
Arm® Architecture Reference Manual
for A-profile architecture
Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0487K.a (ID032224)

Arm Architecture Reference Manual

Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved.

Release Information

The following releases of this document have been made.

Release history

Date Issue Confidentiality Change

30 April 2013 A.a-1 Confidential-Beta Draft Beta draft of first issue, limited circulation

12 June 2013 A.a-2 Confidential-Beta Draft Second beta draft of first issue, limited circulation

04 September 2013 A.a Non-Confidential Beta Beta release

24 December 2013 A.b Non-Confidential Beta Second beta release

18 July 2014 A.c Non-Confidential Beta Third beta release

09 October 2014 A.d Non-Confidential Beta Fourth beta release

17 December 2014 A.e Non-Confidential Beta Fifth beta release

25 March 2015 A.f Non-Confidential Beta Sixth beta release

10 July 2015 A.g Non-Confidential Beta Seventh beta release

30 September 2015 A.h Non-Confidential Beta Eighth beta release

28 January 2016 A.i Non-Confidential Beta Ninth beta release

03 June 2016 A.j Non-Confidential EAC EAC release

30 September 2016 A.k Non-Confidential Armv8.0 EAC Updated EAC release

31 March 2017 B.a Non-Confidential Armv8.1 EAC, v8.2 Beta Initial release incorporating Armv8.1 and Armv8.2

26 September 2017 B.b Non-Confidential Armv8.2 EAC Initial Armv8.2 EAC release, incorporating SPE

20 December 2017 C.a Non-Confidential Armv8.3 EAC Initial Armv8.3 EAC release

31 October 2018 D.a Non-Confidential Armv8.4 EAC Initial Armv8.4 EAC release

29 April 2019 D.b Non-Confidential Armv8.4 EAC Updated Armv8.4 EAC release incorporating accessibility changes

05 July 2019 E.a Non-Confidential Armv8.5 EAC Initial Armv8.5 EAC release

20 February 2020 F.a Non-Confidential Armv8.6 Beta Initial Armv8.6 Beta release

31 March 2020 F.b Non-Confidential Armv8.5 EAC, v8.6 Beta Armv8.5 EAC release, initial Armv8.6 Beta release

17 July 2020 F.c Non-Confidential Armv8.6 EAC Initial Armv8.6 EAC release

22 January 2021 G.a Non-Confidential Armv8.7 EAC Initial Armv8.7 EAC release

22 July 2021 G.b Non-Confidential Armv8.7 EAC Updated Armv8.7 EAC release

04 February 2022 H.a Non-Confidential Armv8.8 and Armv9.3
EAC

Initial Armv8.8 and Armv9 EAC release, incorporating SVE

19 August 2022 I.a Non-Confidential Armv8.8 and Armv9.3
EAC release

Updated Armv9 EAC release incorporating BRBE, ETE, and TRBE

21 April 2023 J.a Non-Confidential Armv8.8 and Armv9.3
EAC release

Updated Armv9 EAC release incorporating MEC, RAS, and RME

20 March 2024 K.a Non-Confidential Armv8.9 and Armv9.4
EAC release

Initial Armv8.9 and Armv9.4 EAC release, incorporating MPAM and
SME
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. ii
ID032224 Non-Confidential

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2013-2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

In this document, where the term Arm is used to refer to the company it means “Arm or any of its affiliates as appropriate”.

Note
The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture. The
context makes it clear when the term is used in this way.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

The information in this manual is at EAC quality, which means that all features of the specification are described in the manual.

This document includes the A-profile system registers, instructions and pseudocode corresponding to the 2022-12 version of the
A-profile XML published on developer.arm.com. The register descriptions relating to feature FEAT_MEC are at Alpha quality.
Alpha quality means that most major features of the specification are described in the manual, some features and details might be
missing.

Web Address

http://www.arm.com
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. iii
ID032224 Non-Confidential

Limitations of this issue

This issue of the Arm Architecture Reference Manual contains many improvements and corrections. Validation of this document
has identified the following issues that Arm will address in future issues:

• Some diagrams in the register descriptions chapter have long field names that split over several lines. These are not wrong,
and the descriptions list the field name correctly.

• Appendix K16 Arm Pseudocode Definition requires further review and update. Since this appendix is informative, rather
than being part of the architecture specification, this does not affect the quality status of this release.

• For a list of the known issues in this Manual, please refer to the Known Issues document on
https://developer.arm.com/documentation/102105/latest.

• For a list of the known issues in the most recent register and instruction XML releases content, please refer to the Release
Notes on https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. iv
ID032224 Non-Confidential

Contents
Arm Architecture Reference Manual for A-profile
architecture

Preface
About this Manual ... xx
Using this Manual ... xxii
Conventions .. xxix
Additional reading .. xxxii
Feedback .. xxxiv

Part A Arm Architecture Introduction and Overview

Chapter A1 Introduction to the Arm Architecture
A1.1 About the Arm architecture ... A1-37
A1.2 Architecture profiles .. A1-39
A1.3 Arm architectural concepts .. A1-41
A1.4 Supported data types .. A1-45
A1.5 Floating-point support ... A1-59
A1.6 The Arm memory model .. A1-77
A1.7 Reliability, Availability, and Serviceability .. A1-78

Chapter A2 A-profile Architecture Extensions
A2.1 About the A-profile architecture extensions ... A2-84
A2.2 Armv8-A architecture extensions .. A2-85
A2.3 Armv9-A architecture extensions .. A2-159
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. v
ID032224 Non-Confidential

Part B The AArch64 Application Level Architecture

Chapter B1 The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model .. B1-178
B1.2 Registers in AArch64 Execution state ... B1-179
B1.3 Process state, PSTATE .. B1-184
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME) B1-187
B1.5 Software control features and EL0 .. B1-215

Chapter B2 The AArch64 Application Level Memory Model
B2.1 About the Arm memory model ... B2-220
B2.2 Atomicity in the Arm architecture ... B2-222
B2.3 Definition of the Arm memory model ... B2-227
B2.4 Completion and endpoint ordering .. B2-259
B2.5 SVE memory ordering relaxations ... B2-261
B2.6 Streaming SVE mode memory ordering relaxations ... B2-262
B2.7 Ordering rules for GCS ... B2-263
B2.8 Ordering of instruction fetches .. B2-264
B2.9 Restrictions on the effects of speculation .. B2-265
B2.10 Memory barriers .. B2-269
B2.11 Limited ordering regions .. B2-277
B2.12 Caches and memory hierarchy ... B2-278
B2.13 Alignment support ... B2-283
B2.14 Endian support .. B2-286
B2.15 Memory types and attributes ... B2-290
B2.16 Mismatched memory attributes ... B2-303
B2.17 Synchronization and semaphores ... B2-306

Part C The AArch64 Instruction Set

Chapter C1 The A64 Instruction Set
C1.1 About the A64 instruction set .. C1-319
C1.2 Structure of the A64 assembler language ... C1-320
C1.3 Address generation ... C1-327
C1.4 Instruction aliases ... C1-330

Chapter C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions .. C2-332
C2.2 General information about the A64 instruction descriptions C2-335

Chapter C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions C3-339
C3.2 Loads and stores ... C3-347
C3.3 Loads and stores - SVE .. C3-375
C3.4 Loads and stores - SME, SME2, SVE2p1 ... C3-385
C3.5 Data processing - immediate ... C3-391
C3.6 Data processing - register ... C3-396
C3.7 Data processing - SIMD and floating-point .. C3-405
C3.8 Data processing - SVE .. C3-432
C3.9 Data processing - SVE2 .. C3-462
C3.10 Data processing - SME, SME2 .. C3-487

Chapter C4 A64 Instruction Set Encoding
C4.1 A64 instruction set encoding ... C4-504
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. vi
ID032224 Non-Confidential

Chapter C5 The A64 System Instruction Class
C5.1 The System instruction class encoding space .. C5-865
C5.2 Special-purpose registers ... C5-885
C5.3 A64 System instructions for cache maintenance .. C5-994
C5.4 A64 System instructions for address translation ... C5-1063
C5.5 A64 System instructions for TLB maintenance ... C5-1092
C5.6 A64 System instructions for prediction restriction ... C5-1604
C5.7 A64 System instructions for the Branch Record Buffer Extension C5-1621
C5.8 A64 System instructions for the Trace Extension .. C5-1626
C5.9 A64 System instructions for the Guarded Control Stack C5-1628

Chapter C6 A64 Base Instruction Descriptions
C6.1 About the A64 base instructions ... C6-1639
C6.2 Alphabetical list of A64 base instructions .. C6-1642

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 Advanced SIMD and floating-point instructions C7-2603
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions C7-2605

Chapter C8 SVE Instruction Descriptions
C8.1 About the SVE instructions ... C8-3537
C8.2 Alphabetical list of SVE instructions .. C8-3538

Chapter C9 SME Instruction Descriptions
C9.1 About the SME instructions ... C9-5388
C9.2 Alphabetical list of SME instructions ... C9-5389

Part D The AArch64 System Level Architecture

Chapter D1 The AArch64 System Level Programmers’ Model
D1.1 Exception levels .. D1-6051
D1.2 Registers for instruction processing and exception handling D1-6057
D1.3 Exceptions ... D1-6060
D1.4 Process state, PSTATE .. D1-6110
D1.5 Resets and power domains ... D1-6113
D1.6 Mechanisms for entering a low-power state .. D1-6116
D1.7 Self-hosted debug ... D1-6122
D1.8 Event monitors .. D1-6124
D1.9 Interprocessing .. D1-6125
D1.10 Check Feature ... D1-6132

Chapter D2 AArch64 Self-hosted Debug
D2.1 About self-hosted debug ... D2-6135
D2.2 Routing debug exceptions ... D2-6139
D2.3 The debug exception enable controls ... D2-6141
D2.4 The effect of powerdown on debug exceptions ... D2-6143
D2.5 Summary of the routing and enabling of debug exceptions D2-6144
D2.6 Pseudocode description of debug exceptions ... D2-6146
D2.7 Breakpoint Instruction exceptions ... D2-6147
D2.8 Breakpoint exceptions ... D2-6150
D2.9 Watchpoint exceptions .. D2-6176
D2.10 Vector Catch exceptions ... D2-6196
D2.11 Software Step exceptions ... D2-6197
D2.12 Synchronization and debug exceptions .. D2-6211
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. vii
ID032224 Non-Confidential

Chapter D3 AArch64 Self-hosted Trace
D3.1 About self-hosted trace ... D3-6213
D3.2 Prohibited regions in self-hosted trace .. D3-6215
D3.3 Self-hosted trace timestamps .. D3-6217
D3.4 Synchronization in self-hosted trace ... D3-6218

Chapter D4 The Embedded Trace Extension
D4.1 About the Embedded Trace Extension ... D4-6220
D4.2 Programmers’ model ... D4-6228
D4.3 Trace elements ... D4-6232
D4.4 Instruction and exception classification ... D4-6250
D4.5 About the ETE trace unit ... D4-6260
D4.6 Resource operation ... D4-6307

Chapter D5 ETE Protocol Descriptions
D5.1 About the ETE protocol ... D5-6340
D5.2 Summary list of ETE packets .. D5-6343
D5.3 Alphabetical list of ETE packets .. D5-6346

Chapter D6 The Trace Buffer Extension
D6.1 About the Trace Buffer Extension ... D6-6472
D6.2 The trace buffer ... D6-6475
D6.3 Trace buffer Self-hosted mode .. D6-6480
D6.4 Trace buffer External mode ... D6-6489
D6.5 Trace buffer management ... D6-6494
D6.6 Synchronization and the Trace Buffer Unit .. D6-6502
D6.7 Trace synchronization and memory barriers ... D6-6507
D6.8 Trace of Speculative execution ... D6-6508
D6.9 Trace in Debug state ... D6-6510
D6.10 Synchronization litmus tests .. D6-6511
D6.11 UNPREDICTABLE behavior ... D6-6515

Chapter D7 The AArch64 System Level Memory Model
D7.1 About the memory system architecture ... D7-6517
D7.2 Address space .. D7-6518
D7.3 Mixed-endian support in AArch64 ... D7-6519
D7.4 Memory Encryption Contexts .. D7-6520
D7.5 Cache support ... D7-6522
D7.6 External aborts .. D7-6556
D7.7 Memory barrier instructions ... D7-6558
D7.8 Pseudocode description of general memory System instructions D7-6559

Chapter D8 The AArch64 Virtual Memory System Architecture
D8.1 Address translation ... D8-6564
D8.2 Translation process ... D8-6582
D8.3 Translation table descriptor formats .. D8-6623
D8.4 Memory access control ... D8-6647
D8.5 Hardware updates to the translation tables ... D8-6675
D8.6 Memory region attributes .. D8-6686
D8.7 Other descriptor fields ... D8-6696
D8.8 Address tagging .. D8-6701
D8.9 Logical Address Tagging ... D8-6703
D8.10 Pointer authentication ... D8-6705
D8.11 Memory Encryption Contexts extension .. D8-6710
D8.12 Virtualization Host Extensions ... D8-6713
D8.13 Nested virtualization .. D8-6720
D8.14 Memory aborts .. D8-6729
D8.15 Translation Lookaside Buffers ... D8-6745
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. viii
ID032224 Non-Confidential

D8.16 TLB maintenance .. D8-6750
D8.17 Caches .. D8-6772
D8.18 Pseudocode description of VMSAv8-64 address translation D8-6774

Chapter D9 The Granule Protection Check Mechanism
D9.1 GPC behavior overview .. D9-6777
D9.2 GPC faults ... D9-6778
D9.3 GPT caching and invalidation ... D9-6780
D9.4 GPT formats .. D9-6783
D9.5 GPT lookup process .. D9-6788

Chapter D10 The Memory Tagging Extension
D10.1 Introduction ... D10-6791
D10.2 Allocation Tags .. D10-6792
D10.3 Memory region tagging types .. D10-6793
D10.4 Tag checking ... D10-6795
D10.5 Allocation Tag Access controls ... D10-6798
D10.6 Physical Tag locations .. D10-6799
D10.7 Tag Check Faults .. D10-6801

Chapter D11 The Guarded Control Stack
D11.1 Introduction ... D11-6804
D11.2 The Guarded Control Stack .. D11-6805
D11.3 Procedure returns ... D11-6806
D11.4 Exception returns .. D11-6809
D11.5 Stage 1 permission model ... D11-6813
D11.6 Stage 2 Permission model .. D11-6815
D11.7 Guarded Control Stack switching .. D11-6816
D11.8 Guarded Control Stack exceptions ... D11-6819
D11.9 Guarded Control Stack data accesses .. D11-6820
D11.10 Detecting when FEAT_GCS is enabled ... D11-6828

Chapter D12 The Generic Timer in AArch64 state
D12.1 About the Generic Timer ... D12-6830
D12.2 The AArch64 view of the Generic Timer ... D12-6835

Chapter D13 The Performance Monitors Extension
D13.1 About the Performance Monitors .. D13-6844
D13.2 Accuracy of the Performance Monitors ... D13-6848
D13.3 Behavior on overflow ... D13-6852
D13.4 Attributability .. D13-6861
D13.5 Controlling the PMU counters ... D13-6863
D13.6 Multithreaded implementations ... D13-6869
D13.7 Event filtering .. D13-6871
D13.8 Event counting threshold ... D13-6873
D13.9 PMU snapshots ... D13-6877
D13.10 Performance Monitors and Debug state .. D13-6881
D13.11 Counter access ... D13-6882
D13.12 PMU events and event numbers ... D13-6885
D13.13 Performance Monitors Extension registers ... D13-7108

Chapter D14 The System Performance Monitors Extension
D14.1 About the System Performance Monitors .. D14-7110
D14.2 System PMU configuration .. D14-7111
D14.3 Accessing System PMUs .. D14-7113
D14.4 Generating System PMU overflow interrupt requests D14-7114
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. ix
ID032224 Non-Confidential

Chapter D15 The Activity Monitors Extension
D15.1 About the Activity Monitors Extension ... D15-7116
D15.2 Properties and behavior of the activity monitors ... D15-7117
D15.3 AMU events and event numbers ... D15-7119

Chapter D16 The Statistical Profiling Extension
D16.1 About the Statistical Profiling Extension .. D16-7121
D16.2 Defining the sample population ... D16-7123
D16.3 Controlling when an operation is sampled .. D16-7124
D16.4 Enabling profiling ... D16-7127
D16.5 Filtering sample records .. D16-7129
D16.6 The profiling data .. D16-7131
D16.7 The Profiling Buffer ... D16-7145
D16.8 Profiling Buffer management ... D16-7151
D16.9 Synchronization and Statistical Profiling ... D16-7157

Chapter D17 Statistical Profiling Extension Sample Record Specification
D17.1 About the Statistical Profiling Extension sample records D17-7160
D17.2 Alphabetical list of Statistical Profiling Extension packets D17-7163

Chapter D18 The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension .. D18-7201
D18.2 Branch record filtering ... D18-7207
D18.3 Branch record buffer operation ... D18-7211
D18.4 Branch record buffer ... D18-7214
D18.5 Programmers’ model ... D18-7216

Chapter D19 RAS PE Architecture
D19.1 About the RAS Extension .. D19-7220
D19.2 PE error handling .. D19-7221
D19.3 Generating error exceptions .. D19-7226
D19.4 Taking error exceptions ... D19-7227
D19.5 Error synchronization event .. D19-7238
D19.6 Virtual SError exceptions .. D19-7245
D19.7 Error records in the PE .. D19-7246

Chapter D20 MPAM PE Architecture
D20.1 About the MPAM Extension .. D20-7252
D20.2 Memory-system resource partitioning .. D20-7253
D20.3 Memory-system resource usage monitoring ... D20-7254
D20.4 Memory-system components .. D20-7255
D20.5 Versions of the MPAM Extension .. D20-7256
D20.6 Example uses ... D20-7259
D20.7 ID Types, Properties, and Spaces .. D20-7260
D20.8 ID types and properties .. D20-7261
D20.9 Physical address spaces .. D20-7262
D20.10 PARTID spaces and properties .. D20-7263
D20.11 Maximum PARTID number ... D20-7266
D20.12 Default PARTID ... D20-7267
D20.13 Default PMG ... D20-7268
D20.14 Memory-System Propagation of MPAM information D20-7269
D20.15 PE behavior ... D20-7270
D20.16 Other Requesters with MPAM .. D20-7271
D20.17 The MPAM for RME system .. D20-7272
D20.18 PE Generation of MPAM Information .. D20-7274
D20.19 MPAM System registers .. D20-7275
D20.20 Instruction, data, translation table walk, and other accesses D20-7278
D20.21 Security ... D20-7279
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. x
ID032224 Non-Confidential

D20.22 PARTID virtualization .. D20-7282
D20.23 MPAM AArch32 interoperability .. D20-7287
D20.24 Support for nested virtualization .. D20-7288
D20.25 MPAM errors and default ID generation .. D20-7291
D20.26 MPAM for RME PE generation of MPAM information D20-7293
D20.27 Synchronization of MPAM System register changes D20-7297
D20.28 Summary of System registers ... D20-7298
D20.29 MPAM enable .. D20-7299
D20.30 SDEFLT .. D20-7300
D20.31 Lower-EL MPAM register access trapping .. D20-7301
D20.32 FORCE_NS ... D20-7302
D20.33 Reset ... D20-7303
D20.34 Unimplemented Exception levels .. D20-7304

Chapter D21 The Scalable Matrix Extension
D21.1 Overview ... D21-7307
D21.2 SME traps and exceptions .. D21-7308
D21.3 Validity of SME and SVE state .. D21-7309
D21.4 Streaming execution priority .. D21-7310
D21.5 Floating-point behaviors in Streaming SVE mode ... D21-7312
D21.6 Floating-point behaviors for instructions that target the SME ZA array D21-7313
D21.7 Security and power considerations ... D21-7314

Chapter D22 AArch64 System Register Encoding
D22.1 The System register encoding space .. D22-7316
D22.2 Moves to and from debug and trace System registers D22-7317
D22.3 Moves to and from non-debug System registers, Special-purpose registers D22-7323

Chapter D23 AArch64 System Register Descriptions
D23.1 About the AArch64 System registers .. D23-7348
D23.2 General system control registers ... D23-7357
D23.3 Debug registers ... D23-8521
D23.4 Trace registers .. D23-8665
D23.5 Performance Monitors registers .. D23-8920
D23.6 Activity Monitors registers ... D23-9140
D23.7 Statistical Profiling Extension registers ... D23-9182
D23.8 Branch Record Buffer Extension registers .. D23-9261
D23.9 RAS registers .. D23-9307
D23.10 Generic Timer registers ... D23-9358
D23.11 Guarded Control Stack registers ... D23-9472
D23.12 MPAM registers ... D23-9496

Part E The AArch32 Application Level Architecture

Chapter E1 The AArch32 Application Level Programmers’ Model
E1.1 About the Application level programmers’ model .. E1-9554
E1.2 The Application level programmers’ model in AArch32 state E1-9555
E1.3 Advanced SIMD and floating-point instructions ... E1-9566
E1.4 About the AArch32 System register interface ... E1-9586
E1.5 Exceptions .. E1-9587

Chapter E2 The AArch32 Application Level Memory Model
E2.1 About the Arm memory model ... E2-9590
E2.2 Atomicity in the Arm architecture ... E2-9592
E2.3 Definition of the memory model ... E2-9597
E2.4 Ordering of translation table walks .. E2-9609
E2.5 Caches and memory hierarchy ... E2-9610
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xi
ID032224 Non-Confidential

E2.6 Alignment support ... E2-9615
E2.7 Endian support .. E2-9617
E2.8 Memory types and attributes ... E2-9621
E2.9 Mismatched memory attributes ... E2-9632
E2.10 Synchronization and semaphores ... E2-9635

Part F The AArch32 Instruction Sets

Chapter F1 About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions .. F1-9648
F1.2 Standard assembler syntax fields .. F1-9652
F1.3 Conditional execution ... F1-9653
F1.4 Shifts applied to a register .. F1-9655
F1.5 Memory accesses .. F1-9657
F1.6 Encoding of lists of general-purpose registers and the PC F1-9658
F1.7 General information about the T32 and A32 instruction descriptions F1-9659
F1.8 Additional pseudocode support for instruction descriptions F1-9672
F1.9 Additional information about Advanced SIMD and floating-point instructions .. F1-9673

Chapter F2 The AArch32 Instruction Sets Overview
F2.1 Support for instructions in different versions of the Arm architecture F2-9680
F2.2 Unified Assembler Language ... F2-9681
F2.3 Branch instructions ... F2-9683
F2.4 Data-processing instructions .. F2-9684
F2.5 PSTATE and banked register access instructions ... F2-9692
F2.6 Load/store instructions ... F2-9693
F2.7 Load/store multiple instructions .. F2-9696
F2.8 Miscellaneous instructions ... F2-9697
F2.9 Exception-generating and exception-handling instructions F2-9699
F2.10 System register access instructions ... F2-9701
F2.11 Advanced SIMD and floating-point load/store instructions F2-9702
F2.12 Advanced SIMD and floating-point register transfer instructions F2-9704
F2.13 Advanced SIMD data-processing instructions .. F2-9705
F2.14 Floating-point data-processing instructions .. F2-9716

Chapter F3 T32 Instruction Set Encoding
F3.1 T32 instruction set encoding .. F3-9719
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding F3-9794

Chapter F4 A32 Instruction Set Encoding
F4.1 A32 instruction set encoding .. F4-9796
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding F4-9862

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions F5-9864
F5.2 Encoding and use of banked register transfer instructions F5-10580

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions F6-10585

Part G The AArch32 System Level Architecture

Chapter G1 The AArch32 System Level Programmers’ Model
G1.1 About the AArch32 System level programmers’ model G1-11316
G1.2 Exception levels .. G1-11317
G1.3 Exception terminology ... G1-11319
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xii
ID032224 Non-Confidential

G1.4 Execution state .. G1-11321
G1.5 Instruction Set state .. G1-11323
G1.6 Security state .. G1-11324
G1.7 Security state, Exception levels, and AArch32 execution privilege G1-11327
G1.8 Virtualization .. G1-11329
G1.9 AArch32 state PE modes .. G1-11332
G1.10 AArch32 general-purpose registers, the PC, and the Special-purpose registers G1-11338
G1.11 Process state, PSTATE .. G1-11341
G1.12 Instruction set states ... G1-11347
G1.13 Handling exceptions that are taken to an Exception level using AArch32 G1-11349
G1.14 Routing of aborts taken to AArch32 state ... G1-11369
G1.15 Exception return to an Exception level using AArch32 G1-11372
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state G1-11377
G1.17 AArch32 state exception descriptions ... G1-11385
G1.18 Reset into AArch32 state .. G1-11407
G1.19 Mechanisms for entering a low-power state .. G1-11409
G1.20 The AArch32 System register interface ... G1-11415
G1.21 Advanced SIMD and floating-point support ... G1-11418
G1.22 Configurable instruction controls ... G1-11423

Chapter G2 AArch32 Self-hosted Debug
G2.1 About self-hosted debug ... G2-11430
G2.2 Routing debug exceptions ... G2-11434
G2.3 The debug exception enable controls ... G2-11436
G2.4 The effect of powerdown on debug exceptions ... G2-11438
G2.5 Summary of permitted routing and enabling of debug exceptions G2-11439
G2.6 Pseudocode description of debug exceptions ... G2-11441
G2.7 Breakpoint Instruction exceptions ... G2-11442
G2.8 Breakpoint exceptions ... G2-11445
G2.9 Watchpoint exceptions .. G2-11472
G2.10 Vector Catch exceptions ... G2-11487
G2.11 Synchronization and debug exceptions .. G2-11495

Chapter G3 AArch32 Self-hosted Trace
G3.1 About self-hosted trace ... G3-11498
G3.2 Prohibited regions in self-hosted trace .. G3-11500
G3.3 Self-hosted trace timestamps .. G3-11501
G3.4 Synchronization in self-hosted trace ... G3-11502

Chapter G4 The AArch32 System Level Memory Model
G4.1 About the memory system architecture ... G4-11504
G4.2 Address space .. G4-11505
G4.3 Mixed-endian support in AArch32 ... G4-11506
G4.4 AArch32 cache and branch predictor support ... G4-11507
G4.5 System register support for IMPLEMENTATION DEFINED memory features G4-11534
G4.6 External aborts .. G4-11535
G4.7 Memory barrier instructions ... G4-11537
G4.8 Pseudocode description of general memory System instructions G4-11538

Chapter G5 The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32 ... G5-11543
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior G5-11552
G5.3 Translation tables .. G5-11556
G5.4 The VMSAv8-32 Short-descriptor translation table format G5-11561
G5.5 The VMSAv8-32 Long-descriptor translation table format G5-11570
G5.6 Memory access control ... G5-11590
G5.7 Memory region attributes .. G5-11601
G5.8 Translation Lookaside Buffers ... G5-11614
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xiii
ID032224 Non-Confidential

G5.9 TLB maintenance requirements .. G5-11618
G5.10 Caches in VMSAv8-32 .. G5-11634
G5.11 VMSAv8-32 memory aborts .. G5-11637
G5.12 Exception reporting in a VMSAv8-32 implementation G5-11650
G5.13 Address translation instructions .. G5-11670
G5.14 Pseudocode description of VMSAv8-32 memory system operations G5-11677
G5.15 About the System registers for VMSAv8-32 .. G5-11680
G5.16 Functional grouping of VMSAv8-32 System registers G5-11686

Chapter G6 The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state .. G6-11688
G6.2 The AArch32 view of the Generic Timer ... G6-11693

Chapter G7 AArch32 System Register Encoding
G7.1 The AArch32 System register encoding space ... G7-11701
G7.2 Organization of registers in the (coproc==0b1110) encoding space G7-11702
G7.3 Organization of registers in the (coproc==0b1111) encoding space G7-11705

Chapter G8 AArch32 System Register Descriptions
G8.1 About the AArch32 System registers .. G8-11722
G8.2 General system control registers ... G8-11737
G8.3 Debug registers ... G8-12238
G8.4 Performance Monitors registers .. G8-12379
G8.5 Activity Monitors registers ... G8-12470
G8.6 RAS registers .. G8-12506
G8.7 Generic Timer registers ... G8-12568

Part H External Debug

Chapter H1 About External Debug
H1.1 Introduction to external debug ... H1-12651
H1.2 External debug .. H1-12653
H1.3 Required debug authentication ... H1-12654

Chapter H2 Debug State
H2.1 About Debug state .. H2-12657
H2.2 Halting the PE on debug events .. H2-12658
H2.3 Entering Debug state .. H2-12665
H2.4 Behavior in Debug state .. H2-12669
H2.5 Exiting Debug state ... H2-12704

Chapter H3 Halting Debug Events
H3.1 Introduction to Halting debug events ... H3-12707
H3.2 Halting Step debug events .. H3-12709
H3.3 Halt Instruction debug event ... H3-12719
H3.4 Exception Catch debug event ... H3-12720
H3.5 External Debug Request debug event .. H3-12725
H3.6 OS Unlock Catch debug event .. H3-12728
H3.7 Reset Catch debug events .. H3-12729
H3.8 Software Access debug event ... H3-12730
H3.9 Synchronization and Halting debug events ... H3-12731

Chapter H4 The Debug Communication Channel and Instruction Transfer Register
H4.1 Introduction ... H4-12734
H4.2 DCC and ITR registers .. H4-12735
H4.3 DCC and ITR access modes ... H4-12738
H4.4 Flow control of the DCC and ITR registers .. H4-12742
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xiv
ID032224 Non-Confidential

H4.5 Synchronization of DCC and ITR accesses .. H4-12746
H4.6 Interrupt-driven use of the DCC .. H4-12752
H4.7 Pseudocode description of the operation of the DCC and ITR registers H4-12753

Chapter H5 The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger .. H5-12755
H5.2 Basic operation on the ECT .. H5-12757
H5.3 Cross-triggers on a PE in an Arm A-profile implementation H5-12761
H5.4 Description and allocation of CTI triggers ... H5-12762
H5.5 CTI registers programmers’ model .. H5-12767
H5.6 Examples .. H5-12768

Chapter H6 Debug Reset and Powerdown Support
H6.1 About Debug over powerdown .. H6-12772
H6.2 Power domains and debug ... H6-12773
H6.3 Core power domain power states .. H6-12774
H6.4 Powerup request mechanism .. H6-12776
H6.5 Emulating low-power states .. H6-12778
H6.6 Debug OS Save and Restore sequences ... H6-12780
H6.7 Reset and debug ... H6-12786

Chapter H7 The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension .. H7-12789

Chapter H8 About the External Debug Registers
H8.1 Relationship between external debug and System registers H8-12795
H8.2 Endianness and supported access sizes .. H8-12796
H8.3 Synchronization of changes to the external debug registers H8-12797
H8.4 Memory-mapped accesses to the external debug interface H8-12801
H8.5 External debug interface register access permissions H8-12804
H8.6 External debug interface registers .. H8-12808
H8.7 Cross-trigger interface registers ... H8-12815
H8.8 External debug register resets .. H8-12818

Chapter H9 External Debug Register Descriptions
H9.1 About the external debug registers ... H9-12822
H9.2 External debug registers ... H9-12823
H9.3 External trace registers ... H9-12956
H9.4 External Trace Buffer registers .. H9-13116
H9.5 Cross-Trigger Interface registers ... H9-13172

Part I Memory-mapped Components of the Arm Architecture

Chapter I1 Requirements for Memory-mapped Components
I1.1 Supported access sizes .. I1-13227
I1.2 Synchronization of memory-mapped registers .. I1-13229
I1.3 Access requirements for reserved and unallocated registers I1-13231

Chapter I2 System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification .. I2-13233
I2.2 Memory-mapped counter module ... I2-13235
I2.3 Memory-mapped timer components .. I2-13239

Chapter I3 Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers I3-13245
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xv
ID032224 Non-Confidential

Chapter I4 Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers I4-13253

Chapter I5 RAS System Architecture
I5.1 About the RAS System Architecture ... I5-13256
I5.2 Nodes .. I5-13257
I5.3 Detecting and consuming errors ... I5-13260
I5.4 Standard error record .. I5-13263
I5.5 Error recovery interrupt ... I5-13280
I5.6 Fault handling interrupt ... I5-13281
I5.7 In-band error response signaling .. I5-13283
I5.8 Critical error interrupt ... I5-13284
I5.9 Standard format Corrected error counter .. I5-13285
I5.10 Error recovery, fault handling, and critical error signaling I5-13287
I5.11 Error record reset .. I5-13290
I5.12 The RAS Timestamp Extension .. I5-13292
I5.13 The Common Fault Injection Model Extension .. I5-13293
I5.14 IMPLEMENTATION DEFINED fault or error injection models I5-13297
I5.15 Memory-mapped view ... I5-13298
I5.16 Reset values ... I5-13303

Chapter I6 External System Control Register Descriptions
I6.1 About the external system control register descriptions I6-13305
I6.2 External Performance Monitors registers summary .. I6-13307
I6.3 Performance Monitors external register descriptions I6-13313
I6.4 External Activity Monitors Extension registers summary I6-13459
I6.5 Activity Monitors external register descriptions ... I6-13462
I6.6 Generic Timer memory-mapped registers overview I6-13511
I6.7 Generic Timer memory-mapped register descriptions I6-13512
I6.8 RAS registers summary .. I6-13557
I6.9 RAS register descriptions .. I6-13563

Part J Architectural Pseudocode

Chapter J1 Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation ... J1-13693
J1.2 Pseudocode for AArch32 operation ... J1-14014
J1.3 Shared pseudocode ... J1-14115

Part K Appendixes

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors K1-14364
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors K1-14388

Appendix K2 Recommendations for Reporting Memory Attributes on an Interconnect
K2.1 Arm recommendations for reporting memory attributes on an interconnect . K2-14410

Appendix K3 GCS Software Usage Examples
K3.1 Recording the call stacks from the current PE .. K3-14412
K3.2 Recording the call stacks from a different PE ... K3-14413
K3.3 Overwriting a Guarded Control Stack record from a higher Exception level . K3-14414
K3.4 Thread migration between PEs ... K3-14415
K3.5 Switching EL0 Guarded Control Stacks from EL1 ... K3-14416
K3.6 Synchronization of GCS accesses .. K3-14417
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xvi
ID032224 Non-Confidential

Appendix K4 ETE Recommended Configurations
K4.1 Configurations ... K4-14424

Appendix K5 ETE and TRBE Software Usage Examples
K5.1 Trace analyzer .. K5-14426
K5.2 ETE programming ... K5-14472
K5.3 Trace examples ... K5-14479
K5.4 Differences between ETM and ETE .. K5-14490
K5.5 Context switching .. K5-14492
K5.6 Controlling generation of trace buffer management events K5-14494

Appendix K6 Stages of Execution
K6.1 Stages of execution without the TME .. K6-14496
K6.2 Stages of execution with the TME ... K6-14497

Appendix K7 Recommended External Debug Interface
K7.1 About the recommended external debug interface K7-14499
K7.2 PMUEVENT bus ... K7-14503
K7.3 Recommended authentication interface .. K7-14504
K7.4 Management registers and CoreSight compliance K7-14506

Appendix K8 Additional Information for Implementations of the Generic Timer
K8.1 Providing a complete set of features in a system level implementation K8-14520
K8.2 Gray count scheme for timer distribution scheme ... K8-14523

Appendix K9 Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax ... K9-14525

Appendix K10 Address Translation Examples
K10.1 AArch64 Address translation examples .. K10-14533
K10.2 AArch32 Address translation examples .. K10-14547

Appendix K11 Example OS Save and Restore Sequences
K11.1 Save Debug registers .. K11-14557
K11.2 Restore Debug registers ... K11-14559

Appendix K12 Recommended Upload and Download Processes for External Debug
K12.1 Using memory access mode in AArch64 state .. K12-14562

Appendix K13 Software Usage Examples
K13.1 Use of the Advanced SIMD complex number instructions K13-14567
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension K13-14569

Appendix K14 Barrier Litmus Tests
K14.1 Introduction ... K14-14577
K14.2 Load-Acquire, Store-Release and barriers .. K14-14580
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers K14-14584
K14.4 Using a mailbox to send an interrupt ... K14-14589
K14.5 Cache and TLB maintenance instructions and barriers K14-14590
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers K14-14602

Appendix K15 Random Number Generation
K15.1 Properties of the generated random number .. K15-14616

Appendix K16 Arm Pseudocode Definition
K16.1 About the Arm pseudocode ... K16-14618
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xvii
ID032224 Non-Confidential

K16.2 Pseudocode for instruction descriptions .. K16-14619
K16.3 Data types ... K16-14622
K16.4 Operators .. K16-14627
K16.5 Statements and control structures .. K16-14633
K16.6 Built-in functions .. K16-14638
K16.7 Miscellaneous helper procedures and functions ... K16-14641
K16.8 Arm pseudocode definition index .. K16-14643

Appendix K17 Registers Index
K17.1 Introduction and register disambiguation .. K17-14647
K17.2 Alphabetical index of AArch64 registers and System instructions K17-14659
K17.3 Functional index of AArch64 registers and System instructions K17-14684
K17.4 Alphabetical index of AArch32 registers and System instructions K17-14710
K17.5 Functional index of AArch32 registers and System instructions K17-14720
K17.6 Alphabetical index of memory-mapped registers .. K17-14732
K17.7 Functional index of memory-mapped registers ... K17-14741

Glossary
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xviii
ID032224 Non-Confidential

Preface

This preface introduces the Arm Architecture Reference Manual, for A-profile architecture. It contains the following
sections:

• About this Manual.

• Using this Manual.

• Conventions.

• Additional reading.

• Feedback.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xix
ID032224 Non-Confidential

Preface
 About this Manual
About this Manual

This Manual describes the Arm® architecture v8, Armv8, and the Arm® architecture v9, Armv9. The architecture
describes the operation of an Armv8-A and an Armv9-A Processing element (PE), and this Manual includes
descriptions of:

• The two Execution states, AArch64 and AArch32.

• The instruction sets:

— In AArch32 state, the A32 and T32 instruction sets, which are compatible with earlier versions of the
Arm architecture.

— In AArch64 state, the A64 instruction set.

• The states that determine how a PE operates, including the current Exception level and Security state, and in
AArch32 state the PE mode.

• The Exception model.

• The interprocessing model, that supports transitioning between AArch64 state and AArch32 state.

• The memory model, that defines memory ordering and memory management. This Manual covers the Arm
A architecture profile, both Armv8-A and Armv9-A, that defines a Virtual Memory System Architecture
(VMSA).

• The programmers’ model, and its interfaces to System registers that control most PE and memory system
features, and provide status information.

• The Advanced SIMD and floating-point instructions, which provide high-performance:

— Single-precision, half-precision, and double-precision floating-point operations.

— Conversions between double-precision, single-precision, and half-precision floating-point values.

— Integer, single-precision floating-point, and half-precision floating-point vector operations in all
instruction sets.

— Double-precision floating-point vector operations in the A64 instruction set.

• The security model, which provides up to four Security states to support Secure applications and confidential
computing.

• The virtualization model.

• The Debug architecture, which provides software access to debug features.

This Manual gives the assembler syntax for the instructions it describes, meaning that it describes instructions in
textual form. However, this Manual is not a tutorial for Arm assembler language, nor does it describe Arm assembler
language, except at a basic level. To make effective use of Arm assembler language, read the documentation
supplied with the assembler being used.

This Manual is organized into parts:

Part A Provides an introduction to the Arm architecture, and an overview of the AArch64 and AArch32
Execution states.

Part B Describes the application level view of the AArch64 Execution state, meaning the view from EL0.
It describes the application level view of the programmers’ model and the memory model.

Part C Describes the A64 instruction set, which is available in the AArch64 Execution state. The
descriptions for each instruction also include the precise effects of each instruction when executed
at EL0, described as unprivileged execution, including any restrictions on its use, and how the
effects of the instruction differ at higher Exception levels. This information is of primary importance
to authors and users of compilers, assemblers, and other programs that generate Arm machine code.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xx
ID032224 Non-Confidential

Preface
 About this Manual
Part D Describes the system level view of the AArch64 Execution state. It includes details of the System
registers, most of which are not accessible from EL0, and the system level view of the programmers’
model and the memory model. This part includes the description of self-hosted debug.

Part E Describes the application level view of the AArch32 Execution state, meaning the view from the
EL0. It describes the application level view of the programmers’ model and the memory model.

Note

In AArch32 state, execution at EL0 is execution in User mode.

Part F Describes the T32 and A32 instruction sets, which are available in the AArch32 Execution state.
These instruction sets are backwards-compatible with earlier versions of the Arm architecture. This
part describes the precise effects of each instruction when executed in User mode, described as
unprivileged execution or execution at EL0, including any restrictions on its use, and how the effects
of the instruction differ at higher Exception levels. This information is of primary importance to
authors and users of compilers, assemblers, and other programs that generate Arm machine code.

Note

User mode is the only mode where software execution is unprivileged.

Part G Describes the system level view of the AArch32 Execution state, which is generally compatible with
earlier versions of the Arm architecture. This part includes details of the System registers, most of
which are not accessible from EL0, and the instruction interface to those registers. It also describes
the system level view of the programmers’ model and the memory model.

Part H Describes the Debug architecture for external debug. This provides configuration, breakpoint and
watchpoint support, and a Debug Communications Channel (DCC) to a debug host.

Part I Describes additional features of the architecture that are not closely coupled to a processing element
(PE), and therefore are accessed through memory-mapped interfaces. Some of these features are
OPTIONAL.

Part J Provides pseudocode that describes various features of the Arm architecture.

Part K, Appendixes

Provide additional information. Some appendixes give information that is not part of the A-profile
architectural requirements. The cover page of each appendix indicates its status.

Glossary Defines terms used in this Manual that have a specialized meaning.

Note
Terms that are generally well understood in the microelectronics industry are not included in the
Glossary.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxi
ID032224 Non-Confidential

Preface
 Using this Manual
Using this Manual

The information in this Manual is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A gives an overview of the Armv8-A and Armv9-A architecture profiles, including its relationship to the other
Arm PE architectures. It introduces the terminology used to describe the architecture, and gives an overview of the
Executions states, AArch64 and AArch32. It contains the following chapters:

Chapter A1 Introduction to the Arm Architecture

Read this for an introduction to the Arm architecture.

Chapter A2 A-profile Architecture Extensions

Read this for an introduction to the A-profile architecture extensions and features.

Part B, The AArch64 Application Level Architecture

Part B describes the AArch64 state application level view of the architecture. It contains the following chapters:

Chapter B1 The AArch64 Application Level Programmers’ Model

Read this for an application level description of the programmers’ model for software executing in
AArch64 state. It describes execution at EL0 when EL0 is using AArch64 state.

Chapter B2 The AArch64 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch64 state. It describes the memory model for execution in EL0 when EL0 is using AArch64
state. It includes information about Arm memory types, attributes, and memory access controls.

Part C, The A64 Instruction Set

Part C describes the A64 instruction set, which is used in AArch64 state. It contains the following chapters:

Chapter C1 The A64 Instruction Set

Read this for a description of the A64 instruction set and common instruction operation details.

Chapter C2 About the A64 Instruction Descriptions

Read this to understand the format of the A64 instruction descriptions.

Chapter C3 A64 Instruction Set Overview

Read this for an overview of the A64 instructions.

Chapter C4 A64 Instruction Set Encoding

Read this for a description of the A64 instruction set encoding.

Chapter C5 The A64 System Instruction Class

Read this for a description of the AArch64 System instructions and register descriptions, and the
System instruction class encoding space.

Chapter C6 A64 Base Instruction Descriptions

Read this for information on key aspects of the A64 base instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions

Read this for information on key aspects of the A64 Advanced SIMD and floating-point instructions
and for descriptions of the individual instructions, which are listed in alphabetical order.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxii
ID032224 Non-Confidential

Preface
 Using this Manual
Chapter C8 SVE Instruction Descriptions

Read this for information on key aspects of the SVE instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Chapter C9 SME Instruction Descriptions

Read this for information on key aspects of the SME instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Part D, The AArch64 System Level Architecture

Part D describes the AArch64 state system level view of the architecture. It contains the following chapters:

Chapter D1 The AArch64 System Level Programmers’ Model

Read this for a description of the AArch64 state system level view of the programmers’ model.

Chapter D2 AArch64 Self-hosted Debug

Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter D3 AArch64 Self-hosted Trace

Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter D4 The Embedded Trace Extension

Read this for a description of the Embedded Trace Extension.

Chapter D5 ETE Protocol Descriptions

Read this for a description of the ETE packets, which are listed in alphabetical order.

Chapter D6 The Trace Buffer Extension

Read this for a description of the Trace Buffer Extension.

Chapter D7 The AArch64 System Level Memory Model

Read this for a description of the AArch64 state system level view of the general features of the
memory system.

Chapter D8 The AArch64 Virtual Memory System Architecture

Read this for a system level view of the AArch64 Virtual Memory System Architecture (VMSA), the
memory system architecture of an A-profile architecture implementation executing in AArch64
state.

Chapter D9 The Granule Protection Check Mechanism

Read this for a description of the granule protection check mechanism, a feature that is added as part
of the OPTIONAL Realm Management Extension.

Chapter D10 The Memory Tagging Extension

Read this for a description of the Memory Tagging Extension.

Chapter D11 The Guarded Control Stack

Read this for a description of the Guarded Control Stack extension.

Chapter D12 The Generic Timer in AArch64 state

Read this for a description of the AArch64 view of the Arm Generic Timer.

Chapter D13 The Performance Monitors Extension

Read this for a description of the Arm Performance Monitors, an optional non-invasive debug
component.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxiii
ID032224 Non-Confidential

Preface
 Using this Manual
Chapter D14 The System Performance Monitors Extension

Read this for a description of the System Performance Monitors, an optional non-invasive debug
component.

Chapter D15 The Activity Monitors Extension

Read this for a description of the Arm Activity Monitors.

Chapter D16 The Statistical Profiling Extension

Read this for a description of the Statistical Profiling Extension, an optional AArch64 state
non-invasive debug component.

Chapter D17 Statistical Profiling Extension Sample Record Specification

Read this for a description of the sample records generated by the Statistical Profiling Extension.

Chapter D18 The Branch Record Buffer Extension

Read this for a description of the Branch Record Buffer Extension.

Chapter D19 RAS PE Architecture

Read this for a description of the RAS Extension PE architecture.

Chapter D20 MPAM PE Architecture

Read this for a description of the MPAM Extension PE architecture.

Chapter D21 The Scalable Matrix Extension

Read this for a description of the Scalable Matrix Extension.

Chapter D22 AArch64 System Register Encoding

Read this for a description of the encoding of the AArch64 System registers, and the other uses of
the AArch64 System registers encoding space.

Chapter D23 AArch64 System Register Descriptions

Read this for an introduction to, and description of, each of the AArch64 System registers.

Part E, The AArch32 Application Level Architecture

Part E describes the AArch32 state application level view of the architecture. It contains the following chapters:

Chapter E1 The AArch32 Application Level Programmers’ Model

Read this for an application level description of the programmers’ model for software executing in
AArch32 state. It describes execution at EL0 when EL0 is using AArch32 state.

Chapter E2 The AArch32 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch32 state. It describes the memory model for execution in EL0 when EL0 is using AArch32
state. It includes information about Arm memory types, attributes, and memory access controls.

Part F, The AArch32 Instruction Sets

Part F describes the T32 and A32 instruction sets, which are used in AArch32 state. It contains the following
chapters:

Chapter F1 About the T32 and A32 Instruction Descriptions

Read this to understand the format of the T32 and A32 instruction descriptions.

Chapter F2 The AArch32 Instruction Sets Overview

Read this for an overview of the T32 and A32 instruction sets.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxiv
ID032224 Non-Confidential

Preface
 Using this Manual
Chapter F3 T32 Instruction Set Encoding

Read this for a description of the T32 instruction set encoding. This includes the T32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter F4 A32 Instruction Set Encoding

Read this for a description of the A32 instruction set encoding. This includes the A32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions

Read this for a description of each of the T32 and A32 base instructions.

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions

Read this for a description of each of the T32 and A32 Advanced SIMD and floating-point
instructions.

Part G, The AArch32 System Level Architecture

Part G describes the AArch32 state system level view of the architecture. It contains the following chapters:

Chapter G1 The AArch32 System Level Programmers’ Model

Read this for a description of the AArch32 state system level view of the programmers’ model for
execution in an Exception level that is using AArch32.

Chapter G2 AArch32 Self-hosted Debug

Read this for an introduction to, and a description of, self-hosted debug in AArch32 state.

Chapter G3 AArch32 Self-hosted Trace

Read this for an introduction to, and a description of, self-hosted trace in AArch32 state.

Chapter G4 The AArch32 System Level Memory Model

Read this for a system level view of the general features of the memory system.

Chapter G5 The AArch32 Virtual Memory System Architecture

Read this for a description of the AArch32 Virtual Memory System Architecture (VMSA).

Chapter G6 The Generic Timer in AArch32 state

Read this for a description of the AArch32 view of an implementation of the Arm Generic Timer.

Chapter G7 AArch32 System Register Encoding

Read this for a description of the encoding of the AArch32 System registers, including the System
instructions that are part of the AArch32 System registers encoding space.

Chapter G8 AArch32 System Register Descriptions

Read this for a description of each of the AArch32 System registers.

Part H, External Debug

Part H describes the architecture for external debug. It contains the following chapters:

Chapter H1 About External Debug

Read this for an introduction to external debug, and a definition of the scope of this part of the
Manual.

Chapter H2 Debug State

Read this for a description of Debug state, which the PE might enter as the result of a Halting debug
event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxv
ID032224 Non-Confidential

Preface
 Using this Manual
Chapter H3 Halting Debug Events

Read this for a description of the external debug events referred to as Halting debug events.

Chapter H4 The Debug Communication Channel and Instruction Transfer Register

Read this for a description of the communication between a debugger and the PE debug logic using
the Debug Communications Channel and the Instruction Transfer register.

Chapter H5 The Embedded Cross-Trigger Interface

Read this for a description of the Embedded Cross-Trigger Interface.

Chapter H6 Debug Reset and Powerdown Support

Read this for a description of reset and powerdown support in the Debug architecture.

Chapter H7 The PC Sample-based Profiling Extension

Read this for a description of the PC Sample-based Profiling Extension that is an OPTIONAL
extension to an Armv8 or Armv9 implementation.

Chapter H8 About the External Debug Registers

Read this for some additional information about the external debug registers.

Chapter H9 External Debug Register Descriptions

Read this for a description of each external debug register.

Part I, Memory-mapped Components of the Arm architecture

Part I describes the memory-mapped components in the architecture. It contains the following chapters:

Chapter I1 Requirements for Memory-mapped Components

Read this for descriptions of some general requirements for memory-mapped components within a
system that complies with the Arm architecture.

Chapter I2 System Level Implementation of the Generic Timer

Read this for a definition of a system level implementation of the Generic Timer.

Chapter I3 Recommended External Interface to the Performance Monitors

Read this for a description of the recommended memory-mapped and external debug interfaces to
the Performance Monitors.

Chapter I4 Recommended External Interface to the Activity Monitors

Read this for a description of the recommended memory-mapped interface to the Activity Monitors.

Chapter I5 RAS System Architecture

Read this for a description of the RAS System architecture.

Chapter I6 External System Control Register Descriptions

Read this for a description of each memory-mapped system control register.

Part J, Architectural Pseudocode

Part J contains pseudocode that describes various features of the Arm architecture. It contains the following chapter:

Chapter J1 Armv8 Pseudocode

Read this for the pseudocode definitions that describe various features of the Arm architecture, for
operation in AArch64 state and in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxvi
ID032224 Non-Confidential

Preface
 Using this Manual
Part K, Appendixes

Note

Some of the descriptions in the following appendixes are not part of the Arm architecture specification. They are
included here as supplementary information, for the convenience of developers and users who might require this
information.

This Manual contains the following appendixes:

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors

Read this for a description of the architecturally-required constraints on UNPREDICTABLE behaviors
in the Arm architecture, including AArch32 behaviors that were UNPREDICTABLE in previous
versions of the architecture.

Appendix K2 Recommendations for Reporting Memory Attributes on an Interconnect

Read this for the Arm recommendations about how the architectural memory attributes are reported
on an interconnect.

Appendix K4 ETE Recommended Configurations

Read this for a description of the ETE recommended configurations.

Appendix K5 ETE and TRBE Software Usage Examples

Read this for software examples that help understanding of ETE and TRBE.

Appendix K6 Stages of Execution

Read this for a description of the stages of execution.

Appendix K7 Recommended External Debug Interface

Read this for a description of the recommended external debug interface.

Appendix K8 Additional Information for Implementations of the Generic Timer

Read this for additional information about implementations of the Arm Generic Timer. This
information does not form part of the architectural definition of the Generic Timer.

Appendix K9 Legacy Instruction Syntax for AArch32 Instruction Sets

Read this for information about the pre-UAL syntax of the AArch32 instruction sets, which are valid
for the A32 instruction set.

Appendix K10 Address Translation Examples

Read this for examples of translation table lookups using the translation regimes described in
Chapter D8 The AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual
Memory System Architecture.

Appendix K11 Example OS Save and Restore Sequences

Read this for software examples that perform the OS Save and Restore sequences for an Armv8 or
Armv9 debug implementation.

Note

 Chapter H6 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism.

Appendix K12 Recommended Upload and Download Processes for External Debug

Read this for information about implementing and using the Arm architecture.

Appendix K13 Software Usage Examples

Read this for software examples that help understanding of some aspects of the Arm architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxvii
ID032224 Non-Confidential

Preface
 Using this Manual
Appendix K14 Barrier Litmus Tests

Read this for examples of the use of barrier instructions provided by the Arm architecture.

Appendix K15 Random Number Generation

Read this for information on the generation of random numbers using FEAT_RNG.

Appendix K16 Arm Pseudocode Definition

Read this for definitions of the Arm pseudocode.

Appendix K17 Registers Index

Read this for an alphabetic and functional index of AArch32 and AArch64 registers, and
memory-mapped registers.

Glossary

Defines terms used in this Manual that have a specialized meaning.

Note

Terms that are well understood in the microelectronics industry are not included in the Glossary.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxviii
ID032224 Non-Confidential

Preface
 Conventions
Conventions

The following sections describe conventions that this book can use:

• Typographic conventions.

• Rules-based writing.

• Signals.

• Numbers.

• Pseudocode descriptions.

• Assembler syntax descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, and are defined in the
Glossary.

Colored text Indicates a link. This can be:

• A URL, for example https://developer.arm.com.

• A cross-reference that includes the page number of the referenced information if it is not on
the current page, for example, Assembler syntax descriptions.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the Manual that
defines the colored term, for example Simple sequential execution or SCTLR.

{ and } Braces, { and }, have two distinct uses:

Optional items

In syntax descriptions braces enclose optional items. In the following example they
indicate that the <shift> parameter is optional:

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

Similarly they can be used in generalized field descriptions, for example
TCR_ELx.{I}PS refers to a field in the TCR_ELx registers that is called either IPS or
PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set
of two register fields, HCR_EL2.E2H and HCR_EL2.TGE.

Notes Notes are formatted as:

Note
This is a Note.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxix
ID032224 Non-Confidential

Preface
 Conventions
In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note might repeat architectural information given elsewhere in the Manual, a
Note never provides any part of the definition of the architecture.

Rules-based writing

Some sections of this Manual use rules-based writing. Rules-based writing consists of a set of individual content
items. A content item is classified as one of the following:

• Rule.

• Information.

• Software usage.

• Declaration.

Rules are normative statements. An implementation that is compliant with this specification must conform to all
Rules in this Manual that apply to that implementation.

Rules must not be read in isolation. Where a particular feature is specified by multiple Rules, these are generally
grouped into sections and subsections that provide context. Where appropriate, these sections begin with a short
introduction.

Arm strongly recommends that implementers read all chapters and sections of this Manual to ensure that an
implementation is compliant.

Content items other than Rules are informative statements. These are provided as an aid to understanding this
Manual.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this Manual. After content
reaches beta status, a given content item has the same identifier across subsequent versions of this Manual.

Content item rendering

In this Manual, a content item is rendered with a token of the following format in the left margin: Liiiii. L is a label
that indicates the content class of the content item. iiiii is the identifier of the content item.

Content item classes

Each of the content item classes has a different function in this Manual.

Rule

A Rule is a statement that describes the behavior of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Information

An Information statement provides information and guidance as an aid to understanding the Manual.

An Information statement is rendered with the label I.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxx
ID032224 Non-Confidential

Preface
 Conventions
A Software usage statement is rendered with the label S.

Declaration

A Declaration statement introduces concepts or terminology.

A Declaration does not describe behavior.

A Declaration is rendered with the label D.

Signals

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This Manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in monospace font, and is described in Appendix K16 Arm Pseudocode Definition.

Assembler syntax descriptions

This Manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in Structure of the A64
assembler language, and Appendix K16 Arm Pseudocode Definition.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxxi
ID032224 Non-Confidential

Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See Arm Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications

• AMBA® 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1, (ARM IHI 0032).

• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

• Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring

(MPAM), for A-profile architecture (ARM DDI 0598).

• Arm® Architecture Reference Manual Supplement, Armv8, for the Armv8-R AArch32 architecture profile
(ARM DDI 0568).

• Arm® Architecture Reference Manual Supplement, Armv8, for R-profile AArch64 architecture (ARM DDI
600).

• Arm® Architecture Reference Manual Supplement, Transactional Memory Extension (TME), for A-profile
architecture (ARM DDI 0617).

• Arm® Debug Interface Architecture Specification, ADIv6.0 (ARM IHI 0074).

• Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (ARM IHI 0031).

• Arm® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

• Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

• ARM® CoreSight™ SoC Technical Reference Manual (ARM DDI 0480).

• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

• ARM® Procedure Call Standard for the ARM 64-bit Architecture (ARM IHI 0055).

Other publications

The following publications are referred to in this Manual, or provide more information:

• Announcing the Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, November 2001.

• IEEE Std 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

• IEEE Std 754-1985, IEEE Standard for Floating-point Arithmetic, March 1985.

• Secure Hash Standard (SHA), Federal Information Processing Standards Publication 180-2, August 2002.

• The Galois/Counter Mode of Operation, McGraw, D. and Viega, J., Submission to NIST Modes of Operation
Process, January 2004.

• Memory Consistency Models for Shared Memory-Multiprocessors, Gharachorloo, Kourosh, 1995, Stanford
University Technical Report CSL-TR-95-685.

• Standard Manufacturer’s Identification Code, JEP106, JEDEC Solid State Technology Association.

• SM3 Cryptographic Hash Algorithm, China Internet Network Information Center (CNNIC).

• SM4 Block Cipher Algorithm, China Internet Network Information Center (CNNIC).

• The QARMA Block Cipher Family, Roberto Avanzi, Qualcomm Product Security Initiative.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxxii
ID032224 Non-Confidential

Preface
 Additional reading
Available from https://eprint.iacr.org/2016/444.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxxiii
ID032224 Non-Confidential

Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this Manual

If you have any comments or queries about this Manual, create a ticket at https://support.developer.arm.com.

As part of the ticket, include:

• The title, Arm® Architecture Reference Manual, for A-profile architecture.

• The number, ARM DDI 0487K.a.

• The section name to which your comments refer.

• The page number(s) to which your comments refer.

• The rule identifier(s) to which your comments refer, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this language. To report
offensive language in this document, email terms@arm.com.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. xxxiv
ID032224 Non-Confidential

Part A
Arm Architecture Introduction and Overview

Chapter A1
Introduction to the Arm Architecture

This chapter introduces the Arm architecture. It contains the following sections:

• About the Arm architecture.

• Architecture profiles.

• Arm architectural concepts.

• Supported data types.

• Floating-point support.

• The Arm memory model.

• Reliability, Availability, and Serviceability.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-36
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.1 About the Arm architecture
A1.1 About the Arm architecture

The Arm architecture described in this Architecture Reference Manual defines the behavior of an abstract machine,
referred to as a processing element, often abbreviated to PE. Implementations compliant with the Arm architecture
must conform to the described behavior of the processing element. It is not intended to describe how to build an
implementation of the PE, nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the Arm architecture must be the same as a simple sequential execution of the program on the
processing element. This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the PE.

The Arm architecture includes definitions of:

• An associated debug architecture, see:

— Chapter D2 AArch64 Self-hosted Debug.

— Chapter G2 AArch32 Self-hosted Debug.

— Part H of this Manual, External Debug.

• Associated trace architectures that define trace units that implementers can implement with the associated
processor hardware. For more information, see:

— The Arm® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

— Chapter D3 AArch64 Self-hosted Trace.

— Chapter D4 The Embedded Trace Extension.

— Chapter D6 The Trace Buffer Extension.

— Chapter G3 AArch32 Self-hosted Trace.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

• A large uniform register file.

• A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

• Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

The architecture defines the interaction of the PE with memory, including caches, and includes a memory translation
system. It also describes how multiple PEs interact with each other and with other observers in a system.

This document defines the Armv8-A and Armv9-A architecture profiles. See Architecture profiles for more
information.

The Arm architecture supports implementations across a wide range of performance points. Implementation size,
performance, and very low power consumption are key attributes of the Arm architecture.

An important feature of the Arm architecture is backwards compatibility, combined with the freedom for optimal
implementation in a wide range of standard and more specialized use cases. The Arm architecture supports:

• A 64-bit Execution state, AArch64.

• A 32-bit Execution state, AArch32, that is compatible with previous versions of the Arm architecture.

Features that are optional are explicitly defined as such in this Manual.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-37
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.1 About the Arm architecture
Note

The presence of an ID register field for a feature does not imply that the feature is optional.

Both Execution states support floating-point instructions:

• AArch32 state provides:

— SIMD instructions in the base instruction sets that operate on the 32-bit general-purpose registers.

— Advanced SIMD instructions that operate on registers in the SIMD and floating-point register
(SIMD&FP register) file.

— Scalar floating-point instructions that operate on registers in the SIMD&FP register file.

• AArch64 state provides:

— Advanced SIMD instructions that operate on registers in the SIMD&FP register file.

— Scalar floating-point instructions that operate on registers in the SIMD&FP register file.

Note

The A64 instruction set does not include SIMD instructions that operate on the general-purpose
registers, therefore, some AArch64 instructions descriptions use SIMD as a synonym for Advanced
SIMD.

— SVE instructions that operate on registers in the SVE register files.

— SME instructions that operate on registers in the SVE register files and ZA storage.

Note

See Conventions for information about conventions used in this Manual, including the use of SMALL CAPITALS for
particular terms that have Arm-specific meanings that are defined in the Glossary.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-38
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.2 Architecture profiles
A1.2 Architecture profiles

The Arm architecture has evolved significantly since its introduction, and Arm continues to develop it. Nine major
versions of the architecture have been defined to date, denoted by the version numbers 1 to 9. Of these, the first three
versions are now obsolete.

The generic names AArch64 and AArch32 describe the 64-bit and 32-bit Execution states:

AArch64 Is the 64-bit Execution state, meaning addresses are held in 64-bit registers, and instructions in the
base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64
instruction set.

AArch32 Is the 32-bit Execution state, meaning addresses are held in 32-bit registers, and instructions in the
base instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and
A32 instruction sets.

Note

The Base instruction set comprises the supported instructions other than the floating-point instructions.

See sections Execution state and The instruction sets for more information.

Arm defines three architecture profiles:

A Application profile, described in this Manual:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

Note

An Armv8-A implementation can be called an AArchv8-A implementation and an Armv9-A
implementation can be called an AArchv9-A implementation.

• Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

• Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

• Supports an optional VMSA based on an MMU.

• Supports the A64, A32, and T32 instruction sets.

M Microcontroller profile:

• Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

• Implements a variant of the R-profile PMSA.

• Supports a variant of the T32 instruction set.

This Manual describes only Armv8-A and Armv9-A. For information about the R and M architecture profiles, and
earlier Arm architecture versions, see:

• The Arm® Architecture Reference Manual Supplement, Armv8, for the ARMv8-R AArch32 architecture
profile.

• The Arm® Architecture Reference Manual Supplement, Armv8, for R-profile AArch64 architecture.

• The ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

• The Arm®v8-M Architecture Reference Manual.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-39
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.2 Architecture profiles
• The Arm®v7-M Architecture Reference Manual.

• The ARM®v6-M Architecture Reference Manual.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-40
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.3 Arm architectural concepts
A1.3 Arm architectural concepts

This section introduces architectural concepts and the associated terminology.

The following subsections describe key architectural concepts. Each section introduces the corresponding terms that
are used to describe the architecture:

• Execution state.

• The instruction sets.

• System registers.

• Arm Debug.

A1.3.1 Execution state

The Execution state defines the PE execution environment, including:

• The supported register widths.

• The supported instruction sets.

• Significant aspects of:

— The Exception model.

— The Virtual Memory System Architecture (VMSA).

— The programmers’ model.

The Execution states are:

AArch64 The 64-bit Execution state. This Execution state:

• Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure link
register.

• Provides a 64-bit Program Counter (PC), stack pointers (SPs), and Exception Link Registers
(ELRs).

• Provides 32 128-bit registers for Advanced SIMD vector and scalar floating-point support.

• Provides a single instruction set, A64. For more information, see The instruction sets.

• Defines the Armv8 Exception model, with up to four Exception levels, EL0 - EL3, that
provide an execution privilege hierarchy, see Exception levels.

• Provides support for 64-bit virtual addressing. For more information, including the limits on
address ranges, see Chapter D8 The AArch64 Virtual Memory System Architecture.

• Defines a number of Process state (PSTATE) elements that hold PE state. The A64
instruction set includes instructions that operate directly on various PSTATE elements.

• Names each System register using a suffix that indicates the lowest Exception level at which
the register can be accessed.

AArch32 The 32-bit Execution state. This Execution state:

• Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and Link Register (LR).
The LR is used as both an ELR and a procedure link register.

Some of these registers have multiple banked instances for use in different PE modes.

• Provides a single ELR, for exception returns from Hyp mode.

• Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-point support.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-41
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.3 Arm architectural concepts
• Provides two instruction sets, A32 and T32. For more information, see The instruction sets.

• Supports the Armv7-A Exception model, based on PE modes, and maps this onto the Armv8
Exception model, that is based on the Exception levels.

• Provides support for 32-bit virtual addressing.

• Defines a number of Process state (PSTATE) elements that hold PE state. The A32 and T32
instruction sets include instructions that operate directly on various PSTATE elements, and
instructions that access PSTATE by using the Application Program Status Register (APSR)
or the Current Program Status Register (CPSR).

Later subsections give more information about the different properties of the Execution states.

Transferring control between the AArch64 and AArch32 Execution states is known as interprocessing. The PE can
move between Execution states only on a change of Exception level, and subject to the rules given in
Interprocessing. This means different software layers, such as an application, an operating system kernel, and a
hypervisor, executing at different Exception levels, can execute in different Execution states.

A1.3.2 The instruction sets

The possible instruction sets depend on the Execution state:

AArch64 AArch64 state supports a single instruction set, called A64. This is a fixed-length instruction set that
uses 32-bit instruction encodings.

For information on the A64 instruction set, see Chapter C3 A64 Instruction Set Overview.

If FEAT_SVE is implemented, the A64 instruction set supports scalable vector instructions. See
About the SVE instructions.

If FEAT_SME is implemented, the A64 instruction set supports scalable matrix instructions. See
About the SME instructions.

AArch32 AArch32 state supports the following instruction sets:

A32 This is a fixed-length instruction set that uses 32-bit instruction encodings.

T32 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction
encodings.

In previous documentation, these instruction sets were called the ARM and Thumb instruction sets.
Armv8 and Armv9 extend each of these instruction sets. In AArch32 state, the Instruction set state
determines the instruction set that the PE executes.

For information on the A32 and T32 instruction sets, see Chapter F2 The AArch32 Instruction Sets
Overview.

The instruction sets support SIMD and scalar floating-point instructions. See Floating-point support.

A1.3.3 System registers

System registers provide control and status information of architected features.

The System registers use a standard naming format: <register_name>.<bit_field_name> to identify specific
registers as well as control and status bits within a register.

Bits can also be described by their numerical position in the form <register_name>[x:y] or the generic form
bits[x:y].

In addition, in AArch64 state, most register names include the lowest Exception level that can access the register as
a suffix to the register name:

• <register_name>_ELx, where x is 0, 1, 2, or 3.

For information about Exception levels, see Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-42
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.3 Arm architectural concepts
The System registers comprise:

• The following registers that are described in this Manual:

— General system control registers.

— Debug registers.

— RAS registers.

— Generic Timer registers.

— Optionally, Performance Monitor registers.

— Optionally, the Activity Monitors registers.

— Optionally, the Scalable Vector Extension registers.

— Optionally, in Armv9, Trace System registers.

• Optionally, one or more of the following groups of registers that are defined in other Arm architecture
specifications:

— Trace System registers, as defined in the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4.

— Generic Interrupt Controller (GIC) System registers, see The Arm Generic Interrupt Controller
System registers.

For information about the AArch64 System registers, see Chapter D23 AArch64 System Register Descriptions.

For information about the AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

A1.3.3.1 The Arm Generic Interrupt Controller System registers

From version 3 of the Arm Generic Interrupt Controller architecture, GICv3, the GIC architecture specification
defines a System register interface to some of its functionality. The System register summaries in this Manual
include these registers, see:

• About the GIC System registers, for more information about the AArch64 GIC System registers.

• About the GIC System registers, for more information about the AArch32 GIC System registers.

These sections give only short overviews of the GIC System registers. For more information, including descriptions
of the registers, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

Note

The programmers’ model for earlier versions of the GIC architecture is wholly memory-mapped.

A1.3.4 Arm Debug

Armv8 and later architectures support the following:

Self-hosted debug

In this model, the PE generates debug exceptions. Debug exceptions are part of the Armv8
Exception model.

External debug

In this model, debug events cause the PE to enter Debug state. In Debug state, the PE is controlled
by an external debugger.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-43
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.3 Arm architectural concepts
All Armv8 and later implementations support both models. The model chosen by a particular user depends on the
debug requirements during different stages of the design and development life cycle of the product. For example,
external debug might be used during debugging of the hardware implementation and OS bring-up, and self-hosted
debug might be used during application development.

For more information about self-hosted debug:

• In AArch64 state, see Chapter D2 AArch64 Self-hosted Debug.

• In AArch32 state, see Chapter G2 AArch32 Self-hosted Debug.

For more information about external debug, see Part H External Debug.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-44
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
A1.4 Supported data types

The Arm architecture supports the following integer data types:

Byte 8 bits.

Halfword 16 bits.

Word 32 bits.

Doubleword 64 bits.

Quadword 128 bits.

The architecture also supports the following floating-point data types:

• Half-precision. See Half-precision floating-point formats.

• Single-precision. See Single-precision floating-point format.

• Double-precision. See Double-precision floating-point format.

• BFloat16. See BFloat16 floating-point format.

It also supports vectors, where a register holds a vector of multiple elements, each the same size and data type. See
Advanced SIMD vector formats and SVE vector formats.

The architecture provides the following:

• A general-purpose register file.

• A SIMD&FP register file.

• If FEAT_SVE or FEAT_SME is implemented, an SVE scalable vector register file and an SVE scalable
predicate register file.

• If FEAT_SME is implemented, the scalable ZA storage.

• If FEAT_SME2 is implemented, the SME2 ZT0 register.

In each of these, the possible register widths depend on the Execution state.

In AArch64 state:

• The general-purpose register file contains 64-bit registers:

— Many instructions can access these registers as 64-bit registers, or as 32-bit registers using only the
bottom 32 bits.

• The SIMD&FP register file contains 128-bit registers:

— While the AArch64 vector registers support 128-bit vectors, the effective vector length can be 64-bits
or 128-bits depending on the A64 instruction encoding used, see Instruction Mnemonics.

• The SVE scalable vector register file contains registers of an IMPLEMENTATION DEFINED width:

— An SVE scalable vector register has an IMPLEMENTATION DEFINED width that is a power of two, from
a minimum of 128 bits up to a maximum of 2048 bits.

— All SVE scalable vector registers in an implementation are the same width.

• The SVE scalable predicate register file contains registers of an IMPLEMENTATION DEFINED width:

— An SVE predicate register has an IMPLEMENTATION DEFINED width that is a power of two, from a
minimum of 16 bits up to a maximum of 256 bits.

• The SME scalable ZA storage is a two-dimensional array of bytes. See ZA storage.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-45
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
• The SME2 ZT0 register is 512 bits. See SME2 ZT0 register.

For more information on the register files in AArch64 state, see Registers in AArch64 Execution state.

In AArch32 state:

• The general-purpose register file contains 32-bit registers:

— Two 32-bit registers can support a doubleword.

— Vector formatting is supported, see Figure A1-4.

• The SIMD&FP register file contains 64-bit registers:

— AArch32 state does not support quadword integer or floating-point data types.

Note

Two consecutive 64-bit registers can be used as a 128-bit register.

For more information on the register files in AArch32 state, see The general-purpose registers, and the PC, in
AArch32 state.

A1.4.1 Advanced SIMD vector formats

In an implementation that includes the Advanced SIMD instructions that operate on the SIMD&FP register file, a
register can hold one or more packed elements, all of the same size and type. In AArch32 state, the combination of
a register and a data type describes a vector of elements, where the number of elements in the vector is implied by
the size of the data type and the size of the register. In AArch64 state, the explicit combination of a register, number
of elements, and element size describes a vector of elements.The vector is considered to be a one-dimensional array
of elements of the data type specified in the instruction.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant bits of the
vector.

For more information on the Advanced SIMD and floating-point registers in AArch32 state, see The SIMD and
floating-point register file.

A1.4.1.1 Advanced SIMD vector formats in AArch64 state

In AArch64 state, the SIMD&FP registers can be referred to as Vn, where n is a value from 0 to 31.

The SIMD&FP registers support the following data formats for loads, stores, and data-processing operations:

• A single, scalar, element in the least significant bits of the register. See Registers in AArch64 Execution state.

• A 128-bit vector of byte, halfword, word, or doubleword elements. See Figure A1-1.

• A 64-bit vector of byte, halfword, word, or doubleword elements. See Figure A1-1.

For vectors, the element sizes are defined in Table A1-1, with the vector format described as:

• For a 128-bit vector: Vn.{2D, 4S, 8H, 16B}.

• For a 64-bit vector: Vn.{1D, 2S, 4H, 8B}.

Table A1-1 SIMD elements in AArch64 state

Mnemonic Size

B 8 bits
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-46
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
Figure A1-1 SIMD vectors in AArch64 state

A1.4.1.2 Advanced SIMD vector formats in AArch32 state

Table A1-2 shows the available formats. Each instruction description specifies the data types that the instruction
supports.

H 16 bits

S 32 bits

D 64 bits

Table A1-1 SIMD elements in AArch64 state (continued)

Mnemonic Size

127 0

Vn

.S .S .S .S

[3] [2] [1] [0]

.H .H .H .H .H .H .H .H

[7] [6] [5] [4] [3] [2] [1] [0]

063

Vn

.S .S

[1] [0]

.H .H .H .H

[3] [2] [1] [0]

128-bit vector of 32-bit elements (.4S)

128-bit vector of 16-bit elements (.8H)

64-bit vector of 32-bit elements (.2S)

64-bit vector of 16-bit elements (.4H)

64 6396 95 32 31 16 1548 4780 79112 111

32 31 16 1548 47

.D .D128-bit vector of 64-bit elements (.2D)

[0][1]

.B .B .B .B .B .B .B .B

[14] [12] [10] [8] [6] [4] [2] [0]

128-bit vector of 8-bit elements (.16B) .B

[15] [13] [11] [9] [7] [5] [3] [1]

.B .B .B .B .B .B .B

.B .B .B .B

[7] [5] [3] [1]

64-bit vector of 8-bit elements (.8B) .B .B .B .B

[6] [4] [2] [0]

.D

[0]

64-bit vector of a single 64-bit element (.1D)

Table A1-2 Advanced SIMD data types in AArch32 state

Data type specifier Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

.I<size> Signed or unsigned integer of <size> bits
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-47
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
Polynomial arithmetic over {0, 1} describes the polynomial data type.

The .F16 data type is the half-precision data type selected by the FPSCR.AHP bit, see Half-precision floating-point
formats.

The .F32 data type is the Arm standard single-precision floating-point data type, see Single-precision floating-point
format.

The instruction definitions use a data type specifier to define the data types appropriate to the operation. Figure A1-2
shows the hierarchy of the Advanced SIMD data types.

Figure A1-2 Advanced SIMD data type hierarchy in AArch32 state

For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as
signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have
to distinguish between signed and unsigned inputs.

Figure A1-3 shows the Advanced SIMD vectors in AArch32 state.

Note

In AArch32 state, a pair of even and following odd numbered doubleword registers can be concatenated and treated
as a single quadword register.

.P<size> Polynomial over {0, 1} of degree less than <size>

.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

Table A1-2 Advanced SIMD data types in AArch32 state (continued)

Data type specifier Meaning

† Output format only. See VMULL instruction description.

.64

.32

.16

.8

.I8

.S64

.U64
.I64

.F32

-

-

.S8

.U8

.P8

-

.I16
.S16

.U16

.P16 †

.F16

.I32
.S32

.U32

.P64 ‡

‡ Available only if the Cyptographic Extension is implemented.

See VMULL instruction description.

.BF16

-

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-48
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
Figure A1-3 Advanced SIMD vectors in AArch32 state

The AArch32 general-purpose registers support vectors formats for use by the SIMD instructions in the Base
instruction set. Figure A1-4 shows these formats, that means that a general-purpose register can be treated as either
2 halfwords or 4 bytes.

Figure A1-4 Vector formatting in AArch32 state

A1.4.2 SVE vector formats

In an implementation that includes the AArch64 SVE instructions, an SVE register can hold one or more packed or
unpacked elements, all of the same size and type. The combination of a register and an element size describes a
vector of elements. The vector is considered to be a one-dimensional array of elements of the data type specified in
the instruction. The number of elements in the vector is implied by the size of the data elements and the Effective
SVE vector length of the register.

Vector element indexes are in the range 0 to (number of elements – 1). An index of 0 refers to bits 0 to (element size
-1) of the vector.

For the definition of Effective SVE vector length, see Configurable SVE vector lengths.

127 0

Qn

.32 .32 .32 .32

[3] [2] [1] [0]

.16 .16 .16 .16 .16 .16 .16 .16

[7] [6] [5] [4] [3] [2] [1] [0]

063

Dn

.32 .32

[1] [0]

.16 .16 .16 .16

[3] [2] [1] [0]

128-bit vector of single-precision

(32-bit) elements

128-bit vector of 16-bit elements

64-bit vector of 32-bit elements

64-bit vector of 16-bit elements

64 6396 95 32 31 16 1548 4780 79112 111

32 31 16 1548 47

.8 .8 .8 .8 .8 .8 .8 .8

[14] [12] [10] [8] [6] [4] [2] [0]

128-bit vector of 8-bit elements .8 .8 .8 .8 .8 .8 .8 .8

[15] [13] [11] [9] [7] [5] [3] [1]

.64 .64

[1] [0]

128-bit vector of double-precision

(64-bit) elements

.8 .8 .8 .8

[6] [4] [2] [0]

64-bit vector of 8-bit elements .8 .8 .8 .8

[7] [5] [3] [1]

31 0

Rn

.8 .8 .8 .8

[3] [2] [1] [0]

16 1524 23 8 7

.16 .16

[1] [0]

32-bit general-purpose register

as a set of two halfwords

32-bit general-purpose register

as a set of four bytes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-49
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
A1.4.2.1 Scalable vector formats in AArch64 state

In AArch64 state, the SVE scalable vector registers can be referred to as Zn, where n is a value from 0 to 31.

The SVE scalable vector registers support the following data formats for loads, stores, and data-processing
operations:

• Advanced SIMD data formats.

Bits[127:0] of each Zn register hold the correspondingly numbered Vn SIMD&FP register.

• A configurable-length vector of byte, halfword, word, doubleword, or quadword elements. See Figure A1-5.
Also see Z0-Z31 in Chapter B1.

The element sizes are defined in Table A1-3 with the vector format described as:

• Zn.{Q, D, S, H, B}.

Figure A1-5 shows the vector formats of an SVE scalable vector register containing:

• A configurable-length vector, where the Effective SVE vector length is 256 bits.

• A fixed-length 128-bit Advanced SIMD vector.

Table A1-3 SVE elements in AArch64 state

Mnemonic Element size

B 8 bits

H 16 bits

S 32 bits

D 64 bits

Q 128 bits
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-50
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
Figure A1-5 SVE vectors, and Advanced SIMD vectors, in an SVE scalable vector register

A1.4.3 Half-precision floating-point formats

The Arm architecture supports two half-precision floating-point formats:

• IEEE half-precision, as described in the IEEE 754-2008 standard.

• Arm alternative half-precision format.

Note

BFloat16 is not a half-precision floating-point format, see BFloat16 floating-point format.

Both formats can be used for conversions to and from other floating-point formats. FPCR.AHP controls the format
in AArch64 state and FPSCR.AHP controls the format in AArch32 state. FEAT_FP16 adds half-precision
data-processing instructions, which always use the IEEE format. These instructions ignore the value of the relevant
AHP field, and behave as if it has an Effective value of 0. All SVE half-precision data-processing instructions,
including conversions, ignore the value of FPCR.AHP, and behave as if it has an Effective value of 0.

255 0

Zn

[7] [4] [3] [0]

[15] [14] [0]

0

Vn

[2] [0]

256-bit vector of 32-bit elements

256-bit vector of 16-bit elements

128-bit vector of 32-bit elements

128-bit vector of 16-bit elements

128 127192 191 64 63

32 31

256-bit vector of 64-bit elements

[1][2]

[2] [0]

256-bit vector of 8-bit elements

[31] [1]

[1]

128-bit vector of 8-bit elements

[2] [0]

.B .B .B .B .B .B .B .B .B .B .B .B .B .B .B .B

[15] ...

.H.H .H .H .H .H .H .H

[4][5][6][7] [3] [2] [1] [0]

.S.S.S.S

[1][3]

[1] [0]

128-bit vector of 64-bit elements .D.D

127 63649596

...

.B .B

......

.H.H.H.H.H.H.H .H.H.H.H.H.H.H.H.H

[13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1]

.S.S.S.S.S.S.S.S

[1][2][5][6]

.D.D.D.D

[3] [0]

[1]

.Q.Q

[0]

256-bit vector of 128-bit elements
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-51
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
The description of IEEE half-precision includes Arm-specific details that are left open by the standard, and is only
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs, and signed zeros, see the IEEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit format is the same. The format is:

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.

0 < exponent < 0x1F

The value is a normalized number and is equal to:

(–1)S × 2(exponent-15) × (1.fraction)

The minimum positive normalized number is 2–14, or approximately 6.104 10–5.

The maximum positive normalized number is (2 – 2–10) × 215, or 65504.

Larger normalized numbers can be expressed using the alternative format when the
exponent == 0x1F.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 when S==0.

–0 when S==1.

fraction != 0

The value is a denormalized number and is equal to:

(–1)S × 2-14 × (0.fraction)

The minimum positive denormalized number is 2–24, or approximately 5.960 × 10–8.

Half-precision denormalized numbers are not flushed to zero by default. When FEAT_FP16 is
implemented, the FPCR.FZ16 bit controls whether flushing denormalized numbers to zero is
enabled for half-precision data-processing instructions. For details, see Flushing denormalized
numbers to zero.

exponent == 0x1F

The value depends on which half-precision format is being used:

IEEE half-precision

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too
big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an
absolute value that is too big to be represented accurately as a
normalized number.

15 14 10 9 0

S exponent fraction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-52
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction
bit, bit[9]:

bit[9] == 0 The NaN is a signaling NaN. The sign bit can take any value,
and the remaining fraction bits can take any value except all
zeros.

bit[9] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction
bits can take any value.

Alternative half-precision

The value is a normalized number and is equal to:

-1S × 216 × (1.fraction)

The maximum positive normalized number is (2-2-10) × 216 or 131008.

A1.4.4 Single-precision floating-point format

The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes Arm-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs, and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word with the format:

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < 0xFF

The value is a normalized number and is equal to:

(–1)S × 2(exponent – 127) × (1.fraction)

The minimum positive normalized number is 2–126, or approximately 1.175 × 10–38.

The maximum positive normalized number is (2 – 2–23) × 2127, or approximately 3.403 × 1038.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 When S==0.

–0 When S==1.

These usually behave identically. In particular, the result is equal if +0 and –0 are
compared as floating-point numbers. However, they yield different results in some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer comparison of the two words.

fraction != 0

The value is a denormalized number and is equal to:

(–1)S × 2-126 × (0.fraction)

fractionS

31 30 23 22 0

exponent
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-53
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
The minimum positive denormalized number is 2–149, or approximately 1.401 × 10–45.

Denormalized numbers are always flushed to zero in Advanced SIMD processing in AArch32 state.
They are optionally flushed to zero in floating-point processing and in Advanced SIMD processing
in AArch64 state. For details, see Flushing denormalized numbers to zero.

exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[22]:

bit[22] == 0

The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[22] == 1

The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

For details of the default NaN, see Default NaN.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A1.4.5 Double-precision floating-point format

The double-precision floating-point format is as defined by the IEEE 754 standard. Double-precision floating-point
is supported by both SIMD and floating-point instructions in AArch64 state, and only by floating-point instructions
in AArch32 state.

This description includes implementation-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs, and signed zeros, see the IEEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

Double-precision values represent numbers, infinities, and NaNs in a similar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF

The value is a normalized number and is equal to:

(–1)S × 2(exponent–1023) × (1.fraction)

S

63 62 52 51 32 31 0

exponent fraction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-54
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
The minimum positive normalized number is 2–1022, or approximately 2.225 × 10–308.

The maximum positive normalized number is (2 – 2–52) × 21023, or approximately 1.798 × 10308.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros that behave in the same way as the two
single-precision zeros:

+0 when S==0.

–0 when S==1.

fraction != 0

The value is a denormalized number and is equal to:

(-1)S × 2–1022 × (0.fraction)

The minimum positive denormalized number is 2–1074, or approximately 4.941 × 10–324.

Optionally, denormalized numbers are flushed to zero in floating-point calculations. For details, see
Flushing denormalized numbers to zero.

exponent == 0x7FF

The value is either an infinity or a NaN, depending on the fraction bits:

fraction == 0

The value is an infinity. As for single-precision, there are two infinities:

+infinity When S==0.

-infinity When S==1.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[51] of
the doubleword:

bit[51] == 0

The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[51] == 1

The NaN is a quiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN, see Default NaN.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A1.4.6 BFloat16 floating-point format

BFloat16 is a 16-bit floating-point storage format that inherits many of its properties and behaviors from the IEEE
754 single-precision format described in Single-precision floating-point format.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-55
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
The BFloat16 format is:

0 < exponent < 0xFF

The value is a normalized number and is equal to:

(–1)S × 2(exponent-127) × (1.fraction)

The minimum positive normalized number is 2–126, or approximately 1.175 10–38.

The maximum positive normalized number is (2 – 2–7) × 2127, or approximately 3.390 1038.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 when S==0.

–0 when S==1.

These usually behave identically. However, they yield different results in some
circumstances. For example, the sign of the result produced as the result of multiplying
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer bitwise comparison of the two halfwords.

fraction != 0

The value is a denormalized number and is equal to:

(–1)S × 2-126 × (0.fraction)

The minimum positive denormalized number is 2–133, or approximately 9.184 × 10–41.

Denormalized numbers are always flushed to zero in Advanced SIMD processing in AArch32 state.
They are optionally flushed to zero in floating-point processing and in Advanced SIMD processing
in AArch64 state. For details, see Flushing denormalized numbers to zero.

exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[6]:

bit[6] == 0 The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[6] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

15 14 7 6 0

S exponent fraction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-56
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
BFloat16 values are 16-bit halfwords that software can convert to single-precision format, by appending 16 zero
bits, so that single-precision arithmetic instructions can be used. A single-precision value can be converted to a
BFloat16 value, either by:

• Truncating, by removing the least significant 16 bits.

• Using the BFloat16 conversion instructions, see Floating-point single-precision to BFloat16 conversion
instruction.

See also:

• Summary of BFloat16 instruction behaviors.

A1.4.7 Conversion between floating-point and fixed-point values

The Arm architecture supports the conversion of a scalar floating-point value to or from a signed or unsigned
fixed-point value in a general-purpose register. Conversion instructions take an argument, #fbits, that specifies the
number of fraction bits in the fixed-point number. That is, #fbits indicates that the general-purpose register holds a
fixed-point number with fbits bits after the binary point, where fbits is in the range 1 to 64 for a 64-bit
general-purpose register, or 1 to 32 for a 32-bit general-purpose register:

• For a 64-bit register Xd:

— The integer part is Xd[63:#fbits].

— The fractional part is Xd[(#fbits-1):0].

• For a 32-bit register Wd or Rd:

— The integer part is Wd[31:#fbits] or Rd[31:#fbits].

— The fractional part is Wd[(#fbits-1):0] or Rd[(#fbits-1):0].

These instructions can cause the following floating-point exceptions:

Invalid Operation When the floating-point input is NaN or Infinity or when a numerical value cannot be
represented within the destination register.

Inexact When the numeric result differs from the input value.

Input Denormal When flushing denormalized numbers to zero is enabled and the denormal input is replaced
by a zero, see Flushing denormalized numbers to zero and Input Denormal exceptions.

Note

An out of range fixed-point result is saturated to the destination size.

For more information, see Floating-point exceptions and exception traps.

A1.4.8 Polynomial arithmetic over {0, 1}

Some SIMD instructions that operate on SIMD&FP registers can operate on polynomials over {0, 1}, see Supported
data types. The polynomial data type represents a polynomial in x of the form bn–1xn–1 + … + b1x + b0 where bk is
bit[k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:

• 0 + 0 = 1 + 1 = 0.

• 0 + 1 = 1 + 0 = 1.

• 0 × 0 = 0 × 1 = 1 × 0 = 0.

• 1 × 1 = 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-57
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.4 Supported data types
That is:

• Adding two polynomials over {0, 1} is the same as a bitwise exclusive-OR.

• Multiplying two polynomials over {0, 1} is the same as integer multiplication except that partial products are
exclusive-ORed instead of being added.

A64, A32, and T32 provide instructions for performing polynomial multiplication of 8-bit values.

• For AArch32, see VMUL (integer and polynomial) and VMULL (integer and polynomial).

• For AArch64, see PMUL and PMULL, PMULL2.

The Cryptographic Extension adds the ability to perform long polynomial multiplies of 64-bit values. See PMULL,
PMULL2.

A1.4.8.1 Pseudocode description of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.

Polynomial multiplication is described by the PolynomialMult() function defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-58
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
A1.5 Floating-point support

The architecture includes the following types of floating-point instructions:

• Scalar floating-point instructions that operate on the lowest numbered element of the SIMD&FP registers.

• Advanced SIMD floating-point instructions that operate on multiple elements of the SIMD&FP registers.

• If FEAT_SVE is implemented, AArch64 SVE instructions that operate on multiple elements of the SVE
scalable vector registers, in which the SIMD&FP registers occupy the least significant 128 bits.

• If FEAT_SME is implemented, AArch64 SME instructions that operate on multiple elements of the SVE
scalable vector registers and the ZA storage.

The architecture can provide the following levels of floating-point support:

• No floating-point support. This option is licensed only for implementations targeting specialized markets.

• Advanced SIMD and floating-point support.

• SVE, plus Advanced SIMD and floating-point support.

• SME and SVE, plus Advanced SIMD and floating-point support.

Note

All Armv8-A systems that support standard operating systems with rich application environments provide hardware
support for Advanced SIMD and floating-point instructions. All Armv9-A systems that support standard operating
systems with rich application environments also provide hardware support for SVE2 instructions. It is a requirement
of the ARM Procedure Call Standard for AArch64, see Procedure Call Standard for the Arm 64-bit Architecture.

The architecture supports the following floating-point formats:

For many floating-point instructions, there are configurable behaviors, such as:

• Configurable rounding modes. See Rounding.

• Configurable trapping of floating-point exceptions. See Floating-point exceptions and exception traps.

• Configurable non-IEEE 754 Default NaN behavior. See NaN handling and the Default NaN.

Table A1-4

AArch32 state AArch64 state

IEEE 754 half-precision Conversion instructions to and from IEEE 754 half-precision.

Supported for data processing if FEAT_FP16 is implemented.

Arm alternative half-precision Conversion instructions to and from non-IEEE 754 Arm alternative half-precision.

IEEE 754 single-precision Supported for scalar data processing. Supported for scalar and vector
data processing.

Supported for Advanced SIMD, with restrictions.
See Arm standard floating-point input and output
values.

IEEE 754 double-precision Supported for scalar data processing. Supported for scalar and vector
data processing.

Not supported for Advanced SIMD.

BFloat16 Supported if FEAT_AA32BF16 is implemented. Supported if FEAT_BF16 is
implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-59
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
• Configurable non-IEEE 754 flushing to zero of denormalized numbers. See Flushing denormalized numbers
to zero.

Floating-point computation using AArch32 Advanced SIMD instructions remains unchanged from Armv7. A32
and T32 Advanced SIMD floating-point instructions always use Arm standard floating-point arithmetic and
performs IEEE 754 floating-point arithmetic with the following restrictions:

• Denormalized numbers are flushed to zero, see Flushing denormalized numbers to zero.

• Only default NaNs are supported, see Default NaN.

• The Round to Nearest rounding mode is used.

• Untrapped floating-point exception handling is used for all floating-point exceptions.

If floating-point exception trapping is supported, then unless stated otherwise, when a floating-point exception is
not trapped, that exception causes a cumulative status register bit to be set to 1 and the operation produces a default
result. For more information, see Floating-point exceptions and exception traps.

In:

• AArch64 state, the Floating-point Control Register, FPCR, controls floating-point operation, and the
Floating-point Status Register, FPSR, returns floating-point status information.

• AArch32 state, there is a single Floating-Point Status and Control Register, FPSCR, combining the FPCR
and FPSR fields.

In AArch64 state, the PSTATE.{N,Z,C,V} condition flags are updated by floating-point comparison operations.

In AArch32 state, the FPSCR.{N,Z,C,V} condition flags are updated by floating-point comparison operations.

If FEAT_FlagM2 is implemented, the AArch64 instructions AXFLAG and XAFLAG convert between the Arm
floating-point condition flags in PSTATE and an alternative format shown in Relationship between ARM format and
alternative format PSTATE condition flags.

Note

For additional details of AArch32 state floating-point support, see Advanced SIMD and floating-point support.

The remainder of this section contains:

• Instruction support.

• Floating-point standards, and terminology.

• Arm standard floating-point input and output values.

• Summary of BFloat16 instruction behaviors.

• Flushing denormalized numbers to zero.

• NaN handling and the Default NaN

• Rounding

• Floating-point exceptions and exception traps

• Alternate BFloat16 behaviors

• BFloat16 behaviors for instructions that compute sum-of-products

A1.5.1 Instruction support

The floating-point instructions support:

• Load and store for single elements and vectors of multiple elements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-60
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
Note

Single elements are also referred to as scalar elements.

• Data processing on single and multiple elements.

• When FEAT_FCMA is implemented, complex number arithmetic.

• Floating-point conversion between different levels of precision.

• Conversion between floating-point and integer types.

• Floating-point rounding.

For more information on floating-point instructions in AArch64 state, see Chapter C3 A64 Instruction Set Overview.

For more information on floating-point instructions in AArch32 state, see Chapter F2 The AArch32 Instruction Sets
Overview.

A1.5.2 Floating-point standards, and terminology

The Arm architecture includes support for all the required features of ANSI/IEEE Std 754-2008, IEEE Standard for
Binary Floating-Point Arithmetic, referred to as IEEE 754-2008. However, some terms in this Manual are based on
the 1985 version of this standard, referred to as IEEE 754-1985:

• Arm floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.

• References to IEEE 754 that do not include the issue year apply to either issue of the standard.

Table A1-5 shows how the terminology in this Manual differs from that used in IEEE 754-2008.

A1.5.3 Arm standard floating-point input and output values

The Arm architecture provides full IEEE 754 floating-point arithmetic support. In AArch32 state, floating-point
operations performed using Advanced SIMD instructions are limited to Arm standard floating-point operation,
regardless of the selected rounding mode in the FPSCR.

Table A1-5 Floating-point terminology

This manual IEEE 754-2008

Normalized a

a. Normalized number is used in preference to normal number,
because of the other specific uses of normal in this Manual.

Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative

Round towards Plus Infinity (RP) roundTowardsPositive

Round towards Zero (RZ) roundTowardZero

Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway

Rounding mode Rounding-direction attribute
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-61
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
Arm standard floating-point arithmetic supports the following input formats defined by the IEEE 754 floating-point
standard:

• Zeros.

• Normalized numbers.

• Denormalized numbers are flushed to 0 before floating-point operations, see Flushing denormalized numbers
to zero.

• NaNs.

• Infinities.

Arm standard floating-point arithmetic supports the Round to Nearest (roundTiesToEven) rounding mode defined
by the IEEE 754 standard.

Arm standard floating-point arithmetic supports the following output result formats defined by the IEEE 754
standard:

• Zeros.

• Normalized numbers.

• Results that are less than the minimum normalized number are flushed to zero, see Flushing denormalized
numbers to zero.

• NaNs produced in floating-point operations are always the default NaN, see Default NaN.

• Infinities.

Note

AArch64 Advanced SIMD floating-point arithmetic is performed using the rounding mode selected by the FPCR.

A1.5.4 Summary of BFloat16 instruction behaviors

BFloat16 instructions follow the floating-point behaviors shown in Table A1-6 and Table A1-7:

Table A1-6 Advanced SIMD and floating-point, and SVE, BFloat16 instruction behaviors

Behaviors when the PE is in
Streaming SVE mode

Behaviors when the PE is not in
Streaming SVE mode

Advanced
SIMD & FP

BFCVT Behaves as: Floating-point behaviors in
Streaming SVE mode.

Follows single-precision behaviors.

This instruction also supports the Alternate BFloat16 behaviors.

BFCVTN, BFCVTN2

BFMLALB, BFMLALT
If legal in Streaming SVE modea, behave as
Floating-point behaviors in Streaming SVE
mode.

Follows single-precision behaviors.

These instructions also support the Alternate BFloat16 behaviors.

BFDOT, BFMMLA If legal in Streaming SVE modea, behave as
BFloat16 behaviors for instructions that
compute sum-of-products.

Behave as BFloat16 behaviors for
instructions that compute sum-of-products.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-62
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
SVE BFADD, BFSUB

BFMLA, BFMLS,
BFMUL

Behave as Floating-point behaviors in
Streaming SVE mode.

Follows single-precision behaviors.

BFCLAMP

BFMAX, BFMAXNM

BFMIN, BFMINNM

Behave as both:

• Floating-point behaviors in
Streaming SVE mode.

• Additional behaviors described in the
individual instruction descriptions.

Follows both:

• Single-precision behaviors.

• Additional behaviors described in the
individual instruction descriptions.

BFCVT, BFCVTNT

BFMLALB, BFMLALT

BFMLSLB, BFMLSLT

Behave as Floating-point behaviors in
Streaming SVE mode.

Follows single-precision behaviors.

These instructions also support the Alternate BFloat16 behaviors.

BFDOT Behave as BFloat16 behaviors for instructions that compute sum-of-products.

BFMMLA If legal in Streaming SVE modea, behaves as
BFloat16 behaviors for instructions that
compute sum-of-products.

Behaves as BFloat16 behaviors for
instructions that compute sum-of-products.

a. These instructions generate an SME illegal instruction exception in Streaming SVE mode if FEAT_SME_FA64 is not implemented
or not enabled at the current Exception level. See Streaming SVE mode and RZFGJP.

Table A1-7 SME BFloat16 instruction behaviors

SME Behaviors in Streaming SVE mode
Behaviors when the PE is
not in Streaming SVE mode

ZA storage enabled
ZA storage
disabled

BFADD, BFMLA, BFMLS, BFSUB

BFMOPA (non-widening)

BFMOPS (non-widening)

Behave as Floating-point behaviors
for instructions that target the SME
ZA array.

Illegala Illegala

BFCLAMP

BFMAX, BFMAXNM

BFMIN, BFMINNM

Behave as both:

• Floating-point behaviors in Streaming SVE
mode.

• Additional behaviors described in the
instruction descriptions.

Illegala

BFCVT, BFCVTN Behave as Floating-point behaviors in Streaming SVE
mode.

These instructions also support the Alternate
BFloat16 behaviors.

Illegala

BFDOT, BFVDOT

BFMOPA (widening)

BFMOPS (widening)

Behave as BFloat16 behaviors for
instructions that compute
sum-of-products.

Illegala Illegala

BFMLAL

BFMLSL

Behave as Floating-point behaviors
for instructions that target the SME
ZA array.

Illegala Illegala

Table A1-6 Advanced SIMD and floating-point, and SVE, BFloat16 instruction behaviors (continued)

Behaviors when the PE is in
Streaming SVE mode

Behaviors when the PE is not in
Streaming SVE mode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-63
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
Unless otherwise specified, BFloat16 instructions follow the behaviors defined in all of:

• Flushing denormalized numbers to zero.

• Rounding.

• Floating-point exceptions and exception traps

See also:

• Streaming SVE mode.

• ZA storage.

A1.5.5 Flushing denormalized numbers to zero

For this section if FEAT_AFP is not implemented, the behavior is the same as if FPCR.AH == 0, FPCR.FIZ == 0,
and FPCR.NEP == 0.

Calculations involving denormalized numbers and Underflow exceptions can reduce the performance of
floating-point processing. For many algorithms, replacing the denormalized operands and intermediate results with
zeros can recover this performance, without significantly affecting the accuracy of the final result. Arm
floating-point implementations allow denormalized numbers to be flushed to zero to permit this optimization.

If a number value satisfies the condition 0 < Abs(value) < MinNorm, it is treated as a denormalized number.

MinNorm is defined as follows:

• For half-precision numbers, MinNorm is 2-14.

• For single-precision and BFloat16 numbers, MinNorm is 2-126.

• For double-precision numbers, MinNorm is 2-1022.

Flushing denormals to zero is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Enabling flushing of denormals to zero must be done with care. Although it can
improve performance on some algorithms, there are significant limitations on its use. These are
application-dependent:

• On many algorithms, it has no noticeable effect, because the algorithm does not usually process denormalized
numbers.

• On other algorithms, it can cause exceptions to occur and can seriously reduce the accuracy of the results of
the algorithm.

A1.5.5.1 Flushing denormalized inputs to zero

If flushing denormalized inputs to zero is enabled for an instruction and a data type, and an input to that instruction
is a denormalized number of that data type, the input operand is flushed to zero, and its sign bit is not changed.

If a floating-point operation has a denormalized input that is flushed to zero, for all purposes within the instruction
other than calculating Input Denormal floating-point exceptions, all inputs that are denormalized numbers are
treated as though they were zero with the same sign as the input.

For floating-point instructions, if the instruction processes half-precision inputs, flushing denormalized inputs to
zero can be controlled as follows:

• If FPCR.FZ16 == 0, denormalized half-precision inputs are not flushed to zero.

• If FPCR.FZ16 == 1:

— Denormalized half-precision inputs to data processing instructions are flushed to zero.

a. The instructions generate an SME illegal instruction exception. See Streaming SVE mode and RZFGJP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-64
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
— Denormalized half-precision inputs to convert instructions are not flushed to zero.

If FPCR.FIZ == 1, or both FPCR.AH == 0 and FPCR.FZ == 1, then for floating-point instructions other than FABS
and FNEG, for all inputs other than half-precision, denormalized inputs are flushed to zero.

If FPCR.FZ == 0, for all inputs other than half-precision, FPCR.FZ does not cause denormalized inputs to be flushed
to zero, although other factors might cause denormalized inputs to be flushed to zero.

If FPCR.AH == 1, regardless of the value of FPCR.FIZ, all of the following instructions flush all input denormal
numbers to zero:

• The BFloat16 instructions defined in Alternate BFloat16 behaviors.

• Single-precision and double-precision instructions: FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

A1.5.5.2 Flushing denormalized outputs to zero

If a denormalized output is flushed to zero, the output is returned as zero with the same sign bit as the denormalized
output value.

If FPCR.AH == 0, the test for a denormalized number for the purpose of flushing the output to zero occurs before
rounding.

If FPCR.AH == 1, the test for a denormalized number for the purpose of flushing the output to zero occurs after
rounding using an unbounded exponent.

If FPCR.FZ == 0, then unless otherwise specified, for all outputs other than half-precision, FPCR.FZ does not cause
denormalized outputs to be flushed to zero, although other factors might cause denormalized outputs to be flushed
to zero.

If FPCR.FZ == 1, for all outputs other than half-precision, for floating-point instructions other than FABS, FNEG, FMAX,
FMAXP, FMAXV, FMIN, FMINP, FMINV, BFMIN, and BFMAX, denormalized outputs are flushed to zero.

If FPCR.EBF == 0, BFDOT, BFMMLA, BFVDOT, BFMOPA (widening), and BFMOPS (widening) instructions unconditionally
flush denormalized outputs to zero, as defined in BFloat16 behaviors for instructions that compute sum-of-products.

If FPCR.FZ16 == 0, denormalized half-precision outputs are not flushed to zero.

If FPCR.FZ16 == 1, for floating-point instructions other than FABS, FNEG, FMAX, FMAXP, FMAXV, FMIN, FMINP, FMINV, BFMIN,
and BFMAX, denormalized half-precision outputs are flushed to zero.

If FPCR.AH == 1, regardless of the value of FPCR.{FZ, FZ16}, denormalized outputs of FABS, FNEG, FMAX, FMAXP,
FMAXV, FMIN, FMINP, FMINV, BFMIN, and BFMAX, are not flushed to zero.

If FPCR.AH == 1, regardless of the value of FPCR.FZ, all of the following instructions flush all output denormal
numbers to zero:

• The BFloat16 instructions defined in Alternate BFloat16 behaviors.

• Single-precision and double-precision instructions: FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

A1.5.5.3 Flushing denormalized BFloat16 intermediate results to zero

BFloat16 arithmetic instructions BFDOT, BFMMLA, BFVDOT, BFMOPA (widening), and BFMOPS (widening) in AArch64 state,
and VDOT (by element), VDOT (vector), VMMLA in AArch32 state when working with BFloat16 inputs, convert
BFloat16 input values to IEEE single-precision format, and calculate N-way dot-products, accumulating the
products in single-precision accumulators. If one of these instructions processes an intermediate result that is a
single-precision denormalized number:

• If the instruction is one of AArch64 BFDOT, BFMMLA, BFVDOT, BFMOPA (widening), and BFMOPS (widening), the
intermediate result is unconditionally flushed to zero if FEAT_EBF16 is not implemented or when
FPCR.EBF is 0. See BFloat16 behaviors for instructions that compute sum-of-products.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-65
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
• If the instruction is one of AArch32 VDOT (by element), VDOT (vector), VMMLA, the intermediate result
is unconditionally flushed to zero.

A1.5.6 NaN handling and the Default NaN

The IEEE 754 standard defines a NaN as a number with all exponent bits set to 1 and a nonzero number in the
mantissa, and specifies that the sign bit of a NaN has no significance.

The Arm architecture additionally defines:

• A BFloat16 NaN, that follows the encoding in BFloat16 floating-point format.

• A Default NaN, compliant with the IEEE 754 standard, that follows the encoding in Table A1-8.

For a quiet NaN output derived from a signaling NaN operand, the most significant fraction bit is set to 1.

A PE is forbidden to generate a NaN whose value is strongly correlated to the values of non-NaN inputs as a
speculative result of a floating-point calculation not involving NaN inputs.

A1.5.6.1 Default NaN

A Default NaN is encoded as described in Table A1-8.

When FPCR.DN == 1, if any input to a floating-point operation is a NaN, the output is a Default NaN, unless the
instruction is one of the following:

• FABS, FNEG, FMAX, FMAXP, FMAXV, FMIN, FMINP, FMINV, BFMAX, and BFMIN. For these, see the individual instruction
descriptions for their Default NaN behavior.

 Floating-point instructions that detect an Invalid Operation condition for a reason other than one of its inputs being
a NaN, produce a Default NaN as the result.

A1.5.6.2 NaN handling

The IEEE 754 standard does not specify which input NaN is used as the output NaN. Therefore, where the Arm
architecture specifies which input NaN to use, this is an addition to the requirements in the IEEE 754 standard.

Depending on the operation, the exact value of a derived quiet NaN output might have both a different sign and
different fraction bits from its source. See individual instruction descriptions for details.

A1.5.6.3 NaN propagation

If an output NaN is derived from one of the operands, how the input NaN propagates to the output depends on the
instruction and the number of operands.

Table A1-8 Default NaN encodings

Half-precision,

 IEEE Format
Single-precision Double-precision BFloat16

Sign bit if FPCR.AH == 0 0 0 0 0

Sign bit if FPCR.AH == 1 1 1 1 1

Exponent 0x1F 0xFF 0x7FF 0xFF

Fraction Bit[9] == 1,

bits[8:0] == 0

Bit[22] == 1,

bits[21:0] == 0

Bit[51] == 1,

bits[50:0] == 0

Bit[6] == 1,

bits[5:0] == 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-66
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
If an output NaN is derived from an input NaN and if the size of the output format is the same as the input format,
then all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is derived from the input NaN.

• If the input NaN is a signaling NaN, the output NaN is derived as follows:

— If the handling of a signaling NaN by the instruction detects an Invalid Operation condition, the output
NaN is derived from a quietened version of the input NaN.

— If the handling of a signaling NaN by the instruction does not detect an Invalid Operation condition,
the output NaN is derived from the input NaN.

If an output NaN is derived from an input NaN and if the size of the output format is larger than the input format,
all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
zero-extended in the low-order bit to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN, except that the
mantissa is zero-extended in the low-order bits and the exponent field is set to all ones.

If an output NaN is derived from an input NaN and if the size of the output format is smaller than the input format,
all of the following apply:

• If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN except that the
mantissa is truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

For the following descriptions, the term “first operand” and “second operand” relate to the left-to-right ordering of
the arguments of the pseudocode function that describes the operation.

If FPCR.DN == 0, for instructions that perform a floating-point operation, other than FABS, FNEG, FMAX*, and FMIN*,
NaN outputs that derive from NaN inputs are derived as follows:

• If all of the following apply, an instruction outputs a quiet NaN derived from the first signaling NaN operand:

— FPCR.AH == 0.

— At least one operand is a signaling NaN.

— The instruction is not trapped.

• If all of the following apply, an instruction outputs a quiet NaN derived from the first NaN operand:

— FPCR.AH == 0.

— At least one operand is a NaN, but none of the operands is a signaling NaN.

— The instruction is not trapped.

• If all of the following apply, the output is a quiet NaN derived from the NaN operand:

— FPCR.AH == 1.

— The operation has two floating-point inputs.

— The operation has only one NaN operand.

• If all of the following apply, the output is a NaN derived from the <Zn>, <Vn>, <Hn>, <Sn>, or <Dn> registers:

— FPCR.AH == 1.

— The operation has two floating-point inputs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-67
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
— The operation has two NaN operands.

• If all of the following apply, the output is a NaN derived from the NaN held in the <Zn>, <Vn>, <Hn>, <Sn>, or
<Dn> registers:

— FPCR.AH == 1

— The instruction is one of: BFMLALB, BFMLALT (by element), BFMLALB, BFMLALT (vector),
FCMLA, FMADD, FMLA (by element), FMLA (vector), FMLAL, FMLAL2 (by element), FMLAL,
FMLAL2 (vector), FMLS (by element), FMLS (vector), FMLSL, FMLSL2 (by element), FMLSL,
FMLSL2 (vector), FMSUB, FNMADD, and FNMSUB.

— One of the following applies:

— The operation has three NaN operands.

— The operation has two NaN operands and the <Zn>, <Vn>, <Hn>, <Sn> or <Dn> register holds a
NaN.

• If all of the following apply, the output is a NaN derived from the NaN held in the <Zm>, <Vm>, <Hm>, <Sm>, or
<Dm> registers:

— FPCR.AH == 1

— The instruction is one of: BFMLALB, BFMLALT (by element), BFMLALB, BFMLALT (vector),
FCMLA, FMADD, FMLA (by element), FMLA (vector), FMLAL, FMLAL2 (by element), FMLAL,
FMLAL2 (vector), FMLS (by element), FMLS (vector), FMLSL, FMLSL2 (by element), FMLSL,
FMLSL2 (vector), FMSUB, FNMADD, and FNMSUB.

— The operation has two NaN operands and the <Zn>, <Vn>, <Hn>, <Sn> or <Dn> register does not hold a
NaN.

If FPCR.AH == 0, and an output NaN is derived from an input NaN, the pseudocode functions FPAbs(), FPNeg(),
BFNeg(), FPTrigMAdd(), and FPTrigSSel() can change the sign of the NaN,

If FPCR.AH == 1, and an output NaN is derived from an input NaN, for all cases, the sign bit of the NaN is
unchanged.

For FMAX*, FMIN*, BFMAX*, BFMIN*, FCLAMP, and BFCLAMP, the NaN handling is described in the instruction description.

A1.5.7 Rounding

The rounding mode specifies how the exact result of a floating-point operation is rounded to a value in the
destination format.

The rounding mode is either determined by the rounding mode control field FPCR.RMode or by the instruction.

If FPCR.AH == 1, for any value of FPCR.RMode, the following instructions use Round to Nearest on outputs:

• The BFloat16 instructions defined in Alternate BFloat16 behaviors.

• Single-precision and double-precision instructions FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

• Half-precision instructions FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS.

FPCR.RMode can select one of:

• Round to Nearest (RN) mode.

• Round towards Plus Infinity (RP) mode.

• Round towards Minus Infinity (RM) mode.

• Round towards Zero (RZ) mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-68
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
The following additional rounding behaviors are not selected by FPCR.RMode, but are used by some instructions:

• Round to Odd.

• Round to Nearest with Ties to Away.

A1.5.7.1 Round to Nearest (RN) mode

Round to Nearest rounding mode rounds the exact result of a floating-point operation to a value that is representable
in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity. The sign of the rounded value is the same as the sign of the value before
rounding.

• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the number with an even least significant digit.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

A1.5.7.2 Round towards Plus Infinity (RP) mode

Round towards Plus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not less than the value before rounding. The result can be plus infinity.

A1.5.7.3 Round towards Minus Infinity (RM) mode

Round towards Minus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the number in the output format that is closest to and not greater
than the value before rounding. The result can be minus infinity.

A1.5.7.4 Round towards Zero (RZ) mode

Round towards Zero rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not greater in absolute value than the value before rounding.

A1.5.7.5 Round to Nearest with Ties to Away

Round to Nearest with Ties to Away rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is calculated as follows:

• If the two nearest floating-point numbers bracketing the value before rounding are equally near, the result is
the number with the largest absolute value.

• If the two nearest floating-point numbers bracketing the value before rounding are not equally near, the result
is the floating-point number nearest to the value before rounding.

Round to Nearest with Ties to Away rounding is used by FCVTAS (scalar), FCVTAS (vector), FCVTAU (scalar),
FCVTAU (vector), FRINTA (scalar), and FRINTA (vector).

A1.5.7.6 Round to Odd

Round to Odd is not defined by IEEE 754.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-69
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
Round to Odd rounds the exact result of a floating-point operation to a value that is representable in the destination
format. If the result of the rounding is inexact, the least significant bit of the mantissa is forced to 1.

The following instructions use Round to Odd:

• BFloat16 instructions defined in BFloat16 behaviors for instructions that compute sum-of-products.

• FCVTXN, FCVTXN2, FCVTX, and FCVTXNT, for which Round to Odd rounding can avoid double
rounding errors when a floating-point value is converted to a lower precision destination format through an
intermediate precision format.

Example A1-1 Converting 64-bit floating-point format to 16-bit floating-point format

A 64-bit floating-point value can be converted to a correctly rounded 16-bit floating-point value using the following
steps:

1. Use an FCVTXN instruction to produce a 32-bit value.

2. Use another instruction with the required rounding mode to convert the 32-bit value to the final 16-bit
floating-point value.

A1.5.8 Floating-point exceptions and exception traps

Execution of a floating-point instruction, or execution of an Advanced SIMD, SVE, or SME instruction that
performs floating-point operations, can generate an exceptional condition, called a floating-point exception.

Predicated SVE floating-point instructions only generate floating-point exceptions in response to floating-point
operations performed on Active elements.

Note

In AArch64 state, an Advanced SIMD, SVE, or SME instruction that operates on floating-point values can perform
multiple floating-point operations. Therefore, this section describes the handling of a floating-point exception on an
operation, rather than on an instruction.

The architecture does not support asynchronous reporting of floating-point exceptions.

For each of the following floating-point exceptions, it is IMPLEMENTATION DEFINED whether an implementation
includes synchronous exception generation:

• Input Denormal.

• Inexact.

• Underflow.

• Overflow.

• Divide by Zero.

• Invalid Operation.

If an implementation does not support synchronous exception generation from a floating-point exception, then that
synchronous exception is never generated and all statements about synchronous exception generation from that
floating-point exception do not apply to the implementation.

Synchronous exception generation by floating-point exceptions is enabled using the FPCR as follows:

• For each floating-point exception that supports synchronous exception generation, the relevant control bit
chosen from FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} is used to enable synchronous exception generation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-70
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
• For each floating-point exception that does not support synchronous exception generation, the relevant bit
chosen from FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} is RAZ/WI.

A1.5.8.1 Operations that do not generate floating-point exceptions

The BFloat16 instructions defined in BFloat16 behaviors for instructions that compute sum-of-products do not
generate floating-point exceptions.

The SME instructions defined in Floating-point behaviors for instructions that target the SME ZA array do not
generate floating-point exceptions.

If FPCR.AH is 1, all of the following instructions do not generate any floating-point exceptions regardless of their
input values:

• The BFloat16 instructions defined in Alternate BFloat16 behaviors.

• Single-precision, double-precision and half-precision instructions FRECPE, FRECPS, FRECPX,
FRSQRTE, and FRSQRTS.

• Floating-point to integer and floating-point rounding instructions: FCVTMS (scalar), FCVTMS (vector),
FCVTMU (scalar), FCVTMU (vector), FCVTNS (scalar), FCVTNS (vector), FCVTNU (scalar), FCVTNU
(vector), FCVTPS (scalar), FCVTPS (vector), FCVTPU (scalar), FCVTPU (vector), FCVTZS (scalar,
fixed-point), FCVTZS (scalar, integer), FCVTZS (vector, fixed-point), FCVTZS (vector, integer), FCVTZU
(scalar, fixed-point), FCVTZU (scalar, integer), FCVTZU (vector, fixed-point), FCVTAS (scalar), FCVTAS
(vector), FCVTAU (scalar), FCVTAU (vector), FCVTZS (scalar, fixed-point), FCVTZS (scalar, integer),
FCVTZS (vector, fixed-point), FCVTZS (vector, integer), FRINTA (scalar), FRINTA (vector), FRINTZ
(scalar), FRINTZ (vector), FRINTM (scalar), FRINTM (vector), FRINTP (scalar), FRINTP (vector),
FRINTN (scalar), FRINTN (vector), FRINTX (scalar), FRINTX (vector), FRINTI (scalar), FRINTI (vector),
FRINT32X (scalar), FRINT32X (vector), FRINT32Z (scalar), FRINT32Z (vector), FRINT64X (scalar),
FRINT64X (vector), FRINT64Z (scalar), and FRINT64Z (vector).

All the following apply to FPAbs(), FPNeg(), and BFNeg():

• They cannot generate floating-point exceptions.

• The floating-point behavior described in the Flushing denormalized numbers to zero does not apply to them.

• The floating-point behavior described in the section NaN handling and the Default NaN does not apply to
them.

• When FPCR.AH is 1, the sign of a NaN input is not changed. When FPCR.AH is 0, the sign of a NaN input
can be changed.

A1.5.8.2 Input Denormal exceptions

The cumulative floating-point exception bit FPSR.IDC, and the trap enable bit FPCR.IDE both relate to Input
Denormal exceptions.

If a denormalized input is flushed to zero, the occurrence of the Input Denormal exception is determined using the
value before flushing.

If a denormalized input is flushed to zero, and FPCR.AH is 0, all floating-point exceptions, except Input Denormal,
are determined by treating the input value that is flushed to zero as zero.

If a denormalized input is flushed to zero, and FPCR.AH is 1, an Input Denormal exception is not generated, and
other floating-point exceptions are determined by treating the input value that is flushed to zero as zero.

When a half-precision floating-point or BFloat16 value is flushed to zero, an Input Denormal exception is not
generated.

If FPCR.AH is 0, when a single-precision or double-precision floating-point input is flushed to zero, an Input
Denormal exception is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-71
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
If FPCR.AH is 1, and FPCR.FIZ is 0, if and only if none of the following apply, any operation with a denormalized
floating-point input generates an Input Denormal exception:

• One of the other operands of the instruction is a NaN.

• The operation generates an Invalid Operation floating-point exception.

• The operation generates a Divide-by-Zero floating-point exception.

• The instruction that generated the operation was one of: BFCVT, BFCVTN, BFCVTN2, and BFCVTNT.

• The denormalized floating-point input is BFloat16.

• The denormalized floating-point input is half-precision.

• The denormalized floating-point input is flushed to zero.

If FPCR.AH is 1, or FPCR.FZ is 0, when FPCR.FIZ causes flushing of a denormalized number, an Input Denormal
Exception is not generated.

A1.5.8.3 Inexact exceptions

The cumulative floating-point exception bit FPSR.IXC and the trap enable bit FPCR.IXE both relate to Inexact
exceptions.

If a denormalized output is flushed to zero, all of the following apply:

• If FPCR.AH is 1, an Inexact exception is generated.

• If FPCR.AH is 0, an Inexact exception is not generated.

If a result is not flushed to zero, and the result does not equal the result computed with unbounded exponent range
and unbounded precision, then an Inexact exception is generated.

A1.5.8.4 Underflow exceptions

The cumulative floating-point exception bit FPSR.UFC, and the trap enable bit FPCR.UFE both relate to Underflow
exceptions.

If FPCR.AH is 0, for the purpose of underflow floating-point exception generation, a denormalized number is
detected before rounding is applied.

If FPCR.AH is 1, for the purpose of underflow floating-point exception generation, a denormalized number is
detected after rounding with an unbounded exponent.

If the result of a floating-point operation is a denormalized number that is not flushed to zero, then:

• If FPCR.UFE is 0, and the result is inexact, then the underflow floating-point exception is generated.

• If FPCR.UFE is 1, then the underflow floating-point exception is generated.

If the result of a floating-point operation is a denormalized number that is flushed to zero, then the Underflow
floating-point exception is not generated.

A1.5.8.5 Overflow exceptions

The cumulative floating-point exception bit FPSR.OFC, and the trap enable bit FPCR.OFE both relate to Overflow
exceptions.

If the output of an instruction rounded with an unbounded exponent is greater than the maximum normalized
number for the output precision, an overflow exception is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-72
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
If an untrapped Overflow exception is generated, the result is determined by the selected rounding behavior and the
sign of the result before rounding as follows:

• Round to Nearest carries all overflows to infinity with the sign of the result before rounding.

• Round towards Plus Infinity carries negative overflows to the most negative finite number of the output
precision, and carries positive overflows to plus infinity.

• Round towards Minus Infinity carries positive overflows to the largest finite number of the output precision,
and carries negative overflows to minus infinity.

• Round towards Zero carries all overflows to the output precision’s largest finite number with the sign of the
result before rounding.

• Round to Nearest Ties to Away carries all overflows to infinity with the sign of the result before rounding.

• Round to Odd, when used by convert instructions, carries all overflows to the output precision’s largest finite
number with the sign of the result before rounding.

• Round to Odd, when used by some BFloat16 instructions, carries all overflows to infinity with the sign of the
result before rounding.

A1.5.8.6 Divide by Zero exceptions

The cumulative floating-point exception bit FPSR.DZC, and the trap enable bit FPCR.DZE both relate to Divide by
Zero exceptions.

If a floating-point operation divides a finite nonzero number by zero, a Divide by Zero exception is generated.

If a floating-point operation divides a finite nonzero number by zero, and the Divide by Zero exception is untrapped,
the result is a correctly signed infinity.

A1.5.8.7 Invalid Operation exceptions

The cumulative floating-point exception bit FPSR.IOC, and the trap enable bit FPCR.IOE both relate to Invalid
Operation exceptions.

For any floating-point instruction that performs a floating-point operation, if any of the following apply, the
instruction generates an Invalid Operation exception:

• At least one operand is a signaling NaN.

• Magnitude subtraction of infinities.

• Multiplying a zero by an infinity.

• Dividing a zero by a zero.

• Dividing an infinity by an infinity.

• Square root of an operand that is less than zero.

If the input is one of: a quiet NaN, an infinity, or a number that overflows the values that can be represented in the
output format, and if another exception is not generated to signal the condition, then a conversion from
floating-point to either integer or fixed-point format, generates an Invalid Operation exception.

For the signaling compare instructions FCMPE and FCCMPE, if either of the source operands is any type of NaN,
the instruction generates an Invalid Operation floating-point exception.

If FPCR.AH is 1, for FMAX (vector), FMAX (scalar), FMAXP (scalar), FMAXP (vector), FMAXV, FMIN
(vector), FMIN (scalar), FMINP (scalar), FMINP (vector), FMINV, BFMAX, and BFMIN, if either input is any
type of NaN, then an Invalid Operation floating-point exception is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-73
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
A1.5.8.8 Handling floating-point exceptions

If an implementation supports synchronous exception generation for floating-point exceptions, the synchronous
exceptions generated by the floating-point exception traps are taken to the lowest Exception level that can handle
such an exception and that is not at a lower Exception level than where the exception was generated.

If an implementation supports synchronous exception generation for floating-point exceptions in AArch64 state, all
of the following apply:

• The registers that are presented to the exception handler are consistent with the state of the PE immediately
before the instruction that caused the exception, except that an implementation is permitted to not restore the
cumulative floating-point exception bits in the event of such an exception.

• When the execution of separate operations in separate SIMD elements causes multiple floating-point
exceptions, the ESR_ELx reports one exception associated with one element that the instruction uses. The
architecture does not specify which element is reported.

The AArch64.FPTrappedException() and FPProcessException() pseudocode functions describe the handling of
trapped floating-point exceptions generated in AArch64 state.

A1.5.8.9 Combinations of floating-point exceptions

More than one floating-point exception can occur on the same operation. The only combinations of floating-point
exceptions that can occur are:

• Overflow with Inexact.

• Underflow with Inexact.

• If FPCR.AH is 0, Input Denormal with any other floating-point exceptions.

• If FPCR.AH is 1, Input Denormal with Inexact, Underflow, or Overflow.

If two floating-point exceptions occur on the same operation, the Input Denormal exception is treated as highest
priority and the Inexact exception is treated as lowest priority.

Some floating-point instructions specify more than one floating-point operation, this is indicated by the pseudocode
descriptions of the instruction. In these cases, it is possible for one instruction to generate multiple exceptions.
Multiple exceptions from one instruction are prioritized as follows:

• If an exception generating operation outputs a result that is used by a second exception generating operation,
the exception generated by the operation that outputs the result is treated as higher priority than the exception
generated by the second operation that uses the result.

• If exception generating operations do not use the outputs of other exception generating operations, it is
CONSTRAINED UNPREDICTABLE which floating-point exception is treated as higher priority. The exception
prioritized might differ between different instances of the same two floating-point exceptions being generated
on the same operation during execution of the instruction.

• A trapped Underflow exception has priority over a trapped inexact exception.

If none of the floating-point exceptions caused by an operation is trapped, any floating-point exception that occurs
causes the associated cumulative exception flag bit in the FPSR to be set to 1.

When a floating-point exception is trapped, all of the following apply:

• When the trapped floating-point exception is taken, it is IMPLEMENTATION DEFINED whether the FPSR is
restored to the value of the FPSR immediately before the instruction that generated the trapped floating-point
exception.

When the trapped floating-point exception is taken, if the FPSR is not restored, it is CONSTRAINED
UNPREDICTABLE which untrapped floating-point exceptions, if any, are indicated by the corresponding FPSR
cumulative exception flag bits having the value 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-74
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
• In the ESR_ELx to which the trapped exception is taken all of the following apply:

— The highest priority trapped floating-point exception has a floating-point exception trapped bit set to 1.

— If any other untrapped floating-point exceptions are generated by the same operation, each untrapped
exception has a floating-point exception trapped bit set to 0. This applies to both higher priority and
lower priority untrapped floating-point exceptions.

— If any lower priority trapped floating-point exceptions are generated by the same operation, for each
exception, it is CONSTRAINED UNPREDICTABLE whether the floating-point exception trapped bit is set
to 1.

The architectural requirements for floating-point exception prioritization apply only to multiple floating-point
exceptions generated on the same element of an Advanced SIMD, SVE or SME operation. For trapped
floating-point exceptions from Advanced SIMD, SVE or SME instructions, the architecture does not define the
floating-point exception prioritization between different elements of the instruction.

A1.5.9 Alternate BFloat16 behaviors

The behaviors in this section apply to the following instructions:

• Advanced SIMD&FP: BFCVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT.

• SVE: BFCVT, BFCVTNT, BFMLALB, BFMLALT, BFMLSLB, BFMLSLT.

• SME: BFCVT, BFCVTN, BFMLAL, BFMLSL.

Table A1-6 and Table A1-7 describe when these instructions are legal.

When FPCR.AH is 1, the instructions:

• Produce the expected IEEE 754 default result but do not update the FPSR cumulative exception flag bits.

• Disable trapped floating-point exceptions, as if FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are all 0.

• Use Round to Nearest Even, ignoring FPCR.RMode.

• Flush denormalized inputs and outputs to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

A1.5.10 BFloat16 behaviors for instructions that compute sum-of-products

The behaviors in this section apply to the following instructions:

• Advanced SIMD: BFDOT and BFMMLA.

• SVE: BFDOT and BFMMLA.

• SME: BFMOPA (widening) and BFMOPS (widening), and SME2 BFDOT and BFVDOT.

Table A1-6 and Table A1-7 describe when these instructions are legal.

When FPCR.EBF is 0, the instructions:

• Perform unfused two-way sum-of-products for each pair of adjacent BFloat16 elements in
the source vectors, with rounding of all intermediate products and sums.

• Ignore FPCR.RMode and use non-IEEE 754 Round to Odd behavior. See Round to Odd.

• Flush denormalized inputs and outputs to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disable alternative floating-point behaviors, as if FPCR.AH is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-75
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.5 Floating-point support
When FPCR.EBF is 1, the instructions:

• Perform a fused two-way sum-of-products for each pair of adjacent BFloat16 elements in the
source vectors, without rounding of the intermediate products, but rounding the
single-precision sum before addition to the single-precision accumulator element.

• Honor FPCR.RMode, supporting all four IEEE 754 rounding modes.

• Honor FPCR.{FZ, FIZ}.

• Honor FPCR.AH.

Regardless of the value of FPCR.EBF, the instructions:

• Produce the expected IEEE 754 single-precision default result but do not update the FPSR
cumulative exception flag bits.

• Disable trapped floating-point exceptions, as if FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are
all 0.

• Generate an intermediate sum-of-products of the same infinity when there are infinite
products all with the same sign.

• Generate an intermediate sum-of-products that is a Default NaN when any of the following
are true:

— Any multiplier input is a NaN.

— Any product is infinity x 0.0.

— Both products are infinity of differing signs.

• Generate a Default NaN, as if FPCR.DN is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-76
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.6 The Arm memory model
A1.6 The Arm memory model

The Arm memory model supports:

• Generating an exception on an unaligned memory access.

• Restricting access by applications to specified areas of memory.

• Translating virtual addresses (VAs) provided by executing instructions to physical addresses (PAs).

• Altering the interpretation of multi-byte data between big-endian and little-endian.

• Controlling the order of accesses to memory.

• Controlling caches and address translation structures.

• Synchronizing access to shared memory by multiple PEs.

• Barriers that control and prevent speculative access to memory.

VA support depends on the Execution state, as follows:

AArch64 state

Supports 64-bit virtual addressing, with the Translation Control Register determining the supported
VA range. Execution at EL1 and EL0 supports two independent VA ranges, each with its own
translation controls.

AArch32 state

Supports 32-bit virtual addressing, with the Translation Control Register determining the supported
VA range. For execution at EL1 and EL0, system software can split the VA range into two
subranges, each with its own translation controls.

The supported PA space is IMPLEMENTATION DEFINED, and can be discovered by system software.

Regardless of the Execution state, the Virtual Memory System Architecture (VMSA) can translate VAs to blocks or
pages of memory anywhere within the supported PA space.

For more information, see:

For execution in AArch64 state

• Chapter B2 The AArch64 Application Level Memory Model.

• Chapter D7 The AArch64 System Level Memory Model.

• Chapter D8 The AArch64 Virtual Memory System Architecture.

For execution in AArch32 state

• Chapter E2 The AArch32 Application Level Memory Model.

• Chapter G4 The AArch32 System Level Memory Model.

• Chapter G5 The AArch32 Virtual Memory System Architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-77
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.7 Reliability, Availability, and Serviceability
A1.7 Reliability, Availability, and Serviceability

A1.7.1 Introduction

ILMHPD RAS are three aspects of the dependability of a system:

• Reliability, that is, the continuity of correct service.

• Availability, that is, the readiness for correct service.

• Serviceability, that is, the ability to undergo modifications and repairs.

IHWHJM RAS techniques reduce unplanned outages because:

• Transient errors can be detected and corrected before they cause application or system failure.

• Failing components can be identified and replaced.

• Failure can be predicted ahead-of-time to allow replacement during planned maintenance.

A1.7.2 Faults, errors, and failures

RNVNNC Correct service is delivered when the service implements the system function.

IQWSVK Correct service might include:

• Producing correct results.

• Producing results within the time allotted to the task.

• Not divulging secret or secure information.

RKRTSC For the purpose of describing the RAS Extension and RAS System Architecture, deviation from correct service is
defined using the following terms:

• A failure is the event of deviation from correct service. This includes data corruption, data loss, and service
loss.

• An error is the deviation from correct service. An incorrect value that has an error is corrupt.

• A fault is the cause of the error.

RJNBDX Errors that are present but not detected are latent errors or undetected errors.

ITNQPK In a system with no error detection, all errors are latent errors and are silently propagated by components until they
are either masked or cause failure.

IGRYKV The severity of a failure can range from minor to catastrophic:

• The harmful consequences of a minor failure are of a similar cost to the benefits provided by correct service
delivery.

• The harmful consequences of a catastrophic failure are orders of magnitude, or even incommensurably,
higher than the benefit provided by correct service delivery.

INMGPQ There are many sources of faults in a system, including both software and hardware faults:

• Hardware faults originate in, or affect, hardware.

• Software faults affect software, that is programs or data.

The RAS Extension and RAS System Architecture primarily address errors produced from hardware faults. These
fall into two main areas:

• Transient faults.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-78
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.7 Reliability, Availability, and Serviceability
• Non-transient or persistent faults.

A1.7.3 General taxonomy of errors

A1.7.3.1 Error detection

RFHXWP When a component accesses memory or other state, an error might be detected in that memory or state.

IWKPVR The error might be corrected or deferred by the component, or signaled to another component as either a deferred
error or a detected error.

A1.7.3.2 Error propagation

RLRZDN A transaction occurs when a producer of the transaction passes a value or other signal to a consumer of the
transaction.

IVYCCX Transactions are part of the service provided by the producer for the consumer.

IRHGDL In many protocols and service interface definitions, a high-level transaction consists of a sequence of operations,
for instance between a Requester and a Completer.

For the purposes of this manual, the most basic form of a unidirectional transfer between a producer and consumer
is considered as a transaction.

That is, each one of the sequence of operations is considered a separate transaction. For some operations, such as a
request, the Requester is producer and the Completer is the consumer. For other operations, such as a response, the
Completer is producer and the Requester is the consumer.

RSKZZG An error is propagated by the producer of a transaction when the service interface is incorrect because of the error.
The error is propagated to the consumer.

RCHCCV An error is propagated by deviations from correct service, including when any of the following occurs that would
not have been permitted to occur had the fault not been activated:

• A corrupt value is passed from producer to consumer.

• A transaction or other operation occurs that should not have occurred.

• A transaction or other operation that should have occurred does not occur.

• A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is
observed.

• Changing the timing and/or order of transactions or other operations such that the timing and/or order of those
transactions or operations is incorrect. In this case, the service interface defines acceptable timings and/or
orders for transactions and other operations.

RYFBRV The service interface for a transaction might include means to signal that the transaction is propagating either of the
following:

• A detected error.

• A deferred error.

RBHWVX An error is silently propagated by the producer of a transaction if the consumer of the transaction cannot detect the
error and consumes an undetected error because of the transaction. This might be because of one of the following:

• The error is present on the transaction, but was not detected by the producer. The error is silently propagated
by the producer.

• The error is present on the transaction, but was not signaled to the consumer as an error. For example, a
corrupt value was passed in the transaction with no indication that it was corrupt. The error is silently
propagated by the producer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-79
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.7 Reliability, Availability, and Serviceability
RFPBYS A latent, possibly detectable, error is silently propagated by the consumer of an otherwise correct transaction if the
transaction causes the error to become undetectable.

Example A1-2

A partial write to a protection granule removes poison, leaving the unchanged portion of the location corrupt. To
implement a partial write, the consumer logically reads the current value of the location, modifies the value, and
then writes the modified value back. These are internal transactions in the consumer that silently propagate the error.
In this example there was no error at the producer nor on the transaction.

IQXRLB Errors might be propagated by components in a system until one of the following occurs:

• They are masked and do not affect the outcome of the system.

The error might be masked because a corrupt value is discarded or overwritten, or the error is detected and
removed.

• They affect the service interface of the system and possibly cause failure. If the error has been silently
propagated to the service interface, then:

— This is a Silent Data Corruption, SDC.

— The rate of such failures, measured as the number of failures per billion device-hours of operation, is
called the Silent Data Corruption Failure-in-Time rate, SDC FIT rate.

Alternatively, the error might have been detected, causing the system to invoke error handling and recovery.
See Error handling and recovery.

A1.7.3.3 Infected and poisoned

RKNHWB The state of a component becomes infected when the component consumes an Uncorrected error that updates the
state.

RTZBSW A value is poisoned in the state of a component if it is marked as being in error, such that a subsequent access of the
state will detect the value is so marked and is treated as a detected error.

IYBMFK Poison is used to defer an error.

A1.7.3.4 Containable and uncontainable

RDXQRD An undetected error is uncontained at the component that failed to detect it.

RRJYRQ A silently propagated error is uncontained at the component that silently propagated it.

RGJQNR A Detected Uncorrected Error is uncontainable at the component if it might be uncontained at the component. A
Detected Uncorrected Error is containable at the component if it is not uncontainable at the component. If the
component cannot determine whether a Detected Uncorrected Error is uncontainable at the component or
containable at the component, then the component treats the Detected Uncorrected Error as uncontainable at the
component.

IMRDMR An error that is uncontainable at the component might be containable at the system level.

INWZGB Reporting an error as containable allows software to contain the error. This does not mean that hardware has
contained the error.

A1.7.4 Techniques for improving reliability, availability, and serviceability

ITPGKF Each device sets its own targets for reliability, availability, and serviceability, using various techniques to achieve
these targets, including:

• Fault prevention and fault removal.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-80
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.7 Reliability, Availability, and Serviceability
• Error handling and recovery.

• Fault handling.

IDMKGY The level of reliability, availability, and serviceability in any implementation, and which parts of the system include
RAS, are IMPLEMENTATION DEFINED. The RAS Extension and RAS System Architecture do not prescribe the level
of reliability, availability, and serviceability in any implementation, or which parts of the system include RAS.

A1.7.4.1 Fault prevention and fault removal

RYLVTS Fault prevention and fault removal are two techniques for handling faults. Fault prevention and fault removal
mechanisms are IMPLEMENTATION DEFINED.

IWZTKF Fault prevention techniques are outside the scope of the architecture.

RJVLNC A fault that is removed is a Corrected error and might be recorded and generate a Fault handling interrupt, but it is
not propagated. This means that it is not consumed and does not cause service failure.

IWSPBC A common technique to detect and correct errors is the use of an Error Detection and Correction Code (EDAC),
more commonly referred to as simply an Error Correction Code (ECC). ECC schemes use mathematical codes to
detect and correct an error in a value in memory. The size of the value is the protection granule for the ECC scheme.

IPBJLC The RAS Extension and RAS System Architecture do not require implementation any fault removal schemes,
including ECC.

A1.7.4.2 Error handling and recovery

RXPLVT A fault that is not removed gives rise to an Uncorrected error.

RVTXYY Error recovery is the process by which software and hardware minimize the impact of an Uncorrected error.

ILYWFS Error recovery methods include any of the following:

• Deferring an error from a fault. An error is deferred by hardware if hardware can make forward progress
without consuming the error. Deferring the error means:

— The fault might become masked later (fault removal). For example, because the corrupt value is
overwritten before it is consumed.

— If the deferred error is later consumed, then the error is reported at the point of consumption. For
example, if the deferred error is consumed by a PE then the consumer PE generates an Error exception.
This can give better results in terms of error recovery in the case where the original producer of the
data is not known when the error was deferred. For example because a latent error was detected.

A common technique to defer an error is to replace the corrupt value with a poisoned value, for example in
memory or in a transaction.

• Preventing further propagation of the error, that is containing the error. In particular, preventing silent
propagation of the error.

• Reducing the severity of a failure by invoking a service failure mode:

— This is a Detected Uncorrected Error (DUE).

— The rate of such failures gives the DUE FIT rate.

— The type of service failure mode depends on what is acceptable to the service.

IBRDMK A software error recovery agent is typically invoked when hardware detects an error it cannot correct, defer, or
remove.

IPGXFK An error recovery agent also provides information to the operator through error logs to improve serviceability, for
example to help with the identification of a Field Replaceable Unit, FRU.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-81
ID032224 Non-Confidential

Introduction to the Arm Architecture
A1.7 Reliability, Availability, and Serviceability
IMFPRY The RAS Extension and RAS System Architecture provide optional common programmers’ models to record
information about an error in an Error record.

ICVFFN The RAS Extension describes the behavior of a PE when an error is signaled to it by the system, including invoking
a service failure mode by taking an Error exception, and optional mechanisms to limit propagation of an error.

ITLDCY The RAS Extension and RAS System Architecture do not require systems to implement error recovery mechanisms,
including poison, and do not require systems to limit the silent propagation of errors.

A1.7.4.3 Fault handling

ISWFLQ Fault handling by software is the process by which software diagnoses and responds to faults to improve availability.

IGGCDN Fault handling methods include Predictive Failure Analysis (PFA), using information recorded by hardware to
trigger preemptive action.

IWNHJF The RAS Extension and RAS System Architecture provide optional mechanisms to allow the reporting of errors
and warnings to a fault handling agent, and to record information about the fault in an Error record. It is the
responsibility of the Error recovery and fault handling processes to collate the Error record data and write it to an
error log.

IFQRSQ The detailed nature of the fault handling agent is outside the scope of this architecture. Fault handling and Error
recovery might be independent agents.

IDQBCJ See also Standard error record.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A1-82
ID032224 Non-Confidential

Chapter A2
A-profile Architecture Extensions

This chapter introduces the Arm A-profile architecture extensions. It contains the following sections:

• About the A-profile architecture extensions.

• Armv8-A architecture extensions.

• Armv9-A architecture extensions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-83
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.1 About the A-profile architecture extensions
A2.1 About the A-profile architecture extensions

An architecture extension adds a set of features that are when implemented can make an implementation compliant
with the version of the architecture.

Each feature description includes:

• A feature name.

• A brief description of the feature.

• The Execution state the feature is supported in.

• Whether the implementation of the feature is mandatory or OPTIONAL.

• Dependencies on the implementation of other features if any.

• The register field that identifies the presence of the feature.

A2.1.1 Permitted implementation of subsets of the A-profile architectural features

Arm regularly introduces new features to the architecture. When a feature is introduced, the architecture specifies
when the feature can be implemented. Typically, a feature introduced as part of Armv8.x or Armv9.x is permitted
to be built in Armv8.(x-1) or Armv9.(x-1), subject only to those constraints that require that certain features be
implemented together.

See the individual feature descriptions for details of when each feature is permitted or required to be built.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-84
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2 Armv8-A architecture extensions

A2.2.1 The Armv8.0 architecture extension

The original Armv8-A architecture is called Armv8.0. It contains mandatory and optional architectural features.
Some features must be implemented together. An implementation is Armv8.0 compliant if it includes all of the
Armv8.0 architectural features that are mandatory.

An Armv8.0 compliant implementation can additionally include:

• Armv8.0 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.1, subject only to those constraints that require
that certain features be implemented together.

FEAT_AA32EL0, Support for AArch32 at EL0

FEAT_AA32EL0 is OPTIONAL.

FEAT_AA32EL1, Support for AArch32 at EL1

FEAT_AA32EL1 is OPTIONAL.

If Armv9.0 is implemented, then FEAT_AA32EL1 is not implemented.

If FEAT_AA32EL1 is implemented, then FEAT_AA32EL0 is implemented.

FEAT_AA32EL2, Support for AArch32 at EL2

FEAT_AA32EL2 is OPTIONAL from Armv8.0.

If FEAT_AA32EL2 is implemented, then FEAT_AA32EL1 is implemented.

FEAT_AA32EL3, Support for AArch32 at EL3

FEAT_AA32EL3 is OPTIONAL from Armv8.0.

If FEAT_AA32EL3 is implemented, then FEAT_AA32EL1 is implemented.

When FEAT_AA32EL3 and FEAT_EL2 are implemented, FEAT_AA32EL2 is implemented.

FEAT_AA64EL0, Support for AArch64 at EL0

If FEAT_AA64EL0 is implemented, FEAT_AA64EL1 is implemented.

FEAT_AA64EL1, Support for AArch64 at EL1

FEAT_AA64EL1 is mandatory from Armv9.0.

If FEAT_AA64EL1 is implemented, then FEAT_AA64EL0 is implemented.

When FEAT AA64EL1 and FEAT_EL2 are implemented, FEAT_AA64EL2 is implemented.

When FEAT AA64EL1 and FEAT_EL3 are implemented, FEAT_AA64EL3 is implemented.

FEAT_AA64EL2, Support for AArch64 at EL2

FEAT_AA64EL2 is OPTIONAL from Armv8.0.

If FEAT_AA64EL2 is implemented, then FEAT_AA64EL1 is implemented.

When FEAT AA64EL2 and FEAT_EL3 are implemented, then FEAT_AA64EL3 is implemented.

FEAT_AA64EL3, Support for AArch64 at EL3

FEAT_AA64EL3 is OPTIONAL from Armv8.0.

If FEAT_AA64EL3 is implemented, then FEAT_AA64EL1 is implemented.

When FEAT_AA64EL3 and FEAT_EL2 are implemented, FEAT_AA64EL2 is implemented.

FEAT_AES, Advanced SIMD AES instructions

FEAT_AES provides the AES* instructions to support AES encryption and decryption, AESD, AESE,
AESMC, and AESIMC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-85
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
This feature is supported in both AArch64 and AArch32 states.

FEAT_AES is OPTIONAL from Armv8.0.

If FEAT_AES is implemented, then FEAT_Crypto is implemented.

The following field identifies the presence of FEAT_AES:

• ID_AA64ISAR0_EL1.AES.

FEAT_ASID16, 16 bit ASID

FEAT_ASID16 is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_ASID16:

• ID_AA64MMFR0_EL1.ASIDBits.

FEAT_AdvSIMD, Advanced SIMD Extension

FEAT_AdvSIMD includes support for the SISD and SIMD operations.

This feature is supported in both AArch64 and AArch32 states.

FEAT_AdvSIMD is OPTIONAL from Armv8.0.

If FEAT_AdvSIMD is implemented, then FEAT_FP is implemented.

The following fields identify the presence of FEAT_AdvSIMD:

• ID_AA64PFR0_EL1.AdvSIMD.

• EDPFR.AdvSIMD.

For more information, see:

• Supported data types.

• Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

• Advanced SIMD and floating-point instructions.

• Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions.

FEAT_CRC32, CRC32 instructions

FEAT_CRC32 introduces the support for the CRC32* instructions that perform cyclic redundancy
check calculations.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CRC32 is mandatory from Armv8.1.

FEAT_CRC32 is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_CRC32:

• ID_AA64ISAR0_EL1.CRC32.

• ID_ISAR5_EL1.CRC32.

• ID_ISAR5.CRC32.

FEAT_CSV2_1p1, Cache Speculation Variant 2

For FEAT_CSV2_1p1, within a hardware-described context, branch targets trained for branches
situated at one address can control speculative execution of branches situated at different addresses
only in a hard-to-determine way.

FEAT_CSV2_1p1 does not support the SCXTNUM_ELx registers.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CSV2_1p1 is OPTIONAL from Armv8.0.

If FEAT_CSV2_1p1 is implemented, then FEAT_CSV2 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-86
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following fields identify the presence of FEAT_CSV2_1p1:

• ID_AA64PFR1_EL1.CSV2_frac.

• ID_AA64PFR0_EL1.CSV2.

For more information, see:

• Restrictions on the effects of speculation.

• Restrictions on the effects of speculation.

FEAT_CSV2_1p2, Cache Speculation Variant 2 version 1.2

For FEAT_CSV2_1p2, within a hardware-described context, branch targets trained for branches
situated at one address can control speculative execution of branches situated at different addresses
only in a hard-to-determine way.

FEAT_CSV2_1p2 adds the SCXTNUM_ELx registers, but the contexts do not include the
SCXTNUM_ELx register contexts.

This feature is supported in AArch64 state only.

FEAT_CSV2_1p2 is OPTIONAL from Armv8.0.

If FEAT_CSV2_1p2 is implemented, then FEAT_CSV2_1p1 is implemented.

The following fields identify the presence of FEAT_CSV2_1p2:

• ID_AA64PFR1_EL1.CSV2_frac.

• ID_AA64PFR0_EL1.CSV2.

For more information, see:

• Restrictions on the effects of speculation.

• Restrictions on the effects of speculation.

FEAT_CSV2_2, Cache Speculation Variant 2 version 2

FEAT_CSV2_2 adds the SCXTNUM_ELx registers, which provide a number that can be used to
separate out different context numbers within their respective Exception levels for the purpose of
protecting against side-channels using branch prediction and similar resources.

This feature is supported in AArch64 state only.

FEAT_CSV2_2 is OPTIONAL from Armv8.0.

If FEAT_CSV2_2 is implemented, then FEAT_CSV2 is implemented.

If FEAT_CSV2_2 is implemented, then FEAT_CSV2_1p1 is not implemented.

The following field identifies the presence of FEAT_CSV2_2:

• ID_AA64PFR0_EL1.CSV2.

For more information, see:

• Restrictions on the effects of speculation.

• Restrictions on the effects of speculation.

FEAT_CSV2_3, Cache Speculation Variant 2 version 3

FEAT_CSV2_3 adds a mechanism to identify if hardware cannot disclose information about
whether branch targets and branch history trained in one hardware described context can control
speculative execution in a different hardware described context.

This feature is supported in AArch64 state only.

FEAT_CSV2_3 is OPTIONAL from Armv8.0.

If FEAT_CSV2_3 is implemented, then FEAT_CSV2_2 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-87
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following field identifies the presence of FEAT_CSV2_3:

• ID_AA64PFR0_EL1.CSV2.

For more information, see:

• Restrictions on the effects of speculation.

• Restrictions on the effects of speculation.

FEAT_Crypto, Cryptographic Extension

The Arm Cryptographic Extension provides instructions for the acceleration of encryption and
decryption. The presence of the Cryptographic Extension in an implementation is subject to export
license controls.

The Cryptographic Extension is an extension of the SIMD support and operates on the vector
register file. It also provides multiply instructions that operate on long polynomials.

In an implementation that supports both AArch64 state and AArch32 state, FEAT_AES,
FEAT_PMULL, FEAT_SHA1 and FEAT_SHA256 provide the same functionality in both states.

This feature is supported in both AArch64 and AArch32 states.

If FEAT_Crypto is implemented, then FEAT_AES or FEAT_SHA1 is implemented.

In an Armv8.2 implementation, if FEAT_Crypto is implemented, FEAT_PMULL, FEAT_SHA256,
FEAT_SM3, or FEAT_SM4 is implemented.

For more information, see

• The Cryptographic Extension.

• The Cryptographic Extension in AArch32 state.

FEAT_DoubleLock, Double Lock

FEAT_DoubleLock is the mnemonic used for the OS Double Lock.

FEAT_DoubleLock is OPTIONAL from Armv8.0.

If Armv9.0 is implemented, then FEAT_DoubleLock is not implemented.

The following field identifies the presence of FEAT_DoubleLock:

• ID_AA64DFR0_EL1.DoubleLock.

FEAT_EL0, Support for execution at EL0

FEAT_EL0 is mandatory.

FEAT_EL0 is implemented if and only if at least one of the following is true:

• FEAT_AA32EL0 is implemented.

• FEAT_AA64EL0 is implemented.

FEAT_EL1, Support for execution at EL1

FEAT_EL1 is mandatory.

FEAT_EL1 is implemented if and only if at least one of the following is true:

• FEAT_AA32EL1 is implemented.

• FEAT_AA64EL1 is implemented.

FEAT_EL2, Support for execution at EL2

FEAT_EL2 is OPTIONAL from Armv8.0.

FEAT_EL2 is implemented if and only if at least one of the following is true:

• FEAT_AA32EL2 is implemented.

• FEAT_AA64EL2 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-88
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_EL3, Support for EL3

FEAT_EL3 is OPTIONAL from Armv8.0.

FEAT_EL3 is implemented if and only if at least one of the following is true:

• FEAT_AA32EL3 is implemented.

• FEAT_AA64EL3 is implemented.

FEAT_ETMv4, Embedded Trace Macrocell version 4

FEAT_ETMv4 indicates support for the Embedded Trace Macrocell architecture ETMv4.

FEAT_ETMv4 is OPTIONAL from Armv8.0.

If Armv9.0 is implemented, then FEAT_ETMv4 is not implemented.

If FEAT_ETMv4 is implemented, then FEAT_TRC_SR or FEAT_TRC_EXT is implemented.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4(ARM IHI 0064).

FEAT_ETS2, Enhanced Translation Synchronization

FEAT_ETS2 adds support for enhanced memory access ordering requirements for translation table
walks.

This feature is supported in both AArch64 and AArch32 states.

FEAT_ETS2 is OPTIONAL from Armv8.0.

FEAT_ETS2 is mandatory from Armv8.8.

The following fields identify the presence of FEAT_ETS2:

• ID_AA64MMFR1_EL1.ETS.

• ID_MMFR5_EL1.ETS.

• ID_MMFR5.ETS.

For more information, see:

• Definition of the Arm memory model.

• Ordering of memory accesses from translation table walks.

• Ordering of translation table walks.

FEAT_FP, Floating Point extensions

FEAT_FP includes support for single-precision and double-precision floating-point types.

This feature is supported in both AArch64 and AArch32 states.

FEAT_FP is OPTIONAL from Armv8.0.

If FEAT_FP is implemented, then FEAT_AdvSIMD is implemented.

The following fields identify the presence of FEAT_FP:

• ID_AA64PFR0_EL1.FP.

• EDPFR.FP.

For more information, see:

• Supported data types.

• Floating-point support.

• Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

• Advanced SIMD and floating-point instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-89
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions.

FEAT_IVIPT, The IVIPT Extension

The IVIPT Extension, FEAT_IVIPT describes any permitted instruction cache implementation.
This includes Virtual Index, Physical tag (VIPT) cache policy and Physical Index, Physical Tag
(PIPT) cache policy.

FEAT_IVIPT is OPTIONAL from Armv8.0.

For more information, see:

• Instruction caches.

• Instruction caches.

FEAT_MixedEnd, Mixed-endian support

FEAT_MixedEnd provides support for mixed-endian configuration.

FEAT_MixedEnd is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_MixedEnd:

• ID_AA64MMFR0_EL1.BigEnd.

For more information, see:

• Mixed-endian support in AArch64.

• Mixed-endian support in AArch32.

FEAT_MixedEndEL0, Mixed-endian support at EL0

FEAT_MixedEndEL0 provides support for mixed-endian at EL0.

FEAT_MixedEndEL0 is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_MixedEndEL0:

• ID_AA64MMFR0_EL1.BigEndEL0.

For more information, see:

• Mixed-endian support in AArch64.

• Mixed-endian support in AArch32.

FEAT_PCSRv8, PC Sample-based Profiling extension

FEAT_PCSRv8 adds support for PC Sample-based Profiling Extension that provides
coarse-grained, non-invasive profiling by an external debugger.

FEAT_PCSRv8 is OPTIONAL from Armv8.0.

If FEAT_PCSRv8 is implemented, then FEAT_PCSRv8p2 is not implemented.

The following fields identify the presence of FEAT_PCSRv8:

• EDDEVID.PCSample.

• DBGDEVID.PCSample.

• EDDEVID1.PCSROffset.

• DBGDEVID1.PCSROffset.

For more information, see About the PC Sample-based Profiling Extension.

FEAT_PMULL, Advanced SIMD PMULL instructions

FEAT_PMULL provides the AES* instructions that support multiplication of 64-bit polynomials,
PMULL, PMULL2.

This feature is supported in both AArch64 and AArch32 states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-90
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_PMULL is OPTIONAL from Armv8.0.

If FEAT_PMULL is implemented, then FEAT_AES is implemented.

The following field identifies the presence of FEAT_PMULL:

• ID_AA64ISAR0_EL1.AES.

FEAT_PMUv3, PMU extension version 3

The Performance Monitors Extension, FEAT_PMUv3, is an optional non-invasive debug
component.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3 is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_PMUv3:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see Chapter D13 The Performance Monitors Extension.

FEAT_PMUv3_EXT, External interface to the Performance Monitors

FEAT_PMUv3_EXT indicates support for external access to the PMUv3 registers.

FEAT_PMUv3_EXT is OPTIONAL from Armv8.0.

If FEAT_PMUv3_EXT is implemented, then FEAT_PMUv3 is implemented.

When FEAT_PMUv3_EXT32 or FEAT_PMUv3_EXT64 is implemented, FEAT_PMUv3_EXT is
implemented.

FEAT_PMUv3_EXT32, 32-bit external interface to the Performance Monitors

FEAT_PMUv3_EXT32 indicates the external Performance Monitors and CoreSight registers are
implemented as mostly 32-bit registers.

If FEAT_PMUv3_EXT32 is implemented, then FEAT_PMUv3_EXT is implemented.

If FEAT_PMUv3_EXT32 is implemented, then FEAT_PMUv3_EXT64 is not implemented.

FEAT_PMUv3_EXT32 is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_PMUv3_EXT32:

• PMDEVARCH.ARCHPART.

For more information, see Chapter I3 Recommended External Interface to the Performance
Monitors.

FEAT_SHA1, Advanced SIMD SHA1 instructions

FEAT_SHA1 implements the SHA1* instructions.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SHA1 is OPTIONAL from Armv8.0.

If FEAT_SHA1 is implemented, then FEAT_Crypto is implemented.

The following field identifies the presence of FEAT_SHA1:

• ID_AA64ISAR0_EL1.SHA1.

FEAT_SHA256, Advanced SIMD SHA256 instructions

FEAT_SHA256 implements the SHA256* instructions.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SHA256 is OPTIONAL from Armv8.0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-91
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
If FEAT_SHA256 is implemented, then FEAT_SHA1 is implemented.

The following field identifies the presence of FEAT_SHA256:

• ID_AA64ISAR0_EL1.SHA2.

FEAT_SpecSEI, SError interrupt exceptions from speculative reads of memory

Describes whether the PE can generate SError interrupt exceptions from speculative reads of
memory, including speculative instruction fetches.

FEAT_SpecSEI is OPTIONAL.

If FEAT_SpecSEI is implemented, then FEAT_RAS is implemented.

The following field identifies the presence of FEAT_SpecSEI:

• ID_AA64MMFR1_EL1.SpecSEI.

FEAT_TGran16K, Support for 16KB memory translation granule size at stage 1

FEAT_TGran16K is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_TGran16K:

• ID_AA64MMFR0_EL1.TGran16.

FEAT_TGran4K, Support for 4KB memory translation granule size at stage 1

FEAT_TGran4K is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_TGran4K:

• ID_AA64MMFR0_EL1.TGran4.

FEAT_TGran64K, Support for 64KB memory translation granule size at stage 1

FEAT_TGran64K is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_TGran64K:

• ID_AA64MMFR0_EL1.TGran64.

FEAT_TRC_EXT, Trace external registers

FEAT_TRC_EXT indicates support for external access to the ETMv4 or ETE registers.

FEAT_TRC_EXT is OPTIONAL from Armv8.0.

If FEAT_TRC_EXT is implemented, then FEAT_ETMv4 or FEAT_ETE is implemented.

FEAT_TRC_SR, Trace System registers

FEAT_TRC_SR indicates support for System registers for ETMv4 or ETE.

This feature is supported in both AArch64 and AArch32, but only when either of these are supported
at EL1.

FEAT_TRC_SR is OPTIONAL from Armv8.0.

If FEAT_TRC_SR is implemented, then FEAT_ETMv4, FEAT_ETE, or FEAT_TRF is
implemented.

The following fields identify the presence of FEAT_TRC_SR:

• ID_AA64DFR0_EL1.TraceVer.

• ID_DFR0.CopTrc.

• ID_DFR0_EL1.CopTrc.

FEAT_nTLBPA, Intermediate caching of translation table walks

FEAT_nTLBPA adds a mechanism to identify if the intermediate caching of translation table walks
does not include non-coherent caches of previous valid translation table entries since the last
completed TLBI applicable to the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-92
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
This feature is supported in both AArch64 and AArch32 states.

FEAT_nTLBPA is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_nTLBPA:

• ID_MMFR5.nTLBPA.

• ID_AA64MMFR1_EL1.nTLBPA.

• ID_MMFR5_EL1.nTLBPA.

For more information, see:

• TLB maintenance.

• General TLB maintenance requirements.

A2.2.1.1 Features added to the Armv8.0 extension in later releases

• FEAT_CHK.

• FEAT_CLRBHB.

• FEAT_CP15SDISABLE2.

• FEAT_CSV2.

• FEAT_CSV3.

• FEAT_DGH.

• FEAT_ECBHB.

• FEAT_GTG.

• FEAT_PAN3.

• FEAT_PRFMSLC.

• FEAT_RAS.

• FEAT_RPRFM.

• FEAT_SB.

• FEAT_SCTLR2.

• FEAT_SPECRES2.

• FEAT_SPECRES.

• FEAT_SSBS2.

• FEAT_SSBS.

• FEAT_TCR2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-93
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.2 The Armv8.1 architecture extension

The Armv8.1 architecture extension is an extension to Armv8.0. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.1 compliant if all of the
following apply:

• It is Armv8.0 compliant.

• It includes all of the Armv8.1 architectural features that are mandatory.

An Armv8.1 compliant implementation can additionally include:

• Armv8.1 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.2, subject only to those constraints that require
that certain features be implemented together.

FEAT_Debugv8p1, Debug with VHE

FEAT_Debugv8p1 is OPTIONAL from Armv8.0.

FEAT_HAFDBS, Hardware management of the Access flag and dirty state

In Armv8.0, all updates to the translation tables are performed by software. From Armv8.1, for the
VMSAv8-64 translation regimes only, hardware can perform updates to the translation tables in two
contexts:

• Hardware management of the Access flag.

• Hardware management of dirty state, with updates to a dirty state in the translation tables.

The dirty state is introduced in Armv8.1.

Hardware management of dirty state can be enabled only when hardware management of the Access
flag is also enabled.

This feature is supported in AArch64 state only.

FEAT_HAFDBS is OPTIONAL from Armv8.0.

In an Armv8.9 implementation, if FEAT_HAFDBS is implemented, FEAT_HAFT is implemented.

The following field identifies the presence of FEAT_HAFDBS:

• ID_AA64MMFR1_EL1.HAFDBS.

For more information, see:

• Hardware management of the Access flag.

• Hardware management of the dirty state.

FEAT_HPDS, Hierarchical permission disables in translations tables

FEAT_HPDS introduces the facility to disable the hierarchical attributes, APTable, PXNTable, and
UXNTable, in the translation tables. This disable has no effect on the NSTable bit.

FEAT_HPDS is mandatory from Armv8.1.

FEAT_HPDS is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_HPDS:

• ID_AA64MMFR1_EL1.HPDS.

This feature is added only to the VMSAv8-64 translation regimes. Armv8.2 extends this to the
AArch32 translation regimes, see FEAT_AA32HPD.

FEAT_LOR, Limited ordering regions

Limited ordering regions allow large systems to perform special Load-Acquire and Store-Release
instructions that provide order between the memory accesses to a region of the PA map as observed
by a limited set of observers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-94
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
This feature is supported in AArch64 state only.

FEAT_LOR is mandatory from Armv8.1.

FEAT_LOR is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_LOR:

• ID_AA64MMFR1_EL1.LO.

For more information, see Limited ordering regions.

FEAT_LSE, Large System Extensions

FEAT_LSE introduces a set of atomic instructions:

• Compare and Swap instructions, CAS and CASP.

• Atomic memory operation instructions, LD<OP> and ST<OP>, where <OP> is one of ADD,
CLR, EOR, SET, SMAX, SMIN, UMAX, and UMIN.

• Swap instruction, SWP.

This feature is supported in AArch64 state only.

FEAT_LSE is mandatory from Armv8.1.

FEAT_LSE is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_LSE:

• ID_AA64ISAR0_EL1.Atomic.

For more information, see:

• State and mode changes without explicit context synchronization events

• Swap.

• Compare and Swap.

FEAT_PAN, Privileged access never

FEAT_PAN adds a bit to PSTATE. When the value of this PAN state bit is 1, any privileged data
access from EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is accessible
to data accesses at EL0, generates a Permission fault.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PAN is mandatory from Armv8.1.

FEAT_PAN is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_PAN:

• ID_AA64MMFR1_EL1.PAN.

• ID_MMFR3_EL1.PAN.

• ID_MMFR3.PAN.

For more information, see:

• PSTATE.PAN.

• About the PAN bit.

FEAT_PMUv3p1, Armv8.1 PMU extensions

FEAT_PMUv3p1 introduces the following:

• The event number space is extended to 16 bits.

• The HPMD bit is added to MDCR_EL2. This bit disables event counting at EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-95
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• The STALL_FRONTEND and STALL_BACKEND events are required to be implemented.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3p1 is OPTIONAL from Armv8.0.

If FEAT_PMUv3p1 is implemented, then FEAT_PMUv3 is implemented.

In an Armv8.1 implementation, if FEAT_PMUv3 is implemented, FEAT_PMUv3p1 is
implemented.

The following fields identify the presence of FEAT_PMUv3p1:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see Required events.

FEAT_RDM, Advanced SIMD rounding double multiply accumulate instructions

FEAT_RDM introduces Rounding Double Multiply Add/Subtract Advanced SIMD instructions.
For more information, see:

For the A64 instruction set

• SQRDMLAH (by element).

• SQRDMLAH (vectors).

• SQRDMLSH (by element).

• SQRDMLSH (vector).

For the T32 and A32 instruction sets

• VQRDMLAH.

• VQRDMLSH.

This feature is supported in both AArch64 and AArch32 states.

In an Armv8.1 implementation, if FEAT_AdvSIMD is implemented, FEAT_RDM is implemented.

FEAT_RDM is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_RDM:

• ID_AA64ISAR0_EL1.RDM.

• ID_ISAR5_EL1.RDM.

• ID_ISAR5.RDM.

FEAT_VHE, Virtualization Host Extensions

Armv8.1 introduces the Virtualization Host Extensions (VHE) that provide enhanced support for
Type 2 hypervisors in Non-secure state.

FEAT_VHE is OPTIONAL from Armv8.0.

In an Armv8.1 implementation, if FEAT_AA64EL2 is implemented, FEAT_VHE is implemented.

If FEAT_VHE is implemented, then FEAT_LSE, FEAT_Debugv8p1, and FEAT_AA64EL2 are
implemented.

The following fields identify the presence of FEAT_VHE:

• ID_AA64MMFR1_EL1.VH.

• ID_AA64DFR0_EL1.DebugVer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-96
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• ID_DFR0_EL1.CopDbg.

• ID_DFR0.CopDbg.

• EDDEVARCH.ARCHVER.

For more information, see Virtualization Host Extensions

FEAT_VMID16, 16-bit VMID

In an Armv8.1 implementation, when EL2 is using AArch64, the virtual machine identifier (VMID)
size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits.

When implemented, this feature is supported only when EL2 is using AArch64.

FEAT_VMID16 is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_VMID16:

• ID_AA64MMFR1_EL1.VMIDBits.

For more information, see VMID size.

A2.2.2.1 Features added to the Armv8.1 extension in later releases

• FEAT_DPB2.

• FEAT_DotProd.

• FEAT_FHM.

• FEAT_FlagM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-97
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.3 The Armv8.2 architecture extension

The Armv8.2 architecture extension is an extension to Armv8.1. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.2 compliant if all of the
following apply:

• It is Armv8.1 compliant.

• It includes all of the Armv8.2 architectural features that are mandatory.

An Armv8.2 compliant implementation can additionally include:

• Armv8.2 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.3, subject only to those constraints that require
that certain features be implemented together.

FEAT_AA32HPD, AArch32 Hierarchical permission disables

FEAT_HPDS introduced the ability to disable the hierarchical attributes, APTable, PXNTable, and
UXNTable, in the VMSAv8-64 translation regimes. FEAT_AA32HPD extends this functionality to
the VMSAv8-32 translation regimes when those regimes are using the Long descriptor Translation
Table format.

This feature is supported in AArch32 state only.

FEAT_AA32HPD is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_AA32HPD:

• ID_MMFR4_EL1.HPDS.

• ID_MMFR4.HPDS.

For more information, see Attribute fields in VMSAv8-32 Long-descriptor translation table format
descriptors

FEAT_AA32I8MM, AArch32 Int8 matrix multiplication instructions

FEAT_AA32I8MM introduces integer matrix multiply-accumulate instructions and dot product
instructions.

This feature is supported in AArch32 state only.

FEAT_AA32I8MM is OPTIONAL from Armv8.1.

If FEAT_AA32I8MM is implemented, then FEAT_I8MM is implemented.

The following fields identify the presence of FEAT_AA32I8MM:

• ID_ISAR6_EL1.I8MM.

• ID_ISAR6.I8MM.

For more information, see:

• Advanced SIMD dot product instructions.

• Advanced SIMD matrix multiply instructions.

FEAT_ASMv8p2, Armv8.2 changes to the A64 ISA

FEAT_ASMv8p2 adds the BFC instruction to the A64 instruction set as an alias of BFM. It also
requires that the BFC instruction and the A64 pseudo-instruction REV64 are implemented by
assemblers.

In Armv8.0 and Armv8.1, the A64 pseudo-instruction REV64 is OPTIONAL.

FEAT_ASMv8p2 is mandatory from Armv8.2.

FEAT_ASMv8p2 is OPTIONAL from Armv8.1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-98
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see:

• BFC.

• REV64.

FEAT_DPB, DC CVAP instruction

FEAT_DPB introduces a mechanism to identify and manage persistent memory locations in a
shared memory hierarchy, including adding the DC CVAP instruction.

This feature is supported in AArch64 state only.

FEAT_DPB is mandatory from Armv8.2.

FEAT_DPB is OPTIONAL from Armv8.1.

The following field identifies the presence of FEAT_DPB:

• ID_AA64ISAR1_EL1.DPB.

For more information, see Memory hierarchy.

FEAT_Debugv8p2, Debug v8.2

FEAT_Debugv8p2 covers a selection of mandatory changes, including:

• If the Core power domain is powered up and DoubleLockStatus() == TRUE,
EDPRSR.{DLK,SPD,PU} is only permitted to read {UNKNOWN, 0, 0}.

• The definition of Exception Catch debug events is extended to include reset entry.

• All CONSTRAINED UNPREDICTABLE cases that generate Exception Catch debug events are
removed.

• Controls are added to EDECCR to control Exception Catch debug event generation on
exception return.

• All IMPLEMENTATION DEFINED control of external debug accesses to OSLAR_EL1 is
removed.

• ExternalSecureNoninvasiveDebugEnabled() cannot override software controls of counting
attributable events in Secure state.

FEAT_Debugv8p2 is mandatory from Armv8.2.

FEAT_Debugv8p2 is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_Debugv8p2:

• ID_AA64DFR0_EL1.DebugVer.

• ID_DFR0_EL1.CopDbg.

• DBGDIDR.Version.

• ID_DFR0.CopDbg.

• EDDEVARCH.ARCHVER.

For more information, see:

• Exception Catch debug event.

• EDPRSR.{DLK, SPD, PU} and the Core power domain.

• Interaction with EL3.

• External access disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-99
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_F32MM, Single-precision Matrix Multiplication

FEAT_F32MM adds support for the SVE FP32 single-precision floating-point matrix
multiplication variant of the FMMLA instruction.

This feature is supported in AArch64 state only.

FEAT_F32MM is OPTIONAL from Armv8.2.

If FEAT_F32MM is implemented, then FEAT_SVE is implemented.

The following field identifies the presence of FEAT_F32MM:

• ID_AA64ZFR0_EL1.F32MM.

FEAT_F64MM, Double-precision Matrix Multiplication

FEAT_F64MM adds support for the following SVE instructions:

• FMMLA (FP64 double-precision variant).

• LD1ROB (scalar plus immediate).

• LD1ROB (scalar plus scalar).

• LD1ROD (scalar plus immediate).

• LD1ROD (scalar plus scalar).

• LD1ROD (scalar plus immediate).

• LD1ROH (scalar plus scalar).

• LD1ROW (scalar plus immediate).

• LD1ROW (scalar plus scalar).

• TRN1, TRN2 (vectors) (128-bit variant).

• UZP1, UZP2 (vectors) (128-bit variant).

• ZIP1, ZIP2 (vectors) (128-bit variant).

This feature is supported in AArch64 state only.

FEAT_F64MM is OPTIONAL from Armv8.2.

If FEAT_F64MM is implemented, then FEAT_SVE is implemented.

The following field identifies the presence of FEAT_F64MM:

• ID_AA64ZFR0_EL1.F64MM.

FEAT_FP16, Half-precision floating-point data processing

FEAT_FP16 supports:

• Half-precision data-processing instructions for Advanced SIMD and floating-point in both
AArch64 and AArch32 states.

• The FPCR.FZ16 and FPSCR.FZ16 fields, which enable flushing of denormalized numbers
to zero for half-precision data-processing instructions.

This feature is supported in both AArch64 and AArch32 states.

FEAT_FP16 is OPTIONAL from Armv8.2.

If FEAT_SVE or FEAT_FHM is implemented, then FEAT_FP16 is implemented.

In an Armv8.4 implementation, if FEAT_FHM is not implemented, then FEAT_FP16 is not
implemented.

The following fields identify the presence of FEAT_FP16:

• ID_AA64PFR0_EL1.FP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-100
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• ID_AA64PFR0_EL1.AdvSIMD.

• MVFR1_EL1.FPHP.

• MVFR1_EL1.SIMDHP.

• MVFR1.FPHP.

• MVFR1.SIMDHP.

For more information, see:

• Half-precision floating-point formats.

• Flushing denormalized numbers to zero.

• Modified immediate constants in A64 floating-point instructions.

FEAT_HPDS2, Hierarchical permission disables

Armv8.2 provides a mechanism to allow operating systems or hypervisors to make up to four bits
of Translation Table final-level descriptors available for IMPLEMENTATION DEFINED hardware use.

This feature is supported in both AArch64 and AArch32 states.

FEAT_HPDS2 is OPTIONAL from Armv8.1.

When FEAT_AA32EL1 and FEAT_HPDS2 are implemented, FEAT_AA32HPD is implemented.

If FEAT_HPDS2 is implemented, then FEAT_HPDS is implemented.

The following fields identify the presence of FEAT_HPDS2:

• ID_AA64MMFR1_EL1.HPDS.

• ID_MMFR4_EL1.HPDS.

• ID_MMFR4.HPDS.

For more information, see:

• Page Based Hardware attributes.

• Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors.

FEAT_I8MM, AArch64 Int8 matrix multiplication instructions

FEAT_I8MM introduces integer matrix multiply-accumulate instructions and dot product
instructions.

This feature is supported in AArch64 state only.

FEAT_I8MM is OPTIONAL from Armv8.1.

FEAT_I8MM is mandatory from Armv8.6.

The following fields identify the presence of FEAT_I8MM:

• ID_AA64ISAR1_EL1.I8MM.

• ID_AA64ZFR0_EL1.I8MM.

For more information, see:

• SIMD integer dot product.

• SIMD integer matrix multiply-accumulate.

• SVE Integer dot product.

• SVE Integer matrix multiply operations.

FEAT_IESB, Implicit Error Synchronization event

FEAT_IESB adds an implicit error synchronization event at exception entry and return.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-101
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The implicit error synchronization events affect the same synchronizable asynchronous events that
are synchronized by the ESB instruction.

This feature is supported in AArch64 state only.

FEAT_IESB is OPTIONAL from Armv8.1.

If FEAT_IESB is implemented, then FEAT_RAS is implemented.

The following fields identify the presence of FEAT_IESB:

• ID_AA64MMFR2_EL1.IESB.

• ID_AA64MMFR4_EL1.EIESB.

For more information, see Error synchronization event.

FEAT_LPA, Large PA and IPA support

FEAT_LPA:

• Allows a larger physical address (PA) and intermediate physical address (IPA) space of up
to 52 bits when using the 64KB translation granule.

• Allows a level 1 block size where the block covers a 4TB address range for the 64KB
translation granule if the implementation support 52 bits of PA.

This feature is supported in AArch64 state only.

FEAT_LPA is OPTIONAL from Armv8.1.

The following field identifies the presence of FEAT_LPA:

• ID_AA64MMFR0_EL1.PARange.

For more information about FEAT_LPA, see:

• Implemented physical address size.

• Output address size configuration.

• Intermediate physical address size configuration

• VMSAv8-64 translation using the 64KB granule

• Page Based Hardware attributes

• Translation table descriptor formats

FEAT_LSMAOC, AArch32 Load/Store Multiple instruction atomicity and ordering controls

FEAT_LSMAOC adds controls that disable legacy behavior of AArch32 load multiple and store
multiple instructions, and provide a trap of one aspect of this legacy behavior.

This feature is supported in both AArch64 and AArch32 states.

FEAT_LSMAOC is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_LSMAOC:

• ID_AA64MMFR2_EL1.LSM.

• ID_MMFR4_EL1.LSM.

• ID_MMFR4.LSM.

For more information, see the register field descriptions and:

• Generation of Alignment faults by load/store multiple accesses to Device memory.

• Multi-register loads and stores that access Device memory.

• Taking an interrupt or other exception during a multiple-register load or store.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-102
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_LVA, Large VA support

FEAT_LVA supports a larger *virtual address* (VA) space for each translation table base register of
up to 52 bits when using the 64KB translation granule.

This feature is supported in AArch64 state only.

FEAT_LVA is OPTIONAL from Armv8.1.

The following field identifies the presence of FEAT_LVA:

• ID_AA64MMFR2_EL1.VARange.

For more information about FEAT_LVA, see:

• Supported virtual address ranges.

• Input address size configuration.

• VMSAv8-64 translation using the 64KB granule.

FEAT_PAN2, AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN

FEAT_PAN2 adds variants of the AArch64 AT S1E1R and AT S1E1W instructions and the
AArch32 ATS1CPR and ATS1CPW instructions. These instructions factor in the Process state,
PSTATE.PAN bit when determining whether or not the location will generate a Permission fault for
a privileged access, as is reported in the PAR. For more information, see:

For the AArch64 System instructions

• AT S1E1RP.

• AT S1E1RP.

For the AArch32 System instructions

• ATS1CPRP.

• ATS1CPRP.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PAN2 is mandatory from Armv8.2.

If FEAT_PAN2 is implemented, then FEAT_PAN is implemented.

FEAT_PAN2 is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_PAN2:

• ID_AA64MMFR1_EL1.PAN.

• ID_MMFR3_EL1.PAN.

• ID_MMFR3.PAN.

For more information, see:

• Address translation instructions.

• Address translation instructions.

• ATS1C**, Address translation stage 1, current security state.

• Encoding and availability of the address translation instructions.

FEAT_PCSRv8p2, PC Sample-based Profiling Extension

In Armv8.2, the control and implementation of the OPTIONAL PC Sample-based Profiling Extension
is moved from ED*SR Debug registers to PM*SR registers in the Performance Monitors address
space.

FEAT_PCSRv8p2 is OPTIONAL from Armv8.1.

If FEAT_PCSRv8p2 is implemented, then FEAT_PCSRv8 is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-103
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
If FEAT_SEL2 and FEAT_PCSRv8 are implemented, then FEAT_PCSRv8p2 is implemented.

The following field identifies the presence of FEAT_PCSRv8p2:

• PMDEVID.PCSample.

For more information, see Chapter H7 The PC Sample-based Profiling Extension.

FEAT_RAS, Reliability, Availability and Serviceability (RAS) Extension

The RAS Extension improves the dependability of a system by providing reliability, availability,
and serviceability. The RAS Extension introduces the Error Synchronization Barrier (ESB)
instruction to the A32, T32, and A64 instruction sets, and the Error synchronization event.

FEAT_RAS is mandatory from Armv8.2.

FEAT_RAS is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_RAS:

• ID_AA64PFR0_EL1.RAS.

• ID_PFR0_EL1.RAS.

• ID_PFR0.RAS.

For more information, see:

• Reliability, Availability, and Serviceability.

• Chapter D19 RAS PE Architecture.

• Chapter I5 RAS System Architecture.

FEAT_RASSAv1, RAS System Architecture version 1

The system architecture to support RAS.

FEAT_RASSAv1 is OPTIONAL.

For more information, see Chapter I5 RAS System Architecture.

FEAT_SHA3, Advanced SIMD SHA3 instructions

FEAT_SHA3 adds Advanced SIMD instructions that support SHA3 functionality.

These instructions are added to the A64 instruction set only.

FEAT_SHA3 is OPTIONAL from Armv8.1.

If FEAT_SHA3 is implemented, then FEAT_SHA256 and FEAT_SHA1 are implemented.

If FEAT_SHA3 is implemented, then FEAT_Crypto is implemented.

The following field identifies the presence of FEAT_SHA3:

• ID_AA64ISAR0_EL1.SHA3.

For more information, see FEAT_SHA3, SHA3 functionality.

FEAT_SHA512, Advanced SIMD SHA512 instructions

FEAT_SHA512 adds Advanced SIMD instructions that support SHA2-512 functionality.

These instructions are added to the A64 instruction set only.

FEAT_SHA512 is OPTIONAL from Armv8.1.

If FEAT_SHA512 is implemented, then FEAT_SHA256 and FEAT_SHA1 are implemented.

If FEAT_SHA512 is implemented, then FEAT_Crypto is implemented.

The following field identifies the presence of FEAT_SHA512:

• ID_AA64ISAR0_EL1.SHA2.

For more information, see FEAT_SHA512, SHA2-512 functionality.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-104
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_SM3, Advanced SIMD SM3 instructions

FEAT_SM3 adds Advanced SIMD instructions that support the Chinese cryptography algorithm
SM3.

These instructions are added to the A64 instruction set only.

FEAT_SM3 is OPTIONAL from Armv8.1.

If FEAT_SM3 is implemented, then FEAT_Crypto is implemented.

The following field identifies the presence of FEAT_SM3:

• ID_AA64ISAR0_EL1.SM3.

For more information, see FEAT_SM3, SM3 functionality.

FEAT_SM4, Advanced SIMD SM4 instructions

FEAT_SM4 adds Advanced SIMD instructions that support the Chinese cryptography algorithm
SM4.

These instructions are added to the A64 instruction set only.

FEAT_SM4 is OPTIONAL from Armv8.1.

If FEAT_SM4 is implemented, then FEAT_Crypto is implemented.

The following field identifies the presence of FEAT_SM4:

• ID_AA64ISAR0_EL1.SM4.

For more information, see FEAT_SM4, SM4 functionality.

FEAT_SPE, Statistical Profiling Extension

FEAT_SPE provides a non-invasive method of sampling software and hardware using randomized
sampling of either architectural instructions, as defined by the instruction set architecture, or by
microarchitectural operations.

This feature is supported in AArch64 state only.

FEAT_SPE is OPTIONAL from Armv8.1.

The following field identifies the presence of FEAT_SPE:

• ID_AA64DFR0_EL1.PMSVer.

For more information, see Chapter D16 The Statistical Profiling Extension.

FEAT_SVE, Scalable Vector Extension

The Scalable Vector Extension includes the following functionality:

• Configurable vector length with scalable vector lengths from 128 bits up to 2048 bits.

• Predication using scalable predicate registers from 16 bits up to 256 bits.

• Instructions that operate on scalable size vectors and predicates.

• Gather-load and scatter-store.

• Software-managed speculative vectorization.

• System registers and fields to configure the Effective SVE vector length and traps.

The Scalable Vector Extension complements the AArch64 Advanced SIMD and floating-point
functionality. SVE does not replace the AArch64 Advanced SIMD and floating-point functionality.

This feature is supported in AArch64 state only.

FEAT_SVE is OPTIONAL from Armv8.2.

If FEAT_SVE is implemented, then FEAT_FCMA and FEAT_FP16 are implemented.

The following field identifies the presence of FEAT_SVE:

• ID_AA64PFR0_EL1.SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-105
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_TTCNP, Translation table Common not private translations

FEAT_TTCNP permits multiple PEs in the same Inner Shareable domain to use the same translation
tables for a given stage of address translation.

This facility is available for all VMSAv8-64 translation regimes and for VMSAv8-32 translation
stages that use the Long descriptor Translation Table format.

This feature is supported in both AArch64 and AArch32 states.

FEAT_TTCNP is mandatory from Armv8.2.

FEAT_TTCNP is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_TTCNP:

• ID_AA64MMFR2_EL1.CnP.

• ID_MMFR4_EL1.CnP.

• ID_MMFR4.CnP.

For more information, see:

• Common not private translations.

• Common not private translations in VMSAv8-32.

FEAT_UAO, Unprivileged Access Override control

FEAT_UAO adds a bit to Process state, PSTATE. When the value of this UAO state bit is 1, and
when executed at EL1 or at EL2 with HCR_EL2.{E2H, TGE} == {1, 1} the memory accesses made
by the load/store unprivileged instructions behave as if they were made by the load/store register
instructions.

This feature is supported in AArch64 state only.

FEAT_UAO is mandatory from Armv8.2.

FEAT_UAO is OPTIONAL from Armv8.1.

The following field identifies the presence of FEAT_UAO:

• ID_AA64MMFR2_EL1.UAO.

For more information, see:

• PSTATE.UAO.

• Load/store unprivileged.

• Load/store register.

FEAT_XNX, Translation table stage 2 Unprivileged Execute-never

FEAT_XNX extends the stage 2 translation table access permissions to provide control of whether
memory is executable at EL0 independent of whether it is executable at EL1.

This facility is available for stage 2 translation stages in VMSAv8-64 and VMSAv8-32.

This feature is supported in both AArch64 and AArch32 states.

In an Armv8.2 implementation, if FEAT_EL2 is implemented, FEAT_XNX is implemented.

FEAT_XNX is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_XNX:

• ID_AA64MMFR1_EL1.XNX.

• ID_MMFR4_EL1.XNX.

• ID_MMFR4.XNX.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-106
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see:

• Stage 2 instruction execution using Direct permissions.

• Access permissions for instruction execution.

A2.2.3.1 Features added to the Armv8.2 extension in later releases

• FEAT_AA32BF16.

• FEAT_BF16.

• FEAT_EBF16.

• FEAT_EVT.

• FEAT_LRCPC2.

• FEAT_LRCPC3.

• FEAT_LSE2.

• FEAT_MPAM.

• FEAT_PAuth2.

• FEAT_RASv1p1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-107
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.4 The Armv8.3 architecture extension

The Armv8.3 architecture extension is an extension to Armv8.2. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.3 compliant if all of the
following apply:

• It is Armv8.2 compliant.

• It includes all of the Armv8.3 architectural features that are mandatory.

An Armv8.3 compliant implementation can additionally include:

• Armv8.3 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.4, subject only to those constraints that require
that certain features be implemented together.

FEAT_CCIDX, Extended cache index

FEAT_CCIDX introduces the following registers to allow caches to be described with greater
numbers of sets and greater associativity:

• A 64-bit format of CCSIDR_EL1.

• CCSIDR2_EL1.

• CCSIDR2.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CCIDX is OPTIONAL from Armv8.2.

The following fields identify the presence of FEAT_CCIDX:

• ID_AA64MMFR2_EL1.CCIDX.

• ID_MMFR4_EL1.CCIDX.

• ID_MMFR4.CCIDX.

For more information, see:

• Possible formats of the Cache Size Identification Register, CCSIDR_EL1.

• Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2.

FEAT_CONSTPACFIELD, PAC algorithm enhancement

FEAT_CONSTPACFIELD introduces functionality that permits an implementation with pointer
authentication to use the value of bit[55] in the virtual address to determine the size of the PAC field
when adding a PAC to the virtual address, even when the top byte is not being ignored.

This feature is supported in AArch64 state only.

FEAT_CONSTPACFIELD is OPTIONAL from Armv8.2.

If FEAT_CONSTPACFIELD is implemented, then FEAT_PAuth2 is implemented.

The following field identifies the presence of FEAT_CONSTPACFIELD:

• ID_AA64ISAR2_EL1.PAC_frac.

For more information, see PAC field.

FEAT_DoPD, Debug over Powerdown

FEAT_DoPD provides a debug programmers' model where all debug and PMU registers are in the
Core power domain and all CTI registers are in the Debug power domain. Power control is provided
by a CoreSight Granular Power Requester (GPR) component.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-108
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
When the optional powerup mechanism is implemented and this feature is implemented, the
debugger makes power control requests for the Core power domain using a CoreSight Class 0x9
ROM Table block, instead of using EDRCR.COREPURQ. EDRCR.COREPURQ is not
implemented. Refer to the Arm™ CoreSight Architecture Specification for more information.

When FEAT_DoPD is implemented:

• The optional Software Lock is not implemented by the architecturally defined debug
components in the PE Core power domain.

• If an ETMv4 trace unit is implemented, the ETM must implement:

• ETMv4.2 or later.

• The Unified Power Domain Model.

• If FEAT_ETE is implemented, the trace unit always implements a single power domain.

FEAT_DoPD is OPTIONAL from Armv9.0 or Armv8.2.

If FEAT_DoPD is implemented, then FEAT_DoubleLock is not implemented.

If FEAT_DoPD is implemented, then FEAT_Debugv8p2 is implemented.

The following field identifies the presence of FEAT_DoPD:

• EDDEVID.DebugPower.

For more information, see Chapter H6 Debug Reset and Powerdown Support.

FEAT_EPAC, Enhanced pointer authentication

FEAT_EPAC adds functionality that permits setting the Pointer Authentication Code (PAC) field to
0 on performing a PAC operation on a non-canonical address.

This feature is supported in AArch64 state only.

FEAT_EPAC is OPTIONAL from Armv8.2.

If FEAT_EPAC is implemented, then FEAT_PAuth is implemented.

If FEAT_EPAC is implemented, then FEAT_PAuth2 is not implemented.

The following fields identify the presence of FEAT_EPAC:

• ID_AA64ISAR1_EL1.APA.

• ID_AA64ISAR1_EL1.API.

• ID_AA64ISAR2_EL1.APA3.

For more information, see Pointer authentication.

FEAT_FCMA, Floating-point complex number instructions

FEAT_FCMA introduces instructions for floating-point multiplication and addition of complex
numbers.

These instructions are added to the A64 and A32/T32 instruction sets.

In an Armv8.3 implementation, if FEAT_FP is implemented, FEAT_FCMA is implemented.

FEAT_FCMA is OPTIONAL from Armv8.2.

If FEAT_FCMA is implemented, then FEAT_FP is implemented.

The following fields identify the presence of FEAT_FCMA:

• ID_AA64ISAR1_EL1.FCMA.

• ID_ISAR5_EL1.VCMA.

• ID_ISAR5.VCMA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-109
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see:

• Advanced SIMD complex number arithmetic instructions.

• Advanced SIMD complex number arithmetic instructions.

FEAT_FPAC, Faulting on AUT* instructions

FEAT_FPAC introduces faulting on an AUT* instruction.

FEAT_FPAC is added as a further extension to FEAT_PAuth2.

This feature is supported in AArch64 state only.

FEAT_FPAC is OPTIONAL from Armv8.2.

If FEAT_FPAC is implemented, then FEAT_PAuth2 is implemented.

The following fields identify the presence of FEAT_FPAC:

• ID_AA64ISAR1_EL1.APA.

• ID_AA64ISAR1_EL1.API.

• ID_AA64ISAR2_EL1.APA3.

For more information, see Faulting on pointer authentication.

FEAT_FPACCOMBINE, Faulting on combined pointer authentication instructions

FEAT_FPACCOMBINE introduces faulting on the combined instructions that perform pointer
authentication.

FEAT_FPACCOMBINE is added as a further extension to FEAT_FPAC.

FEAT_FPACCOMBINE is OPTIONAL from Armv8.2.

If FEAT_FPACCOMBINE is implemented, then FEAT_FPAC is implemented.

The following fields identify the presence of FEAT_FPACCOMBINE:

• ID_AA64ISAR1_EL1.APA.

• ID_AA64ISAR1_EL1.API.

• ID_AA64ISAR2_EL1.APA3.

For more information, see Faulting on pointer authentication.

FEAT_FPACC_SPEC, Faulting on combined pointer authentication instructions

FEAT_FPACC_SPEC introduces consistent impact of speculation for combined instructions that
perform authentication.

FEAT_FPACC_SPEC is added as a further extension to FEAT_FPACCOMBINE.

This feature is supported in AArch64 state only.

FEAT_FPACC_SPEC is OPTIONAL from Armv8.2.

If FEAT_FPACC_SPEC is implemented, then FEAT_FPACCOMBINE is implemented.

The following field identifies the presence of FEAT_FPACC_SPEC:

• ID_AA64MMFR3_EL1.Spec_FPACC.

For more information, see Faulting on pointer authentication.

FEAT_JSCVT, JavaScript conversion instructions

FEAT_JSCVT introduces JavaScript convert instructions that truncate a double-precision value to
a 32-bit signed integer, setting the condition flags to indicate whether the converted value was in
range.

These instructions are added to the A64 and A32/T32 instruction sets.

In an Armv8.3 implementation, if FEAT_FP is implemented, FEAT_JSCVT is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-110
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
If FEAT_JSCVT is implemented, then FEAT_FP is implemented.

FEAT_JSCVT is OPTIONAL from Armv8.2.

The following fields identify the presence of FEAT_JSCVT:

• ID_AA64ISAR1_EL1.JSCVT.

• ID_ISAR6_EL1.JSCVT.

• ID_ISAR6.JSCVT.

For more information, see:

• Floating-point conversion.

• About the SME instructions.

• Advanced SIMD and floating-point instructions.

• Floating-point data-processing instructions.

FEAT_LRCPC, Load-Acquire RCpc instructions

FEAT_LRCPC introduces instructions that support the weaker Release Consistency processor
consistent (RCpc) model that enables the reordering of a Store-Release followed by a Load-Acquire
to a different address.

These instructions are added to the A64 instruction set only.

FEAT_LRCPC is OPTIONAL from Armv8.2.

FEAT_LRCPC is mandatory from Armv8.3.

The following field identifies the presence of FEAT_LRCPC:

• ID_AA64ISAR1_EL1.LRCPC.

For more information, see:

• Load-Acquire, Load-AcquirePC, and Store-Release.

• Load-Acquire/Store-Release.

FEAT_NV, Nested Virtualization

FEAT_NV provides support for a Guest Hypervisor to run in EL1 and ensures that the Guest
Hypervisor is unaware that it is running at that Exception level. A Guest Hypervisor is supported
regardless of the value of HCR_EL2.E2H.

This feature is supported in AArch64 state only.

FEAT_NV is OPTIONAL from Armv8.2.

If FEAT_NV is implemented, then FEAT_EL2 is implemented.

For more information, see Nested virtualization.

FEAT_PACIMP, Pointer authentication - IMPLEMENTATION DEFINED algorithm

FEAT_PACIMP permits an IMPLEMENTATION DEFINED cryptographic algorithm to be used for PAC
calculation.

This feature is supported in AArch64 state only.

FEAT_PACIMP is OPTIONAL from Armv8.2.

If FEAT_PACIMP is implemented, then FEAT_PAuth is implemented.

The following fields identify the presence of FEAT_PACIMP:

• ID_AA64ISAR1_EL1.GPI.

• ID_AA64ISAR1_EL1.API.

For more information, see Pointer authentication.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-111
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_PACQARMA3, Pointer authentication - QARMA3 algorithm

FEAT_PACQARMA3 adds the QARMA3 cryptographic algorithm for PAC calculation.

This feature is supported in AArch64 state only.

FEAT_PACQARMA3 is OPTIONAL from Armv8.2.

If FEAT_PACQARMA3 is implemented, then FEAT_PAuth is implemented.

The following fields identify the presence of FEAT_PACQARMA3:

• ID_AA64ISAR2_EL1.GPA3.

• ID_AA64ISAR2_EL1.APA3.

For more information, see Pointer authentication.

FEAT_PACQARMA5, Pointer authentication - QARMA5 algorithm

FEAT_PACQARMA5 adds the QARMA5 cryptographic algorithm for PAC calculation.

This feature is supported in AArch64 state only.

FEAT_PACQARMA5 is OPTIONAL from Armv8.2.

If FEAT_PACQARMA5 is implemented, then FEAT_PAuth is implemented.

The following fields identify the presence of FEAT_PACQARMA5:

• ID_AA64ISAR1_EL1.GPA.

• ID_AA64ISAR1_EL1.APA.

For more information, see Pointer authentication.

FEAT_PAuth, Pointer authentication

FEAT_PAuth adds functionality that supports address authentication of the contents of a register
before that register is used as the target of an indirect branch, or as a load.

When FEAT_PAuth is implemented, one of the following must be true:

• Exactly one of the PAC algorithms is implemented.

• If the PACGA instruction and other Pointer authentication instructions use different PAC
algorithms, exactly two PAC algorithms are implemented.

The PAC algorithm features are:

• FEAT_PACQARMA5.

• FEAT_PACIMP.

• FEAT_PACQARMA3.

This feature is supported in AArch64 state only.

FEAT_PAuth is mandatory from Armv8.3.

FEAT_PAuth is OPTIONAL from Armv8.2.

The following fields identify the presence of FEAT_PAuth:

• ID_AA64ISAR1_EL1.APA.

• ID_AA64ISAR1_EL1.API.

• ID_AA64ISAR2_EL1.APA3.

• ID_AA64ISAR1_EL1.GPA.

• ID_AA64ISAR1_EL1.GPI.

• ID_AA64ISAR2_EL1.GPA3.

For more information, see Pointer authentication.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-112
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_SPEv1p1, Statistical Profiling Extension version 1

FEAT_SPEv1p1 adds an Alignment Flag in the Events packet and filtering on this event using
PMSEVFR_EL1, together with support for the profiling of Scalable Vector Extension operations.

This feature is supported in AArch64 state only.

FEAT_SPEv1p1 is OPTIONAL from Armv8.2.

If FEAT_SPEv1p1 is implemented, then FEAT_SPE is implemented.

In an Armv8.5 implementation, if FEAT_SPE is implemented, FEAT_SPEv1p1 is implemented.

The following field identifies the presence of FEAT_SPEv1p1:

• ID_AA64DFR0_EL1.PMSVer.

An implementation that includes FEAT_SVE and the Statistical Profiling Extension is strongly
recommended to implement FEAT_SPEv1p1 whenever possible.

For more information, see:

• Chapter D16 The Statistical Profiling Extension.

• Chapter D17 Statistical Profiling Extension Sample Record Specification.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-113
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.5 The Armv8.4 architecture extension

The Armv8.4 architecture extension is an extension to Armv8.3. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.4 compliant if all of the
following apply:

• It is Armv8.3 compliant.

• It includes all of the Armv8.4 architectural features that are mandatory.

An Armv8.4 compliant implementation can additionally include:

• Armv8.4 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.5, subject only to those constraints that require
that certain features be implemented together.

FEAT_AMU_EXT, External Activity Monitors

FEAT_AMU_EXT indicates support for external access to the Activity Monitors.

FEAT_AMU_EXT is OPTIONAL.

If FEAT_AMU_EXT is implemented, then FEAT_AMUv1 is implemented.

FEAT_AMU_EXT32, AArch32 External Activity Monitors

FEAT_AMU_EXT32 indicates the external AMU registers are implemented as mostly 32-bit
registers.

FEAT_AMU_EXT32 is OPTIONAL.

If FEAT_AMU_EXT32 is implemented, then FEAT_AMU_EXT is implemented.

If FEAT_AMU_EXT and FEAT_AMU_EXT32 are implemented, then FEAT_AMU_EXT64 is not
implemented.

The following field identifies the presence of FEAT_AMU_EXT32:

• AMDEVARCH.ARCHID.

For more information, see Chapter I3 Recommended External Interface to the Performance
Monitors.

FEAT_AMUv1, Activity Monitors Extension version 1

FEAT_AMUv1 provides a function similar to a subset of the existing Performance Monitors
Extension functionality, intended for system management use rather than debugging and profiling.

This feature is supported in both AArch64 and AArch32 states.

FEAT_AMUv1 is OPTIONAL from Armv8.3.

The following fields identify the presence of FEAT_AMUv1:

• ID_AA64PFR0_EL1.AMU.

• ID_PFR0_EL1.AMU.

• ID_PFR0.AMU.

• EDPFR.AMU.

For more information, see Chapter D15 The Activity Monitors Extension.

FEAT_BBM, Translation table break-before-make levels

FEAT_BBM provides support to identify the requirements of hardware to have break-before-make
sequences when changing between block size for a translation.

This feature is supported in AArch64 state only.

FEAT_BBM is mandatory from Armv8.4.

FEAT_BBM is OPTIONAL from Armv8.3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-114
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following field identifies the presence of FEAT_BBM:

• ID_AA64MMFR2_EL1.BBM.

For more information, see:

• VMSAv8-64 Block descriptor and Page descriptor formats.

• Block translation entry.

• Support levels for changing table or block size.

FEAT_CNTSC, Generic Counter Scaling

FEAT_CNTSC adds a scaling register to the memory-mapped counter module that allows the
frequency of the counter that is generated to be scaled from the basic frequency reported in the
counter ID mechanisms.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CNTSC is OPTIONAL from Armv8.3.

The following field identifies the presence of FEAT_CNTSC:

• CNTID.CNTSC.

For more information, see CNTCR.

FEAT_DIT, Data Independent Timing instructions

FEAT_DIT provides independent timing for data processing instructions.

This feature is supported in both AArch64 and AArch32 states.

FEAT_DIT is mandatory from Armv8.4.

FEAT_DIT is OPTIONAL from Armv8.3.

The following fields identify the presence of FEAT_DIT:

• ID_AA64PFR0_EL1.DIT.

• ID_PFR0_EL1.DIT.

• ID_PFR0.DIT.

For more information, see:

• About PSTATE.DIT.

• About the DIT bit.

FEAT_Debugv8p4, Debug v8.4

FEAT_Debugv8p4 covers a selection of mandatory changes:

• The fields MDCR_EL3.{EPMAD, EDAD} control Non-secure access to the debug and
PMU registers. The bus Requester is responsible for other debug authentication.

• The Software Lock is obsolete.

• Non-invasive Debug controls are relaxed.

• Secure and Non-secure views of the debug registers are enabled.

FEAT_Debugv8p4 is mandatory from Armv8.4.

FEAT_Debugv8p4 is OPTIONAL from Armv8.3.

If FEAT_Debugv8p4 is implemented, then FEAT_Debugv8p2 is implemented.

If FEAT_SEL2 is implemented, then FEAT_Debugv8p4 is implemented.

The following fields identify the presence of FEAT_Debugv8p4:

• ID_DFR0_EL1.CopDbg.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-115
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• ID_AA64DFR0_EL1.DebugVer.

• DBGDIDR.Version.

• ID_DFR0.CopDbg.

• EDDEVARCH.ARCHVER.

For more information, see:

• Definition and constraints of a debugger.

• Access permissions for the External debug interface registers.

FEAT_DotProd, Advanced SIMD dot product instructions

FEAT_DotProd provides instructions to perform a four-way vector dot product of 8-bit integers,
accumulating each sum of four products into a 32-bit integer. Each 8-bit input can be treated as a
signed or unsigned value.

These instructions are added to the A64 and A32/T32 instruction sets.

In an Armv8.4 implementation, if FEAT_AdvSIMD is implemented, FEAT_DotProd is
implemented.

FEAT_DotProd is OPTIONAL from Armv8.1.

The following fields identify the presence of FEAT_DotProd:

• ID_AA64ISAR0_EL1.DP.

• ID_ISAR6_EL1.DP.

• ID_ISAR6.DP.

For more information, see:

• SIMD integer dot product.

• Advanced SIMD dot product instructions.

FEAT_DoubleFault, Double Fault Extension

FEAT_DoubleFault provides controls for routing and masking error exceptions.

This feature is supported in AArch64 state only.

In an Armv8.4 implementation, if FEAT_AA64EL3 is implemented, FEAT_DoubleFault is
implemented.

If FEAT_DoubleFault is implemented, then FEAT_DoubleFault2 or FEAT_AA64EL3 is
implemented.

The following field identifies the presence of FEAT_DoubleFault:

• ID_AA64PFR0_EL1.RAS.

For more information, see:

• Taking error exceptions.

• Error synchronization event.

FEAT_FHM, Floating-point half-precision to single-precision multiply-add instructions

FEAT_FHM adds half-precision to single-precision fused multiply-add instructions.

These instructions are added to the A64 and A32/T32 instruction sets.

In an Armv8.4 implementation, if FEAT_FP16 is implemented, FEAT_FHM is implemented.

FEAT_FHM is OPTIONAL from Armv8.1.

If FEAT_FHM is implemented, then FEAT_FP16 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-116
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following fields identify the presence of FEAT_FHM:

• ID_AA64ISAR0_EL1.FHM.

• ID_ISAR6_EL1.FHM.

• ID_ISAR6.FHM.

For more information, see:

• SIMD arithmetic.

• SIMD by element arithmetic.

• Advanced SIMD multiply instructions.

FEAT_FlagM, Condition flag manipulation instructions

FEAT_FlagM provides instructions that manipulate the Process state, PSTATE.{N,Z,C,V} flags.

These instructions are added to the A64 instruction set only.

FEAT_FlagM is mandatory from Armv8.4.

FEAT_FlagM is OPTIONAL from Armv8.1.

The following field identifies the presence of FEAT_FlagM:

• ID_AA64ISAR0_EL1.TS.

For more information, see Flag manipulation instructions.

FEAT_IDST, ID space trap handling

FEAT_IDST causes all AArch64 read accesses to the feature ID space when exceptions are
generated to be reported in ESR_ELx using the EC code 0x18.

This feature is supported in AArch64 state only.

FEAT_IDST is mandatory from Armv8.4.

FEAT_IDST is OPTIONAL from Armv8.3.

The following field identifies the presence of FEAT_IDST:

• ID_AA64MMFR2_EL1.IDS.

FEAT_LRCPC2, Load-Acquire RCpc instructions version 2

FEAT_LRCPC2 provides versions of LDAPR and STLR with a 9-bit unscaled signed immediate offset.

These instructions are added to the A64 instruction set only.

FEAT_LRCPC2 is mandatory from Armv8.4.

FEAT_LRCPC2 is OPTIONAL from Armv8.2.

If FEAT_LRCPC2 is implemented, then FEAT_LRCPC is implemented.

The following field identifies the presence of FEAT_LRCPC2:

• ID_AA64ISAR1_EL1.LRCPC.

For more information, see:

• Changes to single-copy atomicity in Armv8.4.

• Load-Acquire/Store-Release.

• A64 instructions that are changed in Debug state.

FEAT_LSE2, Large System Extensions version 2

FEAT_LSE2 introduces changes to single-copy atomicity requirements for loads and stores, and
changes to alignment requirements for loads and stores.

This feature is supported in AArch64 state only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-117
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_LSE2 is mandatory from Armv8.4.

FEAT_LSE2 is OPTIONAL from Armv8.2.

The following field identifies the presence of FEAT_LSE2:

• ID_AA64MMFR2_EL1.AT.

For more information, see:

• Requirements for single-copy atomicity.

• Alignment of data accesses.

FEAT_MPAM, Memory Partitioning and Monitoring Extension

The MPAM Extension provides a framework for memory-system component controls that partition
one or more of the performance resources of the component.

This feature is supported in AArch64 state only.

FEAT_MPAM is OPTIONAL from Armv8.2.

The following field identifies the presence of FEAT_MPAM:

• ID_AA64PFR0_EL1.MPAM.

For more information, see Chapter D20 MPAM PE Architecture.

FEAT_NV2, Enhanced nested virtualization support

FEAT_NV2 supports nested virtualization by redirecting register accesses that would be trapped to
EL1 and EL2 to access memory instead. The address of the memory access depends on information
held in VNCR_EL2.

This feature is supported in AArch64 state only.

FEAT_NV2 is OPTIONAL from Armv8.3.

If FEAT_NV2 is implemented, then FEAT_NV is implemented.

For more information, see Enhanced support for nested virtualization.

FEAT_PMUv3p4, Arm8.4 PMU extensions

FEAT_PMUv3p4 introduces the PMMIR_EL1 and PMMIR registers.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3p4 is OPTIONAL from Armv8.3.

If FEAT_PMUv3p4 is implemented, then FEAT_PMUv3p1 is implemented.

In an Armv8.4 implementation, if FEAT_PMUv3 is implemented, FEAT_PMUv3p4 is
implemented.

The following fields identify the presence of FEAT_PMUv3p4:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see PMU events and event numbers.

FEAT_RASSAv1p1, RAS version 1.1 System Architecture

The system architecture to support RASv1p1

FEAT_RASSAv1p1 is OPTIONAL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-118
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_RASv1p1, RAS extension v1.1

FEAT_RASv1p1 adds support for System register access to the following RAS System Architecture
v1.1 features:

• Additional ERR<n>MISC<m> registers.

• The optional RAS Common Fault Injection Model Extension.

This feature is supported in both AArch64 and AArch32 states.

In an Armv8.4 implementation, if FEAT_RAS is implemented, FEAT_RASv1p1 is implemented.

FEAT_RASv1p1 is OPTIONAL from Armv8.2.

If FEAT_RASv1p1 is implemented, then FEAT_RAS is implemented.

If FEAT_RASv1p1 is implemented, then FEAT_RASSAv1p1 is implemented.

The following fields identify the presence of FEAT_RASv1p1:

• ID_AA64PFR0_EL1.RAS.

• ID_AA64PFR1_EL1.RAS_frac.

• ID_PFR0_EL1.RAS.

• ID_PFR2_EL1.RAS_frac.

• ID_PFR0.RAS.

• ID_PFR2.RAS_frac.

For more information, see Chapter I5 RAS System Architecture.

FEAT_S2FWB, Stage 2 forced Write-Back

FEAT_S2FWB reduces the requirement of additional cache maintenance instructions in systems
where the data Cacheability attributes used by the Guest operating system are different from those
expected by the Hypervisor. If this feature is implemented, there is no meaningful distinction
between the Inner and Outer Shareability domains for accesses to Normal Cacheable memory.

This feature is supported in AArch64 state only.

In an Armv8.4 implementation, if FEAT_EL2 is implemented, FEAT_S2FWB is implemented.

FEAT_S2FWB is OPTIONAL from Armv8.3.

The following field identifies the presence of FEAT_S2FWB:

• ID_AA64MMFR2_EL1.FWB.

For more information, see:

• VMSAv8-64 Block descriptor and Page descriptor formats.

• Stage 2 memory type and Cacheability attributes when FWB is enabled.

FEAT_SEL2, Secure EL2

FEAT_SEL2 permits EL2 to be implemented in Secure state. When Secure EL2 is enabled, a
translation regime is introduced that follows the same format as the other Secure translation
regimes.

This feature is not supported if EL2 is using AArch32.

In an Armv8.4 implementation, if FEAT_AA64EL2 is implemented, FEAT_SEL2 is implemented.

FEAT_SEL2 is OPTIONAL from Armv8.3.

If FEAT_SEL2 is implemented, then FEAT_TTST is implemented.

If FEAT_SEL2 is implemented, then FEAT_EL2 is implemented.

The following field identifies the presence of FEAT_SEL2:

• ID_AA64PFR0_EL1.SEL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-119
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see:

• Security states

• Translation regimes.

FEAT_TLBIOS, TLB invalidate instructions in Outer Shareable domain

FEAT_TLBIOS provides TLBI maintenance instructions that extend to the Outer Shareable
domain.

This feature is supported in AArch64 state only.

FEAT_TLBIOS is mandatory from Armv8.4.

FEAT_TLBIOS is OPTIONAL from Armv8.3.

The following field identifies the presence of FEAT_TLBIOS:

• ID_AA64ISAR0_EL1.TLB.

For more information, see TLB maintenance instructions.

FEAT_TLBIRANGE, TLB invalidate range instructions

FEAT_TLBIRANGE provides TLBI maintenance instructions that apply to a range of input
addresses.

This feature is supported in AArch64 state only.

FEAT_TLBIRANGE is mandatory from Armv8.4.

FEAT_TLBIRANGE is OPTIONAL from Armv8.3.

If FEAT_TLBIRANGE is implemented, then FEAT_TLBIOS is implemented.

The following field identifies the presence of FEAT_TLBIRANGE:

• ID_AA64ISAR0_EL1.TLB.

For more information, see:

• TLB maintenance instructions.

• TLB maintenance instructions that do not apply to a range of addresses.

FEAT_TRF, Self-hosted Trace extensions

FEAT_TRF adds controls of trace in a self-hosted system through System registers.

• The feature provides:

• Control of Exception levels and Security states where trace generation is prohibited.

• Control of whether an offset is used for the timestamp recorded with trace information.

• A context synchronization instruction TSB CSYNC which can be used to prevent reordering
of trace operation accesses with respect to other accesses of the same System registers.

This feature is supported in both AArch64 and AArch32 states.

FEAT_TRF is OPTIONAL from Armv8.3.

If FEAT_TRF is implemented, then FEAT_TRC_SR is implemented.

In an Armv8.4 implementation, if FEAT_ETMv4 is implemented, FEAT_TRF is implemented.

The following fields identify the presence of FEAT_TRF:

• ID_DFR0_EL1.TraceFilt.

• ID_DFR0.TraceFilt.

• ID_AA64DFR0_EL1.TraceFilt.

• EDDFR.TraceFilt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-120
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information on FEAT_TRF, see:

• Chapter D3 AArch64 Self-hosted Trace.

• Chapter G3 AArch32 Self-hosted Trace.

FEAT_TTL, Translation Table Level

FEAT_TTL provides the TTL field to indicate the level of translation table walk holding the leaf
entry for the address that is being invalidated. This field is provided in all TLB maintenance
instructions that take a VA or an IPA argument.

This feature is supported in AArch64 state only.

FEAT_TTL is mandatory from Armv8.4.

FEAT_TTL is OPTIONAL from Armv8.3.

The following field identifies the presence of FEAT_TTL:

• ID_AA64MMFR2_EL1.TTL.

For more information, see:

• TLB maintenance instructions.

• TLB maintenance instructions that do not apply to a range of addresses.

FEAT_TTST, Small translation tables

FEAT_TTST relaxes the lower limit on the size of translation tables, by increasing the maximum
permitted value of the T1SZ and T0SZ fields in TCR_EL1, TCR_EL2, TCR_EL3, VTCR_EL2 and
VSTCR_EL2.

This feature is supported in AArch64 state only.

FEAT_TTST is OPTIONAL from Armv8.3.

If FEAT_SEL2 is implemented, then FEAT_TTST is implemented.

The following field identifies the presence of FEAT_TTST:

• ID_AA64MMFR2_EL1.ST.

For more information, see:

• Input address size configuration.

• VMSAv8-64 translation using the 4KB granule.

• VMSAv8-64 translation using the 16KB granule.

• VMSAv8-64 translation using the 64KB granule.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-121
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.6 The Armv8.5 architecture extension

The Armv8.5 architecture extension is an extension to Armv8.4. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.5 compliant if all of the
following apply:

• It is Armv8.4 compliant.

• It includes all of the Armv8.5 architectural features that are mandatory.

An Armv8.5 compliant implementation can additionally include:

• Armv8.5 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.6, subject only to those constraints that require
that certain features be implemented together.

FEAT_BTI, Branch Target Identification

FEAT_BTI allows memory pages to be guarded against the execution of instructions that are not the
intended target of a branch. To do this, it introduces:

• The GP field, which denotes the blocks and pages in stage 1 translation tables that are
guarded pages.

• The Process state, PSTATE.BTYPE field, which is used to determine whether an access to a
guarded memory region will generate a Branch Target exception.

• The BTI instruction, which is used to guard against the execution of instructions that are not
the intended target of a branch.

This feature is supported in AArch64 state only.

FEAT_BTI is mandatory from Armv8.5.

FEAT_BTI is OPTIONAL from Armv8.4.

The following field identifies the presence of FEAT_BTI:

• ID_AA64PFR1_EL1.BT.

For more information, see:

• VMSAv8-64 Table descriptor format.

• PSTATE.BTYPE.

• Effect of entering Debug state on PSTATE.

FEAT_CSV2, Cache Speculation Variant 2

FEAT_CSV2 adds a mechanism to identify if hardware cannot disclose information about whether
branch or other predictions trained in one hardware described context can control speculative
execution in a different hardware described context.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CSV2 is mandatory from Armv8.5.

FEAT_CSV2 is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_CSV2:

• ID_AA64PFR0_EL1.CSV2.

• ID_PFR0_EL1.CSV2.

• ID_PFR0.CSV2.

For more information, see:

• Restrictions on the effects of speculation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-122
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• Restrictions on the effects of speculation.

FEAT_CSV3, Cache Speculation Variant 3

FEAT_CSV3 adds a mechanism to identify if hardware cannot disclose information about whether
data loaded under speculation with a permission or domain fault can be used to form an address,
generate condition codes, or generate SVE predicate values, to be used by instructions newer than
the load in the speculative sequence.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CSV3 is mandatory from Armv8.5.

FEAT_CSV3 is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_CSV3:

• ID_AA64PFR0_EL1.CSV3.

FEAT_DPB2, DC CVADP instruction

FEAT_DPB2 allows two levels of cache clean to the Point of Persistence by:

• Redefining Point of Persistence, which changes the scope of DC CVAP.

• Defining a Point of Deep Persistence.

• Adding the DC CVADP System instruction.

This feature is supported in AArch64 state only.

FEAT_DPB2 is mandatory from Armv8.5.

FEAT_DPB2 is OPTIONAL from Armv8.1.

If FEAT_DPB2 is implemented, then FEAT_DPB is implemented.

The following field identifies the presence of FEAT_DPB2:

• ID_AA64ISAR1_EL1.DPB.

For more information, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions.

FEAT_E0PD, Preventing EL0 access to halves of address maps

FEAT_E0PD prevents access at EL0 to half of the addresses in the memory map.

This feature is supported in AArch64 state only. When EL1 is using AArch64 state, this feature
affects access to EL0, in either Execution state.

FEAT_E0PD is mandatory from Armv8.5.

If FEAT_E0PD is implemented, then FEAT_CSV3 is implemented.

FEAT_E0PD is OPTIONAL from Armv8.4.

The following field identifies the presence of FEAT_E0PD:

• ID_AA64MMFR2_EL1.E0PD.

For more information, see Preventing EL0 access to halves of the address map.

FEAT_EVT, Enhanced Virtualization Traps

FEAT_EVT introduces additional traps for EL1 and EL0 Cache controls in HCR_EL2 and HCR2.
These traps are independent of existing controls.

This feature is supported in both AArch64 and AArch32 states.

In an Armv8.5 implementation, if FEAT_EL2 is implemented, FEAT_EVT is implemented.

FEAT_EVT is OPTIONAL from Armv8.2.

The following fields identify the presence of FEAT_EVT:

• ID_AA64MMFR2_EL1.EVT.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-123
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• ID_MMFR4_EL1.EVT.

• ID_MMFR4.EVT.

FEAT_ExS, Context synchronization and exception handling

FEAT_ExS provides a mechanism to control whether exception entry and exception return are
context synchronization events.

Fields in the SCTLR_ELx registers enable and disable context synchronization at exception entry
and return at an Exception level.

This feature is supported in AArch64 state only.

FEAT_ExS is OPTIONAL from Armv8.4.

The following field identifies the presence of FEAT_ExS:

• ID_AA64MMFR0_EL1.ExS.

For more information, see CONSTRAINED UNPREDICTABLE behavior due to inadequate context
synchronization.

FEAT_FRINTTS, Floating-point to integer instructions

FEAT_FRINTTS provides instructions that round a floating-point number to an integral valued
floating-point number that fits in a 32-bit or 64-bit integer number range.

These instructions are added to the A64 instruction set only.

In an Armv8.5 implementation, if FEAT_FP is implemented, FEAT_FRINTTS is implemented.

FEAT_FRINTTS is OPTIONAL from Armv8.4.

If FEAT_FRINTTS is implemented, then FEAT_FP and FEAT_AdvSIMD are implemented.

The following field identifies the presence of FEAT_FRINTTS:

• ID_AA64ISAR1_EL1.FRINTTS.

For more information, see Floating-point round to integral value.

FEAT_FlagM2, Enhancements to flag manipulation instructions

FEAT_FlagM2 provides instructions that convert between the PSTATE condition flag format used
by the FCMP instruction and an alternative format described in Condition flags and related
instructions.

These instructions are added to the A64 instruction set only.

FEAT_FlagM2 is OPTIONAL from Armv8.4.

If FEAT_FlagM2 is implemented, then FEAT_FlagM is implemented.

The following field identifies the presence of FEAT_FlagM2:

• ID_AA64ISAR0_EL1.TS.

For more information, see Flag manipulation instructions.

FEAT_GTG, Guest translation granule size

FEAT_GTG allows a hypervisor to support different granule sizes for stage 2 and stage 1
translation, and allows a nested hypervisor to determine what stage 2 granule sizes are available.

This feature is supported in AArch64 state only.

In an Armv8.5 implementation, if FEAT_AA64EL2 is implemented, FEAT_GTG is implemented.

FEAT_GTG is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_GTG:

• ID_AA64MMFR0_EL1.TGran4_2.

• ID_AA64MMFR0_EL1.TGran16_2.

• ID_AA64MMFR0_EL1.TGran64_2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-124
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see Translation granules.

FEAT_MTE, Memory Tagging Extension

FEAT_MTE provides architectural support for runtime, always-on detection of various classes of
memory error to aid with software debugging to eliminate vulnerabilities arising from
memory-unsafe languages.

These features are supported in AArch64 state only.

FEAT_MTE is OPTIONAL from Armv8.4.

The following field identifies the presence of FEAT_MTE:

• ID_AA64PFR1_EL1.MTE.

For more information, see:

• Chapter D10 The Memory Tagging Extension.

• Chapter B2 The AArch64 Application Level Memory Model.

• PMU events and event numbers.

• Chapter D16 The Statistical Profiling Extension.

• Chapter H2 Debug State.

FEAT_MTE2, Memory Tagging Extension

FEAT_MTE2 provides architectural support for runtime, always-on detection of various classes of
memory error to aid with software debugging to eliminate vulnerabilities arising from
memory-unsafe languages.

These features are supported in AArch64 state only.

FEAT_MTE2 is OPTIONAL from Armv8.4.

If FEAT_MTE2 is implemented, then FEAT_MTE is implemented.

The following field identifies the presence of FEAT_MTE2:

• ID_AA64PFR1_EL1.MTE.

For more information, see:

• Chapter D10 The Memory Tagging Extension.

• Chapter B2 The AArch64 Application Level Memory Model.

• PMU events and event numbers.

• Chapter D16 The Statistical Profiling Extension.

• Chapter H2 Debug State.

FEAT_PMUv3p5, Arm8.5 PMU extensions

FEAT_PMUv3p5 extends event counters to 64-bit event counters, and adds mechanisms to disable
the cycle counter in Secure state and in EL2.

FEAT_PMUv3p5 relaxes the behavior of PMCR.{IMP, IDCODE}, and deprecates use of these
fields.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3p5 is OPTIONAL from Armv8.4.

If FEAT_PMUv3p5 is implemented, then FEAT_PMUv3p4 is implemented.

In an Armv8.5 implementation, if FEAT_PMUv3 is implemented, FEAT_PMUv3p5 is
implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-125
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following fields identify the presence of FEAT_PMUv3p5:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see:

• Behavior on overflow.

• Controlling the PMU counters.

• PMU events and event numbers.

FEAT_RNG, Random number generator

FEAT_RNG introduces the RNDR and RNDRRS registers. Reads to these registers return a 64-bit
random number. A read to RNDRRS will cause a reseeding of the random number before the
generation of the random number that is returned.

This feature is supported in AArch64 state only.

FEAT_RNG is OPTIONAL from Armv8.4.

The following field identifies the presence of FEAT_RNG:

• ID_AA64ISAR0_EL1.RNDR.

For more information, see:

• Effect of random number generation instructions on Condition flags

• Appendix K15 Random Number Generation

FEAT_RNG_TRAP, Trapping support for RNDR/RNDRRS

FEAT_RNG_TRAP introduces support for EL3 trapping of reads of the RNDR and RNDRRS
registers.

This feature is supported in AArch64 state only.

FEAT_RNG_TRAP is OPTIONAL from Armv8.4.

The following field identifies the presence of FEAT_RNG_TRAP:

• ID_AA64PFR1_EL1.RNDR_trap.

FEAT_S2TGran16K, Support for 16KB memory translation granule size at stage 2

FEAT_S2TGran16K is OPTIONAL.

FEAT_S2TGran16K is implemented if and only if all of the following are true:

• FEAT_AA64EL2 is implemented.

• FEAT_TGran16K is implemented.

The following field identifies the presence of FEAT_S2TGran16K:

• ID_AA64MMFR0_EL1.TGran16_2.

FEAT_S2TGran4K, Support for 4KB memory translation granule size at stage 2

FEAT_S2TGran4K is OPTIONAL.

FEAT_S2TGran4K is implemented if and only if all of the following are true:

• FEAT_AA64EL2 is implemented.

• FEAT_TGran4K is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-126
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following field identifies the presence of FEAT_S2TGran4K:

• ID_AA64MMFR0_EL1.TGran4_2.

FEAT_S2TGran64K, Support for 64KB memory translation granule size at stage 2

FEAT_S2TGran64K is OPTIONAL.

FEAT_S2TGran64K is implemented if and only if all of the following are true:

• FEAT_AA64EL2 is implemented.

• FEAT_TGran64K is implemented.

The following field identifies the presence of FEAT_S2TGran64K:

• ID_AA64MMFR0_EL1.TGran64_2.

FEAT_SB, Speculation Barrier

Speculation Barrier FEAT_SB introduces a barrier to control speculation.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SB is mandatory from Armv8.5.

FEAT_SB is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_SB:

• ID_AA64ISAR1_EL1.SB.

• ID_ISAR6_EL1.SB.

• ID_ISAR6.SB.

For more information, see:

• Speculation Barrier (SB).

• Barriers and CLREX instructions.

• Speculation Barrier (SB).

• Miscellaneous instructions.

FEAT_SPECRES, Speculation restriction instructions

FEAT_SPECRES adds System instructions that prevent predictions based on information gathered
from earlier execution within a particular execution context from affecting the later speculative
execution within that context, to the extent that the speculative execution is observable through side
channels.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SPECRES is mandatory from Armv8.5.

FEAT_SPECRES is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_SPECRES:

• ID_AA64ISAR1_EL1.SPECRES.

• ID_ISAR6_EL1.SPECRES.

• ID_ISAR6.SPECRES.

For more information, see:

• Prediction restriction instructions.

• Execution, data prediction and prefetching restriction System instructions.

• Execution and data prediction restriction System instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-127
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_SSBS, Speculative Store Bypass Safe

FEAT_SSBS allows software to indicate whether hardware is permitted to load or store
speculatively in a manner that could give rise to a cache timing side channel, which in turn could be
used to derive an address from values loaded to a register from memory.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SSBS is OPTIONAL from Armv8.0.

The following fields identify the presence of FEAT_SSBS:

• ID_AA64PFR1_EL1.SSBS.

• ID_PFR2_EL1.SSBS.

• ID_PFR2.SSBS.

For more information, see:

• Speculative Store Bypass Safe (SSBS).

• Speculative Store Bypass Safe (SSBS).

FEAT_SSBS2, MRS and MSR instructions for SSBS version 2

FEAT_SSBS2 provides controls for the MSR and MRS instructions to read and write the Process
state, PSTATE.SSBS field.

This feature is supported in AArch64 state only.

FEAT_SSBS2 is OPTIONAL from Armv8.0.

If FEAT_SSBS2 is implemented, then FEAT_SSBS is implemented.

The following field identifies the presence of FEAT_SSBS2:

• ID_AA64PFR1_EL1.SSBS.

For more information, see:

• Speculative Store Bypass Safe (SSBS).

• Speculative Store Bypass Safe (SSBS).

A2.2.6.1 Features added to the Armv8.5 extension in later releases

• FEAT_MTE3.

• FEAT_MTE_ASYNC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-128
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.7 The Armv8.6 architecture extension

The Armv8.6 architecture extension is an extension to Armv8.5. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.6 compliant if all of the
following apply:

• It is Armv8.5 compliant.

• It includes all of the Armv8.6 architectural features that are mandatory.

An Armv8.6 compliant implementation can additionally include:

• Armv8.6 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.7, subject only to those constraints that require
that certain features be implemented together.

FEAT_AA32BF16, AArch32 BFloat16 instructions

FEAT_AA32BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in
AArch32 state. This format supports:

• Arithmetic instructions to multiply BF16 values and accumulate into single-precision results.

• Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.

• Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch32 state only.

FEAT_AA32BF16 is OPTIONAL from Armv8.2.

If FEAT_AA32BF16 is implemented, then FEAT_BF16 is implemented.

The following fields identify the presence of FEAT_AA32BF16:

• ID_ISAR6_EL1.BF16.

• ID_ISAR6.BF16.

For more information, see:

• BFloat16 floating-point format.

• Advanced SIMD BFloat16 instructions.

• Floating-point data-processing.

FEAT_AMUv1p1, Activity Monitors Extension version 1.1

FEAT_AMUv1p1 introduces support for virtualization of Activity Monitors event counters, and
introduces controls to disable access to auxiliary event counters below the highest Exception level.

This feature is supported in AArch32 state and AArch64 state, if the hypervisor is using AArch64.

FEAT_AMUv1p1 is OPTIONAL from Armv8.5.

If FEAT_AMUv1p1 is implemented, then FEAT_AMUv1 is implemented.

The following fields identify the presence of FEAT_AMUv1p1:

• ID_AA64PFR0_EL1.AMU.

• ID_PFR0_EL1.AMU.

• ID_PFR0.AMU.

• EDPFR.AMU.

For more information, see Chapter D15 The Activity Monitors Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-129
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_BF16, AArch64 BFloat16 instructions

FEAT_BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in AArch64 state.
This format supports:

• Arithmetic instructions to multiply BF16 values and accumulate into single-precision results.

• Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.

• Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch64 state only.

FEAT_BF16 is OPTIONAL from Armv8.2.

FEAT_BF16 is mandatory from Armv8.6.

The following fields identify the presence of FEAT_BF16:

• ID_AA64ISAR1_EL1.BF16.

• ID_AA64ZFR0_EL1.BF16.

For more information, see:

• BFloat16 floating-point format.

• Convert floating-point single-precision to BFloat16.

• SIMD BFloat16.

• SVE BFloat16 floating-point multiply-add.

• SVE BFloat16 floating-point dot product.

• SVE BFloat16 floating-point matrix multiply.

• SVE BFloat16 floating-point convert.

FEAT_CP15SDISABLE2, CP15SDISABLE2

FEAT_CP15SDISABLE2 provides an implementation-defined mechanism, the CP15SDISABLE2
signal, which when asserted HIGH prevents writes to a set of Secure CP15 registers. This signal is
analogous to the existing CP15SDISABLE signal.

This feature is supported only when EL3 is executing in AArch32 state.

FEAT_CP15SDISABLE2 is OPTIONAL from Armv8.0.

If FEAT_CP15SDISABLE2 is implemented, then FEAT_AA32EL3 is implemented.

For more information, see The CP15SDISABLE and CP15SDISABLE2 input signals.

FEAT_DGH, Data Gathering Hint

FEAT_DGH adds the Data Gathering Hint instruction to the hint space.

This instruction is added to the A64 instruction set only.

FEAT_DGH is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_DGH:

• ID_AA64ISAR1_EL1.DGH.

For more information, see Hint instructions.

FEAT_ECV, Enhanced Counter Virtualization

FEAT_ECV enhances the Generic Timer architecture.

When executing in AArch64 state or AArch32 state, FEAT_ECV provides:

• Self-synchronizing views of the virtual and physical timers in AArch64 and AArch32 state.

• The ability to scale the generation of the event stream.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-130
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
When EL2 is using AArch64 state, FEAT_ECV provides:

• An optional offset between the EL1 or EL0 view of physical time, and the EL2 or EL3 view
of physical time.

• Traps configurable in CNTHCTL_EL2 that trap EL0 and EL1 access to the virtual counter
or timer registers, and accesses to the physical timer registers when they are accessed using
an EL02 descriptor.

The optional offset to views of physical time, and the configurable traps in CNTHCTL_EL2, both
apply to EL1 and EL0 whether EL1 and EL0 are in AArch64 state or AArch32 state.

This feature is supported in both AArch64 and AArch32 states.

FEAT_ECV is mandatory from Armv8.6.

FEAT_ECV is OPTIONAL from Armv8.5.

The following field identifies the presence of FEAT_ECV:

• ID_AA64MMFR0_EL1.ECV.

For more information, see:

• Self-hosted trace timestamps.

• The profiling data.

• The AArch64 view of the Generic Timer.

• The AArch32 view of the Generic Timer.

FEAT_FGT, Fine Grain Traps

FEAT_FGT introduces additional traps to EL2 of EL1 and EL0 access to individual or small groups
of System registers and instructions, and traps to EL3 and EL2 of the Debug Communications
Channel registers. The traps are independent of existing controls.

This feature is supported in AArch64, and when EL1 is using AArch64, EL0 accesses using
AArch32 are also trapped.

In an Armv8.6 implementation, if FEAT_AA64EL2 or FEAT_AA64EL3 is implemented,
FEAT_FGT is implemented.

FEAT_FGT is OPTIONAL from Armv8.5.

The following field identifies the presence of FEAT_FGT:

• ID_AA64MMFR0_EL1.FGT.

For more information, see Configurable instruction controls.

FEAT_HPMN0, Setting of MDCR_EL2.HPMN to zero

FEAT_HPMN0 permits a hypervisor to provide zero PMU event counters for a guest operating
system by setting MDCR_EL2.HPMN to zero.

This feature is supported in both AArch64 and AArch32 states.

In an Armv8.8 implementation, if FEAT_PMUv3 and FEAT_EL2 are implemented,
FEAT_HPMN0 is implemented.

FEAT_HPMN0 is OPTIONAL from Armv8.5.

If FEAT_HPMN0 is implemented, then FEAT_EL2 is implemented.

If FEAT_HPMN0 is implemented, then FEAT_PMUv3 and FEAT_FGT are implemented.

The following fields identify the presence of FEAT_HPMN0:

• ID_AA64DFR0_EL1.HPMN0.

• ID_DFR1_EL1.HPMN0.

• ID_DFR1.HPMN0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-131
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see:

• Interaction with EL2.

• Controlling the PMU counters.

• The Performance Monitors Extension.

• The Performance Monitors Extension.

FEAT_MPAMv0p1, Memory Partitioning and Monitoring version 0.1

This feature is supported in AArch64 state only.

FEAT_MPAMv0p1 is OPTIONAL from Armv8.5.

The following fields identify the presence of FEAT_MPAMv0p1:

• ID_AA64PFR0_EL1.MPAM.

• ID_AA64PFR1_EL1.MPAM_frac.

For more information, see Chapter D20 MPAM PE Architecture.

FEAT_MPAMv1p1, Memory Partitioning and Monitoring version 1.1

This feature is supported in AArch64 state only.

FEAT_MPAMv1p1 is OPTIONAL from Armv8.5.

If FEAT_MPAMv1p1 is implemented, then FEAT_MPAM is implemented and FEAT_MPAMv0p1
is not implemented.

The following fields identify the presence of FEAT_MPAMv1p1:

• ID_AA64PFR0_EL1.MPAM.

• ID_AA64PFR1_EL1.MPAM_frac.

For more information, see Chapter D20 MPAM PE Architecture.

FEAT_MTPMU, Multi-threaded PMU extensions

FEAT_MTPMU introduces controls to disable PMEVTYPER<n>_EL0.MT.

From Armv8.6, when FEAT_PMUv3 is implemented, multithreaded event counting is only
supported in multithreaded implementations that also include FEAT_MTPMU.

This feature is supported in both AArch64 and AArch32 states.

FEAT_MTPMU is OPTIONAL from Armv8.5.

If FEAT_MTPMU is implemented, then FEAT_PMUv3 is implemented.

If FEAT_MTPMU is implemented, then FEAT_EL2 or FEAT_EL3 is implemented.

The following fields identify the presence of FEAT_MTPMU:

• ID_AA64DFR0_EL1.MTPMU.

• ID_DFR1.MTPMU.

• ID_DFR1_EL1.MTPMU.

For more information, see:

• Multithreaded implementations.

• MDCR_EL3.MTPME, SDCR, MDCR_EL2.MTPME, and HDCR.MTPME.

• Common event numbers.

FEAT_PAuth2, Enhancements to pointer authentication

FEAT_PAuth2 adds enhanced pointer authentication functionality that changes the mechanism by
which a PAC is added to the pointer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-132
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
This feature is supported in AArch64 state only.

FEAT_PAuth2 is mandatory from Armv8.6.

FEAT_PAuth2 is OPTIONAL from Armv8.2.

If FEAT_PAuth2 is implemented, then FEAT_PAuth is implemented.

If FEAT_PAuth2 is implemented, then FEAT_EPAC is not implemented.

The following fields identify the presence of FEAT_PAuth2:

• ID_AA64ISAR1_EL1.APA.

• ID_AA64ISAR1_EL1.API.

• ID_AA64ISAR2_EL1.APA3.

For more information, see Pointer authentication.

FEAT_TWED, Delayed Trapping of WFE

FEAT_TWED introduces support for configurable delayed trapping of the WFE instruction.

FEAT_TWED is OPTIONAL from Armv8.5.

The following field identifies the presence of FEAT_TWED:

• ID_AA64MMFR1_EL1.TWED.

For more information, see The Wait for Event and Wait for Event with Timeout instructions.

A2.2.7.1 Features added to the Armv8.6 extension in later releases

• FEAT_SPE_DPFZS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-133
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.8 The Armv8.7 architecture extension

The Armv8.7 architecture extension is an extension to Armv8.6. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.7 compliant if all of the
following apply:

• It is Armv8.6 compliant.

• It includes all of the Armv8.7 architectural features that are mandatory.

An Armv8.7 compliant implementation can additionally include:

• Armv8.7 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.8, subject only to those constraints that require
that certain features be implemented together.

FEAT_AFP, Alternate floating-point behavior

FEAT_AFP allows alternate behavior for specified floating-point instructions including:

• Flushing of denormalized numbers to zero can be controlled separately on inputs and outputs.

• Alternate NaN propagation rules and Default NaN values can apply.

• Certain scalar SIMD and floating-point instructions can be configured to preserve higher
numbered SIMD vector elements.

• Changes to floating-point exception generation.

This feature is supported in AArch64 state only.

FEAT_AFP is OPTIONAL from Armv8.6.

If FEAT_AFP is implemented, then FEAT_FP is implemented.

In an Armv8.7 implementation, if FEAT_FP is implemented, FEAT_AFP is implemented.

The following field identifies the presence of FEAT_AFP:

• ID_AA64MMFR1_EL1.AFP.

For more information, see:

• Flushing denormalized numbers to zero.

• NaN handling and the Default NaN.

• Rounding.

• Floating-point exceptions and exception traps.

FEAT_EBF16, AArch64 Extended BFloat16 instructions

FEAT_EBF16 supports the Extended BFloat16 mode.

This feature is supported in AArch64 state only.

If FEAT_EBF16 is implemented, then FEAT_BF16 is implemented.

FEAT_EBF16 is OPTIONAL from Armv8.2.

If FEAT_EBF16 is implemented, then FEAT_AdvSIMD, FEAT_FP, FEAT_SVE, or FEAT_SME is
implemented.

The following fields identify the presence of FEAT_EBF16:

• ID_AA64ISAR1_EL1.BF16.

• ID_AA64ZFR0_EL1.BF16.

For more information, see:

• BFloat16 floating-point format.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-134
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• Floating-point support.

• Convert floating-point single-precision to BFloat16.

FEAT_HCX, Support for the HCRX_EL2 register

FEAT_HCX introduces the Extended Hypervisor Configuration Register, HCRX_EL2, that
provides configuration controls for virtualization in addition to those provided by HCR_EL2,
including defining whether various operations are trapped to EL2.

This feature is supported in AArch64 state only.

In an Armv8.7 implementation, if FEAT_AA64EL2 is implemented, FEAT_HCX is implemented.

If FEAT_HCX is implemented, then FEAT_AA64EL2 is implemented.

FEAT_HCX is OPTIONAL from Armv8.6.

The following field identifies the presence of FEAT_HCX:

• ID_AA64MMFR1_EL1.HCX.

For more information, see Configurable instruction controls.

FEAT_LPA2, Larger physical address for 4KB and 16KB translation granules

FEAT_LPA2:

• Allows a larger VA space for each translation table base register of up to 52 bits when using
the 4KB or 16KB translation granules.

• Allows a larger intermediate physical address (IPA) and PA space of up to 52 bits when using
the 4KB or 16KB translation granules.

• Allows a level 0 block size where the block covers a 512GB address range for the 4KB
translation granule if the implementation supports 52 bits of PA.

• Allows a level 1 block size where the block covers a 64GB address range for the 16KB
translation granule if the implementation supports 52 bits of PA.

This feature is supported in AArch64 state only.

FEAT_LPA2 is OPTIONAL from Armv8.6.

If FEAT_LPA2 is implemented, then FEAT_LVA is implemented.

The following fields identify the presence of FEAT_LPA2:

• ID_AA64MMFR0_EL1.TGran4_2.

• ID_AA64MMFR0_EL1.TGran16_2.

• ID_AA64MMFR0_EL1.TGran4.

• ID_AA64MMFR0_EL1.TGran16.

For more information, see:

• Implemented physical address size.

• Output address size configuration.

• Supported virtual address ranges.

• Input address size configuration.

• Intermediate physical address size configuration.

• VMSAv8-64 translation using the 4KB granule.

• VMSAv8-64 translation using the 16KB granule.

• VMSAv8-64 Table descriptor format.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-135
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• VMSAv8-64 Block descriptor and Page descriptor formats.

FEAT_LS64, Support for 64-byte loads and stores without status

FEAT_LS64 introduces support for single-copy atomic 64-byte loads and stores without status
result. For more information, see:

• LD64B.

• ST64B.

This feature is supported in AArch64 state only.

FEAT_LS64 is OPTIONAL from Armv8.6.

The following field identifies the presence of FEAT_LS64:

• ID_AA64ISAR1_EL1.LS64.

For more information, see Single-copy atomic 64-byte load/store.

FEAT_LS64_ACCDATA, Support for 64-byte EL0 stores with status

FEAT_LS64_ACCDATA introduces support for single-copy atomic 64-byte EL0 stores with status
result. For more information, see:

• ST64BV0.

• ACCDATA_EL1.

Note

The meaning of any status being returned by the ST64BV0 instruction is defined by the peripheral
providing the response.

This feature is supported in AArch64 state only.

FEAT_LS64_ACCDATA is OPTIONAL from Armv8.6.

If FEAT_LS64_ACCDATA is implemented, then FEAT_LS64_V is implemented.

The following field identifies the presence of FEAT_LS64_ACCDATA:

• ID_AA64ISAR1_EL1.LS64.

For more information, see Single-copy atomic 64-byte load/store.

FEAT_LS64_V, Support for 64-byte stores with status

FEAT_LS64_V introduces support for single-copy atomic 64-byte stores with status result. For
more information, see:

• ST64BV.

Note

The meaning of any status being returned by the ST64BV instruction is defined by the peripheral
providing the response.

This feature is supported in AArch64 state only.

FEAT_LS64_V is OPTIONAL from Armv8.6.

If FEAT_LS64_V is implemented, then FEAT_LS64 is implemented.

The following field identifies the presence of FEAT_LS64_V:

• ID_AA64ISAR1_EL1.LS64.

For more information, see Single-copy atomic 64-byte load/store.

FEAT_MTE3, MTE Asymmetric Fault Handling

FEAT_MTE3 introduces support for asymmetric Tag Check Fault handling.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-136
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
This feature is supported in AArch64 state only.

In an Armv8.7 implementation, if FEAT_MTE_ASYNC is implemented, FEAT_MTE3 is
implemented.

FEAT_MTE3 is OPTIONAL from Armv8.5.

If FEAT_MTE3 is implemented, then FEAT_MTE2 is implemented.

The following field identifies the presence of FEAT_MTE3:

• ID_AA64PFR1_EL1.MTE.

For more information, see Chapter D10 The Memory Tagging Extension.

FEAT_MTE_ASYM_FAULT, Memory tagging asymmetric faults

FEAT_MTE_ASYM_FAULT introduces support for asymmetric MTE Tag Check fault handling.

This feature is supported in AArch64 state only.

FEAT_MTE_ASYM_FAULT is OPTIONAL.

FEAT_MTE3 is implemented if and only if FEAT_MTE_ASYM_FAULT is implemented.

If FEAT_MTE_ASYM_FAULT is implemented, then FEAT_MTE_ASYNC is implemented.

The following field identifies the presence of FEAT_MTE_ASYM_FAULT:

• ID_AA64PFR1_EL1.MTE.

FEAT_PAN3, Support for SCTLR_ELx.EPAN

FEAT_PAN3 adds a bit to SCTLR_EL1 and SCTLR_EL2, EPAN, to support using Privileged
Access Never with instruction accesses for stage 1 translation regimes.

This feature is supported in AArch64 state only.

FEAT_PAN3 is mandatory from Armv8.7.

If FEAT_PAN3 is implemented, then FEAT_PAN2 is implemented.

FEAT_PAN3 is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_PAN3:

• ID_AA64MMFR1_EL1.PAN.

For more information, see PSTATE.PAN.

FEAT_PMUv3p7, Armv8.7 PMU extensions

FEAT_PMUv3p7 adds the following features to the Performance Monitors Extension:

• PMU counters can be frozen when an event counter has an unsigned overflow.

• Event counters can be prohibited from counting events at EL3 without affecting the rest of
Secure state.

• The cycle counter can be prohibited from counting cycles at EL3 without affecting the rest
of Secure state.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3p7 is OPTIONAL from Armv8.6.

If FEAT_PMUv3p7 is implemented, then FEAT_PMUv3p5 is implemented.

In an Armv8.7 implementation, if FEAT_PMUv3 is implemented, FEAT_PMUv3p7 is
implemented.

The following fields identify the presence of FEAT_PMUv3p7:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-137
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• EDDFR.PMUVer.

• PMCFGR.FZO.

For more information, see:

• Controlling the PMU counters.

• Freezing PMU counters.

• Common microarchitectural events.

FEAT_RPRES, Increased precision of FRECPE and FRSQRTE

FEAT_RPRES allows an increase in the precision of the single-precision floating-point reciprocal
estimate and reciprocal square root estimate from an 8-bit mantissa to a 12-bit mantissa.

This feature is supported in AArch64 state only.

FEAT_RPRES is OPTIONAL from Armv8.6.

If FEAT_RPRES is implemented, then FEAT_AFP is implemented.

The following field identifies the presence of FEAT_RPRES:

• ID_AA64ISAR2_EL1.RPRES.

For more information, see RecipEstimate() and RecipSqrtEstimate().

FEAT_SPEv1p2, Statistical Profiling Extensions version 1.2

FEAT_SPEv1p2 adds the following features to the Statistical Profiling Extension:

• An inverse event filter control.

• Controls to freeze the PMU event counters after an SPE buffer management event occurs.

• A discard mode that allows all SPE data to be discarded rather than written to memory.

FEAT_SPEv1p2 optionally enables support for a packet for each taken branch that provides the
target address for the previous taken branch.

If FEAT_SPEv1p2 is implemented, PMSIDR_EL1.PBT indicates support for the previous branch
target packet.

This feature is supported in AArch64 state only.

FEAT_SPEv1p2 is OPTIONAL from Armv8.6.

If FEAT_SPEv1p2 is implemented, then FEAT_SPEv1p1 is implemented.

In an Armv8.7 implementation, if FEAT_SPE is implemented, FEAT_SPEv1p2 is implemented.

The following fields identify the presence of FEAT_SPEv1p2:

• ID_AA64DFR0_EL1.PMSVer.

• PMSIDR_EL1.FnE.

For more information, see:

• Freezing PMU counters.

• Common event numbers.

• Filtering sample records.

• Previous branch target.

• About the Statistical Profiling Extension sample records.

• Address packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-138
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_WFxT, WFE and WFI instructions with timeout

FEAT_WFxT introduces WFET and WFIT. These instructions support the generation of a local timeout
event to act as a wake-up event for the PE when the virtual count in CNTVCT_EL0 equals or
exceeds the value supplied by the instruction for the first time.

These instructions are added to the A64 instruction set only.

FEAT_WFxT is mandatory from Armv8.7.

FEAT_WFxT is OPTIONAL from Armv8.6.

The following field identifies the presence of FEAT_WFxT:

• ID_AA64ISAR2_EL1.WFxT.

For more information, see:

• Instructions with register argument.

• Wait for Event.

• Wait for Interrupt mechanism.

FEAT_XS, XS attribute

FEAT_XS introduces the XS attribute for memory to indicate that an access could take a long time
to complete. This feature provides variants of DSB instructions and TLB maintenance instructions,
the completion of which does not depend on the completion of memory accesses with the XS
attribute.

FEAT_XS adds:

• A mechanism to define the XS attribute for memory.

• An optional nXS variant to the AArch64 DSB instruction and OPTIONAL nXS qualifier to
each AArch64 TLBI instruction to handle memory accesses with the XS attribute.

• The HCRX_EL2.FGTnXS bit to determine the behavior of fine-grained traps in
HFGITR_EL2 for TLB maintenance instructions with the nXS qualifier.

• The HCRX_EL2.FnXS bit to determine the behavior of pre-existing TLB maintenance
instructions in relation to the XS attribute.

This feature is supported in AArch64 state only, but the XS attribute also impacts AArch32 state
execution.

FEAT_XS is mandatory from Armv8.7.

FEAT_XS is OPTIONAL from Armv8.6.

The following field identifies the presence of FEAT_XS:

• ID_AA64ISAR1_EL1.XS.

For more information, see:

• Data Synchronization Barrier (DSB).

• Behavior when stage 1 address translation is disabled.

• VMSAv8-64 Block descriptor and Page descriptor formats.

• Stage 1 memory type and Cacheability attributes.

• XS attribute modifier.

• Overview of memory region attributes for stage 1 translations.

• Ordering and completion of TLB maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-139
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.8.1 Features added to the Armv8.7 extension in later releases

• FEAT_CSSC.

• FEAT_HAFT.

• FEAT_MTE4.

• FEAT_MTE_PERM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-140
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.9 The Armv8.8 architecture extension

The Armv8.8 architecture extension is an extension to Armv8.7. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.8 compliant if all of the
following apply:

• It is Armv8.7 compliant.

• It includes all of the Armv8.8 architectural features that are mandatory.

An Armv8.8 compliant implementation can additionally include:

• Armv8.8 features that are optional.

• Any arbitrary subset of the architectural features of Armv8.9, subject only to those constraints that require
that certain features be implemented together.

FEAT_CMOW, Control for cache maintenance permission

FEAT_CMOW introduces support for cache maintenance instructions that controls whether:

• Cache maintenance instructions executed at EL0 require stage 1 read and write permission to
prevent the instructions from generating a Permission fault.

• Cache maintenance instructions executed at EL1 or EL0 require stage 2 read and write
permission to prevent the instructions from generating a Permission fault.

This feature is supported in AArch64 state only, but also impacts AArch32 instructions.

FEAT_CMOW is mandatory from Armv8.8.

FEAT_CMOW is OPTIONAL from Armv8.7.

The following field identifies the presence of FEAT_CMOW:

• ID_AA64MMFR1_EL1.CMOW.

For more information, see:

• A64 Cache maintenance instructions.

• Permission fault.

FEAT_Debugv8p8, Debug v8.8

FEAT_Debugv8p8 adds support to allow an asynchronous exception to be taken after an exception
generates an Exception Catch debug event, but before the PE halts.

This feature is supported in both AArch64 and AArch32 states.

FEAT_Debugv8p8 is mandatory from Armv8.8.

FEAT_Debugv8p8 is OPTIONAL from Armv8.7.

If FEAT_Debugv8p8 is implemented, then FEAT_Debugv8p4 is implemented.

The following fields identify the presence of FEAT_Debugv8p8:

• ID_AA64DFR0_EL1.DebugVer.

• DBGDIDR.Version.

• ID_DFR0.CopDbg.

• EDDEVARCH.ARCHVER.

For more information, see Exception Catch debug event.

FEAT_HBC, Hinted conditional branches

FEAT_HBC provides the BC.cond instruction to give a conditional branch with a hint to branch
prediction logic that this branch will behave consistently and is highly unlikely to change direction.

This feature is supported in AArch64 state only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-141
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_HBC is mandatory from Armv8.8.

FEAT_HBC is OPTIONAL from Armv8.7.

The following field identifies the presence of FEAT_HBC:

• ID_AA64ISAR2_EL1.BC.

For more information, see Conditional branch.

FEAT_MOPS, Standardization of memory operations

FEAT_MOPS provides instructions that perform a memory copy or memory set, and adds Memory
Copy and Memory Set exceptions.

FEAT_MOPS also adds the HCRX_EL2.{MSCEn, MCE2}, SCTLR_EL1.MSCEn, and
SCTLR_EL2.MSCEn control bits.

This feature is supported in AArch64 state only.

FEAT_MOPS is mandatory from Armv8.8.

FEAT_MOPS is OPTIONAL from Armv8.7.

The following field identifies the presence of FEAT_MOPS:

• ID_AA64ISAR2_EL1.MOPS.

For more information, see:

• Memory Copy and Memory Set instructions.

• Memory Copy and Memory Set exceptions.

FEAT_NMI, Non-maskable Interrupts

FEAT_NMI provides a mechanism to support non-maskable interrupts (NMI) and less-masked
interrupts (LMI). In addition to legacy behavior, the feature includes the following:

• A mode for supporting an LMI interrupt mask that is distinct from Process state, PSTATE.{I,
F}.

• A mode for supporting a limited NMI, where the value when Process state, PSTATE.SP is 1
is taken as an interrupt mask for all interrupts targeting that Exception level, and where the
LMI interrupt mask can also be used

FEAT_NMI adds:

• The AllIntMask variable.

• An Optional Superpriority attribute to denote virtual and physical IRQ and FIQ interrupts as
non-maskable.

• The SCTLR_ELx.{NMI, SPINTMASK} control bits.

• The Process state, PSTATE.ALLINT bit and associated instructions.

• The HCRX_EL2.TALLINT bit to enable trapping of ALLINT instructions at EL1.

This feature is supported in AArch64 state only.

FEAT_NMI is mandatory from Armv8.8.

FEAT_NMI is OPTIONAL from Armv8.7.

The following field identifies the presence of FEAT_NMI:

• ID_AA64PFR1_EL1.NMI.

For more information, see:

• Asynchronous exception types.

• Virtual interrupts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-142
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• PSTATE fields that are meaningful in AArch64 state.

• WFE wakeup events.

FEAT_PMUv3_EXT64, 64-bit external interface to the Performance Monitors

FEAT_PMUv3_EXT64 indicates the external Performance Monitors registers are implemented as
64-bit registers, The 32-bit CoreSight management registers remain 32-bit registers.

If FEAT_PMUv3_EXT64 is implemented, then FEAT_PMUv3_EXT is implemented.

If FEAT_PMUv3_EXT64 is implemented, then FEAT_PMUv3_EXT32 is not implemented.

FEAT_PMUv3_EXT64 is OPTIONAL from Armv8.8.

The following field identifies the presence of FEAT_PMUv3_EXT64:

• PMDEVARCH.ARCHPART.

For more information, see Chapter I3 Recommended External Interface to the Performance
Monitors.

FEAT_PMUv3_TH, Event counting threshold

FEAT_PMUv3_TH adds threshold condition controls to each PMEVTYPER<n>_EL0 register.
This feature permits the counter to count only when PMEVTYPER<n>.{MT, evtCount} describe
an event whose count meets a specified threshold condition.

This feature is supported in both AArch64 and AArch32 states. The threshold condition controls are
only accessible in AArch64 state. However, threshold conditions still apply in AArch32 state.

FEAT_PMUv3_TH is OPTIONAL from Armv8.7.

If FEAT_PMUv3_TH is implemented, then FEAT_PMUv3 is implemented.

The following fields identify the presence of FEAT_PMUv3_TH:

• PMMIR_EL1.THWIDTH.

• PMMIR.THWIDTH.

For more information, see Event counting threshold.

FEAT_PMUv3p8, Armv8.8 PMU extensions

FEAT_PMUv3p8 adds the following features to the Performance Monitors Extension:

• The Common event number space is extended to include the ranges 0x0040-0x00BF and
0x4040-0x40BF.

• For an event counter n, if any reserved or unimplemented PMU event number is written to
PMEVTYPER<n>.evtCount, the event counter n does not count, and a read of
PMEVTYPER<n>.evtCount returns the value written.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3p8 is OPTIONAL from Armv8.7.

If FEAT_PMUv3p8 is implemented, then FEAT_PMUv3p7 is implemented.

In an Armv8.8 implementation, if FEAT_PMUv3 is implemented, FEAT_PMUv3p8 is
implemented.

The following fields identify the presence of FEAT_PMUv3p8:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see PMU events and event numbers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-143
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_SCTLR2, Extension to SCTLR_ELx

FEAT_SCTLR2 introduces the SCTLR2_ELx registers, which provide top level control of the
system, including its memory system. These registers are extensions of the corresponding
SCTLR_ELx registers.

This feature is supported in AArch64 state only.

FEAT_SCTLR2 is OPTIONAL from Armv8.0.

FEAT_SCTLR2 is mandatory from Armv8.9.

When FEAT_SCTLR2 and FEAT_AA64EL2 are implemented, FEAT_HCX is implemented.

The following field identifies the presence of FEAT_SCTLR2:

• ID_AA64MMFR3_EL1.SCTLRX.

FEAT_SPEv1p3, Statistical Profiling Extensions version 1.3

FEAT_SPEv1p3 adds the following features to the Statistical Profiling Extension:

• Support for sampling Tag operations.

• Support for sampling Memory Copy and Set operations.

This feature is supported in AArch64 state only.

FEAT_SPEv1p3 is OPTIONAL from Armv8.7.

If FEAT_SPEv1p3 is implemented, then FEAT_SPEv1p2 is implemented.

In an Armv8.8 implementation, if FEAT_SPE is implemented, FEAT_SPEv1p3 is implemented.

The following field identifies the presence of FEAT_SPEv1p3:

• ID_AA64DFR0_EL1.PMSVer.

For more information, see:

• Additional information for each profiled memory access operation.

• About the Statistical Profiling Extension sample records.

• Address packet.

FEAT_TCR2, Support for TCR2_ELx

FEAT_TCR2 introduces the TCR2_ELx registers which provide top level control of the EL1&0 and
EL2&0 translation regimes respectively. These registers are extensions of the corresponding
TCR_ELx registers.

This feature is supported in AArch64 state only.

FEAT_TCR2 is OPTIONAL from Armv8.0.

FEAT_TCR2 is mandatory from Armv8.9.

When FEAT_TCR2 and FEAT_AA64EL2 are implemented, FEAT_HCX is implemented.

The following field identifies the presence of FEAT_TCR2:

• ID_AA64MMFR3_EL1.TCRX.

FEAT_TIDCP1, EL0 use of IMPLEMENTATION DEFINED functionality

FEAT_TIDCP1 adds a control at EL1 and EL2 to enable trapping of EL0 accesses to registers that
might control IMPLEMENTATION DEFINED functions.

This feature adds controls only in AArch64 state, and controls IMPLEMENTATION DEFINED
execution at EL0 in both AArch32 and AArch64 states.

FEAT_TIDCP1 is mandatory from Armv8.8.

FEAT_TIDCP1 is OPTIONAL from Armv8.7.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-144
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following field identifies the presence of FEAT_TIDCP1:

• ID_AA64MMFR1_EL1.TIDCP1.

For more information, see Prioritization of Synchronous exceptions taken to AArch64 state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-145
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
A2.2.10 The Armv8.9 architecture extension

The Armv8.9 architecture extension is an extension to Armv8.8. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv8.9 compliant if all of the
following apply:

• It is Armv8.8 compliant.

• It includes all of the Armv8.9 architectural features that are mandatory.

An Armv8.9 compliant implementation can additionally include:

• Armv8.9 features that are optional.

FEAT_ADERR, Asynchronous Device Error Exceptions

FEAT_ADERR introduces controls for whether an error signaled on a load from Device memory is
handled precisely and synchronously.

This feature is supported in both AArch64 and AArch32 states.

FEAT_ADERR is OPTIONAL from Armv8.8.

If FEAT_ADERR is implemented, then FEAT_RASv2 is implemented.

If FEAT_ADERR is implemented, then FEAT_SCTLR2 is implemented.

If FEAT_ADERR is implemented, then FEAT_AA64EL1 is implemented.

When FEAT_ADERR and FEAT_AA64EL2 are implemented, FEAT_HCX is implemented.

The following fields identify the presence of FEAT_ADERR:

• ID_AA64MMFR3_EL1.ADERR.

• ID_AA64MMFR3_EL1.SDERR.

For more information, see:

• About the RAS Extension.

• Taking error exceptions.

FEAT_AIE, Memory Attribute Index Enhancement

FEAT_AIE increases the stage 1 descriptor attribute index bit width from 3 to 4, allowing use of up
to 16 memory attributes.

This feature is supported in AArch64 state only.

FEAT_AIE is OPTIONAL from Armv8.8.

If FEAT_AIE is implemented, then FEAT_TCR2 is implemented.

If FEAT_AIE is implemented, then FEAT_HPDS is implemented.

The following field identifies the presence of FEAT_AIE:

• ID_AA64MMFR3_EL1.AIE.

For more information, see Stage 1 memory type and Cacheability attributes.

FEAT_AMU_EXT64, the 64-bit external Activity Monitors extension

FEAT_AMU_EXT64 indicates the external AMU registers are implemented as 64-bit registers.

FEAT_AMU_EXT64 is OPTIONAL.

If FEAT_AMU_EXT64 is implemented, then FEAT_AMU_EXT is implemented.

If FEAT_AMU_EXT and FEAT_AMU_EXT64 are implemented, then FEAT_AMU_EXT32 is not
implemented.

The following field identifies the presence of FEAT_AMU_EXT64:

• AMDEVARCH.ARCHID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-146
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see Chapter I3 Recommended External Interface to the Performance
Monitors.

FEAT_ANERR, Asynchronous Normal Error Exceptions

FEAT_ANERR introduces controls for whether an error signaled on a load from Normal memory
is handled precisely and synchronously.

This feature is supported in both AArch64 and AArch32 states.

FEAT_ANERR is OPTIONAL from Armv8.8.

If FEAT_ANERR is implemented, then FEAT_RASv2 is implemented.

If FEAT_ANERR is implemented, then FEAT_SCTLR2 is implemented.

If FEAT_ANERR is implemented, then FEAT_AA64EL1 is implemented.

When FEAT_ANERR and FEAT_AA64EL2 are implemented, FEAT_HCX is implemented.

The following fields identify the presence of FEAT_ANERR:

• ID_AA64MMFR3_EL1.ANERR.

• ID_AA64MMFR3_EL1.SNERR.

For more information, see:

• About the RAS Extension.

• Taking error exceptions.

FEAT_ATS1A, Address Translation operations that ignore stage 1 permissions

FEAT_ATS1A introduces instructions that provide the output address and attributes of a valid
translation without checking for stage 1 permissions.

These instructions are added to the A64 instruction set only.

FEAT_ATS1A is OPTIONAL from Armv8.8.

The following field identifies the presence of FEAT_ATS1A:

• ID_AA64ISAR2_EL1.ATS1A.

FEAT_CLRBHB, Support for Clear Branch History instruction

FEAT_CLRBHB provides a CLRBHB instruction, which clears the branch history for the current
context to the extent that branch history information created before the CLRBHB instruction cannot
be used by code before the CLRBHB instruction to exploitatively control the execution of any
indirect branches in code in the current context that appear in program order after the instruction.

This feature is supported in both AArch64 and AArch32 states.

FEAT_CLRBHB is OPTIONAL from Armv8.0.

FEAT_CLRBHB is mandatory from Armv8.9.

The following fields identify the presence of FEAT_CLRBHB:

• ID_AA64ISAR2_EL1.CLRBHB.

• ID_ISAR6_EL1.CLRBHB.

• ID_ISAR6.CLRBHB.

For more information, see:

• Branch prediction.

• AArch32 cache and branch predictor maintenance instructions.

FEAT_CSSC, Common Short Sequence Compression instructions

FEAT_CSSC introduces a set of instructions for optimization of short instruction sequences using
general-purpose registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-147
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
This feature is supported in AArch64 state only.

In an Armv8.9 implementation, if FEAT_AdvSIMD is implemented, FEAT_CSSC is implemented.

FEAT_CSSC is OPTIONAL from Armv8.7.

The following field identifies the presence of FEAT_CSSC:

• ID_AA64ISAR2_EL1.CSSC.

For more information, see:

• Integer minimum and maximum (immediate).

• Integer maximum and minimum (register).

• Absolute value.

• Bit operation.

FEAT_Debugv8p9, Debug v8.9

FEAT_Debugv8p9 adds all of the following:

• The ability to implement more than 16 breakpoints and/or watchpoints.

• DBGBCR<n>_EL1 and DBGWCR<n>_EL1 are 64-bit registers in the external debug
interface.

• DSPSR2 is added to extend DSPSR for holding the saved process state for Debug state.

This feature is supported in both AArch64 and AArch32 states.

FEAT_Debugv8p9 is mandatory from Armv8.9.

FEAT_Debugv8p9 is OPTIONAL from Armv8.8.

If FEAT_Debugv8p9 is implemented, then FEAT_Debugv8p8 is implemented.

When FEAT_Debugv8p9 and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following fields identify the presence of FEAT_Debugv8p9:

• ID_AA64DFR0_EL1.DebugVer.

• ID_DFR0_EL1.CopDbg.

• ID_DFR0.CopDbg.

• DBGDIDR.Version.

• EDDEVARCH.ARCHVER.

• EDDEVID1.HSR.

For more information, see:

• About Breakpoint exceptions.

• About Watchpoint exceptions.

FEAT_DoubleFault2, Double Fault Extension v2

FEAT_DoubleFault2 provides additional controls for routing and masking error exceptions.

This feature is supported in AArch64 state only.

FEAT_DoubleFault2 is OPTIONAL from Armv8.8.

If FEAT_DoubleFault2 is implemented, then FEAT_SCTLR2 is implemented.

If FEAT_DoubleFault2 is implemented, then FEAT_AA64EL1 is implemented.

When FEAT_DoubleFault2 and FEAT_AA64EL2 are implemented, FEAT_HCX is implemented.

If FEAT_DoubleFault2 is implemented, then FEAT_DoubleFault is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-148
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following field identifies the presence of FEAT_DoubleFault2:

• ID_AA64PFR1_EL1.DF2.

For more information, see:

• Synchronous exception types.

• Asynchronous exception types.

• Error synchronization event.

FEAT_ECBHB, Exploitative control using branch history information

FEAT_ECBHB imposes restrictions on branch history speculation around exceptions.

This feature is supported in AArch64 state only.

FEAT_ECBHB is OPTIONAL from Armv8.0.

FEAT_ECBHB is mandatory from Armv8.9.

The following field identifies the presence of FEAT_ECBHB:

• ID_AA64MMFR1_EL1.ECBHB.

For more information, see Branch prediction.

FEAT_EDHSR, Support for EDHSR

FEAT_EDHSR introduces the EDHSR, which holds syndrome information of a Debug event.

If FEAT_Debugv8p9 is implemented, then FEAT_EDHSR is implemented.

If FEAT_EDHSR is implemented, then FEAT_Debugv8p2 is implemented.

The following field identifies the presence of FEAT_EDHSR:

• EDDEVID1.HSR.

FEAT_FGT2, Fine-grained traps 2

FEAT_FGT2 introduces the hypervisor registers HFGITR2_EL2, HFGRTR2_EL2,
HFGWTR_EL2, HDFGRTR2_EL2, and HDFGWTR2_EL2. These registers are extensions of the
corresponding FGT registers.

This feature is supported in AArch64, and in AArch32 at EL0 when EL1 is using AArch64.

In an Armv8.9 implementation, if FEAT_AA64EL2 is implemented, FEAT_FGT2 is implemented.

FEAT_FGT2 is OPTIONAL from Armv8.8.

If FEAT_FGT2 is implemented, then FEAT_FGT is implemented.

The following field identifies the presence of FEAT_FGT2:

• ID_AA64MMFR0_EL1.FGT.

FEAT_HAFT, Hardware managed Access Flag for Table descriptors

FEAT_HAFT introduces the support for hardware management of the Table descriptor Access flag.

This feature is supported in AArch64 state only.

FEAT_HAFT is OPTIONAL from Armv8.7.

If FEAT_HAFT is implemented, then FEAT_HAFDBS is implemented.

If FEAT_HAFT is implemented, then FEAT_TCR2 is implemented.

The following field identifies the presence of FEAT_HAFT:

• ID_AA64MMFR1_EL1.HAFDBS.

For more information, see Hardware management of the Table descriptor Access Flag.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-149
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_LRCPC3, Load-Acquire RCpc instructions version 3

FEAT_LRCPC3 introduces variants of load/store pair and load/store single register instructions,
with release consistency, to optimize additional use cases where ordering is required.
FEAT_LRCPC3 also adds a set of additional load/store instructions with release consistency
ordering in the Advanced SIMD and floating-point instruction set.

This feature is supported in AArch64 state only.

If FEAT_LRCPC3 is implemented, then FEAT_LRCPC2 is implemented.

FEAT_LRCPC3 is OPTIONAL from Armv8.2.

The following field identifies the presence of FEAT_LRCPC3:

• ID_AA64ISAR1_EL1.LRCPC.

For more information, see:

• Changes to single-copy atomicity in Armv8.4.

• Load-Acquire/Store-Release.

• A64 instructions that are changed in Debug state.

FEAT_MTE4, Enhanced Memory Tagging Extension

FEAT_MTE4 introduces support for the following sub-features:

• Canonical tag checking, identified as FEAT_MTE_CANONICAL_TAGS.

• Reporting of all non-address bits on a fault, identified as FEAT_MTE_TAGGED_FAR.

• Store-only Tag checking, identified as FEAT_MTE_STORE_ONLY.

• Memory tagging with Address tagging disabled, identified as
FEAT_MTE_NO_ADDRESS_TAGS.

This feature is supported in AArch64 state only.

In an Armv8.9 implementation, if FEAT_MTE2 is implemented, FEAT_MTE4 is implemented.

FEAT_MTE4 is OPTIONAL from Armv8.7.

If FEAT_MTE4 is implemented, then FEAT_MTE_PERM is implemented.

If FEAT_MTE4 is implemented, then FEAT_MTE_CANONICAL_TAGS,
FEAT_MTE_NO_ADDRESS_TAGS, FEAT_MTE_TAGGED_FAR, and
FEAT_MTE_STORE_ONLY are implemented.

The following fields identify the presence of FEAT_MTE4:

• ID_AA64PFR1_EL1.MTEX.

• ID_AA64PFR2_EL1.MTESTOREONLY.

• ID_AA64PFR2_EL1.MTEFAR.

FEAT_MTE_ASYNC, Asynchronous reporting of Tag Check Fault

FEAT_MTE_ASYNC provides support for asynchronously accumulating Tag Check Faults into the
TFSRE0_EL1 or TFSR_ELx registers. A PE that is compliant with FEAT_MTE2 is compliant with
the behavior defined for this feature.

This feature is supported in AArch64 state only.

FEAT_MTE_ASYNC is OPTIONAL from Armv8.5.

If FEAT_MTE_ASYNC is implemented, then FEAT_MTE2 is implemented.

The following field identifies the presence of FEAT_MTE_ASYNC:

• ID_AA64PFR1_EL1.MTE_frac.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-150
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
For more information, see:

• Chapter D10 The Memory Tagging Extension.

• Chapter B2 The AArch64 Application Level Memory Model.

• PMU events and event numbers.

• Chapter D16 The Statistical Profiling Extension.

• Chapter H2 Debug State.

FEAT_MTE_CANONICAL_TAGS, Canonical Tag checking for Untagged memory

FEAT_MTE_CANONICAL_TAGS introduces support for MTE canonical tag checking.

This feature is supported in AArch64 state only.

FEAT_MTE_CANONICAL_TAGS is OPTIONAL.

If FEAT_MTE_CANONICAL_TAGS is implemented, then FEAT_MTE4 is implemented.

The following field identifies the presence of FEAT_MTE_CANONICAL_TAGS:

• ID_AA64PFR1_EL1.MTEX.

FEAT_MTE_NO_ADDRESS_TAGS, Memory tagging with Address tagging disabled

FEAT_MTE_NO_ADDRESS_TAG introduces support for MTE tagging with Address tagging
disabled.

This feature is supported in AArch64 state only.

FEAT_MTE_NO_ADDRESS_TAGS is OPTIONAL.

If FEAT_MTE_NO_ADDRESS_TAGS is implemented, then FEAT_MTE4 is implemented.

The following field identifies the presence of FEAT_MTE_NO_ADDRESS_TAGS:

• ID_AA64PFR1_EL1.MTEX.

FEAT_MTE_PERM, Allocation tag access permission

FEAT_MTE_PERM introduces support for the Stage 2 NoTagAccess memory attribute.

This feature is supported in AArch64 state only.

In an Armv8.9 implementation, if FEAT_MTE2 is implemented, FEAT_MTE_PERM is
implemented.

FEAT_MTE_PERM is OPTIONAL from Armv8.7.

If FEAT_MTE_PERM is implemented, then FEAT_MTE2 is implemented.

The following field identifies the presence of FEAT_MTE_PERM:

• ID_AA64PFR2_EL1.MTEPERM.

FEAT_MTE_STORE_ONLY, Store-only Tag Checking

This feature is supported in AArch64 state only.

FEAT_MTE_STORE_ONLY is OPTIONAL.

If FEAT_MTE_STORE_ONLY is implemented, then FEAT_MTE4 is implemented.

The following field identifies the presence of FEAT_MTE_STORE_ONLY:

• ID_AA64PFR2_EL1.MTESTOREONLY.

FEAT_MTE_TAGGED_FAR, FAR_ELx on a Tag Check Fault

FEAT_MTE_TAGGED_FAR introduces support for reporting all non-address bits on a
synchronous MTE tag check fault.

This feature is supported in AArch64 state only.

FEAT_MTE_TAGGED_FAR is OPTIONAL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-151
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
If FEAT_MTE_TAGGED_FAR is implemented, then FEAT_MTE4 is implemented.

The following field identifies the presence of FEAT_MTE_TAGGED_FAR:

• ID_AA64PFR2_EL1.MTEFAR.

FEAT_PCSRv8p9, Armv8.9 PC Sample-based Profiling Extension

FEAT_PCSRv8p9 adds a mechanism to suspend PC Sample-based Profiling.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PCSRv8p9 is OPTIONAL from Armv8.8.

If FEAT_PCSRv8p9 is implemented, then FEAT_PCSRv8p2 is implemented.

The following field identifies the presence of FEAT_PCSRv8p9:

• PMDEVID.PCSample.

For more information, see Suspending and activating PC Sample-based Profiling.

FEAT_PFAR, Physical Fault Address Register Extension

FEAT_PFAR introduces the Physical Fault Address Registers, PFAR_ELx, that record the faulting
physical address for a synchronous External abort or SError exception.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PFAR is OPTIONAL from Armv8.8.

If FEAT_PFAR is implemented, then FEAT_AA64EL1 is implemented.

When FEAT_PFAR and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following field identifies the presence of FEAT_PFAR:

• ID_AA64PFR1_EL1.PFAR.

FEAT_PMUv3_EDGE, PMU event edge detection

FEAT_PMUv3_EDGE adds edge-detection logic to support counting threshold crossing events.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3_EDGE is OPTIONAL from Armv8.8.

If FEAT_PMUv3_EDGE is implemented, then FEAT_PMUv3 is implemented.

If FEAT_PMUv3_EDGE is implemented, then FEAT_PMUv3_TH is implemented.

The following fields identify the presence of FEAT_PMUv3_EDGE:

• PMMIR_EL1.EDGE.

• PMMIR.EDGE.

For more information, see Edge conditions.

FEAT_PMUv3_ICNTR, Fixed-function instruction counter

FEAT_PMUv3_ICNTR adds a fixed-function instruction counter to the PMU.

This feature is supported in both AArch64 and AArch32 states. The counter is not accessible from
AArch32 state.

FEAT_PMUv3_ICNTR is OPTIONAL from Armv8.8.

If FEAT_PMUv3_ICNTR is implemented, then FEAT_PMUv3p9 is implemented.

When FEAT_PMUv3_ICNTR and FEAT_AA64EL2 are implemented, FEAT_FGT2 is
implemented.

The following fields identify the presence of FEAT_PMUv3_ICNTR:

• ID_AA64DFR1_EL1.PMICNTR.

• PMCFGR.NCG.

For more information, see Enabling PMU counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-152
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_PMUv3_SS, PMU Snapshot extension

FEAT_PMUv3_SS defines an IMPLEMENTATION DEFINED Snapshot Extension, compatible with the
CoreSight PMU Snapshot Extension, where a Capture event is generated.

This feature is supported in both AArch64 and AArch32 states. The PMU snapshot registers are not
accessible from AArch32 state.

FEAT_PMUv3_SS is OPTIONAL from Armv8.8.

If FEAT_PMUv3_SS is implemented, then FEAT_PMUv3p9 is implemented.

When FEAT_PMUv3_SS and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

If FEAT_PMUv3_SS is implemented, then FEAT_AA32EL1 is not implemented.

The following fields identify the presence of FEAT_PMUv3_SS:

• ID_AA64DFR0_EL1.PMSS.

• PMDEVID.PMSS.

For more information, see PMU snapshots.

FEAT_PMUv3p9, Armv8.9 PMU extensions

FEAT_PMUv3p9 adds the following features to the Performance Monitors Extension:

• Provides finer-grained control over allocation of PMU event counters to an EL0 process.

• Allows an arbitrary combination of event counters and fixed-function counters to be zeroed.

• Provides controls to configure the PMU to directly request the PE enters Debug state without
using the CTI.

• Updates PMU event definitions.

This feature is supported in both AArch64 and AArch32 states.

FEAT_PMUv3p9 is OPTIONAL from Armv8.8.

In an Armv8.9 implementation, if FEAT_PMUv3 is implemented, FEAT_PMUv3p9 is
implemented.

If FEAT_PMUv3p9 is implemented, then FEAT_PMUv3p8 is implemented.

When FEAT_PMUv3p9 and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following fields identify the presence of FEAT_PMUv3p9:

• ID_AA64DFR0_EL1.PMUVer.

• ID_DFR0_EL1.PerfMon.

• ID_DFR0.PerfMon.

• EDDFR.PMUVer.

For more information, see:

• Generating overflow interrupt requests.

• Performance Monitors and Debug state.

• EL0 access controls.

• The PMU event number space and common events.

• Common event numbers.

FEAT_PRFMSLC, SLC target support for PRFM instructions

FEAT_PRFMSLC introduces prefetching enhancements and clarifies the scope of the PRFM
instructions to support a system level cache option.

This feature is supported in AArch64 state only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-153
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_PRFMSLC is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_PRFMSLC:

• ID_AA64ISAR2_EL1.PRFMSLC.

FEAT_RASSAv2, RAS System Architecture Extension v2

FEAT_RASSAv2 implements RAS System Architecture v2 and adds support for the following:

• System RAS Agents.

• Controls for disabling Fault Handling Interrupts for Deferred errors.

• Layouts for 16KB and 64KB error record groups.

• A status flag set on an Error Recovery reset.

• A control for disabling error counting on corrected error Events.

• The OPTIONAL Access Control Register feature.

• Fault Injection Groups.

• Interrupt Control registers for error record groups.

• Additional error record types.

In an Armv8.9 implementation, if FEAT_RAS is implemented, FEAT_RASSAv2 is implemented.

FEAT_RASSAv2 is OPTIONAL from Armv8.8.

For more information, see:

• Chapter I5 RAS System Architecture.

FEAT_RASv2, RAS Extension v2

FEAT_RASv2 adds the following features to the Reliability, Availability, and Serviceability
Extension:

• Adds the features defined by FEAT_RASSAv2 to System register error records.

• Defines the ERXGSR_EL1 register.

• Adds a Trap exception to EL3 for writes to RAS System registers.

• Adds additional syndrome to ESR_ELx on an error exception, to give information on
whether a location being accessed has been updated.

This feature is supported in both AArch64 and AArch32 states.

In an Armv8.9 implementation, if FEAT_RAS is implemented, FEAT_RASv2 is implemented.

FEAT_RASv2 is OPTIONAL from Armv8.8.

When FEAT_RASv2 and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

If FEAT_RASv2 is implemented, then FEAT_RASv1p1 is implemented.

If FEAT_RASv2 is implemented, then FEAT_RASSAv2 is implemented.

The following fields identify the presence of FEAT_RASv2:

• ID_AA64PFR0_EL1.RAS.

• ID_PFR0_EL1.RAS.

• ID_PFR0.RAS.

For more information, see:

• Chapter D19 RAS PE Architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-154
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• Chapter I5 RAS System Architecture.

FEAT_RPRFM, Support for Range Prefetch Memory instruction

FEAT_RPRFM introduces the Range Prefetch Memory hint instruction, RPRFM which specifies the
range of addresses that are likely to be accessed in the near future and their expected reuse.

This feature is supported in AArch64 state only.

FEAT_RPRFM is OPTIONAL from Armv8.0.

The following field identifies the presence of FEAT_RPRFM:

• ID_AA64ISAR2_EL1.RPRFM.

FEAT_S1PIE, Stage 1 permission indirections

FEAT_S1PIE introduces a way to set stage 1 permissions that allows more efficient use of the
permission bits in translation table descriptors and provides the ability to introduce new permission
types.

This feature is supported in AArch64 state only.

FEAT_S1PIE is OPTIONAL from Armv8.8.

If FEAT_S1PIE is implemented, then FEAT_ATS1A is implemented.

If FEAT_S1PIE is implemented, then FEAT_TCR2 is implemented.

The following field identifies the presence of FEAT_S1PIE:

• ID_AA64MMFR3_EL1.S1PIE.

For more information, see Stage 1 Indirect permissions.

FEAT_S1POE, Stage 1 permission overlays

FEAT_S1POE allows stage 1 permissions to be progressively restricted by processes running at
EL0 without requiring TLB maintenance, and reduces the number of calls to privileged software.

This feature is supported in AArch64 state only.

FEAT_S1POE is OPTIONAL from Armv8.8.

If FEAT_S1POE is implemented, then FEAT_TCR2 is implemented.

If FEAT_S1POE is implemented, then FEAT_ATS1A is implemented.

If FEAT_S1POE is implemented, then FEAT_HPDS is implemented.

The following field identifies the presence of FEAT_S1POE:

• ID_AA64MMFR3_EL1.S1POE.

For more information, see Stage 1 Overlay permissions.

FEAT_S2PIE, Stage 2 permission indirections

FEAT_S2PIE introduces all of the following:

• A method to set stage 2 permissions that allows more efficient use of the permission bits in
translation table descriptors and provides the ability to introduce new permission types.

• The Mostly Read Only (MRO) permission in stage 2 translations.

This feature is supported in AArch64 state only.

FEAT_S2PIE is OPTIONAL from Armv8.8.

If FEAT_S2PIE is implemented, then FEAT_EL2 is implemented.

The following field identifies the presence of FEAT_S2PIE:

• ID_AA64MMFR3_EL1.S2PIE.

For more information, see Stage 2 Indirect permissions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-155
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
FEAT_S2POE, Stage 1 permission overlays

FEAT_S2POE provides a mechanism for stage 2 permissions to be progressively restricted, such
that different EL1&0 contexts that are using the same stage 2 translation tables can be provided with
different sets of permissions.

This feature is supported in AArch64 state only.

FEAT_S2POE is OPTIONAL from Armv8.8.

If FEAT_S2POE is implemented, then FEAT_EL2 is implemented.

If FEAT_S2POE is implemented, then FEAT_S2PIE is implemented.

The following field identifies the presence of FEAT_S2POE:

• ID_AA64MMFR3_EL1.S2POE.

For more information, see Stage 2 Overlay permissions.

FEAT_SPECRES2, Enhanced speculation restriction instructions

FEAT_SPECRES2 adds a new speculation restriction instruction, Clear Other Speculative
Prediction Restriction by Context (COSP), to the instructions that are part of FEAT_SPECRES.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SPECRES2 is OPTIONAL from Armv8.0.

FEAT_SPECRES2 is mandatory from Armv8.9.

The following fields identify the presence of FEAT_SPECRES2:

• ID_AA64ISAR1_EL1.SPECRES.

• ID_ISAR6_EL1.SPECRES.

• ID_ISAR6.SPECRES.

For more information, see:

• Prediction restriction instructions.

• Execution, data prediction and prefetching restriction System instructions.

• Execution and data prediction restriction System instructions.

FEAT_SPE_CRR, Call Return Branch Records

FEAT_SPE_CRR extends the Operation Type packet to provide more information whether the
branch is a procedure call or a procedure return.

This feature is supported in AArch64 state only.

If FEAT_SPE_CRR is implemented, then FEAT_SPEv1p4 is implemented.

In an Armv8.9 implementation, if FEAT_SPE is implemented, FEAT_SPE_CRR is implemented.

If FEAT_SPE and FEAT_GCS are implemented, then FEAT_SPE_CRR is implemented.

The following field identifies the presence of FEAT_SPE_CRR:

• PMSIDR_EL1.CRR.

FEAT_SPE_DPFZS, Disable Cycle Counter on SPE Freeze

This feature is supported in AArch64 state only.

FEAT_SPE_DPFZS is OPTIONAL from Armv8.6.

If FEAT_PMUv3p9 and FEAT_SPEv1p4 are implemented, then FEAT_SPE_DPFZS is
implemented.

If FEAT_SPE_DPFZS is implemented, then FEAT_PMUv3p7 and FEAT_SPEv1p2 are
implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-156
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
The following field identifies the presence of FEAT_SPE_DPFZS:

• ID_AA64DFR1_EL1.DPFZS.

FEAT_SPE_FDS, Data Source Filtering

FEAT_SPE_FDS enables filtering by (part of) the Data Source indicator to support more efficient
profiling.

This feature is supported in AArch64 state only.

In an Armv8.9 implementation, if FEAT_SPE is implemented, FEAT_SPE_FDS is implemented.

FEAT_SPE_FDS is OPTIONAL from Armv8.8.

If FEAT_SPE_FDS is implemented, then FEAT_SPEv1p4 is implemented.

When FEAT_SPE_FDS and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following field identifies the presence of FEAT_SPE_FDS:

• PMSIDR_EL1.FDS.

For more information, see Filtering sample records.

FEAT_SPEv1p4, Statistical Profiling Extension version 1.4

FEAT_SPEv1p4 adds the following features to the Statistical Profiling Extension:

• Extends the Events packet to provide more information about the data source.

• Defines additional event-based record filtering control bits in PMSEVFR_EL1 and
PMSNEVFR_EL1 that add the ability to filter by additional existing bits in the Events
packet.

This feature is supported in AArch64 state only.

In an Armv8.9 implementation, if FEAT_SPE is implemented, FEAT_SPEv1p4 is implemented.

FEAT_SPEv1p4 is OPTIONAL from Armv8.8.

If FEAT_SPEv1p4 is implemented, then FEAT_SPEv1p3 is implemented.

The following field identifies the presence of FEAT_SPEv1p4:

• ID_AA64DFR0_EL1.PMSVer.

FEAT_SPMU, System Performance Monitors Extension

FEAT_SPMU provides a framework of architectural System registers and behaviors for System
PMUs, which are PMUs that do not belong to the PE but are accessible by the PE.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SPMU is OPTIONAL from Armv8.8.

If FEAT_SPMU is implemented, then FEAT_PMUv3p9 is implemented.

When FEAT_SPMU and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following field identifies the presence of FEAT_SPMU:

• ID_AA64DFR1_EL1.SPMU.

For more information, see Chapter D14 The System Performance Monitors Extension.

FEAT_THE, Translation Hardening Extension

FEAT_THE provides a mechanism to prevent modification of an arbitrary subset of translation table
entries from within the exception level that owns the translation tables, and introduces the
following:

• The stage 1 Assured Translation property and the stage 2 AssuredOnly property.

• Stage 2 TopLevel checks.

• Read-Check-Write instructions, RCW* and RCWS*.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-157
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.2 Armv8-A architecture extensions
• Read-Check-Write mask registers, RCWMASK_EL1 and RCWSMASK_EL1.

• The Protected attribute in stage 1 descriptors.

This feature is supported in AArch64 state only.

FEAT_THE is OPTIONAL from Armv8.8.

When FEAT_THE and FEAT_AA64EL2 are implemented, FEAT_S2PIE is implemented.

When FEAT_THE and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

If FEAT_THE is implemented, then FEAT_TCR2 is implemented.

The following field identifies the presence of FEAT_THE:

• ID_AA64PFR1_EL1.THE.

For more information, see:

• Translation Hardening Extension.

• Read-Check-Write.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-158
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
A2.3 Armv9-A architecture extensions

The AArch32 state might optionally be implemented at EL0. The AArch32 state is not implemented at EL1, EL2,
and EL3.

The implementation of FEAT_DoubleLock in an Armv9 implementation is prohibited.

An implementation of the Armv9-A architecture cannot include an ETM.

A2.3.1 The Armv9.0 architecture extension

The Armv9.0 architecture extension adds mandatory and optional architectural features. Some features must be
implemented together. An implementation is Armv9.0 compliant if all of the following apply:

• It is Armv8.5 compliant.

• It includes all of the Armv9.0 architectural features that are mandatory.

An Armv9.0 compliant implementation can additionally include:

• Armv9.0 features that are optional.

• Any arbitrary subset of the architectural features of Armv9.1, subject only to those constraints that require
that certain features be implemented together.

FEAT_Armv9_Crypto, Armv9 Cryptographic Extension

The Armv9 Cryptographic Extension provides instructions for the acceleration of encryption and
decryption. The presence of the Cryptographic Extension in an implementation is subject to export
license controls.

This feature is supported in AArch64 state only.

FEAT_Armv9_Crypto is OPTIONAL.

If FEAT_Armv9_Crypto is implemented, then FEAT_Crypto is implemented.

When FEAT_Armv9_Crypto is implemented, FEAT_PMULL, FEAT_AES, FEAT_SHA1,
FEAT_SHA256, and FEAT_SHA512 are implemented.

When FEAT_Armv9_Crypto and FEAT_SVE are implemented, FEAT_SVE_AES,
FEAT_SVE_PMULL128, and FEAT_SVE_SHA3 are implemented.

If FEAT_Arm9_Crypto is implemented and FEAT_SVE is implemented, then, subject to export
controls, if one of FEAT_SVE_SHA3, FEAT_SVE_PMULL_128, and FEAT_SVE_AES are
implemented, then all of them are implemented.

For more information, see The Cryptographic Extension and The Cryptographic Extension in
AArch32 state.

FEAT_ETE, Embedded Trace Extension

FEAT_ETE provides a trace unit that records details about software control flow running on a PE,
which can be used to aid debugging or optimizing. The trace unit provides filtering functionality to
allow the targeting of the information to specific code regions or periods of operation.

This feature is supported in AArch64 state, and performs trace in both AArch64 and AArch32
states.

FEAT_ETE is OPTIONAL from Armv9.0.

If FEAT_ETE is implemented, then FEAT_TRBE and FEAT_TRF are implemented.

If FEAT_ETE is implemented, then FEAT_TRC_SR is implemented.

If FEAT_ETE is implemented, then FEAT_ETMv4 is not implemented.

For more information, see Chapter D4 The Embedded Trace Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-159
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
FEAT_SVE2, Scalable Vector Extension version 2

The Scalable Vector Extension version 2 (SVE2) is a superset of SVE that incorporates functionality
similar to Advanced SIMD, and other enhancements. In this Manual, unless stated otherwise, when
SVE is used, the behavior also applies to SVE2.

This feature is supported in AArch64 state only.

FEAT_SVE2 is OPTIONAL from Armv9.0.

If FEAT_SVE2 is implemented, then FEAT_SVE is implemented.

The following field identifies the presence of FEAT_SVE2:

• ID_AA64ZFR0_EL1.SVEver.

For more information, see:

• FEAT_SVE.

• Data processing - SVE2.

FEAT_SVE_AES, Scalable Vector AES instructions

FEAT_SVE_AES provides the following scalable vector AES cryptographic instructions:

• AESD.

• AESE.

• AESIMC.

• AESMC.

This feature is supported in AArch64 state only.

FEAT_SVE_AES is OPTIONAL from Armv9.0.

If FEAT_SVE_AES is implemented, then FEAT_AES is implemented.

If FEAT_SVE_AES is implemented, then FEAT_SVE2 is implemented.

If FEAT_SVE_AES is implemented, then FEAT_Armv9_Crypto is implemented.

The following field identifies the presence of FEAT_SVE_AES:

• ID_AA64ZFR0_EL1.AES.

FEAT_SVE_BitPerm, Scalable Vector Bit Permutes instructions

FEAT_SVE_BitPerm provides the following scalable vector bit permute instructions:

• BEXT.

• BDEP.

• BGRP.

This feature is supported in AArch64 state only.

FEAT_SVE_BitPerm is OPTIONAL from Armv9.0.

If FEAT_SVE_BitPerm is implemented, then FEAT_SVE2 is implemented.

The following field identifies the presence of FEAT_SVE_BitPerm:

• ID_AA64ZFR0_EL1.BitPerm.

FEAT_SVE_PMULL128, Scalable Vector PMULL instructions

FEAT_SVE_PMULL128 provides the following scalable vector 64-bit source element variants
polynomial multiply instructions:

• PMULLB.

• PMULLT.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-160
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
This feature is supported in AArch64 state only.

FEAT_SVE_PMULL128 is OPTIONAL from Armv9.0.

If FEAT_SVE_PMULL128 is implemented, then FEAT_SVE_AES is implemented.

If FEAT_SVE_PMULL128 is implemented, then FEAT_PMULL is implemented.

The following field identifies the presence of FEAT_SVE_PMULL128:

• ID_AA64ZFR0_EL1.AES.

FEAT_SVE_SHA3, Scalable Vector SHA3 instructions

FEAT_SVE_SHA3 provides the following scalable vector SHA3 instruction:

• RAX1.

This feature is supported in AArch64 state only.

FEAT_SVE_SHA3 is OPTIONAL from Armv9.0.

If FEAT_SVE_SHA3 is implemented, then FEAT_SVE2 is implemented.

If FEAT_SVE_SHA3 is implemented, then FEAT_SHA3 is implemented.

The following field identifies the presence of FEAT_SVE_SHA3:

• ID_AA64ZFR0_EL1.SHA3.

FEAT_SVE_SM4, Scalable Vector SM4 instructions

FEAT_SVE_SM4 provides the following scalable vector SM4 instructions:

• SM4E.

• SM4EKEY.

This feature is supported in AArch64 state only.

FEAT_SVE_SM4 is OPTIONAL from Armv9.0.

If FEAT_SVE_SM4 is implemented, then FEAT_SVE2 is implemented.

If FEAT_SVE_SM4 is implemented, then FEAT_SM4 is implemented.

The following field identifies the presence of FEAT_SVE_SM4:

• ID_AA64ZFR0_EL1.SM4.

FEAT_TME, Transactional Memory Extension

FEAT_TME introduces a set of instructions to support hardware transaction memory, which means
a group of instructions can appear to be collectively executed as a single atomic operation. For more
information on these instructions, see:

• TCANCEL.

• TCOMMIT.

• TSTART.

• TTEST.

This feature is supported in AArch64 state only.

FEAT_TME is OPTIONAL from Armv9.0.

The following field identifies the presence of FEAT_TME:

• ID_AA64ISAR0_EL1.TME.

For more information on FEAT_TME, see Arm™ Architecture Reference Manual Supplement,
Transactional Memory Extension (TME), for A-profile architecture (ARM DDI 0617).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-161
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
FEAT_TRBE, Trace Buffer Extension

FEAT_TRBE enables support for a Trace Buffer Unit within a PE. When the Trace Buffer Unit is
enabled, program-flow trace generated by a trace unit is written directly to memory by the Trace
Buffer Unit, rather than routing trace data to a trace sink.

This feature is supported in AArch64 state, and performs trace in both AArch64 and AArch32
states.

FEAT_TRBE is OPTIONAL from Armv9.0.

If FEAT_TRBE is implemented, then FEAT_TRF is implemented.

The following field identifies the presence of FEAT_TRBE:

• ID_AA64DFR0_EL1.TraceBuffer.

For more information, see Chapter D6 The Trace Buffer Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-162
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
A2.3.2 The Armv9.1 architecture extension

The Armv9.1 architecture extension is an extension to Armv9.0. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv9.1 compliant if all of the
following apply:

• It is Armv8.6 compliant.

• It is Armv9.0 compliant.

• It includes all of the Armv9.1 architectural features that are mandatory.

An Armv9.1 compliant implementation can additionally include:

• Armv9.1 features that are optional.

• Any arbitrary subset of the architectural features of Armv9.2, subject only to those constraints that require
that certain features be implemented together.

FEAT_ETEv1p1, Embedded Trace Extension

FEAT_ETEv1p1 extends FEAT_ETE to provide more flexibility for tracing Timestamp values.

This feature is supported in AArch64 state, and performs trace in both AArch64 and AArch32
states.

FEAT_ETEv1p1 is OPTIONAL from Armv9.0.

If FEAT_ETEv1p1 is implemented, then FEAT_ETE is implemented.

The following field identifies the presence of FEAT_ETEv1p1:

• TRCDEVARCH.REVISION.

For more information, see Chapter D4 The Embedded Trace Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-163
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
A2.3.3 The Armv9.2 architecture extension

The Armv9.2 architecture extension is an extension to Armv9.1. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv9.2 compliant if all of the
following apply:

• It is Armv8.7 compliant.

• It is Armv9.1 compliant.

• It includes all of the Armv9.2 architectural features that are mandatory.

An Armv9.2 compliant implementation can additionally include:

• Armv9.2 features that are optional.

• Any arbitrary subset of the architectural features of Armv9.3, subject only to those constraints that require
that certain features be implemented together.

FEAT_BRBE, Branch Record Buffer Extension

FEAT_BRBE provides a Branch record buffer for capturing control path history.

This feature is supported in AArch64 state only.

FEAT_BRBE is OPTIONAL from Armv9.1.

The following field identifies the presence of FEAT_BRBE:

• ID_AA64DFR0_EL1.BRBE.

For more information, see Chapter D18 The Branch Record Buffer Extension.

FEAT_ETEv1p2, Embedded Trace Extension

FEAT_ETEv1p2 extends FEAT_ETE to support FEAT_RME.

This feature is supported in AArch64 state, and performs trace in both AArch64 and AArch32
states.

FEAT_ETEv1p2 is OPTIONAL from Armv9.1.

If FEAT_ETEv1p2 is implemented, then FEAT_ETEv1p1 is implemented.

If FEAT_ETE and FEAT_RME are implemented, then FEAT_ETEv1p2 is implemented.

The following field identifies the presence of FEAT_ETEv1p2:

• TRCDEVARCH.REVISION.

For more information, see Chapter D4 The Embedded Trace Extension.

FEAT_RME, Realm Management Extension

The Realm Management Extension (RME) is an extension to the Armv9 A-profile architecture.

RME adds all of the following features:

• Two additional Security states, Root and Realm.

• Two additional physical address spaces, Root and Realm.

• The ability to dynamically transition memory granules between physical address spaces.

• Granule Protection Check mechanism.

FEAT_RME is one component of the Arm Confidential Compute Architecture (Arm CCA).
Together with the other components of the Arm CCA, RME enables support for dynamic, attestable,
and trusted execution environments (Realms) to be run on an Arm PE.

This feature is supported in AArch64 state only.

FEAT_RME is OPTIONAL from Armv9.1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-164
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
If FEAT_RME is implemented, then FEAT_AA64EL3, FEAT_AA64EL2, FEAT_PMULL, and
FEAT_RNG or FEAT_RNG_TRAP are implemented.

When FEAT_RME and FEAT_AES or FEAT_SHA1 are implemented, FEAT_PMULL,
FEAT_AES, FEAT_SHA3, FEAT_SHA256, and FEAT_SHA512 are implemented.

When FEAT_RME, FEAT_SVE and FEAT_AES or FEAT_SHA1 are implemented,
FEAT_SVE_AES, FEAT_SVE_PMULL128, and FEAT_SVE_SHA3 are implemented.

When FEAT_ETE and FEAT_RME are implemented, FEAT_ETEv1p2 is implemented.

When FEAT_PMUv3 and FEAT_RME are implemented, FEAT_PMUv3p7 is implemented.

When FEAT_SPE and FEAT_RME are implemented, FEAT_SPEv1p2 is implemented.

When FEAT_MPAM and FEAT_RME are implemented, FEAT_MPAMv1p1 is implemented.

When FEAT_PCSRv8 and FEAT_RME are implemented, FEAT_PCSRv8p2 is implemented.

The following field identifies the presence of FEAT_RME:

• ID_AA64PFR0_EL1.RME.

If the Activity Monitors Extension is implemented, then Arm strongly recommends that a PE that
implements FEAT_RME also implements FEAT_AMUv1p1.

Arm recommends that a PE that implements FEAT_RME also implements all of the following:

• FEAT_VMID16.

• FEAT_HAFDBS.

For more information, see:

• Chapter D1 The AArch64 System Level Programmers’ Model.

• Chapter D8 The AArch64 Virtual Memory System Architecture.

• Chapter D9 The Granule Protection Check Mechanism.

FEAT_SME, Scalable Matrix Extension

FEAT_SME introduces two AArch64 execution modes that can be enabled and disabled by
application software:

• In ZA storage enabled mode, scalable, two-dimensional, architectural ZA tile storage
becomes available and instructions are defined to load, store, extract, insert, and clear rows
and columns of the ZA tiles.

• In Streaming SVE mode, the Effective SVE vector length changes to match the Effective ZA
tile width, support for a substantial subset of the SVE2 instruction set is available, and, when
ZA mode is also enabled, instructions are defined that accumulate the matrix outer product
of two SVE vectors into a ZA tile.

This feature is supported in AArch64 state only.

FEAT_SME is OPTIONAL from Armv9.2.

If FEAT_SME is implemented, then FEAT_FCMA, FEAT_FP16, FEAT_BF16, and FEAT_FHM
are implemented.

When FEAT_SME and FEAT_EL2 are implemented, FEAT_FGT and FEAT_HCX are
implemented.

The following field identifies the presence of FEAT_SME:

• ID_AA64PFR1_EL1.SME.

If FEAT_SME is implemented, this does not imply that FEAT_SVE and FEAT_SVE2 are
implemented when the PE is not in Streaming SVE mode.

For more information, see Chapter D21 The Scalable Matrix Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-165
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
FEAT_SME_F64F64, Double-precision floating-point outer product instructions

FEAT_SME_F64F64 indicates SME support for instructions that accumulate into double-precision
floating-point elements in the ZA array.

This feature is supported in AArch64 state only.

If FEAT_SME_F64F64 is implemented, then FEAT_SME is implemented.

FEAT_SME_F64F64 is OPTIONAL from Armv9.2.

The following field identifies the presence of FEAT_SME_F64F64:

• ID_AA64SMFR0_EL1.F64F64.

For more information, see Chapter D21 The Scalable Matrix Extension.

FEAT_SME_FA64, Full A64 instruction set support in Streaming SVE mode

FEAT_SME_FA64 indicates support for execution of the full A64 instruction set in Streaming SVE
mode.

This feature is supported in AArch64 state only.

If FEAT_SME_FA64 is implemented, then FEAT_SME is implemented.

If FEAT_SME_FA64 is implemented, then FEAT_SVE2 is implemented.

FEAT_SME_FA64 is OPTIONAL from Armv9.2.

The following field identifies the presence of FEAT_SME_FA64:

• ID_AA64SMFR0_EL1.FA64.

For more information, see Chapter D21 The Scalable Matrix Extension.

FEAT_SME_I16I64, 16-bit to 64-bit integer widening outer product instructions

FEAT_SME_I16I64 indicates SME support for instructions that accumulate into 64-bit integer
elements in the ZA array.

This feature is supported in AArch64 state only.

If FEAT_SME_I16I64 is implemented, then FEAT_SME is implemented.

FEAT_SME_I16I64 is OPTIONAL from Armv9.2.

The following field identifies the presence of FEAT_SME_I16I64:

• ID_AA64SMFR0_EL1.I16I64.

For more information, see Chapter D21 The Scalable Matrix Extension.

A2.3.3.1 Features added to the Armv9.2 extension in later releases

• FEAT_SME2p1.

• FEAT_SME_F16F16.

• FEAT_SVE2p1.

• FEAT_SVE_B16B16.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-166
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
A2.3.4 The Armv9.3 architecture extension

The Armv9.3 architecture extension is an extension to Armv9.2. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv9.3 compliant if all of the
following apply:

• It is Armv8.8 compliant.

• It is Armv9.2 compliant.

• It includes all of the Armv9.3 architectural features that are mandatory.

An Armv9.3 compliant implementation can additionally include:

• Armv9.3 features that are optional.

• Any arbitrary subset of the architectural features of Armv9.4, subject only to those constraints that require
that certain features be implemented together.

FEAT_BRBEv1p1, Branch Record Buffer Extension version 1.1

FEAT_BRBEv1p1 extends FEAT_BRBE to enable branch recording at EL3.

This feature is supported in AArch64 state only.

FEAT_BRBEv1p1 is OPTIONAL from Armv9.2.

If FEAT_BRBEv1p1 is implemented, then FEAT_BRBE is implemented.

In an Armv9.3 implementation, if FEAT_BRBE is implemented, FEAT_BRBEv1p1 is
implemented.

The following field identifies the presence of FEAT_BRBEv1p1:

• ID_AA64DFR0_EL1.BRBE.

For more information, see Chapter D18 The Branch Record Buffer Extension.

FEAT_MEC, Memory Encryption Contexts

Memory Encryption Contexts (MEC) is an extension to the RME.

An existing RME enabled system uses a combination of isolation and external memory protection
to guarantee privacy of the Realm Security state. Isolation between Realms is enforced by the Realm
stage 2 translation tables.

FEAT_MEC adds all of the following features:

• Memory encryption contexts are provided to all physical address spaces.

• Multiple memory encryption contexts are provided to the Realm physical address space for
assignment to Realm virtual machines, with policy controlled by Realm EL2.

• The Non-secure, Secure, and Root, physical address spaces each have one encryption
context.

This feature is supported in AArch64 state only.

FEAT_MEC is OPTIONAL from Armv9.2.

If FEAT_MEC is implemented, then FEAT_RME is implemented.

If FEAT_MEC is implemented, then FEAT_SCTLR2 is implemented.

If FEAT_MEC is implemented, then FEAT_TCR2 is implemented.

The following field identifies the presence of FEAT_MEC:

• ID_AA64MMFR3_EL1.MEC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-167
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
FEAT_SME2, Scalable Matrix Extensions version 2

FEAT_SME2 is a superset of FEAT_SME that introduces the following:

• The ability to treat the SME ZA array as containing addressable groups of one-dimensional
ZA array vectors, instead of two-dimensional ZA tiles.

• Multi-vector instructions that operate on groups of Z vector registers and ZA array vectors.

• A multi-vector predication mechanism for multi-vector load and store.

• A dedicated 512-bit lookup table register, ZT0, for data decompression.

This feature is supported in AArch64 state only.

FEAT_SME2 is OPTIONAL from Armv9.2.

If FEAT_SME2 is implemented, then FEAT_SME is implemented.

The following fields identify the presence of FEAT_SME2:

• ID_AA64SMFR0_EL1.SMEver.

• ID_AA64PFR1_EL1.SME.

For more information, see Chapter D21 The Scalable Matrix Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-168
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
A2.3.5 The Armv9.4 architecture extension

The Armv9.4 architecture extension is an extension to Armv9.3. It adds mandatory and optional architectural
features. Some features must be implemented together. An implementation is Armv9.4 compliant if all of the
following apply:

• It is Armv8.9 compliant.

• It is Armv9.3 compliant.

• It includes all of the Armv9.4 architectural features that are mandatory.

An Armv9.4 compliant implementation can additionally include:

• Armv9.4 features that are optional.

FEAT_ABLE, Address Breakpoint Linking Extension

FEAT_ABLE adds the capability to link a watchpoint to an address matching breakpoint.

This feature is supported in both AArch64 and AArch32 states.

FEAT_ABLE is OPTIONAL from Armv9.3.

If FEAT_ABLE is implemented, then FEAT_BWE is implemented.

If FEAT_ABLE is implemented, then FEAT_Debugv8p9 is implemented.

The following fields identify the presence of FEAT_ABLE:

• ID_AA64DFR1_EL1.ABLE.

• EDDFR1.ABLE.

For more information, see About Breakpoint exceptions.

FEAT_BWE, Breakpoint and watchpoint enhancements

FEAT_BWE adds the capability to define an included-range-based breakpoint and an
excluded-range-based breakpoint.

This feature is supported in AArch64 state only.

FEAT_BWE is OPTIONAL from Armv9.3.

The following fields identify the presence of FEAT_BWE:

• ID_AA64DFR1_EL1.ABLE.

• EDDFR1.ABLE.

For more information, see Other usage constraints for Address breakpoints.

FEAT_CHK, Check Feature Status

FEAT_CHK adds the CHKFEAT instruction, which allows software to detect when certain features are
enabled.

A PE that is compliant with architectures from Armv8.0 to Armv9.3 is compliant with the behavior
defined for this feature.

This feature is supported in AArch64 state only.

FEAT_CHK is OPTIONAL from Armv8.0.

FEAT_CHK is mandatory from Armv9.4.

For more information, see Detecting when FEAT_GCS is enabled.

FEAT_D128, 128-bit Translation Tables, 56 bit PA

FEAT_D128 adds support for the VMSAv9-128 translation system, comprising the following:

• 128-bit translation table descriptors.

• 56-bit physical addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-169
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
• 56-bit virtual addresses.

• 128-bit System registers.

• 128-bit atomic instructions.

• TLBIP VA*, TLBIP RVA*, TLBIP IPA*, TLBIP RIPA* instructions that can take 128-bit
inputs.

• IMPLEMENTATION DEFINED System instructions that can take 128-bit inputs.

This feature is supported in AArch64 state only.

FEAT_D128 is OPTIONAL from Armv9.3.

If FEAT_D128 is implemented, then FEAT_SYSREG128 is implemented.

If FEAT_D128 is implemented, then FEAT_SYSINSTR128 is implemented.

If FEAT_D128 is implemented, then FEAT_LSE128 is implemented.

If FEAT_D128 is implemented, then FEAT_S1PIE is implemented.

If FEAT_D128 is implemented, then FEAT_S2PIE is implemented.

If FEAT_D128 is implemented, then FEAT_AIE is implemented.

If FEAT_D128 is implemented, then FEAT_TCR2 is implemented.

If FEAT_D128 is implemented, then FEAT_LVA is implemented.

If FEAT_D128 is implemented, then FEAT_LPA2 is implemented.

The following field identifies the presence of FEAT_D128:

• ID_AA64MMFR3_EL1.D128.

For more information, see Chapter D8 The AArch64 Virtual Memory System Architecture.

FEAT_EBEP, Exception-based Event Profiling

FEAT_EBEP adds a locally generated PMU exception type to allow generation of high-quality
profiles by eliminating the interrupt latency and jitter incurred outside the PE.

This feature is supported in both AArch64 and AArch32 states.

FEAT_EBEP is OPTIONAL from Armv9.3.

In an Armv9.3 implementation, if FEAT_PMUv3p9 is implemented, FEAT_EBEP is implemented.

When FEAT_EBEP and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

When FEAT_EBEP and FEAT_AA32EL0 are implemented, FEAT_Debugv8p9 is implemented.

The following field identifies the presence of FEAT_EBEP:

• ID_AA64DFR1_EL1.EBEP.

For more information, see Exception-based event profiling.

FEAT_ETEv1p3, Embedded Trace Extension version 1.3

FEAT_ETEv1p3 extends FEAT_ETE to support all of the following:

• The ETE External Debug Request, when FEAT_Debugv8p9 is implemented.

• The ETE Trace Output Enable, which is mandatory for FEAT_ETEv1p3 and OPTIONAL for
FEAT_ETE.

This feature is supported in AArch64 state, and performs trace in both AArch64 and AArch32
states.

FEAT_ETEv1p3 is OPTIONAL from Armv9.3.

If FEAT_ETEv1p3 is implemented, then FEAT_ETEv1p2 is implemented.

The following field identifies the presence of FEAT_ETEv1p3:

• TRCDEVARCH.REVISION.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-170
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
For more information, see Chapter D4 The Embedded Trace Extension.

FEAT_GCS, Guarded Control Stack Extension

FEAT_GCS adds support for a Guarded Control Stack, an area of memory in which procedure
return addresses and exception return addresses are stored and protected from modification.

This feature is supported in AArch64 state only.

FEAT_GCS is OPTIONAL from Armv9.3.

If FEAT_GCS is implemented, then FEAT_CHK is implemented.

If FEAT_GCS is implemented, then FEAT_S1PIE is implemented.

The following field identifies the presence of FEAT_GCS:

• ID_AA64PFR1_EL1.GCS.

For more information, see Chapter D11 The Guarded Control Stack.

FEAT_ITE, Instrumentation Trace Extension

FEAT_ITE provides all of the following to allow software to inject instrumentation information into
the ETE trace stream:

• The TRCIT instruction, that injects the value of a general purpose register into the ETE trace
stream.

• Instrumentation Packet that contains the value written by the TRCIT instruction.

• Controls that define the behavior of the TRCIT instruction.

This feature is supported in both AArch64 and AArch32 states.

FEAT_ITE is OPTIONAL from Armv9.3.

If FEAT_ITE is implemented, then FEAT_TRF is implemented.

If FEAT_ITE is implemented, then FEAT_ETE is implemented.

If FEAT_ITE is implemented, then FEAT_TRBE is implemented.

When FEAT_ITE and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following fields identify the presence of FEAT_ITE:

• ID_AA64DFR1_EL1.ITE.

• TRCIDR0.ITE.

For more information, see:

• Instrumentation extension.

• Instrumentation element.

FEAT_LSE128, 128-bit Atomics

FEAT_LSE128 adds support for 128-bit atomic instructions.

This feature is supported in AArch64 state only.

FEAT_LSE128 is OPTIONAL from Armv9.3.

If FEAT_LSE128 is implemented, then FEAT_LSE is implemented.

The following field identifies the presence of FEAT_LSE128:

• ID_AA64ISAR0_EL1.Atomic.

For more information, see:

• Atomic memory operations.

• Swap.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-171
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
FEAT_LVA3, 56-bit VA

FEAT_LVA3 adds support for 56-bit virtual addresses.

This feature is supported in AArch64 state only.

FEAT_LVA3 is OPTIONAL from Armv9.3.

If FEAT_LVA3 is implemented, then FEAT_D128 is implemented.

If FEAT_LVA3 is implemented, then FEAT_LVA is implemented.

The following field identifies the presence of FEAT_LVA3:

• ID_AA64MMFR2_EL1.VARange.

For more information, see Supported virtual address ranges.

FEAT_SEBEP, Synchronous Exception-based Event Profiling

FEAT_SEBEP creates new configurations to generate synchronous and precise PMU exceptions.

This feature is supported in both AArch64 and AArch32 states.

FEAT_SEBEP is OPTIONAL from Armv9.3.

If FEAT_SEBEP is implemented, then FEAT_EBEP is implemented.

When FEAT_SEBEP and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

When FEAT_SEBEP and FEAT_AA32EL0 are implemented, FEAT_Debugv8p9 is implemented.

The following field identifies the presence of FEAT_SEBEP:

• ID_AA64DFR0_EL1.SEBEP.

For more information, see:

• Synchronous exception-based event profiling.

• Synchronous events.

FEAT_SME2p1, Scalable Matrix Extension version 2.1

The Scalable Matrix Extension version 2.1 (SME2.1) is a superset of SME2 that adds:

• New SME instructions.

• Other relaxations and enhancements.

In this Manual, unless stated otherwise, when SME is used, the behavior also applies to SME2.1.

This feature is supported in AArch64 state only.

In an Armv9.4 implementation, if FEAT_SME2 is implemented, FEAT_SME2p1 is implemented.

FEAT_SME2p1 is OPTIONAL from Armv9.2.

If FEAT_SME2p1 is implemented, then FEAT_SME2 is implemented.

If FEAT_SME and FEAT_SVE2p1 are implemented, then FEAT_SME2p1 is implemented.

The following field identifies the presence of FEAT_SME2p1:

• ID_AA64SMFR0_EL1.SMEver.

For more information, see:

• Data processing - SME, SME2.

• Chapter D21 The Scalable Matrix Extension.

FEAT_SME_F16F16, Non-widening half-precision FP16 to FP16 arithmetic for SME2.

FEAT_SME_F16F16 adds the SME2 half-precision to single-precision convert instructions and
non-widening half-precision floating-point instructions.

This feature is supported in AArch64 state only.

FEAT_SME_F16F16 is OPTIONAL from Armv9.2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-172
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
If FEAT_SME_F16F16 is implemented, then FEAT_SME2 is implemented.

The following field identifies the presence of FEAT_SME_F16F16:

• ID_AA64SMFR0_EL1.F16F16.

For more information, see:

• Data processing - SME, SME2.

• Chapter D21 The Scalable Matrix Extension.

FEAT_SVE2p1, Scalable Vector Extensions version 2.1

The Scalable Vector Extension version 2.1 (SVE2.1) is a superset of SVE2 that adds:

• SVE instructions in Non-streaming SVE mode, which were previously added by SME in
Streaming SVE mode. These are:

— Contiguous multi-vector load and store instructions.

— Predicate-as-counter instructions.

— General-purpose SVE instructions.

• Other relaxations and enhancements.

In this Manual, unless stated otherwise, when SVE is used, the behavior also applies to SVE2.1.

This feature is supported in AArch64 state only.

In an Armv9.4 implementation, if FEAT_SVE2 is implemented, FEAT_SVE2p1 is implemented.

FEAT_SVE2p1 is OPTIONAL from Armv9.2.

If FEAT_SVE2p1 is implemented, then FEAT_SVE2 is implemented.

If FEAT_SVE2 and FEAT_SME2p1 are implemented, then FEAT_SVE2p1 is implemented.

The following field identifies the presence of FEAT_SVE2p1:

• ID_AA64ZFR0_EL1.SVEver.

For more information, see:

• FEAT_SVE.

• Loads and stores - SME, SME2, SVE2p1.

• Data processing - SVE2.

FEAT_SVE_B16B16, Non-widening BFloat16 to BFloat16 arithmetic for SVE2 and SME2.

FEAT_SVE_B16B16 adds SVE2 non-widening BFloat16 floating-point instructions to SVE.

If FEAT_SVE2 is implemented, FEAT_SVE_B16B16 adds the SVE2 non-widening BFloat16
instructions when the PE is not in Streaming SVE mode.

If FEAT_SME2 is implemented, FEAT_SVE_B16B16 adds:

• The SVE2 non-widening BFloat16 instructions when the PE is in Streaming SVE mode.

• The SME2 non-widening BFloat16 instructions.

This feature is supported in AArch64 state only.

FEAT_SVE_B16B16 is OPTIONAL from Armv9.2.

If FEAT_SVE_B16B16 is implemented, then FEAT_SME2 or FEAT_SVE2 is implemented.

The following fields identify the presence of FEAT_SVE_B16B16:

• ID_AA64SMFR0_EL1.B16B16.

• ID_AA64ZFR0_EL1.B16B16.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-173
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
For more informations, see:

• BFloat16 arithmetic.

• BFloat16 minimum/maximum.

• Clamp to minimum/maximum.

FEAT_SYSINSTR128, 128-bit System instructions

FEAT_SYSINSTR128 adds support for IMPLEMENTATION DEFINED System instructions that can
take 128-bit inputs.

This feature is supported in AArch64 state only.

FEAT_SYSINSTR128 is OPTIONAL from Armv9.3.

If FEAT_SYSINSTR128 is implemented, then FEAT_SCTLR2 is implemented.

If FEAT_SYSINSTR128 is implemented, then FEAT_D128 is implemented.

The following field identifies the presence of FEAT_SYSINSTR128:

• ID_AA64ISAR2_EL1.SYSINSTR_128.

For more information, see System instructions.

FEAT_SYSREG128, 128-bit System registers

FEAT_SYSREG128 adds the following support for 128-bit System registers:

• The MRRS instruction to move a 128-bit System register into a pair of 64-bit general-purpose
registers.

• The MSRR instruction to move a pair of 64-bit general-purpose registers to a 128-bit System
register.

• 128-bit formats of the following system registers:

• The Physical Address Register, PAR_EL1.

• The Read-Check-Write mask registers, RCWMASK_EL1 and RCWSMASK_EL1.

• The following translation table base address registers, TTBR0_EL1, TTBR0_EL2,
TTBR1_EL1, TTBR1_EL2, VTTBR_EL2.

This feature is supported in AArch64 state only.

FEAT_SYSREG128 is OPTIONAL from Armv9.3.

If FEAT_SYSREG128 is implemented, then FEAT_SCTLR2 is implemented.

If FEAT_SYSREG128 is implemented, then FEAT_D128 is implemented.

The following field identifies the presence of FEAT_SYSREG128:

• ID_AA64ISAR2_EL1.SYSREG_128.

FEAT_TRBE_EXT, Trace Buffer external mode

FEAT_TRBE_EXT allows an external debugger, as well as a self-hosted debugger, to use the Trace
Buffer Unit. All of the following registers are introduced to determine the parameters of the
implementation:

• TRBDEVARCH.

• TRBDEVID.

• TRBDEVID1.

This feature is supported in both AArch64 and AArch32 states.

FEAT_TRBE_EXT is OPTIONAL from Armv9.3.

If FEAT_TRBE_EXT is implemented, then FEAT_TRBE is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-174
ID032224 Non-Confidential

A-profile Architecture Extensions
A2.3 Armv9-A architecture extensions
The following fields identify the presence of FEAT_TRBE_EXT:

• ID_AA64DFR0_EL1.ExtTrcBuff.

• EDDFR.TraceBuffer.

• EDDFR.ExtTrcBuff.

For more information, see Trace buffer External mode.

FEAT_TRBE_MPAM, Trace Buffer MPAM extensions

FEAT_TRBE_MPAM allows software to program the MPAM PARTID and PMG to use different
MPAM values for trace data. TRBDEVID1.{PMG_MAX, PARTID_MAX} are used to determine
the parameters of the MPAM implementation.

This feature is supported in both AArch64 and AArch32 states.

FEAT_TRBE_MPAM is OPTIONAL from Armv9.3.

If FEAT_TRBE_MPAM is implemented, then FEAT_TRBE_EXT is implemented.

If FEAT_TRBE_MPAM is implemented, then FEAT_MPAM is implemented.

When FEAT_TRBE_MPAM and FEAT_AA64EL2 are implemented, FEAT_FGT2 is implemented.

The following field identifies the presence of FEAT_TRBE_MPAM:

• TRBIDR_EL1.MPAM.

For more information, see External mode and MPAM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. A2-175
ID032224 Non-Confidential

Part B
The AArch64 Application Level Architecture

Chapter B1
The AArch64 Application Level Programmers’ Model

This chapter describes the AArch64 application level programmers’ model. It contains the following sections:

• About the Application level programmers’ model.

• Registers in AArch64 Execution state.

• Process state, PSTATE.

• The Scalable Vector and Scalable Matrix Extensions (SVE & SME).

• Software control features and EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-177
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model
B1.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of the system
information is needed to put the Application level programmers' model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege,
indicated by different Exception levels that number upwards from EL0 to EL3. EL0 corresponds to the lowest
privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at EL0. For more information, see Exception levels.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When
an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged at EL0. This:

• Permits the operating system to allocate system resources to an application in a unique or shared manner.

• Provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives a reference
to the system level description.

Execution at any Exception level above EL0 is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level
Programmers’ Model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-178
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
B1.2 Registers in AArch64 Execution state

The following registers are visible at EL0 using AArch64:

R0-R30 31 general-purpose registers, R0 to R30. Each can be accessed as:

• A 64-bit general-purpose register named X0 to X30.

• A 32-bit general-purpose register named W0 to W30.

Figure B1-1 General-purpose register naming

The X30 general-purpose register is used as the procedure call link register.

SP A 64-bit dedicated Stack Pointer register. The least significant 32 bits of the stack pointer can be
accessed using the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note

Stack pointer alignment to a 16-byte boundary is configurable at EL1. For more information, see
the Procedure Call Standard for the Arm 64-bit Architecture.

PC A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can be updated only on a branch, exception entry or
exception return.

Note

Attempting to execute an A64 instruction that is not word-aligned generates a PC alignment fault,
see PC alignment checking.

V0-V31 32 SIMD&FP registers, V0 to V31. Each can be accessed as:

• A 128-bit register named Q0 to Q31.

• A 64-bit register named D0 to D31.

• A 32-bit register named S0 to S31.

• A 16-bit register named H0 to H31.

• An 8-bit register named B0 to B31.

• A 128-bit vector of elements. See SIMD vectors in AArch64 state.

• A 64-bit vector of elements. See SIMD vectors in AArch64 state.

Where the number of bits described by a register name does not occupy an entire SIMD&FP
register, it refers to the least significant bits. See Figure B1-2.

For more information about data types and vector formats, see Supported data types.

63 32 31 0

Rn

Wn

Xn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-179
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
Figure B1-2 SIMD and floating-point register naming

FPCR, FPSR The FPCR is the floating-point control register. The FPSR is the floating-point status register.

Z0-Z31 32 SVE scalable vector registers, Z0 to Z31, of equal length. Each register can be accessed as:

• A configurable-length vector of elements. The length, VL, is a power of two, from a
minimum of 128 bits to an IMPLEMENTATION DEFINED maximum no greater than 2048 bits.
See Figure B1-3, Figure A1-5, and Configurable SVE vector lengths.

• A SIMD&FP register, as described in V0-V31. Bits[127:0] of each Zn register hold the
correspondingly numbered V0-V31 SIMD&FP register, as Figure B1-3 shows:

Figure B1-3 SVE register naming

See also:

• Maximum implemented SVE vector lengths.

• Configurable SVE vector lengths.

• Treatment of SVE Z registers.

• SVE writes of scalar values to registers.

P0-P15 16 SVE predicate registers, named P0 to P15. Each SVE predicate register holds one bit for each
byte of an SVE scalar vector register.

Note

The Maximum implemented SVE predicate length is the Maximum implemented SVE vector length
divided by 8. See Maximum implemented SVE vector lengths.

Also see Vector predication.

127 64 63 16 1532 31 7 08

Vn

Bn

Hn

Sn

Dn

Qn

127 64 63 16 1532 31 7 08

Bn

Hn

Sn

Dn

Qn

Vn

Zn

VL-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-180
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
FFR The dedicated SVE First Fault Register that has the same size and format as the SVE predicate
registers, P0-P15. See FFR, First Fault Register.

ZA Architectural state capable of holding a two-dimensional array of bytes. See ZA storage.

ZT0 A 512-bit SME2 lookup table register. See SME2 ZT0 register.

See also:

• System registers.

• Pseudocode description of registers in AArch64 state.

• Registers for instruction processing and exception handling.

B1.2.1 FFR, First Fault Register

RTRLWH SVE has a dedicated First Fault Register named FFR.

IXPLQW The FFR captures the cumulative fault status of a sequence of SVE First-fault and Non-fault vector load
instructions.

RCPQQN The FFR and the predicate registers have the same size and format.

IPBWPM The FFR is a Special-purpose register.

RCGHCK All bits in the FFR that are accessible at the current Exception level are initialized to 1 by using the SETFFR
instruction.

RWZJVT Bits in the FFR are indirectly set to 0 as a result of a suppressed access or suppressed fault corresponding to an Active
element of an SVE First-fault or Non-fault vector load.

RBZLJG Bits in the FFR are never set to 1 as a result of a vector load instruction.

IXLZQY After a sequence of one or more SVE First-fault or Non-fault loads that follow a SETFFR instruction, the FFR
contains a sequence of zero or more TRUE elements, followed by zero or more FALSE elements.

ITQMTV The TRUE elements in the FFR indicate the shortest sequence of consecutive elements that could contain valid data
loaded from memory.

RGHFRQ The only instructions that directly read the FFR are:

• RDFFR.

• RDFFRS.

RLHBRN The only instructions that directly write the FFR are:

• WRFFR.

• SETFFR.

RXXMMP All direct and indirect reads and writes to the FFR occur in program order relative to other instructions, without
explicit synchronization.

B1.2.2 System registers

System registers provide support for execution control, status and general system configuration. The majority of the
System registers are not accessible at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-181
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
However, some System registers can be configured to allow access from software executing at EL0. Any access
from EL0 to a System register with the access right disabled causes the instruction to behave as UNDEFINED. The
registers that can be accessed from EL0 are:

Cache ID registers The CTR_EL0 and DCZID_EL0 registers provide implementation parameters for EL0
cache management support.

Debug registers A Debug Communications Channel is supported by the MDCCSR_EL0, DBGDTR_EL0,
DBGDTRRX_EL0 and DBGDTRTX_EL0 registers.

Performance Monitors registers

The Performance Monitors Extension provides counters and configuration registers.
Software executing at EL1 or a higher Exception level can configure some of these registers
to be accessible at EL0.

For more details, see Chapter D13 The Performance Monitors Extension.

Activity Monitors registers

The Activity Monitors Extension provides counters and configuration registers. Software
executing at EL1 or a higher Exception level can configure these registers to be accessible
at EL0.

For more details, see Chapter D15 The Activity Monitors Extension.

Thread ID registers Software can store thread specific information in TPIDR_EL0, TPIDR2_EL0, and
TPIDRRO_EL0.

Timer registers The following operations are performed by these registers:

• Read access to the system counter clock frequency using CNTFRQ_EL0.

• Physical and virtual timer count registers, CNTPCT_EL0 and CNTVCT_EL0.

• Physical up-count comparison, down-count value and timer control registers,
CNTP_CVAL_EL0, CNTP_TVAL_EL0, and CNTP_CTL_EL0.

• Virtual up-count comparison, down-count value and timer control registers,
CNTV_CVAL_EL0, CNTV_TVAL_EL0, and CNTV_CTL_EL0.

B1.2.3 Pseudocode description of registers in AArch64 state

The AArch64 pseudocode uses getter and setter accessor functions to read and write register files that are visible at
EL0:

• The setter or assignment accessor, for example “X[num. width] = result”, is used for register writes.

• The getter or non-assignment accessor, “operand = X[num, width]“, is used for register reads.

• The num parameter specifies the register number to be accessed within the named register file, and width
specifies the bit width of the register access.

• For the general-purpose register X[] accessor, register number 31 accesses the zero register, ZR, which reads
as zero and ignores writes.

• For other register accessors, such as the SIMD&FP V[] accessors, there is no special interpretation of the
register number.

Other special AArch64 accessors include:

• The SP[] accessors have no parameters and are used to read or write the currently selected 64-bit stack pointer
at the current Exception level.

• The PC64[] accessor has no parameter list and is used to read the 64-bit Program Counter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-182
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state
• The Vpart[] accessors are used to perform a partial read or write of an Advanced SIMD vector register, using
an additional part parameter to select which half of the vector register to access.

• The Z[], V[], and Vpart[] accessors read and write the same underlying vector register file.

Other register accessors are defined as required by other architectural features. See Chapter J1 Armv8 Pseudocode,
sections aarch64/functions/registers/.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-183
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Process state, PSTATE
B1.3 Process state, PSTATE

Process state, or PSTATE, is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

For the system level view of PSTATE, see Process state, PSTATE in Chapter D1.

The following PSTATE information is accessible at EL0:

The Condition flags

Flag-setting instructions set these. They are:

N Negative Condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:

• 1 if the result is negative.

• 0 if the result is positive or zero.

Z Zero Condition flag. Set to:

• 1 if the result of the instruction is zero.

• 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C Carry Condition flag. Set to:

• 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.

• 0 otherwise.

V Overflow Condition flag. Set to:

• 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.

• 0 otherwise.

Conditional instructions test the N, Z, C and V Condition flags, combining them with the Condition
code for the instruction to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Condition flags and related instructions.

The exception masking bits

D Debug exception mask bit. When EL0 is enabled to modify the mask bits, this bit is
visible and can be modified. However, this bit is architecturally ignored at EL0.

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.

For each bit, the values are:

0 Exception not masked.

1 Exception masked.

Access at EL0 using AArch64 state depends on SCTLR_EL1.UMA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-184
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Process state, PSTATE
SME enable controls

SM Streaming SVE mode enable:

0 Streaming SVE mode not enabled.

1 Streaming SVE mode enabled.

See Streaming SVE mode.

ZA ZA storage and ZT0 register enable:

0 ZA storage and the ZT0 register are not enabled.

1 ZA storage and the ZT0 register are enabled.

See About PSTATE.ZA, ZA storage and SME2 ZT0 register.

B1.3.1 Accessing PSTATE fields at EL0

At EL0 using AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly
read using the MRS instruction and directly written using the MSR (register) instructions. Table B1-1 shows the
Special-purpose registers that access the PSTATE fields that hold AArch64 state when the PE is at EL0 using
AArch64. All other PSTATE fields do not have direct read and write access at EL0.

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F, SM, ZA, SSBS,
DIT, TCO}. Table B1-2 shows the MSR (immediate) operands that can directly write to PSTATE.{D, A, I, F, SM,
ZA, SSBS, DIT, TCO} when the PE is at EL0 using AArch64 state.

Table B1-1 Accessing PSTATE fields at EL0 using MRS and MSR (register)

Special-purpose register PSTATE fields

NZCV N, Z, C, V

DAIF D, A, I, F

SVCR SM, ZA

SSBS SSBS

DIT DIT

TCO TCO

Table B1-2 Accessing PSTATE.{D, A, I, F, SM, ZA, SSBS, DIT, TCO} at EL0 using MSR (immediate)

Operand PSTATE fields Notes

DAIFSet D, A, I, F Directly sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClr D, A, I, F Directly clears any of the PSTATE.{D, A, I, F} bits to 0

SVCRSM SM Directly sets the PSTATE.SM bit to CRm<0>.

SVCRZA ZA Directly sets the PSTATE.ZA bit to CRm<0>.

SVCRSMZA SM, ZA Directly sets the PSTATE.{SM, ZA} bits to CRm<0>.

SSBS SSBS Directly sets the PSTATE.SSBS bit to CRm<0>

DIT DIT Directly sets the PSTATE.DIT bit to CRm<0>

TCO TCO Directly sets the PSTATE.TCO bit to CRm<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-185
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Process state, PSTATE
Access to the PSTATE.{D, A, I, F} fields at EL0 using AArch64 state depends on SCTLR_EL1.UMA.

Software can more efficiently change PSTATE.{SM, ZA} by using SMSTART and SMSTOP instructions.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects, are
guaranteed:

• Not to be visible to earlier instructions in the execution stream.

• To be visible to later instructions in the execution stream.

B1.3.2 SVE use of PSTATE N, Z, C, and V Condition flags

IWYXLS This section describes the SVE-specific use of PSTATE.

IYZYCQ PSTATE N, Z, C and V condition flags can be updated by any of the following:

• An SVE instruction that generates a predicate result and updates the PSTATE N, Z, C and V Condition flags
based on the value of the result.

• An SVE instruction that updates the PSTATE N, Z, C and V Condition flags based on the value in its predicate
source register or FFR:

— PTEST.

— RDFFRS (predicated).

• An SVE instruction that updates the PSTATE N, Z, C and V Condition flags based on the values in its
general-purpose source registers:

— CTERMEQ.

— CTERMNE.

RTPXTF When setting the PSTATE N, Z, C and V Condition flags for SVE predicated flag-setting instructions, the
instruction's Governing predicate determines which predicate elements are considered Active.

RQJBRW When setting the PSTATE N, Z, C and V Condition flags for SVE unpredicated flag-setting instructions, all
predicate elements are considered Active.

RZMRXC Unless otherwise specified in an instruction description, the SVE flag-setting instructions update the PSTATE N, Z,
C and V Condition flags as follows:

Flag SVE Name SVE interpretation

N First Set to 1 if the First active element was TRUE, otherwise cleared to 0.

Z None Cleared to 0 if any Active element was TRUE, otherwise set to 1.

C Not last Cleared to 0 if the Last active element was TRUE, otherwise set to 1.

V - Cleared to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-186
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)

This section contains:

• Maximum implemented SVE vector lengths.

• Configurable SVE vector lengths.

• Treatment of SVE Z registers.

• SVE writes of scalar values to registers.

• Vector predication.

• Streaming SVE mode.

• About PSTATE.ZA.

• ZA storage.

• ZA array vector access.

• ZA tile access.

• ZA storage layout.

• SME2 Multi-vector operands.

• SME2 ZT0 register.

B1.4.1 Maximum implemented SVE vector lengths

RQSVCQ There are the following IMPLEMENTATION DEFINED vector lengths for the SVE scalable vector registers, Z0-Z31:

• A Maximum implemented Streaming SVE vector length.

• A Maximum implemented Non-streaming SVE vector length.

For each IMPLEMENTATION DEFINED vector length, all the following apply:

• The smallest architecturally defined maximum length is 128 bits.

• The largest architecturally defined maximum length is 2048 bits.

• The length is a power of two.

IGZRPL There is no requirement for the Maximum implemented Streaming SVE vector length to be greater than or equal to
the Maximum Non-streaming implemented SVE vector length.

ISGCVT Where this architecture specification uses the term Maximum implemented SVE vector length, it means:

• The Maximum implemented Streaming SVE vector length when the PE is in Streaming SVE mode.

• The Maximum implemented Non-streaming SVE vector length otherwise.

See also:

• Z0-Z31.

• Configurable SVE vector lengths.

B1.4.2 Configurable SVE vector lengths

RKFTHG There are the following configurable vector lengths for the SVE scalable vector registers, Z0-Z31:

• Effective Streaming SVE vector length (SVL).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-187
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
• Effective Non-streaming SVE vector length (NSVL).

IQQRNR SMCR_ELx.LEN requests an SVL. The architecturally defined SVL set is all powers of two from 128 to 2048 bits
inclusive. Implementing any subset is permitted, up to and including the Maximum implemented Streaming SVE
vector length. The subset is not required to be contiguous and is not required to start at 128 bits. Implementing a
single SVL is permitted.

INWYBP ZCR_ELx.LEN requests an NSVL. The architecturally defined NSVL set is all powers of two from 128 to 2048 bits
inclusive. An implementation is required to implement all architecturally defined values up to and including the
Maximum implemented Non-streaming SVE vector length.

IWDKGR An implementation is permitted to implement an SVL set that does not overlap with the implemented NSVL set.

RGWVHP When SMCR_ELx.LEN requests an SVL, the PE selects an SVL according to the steps described in the
SMCR_ELx.LEN field descriptions.

RMMCTJ When ZCR_ELx.LEN requests an NSVL, the PE selects an NSVL according to the steps described in the
ZCR_ELx.LEN field descriptions.

IVCQBB Where this architecture specification uses the term Effective SVE vector length (VL), it means:

• SVL when the PE is in Streaming SVE mode.

• NSVL otherwise.

RPXZTM When executing at an Exception level where VL is less than the Maximum implemented SVE vector length, bits VL
and higher in the SVE Z registers, bits VL ÷ 8 in the SVE predicate registers and FFR, are inaccessible.

RYRPDH When VL is increased, it is CONSTRAINED UNPREDICTABLE whether the previously inaccessible bits that become
accessible have:

• A value of zero.

• The value they had before executing at the more constrained length.

IHGYPV VL might increase because of an explicit action such as writing to SMCR_ELx.LEN or ZCR_ELx.LEN, or an
implicit action such as taking an exception to an Exception level with a less constrained VL.

IPDLWX When changing VL, the contents in the bits that consistently remain accessible remain the same.

RKXKNK For SVE instructions, if any of the following are true and floating-point instructions are not trapped at ELx, then
VL at ELx is 128 bits.

If SVE instructions are disabled or trapped at ELx, or not available because that Exception level is in AArch32 state,
then VL is 128 bits.

RDMBPN When taking an exception to a target Exception level, if SVE, SME, and floating-point instructions are disabled,
trapped, or not available at all Exception levels below the target Exception level, for the current Security state, the
SVE register state at the target Exception level is preserved.

IFMWZZ When VL is increased, steps must be taken to ensure the newly accessible area does not expose values unrelated to
another body of software in a different trust or security scope. This might be achieved by, for example, ensuring that
the previously inaccessible bits in the SVE Z, P, and FFR registers, and the SME ZA storage and ZT0 register, are
reset to zero before they are next used.

IBRMMV System software provides a maximum VL to lower-privileged software, which might further constrain the VL.
However, system software must initialize and context switch values consistent with the maximum VL it provides
and should not make assumptions about any smaller length that lower-privileged software is using. For example, if
a hypervisor exposes a VL of 512 to a VM, that VM might choose to constrain VL to 256. The hypervisor must still
save and restore 512-bit vectors to prevent leakage of values between VMs, because the VM might later raise its
SVL to 512 and must not be able to observe values created by other software in the newly visible upper portion of
the registers.

See also:

• Maximum implemented SVE vector lengths.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-188
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
• Streaming SVE mode.

B1.4.3 Treatment of SVE Z registers

IGKWYJ Unless stated otherwise in an instruction description, SVE instructions treat an SVE scalable vector register as
containing one or more vector elements of equal size.

ICDKJQ SVE instructions can process vector elements in parallel, unless an instruction description states otherwise.

RCJZLM If the order of operations performed by an SVE instruction on vector or predicate elements has observable
significance, elements are processed in increasing element number order.

RKHDBN When an SVE instruction treats an SVE scalable vector register as containing multiple vector elements, the element
size is encoded in the opcode of the instruction. The element size is 8, 16, 32, 64, or 128 bits.

RWKYLB When the Effective SVE vector length (VL) at the current Exception level is greater than 128 bits, any AArch64
instruction that writes to an 128-bit SIMD&FP register, V0-V31, sets bits [VL-1:128] to zero.

B1.4.4 SVE writes of scalar values to registers

IZDLGD Certain SVE instructions generate a scalar result that is written to an AArch64 general-purpose register or to
element[0] of a vector register.

RHNVTM When an SVE instruction generates a scalar result of width N bits, the instruction places the result in bits [N-1:0]
of the destination register.

RQCLSH When an SVE instruction generates a scalar result of width N bits, and N is less than the maximum accessible
destination register width RW, the instruction sets bits [RW-1:N] of the destination register to zero.

B1.4.5 Vector predication

RJFJZX There are the following vector predication concepts:

• Predicate-as-mask, if FEAT_SVE or FEAT_SME is implemented.

• Predicate-as-counter, if FEAT_SME2 or FEAT_SVE2p1 is implemented.

IHWRFM The assembler syntax for a predicate register is of the form:

• Pg for predicate-as-mask.

• PNg for predicate-as-counter.

Pg and PNg refer to the same SVE predicate register.

The remainder of this section contains:

• Predicate-as-mask.

• Predicate-as-counter.

• SVE predicated instructions.

B1.4.5.1 Predicate-as-mask

IJHCTW Most SVE instructions interpret SVE predicate registers as a predicate-as-mask encoding.

RXMPLM A predicate-as-mask encoding is divided into 1-bit, 2-bit, 4-bit, or 8-bit predicate elements. Each predicate element
corresponds to a vector element in an SVE scalable vector register.

RXVRKX Unless stated otherwise in an instruction description, SVE instructions treat an SVE predicate register as containing
one or more predicate elements of equal size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-189
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
RXCZQR When an SVE instruction treats an SVE predicate register as containing multiple predicate elements, the element
size is encoded in the opcode of the instruction.

RHRPMD If the lowest-numbered bit of a predicate element is 0, the value of the predicate element is FALSE.

RDNMFH If the lowest-numbered bit of a predicate element is 1, the value of the predicate element is TRUE.

RLTGQC For SVE instructions that generate predicate-as-mask encodings, if all the following are true, all bits except the
lowest-numbered bit of each destination predicate element are set to zero:

• The instructions are not used to move and permute predicate elements.

• The instructions are not predicate logical operations.

RHBMLS For SVE instructions that consume predicate-as-mask encodings, if all the following are true, all bits except the
lowest-numbered bit of each source predicate element are ignored on reads:

• The instructions are not used to move and permute predicate elements.

• The instructions are not predicate logical operations.

B1.4.5.2 Predicate-as-counter

RDSFKR SME2 and SVE2.1 multi-vector instructions interpret bits[15:0] of SVE predicate registers as a
predicate-as-counter encoding:

Element size, bits[LSZ:0]

For values shown in Table B1-3 other than 0b0000:

• Number of trailing zeroes = log2(element size in bytes).

For example, 2 trailing zeroes = log2(4 bytes). This means word-size elements.

Element count, bits[14:(LSZ+1)]

An unsigned integer value:

• The number of consecutive elements, starting from element 0, that are TRUE or FALSE
according to bit[15].

Invert, bit[15]

0b0 [14:(LSZ+1)] is holding the number of TRUE elements. All other elements are FALSE.

0b1 [14:(LSZ+1)] is holding the number of FALSE elements. All other elements are TRUE.

Table B1-3 Predicate-as-counter encoding

Bit[15]

Invert

Bits[14:(LSZ+1)]a

Element countb

a. LSZ = the number of trailing zeroes in the element size field.

b. The 4 most significant bits are reserved.

Bits[LSZ:0]

Element size
Meaning

0bX 0bXXXXXXXXXXXXXX 0b1 Byte-size elements

0bX 0bXXXXXXXXXXXXX 0b10 Halfword-size elements

0bX 0bXXXXXXXXXXXX 0b100 Word-size elements

0bX 0bXXXXXXXXXXX 0b1000 Doubleword-size elements

0bX 0bXXXXXXXXXXX 0b0000 Any-size elements. All FALSE predicate.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-190
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
IZPLKP The maximum number of elements that the predicate-as-counter encoding can count is four vectors of byte
elements, where the length of each vector is the largest architecturally defined length, 2048 bits:

DBJMYH The canonical all-FALSE predicate-as-counter encoding has an element count of zero, with the invert bit set to 0
and an element size field set to 0b0000.

DJGSYR The canonical all-TRUE predicate-as-counter encoding has an element count of zero, with the invert bit set to 1 and
a nonzero element size field determined by the generating instruction.

RYCRMW If the Effective SVE vector length (VL) is greater than 128 bits, then an instruction generating a predicate-as-counter
encoding sets bits 16 and higher to zero.

RSGVTC If VL is greater than 128 bits, then an instruction consuming a predicate-as-counter encoding ignores bits 16 and
higher.

RYSTVC An instruction consuming a predicate-as-counter encoding uses the least significant bits of the element count field
required to count the number of bytes in VL times four. The instruction ignores the more significant bits in the
element count field. Table B1-5 gives an example for VL = 512 bits and byte-size elements:

See also:

• P0-P15.

• Configurable SVE vector lengths.

B1.4.5.3 SVE predicated instructions

IVKHDR If an instruction supports predication, it is known as a predicated instruction.

IFNFRN The predicate operand that is used to determine the Active elements of a predicated instruction is known as the
Governing predicate.

ISVYXB An instruction that does not have a Governing predicate operand and implicitly treats all other vector and predicate
elements as Active is known as an unpredicated instruction.

IKNKBN Many predicated instructions can only use P0-P7 as the Governing predicate.

Table B1-4

Bit[15]

Invert

Bits[14:(LSZ+1)]

Element count

Bits[LSZ:0]

Element size
Total number
of bits

1 bit 4 reserved bits. 10 count bits.

10 count bits can count 1024 elements, which is the number of
byte elements in four 2048-bit long vectors.

1 bit 16 bits

Table B1-5

Bit[15]
Invert

Bits[14:(LSZ+1)]

Element count

Bits[LSZ:0]

Element size

1 bit 4 reserved bits, bits[14:11]. The instruction ignores these.

2 bits, bits[10:9]. The instruction ignores these.

8 count bits, bits[8:1]. The instruction uses these.

8 count bits can count 256 elements, which is the number of byte elements in four
512-bit long vectors.

1 bit
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-191
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
RLZVFJ When a Governing predicate element is TRUE, the corresponding element in other vector or predicate operands is
an Active element.

RCNFLG When a Governing predicate element is FALSE, the corresponding element in other vector or predicate operands is
an Inactive element.

RCBYJH Predicated instructions process Active elements.

RLDXSF Predicated instructions do not process Inactive elements.

RGJLPZ Unpredicated instructions process all elements in their vector or predicate operands.

RWLQBD When a predicated instruction writes to a vector destination register or a predicate destination register, one of the
following happens:

• The Inactive elements in the destination register are set to zero.

• The Inactive elements in the destination register retain their previous value.

IQBHRN Zeroing predication is performed when the Inactive elements in the destination register are set to zero.

IYPYRF Merging predication is performed when Inactive elements in the destination register retain their previous value.

B1.4.6 Streaming SVE mode

RXDPXS A PE with FEAT_SME has Streaming SVE mode.

IZTTNW In Streaming SVE mode:

• SME and SME2 instructions access Streaming SVE register state, which comprises:

— SVE scalable vector registers, Z0 to Z31.

— SVE predicate registers, P0 to P15.

— SVE First Fault register, FFR, if FEAT_SME_FA64 is implemented and enabled at the current
Exception level.

• PSTATE.ZA can be toggled, to enable and disable the ZA storage and ZT0 register as required.

RRSWFQ When the Effective value of PSTATE.SM is changed by any method from 0 to 1, an entry to Streaming SVE mode
is performed, and all implemented bits of Streaming SVE register state are set to zero.

RKFRQZ When the Effective value of PSTATE.SM is changed by any method from 1 to 0, an exit from Streaming SVE mode
is performed, and in the newly-entered mode, all implemented bits of the SVE scalable vector registers, SVE
predicate registers, and FFR, are set to zero.

INHNFF A legal instruction is an instruction that the architecture permits execution of when PSTATE.{SM, ZA} are in the
required state, unless its execution at the current Exception level is prevented by a configurable trap or enable.

IHZFSG An illegal instruction is an instruction whose attempted execution by a PE when PSTATE.SM and PSTATE.ZA are
not in the required state causes an SME illegal instruction exception to be taken, unless its execution at the current
Exception level is prevented by a higher-priority configurable trap or enable.

RVJZBC In Streaming SVE mode:

• Streaming SVE register state is valid, and SME and SME2 instructions that access it are legal.

• When PSTATE.ZA is 1, SME and SME2 instructions that access ZA storage or the ZT0 register are legal.

• SME and SME2 instructions that do not access ZA storage or the ZT0 register are legal.

• Legal instructions that access the SVE scalar vector registers or their correspondingly numbered SIMD&FP
registers access Streaming SVE register state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-192
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
• The following are illegal if FEAT_SME_FA64 is not implemented or not enabled at the current Exception
level:

— Some SVE and SVE2 instructions. The individual instruction descriptions in Chapter C8 SVE
Instruction Descriptions describe which are illegal.

— All those instructions that call the CheckFPAdvSIMDEnabled64() function.

RXBBFD When the PE is not in Streaming SVE mode:

• Streaming SVE register state is not valid, and SME and SME2 instructions that access it are illegal.

• When PSTATE.ZA is 1:

— SME LDR (array vector), STR (array vector), and ZERO (tiles) instructions that access ZA storage are
legal. All other instructions that access ZA storage are illegal.

— SME2 LDR (table), STR (table), and ZERO (table) instructions that access the ZT0 register are legal. All
other instructions that access the ZT0 register are illegal.

ITDSPN In Streaming SVE mode, the following instructions might be significantly delayed if FEAT_SME_FA64 is not
implemented or not enabled at the current Exception level:

• Instructions which are dependent on results generated from vector or SIMD&FP register sources written to
a general-purpose destination register, a predicate destination register, or the NZCV condition flags.

The Operational information sections of instruction descriptions in Chapter C7 A64 Advanced SIMD and
Floating-point Instruction Descriptions and Chapter C8 SVE Instruction Descriptions describe which instructions
are affected.

IMHTLZ When the Effective value of PSTATE.SM is changed by any method from 0 to 1 or from 1 to 0, the FPSR is set to
the value 0x0000_0000_0800_009f, setting all the cumulative status bits to 1.

IYTZVD Statements which refer to the value of the SVE vector registers, Z0-Z31, implicitly also refer to the lower bits of
those registers accessed by the SIMD&FP register names V0-V31, Q0-Q31, D0-D31, S0-S31, H0-H31, and
B0-B31.

See also:

• Registers in AArch64 Execution state.

• About PSTATE.ZA.

• Accessing PSTATE fields at EL0.

• Floating-point behaviors in Streaming SVE mode.

B1.4.7 About PSTATE.ZA

IHVKTL PSTATE.ZA enables ZA storage and, if FEAT_SME2 is implemented, the ZT0 register.

RJHMYL When PSTATE.ZA is 0, the contents of ZA storage and the ZT0 register are not valid, and SME and SME2
instructions that access them are illegal.

RSFWMY When PSTATE.ZA is 1, the contents of ZA storage and the ZT0 register are valid and are retained by hardware
irrespective of whether the PE is in Streaming SVE mode, and:

• SME LDR (array vector), STR (array vector), and ZERO (tiles) instructions that access ZA storage are legal.

• SME2 LDR (table), STR (table), and ZERO (table) instructions that access the ZT0 register are legal.

• When the PE is in Streaming SVE mode, all other SME and SME2 instructions that access ZA storage or the
ZT0 register are legal.

RYRZRM When PSTATE.ZA is changed by any method from 0 to 1, all implemented bits of ZA storage and the ZT0 register
are set to zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-193
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
ILRDZR When PSTATE.ZA is changed from 1 to 0, there is no architecturally defined effect on ZA storage and the ZT0
register, because the contents of ZA storage and the ZT0 register cannot be observed when PSTATE.ZA is 0.

IQWCJS When PSTATE.ZA is changed from 0 to 1, or from 1 to 0, there is no effect on the SVE scalable vector registers,
SVE predicate registers, and FPSR if PSTATE.SM is not changed.

See also:

• Streaming SVE mode.

• ZA storage.

• SME2 ZT0 register.

B1.4.8 ZA storage

RFFWLL A PE with FEAT_SME has ZA storage.

DJBVYJ There are the following terms for the number of elements in a vector of SVL bits:

SVLB The number of byte elements, SVL ÷ 8.

SVLH The number of halfword elements, SVL ÷ 16.

SVLS The number of word elements, SVL ÷ 32.

SVLD The number of doubleword elements, SVL ÷ 64.

SVLQ The number of quadword elements, SVL ÷ 128.

RSSXPL ZA storage is architectural register state consisting of a two-dimensional ZA array of [SVLB × SVLB] bytes.

See also:

• About PSTATE.ZA.

• Accessing PSTATE fields at EL0.

• Streaming SVE mode.

B1.4.9 ZA array vector access

RFFWNB The ZA array can be accessed as vectors of SVL bits.

DPPPCM An untyped vector access to the ZA array is represented by ZA[N], where N is in the range 0 to SVLB-1 inclusive.

DDTVZN In SME LDR (array vector) and STR (array vector) instructions, an untyped ZA array vector is selected by the sum of
a 32-bit general-purpose vector select register Wv and an immediate vector select offset offs, modulo SVLB.

DYXHFR The preferred disassembly for an untyped ZA array vector is ZA[Wv, offs], where offs is an immediate in the range
0-15 inclusive.

DCRJPC The ZA array can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

DWMVZT An elementwise vector access to the ZA array is indicated by appending a vector index "[N]" to the ZA array name
and element size qualifier, where N is in the range 0 to SVLB-1 inclusive, as follows:

• An 8-bit element vector access to the ZA array is represented by ZA.B[N].

• A 16-bit element vector access to the ZA array is represented by ZA.H[N].

• A 32-bit element vector access to the ZA array is represented by ZA.S[N].

• A 64-bit element vector access to the ZA array is represented by ZA.D[N].

• A 128-bit element vector access to the ZA array is represented by ZA.Q[N].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-194
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
B1.4.10 ZA tile access

DVSVMX A ZA tile is a square, two-dimensional sub-array of elements within the ZA array.

IWLRTV Depending on the element size with which it is accessed, the ZA array is treated as containing one or more ZA tiles,
as described in the following sections.

DDWMYT A ZA tile is indicated by appending the tile number to the ZA name.

DZGBHT A ZA tile slice is a one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.

RPZNWB A vector access to a tile reads or writes a ZA tile slice.

INFXHH A ZA tile can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

IYZDBS A ZA tile can be accessed as horizontal slices of SVL bits.

RGPVSZ A ZA tile is accessed as horizontal slices if the V field in the accessing instruction opcode is 0.

DTRHTX An access to horizontal tile slices is indicated by an "H" suffix on the ZA tile name.

IHBYTT A ZA tile can be accessed as vertical slices of SVL bits.

RGPPPK A ZA tile is accessed as vertical slices if the V field in the accessing instruction opcode is 1.

DWSBVG An access to vertical tile slices is indicated by a suffix on the ZA tile name.

RTWWTL In SME instructions, the tile slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs, modulo the number of slices in the named tile.

B1.4.10.1 Accessing an 8-bit element ZA tile

DHMSNH An 8-bit element ZA tile is indicated by a ".B" qualifier following the tile name.

DNLCNH There is a single tile named ZA0.B which consists of [SVLB × SVLB] 8-bit elements and occupies all of the ZA
storage.

RNBSMJ An access to a horizontal or vertical 8-bit element ZA tile slice reads or writes SVLB 8-bit elements.

DNMHLM An access to a horizontal or vertical 8-bit element ZA tile slice is indicated by appending a slice index "[N]" to the
tile name, direction suffix, and qualifier. For example, where N is in the range 0 to SVLB-1 inclusive:

• ZA0H.B[N] indicates a horizontal 8-bit element ZA tile slice selection.

• ZA0V.B[N] indicates a vertical 8-bit element ZA tile slice selection.

IJVTNY Horizontal and vertical ZA0.B slice accesses are illustrated in the following diagram for SVL of 256 bits:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-195
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-4 Horizontal and vertical ZA0.B slice for SVL of 256

RDCSDX An access to the horizontal slice ZA0H.B[N] reads or writes the SVLB bytes in ZA array vector ZA.B[N].

RFHYSQ An access to the vertical slice ZA0V.B[N] reads or writes the 8-bit element [N] within each horizontal slice of
ZA0.B.

DCDDVV The preferred disassembly is:

• ZA0H.B[Ws, offs], for a horizontal 8-bit element ZA tile slice selection.

• ZA0V.B[Ws, offs], for a vertical 8-bit element ZA tile slice selection.

Where offs is an immediate in the range 0-15 inclusive.

B1.4.10.2 Accessing a 16-bit element ZA tile

DLNXPD A 16-bit element ZA tile is indicated by a ".H" qualifier following the tile name.

DGWZDM There are two tiles named ZA0.H and ZA1.H. Each tile consists of [SVLH × SVLH] 16-bit elements, and occupies
half of the ZA storage.

RNMGXG An access to a horizontal or vertical 16-bit element ZA tile slice reads or writes SVLH 16-bit elements.

ZA0H.B[15]

ZA0H.B[31]

ZA
0V

.B
[3

1]

ZA
0V

.B
[0

]

ZA
0V

.B
[1

6]

ZA0H.B[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-196
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
DDHKMC An access to a horizontal or vertical 16-bit element ZA tile slice is indicated by appending a slice index "[N]" to the
tile name, direction suffix, and qualifier. For example, where t is 0 or 1, and N is in the range 0 to SVLH-1 inclusive:

• ZAtH.H[N] indicates a horizontal 16-bit element ZA tile slice selection.

• ZAtV.H[N] indicates a vertical 16-bit element ZA tile slice selection.

IZSWJW Horizontal and vertical ZAt.H slice accesses, where t is 0 or 1, are illustrated in the following diagram for SVL of
256 bits:

Figure B1-5 Horizontal and vertical ZAt.H slice for SVL of 256

RBTLQC An access to the horizontal slice ZAtH.H[N] reads or writes the SVLH 16-bit elements in ZA array vector ZA.H[t +
2 * N].

RNGJBJ An access to the vertical slice ZAtV.H[N] reads or writes the 16-bit element [N] within each horizontal slice of
ZAt.H.

DRHQJT The preferred disassembly is as follows:

• ZAtH.H[Ws, offs], for a horizontal 16-bit element ZA tile slice selection.

• ZAtV.H[Ws, offs], for a vertical 16-bit element ZA tile slice selection.

Where t is 0 or 1, and offs is an immediate in the range 0-7 inclusive.

B1.4.10.3 Accessing a 32-bit element ZA tile

DHBKZV A 32-bit element ZA tile is indicated by a ".S" qualifier following the tile name.

DRDRRT There are four tiles named ZA0.S, ZA1.S, ZA2.S, and ZA3.S. Each tile consists of [SVLS × SVLS] 32-bit elements,
and occupies a quarter of the ZA storage.

RXFPPL An access to a horizontal or vertical 32-bit element ZA tile slice reads or writes SVLS 32-bit elements.

ZAt H.H[15]

ZA
tV

.H
[1

5]

ZA
tV

.H
[8

]

ZA
tV

.H
[0

]

ZAt H.H[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-197
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
DJFPSJ An access to a horizontal or vertical 32-bit element ZA tile slice is indicated by appending a slice index "[N]" to the
tile name, direction suffix, and qualifier. For example, where t is 0, 1, 2, or 3, and N is in the range 0 to SVLS-1
inclusive:

• ZAtH.S[N] indicates a horizontal 32-bit element ZA tile slice selection.

• ZAtV.S[N] indicates a vertical 32-bit element ZA tile slice selection.

ISZXZR Horizontal and vertical ZAt.S slice accesses, where t is 0, 1, 2, or 3, are illustrated in the following diagram for SVL
of 256 bits:

Figure B1-6 Horizontal and vertical ZAt.S slice for SVL of 256

RJBJZY An access to the horizontal slice ZAtH.S[N] reads or writes the SVLS 32-bit elements in ZA array vector ZA.S[t +
4 * N].

RGBYSJ An access to the vertical slice ZAtV.S[N] reads or writes the 32-bit element [N] within each horizontal slice of
ZAt.S.

DLQLJH The preferred disassembly is:

• ZAtH.S[Ws, offs], for a horizontal 32-bit element ZA tile slice selection.

• ZAtV.S[Ws, offs], for a vertical 32-bit element ZA tile slice selection.

Where t is 0, 1, 2, or 3, and offs is 0, 1, 2, or 3.

B1.4.10.4 Accessing a 64-bit element ZA tile

DTWMMM A 64-bit element ZA tile is indicated by a ".D" qualifier following the tile name.

DTHPSD There are eight tiles named ZA0.D, ZA1.D, ZA2.D, ZA3.D, ZA4.D, ZA5.D, ZA6.D, and ZA7.D. Each tile consists
of [SVLD × SVLD] 64-bit elements, and occupies an eighth of the ZA storage.

RZXYBQ An access to a horizontal or vertical 64-bit element ZA tile slice reads or writes SVLD 64-bit elements.

DDCXSX An access to a horizontal or vertical 64-bit element ZA tile slice is indicated by appending a slice index "[N]" to the
tile name, direction suffix, and qualifier. For example, where t is in the range 0-7 inclusive, and N is in the range 0
to SVLD-1 inclusive:

• ZAtH.D[N] indicates a horizontal 64-bit element ZA tile slice selection.

• ZAtV.D[N] indicates a vertical 64-bit element ZA tile slice selection.

ILGJZC Horizontal and vertical ZAt.D slice accesses, where t is in the range 0-7 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

ZA
tV

.S
[7

]

ZA
tV

.S
[0

]

ZAt H.S[0]

ZAt H.S[7]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-198
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-7 Horizontal and vertical ZAt.D slice for SVL of 256

RCVVJK An access to the horizontal slice ZAtH.D[N] reads or writes the SVLD 64-bit elements in ZA array vector ZA.D[t +
8 * N].

RJYQKK An access to the vertical slice ZAtV.D[N] reads or writes the 64-bit element [N] within each horizontal slice of
ZAt.D.

DMQQPX The preferred disassembly is:

• ZAtH.D[Ws, offs], for a horizontal 64-bit element ZA tile slice selection.

• ZAtV.D[Ws, offs], for a vertical 64-bit element ZA tile slice selection.

Where t is in the range 0-7 inclusive, and offs is 0 or 1.

B1.4.10.5 Accessing a 128-bit element ZA tile

DGZDSH A 128-bit element ZA tile is indicated by a ".Q" qualifier following the tile name.

DRPMJL There are 16 tiles named ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q, ZA9.Q,
ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, and ZA15.Q. Each tile consists of [SVLQ × SVLQ] 128-bit elements,
and occupies 1/16 of the ZA storage.

RQGHPF An access to a horizontal or vertical 128-bit element ZA tile slice reads or writes SVLQ 128-bit elements.

DRLQKW An access to a horizontal or vertical 128-bit element ZA tile slice is indicated by appending a slice index "[N]" to
the tile name, direction suffix, and qualifier. For example, where t is in the range 0-15 inclusive, and N is in the range
0 to SVLQ-1 inclusive:

• ZAtH.Q[N] indicates a horizontal 128-bit element ZA tile slice selection.

• ZAtV.Q[N] indicates a vertical 128-bit element ZA tile slice selection.

IYQPWS Horizontal and vertical ZAt.Q slice accesses, where t is in the range 0-15 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

ZAt H.D[0]

ZAt H.D[3]

ZA
tV

.D
[3

]

ZA
tV

.D
[0

]

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-199
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)

Z

V

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Figure B1-8 Horizontal and vertical ZAt.Q slice for SVL of 256

RPJTQJ An access to the horizontal slice ZAtH.Q[N] reads or writes the SVLQ 128-bit elements in ZA array vector ZA.Q[t
+ 16 * N].

RTRJFZ An access to the vertical slice ZAtV.Q[N] reads or writes the 128-bit element [N] within each horizontal slice of
ZAt.Q.

DVCLJP The preferred disassembly is:

• ZAtH.Q[Ws, 0], for a horizontal 128-bit element ZA tile slice selection.

• ZAtV.Q[Ws, 0], for a vertical 128-bit element ZA tile slice selection.

Where t is in the range 0-15 inclusive, and the slice index offset is always zero.

B1.4.11 ZA storage layout

B1.4.11.1 ZA array vector and tile slice mappings

IPYTLW Each horizontal tile slice corresponds to one ZA array vector.

The horizontal slice mappings for all tile sizes are illustrated by this table:

ZAt H.Q[0]

ZA
tV

.Q
[1

]

A Array

ector

8-bit element Tile

Horizontal Slice

16-bit element Tile

Horizontal Slice

32-bit element Tile

Horizontal Slice

64-bit element Tile

Horizontal Slice

128-bit element Tile

Horizontal Slice

A[0] ZA0H.B[0] ZA0H.H[0] ZA0H.S[0] ZA0H.D[0] ZA0H.Q[0]

A[1] ZA0H.B[1] ZA1H.H[0] ZA1H.S[0] ZA1H.D[0] ZA1H.Q[0]

A[2] ZA0H.B[2] ZA0H.H[1] ZA2H.S[0] ZA2H.D[0] ZA2H.Q[0]

A[3] ZA0H.B[3] ZA1H.H[1] ZA3H.S[0] ZA3H.D[0] ZA3H.Q[0]

A[4] ZA0H.B[4] ZA0H.H[2] ZA0H.S[1] ZA4H.D[0] ZA4H.Q[0]

A[5] ZA0H.B[5] ZA1H.H[2] ZA1H.S[1] ZA5H.D[0] ZA5H.Q[0]

A[6] ZA0H.B[6] ZA0H.H[3] ZA2H.S[1] ZA6H.D[0] ZA6H.Q[0]

A[7] ZA0H.B[7] ZA1H.H[3] ZA3H.S[1] ZA7H.D[0] ZA7H.Q[0]

A[8] ZA0H.B[8] ZA0H.H[4] ZA0H.S[2] ZA0H.D[1] ZA8H.Q[0]

A[9] ZA0H.B[9] ZA1H.H[4] ZA1H.S[2] ZA1H.D[1] ZA9H.Q[0]

A[10] ZA0H.B[10] ZA0H.H[5] ZA2H.S[2] ZA2H.D[1] ZA10H.Q[0]

A[11] ZA0H.B[11] ZA1H.H[5] ZA3H.S[2] ZA3H.D[1] ZA11H.Q[0]

A[12] ZA0H.B[12] ZA0H.H[6] ZA0H.S[3] ZA4H.D[1] ZA12H.Q[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-200
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)

Z

Z

Z

if

Z

Z

Z

V

B1.4.11.2 Tile mappings

IYVYJP The smallest ZA tile granule is the 128-bit element tile. When the ZA storage is viewed as an array of tiles, the larger
64-bit, 32-bit, 16-bit, and 8-bit element tiles overlap multiple 128-bit element tiles as follows:

IWGZBT The architecture permits concurrent use of different element size tiles.

B1.4.11.3 Horizontal tile slice mappings

INJJXW The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit
element horizontal tile slice.

Each small numbered square represents 8 bits.

A[13] ZA0H.B[13] ZA1H.H[6] ZA1H.S[3] ZA5H.D[1] ZA13H.Q[0]

A[14] ZA0H.B[14] ZA0H.H[7] ZA2H.S[3] ZA6H.D[1] ZA14H.Q[0]

A[15] ZA0H.B[15] ZA1H.H[7] ZA3H.S[3] ZA7H.D[1] ZA15H.Q[0]

 applicable

A[16] to

A[SVLB-1]

… … … … …

A Array

ector

8-bit element Tile

Horizontal Slice

16-bit element Tile

Horizontal Slice

32-bit element Tile

Horizontal Slice

64-bit element Tile

Horizontal Slice

128-bit element Tile

Horizontal Slice

Tile Overlaps

ZA0.B ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q,

ZA8.Q, ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, ZA15.Q

ZA0.H ZA0.Q, ZA2.Q, ZA4.Q, ZA6.Q, ZA8.Q, ZA10.Q, ZA12.Q, ZA14.Q

ZA1.H ZA1.Q, ZA3.Q, ZA5.Q, ZA7.Q, ZA9.Q, ZA11.Q, ZA13.Q, ZA15.Q

ZA0.S ZA0.Q, ZA4.Q, ZA8.Q, ZA12.Q

ZA1.S ZA1.Q, ZA5.Q, ZA9.Q, ZA13.Q

ZA2.S ZA2.Q, ZA6.Q, ZA10.Q, ZA14.Q

ZA3.S ZA3.Q, ZA7.Q, ZA11.Q, ZA15.Q

ZA0.D ZA0.Q, ZA8.Q

ZA1.D ZA1.Q, ZA9.Q

ZA2.D ZA2.Q, ZA10.Q

ZA3.D ZA3.Q, ZA11.Q

ZA4.D ZA4.Q, ZA12.Q

ZA5.D ZA5.Q, ZA13.Q

ZA6.D ZA6.Q, ZA14.Q

ZA7.D ZA7.Q, ZA15.Q
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-201
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-9 ZA storage mapping for SVL of 256 bits: 32-bit and 64-bit element horizontal tile slice

An SME vector load, store, or move instruction that accesses horizontal tile slices ZA2H.S[1] or ZA4H.D[2] treats
the slices as vectors with the following layout:

Figure B1-10 ZA2H.S[1] and ZA4H.D[2] vector layout

B1.4.11.4 Vertical tile slice mappings

ITNCCV The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit
element vertical tile slice.

Each small numbered square represents 8 bits.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6] ZA2H.S[1]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]

10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]

0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA4H.D[2]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]

10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ZA2H.S[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ZA4H.D[2]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-202
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-11 ZA storage mapping for SVL of 256 bits: 32-bit and 64-bit element vertical tile slices

An SME vector load, store, or move instruction which accesses vertical tile slices ZA2V.S[1] or ZA4V.D[2] treats
the slices as vectors with the following layout:

Figure B1-12 ZA2V.S[1] and ZA4V.D[2] vector layout

B1.4.11.5 Mixed horizontal and vertical tile slice mappings

ICGXPJ The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for various element size tiles,
horizontal tile slices, and vertical tile slices.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]

10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]

0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]

10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA2V.S[1]Z A 4V.D[2]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 ZA2V.S[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 ZA4V.D[2]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-203
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Each small square represents 8 bits.

Figure B1-13 ZA storage mapping for SVL of 256 bits: various vertical and tile slices

IHVFMB It is possible to simultaneously use non-overlapping ZA array vectors within tiles of differing element sizes. For
example, tiles ZA1.H, ZA0.S, and ZA2.D have no ZA array vectors in common, as illustrated in the following
diagram for SVL of 256 bits:

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]

10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]

10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA2H.S[5]
ZA0V.B[22] ZA12H.Q[1]
ZA6H.D[0]
ZA0H.H[7]
ZA0H.B[20] ZA1V.H[1]

ZA3V.S[4]

ZA7V.D[3]
Z A 8V.Q[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-204
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-14 Using various non-overlapping ZA array vectors within tiles of different element sizes

IWDMCK It is possible to access overlapping ZA array vectors within tiles of differing element sizes. For example, tiles
ZA0.H, ZA2.S, and ZA6.D have common ZA array vectors.

B1.4.12 SME2 Multi-vector operands

RKLRKJ Multi-vector operands allow certain SME2 instructions to access as source and destination operands:

• A group of two or four SVE Z vector registers.

• A group of two or four ZA tile slices.

• A group of two, four, eight, or sixteen ZA array vectors.

B1.4.12.1 Z multi-vector operands

DPSTFY A multi-vector operand consisting of two or four SVE Z vector registers is called Z multi-vector operand.

RVCXBQ A Z multi-vector operand can occupy:

• Consecutively numbered Z registers.

• Z registers with strided numbering.

DNYNRZ A Z multi-vector operand occupying two consecutively numbered Z vectors consists of Zn+0 and Zn+1, where n+x
modulo 32 is a register number in the range 0 to 31 inclusive.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0] ZA0H.S[0]

1[0] 1[0] 1[0] 1[0] 0[1] [1] ZA1H.H[0]

2[0] 2[0] 2[0] 0[1] 0[2] [2] ZA2H.D[0]

3[0] 3[0] 3[0] 1[1] 0[3] [3] ZA1H.H[1]

4[0] 4[0] 0[1] 0[2] 0[4] [4] ZA0H.S[1]

5[0] 5[0] 1[1] 1[2] 0[5] [5] ZA1H.H[2]

6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7] ZA1H.H[3]

8[0] 0[1] 0[2] 0[4] 0[8] [8] ZA0H.S[2]

9[0] 1[1] 1[2] 1[4] 0[9] [9] ZA1H.H[4]

10[0] 2[1] 2[2] 0[5] 0[10] [10] ZA2H.D[1]

11[0] 3[1] 3[2] 1[5] 0[11] [11] ZA1H.H[5]

12[0] 4[1] 0[3] 0[6] 0[12] [12] ZA0H.S[3]

13[0] 5[1] 1[3] 1[6] 0[13] [13] ZA1H.H[6]

14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15] ZA1H.H[7]

0[1] 0[2] 0[4] 0[8] 0[16] [16] ZA0H.S[4]

1[1] 1[2] 1[4] 1[8] 0[17] [17] ZA1H.H[8]

2[1] 2[2] 2[4] 0[9] 0[18] [18] ZA2H.D[2]

3[1] 3[2] 3[4] 1[9] 0[19] [19] ZA1H.H[9]

4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA0H.S[5]

5[1] 5[2] 1[5] 1[10] 0[21] [21] ZA1H.H[10]

6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23] ZA1H.H[11]

8[1] 0[3] 0[6] 0[12] 0[24] [24] ZA0H.S[6]

9[1] 1[3] 1[6] 1[12] 0[25] [25] ZA1H.H[12]

10[1] 2[3] 2[6] 0[13] 0[26] [26] ZA2H.D[3]

11[1] 3[3] 3[6] 1[13] 0[27] [27] ZA1H.H[13]

12[1] 4[3] 0[7] 0[14] 0[28] [28] ZA0H.S[7]

13[1] 5[3] 1[7] 1[14] 0[29] [29] ZA1H.H[14]

14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31] ZA1H.H[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-205
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
DDZDBM A Z multi-vector operand occupying four consecutively numbered Z vectors consists of Zn+0 to Zn+3, where n+x
modulo 32 is a register number in the range 0 to 31 inclusive.

DVYKCM The preferred disassembly for a Z multi-vector operand of consecutively numbered Z vectors is a dash-separated
register range, for example { Z0.S-Z1.S } or { Z30.B-Z1.B }. Toolchains must also support assembler source code
which uses the alternative comma-separated list notation, for example { Z0.S, Z1.S } or { Z30.B, Z31.B, Z0.B,
Z1.B}, and disassemblers may provide an option to select between the dash-separated range and comma-separated
list notations.

DPCYZS A Z multi-vector operand occupying two Z vectors with strided register numbering consists of a first register in the
range Z0-Z7 or Z16-Z23, followed by a second register with a number that is 8 higher than the first.

DRZTTV A Z multi-vector operand occupying four Z vectors with strided register numbering consists of a first register in the
range Z0-Z3 or Z16-Z19, followed by three registers with a number that is each 4 higher than the last.

DDMTSL The preferred disassembly for a Z multi-vector operand of Z vectors with strided register numbering is a
comma-separated register list, for example { Z0.D, Z8.D } or { Z0.H, Z4.H, Z8.H, Z12.H }.

B1.4.12.2 ZA multi-slice operands

DJMCTK A multi-vector operand consisting of two or four ZA tile slices is called ZA multi-slice operand.

RSCHNH A ZA multi-slice operand can occupy:

• Consecutively numbered horizontal ZA tile slices.

• Consecutively numbered vertical ZA tile slices.

DJFDSB In instructions operating on ZA multi-slice operands the lowest-numbered slice is a multiple of 2 for a two-slice ZA
operand, and a multiple of 4 for a four-slice ZA operand, selected by the sum of a 32-bit general-purpose register
(slice index register Ws) and an offset (slice index offset offs).

RXMMKZ Instructions operating on the following ZA multi-slice operands are treated as UNDEFINED:

• The four-slice operand in a 64-bit element tile when SVL is 128 bits.

• The two-slice operand in a 128-bit element tile when SVL is 128 bits.

• The four-slice operand in a 128-bit element tile when SVL is 128 bits or 256 bits.

DGJTMX The preferred disassembly for a ZA multi-slice operand is as follows:

• ZAtH.T[Ws, offs1:offs2], for horizontal ZA two-slice operands, where offs2 = offs1 + 1.

• ZAtH.T[Ws, offs1:offs4], for horizontal ZA four-slice operands, where offs4 = offs1 + 3.

• ZAtV.T[Ws, offs1:offs2], for vertical ZA two-slice operands, where offs2 = offs1 + 1.

• ZAtV.T[Ws, offs1:offs4], for vertical ZA four-slice operands, where offs4 = offs1 + 3.

B1.4.12.3 ZA multi-vector operands

DRGXBK A multi-vector operand consisting of two, four, eight, or sixteen ZA array vectors is called ZA multi-vector operand.

DTGDRF One ZA array vector is called a ZA single-vector group.

DFCYGL Two consecutively-numbered vectors in the ZA array are called a ZA double-vector group.

DGCTYB Four consecutively-numbered vectors in the ZA array are called a ZA quad-vector group.

IPMQRQ The ZA multi-vector operand consists of one, two, or four vector groups, where a vector group is one of the
following:

• ZA single-vector group.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-206
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
• ZA double-vector group.

• ZA quad-vector group.

IKLBYZ The SME2 architecture includes multi-vector instructions that access a ZA multi-vector operand consisting of the
same number of vector groups as there are vectors in each Z multi-vector operand.

IHPKZM The preferred disassembly for a ZA multi-vector operand consisting of two or four vector groups, defined in
declarations DKQZYZ, DJWRSN, and DTTNGH, includes the symbol VGx2 or VGx4, respectively. The symbol VGx2 or VGx4
can optionally be omitted in assembler source code if it can be inferred from the other operands.

DCLJBX In instructions that access a ZA multi-vector operand, the lowest-numbered vector is selected by the sum of a 32-bit
general-purpose register (vector select register Wv) and an offset (vector select offset offs), modulo one of the
following values:

• SVLB when the operand consists of one ZA vector group.

• SVLB/2 when the operand consists of two ZA vector groups.

• SVLB/4 when the operand consists of four ZA vector groups.

B1.4.12.3.1 ZA multi-vector operands of single-vector groups

DQFPHH In instructions where the ZA multi-vector operand consists of two single-vector groups, each vector group is held
in a separate half of the ZA array: ZA[n+0] and ZA[SVLB/2 + n+0], where n is in the range 0 to (SVLB/2 - 1)
inclusive.

DTTHGQ In instructions where the ZA multi-vector operand consists of four single-vector groups, each vector group is held
in a separate quarter of the ZA array: ZA[n+0], ZA[SVLB/4 + n+0], ZA[SVLB/2 + n+0], and ZA[SVLB*3/4 + n+0],
where n is in the range 0 to (SVLB/4 - 1) inclusive.

DKQZYZ The preferred disassembly for a ZA multi-vector operand of single-vector groups is:

• ZA.T[Wv, offs, VGx2], when the operand consists of two single-vector groups.

• ZA.T[Wv, offs, VGx4], when the operand consists of four single-vector groups.

Where offs is in the range 0 to 7 inclusive, and T is one of B, H, S, or D.

IBYBQLI The mapping between ZA multi-vector operands of single-vector groups and 32-bit element ZA tile slices when SVL
is 256 bits is illustrated in the following diagram:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-207
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-15 ZA array vector view and 32-bit element ZA tile slice view for single-vector groups

IMLNNG The mapping between ZA multi-vector operands of single-vector groups and 64-bit element ZA tile slices when SVL
is 256 bits is illustrated in the following diagram:

ZA[0] ZA0H.S[0] ZA[0]
ZA[1] ZA0H.S[1] ZA[4]
ZA[2] ZA0H.S[2] ZA[8]
ZA[3] ZA0H.S[3] ZA[12]
ZA[4] ZA0H.S[4] ZA[16]
ZA[5] ZA0H.S[5] ZA[20]
ZA[6] ZA0H.S[6] ZA[24]
ZA[7] ZA0H.S[7] ZA[28]
ZA[8] ZA1H.S[0] ZA[1]
ZA[9] ZA1H.S[1] ZA[5]
ZA[10] ZA1H.S[2] ZA[9]
ZA[11] ZA1H.S[3] ZA[13]
ZA[12] ZA1H.S[4] ZA[17]
ZA[13] ZA1H.S[5] ZA[21]
ZA[14] ZA1H.S[6] ZA[25]
ZA[15] ZA1H.S[7] ZA[29]
ZA[16] ZA2H.S[0] ZA[2]
ZA[17] ZA2H.S[1] ZA[6]
ZA[18] ZA2H.S[2] ZA[10]
ZA[19] ZA2H.S[3] ZA[14]
ZA[20] ZA2H.S[4] ZA[18]
ZA[21] ZA2H.S[5] ZA[22]
ZA[22] ZA2H.S[6] ZA[26]
ZA[23] ZA2H.S[7] ZA[30]
ZA[24] ZA3H.S[0] ZA[3]
ZA[25] ZA3H.S[1] ZA[7]
ZA[26] ZA3H.S[2] ZA[11]
ZA[27] ZA3H.S[3] ZA[15]
ZA[28] ZA3H.S[4] ZA[19]
ZA[29] ZA3H.S[5] ZA[23]
ZA[30] ZA3H.S[6] ZA[27]
ZA[31] ZA3H.S[7] ZA[31]

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
2

ZA
 4

th
 q

ua
rt

er

ZA
3

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
 2

nd
 q

ua
rt

er

ZA
1

ZA
0

ZA array vector view 32-bit ZA tile slices view

Two single-vectors ZA[2]Four single-vectors ZA[5]

ZA[2]

ZA[2]

ZA[5]

ZA[5]

ZA[5]

ZA[5]

ZA[5]

ZA[5]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-208
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-16 ZA array vector view and 64-bit element ZA tile slice view for single-vector groups

B1.4.12.3.2 ZA multi-vector operands of double-vector groups

DRBSQJ In instructions where the ZA multi-vector operand consists of one double-vector group, the vector group is held in
ZA array vectors: ZA[n+0] to ZA[n+1], where n is a multiple of 2 in the range 0 to (SVLB - 2) inclusive.

DKKVVG In instructions where the ZA multi-vector operand consists of two double-vector groups, each vector group is held
in a separate half of the ZA array: ZA[n+0] to ZA[n+1], and ZA[SVLB/2 + n+0] to ZA[SVLB/2 + n+1], where n is
a multiple of 2 in the range 0 to (SVLB/2 - 2) inclusive.

DVMYGN In instructions where the ZA multi-vector operand consists of four double-vector groups, each vector group is held
in a separate quarter of the ZA array: ZA[n+0] to ZA[n+1], ZA[SVLB/4 + n+0] to ZA[SVLB/4 + n+1], ZA[SVLB/2
+ n+0] to ZA[SVLB/2 + n+1], and ZA[SVLB*3/4 + n+0] to ZA[SVLB*3/4 + n+1], where n is a multiple of 2 in
the range 0 to (SVLB/4 - 2) inclusive.

DJWRSN The preferred disassembly for a ZA multi-vector operand of double-vector groups is:

• ZA.T[Wv, offs1:offs2], where: offs1 is a multiple of 2 in the range 0 to 14 inclusive, when the operand consists
of one double-vector group.

• ZA.T[Wv, offs1:offs2, VGx2], where offs1 is a multiple of 2 in the range 0 to 6 inclusive, when the operand
consists of two double-vector groups.

ZA[0] ZA0H.D[0] ZA[0]
ZA[1] ZA0H.D[1] ZA[8]
ZA[2] ZA0H.D[2] ZA[16]
ZA[3] ZA0H.D[3] ZA[24]
ZA[4] ZA1H.D[0] ZA[1]
ZA[5] ZA1H.D[1] ZA[9]
ZA[6] ZA1H.D[2] ZA[17]
ZA[7] ZA1H.D[3] ZA[25]
ZA[8] ZA2H.D[0] ZA[2]
ZA[9] ZA2H.D[1] ZA[10]
ZA[10] ZA2H.D[2] ZA[18]
ZA[11] ZA2H.D[3] ZA[26]
ZA[12] ZA3H.D[0] ZA[3]
ZA[13] ZA3H.D[1] ZA[11]
ZA[14] ZA3H.D[2] ZA[19]
ZA[15] ZA3H.D[3] ZA[27]
ZA[16] ZA4H.D[0] ZA[4]
ZA[17] ZA4H.D[1] ZA[12]
ZA[18] ZA4H.D[2] ZA[20]
ZA[19] ZA4H.D[3] ZA[28]
ZA[20] ZA5H.D[0] ZA[5]
ZA[21] ZA5H.D[1] ZA[13]
ZA[22] ZA5H.D[2] ZA[21]
ZA[23] ZA5H.D[3] ZA[29]
ZA[24] ZA6H.D[0] ZA[6]
ZA[25] ZA6H.D[1] ZA[14]
ZA[26] ZA6H.D[2] ZA[22]
ZA[27] ZA6H.D[3] ZA[30]
ZA[28] ZA7H.D[0] ZA[7]
ZA[29] ZA7H.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA
7

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
4

ZA
5

ZA
 4

th
 q

ua
rt

er

ZA
6

ZA
3

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
0

ZA
1

ZA
 2

nd
 q

ua
rt

er

ZA
2

ZA array vector view 64-bit ZA tile slices view

Four single-vectors ZA[5] Two single-vectors ZA[2]

ZA[2]

ZA[2]

ZA[5]

ZA[5]

ZA[5]

ZA[5]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-209
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
• ZA.T[Wv, offs1:offs2, VGx4], where offs1 is a multiple of 2 in the range 0 to 6 inclusive, when the operand
consists of four double-vector groups.

Where offs2 = offs1 + 1, and T is one of B, H, S, or D.

ILZRTK The mapping between ZA multi-vector operands of double-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Figure B1-17 ZA array vector view and 32-bit element ZA tile slice view for double-vector groups

IJYQTB The mapping between ZA multi-vector operands of double-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Four double-vectors ZA[0:3] Two double-vectors ZA[6:7]

ZA[0] ZA0H.S[0] ZA[0]
ZA[1] ZA0H.S[1] ZA[4]
ZA[2] ZA0H.S[2] ZA[8]
ZA[3] ZA0H.S[3] ZA[12]
ZA[4] ZA0H.S[4] ZA[16]
ZA[5] ZA0H.S[5] ZA[20]
ZA[6] ZA0H.S[6] ZA[24]
ZA[7] ZA0H.S[7] ZA[28]
ZA[8] ZA1H.S[0] ZA[1]
ZA[9] ZA1H.S[1] ZA[5]
ZA[10] ZA1H.S[2] ZA[9]
ZA[11] ZA1H.S[3] ZA[13]
ZA[12] ZA1H.S[4] ZA[17]
ZA[13] ZA1H.S[5] ZA[21]
ZA[14] ZA1H.S[6] ZA[25]
ZA[15] ZA1H.S[7] ZA[29]
ZA[16] ZA2H.S[0] ZA[2]
ZA[17] ZA2H.S[1] ZA[6]
ZA[18] ZA2H.S[2] ZA[10]
ZA[19] ZA2H.S[3] ZA[14]
ZA[20] ZA2H.S[4] ZA[18]
ZA[21] ZA2H.S[5] ZA[22]
ZA[22] ZA2H.S[6] ZA[26]
ZA[23] ZA2H.S[7] ZA[30]
ZA[24] ZA3H.S[0] ZA[3]
ZA[25] ZA3H.S[1] ZA[7]
ZA[26] ZA3H.S[2] ZA[11]
ZA[27] ZA3H.S[3] ZA[15]
ZA[28] ZA3H.S[4] ZA[19]
ZA[29] ZA3H.S[5] ZA[23]
ZA[30] ZA3H.S[6] ZA[27]
ZA[31] ZA3H.S[7] ZA[31]

One double-vector ZA[28:29]

ZA array vector view 32-bit ZA tile slices view

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
0

ZA
 2

nd
 q

ua
rt

er

ZA
1

ZA
2

ZA
 4

th
 q

ua
rt

er

ZA
3

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[6:7]

ZA[6:7]

ZA[28:29]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-210
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-18 ZA array vector view and 64-bit element ZA tile slice view for double-vector groups

B1.4.12.3.3 ZA multi-vector operands of quad-vector groups

DWSTWB In instructions where the ZA multi-vector operand consists of one quad-vector group, the vector group is held in ZA
array vectors: ZA[n+0] to ZA[n+3], where n is a multiple of 4 in the range 0 to (SVLB - 4) inclusive.

DQJXHS In instructions where the ZA multi-vector operand consists of two quad-vector groups, each vector group is held in
a separate half of the ZA array: ZA[n+0] to ZA[n+3], and ZA[SVLB/2 + n+0] to ZA[SVLB/2 + n+3], where n is a
multiple of 4 in the range 0 to (SVLB/2 - 4) inclusive.

DBQWJD In instructions where the ZA multi-vector operand consists of four quad-vector groups, each vector group is held in
a separate quarter of the ZA array: ZA[n+0] to ZA[n+3], ZA[SVLB/4 + n+0] to ZA[SVLB/4 + n+3], ZA[SVLB/2
+ n+0] to ZA[SVLB/2 + n+3], and ZA[SVLB*3/4 + n+0] to ZA[SVLB*3/4 + n+3], where n is a multiple of 4 in
the range 0 to (SVLB/4 - 4) inclusive.

DTTNGH The preferred disassembly for a ZA multi-vector operand of quad-vector groups is:

• ZA.T[Wv, offs1:offs4], where: offs1 is a multiple of 4 in the range 0 to 12 inclusive, when the operand consists
of one quad-vector group.

• ZA.T[Wv, offs1:offs4, VGx2], where offs1 is 0 or 4, when the operand consists of two quad-vector groups.

Four double-vectors ZA[0:1] Two double-vectors ZA[6:7]

ZA[0] ZA0H.D[0] ZA[0]
ZA[1] ZA0H.D[1] ZA[8]
ZA[2] ZA0H.D[2] ZA[16]
ZA[3] ZA0H.D[3] ZA[24]
ZA[4] ZA1H.D[0] ZA[1]
ZA[5] ZA1H.D[1] ZA[9]
ZA[6] ZA1H.D[2] ZA[17]
ZA[7] ZA1H.D[3] ZA[25]
ZA[8] ZA2H.D[0] ZA[2]
ZA[9] ZA2H.D[1] ZA[10]
ZA[10] ZA2H.D[2] ZA[18]
ZA[11] ZA2H.D[3] ZA[26]
ZA[12] ZA3H.D[0] ZA[3]
ZA[13] ZA3H.D[1] ZA[11]
ZA[14] ZA3H.D[2] ZA[19]
ZA[15] ZA3H.D[3] ZA[27]
ZA[16] ZA4H.D[0] ZA[4]
ZA[17] ZA4H.D[1] ZA[12]
ZA[18] ZA4H.D[2] ZA[20]
ZA[19] ZA4H.D[3] ZA[28]
ZA[20] ZA5H.D[0] ZA[5]
ZA[21] ZA5H.D[1] ZA[13]
ZA[22] ZA5H.D[2] ZA[21]
ZA[23] ZA5H.D[3] ZA[29]
ZA[24] ZA6H.D[0] ZA[6]
ZA[25] ZA6H.D[1] ZA[14]
ZA[26] ZA6H.D[2] ZA[22]
ZA[27] ZA6H.D[3] ZA[30]
ZA[28] ZA7H.D[0] ZA[7]
ZA[29] ZA7H.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

Z
A

 2
n

d
 q

u
ar

te
r

ZA array vector view 64-bit ZA tile slices view

Z
A

 1
st

 q
u

ar
te

r

Z
A

 1
st

 h
al

f

Z
A

0
Z

A
1

Z
A

3
Z

A
2

Z
A

 4
th

 q
u

ar
te

r

Z
A

6
Z

A
7

One double-vector ZA[28:29]
Z

A
 3

rd
 q

u
ar

te
r

Z
A

 2
n

d
 h

al
f

Z
A

4
Z

A
5

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[6:7]

ZA[6:7]

ZA[28:29]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-211
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
• ZA.T[Wv, offs1:offs4, VGx4], where offs1 is 0 or 4, when the operand consists of four quad-vector groups.

Where offs4 = offs1 + 3, and T is one of B, H, S, or D.

IZNSGW The mapping between ZA multi-vector operands of quad-vector groups and 32-bit element ZA tile slices when SVL
is 256 bits is illustrated in the following diagram:

Figure B1-19 ZA array vector view and 32-bit element ZA tile slice view for quad-vector groups

IKBMLX The mapping between ZA multi-vector operands of quad-vector groups and 64-bit element ZA tile slices when SVL
is 256 bits is illustrated in the following diagram:

Two quad-vectors ZA[4:7]

ZA[0] ZA0H.S[0] ZA[0]
ZA[1] ZA0H.S[1] ZA[4]
ZA[2] ZA0H.S[2] ZA[8]
ZA[3] ZA0H.S[3] ZA[12]
ZA[4] ZA0H.S[4] ZA[16]
ZA[5] ZA0H.S[5] ZA[20]
ZA[6] ZA0H.S[6] ZA[24]
ZA[7] ZA0H.S[7] ZA[28]
ZA[8] ZA1H.S[0] ZA[1]
ZA[9] ZA1H.S[1] ZA[5]
ZA[10] ZA1H.S[2] ZA[9]
ZA[11] ZA1H.S[3] ZA[13]
ZA[12] ZA1H.S[4] ZA[17]
ZA[13] ZA1H.S[5] ZA[21]
ZA[14] ZA1H.S[6] ZA[25]
ZA[15] ZA1H.S[7] ZA[29]
ZA[16] ZA2H.S[0] ZA[2]
ZA[17] ZA2H.S[1] ZA[6]
ZA[18] ZA2H.S[2] ZA[10]
ZA[19] ZA2H.S[3] ZA[14]
ZA[20] ZA2H.S[4] ZA[18]
ZA[21] ZA2H.S[5] ZA[22]
ZA[22] ZA2H.S[6] ZA[26]
ZA[23] ZA2H.S[7] ZA[30]
ZA[24] ZA3H.S[0] ZA[3]
ZA[25] ZA3H.S[1] ZA[7]
ZA[26] ZA3H.S[2] ZA[11]
ZA[27] ZA3H.S[3] ZA[15]
ZA[28] ZA3H.S[4] ZA[19]
ZA[29] ZA3H.S[5] ZA[23]
ZA[30] ZA3H.S[6] ZA[27]
ZA[31] ZA3H.S[7] ZA[31]

Four quad-vectors ZA[0:3] One quad-vector ZA[12:15]

ZA array vector view 32-bit ZA tile slices view

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
0

ZA
 2

nd
 q

ua
rt

er

ZA
1

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
2

ZA
 4

th
 q

ua
rt

er

ZA
3

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[4:7]

ZA[4:7]

ZA[12:15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-212
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
Figure B1-20 ZA array vector view and 64-bit element ZA tile slice view for quad-vector groups

B1.4.13 SME2 ZT0 register

RKHZMV A PE with FEAT_SME2 has a 512-bit register, ZT0, to store a lookup table.

RWDJBC The ZT0 register holds 8-bit, 16-bit, or 32-bit lookup table elements that are stored in the least significant bits of
32-bit table entries. The lowest numbered 32 bits in the register hold table entry 0.

RJQXLS The ZT0 register lookup table can be accessed using fully packed 2-bit or 4-bit indices from a numbered portion of
one source Zn SVE scalable vector register.

IBRRGG When the ZT0 register lookup table is addressed by 2-bit indices, four different table elements (0-3) of a given
element size can be accessed. When the lookup table is addressed by 4-bit indices, 16 different table elements (0-15)
of a given element size can be accessed.

RJKYRB The indexed 8-bit, 16-bit, or 32-bit table elements are read from the ZT0 register and packed into consecutive or
strided elements of an SVE Z vector or Z multi-vector operand.

Two quad-vectors ZA[4:7]

ZA[0] ZA0H.D[0] ZA[0]
ZA[1] ZA0H.D[1] ZA[8]
ZA[2] ZA0H.D[2] ZA[16]
ZA[3] ZA0H.D[3] ZA[24]
ZA[4] ZA1H.D[0] ZA[1]
ZA[5] ZA1H.D[1] ZA[9]
ZA[6] ZA1H.D[2] ZA[17]
ZA[7] ZA1H.D[3] ZA[25]
ZA[8] ZA2H.D[0] ZA[2]
ZA[9] ZA2H.D[1] ZA[10]
ZA[10] ZA2H.D[2] ZA[18]
ZA[11] ZA2H.D[3] ZA[26]
ZA[12] ZA3H.D[0] ZA[3]
ZA[13] ZA3H.D[1] ZA[11]
ZA[14] ZA3H.D[2] ZA[19]
ZA[15] ZA3H.D[3] ZA[27]
ZA[16] ZA4H.D[0] ZA[4]
ZA[17] ZA4H.D[1] ZA[12]
ZA[18] ZA4H.D[2] ZA[20]
ZA[19] ZA4H.D[3] ZA[28]
ZA[20] ZA5H.D[0] ZA[5]
ZA[21] ZA5H.D[1] ZA[13]
ZA[22] ZA5H.D[2] ZA[21]
ZA[23] ZA5H.D[3] ZA[29]
ZA[24] ZA6H.D[0] ZA[6]
ZA[25] ZA6H.D[1] ZA[14]
ZA[26] ZA6H.D[2] ZA[22]
ZA[27] ZA6H.D[3] ZA[30]
ZA[28] ZA7H.D[0] ZA[7]
ZA[29] ZA7H.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA array vector view 64-bit ZA tile slices view

One quad-vector ZA[12:15]Four quad-vectors ZA[0:3]
ZA

 1
st

 q
ua

rt
er

ZA
 1

st
 h

al
f

ZA
0

ZA
1

ZA
 2

nd
 q

ua
rt

er

ZA
2

ZA
3

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
4

ZA
5

ZA
 4

th
 q

ua
rt

er

ZA
6

ZA
7

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[4:7]

ZA[4:7]

ZA[12:15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-213
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
See also:

• About PSTATE.ZA.

• Streaming SVE mode.

• Accessing PSTATE fields at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-214
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.5 Software control features and EL0
B1.5 Software control features and EL0

The following sections describe the EL0 view of the software control features:

• Exception handling.

• Wait for Interrupt and Wait for Event.

• The YIELD instruction.

• Application level cache management.

• Instructions relating to Debug.

• About PSTATE.DIT.

B1.5.1 Exception handling

In the Arm architecture, an exception causes a change of program flow. Execution of an exception handler starts, at
an Exception level higher than EL0, from a defined vector that relates to the exception taken.

Exceptions include:

• Interrupts.

• Memory system aborts.

• Exceptions generated by attempting to execute an instruction that is UNDEFINED.

• System calls.

• Secure monitor or Hypervisor traps.

• Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in Chapter D1 The
AArch64 System Level Programmers’ Model.

The SVC instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to
make a system call to an operating system.

The BRK instruction generates a Breakpoint Instruction exception. This provides a mechanism for debugging
software using debugger executing on the same PE, see Breakpoint Instruction exceptions.

Note

The BRK instruction is supported only in the A64 instruction set. The equivalent instruction in the T32 and A32
instruction sets is BKPT.

B1.5.2 Wait for Interrupt and Wait for Event

Issuing a WFI instruction indicates that no further execution is required until a WFI wakeup event occurs, see Wait
for Interrupt mechanism. This permits entry to a low-power state.

Issuing a WFE instruction indicates that no further execution is required until a WFE wakeup event occurs, see Wait
for Event. This permits entry to a low-power state.

B1.5.3 The YIELD instruction

The YIELD instruction provides a hint that the task performed by a thread is of low importance so that it could yield,
see YIELD. This mechanism can be used to improve overall performance in a Symmetric Multithreading (SMT) or
Symmetric Multiprocessing (SMP) system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-215
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.5 Software control features and EL0
Examples of when the YIELD instruction might be used include a thread that is sitting in a spin-lock, or where the
arbitration priority of the snoop bit in an SMP system is modified. The YIELD instruction permits binary
compatibility between SMT and SMP systems.

The YIELD instruction is a NOP hint instruction.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use for future migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.

B1.5.4 Application level cache management

A small number of cache management instructions can be enabled at EL0 from higher levels of privilege using the
SCTLR_EL1 System register. Any access from EL0 to an operation with the access right disabled causes the
instruction to behave as UNDEFINED.

About the available operations, see Application level access to functionality related to caches.

B1.5.5 Instructions relating to Debug

Exception handling refers to the BRK instruction, which generates a Breakpoint Instruction exception. In addition, in
both AArch64 state and AArch32 state, the HLT instruction causes the PE to halt execution and enter Debug state.
This provides a mechanism for debugging software using a debugger that is external to the PE, see Chapter H1
About External Debug.

Note

In AArch32 state, previous versions of the architecture defined the DBG instruction, which could provide a hint to the
debug system. This instruction executes as a NOP. Arm deprecates the use of the DBG instruction.

B1.5.6 About PSTATE.DIT

When the value of PSTATE.DIT is 1:

• The instructions affected by DIT are required to have;

— Timing which is independent of the values of the data supplied in any of its registers, and the values
of the NZCV flags.

— Responses to asynchronous exceptions which do not vary based on the values supplied in any of their
registers, or the values of the NZCV flags.

• All loads and stores must have their timing insensitive to the value of the data being loaded or stored.

Note

• The Operational information section of an instruction description indicates whether or not that instruction
honors the PSTATE.DIT control. If the Operational information section of an instruction description does
not mention PSTATE.DIT or if the section does not exist, then the instruction is not required to honor the
PSTATE.DIT control.

• The use of value prediction for load data values when PSTATE.DIT is set, is not compatible with the
requirement that the timing is insensitive to the data value being loaded.

• Arm recommends that the FEAT_PAuth instructions do not have their timing dependent on the key value
used in the pointer authentication, regardless of the PSTATE.DIT bit.

• When the value of PSTATE.DIT is 0, the architecture makes no statement about the timing properties of any
instructions. However, it is likely that these instructions have timing that is invariant of the data in many
situations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-216
ID032224 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.5 Software control features and EL0
• If SVE2 is not implemented, the data independent timing control introduced by FEAT_DIT does not affect
the timing properties of SVE instructions.

• For SVE and SVE2 predicated instructions, it is the programmer’s responsibility to use a Governing
predicate that does not reflect the values of the data being operated on.

A corresponding DIT bit is added to PSTATE in AArch64 state, and to CPSR in AArch32 state.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.DIT is copied to SPSR_ELx.DIT.

On an exception that is taken from AArch32 state to AArch64 state, CPSR.DIT is copied to SPSR_ELx.DIT.

On an exception return from AArch64 state:

• SPSR_ELx.DIT is copied to PSTATE.DIT, when the target Exception level is in AArch64 state.

• SPSR_ELx.DIT is copied to CPSR.DIT, when the target Exception level is in AArch32 state.

PSTATE.DIT can be written and read at all Exception levels.

Note

• PSTATE.DIT is unchanged on entry into Debug state.

• PSTATE.DIT is not guaranteed to have any effect in Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B1-217
ID032224 Non-Confidential

Chapter B2
The AArch64 Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

• About the Arm memory model.

• Atomicity in the Arm architecture.

• Definition of the Arm memory model.

• Completion and endpoint ordering.

• SVE memory ordering relaxations.

• Streaming SVE mode memory ordering relaxations.

• Ordering of instruction fetches.

• Restrictions on the effects of speculation from Armv8.5.

• Memory barriers.

• Limited ordering regions.

• Caches and memory hierarchy.

• Alignment support.

• Endian support.

• Memory types and attributes.

• Mismatched memory attributes.

• Synchronization and semaphores.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-218
ID032224 Non-Confidential

The AArch64 Application Level Memory Model

Note

In this chapter, System register names usually link to the description of the register in Chapter D23 AArch64 System
Register Descriptions, for example. SCTLR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-219
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model
B2.1 About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of
memory accesses in a different order from the program order. The following sections of this chapter provide the
complete definition of the memory model. This introduction is not intended to contradict the definition found in
those sections.

In general, the basic principles of the memory model are:

• To provide a memory model that has similar weaknesses to those found in the memory models used by
high-level programming languages such as C or Java. For example, by permitting independent memory
accesses to be reordered as seen by other observers.

• To avoid the requirement for multi-copy atomicity in the majority of memory types.

• The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the
cases where it would be needed is required.

• The use of address, data, and control dependencies in the creation of order so as to avoid having excessive
numbers of barriers or other explicit instructions in common situations where some order is required by the
programmer or the compiler.

• If FEAT_MTE2 is implemented, the definitions of the memory model which apply to data accesses and data
apply to Allocation Tag accesses and Allocation tags.

This section contains:

• Address space.

• Memory type overview.

• SVE memory model.

• SME memory model.

B2.1.1 Address space

Address calculations are performed using 64-bit registers. However, supervisory software can configure the top
eight address bits for use as a tag, as described in Address tagging. If this is done, address bits[63:56]:

• Are not considered when determining whether the address is valid.

• Are never propagated to the Program Counter.

Supervisory software determines the valid address range. Attempting to access an address that is not valid generates
an MMU fault.

Simple sequential execution of instructions might overflow the valid address range. For more information, see
Virtual address space overflow.

Memory accesses use the Mem[] function. This function makes an access of the required type. If supervisory software
configures the top eight address bits for use as a tag, the top eight address bits are ignored.

The AccessType defines the different access types and attributes.

Note

• Chapter D7 The AArch64 System Level Memory Model and Chapter D8 The AArch64 Virtual Memory System
Architecture include descriptions of memory system features that are transparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also include pseudocode descriptions of these operations.

• For information on the pseudocode that relates to memory accesses, see Basic memory access, Unaligned
memory access, and Aligned memory access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-220
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model
B2.1.2 Memory type overview

The Arm architecture provides the following mutually-exclusive memory types:

Normal This is generally used for bulk memory operations, both read/write and read-only operations.

Device The Arm architecture forbids Speculative reads of any type of Device memory. This means Device
memory types are suitable attributes for read-sensitive Locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

• They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering.

• They preserve the access order and synchronization requirements for accesses to a single
peripheral. See Reordering.

• They indicate whether a write can be acknowledged other than at the end point. See Early
Write Acknowledgement.

For more information on Normal memory and Device memory, see Memory types and attributes.

Note

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-ordered memory type.
A Note in Device memory describes how these memory types map onto the Armv8 memory types.

B2.1.3 SVE memory model

ICZFSY SVE predicated memory operations have a vector element size and a memory element access size. The vector
element size specifies the data that is read from and written to the vector. The memory element access size specifies
the amount of data that is read from and written to the memory.

ITJQJF The vector element size and the memory element access size do not need to have the same value.

ILGGHH For each memory element, there is an associated element address.

SVE also affects behavior in the following areas:

• Requirements for single-copy atomicity.

• SVE memory ordering relaxations.

• Load or Store of Single or Multiple registers.

• Endianness in SVE operations.

• SVE loads and stores that access Device memory.

B2.1.4 SME memory model

RBQSCG SME load/store memory accesses are subject to the same rules that govern SVE load/store memory accesses.

IWWVYJ When the PE is in Streaming SVE mode, there are relaxations for Advanced SIMD&FP instructions in the following
areas:

• Streaming SVE mode memory ordering relaxations.

• Streaming SVE mode loads and stores that access Device memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-221
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
B2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to
two types of atomicity, single-copy atomicity and multi-copy atomicity. In the Arm architecture, the atomicity
requirements for memory accesses depend on the memory type, and whether the access is explicit or implicit. For
more information, see:

• Requirements for single-copy atomicity.

• Properties of single-copy atomic accesses.

• Multi-copy atomicity.

• Requirements for multi-copy atomicity.

• Concurrent modification and execution of instructions.

• Possible implementation restrictions on using atomic instructions.

For more information about the memory types, see Memory type overview.

B2.2.1 Requirements for single-copy atomicity

For explicit memory effects generated from an Exception level the following rules apply:

• A read that is generated by a load instruction that loads a single general-purpose register and is aligned to the
size of the read in the instruction is single-copy atomic.

• A write that is generated by a store instruction that stores a single general-purpose register and is aligned to
the size of the write in the instruction is single-copy atomic.

• Reads that are generated by a Load Pair instruction that loads two general-purpose registers and are aligned
to the size of the load to each register are treated as two single-copy atomic reads, one for each register being
loaded.

• Writes that are generated by a Store pair instruction that stores two general-purpose registers and are aligned
to the size of the store of each register are treated as two single-copy atomic writes, one for each register being
stored.

• Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of 32-bit
quantities are single-copy atomic.

• When the Store-Exclusive of a Load-Exclusive/Store-Exclusive pair instruction using two 64-bit quantities
succeeds, it causes a single-copy atomic update of the entire memory location being updated.

Note
To atomically load two 64-bit quantities, perform a Load-Exclusive pair/Store-Exclusive pair sequence of
reading and writing the same value for which the Store-Exclusive pair succeeds, and use the read values from
the Load-Exclusive pair.

• Where translation table walks generate a read of a translation table entry, this read is single-copy atomic.

• For the atomicity of instruction fetches, see Concurrent modification and execution of instructions.

• Reads to SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size of
the quantity being loaded are treated as single-copy atomic reads.

• Writes from SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size
of the quantity being stored are treated as single-copy atomic writes.

• Element or Structure Reads to SIMD and floating-point registers of 64-bit or smaller elements, where each
element is aligned to the size of the element being loaded, have each element treated as a single-copy atomic
read.

• Element or Structure Writes from SIMD and floating-point registers of 64-bit or smaller elements, where
each element is aligned to the size of the element being stored, have each element treated as a single-copy
atomic store.

• Reads to SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated as
a pair of single-copy atomic 64-bit reads.

• Writes from SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated
as a pair of single-copy atomic 64-bit writes.

• Atomicity rules for SIMD load and store instructions also apply to SVE load and store instructions.

• SVE predicated load and store instructions are performed as a sequence of memory element accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-222
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
• If an SVE predicated load or store instruction uses an element address that is aligned to the specified memory
element access size, the related element memory access is performed as a single-copy atomic access.

• SVE unpredicated load and store instructions are performed as a sequence of byte accesses.

• SVE unpredicated load and store instructions do not guarantee that any access larger than a byte will be
performed as a single-copy atomic access.

• When FEAT_LS64 is implemented, a single-copy atomic load of a 64-byte value that is 64-byte aligned in
memory is treated as an atomic 64-byte read from the target address.

• When FEAT_LS64 is implemented, a single-copy atomic store of a 64-byte value that is 64-byte aligned in
memory is treated as an atomic 64-byte write to the target address.

• For unaligned memory accesses, the single-copy atomicity is described in Alignment of data accesses.

• The reads and writes of the two words or two doublewords accessed by CASP instructions are single-copy
atomic at the size of the two words or doublewords.

All other memory accesses are regarded as streams of accesses to bytes, and no atomicity between accesses to
different bytes is ensured by the architecture.

All accesses to any byte are single-copy atomic.

Note

In AArch64 state, no memory accesses from a DC ZVA have single-copy atomicity of any quantity greater than
individual bytes.

If, according to these rules, an instruction is executed as a sequence of accesses, exceptions, including interrupts,
can be taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are
returned from using their preferred return address, the instruction that generated the sequence of accesses is
re-executed, and so any access performed before the exception was taken is repeated. See also Taking an interrupt
during a multi-access load or store.

Note

The exception behavior for these multiple access instructions means that they are not suitable for use for writes to
memory for the purpose of software synchronization.

B2.2.1.1 Changes to single-copy atomicity in Armv8.4

In addition to the single-copy atomicity requirements listed above:

Instructions that are introduced in FEAT_LRCPC are single-copy atomic when all of the following conditions are
true:

• All bytes being accessed are within the same 16-byte quantity aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

If FEAT_LSE2 is implemented, all loads and stores are single-copy atomic when all of the following conditions are
true:

• Accesses are unaligned to their data size but all bytes being accessed are within a 16-byte quantity that is
aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

If FEAT_LSE2 is implemented, LDP, LDNP, and STP instructions that load or store two 64-bit registers are single-copy
atomic when all of the following conditions are true:

• The overall memory access is aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

If FEAT_LSE2 is implemented, LDP, LDNP, and STP instructions that access fewer than 16 bytes are single-copy
atomic when all of the following conditions are true:

• All bytes being accessed are within a 16-byte quantity aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-223
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
B2.2.2 Properties of single-copy atomic accesses

A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one
of the stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one of
the overlapping reads generated by L1 Reads-from one of the overlapping writes generated by S2, then none
of the overlapping writes generated by S2 are Coherence-after the corresponding overlapping reads generated
by L1.

For more information, see Definition of the Arm memory model.

B2.2.3 Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

• All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

• A read of a location does not return the value of a write until all observers observe that write.

Note

Writes that are not coherent are not multi-copy atomic.

B2.2.4 Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory, writes are not required to be multi-copy atomic.

The Arm memory model is Other-multi-copy atomic. For more information, see External ordering constraints.

B2.2.5 Concurrent modification and execution of instructions

The Arm architecture limits the set of instructions that can be executed by one thread of execution as they are being
modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where each of the instruction before modification and the instruction after modification is one of a B, B.cond,
BL, BRK, CBNZ, CBZ, HVC, ISB, NOP, SMC, SVC, TBNZ, TBZ, or TRCIT instruction.

For the B, B.cond, BL, BRK, CBNZ, CBZ, HVC, ISB, NOP, SMC, SVC, TBNZ, TBZ, and TRCIT instructions, the architecture
guarantees that after modification of the instruction, behavior is consistent with execution of either:

• The instruction originally fetched.

• A fetch of the modified instruction.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction
modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the
following sequence of instructions and operations:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-224
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
; enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)DSB ISH; Ensure

visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH

Note

• The DC CVAU operation is not required if the area of memory is either Non-cacheable or Write-Through
Cacheable.

• If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs
can cause the instructions to be concurrently modified by one PE and executed by another PE. If the
modifications affect instructions other than those listed as being acceptable for modification,
synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.

• In a multiprocessor system, the DC CVAU and IC IVAU are broadcast to all PEs within the Inner
Shareable domain of the PE running this sequence.

3. When the modified instructions are observable, each PE that is executing the modified instructions must
execute an ISB or perform a context synchronizing event to ensure execution of the modified instructions:

 ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses.

For information about memory accesses caused by instruction fetches, see Ordering relations.

B2.2.6 Possible implementation restrictions on using atomic instructions

In some implementations, and for some memory types, the properties of atomicity can be met only by functionality
outside the PE. Some system implementations might not support atomic instructions for all regions of the memory.
In particular, this can apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Device, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does
support hardware cache coherency.

In such implementations, it is defined by the system:

• Whether the atomic instructions are atomic in regard to other agents that access memory.

• If the atomic instructions are atomic in regard to other agents that access memory, which address ranges or
memory types this applies to.

An implementation can choose which memory type is treated as Non-cacheable.

The memory types for which it is architecturally guaranteed that the atomic instructions will be atomic are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The architecture only requires that Conventional memory that is mapped in this way supports this functionality.

If the atomic instructions are not atomic in regard to other agents that access memory, then performing an atomic
instruction to such a location can have one or more of the following effects:

• The instruction generates a synchronous External abort.

• The instruction generates a System Error interrupt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-225
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture
• The instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data Abort Fault
status code of ESR_ELx.DFSC = 110101.

For the EL1&0 translation regime, if the atomic instruction is not supported because of the memory type that
is defined in the first stage of translation, or the second stage of translation is not enabled, then this exception
is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage abort and is taken to EL2.

• The instruction is treated as a NOP.

• The instructions are performed, but there is no guarantee that the memory accesses were performed
atomically in regard to other agents that access memory. In this case, the instruction might also generate a
System Error interrupt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-226
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
B2.3 Definition of the Arm memory model

The Arm memory model introduces a number of relations which are as follows:

• Intrinsic relations; For example, Intrinsic data/control/order dependencies and
Translation-intrinsically-before are hardware requirements which stem from the instruction semantics.

• After relations; For example, Coherence-after and TLBI-after are relations which happen to be oriented that
way in a specific execution, but could be oriented the other way in a different execution.

• Observation relations; For example, Explicitly-Observed-by and TLBI-Observed-by build on After relations
to describe an execution.

• Ordered relations; For example, Ordered-before and TLBI-ordered-before are architectural requirements
which must be respected by hardware in all executions.

This section describes observation and ordering in the Arm memory model. It contains the following subsections:

• Basic definitions.

• Intrinsic Dependency relations.

• Tag-check-intrinsically-before.

• Translation-intrinsically-before.

• Fetch-intrinsically-before.

• Dependency relations.

• Ordering relations.

• Observation relations.

• External ordering constraints.

For more information about endpoint ordering of memory accesses, see Reordering.

In the Arm memory model, the Shareability memory attribute indicates the degree to which hardware must ensure
memory coherency between a set of observers. See Memory types and attributes.

The Arm architecture defines additional memory attributes and associated behaviors, which are defined in the
system level section of this manual. See:

• Chapter D7 The AArch64 System Level Memory Model.

• Chapter D8 The AArch64 Virtual Memory System Architecture.

See also Mismatched memory attributes.

B2.3.1 Basic definitions

The Arm memory model provides a set of definitions that are used to construct conditions on the permitted
sequences of accesses to memory.

Common Shareability Domain

For the purpose of this section, all processing elements are assumed to belong to the same Inner
Shareable domain. All Memory Read and Write effects access Locations mapped as Normal, Inner
Shareable, Inner Write-Back, Outer Write-Back memory, and exclude the situations described in
Mismatched memory attributes.

Location

A Location is a byte that is associated with an address in the physical address space.

For example, a data location is an 8-bit that is associated with an address in the physical address
space. A Tag Location is a 4-bit MTE Allocation Tag.

Note

It is expected that an operating system behaves as if a location is considered as a byte that is
associated with an address in the virtual address space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-227
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Effects

The effects of an instruction can be:

• Register effects.

• Memory effects.

• Implicit Translation Table Descriptor (TTD) Memory effects.

• Hardware Update effects.

• Tag Memory effects.

• Barrier effects.

• Context Synchronization effects.

• Conditional Branching, and Intrinsic Branching effects.

• Fault effects, Exception Entry, and Exception Return effects.

• TLBI effects, Completed TLBI effects and Invalidation Scopes.

• TLBUncacheable effects.

• DC CVAU effects.

• IC effects, Completed IC effects.

Program order

An effect E1 of an instruction I1 appears in program order before an effect E2 of an instruction I2 if
and only if I1 occurs before I2 in the order specified by the program. Each effect generated by an
instruction has a unique effect identifier that characterizes it among the effects generated by the
same instruction.

Register effects

The Register effects of an instruction are register reads or register writes of that instruction. Register
effects only pertain to:

• General purpose registers from R0 to R30, excluding the zero register.

• SVE registers.

• SIMD/FP registers.

• PSTATE.NZCV.

• Direct reads to System registers that are readable.

• Direct writes to System registers that are writable.

• Direct reads to Special-purpose registers that are readable.

• Direct writes to Special-purpose registers that are writable.

For an instruction that accesses registers, a Register Read effect is generated for each register read
by the instruction and a Register Write effect is generated for each register written by the instruction.
An instruction may generate both Register Read and Write effects.

Memory effects

The Memory effects of an instruction are the Read or Write effects from memory of that instruction.
For an instruction that accesses memory, a Memory Read effect is generated for each Location read
from by the instruction and a Memory Write effect is generated for each Location written to by the
instruction. An instruction can generate both Memory Read and Write effects.

Implicit Translation Table Descriptor (TTD) Memory effects

Implicit Translation Table Descriptor (TTD) Memory effects are a subset of Memory effects to a
TTD location. Implicit TTD Memory effects are Memory Read or Write effects caused by hardware
translation table walks, including the hardware updates for the Access Flag or the Dirty Bit of a
TTD.

Hardware Update effects

Hardware Update effects are Implicit TTD Memory Write effects that correspond to writes
modifying the Access Flag or the Dirty Bit of a TTD. See The Access flag. and Hardware
management of the dirty state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-228
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Tag Memory effects

Tag Memory effects are a subset of Memory effects. A Tag effect refers to a Memory Read or Write
effect to a tag location. For example:

• LDG and LDGM instructions generate an Explicit Tag Memory Read effect for their read from a
tag location.

• STG, STGM, STGP, DC GZVA, and DC GVA instructions generate an Explicit Tag Memory Write
effect for their write to a tag location.

• A Tag Checked memory access generates an Implicit Tag Memory Read effect for its read of
a tag location, as well as an Explicit Data Memory effect.

Barrier effects

Barrier instructions generate Barrier effects. In this chapter, the resultant effect is named after the
instruction. Therefore, an ISB instruction generates an ISB effect, a DMB instruction generates a
DMB effect, and a DSB instruction generates a DSB effect.

The following conventions are used when referring to DMB and DSB effects:

• A DMB FULL effect is generated by a DMB instruction with neither a LD nor ST qualifier.

• A DMB effect without a qualifier refers to all types of DMB effects.

The same conventions are used for DSB effects.

Context Synchronization effects

A Context Synchronization event generates a Context synchronization effect (CSE effect). For
example, an ISB instruction generates an ISB effect, which is a CSE effect. An Exception Entry
effect is a CSE effect.

If FEAT_ExS is not implemented, or if FEAT_ExS is implemented and the SCTLR ELx.EOS field
is set, an Exception Return effect is a CSE effect.

Conditional Branching, and Intrinsic Branching effects

The Conditional Branching effects and Intrinsic Branching effects of an instruction represent the
decision points in choices between two possible changes to the execution flow.

Conditional Branching effects are generated by Conditional branch instructions, when as a
consequence of evaluating a condition a choice potentially affecting the execution flow of other
subsequent instructions is made.

Intrinsic Branching effects due to a translation occur when, as a consequence of reading a TTD, a
choice is made between raising a fault (for example, if the descriptor is invalid) or performing a
physical access. Intrinsic Branching effects represent such decision points.

Intrinsic Branching effects due to tag checking occur when, as a consequence of reading a tag, a
choice is made between raising a fault (that is, due to a failed tag check) or performing a physical
access. Intrinsic Branching effects represent such decision points.

Intrinsic Branching effects due to due to instruction fetch occur when, as a consequence of reading
and decoding an instruction, a choice is made between raising a fault (that is, an Illegal Instruction
Abort) or proceeding to execute the valid instruction. Intrinsic Branching effects represent such
decision points as well.

Note

Conditional Selection instructions do not generate Conditional Branching effects.
Compare-and-Swap instructions do not generate Conditional Branching effects either, but they do
generate Intrinsic Branching effects.

Fault effects, Exception Entry, and Exception Return effects

An instruction can generate a Fault or equivalently an Exception Entry effect, for example as a result
of reading an invalid TTD or fetching an illegal instruction.

An ERET instruction generates an Exception Return effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-229
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
A Fault effect generated by the MMU is called an MMU fault. A Fault effect generated by a failed
Tag Check is called a TagCheck fault.

TLBI effects, Completed TLBI effects and Invalidation Scopes

TLBI effects are generated by TLBI instructions.

A TLBI effect E1 is a Completed TLBI effect if E1 appears in program order before a DSB.FULL effect.

A TLBI effect defines an Invalidation scope, which is a set of TTD Memory Read or Write effects.
A TTD Memory Read or Write effect is in the Invalidation Scope of a TLBI effect if its address is
in the Invalidation scope of the TLBI instruction.

TLBUncacheable effects

An MMU Fault effect is TLBUncacheable if it is one of:

• A Translation Fault effect.

• An Access Flag Fault effect.

• An Address Size Fault effect.

Note
A Permission Fault effect is not TLBUncacheable.

DC CVAU effects

DC CVAU effects are generated by DC CVAU instructions.

IC effects, Completed IC effects

IC effects are generated by IC IALLUIS, IC IALLU or IC IVAU instructions. An IC effect E1 is a
Completed IC effect if E1 appears in program order before a DSB.FULL effect.

Reads-from-register

The Reads-from-register relation couples Register Read and Write effects to the same register such
that each Register Read effect is paired with exactly one Register Write effect in the execution of a
program. A Register Read effect E2 Reads-from-register a Register Write effect E1 if, and only if,
E1 and E2 are to the same register, and E2 takes its data from E1. By construction E1 appears in
program order before E2 and there must be no Register Write effect to the same register in program
order between E1 and E2.

Reads-from memory

The Reads-from memory relation couples Memory Read and Write effects to the same Location so
that each Memory Read effect is paired with exactly one Memory Write effect in the execution of a
program. A Memory Read effect E2 Reads-from-memory a Memory Write effect E1, if and only if
E1 and E2 are to the same location and E2 takes its data from E1.

For two effects E1 and E2 if all of the following apply:

• E1 is an Explicit Memory Read effect.

• E2 is an Explicit Memory Write effect.

• E1 appears in program order before E2.

• E1 and E2 are to the Same Location.

then it is not the case that E1 Reads-from-memory E2.

For two effects E1 and E2 if all of the following apply:

• E1 is an Explicit Memory Read effect.

• E2 is an Explicit Memory Write effect.

• E1 and E2 form a successful Read-Modify-Write pair.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-230
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
then it is not the case that E1 Reads-from-memory E2.

For two effects E1 and E2 if all of the following apply:

• E1 is an Implicit Tag Memory Read effect.

• E2 is an Explicit Memory Write effect.

• E1 appears in program order before E2.

• E1 and E2 are to the Same Location.

then it is not the case that E1 Reads-from-memory E2.

Coherence order

There is a per-location Coherence order relation that provides a total order over all Memory Write
effects to that Location, starting with a notional Memory Write effect of the initial value. The
Coherence order of a Location represents the order in which Memory Write effects to the Location
arrive at memory.

Local read successor

A Memory Read effect E2 of a Location is the Local read successor of a Memory Write effect E1 to
the same Location if E1 appears in program order before E2 and there is no Memory Write effect E3
to the same Location appearing in program order between E1 and E2.

Local write successor

An effect E2 is a Local write successor of a Memory Read or Write effect E1 if E2 is a Memory Write
effect or an MMU Fault, E1 and E2 are to the same Location, and E1 appears in program order before
E2.

Coherence-before, Coherence-after

A Memory Write effect E1 is Coherence-before a Memory Write effect E2 to the same Location if
E1 is sequenced before E2 in the Coherence order for the Location.

A Memory Read effect E1 is Coherence-before a Memory Write effect E2 to the same Location if
E1 Reads-from-memory a Memory Write effect E3 and E3 is Coherence-before E2.

An effect E2 is Coherence-after an effect E1 if E1 is Coherence-before E2.

For two effects E1 and E2 if all of the following apply:

• E1 is an Explicit Memory Write effect.

• E2 is an Explicit Memory Write effect.

• E1 appears in program order before E2.

• E1 and E2 are to the Same Location.

then it is not the case that E2 is Coherence-before E1.

For two effects E1 and E2 if all of the following apply:

• E1 is an Explicit Memory Write effect.

• E2 is an Explicit Memory Read effect.

• E1 appears in program order before E2.

• E1 and E2 are to the Same Location.

then it is not the case that E2 is Coherence-before E1.

For two effects E1 and E2 if all of the following apply:

• E1 is an Explicit Memory Write effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-231
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
• E2 is an Implicit Tag Memory Read effect.

• E1 appears in program order before E2.

• E1 and E2 are to the Same Location.

then it is not the case that E2 is Coherence-before E1.

Low Order Bits

The Low Order Bits of an input address are the bits that map directly to the output address bits,
regardless of the TTD.

Same Low Order Bits

Two effects E1 and E2 have the Same Low Order Bits if the Low Order Bits of the address of E1 and
the low address bits of the address of E2 match.

Note

The address associated with an MMU Fault effect is the faulting address as also indicated in
FAR_ELx.

Same Location

An effect E1 and an effect E2 are to the Same Location if one of the following applies:

• All of the following apply:

— E1 is a Memory effect.

— E2 is a Memory effect.

— E1 and E2 are to the physical address (PA), or

• All of the following applies:

— E1 is an MMU Translation Fault effect.

— E1 and E2 have the Same Low-order Bits, or

• All of the following applies:

— E1 and E2 have the Same Low-order Bits.

— E2 is an MMU Translation Fault effect, or

• All of the following applies:

— An effect E3 is a Translation-intrinsically-before E1.

— An effect E4 is a Translation-intrinsically-before E1.

— The output address of E3 is the same as the output address of E4.

— E1 and E2 have the Same Low-order Bits.

Note

An effect E1 and an effect E2 are to the Same Location, if E1 and E2 are Memory effects or Fault
effects to the same PA. The PA for a Fault effect that prevents an output address from being
generated, for example a Translation Fault effect, is considered to be the same as the PA of an
Explicit Memory effect if the two effects have the Same Low-order Bits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-232
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Same Virtual Address

An effect E1 and an effect E2 are to the Same Virtual Address if and only if all of the following
applies:

• E1 is an Implicit TTD Memory Read effect.

• E2 is an Implicit TTD Memory Read effect.

• E1 and E2 are to the Same Location.

• E1 is Translation-intrinsically-before an effect E3.

• E2 is Translation-intrinsically-before an effect E4.

• E3 and E4 have the Same Low-order Bits.

Same Cache Line

An effect E1 and an effect E2 are to the Same Cache Line if:

• E1 and E2 are Memory effects or DC effects or IC effects.

• E1 and E2 are to PAs that are on the Same Cache Line as follows from section Cache
identification.

TLBUncacheable-Write-Predecessor and -Successor

 An effect E1 is a TLBUncacheable-Write-Predecessor of an effect E2 if and only if all of the
following applies:

• E1 is an Implicit TTD Memory Read effect.

• E2 is an Explicit Memory Write effect.

• E3 is a TLBUncacheable Fault effect.

• E1 is Translation-intrinsically-before E3.

• E1 is Coherence-before E2.

• There is no Memory Write effect E4 such that E1 is Coherence-before E4 and E4 is
Coherence-before E2.

E2 is a TLBUncacheable-Write-Successor of E1 if and only if E1 is a TLBUncacheable-
Write-Predecessor of E2.

Hardware-Update-Predecessor and -Successor

An effect E1 is Hardware-Update-Predecessor of another effect E2 if all of the following apply:

• E2 is a Hardware Update effect.

• E1 is Coherence-Before E2.

• There is no Memory Write effect E3 such that E1 is Coherence-Before E3 and E3 is
Coherence-Before E2.

E2 is a Hardware-Update-Successor of E1 if and only if E1 is a Hardware-Update-Predecessor of E2.

TLBI-before, TLBI-after

For two effects E1 and E2, if and only if all of the following applies:

• E1 is a Completed TLBI effect.

• E2 is an Implicit TTD Read effect.

• E2 is in the Invalidation Scope of E1.

then one and only one of the following applies:

• E1 is TLBI-after E2 (equivalently E2 is TLBI-before E1), or

• E2 is TLBI-after E1 (equivalently E1 is TLBI-before E2).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-233
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Note

The TLBI-after relation enumerates all possible pairs (E1,E2) where E1 is a TLBI effect and E2 is an
Implicit TTD Read effect such that E2 is in the Invalidation Scope of E1, and the TLBI-after relation
is asymmetric.

DC-before, DC-after

For two effects E1 and E2, if all of the following applies:

• E1 is a DC CVAU effect.

• E2 is an Explicit Memory Write effect.

• E1 and E2 are to the Same Cache Line.

then one of the following applies:

• E1 is DC-after E2 (equivalently E2 is DC-before E1), or

• E2 is DC-after E1 (equivalently E1 is DC-before E2).

Note

The DC-after relation enumerates all possible pairs (E1, E2) where E1 is a DC CVAU effect and E2
is an Explicit Memory Write effect such that E1 and E2 are to the Same Cache Line, and the relation
DC-after is asymmetric.

IC-before, IC-after

For two effects E1 and E2, if and only if all of the following applies:

• E1 is a completed IC effect.

• E2 is an Implicit Instruction Memory Read effect.

• E1 and E2 are to the Same Cache Line.

then one and only one of the following applies:

• E1 is IC-after E2 (equivalently E2 is IC-before E1), or

• E2 is IC-after E1 (equivalently E1 is IC-before E2).

Note

The IC-after relation enumerates all possible pairs (E1,E2) where E1 is a completed IC effect and E2
is an Implicit Instruction Memory Read effect such that E1 and E2 are to the Same Cache Line, and
the relation IC-after is asymmetric.

Single-copy-atomic class

A single-copy-atomic class gathers all the Explicit Memory effects generated by the same memory
access where that memory access is defined by the architecture to be single-copy atomic.

B2.3.2 Intrinsic Dependency relations

B2.3.2.1 Intrinsic data, control and order dependencies

Intrinsic dependencies are as follows:

• Intrinsic data dependencies indicate an effect handing over some data to another effect.

• Intrinsic control dependencies indicate an effect being predicated on another effect.

• Intrinsic order dependencies indicate an Intrinsic dependency being neither data nor a control.

Generally, instructions provide an Intrinsic data dependency from the Register or Memory effects from which they
take their inputs to the Register or Memory effects from which they produce their outputs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-234
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
In the following, instructions whose Intrinsic dependencies are note-worthy special cases are listed.

B2.3.2.1.1 Conditional Selection instructions

CSEL instruction success case.

If the condition cond is true all of the following apply to the effects generated by CSEL X0, X1, X2, cond instruction:

• Ct1: There is an Intrinsic control dependency from the Register Read effect of PSTATE.NZCV to the Register
Read effect of X1.

• Dt1: There is an Intrinsic data dependency from the Register Read effect of X0 to the Register Write effect of
X0.

A CSEL instruction fail case.

If the condition cond is false all of the following apply:

• Cf1: There is an Intrinsic control dependency from the Register Read effect of PSTATE.NZCV to the Register
Read effect of X2.

• Df1: There is an Intrinsic data dependency from the Register Read effect of X2 to the Register Write effect of
X0.

B2.3.2.1.2 Compare-and-Swap instructions

The following apply to the effects generated by CAS X0, X1,[X2]:

CAS instruction fail case.

• D1: There is an Intrinsic data dependency from the Register Read effect of X2 to the Explicit Memory Read
effect of the Memory Location x addressed by X2.

• D2: There is an Intrinsic data dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Intrinsic Branching effect which checks whether the contents of the Memory Location
x are equal to the contents of the Register X0.

• D3: There is an Intrinsic data dependency from the Register Read effect of X0 to the Intrinsic Branching effect
which checks whether the contents of the Memory Location x are equal to the contents of the Register X0.

• Df1: There is an Intrinsic data dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Register Write effect of X0.

CAS instruction success case 0.

• D1: There is an Intrinsic data dependency from the Register Read effect of X2 to the Explicit Memory Read
effect of the Memory Location x addressed by X2.

• D2: There is an Intrinsic data dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Intrinsic Branching effect which checks whether the contents of the Memory Location
x are equal to the contents of the Register X0.

• D3: There is an Intrinsic data dependency from the Register Read effect of X0 to the Intrinsic Branching effect
which checks whether the contents of the Memory Location x are equal to the contents of the Register X0.

• Ds1: There is an Intrinsic data dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Register Write effect of X0.

• Ds2: There is an Intrinsic control dependency from the Intrinsic Branching effect which checks whether the
contents of the Memory Location x are equal to the contents of the Register X0 to the Register Write effect
of X0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-235
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
CAS instruction success case 1.

• D1: There is an Intrinsic data dependency from the Register Read effect of X2 to the Explicit Memory Read
effect of the Memory Location x addressed by X2.

• D2: There is an Intrinsic data dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Intrinsic Branching effect which checks whether the contents of the Memory Location
x are equal to the contents of the Register X0.

• D3: There is an Intrinsic data dependency from the Register Read effect of X0 to the Intrinsic Branching effect
which checks whether the contents of the Memory Location x are equal to the contents of the Register X0.

• Ds1: There is an Intrinsic data dependency from the Register Read effect of X2 to the Explicit Memory Write
effect of the Memory Location x addressed by X2.

• Ds2: There is an Intrinsic data dependency from the Register Read effect of X1 to the Explicit Memory Write
effect of the Memory Location x addressed by X2.

• Cs1: There is an Intrinsic control dependency from the Intrinsic Branching effect which checks whether the
contents of the Memory Location x are equal to the contents of the Register X0 to the Explicit Memory Write
effect of the Memory Location x addressed by X2.

• Ds32: There is an Intrinsic data dependency from Register Read effect X0 to the Register Write effect of X0.

• Cs1: There is an Intrinsic control dependency from the Intrinsic Branching effect which checks whether the
contents of the Memory Location x are equal to the contents of the Register X0 to the Register Write effect
of X0.

B2.3.2.1.3 Swap instructions

All of the following apply to the effects generated by the SWP X0, X1,[X2] instruction:

• D1: There is an Intrinsic data dependency from the Register Read effect of X2 to the Explicit Memory Read
effect of the Memory Location x addressed by X2.

• D2: There is an Intrinsic data dependency from the Register Read effect of X2 to the Explicit Memory Write
effect of the Memory Location x addressed by X2.

• O1: There is an Intrinsic order dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Explicit Memory Write effect of the Memory Location x addressed by X2.

• D3: There is an Intrinsic data dependency from the Explicit Memory Read effect of the Memory Location x
addressed by X2 to the Register Write effect of X1.

• D4: There is an Intrinsic data dependency from the Register Read effect of X0, to the Explicit Memory Write
effect of the Memory Location x addressed by X2.

B2.3.2.1.4 MTE Checked instructions

If FEAT_MTE2 is implemented, a Checked LDR X1, [X0] instruction has the following additional dependencies:

• D1: There is an Intrinsic data dependency from the Implicit Tag Memory Read effect of the Tag Location x
of the Memory Location x addressed by X0 to the Intrinsic Branching effect which checks whether tags
match.

• C1: There is an Intrinsic control dependency from the Intrinsic Branching effect which checks whether tags
match to the Explicit Memory Read effect of the Memory Location x addressed by X0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-236
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
B2.3.3 Tag-check-intrinsically-before

If FEAT_MTE2 is implemented, an effect E1 is Tag-check-intrinsically-before an effect E2 generated by the same
instruction as E1 if all of the following apply:

• E1 is an Implicit Tag Memory Read effect.

• One of the following applies:

— E2 is an Explicit Memory Write effect and it is not the case that E2 is a Tag Memory effect.

— E2 is an TagCheck Fault effect.

• E3 is a Branching effect.

• There is an Intrinsic data dependency from E1 to E3.

• There is an Intrinsic control dependency from E3 to E2.

B2.3.4 Translation-intrinsically-before

An effect E1 is Translation-intrinsically-before an effect E2 if all of the following apply:

• E1 is an Implicit TTD Memory Read effect.

• One of the following applies:

— E2 is an Explicit Memory effect.

— E2 is an MMU Fault effect.

• E3 is a Branching effect.

• There is an Intrinsic data dependency from E1 to E3.

• There is an Intrinsic control dependency from E3 to E2.

B2.3.5 Fetch-intrinsically-before

An effect E1 is Fetch-intrinsically-before an effect E2 if all of the following apply:

• E1 is an Implicit Instruction Memory Read effect.

• E3 is a Branching effect.

• There is an Intrinsic data dependency from E1 to E3.

• One of the following applies:

— There is an Intrinsic control dependency from E3 to E2.

— There is an Intrinsic control dependency from E3 to an effect E4 and there is an Intrinsic data
dependency from E4 to E2.

B2.3.6 Dependency relations

Dependency through registers and memory

There is a Dependency through registers and memory from an effect E1 to an effect E2 if one of the
following applies:

• All of the following apply:

— E1 is a Register Write effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-237
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— It is not the case that E1 is generated by a Store Exclusive instruction.

— E2 is a Register Read effect.

— E2 Reads-from-register E1.

• E2 is a Local read successor of E1.

• There is an Intrinsic data dependency from E1 to E2.

• There exists a chain of dependencies through registers and memory from E1 to E2.

Basic dependency

There is a Basic dependency from an effect E1 to an effect E2 if all of the following apply:

• One of the following applies:

— E1 is an Explicit Memory Read effect.

— E1 is a Register Read effect.

• One of the following applies:

— There is a dependency through registers and memory from E1 to E2.

— E1 and E2 are the same effect.

Data dependency

There is a Data dependency from an effect E1 to an effect E2 if all of the following apply:

• There is a Basic dependency from E1 to E3.

• E3 affects the data value written by E2.

• There exists a chain of Intrinsic data dependency from E3 to E2.

• E2 is a Memory Write effect.

Address dependency

There is an Address dependency from an effect E1 to an effect E2 if all of the following apply:

• E1 is an Explicit Memory effect.

• There is a Basic dependency from E1 to E3.

• E3 affects the address of the Location accessed by E2.

• There is an Intrinsic Data Dependency from E3 to E2.

• E2 is a Memory effect.

Control dependency

There is a Control dependency from an effect E1 to an effect E2 if all of the following apply:

• There is a Basic dependency from E1 to E3.

• E3 is a Conditional Branching effect.

• E3 appears in program order before E2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-238
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Note

This includes cases where there is a Basic dependency from E1 to the determination of a
synchronous exception on an instruction generating an effect E3, and E3 appears in program order
before E2. This is for any synchronous exception and not just exceptions related to translation. This
is also regardless of the exception actually being detected.

Pick dependency through registers and memory

There is a Pick dependency through registers and memory from an effect E1 to an effect E2 if one of
the following applies:

• There is a dependency through registers and memory from E1 to E2.

• There is an Intrinsic control dependency from E1 to E2.

• There exists a chain of dependency through registers and memory or Intrinsic control
dependency from E1 to E2.

Pick Basic dependency

There is a Pick Basic dependency from an effect E1 to an effect E2 if one of the following applies:

• One of the following applies:

— E1 is an Explicit Memory Read effect.

— E1 is a Register Read effect.

• One of the following applies:

— There is a Pick dependency through registers and memory from E1 to E2.

— E1 and E2 are the same effect.

Pick Data dependency

There is a Pick Data dependency from an effect E1 to an effect E2 if all of the following apply:

• There is a Pick Basic dependency from effect E1 to an effect E3.

• E3 affects the data value written by E2.

• There exists a chain of Intrinsic data dependency from E3 to E2.

• E2 is a Memory Write effect.

Pick Address dependency

There is a Pick Address dependency from an effect E1 to an effect E2 if all of the following apply:

• There is a Pick Basic dependency from E1 to an effect E3.

• E3 affects the address of the Location accessed by E2.

• There exists a chain of Intrinsic data dependency from E3 to E2.

• E2 is a Memory effect.

Pick Control dependency

There is a Pick Control dependency from an effect E1 to an effect E2 if all of the following apply:

• There is a Pick Basic dependency from E1 to an effect E3.

• E3 is a Conditional Branching effect.

• E3 appears in program order before E2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-239
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Pick dependency

There is a Pick dependency from an effect E1 to an effect E2 if one of the following applies:

• There is a Pick Basic dependency from E1 to E2.

• There is a Pick Address dependency from E1 to E2.

• There is a Pick Data dependency from E1 to E2.

• There is a Pick Control dependency from E1 to E2.

B2.3.7 Ordering relations

Explicitly-Hazard-ordered-before

An effect E1 is Explicitly-Hazard-ordered-before an effect E2 if all of the following apply:

• E1 is an Explicit Memory Read effect.

• E1 appears in program order before E3.

• E1 and E3 are to the Same Location.

• E3 is an Explicit Memory Read effect.

• E3 is Coherence-before E2.

• E3 and E2 are from different Processing Elements.

• E3 is an Explicit Memory Write effect.

Note

The Explicitly-Hazard-ordered-before relation does not apply when either E1 or E3 or both are
generated by SVE instructions.

TTD-read-ordered-before

An effect E1 is TTD-read-ordered-before an effect E2 if one of the following applies:

• All of the following apply:

— E1 is TLBI-before E3.

— E3 is a TLBI effect.

— E3 appears in program order before E4.

— E4 is a DSB.FULL effect.

— E4 appears in program order before E2.

— It is not the case that E2 is an Implicit Memory effect.

• All of the following apply:

— E1 is TLBI-before E3.

— E3 is a TLBI effect.

— E3 appears in program order before E4.

— E4 is a DSB.FULL effect.

— E4 appears in program order before E5.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-240
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E5 is an Context Synchronization effect.

— E5 appears in program order before E2.

— E2 is an Implicit Memory effect.

• All of the following apply:

— ETS2 is implemented.

— E1 is a TLBI-before E3.

— E3 is a TLBI effect.

— E3 appears in program order before E4.

— E4 is a DSB.FULL effect.

— E4 appears in program order before E2.

— E2 is an Implicit TTD Memory effect.

TLBI-ordered-before

An effect E1 is TLBI-ordered-before an effect E2 if all of the following apply:

• E1 is TTD-read-ordered-before E2.

• All of the following apply:

— E3 is Translation-intrinsically-before E1.

— E3 is TTD-read-ordered-before E2.

— E3 and E2 are from different Processing Elements.

• All of the following apply:

— E1 appears in program order before E3.

— E1 and E3 are to the Same Virtual Address.

— E3 is TTD-read-ordered-before E2.

— E3 and E2 are from different Processing Elements.

Instruction-read-ordered-before

An effect E1 is Instruction-read-ordered-before an effect E2 if one of the following applies:

• All of the following apply:

— E1 is IC-before E3.

— E3 is an IC effect.

— E3 appears in program order before E4.

— E4 is a DSB.FULL effect.

— E4 appears in program order before E2.

— It is not the case that E2 is an Implicit Memory effect.

• DIC is implemented and E1 is Coherence-before E2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-241
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
IC-ordered-before

An effect E1 is IC-ordered-before an effect E2 if all of the following apply:

• E1 is an Implicit Instruction Memory Read effect.

• E1 appears in program order before E3.

• E3 is an Implicit Instruction Memory Read effect.

• E3 is an Instruction-read-ordered-before E2.

Hazard-ordered-before

An effect E1 is Hazard-ordered-before an effect E2 if one of the following applies:

• E1 is Explicitly-hazard-ordered-before E2.

• E1 is TLBI-ordered-before E2.

• E1 is IC-ordered-before E2.

DSB-ordered-before

An effect E1 is DSB-ordered-before an effect E2 if one of the following applies:

• All of the following apply:

— One of the following applies:

— E1 is a Memory effect.

— E1 is a DC VAU effect.

— E1 is an IC effect.

— E1 appears in program order before E3.

— E3 is a DSB.FULL effect.

— E3 appears in program order before E2.

— It is not the case that E2 is an Implicit Memory effect.

• All of the following apply:

— ETS2 is implemented.

— One of the following applies:

— E1 is a Memory effect.

— E1 is a DC VAU effect.

— E1 is an IC effect.

— E1 appears in program order before E3.

— E3 is a DSB.FULL effect.

— E3 appears in program order before E3.

— E2 is an Implicit TTD Memory effect.

• All of the following apply:

— E1 is an Explicit Memory Read effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-242
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E1 is generated by an instruction whose destination register is not WZR or XZR.

— E1 appears in program order before E3.

— E3 is a DSB LD effect.

— E3 appears in program order before E2.

— It is not the case that E2 is an Implicit Memory effect.

• All of the following apply:

— ETS2 is implemented.

— E1 is an Explicit Memory Read effect.

— E1 is generated by an instruction whose destination register is not WZR or XZR.

— E1 appears in program order before E3.

— E3 is a DSB LD effect.

— E3 appears in program order before E2.

— E2 is an Implicit TTD Memory effect.

• All of the following apply:

— E1 is an Explicit Memory Write effect.

— E1 appears in program order before E3.

— E3 is a DSB ST effect.

— E3 appears in program order before E2.

— It is not the case that E2 is an Implicit Memory effect.

• All of the following apply:

— ETS2 is implemented.

— E1 is an Explicit Memory Write effect.

— E1 appears in program order before E3.

— E3 is a DSB ST effect.

— E3 appears in program order before E2.

— E2 is an Implicit TTD Memory effect.

CSE-ordered-before

An effect E1 is CSE-ordered-before an effect E2 if one of the following applies:

• All of the following apply:

— E1 is an Explicit Memory Read effect.

— There is a Control dependency from E1 to E3.

— E3 is a Context Synchronization effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-243
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E3 appears in program order before E2.

• All of the following apply:

— E1 is a DSB-ordered-before E3.

— E3 is a Context Synchronization effect.

— E3 appears in program order before E2.

• All of the following apply:

— E1 is an Implicit TTD Memory Read effect.

— E1 is an Translation-intrinsically-before E3.

— E3 is a Context Synchronization effect.

— E3 appears in program order before E2.

• All of the following apply:

— E1 is an Implicit Instruction Memory Read effect.

— E1 is an Fetch-intrinsically-before E3.

— E3 is a Context Synchronization effect.

— E3 appears in program order before E2.

Dependency-ordered-before

An effect E1 is Dependency-ordered-before an effect E2 if one of the following applies:

• There is an Address dependency from E1 to E2.

• There is an Data dependency from E1 to E2.

• All of the following apply:

— There is a Control dependency from E1 to E2.

— E2 is a Memory Write effect.

• All of the following apply:

— There is an Address dependency from E1 to E3.

— E3 is an Explicit effect.

— E3 appears in program order before E4.

— E4 is a Context Synchronization effect.

— E4 appears in program order before E2.

— E2 is a Memory Read effect.

• All of the following apply:

— There is an Address dependency from E1 to E3.

— E3 is an Explicit effect.

— E3 appears in program order before E2.

— E2 is a Memory Write effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-244
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
• All of the following apply:

— There is an Address dependency from E1 to E3.

— E3 is an Explicit effect.

— E2 is a Local read successor of E3.

• All of the following apply:

— There is an Data dependency from E1 to E3.

— E3 is an Explicit effect.

— E2 is a Local read successor of E3.

Pick-ordered-before

An effect E1 is Pick-ordered-before an effect E2 if one of the following applies:

• All of the following apply:

— E1 is an Explicit effect.

— There is a Pick dependency from E1 to E2.

— E2 is a Memory Write effect.

• All of the following apply:

— E1 is an Explicit effect.

— There is a Pick Control dependency from E1 to E3.

— E3 is a Context Synchronization effect.

— E3 appears in program order before E2.

— E2 is a Memory effect.

• All of the following apply:

— E1 is an Explicit effect.

— There is a Pick Address dependency from E1 to E3.

— E3 is an Explicit effect.

— E3 appears in program order before E4.

— E4 is a Context Synchronization effect.

— E4 appears in program order before E2.

— E2 is a Memory effect.

• All of the following apply:

— E1 is an Explicit effect.

— There is a Pick Address dependency from E1 to E3.

— E3 is an Explicit Memory effect.

— E3 appears in program order before E2.

— E2 is a Memory Write effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-245
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
Atomic-ordered-before

E1 and E2 form a successful Read-Modify-Write pair if and only if E1 and E2 are generated by the
same atomic instruction or the same successful Load-Exclusive/Store-Exclusive instruction pair to
the Same Location.

An effect E1 is atomic-ordered-before an effect E2 if one of the following applies:

• E1 and E2 form a successful Read-Modify-Write pair.

• All of the following apply:

— E1 and E3 form a successful Read-Modify-Write pair.

— E2 is the Local read successor of E3.

— One of the following applies:

— E2 is generated by an instruction with Acquire semantics.

— E2 is generated by an instruction with AcquirePC semantics.

Barrier-ordered-before

An effect E1 is Barrier-ordered-before an effect E2 if one of the following applies:

• All of the following apply:

— E1 appears in program order before E3.

— E3 is either a DMB Full effect or a DSB Full effect.

— E3 appears in program order before E2.

• All of the following apply:

— E1 is a Memory Read effect.

— E1 is generated by an instruction whose destination register is not WZR or XZR.

— E1 appears in program order before E3.

— E3 is either a DMB LD effect or a DSB LD effect.

— E3 appears in program order before E2.

• All of the following apply:

— E1 is a Memory Write effect.

— E1 appears in program order before E3.

— E3 is a either a DMB ST effect or a DSB ST effect.

— E3 appears in program order before E2.

— One of the following applies:

— E2 is a Memory Write effect.

— E2 is a MMU Fault effect.

• All of the following apply:

— E1 is a Memory Write effect and is generated by an atomic instruction with both
Acquire and Release semantics.

— E1 appears in program order before E2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-246
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
• All of the following apply:

— E1 is generated by an instruction with Release semantics.

— E1 appears in program order before E2.

— E2 is generated by an instruction with Acquire semantics.

• All of the following apply:

— One of the following applies:

— E1 is generated by an instruction with Acquire semantics.

— E1 is generated by an instruction with AcquirePC semantics.

— E1 appears in program order before E2.

• All of the following apply:

— One of the following applies:

— E1 is generated by an instruction with Acquire semantics.

— E1 is generated by an instruction with AcquirePC semantics.

— There is an Intrinsic order dependency from E1 to E2.

• All of the following apply:

— E1 appears in program order before E2.

— E2 is generated by an instruction with Release semantics.

• All of the following apply:

— There is an Intrinsic order dependency from E1 to E2.

— E2 is generated by an instruction with Release semantics.

Locally-ordered-before

An effect E1 is Locally-ordered-before an effect E2 if one of the following applies:

• One of the following apply:

— E2 is a Local write successor of E1.

— E3 is a Local write successor of E1 and E2 belongs to the same single-copy-atomic class
as E3.

• E1 is Dependency-ordered-before E2.

• E1 is Pick-ordered-before E2.

• E1 is Atomic-ordered-before E2.

• E1 is Barrier-ordered-before E2.

• There exists a chain of Locally-ordered-before from E1 to E2.

Pick-locally-ordered-before

An effect E1 is Pick-locally-ordered-before an effect E2 if all of the following apply:

• There is a Pick Basic dependency from E1 to an effect E3.

• E3 is Locally-ordered-before E2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-247
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
• E2 is a Memory Write effect.

Locally-hardware-required-ordered-before

An effect E1 is Locally-hardware-required-ordered-before an effect E2 if one of the following
applies:

• E1 is Tag-check-intrinsically-before E2.

• E1 is Translation-intrinsically-before E2.

• E1 is Fetch-intrinsically-before E2.

• All of the following apply:

— One of the following applies:

— E1 is an Explicit Memory effect.

— E1 is an Implicit Tag Memory Read effect.

— E1 is Locally-ordered-before E2.

— One of the following applies:

— E2 is an Explicit Memory effect.

— E2 is an Implicit Tag Memory Read effect.

— E2 is a Tag Check Fault effect.

— E2 is an MMU Fault effect.

• All of the following apply:

— One of the following applies:

— E1 is an Explicit Memory effect.

— E1 is an Implicit Tag Memory Read effect.

— E1 is Pick-locally-ordered-before E2.

— One of the following applies:

— E2 is an Explicit Memory effect.

— E2 is an Implicit Tag Memory Read effect.

— E2 is a Tag Check Fault effect.

— E2 is an MMU Fault effect.

• All of the following apply:

— ETS2 is implemented.

— E1 is an Explicit Memory effect.

— E1 appears in program order before E3.

— E3 is a TLBUncacheable Fault effect.

— E2 is Translation-intrinsically-before E3.

— E2 is an Implicit TTD Memory Read effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-248
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
• E1 is DSB-ordered-before E2.

• E1 is CSE-ordered-before E2.

• All of the following apply:

— E1 is an Implicit TTD Memory Read effect.

— E1 appears in program order before E2.

— E1 and E2 are to the Same Location.

— E2 is a Memory Write effect.

• All of the following apply:

— E1 is an Implicit TTD Read effect.

— E1 and E2 form a successful Read-Modify-Write pair.

— E2 is a Hardware Update effect.

• All of the following apply:

— E1 is an Explicit Memory effect.

— E1 appears in program order before E2.

— E1 and E2 are to the Same Location.

— E2 is a TLBUncacheable Fault effect.

• All of the following apply:

— E1 is an Explicit Memory Read effect.

— There is a Control dependency from E1 to E2.

— E2 is a Hardware Update effect.

• All of the following apply:

— E1 is an Explicit Memory Read effect.

— There is an Address dependency from E1 to E2.

— E2 is a Hardware Update effect.

• All of the following apply:

— E1 is an Explicit Memory Read effect.

— There is an Address dependency from E1 to E3.

— E3 is an Explicit effect.

— E3 appears in program order before E2.

— E2 is a Hardware Update effect.

• All of the following apply:

— E1 is an Explicit Memory Read effect.

— There is an Address dependency from E1 to E3.

— E3 is an Explicit effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-249
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E3 appears in program order before E4.

— E4 is a Context Synchronization effect.

— E4 appears in program order before E2.

• All of the following apply:

— E1 is an Implicit Instruction Memory Read effect.

— E1 appears in program order before E2.

— It is not the case that E2 is an Implicit Instruction Memory Read effect.

• All of the following apply:

— E1 is an Explicit Memory Read effect.

— E1 appears in program order before E3.

— E3 is a DMB Full effect.

— E3 appears in program order before E2.

— E2 is a DC CVAU effect.

• All of the following apply:

— E1 is a DC CVAU effect.

— E1 appears in program order before E3.

— E3 is a DMB Full effect.

— E3 appears in program order before E2.

— E2 is an Explicit Memory effect.

• All of the following apply:

— E1 is a DC CVAU effect.

— E1 appears in program order before E3.

— E3 is a DMB Full effect.

— E3 appears in program order before E2.

— E2 is a DC CVAU effect.

• All of the following apply:

— E1 is an Explicit Memory effect.

— E1 appears in program order before E2.

— E1 and E2 are to the Same Cache Line.

— E2 is a DC CVAU effect.

• All of the following apply:

— E1 is a DC CVAU effect.

— E1 appears in program order before E2.

— E1 and E2 are to the Same Cache Line.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-250
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E2 is an Explicit Memory effect.

• All of the following apply:

— E1 is a DC CVAU effect.

— E1 appears in program order before E2.

— E1 and E2 are to the Same Cache Line.

— E2 is a DC CVAU effect.

• There exists a chain of Locally-hardware-required-ordered-before from E1 to E2.

Hardware-required-ordered-before

An effect E1 is in Hardware-required-ordered-before an effect E2 if one of the following applies:

• E1 is Locally-hardware-required-before E2.

• E1 is Hazard-ordered-before E2.

B2.3.8 Observation relations

TLBI-Coherence-before and TLBI-Coherence-after

An effect E1 is TLBI-Coherence-before an effect E2 if all of the following apply:

• E1 is a TLBI effect.

• E1 is a TLBI-before E3.

• E3 is an Implicit TTD Memory Read effect.

• E3 is Coherence-before E2.

• E2 is a Memory Write effect.

An effect E1 is TLBI-Coherence-after an effect E2 if and only if E2 is TLBI-Coherence-before E1.

IC-Coherence-before and IC-Coherence-after

An effect E1 is IC-Coherence-before an effect E2 if one of the following applies:

• All of the following apply:

— It is not the case that DIC is implemented.

— It is not the case that IDC is implemented.

— E1 is an IC effect.

— E1 is IC-before E3.

— E3 is an Implicit Instruction Memory Read effect.

— E3 is Coherence-before E4.

— E4 is a Memory Write effect.

— E4 is DC-before E2.

— E2 is a DC CVAU effect.

• All of the following apply:

— It is not the case that DIC is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-251
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— IDC is implemented.

— E1 is an IC effect.

— E1 is IC-before E3.

— E3 is an Implicit Instruction Memory Read effect.

— E3 is Coherence-before E2.

— E2 is a Memory Write effect.

• All of the following apply:

— DIC is implemented.

— IDC is implemented.

— E1 is an Implicit Instruction Memory Read effect.

— E1 is Coherence-before E2.

— E2 is a Memory Write effect.

An effect E1 is IC-Coherence-after an effect E2 if and only if E2 is IC-Coherence-before E1.

Explicitly-Observed-by

An effect E1 is Explicitly-Observed-by an effect E2 if one of the following applies:

• All of the following apply:

— E1 is an Explicit Memory Write effect.

— E2 Reads-from-memory E1.

— E1 and E2 are from different Processing Elements.

— E2 is an Explicit Memory Read effect.

• All of the following apply:

— E1 is an Explicit Memory effect.

— E1 is Coherence-before E2.

— E1 and E2 are from different Processing Elements.

— E2 is an Explicit Memory Write effect.

Tag-Observed-by

An effect E1 is Tag-Observed-by an effect E2 if one of the following applies:

• All of the following apply:

— E1 is an Explicit Memory Write effect.

— E2 Reads-from-memory E1.

— E1 and E2 are from different Processing Elements.

— E2 is an Implicit Tag Memory Read effect.

• All of the following apply:

— E1 is an Implicit Tag Memory Read effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-252
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E1 is Coherence-before E2.

— E1 and E2 are from different Processing Elements.

— E2 is an Explicit Memory Write effect.

TTD-Observed-by

An effect E1 is TTD-Observed-by an effect E2 if one of the following applies:

• All of the following apply:

— E1 is an Implicit TTD Memory Write effect.

— E2 Reads-from-memory E1.

• All of the following apply:

— E2 Reads-from-memory E1.

— E2 is an Implicit TTD Memory Read effect.

• E1 is a TLBUncacheable-Write-Predecessor of E2.

• E1 is a Hardware-Update-Predecessor of E2.

• All of the following apply:

— E1 is a Hardware Update effect.

— E1 is a Coherence-before E2.

• All of the following apply:

— E1 is a Coherence-before E2.

— E2 is a Hardware Update effect.

• E1 is a TLBI-coherence-before E2.

Instruction-Observed-by

An effect E1 is Instruction-Observed-by an effect E2 if one of the following applies:

• All of the following apply:

— E2 Reads-from-memory E1.

— E2 is an Implicit Instruction Memory Read effect.

• E1 is IC-before E2.

• All of the following apply:

— E1 is a DC CVAU effect.

— E1 is a DC-before E2.

— E2 is a Memory Write effect.

• All of the following apply:

— E1 is a Memory Write effect.

— E1 is a DC-before E2.

— E2 is a DC CVAU effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-253
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
• E1 is IC-coherence-before E2.

Observed-by

An effect E1 is Observed-by an effect E2 if one of the following applies:

• E1 is Explicitly-Observed-by either E2 or an effect which belongs to the same
single-copy-atomic class as E2.

• E1 is Tag-Observed-by either E2 or an effect which belongs to the same single-copy-atomic
class as E2.

• E1 is TTD-Observed-by E2.

• E1 is Instruction-Observed-by E2.

B2.3.9 External ordering constraints

An architecturally well-formed execution must satisfy the External visibility requirement.

B2.3.9.1 External visibility requirement

Ordered-before

An effect E1 is Ordered-before an effect E2 if one of the following cases apply:

• E1 is Hardware-required-ordered-before E2.

• E1 is Observed-by E2.

• There exists a chain of Ordered-before from E1 to E2.

For an effect E1 that is Ordered-before an effect E2, the External visibility requirement requires that E2 is not
Observed-by E1. This requirement means that an architecturally well-formed execution must not exhibit a cycle in
the Ordered-before relation.

B2.3.9.2 External completion requirement

The External completion requirement is a requirement that is alternative to the External visibility requirement, but
is limited to Explicit Memory effects only. An architecturally well-formed execution must satisfy the External
completion requirement.

The Completes-before order is a total order that corresponds to the order in which Memory effects complete within
the system. Effects E1 and E2 constitute a single entry in the Completes-before order, if any of the following applies:

• All of the following apply:

— E1 is a Memory Write effect.

— E2 is a Memory Write effect.

— E1 belongs to the same single-copy-atomic class as E2.

• All of the following apply:

— E1 is a Memory Read effect.

— E2 is a Memory Read effect.

— E1 belongs to the same single-copy-atomic class as E2.

— E1 Reads-from-memory a Memory Write effect E3.

— E1 and E3 are from different Processing Elements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-254
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E2 Reads-from-memory a Memory Write effect E4.

— E2 and E4 are from different Processing Elements.

• All of the following apply:

— E1 is a Memory Read effect.

— E2 is a Memory Read effect.

— E1 belongs to the same single-copy-atomic class as E2.

— E1 Reads-from-memory a Memory Write effect E3.

— E1 and E3 are from the same Processing Element.

— E2 Reads-from-memory a Memory Write effect E4.

— E2 and E4 are from the same Processing Element.

— E3 belongs to the same single-copy-atomic class as E4.

All other Memory Read effects constitute distinct entries in the Completes-before order.

Single-copy-atomic-ordered-before

A Memory Read effect E1 is single-copy-atomic-order-before another Memory Read effect E2 if all
the following apply:

• E1 belongs to the same single-copy-atomic class as E2.

• E1 Reads-from-memory a Memory Write effect E3.

• E1 and E3 are from different Processing Elements.

• E2 Reads-from-memory a Memory Write effect E4.

• E2 and E4 are from the same Processing Element.

Completes-before

A Memory Read or Write effect E1 completes-before a Memory Read or Write effect E2 if E1
appears in the Completes-before order before E2.

Deriving Reads-from-memory and Coherence order from the Completes-before order

The Reads-from-memory relation can be derived from the Completes-before order by specifying
which Memory Write effect every Memory Read effect gets its value from. Specifically, for a
Memory Read effect E1 one of the following must apply:

• If all of the following apply:

— There is a Memory Write effect E2.

— E1 is a Local read successor of E2.

— E1 Completes-before E2.

— There is no Memory Write effect E3 to the Same Location in the Completes-before
order between E2 and an Explicit Memory Read effect E4 to the Same Location that
appears in program-order before E1.

then it must be that E1 Reads-from-memory E2.

• If all of the following apply:

— There is a Memory Write effect E2 (possibly representing the writing of the initial
value to the Location).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-255
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E2 and E1 are to the Same Location.

— E2 Completes-before E1.

— It is not the case that E2 Completes-before a Memory Write effect E3 and E1 is the local
read successor of E3.

— There is no Memory Write effect E4 to the Same Location in the Completes-before
order between E2 and E1.

— There is no Memory Write effect E5 to the Same Location in the Completes-before
order between E2 and a Memory Read effect E6 to the Same Location that appears in
program-order before E1.

then it must be that E1 Reads-from-memory E2.

The Coherence order can be derived from the Completes-before order by letting the Coherence
order of Memory Write effects to a memory location be the order in which those Memory Write
effects appear in the Completes-before order. The final value of each memory location is therefore
determined by the final Memory Write effect to each Location in the Completes-before order. If no
such Memory Write effect exists for a given Location, the final value is the initial value of that
Location.

External completion requirement

The External completion requirement requires that a Memory effect E1 Completes-before a
Memory effect E2 if all of the following statements are true:

• E1 is Locally-hardware-required-ordered-before E2.

• E1 is a Memory Read effect, E2 is a Memory Read effect, and E1 is
single-copy-atomic-ordered before E2.

B2.3.9.3 External global completion requirement

The External global completion requirement is a requirement that is alternative to the External visibility
requirement, but is limited to Explicit Memory effects only. An architecturally well-formed execution must satisfy
the External completion requirement.

The Globally-completes-before order is a total order that corresponds to the order in which Memory effects
complete within the system. Effects E1 and E2 constitute a single entry in the Globally-completes-before order, if
any of the following applies:

• All of the following apply:

— E1 is a Memory Write effect.

— E2 is a Memory Write effect.

— E1 belongs to the same single-copy-atomic class as E2.

• All of the following apply:

— E1 is a Memory Read effect.

— E2 is a Memory Read effect.

— E1 belongs to the same single-copy-atomic class as E2.

— E1 Reads-from-memory a Memory Write effect E3.

— E1 and E3 are from different Processing Elements.

— E2 Reads-from-memory a Memory Write effect E4.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-256
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
— E2 and E4 are from different Processing Elements.

• All of the following apply:

— E1 is a Memory Read effect.

— E2 is a Memory Read effect.

— E1 belongs to the same single-copy-atomic class as E2.

— E1 Reads-from-memory a Memory Write effect E3.

— E1 and E3 are from the same Processing Element.

— E2 Reads-from-memory a Memory Write effect E4.

— E2 and E4 are from the same Processing Element.

— E3 belongs to the same single-copy-atomic class as E4.

All other Memory Read effects constitute distinct entries in the Globally-completes-before order.

Single-copy-atomic-ordered-before

A Memory Read effect E1 is single-copy-atomic-order-before another Memory Read effect E2 if all
the following apply:

• E1 belongs to the same single-copy-atomic class as E2.

• E1 Reads-from-memory a Memory Write effect E3.

• E1 and E3 are from different Processing Elements.

• E2 Reads-from-memory a Memory Write effect E4.

• E2 and E4 are from the same Processing Element.

Globally-completes-before

A Memory Read or Write effect E1 Globally-completes-before a Memory Read or Write effect E2 if
E1 appears in the Globally-completes-before order before E2.

Deriving Reads-from-memory and Coherence order from the Globally-completes-before order

The Reads-from-memory relation can be derived from the Globally-completes-before order by
specifying which Memory Write effect every Memory Read effect gets its value from. Specifically,
for a Memory Read effect E1 it must be that if all of the following applies:

• There is Memory Write effect E2 (possibly representing the writing of the initial value to the
Location).

• E2 Globally-completes-before E1.

• E1 and E2 are to the Same Location.

• There is no Memory Write effect E3 to the Same Location in the Globally-completes-before
order between E2 and E1.

• There is no Memory Write effect E4 to the Same Location in the Globally-completes-before
order between E2 and an Explicit Memory Read effect E5 to the Same Location that appears
in program-order before E1.

then it must be that E1 Reads-from-memory E2.

The Coherence order can be derived from the Globally-completes-before order by letting the
Coherence order of Memory Write effects to a memory location be the order in which those Memory
Write effects appear in the Globally-completes-before order. The final value of each memory
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-257
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Arm memory model
location is therefore determined by the final Memory Write effect to each Location in the
Globally-completes-before order. If no such Memory Write effect exists for a given Location, the
final value is the initial value of that Location.

External global completion requirement

The External global completion requirement requires that a Memory effect E1
Globally-completes-before a Memory effect E2 if all of the following statements are true:

• E1 is Locally-hardware-required-ordered-before E2 and one of the following applies:

— E1 is a Memory Write effect.

— E1 is a Memory Read effect, and one of the following applies:

— E1 Reads-from-memory a Memory Write effect E3, and E1 and E3 are from
different Processing Elements, or.

— E1 Reads-from-memory a Memory Write effect E3, E1, and E3 are from the
same Processing Element, and E3 is Locally-hardware-required-ordered-before
E2.

• E1 is a Memory Read effect, E2 is a Memory Read effect, and E1 is
single-copy-atomic-ordered before E2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-258
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.4 Completion and endpoint ordering
B2.4 Completion and endpoint ordering

For all memory, the completion rules are defined as:

• A Memory Read effect R1 to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an observer within the shareability domain will be Coherence-after
R1.

— Any translation table walks associated with R1 are complete for that shareability domain.

• A Memory Write effect W1 to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an observer within the shareability domain will be Coherence-after
W1.

— Any read to the same Location by an observer within the shareability domain will either Reads-from
W1 or Reads-from a Memory Write effect that is Coherence-after W1.

— Any translation table walks associated with the write are complete for that shareability domain.

• A translation table walk is complete for a shareability domain when the memory accesses, including the
updates to translation table entries, associated with the translation table walk are complete for that
shareability domain, and the TLB is updated.

• A cache maintenance instruction is complete for a shareability domain when the memory effects of the
instruction are complete for that shareability domain, and any translation table walks that arise from the
instruction are complete for that shareability domain.

• A TLB invalidate instruction is complete when all memory accesses using the TLB entries that have been
invalidated are complete.

The completion of any cache or TLB maintenance instruction includes its completion on all PEs that are affected
by both the instruction and the DSB operation that is required to guarantee visibility of the maintenance instruction.

Additionally, for Device-nGnRnE memory, a read or write of a Location in a Memory-mapped peripheral that
exhibits side effects is complete only when the read or write both:

• Can begin to affect the state of the Memory-mapped peripheral.

• Can trigger all associated side effects, whether they affect other peripheral devices, PEs, or memory.

Interaction between observers in a system is not restricted to communication via shared variables in coherent
memory. For example, an observer could configure an interrupt controller to raise an interrupt on another observer
as a form of message passing. These interactions typically involve an additional agent, which defines the instruction
sequence that is required to establish communication links between different observers. When these forms of
interaction are used in conjunction with shared variables, a DSB instruction can be used to enforce ordering between
them.

Note

This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral
endpoint.

Note

These completion rules mean that, for example, a cache maintenance instruction that operates by VA to the PoC
completes only after memory at the PoC has been updated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-259
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.4 Completion and endpoint ordering
B2.4.1 Peripherals

This section defines a Memory-mapped peripheral and the total order of reads and writes to a peripheral which is
defined as the Peripheral coherence order:

Memory-mapped peripheral

A Memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and
can be accessed using load and store instructions. Memory effects to a Memory-mapped peripheral
can have side effects, such as causing the peripheral to perform an action. Values that are read from
addresses within a Memory-mapped peripheral might not correspond to the last data value written
to those addresses. As such, Memory effects to a Memory-mapped peripheral might not appear in
the Reads-from or Coherence order relations.

Peripheral coherence order

The Peripheral coherence order of a Memory-mapped peripheral is a total order on all reads and
writes to that peripheral.

Note

The Peripheral coherence order for a Memory-mapped peripheral signifies the order in which
accesses arrive at the endpoint.

For a Read Memory or write effect RW1 and a Read Memory or write effect RW2 to the same
peripheral, then RW1 will appear in the Peripheral coherence order for the peripheral before RW2 if
either of the following cases apply:

• RW1 and RW2 are accesses using Non-cacheable or Device attributes and RW1 is
Ordered-before RW2.

• RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes, with the
same XS attribute value, and RW1 appears in program order before RW2.

Note

When FEAT_XS is implemented, if accesses marked with the Device-nGnRE or Device-nGnRnE
attributes are within the same Memory-mapped peripheral, but the XS attribute is not the same on
those accesses, the order of arrival at the endpoint is not defined by the architecture.

Out-of-band-ordered-before

A Read Memory or write effect RW1 is Out-of-band-ordered-before a Read Memory or write effect
RW2 if either of the following cases apply:

• RW1 appears in program order before a DSB instruction that begins an IMPLEMENTATION
DEFINED instruction sequence indirectly leading to the generation of RW2.

• RW1 is Ordered-before a Read Memory or write effect RW3 and RW3 is
Out-of-band-ordered-before RW2.

If a Memory effect M1 is Out-of-band-ordered-before a Read Memory or write effect M2, then M1
is seen to occur before M2 by all observers.

Note

Arm expects that, in most systems with early acknowledgments, those acknowledgments will come from a point at
or after the point that establishes global visibility. This is expected in such systems to enable the acknowledgments
to be used as part of the mechanisms to implement the ordering requirements of the Arm memory model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-260
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.5 SVE memory ordering relaxations
B2.5 SVE memory ordering relaxations

ICTNGV The Arm memory model is relaxed for reads and writes generated by SVE load and store instructions.

RQLJPC When two reads generated by SVE vector load instructions have an address dependency, the dependency does not
contribute to the dependency-ordered-before relation.

RYMBMZ When a pair of reads access the same location, and at least one of the reads is generated by an SVE load instruction,
for a given observer, the hazard-ordered-before relation does not apply to the pair of reads.

RCJHWV When a single SVE vector store instruction generates multiple writes to the same location, the instruction ensures
that these writes appear in the coherence order for that location, in order of increasing vector element number. No
other ordering restrictions apply to memory effects generated by the same SVE store instruction.

RLVXTJ If a single SVE load instruction generates multiple reads, the order in which the reads for different elements and
registers appear is not architecturally defined.

RVMDYZ If an address dependency exists between two Read Memory and an SVE non-temporal vector load instruction
generated the second read, then in the absence of any other barrier mechanism to achieve order, the memory
accesses can be observed in any order by the other observers within the shareability domain of the memory
addresses being accessed.

ICCWGN For any SVE load or store instruction that generates multiple single-copy atomic accesses to Normal or Device
memory, there is no requirement for the memory system beyond the PE to be able to identify the single-copy atomic

memory element access sizes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-261
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.6 Streaming SVE mode memory ordering relaxations
B2.6 Streaming SVE mode memory ordering relaxations

RHBBTV If a pair of memory reads access the same location, and at least one of the reads is generated by an Advanced
SIMD&FP load instruction, for a given observer, the hazard-ordered-before relation does not apply to the pair of
reads when the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level.

See also:

• Streaming SVE mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-262
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Ordering rules for GCS
B2.7 Ordering rules for GCS

IQNKNL If FEAT_GCS is implemented, see Guarded Control Stack data accesses for relevant ordering rules.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-263
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.8 Ordering of instruction fetches
B2.8 Ordering of instruction fetches

For two memory locations A and B, if A has been written to with an updated value and been made coherent with
the instruction fetches of the shareability domain before B has been written to with an updated value by an observer
in the same shareability domain, then where, for an observer in the shareability domain, an instruction read from B
appears in program order before an instruction fetched from A, if the instruction read from B contains the updated
value of B then the instruction read from A appearing later in program order will contain the updated value of A.

A write has been made coherent with an instruction fetch of a shareability domain when:

CTR_EL0.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR_EL0.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

Note

Microarchitecturally, this means that these situations cannot both be true in an implementation:

• After delays in fetching from memory, the instruction queue can have entries written into it out of order.

• For an implementation:

— When CTR_EL0.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries
in the instruction queue are not impacted by the IC IVAU instructions of a different core.

— When CTR_EL0.DIC == 1, if there is a write to the location that is held in the queue when there is an
outstanding entry in the instruction queue for an older entry, then the instruction queue does not have
entries invalidated from it.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-264
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Restrictions on the effects of speculation
B2.9 Restrictions on the effects of speculation

The Arm architecture places certain restrictions on the effects of speculation. These are:

• Each load from a location using a particular VA after an exception return that is a Context Synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception exit.

• Each load from a location using a particular VA after an exception entry that is a Context Synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception entry.

• Any load from a location using a particular VA before an exception entry that is a Context Synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
entry.

• Any load from a location using a particular VA before an exception return that is a Context Synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
exit.

• When data is loaded under speculation with a Translation fault, it cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by other instructions in the speculative
sequence.

• When data is loaded under speculation with a GPC fault, it cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by other instructions in the speculative
sequence, and the execution timing of any other instructions in the speculative sequence is not a function of
the data loaded under speculation.

• When stage 2 translation is enabled and a stage 1 translation table entry is loaded under speculation with a
GPC fault, the output address or Next-level table address from the entry cannot be used to form an address
to be used by other fetches in the translation table walk.

• Granule protection checks apply to speculative instruction fetch and speculative execution. Any instruction
fetched under speculation with a GPC fault:

— Cannot cause an update to any architectural or micro-architectural state as a result of speculative
execution of the instruction, where the update of the state is dependent on the content of the
instruction.

— Cannot be stored in a cache that is not affected by DC PAPA operations.

• If GPCCR_EL3.GPCP == 0, data from a translation table walk for which the granule protection check for
the address being accessed has not been architecturally resolved can not be used to form an address for a
subsequent read access or for generating syndrome information, until the granule protection check has
passed.

Note

Permitting read accesses to locations for which the granule protection check has not been architecturally
resolved means the GPT does not protect non-idempotent locations from these speculative read operations.

• When data is loaded under speculation from a location that does not have a valid translation for the translation
regime being speculated in, the data cannot be used to form an address, generate condition codes, or generate
SVE predicate values to be used by other instructions in the speculative sequence.

• When data is loaded as a result of speculative accesses made after TLBI + DSB + ERET using a translation that
was invalidated by the TLBI, the data cannot be used to form an address, generate condition codes, or
generate SVE predicate values to be used by other instructions in the speculative sequence. The execution
timing of any other instructions in the speculative sequence is not a function of the data loaded.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the microarchitectural state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-265
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Restrictions on the effects of speculation
• Changes to Special-purpose registers can occur speculatively.

• Accesses to Device memory are subject to many restrictions on the effects of Speculation. See Device
memory.

• Execute-never controls apply to speculative instruction fetching. See Effects on instruction execution
permissions and restrictions on instruction fetch.

• When writing new instructions to memory, there is no requirement for an SB instruction to prevent speculative
execution of the old code. See Instruction cache maintenance instructions.

• Write speculation that is visible to other observers is prohibited for all memory types.

Note

The prohibition of using data loaded under speculation with faults to form addresses, condition codes or SVE
predicate values does not prohibit the use of value predicted data from such locations for such purposes, so long as
the training of the data value prediction was from the hardware defined context that is using the prediction. A
consequence of this is that training of value prediction cannot be based on data loaded under speculation with a
translation or Permission fault.

B2.9.1 Speculative Store Bypass Safe (SSBS)

When FEAT_SSBS is implemented, PSTATE.SSBS is a control that can be set by software to indicate whether
hardware is permitted to use, in a manner that is potentially speculatively exploitable, a speculative value in a
register that has been loaded from memory using a load instruction that speculatively read the location being loaded
from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by
the latest store to that location using the same virtual address as the load instruction.

A speculative value in a register is used in a potentially speculatively exploitable manner if it is used to form an
address, generate condition codes, or generate SVE predicate values to be used by other instructions in the
speculative sequence or if the execution timing of any other instructions in the speculative sequence is a function of
the data loaded under speculation.

When the value of PSTATE.SSBS is 0, hardware is not permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of PSTATE.SSBS is 1, hardware is permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

Note

• If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads
of address values that have been speculatively loaded from memory to a register.

• Software written for architectures from Armv8.0 to Armv8.4 will set SPSR_ELx.SSBS to 0. This means that
PSTATE.SSBS will not set, so hardware will not be permitted to use speculative loads with outstanding
memory disambiguation issues for any subsequent speculative memory accesses if there is any possibility of
those subsequent memory accesses creating a cache timing side channel.

B2.9.2 Definition of exploitative control of speculative execution

The execution of some code (code1) can exploitatively control speculative execution of some other code (code2) if
all of the following apply:

• The actions of code1 can influence, in a manner that is not hard-to-determine, the prediction of multi-bit
values that determine speculative execution of code2 to cause an irreversible change to the microarchitectural
state of the PE that is indicative of some architectural state accessible to the execution context of code2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-266
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Restrictions on the effects of speculation
• code1 has control in determining the choice of the architectural state that the irreversible change to the
microarchitectural state is indicative of.

• The irreversible changes to the microarchitectural state of the PE can be measured by code executing in an
execution context other than that of code2 to allow the retrieval of the architectural state in a manner that is
not hard-to-determine.

B2.9.3 Definition of exploitative predictive leakage

The execution of some code (code1) can predictively leak to some other code (code2) if all of the following apply:

• The execution of code1 influences, in a manner that is not hard-to-determine, the predictive
microarchitectural structures of the implementation that predict multi-bit values, not binary choices, to
behave in a way that is indicative of some architectural state accessible to the execution context of code1.

• The predictive microarchitectural structures of the implementation impact the timing of the speculative
execution of code2 in a way that enables code2 to recover the architectural state in a manner that is not
hard-to-determine.

• Code1 and code2 are not collaborating to communicate using the mechanisms in the previous two bullets.

Note

Mechanisms to prevent the influence and the state recovery being “not hard-to-determine” are left open to
implementations. Examples could include the complete separation of prediction resources, or the isolation of the
predictions using a cryptographic or pseudo-random mechanism to separate each context.

B2.9.4 Restrictions on the effects of speculation from Armv8.5

Note

If SCR_EL3.EEL2 is changed, in order to remove all VMID tagging from Secure EL1 and Secure EL0 entries, each
prediction resource should be invalidated by software for:

• Secure EL0 for all ASID and VMID values.

• Secure EL1 for all VMID values.

Further restrictions on speculation are introduced by some additional architectural features as described here.

FEAT_CSV3 introduces these restrictions:

• Data loaded under speculation with a Permission or Domain fault cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by other instructions in the speculative
sequence.

• Any read under speculation from a register that is not architecturally accessible from the current Exception
level cannot be used to form an address, to generate condition codes, or to generate SVE predicate values to
be used by other instructions in the speculative sequence.

Note

As the effects of speculation are not architecturally visible, this restriction requires that the effect of any
speculation cannot give rise to side channels that will leak the values of memory locations, System registers,
or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

• The value of Allocation tags loaded under speculation as the result of a Tag checked access with a
NoTagAccess fault or to Untagged memory cannot influence the execution of the instruction causing the Tag
checked access or other instructions in the speculative sequence.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the microarchitectural state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-267
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Restrictions on the effects of speculation
Note

Changes to Special-purpose registers can occur speculatively.

FEAT_CSV2, FEAT_CSV2_1p1, FEAT_CSV2_1p2, FEAT_CSV2_2 and FEAT_CSV2_3 introduce a range of
additional restrictions.

If FEAT_CSV2 is implemented:

• Code running in one hardware-defined context (context1) cannot either exploitatively control, or predictively
leak to, the speculative execution of code in a different hardware-defined context (context2), as a result of
the behavior of any of the following resources:

— Branch target prediction based on the branch targets used in context1.

— This applies to both direct and indirect branches, including return instructions, but excludes the
prediction of the direction of a conditional branch.

— Data Value predictions based on data value from execution in context1.

Note
PSTATE.{N,Z,C,V} values from context1 are not considered a data value for this purpose.

— Virtual address-based cache prefetch predictions generated as a result of execution in context1, based
on, or causing dereference of, data values from memory.

— Any other prediction mechanisms, other than Branch, Data Value, or Cache Prefetch predictions.

In this definition, the hardware-defined context is determined by:

— The Exception level.

— The Security state.

— When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.

— When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.

— When executing at EL0 and using the EL1&0 translation regime, the address space identifier (ASID)
and, if EL2 is implemented and enabled in the current Security state, the VMID.

— When executing at EL0 and using the EL2&0 translation regime, the ASID.

If FEAT_CSV2_2 is implemented, then SCXTNUM_ELx is also part of the hardware-defined context.

If either FEAT_CSV2_1p1 or FEAT_CSV2_3 is implemented, code running in one hardware-defined context
(context1) cannot either exploitatively control, or predictively leak to, the speculative execution of code in a
different hardware-defined context (context2) as a result of the behavior of branch target prediction based on the
branch history used in context1.

If FEAT_CSV2_1p1 is implemented, branch or data values trained from one instruction address cannot
exploitatively control, or predictively leak to, the speculative execution of code from a different address.

If FEAT_CSV2_1p2 is implemented, the SCXTNUM_ELx register is implemented, but is not part of the
hardware-defined context.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-268
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
B2.10 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization
events by a PE with respect to retiring load/store instructions. The memory barriers defined by the Arm architecture
provide a range of functionality, including:

• Ordering of load/store instructions.

• Completion of load/store instructions.

• Context synchronization.

The following subsections describe the Arm memory barrier instructions:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

• Speculation Barrier (SB).

• Consumption of Speculative Data Barrier (CSDB).

• Speculative Store Bypass Barrier (SSBB).

• Profiling Synchronization Barrier (PSB).

• Physical Speculative Store Bypass Barrier (PSSBB).

• Trace Synchronization Barrier (TSB).

• Data Synchronization Barrier (DSB).

• Shareability and access limitations on the data barrier operations.

• Load-Acquire, Load-AcquirePC, and Store-Release.

• LoadLOAcquire, StoreLORelease.

• Guarded Control Stack Barrier (GCSB).

Note

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache maintenance and memory management instructions that in general are available only
when software execution is at EL1 or higher.

DMB and DSB instructions affect reads and writes to the memory system generated by load/store instructions and data
or unified cache maintenance instructions being executed by the PE.

B2.10.1 Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from
the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of
context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction.
Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the
operation are visible to instructions fetched after the ISB instruction are:

• Completed cache and TLB maintenance instructions.

• Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction take effect only after the ISB
has been executed.

The pseudocode function for the operation of an ISB is InstructionSynchronizationBarrier().

See also Memory barriers.

B2.10.2 Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the
barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the
memory accesses for which it ensures relative order.

The full definition of the DMB instruction is covered formally in the Definition of the Arm memory model and this
introduction to the DMB instruction is not intended to contradict that section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-269
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be
affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all
affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB
instruction and those which originate from a different PE, to the extent required by the DMB options, which have
been observed by the PE before the DMB instruction is executed, are observed by each PE, to the extent required by
the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are
observed by that PE.

The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition
of Barrier-ordered-before.

The DMB instruction affects only memory accesses and the operation of data cache and unified cache maintenance
instructions, see A64 Cache maintenance instructions. It has no effect on the ordering of any other instructions
executing on the PE.

The pseudocode function for the operation of a DMB instruction is DataMemoryBarrier().

B2.10.3 Speculation Barrier (SB)

An SB instruction is a memory barrier that prevents speculative execution of instructions until after the barrier has
completed when those instructions could be observed through side-channels.

Until the barrier completes, the speculative execution of any instruction appearing later in the program order than
the barrier cannot be performed to the extent that such speculation can be observed through side-channels as a result
of control flow speculation or data value speculation. An example is speculative allocation into any caching
structure where the allocation of that entry could indicate any data value present in memory or in the registers.

• Cannot be performed to the extent that such speculation can be observed through side-channels as a result of
control flow speculation or data value speculation.

• Can be performed when predicting that a instruction that could generate an exception does not generate an
exception.

The speculative execution of an SB instruction cannot be as a result of any of the following:

• Control flow speculation.

• Data value speculation.

• Can be as a result of predicting that an instruction that could generate an exception does not generate an
exception.

An SB instruction can complete when all of the following apply:

• It is known that it is not speculative, or it is speculative only as a result of either:

— Speculating that an instruction that could generate an exception does not generate an exception.

— Speculating past the point in the Execution stream where a precise asynchronous exception is taken.

• All the data values generated by instructions appearing in program order before the SB instruction are
architecturally resolved, and so are not speculative.

Note

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being
fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs
of the speculative execution of instructions appearing in program order after the SB instruction.

B2.10.4 Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution arising from data value
prediction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-270
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
Any instruction, other than a branch instruction, that appears in program order after the CSDB cannot be
speculatively executed using the results of any of the following predictions if those predictions come from
instructions that appear in program order before the CSDB and have not been architecturally resolved:

• Data value predictions of any instructions.

• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in
program order before the CSDB that have not been architecturally resolved.

• Predictions of SVE predication state for any SVE instructions.

Note

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} and SVE predication state are not considered data values.
This definition permits:

• Control flow speculation before and after the CSDB instruction.

• Speculative execution of conditional data processing instructions after the CSDB instruction, unless they use
the results of data value, SVE predication state, or PSTATE.{N,Z,C,V} predictions of instructions appearing in
program order before the CSDB instruction that have not been architecturally resolved.

B2.10.5 Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB instruction, then the load does not
speculatively read an entry earlier in the coherence order for that location than the entry generated by the
latest store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order before the SSBB instruction.

• When a load to a location appears in program order before the SSBB instruction, then the load does not
speculatively read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order after the SSBB instruction.

B2.10.6 Profiling Synchronization Barrier (PSB)

The PSB instruction is a barrier that ensures that all existing profiling data for the current PE has been formatted, and
profiling buffer addresses have been translated such that all writes to the profiling buffer have been initiated. A
following DSB instruction completes when the writes to the profiling buffer have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

B2.10.7 Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
physical address under certain conditions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-271
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB instruction, then the load does not
speculatively read an entry earlier in the coherence order for that location than the entry generated by the
latest store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order before the PSSBB instruction.

• When a load to a location appears in program order before the PSSBB instruction, then the load does not
speculatively read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order after the PSSBB instruction.

Note

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual
addresses and from different Exception levels.

B2.10.8 Trace Synchronization Barrier (TSB)

The TSB instruction is a barrier instruction that preserves the relative order of accesses to System registers due to
trace operations and other accesses to the same registers.

A trace operation is an operation of the trace unit generating trace for an instruction when FEAT_TRF is
implemented and enabled.

A TSB instruction is not required to execute in program order with respect to other instructions. This includes being
reordered with respect to other trace instructions. One or more Context synchronization events are required to
ensure that TSB instruction is executed in the necessary order.

If trace is generated between a Context synchronization event and a TSB operation, these trace operations may be
reordered with respect to the TSB operation, and therefore may not be synchronized.

The following situations are synchronized using a TSB operation:

• A direct write B to a System register is ordered after an indirect read or indirect write of the same register by
a trace operation of a traced instruction A, if all of the following are true:

— A is executed in program order before a Context synchronization event C.

— C appears in program order before a TSB operation T.

— B is executed in program order after T.

• A direct read B of a System register is ordered after an indirect write to the same register by a trace operation
of a traced instruction A if all the following are true:

— A is executed in program order before a Context synchronization event C1.

— C1 appears in program order before TSB operation T.

— T is executed in program order before a second Context synchronization event C2.

— B is executed in program order after C2.

A TSB operation is not needed to ensure a direct write B to a System register is ordered before an indirect read or
indirect write of the same register by a trace operation of a traced instruction A, if all the following are true:

• A is executed in program order after a Context synchronization event C.

• B is executed in program order before C.

If FEAT_TRBE is implemented, the requirements in this section are extended. See Synchronization and the Trace
Buffer Unit.

The pseudocode function for the operation of a TSB instruction is TraceSynchronizationBarrier().
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-272
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
B2.10.9 Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have
completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and
all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB instruction:

• At EL2 ensures that any memory accesses caused by Speculative translation table walks from the EL1&0
translation regime have been observed.

• At EL3 ensures that any memory accesses caused by speculative translation table walks from the EL2,
EL1&0 or EL2&0 translation regimes have been observed.

For more information, see Out-of-context translation regimes.

A DSB instruction executed by a PE, PEe, completes when all of the following apply:

• All explicit memory effects of the required access types appearing in program order before the DSB are
complete for the set of observers in the required shareability domain.

• If the required access types of the DSB is reads and writes, the following instructions issued by PEe before the
DSB are complete for the required shareability domain:

— All cache maintenance instructions.

— All TLB maintenance instructions.

— All PSB instructions.

• When FEAT_XS is implemented, if the required access types of the DSB is reads and writes, completion of
the DSB instruction with the nXS qualifier executed by a PE, PEe, ensures that:

— All previous TLBInXS maintenance operations generated by AArch64 TLB maintenance instructions
with the nXS qualifier executed by PEe are finished for all PEs in the shareability domain of the DSB
instruction.

— All previous TLBInXS maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL1 by PEe when HCRX_EL2.FnXS is 1 are finished for all PEs in the
shareability domain of the DSB instruction.

Completion of the DSB instruction with the nXS qualifier executed by a PE, PEe, does not ensure that:

— All previous TLB maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL1 by PEe when HCRX_EL2.FnXS is 0 are finished for all PEs in the
shareability domain of the DSB instruction.

— All previous TLB maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL2 or EL3 by PEe are finished for all PEs in the shareability domain of the
DSB instruction.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system or
perform any part of its functionality until the DSB completes other than:

• Being fetched from memory and decoded.

• Reading the general-purpose, SIMD and floating-point, SVE vector or predicate, Special-purpose, or System
registers that are directly or indirectly read without causing side effects.

• If FEAT_ETS2 is not implemented, having any virtual addresses of loads and stores translated.

If FEAT_MTE2 is implemented, on completion of a DSB instruction operating over the Non-shareable domain, all
updates to TFSR_ELx.TFx or TFSRE0_EL1.TFx due to Tag Check fails caused by accesses for which the DSB
operates will be complete. For more information on FEAT_MTE2, see Chapter D10 The Memory Tagging
Extension.

When FEAT_XS is implemented and HCRX_EL2.FnXS is 1, an AArch64 DSB instruction executed at EL1 or EL0
behaves in the same way as the corresponding DSB instruction with the nXS qualifier executed at EL1 or EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-273
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
A DSB instruction ordered after a direct write to a System PMU register does not complete until all observers observe
the direct write. A Context synchronization event is required to create the order between the direct write and the DSB
instruction.

If FEAT_TRBE is implemented, the requirements in this section are extended. See Trace synchronization and
memory barriers.

The pseudocode function for the operation of a DSB is DataSynchronizationBarrier().

See also:

• Memory barriers.

• Ordering and completion of TLB maintenance instructions.

B2.10.10 Shareability and access limitations on the data barrier operations

The DMB and DSB instructions take an argument that specifies:

• The shareability domain over which the instruction must operate. This is one of:

— Full system.

— Outer Shareable.

— Inner Shareable.

— Non-shareable.

Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable
domains of the processor.

Note
The distinction between Full system and Outer Shareable is applicable only for Normal Non-cacheable
memory accesses and Device memory accesses.

• The accesses for which the instruction operates. This is one of:

— Read and write accesses, both before and after the barrier instruction.

— Write accesses only, before and after the barrier instruction.

— Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

Note
This form of a DMB or DSB instruction can be described as a load-load/store barrier.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB)
or Data Synchronization Barrier (DSB).

Table B2-1 shows how these options are encoded in the <option> field of the instruction:

See the instruction descriptions for more information:

• DMB.

• DSB.

Table B2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

Before the barrier After the barrier Full system Outer Shareable Inner Shareable Non-shareable

Reads and writes Reads and writes SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-274
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
Note

ISB also supports an optional limitation argument that can contain only one value that corresponds to full system
operation, see ISB.

B2.10.11 Load-Acquire, Load-AcquirePC, and Store-Release

Arm provides a set of instructions with Acquire semantics for loads, and Release semantics for stores. These
instructions support the Release Consistency sequentially consistent (RCsc) model. In addition, FEAT_LRCPC
provides Load-AcquirePC instructions. The combination of Load-AcquirePC and Store-Release can be use to
support the weaker Release Consistency processor consistent (RCpc) model.

The full definitions of the Load-Acquire and Load-AcquirePC instructions are covered formally in the Definition of
the Arm memory model. This introduction to the Load-Acquire and Load-AcquirePC instructions is not intended to
contradict that section.

The basic principle of both Load-Acquire and Load-AcquirePC instructions is to introduce order between:

• The memory access generated by the Load-Acquire or Load-AcquirePC instruction.

• The memory accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction,
such that the memory access generated by the Load-Acquire or Load-AcquirePC instruction is observed by
each PE to the extent that the PE is required to observe the access coherently, before any of the memory
accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction are observed by
that PE to the extent that the PE is required to observe the accesses coherently.

The use of a Load-Acquire or Load-AcquirePC instruction creates order between the Memory effects of instructions
as described in the definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the Arm memory model
and this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the following:

• A set of memory accesses, RWx, that are generated by the PE executing the Store-Release instruction and
that appear in program order before the Store-Release instruction, together with those that originate from a
different PE to the extent that the PE is required to observe them coherently, observed by the PE before
executing the Store-release.

• The memory access generated by the Store-Release (Wrel), such that all of the memory accesses, RWx, are
observed by each PE to the extent that the PE is required to observe those accesses coherently, before Wrel
is observed by that PE to the extent that the PE is required to observe that access coherently.

The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

Where a Load-Acquire appears in program order after a Store-Release, the memory access generated by the
Store-Release instruction is observed by each PE to the extent that PE is required to observe the access coherently,
before the memory access generated by the Load-Acquire instruction is observed by that PE, to the extent that the
PE is required to observe the access coherently. In addition, the use of a Load-Acquire, Load-AcquirePC or a
Store-Release instruction on accesses to a Memory-mapped peripheral introduces order between the Memory
effects of the instructions that access that peripheral, as described in the definition of Peripheral coherence order.

Load-Acquire, Load-AcquirePC and Store-Release, other than Load-Acquire Exclusive Pair and
Store-Release-Exclusive Pair, access only a single data element.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements.

A Store-Release Exclusive instruction has the release semantics only if the store is successful.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-275
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.10 Memory barriers
Note

• Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.

— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

• The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the
explicit DMB instruction.

B2.10.12 LoadLOAcquire, StoreLORelease

For each PE, the Non-secure physical memory map is divided into a set of LORegions using a table that is held
within the PE. Any PA in the Non-secure memory map can be a member of one LORegion. If a PA is assigned to
more than one LORegion, then an implementation might treat it as if it has been assigned to fewer LORegions than
that have been specified. If a PA is not in the Non-secure physical memory map, then that PA cannot be a member
of any LORegion. For more information, see Limited ordering regions.

FEAT_LOR provides a set of instructions with Acquire semantics for loads, and Release semantics for stores that
apply in relation to the defined LORegions. The new variants of the Load-Acquire and Store-Release instructions
are LoadLOAcquire and StoreLORelease. See LoadLOAcquire/StoreLORelease.

For all memory types, these instructions have the following ordering requirements:

• LoadLOAcquire has the same semantics as Load-Acquire except that the memory accesses affected lie within
the same LORegion as the address of the memory access generated by the LoadLOAcquire instruction. See
Load-Acquire, Load-AcquirePC, and Store-Release.

• StoreLORelease has the same semantics as Store-Release except that the memory accesses affected lie within
the same LORegion as the address of the memory access generated by the StoreLORelease instruction. See
Load-Acquire, Load-AcquirePC, and Store-Release.

In addition, for accesses to Memory-mapped peripherals:

• LoadLOAcquire has the same semantics as Load-Acquire except that the affected Memory effects of
instructions that access the peripheral lie within the same LORegion as the address of the memory access
generated by the LoadLOAcquire instruction. See Load-Acquire, Load-AcquirePC, and Store-Release.

• StoreLORelease has the same semantics as Store-Release except that the affected Memory effects of
instructions that access the peripheral lie within the same LORegion as the address of the memory access
generated by the StoreLORelease instruction. See Load-Acquire, Load-AcquirePC, and Store-Release.

Note

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB instruction.

B2.10.13 Guarded Control Stack Barrier (GCSB)

The GCSB instruction is a barrier instruction that generates a GCSB event. The GCSB event applies ordering
requirements between general load/store accesses and Guarded Control Stack data accesses. For more information,
see Guarded Control Stack data access behaviors.

If FEAT_GCS is not implemented, this instruction executes as a NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-276
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.11 Limited ordering regions
B2.11 Limited ordering regions

FEAT_LOR introduces limited ordering regions (LORegions), which allow large systems to perform special
load-acquire and store-release instructions that provide order between the memory accesses to a region of the PA
map as observed by a set of observers.

LORegions are defined in the Non-secure physical address space. LORegions cannot be defined in the Secure,
Realm, or Root physical address spaces.

This feature is supported in AArch64 state only.

B2.11.1 Specification of the LORegions

The LORegions are defined in the Non-secure physical memory map using a set of LORegion descriptors. The
number of LORegion descriptors is IMPLEMENTATION DEFINED, and can be discovered by reading the LORID_EL1
register.

Each LORegion descriptor consists of:

• A tuple of the following values:

— A Start Address.

— An End Address.

— An LORegion Number.

• Valid bit which indicates whether that LORegion descriptor is valid.

A memory location lies within the LORegion identified by the LORegion Number if the PA lies between the Start
Address and the End Address, inclusive. The Start Address must be defined to be aligned to 64KB and the End
Address must be defined as the top byte of a 64KB block of memory.

It is permitted for multiple LORegion descriptors with non-overlapping address ranges to be configured with the
same LORegion Number.

The LORegion descriptors are programmed using the LORSA_EL1, LOREA_EL1, LORN_EL1, and LORC_EL1
registers in the System register space. These registers describe only memory addresses in the Non-secure memory
map. These registers are UNDEFINED if accessed when SCR_EL3.NS == 0.

If a LoadLOAcquire or a StoreLORelease does not match with any LORegion, then:

• The LoadLOAcquire will behave as a Load-Acquire, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

• The StoreLORelease will behave as a Store-Release, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

Note

If no LORegions are implemented, then the LoadLOAcquire and StoreLORelease will therefore behave as a
Load-Acquire and Store-Release.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-277
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.12 Caches and memory hierarchy
B2.12 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. The Arm architecture defines the application level interface to
the memory system, including a hierarchical memory system with multiple levels of cache. This section describes
an application level view of this system. It contains the subsections:

• Introduction to caches.

• Memory hierarchy.

• Application level access to functionality related to caches

• Implication of caches for the application programmer.

• Preloading caches.

B2.12.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

• Main memory address information, commonly known as a tag.

• The associated data.

Caches increase the average speed of a memory access. Caching takes account of two principles of locality:

Spatial locality

An access to one Location is likely to be followed by accesses to adjacent Locations. Examples of
this principle are:

• Sequential instruction execution.

• Accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a
cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the
cache line loaded from memory. The Arm architecture permits different cache topologies and access policies,
provided they comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

• Memory accesses can occur at times other than when the programmer would expect them.

• A data item can be held in multiple physical locations.

B2.12.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overall performance, an Armv8 memory system can include multiple levels of cache in a hierarchical memory
system that exploits this trade-off between size and latency. Figure B2-1 shows an example of such a system in an
Armv8-A system that supports virtual addressing.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-278
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.12 Caches and memory hierarchy
Figure B2-1 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processing element, as
shown in Figure B2-1.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches that are located at the levels closest
to the main memory. Memory coherency for cache topologies can be defined using the conceptual points Point of
Unification (PoU), Point of Coherency (PoC), Point of Persistence (PoP), and Point of Deep Persistence (PoDP).

For more information, including the definitions of PoU, PoC, PoP, and PoDP, see About cache maintenance in
AArch64 state.

If FEAT_MTE2 is implemented, the behavior of cache maintenance instructions is modified. For more information,
see Allocation Tags.

B2.12.2.1 The cacheability and shareability memory attributes

Cacheability and shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This attribute defines whether memory locations are allowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer Cacheability locations.

Shareability This attribute defines whether memory locations are shareable between different agents in a system.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
the location is coherent for all agents in that domain. Shareability is defined independently for Inner
and Outer Shareability domains.

For more information about Cacheability and Shareability, see Memory types and attributes.

B2.12.3 Application level access to functionality related to caches

As indicated in About the Application level programmers’ model, the application level corresponds to execution at
EL0. The architecture defines a set of cache maintenance instructions that software can use to manage cache
coherency. Software executing at a higher Exception level can enable use of some of this functionality from EL0,
as follows:

When the value of SCTLR_EL1.UCI is 1

Software executing at EL0 can access:

• The data cache maintenance instructions, DC CVAU, DC CVAC, DC CVAP, DC CVADP, and DC CIVAC.
See The data cache maintenance instruction (DC).

Device

PE,

AArch64 state

Instruction

fetch

Data

Level 1

Cache

Level 2

Cache

Level 3

Cache

DRAM, SRAM,

Storage-class

memory

Level 4

for example,

memory card,

disk

Address

translation

System configuration

and control

X30

X0

Physical address

Virtual

address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-279
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.12 Caches and memory hierarchy
• The instruction cache maintenance instruction IC IVAU. See The instruction cache
maintenance instruction (IC).

Attempted execution of these instructions might generate a Permission fault as described in
Permission fault.

When the value of SCTLR_EL1.UCT is 1

Software executing at EL0 can access the cache type register. See CTR_EL0.

When the value of SCTLR_EL1.DZE is 1

Software executing at EL0 can access the data cache zero instruction DC ZVA. See Data cache zero
instruction.

The SCTLR_EL1.{UCI, UCT, DZE} control fields are accessible only by software executing at EL1 or higher.

When HCR_EL2.{E2H, TGE} == {1,1}, the controls {UCI, UCT and DZE} are found in SCTLR_EL2.

This functionality is UNDEFINED at EL0 when the value of the corresponding SCTLR_EL1 control field is 0.

B2.12.4 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become
visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

• When memory locations are updated by other agents in the system that do not use hardware management of
coherency.

• When memory updates made from the application software must be made visible to other agents in the
system, without the use of hardware management of coherency.

For example:

• In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

• In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

B2.12.4.1 Data coherency issues

Software can ensure the data coherency of caches in the following ways:

• By not using the caches in situations where coherency issues can arise. This can be achieved by:

— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.

— Not enabling caches in the system.

• By using cache maintenance instructions to manage the coherency issues in software. See Application level
access to functionality related to caches.

• By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory and
Shareable, Inner Shareable, and Outer Shareable Normal memory.

Note
The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations, the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-280
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.12 Caches and memory hierarchy
Note

Not all these mechanisms are directly available to software operating at EL0 and might involve interaction with
software operating at a higher Exception level.

B2.12.4.2 Synchronization and coherency issues between data and instruction
accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

• The PE might have fetched the instructions from memory at any time since the last Context Synchronization
event on that PE.

• Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being refetched from memory. In the absence of a Context Synchronization event, there
is no limit on the number of times such an instruction might be executed without being refetched from
memory.

The Arm architecture requires the hardware to ensure coherency between instruction caches and memory, even for
locations of shared memory. A write has been made coherent with an instruction fetch of a shareability domain
when:

CTR_EL0.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

If software requires coherency between instruction execution and memory, it must manage this coherency using
Context Synchronization events and cache maintenance instructions. The following code sequence can be used to
allow a PE to execute code that the same PE has written.

; Coherency example for data and instruction accesses within the same Inner Shareable domain.

; Enter this code with <Wt> containing a new 32-bit instruction,

; to be held in Cacheable space at a location pointed to by Xn.

 STR Wt, [Xn]

 DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)

 DSB ISH ; Ensure visibility of the data cleaned from cache

 IC IVAU, Xn ; Invalidate instruction cache by VA to PoU

 DSB ISH ; Ensure completion of the invalidations

 ISB ; Synchronize the fetched instruction stream
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-281
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.12 Caches and memory hierarchy
Note

• If this sequence is not executed between writing data to a location and executing the instruction at that
location, the lack of coherency between instruction caches and memory means that the instructions that are
executed might be the old instruction or the updated instruction, and which is used can arbitrarily vary during
execution. It must not be assumed by software, before the synchronization sequence is executed, that when
the updated instruction has been seen, the old instruction will not be seen again.

• For Non-cacheable or Write-Through accesses, the clean data cache by VA instruction is not required.
However, the invalidate instruction cache instruction is required because the Armv8-A AArch64 architecture
allows Non-cacheable accesses to be held in an instruction cache. See Non-cacheable accesses and
instruction caches.

• This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The Arm architecture limits the set of instructions that can be executed by one thread
of execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions.

• The system software controls whether these cache maintenance instructions are available to the application
level by setting SCTLR_EL1.UCI.

B2.12.5 Preloading caches

The Arm architecture provides memory system hints PRFM, RPRFM, LDNP, and STNP that software can use to
communicate the expected use of memory locations to the hardware. The memory system can respond by taking
actions that are expected to speed up the memory accesses if they occur. The effect of these memory system hints
is IMPLEMENTATION DEFINED. Typically, implementations use this information to bring the data or instruction
locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operations might, under exceptional circumstances, generate an asynchronous External abort,
which is taken using an SError interrupt exception. For more information, see ISS encoding for an exception from
a Data Abort.

PrefetchHint{} defines the prefetch hint types.

The Hint_Prefetch() function signals to the memory system that memory accesses of the type hint to or from the
specified address are likely to occur in the near future. The memory system might take some action to speed up the
memory accesses when they do occur, such as preloading the specified address into one or more caches as indicated
by the innermost cache level target and non-temporal hint stream.

For more information on PRFM, RPRFM, and load/store instructions that provide hints to the memory system, see
Prefetch memory and Load/store SIMD and floating-point non-temporal pair. For more information on SVE PRF*
instructions that provide hints to the memory system, see Predicated non-contiguous element accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-282
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.13 Alignment support
B2.13 Alignment support

This section describes alignment support. It contains the following subsections:

• Instruction alignment.

• Alignment of data accesses.

B2.13.1 Instruction alignment

A64 instructions must be word-aligned.

Attempting to fetch an instruction from a misaligned location results in a PC alignment fault. See PC alignment
checking.

B2.13.2 Alignment of data accesses

For an unaligned access to any type of Device memory:

• If the memory location cannot support unaligned accesses then an Alignment fault is generated.

• If the memory location supports unaligned accesses, then it is IMPLEMENTATION DEFINED whether the access
generates an Alignment fault if the location would not generate an Alignment fault if the same access were
made to Normal memory.

B2.13.2.1 Unaligned accesses to Normal memory

The behavior of unaligned accesses to Normal memory is dependent on all of the following:

• The instruction causing the memory access.

• The memory attributes of the accessed memory.

• The value of SCTLR_ELx.{A, nAA}.

• Whether or not FEAT_LSE2 is implemented.

B2.13.2.1.1 Load or Store of Single or Multiple registers

For all instructions that load or store single or multiple registers, but not Load-Exclusive, Store-Exclusive,
Load-Acquire/Store-Release, Atomic, and SETG* Memory Copy and Memory Set instructions, if the address that is
accessed is not aligned to the size of the data element being accessed, then:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

• An unaligned access is performed.

• If FEAT_LSE2 is not implemented, the access is not guaranteed to be single-copy atomic except at the byte
access level.

• If FEAT_LSE2 is implemented:

— If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal
Inner Write-Back, Outer Write-Back Cacheable memory, the memory access is single-copy atomic.
For LDNP, LDP, or STP instructions, the entire memory access will be single-copy atomic.

— If all the bytes of the memory accessed do not lie within a 16-byte quantity aligned to 16 bytes, or the
access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory, the access is not
guaranteed to be single-copy atomic except at the byte access level.

For these instructions, the definition of an unaligned access is based on the size of the accessed elements, not the
overall size of the memory access. This affects SIMD and SVE element and structure loads and stores, and also
load/store pair instructions.

For predicated SVE vector element and structure load or store instructions, alignment checks are based on the
memory element access size, not on the vector element size.

For predicated SVE vector element and structure load or store instructions, Inactive elements cannot cause an
Alignment fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-283
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.13 Alignment support
For unpredicated SVE vector register load or store instructions, the base address is checked for 16-byte alignment.

For unpredicated SVE predicate register load or store instructions, the base address is checked for 2-byte alignment.

B2.13.2.1.2 Load-Exclusive/ Store-Exclusive and Atomic instructions

For Load-Exclusive/Store-Exclusive, and Atomic instructions including those with acquire or acquire-release
semantics:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

If FEAT_LSE2 is not implemented, these instructions generate an Alignment fault if the address being accessed is
not aligned to the size of the data structure being accessed.

If FEAT_LSE2 is implemented, then:

• If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal Inner
Write-Back, Outer Write-Back Cacheable memory, an unaligned access is performed.

• If all the bytes of the memory access do not lie within a 16-byte quantity aligned to 16-bytes, or the memory
access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory, then it is a CONSTRAINED
UNPREDICTABLE choice of either of the following:

— An unaligned access is performed meeting all of the semantics of the instruction.

— An Alignment fault is generated.

Where memory access is performed, then it is single-copy atomic.

For these instructions, the definition of an unaligned access is based on the overall access size.

If FEAT_LS64 is implemented, when a single-copy atomic 64-byte instruction accesses a memory location that is
not aligned to 64 bytes, an Alignment fault always occurs, regardless of the value of SCTLR_ELx.A.

B2.13.2.1.3 Non-atomic Load-Acquire/Store-Release instructions

For Load-Acquire/Store-Release instructions that do not have exclusive or atomic behaviors:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

If FEAT_LSE2 is not implemented, then these instructions generate an Alignment fault if the address being accessed
is not aligned to the size of the data structure being accessed.

If FEAT_LSE2 is implemented, then:

• If the memory access is not to Normal Inner Write-Back or Outer Write-Back Cacheable memory, then it is
a CONSTRAINED UNPREDICTABLE choice of either of the following:

— An unaligned access is performed meeting all of the semantics of the instruction.

— An Alignment fault is generated.

• If all of the bytes of the memory access do not lie within a 16-byte quantity aligned to 16 bytes then the
following applies:

— If SCTLR_ELx.nAA applicable to the current Exception level is 0, an Alignment fault is generated.

— If SCTLR_ELx.nAA applicable to the current Exception level is 1, then an unaligned access is
performed which is not guaranteed to be single-copy atomic except at the byte access level.

In this case, the architecture does no define the order of the different transactions of the access defined by the
single instructions relative to each other.

• If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal Inner
Write-Back, Outer Write-Back Cacheable memory, an unaligned access meeting all the semantics of the
instruction is performed.

Note

• Unaligned accesses typically take additional cycles to complete compared to a naturally-aligned access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-284
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.13 Alignment support
• An operation that is not single-copy atomic above the byte level can abort on any memory access that it makes
and can abort on more than one access. This means that an unaligned access that occurs across a page
boundary can generate an abort on either side of the page boundary.

B2.13.2.1.4 Memory Copy and Memory Set instructions

For SETG* instructions:

• There is an alignment check regardless of the value of SCTLR_ELx.A.

• If Xn is not a multiple of 16, an Alignment fault is generated.

• If Xd is not aligned to a multiple of 16, an Alignment fault is generated.

For more information, see the individual SETG* instruction descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-285
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.14 Endian support
B2.14 Endian support

General description of endianness in the Arm architecture describes the relationship between endianness and
memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:

• Instruction endianness.

• Data endianness.

• Endianness of memory-mapped peripherals.

B2.14.1 General description of endianness in the Arm architecture

This section describes only memory addressing and the effects of endianness for data elements up to quadwords of
128 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure B2-2 shows, for big-endian and little-endian memory systems, the relationship between:

• The quadword at address A.

• The doubleword at address A and A+8.

• The words at addresses A, A+4, A+8, and A+12.

• The halfwords at addresses A, A+2, A+4, A+6, A+8, A+10, A+12, and A+14.

• The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, A+7, A+8, A+9, A+10, A+11, A+12, A+13,
A+14, and A+15.

The terms in Figure B2-2 have the following definitions:

B_A Byte at address A.

HW_A Halfword at address A.

MSByte Most significant byte.

LSByte Least significant byte.

Figure B2-2 Endianness relationships

Big-endian memory system

Little-endian memory system

B_A+15B_A+14B_A+13B_A+12B_A+11 B_A+10 B_A+9 B_A+8 B_A+7 B_A+6 B_A+5 B_A+4 B_A+3 B_A+2 B_A+1 B_A

HW_A+14 HW_A+12 HW_A+10 HW_A+8 HW_A+6 HW_A+4 HW_A+2 HW_A

Word at address A+12 Word at address A+8 Word at address A+4 Word at address A

Doubleword at address A+8 Doubleword at address A

Quadword at address A

Incrementing byte address LSByteMSByte

Incrementing byte address

B_A+15B_A+14B_A+13B_A+12B_A+11B_A+10B_A+9B_A+8B_A+7B_A+6B_A+5B_A+4B_A+3B_A+2B_A+1B_A

HW_A+14HW_A+12HW_A+10HW_A+8HW_A+6HW_A+4HW_A+2HW_A

Word at address A+12Word at address A+8Word at address A+4Word at address A

Doubleword at address A+8Doubleword at address A

Quadword at address A

LSByteMSByte
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-286
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.14 Endian support
The big-endian and little-endian mapping schemes determine the order in which the bytes of a quadword,
doubleword, word, or halfword are interpreted. For example, a load of a word from address 0x1000 always results
in an access to the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these 4 bytes.

B2.14.2 Instruction endianness

A64 instructions have a fixed length of 32 bits and are always little-endian.

B2.14.3 Data endianness

SCTLR_EL1.E0E, configurable at EL1 or higher, determines the data endianness for execution at EL0. When
HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.E0E.

The data size used for endianness conversions:

• Is the size of the data value that is loaded or stored for SIMD and floating-point register and general-purpose
register loads and stores.

• Is the size of the data element that is loaded or stored for SIMD element and data structure loads and stores.
For more information, see Endianness in SIMD operations.

Note

This means the Armv8 architecture introduces a requirement for 128-bit endian conversions.

B2.14.3.1 Instructions to reverse bytes in a general-purpose register, a SIMD and
floating-point register, or an SVE register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table B2-2 shows the instructions that provide this functionality:

Table B2-2 Byte reversal instructions

Function Instructions Notes

Reverse bytes in 32-bit word or wordsa

a. Can operate on multiple words.

REV32 For use with general-purpose registers

Reverse bytes in whole register REV For use with general-purpose registers

Reverse bytes in 16-bit halfwords REV16 For use with general-purpose registers

Reverse elements in doublewords, vector REV64 For use with SIMD and floating-point registers

Reverse elements in words, vector REV32 For use with SIMD and floating-point registers

Reverse elements in halfwords, vector REV16 For use with SIMD and floating-point registers

Reverse bytes/halfwords/words within
elements, predicated

REVB,
REVH,
REVW

For use with SVE registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-287
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.14 Endian support
B2.14.3.2 Endianness in SIMD operations

SIMD element load/store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. This information is used to load and store data correctly in both big-endian and little-endian
systems.

For example:

LD1 {V0.4H}, [X1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the
endianness configuration, as shown in Figure B2-3. Therefore, the order of the elements in the registers is the same
regardless of the endianness configuration.

Figure B2-3 SIMD byte order example

The BigEndian() pseudocode function determines the current endianness of the data.

The BigEndianReverse() pseudocode function reverses the endianness of a bitstring.

The BigEndian() and BigEndianReverse() functions are defined in Chapter J1 Armv8 Pseudocode.

B2.14.3.3 Endianness in SVE operations

RVDGQK Rules on byte and element order of SIMD load and store instructions apply to SVE load and store instructions.

IRFQJP Additional rules apply to the data endianness of memory accesses performed by SVE load and store instructions.

RCNKCL For predicated SVE vector element and structure load and store instructions, an endianness conversion is performed
using the memory element access size. The size of the vector element is not used in endianness conversion.

RQHXPL For unpredicated SVE vector register load and store instructions, the vector byte elements are transferred in
increasing element number order without any endianness conversion.

RRWLXY For unpredicated SVE predicate register load and store instructions, each 8 bits from the predicate are transferred
as a byte in increasing element number order without any endianness conversion.

RYGSBQ When an SVE load instruction is executed, endianness conversion occurs before any sign-extension or
zero-extension into a vector element.

RKYRQW When an SVE store instruction is executed, endianness conversion occurs after any truncation from the vector
element to the memory element access size.

D[15:8] D[7:0] C[15:8] C[7:0] B[15:8] B[7:0] A[15:8] A[7:0]

64-bit register containing four 16-bit elements

0

1

2

3

4

5

6 D[7:0]

C[15:8]

C[7:0]

B[15:8]

B[7:0]

A[15:8]

A[7:0] 0

1

2

3

4

5

6

D[7:0]

D[15:8]

C[7:0]

C[15:8]

B[7:0]

B[15:8]

A[7:0]

A[15:8]

Memory system with

little-endian addressing (LE)

Memory system with

big-endian addressing (BE)

LD1 {V0.4H}, [X1] LD1 {V0.4H}, [X1]

77 D[15:8]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-288
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.14 Endian support
B2.14.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.

Peripherals to which this requirement applies include:

• Memory-mapped register interfaces to a debugger, or to a Cross Trigger Interface, see Chapter H8 About the
External Debug Registers.

• The memory-mapped register interface to the system level implementation of the Generic Timer, see
Chapter I2 System Level Implementation of the Generic Timer.

• A memory-mapped register interface to the Performance Monitors, see Chapter I3 Recommended External
Interface to the Performance Monitors.

• A memory-mapped register interface to the Activity Monitors, see Chapter I4 Recommended External
Interface to the Activity Monitors.

• Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

• The memory-mapped register interface to an Arm trace component. See, for example, the Arm® Embedded
Trace Macrocell Architecture Specification, ETMv4.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-289
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
B2.15 Memory types and attributes

The ordering of accesses for addresses in memory, referred to as the memory order model, is defined by the memory
attributes. The following sections describe this model:

• Normal memory.

• Device memory.

• Memory access restrictions.

B2.15.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted
by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions
for these locations.

The Normal memory type has the following properties:

• A write to a memory location with the Normal attribute completes in finite time.

• Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-Through
cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory
system in finite time. Two writes to the same location, where at least one is using the Normal memory type,
might be merged before they reach the endpoint unless there is an ordered-before relationship between the
two writes. For the purposes of this requirement, the endpoint for a location in Conventional memory is the
PoC.

• Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

• There is no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register load/store instructions. See Multi-register loads and stores that access Normal memory.

• Where a load or store instruction performs a sequence of memory accesses, as opposed to one single-copy
atomic access as defined in the rules for single-copy atomicity, these accesses might occur multiple times as
a result of executing the load or store instruction.

Note

Write speculation that is visible to other observers is prohibited for all memory types.

Note

• The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side effects.

— Repeated read accesses return the last value written to the resource being read.

— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.

— Accesses can be merged before accessing the target memory system.

• Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of
data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:

— Memory accesses return UNKNOWN values.

— UNPREDICTABLE effects on memory-mapped peripherals.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-290
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
• An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture might
be abandoned as a result of an exception being taken during the sequence of accesses. On return from the
exception the instruction is restarted, and therefore, one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the
write accesses.

For accesses to Normal memory, a DMB instruction is required to ensure the required ordering.

The following sections describe the other attributes for Normal memory:

• Shareable Normal memory.

• Non-shareable Normal memory.

• Cacheability attributes for Normal memory.

See also:

• Multi-register loads and stores that access Normal memory.

• Atomicity in the Arm architecture.

• Memory barriers.

• Concurrent modification and execution of instructions.

B2.15.1.1 Shareable Normal memory

A Normal memory location has a Shareability attribute that is one of:

• Inner Shareable, meaning it applies across the Inner Shareable shareability domain.

• Outer Shareable, meaning it applies across both the Inner Shareable and the Outer Shareable shareability
domains.

• Non-shareable.

The shareability attributes define the data coherency requirements of the location, which hardware must enforce.
They do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues
between data and instruction accesses.

Note

• System designers can use the shareability attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software developers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEs in a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different processing elements.

• This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner
Shareable shareability domain.

B2.15.1.1.1 Shareable, Inner Shareable, and Outer Shareable Normal memory

The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

• Each observer is a member of only a single Inner Shareability domain.

• Each observer is a member of only a single Outer Shareability domain.

• All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.
This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not
required to be a proper subset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-291
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
Note

• Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

• The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.

The details of the use of the shareability attributes are system-specific. Example B2-1 shows how they might be
used.

Example B2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

• In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses
to memory locations with the Inner Shareable attribute.

• However, between the two clusters, the caches:

— Are not required to be coherent for data accesses that have only the Inner Shareable attribute.

— Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable shareability domain.

For shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account of
the possibility of accesses by more than one observer in the same Shareability domain.

B2.15.1.2 Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

B2.15.1.3 Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned
a Cacheability attribute that is one of:

• Write-Through Cacheable.

• Write-Back Cacheable.

• Non-cacheable.

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:

• A region might be assigned cache allocation hints for read and write accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-292
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
• It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of
Transient or Non-transient.

For more information, see Cacheability, cache allocation hints, and cache transient hints.

A memory location can be marked as having different cacheability attributes, for example when using aliases in a
VA to PA mapping:

• If the attributes differ only in the cache allocation hint, this does not affect the behavior of accesses to that
location.

• For other cases, see Mismatched memory attributes.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the shareability
domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of
memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties
for Non-cacheable or Write-Through Cacheable memory:

• A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

• A completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

• For accesses to Normal memory that is Non-cacheable, a DMB instruction introduces a Barrier-ordered-before
relation on all accesses to a single peripheral or block of memory that is of IMPLEMENTATION DEFINED size.
For more information, see Ordering relations.

Note

Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each
of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels
of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the
boundaries between the Inner and Outer Shareability domains. However:

• Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the
lowest level of cache.

• No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the
Outer cacheability attributes.

• An implementation might not have any outer cache.

Example B2-2, Example B2-3, and Example B2-4 describe the possible ways of implementing a system with three
levels of cache, level 1 (L1) to level 3 (L3).

Note

• L1 cache is the level closest to the PE, see Memory hierarchy.

• When managing coherency, system designs must consider both the inner and outer cacheability attributes, as
well as the shareability attributes. This is because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-293
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
Example B2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 and L2 cache.

• The Outer cacheability attribute applied to L3 cache.

Example B2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2,
and L3 cache. Do not use the Outer cacheability attribute.

Example B2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 cache.

• The Outer cacheability attribute applied to L2 and L3 cache.

B2.15.1.4 Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more SVE or Advanced SIMD&FP registers from an Exception level,
there is no requirement for the memory system beyond the PE to be able to identify the size of the element accessed
by these load or store instructions.

B2.15.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects,
or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Armv8 Device memory are:

Gathering Identified as G or nG, see Gathering.

Reordering Identified as R or nR, see Reordering.

Early Write Acknowledgement

Identified as E or nE, see Early Write Acknowledgement.

The Armv8 Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early Write Acknowledgement.

Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.

Equivalent to the Device memory type in earlier versions of the architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-294
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriers is required to order accesses to Device-nGRE memory.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that Speculative accesses to Device-GRE memory is
forbidden.

Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

• As the list of types shows, these additional attributes are hierarchical. For example, a memory location that
permits Gathering must also permit Reordering and Early Write Acknowledgement.

• The architecture does not require an implementation to distinguish between each of these memory types and
Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

All of these memory types have the following properties:

• Speculative data accesses are not permitted to any memory location with any Device memory attribute. This
means that each memory access to any Device memory type must be one that would be generated by a simple
sequential execution of the program.

The following exceptions to this apply:

— Reads generated by the SIMD and floating-point instructions can access bytes that are not explicitly
accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that
contains at least one byte that is explicitly accessed by the instruction.

— For reads, including hardware speculation, that are performed by an SVE unpredicated load
instruction, all of the following are true:

— For any 64-byte window aligned to 64 bytes containing at least 1 byte that is explicitly accessed
by the instruction, any byte in the window can be accessed by the instruction.

— All bytes accessed by the instruction will be in a 64-byte window aligned to 64 bytes containing
at least 1 byte that is explicitly accessed by the instruction.

— For reads, including hardware speculation, that are performed by an SVE predicated load instruction
that is not a non-temporal load, all of the following are true:

— For any 64-byte window aligned to 64 bytes containing at least 1 byte that is explicitly accessed
by an Active element of the instruction, any byte in the window can be accessed by the
instruction.

— All bytes accessed by the instruction will be in a 64-byte window aligned to 64 bytes that
contains at least 1 byte that is explicitly accessed by an Active element of the instruction.

— For reads, including hardware speculation, that are performed by an SVE predicated non-temporal
load instruction from memory locations with the Gathering attributes, all of the following are true:

— For any 128-byte window aligned to 128 bytes containing at least 1 byte that is explicitly
accessed by an Active element of the instruction, any byte in the window can be accessed by the
instruction.

— All bytes accessed by the instruction are in a 128-byte window aligned to 128 bytes that
contains at least 1 byte that is explicitly accessed by an Active element of the instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-295
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
— The architecture permits a Memory Copy and Memory Set CPY* instruction to perform speculative
reads of any memory location, even those marked as Device, within a 64-byte quantity, aligned to 64
bytes, of a location that is within the range [Xs] to [Xs+Xn-1].

— For Device memory with the Gathering attribute, reads generated by the LDNP instructions are
permitted to access bytes that are not explicitly accessed by the instruction, provided that the bytes
accessed are in a 128-byte window, aligned to 128-bytes, that contains at least one byte that is
explicitly accessed by the instruction.

— Where a load or store instruction performs a sequence of memory accesses, as opposed to one
single-copy atomic access as defined in the rules for single-copy atomicity, these accesses might occur
multiple times as a result of executing the load or store instruction. See Properties of single-copy
atomic accesses.

— An LDRAA or LDRAB instruction that fails the pointer authentication check and loads from a location in
Device memory is permitted to cause one read access to that location if all of the other requirements
for accessing that Device location are met.

Note

— An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture
might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception, the instruction is restarted, and therefore, one or more of the memory locations
might be accessed multiple times. This can result in repeated accesses to a location where the program
defines only a single access. For this reason, Arm strongly recommends that no accesses to Device
memory are performed from a single instruction that spans the boundary of a translation granule or
which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observers is prohibited for all memory types.

• A write to a memory location with any Device memory type completes in finite time.

• If a value that would be returned from a read of a memory location with the Device memory type changes
without an explicit Memory Write effect by an observer, this change must also be globally observed for all
observers in the system in finite time. Such a change might occur in a peripheral location that holds status
information.

• Data accesses to memory locations are coherent for all observers in the system, and correspondingly are
treated as being Outer Shareable.

• A memory location with any Device memory attribute cannot be allocated into a cache.

• Writes to a memory location with any Device memory attribute must reach the endpoint for that address in
the memory system in finite time. Two writes of Device memory type to the same location might be merged
before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an
ordered-before relationship between the two writes.

• For accesses to any Device memory type, a DMB instruction introduces a Barrier-ordered-before relation on all
accesses to a single peripheral or block of memory that is of implementation defined size. For more
information, see Ordering relations.

• If a memory location is not capable of supporting unaligned memory accesses, then an unaligned access to
that memory location generates an Alignment fault at the first stage of translation that defined the location as
being Device.

• If a memory location is capable of supporting unaligned memory accesses, and such a memory location is
marked as Device, then it is IMPLEMENTATION DEFINED whether an unaligned access to that memory location
generates an Alignment fault at the first stage of translation that defined the location as being Device.

• Hardware does not prevent speculative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as execute-never for all Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-296
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must also be marked as execute-never for
all Exception levels. Failure to mark a memory location with any Device memory attribute as execute-never
for all Exception levels is a programming error.

Note

In the EL1&0 translation regime in systems where HCR_EL2.TGE==1 and HCR_EL2.DC==0, any Alignment
fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This
causes ESR_EL2.ISS[24] to be 0.

See also Memory access restrictions.

The memory types for translation table walks cannot be defined as any Device memory type within the TCR_ELx.
For the EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are subject to
a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage translation
table walk might be made to memory locations with any Device memory type. These accesses might be made
speculatively. When the value of the HCR_EL2.PTW bit is 1, a stage 2 Permission fault is generated if a first stage
translation table walk is made to any Device memory type.

Note

In general, making a translation table walk to any Device memory type is the result of a programming error.

For an instruction fetch from a memory location with the Device attribute that is not marked as execute-never for
the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.

• Take a Permission fault.

B2.15.2.1 Gathering

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

• Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

• Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
a single memory transaction on an interconnect.

Note

This also applies to writebacks from the cache, whether caused by a Natural eviction or as a result of a cache
maintenance instruction.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

• The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-297
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
• All accesses occur at their single-copy atomic sizes, except that there is no requirement for the memory
system beyond the PE to be able to identify the single-copy atomic sizes accessed by multi-register load/store
instructions that generate more than one single-copy atomic access. See Multi-register loads and stores that
access Device memory.

Gathering between the memory accesses generated by one Load-Acquire or Store-Release instruction, and the
memory accesses generated by another Load-Acquire or Store-Release instruction is not permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

Gathering between memory accesses generated by Memory Copy and Memory Set instructions is always permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

• A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.

— The accesses are not separated by other ordering constructions that require that the accesses are in
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

• The Arm architecture defines only programmer visible behavior. Therefore, gathering can be performed if a
programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

B2.15.2.2 Reordering

In the Device memory attribute:

R Indicates that the location has the Reordering attribute. Accesses to the location can be reordered
within the same rules that apply to accesses to Normal Non-cacheable memory. All memory types
with the Reordering attribute have the same ordering rules as accesses to Normal Non-cacheable
memory, see Ordering relations.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

Note
Some interconnect fabrics, such as PCIe, perform very limited reordering, which is not important
for the software usage. It is outside the scope of the Arm architecture to prohibit the use of a
non-Reordering memory type with these interconnects.

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple
sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all
accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of
Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.

Note

• The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee
provided by the DMB instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-298
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
• The Arm architecture defines only programmer visible behavior. Therefore, reordering can be performed if
a programmer cannot tell whether reordering has occurred.

• The non-Reordering property is only required by the architecture to apply the order of arrival of accesses to
a single memory-mapped peripheral of an IMPLEMENTATION DEFINED size, and is not required to have an
impact on the order of observation of memory accesses to SDRAM. For this reason, there is no effect of the
non-Reordering attribute on the ordering relations between accesses to different locations described in
Ordering relations as part of the formal definition of the memory model. It does have an effect on the
Peripheral Coherence Order described in section Completion and endpoint ordering.

• If the same memory location is mapped with different aliases, and different attribute values, these are a type
of mismatched attribute. The different attributes could be:

— A different Reordering attribute value.

— A different Device memory attribute value.

— When FEAT_XS is implemented, a different XS attribute value.

For information about the effects of accessing memory with mismatched attributes, see Mismatched memory
attributes.

An implementation:

• Is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements
specified by the non-Reordering attribute.

• Is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the
relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal
memory, between:

• Accesses to one physical address with the non-Reordering attribute and accesses to a different physical
address with the Reordering attribute.

• Access to one physical address with the non-Reordering attribute and access to a different physical address
to Normal memory.

• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

The non-Reordering attribute has no effect on the ordering of cache maintenance instructions, even if the memory
location specified in the instruction has the non-Reordering attribute.

The non-Reordering attribute has no effect on the memory accesses caused by Memory Copy and Memory Set
instructions.

B2.15.2.3 Early Write Acknowledgement

In the Device memory attribute:

E Indicates that the location has the Early Write Acknowledgement attribute.

nE Indicates that the location has the No Early Write Acknowledgement attribute.

If the No Early Write Acknowledgement attribute is assigned for a Device memory location:

• For memory system endpoints where the system architecture in which the PE is operating requires that
acknowledgment of a write comes from the endpoint, it is guaranteed that:

— Only the endpoint of the write access returns a write acknowledgment of the access.

— No earlier point in the memory system returns a write acknowledgment.

• For memory system endpoints where the system architecture in which the PE is operating does not require
that acknowledgment of a write comes from the endpoint, the acknowledgment of a write is not required to
come from the endpoint.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-299
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
Note

A write with the No Early Write Acknowledgement attribute assigned for a Device memory location is not expected
to generate an abort in any situation where the equivalent write to the same location without the No Early Write
Acknowledgement attribute assigned does not generate an abort.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write
Acknowledgement Location, completes only after the write has reached its endpoint in the memory system if that
is required by the system architecture.

Peripherals are an example of system endpoints that require that the acknowledgment of a write comes from the
endpoint.

Note

• The Early Write Acknowledgement attribute only affects where the endpoint acknowledgment is returned
from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by
either the Device Reordering attribute, or the use of barriers to create order.

• The areas of the physical memory map for which write acknowledgment from the endpoint is required is
outside the scope of the Arm Architecture definition and must be defined as part of the system architecture
in which the PE is operating. In particular, regions of memory handled as PCIe configuration writes are
expected to support write acknowledgment from the endpoint.

• Arm recognizes that not all areas of a physical memory map will be capable of supporting write
acknowledgment from the endpoint. In particular, Arm expects that regions of memory handled as posted
writes under PCIe will not support write acknowledgment from the endpoint.

• For maximum software compatibility, Arm strongly recommends that all peripherals for which standard
software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint
are placed in areas of the physical memory map that support write acknowledgment from the endpoint.

B2.15.2.4 Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register and generate more than one single-copy
atomic access for that load or store, there is no requirement for the memory system beyond the PE to be able to
identify the single-copy atomic sizes accessed by these load or store instructions.

For all instructions that load or store more than one general-purpose register, the order in which the registers are
accessed is not defined by the architecture. This applies even to accesses to any type of Device memory.

For all instructions that load or store one or more Advanced SIMD&FP or SVE registers, and generate more than
one single-copy atomic access for that load or store, there is no requirement for the memory system beyond the PE
to be able to identify the single-copy atomic sizes accessed by these load or store instructions, even for access to
any type of Device memory.

The architecture permits that the non-speculative execution of an instruction that loads or stores more than one
general-purpose or SIMD and floating-point register might result in repeated accesses to the same address, even if
the resulting accesses are to any type of Device memory.

B2.15.2.5 SVE loads and stores that access Device memory

RXLLJZ All rules applying to Device memory accesses by Advanced SIMD and floating-point load and store instructions
apply to Device memory access by SVE load and store instructions.

IYHWJT Additional rules apply to Device memory access by SVE load and store instructions.

RNYMWH When an SVE vector prefetch instruction is executed, any resulting Read Memory is guaranteed not to access
Device memory.

RSBHLD When an SVE Non-fault vector load is executed, or when any element from a First-fault load except the First active
element attempts to access Device memory, the resulting Read Memory will not access Device memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-300
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
RTMVNR When an SVE Non-fault vector load instruction is executed, an attempt by any Active element to access Device
memory is suppressed and reported in the FFR.

RSFBKQ When an SVE First-fault vector load instruction is executed, any Read Memory performed for the First active
element can access Device memory.

RBHNQN When an SVE First-fault vector load instruction is executed, an attempt by any Active element other than the First
active element to access Device memory is suppressed and is reported in the FFR.

RQBLMZ Any access to Device memory performed by an SVE load or store instruction is relaxed such that it might behave
as if:

• The Gathering attribute is set, regardless of the configured value of the nG attribute.

• The Reordering attribute is set, regardless of the configured value of the nR attribute.

• The Early Acknowledgment attribute is set, regardless of the configured value of the nE attribute.

Whether attributes are classified as mismatched is determined strictly by the memory attributes derived from the
translation table entry.

B2.15.2.6 Streaming SVE mode loads and stores that access Device memory

RXHFBX When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level, any access to Device memory performed by an Advanced SIMD&FP load/store instruction is
relaxed such that it might behave as if:

• The Gathering attribute is set, regardless of the configured value of the nG attribute.

• The Reordering attribute is set, regardless of the configured value of the nR attribute.

• The Early Acknowledgement attribute is set, regardless of the configured value of the nE attribute.

Whether attributes are classified as mismatched is determined strictly by the memory attributes derived from the
translation table entry.

See also:

• Streaming SVE mode.

B2.15.3 Memory access restrictions

The following restrictions apply to memory accesses:

• For two explicit Memory Read effects to any two adjacent bytes in memory, p and p+1, generated by the
same instruction, and for two explicit Memory Write effects to any two adjacent bytes in memory, p and p+1,
that are generated by the same instruction:

— The bytes p and p+1 must have the same memory type and Shareability attributes, otherwise the
results are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned load or store that
spans the boundary between Normal memory and Device memory is CONSTRAINED UNPREDICTABLE.

— Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and p+1.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or Shareability attributes.

• If the accesses of an instruction that causes multiple accesses to any type of Device memory cross an address
boundary that corresponds to the smallest implemented translation granule, then behavior is CONSTRAINED
UNPREDICTABLE, and Crossing a peripheral boundary with a Device access describes the permitted
behaviors. For this reason, it is important that an access to a volatile memory device is not made using a single
instruction that crosses an address boundary of the size of the smallest implemented translation granule.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-301
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.15 Memory types and attributes
Note

— The boundary referred to is between two Device memory regions that are both of the size of the
smallest implemented translation granule and aligned to the size of the smallest implemented
translation granule.

— This restriction means it is important that an access to a volatile memory device is not made using a
single instruction that crosses an address boundary of the size of the smallest implemented translation
granule.

— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory
map, rather than expecting a compiler to be aware of the alignment of memory accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-302
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.16 Mismatched memory attributes
B2.16 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D8 The AArch64
Virtual Memory System Architecture.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a
common definition of all of the following attributes of that location:

• Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.

• Shareability.

• Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

• When FEAT_XS is implemented, XS attribute.

Collectively these are referred to as memory attributes.

If FEAT_MTE2 is implemented, accesses to a location which use a common definition of the memory attributes but
the Tagged attribute of that location differs do not cause a mismatched access to occur.

If FEAT_MTE_PERM is implemented, the NoTagAccess attribute does not factor into the determination of
mis-matched attributes.

Note

In this document, the terms location and memory location refer to any byte within the current coherency granule
and are used interchangeably.

When a memory Location is accessed with mismatched attributes, the only software visible effects are one or more
of the following:

• Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:

— A read of the memory Location by one agent might not return the value most recently written to that
memory Location by the same agent.

— Multiple writes to the memory Location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory Location.

• There might be a loss of properties derived from the memory type, as described in later bullets in this section.

• If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.

• Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of
Device memory that are additional to the properties of Normal memory:

• Prohibition of Speculative read accesses.

• Prohibition on Gathering.

• Prohibition on reordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more
restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type,
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that
common definition of the memory attributes, only if all the following conditions are met:

• All writes are performed to an alias of the memory Location that uses the same definition of the
Memory type, Shareability and Cacheability attributes.

• Either:

— In the EL1&0 translation regime, HCR_EL2.MIOCNCE has a value of 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-303
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.16 Mismatched memory attributes
— All aliases with write permission have the Inner Cacheability attribute the same as the Outer
Cacheability attribute.

• Either:

— All writes are performed to an alias of the memory Location that has Inner Cacheability and
Outer Cacheability attributes both as Non-cacheable.

— All aliases to a memory Location use a definition of the Shareability attributes that encompasses
all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined
more precisely if all of the mismatched attributes define the memory Location as one of:

• Any Device memory type.

• Inner Non-cacheable, Outer Non-cacheable Normal memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory Location.

• Possible reordering of memory transactions to the same memory Location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory location all assign the same shareability attribute to a Location that
has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a shareability
domain can be avoided by use of software cache management. To do so, software must use the techniques
that are required for the software management of the ordering or coherency of cacheable Locations between
agents in different shareability domains. This means:

• Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate,
or clean, a Location from the caches if any agent might have written to the Location with the
Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.

• After writing to a cacheable Location with the Write-Back attribute, software must clean the Location
from the caches, to make the write visible to external memory.

• Before reading the Location with a cacheable attribute, software must invalidate, or clean and
invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last
value made visible in external memory.

• Executing a DMB barrier instruction, with scope that applies to the common shareability of the accesses,
between any accesses to the same cacheable Location that use different attributes.

In all cases:

• Location refers to any byte within the current coherency granule.

• A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.

• In the sequences outlined in this section, all cache maintenance instructions and memory transactions
must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address, see Ordering and completion of data and instruction cache instructions.

Note
With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-304
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.16 Mismatched memory attributes
2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be
made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are
guaranteed only if:

• Software running on a PE cleans and invalidates a Location from cache before and after each read or
write to that Location by that PE.

• A DMB barrier with scope that covers the full shareability of the accesses is placed between any accesses
to the same memory Location that use different attributes.

Note
The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location,
and the accesses from the different agents have different memory attributes associated with the Location, the
Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Note

As described in Non-cacheable accesses and instruction caches, a non-cacheable access is permitted to be cached
in an instruction cache, despite the fact that a non-cacheable access is not permitted to be cached in a unified cache.
Despite this, when cacheable and non-cacheable aliases exist for memory which is executable, these must be treated
as mismatched aliases to avoid coherency issues from the data or unified caches that might hold entries that will be
brought into the instruction caches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-305
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
B2.17 Synchronization and semaphores

Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives applies to accesses to both Normal
memory and to any type of Device memory.

Note

Use of the Armv8 synchronization primitives scales for multiprocessing system designs.

Table B2-3 shows the synchronization primitives and the associated CLREX instruction.

Except for the row showing the CLREX instruction, the two instructions in a single row are a
Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive
instruction pair accessing a non-aborting memory address x is:

• The Load-Exclusive instruction reads a value from memory address x.

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the Write Memory succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block. A Store-Exclusive instruction
to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive
instruction.

The following sections give more information:

• Exclusive access instructions and Non-shareable memory locations.

• Exclusive access instructions and Shareable memory locations.

• Marking and the size of the marked memory block.

• Context switch support.

• Load-Exclusive and Store-Exclusive instruction usage restrictions.

Table B2-3 Synchronization primitives and associated instruction, A64 instruction set

Transaction size Additional semantics Load-Exclusivea

a. Instruction in the A64 instruction set.

Store-Exclusivea Othera

Byte - LDXRB STXRB -

Load-Acquire/Store-Release LDAXRB STLXRB -

Halfword - LDXRH STXRH -

Load-Acquire/Store-Release LDAXRH STLXRH -

Registerb

b. A register instruction operates on a doubleword if accessing an X register, or on a word if accessing a W register
A pair instruction operates on two doublewords if access X registers, or on two words if accessing W registers.

- LDXR STXR -

Load-Acquire/Store-Release LDAXR STLXR -

Pairb - LDXP STXP -

Load-Acquire/Store-Release LDAXP STLXP -

None Clear-Exclusive - - CLREX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-306
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
• Use of WFE and SEV instructions by spin-locks.

B2.17.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the shareability attribute is Non-shareable, the exclusive access instructions rely
on a local Exclusives monitor, or local monitor, that marks the address of the Explicit Memory Read effect
generated by any Load-Exclusive instruction executed by the PE.

A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the physical memory address for exclusive access.

• The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

• If the address of the Explicit Memory Write effect of the Store-Exclusive instruction is the
same as the address that has been marked in the monitor due to the execution of an earlier
Load-Exclusive instruction, then the store occurs. Otherwise, it is IMPLEMENTATION DEFINED
whether the store occurs.

• A status value is returned to a register:

— If the store took place, the status value is 0.

— Otherwise, the status value is 1.

• The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state, the monitor is set.

If the local monitor is in the Open Access state

• No store takes place.

• A status value of 1 is returned to a register.

• The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Open Access state, the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in
the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state of the local
monitor.

• If the write is to a PA that is marked as Exclusive Access by its local monitor, it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if
that store is by an observer other than the one that caused the PA to be marked.

Figure B2-4 shows the state machine for the local monitor and the effect of each of the operations shown in the
figure.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-307
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
Figure B2-4 Local monitor state machine diagram

For more information about marking, see Marking and the size of the marked memory block.

Note

For the local monitor state machine, as shown in Figure B2-4:

• The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any PA, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

• A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.

• The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the local monitor.

• It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExcl is from another observer.

B2.17.1.1 Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure B2-4.

An implementation must ensure that:

• The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Figure B2-4.

• Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure B2-4 must not indefinitely delay forward progress of execution.

B2.17.2 Exclusive access instructions and Shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a
Shareability attribute of Inner Shareable or Outer Shareable.

Open

Access

Exclusive

Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address)*

Store(Marked_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction

Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-308
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
For shareable memory locations, exclusive access instructions rely on:

• A local monitor for each PE in the system, which marks any address from which the PE executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory locations, except that for shareable memory any Store-Exclusive is then subject to checking by the
global monitor if it is described in that section as doing at least one of the following:

— Updating memory.

— Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

• A global monitor that marks a PA as exclusive access for a particular PE. This marking is used later to
determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur.
Any successful write to the marked block by any other observer in the shareability domain of the memory
location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold at least one marked block.

— Maintains a state machine for each marked block it can hold.

Note
For each PE, the architecture only requires global monitor support for a single marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions.

Note

The global monitor can either reside within the PE, or exist as a secondary monitor at the memory interfaces. The
IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined
into a single unit, provided that the unit performs the global monitor and local monitor functions defined in this
manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

• Any type of memory in the system implementation that does not support hardware cache coherency.

• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:

• Whether the global monitor is implemented.

• If the global monitor is implemented, which address ranges or memory types it monitors.

If FEAT_MTE2 is implemented, it is IMPLEMENTATION DEFINED whether explicit accesses to Allocation Tags are
monitored by a global monitor. For more information, see Chapter D10 The Memory Tagging Extension.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system
might define at least one location of memory, of at least the size of the translation granule, in the system memory
map to support the global monitor for all Arm PEs within a common Inner Shareable domain. However, this is not
an architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not
rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as
Lamport’s Bakery algorithm to achieve mutual exclusion.

Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for
which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-309
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
The architecture only requires that Conventional memory mapped in this way supports this functionality.

If the global monitor is not implemented for an address range or memory type, then performing a Load-Exclusive
or a Store-Exclusive instruction to such a location has one or more of the following effects:

• The instruction generates an External abort.

• The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Data Abort
Fault status code of ESR_ELx.DFSC = 110101.

If the IMPLEMENTATION DEFINED MMU fault is generated for the EL1&0 translation regime then:

— If the fault is generated because of the memory type defined in the first stage of translation, or if the
second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.

— Otherwise, the fault is a second stage fault and the exception is taken to EL2.

The priority of this fault is IMPLEMENTATION DEFINED.

• The instruction is treated as a NOP.

• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN. In this case, if the store exclusive instruction is a store exclusive pair of
64-bit quantities, then the two quantities being stored might not be stored atomically.

• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by Arm PEs is
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

• Some address ranges.

• Some memory types.

B2.17.2.1 Operation of the global Exclusives monitor

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the
access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark
to be removed from any other PA that has been marked by the requesting PE.

Note

The global monitor supports only a single outstanding exclusive access to shareable memory per PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting
PE and both the local monitor and the global monitor state machines for the requesting PE are in the
Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.

— If the address accessed is marked for exclusive access in the global monitor state machine for any other
PE, then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:

— A status value of 1 is returned to a register to indicate that the store failed.

— The global monitor is not affected and remains in Open Access state for the requesting PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-310
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
• If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether
the store succeeds or not:

— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it. This means that it responds to:

• Accesses generated by PE(n).

• Accesses generated by the other observers in the shareability domain of the memory location. These accesses
are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:

• In the Exclusive Access state is set.

• In the Open Access state is clear.

B2.17.2.1.1 Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Mechanisms
for entering a low-power state.

Figure B2-5 shows the state machine for PE(n) in a global monitor.

Figure B2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system

For more information about marking, see Marking and the size of the marked memory block.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Open

Access

Exclusive

Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡

Store(Marked_address,!n)

StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction

Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)

Store(x,n)

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

StoreExcl(Marked_address,!n)‡

StoreExcl(Marked_address,n)*

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

CLREX(n)*

StoreExcl(!Marked_address,!n)

Store(!Marked_address,!n)

CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-311
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
Note

For the global monitor state machine, as shown in Figure B2-5:

• The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

• Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors are in the exclusive state. For this reason, Figure B2-5 shows only
how the operations by (!n) cause state transitions of the state machine for PE(n).

• A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

• When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

• It is IMPLEMENTATION DEFINED:

— Whether a modification to a Non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state.

— Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor
to transition from Open Access to Exclusive Access state.

B2.17.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size 2a bytes is created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block. The size of the
marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is
IMPLEMENTATION DEFINED in the range 4-512 words.

Note

This definition means that the Exclusives reservation granule is:

• 4 words in an implementation where a is 4.

• 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDXRB of address 0x341B4 defines a marked block using
bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR_EL0. Otherwise, software
must assume that the maximum Exclusives reservation granule, 512 words, is implemented.

B2.17.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-312
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
B2.17.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDXP/STXP pair or a LDXR/STXR pair. To support different implementations of these functions, software must follow the
notes and restrictions given here.

The following notes describe the use of a LoadExcl/StoreExcl instruction pair, to indicate the use of any of the
Load-Exclusive/Store-Exclusive instruction pairs shown in Table B2-3. In this context, a LoadExcl/StoreExcl pair
comprises two instructions in the same thread of execution:

• The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target VA of a StoreExcl is different from the VA of the preceding LoadExcl instruction in the
same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the
states of the local and global monitors for that PE are UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
addresses, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched addresses.

— The data at the address accessed by the LoadExcl, and at the address accessed by the StoreExcl, is
UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl are executed with the same VA.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding
LoadExcl instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from
the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction
sizes.

— The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair
at the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl have the same transaction size.

• An implementation of the LoadExcl and StoreExcl instructions can require that, in any thread of execution,
the StoreExcl instruction accesses the same number of registers as the preceding LoadExcl instruction
executed in that thread. If the StoreExcl instruction accesses a different number of registers than the preceding
LoadExcl instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. As a result,
software can rely on an LoadExcl/StoreExcl pair to eventually succeed only if they access the same number
of registers. For more information, see CONSTRAINED UNPREDICTABLE behavior when
Load-Exclusive/Store-Exclusive access a different number of registers.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the Tag Checked property of a memory access due to a StoreExcl instruction is the same as the
Tag Checked property of a memory access by the preceding LoadExcl instruction, unless
FEAT_MTE_STORE_ONLY is implemented and the preceding LoadExcl is not Tag Checked only due to
Store-only Tag Checking being enabled. If the Tag Checked property of memory accesses due to a
LoadExcl/StoreExcl pair in the same thread of execution is not compatible, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-313
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
Note
This means the StoreExcl might pass for some instances of such a LoadExcl/StoreExcl pair, and fail for
other instances of such a LoadExcl/StoreExcl pair.

— The data at the address accessed by the LoadExcl/StoreExcl pair is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the memory is
accessed with a compatible Tag Checked property.

• LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/StoreExcl loop
within a single thread of execution, the software meets all of the following conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, ISB barriers,
indirect branches, or Branch with Link instructions.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding
Load-Exclusive:

• There are no stores or PRFM or RPRFM instructions to any address within the Exclusives
reservation granule accessed by the Store-Exclusive.

• There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

• There are no direct or indirect System register writes, address translation instructions,
cache or TLB maintenance instructions, exception generating instructions, exception
returns, indirect branches, or Branch with Link instructions.

• All loads and stores are to a block of contiguous virtual memory of not more than 512
bytes in size.

The Exclusives monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExcl/StoreExcl
loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

— Performing stores to a PA covered by the Exclusives monitor.

— Prefetching with intent to write to a PA covered by the Exclusives monitor.

— Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a
PA covered by the Exclusives monitor.

— Executing instruction cache invalidate all instructions.

— Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

— Executing TLB maintenance to a PA covered by the Exclusives monitor.

• Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single
thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the
LoadExcl instruction and the StoreExcl instruction. Therefore, for best performance, Arm strongly
recommends a limit of 128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

• The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked
as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses
are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a
functional requirement.

• After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN.

• For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl
instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread
of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the
accessed address changes between the LoadExcl instruction and the StoreExcl instruction, the CONSTRAINED
UNPREDICTABLE behavior is as follows:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with changed
memory attributes, and fail for other instances of a LoadExcl/StoreExcl pair with changed memory
attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-314
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
— The data at the address accessed by the StoreExcl is UNKNOWN.

Note
Another bullet point in this list covers the case where the memory attributes of a LoadExcl/StoreExcl pair
differ as a result of using different VAs with different attributes that point to the same PA.

• The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction
might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance
instructions, this also applies to the monitors of other PEs in the same shareability domain as the PE executing
the cache maintenance instruction, as determined by the shareability domain of the address being maintained.

Note
Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in one Security state cannot cause a denial of service on a PE in another Security state.

• If the mapping of the VA to PA is changed between the LoadExcl instruction and the STREX instruction, and
the change is performed using a break-before-make sequence as described in Using break-before-make when
updating translation table entries, if the StoreExcl is performed after another write to the same PA as the
StoreExcl, and that other write was performed after the old translation was properly invalidated and that
invalidation was properly synchronized, then the StoreExcl will not pass its monitor check.

Note
Arm expects that, in many implementations, either:

— The TLB invalidation will clear either the local or global monitor.

— The PA will be checked between the LoadExcl and StoreExcl.

• The Exclusive Access state for an address accessed by a PE can be lost as a result of a PRFM PST* or RPRFM
instruction to the same PA executed by another PE. This means that a very high rate of repeated PRFM PST* or
RPRFM accesses to a memory location might impede the forward progress of another PE.

• If FEAT_MTE2 is implemented, and if a Tag Unchecked store exclusive instruction would not perform the
store and return a status value of 1, it is CONSTRAINED UNPREDICTABLE whether:

— The instruction is a Tag Checked access,

— The instruction is an Tag Unchecked access.

For more information, see Chapter D10 The Memory Tagging Extension.

Note

In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

B2.17.5.1 CONSTRAINED UNPREDICTABLE behavior when
Load-Exclusive/Store-Exclusive access a different number of registers

As stated in this section, an implementation can require that the instructions of a Load-Exclusive/Store-Exclusive
pair access the same number of registers. In such an implementation, this means behavior is CONSTRAINED
UNPREDICTABLE if, in a single thread of execution, either:

• An LDXP instruction of two 32-bit quantities is followed by an STXR instruction of one 64-bit quantity at the
same address.

• An LDXR instruction of one 64-bit quantity is followed by an STXP instruction of two 32-bit quantities at the
same address.

In these cases, the CONSTRAINED UNPREDICTABLE behavior must be one of:

• The STXP or STXR instruction generates an external Data Abort.

• The STXP or STXR instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data
Abort Fault status code of ESR_ELx.DFSC = 0b110101.

• The STXP or STXR instruction always fails, returning a status of 1.

• The STXP or STXR instruction always passes, returning a status of 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-315
ID032224 Non-Confidential

The AArch64 Application Level Memory Model
B2.17 Synchronization and semaphores
• This STXP or STXR instruction has the same pass or fail behavior that it would have had if the instruction had
used the same size and number of registers as the preceding LDXR or LDXP instruction.

B2.17.6 Use of WFE and SEV instructions by spin-locks

Armv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, and SEVL, that can assist
with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock.
These instructions can be used at the application level, but a complete understanding of what they do depends on a
system level understanding of exceptions. They are described in Wait for Event. However, in Armv8, when the
global monitor for a PE changes from Exclusive Access state to Open Access state, an event is generated.

Note

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. B2-316
ID032224 Non-Confidential

Part C
The AArch64 Instruction Set

Chapter C1
The A64 Instruction Set

This chapter describes the A64 instruction set. It contains the following sections:

• About the A64 instruction set.

• Structure of the A64 assembler language.

• Address generation.

• Instruction aliases.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-318
ID032224 Non-Confidential

The A64 Instruction Set
C1.1 About the A64 instruction set
C1.1 About the A64 instruction set

The A64 instruction set is the instruction set supported in the AArch64 Execution state. All A64 instructions have
a width of 32 bits.

The following chapters contain alphabetical lists of A64 instructions:

• Chapter C6 A64 Base Instruction Descriptions lists all of:

— Branch instructions, exception generating instructions, system instructions.

— Load, store, and data-processing instructions associated with the general-purpose registers.

• Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions lists the load, store, and
data-processing instructions associated with Advanced SIMD and floating-point support.

• Chapter C8 SVE Instruction Descriptions lists the load, store, and data-processing instructions associated
with SVE support.

• Chapter C9 SME Instruction Descriptions lists the load, store, and data-processing instructions associated
with SME support.

When an instruction supports more than one syntax, each syntax is an instruction variant. Instruction variants can
occur because of differences in:

• The size or format of the operands.

• The register file used for the operands.

• The addressing mode used for load/load/store memory operands.

Instruction variants might also arise as the result of other factors.

Instruction variants are described in the instruction description for the individual instructions.

A64 instruction set encoding describes the A64 encoding structure. A64 instructions have a regular bit encoding
structure:

• 5-bit register operand fields at fixed positions within the instruction. For general-purpose register operands,
the values 0-30 select one of 31 registers. The value 31 is used as a special case that can:

— Indicate use of the current stack pointer, when identifying a load/store base register or in a limited set
of data-processing instructions. See The stack pointer registers.

— Indicate the value zero when used as a source register operand.

— Indicate discarding the result when used as a destination register operand.

• For Advanced SIMD and floating-point register access and SVE scalable vector register access, a 5-bit
register operand field selects one of 32 registers of the appropriate type.

• Certain Advanced SIMD, SVE, and SME instructions have a register operand field smaller than 5 bits when
specifying an indexed vector element or multi-vector operand, which restricts the number of vector registers
that can be accessed by those operands.

• For SME instructions that access ZA tiles, ZA tile slices, or ZA array vectors, see ZA storage.

• Immediate bits that provide constant data-processing values or address offsets are placed in contiguous
bitfields. Some computed values in instruction variants use one or more immediate bitfields together with the
secondary encoding bitfields.

All encodings that are not fully defined are described as unallocated. An attempt to execute an unallocated
instruction is UNDEFINED, unless the behavior is otherwise defined in this Manual.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-319
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2 Structure of the A64 assembler language

The following sections describe the A64 assembler syntax:

• General requirements.

• Common syntax terms.

• Instruction Mnemonics.

• Condition code.

• Register names.

C1.2.1 General requirements

The letter W denotes a general-purpose register holding a 32-bit word, and X denotes a general-purpose register
holding a 64-bit doubleword.

An A64 assembler recognizes both uppercase and lowercase variants of the instruction mnemonics and register
names, but not mixed case variants. An A64 disassembler can output either uppercase or lowercase mnemonics and
register names. Program and data labels are case-sensitive.

The A64 assembly language does not require the # character to introduce constant immediate operands, but an
assembler must allow immediate values introduced with or without the # character.

In Example C1-1, the sequence // is used as a comment leader and A64 assemblers are encouraged to accept this
syntax.

C1.2.2 Common syntax terms

The following syntax terms are used frequently throughout the A64 instruction set description.

UPPER Text in upper-case letters is fixed. Text in lower-case letters is variable. This means that register
name Xn indicates that the X is required, followed by a variable register number, for example X29.

< > Any text enclosed by angle braces, < >, is a value that the user supplies. Subsequent text might
supply additional information.

{ } Any item enclosed by curly brackets, { }, is optional. A description of the item and how its presence
or absence affects the instruction is normally supplied by subsequent text. In some cases curly
braces are actual symbols in the syntax, for example when they surround a register list. These cases
are called out in the surrounding text.

[] Any items enclosed by square brackets, [], constitute a list of alternative characters. A single one
of the characters can be used in that position and the subsequent text describes the meaning of the
alternatives. In some case the square brackets are part of the syntax itself, such as addressing modes
or vector elements. These cases are called out in the surrounding text.

a|b Alternative words are separated by a vertical bar, |, and can be surrounded by parentheses to delimit
them. For example, U(ADD|SUB)W represents UADDW or USUBW.

± This indicates an optional + or - sign. If neither is used then + is assumed.

uimmn An n-bit unsigned, positive, immediate value.

simmn An n-bit two’s complement, signed immediate value, where n includes the sign bit.

SP See Register names.

Wn See Register names.

WSP See Register names.

WZR See Register names.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-320
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
Xn See Register names.

XZR See Register names
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-321
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2.3 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions all have different opcodes.
However, the programmer must remember only one mnemonic, as the assembler automatically chooses the correct
opcode based on the operands. The disassembler follows the same procedure in reverse.

Example C1-1 ADD instructions with different opcodes

ADD W0, W1, W2 // add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, W2, SXTW // add 64-bit extended register
ADD X0, X1, #42 // add 64-bit immediate

C1.2.4 Condition code

The A64 ISA has some instructions that set Condition flags or test Condition codes or both. For information about
instructions that set the Condition flags or use the condition mnemonics, see Condition flags and related
instructions.

Table C1-1 shows the available Condition codes.

Table C1-1 Condition codes

cond Mnemonic Meaning (integer) Meaning (floating-point)a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal or unordered Z == 0

0010 CS or HS Carry set Greater than, equal, or unordered C == 1

0011 CC or LO Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Ordered V == 0

1000 HI Unsigned higher Greater than, or unordered C ==1 && Z == 0

1001 LS Unsigned lower or same Less than or equal !(C ==1 && Z ==0)

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V

1100 GT Signed greater than Greater than Z == 0 && N == V

1101 LE Signed less than or equal Less than, equal, or unordered !(Z == 0 && N == V)

1110 AL Always Always Any

1111 NVb Always Always Any

a. Unordered means at least one NaN operand.

b. The Condition code NV exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is identical
to AL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-322
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2.5 SVE Condition code aliases

The SVE assembler syntax defines an alternative set of SVE condition code aliases for use with AArch64
conditional instructions, as follows:

Table C1-2 shows the available SVE Condition code aliases.

C1.2.6 Register names

See:

• General-purpose register file and zero register and stack pointer.

• Advanced SIMD and floating-point register file.

• Advanced SIMD and floating-point scalar register names.

• SIMD vector register names.

• SIMD vector element names.

• For SVE register names, see Z0-Z31. P0-P15, and FFR, First Fault Register.

• For SME ZA storage, see ZA array vector access and ZA tile access.

• For SME2 ZT0 storage, see ZT0.

C1.2.6.1 General-purpose register file and zero register and stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the
instruction register fields with values 0-30. In a general-purpose register field the value 31 represents either the
current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size,
32 bits or 64 bits, and the data size of the instruction.

Table C1-2 SVE Condition codes

cond Mnemonic
SVE
alias

Meaning Condition flags

0000 EQ NONE All Active elements were FALSE or there were no Active elements. Z == 1

0001 NE ANY An Active element was TRUE. Z == 0

0010 CS or HS NLAST The Last active element was FALSE or there were no Active elements. C == 1

0011 CC or LO LAST The Last active element was TRUE. C == 0

0100 MI FIRST The First active element was TRUE. N == 1

0101 PL NRFST The First active element was FALSE or there were no Active elements. N == 0

0110 VS - CTERM comparison failed, but end of partition reached. V == 1

0111 VC - CTERM comparison succeeded, or end of partition not reached. V == 0

1000 HI An Active element was TRUE, but the Last active element was FALSE. C ==1 && Z == 0

1001 LS PLAST The Last active element was TRUE, or all Active elements were FALSE,
or there were no Active elements.

C ==0 || Z ==1

1010 GE TCONT CTERM termination condition not detected. N == V

1011 LT TSTOP CTERM termination condition detected. N != V
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-323
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read
and cleared to zero on a write.

Table C1-3 shows the qualified names for registers, where n is a register number 0-30.

This list gives more information about the instruction arguments shown in Table C1-3:

• The names Xn and Wn both refer to the same general-purpose register, Rn.

• There is no register named W31 or X31.

• The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as a read or write of the current stack pointer. When instructions
do not interpret this operand encoding as the stack pointer, use of the name SP is an error.

• The name WSP represents the current stack pointer in a 32-bit context.

• The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as returning zero when read or discarding the result when written.
When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error.

• The name WZR represents the zero register in a 32-bit context.

• The architecture does not define a specific name for general-purpose register R30 to reflect its role as the link
register on procedure calls. However, an A64 assembler must always use W30 and X30 for this purpose, and
additional software names might be defined as part of the Procedure Call Standard, see Procedure Call
Standard for the Arm 64-bit Architecture.

C1.2.6.2 Advanced SIMD and floating-point register file

The 32 registers in the Advanced SIMD and floating-point register file, V0-V31, hold floating-point operands for
the scalar floating-point instructions, and both scalar and vector operands for the Advanced SIMD instructions.
When they are used in a specific instruction form, the names must be further qualified to indicate the data shape,
that is the data element size and the number of elements or lanes within the register. A similar requirement is placed
on the general-purpose registers. See General-purpose register file and zero register and stack pointer.

Note

The data type is described by the instruction mnemonics that operate on the data. The data type is not described by
the register name. The data type is the interpretation of bits within each register or vector element, whether these
are integers, floating-point values, polynomials, or cryptographic hashes.

Table C1-3 Naming of general-purpose registers, the zero register, and the stack pointer

 Name Size Encoding Description

Wn 32 bits 0-30 General-purpose register 0-30

Xn 64 bits 0-30 General-purpose register 0-30

WZR 32 bits 31 Zero register

XZR 64 bits 31 Zero register

WSP 32 bits 31 Current stack pointer

SP 64 bits 31 Current stack pointer
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-324
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
C1.2.6.3 Advanced SIMD and floating-point scalar register names

Advanced SIMD and floating-point instructions that operate on scalar data only access the lower bits of an
Advanced SIMD and floating-point register. The unused high bits are ignored on a read and cleared to 0 on a write.

Table C1-4 shows the qualified names for accessing scalar Advanced SIMD and floating-point registers. The letter
n denotes a register number between 0 and 31.

C1.2.6.4 SIMD vector register names

If a register holds multiple data elements on which arithmetic is performed in a parallel, SIMD, manner, then a
qualifier describes the vector shape. The vector shape is the element size and the number of elements or lanes. If the
element size in bits multiplied by the number of lanes does not equal 128, then the upper 64 bits of the register are
ignored on a read and cleared to zero on a write.

Table C1-5 shows the SIMD vector register names. The letter n denotes a register number between 0 and 31.

C1.2.6.5 SIMD vector element names

Appending a constant, zero-based element index to the register name inside square brackets indicates that a single
element from a SIMD and floating-point register is used as a scalar operand. The number of lanes is not represented,
as it is not encoded in the instruction and can only be inferred from the index value.

Table C1-4 Advanced SIMD and floating-point scalar register names

Size Name

8 bits Bn

16 bits Hn

32 bits Sn

64 bits Dn

128 bits Qn

Table C1-5 SIMD vector register names

Shape Name

8 bits × 8 lanes Vn.8B

8 bits × 16 lanes Vn.16B

16 bits × 4 lanes Vn.4H

16 bits × 8 lanes Vn.8H

32 bits × 2 lanes Vn.2S

32 bits × 4 lanes Vn.4S

64 bits × 1 lane Vn.1D

64 bits × 2 lanes Vn.2D
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-325
ID032224 Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language
Table C1-6 shows the vector register names and the element index. The letter i denotes the element index.

An assembler must accept a fully qualified SIMD register name if the number of lanes is greater than the index
value. See SIMD vector register names. For example, an assembler must accept all of the following forms as the
name for the 32-bit element in bits [63:32] of the SIMD and floating-point register V9:

V9.S[1] //standard disassembly
V9.2S[1] //optional number of lanes
V9.4S[1] //optional number of lanes

Note

The SIMD and floating-point register element name Vn.S[0] is not equivalent to the scalar SIMD and floating-point
register name Sn. Although they represent the same bits in the register, they select different instruction encoding
forms, either the vector element or the scalar form.

C1.2.6.5.1 SIMD vector register list

Where an instruction operates on multiple SIMD&FP or SVE registers, for example vector load/store structure and
table lookup operations, the registers are specified as a list enclosed by curly braces. This list consists of either a
sequence of registers separated by commas, or a register range separated by a hyphen. The registers must be
numbered in increasing order, modulo 32, in increments of one. The hyphenated form is preferred for disassembly
if there are more than two registers in the list and the register numbers are increasing. The following examples are
equivalent representations of a set of four registers V4 to V7, each holding four lanes of 32-bit elements:

{ V4.4S - V7.4S } //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S } //alternative representation

C1.2.6.5.2 SIMD vector element list

Registers in a list can also have a vector element form. For example, the LD4 instruction can load one element into
each of four registers, and in this case the index is appended to the list as follows:

{ V4.S - V7.S }[3] //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S }[3] //alternative with optional number of lanes

Table C1-6 Vector register names with element index

Size Name

8 bits Vn.B[i]

16 bits Vn.H[i]

32 bits Vn.S[i]

64 bits Vn.D[i]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-326
ID032224 Non-Confidential

The A64 Instruction Set
C1.3 Address generation
C1.3 Address generation

The A64 instruction set supports 64-bit virtual addresses (VAs). The valid VA range is determined by the following
factors:

• The size of the implemented virtual address space.

• Memory Management Unit (MMU) configuration settings.

Limits on the VA size mean that the most significant bits of the virtual address do not hold valid address bits. These
unused bits can hold:

• A tag, see Address tagging.

• If FEAT_PAuth is implemented, a Pointer authentication code (PAC), see Pointer authentication.

For more information on memory management and address translation, see Chapter D8 The AArch64 Virtual
Memory System Architecture.

C1.3.1 Register indexed addressing

The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling
of the index by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within
an index register, followed by optional scaling.

C1.3.2 PC-relative addressing

The A64 instruction set has support for position-independent code and data addressing:

• PC-relative literal loads have an offset range of ± 1MB.

• Process state flag and compare based conditional branches have a range of ± 1MB. Test bit conditional
branches have a restricted range of ± 32KB.

• Unconditional branches, including branch and link, have a range of ± 128MB.

PC-relative load/store operations, and address generation with a range of ± 4GB can be performed using two
instructions.

C1.3.3 Load/store addressing modes

Load/store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-7 shows the
assembler syntax for the complete set of load/store addressing modes.

Table C1-7 A64 Load/store addressing modes

Addressing Mode
Offset

Immediate Register Extended Register

Base register only (no offset) [base{, #0}] - -

Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XT(X|W) {#imm}]

Pre-indexed [base, #imm]! - -

Post-indexed [base], #imm [base], Xma

a. The post-indexed by register offset mode can be used with the SIMD load/store structure instructions described in
Load/store Advanced SIMD. Otherwise the post-indexed by register offset mode is not available.

-

Literal (PC-relative) label - -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-327
ID032224 Non-Confidential

The A64 Instruction Set
C1.3 Address generation
Some types of load/store instruction support only a subset of the load/store addressing modes listed in Table C1-7.
Details of the supported modes are as follows:

• Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.

• Pre-indexed addressing means that the address is the sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.

• Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

• Literal addressing means that the address is the value of the 64-bit program counter for this instruction plus
a 19-bit signed word offset. This means that it is a 4 byte aligned address within ±1MB of the address of this
instruction with no offset. Literal addressing can be used only for loads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific
to individual toolchains.

• An immediate offset can be unsigned or signed, and scaled or unscaled, depending on the type of load/store
instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of load/store instruction and the transfer
size.

Table C1-8 shows the offset and the type of load/store instruction.

• A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled
by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to log2(transfer_size). The
SXTX extend/shift option is functionally equivalent to LSL, but the LSL option is preferred in source code.

• An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to log2(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

• Generating an address lower than the value in the base register requires a negative signed immediate offset
or a register offset holding a negative value.

• When stack alignment checking is enabled by system software and the base register is the SP, the current
stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific load/store instruction
requires this. SP cannot be used as a register offset.

Table C1-8 Immediate offsets and the type of load/store instruction

Offset bits Sign Scaling Write-Back Load/store type

0 - - - Exclusive/acquire/release

7 Signed Scaled Optional Register pair

9 Signed Unscaled Optional Single register

12 Unsigned Scaled No Single register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-328
ID032224 Non-Confidential

The A64 Instruction Set
C1.3 Address generation
C1.3.3.1 Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to
a general-purpose register or, in most cases, to the current stack pointer.

Table C1-9 shows the arithmetic instructions that can compute addressing modes.

Note

• For the 64-bit base plus register offset form, the UXTX mnemonic is an alias for the LSL shift option, but LSL is
preferred for disassembly. Similarly the SXTX extend/shift option is functionally equivalent to the LSL option,
but the LSL option is preferred in source code.

• To calculate a base plus immediate offset the ADD instructions defined in Arithmetic (immediate) accept an
unsigned 12-bit immediate offset, with an optional left shift by 12. This means that a single ADD instruction
cannot support the full range of byte offsets available to a single register load/store with a scaled 12-bit
immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To calculate an address
with a byte offset that requires more than 12 bits it is necessary to use two ADD instructions. The following
example shows this:

ADD Xd, base, #(imm & 0xFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

• To calculate a base plus extended register offset, the ADD instructions defined in Arithmetic (extended register)
provide a superset of the addressing mode that also supports sign-extension or zero-extension of a byte or
halfword value with any shift amount between 0 and 4, for example:

ADD Xd, base, Wm, SXTW #3 // Xd = base + (SignExtend(Wm) LSL 3)
ADD Xd, base, Wm, UXTH #4 // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)

• If the same extended register offset is used by more than one load/store instruction, then, depending on the
implementation, it might be more efficient to calculate the extended and scaled intermediate result just once,
and then reuse it as a simple register offset. The extend and scale calculation can be performed using the SBFIZ
and UBFIZ bitfield instructions defined in Bitfield move, for example:

SBFIZ Xd, Xm, #3, #32 //Xd = “Wm, SXTW #3”
UBFIZ Xd, Xm, #4, #16 //Xd = “Wm, UXTH #4”

Table C1-9 Arithmetic instructions to compute addressing modes

Addressing
Form

Offset

Immediate Register Extended Register

Base register
(no offset)

MOV Xd|SP, base - -

Base plus offset ADD Xd|SP, base, #imm

or

SUB Xd|SP, base, #imm

ADD <Xd|SP>, base, Xm{,LSL#imm} ADD <Xd|SP>, base, Wm,(S|U)XT(W|H|B|X) {#imm}

Pre-indexed - - -

Post-indexed - - -

Literal
(PC-relative)

ADR Xd, label - -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-329
ID032224 Non-Confidential

The A64 Instruction Set
C1.4 Instruction aliases
C1.4 Instruction aliases

Some instructions have an associated architecture alias that is used for disassembly of the encoding when the
associated conditions are met. Architecture alias instructions are included in the alphabetic lists of instruction types
and clearly presented as an alias form in descriptions for the individual instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C1-330
ID032224 Non-Confidential

Chapter C2
About the A64 Instruction Descriptions

This chapter describes the instruction descriptions contained in Chapter C6 A64 Base Instruction Descriptions,
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions, Chapter C8 SVE Instruction
Descriptions, and Chapter C9 SME Instruction Descriptions.

It contains the following sections:

• Understanding the A64 instruction descriptions.

• General information about the A64 instruction descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-331
ID032224 Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions
C2.1 Understanding the A64 instruction descriptions

Each instruction description in Chapter C6, Chapter C7, Chapter C8, and Chapter C9 has the following content:

1. A title.

2. An introduction to the instruction.

3. The instruction encoding or encodings.

4. Any alias conditions.

5. A list of the assembler symbols for the instruction.

6. Pseudocode describing how the instruction operates.

7. Notes, if applicable.

The following sections describe each of these.

C2.1.1 The title

The title of an instruction description includes the base mnemonic for the instruction.

If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the
title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used
when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C6 there are the following titles for different forms of the ADD instruction:

• ADD (extended register).

• ADD (immediate).

• ADD (shifted register).

C2.1.2 An introduction to the instruction

This briefly describes the function of the instruction. The introduction is not a complete description of the
instruction, and it is not definitive. If there is any conflict between it and the more detailed information that follows
it, the more detailed information takes priority.

C2.1.3 The instruction encoding or encodings

This shows the instruction encoding diagram, or if the instruction has more than one encoding, shows all of the
encoding diagrams. Each diagram has a subheading.

For example, for load and store instructions, the subheadings might be:

• Post-index.

• Pre-index.

• Unsigned offset.

Each diagram numbers the bits from 31 to 0. The diagram for an instruction at address A shows, from left to right,
the bytes at addresses A+3, A+2, A+1, and A.

There might be variants of an encoding, if the assembler syntax prototype differs depending on the value in one or
more of the encoding fields. In this case, each variant has a subheading that describes the variant and shows the
distinguishing field value or values in parentheses. For example, in Chapter C6 there are the following subheadings
for variants of the ADC instruction encoding:

• 32-bit variant (sf = 0).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-332
ID032224 Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions
• 64-bit variant (sf = 1).

The assembler syntax prototype for an encoding or variant of an encoding shows how to form a complete assembler
source code instruction that assembles to the encoding. Unless otherwise stated, the prototype is also the preferred
syntax for a disassembler to disassemble the encoding to. Disassemblers are permitted to omit optional symbols that
represent the default value of a field or set of fields, to produce more readable disassembled code, provided that the
output re-assembles to the same encoding.

Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describes the operation of the instruction. See Pseudocode describing how the instruction operates.

C2.1.4 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an
alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

Arm recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C2.1.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of the instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use, if any.

In assembler syntax prototypes, the following conventions are used:

< > Angle brackets. Any symbol enclosed by these is a name or a value that the user supplies. For each
symbol, there is a description of what the symbol represents. The description usually also specifies
which encoding field or fields encodes the symbol.

{ } Brace brackets. Any symbols enclosed by these are optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

This usually precedes a numeric constant. All uses of # are optional in A64 assembler source code.
Arm recommends that disassemblers output the # where the assembler syntax prototype includes it.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, the characters shown are used as part of a meta-language to define the architectural
assembler syntax for an instruction encoding or alias, but have no architecturally defined significance in the input
to an assembler or in the output from a disassembler.

The following symbol conventions are used:

<Xn> The 64-bit name of a general-purpose register (X0-X30) or the zero register (XZR).

<Wn> The 32-bit name of a general-purpose register (W0-W30) or the zero register (WZR).

<Xn|SP> The 64-bit name of a general-purpose register (X0-X30) or the current stack pointer (SP).

<Wn|WSP> The 32-bit name of a general-purpose register (W0-W30) or the current stack pointer (WSP).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-333
ID032224 Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions
<Bn>, <Hn>, <Sn>, <Dn>, <Qn>

The 8, 16, 32, 64, or 128-bit name of a SIMD and floating-point register in a scalar context, as
described in Register names.

<Vn> The name of a SIMD and floating-point register in a vector context, as described in Register names.

<Zn> The name of an SVE vector register, as described in Treatment of SVE Z registers.

<Pn> The name of an SVE predicate register, as described in Vector predication.

If the description of a symbol specifies that the symbol is a register, the description might also specify that the range
of permitted registers is extended or restricted. It also specifies any differences from the default rules for such fields.

For information about SME conventions, see ZA storage.

Note

Register names provides the A64 register names.

C2.1.6 Pseudocode describing how the instruction operates

The Operation subsection of the instruction description contains this pseudocode.

It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note

For a description of Arm pseudocode, see Appendix K16 Arm Pseudocode Definition. This appendix also describes
the execution model for an instruction.

C2.1.7 Notes, if applicable

If applicable, other notes about the instruction appear under additional subheadings.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-334
ID032224 Non-Confidential

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
C2.2 General information about the A64 instruction descriptions

This section provides general information about the A64 instruction descriptions. Some of this information also
applies to System register descriptions, for example the terms defined in Fixed values in AArch64 instruction and
System register descriptions apply to the AArch64 descriptions throughout this manual. The following subsections
provide this information:

• Execution of instructions in Debug state.

• Fixed values in AArch64 instruction and System register descriptions.

• Modified immediate constants in A64 floating-point instructions.

C2.2.1 Execution of instructions in Debug state

In general, except for the instructions described in Debug state, the A64 instruction descriptions do not indicate any
differences in the behavior of the instruction if it is executed in Debug state. For this information, see Executing
instructions in Debug state.

Note

For many instructions, execution is unchanged in Debug state. Executing instructions in Debug state identifies these
instructions,

C2.2.2 Fixed values in AArch64 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions.
The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the
corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RES0 and
RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:

RAZ Read-As-Zero. See Read-As-Zero (RAZ).

In diagrams, a RAZ bit can be shown as 0.

(0), RES0 Reserved, Should-Be-Zero (SBZ) or RES0.

In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ bit. If
the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 0.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0)(0) or as
(000).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES0. See the Glossary definition of RES0 for more information.

Note

Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES0 fields,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-335
ID032224 Non-Confidential

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
The (0) and RES0 descriptions can be applied to bits or bit fields that are read-only, or are write-only.
The Glossary definitions cover these cases.

RAO Read-As-One. See Read-As-One (RAO).

In diagrams, a RAO bit can be shown as 1.

(1), RES1 Reserved, Should-Be-One (SBO) or RES1.

In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates an SBO bit. If
the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 1.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as
(111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES1. See the Glossary definition of RES1 for more information.

Note

Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES1 fields,

The (1) and RES1 descriptions can be applied to bits or bit fields that are read-only, or are write-only.
The Glossary definitions cover these cases.

C2.2.3 Modified immediate constants in A64 floating-point instructions

Table C2-1 shows the immediate constants available in FMOV (scalar, immediate) and FMOV (vector, immediate)
floating-point instructions.

The immediate value shown in the table is either:

• The value of the imm8 field for an FMOV (scalar, immediate) instruction, see FMOV (scalar, immediate).

• The value obtained by concatenating the a:b:c:d:e:f:g:h fields for an FMOV (vector, immediate) instruction,
see FMOV (vector, immediate).

Table C2-1 A64 Floating-point modified immediate constants

Data
type

immediate Constant a

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (–1)S × 2exp × mantissa,
where S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

F16 abcdefgh aBbbcdef gh000000

F32 abcdefgh aBbbbbbc defgh000 00000000 00000000

F64 abcdefgh aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-336
ID032224 Non-Confidential

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions
Table C2-2 shows the floating-point constant values encoded in the b:c:d:e:f:g:h fields of the FMOV (vector,
immediate) instruction.

C2.2.3.1 Operation of modified immediate constants, floating-point instructions

For an A64 floating-point instruction that uses a modified immediate constant, the operation described by the
VFPExpandImm() pseudocode function returns the value of the immediate constant.

Table C2-2 Floating-point constant values

efgh
bcd

000 001 010 011 100 101 110 111

0000 2.0 4.0 8.0 16.0 0.125 0.25 0.5 1.0

0001 2.125 4.25 8.5 17.0 0.1328125 0.265625 0.53125 1.0625

0010 2.25 4.5 9.0 18.0 0.140625 0.28125 0.5625 1.125

0011 2.375 4.75 9.5 19.0 0.1484375 0.296875 0.59375 1.1875

0100 2.5 5.0 10.0 20.0 0.15625 0.3125 0.625 1.25

0101 2.625 5.25 10.5 21.0 0.1640625 0.328125 0.65625 1.3125

0110 2.75 5.5 11.0 22.0 0.171875 0.34375 0.6875 1.375

0111 2.875 5.75 11.5 23.0 0.1796875 0.359375 0.71875 1.4375

1000 3.0 6.0 12.0 24.0 0.1875 0.375 0.75 1.5

1001 3.125 6.25 12.5 25.0 0.1953125 0.390625 0.78125 1.5625

1010 3.25 6.5 13.0 26.0 0.203125 0.40625 0.8125 1.625

1011 3.375 6.75 13.5 27.0 0.2109375 0.421875 0.84375 1.6875

1100 3.5 7.0 14.0 28.0 0.21875 0.4375 0.875 1.75

1101 3.625 7.25 14.5 29.0 0.2265625 0.453125 0.90625 1.8125

1110 3.75 7.5 15.0 30.0 0.234375 0.46875 0.9375 1.875

1111 3.875 7.75 15.5 31.0 0.2421875 0.484375 0.96875 1.9375
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C2-337
ID032224 Non-Confidential

Chapter C3
A64 Instruction Set Overview

This chapter provides an overview of the A64 instruction set. It contains the following sections:

• Branches, Exception generating, and System instructions.

• Loads and stores.

• Loads and stores - SVE.

• Loads and stores - SME, SME2, SVE2p1

• Data processing - immediate.

• Data processing - register.

• Data processing - SIMD and floating-point.

• Data processing - SVE.

• Data processing - SVE2.

• Data processing - SME, SME2

For a structured breakdown of instruction groups by encoding, see Chapter C4 A64 Instruction Set Encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-338
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and System instructions. It contains the following
subsections:

• Conditional branch.

• Unconditional branch (immediate).

• Unconditional branch (register).

• Exception generation and return.

• System register instructions.

• System instructions.

• Hint instructions.

• Barriers and CLREX instructions.

• Pointer authentication instructions.

For information about the encoding structure of the instructions in this instruction group, see Branches, Exception
Generating and System instructions.

Note

Software must:

• Use only BLR or BL to perform a nested subroutine call when that subroutine is expected to return to the
immediately following instruction, that is, the instruction with the address of the BLR or BL instruction
incremented by four.

• Use only RET to perform a subroutine return, when that subroutine is expected to have been entered by a BL
or BLR instruction.

• Use only B, BR, or the instructions listed in Table C3-1 to perform a control transfer that is not a subroutine
call or subroutine return described in this Note.

C3.1.1 Conditional branch

Conditional branches change the flow of execution depending on the current state of the Condition flags or the value
in a general-purpose register. See Table C1-1 for a list of the Condition codes that can be used for cond.

Table C3-1 shows the Conditional branch instructions.

Table C3-1 Conditional branch instructions

Mnemonic Instruction
Branch offset range
from the PC

See

B.cond Branch conditionally ±1MB B.cond

BC.cond Branch Consistent conditionally ±1MB BC.cond

CBNZ Compare and branch if nonzero ±1MB CBNZ

CBZ Compare and branch if zero ±1MB CBZ

TBNZ Test bit and branch if nonzero ±32KB TBNZ

TBZ Test bit and branch if zero ±32KB TBZ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-339
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an
immediate offset with a range of ±128MB to the value of the program counter that fetched the instruction. The BL
instruction also writes the address of the sequentially following instruction to general-purpose register, X30.

Table C3-2 shows the Unconditional branch instructions with an immediate branch offset.

C3.1.3 Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program
counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially
following instruction to general-purpose register X30. The RET instruction behaves identically to BR, but provides an
additional hint to the PE that this is a return from a subroutine. Table C3-3 shows Unconditional branch instructions
that jump directly to an address held in a general-purpose register.

C3.1.4 Exception generation and return

This section describes the following exceptions:

• Exception generating.

• Exception return.

• Debug state.

C3.1.4.1 Exception generating

Table C3-4 shows the Exception generating instructions.

Table C3-2 Unconditional branch instructions (immediate)

Mnemonic Instruction
Immediate branch offset range
from the PC

See

B Branch unconditionally ±128MB B

BL Branch with link ±128MB BL

Table C3-3 Unconditional branch instructions (register)

Mnemonic Instruction See

BLR Branch with link to register BLR

BR Branch to register BR

RET Return from subroutine RET

Table C3-4 Exception generating instructions

Mnemonic Instruction See

BRK Breakpoint Instruction BRK

HLT Halt Instruction HLT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-340
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1.4.2 Exception return

Table C3-5 shows the Exception return instructions.

C3.1.4.3 Debug state

Table C3-6 shows the Debug state instructions.

C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-7 shows the System register instructions.

If FEAT_SYSREG128 is implemented, the following instructions are added that allow the PE to move values
between a 128-bit System register and two adjacent 64-bit general-purpose registers:

• MRRS.

• MSRR.

HVC Generate exception targeting Exception level 2 HVC

SMC Generate exception targeting Exception level 3 SMC

SVC Generate exception targeting Exception level 1 SVC

Table C3-5 Exception return instructions

Mnemonic Instruction See

ERET Exception return using current ELR and SPSR ERET

Table C3-6 Debug state instructions

Mnemonic Instruction See

DCPS1 Debug switch to Exception level 1 DCPS1

DCPS2 Debug switch to Exception level 2 DCPS2

DCPS3 Debug switch to Exception level 3 DCPS3

DRPS Debug restore PE state DRPS

Table C3-4 Exception generating instructions (continued)

Mnemonic Instruction See

Table C3-7 System register instructions

Mnemonic Instruction See

MRS Move System register to general-purpose register MRS

MSR Move general-purpose register to System register MSR (register)

Move immediate to PE state field MSR (immediate)

MRRS Move 128-bit System register to two adjacent 64-bit general-purpose registers MRRS

MSRR Move two adjacent 64-bit general-purpose registers to 128-bit System register MSRR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-341
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1.6 Instructions with register argument

For detailed information about instructions with register argument, see Chapter C6 A64 Base Instruction
Descriptions. Table C3-8 shows the instructions with register argument.

C3.1.7 System instructions

For detailed information about the System instructions, see Chapter C5 The A64 System Instruction Class.

If FEAT_SYSINSTR128 is implemented, the 128-bit System instruction, SYSP, is supported.

Table C3-9 shows the System instructions.

C3.1.8 Hint instructions

Table C3-10 shows the Hint instructions.

Table C3-8 Instructions with register argument

Mnemonic Instruction See

WFET Wait for event with Timeout WFET

WFIT Wait for interrupt with Timeout WFIT

Table C3-9 System instructions

Mnemonic Instruction See

SYS System instruction SYS

SYSL System instruction with result SYSL

SYSP 128-bit System instruction SYSP

IC Instruction cache maintenance IC and Table C5-1

DC Data cache maintenance DC and Table C5-1

AT Address translation AT and Table C5-3

TLBI TLB Invalidate TLBI and Table C5-4

Table C3-10 Hint instructions

Mnemonic Instruction See

NOP No operation NOP

YIELD Yield hint YIELD

WFE Wait for event WFE

WFI Wait for interrupt WFI

SEV Send event SEV

SEVL Send event local SEVL

HINT Unallocated hint HINT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-342
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1.9 Barriers and CLREX instructions

Table C3-11 shows the barrier and CLREX instructions.

For more information about DSB, DMB, and ISB, see Memory barriers.

Table C3-12 shows the speculation and synchronization barriers. If these instructions are not implemented, then
these instructions execute as a NOP.

For more information about:

• CSDB, PSSBB, SB, SSBB, TSB, see Memory barriers.

• ESB, see Error synchronization event.

• PSB, see Chapter D16 The Statistical Profiling Extension.

• GCSB, see Guarded Control Stack data accesses.

DGH Data Gathering Hint DGH

CLRBHB Clear Branch History CLRBHB

CHKFEAT Check Feature CHKFEAT

Table C3-10 Hint instructions (continued)

Mnemonic Instruction See

Table C3-11 Barriers and CLREX instructions

Mnemonic Instruction See

CLREX Clear Exclusives monitor CLREX

DMB Data memory barrier DMB

DSB Data synchronization barrier DSB

ISB Instruction synchronization barrier ISB

Table C3-12 Speculation and synchronization barriers

Mnemonic Instruction See

CSDB Consumption of Speculative Data Barrier CSDB

ESB Error synchronization barrier ESB

PSB Profiling synchronization barrier PSB

PSSBB Physical Speculative Store Bypass Barrier PSSBB

SB Speculation Barrier SB

SSBB Speculative Store Bypass Barrier SSBB

TSB Trace Synchronization Barrier TSB

GCSB Guarded Control Stack Barrier GCSB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-343
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1.10 Pointer authentication instructions

FEAT_PAuth adds support for pointer authentication, see Pointer authentication. This functionality includes the
A64 instructions described in this section. These instructions fall into two groups, see:

• Basic pointer authentication instructions.

• Combined instructions that include pointer authentication.

C3.1.10.1 Basic pointer authentication instructions

Each of these instructions only performs an operation that supports pointer authentication.

Table C3-13 shows the instructions that add a Pointer Authentication Code (PAC) to the address in a register:

Table C3-13 Instructions that add a PAC

Mnemonic Instruction See

PACIASP Add PAC to instruction address
using APIAKey_EL1 and SP

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

PACIAZ Add PAC to instruction address
using APIAKey_EL1 and zero

PACIA1716 Add PAC to instruction address
X17 using APIAKey_EL1 and X16

PACIBSP Add PAC to instruction address
using APIBKey_EL1 and SP

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

PACIBZ Add PAC to instruction address
using APIBKey_EL1 and zero

PACIB1716 Add PAC to instruction address X17
using APIBKey_EL1 and X16

PACIA Add PAC to instruction address
using APIAKey_EL1, registers

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

PACDA Add PAC to data address
using APDAKey_EL1, registers

PACDA, PACDZA

PACIB Add PAC to instruction address
using APIBKey_EL1, registers

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

PACDB Add PAC to data address
using APDBKey_EL1, registers

PACDB, PACDZB

PACIZA Add PAC to instruction address
using APIAKey_EL1, register and zero

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

PACDZA Add PAC to data address
using APDAKey_EL1, register and zero

PACDA, PACDZA

PACIZB Add PAC to instruction address
using APIBKey_EL1, register and zero

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

PACDZB Add PAC to data address
using APDBKey_EL1, register and zero

PACDB, PACDZB

PACGA Add generic PAC
using APGAKey_EL1, registers

PACGA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-344
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
Table C3-14 shows the instructions that authenticate a PAC in a register:

Table C3-15 shows the instructions that strip a PAC from a register, without performing any authentication:

Table C3-14 Instructions that authenticate a PAC

Mnemonic Instruction See

AUTIASP Authenticate PAC for instruction address
using APIAKey_EL1 and SP

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

AUTIAZ Authenticate PAC for instruction address
using APIAKey_EL1 and zero

AUTIA1716 Authenticate PAC for instruction address X17
using APIAKey_EL1 and X16

AUTIBSP Authenticate PAC for instruction address
using APIBKey_EL1 and SP

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

AUTIBZ Authenticate PAC for instruction address
using APIBKey_EL1 and zero

AUTIB1716 Authenticate PAC for instruction address X17
using APIBKey_EL1 and X16

AUTIA Authenticate PAC for instruction address
using APIAKey_EL1, registers

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

AUTDA Authenticate PAC for data address
using APDAKey_EL1, registers

AUTDA, AUTDZA

AUTIB Authenticate PAC for instruction address
using APIBKey_EL1, registers

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

AUTDB Authenticate PAC for data address
using APDBKey_EL1, registers

AUTDB, AUTDZB

AUTIZA Authenticate PAC for instruction address
using APIAKey_EL1, register and zero

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

AUTDZA Authenticate PAC for data address
using APDAKey_EL1, register and zero

AUTDA, AUTDZA

AUTIZB Authenticate PAC for instruction address
using APIBKey_EL1, register and zero

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

AUTDZB Authenticate PAC for data address
using APDBKey_EL1, register and zero

AUTDB, AUTDZB

Table C3-15 Instructions that strip a PAC

Mnemonic Instruction See

XPACLRI Strip instruction address PAC from LR XPACD, XPACI, XPACLRI

XPACI Strip instruction address PAC, register

XPACD Strip data address PAC, register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-345
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions
C3.1.10.2 Combined instructions that include pointer authentication

Each of these instructions combines a pointer authentication with another operation that uses the authenticated
pointer. Table C3-16 shows these instructions:

Table C3-16 Combined pointer authentication instructions

Mnemonic Instruction See

RETAA Authenticate PAC for LR
using APIAKey_EL1 and SP, and return

RETAA, RETAB

RETAB Authenticate PAC for LR
using APIBKey_EL1 and SP, and return

BRAA Authenticate PAC
using APIAKey_EL1 (registers), and branch

BRAA, BRAAZ, BRAB, BRABZ

BRAB Authenticate PAC
using APIBKey_EL1 (registers), and branch

BLRAA Authenticate PAC
using APIAKey_EL1 (registers), and branch with link

BLRAA, BLRAAZ, BLRAB, BLRABZ

BLRAB Authenticate PAC
using APIBKey_EL1 (registers), and branch with link

BRAAZ Authenticate PAC
using APIAKey_EL1 (register and zero), and branch

BRAA, BRAAZ, BRAB, BRABZ

BRABZ Authenticate PAC
using APIBKey_EL1 (register and zero), and branch

BLRAAZ Authenticate PAC
using APIAKey_EL1 (register and zero), and branch with link

BLRAA, BLRAAZ, BLRAB, BLRABZ

BLRABZ Authenticate PAC
using APIBKey_EL1 (register and zero), and branch with link

ERETAA Authenticate PAC for ELR
using APIAKey_EL1 and SP, and exception return

ERETAA, ERETAB

ERETAB Authenticate PAC for ELR
using APIBKey_EL1 and SP, and exception return

LDRAA Authenticate PAC for data address
using APDAKey_EL1 (register and zero) and Load

LDRAA, LDRAB

LDRAB Authenticate PAC for data address
using APDBKey_EL1 (register and zero) and Load
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-346
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2 Loads and stores

This section describes the load/store instructions. It contains the following subsections:

• Load/store register.

• Load/store register (unscaled offset).

• Load/store pair.

• Load/store non-temporal pair.

• Load/store unprivileged.

• Load-Exclusive/Store-Exclusive.

• Load-Acquire/Store-Release.

• LoadLOAcquire/StoreLORelease.

• Load/store scalar SIMD and floating-point.

• Load/store Advanced SIMD.

• Prefetch memory.

• Atomic instructions.

• Memory Tagging instructions.

• Memory Copy and Memory Set instructions.

The requirements for the alignment of data memory accesses are strict. For more information, see Alignment of data
accesses.

The additional control bits SCTLR_ELx.SA and SCTLR_EL1.SA0 control whether the stack pointer must be
quadword aligned when used as a base register. See SP alignment checking. Using a misaligned stack pointer
generates an SP alignment fault exception.

For information about the encoding structure of the instructions in this instruction group, see Loads and Stores.

Note

In some cases, load/store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See AArch64
CONSTRAINED UNPREDICTABLE behaviors.

C3.2.1 Load/store register

The load/store register instructions support the following addressing modes:

• Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.

• Base plus a 64-bit register offset, optionally scaled.

• Base plus a 32-bit extended register offset, optionally scaled.

• Pre-indexed by an unscaled 9-bit signed immediate offset.

• Post-indexed by an unscaled 9-bit signed immediate offset.

• PC-relative literal for loads of 32 bits or more.

See also Load/store addressing modes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-347
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
If a Load instruction specifies writeback and the register being loaded is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs the load using the specified addressing mode and the base register becomes
UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address
might be corrupted so that the instruction cannot be repeated.

If a Store instruction performs a writeback and the register that is stored is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs the store to the designated register using the specified addressing mode, but the
value stored is UNKNOWN.

Table C3-17 shows the load/store register instructions.

Table C3-17 Load/store register instructions

Mnemonic Instruction See

LDR Load register (register offset) LDR (register)

Load register (immediate offset) LDR (immediate)

Load register (PC-relative literal) LDR (literal)

LDRB Load byte (register offset) LDRB (register)

Load byte (immediate offset) LDRB (immediate)

LDRSB Load signed byte (register offset) LDRSB (register)

Load signed byte (immediate offset) LDRSB (immediate)

LDRH Load halfword (register offset) LDRH (register)

Load halfword (immediate offset) LDRH (immediate)

LDRSH Load signed halfword (register offset) LDRSH (register)

Load signed halfword (immediate offset) LDRSH (immediate)

LDRSW Load signed word (register offset) LDRSW (register)

Load signed word (immediate offset) LDRSW (immediate)

Load signed word (PC-relative literal) LDRSW (literal)

STR Store register (register offset) STR (register)

Store register (immediate offset) STR (immediate)

STRB Store byte (register offset) STRB (register)

Store byte (immediate offset) STRB (immediate)

STRH Store halfword (register offset) STRH (register)

Store halfword (immediate offset) STRH (immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-348
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.2 Load/store register (unscaled offset)

The load/store register instructions with an unscaled offset support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See Load/store addressing modes.

The load/store register (unscaled offset) instructions are required to disambiguate this instruction class from the
load/store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit
immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:

• In the range 0-255, inclusive.

• Naturally aligned to the access size.

Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a
load/store instruction, for example LDR, is required to encode an unambiguous offset using the unscaled 9-bit offset
form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the
generation of the unscaled 9-bit form by using one of the mnemonics in Table C3-18. Arm recommends that a
disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but unambiguous offsets can be
output using a load/store single register mnemonic, for example, LDR.

Table C3-18 shows the load/store register instructions with an unscaled offset.

C3.2.3 Load/store pair

The load/store pair instructions support the following addressing modes:

• Base plus a scaled 7-bit signed immediate offset.

• Pre-indexed by a scaled 7-bit signed immediate offset.

• Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes.

If a Load Pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

Table C3-18 Load/store register (unscaled offset) instructions

Mnemonic Instruction See

LDUR Load register (unscaled offset) LDUR

LDURB Load byte (unscaled offset) LDURB

LDURSB Load signed byte (unscaled offset) LDURSB

LDURH Load halfword (unscaled offset) LDURH

LDURSH Load signed halfword (unscaled offset) LDURSH

LDURSW Load signed word (unscaled offset) LDURSW

STUR Store register (unscaled offset) STUR

STURB Store byte (unscaled offset) STURB

STURH Store halfword (unscaled offset) STURH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-349
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the base register becomes
UNKNOWN. In addition, if an exception occurs during the instruction, the base address might be corrupted so
that the instruction cannot be repeated.

If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the stores of the registers indicated by the specified addressing mode, but the
value stored for the base register is UNKNOWN.

Table C3-19 shows the load/store pair instructions.

C3.2.4 Load/store non-temporal pair

The load/store non-temporal pair instructions support only one addressing mode:

• Base plus a scaled 7-bit signed immediate offset.

See Load/store addressing modes.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a Load Non-temporal Pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, the memory accesses can be observed in any order by the other observers within
the shareability domain of the memory addresses being accessed.

If a Load Non-Temporal Pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

Table C3-19 Load/store pair instructions

Mnemonic Instruction See

LDP Load Pair LDP

LDPSW Load Pair signed words LDPSW

STP Store Pair STP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-350
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-20 shows the load/store non-temporal pair instructions.

C3.2.5 Load/store unprivileged

The load/store unprivileged instructions support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See Load/store addressing modes.

The access permissions that apply to accesses made at EL0 apply to the memory accesses made by a load/store
unprivileged instruction that is executed either:

• At EL1 when the Effective value of PSTATE.UAO is 0.

• At EL2 when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of
PSTATE.UAO is 0.

Otherwise, memory accesses made by a load/store unprivileged instruction are subject to the access permissions that
apply to the Exception level at which the instruction is executed. These are the permissions that apply to the
corresponding load/store register instruction, see Load/store register.

Note

This means that when the value of PSTATE.UAO is 1 the access permissions for a load/store unprivileged
instruction are always the same as those for the corresponding load/store register instruction.

Table C3-21 shows the load/store unprivileged instructions.

C3.2.6 Load-Exclusive/Store-Exclusive

The Load-Exclusive/Store-Exclusive instructions support only one addressing mode:

• Base register with no offset.

Table C3-20 Load/store non-temporal pair instructions

Mnemonic Instruction See

LDNP Load Non-temporal Pair LDNP

STNP Store Non-temporal Pair STNP

Table C3-21 Load-Store unprivileged instructions

Mnemonic Instruction See

LDTR Load unprivileged register LDTR

LDTRB Load unprivileged byte LDTRB

LDTRSB Load unprivileged signed byte LDTRSB

LDTRH Load unprivileged halfword LDTRH

LDTRSH Load unprivileged signed halfword LDTRSH

LDTRSW Load unprivileged signed word LDTRSW

STTR Store unprivileged register STTR

STTRB Store unprivileged byte STTRB

STTRH Store unprivileged halfword STTRH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-351
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
See Load/store addressing modes.

The Load-Exclusive instructions mark the physical address being accessed as an exclusive access. This exclusive
access mark is checked by the Store-Exclusive instruction, permitting the construction of atomic read-modify-write
operations on shared memory variables, semaphores, mutexes, and spinlocks. See Synchronization and semaphores.

If FEAT_LSE2 is not implemented then:.

• The Load-Exclusive/Store-Exclusive instructions other than Load-Exclusive pair and Store-Exclusive pair
require natural alignment, and an unaligned address generates an Alignment fault.

• Memory accesses generated by Load-Exclusive pair or Store-Exclusive pair instructions must be aligned to
the size of the pair, otherwise the access generates an Alignment fault.

For more information on alignment requirements and behaviors, see Load-Exclusive/ Store-Exclusive and
Atomic instructions.

When a Store-Exclusive pair succeeds, it causes a single-copy atomic update of the entire memory location being
stored to.

Table C3-22 shows the Load-Exclusive/Store-Exclusive instructions.

C3.2.7 Load-Acquire/Store-Release

The Load-Acquire, Load-AcquirePC and Store-Release instructions are added as part of the FEAT_LRCPC,
FEAT_LRCPC2, and FEAT_LRCPC3 architecture features.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the explicit
DMB memory barrier instruction. For more information about the ordering of Load-Acquire, Load-AcquirePC, and
Store-Release, see Load-Acquire, Load-AcquirePC, and Store-Release.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions other than Load-Acquire pair and
Store-Release pair require natural alignment, and an unaligned address generates an Alignment fault. Memory
accesses generated by Load-Acquire pair or Store-Release pair instructions must be aligned to the size of the
accessed element in the pair, otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction has the Release semantics only if the store is successful.

Armv8.1 adds more instructions with load-acquire and store-release mechanisms, see
LoadLOAcquire/StoreLORelease.

Table C3-22 Load-Exclusive/Store-Exclusive instructions

Mnemonic Instruction See

LDXR Load Exclusive register LDXR

LDXRB Load Exclusive byte LDXRB

LDXRH Load Exclusive halfword LDXRH

LDXP Load Exclusive pair LDXP

STXR Store Exclusive register STXR

STXRB Store Exclusive byte STXRB

STXRH Store Exclusive halfword STXRH

STXP Store Exclusive pair STXP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-352
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-23 shows the Non-exclusive Load-Acquire/Store-Release instructions.

Table C3-24 shows the Exclusive Load-Acquire/Store-Release instructions.

Table C3-23 Non-exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAPR Load-Acquire RCpc Register LDAPR

LDAPRB Load-Acquire RCpc Register Byte LDAPRB

LDAPRH Load-Acquire RCpc Register Halfword LDAPRH

LDAPUR Load-Acquire RCpc Register (unscaled) LDAPUR

LDAPURB Load-Acquire RCpc Register Byte (unscaled) LDAPURB

LDAPURH Load-Acquire RCpc Register Halfword (unscaled) LDAPURH

LDAPURSB Load-Acquire RCpc Register Signed Byte (unscaled) 32-bit LDAPURSB

LDAPURSB Load-Acquire RCpc Register Signed Byte (unscaled) 64-bit LDAPURSB

LDAPURSH Load-Acquire RCpc Register Signed Halfword (unscaled) 32-bit LDAPURSH

LDAPURSH Load-Acquire RCpc Register Signed Halfword (unscaled) 64-bit LDAPURSH

LDAPURSW Load-Acquire RCpc Register Signed Word (unscaled) LDAPURSW

LDAR Load-Acquire Register LDAR

LDARB Load-Acquire Byte LDARB

LDARH Load-Acquire Halfword LDARH

STLR Store-Release Register STLR

STLRB Store-Release Byte STLRB

STLRH Store-Release Halfword STLRH

STLUR Store-Release Register (unscaled) STLUR

STLURB Store-Release Register Byte (unscaled) STLURB

STLURH Store-Release Register Halfword (unscaled) STLURH

Table C3-24 Exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAXR Load-Acquire Exclusive register LDAXR

LDAXRB Load-Acquire Exclusive byte LDAXRB

LDAXRH Load-Acquire Exclusive halfword LDAXRH

LDAXP Load-Acquire Exclusive pair LDAXP

STLXR Store-Release Exclusive register STLXR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-353
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.8 LoadLOAcquire/StoreLORelease

The LoadLOAcquire/StoreLORelease instructions support only one addressing mode:

• Base register with no offset.

See Load/store addressing modes.

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB memory
barrier instruction. For more information about the ordering of LoadLOAcquire/StoreLORelease, see
LoadLOAcquire, StoreLORelease.

The LoadLOAcquire/StoreLORelease instructions require natural alignment, and an unaligned address generates an
Alignment fault.

Table C3-26 shows the LoadLOAcquire/StoreLORelease instructions.

C3.2.9 Load/store scalar SIMD and floating-point

The load/store scalar SIMD and floating-point instructions operate on scalar values in the SIMD and floating-point
register file as described in Advanced SIMD and floating-point scalar register names. The memory addressing
modes available, described in Load/store addressing modes, are identical to the general-purpose register load/store
instructions, and like those instructions permit arbitrary address alignment unless strict alignment checking is
enabled. However, unlike the load/store instructions that transfer general-purpose registers, load/store scalar SIMD
and floating-point instructions make no guarantee of atomicity, even when the address is naturally aligned to the
size of the data.

STLXRB Store-Release Exclusive byte STLXRB

STLXRH Store-Release Exclusive halfword STLXRH

STLXP Store-Release Exclusive pair STLXP

Table C3-25 Register Pair Ordered Load-AcquirePC and Store-Release instructions

Mnemonic Instruction See

LDIAPP Load-Acquire RCpc Ordered Pair of Registers LDIAPP

STILP Store-Release Pair Ordered STILP

Table C3-24 Exclusive Load-Acquire and Store-Release instructions (continued)

Mnemonic Instruction See

Table C3-26 LoadLOAcquire and StoreLORelease instructions

Mnemonic Instruction See

LDLARB LoadLOAcquire byte LDLARB

LDLARH LoadLOAcquire halfword LDLARH

LDLAR LoadLOAcquire register LDLAR

STLLRB StoreLORelease byte STLLRB

STLLRH StoreLORelease halfword STLLRH

STLLR StoreLORelease register STLLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-354
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.9.1 Load/store scalar SIMD and floating-point register

 The load/store scalar SIMD and floating-point register instructions support the following addressing modes:

• Base plus a scaled 12-bit unsigned immediate offset or base plus unscaled 9-bit signed immediate offset.

• Base plus 64-bit register offset, optionally scaled.

• Base plus 32-bit extended register offset, optionally scaled.

• Pre-indexed by an unscaled 9-bit signed immediate offset.

• Post-indexed by an unscaled 9-bit signed immediate offset.

• PC-relative literal for loads of 32 bits or more.

For more information on the addressing modes, see Load/store addressing modes.

Note

The unscaled 9-bit signed immediate offset address mode requires its own instruction form, see Load/store scalar
SIMD and floating-point register (unscaled offset).

 Table C3-27 shows the load/store instructions for a single SIMD and floating-point register.

C3.2.9.2 Load/store scalar SIMD and floating-point register (unscaled offset)

The load /store scalar SIMD and floating-point register instructions support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See also Load/store addressing modes.

The load/store scalar SIMD and floating-point register (unscaled offset) instructions are required to disambiguate
this instruction class from the load/store single SIMD and floating-point instruction forms that support an
addressing mode of base plus a scaled, unsigned 12-bit immediate offset. This is similar to the load/store register
(unscaled offset) instructions, that disambiguate this instruction class from the load/store register instruction, see
Load/store register (unscaled offset).

Table C3-28 shows the load/store SIMD and floating-point register instructions with an unscaled offset.

Table C3-27 Load/store single SIMD and floating-point register instructions

Mnemonic Instruction See

LDR Load scalar SIMD&FP register (register offset) LDR (register, SIMD&FP)

Load scalar SIMD&FP register (immediate offset) LDR (immediate, SIMD&FP)

Load scalar SIMD&FP register (PC-relative literal) LDR (literal, SIMD&FP)

STR Store scalar SIMD&FP register (register offset) STR (register, SIMD&FP)

Store scalar SIMD&FP register (immediate offset) STR (immediate, SIMD&FP)

Table C3-28 Load/store SIMD and floating-point register instructions

Mnemonic Instruction See

LDUR Load scalar SIMD&FP register (unscaled offset) LDUR (SIMD&FP)

STUR Store scalar SIMD&FP register (unscaled offset) STUR (SIMD&FP)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-355
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.9.3 Load/store SIMD and floating-point register pair

The load/store SIMD and floating-point register pair instructions support the following addressing modes:

• Base plus a scaled 7-bit signed immediate offset.

• Pre-indexed by a scaled 7-bit signed immediate offset.

• Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes.

If a Load pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all of the loads using the specified addressing mode and the register being loaded
takes an UNKNOWN value.

Table C3-29 shows the load/store SIMD and floating-point register pair instructions.

C3.2.9.4 Load/store SIMD and floating-point non-temporal pair

The load/store SIMD and floating-point non-temporal pair instructions support only one addressing mode:

• Base plus a scaled 7-bit signed immediate offset.

See also Load/store addressing modes.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a load non-temporal pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, those memory accesses can be observed in any order by the other observers
within the shareability domain of the memory addresses being accessed.

If a load non-temporal pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

• The instruction is treated as UNDEFINED.

• The instruction is treated as a NOP.

• The instruction performs all the loads using the specified addressing mode and the register that is loaded takes
an UNKNOWN value.

Table C3-29 Load/store SIMD and floating-point register pair instructions

Mnemonic Instruction See

LDP Load pair of scalar SIMD&FP registers LDP (SIMD&FP)

STP Store pair of scalar SIMD&FP registers STP (SIMD&FP)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-356
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
 Table C3-30 shows the load/store SIMD and floating-point Non-temporal pair instructions.

C3.2.10 Load/store Advanced SIMD

The Advanced SIMD load/store structure instructions support the following addressing modes:

• Base register only.

• Post-indexed by a 64-bit register.

• Post-indexed by an immediate, equal to the number of bytes transferred.

Load/store vector instructions, like other load/store instructions, allow any address alignment, unless strict
alignment checking is enabled. If strict alignment checking is enabled, then alignment checking to the size of the
element is performed. However, unlike the load/store instructions that transfer general-purpose registers, the
load/store vector instructions do not guarantee atomicity, even when the address is naturally aligned to the size of
the element.

C3.2.10.1 Load/store structures

Table C3-31 shows the load/store structure instructions. A post-increment immediate offset, if present, must be 8,
16, 24, 32, 48, or 64, depending on the number of elements transferred.

Table C3-30 Load/store SIMD and floating-point non-temporal pair instructions

Mnemonic Instruction See

LDNP Load pair of scalar SIMD&FP registers LDNP (SIMD&FP)

STNP Store pair of scalar SIMD&FP registers STNP (SIMD&FP)

Table C3-31 Load/store multiple structures instructions

Mnemonic Instruction See

LD1 Load single 1-element structure to one lane of one register LD1 (single structure)

Load multiple 1-element structures to one register or to two, three, or four consecutive
registers

LD1 (multiple
structures)

LD2 Load single 2-element structure to one lane of two consecutive registers LD2 (single structure)

Load multiple 2-element structures to two consecutive registers LD2 (multiple
structures)

LD3 Load single 3-element structure to one lane of three consecutive registers LD3 (single structure)

Load multiple 3-element structures to three consecutive registers LD3 (multiple
structures)

LD4 Load single 4-element structure to one lane of four consecutive registers LD4 (single structure)

Load multiple 4-element structures to four consecutive registers LD4 (multiple
structures)

ST1 Store single 1-element structure from one lane of one register ST1 (single structure)

Store multiple 1-element structures from one register, or from two, three, or four
consecutive registers

ST1 (multiple
structures)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-357
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Load single structure and replicate

Table C3-32 shows the Load single structure and replicate instructions. A post-increment immediate offset, if
present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32, depending on the number of elements transferred.

C3.2.11 Prefetch memory

The Prefetch memory instructions support the following addressing modes:

• Base register with no offset.

• Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.

• Base plus a 64-bit register offset. This can be optionally scaled by 8-bits, for example LSL#3.

• Base plus a 32-bit extended register offset. This can be optionally scaled by 8-bits.

• PC-relative literal.

ST2 Store single 2-element structure from one lane of two consecutive registers ST2 (single structure)

Store multiple 2-element structures from two consecutive registers ST2 (multiple
structures)

ST3 Store single 3-element structure from one lane of three consecutive registers ST3 (single structure)

Store multiple 3-element structures from three consecutive registers ST3 (multiple
structures)

ST4 Store single 4-element structure from one lane of four consecutive registers ST4 (single structure)

Store multiple 4-element structures from four consecutive registers ST4 (multiple
structures)

Table C3-31 Load/store multiple structures instructions (continued)

Mnemonic Instruction See

Table C3-32 Load single structure and replicate instructions

Mnemonic Instruction See

LD1R Load single 1-element structure and replicate to all lanes of one register LD1R

LD2R Load single 2-element structure and replicate to all lanes of two registers LD2R

LD3R Load single 3-element structure and replicate to all lanes of three registers LD3R

LD4R Load single 4-element structure and replicate to all lanes of four registers LD4R

Table C3-33 SIMD and floating-point Non-exclusive Load-AcquirePC and Store-Release instructions

Mnemonic Instruction See

LDAP1 (SIMD&FP) Load-Acquire RCpc one single-element structure to one lane of one register LDAP1 (SIMD&FP)

LDAPUR (SIMD&FP) Load-Acquire RCpc SIMD&FP Register (unscaled offset) LDAPUR (SIMD&FP)

STL1 (SIMD&FP) Store-Release a single-element structure from one lane of one register STL1 (SIMD&FP)

STLUR (SIMD&FP) Store-Release SIMD&FP Register (unscaled offset) STLUR (SIMD&FP)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-358
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
The Prefetch memory instructions signal to the memory system that memory accesses from a specified address or
range of addresses are likely to occur in the near future. The memory system can respond by taking actions that are
expected to speed up the memory access when they do occur, such as preloading the specified address or range of
addresses into one or more caches. Because these signals are only hints, it is valid for the PE to treat any or all
prefetch instructions as a NOP.

Because they are hints to the memory system, the operation of a prefetch memory instruction cannot cause a
synchronous exception. However, a memory operation performed as a result of one of these memory system hints
might in exceptional cases trigger an asynchronous event, and thereby influence the execution of the PE. An
example of an asynchronous event that might be triggered is an SError interrupt.

A prefetch memory instruction can only have an effect on software visible structures, such as caches and translation
lookaside buffers associated with memory locations that can be accessed by reads, writes, or execution as defined
in the translation regime of the current Exception level.

A PRFM, PRFUM, or RPRFM instruction is guaranteed not to access Device memory.

A PRFM or PRFUM instruction using a PLI hint must not result in any access that could not be performed by the PE
speculatively fetching an instruction. Therefore, if all associated MMUs are disabled, a PLI hint cannot access any
memory location that cannot be accessed by instruction fetches.

Arm recommends that when a PRFM or a PRFUM instruction describes a particular cache level, then the memory
location described at that cache level should be made available at that same cache level, even if the line had
previously been at a level of the cache that is closer to the PE than the specified cache level.

Note

 For a PRFM PST instruction, this might result in the demotion of a cache line from a level that was closer to the cache.

Table C3-34 shows the Prefetch memory instructions.

C3.2.12 Atomic instructions

The atomic instructions perform atomic read and write operations on a memory location such that the architecture
guarantees that no modification of that memory location by another observer can occur between the read and the
write defined by that instruction.

This section describes the following operations:

• Atomic memory operations.

• Single-copy atomic 64-byte load/store.

• Swap.

• Compare and Swap.

Table C3-34 Prefetch memory instructions

Mnemonic Instruction See

PRFM Prefetch memory (register offset) PRFM (register)

Prefetch memory (immediate offset) PRFM (immediate)

Prefetch memory (PC-relative offset) PRFM (literal)

PRFUM Prefetch memory (unscaled offset) PRFUM

RPRFM Range prefetch memory RPRFM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-359
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.12.1 Atomic memory operations

The atomic memory operation instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes.

For the purpose of permission checking, and for watchpoints, all of the Atomic memory operation instructions are
treated as performing both a load and a store.

If FEAT_LSE2 is not implemented then the LD<OP> and ST<OP> instructions require natural alignment, and an
unaligned address generates an Alignment fault. For more information on alignment requirements and behaviors,
see Load-Exclusive/ Store-Exclusive and Atomic instructions.

The address accessed by the 128-bit atomic instructions must be aligned to 128-bits, otherwise the instructions
generate an Alignment fault.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
architecture. The atomic instructions with release semantics have the same rules as Store-Release instructions
regarding multi-copy atomicity. These operations map to the acquire and release definitions, and are counted as
Load-Acquire and Store-Release operations respectively.

For the LD<OP> instructions, where the source and destination registers are the same, if the instruction generates a
synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

The ST<OP> instructions, and LD<OP> instructions where the destination register is WZR or XZR, are not regarded as
doing a read for the purpose of a DMB LD barrier.

Table C3-35 Atomic memory operation instructions

Mnemonic Instruction See

LDADD Atomic add LDADD, LDADDA, LDADDAL, LDADDL

LDADDB Atomic add on byte LDADDB, LDADDAB, LDADDALB, LDADDLB

LDADDH Atomic add on halfword LDADDH, LDADDAH, LDADDALH, LDADDLH

LDCLR Atomic bit clear LDCLR, LDCLRA, LDCLRAL, LDCLRL

LDCLRB Atomic bit clear on byte LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

LDCLRH Atomic bit clear on halfword LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

LDCLRP Atomic bit clear on quadword LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL

LDEOR Atomic exclusive-OR LDEOR, LDEORA, LDEORAL, LDEORL

LDEORB Atomic exclusive-OR on byte LDEORB, LDEORAB, LDEORALB, LDEORLB

LDEORH Atomic exclusive-OR on halfword LDEORH, LDEORAH, LDEORALH, LDEORLH

LDSET Atomic bit set LDSET, LDSETA, LDSETAL, LDSETL

LDSETB Atomic bit set on byte LDSETB, LDSETAB, LDSETALB, LDSETLB

LDSETH Atomic bit set on halfword LDSETH, LDSETAH, LDSETALH, LDSETLH

LDSETP Atomic bit set on quadword LDSETP, LDSETPA, LDSETPAL, LDSETPL

LDMAX Atomic signed maximum LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

LDMAXB Atomic signed maximum on byte LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

LDMAXH Atomic signed maximum on halfword LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-360
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
LDMIN Atomic signed minimum LDSMIN, LDSMINA, LDSMINAL, LDSMINL

LDMINB Atomic signed minimum on byte LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

LDMINH Atomic signed minimum on halfword LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

LDUMAX Atomic unsigned maximum LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

LDUMAXB Atomic unsigned maximum on byte LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

LDUMAXH Atomic unsigned maximum on halfword LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

LDUMIN Atomic unsigned minimum LDUMIN, LDUMINA, LDUMINAL, LDUMINL

LDUMINB Atomic unsigned minimum on byte LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

LDUMINH Atomic unsigned minimum on halfword LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

STADD Atomic add, without return STADD, STADDL

STADDB Atomic add on byte, without return STADDB, STADDLB

STADDH Atomic add on halfword, without return STADDH, STADDLH

STCLR Atomic bit clear, without return STCLR, STCLRL

STCLRB Atomic bit clear on byte, without return STCLRB, STCLRLB

STCLRH Atomic bit clear on halfword, without return STCLRH, STCLRLH

STEOR Atomic exclusive-OR, without return STEOR, STEORL

STEORB Atomic exclusive-OR on byte, without return STEORB, STEORLB

STEORH Atomic exclusive-OR on halfword, without return STEORH, STEORLH

STSET Atomic bit set, without return STSET, STSETL

STSETB Atomic bit set on byte, without return STSETB, STSETLB

STSETH Atomic bit set on halfword, without return STSETH, STSETLH

STMAX Atomic signed maximum, without return STSMAX, STSMAXL

STMAXB Atomic signed maximum on byte, without return STSMAXB, STSMAXLB

STMAXH Atomic signed maximum on halfword, without return STSMAXH, STSMAXLH

STMIN Atomic signed minimum, without return STSMIN, STSMINL

STMINB Atomic signed minimum on byte, without return STSMINB, STSMINLB

STMINH Atomic signed minimum on halfword, without return STSMINH, STSMINLH

STUMAX Atomic unsigned maximum, without return STUMAX, STUMAXL

STUMAXB Atomic unsigned maximum on byte, without return STUMAXB, STUMAXLB

STUMAXH Atomic unsigned maximum on halfword, without return STUMAXH, STUMAXLH

Table C3-35 Atomic memory operation instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-361
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.12.2 Single-copy atomic 64-byte load/store

If FEAT_LS64 is implemented, the following instructions are implemented:

• LD64B.

• ST64B.

If FEAT_LS64_V is implemented, the following instructions are implemented:

• LD64B.

• ST64B.

• ST64BV.

If FEAT_LS64_ACCDATA is implemented, the following instructions are implemented:

• LD64B.

• ST64B.

• ST64BV.

• ST64BV0.

The single-copy atomic 64-byte load/store instructions support one addressing mode:

• Base register only.

See also Load/store addressing modes.

The memory location accessed by the instructions is required to be aligned on a 64-byte boundary, otherwise an
Alignment fault occurs.

When the instructions access a memory type that is not one of the following, a data abort for unsupported Exclusive
or atomic access is generated:

• Normal Inner Non-cacheable, Outer Non-cacheable.

• Device-GRE.

• Device-nGRE.

• Device-nGnRE.

• Device-nGnRnE.

It is IMPLEMENTATION DEFINED which of the following approaches is used to provide this check:

• The check is performed at each enabled stage of translation, and the fault is reported for the first stage of
translation that provides an inappropriate memory type. In this case, the value of the HCR_EL2.DC bit does
not cause accesses generated by the instructions to generate a stage 1 Data abort,

• The check is performed against the resulting memory type after all enabled stages of translation. In this case
the fault is reported at the final enabled stage of translation.

STUMIN Atomic unsigned minimum, without return STUMIN, STUMINL

STUMINB Atomic unsigned minimum on byte, without return STUMINB, STUMINLB

STUMINH Atomic unsigned minimum on halfword, without return STUMINH, STUMINLH

Table C3-35 Atomic memory operation instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-362
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Regardless of the memory type:

• The memory access generated by an ST64BV or ST64BV0 instruction is not merged with any accesses.

• The memory access generated by an ST64B instruction is not merged with any accesses generated by store
instructions appearing in program order after the instruction.

Table C3-36 shows the single-copy atomic 64-byte load/store instructions.

Table C3-37 shows the single-copy atomic 64-byte store with status result.

Table C3-38 shows the single-copy atomic 64-byte EL0 store with status result.

C3.2.12.3 Swap

The swap instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes.

For the purpose of permission checking, and for watchpoints, all of the Swap instructions are treated as performing
both a load and a store.

If FEAT_LSE2 is not implemented, then the SWP instructions require natural alignment, and an unaligned address
generates an Alignment fault. For more information on alignment requirements and behaviors, see Load-Exclusive/
Store-Exclusive and Atomic instructions.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
architecture. The atomic instructions with release semantics have the same rules as Store-Release instructions
regarding multi-copy atomicity.

Table C3-36 Single-copy atomic 64-byte load/store instructions

Mnemonic Instruction See

LD64B Single-copy atomic 64-byte load LD64B

ST64B Single-copy atomic 64-byte store without status result ST64B

Table C3-37 Single-copy atomic 64-byte store with status result instructions

Mnemonic Instruction See

ST64BV Single-copy atomic 64-byte store with status result ST64BV

Table C3-38 Single-copy atomic 64-byte EL0 store with status result instructions

Mnemonic Instruction See

ST64BV0 Single-copy atomic 64-byte EL0 store with status result ST64BV0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-363
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
For the SWP instructions, where the source and destination registers are the same, if the instruction generates a
synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

C3.2.12.4 Compare and Swap

The Compare and Swap instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes.

For the purpose of permission checking, and for watchpoints, all of the Compare and Swap instructions are treated
as performing both a load and a store.

If FEAT_LSE2 is not implemented then:

• The CAS instructions require natural alignment.

• The CASP instructions require alignment to the total size of the memory being accessed.

For more information on alignment requirements and behaviors, see Load-Exclusive/ Store-Exclusive and
Atomic instructions.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
architecture. If a compare and swap instruction does not perform a store, then the instruction does not have release
semantics, regardless of the instruction ordering options.

The atomic instructions with release semantics have the same rules as Store-Release instructions regarding
multi-copy atomicity.

For the CAS and CASP instructions, the architecture permits that a data read clears any Exclusives monitors associated
with that location, even if the compare subsequently fails. If these instructions generate a synchronous Data Abort,
the registers which are compared and loaded are restored to the values held in the registers before the instruction
was executed.

C3.2.12.5 Read-Check-Write

If FEAT_THE is implemented, then the Read-Check-Write instructions, RCW, and Read-Check-Write Software
instructions, RCWS, are provided to conditionally update stage 1 descriptors.

Table C3-39 Swap instructions

Mnemonic Instruction See

SWP Swap SWP, SWPA, SWPAL, SWPL

SWPB Swap byte SWPB, SWPAB, SWPALB, SWPLB

SWPH Swap halfword SWPH, SWPAH, SWPALH, SWPLH

SWPP Swap quadword SWPP, SWPPA, SWPPAL, SWPPL

Table C3-40 Compare and swap instructions

Mnemonic Instruction See

CAS Compare and swap CAS, CASA, CASAL, CASL

CASB Compare and swap byte CASB, CASAB, CASALB, CASLB

CASH Compare and swap halfword CASH, CASAH, CASALH, CASLH

CASP Compare and swap pair CASP, CASPA, CASPAL, CASPL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-364
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
The RCW and RCWS instructions support only one addressing mode:

• Base register only.

See also Load/store addressing modes.

RCW and RCWS instructions update PSTATE.{N, Z, C, V} to {0, 0, 1, 0}, with all of the following exceptions:

• For the compare and swap variants of the RCW and RCWS instructions, if the compare fails, then PSTATE.N is
set to 1.

• Otherwise, all of the following apply:

— If RCW and RCWS instructions fail the RCW checks, then PSTATE.Z is set to 1.

— If RCWS instructions fail the RCWS checks, then PSTATE.C is set to 0.

For the purpose of permission checking, and for watchpoints, all of the RCW and RCWS instructions are treated as
performing both a load and a store.

If FEAT_D128 is implemented, then RCW and RCWS instructions that operate on 128 bits of data are provided.

If the address is not aligned to the data transfer size, then RCW and RCWS instructions generate an Alignment fault.

The following table shows the RCW and RCWS instructions that operate on 64 bits of data:

The following table shows the RCW and RCWS instructions that operate on 128 bits of data:

Table C3-41 64 bit Read-Check-Write instructions

Mnemonic Instruction See

RCWCAS Read Check Write Compare and Swap doubleword RCWCAS, RCWCASA, RCWCASL, RCWCASAL

RCWSCAS Read Check Write Software Compare and Swap doubleword RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL

RCWCLR Read Check Write Atomic bit clear on doubleword RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL

RCWSCLR Read Check Write Software Atomic bit clear on doubleword RCWSCLR, RCWSCLRA, RCWSCLRL,
RCWSCLRAL

RCWSET Read Check Write Atomic bit set on doubleword RCWSET, RCWSETA, RCWSETL, RCWSETAL

RCWSWP Read Check Write Swap doubleword RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL

RCWSSWP Read Check Write Software Swap doubleword RCWSSWP, RCWSSWPA, RCWSSWPL,
RCWSSWPAL

Table C3-42 128 bit Read-Check-Write instructions

Mnemonic Instruction See

RCWCASP Read Check Write Compare and Swap quadword RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL

RCWSCASP Read Check Write Software Compare and Swap
quadword

RCWSCASP, RCWSCASPA, RCWSCASPL,
RCWSCASPAL

RCWCLRP Read Check Write Atomic bit clear on quadword RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL

RCWSCLRP Read Check Write Software Atomic bit clear on
quadword

RCWSCLRP, RCWSCLRPA, RCWSCLRPL,
RCWSCLRPAL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-365
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
C3.2.13 Memory Tagging instructions

If FEAT_MTE is implemented, the following instructions are implemented.

Table C3-43 shows the Memory Tagging Extension Tag generation instructions.

Table C3-44 shows the Memory Tagging Extension Pointer Arithmetic instructions.

Table C3-45 shows the Memory Tagging Extension Tag setting instructions.

Table C3-46 shows the Memory Tagging Extension Tag getting instructions.

RCWSETP Read Check Write Atomic bit set on quadword RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL

RCWSWPP Read Check Write Swap quadword RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL

RCWSSWPP Read Check Write Software Swap quadword RCWSSWPP, RCWSSWPPA, RCWSSWPPL,
RCWSSWPPAL

Table C3-42 128 bit Read-Check-Write instructions (continued)

Mnemonic Instruction See

Table C3-43 Tag generation instructions

Mnemonic Instruction See

ADDG Add immediate value to Logical Address Tag ADDG

GMI Tag Mask Insert GMI

IRG Random Logical Address Tag generation IRG

SUBG Subtract immediate value to Logical Address Tag SUBG

Table C3-44 Pointer Arithmetic

Mnemonic Instruction See

SUBP(S) Subtract address and set flags SUBPS

Table C3-45 Tag setting instructions

Mnemonic Instruction See

STG Store Allocation Tag to granule STG

STZG Store Allocation Tag to granule Zeroing STZG

ST2G Store Allocation Tag to two granules ST2G

STZ2G Store Allocation Tag to two granules Zeroing STZ2G

STGP Store Allocation Tag to memory STGP

Table C3-46 Tag getting instructions

Mnemonic Instruction See

LDG Load Allocation Tag LDG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-366
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
If FEAT_MTE2 is implemented, all of the FEAT_MTE instructions are implemented, plus the following
instructions.

Table C3-47 shows the Memory Tagging Extension Bulk Allocation Tag access instructions.

C3.2.14 Memory Copy and Memory Set instructions

If FEAT_MOPS is implemented, the CPY*, SETE*, SETM*, and SETP* instructions described in this section are
implemented. If FEAT_MOPS and FEAT_MTE are implemented, the SETG* instructions described in this section
are also implemented. Collectively, the instructions described in this section are referred to as Memory Copy and
Memory Set instructions.

To perform a memory copy or memory set, three instructions - a prologue, then a main, and then an epilogue - are
expected to be run in succession, with no instruction appearing in the code between them:

• To perform a memory copy, forward-only: CPYFP*, then CPYFM*, and then CPYFE*.

• To perform a memory copy, forward or backward: CPYP*, then CPYM*, and then CPYE*.

• To perform a memory set with tag setting: SETGP*, then SETGM*, and then SETGE*.

• To perform a memory set without tag setting: SETP*, then SETM*, and then SETE*.

The variant of each instruction is also expected to be the same throughout one of these sequences. For example,
CPYFPWTWN, CPYFMWTWN, CPYFEWTWN.

Fetching of a Memory Copy and Memory Set instruction multiple times during its execution is permissible.

The handling of synchronous exceptions generated by Memory Copy and Memory Set instructions is described in
ESR_ELx, FAR_ELx, Definition of a precise exception and imprecise exception, and Synchronous exception entry.

The handling of asynchronous exceptions generated by Memory Copy and Memory Set instructions is described in
Definition of a precise exception and imprecise exception and Asynchronous exception entry.

Memory Copy and Memory Set exceptions can be generated by execution of Memory Copy and Memory Set
instructions restarting on a physical hardware PE implementation that is different from the physical hardware PE
implementation that an exception was taken from. For more information, see Memory Copy and Memory Set
exceptions.

If an exception is taken during the execution of a Memory Copy and Memory Set instruction, that instruction has
not been executed for the purposes of instruction counting, instruction tracing, statistical profiling, or single
stepping.

For the purposes of single stepping and performance monitoring, each Memory Copy and Memory Set instruction
is regarded as a single instruction that performs a store and, in the case of CPY* instructions, also performs a load.

For Memory Copy and Memory Set instructions, the following are not architecturally defined:

• The size of the memory transactions they create.

• The order between accesses to different addresses.

Table C3-47 Bulk Allocation Tag access

Mnemonic Instruction See

LDGM Load an IMPLEMENTATION DEFINED number of Allocation Tags LDGM

STGM Store an IMPLEMENTATION DEFINED number of Allocation Tags STGM

STZGM Store Allocation Tag to granule Zeroing Multiple STZGM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-367
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
The CPY* instructions are guaranteed to make forward progress if none of the following four leaf level translation
table entries fault:

• The source leaf level translation table entry held in Xs.

• The next leaf level translation table entry, as determined by the copy direction, adjacent to the source leaf
level translation table entry held in Xs.

• The destination leaf level translation table entry held in Xd.

• The next leaf level translation table entry, as determined by the copy direction, adjacent to the destination leaf
level translation table entry held in Xd.

The SET* instructions are guaranteed to make forward progress if neither of the following two leaf level translation
table entries fault:

• The destination leaf level translation table entry held in Xd.

• The next leaf level translation table entry adjacent to the destination leaf level translation table entry held in
Xd.

Note

The forward progress described in this section can be achieved by ensuring that, when a memory management fault
is encountered, all bytes leading up to the fault have been operated on.

Table C3-48 shows the memory copy, forward-only instructions.

Table C3-48 Memory copy, forward-only instructions

Mnemonic Instruction See

CPYFE Memory Copy Forward-only Epilogue CPYFP, CPYFM, CPYFE Epilogue variant

CPYFEN Memory Copy Forward-only Epilogue,
reads and writes non-temporal

CPYFPN, CPYFMN, CPYFEN Epilogue variant

CPYFERN Memory Copy Forward-only Epilogue,
reads non-temporal

CPYFPRN, CPYFMRN, CPYFERN Epilogue variant

CPYFERT Memory Copy Forward-only Epilogue,
reads unprivileged

CPYFPRT, CPYFMRT, CPYFERT Epilogue variant

CPYFERTN Memory Copy Forward-only Epilogue,
reads unprivileged, reads and writes
non-temporal

CPYFPRTN, CPYFMRTN, CPYFERTN Epilogue variant

CPYFERTRN Memory Copy Forward-only Epilogue,
reads unprivileged and non-temporal

CPYFPRTRN, CPYFMRTRN, CPYFERTRN Epilogue variant

CPYFERTWN Memory Copy Forward-only Epilogue,
reads unprivileged, writes non-temporal

CPYFPRTWN, CPYFMRTWN, CPYFERTWN Epilogue variant

CPYFET Memory Copy Forward-only Epilogue,
reads and writes unprivileged

CPYFPT, CPYFMT, CPYFET Epilogue variant

CPYFETN Memory Copy Forward-only Epilogue,
reads and writes unprivileged and non-temporal

CPYFPTN, CPYFMTN, CPYFETN Epilogue variant

CPYFETRN Memory Copy Forward-only Epilogue,
reads and writes unprivileged, reads
non-temporal

CPYFPTRN, CPYFMTRN, CPYFETRN Epilogue variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-368
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
CPYFETWN Memory Copy Forward-only Epilogue,
reads and writes unprivileged, writes
non-temporal

CPYFPTWN, CPYFMTWN, CPYFETWN Epilogue variant

CPYFEWN Memory Copy Forward-only Epilogue,
writes non-temporal

CPYFPWN, CPYFMWN, CPYFEWN Epilogue variant

CPYFEWT Memory Copy Forward-only Epilogue,
writes unprivileged

CPYFPWT, CPYFMWT, CPYFEWT Epilogue variant

CPYFEWTN Memory Copy Forward-only Epilogue,
writes unprivileged, reads and writes
non-temporal

CPYFPWTN, CPYFMWTN, CPYFEWTN Epilogue variant

CPYFEWTRN Memory Copy Forward-only Epilogue,
writes unprivileged, reads non-temporal

CPYFPWTRN, CPYFMWTRN, CPYFEWTRN Epilogue
variant

CPYFMWTWN Memory Copy Forward-only Epilogue,
writes unprivileged and non-temporal

CPYFPWTWN, CPYFMWTWN, CPYFEWTWN Epilogue
variant

CPYFM Memory Copy Forward-only Main CPYFP, CPYFM, CPYFE Main variant

CPYFMN Memory Copy Forward-only Main,
reads and writes non-temporal

CPYFPN, CPYFMN, CPYFEN Main variant

CPYFMRN Memory Copy Forward-only Main,
reads non-temporal

CPYFPRN, CPYFMRN, CPYFERN Main variant

CPYFMRT Memory Copy Forward-only Main,
reads unprivileged

CPYFPRT, CPYFMRT, CPYFERT Main variant

CPYFMRTN Memory Copy Forward-only Main,
reads unprivileged, reads and writes
non-temporal

CPYFPRTN, CPYFMRTN, CPYFERTN Main variant

CPYFMRTRN Memory Copy Forward-only Main,
reads unprivileged and non-temporal

CPYFPRTRN, CPYFMRTRN, CPYFERTRN Main variant

CPYFMRTWN Memory Copy Forward-only Main,
reads unprivileged, writes non-temporal

CPYFPRTWN, CPYFMRTWN, CPYFERTWN Main variant

CPYFMT Memory Copy Forward-only Main,
reads and writes unprivileged

CPYFPT, CPYFMT, CPYFET Main variant

CPYFMTN Memory Copy Forward-only Main,
reads and writes unprivileged and non-temporal

CPYFPTN, CPYFMTN, CPYFETN Main variant

CPYFMTRN Memory Copy Forward-only Main,
reads and writes unprivileged, reads
non-temporal

CPYFPTRN, CPYFMTRN, CPYFETRN Main variant

CPYFMTWN Memory Copy Forward-only Main,
reads and writes unprivileged, writes
non-temporal

CPYFPTWN, CPYFMTWN, CPYFETWN Main variant

CPYFMWN Memory Copy Forward-only Main,
writes non-temporal

CPYFPWN, CPYFMWN, CPYFEWN Main variant

CPYFMWT Memory Copy Forward-only Main,
writes unprivileged

CPYFPWT, CPYFMWT, CPYFEWT Main variant

Table C3-48 Memory copy, forward-only instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-369
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
CPYFMWTN Memory Copy Forward-only Main,
writes unprivileged, reads and writes
non-temporal

CPYFPWTN, CPYFMWTN, CPYFEWTN Main variant

CPYFMWTRN Memory Copy Forward-only Main,
writes unprivileged, reads non-temporal

CPYFPWTRN, CPYFMWTRN, CPYFEWTRN Main variant

CPYFMWTWN Memory Copy Forward-only Main,
writes unprivileged and non-temporal

CPYFPWTWN, CPYFMWTWN, CPYFEWTWN Main variant

CPYFP Memory Copy Forward-only Prologue CPYFP, CPYFM, CPYFE Prologue variant

CPYFPN Memory Copy Forward-only Prologue,
reads and writes non-temporal

CPYFPN, CPYFMN, CPYFEN Prologue variant

CPYFPRN Memory Copy Forward-only Prologue,
reads non-temporal

CPYFPRN, CPYFMRN, CPYFERN Prologue variant

CPYFPRT Memory Copy Forward-only Prologue,
reads unprivileged

CPYFPRT, CPYFMRT, CPYFERT Prologue variant

CPYFPRTN Memory Copy Forward-only Prologue,
reads unprivileged, reads and writes
non-temporal

CPYFPRTN, CPYFMRTN, CPYFERTN Prologue variant

CPYFPRTRN Memory Copy Forward-only Prologue,
reads unprivileged and non-temporal

CPYFPRTRN, CPYFMRTRN, CPYFERTRN Prologue variant

CPYFPRTWN Memory Copy Forward-only Prologue,
reads unprivileged, writes non-temporal

CPYFPRTWN, CPYFMRTWN, CPYFERTWN Prologue variant

CPYFPT Memory Copy Forward-only Prologue,
reads and writes unprivileged

CPYFPT, CPYFMT, CPYFET Prologue variant

CPYFPTN Memory Copy Forward-only Prologue,
reads and writes unprivileged and non-temporal

CPYFPTN, CPYFMTN, CPYFETN Prologue variant

CPYFPTRN Memory Copy Forward-only Prologue,
reads and writes unprivileged, reads
non-temporal

CPYFPTRN, CPYFMTRN, CPYFETRN Prologue variant

CPYFPTWN Memory Copy Forward-only Prologue,
reads and writes unprivileged, writes
non-temporal

CPYFPTWN, CPYFMTWN, CPYFETWN Prologue variant

CPYFPWN Memory Copy Forward-only Prologue,
writes non-temporal

CPYFPWN, CPYFMWN, CPYFEWN Prologue variant

CPYFPWT Memory Copy Forward-only Prologue,
writes unprivileged

CPYFPWT, CPYFMWT, CPYFEWT Prologue variant

CPYFPWTN Memory Copy Forward-only Prologue,
writes unprivileged, reads and writes
non-temporal

CPYFPWTN, CPYFMWTN, CPYFEWTN Prologue variant

CPYFPWTRN Memory Copy Forward-only Prologue,
writes unprivileged, reads non-temporal

CPYFPWTRN, CPYFMWTRN, CPYFEWTRN Prologue
variant

CPYFPWTWN Memory Copy Forward-only Prologue,
writes unprivileged and non-temporal

CPYFPWTWN, CPYFMWTWN, CPYFEWTWN Prologue
variant

Table C3-48 Memory copy, forward-only instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-370
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-49 shows the memory copy, forward or backward instructions.

Table C3-49 Memory copy, forward or backward instructions

Mnemonic Instruction See

CPYE Memory Copy Epilogue CPYP, CPYM, CPYE Epilogue variant

CPYEN Memory Copy Epilogue,
reads and writes non-temporal

CPYPN, CPYMN, CPYEN Epilogue variant

CPYERN Memory Copy Epilogue,
reads non-temporal

CPYPRN, CPYMRN, CPYERN Epilogue variant

CPYERT Memory Copy Epilogue,
reads unprivileged

CPYPRT, CPYMRT, CPYERT Epilogue variant

CPYERTN Memory Copy Epilogue,
reads unprivileged, reads and writes non-temporal

CPYPRTN, CPYMRTN, CPYERTN Epilogue variant

CPYERTRN Memory Copy Epilogue,
reads unprivileged and non-temporal

CPYPRTRN, CPYMRTRN, CPYERTRN Epilogue variant

CPYERTWN Memory Copy Epilogue,
reads unprivileged, writes non-temporal

CPYPRTWN, CPYMRTWN, CPYERTWN Epilogue variant

CPYET Memory Copy Epilogue,
reads and writes unprivileged

CPYPT, CPYMT, CPYET Epilogue variant

CPYETN Memory Copy Epilogue,
reads and writes unprivileged and non-temporal

CPYPTN, CPYMTN, CPYETN Epilogue variant

CPYETRN Memory Copy Epilogue,
reads and writes unprivileged, reads non-temporal

CPYPTRN, CPYMTRN, CPYETRN Epilogue variant

CPYETWN Memory Copy Epilogue,
reads and writes unprivileged, writes non-temporal

CPYPTWN, CPYMTWN, CPYETWN Epilogue variant

CPYEWN Memory Copy Epilogue,
writes non-temporal

CPYPWN, CPYMWN, CPYEWN Epilogue variant

CPYEWT Memory Copy Epilogue,
writes unprivileged

CPYPWT, CPYMWT, CPYEWT Epilogue variant

CPYEWTN Memory Copy Epilogue,
writes unprivileged, reads and writes non-temporal

CPYPWTN, CPYMWTN, CPYEWTN Epilogue variant

CPYEWTRN Memory Copy Epilogue,
writes unprivileged, reads non-temporal

CPYPWTRN, CPYMWTRN, CPYEWTRN Epilogue variant

CPYMWTWN Memory Copy Epilogue,
writes unprivileged and non-temporal

CPYPWTWN, CPYMWTWN, CPYEWTWN Epilogue variant

CPYM Memory Copy Main CPYP, CPYM, CPYE Main variant

CPYMN Memory Copy Main,
reads and writes non-temporal

CPYPN, CPYMN, CPYEN Main variant

CPYMRN Memory Copy Main,
reads non-temporal

CPYPRN, CPYMRN, CPYERN Main variant

CPYMRT Memory Copy Main,
reads unprivileged

CPYPRT, CPYMRT, CPYERT Main variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-371
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
CPYMRTN Memory Copy Main,
reads unprivileged, reads and writes non-temporal

CPYPRTN, CPYMRTN, CPYERTN Main variant

CPYMRTRN Memory Copy Main,
reads unprivileged and non-temporal

CPYPRTRN, CPYMRTRN, CPYERTRN Main variant

CPYMRTWN Memory Copy Main,
reads unprivileged, writes non-temporal

CPYPRTWN, CPYMRTWN, CPYERTWN Main variant

CPYMT Memory Copy Main,
reads and writes unprivileged

CPYPT, CPYMT, CPYET Main variant

CPYMTN Memory Copy Main,
reads and writes unprivileged and non-temporal

CPYPTN, CPYMTN, CPYETN Main variant

CPYMTRN Memory Copy Main,
reads and writes unprivileged, reads non-temporal

CPYPTRN, CPYMTRN, CPYETRN Main variant

CPYMTWN Memory Copy Main,
reads and writes unprivileged, writes non-temporal

CPYPTWN, CPYMTWN, CPYETWN Main variant

CPYMWN Memory Copy Main,
writes non-temporal

CPYPWN, CPYMWN, CPYEWN Main variant

CPYMWT Memory Copy Main,
writes unprivileged

CPYPWT, CPYMWT, CPYEWT Main variant

CPYMWTN Memory Copy Main,
writes unprivileged, reads and writes non-temporal

CPYPWTN, CPYMWTN, CPYEWTN Main variant

CPYMWTRN Memory Copy Main,
writes unprivileged, reads non-temporal

CPYPWTRN, CPYMWTRN, CPYEWTRN Main variant

CPYMWTWN Memory Copy Main,
writes unprivileged and non-temporal

CPYPWTWN, CPYMWTWN, CPYEWTWN Main variant

CPYP Memory Copy Prologue CPYP, CPYM, CPYE Prologue variant

CPYPN Memory Copy Prologue,
reads and writes non-temporal

CPYPN, CPYMN, CPYEN Prologue variant

CPYPRN Memory Copy Prologue,
reads non-temporal

CPYPRN, CPYMRN, CPYERN Prologue variant

CPYPRT Memory Copy Prologue,
reads unprivileged

CPYPRT, CPYMRT, CPYERT Prologue variant

CPYPRTN Memory Copy Prologue,
reads unprivileged, reads and writes non-temporal

CPYPRTN, CPYMRTN, CPYERTN Prologue variant

CPYPRTRN Memory Copy Prologue,
reads unprivileged and non-temporal

CPYPRTRN, CPYMRTRN, CPYERTRN Prologue variant

CPYPRTWN Memory Copy Prologue,
reads unprivileged, writes non-temporal

CPYPRTWN, CPYMRTWN, CPYERTWN Prologue variant

CPYPT Memory Copy Prologue,
reads and writes unprivileged

CPYPT, CPYMT, CPYET Prologue variant

CPYPTN Memory Copy Prologue,
reads and writes unprivileged and non-temporal

CPYPTN, CPYMTN, CPYETN Prologue variant

Table C3-49 Memory copy, forward or backward instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-372
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-50 shows the memory set with tag setting instructions.

CPYPTRN Memory Copy Prologue,
reads and writes unprivileged, reads non-temporal

CPYPTRN, CPYMTRN, CPYETRN Prologue variant

CPYPTWN Memory Copy Prologue,
reads and writes unprivileged, writes non-temporal

CPYPTWN, CPYMTWN, CPYETWN Prologue variant

CPYPWN Memory Copy Prologue,
writes non-temporal

CPYPWN, CPYMWN, CPYEWN Prologue variant

CPYPWT Memory Copy Prologue,
writes unprivileged

CPYPWT, CPYMWT, CPYEWT Prologue variant

CPYPWTN Memory Copy Prologue,
writes unprivileged, reads and writes non-temporal

CPYPWTN, CPYMWTN, CPYEWTN Prologue variant

CPYPWTRN Memory Copy Prologue,
writes unprivileged, reads non-temporal

CPYPWTRN, CPYMWTRN, CPYEWTRN Prologue variant

CPYPWTWN Memory Copy Prologue,
writes unprivileged and non-temporal

CPYPWTWN, CPYMWTWN, CPYEWTWN Prologue variant

Table C3-49 Memory copy, forward or backward instructions (continued)

Mnemonic Instruction See

Table C3-50 Memory set with tag setting instructions

Mnemonic Instruction See

SETGE Memory Set with tag setting Epilogue SETGP, SETGM, SETGE Epilogue variant

SETGEN Memory Set with tag setting Epilogue,
non-temporal

SETGPN, SETGMN, SETGEN Epilogue variant

SETGET Memory Set with tag setting Epilogue,
unprivileged

SETGPT, SETGMT, SETGET Epilogue variant

SETGETN Memory Set with tag setting Epilogue,
unprivileged and non-temporal

SETGPTN, SETGMTN, SETGETN Epilogue variant

SETGM Memory Set with tag setting Main SETGP, SETGM, SETGE Main variant

SETGMN Memory Set with tag setting Main,
non-temporal

SETGPN, SETGMN, SETGEN Main variant

SETGMT Memory Set with tag setting Main,
unprivileged

SETGPT, SETGMT, SETGET Main variant

SETGMTN Memory Set with tag setting Main,
unprivileged and non-temporal

SETGPTN, SETGMTN, SETGETN Main variant

SETGP Memory Set with tag setting Prologue SETGP, SETGM, SETGE Prologue variant

SETGPN Memory Set with tag setting Prologue,
non-temporal

SETGPN, SETGMN, SETGEN Prologue variant

SETGPT Memory Set with tag setting Prologue,
unprivileged

SETGPT, SETGMT, SETGET Prologue variant

SETGPTN Memory Set with tag setting Prologue,
unprivileged and non-temporal

SETGPTN, SETGMTN, SETGETN Prologue variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-373
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores
Table C3-51 shows the memory set without tag setting instructions.

Table C3-51 Memory set without tag setting instructions

Mnemonic Instruction See

SETE Memory Set Epilogue SETP, SETM, SETE Epilogue variant

SETEN Memory Set Epilogue,
non-temporal

SETPN, SETMN, SETEN Epilogue variant

SETET Memory Set Epilogue,
unprivileged

SETPT, SETMT, SETET Epilogue variant

SETETN Memory Set Epilogue,
unprivileged and non-temporal

SETPTN, SETMTN, SETETN Epilogue variant

SETM Memory Set Main SETP, SETM, SETE Main variant

SETMN Memory Set Main,
non-temporal

SETPN, SETMN, SETEN Main variant

SETMT Memory Set Main,
unprivileged

SETPT, SETMT, SETET Main variant

SETMTN Memory Set Main,
unprivileged and non-temporal

SETPTN, SETMTN, SETETN Main variant

SETP Memory Set Prologue SETP, SETM, SETE Prologue variant

SETPN Memory Set Prologue,
non-temporal

SETPN, SETMN, SETEN Prologue variant

SETPT Memory Set Prologue,
unprivileged

SETPT, SETMT, SETET Prologue variant

SETPTN Memory Set Prologue,
unprivileged and non-temporal

SETPTN, SETMTN, SETETN Prologue variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-374
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
C3.3 Loads and stores - SVE

SVE vector load and store instructions transfer data in memory to or from elements of one or more vector or
predicate transfer registers. SVE also includes vector prefetch instructions that provide read and write hints to the
memory system. For SVE predicated load, store, and prefetch instructions, the memory element access size and type
that is associated with each vector element is specified by a suffix to the instruction mnemonic, independently of
the element size of the transfer registers. For example, LD1SH. The following table shows the supported instruction
suffixes for SVE load, store, and prefetch instructions:

The element size of the transfer registers is always greater than or equal to the memory element access size. When
the element size of the transfer registers is strictly greater than the memory element access size, then these are
referred to as unpacked data accesses. In the case of unpacked data accesses:

• For load instructions, each element access is sign-extended or zero-extended to fill the vector element,
according to its memory element access size and type.

• For store instructions, each vector element is truncated to the memory element access size.

Where the vector element size and the memory element access size are the same, then these are referred to as packed
data accesses. Signed access types are not supported for packed data accesses. Packed and unpacked access sizes
and types relate to the vector element size of the transfer registers, as defined in the following table:

For gather-load and scatter-store instructions, the vector element size can only be .S or .D. This means that any
non-contiguous memory element access of less than a word is unpacked. Non-contiguous memory element accesses
of a word can be either packed or unpacked, depending on the vector element size.

Load, store, and prefetch instructions consist of the following:

• Predicated single vector contiguous element accesses.

• Predicated multiple vector contiguous structure load/store.

• Predicated non-contiguous element accesses.

• Predicated replicating element loads.

• Unpredicated vector register load/store.

Instruction suffix Memory element access size and type

B Unsigned byte

H Unsigned halfword or half-precision floating-point

W Unsigned word or single-precision floating-point

D Unsigned doubleword or double-precision floating-point

SB Signed byte

SH Signed halfword

SW Signed word

Vector element Packed access suffix Unpacked access suffixes

.B B -

.H H B, SB

.S W H, SH, B, SB

.D D W, SW, H, SH, B, SB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-375
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
• Unpredicated predicate register load/store.

All predicated load instructions zero the Inactive elements of the destination vector, except for Non-fault loads and
First-fault loads when the corresponding FFR element is FALSE.

Prefetch instructions provide hints to hardware and do not change architectural state. Therefore, a Governing
predicate for a prefetch instruction provides an additional hint which indicates the memory locations to be
prefetched. Prefetch instructions require a prefetch operation specifier. SVE prefetch instructions support all of the
prefetch operations except for the PLI prefetch operand types.

Load, store, and prefetch instructions that multiply a scalar index register or an index vector element by the memory
element access size specify a shift type, followed by a shift amount in bits. The shift type can be one of LSL, SXTW,
or UXTW. The shift amount is always Log2 of the memory element access size, in bytes. The shift amount defaults to
zero when the memory element access size is a byte, and the shift size can be omitted. The shift type of LSL must be
omitted if the shift amount is omitted.

When included as part of the assembler syntax for an instruction, MUL VL indicates that the specified immediate index
value is multiplied by the size of the addressed vector or predicate in memory, measured in bytes, irrespective of
predication. For a detailed description of the meaning of this assembler syntax for each instruction, see the
appropriate subsection below. When used in pseudocode, the symbol VL represents the vector length, measured in
bits.

SVE load, store, and prefetch instructions do not support pre-indexed or post-indexed addressing.

C3.3.1 Predicated single vector contiguous element accesses

Predicated contiguous load and store instructions access memory locations starting from an address that is defined
by a scalar base register plus either:

• A scalar index register.

• An immediate index value that is in the range -8 to 7, inclusive. This defaults to zero if omitted.

The predicated contiguous load and store instructions have two supporting addressing modes:

• Scalar base plus immediate index.

• Scalar base plus scalar index.

Predicated contiguous prefetch instructions address memory locations in a similar manner, with the index being
either:

• A scalar index register.

• An immediate index value that is in the range of -32 to 31, inclusive. This defaults to zero if omitted.

For predicated contiguous load and store SVE instructions:

• The immediate index value is a vector index, not an element index. The immediate index value is multiplied
by the number of vector elements, irrespective of predication, and then multiplied by the memory element
access size in bytes. The resulting offset is incremented following each element access by the memory
element access size.

• The scalar index register value is multiplied by the memory element access size in bytes. The index value is
incremented by one after each element access, but the scalar index register is not updated by the instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-376
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
• When alignment checking is enabled for loads and stores, the value of the base address register must be
aligned to the memory element access size.

Table C3-52 Predicated single vector contiguous element accesses

Mnemonic Instruction See

LD1 Contiguous load unsigned bytes to vector
(scalar plus immediate, scalar plus scalar)

LD1B (scalar plus immediate, single register)

LD1B (scalar plus scalar, single register)

Contiguous load doublewords to vector
(scalar plus immediate, scalar plus scalar)

LD1D (scalar plus immediate, single register)

LD1D (scalar plus scalar, single register)

Contiguous load unsigned halfwords to vector
(scalar plus immediate, scalar plus scalar)

LD1H (scalar plus immediate, single register)

LD1H (scalar plus scalar, single register)

Contiguous load and replicate 32-bytes
(scalar plus immediate, scalar plus scalar)

LD1ROB (scalar plus immediate)

LD1ROB (scalar plus scalar)

Contiguous load and replicate four doublewords
(scalar plus immediate, scalar plus scalar)

LD1ROD (scalar plus immediate)

LD1ROD (scalar plus scalar)

Contiguous load and replicate 16 halfwords
(scalar plus immediate, scalar plus scalar)

LD1ROH (scalar plus immediate)

LD1ROH (scalar plus scalar)

Contiguous load and replicate eight words
(scalar plus immediate, scalar plus scalar)

LD1ROW (scalar plus immediate)

LD1ROW (scalar plus scalar)

Contiguous load and replicate 16 bytes
(scalar plus immediate, scalar plus scalar)

LD1RQB (scalar plus immediate)

LD1RQB (scalar plus scalar)

Contiguous load and replicate two doublewords
(scalar plus immediate, scalar plus scalar)

LD1RQD (scalar plus immediate)

LD1RQD (scalar plus scalar)

Contiguous load and replicate eight halfwords
(scalar plus immediate, scalar plus scalar)

LD1RQH (scalar plus immediate)

LD1RQH (scalar plus scalar)

Contiguous load and replicate four words
(scalar plus immediate, scalar plus scalar)

LD1RQW (scalar plus immediate)

LD1RQW (scalar plus scalar)

Contiguous load signed bytes to vector
(scalar plus immediate)

LD1SB (scalar plus immediate)

Contiguous load signed words to vector
(scalar plus immediate)

LD1SW (scalar plus immediate)

Contiguous load unsigned words to vector
(scalar plus immediate)

LD1W (scalar plus immediate, single register)

ST1 Contiguous store bytes from vector
(scalar plus immediate, scalar plus scalar)

ST1B (scalar plus immediate, single register)

ST1B (scalar plus scalar, single register)

Contiguous store doublewords from vector
(scalar plus immediate, scalar plus scalar)

ST1D (scalar plus immediate, single register)

ST1D (scalar plus scalar, single register)

Contiguous store halfwords from vector
(scalar plus immediate, scalar plus scalar)

ST1H (scalar plus immediate, single register)

ST1H (scalar plus scalar, single register)

Contiguous store words from vector
(scalar plus immediate, scalar plus scalar)

ST1W (scalar plus immediate, single register)

ST1W (scalar plus scalar, single register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-377
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
LDFF1 Contiguous load first-fault unsigned bytes to vector
(scalar plus scalar)

LDFF1B (scalar plus scalar)

Contiguous load first-fault doublewords to vector
(scalar plus scalar)

LDFF1D (scalar plus scalar)

Contiguous load first-fault unsigned halfwords to vector
(scalar plus scalar)

LDFF1H (scalar plus scalar)

Contiguous load first-fault signed bytes to vector
(scalar plus scalar)

LDFF1SB (scalar plus scalar)

Contiguous load first-fault signed halfwords to vector
(scalar plus scalar)

LDFF1SH (scalar plus scalar)

Contiguous load first-fault signed words to vector
(scalar plus scalar)

LDFF1SW (scalar plus scalar)

Contiguous load first-fault unsigned words to vector
(scalar plus scalar)

LDFF1W (scalar plus scalar)

LDNF1 Contiguous load non-fault unsigned bytes to vector LDNF1B

Contiguous load non-fault doublewords to vector LDNF1D

Contiguous load non-fault unsigned halfwords to vector LDNF1H

Contiguous load non-fault signed bytes to vector LDNF1SB

Contiguous load non-fault signed halfwords to vector LDNF1SH

Contiguous load non-fault signed words to vector LDNF1SW

Contiguous load non-fault unsigned words to vector LDNF1W

LDNT1 Contiguous load non-temporal bytes to vector
(scalar plus immediate, scalar plus scalar)

LDNT1B (scalar plus immediate, single register)

LDNT1B (scalar plus scalar, single register)

Contiguous load non-temporal doublewords to vector
(scalar plus immediate, scalar plus scalar)

LDNT1D (scalar plus immediate, single register)

LDNT1D (scalar plus scalar, single register)

Contiguous load non-temporal halfwords to vector
(scalar plus immediate, scalar plus scalar)

LDNT1H (scalar plus immediate, single register)

LDNT1H (scalar plus scalar, single register)

Contiguous load non-temporal words to vector
(scalar plus immediate, scalar plus scalar)

LDNT1W (scalar plus immediate, single register)

LDNT1W (scalar plus scalar, single register)

STNT1 Contiguous store non-temporal bytes from vector
(scalar plus immediate, scalar plus scalar)

STNT1B (scalar plus immediate, single register)

STNT1B (scalar plus scalar, single register)

Contiguous store non-temporal doublewords from vector
(scalar plus immediate, scalar plus scalar)

STNT1D (scalar plus immediate, single register)

STNT1D (scalar plus scalar, single register)

Contiguous store non-temporal halfwords from vector
(scalar plus immediate, scalar plus scalar)

STNT1H (scalar plus immediate, single register)

STNT1H (scalar plus scalar, single register)

Contiguous store non-temporal words from vector
(scalar plus immediate, scalar plus scalar)

STNT1W (scalar plus immediate, single register)

STNT1W (scalar plus scalar, single register)

Table C3-52 Predicated single vector contiguous element accesses (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-378
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
C3.3.2 Predicated multiple vector contiguous structure load/store

Predicated multiple vector contiguous structure load/store instructions are defined by a scalar base register plus
either:

• A scalar index register.

• An immediate index that is a multiple of N, in the range -8xN to 7xN, inclusive. This defaults to zero if
omitted.

The predicated contiguous structure load and store instructions have two supporting addressing modes:

• Scalar base plus immediate index.

• Scalar base plus scalar index.

For the predicated multiple vector contiguous structure load/store SVE instructions:

• The immediate index value is a vector index, not an element index. The immediate index value is multiplied
by the number of vector elements, irrespective of predication, and then multiplied by the memory element
access size in bytes. The resulting offset is incremented following each element access by the memory
element access size.

• The scalar index register value is multiplied by the memory element access size in bytes. Following each
element access, the index value is incremented by one but the instruction does not update the scalar index
register.

• Each predicate element applies to a single structure in memory, or equivalently to the same element number
within each of the two, three, or four transferred vector registers.

• These instructions support packed data accesses only.

PRF Contiguous prefetch bytes
(scalar plus immediate, scalar plus scalar)

PRFB (scalar plus immediate)

PRFB (scalar plus scalar)

Contiguous prefetch doublewords
(scalar plus immediate, scalar plus scalar)

PRFD (scalar plus immediate)

PRFD (scalar plus scalar)

Contiguous prefetch halfwords
(scalar plus immediate, scalar plus scalar)

PRFH (scalar plus immediate)

PRFH (scalar plus scalar)

Contiguous prefetch words
(scalar plus immediate, scalar plus scalar)

PRFW (scalar plus immediate)

PRFW (scalar plus scalar)

Table C3-52 Predicated single vector contiguous element accesses (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-379
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
• When alignment checking is enabled for loads and stores, the base address must be aligned to the element
access size.

Table C3-53 Predicated multiple vector contiguous structure load/store

Mnemonic Instruction See

LD2 Contiguous load 2-byte structures to two vectors
(scalar plus immediate, scalar plus scalar)

LD2B (scalar plus immediate)

LD2B (scalar plus scalar)

Contiguous load two-doubleword structures to two vectors
(scalar plus immediate, scalar plus scalar)

LD2D (scalar plus immediate)

LD2D (scalar plus scalar)

Contiguous load two-halfword structures to two vectors
(scalar plus immediate, scalar plus scalar)

LD2H (scalar plus immediate)

LD2H (scalar plus scalar)

Contiguous load two-word structures to two vectors
(scalar plus immediate, scalar plus scalar)

LD2W (scalar plus immediate)

LD2W (scalar plus scalar)

LD3 Contiguous load 3-byte structures to three vectors
(scalar plus immediate, scalar plus scalar)

LD3B (scalar plus immediate)

LD3B (scalar plus scalar)

Contiguous load three-doubleword structures to three vectors
(scalar plus immediate, scalar plus scalar)

LD3D (scalar plus immediate)

LD3D (scalar plus scalar)

Contiguous load three-halfword structures to three vectors
(scalar plus immediate, scalar plus scalar)

LD3H (scalar plus immediate)

LD3H (scalar plus scalar)

Contiguous load three-word structures to three vectors
(scalar plus immediate, scalar plus scalar)

LD3W (scalar plus immediate)

LD3W (scalar plus scalar)

LD4 Contiguous load 4-byte structures to four vectors
(scalar plus immediate, scalar plus scalar)

LD4B (scalar plus immediate)

LD4B (scalar plus scalar)

Contiguous load four-doubleword structures to four vectors
(scalar plus immediate, scalar plus scalar)

LD4D (scalar plus immediate)

LD4D (scalar plus scalar)

Contiguous load four-halfword structures to four vectors
(scalar plus immediate, scalar plus scalar)

LD4H (scalar plus immediate)

LD4H (scalar plus scalar)

Contiguous load four-word structures to four vectors
(scalar plus immediate, scalar plus scalar)

LD4W (scalar plus immediate)

LD4W (scalar plus scalar)

ST2 Contiguous store 2-byte structures from two vectors
(scalar plus immediate, scalar plus scalar)

ST2B (scalar plus immediate)

ST2B (scalar plus scalar)

Contiguous store two-doubleword structures from two vectors
(scalar plus immediate, scalar plus scalar)

ST2D (scalar plus immediate)

ST2D (scalar plus scalar)

Contiguous store two-halfword structures from two vectors
(scalar plus immediate, scalar plus scalar)

ST2H (scalar plus immediate)

ST2H (scalar plus scalar)

Contiguous store two-word structures from two vectors
(scalar plus immediate, scalar plus scalar)

ST2W (scalar plus immediate)

ST2W (scalar plus scalar)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-380
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
C3.3.3 Predicated non-contiguous element accesses

Predicated non-contiguous element accesses address non-contiguous memory locations that are specified by either:

• A scalar base register plus a vector of indices or offsets.

• A vector of base addresses plus an immediate byte offset. The immediate byte offset is a multiple of the
memory element access size, in the range 0 to 31 times the memory element access size, inclusive, and
defaults to zero if omitted.

The predicated non-contiguous element accesses have two supporting addressing modes:

• Scalar base plus 64-bit vector index.

• Scalar base plus 32-bit vector index.

• Vector base plus immediate offset.

For this group of SVE instructions:

• Vector registers used as part of the address must specify a vector element size of 32 bits or 64 bits, .S or .D.
For load and store instructions, the transfer register must specify the same vector element size.

• If the index vector register contains 32-bit index values then the lowest 32 bits of each index vector element
can either be zero-extended or sign-extended to 64 bits.

• For load and store instructions, the index vector elements are then optionally multiplied by the memory
element access size, in bytes, if a shift amount is specified. For prefetch instructions, the index vector
elements are always multiplied by the memory element access size, in bytes.

ST3 Contiguous store 3-byte structures from three vectors
(scalar plus immediate, scalar plus scalar)

ST3B (scalar plus immediate)

ST3B (scalar plus scalar)

Contiguous store three-doubleword structures from three vectors
(scalar plus immediate, scalar plus scalar)

ST3D (scalar plus immediate)

ST3D (scalar plus scalar)

Contiguous store three-halfword structures from three vectors
(scalar plus immediate, scalar plus scalar)

ST3H (scalar plus immediate)

ST3H (scalar plus scalar)

Contiguous store three-word structures from three vectors
(scalar plus immediate, scalar plus scalar)

ST3W (scalar plus immediate)

ST3W (scalar plus scalar)

ST4 Contiguous store 4-byte structures from four vectors
(scalar plus immediate, scalar plus scalar)

ST4B (scalar plus immediate)

ST4B (scalar plus scalar)

Contiguous store four-doubleword structures from four vectors
(scalar plus immediate, scalar plus scalar)

ST4D (scalar plus immediate)

ST4D (scalar plus scalar)

Contiguous store four-halfword structures from four vectors
(scalar plus immediate, scalar plus scalar)

ST4H (scalar plus immediate)

ST4H (scalar plus scalar)

Contiguous store four-word structures from four vectors
(scalar plus immediate, scalar plus scalar)

ST4W (scalar plus immediate)

ST4W (scalar plus scalar)

Table C3-53 Predicated multiple vector contiguous structure load/store (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-381
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
• When alignment checking is enabled for loads and stores, the computed virtual address of each element must
be aligned to the memory element access size.

Table C3-54 Predicated non-contiguous element accesses

Mnemonic Instructions See

LD1 Gather load unsigned bytes to vector
(scalar plus vector, vector plus immediate)

LD1B (scalar plus vector)

LD1B (vector plus immediate)

Gather load doublewords to vector
(scalar plus vector, vector plus immediate)

LD1D (scalar plus vector)

LD1D (vector plus immediate)

Gather load unsigned halfwords
(scalar plus vector, vector plus immediate)

LD1H (scalar plus vector)

LD1H (vector plus immediate)

Gather load signed bytes to vector
(scalar plus vector, vector plus immediate)

LD1SB (scalar plus vector)

LD1SB (vector plus immediate)

Gather load signed halfwords to vector
(scalar plus vector, vector plus immediate)

LD1SH (scalar plus vector)

LD1SH (vector plus immediate)

Gather load unsigned words to vector
(scalar plus vector, vector plus immediate)

LD1SW (scalar plus vector)

LD1SW (vector plus immediate)

ST1 Scatter store bytes from a vector
(scalar plus vector, vector plus immediate)

ST1B (scalar plus vector)

ST1B (vector plus immediate)

Scatter store doublewords from a vector
(scalar plus vector, vector plus immediate)

ST1D (scalar plus vector)

ST1D (vector plus immediate)

Scatter store halfwords from a vector
(scalar plus vector, vector plus immediate)

ST1H (scalar plus vector)

ST1H (vector plus immediate)

Scatter store words from a vector
(scalar plus vector, vector plus immediate)

ST1W (scalar plus vector)

ST1W (vector plus immediate)

LDFF1 Gather load first-fault unsigned bytes to vector
(scalar plus vector, vector plus immediate)

LDFF1B (scalar plus vector)

LDFF1B (vector plus immediate)

Gather load first-fault doublewords to vector
(scalar plus vector, vector plus immediate)

LDFF1D (scalar plus vector)

LDFF1D (vector plus immediate)

Gather load first-fault unsigned halfwords to vector
(scalar plus vector, vector plus immediate)

LDFF1H (scalar plus vector)

LDFF1SH (vector plus immediate)

Gather load first-fault signed bytes to vector
(scalar plus vector, vector plus immediate)

LDFF1SB (scalar plus vector)

LDFF1SB (vector plus immediate)

Gather load first-fault signed halfwords to vector
(scalar plus vector, vector plus immediate)

LDFF1SH (scalar plus vector)

LDFF1SH (vector plus immediate)

Gather load first-fault signed words to vector
(scalar plus vector, vector plus immediate)

LDFF1SW (scalar plus vector)

LDFF1SW (vector plus immediate)

LDFF1 Gather load first-fault unsigned words to vector
(scalar plus vector, vector plus immediate)

LDFF1W (scalar plus vector)

LDFF1W (vector plus immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-382
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
C3.3.4 Predicated replicating element loads

The load and replicate instructions read one or more contiguous memory locations starting from an address that is
defined by a scalar base register plus either:

• A scalar index register.

• An immediate byte offset.

The predicated contiguous load and store instructions have two supporting addressing modes:

• Scalar base plus immediate offset.

• Scalar base plus scalar index.

This defaults to zero if omitted. For predicated replicating element load SVE instructions:

• When alignment checking is enabled, the base address must be aligned to the memory element access size.

PRF Gather prefetch bytes
(scalar plus vector, vector plus immediate)

PRFB (scalar plus vector)

PRFB (vector plus immediate)

Gather prefetch doublewords
(scalar plus vector, vector plus immediate)

PRFD (scalar plus vector)

PRFD (vector plus immediate)

Gather prefetch halfwords
(scalar plus vector, vector plus immediate)

PRFH (scalar plus vector)

PRFH (vector plus immediate)

Gather prefetch words
(scalar plus vector, vector plus immediate)

PRFW (scalar plus vector)

PRFW (vector plus immediate)

Table C3-54 Predicated non-contiguous element accesses (continued)

Mnemonic Instructions See

Table C3-55 Predicated replicating element loads

Mnemonic Instructions See

LD1RB Load and broadcast unsigned byte to vector LD1RB

LD1RD Load and broadcast doubleword to vector LD1RD

LD1RH Load and broadcast unsigned halfword to vector LD1RH

LD1RW Load and broadcast unsigned word to vector LD1RW

LD1RQB Contiguous load and replicate 16 bytes
(scalar plus immediate, scalar plus scalar)

LD1RQB (scalar plus immediate)

LD1RQB (scalar plus scalar)

LD1RQD Contiguous load and replicate two doublewords
(scalar plus immediate, scalar plus scalar)

LD1RQD (scalar plus immediate)

LD1RQD (scalar plus scalar)

LD1RQH Contiguous load and replicate eight halfwords
(scalar plus immediate, scalar plus scalar)

LD1RQH (scalar plus immediate)

LD1RQH (scalar plus scalar)

LD1RQW Contiguous load and replicate four words
(scalar plus immediate, scalar plus scalar)

LD1RQW (scalar plus immediate)

LD1RQW (scalar plus scalar)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-383
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.3 Loads and stores - SVE
C3.3.5 Unpredicated vector register load/store

The unpredicated vector register load, LDR, and store, STR, instructions transfer a single vector register from or to
memory locations that are specified by a scalar base register plus an immediate index value that is in the range -256
to 255, inclusive. The immediate index value defaults to zero if omitted.

The unpredicated vector register load/store instructions have one supporting addressing mode:

• Scalar base plus immediate index.

For the unpredicated vector register load/store SVE instructions:

• The immediate index value is a vector index, not an element index. The immediate index value is multiplied
by the current vector register length in bytes.

• The data transfer is performed as a contiguous stream of byte accesses in ascending element order, without
endianness conversion.

• When alignment checking is enabled for loads and stores, the base address must be 16-byte aligned.

C3.3.6 Unpredicated predicate register load/store

The unpredicated predicate register load, LDR, and store, STR, instructions transfer a single predicate register from
or to memory locations that are specified by a scalar base register plus an immediate index value that is in the range
-256 to 255, inclusive. The immediate index value defaults to zero if omitted.

The unpredicated predicate register load/store instructions have one supporting addressing mode:

• Scalar base plus immediate index.

For unpredicated predicate register load/store SVE instructions:

• The immediate index value is a predicate index, not an element index. The immediate index value is
multiplied by the current predicate register length, in bytes.

• The data transfer is performed as a contiguous stream of byte accesses, each byte containing 8 consecutive
predicate bits, in ascending bit and element order, without endian conversion.

• When alignment checking is enabled for loads and stores, the base address must be 2-byte aligned.

Table C3-56 Unpredicated vector register load/store

Mnemonic Instruction See

LDR Load vector register (vector) LDR (vector)

STR Store vector register (vector) STR (vector)

Table C3-57 Unpredicated predicate register load/store

Mnemonic Instruction See

LDR Load predicate register (predicate) LDR (predicate)

STR Store predicate register (predicate) STR (predicate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-384
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.4 Loads and stores - SME, SME2, SVE2p1
C3.4 Loads and stores - SME, SME2, SVE2p1

The following subsections describe the SME, SME2 and SVE2p1 loads and stores:

• Array vector/table load and store.

• Consecutive multi-vector loads and stores.

• SVE2.1 quadword loads and stores.

C3.4.1 Array vector/table load and store

These instructions transfer data between the ZA array vector or the ZT0 registers and memory.

These instructions are performed as contiguous byte accesses, with no endian conversion and no guarantee of
single-copy atomicity larger than a byte.

C3.4.2 Contiguous multi-vector loads and stores

C3.4.2.1 Consecutive multi-vector loads and stores

Multi-vector load and store instructions that transfer data between memory and consecutive SVE vector registers.

Table C3-58 SME array vector/table load and store

Mnemonic Instruction See

LDR Load ZA array vector LDR (array vector)

Load ZT0 register LDR (table)

STR Store ZA array vector STR (array vector)

Store ZT0 register STR (table)

Table C3-59 Consecutive multi-vector load and store instructions

Mnemonic Instruction See

LD1 Contiguous load of bytes to multiple consecutive vectors
(immediate index, scalar index)

LD1B (scalar plus immediate, consecutive registers)

LD1B (scalar plus scalar, consecutive registers)

Contiguous load of doublewords to multiple consecutive
vectors (immediate index, scalar index)

LD1D (scalar plus immediate, consecutive registers)

LD1D (scalar plus scalar, consecutive registers)

Contiguous load of halfwords to multiple consecutive
vectors (immediate index, scalar index)

LD1H (scalar plus immediate, consecutive registers)

LD1H (scalar plus scalar, consecutive registers)

Contiguous load of words to multiple consecutive vectors
(immediate index, scalar index)

LD1W (scalar plus immediate, consecutive registers)

LD1W (scalar plus scalar, consecutive registers)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-385
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.4 Loads and stores - SME, SME2, SVE2p1
LDNT1 Contiguous load non-temporal of bytes to multiple
consecutive vectors (immediate index, scalar index)

LDNT1B (scalar plus immediate, consecutive registers)

LDNT1B (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of doublewords to multiple
consecutive vectors (immediate index, scalar index)

LDNT1D (scalar plus immediate, consecutive registers)

LDNT1D (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of halfwords to multiple
consecutive vectors (immediate index, scalar index)

LDNT1H (scalar plus immediate, consecutive registers)

LDNT1H (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of words to multiple
consecutive vectors (immediate index, scalar index)

LDNT1W (scalar plus immediate, consecutive registers)

LDNT1W (scalar plus scalar, consecutive registers)

ST1 Contiguous store of bytes from multiple consecutive
vectors (immediate index, scalar index)

ST1B (scalar plus immediate, consecutive registers)

ST1B (scalar plus scalar, consecutive registers)

Contiguous store of doublewords from multiple
consecutive vectors (immediate index, scalar index)

ST1D (scalar plus immediate, consecutive registers)

ST1D (scalar plus scalar, consecutive registers)

Contiguous store of halfwords from multiple consecutive
vectors (immediate index, scalar index)

ST1H (scalar plus immediate, consecutive registers)

ST1H (scalar plus scalar, consecutive registers)

Contiguous store of words from multiple consecutive
vectors (immediate index, scalar index)

ST1W (scalar plus immediate, consecutive registers)

ST1W (scalar plus scalar, consecutive registers)

STNT1 Contiguous store non-temporal of bytes from multiple
consecutive vectors (immediate index, scalar index)

STNT1B (scalar plus immediate, consecutive registers)

STNT1B (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of doublewords from
multiple consecutive vectors (immediate index, scalar
index)

STNT1D (scalar plus immediate, consecutive registers)

STNT1D (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of halfwords from multiple
consecutive vectors (immediate index, scalar index)

STNT1H (scalar plus immediate, consecutive registers)

STNT1H (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of words from multiple
consecutive vectors (immediate index, scalar index)

STNT1W (scalar plus immediate, consecutive registers)

STNT1W (scalar plus scalar, consecutive registers)

Table C3-59 Consecutive multi-vector load and store instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-386
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.4 Loads and stores - SME, SME2, SVE2p1
C3.4.2.2 Strided multi-vector loads and stores

Multi-vector load and store instructions that transfer data between memory and strided numbered vector registers.

Table C3-60 Strided multi-vector load and store instructions

Mnemonic Instruction See

LD1 Contiguous load of bytes to multiple strided vectors (immediate index,
scalar index)

LD1B (scalar plus immediate, strided
registers)

LD1B (scalar plus scalar, strided
registers)

Contiguous load of doublewords to multiple strided vectors (immediate
index, scalar index)

LD1D (scalar plus immediate, strided
registers)

LD1D (scalar plus scalar, strided
registers)

Contiguous load of halfwords to multiple strided vectors (immediate
index, scalar index)

LD1H (scalar plus immediate, strided
registers)

LD1H (scalar plus scalar, strided
registers)

Contiguous load of words to multiple strided vectors (immediate index,
scalar index)

LD1W (scalar plus immediate, strided
registers)

LD1W (scalar plus scalar, strided
registers)

LDNT1 Contiguous load non-temporal of bytes to multiple strided vectors
(immediate index, scalar index)

LDNT1B (scalar plus immediate, strided
registers)

LDNT1B (scalar plus scalar, strided
registers)

Contiguous load non-temporal of doublewords to multiple strided vectors
(immediate index, scalar index)

LDNT1D (scalar plus immediate, strided
registers)

LDNT1D (scalar plus scalar, strided
registers)

Contiguous load non-temporal of halfwords to multiple strided vectors
(immediate index, scalar index)

LDNT1H (scalar plus immediate, strided
registers)

LDNT1H (scalar plus scalar, strided
registers)

Contiguous load non-temporal of words to multiple strided vectors
(immediate index, scalar index)

LDNT1W (scalar plus immediate,
strided registers)

LDNT1W (scalar plus scalar, strided
registers)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-387
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.4 Loads and stores - SME, SME2, SVE2p1
ST1 Contiguous store of bytes from multiple strided vectors (immediate index,
scalar index)

ST1B (scalar plus immediate, strided
registers)

ST1B (scalar plus scalar, strided
registers)

Contiguous store of doublewords from multiple strided vectors (immediate
index, scalar index)

ST1D (scalar plus immediate, strided
registers)

ST1D (scalar plus scalar, strided
registers)

Contiguous store of halfwords from multiple strided vectors (immediate
index, scalar index)

ST1H (scalar plus immediate, strided
registers)

ST1H (scalar plus scalar, strided
registers)

Contiguous store of words from multiple strided vectors (immediate index,
scalar index)

ST1W (scalar plus immediate, strided
registers)

ST1W (scalar plus scalar, strided
registers)

STNT1 Contiguous store non-temporal of bytes from multiple strided vectors
(immediate index, scalar index)

STNT1B (scalar plus immediate, strided
registers)

STNT1B (scalar plus scalar, strided
registers)

Contiguous store non-temporal of doublewords from multiple strided
vectors (immediate index, scalar index)

STNT1D (scalar plus immediate, strided
registers)

STNT1D (scalar plus scalar, strided
registers)

Contiguous store non-temporal of halfwords from multiple strided vectors
(immediate index, scalar index)

STNT1H (scalar plus immediate, strided
registers)

STNT1H (scalar plus scalar, strided
registers)

Contiguous store non-temporal of words from multiple strided vectors
(immediate index, scalar index)

STNT1W (scalar plus immediate, strided
registers)

STNT1W (scalar plus scalar, strided
registers)

Table C3-60 Strided multi-vector load and store instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-388
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.4 Loads and stores - SME, SME2, SVE2p1
C3.4.2.3 Tile slice multi-vector loads and stores

Tile slice load and store instructions transfer bytes between a tile slice and memory.

C3.4.3 SVE2.1 quadword loads and stores

C3.4.3.1 Contiguous quadword loads and stores

Contiguous load or store to/from elements of a vector register from/to the memory address generated by a scalar
base and an immediate index, which is multiplied and added to the base address, or a scalar index, which is added
to the base address. Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero
in the destination vector.

Table C3-61 Tile slice multi-vector load and store instructions

Mnemonic Instruction See

LD1 Contiguous load of bytes to 8-bit element ZA tile slice LD1B (scalar plus scalar, tile slice)

Contiguous load of doublewords to 64-bit element ZA tile slice LD1D (scalar plus scalar, tile slice)

Contiguous load of halfwords to 16-bit element ZA tile slice LD1H (scalar plus scalar, tile slice)

Contiguous load of quadwords to 128-bit element ZA tile slice LD1Q

Contiguous load of words to 32-bit element ZA tile slice LD1W (scalar plus scalar, tile slice)

ST1 Contiguous store of bytes from 8-bit element ZA tile slice ST1B (scalar plus scalar, tile slice)

Contiguous store of doublewords from to 64-bit element ZA tile slice ST1D (scalar plus scalar, tile slice)

Contiguous store of halfwords from 16-bit element ZA tile slice ST1H (scalar plus scalar, tile slice)

Contiguous store of quadwords from 128-bit element ZA tile slice ST1Q

Contiguous store of words from 32-bit element ZA tile slice ST1W (scalar plus scalar, tile slice)

Table C3-62 SME2/SVE2.1 Contiguous quadword load and store instructions

Mnemonic Instruction See

LD1D Contiguous load unsigned doublewords to vector (immediate or scalar
index)

LD1D (scalar plus immediate, single
register)

LD1D (scalar plus scalar, single register)

LD1W Contiguous load unsigned words to vector (immediate or scalar index) LD1W (scalar plus immediate, single
register)

LD1W (scalar plus scalar, single register)

ST1D Contiguous store doublewords from vector (immediate or scalar index) ST1D (scalar plus immediate, single
register)

ST1D (scalar plus scalar, single register)

ST1W Contiguous store words from vector (immediate or scalar index) ST1W (scalar plus immediate, single
register)

ST1W (scalar plus scalar, single register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-389
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.4 Loads and stores - SME, SME2, SVE2p1
C3.4.3.2 Quadword gather and scatter

Gather load or scatter store of quadwords between active elements of a vector register and memory addresses
generated by a vector base plus an unscaled scalar register offset.

C3.4.3.3 Quadword structure loads and stores

Table C3-63 SME2/SVE2.1 Quadword gather and scatter instructions

Mnemonic Instruction See

LD1Q Gather load quadwords LD1Q

ST1Q Scatter store quadwords ST1Q

Table C3-64 SVE2.1 Quadword structure load and store instructions

Mnemonic Instruction See

LD Contiguous load two-quadword structures to two vectors (immediate index, scalar
index)

LD2Q (scalar plus
immediate)

LD2Q (scalar plus scalar)

Contiguous load three-quadword structures to three vectors (immediate index, scalar
index)

LD3Q (scalar plus
immediate)

LD3Q (scalar plus scalar)

Contiguous load four-quadword structures to four vectors (immediate index, scalar
index)

LD4Q (scalar plus
immediate)

LD4Q (scalar plus scalar)

ST Contiguous store two-quadword structures from two vectors (immediate index, scalar
index)

ST2Q (scalar plus
immediate)

ST2Q (scalar plus scalar)

Contiguous store three-quadword structures from three vectors (immediate index,
scalar index)

ST3Q (scalar plus
immediate)

ST3Q (scalar plus scalar)

Contiguous store four-quadword structures from four vectors (immediate index, scalar
index)

ST4Q (scalar plus
immediate)

ST4Q (scalar plus scalar)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-390
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - immediate
C3.5 Data processing - immediate

This section describes the instruction groups for data processing with immediate operands. It contains the following
subsections:

• Arithmetic (immediate).

• Integer minimum and maximum (immediate)

• Logical (immediate).

• Move (wide immediate).

• Move (immediate).

• PC-relative address calculation.

• Bitfield move.

• Bitfield insert and extract

• Extract register.

• Shift (immediate).

• Sign-extend and Zero-extend.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Immediate.

C3.5.1 Arithmetic (immediate)

The Arithmetic (immediate) instructions accept a 12-bit unsigned immediate value, optionally shifted left by 12 bits.

The Arithmetic (immediate) instructions that do not set Condition flags can read from and write to the current stack
pointer. The flag setting instructions can read from the stack pointer, but they cannot write to it.

Table C3-65 shows the Arithmetic instructions with an immediate offset.

C3.5.2 Integer minimum and maximum (immediate)

The Integer maximum and minimum (immediate) instructions determine the maximum/minimum of the source
register value and immediate.

These instructions are only present when FEAT_CSSC is implemented.

Table C3-65 Arithmetic instructions with an immediate

Mnemonic Instruction See

ADD Add ADD (immediate)

ADDS Add and set flags ADDS (immediate)

SUB Subtract SUB (immediate)

SUBS Subtract and set flags SUBS (immediate)

CMP Compare CMP (immediate)

CMN Compare negative CMN (immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-391
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - immediate
Table C3-66 shows the Integer maximum and minimum (immediate) instructions.

C3.5.3 Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern
viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. Each element contains the same
sub-pattern, that is a single run of 1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then rotated by 0 to (e -
1) bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.

Note

Values that consist of only zeros or only ones cannot be described in this way.

The Logical (immediate) instructions that do not set the Condition flags can write to the current stack pointer, for
example to align the stack pointer in a function prologue.

Note

Apart from ANDS and its TST alias, Logical (immediate) instructions do not set the Condition flags. However, the final
results of a bitwise operation can be tested by a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-67 shows the Logical immediate instructions.

C3.5.4 Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned
position in the destination register. The value of the other bits in the destination register depends on the variant used.
The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-66 Integer maximum and minimum (immediate) instructions

Mnemonic Instruction See

SMAX Signed Maximum (immediate) SMAX (immediate)

SMIN Signed Minimum (immediate) SMIN (immediate)

UMAX Unsigned Maximum (immediate) UMAX (immediate)

UMIN Unsigned Minimum (immediate) UMIN (immediate)

Table C3-67 Logical immediate instructions

Mnemonic Instruction See

AND Bitwise AND AND (immediate)

ANDS Bitwise AND and set flags ANDS (immediate)

EOR Bitwise exclusive OR EOR (immediate)

ORR Bitwise inclusive OR ORR (immediate)

TST Test bits TST (immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-392
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - immediate
Table C3-68 shows the Move (wide immediate) instructions.

C3.5.5 Move (immediate)

The Move (immediate) instructions are aliases for a single MOVZ, MOVN, or ORR (immediate with zero register),
instruction to load an immediate value into the destination register. An assembler must permit a signed or unsigned
immediate, as long as its binary representation can be generated using one of these instructions, and an assembler
error results if the immediate cannot be generated in this way. On disassembly, it is unspecified whether the
immediate is output as a signed or an unsigned value.

If there is a choice between the MOVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must
prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with
zero register) MOVZ, and MOVN, as a MOV mnemonic except that the underlying instruction must be used when:

• ORR has an immediate that can be generated by a MOVZ or MOVN instruction.

• A MOVN instruction has an immediate that can be encoded by MOVZ.

• MOVZ #0 or MOVN #0 have a shift amount other than LSL #0.

Table C3-69 shows the Move (immediate) instructions.

C3.5.6 PC-relative address calculation

The ADR instruction adds a signed, 21-bit immediate to the value of the program counter that fetched this instruction,
and then writes the result to a general-purpose register. This permits the calculation of any byte address within
±1MB of the current PC.

The ADRP instruction shifts a signed, 21-bit immediate left by 12 bits, adds it to the value of the program counter with
the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the
calculation of the address at a 4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or
a load/store instruction with a 12-bit immediate offset, this allows for the calculation of, or access to, any address
within ±4GB of the current PC.

Note

The term page used in the ADRP description is short-hand for the 4KB memory region, and is not related to the virtual
memory translation granule size.

Table C3-68 Move (wide immediate) instructions

Mnemonic Instruction See

MOVZ Move wide with zero MOVZ

MOVN Move wide with NOT MOVN

MOVK Move wide with keep MOVK

Table C3-69 Move (immediate) instructions

Mnemonic Instruction See

MOV Move (inverted wide immediate) MOV (inverted wide immediate)

Move (wide immediate) MOV (wide immediate)

Move (bitmask immediate) MOV (bitmask immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-393
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - immediate
Table C3-70 shows the instructions used for PC-relative address calculations are as follows:

C3.5.7 Bitfield move

The Bitfield move instructions copy a field of constant width from bit 0 in the source register to a constant bit
position in the destination register, or from a constant bit position in the source register to bit 0 in the destination
register. The remaining bits in the destination register are set as follows:

• For BFM, the remaining bits are unchanged.

• For UBFM the lower bits, if any, and upper bits, if any, are set to zero.

• For SBFM, the lower bits, if any, are set to zero, and the upper bits, if any, are set to a copy of the
most-significant bit in the copied field.

Table C3-71 shows the Bitfield move instructions.

C3.5.8 Bitfield insert and extract

The Bitfield insert and extract instructions are implemented as aliases of the Bitfield move instructions. Table C3-72
shows the Bitfield insert and extract aliases.

Table C3-70 PC-relative address calculation instructions

Mnemonic Instruction See

ADRP Compute address of 4KB page at a PC-relative offset ADRP

ADR Compute address of label at a PC-relative offset. ADR

Table C3-71 Bitfield move instructions

Mnemonic Instruction See

BFM Bitfield move BFM

SBFM Signed bitfield move SBFM

UBFM Unsigned bitfield move (32-bit) UBFM

Table C3-72 Bitfield insert and extract instructions

Mnemonic Instruction See

BFC Bitfield clear BFC

BFI Bitfield insert BFI

BFXIL Bitfield extract and insert low BFXIL

SBFIZ Signed bitfield insert in zero SBFIZ

SBFX Signed bitfield extract SBFX

UBFIZ Unsigned bitfield insert in zero UBFIZ

UBFX Unsigned bitfield extract UBFX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-394
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - immediate
C3.5.9 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from
a constant bit position within a double-width value formed by the concatenation of a pair of source registers to a
destination register.

Table C3-73 shows the Extract (immediate) instructions.

C3.5.10 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register
instructions. The shift or rotate amount must be in the range 0 to one less than the register width of the instruction,
inclusive.

Table C3-74 shows the aliases that can be used as immediate shift and rotate instructions.

C3.5.11 Sign-extend and Zero-extend

The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions.

Table C3-75 shows the aliases that can be used as zero-extend and sign-extend instructions.

Table C3-73 Extract register instructions

Mnemonic Instruction See

EXTR Extract register from pair EXTR

Table C3-74 Aliases for immediate shift and rotate instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (immediate)

LSL Logical shift left LSL (immediate)

LSR Logical shift right LSR (immediate)

ROR Rotate right ROR (immediate)

Table C3-75 Zero-extend and sign-extend instructions

Mnemonic Instruction See

SXTB Sign-extend byte SXTB

SXTH Sign-extend halfword SXTH

SXTW Sign-extend word SXTW

UXTB Unsigned extend byte UXTB

UXTH Unsigned extend halfword UXTH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-395
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
C3.6 Data processing - register

This section describes the instruction groups for data processing with all register operands. It contains the following
subsections:

• Arithmetic (shifted register).

• Arithmetic (extended register).

• Arithmetic with carry.

• Integer maximum and minimum (register)

• Flag manipulation instructions.

• Logical (shifted register).

• Move (register).

• Absolute value

• Shift (register).

• Multiply and divide.

• CRC32.

• Bit operation.

• Conditional select.

• Conditional comparison.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Register.

C3.6.1 Arithmetic (shifted register)

The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value
before performing the arithmetic operation. The register width of the instruction controls whether the new bits are
fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, and LSR accept an immediate shift amount in the range 0 to one less than the register
width of the instruction, inclusive.

Omitting the shift operator implies LSL #0, which means that there is no shift. A disassembler must not output
LSL #0. However, a disassembler must output all other shifts by zero.

The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended
register) for arithmetic instructions that can operate on the current stack pointer.

Table C3-76 shows the Arithmetic (shifted register) instructions.

Table C3-76 Arithmetic (shifted register) instructions

Mnemonic Instruction See

ADD Add ADD (shifted register)

ADDS Add and set flags ADDS (shifted register)

SUB Subtract SUB (shifted register)

SUBS Subtract and set flags SUBS (shifted register)

CMN Compare negative CMN (shifted register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-396
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
C3.6.2 Arithmetic (extended register)

The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second
source register value, followed by an optional left shift by a constant amount of 1-4, inclusive.

The extended shift is described by the mandatory extend operator SXTB, SXTH, SXTW, UXTB, UXTH, or UXTW. This is
followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A
disassembler must not output a shift amount of zero.

For 64-bit instruction forms, the additional operators UXTX and SXTX use all 64 bits of the second source register with
an optional shift. In that case, Arm recommends UXTX as the operator. If and only if at least one register is SP, Arm
recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the
operator and the shift amount can be omitted. UXTW and SXTW both use all 32 bits of the second source register with
an optional shift. In that case Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

For 32-bit instruction forms, the operators UXTW and SXTW both use all 32 bits of the second source register with an
optional shift. In that case, Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either
the destination register and the first source register. The flag setting variants only permit the stack pointer to be used
as the first source register.

In the 64-bit form of these instructions, the final register operand is written as Wm for all except the UXTX/LSL and SXTX
extend operators. For example:

CMP X4, W5, SXTW
ADD X1, X2, W3, UXTB #2
SUB SP, SP, X1 // SUB SP, SP, X1, UXTX #0

Table C3-77 shows the Arithmetic (extended register) instructions.

CMP Compare CMP (shifted register)

NEG Negate NEG (shifted register)

NEGS Negate and set flags NEGS

Table C3-76 Arithmetic (shifted register) instructions (continued)

Mnemonic Instruction See

Table C3-77 Arithmetic (extended register) instructions

Mnemonic Instruction See

ADD Add ADD (extended register)

ADDS Add and set flags ADDS (extended register)

SUB Subtract SUB (extended register)

SUBS Subtract and set flags SUBS (extended register)

CMN Compare negative CMN (extended register)

CMP Compare CMP (extended register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-397
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
C3.6.3 Arithmetic with carry

The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the
calculation. They do not support shifting of the second source register.

Table C3-78 shows the Arithmetic with carry instructions

C3.6.4 Integer maximum and minimum (register)

The Integer maximum and minimum (register) instructions determine the maximum/minimum of the two source
register values.

These instructions are only present when FEAT_CSSC is implemented.

Table C3-79 shows the Integer maximum and minimum (register) instructions.

C3.6.5 Flag manipulation instructions

The Flag manipulation instructions set the value of the NZCV condition flags directly.

The instructions SETF8 and SETF16 accept one source register and set the NZV condition flags based on the value of
the input register. The instruction RMIF accepts one source register and two immediate values, rotating the first
source register using the first immediate value and setting the NZCV condition flags masked by the second
immediate value.

The instructions XAFLAG and AXFLAG convert PSTATE condition flags between the FCMP instruction format and an
alternative format. See Table C6-1 for more information.

Table C3-78 Arithmetic with carry instructions

Mnemonic Instruction See

ADC Add with carry ADC

ADCS Add with carry and set flags ADCS

SBC Subtract with carry SBC

SBCS Subtract with carry and set flags SBCS

NGC Negate with carry NGC

NGCS Negate with carry and set flags NGCS

Table C3-79 Integer maximum and minimum (register) instructions

Mnemonic Instruction See

SMAX Signed Maximum (register) SMAX (register)

SMIN Signed Minimum (register) SMIN (register)

UMAX Unsigned Maximum (register) UMAX (register)

UMIN Unsigned Minimum (register) UMIN (register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-398
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
Table C3-80 shows the Flag manipulation instructions.

C3.6.6 Logical (shifted register)

The Logical (shifted register) instructions apply an optional shift operator to the second source register value before
performing the main operation. The register width of the instruction controls whether the new bits are fed into the
intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, LSR, and ROR accept a constant immediate shift amount in the range 0 to one less than
the register width of the instruction, inclusive.

Omitting the shift operator and amount implies LSL #0, which means that there is no shift. A disassembler must not
output LSL #0. However, a disassembler must output all other shifts by zero.

Note

Apart from ANDS, TST, and BICS, the logical instructions do not set the Condition flags, but the final result of a bit
operation can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-81 shows the Logical (shifted register) instructions.

Table C3-80 Flag manipulation instructions

Mnemonic Instruction See

AXFLAG Convert from FCMP comparison format to the alternative format AXFLAG

CFINV Invert value of the PSTATE.C bit CFINV

RMIF Rotate, mask insert flags RMIF

SETF8 Evaluation of 8-bit flags SETF8, SETF16

SETF16 Evaluation of 16-bit flags SETF8, SETF16

XAFLAG Convert from alternative format to FCMP comparison format XAFLAG

Table C3-81 Logical (shifted register) instructions

Mnemonic Instruction See

AND Bitwise AND AND (shifted register)

ANDS Bitwise AND and set flags ANDS (shifted register)

BIC Bitwise bit clear BIC (shifted register)

BICS Bitwise bit clear and set flags BICS (shifted register)

EON Bitwise exclusive-OR NOT EON (shifted register)

EOR Bitwise exclusive-OR EOR (shifted register)

ORR Bitwise inclusive OR ORR (shifted register)

MVN Bitwise NOT MVN

ORN Bitwise inclusive OR NOT ORN (shifted register)

TST Test bits TST (shifted register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-399
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
C3.6.7 Move (register)

The Move (register) instructions are aliases for other data processing instructions. They copy a value from a
general-purpose register to another general-purpose register or the current stack pointer, or from the current stack
pointer to a general-purpose register.

C3.6.8 Absolute value

The Absolute value instruction is only present when FEAT_CSSC is implemented.

Table C3-83 shows the Absolute value instruction.

C3.6.9 Shift (register)

In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the
register size. The register width of the instruction controls whether the new bits are fed into the result on a right shift
or rotate at bit[63] or bit[31].

Table C3-84 shows the Shift (register) instructions.

However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases
described in Shift (immediate).

Table C3-85 shows the aliases for Shift (register) instructions.

Table C3-82 MOV register instructions

Mnemonic Instruction See

MOV Move register MOV (register)

Move register to SP or move SP to register MOV (to/from SP)

Table C3-83 Absolute value instruction

Mnemonic Instruction See

ABS Absolute value ABS

Table C3-84 Shift (register) instructions

Mnemonic Instruction See

ASRV Arithmetic shift right variable ASRV

LSLV Logical shift left variable LSLV

LSRV Logical shift right variable LSRV

RORV Rotate right variable RORV

Table C3-85 Aliases for Variable shift instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-400
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
C3.6.10 Multiply and divide

This section describes the instructions used for integer multiplication and division. It contains the following
subsections:

• Multiply.

• Divide.

C3.6.10.1 Multiply

The Multiply instructions write to a single 32-bit or 64-bit destination register, and are built around the fundamental
four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A
64-bit to 128-bit widening multiple can be constructed with two instructions, using SMULH or UMULH to generate the
upper 64 bits. Table C3-86 shows the Multiply instructions.

C3.6.10.2 Divide

The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be
computed as (numerator - (quotient × denominator)), using the MSUB instruction.

LSL Logical shift left LSL (register)

LSR Logical shift right LSR (register)

ROR Rotate right ROR (register)

Table C3-85 Aliases for Variable shift instructions (continued)

Mnemonic Instruction See

Table C3-86 Multiply integer instructions

Mnemonic Instruction See

MADD Multiply-add MADD

MSUB Multiply-subtract MSUB

MNEG Multiply-negate MNEG

MUL Multiply MUL

SMADDL Signed multiply-add long SMADDL

SMSUBL Signed multiply-subtract long SMSUBL

SMNEGL Signed multiply-negate long SMNEGL

SMULL Signed multiply long SMULL

SMULH Signed multiply high SMULH

UMADDL Unsigned multiply-add long UMADDL

UMSUBL Unsigned multiply-subtract long UMSUBL

UMNEGL Unsigned multiply-negate long UMNEGL

UMULL Unsigned multiply long UMULL

UMULH Unsigned multiply high UMULH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-401
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
If a signed integer division (INT_MIN / -1) is performed where INT_MIN is the most negative integer value
representable in the selected register size, then the result overflows the signed integer range. No indication of this
overflow is produced and the result that is written to the destination register is INT_MIN.

A division by zero results in a zero being written to the destination register, without any indication that the division
by zero occurred.

Table C3-87 shows the Divide instructions.

C3.6.11 CRC32

The CRC32 instructions operate on the general-purpose register file to update a 32-bit CRC value from an input value
comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32, and CRC32C, that support two
commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the values is reversed as part of the operation.

When bits[19:16] of ID_AA64ISAR0_EL1 are set to 0b0001, the CRC instructions are implemented.

These instructions are optional in an Armv8.0 implementation.

All implementations of Armv8.1 architecture and later are required to implement the CRC32 instructions.

Table C3-88 shows the CRC instructions.

C3.6.12 Bit operation

The CNT and CTZ instructions are only present when FEAT_CSSC is implemented.

Table C3-87 Divide instructions

Mnemonic Instruction See

SDIV Signed divide SDIV

UDIV Unsigned divide UDIV

Table C3-88 CRC32 instructions

Mnemonic Instruction See

CRC32B CRC-32 sum from byte CRC32B, CRC32H, CRC32W, CRC32X

CRC32H CRC-32 sum from halfword CRC32B, CRC32H, CRC32W, CRC32X

CRC32W CRC-32 sum from word CRC32B, CRC32H, CRC32W, CRC32X

CRC32X CRC-32 sum from doubleword CRC32B, CRC32H, CRC32W, CRC32X

CRC32CB CRC-32C sum from byte CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32CH CRC-32C sum from halfword CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32CW CRC-32C sum from word CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32CX CRC-32C sum from doubleword CRC32CB, CRC32CH, CRC32CW, CRC32CX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-402
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
Table C3-89 shows the Bit operation instructions.

C3.6.13 Conditional select

The Conditional select instructions select between the first or second source register, depending on the current state
of the Condition flags. When the named condition is true, the first source register is selected and its value is copied
without modification to the destination register. When the condition is false the second source register is selected
and its value might be optionally inverted, negated, or incremented by one, before writing to the destination register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional
select instructions.

Table C3-90 shows the Conditional select instructions.

C3.6.14 Conditional comparison

The Conditional comparison instructions provide a conditional select for the NZCV Condition flags, setting the
flags to the result of an arithmetic comparison of its two source register values if the named input condition is true,
or to an immediate value if the input condition is false. There are register and immediate forms. The immediate form
compares the source register to a small 5-bit unsigned value.

Table C3-89 Bit operation instructions

Mnemonic Instruction See

CLS Count leading sign bits CLS

CLZ Count leading zero bits CLZ

CNT Count bits CNT

CTZ Count trailing zero bits CTZ

RBIT Reverse bit order RBIT

REV Reverse bytes in register REV

REV16 Reverse bytes in halfwords REV16

REV32 Reverse bytes in words REV32

REV64 Reverse bytes in register REV64

Table C3-90 Conditional select instructions

Mnemonic Instruction See

CSEL Conditional select CSEL

CSINC Conditional select increment CSINC

CSINV Conditional select inversion CSINV

CSNEG Conditional select negation CSNEG

CSET Conditional set CSET

CSETM Conditional set mask CSETM

CINC Conditional increment CINC

CINV Conditional invert CINV

CNEG Conditional negate CNEG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-403
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.6 Data processing - register
Table C3-91 shows the Conditional comparison instructions.

Table C3-91 Conditional comparison instructions

Mnemonic Instruction See

CCMN Conditional compare negative (register) CCMN (register)

CCMN Conditional compare negative (immediate) CCMN (immediate)

CCMP Conditional compare (register) CCMP (register)

CCMP Conditional compare (immediate) CCMP (immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-404
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7 Data processing - SIMD and floating-point

This section describes the instruction groups for data processing with SIMD and floating-point register operands.

Common features of SIMD instructions gives general information about SIMD instructions.

The following subsections describe the scalar floating-point data processing instructions:

• Floating-point move (register).

• Floating-point move (immediate).

• Floating-point conversion.

• Floating-point round to integral value.

• Floating-point multiply-add.

• Floating-point arithmetic (one source).

• Floating-point arithmetic (two sources).

• Floating-point minimum and maximum.

• Floating-point comparison.

• Floating-point conditional select.

The following subsections describe the SIMD data processing instructions:

• SIMD move

• SIMD arithmetic.

• SIMD compare.

• SIMD widening and narrowing arithmetic.

• SIMD table lookup.

• SIMD by element arithmetic.

• SIMD permute.

• SIMD immediate.

• SIMD shift (immediate).

• SIMD floating-point and integer conversion.

• SIMD reduce (across vector lanes).

• SIMD pairwise arithmetic.

• SIMD integer dot product.

• SIMD table lookup.

• SIMD complex number arithmetic.

• SIMD BFloat16 floating-point multiply-add.

• SIMD BFloat16.

• SIMD integer matrix multiply-accumulate.

• The Cryptographic Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-405
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Scalar Floating-Point and Advanced SIMD.

For information about the floating-point exceptions, see Floating-point exceptions and exception traps.

C3.7.1 Common features of SIMD instructions

A number of SIMD instructions come in three forms:

Wide Indicated by the suffix W. The element width of the destination register and the first source operand
is double that of the second source operand.

Long Indicated by the suffix L. The element width of the destination register is double that of both source
operands.

Narrow Indicated by the suffix N. The element width of the destination register is half that of both source
operands.

In addition, each vector form of the instruction is part of a pair, with a second and upper half suffix of 2, to identify
the variant of the instruction:

• Where a SIMD operation widens or lengthens a 64-bit vector to a 128-bit vector, the instruction provides a
second part operation that can extract the source from the upper 64 bits of the source registers.

• Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the instruction provides a second-part
operation that can pack the result of a second operation into the upper part of the same destination register.

Note

This is referred to as a lane set specifier.

C3.7.2 Floating-point move (register)

The Floating-point move (register) instructions copy a scalar floating-point value from one register to another
register without performing any conversion.

Some of the Floating-point move (register) instructions overlap with the functionality provided by the Advanced
SIMD instructions DUP, INS, and UMOV. However, Arm recommends using the FMOV instructions when operating on
scalar floating-point data to avoid the creation of scalar floating-point code that depends on the availability of the
Advanced SIMD instruction set.

Table C3-92 shows the Floating-point move (register) instructions.

C3.7.3 Floating-point move (immediate)

The Floating-point move (immediate) instructions convert a small constant immediate floating-point value into a
half-precision, single-precision, or double-precision scalar floating-point value in a SIMD and floating-point
register.

The floating-point constant can be specified either in decimal notation, such as 12.0 or -1.2e1, or as a string
beginning with 0x followed by a hexadecimal representation of the IEEE 754 half-precision, single-precision, or
double-precision encoding. Arm recommends that a disassembler uses the decimal notation, provided that this
displays the value precisely.

Table C3-92 Floating-point move (register) instructions

Mnemonic Instruction See

FMOV Floating-point move register without conversion FMOV (register)

Floating-point move to or from general-purpose register without conversion FMOV (general)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-406
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Note

When FEAT_FP16 is not implemented, the only half-precision instructions that are supported are floating-point
conversions between half-precision, single-precision, and double-precision.

The floating-point value must be expressible as (± n/16 × 2r), where n is an integer in the range 16 n 31 and r is
an integer in the range of -3 r 4, that is a normalized binary floating-point encoding with one sign bit, four bits
of fraction, and a 3-bit exponent.

Table C3-93 shows the Floating-point move (immediate) instruction:

C3.7.4 Floating-point conversion

The following subsections describe the conversion of floating-point values:

• Convert floating-point precision.

• Convert floating-point single-precision to BFloat16

• Convert between floating-point and integer or fixed-point.

C3.7.4.1 Convert floating-point precision

These instructions convert a floating-point scalar with one precision to a floating-point scalar with a different
precision, using the current rounding mode as specified by FPCR.RMode.

Table C3-94 shows the Floating-point precision conversion instruction.

C3.7.4.2 Convert floating-point single-precision to BFloat16

The BFCVT instruction is provided by FEAT_BF16. This instruction converts a single-precision floating-point input
to BFloat16 format, honoring the FPCR rounding mode controls to give a more accurate conversion than simply
removing the bottom 16 bits of the input.

Table C3-95 shows this instruction.

Table C3-93 Floating-point move (immediate) instruction

Mnemonic Instruction See

FMOV Floating-point move immediate FMOV (scalar, immediate)

Table C3-94 Floating-point precision conversion instruction

Mnemonic Instruction See

FCVT Floating-point convert precision (scalar) FCVT

Table C3-95 Floating-point single-precision to BFloat16 conversion instruction

Mnemonic Instruction See

BFCVT BFloat16 floating-point convert from single-precision to BFloat16 format (scalar) BFCVT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-407
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.4.3 Convert between floating-point and integer or fixed-point

These instructions convert a floating-point scalar in a SIMD and floating-point register to or from a signed or
unsigned integer or fixed-point value in a general-purpose register. For a fixed-point value, a final immediate
operand indicates that the general-purpose register holds a fixed-point number and fbits indicates the number of
bits after the binary point. fbits is in the range 1- 32 inclusive for a 32-bit general-purpose register name, and 1-64
inclusive for a 64-bit general-purpose register name.

These instructions can cause the following floating-point exceptions:

Invalid Operation

Occurs if the floating-point input is a NaN, infinity, or a numerical value that cannot be represented
in the destination register. An out of range integer or fixed-point result is saturated to the size of the
destination register.

Inexact Occurs if the numeric result that differs from the input value.

Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero and Input Denormal exceptions.

Table C3-96 shows the Floating-point and fixed-point conversion instructions.

Table C3-96 Floating-point and integer or fixed-point conversion instructions

Mnemonic Instruction See

FCVTAS Floating-point scalar convert to signed integer, rounding to nearest with ties to away
(scalar form)

FCVTAS (scalar)

FCVTAU Floating-point scalar convert to unsigned integer, rounding to nearest with ties to away
(scalar form)

FCVTAU (scalar)

FCVTMS Floating-point scalar convert to signed integer, rounding toward minus infinity (scalar
form)

FCVTMS (scalar)

FCVTMU Floating-point scalar convert to unsigned integer, rounding toward minus infinity (scalar
form)

FCVTMU (scalar)

FCVTNS Floating-point scalar convert to signed integer, rounding to nearest with ties to even
(scalar form)

FCVTNS (scalar)

FCVTNU Floating-point scalar convert to unsigned integer, rounding to nearest with ties to even
(scalar form)

FCVTNU (scalar)

FCVTPS Floating-point scalar convert to signed integer, rounding toward positive infinity (scalar
form)

FCVTPS (scalar)

FCVTPU Floating-point scalar convert to unsigned integer, rounding toward positive infinity (scalar
form)

FCVTPU (scalar)

FCVTZS Floating-point scalar convert to signed integer, rounding toward zero (scalar form) FCVTZS (scalar, integer)

Floating-point convert to signed fixed-point, rounding toward zero (scalar form) FCVTZS (scalar,
fixed-point)

FCVTZU Floating-point scalar convert to unsigned integer, rounding toward zero (scalar form) FCVTZU (scalar,
integer)

Floating-point scalar convert to unsigned fixed-point, rounding toward zero (scalar form) FCVTZU (scalar,
fixed-point)

FJCVTZS Floating-point Javascript convert to signed fixed-point, rounding toward zero FJCVTZS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-408
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.5 Floating-point round to integral value

The following subsections describe instructions which round a floating-point number to an integral valued
floating-point number in the same format:

• Floating-point round to an integer of the same size as the register

• Floating-point round to 32-bit or 64-bit integer

C3.7.5.1 Floating-point round to an integer of the same size as the register

The following instructions round a floating-point value to an integer floating-point value of the same size.

For these instructions:

• A zero input gives a zero result with the same sign.

• An infinite input gives an infinite result with the same sign.

• A NaN is propagated as in normal floating-point arithmetic.

These instructions can cause the following floating-point exceptions:

Invalid Operation

Occurs in response to a floating-point input of a signaling NaN.

Inexact, FRINTX instruction only

Occurs if the result is numeric and does not have the same numerical value as the input.

Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero and Input Denormal exceptions.

Table C3-97 shows the Floating-point round to integer instructions.

SCVTF Signed integer scalar convert to floating-point, using the current rounding mode (scalar
form)

SCVTF (scalar, integer)

Signed fixed-point convert to floating-point, using the current rounding mode (scalar
form)

SCVTF (scalar,
fixed-point)

UCVTF Unsigned integer scalar convert to floating-point, using the current rounding mode (scalar
form)

UCVTF (scalar, integer)

Unsigned fixed-point convert to floating-point, using the current rounding mode (scalar
form)

UCVTF (scalar,
fixed-point)

Table C3-96 Floating-point and integer or fixed-point conversion instructions (continued)

Mnemonic Instruction See

Table C3-97 Floating-point round to integer instructions

Mnemonic Instruction See

FRINTA Floating-point round to integer, to nearest with ties to away FRINTA (scalar)

FRINTI Floating-point round to integer, using current rounding mode FRINTI (scalar)

FRINTM Floating-point round to integer, toward minus infinity FRINTM (scalar)

FRINTN Floating-point round to integer, to nearest with ties to even FRINTN (scalar)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-409
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.5.2 Floating-point round to 32-bit or 64-bit integer

The following instructions are present if FEAT_FRINTTS is implemented, The instructions round to a value that
fits in a 32-bit integer or a 64-bit integer size, and use either round towards zero or the ambient rounding model.

Invalid Operation

Forced to be the most negative integer representable in the target size, and occurs in response to a
floating-point input of a signaling NaN, an infinite input, or an out of range input.

Inexact

Occurs if the result is numeric and does not have the same numerical value as the input.

Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero and Input Denormal exceptions.

Table C3-98 shows the Floating-point round to 32-bit or 64-bit integer instructions.

C3.7.6 Floating-point multiply-add

Table C3-99 shows the Floating-point multiply-add instructions that require three source register operands.

FRINTP Floating-point round to integer, toward positive infinity FRINTP (scalar)

FRINTX Floating-point round to integer exact, using current rounding mode FRINTX (scalar)

FRINTZ Floating-point round to integer, toward zero FRINTZ (scalar)

Table C3-98 Floating-point round to integer instructions

Mnemonic Instruction See

FRINT32X Floating-point round to 32-bit integer, using current rounding model FRINT32X (scalar)

FRINT32Z Floating-point round to 32-bit integer, toward zero FRINT32Z (scalar)

FRINT64X Floating point round to 64-bit integer using current rounding model FRINT64X (scalar)

FRINT64Z Floating point round to 64-bit integer, toward zero FRINT64Z (scalar)

Table C3-97 Floating-point round to integer instructions (continued)

Mnemonic Instruction See

Table C3-99 Floating-point multiply-add instructions

Mnemonic Instruction See

FMADD Floating-point scalar fused multiply-add FMADD

FMSUB Floating-point scalar fused multiply-subtract FMSUB

FNMADD Floating-point scalar negated fused multiply-add FNMADD

FNMSUB Floating-point scalar negated fused multiply-subtract FNMSUB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-410
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.7 Floating-point arithmetic (one source)

Table C3-100 shows the Floating-point arithmetic instructions that require a single source register operand.

C3.7.8 Floating-point arithmetic (two sources)

Table C3-101 shows the Floating-point arithmetic instructions that require two source register operands.

C3.7.9 Floating-point minimum and maximum

The min(x,y) and max(x,y) operations return a quiet NaN when either x or y is NaN.

As described in Flushing denormalized numbers to zero, if flushing denormalized inputs to zero is enabled,
denormal operands are flushed to zero before comparison, and if the result of the comparison is the flushed value,
then a zero value is returned. Where both x and y are zero, or denormal values flushed to zero, with different signs,
then +0.0 is returned by max() and -0.0 by min().

The minNum(x,y) and maxNum(x,y) operations follow the IEEE 754-2008 standard and return the numerical operand
when one operand is numerical and the other a quiet NaN. Apart from this additional handling of a single quiet NaN,
the result is then identical to min(x,y) and max(x,y).

Table C3-102 shows the Floating-point instructions that can perform floating-point minimum and maximum
operations.

Table C3-100 Floating-point arithmetic instructions with one source register

Mnemonic Instructions See

FABS Floating-point scalar absolute value FABS (scalar)

FNEG Floating-point scalar negate FNEG (scalar)

FSQRT Floating-point scalar square root FSQRT (scalar)

Table C3-101 Floating-point arithmetic instructions with two source registers

Mnemonic Instruction See

FADD Floating-point scalar add FADD (scalar)

FDIV Floating-point scalar divide FDIV (scalar)

FMUL Floating-point scalar multiply FMUL (scalar)

FNMUL Floating-point scalar multiply-negate FNMUL (scalar)

FSUB Floating-point scalar subtract FSUB (scalar)

Table C3-102 Floating-point minimum and maximum instructions

Mnemonic Instruction See

FMAX Floating-point scalar maximum FMAX (scalar)

FMAXNM Floating-point scalar maximum number FMAXNM (scalar)

FMIN Floating-point scalar minimum FMIN (scalar)

FMINNM Floating-point scalar minimum number FMINNM (scalar)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-411
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.10 Floating-point comparison

These instructions set the NZCV Condition flags in PSTATE, based on the result of a comparison of two operands.
If the floating-point comparisons are unordered, where one or both operands are a form of NaN, the C and V bits
are set to 1 and the N and Z bits are cleared to 0.

Note

The NZCV flags in the FPSR are associated with AArch32 state. The A64 floating-point comparison instructions
do not change the Condition flags in the FPSR.

For the conditional Floating-point comparison instructions, if the condition is TRUE, the flags are updated to the
result of the comparison, otherwise the flags are updated to the immediate value that is defined in the instruction
encoding.

The quiet compare instructions generate an Invalid Operation floating-point exception if either of the source
operands is a signaling NaN. The signaling compare instructions generate an Invalid Operation floating-point
exception if either of the source operands is any type of NaN.

Note

If FEAT_FlagM2 is implemented, instructions AXFLAG and XAFLAG convert between the PSTATE condition
flag format used by the FCMP instruction and an alternative format. See FEAT_FlagM for more information.

Table C3-103 shows the Floating-point comparison instructions.

C3.7.11 Floating-point conditional select

Table C3-104 shows the Floating-point conditional select instructions.

C3.7.12 SIMD move

The functionality of some data movement instructions overlaps with that provided by the scalar floating-point FMOV
instructions described in Floating-point move (register).

Table C3-103 Floating-point comparison instructions

Mnemonic Instruction See

FCMP Floating-point quiet compare FCMP

FCMPE Floating-point signaling compare FCMPE

FCCMP Floating-point conditional quiet compare FCCMP

FCCMPE Floating-point conditional signaling compare FCCMPE

Table C3-104 Floating-point conditional select instructions

Mnemonic Instruction See

FCSEL Floating-point scalar conditional select FCSEL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-412
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Table C3-105 shows the SIMD move instructions.

C3.7.13 SIMD arithmetic

Table C3-106 shows the SIMD arithmetic instructions.

Table C3-105 SIMD move instructions

Mnemonic Instruction See

DUP Duplicate vector element to vector or scalar DUP (element)

DUP Duplicate general-purpose register to vector DUP (general)

INSa

a. Disassembles as MOV.

Insert vector element from another vector element INS (element)

Insert vector element from general-purpose register INS (general)

MOV Move vector element to vector element MOV (element)

Move general-purpose register to vector element MOV (from general)

Move vector element to scalar MOV (scalar)

Move vector element to general-purpose register MOV (to general)

UMOV Unsigned move vector element to general-purpose register UMOV

SMOV Signed move vector element to general-purpose register SMOV

Table C3-106 SIMD arithmetic instructions

Mnemonic Instruction See

ADD Add (vector and scalar form) ADD (vector)

AND Bitwise AND (vector form) AND (vector)

BIC Bitwise bit clear (register) (vector form) BIC (vector, register)

BIF Bitwise insert if false (vector form) BIF

BIT Bitwise insert if true (vector form) BIT

BSL Bitwise select (vector form) BSL

EOR Bitwise exclusive-OR (vector form) EOR (vector)

FABD Floating-point absolute difference (vector and scalar form) FABD

FADD Floating-point add (vector form) FADD (vector)

FDIV Floating-point divide (vector form) FDIV (vector)

FMAX Floating-point maximum (vector form) FMAXP (vector)

FMAXNM Floating-point maximum number (vector form) FMAXNM (vector)

FMIN Floating-point minimum (vector form) FMIN (vector)

FMINNM Floating-point minimum number (vector form) FMINNM (vector)

FMLA Floating-point fused multiply-add (vector form) FMLA (vector)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-413
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
FMLAL, FMLAL2 Floating-point fused multiply-add long (vector form) FMLAL, FMLAL2
(vector)

FMLS Floating-point fused multiply-subtract (vector form) FMLS (vector)

FMLSL, FMLSL2 Floating-point fused multiply-subtract long (vector form) FMLSL, FMLSL2
(vector)

FMUL Floating-point multiply (vector form) FMUL (vector)

FMULX Floating-point multiply extended (vector and scalar form) FMULX

FRECPS Floating-point reciprocal step (vector and scalar form) FRECPS

FRSQRTS Floating-point reciprocal square root step (vector and scalar form) FRSQRTS

FSUB Floating-point subtract (vector form) FSUB (vector)

MLA Multiply-add (vector form) MLA (vector)

MLS Multiply-subtract (vector form) MLS (vector)

MUL Multiply (vector form) MUL (vector)

MOV Move vector register (vector form) MOV (vector)

ORN Bitwise inclusive OR NOT (vector form) ORN (vector)

ORR Bitwise inclusive OR (register) (vector form) ORR (vector, register)

PMUL Polynomial multiply (vector form) PMUL

SABA Signed absolute difference and accumulate (vector form) SABA

SABD Signed absolute difference (vector form) SABD

SHADD Signed halving add (vector form) SHADD

SHSUB Signed halving subtract (vector form) SHSUB

SMAX Signed maximum (vector form) SMAX

SMIN Signed minimum (vector form) SMIN

SQADD Signed saturating add (vector and scalar form) SQADD

SQDMULH Signed saturating doubling multiply returning high half (vector and scalar form) SQDMULH (vector)

SQRSHL Signed saturating rounding shift left (register) (vector and scalar form) SQRSHL

SQRDMLAH Signed saturating rounding doubling multiply accumulate returning high half SQRDMLAH (vector)

SQRDMLSH Signed saturating rounding doubling multiply subtract returning high half SQRDMLSH (vector)

SQRDMULH Signed saturating rounding doubling multiply returning high half (vector and scalar
form)

SQRDMULH (vector)

SQSHL Signed saturating shift left (register) (vector and scalar form) SQSHL (register)

SQSUB Signed saturating subtract (vector and scalar form) SQSUB

SRHADD Signed rounding halving add (vector form) SRHADD

Table C3-106 SIMD arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-414
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
SRSHL Signed rounding shift left (register) (vector and scalar form) SRSHL

SSHL Signed shift left (register) (vector and scalar form) SSHL

SUB Subtract (vector and scalar form) SUB (vector)

UABA Unsigned absolute difference and accumulate (vector form) UABA

UABD Unsigned absolute difference (vector form) UABD

UHADD Unsigned halving add (vector form) UHADD

UHSUB Unsigned halving subtract (vector form) UHSUB

UMAX Unsigned maximum (vector form) UMAX

UMIN Unsigned minimum (vector form) UMIN

UQADD Unsigned saturating add (vector and scalar form) UQADD

UQRSHL Unsigned saturating rounding shift left (register) (vector and scalar form) UQRSHL

UQSHL Unsigned saturating shift left (register) (vector and scalar form) UQSHL (register)

UQSUB Unsigned saturating subtract (vector and scalar form) UQSUB

URHADD Unsigned rounding halving add (vector form) URHADD

URSHL Unsigned rounding shift left (register) (vector and scalar form) URSHL

USHL Unsigned shift left (register) (vector and scalar form) USHL

Table C3-106 SIMD arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-415
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.14 SIMD compare

The SIMD compare instructions compare vector or scalar elements according to the specified condition and set the
destination vector element to all ones if the condition holds, or to zero if the condition does not hold.

Note

Some of the comparisons, such as LS, LE, LO, and LT, can be made by reversing the operands and using the
opposite comparison, HS, GE, HI, or GT.

Table C3-107 shows that SIMD compare instructions.

C3.7.15 SIMD widening and narrowing arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions.

Table C3-107 SIMD compare instructions

Mnemonic Instruction See

CMEQ Compare bitwise equal (vector and scalar form) CMEQ (register)

Compare bitwise equal to zero (vector and scalar form) CMEQ (zero)

CMHS Compare unsigned higher or same (vector and scalar form) CMHS (register)

CMGE Compare signed greater than or equal (vector and scalar form) CMGE (register)

Compare signed greater than or equal to zero (vector and scalar form) CMGE (zero)

CMHI Compare unsigned higher (vector and scalar form) CMHI (register)

CMGT Compare signed greater than (vector and scalar form) CMGT (register)

Compare signed greater than zero (vector and scalar form) CMGT (zero)

CMLE Compare signed less than or equal to zero (vector and scalar form) CMLE (zero)

CMLT Compare signed less than zero (vector and scalar form) CMLT (zero)

CMTST Compare bitwise test bits nonzero (vector and scalar form) CMTST

FCMEQ Floating-point compare equal (vector and scalar form) FCMEQ (register)

Floating-point compare equal to zero (vector and scalar form) FCMEQ (zero)

FCMGE Floating-point compare greater than or equal (vector and scalar form) FCMGE (register)

Floating-point compare greater than or equal to zero (vector and scalar form) FCMGE (zero)

FCMGT Floating-point compare greater than (vector and scalar form) FCMGT (register)

Floating-point compare greater than zero (vector and scalar form) FCMGT (zero)

FCMLE Floating-point compare less than or equal to zero (vector and scalar form) FCMLE (zero)

FCMLT Floating-point compare less than zero (vector and scalar form) FCMLT (zero)

FACGE Floating-point absolute compare greater than or equal (vector and scalar form) FACGE

FACGT Floating-point absolute compare greater than (vector and scalar form) FACGT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-416
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Table C3-108 shows the SIMD widening and narrowing arithmetic instructions.

C3.7.16 SIMD unary arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions.

Table C3-108 SIMD widening and narrowing arithmetic instructions

Mnemonic Instruction See

ADDHN, ADDHN2 Add returning high, narrow (vector form) ADDHN, ADDHN2

PMULL, PMULL2 Polynomial multiply long (vector form) PMULL, PMULL2

See also The Cryptographic
Extension

RADDHN, RADDHN2 Rounding add returning high, narrow (vector form) RADDHN, RADDHN2

RSUBHN, RSUBHN2 Rounding subtract returning high, narrow (vector form) RSUBHN, RSUBHN2

SABAL, SABAL2 Signed absolute difference and accumulate long (vector form) SABAL, SABAL2

SABDL, SABDL2 Signed absolute difference long (vector form) SABDL, SABDL2

SADDL, SADDL2 Signed add long (vector form) SADDL, SADDL2

SADDW, SADDW2 Signed add wide (vector form) SADDW, SADDW2

SMLAL, SMLAL2 Signed multiply-add long (vector form) SMLAL, SMLAL2 (vector)

SMLSL, SMLSL2 Signed multiply-subtract long (vector form) SMLSL, SMLSL2 (vector)

SMULL, SMULL2 Signed multiply long (vector form) SMULL, SMULL2 (vector)

SQDMLAL,

SQDMLAL2

Signed saturating doubling multiply-add long (vector and scalar form) SQDMLAL, SQDMLAL2 (vector)

SQDMLSL,

SQDMLSL2

Signed saturating doubling multiply-subtract long (vector and scalar
form)

SQDMLSL, SQDMLSL2 (vector)

SQDMULL,

SQDMULL2

Signed saturating doubling multiply long (vector and scalar form) SQDMULL, SQDMULL2 (vector)

SSUBL, SSUBL2 Signed subtract long (vector form) SSUBL, SSUBL2

SSUBW, SSUBW2 Signed subtract wide (vector form) SSUBW, SSUBW2

SUBHN, SUBHN2 Subtract returning high, narrow (vector form) SUBHN, SUBHN2

UABAL, UABAL2 Unsigned absolute difference and accumulate long (vector form) UABAL, UABAL2

UABDL, UABDL2 Unsigned absolute difference long (vector form) UABDL, UABDL2

UADDL, UADDL2 Unsigned add long (vector form) UADDL, UADDL2

UADDW, UADDW2 Unsigned add wide (vector form) UADDW, UADDW2

UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLAL2 (vector)

UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL2 (vector)

UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL2 (vector)

USUBL, USUBL2 Unsigned subtract long (vector form) USUBL, USUBL2

USUBW, USUBW2 Unsigned subtract wide (vector form) USUBW, USUBW2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-417
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Table C3-109 shows the SIMD unary arithmetic instructions.

Table C3-109 SIMD unary arithmetic instructions

Mnemonic Instruction See

ABS Absolute value (vector and scalar form) ABS

CLS Count leading sign bits (vector form) CLS (vector)

CLZ Count leading zero bits (vector form) CLZ (vector)

CNT Population count per byte (vector form) CNT

FABS Floating-point absolute (vector form) FABS (vector)

FCVTL,
FCVTL2

Floating-point convert to higher precision long (vector form) FCVTL, FCVTL2

FCVTN,
FCVTN2

Floating-point convert to lower precision narrow (vector form) FCVTN, FCVTN2 (FP64 to FP32, FP32
to FP16)

FCVTXN,
FCVTXN2

Floating-point convert to lower precision narrow, rounding to odd (vector
and scalar form)

FCVTXN, FCVTXN2

FNEG Floating-point negate (vector form) FNEG (vector)

FRECPE Floating-point reciprocal estimate (vector and scalar form) FRECPE

FRECPX Floating-point reciprocal exponent (scalar form) FRECPX

FRINT32X Floating-point round to 32-bit integer, using current rounding mode
(vector form)

FRINT32X (vector)

FRINT32Z Floating-point round to 32-bit integer, toward zero (vector form) FRINT32Z (vector)

FRINT64X Floating-point round to 64-bit integer, using current rounding mode
(vector form)

FRINT64X (vector)

FRINT64Z Floating-point round to 64-bit integer, toward zero (vector form) FRINT64Z (vector)

FRINTA Floating-point round to integer, to nearest with ties to away (vector form) FRINTA (vector)

FRINTI Floating-point round to integer, using current rounding mode (vector form) FRINTI (vector)

FRINTM Floating-point round to integer, toward minus infinity (vector form) FRINTM (vector)

FRINTN Floating-point round to integer, to nearest with ties to even (vector form) FRINTN (vector)

FRINTP Floating-point round to integer, toward positive infinity (vector form) FRINTP (vector)

FRINTX Floating-point round to integer exact, using current rounding mode (vector
form)

FRINTX (vector)

FRINTZ Floating-point round to integer, toward zero (vector form) FRINTZ (vector)

FRSQRTE Floating-point reciprocal square root estimate (vector and scalar form) FRSQRTE

FSQRT Floating-point square root (vector form) FSQRT (vector)

MVN Bitwise NOT (vector form) MVN

NEG Negate (vector and scalar form) NEG (vector)

NOT Bitwise NOT (vector form) NOT

RBIT Bitwise reverse (vector form) RBIT (vector)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-418
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.17 SIMD by element arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions.

Table C3-110 shows the SIMD by element arithmetic instructions.

REV16 Reverse elements in 16-bit halfwords (vector form) REV16 (vector)

REV32 Reverse elements in 32-bit words (vector form) REV32 (vector)

REV64 Reverse elements in 64-bit doublewords (vector form) REV64

SADALP Signed add and accumulate long pairwise (vector form) SADALP

SADDLP Signed add long pairwise (vector form) SADDLP

SQABS Signed saturating absolute value (vector and scalar form) SQABS

SQNEG Signed saturating negate (vector and scalar form) SQNEG

SQXTN,
SQXTN2

Signed saturating extract narrow (vector form) SQXTN, SQXTN2

SQXTUN,
SQXTUN2

Signed saturating extract unsigned narrow (vector and scalar form) SQXTUN, SQXTUN2

SUQADD Signed saturating accumulate of unsigned value (vector and scalar form) SUQADD

SXTL, SXTL2 Signed extend long SXTL, SXTL2

UADALP Unsigned add and accumulate long pairwise (vector form) UADALP

UADDLP Unsigned add long pairwise (vector form) UADDLP

UQXTN,
UQXTN2

Unsigned saturating extract narrow (vector form) UQXTN, UQXTN2

URECPE Unsigned reciprocal estimate (vector form) URECPE

URSQRTE Unsigned reciprocal square root estimate (vector form) URSQRTE

USQADD Unsigned saturating accumulate of signed value (vector and scalar form) USQADD

UXTL, UXTL2 Unsigned extend long UXTL, UXTL2

XTN, XTN2 Extract narrow (vector form) XTN, XTN2

Table C3-109 SIMD unary arithmetic instructions (continued)

Mnemonic Instruction See

Table C3-110 SIMD by element arithmetic instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add (vector and scalar form) FMLA (by element)

FMLAL, FMLAL2 Floating-point fused multiply-add long (vector form) FMLAL, FMLAL2 (by element)

FMLS Floating-point fused multiply-subtract (vector and scalar form) FMLS (by element).

FMLSL, FMLSL2 Floating-point fused multiply-subtract long (vector form) FMLSL, FMLSL2 (by element)

FMUL Floating-point multiply (vector and scalar form) FMUL (by element)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-419
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.18 SIMD permute

Table C3-111 shows the SIMD permute instructions.

FMULX Floating-point multiply extended (vector and scalar form) FMULX (by element)

MLA Multiply-add (vector form) MLA (by element)

MLS Multiply-subtract (vector form) MLS (by element)

MUL Multiply (vector form) MUL (by element)

SMLAL, SMLAL2 Signed multiply-add long (vector form) SMLAL, SMLAL2 (by element)

SMLSL, SMLSL2 Signed multiply-subtract long (vector form) SMLSL, SMLSL2 (by element)

SMULL, SMULL2 Signed multiply long (vector form) SMULL, SMULL2 (by element)

SQDMLAL,
SQDMLAL2

Signed saturating doubling multiply-add long (vector and scalar form) SQDMLAL, SQDMLAL2 (by
element)

SQDMLSL,
SQDMLSL2

Signed saturating doubling multiply-subtract long (vector form) SQDMLSL, SQDMLSL2 (by
element)

SQDMULH Signed saturating doubling multiply returning high half (vector and scalar
form)

SQDMULH (by element)

SQDMULL,
SQDMULL2

Signed saturating doubling multiply long (vector and scalar form) SQDMULL, SQDMULL2 (by
element)

SQRDMLAH Signed saturating rounding doubling multiply accumulate returning high half SQRDMLSH (by element)

SQRDMLSH Signed saturating rounding doubling multiply subtract returning high half SQRDMLSH (vector)

SQRDMULH Signed saturating rounding doubling multiply returning high half (vector and
scalar form)

SQRDMULH (by element)

UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLAL2 (by element)

UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL2 (by element)

UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL2 (by element)

Table C3-110 SIMD by element arithmetic instructions (continued)

Mnemonic Instruction See

Table C3-111 SIMD permute instructions

Mnemonic Instruction See

EXT Extract vector from a pair of vectors EXT

TRN1 Transpose vectors (primary) TRN1

TRN2 Transpose vectors (secondary) TRN2

UZP1 Unzip vectors (primary) UZP1

UZP2 Unzip vectors (secondary) UZP2

ZIP1 Zip vectors (primary) ZIP1

ZIP2 Zip vectors (secondary) ZIP2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-420
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.19 SIMD immediate

Table C3-112 shows the SIMD immediate instructions.

C3.7.20 SIMD shift (immediate)

For information about the variants of these instructions, see Common features of SIMD instructions.

Table C3-113 shows the SIMD shift immediate instructions.

Table C3-112 SIMD immediate instructions

Mnemonic Instruction See

BIC Bitwise bit clear immediate BIC (vector, immediate)

FMOV Floating-point move immediate FMOV (vector, immediate)

MOVI Move immediate MOVI

MVNI Move inverted immediate MVNI

ORR Bitwise inclusive OR immediate ORR (vector, immediate)

Table C3-113 SIMD shift (immediate) instructions

Mnemonic Instruction See

RSHRN, RSHRN2 Rounding shift right narrow immediate (vector form) RSHRN, RSHRN2

SHL Shift left immediate (vector and scalar form) SHL

SHLL, SHLL2 Shift left long (by element size) (vector form) SHLL, SHLL2

SHRN, SHRN2 Shift right narrow immediate (vector form) SHRN, SHRN2

SLI Shift left and insert immediate (vector and scalar form) SLI

SQRSHRN, SQRSHRN2 Signed saturating rounded shift right narrow immediate (vector and scalar form) SQRSHRN, SQRSHRN2

SQRSHRUN,
SQRSHRUN2

Signed saturating shift right unsigned narrow immediate (vector and scalar form) SQRSHRUN,
SQRSHRUN2

SQSHL Signed saturating shift left immediate (vector and scalar form) SQSHL (immediate)

SQSHLU Signed saturating shift left unsigned immediate (vector and scalar form) SQSHLU

SQSHRN, SQSHRN2 Signed saturating shift right narrow immediate (vector and scalar form) SQSHRN, SQSHRN2

SQSHRUN,
SQSHRUN2

Signed saturating shift right unsigned narrow immediate (vector and scalar form) SQSHRUN, SQSHRUN2

SRI Shift right and insert immediate (vector and scalar form) SRI

SRSHR Signed rounding shift right immediate (vector and scalar form) SRSHR

SRSRA Signed rounding shift right and accumulate immediate (vector and scalar form) SRSRA.

SSHLL, SSHLL2 Signed shift left long immediate (vector form) SSHLL, SSHLL2

SSHR Signed shift right immediate (vector and scalar form) SSHR

SSRA Signed integer shift right and accumulate immediate (vector and scalar form) SSRA

SXTL, SXTL2 Signed integer extend (vector only) SXTL, SXTL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-421
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.21 SIMD floating-point and integer conversion

The SIMD floating-point and integer conversion instructions generate the Invalid Operation floating-point
exception in response to a floating-point input of NaN, infinity, or a numerical value that cannot be represented
within the destination register. An out of range integer or a fixed-point result is saturated to the size of the destination
register. A numeric result that differs from the input raises the Inexact floating-point exception.

Table C3-114 shows the SIMD floating-point and integer conversion instructions.

UQRSHRN, UQRSHRN2 Unsigned saturating rounded shift right narrow immediate (vector and scalar form) UQRSHRN, UQRSHRN2

UQSHL Unsigned saturating shift left immediate (vector and scalar form) UQSHL (immediate)

UQSHRN, UQSHRN2 Unsigned saturating shift right narrow immediate (vector and scalar form) UQSHRN, UQSHRN2

URSHR Unsigned rounding shift right immediate (vector and scalar form) URSHR

URSRA Unsigned integer rounding shift right and accumulate immediate (vector and scalar
form)

URSRA

USHLL, USHLL2 Unsigned shift left long immediate (vector form) USHLL, USHLL2

USHR Unsigned shift right immediate (vector and scalar form) USHR

USRA Unsigned shift right and accumulate immediate (vector and scalar form) USRA

UXTL, UXTL2 Unsigned integer extend (vector only) UXTL, UXTL2

Table C3-113 SIMD shift (immediate) instructions (continued)

Mnemonic Instruction See

Table C3-114 SIMD floating-point and integer conversion instructions

Mnemonic Instruction See

FCVTAS Floating-point convert to signed integer, rounding to nearest with ties to away (vector and
scalar form)

FCVTAS (vector)

FCVTAU Floating-point convert to unsigned integer, rounding to nearest with ties to away (vector
and scalar form)

FCVTAU (vector)

FCVTMS Floating-point convert to signed integer, rounding toward minus infinity (vector and
scalar form)

FCVTMS (vector)

FCVTMU Floating-point convert to unsigned integer, rounding toward minus infinity (vector and
scalar form)

FCVTMU (vector)

FCVTNS Floating-point convert to signed integer, rounding to nearest with ties to even (vector and
scalar form)

FCVTNS (vector)

FCVTNU Floating-point convert to unsigned integer, rounding to nearest with ties to even (vector
and scalar form)

FCVTNU (vector)

FCVTPS Floating-point convert to signed integer, rounding toward positive infinity (vector and
scalar form)

FCVTPS (vector)

FCVTPU Floating-point convert to unsigned integer, rounding toward positive infinity (vector and
scalar form)

FCVTPU (vector)

FCVTZS Floating-point convert to signed integer, rounding toward zero (vector and scalar form) FCVTZS (vector, integer)

Floating-point convert to signed fixed-point, rounding toward zero (vector and scalar
form)

FCVTZS (vector,
fixed-point)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-422
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.22 SIMD reduce (across vector lanes)

The SIMD reduce (across vector lanes) instructions perform arithmetic operations horizontally, that is across all
lanes of the input vector. They deliver a single scalar result.

Table C3-115 shows the SIMD reduce (across vector lanes) instructions.

C3.7.23 SIMD pairwise arithmetic

The SIMD pairwise arithmetic instructions perform operations on pairs of adjacent elements and deliver a vector
result.

FCVTZU Floating-point convert to unsigned integer, rounding toward zero (vector and scalar form) FCVTZU (vector,
integer)

Floating-point convert to unsigned fixed-point, rounding toward zero, (vector and scalar
form)

FCVTZU (vector,
fixed-point)

SCVTF Signed integer convert to floating-point (vector and scalar form) SCVTF (vector, integer)

Signed fixed-point convert to floating-point (vector and scalar form) SCVTF (vector,
fixed-point)

UCVTF Unsigned integer convert to floating-point (vector and scalar form) UCVTF (vector, integer)

Unsigned fixed-point convert to floating-point (vector and scalar form) UCVTF (vector,
fixed-point)

Table C3-114 SIMD floating-point and integer conversion instructions (continued)

Mnemonic Instruction See

Table C3-115 SIMD reduce (across vector lanes) instructions

Mnemonic Instruction See

ADDV Add (across vector) ADDV

FMAXNMV Floating-point maximum number (across vector) FMAXNMV

FMAXV Floating-point maximum (across vector) FMAXV

FMINNMV Floating-point minimum number (across vector) FMINNMV

FMINV Floating-point minimum (across vector) FMINV

SADDLV Signed add long (across vector) SADDLV

SMAXV Signed maximum (across vector) SMAXV

SMINV Signed minimum (across vector) SMINV

UADDLV Unsigned add long (across vector) UADDLV

UMAXV Unsigned maximum (across vector) UMAXV

UMINV Unsigned minimum (across vector) UMINV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-423
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Table C3-116 shows the SIMD pairwise arithmetic instructions.

C3.7.24 SIMD integer dot product

FEAT_DotProd provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit
elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions,
each with signed and unsigned versions:

Vector form The dot product is calculated for each element of the first vector with the corresponding element of
the second vector.

Indexed form The dot product is calculated for each element of the first vector with the element of the second
vector that is indicated by the index argument to the instruction.

Note

That is, a single element from the second vector is used, and the dot product is calculated between
each element of the first vector and this single element from the second vector.

Table C3-116 SIMD pairwise arithmetic instructions

Mnemonic Instruction See

ADDP Add pairwise (vector and scalar form) ADDP (vector)

ADDP (scalar)

FADDP Floating-point add pairwise (vector and scalar form) FADDP (vector)

FADDP (scalar)

FMAXNMP Floating-point maximum number pairwise (vector and scalar form) FMAXNMP (vector)

FMAXNMP (scalar)

FMAXP Floating-point maximum pairwise (vector and scalar form) FMAXP (vector)

FMAXP (scalar)

FMINNMP Floating-point minimum number pairwise (vector and scalar form) FMINNMP (vector)

FMINNMP (scalar)

FMINP Floating-point minimum pairwise (vector and scalar form) FMINP (vector)

FMINP (scalar)

SMAXP Signed maximum pairwise SMAXP

SMINP Signed minimum pairwise SMINP

UMAXP Unsigned maximum pairwise UMAXP

UMINP Unsigned minimum pairwise UMINP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-424
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Table C3-117 shows the SIMD integer dot product instructions.

C3.7.25 SIMD integer matrix multiply-accumulate

The integer matrix multiply-accumulate instructions are provided by FEAT_I8MM.

The integer matrix multiply-accumulate instructions treat each source and destination vector as a single matrix:

• The first source vector 2x8 matrix of 8-bit integers is organized in row-by-row order.

• The second source vector 8x2 matrix of 8-bit integers is organized in a column-by-column order.

• The destination vector 2x2 matrix of 32-bit integers is organized in row-by-row order.

Table C3-118 shows these instructions.

C3.7.26 SIMD table lookup

Table C3-119 shows the SIMD table lookup instructions.

Table C3-117 SIMD integer dot product instructions

Mnemonic Instruction See

SDOT Signed dot product (vector form) SDOT (vector)

UDOT Unsigned dot product (vector form) UDOT (vector)

SDOT Signed dot product (indexed form) SDOT (by element)

UDOT Unsigned dot product (indexed form) UDOT (by element)

USDOT Mixed sign integer dot product (vector form)a

a. This instruction is supported when FEAT_I8MM is implemented.

USDOT (vector)

Mixed sign integer dot product by indexed quadupleta USDOT (by element)

SUDOT Mixed sign integer dot product by indexed quadupleta SUDOT (by element)

Table C3-118 SIMD integer matrix multiply-accumulate instructions

Mnemonic Instruction See

SMMLA Widening signed 8-bit to 32-bit integer matrix multiply-accumulate SMMLA (vector)

UMMLA Widening unsigned 8-bit to 32-bit integer matrix multiply-accumulate UMMLA (vector)

USMMLA Widening mixed sign 8-bit to 32-bit integer matrix multiply-accumulate USMMLA (vector)

Table C3-119 SIMD table lookup instructions

Mnemonic Instruction See

TBL Table vector lookup TBL

TBX Table vector lookup extension TBX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-425
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.27 SIMD complex number arithmetic

FEAT_FCMA provides SIMD instructions that perform arithmetic on complex numbers held in element pairs in
vector registers, where the less significant element of the pair contains the real component and the more significant
element contains the imaginary component.

These instructions provide double-precision and single-precision versions. If FEAT_FP16 is implemented they also
provide half-precision versions, otherwise the half-precision encodings are UNDEFINED.

Table C3-120 shows the FEAT_FCMA SIMD instructions.

A pair of FCMLA instructions can be used to perform a complex number multiplication. This is demonstrated in
Complex multiplication.

C3.7.28 SIMD BFloat16

If FEAT_BF16 is implemented, the instructions in this section are available.

C3.7.28.1 SIMD BFloat16 floating-point multiply-add

The BFloat16 floating-point multiply-add instructions perform an implicit conversion of the bottom
(even-numbered) or top (odd-numbered) BFloat16 source elements to IEEE 754 single-precision floating-point
format before performing a fused multiply-add without intermediate rounding to the overlapping single-precision
destination element. These instructions follow the normal floating-point behaviors that apply to single-precision
arithmetic, controlled by the Effective value of the FPCR, and captured in the FPSR cumulative exception bits.

C3.7.28.2 SIMD BFloat16 floating-point dot product

The BFloat16 floating-point dot product instruction, BFDOT, performs an implicit conversion of vectors of BF16
input values to IEEE 754 single-precision floating-point format.

Table C3-120 SIMD complex number arithmetic instructions

Mnemonic Instruction See

FCADD Floating-point complex add FCADD

FCMLA Floating-point complex multiply accumulate (vector form) FCMLA

FCMLA Floating-point complex multiply accumulate (indexed form) FCMLA (by element)

Table C3-121 SIMD BFloat16 floating-point multiply-add instructions

Mnemonic Instruction See

BFMLALB BFloat16 floating-point widening multiply-add long bottom
(vector and indexed forms)

BFMLALB, BFMLALT (vector)

BFMLALB, BFMLALT (by element)

BFMLALT BFloat16 floating-point widening multiply-add long top
(vector and index forms)

BFMLALB, BFMLALT (vector)

BFMLALB, BFMLALT (by element)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-426
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
The BFloat16 dot product instructions delimit their source vectors into pairs of BFloat16 elements.

C3.7.28.3 SIMD BFloat16 floating-point matrix multiply

The BFloat16 floating-point matrix multiply instruction, BFMMLA, treats each source and destination vector as a single
matrix:

• The first source vector 2x4 BF16 matrix is organized in row-by-row order.

• The second source vector 4x2 BF16 matrix is organized in a column-by-column order.

• The destination vector 2x2 single-precision matrix is organized in row-by-row order.

One matrix multiplication is performed per source vector and accumulated into the corresponding destination
vector. This corresponds to accumulating two 2-way BFloat16 widening dot products into each single-precision
destination element, following the numeric behaviors described for BFDOT instruction in SIMD BFloat16
floating-point dot product.

C3.7.28.4 SIMD BFloat16 floating-point convert

The BFloat16 floating-point convert instructions perform accurately rounded down-conversion of IEEE 754
single-precision source vector elements to BFloat16 format.

The BFCVTN instruction places its half-width BFloat16 results in the bottom or even-numbered 16-bit elements of the
destination vector, and sets the top or odd-numbered elements to zero.

The BFCVTN2 instruction places its half-width BFloat16 results in the top or odd-numbered 16-bit elements of the
destination vector, leaving the bottom or even-numbered elements unchanged.

These instructions follow the normal floating-point behaviors that apply to single-precision arithmetic, controlled
by the Effective value of the FPCR, and captured in the FPSR cumulative exception bits.

C3.7.29 SIMD integer matrix multiply-accumulate

The integer matrix multiply-accumulate instructions are provided by FEAT_I8MM.

The integer matrix multiply-accumulate instructions treat each source and destination vector as a single matrix:

• The first source vector 2x8 matrix is organized in row-by-row order.

• The second source vector 8x2 matrix is organized in a column-by-column order.

Table C3-122 SIMD BFloat16 floating-point dot product instructions

Mnemonic Instruction See

BFDOT BFloat16 floating-point dot product (vector and indexed forms) BFDOT (vector)

BFDOT (by element)

Table C3-123 SIMD BFloat16 floating-point matrix multiply instructions

Mnemonic Instruction See

BFMMLA BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix BFMMLA

Table C3-124 SIMD BFloat16 floating-point convert instructions

Mnemonic Instruction See

BFCVTN, BFCVTN2 Floating-point convert from single-precision to BFloat16 format
(vector form)

BFCVTN, BFCVTN2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-427
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
• The destination vector 2x2 matrix is organized in row-by-row order.

One matrix multiplication is performed per segment.

Table C3-125 shows these instructions.

C3.7.30 The Cryptographic Extension

C3.7.30.1 The Armv8.0 Cryptographic Extension

The instructions provided by the OPTIONAL Armv8.0 Cryptographic Extension use the SIMD and floating-point
register file. For more information about the functions they provide, see:

• Announcing the Advanced Encryption Standard (AES).

• Secure Hash Standard (SHA).

• The Galois/Counter Mode of Operation.

Table C3-126 shows the Armv8.0 Cryptographic Extension instructions.

Table C3-125 Matrix multiply SIMD instructions

Mnemonic Instruction See

SMMLA Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix SMMLA (vector)

UMMLA Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix UMMLA (vector)

USMMLA Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix USMMLA (vector)

Table C3-126 Cryptographic Extension instructions

Mnemonic Instruction See

AESD AES single round decryption AESD

AESE AES single round encryption AESE

AESIMC AES inverse mix columns AESIMC

AESMC AES mix columns AESMC

PMULL Polynomial multiply long PMULL, PMULL2a

SHA1C SHA1 hash update (choose) SHA1C

SHA1H SHA1 fixed rotate SHA1H

SHA1M SHA1 hash update (majority) SHA1M

SHA1P SHA1 hash update (parity) SHA1P

SHA1SU0 SHA1 schedule update 0 SHA1SU0

SHA1SU1 SHA1 schedule update 1 SHA1SU1

SHA256H SHA256 hash update, part 1 SHA256H

SHA256H2 SHA256 hash update, part 2 SHA256H2

SHA256SU0 SHA256 schedule update 0 SHA256SU0

SHA256SU1 SHA256 schedule update 1 SHA256SU1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-428
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
C3.7.30.2 Armv8.2 extensions to the Cryptographic Extension

Armv8.2 supports the following OPTIONAL extensions to the Cryptographic Extension:

• FEAT_SHA512, SHA2-512 functionality.

• FEAT_SHA3, SHA3 functionality.

• FEAT_SM3, SM3 functionality.

• FEAT_SM4, SM4 functionality.

C3.7.30.2.1 FEAT_SHA512, SHA2-512 functionality

FEAT_SHA512 provides instructions to accelerate the SHA-2 hash algorithm using a digest that is larger than 256
bits. The relevant standards are SHA-384, SHA-512, SHA-512|224 and SHA-512|256. These are all based on the
SHA-512 computation, and therefore this set of instructions is described as the SHA512 instructions.

Implementation of FEAT_SHA512 requires the implementation of the SHA1 and SHA2-256 instructions from the
Armv8.0 Cryptographic Extension.

Note

Implementation of FEAT_SHA512 does not require the implementation of the AES instructions, and the 64-bit
polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.

When FEAT_SHA512 is implemented, the value of ID_AA64ISAR0_EL1.SHA2 is 0b0010, indicating support for
the SHA512 instructions.

Table C3-127 shows the FEAT_SHA512 instructions:

Use of the SHA512 instructions shows an example of the use of these instructions to calculate a SHA512 hash
iteration. This example code is not part of the architectural definition of these instructions.

C3.7.30.2.2 FEAT_SHA3, SHA3 functionality

FEAT_SHA3 provides instructions to accelerate the SHA-3 hash algorithm. This set of instructions is described as
the SHA3 instructions.

Note

Implementation of FEAT_SHA3 does not require the implementation of the AES instructions, and the 64-bit
polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.

When FEAT_SHA3 is implemented, the value of ID_AA64ISAR0_EL1.SHA3 is 0b0001, indicating support for the
SHA3 instructions.

a. The Cryptographic Extension adds the variant of the instruction
that operates on two 64-bit polynomials.

Table C3-127 FEAT_SHA512 instructions

Mnemonic Instruction See

SHA512H SHA512 Hash update part 1 SHA512H

SHA512H2 SHA512 Hash update part 2 SHA512H2

SHA512SU0 SHA512 Schedule Update 0 SHA512SU0

SHA512SU1 SHA512 Schedule Update 1 SHA512SU1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-429
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Table C3-128 shows the FEAT_SHA3 instructions. The SHA-3 hash algorithm is based on a running digest of 1600
bytes, arranged as a five by five array of 64-bit registers. The Arm acceleration of these instructions is based on
mapping the 25 64-bit values into 25 vector registers, with each 64-bit value occupying the same 64-bit element in
each vector. A series of transformations is performed on these registers as part of a round of the SHA-3 hash
calculation.

The SIMD nature of the vector registers means the acceleration can compute two parallel SHA3 hash calculations,
where one calculation is performed using the zeroth 64-bit element of each vector, and the other calculation is
performed using the first 64-bit element of each vector.

To provide acceleration where the SIMD calculation is not required, the instructions provide variants that operate
only on the zeroth 64-bit elements. These are provided as a power optimization.

Use of the SHA3 instructions shows an example of the use of these instructions to calculate the combined theta, phi,
rho and chi operations of a SHA3 iteration. This example code is not part of the architectural definition of these
instructions.

C3.7.30.2.3 FEAT_SM3, SM3 functionality

FEAT_SM3 provides instructions to accelerate the SM3 hash algorithm, the standard Chinese hash algorithm. These
are described as the SM3 instructions.

FEAT_SM3 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and
independently of FEAT_SHA512.

Note

This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the
FEAT_SM3 functionality.

When FEAT_SM3 is implemented, the value of ID_AA64ISAR0_EL1.SM3 is 0b0001, indicating support for the
SM3 instructions.

Table C3-129 shows the FEAT_SM3 instructions. The SM3 algorithm computes a digest of 256 bits, which can be
held in two vector registers. The SM3 instructions include instructions to accelerate the computation of the hash and
the schedule update.

Note

The SM3 instruction names refer to intermediate variables defined as part of the SM3 Cryptographic Hash
Algorithm specification.

Table C3-128 FEAT_SHA3 instructions

Mnemonic Instruction See

BCAX Bit Clear and Exclusive OR BCAX

EOR3 Three-way Exclusive OR EOR3

RAX1 Rotate and Exclusive OR RAX1

XAR Exclusive OR and Rotate XAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-430
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.7 Data processing - SIMD and floating-point
Use of the SM3 instructions shows an example of the use of these instructions to generate an SM3 hash. This
example code is not part of the architectural definition of these instructions.

C3.7.30.2.4 FEAT_SM4, SM4 functionality

FEAT_SM4 provides instruction to accelerate the SM4 encryption algorithm, the standard Chinese encryption
algorithm. This set of instructions is described as the SM4 instructions.

FEAT_SM4 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and
independently of FEAT_SHA3.

Note

This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the
FEAT_SM4 functionality.

When FEAT_SM4 is implemented, the value of ID_AA64ISAR0_EL1.SM4 is 0b0001, indicating support for the
SM4 instructions.

Table C3-130 shows the FEAT_SM4 instructions. The SM4 algorithm is 128-bit wide block cipher. The SM4E
instruction accelerates a single round of encryption or decryption, and the SM4EKEY instruction accelerates a single
round of key generation:

Use of the SM4 instructions shows an example of the use of these instructions to perform SM4 encryption and
decryption. This example code is not part of the architectural definition of these instructions.

Table C3-129 FEAT_SM3 instructions

Mnemonic Instruction See

SM3SS1 SM3 SS1 calculation SM3SS1

SM3TT1A SM3 TT1 calculation, part A SM3TT1A

SM3TT1B SM3 TT1 calculation, part B SM3TT1B

SM3TT2A SM3 TT2 calculation, part A SM3TT2A

SM3TT2B SM3 TT2 calculation, part B SM3TT2B

SM3PARTW1 SM3 PARTW calculation, part 1 SM3PARTW1

SM3PARTW2 SM3 PARTW calculation, part 1 SM3PARTW2

Table C3-130 FEAT_SM4 instructions

Mnemonic Instruction See

SM4E SM4 Encrypt SM4E

SM4EKEY SM4 Key SM4EKEY
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-431
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8 Data processing - SVE

The following subsections describe the SVE processing instructions:

• SVE Vector integer operations

• SVE Vector address calculation

• SVE Bitwise logical operations

• SVE Bitwise shift, reverse, and count

• SVE Vector floating-point operations

• Predicate operations

• Loop control

• SVE Move operations

• Index vector generation

• Move prefix

• Reduction operations

C3.8.1 SVE Vector integer operations

C3.8.1.1 SVE Integer arithmetic

For binary operations, the Integer arithmetic instructions perform arithmetic operations on a source vector
containing integer element values, and a second source vector of either integer element values or an immediate
value.

For ternary operations, these instructions perform arithmetic operations on a source vector containing integer
element values, a second source vector of either integer element values or an immediate value, and a third source
vector containing integer element values.

Table C3-131 Integer arithmetic instructions

Mnemonic Instruction See

ABS Absolute value ABS

ADD Add vectors (predicated) ADD (vectors, predicated)

Add vectors (unpredicated) ADD (vectors, unpredicated)

Add immediate ADD (immediate)

CNOT Logically invert Boolean condition CNOT

MAD Multiply-add, writing to the multiplicand register MAD

MLA Multiply-add, writing to the addend register MLA (indexed)

MLA (vectors)

MLS Multiply-subtract, writing to the addend register MLS (indexed)

MLS (vectors)

MSB Multiply-subtract, writing to the multiplicand register MSB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-432
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
MUL Multiply by immediate MUL (immediate)

Multiply vectors MUL (vectors, predicated)

MUL (vectors, unpredicated)

NEG Negate NEG

SABD Signed absolute difference SABD

SDIV Signed divide SDIV

SDIVR Signed reversed divide SDIVR

SMAX Signed maximum with immediate SMAX (immediate)

Signed maximum vectors SMAX (vectors)

SMIN Signed minimum with immediate SMIN (immediate)

Signed minimum vectors SMIN (vectors)

SMULH Signed multiply returning high half SMULH (predicated)

SMULH (unpredicated)

SQADD Signed saturating add immediate SQADD (immediate)

Signed saturating add vectors SQADD (vectors, predicated)

SQADD (vectors, unpredicated)

SQSUB Signed saturating subtract immediate SQSUB (immediate)

Signed saturating subtract vectors SQSUB (vectors, predicated)

SQSUB (vectors, unpredicated)

SUB Subtract immediate SUB (immediate)

Subtract vectors (predicated) SUB (vectors, predicated)

Subtract vectors (unpredicated) SUB (vectors, unpredicated)

SUBR Reversed subtract from immediate SUBR (immediate)

Reversed subtract vectors SUBR (vectors)

SXTB Signed byte extend SXTB, SXTH, SXTW

SXTH Signed halfword extend SXTB, SXTH, SXTW

SXTW Signed word extend SXTB, SXTH, SXTW

UABD Unsigned absolute difference UABD

UDIV Unsigned divide UDIV

UDIVR Unsigned reversed divide UDIVR

UMAX Unsigned maximum with immediate UMAX (immediate)

Unsigned maximum vectors UMAX (vectors)

Table C3-131 Integer arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-433
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.1.2 SVE Integer dot product

The Integer dot product instructions delimit the source vectors into groups of four 8-bit or 16-bit integer elements.
Within each group of four elements, the elements in the first source vector are multiplied by the corresponding
elements in the second source vector. The resulting widened products are summed and added to the 32-bit or 64-bit
element of the accumulator and destination vector that aligns with the group of four elements in the first source
vector.

The indexed forms of these instructions specify a single, numbered, group of four elements within each 128-bit
segment of the second source vector as the multiplier for all the groups of four elements within the corresponding
128-bit segment of the first source vector.

UMIN Unsigned minimum with immediate UMIN (immediate)

Unsigned minimum vectors UMIN (vectors)

UMULH Unsigned multiply returning high half UMULH (predicated)

UMULH (unpredicated)

UQADD Unsigned saturating add immediate UQADD (immediate)

Unsigned saturating add vectors UQADD (vectors, predicated)

UQADD (vectors, unpredicated)

UQSUB Unsigned saturating subtract immediate UQSUB (immediate)

Unsigned saturating subtract vectors UQSUB (vectors, predicated)

UQSUB (vectors, unpredicated)

UXTB Unsigned byte extend UXTB, UXTH, UXTW

UXTH Unsigned halfword extend UXTB, UXTH, UXTW

UXTW Unsigned word extend UXTB, UXTH, UXTW

Table C3-132 Integer dot product instructions

Mnemonic Instruction See

SDOT Signed integer indexed dot product SDOT (2-way, indexed)

Signed integer dot product SDOT (2-way, vectors)

SDOT Signed dot product by vector SDOT (4-way, vectors)

Signed dot product by indexed elements SDOT (4-way, indexed)

SUDOT Signed by unsigned integer dot product by indexed elements SUDOT

UDOT Unsigned integer indexed dot product UDOT (2-way, indexed)

Unsigned integer dot product UDOT (2-way, vectors)

UDOT Unsigned dot product by vector UDOT (4-way, vectors)

Unsigned dot product by indexed elements UDOT (4-way, indexed)

USDOT Unsigned by signed integer dot product USDOT (vectors)

Unsigned by signed integer dot product by indexed elements USDOT (indexed)

Table C3-131 Integer arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-434
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.1.3 SVE Integer matrix multiply operations

The Integer matrix multiply instructions facilitate matrix multiplication and include integer matrix
multiply-accumulate instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

• The first source vector 2x8 8-bit matrix is organized in row-by-row order.

• The second source vector 8x2 8-bit matrix is organized in a column-by-column order.

• The destination vector 2x2 32-bit matrix is organized in row-by-row order.

One matrix multiplication is performed per vector segment of 128 bits and accumulated into the destination vector
segment.

C3.8.1.4 SVE Integer comparison

The Integer comparison instructions compare Active elements in the first source vector with the corresponding
elements in a second vector or with an immediate value. The Boolean result of each comparison is placed in the
corresponding element of the destination predicate. Inactive elements in the destination predicate register are set to
FALSE. All integer comparisons set the N, Z, and C condition flags based on the predicate result, and set the V flag
to zero.

The wide element variants of the compare instructions allow a packed vector of narrower elements to be compared
with wider 64-bit elements. These instructions treat the second source vector as having a fixed 64-bit doubleword
element size and compare each narrow element of the first source vector with the corresponding vertically-aligned
wide element of the second source vector. For example, if the first source vector contained 8-bit byte elements, then
8-bit element[0] to element[7] of the first source vector are compared with 64-bit element[0] of the second source
vector, 8-bit element[8] to element[15] with 64-bit element[1], and so on. All 64 bits of the wide elements are
significant for the comparison, with the narrow elements being sign-extended or zero-extended to 64 bits as
appropriate for the type of comparison.

Table C3-133 Integer matrix multiply operations

Mnemonic Instruction See

SMMLA Widening signed 8-bit integer matrix multiply-accumulate into 2x2 matrix SMMLA

UMMLA Widening unsigned 8-bit integer matrix multiply-accumulate into 2x2 matrix UMMLA

USMMLA Widening mixed sign 8-bit integer matrix multiply-accumulate into 2x2 matrix USMMLA

Table C3-134 Integer comparison instructions

Mnemonic Instruction See

CMPEQ Compare signed equal to immediate CMP<cc> (immediate) Equal

Compare signed equal to wide elements CMP<cc> (wide elements) Equal

Compare signed equal to vector CMP<cc> (vectors) Equal

CMPGE Compare signed greater than or equal to immediate CMP<cc> (immediate) Greater than or equal

Compare signed greater than or equal to wide elements CMP<cc> (wide elements) Greater than or equal

Compare signed greater than or equal to vector CMP<cc> (vectors) Greater than or equal
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-435
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.2 SVE Vector address calculation

The Vector address calculation instructions compute vectors of addresses and addresses of vectors. This includes
instructions to add a multiple of the current vector length or predicate register length, in bytes, to a general-purpose
register.

The ADR instruction is an integer arithmetic operation that is used to calculate a vector of 64-bit or 32-bit addresses.

The ADR destination vector elements are computed by the addition of the corresponding elements in the source
vectors, with an optional sign or zero extension and optional bitwise left shift of 1-3 bits applied to the final
operands. This can be considered as the addition of a vector base and a scaled vector index.

CMPGT Compare signed greater than immediate CMP<cc> (immediate) Greater than

Compare signed greater than wide elements CMP<cc> (wide elements) Greater than

Compare signed greater than vector CMP<cc> (vectors) Greater than

CMPHI Compare unsigned higher than immediate CMP<cc> (immediate) Higher

Compare unsigned higher than wide elements CMP<cc> (wide elements) Higher

Compare unsigned higher than vector CMP<cc> (vectors) Higher

CMPHS Compare unsigned higher than or same as immediate CMP<cc> (immediate) Higher or same

Compare unsigned higher than or same as wide elements CMP<cc> (wide elements) Higher or same

Compare unsigned higher than or same as vector CMP<cc> (vectors) Higher or same

CMPLE Compare signed less than or equal to immediate CMP<cc> (immediate) Less than or equal

Compare signed less than or equal to wide elements CMP<cc> (wide elements) Less than or equal

Compare signed less than or equal to vector CMPLE (vectors)

CMPLO Compare unsigned lower than immediate CMP<cc> (immediate) Lower

Compare unsigned lower than 64-bit wide elements CMP<cc> (wide elements) Lower

Compare unsigned lower than vector CMPLO (vectors)

CMPLS Compare unsigned lower or same as immediate CMP<cc> (immediate) Lower or same

Compare unsigned lower or same as wide elements CMP<cc> (wide elements) Lower or same

Compare unsigned lower or same as vector CMPLS (vectors)

CMPLT Compare signed less than immediate CMP<cc> (immediate) Less than

Compare signed less than wide elements CMP<cc> (wide elements) Less than

Compare signed less than vector CMPLT (vectors)

CMPNE Compare not equal to immediate CMP<cc> (immediate) Not equal

Compare not equal to wide elements CMP<cc> (wide elements) Not equal

Compare not equal to vector CMP<cc> (vectors) Not equal

Table C3-134 Integer comparison instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-436
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
The ADR instruction computes a vector of 32-bit addresses by the addition of a 32-bit base and a scaled 32-bit
unsigned index.The ADR instruction computes a vector of 64-bit addresses by one of:

• Addition of a 64-bit base and a scaled 64-bit unsigned index.

• Addition of a 64-bit base and a scaled, zero-extended 32-bit index.

• Addition of a 64-bit base and a scaled, sign-extended 32-bit index.

C3.8.3 SVE Bitwise logical operations

The Bitwise logical operations instructions perform bitwise logical operations on vectors. Where operations are
unpredicated, the operations are independent of the element size.

Table C3-135 Vector address calculation instructions

Mnemonic Instruction See

ADDPL Add multiple of predicate register length, in bytes, to scalar register ADDPL

ADDVL Add multiple of vector length, in bytes, to scalar register ADDVL

ADR Compute vector of addresses ADR

RDVL Read multiple of vector register length, in bytes, to scalar register RDVL

Table C3-136 Bitwise logical operations

Mnemonic Instruction See

AND Bitwise AND vectors (predicated) AND (vectors, predicated)

Bitwise AND vectors (unpredicated) AND (vectors, unpredicated)

Bitwise AND with immediate AND (immediate)

BIC Bitwise clear with vector (predicated) BIC (vectors, predicated)

Bitwise clear with vector (unpredicated) BIC (vectors, unpredicated)

Bitwise clear using immediate BIC (immediate)

DUPM Broadcast bitmask immediate to vector (unpredicated) DUPM

EON Bitwise exclusive-OR with inverted immediate EON

EOR Bitwise exclusive-OR vectors (predicated) EOR (vectors, predicated)

Bitwise exclusive-OR vectors (unpredicated) EOR (vectors, unpredicated)

Bitwise exclusive-OR with immediate EOR (immediate)

MOV Move bitmask immediate to vector MOV

Move vector register MOV (vector, unpredicated)

NOT Bitwise invert vector NOT (vector)

ORN Bitwise OR with inverted immediate ORN (immediate)

ORR Bitwise OR vectors (predicated) ORR (vectors, predicated)

Bitwise OR vectors (unpredicated) ORR (vectors, unpredicated)

Bitwise OR with immediate ORR (immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-437
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.4 SVE Bitwise shift, reverse, and count

Bitwise shifts, reversals, and counts within vector elements.

Shift counts saturate at the number of bits per element, rather than being used modulo the element size. If modulo
behavior is required, then the modulus must be computed separately.

The wide element variants of the bitwise shift instructions allow a packed vector of narrower elements to be shifted
by wider 64-bit shift amounts. These instructions treat the second source vector as having a fixed 64-bit doubleword
element size and shift each narrow element of the first source vector by the corresponding vertically-aligned wide
element of the second source vector. For example, if the first source vector contained 8-bit byte elements, then
8-bitelement[0] to element[7] of the first vector are shifted by 64-bit element[0] of the second source vector, 8-bit
element [8] to element[15] by 64-bit element[1], and so on. All 64 bits of the wide shift amount are significant.

Table C3-137 Bitwise shift, reverse, and count instructions

Mnemonic Instruction See

ASR Arithmetic shift right by immediate (predicated) ASR (immediate, predicated)

Arithmetic shift right by immediate (unpredicated) ASR (immediate, unpredicated)

Arithmetic shift right by wide elements (predicated) ASR (wide elements, predicated)

Arithmetic shift right by wide elements (unpredicated) ASR (wide elements, unpredicated)

Arithmetic shift right by vector ASR (vectors)

ASRD Arithmetic shift right for divide by immediate ASRD

ASRR Reversed arithmetic shift right by vector ASRR

CLS Count leading sign bits CLS

CLZ Count leading zero bits CLZ

CNT Count nonzero bits CNT

LSL Logical shift left by immediate (predicated) LSL (immediate, predicated)

Logical shift left by immediate (unpredicated) LSL (immediate, unpredicated)

Logical shift left by wide elements (predicated) LSL (wide elements, predicated)

Logical shift left by wide elements (unpredicated) LSL (wide elements, unpredicated)

Logical shift left by vector LSL (vectors)

LSLR Reversed logical shift left by vector LSLR

LSR Logical shift right by immediate (predicated) LSR (immediate, predicated)

Logical shift right by immediate (unpredicated) LSR (immediate, unpredicated)

Logical shift right by wide elements (predicated) LSR (wide elements, predicated)

Logical shift right by wide elements (unpredicated) LSR (wide elements, unpredicated)

Logical shift right by vector LSR (vectors)

LSRR Reversed logical shift right by vector LSRR

RBIT Reverse bits RBIT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-438
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.5 SVE Vector floating-point operations

The following instructions operate on floating-point data within a vector.

C3.8.5.1 SVE Floating-point arithmetic

The Floating-point arithmetic instructions perform arithmetic operations on vectors containing floating-point
element values.

Table C3-138 Floating-point arithmetic instructions

Mnemonic Instruction See

FABD Floating-point absolute difference FABD

FABS Floating-point absolute value FABS

FADD Floating-point add (immediate) FADD (immediate)

Floating-point add (predicated) FADD (vectors, predicated)

Floating-point add (unpredicated) FADD (vectors, unpredicated)

FDIV Floating-point divide FDIV

FDIVR Floating-point reversed divide FDIVR

FMAX Floating-point maximum with immediate FMAX (immediate)

Floating-point maximum vectors FMAX (vectors)

FMAXNM Floating-point maximum number with immediate FMAXNM (immediate)

Floating-point maximum number vectors FMAXNM (vectors)

FMIN Floating-point minimum with immediate FMIN (immediate)

Floating-point minimum vectors FMIN (vectors)

FMINNM Floating-point minimum number with immediate FMINNM (immediate)

Floating-point minimum number vectors FMINNM (vectors)

FMUL Floating-point multiply by immediate FMUL (immediate)

Floating-point multiply vectors (predicated) FMUL (vectors, predicated)

Floating-point multiply vectors (unpredicated) FMUL (vectors, unpredicated)

FMULX Floating-point multiply-extended FMULX

FNEG Floating-point negate FNEG

FRECPE Floating-point reciprocal estimate FRECPE

FRECPS Floating-point reciprocal step FRECPS

FRECPX Floating-point reciprocal exponent FRECPX

FRSQRTE Floating-point reciprocal square root estimate FRSQRTE

FRSQRTS Floating-point reciprocal square root step FRSQRTS

FSCALE Floating-point adjust exponent by vector FSCALE

FSQRT Floating-point square root FSQRT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-439
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.5.2 SVE Floating-point multiply accumulate

The Floating-point multiply accumulate instructions perform floating-point fused multiply-add or multiply-subtract
operations and their negated forms. There are two groups of these instructions, as follows:

• Instructions where the result of the operation is written to the addend register.

— Supported instructions are: FMLA, FMLS, FNMLA, FNMLS.

• Instructions where the result of the operation is written to the multiplicand register.

— Supported instructions are: FMAD, FMSB, FNMAD, FNMSB.

C3.8.5.3 SVE Floating-point complex arithmetic

The Floating-point complex arithmetic instructions perform arithmetic on vectors containing floating-point
complex numbers as interleaved pairs of elements, where the even-numbered elements contain the real components
and the odd-numbered elements contain the imaginary components.

The FCADD instructions rotate the complex numbers in the second source vector by 90 degrees or 270 degrees in the
direction from the positive real axis towards the positive imaginary axis, when considered in polar representation,
before adding active pairs of elements to the corresponding elements of the first source vector in a destructive
manner.

FSUB Floating-point subtract immediate FSUB (immediate)

Floating-point subtract vectors (predicated) FSUB (vectors, predicated)

Floating-point subtract vectors (unpredicated) FSUB (vectors, unpredicated)

FSUBR Floating-point reversed subtract from immediate FSUBR (immediate)

Floating-point reversed subtract vectors FSUBR (vectors)

Table C3-138 Floating-point arithmetic instructions (continued)

Mnemonic Instruction See

Table C3-139 Floating-point multiply accumulate instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add vectors, writing to the addend FMLA (indexed)

FMLA (vectors)

FMLS Floating-point fused multiply-subtract vectors, writing to the addend FMLS (indexed)

FMLS (vectors)

FNMLA Floating-point negated fused multiply-add vectors, writing to the addend FNMLA

FNMLS Floating-point negated fused multiply-subtract vectors, writing to the addend FNMLS

FMAD Floating-point fused multiply-add vectors, writing to the multiplicand FMAD

FMSB Floating-point fused multiply-subtract vectors, writing to the multiplicand FMLSLB (indexed)

FMLSLB (vectors)

FNMAD Floating-point negated fused multiply-add vectors, writing to the multiplicand FNMAD

FNMSB Floating-point negated fused multiply-subtract vectors, writing to the multiplicand FNMSB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-440
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
The FCMLA instructions perform a transformation of the operands to allow the creation of multiply-add or
multiply-subtract operations on complex numbers by combining two of the instructions. The transformations
performed are as follows:

• The complex numbers in the second source vector, considered in polar form, are rotated by 0 degrees or 180
degrees before multiplying by the duplicated real components of the first source vector.

• The complex numbers in the second source vector, considered in polar form, are rotated by 90 degrees or 270
degrees before multiplying by the duplicated imaginary components of the first source vector.

The resulting products are then added to the corresponding components of the destination and addend vector,
without intermediate rounding.

Two FCMLA instructions can be used as follows:

FCMLA Zda.S, Pg/M, Zn.S, Zm.S, #A
...
FCMLA Zda.S, Pg/M, Zn.S, Zm.S, #B

For example, some meaningful combinations of A and B are:

• A=0, B=90. In this case, the two vectors of complex numbers in Zn and Zm are multiplied and the products
are added to the complex numbers in Zda.

• A=0, B=270. In this case, the conjugates of the complex numbers in Zn are multiplied by the complex
numbers in Zm and the products are added to the complex numbers in Zda.

• A=180, B=270. In this case, the two vectors of complex numbers in Zn and Zm are multiplied and the
products are subtracted from the complex numbers in Zda.

• A=180, B=90. In this case, the conjugates of the complex numbers in Zn are multiplied by the complex
numbers in Zm and the products are subtracted from the complex numbers in Zda.

Note

The lack of intermediate rounding can give unexpected results in certain cases relative to a traditional sequence of
independent multiply, add, and subtract instructions.

In addition, when using these instructions, the behavior of calculations such as (∞+∞i) multiplied by (0+i) is
(NaN+NaNi), rather than the result expected by ISO C, which is complex. The expectation is that these instructions
are only used in situations where the effect of differences in the rounding and handling of infinities are not material
to the calculation.

Table C3-140 Floating-point complex arithmetic instructions

Mnemonic Instruction See

FCADD Floating-point complex add with rotate FCADD

FCMLA Floating-point complex multiply-add with rotate FCMLA (vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-441
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.5.4 SVE Floating-point rounding and conversion

The Floating-point rounding and conversion instructions change floating-point size and precision, round
floating-point to integral floating-point with explicit rounding mode, and convert floating-point to or from integer
format.

Table C3-141 Floating-point rounding and conversion instructions

Mnemonic Instruction See

BFCVT Floating-point down convert to BFloat16 format BFCVT

BFCVTNT Floating-point down convert and narrow to BFloat16 format
(top, predicated)

BFCVTNT

FCVT Floating-point convert precision FCVT

FCVTZS Floating-point convert to signed integer,
rounding toward zero

FCVTZS

FCVTZU Floating-point convert to unsigned integer,
rounding toward zero

FCVTZU

FRINTA Floating-point round to integral value,
to nearest with ties away from zero

FRINT<r> Nearest with ties to away

FRINTI Floating-point round to integral value,
using the current rounding mode

FRINT<r> Current mode

FRINTM Floating-point round to integral value,
toward minus infinity

FRINT<r> Toward minus infinity

FRINTN Floating-point round to integral value,
to nearest with ties to even

FRINT<r> Nearest with ties to even

FRINTP Floating-point round to integral value,
toward plus infinity

FRINT<r> Toward plus infinity

FRINTX Floating-point round to integral value exact,
using the current rounding mode

FRINT<r> Current mode signalling inexact

FRINTZ Floating-point round to integral value,
toward zero

FRINT<r> Toward zero

SCVTF Signed integer convert to floating-point SCVTF

UCVTF Unsigned integer convert to floating-point UCVTF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-442
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.5.5 SVE Floating-point comparisons

The Floating-point comparison instructions compare active floating-point element values in the first source vector
with corresponding elements in the second vector or with the immediate value +0.0. The Boolean result of each
comparison is placed in the corresponding element of the destination predicate. Inactive elements in the destination
predicate register are set to FALSE. Floating-point vector comparisons do not set the condition flags.

C3.8.5.6 SVE Floating-point transcendental acceleration

The Floating-point transcendental instructions accelerate calculations of sine, cosine, and exponential functions for
vectors containing floating-point element values.

The trigonometric instructions accelerate the calculation of a polynomial series approximation for the sine and
cosine functions. The exponential instruction accelerates the polynomial series calculation of the exponential
function.

Table C3-142 Floating-point comparison instructions

Mnemonic Instruction See

FACGE Floating-point absolute compare greater than or equal FAC<cc> - Greater than or equal

FACGT Floating-point absolute compare greater than FAC<cc> - Greater than

FACLE Floating-point absolute compare less than or equal FACLE

FACLT Floating-point absolute compare less than FACLT

FCMEQ Floating-point compare equal to zero FCM<cc> (zero) - Equal

Floating-point compare equal to vector FCM<cc> (vectors) - Equal

FCMGE Floating-point compare greater than or equal to zero FCM<cc> (zero) - Greater than or equal

Floating-point compare greater than or equal to vector FCM<cc> (vectors) - Greater than or equal

FCMGT Floating-point compare greater than zero FCM<cc> (zero) - Greater than

Floating-point compare greater than vector FCM<cc> (vectors) - Greater than

FCMLE Floating-point compare less than or equal to zero FCM<cc> (zero) - Less than or equal

Floating-point compare less than or equal to vector FCMLE (vectors)

FCMLT Floating-point compare less than zero FCM<cc> (zero) - Less than

Floating-point compare less than vector FCMLT (vectors)

FCMNE Floating-point compare not equal to zero FCM<cc> (zero) - Not equal

Floating-point compare not equal to vector FCM<cc> (vectors) - Not equal

FCMUO Floating-point unordered vectors FCM<cc> (vectors) - Unordered

Table C3-143 Floating-point transcendental instructions

Mnemonic Instruction See

FTMAD Floating-point trigonometric multiply-add coefficient FTMAD

FTSMUL Floating-point trigonometric starting value FTSMUL

FTSSEL Floating-point trigonometric select coefficient FTSSEL

FEXPA Floating-point exponential accelerator FEXPA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-443
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.5.7 SVE Floating-point indexed multiples

The Floating-point indexed multiples instructions multiply all floating-point elements within each 128-bit segment
of the first source vector by the single numbered element within the corresponding segment of the second source
vector.

For the FMLA and FMLS instructions, the products are destructively added or subtracted from the corresponding
elements of the addend and destination vector, without intermediate rounding.

C3.8.5.8 SVE Floating-point matrix multiply operations

The Floating-point matrix multiply instructions facilitate matrix multiplication and include floating-point matrix
multiply-accumulate instructions, and companion instructions that support data rearrangements in vector registers
as required by the double-precision matrix multiply-accumulate instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

• The first source vector 2x2 matrix is organized in row-by-row order.

• The second source vector 2x2 matrix is organized in a column-by-column order.

• The destination vector 2x2 matrix is organized in row-by-row order.

One matrix multiplication is performed per vector segment and accumulated into the destination vector segment.
For the double-precision matrix multiply-accumulate instructions, the vector segment length and minimum vector
length is 256 bits. Double-precision matrix multiply-accumulate instructions are not supported when the vector
length is 128 bits. For the single-precision matrix multiply-accumulate instruction, the vector segment length is 128
bits.

The floating-point matrix multiply-accumulate instructions strictly define the order of accumulations, and the
multiplications and additions are not fused, so intermediate rounding is performed after every multiplication and
every addition.

The following table shows the floating-point matrix multiplication instructions and companion instructions that are
supported if ID_AA64ZFR0_EL1.F64MM is 1:

Table C3-144 Floating-point indexed multiples instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add by indexed elements FMLA (indexed)

FMLS Floating-point fused multiply-subtract by indexed elements FMLS (indexed)

FMUL Floating-point multiply by indexed elements FMUL (indexed)

Table C3-145 Floating-point matrix multiply instructions

Mnemonic Instruction See

FMMLA Floating-point matrix multiply-accumulate into 2x2 matrix (double-precision) FMMLA

LD1ROB Contiguous load and replicate thirty-two bytes, scalar plus scalar LD1ROB (scalar plus scalar)

Contiguous load and replicate thirty-two bytes, scalar plus immediate LD1ROB (scalar plus immediate)

LD1ROD Contiguous load and replicate four doublewords, scalar plus scalar LD1ROD (scalar plus scalar)

Contiguous load and replicate four doublewords, scalar plus immediate LD1ROD (scalar plus immediate)

LD1ROH Contiguous load and replicate sixteen halfwords, scalar plus scalar LD1ROH (scalar plus scalar)

Contiguous load and replicate sixteen halfwords, scalar plus immediate LD1ROH (scalar plus immediate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-444
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
The following table shows the floating-point matrix multiplication instructions and companion instructions that are
supported if ID_AA64ZFR0_EL1.F32MM is 1:

C3.8.5.9 SVE BFloat16 floating-point multiply-add

The BFloat16 floating-point multiply-add instructions perform an implicit conversion of the bottom
(even-numbered) or top (odd-numbered) BFloat16 source elements to IEEE 754 single-precision floating-point
format before performing a fused multiply-add without intermediate rounding to the overlapping single-precision
destination element. These instructions follow the normal floating-point behaviors that apply to single-precision
arithmetic, controlled by the Effective value of the FPCR, and captured in the FPSR cumulative exception bits.

C3.8.5.10 SVE BFloat16 floating-point dot product

The BFloat16 floating-point dot product instruction, BFDOT, performs an implicit conversion of vectors of BF16
input values to IEEE 754 single-precision floating-point format.

LD1ROW Contiguous load and replicate eight words, scalar plus scalar LD1ROW (scalar plus scalar)

Contiguous load and replicate eight words, scalar plus immediate LD1ROW (scalar plus immediate)

TRN1, TRN2 Interleave even or odd 128-bit elements from two vectors TRN1, TRN2 (vectors)

UZP1, UZP2 Concatenate even or odd 128-bit elements from two vectors UZP1, UZP2 (vectors)

ZIP1, ZIP2 Interleave 128-bit elements from two half vectors ZIP1, ZIP2 (vectors)

Table C3-145 Floating-point matrix multiply instructions (continued)

Mnemonic Instruction See

Mnemonic Instruction See

FMMLA Floating-point matrix multiply-accumulate into 2x2 matrix (single-precision) FMMLA

Table C3-146 SVE BFloat16 floating-point multiply-add instructions

Mnemoni
c

Instruction See

BFMLALB BFloat16 floating-point widening multiply accumulate long bottom (vector and indexed forms) BFMLALB
(vectors)

BFMLALB
(indexed)

BFMLALT BFloat16 floating-point widening multiply accumulate long top (vector and indexed forms) BFMLALT (vectors)

BFMLALT
(indexed)

BFMLSLB BFloat16 floating-point multiply-subtract long from single-precision (bottom, indexed) BFMLSLB
(indexed)

BFloat16 floating-point multiply-subtract long from single-precision (bottom) BFMLSLB (vectors)

BFMLSLT BFloat16 floating-point multiply-subtract long from single-precision (top, indexed) BFMLSLT
(indexed)

BFloat16 floating-point multiply-subtract long from single-precision (top) BFMLSLT (vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-445
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
The BFloat16 dot product instructions delimit their source vectors into pairs of BFloat16 elements.

C3.8.5.11 SVE BFloat16 floating-point matrix multiply

The BFloat16 floating-point matrix multiply instruction, BFMMLA, delimits source and destination vectors into
128-bit segments. Within each segment:

• The first source vector 2x4 BF16 matrix is organized in row-by-row order.

• The second source vector 4x2 BF16 matrix is organized in a column-by-column order.

• The destination vector 2x2 single-precision matrix is organized in row-by-row order.

One matrix multiplication is performed per source vector segment and accumulated into the corresponding
destination vector segment. This corresponds to accumulating two 2-way BFloat16 widening dot products into each
single-precision destination element, following the numeric behaviors described for BFDOT instruction in SVE
BFloat16 floating-point dot product.

C3.8.5.12 SVE BFloat16 floating-point convert

The BFloat16 floating-point convert instructions perform accurately rounded down-conversion of IEEE 754
single-precision source vector elements to BFloat16 format.

The BFCVT instruction places its BFloat16 results in the bottom or even-numbered 16-bit elements of the destination
vector, and sets the top or odd-numbered elements to zero.

The BFCVTNT instruction places its BFloat16 results in the top or odd-numbered 16-bit elements of the destination
vector, leaving the bottom or even-numbered elements unchanged.

These instructions follow the normal floating-point behaviors that apply to single-precision arithmetic, controlled
by the Effective value of the FPCR, and captured in the FPSR cumulative exception bits.

C3.8.6 Predicate operations

The Predicate instructions perform operations that manipulate the predicate registers.

Some of these instructions are insensitive to the predicate element size and specify an explicit byte element size
qualifier, .B, but an assembler must accept any qualifier, or none.

Table C3-147 SVE BFloat16 floating-point dot product instructions

Mnemonic Instruction See

BFDOT BFloat16 floating-point dot product (vector and indexed forms) BFDOT (vectors)

BFDOT (indexed)

Table C3-148 SVE BFloat16 floating-point matrix multiply instructions

Mnemonic Instruction See

BFMMLA BFloat16 floating-point matrix multiply-accumulate BFMMLA

Table C3-149 SVE BFloat16 floating-point convert instructions

Mnemonic Instruction See

BFCVT Floating-point down convert to BFloat16 format (predicated) BFCVT

BFCVTNT Floating-point down convert and narrow to BFloat16 (top, predicated) BFCVTNT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-446
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.6.1 SVE Predicate initialization

The Predicate initialization instructions initialize predicate elements.Predicate elements can be initialized to be
FALSE, or to be TRUE when their element number is less than:

• A fixed number of elements from the following range: VL1-VL8, VL16, VL32, VL64, VL128 or VL256.

• The largest power of two elements, POW2.

• The largest multiple of three or four elements, MUL3 or MUL4.

• The number of accessible elements, ALL, which is implicitly a multiple of two.

Unspecified or out of range constraint encodings generate a predicate with values that are all FALSE and do not
cause an Undefined Instruction exception.

C3.8.6.2 SVE Predicate move operations

The Predicate move instructions operate on all bits of the predicate registers, implying a fixed, 1-bit predicate
element size. The flag-setting variants set the N, Z, and C condition flags based on the predicate result, and set the
V flag to zero. Because these instructions operate with a fixed, 1-bit element size, the Governing predicate for the
flag-setting variants should be in the canonical form for a predicate element size in order to generate a meaningful
set of condition flags for that element size.

C3.8.6.3 SVE Predicate logical operations

The Predicate logical operation instructions perform bitwise logical operations on predicate registers that operate
on all bits of the register, implying a fixed, 1-bit predicate element size. The flag-setting variants set the N, Z, and
C condition flags based on the predicate result, and set the V flag to zero. Inactive elements in the destination
Predicate register are set to zero, except for PTEST which does not specify a destination register. Because these

Table C3-150 Predicate initialization instructions

Mnemonic Instruction See

PFALSE Set all predicate elements to FALSE PFALSE

PTRUE Initialize predicate elements from named constraint PTRUE (predicate)

PTRUES Initialize predicate elements from named constraint, setting the condition flags PTRUES

Table C3-151 Predicate move instructions

Mnemonic Instruction See

SEL Select predicate elements from two predicates SEL (predicates)

MOV Move predicate elements (predicated, merging) MOV (predicate, predicated, merging)

Move predicate elements (predicated, zeroing) MOV (predicate, predicated, zeroing)

Move predicate elements (unpredicated) MOV

MOVS Move predicate elements, setting the condition flags (predicated) MOVS (predicated)

Move predicate elements, setting the condition flags (unpredicated) MOVS (unpredicated)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-447
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
instructions operate with a fixed, 1-bit element size, the Governing predicate for the flag-setting variants should be
in the canonical form for a predicate element size in order to generate a meaningful set of condition flags for that
element size.

C3.8.6.4 FFR predicate handling

The FFR predicate handling instructions work with SVE First-fault and Non-fault loads using the FFR to determine
which elements have been successfully loaded and which remain to be loaded on a subsequent iteration.

The RDFFRS instruction sets the N, Z, and C condition flags based on the predicate result, and sets the V flag to zero.
Because these instructions operate with a fixed, 1-bit element size, the Governing predicate for the RDFFRS
instruction should be in the canonical form for a predicate element size in order to generate a meaningful set of
condition flags for that element size.

Table C3-152 Predicate logical operation instructions

Mnemonic Instruction See

AND Bitwise AND predicates AND (predicates)

ANDS Bitwise AND predicates, setting the condition flags ANDS

BIC Bitwise clear predicates BIC (predicates)

BICS Bitwise clear predicates, setting the condition flags BICS

EOR Bitwise exclusive-OR predicates EOR (predicates)

EORS Bitwise exclusive-OR predicates, setting the condition flags EORS

NAND Bitwise NAND predicates NAND

NANDS Bitwise NAND predicates, setting the condition flags NANDS

NOR Bitwise NOR predicates NOR

NORS Bitwise NOR predicates, setting the condition flags NORS

NOT Bitwise invert predicate NOT (predicate)

NOTS Bitwise invert predicate, setting the condition flags NOTS

ORN Bitwise OR inverted predicate ORN (predicates)

ORNS Bitwise OR inverted predicate, setting the condition flags ORNS

ORR Bitwise OR predicates ORR (predicates)

ORRS Bitwise OR predicates, setting the condition flags ORRS

PTEST Test predicate value, setting the condition flags PTEST

Table C3-153 FFR predicate handling instructions

Mnemonic Instruction See

RDFFR Return predicate of successfully loaded elements (unpredicated) RDFFR (unpredicated)

Return predicate of successfully loaded elements (predicated) RDFFR (predicated)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-448
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.6.5 Predicate counts

The Predicate count instructions count either the number of Active predicate elements that are set to TRUE, or the
number of elements implied by a named predicate constraint. The count can be placed in a general-purpose register,
or used to increment or decrement a vector or general-purpose register.

Signed or unsigned saturating variants handle cases where, for example, an increment might cause a vectorized
scalar loop index to overflow and therefore never satisfy a loop termination condition that compares it with a limit
that is close to the maximum integer value.

The named predicate constraint limits the number of elements to:

• A fixed number of elements from the following range: VL1-VL8, VL16, VL32, VL64, VL128 or VL256.

• The largest power of two elements, POW2.

• The largest multiple of three or four elements, MUL3 or MUL4.

• The number of accessible elements, ALL, implicitly a multiple of two.

Unspecified or out of range predicate constraint encodings generate a zero element count and do not cause an
Undefined Instruction exception.

RDFFRS Return predicate of successfully loaded elements,
setting the condition flags (predicated)

RDFFRS

SETFFR Initialize the First-fault register to all TRUE SETFFR

WRFFR Write a predicate register to the First-fault register WRFFR

Table C3-153 FFR predicate handling instructions (continued)

Mnemonic Instruction See

Table C3-154 Predicate count instructions

Mnemonic Instruction See

CNTB Set scalar to multiple of 8-bit predicate constraint element count CNTB, CNTD, CNTH, CNTW

CNTH Set scalar to multiple of 16-bit predicate constraint element count CNTB, CNTD, CNTH, CNTW

CNTW Set scalar to multiple of 32-bit predicate constraint element count CNTB, CNTD, CNTH, CNTW

CNTD Set scalar to multiple of 64-bit predicate constraint element count CNTB, CNTD, CNTH, CNTW

CNTP Set scalar to the number of Active predicate elements that are TRUE CNTP (predicate)

DECB Decrement scalar by multiple of 8-bit predicate constraint element count DECB, DECD, DECH, DECW
(scalar)

DECH Decrement scalar by multiple of 16-bit predicate constraint element count DECB, DECD, DECH, DECW
(scalar)

Decrement vector by multiple of 16-bit predicate constraint element count DECD, DECH, DECW (vector)

DECW Decrement scalar by multiple of 32-bit predicate constraint element count DECB, DECD, DECH, DECW
(scalar)

Decrement vector by multiple of 32-bit predicate constraint element count DECD, DECH, DECW (vector)

DECD Decrement scalar by multiple of 64-bit predicate constraint element count DECB, DECD, DECH, DECW
(scalar)

Decrement vector by multiple of 64-bit predicate constraint element count DECD, DECH, DECW (vector)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-449
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
DECP Decrement scalar by the number of predicate elements that are TRUE DECP (scalar)

Decrement vector by the number of Active predicate elements that are TRUE DECP (vector)

INCB Increment scalar by multiple of 8-bit predicate constraint element count INCB, INCD, INCH, INCW
(scalar)

INCH Increment scalar by multiple of 16-bit predicate constraint element count INCB, INCD, INCH, INCW
(scalar)

Increment vector by multiple of 16-bit predicate constraint element count INCD, INCH, INCW (vector)

INCW Increment scalar by multiple of 32-bit predicate constraint element count INCB, INCD, INCH, INCW
(scalar)

Increment vector by multiple of 32-bit predicate constraint element count INCD, INCH, INCW (vector)

INCD Increment scalar by multiple of 64-bit predicate constraint element count INCB, INCD, INCH, INCW
(scalar)

Increment vector by multiple of 64-bit predicate constraint element count INCD, INCH, INCW (vector)

INCP Increment scalar by the number of predicate elements that are TRUE INCP (scalar)

Increment vector by the number of predicate elements that are TRUE INCP (vector)

SQDECB Signed saturating decrement scalar by multiple of 8-bit predicate constraint
element count

SQDECB

SQDECH Signed saturating decrement scalar by multiple of 16-bit predicate constraint
element count

SQDECH (scalar)

Signed saturating decrement vector by multiple of 16-bit predicate constraint
element count

SQDECH (vector)

SQDECW Signed saturating decrement scalar by multiple of 32-bit predicate constraint
element count

SQDECW (scalar)

Signed saturating decrement vector by multiple of 32-bit predicate constraint
element count

SQDECW (vector)

SQDECD Signed saturating decrement scalar by multiple of 64-bit predicate constraint
element count

SQDECD (scalar)

Signed saturating decrement vector by multiple of 64-bit predicate constraint
element count

SQDECD (vector)

SQDECP Signed saturating decrement scalar the number of predicate elements that are
TRUE

SQDECP (scalar)

Signed saturating decrement vector by the number of predicate elements that are
TRUE

SQDECP (vector)

SQINCB Signed saturating increment scalar by multiple of 8-bit predicate constraint element
count

SQINCB

SQINCH Signed saturating increment scalar by multiple of 16-bit predicate constraint
element count

SQINCH (scalar)

Signed saturating increment vector by multiple of 16-bit predicate constraint
element count

SQINCH (vector)

Table C3-154 Predicate count instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-450
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
SQINCW Signed saturating increment scalar by multiple of 32-bit predicate constraint
element count

SQINCW (scalar)

Signed saturating increment vector by multiple of 32-bit predicate constraint
element count

SQINCW (vector)

SQINCD Signed saturating increment scalar by multiple of 64-bit predicate constraint
element count

SQINCD (scalar)

Signed saturating increment vector by multiple of 64-bit predicate constraint
element count

SQINCD (vector)

SQINCP Signed saturating increment scalar by the number of predicate elements that are
TRUE

SQINCP (scalar)

Signed saturating increment vector by the number of predicate elements that are
TRUE

SQINCP (vector)

UQDECB Unsigned saturating decrement scalar by multiple of 8-bit predicate constraint
element count

UQDECB

UQDECH Unsigned saturating decrement scalar by multiple of 16-bit predicate constraint
element count

UQDECH (scalar)

Unsigned saturating decrement vector by multiple of 16-bit predicate constraint
element count

UQDECH (vector)

UQDECW Unsigned saturating decrement scalar by multiple of 32-bit predicate constraint
element count

UQDECW (scalar)

Unsigned saturating decrement vector by multiple of 32-bit predicate constraint
element count

UQDECW (vector)

UQDECD Unsigned saturating decrement scalar by multiple of 64-bit predicate constraint
element count

UQDECD (scalar)

Unsigned saturating decrement vector by multiple of 64-bit predicate constraint
element count

UQDECD (vector)

UQDECP Unsigned saturating decrement scalar by the number of predicate elements that are
TRUE

UQDECP (scalar)

Unsigned saturating decrement vector by the number of predicate elements that are
TRUE

UQDECP (vector)

UQINCB Unsigned saturating increment scalar by multiple of 8-bit predicate constraint
element count

UQINCB

UQINCH Unsigned saturating increment scalar by multiple of 16-bit predicate constraint
element count

UQINCH (scalar)

Unsigned saturating increment vector by multiple of 16-bit predicate constraint
element count

UQINCH (vector)

UQINCW Unsigned saturating increment scalar by multiple of 32-bit predicate constraint
element count

UQINCW (scalar)

Unsigned saturating increment vector by multiple of 32-bit predicate constraint
element count

UQINCW (vector)

Table C3-154 Predicate count instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-451
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.7 Loop control

These instructions control counted vector loops and vector loops with data-dependent termination conditions.These
instructions create a loop partition predicate with Active elements set to TRUE up to the point where the loop should
terminate, and FALSE thereafter. Two loop concepts are supported, simple loops and data-dependent loops.

UQINCD Unsigned saturating increment scalar by multiple of 64-bit predicate constraint
element count

UQINCD (scalar)

Unsigned saturating increment vector by multiple of 64-bit predicate constraint
element count

UQINCD (vector)

UQINCP Unsigned saturating increment scalar by the number of predicate elements that are
TRUE

UQINCP (scalar)

Unsigned saturating increment vector by the number of predicate elements that are
TRUE

UQINCP (vector)

Table C3-154 Predicate count instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-452
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.7.1 Simple loops

An up-counting WHILE instruction that increments the value of the first scalar operand and compares the value with
a second, fixed scalar operand. The instruction generates a destination predicate with all of the following
characteristics:

• The predicate elements starting from the lowest numbered element are true while the comparison is true.

• The predicate elements thereafter, up to the highest numbered element, are false when the comparison
becomes false.

All 32 bits or 64 bits of the scalar operands are significant for the purposes of comparison. The full 32-bit or 64-bit
value of the first operand is incremented by 1 for each destination predicate element, irrespective of the element
size. The first general-purpose register operand is not updated.

If all of the following occur, a comparison can never fail, resulting in an all-true predicate:

• The comparison includes an equality test.

• The second scalar operand is equal to the maximum integer value of the selected size and type of comparison.

The N, Z, C, and V condition flags are unconditionally set to control a subsequent conditional branch.

Table C3-155 Single loop instructions

Mnemonic Instruction See

WHILELE While incrementing signed scalar less than or equal to scalar WHILELE (predicate)

WHILELO While incrementing unsigned scalar lower than scalar WHILELO (predicate)

WHILELS While incrementing unsigned scalar lower than or the same as scalar WHILELS (predicate)

WHILELT While incrementing signed scalar less than scalar WHILELT (predicate)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-453
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.7.2 Data-independent loops

For data-dependent termination conditions, it is necessary to convert the result of a vector comparison into a loop
partition predicate. The new partition truncates the current vector partition immediately before or after the first
active TRUE comparison. The N, Z, C, and V condition flags are optionally set to control a subsequent conditional
branch.

The BRKA instructions set active destination predicate elements to TRUE up to and including the first active TRUE
element in their source predicate register, setting subsequent elements to FALSE.

The BRKB instructions set active destination predicate elements to TRUE up to but excluding the first active TRUE
element in their source predicate register, setting subsequent elements to FALSE.

The BRKPA and BRKPB instructions propagate the result of a previous BRKB or BRKPB instruction, by setting their
destination predicate register to all FALSE if the Last active element of their first source predicate register is not
TRUE, but otherwise generate the destination predicate from their second source predicate as described for the BRKA
and BRKB instructions.

The BRKN instructions propagate the result of a previous BRKB or BRKPB instruction by setting the destination
predicate register to all FALSE if the Last active element of their first source predicate register is not TRUE, but
otherwise leave the destination predicate unchanged. The destination and second source predicate must have been
created by another instruction, such as RDFFR or WHILE.

C3.8.7.3 Serialized operations

The Serialized operation instructions permit Active elements within a vector to be processed sequentially without
unpacking the vector. The condition flags are unconditionally set to control a subsequent conditional branch.

Table C3-156 Data-independent loop instructions

Mnemonic Instruction See

BRKA Break after the first true condition BRKA

BRKAS Break after the first true condition, setting the condition flags BRKAS

BRKB Break before the first true condition BRKB

BRKBS Break before the first true condition, setting the condition flags BRKBS

BRKN Propagate break to next partition BRKN

BRKNS Propagate break to next partition, setting the condition flags BRKNS

BRKPA Break after the first true condition, propagating from previous partition BRKPA

BRKPAS Break after the first true condition, propagating from previous partition,
setting the condition flags

BRKPAS

BRKPB Break before the first true condition, propagating from the previous partition BRKPB

BRKPBS Break before the first true condition, propagating from the previous partition,
setting the condition flags

BRKPBS

Table C3-157 Serialized operation instructions

Mnemonic Instruction See

PFIRST Set the First active element to TRUE PFIRST
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-454
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.8 SVE Move operations

C3.8.8.1 Element move and broadcast

The Element move and broadcast instructions copy data from scalar registers, immediate values, and other vectors
to all vector elements or only to Active vector elements. The copied data might be in an integer or floating-point
format.

PNEXT Find next Active element PNEXT

CTERMEQ Compare and terminate loop when equal CTERMEQ, CTERMNE

CTERMNE Compare and terminate loop when not equal CTERMEQ, CTERMNE

Table C3-157 Serialized operation instructions (continued)

Mnemonic Instruction See

Table C3-158 Element move and broadcast instructions

Mnemonic Instruction See

CPY Copy signed integer immediate to Active vector elements CPY (immediate, merging)

CPY (immediate, zeroing)

Copy general-purpose register to Active vector elements CPY (scalar)

Copy SIMD&FP scalar register to Active vector elements CPY (SIMD&FP scalar)

DUP Broadcast signed immediate to all vector elements DUP (immediate)

Broadcast general-purpose register to all vector elements DUP (scalar)

FCPY Copy 8-bit floating-point immediate to Active vector elements FCPY

FDUP Broadcast 8-bit floating-point immediate to all vector elements FDUP

FMOV Move floating-point +0.0 to vector elements
(unpredicated)

FMOV (zero, unpredicated)

Move floating-point +0.0 to vector elements
(predicated)

FMOV (zero, predicated)

Move 8-bit floating-point immediate to vector elements
(unpredicated)

FMOV (immediate, unpredicated)

Move 8-bit floating-point immediate to vector element
(predicated)

FMOV (immediate, predicated)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-455
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.8.2 Element permute and shuffle

The Element permute and shuffle instructions move data between different vector elements, or between vector
elements and scalar registers.

These instructions perform the following operations:

• Conditionally extract the Last active element of a vector or the following element.

— The supported instructions are CLASTA and CLASTB.

• Unconditionally extract the Last active element of a vector or the following element.

— The supported instructions are LASTA and LASTB.

• Variable permute instructions where the permutation is determined by the values in a predicate register or a
table of element index values.

— The supported instructions are COMPACT, SPLICE, and TBL.

• Fixed permute instructions where the form of the permutation is encoded in the instruction.

— The supported instructions are: DUP, EXT, INSR, REV, REVB, REVH, REVW, SUNPKHI, SUNPKLO, TRN1, TRN2,
UUNPKHI, UUNPKLO, UZP1, UZP2, ZIP1, and ZIP2.

MOV Move signed integer immediate to vector elements
(unpredicated)

MOV (immediate, unpredicated)

Move signed integer immediate to vector elements
(predicated)

MOV (immediate, predicated, merging)

MOV (immediate, predicated, zeroing)

Move general-purpose register to vector elements
(unpredicated)

MOV (scalar, unpredicated)

Move general-purpose register to vector elements
(predicated)

MOV (scalar, predicated)

Move SIMD&FP scalar register to vector elements
(unpredicated)

MOV (SIMD&FP scalar, unpredicated)

MOV Move SIMD&FP scalar register to vector elements (predicated) MOV (SIMD&FP scalar, predicated)

Move vector register (unpredicated) MOV (vector, unpredicated)

Move vector register (predicated) MOV (vector, predicated)

SEL Select vector elements from two vectors SEL (predicates)

SEL (vectors)

Table C3-158 Element move and broadcast instructions (continued)

Mnemonic Instruction See

Table C3-159 Element permute and shuffle instructions

Mnemonic Instruction See

CLASTA Conditionally extract element after the Last active element to general-purpose
register

CLASTA (scalar)

Conditionally extract element after the Last active element to SIMD&FP scalar CLASTA (SIMD&FP scalar)

Conditionally extract element after the Last active element to vector CLASTA (vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-456
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
CLASTB Conditionally extract Last active element to general-purpose register CLASTB (scalar)

Conditionally extract Last active element to SIMD&FP scalar CLASTB (SIMD&FP scalar)

Conditionally extract Last active element to vector CLASTB (vectors)

LASTA Extract element after the Last active element to general-purpose register LASTA (scalar)

Extract element after the Last active element to SIMD&FP scalar LASTA (SIMD&FP scalar)

LASTB Extract Last active element to general-purpose register LASTB (scalar)

Extract Last active element to SIMD&FP scalar LASTA (SIMD&FP scalar)

COMPACT Shuffle Active elements of vector to the right and fill with zeros COMPACT

SPLICE Splice two vectors under predicate control SPLICE

TBL Programmable table lookup using vector of element indexes TBL

DUP Broadcast indexed vector element DUP (indexed)

EXT Extract vector from pair of vectors EXT

INSR Insert general-purpose register into shifted vector INSR (scalar)

Insert SIMD&FP scalar register into shifted vector INSR (SIMD&FP scalar)

MOV Move indexed element or SIMD&FP scalar to vector (unpredicated) MOV (SIMD&FP scalar,
unpredicated)

Move SIMD&FP scalar register to vector elements (predicated) MOV (SIMD&FP scalar,
predicated)

REV Reverse all elements in vector REV (vector)

REVB Reverse 8-bit bytes in elements REVB, REVH, REVW

REVH Reverse 16-bit halfwords in elements REVB, REVH, REVW

REVW Reverse 32-bit words in elements REVB, REVH, REVW

TRN1 Interleave even elements from two vectors TRN1, TRN2 (vectors)

TRN2 Interleave odd elements from two vectors TRN1, TRN2 (vectors)

UZP1 Concatenate even elements from two vectors UZP1, UZP2 (vectors)

UZP2 Concatenate odd elements from two vectors UZP1, UZP2 (vectors)

ZIP1 Interleave elements from low halves of two vectors ZIP1, ZIP2 (vectors)

ZIP2 Interleave elements from high halves of two vectors ZIP1, ZIP2 (vectors)

Table C3-159 Element permute and shuffle instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-457
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.8.3 Unpacking instructions

The Unpacking instructions unpack half of the elements from the source vector register or predicate register, widen
the unpacked elements to twice the width, and place the result in the destination register.

C3.8.8.4 Predicate permute

The Predicate instructions are used to move and permute predicate elements. These instructions generally mirror
the fixed vector permutes to allow predicates to follow their data. The permutes move all of the bits in a predicate
element, not just the canonical bits.

Table C3-160 Unpacking instructions

Mnemonic Instruction See

SUNPKHI Unpack and sign-extend elements from high half of vector SUNPKHI, SUNPKLO

SUNPKLO Unpack and sign-extend elements from low half of vector SUNPKHI, SUNPKLO

UUNPKHI Unpack and zero-extend elements from high half of vector UUNPKHI, UUNPKLO

UUNPKLO Unpack and zero-extend elements from low half of vector UUNPKHI, UUNPKLO

PUNPKHI Unpack and widen elements from high half of predicate PUNPKHI, PUNPKLO

PUNPKLO Unpack and widen elements from low half of predicate PUNPKHI, PUNPKLO

Table C3-161 Predicate instructions

Mnemonic Instruction See

REV Reverse all elements in predicate REV (predicate)

TRN1 Interleave even elements from two predicates TRN1, TRN2 (predicates)

TRN2 Interleave odd elements from two predicates TRN1, TRN2 (predicates)

UZP1 Select even elements from two predicates UZP1, UZP2 (predicates)

UZP2 Select odd elements from two predicates UZP1, UZP2 (predicates)

ZIP1 Interleave elements from low halves of two predicates ZIP1, ZIP2 (predicates)

ZIP2 Interleave elements from high halves of two predicates ZIP1, ZIP2 (predicates)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-458
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
C3.8.9 Index vector generation

The INDEX instruction initializes a vector horizontally by setting its first element to an integer value, and then
repeatedly incrementing it by a second integer value to generate the subsequent elements. Each integer value can be
specified as a signed immediate or a general-purpose register.

C3.8.10 Move prefix

The MOVPRFX (predicated) instruction is a predicated vector move that can be combined with a predicated destructive
instruction that immediately follows it, in program order, to create a single constructive operation, or to convert an
instruction with merging predication to use zeroing predication.

The MOVPRFX (unpredicated) instruction is an unpredicated vector move that can be combined with a predicated or
unpredicated destructive instruction that immediately follows it, in program order, to create a single constructive
operation.

The Operational information section of an SVE instruction description indicates whether or not an instruction can
be predictably prefixed by a MOVPRFX instruction. If the Operational information of an SVE instruction description
does not mention MOVPRFX or if the section does not exist, then the instruction cannot be predictably prefixed by a
MOVPRFX instruction.

The prefixed instruction that immediately follows a MOVPRFX instruction in program order must be an implemented
SVE instruction that can be predictably prefixed by a MOVPRFX instruction, or an A64 HLT instruction, or an A64 BRK
instruction. For an SVE instruction that can be predictably prefixed by a MOVPRFX instruction, all of the following
apply:

• The destination register field implicitly specifies one of the source operands, which means that it is a
destructive binary or ternary vector operation or unary operation with merging predication, excluding
MOVPRFX.

• The destination register is the same as the MOVPRFX destination register.

• The prefixed instruction does not use the MOVPRFX destination register in any of its other source register fields,
even if it has a different name but refers to the same architectural register state. For example, Z1, V1, and D1
all refer to the same architectural register.

• If the MOVPRFX instruction is predicated, then the prefixed instruction is predicated using the same Governing
predicate register, and the maximum encoded element size is the same as the MOVPRFX element size, excluding
the fixed-size 64-bit elements of the wide elements form of bitwise shift and integer compare operations.

• If the MOVPRFX instruction is unpredicated, then the prefixed instruction can use any Governing predicate
register and element size, or it can be unpredicated. A predicated MOVPRFX cannot be used with an unpredicated
instruction.

If the instruction that follows a MOVPRFX instruction is not an implemented SVE instruction that can be predictably
prefixed by a MOVPRFX instruction, the two instructions behave in one of the following CONSTRAINED
UNPREDICTABLE ways:

• Either or both instructions can execute with their individually described effects.

Table C3-162 Index instructions

Mnemonic Instruction See

INDEX Create index vector starting from and incremented by immediates INDEX (immediates)

Create index vector starting from immediate and incremented by general-purpose register INDEX (scalars)

Create index vector starting from general-purpose register and incremented by immediate INDEX (scalar,
immediate)

Create index vector starting from immediate and incremented by general-purpose
registers

INDEX (immediate,
scalar)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-459
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
• Either instruction can generate an Undefined Instruction exception.

• Either or both instructions can execute as a NOP.

• The second instruction can execute with an UNKNOWN value for any of its source registers.

• Any register that is written by either or both instructions can be set to an unknown value.

• A control flow instruction that writes the PC can set the PC to an unknown value.

Unless the combination of a constructive operation with merging predication is specifically required, it is strongly
recommended that, for performance reasons, software should prefer to use the zeroing form of predicated MOVPRFX
or the unpredicated MOVPRFX instruction.

When a MOVPRFX instruction is executed, except for PMU events SVE_MOVPRFX_SPEC,
SVE_MOVPRFX_Z_SPEC, SVE_MOVPRFX_M_SPEC, and SVE_MOVPRFX_U_SPEC, 0x807C-0x807F, it is
IMPLEMENTATION DEFINED for each execution of the instruction whether or not any Performance Monitor counts
the instruction. This can vary dynamically for each execution of the same instruction.

When a microarchitectural operation is executed because of a MOVPRFX instruction, except for PMU events
SVE_MOVPRFX_SPEC, SVE_MOVPRFX_Z_SPEC, SVE_MOVPRFX_M_SPEC, and
SVE_MOVPRFX_U_SPEC, 0x807C-0x807F, it is implementation defined for each execution of the operation
whether or not the Performance Monitor counts the operation. This can vary dynamically for each execution of the
same instruction.

C3.8.10.1 MOVPRFX instruction behavior in self-hosted debug

A MOVPRFX instruction can legally prefix a BRK or HLT instruction.

If a hardware breakpoint is programmed with the address of a legal MOVPRFX instruction, when any of the following
events occur, the hardware breakpoint generates a Breakpoint exception:

• The MOVPRFX instruction is committed for execution.

• The combined MOVPRFX and Prefixed instruction is committed for execution.

If a hardware breakpoint is programmed with the address of an illegal MOVPRFX instruction or a Prefixed instruction,
when any of the MOVPRFX instruction and Prefixed instruction are committed for execution, it is CONSTRAINED
UNPREDICTABLE whether or not the hardware breakpoint generates a Breakpoint exception.

If a single-step is performed for a MOVPRFX instruction, it is CONSTRAINED UNPREDICTABLE whether the PE steps over
the pair of instructions or steps over only the MOVPRFX instruction.

C3.8.11 Reduction operations

C3.8.11.1 Horizontal reductions

The Horizontal reduction instructions perform arithmetic horizontally across Active elements of a single source
vector and deliver a scalar result.

The floating-point horizontal accumulating sum instruction, FADDA, operates strictly in order of increasing element
number across a vector, using the scalar destination register as a source for the initial value of the accumulator. This
preserves the original program evaluation order where non-associativity is required.

Table C3-163 Move prefix instructions

Mnemonic Instruction See

MOVPRFX Move prefix (predicated) MOVPRFX (predicated)

Move prefix (unpredicated) MOVPRFX (unpredicated)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-460
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.8 Data processing - SVE
The other floating-point reductions calculate their result using a recursive pair-wise algorithm that does not preserve
the original program order, but permits increased parallelism for code that does not require strict order of evaluation.

Integer reductions are fully associative, and the order of evaluation is not specified by the architecture.

Table C3-164 Horizontal reduction instructions

Mnemonic Instruction See

ANDV Bitwise AND reduction, treating Inactive elements as all ones ANDV

EORV Bitwise EOR reduction, treating Inactive elements as zero EORV

FADDA Floating-point add strictly-ordered reduction, accumulating in scalar, ignoring Inactive elements FADDA

FADDV Floating-point add recursive reduction, treating Inactive elements as +0.0 FADDV

FMAXNMV Floating-point maximum number recursive reduction, treating Inactive elements as the default NaN FMAXNMV

FMAXV Floating-point maximum recursive reduction, treating Inactive elements as negative infinity FMAXV

FMINNMV Floating-point minimum number recursive reduction, treating Inactive elements as the default NaN FMINNMV

FMINV Floating-point minimum recursive reduction, treating Inactive elements as positive infinity FMINV

ORV Bitwise OR reduction, treating Inactive elements as zero ORV

SADDV Signed add reduction, treating Inactive elements as zero SADDV

SMAXV Signed maximum reduction, treating Inactive elements as the minimum signed integer SMAXV

SMINV Signed minimum reduction, treating Inactive elements the maximum signed integer SMINV

UADDV Unsigned add reduction, treating Inactive elements as zero UADDV

UMAXV Unsigned maximum reduction, treating Inactive elements as zero UMAXV

UMINV Unsigned minimum reduction, treating Inactive elements as the maximum unsigned integer UMINV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-461
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9 Data processing - SVE2

The following subsections describe the SVE2 processing instructions:

• Down-counting loops.

• Constructive multiply.

• Uniform DSP operations.

• Widening DSP operations.

• Narrowing DSP operation.

• Unary narrowing operations.

• Non-widening pairwise arithmetic.

• Widening pairwise arithmetic.

• Bitwise ternary logical instructions.

• Large integer arithmetic.

• Multiplication by indexed elements.

• Complex integer arithmetic.

• Floating-point extra conversions.

• Floating-point widening multiply-accumulate.

• Floating-point integer binary logarithm.

• Cross-lane match detect.

• Bit permutation.

• Polynomial arithmetic.

• Vector concatenation.

• Extended table lookup permute.

• Non-temporal gather/scatter.

• Cryptography support.

• BFloat16 arithmetic.

• BFloat16 minimum/maximum.

The following subsections describe the SVE2.1 processing instructions:

• Floating-point dot product.

• SVE2.1 quadword operations.

• Integer shift and convert.

• Multi-vector predication.

• Permute vector.

• Predicate pair loop control.

• Predicate move.

• Predicate select.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-462
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.1 Down-counting loops

A down-counting WHILE instruction decrements the value of the first scalar operand and compares the value with a
second, fixed scalar operand. The instruction generates a destination predicate with all of the following
characteristics:

• The predicate elements starting from the highest-numbered element are true while the comparison remains
true.

• The predicate elements thereafter, down to the lowest-numbered element, are false when the comparison
becomes false.

All 32 bits or 64 bits of the scalar operands are significant for the purposes of comparison. The full 32-bit or 64-bit
value of the first operand is decremented by 1 for each destination predicate element, irrespective of the element
size. The first general-purpose register operand is not updated.

If all of the following occur, a comparison can never fail, resulting in an all-true predicate:

• The comparison includes an equality test.

• The second scalar operand is equal to the minimum integer value of the selected size and type of comparison.

C3.9.2 Constructive multiply

SVE2 includes the following constructive, three-operand versions of the integer multiply instructions:

Table C3-165 Down counting loop instructions

Mnemonic Instruction See

WHILEGE While decrementing signed 32-bit or 64-bit scalar greater than or equal to scalar WHILEGE (predicate)

WHILEGT While decrementing signed 32-bit or 64-bit scalar greater than scalar WHILEGT (predicate)

WHILEHI While decrementing unsigned 32-bit or 64-bit scalar higher than scalar WHILEHI (predicate)

WHILEHS While decrementing unsigned 32-bit or 64-bit scalar higher or same as scalar WHILEHS (predicate)

Table C3-166 Constructive multiply instructions

Mnemonic Instruction See

MUL Multiply vectors (unpredicated) MUL (vectors, unpredicated)

SMULH Signed multiply returning high half (unpredicated) SMULH (unpredicated)

UMULH Unsigned multiply returning high half (unpredicated) UMULH (unpredicated)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-463
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.3 Uniform DSP operations

The uniform DSP instructions are based on AArch64 Advanced SIMD instructions with the same mnemonic. The
instructions operate on integer operands and produce results with a uniform element size. The operation of an
instruction might include one or more of rounding, halving, saturation, and accumulation.

Table C3-167 Uniform DSP instructions

Mnemonic Instruction See

SABA Signed absolute difference and accumulate SABA

SHADD Signed halving addition SHADD

SHSUB Signed halving subtract SHSUB

SHSUBR Signed halving subtract reversed vectors SHSUBR

SLI Shift left and insert (immediate) SLI

SQABS Signed saturating absolute value SQABS

SQADD Signed saturating addition (predicated) SQADD (vectors,
predicated)

SQDMULH Signed saturating doubling multiply high (unpredicated) SQDMULH (vectors)

SQNEG Signed saturating negate SQNEG

SQRDMLAH Signed saturating rounding doubling multiply-add high to accumulator (unpredicated) SQRDMLAH (indexed)

SQRDMLSH Signed saturating rounding doubling multiply-subtract high from accumulator
(unpredicated)

SQRDMLSH (vectors)

SQRDMULH Signed saturating rounding doubling multiply high (unpredicated) SQRDMULH (vectors)

SQRSHL Signed saturating rounding shift left by vector (predicated) SQRSHL

SQRSHLR Signed saturating rounding shift left reversed vectors (predicated) SQRSHLR

SQSHL Signed saturating shift left by immediate SQSHL (immediate)

SQSHL Signed saturating shift left by vector (predicated) SQSHL (vectors)

SQSHLR Signed saturating shift left reversed vectors (predicated) SQSHLR

SQSHLU Signed saturating shift left unsigned by immediate SQSHLU

SQSUB Signed saturating subtraction (predicated) SQSUB (vectors,
predicated)

SQSUBR Signed saturating subtraction reversed vectors (predicated) SQSUBR

SRHADD Signed rounding halving addition SRHADD

SRI Shift right and insert (immediate) SRI

SRSHL Signed rounding shift left by vector (predicated) SRSHL

SRSHLR Signed rounding shift left reversed vectors (predicated) SRSHLR

SRSHR Signed rounding shift right by immediate SRSHR

SRSRA Signed rounding shift right and accumulate (immediate) SRSRA

SSRA Signed shift right and accumulate (immediate) SSRA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-464
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
SUQADD Signed saturating addition of unsigned value SUQADD

UABA Unsigned absolute difference and accumulate. UABA

UHADD Unsigned halving addition. UHADD

UHSUB Unsigned halving subtract UHSUB

UHSUBR Unsigned halving subtract reversed vectors UHSUBR

UQADD Unsigned saturating addition (predicated) UQADD (vectors,
predicated)

UQRSHL Unsigned saturating rounding shift left by vector (predicated) UQRSHL

UQRSHLR Unsigned saturating rounding shift left reversed vectors (predicated) UQRSHLR

UQSHL Unsigned saturating shift left by immediate UQSHL (immediate)

UQSHL Unsigned saturating shift left by vector (predicated) UQSHL (vectors)

UQSHLR Unsigned saturating shift left reversed vectors (predicated) UQSHLR

UQSUB Unsigned saturating subtraction (predicated) UQSUB (vectors,
predicated)

UQSUBR Unsigned saturating subtraction reversed vectors (predicated) UQSUBR

URECPE Unsigned reciprocal estimate (predicated) URECPE

URHADD Unsigned rounding halving addition. URHADD

URSHL Unsigned rounding shift left by vector (predicated) URSHL

URSHLR Unsigned rounding shift left reversed vectors (predicated) URSHLR

URSHR Unsigned rounding shift right by immediate URSHR

URSQRTE Unsigned reciprocal square root estimate (predicated) URSQRTE

URSRA Unsigned rounding shift right and accumulate (immediate) URSRA

USQADD Unsigned saturating addition of signed value USQADD

USRA Unsigned shift right and accumulate (immediate) USRA

Table C3-167 Uniform DSP instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-465
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.4 Widening DSP operations

The widening DSP instructions are based on AArch64 Advanced SIMD instructions with similar mnemonics. The
instructions operate on integer values and produce results that are twice the width of some or all of the inputs. The
instructions read the narrow inputs from either the even-numbered (bottom) or odd-numbered (top) source elements
and place each result in the double-width destination elements that overlap the narrow source elements.

Table C3-168 Widening DSP instructions

Mnemonic Instruction See

SABALB Signed absolute difference and accumulate long (bottom) SABALB

SABALT Signed absolute difference and accumulate long (top) SABALT

SABDLB Signed absolute difference long (bottom) SABDLB

SABDLT Signed absolute difference long (top) SABDLT

SADDLB Signed add long (bottom) SADDLB

SADDLT Signed add long (top) SADDLT

SADDWB Signed add wide (bottom) SADDWB

SADDWT Signed add wide (top) SADDWT

SMLALB Signed multiply-add long to accumulator (bottom) SMLALB (vectors)

SMLALT Signed multiply-add long to accumulator (top) SMLALT (vectors)

SMLSLB Signed multiply-subtract long from accumulator (bottom) SMLSLB (vectors)

SMLSLT Signed multiply-subtract long from accumulator (top) SMLSLT (vectors)

SMULLB Signed multiply long (bottom) SMULLB (vectors)

SMULLT Signed multiply long (top) SMULLT (vectors)

SQDMLALB Signed saturating doubling multiply-add long to accumulator (bottom) SQDMLALB (vectors)

SQDMLALT Signed saturating doubling multiply-add long to accumulator (top) SQDMLALT (vectors)

SQDMLSLB Signed saturating doubling multiply-subtract long from accumulator (bottom) SQDMLSLB (vectors)

SQDMLSLT Signed saturating doubling multiply-subtract long from accumulator (top) SQDMLSLT (vectors)

SQDMULLB Signed saturating doubling multiply long (bottom) SQDMULLB (vectors)

SQDMULLT Signed saturating doubling multiply long (top) SQDMULLT (vectors)

SSHLLB Signed shift left long by immediate (bottom) SSHLLB

SSHLLT Signed shift left long by immediate (top) SSHLLT

SSUBLB Signed subtract long (bottom) SSUBLB

SSUBLT Signed subtract long (top) SSUBLT

SSUBWB Signed subtract wide (bottom) SSUBWB

SSUBWT Signed subtract wide (top) SSUBWT

UABALB Unsigned absolute difference and accumulate long (bottom) UABALB

UABALT Unsigned absolute difference and accumulate long (top) UABALT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-466
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.5 Narrowing DSP operation

The narrowing DSP instructions are based on AArch64 Advanced SIMD instructions with similar mnemonics. The
instructions operate on integer values and produce results that are half the width of the inputs. The instructions read
wide source elements and place each result in one of the following:

• The overlapped even-numbered (bottom) half-width destination elements. The odd-numbered destination
elements are set to zero.

• The overlapped odd-numbered (top) half-width destination elements. The even-numbered destination
elements are unchanged, which means that the instructions are implicitly merging operations.

UABDLB Unsigned absolute difference long (bottom) UABDLB

UABDLT Unsigned absolute difference long (top) UABDLT

UADDLB Unsigned add long (bottom) UADDLB

UADDLT Unsigned add long (top) UADDLT

UADDWB Unsigned add wide (bottom) UADDWB

UADDWT Unsigned add wide (top) UADDWT

UMLALB Unsigned multiply-add long to accumulator (bottom) UMLALB (vectors)

UMLALT Unsigned multiply-add long to accumulator (top) UMLALT (vectors)

UMLSLB Unsigned multiply-subtract long from accumulator (bottom) UMLSLB (vectors)

UMLSLT Unsigned multiply-subtract long from accumulator (top) UMLSLT (vectors)

UMULLB Unsigned multiply long (bottom) UMULLB (vectors)

UMULLT Unsigned multiply long (top) UMULLT (vectors)

USHLLB Unsigned shift left long by immediate (bottom) USHLLB

USHLLT Unsigned shift left long by immediate (top) USHLLT

USUBLB Unsigned subtract long (bottom) USUBLB

USUBLT Unsigned subtract long (top) USUBLT

USUBWB Unsigned subtract wide (bottom) USUBWB

USUBWT Unsigned subtract wide (top) USUBWT

Table C3-168 Widening DSP instructions (continued)

Mnemonic Instruction See

Table C3-169 Narrowing DSP instructions

Mnemonic Instruction See

ADDHNB Add narrow high part (bottom) ADDHNB

ADDHNT Add narrow high part (top) ADDHNT

RADDHNB Rounding add narrow high part (bottom) RADDHNB

RADDHNT Rounding add narrow high part (top) RADDHNT

RSHRNB Rounding shift right narrow by immediate (bottom) RSHRNB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-467
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.6 Unary narrowing operations

The unary narrowing instructions are unpredicated and do not write to the source register. The instructions read
elements from the source vector and saturate each value to the half-width destination element size. The instructions
place the narrow results in one of the following:

• The overlapped even-numbered (bottom) half-width elements. The odd-numbered elements are set to zero.

• The overlapped odd-numbered (top) half-width elements. The even-numbered elements are unchanged.

Non-saturating (truncating) conversions can be performed using existing SVE instructions such as shifts, masks,

and permutes.

RSHRNT Rounding shift right narrow by immediate (top) RSHRNT

RSUBHNB Rounding subtract narrow high part (bottom) RSUBHNB

RSUBHNT Rounding subtract narrow high part (top) RSUBHNT

SHRNB Shift right narrow by immediate (bottom) SHRNB

SHRNT Shift right narrow by immediate (top) SHRNT

SQRSHRNB Signed saturating rounding shift right narrow by immediate (bottom) SQRSHRNB

SQRSHRNT Signed saturating rounding shift right narrow by immediate (top) SQRSHRNT

SQRSHRUNB Signed saturating rounding shift right unsigned narrow by immediate (bottom) SQRSHRUNB

SQRSHRUNT Signed saturating rounding shift right unsigned narrow by immediate (top) SQRSHRUNT

SQSHRNB Signed saturating shift right narrow by immediate (bottom) SQSHRNB

SQSHRNT Signed saturating shift right narrow by immediate (top) SQSHRNT

SQSHRUNB Signed saturating shift right unsigned narrow by immediate (bottom) SQSHRUNB

SQSHRUNT Signed saturating shift right unsigned narrow by immediate (top) SQSHRUNT

SUBHNB Subtract narrow high part (bottom) SUBHNB

SUBHNT Subtract narrow high part (top) SUBHNT

UQRSHRNB Unsigned saturating rounding shift right narrow by immediate (bottom) UQRSHRNB

UQRSHRNT Unsigned saturating rounding shift right narrow by immediate (top) UQRSHRNT

UQSHRNB Unsigned saturating shift right narrow by immediate (bottom) UQSHRNB

UQSHRNT Unsigned saturating shift right narrow by immediate (top) UQSHRNT

Table C3-169 Narrowing DSP instructions (continued)

Mnemonic Instruction See

Table C3-170 Unary narrowing instructions

Mnemonic Instruction See

SQXTNB Signed saturating extract narrow (bottom) SQXTNB

SQXTNT Signed saturating extract narrow (top) SQXTNT

SQXTUNB Signed saturating unsigned extract narrow (bottom) SQXTUNB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-468
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.7 Non-widening pairwise arithmetic

The non-widening pairwise arithmetic instructions operate on pairs of adjacent elements in each source vector and
produce a result element that is the same size as a single input element. The results from the first and second source
vectors are interleaved, so that the source and result elements overlap. The result is destructively placed in the first
source vector. The AArch64 Advanced SIMD instructions do not interleave the results from the first and second
source vectors. Predication applies to the destination vector. The even-numbered predicate elements enable an
operation on a pair of elements in the first source vector. The odd-numbered predicate elements enable an operation
on a pair of elements in the second source vector. Inactive elements in the destination vector register are not
modified.

C3.9.8 Widening pairwise arithmetic

The widening pairwise arithmetic instructions operate on pairs of adjacent elements in a single source vector and
produce a double-width result element that is accumulated into the destination vector. Inactive elements in the
destination vector register are not modified.

SQXTUNT Signed saturating unsigned extract narrow (top) SQXTUNT

UQXTNB Unsigned saturating extract narrow (bottom) UQXTNB

UQXTNT Unsigned saturating extract narrow (top) UQXTNT

Table C3-170 Unary narrowing instructions (continued)

Mnemonic Instruction See

Table C3-171 Non-widening pairwise arithmetic instructions

Mnemonic Instruction See

ADDP Add pairwise ADDP

FADDP Floating-point add pairwise FADDP

FMAXNMP Floating-point maximum number pairwise FMAXNMP

FMAXP Floating-point maximum pairwise FMAXP

FMINNMP Floating-point minimum number pairwise FMINNMP

FMINP Floating-point minimum pairwise FMINP

SMAXP Signed maximum pairwise SMAXP

SMINP Signed minimum pairwise SMINP

UMAXP Unsigned maximum pairwise UMAXP

UMINP Unsigned minimum pairwise UMINP

Table C3-172 Widening pairwise arithmetic instructions

Mnemonic Instruction See

SADALP Signed add and accumulate long pairwise SADALP

UADALP Unsigned add and accumulate long pairwise UADALP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-469
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.9 Bitwise ternary logical instructions

The bitwise ternary logical instructions enable complex bit processing codes to be accelerated using multiple
bitwise logical operations in a shorter instruction sequence. All of the following operations are supported by the
bitwise ternary logical instructions:

• The BCAX instruction combines a ternary bitwise clear with an exclusive-OR.

• The EOR3 instruction provides a ternary exclusive-OR.

• The XAR instruction combines an exclusive-OR with rotation by a constant amount.

• The bitwise select instructions, BSL, BSL1N, BSL2N, and NBSL, can be used with other bitwise logical instructions
to generate all 256 possible bitwise combinations of three input bits using at most three instructions.

The bitwise ternary logical instructions are unpredicated.

C3.9.10 Large integer arithmetic

The large integer arithmetic instructions aid the processing of large integers in vector registers by maintaining
multiple carry chains that are interleaved in accumulator vectors.A large integer arithmetic instruction takes as input
all of the following:

• Either the even-numbered (bottom) or odd-numbered (top) elements of the first source vector.

• A 1-bit carry input from the least-significant bit of the odd-numbered elements of the second source vector.

The inputs to the instruction are added to or subtracted from the even-numbered elements of the destination and
accumulator vector. The 1-bit carry output is placed in the corresponding odd-numbered element of the destination
vector.

Table C3-173 Bitwise ternary logical instructions

Mnemonic Instruction See

BCAX Bitwise clear and exclusive-OR BCAX

BSL Bitwise select BSL

BSL1N Bitwise select with first input inverted BSL1N

BSL2N Bitwise select with second input inverted BSL2N

EOR3 Bitwise exclusive-OR of three vectors EOR3

NBSL Bitwise inverted select NBSL

XAR Bitwise exclusive-OR and rotate right by immediate XAR

Table C3-174 Large integer arithmetic instructions

Mnemonic Instruction See

ADCLB Add with carry long (bottom) ADCLB

ADCLT Add with carry long (top) ADCLT

SBCLB Subtract with carry long (bottom) SBCLB

SBCLT Subtract with carry long (top) SBCLT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-470
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.11 Multiplication by indexed elements

The multiplication by indexed elements instructions take all integer elements in each 128-bit vector segment of the
first source vector and multiplies them by the indexed element in the corresponding segment of the second source
vector.

The products might be destructively added to or subtracted from the corresponding elements of an addend vector.

The second source vector elements are specified using an immediate index that selects the same element position in
each 128-bit vector segment. The index range is 0 to one less than the number of elements per 128-bit segment,
encoded in 1 to 3 bits depending on the element size.

C3.9.12 Complex integer arithmetic

Complex integer arithmetic instructions operate on signed integer complex numbers in vectors containing the
following interleaved element pairs:

• The even-numbered elements contain the real parts of the complex numbers.

• The odd-numbered elements contain the imaginary parts of the complex numbers.

Table C3-175 Multiplication by indexed elements instructions

Mnemonic Instruction See

MLA Multiply-add to accumulator (indexed) MLA (indexed)

MLS Multiply-subtract from accumulator (indexed) MLS (indexed)

MUL Multiply (indexed) MUL (indexed)

SMLALB Signed multiply-add long to accumulator (bottom, indexed) SMLALB (indexed)

SMLALT Signed multiply-add long to accumulator (top, indexed) SMLALT (indexed)

SMLSLB Signed multiply-subtract long from accumulator (bottom, indexed) SMLSLB (indexed)

SMLSLT Signed multiply-subtract long from accumulator (top, indexed) SMLSLT (indexed)

SQDMLALT Signed saturating doubling multiply-add long to accumulator (top, indexed) SQDMLALT (indexed)

SQDMLSLB Signed saturating doubling multiply-subtract long from accumulator (bottom, indexed) SQDMLSLB (indexed)

SQDMLSLT Signed saturating doubling multiply-subtract long from accumulator (top, indexed) SQDMLSLB (indexed)

SQDMULLT Signed saturating doubling multiply long (top, indexed) SQDMULLT (indexed)

SQRDMLAH Signed saturating rounding doubling multiply-add high to accumulator (indexed) SQRDMLAH (indexed)

SQRDMLSH Signed saturating rounding doubling multiply-subtract high from accumulator (indexed) SQRDMLSH (indexed)

SQRDMULH Signed saturating rounding doubling multiply high (indexed) SQRDMULH (indexed)

UMLALB Unsigned multiply-add long to accumulator (bottom, indexed) UMLALB (indexed)

UMLALT Unsigned multiply-add long to accumulator (top, indexed) UMLALT (indexed)

UMLSLB Unsigned multiply-subtract long from accumulator (bottom, indexed) UMLSLB (indexed)

UMLSLT Unsigned multiply-subtract long from accumulator (top, indexed) UMLSLT (indexed)

UMULLB Unsigned multiply long (bottom, indexed) UMULLB (indexed)

UMULLT Unsigned multiply long (top, indexed) UMULLT (indexed)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-471
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.12.1 Uniform complex integer arithmetic

The uniform complex integer arithmetic instructions operate on vectors containing integral complex numbers. The
instructions operate on complex numbers that are in polar form.

The CADD instructions rotate the complex numbers in the second source vector before adding element pairs to the
corresponding elements of the first source vector, in a destructive manner. The rotation direction is 90 degrees or
270 degrees from the positive real axis towards the positive imaginary axis.

The CMLA instructions transform the operands to enable multiply-add or multiply-subtract operations on complex
numbers by combining two of the instructions. The following transformations are done:

• The complex numbers in the second source vector are rotated by 0 degrees or 180 degrees before multiplying
by the duplicated real components of the first source vector.

• The complex numbers in the second source vector are rotated by 90 degrees or 270 degrees before
multiplying by the duplicated imaginary components of the first source vector.

The resulting products are added to the corresponding components of the destination and addend vector.

Two CMLA instructions can be used, as follows:

• CMLA Zda.S, Zn.S, Zm.S, #A

• CMLA Zda.S, Zn.S, Zm.S, #B

Some meaningful combinations of A and B are:

• A=0, B=90. The complex number vectors, Zn and Zm, are multiplied and the products are added to the
complex numbers in Zda.

• A=0, B=270. The complex number conjugates in Zn are multiplied by the complex numbers in Zm and the
products are added to the complex numbers in Zda.

• A=180, B=270. The two complex number vectors, Zn and Zm, are multiplied and the products are subtracted
from the complex numbers in Zda.

• A=180, B=90. The complex number conjugates in Zn are multiplied by the complex numbers in Zm and the
products are subtracted from the complex numbers in Zda.

The CMLA indexed form uses a single complex number in each 128-bit segment of the second source vector as the
multiplier for all complex numbers in the corresponding first source vector segment. The complex numbers in the
second source vector are specified using an immediate index that selects the same complex number position in each
128-bit vector segment. The index range is 0 to one less than the number of complex numbers per 128-bit segment,
encoded in 1 to 2 bits depending on the complex number size.

Table C3-176 Uniform complex integer arithmetic instructions

Mnemonic Instruction See

CADD Complex integer add with rotate CADD

CMLA Complex integer multiply-add with rotate CMLA (vectors)

Complex integer multiply-add with rotate (indexed) CMLA (indexed)

SQCADD Saturating complex integer add with rotate SQCADD

SQRDCMLAH Saturating rounding doubling complex integer multiply-add high with rotate SQRDCMLAH (vectors)

SQRDCMLAH Saturating rounding doubling complex integer multiply-add high with rotate (indexed) SQRDCMLAH (indexed)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-472
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.12.2 Widening complex integer arithmetic

The widening complex integer instructions deinterleave the real and imaginary components of integral complex
numbers, and generate complex result components that have a higher numeric precision than the input values. The
instructions differ from other complex instructions that process the real and imaginary components of complex
numbers and write the complex result components to the destination.

The following instructions are useful when generating the widened components of the result of a complex
multiply-add:

• SQDMLALBT, the imaginary results.

• SQDMLSLT, the real results.

• SQDMLALB, the conjugate real results.

• SQDMLSLBT, the conjugate imaginary results.

The following instructions are useful when generating the widened components of the result of a complex addition
(X + jY) or (X - jY), given complex numbers X and Y:

• SADDLBT, the imaginary results when computing (X + jY) or real values when computing (X - jY).

• SSUBLBT, the real results when computing (X + jY) or imaginary values when computing (X - jY).

C3.9.12.3 Complex integer dot product

The complex integer dot product instructions delimit the source vectors into pairs of 8-bit or 16-bit signed integer
complex numbers. The complex numbers in the first source vector are multiplied by the corresponding complex
numbers in the second source vector. The wide real or wide imaginary part of the product is accumulated into a
32-bit or 64-bit destination vector element that overlaps all four of the elements that form a pair of complex number
values in the first source vector.

Each instruction implicitly deinterleaves the real and imaginary components of their complex number inputs, so that
the destination vector accumulates four wide real sums or four wide imaginary sums.

The complex numbers in the second source vector are rotated by 0, 90, 180, or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, considered in polar form, by applying the following
transformations before the dot product operations:

• If the rotation is #0, the imaginary parts of the complex numbers in the second source vector are negated. The
destination vector accumulates the real parts of a complex dot product.

• If the rotation is #90, the real and imaginary parts of the complex numbers the second source vector are
swapped. The destination vector accumulates the imaginary parts of a complex dot product.

• If the rotation is #180, there is no transformation. The destination vector accumulates the real parts of a
complex conjugate dot product.

Table C3-177 Widening complex integer arithmetic instructions

Mnemonic Instruction See

SADDLBT Signed add long (bottom + top) SADDLBT

SQDMLALBT Signed saturating doubling multiply-add long to accumulator (bottom × top) SQDMLALBT

SQDMLSLBT Signed saturating doubling multiply-subtract long from accumulator (bottom × top) SQDMLSLBT

SSUBLBT Signed subtract long (bottom - top) SSUBLBT

SSUBLTB Signed subtract long (top - bottom) SSUBLTB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-473
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
• If the rotation is #270, the real parts of the complex numbers in the second source vector are negated and then
swapped with the imaginary parts. The destination vector accumulates the imaginary parts of a complex
conjugate dot product.

The indexed form of the instruction selects a single complex number pair within each 128-bit segment of the second
source vector to multiply with all complex number pairs within the corresponding 128-bit segment of the first source
vector. The complex number pairs within the second source vector are specified using an immediate index which
selects the same complex number pair position within each 128-bit vector segment. The index range is from 0 to
one less than the number of complex number pairs per 128-bit segment, encoded in 1 or 2 bits depending on the size
of the complex number pair.

Each complex number is represented in a vector register as an even and odd pair of elements. The real part is the
even-numbered element and the imaginary part is the odd-numbered element.

C3.9.13 Floating-point extra conversions

The floating-point extra conversion instructions convert to and from fully packed vectors of narrower floating-point
elements.

The FCVTLT instruction converts the top or odd-numbered narrow floating-point vector elements to wider elements
of the next higher precision. The conversion is similar to what is done by the widening integer instructions.

The FCVTNT and FCVXNT instructions convert wider floating-point vector elements to the top or odd-numbered
narrower elements of the next lower precision. The conversion is similar to what is done by the narrowing integer
instructions.

The FCVTXNT and FCVTX instructions convert from double-precision to fully packed half-precision in two narrowing
steps, double-precision to single-precision and then single-precision to half-precision. The two-step conversion is
done without an intermediate rounding error by using von Neumann rounding, which rounds an inexact mantissa to
an odd value.

The existing SVE FCVT instructions implement the corresponding widening and narrowing conversions on the
bottom or even-numbered half-width elements.

C3.9.14 Floating-point widening multiply-accumulate

The floating-point widening multiply-accumulate instructions multiply the even-numbered or odd-numbered
half-precision elements of the two source vectors and then destructively add or subtract the single-precision
intermediate products. Intermediate rounding is not done. The result is placed into the overlapping single-precision
elements of the addend vector.

Table C3-178 Complex integer dot product instructions

Mnemonic Instruction See

CDOT Complex integer dot product CDOT (vectors)

Complex integer dot product (indexed) CDOT (indexed)

Table C3-179 Floating-point extra conversion instructions

Mnemonic Instruction See

FCVTLT Floating-point up convert long (top, predicated) FCVTLT

FCVTNT Floating-point down convert narrow (top, predicated) FCVTNT

FCVTX Floating-point down convert, rounding to odd (predicated) FCVTX

FCVTXNT Floating-point down convert, rounding to odd (top, predicated) FCVTXNT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-474
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
The instructions implicitly convert the half-precision inputs to single-precision and can be used to mitigate the
impact of round-off errors when accumulating half-precision floating-point values over many iterations.

The instructions are unpredicated and preserve the multiplier and multiplicand source vectors.

C3.9.15 Floating-point integer binary logarithm

The floating-point integer binary logarithm instruction returns the signed integer base 2 logarithm of each
floating-point input element |x| after normalization.

The instruction produces the unbiased exponent of x used in the representation of the floating-point value. For
positive x, x = significand × 2exponent.

The integer results are placed in elements of the destination vector, which have the same width as the floating-point
input elements:

• If x is normal, the result is the base 2 logarithm of x.

• If x is subnormal, the result corresponds to the normalized representation.

• If x is infinite, the result is 2(esize-1)-1.

• If x is ±0.0 or NaN, the result is -2(esize-1).

Inactive elements in the destination vector register are not modified.

C3.9.16 Cross-lane match detect

This section includes instructions that detect or count matching elements within another vector, or within a 128-bit
vector segment.

Table C3-180 Floating-point widening multiply-accumulate instructions

Mnemonic Instruction See

FMLALB Floating-point fused multiply-add long to accumulator (bottom) FMLALB (vectors)

FMLALB Floating-point fused multiply-add long to accumulator (bottom, indexed) FMLALB (indexed)

FMLALT Floating-point fused multiply-add long to accumulator (top) FMLALT (vectors)

FMLALT Floating-point fused multiply-add long to accumulator (top, indexed) FMLALT (indexed)

FMLSLB Floating-point fused multiply-subtract long from accumulator (bottom) FMLSLB (vectors)

FMLSLB Floating-point fused multiply-subtract long from accumulator (bottom, indexed) FMLSLB (indexed)

FMLSLT Floating-point fused multiply-subtract long from accumulator (top) FMLSLT (vectors)

FMLSLT Floating-point fused multiply-subtract long from accumulator (top, indexed) FMLSLT (indexed)

Table C3-181 Floating-point integer binary logarithm instruction

Mnemonic Instruction See

FLOGB Floating-point base 2 logarithm as integer FLOGB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-475
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.16.1 Vector Histogram Count

The vector histogram count instructions create vector histograms.

• HISTSEG compares each 8-bit byte element in the first source vector with all of the elements in the
corresponding 128-bit segment of the second source vector. The instruction counts the matching elements
and places the result in the corresponding destination vector element. The instruction is unpredicated.

• HISTCNT compares each active 32-bit or 64-bit element in the first source vector with all elements in the second
source vector that have an element number less than or equal to the Active element in the first source vector.
The number of matching elements is counted and the result is placed in the corresponding destination vector
element. Inactive elements in the destination vector are set to zero. Inactive elements in the second source

vector do not cause a match.

C3.9.16.2 Character match

The character match instructions can be used to scan each 128-bit segment of the second source vector for an 8-bit
or 16-bit character string from the first source vector.

The MATCH and NMATCH instructions compare each active 8-bit or 16-bit character in the first source vector with all of
the characters in the corresponding 128-bit segment of the second source vector. When the first source character
matches any (MATCH) or does not match any (NMATCH) character in the second segment, a true value is placed in the
corresponding destination predicate element, otherwise a false value is placed in the destination predicate element.
Inactive elements in the destination predicate register are set to zero.

The instruction sets the NZC condition flags based on the predicate result, and sets the V flag to zero.

C3.9.16.3 Contiguous conflict detection

The contiguous conflict detection instructions check two addresses for a conflict or overlap between address ranges
that could result in a loop-carried dependency through memory. The address range has the form [addr,addr+VL÷8],
where VL is the Effective SVE vector length in bits. A conflict can occur when contiguous load and store
instructions use these addresses within the same loop iteration.

The instructions generate a predicate with elements that are true when the addresses cannot conflict within the same
iteration, and false thereafter. The instructions set the NZC condition flags based on the predicate result, and the V
flag is set to zero.

Table C3-182 Vector histogram count instructions

Mnemonic Instruction See

HISTCNT Count matching elements in vector HISTCNT

HISTSEG Count matching elements in vector segments HISTSEG

Table C3-183 Character match instructions

Mnemonic Instruction See

MATCH Detect any matching elements, setting the condition flag MATCH

NMATCH Detect no matching elements, setting the condition flags NMATCH

Table C3-184 Contiguous conflict detection instructions

Mnemonic Instruction See

WHILERW While free of read-after-write conflicts WHILERW

WHILEWR While free of write-after-read/write conflicts WHILEWR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-476
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.17 Bit permutation

The bit permutation instructions are optional. The bit permutation instructions are configured by the
ID_AA64ZFR0_EL1.BitPerm bit. The instructions can be used to scatter, gather, or separate a set of bits within each
first source vector element under the control of a bit mask or sieve in the corresponding second source vector
elements. The instructions are unpredicated.

The BDEP instruction scatters the lowest-numbered contiguous bits within each first source vector element to the bit
positions that are indicated by nonzero bits in the corresponding mask element of the second source vector. The
order of the bits is preserved. The bits corresponding to a zero mask bit are set to zero.

The BEXT instruction gathers bits in each first source vector element from the bit positions that are indicated by
nonzero bits in the corresponding mask element of the second source vector. The bits are gathered to the
lowest-numbered contiguous bits of the corresponding destination element, preserving their order. The remaining
higher-numbered bits are set to zero.

The BGRP instruction selects bits from each first source vector element and groups them into the corresponding
destination element, using a corresponding mask element in the second source vector, as follows:

• The nonzero bits in the mask element select the bit positions from the corresponding first source vector
element. The selected bits are gathered into the lowest-numbered contiguous bits of the destination element.

• The zero bits in the mask element select the bit positions from the corresponding first source vector element.
The selected bits are gathered into the highest-numbered contiguous bits of the destination element.

The bit order within each group is preserved.

C3.9.18 Polynomial arithmetic

The polynomial arithmetic instructions support polynomial arithmetic over [0, 1], where exclusive-OR takes the
place of addition. The instructions can be used in applications such as CRC calculations, AES-GCM, elliptic curve
cryptography, Diffie-Hellman key exchange, and others.

The PMUL and widening PMULL instructions perform a polynomial multiplication over [0, 1]. The PMULL instructions
read the source operands from either the even-numbered (bottom) or odd-numbered (top) narrow elements. Each
double-width result is placed in the destination elements that overlap the narrow source elements.

The interleaving bitwise exclusive-OR instructions operate on the even-numbered (bottom) elements of the first
source vector register and the odd-numbered (top) elements of the second source vector register. The result is either
placed in the even-numbered elements of the destination vector, leaving the odd-numbered elements unchanged, or
placed in the odd-numbered elements of the destination vector, leaving the even-numbered elements unchanged.

These instructions are unpredicated.

Table C3-185 Bit permutation instructions

Mnemonic Instruction See

BDEP Scatter lower bits into positions selected by bitmask BDEP

BEXT Gather lower bits from positions selected by bitmask BEXT

BGRP Group bits to right or left as selected by bitmask BGRP

Table C3-186 Polynomial arithmetic instructions

Mnemonic Instruction See

EORBT Interleaving exclusive-OR (bottom, top) EORBT

EORTB Interleaving exclusive-OR (top, bottom) EORTB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-477
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.19 Vector concatenation

The vector concatenation instructions have new constructive versions that are introduced in SVE2 that preserve both
of the source operands. In the constructive versions of the instruction, only the first source vector register number
is encoded, which requires the source vectors to be in consecutively numbered registers (modulo 32).

C3.9.20 Extended table lookup permute

The SVE2 extended table lookup instructions, TBL and TBX enable the construction of table lookups or programmable
vector permutes where the table consists of two or more vector registers.

Because the index values can select any element in a vector, the instructions are not naturally vector length agnostic.

C3.9.21 Non-temporal gather/scatter

The non-temporal gather load and scatter store instructions provide a hint to the memory system that the data
structure being accessed has a low reuse frequency. The memory system can use the hint to avoid retaining the data
or evicting more frequently-used data from the caches.

These instructions support a single addressing mode consisting of 64-bit or 32-bit vector base addresses plus an
unscaled 64-bit scalar offset that defaults to the zero register, XZR. Other addressing modes can be constructed
using extra instructions.

PMUL Polynomial multiply vectors (unpredicated) PMUL

PMULLB Polynomial multiply long (bottom) PMULLB

PMULLT Polynomial multiply long (top) PMULLT

Table C3-186 Polynomial arithmetic instructions (continued)

Mnemonic Instruction See

Table C3-187 Vector concatenation instructions

Mnemonic Instruction See

EXT Extract vector from pair of vectors EXT

SPLICE Splice two vectors under predicate control SPLICE

Table C3-188 Extended table lookup instructions

Mnemonic Instruction See

TBL Programmable table lookup in one or two vector table (zeroing) TBL

TBX Programmable table lookup in single vector table (zeroing) TBX

Table C3-189 Non-temporal gather load and scatter store instructions

Mnemonic Instruction See

LDNT1B Gather load non-temporal unsigned bytes LDNT1B (vector plus scalar)

LDNT1D Gather load non-temporal unsigned doublewords LDNT1D (vector plus scalar)

LDNT1H Gather load non-temporal unsigned halfwords LDNT1H (vector plus scalar)

LDNT1SB Gather load non-temporal signed bytes LDNT1SB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-478
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.22 Cryptography support

Implementation of cryptography acceleration instructions is optional and controlled by the
ID_AA64ZFR0_EL1.{SM4, SHA3, AES} bit fields. Implementation of the instructions requires consistency is
maintained with the existing Armv8 cryptographic functionality support, as follows:

• If none of the SVE2 cryptographic instructions are implemented, then the Armv8 AES, SHA1, and SHA256
instructions and the Armv8.4 SHA512, SHA3, SM3, and SM4 instructions can be implemented.

• If the SVE2 SHA3 instructions are implemented, then implementation of the Armv8.4 SHA3 instructions is
required.

• If the SVE2 SM4 instructions are implemented, then implementation of the Armv8.4 SM4 instructions is
required, but implementing any of the following instructions is optional:

— The Armv8 AES, SHA1, and SHA256 instructions.

— The Armv8.4 SHA512 and SHA3 instructions.

• If the SVE2 AES instructions are implemented, then implementation of the Armv8 AES instructions is required,
but implementing any of the Armv8 SHA256, SHA512, SHA3, SM3, and SM4 instructions is optional.

• If all of the SVE2 cryptographic instructions are implemented, then implementation of the equivalent Armv8
and Armv8.4 instructions is required.

C3.9.22.1 AES-128 instructions

AES-128 is a 128-bit block cipher that is computed using a combination of linear EOR operations, the use of
rotations by fixed values, and a set of 8-bit non-linear substitutions.

The following instructions accelerate a single encryption round:

• The AESE instruction reads a 16-byte state array from each 128-bit segment of the first source vector and a
round key from the corresponding 128-bit segment of the second source vector. A single round of the
AddRoundKey(), SubBytes(), and ShiftRows() transformations, in accordance with the AES standard, is
applied to each state array.

• The AESMC instruction reads a 16-byte state array from each 128-bit segment of the source register and
performs a single round of the MixColumns() transformation on each state array in accordance with the AES
standard.

LSNT1SH Gather load non-temporal signed halfwords LDNT1SH

LSNT1SW Gather load non-temporal signed words LDNT1SW

LDNT1W Gather load non-temporal unsigned words LDNT1W (vector plus scalar)

STNT1B Scatter store non-temporal bytes STNT1B (vector plus scalar)

STNT1D Scatter store non-temporal doublewords STNT1D (vector plus scalar)

STNT1H Scatter store non-temporal halfwords STNT1H (vector plus scalar)

STNT1W Scatter store non-temporal words STNT1W (vector plus scalar)

Table C3-189 Non-temporal gather load and scatter store instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-479
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
The following instructions accelerate a single decryption round:

• The AESD instruction reads a 16-byte state array from each 128-bit segment of the first source vector and a
round key from the corresponding 128-bit segment of the second source vector. A single round of the
AddRoundKey(), InvSubBytes(), and InvShiftRows() transformations in accordance with the AES standard, is
applied to each state array.

• The AESMC instruction reads a 16-byte state array from each 128-bit segment of the source register and
performs a single round of the InvMixColumns() transformation on each state array in accordance with the
AES standard.

Each updated state array is destructively placed in the corresponding segment of the first source vector. The AES
instructions are unpredicated.

C3.9.22.2 SHA-3 instructions

The SHA-3 instructions accelerate the SHA-3 hash algorithm.

The SHA-3 hash is based on a running digest of 1600 bits, arranged as a five by five array of 64-bit values. The
instructions map the 25 64-bit values into 25 vector registers, with each 64-bit value occupying the same 64-bit
element in each vector. A series of transformations is done on these registers during a round of the SHA-3 hash
calculation.

Two or more parallel SHA-3 hash calculations are combined as a SIMD operation, where one calculation operates
on the 0th 64-bit element of each vector, and the other calculation operates on the first 64-bit element of each vector.
The SIMD operation is useful for the fast parallel hash algorithm recently introduced into the SHA-3 standard that
allows a single input stream to be computed using multiple SHA-3 hashes in parallel.

The SHA3 instructions are unpredicated.

See also Bitwise ternary logical instructions.

C3.9.22.3 SM4 instructions

SM4 is the standard Chinese symmetric encryption algorithm which can be accelerated using a similar approach to
that used for AES.

SM4 is a 128-bit wide block cipher that is computed using a combination of linear EOR operations, the use of
fixed-value rotations, and a set of 8-bit non-linear substitutions.

• The SM4E instruction reads 16 bytes of input data from each 128-bit segment of the first source vector, and
four iterations of 32-bit round keys from the corresponding 128-bit segments of the second source vector.
Each input data block is encrypted by four rounds in accordance with the SM4 standard, and destructively
placed in the corresponding segments of the first source vector.

Table C3-190 AES-128 instructions

Mnemonic Instruction See

AESD AES single round decryption AESD

AESE AES single round encryption AESE

AESIMC AES inverse mix columns AESIMC

AESMC AES mix columns AESMC

Table C3-191 SHA-3 instructions

Mnemonic Instruction See

RAX1 Bitwise rotate left by 1 and exclusive-OR RAX1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-480
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
• The SM4EKEY instruction reads four rounds of 32-bit input key values from each 128-bit segment of the first
source vector, and four rounds of 32-bit constants from the corresponding 128-bit segment of the second
source vector. The four rounds of output key values are derived in accordance with the SM4 standard, and
placed in the corresponding segments of the destination vector.

The SM4 instructions are unpredicated.

C3.9.23 BFloat16 arithmetic

C3.9.23.1 Add and subtract

Add or subtract BFloat16 elements of the second source vector from the corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector.

C3.9.23.2 Multiply and multiply-accumulate

Multiply all BFloat16 elements of the first source vector by the specified element in the corresponding second
source vector and place the results in the corresponding elements of the destination vector. The accumulate
instructions add or subtract the result without intermediate rounding from the corresponding elements of the
destination vector.

BFMLA and BFMLS perform a fused multiply-add or multiply-subtract of BFloat16 values without intermediate
rounding.

Table C3-192 SM4 instructions

Mnemonic Instruction See

SM4E SM4 encryption and decryption SM4E

SM4EKEY SM4 key updates SM4EKEY

Table C3-193 SVE2 BFloat16 add and subtract instructions

Mnemonic Instruction See

BFADD BFloat16 floating-point add vectors (predicated, unpredicated) BFADD (predicated)

BFADD (unpredicated)

BFSUB BFloat16 floating-point subtract vectors (predicated, unpredicated) BFSUB (predicated)

BFSUB (unpredicated)

Table C3-194 SVE2 BFloat16 multiply and multiply-accumulate instructions

Mnemonic Instruction See

BFMUL BFloat16 floating-point multiply vectors by indexed elements BFMUL (indexed)

BFloat16 floating-point multiply vectors (predicated, unpredicated) BFMUL (vectors, predicated)

BFMUL (vectors, unpredicated)

BFMLA BFloat16 floating-point fused multiply-add vectors by indexed elements BFMLA (indexed)

BFloat16 floating-point fused multiply-add vectors BFMLA (vectors)

BFMLS BFloat16 floating-point fused multiply-subtract vectors by indexed elements BFMLS (indexed)

BFloat16 floating-point fused multiply-subtract vectors BFMLS (vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-481
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.24 BFloat16 minimum/maximum

Determine the maximum or minimum active BFloat16 elements of the second source vector and corresponding
elements of the first source vector and destructively place the results in the corresponding elements of the first
source vector.

C3.9.25 Clamp to minimum/maximum

Clamp each element in the destination vectors to between the minimum value in the corresponding element of the
first source vector and the maximum value in the corresponding element of the second source vector and
destructively place the clamped results in the corresponding elements of the destination vector.

C3.9.25.1 Floating-point clamp to minimum/maximum

C3.9.25.2 Integer clamp to minimum/maximum

C3.9.26 Floating-point dot product

Compute the dot product of a pair of values held in the corresponding elements of the first source vectors multiplied
by the corresponding elements of the second source vector. The dot product is then destructively added to the
corresponding element of the destination vector.

Table C3-195 SVE2 BFloat16 minimum/maximum instructions

Mnemonic Instruction See

BFMAX BFloat16 floating-point maximum (predicated) BFMAX

BFMAXNM BFloat16 floating-point maximum number (predicated) BFMAXNM

BFMIN BFloat16 floating-point minimum (predicated) BFMIN

BFMINNM BFloat16 floating-point minimum number (predicated) BFMINNM

Table C3-196 SVE2.1 Floating-point clamp to minimum/maximum instructions

Mnemonic Instruction See

BFCLAMP BFloat16 floating-point clamp to minimum/maximum number BFCLAMP

FCLAMP Floating-point clamp to minimum/maximum number FCLAMP

Table C3-197 SVE2.1 Integer clamp to minimum/maximum instructions

Mnemonic Instruction See

SCLAMP Signed clamp to minimum/maximum vector SCLAMP

UCLAMP Unsigned clamp to minimum/maximum vector UCLAMP

Table C3-198 SVE2.1 Floating-point dot product instructions

Mnemonic Instruction See

FDOT Half-precision floating-point indexed dot product FDOT (indexed)

Half-precision floating-point dot product FDOT (vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-482
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.27 SVE2.1 quadword operations

C3.9.27.1 Permute within quadwords

In these instructions the same permutation pattern is applied within each quadword.

C3.9.27.2 Reduction to quadword

In the reductions to quadwords instructions a full SVE vector is reduced to a single 128-bit vector. The result of the
operations is placed into the corresponding element of the 128-bit Advanced SIMD and floating-point destination
register.

Table C3-199 SVE2.1 Permute within quadwords instructions

Mnemonic Instruction See

DUPQ Broadcast indexed element within each quadword vector segment (unpredicated) DUPQ

EXTQ Extract vector segment from each pair of quadword vector segments EXTQ

TBLQ Programmable table lookup within each quadword vector segment (zeroing) TBLQ

TBXQ Programmable table lookup within each quadword vector segment (merging) TBXQ

UZPQ1 Concatenate even elements within each pair of quadword vector segments UZPQ1

UZPQ2 Concatenate odd elements within each pair of quadword vector segments UZPQ2

ZIPQ1 Interleave elements from low halves of each pair of quadword vector segments ZIPQ1

ZIPQ2 Interleave elements from high halves of each pair of quadword vector segments ZIPQ2

Table C3-200 SVE2.1 Reduction to quadword instructions

Mnemonic Instruction See

ADDQV Unsigned add reduction of quadword vector segments ADDQV

ANDQV Bitwise AND reduction of quadword vector segments ANDQV

EORQV Bitwise exclusive OR reduction of quadword vector segments EORQV

FADDQV Floating-point add recursive reduction of quadword vector segments FADDQV

FMAXNMQV Floating-point maximum number recursive reduction of quadword vector segments FMAXNMQV

FMAXQV Floating-point maximum reduction of quadword vector segments FMAXQV

FMINNMQV Floating-point minimum number recursive reduction of quadword vector segments FMINNMQV

FMINQV Floating-point minimum recursive reduction of quadword vector segments FMINQV

ORQV Bitwise inclusive OR reduction of quadword vector segments ORQV

SMAXQV Signed maximum reduction of quadword vector segments SMAXQV

SMINQV Signed minimum reduction of quadword vector segments SMINQV

UMAXQV Unsigned maximum reduction of quadword vector segments UMAXQV

UMINQV Unsigned minimum reduction of quadword vector segments UMINQV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-483
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.28 Integer shift and convert

Convert or shift the value of each element of the source vectors and place the results in the corresponding destination
vector elements.

These are narrowing, interleaving, saturating variants of the integer shift and convert instructions, to avoid write
after write dependencies for merging narrowing top instructions.

C3.9.29 Multi-vector predication

Multi-vector predication is required when using the Contiguous multi-vector loads and stores, and also reduces the
number of predicate registers and predicate computations in a loop.

The WHILE instructions generate a predicate-as-counter encoding. These instructions have an operand that indicates
the number of vectors (2 or 4) to be controlled by this predicate, which determines:

• The maximum value that can be stored in the count.

• The number of elements that are considered Active when computing the Any Active element and Last Active
element SVE condition flags.

CNTP has an operand that indicates the limit of the number of elements to be counted. The limit corresponds to the
total number of elements in either 2 or 4 vectors.

For more information, see Predicate-as-counter.

Table C3-201 SVE2.1 Integer shift and convert instructions

Mnemonic Instruction See

SQCVTN Signed saturating extract narrow and interleave SQCVTN

SQCVTUN Signed saturating unsigned extract narrow and interleave SQCVTUN

SQRSHRN Signed saturating rounding shift right narrow by immediate and interleave SQRSHRN

SQRSHRUN Signed saturating rounding shift right unsigned narrow by immediate and interleave SQRSHRUN

UQCVTN Unsigned saturating extract narrow and interleave UQCVTN

UQRSHRN Unsigned saturating rounding shift right narrow by immediate and interleave UQRSHRN

Table C3-202 SVE2.1 Multi-vector predication instructions

Mnemonic Instruction See

CNTP Set scalar to count from predicate-as-counter CNTP (predicate as counter)

PEXT Set pair of predicates from predicate-as-counter PEXT (predicate pair)

Set predicate from predicate-as-counter PEXT (predicate)

PTRUE Initialize predicate-as-counter to all active PTRUE (predicate as counter)

WHILEGE While decrementing signed scalar greater than or equal to scalar
(predicate-as-counter)

WHILEGE (predicate as
counter)

WHILEGT While decrementing signed scalar greater than scalar (predicate-as-counter) WHILEGT (predicate as
counter)

WHILEHI While decrementing unsigned scalar higher than scalar (predicate-as-counter) WHILEHI (predicate as
counter)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-484
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
C3.9.30 Permute vector

This instruction is a fixed permute instruction, which is a doubleword variant of the reverse within elements
instructions.

C3.9.31 Predicate pair loop control

Generate a pair of predicate registers to simplify loop unrolling.

C3.9.32 Predicate move

With the PMOV (to predicate) instruction, based on the specified element size and immediate index, the selected bits
in a vector register are expanded into a predicate register ready to be used as an SVE governing predicate.

WHILEHS While decrementing unsigned scalar higher or same as scalar (predicate-as-counter) WHILEHS (predicate as
counter)

WHILELE While incrementing signed scalar less than or equal to scalar (predicate-as-counter) WHILELE (predicate as
counter)

WHILELO While incrementing unsigned scalar lower than scalar (predicate-as-counter) WHILELO (predicate as
counter)

WHILELS While incrementing unsigned scalar lower or same as scalar (predicate-as-counter) WHILELS (predicate as
counter)

WHILELT While incrementing signed scalar less than scalar (predicate-as-counter) WHILELT (predicate as
counter)

Table C3-202 SVE2.1 Multi-vector predication instructions (continued)

Mnemonic Instruction See

Table C3-203 SVE2.1 Permute vector instruction

Mnemonic Instruction See

REVD Reverse 64-bit doublewords in elements (predicated) REVD

Table C3-204 SVE2.1 Predicate pair loop control instructions

Mnemonic Instruction See

WHILEGE While decrementing signed scalar greater than or equal to scalar (pair of predicates) WHILEGE (predicate pair)

WHILEGT While decrementing signed scalar greater than scalar (pair of predicates) WHILEGT (predicate pair)

WHILEHI While decrementing unsigned scalar higher than scalar (pair of predicates) WHILEHI (predicate pair)

WHILEHS While decrementing unsigned scalar higher or same as scalar (pair of predicates) WHILEHS (predicate pair)

WHILELE While incrementing signed scalar less than or equal to scalar (pair of predicates) WHILELE (predicate pair)

WHILELO While incrementing unsigned scalar lower than scalar (pair of predicates) WHILELO (predicate pair)

WHILELS While incrementing unsigned scalar lower or same as scalar (pair of predicates) WHILELS (predicate pair)

WHILELT While incrementing signed scalar less than scalar (pair of predicates) WHILELT (predicate pair)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-485
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.9 Data processing - SVE2
With the PMOV (to vector) instruction a portion of a bitarray is created and can be stored to memory or further
processed in registers.

C3.9.33 Predicate select

PSEL places contents of the first source predicate register into a destination register or sets the destination to
all-FALSE.

Table C3-205 SVE2.1 Predicate move instructions

Mnemonic Instruction See

PMOV Move predicate from vector PMOV (to predicate)

Move predicate to vector PMOV (to vector)

Table C3-206 SVE2.1 Predicate select instruction

Mnemonic Instruction See

PSEL Predicate select between predicate register or all-false PSEL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-486
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10 Data processing - SME, SME2

The following subsections describe the SME, SME2, and SME2.1 processing instructions:

• Clamp to minimum/maximum.

• Dot product.

• Vertical dot product.

• Element concatenate and interleave.

• Floating-point conversions.

• Floating-point round.

• Lookup table.

• Move operations.

• Multi-vector arithmetic.

• Multi-vector minimum/maximum.

• Multi-vector multiply high

• Multi-vector multiply-accumulate.

• Multi-vector select.

• Multi-vector shift and convert.

• Outer product.

• Stack frame operations.

• Unpack and extend.

• Zero operations.

C3.10.1 Clamp to minimum/maximum

Clamp each element in the destination vectors to between the minimum value in the corresponding element of the
first source vector and the maximum value in the corresponding element of the second source vector and
destructively place the clamped results in the corresponding elements of the destination vectors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-487
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.1.1 Floating-point clamp to minimum/maximum

C3.10.1.2 Integer clamp to minimum/maximum

C3.10.2 Dot product

Compute the dot product of two or four values held in the corresponding elements of the first source vectors and in
the corresponding element of the second source vector. The widened dot product is then added to the corresponding
element of the ZA single-vector groups.

C3.10.2.1 Floating-point dot product

Table C3-207 SME2 Floating-point clamp to minimum/maximum instructions

Mnemonic Instruction See

BFCLAMP Multi-vector BFloat16 floating-point clamp to minimum/maximum number BFCLAMP

FCLAMP Multi-vector floating-point clamp to minimum/maximum number FCLAMP

Table C3-208 SME2 Integer clamp to minimum/maximum instructions

Mnemonic Instruction See

SCLAMP Multi-vector signed clamp to minimum/maximum vector SCLAMP

UCLAMP Multi-vector unsigned clamp to minimum/maximum vector UCLAMP

Table C3-209 SME2 Floating-point Dot product instructions

Mnemonic Instruction See

BFDOT Multi-vector BFloat16 floating-point dot-product by indexed element BFDOT (multiple and indexed vector)

Multi-vector BFloat16 floating-point dot-product by vector BFDOT (multiple and single vector)

Multi-vector BFloat16 floating-point dot-product BFDOT (multiple vectors)

FDOT Multi-vector half-precision floating-point dot-product by indexed element FDOT (multiple and indexed vector)

Multi-vector half-precision floating-point dot-product by vector FDOT (multiple and single vector)

Multi-vector half-precision floating-point dot-product FDOT (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-488
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.2.2 Integer dot product

C3.10.3 Vertical dot product

Compute the vertical dot product of the corresponding values held in the first source vectors and in the
corresponding elements of second source vector. The widened dot product is then added to the corresponding
element of the ZA single-vector groups.

Table C3-210 SME2 Integer Dot product instructions

Mnemonic Instruction See

SDOT Multi-vector signed integer dot-product by indexed element SDOT (2-way, multiple and indexed
vector)

SDOT (4-way, multiple and indexed
vector)

Multi-vector signed integer dot-product by vector SDOT (2-way, multiple and single vector)

SDOT (4-way, multiple and single vector)

Multi-vector signed integer dot-product SDOT (2-way, multiple vectors)

SDOT (4-way, multiple vectors)

SUDOT Multi-vector signed by unsigned integer dot-product by indexed
elements

SUDOT (multiple and indexed vector)

Multi-vector signed by unsigned integer dot-product by vector SUDOT (multiple and single vector)

UDOT Multi-vector unsigned integer dot-product by indexed element UDOT (2-way, multiple and indexed
vector)

UDOT (4-way, multiple and indexed
vector)

Multi-vector unsigned integer dot-product by vector UDOT (2-way, multiple and single vector)

UDOT (4-way, multiple and single vector)

Multi-vector unsigned integer dot-product UDOT (2-way, multiple vectors)

UDOT (4-way, multiple vectors)

USDOT Multi-vector unsigned by signed integer dot-product by indexed element USDOT (multiple and indexed vector)

Multi-vector unsigned by signed integer dot-product by vector USDOT (multiple and single vector)

Multi-vector unsigned by signed integer dot-product USDOT (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-489
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.3.1 Floating-point vertical dot product

C3.10.3.2 Integer vertical dot product

C3.10.4 Element concatenate and interleave

Join elements from the source vectors and place them in the corresponding elements of the destination vectors.

C3.10.5 Floating-point conversions

Convert each element of the source vectors and place the results in the corresponding elements of the destination
vectors.

Table C3-211 SME2 Floating-point vertical dot product instructions

Mnemonic Instruction See

BFVDOT Multi-vector BFloat16 floating-point vertical dot-product by indexed element BFVDOT

FVDOT Multi-vector half-precision floating-point vertical dot-product by indexed element FVDOT

Table C3-212 SME2 Integer vertical dot product instructions

Mnemonic Instruction See

SUVDOT Multi-vector signed by unsigned integer vertical dot-product by indexed element SUVDOT

SVDOT Multi-vector signed integer vertical dot-product by indexed element SVDOT (2-way)

SVDOT (4-way)

USVDOT Multi-vector unsigned by signed integer vertical dot-product by indexed element USVDOT

UVDOT Multi-vector unsigned integer vertical dot-product by indexed element UVDOT (2-way)

UVDOT (4-way)

Table C3-213 SME2 Element concatenate/interleave instructions

Mnemonic Instruction See

UZP Concatenate elements from four/two vectors UZP (four registers)

UZP (two registers)

ZIP Interleave elements from four/two vectors ZIP (four registers)

ZIP (two registers)

Table C3-214 SME2 Floating-point conversions instructions

Mnemonic Instruction See

BFCVT Multi-vector floating-point convert from single-precision to packed BFloat16 format BFCVT

BFCVTN Multi-vector floating-point convert from single-precision to interleaved BFloat16 format BFCVTN

FCVT Multi-vector floating-point convert from single-precision to packed half-precision FCVT (narrowing)

Multi-vector floating-point convert from half-precision to single-precision (in-order) FCVT (widening)

FCVTL Multi-vector floating-point convert from half-precision to deinterleaved single-precision FCVTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-490
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.6 Floating-point round

Round each element of the source vectors to an integral floating-point value and place the results in the
corresponding elements of the destination vectors.

C3.10.7 Lookup table

Copy elements from ZT0 to the destination vectors using packed indices from a portion of the source vector.

FCVTN Multi-vector floating-point convert from single-precision to interleaved half-precision FCVTN

FCVTZS Multi-vector floating-point convert to signed integer, rounding toward zero FCVTZS

FCVTZU Multi-vector floating-point convert to unsigned integer, rounding toward zero FCVTZU

Table C3-214 SME2 Floating-point conversions instructions (continued)

Mnemonic Instruction See

Table C3-215 SME2 Floating-point round to integral value instructions

Mnemonic Instruction See

FRINTA Multi-vector floating-point round to integral value, to nearest with ties away from zero FRINTA

FRINTM Multi-vector floating-point round to integral value, toward minus Infinity FRINTM

FRINTN Multi-vector floating-point round to integral value, to nearest with ties to even FRINTN

FRINTP Multi-vector floating-point round to integral value, toward plus Infinity FRINTP

Table C3-216 SME2/SME2.1 Lookup table read instructions

Mnemonic Instruction See

LUTI2 Lookup table read with 2-bit indexes LUTI2 (four registers)

LUTI2 (single)

LUTI2 (two registers)

LUTI4 Lookup table read with 4-bit indexes LUTI4 (four registers)

LUTI4 (single)

LUTI4 (two registers)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-491
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.8 Move operations

Move between ZA single-vector groups, vector registers, or individual horizontal or vertical ZA tile slices.

C3.10.8.1 Lookup table move

Move 8 bytes between the ZT0 register and a general-purpose register at a specified byte offset.

C3.10.8.2 Move and zero

Move contents of ZA single-vector groups or of consecutive horizontal or vertical slices within a ZA tile to the
destination vectors and zero the source contents.

Table C3-217 SME/SME2 Move instructions

Mnemonic Instruction See

MOVA Move four ZA single-vector groups to four vector registers MOVA (array to vector, four registers)

Move two ZA single-vector groups to two vector registers MOVA (array to vector, two registers)

Move four ZA tile slices to four vector registers MOVA (tile to vector, four registers)

Move ZA tile slice to vector register MOVA (tile to vector, single)

Move two ZA tile slices to two vector registers MOVA (tile to vector, two registers)

Move four vector registers to four ZA single-vector groups MOVA (vector to array, four registers)

Move two vector registers to two ZA single-vector groups MOVA (vector to array, two registers)

Move four vector registers to four ZA tile slices MOVA (vector to tile, four registers)

Move vector register to ZA tile slice MOVA (vector to tile, single)

Move two vector registers to two ZA tile slices MOVA (vector to tile, two registers)

Table C3-218 SME2 Lookup table move instructions

Mnemonic Instruction See

MOVT Move 8 bytes from general-purpose register to ZT0 MOVT (scalar to table)

Move 8 bytes from ZT0 to general-purpose register MOVT (table to scalar)

Table C3-219 SME2.1 Move and zero instructions

Mnemonic Instruction See

MOVAZ Move and zero four ZA single-vector groups to vector registers MOVAZ (array to vector, four registers)

Move and zero two ZA single-vector groups to vector registers MOVAZ (array to vector, two registers)

Move and zero four ZA tile slices to vector registers MOVAZ (tile to vector, four registers)

Move and zero ZA tile slice to vector register MOVAZ (tile to vector, single)

Move and zero two ZA tile slices to vector registers MOVAZ (tile to vector, two registers)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-492
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.9 Multi-vector arithmetic

Add or subtract vectors from ZA single-vector groups or destructively place results in corresponding elements of
the source vectors.

C3.10.9.1 Add vector to array

Add each element of the source vector to the corresponding active element of each vertical or horizontal slice of a
ZA tile.

C3.10.9.2 Floating-point add and subtract

Destructively add or subtract all elements of the source vectors from the corresponding elements of the ZA
single-vector groups.

C3.10.10 Multi-vector minimum/maximum

Determine the minimum or maximum of elements of the second source vector and the corresponding elements of
the first source vectors and destructively place the results in the corresponding elements of the first source vectors.

Table C3-220 SME2 Add and subtract instructions

Mnemonic Instruction See

ADD Add multi-vector to ZA array vector accumulators ADD (array accumulators)

Add replicated single vector to multi-vector with ZA array vector results ADD (array results, multiple and single
vector)

Add multi-vector to multi-vector with ZA array vector results ADD (array results, multiple vectors)

Add replicated single vector to multi-vector with multi-vector result ADD (to vector)

SUB Subtract multi-vector from ZA array vector accumulators SUB (array accumulators)

Subtract replicated single vector from multi-vector with ZA array vector
results

SUB (array results, multiple and single
vector)

Subtract multi-vector from multi-vector with ZA array vector results SUB (array results, multiple vectors)

Table C3-221 SME Add vector to array instructions

Mnemonic Instruction See

ADDHA Add horizontally vector elements to ZA tile ADDHA

ADDVA Add vertically vector elements to ZA tile ADDVA

Table C3-222 SME2 Floating-point add and subtract instructions

Mnemonic Instruction See

BFADD BFloat16 floating-point add multi-vector to ZA array vector accumulators BFADD

BFSUB BFloat16 floating-point subtract multi-vector from ZA array vector accumulators BFSUB

FADD Floating-point add multi-vector to ZA array vector accumulators FADD

FSUB Floating-point subtract multi-vector from ZA array vector accumulators FSUB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-493
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.10.1 BFloat16 minimum/maximum

These instructions follow the SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions
that place their results in two or four SVE Z vectors. If FEAT_SVE_B16B16 is implemented, these instructions are
also implemented.

Table C3-223 SME2.1 BFloat16 minimum/maximum

Mnemonic Instruction See

BFMAX Multi-vector BFloat16 floating-point maximum by vector BFMAX (multiple and single vector)

Multi-vector BFloat16 floating-point maximum BFMAX (multiple vectors)

BFMAXNM Multi-vector BFloat16 floating-point maximum number by vector BFMAXNM (multiple and single vector)

Multi-vector BFloat16 floating-point maximum number BFMAXNM (multiple vectors)

BFMIN Multi-vector BFloat16 floating-point minimum by vector BFMIN (multiple and single vector)

Multi-vector BFloat16 floating-point minimum BFMIN (multiple vectors)

BFMINNM Multi-vector BFloat16 floating-point minimum number by vector BFMINNM (multiple and single vector)

Multi-vector BFloat16 floating-point minimum number BFMINNM (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-494
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.10.2 Floating-point minimum/maximum

C3.10.10.3 Integer minimum/maximum

C3.10.11 Multi-vector multiply-accumulate

Multiply the corresponding elements of the first source vectors by the corresponding elements of the second source
vector and destructively, without intermediate rounding, add to or subtract from the corresponding elements of the
ZA single-vector groups.

Table C3-224 SME2 Floating-point minimum/maximum

Mnemonic Instruction See

FMAX Multi-vector floating-point maximum by vector FMAX (multiple and single vector)

Multi-vector floating-point maximum FMAX (multiple vectors)

FMAXNM Multi-vector floating-point maximum number by vector FMAXNM (multiple and single vector)

Multi-vector floating-point maximum number FMAXNM (multiple vectors)

FMIN Multi-vector floating-point minimum by vector FMIN (multiple and single vector)

Multi-vector floating-point minimum FMIN (multiple vectors)

FMINNM Multi-vector floating-point minimum number by vector FMINNM (multiple and single vector)

Multi-vector floating-point minimum number FMINNM (multiple vectors)

Table C3-225 SME2 Integer minimum/maximum

Mnemonic Instruction See

SMAX Multi-vector signed maximum by vector SMAX (multiple and single vector)

Multi-vector signed maximum SMAX (multiple vectors)

SMIN Multi-vector signed minimum by vector SMIN (multiple and single vector)

Multi-vector signed minimum SMIN (multiple vectors)

UMAX Multi-vector unsigned maximum by vector UMAX (multiple and single vector)

Multi-vector unsigned maximum UMAX (multiple vectors)

UMIN Multi-vector unsigned minimum by vector UMIN (multiple and single vector)

Multi-vector unsigned minimum UMIN (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-495
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.11.1 BFloat16 multiply-accumulate

C3.10.11.2 Floating-point multiply-accumulate

Table C3-226 SME2 BFloat16 multiply-accumulate instructions

Mnemonic Instruction See

BFMLA Multi-vector BFloat16 floating-point fused multiply-add by indexed element BFMLA (multiple and indexed
vector)

Multi-vector BFloat16 floating-point fused multiply-add by vector BFMLA (multiple and single
vector)

Multi-vector BFloat16 floating-point fused multiply-add BFMLA (multiple vectors)

BFMLAL Multi-vector BFloat16 floating-point multiply-add long by indexed element BFMLAL (multiple and indexed
vector)

Multi-vector BFloat16 floating-point multiply-add long by vector BFMLAL (multiple and single
vector)

Multi-vector BFloat16 floating-point multiply-add long BFMLAL (multiple vectors)

BFMLS Multi-vector BFloat16 floating-point fused multiply-subtract by indexed
element

BFMLS (multiple and indexed
vector)

Multi-vector BFloat16 floating-point fused multiply-subtract by vector BFMLS (multiple and single
vector)

Multi-vector BFloat16 floating-point fused multiply-subtract BFMLS (multiple vectors)

BFMLSL Multi-vector BFloat16 floating-point multiply-subtract long by indexed
element

BFMLSL (multiple and indexed
vector)

Multi-vector BFloat16 floating-point multiply-subtract long by vector BFMLSL (multiple and single
vector)

Multi-vector BFloat16 floating-point multiply-subtract long BFMLSL (multiple vectors)

Table C3-227 SME2 Floating-point multi-vector multiply-accumulate instructions

Mnemonic Instruction See

FMLA Multi-vector floating-point fused multiply-add by indexed element FMLA (multiple and indexed vector)

Multi-vector floating-point fused multiply-add by vector FMLA (multiple and single vector)

Multi-vector floating-point fused multiply-add FMLA (multiple vectors)

FMLAL Multi-vector floating-point multiply-add long by indexed element FMLAL (multiple and indexed vector)

Multi-vector floating-point multiply-add long by vector FMLAL (multiple and single vector)

Multi-vector floating-point fused multiply-add long FMLAL (multiple vectors)

FMLS Multi-vector floating-point fused multiply-subtract by indexed element FMLS (multiple and indexed vector)

Multi-vector floating-point fused multiply-subtract by vector FMLS (multiple and single vector)

Multi-vector floating-point fused multiply-subtract FMLS (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-496
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.11.3 Integer multiply-accumulate

FMLSL Multi-vector floating-point multiply-subtract long by indexed element FMLSL (multiple and indexed vector)

Multi-vector floating-point multiply-subtract long by vector FMLSL (multiple and single vector)

Multi-vector floating-point multiply-subtract long FMLSL (multiple vectors)

Table C3-227 SME2 Floating-point multi-vector multiply-accumulate instructions (continued)

Mnemonic Instruction See

Table C3-228 SME2 Integer multi-vector multiply-accumulate instructions

Mnemonic Instruction See

SMLAL Multi-vector signed integer multiply-add long by indexed element SMLAL (multiple and indexed
vector)

Multi-vector signed integer multiply-add long by vector SMLAL (multiple and single vector)

Multi-vector signed integer multiply-add long SMLAL (multiple vectors)

SMLALL Multi-vector signed integer multiply-add long-long by indexed element SMLALL (multiple and indexed
vector)

Multi-vector signed integer multiply-add long-long by vector SMLALL (multiple and single
vector)

Multi-vector signed integer multiply-add long-long SMLALL (multiple vectors)

SMLSL Multi-vector signed integer multiply-subtract long by indexed element SMLSL (multiple and indexed
vector)

Multi-vector signed integer multiply-subtract long by vector SMLSL (multiple and single vector)

Multi-vector signed integer multiply-subtract long SMLSL (multiple vectors)

SMLSLL Multi-vector signed integer multiply-subtract long-long by indexed element SMLSLL (multiple and indexed
vector)

Multi-vector signed integer multiply-subtract long-long by vector SMLSLL (multiple and single
vector)

Multi-vector signed integer multiply-subtract long-long SMLSLL (multiple vectors)

SUMLALL Multi-vector signed by unsigned integer multiply-add long-long by indexed
element

SUMLALL (multiple and indexed
vector)

Multi-vector signed by unsigned integer multiply-add long-long by vector SUMLALL (multiple and single
vector)

UMLAL Multi-vector unsigned integer multiply-add long by indexed element UMLAL (multiple and indexed
vector)

Multi-vector unsigned integer multiply-add long by vector UMLAL (multiple and single vector)

Multi-vector unsigned integer multiply-add long UMLAL (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-497
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.12 Multi-vector multiply high

These instructions multiply then double the corresponding elements of the first and second source vectors and
destructively place the most significant half of the result in the corresponding elements of the first and second source
vectors.

C3.10.13 Multi-vector select

Read active elements from the first source vectors, inactive elements from the second source vectors and place in
the corresponding elements of the destination vectors.

UMLALL Multi-vector unsigned integer multiply-add long-long by indexed element UMLALL (multiple and indexed
vector)

Multi-vector unsigned integer multiply-add long-long by vector UMLALL (multiple and single
vector)

Multi-vector unsigned integer multiply-add long-long UMLALL (multiple vectors)

UMLSL Multi-vector unsigned integer multiply-subtract long by indexed element UMLSL (multiple and indexed
vector)

Multi-vector unsigned integer multiply-subtract long by vector UMLSL (multiple and single vector)

Multi-vector unsigned integer multiply-subtract long by indexed element UMLSL (multiple vectors)

UMLSLL Multi-vector unsigned integer multiply-subtract long-long by indexed element UMLSLL (multiple and indexed
vector)

Multi-vector unsigned integer multiply-subtract long-long by vector UMLSLL (multiple and single
vector)

Multi-vector unsigned integer multiply-subtract long-long UMLSLL (multiple vectors)

USMLALL Multi-vector unsigned by signed integer multiply-add long-long by indexed
element

USMLALL (multiple and indexed
vector)

Multi-vector unsigned by signed integer multiply-add long-long by vector USMLALL (multiple and single
vector)

Multi-vector unsigned by signed integer multiply-add long-long USMLALL (multiple vectors)

Table C3-228 SME2 Integer multi-vector multiply-accumulate instructions (continued)

Mnemonic Instruction See

Table C3-229 SME2 Multi-vector multiply high

MnemonicInstruction See

SQDMULH Multi-vector signed saturating doubling multiply high by vectorSQDMULH (multiple and single vector)

Multi-vector signed saturating doubling multiply high SQDMULH (multiple vectors)

Table C3-230 SME2 Multi-vector select

Mnemonic Instruction See

SEL Multi-vector conditionally select elements from two vectors SEL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-498
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.14 Multi-vector shift and convert

Convert or shift the value of each element of the source vectors and place the results in the corresponding destination
vector elements.

C3.10.15 Outer product

Multiply, or widen and multiply, the sub-matrix in the first source vector by the sub-matrix in the second source
vector and add or subtract from the destination tile.

Table C3-231 SME2 Multi-vector shift and convert instructions

Mnemonic Instruction See

SCVTF Multi-vector signed integer convert to floating-point SCVTF

SQCVT Multi-vector signed saturating extract narrow SQCVT (four registers)

SQCVT (two registers)

SQCVTN Multi-vector signed saturating extract narrow and interleave SQCVTN

SQCVTU Multi-vector signed saturating unsigned extract narrow SQCVTU (four registers)

SQCVTU (two registers)

SQCVTUN Multi-vector signed saturating unsigned extract narrow and interleave SQCVTUN

SQRSHR Multi-vector signed saturating rounding shift right narrow by immediate SQRSHR (four registers)

SQRSHR (two registers)

SQRSHRN Multi-vector signed saturating rounding shift right narrow by immediate and
interleave

SQRSHRN

SQRSHRU Multi-vector signed saturating rounding shift right unsigned narrow by immediate SQRSHRU (four registers)

SQRSHRU (two registers)

SQRSHRUN Multi-vector signed saturating rounding shift right unsigned narrow by immediate and
interleave

SQRSHRUN

SRSHL Multi-vector signed rounding shift left by vector SRSHL (multiple and single
vector)

 Multi-vector signed rounding shift left SRSHL (multiple vectors)

UCVTF Multi-vector unsigned integer convert to floating-point UCVTF

UQCVT Multi-vector unsigned saturating extract narrow UQCVT (four registers)

UQCVT (two registers)

UQCVTN Multi-vector unsigned saturating extract narrow and interleave UQCVTN

UQRSHR Multi-vector unsigned saturating rounding shift right narrow by immediate UQRSHR (four registers)

UQRSHR (two registers)

UQRSHRN Multi-vector unsigned saturating rounding shift right narrow by immediate and
interleave

UQRSHRN

URSHL Multi-vector unsigned rounding shift left by vector URSHL (multiple and single
vector)

Multi-vector unsigned rounding shift left URSHL (multiple vectors)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-499
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.15.1 Floating-point outer product

C3.10.15.2 Binary outer product

Generate an outer product of the first and the second source vectors and destructively add or subtract the result from
the destination tile.

Table C3-232 SME Floating-point outer product instructions

Mnemonic Instruction See

BFMOPA BFloat16 floating-point outer product and accumulate BFMOPA (non-widening)

BFloat16 sum of outer products and accumulate BFMOPA (widening)

BFMOPS BFloat16 floating-point outer product and subtract BFMOPS (non-widening)

BFloat16 sum of outer products and subtract BFMOPS (widening)

FMOPA Floating-point outer product and accumulate FMOPA (non-widening)

Half-precision floating-point sum of outer products and accumulate FMOPA (widening)

FMOPS Floating-point outer product and subtract FMOPS (non-widening)

Half-precision floating-point sum of outer products and subtract FMOPS (widening)

Table C3-233 SME2 Binary outer product instructions

Mnemonic Instruction See

BMOPA Bitwise exclusive NOR population count outer product and accumulate BMOPA

BMOPS Bitwise exclusive NOR population count outer product and subtract BMOPS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-500
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.15.3 Integer outer product

C3.10.16 Stack frame operations

Multiply the Streaming SVE vector register size in bytes by an immediate and add the result to the destination
general-purpose register or current stack pointer. RDSVL only places the result in the destination general-purpose
register without addition.

C3.10.17 Unpack and extend

Unpack elements from the source vectors and extend them to place in elements of twice their size within the
destination vectors.

Table C3-234 SME Integer outer product instructions

Mnemonic Instruction See

SMOPA Signed integer sum of outer products and accumulate SMOPA (2-way)

SMOPA (4-way)

SMOPS Signed integer sum of outer products and subtract SMOPS (2-way)

SMOPS (4-way)

SUMOPA Signed by unsigned integer sum of outer products and accumulate SUMOPA

SUMOPS Signed by unsigned integer sum of outer products and subtract SUMOPS

UMOPA Unsigned integer sum of outer products and accumulate UMOPA (2-way)

UMOPA (4-way)

UMOPS Unsigned integer sum of outer products and subtract UMOPS (2-way)

UMOPS (4-way)

USMOPA Unsigned by signed integer sum of outer products and accumulate USMOPA

USMOPS Unsigned by signed integer sum of outer products and subtract USMOPS

Table C3-235 SME Stack frame instructions

Mnemonic Instruction See

ADDSPL Add multiple of Streaming SVE predicate register size to scalar register ADDSPL

ADDSVL Add multiple of Streaming SVE vector register size to scalar register ADDSVL

RDSVL Read multiple of Streaming SVE vector register size to scalar register RDSVL

Table C3-236 SME2 Unpack and extend instructions

Mnemonic Instruction See

SUNPK Unpack and sign-extend multi-vector elements SUNPK

UUNPK Unpack and zero-extend multi-vector elements UUNPK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-501
ID032224 Non-Confidential

A64 Instruction Set Overview
C3.10 Data processing - SME, SME2
C3.10.18 Zero operations

Set all corresponding bytes or ZA vector groups to zero.

C3.10.18.1 Zero ZA array vectors

Table C3-237 SME/SME2 Zero instructions

Mnemonic Instruction See

ZERO Zero ZT0 ZERO (table)

Zero a list of 64-bit element ZA tiles ZERO (tiles)

Table C3-238 SME2.1 Zero ZA array vectors instructions

Mnemonic Instruction See

ZERO Zero ZA double-vector groups ZERO (double-vector)

Zero ZA quad-vector groups ZERO (quad-vector)

Zero ZA single-vector groups ZERO (single-vector)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C3-502
ID032224 Non-Confidential

Chapter C4
A64 Instruction Set Encoding

This chapter describes the encoding of the A64 instruction set. It contains the following section:

• A64 instruction set encoding.

In this chapter:

• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.

• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-503
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1 A64 instruction set encoding

The A64 instruction encoding is:

C4.1.1 Reserved

This section describes the encoding of the Reserved group. The encodings in this section are decoded from A64
instruction set encoding.

Table C4-1 Main encoding table for the A64 instruction set

Decode fields
Decode group or instruction page

op0 op1

 0 0000 Reserved

 1 0000 SME encodings

 - 0001 Unallocated.

 - 0010 SVE encodings

 - 0011 Unallocated.

 - 100x Data Processing -- Immediate

 - 101x Branches, Exception Generating and System instructions

 - x1x0 Loads and Stores

 - x101 Data Processing -- Register

 - x111 Data Processing -- Scalar Floating-Point and Advanced SIMD

op1

31 30 29 28 25 24 0

op0

Table C4-2 Encoding table for the Reserved group

Decode fields
Decode group or instruction page

op0 op1

 00 000000000 UDF

 - != 000000000 Unallocated.

 != 00 - Unallocated.

op0 0000 op1

31 30 29 28 25 24 16 15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-504
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.2 SME encodings

This section describes the encoding of the SME encodings group. The encodings in this section are decoded from
A64 instruction set encoding.

1 op0 0000 op1 op2

31 30 29 28 25 24 10 9 5 4 1 0

Table C4-3 Encoding table for the SME encodings group

Decode fields
Decode group or instruction page

op0 op1 op2

 0x x10xxxxxxxxxxxx xx1x Unallocated.

 0x x11xxxxxxxxxxxx x0xx SME Outer Product - 64 bit

 0x x11xxxxxxxxxxxx x1xx Unallocated.

 00 x0xxxxxxxxxxxxx - Unallocated.

 00 x10xxxxxxxxxxxx x00x SME FP Outer Product - 32 bit

 00 x10xxxxxxxxxxxx x10x SME2 Outer Product - Misc

 01 x10xxxxxxxxxxxx xx0x SME Integer Outer Product - 32 bit

 01 00xxxxxxxxxxxxx - SME2 Multi-vector - Memory (Contiguous)

 01 10xxxxxxxxxxxxx - SME2 Multi-vector - Memory (Strided)

 10 0xx000x0xxxxxxx 0xxx SME Move into Array

 10 0xx000x0xxxxxxx 1xxx Unallocated.

 10 0xx000x1xxxxxxx - SME Move from Array

 10 0xx010xxxxxxxxx x0xx SME Add Vector to Array

 10 0xx010xxxxxxxxx x1xx Unallocated.

 10 0xx1xxxxxxxxxxx - Unallocated.

 10 00x011xxxxxxxxx - Unallocated.

 10 0000010xxxxxxxx - SME Zero

 10 0000011xxxxxxxx - SME2 Multiple Zero

 10 0010010xxxxxxxx - SME2 Zero Lookup Table

 10 0010011xxxxxxxx - SME2 Move Lookup Table

 10 01x001xxxxxxxxx - SME2 Expand Lookup Table (Contiguous)

 10 010011xxxxxxxxx - SME2 Expand Lookup Table (Non-contiguous)

 10 011011xxxxxxxxx - Unallocated.

 10 1xx00xxxxxxxxxx - SME2 Multi-vector - Indexed (One register)

 10 1xx01xxxx0xxxxx - SME2 Multi-vector - Indexed (Two registers)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-505
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.3 SME Outer Product - 64 bit

This section describes the encoding of the SME Outer Product - 64 bit group. The encodings in this section are
decoded from SME encodings.

 10 1xx01xxxx1xxxxx - SME2 Multi-vector - Indexed (Four registers)

 10 1xx1xxxxx100xxx - SME2 Multi-vector - SVE Select

 10 1xx1xxxxx110xxx - SME2 Multi-vector - SVE Constructive Binary

 10 1xx1xxxxx111000 - SME2 Multi-vector - SVE Constructive Unary

 10 1xx1xxxxx111001 - Unallocated.

 10 1xx1xxxxx11101x - Unallocated.

 10 1xx1xxxx0101100 - SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers)

 10 1xx1xxxx0101101 - SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Two registers)

 10 1xx1xxx00101110 xxx0 SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers)

 10 1xx1xxx00101111 xxx0 SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Four registers)

 10 1xx1xxx1010111x - Unallocated.

 10 1xx10xxxx10100x - SME2 Multi-vector - Multiple and Single SVE Destructive (Two registers)

 10 1xx10xxxx10101x xxx0 SME2 Multi-vector - Multiple and Single SVE Destructive (Four registers)

 10 1xx10xxx01111xx - Unallocated.

 10 1xx10xxx11x11xx - Unallocated.

 10 1xx10xx00101x1x xxx1 Unallocated.

 10 1xx10xx0110101x xxx1 Unallocated.

 10 1xx10xx1x10101x xxx1 Unallocated.

 10 1xx11xxxx1111xx - Unallocated.

 10 1xx11xxx01010xx - Unallocated.

 10 1xx11xxx1101xxx - Unallocated.

 10 1xx11xx0010111x xxx1 Unallocated.

 10 10x10xxxx0xxxxx - SME2 Multi-vector - Multiple and Single Array Vectors (Two registers)

 10 10x11xxxx0xxxxx - SME2 Multi-vector - Multiple and Single Array Vectors (Four registers)

 10 11x1xxxx00xxxxx - SME2 Multi-vector - Multiple Array Vectors (Two registers)

 10 11x1xxxx10xxxxx - SME2 Multi-vector - Multiple Array Vectors (Four registers)

 11 - - SME Memory

Table C4-3 Encoding table for the SME encodings group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-506
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.3.1 SME FP64 outer product

This section describes the encoding of the SME FP64 outer product instruction class. The encodings in this section
are decoded from SME Outer Product - 64 bit.

C4.1.3.2 SME Int16 outer product

This section describes the encoding of the SME Int16 outer product instruction class. The encodings in this section
are decoded from SME Outer Product - 64 bit.

Table C4-4 Encoding table for the SME Outer Product - 64 bit group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 0 0 SME FP64 outer product

 0 0 1 Unallocated.

 0 1 - Unallocated.

 1 - - SME Int16 outer product

Decode fields
Instruction page Feature

S

0 FMOPA (non-widening) FEAT_SME_F64F64

1 FMOPS (non-widening) FEAT_SME_F64F64

10 0000 11 0

31 30 29 28 25 24 23 22 21 20 4 3 2 0

op0

op1

op2

1 0 0 0 0 0 0 0 1 1 0 Zm Pm Pn Zn S 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-507
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.4 SME FP Outer Product - 32 bit

This section describes the encoding of the SME FP Outer Product - 32 bit group. The encodings in this section are
decoded from SME encodings.

C4.1.4.1 SME FP32 outer product

This section describes the encoding of the SME FP32 outer product instruction class. The encodings in this section
are decoded from SME FP Outer Product - 32 bit.

Decode fields
Instruction page Feature

u0 u1 S

0 0 0 SMOPA (4-way) FEAT_SME_I16I64

0 0 1 SMOPS (4-way) FEAT_SME_I16I64

0 1 0 SUMOPA FEAT_SME_I16I64

0 1 1 SUMOPS FEAT_SME_I16I64

1 0 0 USMOPA FEAT_SME_I16I64

1 0 1 USMOPS FEAT_SME_I16I64

1 1 0 UMOPA (4-way) FEAT_SME_I16I64

1 1 1 UMOPS (4-way) FEAT_SME_I16I64

1 0 1 0 0 0 0 u0 1 1 u1 Zm Pm Pn Zn S 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

Table C4-5 Encoding table for the SME FP Outer Product - 32 bit group

Decode fields
Decode group or instruction page

op0 op1

 0 0 SME FP32 outer product

 0 1 Unallocated.

 1 0 SME BF16 widening outer product

 1 1 SME FP16 widening outer product

1000000 10 00

31 25 24 23 22 21 20 4 3 2 1 0

op0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-508
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.4.2 SME BF16 widening outer product

This section describes the encoding of the SME BF16 widening outer product instruction class. The encodings in
this section are decoded from SME FP Outer Product - 32 bit.

C4.1.4.3 SME FP16 widening outer product

This section describes the encoding of the SME FP16 widening outer product instruction class. The encodings in
this section are decoded from SME FP Outer Product - 32 bit.

C4.1.5 SME2 Outer Product - Misc

This section describes the encoding of the SME2 Outer Product - Misc group. The encodings in this section are
decoded from SME encodings.

Decode fields
Instruction page Feature

S

0 FMOPA (non-widening) FEAT_SME

1 FMOPS (non-widening) FEAT_SME

Decode fields
Instruction page Feature

S

0 BFMOPA (widening) FEAT_SME

1 BFMOPS (widening) FEAT_SME

Decode fields
Instruction page Feature

S

0 FMOPA (widening) FEAT_SME

1 FMOPS (widening) FEAT_SME

1 0 0 0 0 0 0 0 1 0 0 Zm Pm Pn Zn S 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

1 0 0 0 0 0 0 1 1 0 0 Zm Pm Pn Zn S 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

1 0 0 0 0 0 0 1 1 0 1 Zm Pm Pn Zn S 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-509
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.5.1 SME2 32-bit binary outer product

This section describes the encoding of the SME2 32-bit binary outer product instruction class. The encodings in this
section are decoded from SME2 Outer Product - Misc.

C4.1.5.2 SME2 FP16 non-widening outer product

This section describes the encoding of the SME2 FP16 non-widening outer product instruction class. The encodings
in this section are decoded from SME2 Outer Product - Misc.

Table C4-6 Encoding table for the SME2 Outer Product - Misc group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 0 - SME2 32-bit binary outer product

 0 1 - Unallocated.

 1 0 0 SME2 FP16 non-widening outer product

 1 1 0 SME2 BF16 non-widening outer product

 1 - 1 Unallocated.

Decode fields
Instruction page Feature

S

0 BMOPA FEAT_SME2

1 BMOPS FEAT_SME2

1000000 10 10

31 25 24 23 22 21 20 4 3 2 1 0

op0

op1

op2

1 0 0 0 0 0 0 0 1 0 0 Zm Pm Pn Zn S 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-510
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.5.3 SME2 BF16 non-widening outer product

This section describes the encoding of the SME2 BF16 non-widening outer product instruction class. The encodings
in this section are decoded from SME2 Outer Product - Misc.

C4.1.6 SME Integer Outer Product - 32 bit

This section describes the encoding of the SME Integer Outer Product - 32 bit group. The encodings in this section
are decoded from SME encodings.

Decode fields
Instruction page Feature

S

0 FMOPA (non-widening) FEAT_SME_F16F16

1 FMOPS (non-widening) FEAT_SME_F16F16

Decode fields
Instruction page Feature

S

0 BFMOPA (non-widening) FEAT_SVE_B16B16

1 BFMOPS (non-widening) FEAT_SVE_B16B16

1 0 0 0 0 0 0 1 1 0 0 Zm Pm Pn Zn S 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

ZAda

1 0 0 0 0 0 0 1 1 0 1 Zm Pm Pn Zn S 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

ZAda

Table C4-7 Encoding table for the SME Integer Outer Product - 32 bit group

Decode fields
Decode group or instruction page

op0 op1

 0 1 SME2 Int16 two-way outer product

 1 1 Unallocated.

 - 0 SME Int8 outer product

1010000 10 0

31 25 24 23 22 21 20 4 3 2 1 0

op0 op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-511
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.6.1 SME2 Int16 two-way outer product

This section describes the encoding of the SME2 Int16 two-way outer product instruction class. The encodings in
this section are decoded from SME Integer Outer Product - 32 bit.

C4.1.6.2 SME Int8 outer product

This section describes the encoding of the SME Int8 outer product instruction class. The encodings in this section
are decoded from SME Integer Outer Product - 32 bit.

C4.1.7 SME2 Multi-vector - Memory (Contiguous)

This section describes the encoding of the SME2 Multi-vector - Memory (Contiguous) group. The encodings in this
section are decoded from SME encodings.

Decode fields
Instruction page Feature

u0 S

0 0 SMOPA (2-way) FEAT_SME2

0 1 SMOPS (2-way) FEAT_SME2

1 0 UMOPA (2-way) FEAT_SME2

1 1 UMOPS (2-way) FEAT_SME2

Decode fields
Instruction page Feature

u0 u1 S

0 0 0 SMOPA (4-way) FEAT_SME

0 0 1 SMOPS (4-way) FEAT_SME

0 1 0 SUMOPA FEAT_SME

0 1 1 SUMOPS FEAT_SME

1 0 0 USMOPA FEAT_SME

1 0 1 USMOPS FEAT_SME

1 1 0 UMOPA (4-way) FEAT_SME

1 1 1 UMOPS (4-way) FEAT_SME

1 0 1 0 0 0 0 u0 1 0 0 Zm Pm Pn Zn S 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

1 0 1 0 0 0 0 u0 1 0 u1 Zm Pm Pn Zn S 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-512
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.7.1 SME2 multi-vec contiguous load (scalar plus scalar, two registers)

This section describes the encoding of the SME2 multi-vec contiguous load (scalar plus scalar, two registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

Table C4-8 Encoding table for the SME2 Multi-vector - Memory (Contiguous) group

Decode fields
Decode group or instruction page

op0 op1 op2

 00x 0 - SME2 multi-vec contiguous load (scalar plus scalar, two registers)

 00x 1 0 SME2 multi-vec contiguous load (scalar plus scalar, four registers)

 01x 0 - SME2 multi-vec contiguous store (scalar plus scalar, two registers)

 01x 1 0 SME2 multi-vec contiguous store (scalar plus scalar, four registers)

 0xx 1 1 Unallocated.

 100 0 - SME2 multi-vec contiguous load (scalar plus immediate, two registers)

 100 1 0 SME2 multi-vec contiguous load (scalar plus immediate, four registers)

 110 0 - SME2 multi-vec contiguous store (scalar plus immediate, two registers)

 110 1 0 SME2 multi-vec contiguous store (scalar plus immediate, four registers)

 1x0 1 1 Unallocated.

 1x1 - - Unallocated.

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

00 1 LDNT1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 0 LD1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 1 LDNT1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 0 LD1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

101000000 op0

31 23 22 20 19 16 15 14 2 1 0

op1 op2

1 0 1 0 0 0 0 0 0 0 0 Rm 0 msz PNg Rn Zt N

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-513
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.7.2 SME2 multi-vec contiguous load (scalar plus scalar, four registers)

This section describes the encoding of the SME2 multi-vec contiguous load (scalar plus scalar, four registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

C4.1.7.3 SME2 multi-vec contiguous store (scalar plus scalar, two registers)

This section describes the encoding of the SME2 multi-vec contiguous store (scalar plus scalar, two registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

10 1 LDNT1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 0 LD1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 1 LDNT1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

00 1 LDNT1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 0 LD1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 1 LDNT1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 0 LD1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 1 LDNT1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 0 LD1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 1 LDNT1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

00 1 STNT1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 0 ST1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

1 0 1 0 0 0 0 0 0 0 0 Rm 1 msz PNg Rn Zt 0 N

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

1 0 1 0 0 0 0 0 0 0 1 Rm 0 msz PNg Rn Zt N

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-514
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.7.4 SME2 multi-vec contiguous store (scalar plus scalar, four registers)

This section describes the encoding of the SME2 multi-vec contiguous store (scalar plus scalar, four registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

C4.1.7.5 SME2 multi-vec contiguous load (scalar plus immediate, two registers)

This section describes the encoding of the SME2 multi-vec contiguous load (scalar plus immediate, two registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

01 1 STNT1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 0 ST1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 1 STNT1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 0 ST1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 1 STNT1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

00 1 STNT1B (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 0 ST1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

01 1 STNT1H (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 0 ST1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

10 1 STNT1W (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 0 ST1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

11 1 STNT1D (scalar plus scalar, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

1 0 1 0 0 0 0 0 0 0 1 Rm 1 msz PNg Rn Zt 0 N

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-515
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.7.6 SME2 multi-vec contiguous load (scalar plus immediate, four registers)

This section describes the encoding of the SME2 multi-vec contiguous load (scalar plus immediate, four registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

C4.1.7.7 SME2 multi-vec contiguous store (scalar plus immediate, two registers)

This section describes the encoding of the SME2 multi-vec contiguous store (scalar plus immediate, two registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

00 1 LDNT1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 0 LD1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 1 LDNT1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 0 LD1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 1 LDNT1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 0 LD1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 1 LDNT1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

00 1 LDNT1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 0 LD1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 1 LDNT1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 0 LD1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 1 LDNT1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 0 LD1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 1 LDNT1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 msz PNg Rn Zt N

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 msz PNg Rn Zt 0 N

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-516
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.7.8 SME2 multi-vec contiguous store (scalar plus immediate, four registers)

This section describes the encoding of the SME2 multi-vec contiguous store (scalar plus immediate, four registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Contiguous).

C4.1.8 SME2 Multi-vector - Memory (Strided)

This section describes the encoding of the SME2 Multi-vector - Memory (Strided) group. The encodings in this
section are decoded from SME encodings.

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

00 1 STNT1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 0 ST1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 1 STNT1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 0 ST1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 1 STNT1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 0 ST1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 1 STNT1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

00 1 STNT1B (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 0 ST1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

01 1 STNT1H (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 0 ST1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

10 1 STNT1W (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 0 ST1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

11 1 STNT1D (scalar plus immediate, consecutive registers) FEAT_SVE2p1

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 msz PNg Rn Zt N

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 msz PNg Rn Zt 0 N

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-517
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.8.1 SME2 multi-vec non-contiguous load (scalar plus scalar, two registers)

This section describes the encoding of the SME2 multi-vec non-contiguous load (scalar plus scalar, two registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

101000010 op0

31 23 22 20 19 16 15 14 3 2 1 0

op1 op2

Table C4-9 Encoding table for the SME2 Multi-vector - Memory (Strided) group

Decode fields
Decode group or instruction page

op0 op1 op2

 00x 0 - SME2 multi-vec non-contiguous load (scalar plus scalar, two registers)

 00x 1 0 SME2 multi-vec non-contiguous load (scalar plus scalar, four registers)

 01x 0 - SME2 multi-vec non-contiguous store (scalar plus scalar, two registers)

 01x 1 0 SME2 multi-vec non-contiguous store (scalar plus scalar, four registers)

 0xx 1 1 Unallocated.

 100 0 - SME2 multi-vec non-contiguous load (scalar plus immediate, two registers)

 100 1 0 SME2 multi-vec non-contiguous load (scalar plus immediate, four registers)

 110 0 - SME2 multi-vec non-contiguous store (scalar plus immediate, two registers)

 110 1 0 SME2 multi-vec non-contiguous store (scalar plus immediate, four registers)

 1x0 1 1 Unallocated.

 1x1 - - Unallocated.

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus scalar, strided registers) FEAT_SME2

00 1 LDNT1B (scalar plus scalar, strided registers) FEAT_SME2

01 0 LD1H (scalar plus scalar, strided registers) FEAT_SME2

01 1 LDNT1H (scalar plus scalar, strided registers) FEAT_SME2

10 0 LD1W (scalar plus scalar, strided registers) FEAT_SME2

1 0 1 0 0 0 0 1 0 0 0 Rm 0 msz PNg Rn Zth N Ztl

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-518
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.8.2 SME2 multi-vec non-contiguous load (scalar plus scalar, four registers)

This section describes the encoding of the SME2 multi-vec non-contiguous load (scalar plus scalar, four registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

C4.1.8.3 SME2 multi-vec non-contiguous store (scalar plus scalar, two registers)

This section describes the encoding of the SME2 multi-vec non-contiguous store (scalar plus scalar, two registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

10 1 LDNT1W (scalar plus scalar, strided registers) FEAT_SME2

11 0 LD1D (scalar plus scalar, strided registers) FEAT_SME2

11 1 LDNT1D (scalar plus scalar, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus scalar, strided registers) FEAT_SME2

00 1 LDNT1B (scalar plus scalar, strided registers) FEAT_SME2

01 0 LD1H (scalar plus scalar, strided registers) FEAT_SME2

01 1 LDNT1H (scalar plus scalar, strided registers) FEAT_SME2

10 0 LD1W (scalar plus scalar, strided registers) FEAT_SME2

10 1 LDNT1W (scalar plus scalar, strided registers) FEAT_SME2

11 0 LD1D (scalar plus scalar, strided registers) FEAT_SME2

11 1 LDNT1D (scalar plus scalar, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus scalar, strided registers) FEAT_SME2

00 1 STNT1B (scalar plus scalar, strided registers) FEAT_SME2

01 0 ST1H (scalar plus scalar, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

1 0 1 0 0 0 0 1 0 0 0 Rm 1 msz PNg Rn Zth N 0 Ztl

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

1 0 1 0 0 0 0 1 0 0 1 Rm 0 msz PNg Rn Zth N Ztl

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-519
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.8.4 SME2 multi-vec non-contiguous store (scalar plus scalar, four registers)

This section describes the encoding of the SME2 multi-vec non-contiguous store (scalar plus scalar, four registers)
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

C4.1.8.5 SME2 multi-vec non-contiguous load (scalar plus immediate, two registers)

This section describes the encoding of the SME2 multi-vec non-contiguous load (scalar plus immediate, two
registers) instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

01 1 STNT1H (scalar plus scalar, strided registers) FEAT_SME2

10 0 ST1W (scalar plus scalar, strided registers) FEAT_SME2

10 1 STNT1W (scalar plus scalar, strided registers) FEAT_SME2

11 0 ST1D (scalar plus scalar, strided registers) FEAT_SME2

11 1 STNT1D (scalar plus scalar, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus scalar, strided registers) FEAT_SME2

00 1 STNT1B (scalar plus scalar, strided registers) FEAT_SME2

01 0 ST1H (scalar plus scalar, strided registers) FEAT_SME2

01 1 STNT1H (scalar plus scalar, strided registers) FEAT_SME2

10 0 ST1W (scalar plus scalar, strided registers) FEAT_SME2

10 1 STNT1W (scalar plus scalar, strided registers) FEAT_SME2

11 0 ST1D (scalar plus scalar, strided registers) FEAT_SME2

11 1 STNT1D (scalar plus scalar, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

1 0 1 0 0 0 0 1 0 0 1 Rm 1 msz PNg Rn Zth N 0 Ztl

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-520
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.8.6 SME2 multi-vec non-contiguous load (scalar plus immediate, four registers)

This section describes the encoding of the SME2 multi-vec non-contiguous load (scalar plus immediate, four
registers) instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

C4.1.8.7 SME2 multi-vec non-contiguous store (scalar plus immediate, two registers)

This section describes the encoding of the SME2 multi-vec non-contiguous store (scalar plus immediate, two
registers) instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus immediate, strided registers) FEAT_SME2

00 1 LDNT1B (scalar plus immediate, strided registers) FEAT_SME2

01 0 LD1H (scalar plus immediate, strided registers) FEAT_SME2

01 1 LDNT1H (scalar plus immediate, strided registers) FEAT_SME2

10 0 LD1W (scalar plus immediate, strided registers) FEAT_SME2

10 1 LDNT1W (scalar plus immediate, strided registers) FEAT_SME2

11 0 LD1D (scalar plus immediate, strided registers) FEAT_SME2

11 1 LDNT1D (scalar plus immediate, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

00 0 LD1B (scalar plus immediate, strided registers) FEAT_SME2

00 1 LDNT1B (scalar plus immediate, strided registers) FEAT_SME2

01 0 LD1H (scalar plus immediate, strided registers) FEAT_SME2

01 1 LDNT1H (scalar plus immediate, strided registers) FEAT_SME2

10 0 LD1W (scalar plus immediate, strided registers) FEAT_SME2

10 1 LDNT1W (scalar plus immediate, strided registers) FEAT_SME2

11 0 LD1D (scalar plus immediate, strided registers) FEAT_SME2

11 1 LDNT1D (scalar plus immediate, strided registers) FEAT_SME2

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 msz PNg Rn Zth N Ztl

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 msz PNg Rn Zth N 0 Ztl

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-521
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.8.8 SME2 multi-vec non-contiguous store (scalar plus immediate, four registers)

This section describes the encoding of the SME2 multi-vec non-contiguous store (scalar plus immediate, four
registers) instruction class. The encodings in this section are decoded from SME2 Multi-vector - Memory (Strided).

C4.1.9 SME Move into Array

This section describes the encoding of the SME Move into Array group. The encodings in this section are decoded
from SME encodings.

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus immediate, strided registers) FEAT_SME2

00 1 STNT1B (scalar plus immediate, strided registers) FEAT_SME2

01 0 ST1H (scalar plus immediate, strided registers) FEAT_SME2

01 1 STNT1H (scalar plus immediate, strided registers) FEAT_SME2

10 0 ST1W (scalar plus immediate, strided registers) FEAT_SME2

10 1 STNT1W (scalar plus immediate, strided registers) FEAT_SME2

11 0 ST1D (scalar plus immediate, strided registers) FEAT_SME2

11 1 STNT1D (scalar plus immediate, strided registers) FEAT_SME2

Decode fields
Instruction page Feature

msz N

00 0 ST1B (scalar plus immediate, strided registers) FEAT_SME2

00 1 STNT1B (scalar plus immediate, strided registers) FEAT_SME2

01 0 ST1H (scalar plus immediate, strided registers) FEAT_SME2

01 1 STNT1H (scalar plus immediate, strided registers) FEAT_SME2

10 0 ST1W (scalar plus immediate, strided registers) FEAT_SME2

10 1 STNT1W (scalar plus immediate, strided registers) FEAT_SME2

11 0 ST1D (scalar plus immediate, strided registers) FEAT_SME2

11 1 STNT1D (scalar plus immediate, strided registers) FEAT_SME2

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 msz PNg Rn Zth N Ztl

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 msz PNg Rn Zth N 0 Ztl

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-522
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.9.1 SME move vector to array

This section describes the encoding of the SME move vector to array instruction class. The encodings in this section
are decoded from SME Move into Array.

11000000 op0 000 0 op2 op3 op4 0

31 24 23 22 21 19 18 17 16 15 14 13 12 10 9 7 6 5 4 3 2 0

op1 op5

Table C4-10 Encoding table for the SME Move into Array group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4 op5

 00 1 00 010 x0 0 MOVA (vector to array, two registers) FEAT_SME2

 00 1 00 011 00 0 MOVA (vector to array, four registers) FEAT_SME2

 00 1 00 0x0 x0 1 Unallocated. -

 00 1 00 0x0 x1 - Unallocated. -

 00 1 00 0x1 00 1 Unallocated. -

 00 1 00 0x1 != 00 - Unallocated. -

 00 1 01 000 x0 1 Unallocated. -

 00 1 01 000 x1 - Unallocated. -

 00 1 01 001 00 1 Unallocated. -

 00 1 01 001 != 00 - Unallocated. -

 00 1 01 01x - - Unallocated. -

 != 00 1 0x 000 x0 1 Unallocated. -

 != 00 1 0x 000 x1 - Unallocated. -

 != 00 1 0x 001 00 1 Unallocated. -

 != 00 1 0x 001 01 - Unallocated. -

 != 00 1 0x 001 1x - Unallocated. -

 != 00 1 0x 01x - - Unallocated. -

 - 0 - - - - SME move vector to array -

 - 1 0x 000 x0 0 SME2 move vector to tile, two registers -

 - 1 0x 001 00 0 SME2 move vector to tile, four registers -

 - 1 0x 1xx - - Unallocated. -

 - 1 1x - - - Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-523
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.9.2 SME2 move vector to tile, two registers

This section describes the encoding of the SME2 move vector to tile, two registers instruction class. The encodings
in this section are decoded from SME Move into Array.

C4.1.9.3 SME2 move vector to tile, four registers

This section describes the encoding of the SME2 move vector to tile, four registers instruction class. The encodings
in this section are decoded from SME Move into Array.

Decode fields
Instruction page Feature

size Q

0x 1 Unallocated. -

00 0 MOVA (vector to tile, single) - Encoding FEAT_SME

01 0 MOVA (vector to tile, single) - Encoding FEAT_SME

10 0 MOVA (vector to tile, single) - Encoding FEAT_SME

10 1 Unallocated. -

11 0 MOVA (vector to tile, single) - Encoding FEAT_SME

11 1 MOVA (vector to tile, single) - Encoding FEAT_SME

Decode fields
Instruction page Feature

size

00 MOVA (vector to tile, two registers) - Encoding FEAT_SME2

01 MOVA (vector to tile, two registers) - Encoding FEAT_SME2

10 MOVA (vector to tile, two registers) - Encoding FEAT_SME2

11 MOVA (vector to tile, two registers) - Encoding FEAT_SME2

1 1 0 0 0 0 0 0 size 0 0 0 0 0 Q V Rs Pg Zn 0 opc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

1 1 0 0 0 0 0 0 size 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 opc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-524
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.10 SME Move from Array

This section describes the encoding of the SME Move from Array group. The encodings in this section are decoded
from SME encodings.

Decode fields
Instruction page Feature

size opc

0x 1xx Unallocated. -

00 0xx MOVA (vector to tile, four registers) - Encoding FEAT_SME2

01 0xx MOVA (vector to tile, four registers) - Encoding FEAT_SME2

10 0xx MOVA (vector to tile, four registers) - Encoding FEAT_SME2

10 1xx Unallocated. -

11 - MOVA (vector to tile, four registers) - Encoding FEAT_SME2

1 1 0 0 0 0 0 0 size 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 opc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

11000000 op0 000 1 op2 op3 op4 op5

31 24 23 22 21 19 18 17 16 15 14 13 12 10 9 8 7 2 1 0

op1

Table C4-11 Encoding table for the SME Move from Array group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4 op5

 00 1 00 010 00 x0 MOVA (array to vector, two registers) FEAT_SME2

 00 1 00 010 10 x0 MOVAZ (array to vector, two registers) FEAT_SME2p1

 00 1 00 011 00 00 MOVA (array to vector, four registers) FEAT_SME2

 00 1 00 011 10 00 MOVAZ (array to vector, four registers) FEAT_SME2p1

 00 1 00 0x0 x0 x1 Unallocated. -

 00 1 00 0x1 x0 != 00 Unallocated. -

 00 1 00 0xx x1 - Unallocated. -

 00 1 01 000 x0 x1 Unallocated. -

 00 1 01 001 x0 != 00 Unallocated. -

 00 1 01 00x x1 - Unallocated. -

 00 1 01 01x - - Unallocated. -

 != 00 1 0x 000 x0 x1 Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-525
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.10.1 SME zeroing move array to vector

This section describes the encoding of the SME zeroing move array to vector instruction class. The encodings in
this section are decoded from SME Move from Array.

 != 00 1 0x 001 x0 01 Unallocated. -

 != 00 1 0x 001 x0 1x Unallocated. -

 != 00 1 0x 00x x1 - Unallocated. -

 != 00 1 0x 01x - - Unallocated. -

 - 0 - 000 1x - SME zeroing move array to vector -

 - 0 - !=
000

 1x - Unallocated. -

 - 0 - - 0x - SME move array to vector -

 - 1 0x 000 00 x0 SME2 move tile to vector, two registers -

 - 1 0x 000 10 x0 SME2 zeroing move tile to vector, two registers -

 - 1 0x 001 00 00 SME2 move tile to vector, four registers -

 - 1 0x 001 10 00 SME2 zeroing move tile to vector, four registers -

 - 1 0x 1xx - - Unallocated. -

 - 1 1x - - - Unallocated. -

Table C4-11 Encoding table for the SME Move from Array group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4 op5

Decode fields
Instruction page Feature

size Q

0x 1 Unallocated. -

00 0 MOVAZ (tile to vector, single) - Encoding FEAT_SME2p1

01 0 MOVAZ (tile to vector, single) - Encoding FEAT_SME2p1

10 0 MOVAZ (tile to vector, single) - Encoding FEAT_SME2p1

10 1 Unallocated. -

11 0 MOVAZ (tile to vector, single) - Encoding FEAT_SME2p1

11 1 MOVAZ (tile to vector, single) - Encoding FEAT_SME2p1

1 1 0 0 0 0 0 0 size 0 0 0 0 1 Q V Rs 0 0 0 1 opc Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-526
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.10.2 SME move array to vector

This section describes the encoding of the SME move array to vector instruction class. The encodings in this section
are decoded from SME Move from Array.

C4.1.10.3 SME2 move tile to vector, two registers

This section describes the encoding of the SME2 move tile to vector, two registers instruction class. The encodings
in this section are decoded from SME Move from Array.

C4.1.10.4 SME2 zeroing move tile to vector, two registers

This section describes the encoding of the SME2 zeroing move tile to vector, two registers instruction class. The
encodings in this section are decoded from SME Move from Array.

Decode fields
Instruction page Feature

size Q

0x 1 Unallocated. -

00 0 MOVA (tile to vector, single) - Encoding FEAT_SME

01 0 MOVA (tile to vector, single) - Encoding FEAT_SME

10 0 MOVA (tile to vector, single) - Encoding FEAT_SME

10 1 Unallocated. -

11 0 MOVA (tile to vector, single) - Encoding FEAT_SME

11 1 MOVA (tile to vector, single) - Encoding FEAT_SME

Decode fields
Instruction page Feature

size

00 MOVA (tile to vector, two registers) - Encoding FEAT_SME2

01 MOVA (tile to vector, two registers) - Encoding FEAT_SME2

10 MOVA (tile to vector, two registers) - Encoding FEAT_SME2

11 MOVA (tile to vector, two registers) - Encoding FEAT_SME2

1 1 0 0 0 0 0 0 size 0 0 0 0 1 Q V Rs Pg 0 opc Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 5 4 0

1 1 0 0 0 0 0 0 size 0 0 0 1 1 0 V Rs 0 0 0 0 0 opc Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-527
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.10.5 SME2 move tile to vector, four registers

This section describes the encoding of the SME2 move tile to vector, four registers instruction class. The encodings
in this section are decoded from SME Move from Array.

C4.1.10.6 SME2 zeroing move tile to vector, four registers

This section describes the encoding of the SME2 zeroing move tile to vector, four registers instruction class. The
encodings in this section are decoded from SME Move from Array.

Decode fields
Instruction page Feature

size

00 MOVAZ (tile to vector, two registers) - Encoding FEAT_SME2p1

01 MOVAZ (tile to vector, two registers) - Encoding FEAT_SME2p1

10 MOVAZ (tile to vector, two registers) - Encoding FEAT_SME2p1

11 MOVAZ (tile to vector, two registers) - Encoding FEAT_SME2p1

Decode fields
Instruction page Feature

size opc

0x 1xx Unallocated. -

00 0xx MOVA (tile to vector, four registers) - Encoding FEAT_SME2

01 0xx MOVA (tile to vector, four registers) - Encoding FEAT_SME2

10 0xx MOVA (tile to vector, four registers) - Encoding FEAT_SME2

10 1xx Unallocated. -

11 - MOVA (tile to vector, four registers) - Encoding FEAT_SME2

1 1 0 0 0 0 0 0 size 0 0 0 1 1 0 V Rs 0 0 0 1 0 opc Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

1 1 0 0 0 0 0 0 size 0 0 0 1 1 0 V Rs 0 0 1 0 0 opc Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-528
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.11 SME Add Vector to Array

This section describes the encoding of the SME Add Vector to Array group. The encodings in this section are
decoded from SME encodings.

C4.1.11.1 SME add vector to array

This section describes the encoding of the SME add vector to array instruction class. The encodings in this section
are decoded from SME Add Vector to Array.

Decode fields
Instruction page Feature

size opc

0x 1xx Unallocated. -

00 0xx MOVAZ (tile to vector, four registers) - Encoding FEAT_SME2p1

01 0xx MOVAZ (tile to vector, four registers) - Encoding FEAT_SME2p1

10 0xx MOVAZ (tile to vector, four registers) - Encoding FEAT_SME2p1

10 1xx Unallocated. -

11 - MOVAZ (tile to vector, four registers) - Encoding FEAT_SME2p1

1 1 0 0 0 0 0 0 size 0 0 0 1 1 0 V Rs 0 0 1 1 0 opc Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0

Table C4-12 Encoding table for the SME Add Vector to Array group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 - - Unallocated.

 1 00 0 SME add vector to array

 1 00 1 Unallocated.

 1 != 00 - Unallocated.

11000000 010 op1 0

31 24 23 22 21 19 18 17 16 5 4 3 2 0

op0 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-529
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.12 SME Zero

This section describes the encoding of the SME Zero group. The encodings in this section are decoded from SME
encodings.

C4.1.13 SME2 Multiple Zero

This section describes the encoding of the SME2 Multiple Zero group. The encodings in this section are decoded
from SME encodings.

Decode fields
Instruction page Feature

op V opc2

0 - 1xx Unallocated. -

0 0 0xx ADDHA - Encoding FEAT_SME

0 1 0xx ADDVA - Encoding FEAT_SME

1 0 - ADDHA - Encoding FEAT_SME_I16I64

1 1 - ADDVA - Encoding FEAT_SME_I16I64

1 1 0 0 0 0 0 0 1 op 0 1 0 0 0 V Pm Pn Zn 0 0 opc2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 10 9 5 4 3 2 0

Table C4-13 Encoding table for the SME Zero group

Decode fields
Decode group or instruction page Feature

op0

 0000000000 ZERO (tiles) FEAT_SME

 != 0000000000 Unallocated. -

11000000000010 op0

31 18 17 8 7 0

Table C4-14 Encoding table for the SME2 Multiple Zero group

Decode fields
Decode group or instruction page

op0

 0000000000 SME multiple vectors zero array

 != 0000000000 Unallocated.

11000000000011 op0

31 18 17 13 12 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-530
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.13.1 SME multiple vectors zero array

This section describes the encoding of the SME multiple vectors zero array instruction class. The encodings in this
section are decoded from SME2 Multiple Zero.

C4.1.14 SME2 Zero Lookup Table

This section describes the encoding of the SME2 Zero Lookup Table group. The encodings in this section are
decoded from SME encodings.

C4.1.14.1 SME2 zero lookup table

This section describes the encoding of the SME2 zero lookup table instruction class. The encodings in this section
are decoded from SME2 Zero Lookup Table.

Decode fields
Instruction page Feature

opc opc2

x1x 1xx Unallocated. -

000 - ZERO (single-vector) - Encoding FEAT_SME2p1

001 - ZERO (double-vector) - Encoding FEAT_SME2p1

010 0xx ZERO (double-vector) - Encoding FEAT_SME2p1

011 0xx ZERO (double-vector) - Encoding FEAT_SME2p1

100 - ZERO (single-vector) - Encoding FEAT_SME2p1

101 0xx ZERO (quad-vector) - Encoding FEAT_SME2p1

101 1xx Unallocated. -

11x 01x Unallocated. -

110 00x ZERO (quad-vector) - Encoding FEAT_SME2p1

111 00x ZERO (quad-vector) - Encoding FEAT_SME2p1

1 1 0 0 0 0 0 0 0 0 0 0 1 1 opc Rv 0 0 0 0 0 0 0 0 0 0 opc2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Table C4-15 Encoding table for the SME2 Zero Lookup Table group

Decode fields
Decode group or instruction page

op0

 00000000000000 SME2 zero lookup table

 != 00000000000000 Unallocated.

11000000010010 op0

31 18 17 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-531
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.15 SME2 Move Lookup Table

This section describes the encoding of the SME2 Move Lookup Table group. The encodings in this section are
decoded from SME encodings.

C4.1.15.1 SME2 move from lookup table

This section describes the encoding of the SME2 move from lookup table instruction class. The encodings in this
section are decoded from SME2 Move Lookup Table.

Decode fields
Instruction page Feature

opc

0000 Unallocated. -

0001 ZERO (table) FEAT_SME2

001x Unallocated. -

01xx Unallocated. -

1xxx Unallocated. -

1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 opc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Table C4-16 Encoding table for the SME2 Move Lookup Table group

Decode fields
Decode group or instruction page

op0 op1

 0 00 SME2 move from lookup table

 1 00 SME2 move into lookup table

 - != 00 Unallocated.

11000000010011 op1

31 18 17 16 15 14 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-532
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.15.2 SME2 move into lookup table

This section describes the encoding of the SME2 move into lookup table instruction class. The encodings in this
section are decoded from SME2 Move Lookup Table.

C4.1.16 SME2 Expand Lookup Table (Contiguous)

This section describes the encoding of the SME2 Expand Lookup Table (Contiguous) group. The encodings in this
section are decoded from SME encodings.

Decode fields
Instruction page Feature

opc

000xxxx Unallocated. -

0010xxx Unallocated. -

00110xx Unallocated. -

001110x Unallocated. -

0011110 Unallocated. -

0011111 MOVT (table to scalar) FEAT_SME2

01xxxxx Unallocated. -

1xxxxxx Unallocated. -

Decode fields
Instruction page Feature

opc

000xxxx Unallocated. -

0010xxx Unallocated. -

00110xx Unallocated. -

001110x Unallocated. -

0011110 Unallocated. -

0011111 MOVT (scalar to table) FEAT_SME2

01xxxxx Unallocated. -

1xxxxxx Unallocated. -

1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 imm3 opc Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 5 4 0

1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 imm3 opc Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-533
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.16.1 SME2 lookup table expand four contiguous registers

This section describes the encoding of the SME2 lookup table expand four contiguous registers instruction class.
The encodings in this section are decoded from SME2 Expand Lookup Table (Contiguous).

C4.1.16.2 SME2 lookup table expand two contiguous registers

This section describes the encoding of the SME2 lookup table expand two contiguous registers instruction class.
The encodings in this section are decoded from SME2 Expand Lookup Table (Contiguous).

Table C4-17 Encoding table for the SME2 Expand Lookup Table (Contiguous) group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 00 - Unallocated.

 0 10 00 SME2 lookup table expand four contiguous registers

 0 10 != 00 Unallocated.

 0 x1 x0 SME2 lookup table expand two contiguous registers

 0 x1 x1 Unallocated.

 1 - - SME2 lookup table expand one register

Decode fields
Instruction page Feature

opc opc2

00x - Unallocated. -

01x 00 LUTI4 (four registers) FEAT_SME2

01x 01 Unallocated. -

01x 1x Unallocated. -

1xx 00 LUTI2 (four registers) FEAT_SME2

1xx 01 Unallocated. -

1xx 1x Unallocated. -

110000001 001 op1 op2

31 23 22 21 19 18 16 15 14 13 2 1 0

op0

1 1 0 0 0 0 0 0 1 0 0 0 1 opc 1 0 size opc2 Zn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-534
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.16.3 SME2 lookup table expand one register

This section describes the encoding of the SME2 lookup table expand one register instruction class. The encodings
in this section are decoded from SME2 Expand Lookup Table (Contiguous).

C4.1.17 SME2 Expand Lookup Table (Non-contiguous)

This section describes the encoding of the SME2 Expand Lookup Table (Non-contiguous) group. The encodings in
this section are decoded from SME encodings.

Decode fields
Instruction page Feature

opc opc2

00xx - Unallocated. -

01xx 00 LUTI4 (two registers) FEAT_SME2

01xx 01 Unallocated. -

01xx 1x Unallocated. -

1xxx 00 LUTI2 (two registers) FEAT_SME2

1xxx 01 Unallocated. -

1xxx 1x Unallocated. -

Decode fields
Instruction page Feature

opc opc2

00xxx - Unallocated. -

01xxx 00 LUTI4 (single) FEAT_SME2

01xxx 01 Unallocated. -

01xxx 1x Unallocated. -

1xxxx 00 LUTI2 (single) FEAT_SME2

1xxxx 01 Unallocated. -

1xxxx 1x Unallocated. -

1 1 0 0 0 0 0 0 1 0 0 0 1 opc 1 size opc2 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 0 1 1 0 0 1 opc size opc2 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-535
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.17.1 SME2 lookup table expand four non-contiguous registers

This section describes the encoding of the SME2 lookup table expand four non-contiguous registers instruction
class. The encodings in this section are decoded from SME2 Expand Lookup Table (Non-contiguous).

C4.1.17.2 SME2 lookup table expand two non-contiguous registers

This section describes the encoding of the SME2 lookup table expand two non-contiguous registers instruction
class. The encodings in this section are decoded from SME2 Expand Lookup Table (Non-contiguous).

Table C4-18 Encoding table for the SME2 Expand Lookup Table (Non-contiguous) group

Decode fields
Decode group or instruction page

op0 op1

 00 - Unallocated.

 10 00 SME2 lookup table expand four non-contiguous registers

 10 01 Unallocated.

 != 00 1x Unallocated.

 x1 0x SME2 lookup table expand two non-contiguous registers

Decode fields
Instruction page Feature

opc opc2

00x - Unallocated. -

01x 00 LUTI4 (four registers) FEAT_SME2p1

01x 01 Unallocated. -

01x 1x Unallocated. -

1xx 00 LUTI2 (four registers) FEAT_SME2p1

1xx 01 Unallocated. -

1xx 1x Unallocated. -

1100000010011 op0 op1

31 19 18 16 15 14 13 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 0 1 1 opc 1 0 size opc2 Zn 0 0 Zdl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 3 2 1 0

Zdh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-536
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.18 SME2 Multi-vector - Indexed (One register)

This section describes the encoding of the SME2 Multi-vector - Indexed (One register) group. The encodings in this
section are decoded from SME encodings.

C4.1.18.1 SME2 multi-vec indexed long long MLA one source 32-bit

This section describes the encoding of the SME2 multi-vec indexed long long MLA one source 32-bit instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Indexed (One register).

Decode fields
Instruction page Feature

opc opc2

00xx - Unallocated. -

01xx 00 LUTI4 (two registers) FEAT_SME2p1

01xx 01 Unallocated. -

01xx 1x Unallocated. -

1xxx 00 LUTI2 (two registers) FEAT_SME2p1

1xxx 01 Unallocated. -

1xxx 1x Unallocated. -

1 1 0 0 0 0 0 0 1 0 0 1 1 opc 1 size opc2 Zn 0 Zdl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 15 14 13 12 11 10 9 5 4 3 2 0

Zdh

Table C4-19 Encoding table for the SME2 Multi-vector - Indexed (One register) group

Decode fields
Decode group or instruction page

op0 op1 op2

 00 - - SME2 multi-vec indexed long long MLA one source 32-bit

 01 - - Unallocated.

 10 0 0 SME2 multi-vec indexed long long MLA one source 64-bit

 10 0 1 Unallocated.

 10 1 - SME2 multi-vec indexed long FMA one source

 11 0 - Unallocated.

 11 1 - SME2 multi-vec indexed long MLA one source

11000001 op0 00

31 24 23 22 21 20 19 13 12 11 3 2 1 0

op2

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-537
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.18.2 SME2 multi-vec indexed long long MLA one source 64-bit

This section describes the encoding of the SME2 multi-vec indexed long long MLA one source 64-bit instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Indexed (One register).

C4.1.18.3 SME2 multi-vec indexed long FMA one source

This section describes the encoding of the SME2 multi-vec indexed long FMA one source instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Indexed (One register).

Decode fields
Instruction page Feature

U S op

- 1 1 Unallocated. -

0 0 0 SMLALL (multiple and indexed vector) FEAT_SME2

0 0 1 USMLALL (multiple and indexed vector) FEAT_SME2

0 1 0 SMLSLL (multiple and indexed vector) FEAT_SME2

1 0 0 UMLALL (multiple and indexed vector) FEAT_SME2

1 0 1 SUMLALL (multiple and indexed vector) FEAT_SME2

1 1 0 UMLSLL (multiple and indexed vector) FEAT_SME2

Decode fields
Instruction page Feature

U S

0 0 SMLALL (multiple and indexed vector) FEAT_SME_I16I64

0 1 SMLSLL (multiple and indexed vector) FEAT_SME_I16I64

1 0 UMLALL (multiple and indexed vector) FEAT_SME_I16I64

1 1 UMLSLL (multiple and indexed vector) FEAT_SME_I16I64

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn U S op off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

i4h

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 0 i3l Zn U S 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-538
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.18.4 SME2 multi-vec indexed long MLA one source

This section describes the encoding of the SME2 multi-vec indexed long MLA one source instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Indexed (One register).

C4.1.19 SME2 Multi-vector - Indexed (Two registers)

This section describes the encoding of the SME2 Multi-vector - Indexed (Two registers) group. The encodings in
this section are decoded from SME encodings.

Decode fields
Instruction page Feature

op S

0 0 FMLAL (multiple and indexed vector) FEAT_SME2

0 1 FMLSL (multiple and indexed vector) FEAT_SME2

1 0 BFMLAL (multiple and indexed vector) FEAT_SME2

1 1 BFMLSL (multiple and indexed vector) FEAT_SME2

Decode fields
Instruction page Feature

U S

0 0 SMLAL (multiple and indexed vector) FEAT_SME2

0 1 SMLSL (multiple and indexed vector) FEAT_SME2

1 0 UMLAL (multiple and indexed vector) FEAT_SME2

1 1 UMLSL (multiple and indexed vector) FEAT_SME2

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 1 i3l Zn op S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

i3h

1 1 0 0 0 0 0 1 1 1 0 0 Zm Rv 1 i3l Zn U S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-539
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.19.1 SME2 multi-vec indexed long long MLA two sources 32-bit

This section describes the encoding of the SME2 multi-vec indexed long long MLA two sources 32-bit instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

Table C4-20 Encoding table for the SME2 Multi-vector - Indexed (Two registers) group

Decode fields
Decode group or instruction page

op0 op1 op2

 00 0x - SME2 multi-vec indexed long long MLA two sources 32-bit

 00 1x - SME2 multi-vec ternary indexed two registers 16-bit

 01 - - SME2 multi-vec ternary indexed two registers 32-bit

 10 00 0 SME2 multi-vec indexed long long MLA two sources 64-bit

 10 1x 0 SME2 multi-vec indexed long FMA two sources

 11 00 0 SME2 multi-vec ternary indexed two registers 64-bit

 11 1x 0 SME2 multi-vec indexed long MLA two sources

 1x 00 1 Unallocated.

 1x 01 - Unallocated.

 1x 1x 1 Unallocated.

Decode fields
Instruction page Feature

op U S

0 0 0 SMLALL (multiple and indexed vector) FEAT_SME2

0 0 1 SMLSLL (multiple and indexed vector) FEAT_SME2

0 1 0 UMLALL (multiple and indexed vector) FEAT_SME2

0 1 1 UMLSLL (multiple and indexed vector) FEAT_SME2

1 - 1 Unallocated. -

1 0 0 USMLALL (multiple and indexed vector) FEAT_SME2

1 1 0 SUMLALL (multiple and indexed vector) FEAT_SME2

11000001 op0 01 0 op1

31 24 23 22 21 20 19 16 15 14 13 12 11 10 6 5 4 0

op2

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn op U S i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-540
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.19.2 SME2 multi-vec ternary indexed two registers 16-bit

This section describes the encoding of the SME2 multi-vec ternary indexed two registers 16-bit instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

C4.1.19.3 SME2 multi-vec ternary indexed two registers 32-bit

This section describes the encoding of the SME2 multi-vec ternary indexed two registers 32-bit instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

Decode fields
Instruction page Feature

op S

0 0 FMLA (multiple and indexed vector) FEAT_SME_F16F16

0 1 FMLS (multiple and indexed vector) FEAT_SME_F16F16

1 0 BFMLA (multiple and indexed vector) FEAT_SVE_B16B16

1 1 BFMLS (multiple and indexed vector) FEAT_SVE_B16B16

Decode fields
Instruction page Feature

op opc2

0 000 FMLA (multiple and indexed vector) FEAT_SME2

0 001 FVDOT FEAT_SME2

0 010 FMLS (multiple and indexed vector) FEAT_SME2

0 011 BFVDOT FEAT_SME2

0 1x1 Unallocated. -

0 100 SVDOT (2-way) FEAT_SME2

0 110 UVDOT (2-way) FEAT_SME2

1 000 SDOT (2-way, multiple and indexed vector) FEAT_SME2

1 001 FDOT (multiple and indexed vector) FEAT_SME2

1 010 UDOT (2-way, multiple and indexed vector) FEAT_SME2

1 011 BFDOT (multiple and indexed vector) FEAT_SME2

1 100 SDOT (4-way, multiple and indexed vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 1 i3h Zn op S i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv op i2 Zn opc2 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-541
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.19.4 SME2 multi-vec indexed long long MLA two sources 64-bit

This section describes the encoding of the SME2 multi-vec indexed long long MLA two sources 64-bit instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

C4.1.19.5 SME2 multi-vec indexed long FMA two sources

This section describes the encoding of the SME2 multi-vec indexed long FMA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

1 101 USDOT (multiple and indexed vector) FEAT_SME2

1 110 UDOT (4-way, multiple and indexed vector) FEAT_SME2

1 111 SUDOT (multiple and indexed vector) FEAT_SME2

Decode fields
Instruction page Feature

U S

0 0 SMLALL (multiple and indexed vector) FEAT_SME_I16I64

0 1 SMLSLL (multiple and indexed vector) FEAT_SME_I16I64

1 0 UMLALL (multiple and indexed vector) FEAT_SME_I16I64

1 1 UMLSLL (multiple and indexed vector) FEAT_SME_I16I64

Decode fields
Instruction page Feature

op S

0 0 FMLAL (multiple and indexed vector) FEAT_SME2

0 1 FMLSL (multiple and indexed vector) FEAT_SME2

1 0 BFMLAL (multiple and indexed vector) FEAT_SME2

1 1 BFMLSL (multiple and indexed vector) FEAT_SME2

Decode fields
Instruction page Feature

op opc2

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 0 0 Zn 0 U S i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

i3h

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 1 i3h Zn 0 op S i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-542
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.19.6 SME2 multi-vec ternary indexed two registers 64-bit

This section describes the encoding of the SME2 multi-vec ternary indexed two registers 64-bit instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

C4.1.19.7 SME2 multi-vec indexed long MLA two sources

This section describes the encoding of the SME2 multi-vec indexed long MLA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Indexed (Two registers).

C4.1.20 SME2 Multi-vector - Indexed (Four registers)

This section describes the encoding of the SME2 Multi-vector - Indexed (Four registers) group. The encodings in
this section are decoded from SME encodings.

Decode fields
Instruction page Feature

opc

00 FMLA (multiple and indexed vector) FEAT_SME_F64F64

01 SDOT (4-way, multiple and indexed vector) FEAT_SME_I16I64

10 FMLS (multiple and indexed vector) FEAT_SME_F64F64

11 UDOT (4-way, multiple and indexed vector) FEAT_SME_I16I64

Decode fields
Instruction page Feature

U S

0 0 SMLAL (multiple and indexed vector) FEAT_SME2

0 1 SMLSL (multiple and indexed vector) FEAT_SME2

1 0 UMLAL (multiple and indexed vector) FEAT_SME2

1 1 UMLSL (multiple and indexed vector) FEAT_SME2

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 0 0 i1 Zn 0 opc off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 1 i3h Zn 0 U S i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-543
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.20.1 SME2 multi-vec indexed long long MLA four sources 32-bit

This section describes the encoding of the SME2 multi-vec indexed long long MLA four sources 32-bit instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

Table C4-21 Encoding table for the SME2 Multi-vector - Indexed (Four registers) group

Decode fields
Decode group or instruction page

op0 op1 op2

 00 0x 0x SME2 multi-vec indexed long long MLA four sources 32-bit

 00 1x 0x SME2 multi-vec ternary indexed four registers 16-bit

 01 - 0x SME2 multi-vec ternary indexed four registers 32-bit

 0x - 1x Unallocated.

 10 00 00 SME2 multi-vec indexed long long MLA four sources 64-bit

 10 00 != 00 Unallocated.

 10 01 - Unallocated.

 10 1x 00 SME2 multi-vec indexed long FMA four sources

 10 1x != 00 Unallocated.

 11 0x 00 SME2 multi-vec ternary indexed four registers 64-bit

 11 1x 00 SME2 multi-vec indexed long MLA four sources

 11 - != 00 Unallocated.

Decode fields
Instruction page Feature

op U S

0 0 0 SMLALL (multiple and indexed vector) FEAT_SME2

0 0 1 SMLSLL (multiple and indexed vector) FEAT_SME2

0 1 0 UMLALL (multiple and indexed vector) FEAT_SME2

0 1 1 UMLSLL (multiple and indexed vector) FEAT_SME2

1 - 1 Unallocated. -

1 0 0 USMLALL (multiple and indexed vector) FEAT_SME2

1 1 0 SUMLALL (multiple and indexed vector) FEAT_SME2

11000001 op0 01 1 op1 op2

31 24 23 22 21 20 19 16 15 14 13 12 11 10 7 6 5 4 0

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 op U S i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-544
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.20.2 SME2 multi-vec ternary indexed four registers 16-bit

This section describes the encoding of the SME2 multi-vec ternary indexed four registers 16-bit instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

C4.1.20.3 SME2 multi-vec ternary indexed four registers 32-bit

This section describes the encoding of the SME2 multi-vec ternary indexed four registers 32-bit instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

Decode fields
Instruction page Feature

op S

0 0 FMLA (multiple and indexed vector) FEAT_SME_F16F16

0 1 FMLS (multiple and indexed vector) FEAT_SME_F16F16

1 0 BFMLA (multiple and indexed vector) FEAT_SVE_B16B16

1 1 BFMLS (multiple and indexed vector) FEAT_SVE_B16B16

Decode fields
Instruction page Feature

op opc2

0 0x1 Unallocated. -

0 000 FMLA (multiple and indexed vector) FEAT_SME2

0 010 FMLS (multiple and indexed vector) FEAT_SME2

0 100 SVDOT (4-way) FEAT_SME2

0 101 USVDOT FEAT_SME2

0 110 UVDOT (4-way) FEAT_SME2

0 111 SUVDOT FEAT_SME2

1 000 SDOT (2-way, multiple and indexed vector) FEAT_SME2

1 001 FDOT (multiple and indexed vector) FEAT_SME2

1 010 UDOT (2-way, multiple and indexed vector) FEAT_SME2

1 011 BFDOT (multiple and indexed vector) FEAT_SME2

1 100 SDOT (4-way, multiple and indexed vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 1 i3h Zn 0 op S i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv op i2 Zn 0 opc2 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-545
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.20.4 SME2 multi-vec indexed long long MLA four sources 64-bit

This section describes the encoding of the SME2 multi-vec indexed long long MLA four sources 64-bit instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

C4.1.20.5 SME2 multi-vec indexed long FMA four sources

This section describes the encoding of the SME2 multi-vec indexed long FMA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

1 101 USDOT (multiple and indexed vector) FEAT_SME2

1 110 UDOT (4-way, multiple and indexed vector) FEAT_SME2

1 111 SUDOT (multiple and indexed vector) FEAT_SME2

Decode fields
Instruction page Feature

U S

0 0 SMLALL (multiple and indexed vector) FEAT_SME_I16I64

0 1 SMLSLL (multiple and indexed vector) FEAT_SME_I16I64

1 0 UMLALL (multiple and indexed vector) FEAT_SME_I16I64

1 1 UMLSLL (multiple and indexed vector) FEAT_SME_I16I64

Decode fields
Instruction page Feature

op S

0 0 FMLAL (multiple and indexed vector) FEAT_SME2

0 1 FMLSL (multiple and indexed vector) FEAT_SME2

1 0 BFMLAL (multiple and indexed vector) FEAT_SME2

1 1 BFMLSL (multiple and indexed vector) FEAT_SME2

Decode fields
Instruction page Feature

op opc2

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 0 0 Zn 0 0 U S i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

i3h

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 op S i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-546
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.20.6 SME2 multi-vec ternary indexed four registers 64-bit

This section describes the encoding of the SME2 multi-vec ternary indexed four registers 64-bit instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

C4.1.20.7 SME2 multi-vec indexed long MLA four sources

This section describes the encoding of the SME2 multi-vec indexed long MLA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Indexed (Four registers).

C4.1.21 SME2 Multi-vector - SVE Select

This section describes the encoding of the SME2 Multi-vector - SVE Select group. The encodings in this section
are decoded from SME encodings.

Decode fields
Instruction page Feature

op opc2

0 00 FMLA (multiple and indexed vector) FEAT_SME_F64F64

0 01 SDOT (4-way, multiple and indexed vector) FEAT_SME_I16I64

0 10 FMLS (multiple and indexed vector) FEAT_SME_F64F64

0 11 UDOT (4-way, multiple and indexed vector) FEAT_SME_I16I64

1 x0 Unallocated. -

1 01 SVDOT (4-way) FEAT_SME_I16I64

1 11 UVDOT (4-way) FEAT_SME_I16I64

Decode fields
Instruction page Feature

U S

0 0 SMLAL (multiple and indexed vector) FEAT_SME2

0 1 SMLSL (multiple and indexed vector) FEAT_SME2

1 0 UMLAL (multiple and indexed vector) FEAT_SME2

1 1 UMLSL (multiple and indexed vector) FEAT_SME2

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 op i1 Zn 0 0 opc2 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 1 i3h Zn 0 0 U S i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-547
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.22 SME2 Multi-vector - SVE Constructive Binary

This section describes the encoding of the SME2 Multi-vector - SVE Constructive Binary group. The encodings in
this section are decoded from SME encodings.

Table C4-22 Encoding table for the SME2 Multi-vector - SVE Select group

Decode fields
Decode group or instruction page Feature

op0 op1 op2

 01 00 00 SEL - Encoding FEAT_SME2

 01 00 != 00 Unallocated. -

 01 != 00 - Unallocated. -

 11 - - Unallocated. -

 x0 x0 x0 SEL - Encoding FEAT_SME2

 x0 x0 x1 Unallocated. -

 x0 x1 - Unallocated. -

11000001 1 op0 100 op1 op2

31 24 23 22 21 20 18 17 16 15 13 12 7 6 5 4 2 1 0

Table C4-23 Encoding table for the SME2 Multi-vector - SVE Constructive Binary group

Decode fields
Decode group or instruction page

op0 op1 op2

 00 101 - SME2 multi-vec quadwords ZIP two registers

 01 101 - Unallocated.

 10 101 - Unallocated.

 11 101 - SME2 multi-vec saturating shift right narrow two registers

 - 000 - SME2 multi-vec FCLAMP two registers

 - 001 - SME2 multi-vec CLAMP two registers

 - 010 0 SME2 multi-vec FCLAMP four registers

 - 011 0 SME2 multi-vec CLAMP four registers

11000001 op0 1 110 op1

31 24 23 22 21 20 16 15 13 12 10 9 2 1 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-548
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.22.1 SME2 multi-vec quadwords ZIP two registers

This section describes the encoding of the SME2 multi-vec quadwords ZIP two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

C4.1.22.2 SME2 multi-vec saturating shift right narrow two registers

This section describes the encoding of the SME2 multi-vec saturating shift right narrow two registers instruction
class. The encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

C4.1.22.3 SME2 multi-vec FCLAMP two registers

This section describes the encoding of the SME2 multi-vec FCLAMP two registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

 - 01x 1 Unallocated.

 - 100 - SME2 multi-vec ZIP two registers

 - 11x - SME2 multi-vec saturating shift right narrow four registers

Decode fields
Instruction page Feature

op

0 ZIP (two registers) FEAT_SME2

1 UZP (two registers) FEAT_SME2

Decode fields
Instruction page Feature

op U

0 0 SQRSHR (two registers) FEAT_SME2

0 1 UQRSHR (two registers) FEAT_SME2

1 0 SQRSHRU (two registers) FEAT_SME2

1 1 Unallocated. -

Table C4-23 Encoding table for the SME2 Multi-vector - SVE Constructive Binary group

Decode fields
Decode group or instruction page

op0 op1 op2

1 1 0 0 0 0 0 1 0 0 1 Zm 1 1 0 1 0 1 Zn Zd op

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 1 1 1 op imm4 1 1 0 1 0 1 Zn U Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-549
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.22.4 SME2 multi-vec CLAMP two registers

This section describes the encoding of the SME2 multi-vec CLAMP two registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

C4.1.22.5 SME2 multi-vec FCLAMP four registers

This section describes the encoding of the SME2 multi-vec FCLAMP four registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

Decode fields
Instruction page Feature

size op

- 1 Unallocated. -

!= 00 0 FCLAMP FEAT_SME2

00 0 BFCLAMP FEAT_SVE_B16B16

Decode fields
Instruction page Feature

U

0 SCLAMP FEAT_SME2

1 UCLAMP FEAT_SME2

Decode fields
Instruction page Feature

size op

- 1 Unallocated. -

!= 00 0 FCLAMP FEAT_SME2

00 0 BFCLAMP FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 0 0 Zn Zd op

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 0 1 Zn Zd U

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 1 0 Zn Zd 0 op

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-550
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.22.6 SME2 multi-vec CLAMP four registers

This section describes the encoding of the SME2 multi-vec CLAMP four registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

C4.1.22.7 SME2 multi-vec ZIP two registers

This section describes the encoding of the SME2 multi-vec ZIP two registers instruction class. The encodings in
this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

C4.1.22.8 SME2 multi-vec saturating shift right narrow four registers

This section describes the encoding of the SME2 multi-vec saturating shift right narrow four registers instruction
class. The encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Binary.

Decode fields
Instruction page Feature

U

0 SCLAMP FEAT_SME2

1 UCLAMP FEAT_SME2

Decode fields
Instruction page Feature

op

0 ZIP (two registers) FEAT_SME2

1 UZP (two registers) FEAT_SME2

Decode fields
Instruction page Feature

N op U

- 1 1 Unallocated. -

0 0 0 SQRSHR (four registers) FEAT_SME2

0 0 1 UQRSHR (four registers) FEAT_SME2

0 1 0 SQRSHRU (four registers) FEAT_SME2

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 1 1 Zn Zd 0 U

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 2 1 0

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 1 0 0 Zn Zd op

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 N Zn op U Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-551
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23 SME2 Multi-vector - SVE Constructive Unary

This section describes the encoding of the SME2 Multi-vector - SVE Constructive Unary group. The encodings in
this section are decoded from SME encodings.

1 0 0 SQRSHRN FEAT_SME2

1 0 1 UQRSHRN FEAT_SME2

1 1 0 SQRSHRUN FEAT_SME2

Decode fields
Instruction page Feature

N op U

Table C4-24 Encoding table for the SME2 Multi-vector - SVE Constructive Unary group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 00 00001 - x0 SME2 multi-vec FP to int convert two registers

 00 00001 - x1 Unallocated.

 00 00010 - x0 SME2 multi-vec int to FP two registers

 00 00010 - x1 Unallocated.

 00 00100 - - Unallocated.

 00 10001 0x 00 SME2 multi-vec FP to int convert four registers

 00 10001 0x != 00 Unallocated.

 00 10001 1x - Unallocated.

 00 10010 0x 00 SME2 multi-vec int to FP four registers

 00 10010 0x != 00 Unallocated.

 00 10010 1x - Unallocated.

 00 10111 00 x0 SME2 multi-vec quadwords ZIP four registers

 00 1011x 00 x1 Unallocated.

 00 1011x != 00 - Unallocated.

 00 10x00 - - Unallocated.

 01 00001 - - Unallocated.

 01 x0010 - - Unallocated.

 0x 00000 - - SME2 multi-vec FP down convert two registers

 0x 00011 - - SME2 multi-vec int down convert two registers

11000001 op0 1 op1 111000 op2 op3

31 24 23 22 21 20 16 15 10 9 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-552
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23.1 SME2 multi-vec FP to int convert two registers

This section describes the encoding of the SME2 multi-vec FP to int convert two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

 0x 0011x - - Unallocated.

 10 00000 - - SME2 multi-vec convert two registers

 10 00001 - - Unallocated.

 10 00x1x - - Unallocated.

 11 000xx - - Unallocated.

 11 0011x - - Unallocated.

 1x 10010 - - Unallocated.

 != 00 1000x - - Unallocated.

 != 00 10110 00 x1 Unallocated.

 != 00 10110 01 - Unallocated.

 != 00 10110 1x - Unallocated.

 != 00 10111 - - Unallocated.

 != 00 x0100 - - Unallocated.

 - 00101 - - SME2 multi-vec unpack two registers

 - 01xxx x0 x0 SME2 multi-vec FRINT two registers

 - 01xxx x0 x1 Unallocated.

 - 01xxx x1 - Unallocated.

 - 10011 - - SME2 multi-vec int down convert four registers

 - 10101 x0 0x SME2 multi-vec unpack four registers

 - 10101 x0 1x Unallocated.

 - 10101 x1 - Unallocated.

 - 10110 00 x0 SME2 multi-vec ZIP four registers

 - 11xxx 00 00 SME2 multi-vec FRINT four registers

 - 11xxx 00 != 00 Unallocated.

 - 11xxx != 00 - Unallocated.

Table C4-24 Encoding table for the SME2 Multi-vector - SVE Constructive Unary group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-553
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23.2 SME2 multi-vec int to FP two registers

This section describes the encoding of the SME2 multi-vec int to FP two registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.3 SME2 multi-vec FP to int convert four registers

This section describes the encoding of the SME2 multi-vec FP to int convert four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.4 SME2 multi-vec int to FP four registers

This section describes the encoding of the SME2 multi-vec int to FP four registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

Decode fields
Instruction page Feature

U

0 FCVTZS FEAT_SME2

1 FCVTZU FEAT_SME2

Decode fields
Instruction page Feature

U

0 SCVTF FEAT_SME2

1 UCVTF FEAT_SME2

Decode fields
Instruction page Feature

U

0 FCVTZS FEAT_SME2

1 FCVTZU FEAT_SME2

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 Zn U Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 Zn U Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 Zn 0 U Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-554
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23.5 SME2 multi-vec quadwords ZIP four registers

This section describes the encoding of the SME2 multi-vec quadwords ZIP four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.6 SME2 multi-vec FP down convert two registers

This section describes the encoding of the SME2 multi-vec FP down convert two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

Decode fields
Instruction page Feature

U

0 SCVTF FEAT_SME2

1 UCVTF FEAT_SME2

Decode fields
Instruction page Feature

op

0 ZIP (four registers) FEAT_SME2

1 UZP (four registers) FEAT_SME2

Decode fields
Instruction page Feature

op N

0 0 FCVT (narrowing) FEAT_SME2

0 1 FCVTN FEAT_SME2

1 0 BFCVT FEAT_SME2

1 1 BFCVTN FEAT_SME2

1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 Zn 0 U Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 Zn 0 0 Zd op 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 0 op 1 0 0 0 0 0 1 1 1 0 0 0 Zn N Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-555
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23.7 SME2 multi-vec int down convert two registers

This section describes the encoding of the SME2 multi-vec int down convert two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.8 SME2 multi-vec convert two registers

This section describes the encoding of the SME2 multi-vec convert two registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.9 SME2 multi-vec unpack two registers

This section describes the encoding of the SME2 multi-vec unpack two registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

Decode fields
Instruction page Feature

op U

0 0 SQCVT (two registers) FEAT_SME2

0 1 UQCVT (two registers) FEAT_SME2

1 0 SQCVTU (two registers) FEAT_SME2

1 1 Unallocated. -

Decode fields
Instruction page Feature

L

0 FCVT (widening) FEAT_SME_F16F16

1 FCVTL FEAT_SME_F16F16

Decode fields
Instruction page Feature

U

0 SUNPK FEAT_SME2

1 UUNPK FEAT_SME2

1 1 0 0 0 0 0 1 0 op 1 0 0 0 1 1 1 1 1 0 0 0 Zn U Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 Zn Zd L

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 size 1 0 0 1 0 1 1 1 1 0 0 0 Zn Zd U

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-556
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23.10 SME2 multi-vec FRINT two registers

This section describes the encoding of the SME2 multi-vec FRINT two registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.11 SME2 multi-vec int down convert four registers

This section describes the encoding of the SME2 multi-vec int down convert four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

Decode fields
Instruction page Feature

size opc

0x - Unallocated. -

10 000 FRINTN FEAT_SME2

10 001 FRINTP FEAT_SME2

10 010 FRINTM FEAT_SME2

10 011 Unallocated. -

10 100 FRINTA FEAT_SME2

10 101 Unallocated. -

10 11x Unallocated. -

11 - Unallocated. -

Decode fields
Instruction page Feature

op N U

0 0 0 SQCVT (four registers) FEAT_SME2

0 0 1 UQCVT (four registers) FEAT_SME2

0 1 0 SQCVTN FEAT_SME2

0 1 1 UQCVTN FEAT_SME2

1 - 1 Unallocated. -

1 0 0 SQCVTU (four registers) FEAT_SME2

1 1 0 SQCVTUN FEAT_SME2

1 1 0 0 0 0 0 1 size 1 0 1 opc 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 6 5 4 1 0

1 1 0 0 0 0 0 1 sz op 1 1 0 0 1 1 1 1 1 0 0 0 Zn N U Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-557
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.23.12 SME2 multi-vec unpack four registers

This section describes the encoding of the SME2 multi-vec unpack four registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.13 SME2 multi-vec ZIP four registers

This section describes the encoding of the SME2 multi-vec ZIP four registers instruction class. The encodings in
this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

C4.1.23.14 SME2 multi-vec FRINT four registers

This section describes the encoding of the SME2 multi-vec FRINT four registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - SVE Constructive Unary.

Decode fields
Instruction page Feature

U

0 SUNPK FEAT_SME2

1 UUNPK FEAT_SME2

Decode fields
Instruction page Feature

op

0 ZIP (four registers) FEAT_SME2

1 UZP (four registers) FEAT_SME2

Decode fields
Instruction page Feature

size opc

0x - Unallocated. -

10 000 FRINTN FEAT_SME2

10 001 FRINTP FEAT_SME2

10 010 FRINTM FEAT_SME2

1 1 0 0 0 0 0 1 size 1 1 0 1 0 1 1 1 1 0 0 0 Zn 0 Zd 0 U

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 2 1 0

1 1 0 0 0 0 0 1 size 1 1 0 1 1 0 1 1 1 0 0 0 Zn 0 0 Zd op 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 size 1 1 1 opc 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-558
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.24 SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers)

This section describes the encoding of the SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers)
group. The encodings in this section are decoded from SME encodings.

C4.1.24.1 SME2 multiple vectors int min/max two registers

This section describes the encoding of the SME2 multiple vectors int min/max two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers).

10 011 Unallocated. -

10 100 FRINTA FEAT_SME2

10 101 Unallocated. -

10 11x Unallocated. -

11 - Unallocated. -

Decode fields
Instruction page Feature

size opc

Table C4-25 Encoding table for the SME2 Multi-vector - Multiple Vectors SVE Destructive (Two
registers) group

Decode fields
Decode group or instruction page

op0

 000 SME2 multiple vectors int min/max two registers

 001 Unallocated.

 010 SME2 multiple vectors FP min/max two registers

 011 Unallocated.

 10x SME2 multiple vectors shift two registers

 11x Unallocated.

11000001 1 0101100 op0

31 24 23 22 21 20 17 16 10 9 7 6 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-559
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.24.2 SME2 multiple vectors FP min/max two registers

This section describes the encoding of the SME2 multiple vectors FP min/max two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers).

C4.1.24.3 SME2 multiple vectors shift two registers

This section describes the encoding of the SME2 multiple vectors shift two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers).

Decode fields
Instruction page Feature

opc U

00 0 SMAX (multiple vectors) FEAT_SME2

00 1 UMAX (multiple vectors) FEAT_SME2

01 0 SMIN (multiple vectors) FEAT_SME2

01 1 UMIN (multiple vectors) FEAT_SME2

1x - Unallocated. -

Decode fields
Instruction page Feature

size opc o2

- 1x - Unallocated. -

!= 00 00 0 FMAX (multiple vectors) FEAT_SME2

!= 00 00 1 FMIN (multiple vectors) FEAT_SME2

!= 00 01 0 FMAXNM (multiple vectors) FEAT_SME2

!= 00 01 1 FMINNM (multiple vectors) FEAT_SME2

00 00 0 BFMAX (multiple vectors) FEAT_SVE_B16B16

00 00 1 BFMIN (multiple vectors) FEAT_SVE_B16B16

00 01 0 BFMAXNM (multiple vectors) FEAT_SVE_B16B16

00 01 1 BFMINNM (multiple vectors) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 0 0 0 opc Zdn U

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 0 1 0 opc Zdn o2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-560
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.25 SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Two registers)

This section describes the encoding of the SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Two
registers) group. The encodings in this section are decoded from SME encodings.

C4.1.25.1 SME2 multi-vector signed saturating doubling multiply high two registers

This section describes the encoding of the SME2 multi-vector signed saturating doubling multiply high two
registers instruction class. The encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors
SVE Saturating Multiply (Two registers).

Decode fields
Instruction page Feature

opc U

000 - Unallocated. -

001 0 SRSHL (multiple vectors) FEAT_SME2

001 1 URSHL (multiple vectors) FEAT_SME2

01x - Unallocated. -

1xx - Unallocated. -

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 1 0 opc Zdn U

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

Table C4-26 Encoding table for the SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply
(Two registers) group

Decode fields
Decode group or instruction page

op0

 00000 SME2 multi-vector signed saturating doubling multiply high two registers

 != 00000 Unallocated.

11000001 1 0101101 op0

31 24 23 22 21 20 17 16 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-561
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.26 SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers)

This section describes the encoding of the SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers)
group. The encodings in this section are decoded from SME encodings.

C4.1.26.1 SME2 multiple vectors int min/max four registers

This section describes the encoding of the SME2 multiple vectors int min/max four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers).

Decode fields
Instruction page Feature

op

0 SQDMULH (multiple vectors) FEAT_SME2

1 Unallocated. -

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 1 0 0 0 0 0 Zdn op

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

Table C4-27 Encoding table for the SME2 Multi-vector - Multiple Vectors SVE Destructive (Four
registers) group

Decode fields
Decode group or instruction page

op0

 000 SME2 multiple vectors int min/max four registers

 001 Unallocated.

 010 SME2 multiple vectors FP min/max four registers

 011 Unallocated.

 10x SME2 multiple vectors shift four registers

 11x Unallocated.

11000001 1 00101110 op0 0

31 24 23 22 21 20 18 17 10 9 7 6 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-562
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.26.2 SME2 multiple vectors FP min/max four registers

This section describes the encoding of the SME2 multiple vectors FP min/max four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers).

C4.1.26.3 SME2 multiple vectors shift four registers

This section describes the encoding of the SME2 multiple vectors shift four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers).

Decode fields
Instruction page Feature

opc U

00 0 SMAX (multiple vectors) FEAT_SME2

00 1 UMAX (multiple vectors) FEAT_SME2

01 0 SMIN (multiple vectors) FEAT_SME2

01 1 UMIN (multiple vectors) FEAT_SME2

1x - Unallocated. -

Decode fields
Instruction page Feature

size opc o2

- 1x - Unallocated. -

!= 00 00 0 FMAX (multiple vectors) FEAT_SME2

!= 00 00 1 FMIN (multiple vectors) FEAT_SME2

!= 00 01 0 FMAXNM (multiple vectors) FEAT_SME2

!= 00 01 1 FMINNM (multiple vectors) FEAT_SME2

00 00 0 BFMAX (multiple vectors) FEAT_SVE_B16B16

00 00 1 BFMIN (multiple vectors) FEAT_SVE_B16B16

00 01 0 BFMAXNM (multiple vectors) FEAT_SVE_B16B16

00 01 1 BFMINNM (multiple vectors) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 0 0 0 opc Zdn 0 U

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 0 1 0 opc Zdn 0 o2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-563
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.27 SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Four registers)

This section describes the encoding of the SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Four
registers) group. The encodings in this section are decoded from SME encodings.

C4.1.27.1 SME2 multi-vector signed saturating doubling multiply high four registers

This section describes the encoding of the SME2 multi-vector signed saturating doubling multiply high four
registers instruction class. The encodings in this section are decoded from SME2 Multi-vector - Multiple Vectors
SVE Saturating Multiply (Four registers).

Decode fields
Instruction page Feature

opc U

000 - Unallocated. -

001 0 SRSHL (multiple vectors) FEAT_SME2

001 1 URSHL (multiple vectors) FEAT_SME2

01x - Unallocated. -

1xx - Unallocated. -

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 1 0 opc Zdn 0 U

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0

Table C4-28 Encoding table for the SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply
(Four registers) group

Decode fields
Decode group or instruction page

op0

 00000 SME2 multi-vector signed saturating doubling multiply high four registers

 != 00000 Unallocated.

11000001 1 00101111 op0 0

31 24 23 22 21 20 18 17 10 9 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-564
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.28 SME2 Multi-vector - Multiple and Single SVE Destructive (Two registers)

This section describes the encoding of the SME2 Multi-vector - Multiple and Single SVE Destructive (Two
registers) group. The encodings in this section are decoded from SME encodings.

C4.1.28.1 SME2 single-multi int min/max two registers

This section describes the encoding of the SME2 single-multi int min/max two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Two
registers).

Decode fields
Instruction page Feature

op

0 SQDMULH (multiple vectors) FEAT_SME2

1 Unallocated. -

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 1 0 0 0 0 0 Zdn 0 op

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

Table C4-29 Encoding table for the SME2 Multi-vector - Multiple and Single SVE Destructive (Two
registers) group

Decode fields
Decode group or instruction page

op0 op1

 0 0000x SME2 single-multi int min/max two registers

 0 0100x SME2 single-multi FP min/max two registers

 0 0x!= 00x Unallocated.

 0 10xxx SME2 single-multi shift two registers

 0 11000 SME2 single-multi add two registers

 0 11!= 000 Unallocated.

 1 00000 SME2 single-multi signed saturating doubling multiply high two registers

 1 != 00000 Unallocated.

11000001 10 10100 op1

31 24 23 22 21 20 19 16 15 11 10 9 5 4 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-565
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.28.2 SME2 single-multi FP min/max two registers

This section describes the encoding of the SME2 single-multi FP min/max two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Two
registers).

C4.1.28.3 SME2 single-multi shift two registers

This section describes the encoding of the SME2 single-multi shift two registers instruction class. The encodings in
this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Two registers).

Decode fields
Instruction page Feature

op U

0 0 SMAX (multiple and single vector) FEAT_SME2

0 1 UMAX (multiple and single vector) FEAT_SME2

1 0 SMIN (multiple and single vector) FEAT_SME2

1 1 UMIN (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

size op o2

!= 00 0 0 FMAX (multiple and single vector) FEAT_SME2

!= 00 0 1 FMIN (multiple and single vector) FEAT_SME2

!= 00 1 0 FMAXNM (multiple and single vector) FEAT_SME2

!= 00 1 1 FMINNM (multiple and single vector) FEAT_SME2

00 0 0 BFMAX (multiple and single vector) FEAT_SVE_B16B16

00 0 1 BFMIN (multiple and single vector) FEAT_SVE_B16B16

00 1 0 BFMAXNM (multiple and single vector) FEAT_SVE_B16B16

00 1 1 BFMINNM (multiple and single vector) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 0 0 0 0 op Zdn U

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 0 1 0 0 op Zdn o2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-566
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.28.4 SME2 single-multi add two registers

This section describes the encoding of the SME2 single-multi add two registers instruction class. The encodings in
this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Two registers).

C4.1.28.5 SME2 single-multi signed saturating doubling multiply high two registers

This section describes the encoding of the SME2 single-multi signed saturating doubling multiply high two registers
instruction class. The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single SVE
Destructive (Two registers).

Decode fields
Instruction page Feature

opc U

000 - Unallocated. -

001 0 SRSHL (multiple and single vector) FEAT_SME2

001 1 URSHL (multiple and single vector) FEAT_SME2

01x - Unallocated. -

1xx - Unallocated. -

Decode fields
Instruction page Feature

op

0 ADD (to vector) FEAT_SME2

1 Unallocated. -

Decode fields
Instruction page Feature

op

0 SQDMULH (multiple and single vector) FEAT_SME2

1 Unallocated. -

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 1 0 opc Zdn U

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 5 4 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 1 1 0 0 0 Zdn op

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 1 0 0 0 0 0 Zdn op

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-567
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.29 SME2 Multi-vector - Multiple and Single SVE Destructive (Four registers)

This section describes the encoding of the SME2 Multi-vector - Multiple and Single SVE Destructive (Four
registers) group. The encodings in this section are decoded from SME encodings.

C4.1.29.1 SME2 single-multi int min/max four registers

This section describes the encoding of the SME2 single-multi int min/max four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Four
registers).

Table C4-30 Encoding table for the SME2 Multi-vector - Multiple and Single SVE Destructive (Four
registers) group

Decode fields
Decode group or instruction page

op0 op1

 0 0000x SME2 single-multi int min/max four registers

 0 0100x SME2 single-multi FP min/max four registers

 0 0x!= 00x Unallocated.

 0 10xxx SME2 single-multi shift four registers

 0 11000 SME2 single-multi add four registers

 0 11!= 000 Unallocated.

 1 00000 SME2 single-multi signed saturating doubling multiply high four registers

 1 != 00000 Unallocated.

Decode fields
Instruction page Feature

op U

0 0 SMAX (multiple and single vector) FEAT_SME2

0 1 UMAX (multiple and single vector) FEAT_SME2

1 0 SMIN (multiple and single vector) FEAT_SME2

1 1 UMIN (multiple and single vector) FEAT_SME2

11000001 10 10101 op1 0

31 24 23 22 21 20 19 16 15 11 10 9 5 4 2 1 0

op0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 0 0 0 0 op Zdn 0 U

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-568
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.29.2 SME2 single-multi FP min/max four registers

This section describes the encoding of the SME2 single-multi FP min/max four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Four
registers).

C4.1.29.3 SME2 single-multi shift four registers

This section describes the encoding of the SME2 single-multi shift four registers instruction class. The encodings
in this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Four registers).

C4.1.29.4 SME2 single-multi add four registers

This section describes the encoding of the SME2 single-multi add four registers instruction class. The encodings in
this section are decoded from SME2 Multi-vector - Multiple and Single SVE Destructive (Four registers).

Decode fields
Instruction page Feature

size op o2

!= 00 0 0 FMAX (multiple and single vector) FEAT_SME2

!= 00 0 1 FMIN (multiple and single vector) FEAT_SME2

!= 00 1 0 FMAXNM (multiple and single vector) FEAT_SME2

!= 00 1 1 FMINNM (multiple and single vector) FEAT_SME2

00 0 0 BFMAX (multiple and single vector) FEAT_SVE_B16B16

00 0 1 BFMIN (multiple and single vector) FEAT_SVE_B16B16

00 1 0 BFMAXNM (multiple and single vector) FEAT_SVE_B16B16

00 1 1 BFMINNM (multiple and single vector) FEAT_SVE_B16B16

Decode fields
Instruction page Feature

opc U

000 - Unallocated. -

001 0 SRSHL (multiple and single vector) FEAT_SME2

001 1 URSHL (multiple and single vector) FEAT_SME2

01x - Unallocated. -

1xx - Unallocated. -

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 0 1 0 0 op Zdn 0 o2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 1 0 opc Zdn 0 U

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-569
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.29.5 SME2 single-multi signed saturating doubling multiply high four registers

This section describes the encoding of the SME2 single-multi signed saturating doubling multiply high four
registers instruction class. The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single
SVE Destructive (Four registers).

C4.1.30 SME2 Multi-vector - Multiple and Single Array Vectors (Two registers)

This section describes the encoding of the SME2 Multi-vector - Multiple and Single Array Vectors (Two registers)
group. The encodings in this section are decoded from SME encodings.

Decode fields
Instruction page Feature

op

0 ADD (to vector) FEAT_SME2

1 Unallocated. -

Decode fields
Instruction page Feature

op

0 SQDMULH (multiple and single vector) FEAT_SME2

1 Unallocated. -

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 1 1 0 0 0 Zdn 0 op

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 1 0 0 0 0 0 Zdn 0 op

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

Table C4-31 Encoding table for the SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers) group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 010 - - SME2 single-multi long FMA two sources

 0 011 - - SME2 multiple and single vector long FMA one source

 0 100 - - SME2 single-multi FP dot product two registers

 0 101 x1 - SME2 single-multi mixed dot product two registers

110000010 10 0 op1 op2

31 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

op0 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-570
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.30.1 SME2 single-multi long FMA two sources

This section describes the encoding of the SME2 single-multi long FMA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

C4.1.30.2 SME2 multiple and single vector long FMA one source

This section describes the encoding of the SME2 multiple and single vector long FMA one source instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers).

 1 010 - - SME2 single-multi long MLA two sources

 1 011 - - SME2 multiple and single vector long MLA one source

 1 100 - - Unallocated.

 1 101 x1 - SME2 single-multi two-way dot product two registers

 - 000 - 0 SME2 single-multi long long MLA two sources

 - 000 - 1 Unallocated.

 - 001 - - SME2 multiple and single vector long long FMA one source

 - 101 x0 - SME2 single-multi four-way dot product two registers

 - 110 0x - SME2 single-multi ternary FP two registers

 - 110 1x - SME2 single-multi ternary int two registers

 - 111 0x - SME2 single-multi ternary FP16 two registers

 - 111 1x - Unallocated.

Decode fields
Instruction page Feature

op S o2

- - 1 Unallocated. -

0 0 0 FMLAL (multiple and single vector) FEAT_SME2

0 1 0 FMLSL (multiple and single vector) FEAT_SME2

1 0 0 BFMLAL (multiple and single vector) FEAT_SME2

1 1 0 BFMLSL (multiple and single vector) FEAT_SME2

Table C4-31 Encoding table for the SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers) group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 0 Zn op S o2 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-571
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.30.3 SME2 single-multi FP dot product two registers

This section describes the encoding of the SME2 single-multi FP dot product two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

C4.1.30.4 SME2 single-multi mixed dot product two registers

This section describes the encoding of the SME2 single-multi mixed dot product two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

Decode fields
Instruction page Feature

op S

0 0 FMLAL (multiple and single vector) FEAT_SME2

0 1 FMLSL (multiple and single vector) FEAT_SME2

1 0 BFMLAL (multiple and single vector) FEAT_SME2

1 1 BFMLSL (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

opc

x1 Unallocated. -

00 FDOT (multiple and single vector) FEAT_SME2

10 BFDOT (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

U

0 USDOT (multiple and single vector) FEAT_SME2

1 SUDOT (multiple and single vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 1 Zn op S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 0 0 Zn opc off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 0 1 Zn U 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-572
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.30.5 SME2 single-multi long MLA two sources

This section describes the encoding of the SME2 single-multi long MLA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

C4.1.30.6 SME2 multiple and single vector long MLA one source

This section describes the encoding of the SME2 multiple and single vector long MLA one source instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers).

C4.1.30.7 SME2 single-multi two-way dot product two registers

This section describes the encoding of the SME2 single-multi two-way dot product two registers instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers).

Decode fields
Instruction page Feature

U S op

- - 1 Unallocated. -

0 0 0 SMLAL (multiple and single vector) FEAT_SME2

0 1 0 SMLSL (multiple and single vector) FEAT_SME2

1 0 0 UMLAL (multiple and single vector) FEAT_SME2

1 1 0 UMLSL (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

U S

0 0 SMLAL (multiple and single vector) FEAT_SME2

0 1 SMLSL (multiple and single vector) FEAT_SME2

1 0 UMLAL (multiple and single vector) FEAT_SME2

1 1 UMLSL (multiple and single vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 0 Zn U S op off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 1 Zn U S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-573
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.30.8 SME2 single-multi long long MLA two sources

This section describes the encoding of the SME2 single-multi long long MLA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

C4.1.30.9 SME2 multiple and single vector long long FMA one source

This section describes the encoding of the SME2 multiple and single vector long long FMA one source instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers).

Decode fields
Instruction page Feature

U

0 SDOT (2-way, multiple and single vector) FEAT_SME2

1 UDOT (2-way, multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

sz U S op

- 0 0 0 SMLALL (multiple and single vector) FEAT_SME2

- 0 1 0 SMLSLL (multiple and single vector) FEAT_SME2

- 1 0 0 UMLALL (multiple and single vector) FEAT_SME2

- 1 1 0 UMLSLL (multiple and single vector) FEAT_SME2

0 - 1 1 Unallocated. -

0 0 0 1 USMLALL (multiple and single vector) FEAT_SME2

0 1 0 1 SUMLALL (multiple and single vector) FEAT_SME2

1 - - 1 Unallocated. -

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 1 0 1 Zn U 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 0 Zn U S op 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-574
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.30.10 SME2 single-multi four-way dot product two registers

This section describes the encoding of the SME2 single-multi four-way dot product two registers instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two
registers).

C4.1.30.11 SME2 single-multi ternary FP two registers

This section describes the encoding of the SME2 single-multi ternary FP two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

Decode fields
Instruction page Feature

sz U S op

- 0 0 0 SMLALL (multiple and single vector) FEAT_SME2

- 0 1 0 SMLSLL (multiple and single vector) FEAT_SME2

- 1 0 0 UMLALL (multiple and single vector) FEAT_SME2

- 1 1 0 UMLSLL (multiple and single vector) FEAT_SME2

0 0 0 1 USMLALL (multiple and single vector) FEAT_SME2

0 0 1 1 Unallocated. -

0 1 - 1 Unallocated. -

1 - - 1 Unallocated. -

Decode fields
Instruction page Feature

U

0 SDOT (4-way, multiple and single vector) FEAT_SME2

1 UDOT (4-way, multiple and single vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 1 Zn U S op off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 0 1 Zn U 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-575
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.30.12 SME2 single-multi ternary int two registers

This section describes the encoding of the SME2 single-multi ternary int two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

C4.1.30.13 SME2 single-multi ternary FP16 two registers

This section describes the encoding of the SME2 single-multi ternary FP16 two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Two registers).

Decode fields
Instruction page Feature

S

0 FMLA (multiple and single vector) FEAT_SME2

1 FMLS (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

S

0 ADD (array results, multiple and single vector) FEAT_SME2

1 SUB (array results, multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

sz S

0 0 FMLA (multiple and single vector) FEAT_SME_F16F16

0 1 FMLS (multiple and single vector) FEAT_SME_F16F16

1 0 BFMLA (multiple and single vector) FEAT_SVE_B16B16

1 1 BFMLS (multiple and single vector) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 0 Zn 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 0 Zn 1 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 1 Zn 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-576
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.31 SME2 Multi-vector - Multiple and Single Array Vectors (Four registers)

This section describes the encoding of the SME2 Multi-vector - Multiple and Single Array Vectors (Four registers)
group. The encodings in this section are decoded from SME encodings.

C4.1.31.1 SME2 single-multi long FMA four sources

This section describes the encoding of the SME2 single-multi long FMA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

Table C4-32 Encoding table for the SME2 Multi-vector - Multiple and Single Array Vectors (Four
registers) group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 010 - - SME2 single-multi long FMA four sources

 0 100 - - SME2 single-multi FP dot product four registers

 0 101 x1 - SME2 single-multi mixed dot product four registers

 1 010 - - SME2 single-multi long MLA four sources

 1 100 - - Unallocated.

 1 101 x1 - SME2 single-multi two-way dot product four registers

 - 000 - 0 SME2 single-multi long long MLA four sources

 - 000 - 1 Unallocated.

 - 0x1 - - Unallocated.

 - 101 x0 - SME2 single-multi four-way dot product four registers

 - 110 0x - SME2 single-multi ternary FP four registers

 - 110 1x - SME2 single-multi ternary int four registers

 - 111 0x - SME2 single-multi ternary FP16 four registers

 - 111 1x - Unallocated.

110000010 11 0 op1 op2

31 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

op0 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-577
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.31.2 SME2 single-multi FP dot product four registers

This section describes the encoding of the SME2 single-multi FP dot product four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

C4.1.31.3 SME2 single-multi mixed dot product four registers

This section describes the encoding of the SME2 single-multi mixed dot product four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

Decode fields
Instruction page Feature

op S o2

- - 1 Unallocated. -

0 0 0 FMLAL (multiple and single vector) FEAT_SME2

0 1 0 FMLSL (multiple and single vector) FEAT_SME2

1 0 0 BFMLAL (multiple and single vector) FEAT_SME2

1 1 0 BFMLSL (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

opc

x1 Unallocated. -

00 FDOT (multiple and single vector) FEAT_SME2

10 BFDOT (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

U

0 USDOT (multiple and single vector) FEAT_SME2

1 SUDOT (multiple and single vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 1 0 Zn op S o2 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 0 0 Zn opc off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 0 1 Zn U 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-578
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.31.4 SME2 single-multi long MLA four sources

This section describes the encoding of the SME2 single-multi long MLA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

C4.1.31.5 SME2 single-multi two-way dot product four registers

This section describes the encoding of the SME2 single-multi two-way dot product four registers instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four
registers).

C4.1.31.6 SME2 single-multi long long MLA four sources

This section describes the encoding of the SME2 single-multi long long MLA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

Decode fields
Instruction page Feature

U S op

- - 1 Unallocated. -

0 0 0 SMLAL (multiple and single vector) FEAT_SME2

0 1 0 SMLSL (multiple and single vector) FEAT_SME2

1 0 0 UMLAL (multiple and single vector) FEAT_SME2

1 1 0 UMLSL (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

U

0 SDOT (2-way, multiple and single vector) FEAT_SME2

1 UDOT (2-way, multiple and single vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 0 1 0 Zn U S op off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 1 0 1 Zn U 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-579
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.31.7 SME2 single-multi four-way dot product four registers

This section describes the encoding of the SME2 single-multi four-way dot product four registers instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four
registers).

C4.1.31.8 SME2 single-multi ternary FP four registers

This section describes the encoding of the SME2 single-multi ternary FP four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

Decode fields
Instruction page Feature

sz U S op

- 0 0 0 SMLALL (multiple and single vector) FEAT_SME2

- 0 1 0 SMLSLL (multiple and single vector) FEAT_SME2

- 1 0 0 UMLALL (multiple and single vector) FEAT_SME2

- 1 1 0 UMLSLL (multiple and single vector) FEAT_SME2

0 - 1 1 Unallocated. -

0 0 0 1 USMLALL (multiple and single vector) FEAT_SME2

0 1 0 1 SUMLALL (multiple and single vector) FEAT_SME2

1 - - 1 Unallocated. -

Decode fields
Instruction page Feature

U

0 SDOT (4-way, multiple and single vector) FEAT_SME2

1 UDOT (4-way, multiple and single vector) FEAT_SME2

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 0 0 0 Zn U S op 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 0 1 Zn U 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-580
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.31.9 SME2 single-multi ternary int four registers

This section describes the encoding of the SME2 single-multi ternary int four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

C4.1.31.10 SME2 single-multi ternary FP16 four registers

This section describes the encoding of the SME2 single-multi ternary FP16 four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple and Single Array Vectors (Four registers).

Decode fields
Instruction page Feature

S

0 FMLA (multiple and single vector) FEAT_SME2

1 FMLS (multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

S

0 ADD (array results, multiple and single vector) FEAT_SME2

1 SUB (array results, multiple and single vector) FEAT_SME2

Decode fields
Instruction page Feature

sz S

0 0 FMLA (multiple and single vector) FEAT_SME_F16F16

0 1 FMLS (multiple and single vector) FEAT_SME_F16F16

1 0 BFMLA (multiple and single vector) FEAT_SVE_B16B16

1 1 BFMLS (multiple and single vector) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 0 Zn 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 0 Zn 1 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 1 Zn 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-581
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.32 SME2 Multi-vector - Multiple Array Vectors (Two registers)

This section describes the encoding of the SME2 Multi-vector - Multiple Array Vectors (Two registers) group. The
encodings in this section are decoded from SME encodings.

110000011 1 op1 op2 00 op3 op4

31 23 22 21 20 19 18 17 16 15 14 13 12 10 9 6 5 1 0

op0

Table C4-33 Encoding table for the SME2 Multi-vector - Multiple Array Vectors (Two registers) group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4

 0 00 x0 11x 1xxxx Unallocated. -

 0 - - 010 0xx0x SME2 multiple vectors long FMA two sources -

 0 - - 100 1x1xx Unallocated. -

 0 - - 100 xx0xx SME2 multiple vectors FP dot product two registers -

 0 - - 101 001xx USDOT (multiple vectors) - Encoding FEAT_SME2

 0 - - 101 011xx Unallocated. -

 0 - - 101 1xxxx Unallocated. -

 1 00 x0 1xx 1xxxx Unallocated. -

 1 00 x1 10x 1xxxx Unallocated. -

 1 != 00 - 10x 1xxxx Unallocated. -

 1 - - 010 0xx0x SME2 multiple vectors long MLA two sources -

 1 - - 100 0x0xx Unallocated. -

 1 - - 101 0x1xx SME2 multiple vectors two-way dot product two registers -

 - 00 00 111 00xxx SME2 multiple vectors binary FP two registers -

 - 00 00 111 01xxx SME2 multiple vectors binary int two registers -

 - 00 10 111 00xxx SME2 multiple vectors binary FP16 two registers -

 - 00 10 111 01xxx Unallocated. -

 - 00 x1 110 1xxxx Unallocated. -

 - 00 x1 111 - Unallocated. -

 - != 00 - 110 1xxxx Unallocated. -

 - != 00 - 111 - Unallocated. -

 - - - 000 0xxx0 SME2 multiple vectors long long MLA two sources -

 - - - 000 0xxx1 Unallocated. -

 - - - 010 0xx1x Unallocated. -

 - - - 0x0 1xxxx Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-582
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.32.1 SME2 multiple vectors long FMA two sources

This section describes the encoding of the SME2 multiple vectors long FMA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.2 SME2 multiple vectors FP dot product two registers

This section describes the encoding of the SME2 multiple vectors FP dot product two registers instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

 - - - 0x1 - Unallocated. -

 - - - 100 0x1xx SME2 multiple vectors ternary FP16 two registers -

 - - - 101 0x0xx SME2 multiple vectors four-way dot product two registers -

 - - - 110 00xxx SME2 multiple vectors ternary FP two registers -

 - - - 110 01xxx SME2 multiple vectors ternary int two registers -

Table C4-33 Encoding table for the SME2 Multi-vector - Multiple Array Vectors (Two registers) group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4

Decode fields
Instruction page Feature

op S

0 0 FMLAL (multiple vectors) FEAT_SME2

0 1 FMLSL (multiple vectors) FEAT_SME2

1 0 BFMLAL (multiple vectors) FEAT_SME2

1 1 BFMLSL (multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

opc

00 FDOT (multiple vectors) FEAT_SME2

01 BFDOT (multiple vectors) FEAT_SME2

1x Unallocated. -

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 0 1 0 Zn 0 op S 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 1 0 0 Zn opc 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-583
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.32.3 SME2 multiple vectors long MLA two sources

This section describes the encoding of the SME2 multiple vectors long MLA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.4 SME2 multiple vectors two-way dot product two registers

This section describes the encoding of the SME2 multiple vectors two-way dot product two registers instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.5 SME2 multiple vectors binary FP two registers

This section describes the encoding of the SME2 multiple vectors binary FP two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

Decode fields
Instruction page Feature

U S

0 0 SMLAL (multiple vectors) FEAT_SME2

0 1 SMLSL (multiple vectors) FEAT_SME2

1 0 UMLAL (multiple vectors) FEAT_SME2

1 1 UMLSL (multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

U

0 SDOT (2-way, multiple vectors) FEAT_SME2

1 UDOT (2-way, multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

S

0 FADD FEAT_SME2

1 FSUB FEAT_SME2

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 0 1 0 Zn 0 U S 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 1 0 1 Zn 0 U 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 0 0 Rv 1 1 1 Zm 0 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-584
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.32.6 SME2 multiple vectors binary int two registers

This section describes the encoding of the SME2 multiple vectors binary int two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.7 SME2 multiple vectors binary FP16 two registers

This section describes the encoding of the SME2 multiple vectors binary FP16 two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.8 SME2 multiple vectors long long MLA two sources

This section describes the encoding of the SME2 multiple vectors long long MLA two sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

Decode fields
Instruction page Feature

S

0 ADD (array accumulators) FEAT_SME2

1 SUB (array accumulators) FEAT_SME2

Decode fields
Instruction page Feature

sz S

0 0 FADD FEAT_SME_F16F16

0 1 FSUB FEAT_SME_F16F16

1 0 BFADD FEAT_SVE_B16B16

1 1 BFSUB FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 0 0 Rv 1 1 1 Zm 0 1 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 0 0 1 0 0 0 Rv 1 1 1 Zm 0 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-585
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.32.9 SME2 multiple vectors ternary FP16 two registers

This section describes the encoding of the SME2 multiple vectors ternary FP16 two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.10 SME2 multiple vectors four-way dot product two registers

This section describes the encoding of the SME2 multiple vectors four-way dot product two registers instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

Decode fields
Instruction page Feature

sz U S op

- 0 0 0 SMLALL (multiple vectors) FEAT_SME2

- 0 1 0 SMLSLL (multiple vectors) FEAT_SME2

- 1 0 0 UMLALL (multiple vectors) FEAT_SME2

- 1 1 0 UMLSLL (multiple vectors) FEAT_SME2

0 0 0 1 USMLALL (multiple vectors) FEAT_SME2

0 0 1 1 Unallocated. -

0 1 - 1 Unallocated. -

1 - - 1 Unallocated. -

Decode fields
Instruction page Feature

sz S

0 0 FMLA (multiple vectors) FEAT_SME_F16F16

0 1 FMLS (multiple vectors) FEAT_SME_F16F16

1 0 BFMLA (multiple vectors) FEAT_SVE_B16B16

1 1 BFMLS (multiple vectors) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 0 0 0 Zn 0 U S op 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 0 0 Zn 0 S 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-586
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.32.11 SME2 multiple vectors ternary FP two registers

This section describes the encoding of the SME2 multiple vectors ternary FP two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.32.12 SME2 multiple vectors ternary int two registers

This section describes the encoding of the SME2 multiple vectors ternary int two registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Two registers).

C4.1.33 SME2 Multi-vector - Multiple Array Vectors (Four registers)

This section describes the encoding of the SME2 Multi-vector - Multiple Array Vectors (Four registers) group. The
encodings in this section are decoded from SME encodings.

Decode fields
Instruction page Feature

U

0 SDOT (4-way, multiple vectors) FEAT_SME2

1 UDOT (4-way, multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

S

0 FMLA (multiple vectors) FEAT_SME2

1 FMLS (multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

S

0 ADD (array results, multiple vectors) FEAT_SME2

1 SUB (array results, multiple vectors) FEAT_SME2

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 0 1 Zn 0 U 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 1 0 Zn 0 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 1 0 Zn 0 1 S off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-587
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
110000011 1 op1 op2 10 op3 op4 op5

31 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 5 4 1 0

op0

Table C4-34 Encoding table for the SME2 Multi-vector - Multiple Array Vectors (Four registers) group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4 op5

 0 00 x0 11x 01 - Unallocated. -

 0 - x0 010 00
xx0x

 SME2 multiple vectors long FMA four sources -

 0 - x0 100 01
x1xx

Unallocated. -

 0 - x0 100 0x
x0xx

 SME2 multiple vectors FP dot product four registers -

 0 - x0 101 00
01xx

 USDOT (multiple vectors) - Encoding FEAT_SME2

 0 - x0 101 00
11xx

Unallocated. -

 0 - x0 101 01 - Unallocated. -

 1 00 x0 1xx 01 - Unallocated. -

 1 != 00 x0 10x 01 - Unallocated. -

 1 - x0 010 00
xx0x

 SME2 multiple vectors long MLA four sources -

 1 - x0 100 00
x0xx

Unallocated. -

 1 - x0 101 00
x1xx

 SME2 multiple vectors two-way dot product four registers -

 - 00 00 111 00
0xxx

 SME2 multiple vectors binary FP four registers -

 - 00 00 111 00
1xxx

 SME2 multiple vectors binary int four registers -

 - 00 10 111 00
0xxx

 SME2 multiple vectors binary FP16 four registers -

 - 00 10 111 00
1xxx

Unallocated. -

 - 00 x0 1xx 1x - Unallocated. -

 - != 00 x0 10x 1x - Unallocated. -

 - != 00 x0 110 01 - Unallocated. -

 - != 00 x0 110 1x - Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-588
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.33.1 SME2 multiple vectors long FMA four sources

This section describes the encoding of the SME2 multiple vectors long FMA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.2 SME2 multiple vectors FP dot product four registers

This section describes the encoding of the SME2 multiple vectors FP dot product four registers instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

 - != 00 x0 111 - - Unallocated. -

 - - x0 000 00
xxx0

 SME2 multiple vectors long long MLA four sources -

 - - x0 000 00
xxx1

Unallocated. -

 - - x0 010 00
xx1x

Unallocated. -

 - - x0 0x0 != 00 - Unallocated. -

 - - x0 0x1 - - Unallocated. -

 - - x0 100 00
x1xx

 SME2 multiple vectors ternary FP16 four registers -

 - - x0 101 00
x0xx

 SME2 multiple vectors four-way dot product four registers -

 - - x0 110 00
0xxx

 SME2 multiple vectors ternary FP four registers -

 - - x0 110 00
1xxx

 SME2 multiple vectors ternary int four registers -

 - - x1 - - - Unallocated. -

Table C4-34 Encoding table for the SME2 Multi-vector - Multiple Array Vectors (Four registers) group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4 op5

Decode fields
Instruction page Feature

op S

0 0 FMLAL (multiple vectors) FEAT_SME2

0 1 FMLSL (multiple vectors) FEAT_SME2

1 0 BFMLAL (multiple vectors) FEAT_SME2

1 1 BFMLSL (multiple vectors) FEAT_SME2

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 op S 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-589
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.33.3 SME2 multiple vectors long MLA four sources

This section describes the encoding of the SME2 multiple vectors long MLA four sources instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.4 SME2 multiple vectors two-way dot product four registers

This section describes the encoding of the SME2 multiple vectors two-way dot product four registers instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

Decode fields
Instruction page Feature

opc

00 FDOT (multiple vectors) FEAT_SME2

01 BFDOT (multiple vectors) FEAT_SME2

1x Unallocated. -

Decode fields
Instruction page Feature

U S

0 0 SMLAL (multiple vectors) FEAT_SME2

0 1 SMLSL (multiple vectors) FEAT_SME2

1 0 UMLAL (multiple vectors) FEAT_SME2

1 1 UMLSL (multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

U

0 SDOT (2-way, multiple vectors) FEAT_SME2

1 UDOT (2-way, multiple vectors) FEAT_SME2

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 1 0 0 Zn 0 opc 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 U S 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 U 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-590
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.33.5 SME2 multiple vectors binary FP four registers

This section describes the encoding of the SME2 multiple vectors binary FP four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.6 SME2 multiple vectors binary int four registers

This section describes the encoding of the SME2 multiple vectors binary int four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.7 SME2 multiple vectors binary FP16 four registers

This section describes the encoding of the SME2 multiple vectors binary FP16 four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

Decode fields
Instruction page Feature

S

0 FADD FEAT_SME2

1 FSUB FEAT_SME2

Decode fields
Instruction page Feature

S

0 ADD (array accumulators) FEAT_SME2

1 SUB (array accumulators) FEAT_SME2

Decode fields
Instruction page Feature

sz S

0 0 FADD FEAT_SME_F16F16

0 1 FSUB FEAT_SME_F16F16

1 0 BFADD FEAT_SVE_B16B16

1 1 BFSUB FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 1 0 Rv 1 1 1 Zm 0 0 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 1 0 Rv 1 1 1 Zm 0 0 1 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 0 0 1 0 1 0 Rv 1 1 1 Zm 0 0 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-591
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.33.8 SME2 multiple vectors long long MLA four sources

This section describes the encoding of the SME2 multiple vectors long long MLA four sources instruction class.
The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.9 SME2 multiple vectors ternary FP16 four registers

This section describes the encoding of the SME2 multiple vectors ternary FP16 four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.10 SME2 multiple vectors four-way dot product four registers

This section describes the encoding of the SME2 multiple vectors four-way dot product four registers instruction
class. The encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

Decode fields
Instruction page Feature

sz U S op

- 0 0 0 SMLALL (multiple vectors) FEAT_SME2

- 0 1 0 SMLSLL (multiple vectors) FEAT_SME2

- 1 0 0 UMLALL (multiple vectors) FEAT_SME2

- 1 1 0 UMLSLL (multiple vectors) FEAT_SME2

0 0 0 1 USMLALL (multiple vectors) FEAT_SME2

0 0 1 1 Unallocated. -

0 1 - 1 Unallocated. -

1 - - 1 Unallocated. -

Decode fields
Instruction page Feature

sz S

0 0 FMLA (multiple vectors) FEAT_SME_F16F16

0 1 FMLS (multiple vectors) FEAT_SME_F16F16

1 0 BFMLA (multiple vectors) FEAT_SVE_B16B16

1 1 BFMLS (multiple vectors) FEAT_SVE_B16B16

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 0 0 0 Zn 0 0 U S op 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 S 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-592
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.33.11 SME2 multiple vectors ternary FP four registers

This section describes the encoding of the SME2 multiple vectors ternary FP four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.33.12 SME2 multiple vectors ternary int four registers

This section describes the encoding of the SME2 multiple vectors ternary int four registers instruction class. The
encodings in this section are decoded from SME2 Multi-vector - Multiple Array Vectors (Four registers).

C4.1.34 SME Memory

This section describes the encoding of the SME Memory group. The encodings in this section are decoded from
SME encodings.

Decode fields
Instruction page Feature

U

0 SDOT (4-way, multiple vectors) FEAT_SME2

1 UDOT (4-way, multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

S

0 FMLA (multiple vectors) FEAT_SME2

1 FMLS (multiple vectors) FEAT_SME2

Decode fields
Instruction page Feature

S

0 ADD (array results, multiple vectors) FEAT_SME2

1 SUB (array results, multiple vectors) FEAT_SME2

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 U 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 1 0 Zn 0 0 0 S off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 1 0 Zn 0 0 1 S off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-593
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.34.1 SME load array vector (elements)

This section describes the encoding of the SME load array vector (elements) instruction class. The encodings in this
section are decoded from SME Memory.

1110000 op0 op1 op3 op4

31 25 24 21 20 16 15 14 10 9 5 4 2 1 0

op2

Table C4-35 Encoding table for the SME Memory group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3 op4

 0xx0 - - - 0xx SME load array vector (elements) -

 0xx1 - - - 0xx SME store array vector (elements) -

 0xxx - - - 1xx Unallocated. -

 100x 00000 0 xx000 0xx SME save and restore array -

 100x 00000 0 xx000 1xx Unallocated. -

 100x 00000 0 xx!= 000 - Unallocated. -

 100x != 00000 0 - - Unallocated. -

 100x - 1 00000 000 SME2 lookup table load/store -

 100x - 1 00000 != 000 Unallocated. -

 100x - 1 != 00000 - Unallocated. -

 101x - - - - Unallocated. -

 110x - - - - Unallocated. -

 1110 - - - 0xx LD1Q FEAT_SME

 1111 - - - 0xx ST1Q FEAT_SME

 111x - - - 1xx Unallocated. -

Decode fields
Instruction page Feature

msz

00 LD1B (scalar plus scalar, tile slice) FEAT_SME

1 1 1 0 0 0 0 0 msz 0 Rm V Rs Pg Rn 0 opc

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-594
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.34.2 SME store array vector (elements)

This section describes the encoding of the SME store array vector (elements) instruction class. The encodings in
this section are decoded from SME Memory.

C4.1.34.3 SME save and restore array

This section describes the encoding of the SME save and restore array instruction class. The encodings in this
section are decoded from SME Memory.

C4.1.34.4 SME2 lookup table load/store

This section describes the encoding of the SME2 lookup table load/store instruction class. The encodings in this
section are decoded from SME Memory.

01 LD1H (scalar plus scalar, tile slice) FEAT_SME

10 LD1W (scalar plus scalar, tile slice) FEAT_SME

11 LD1D (scalar plus scalar, tile slice) FEAT_SME

Decode fields
Instruction page Feature

msz

00 ST1B (scalar plus scalar, tile slice) FEAT_SME

01 ST1H (scalar plus scalar, tile slice) FEAT_SME

10 ST1W (scalar plus scalar, tile slice) FEAT_SME

11 ST1D (scalar plus scalar, tile slice) FEAT_SME

Decode fields
Instruction page Feature

op

0 LDR (array vector) FEAT_SME

1 STR (array vector) FEAT_SME

Decode fields
Instruction page Feature

msz

1 1 1 0 0 0 0 0 msz 1 Rm V Rs Pg Rn 0 opc

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

1 1 1 0 0 0 0 1 0 0 op 0 0 0 0 0 0 Rv 0 0 0 Rn 0 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-595
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35 SVE encodings

This section describes the encoding of the SVE encodings group. The encodings in this section are decoded from
A64 instruction set encoding.

Decode fields
Instruction page Feature

opc opc2

x0xxxx - Unallocated. -

x10xxx - Unallocated. -

x110xx - Unallocated. -

x1110x - Unallocated. -

x11110 - Unallocated. -

x11111 01 Unallocated. -

x11111 1x Unallocated. -

011111 00 LDR (table) FEAT_SME2

111111 00 STR (table) FEAT_SME2

1 1 1 0 0 0 0 1 0 0 opc 1 0 0 0 0 0 Rn 0 0 0 opc2

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 11 10 9 5 4 3 2 1 0

op0 0010 op1 op2

31 29 28 25 24 17 16 15 10 9 5 4 3 0

op3

Table C4-36 Encoding table for the SVE encodings group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

 000
0xx0xxxx

x1xxxx

 - SVE Integer Multiply-Add - Predicated -

 000
0xx0xxxx

000xxx

 - SVE Integer Binary Arithmetic - Predicated -

 000
0xx0xxxx

001xxx

 - SVE Integer Reduction -

 000
0xx0xxxx

100xxx

 - SVE Bitwise Shift - Predicated -

 000
0xx0xxxx

101xxx

 - SVE Integer Unary Arithmetic - Predicated -

 000
0xx1xxxx

000xxx

 - SVE integer add/subtract vectors (unpredicated) -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-596
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 000
0xx1xxxx

001xxx

 - SVE Bitwise Logical - Unpredicated -

 000
0xx1xxxx

0100xx

 - SVE Index Generation -

 000
0xx1xxxx

0101xx

 - SVE Stack Allocation -

 000
0xx1xxxx

011xxx

 - SVE2 Integer Multiply - Unpredicated -

 000
0xx1xxxx

100xxx

 - SVE Bitwise Shift - Unpredicated -

 000
0xx1xxxx

1010xx

 - SVE address generation -

 000
0xx1xxxx

1011xx

 - SVE Integer Misc - Unpredicated -

 000
0xx1xxxx

11xxxx

 - SVE Element Count -

 000
1xx00xxx

 - - SVE Bitwise Immediate -

 000
1xx01xxx

 - - SVE Integer Wide Immediate - Predicated -

 000
1xx1xxxx

001000

 - DUP (indexed) -

 000
1xx1xxxx

001001

 - SVE Permute Vector - One Source Quadwords -

 000
1xx1xxxx

00101x

 - SVE table lookup (three sources) -

 000
1xx1xxxx

001100

 - TBL - Encoding -

 000
1xx1xxxx

001101

 - TBXQ FEAT_SVE2p1

 000
1xx1xxxx

001110

 - SVE Permute Vector - Unpredicated -

 000
1xx1xxxx

001111

 - Unallocated. -

 000
1xx1xxxx

010xxx

 - SVE Permute Predicate -

 000
1xx1xxxx

011xxx

 - SVE permute vector elements -

Table C4-36 Encoding table for the SVE encodings group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-597
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 000
1xx1xxxx

10xxxx

 - SVE Permute Vector - Predicated -

 000
1xx1xxxx

11xxxx

 - SEL (vectors) -

 000
10x1xxxx

000xxx

 - SVE Permute Vector - Extract -

 000
11x1xxxx

000xxx

 - SVE Permute Vector - Segments -

 001
0xx0xxxx

 - - SVE Integer Compare - Vectors -

 001
0xx1xxxx

 - - SVE integer compare with unsigned immediate -

 001
1xx0xxxx

x0xxxx

 - SVE integer compare with signed immediate -

 001
1xx00xxx

01xxxx

 - SVE predicate logical operations -

 001
1xx00xxx

11xxxx

 - SVE Propagate Break -

 001
1xx01xxx

01xxxx

 - SVE Partition Break -

 001
1xx01xxx

11xxxx

 - SVE Predicate Misc -

 001
1xx1xxxx

00xxxx

 - SVE Integer Compare - Scalars -

 001
1xx1xxxx

01xxxx

 0 SVE broadcast predicate element -

 001
1xx1xxxx

01xxxx

 1 SVE Scalar Integer Compare - Predicate-as-counter -

 001
1xx1xxxx

11xxxx

 - SVE Integer Wide Immediate - Unpredicated -

 001
1xx100xx

10xxxx

 - SVE Predicate Count -

 001
1xx101xx

1000xx

 - SVE Inc/Dec by Predicate Count -

 001
1xx101xx

1001xx

 - SVE Write FFR -

 001
1xx101xx

101xxx

 - Unallocated. -

Table C4-36 Encoding table for the SVE encodings group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-598
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 001
1xx11xxx

10xxxx

 - Unallocated. -

 010
0xx0xxxx

0xxxxx

 - SVE Integer Multiply-Add - Unpredicated -

 010
0xx0xxxx

10xxxx

 - SVE2 Integer - Predicated -

 010
0xx0xxxx

11000x

 - SVE integer clamp -

 010
0xx0xxxx

1101xx

 - Unallocated. -

 010
0xx0xxxx

111xxx

 - SVE permute vector elements (quadwords) -

 010
0xx1xxxx

 - - SVE Multiply - Indexed -

 010
0x10xxxx

11001x

 - Unallocated. -

 010
0000xxxx

11001x

 - SVE two-way dot product -

 010
0100xxxx

11001x

 - SVE two-way dot product (indexed) -

 010
1xx0xxxx

0xxxxx

 - SVE2 Widening Integer Arithmetic -

 010
1xx0xxxx

10xxxx

 - SVE Misc -

 010
1xx0xxxx

11xxxx

 - SVE2 Accumulate -

 010
1xx1xxxx

0xxxxx

 - SVE2 Narrowing -

 010
1xx1xxxx

100xxx

 - SVE2 character match -

 010
1xx1xxxx

101xxx

 - SVE2 Histogram Computation (Segment) and Lookup Table -

 010
1xx1xxxx

110xxx

 - HISTCNT -

 010
1xx1xxxx

111xxx

 - SVE2 Crypto Extensions -

 011
0xx0xxxx

0xxxxx

 - FCMLA (vectors) -

Table C4-36 Encoding table for the SVE encodings group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-599
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 011
0xx00x1x

1xxxxx

 - Unallocated. -

 011
0xx00000

100xxx

 - FCADD -

 011
0xx00000

101xxx

 - Unallocated. -

 011
0xx00000

11xxxx

 - Unallocated. -

 011
0xx00001

1xxxxx

 - Unallocated. -

 011
0xx0010x

100xxx

 - Unallocated. -

 011
0xx0010x

101xxx

 - SVE floating-point convert precision odd elements -

 011
0xx0010x

11xxxx

 - Unallocated. -

 011
0xx010xx

100xxx

 - SVE2 floating-point pairwise operations -

 011
0xx010xx

101xxx

 - SVE floating-point recursive reduction (quadwords) -

 011
0xx010xx

11xxxx

 - Unallocated. -

 011
0xx011xx

1xxxxx

 - Unallocated. -

 011
0xx1xxxx

0000xx

 - SVE floating-point multiply-add (indexed) -

 011
0xx1xxxx

0001xx

 - SVE floating-point complex multiply-add (indexed) -

 011
0xx1xxxx

0010x0

 - SVE floating-point multiply (indexed) -

 011
0xx1xxxx

001001

 - SVE FP clamp -

 011
0xx1xxxx

001011

 - Unallocated. -

 011
0xx1xxxx

0011xx

 - Unallocated. -

 011
0xx1xxxx

01x0xx

 - SVE Floating Point Widening Multiply-Add - Indexed -

Table C4-36 Encoding table for the SVE encodings group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-600
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 011
0xx1xxxx

01x1xx

 - Unallocated. -

 011
0xx1xxxx

10x00x

 - SVE Floating Point Widening Multiply-Add -

 011
0xx1xxxx

10x01x

 - Unallocated. -

 011
0xx1xxxx

10x1xx

 - Unallocated. -

 011
0xx1xxxx

110xxx

 - Unallocated. -

 011
0xx1xxxx

111000

 - Unallocated. -

 011
0xx1xxxx

111001

 - SVE floating point matrix multiply accumulate -

 011
0xx1xxxx

11101x

 - Unallocated. -

 011
0xx1xxxx

1111xx

 - Unallocated. -

 011
1xx0xxxx

x1xxxx

 - SVE floating-point compare vectors -

 011
1xx0xxxx

000xxx

 - SVE floating-point arithmetic (unpredicated) -

 011
1xx0xxxx

100xxx

 - SVE Floating Point Arithmetic - Predicated -

 011
1xx0xxxx

101xxx

 - SVE Floating Point Unary Operations - Predicated -

 011
1xx000xx

001xxx

 - SVE floating-point recursive reduction -

 011
1xx001xx

0010xx

 - Unallocated. -

 011
1xx001xx

0011xx

 - SVE Floating Point Unary Operations - Unpredicated -

 011
1xx010xx

001xxx

 - SVE Floating Point Compare - with Zero -

 011
1xx011xx

001xxx

 - SVE Floating Point Accumulating Reduction -

 011
1xx1xxxx

 - - SVE Floating Point Multiply-Add -

 100 - - - SVE Memory - 32-bit Gather and Unsized Contiguous -

Table C4-36 Encoding table for the SVE encodings group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-601
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.1 SVE integer add/subtract vectors (unpredicated)

This section describes the encoding of the SVE integer add/subtract vectors (unpredicated) instruction class. The
encodings in this section are decoded from SVE encodings.

C4.1.35.2 SVE address generation

This section describes the encoding of the SVE address generation instruction class. The encodings in this section
are decoded from SVE encodings.

 101 - - - SVE Memory - Contiguous Load -

 110 - - - SVE Memory - 64-bit Gather -

 111 -
0x0xxx

 - SVE Memory - Contiguous Store and Unsized Contiguous -

 111 -
001xxx

 - SVE Memory - Non-temporal and Quadword Scatter Store -

 111 -
011xxx

 - SVE Memory - Non-temporal and Multi-register Contiguous Store -

 111 -
1x0xxx

 - SVE Memory - Scatter with Optional Sign Extend -

 111 -
101xxx

 - SVE Memory - Scatter -

 111 -
111xxx

 - SVE Memory - Contiguous Store with Immediate Offset -

Table C4-36 Encoding table for the SVE encodings group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

Decode fields
Instruction page

opc

000 ADD (vectors, unpredicated)

001 SUB (vectors, unpredicated)

01x Unallocated.

100 SQADD (vectors, unpredicated)

101 UQADD (vectors, unpredicated)

110 SQSUB (vectors, unpredicated)

111 UQSUB (vectors, unpredicated)

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-602
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.3 SVE table lookup (three sources)

This section describes the encoding of the SVE table lookup (three sources) instruction class. The encodings in this
section are decoded from SVE encodings.

C4.1.35.4 SVE permute vector elements

This section describes the encoding of the SVE permute vector elements instruction class. The encodings in this
section are decoded from SVE encodings.

Decode fields
Instruction page

opc

00 ADR - Encoding

01 ADR - Encoding

1x ADR - Encoding

Decode fields
Instruction page

op

0 TBL

1 TBX

Decode fields
Instruction page

opc

000 ZIP1, ZIP2 (vectors) - Encoding

001 ZIP1, ZIP2 (vectors) - Encoding

010 UZP1, UZP2 (vectors) - Encoding

011 UZP1, UZP2 (vectors) - Encoding

0 0 0 0 0 1 0 0 opc 1 Zm 1 0 1 0 msz Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 Zm 0 0 1 0 1 op Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-603
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.5 SVE integer compare with unsigned immediate

This section describes the encoding of the SVE integer compare with unsigned immediate instruction class. The
encodings in this section are decoded from SVE encodings.

C4.1.35.6 SVE integer compare with signed immediate

This section describes the encoding of the SVE integer compare with signed immediate instruction class. The
encodings in this section are decoded from SVE encodings.

100 TRN1, TRN2 (vectors) - Encoding

101 TRN1, TRN2 (vectors) - Encoding

11x Unallocated.

Decode fields
Instruction page

lt ne

0 0 CMP<cc> (immediate) - Encoding

0 1 CMP<cc> (immediate) - Encoding

1 0 CMP<cc> (immediate) - Encoding

1 1 CMP<cc> (immediate) - Encoding

Decode fields
Instruction page

op o2 ne

0 0 0 CMP<cc> (immediate) - Encoding

0 0 1 CMP<cc> (immediate) - Encoding

0 1 0 CMP<cc> (immediate) - Encoding

0 1 1 CMP<cc> (immediate) - Encoding

1 0 0 CMP<cc> (immediate) - Encoding

1 0 1 CMP<cc> (immediate) - Encoding

1 1 - Unallocated.

Decode fields
Instruction page

opc

0 0 1 0 0 1 0 0 size 1 imm7 lt Pg Zn ne Pd

31 30 29 28 27 26 25 24 23 22 21 20 14 13 12 10 9 5 4 3 0

0 0 1 0 0 1 0 1 size 0 imm5 op 0 o2 Pg Zn ne Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-604
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.7 SVE predicate logical operations

This section describes the encoding of the SVE predicate logical operations instruction class. The encodings in this
section are decoded from SVE encodings.

C4.1.35.8 SVE broadcast predicate element

This section describes the encoding of the SVE broadcast predicate element instruction class. The encodings in this
section are decoded from SVE encodings.

Decode fields
Instruction page

op S o2 o3

0 0 0 0 AND (predicates)

0 0 0 1 BIC (predicates)

0 0 1 0 EOR (predicates)

0 0 1 1 SEL (predicates)

0 1 0 0 ANDS

0 1 0 1 BICS

0 1 1 0 EORS

0 1 1 1 Unallocated.

1 0 0 0 ORR (predicates)

1 0 0 1 ORN (predicates)

1 0 1 0 NOR

1 0 1 1 NAND

1 1 0 0 ORRS

1 1 0 1 ORNS

1 1 1 0 NORS

1 1 1 1 NANDS

0 0 1 0 0 1 0 1 op S 0 0 Pm 0 1 Pg o2 Pn o3 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-605
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.9 SVE integer clamp

This section describes the encoding of the SVE integer clamp instruction class. The encodings in this section are
decoded from SVE encodings.

C4.1.35.10 SVE permute vector elements (quadwords)

This section describes the encoding of the SVE permute vector elements (quadwords) instruction class. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page Feature

S

0 PSEL FEAT_SVE2p1

1 Unallocated. -

Decode fields
Instruction page Feature

U

0 SCLAMP FEAT_SVE2p1

1 UCLAMP FEAT_SVE2p1

Decode fields
Instruction page Feature

opc

000 ZIPQ1 FEAT_SVE2p1

001 ZIPQ2 FEAT_SVE2p1

010 UZPQ1 FEAT_SVE2p1

011 UZPQ2 FEAT_SVE2p1

0 0 1 0 0 1 0 1 i1 1 tszl Rv 0 1 Pn S Pm 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 10 9 8 5 4 3 0

tszh

0 1 0 0 0 1 0 0 size 0 Zm 1 1 0 0 0 U Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 Zm 1 1 1 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-606
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.11 SVE two-way dot product

This section describes the encoding of the SVE two-way dot product instruction class. The encodings in this section
are decoded from SVE encodings.

C4.1.35.12 SVE two-way dot product (indexed)

This section describes the encoding of the SVE two-way dot product (indexed) instruction class. The encodings in
this section are decoded from SVE encodings.

C4.1.35.13 SVE2 character match

This section describes the encoding of the SVE2 character match instruction class. The encodings in this section are
decoded from SVE encodings.

10x Unallocated. -

110 TBLQ FEAT_SVE2p1

111 Unallocated. -

Decode fields
Instruction page Feature

U

0 SDOT (2-way, vectors) FEAT_SVE2p1

1 UDOT (2-way, vectors) FEAT_SVE2p1

Decode fields
Instruction page Feature

U

0 SDOT (2-way, indexed) FEAT_SVE2p1

1 UDOT (2-way, indexed) FEAT_SVE2p1

Decode fields
Instruction page Feature

opc

0 1 0 0 0 1 0 0 0 0 0 Zm 1 1 0 0 1 U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 1 0 0 opc 1 1 0 0 1 U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-607
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.14 SVE floating-point convert precision odd elements

This section describes the encoding of the SVE floating-point convert precision odd elements instruction class. The
encodings in this section are decoded from SVE encodings.

C4.1.35.15 SVE2 floating-point pairwise operations

This section describes the encoding of the SVE2 floating-point pairwise operations instruction class. The encodings
in this section are decoded from SVE encodings.

Decode fields
Instruction page

op

0 MATCH

1 NMATCH

Decode fields
Instruction page Feature

opc opc2

x0 11 Unallocated. -

00 0x Unallocated. -

00 10 FCVTXNT -

01 - Unallocated. -

10 00 FCVTNT - Encoding -

10 01 FCVTLT - Encoding -

10 10 BFCVTNT FEAT_BF16

11 0x Unallocated. -

11 10 FCVTNT - Encoding -

11 11 FCVTLT - Encoding -

0 1 0 0 0 1 0 1 size 1 Zm 1 0 0 Pg Zn op Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

0 1 1 0 0 1 0 0 opc 0 0 1 0 opc2 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-608
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.16 SVE floating-point recursive reduction (quadwords)

This section describes the encoding of the SVE floating-point recursive reduction (quadwords) instruction class.
The encodings in this section are decoded from SVE encodings.

C4.1.35.17 SVE floating-point multiply-add (indexed)

This section describes the encoding of the SVE floating-point multiply-add (indexed) instruction class. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page

opc

000 FADDP

001 Unallocated.

01x Unallocated.

100 FMAXNMP

101 FMINNMP

110 FMAXP

111 FMINP

Decode fields
Instruction page Feature

opc

000 FADDQV FEAT_SVE2p1

001 Unallocated. -

01x Unallocated. -

100 FMAXNMQV FEAT_SVE2p1

101 FMINNMQV FEAT_SVE2p1

110 FMAXQV FEAT_SVE2p1

111 FMINQV FEAT_SVE2p1

0 1 1 0 0 1 0 0 size 0 1 0 opc 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 0 size 0 1 0 opc 1 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-609
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.18 SVE floating-point complex multiply-add (indexed)

This section describes the encoding of the SVE floating-point complex multiply-add (indexed) instruction class.
The encodings in this section are decoded from SVE encodings.

C4.1.35.19 SVE floating-point multiply (indexed)

This section describes the encoding of the SVE floating-point multiply (indexed) instruction class. The encodings
in this section are decoded from SVE encodings.

Decode fields
Instruction page Feature

size o2 op

0x 0 0 FMLA (indexed) - Encoding -

0x 0 1 FMLS (indexed) - Encoding -

0x 1 0 BFMLA (indexed) FEAT_SVE_B16B16

0x 1 1 BFMLS (indexed) FEAT_SVE_B16B16

1x 1 - Unallocated. -

10 0 0 FMLA (indexed) - Encoding -

10 0 1 FMLS (indexed) - Encoding -

11 0 0 FMLA (indexed) - Encoding -

11 0 1 FMLS (indexed) - Encoding -

Decode fields
Instruction page

size

0x Unallocated.

10 FCMLA (indexed) - Encoding

11 FCMLA (indexed) - Encoding

0 1 1 0 0 1 0 0 size 1 opc 0 0 0 0 o2 op Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 0 0 1 0 0 size 1 opc 0 0 0 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-610
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.20 SVE FP clamp

This section describes the encoding of the SVE FP clamp instruction class. The encodings in this section are
decoded from SVE encodings.

C4.1.35.21 SVE floating point matrix multiply accumulate

This section describes the encoding of the SVE floating point matrix multiply accumulate instruction class. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page Feature

size o2

0x 0 FMUL (indexed) - Encoding -

0x 1 BFMUL (indexed) FEAT_SVE_B16B16

1x 1 Unallocated. -

10 0 FMUL (indexed) - Encoding -

11 0 FMUL (indexed) - Encoding -

Decode fields
Instruction page Feature

size

!= 00 FCLAMP FEAT_SVE2p1

00 BFCLAMP FEAT_SVE_B16B16

Decode fields
Instruction page Feature

opc

00 Unallocated. -

0 1 1 0 0 1 0 0 size 1 opc 0 0 1 0 o2 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 0 0 1 0 0 size 1 Zm 0 0 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 0 0 1 0 0 opc 1 Zm 1 1 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-611
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.22 SVE floating-point compare vectors

This section describes the encoding of the SVE floating-point compare vectors instruction class. The encodings in
this section are decoded from SVE encodings.

C4.1.35.23 SVE floating-point arithmetic (unpredicated)

This section describes the encoding of the SVE floating-point arithmetic (unpredicated) instruction class. The
encodings in this section are decoded from SVE encodings.

01 BFMMLA FEAT_BF16

10 FMMLA - Encoding FEAT_F32MM

11 FMMLA - Encoding FEAT_F64MM

Decode fields
Instruction page

op o2 o3

0 0 0 FCM<cc> (vectors) - Encoding

0 0 1 FCM<cc> (vectors) - Encoding

0 1 0 FCM<cc> (vectors) - Encoding

0 1 1 FCM<cc> (vectors) - Encoding

1 0 0 FCM<cc> (vectors) - Encoding

1 0 1 FAC<cc> - Encoding

1 1 0 Unallocated.

1 1 1 FAC<cc> - Encoding

Decode fields
Instruction page Feature

size opc

- 011 FTSMUL -

- 10x Unallocated. -

- 110 FRECPS -

Decode fields
Instruction page Feature

opc

0 1 1 0 0 1 0 1 size 0 Zm op 1 o2 Pg Zn o3 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-612
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.35.24 SVE floating-point recursive reduction

This section describes the encoding of the SVE floating-point recursive reduction instruction class. The encodings
in this section are decoded from SVE encodings.

C4.1.36 SVE Integer Multiply-Add - Predicated

This section describes the encoding of the SVE Integer Multiply-Add - Predicated group. The encodings in this
section are decoded from SVE encodings.

- 111 FRSQRTS -

!= 00 000 FADD (vectors, unpredicated) -

!= 00 001 FSUB (vectors, unpredicated) -

!= 00 010 FMUL (vectors, unpredicated) -

00 000 BFADD (unpredicated) FEAT_SVE_B16B16

00 001 BFSUB (unpredicated) FEAT_SVE_B16B16

00 010 BFMUL (vectors, unpredicated) FEAT_SVE_B16B16

Decode fields
Instruction page

opc

000 FADDV

001 Unallocated.

01x Unallocated.

100 FMAXNMV

101 FMINNMV

110 FMAXV

111 FMINV

Decode fields
Instruction page Feature

size opc

0 1 1 0 0 1 0 1 size 0 0 0 opc 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-613
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.36.1 SVE integer multiply-accumulate writing addend (predicated)

This section describes the encoding of the SVE integer multiply-accumulate writing addend (predicated) instruction
class. The encodings in this section are decoded from SVE Integer Multiply-Add - Predicated.

C4.1.36.2 SVE integer multiply-add writing multiplicand (predicated)

This section describes the encoding of the SVE integer multiply-add writing multiplicand (predicated) instruction
class. The encodings in this section are decoded from SVE Integer Multiply-Add - Predicated.

C4.1.37 SVE Integer Binary Arithmetic - Predicated

This section describes the encoding of the SVE Integer Binary Arithmetic - Predicated group. The encodings in this
section are decoded from SVE encodings.

Table C4-37 Encoding table for the SVE Integer Multiply-Add - Predicated group

Decode fields
Decode group or instruction page

op0

 0 SVE integer multiply-accumulate writing addend (predicated)

 1 SVE integer multiply-add writing multiplicand (predicated)

Decode fields
Instruction page

op

0 MLA (vectors)

1 MLS (vectors)

Decode fields
Instruction page

op

0 MAD

1 MSB

00000100 0 1

31 24 23 22 21 20 16 15 14 13 0

op0

0 0 0 0 0 1 0 0 size 0 Zm 0 1 op Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 Zm 1 1 op Pg Za Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-614
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.37.1 SVE integer add/subtract vectors (predicated)

This section describes the encoding of the SVE integer add/subtract vectors (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Binary Arithmetic - Predicated.

C4.1.37.2 SVE integer min/max/difference (predicated)

This section describes the encoding of the SVE integer min/max/difference (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Binary Arithmetic - Predicated.

Table C4-38 Encoding table for the SVE Integer Binary Arithmetic - Predicated group

Decode fields
Decode group or instruction page

op0

 00x SVE integer add/subtract vectors (predicated)

 01x SVE integer min/max/difference (predicated)

 100 SVE integer multiply vectors (predicated)

 101 SVE integer divide vectors (predicated)

 11x SVE bitwise logical operations (predicated)

Decode fields
Instruction page

opc

000 ADD (vectors, predicated)

001 SUB (vectors, predicated)

010 Unallocated.

011 SUBR (vectors)

1xx Unallocated.

00000100 0 op0 000

31 24 23 22 21 20 18 17 16 15 13 12 0

0 0 0 0 0 1 0 0 size 0 0 0 opc 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-615
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.37.3 SVE integer multiply vectors (predicated)

This section describes the encoding of the SVE integer multiply vectors (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Binary Arithmetic - Predicated.

C4.1.37.4 SVE integer divide vectors (predicated)

This section describes the encoding of the SVE integer divide vectors (predicated) instruction class. The encodings
in this section are decoded from SVE Integer Binary Arithmetic - Predicated.

Decode fields
Instruction page

opc U

00 0 SMAX (vectors)

00 1 UMAX (vectors)

01 0 SMIN (vectors)

01 1 UMIN (vectors)

10 0 SABD

10 1 UABD

11 - Unallocated.

Decode fields
Instruction page

H U

0 0 MUL (vectors, predicated)

0 1 Unallocated.

1 0 SMULH (predicated)

1 1 UMULH (predicated)

0 0 0 0 0 1 0 0 size 0 0 1 opc U 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 1 0 0 H U 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-616
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.37.5 SVE bitwise logical operations (predicated)

This section describes the encoding of the SVE bitwise logical operations (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Binary Arithmetic - Predicated.

C4.1.38 SVE Integer Reduction

This section describes the encoding of the SVE Integer Reduction group. The encodings in this section are decoded
from SVE encodings.

Decode fields
Instruction page

R U

0 0 SDIV

0 1 UDIV

1 0 SDIVR

1 1 UDIVR

Decode fields
Instruction page

opc

000 ORR (vectors, predicated)

001 EOR (vectors, predicated)

010 AND (vectors, predicated)

011 BIC (vectors, predicated)

1xx Unallocated.

0 0 0 0 0 1 0 0 size 0 1 0 1 R U 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 1 1 opc 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-617
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.38.1 SVE integer add reduction (predicated)

This section describes the encoding of the SVE integer add reduction (predicated) instruction class. The encodings
in this section are decoded from SVE Integer Reduction.

C4.1.38.2 SVE integer add reduction (quadwords)

This section describes the encoding of the SVE integer add reduction (quadwords) instruction class. The encodings
in this section are decoded from SVE Integer Reduction.

Table C4-39 Encoding table for the SVE Integer Reduction group

Decode fields
Decode group or instruction page

op0

 000 SVE integer add reduction (predicated)

 001 SVE integer add reduction (quadwords)

 010 SVE integer min/max reduction (predicated)

 011 SVE integer min/max reduction (quadwords)

 10x SVE constructive prefix (predicated)

 110 SVE bitwise logical reduction (predicated)

 111 SVE bitwise logical reduction (quadwords)

Decode fields
Instruction page

op U

0 0 SADDV

0 1 UADDV

1 - Unallocated.

00000100 0 op0 001

31 24 23 22 21 20 18 17 16 15 13 12 0

0 0 0 0 0 1 0 0 size 0 0 0 0 op U 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-618
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.38.3 SVE integer min/max reduction (predicated)

This section describes the encoding of the SVE integer min/max reduction (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Reduction.

C4.1.38.4 SVE integer min/max reduction (quadwords)

This section describes the encoding of the SVE integer min/max reduction (quadwords) instruction class. The
encodings in this section are decoded from SVE Integer Reduction.

Decode fields
Instruction page Feature

op U

0 0 Unallocated. -

0 1 ADDQV FEAT_SVE2p1

1 - Unallocated. -

Decode fields
Instruction page

op U

0 0 SMAXV

0 1 UMAXV

1 0 SMINV

1 1 UMINV

Decode fields
Instruction page Feature

op U

0 0 SMAXQV FEAT_SVE2p1

0 0 0 0 0 1 0 0 size 0 0 0 1 op U 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 0 1 0 op U 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 0 1 1 op U 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-619
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.38.5 SVE constructive prefix (predicated)

This section describes the encoding of the SVE constructive prefix (predicated) instruction class. The encodings in
this section are decoded from SVE Integer Reduction.

C4.1.38.6 SVE bitwise logical reduction (predicated)

This section describes the encoding of the SVE bitwise logical reduction (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Reduction.

C4.1.38.7 SVE bitwise logical reduction (quadwords)

This section describes the encoding of the SVE bitwise logical reduction (quadwords) instruction class. The
encodings in this section are decoded from SVE Integer Reduction.

0 1 UMAXQV FEAT_SVE2p1

1 0 SMINQV FEAT_SVE2p1

1 1 UMINQV FEAT_SVE2p1

Decode fields
Instruction page

opc

00 MOVPRFX (predicated)

01 Unallocated.

1x Unallocated.

Decode fields
Instruction page

opc

00 ORV

01 EORV

10 ANDV

11 Unallocated.

Decode fields
Instruction page Feature

op U

0 0 0 0 0 1 0 0 size 0 1 0 opc M 0 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 1 1 0 opc 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-620
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.39 SVE Bitwise Shift - Predicated

This section describes the encoding of the SVE Bitwise Shift - Predicated group. The encodings in this section are
decoded from SVE encodings.

C4.1.39.1 SVE bitwise shift by immediate (predicated)

This section describes the encoding of the SVE bitwise shift by immediate (predicated) instruction class. The
encodings in this section are decoded from SVE Bitwise Shift - Predicated.

Decode fields
Instruction page Feature

opc

00 ORQV FEAT_SVE2p1

01 EORQV FEAT_SVE2p1

10 ANDQV FEAT_SVE2p1

11 Unallocated. -

0 0 0 0 0 1 0 0 size 0 1 1 1 opc 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Table C4-40 Encoding table for the SVE Bitwise Shift - Predicated group

Decode fields
Decode group or instruction page

op0

 0x SVE bitwise shift by immediate (predicated)

 10 SVE bitwise shift by vector (predicated)

 11 SVE bitwise shift by wide elements (predicated)

Decode fields
Instruction page

opc L U

00 0 0 ASR (immediate, predicated)

00 0 1 LSR (immediate, predicated)

00 1 0 Unallocated.

00000100 0 op0 100

31 24 23 22 21 20 19 18 16 15 13 12 0

0 0 0 0 0 1 0 0 tszh 0 0 opc L U 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-621
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.39.2 SVE bitwise shift by vector (predicated)

This section describes the encoding of the SVE bitwise shift by vector (predicated) instruction class. The encodings
in this section are decoded from SVE Bitwise Shift - Predicated.

C4.1.39.3 SVE bitwise shift by wide elements (predicated)

This section describes the encoding of the SVE bitwise shift by wide elements (predicated) instruction class. The
encodings in this section are decoded from SVE Bitwise Shift - Predicated.

00 1 1 LSL (immediate, predicated)

01 0 0 ASRD

01 0 1 Unallocated.

01 1 0 SQSHL (immediate)

01 1 1 UQSHL (immediate)

10 - - Unallocated.

11 0 0 SRSHR

11 0 1 URSHR

11 1 0 Unallocated.

11 1 1 SQSHLU

Decode fields
Instruction page

R L U

- 1 0 Unallocated.

0 0 0 ASR (vectors)

0 0 1 LSR (vectors)

0 1 1 LSL (vectors)

1 0 0 ASRR

1 0 1 LSRR

1 1 1 LSLR

Decode fields
Instruction page

opc L U

0 0 0 0 0 1 0 0 size 0 1 0 R L U 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-622
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.40 SVE Integer Unary Arithmetic - Predicated

This section describes the encoding of the SVE Integer Unary Arithmetic - Predicated group. The encodings in this
section are decoded from SVE encodings.

C4.1.40.1 SVE integer unary operations (predicated)

This section describes the encoding of the SVE integer unary operations (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Unary Arithmetic - Predicated.

Decode fields
Instruction page

R L U

0 0 0 ASR (wide elements, predicated)

0 0 1 LSR (wide elements, predicated)

0 1 0 Unallocated.

0 1 1 LSL (wide elements, predicated)

1 - - Unallocated.

0 0 0 0 0 1 0 0 size 0 1 1 R L U 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Table C4-41 Encoding table for the SVE Integer Unary Arithmetic - Predicated group

Decode fields
Decode group or instruction page

op0

 0x Unallocated.

 10 SVE integer unary operations (predicated)

 11 SVE bitwise unary operations (predicated)

00000100 0 op0 101

31 24 23 22 21 20 19 18 16 15 13 12 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-623
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.40.2 SVE bitwise unary operations (predicated)

This section describes the encoding of the SVE bitwise unary operations (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Unary Arithmetic - Predicated.

C4.1.41 SVE Bitwise Logical - Unpredicated

This section describes the encoding of the SVE Bitwise Logical - Unpredicated group. The encodings in this section
are decoded from SVE encodings.

Decode fields
Instruction page

opc

000 SXTB, SXTH, SXTW - Encoding

001 UXTB, UXTH, UXTW - Encoding

010 SXTB, SXTH, SXTW - Encoding

011 UXTB, UXTH, UXTW - Encoding

100 SXTB, SXTH, SXTW - Encoding

101 UXTB, UXTH, UXTW - Encoding

110 ABS

111 NEG

Decode fields
Instruction page

opc

000 CLS

001 CLZ

010 CNT

011 CNOT

100 FABS

101 FNEG

110 NOT (vector)

111 Unallocated.

0 0 0 0 0 1 0 0 size 0 1 0 opc 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 0 size 0 1 1 opc 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-624
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.41.1 SVE bitwise logical operations (unpredicated)

This section describes the encoding of the SVE bitwise logical operations (unpredicated) instruction class. The
encodings in this section are decoded from SVE Bitwise Logical - Unpredicated.

C4.1.41.2 SVE2 bitwise ternary operations

This section describes the encoding of the SVE2 bitwise ternary operations instruction class. The encodings in this
section are decoded from SVE Bitwise Logical - Unpredicated.

Table C4-42 Encoding table for the SVE Bitwise Logical - Unpredicated group

Decode fields
Decode group or instruction page

op0

 0xx Unallocated.

 100 SVE bitwise logical operations (unpredicated)

 101 XAR

 11x SVE2 bitwise ternary operations

Decode fields
Instruction page

opc

00 AND (vectors, unpredicated)

01 ORR (vectors, unpredicated)

10 EOR (vectors, unpredicated)

11 BIC (vectors, unpredicated)

00000100 1 001 op0

31 24 23 22 21 20 16 15 13 12 10 9 0

0 0 0 0 0 1 0 0 opc 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-625
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.42 SVE Index Generation

This section describes the encoding of the SVE Index Generation group. The encodings in this section are decoded
from SVE encodings.

C4.1.43 SVE Stack Allocation

This section describes the encoding of the SVE Stack Allocation group. The encodings in this section are decoded
from SVE encodings.

Decode fields
Instruction page

opc o2

00 0 EOR3

00 1 BSL

01 0 BCAX

01 1 BSL1N

1x 0 Unallocated.

10 1 BSL2N

11 1 NBSL

0 0 0 0 0 1 0 0 opc 1 Zm 0 0 1 1 1 o2 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-43 Encoding table for the SVE Index Generation group

Decode fields
Decode group or instruction page

op0

 00 INDEX (immediates)

 01 INDEX (scalar, immediate)

 10 INDEX (immediate, scalar)

 11 INDEX (scalars)

00000100 1 0100 op0

31 24 23 22 21 20 16 15 12 11 10 9 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-626
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.43.1 SVE stack frame adjustment

This section describes the encoding of the SVE stack frame adjustment instruction class. The encodings in this
section are decoded from SVE Stack Allocation.

C4.1.43.2 Streaming SVE stack frame adjustment

This section describes the encoding of the Streaming SVE stack frame adjustment instruction class. The encodings
in this section are decoded from SVE Stack Allocation.

Table C4-44 Encoding table for the SVE Stack Allocation group

Decode fields
Decode group or instruction page

op0 op1

 0 0 SVE stack frame adjustment

 0 1 Streaming SVE stack frame adjustment

 1 0 SVE stack frame size

 1 1 Streaming SVE stack frame size

Decode fields
Instruction page

op

0 ADDVL

1 ADDPL

Decode fields
Instruction page Feature

op

0 ADDSVL FEAT_SME

1 ADDSPL FEAT_SME

00000100 1 0101

31 24 23 22 21 20 16 15 12 11 10 0

op0 op1

0 0 0 0 0 1 0 0 0 op 1 Rn 0 1 0 1 0 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0

0 0 0 0 0 1 0 0 0 op 1 Rn 0 1 0 1 1 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-627
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.43.3 SVE stack frame size

This section describes the encoding of the SVE stack frame size instruction class. The encodings in this section are
decoded from SVE Stack Allocation.

C4.1.43.4 Streaming SVE stack frame size

This section describes the encoding of the Streaming SVE stack frame size instruction class. The encodings in this
section are decoded from SVE Stack Allocation.

C4.1.44 SVE2 Integer Multiply - Unpredicated

This section describes the encoding of the SVE2 Integer Multiply - Unpredicated group. The encodings in this
section are decoded from SVE encodings.

Decode fields
Instruction page

op opc2

0 0xxxx Unallocated.

0 10xxx Unallocated.

0 110xx Unallocated.

0 1110x Unallocated.

0 11110 Unallocated.

0 11111 RDVL

1 - Unallocated.

Decode fields
Instruction page Feature

op opc2

0 0xxxx Unallocated. -

0 10xxx Unallocated. -

0 110xx Unallocated. -

0 1110x Unallocated. -

0 11110 Unallocated. -

0 11111 RDSVL FEAT_SME

1 - Unallocated. -

0 0 0 0 0 1 0 0 1 op 1 opc2 0 1 0 1 0 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0

0 0 0 0 0 1 0 0 1 op 1 opc2 0 1 0 1 1 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-628
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.44.1 SVE2 integer multiply vectors (unpredicated)

This section describes the encoding of the SVE2 integer multiply vectors (unpredicated) instruction class. The
encodings in this section are decoded from SVE2 Integer Multiply - Unpredicated.

C4.1.44.2 SVE2 signed saturating doubling multiply high (unpredicated)

This section describes the encoding of the SVE2 signed saturating doubling multiply high (unpredicated) instruction
class. The encodings in this section are decoded from SVE2 Integer Multiply - Unpredicated.

Table C4-45 Encoding table for the SVE2 Integer Multiply - Unpredicated group

Decode fields
Decode group or instruction page

op0

 0x SVE2 integer multiply vectors (unpredicated)

 10 SVE2 signed saturating doubling multiply high (unpredicated)

 11 Unallocated.

Decode fields
Instruction page

size opc

- 00 MUL (vectors, unpredicated)

- 10 SMULH (unpredicated)

- 11 UMULH (unpredicated)

00 01 PMUL

01 01 Unallocated.

1x 01 Unallocated.

00000100 1 011 op0

31 24 23 22 21 20 16 15 13 12 11 10 0

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 0 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-629
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.45 SVE Bitwise Shift - Unpredicated

This section describes the encoding of the SVE Bitwise Shift - Unpredicated group. The encodings in this section
are decoded from SVE encodings.

C4.1.45.1 SVE bitwise shift by wide elements (unpredicated)

This section describes the encoding of the SVE bitwise shift by wide elements (unpredicated) instruction class. The
encodings in this section are decoded from SVE Bitwise Shift - Unpredicated.

Decode fields
Instruction page

R

0 SQDMULH (vectors)

1 SQRDMULH (vectors)

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 1 0 R Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-46 Encoding table for the SVE Bitwise Shift - Unpredicated group

Decode fields
Decode group or instruction page

op0

 0 SVE bitwise shift by wide elements (unpredicated)

 1 SVE bitwise shift by immediate (unpredicated)

Decode fields
Instruction page

opc

00 ASR (wide elements, unpredicated)

01 LSR (wide elements, unpredicated)

10 Unallocated.

11 LSL (wide elements, unpredicated)

00000100 1 100

31 24 23 22 21 20 16 15 13 12 11 0

op0

0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-630
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.45.2 SVE bitwise shift by immediate (unpredicated)

This section describes the encoding of the SVE bitwise shift by immediate (unpredicated) instruction class. The
encodings in this section are decoded from SVE Bitwise Shift - Unpredicated.

C4.1.46 SVE Integer Misc - Unpredicated

This section describes the encoding of the SVE Integer Misc - Unpredicated group. The encodings in this section
are decoded from SVE encodings.

C4.1.46.1 SVE floating-point trig select coefficient

This section describes the encoding of the SVE floating-point trig select coefficient instruction class. The encodings
in this section are decoded from SVE Integer Misc - Unpredicated.

Decode fields
Instruction page

opc

00 ASR (immediate, unpredicated)

01 LSR (immediate, unpredicated)

10 Unallocated.

11 LSL (immediate, unpredicated)

0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

Table C4-47 Encoding table for the SVE Integer Misc - Unpredicated group

Decode fields
Decode group or instruction page

op0

 0x SVE floating-point trig select coefficient

 10 SVE floating-point exponential accelerator

 11 SVE constructive prefix (unpredicated)

00000100 1 1011 op0

31 24 23 22 21 20 16 15 12 11 10 9 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-631
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.46.2 SVE floating-point exponential accelerator

This section describes the encoding of the SVE floating-point exponential accelerator instruction class. The
encodings in this section are decoded from SVE Integer Misc - Unpredicated.

C4.1.46.3 SVE constructive prefix (unpredicated)

This section describes the encoding of the SVE constructive prefix (unpredicated) instruction class. The encodings
in this section are decoded from SVE Integer Misc - Unpredicated.

Decode fields
Instruction page

op

0 FTSSEL

1 Unallocated.

Decode fields
Instruction page

opc

00000 FEXPA

00001 Unallocated.

0001x Unallocated.

001xx Unallocated.

01xxx Unallocated.

1xxxx Unallocated.

0 0 0 0 0 1 0 0 size 1 Zm 1 0 1 1 0 op Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 0 size 1 opc 1 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-632
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.47 SVE Element Count

This section describes the encoding of the SVE Element Count group. The encodings in this section are decoded
from SVE encodings.

Decode fields
Instruction page

opc opc2

00 00000 MOVPRFX (unpredicated)

00 00001 Unallocated.

00 0001x Unallocated.

00 001xx Unallocated.

00 01xxx Unallocated.

00 1xxxx Unallocated.

01 - Unallocated.

1x - Unallocated.

0 0 0 0 0 1 0 0 opc 1 opc2 1 0 1 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-48 Encoding table for the SVE Element Count group

Decode fields
Decode group or instruction page

op0 op1

 0 00x SVE saturating inc/dec vector by element count

 0 100 SVE element count

 0 101 Unallocated.

 1 000 SVE inc/dec vector by element count

 1 100 SVE inc/dec register by element count

 1 x01 Unallocated.

 - 01x Unallocated.

 - 11x SVE saturating inc/dec register by element count

00000100 1 11 op1

31 24 23 22 21 20 19 16 15 14 13 11 10 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-633
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.47.1 SVE saturating inc/dec vector by element count

This section describes the encoding of the SVE saturating inc/dec vector by element count instruction class. The
encodings in this section are decoded from SVE Element Count.

C4.1.47.2 SVE element count

This section describes the encoding of the SVE element count instruction class. The encodings in this section are
decoded from SVE Element Count.

Decode fields
Instruction page

size D U

00 - - Unallocated.

01 0 0 SQINCH (vector)

01 0 1 UQINCH (vector)

01 1 0 SQDECH (vector)

01 1 1 UQDECH (vector)

10 0 0 SQINCW (vector)

10 0 1 UQINCW (vector)

10 1 0 SQDECW (vector)

10 1 1 UQDECW (vector)

11 0 0 SQINCD (vector)

11 0 1 UQINCD (vector)

11 1 0 SQDECD (vector)

11 1 1 UQDECD (vector)

Decode fields
Instruction page

size op

- 1 Unallocated.

00 0 CNTB, CNTD, CNTH, CNTW - Encoding

0 0 0 0 0 1 0 0 size 1 0 imm4 1 1 0 0 D U pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 0 size 1 0 imm4 1 1 1 0 0 op pattern Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-634
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.47.3 SVE inc/dec vector by element count

This section describes the encoding of the SVE inc/dec vector by element count instruction class. The encodings in
this section are decoded from SVE Element Count.

C4.1.47.4 SVE inc/dec register by element count

This section describes the encoding of the SVE inc/dec register by element count instruction class. The encodings
in this section are decoded from SVE Element Count.

01 0 CNTB, CNTD, CNTH, CNTW - Encoding

10 0 CNTB, CNTD, CNTH, CNTW - Encoding

11 0 CNTB, CNTD, CNTH, CNTW - Encoding

Decode fields
Instruction page

size D

00 - Unallocated.

01 0 INCD, INCH, INCW (vector) - Encoding

01 1 DECD, DECH, DECW (vector) - Encoding

10 0 INCD, INCH, INCW (vector) - Encoding

10 1 DECD, DECH, DECW (vector) - Encoding

11 0 INCD, INCH, INCW (vector) - Encoding

11 1 DECD, DECH, DECW (vector) - Encoding

Decode fields
Instruction page

size D

00 0 INCB, INCD, INCH, INCW (scalar) - Encoding

00 1 DECB, DECD, DECH, DECW (scalar) - Encoding

01 0 INCB, INCD, INCH, INCW (scalar) - Encoding

01 1 DECB, DECD, DECH, DECW (scalar) - Encoding

Decode fields
Instruction page

size op

0 0 0 0 0 1 0 0 size 1 1 imm4 1 1 0 0 0 D pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 0 size 1 1 imm4 1 1 1 0 0 D pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-635
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.47.5 SVE saturating inc/dec register by element count

This section describes the encoding of the SVE saturating inc/dec register by element count instruction class. The
encodings in this section are decoded from SVE Element Count.

10 0 INCB, INCD, INCH, INCW (scalar) - Encoding

10 1 DECB, DECD, DECH, DECW (scalar) - Encoding

11 0 INCB, INCD, INCH, INCW (scalar) - Encoding

11 1 DECB, DECD, DECH, DECW (scalar) - Encoding

Decode fields
Instruction page

size sf D U

00 0 0 0 SQINCB - Encoding

00 0 0 1 UQINCB - Encoding

00 0 1 0 SQDECB - Encoding

00 0 1 1 UQDECB - Encoding

00 1 0 0 SQINCB - Encoding

00 1 0 1 UQINCB - Encoding

00 1 1 0 SQDECB - Encoding

00 1 1 1 UQDECB - Encoding

01 0 0 0 SQINCH (scalar) - Encoding

01 0 0 1 UQINCH (scalar) - Encoding

01 0 1 0 SQDECH (scalar) - Encoding

01 0 1 1 UQDECH (scalar) - Encoding

01 1 0 0 SQINCH (scalar) - Encoding

01 1 0 1 UQINCH (scalar) - Encoding

01 1 1 0 SQDECH (scalar) - Encoding

01 1 1 1 UQDECH (scalar) - Encoding

10 0 0 0 SQINCW (scalar) - Encoding

10 0 0 1 UQINCW (scalar) - Encoding

10 0 1 0 SQDECW (scalar) - Encoding

Decode fields
Instruction page

size D

0 0 0 0 0 1 0 0 size 1 sf imm4 1 1 1 1 D U pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-636
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.48 SVE Bitwise Immediate

This section describes the encoding of the SVE Bitwise Immediate group. The encodings in this section are decoded
from SVE encodings.

C4.1.48.1 SVE bitwise logical with immediate (unpredicated)

This section describes the encoding of the SVE bitwise logical with immediate (unpredicated) instruction class. The
encodings in this section are decoded from SVE Bitwise Immediate.

10 0 1 1 UQDECW (scalar) - Encoding

10 1 0 0 SQINCW (scalar) - Encoding

10 1 0 1 UQINCW (scalar) - Encoding

10 1 1 0 SQDECW (scalar) - Encoding

10 1 1 1 UQDECW (scalar) - Encoding

11 0 0 0 SQINCD (scalar) - Encoding

11 0 0 1 UQINCD (scalar) - Encoding

11 0 1 0 SQDECD (scalar) - Encoding

11 0 1 1 UQDECD (scalar) - Encoding

11 1 0 0 SQINCD (scalar) - Encoding

11 1 0 1 UQINCD (scalar) - Encoding

11 1 1 0 SQDECD (scalar) - Encoding

11 1 1 1 UQDECD (scalar) - Encoding

Decode fields
Instruction page

size sf D U

Table C4-49 Encoding table for the SVE Bitwise Immediate group

Decode fields
Decode group or instruction page

op0 op1

 11 00 DUPM

 != 11 00 SVE bitwise logical with immediate (unpredicated)

 - != 00 Unallocated.

00000101 op0 00 op1

31 24 23 22 21 20 19 18 17 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-637
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.49 SVE Integer Wide Immediate - Predicated

This section describes the encoding of the SVE Integer Wide Immediate - Predicated group. The encodings in this
section are decoded from SVE encodings.

C4.1.49.1 SVE copy integer immediate (predicated)

This section describes the encoding of the SVE copy integer immediate (predicated) instruction class. The
encodings in this section are decoded from SVE Integer Wide Immediate - Predicated.

Decode fields
Instruction page

opc

00 ORR (immediate)

01 EOR (immediate)

10 AND (immediate)

0 0 0 0 0 1 0 1 !=11 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0

opc

Table C4-50 Encoding table for the SVE Integer Wide Immediate - Predicated group

Decode fields
Decode group or instruction page

op0

 0xx SVE copy integer immediate (predicated)

 10x Unallocated.

 110 FCPY

 111 Unallocated.

Decode fields
Instruction page

M

0 CPY (immediate, zeroing)

1 CPY (immediate, merging)

00000101 01 op0

31 24 23 22 21 20 19 16 15 13 12 0

0 0 0 0 0 1 0 1 size 0 1 Pg 0 M sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-638
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.50 SVE Permute Vector - One Source Quadwords

This section describes the encoding of the SVE Permute Vector - One Source Quadwords group. The encodings in
this section are decoded from SVE encodings.

C4.1.51 SVE Permute Vector - Unpredicated

This section describes the encoding of the SVE Permute Vector - Unpredicated group. The encodings in this section
are decoded from SVE encodings.

Table C4-51 Encoding table for the SVE Permute Vector - One Source Quadwords group

Decode fields
Decode group or instruction page Feature

op0 op1

 00 - DUPQ FEAT_SVE2p1

 01 0 EXTQ FEAT_SVE2p1

 01 1 Unallocated. -

 1x - Unallocated. -

00000101 op0 1 001001

31 24 23 22 21 20 19 16 15 10 9 0

op1

Table C4-52 Encoding table for the SVE Permute Vector - Unpredicated group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 00 000 - - DUP (scalar)

 00 100 - - INSR (scalar)

 00 x10 - - Unallocated.

 00 xx1 - - Unallocated.

 01 xx0 - 0 SVE move predicate from vector

 01 xx0 - 1 Unallocated.

 01 xx1 0 - SVE move predicate into vector

 01 xx1 1 - Unallocated.

 10 0xx - - SVE unpack vector elements

 10 100 - - INSR (SIMD&FP scalar)

00000101 1 op0 op1 001110

31 24 23 22 21 20 19 18 16 15 10 9 8 5 4 3 0

op3

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-639
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.51.1 SVE move predicate from vector

This section describes the encoding of the SVE move predicate from vector instruction class. The encodings in this
section are decoded from SVE Permute Vector - Unpredicated.

C4.1.51.2 SVE move predicate into vector

This section describes the encoding of the SVE move predicate into vector instruction class. The encodings in this
section are decoded from SVE Permute Vector - Unpredicated.

 10 110 - - Unallocated.

 10 1x1 - - Unallocated.

 11 000 - - REV (vector)

 11 != 000 - - Unallocated.

Decode fields
Instruction page Feature

opc opc2

00 00 Unallocated. -

00 01 PMOV (to predicate) - Encoding FEAT_SVE2p1

00 1x PMOV (to predicate) - Encoding FEAT_SVE2p1

01 - PMOV (to predicate) - Encoding FEAT_SVE2p1

1x - PMOV (to predicate) - Encoding FEAT_SVE2p1

Decode fields
Instruction page Feature

opc opc2

00 00 Unallocated. -

00 01 PMOV (to vector) - Encoding FEAT_SVE2p1

Table C4-52 Encoding table for the SVE Permute Vector - Unpredicated group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

0 0 0 0 0 1 0 1 opc 1 0 1 opc2 0 0 0 1 1 1 0 Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0

0 0 0 0 0 1 0 1 opc 1 0 1 opc2 1 0 0 1 1 1 0 0 Pn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-640
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.51.3 SVE unpack vector elements

This section describes the encoding of the SVE unpack vector elements instruction class. The encodings in this
section are decoded from SVE Permute Vector - Unpredicated.

C4.1.52 SVE Permute Predicate

This section describes the encoding of the SVE Permute Predicate group. The encodings in this section are decoded
from SVE encodings.

00 1x PMOV (to vector) - Encoding FEAT_SVE2p1

01 - PMOV (to vector) - Encoding FEAT_SVE2p1

1x - PMOV (to vector) - Encoding FEAT_SVE2p1

Decode fields
Instruction page

U H

0 0 SUNPKHI, SUNPKLO - Encoding

0 1 SUNPKHI, SUNPKLO - Encoding

1 0 UUNPKHI, UUNPKLO - Encoding

1 1 UUNPKHI, UUNPKLO - Encoding

Decode fields
Instruction page Feature

opc opc2

0 0 0 0 0 1 0 1 size 1 1 0 0 U H 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Table C4-53 Encoding table for the SVE Permute Predicate group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 00 1000x 0000 0 SVE unpack predicate elements

 01 1000x 0000 0 Unallocated.

 10 1000x 0000 0 Unallocated.

 11 1000x 0000 0 Unallocated.

 - 0xxxx xxx0 0 SVE permute predicate elements

00000101 op0 1 op1 010 op2

31 24 23 22 21 20 16 15 13 12 9 8 5 4 3 0

op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-641
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.52.1 SVE unpack predicate elements

This section describes the encoding of the SVE unpack predicate elements instruction class. The encodings in this
section are decoded from SVE Permute Predicate.

C4.1.52.2 SVE permute predicate elements

This section describes the encoding of the SVE permute predicate elements instruction class. The encodings in this
section are decoded from SVE Permute Predicate.

 - 0xxxx xxx1 0 Unallocated.

 - 10100 0000 0 REV (predicate)

 - 10101 0000 0 Unallocated.

 - 10x0x 1000 0 Unallocated.

 - 10x0x x100 0 Unallocated.

 - 10x0x xx10 0 Unallocated.

 - 10x0x xxx1 0 Unallocated.

 - 10x1x - 0 Unallocated.

 - 11xxx - 0 Unallocated.

 - - - 1 Unallocated.

Decode fields
Instruction page

H

0 PUNPKHI, PUNPKLO - Encoding

1 PUNPKHI, PUNPKLO - Encoding

Table C4-53 Encoding table for the SVE Permute Predicate group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 H 0 1 0 0 0 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-642
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.53 SVE Permute Vector - Predicated

This section describes the encoding of the SVE Permute Vector - Predicated group. The encodings in this section
are decoded from SVE encodings.

Decode fields
Instruction page

opc H

00 0 ZIP1, ZIP2 (predicates) - Encoding

00 1 ZIP1, ZIP2 (predicates) - Encoding

01 0 UZP1, UZP2 (predicates) - Encoding

01 1 UZP1, UZP2 (predicates) - Encoding

10 0 TRN1, TRN2 (predicates) - Encoding

10 1 TRN1, TRN2 (predicates) - Encoding

11 - Unallocated.

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 opc H 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

Table C4-54 Encoding table for the SVE Permute Vector - Predicated group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 000 0 0 CPY (SIMD&FP scalar)

 0 000 1 0 COMPACT

 0 000 - 1 SVE extract element to general register

 0 001 - 0 SVE extract element to SIMD&FP scalar register

 0 01x - 0 SVE reverse within elements

 0 01x - 1 Unallocated.

 0 100 0 1 CPY (scalar)

 0 100 1 1 Unallocated.

 0 100 - 0 SVE conditionally broadcast element to vector

 0 101 - 0 SVE conditionally extract element to SIMD&FP scalar

00000101 1 op1 10

31 24 23 22 21 20 19 17 16 15 14 13 12 0

op0

op2

op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-643
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.53.1 SVE extract element to general register

This section describes the encoding of the SVE extract element to general register instruction class. The encodings
in this section are decoded from SVE Permute Vector - Predicated.

C4.1.53.2 SVE extract element to SIMD&FP scalar register

This section describes the encoding of the SVE extract element to SIMD&FP scalar register instruction class. The
encodings in this section are decoded from SVE Permute Vector - Predicated.

 0 110 0 0 SPLICE - Encoding

 0 110 1 0 SPLICE - Encoding

 0 110 - 1 Unallocated.

 0 111 0 0 SVE reverse doublewords

 0 111 0 1 Unallocated.

 0 111 1 - Unallocated.

 0 x01 - 1 Unallocated.

 1 000 - 0 Unallocated.

 1 000 - 1 SVE conditionally extract element to general register

 1 != 000 - - Unallocated.

Decode fields
Instruction page

B

0 LASTA (scalar)

1 LASTB (scalar)

Table C4-54 Encoding table for the SVE Permute Vector - Predicated group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

0 0 0 0 0 1 0 1 size 1 0 0 0 0 B 1 0 1 Pg Zn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-644
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.53.3 SVE reverse within elements

This section describes the encoding of the SVE reverse within elements instruction class. The encodings in this
section are decoded from SVE Permute Vector - Predicated.

C4.1.53.4 SVE conditionally broadcast element to vector

This section describes the encoding of the SVE conditionally broadcast element to vector instruction class. The
encodings in this section are decoded from SVE Permute Vector - Predicated.

Decode fields
Instruction page

B

0 LASTA (SIMD&FP scalar)

1 LASTB (SIMD&FP scalar)

Decode fields
Instruction page

opc

00 REVB, REVH, REVW - Encoding

01 REVB, REVH, REVW - Encoding

10 REVB, REVH, REVW - Encoding

11 RBIT

Decode fields
Instruction page

B

0 CLASTA (vectors)

1 CLASTB (vectors)

0 0 0 0 0 1 0 1 size 1 0 0 0 1 B 1 0 0 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 0 0 1 opc 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 0 1 0 0 B 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-645
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.53.5 SVE conditionally extract element to SIMD&FP scalar

This section describes the encoding of the SVE conditionally extract element to SIMD&FP scalar instruction class.
The encodings in this section are decoded from SVE Permute Vector - Predicated.

C4.1.53.6 SVE reverse doublewords

This section describes the encoding of the SVE reverse doublewords instruction class. The encodings in this section
are decoded from SVE Permute Vector - Predicated.

C4.1.53.7 SVE conditionally extract element to general register

This section describes the encoding of the SVE conditionally extract element to general register instruction class.
The encodings in this section are decoded from SVE Permute Vector - Predicated.

Decode fields
Instruction page

B

0 CLASTA (SIMD&FP scalar)

1 CLASTB (SIMD&FP scalar)

Decode fields
Instruction page Feature

size

00 REVD FEAT_SVE2p1

01 Unallocated. -

1x Unallocated. -

Decode fields
Instruction page

B

0 CLASTA (scalar)

1 CLASTB (scalar)

0 0 0 0 0 1 0 1 size 1 0 1 0 1 B 1 0 0 Pg Zm Vdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 0 1 1 1 0 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 1 0 0 0 B 1 0 1 Pg Zm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-646
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.54 SVE Permute Vector - Extract

This section describes the encoding of the SVE Permute Vector - Extract group. The encodings in this section are
decoded from SVE encodings.

C4.1.55 SVE Permute Vector - Segments

This section describes the encoding of the SVE Permute Vector - Segments group. The encodings in this section are
decoded from SVE encodings.

C4.1.55.1 SVE permute vector segments

This section describes the encoding of the SVE permute vector segments instruction class. The encodings in this
section are decoded from SVE Permute Vector - Segments.

Table C4-55 Encoding table for the SVE Permute Vector - Extract group

Decode fields
Decode group or instruction page

op0

 0 EXT - Encoding

 1 EXT - Encoding

000001010 1 000

31 23 22 21 20 16 15 13 12 0

op0

Table C4-56 Encoding table for the SVE Permute Vector - Segments group

Decode fields
Decode group or instruction page

op0

 0 SVE permute vector segments

 1 Unallocated.

000001011 1 000

31 23 22 21 20 16 15 13 12 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-647
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.56 SVE Integer Compare - Vectors

This section describes the encoding of the SVE Integer Compare - Vectors group. The encodings in this section are
decoded from SVE encodings.

C4.1.56.1 SVE integer compare vectors

This section describes the encoding of the SVE integer compare vectors instruction class. The encodings in this
section are decoded from SVE Integer Compare - Vectors.

Decode fields
Instruction page Feature

opc H

00 0 ZIP1, ZIP2 (vectors) - Encoding FEAT_F64MM

00 1 ZIP1, ZIP2 (vectors) - Encoding FEAT_F64MM

01 0 UZP1, UZP2 (vectors) - Encoding FEAT_F64MM

01 1 UZP1, UZP2 (vectors) - Encoding FEAT_F64MM

10 - Unallocated. -

11 0 TRN1, TRN2 (vectors) - Encoding FEAT_F64MM

11 1 TRN1, TRN2 (vectors) - Encoding FEAT_F64MM

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 opc H Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-57 Encoding table for the SVE Integer Compare - Vectors group

Decode fields
Decode group or instruction page

op0

 0 SVE integer compare vectors

 1 SVE integer compare with wide elements

00100100 0

31 24 23 22 21 20 15 14 13 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-648
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.56.2 SVE integer compare with wide elements

This section describes the encoding of the SVE integer compare with wide elements instruction class. The
encodings in this section are decoded from SVE Integer Compare - Vectors.

C4.1.57 SVE Propagate Break

This section describes the encoding of the SVE Propagate Break group. The encodings in this section are decoded
from SVE encodings.

Decode fields
Instruction page

op o2 ne

0 0 0 CMP<cc> (vectors) - Encoding

0 0 1 CMP<cc> (vectors) - Encoding

0 1 0 CMP<cc> (wide elements) - Encoding

0 1 1 CMP<cc> (wide elements) - Encoding

1 0 0 CMP<cc> (vectors) - Encoding

1 0 1 CMP<cc> (vectors) - Encoding

1 1 0 CMP<cc> (vectors) - Encoding

1 1 1 CMP<cc> (vectors) - Encoding

Decode fields
Instruction page

U lt ne

0 0 0 CMP<cc> (wide elements) - Encoding

0 0 1 CMP<cc> (wide elements) - Encoding

0 1 0 CMP<cc> (wide elements) - Encoding

0 1 1 CMP<cc> (wide elements) - Encoding

1 0 0 CMP<cc> (wide elements) - Encoding

1 0 1 CMP<cc> (wide elements) - Encoding

1 1 0 CMP<cc> (wide elements) - Encoding

1 1 1 CMP<cc> (wide elements) - Encoding

0 0 1 0 0 1 0 0 size 0 Zm op 0 o2 Pg Zn ne Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

0 0 1 0 0 1 0 0 size 0 Zm U 1 lt Pg Zn ne Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-649
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.57.1 SVE propagate break from previous partition

This section describes the encoding of the SVE propagate break from previous partition instruction class. The
encodings in this section are decoded from SVE Propagate Break.

C4.1.58 SVE Partition Break

This section describes the encoding of the SVE Partition Break group. The encodings in this section are decoded
from SVE encodings.

Table C4-58 Encoding table for the SVE Propagate Break group

Decode fields
Decode group or instruction page

op0

 0 SVE propagate break from previous partition

 1 Unallocated.

Decode fields
Instruction page

op S B

0 0 0 BRKPA

0 0 1 BRKPB

0 1 0 BRKPAS

0 1 1 BRKPBS

1 - - Unallocated.

00100101 00 11

31 24 23 22 21 20 19 16 15 14 13 10 9 8 0

op0

0 0 1 0 0 1 0 1 op S 0 0 Pm 1 1 Pg 0 Pn B Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-650
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.58.1 SVE propagate break to next partition

This section describes the encoding of the SVE propagate break to next partition instruction class. The encodings
in this section are decoded from SVE Partition Break.

C4.1.58.2 SVE partition break condition

This section describes the encoding of the SVE partition break condition instruction class. The encodings in this
section are decoded from SVE Partition Break.

Table C4-59 Encoding table for the SVE Partition Break group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 1000 0 0 SVE propagate break to next partition

 0 1000 0 1 Unallocated.

 0 x000 1 - Unallocated.

 0 x1xx - - Unallocated.

 0 xx1x - - Unallocated.

 0 xxx1 - - Unallocated.

 1 0000 1 - Unallocated.

 1 != 0000 - - Unallocated.

 - 0000 0 - SVE partition break condition

Decode fields
Instruction page

S

0 BRKN

1 BRKNS

00100101 01 op1 01

31 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

op0 op3

op2

0 0 1 0 0 1 0 1 0 S 0 1 1 0 0 0 0 1 Pg 0 Pn 0 Pdm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-651
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.59 SVE Predicate Misc

This section describes the encoding of the SVE Predicate Misc group. The encodings in this section are decoded
from SVE encodings.

Decode fields
Instruction page

B S M

- 1 1 Unallocated.

0 0 - BRKA

0 1 0 BRKAS

1 0 - BRKB

1 1 0 BRKBS

0 0 1 0 0 1 0 1 B S 0 1 0 0 0 0 0 1 Pg 0 Pn M Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

Table C4-60 Encoding table for the SVE Predicate Misc group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

 0000 - x0 - 0 SVE predicate test

 0100 - x0 - 0 Unallocated.

 0x10 - x0 - 0 Unallocated.

 0xx1 - x0 - 0 Unallocated.

 0xxx - x1 - 0 Unallocated.

 1000 000 00 - 0 SVE predicate first active

 1000 000 != 00 - 0 Unallocated.

 1000 100 10 0000 0 SVE predicate zero

 1000 100 10 != 0000 0 Unallocated.

 1000 110 00 - 0 SVE predicate read from FFR (predicated)

 1001 000 0x - 0 Unallocated.

 1001 000 10 - 0 PNEXT

 1001 000 11 - 0 Unallocated.

00100101 01 op0 11 op1 op2 op3

31 24 23 22 21 20 19 16 15 14 13 11 10 9 8 5 4 3 0

op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-652
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.59.1 SVE predicate test

This section describes the encoding of the SVE predicate test instruction class. The encodings in this section are
decoded from SVE Predicate Misc.

C4.1.59.2 SVE predicate first active

This section describes the encoding of the SVE predicate first active instruction class. The encodings in this section
are decoded from SVE Predicate Misc.

 1001 100 10 - 0 Unallocated.

 1001 110 00 0000 0 SVE predicate read from FFR (unpredicated)

 1001 110 00 != 0000 0 Unallocated.

 100x 010 - - 0 Unallocated.

 100x 100 0x - 0 SVE predicate initialize

 100x 100 11 - 0 Unallocated.

 100x 110 != 00 - 0 Unallocated.

 100x xx1 - - 0 Unallocated.

 110x - - - 0 Unallocated.

 1x1x - - - 0 Unallocated.

 - - - - 1 Unallocated.

Decode fields
Instruction page

op S opc2

0 0 - Unallocated.

0 1 0000 PTEST

0 1 0001 Unallocated.

0 1 001x Unallocated.

0 1 01xx Unallocated.

0 1 1xxx Unallocated.

1 - - Unallocated.

Table C4-60 Encoding table for the SVE Predicate Misc group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

0 0 1 0 0 1 0 1 op S 0 1 0 0 0 0 1 1 Pg 0 Pn 0 opc2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-653
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.59.3 SVE predicate zero

This section describes the encoding of the SVE predicate zero instruction class. The encodings in this section are
decoded from SVE Predicate Misc.

C4.1.59.4 SVE predicate read from FFR (predicated)

This section describes the encoding of the SVE predicate read from FFR (predicated) instruction class. The
encodings in this section are decoded from SVE Predicate Misc.

Decode fields
Instruction page

op S

0 0 Unallocated.

0 1 PFIRST

1 - Unallocated.

Decode fields
Instruction page

op S

0 0 PFALSE

0 1 Unallocated.

1 - Unallocated.

Decode fields
Instruction page

op S

0 0 RDFFR (predicated)

0 1 RDFFRS

1 - Unallocated.

0 0 1 0 0 1 0 1 op S 0 1 1 0 0 0 1 1 0 0 0 0 0 Pg 0 Pdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0

0 0 1 0 0 1 0 1 op S 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 1 0 0 1 0 1 op S 0 1 1 0 0 0 1 1 1 1 0 0 0 Pg 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-654
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.59.5 SVE predicate read from FFR (unpredicated)

This section describes the encoding of the SVE predicate read from FFR (unpredicated) instruction class. The
encodings in this section are decoded from SVE Predicate Misc.

C4.1.59.6 SVE predicate initialize

This section describes the encoding of the SVE predicate initialize instruction class. The encodings in this section
are decoded from SVE Predicate Misc.

C4.1.60 SVE Integer Compare - Scalars

This section describes the encoding of the SVE Integer Compare - Scalars group. The encodings in this section are
decoded from SVE encodings.

Decode fields
Instruction page

op S

0 0 RDFFR (unpredicated)

0 1 Unallocated.

1 - Unallocated.

Decode fields
Instruction page

S

0 PTRUE (predicate)

1 PTRUES

0 0 1 0 0 1 0 1 op S 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 1 0 0 1 0 1 size 0 1 1 0 0 S 1 1 1 0 0 0 pattern 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-655
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.60.1 SVE integer compare scalar count and limit

This section describes the encoding of the SVE integer compare scalar count and limit instruction class. The
encodings in this section are decoded from SVE Integer Compare - Scalars.

C4.1.60.2 SVE conditionally terminate scalars

This section describes the encoding of the SVE conditionally terminate scalars instruction class. The encodings in
this section are decoded from SVE Integer Compare - Scalars.

Table C4-61 Encoding table for the SVE Integer Compare - Scalars group

Decode fields
Decode group or instruction page

op0 op1 op2

 0x - - SVE integer compare scalar count and limit

 10 00 0000 SVE conditionally terminate scalars

 10 00 != 0000 Unallocated.

 11 00 - SVE pointer conflict compare

 1x != 00 - Unallocated.

Decode fields
Instruction page

U lt eq

0 0 0 WHILEGE (predicate)

0 0 1 WHILEGT (predicate)

0 1 0 WHILELT (predicate)

0 1 1 WHILELE (predicate)

1 0 0 WHILEHS (predicate)

1 0 1 WHILEHI (predicate)

1 1 0 WHILELO (predicate)

1 1 1 WHILELS (predicate)

00100101 1 00 op0 op1 op2

31 24 23 22 21 20 16 15 14 13 12 11 10 9 4 3 0

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf U lt Rn eq Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-656
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.60.3 SVE pointer conflict compare

This section describes the encoding of the SVE pointer conflict compare instruction class. The encodings in this
section are decoded from SVE Integer Compare - Scalars.

C4.1.61 SVE Scalar Integer Compare - Predicate-as-counter

This section describes the encoding of the SVE Scalar Integer Compare - Predicate-as-counter group. The encodings
in this section are decoded from SVE encodings.

Decode fields
Instruction page

op ne

0 - Unallocated.

1 0 CTERMEQ, CTERMNE - Encoding

1 1 CTERMEQ, CTERMNE - Encoding

Decode fields
Instruction page

rw

0 WHILEWR

1 WHILERW

0 0 1 0 0 1 0 1 op sz 1 Rm 0 0 1 0 0 0 Rn ne 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

0 0 1 0 0 1 0 1 size 1 Rm 0 0 1 1 0 0 Rn rw Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

00100101 1 op0 01 op1 op2 1

31 24 23 22 21 20 16 15 14 13 11 10 5 4 3 2 0

op3

Table C4-62 Encoding table for the SVE Scalar Integer Compare - Predicate-as-counter group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

 00000 110 - - SVE extract mask predicate from predicate-as-counter -

 00000 111 000000 0 PTRUE (predicate as counter) FEAT_SVE2p1

 00000 111 000000 1 Unallocated. -

 00000 111 != 000000 - Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-657
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.61.1 SVE extract mask predicate from predicate-as-counter

This section describes the encoding of the SVE extract mask predicate from predicate-as-counter instruction class.
The encodings in this section are decoded from SVE Scalar Integer Compare - Predicate-as-counter.

C4.1.61.2 SVE integer compare scalar count and limit (predicate pair)

This section describes the encoding of the SVE integer compare scalar count and limit (predicate pair) instruction
class. The encodings in this section are decoded from SVE Scalar Integer Compare - Predicate-as-counter.

 != 00000 11x - - Unallocated. -

 - 01x - - SVE integer compare scalar count and limit (predicate pair) -

 - x0x - - SVE integer compare scalar count and limit (predicate-as-counter) -

Table C4-62 Encoding table for the SVE Scalar Integer Compare - Predicate-as-counter group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

Decode fields
Instruction page Feature

opc

0xx PEXT (predicate) FEAT_SVE2p1

10x PEXT (predicate pair) FEAT_SVE2p1

11x Unallocated. -

Decode fields
Instruction page Feature

U lt eq

0 0 0 WHILEGE (predicate pair) FEAT_SVE2p1

0 0 1 WHILEGT (predicate pair) FEAT_SVE2p1

0 1 0 WHILELT (predicate pair) FEAT_SVE2p1

0 1 1 WHILELE (predicate pair) FEAT_SVE2p1

1 0 0 WHILEHS (predicate pair) FEAT_SVE2p1

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 0 1 1 1 0 opc PNn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 7 5 4 3 0

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 U lt Rn 1 Pd eq

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-658
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.61.3 SVE integer compare scalar count and limit (predicate-as-counter)

This section describes the encoding of the SVE integer compare scalar count and limit (predicate-as-counter)
instruction class. The encodings in this section are decoded from SVE Scalar Integer Compare -
Predicate-as-counter.

C4.1.62 SVE Integer Wide Immediate - Unpredicated

This section describes the encoding of the SVE Integer Wide Immediate - Unpredicated group. The encodings in
this section are decoded from SVE encodings.

1 0 1 WHILEHI (predicate pair) FEAT_SVE2p1

1 1 0 WHILELO (predicate pair) FEAT_SVE2p1

1 1 1 WHILELS (predicate pair) FEAT_SVE2p1

Decode fields
Instruction page Feature

U lt eq

0 0 0 WHILEGE (predicate as counter) FEAT_SVE2p1

0 0 1 WHILEGT (predicate as counter) FEAT_SVE2p1

0 1 0 WHILELT (predicate as counter) FEAT_SVE2p1

0 1 1 WHILELE (predicate as counter) FEAT_SVE2p1

1 0 0 WHILEHS (predicate as counter) FEAT_SVE2p1

1 0 1 WHILEHI (predicate as counter) FEAT_SVE2p1

1 1 0 WHILELO (predicate as counter) FEAT_SVE2p1

1 1 1 WHILELS (predicate as counter) FEAT_SVE2p1

Decode fields
Instruction page Feature

U lt eq

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 U lt Rn 1 eq PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-659
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.62.1 SVE integer add/subtract immediate (unpredicated)

This section describes the encoding of the SVE integer add/subtract immediate (unpredicated) instruction class. The
encodings in this section are decoded from SVE Integer Wide Immediate - Unpredicated.

C4.1.62.2 SVE integer min/max immediate (unpredicated)

This section describes the encoding of the SVE integer min/max immediate (unpredicated) instruction class. The
encodings in this section are decoded from SVE Integer Wide Immediate - Unpredicated.

Table C4-63 Encoding table for the SVE Integer Wide Immediate - Unpredicated group

Decode fields
Decode group or instruction page

op0 op1

 00 - SVE integer add/subtract immediate (unpredicated)

 01 - SVE integer min/max immediate (unpredicated)

 10 - SVE integer multiply immediate (unpredicated)

 11 0 SVE broadcast integer immediate (unpredicated)

 11 1 SVE broadcast floating-point immediate (unpredicated)

Decode fields
Instruction page

opc

000 ADD (immediate)

001 SUB (immediate)

010 Unallocated.

011 SUBR (immediate)

100 SQADD (immediate)

101 UQADD (immediate)

110 SQSUB (immediate)

111 UQSUB (immediate)

00100101 1 op0 11

31 24 23 22 21 20 19 18 17 16 15 14 13 0

op1

0 0 1 0 0 1 0 1 size 1 0 0 opc 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-660
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.62.3 SVE integer multiply immediate (unpredicated)

This section describes the encoding of the SVE integer multiply immediate (unpredicated) instruction class. The
encodings in this section are decoded from SVE Integer Wide Immediate - Unpredicated.

C4.1.62.4 SVE broadcast integer immediate (unpredicated)

This section describes the encoding of the SVE broadcast integer immediate (unpredicated) instruction class. The
encodings in this section are decoded from SVE Integer Wide Immediate - Unpredicated.

Decode fields
Instruction page

opc o2

0xx 1 Unallocated.

000 0 SMAX (immediate)

001 0 UMAX (immediate)

010 0 SMIN (immediate)

011 0 UMIN (immediate)

1xx - Unallocated.

Decode fields
Instruction page

opc o2

000 0 MUL (immediate)

000 1 Unallocated.

001 - Unallocated.

01x - Unallocated.

1xx - Unallocated.

0 0 1 0 0 1 0 1 size 1 0 1 opc 1 1 o2 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 5 4 0

0 0 1 0 0 1 0 1 size 1 1 0 opc 1 1 o2 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-661
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.62.5 SVE broadcast floating-point immediate (unpredicated)

This section describes the encoding of the SVE broadcast floating-point immediate (unpredicated) instruction class.
The encodings in this section are decoded from SVE Integer Wide Immediate - Unpredicated.

C4.1.63 SVE Predicate Count

This section describes the encoding of the SVE Predicate Count group. The encodings in this section are decoded
from SVE encodings.

Decode fields
Instruction page

opc

00 DUP (immediate)

01 Unallocated.

1x Unallocated.

Decode fields
Instruction page

opc o2

00 0 FDUP

00 1 Unallocated.

01 - Unallocated.

1x - Unallocated.

0 0 1 0 0 1 0 1 size 1 1 1 opc 0 1 1 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

0 0 1 0 0 1 0 1 size 1 1 1 opc 1 1 1 o2 imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-662
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.63.1 SVE predicate count (predicate-as-counter)

This section describes the encoding of the SVE predicate count (predicate-as-counter) instruction class. The
encodings in this section are decoded from SVE Predicate Count.

C4.1.63.2 SVE predicate count

This section describes the encoding of the SVE predicate count instruction class. The encodings in this section are
decoded from SVE Predicate Count.

Table C4-64 Encoding table for the SVE Predicate Count group

Decode fields
Decode group or instruction page

op0 op1

 000 1 SVE predicate count (predicate-as-counter)

 != 000 1 Unallocated.

 - 0 SVE predicate count

Decode fields
Instruction page Feature

opc

000 CNTP (predicate as counter) FEAT_SVE2p1

001 Unallocated. -

01x Unallocated. -

1xx Unallocated. -

00100101 100 10 op0

31 24 23 22 21 19 18 16 15 14 13 11 10 9 8 0

op1

0 0 1 0 0 1 0 1 size 1 0 0 opc 1 0 0 0 0 vl 1 PNn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-663
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.64 SVE Inc/Dec by Predicate Count

This section describes the encoding of the SVE Inc/Dec by Predicate Count group. The encodings in this section are
decoded from SVE encodings.

C4.1.64.1 SVE saturating inc/dec vector by predicate count

This section describes the encoding of the SVE saturating inc/dec vector by predicate count instruction class. The
encodings in this section are decoded from SVE Inc/Dec by Predicate Count.

Decode fields
Instruction page

opc

000 CNTP (predicate)

001 Unallocated.

01x Unallocated.

1xx Unallocated.

0 0 1 0 0 1 0 1 size 1 0 0 opc 1 0 Pg 0 Pn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 10 9 8 5 4 0

Table C4-65 Encoding table for the SVE Inc/Dec by Predicate Count group

Decode fields
Decode group or instruction page

op0 op1

 0 0 SVE saturating inc/dec vector by predicate count

 0 1 SVE saturating inc/dec register by predicate count

 1 0 SVE inc/dec vector by predicate count

 1 1 SVE inc/dec register by predicate count

00100101 101 1000

31 24 23 22 21 19 18 17 16 15 12 11 10 0

op0 op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-664
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.64.2 SVE saturating inc/dec register by predicate count

This section describes the encoding of the SVE saturating inc/dec register by predicate count instruction class. The
encodings in this section are decoded from SVE Inc/Dec by Predicate Count.

C4.1.64.3 SVE inc/dec vector by predicate count

This section describes the encoding of the SVE inc/dec vector by predicate count instruction class. The encodings
in this section are decoded from SVE Inc/Dec by Predicate Count.

Decode fields
Instruction page

D U opc

- - 01 Unallocated.

- - 1x Unallocated.

0 0 00 SQINCP (vector)

0 1 00 UQINCP (vector)

1 0 00 SQDECP (vector)

1 1 00 UQDECP (vector)

Decode fields
Instruction page

D U sf op

- - - 1 Unallocated.

0 0 0 0 SQINCP (scalar) - Encoding

0 0 1 0 SQINCP (scalar) - Encoding

0 1 0 0 UQINCP (scalar) - Encoding

0 1 1 0 UQINCP (scalar) - Encoding

1 0 0 0 SQDECP (scalar) - Encoding

1 0 1 0 SQDECP (scalar) - Encoding

1 1 0 0 UQDECP (scalar) - Encoding

1 1 1 0 UQDECP (scalar) - Encoding

0 0 1 0 0 1 0 1 size 1 0 1 0 D U 1 0 0 0 0 opc Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

0 0 1 0 0 1 0 1 size 1 0 1 0 D U 1 0 0 0 1 sf op Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-665
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.64.4 SVE inc/dec register by predicate count

This section describes the encoding of the SVE inc/dec register by predicate count instruction class. The encodings
in this section are decoded from SVE Inc/Dec by Predicate Count.

C4.1.65 SVE Write FFR

This section describes the encoding of the SVE Write FFR group. The encodings in this section are decoded from
SVE encodings.

Decode fields
Instruction page

op D opc2

0 - 01 Unallocated.

0 - 1x Unallocated.

0 0 00 INCP (vector)

0 1 00 DECP (vector)

1 - - Unallocated.

Decode fields
Instruction page

op D opc2

0 - 01 Unallocated.

0 - 1x Unallocated.

0 0 00 INCP (scalar)

0 1 00 DECP (scalar)

1 - - Unallocated.

0 0 1 0 0 1 0 1 size 1 0 1 1 op D 1 0 0 0 0 opc2 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

0 0 1 0 0 1 0 1 size 1 0 1 1 op D 1 0 0 0 1 opc2 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-666
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.65.1 SVE FFR write from predicate

This section describes the encoding of the SVE FFR write from predicate instruction class. The encodings in this
section are decoded from SVE Write FFR.

C4.1.65.2 SVE FFR initialise

This section describes the encoding of the SVE FFR initialise instruction class. The encodings in this section are
decoded from SVE Write FFR.

Table C4-66 Encoding table for the SVE Write FFR group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

 0 00 000 - 00000 SVE FFR write from predicate

 1 00 000 0000 00000 SVE FFR initialise

 1 00 000 1xxx 00000 Unallocated.

 1 00 000 x1xx 00000 Unallocated.

 1 00 000 xx1x 00000 Unallocated.

 1 00 000 xxx1 00000 Unallocated.

 - 00 000 - != 00000 Unallocated.

 - 00 != 000 - - Unallocated.

 - != 00 - - - Unallocated.

Decode fields
Instruction page

opc

00 WRFFR

01 Unallocated.

1x Unallocated.

00100101 101 op1 1001 op2 op3 op4

31 24 23 22 21 19 18 17 16 15 12 11 9 8 5 4 0

op0

0 0 1 0 0 1 0 1 opc 1 0 1 0 0 0 1 0 0 1 0 0 0 Pn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-667
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.66 SVE Integer Multiply-Add - Unpredicated

This section describes the encoding of the SVE Integer Multiply-Add - Unpredicated group. The encodings in this
section are decoded from SVE encodings.

C4.1.66.1 SVE integer dot product (unpredicated)

This section describes the encoding of the SVE integer dot product (unpredicated) instruction class. The encodings
in this section are decoded from SVE Integer Multiply-Add - Unpredicated.

Decode fields
Instruction page

opc

00 SETFFR

01 Unallocated.

1x Unallocated.

0 0 1 0 0 1 0 1 opc 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table C4-67 Encoding table for the SVE Integer Multiply-Add - Unpredicated group

Decode fields
Decode group or instruction page

op0

 0000x SVE integer dot product (unpredicated)

 0001x SVE2 saturating multiply-add interleaved long

 001xx CDOT (vectors)

 01xxx SVE2 complex integer multiply-add

 10xxx SVE2 integer multiply-add long

 110xx SVE2 saturating multiply-add long

 1110x SVE2 saturating multiply-add high

 11110 SVE mixed sign dot product

 11111 Unallocated.

01000100 0 0 op0

31 24 23 22 21 20 16 15 14 10 9 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-668
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.66.2 SVE2 saturating multiply-add interleaved long

This section describes the encoding of the SVE2 saturating multiply-add interleaved long instruction class. The
encodings in this section are decoded from SVE Integer Multiply-Add - Unpredicated.

C4.1.66.3 SVE2 complex integer multiply-add

This section describes the encoding of the SVE2 complex integer multiply-add instruction class. The encodings in
this section are decoded from SVE Integer Multiply-Add - Unpredicated.

C4.1.66.4 SVE2 integer multiply-add long

This section describes the encoding of the SVE2 integer multiply-add long instruction class. The encodings in this
section are decoded from SVE Integer Multiply-Add - Unpredicated.

Decode fields
Instruction page

U

0 SDOT (4-way, vectors)

1 UDOT (4-way, vectors)

Decode fields
Instruction page

S

0 SQDMLALBT

1 SQDMLSLBT

Decode fields
Instruction page

op

0 CMLA (vectors)

1 SQRDCMLAH (vectors)

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 0 U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 1 S Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 Zm 0 0 1 op rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-669
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.66.5 SVE2 saturating multiply-add long

This section describes the encoding of the SVE2 saturating multiply-add long instruction class. The encodings in
this section are decoded from SVE Integer Multiply-Add - Unpredicated.

C4.1.66.6 SVE2 saturating multiply-add high

This section describes the encoding of the SVE2 saturating multiply-add high instruction class. The encodings in
this section are decoded from SVE Integer Multiply-Add - Unpredicated.

Decode fields
Instruction page

S U T

0 0 0 SMLALB (vectors)

0 0 1 SMLALT (vectors)

0 1 0 UMLALB (vectors)

0 1 1 UMLALT (vectors)

1 0 0 SMLSLB (vectors)

1 0 1 SMLSLT (vectors)

1 1 0 UMLSLB (vectors)

1 1 1 UMLSLT (vectors)

Decode fields
Instruction page

S T

0 0 SQDMLALB (vectors)

0 1 SQDMLALT (vectors)

1 0 SQDMLSLB (vectors)

1 1 SQDMLSLT (vectors)

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 S U T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 0 S T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-670
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.66.7 SVE mixed sign dot product

This section describes the encoding of the SVE mixed sign dot product instruction class. The encodings in this
section are decoded from SVE Integer Multiply-Add - Unpredicated.

C4.1.67 SVE2 Integer - Predicated

This section describes the encoding of the SVE2 Integer - Predicated group. The encodings in this section are
decoded from SVE encodings.

Decode fields
Instruction page

S

0 SQRDMLAH (vectors)

1 SQRDMLSH (vectors)

Decode fields
Instruction page Feature

size

0x Unallocated. -

10 USDOT (vectors) FEAT_I8MM

11 Unallocated. -

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 1 0 S Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-68 Encoding table for the SVE2 Integer - Predicated group

Decode fields
Decode group or instruction page

op0 op1

 0010 1 SVE2 integer pairwise add and accumulate long

 0011 1 Unallocated.

 011x 1 Unallocated.

 0x0x 1 SVE2 integer unary operations (predicated)

01000100 0 op0 10

31 24 23 22 21 20 17 16 15 14 13 12 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-671
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.67.1 SVE2 integer pairwise add and accumulate long

This section describes the encoding of the SVE2 integer pairwise add and accumulate long instruction class. The
encodings in this section are decoded from SVE2 Integer - Predicated.

C4.1.67.2 SVE2 integer unary operations (predicated)

This section describes the encoding of the SVE2 integer unary operations (predicated) instruction class. The
encodings in this section are decoded from SVE2 Integer - Predicated.

 0xxx 0 SVE2 saturating/rounding bitwise shift left (predicated)

 10xx 0 SVE2 integer halving add/subtract (predicated)

 10xx 1 SVE2 integer pairwise arithmetic

 11xx 0 SVE2 saturating add/subtract

 11xx 1 Unallocated.

Decode fields
Instruction page

U

0 SADALP

1 UADALP

Decode fields
Instruction page

Q opc

- 1x Unallocated.

0 00 URECPE

0 01 URSQRTE

1 00 SQABS

1 01 SQNEG

Table C4-68 Encoding table for the SVE2 Integer - Predicated group (continued)

Decode fields
Decode group or instruction page

op0 op1

0 1 0 0 0 1 0 0 size 0 0 0 1 0 U 1 0 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 0 Q 0 opc 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-672
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.67.3 SVE2 saturating/rounding bitwise shift left (predicated)

This section describes the encoding of the SVE2 saturating/rounding bitwise shift left (predicated) instruction class.
The encodings in this section are decoded from SVE2 Integer - Predicated.

C4.1.67.4 SVE2 integer halving add/subtract (predicated)

This section describes the encoding of the SVE2 integer halving add/subtract (predicated) instruction class. The
encodings in this section are decoded from SVE2 Integer - Predicated.

Decode fields
Instruction page

Q R N U

0 - 0 - Unallocated.

0 0 1 0 SRSHL

0 0 1 1 URSHL

0 1 1 0 SRSHLR

0 1 1 1 URSHLR

1 0 0 0 SQSHL (vectors)

1 0 0 1 UQSHL (vectors)

1 0 1 0 SQRSHL

1 0 1 1 UQRSHL

1 1 0 0 SQSHLR

1 1 0 1 UQSHLR

1 1 1 0 SQRSHLR

1 1 1 1 UQRSHLR

Decode fields
Instruction page

R S U

0 0 0 SHADD

0 0 1 UHADD

0 1 0 SHSUB

0 1 1 UHSUB

0 1 0 0 0 1 0 0 size 0 0 Q R N U 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 1 0 R S U 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-673
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.67.5 SVE2 integer pairwise arithmetic

This section describes the encoding of the SVE2 integer pairwise arithmetic instruction class. The encodings in this
section are decoded from SVE2 Integer - Predicated.

C4.1.67.6 SVE2 saturating add/subtract

This section describes the encoding of the SVE2 saturating add/subtract instruction class. The encodings in this
section are decoded from SVE2 Integer - Predicated.

1 0 0 SRHADD

1 0 1 URHADD

1 1 0 SHSUBR

1 1 1 UHSUBR

Decode fields
Instruction page

opc U

00 0 Unallocated.

00 1 ADDP

01 - Unallocated.

10 0 SMAXP

10 1 UMAXP

11 0 SMINP

11 1 UMINP

Decode fields
Instruction page

op S U

0 0 0 SQADD (vectors, predicated)

0 0 1 UQADD (vectors, predicated)

0 1 0 SQSUB (vectors, predicated)

Decode fields
Instruction page

R S U

0 1 0 0 0 1 0 0 size 0 1 0 opc U 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 0 0 0 1 0 0 size 0 1 1 op S U 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-674
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68 SVE Multiply - Indexed

This section describes the encoding of the SVE Multiply - Indexed group. The encodings in this section are decoded
from SVE encodings.

0 1 1 UQSUB (vectors, predicated)

1 0 0 SUQADD

1 0 1 USQADD

1 1 0 SQSUBR

1 1 1 UQSUBR

Decode fields
Instruction page

op S U

Table C4-69 Encoding table for the SVE Multiply - Indexed group

Decode fields
Decode group or instruction page

op0

 00000x SVE integer dot product (indexed)

 00001x SVE2 integer multiply-add (indexed)

 00010x SVE2 saturating multiply-add high (indexed)

 00011x SVE mixed sign dot product (indexed)

 001xxx SVE2 saturating multiply-add (indexed)

 0100xx SVE2 complex integer dot product (indexed)

 0101xx Unallocated.

 0110xx SVE2 complex integer multiply-add (indexed)

 0111xx SVE2 complex saturating multiply-add (indexed)

 10xxxx SVE2 integer multiply-add long (indexed)

 110xxx SVE2 integer multiply long (indexed)

 1110xx SVE2 saturating multiply (indexed)

 11110x SVE2 saturating multiply high (indexed)

 111110 SVE2 integer multiply (indexed)

 111111 Unallocated.

01000100 1 op0

31 24 23 22 21 20 16 15 10 9 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-675
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68.1 SVE integer dot product (indexed)

This section describes the encoding of the SVE integer dot product (indexed) instruction class. The encodings in
this section are decoded from SVE Multiply - Indexed.

C4.1.68.2 SVE2 integer multiply-add (indexed)

This section describes the encoding of the SVE2 integer multiply-add (indexed) instruction class. The encodings in
this section are decoded from SVE Multiply - Indexed.

C4.1.68.3 SVE2 saturating multiply-add high (indexed)

This section describes the encoding of the SVE2 saturating multiply-add high (indexed) instruction class. The
encodings in this section are decoded from SVE Multiply - Indexed.

Decode fields
Instruction page

size U

0x - Unallocated.

10 0 SDOT (4-way, indexed) - Encoding

10 1 UDOT (4-way, indexed) - Encoding

11 0 SDOT (4-way, indexed) - Encoding

11 1 UDOT (4-way, indexed) - Encoding

Decode fields
Instruction page

size S

0x 0 MLA (indexed) - Encoding

0x 1 MLS (indexed) - Encoding

10 0 MLA (indexed) - Encoding

10 1 MLS (indexed) - Encoding

11 0 MLA (indexed) - Encoding

11 1 MLS (indexed) - Encoding

0 1 0 0 0 1 0 0 size 1 opc 0 0 0 0 0 U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 1 opc 0 0 0 0 1 S Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-676
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68.4 SVE mixed sign dot product (indexed)

This section describes the encoding of the SVE mixed sign dot product (indexed) instruction class. The encodings
in this section are decoded from SVE Multiply - Indexed.

C4.1.68.5 SVE2 saturating multiply-add (indexed)

This section describes the encoding of the SVE2 saturating multiply-add (indexed) instruction class. The encodings
in this section are decoded from SVE Multiply - Indexed.

Decode fields
Instruction page

size S

0x 0 SQRDMLAH (indexed) - Encoding

0x 1 SQRDMLSH (indexed) - Encoding

10 0 SQRDMLAH (indexed) - Encoding

10 1 SQRDMLSH (indexed) - Encoding

11 0 SQRDMLAH (indexed) - Encoding

11 1 SQRDMLSH (indexed) - Encoding

Decode fields
Instruction page Feature

size U

0x - Unallocated. -

10 0 USDOT (indexed) FEAT_I8MM

10 1 SUDOT FEAT_I8MM

11 - Unallocated. -

0 1 0 0 0 1 0 0 size 1 opc 0 0 0 1 0 S Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 1 opc 0 0 0 1 1 U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-677
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68.6 SVE2 complex integer dot product (indexed)

This section describes the encoding of the SVE2 complex integer dot product (indexed) instruction class. The
encodings in this section are decoded from SVE Multiply - Indexed.

C4.1.68.7 SVE2 complex integer multiply-add (indexed)

This section describes the encoding of the SVE2 complex integer multiply-add (indexed) instruction class. The
encodings in this section are decoded from SVE Multiply - Indexed.

Decode fields
Instruction page

size S T

0x - - Unallocated.

10 0 0 SQDMLALB (indexed) - Encoding

10 0 1 SQDMLALT (indexed) - Encoding

10 1 0 SQDMLSLB (indexed) - Encoding

10 1 1 SQDMLSLT (indexed) - Encoding

11 0 0 SQDMLALB (indexed) - Encoding

11 0 1 SQDMLALT (indexed) - Encoding

11 1 0 SQDMLSLB (indexed) - Encoding

11 1 1 SQDMLSLT (indexed) - Encoding

Decode fields
Instruction page

size

0x Unallocated.

10 CDOT (indexed) - Encoding

11 CDOT (indexed) - Encoding

0 1 0 0 0 1 0 0 size 1 opc 0 0 1 S il T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 1 opc 0 1 0 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-678
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68.8 SVE2 complex saturating multiply-add (indexed)

This section describes the encoding of the SVE2 complex saturating multiply-add (indexed) instruction class. The
encodings in this section are decoded from SVE Multiply - Indexed.

C4.1.68.9 SVE2 integer multiply-add long (indexed)

This section describes the encoding of the SVE2 integer multiply-add long (indexed) instruction class. The
encodings in this section are decoded from SVE Multiply - Indexed.

Decode fields
Instruction page

size

0x Unallocated.

10 CMLA (indexed) - Encoding

11 CMLA (indexed) - Encoding

Decode fields
Instruction page

size

0x Unallocated.

10 SQRDCMLAH (indexed) - Encoding

11 SQRDCMLAH (indexed) - Encoding

Decode fields
Instruction page

size S U T

0x - - - Unallocated.

10 0 0 0 SMLALB (indexed) - Encoding

10 0 0 1 SMLALT (indexed) - Encoding

10 0 1 0 UMLALB (indexed) - Encoding

0 1 0 0 0 1 0 0 size 1 opc 0 1 1 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 1 opc 0 1 1 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 1 opc 1 0 S U il T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-679
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68.10 SVE2 integer multiply long (indexed)

This section describes the encoding of the SVE2 integer multiply long (indexed) instruction class. The encodings
in this section are decoded from SVE Multiply - Indexed.

10 0 1 1 UMLALT (indexed) - Encoding

10 1 0 0 SMLSLB (indexed) - Encoding

10 1 0 1 SMLSLT (indexed) - Encoding

10 1 1 0 UMLSLB (indexed) - Encoding

10 1 1 1 UMLSLT (indexed) - Encoding

11 0 0 0 SMLALB (indexed) - Encoding

11 0 0 1 SMLALT (indexed) - Encoding

11 0 1 0 UMLALB (indexed) - Encoding

11 0 1 1 UMLALT (indexed) - Encoding

11 1 0 0 SMLSLB (indexed) - Encoding

11 1 0 1 SMLSLT (indexed) - Encoding

11 1 1 0 UMLSLB (indexed) - Encoding

11 1 1 1 UMLSLT (indexed) - Encoding

Decode fields
Instruction page

size U T

0x - - Unallocated.

10 0 0 SMULLB (indexed) - Encoding

10 0 1 SMULLT (indexed) - Encoding

10 1 0 UMULLB (indexed) - Encoding

10 1 1 UMULLT (indexed) - Encoding

11 0 0 SMULLB (indexed) - Encoding

11 0 1 SMULLT (indexed) - Encoding

11 1 0 UMULLB (indexed) - Encoding

11 1 1 UMULLT (indexed) - Encoding

Decode fields
Instruction page

size S U T

0 1 0 0 0 1 0 0 size 1 opc 1 1 0 U il T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-680
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.68.11 SVE2 saturating multiply (indexed)

This section describes the encoding of the SVE2 saturating multiply (indexed) instruction class. The encodings in
this section are decoded from SVE Multiply - Indexed.

C4.1.68.12 SVE2 saturating multiply high (indexed)

This section describes the encoding of the SVE2 saturating multiply high (indexed) instruction class. The encodings
in this section are decoded from SVE Multiply - Indexed.

C4.1.68.13 SVE2 integer multiply (indexed)

This section describes the encoding of the SVE2 integer multiply (indexed) instruction class. The encodings in this
section are decoded from SVE Multiply - Indexed.

Decode fields
Instruction page

size T

0x - Unallocated.

10 0 SQDMULLB (indexed) - Encoding

10 1 SQDMULLT (indexed) - Encoding

11 0 SQDMULLB (indexed) - Encoding

11 1 SQDMULLT (indexed) - Encoding

Decode fields
Instruction page

size R

0x 0 SQDMULH (indexed) - Encoding

0x 1 SQRDMULH (indexed) - Encoding

10 0 SQDMULH (indexed) - Encoding

10 1 SQRDMULH (indexed) - Encoding

11 0 SQDMULH (indexed) - Encoding

11 1 SQRDMULH (indexed) - Encoding

0 1 0 0 0 1 0 0 size 1 opc 1 1 1 0 il T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 0 size 1 opc 1 1 1 1 0 R Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-681
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.69 SVE2 Widening Integer Arithmetic

This section describes the encoding of the SVE2 Widening Integer Arithmetic group. The encodings in this section
are decoded from SVE encodings.

C4.1.69.1 SVE2 integer add/subtract long

This section describes the encoding of the SVE2 integer add/subtract long instruction class. The encodings in this
section are decoded from SVE2 Widening Integer Arithmetic.

Decode fields
Instruction page

size

0x MUL (indexed) - Encoding

10 MUL (indexed) - Encoding

11 MUL (indexed) - Encoding

0 1 0 0 0 1 0 0 size 1 opc 1 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-70 Encoding table for the SVE2 Widening Integer Arithmetic group

Decode fields
Decode group or instruction page

op0

 0x SVE2 integer add/subtract long

 10 SVE2 integer add/subtract wide

 11 SVE2 integer multiply long

Decode fields
Instruction page

op S U T

0 0 0 0 SADDLB

0 0 0 1 SADDLT

0 0 1 0 UADDLB

0 0 1 1 UADDLT

01000101 0 0 op0

31 24 23 22 21 20 16 15 14 13 12 0

0 1 0 0 0 1 0 1 size 0 Zm 0 0 op S U T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-682
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.69.2 SVE2 integer add/subtract wide

This section describes the encoding of the SVE2 integer add/subtract wide instruction class. The encodings in this
section are decoded from SVE2 Widening Integer Arithmetic.

C4.1.69.3 SVE2 integer multiply long

This section describes the encoding of the SVE2 integer multiply long instruction class. The encodings in this
section are decoded from SVE2 Widening Integer Arithmetic.

0 1 0 0 SSUBLB

0 1 0 1 SSUBLT

0 1 1 0 USUBLB

0 1 1 1 USUBLT

1 0 - - Unallocated.

1 1 0 0 SABDLB

1 1 0 1 SABDLT

1 1 1 0 UABDLB

1 1 1 1 UABDLT

Decode fields
Instruction page

S U T

0 0 0 SADDWB

0 0 1 SADDWT

0 1 0 UADDWB

0 1 1 UADDWT

1 0 0 SSUBWB

1 0 1 SSUBWT

1 1 0 USUBWB

1 1 1 USUBWT

Decode fields
Instruction page

op S U T

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 S U T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-683
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.70 SVE Misc

This section describes the encoding of the SVE Misc group. The encodings in this section are decoded from SVE
encodings.

Decode fields
Instruction page Feature

size op U T

- 0 0 0 SQDMULLB (vectors) -

- 0 0 1 SQDMULLT (vectors) -

- 1 0 0 SMULLB (vectors) -

- 1 0 1 SMULLT (vectors) -

- 1 1 0 UMULLB (vectors) -

- 1 1 1 UMULLT (vectors) -

!= 00 0 1 0 PMULLB - Encoding -

!= 00 0 1 1 PMULLT - Encoding -

00 0 1 0 PMULLB - Encoding FEAT_SVE_PMULL128

00 0 1 1 PMULLT - Encoding FEAT_SVE_PMULL128

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 op U T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-71 Encoding table for the SVE Misc group

Decode fields
Decode group or instruction page

op0 op1

 0 10xx SVE2 bitwise shift left long

 1 10xx Unallocated.

 - 00xx SVE2 integer add/subtract interleaved long

 - 010x SVE2 bitwise exclusive-or interleaved

 - 0110 SVE integer matrix multiply accumulate

 - 0111 Unallocated.

 - 11xx SVE2 bitwise permute

01000101 0 10 op1

31 24 23 22 21 20 16 15 14 13 10 9 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-684
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.70.1 SVE2 bitwise shift left long

This section describes the encoding of the SVE2 bitwise shift left long instruction class. The encodings in this
section are decoded from SVE Misc.

C4.1.70.2 SVE2 integer add/subtract interleaved long

This section describes the encoding of the SVE2 integer add/subtract interleaved long instruction class. The
encodings in this section are decoded from SVE Misc.

C4.1.70.3 SVE2 bitwise exclusive-or interleaved

This section describes the encoding of the SVE2 bitwise exclusive-or interleaved instruction class. The encodings
in this section are decoded from SVE Misc.

Decode fields
Instruction page

U T

0 0 SSHLLB

0 1 SSHLLT

1 0 USHLLB

1 1 USHLLT

Decode fields
Instruction page

S tb

0 0 SADDLBT

0 1 Unallocated.

1 0 SSUBLBT

1 1 SSUBLTB

0 1 0 0 0 1 0 1 0 0 tszl imm3 1 0 1 0 U T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

tszh

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 0 S tb Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-685
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.70.4 SVE integer matrix multiply accumulate

This section describes the encoding of the SVE integer matrix multiply accumulate instruction class. The encodings
in this section are decoded from SVE Misc.

C4.1.70.5 SVE2 bitwise permute

This section describes the encoding of the SVE2 bitwise permute instruction class. The encodings in this section are
decoded from SVE Misc.

Decode fields
Instruction page

tb

0 EORBT

1 EORTB

Decode fields
Instruction page Feature

uns

00 SMMLA FEAT_I8MM

01 Unallocated. -

10 USMMLA FEAT_I8MM

11 UMMLA FEAT_I8MM

Decode fields
Instruction page Feature

opc

00 BEXT FEAT_SVE_BitPerm

01 BDEP FEAT_SVE_BitPerm

10 BGRP FEAT_SVE_BitPerm

11 Unallocated. -

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 1 0 tb Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 1 uns 0 Zm 1 0 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 1 size 0 Zm 1 0 1 1 opc Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-686
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.71 SVE2 Accumulate

This section describes the encoding of the SVE2 Accumulate group. The encodings in this section are decoded from
SVE encodings.

C4.1.71.1 SVE2 complex integer add

This section describes the encoding of the SVE2 complex integer add instruction class. The encodings in this section
are decoded from SVE2 Accumulate.

C4.1.71.2 SVE2 integer absolute difference and accumulate long

This section describes the encoding of the SVE2 integer absolute difference and accumulate long instruction class.
The encodings in this section are decoded from SVE2 Accumulate.

Table C4-72 Encoding table for the SVE2 Accumulate group

Decode fields
Decode group or instruction page

op0 op1

 0000 011 SVE2 complex integer add

 != 0000 011 Unallocated.

 - 00x SVE2 integer absolute difference and accumulate long

 - 010 SVE2 integer add/subtract long with carry

 - 10x SVE2 bitwise shift right and accumulate

 - 110 SVE2 bitwise shift and insert

 - 111 SVE2 integer absolute difference and accumulate

Decode fields
Instruction page

op

0 CADD

1 SQCADD

01000101 0 op0 11 op1

31 24 23 22 21 20 17 16 15 14 13 11 10 0

0 1 0 0 0 1 0 1 size 0 0 0 0 0 op 1 1 0 1 1 rot Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-687
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.71.3 SVE2 integer add/subtract long with carry

This section describes the encoding of the SVE2 integer add/subtract long with carry instruction class. The
encodings in this section are decoded from SVE2 Accumulate.

C4.1.71.4 SVE2 bitwise shift right and accumulate

This section describes the encoding of the SVE2 bitwise shift right and accumulate instruction class. The encodings
in this section are decoded from SVE2 Accumulate.

Decode fields
Instruction page

U T

0 0 SABALB

0 1 SABALT

1 0 UABALB

1 1 UABALT

Decode fields
Instruction page

size T

0x 0 ADCLB

0x 1 ADCLT

1x 0 SBCLB

1x 1 SBCLT

0 1 0 0 0 1 0 1 size 0 Zm 1 1 0 0 U T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 1 size 0 Zm 1 1 0 1 0 T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-688
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.71.5 SVE2 bitwise shift and insert

This section describes the encoding of the SVE2 bitwise shift and insert instruction class. The encodings in this
section are decoded from SVE2 Accumulate.

C4.1.71.6 SVE2 integer absolute difference and accumulate

This section describes the encoding of the SVE2 integer absolute difference and accumulate instruction class. The
encodings in this section are decoded from SVE2 Accumulate.

Decode fields
Instruction page

R U

0 0 SSRA

0 1 USRA

1 0 SRSRA

1 1 URSRA

Decode fields
Instruction page

op

0 SRI

1 SLI

Decode fields
Instruction page

U

0 SABA

1 UABA

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 0 R U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 1 0 op Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

0 1 0 0 0 1 0 1 size 0 Zm 1 1 1 1 1 U Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-689
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.72 SVE2 Narrowing

This section describes the encoding of the SVE2 Narrowing group. The encodings in this section are decoded from
SVE encodings.

C4.1.72.1 SVE2 saturating extract narrow

This section describes the encoding of the SVE2 saturating extract narrow instruction class. The encodings in this
section are decoded from SVE2 Narrowing.

Table C4-73 Encoding table for the SVE2 Narrowing group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0 00 0 10 - - SVE2 saturating extract narrow

 0 00 1 10 0 0 SME2 multi-vec extract narrow

 0 00 1 10 0 1 Unallocated.

 0 00 1 10 1 - Unallocated.

 0 != 00 - 10 - - Unallocated.

 0 - - 0x - - SVE2 bitwise shift right narrow

 1 - - 0x 0 0 SME2 multi-vec shift narrow

 1 - - 0x 0 1 Unallocated.

 1 - - 0x 1 - Unallocated.

 1 - - 10 - - Unallocated.

 - - - 11 - - SVE2 integer add/subtract narrow high part

Decode fields
Instruction page

opc T

00 0 SQXTNB

00 1 SQXTNT

01 0 UQXTNB

01000101 1 op1 0 op3

31 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

op0

op2

op5

op4

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 opc T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-690
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.72.2 SME2 multi-vec extract narrow

This section describes the encoding of the SME2 multi-vec extract narrow instruction class. The encodings in this
section are decoded from SVE2 Narrowing.

C4.1.72.3 SVE2 bitwise shift right narrow

This section describes the encoding of the SVE2 bitwise shift right narrow instruction class. The encodings in this
section are decoded from SVE2 Narrowing.

01 1 UQXTNT

10 0 SQXTUNB

10 1 SQXTUNT

11 - Unallocated.

Decode fields
Instruction page Feature

tszh tszl opc

0 0x - Unallocated. -

0 10 00 SQCVTN FEAT_SVE2p1

0 10 01 UQCVTN FEAT_SVE2p1

0 10 10 SQCVTUN FEAT_SVE2p1

0 10 11 Unallocated. -

0 11 - Unallocated. -

1 - - Unallocated. -

Decode fields
Instruction page

opc T

0 1 0 0 0 1 0 1 0 1 tszl 0 0 1 0 1 0 opc 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-691
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.72.4 SME2 multi-vec shift narrow

This section describes the encoding of the SME2 multi-vec shift narrow instruction class. The encodings in this
section are decoded from SVE2 Narrowing.

Decode fields
Instruction page

op U R T

0 0 0 0 SQSHRUNB

0 0 0 1 SQSHRUNT

0 0 1 0 SQRSHRUNB

0 0 1 1 SQRSHRUNT

0 1 0 0 SHRNB

0 1 0 1 SHRNT

0 1 1 0 RSHRNB

0 1 1 1 RSHRNT

1 0 0 0 SQSHRNB

1 0 0 1 SQSHRNT

1 0 1 0 SQRSHRNB

1 0 1 1 SQRSHRNT

1 1 0 0 UQSHRNB

1 1 0 1 UQSHRNT

1 1 1 0 UQRSHRNB

1 1 1 1 UQRSHRNT

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 op U R T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-692
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.72.5 SVE2 integer add/subtract narrow high part

This section describes the encoding of the SVE2 integer add/subtract narrow high part instruction class. The
encodings in this section are decoded from SVE2 Narrowing.

Decode fields
Instruction page Feature

tszh tszl op U R

0 0 - - - Unallocated. -

0 1 0 0 0 Unallocated. -

0 1 0 0 1 SQRSHRUN FEAT_SVE2p1

0 1 0 1 - Unallocated. -

0 1 1 - 0 Unallocated. -

0 1 1 0 1 SQRSHRN FEAT_SVE2p1

0 1 1 1 1 UQRSHRN FEAT_SVE2p1

1 - - - - Unallocated. -

Decode fields
Instruction page

S R T

0 0 0 ADDHNB

0 0 1 ADDHNT

0 1 0 RADDHNB

0 1 1 RADDHNT

1 0 0 SUBHNB

1 0 1 SUBHNT

1 1 0 RSUBHNB

1 1 1 RSUBHNT

0 1 0 0 0 1 0 1 1 1 imm4 0 0 op U R 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

tszh

tszl

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 S R T Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-693
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.73 SVE2 Histogram Computation (Segment) and Lookup Table

This section describes the encoding of the SVE2 Histogram Computation (Segment) and Lookup Table group. The
encodings in this section are decoded from SVE encodings.

C4.1.74 SVE2 Crypto Extensions

This section describes the encoding of the SVE2 Crypto Extensions group. The encodings in this section are
decoded from SVE encodings.

C4.1.74.1 SVE2 crypto unary operations

This section describes the encoding of the SVE2 crypto unary operations instruction class. The encodings in this
section are decoded from SVE2 Crypto Extensions.

Table C4-74 Encoding table for the SVE2 Histogram Computation (Segment) and Lookup Table
group

Decode fields
Decode group or instruction page

op0

 000 HISTSEG

 != 000 Unallocated.

01000101 1 101 op0

31 24 23 22 21 20 16 15 13 12 10 9 0

Table C4-75 Encoding table for the SVE2 Crypto Extensions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 000 00 00 00000 SVE2 crypto unary operations

 000 00 00 != 00000 Unallocated.

 000 00 x1 - Unallocated.

 000 01 0x - Unallocated.

 000 01 11 - Unallocated.

 000 1x 00 - SVE2 crypto destructive binary operations

 000 1x x1 - Unallocated.

 != 000 - 0x - Unallocated.

 != 000 - 11 - Unallocated.

 - - 10 - SVE2 crypto constructive binary operations

01000101 1 op0 op1 111 op2 op3

31 24 23 22 21 20 18 17 16 15 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-694
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.74.2 SVE2 crypto destructive binary operations

This section describes the encoding of the SVE2 crypto destructive binary operations instruction class. The
encodings in this section are decoded from SVE2 Crypto Extensions.

C4.1.74.3 SVE2 crypto constructive binary operations

This section describes the encoding of the SVE2 crypto constructive binary operations instruction class. The
encodings in this section are decoded from SVE2 Crypto Extensions.

Decode fields
Instruction page Feature

size op

00 0 AESMC FEAT_SVE_AES

00 1 AESIMC FEAT_SVE_AES

01 - Unallocated. -

1x - Unallocated. -

Decode fields
Instruction page Feature

size op o2

00 0 0 AESE FEAT_SVE_AES

00 0 1 AESD FEAT_SVE_AES

00 1 0 SM4E FEAT_SVE_SM4

00 1 1 Unallocated. -

01 - - Unallocated. -

1x - - Unallocated. -

0 1 0 0 0 1 0 1 size 1 0 0 0 0 0 1 1 1 0 0 op 0 0 0 0 0 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

0 1 0 0 0 1 0 1 size 1 0 0 0 1 op 1 1 1 0 0 o2 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-695
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.75 SVE Floating Point Widening Multiply-Add - Indexed

This section describes the encoding of the SVE Floating Point Widening Multiply-Add - Indexed group. The
encodings in this section are decoded from SVE encodings.

C4.1.75.1 SVE BFloat16 floating-point dot product (indexed)

This section describes the encoding of the SVE BFloat16 floating-point dot product (indexed) instruction class. The
encodings in this section are decoded from SVE Floating Point Widening Multiply-Add - Indexed.

Decode fields
Instruction page Feature

size op

00 0 SM4EKEY FEAT_SVE_SM4

00 1 RAX1 FEAT_SVE_SHA3

01 - Unallocated. -

1x - Unallocated. -

0 1 0 0 0 1 0 1 size 1 Zm 1 1 1 1 0 op Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Table C4-76 Encoding table for the SVE Floating Point Widening Multiply-Add - Indexed group

Decode fields
Decode group or instruction page

op0 op1

 0 0 SVE BFloat16 floating-point dot product (indexed)

 0 1 Unallocated.

 1 - SVE floating-point multiply-add long (indexed)

01100100 1 01 0

31 24 23 22 21 20 16 15 14 13 12 11 0

op0 op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-696
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.75.2 SVE floating-point multiply-add long (indexed)

This section describes the encoding of the SVE floating-point multiply-add long (indexed) instruction class. The
encodings in this section are decoded from SVE Floating Point Widening Multiply-Add - Indexed.

C4.1.76 SVE Floating Point Widening Multiply-Add

This section describes the encoding of the SVE Floating Point Widening Multiply-Add group. The encodings in this
section are decoded from SVE encodings.

Decode fields
Instruction page Feature

op opc2

- 01 Unallocated. -

- 1x Unallocated. -

0 00 FDOT (indexed) FEAT_SVE2p1

1 00 BFDOT (indexed) FEAT_BF16

Decode fields
Instruction page Feature

o2 op T

0 0 0 FMLALB (indexed) -

0 0 1 FMLALT (indexed) -

0 1 0 FMLSLB (indexed) -

0 1 1 FMLSLT (indexed) -

1 0 0 BFMLALB (indexed) FEAT_BF16

1 0 1 BFMLALT (indexed) FEAT_BF16

1 1 0 BFMLSLB (indexed) FEAT_SVE2p1

1 1 1 BFMLSLT (indexed) FEAT_SVE2p1

0 1 1 0 0 1 0 0 0 op 1 i2 Zm 0 1 0 0 opc2 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

0 1 1 0 0 1 0 0 1 o2 1 i3h Zm 0 1 op 0 i3l T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-697
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.76.1 SVE BFloat16 floating-point dot product

This section describes the encoding of the SVE BFloat16 floating-point dot product instruction class. The encodings
in this section are decoded from SVE Floating Point Widening Multiply-Add.

C4.1.76.2 SVE floating-point multiply-add long

This section describes the encoding of the SVE floating-point multiply-add long instruction class. The encodings in
this section are decoded from SVE Floating Point Widening Multiply-Add.

Table C4-77 Encoding table for the SVE Floating Point Widening Multiply-Add group

Decode fields
Decode group or instruction page

op0 op1

 0 0 SVE BFloat16 floating-point dot product

 0 1 Unallocated.

 1 - SVE floating-point multiply-add long

Decode fields
Instruction page Feature

op o2

- 1 Unallocated. -

0 0 FDOT (vectors) FEAT_SVE2p1

1 0 BFDOT (vectors) FEAT_BF16

Decode fields
Instruction page Feature

o2 op T

0 0 0 FMLALB (vectors) -

0 0 1 FMLALT (vectors) -

0 1 0 FMLSLB (vectors) -

01100100 1 10 00

31 24 23 22 21 20 16 15 14 13 12 11 10 0

op0 op1

0 1 1 0 0 1 0 0 0 op 1 Zm 1 0 0 0 0 o2 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 0 0 1 0 0 1 o2 1 Zm 1 0 op 0 0 T Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-698
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.77 SVE Floating Point Arithmetic - Predicated

This section describes the encoding of the SVE Floating Point Arithmetic - Predicated group. The encodings in this
section are decoded from SVE encodings.

C4.1.77.1 SVE floating-point arithmetic (predicated)

This section describes the encoding of the SVE floating-point arithmetic (predicated) instruction class. The
encodings in this section are decoded from SVE Floating Point Arithmetic - Predicated.

0 1 1 FMLSLT (vectors) -

1 0 0 BFMLALB (vectors) FEAT_BF16

1 0 1 BFMLALT (vectors) FEAT_BF16

1 1 0 BFMLSLB (vectors) FEAT_SVE2p1

1 1 1 BFMLSLT (vectors) FEAT_SVE2p1

Decode fields
Instruction page Feature

o2 op T

Table C4-78 Encoding table for the SVE Floating Point Arithmetic - Predicated group

Decode fields
Decode group or instruction page

op0 op1 op2

 0x - - SVE floating-point arithmetic (predicated)

 10 000 - FTMAD

 10 != 000 - Unallocated.

 11 - 0000 SVE floating-point arithmetic with immediate (predicated)

 11 - != 0000 Unallocated.

Decode fields
Instruction page Feature

size opc

- 0011 FSUBR (vectors) -

- 1000 FABD -

- 1001 FSCALE -

01100101 0 op0 100 op1 op2

31 24 23 22 21 20 19 18 16 15 13 12 10 9 6 5 0

0 1 1 0 0 1 0 1 size 0 0 opc 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-699
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.77.2 SVE floating-point arithmetic with immediate (predicated)

This section describes the encoding of the SVE floating-point arithmetic with immediate (predicated) instruction
class. The encodings in this section are decoded from SVE Floating Point Arithmetic - Predicated.

- 1010 FMULX -

- 1011 Unallocated. -

- 1100 FDIVR -

- 1101 FDIV -

- 111x Unallocated. -

!= 00 0000 FADD (vectors, predicated) -

!= 00 0001 FSUB (vectors, predicated) -

!= 00 0010 FMUL (vectors, predicated) -

!= 00 0100 FMAXNM (vectors) -

!= 00 0101 FMINNM (vectors) -

!= 00 0110 FMAX (vectors) -

!= 00 0111 FMIN (vectors) -

00 0000 BFADD (predicated) FEAT_SVE_B16B16

00 0001 BFSUB (predicated) FEAT_SVE_B16B16

00 0010 BFMUL (vectors, predicated) FEAT_SVE_B16B16

00 0100 BFMAXNM FEAT_SVE_B16B16

00 0101 BFMINNM FEAT_SVE_B16B16

00 0110 BFMAX FEAT_SVE_B16B16

00 0111 BFMIN FEAT_SVE_B16B16

Decode fields
Instruction page

opc

000 FADD (immediate)

001 FSUB (immediate)

010 FMUL (immediate)

011 FSUBR (immediate)

Decode fields
Instruction page Feature

size opc

0 1 1 0 0 1 0 1 size 0 1 1 opc 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-700
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.78 SVE Floating Point Unary Operations - Predicated

This section describes the encoding of the SVE Floating Point Unary Operations - Predicated group. The encodings
in this section are decoded from SVE encodings.

C4.1.78.1 SVE floating-point round to integral value

This section describes the encoding of the SVE floating-point round to integral value instruction class. The
encodings in this section are decoded from SVE Floating Point Unary Operations - Predicated.

100 FMAXNM (immediate)

101 FMINNM (immediate)

110 FMAX (immediate)

111 FMIN (immediate)

Decode fields
Instruction page

opc

Table C4-79 Encoding table for the SVE Floating Point Unary Operations - Predicated group

Decode fields
Decode group or instruction page

op0

 00x SVE floating-point round to integral value

 010 SVE floating-point convert precision

 011 SVE floating-point unary operations

 10x SVE integer convert to floating-point

 11x SVE floating-point convert to integer

Decode fields
Instruction page

opc

000 FRINT<r> - Encoding

001 FRINT<r> - Encoding

010 FRINT<r> - Encoding

011 FRINT<r> - Encoding

01100101 0 op0 101

31 24 23 22 21 20 18 17 16 15 13 12 0

0 1 1 0 0 1 0 1 size 0 0 0 opc 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-701
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.78.2 SVE floating-point convert precision

This section describes the encoding of the SVE floating-point convert precision instruction class. The encodings in
this section are decoded from SVE Floating Point Unary Operations - Predicated.

C4.1.78.3 SVE floating-point unary operations

This section describes the encoding of the SVE floating-point unary operations instruction class. The encodings in
this section are decoded from SVE Floating Point Unary Operations - Predicated.

100 FRINT<r> - Encoding

101 Unallocated.

110 FRINT<r> - Encoding

111 FRINT<r> - Encoding

Decode fields
Instruction page Feature

opc opc2

x0 11 Unallocated. -

00 0x Unallocated. -

00 10 FCVTX -

01 - Unallocated. -

10 00 FCVT - Encoding -

10 01 FCVT - Encoding -

10 10 BFCVT FEAT_BF16

11 00 FCVT - Encoding -

11 01 FCVT - Encoding -

11 10 FCVT - Encoding -

11 11 FCVT - Encoding -

Decode fields
Instruction page

opc

0 1 1 0 0 1 0 1 opc 0 0 1 0 opc2 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-702
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.78.4 SVE integer convert to floating-point

This section describes the encoding of the SVE integer convert to floating-point instruction class. The encodings in
this section are decoded from SVE Floating Point Unary Operations - Predicated.

Decode fields
Instruction page

opc

00 FRECPX

01 FSQRT

1x Unallocated.

Decode fields
Instruction page

opc opc2 U

00 - - Unallocated.

01 00 - Unallocated.

01 01 0 SCVTF - Encoding

01 01 1 UCVTF - Encoding

01 10 0 SCVTF - Encoding

01 10 1 UCVTF - Encoding

01 11 0 SCVTF - Encoding

01 11 1 UCVTF - Encoding

10 0x - Unallocated.

10 10 0 SCVTF - Encoding

10 10 1 UCVTF - Encoding

10 11 - Unallocated.

11 00 0 SCVTF - Encoding

11 00 1 UCVTF - Encoding

11 01 - Unallocated.

11 10 0 SCVTF - Encoding

0 1 1 0 0 1 0 1 size 0 0 1 1 opc 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 opc 0 1 0 opc2 U 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-703
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.78.5 SVE floating-point convert to integer

This section describes the encoding of the SVE floating-point convert to integer instruction class. The encodings in
this section are decoded from SVE Floating Point Unary Operations - Predicated.

11 10 1 UCVTF - Encoding

11 11 0 SCVTF - Encoding

11 11 1 UCVTF - Encoding

Decode fields
Instruction page

opc opc2 U

00 - 0 FLOGB

00 - 1 Unallocated.

01 00 - Unallocated.

01 01 0 FCVTZS - Encoding

01 01 1 FCVTZU - Encoding

01 10 0 FCVTZS - Encoding

01 10 1 FCVTZU - Encoding

01 11 0 FCVTZS - Encoding

01 11 1 FCVTZU - Encoding

10 0x - Unallocated.

10 10 0 FCVTZS - Encoding

10 10 1 FCVTZU - Encoding

10 11 - Unallocated.

11 00 0 FCVTZS - Encoding

11 00 1 FCVTZU - Encoding

11 01 - Unallocated.

11 10 0 FCVTZS - Encoding

11 10 1 FCVTZU - Encoding

11 11 0 FCVTZS - Encoding

11 11 1 FCVTZU - Encoding

Decode fields
Instruction page

opc opc2 U

0 1 1 0 0 1 0 1 opc 0 1 1 opc2 U 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-704
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.79 SVE Floating Point Unary Operations - Unpredicated

This section describes the encoding of the SVE Floating Point Unary Operations - Unpredicated group. The
encodings in this section are decoded from SVE encodings.

C4.1.79.1 SVE floating-point reciprocal estimate (unpredicated)

This section describes the encoding of the SVE floating-point reciprocal estimate (unpredicated) instruction class.
The encodings in this section are decoded from SVE Floating Point Unary Operations - Unpredicated.

C4.1.80 SVE Floating Point Compare - with Zero

This section describes the encoding of the SVE Floating Point Compare - with Zero group. The encodings in this
section are decoded from SVE encodings.

Table C4-80 Encoding table for the SVE Floating Point Unary Operations - Unpredicated group

Decode fields
Decode group or instruction page

op0 op1

 0x - Unallocated.

 10 - Unallocated.

 11 00 SVE floating-point reciprocal estimate (unpredicated)

 11 != 00 Unallocated.

Decode fields
Instruction page

op

0 FRECPE

1 FRSQRTE

01100101 001 op0 0011 op1

31 24 23 22 21 19 18 17 16 15 12 11 10 9 0

0 1 1 0 0 1 0 1 size 0 0 1 1 1 op 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-705
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.80.1 SVE floating-point compare with zero

This section describes the encoding of the SVE floating-point compare with zero instruction class. The encodings
in this section are decoded from SVE Floating Point Compare - with Zero.

C4.1.81 SVE Floating Point Accumulating Reduction

This section describes the encoding of the SVE Floating Point Accumulating Reduction group. The encodings in
this section are decoded from SVE encodings.

Table C4-81 Encoding table for the SVE Floating Point Compare - with Zero group

Decode fields
Decode group or instruction page

op0

 0 SVE floating-point compare with zero

 1 Unallocated.

Decode fields
Instruction page

eq lt ne

0 0 0 FCM<cc> (zero) - Encoding

0 0 1 FCM<cc> (zero) - Encoding

0 1 0 FCM<cc> (zero) - Encoding

0 1 1 FCM<cc> (zero) - Encoding

1 - 1 Unallocated.

1 0 0 FCM<cc> (zero) - Encoding

1 1 0 FCM<cc> (zero) - Encoding

01100101 010 001

31 24 23 22 21 19 18 17 16 15 13 12 0

op0

0 1 1 0 0 1 0 1 size 0 1 0 0 eq lt 0 0 1 Pg Zn ne Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-706
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.81.1 SVE floating-point serial reduction (predicated)

This section describes the encoding of the SVE floating-point serial reduction (predicated) instruction class. The
encodings in this section are decoded from SVE Floating Point Accumulating Reduction.

C4.1.82 SVE Floating Point Multiply-Add

This section describes the encoding of the SVE Floating Point Multiply-Add group. The encodings in this section
are decoded from SVE encodings.

Table C4-82 Encoding table for the SVE Floating Point Accumulating Reduction group

Decode fields
Decode group or instruction page

op0

 0 SVE floating-point serial reduction (predicated)

 1 Unallocated.

Decode fields
Instruction page

opc

00 FADDA

01 Unallocated.

1x Unallocated.

01100101 011 001

31 24 23 22 21 19 18 17 16 15 13 12 0

op0

0 1 1 0 0 1 0 1 size 0 1 1 0 opc 0 0 1 Pg Zm Vdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Table C4-83 Encoding table for the SVE Floating Point Multiply-Add group

Decode fields
Decode group or instruction page

op0

 0 SVE floating-point multiply-accumulate writing addend

 1 SVE floating-point multiply-accumulate writing multiplicand

01100101 1

31 24 23 22 21 20 16 15 14 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-707
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.82.1 SVE floating-point multiply-accumulate writing addend

This section describes the encoding of the SVE floating-point multiply-accumulate writing addend instruction class.
The encodings in this section are decoded from SVE Floating Point Multiply-Add.

C4.1.82.2 SVE floating-point multiply-accumulate writing multiplicand

This section describes the encoding of the SVE floating-point multiply-accumulate writing multiplicand instruction
class. The encodings in this section are decoded from SVE Floating Point Multiply-Add.

C4.1.83 SVE Memory - 32-bit Gather and Unsized Contiguous

This section describes the encoding of the SVE Memory - 32-bit Gather and Unsized Contiguous group. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page Feature

size opc

- 10 FNMLA -

- 11 FNMLS -

!= 00 00 FMLA (vectors) -

!= 00 01 FMLS (vectors) -

00 00 BFMLA (vectors) FEAT_SVE_B16B16

00 01 BFMLS (vectors) FEAT_SVE_B16B16

Decode fields
Instruction page

opc

00 FMAD

01 FMSB

10 FNMAD

11 FNMSB

0 1 1 0 0 1 0 1 size 1 Zm 0 opc Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 size 1 Za 1 opc Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-708
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.83.1 SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets)

This section describes the encoding of the SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

1000010 op0 op1 op2

31 25 24 23 22 21 20 16 15 13 12 5 4 3 0

op3

Table C4-84 Encoding table for the SVE Memory - 32-bit Gather and Unsized Contiguous group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 00 x1 0xx 0 SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets)

 00 x1 0xx 1 Unallocated.

 01 x1 0xx - SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)

 10 x1 0xx - SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)

 11 0x 000 0 LDR (predicate)

 11 0x 000 1 Unallocated.

 11 0x 010 - LDR (vector)

 11 0x 0x1 - Unallocated.

 11 1x 0xx 0 SVE contiguous prefetch (scalar plus immediate)

 11 1x 0xx 1 Unallocated.

 != 11 x0 0xx - SVE 32-bit gather load (scalar plus 32-bit unscaled offsets)

 - 00 10x - SVE2 32-bit gather non-temporal load (vector plus scalar)

 - 00 110 0 SVE contiguous prefetch (scalar plus scalar)

 - 00 111 0 SVE 32-bit gather prefetch (vector plus immediate)

 - 00 11x 1 Unallocated.

 - 01 1xx - SVE 32-bit gather load (vector plus immediate)

 - 1x 1xx - SVE load and broadcast element
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-709
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.83.2 SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)

This section describes the encoding of the SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized
Contiguous.

C4.1.83.3 SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)

This section describes the encoding of the SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized
Contiguous.

Decode fields
Instruction page

msz

00 PRFB (scalar plus vector)

01 PRFH (scalar plus vector)

10 PRFW (scalar plus vector)

11 PRFD (scalar plus vector)

Decode fields
Instruction page

U ff

0 0 LD1SH (scalar plus vector)

0 1 LDFF1SH (scalar plus vector)

1 0 LD1H (scalar plus vector)

1 1 LDFF1H (scalar plus vector)

1 0 0 0 0 1 0 0 0 xs 1 Zm 0 msz Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

1 0 0 0 0 1 0 0 1 xs 1 Zm 0 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-710
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.83.4 SVE contiguous prefetch (scalar plus immediate)

This section describes the encoding of the SVE contiguous prefetch (scalar plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

C4.1.83.5 SVE 32-bit gather load (scalar plus 32-bit unscaled offsets)

This section describes the encoding of the SVE 32-bit gather load (scalar plus 32-bit unscaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

Decode fields
Instruction page

U ff

0 - Unallocated.

1 0 LD1W (scalar plus vector)

1 1 LDFF1W (scalar plus vector)

Decode fields
Instruction page

msz

00 PRFB (scalar plus immediate)

01 PRFH (scalar plus immediate)

10 PRFW (scalar plus immediate)

11 PRFD (scalar plus immediate)

Decode fields
Instruction page

opc U ff

00 0 0 LD1SB (scalar plus vector)

00 0 1 LDFF1SB (scalar plus vector)

00 1 0 LD1B (scalar plus vector)

1 0 0 0 0 1 0 1 0 xs 1 Zm 0 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 0 0 0 0 1 0 1 1 1 imm6 0 msz Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0

1 0 0 0 0 1 0 !=11 xs 0 Zm 0 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-711
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.83.6 SVE2 32-bit gather non-temporal load (vector plus scalar)

This section describes the encoding of the SVE2 32-bit gather non-temporal load (vector plus scalar) instruction
class. The encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

C4.1.83.7 SVE contiguous prefetch (scalar plus scalar)

This section describes the encoding of the SVE contiguous prefetch (scalar plus scalar) instruction class. The
encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

00 1 1 LDFF1B (scalar plus vector)

01 0 0 LD1SH (scalar plus vector)

01 0 1 LDFF1SH (scalar plus vector)

01 1 0 LD1H (scalar plus vector)

01 1 1 LDFF1H (scalar plus vector)

10 0 - Unallocated.

10 1 0 LD1W (scalar plus vector)

10 1 1 LDFF1W (scalar plus vector)

Decode fields
Instruction page

msz U

00 0 LDNT1SB

00 1 LDNT1B (vector plus scalar)

01 0 LDNT1SH

01 1 LDNT1H (vector plus scalar)

10 0 Unallocated.

10 1 LDNT1W (vector plus scalar)

11 - Unallocated.

Decode fields
Instruction page

opc U ff

1 0 0 0 0 1 0 msz 0 0 Rm 1 0 U Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-712
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.83.8 SVE 32-bit gather prefetch (vector plus immediate)

This section describes the encoding of the SVE 32-bit gather prefetch (vector plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

C4.1.83.9 SVE 32-bit gather load (vector plus immediate)

This section describes the encoding of the SVE 32-bit gather load (vector plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

Decode fields
Instruction page

msz

00 PRFB (scalar plus scalar)

01 PRFH (scalar plus scalar)

10 PRFW (scalar plus scalar)

11 PRFD (scalar plus scalar)

Decode fields
Instruction page

msz

00 PRFB (vector plus immediate)

01 PRFH (vector plus immediate)

10 PRFW (vector plus immediate)

11 PRFD (vector plus immediate)

1 0 0 0 0 1 0 msz 0 0 Rm 1 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

1 0 0 0 0 1 0 msz 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-713
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.83.10 SVE load and broadcast element

This section describes the encoding of the SVE load and broadcast element instruction class. The encodings in this
section are decoded from SVE Memory - 32-bit Gather and Unsized Contiguous.

Decode fields
Instruction page

msz U ff

00 0 0 LD1SB (vector plus immediate)

00 0 1 LDFF1SB (vector plus immediate)

00 1 0 LD1B (vector plus immediate)

00 1 1 LDFF1B (vector plus immediate)

01 0 0 LD1SH (vector plus immediate)

01 0 1 LDFF1SH (vector plus immediate)

01 1 0 LD1H (vector plus immediate)

01 1 1 LDFF1H (vector plus immediate)

10 0 - Unallocated.

10 1 0 LD1W (vector plus immediate)

10 1 1 LDFF1W (vector plus immediate)

11 - - Unallocated.

Decode fields
Instruction page

dtypeh dtypel

00 00 LD1RB - Encoding

00 01 LD1RB - Encoding

00 10 LD1RB - Encoding

00 11 LD1RB - Encoding

01 00 LD1RSW

01 01 LD1RH - Encoding

01 10 LD1RH - Encoding

1 0 0 0 0 1 0 msz 0 1 imm5 1 U ff Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 0 0 0 0 1 0 1 imm6 1 dtypel Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-714
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84 SVE Memory - Contiguous Load

This section describes the encoding of the SVE Memory - Contiguous Load group. The encodings in this section
are decoded from SVE encodings.

01 11 LD1RH - Encoding

10 00 LD1RSH - Encoding

10 01 LD1RSH - Encoding

10 10 LD1RW - Encoding

10 11 LD1RW - Encoding

11 00 LD1RSB - Encoding

11 01 LD1RSB - Encoding

11 10 LD1RSB - Encoding

11 11 LD1RD

Decode fields
Instruction page

dtypeh dtypel

Table C4-85 Encoding table for the SVE Memory - Contiguous Load group

Decode fields
Decode group or instruction page

op0 op1 op2

 00 0 111 SVE contiguous non-temporal load (scalar plus immediate)

 00 1 001 SVE contiguous load (quadwords, scalar plus immediate)

 00 1 111 SVE load multiple structures (quadwords, scalar plus immediate)

 00 - 100 SVE contiguous load (quadwords, scalar plus scalar)

 00 - 110 SVE contiguous non-temporal load (scalar plus scalar)

 01 - 100 SVE load multiple structures (quadwords, scalar plus scalar)

 1x - 100 Unallocated.

 != 00 0 111 SVE load multiple structures (scalar plus immediate)

 != 00 1 001 Unallocated.

 != 00 1 111 Unallocated.

 != 00 - 110 SVE load multiple structures (scalar plus scalar)

 - 0 001 SVE load and broadcast quadword (scalar plus immediate)

1010010 op0 op2

31 25 24 23 22 21 20 19 16 15 13 12 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-715
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.1 SVE contiguous non-temporal load (scalar plus immediate)

This section describes the encoding of the SVE contiguous non-temporal load (scalar plus immediate) instruction
class. The encodings in this section are decoded from SVE Memory - Contiguous Load.

C4.1.84.2 SVE contiguous load (quadwords, scalar plus immediate)

This section describes the encoding of the SVE contiguous load (quadwords, scalar plus immediate) instruction
class. The encodings in this section are decoded from SVE Memory - Contiguous Load.

 - 0 101 SVE contiguous load (scalar plus immediate)

 - 1 101 SVE contiguous non-fault load (scalar plus immediate)

 - - 000 SVE load and broadcast quadword (scalar plus scalar)

 - - 010 SVE contiguous load (scalar plus scalar)

 - - 011 SVE contiguous first-fault load (scalar plus scalar)

Decode fields
Instruction page

msz

00 LDNT1B (scalar plus immediate, single register)

01 LDNT1H (scalar plus immediate, single register)

10 LDNT1W (scalar plus immediate, single register)

11 LDNT1D (scalar plus immediate, single register)

Decode fields
Instruction page Feature

dtype

0x Unallocated. -

10 LD1W (scalar plus immediate, single register) FEAT_SVE2p1

11 LD1D (scalar plus immediate, single register) FEAT_SVE2p1

Table C4-85 Encoding table for the SVE Memory - Contiguous Load group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2

1 0 1 0 0 1 0 msz 0 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

1 0 1 0 0 1 0 dtype 0 0 1 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-716
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.3 SVE load multiple structures (quadwords, scalar plus immediate)

This section describes the encoding of the SVE load multiple structures (quadwords, scalar plus immediate)
instruction class. The encodings in this section are decoded from SVE Memory - Contiguous Load.

C4.1.84.4 SVE contiguous load (quadwords, scalar plus scalar)

This section describes the encoding of the SVE contiguous load (quadwords, scalar plus scalar) instruction class.
The encodings in this section are decoded from SVE Memory - Contiguous Load.

C4.1.84.5 SVE contiguous non-temporal load (scalar plus scalar)

This section describes the encoding of the SVE contiguous non-temporal load (scalar plus scalar) instruction class.
The encodings in this section are decoded from SVE Memory - Contiguous Load.

Decode fields
Instruction page Feature

num

00 Unallocated. -

01 LD2Q (scalar plus immediate) FEAT_SVE2p1

10 LD3Q (scalar plus immediate) FEAT_SVE2p1

11 LD4Q (scalar plus immediate) FEAT_SVE2p1

Decode fields
Instruction page Feature

dtype

0x Unallocated. -

10 LD1W (scalar plus scalar, single register) FEAT_SVE2p1

11 LD1D (scalar plus scalar, single register) FEAT_SVE2p1

1 0 1 0 0 1 0 num 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

1 0 1 0 0 1 0 dtype 0 0 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-717
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.6 SVE load multiple structures (quadwords, scalar plus scalar)

This section describes the encoding of the SVE load multiple structures (quadwords, scalar plus scalar) instruction
class. The encodings in this section are decoded from SVE Memory - Contiguous Load.

C4.1.84.7 SVE load multiple structures (scalar plus immediate)

This section describes the encoding of the SVE load multiple structures (scalar plus immediate) instruction class.
The encodings in this section are decoded from SVE Memory - Contiguous Load.

Decode fields
Instruction page

msz

00 LDNT1B (scalar plus scalar, single register)

01 LDNT1H (scalar plus scalar, single register)

10 LDNT1W (scalar plus scalar, single register)

11 LDNT1D (scalar plus scalar, single register)

Decode fields
Instruction page Feature

num

00 Unallocated. -

01 LD2Q (scalar plus scalar) FEAT_SVE2p1

10 LD3Q (scalar plus scalar) FEAT_SVE2p1

11 LD4Q (scalar plus scalar) FEAT_SVE2p1

1 0 1 0 0 1 0 msz 0 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 0 1 0 0 1 0 num 0 1 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-718
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.8 SVE load multiple structures (scalar plus scalar)

This section describes the encoding of the SVE load multiple structures (scalar plus scalar) instruction class. The
encodings in this section are decoded from SVE Memory - Contiguous Load.

Decode fields
Instruction page

msz opc

00 01 LD2B (scalar plus immediate)

00 10 LD3B (scalar plus immediate)

00 11 LD4B (scalar plus immediate)

01 01 LD2H (scalar plus immediate)

01 10 LD3H (scalar plus immediate)

01 11 LD4H (scalar plus immediate)

10 01 LD2W (scalar plus immediate)

10 10 LD3W (scalar plus immediate)

10 11 LD4W (scalar plus immediate)

11 01 LD2D (scalar plus immediate)

11 10 LD3D (scalar plus immediate)

11 11 LD4D (scalar plus immediate)

Decode fields
Instruction page

msz opc

00 01 LD2B (scalar plus scalar)

00 10 LD3B (scalar plus scalar)

00 11 LD4B (scalar plus scalar)

01 01 LD2H (scalar plus scalar)

01 10 LD3H (scalar plus scalar)

01 11 LD4H (scalar plus scalar)

10 01 LD2W (scalar plus scalar)

1 0 1 0 0 1 0 msz !=00 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

opc

1 0 1 0 0 1 0 msz !=00 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-719
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.9 SVE load and broadcast quadword (scalar plus immediate)

This section describes the encoding of the SVE load and broadcast quadword (scalar plus immediate) instruction
class. The encodings in this section are decoded from SVE Memory - Contiguous Load.

C4.1.84.10 SVE contiguous load (scalar plus immediate)

This section describes the encoding of the SVE contiguous load (scalar plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - Contiguous Load.

10 10 LD3W (scalar plus scalar)

10 11 LD4W (scalar plus scalar)

11 01 LD2D (scalar plus scalar)

11 10 LD3D (scalar plus scalar)

11 11 LD4D (scalar plus scalar)

Decode fields
Instruction page Feature

msz ssz

- 1x Unallocated. -

00 00 LD1RQB (scalar plus immediate) -

00 01 LD1ROB (scalar plus immediate) FEAT_F64MM

01 00 LD1RQH (scalar plus immediate) -

01 01 LD1ROH (scalar plus immediate) FEAT_F64MM

10 00 LD1RQW (scalar plus immediate) -

10 01 LD1ROW (scalar plus immediate) FEAT_F64MM

11 00 LD1RQD (scalar plus immediate) -

11 01 LD1ROD (scalar plus immediate) FEAT_F64MM

Decode fields
Instruction page

msz opc

1 0 1 0 0 1 0 msz ssz 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-720
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.11 SVE contiguous non-fault load (scalar plus immediate)

This section describes the encoding of the SVE contiguous non-fault load (scalar plus immediate) instruction class.
The encodings in this section are decoded from SVE Memory - Contiguous Load.

Decode fields
Instruction page

dtype

0000 LD1B (scalar plus immediate, single register) - Encoding

0001 LD1B (scalar plus immediate, single register) - Encoding

0010 LD1B (scalar plus immediate, single register) - Encoding

0011 LD1B (scalar plus immediate, single register) - Encoding

0100 LD1SW (scalar plus immediate)

0101 LD1H (scalar plus immediate, single register) - Encoding

0110 LD1H (scalar plus immediate, single register) - Encoding

0111 LD1H (scalar plus immediate, single register) - Encoding

1000 LD1SH (scalar plus immediate) - Encoding

1001 LD1SH (scalar plus immediate) - Encoding

1010 LD1W (scalar plus immediate, single register) - Encoding

1011 LD1W (scalar plus immediate, single register) - Encoding

1100 LD1SB (scalar plus immediate) - Encoding

1101 LD1SB (scalar plus immediate) - Encoding

1110 LD1SB (scalar plus immediate) - Encoding

1111 LD1D (scalar plus immediate, single register)

Decode fields
Instruction page

dtype

0000 LDNF1B - Encoding

0001 LDNF1B - Encoding

0010 LDNF1B - Encoding

1 0 1 0 0 1 0 dtype 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 21 20 19 16 15 14 13 12 10 9 5 4 0

1 0 1 0 0 1 0 dtype 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-721
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.12 SVE load and broadcast quadword (scalar plus scalar)

This section describes the encoding of the SVE load and broadcast quadword (scalar plus scalar) instruction class.
The encodings in this section are decoded from SVE Memory - Contiguous Load.

0011 LDNF1B - Encoding

0100 LDNF1SW

0101 LDNF1H - Encoding

0110 LDNF1H - Encoding

0111 LDNF1H - Encoding

1000 LDNF1SH - Encoding

1001 LDNF1SH - Encoding

1010 LDNF1W - Encoding

1011 LDNF1W - Encoding

1100 LDNF1SB - Encoding

1101 LDNF1SB - Encoding

1110 LDNF1SB - Encoding

1111 LDNF1D

Decode fields
Instruction page Feature

msz ssz

- 1x Unallocated. -

00 00 LD1RQB (scalar plus scalar) -

00 01 LD1ROB (scalar plus scalar) FEAT_F64MM

01 00 LD1RQH (scalar plus scalar) -

01 01 LD1ROH (scalar plus scalar) FEAT_F64MM

10 00 LD1RQW (scalar plus scalar) -

10 01 LD1ROW (scalar plus scalar) FEAT_F64MM

11 00 LD1RQD (scalar plus scalar) -

11 01 LD1ROD (scalar plus scalar) FEAT_F64MM

Decode fields
Instruction page

dtype

1 0 1 0 0 1 0 msz ssz Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-722
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.84.13 SVE contiguous load (scalar plus scalar)

This section describes the encoding of the SVE contiguous load (scalar plus scalar) instruction class. The encodings
in this section are decoded from SVE Memory - Contiguous Load.

C4.1.84.14 SVE contiguous first-fault load (scalar plus scalar)

This section describes the encoding of the SVE contiguous first-fault load (scalar plus scalar) instruction class. The
encodings in this section are decoded from SVE Memory - Contiguous Load.

Decode fields
Instruction page

dtype

0000 LD1B (scalar plus scalar, single register) - Encoding

0001 LD1B (scalar plus scalar, single register) - Encoding

0010 LD1B (scalar plus scalar, single register) - Encoding

0011 LD1B (scalar plus scalar, single register) - Encoding

0100 LD1SW (scalar plus scalar)

0101 LD1H (scalar plus scalar, single register) - Encoding

0110 LD1H (scalar plus scalar, single register) - Encoding

0111 LD1H (scalar plus scalar, single register) - Encoding

1000 LD1SH (scalar plus scalar) - Encoding

1001 LD1SH (scalar plus scalar) - Encoding

1010 LD1W (scalar plus scalar, single register) - Encoding

1011 LD1W (scalar plus scalar, single register) - Encoding

1100 LD1SB (scalar plus scalar) - Encoding

1101 LD1SB (scalar plus scalar) - Encoding

1110 LD1SB (scalar plus scalar) - Encoding

1111 LD1D (scalar plus scalar, single register)

1 0 1 0 0 1 0 dtype Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-723
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85 SVE Memory - 64-bit Gather

This section describes the encoding of the SVE Memory - 64-bit Gather group. The encodings in this section are
decoded from SVE encodings.

Decode fields
Instruction page

dtype

0000 LDFF1B (scalar plus scalar) - Encoding

0001 LDFF1B (scalar plus scalar) - Encoding

0010 LDFF1B (scalar plus scalar) - Encoding

0011 LDFF1B (scalar plus scalar) - Encoding

0100 LDFF1SW (scalar plus scalar)

0101 LDFF1H (scalar plus scalar) - Encoding

0110 LDFF1H (scalar plus scalar) - Encoding

0111 LDFF1H (scalar plus scalar) - Encoding

1000 LDFF1SH (scalar plus scalar) - Encoding

1001 LDFF1SH (scalar plus scalar) - Encoding

1010 LDFF1W (scalar plus scalar) - Encoding

1011 LDFF1W (scalar plus scalar) - Encoding

1100 LDFF1SB (scalar plus scalar) - Encoding

1101 LDFF1SB (scalar plus scalar) - Encoding

1110 LDFF1SB (scalar plus scalar) - Encoding

1111 LDFF1D (scalar plus scalar)

1 0 1 0 0 1 0 dtype Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-724
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85.1 SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets)

This section describes the encoding of the SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - 64-bit Gather.

1100010 op0 op1 op2

31 25 24 23 22 21 20 16 15 13 12 5 4 3 0

op3

Table C4-86 Encoding table for the SVE Memory - 64-bit Gather group

Decode fields Decode group or instruction page
Feature

op0 op1 op2 op3

 00 00 101 - LD1Q FEAT_SVE2p1

 00 01 0xx 1 Unallocated. -

 00 11 1xx 0 SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets) -

 00 11 - 1 Unallocated. -

 00 x1 0xx 0 SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled offsets) -

 != 00 00 101 - Unallocated. -

 != 00 11 1xx - SVE 64-bit gather load (scalar plus 64-bit scaled offsets) -

 != 00 x1 0xx - SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets) -

 - 00 111 0 SVE 64-bit gather prefetch (vector plus immediate) -

 - 00 111 1 Unallocated. -

 - 00 1x0 - SVE2 64-bit gather non-temporal load (vector plus scalar) -

 - 01 1xx - SVE 64-bit gather load (vector plus immediate) -

 - 10 1xx - SVE 64-bit gather load (scalar plus 64-bit unscaled offsets) -

 - x0 0xx - SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets) -

Decode fields
Instruction page

msz

00 PRFB (scalar plus vector)

01 PRFH (scalar plus vector)

10 PRFW (scalar plus vector)

11 PRFD (scalar plus vector)

1 1 0 0 0 1 0 0 0 1 1 Zm 1 msz Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-725
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85.2 SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled offsets)

This section describes the encoding of the SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - 64-bit Gather.

C4.1.85.3 SVE 64-bit gather load (scalar plus 64-bit scaled offsets)

This section describes the encoding of the SVE 64-bit gather load (scalar plus 64-bit scaled offsets) instruction class.
The encodings in this section are decoded from SVE Memory - 64-bit Gather.

Decode fields
Instruction page

msz

00 PRFB (scalar plus vector)

01 PRFH (scalar plus vector)

10 PRFW (scalar plus vector)

11 PRFD (scalar plus vector)

Decode fields
Instruction page

opc U ff

01 0 0 LD1SH (scalar plus vector)

01 0 1 LDFF1SH (scalar plus vector)

01 1 0 LD1H (scalar plus vector)

01 1 1 LDFF1H (scalar plus vector)

10 0 0 LD1SW (scalar plus vector)

10 0 1 LDFF1SW (scalar plus vector)

10 1 0 LD1W (scalar plus vector)

10 1 1 LDFF1W (scalar plus vector)

11 0 - Unallocated.

11 1 0 LD1D (scalar plus vector)

11 1 1 LDFF1D (scalar plus vector)

1 1 0 0 0 1 0 0 0 xs 1 Zm 0 msz Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

1 1 0 0 0 1 0 !=00 1 1 Zm 1 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-726
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85.4 SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)

This section describes the encoding of the SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - 64-bit Gather.

C4.1.85.5 SVE 64-bit gather prefetch (vector plus immediate)

This section describes the encoding of the SVE 64-bit gather prefetch (vector plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - 64-bit Gather.

Decode fields
Instruction page

opc U ff

01 0 0 LD1SH (scalar plus vector)

01 0 1 LDFF1SH (scalar plus vector)

01 1 0 LD1H (scalar plus vector)

01 1 1 LDFF1H (scalar plus vector)

10 0 0 LD1SW (scalar plus vector)

10 0 1 LDFF1SW (scalar plus vector)

10 1 0 LD1W (scalar plus vector)

10 1 1 LDFF1W (scalar plus vector)

11 0 - Unallocated.

11 1 0 LD1D (scalar plus vector)

11 1 1 LDFF1D (scalar plus vector)

Decode fields
Instruction page

msz

00 PRFB (vector plus immediate)

01 PRFH (vector plus immediate)

10 PRFW (vector plus immediate)

11 PRFD (vector plus immediate)

1 1 0 0 0 1 0 !=00 xs 1 Zm 0 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

opc

1 1 0 0 0 1 0 msz 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-727
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85.6 SVE2 64-bit gather non-temporal load (vector plus scalar)

This section describes the encoding of the SVE2 64-bit gather non-temporal load (vector plus scalar) instruction
class. The encodings in this section are decoded from SVE Memory - 64-bit Gather.

C4.1.85.7 SVE 64-bit gather load (vector plus immediate)

This section describes the encoding of the SVE 64-bit gather load (vector plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - 64-bit Gather.

Decode fields
Instruction page

msz U

00 0 LDNT1SB

00 1 LDNT1B (vector plus scalar)

01 0 LDNT1SH

01 1 LDNT1H (vector plus scalar)

10 0 LDNT1SW

10 1 LDNT1W (vector plus scalar)

11 0 Unallocated.

11 1 LDNT1D (vector plus scalar)

Decode fields
Instruction page

msz U ff

00 0 0 LD1SB (vector plus immediate)

00 0 1 LDFF1SB (vector plus immediate)

00 1 0 LD1B (vector plus immediate)

00 1 1 LDFF1B (vector plus immediate)

01 0 0 LD1SH (vector plus immediate)

01 0 1 LDFF1SH (vector plus immediate)

01 1 0 LD1H (vector plus immediate)

01 1 1 LDFF1H (vector plus immediate)

10 0 0 LD1SW (vector plus immediate)

1 1 0 0 0 1 0 msz 0 0 Rm 1 U 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 0 0 0 1 0 msz 0 1 imm5 1 U ff Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-728
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85.8 SVE 64-bit gather load (scalar plus 64-bit unscaled offsets)

This section describes the encoding of the SVE 64-bit gather load (scalar plus 64-bit unscaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - 64-bit Gather.

10 0 1 LDFF1SW (vector plus immediate)

10 1 0 LD1W (vector plus immediate)

10 1 1 LDFF1W (vector plus immediate)

11 0 - Unallocated.

11 1 0 LD1D (vector plus immediate)

11 1 1 LDFF1D (vector plus immediate)

Decode fields
Instruction page

msz U ff

00 0 0 LD1SB (scalar plus vector)

00 0 1 LDFF1SB (scalar plus vector)

00 1 0 LD1B (scalar plus vector)

00 1 1 LDFF1B (scalar plus vector)

01 0 0 LD1SH (scalar plus vector)

01 0 1 LDFF1SH (scalar plus vector)

01 1 0 LD1H (scalar plus vector)

01 1 1 LDFF1H (scalar plus vector)

10 0 0 LD1SW (scalar plus vector)

10 0 1 LDFF1SW (scalar plus vector)

10 1 0 LD1W (scalar plus vector)

10 1 1 LDFF1W (scalar plus vector)

11 0 - Unallocated.

11 1 0 LD1D (scalar plus vector)

11 1 1 LDFF1D (scalar plus vector)

Decode fields
Instruction page

msz U ff

1 1 0 0 0 1 0 msz 1 0 Zm 1 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-729
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.85.9 SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets)

This section describes the encoding of the SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - 64-bit Gather.

C4.1.86 SVE Memory - Contiguous Store and Unsized Contiguous

This section describes the encoding of the SVE Memory - Contiguous Store and Unsized Contiguous group. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page

msz U ff

00 0 0 LD1SB (scalar plus vector)

00 0 1 LDFF1SB (scalar plus vector)

00 1 0 LD1B (scalar plus vector)

00 1 1 LDFF1B (scalar plus vector)

01 0 0 LD1SH (scalar plus vector)

01 0 1 LDFF1SH (scalar plus vector)

01 1 0 LD1H (scalar plus vector)

01 1 1 LDFF1H (scalar plus vector)

10 0 0 LD1SW (scalar plus vector)

10 0 1 LDFF1SW (scalar plus vector)

10 1 0 LD1W (scalar plus vector)

10 1 1 LDFF1W (scalar plus vector)

11 0 - Unallocated.

11 1 0 LD1D (scalar plus vector)

11 1 1 LDFF1D (scalar plus vector)

1 1 0 0 0 1 0 msz xs 0 Zm 0 U ff Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-730
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.86.1 SVE store multiple structures (quadwords, scalar plus immediate)

This section describes the encoding of the SVE store multiple structures (quadwords, scalar plus immediate)
instruction class. The encodings in this section are decoded from SVE Memory - Contiguous Store and Unsized
Contiguous.

C4.1.86.2 SVE store multiple structures (quadwords, scalar plus scalar)

This section describes the encoding of the SVE store multiple structures (quadwords, scalar plus scalar) instruction
class. The encodings in this section are decoded from SVE Memory - Contiguous Store and Unsized Contiguous.

1110010 op0 op1 0 0

31 25 24 22 21 20 19 16 15 14 13 12 5 4 3 0

op3

op2

Table C4-87 Encoding table for the SVE Memory - Contiguous Store and Unsized Contiguous group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0xx 00 0 - SVE store multiple structures (quadwords, scalar plus immediate)

 0xx 01 0 - Unallocated.

 0xx 1x 0 - SVE store multiple structures (quadwords, scalar plus scalar)

 10x - 0 - Unallocated.

 110 - 0 0 STR (predicate)

 110 - 0 1 Unallocated.

 110 - 1 - STR (vector)

 111 - 0 - Unallocated.

 != 110 - 1 - SVE contiguous store (scalar plus scalar)

Decode fields
Instruction page Feature

num

00 Unallocated. -

01 ST2Q (scalar plus immediate) FEAT_SVE2p1

10 ST3Q (scalar plus immediate) FEAT_SVE2p1

11 ST4Q (scalar plus immediate) FEAT_SVE2p1

1 1 1 0 0 1 0 0 num 0 0 imm4 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-731
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.86.3 SVE contiguous store (scalar plus scalar)

This section describes the encoding of the SVE contiguous store (scalar plus scalar) instruction class. The encodings
in this section are decoded from SVE Memory - Contiguous Store and Unsized Contiguous.

C4.1.87 SVE Memory - Non-temporal and Quadword Scatter Store

This section describes the encoding of the SVE Memory - Non-temporal and Quadword Scatter Store group. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page Feature

num

00 Unallocated. -

01 ST2Q (scalar plus scalar) FEAT_SVE2p1

10 ST3Q (scalar plus scalar) FEAT_SVE2p1

11 ST4Q (scalar plus scalar) FEAT_SVE2p1

Decode fields
Instruction page Feature

opc o2

00x - ST1B (scalar plus scalar, single register) -

01x - ST1H (scalar plus scalar, single register) -

100 0 ST1W (scalar plus scalar, single register) - Encoding FEAT_SVE2p1

101 - ST1W (scalar plus scalar, single register) - Encoding -

111 0 ST1D (scalar plus scalar, single register) - Encoding FEAT_SVE2p1

111 1 ST1D (scalar plus scalar, single register) - Encoding -

1 1 1 0 0 1 0 0 num 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 1 0 0 1 0 !=110 o2 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-732
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.87.1 SVE2 64-bit scatter non-temporal store (vector plus scalar)

This section describes the encoding of the SVE2 64-bit scatter non-temporal store (vector plus scalar) instruction
class. The encodings in this section are decoded from SVE Memory - Non-temporal and Quadword Scatter Store.

C4.1.87.2 SVE2 32-bit scatter non-temporal store (vector plus scalar)

This section describes the encoding of the SVE2 32-bit scatter non-temporal store (vector plus scalar) instruction
class. The encodings in this section are decoded from SVE Memory - Non-temporal and Quadword Scatter Store.

1110010 op0 001

31 25 24 22 21 20 16 15 13 12 0

op1

Table C4-88 Encoding table for the SVE Memory - Non-temporal and Quadword Scatter Store group

Decode fields
Decode group or instruction page Feature

op0 op1

 000 1 ST1Q FEAT_SVE2p1

 != 000 1 Unallocated. -

 xx0 0 SVE2 64-bit scatter non-temporal store (vector plus scalar) -

 xx1 0 SVE2 32-bit scatter non-temporal store (vector plus scalar) -

Decode fields
Instruction page

msz

00 STNT1B (vector plus scalar)

01 STNT1H (vector plus scalar)

10 STNT1W (vector plus scalar)

11 STNT1D (vector plus scalar)

1 1 1 0 0 1 0 msz 0 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-733
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.88 SVE Memory - Non-temporal and Multi-register Contiguous Store

This section describes the encoding of the SVE Memory - Non-temporal and Multi-register Contiguous Store group.
The encodings in this section are decoded from SVE encodings.

C4.1.88.1 SVE contiguous non-temporal store (scalar plus scalar)

This section describes the encoding of the SVE contiguous non-temporal store (scalar plus scalar) instruction class.
The encodings in this section are decoded from SVE Memory - Non-temporal and Multi-register Contiguous Store.

Decode fields
Instruction page

msz

00 STNT1B (vector plus scalar)

01 STNT1H (vector plus scalar)

10 STNT1W (vector plus scalar)

11 Unallocated.

1 1 1 0 0 1 0 msz 1 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

Table C4-89 Encoding table for the SVE Memory - Non-temporal and Multi-register Contiguous
Store group

Decode fields
Decode group or instruction page

op0

 00 SVE contiguous non-temporal store (scalar plus scalar)

 != 00 SVE store multiple structures (scalar plus scalar)

Decode fields
Instruction page

msz

00 STNT1B (scalar plus scalar, single register)

1110010 op0 011

31 25 24 23 22 21 20 16 15 13 12 0

1 1 1 0 0 1 0 msz 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-734
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.88.2 SVE store multiple structures (scalar plus scalar)

This section describes the encoding of the SVE store multiple structures (scalar plus scalar) instruction class. The
encodings in this section are decoded from SVE Memory - Non-temporal and Multi-register Contiguous Store.

C4.1.89 SVE Memory - Scatter with Optional Sign Extend

This section describes the encoding of the SVE Memory - Scatter with Optional Sign Extend group. The encodings
in this section are decoded from SVE encodings.

01 STNT1H (scalar plus scalar, single register)

10 STNT1W (scalar plus scalar, single register)

11 STNT1D (scalar plus scalar, single register)

Decode fields
Instruction page

msz opc

00 01 ST2B (scalar plus scalar)

00 10 ST3B (scalar plus scalar)

00 11 ST4B (scalar plus scalar)

01 01 ST2H (scalar plus scalar)

01 10 ST3H (scalar plus scalar)

01 11 ST4H (scalar plus scalar)

10 01 ST2W (scalar plus scalar)

10 10 ST3W (scalar plus scalar)

10 11 ST4W (scalar plus scalar)

11 01 ST2D (scalar plus scalar)

11 10 ST3D (scalar plus scalar)

11 11 ST4D (scalar plus scalar)

Decode fields
Instruction page

msz

1 1 1 0 0 1 0 msz !=00 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-735
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.89.1 SVE 64-bit scatter store (scalar plus unpacked 32-bit unscaled offsets)

This section describes the encoding of the SVE 64-bit scatter store (scalar plus unpacked 32-bit unscaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - Scatter with Optional Sign Extend.

C4.1.89.2 SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)

This section describes the encoding of the SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
instruction class. The encodings in this section are decoded from SVE Memory - Scatter with Optional Sign Extend.

Table C4-90 Encoding table for the SVE Memory - Scatter with Optional Sign Extend group

Decode fields
Decode group or instruction page

op0

 00 SVE 64-bit scatter store (scalar plus unpacked 32-bit unscaled offsets)

 01 SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)

 10 SVE 32-bit scatter store (scalar plus 32-bit unscaled offsets)

 11 SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)

Decode fields
Instruction page

msz

00 ST1B (scalar plus vector)

01 ST1H (scalar plus vector)

10 ST1W (scalar plus vector)

11 ST1D (scalar plus vector)

1110010 op0 1 0

31 25 24 23 22 21 20 16 15 14 13 12 0

1 1 1 0 0 1 0 msz 0 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-736
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.89.3 SVE 32-bit scatter store (scalar plus 32-bit unscaled offsets)

This section describes the encoding of the SVE 32-bit scatter store (scalar plus 32-bit unscaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - Scatter with Optional Sign Extend.

C4.1.89.4 SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)

This section describes the encoding of the SVE 32-bit scatter store (scalar plus 32-bit scaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - Scatter with Optional Sign Extend.

Decode fields
Instruction page

msz

00 Unallocated.

01 ST1H (scalar plus vector)

10 ST1W (scalar plus vector)

11 ST1D (scalar plus vector)

Decode fields
Instruction page

msz

00 ST1B (scalar plus vector)

01 ST1H (scalar plus vector)

10 ST1W (scalar plus vector)

11 Unallocated.

1 1 1 0 0 1 0 msz 0 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 1 0 0 1 0 msz 1 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-737
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.90 SVE Memory - Scatter

This section describes the encoding of the SVE Memory - Scatter group. The encodings in this section are decoded
from SVE encodings.

C4.1.90.1 SVE 64-bit scatter store (scalar plus 64-bit unscaled offsets)

This section describes the encoding of the SVE 64-bit scatter store (scalar plus 64-bit unscaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - Scatter.

Decode fields
Instruction page

msz

00 Unallocated.

01 ST1H (scalar plus vector)

10 ST1W (scalar plus vector)

11 Unallocated.

1 1 1 0 0 1 0 msz 1 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

Table C4-91 Encoding table for the SVE Memory - Scatter group

Decode fields
Decode group or instruction page

op0

 00 SVE 64-bit scatter store (scalar plus 64-bit unscaled offsets)

 01 SVE 64-bit scatter store (scalar plus 64-bit scaled offsets)

 10 SVE 64-bit scatter store (vector plus immediate)

 11 SVE 32-bit scatter store (vector plus immediate)

1110010 op0 101

31 25 24 23 22 21 20 16 15 13 12 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-738
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.90.2 SVE 64-bit scatter store (scalar plus 64-bit scaled offsets)

This section describes the encoding of the SVE 64-bit scatter store (scalar plus 64-bit scaled offsets) instruction
class. The encodings in this section are decoded from SVE Memory - Scatter.

C4.1.90.3 SVE 64-bit scatter store (vector plus immediate)

This section describes the encoding of the SVE 64-bit scatter store (vector plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - Scatter.

Decode fields
Instruction page

msz

00 ST1B (scalar plus vector)

01 ST1H (scalar plus vector)

10 ST1W (scalar plus vector)

11 ST1D (scalar plus vector)

Decode fields
Instruction page

msz

00 Unallocated.

01 ST1H (scalar plus vector)

10 ST1W (scalar plus vector)

11 ST1D (scalar plus vector)

1 1 1 0 0 1 0 msz 0 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 1 0 0 1 0 msz 0 1 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-739
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.90.4 SVE 32-bit scatter store (vector plus immediate)

This section describes the encoding of the SVE 32-bit scatter store (vector plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - Scatter.

C4.1.91 SVE Memory - Contiguous Store with Immediate Offset

This section describes the encoding of the SVE Memory - Contiguous Store with Immediate Offset group. The
encodings in this section are decoded from SVE encodings.

Decode fields
Instruction page

msz

00 ST1B (vector plus immediate)

01 ST1H (vector plus immediate)

10 ST1W (vector plus immediate)

11 ST1D (vector plus immediate)

Decode fields
Instruction page

msz

00 ST1B (vector plus immediate)

01 ST1H (vector plus immediate)

10 ST1W (vector plus immediate)

11 Unallocated.

1 1 1 0 0 1 0 msz 1 0 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 1 0 0 1 0 msz 1 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-740
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.91.1 SVE contiguous non-temporal store (scalar plus immediate)

This section describes the encoding of the SVE contiguous non-temporal store (scalar plus immediate) instruction
class. The encodings in this section are decoded from SVE Memory - Contiguous Store with Immediate Offset.

C4.1.91.2 SVE store multiple structures (scalar plus immediate)

This section describes the encoding of the SVE store multiple structures (scalar plus immediate) instruction class.
The encodings in this section are decoded from SVE Memory - Contiguous Store with Immediate Offset.

Table C4-92 Encoding table for the SVE Memory - Contiguous Store with Immediate Offset group

Decode fields
Decode group or instruction page

op0 op1

 00 1 SVE contiguous non-temporal store (scalar plus immediate)

 != 00 1 SVE store multiple structures (scalar plus immediate)

 - 0 SVE contiguous store (scalar plus immediate)

Decode fields
Instruction page

msz

00 STNT1B (scalar plus immediate, single register)

01 STNT1H (scalar plus immediate, single register)

10 STNT1W (scalar plus immediate, single register)

11 STNT1D (scalar plus immediate, single register)

1110010 op0 111

31 25 24 23 22 21 20 19 16 15 13 12 0

op1

1 1 1 0 0 1 0 msz 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-741
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.91.3 SVE contiguous store (scalar plus immediate)

This section describes the encoding of the SVE contiguous store (scalar plus immediate) instruction class. The
encodings in this section are decoded from SVE Memory - Contiguous Store with Immediate Offset.

Decode fields
Instruction page

msz opc

00 01 ST2B (scalar plus immediate)

00 10 ST3B (scalar plus immediate)

00 11 ST4B (scalar plus immediate)

01 01 ST2H (scalar plus immediate)

01 10 ST3H (scalar plus immediate)

01 11 ST4H (scalar plus immediate)

10 01 ST2W (scalar plus immediate)

10 10 ST3W (scalar plus immediate)

10 11 ST4W (scalar plus immediate)

11 01 ST2D (scalar plus immediate)

11 10 ST3D (scalar plus immediate)

11 11 ST4D (scalar plus immediate)

Decode fields
Instruction page Feature

msz opc

00 - ST1B (scalar plus immediate, single register) -

01 - ST1H (scalar plus immediate, single register) -

10 00 ST1W (scalar plus immediate, single register) - Encoding FEAT_SVE2p1

10 01 Unallocated. -

10 1x ST1W (scalar plus immediate, single register) - Encoding -

1 1 1 0 0 1 0 msz !=00 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

opc

1 1 1 0 0 1 0 msz opc 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-742
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.92 Data Processing -- Immediate

This section describes the encoding of the Data Processing -- Immediate group. The encodings in this section are
decoded from A64 instruction set encoding.

C4.1.92.1 PC-rel. addressing

This section describes the encoding of the PC-rel. addressing instruction class. The encodings in this section are
decoded from Data Processing -- Immediate.

11 0x Unallocated. -

11 10 ST1D (scalar plus immediate, single register) - Encoding FEAT_SVE2p1

11 11 ST1D (scalar plus immediate, single register) - Encoding -

Decode fields
Instruction page Feature

msz opc

Table C4-93 Encoding table for the Data Processing -- Immediate group

Decode fields
Decode group or instruction page

op0

 00xx PC-rel. addressing

 010x Add/subtract (immediate)

 0110 Add/subtract (immediate, with tags)

 0111 Min/max (immediate)

 100x Logical (immediate)

 101x Move wide (immediate)

 110x Bitfield

 111x Extract

Decode fields
Instruction page

op

0 ADR

1 ADRP

100 op0

31 29 28 26 25 22 21 0

op immlo 1 0 0 0 0 immhi Rd

31 30 29 28 27 26 25 24 23 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-743
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.92.2 Add/subtract (immediate)

This section describes the encoding of the Add/subtract (immediate) instruction class. The encodings in this section
are decoded from Data Processing -- Immediate.

C4.1.92.3 Add/subtract (immediate, with tags)

This section describes the encoding of the Add/subtract (immediate, with tags) instruction class. The encodings in
this section are decoded from Data Processing -- Immediate.

C4.1.92.4 Min/max (immediate)

This section describes the encoding of the Min/max (immediate) instruction class. The encodings in this section are
decoded from Data Processing -- Immediate.

Decode fields
Instruction page

sf op S

0 0 0 ADD (immediate) - 32-bit variant

0 0 1 ADDS (immediate) - 32-bit variant

0 1 0 SUB (immediate) - 32-bit variant

0 1 1 SUBS (immediate) - 32-bit variant

1 0 0 ADD (immediate) - 64-bit variant

1 0 1 ADDS (immediate) - 64-bit variant

1 1 0 SUB (immediate) - 64-bit variant

1 1 1 SUBS (immediate) - 64-bit variant

Decode fields
Instruction page Feature

sf op S

0 - - Unallocated. -

1 - 1 Unallocated. -

1 0 0 ADDG FEAT_MTE

1 1 0 SUBG FEAT_MTE

sf op S 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

sf op S 1 0 0 0 1 1 0 uimm6 op3 uimm4 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-744
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.92.5 Logical (immediate)

This section describes the encoding of the Logical (immediate) instruction class. The encodings in this section are
decoded from Data Processing -- Immediate.

Decode fields
Instruction page Feature

sf op S opc

- 0 - 01xx Unallocated. -

- 0 - 1xxx Unallocated. -

- 0 1 00xx Unallocated. -

- 1 - - Unallocated. -

0 0 0 0000 SMAX (immediate) - 32-bit variant FEAT_CSSC

0 0 0 0001 UMAX (immediate) - 32-bit variant FEAT_CSSC

0 0 0 0010 SMIN (immediate) - 32-bit variant FEAT_CSSC

0 0 0 0011 UMIN (immediate) - 32-bit variant FEAT_CSSC

1 0 0 0000 SMAX (immediate) - 64-bit variant FEAT_CSSC

1 0 0 0001 UMAX (immediate) - 64-bit variant FEAT_CSSC

1 0 0 0010 SMIN (immediate) - 64-bit variant FEAT_CSSC

1 0 0 0011 UMIN (immediate) - 64-bit variant FEAT_CSSC

Decode fields
Instruction page

sf opc N

0 - 1 Unallocated.

0 00 0 AND (immediate) - 32-bit variant

0 01 0 ORR (immediate) - 32-bit variant

0 10 0 EOR (immediate) - 32-bit variant

0 11 0 ANDS (immediate) - 32-bit variant

1 00 - AND (immediate) - 64-bit variant

sf op S 1 0 0 0 1 1 1 opc imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 18 17 10 9 5 4 0

sf opc 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-745
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.92.6 Move wide (immediate)

This section describes the encoding of the Move wide (immediate) instruction class. The encodings in this section
are decoded from Data Processing -- Immediate.

C4.1.92.7 Bitfield

This section describes the encoding of the Bitfield instruction class. The encodings in this section are decoded from
Data Processing -- Immediate.

1 01 - ORR (immediate) - 64-bit variant

1 10 - EOR (immediate) - 64-bit variant

1 11 - ANDS (immediate) - 64-bit variant

Decode fields
Instruction page

sf opc hw

- 01 - Unallocated.

0 - 1x Unallocated.

0 00 0x MOVN - 32-bit variant

0 10 0x MOVZ - 32-bit variant

0 11 0x MOVK - 32-bit variant

1 00 - MOVN - 64-bit variant

1 10 - MOVZ - 64-bit variant

1 11 - MOVK - 64-bit variant

Decode fields
Instruction page

sf opc N

- 11 - Unallocated.

0 - 1 Unallocated.

0 00 0 SBFM - 32-bit variant

Decode fields
Instruction page

sf opc N

sf opc 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

sf opc 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-746
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.92.8 Extract

This section describes the encoding of the Extract instruction class. The encodings in this section are decoded from
Data Processing -- Immediate.

C4.1.93 Branches, Exception Generating and System instructions

This section describes the encoding of the Branches, Exception Generating and System instructions group. The
encodings in this section are decoded from A64 instruction set encoding.

0 01 0 BFM - 32-bit variant

0 10 0 UBFM - 32-bit variant

1 - 0 Unallocated.

1 00 1 SBFM - 64-bit variant

1 01 1 BFM - 64-bit variant

1 10 1 UBFM - 64-bit variant

Decode fields
Instruction page

sf op21 N o0 imms

- x1 - - - Unallocated.

- 00 - 1 - Unallocated.

- 1x - - - Unallocated.

0 - - - 1xxxxx Unallocated.

0 - 1 - - Unallocated.

0 00 0 0 0xxxxx EXTR - 32-bit variant

1 - 0 - - Unallocated.

1 00 1 0 - EXTR - 64-bit variant

Decode fields
Instruction page

sf opc N

sf op21 1 0 0 1 1 1 N o0 Rm imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-747
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.1 Conditional branch (immediate)

This section describes the encoding of the Conditional branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions.

Table C4-94 Encoding table for the Branches, Exception Generating and System instructions
group

Decode fields
Decode group or instruction page

op0 op1 op2

 010 0xxxxxxxxxxxxx - Conditional branch (immediate)

 110 00xxxxxxxxxxxx - Exception generation

 110 01000000110001 - System instructions with register argument

 110 01000000110010 11111 Hints

 110 01000000110011 - Barriers

 110 0100000xxx0100 - PSTATE

 110 0100100xxxxxxx - System with result

 110 0100x01xxxxxxx - System instructions

 110 0100x1xxxxxxxx - System register move

 110 0101x01xxxxxxx - System pair instructions

 110 0101x1xxxxxxxx - System register pair move

 110 1xxxxxxxxxxxxx - Unconditional branch (register)

 x00 - - Unconditional branch (immediate)

 x01 0xxxxxxxxxxxxx - Compare and branch (immediate)

 x01 1xxxxxxxxxxxxx - Test and branch (immediate)

Decode fields
Instruction page Feature

o1 o0

0 0 B.cond -

0 1 BC.cond FEAT_HBC

1 - Unallocated. -

op0 101 op1 op2

31 29 28 26 25 12 11 5 4 0

0 1 0 1 0 1 0 o1 imm19 o0 cond

31 30 29 28 27 26 25 24 23 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-748
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.2 Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions.

C4.1.93.3 System instructions with register argument

This section describes the encoding of the System instructions with register argument instruction class. The
encodings in this section are decoded from Branches, Exception Generating and System instructions.

Decode fields
Instruction page Feature

opc op2 LL

- 001 - Unallocated. -

- 01x - Unallocated. -

- 1xx - Unallocated. -

000 000 00 Unallocated. -

000 000 01 SVC -

000 000 10 HVC -

000 000 11 SMC -

001 000 x1 Unallocated. -

001 000 00 BRK -

001 000 1x Unallocated. -

010 000 x1 Unallocated. -

010 000 00 HLT -

010 000 1x Unallocated. -

011 000 00 TCANCEL FEAT_TME

011 000 01 Unallocated. -

011 000 1x Unallocated. -

100 000 - Unallocated. -

101 000 00 Unallocated. -

101 000 01 DCPS1 -

101 000 10 DCPS2 -

101 000 11 DCPS3 -

110 000 - Unallocated. -

111 000 - Unallocated. -

1 1 0 1 0 1 0 0 opc imm16 op2 LL

31 30 29 28 27 26 25 24 23 21 20 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-749
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.4 Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions.

Decode fields
Instruction page Feature

CRm op2

!= 0000 - Unallocated. -

0000 000 WFET FEAT_WFxT

0000 001 WFIT FEAT_WFxT

0000 01x Unallocated. -

0000 1xx Unallocated. -

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

Decode fields
Instruction page Feature

CRm op2

- - HINT -

0000 000 NOP -

0000 001 YIELD -

0000 010 WFE -

0000 011 WFI -

0000 100 SEV -

0000 101 SEVL -

0000 110 DGH FEAT_DGH

0000 111 XPACD, XPACI, XPACLRI FEAT_PAuth

0001 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA1716 variant FEAT_PAuth

0001 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB1716 variant FEAT_PAuth

0001 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA1716 variant FEAT_PAuth

0001 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB1716 variant FEAT_PAuth

0010 000 ESB FEAT_RAS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-750
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.5 Barriers

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions.

0010 001 PSB FEAT_SPE

0010 010 TSB FEAT_TRF

0010 011 GCSB FEAT_GCS

0010 100 CSDB -

0010 110 CLRBHB FEAT_CLRBHB

0011 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIAZ variant FEAT_PAuth

0011 001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIASP variant FEAT_PAuth

0011 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBZ variant FEAT_PAuth

0011 011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBSP variant FEAT_PAuth

0011 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIAZ variant FEAT_PAuth

0011 101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIASP variant FEAT_PAuth

0011 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBZ variant FEAT_PAuth

0011 111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBSP variant FEAT_PAuth

0100 xx0 BTI FEAT_BTI

0101 000 CHKFEAT FEAT_CHK

Decode fields
Instruction page Feature

CRm op2

Decode fields
Instruction page Feature

CRm op2 Rt

- 000 - Unallocated. -

- 001 != 11111 Unallocated. -

- 010 11111 CLREX -

- 100 11111 DSB - Encoding -

- 101 11111 DMB -

- 110 11111 ISB -

- 111 != 11111 Unallocated. -

- 111 11111 SB FEAT_SB

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-751
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.6 PSTATE

This section describes the encoding of the PSTATE instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions.

C4.1.93.7 System with result

This section describes the encoding of the System with result instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions.

xx0x 001 11111 Unallocated. -

xx10 001 11111 DSB - Encoding FEAT_XS

xx11 001 11111 Unallocated. -

0000 011 11111 TCOMMIT FEAT_TME

0001 011 - Unallocated. -

001x 011 - Unallocated. -

01xx 011 - Unallocated. -

1xxx 011 - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 Rt

- - != 11111 Unallocated. -

- - 11111 MSR (immediate) -

000 000 11111 CFINV FEAT_FlagM

000 001 11111 XAFLAG FEAT_FlagM2

000 010 11111 AXFLAG FEAT_FlagM2

Decode fields
Instruction page Feature

CRm op2 Rt

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-752
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.8 System instructions

This section describes the encoding of the System instructions instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions.

C4.1.93.9 System register move

This section describes the encoding of the System register move instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions.

Decode fields
Instruction page Feature

op1 CRn CRm op2

!= 011 - - - Unallocated. -

011 != 0011 - - Unallocated. -

011 0011 - != 011 Unallocated. -

011 0011 != 000x 011 Unallocated. -

011 0011 0000 011 TSTART FEAT_TME

011 0011 0001 011 TTEST FEAT_TME

Decode fields
Instruction page

L

0 SYS

1 SYSL

Decode fields
Instruction page

L

0 MSR (register)

1 MRS

1 1 0 1 0 1 0 1 0 0 1 0 0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 1 0 1 0 1 0 1 0 0 L 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 1 0 1 0 1 0 1 0 0 L 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-753
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.10 System pair instructions

This section describes the encoding of the System pair instructions instruction class. The encodings in this section
are decoded from Branches, Exception Generating and System instructions.

C4.1.93.11 System register pair move

This section describes the encoding of the System register pair move instruction class. The encodings in this section
are decoded from Branches, Exception Generating and System instructions.

C4.1.93.12 Unconditional branch (register)

This section describes the encoding of the Unconditional branch (register) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions.

Decode fields
Instruction page Feature

L

0 SYSP FEAT_SYSINSTR128

1 Unallocated. -

Decode fields
Instruction page Feature

L

0 MSRR FEAT_SYSREG128

1 MRRS FEAT_SYSREG128

1 1 0 1 0 1 0 1 0 1 L 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 1 0 1 0 1 0 1 0 1 L 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 1 0 1 0 1 1 opc op2 op3 Rn op4

31 30 29 28 27 26 25 24 21 20 16 15 10 9 5 4 0

Decode fields
Instruction page Feature

opc op2 op3 Rn op4

- != 11111 - - - Unallocated. -

0000 11111 000000 - != 00000 Unallocated. -

0000 11111 000000 - 00000 BR -

0000 11111 000001 - - Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-754
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0000 11111 000010 - != 11111 Unallocated. -

0000 11111 000010 - 11111 BRAA, BRAAZ, BRAB, BRABZ - Key A, zero modifier
variant

FEAT_PAuth

0000 11111 000011 - != 11111 Unallocated. -

0000 11111 000011 - 11111 BRAA, BRAAZ, BRAB, BRABZ - Key B, zero modifier
variant

FEAT_PAuth

0000 11111 0001xx - - Unallocated. -

0000 11111 001xxx - - Unallocated. -

0000 11111 01xxxx - - Unallocated. -

0000 11111 1xxxxx - - Unallocated. -

0001 11111 000000 - != 00000 Unallocated. -

0001 11111 000000 - 00000 BLR -

0001 11111 000001 - - Unallocated. -

0001 11111 000010 - != 11111 Unallocated. -

0001 11111 000010 - 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A, zero
modifier variant

FEAT_PAuth

0001 11111 000011 - != 11111 Unallocated. -

0001 11111 000011 - 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B, zero
modifier variant

FEAT_PAuth

0001 11111 0001xx - - Unallocated. -

0001 11111 001xxx - - Unallocated. -

0001 11111 01xxxx - - Unallocated. -

0001 11111 1xxxxx - - Unallocated. -

0010 11111 000000 - != 00000 Unallocated. -

0010 11111 000000 - 00000 RET -

0010 11111 000001 - - Unallocated. -

0010 11111 000010 != 11111 != 11111 Unallocated. -

0010 11111 000010 != 11111 11111 Unallocated. -

0010 11111 000010 11111 != 11111 Unallocated. -

0010 11111 000010 11111 11111 RETAA, RETAB - RETAA variant FEAT_PAuth

0010 11111 000011 != 11111 != 11111 Unallocated. -

0010 11111 000011 != 11111 11111 Unallocated. -

0010 11111 000011 11111 != 11111 Unallocated. -

Decode fields
Instruction page Feature

opc op2 op3 Rn op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-755
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0010 11111 000011 11111 11111 RETAA, RETAB - RETAB variant FEAT_PAuth

0010 11111 0001xx - - Unallocated. -

0010 11111 001xxx - - Unallocated. -

0010 11111 01xxxx - - Unallocated. -

0010 11111 1xxxxx - - Unallocated. -

0011 11111 - - - Unallocated. -

0100 11111 000000 != 11111 != 00000 Unallocated. -

0100 11111 000000 != 11111 00000 Unallocated. -

0100 11111 000000 11111 != 00000 Unallocated. -

0100 11111 000000 11111 00000 ERET -

0100 11111 000001 - - Unallocated. -

0100 11111 000010 != 11111 != 11111 Unallocated. -

0100 11111 000010 != 11111 11111 Unallocated. -

0100 11111 000010 11111 != 11111 Unallocated. -

0100 11111 000010 11111 11111 ERETAA, ERETAB - ERETAA variant FEAT_PAuth

0100 11111 000011 != 11111 != 11111 Unallocated. -

0100 11111 000011 != 11111 11111 Unallocated. -

0100 11111 000011 11111 != 11111 Unallocated. -

0100 11111 000011 11111 11111 ERETAA, ERETAB - ERETAB variant FEAT_PAuth

0100 11111 0001xx - - Unallocated. -

0100 11111 001xxx - - Unallocated. -

0100 11111 01xxxx - - Unallocated. -

0100 11111 1xxxxx - - Unallocated. -

0101 11111 !=

000000

- - Unallocated. -

0101 11111 000000 != 11111 != 00000 Unallocated. -

0101 11111 000000 != 11111 00000 Unallocated. -

0101 11111 000000 11111 != 00000 Unallocated. -

0101 11111 000000 11111 00000 DRPS -

011x 11111 - - - Unallocated. -

1000 11111 00000x - - Unallocated. -

1000 11111 000010 - - BRAA, BRAAZ, BRAB, BRABZ - Key A, register modifier
variant

FEAT_PAuth

Decode fields
Instruction page Feature

opc op2 op3 Rn op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-756
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.13 Unconditional branch (immediate)

This section describes the encoding of the Unconditional branch (immediate) instruction class. The encodings in
this section are decoded from Branches, Exception Generating and System instructions.

C4.1.93.14 Compare and branch (immediate)

This section describes the encoding of the Compare and branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions.

1000 11111 000011 - - BRAA, BRAAZ, BRAB, BRABZ - Key B, register modifier
variant

FEAT_PAuth

1000 11111 0001xx - - Unallocated. -

1000 11111 001xxx - - Unallocated. -

1000 11111 01xxxx - - Unallocated. -

1000 11111 1xxxxx - - Unallocated. -

1001 11111 00000x - - Unallocated. -

1001 11111 000010 - - BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A, register
modifier variant

FEAT_PAuth

1001 11111 000011 - - BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B, register
modifier variant

FEAT_PAuth

1001 11111 0001xx - - Unallocated. -

1001 11111 001xxx - - Unallocated. -

1001 11111 01xxxx - - Unallocated. -

1001 11111 1xxxxx - - Unallocated. -

101x 11111 - - - Unallocated. -

11xx 11111 - - - Unallocated. -

Decode fields
Instruction page Feature

opc op2 op3 Rn op4

Decode fields
Instruction page

op

0 B

1 BL

op 0 0 1 0 1 imm26

31 30 29 28 27 26 25 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-757
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.93.15 Test and branch (immediate)

This section describes the encoding of the Test and branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions.

C4.1.94 Loads and Stores

This section describes the encoding of the Loads and Stores group. The encodings in this section are decoded from
A64 instruction set encoding.

Decode fields
Instruction page

sf op

0 0 CBZ - 32-bit variant

0 1 CBNZ - 32-bit variant

1 0 CBZ - 64-bit variant

1 1 CBNZ - 64-bit variant

Decode fields
Instruction page

op

0 TBZ

1 TBNZ

sf 0 1 1 0 1 0 op imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

b5 0 1 1 0 1 1 op b40 imm14 Rt

31 30 29 28 27 26 25 24 23 19 18 5 4 0

op0 1 0 op2

31 28 27 26 25 24 10 9 0

op1

Table C4-95 Encoding table for the Loads and Stores group

Decode fields
Decode group or instruction page

op0 op1 op2

 0x00 0 00x1xxxxxxxxxxx Compare and swap pair

 0x00 1 00x000000xxxxxx Advanced SIMD load/store multiple structures

 0x00 1 00xxxxxx1xxxxxx Unallocated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-758
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 0x00 1 01x0xxxxxxxxxxx Advanced SIMD load/store multiple structures (post-indexed)

 0x00 1 0xx1xxxxxxxxxxx Unallocated.

 0x00 1 10xx0000xxxxxxx Advanced SIMD load/store single structure

 0x00 1 11xxxxxxxxxxxxx Advanced SIMD load/store single structure (post-indexed)

 0x00 1 x0xx1xxxxxxxxxx Unallocated.

 0x00 1 x0xxx1xxxxxxxxx Unallocated.

 0x00 1 x0xxxx1xxxxxxxx Unallocated.

 0x00 1 x0xxxxx1xxxxxxx Unallocated.

 0x01 0 1xx1xxxxx000010 RCW compare and swap

 0x01 0 1xx1xxxxx000011 RCW compare and swap pair

 0x01 0 1xx1xxxxxxxxx00 128-bit atomic memory operations

 1101 0 1000111110xxx11 GCS load/store

 1101 0 1xx1xxxxxxxxxxx Load/store memory tags

 1x00 0 00x1xxxxxxxxxxx Load/store exclusive pair

 1x00 1 - Unallocated.

 xx00 0 00x0xxxxxxxxxxx Load/store exclusive register

 xx00 0 01x0xxxxxxxxxxx Load/store ordered

 xx00 0 01x1xxxxxxxxxxx Compare and swap

 xx01 0 10x0xxxxxxxxx10 LDIAPP/STILP

 xx01 0 11x000000000010 LDAPR/STLR (writeback)

 xx01 0 1xx0xxxxxxxxx00 LDAPR/STLR (unscaled immediate)

 xx01 1 1xx0xxxxxxxxx10 LDAPR/STLR (SIMD&FP)

 xx01 - 0xxxxxxxxxxxxxx Load register (literal)

 xx01 - 1xx0xxxxxxxxx01 Memory Copy and Memory Set

 xx10 - 00xxxxxxxxxxxxx Load/store no-allocate pair (offset)

 xx10 - 01xxxxxxxxxxxxx Load/store register pair (post-indexed)

 xx10 - 10xxxxxxxxxxxxx Load/store register pair (offset)

 xx10 - 11xxxxxxxxxxxxx Load/store register pair (pre-indexed)

 xx11 - 0xx0xxxxxxxxx00 Load/store register (unscaled immediate)

 xx11 - 0xx0xxxxxxxxx01 Load/store register (immediate post-indexed)

 xx11 - 0xx0xxxxxxxxx10 Load/store register (unprivileged)

Table C4-95 Encoding table for the Loads and Stores group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-759
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.1 Compare and swap pair

This section describes the encoding of the Compare and swap pair instruction class. The encodings in this section
are decoded from Loads and Stores.

C4.1.94.2 Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Loads and Stores.

 xx11 - 0xx0xxxxxxxxx11 Load/store register (immediate pre-indexed)

 xx11 - 0xx1xxxxxxxxx00 Atomic memory operations

 xx11 - 0xx1xxxxxxxxx10 Load/store register (register offset)

 xx11 - 0xx1xxxxxxxxxx1 Load/store register (pac)

 xx11 - 1xxxxxxxxxxxxxx Load/store register (unsigned immediate)

Table C4-95 Encoding table for the Loads and Stores group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2

Decode fields
Instruction page Feature

sz L o0 Rt2

- - - != 11111 Unallocated. -

0 0 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASP variant FEAT_LSE

0 0 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPL variant FEAT_LSE

0 1 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPA variant FEAT_LSE

0 1 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPAL variant FEAT_LSE

1 0 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant FEAT_LSE

1 0 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPL variant FEAT_LSE

1 1 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPA variant FEAT_LSE

1 1 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPAL variant FEAT_LSE

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-760
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page

L opcode

0 0000 ST4 (multiple structures)

0 0001 Unallocated.

0 0010 ST1 (multiple structures) - Four registers variant

0 0011 Unallocated.

0 0100 ST3 (multiple structures)

0 0101 Unallocated.

0 0110 ST1 (multiple structures) - Three registers variant

0 0111 ST1 (multiple structures) - One register variant

0 1000 ST2 (multiple structures)

0 1001 Unallocated.

0 1010 ST1 (multiple structures) - Two registers variant

0 1011 Unallocated.

0 11xx Unallocated.

1 0000 LD4 (multiple structures)

1 0001 Unallocated.

1 0010 LD1 (multiple structures) - Four registers variant

1 0011 Unallocated.

1 0100 LD3 (multiple structures)

1 0101 Unallocated.

1 0110 LD1 (multiple structures) - Three registers variant

1 0111 LD1 (multiple structures) - One register variant

1 1000 LD2 (multiple structures)

1 1001 Unallocated.

1 1010 LD1 (multiple structures) - Two registers variant

1 1011 Unallocated.

1 11xx Unallocated.

0 Q 0 0 1 1 0 0 0 L 0 0 0 0 0 0 opcode size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-761
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.3 Advanced SIMD load/store multiple structures (post-indexed)

This section describes the encoding of the Advanced SIMD load/store multiple structures (post-indexed) instruction
class. The encodings in this section are decoded from Loads and Stores.

Decode fields
Instruction page

L Rm opcode

0 - 0001 Unallocated.

0 - 0011 Unallocated.

0 - 0101 Unallocated.

0 - 1001 Unallocated.

0 - 1011 Unallocated.

0 - 11xx Unallocated.

0 != 11111 0000 ST4 (multiple structures) - Register offset variant

0 != 11111 0010 ST1 (multiple structures) - Four registers, register offset variant

0 != 11111 0100 ST3 (multiple structures) - Register offset variant

0 != 11111 0110 ST1 (multiple structures) - Three registers, register offset variant

0 != 11111 0111 ST1 (multiple structures) - One register, register offset variant

0 != 11111 1000 ST2 (multiple structures) - Register offset variant

0 != 11111 1010 ST1 (multiple structures) - Two registers, register offset variant

0 11111 0000 ST4 (multiple structures) - Immediate offset variant

0 11111 0010 ST1 (multiple structures) - Four registers, immediate offset variant

0 11111 0100 ST3 (multiple structures) - Immediate offset variant

0 11111 0110 ST1 (multiple structures) - Three registers, immediate offset variant

0 11111 0111 ST1 (multiple structures) - One register, immediate offset variant

0 11111 1000 ST2 (multiple structures) - Immediate offset variant

0 11111 1010 ST1 (multiple structures) - Two registers, immediate offset variant

1 - 0001 Unallocated.

1 - 0011 Unallocated.

1 - 0101 Unallocated.

1 - 1001 Unallocated.

1 - 1011 Unallocated.

1 - 11xx Unallocated.

0 Q 0 0 1 1 0 0 1 L 0 Rm opcode size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-762
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.4 Advanced SIMD load/store single structure

This section describes the encoding of the Advanced SIMD load/store single structure instruction class. The
encodings in this section are decoded from Loads and Stores.

1 != 11111 0000 LD4 (multiple structures) - Register offset variant

1 != 11111 0010 LD1 (multiple structures) - Four registers, register offset variant

1 != 11111 0100 LD3 (multiple structures) - Register offset variant

1 != 11111 0110 LD1 (multiple structures) - Three registers, register offset variant

1 != 11111 0111 LD1 (multiple structures) - One register, register offset variant

1 != 11111 1000 LD2 (multiple structures) - Register offset variant

1 != 11111 1010 LD1 (multiple structures) - Two registers, register offset variant

1 11111 0000 LD4 (multiple structures) - Immediate offset variant

1 11111 0010 LD1 (multiple structures) - Four registers, immediate offset variant

1 11111 0100 LD3 (multiple structures) - Immediate offset variant

1 11111 0110 LD1 (multiple structures) - Three registers, immediate offset variant

1 11111 0111 LD1 (multiple structures) - One register, immediate offset variant

1 11111 1000 LD2 (multiple structures) - Immediate offset variant

1 11111 1010 LD1 (multiple structures) - Two registers, immediate offset variant

Decode fields
Instruction page Feature

L R o2 opcode S size

- 0 1 x00 0 00 Unallocated. -

- 0 1 x00 0 1x Unallocated. -

- 0 1 x00 1 - Unallocated. -

- 0 1 x01 - - Unallocated. -

- 0 1 x1x - - Unallocated. -

- 1 1 - - - Unallocated. -

0 - 0 11x - - Unallocated. -

0 0 0 000 - - ST1 (single structure) - 8-bit variant -

0 0 0 001 - - ST3 (single structure) - 8-bit variant -

Decode fields
Instruction page

L Rm opcode

0 Q 0 0 1 1 0 1 0 L R 0 0 0 0 o2 opcode S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-763
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 0 0 010 - x0 ST1 (single structure) - 16-bit variant -

0 0 0 010 - x1 Unallocated. -

0 0 0 011 - x0 ST3 (single structure) - 16-bit variant -

0 0 0 011 - x1 Unallocated. -

0 0 0 100 - 00 ST1 (single structure) - 32-bit variant -

0 0 0 100 - 1x Unallocated. -

0 0 0 100 0 01 ST1 (single structure) - 64-bit variant -

0 0 0 100 1 01 Unallocated. -

0 0 0 101 - 00 ST3 (single structure) - 32-bit variant -

0 0 0 101 - 10 Unallocated. -

0 0 0 101 0 01 ST3 (single structure) - 64-bit variant -

0 0 0 101 0 11 Unallocated. -

0 0 0 101 1 x1 Unallocated. -

0 0 1 100 0 01 STL1 (SIMD&FP) FEAT_LRCPC3

0 1 0 000 - - ST2 (single structure) - 8-bit variant -

0 1 0 001 - - ST4 (single structure) - 8-bit variant -

0 1 0 010 - x0 ST2 (single structure) - 16-bit variant -

0 1 0 010 - x1 Unallocated. -

0 1 0 011 - x0 ST4 (single structure) - 16-bit variant -

0 1 0 011 - x1 Unallocated. -

0 1 0 100 - 00 ST2 (single structure) - 32-bit variant -

0 1 0 100 - 10 Unallocated. -

0 1 0 100 0 01 ST2 (single structure) - 64-bit variant -

0 1 0 100 0 11 Unallocated. -

0 1 0 100 1 x1 Unallocated. -

0 1 0 101 - 00 ST4 (single structure) - 32-bit variant -

0 1 0 101 - 10 Unallocated. -

0 1 0 101 0 01 ST4 (single structure) - 64-bit variant -

0 1 0 101 0 11 Unallocated. -

0 1 0 101 1 x1 Unallocated. -

1 0 0 000 - - LD1 (single structure) - 8-bit variant -

1 0 0 001 - - LD3 (single structure) - 8-bit variant -

Decode fields
Instruction page Feature

L R o2 opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-764
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
1 0 0 010 - x0 LD1 (single structure) - 16-bit variant -

1 0 0 010 - x1 Unallocated. -

1 0 0 011 - x0 LD3 (single structure) - 16-bit variant -

1 0 0 011 - x1 Unallocated. -

1 0 0 100 - 00 LD1 (single structure) - 32-bit variant -

1 0 0 100 - 1x Unallocated. -

1 0 0 100 0 01 LD1 (single structure) - 64-bit variant -

1 0 0 100 1 01 Unallocated. -

1 0 0 101 - 00 LD3 (single structure) - 32-bit variant -

1 0 0 101 - 10 Unallocated. -

1 0 0 101 0 01 LD3 (single structure) - 64-bit variant -

1 0 0 101 0 11 Unallocated. -

1 0 0 101 1 x1 Unallocated. -

1 0 0 110 0 - LD1R -

1 0 0 110 1 - Unallocated. -

1 0 0 111 0 - LD3R -

1 0 0 111 1 - Unallocated. -

1 0 1 100 0 01 LDAP1 (SIMD&FP) FEAT_LRCPC3

1 1 0 000 - - LD2 (single structure) - 8-bit variant -

1 1 0 001 - - LD4 (single structure) - 8-bit variant -

1 1 0 010 - x0 LD2 (single structure) - 16-bit variant -

1 1 0 010 - x1 Unallocated. -

1 1 0 011 - x0 LD4 (single structure) - 16-bit variant -

1 1 0 011 - x1 Unallocated. -

1 1 0 100 - 00 LD2 (single structure) - 32-bit variant -

1 1 0 100 - 10 Unallocated. -

1 1 0 100 0 01 LD2 (single structure) - 64-bit variant -

1 1 0 100 0 11 Unallocated. -

1 1 0 100 1 x1 Unallocated. -

1 1 0 101 - 00 LD4 (single structure) - 32-bit variant -

1 1 0 101 - 10 Unallocated. -

1 1 0 101 0 01 LD4 (single structure) - 64-bit variant -

Decode fields
Instruction page Feature

L R o2 opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-765
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.5 Advanced SIMD load/store single structure (post-indexed)

This section describes the encoding of the Advanced SIMD load/store single structure (post-indexed) instruction
class. The encodings in this section are decoded from Loads and Stores.

1 1 0 101 0 11 Unallocated. -

1 1 0 101 1 x1 Unallocated. -

1 1 0 110 0 - LD2R -

1 1 0 110 1 - Unallocated. -

1 1 0 111 0 - LD4R -

1 1 0 111 1 - Unallocated. -

Decode fields
Instruction page

L R Rm opcode S size

0 - - 11x - - Unallocated.

0 0 - 010 - x1 Unallocated.

0 0 - 011 - x1 Unallocated.

0 0 - 100 - 1x Unallocated.

0 0 - 100 1 01 Unallocated.

0 0 - 101 - 10 Unallocated.

0 0 - 101 0 11 Unallocated.

0 0 - 101 1 x1 Unallocated.

0 0 != 11111 000 - - ST1 (single structure) - 8-bit, register offset variant

0 0 != 11111 001 - - ST3 (single structure) - 8-bit, register offset variant

0 0 != 11111 010 - x0 ST1 (single structure) - 16-bit, register offset variant

0 0 != 11111 011 - x0 ST3 (single structure) - 16-bit, register offset variant

0 0 != 11111 100 - 00 ST1 (single structure) - 32-bit, register offset variant

0 0 != 11111 100 0 01 ST1 (single structure) - 64-bit, register offset variant

0 0 != 11111 101 - 00 ST3 (single structure) - 32-bit, register offset variant

0 0 != 11111 101 0 01 ST3 (single structure) - 64-bit, register offset variant

0 0 11111 000 - - ST1 (single structure) - 8-bit, immediate offset variant

Decode fields
Instruction page Feature

L R o2 opcode S size

0 Q 0 0 1 1 0 1 1 L R Rm opcode S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-766
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 0 11111 001 - - ST3 (single structure) - 8-bit, immediate offset variant

0 0 11111 010 - x0 ST1 (single structure) - 16-bit, immediate offset variant

0 0 11111 011 - x0 ST3 (single structure) - 16-bit, immediate offset variant

0 0 11111 100 - 00 ST1 (single structure) - 32-bit, immediate offset variant

0 0 11111 100 0 01 ST1 (single structure) - 64-bit, immediate offset variant

0 0 11111 101 - 00 ST3 (single structure) - 32-bit, immediate offset variant

0 0 11111 101 0 01 ST3 (single structure) - 64-bit, immediate offset variant

0 1 - 010 - x1 Unallocated.

0 1 - 011 - x1 Unallocated.

0 1 - 100 - 10 Unallocated.

0 1 - 100 0 11 Unallocated.

0 1 - 100 1 x1 Unallocated.

0 1 - 101 - 10 Unallocated.

0 1 - 101 0 11 Unallocated.

0 1 - 101 1 x1 Unallocated.

0 1 != 11111 000 - - ST2 (single structure) - 8-bit, register offset variant

0 1 != 11111 001 - - ST4 (single structure) - 8-bit, register offset variant

0 1 != 11111 010 - x0 ST2 (single structure) - 16-bit, register offset variant

0 1 != 11111 011 - x0 ST4 (single structure) - 16-bit, register offset variant

0 1 != 11111 100 - 00 ST2 (single structure) - 32-bit, register offset variant

0 1 != 11111 100 0 01 ST2 (single structure) - 64-bit, register offset variant

0 1 != 11111 101 - 00 ST4 (single structure) - 32-bit, register offset variant

0 1 != 11111 101 0 01 ST4 (single structure) - 64-bit, register offset variant

0 1 11111 000 - - ST2 (single structure) - 8-bit, immediate offset variant

0 1 11111 001 - - ST4 (single structure) - 8-bit, immediate offset variant

0 1 11111 010 - x0 ST2 (single structure) - 16-bit, immediate offset variant

0 1 11111 011 - x0 ST4 (single structure) - 16-bit, immediate offset variant

0 1 11111 100 - 00 ST2 (single structure) - 32-bit, immediate offset variant

0 1 11111 100 0 01 ST2 (single structure) - 64-bit, immediate offset variant

0 1 11111 101 - 00 ST4 (single structure) - 32-bit, immediate offset variant

0 1 11111 101 0 01 ST4 (single structure) - 64-bit, immediate offset variant

1 0 - 010 - x1 Unallocated.

Decode fields
Instruction page

L R Rm opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-767
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
1 0 - 011 - x1 Unallocated.

1 0 - 100 - 1x Unallocated.

1 0 - 100 1 01 Unallocated.

1 0 - 101 - 10 Unallocated.

1 0 - 101 0 11 Unallocated.

1 0 - 101 1 x1 Unallocated.

1 0 - 110 1 - Unallocated.

1 0 - 111 1 - Unallocated.

1 0 != 11111 000 - - LD1 (single structure) - 8-bit, register offset variant

1 0 != 11111 001 - - LD3 (single structure) - 8-bit, register offset variant

1 0 != 11111 010 - x0 LD1 (single structure) - 16-bit, register offset variant

1 0 != 11111 011 - x0 LD3 (single structure) - 16-bit, register offset variant

1 0 != 11111 100 - 00 LD1 (single structure) - 32-bit, register offset variant

1 0 != 11111 100 0 01 LD1 (single structure) - 64-bit, register offset variant

1 0 != 11111 101 - 00 LD3 (single structure) - 32-bit, register offset variant

1 0 != 11111 101 0 01 LD3 (single structure) - 64-bit, register offset variant

1 0 != 11111 110 0 - LD1R - Register offset variant

1 0 != 11111 111 0 - LD3R - Register offset variant

1 0 11111 000 - - LD1 (single structure) - 8-bit, immediate offset variant

1 0 11111 001 - - LD3 (single structure) - 8-bit, immediate offset variant

1 0 11111 010 - x0 LD1 (single structure) - 16-bit, immediate offset variant

1 0 11111 011 - x0 LD3 (single structure) - 16-bit, immediate offset variant

1 0 11111 100 - 00 LD1 (single structure) - 32-bit, immediate offset variant

1 0 11111 100 0 01 LD1 (single structure) - 64-bit, immediate offset variant

1 0 11111 101 - 00 LD3 (single structure) - 32-bit, immediate offset variant

1 0 11111 101 0 01 LD3 (single structure) - 64-bit, immediate offset variant

1 0 11111 110 0 - LD1R - Immediate offset variant

1 0 11111 111 0 - LD3R - Immediate offset variant

1 1 - 010 - x1 Unallocated.

1 1 - 011 - x1 Unallocated.

1 1 - 100 - 10 Unallocated.

1 1 - 100 0 11 Unallocated.

Decode fields
Instruction page

L R Rm opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-768
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.6 RCW compare and swap

This section describes the encoding of the RCW compare and swap instruction class. The encodings in this section
are decoded from Loads and Stores.

1 1 - 100 1 x1 Unallocated.

1 1 - 101 - 10 Unallocated.

1 1 - 101 0 11 Unallocated.

1 1 - 101 1 x1 Unallocated.

1 1 - 110 1 - Unallocated.

1 1 - 111 1 - Unallocated.

1 1 != 11111 000 - - LD2 (single structure) - 8-bit, register offset variant

1 1 != 11111 001 - - LD4 (single structure) - 8-bit, register offset variant

1 1 != 11111 010 - x0 LD2 (single structure) - 16-bit, register offset variant

1 1 != 11111 011 - x0 LD4 (single structure) - 16-bit, register offset variant

1 1 != 11111 100 - 00 LD2 (single structure) - 32-bit, register offset variant

1 1 != 11111 100 0 01 LD2 (single structure) - 64-bit, register offset variant

1 1 != 11111 101 - 00 LD4 (single structure) - 32-bit, register offset variant

1 1 != 11111 101 0 01 LD4 (single structure) - 64-bit, register offset variant

1 1 != 11111 110 0 - LD2R - Register offset variant

1 1 != 11111 111 0 - LD4R - Register offset variant

1 1 11111 000 - - LD2 (single structure) - 8-bit, immediate offset variant

1 1 11111 001 - - LD4 (single structure) - 8-bit, immediate offset variant

1 1 11111 010 - x0 LD2 (single structure) - 16-bit, immediate offset variant

1 1 11111 011 - x0 LD4 (single structure) - 16-bit, immediate offset variant

1 1 11111 100 - 00 LD2 (single structure) - 32-bit, immediate offset variant

1 1 11111 100 0 01 LD2 (single structure) - 64-bit, immediate offset variant

1 1 11111 101 - 00 LD4 (single structure) - 32-bit, immediate offset variant

1 1 11111 101 0 01 LD4 (single structure) - 64-bit, immediate offset variant

1 1 11111 110 0 - LD2R - Immediate offset variant

1 1 11111 111 0 - LD4R - Immediate offset variant

Decode fields
Instruction page

L R Rm opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-769
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.7 RCW compare and swap pair

This section describes the encoding of the RCW compare and swap pair instruction class. The encodings in this
section are decoded from Loads and Stores.

0 S 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

S A R

0 0 0 RCWCAS, RCWCASA, RCWCASL, RCWCASAL - RCWCAS variant FEAT_THE

0 0 1 RCWCAS, RCWCASA, RCWCASL, RCWCASAL - RCWCASL variant FEAT_THE

0 1 0 RCWCAS, RCWCASA, RCWCASL, RCWCASAL - RCWCASA variant FEAT_THE

0 1 1 RCWCAS, RCWCASA, RCWCASL, RCWCASAL - RCWCASAL variant FEAT_THE

1 0 0 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL - RCWSCAS variant FEAT_THE

1 0 1 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL - RCWSCASL variant FEAT_THE

1 1 0 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL - RCWSCASA variant FEAT_THE

1 1 1 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL - RCWSCASAL variant FEAT_THE

0 S 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Decode
fields

Instruction page Feature

S A R

0 0 0 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL - RCWCASP variant FEAT_D128 &&
FEAT_THE

0 0 1 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL - RCWCASPL variant FEAT_D128 &&
FEAT_THE

0 1 0 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL - RCWCASPA variant FEAT_D128 &&
FEAT_THE

0 1 1 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL - RCWCASPAL variant FEAT_D128 &&
FEAT_THE

1 0 0 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL - RCWSCASP
variant

FEAT_D128 &&
FEAT_THE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-770
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.8 128-bit atomic memory operations

This section describes the encoding of the 128-bit atomic memory operations instruction class. The encodings in
this section are decoded from Loads and Stores.

1 0 1 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL - RCWSCASPL
variant

FEAT_D128 &&
FEAT_THE

1 1 0 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL - RCWSCASPA
variant

FEAT_D128 &&
FEAT_THE

1 1 1 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL - RCWSCASPAL
variant

FEAT_D128 &&
FEAT_THE

Decode
fields

Instruction page Feature

S A R

0 S 0 1 1 0 0 1 A R 1 Rt2 o3 opc 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

S A R o3 opc

0 - - - 1xx Unallocated. -

0 - - 0 0x0 Unallocated. -

0 0 0 0 001 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL - LDCLRP variant FEAT_LSE128

0 0 0 0 011 LDSETP, LDSETPA, LDSETPAL, LDSETPL - LDSETP variant FEAT_LSE128

0 0 0 1 000 SWPP, SWPPA, SWPPAL, SWPPL - SWPP variant FEAT_LSE128

0 0 0 1 001 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL - RCWCLRP
variant

FEAT_D128 &&
FEAT_THE

0 0 0 1 010 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL - RCWSWPP
variant

FEAT_D128 &&
FEAT_THE

0 0 0 1 011 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL - RCWSETP variant FEAT_D128 &&
FEAT_THE

0 0 1 0 001 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL - LDCLRPL variant FEAT_LSE128

0 0 1 0 011 LDSETP, LDSETPA, LDSETPAL, LDSETPL - LDSETPL variant FEAT_LSE128

0 0 1 1 000 SWPP, SWPPA, SWPPAL, SWPPL - SWPPL variant FEAT_LSE128

0 0 1 1 001 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL - RCWCLRPL
variant

FEAT_D128 &&
FEAT_THE

0 0 1 1 010 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL - RCWSWPPL
variant

FEAT_D128 &&
FEAT_THE

0 0 1 1 011 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL - RCWSETPL
variant

FEAT_D128 &&
FEAT_THE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-771
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 1 0 0 001 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL - LDCLRPA variant FEAT_LSE128

0 1 0 0 011 LDSETP, LDSETPA, LDSETPAL, LDSETPL - LDSETPA variant FEAT_LSE128

0 1 0 1 000 SWPP, SWPPA, SWPPAL, SWPPL - SWPPA variant FEAT_LSE128

0 1 0 1 001 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL - RCWCLRPA
variant

FEAT_D128 &&
FEAT_THE

0 1 0 1 010 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL - RCWSWPPA
variant

FEAT_D128 &&
FEAT_THE

0 1 0 1 011 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL - RCWSETPA
variant

FEAT_D128 &&
FEAT_THE

0 1 1 0 001 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL - LDCLRPAL variant FEAT_LSE128

0 1 1 0 011 LDSETP, LDSETPA, LDSETPAL, LDSETPL - LDSETPAL variant FEAT_LSE128

0 1 1 1 000 SWPP, SWPPA, SWPPAL, SWPPL - SWPPAL variant FEAT_LSE128

0 1 1 1 001 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL - RCWCLRPAL
variant

FEAT_D128 &&
FEAT_THE

0 1 1 1 010 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL - RCWSWPPAL
variant

FEAT_D128 &&
FEAT_THE

0 1 1 1 011 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL - RCWSETPAL
variant

FEAT_D128 &&
FEAT_THE

1 - - 0 - Unallocated. -

1 - - 1 000 Unallocated. -

1 - - 1 1xx Unallocated. -

1 0 0 1 001 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL -
RCWSCLRP variant

FEAT_D128 &&
FEAT_THE

1 0 0 1 010 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL -
RCWSSWPP variant

FEAT_D128 &&
FEAT_THE

1 0 0 1 011 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL - RCWSSETP
variant

FEAT_D128 &&
FEAT_THE

1 0 1 1 001 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL -
RCWSCLRPL variant

FEAT_D128 &&
FEAT_THE

1 0 1 1 010 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL -
RCWSSWPPL variant

FEAT_D128 &&
FEAT_THE

1 0 1 1 011 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL -
RCWSSETPL variant

FEAT_D128 &&
FEAT_THE

1 1 0 1 001 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL -
RCWSCLRPA variant

FEAT_D128 &&
FEAT_THE

1 1 0 1 010 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL -
RCWSSWPPA variant

FEAT_D128 &&
FEAT_THE

Decode fields
Instruction page Feature

S A R o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-772
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.9 GCS load/store

This section describes the encoding of the GCS load/store instruction class. The encodings in this section are
decoded from Loads and Stores.

C4.1.94.10 Load/store memory tags

This section describes the encoding of the Load/store memory tags instruction class. The encodings in this section
are decoded from Loads and Stores.

1 1 0 1 011 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL -
RCWSSETPA variant

FEAT_D128 &&
FEAT_THE

1 1 1 1 001 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL -
RCWSCLRPAL variant

FEAT_D128 &&
FEAT_THE

1 1 1 1 010 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL -
RCWSSWPPAL variant

FEAT_D128 &&
FEAT_THE

1 1 1 1 011 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL -
RCWSSETPAL variant

FEAT_D128 &&
FEAT_THE

Decode fields
Instruction page Feature

S A R o3 opc

Decode fields
Instruction page Feature

opc

000 GCSSTR FEAT_GCS

001 GCSSTTR FEAT_GCS

01x Unallocated. -

1xx Unallocated. -

Decode fields
Instruction page Feature

opc imm9 op2

00 - 01 STG - Encoding FEAT_MTE

00 - 10 STG - Encoding FEAT_MTE

00 - 11 STG - Encoding FEAT_MTE

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 opc 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 opc 1 imm9 op2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-773
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.11 Load/store exclusive pair

This section describes the encoding of the Load/store exclusive pair instruction class. The encodings in this section
are decoded from Loads and Stores.

00 000000000 00 STZGM FEAT_MTE2

01 - 00 LDG FEAT_MTE

01 - 01 STZG - Encoding FEAT_MTE

01 - 10 STZG - Encoding FEAT_MTE

01 - 11 STZG - Encoding FEAT_MTE

10 - 01 ST2G - Encoding FEAT_MTE

10 - 10 ST2G - Encoding FEAT_MTE

10 - 11 ST2G - Encoding FEAT_MTE

10 != 000000000 00 Unallocated. -

10 000000000 00 STGM FEAT_MTE2

11 - 01 STZ2G - Encoding FEAT_MTE

11 - 10 STZ2G - Encoding FEAT_MTE

11 - 11 STZ2G - Encoding FEAT_MTE

11 != 000000000 00 Unallocated. -

11 000000000 00 LDGM FEAT_MTE2

Decode fields
Instruction page

sz L o0

0 0 0 STXP - 32-bit variant

0 0 1 STLXP - 32-bit variant

0 1 0 LDXP - 32-bit variant

0 1 1 LDAXP - 32-bit variant

1 0 0 STXP - 64-bit variant

1 0 1 STLXP - 64-bit variant

1 1 0 LDXP - 64-bit variant

1 1 1 LDAXP - 64-bit variant

Decode fields
Instruction page Feature

opc imm9 op2

1 sz 0 0 1 0 0 0 0 L 1 Rs o0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-774
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.12 Load/store exclusive register

This section describes the encoding of the Load/store exclusive register instruction class. The encodings in this
section are decoded from Loads and Stores.

C4.1.94.13 Load/store ordered

This section describes the encoding of the Load/store ordered instruction class. The encodings in this section are
decoded from Loads and Stores.

Decode fields
Instruction page

size L o0

00 0 0 STXRB

00 0 1 STLXRB

00 1 0 LDXRB

00 1 1 LDAXRB

01 0 0 STXRH

01 0 1 STLXRH

01 1 0 LDXRH

01 1 1 LDAXRH

10 0 0 STXR - 32-bit variant

10 0 1 STLXR - 32-bit variant

10 1 0 LDXR - 32-bit variant

10 1 1 LDAXR - 32-bit variant

11 0 0 STXR - 64-bit variant

11 0 1 STLXR - 64-bit variant

11 1 0 LDXR - 64-bit variant

11 1 1 LDAXR - 64-bit variant

size 0 0 1 0 0 0 0 L 0 Rs o0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-775
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.14 Compare and swap

This section describes the encoding of the Compare and swap instruction class. The encodings in this section are
decoded from Loads and Stores.

Decode fields
Instruction page Feature

size L o0

00 0 0 STLLRB FEAT_LOR

00 0 1 STLRB -

00 1 0 LDLARB FEAT_LOR

00 1 1 LDARB -

01 0 0 STLLRH FEAT_LOR

01 0 1 STLRH -

01 1 0 LDLARH FEAT_LOR

01 1 1 LDARH -

10 0 0 STLLR - 32-bit variant FEAT_LOR

10 0 1 STLR - 32-bit variant -

10 1 0 LDLAR - 32-bit variant FEAT_LOR

10 1 1 LDAR - 32-bit variant -

11 0 0 STLLR - 64-bit variant FEAT_LOR

11 0 1 STLR - 64-bit variant -

11 1 0 LDLAR - 64-bit variant FEAT_LOR

11 1 1 LDAR - 64-bit variant -

Decode fields
Instruction page Feature

size L o0 Rt2

- - - != 11111 Unallocated. -

00 0 0 11111 CASB, CASAB, CASALB, CASLB - CASB variant FEAT_LSE

00 0 1 11111 CASB, CASAB, CASALB, CASLB - CASLB variant FEAT_LSE

size 0 0 1 0 0 0 1 L 0 Rs o0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size 0 0 1 0 0 0 1 L 1 Rs o0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-776
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.15 LDIAPP/STILP

This section describes the encoding of the LDIAPP/STILP instruction class. The encodings in this section are
decoded from Loads and Stores.

00 1 0 11111 CASB, CASAB, CASALB, CASLB - CASAB variant FEAT_LSE

00 1 1 11111 CASB, CASAB, CASALB, CASLB - CASALB variant FEAT_LSE

01 0 0 11111 CASH, CASAH, CASALH, CASLH - CASH variant FEAT_LSE

01 0 1 11111 CASH, CASAH, CASALH, CASLH - CASLH variant FEAT_LSE

01 1 0 11111 CASH, CASAH, CASALH, CASLH - CASAH variant FEAT_LSE

01 1 1 11111 CASH, CASAH, CASALH, CASLH - CASALH variant FEAT_LSE

10 0 0 11111 CAS, CASA, CASAL, CASL - 32-bit CAS variant FEAT_LSE

10 0 1 11111 CAS, CASA, CASAL, CASL - 32-bit CASL variant FEAT_LSE

10 1 0 11111 CAS, CASA, CASAL, CASL - 32-bit CASA variant FEAT_LSE

10 1 1 11111 CAS, CASA, CASAL, CASL - 32-bit CASAL variant FEAT_LSE

11 0 0 11111 CAS, CASA, CASAL, CASL - 64-bit CAS variant FEAT_LSE

11 0 1 11111 CAS, CASA, CASAL, CASL - 64-bit CASL variant FEAT_LSE

11 1 0 11111 CAS, CASA, CASAL, CASL - 64-bit CASA variant FEAT_LSE

11 1 1 11111 CAS, CASA, CASAL, CASL - 64-bit CASAL variant FEAT_LSE

Decode fields
Instruction page Feature

size L opc2

0x - - Unallocated. -

1x - 001x Unallocated. -

1x - 01xx Unallocated. -

1x - 1xxx Unallocated. -

10 0 0000 STILP - 32-bit pre-index variant FEAT_LRCPC3

10 0 0001 STILP - 32-bit variant FEAT_LRCPC3

10 1 0000 LDIAPP - 32-bit post-index variant FEAT_LRCPC3

10 1 0001 LDIAPP - 32-bit variant FEAT_LRCPC3

11 0 0000 STILP - 64-bit pre-index variant FEAT_LRCPC3

Decode fields
Instruction page Feature

size L o0 Rt2

size 0 1 1 0 0 1 0 L 0 Rt2 opc2 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-777
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.16 LDAPR/STLR (writeback)

This section describes the encoding of the LDAPR/STLR (writeback) instruction class. The encodings in this
section are decoded from Loads and Stores.

C4.1.94.17 LDAPR/STLR (unscaled immediate)

This section describes the encoding of the LDAPR/STLR (unscaled immediate) instruction class. The encodings in
this section are decoded from Loads and Stores.

11 0 0001 STILP - 64-bit variant FEAT_LRCPC3

11 1 0000 LDIAPP - 64-bit post-index variant FEAT_LRCPC3

11 1 0001 LDIAPP - 64-bit variant FEAT_LRCPC3

Decode fields
Instruction page Feature

size L

0x - Unallocated. -

10 0 STLR - 32-bit variant FEAT_LRCPC3

10 1 LDAPR - 32-bit variant FEAT_LRCPC3

11 0 STLR - 64-bit variant FEAT_LRCPC3

11 1 LDAPR - 64-bit variant FEAT_LRCPC3

Decode fields
Instruction page Feature

size opc

00 00 STLURB FEAT_LRCPC2

00 01 LDAPURB FEAT_LRCPC2

00 10 LDAPURSB - 64-bit variant FEAT_LRCPC2

00 11 LDAPURSB - 32-bit variant FEAT_LRCPC2

01 00 STLURH FEAT_LRCPC2

01 01 LDAPURH FEAT_LRCPC2

Decode fields
Instruction page Feature

size L opc2

size 0 1 1 0 0 1 1 L 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size 0 1 1 0 0 1 opc 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-778
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.18 LDAPR/STLR (SIMD&FP)

This section describes the encoding of the LDAPR/STLR (SIMD&FP) instruction class. The encodings in this
section are decoded from Loads and Stores.

01 10 LDAPURSH - 64-bit variant FEAT_LRCPC2

01 11 LDAPURSH - 32-bit variant FEAT_LRCPC2

1x 11 Unallocated. -

10 00 STLUR - 32-bit variant FEAT_LRCPC2

10 01 LDAPUR - 32-bit variant FEAT_LRCPC2

10 10 LDAPURSW FEAT_LRCPC2

11 00 STLUR - 64-bit variant FEAT_LRCPC2

11 01 LDAPUR - 64-bit variant FEAT_LRCPC2

11 10 Unallocated. -

Decode fields
Instruction page Feature

size opc

00 00 STLUR (SIMD&FP) - 8-bit variant FEAT_LRCPC3

00 01 LDAPUR (SIMD&FP) - 8-bit variant FEAT_LRCPC3

00 10 STLUR (SIMD&FP) - 128-bit variant FEAT_LRCPC3

00 11 LDAPUR (SIMD&FP) - 128-bit variant FEAT_LRCPC3

01 00 STLUR (SIMD&FP) - 16-bit variant FEAT_LRCPC3

01 01 LDAPUR (SIMD&FP) - 16-bit variant FEAT_LRCPC3

01 1x Unallocated. -

1x 1x Unallocated. -

10 00 STLUR (SIMD&FP) - 32-bit variant FEAT_LRCPC3

10 01 LDAPUR (SIMD&FP) - 32-bit variant FEAT_LRCPC3

11 00 STLUR (SIMD&FP) - 64-bit variant FEAT_LRCPC3

11 01 LDAPUR (SIMD&FP) - 64-bit variant FEAT_LRCPC3

Decode fields
Instruction page Feature

size opc

size 0 1 1 1 0 1 opc 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-779
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.19 Load register (literal)

This section describes the encoding of the Load register (literal) instruction class. The encodings in this section are
decoded from Loads and Stores.

C4.1.94.20 Memory Copy and Memory Set

This section describes the encoding of the Memory Copy and Memory Set instruction class. The encodings in this
section are decoded from Loads and Stores.

Decode fields
Instruction page

opc VR

00 0 LDR (literal) - 32-bit variant

00 1 LDR (literal, SIMD&FP) - 32-bit variant

01 0 LDR (literal) - 64-bit variant

01 1 LDR (literal, SIMD&FP) - 64-bit variant

10 0 LDRSW (literal)

10 1 LDR (literal, SIMD&FP) - 128-bit variant

11 0 PRFM (literal)

11 1 Unallocated.

Decode fields
Instruction page Feature

o0 op1 op2

0 00 0000 CPYFP, CPYFM, CPYFE - Prologue variant FEAT_MOPS

0 00 0001 CPYFPWT, CPYFMWT, CPYFEWT - Prologue variant FEAT_MOPS

0 00 0010 CPYFPRT, CPYFMRT, CPYFERT - Prologue variant FEAT_MOPS

0 00 0011 CPYFPT, CPYFMT, CPYFET - Prologue variant FEAT_MOPS

0 00 0100 CPYFPWN, CPYFMWN, CPYFEWN - Prologue variant FEAT_MOPS

0 00 0101 CPYFPWTWN, CPYFMWTWN, CPYFEWTWN - Prologue variant FEAT_MOPS

0 00 0110 CPYFPRTWN, CPYFMRTWN, CPYFERTWN - Prologue variant FEAT_MOPS

0 00 0111 CPYFPTWN, CPYFMTWN, CPYFETWN - Prologue variant FEAT_MOPS

0 00 1000 CPYFPRN, CPYFMRN, CPYFERN - Prologue variant FEAT_MOPS

opc 0 1 1 VR 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

size 0 1 1 o0 0 1 op1 0 Rs op2 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-780
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 00 1001 CPYFPWTRN, CPYFMWTRN, CPYFEWTRN - Prologue variant FEAT_MOPS

0 00 1010 CPYFPRTRN, CPYFMRTRN, CPYFERTRN - Prologue variant FEAT_MOPS

0 00 1011 CPYFPTRN, CPYFMTRN, CPYFETRN - Prologue variant FEAT_MOPS

0 00 1100 CPYFPN, CPYFMN, CPYFEN - Prologue variant FEAT_MOPS

0 00 1101 CPYFPWTN, CPYFMWTN, CPYFEWTN - Prologue variant FEAT_MOPS

0 00 1110 CPYFPRTN, CPYFMRTN, CPYFERTN - Prologue variant FEAT_MOPS

0 00 1111 CPYFPTN, CPYFMTN, CPYFETN - Prologue variant FEAT_MOPS

0 01 0000 CPYFP, CPYFM, CPYFE - Main variant FEAT_MOPS

0 01 0001 CPYFPWT, CPYFMWT, CPYFEWT - Main variant FEAT_MOPS

0 01 0010 CPYFPRT, CPYFMRT, CPYFERT - Main variant FEAT_MOPS

0 01 0011 CPYFPT, CPYFMT, CPYFET - Main variant FEAT_MOPS

0 01 0100 CPYFPWN, CPYFMWN, CPYFEWN - Main variant FEAT_MOPS

0 01 0101 CPYFPWTWN, CPYFMWTWN, CPYFEWTWN - Main variant FEAT_MOPS

0 01 0110 CPYFPRTWN, CPYFMRTWN, CPYFERTWN - Main variant FEAT_MOPS

0 01 0111 CPYFPTWN, CPYFMTWN, CPYFETWN - Main variant FEAT_MOPS

0 01 1000 CPYFPRN, CPYFMRN, CPYFERN - Main variant FEAT_MOPS

0 01 1001 CPYFPWTRN, CPYFMWTRN, CPYFEWTRN - Main variant FEAT_MOPS

0 01 1010 CPYFPRTRN, CPYFMRTRN, CPYFERTRN - Main variant FEAT_MOPS

0 01 1011 CPYFPTRN, CPYFMTRN, CPYFETRN - Main variant FEAT_MOPS

0 01 1100 CPYFPN, CPYFMN, CPYFEN - Main variant FEAT_MOPS

0 01 1101 CPYFPWTN, CPYFMWTN, CPYFEWTN - Main variant FEAT_MOPS

0 01 1110 CPYFPRTN, CPYFMRTN, CPYFERTN - Main variant FEAT_MOPS

0 01 1111 CPYFPTN, CPYFMTN, CPYFETN - Main variant FEAT_MOPS

0 10 0000 CPYFP, CPYFM, CPYFE - Epilogue variant FEAT_MOPS

0 10 0001 CPYFPWT, CPYFMWT, CPYFEWT - Epilogue variant FEAT_MOPS

0 10 0010 CPYFPRT, CPYFMRT, CPYFERT - Epilogue variant FEAT_MOPS

0 10 0011 CPYFPT, CPYFMT, CPYFET - Epilogue variant FEAT_MOPS

0 10 0100 CPYFPWN, CPYFMWN, CPYFEWN - Epilogue variant FEAT_MOPS

0 10 0101 CPYFPWTWN, CPYFMWTWN, CPYFEWTWN - Epilogue variant FEAT_MOPS

0 10 0110 CPYFPRTWN, CPYFMRTWN, CPYFERTWN - Epilogue variant FEAT_MOPS

0 10 0111 CPYFPTWN, CPYFMTWN, CPYFETWN - Epilogue variant FEAT_MOPS

0 10 1000 CPYFPRN, CPYFMRN, CPYFERN - Epilogue variant FEAT_MOPS

Decode fields
Instruction page Feature

o0 op1 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-781
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 10 1001 CPYFPWTRN, CPYFMWTRN, CPYFEWTRN - Epilogue variant FEAT_MOPS

0 10 1010 CPYFPRTRN, CPYFMRTRN, CPYFERTRN - Epilogue variant FEAT_MOPS

0 10 1011 CPYFPTRN, CPYFMTRN, CPYFETRN - Epilogue variant FEAT_MOPS

0 10 1100 CPYFPN, CPYFMN, CPYFEN - Epilogue variant FEAT_MOPS

0 10 1101 CPYFPWTN, CPYFMWTN, CPYFEWTN - Epilogue variant FEAT_MOPS

0 10 1110 CPYFPRTN, CPYFMRTN, CPYFERTN - Epilogue variant FEAT_MOPS

0 10 1111 CPYFPTN, CPYFMTN, CPYFETN - Epilogue variant FEAT_MOPS

0 11 0000 SETP, SETM, SETE - Prologue variant FEAT_MOPS

0 11 0001 SETPT, SETMT, SETET - Prologue variant FEAT_MOPS

0 11 0010 SETPN, SETMN, SETEN - Prologue variant FEAT_MOPS

0 11 0011 SETPTN, SETMTN, SETETN - Prologue variant FEAT_MOPS

0 11 0100 SETP, SETM, SETE - Main variant FEAT_MOPS

0 11 0101 SETPT, SETMT, SETET - Main variant FEAT_MOPS

0 11 0110 SETPN, SETMN, SETEN - Main variant FEAT_MOPS

0 11 0111 SETPTN, SETMTN, SETETN - Main variant FEAT_MOPS

0 11 1000 SETP, SETM, SETE - Epilogue variant FEAT_MOPS

0 11 1001 SETPT, SETMT, SETET - Epilogue variant FEAT_MOPS

0 11 1010 SETPN, SETMN, SETEN - Epilogue variant FEAT_MOPS

0 11 1011 SETPTN, SETMTN, SETETN - Epilogue variant FEAT_MOPS

0 11 11xx Unallocated. -

1 00 0000 CPYP, CPYM, CPYE - Prologue variant FEAT_MOPS

1 00 0001 CPYPWT, CPYMWT, CPYEWT - Prologue variant FEAT_MOPS

1 00 0010 CPYPRT, CPYMRT, CPYERT - Prologue variant FEAT_MOPS

1 00 0011 CPYPT, CPYMT, CPYET - Prologue variant FEAT_MOPS

1 00 0100 CPYPWN, CPYMWN, CPYEWN - Prologue variant FEAT_MOPS

1 00 0101 CPYPWTWN, CPYMWTWN, CPYEWTWN - Prologue variant FEAT_MOPS

1 00 0110 CPYPRTWN, CPYMRTWN, CPYERTWN - Prologue variant FEAT_MOPS

1 00 0111 CPYPTWN, CPYMTWN, CPYETWN - Prologue variant FEAT_MOPS

1 00 1000 CPYPRN, CPYMRN, CPYERN - Prologue variant FEAT_MOPS

1 00 1001 CPYPWTRN, CPYMWTRN, CPYEWTRN - Prologue variant FEAT_MOPS

1 00 1010 CPYPRTRN, CPYMRTRN, CPYERTRN - Prologue variant FEAT_MOPS

1 00 1011 CPYPTRN, CPYMTRN, CPYETRN - Prologue variant FEAT_MOPS

Decode fields
Instruction page Feature

o0 op1 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-782
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
1 00 1100 CPYPN, CPYMN, CPYEN - Prologue variant FEAT_MOPS

1 00 1101 CPYPWTN, CPYMWTN, CPYEWTN - Prologue variant FEAT_MOPS

1 00 1110 CPYPRTN, CPYMRTN, CPYERTN - Prologue variant FEAT_MOPS

1 00 1111 CPYPTN, CPYMTN, CPYETN - Prologue variant FEAT_MOPS

1 01 0000 CPYP, CPYM, CPYE - Main variant FEAT_MOPS

1 01 0001 CPYPWT, CPYMWT, CPYEWT - Main variant FEAT_MOPS

1 01 0010 CPYPRT, CPYMRT, CPYERT - Main variant FEAT_MOPS

1 01 0011 CPYPT, CPYMT, CPYET - Main variant FEAT_MOPS

1 01 0100 CPYPWN, CPYMWN, CPYEWN - Main variant FEAT_MOPS

1 01 0101 CPYPWTWN, CPYMWTWN, CPYEWTWN - Main variant FEAT_MOPS

1 01 0110 CPYPRTWN, CPYMRTWN, CPYERTWN - Main variant FEAT_MOPS

1 01 0111 CPYPTWN, CPYMTWN, CPYETWN - Main variant FEAT_MOPS

1 01 1000 CPYPRN, CPYMRN, CPYERN - Main variant FEAT_MOPS

1 01 1001 CPYPWTRN, CPYMWTRN, CPYEWTRN - Main variant FEAT_MOPS

1 01 1010 CPYPRTRN, CPYMRTRN, CPYERTRN - Main variant FEAT_MOPS

1 01 1011 CPYPTRN, CPYMTRN, CPYETRN - Main variant FEAT_MOPS

1 01 1100 CPYPN, CPYMN, CPYEN - Main variant FEAT_MOPS

1 01 1101 CPYPWTN, CPYMWTN, CPYEWTN - Main variant FEAT_MOPS

1 01 1110 CPYPRTN, CPYMRTN, CPYERTN - Main variant FEAT_MOPS

1 01 1111 CPYPTN, CPYMTN, CPYETN - Main variant FEAT_MOPS

1 10 0000 CPYP, CPYM, CPYE - Epilogue variant FEAT_MOPS

1 10 0001 CPYPWT, CPYMWT, CPYEWT - Epilogue variant FEAT_MOPS

1 10 0010 CPYPRT, CPYMRT, CPYERT - Epilogue variant FEAT_MOPS

1 10 0011 CPYPT, CPYMT, CPYET - Epilogue variant FEAT_MOPS

1 10 0100 CPYPWN, CPYMWN, CPYEWN - Epilogue variant FEAT_MOPS

1 10 0101 CPYPWTWN, CPYMWTWN, CPYEWTWN - Epilogue variant FEAT_MOPS

1 10 0110 CPYPRTWN, CPYMRTWN, CPYERTWN - Epilogue variant FEAT_MOPS

1 10 0111 CPYPTWN, CPYMTWN, CPYETWN - Epilogue variant FEAT_MOPS

1 10 1000 CPYPRN, CPYMRN, CPYERN - Epilogue variant FEAT_MOPS

1 10 1001 CPYPWTRN, CPYMWTRN, CPYEWTRN - Epilogue variant FEAT_MOPS

1 10 1010 CPYPRTRN, CPYMRTRN, CPYERTRN - Epilogue variant FEAT_MOPS

1 10 1011 CPYPTRN, CPYMTRN, CPYETRN - Epilogue variant FEAT_MOPS

Decode fields
Instruction page Feature

o0 op1 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-783
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.21 Load/store no-allocate pair (offset)

This section describes the encoding of the Load/store no-allocate pair (offset) instruction class. The encodings in
this section are decoded from Loads and Stores.

1 10 1100 CPYPN, CPYMN, CPYEN - Epilogue variant FEAT_MOPS

1 10 1101 CPYPWTN, CPYMWTN, CPYEWTN - Epilogue variant FEAT_MOPS

1 10 1110 CPYPRTN, CPYMRTN, CPYERTN - Epilogue variant FEAT_MOPS

1 10 1111 CPYPTN, CPYMTN, CPYETN - Epilogue variant FEAT_MOPS

1 11 0000 SETGP, SETGM, SETGE - Prologue variant FEAT_MOPS

1 11 0001 SETGPT, SETGMT, SETGET - Prologue variant FEAT_MOPS

1 11 0010 SETGPN, SETGMN, SETGEN - Prologue variant FEAT_MOPS

1 11 0011 SETGPTN, SETGMTN, SETGETN - Prologue variant FEAT_MOPS

1 11 0100 SETGP, SETGM, SETGE - Main variant FEAT_MOPS

1 11 0101 SETGPT, SETGMT, SETGET - Main variant FEAT_MOPS

1 11 0110 SETGPN, SETGMN, SETGEN - Main variant FEAT_MOPS

1 11 0111 SETGPTN, SETGMTN, SETGETN - Main variant FEAT_MOPS

1 11 1000 SETGP, SETGM, SETGE - Epilogue variant FEAT_MOPS

1 11 1001 SETGPT, SETGMT, SETGET - Epilogue variant FEAT_MOPS

1 11 1010 SETGPN, SETGMN, SETGEN - Epilogue variant FEAT_MOPS

1 11 1011 SETGPTN, SETGMTN, SETGETN - Epilogue variant FEAT_MOPS

1 11 11xx Unallocated. -

Decode fields
Instruction page

opc VR L

00 0 0 STNP - 32-bit variant

00 0 1 LDNP - 32-bit variant

00 1 0 STNP (SIMD&FP) - 32-bit variant

00 1 1 LDNP (SIMD&FP) - 32-bit variant

01 0 - Unallocated.

01 1 0 STNP (SIMD&FP) - 64-bit variant

Decode fields
Instruction page Feature

o0 op1 op2

opc 1 0 1 VR 0 0 0 L imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-784
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.22 Load/store register pair (post-indexed)

This section describes the encoding of the Load/store register pair (post-indexed) instruction class. The encodings
in this section are decoded from Loads and Stores.

C4.1.94.23 Load/store register pair (offset)

This section describes the encoding of the Load/store register pair (offset) instruction class. The encodings in this
section are decoded from Loads and Stores.

01 1 1 LDNP (SIMD&FP) - 64-bit variant

10 0 0 STNP - 64-bit variant

10 0 1 LDNP - 64-bit variant

10 1 0 STNP (SIMD&FP) - 128-bit variant

10 1 1 LDNP (SIMD&FP) - 128-bit variant

11 - - Unallocated.

Decode fields
Instruction page Feature

opc VR L

00 0 0 STP - 32-bit variant -

00 0 1 LDP - 32-bit variant -

00 1 0 STP (SIMD&FP) - 32-bit variant -

00 1 1 LDP (SIMD&FP) - 32-bit variant -

01 0 0 STGP FEAT_MTE

01 0 1 LDPSW -

01 1 0 STP (SIMD&FP) - 64-bit variant -

01 1 1 LDP (SIMD&FP) - 64-bit variant -

10 0 0 STP - 64-bit variant -

10 0 1 LDP - 64-bit variant -

10 1 0 STP (SIMD&FP) - 128-bit variant -

10 1 1 LDP (SIMD&FP) - 128-bit variant -

11 - - Unallocated. -

Decode fields
Instruction page

opc VR L

opc 1 0 1 VR 0 0 1 L imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-785
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.24 Load/store register pair (pre-indexed)

This section describes the encoding of the Load/store register pair (pre-indexed) instruction class. The encodings in
this section are decoded from Loads and Stores.

Decode fields
Instruction page Feature

opc VR L

00 0 0 STP - 32-bit variant -

00 0 1 LDP - 32-bit variant -

00 1 0 STP (SIMD&FP) - 32-bit variant -

00 1 1 LDP (SIMD&FP) - 32-bit variant -

01 0 0 STGP FEAT_MTE

01 0 1 LDPSW -

01 1 0 STP (SIMD&FP) - 64-bit variant -

01 1 1 LDP (SIMD&FP) - 64-bit variant -

10 0 0 STP - 64-bit variant -

10 0 1 LDP - 64-bit variant -

10 1 0 STP (SIMD&FP) - 128-bit variant -

10 1 1 LDP (SIMD&FP) - 128-bit variant -

11 - - Unallocated. -

Decode fields
Instruction page Feature

opc VR L

00 0 0 STP - 32-bit variant -

00 0 1 LDP - 32-bit variant -

00 1 0 STP (SIMD&FP) - 32-bit variant -

00 1 1 LDP (SIMD&FP) - 32-bit variant -

01 0 0 STGP FEAT_MTE

01 0 1 LDPSW -

opc 1 0 1 VR 0 1 0 L imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc 1 0 1 VR 0 1 1 L imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-786
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.25 Load/store register (unscaled immediate)

This section describes the encoding of the Load/store register (unscaled immediate) instruction class. The encodings
in this section are decoded from Loads and Stores.

01 1 0 STP (SIMD&FP) - 64-bit variant -

01 1 1 LDP (SIMD&FP) - 64-bit variant -

10 0 0 STP - 64-bit variant -

10 0 1 LDP - 64-bit variant -

10 1 0 STP (SIMD&FP) - 128-bit variant -

10 1 1 LDP (SIMD&FP) - 128-bit variant -

11 - - Unallocated. -

Decode fields
Instruction page

size VR opc

x1 1 1x Unallocated.

00 0 00 STURB

00 0 01 LDURB

00 0 10 LDURSB - 64-bit variant

00 0 11 LDURSB - 32-bit variant

00 1 00 STUR (SIMD&FP) - 8-bit variant

00 1 01 LDUR (SIMD&FP) - 8-bit variant

00 1 10 STUR (SIMD&FP) - 128-bit variant

00 1 11 LDUR (SIMD&FP) - 128-bit variant

01 0 00 STURH

01 0 01 LDURH

01 0 10 LDURSH - 64-bit variant

01 0 11 LDURSH - 32-bit variant

01 1 00 STUR (SIMD&FP) - 16-bit variant

01 1 01 LDUR (SIMD&FP) - 16-bit variant

1x 0 11 Unallocated.

Decode fields
Instruction page Feature

opc VR L

size 1 1 1 VR 0 0 opc 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-787
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.26 Load/store register (immediate post-indexed)

This section describes the encoding of the Load/store register (immediate post-indexed) instruction class. The
encodings in this section are decoded from Loads and Stores.

1x 1 1x Unallocated.

10 0 00 STUR - 32-bit variant

10 0 01 LDUR - 32-bit variant

10 0 10 LDURSW

10 1 00 STUR (SIMD&FP) - 32-bit variant

10 1 01 LDUR (SIMD&FP) - 32-bit variant

11 0 00 STUR - 64-bit variant

11 0 01 LDUR - 64-bit variant

11 0 10 PRFUM

11 1 00 STUR (SIMD&FP) - 64-bit variant

11 1 01 LDUR (SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size VR opc

x1 1 1x Unallocated.

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) - 64-bit variant

00 0 11 LDRSB (immediate) - 32-bit variant

00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

00 1 01 LDR (immediate, SIMD&FP) - 8-bit variant

00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant

Decode fields
Instruction page

size VR opc

size 1 1 1 VR 0 0 opc 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-788
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.27 Load/store register (unprivileged)

This section describes the encoding of the Load/store register (unprivileged) instruction class. The encodings in this
section are decoded from Loads and Stores.

01 0 11 LDRSH (immediate) - 32-bit variant

01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

01 1 01 LDR (immediate, SIMD&FP) - 16-bit variant

1x 0 11 Unallocated.

1x 1 1x Unallocated.

10 0 00 STR (immediate) - 32-bit variant

10 0 01 LDR (immediate) - 32-bit variant

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) - 32-bit variant

10 1 01 LDR (immediate, SIMD&FP) - 32-bit variant

11 0 00 STR (immediate) - 64-bit variant

11 0 01 LDR (immediate) - 64-bit variant

11 0 10 Unallocated.

11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

11 1 01 LDR (immediate, SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size VR opc

- 1 - Unallocated.

00 0 00 STTRB

00 0 01 LDTRB

00 0 10 LDTRSB - 64-bit variant

00 0 11 LDTRSB - 32-bit variant

01 0 00 STTRH

01 0 01 LDTRH

01 0 10 LDTRSH - 64-bit variant

Decode fields
Instruction page

size VR opc

size 1 1 1 VR 0 0 opc 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-789
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.28 Load/store register (immediate pre-indexed)

This section describes the encoding of the Load/store register (immediate pre-indexed) instruction class. The
encodings in this section are decoded from Loads and Stores.

01 0 11 LDTRSH - 32-bit variant

1x 0 11 Unallocated.

10 0 00 STTR - 32-bit variant

10 0 01 LDTR - 32-bit variant

10 0 10 LDTRSW

11 0 00 STTR - 64-bit variant

11 0 01 LDTR - 64-bit variant

11 0 10 Unallocated.

Decode fields
Instruction page

size VR opc

x1 1 1x Unallocated.

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) - 64-bit variant

00 0 11 LDRSB (immediate) - 32-bit variant

00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

00 1 01 LDR (immediate, SIMD&FP) - 8-bit variant

00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant

01 0 11 LDRSH (immediate) - 32-bit variant

01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

01 1 01 LDR (immediate, SIMD&FP) - 16-bit variant

Decode fields
Instruction page

size VR opc

size 1 1 1 VR 0 0 opc 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-790
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.29 Atomic memory operations

This section describes the encoding of the Atomic memory operations instruction class. The encodings in this
section are decoded from Loads and Stores.

1x 0 11 Unallocated.

1x 1 1x Unallocated.

10 0 00 STR (immediate) - 32-bit variant

10 0 01 LDR (immediate) - 32-bit variant

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) - 32-bit variant

10 1 01 LDR (immediate, SIMD&FP) - 32-bit variant

11 0 00 STR (immediate) - 64-bit variant

11 0 01 LDR (immediate) - 64-bit variant

11 0 10 Unallocated.

11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

11 1 01 LDR (immediate, SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size VR opc

size 1 1 1 VR 0 0 A R 1 Rs o3 opc 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

size VR A R Rs o3 opc

- 0 - - - 1 11x Unallocated. -

- 0 0 - - 1 100 Unallocated. -

- 0 0 1 - 1 101 Unallocated. -

- 0 1 0 - 1 101 Unallocated. -

- 0 1 1 - 1 100 Unallocated. -

- 0 1 1 - 1 101 Unallocated. -

- 1 - - - - - Unallocated. -

00 0 0 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDB
variant

FEAT_LSE

00 0 0 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRB variant FEAT_LSE

00 0 0 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORB variant FEAT_LSE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-791
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
00 0 0 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETB variant FEAT_LSE

00 0 0 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXB variant

FEAT_LSE

00 0 0 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - LDSMINB
variant

FEAT_LSE

00 0 0 0 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXB variant

FEAT_LSE

00 0 0 0 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINB variant

FEAT_LSE

00 0 0 0 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPB variant FEAT_LSE

00 0 0 0 - 1 001 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL - RCWCLR
variant

FEAT_THE

00 0 0 0 - 1 010 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL - RCWSWP
variant

FEAT_THE

00 0 0 0 - 1 011 RCWSET, RCWSETA, RCWSETL, RCWSETAL - RCWSET variant FEAT_THE

00 0 0 0 - 1 101 Unallocated. -

00 0 0 1 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDLB
variant

FEAT_LSE

00 0 0 1 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRLB
variant

FEAT_LSE

00 0 0 1 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORLB
variant

FEAT_LSE

00 0 0 1 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETLB variant FEAT_LSE

00 0 0 1 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXLB variant

FEAT_LSE

00 0 0 1 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - LDSMINLB
variant

FEAT_LSE

00 0 0 1 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXLB variant

FEAT_LSE

00 0 0 1 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINLB variant

FEAT_LSE

00 0 0 1 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPLB variant FEAT_LSE

00 0 0 1 - 1 001 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL - RCWCLRL
variant

FEAT_THE

00 0 0 1 - 1 010 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL - RCWSWPL
variant

FEAT_THE

00 0 0 1 - 1 011 RCWSET, RCWSETA, RCWSETL, RCWSETAL - RCWSETL
variant

FEAT_THE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-792
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
00 0 1 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDAB
variant

FEAT_LSE

00 0 1 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRAB
variant

FEAT_LSE

00 0 1 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORAB
variant

FEAT_LSE

00 0 1 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETAB variant FEAT_LSE

00 0 1 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXAB variant

FEAT_LSE

00 0 1 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB -
LDSMINAB variant

FEAT_LSE

00 0 1 0 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXAB variant

FEAT_LSE

00 0 1 0 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINAB variant

FEAT_LSE

00 0 1 0 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPAB variant FEAT_LSE

00 0 1 0 - 1 001 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL - RCWCLRA
variant

FEAT_THE

00 0 1 0 - 1 010 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL - RCWSWPA
variant

FEAT_THE

00 0 1 0 - 1 011 RCWSET, RCWSETA, RCWSETL, RCWSETAL - RCWSETA
variant

FEAT_THE

00 0 1 0 - 1 100 LDAPRB FEAT_LRCPC

00 0 1 1 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDALB
variant

FEAT_LSE

00 0 1 1 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRALB
variant

FEAT_LSE

00 0 1 1 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORALB
variant

FEAT_LSE

00 0 1 1 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETALB variant FEAT_LSE

00 0 1 1 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB -
LDSMAXALB variant

FEAT_LSE

00 0 1 1 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB -
LDSMINALB variant

FEAT_LSE

00 0 1 1 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB -
LDUMAXALB variant

FEAT_LSE

00 0 1 1 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB -
LDUMINALB variant

FEAT_LSE

00 0 1 1 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPALB variant FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-793
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
00 0 1 1 - 1 001 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL - RCWCLRAL
variant

FEAT_THE

00 0 1 1 - 1 010 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL - RCWSWPAL
variant

FEAT_THE

00 0 1 1 - 1 011 RCWSET, RCWSETA, RCWSETL, RCWSETAL - RCWSETAL
variant

FEAT_THE

01 0 0 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDH
variant

FEAT_LSE

01 0 0 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRH variant FEAT_LSE

01 0 0 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORH
variant

FEAT_LSE

01 0 0 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETH variant FEAT_LSE

01 0 0 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXH variant

FEAT_LSE

01 0 0 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - LDSMINH
variant

FEAT_LSE

01 0 0 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXH variant

FEAT_LSE

01 0 0 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINH variant

FEAT_LSE

01 0 0 0 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPH variant FEAT_LSE

01 0 0 0 - 1 001 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL -
RCWSCLR variant

FEAT_THE

01 0 0 0 - 1 010 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL -
RCWSSWP variant

FEAT_THE

01 0 0 0 - 1 011 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL - RCWSSET
variant

FEAT_THE

01 0 0 0 - 1 101 Unallocated. -

01 0 0 1 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDLH
variant

FEAT_LSE

01 0 0 1 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRLH
variant

FEAT_LSE

01 0 0 1 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORLH
variant

FEAT_LSE

01 0 0 1 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETLH variant FEAT_LSE

01 0 0 1 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXLH variant

FEAT_LSE

01 0 0 1 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINLH variant

FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-794
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
01 0 0 1 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXLH variant

FEAT_LSE

01 0 0 1 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINLH variant

FEAT_LSE

01 0 0 1 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPLH variant FEAT_LSE

01 0 0 1 - 1 001 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL -
RCWSCLRL variant

FEAT_THE

01 0 0 1 - 1 010 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL -
RCWSSWPL variant

FEAT_THE

01 0 0 1 - 1 011 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL -
RCWSSETL variant

FEAT_THE

01 0 1 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDAH
variant

FEAT_LSE

01 0 1 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRAH
variant

FEAT_LSE

01 0 1 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORAH
variant

FEAT_LSE

01 0 1 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETAH variant FEAT_LSE

01 0 1 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXAH variant

FEAT_LSE

01 0 1 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINAH variant

FEAT_LSE

01 0 1 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXAH variant

FEAT_LSE

01 0 1 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINAH variant

FEAT_LSE

01 0 1 0 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPAH variant FEAT_LSE

01 0 1 0 - 1 001 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL -
RCWSCLRA variant

FEAT_THE

01 0 1 0 - 1 010 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL -
RCWSSWPA variant

FEAT_THE

01 0 1 0 - 1 011 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL -
RCWSSETA variant

FEAT_THE

01 0 1 0 - 1 100 LDAPRH FEAT_LRCPC

01 0 1 1 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDALH
variant

FEAT_LSE

01 0 1 1 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRALH
variant

FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-795
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
01 0 1 1 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORALH
variant

FEAT_LSE

01 0 1 1 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETALH
variant

FEAT_LSE

01 0 1 1 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH -
LDSMAXALH variant

FEAT_LSE

01 0 1 1 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH -
LDSMINALH variant

FEAT_LSE

01 0 1 1 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH -
LDUMAXALH variant

FEAT_LSE

01 0 1 1 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH -
LDUMINALH variant

FEAT_LSE

01 0 1 1 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPALH variant FEAT_LSE

01 0 1 1 - 1 001 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL -
RCWSCLRAL variant

FEAT_THE

01 0 1 1 - 1 010 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL -
RCWSSWPAL variant

FEAT_THE

01 0 1 1 - 1 011 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL -
RCWSSETAL variant

FEAT_THE

1x 0 0 1 - 1 001 Unallocated. -

1x 0 0 1 - 1 010 Unallocated. -

1x 0 0 1 - 1 011 Unallocated. -

1x 0 1 0 - 1 001 Unallocated. -

1x 0 1 0 - 1 010 Unallocated. -

1x 0 1 0 - 1 011 Unallocated. -

1x 0 1 1 - 1 001 Unallocated. -

1x 0 1 1 - 1 010 Unallocated. -

1x 0 1 1 - 1 011 Unallocated. -

10 0 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADD variant FEAT_LSE

10 0 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLR variant FEAT_LSE

10 0 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEOR variant FEAT_LSE

10 0 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSET variant FEAT_LSE

10 0 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAX variant

FEAT_LSE

10 0 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMIN
variant

FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-796
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
10 0 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAX variant

FEAT_LSE

10 0 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit LDUMIN
variant

FEAT_LSE

10 0 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWP variant FEAT_LSE

10 0 0 0 - 1 001 Unallocated. -

10 0 0 0 - 1 010 Unallocated. -

10 0 0 0 - 1 011 Unallocated. -

10 0 0 0 - 1 101 Unallocated. -

10 0 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDL
variant

FEAT_LSE

10 0 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRL variant FEAT_LSE

10 0 0 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORL variant FEAT_LSE

10 0 0 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETL variant FEAT_LSE

10 0 0 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAXL variant

FEAT_LSE

10 0 0 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMINL
variant

FEAT_LSE

10 0 0 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAXL variant

FEAT_LSE

10 0 0 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMINL variant

FEAT_LSE

10 0 0 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPL variant FEAT_LSE

10 0 1 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDA
variant

FEAT_LSE

10 0 1 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRA variant FEAT_LSE

10 0 1 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORA variant FEAT_LSE

10 0 1 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETA variant FEAT_LSE

10 0 1 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAXA variant

FEAT_LSE

10 0 1 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMINA
variant

FEAT_LSE

10 0 1 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAXA variant

FEAT_LSE

10 0 1 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMINA variant

FEAT_LSE

10 0 1 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPA variant FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-797
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
10 0 1 0 - 1 100 LDAPR - 32-bit variant FEAT_LRCPC

10 0 1 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDAL
variant

FEAT_LSE

10 0 1 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRAL
variant

FEAT_LSE

10 0 1 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORAL
variant

FEAT_LSE

10 0 1 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETAL variant FEAT_LSE

10 0 1 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit
LDSMAXAL variant

FEAT_LSE

10 0 1 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMINAL
variant

FEAT_LSE

10 0 1 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit
LDUMAXAL variant

FEAT_LSE

10 0 1 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit
LDUMINAL variant

FEAT_LSE

10 0 1 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPAL variant FEAT_LSE

11 0 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADD variant FEAT_LSE

11 0 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLR variant FEAT_LSE

11 0 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEOR variant FEAT_LSE

11 0 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSET variant FEAT_LSE

11 0 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAX variant

FEAT_LSE

11 0 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMIN
variant

FEAT_LSE

11 0 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAX variant

FEAT_LSE

11 0 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMIN
variant

FEAT_LSE

11 0 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWP variant FEAT_LSE

11 0 0 0 - 1 010 ST64BV0 FEAT_LS64_
ACCDATA

11 0 0 0 - 1 011 ST64BV FEAT_LS64_
V

11 0 0 0 111

11

1 001 ST64B FEAT_LS64

11 0 0 0 111

11

1 101 LD64B FEAT_LS64

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-798
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
11 0 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDL
variant

FEAT_LSE

11 0 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRL variant FEAT_LSE

11 0 0 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORL variant FEAT_LSE

11 0 0 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETL variant FEAT_LSE

11 0 0 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAXL variant

FEAT_LSE

11 0 0 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINL
variant

FEAT_LSE

11 0 0 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAXL variant

FEAT_LSE

11 0 0 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMINL variant

FEAT_LSE

11 0 0 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPL variant FEAT_LSE

11 0 1 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDA
variant

FEAT_LSE

11 0 1 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRA variant FEAT_LSE

11 0 1 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORA variant FEAT_LSE

11 0 1 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETA variant FEAT_LSE

11 0 1 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAXA variant

FEAT_LSE

11 0 1 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINA
variant

FEAT_LSE

11 0 1 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAXA variant

FEAT_LSE

11 0 1 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMINA variant

FEAT_LSE

11 0 1 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPA variant FEAT_LSE

11 0 1 0 - 1 100 LDAPR - 64-bit variant FEAT_LRCPC

11 0 1 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDAL
variant

FEAT_LSE

11 0 1 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRAL
variant

FEAT_LSE

11 0 1 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORAL
variant

FEAT_LSE

11 0 1 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETAL variant FEAT_LSE

11 0 1 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit
LDSMAXAL variant

FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-799
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.30 Load/store register (register offset)

This section describes the encoding of the Load/store register (register offset) instruction class. The encodings in
this section are decoded from Loads and Stores.

11 0 1 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINAL
variant

FEAT_LSE

11 0 1 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit
LDUMAXAL variant

FEAT_LSE

11 0 1 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit
LDUMINAL variant

FEAT_LSE

11 0 1 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPAL variant FEAT_LSE

Decode fields
Instruction page Feature

size VR A R Rs o3 opc

size 1 1 1 VR 0 0 opc 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

size VR opc option Rt

x1 1 1x - - Unallocated. -

00 0 00 != 011 - STRB (register) - Extended register variant -

00 0 00 011 - STRB (register) - Shifted register variant -

00 0 01 != 011 - LDRB (register) - Extended register variant -

00 0 01 011 - LDRB (register) - Shifted register variant -

00 0 10 != 011 - LDRSB (register) - 64-bit with extended register offset variant -

00 0 10 011 - LDRSB (register) - 64-bit with shifted register offset variant -

00 0 11 != 011 - LDRSB (register) - 32-bit with extended register offset variant -

00 0 11 011 - LDRSB (register) - 32-bit with shifted register offset variant -

00 1 00 != 011 - STR (register, SIMD&FP) -

00 1 00 011 - STR (register, SIMD&FP) -

00 1 01 != 011 - LDR (register, SIMD&FP) -

00 1 01 011 - LDR (register, SIMD&FP) -

00 1 10 - - STR (register, SIMD&FP) -

00 1 11 - - LDR (register, SIMD&FP) -

01 0 00 - - STRH (register) -

01 0 01 - - LDRH (register) -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-800
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.31 Load/store register (pac)

This section describes the encoding of the Load/store register (pac) instruction class. The encodings in this section
are decoded from Loads and Stores.

01 0 10 - - LDRSH (register) - 64-bit variant -

01 0 11 - - LDRSH (register) - 32-bit variant -

01 1 00 - - STR (register, SIMD&FP) -

01 1 01 - - LDR (register, SIMD&FP) -

1x 0 11 - - Unallocated. -

1x 1 1x - - Unallocated. -

10 0 00 - - STR (register) - 32-bit variant -

10 0 01 - - LDR (register) - 32-bit variant -

10 0 10 - - LDRSW (register) -

10 1 00 - - STR (register, SIMD&FP) -

10 1 01 - - LDR (register, SIMD&FP) -

11 0 00 - - STR (register) - 64-bit variant -

11 0 01 - - LDR (register) - 64-bit variant -

11 0 10 x0x - Unallocated. -

11 0 10 x1x != 11xxx PRFM (register) -

11 0 10 x1x 11xxx RPRFM FEAT_RPRFM

11 1 00 - - STR (register, SIMD&FP) -

11 1 01 - - LDR (register, SIMD&FP) -

Decode fields
Instruction page Feature

size VR opc option Rt

Decode fields
Instruction page Feature

size VR M W

!= 11 - - - Unallocated. -

11 0 0 0 LDRAA, LDRAB - Key A, offset variant FEAT_PAuth

11 0 0 1 LDRAA, LDRAB - Key A, pre-indexed variant FEAT_PAuth

size 1 1 1 VR 0 0 M S 1 imm9 W 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-801
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.94.32 Load/store register (unsigned immediate)

This section describes the encoding of the Load/store register (unsigned immediate) instruction class. The
encodings in this section are decoded from Loads and Stores.

11 0 1 0 LDRAA, LDRAB - Key B, offset variant FEAT_PAuth

11 0 1 1 LDRAA, LDRAB - Key B, pre-indexed variant FEAT_PAuth

11 1 - - Unallocated. -

Decode fields
Instruction page

size VR opc

x1 1 1x Unallocated.

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) - 64-bit variant

00 0 11 LDRSB (immediate) - 32-bit variant

00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

00 1 01 LDR (immediate, SIMD&FP) - 8-bit variant

00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

00 1 11 LDR (immediate, SIMD&FP) - 128-bit variant

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant

01 0 11 LDRSH (immediate) - 32-bit variant

01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

01 1 01 LDR (immediate, SIMD&FP) - 16-bit variant

1x 0 11 Unallocated.

1x 1 1x Unallocated.

10 0 00 STR (immediate) - 32-bit variant

10 0 01 LDR (immediate) - 32-bit variant

10 0 10 LDRSW (immediate)

Decode fields
Instruction page Feature

size VR M W

size 1 1 1 VR 0 1 opc imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-802
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95 Data Processing -- Register

This section describes the encoding of the Data Processing -- Register group. The encodings in this section are
decoded from A64 instruction set encoding.

10 1 00 STR (immediate, SIMD&FP) - 32-bit variant

10 1 01 LDR (immediate, SIMD&FP) - 32-bit variant

11 0 00 STR (immediate) - 64-bit variant

11 0 01 LDR (immediate) - 64-bit variant

11 0 10 PRFM (immediate)

11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

11 1 01 LDR (immediate, SIMD&FP) - 64-bit variant

Decode fields
Instruction page

size VR opc

Table C4-96 Encoding table for the Data Processing -- Register group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 1 0110 - Data-processing (2 source)

 1 1 0110 - Data-processing (1 source)

 - 0 0xxx - Logical (shifted register)

 - 0 1xx0 - Add/subtract (shifted register)

 - 0 1xx1 - Add/subtract (extended register)

 - 1 0000 000000 Add/subtract (with carry)

 - 1 0000 x00001 Rotate right into flags

 - 1 0000 xx0010 Evaluate into flags

 - 1 0010 xxxx0x Conditional compare (register)

 - 1 0010 xxxx1x Conditional compare (immediate)

 - 1 0100 - Conditional select

 - 1 1xxx - Data-processing (3 source)

101 op2 op3

31 30 29 28 27 25 24 21 20 16 15 10 9 0

op0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-803
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.1 Data-processing (2 source)

This section describes the encoding of the Data-processing (2 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register.

Decode fields
Instruction page Feature

sf S opcode

- - 000001 Unallocated. -

- - 1xxxxx Unallocated. -

- 0 00011x Unallocated. -

- 0 001101 Unallocated. -

- 0 00111x Unallocated. -

- 0 0111xx Unallocated. -

- 1 00001x Unallocated. -

- 1 0001xx Unallocated. -

- 1 001xxx Unallocated. -

- 1 01xxxx Unallocated. -

0 - 000000 Unallocated. -

0 0 000010 UDIV - 32-bit variant -

0 0 000011 SDIV - 32-bit variant -

0 0 00010x Unallocated. -

0 0 001000 LSLV - 32-bit variant -

0 0 001001 LSRV - 32-bit variant -

0 0 001010 ASRV - 32-bit variant -

0 0 001011 RORV - 32-bit variant -

0 0 001100 Unallocated. -

0 0 010x11 Unallocated. -

0 0 010000 CRC32B, CRC32H, CRC32W, CRC32X - CRC32B variant FEAT_CRC32

0 0 010001 CRC32B, CRC32H, CRC32W, CRC32X - CRC32H variant FEAT_CRC32

0 0 010010 CRC32B, CRC32H, CRC32W, CRC32X - CRC32W variant FEAT_CRC32

0 0 010100 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CB variant FEAT_CRC32

0 0 010101 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CH variant FEAT_CRC32

0 0 010110 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CW variant FEAT_CRC32

sf 0 S 1 1 0 1 0 1 1 0 Rm opcode Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-804
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.2 Data-processing (1 source)

This section describes the encoding of the Data-processing (1 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register.

0 0 011000 SMAX (register) - 32-bit variant FEAT_CSSC

0 0 011001 UMAX (register) - 32-bit variant FEAT_CSSC

0 0 011010 SMIN (register) - 32-bit variant FEAT_CSSC

0 0 011011 UMIN (register) - 32-bit variant FEAT_CSSC

1 0 000000 SUBP FEAT_MTE

1 0 000010 UDIV - 64-bit variant -

1 0 000011 SDIV - 64-bit variant -

1 0 000100 IRG FEAT_MTE

1 0 000101 GMI FEAT_MTE

1 0 001000 LSLV - 64-bit variant -

1 0 001001 LSRV - 64-bit variant -

1 0 001010 ASRV - 64-bit variant -

1 0 001011 RORV - 64-bit variant -

1 0 001100 PACGA FEAT_PAuth

1 0 010xx0 Unallocated. -

1 0 010x0x Unallocated. -

1 0 010011 CRC32B, CRC32H, CRC32W, CRC32X - CRC32X variant FEAT_CRC32

1 0 010111 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CX variant FEAT_CRC32

1 0 011000 SMAX (register) - 64-bit variant FEAT_CSSC

1 0 011001 UMAX (register) - 64-bit variant FEAT_CSSC

1 0 011010 SMIN (register) - 64-bit variant FEAT_CSSC

1 0 011011 UMIN (register) - 64-bit variant FEAT_CSSC

1 1 000000 SUBPS FEAT_MTE

Decode fields
Instruction page Feature

sf S opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-805
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
sf 1 S 1 1 0 1 0 1 1 0 opcode2 opcode Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

Decode fields
Instruction page Feature

sf S opcode2 opcode Rn

- - - 1xxxxx - Unallocated. -

- - xxx1x - - Unallocated. -

- - xx1xx - - Unallocated. -

- - x1xxx - - Unallocated. -

- - 1xxxx - - Unallocated. -

- 0 00000 001001 - Unallocated. -

- 0 00000 00101x - Unallocated. -

- 0 00000 0011xx - Unallocated. -

- 0 00000 01xxxx - Unallocated. -

- 1 - - - Unallocated. -

0 - 00001 - - Unallocated. -

0 0 00000 000000 - RBIT - 32-bit variant -

0 0 00000 000001 - REV16 - 32-bit variant -

0 0 00000 000010 - REV - 32-bit variant -

0 0 00000 000011 - Unallocated. -

0 0 00000 000100 - CLZ - 32-bit variant -

0 0 00000 000101 - CLS - 32-bit variant -

0 0 00000 000110 - CTZ - 32-bit variant FEAT_CSSC

0 0 00000 000111 - CNT - 32-bit variant FEAT_CSSC

0 0 00000 001000 - ABS - 32-bit variant FEAT_CSSC

1 0 00000 000000 - RBIT - 64-bit variant -

1 0 00000 000001 - REV16 - 64-bit variant -

1 0 00000 000010 - REV32 -

1 0 00000 000011 - REV - 64-bit variant -

1 0 00000 000100 - CLZ - 64-bit variant -

1 0 00000 000101 - CLS - 64-bit variant -

1 0 00000 000110 - CTZ - 64-bit variant FEAT_CSSC

1 0 00000 000111 - CNT - 64-bit variant FEAT_CSSC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-806
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.3 Logical (shifted register)

This section describes the encoding of the Logical (shifted register) instruction class. The encodings in this section
are decoded from Data Processing -- Register.

1 0 00000 001000 - ABS - 64-bit variant FEAT_CSSC

1 0 00001 000000 - PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA variant FEAT_PAuth

1 0 00001 000001 - PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB variant FEAT_PAuth

1 0 00001 000010 - PACDA, PACDZA - PACDA variant FEAT_PAuth

1 0 00001 000011 - PACDB, PACDZB - PACDB variant FEAT_PAuth

1 0 00001 000100 - AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA variant FEAT_PAuth

1 0 00001 000101 - AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB variant FEAT_PAuth

1 0 00001 000110 - AUTDA, AUTDZA - AUTDA variant FEAT_PAuth

1 0 00001 000111 - AUTDB, AUTDZB - AUTDB variant FEAT_PAuth

1 0 00001 001000 11111 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIZA variant FEAT_PAuth

1 0 00001 001001 11111 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIZB variant FEAT_PAuth

1 0 00001 001010 11111 PACDA, PACDZA - PACDZA variant FEAT_PAuth

1 0 00001 001011 11111 PACDB, PACDZB - PACDZB variant FEAT_PAuth

1 0 00001 001100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIZA
variant

FEAT_PAuth

1 0 00001 001101 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIZB
variant

FEAT_PAuth

1 0 00001 001110 11111 AUTDA, AUTDZA - AUTDZA variant FEAT_PAuth

1 0 00001 001111 11111 AUTDB, AUTDZB - AUTDZB variant FEAT_PAuth

1 0 00001 010000 11111 XPACD, XPACI, XPACLRI - XPACI variant FEAT_PAuth

1 0 00001 010001 11111 XPACD, XPACI, XPACLRI - XPACD variant FEAT_PAuth

1 0 00001 01001x - Unallocated. -

1 0 00001 0101xx - Unallocated. -

1 0 00001 011xxx - Unallocated. -

Decode fields
Instruction page Feature

sf S opcode2 opcode Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-807
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.4 Add/subtract (shifted register)

This section describes the encoding of the Add/subtract (shifted register) instruction class. The encodings in this
section are decoded from Data Processing -- Register.

Decode fields
Instruction page

sf opc N imm6

0 - - 1xxxxx Unallocated.

0 00 0 - AND (shifted register) - 32-bit variant

0 00 1 - BIC (shifted register) - 32-bit variant

0 01 0 - ORR (shifted register) - 32-bit variant

0 01 1 - ORN (shifted register) - 32-bit variant

0 10 0 - EOR (shifted register) - 32-bit variant

0 10 1 - EON (shifted register) - 32-bit variant

0 11 0 - ANDS (shifted register) - 32-bit variant

0 11 1 - BICS (shifted register) - 32-bit variant

1 00 0 - AND (shifted register) - 64-bit variant

1 00 1 - BIC (shifted register) - 64-bit variant

1 01 0 - ORR (shifted register) - 64-bit variant

1 01 1 - ORN (shifted register) - 64-bit variant

1 10 0 - EOR (shifted register) - 64-bit variant

1 10 1 - EON (shifted register) - 64-bit variant

1 11 0 - ANDS (shifted register) - 64-bit variant

1 11 1 - BICS (shifted register) - 64-bit variant

sf opc 0 1 0 1 0 shift N Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-808
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.5 Add/subtract (extended register)

This section describes the encoding of the Add/subtract (extended register) instruction class. The encodings in this
section are decoded from Data Processing -- Register.

Decode fields
Instruction page

sf op S shift imm6

- - - 11 - Unallocated.

0 - - - 1xxxxx Unallocated.

0 0 0 - - ADD (shifted register) - 32-bit variant

0 0 1 - - ADDS (shifted register) - 32-bit variant

0 1 0 - - SUB (shifted register) - 32-bit variant

0 1 1 - - SUBS (shifted register) - 32-bit variant

1 0 0 - - ADD (shifted register) - 64-bit variant

1 0 1 - - ADDS (shifted register) - 64-bit variant

1 1 0 - - SUB (shifted register) - 64-bit variant

1 1 1 - - SUBS (shifted register) - 64-bit variant

Decode fields
Instruction page

sf op S opt imm3

- - - - 1x1 Unallocated.

- - - - 11x Unallocated.

- - - x1 - Unallocated.

- - - 1x - Unallocated.

0 0 0 00 - ADD (extended register) - 32-bit variant

0 0 1 00 - ADDS (extended register) - 32-bit variant

0 1 0 00 - SUB (extended register) - 32-bit variant

0 1 1 00 - SUBS (extended register) - 32-bit variant

1 0 0 00 - ADD (extended register) - 64-bit variant

sf op S 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

sf op S 0 1 0 1 1 opt 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-809
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.6 Add/subtract (with carry)

This section describes the encoding of the Add/subtract (with carry) instruction class. The encodings in this section
are decoded from Data Processing -- Register.

C4.1.95.7 Rotate right into flags

This section describes the encoding of the Rotate right into flags instruction class. The encodings in this section are
decoded from Data Processing -- Register.

1 0 1 00 - ADDS (extended register) - 64-bit variant

1 1 0 00 - SUB (extended register) - 64-bit variant

1 1 1 00 - SUBS (extended register) - 64-bit variant

Decode fields
Instruction page

sf op S

0 0 0 ADC - 32-bit variant

0 0 1 ADCS - 32-bit variant

0 1 0 SBC - 32-bit variant

0 1 1 SBCS - 32-bit variant

1 0 0 ADC - 64-bit variant

1 0 1 ADCS - 64-bit variant

1 1 0 SBC - 64-bit variant

1 1 1 SBCS - 64-bit variant

Decode fields
Instruction page Feature

sf op S o2

0 - - - Unallocated. -

1 0 0 - Unallocated. -

Decode fields
Instruction page

sf op S opt imm3

sf op S 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

sf op S 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn o2 mask

31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-810
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.8 Evaluate into flags

This section describes the encoding of the Evaluate into flags instruction class. The encodings in this section are
decoded from Data Processing -- Register.

C4.1.95.9 Conditional compare (register)

This section describes the encoding of the Conditional compare (register) instruction class. The encodings in this
section are decoded from Data Processing -- Register.

1 0 1 0 RMIF FEAT_FlagM

1 0 1 1 Unallocated. -

1 1 - - Unallocated. -

Decode fields
Instruction page Feature

sf op S opcode2 sz o3 mask

0 0 0 - - - - Unallocated. -

0 0 1 != 000000 - - - Unallocated. -

0 0 1 000000 - 0 != 1101 Unallocated. -

0 0 1 000000 - 1 - Unallocated. -

0 0 1 000000 0 0 1101 SETF8, SETF16 - SETF8 variant FEAT_FlagM

0 0 1 000000 1 0 1101 SETF8, SETF16 - SETF16 variant FEAT_FlagM

0 1 - - - - - Unallocated. -

1 - - - - - - Unallocated. -

Decode fields
Instruction page

sf op S o2 o3

- - - - 1 Unallocated.

- - - 1 - Unallocated.

- - 0 - - Unallocated.

Decode fields
Instruction page Feature

sf op S o2

sf op S 1 1 0 1 0 0 0 0 opcode2 sz 0 0 1 0 Rn o3 mask

31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0

sf op S 1 1 0 1 0 0 1 0 Rm cond 0 o2 Rn o3 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-811
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.10 Conditional compare (immediate)

This section describes the encoding of the Conditional compare (immediate) instruction class. The encodings in this
section are decoded from Data Processing -- Register.

C4.1.95.11 Conditional select

This section describes the encoding of the Conditional select instruction class. The encodings in this section are
decoded from Data Processing -- Register.

0 0 1 0 0 CCMN (register) - 32-bit variant

0 1 1 0 0 CCMP (register) - 32-bit variant

1 0 1 0 0 CCMN (register) - 64-bit variant

1 1 1 0 0 CCMP (register) - 64-bit variant

Decode fields
Instruction page

sf op S o2 o3

- - - - 1 Unallocated.

- - - 1 - Unallocated.

- - 0 - - Unallocated.

0 0 1 0 0 CCMN (immediate) - 32-bit variant

0 1 1 0 0 CCMP (immediate) - 32-bit variant

1 0 1 0 0 CCMN (immediate) - 64-bit variant

1 1 1 0 0 CCMP (immediate) - 64-bit variant

Decode fields
Instruction page

sf op S op2

- - - 1x Unallocated.

- - 1 - Unallocated.

0 0 0 00 CSEL - 32-bit variant

Decode fields
Instruction page

sf op S o2 o3

sf op S 1 1 0 1 0 0 1 0 imm5 cond 1 o2 Rn o3 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

sf op S 1 1 0 1 0 1 0 0 Rm cond op2 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-812
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.95.12 Data-processing (3 source)

This section describes the encoding of the Data-processing (3 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register.

0 0 0 01 CSINC - 32-bit variant

0 1 0 00 CSINV - 32-bit variant

0 1 0 01 CSNEG - 32-bit variant

1 0 0 00 CSEL - 64-bit variant

1 0 0 01 CSINC - 64-bit variant

1 1 0 00 CSINV - 64-bit variant

1 1 0 01 CSNEG - 64-bit variant

Decode fields
Instruction page

sf op54 op31 o0

- 00 010 1 Unallocated.

- 00 011 - Unallocated.

- 00 100 - Unallocated.

- 00 110 1 Unallocated.

- 00 111 - Unallocated.

- 01 - - Unallocated.

- 1x - - Unallocated.

0 00 000 0 MADD - 32-bit variant

0 00 000 1 MSUB - 32-bit variant

0 00 001 0 Unallocated.

0 00 001 1 Unallocated.

0 00 010 0 Unallocated.

0 00 101 0 Unallocated.

0 00 101 1 Unallocated.

0 00 110 0 Unallocated.

1 00 000 0 MADD - 64-bit variant

Decode fields
Instruction page

sf op S op2

sf op54 1 1 0 1 1 op31 Rm o0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-813
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96 Data Processing -- Scalar Floating-Point and Advanced SIMD

This section describes the encoding of the Data Processing -- Scalar Floating-Point and Advanced SIMD group. The
encodings in this section are decoded from A64 instruction set encoding.

1 00 000 1 MSUB - 64-bit variant

1 00 001 0 SMADDL

1 00 001 1 SMSUBL

1 00 010 0 SMULH

1 00 101 0 UMADDL

1 00 101 1 UMSUBL

1 00 110 0 UMULH

Decode fields
Instruction page

sf op54 op31 o0

op0 111 op1 op2 op3

31 28 27 25 24 23 22 19 18 10 9 0

Table C4-97 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

 0000 0x x101 00xxxxx10 Unallocated. -

 0010 0x x101 00xxxxx10 Unallocated. -

 0100 0x x101 00xxxxx10 Cryptographic AES -

 0101 0x x0xx xxx0xxx00 Cryptographic three-register SHA -

 0101 0x x0xx xxx0xxx10 Unallocated. -

 0101 0x x101 00xxxxx10 Cryptographic two-register SHA -

 0110 0x x101 00xxxxx10 Unallocated. -

 0111 0x x0xx xxx0xxxx0 Unallocated. -

 0111 0x x101 00xxxxx10 Unallocated. -

 01x1 00 00xx xxx0xxxx1 Advanced SIMD scalar copy -

 01x1 01 00xx xxx0xxxx1 Unallocated. -

 01x1 0x 0111 00xxxxx10 Unallocated. -

 01x1 0x 10xx xxx00xxx1 Advanced SIMD scalar three same FP16 -

 01x1 0x 10xx xxx01xxx1 Unallocated. -

 01x1 0x 1111 00xxxxx10 Advanced SIMD scalar two-register miscellaneous FP16 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-814
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
 01x1 0x x0xx xxx1xxxx0 Unallocated. -

 01x1 0x x0xx xxx1xxxx1 Advanced SIMD scalar three same extra -

 01x1 0x x100 00xxxxx10 Advanced SIMD scalar two-register miscellaneous -

 01x1 0x x110 00xxxxx10 Advanced SIMD scalar pairwise -

 01x1 0x x1xx 1xxxxxx10 Unallocated. -

 01x1 0x x1xx x1xxxxx10 Unallocated. -

 01x1 0x x1xx xxxxxxx00 Advanced SIMD scalar three different -

 01x1 0x x1xx xxxxxxxx1 Advanced SIMD scalar three same -

 01x1 10 - xxxxxxxx1 Advanced SIMD scalar shift by immediate -

 01x1 11 - xxxxxxxx1 Unallocated. -

 01x1 1x - xxxxxxxx0 Advanced SIMD scalar x indexed element -

 0x00 0x x0xx xxx0xxx00 Advanced SIMD table lookup -

 0x00 0x x0xx xxx0xxx10 Advanced SIMD permute -

 0x10 0x x0xx xxx0xxxx0 Advanced SIMD extract -

 0xx0 00 00xx xxx0xxxx1 Advanced SIMD copy -

 0xx0 01 00xx xxx0xxxx1 Unallocated. -

 0xx0 0x 0111 00xxxxx10 Unallocated. -

 0xx0 0x 10xx xxx00xxx1 Advanced SIMD three same (FP16) -

 0xx0 0x 10xx xxx01xxx1 Unallocated. -

 0xx0 0x 1111 00xxxxx10 Advanced SIMD two-register miscellaneous (FP16) -

 0xx0 0x x0xx xxx1xxxx0 Unallocated. -

 0xx0 0x x0xx xxx1xxxx1 Advanced SIMD three-register extension -

 0xx0 0x x100 00xxxxx10 Advanced SIMD two-register miscellaneous -

 0xx0 0x x110 00xxxxx10 Advanced SIMD across lanes -

 0xx0 0x x1xx 1xxxxxx10 Unallocated. -

 0xx0 0x x1xx x1xxxxx10 Unallocated. -

 0xx0 0x x1xx xxxxxxx00 Advanced SIMD three different -

 0xx0 0x x1xx xxxxxxxx1 Advanced SIMD three same -

 0xx0 10 0000 xxxxxxxx1 Advanced SIMD modified immediate -

 0xx0 10 != 0000 xxxxxxxx1 Advanced SIMD shift by immediate -

 0xx0 11 - xxxxxxxx1 Unallocated. -

Table C4-97 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-815
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.1 Cryptographic AES

This section describes the encoding of the Cryptographic AES instruction class. The encodings in this section are
decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

 0xx0 1x - xxxxxxxx0 Advanced SIMD vector x indexed element -

 1100 00 10xx xxx10xxxx Cryptographic three-register, imm2 -

 1100 00 11xx xxx1x00xx Cryptographic three-register SHA 512 -

 1100 00 - xxx0xxxxx Cryptographic four-register -

 1100 01 00xx - XAR FEAT_SHA3

 1100 01 1000 0001000xx Cryptographic two-register SHA 512 -

 1xx0 1x - - Unallocated. -

 x0x1 0x x0xx - Conversion between floating-point and fixed-point -

 x0x1 0x x1xx xxx000000 Conversion between floating-point and integer -

 x0x1 0x x1xx xxxx10000 Floating-point data-processing (1 source) -

 x0x1 0x x1xx xxxxx1000 Floating-point compare -

 x0x1 0x x1xx xxxxxx100 Floating-point immediate -

 x0x1 0x x1xx xxxxxxx01 Floating-point conditional compare -

 x0x1 0x x1xx xxxxxxx10 Floating-point data-processing (2 source) -

 x0x1 0x x1xx xxxxxxx11 Floating-point conditional select -

 x0x1 1x - - Floating-point data-processing (3 source) -

Table C4-97 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

Decode fields
Instruction page Feature

size opcode

- x1xxx Unallocated. -

- 000xx Unallocated. -

- 1xxxx Unallocated. -

x1 - Unallocated. -

00 00100 AESE FEAT_AES

00 00101 AESD FEAT_AES

0 1 0 0 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-816
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.2 Cryptographic three-register SHA

This section describes the encoding of the Cryptographic three-register SHA instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.3 Cryptographic two-register SHA

This section describes the encoding of the Cryptographic two-register SHA instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

00 00110 AESMC FEAT_AES

00 00111 AESIMC FEAT_AES

1x - Unallocated. -

Decode fields
Instruction page Feature

size opcode

- 111 Unallocated. -

x1 - Unallocated. -

00 000 SHA1C FEAT_SHA1

00 001 SHA1P FEAT_SHA1

00 010 SHA1M FEAT_SHA1

00 011 SHA1SU0 FEAT_SHA1

00 100 SHA256H FEAT_SHA256

00 101 SHA256H2 FEAT_SHA256

00 110 SHA256SU1 FEAT_SHA256

1x - Unallocated. -

Decode fields
Instruction page Feature

size opcode

0 1 0 1 1 1 1 0 size 0 Rm 0 opcode 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-817
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.4 Advanced SIMD scalar copy

This section describes the encoding of the Advanced SIMD scalar copy instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.5 Advanced SIMD scalar three same FP16

This section describes the encoding of the Advanced SIMD scalar three same FP16 instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

size opcode

- xx1xx Unallocated. -

- x1xxx Unallocated. -

- 1xxxx Unallocated. -

x1 - Unallocated. -

00 00000 SHA1H FEAT_SHA1

00 00001 SHA1SU1 FEAT_SHA1

00 00010 SHA256SU0 FEAT_SHA256

00 00011 Unallocated. -

1x - Unallocated. -

Decode fields
Instruction page

op imm4

0 xxx1 Unallocated.

0 xx1x Unallocated.

0 x1xx Unallocated.

0 0000 DUP (element)

0 1xxx Unallocated.

1 - Unallocated.

0 1 0 1 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0

0 1 op 1 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-818
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.6 Advanced SIMD scalar two-register miscellaneous FP16

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous FP16 instruction
class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced
SIMD.

Decode fields
Instruction page Feature

U a opcode

- - 110 Unallocated. -

- 1 011 Unallocated. -

0 0 011 FMULX FEAT_FP16

0 0 100 FCMEQ (register) FEAT_FP16

0 0 101 Unallocated. -

0 0 111 FRECPS FEAT_FP16

0 1 100 Unallocated. -

0 1 101 Unallocated. -

0 1 111 FRSQRTS FEAT_FP16

1 0 011 Unallocated. -

1 0 100 FCMGE (register) FEAT_FP16

1 0 101 FACGE FEAT_FP16

1 0 111 Unallocated. -

1 1 010 FABD FEAT_FP16

1 1 100 FCMGT (register) FEAT_FP16

1 1 101 FACGT FEAT_FP16

1 1 111 Unallocated. -

0 1 U 1 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-819
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page Feature

U a opcode

- - 00xxx Unallocated. -

- - 010xx Unallocated. -

- - 10xxx Unallocated. -

- - 1100x Unallocated. -

- - 11110 Unallocated. -

- 0 011xx Unallocated. -

- 0 11111 Unallocated. -

- 1 01111 Unallocated. -

- 1 11100 Unallocated. -

0 0 11010 FCVTNS (vector) FEAT_FP16

0 0 11011 FCVTMS (vector) FEAT_FP16

0 0 11100 FCVTAS (vector) FEAT_FP16

0 0 11101 SCVTF (vector, integer) FEAT_FP16

0 1 01100 FCMGT (zero) FEAT_FP16

0 1 01101 FCMEQ (zero) FEAT_FP16

0 1 01110 FCMLT (zero) FEAT_FP16

0 1 11010 FCVTPS (vector) FEAT_FP16

0 1 11011 FCVTZS (vector, integer) FEAT_FP16

0 1 11101 FRECPE FEAT_FP16

0 1 11111 FRECPX FEAT_FP16

1 0 11010 FCVTNU (vector) FEAT_FP16

1 0 11011 FCVTMU (vector) FEAT_FP16

1 0 11100 FCVTAU (vector) FEAT_FP16

1 0 11101 UCVTF (vector, integer) FEAT_FP16

1 1 01100 FCMGE (zero) FEAT_FP16

1 1 01101 FCMLE (zero) FEAT_FP16

1 1 01110 Unallocated. -

1 1 11010 FCVTPU (vector) FEAT_FP16

0 1 U 1 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-820
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.7 Advanced SIMD scalar three same extra

This section describes the encoding of the Advanced SIMD scalar three same extra instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.8 Advanced SIMD scalar two-register miscellaneous

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 1 11011 FCVTZU (vector, integer) FEAT_FP16

1 1 11101 FRSQRTE FEAT_FP16

1 1 11111 Unallocated. -

Decode fields
Instruction page Feature

U opcode

- 001x Unallocated. -

- 01xx Unallocated. -

- 1xxx Unallocated. -

0 0000 Unallocated. -

0 0001 Unallocated. -

1 0000 SQRDMLAH (vector) FEAT_RDM

1 0001 SQRDMLSH (vector) FEAT_RDM

Decode fields
Instruction page

U size opcode

- - 0000x Unallocated.

- - 00010 Unallocated.

- - 0010x Unallocated.

- - 00110 Unallocated.

Decode fields
Instruction page Feature

U a opcode

0 1 U 1 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0

0 1 U 1 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-821
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
- - 01111 Unallocated.

- - 1000x Unallocated.

- - 10011 Unallocated.

- - 10101 Unallocated.

- - 10111 Unallocated.

- - 1100x Unallocated.

- - 11110 Unallocated.

- 0x 011xx Unallocated.

- 0x 11111 Unallocated.

- 1x 10110 Unallocated.

- 1x 11100 Unallocated.

0 - 00011 SUQADD

0 - 00111 SQABS

0 - 01000 CMGT (zero)

0 - 01001 CMEQ (zero)

0 - 01010 CMLT (zero)

0 - 01011 ABS

0 - 10010 Unallocated.

0 - 10100 SQXTN, SQXTN2

0 0x 10110 Unallocated.

0 0x 11010 FCVTNS (vector)

0 0x 11011 FCVTMS (vector)

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)

0 1x 01100 FCMGT (zero)

0 1x 01101 FCMEQ (zero)

0 1x 01110 FCMLT (zero)

0 1x 11010 FCVTPS (vector)

0 1x 11011 FCVTZS (vector, integer)

0 1x 11101 FRECPE

0 1x 11111 FRECPX

1 - 00011 USQADD

Decode fields
Instruction page

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-822
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.9 Advanced SIMD scalar pairwise

This section describes the encoding of the Advanced SIMD scalar pairwise instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 - 00111 SQNEG

1 - 01000 CMGE (zero)

1 - 01001 CMLE (zero)

1 - 01010 Unallocated.

1 - 01011 NEG (vector)

1 - 10010 SQXTUN, SQXTUN2

1 - 10100 UQXTN, UQXTN2

1 0x 10110 FCVTXN, FCVTXN2

1 0x 11010 FCVTNU (vector)

1 0x 11011 FCVTMU (vector)

1 0x 11100 FCVTAU (vector)

1 0x 11101 UCVTF (vector, integer)

1 1x 01100 FCMGE (zero)

1 1x 01101 FCMLE (zero)

1 1x 01110 Unallocated.

1 1x 11010 FCVTPU (vector)

1 1x 11011 FCVTZU (vector, integer)

1 1x 11101 FRSQRTE

1 1x 11111 Unallocated.

Decode fields
Instruction page Feature

U size opcode

- - 00xxx Unallocated. -

- - 010xx Unallocated. -

- - 01110 Unallocated. -

- - 10xxx Unallocated. -

Decode fields
Instruction page

U size opcode

0 1 U 1 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-823
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.10 Advanced SIMD scalar three different

This section describes the encoding of the Advanced SIMD scalar three different instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

- - 1100x Unallocated. -

- - 11010 Unallocated. -

- - 111xx Unallocated. -

- 1x 01101 Unallocated. -

0 - 11011 ADDP (scalar) -

0 0x 01100 FMAXNMP (scalar) - Encoding FEAT_FP16

0 0x 01101 FADDP (scalar) - Encoding FEAT_FP16

0 0x 01111 FMAXP (scalar) - Encoding FEAT_FP16

0 1x 01100 FMINNMP (scalar) - Encoding FEAT_FP16

0 1x 01111 FMINP (scalar) - Encoding FEAT_FP16

1 - 11011 Unallocated. -

1 0x 01100 FMAXNMP (scalar) - Encoding -

1 0x 01101 FADDP (scalar) - Encoding -

1 0x 01111 FMAXP (scalar) - Encoding -

1 1x 01100 FMINNMP (scalar) - Encoding -

1 1x 01111 FMINP (scalar) - Encoding -

Decode fields
Instruction page

U opcode

- 00xx Unallocated.

- 01xx Unallocated.

- 1000 Unallocated.

- 1010 Unallocated.

- 1100 Unallocated.

- 111x Unallocated.

0 1001 SQDMLAL, SQDMLAL2 (vector)

Decode fields
Instruction page Feature

U size opcode

0 1 U 1 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-824
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.11 Advanced SIMD scalar three same

This section describes the encoding of the Advanced SIMD scalar three same instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 1011 SQDMLSL, SQDMLSL2 (vector)

0 1101 SQDMULL, SQDMULL2 (vector)

1 1001 Unallocated.

1 1011 Unallocated.

1 1101 Unallocated.

Decode fields
Instruction page

U size opcode

- - 00000 Unallocated.

- - 0001x Unallocated.

- - 00100 Unallocated.

- - 011xx Unallocated.

- - 1001x Unallocated.

- 1x 11011 Unallocated.

0 - 00001 SQADD

0 - 00101 SQSUB

0 - 00110 CMGT (register)

0 - 00111 CMGE (register)

0 - 01000 SSHL

0 - 01001 SQSHL (register)

0 - 01010 SRSHL

0 - 01011 SQRSHL

0 - 10000 ADD (vector)

0 - 10001 CMTST

0 - 10100 Unallocated.

0 - 10101 Unallocated.

Decode fields
Instruction page

U opcode

0 1 U 1 1 1 1 0 size 1 Rm opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-825
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 - 10110 SQDMULH (vector)

0 - 10111 Unallocated.

0 0x 11000 Unallocated.

0 0x 11001 Unallocated.

0 0x 11010 Unallocated.

0 0x 11011 FMULX

0 0x 11100 FCMEQ (register)

0 0x 11101 Unallocated.

0 0x 11110 Unallocated.

0 0x 11111 FRECPS

0 1x 11000 Unallocated.

0 1x 11001 Unallocated.

0 1x 11010 Unallocated.

0 1x 11100 Unallocated.

0 1x 11101 Unallocated.

0 1x 11110 Unallocated.

0 1x 11111 FRSQRTS

1 - 00001 UQADD

1 - 00101 UQSUB

1 - 00110 CMHI (register)

1 - 00111 CMHS (register)

1 - 01000 USHL

1 - 01001 UQSHL (register)

1 - 01010 URSHL

1 - 01011 UQRSHL

1 - 10000 SUB (vector)

1 - 10001 CMEQ (register)

1 - 10100 Unallocated.

1 - 10101 Unallocated.

1 - 10110 SQRDMULH (vector)

1 - 10111 Unallocated.

1 0x 11000 Unallocated.

Decode fields
Instruction page

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-826
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.12 Advanced SIMD scalar shift by immediate

This section describes the encoding of the Advanced SIMD scalar shift by immediate instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 0x 11001 Unallocated.

1 0x 11010 Unallocated.

1 0x 11011 Unallocated.

1 0x 11100 FCMGE (register)

1 0x 11101 FACGE

1 0x 11110 Unallocated.

1 0x 11111 Unallocated.

1 1x 11000 Unallocated.

1 1x 11001 Unallocated.

1 1x 11010 FABD

1 1x 11100 FCMGT (register)

1 1x 11101 FACGT

1 1x 11110 Unallocated.

1 1x 11111 Unallocated.

Decode fields
Instruction page

U immh opcode

- != 0000 00001 Unallocated.

- != 0000 00011 Unallocated.

- != 0000 00101 Unallocated.

- != 0000 00111 Unallocated.

- != 0000 01001 Unallocated.

- != 0000 01011 Unallocated.

- != 0000 01101 Unallocated.

- != 0000 01111 Unallocated.

- != 0000 101xx Unallocated.

Decode fields
Instruction page

U size opcode

0 1 U 1 1 1 1 1 0 immh immb opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-827
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
- != 0000 110xx Unallocated.

- != 0000 11101 Unallocated.

- != 0000 11110 Unallocated.

- 0000 - Unallocated.

0 != 0000 00000 SSHR

0 != 0000 00010 SSRA

0 != 0000 00100 SRSHR

0 != 0000 00110 SRSRA

0 != 0000 01000 Unallocated.

0 != 0000 01010 SHL

0 != 0000 01100 Unallocated.

0 != 0000 01110 SQSHL (immediate)

0 != 0000 10000 Unallocated.

0 != 0000 10001 Unallocated.

0 != 0000 10010 SQSHRN, SQSHRN2

0 != 0000 10011 SQRSHRN, SQRSHRN2

0 != 0000 11100 SCVTF (vector, fixed-point)

0 != 0000 11111 FCVTZS (vector, fixed-point)

1 != 0000 00000 USHR

1 != 0000 00010 USRA

1 != 0000 00100 URSHR

1 != 0000 00110 URSRA

1 != 0000 01000 SRI

1 != 0000 01010 SLI

1 != 0000 01100 SQSHLU

1 != 0000 01110 UQSHL (immediate)

1 != 0000 10000 SQSHRUN, SQSHRUN2

1 != 0000 10001 SQRSHRUN, SQRSHRUN2

1 != 0000 10010 UQSHRN, UQSHRN2

1 != 0000 10011 UQRSHRN, UQRSHRN2

1 != 0000 11100 UCVTF (vector, fixed-point)

1 != 0000 11111 FCVTZU (vector, fixed-point)

Decode fields
Instruction page

U immh opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-828
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.13 Advanced SIMD scalar x indexed element

This section describes the encoding of the Advanced SIMD scalar x indexed element instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

U size opcode

- - 0000 Unallocated. -

- - 0010 Unallocated. -

- - 0100 Unallocated. -

- - 0110 Unallocated. -

- - 1000 Unallocated. -

- - 1010 Unallocated. -

- - 1110 Unallocated. -

- 01 0001 Unallocated. -

- 01 0101 Unallocated. -

- 01 1001 Unallocated. -

0 - 0011 SQDMLAL, SQDMLAL2 (by element) -

0 - 0111 SQDMLSL, SQDMLSL2 (by element) -

0 - 1011 SQDMULL, SQDMULL2 (by element) -

0 - 1100 SQDMULH (by element) -

0 - 1101 SQRDMULH (by element) -

0 - 1111 Unallocated. -

0 00 0001 FMLA (by element) - Encoding FEAT_FP16

0 00 0101 FMLS (by element) - Encoding FEAT_FP16

0 00 1001 FMUL (by element) - Encoding FEAT_FP16

0 1x 0001 FMLA (by element) - Encoding -

0 1x 0101 FMLS (by element) - Encoding -

0 1x 1001 FMUL (by element) - Encoding -

1 - 0011 Unallocated. -

1 - 0111 Unallocated. -

1 - 1011 Unallocated. -

1 - 1100 Unallocated. -

0 1 U 1 1 1 1 1 size L M Rm opcode H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-829
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.14 Advanced SIMD table lookup

This section describes the encoding of the Advanced SIMD table lookup instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.15 Advanced SIMD permute

This section describes the encoding of the Advanced SIMD permute instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 - 1101 SQRDMLAH (by element) FEAT_RDM

1 - 1111 SQRDMLSH (by element) FEAT_RDM

1 00 0001 Unallocated. -

1 00 0101 Unallocated. -

1 00 1001 FMULX (by element) - Encoding FEAT_FP16

1 1x 0001 Unallocated. -

1 1x 0101 Unallocated. -

1 1x 1001 FMULX (by element) - Encoding -

Decode fields
Instruction page

op2 len op

x1 - - Unallocated.

00 00 0 TBL - Single register table variant

00 00 1 TBX - Single register table variant

00 01 0 TBL - Two register table variant

00 01 1 TBX - Two register table variant

00 10 0 TBL - Three register table variant

00 10 1 TBX - Three register table variant

00 11 0 TBL - Four register table variant

00 11 1 TBX - Four register table variant

1x - - Unallocated.

Decode fields
Instruction page Feature

U size opcode

0 Q 0 0 1 1 1 0 op2 0 Rm 0 len op 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-830
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.16 Advanced SIMD extract

This section describes the encoding of the Advanced SIMD extract instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.17 Advanced SIMD copy

This section describes the encoding of the Advanced SIMD copy instruction class. The encodings in this section are
decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page

opcode

000 Unallocated.

001 UZP1

010 TRN1

011 ZIP1

100 Unallocated.

101 UZP2

110 TRN2

111 ZIP2

Decode fields
Instruction page

op2

x1 Unallocated.

00 EXT

1x Unallocated.

0 Q 0 0 1 1 1 0 size 0 Rm 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 op2 0 Rm 0 imm4 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-831
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.18 Advanced SIMD three same (FP16)

This section describes the encoding of the Advanced SIMD three same (FP16) instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page

Q op imm5 imm4

- - x0000 - Unallocated.

- 0 - 0000 DUP (element)

- 0 - 0001 DUP (general)

- 0 - 0010 Unallocated.

- 0 - 0100 Unallocated.

- 0 - 0110 Unallocated.

- 0 - 1xxx Unallocated.

0 0 - 0011 Unallocated.

0 0 - 0101 SMOV

0 0 - 0111 UMOV

0 1 - - Unallocated.

1 0 - 0011 INS (general)

1 0 - 0101 SMOV

1 0 x1000 0111 UMOV

1 1 - - INS (element)

Decode fields
Instruction page Feature

U a opcode

0 0 000 FMAXNM (vector) FEAT_FP16

0 0 001 FMLA (vector) FEAT_FP16

0 0 010 FADD (vector) FEAT_FP16

0 0 011 FMULX FEAT_FP16

0 Q op 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0

0 Q U 0 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-832
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.19 Advanced SIMD two-register miscellaneous (FP16)

This section describes the encoding of the Advanced SIMD two-register miscellaneous (FP16) instruction class.
The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 0 100 FCMEQ (register) FEAT_FP16

0 0 101 Unallocated. -

0 0 110 FMAX (vector) FEAT_FP16

0 0 111 FRECPS FEAT_FP16

0 1 000 FMINNM (vector) FEAT_FP16

0 1 001 FMLS (vector) FEAT_FP16

0 1 010 FSUB (vector) FEAT_FP16

0 1 011 Unallocated. -

0 1 100 Unallocated. -

0 1 101 Unallocated. -

0 1 110 FMIN (vector) FEAT_FP16

0 1 111 FRSQRTS FEAT_FP16

1 0 000 FMAXNMP (vector) FEAT_FP16

1 0 001 Unallocated. -

1 0 010 FADDP (vector) FEAT_FP16

1 0 011 FMUL (vector) FEAT_FP16

1 0 100 FCMGE (register) FEAT_FP16

1 0 101 FACGE FEAT_FP16

1 0 110 FMAXP (vector) FEAT_FP16

1 0 111 FDIV (vector) FEAT_FP16

1 1 000 FMINNMP (vector) FEAT_FP16

1 1 001 Unallocated. -

1 1 010 FABD FEAT_FP16

1 1 011 Unallocated. -

1 1 100 FCMGT (register) FEAT_FP16

1 1 101 FACGT FEAT_FP16

1 1 110 FMINP (vector) FEAT_FP16

1 1 111 Unallocated. -

Decode fields
Instruction page Feature

U a opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-833
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page Feature

U a opcode

- - 00xxx Unallocated. -

- - 010xx Unallocated. -

- - 10xxx Unallocated. -

- - 11110 Unallocated. -

- 0 011xx Unallocated. -

- 0 11111 Unallocated. -

- 1 11100 Unallocated. -

0 0 11000 FRINTN (vector) FEAT_FP16

0 0 11001 FRINTM (vector) FEAT_FP16

0 0 11010 FCVTNS (vector) FEAT_FP16

0 0 11011 FCVTMS (vector) FEAT_FP16

0 0 11100 FCVTAS (vector) FEAT_FP16

0 0 11101 SCVTF (vector, integer) FEAT_FP16

0 1 01100 FCMGT (zero) FEAT_FP16

0 1 01101 FCMEQ (zero) FEAT_FP16

0 1 01110 FCMLT (zero) FEAT_FP16

0 1 01111 FABS (vector) FEAT_FP16

0 1 11000 FRINTP (vector) FEAT_FP16

0 1 11001 FRINTZ (vector) FEAT_FP16

0 1 11010 FCVTPS (vector) FEAT_FP16

0 1 11011 FCVTZS (vector, integer) FEAT_FP16

0 1 11101 FRECPE FEAT_FP16

0 1 11111 Unallocated. -

1 0 11000 FRINTA (vector) FEAT_FP16

1 0 11001 FRINTX (vector) FEAT_FP16

1 0 11010 FCVTNU (vector) FEAT_FP16

1 0 11011 FCVTMU (vector) FEAT_FP16

1 0 11100 FCVTAU (vector) FEAT_FP16

0 Q U 0 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-834
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.20 Advanced SIMD three-register extension

This section describes the encoding of the Advanced SIMD three-register extension instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 0 11101 UCVTF (vector, integer) FEAT_FP16

1 1 01100 FCMGE (zero) FEAT_FP16

1 1 01101 FCMLE (zero) FEAT_FP16

1 1 01110 Unallocated. -

1 1 01111 FNEG (vector) FEAT_FP16

1 1 11000 Unallocated. -

1 1 11001 FRINTI (vector) FEAT_FP16

1 1 11010 FCVTPU (vector) FEAT_FP16

1 1 11011 FCVTZU (vector, integer) FEAT_FP16

1 1 11101 FRSQRTE FEAT_FP16

1 1 11111 FSQRT (vector) FEAT_FP16

Decode fields
Instruction page Feature

Q U size opcode

- - 0x 0011 Unallocated. -

- - 11 0011 Unallocated. -

- 0 - 0000 Unallocated. -

- 0 - 0001 Unallocated. -

- 0 - 0010 SDOT (vector) FEAT_DotProd

- 0 - 1xxx Unallocated. -

- 0 10 0011 USDOT (vector) FEAT_I8MM

- 1 - 0000 SQRDMLAH (vector) FEAT_RDM

- 1 - 0001 SQRDMLSH (vector) FEAT_RDM

- 1 - 0010 UDOT (vector) FEAT_DotProd

- 1 - 10xx FCMLA FEAT_FCMA

- 1 - 11x0 FCADD FEAT_FCMA

Decode fields
Instruction page Feature

U a opcode

0 Q U 0 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-835
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.21 Advanced SIMD two-register miscellaneous

This section describes the encoding of the Advanced SIMD two-register miscellaneous instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

- 1 00 1101 Unallocated. -

- 1 00 1111 Unallocated. -

- 1 01 1111 BFDOT (vector) FEAT_BF16

- 1 1x 1101 Unallocated. -

- 1 10 0011 Unallocated. -

- 1 10 1111 Unallocated. -

- 1 11 1111 BFMLALB, BFMLALT (vector) FEAT_BF16

0 - - 01xx Unallocated. -

0 1 01 1101 Unallocated. -

1 - 0x 01xx Unallocated. -

1 - 1x 011x Unallocated. -

1 0 10 0100 SMMLA (vector) FEAT_I8MM

1 0 10 0101 USMMLA (vector) FEAT_I8MM

1 1 01 1101 BFMMLA FEAT_BF16

1 1 10 0100 UMMLA (vector) FEAT_I8MM

1 1 10 0101 Unallocated. -

Decode fields
Instruction page Feature

U size opcode

- - 1000x Unallocated. -

- - 10101 Unallocated. -

- 0x 011xx Unallocated. -

- 1x 10111 Unallocated. -

- 1x 11110 Unallocated. -

- 11 10110 Unallocated. -

0 - 00000 REV64 -

Decode fields
Instruction page Feature

Q U size opcode

0 Q U 0 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-836
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 - 00001 REV16 (vector) -

0 - 00010 SADDLP -

0 - 00011 SUQADD -

0 - 00100 CLS (vector) -

0 - 00101 CNT -

0 - 00110 SADALP -

0 - 00111 SQABS -

0 - 01000 CMGT (zero) -

0 - 01001 CMEQ (zero) -

0 - 01010 CMLT (zero) -

0 - 01011 ABS -

0 - 10010 XTN, XTN2 -

0 - 10011 Unallocated. -

0 - 10100 SQXTN, SQXTN2 -

0 0x 10110 FCVTN, FCVTN2 (FP64 to FP32, FP32 to FP16) -

0 0x 10111 FCVTL, FCVTL2 -

0 0x 11000 FRINTN (vector) -

0 0x 11001 FRINTM (vector) -

0 0x 11010 FCVTNS (vector) -

0 0x 11011 FCVTMS (vector) -

0 0x 11100 FCVTAS (vector) -

0 0x 11101 SCVTF (vector, integer) -

0 0x 11110 FRINT32Z (vector) FEAT_FRINTTS

0 0x 11111 FRINT64Z (vector) FEAT_FRINTTS

0 1x 01100 FCMGT (zero) -

0 1x 01101 FCMEQ (zero) -

0 1x 01110 FCMLT (zero) -

0 1x 01111 FABS (vector) -

0 1x 11000 FRINTP (vector) -

0 1x 11001 FRINTZ (vector) -

0 1x 11010 FCVTPS (vector) -

0 1x 11011 FCVTZS (vector, integer) -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-837
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 1x 11100 URECPE -

0 1x 11101 FRECPE -

0 1x 11111 Unallocated. -

0 10 10110 BFCVTN, BFCVTN2 FEAT_BF16

1 - 00000 REV32 (vector) -

1 - 00001 Unallocated. -

1 - 00010 UADDLP -

1 - 00011 USQADD -

1 - 00100 CLZ (vector) -

1 - 00110 UADALP -

1 - 00111 SQNEG -

1 - 01000 CMGE (zero) -

1 - 01001 CMLE (zero) -

1 - 01010 Unallocated. -

1 - 01011 NEG (vector) -

1 - 10010 SQXTUN, SQXTUN2 -

1 - 10011 SHLL, SHLL2 -

1 - 10100 UQXTN, UQXTN2 -

1 0x 10110 FCVTXN, FCVTXN2 -

1 0x 10111 Unallocated. -

1 0x 11000 FRINTA (vector) -

1 0x 11001 FRINTX (vector) -

1 0x 11010 FCVTNU (vector) -

1 0x 11011 FCVTMU (vector) -

1 0x 11100 FCVTAU (vector) -

1 0x 11101 UCVTF (vector, integer) -

1 0x 11110 FRINT32X (vector) FEAT_FRINTTS

1 0x 11111 FRINT64X (vector) FEAT_FRINTTS

1 00 00101 NOT -

1 01 00101 RBIT (vector) -

1 1x 00101 Unallocated. -

1 1x 01100 FCMGE (zero) -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-838
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.22 Advanced SIMD across lanes

This section describes the encoding of the Advanced SIMD across lanes instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 1x 01101 FCMLE (zero) -

1 1x 01110 Unallocated. -

1 1x 01111 FNEG (vector) -

1 1x 11000 Unallocated. -

1 1x 11001 FRINTI (vector) -

1 1x 11010 FCVTPU (vector) -

1 1x 11011 FCVTZU (vector, integer) -

1 1x 11100 URSQRTE -

1 1x 11101 FRSQRTE -

1 1x 11111 FSQRT (vector) -

1 10 10110 Unallocated. -

Decode fields
Instruction page Feature

U size opcode

- - 0000x Unallocated. -

- - 00010 Unallocated. -

- - 001xx Unallocated. -

- - 0100x Unallocated. -

- - 01011 Unallocated. -

- - 01101 Unallocated. -

- - 01110 Unallocated. -

- - 10xxx Unallocated. -

- - 1100x Unallocated. -

- - 111xx Unallocated. -

0 - 00011 SADDLV -

0 - 01010 SMAXV -

Decode fields
Instruction page Feature

U size opcode

0 Q U 0 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-839
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.23 Advanced SIMD three different

This section describes the encoding of the Advanced SIMD three different instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 - 11010 SMINV -

0 - 11011 ADDV -

0 00 01100 FMAXNMV - Encoding FEAT_FP16

0 00 01111 FMAXV - Encoding FEAT_FP16

0 01 01100 Unallocated. -

0 01 01111 Unallocated. -

0 10 01100 FMINNMV - Encoding FEAT_FP16

0 10 01111 FMINV - Encoding FEAT_FP16

0 11 01100 Unallocated. -

0 11 01111 Unallocated. -

1 - 00011 UADDLV -

1 - 01010 UMAXV -

1 - 11010 UMINV -

1 - 11011 Unallocated. -

1 0x 01100 FMAXNMV - Encoding -

1 0x 01111 FMAXV - Encoding -

1 1x 01100 FMINNMV - Encoding -

1 1x 01111 FMINV - Encoding -

Decode fields
Instruction page

U opcode

- 1111 Unallocated.

0 0000 SADDL, SADDL2

0 0001 SADDW, SADDW2

0 0010 SSUBL, SSUBL2

0 0011 SSUBW, SSUBW2

Decode fields
Instruction page Feature

U size opcode

0 Q U 0 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-840
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.24 Advanced SIMD three same

This section describes the encoding of the Advanced SIMD three same instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 0100 ADDHN, ADDHN2

0 0101 SABAL, SABAL2

0 0110 SUBHN, SUBHN2

0 0111 SABDL, SABDL2

0 1000 SMLAL, SMLAL2 (vector)

0 1001 SQDMLAL, SQDMLAL2 (vector)

0 1010 SMLSL, SMLSL2 (vector)

0 1011 SQDMLSL, SQDMLSL2 (vector)

0 1100 SMULL, SMULL2 (vector)

0 1101 SQDMULL, SQDMULL2 (vector)

0 1110 PMULL, PMULL2

1 0000 UADDL, UADDL2

1 0001 UADDW, UADDW2

1 0010 USUBL, USUBL2

1 0011 USUBW, USUBW2

1 0100 RADDHN, RADDHN2

1 0101 UABAL, UABAL2

1 0110 RSUBHN, RSUBHN2

1 0111 UABDL, UABDL2

1 1000 UMLAL, UMLAL2 (vector)

1 1001 Unallocated.

1 1010 UMLSL, UMLSL2 (vector)

1 1011 Unallocated.

1 1100 UMULL, UMULL2 (vector)

1 1101 Unallocated.

1 1110 Unallocated.

Decode fields
Instruction page

U opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-841
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page Feature

U size opcode

0 - 00000 SHADD -

0 - 00001 SQADD -

0 - 00010 SRHADD -

0 - 00100 SHSUB -

0 - 00101 SQSUB -

0 - 00110 CMGT (register) -

0 - 00111 CMGE (register) -

0 - 01000 SSHL -

0 - 01001 SQSHL (register) -

0 - 01010 SRSHL -

0 - 01011 SQRSHL -

0 - 01100 SMAX -

0 - 01101 SMIN -

0 - 01110 SABD -

0 - 01111 SABA -

0 - 10000 ADD (vector) -

0 - 10001 CMTST -

0 - 10010 MLA (vector) -

0 - 10011 MUL (vector) -

0 - 10100 SMAXP -

0 - 10101 SMINP -

0 - 10110 SQDMULH (vector) -

0 - 10111 ADDP (vector) -

0 0x 11000 FMAXNM (vector) -

0 0x 11001 FMLA (vector) -

0 0x 11010 FADD (vector) -

0 0x 11011 FMULX -

0 0x 11100 FCMEQ (register) -

0 Q U 0 1 1 1 0 size 1 Rm opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-842
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 0x 11110 FMAX (vector) -

0 0x 11111 FRECPS -

0 00 00011 AND (vector) -

0 00 11101 FMLAL, FMLAL2 (vector) - Encoding FEAT_FHM

0 01 00011 BIC (vector, register) -

0 01 11101 Unallocated. -

0 1x 11000 FMINNM (vector) -

0 1x 11001 FMLS (vector) -

0 1x 11010 FSUB (vector) -

0 1x 11011 Unallocated. -

0 1x 11100 Unallocated. -

0 1x 11110 FMIN (vector) -

0 1x 11111 FRSQRTS -

0 10 00011 ORR (vector, register) -

0 10 11101 FMLSL, FMLSL2 (vector) - Encoding FEAT_FHM

0 11 00011 ORN (vector) -

0 11 11101 Unallocated. -

1 - 00000 UHADD -

1 - 00001 UQADD -

1 - 00010 URHADD -

1 - 00100 UHSUB -

1 - 00101 UQSUB -

1 - 00110 CMHI (register) -

1 - 00111 CMHS (register) -

1 - 01000 USHL -

1 - 01001 UQSHL (register) -

1 - 01010 URSHL -

1 - 01011 UQRSHL -

1 - 01100 UMAX -

1 - 01101 UMIN -

1 - 01110 UABD -

1 - 01111 UABA -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-843
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
1 - 10000 SUB (vector) -

1 - 10001 CMEQ (register) -

1 - 10010 MLS (vector) -

1 - 10011 PMUL -

1 - 10100 UMAXP -

1 - 10101 UMINP -

1 - 10110 SQRDMULH (vector) -

1 - 10111 Unallocated. -

1 0x 11000 FMAXNMP (vector) -

1 0x 11010 FADDP (vector) -

1 0x 11011 FMUL (vector) -

1 0x 11100 FCMGE (register) -

1 0x 11101 FACGE -

1 0x 11110 FMAXP (vector) -

1 0x 11111 FDIV (vector) -

1 00 00011 EOR (vector) -

1 00 11001 FMLAL, FMLAL2 (vector) - Encoding FEAT_FHM

1 01 00011 BSL -

1 01 11001 Unallocated. -

1 1x 11000 FMINNMP (vector) -

1 1x 11010 FABD -

1 1x 11011 Unallocated. -

1 1x 11100 FCMGT (register) -

1 1x 11101 FACGT -

1 1x 11110 FMINP (vector) -

1 1x 11111 Unallocated. -

1 10 00011 BIT -

1 10 11001 FMLSL, FMLSL2 (vector) - Encoding FEAT_FHM

1 11 00011 BIF -

1 11 11001 Unallocated. -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-844
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.25 Advanced SIMD modified immediate

This section describes the encoding of the Advanced SIMD modified immediate instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.26 Advanced SIMD shift by immediate

This section describes the encoding of the Advanced SIMD shift by immediate instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

Q op cmode o2

- 0 0xxx 1 Unallocated. -

- 0 0xx0 0 MOVI - 32-bit shifted immediate variant -

- 0 0xx1 0 ORR (vector, immediate) - 32-bit variant -

- 0 10xx 1 Unallocated. -

- 0 10x0 0 MOVI - 16-bit shifted immediate variant -

- 0 10x1 0 ORR (vector, immediate) - 16-bit variant -

- 0 110x 0 MOVI - 32-bit shifting ones variant -

- 0 110x 1 Unallocated. -

- 0 1110 0 MOVI - 8-bit variant -

- 0 1110 1 Unallocated. -

- 0 1111 0 FMOV (vector, immediate) - Single-precision variant -

- 0 1111 1 FMOV (vector, immediate) - Encoding FEAT_FP16

- 1 - 1 Unallocated. -

- 1 0xx0 0 MVNI - 32-bit shifted immediate variant -

- 1 0xx1 0 BIC (vector, immediate) - 32-bit variant -

- 1 10x0 0 MVNI - 16-bit shifted immediate variant -

- 1 10x1 0 BIC (vector, immediate) - 16-bit variant -

- 1 110x 0 MVNI - 32-bit shifting ones variant -

0 1 1110 0 MOVI - 64-bit scalar variant -

0 1 1111 0 Unallocated. -

1 1 1110 0 MOVI - 64-bit vector variant -

1 1 1111 0 FMOV (vector, immediate) - Double-precision variant -

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode o2 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-845
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
Decode fields
Instruction page

U opcode

- 00001 Unallocated.

- 00011 Unallocated.

- 00101 Unallocated.

- 00111 Unallocated.

- 01001 Unallocated.

- 01011 Unallocated.

- 01101 Unallocated.

- 01111 Unallocated.

- 10101 Unallocated.

- 1011x Unallocated.

- 110xx Unallocated.

- 11101 Unallocated.

- 11110 Unallocated.

0 00000 SSHR

0 00010 SSRA

0 00100 SRSHR

0 00110 SRSRA

0 01000 Unallocated.

0 01010 SHL

0 01100 Unallocated.

0 01110 SQSHL (immediate)

0 10000 SHRN, SHRN2

0 10001 RSHRN, RSHRN2

0 10010 SQSHRN, SQSHRN2

0 10011 SQRSHRN, SQRSHRN2

0 10100 SSHLL, SSHLL2

0 11100 SCVTF (vector, fixed-point)

0 11111 FCVTZS (vector, fixed-point)

0 Q U 0 1 1 1 1 0 !=0000 immb opcode 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 11 10 9 5 4 0

immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-846
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.27 Advanced SIMD vector x indexed element

This section describes the encoding of the Advanced SIMD vector x indexed element instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 00000 USHR

1 00010 USRA

1 00100 URSHR

1 00110 URSRA

1 01000 SRI

1 01010 SLI

1 01100 SQSHLU

1 01110 UQSHL (immediate)

1 10000 SQSHRUN, SQSHRUN2

1 10001 SQRSHRUN, SQRSHRUN2

1 10010 UQSHRN, UQSHRN2

1 10011 UQRSHRN, UQRSHRN2

1 10100 USHLL, USHLL2

1 11100 UCVTF (vector, fixed-point)

1 11111 FCVTZU (vector, fixed-point)

Decode fields
Instruction page Feature

U size opcode

- 01 1001 Unallocated. -

0 - 0010 SMLAL, SMLAL2 (by element) -

0 - 0011 SQDMLAL, SQDMLAL2 (by element) -

0 - 0110 SMLSL, SMLSL2 (by element) -

0 - 0111 SQDMLSL, SQDMLSL2 (by element) -

0 - 1000 MUL (by element) -

0 - 1010 SMULL, SMULL2 (by element) -

0 - 1011 SQDMULL, SQDMULL2 (by element) -

Decode fields
Instruction page

U opcode

0 Q U 0 1 1 1 1 size L M Rm opcode H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-847
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 - 1100 SQDMULH (by element) -

0 - 1101 SQRDMULH (by element) -

0 - 1110 SDOT (by element) FEAT_DotProd

0 0x 0000 Unallocated. -

0 0x 0100 Unallocated. -

0 00 0001 FMLA (by element) - Encoding FEAT_FP16

0 00 0101 FMLS (by element) - Encoding FEAT_FP16

0 00 1001 FMUL (by element) - Encoding FEAT_FP16

0 00 1111 SUDOT (by element) FEAT_I8MM

0 01 0001 Unallocated. -

0 01 0101 Unallocated. -

0 01 1111 BFDOT (by element) FEAT_BF16

0 1x 0001 FMLA (by element) - Encoding -

0 1x 0101 FMLS (by element) - Encoding -

0 1x 1001 FMUL (by element) - Encoding -

0 10 0000 FMLAL, FMLAL2 (by element) - Encoding FEAT_FHM

0 10 0100 FMLSL, FMLSL2 (by element) - Encoding FEAT_FHM

0 10 1111 USDOT (by element) FEAT_I8MM

0 11 0000 Unallocated. -

0 11 0100 Unallocated. -

0 11 1111 BFMLALB, BFMLALT (by element) FEAT_BF16

1 - 0000 MLA (by element) -

1 - 0010 UMLAL, UMLAL2 (by element) -

1 - 0100 MLS (by element) -

1 - 0110 UMLSL, UMLSL2 (by element) -

1 - 1010 UMULL, UMULL2 (by element) -

1 - 1011 Unallocated. -

1 - 1101 SQRDMLAH (by element) FEAT_RDM

1 - 1110 UDOT (by element) FEAT_DotProd

1 - 1111 SQRDMLSH (by element) FEAT_RDM

1 0x 1000 Unallocated. -

1 0x 1100 Unallocated. -

Decode fields
Instruction page Feature

U size opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-848
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.28 Cryptographic three-register, imm2

This section describes the encoding of the Cryptographic three-register, imm2 instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 00 0001 Unallocated. -

1 00 0011 Unallocated. -

1 00 0101 Unallocated. -

1 00 0111 Unallocated. -

1 00 1001 FMULX (by element) - Encoding FEAT_FP16

1 01 0xx1 FCMLA (by element) FEAT_FCMA

1 1x 1001 FMULX (by element) - Encoding -

1 10 0xx1 FCMLA (by element) FEAT_FCMA

1 10 1000 FMLAL, FMLAL2 (by element) - Encoding FEAT_FHM

1 10 1100 FMLSL, FMLSL2 (by element) - Encoding FEAT_FHM

1 11 0001 Unallocated. -

1 11 0011 Unallocated. -

1 11 0101 Unallocated. -

1 11 0111 Unallocated. -

1 11 1000 Unallocated. -

1 11 1100 Unallocated. -

Decode fields
Instruction page Feature

opcode

00 SM3TT1A FEAT_SM3

01 SM3TT1B FEAT_SM3

10 SM3TT2A FEAT_SM3

11 SM3TT2B FEAT_SM3

Decode fields
Instruction page Feature

U size opcode

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-849
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.29 Cryptographic three-register SHA 512

This section describes the encoding of the Cryptographic three-register SHA 512 instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.30 Cryptographic four-register

This section describes the encoding of the Cryptographic four-register instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.31 Cryptographic two-register SHA 512

This section describes the encoding of the Cryptographic two-register SHA 512 instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

O opcode

0 00 SHA512H FEAT_SHA512

0 01 SHA512H2 FEAT_SHA512

0 10 SHA512SU1 FEAT_SHA512

0 11 RAX1 FEAT_SHA3

1 00 SM3PARTW1 FEAT_SM3

1 01 SM3PARTW2 FEAT_SM3

1 10 SM4EKEY FEAT_SM4

1 11 Unallocated. -

Decode fields
Instruction page Feature

Op0

00 EOR3 FEAT_SHA3

01 BCAX FEAT_SHA3

10 SM3SS1 FEAT_SM3

11 Unallocated. -

1 1 0 0 1 1 1 0 0 1 1 Rm 1 O 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opcode

1 1 0 0 1 1 1 0 0 Op0 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-850
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.32 Conversion between floating-point and fixed-point

This section describes the encoding of the Conversion between floating-point and fixed-point instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

opcode

00 SHA512SU0 FEAT_SHA512

01 SM4E FEAT_SM4

1x Unallocated. -

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opcode

sf 0 S 1 1 1 1 0 ftype 0 rmode opcode scale Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

Decode fields
Instruction page Feature

sf S ftype rmode opcode scale

- - - - 1xx - Unallocated. -

- - - x0 00x - Unallocated. -

- - - x1 01x - Unallocated. -

- - - 0x 00x - Unallocated. -

- - - 1x 01x - Unallocated. -

- - 10 - - - Unallocated. -

- 1 - - - - Unallocated. -

0 - - - - 0xxxxx Unallocated. -

0 0 00 00 010 - SCVTF (scalar, fixed-point) - 32-bit to single-precision variant -

0 0 00 00 011 - UCVTF (scalar, fixed-point) - 32-bit to single-precision variant -

0 0 00 11 000 - FCVTZS (scalar, fixed-point) - Single-precision to 32-bit variant -

0 0 00 11 001 - FCVTZU (scalar, fixed-point) - Single-precision to 32-bit
variant

-

0 0 01 00 010 - SCVTF (scalar, fixed-point) - 32-bit to double-precision variant -

0 0 01 00 011 - UCVTF (scalar, fixed-point) - 32-bit to double-precision variant -

0 0 01 11 000 - FCVTZS (scalar, fixed-point) - Double-precision to 32-bit
variant

-

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-851
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.33 Conversion between floating-point and integer

This section describes the encoding of the Conversion between floating-point and integer instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 0 01 11 001 - FCVTZU (scalar, fixed-point) - Double-precision to 32-bit
variant

-

0 0 11 00 010 - SCVTF (scalar, fixed-point) - 32-bit to half-precision variant FEAT_FP16

0 0 11 00 011 - UCVTF (scalar, fixed-point) - 32-bit to half-precision variant FEAT_FP16

0 0 11 11 000 - FCVTZS (scalar, fixed-point) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 11 001 - FCVTZU (scalar, fixed-point) - Half-precision to 32-bit variant FEAT_FP16

1 0 00 00 010 - SCVTF (scalar, fixed-point) - 64-bit to single-precision variant -

1 0 00 00 011 - UCVTF (scalar, fixed-point) - 64-bit to single-precision variant -

1 0 00 11 000 - FCVTZS (scalar, fixed-point) - Single-precision to 64-bit variant -

1 0 00 11 001 - FCVTZU (scalar, fixed-point) - Single-precision to 64-bit
variant

-

1 0 01 00 010 - SCVTF (scalar, fixed-point) - 64-bit to double-precision variant -

1 0 01 00 011 - UCVTF (scalar, fixed-point) - 64-bit to double-precision variant -

1 0 01 11 000 - FCVTZS (scalar, fixed-point) - Double-precision to 64-bit
variant

-

1 0 01 11 001 - FCVTZU (scalar, fixed-point) - Double-precision to 64-bit
variant

-

1 0 11 00 010 - SCVTF (scalar, fixed-point) - 64-bit to half-precision variant FEAT_FP16

1 0 11 00 011 - UCVTF (scalar, fixed-point) - 64-bit to half-precision variant FEAT_FP16

1 0 11 11 000 - FCVTZS (scalar, fixed-point) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 11 001 - FCVTZU (scalar, fixed-point) - Half-precision to 64-bit variant FEAT_FP16

Decode fields
Instruction page Feature

sf S ftype rmode opcode scale

sf 0 S 1 1 1 1 0 ftype 1 rmode opcode 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

Decode fields
Instruction page Feature

sf S ftype rmode opcode

- - - x1 01x Unallocated. -

- - - x1 10x Unallocated. -

- - - 1x 01x Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-852
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
- - - 1x 10x Unallocated. -

- 0 10 - 0xx Unallocated. -

- 0 10 - 10x Unallocated. -

- 1 - - - Unallocated. -

0 0 00 x1 11x Unallocated. -

0 0 00 00 000 FCVTNS (scalar) - Single-precision to 32-bit variant -

0 0 00 00 001 FCVTNU (scalar) - Single-precision to 32-bit variant -

0 0 00 00 010 SCVTF (scalar, integer) - 32-bit to single-precision variant -

0 0 00 00 011 UCVTF (scalar, integer) - 32-bit to single-precision variant -

0 0 00 00 100 FCVTAS (scalar) - Single-precision to 32-bit variant -

0 0 00 00 101 FCVTAU (scalar) - Single-precision to 32-bit variant -

0 0 00 00 110 FMOV (general) - Single-precision to 32-bit variant -

0 0 00 00 111 FMOV (general) - 32-bit to single-precision variant -

0 0 00 01 000 FCVTPS (scalar) - Single-precision to 32-bit variant -

0 0 00 01 001 FCVTPU (scalar) - Single-precision to 32-bit variant -

0 0 00 1x 11x Unallocated. -

0 0 00 10 000 FCVTMS (scalar) - Single-precision to 32-bit variant -

0 0 00 10 001 FCVTMU (scalar) - Single-precision to 32-bit variant -

0 0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 32-bit variant -

0 0 00 11 001 FCVTZU (scalar, integer) - Single-precision to 32-bit variant -

0 0 01 0x 11x Unallocated. -

0 0 01 00 000 FCVTNS (scalar) - Double-precision to 32-bit variant -

0 0 01 00 001 FCVTNU (scalar) - Double-precision to 32-bit variant -

0 0 01 00 010 SCVTF (scalar, integer) - 32-bit to double-precision variant -

0 0 01 00 011 UCVTF (scalar, integer) - 32-bit to double-precision variant -

0 0 01 00 100 FCVTAS (scalar) - Double-precision to 32-bit variant -

0 0 01 00 101 FCVTAU (scalar) - Double-precision to 32-bit variant -

0 0 01 01 000 FCVTPS (scalar) - Double-precision to 32-bit variant -

0 0 01 01 001 FCVTPU (scalar) - Double-precision to 32-bit variant -

0 0 01 10 000 FCVTMS (scalar) - Double-precision to 32-bit variant -

0 0 01 10 001 FCVTMU (scalar) - Double-precision to 32-bit variant -

0 0 01 10 11x Unallocated. -

Decode fields
Instruction page Feature

sf S ftype rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-853
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 0 01 11 000 FCVTZS (scalar, integer) - Double-precision to 32-bit variant -

0 0 01 11 001 FCVTZU (scalar, integer) - Double-precision to 32-bit variant -

0 0 01 11 110 FJCVTZS FEAT_JSCVT

0 0 01 11 111 Unallocated. -

0 0 10 - 11x Unallocated. -

0 0 11 00 000 FCVTNS (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 00 001 FCVTNU (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 00 010 SCVTF (scalar, integer) - 32-bit to half-precision variant FEAT_FP16

0 0 11 00 011 UCVTF (scalar, integer) - 32-bit to half-precision variant FEAT_FP16

0 0 11 00 100 FCVTAS (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 00 101 FCVTAU (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 00 110 FMOV (general) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 00 111 FMOV (general) - 32-bit to half-precision variant FEAT_FP16

0 0 11 01 000 FCVTPS (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 01 001 FCVTPU (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 10 000 FCVTMS (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 10 001 FCVTMU (scalar) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 11 000 FCVTZS (scalar, integer) - Half-precision to 32-bit variant FEAT_FP16

0 0 11 11 001 FCVTZU (scalar, integer) - Half-precision to 32-bit variant FEAT_FP16

1 0 00 - 11x Unallocated. -

1 0 00 00 000 FCVTNS (scalar) - Single-precision to 64-bit variant -

1 0 00 00 001 FCVTNU (scalar) - Single-precision to 64-bit variant -

1 0 00 00 010 SCVTF (scalar, integer) - 64-bit to single-precision variant -

1 0 00 00 011 UCVTF (scalar, integer) - 64-bit to single-precision variant -

1 0 00 00 100 FCVTAS (scalar) - Single-precision to 64-bit variant -

1 0 00 00 101 FCVTAU (scalar) - Single-precision to 64-bit variant -

1 0 00 01 000 FCVTPS (scalar) - Single-precision to 64-bit variant -

1 0 00 01 001 FCVTPU (scalar) - Single-precision to 64-bit variant -

1 0 00 10 000 FCVTMS (scalar) - Single-precision to 64-bit variant -

1 0 00 10 001 FCVTMU (scalar) - Single-precision to 64-bit variant -

1 0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 64-bit variant -

1 0 00 11 001 FCVTZU (scalar, integer) - Single-precision to 64-bit variant -

Decode fields
Instruction page Feature

sf S ftype rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-854
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
1 0 01 x1 11x Unallocated. -

1 0 01 00 000 FCVTNS (scalar) - Double-precision to 64-bit variant -

1 0 01 00 001 FCVTNU (scalar) - Double-precision to 64-bit variant -

1 0 01 00 010 SCVTF (scalar, integer) - 64-bit to double-precision variant -

1 0 01 00 011 UCVTF (scalar, integer) - 64-bit to double-precision variant -

1 0 01 00 100 FCVTAS (scalar) - Double-precision to 64-bit variant -

1 0 01 00 101 FCVTAU (scalar) - Double-precision to 64-bit variant -

1 0 01 00 110 FMOV (general) - Double-precision to 64-bit variant -

1 0 01 00 111 FMOV (general) - 64-bit to double-precision variant -

1 0 01 01 000 FCVTPS (scalar) - Double-precision to 64-bit variant -

1 0 01 01 001 FCVTPU (scalar) - Double-precision to 64-bit variant -

1 0 01 1x 11x Unallocated. -

1 0 01 10 000 FCVTMS (scalar) - Double-precision to 64-bit variant -

1 0 01 10 001 FCVTMU (scalar) - Double-precision to 64-bit variant -

1 0 01 11 000 FCVTZS (scalar, integer) - Double-precision to 64-bit variant -

1 0 01 11 001 FCVTZU (scalar, integer) - Double-precision to 64-bit variant -

1 0 10 x0 11x Unallocated. -

1 0 10 01 110 FMOV (general) - Top half of 128-bit to 64-bit variant -

1 0 10 01 111 FMOV (general) - 64-bit to top half of 128-bit variant -

1 0 10 1x 11x Unallocated. -

1 0 11 00 000 FCVTNS (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 00 001 FCVTNU (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 00 010 SCVTF (scalar, integer) - 64-bit to half-precision variant FEAT_FP16

1 0 11 00 011 UCVTF (scalar, integer) - 64-bit to half-precision variant FEAT_FP16

1 0 11 00 100 FCVTAS (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 00 101 FCVTAU (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 00 110 FMOV (general) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 00 111 FMOV (general) - 64-bit to half-precision variant FEAT_FP16

1 0 11 01 000 FCVTPS (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 01 001 FCVTPU (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 10 000 FCVTMS (scalar) - Half-precision to 64-bit variant FEAT_FP16

Decode fields
Instruction page Feature

sf S ftype rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-855
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.34 Floating-point data-processing (1 source)

This section describes the encoding of the Floating-point data-processing (1 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

1 0 11 10 001 FCVTMU (scalar) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 11 000 FCVTZS (scalar, integer) - Half-precision to 64-bit variant FEAT_FP16

1 0 11 11 001 FCVTZU (scalar, integer) - Half-precision to 64-bit variant FEAT_FP16

Decode fields
Instruction page Feature

sf S ftype rmode opcode

Decode fields
Instruction page Feature

M S ftype opcode

- - - 1xxxxx Unallocated. -

- 1 - - Unallocated. -

0 0 00 000000 FMOV (register) - Single-precision variant -

0 0 00 000001 FABS (scalar) - Single-precision variant -

0 0 00 000010 FNEG (scalar) - Single-precision variant -

0 0 00 000011 FSQRT (scalar) - Single-precision variant -

0 0 00 000100 Unallocated. -

0 0 00 000101 FCVT - Single-precision to double-precision variant -

0 0 00 000110 Unallocated. -

0 0 00 000111 FCVT - Single-precision to half-precision variant -

0 0 00 001000 FRINTN (scalar) - Single-precision variant -

0 0 00 001001 FRINTP (scalar) - Single-precision variant -

0 0 00 001010 FRINTM (scalar) - Single-precision variant -

0 0 00 001011 FRINTZ (scalar) - Single-precision variant -

0 0 00 001100 FRINTA (scalar) - Single-precision variant -

0 0 00 001101 Unallocated. -

0 0 00 001110 FRINTX (scalar) - Single-precision variant -

0 0 00 001111 FRINTI (scalar) - Single-precision variant -

0 0 00 010000 FRINT32Z (scalar) - Single-precision variant FEAT_FRINTTS

0 0 00 010001 FRINT32X (scalar) - Single-precision variant FEAT_FRINTTS

M 0 S 1 1 1 1 0 ftype 1 opcode 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-856
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 0 00 010010 FRINT64Z (scalar) - Single-precision variant FEAT_FRINTTS

0 0 00 010011 FRINT64X (scalar) - Single-precision variant FEAT_FRINTTS

0 0 00 0101xx Unallocated. -

0 0 00 011xxx Unallocated. -

0 0 01 000000 FMOV (register) - Double-precision variant -

0 0 01 000001 FABS (scalar) - Double-precision variant -

0 0 01 000010 FNEG (scalar) - Double-precision variant -

0 0 01 000011 FSQRT (scalar) - Double-precision variant -

0 0 01 000100 FCVT - Double-precision to single-precision variant -

0 0 01 000101 Unallocated. -

0 0 01 000110 BFCVT FEAT_BF16

0 0 01 000111 FCVT - Double-precision to half-precision variant -

0 0 01 001000 FRINTN (scalar) - Double-precision variant -

0 0 01 001001 FRINTP (scalar) - Double-precision variant -

0 0 01 001010 FRINTM (scalar) - Double-precision variant -

0 0 01 001011 FRINTZ (scalar) - Double-precision variant -

0 0 01 001100 FRINTA (scalar) - Double-precision variant -

0 0 01 001101 Unallocated. -

0 0 01 001110 FRINTX (scalar) - Double-precision variant -

0 0 01 001111 FRINTI (scalar) - Double-precision variant -

0 0 01 010000 FRINT32Z (scalar) - Double-precision variant FEAT_FRINTTS

0 0 01 010001 FRINT32X (scalar) - Double-precision variant FEAT_FRINTTS

0 0 01 010010 FRINT64Z (scalar) - Double-precision variant FEAT_FRINTTS

0 0 01 010011 FRINT64X (scalar) - Double-precision variant FEAT_FRINTTS

0 0 01 0101xx Unallocated. -

0 0 01 011xxx Unallocated. -

0 0 10 0xxxxx Unallocated. -

0 0 11 000000 FMOV (register) - Half-precision variant FEAT_FP16

0 0 11 000001 FABS (scalar) - Half-precision variant FEAT_FP16

0 0 11 000010 FNEG (scalar) - Half-precision variant FEAT_FP16

0 0 11 000011 FSQRT (scalar) - Half-precision variant FEAT_FP16

0 0 11 000100 FCVT - Half-precision to single-precision variant -

Decode fields
Instruction page Feature

M S ftype opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-857
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.35 Floating-point compare

This section describes the encoding of the Floating-point compare instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 0 11 000101 FCVT - Half-precision to double-precision variant -

0 0 11 00011x Unallocated. -

0 0 11 001000 FRINTN (scalar) - Half-precision variant FEAT_FP16

0 0 11 001001 FRINTP (scalar) - Half-precision variant FEAT_FP16

0 0 11 001010 FRINTM (scalar) - Half-precision variant FEAT_FP16

0 0 11 001011 FRINTZ (scalar) - Half-precision variant FEAT_FP16

0 0 11 001100 FRINTA (scalar) - Half-precision variant FEAT_FP16

0 0 11 001101 Unallocated. -

0 0 11 001110 FRINTX (scalar) - Half-precision variant FEAT_FP16

0 0 11 001111 FRINTI (scalar) - Half-precision variant FEAT_FP16

0 0 11 01xxxx Unallocated. -

1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype op opcode2

- - - - xxxx1 Unallocated. -

- - - - xxx1x Unallocated. -

- - - - xx1xx Unallocated. -

- - - x1 - Unallocated. -

- - - 1x - Unallocated. -

- - 10 - - Unallocated. -

- 1 - - - Unallocated. -

0 0 00 00 00000 FCMP -

0 0 00 00 01000 FCMP -

0 0 00 00 10000 FCMPE -

0 0 00 00 11000 FCMPE -

Decode fields
Instruction page Feature

M S ftype opcode

M 0 S 1 1 1 1 0 ftype 1 Rm op 1 0 0 0 Rn opcode2

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-858
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.36 Floating-point immediate

This section describes the encoding of the Floating-point immediate instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

C4.1.96.37 Floating-point conditional compare

This section describes the encoding of the Floating-point conditional compare instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 0 01 00 00000 FCMP -

0 0 01 00 01000 FCMP -

0 0 01 00 10000 FCMPE -

0 0 01 00 11000 FCMPE -

0 0 11 00 00000 FCMP FEAT_FP16

0 0 11 00 01000 FCMP FEAT_FP16

0 0 11 00 10000 FCMPE FEAT_FP16

0 0 11 00 11000 FCMPE FEAT_FP16

1 - - - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype imm5

- - - xxxx1 Unallocated. -

- - - xxx1x Unallocated. -

- - - xx1xx Unallocated. -

- - - x1xxx Unallocated. -

- - - 1xxxx Unallocated. -

- - 10 - Unallocated. -

- 1 - - Unallocated. -

0 0 00 00000 FMOV (scalar, immediate) - Single-precision variant -

0 0 01 00000 FMOV (scalar, immediate) - Double-precision variant -

0 0 11 00000 FMOV (scalar, immediate) - Half-precision variant FEAT_FP16

1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype op opcode2

M 0 S 1 1 1 1 0 ftype 1 imm8 1 0 0 imm5 Rd

31 30 29 28 27 26 25 24 23 22 21 20 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-859
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.38 Floating-point data-processing (2 source)

This section describes the encoding of the Floating-point data-processing (2 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

M S ftype op

- - 10 - Unallocated. -

- 1 - - Unallocated. -

0 0 00 0 FCCMP - Single-precision variant -

0 0 00 1 FCCMPE - Single-precision variant -

0 0 01 0 FCCMP - Double-precision variant -

0 0 01 1 FCCMPE - Double-precision variant -

0 0 11 0 FCCMP - Half-precision variant FEAT_FP16

0 0 11 1 FCCMPE - Half-precision variant FEAT_FP16

1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype opcode

- - - 1xx1 Unallocated. -

- - - 1x1x Unallocated. -

- - - 11xx Unallocated. -

- - 10 - Unallocated. -

- 1 - - Unallocated. -

0 0 00 0000 FMUL (scalar) - Single-precision variant -

0 0 00 0001 FDIV (scalar) - Single-precision variant -

0 0 00 0010 FADD (scalar) - Single-precision variant -

0 0 00 0011 FSUB (scalar) - Single-precision variant -

0 0 00 0100 FMAX (scalar) - Single-precision variant -

M 0 S 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn op nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

M 0 S 1 1 1 1 0 ftype 1 Rm opcode 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-860
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.39 Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

0 0 00 0101 FMIN (scalar) - Single-precision variant -

0 0 00 0110 FMAXNM (scalar) - Single-precision variant -

0 0 00 0111 FMINNM (scalar) - Single-precision variant -

0 0 00 1000 FNMUL (scalar) - Single-precision variant -

0 0 01 0000 FMUL (scalar) - Double-precision variant -

0 0 01 0001 FDIV (scalar) - Double-precision variant -

0 0 01 0010 FADD (scalar) - Double-precision variant -

0 0 01 0011 FSUB (scalar) - Double-precision variant -

0 0 01 0100 FMAX (scalar) - Double-precision variant -

0 0 01 0101 FMIN (scalar) - Double-precision variant -

0 0 01 0110 FMAXNM (scalar) - Double-precision variant -

0 0 01 0111 FMINNM (scalar) - Double-precision variant -

0 0 01 1000 FNMUL (scalar) - Double-precision variant -

0 0 11 0000 FMUL (scalar) - Half-precision variant FEAT_FP16

0 0 11 0001 FDIV (scalar) - Half-precision variant FEAT_FP16

0 0 11 0010 FADD (scalar) - Half-precision variant FEAT_FP16

0 0 11 0011 FSUB (scalar) - Half-precision variant FEAT_FP16

0 0 11 0100 FMAX (scalar) - Half-precision variant FEAT_FP16

0 0 11 0101 FMIN (scalar) - Half-precision variant FEAT_FP16

0 0 11 0110 FMAXNM (scalar) - Half-precision variant FEAT_FP16

0 0 11 0111 FMINNM (scalar) - Half-precision variant FEAT_FP16

0 0 11 1000 FNMUL (scalar) - Half-precision variant FEAT_FP16

1 - - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-861
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
C4.1.96.40 Floating-point data-processing (3 source)

This section describes the encoding of the Floating-point data-processing (3 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD.

Decode fields
Instruction page Feature

M S ftype

- - 10 Unallocated. -

- 1 - Unallocated. -

0 0 00 FCSEL - Single-precision variant -

0 0 01 FCSEL - Double-precision variant -

0 0 11 FCSEL - Half-precision variant FEAT_FP16

1 - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype o1 o0

- - 10 - - Unallocated. -

- 1 - - - Unallocated. -

0 0 00 0 0 FMADD - Single-precision variant -

0 0 00 0 1 FMSUB - Single-precision variant -

0 0 00 1 0 FNMADD - Single-precision variant -

0 0 00 1 1 FNMSUB - Single-precision variant -

0 0 01 0 0 FMADD - Double-precision variant -

0 0 01 0 1 FMSUB - Double-precision variant -

0 0 01 1 0 FNMADD - Double-precision variant -

0 0 01 1 1 FNMSUB - Double-precision variant -

0 0 11 0 0 FMADD - Half-precision variant FEAT_FP16

0 0 11 0 1 FMSUB - Half-precision variant FEAT_FP16

M 0 S 1 1 1 1 0 ftype 1 Rm cond 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

M 0 S 1 1 1 1 1 ftype o1 Rm o0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-862
ID032224 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding
0 0 11 1 0 FNMADD - Half-precision variant FEAT_FP16

0 0 11 1 1 FNMSUB - Half-precision variant FEAT_FP16

1 - - - - Unallocated. -

Decode fields
Instruction page Feature

M S ftype o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C4-863
ID032224 Non-Confidential

Chapter C5
The A64 System Instruction Class

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that is a
subset of the System registers encoding space. It contains the following sections:

• The System instruction class encoding space.

• Special-purpose registers.

• A64 System instructions for cache maintenance.

• A64 System instructions for address translation.

• A64 System instructions for TLB maintenance.

• A64 System instructions for prediction restriction.

• A64 System instructions for the Branch Record Buffer Extension.

• A64 System instructions for the Trace Extension.

• A64 System instructions for the Guarded Control Stack.

See General information about the A64 instruction descriptions for information about entries used in the instruction
encoding descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-864
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
C5.1 The System instruction class encoding space

Part of the A64 instruction encoding space is assigned to instructions that access the System register encoding space.
These instructions provide:

• Access to System registers, including the debug registers, that provide system control, and system status
information.

• Access to Special-purpose registers such as SPSR_ELx, ELR_ELx, and the equivalent fields of the Process
State.

• The cache and TLB maintenance instructions and address translation instructions.

• Barriers and the CLREX instruction.

• Architectural hint instructions.

This section describes the general model for accessing this functionality.

Note

• See Fixed values in AArch64 instruction and System register descriptions for information about
abbreviations used in the System instruction descriptions.

• In AArch32 state much of this functionality is provided through the System register interface described in
The AArch32 System register interface. In AArch64 state, the parameters used to characterize the System
register encoding space are {op0, op1, CRn, CRm, op2}. These are based on the parameters that characterize the
AArch32 System register encoding space, which reflect the original implementation of these registers, as
described in Background to the System register interface. There is no particular significance to the naming
of these parameters, and no functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding describes some general properties of these encodings. System
instruction class encoding overview then describes the top-level encoding of these instructions, and the following
sections then describe the next level of the encoding hierarchy of System instructions and Special-purpose registers:

• op0==0b00, architectural hints, barriers and CLREX, and PSTATE access.

• op0==0b01, cache maintenance, TLB maintenance, address translation, prediction restriction, BRBE, Trace
Extension, and Guarded Control Stack instructions.

• op0==0b11, Moves to and from Special-purpose registers.

For the description of the next level of encoding hierarchy of System registers, see:

• Moves to and from debug and trace System registers.

• Moves to and from non-debug System registers, Special-purpose registers.

• Reserved encodings for IMPLEMENTATION DEFINED registers.

C5.1.1 Principles of the System instruction class encoding

An encoding in the System instruction space is identified by a set of arguments,{op0, op1, CRn, CRm, op2}. These form
an encoding hierarchy, where:

op0 Defines the top-level division of the encoding space, see System instruction class encoding
overview.

op1 Identifies the lowest Exception level at which the encoding is accessible, as follows:

Accessible at EL0 op1 has the value 3.

Accessible at EL1 op1 has the value 0, 1, or 2. The value is the same as the op1 value used to
access the equivalent AArch32 register.

Accessible at Secure EL1

op1 has the value 7.

Accessible at EL2 op1 has the value 4 or 5. The value 5 is used for the EL12 encodings that
access EL1 System registers used when FEAT_VHE is implemented and
HCR_EL2.E2H is 1.

Accessible at EL3 op1 has the value 6.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-865
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Arm strongly recommends that implementers adopt this use of op1 when using the IMPLEMENTATION DEFINED
regions of the encoding space described in Reserved encodings for IMPLEMENTATION DEFINED registers.

C5.1.2 System instruction class encoding overview

The encoding of the System instruction class describes each instruction as being either:

• A transfer to a System register. This is a System instruction with the semantics of a write.

• A transfer from a System register. This is a System instruction with the semantics of a read.

A System instruction that initiates an operation operates as if it was making a transfer to a register.

In the AArch64 instruction set, the decode structure for the System instruction class is:

The value of L indicates the transfer direction:

0 Transfer to System register.

1 Transfer from System register.

The op0 field is the top level encoding of the System instruction type. Its possible values are:

0b00 These encodings provide:

• Instructions with an immediate field for accessing PSTATE, the current PE state.

• The architectural hint instructions.

• Barriers and the CLREX instruction.

For more information about these encodings, see op0==0b00, architectural hints, barriers and
CLREX, and PSTATE access.

0b01 These encodings provide:

• Cache maintenance instructions.

• TLB maintenance instructions.

• Address translation instructions.

• Prediction restriction instructions.

• BRBE instructions.

Note

These are equivalent to operations in the AArch32 (coproc==0b1111) encoding space.

For more information, see op0==0b01, cache maintenance, TLB maintenance, address translation,
prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

0b10 These encodings provide moves to and from:

• Legacy AArch32 System registers for execution environments, to provide access to these
registers from higher Exception levels that are using AArch64.

• Debug and trace registers.

Note
These are equivalent to the registers in the AArch32 (coproc==0b1110) encoding space.

For more information, see Moves to and from debug and trace System registers.

0b11 These encodings provide:

• Moves to and from Non-debug System registers. The accessed registers provide system
control, and system status information.

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-866
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Note
The accessed registers are equivalent to the registers in the AArch32 (coproc==0b1111)
encoding space.

• Access to Special-purpose registers.

For more information, see Instructions for accessing Special-purpose registers and Instructions for
accessing non-debug System registers.

UNDEFINED behaviors

In the System register instruction encoding space, the following principles apply:

• All unallocated encodings are treated as UNDEFINED.

• All encodings with L==1 and op0==0b0x are UNDEFINED, except for encodings in the area reserved for
IMPLEMENTATION DEFINED use, see Reserved encoding space for IMPLEMENTATION DEFINED
instructions.

For registers and operations that are accessible from a particular Exception level, any attempt to access those
registers from a lower Exception level is UNDEFINED.

If a particular Exception level:

• Defines a register to be RO, then any attempt to write to that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==0 is UNDEFINED.

• Defines a register to be WO, then any attempt to read from that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED, but
see the recommendation in Principles of the System instruction class encoding.

C5.1.3 op0==0b00, architectural hints, barriers and CLREX, and PSTATE access

The different groups of System register instructions with op0==0b00:

• Are identified by the value of CRn.

• Are always encoded with a value of 0b11111 in the Rt field.

The encoding of these instructions is:

The encoding of the CRn field is as follows:

0b0010 See Architectural hint instructions.

0b0011 See Barriers and CLREX.

0b0100 See Instructions for accessing the PSTATE fields.

Architectural hint instructions

Within the op0==0b00 encodings, the architectural hint instructions are identified by CRn having the value 0b0010. The
encoding of these instructions is:

The value of op<6:0>, formed by concatenating the CRm and op2 fields, determines the hint instruction as follows:

0b0000000 NOP instruction.

0b0000001 YIELD instruction.

Rt

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

0 0 1 1 1 1 1

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 5 4 0

1 0 1 0 1 0 1 0 0 0 Op<6:0>0 0 0 0 1 0 1 1 1 1 10 1 1

Rtop1 CRn CRm op2op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-867
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
0b0000010 WFE instruction.

0b0000011 WFI instruction.

0b0000100 SEV instruction.

0b0000101 SEVL instruction.

0b0000110 DGH instruction.

0b0000111 XPACD, XPACI, XPACLRI instruction.

0b0001000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIA1716 variant.

0b0001010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIB1716 variant.

0b0001100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIA1716 variant.

0b0001110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIB1716 variant.

0b0010000 ESB instruction.

0b0010001 PSB instruction.

0b0010010 TSB instruction.

0b0010100 CSDB instruction.

0b0010110 CLRBHB instruction.

0b0011000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIAZ variant.

0b0011001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIASP variant.

0b0011010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBZ variant.

0b0011011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBSP variant.

0b0011100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIAZ variant.

0b0011101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIASP variant.

0b0011110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBZ variant.

0b0011111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBSP variant.

0b0101000 CHKFEAT instruction.

0b0100xx0 BTI instruction.

These instructions are described in Chapter C6 A64 Base Instruction Descriptions.

Note
• Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

• The operation of the A64 instructions for architectural hints are identical to the corresponding A32 and T32
instructions.

For more information about:

• The WFE, WFI, SEV, and SEVL instructions, see Mechanisms for entering a low-power state.

• The YIELD instruction, see Software control features and EL0.

Barriers and CLREX

Within the op0==0b00 encodings, the barriers and CLREX instructions are identified by CRn having the value 0b0011.
The encoding of these instructions is:

The value of op2 determines the instruction, as follows.

0b001 DSB instruction, Memory nXS barrier variant.

0b010 CLREX instruction.

0b100 DSB instruction, Memory barrier variant.

0b101 DMB instruction.

0b110 ISB instruction.

0b000, 0b011, 0b111

UNDEFINED.

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 CRm op20 0 0 0 1 1 1 1 1 1 10 1 1

Rtop1 CRnop0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-868
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
These instructions are described in Chapter C6 A64 Base Instruction Descriptions.

Note

• Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

• The operation of the A64 instructions for barriers and CLREX are identical to the corresponding A32 and T32
instructions.

For more information about:

• The barrier instructions, see Memory barriers.

• The CLREX instruction, see Synchronization and semaphores.

Instructions for accessing the PSTATE fields

Within the op0==0b00 encodings, the instructions that can be used to modify PSTATE fields directly are identified
by CRn having the value 0b0100. The encoding of these instructions is shown in Figure C5-1 and Figure C5-2:

Figure C5-1 Instructions using #Imm4

Figure C5-2 Instructions using #Imm1

These instructions are:

CFINV ; Inverts the value of PSTATE.C
MSR DAIFSet, #Imm4 ; Used to set any or all of DAIF to 1
MSR DAIFClr, #Imm4 ; Used to clear any or all of DAIF to 0
MSR SPSel, #Imm4 ; Used to select the Stack Pointer, between SP_EL0 and SP_ELx
MSR UAO, #Imm4 ; Used to set the value of PSTATE.UAO
MSR PAN, #Imm4 ; Used to set the value of PSTATE.PAN
MSR DIT, #Imm4 ; Used to set the value of PSTATE.DIT
MSR SSBS, #Imm4 ; Used to set the value of PSTATE.SSBS
MSR TCO, #Imm4 ; Used to set the value of PSTATE.TCO
MSR ALLINT, #Imm1 ; Used to set the value of PSTATE.ALLINT

The value of op2 selects the instruction form, which defines the constraints on the values of the op1 and Imm4 or Imm1
arguments, as follows:

op2==0b000 Selects the CFINV instruction.

op2==0b011 Selects the MSR UAO instruction.

op2==0b100 Selects the MSR PAN instruction.

op2==0b101 Selects the MSR SPSel instruction.

op2==0b001 Selects the MSR SSBS instruction.

op2==0b010 Selects the MSR DIT instruction.

op2==0b100 Selects the MSR TCO instruction.

op2==0b110 Selects the MSR DAIFSet instruction, that sets the specified PSTATE.{D, A, I, F} bits to 1.

op2==0b111 Selects the MSR DAIFClr instruction, that clears the specified PSTATE.{D, A, I, F} bits to 0.

op2==0b000 Selects the MSR ALLINT instruction.

All other combinations of op1 and op2 are reserved, and the corresponding instructions are UNDEFINED.

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 op1 Imm4 op20 0 0 1 0 0 1 1 1 1 1

RtCRn CRmop0

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 op1 Imm1 op20 0 0 1 0 0 1 1 1 1 1

RtCRn CRmop0

0 0 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-869
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Note

For PSTATE updates, instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

Writes to PSTATE occur in program order without the need for additional synchronization. Changing PSTATE.SP
to use SP_EL0 synchronizes any updates to SP_EL0 that have been written by an MSR to SP_EL0, without the need
for additional synchronization.

C5.1.4 op0==0b01, cache maintenance, TLB maintenance, address translation, prediction restriction,
BRBE, Trace Extension, and Guarded Control Stack instructions

The System instructions are encoded with op0==0b01. The different groups of System instructions are identified by
the values of CRn and CRm, except that some of this encoding space is reserved for IMPLEMENTATION DEFINED
functionality. The encoding of these instructions is:

The grouping of these instructions depending on the CRn and CRm fields is as follows:

CRn==7 The instruction group is determined by the value of CRm, as follows:

CRm=={1, 5} Instruction cache maintenance instructions.

See Cache maintenance instructions, and data cache zero operation.

CRm==2 Branch Record Buffer and Trace Extension instructions.

See Branch Record Buffer instructions and Trace Extension instructions.

CRm==3 Prediction restriction instructions.

See Prediction restriction instructions.

CRm==4 Data cache zero operation.

See Cache maintenance instructions, and data cache zero operation.

CRm=={6, 10, 11, 12, 13, 14}

Data cache maintenance instructions.

See Cache maintenance instructions, and data cache zero operation.

CRm==7 Guarded Control Stack instructions.

See Guarded Control Stack instructions.

CRm==8 See Address translation instructions.

CRn=={8, 9} See TLB maintenance instructions.

CRn=={11, 15} See Reserved encoding space for IMPLEMENTATION DEFINED instructions.

Cache maintenance instructions, and data cache zero operation

Table C5-1 lists the Cache maintenance instructions and their encodings. Instructions that take an argument include
Xt in the instruction syntax. For instructions that do not take an argument, the Xt field is encoded as 0b11111. For
these instructions, if the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Xt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 0 op1 CRn CRm op20 1

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-870
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Table C5-1 Cache maintenance instructions and data cache zero operation

op0 op1 CRn CRm op2 Mnemonic

01 000 0111 0001 000 IC IALLUIS

01 000 0111 0101 000 IC IALLU

01 011 0111 0101 001 IC IVAU

01 000 0111 0110 001 DC IVAC

01 000 0111 0110 010 DC ISW

01 000 0111 0110 011 DC IGVAC

01 000 0111 0110 100 DC IGSW

01 000 0111 0110 101 DC IGDVAC

01 000 0111 0110 110 DC IGDSW

01 000 0111 1010 010 DC CSW

01 000 0111 1010 100 DC CGSW

01 000 0111 1010 110 DC CGDSW

01 000 0111 1110 010 DC CISW

01 000 0111 1110 100 DC CIGSW

01 000 0111 1110 110 DC CIGDSW

01 011 0111 0100 001 DC ZVA

01 011 0111 0100 011 DC GVA

01 011 0111 0100 100 DC GZVA

01 011 0111 1010 001 DC CVAC

01 011 0111 1010 011 DC CGVAC

01 011 0111 1010 101 DC CGDVAC

01 011 0111 1011 001 DC CVAU

01 011 0111 1100 001 DC CVAP

01 011 0111 1100 011 DC CGVAP

01 011 0111 1100 101 DC CGDVAP

01 011 0111 1101 001 DC CVADP

01 011 0111 1101 011 DC CGVADP

01 011 0111 1101 101 DC CGDVADP

01 011 0111 1110 001 DC CIVAC

01 011 0111 1110 011 DC CIGVAC

01 011 0111 1110 101 DC CIGDVAC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-871
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
]For more information about these instructions, see About cache maintenance in AArch64 state and A64 Cache
maintenance instructions.

Prediction restriction instructions

Table C5-2 lists the Prediction restriction instructions and their encodings. Instructions that take an argument
include Xt in the instruction syntax.

For more information about these instructions, see Execution, data prediction and prefetching restriction System
instructions.

Address translation instructions

Table C5-3 lists the Address translation instructions and their encodings. The syntax of the instructions includes Xt,
that provides the address to be translated.

01 100 0111 1110 000 DC CIPAE

01 100 0111 1110 111 DC CIGDPAE

01 110 0111 1110 001 DC CIPAPA

01 110 0111 1110 101 DC CIGDPAPA

Table C5-1 Cache maintenance instructions and data cache zero operation (continued)

op0 op1 CRn CRm op2 Mnemonic

Table C5-2 Prediction restriction instructions

Instruction
Prediction restriction encoding

Notes
op0 op1 CRn CRm op2

CFP RCTX, Xt 1 3 7 3 4 When FEAT_SPECRES is implemented, accessible from EL0 or higher.

DVP RCTX, Xt 5

CPP RCTX, Xt 7

COSP RCTX, Xt 1 3 7 3 6 When FEAT_SPECRES2 is implemented, accessible from EL0 or higher.

Table C5-3 Address translation instructions

op0 op1 CRn CRm op2 Mnemonic

01 000 0111 1000 000 AT S1E1R

01 000 0111 1000 001 AT S1E1W

01 000 0111 1000 010 AT S1E0R

01 000 0111 1000 011 AT S1E0W

01 000 0111 1001 000 AT S1E1RP

01 000 0111 1001 001 AT S1E1WP

01 000 0111 1001 010 AT S1E1A

01 100 0111 1000 000 AT S1E2R
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-872
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
For more information about these instructions, see Address translation instructions.

TLB maintenance instructions

Table C5-4 lists the TLB maintenance instructions and their encodings. Instructions that take an argument include
Xt in the instruction syntax. For instructions that do not take an argument, the Xt field is encoded as 0b11111. For
these instructions, if the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

01 100 0111 1000 001 AT S1E2W

01 100 0111 1000 100 AT S12E1R

01 100 0111 1000 101 AT S12E1W

01 100 0111 1000 110 AT S12E0R

01 100 0111 1000 111 AT S12E0W

01 100 0111 1001 010 AT S1E2A

01 110 0111 1000 000 AT S1E3R

01 110 0111 1000 001 AT S1E3W

01 110 0111 1001 010 AT S1E3A

Table C5-4 TLB maintenance instructions

op0 op1 CRn CRm op2 Mnemonic

01 000 1000 0001 000 TLBI VMALLE1OS, TLBI VMALLE1OSNXS

01 000 1000 0001 001 TLBI VAE1OS, TLBI VAE1OSNXS,
TLBIP VAE1OS, TLBIP VAE1OSNXS

01 000 1000 0001 010 TLBI ASIDE1OS, TLBI ASIDE1OSNXS

01 000 1000 0001 011 TLBI VAAE1OS, TLBI VAAE1OSNXS,
TLBIP VAAE1OS, TLBIP VAAE1OSNXS

01 000 1000 0001 101 TLBI VALE1OS, TLBI VALE1OSNXS,
TLBIP VALE1OS, TLBIP VALE1OSNXS

01 000 1000 0001 111 TLBI VAALE1OS, TLBI VAALE1OSNXS,
TLBIP VAALE1OS, TLBIP VAALE1OSNXS

01 000 1000 0010 001 TLBI RVAE1IS, TLBI RVAE1ISNXS,
TLBIP RVAE1IS, TLBIP RVAE1ISNXS

01 000 1000 0010 011 TLBI RVAAE1IS, TLBI RVAAE1ISNXS,
TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS

01 000 1000 0010 101 TLBI RVALE1IS, TLBI RVALE1ISNXS,
TLBIP RVALE1IS, TLBIP RVALE1ISNXS

01 000 1000 0010 111 TLBI RVAALE1IS, TLBI RVAALE1ISNXS,
TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS

Table C5-3 Address translation instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-873
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
01 000 1000 0011 000 TLBI VMALLE1IS, TLBI VMALLE1ISNXS

01 000 1000 0011 001 TLBI VAE1IS, TLBI VAE1ISNXS,
TLBIP VAE1IS, TLBIP VAE1ISNXS

01 000 1000 0011 010 TLBI ASIDE1IS, TLBI ASIDE1ISNXS

01 000 1000 0011 011 TLBI VAAE1IS, TLBI VAAE1ISNXS,
TLBIP VAAE1IS, TLBIP VAAE1ISNXS

01 000 1000 0011 101 TLBI VALE1IS, TLBI VALE1ISNXS,
TLBIP VALE1IS, TLBIP VALE1ISNXS

01 000 1000 0011 111 TLBI VAALE1IS, TLBI VAALE1ISNXS,
TLBIP VAALE1IS, TLBIP VAALE1ISNXS

01 000 1000 0101 001 TLBI RVAE1OS, TLBI RVAE1OSNXS,
TLBIP RVAE1OS, TLBIP RVAE1OSNXS

01 000 1000 0101 011 TLBI RVAAE1OS, TLBI RVAAE1OSNXS,
TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS

01 000 1000 0101 101 TLBI RVALE1OS, TLBI RVALE1OSNXS,
TLBIP RVALE1OS, TLBIP RVALE1OSNXS

01 000 1000 0101 111 TLBI RVAALE1OS, TLBI RVAALE1OSNXS,
TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS

01 000 1000 0110 001 TLBI RVAE1, TLBI RVAE1NXS,
TLBIP RVAE1, TLBIP RVAE1NXS

01 000 1000 0110 011 TLBI RVAAE1, TLBI RVAAE1NXS,
TLBIP RVAAE1, TLBIP RVAAE1NXS

01 000 1000 0110 101 TLBI RVALE1, TLBI RVALE1NXS,
TLBIP RVALE1, TLBIP RVALE1NXS

01 000 1000 0110 111 TLBI RVAALE1, TLBI RVAALE1NXS,
TLBIP RVAALE1, TLBIP RVAALE1NXS

01 000 1000 0111 000 TLBI VMALLE1, TLBI VMALLE1NXS

01 000 1000 0111 001 TLBI VAE1, TLBI VAE1NXS,
TLBIP VAE1, TLBIP VAE1NXS

01 000 1000 0111 010 TLBI ASIDE1, TLBI ASIDE1NXS

01 000 1000 0111 011 TLBI VAAE1, TLBI VAAE1NXS,
TLBIP VAAE1, TLBIP VAAE1NXS

01 000 1000 0111 101 TLBI VALE1, TLBI VALE1NXS,
TLBIP VALE1, TLBIP VALE1NXS

01 000 1000 0111 111 TLBI VAALE1, TLBI VAALE1NXS,
TLBIP VAALE1, TLBIP VAALE1NXS

01 000 1001 0001 000 TLBI VMALLE1OSNXS

01 000 1001 0001 001 TLBI VAE1OSNXS,
TLBIP VAE1OSNXS

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-874
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
01 000 1001 0001 010 TLBI ASIDE1OSNXS

01 000 1001 0001 011 TLBI VAAE1OSNXS,
TLBIP VAAE1OSNXS

01 000 1001 0001 101 TLBI VALE1OSNXS,
TLBIP VALE1OSNXS

01 000 1001 0001 111 TLBI VAALE1OSNXS,
TLBIP VAALE1OSNXS

01 000 1001 0010 001 TLBI RVAE1ISNXS,
TLBIP RVAE1ISNXS

01 000 1001 0010 011 TLBI RVAAE1ISNXS,
TLBIP RVAAE1ISNXS

01 000 1001 0010 101 TLBI RVALE1ISNXS,
TLBIP RVALE1ISNXS

01 000 1001 0010 111 TLBI RVAALE1ISNXS,
TLBIP RVAALE1ISNXS

01 000 1001 0011 000 TLBI VMALLE1ISNXS

01 000 1001 0011 001 TLBI VAE1ISNXS,
TLBIP VAE1ISNXS

01 000 1001 0011 010 TLBI ASIDE1ISNXS

01 000 1001 0011 011 TLBI VAAE1ISNXS,
TLBIP VAAE1ISNXS

01 000 1001 0011 101 TLBI VALE1ISNXS,
TLBIP VALE1ISNXS

01 000 1001 0011 111 TLBI VAALE1ISNXS,
TLBIP VAALE1ISNXS

01 000 1001 0101 001 TLBI RVAE1OSNXS,
TLBIP RVAE1OSNXS

01 000 1001 0101 011 TLBI RVAAE1OSNXS,
TLBIP RVAAE1OSNXS

01 000 1001 0101 101 TLBI RVALE1OSNXS,
TLBIP RVALE1OSNXS

01 000 1001 0101 111 TLBI RVAALE1OSNXS,
TLBIP RVAALE1OSNXS

01 000 1001 0110 001 TLBI RVAE1NXS,
TLBIP RVAE1NXS

01 000 1001 0110 011 TLBI RVAAE1NXS,
TLBIP RVAAE1NXS

01 000 1001 0110 101 TLBI RVALE1NXS,
TLBIP RVALE1NXS

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-875
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
01 000 1001 0110 111 TLBI RVAALE1NXS,
TLBIP RVAALE1NXS

01 000 1001 0111 000 TLBI VMALLE1NXS

01 000 1001 0111 001 TLBI VAE1NXS,
TLBIP VAE1NXS

01 000 1001 0111 010 TLBI ASIDE1NXS

01 000 1001 0111 011 TLBI VAAE1NXS,
TLBIP VAAE1NXS

01 000 1001 0111 101 TLBI VALE1NXS,
TLBIP VALE1NXS

01 000 1001 0111 111 TLBI VAALE1NXS,
TLBIP VAALE1NXS

01 100 1000 0000 001 TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS,
TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS

01 100 1000 0000 010 TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS,
TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS

01 100 1000 0000 101 TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS,
TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS

01 100 1000 0000 110 TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS,
TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS

01 100 1000 0001 000 TLBI ALLE2OS, TLBI ALLE2OSNXS

01 100 1000 0001 001 TLBI VAE2OS, TLBI VAE2OSNXS,
TLBIP VAE2OS, TLBIP VAE2OSNXS

01 100 1000 0001 100 TLBI ALLE1OS, TLBI ALLE1OSNXS

01 100 1000 0001 101 TLBI VALE2OS, TLBI VALE2OSNXS,
TLBIP VALE2OS, TLBIP VALE2OSNXS

01 100 1000 0001 110 TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS

01 100 1000 0010 001 TLBI RVAE2IS, TLBI RVAE2ISNXS,
TLBIP RVAE2IS, TLBIP RVAE2ISNXS

01 100 1000 0010 101 TLBI RVALE2IS, TLBI RVALE2ISNXS,
TLBIP RVALE2IS, TLBIP RVALE2ISNXS

01 100 1000 0011 000 TLBI ALLE2IS, TLBI ALLE2ISNXS

01 100 1000 0011 001 TLBI VAE2IS, TLBI VAE2ISNXS,
TLBIP VAE2IS, TLBIP VAE2ISNXS

01 100 1000 0011 100 TLBI ALLE1IS, TLBI ALLE1ISNXS

01 100 1000 0011 101 TLBI VALE2IS, TLBI VALE2ISNXS,
TLBIP VALE2IS, TLBIP VALE2ISNXS

01 100 1000 0011 110 TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-876
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
01 100 1000 0100 000 TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS,
TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS

01 100 1000 0100 001 TLBI IPAS2E1, TLBI IPAS2E1NXS,
TLBIP IPAS2E1, TLBIP IPAS2E1NXS

01 100 1000 0100 010 TLBI RIPAS2E1, TLBI RIPAS2E1NXS,
TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS

01 100 1000 0100 011 TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS,
TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS

01 100 1000 0100 100 TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS,
TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS

01 100 1000 0100 101 TLBI IPAS2LE1, TLBI IPAS2LE1NXS,
TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS

01 100 1000 0100 110 TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS,
TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS

01 100 1000 0100 111 TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS,
TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS

01 100 1000 0101 001 TLBI RVAE2OS, TLBI RVAE2OSNXS,
TLBIP RVAE2OS, TLBIP RVAE2OSNXS

01 100 1000 0101 101 TLBI RVALE2OS, TLBI RVALE2OSNXS,
TLBIP RVALE2OS, TLBIP RVALE2OSNXS

01 100 1000 0110 001 TLBI RVAE2, TLBI RVAE2NXS,
TLBIP RVAE2, TLBIP RVAE2NXS

01 100 1000 0110 101 TLBI RVALE2, TLBI RVALE2NXS,
TLBIP RVALE2, TLBIP RVALE2NXS

01 100 1000 0111 000 TLBI ALLE2, TLBI ALLE2NXS

01 100 1000 0111 001 TLBI VAE2, TLBI VAE2NXS,
TLBIP VAE2, TLBIP VAE2NXS

01 100 1000 0111 100 TLBI ALLE1, TLBI ALLE1NXS

01 100 1000 0111 101 TLBI VALE2, TLBI VALE2NXS,
TLBIP VALE2, TLBIP VALE2NXS

01 100 1000 0111 110 TLBI VMALLS12E1, TLBI VMALLS12E1NXS

01 100 1001 0000 001 TLBI IPAS2E1ISNXS,
TLBIP IPAS2E1ISNXS

01 100 1001 0000 010 TLBI RIPAS2E1ISNXS,
TLBIP RIPAS2E1ISNXS

01 100 1001 0000 101 TLBI IPAS2LE1ISNXS,
TLBIP IPAS2LE1ISNXS

01 100 1001 0000 110 TLBI RIPAS2LE1ISNXS,
TLBIP RIPAS2LE1ISNXS

01 100 1001 0001 000 TLBI ALLE2OSNXS

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-877
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
01 100 1001 0001 001 TLBI VAE2OSNXS,
TLBIP VAE2OSNXS

01 100 1001 0001 100 TLBI ALLE1OSNXS

01 100 1001 0001 101 TLBI VALE2OSNXS,
TLBIP VALE2OSNXS

01 100 1001 0001 110 TLBI VMALLS12E1OSNXS

01 100 1001 0010 001 TLBI RVAE2ISNXS,
TLBIP RVAE2ISNXS

01 100 1001 0010 101 TLBI RVALE2ISNXS,
TLBIP RVALE2ISNXS

01 100 1001 0011 000 TLBI ALLE2ISNXS

01 100 1001 0011 001 TLBI VAE2ISNXS,
TLBIP VAE2ISNXS

01 100 1001 0011 100 TLBI ALLE1ISNXS

01 100 1001 0011 101 TLBI VALE2ISNXS,
TLBIP VALE2ISNXS

01 100 1001 0011 110 TLBI VMALLS12E1ISNXS

01 100 1001 0100 000 TLBI IPAS2E1OSNXS,
TLBIP IPAS2E1OSNXS

01 100 1001 0100 001 TLBI IPAS2E1NXS,
TLBIP IPAS2E1NXS

01 100 1001 0100 010 TLBI RIPAS2E1NXS,
TLBIP RIPAS2E1NXS

01 100 1001 0100 011 TLBI RIPAS2E1OSNXS,
TLBIP RIPAS2E1OSNXS

01 100 1001 0100 100 TLBI IPAS2LE1OSNXS,
TLBIP IPAS2LE1OSNXS

01 100 1001 0100 101 TLBI IPAS2LE1NXS,
TLBIP IPAS2LE1NXS

01 100 1001 0100 110 TLBI RIPAS2LE1NXS,
TLBIP RIPAS2LE1NXS

01 100 1001 0100 111 TLBI RIPAS2LE1OSNXS,
TLBIP RIPAS2LE1OSNXS

01 100 1001 0101 001 TLBI RVAE2OSNXS,
TLBIP RVAE2OSNXS

01 100 1001 0101 101 TLBI RVALE2OSNXS,
TLBIP RVALE2OSNXS

01 100 1001 0110 001 TLBI RVAE2NXS,
TLBIP RVAE2NXS

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-878
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
01 100 1001 0110 101 TLBI RVALE2NXS,
TLBIP RVALE2NXS

01 100 1001 0111 000 TLBI ALLE2NXS

01 100 1001 0111 001 TLBI VAE2NXS,
TLBIP VAE2NXS

01 100 1001 0111 100 TLBI ALLE1NXS

01 100 1001 0111 101 TLBI VALE2NXS,
TLBIP VALE2NXS

01 100 1001 0111 110 TLBI VMALLS12E1NXS

01 110 1000 0001 000 TLBI ALLE3OS, TLBI ALLE3OSNXS

01 110 1000 0001 001 TLBI VAE3OS, TLBI VAE3OSNXS,
TLBIP VAE3OS, TLBIP VAE3OSNXS

01 110 1000 0001 100 TLBI PAALLOS

01 110 1000 0001 101 TLBI VALE3OS, TLBI VALE3OSNXS,
TLBIP VALE3OS, TLBIP VALE3OSNXS

01 110 1000 0010 001 TLBI RVAE3IS, TLBI RVAE3ISNXS,
TLBIP RVAE3IS, TLBIP RVAE3ISNXS

01 110 1000 0010 101 TLBI RVALE3IS, TLBI RVALE3ISNXS,
TLBIP RVALE3IS, TLBIP RVALE3ISNXS

01 110 1000 0011 000 TLBI ALLE3IS, TLBI ALLE3ISNXS

01 110 1000 0011 001 TLBI VAE3IS, TLBI VAE3ISNXS,
TLBIP VAE3IS, TLBIP VAE3ISNXS

01 110 1000 0011 101 TLBI VALE3IS, TLBI VALE3ISNXS,
TLBIP VALE3IS, TLBIP VALE3ISNXS

01 110 1000 0100 011 TLBI RPAOS

01 110 1000 0100 111 TLBI RPALOS

01 110 1000 0101 001 TLBI RVAE3OS, TLBI RVAE3OSNXS,
TLBIP RVAE3OS, TLBIP RVAE3OSNXS

01 110 1000 0101 101 TLBI RVALE3OS, TLBI RVALE3OSNXS,
TLBIP RVALE3OS, TLBIP RVALE3OSNXS

01 110 1000 0110 001 TLBI RVAE3, TLBI RVAE3NXS,
TLBIP RVAE3, TLBIP RVAE3NXS

01 110 1000 0110 101 TLBI RVALE3, TLBI RVALE3NXS,
TLBIP RVALE3, TLBIP RVALE3NXS

01 110 1000 0111 000 TLBI ALLE3, TLBI ALLE3NXS

01 110 1000 0111 001 TLBI VAE3, TLBI VAE3NXS,
TLBIP VAE3, TLBIP VAE3NXS

01 110 1000 0111 100 TLBI PAALL

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-879
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
For more information about these instructions, see TLB maintenance instructions.

01 110 1000 0111 101 TLBI VALE3, TLBI VALE3NXS,
TLBIP VALE3, TLBIP VALE3NXS

01 110 1001 0001 000 TLBI ALLE3OSNXS

01 110 1001 0001 001 TLBI VAE3OSNXS,
TLBIP VAE3OSNXS

01 110 1001 0001 101 TLBI VALE3OSNXS,
TLBIP VALE3OSNXS

01 110 1001 0010 001 TLBI RVAE3ISNXS,
TLBIP RVAE3ISNXS

01 110 1001 0010 101 TLBI RVALE3ISNXS,
TLBIP RVALE3ISNXS

01 110 1001 0011 000 TLBI ALLE3ISNXS

01 110 1001 0011 001 TLBI VAE3ISNXS,
TLBIP VAE3ISNXS

01 110 1001 0011 101 TLBI VALE3ISNXS,
TLBIP VALE3ISNXS

01 110 1001 0101 001 TLBI RVAE3OSNXS,
TLBIP RVAE3OSNXS

01 110 1001 0101 101 TLBI RVALE3OSNXS,
TLBIP RVALE3OSNXS

01 110 1001 0110 001 TLBI RVAE3NXS,
TLBIP RVAE3NXS

01 110 1001 0110 101 TLBI RVALE3NXS,
TLBIP RVALE3NXS

01 110 1001 0111 000 TLBI ALLE3NXS

01 110 1001 0111 001 TLBI VAE3NXS,
TLBIP VAE3NXS

01 110 1001 0111 101 TLBI VALE3NXS,
TLBIP VALE3NXS

Table C5-4 TLB maintenance instructions (continued)

op0 op1 CRn CRm op2 Mnemonic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-880
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Branch Record Buffer instructions

Table C5-5 lists the Branch Record Buffer instructions and their encodings.

For more information, see Chapter D18 The Branch Record Buffer Extension.

Trace Extension instructions

Table C5-5 lists the Trace Extension instructions and their encodings.

For more information, see Instrumentation element.

Guarded Control Stack instructions

Table C5-7 lists the Guarded Control Stack instructions and their encodings.

For more information, see Chapter D11 The Guarded Control Stack.

Table C5-5 Branch Record Buffer instructions

Instruction
Access instruction encoding

Notes
op0 op1 CRn CRm op2

BRB IALL 1 1 7 2 4 Accessible from EL1 or higher.

BRB INJ 5

Table C5-6 Trace Extension instructions

Instruction
Access instruction encoding

Notes
op0 op1 CRn CRm op2

TRCIT 1 3 7 2 7 When FEAT_ITE is implemented.

Table C5-7 Guarded Control Stack instructions

Instruction
Access instruction encoding

Notes
op0 op1 CRn CRm op2

GCSPOPCX 1 0 7 7 5 When FEAT_GCS is implemented.

GCSPOPM 1 3 7 7 1 When FEAT_GCS is implemented.

GCSPOPX 1 3 7 7 6 When FEAT_GCS is implemented.

GCSPUSHM 1 3 7 7 0 When FEAT_GCS is implemented.

GCSPUSHX 1 0 7 7 8 When FEAT_GCS is implemented.

GCSSS1 1 3 7 7 4 When FEAT_GCS is implemented.

GCSSS2 1 3 7 7 3 When FEAT_GCS is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-881
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
Reserved encoding space for IMPLEMENTATION DEFINED instructions

The A64 instruction set reserves the following encoding space for IMPLEMENTATION DEFINED instructions:

The value of L defines the use of Rt as follows:

0 Rt is an argument supplied to the instruction.

1 Rt is a result returned by the instruction.

IMPLEMENTATION DEFINED instructions in this encoding space are accessed using the SYS and SYSL instructions, see
SYS and SYSL.

See also Reserved encodings for IMPLEMENTATION DEFINED registers.

C5.1.5 op0==0b11, Moves to and from Special-purpose registers

The instructions that move data to and from non-debug System registers are encoded with op0==0b11, except that
some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these
instructions is:

Instructions for accessing Special-purpose registers

The value of CRn provides the next level of decode of these instructions. For Special-purpose registers, the value of
CRn is 4.

The A64 instructions for accessing Special-purpose registers are:

MSR <Special-purpose register>, Xt ; Write to Special-purpose register
MRS Xt, <Special-purpose register> ; Read from Special-purpose register

For these accesses, CRn has the value 4. The encoding for Special-purpose register accesses is:

The full list of Special-purpose registers is in Table C5-8. The characteristic of a Special-purpose register is that all
direct and indirect reads and writes to the register appear to occur in program order relative to other instructions,
without the need for any explicit synchronization.

Table C5-8 lists the encodings for op1, CRm, and op2 fields for accesses to the Special-purpose registers in AArch64.

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 4 0

1 0 1 0 1 0 1 0 0 L 0 1 1 x 1 1

11 5

op1

CRnop0

op2

7

CRm

8

Table C5-8 Special-purpose register accesses

op0 op1 CRn CRm op2 Access Mnemonic Register

11 000 0100 0000 000 RW SPSR_EL1 SPSR_EL1

11 000 0100 0000 000 RW SPSR_EL1 SPSR_EL2

11 000 0100 0000 000 RW SPSR_EL2 SPSR_EL1

11 000 0100 0000 000 RW SPSR_EL2 SPSR_EL2

11 000 0100 0000 001 RW ELR_EL1 ELR_EL1

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 1

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRm op21 1 0 1 0 0

op0 CRn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-882
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
11 000 0100 0000 001 RW ELR_EL1 ELR_EL2

11 000 0100 0000 001 RW ELR_EL2 ELR_EL1

11 000 0100 0000 001 RW ELR_EL2 ELR_EL2

11 000 0100 0001 000 RW SP_EL0 SP_EL0

11 000 0100 0010 000 - SPSel -

11 000 0100 0010 010 - CurrentEL -

11 000 0100 0010 011 - PAN -

11 000 0100 0010 100 - UAO -

11 000 0100 0011 000 - ALLINT -

11 000 0100 0011 001 - PM -

11 000 0100 0110 000 RW ICC_PMR_EL1 ICC_PMR_EL1

11 000 0100 0110 000 RW ICC_PMR_EL1 ICV_PMR_EL1

11 000 0100 0110 000 RW ICV_PMR_EL1 ICC_PMR_EL1

11 000 0100 0110 000 RW ICV_PMR_EL1 ICV_PMR_EL1

11 011 0100 0010 000 - NZCV -

11 011 0100 0010 001 - DAIF -

11 011 0100 0010 010 - SVCR -

11 011 0100 0010 101 - DIT -

11 011 0100 0010 110 - SSBS -

11 011 0100 0010 111 - TCO -

11 011 0100 0100 000 RW FPCR FPCR

11 011 0100 0100 001 RW FPSR FPSR

11 011 0100 0101 000 RW DSPSR_EL0 DSPSR_EL0

11 011 0100 0101 001 RW DLR_EL0 DLR_EL0

11 100 0100 0000 000 RW SPSR_EL1 SPSR_EL1

11 100 0100 0000 000 RW SPSR_EL1 SPSR_EL2

11 100 0100 0000 000 RW SPSR_EL2 SPSR_EL1

11 100 0100 0000 000 RW SPSR_EL2 SPSR_EL2

11 100 0100 0000 001 RW ELR_EL1 ELR_EL1

11 100 0100 0000 001 RW ELR_EL1 ELR_EL2

11 100 0100 0000 001 RW ELR_EL2 ELR_EL1

11 100 0100 0000 001 RW ELR_EL2 ELR_EL2

Table C5-8 Special-purpose register accesses (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-883
ID032224 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space
All direct and indirect reads and writes to Special-purpose registers appear to occur in program order relative to
other instructions.

11 100 0100 0001 000 RW SP_EL1 SP_EL1

11 100 0100 0011 000 RW SPSR_irq SPSR_irq

11 100 0100 0011 001 RW SPSR_abt SPSR_abt

11 100 0100 0011 010 RW SPSR_und SPSR_und

11 100 0100 0011 011 RW SPSR_fiq SPSR_fiq

11 101 0100 0000 000 RW SPSR_EL1 SPSR_EL1

11 101 0100 0000 001 RW ELR_EL1 ELR_EL1

11 110 0100 0000 000 RW SPSR_EL3 SPSR_EL3

11 110 0100 0000 001 RW ELR_EL3 ELR_EL3

11 110 0100 0001 000 RW SP_EL2 SP_EL2

Table C5-8 Special-purpose register accesses (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-884
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2 Special-purpose registers

This section describes the following Special-purpose registers:

• ALLINT, that holds the PSTATE.ALLINT bit.

• CurrentEL, that holds PSTATE.EL, and that software can read to determine the current Exception level.

• DAIF, that holds the current PSTATE.{D, A, I, F} interrupt mask bits.

• DIT, that holds the PSTATE.DIT bit.

• ELR_EL1, that holds the address to return to for an exception return from EL1.

• ELR_EL2, that holds the address to return to for an exception return from EL2.

• ELR_EL3, that holds the address to return to for an exception return from EL3.

• FPCR, that provides control of floating-point operation.

• FPSR, that provides floating-point status information.

• NZCV, that holds the PSTATE.{N, Z, C, V} condition flags.

• PAN, that holds the PSTATE.PAN state bit.

• SP_EL0, that holds the stack pointer for EL0.

• SP_EL1, that holds the stack pointer for EL1.

• SP_EL2, that holds the stack pointer for EL2.

• SP_EL3, that holds the stack pointer for EL3.

• SPSel, that holds PSTATE.SP, that at EL1 or higher selects the current SP.

• SPSR_abt, that holds process state on taking an exception to AArch32 Abort mode.

• SPSR_EL1, that holds process state on taking an exception to AArch64 EL1.

• SPSR_EL2, that holds process state on taking an exception to AArch64 EL2.

• SPSR_EL3, that holds process state on taking an exception to AArch64 EL3.

• SPSR_fiq, that holds process state on taking an exception to AArch32 FIQ mode.

• SPSR_irq, that holds process state on taking an exception to AArch32 IRQ mode.

• SPSR_und, that holds process state on taking an exception to AArch32 Undefined mode.

• SSBS, that holds the PSTATE.SSBS bit.

• SVCR, controls Streaming SVE mode and SME behavior.

• TCO, that holds the PSTATE.TCO bit.

• UAO, that holds the PSTATE.UAO bit.

The following registers are also Special-purpose registers:

• DLR_EL0, that holds the address to return to for a return from Debug state.

• DSPSR_EL0, that holds process state on entry to Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-885
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.1 ALLINT, All Interrupt Mask Bit

The ALLINT characteristics are:

Purpose

Allows access to the all interrupt mask bit.

Configurations

This register is present only when FEAT_NMI is implemented. Otherwise, direct accesses to
ALLINT are UNDEFINED.

Attributes

ALLINT is a 64-bit register.

Field descriptions

Bits [63:14]

Reserved, RES0.

ALLINT, bit [13]

All interrupt mask. An interrupt is controlled by PSTATE.ALLINT when all of the following apply:

• SCTLR_ELx.NMI is 1.

• The interrupt is targeted at ELx.

• Execution is at ELx.

0b0 This control does not cause any interrupts to be masked.

0b1 If SCTLR_ELx.NMI is 1 and execution is at ELx, an IRQ or FIQ interrupt that is
targeted to ELx, with or without Superpriority, is masked.

The value of this bit is set to the inverse value in the SCTLR_ELx.SPINTMASK field on taking an
exception to ELx.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [12:0]

Reserved, RES0.

Accessing ALLINT

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ALLINT

RES0

63 32

RES0

31 14 13

RES0

12 0

ALLINT

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-886
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(50):PSTATE.ALLINT:Zeros(13);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(50):PSTATE.ALLINT:Zeros(13);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(50):PSTATE.ALLINT:Zeros(13);

MSR ALLINT, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsHCRXEL2Enabled() && HCRX_EL2.TALLINT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PSTATE.ALLINT = X[t, 64]<13>;
elsif PSTATE.EL == EL2 then
 PSTATE.ALLINT = X[t, 64]<13>;
elsif PSTATE.EL == EL3 then
 PSTATE.ALLINT = X[t, 64]<13>;

MSR ALLINT, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0011 0b000

op0 op1 CRn CRm op2

0b00 0b001 0b0100 0b000x 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-887
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.2 CurrentEL, Current Exception Level

The CurrentEL characteristics are:

Purpose

Holds the current Exception level.

Configurations

There are no configuration notes.

Attributes

CurrentEL is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

When the Effective value of HCR_EL2.NV is 1, EL1 read accesses to the CurrentEL register return
the value of 0b10 in this field.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 1.

— When the highest implemented Exception level is EL2, this field resets to 2.

— Otherwise, this field resets to 3.

Bits [1:0]

Reserved, RES0.

Accessing CurrentEL

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CurrentEL

RES0

63 32

RES0

31 4

EL

3 2

RES0

1 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-888
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 X[t, 64] = Zeros(60):'10':Zeros(2);
 else
 X[t, 64] = Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(60):PSTATE.EL:Zeros(2);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-889
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.3 DAIF, Interrupt Mask Bits

The DAIF characteristics are:

Purpose

Allows access to the interrupt mask bits.

Configurations

There are no configuration notes.

Attributes

DAIF is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

D, bit [9]

Process state D mask.

0b0 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

0b1 Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

A, bit [8]

SError exception mask bit.

0b0 Exception not masked.

0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

I, bit [7]

IRQ mask bit.

0b0 Exception not masked.

0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

RES0

63 32

RES0

31 10

D

9

A

8

I

7

F

6

RES0

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-890
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ mask bit.

0b0 Exception not masked.

0b1 Exception masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [5:0]

Reserved, RES0.

Accessing DAIF

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DAIF

if PSTATE.EL == EL0 then
 if ELIsInHost(EL0) || SCTLR_EL1.UMA == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 X[t, 64] = Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

MSR DAIF, <Xt>

if PSTATE.EL == EL0 then
 if ELIsInHost(EL0) || SCTLR_EL1.UMA == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 PSTATE.<D,A,I,F> = X[t, 64]<9:6>;
elsif PSTATE.EL == EL1 then
 PSTATE.<D,A,I,F> = X[t, 64]<9:6>;
elsif PSTATE.EL == EL2 then
 PSTATE.<D,A,I,F> = X[t, 64]<9:6>;
elsif PSTATE.EL == EL3 then
 PSTATE.<D,A,I,F> = X[t, 64]<9:6>;

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-891
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR DAIFSet, #<imm>

MSR DAIFClr, #<imm>

op0 op1 CRn op2

0b00 0b011 0b0100 0b110

op0 op1 CRn op2

0b00 0b011 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-892
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.4 DIT, Data Independent Timing

The DIT characteristics are:

Purpose

Allows access to the Data Independent Timing bit.

Configurations

This register is present only when FEAT_DIT is implemented. Otherwise, direct accesses to DIT are
UNDEFINED.

Attributes

DIT is a 64-bit register.

Field descriptions

Bits [63:25]

Reserved, RES0.

DIT, bit [24]

Data Independent Timing.

0b0 The architecture makes no statement about the timing properties of any instructions.

0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive to the value of the
data being loaded or stored.

• For certain data processing instructions, the instruction takes a time which is
independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• For certain data processing instructions, the response of the instruction to
asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

The Operational Information section of a data processing instruction description indicates if that
instruction is affected by this bit.

Note
The architecture makes no statement about the timing properties when the PSTATE.DIT bit is not
set. However, it is likely that many of these instructions have timing that is invariant of the data in
many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer authentication instructions do not
have their timing dependent on the key value used in the pointer authentication in all cases,
regardless of the PSTATE.DIT bit.

RES0

63 32

RES0

31 25 24

RES0

23 0

DIT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-893
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [23:0]

Reserved, RES0.

Accessing DIT

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DIT

if PSTATE.EL == EL0 then
 X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(39):PSTATE.DIT:Zeros(24);

MSR DIT, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.DIT = X[t, 64]<24>;
elsif PSTATE.EL == EL1 then
 PSTATE.DIT = X[t, 64]<24>;
elsif PSTATE.EL == EL2 then
 PSTATE.DIT = X[t, 64]<24>;
elsif PSTATE.EL == EL3 then
 PSTATE.DIT = X[t, 64]<24>;

MSR DIT, #<imm>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b101

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b101

op0 op1 CRn op2

0b00 0b011 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-894
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.5 ELR_EL1, Exception Link Register (EL1)

The ELR_EL1 characteristics are:

Purpose

When taking an exception to EL1, holds the address to return to.

Configurations

There are no configuration notes.

Attributes

ELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic ELR_EL1 or ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x230];
 else
 X[t, 64] = ELR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = ELR_EL2;
 else
 X[t, 64] = ELR_EL1;

Return address

63 32

Return address

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-895
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = ELR_EL1;

MSR ELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && !(EffectiveHCR_EL2_NVx() IN {'x11'}) then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x230] = X[t, 64];
 else
 ELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && ELIsInHost(EL2) then
 EXLOCKException();
 elsif ELIsInHost(EL2) then
 ELR_EL2 = X[t, 64];
 else
 ELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ELR_EL1 = X[t, 64];

MRS <Xt>, ELR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x230];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = ELR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = ELR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-896
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR ELR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x230] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 ELR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 ELR_EL1 = X[t, 64];
 else
 UNDEFINED;

 When FEAT_VHE is implemented : MRS <Xt>, ELR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = ELR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ELR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ELR_EL2;

 When FEAT_VHE is implemented : MSR ELR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && EffectiveHCR_EL2_NVx() IN {'xx1'} then

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-897
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 ELR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 ELR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ELR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-898
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.6 ELR_EL2, Exception Link Register (EL2)

The ELR_EL2 characteristics are:

Purpose

When taking an exception to EL2, holds the address to return to.

Configurations

AArch64 System register ELR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register ELR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ELR_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3
and AArch64 execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value
that they did before AArch32 execution. Which option is adopted is determined by an
implementation, and might vary dynamically within an implementation. Correspondingly software
must regard the value as being an UNKNOWN choice between the two values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic ELR_EL2 or ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = ELR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then

Return address

63 32

Return address

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-899
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ELR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ELR_EL2;

MSR ELR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && EffectiveHCR_EL2_NVx() IN {'xx1'} then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 ELR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 ELR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ELR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, ELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x230];
 else
 X[t, 64] = ELR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = ELR_EL2;
 else
 X[t, 64] = ELR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ELR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-900
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 When FEAT_VHE is implemented : MSR ELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && !(EffectiveHCR_EL2_NVx() IN {'x11'}) then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x230] = X[t, 64];
 else
 ELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && ELIsInHost(EL2) then
 EXLOCKException();
 elsif ELIsInHost(EL2) then
 ELR_EL2 = X[t, 64];
 else
 ELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ELR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-901
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.7 ELR_EL3, Exception Link Register (EL3)

The ELR_EL3 characteristics are:

Purpose

When taking an exception to EL3, holds the address to return to.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ELR_EL3 are
UNDEFINED.

Attributes

ELR_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ELR_EL3;

MSR ELR_EL3, <Xt>

Return address

63 32

Return address

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-902
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 ELR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-903
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.8 FPCR, Floating-point Control Register

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

Configurations

AArch64 System register FPCR bits [26:15] are architecturally mapped to AArch32 System register
FPSCR[26:15].

AArch64 System register FPCR bits [12:8] are architecturally mapped to AArch32 System register
FPSCR[12:8].

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to nonzero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

Attributes

FPCR is a 64-bit register.

Field descriptions

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit.

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point
formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE
half-precision format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN use for NaN propagation.

0b0 NaN operands propagate through to the output of a floating-point operation.

0b1 Any operation involving one or more NaNs returns the Default NaN.

This bit has no effect on the output of FABS, FMAX*, FMIN*, and FNEG instructions,
and a default NaN is never returned as a result of these instructions.

RES0

63 32

RES0

31 27 26

DN

25

FZ

24 23 22 21 20 19

Len

18 16 15 14 13 12 11 10 9 8

RES0

7 3 2

AH

1 0

AHP
RMode

Stride
FZ16

IDE
RES0

IOE
DZE

OFE
UFE

IXE
EBF

NEP FIZ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-904
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flushing denormalized numbers to zero control bit.

0b0 If FPCR.AH is 0, the flushing to zero of single-precision and double-precision
denormalized inputs to, and outputs of, floating-point instructions not enabled by this
control, but other factors might cause the input denormalized numbers to be flushed to
zero.

If FPCR.AH is 1, the flushing to zero of single-precision and double-precision
denormalized outputs of floating-point instructions not enabled by this control, but
other factors might cause the input denormalized numbers to be flushed to zero.

0b1 If FPCR.AH is 0, denormalized single-precision and double-precision inputs to, and
outputs from, floating-point instructions are flushed to zero.

If FPCR.AH is 1, denormalized single-precision and double-precision outputs from
floating-point instructions are flushed to zero.

For more information, see Flushing denormalized numbers to zero and the pseudocode of the
floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field.

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point
instructions.

If FPCR.AH is 1, then the following instructions use Round to Nearest mode regardless of the value
of this bit:

• The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

This field has no function in AArch64 state, and nonzero values are ignored during execution in
AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation implements FPSCR.LEN,STRIDE as RAZ, access to this field is
RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-905
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
FZ16, bit [19]

When FEAT_FP16 is implemented:

Flushing denormalized numbers to zero control bit on half-precision data-processing instructions.

0b0 For some instructions, this bit disables flushing to zero of inputs and outputs that are
half-precision denormalized numbers.

0b1 Flushing denormalized numbers to zero enabled.

For some instructions that do not convert a half-precision input to a higher precision
output, this bit enables flushing to zero of inputs and outputs that are half-precision
denormalized numbers.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision
calculations.

For more information, see Flushing denormalized numbers to zero and the pseudocode of the
floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

This field has no function in AArch64 state, and nonzero values are ignored during execution in
AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation implements FPSCR.LEN,STRIDE as RAZ, access to this field is
RAZ/WI.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.IDC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.IDC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.IDE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Input Denormal floating-point exceptions,
access to this field is RAZ/WI.

Bit [14]

Reserved, RES0.

EBF, bit [13]

When FEAT_EBF16 is implemented:

The value of this bit controls the numeric behaviors of BFloat16 dot product calculations performed
by the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions. If FEAT_SME2 is implemented,
this also controls BFVDOT instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-906
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
When ID_AA64ISAR1_EL1.BF16 and ID_AA64ZFR0_EL1.BF16 are 0b0010, the PE supports the
FPCR.EBF field. Otherwise, FPCR.EBF is RES0.

0b0 These instructions use the standard BFloat16 behaviors:

• Ignoring the FPCR.RMode control and using the rounding mode defined for
BFloat16. For more information, see Rounding.

• Flushing denormalized inputs and outputs to zero, as if the FPCR.FZ and
FPCR.FIZ controls had the value '1'.

• Performing unfused multiplies and additions with intermediate rounding of all
products and sums.

0b1 These instructions use the extended BFloat16 behaviors:

• Supporting all four IEEE 754 rounding modes selected by the FPCR.RMode
control.

• Optionally, flushing denormalized inputs and outputs to zero, as governed by the
FPCR.FZ and FPCR.FIZ controls.

• Performing a fused two-way sum-of-products for each pair of adjacent BFloat16
elements, without intermediate rounding of the products, but rounding the
single-precision sum before addition to the accumulator.

• Generating the default NaN as intermediate sum-of-products when any multiplier
input is a NaN, or any product is infinity × 0.0, or there are infinite products with
differing signs.

• Generating an intermediate sum-of-products of the same infinity when there are
infinite products all with the same sign.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.IXC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.IXC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.IXE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Inexact floating-point exceptions, access
to this field is RAZ/WI.

UFE, bit [11]

Underflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.UFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs and
Flush-to-zero is not enabled, the PE does not update the FPSR.UFC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.UFE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-907
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Underflow floating-point exceptions,
access to this field is RAZ/WI.

OFE, bit [10]

Overflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.OFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.OFC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.OFE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Overflow floating-point exceptions,
access to this field is RAZ/WI.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.DZC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.DZC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.DZE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Divide by Zero floating-point exceptions,
access to this field is RAZ/WI.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the
FPSR.IOC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the FPSR.IOC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.IOE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Invalid Operation floating-point
exceptions, access to this field is RAZ/WI.

Bits [7:3]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-908
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
NEP, bit [2]

When FEAT_AFP is implemented:

Controls how the output elements other than the lowest element of the vector are determined for
Advanced SIMD scalar instructions.

0b0 Does not affect how the output elements other than the lowest are determined for
Advanced SIMD scalar instructions.

0b1 The output elements other than the lowest are taken from the following registers:

• For 3-input scalar versions of the FMLA (by element) and FMLS (by element)
instructions, the <Hd>, <Sd>, or <Dd> register.

• For 3-input versions of the FMADD, FMSUB, FNMADD, and FNMSUB
instructions, the <Ha>, <Sa>, or <Da> register.

• For 2-input scalar versions of the FACGE, FACGT, FCMEQ (register), FCMGE
(register), and FCMGT (register) instructions, the <Hm>, <Sm>, or <Dm>
register.

• For 2-input scalar versions of the FABD, FADD (scalar), FDIV (scalar), FMAX
(scalar), FMAXNM (scalar), FMIN (scalar), FMINNM (scalar), FMUL (by
element), FMUL (scalar), FMULX (by element), FMULX, FNMUL (scalar),
FRECPS, FRSQRTS, and FSUB (scalar) instructions, the <Hn>, <Sn>, or <Dn>
register.

• For 1-input scalar versions of the following instructions, the <Hd>, <Sd>, or
<Dd> register:

— The (vector) versions of the FCVTAS, FCVTAU, FCVTMS, FCVTMU,
FCVTNS, FCVTNU, FCVTPS, and FCVTPU instructions.

— The (vector, fixed-point) and (vector, integer) versions of the FCVTZS,
FCVTZU, SCVTF, and UCVTF instructions.

— The (scalar) versions of the FABS, FNEG, FRINT32X, FRINT32Z,
FRINT64X, FRINT64Z, FRINTA, FRINTI, FRINTM, FRINTN,
FRINTP, FRINTX, FRINTZ, and FSQRT instructions.

— The (scalar, fixed-point) and (scalar, integer) versions of the SCVTF and
UCVTF instructions.

— The BFCVT, FCVT, FCVTXN, FRECPE, FRECPX, and FRSQRTE
instructions.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled,
the value of FPCR.NEP is treated as 0 for all purposes other than a direct read or write of the FPCR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AH, bit [1]

When FEAT_AFP is implemented:

Alternate Handling. Controls alternate handling of floating-point numbers.

The Arm architecture supports two models for handling some of the corner cases of the
floating-point behaviors, such as the nature of flushing of denormalized numbers, the detection of
tininess and other exceptions and a range of other behaviors. The value of the FPCR.AH bit selects
between these models.

For more information on the FPCR.AH bit, see Flushing denormalized numbers to zero,
Floating-point exceptions and exception traps and the pseudocode of the floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-909
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

FIZ, bit [0]

When FEAT_AFP is implemented:

Flush Inputs to Zero. Controls whether single-precision, double-precision and BFloat16 input
operands that are denormalized numbers are flushed to zero.

0b0 The flushing to zero of single-precision and double-precision denormalized inputs to
floating-point instructions not enabled by this control, but other factors might cause the
input denormalized numbers to be flushed to zero.

0b1 Denormalized single-precision and double-precision inputs to most floating-point
instructions flushed to zero.

For more information, see Flushing denormalized numbers to zero and the pseudocode of the
floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing FPCR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPCR

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPCR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-910
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPCR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPCR;

MSR FPCR, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-911
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPCR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-912
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.9 FPSR, Floating-point Status Register

The FPSR characteristics are:

Purpose

Provides floating-point system status information.

Configurations

AArch64 System register FPSR bits [31:27] are architecturally mapped to AArch32 System register
FPSCR[31:27].

AArch64 System register FPSR bit [7] is architecturally mapped to AArch32 System register
FPSCR[7].

AArch64 System register FPSR bits [4:0] are architecturally mapped to AArch32 System register
FPSCR[4:0].

Attributes

FPSR is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

When AArch32 is supported and AArch32 floating-point is implemented:

Negative condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.N flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Z, bit [30]

When AArch32 is supported and AArch32 floating-point is implemented:

Zero condition flag for AArch32 floating-point comparison operations.

Note
AArch64 floating-point comparisons set the PSTATE.Z flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

N

31

Z

30

C

29

V

28

QC

27

RES0

26 8 7

RES0

6 5 4 3 2 1 0

IDC
IXC

UFC

IOC
DZC

OFC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-913
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

C, bit [29]

When AArch32 is supported and AArch32 floating-point is implemented:

Carry condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.C flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

V, bit [28]

When AArch32 is supported and AArch32 floating-point is implemented:

Overflow condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.V flag instead.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced
SIMD integer operation has saturated since 0 was last written to this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [26:8]

Reserved, RES0.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input
Denormal floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.IDE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IDE is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.IXE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IXE is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-914
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The criteria for the Inexact floating-point exception to occur are affected by whether denormalized
numbers are flushed to zero and by the value of the FPCR.AH bit. For more information, see
Floating-point exceptions and exception traps.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.UFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.UFE is 0
or if flushing denormalized numbers to zero is enabled.

The criteria for the Underflow floating-point exception to occur are affected by whether
denormalized numbers are flushed to zero and by the value of the FPCR.AH bit. For more
information, see Floating-point exceptions and exception traps.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.OFE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.OFE is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide
by Zero floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.DZE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.DZE is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the
Invalid Operation floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of
the FPCR.IOE bit. This bit is set to 1 to indicate a floating-point exception only if FPCR.IOE is 0.

The criteria for the Invalid Operation floating-point exception to occur are affected by the value of
the FPCR.AH bit. For more information, see Floating-point exceptions and exception traps.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-915
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Accessing FPSR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPSR

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPSR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPSR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-916
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 else
 X[t, 64] = FPSR;

MSR FPSR, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x00);
 else
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x07);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPSR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-917
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 else
 FPSR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-918
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.10 NZCV, Condition Flags

The NZCV characteristics are:

Purpose

Allows access to the condition flags.

Configurations

There are no configuration notes.

Attributes

NZCV is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative condition flag. Set to 1 if the result of the last flag-setting instruction was negative.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Bits [27:0]

Reserved, RES0.

Accessing NZCV

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, NZCV

if PSTATE.EL == EL0 then
 X[t, 64] = Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL1 then

RES0

63 32

N

31

Z

30

C

29

V

28

RES0

27 0

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-919
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 X[t, 64] = Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

MSR NZCV, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.<N,Z,C,V> = X[t, 64]<31:28>;
elsif PSTATE.EL == EL1 then
 PSTATE.<N,Z,C,V> = X[t, 64]<31:28>;
elsif PSTATE.EL == EL2 then
 PSTATE.<N,Z,C,V> = X[t, 64]<31:28>;
elsif PSTATE.EL == EL3 then
 PSTATE.<N,Z,C,V> = X[t, 64]<31:28>;

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-920
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.11 PAN, Privileged Access Never

The PAN characteristics are:

Purpose

Allows access to the Privileged Access Never bit.

Configurations

This register is present only when FEAT_PAN is implemented. Otherwise, direct accesses to PAN
are UNDEFINED.

Attributes

PAN is a 64-bit register.

Field descriptions

Bits [63:23]

Reserved, RES0.

PAN, bit [22]

Privileged Access Never.

0b0 Privileged reads and write are not disabled by this mechanism.

0b1 Disables privileged read and write accesses to addresses accessible at EL0 for an
enabled stage 1 translation regime that defines the EL0 permissions.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR_EL1.SPAN bit is 0, this
bit is set to 1.

• When the target of the exception is EL2, the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, and the value of the SCTLR_EL2.SPAN bit is 0, this bit is set to 1.

Bits [21:0]

Reserved, RES0.

Accessing PAN

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PAN

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 23 22

RES0

21 0

PAN

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-921
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 X[t, 64] = Zeros(41):PSTATE.PAN:Zeros(22);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(41):PSTATE.PAN:Zeros(22);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(41):PSTATE.PAN:Zeros(22);

MSR PAN, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.PAN = X[t, 64]<22>;
elsif PSTATE.EL == EL2 then
 PSTATE.PAN = X[t, 64]<22>;
elsif PSTATE.EL == EL3 then
 PSTATE.PAN = X[t, 64]<22>;

MSR PAN, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b011

op0 op1 CRn op2

0b00 0b000 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-922
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.12 PM, PMU Exception Mask

The PM characteristics are:

Purpose

Allows access to the PMU exception Mask bit.

Configurations

This register is present only when FEAT_EBEP is implemented. Otherwise, direct accesses to PM
are UNDEFINED.

Attributes

PM is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

PM, bit [32]

PMU Exception Mask.

0b0 Does not cause the PMU exception to be masked.

0b1 Causes the PMU exception to be masked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

Accessing PM

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PM

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(31):PSTATE.PM:Zeros(32);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(31):PSTATE.PM:Zeros(32);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(31):PSTATE.PM:Zeros(32);

RES0

63 33

PM

32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-923
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR PM, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.PM = X[t, 64]<32>;
elsif PSTATE.EL == EL2 then
 PSTATE.PM = X[t, 64]<32>;
elsif PSTATE.EL == EL3 then
 PSTATE.PM = X[t, 64]<32>;

MSR PM, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0011 0b001

op0 op1 CRn CRm op2

0b00 0b001 0b0100 0b001x 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-924
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.13 SP_EL0, Stack Pointer (EL0)

The SP_EL0 characteristics are:

Purpose

Holds the stack pointer associated with EL0. At higher Exception levels, this is used as the current
stack pointer when the value of SPSel.SP is 0.

Configurations

There are no configuration notes.

Attributes

SP_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SP_EL0

When the value of PSTATE.SP is 0, this register is accessible at all Exception levels as the current stack pointer.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SP_EL0

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 X[t, 64] = SP_EL0;
elsif PSTATE.EL == EL2 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 X[t, 64] = SP_EL0;
elsif PSTATE.EL == EL3 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 X[t, 64] = SP_EL0;

Stack pointer

63 32

Stack pointer

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-925
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR SP_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 SP_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 SP_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if PSTATE.SP == '0' then
 UNDEFINED;
 else
 SP_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-926
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.14 SP_EL1, Stack Pointer (EL1)

The SP_EL1 characteristics are:

Purpose

Holds the stack pointer associated with EL1. When executing at EL1, the value of SPSel.SP
determines the current stack pointer:

Configurations

There are no configuration notes.

Attributes

SP_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SP_EL1

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL1 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SP_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

SPSel.SP Current stack pointer

0b0 SP_EL0

0b1 SP_EL1

Stack pointer

63 32

Stack pointer

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-927
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x240];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SP_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SP_EL1;

MSR SP_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x240] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SP_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SP_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-928
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.15 SP_EL2, Stack Pointer (EL2)

The SP_EL2 characteristics are:

Purpose

Holds the stack pointer associated with EL2. When executing at EL2, the value of SPSel. SP
determines the current stack pointer:

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SP_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SP_EL2

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL2 as the current stack pointer.

Note

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SP_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

SPSel.SP Current stack pointer

0b0 SP_EL0

0b1 SP_EL2

Stack pointer

63 32

Stack pointer

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-929
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SP_EL2;

MSR SP_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SP_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-930
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.16 SP_EL3, Stack Pointer (EL3)

The SP_EL3 characteristics are:

Purpose

Holds the stack pointer associated with EL3. When executing at EL3, the value of SPSel.SP
determines the current stack pointer:

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to SP_EL3 are
UNDEFINED.

Attributes

SP_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Stack pointer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSel.SP Current stack pointer

0b0 SP_EL0

0b1 SP_EL3

Stack pointer

63 32

Stack pointer

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-931
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.17 SPSel, Stack Pointer Select

The SPSel characteristics are:

Purpose

Allows the Stack Pointer to be selected between SP_EL0 and SP_ELx.

Configurations

There are no configuration notes.

Attributes

SPSel is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

SP, bit [0]

Stack pointer to use. Possible values of this bit are:

0b0 Use SP_EL0 at all Exception levels.

0b1 Use SP_ELx for Exception level ELx.

When FEAT_NMI is implemented and SCTLR_ELx.SPINTMASK is 1, if execution is
at ELx, an IRQ or FIQ interrupt that is targeted to ELx is masked regardless of any
denotion of Superpriority.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Accessing SPSel

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSel

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(63):PSTATE.SP;
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(63):PSTATE.SP;
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(63):PSTATE.SP;

RES0

63 32

RES0

31 1

SP

0

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-932
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR SPSel, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.SP = X[t, 64]<0>;
elsif PSTATE.EL == EL2 then
 PSTATE.SP = X[t, 64]<0>;
elsif PSTATE.EL == EL3 then
 PSTATE.SP = X[t, 64]<0>;

MSR SPSel, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b000

op0 op1 CRn op2

0b00 0b000 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-933
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.18 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

AArch64 System register SPSR_abt bits [31:0] are architecturally mapped to AArch32 System
register SPSR_abt[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_abt is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

Bits [63:0]

Reserved, RES0.

Otherwise:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and
copied to PSTATE.N on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and
copied to PSTATE.Z on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 0

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-934
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and
copied to PSTATE.C on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and
copied to PSTATE.V on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode,
and copied to PSTATE.Q on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Abort mode, and copied to
PSTATE.IT on executing an illegal exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].

• IT[7:2] is SPSR_abt[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode,
and copied to PSTATE.SSBS on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode,
and copied to PSTATE.PAN on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-935
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode,
and copied to PSTATE.DIT on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and
copied to PSTATE.IL on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode,
and copied to PSTATE.GE on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to
PSTATE.E on executing an illegal exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the
implementation does not support little-endian operation, SPSR_abt.E is RES1. On executing an
illegal exception return operation in Abort mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_abt.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_abt.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and
copied to PSTATE.A on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied
to PSTATE.I on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied
to PSTATE.F on executing an illegal exception return operation in Abort mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-936
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and
copied to PSTATE.T on executing an illegal exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to
PSTATE.M[4:0] on executing an illegal exception return operation in Abort mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an illegal exception return operation in Abort mode is
an illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_abt

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_abt

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SPSR_abt;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_abt;

MSR SPSR_abt, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-937
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_abt = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_abt = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-938
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.19 SPSR_EL1, Saved Program Status Register (EL1)

The SPSR_EL1 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL1.

Configurations

AArch64 System register SPSR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register SPSR_svc[31:0].

Attributes

SPSR_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported and exception taken from AArch32 state:

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:34]

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on taking an exception to EL1,
and conditionally copied to PSTATE.PPEND on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied
to PSTATE.N on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to
PSTATE.Z on executing an exception return operation in EL1.

RES0

63 34 33 32

PPEND RES0

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-939
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to
PSTATE.C on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied
to PSTATE.V on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and
copied to PSTATE.Q on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL1, and copied to PSTATE.IT
on executing an exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL1[26:25].

• IT[7:2] is SPSR_EL1[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and
copied to PSTATE.DIT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and
copied to PSTATE.SSBS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-940
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and
copied to PSTATE.PAN on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to
PSTATE.IL on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and
copied to PSTATE.GE on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E
on executing an exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL1.E is RES1. On executing an
exception return operation in EL1, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL1.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL1.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to
PSTATE.A on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to
PSTATE.I on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-941
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to
PSTATE.F on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied
to PSTATE.T on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL1.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL1.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0111 Abort.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL1 is an illegal return
event, as described in Illegal exception returns from AArch64 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:35]

Reserved, RES0.

RES0

63 35 34 33

PM

32

EXLOCK PPEND

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 14 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

ALLINT
SSBS

M[4]
RES0

BTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-942
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
EXLOCK, bit [34]

When FEAT_GCS is implemented:

Exception return state lock. Set to the value of PSTATE.EXLOCK on taking an exception to EL1,
and copied to PSTATE.EXLOCK on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on taking an exception to EL1,
and conditionally copied to PSTATE.PPEND on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PM, bit [32]

When FEAT_EBEP is implemented:

PMU exception mask bit. Set to the value of PSTATE.PM on taking an exception to EL1, and copied
to PSTATE.PM on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied
to PSTATE.N on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to
PSTATE.Z on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to
PSTATE.C on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied
to PSTATE.V on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-943
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL1, and copied
to PSTATE.TCO on executing an exception return operation in EL1.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE2 is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and
copied to PSTATE.DIT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied
to PSTATE.UAO on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and
copied to PSTATE.PAN on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to
PSTATE.IL on executing an exception return operation in EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-944
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

ALLINT, bit [13]

When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on taking an exception to
EL1, and copied to PSTATE.ALLINT on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and
copied to PSTATE.SSBS on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL1, and
copied to PSTATE.BTYPE on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to
PSTATE.D on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to
PSTATE.A on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to
PSTATE.I on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-945
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to
PSTATE.F on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL1.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0.

0b0100 EL1 with SP_EL0 (ELt).

0b0101 EL1 with SP_EL1 (EL1h).

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL1 is an illegal return
event, as described in Illegal exception returns from AArch64 state.

The bits in this field are interpreted as follows:

• M[3:2]: On an exception to EL1:

— If the Effective value of HCR_EL2.{NV, NV1} is not {1, 0} or the exception is not
taken from EL1, then M[3:2] is set to the value of PSTATE.EL on taking an exception
to EL1.

— If the Effective value of HCR_EL2.{NV, NV1} is {1, 0} and the exception is not taken
from EL1, then M[3:2] is set to 0b10.

— M[3:2] is copied to PSTATE.EL on executing a legal exception return operation in
EL1.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to
PSTATE.SP on executing an exception return operation in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic SPSR_EL1 or SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-946
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x160];
 else
 X[t, 64] = SPSR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = SPSR_EL2;
 else
 X[t, 64] = SPSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_EL1;

MSR SPSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && !(EffectiveHCR_EL2_NVx() IN {'x11'}) then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x160] = X[t, 64];
 else
 SPSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && ELIsInHost(EL2) then
 EXLOCKException();
 elsif ELIsInHost(EL2) then
 SPSR_EL2 = X[t, 64];
 else
 SPSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_EL1 = X[t, 64];

MRS <Xt>, SPSR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x160];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-947
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = SPSR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = SPSR_EL1;
 else
 UNDEFINED;

MSR SPSR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x160] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 SPSR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 SPSR_EL1 = X[t, 64];
 else
 UNDEFINED;

 When FEAT_VHE is implemented : MRS <Xt>, SPSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = SPSR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SPSR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_EL2;

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-948
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 When FEAT_VHE is implemented : MSR SPSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && EffectiveHCR_EL2_NVx() IN {'xx1'} then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 SPSR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 SPSR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-949
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.20 SPSR_EL2, Saved Program Status Register (EL2)

The SPSR_EL2 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL2.

Configurations

AArch64 System register SPSR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register SPSR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SPSR_EL2 is a 64-bit register.

Field descriptions

When AArch32 is supported and exception taken from AArch32 state:

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:34]

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on taking an exception to EL2,
and conditionally copied to PSTATE.PPEND on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied
to PSTATE.N on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to
PSTATE.Z on executing an exception return operation in EL2.

RES0

63 34 33 32

PPEND RES0

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-950
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to
PSTATE.C on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied
to PSTATE.V on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and
copied to PSTATE.Q on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL2, and copied to PSTATE.IT
on executing an exception return operation in EL2.

SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL2[26:25].

• IT[7:2] is SPSR_EL2[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and
copied to PSTATE.DIT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and
copied to PSTATE.SSBS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-951
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and
copied to PSTATE.PAN on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to
PSTATE.IL on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and
copied to PSTATE.GE on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E
on executing an exception return operation in EL2.

If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL2.E is RES1. On executing an
exception return operation in EL2, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL2.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL2.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to
PSTATE.A on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to
PSTATE.I on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-952
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to
PSTATE.F on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied
to PSTATE.T on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL2.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL2.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL2 is an illegal return
event, as described in Illegal exception returns from AArch64 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

RES0

63 35 34 33

PM

32

EXLOCK PPEND

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 14 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

ALLINT
SSBS

M[4]
RES0

BTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-953
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:35]

Reserved, RES0.

EXLOCK, bit [34]

When FEAT_GCS is implemented:

Exception return state lock. Set to the value of PSTATE.EXLOCK on taking an exception to EL2,
and copied to PSTATE.EXLOCK on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on taking an exception to EL2,
and conditionally copied to PSTATE.PPEND on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PM, bit [32]

When FEAT_EBEP is implemented:

PMU exception mask bit. Set to the value of PSTATE.PM on taking an exception to EL2, and copied
to PSTATE.PM on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied
to PSTATE.N on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to
PSTATE.Z on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to
PSTATE.C on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-954
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied
to PSTATE.V on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL2, and copied
to PSTATE.TCO on executing an exception return operation in EL2.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE2 is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and
copied to PSTATE.DIT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL2, and copied
to PSTATE.UAO on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and
copied to PSTATE.PAN on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-955
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to
PSTATE.IL on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

ALLINT, bit [13]

When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on taking an exception to
EL2, and copied to PSTATE.ALLINT on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and
copied to PSTATE.SSBS on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL2, and
copied to PSTATE.BTYPE on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to
PSTATE.D on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to
PSTATE.A on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-956
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to
PSTATE.I on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to
PSTATE.F on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL2.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0.

0b0100 EL1 with SP_EL0 (ELt).

0b0101 EL1 with SP_EL1 (EL1h).

0b1000 EL2 with SP_EL0 (EL2t).

0b1001 EL2 with SP_EL2 (EL2h).

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL2 is an illegal return
event, as described in Illegal exception returns from AArch64 state.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to
PSTATE.EL on executing an exception return operation in EL2.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to
PSTATE.SP on executing an exception return operation in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic SPSR_EL2 or SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-957
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = SPSR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SPSR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_EL2;

MSR SPSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && EffectiveHCR_EL2_NVx() IN {'xx1'} then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 SPSR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 SPSR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, SPSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-958
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x160];
 else
 X[t, 64] = SPSR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = SPSR_EL2;
 else
 X[t, 64] = SPSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_EL1;

 When FEAT_VHE is implemented : MSR SPSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && !(EffectiveHCR_EL2_NVx() IN {'x11'}) then
 EXLOCKException();
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x160] = X[t, 64];
 else
 SPSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' && ELIsInHost(EL2) then
 EXLOCKException();
 elsif ELIsInHost(EL2) then
 SPSR_EL2 = X[t, 64];
 else
 SPSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-959
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.21 SPSR_EL3, Saved Program Status Register (EL3)

The SPSR_EL3 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to SPSR_EL3
are UNDEFINED.

Attributes

SPSR_EL3 is a 64-bit register.

Field descriptions

When AArch32 is supported and exception taken from AArch32 state:

An exception return from EL3 using AArch64 makes SPSR_EL3 become UNKNOWN.

Bits [63:34]

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on taking an exception to EL3,
and conditionally copied to PSTATE.PPEND on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied
to PSTATE.N on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to
PSTATE.Z on executing an exception return operation in EL3.

RES0

63 34 33 32

PPEND RES0

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-960
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to
PSTATE.C on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied
to PSTATE.V on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and
copied to PSTATE.Q on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to EL3, and copied to PSTATE.IT
on executing an exception return operation in EL3.

SPSR_EL3.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL3[26:25].

• IT[7:2] is SPSR_EL3[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and
copied to PSTATE.DIT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and
copied to PSTATE.SSBS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-961
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and
copied to PSTATE.PAN on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to
PSTATE.IL on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and
copied to PSTATE.GE on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E
on executing an exception return operation in EL3.

If the implementation does not support big-endian operation, SPSR_EL3.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL3.E is RES1. On executing an
exception return operation in EL3, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL3.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL3.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to
PSTATE.A on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to
PSTATE.I on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-962
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to
PSTATE.F on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied
to PSTATE.T on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL3.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL3.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL3.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL3 is an illegal return
event, as described in Illegal exception returns from AArch64 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

RES0

63 35 34 33

PM

32

EXLOCK PPEND

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 14 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

ALLINT
SSBS

M[4]
RES0

BTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-963
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
An exception return from EL3 using AArch64 makes SPSR_EL3 become UNKNOWN.

Bits [63:35]

Reserved, RES0.

EXLOCK, bit [34]

When FEAT_GCS is implemented:

Exception return state lock. Set to the value of PSTATE.EXLOCK on taking an exception to EL3,
and copied to PSTATE.EXLOCK on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on taking an exception to EL3,
and conditionally copied to PSTATE.PPEND on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PM, bit [32]

When FEAT_EBEP is implemented:

PMU exception mask bit. Set to the value of PSTATE.PM on taking an exception to EL3, and copied
to PSTATE.PM on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied
to PSTATE.N on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to
PSTATE.Z on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to
PSTATE.C on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-964
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied
to PSTATE.V on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied
to PSTATE.TCO on executing an exception return operation in EL3.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE2 is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and
copied to PSTATE.DIT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied
to PSTATE.UAO on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and
copied to PSTATE.PAN on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally
copied to PSTATE.SS on executing an exception return operation in EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-965
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to
PSTATE.IL on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

ALLINT, bit [13]

When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on taking an exception to
EL3, and copied to PSTATE.ALLINT on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and
copied to PSTATE.SSBS on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL3, and
copied to PSTATE.BTYPE on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to
PSTATE.D on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to
PSTATE.A on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-966
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to
PSTATE.I on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to
PSTATE.F on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL3.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0.

0b0100 EL1 with SP_EL0 (ELt).

0b0101 EL1 with SP_EL1 (EL1h).

0b1000 EL2 with SP_EL0 (EL2t).

0b1001 EL2 with SP_EL2 (EL2h).

0b1100 EL3 with SP_EL0 (EL3t).

0b1101 EL3 with SP_EL3 (EL3h).

Other values are reserved. If SPSR_EL3.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL3 is an illegal return
event, as described in Illegal exception returns from AArch64 state.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to
PSTATE.EL on executing an exception return operation in EL3.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to
PSTATE.SP on executing an exception return operation in EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-967
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Accessing SPSR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_EL3;

MSR SPSR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 SPSR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-968
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.22 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

AArch64 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch32 System
register SPSR_fiq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_fiq is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

Bits [63:0]

Reserved, RES0.

Otherwise:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and
copied to PSTATE.N on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied
to PSTATE.Z on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 0

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-969
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied
to PSTATE.C on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and
copied to PSTATE.V on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and
copied to PSTATE.Q on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to FIQ mode, and copied to
PSTATE.IT on executing an illegal exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].

• IT[7:2] is SPSR_fiq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode,
and copied to PSTATE.SSBS on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and
copied to PSTATE.PAN on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-970
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode,
and copied to PSTATE.DIT on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and
copied to PSTATE.IL on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode,
and copied to PSTATE.GE on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to
PSTATE.E on executing an illegal exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the
implementation does not support little-endian operation, SPSR_fiq.E is RES1. On executing an
illegal exception return operation in FIQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_fiq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and
copied to PSTATE.A on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied
to PSTATE.I on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied
to PSTATE.F on executing an illegal exception return operation in FIQ mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-971
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and
copied to PSTATE.T on executing an illegal exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to
PSTATE.M[4:0] on executing an illegal exception return operation in FIQ mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an illegal exception return operation in FIQ mode is an
illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_fiq

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_fiq

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SPSR_fiq;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_fiq;

MSR SPSR_fiq, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-972
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_fiq = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_fiq = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-973
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.23 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

AArch64 System register SPSR_irq bits [31:0] are architecturally mapped to AArch32 System
register SPSR_irq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_irq is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

Bits [63:0]

Reserved, RES0.

Otherwise:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and
copied to PSTATE.N on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied
to PSTATE.Z on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 0

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-974
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied
to PSTATE.C on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and
copied to PSTATE.V on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and
copied to PSTATE.Q on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to IRQ mode, and copied to
PSTATE.IT on executing an illegal exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].

• IT[7:2] is SPSR_irq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode,
and copied to PSTATE.SSBS on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and
copied to PSTATE.PAN on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-975
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode,
and copied to PSTATE.DIT on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and
copied to PSTATE.IL on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode,
and copied to PSTATE.GE on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to
PSTATE.E on executing an illegal exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the
implementation does not support little-endian operation, SPSR_irq.E is RES1. On executing an
illegal exception return operation in IRQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_irq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_irq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and
copied to PSTATE.A on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied
to PSTATE.I on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied
to PSTATE.F on executing an illegal exception return operation in IRQ mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-976
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and
copied to PSTATE.T on executing an illegal exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to
PSTATE.M[4:0] on executing an illegal exception return operation in IRQ mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an illegal exception return operation in IRQ mode is an
illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_irq

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_irq

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SPSR_irq;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_irq;

MSR SPSR_irq, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-977
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_irq = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_irq = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-978
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.24 SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

AArch64 System register SPSR_und bits [31:0] are architecturally mapped to AArch32 System
register SPSR_und[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes

SPSR_und is a 64-bit register.

Field descriptions

When EL1 can only use AArch64:

Bits [63:0]

Reserved, RES0.

Otherwise:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode,
and copied to PSTATE.N on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and
copied to PSTATE.Z on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 0

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-979
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and
copied to PSTATE.C on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode,
and copied to PSTATE.V on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined
mode, and copied to PSTATE.Q on executing an illegal exception return operation in Undefined
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Undefined mode, and copied to
PSTATE.IT on executing an illegal exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].

• IT[7:2] is SPSR_und[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined
mode, and copied to PSTATE.SSBS on executing an illegal exception return operation in Undefined
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined
mode, and copied to PSTATE.PAN on executing an illegal exception return operation in Undefined
mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-980
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined
mode, and copied to PSTATE.DIT on executing an illegal exception return operation in Undefined
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode,
and copied to PSTATE.IL on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined
mode, and copied to PSTATE.GE on executing an illegal exception return operation in Undefined
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied
to PSTATE.E on executing an illegal exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the
implementation does not support little-endian operation, SPSR_und.E is RES1. On executing an
illegal exception return operation in Undefined mode, if the implementation does not support
big-endian operation at the Exception level being returned to, SPSR_und.E is RES0, and if the
implementation does not support little-endian operation at the Exception level being returned to,
SPSR_und.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Undefined mode,
and copied to PSTATE.A on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and
copied to PSTATE.I on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-981
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and
copied to PSTATE.F on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode,
and copied to PSTATE.T on executing an illegal exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied
to PSTATE.M[4:0] on executing an illegal exception return operation in Undefined mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an illegal exception return operation in Undefined mode
is an illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_und

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPSR_und

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SPSR_und;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPSR_und;

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-982
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
MSR SPSR_und, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_und = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPSR_und = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-983
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.25 SSBS, Speculative Store Bypass Safe

The SSBS characteristics are:

Purpose

Allows access to the Speculative Store Bypass Safe bit.

Configurations

This register is present only when FEAT_SSBS is implemented. Otherwise, direct accesses to SSBS
are UNDEFINED.

Attributes

SSBS is a 64-bit register.

Field descriptions

Bits [63:13]

Reserved, RES0.

SSBS, bit [12]

Speculative Store Bypass Safe.

Prohibits speculative loads or stores which might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived
from a register that is being loaded from memory using a load instruction speculatively read from a
memory location. If PSTATE.SSBS is enabled, the address derived from the load instruction might
be from earlier in the coherence order than the latest store to that memory location with the same
virtual address.

0b0 Hardware is not permitted to load or store speculatively, in a manner that could
practically give rise to a cache timing side channel, using an address derived from a
register value that has been loaded from memory using a load instruction (L) that
speculatively reads an entry from earlier in the coherence order from that location being
loaded from than the entry generated by the latest store (S) to that location using the
same virtual address as L.

0b1 Hardware is permitted to load or store speculatively, in a manner that could practically
give rise to a cache timing side channel, using an address derived from a register value
that has been loaded from memory using a load instruction (L) that speculatively reads
an entry from earlier in the coherence order fro that location being loaded from than the
entry generated by the latest store (S) to that location using the same virtual address as L.

The value of this bit is set to the value in the SCTLR_ELx.DSSBS field on taking an exception to
ELx.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [11:0]

Reserved, RES0.

RES0

63 32

RES0

31 13 12

RES0

11 0

SSBS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-984
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
Accessing SSBS

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SSBS

if PSTATE.EL == EL0 then
 X[t, 64] = Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(51):PSTATE.SSBS:Zeros(12);

MSR SSBS, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.SSBS = X[t, 64]<12>;
elsif PSTATE.EL == EL1 then
 PSTATE.SSBS = X[t, 64]<12>;
elsif PSTATE.EL == EL2 then
 PSTATE.SSBS = X[t, 64]<12>;
elsif PSTATE.EL == EL3 then
 PSTATE.SSBS = X[t, 64]<12>;

MSR SSBS, #<imm>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b110

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b110

op0 op1 CRn op2

0b00 0b011 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-985
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.26 SVCR, Streaming Vector Control Register

The SVCR characteristics are:

Purpose

Controls Streaming SVE mode and SME behavior.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SVCR
are UNDEFINED.

Attributes

SVCR is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

ZA, bit [1]

Enables SME ZA storage. If FEAT_SME2 is implemented, also enables SME2 ZT0 storage.

When this storage is disabled, execution of an instruction which can access it is trapped. The
exception is reported using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x3}.

The possible values of this bit are:

0b0 SME ZA storage and, if implemented, ZT0 storage are invalid and not accessible.

This control causes execution at any Exception level of instructions that can access this
storage to be trapped.

0b1 SME ZA storage and, if implemented, ZT0 storage are valid and accessible.

This control does not cause execution of any instructions to be trapped.

When a write to SVCR.ZA changes the value of PSTATE.ZA from 0 to 1, all implemented bits of
the storage are set to zero.

Changes to this field do not have an effect on the SVE vector and predicate registers and FPSR.

A direct or indirect read of ZA appears to occur in program order relative to a direct write of SVCR,
and to MSR SVCRZA and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SM, bit [0]

Enables Streaming SVE mode.

When the PE is in Streaming SVE mode, the Streaming SVE vector length (SVL) applies to SVE
instructions, and execution at any Exception level of an instruction which is illegal in that mode is
trapped. The exception is reported using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x1}.

When the PE is not in Streaming SVE mode, the SVE vector length (VL) applies to SVE
instructions, and execution at any Exception level of an instruction which is only legal in that mode
is trapped. The exception is reported using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x2}.

RES0

63 32

RES0

31 2

ZA

1

SM

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-986
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
The possible values of this bit are:

0b0 The PE is not in Streaming SVE mode.

0b1 The PE is in Streaming SVE mode.

When a write to SVCR.SM changes the value of PSTATE.SM, the following applies:

• When changed from 0 to 1, an entry to Streaming SVE mode is performed.

• When changed from 1 to 0, an exit from Streaming SVE mode is performed.

• All implemented bits of the SVE registers Z0-Z31, P0-P15, and FFR in the new mode are set
to zero.

• FPSR in the new mode is set to 0x0000_0000_0800_009f, in which all cumulative status bits
are set to 1.

Changes to this field do not have an effect on SME ZA storage or, if implemented, ZT0 storage.

A direct or indirect read of SM appears to occur in program order relative to a direct write of SVCR,
and to MSR SVCRSM and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SVCR

SVCR is read/write and can be accessed from any Exception level.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SVCR

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.SMEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 else
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif ELIsInHost(EL0) && CPTR_EL2.SMEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPACR_EL1.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-987
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;

MSR SVCR, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.SMEN != '11' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 else
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif ELIsInHost(EL0) && CPTR_EL2.SMEN != '11' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SetPSTATE_SVCR(X[t, 32]);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPACR_EL1.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-988
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SetPSTATE_SVCR(X[t, 32]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SetPSTATE_SVCR(X[t, 32]);
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SetPSTATE_SVCR(X[t, 32]);

MSR SVCRSM, #<imm>

MSR SVCRZA, #<imm>

MSR SVCRSMZA, #<imm>

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b001x 0b011

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b010x 0b011

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b011x 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-989
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.27 TCO, Tag Check Override

The TCO characteristics are:

Purpose

When FEAT_MTE is implemented, this register allows tag checks to be disabled globally.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this register
is RES0 or behaves as if FEAT_MTE2 is implemented.

Configurations

This register is present only when FEAT_MTE is implemented. Otherwise, direct accesses to TCO
are UNDEFINED.

Attributes

TCO is a 64-bit register.

Field descriptions

Bits [63:26]

Reserved, RES0.

TCO, bit [25]

Allows memory tag checks to be globally disabled.

0b0 Loads and Stores are not affected by this control.

0b1 Loads and Stores are unchecked.

Bits [24:0]

Reserved, RES0.

Accessing TCO

For information about the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCO

if PSTATE.EL == EL0 then
 X[t, 64] = Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(38):PSTATE.TCO:Zeros(25);

RES0

63 32

RES0

31 26 25

RES0

24 0

TCO

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-990
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(38):PSTATE.TCO:Zeros(25);

MSR TCO, <Xt>

if PSTATE.EL == EL0 then
 PSTATE.TCO = X[t, 64]<25>;
elsif PSTATE.EL == EL1 then
 PSTATE.TCO = X[t, 64]<25>;
elsif PSTATE.EL == EL2 then
 PSTATE.TCO = X[t, 64]<25>;
elsif PSTATE.EL == EL3 then
 PSTATE.TCO = X[t, 64]<25>;

MSR TCO, #<imm>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b111

op0 op1 CRn op2

0b00 0b011 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-991
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
C5.2.28 UAO, User Access Override

The UAO characteristics are:

Purpose

Allows access to the User Access Override bit.

Configurations

This register is present only when FEAT_UAO is implemented. Otherwise, direct accesses to UAO
are UNDEFINED.

Attributes

UAO is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

UAO, bit [23]

User Access Override.

0b0 The behavior of LDTR* and STTR* instructions is as defined in the base Armv8
architecture.

0b1 When executed at the following Exception levels, LDTR* and STTR* instructions
behave as the equivalent LDR* and STR* instructions:

• EL1.

• EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

When executed at EL3, or at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1},
the LDTR* and STTR* instructions behave as the equivalent LDR* and STR* instructions, regardless
of the setting of the PSTATE.UAO bit.

Bits [22:0]

Reserved, RES0.

Accessing UAO

For more information about the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, UAO

RES0

63 32

RES0

31 24 23

RES0

22 0

UAO

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-992
ID032224 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 X[t, 64] = Zeros(40):PSTATE.UAO:Zeros(23);
elsif PSTATE.EL == EL2 then
 X[t, 64] = Zeros(40):PSTATE.UAO:Zeros(23);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Zeros(40):PSTATE.UAO:Zeros(23);

MSR UAO, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 PSTATE.UAO = X[t, 64]<23>;
elsif PSTATE.EL == EL2 then
 PSTATE.UAO = X[t, 64]<23>;
elsif PSTATE.EL == EL3 then
 PSTATE.UAO = X[t, 64]<23>;

MSR UAO, #<imm>

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0010 0b100

op0 op1 CRn op2

0b00 0b000 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-993
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3 A64 System instructions for cache maintenance

This section lists the A64 System instructions for cache maintenance.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-994
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.1 DC CGDSW, Clean of Data and Allocation Tags by Set/Way

The DC CGDSW characteristics are:

Purpose

Clean data and Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CGDSW are UNDEFINED.

Attributes

DC CGDSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CGDSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-995
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-996
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.2 DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC

The DC CGDVAC characteristics are:

Purpose

Clean data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGDVAC are UNDEFINED.

Attributes

DC CGDVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGDVAC

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDVAC, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-997
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-998
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.3 DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP

The DC CGDVADP characteristics are:

Purpose

Clean Allocation Tags and data in data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves
as a DC CGDVAP.

Configurations

This instruction is present only when FEAT_DPB2 is implemented and FEAT_MTE is
implemented. Otherwise, direct accesses to DC CGDVADP are UNDEFINED.

Attributes

DC CGDVADP is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGDVADP

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDVADP, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-999
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoDP);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1000
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.4 DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP

The DC CGDVAP characteristics are:

Purpose

Clean data and Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC
CGDVAC.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGDVAP are UNDEFINED.

Attributes

DC CGDVAP is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGDVAP

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGDVAP, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1001
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Clean, CacheOpScope_PoP);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1002
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.5 DC CGSW, Clean of Allocation Tags by Set/Way

The DC CGSW characteristics are:

Purpose

Clean Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CGSW are UNDEFINED.

Attributes

DC CGSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CGSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1003
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1004
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.6 DC CGVAC, Clean of Allocation Tags by VA to PoC

The DC CGVAC characteristics are:

Purpose

Clean Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGVAC are UNDEFINED.

Attributes

DC CGVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGVAC

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGVAC, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1005
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1006
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.7 DC CGVADP, Clean of Allocation Tags by VA to PoDP

The DC CGVADP characteristics are:

Purpose

Clean Allocation tags by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves
as a DC CGVAP.

Configurations

This instruction is present only when FEAT_DPB2 is implemented and FEAT_MTE is
implemented. Otherwise, direct accesses to DC CGVADP are UNDEFINED.

Attributes

DC CGVADP is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGVADP

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGVADP, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1007
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoDP);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1008
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.8 DC CGVAP, Clean of Allocation Tags by VA to PoP

The DC CGVAP characteristics are:

Purpose

Clean Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC
CGVAC.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CGVAP are UNDEFINED.

Attributes

DC CGVAP is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CGVAP

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CGVAP, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1009
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Clean, CacheOpScope_PoP);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1010
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.9 DC CIGDPAPA, Clean and Invalidate of Data and Allocation Tags by PA to PoPA

The DC CIGDPAPA characteristics are:

Purpose

Clean and Invalidate data and Allocation Tags in data cache by physical address to the Point of
Physical Aliasing.

Note

This instruction cleans and invalidates all copies of the Location specified in the Xt argument,
irrespective of any MECID associated with the Location. Memory accesses resulting from the Clean
operation use the MECID associated with the cache entry.

Configurations

This instruction is present only when FEAT_RME is implemented and FEAT_MTE2 is
implemented. Otherwise, direct accesses to DC CIGDPAPA are UNDEFINED.

Attributes

DC CIGDPAPA is a 64-bit System instruction.

Field descriptions

NS, bit [63]

Together with the NSE field, this field specifies the target physical address space.

If FEAT_SEL2 is not implemented, and {NSE, NS} == {0b0, 0b0}, then no cache entries are
required to be cleaned or invalidated

NSE, bit [62]

Together with the NS field, this field specifies the target physical address space.

For a description of the values derived by evaluating NS and NSE together, see DC CIGDPAPA.NS.

Bits [61:56]

Reserved, RES0.

NS

63 62

RES0

61 56 55 52

Physical address

51 32

NSE PA[55:52]

Physical address

31 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1011
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

Extension to PA[51:0] if ID_AA64MMFR0_EL1.PARange = 0111. For more information see
PA[51:0].

Otherwise:

Reserved, RES0.

PA, bits [51:0]

Physical address to use. No alignment restrictions apply to this PA.

Executing DC CIGDPAPA

• This instruction is not subject to any translation, permission checks, or granule protection checks.

• This instruction affects all caches in the Outer Shareable shareability domain.

• This instruction has the same ordering, observability, and completion behavior as VA-based cache
maintenance instructions issued to the Outer Shareable shareability domain.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDPAPA, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoPA);

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1012
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.10 DC CIGDPAE, Clean and invalidate of data and allocation tags by PA to PoE

The DC CIGDPAE characteristics are:

Purpose

Clean and invalidate of data and allocation tags by PA to PoE.

Configurations

This instruction is present only when FEAT_MEC is implemented. Otherwise, direct accesses to DC
CIGDPAE are UNDEFINED.

Attributes

DC CIGDPAE is a 64-bit System instruction.

Field descriptions

NS, bit [63]

Together with the NSE field, this field specifies the target physical address space.

If {NSE, NS} != {0b1, 0b1}, then no cache entries are required to be cleaned or invalidated

NSE, bit [62]

Together with the NS field, this field specifies the target physical address space.

For a description of the values derived by evaluating NS and NSE together, see DC CIGDPAE.NS.

Bits [61:56]

Reserved, RES0.

PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

Extension to PA[51:0] if ID_AA64MMFR0_EL1.PARange = 0111. For more information see
PA[51:0].

Otherwise:

Reserved, RES0.

PA, bits [51:0]

Physical address to use. No alignment restrictions apply to this PA.

NS

63 62

RES0

61 56 55 52

Physical address

51 32

NSE PA[55:52]

Physical address

31 0

NSE NS Meaning

0b0 0b0 Reserved.

0b0 0b1 Reserved.

0b1 0b0 Reserved.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1013
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Executing DC CIGDPAE

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDPAE, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate,
CacheOpScope_PoE);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoE);

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1014
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.11 DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way

The DC CIGDSW characteristics are:

Purpose

Clean and Invalidate data and Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CIGDSW are UNDEFINED.

Attributes

DC CIGDSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CIGDSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1015
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate,
CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1016
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.12 DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC

The DC CIGDVAC characteristics are:

Purpose

Clean and Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CIGDVAC are UNDEFINED.

Attributes

DC CIGDVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CIGDVAC

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGDVAC, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate,
CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1017
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate,
CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1018
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.13 DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way

The DC CIGSW characteristics are:

Purpose

Clean and Invalidate Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC CIGSW are UNDEFINED.

Attributes

DC CIGSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CIGSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1019
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1020
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.14 DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

The DC CIGVAC characteristics are:

Purpose

Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
CIGVAC are UNDEFINED.

Attributes

DC CIGVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CIGVAC

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIGVAC, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1021
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_CleanInvalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1022
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.15 DC CIPAPA, Data or unified Cache line Clean and Invalidate by PA to PoPA

The DC CIPAPA characteristics are:

Purpose

Clean and Invalidate data cache by physical address to the Point of Physical Aliasing.

Note
This instruction cleans and invalidates all copies of the Location specified in the Xt argument,
irrespective of any MECID associated with the Location. Memory accesses resulting from the Clean
operation use the MECID associated with the cache entry.

Configurations

This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to DC
CIPAPA are UNDEFINED.

Attributes

DC CIPAPA is a 64-bit System instruction.

Field descriptions

NS, bit [63]

Together with the NSE field, this field specifies the target physical address space.

If FEAT_SEL2 is not implemented, and {NSE, NS} == {0b0, 0b0}, then no cache entries are
required to be cleaned or invalidated

NSE, bit [62]

Together with the NS field, this field specifies the target physical address space.

For a description of the values derived by evaluating NS and NSE together, see DC CIPAPA.NS.

Bits [61:56]

Reserved, RES0.

PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

Extension to PA[51:0] if ID_AA64MMFR0_EL1.PARange = 0111. For more information see
PA[51:0].

NS

63 62

RES0

61 56 55 52

Physical address

51 32

NSE PA[55:52]

Physical address

31 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1023
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Otherwise:

Reserved, RES0.

PA, bits [51:0]

Physical address to use. No alignment restrictions apply to this PA.

Executing DC CIPAPA

• This instruction is not subject to any translation, permission checks, or granule protection checks.

• This instruction affects all caches in the Outer Shareable shareability domain.

• This instruction has the same ordering, observability, and completion behavior as VA-based cache
maintenance instructions issued to the Outer Shareable shareability domain.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIPAPA, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoPA);

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1024
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.16 DC CIPAE, Data or unified Cache line Clean and Invalidate by PA to PoE

The DC CIPAE characteristics are:

Purpose

Data or unified Cache line Clean and Invalidate by PA to PoE.

Configurations

This instruction is present only when FEAT_MEC is implemented. Otherwise, direct accesses to DC
CIPAE are UNDEFINED.

Attributes

DC CIPAE is a 64-bit System instruction.

Field descriptions

NS, bit [63]

Together with the NSE field, this field specifies the target physical address space.

If {NSE, NS} != {0b1, 0b1}, then no cache entries are required to be cleaned or invalidated

NSE, bit [62]

Together with the NS field, this field specifies the target physical address space.

For a description of the values derived by evaluating NS and NSE together, see DC CIPAE.NS.

Bits [61:56]

Reserved, RES0.

PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

Extension to PA[51:0] if ID_AA64MMFR0_EL1.PARange = 0111. For more information see
PA[51:0].

Otherwise:

Reserved, RES0.

PA, bits [51:0]

Physical address to use. No alignment restrictions apply to this PA.

NS

63 62

RES0

61 56 55 52

Physical address

51 32

NSE PA[55:52]

Physical address

31 0

NSE NS Meaning

0b0 0b0 Reserved.

0b0 0b1 Reserved.

0b1 0b0 Reserved.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1025
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Executing DC CIPAE

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIPAE, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoE);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoE);

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1026
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.17 DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

The DC CISW characteristics are:

Purpose

Clean and Invalidate data cache by set/way.

Configurations

AArch64 System register DC CISW performs the same function as AArch32 System register
DCCISW.

Attributes

DC CISW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CISW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1027
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CISW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1028
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.18 DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

The DC CIVAC characteristics are:

Purpose

Clean and Invalidate data cache by address to Point of Coherency.

Configurations

AArch64 System register DC CIVAC performs the same function as AArch32 System register
DCCIMVAC.

Attributes

DC CIVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CIVAC

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CIVAC, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1029
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_CleanInvalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1030
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.19 DC CSW, Data or unified Cache line Clean by Set/Way

The DC CSW characteristics are:

Purpose

Clean data cache by set/way.

Configurations

AArch64 System register DC CSW performs the same function as AArch32 System register
DCCSW.

Attributes

DC CSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC CSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1031
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1032
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.20 DC CVAC, Data or unified Cache line Clean by VA to PoC

The DC CVAC characteristics are:

Purpose

Clean data cache by address to Point of Coherency.

Configurations

AArch64 System register DC CVAC performs the same function as AArch32 System register
DCCMVAC.

Attributes

DC CVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVAC

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVAC, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1033
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1034
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.21 DC CVADP, Data or unified Cache line Clean by VA to PoDP

The DC CVADP characteristics are:

Purpose

Clean data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves
as a DC CVAP.

Configurations

This instruction is present only when FEAT_DPB2 is implemented. Otherwise, direct accesses to
DC CVADP are UNDEFINED.

Attributes

DC CVADP is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVADP

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVADP, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1035
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoDP);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1036
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.22 DC CVAP, Data or unified Cache line Clean by VA to PoP

The DC CVAP characteristics are:

Purpose

Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC
CVAC.

Configurations

This instruction is present only when FEAT_DPB is implemented. Otherwise, direct accesses to DC
CVAP are UNDEFINED.

Attributes

DC CVAP is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVAP

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVAP, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1037
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoP);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1038
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.23 DC CVAU, Data or unified Cache line Clean by VA to PoU

The DC CVAU characteristics are:

Purpose

Clean data cache by address to Point of Unification.

Configurations

AArch64 System register DC CVAU performs the same function as AArch32 System register
DCCMVAU.

Attributes

DC CVAU is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC CVAU

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC CVAU, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b1011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1039
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCCVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Clean, CacheOpScope_PoU);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1040
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.24 DC GVA, Data Cache set Allocation Tag by VA

The DC GVA characteristics are:

Purpose

Write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is
identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
GVA are UNDEFINED.

Attributes

DC GVA is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes
that is used.

Executing DC GVA

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same
way as other memory-related faults or watchpoints. If a synchronous Data Abort fault or a watchpoint is generated,
the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being modified is any type of Device memory, this instruction generates an alignment fault
that is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of stores to each Allocation Tag within the block being accessed, and so it:

• Generates a Permission fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instructions.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC GVA, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.DZE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1041
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t, 64], CacheType_Tag);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t, 64], CacheType_Tag);
elsif PSTATE.EL == EL2 then
 AArch64.MemZero(X[t, 64], CacheType_Tag);
elsif PSTATE.EL == EL3 then
 AArch64.MemZero(X[t, 64], CacheType_Tag);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1042
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.25 DC GZVA, Data Cache set Allocation Tags and Zero by VA

The DC GZVA characteristics are:

Purpose

Zero data and write a value to the Allocation Tags of a naturally aligned block of N bytes, where the
size of N is identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC
GZVA are UNDEFINED.

Attributes

DC GZVA is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes
that is used.

Executing DC GZVA

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same
way as other memory-related faults or watchpoints. If a synchronous Data Abort fault or a watchpoint is generated,
the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction generates an alignment fault
which is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte and Allocation tag within the block being accessed, and so it:

• Generates a Permission fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instructions.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC GZVA, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.DZE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1043
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t, 64], CacheType_Data_Tag);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t, 64], CacheType_Data_Tag);
elsif PSTATE.EL == EL2 then
 AArch64.MemZero(X[t, 64], CacheType_Data_Tag);
elsif PSTATE.EL == EL3 then
 AArch64.MemZero(X[t, 64], CacheType_Data_Tag);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1044
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.26 DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way

The DC IGDSW characteristics are:

Purpose

Invalidate data and Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGDSW are UNDEFINED.

Attributes

DC IGDSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC IGDSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1045
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGDSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1046
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.27 DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC

The DC IGDVAC characteristics are:

Purpose

Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGDVAC are UNDEFINED.

Attributes

DC IGDVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC IGDVAC

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGDVAC, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1047
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1048
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.28 DC IGSW, Invalidate of Allocation Tags by Set/Way

The DC IGSW characteristics are:

Purpose

Invalidate Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGSW are UNDEFINED.

Attributes

DC IGSW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC IGSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1049
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGSW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1050
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.29 DC IGVAC, Invalidate of Allocation Tags by VA to PoC

The DC IGVAC characteristics are:

Purpose

Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
DC IGVAC are UNDEFINED.

Attributes

DC IGVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC IGVAC

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IGVAC, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1051
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Tag, CacheOp_Invalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1052
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.30 DC ISW, Data or unified Cache line Invalidate by Set/Way

The DC ISW characteristics are:

Purpose

Invalidate data cache by set/way.

When FEAT_MTE2 is implemented, this instruction might invalidate Allocation Tags from caches.
When it invalidates Allocation Tags from caches, it also cleans them.

Configurations

AArch64 System register DC ISW performs the same function as AArch32 System register
DCISW.

Attributes

DC ISW is a 64-bit System instruction.

Field descriptions

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DC ISW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

RES0

63 32

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1053
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC ISW, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Invalidate, CacheOpScope_SetWay);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1054
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.31 DC IVAC, Data or unified Cache line Invalidate by VA to PoC

The DC IVAC characteristics are:

Purpose

Invalidate data cache by address to Point of Coherency.

When FEAT_MTE2 is implemented, this instruction might invalidate Allocation Tags from caches.
When it invalidates Allocation Tags from caches, it also cleans them.

Configurations

AArch64 System register DC IVAC performs the same function as AArch32 System register
DCIMVAC.

Attributes

DC IVAC is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DC IVAC

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC IVAC, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1055
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch64.DC(X[t, 64], CacheType_Data, CacheOp_Invalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1056
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.32 DC ZVA, Data Cache Zero by VA

The DC ZVA characteristics are:

Purpose

Zero data cache by address. Zeroes a naturally aligned block of N bytes, where the size of N is
identified in DCZID_EL0.

Configurations

There are no configuration notes.

Attributes

DC ZVA is a 64-bit System instruction.

Field descriptions

VA, bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes
that is used.

Executing DC ZVA

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same
way as other memory-related faults or watchpoints. If a synchronous Data Abort fault or a watchpoint is generated,
the CM bit in the ESR_ELx.ISS field is set to 0.

If the memory region being zeroed is any type of Device memory, this instruction generates an Alignment fault
which is prioritized in the same way as other Alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instructions.

Accesses to this instruction use the following encodings in the System instruction encoding space:

DC ZVA, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.DZE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1057
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t, 64], CacheType_Data);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.MemZero(X[t, 64], CacheType_Data);
elsif PSTATE.EL == EL2 then
 AArch64.MemZero(X[t, 64], CacheType_Data);
elsif PSTATE.EL == EL3 then
 AArch64.MemZero(X[t, 64], CacheType_Data);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1058
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.33 IC IALLU, Instruction Cache Invalidate All to PoU

The IC IALLU characteristics are:

Purpose

Invalidate all instruction caches of the PE executing the instruction to the Point of Unification.

Configurations

AArch64 System register IC IALLU performs the same function as AArch32 System register
ICIALLU.

Attributes

IC IALLU is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing IC IALLU

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IALLU{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ICIALLU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.IC(CacheOpScope_ALLUIS);
 else
 AArch64.IC(CacheOpScope_ALLU);
elsif PSTATE.EL == EL2 then
 AArch64.IC(CacheOpScope_ALLU);
elsif PSTATE.EL == EL3 then
 AArch64.IC(CacheOpScope_ALLU);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1059
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.34 IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

The IC IALLUIS characteristics are:

Purpose

Invalidate all instruction caches in the Inner Shareable domain of the PE executing the instruction
to the Point of Unification.

Configurations

AArch64 System register IC IALLUIS performs the same function as AArch32 System register
ICIALLUIS.

Attributes

IC IALLUIS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing IC IALLUIS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IALLUIS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TICAB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ICIALLUIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL2 then
 AArch64.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL3 then
 AArch64.IC(CacheOpScope_ALLUIS);

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1060
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
C5.3.35 IC IVAU, Instruction Cache line Invalidate by VA to PoU

The IC IVAU characteristics are:

Purpose

Invalidate instruction cache by address to Point of Unification.

Configurations

AArch64 System register IC IVAU performs the same function as AArch32 System register
ICIMVAU.

Attributes

IC IVAU is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing IC IVAU

If EL0 access is enabled, when executed at EL0, the instruction may generate a Permission fault, subject to the
constraints described in MMU faults generated by cache maintenance operations.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see The data cache maintenance instruction (DC).

Accesses to this instruction use the following encodings in the System instruction encoding space:

IC IVAU{, <Xt>}

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.IC(X[t, 64], CacheOpScope_PoU);

Virtual address to use

63 32

Virtual address to use

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1061
ID032224 Non-Confidential

The A64 System Instruction Class
C5.3 A64 System instructions for cache maintenance
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ICIVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.IC(X[t, 64], CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch64.IC(X[t, 64], CacheOpScope_PoU);
elsif PSTATE.EL == EL3 then
 AArch64.IC(X[t, 64], CacheOpScope_PoU);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1062
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4 A64 System instructions for address translation

This section lists the A64 System instructions for address translation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1063
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

The AT S12E0R characteristics are:

Purpose

Performs stage 1 and 2 address translations from EL0, with permissions as if reading from the given
virtual address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime.

• Otherwise, the EL1&0 translation regime.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S12E0R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E0R

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E0R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1064
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 if ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00' then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Read);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL0, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Read);
 elsif EL2Enabled() && (ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00') then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Read);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL0, ATAccess_Read);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1065
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

The AT S12E0W characteristics are:

Purpose

Performs stage 1 and 2 address translations from EL0, with permissions as if writing to the given
virtual address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime.

• Otherwise, the EL1&0 translation regime.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S12E0W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E0W

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E0W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1066
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 if ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00' then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Write);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL0, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Write);
 elsif EL2Enabled() && (ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00') then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Write);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL0, ATAccess_Write);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1067
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

The AT S12E1R characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual
address from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using
the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S12E1R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E1R

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E1R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1068
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00' then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Read);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL1, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Read);
 elsif EL2Enabled() && (ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00') then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Read);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL1, ATAccess_Read);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1069
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

The AT S12E1W characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address
from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the
following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S12E1W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S12E1W

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S12E1W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1070
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00' then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Write);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL1, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Write);
 elsif EL2Enabled() && (ELIsInHost(EL0) || HCR_EL2.<DC,VM> == '00') then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Write);
 else
 AArch64.AT(X[t, 64], TranslationStage_12, EL1, ATAccess_Write);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1071
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.5 AT S1E0R, Address Translate Stage 1 EL0 Read

The AT S1E0R characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if reading from the given virtual
address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime.

• Otherwise, the EL1&0 translation regime.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S1E0R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E0R

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E0R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ATS1E0R == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1072
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Read);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Read);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1073
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.6 AT S1E0W, Address Translate Stage 1 EL0 Write

The AT S1E0W characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if writing to the given virtual
address from EL0, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime.

• Otherwise, the EL1&0 translation regime.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S1E0W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E0W

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E0W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ATS1E0W == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1074
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Write);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL0, ATAccess_Write);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1075
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.7 AT S1E1A, Address Translate Stage 1 EL1 Without Permission checks

The AT S1E1A characteristics are:

Purpose

Performs a stage 1 address translation, while ignoring the permission checks using the following
translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

This instruction is present only when FEAT_ATS1A is implemented. Otherwise, direct accesses to
AT S1E1A are UNDEFINED.

Attributes

AT S1E1A is a 64-bit System instruction.

Field descriptions

IA, bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

Executing AT S1E1A

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1A, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ATS1E1A == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1076
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Any);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Any);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Any);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1077
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.8 AT S1E1R, Address Translate Stage 1 EL1 Read

The AT S1E1R characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if reading from the given virtual address
from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the
following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S1E1R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1R

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1078
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
== '1') && HFGITR_EL2.ATS1E1R == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Read);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Read);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1079
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.9 AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

The AT S1E1RP characteristics are:

Purpose

Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from
a location will generate a Permission fault for a privileged access, using the following translation
regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to
AT S1E1RP are UNDEFINED.

Attributes

AT S1E1RP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1RP

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1RP, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1080
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ATS1E1RP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_ReadPAN);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_ReadPAN);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_ReadPAN);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1081
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.10 AT S1E1W, Address Translate Stage 1 EL1 Write

The AT S1E1W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address from
EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following
translation regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S1E1W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1W

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1082
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
== '1') && HFGITR_EL2.ATS1E1W == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Write);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_Write);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1083
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.11 AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

The AT S1E1WP characteristics are:

Purpose

Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a
location will generate a Permission fault for a privileged access, using the following translation
regime:

• When EL2 is implemented and enabled in the Security state described by the current
Effective value of SCR_EL3.{NSE, NS}:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation
regime, accessed from EL1.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation
regime, accessed from EL2.

• Otherwise, the EL1&0 translation regime, accessed from EL1.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to
AT S1E1WP are UNDEFINED.

Attributes

AT S1E1WP is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E1WP

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E1WP, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b1001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1084
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.ATS1E1WP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_WritePAN);
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_WritePAN);
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL1, ATAccess_WritePAN);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1085
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.12 AT S1E2A, Address Translate Stage 1 EL2 Without Permission checks

The AT S1E2A characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, while ignoring permissions checks from
the given virtual address.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

This instruction is present only when FEAT_ATS1A is implemented. Otherwise, direct accesses to
AT S1E2A are UNDEFINED.

Attributes

AT S1E2A is a 64-bit System instruction.

Field descriptions

IA, bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

Executing AT S1E2A

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2A, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL2, ATAccess_Any);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL2, ATAccess_Any);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1086
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.13 AT S1E2R, Address Translate Stage 1 EL2 Read

The AT S1E2R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, with permissions as if reading from the
given virtual address.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S1E2R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E2R

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL2, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL2, ATAccess_Read);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1087
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.14 AT S1E2W, Address Translate Stage 1 EL2 Write

The AT S1E2W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL2, with permissions as if writing to the given
virtual address.

When FEAT_RME is implemented, if the Effective value of SCR_EL3.{NSE, NS} is a reserved
value, this instruction is UNDEFINED at EL3.

Configurations

There are no configuration notes.

Attributes

AT S1E2W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E2W

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E2W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL2, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 AArch64.AT(X[t, 64], TranslationStage_1, EL2, ATAccess_Write);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b100 0b0111 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1088
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.15 AT S1E3A, Address Translate Stage 1 EL3 Without Permission checks

The AT S1E3A characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, while ignoring permissions checks from
the given virtual address.

Configurations

This instruction is present only when FEAT_ATS1A is implemented. Otherwise, direct accesses to
AT S1E3A are UNDEFINED.

Attributes

AT S1E3A is a 64-bit System instruction.

Field descriptions

IA, bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

Executing AT S1E3A

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3A, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL3, ATAccess_Any);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1089
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.16 AT S1E3R, Address Translate Stage 1 EL3 Read

The AT S1E3R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if reading from the
given virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E3R is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E3R

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL3, ATAccess_Read);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1090
ID032224 Non-Confidential

The A64 System Instruction Class
C5.4 A64 System instructions for address translation
C5.4.17 AT S1E3W, Address Translate Stage 1 EL3 Write

The AT S1E3W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if writing to the given
virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E3W is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing AT S1E3W

Accesses to this instruction use the following encodings in the System instruction encoding space:

AT S1E3W, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.AT(X[t, 64], TranslationStage_1, EL3, ATAccess_Write);

Input address for translation

63 32

Input address for translation

31 0

op0 op1 CRn CRm op2

0b01 0b110 0b0111 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1091
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5 A64 System instructions for TLB maintenance

This section lists the A64 System instructions for TLB maintenance.

For more information about these instructions see TLB maintenance instructions. In particular, for the full
description of the scope of each instruction see TLB maintenance instruction scope.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1092
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.1 TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1

The TLBI ALLE1 and TLBI ALLE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate an address
using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate an address
using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate an address
using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation only applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE1, TLBI ALLE1NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE1, TLBI ALLE1NXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1093
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_AllAttr);

TLBI ALLE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1094
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.2 TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable

The TLBI ALLE1IS and TLBI ALLE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate an address
using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate an address
using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate an address
using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE1IS, TLBI ALLE1ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE1IS, TLBI ALLE1ISNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1095
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH,
TLBI_AllAttr);

TLBI ALLE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1096
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.3 TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable

The TLBI ALLE1OS and TLBI ALLE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate an address
using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate an address
using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate an address
using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate an address using the
Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate an address using the
Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ALLE1OS, TLBI ALLE1OSNXS are UNDEFINED.

Attributes

TLBI ALLE1OS, TLBI ALLE1OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE1OS, TLBI ALLE1OSNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1097
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH,
TLBI_AllAttr);

TLBI ALLE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b100

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1098
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.4 TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

The TLBI ALLE2 and TLBI ALLE2NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any
address using the Secure EL2&0 or EL2 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any
address using the Non-secure EL2&0 or EL2 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any
address using the Realm EL2&0 or EL2 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any address using the
Secure EL2&0 or EL2 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any address using the
Non-secure EL2&0 or EL2 translation regime.

The invalidation only applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE2, TLBI ALLE2NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE2, TLBI ALLE2NXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1099
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH,
TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH,
TLBI_AllAttr);

TLBI ALLE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b000

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1100
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSH,
TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH,
TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1101
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.5 TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

The TLBI ALLE2IS and TLBI ALLE2ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any
address using the Secure EL2&0 or EL2 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any
address using the Non-secure EL2&0 or EL2 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any
address using the Realm EL2&0 or EL2 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any address using the
Secure EL2&0 or EL2 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any address using the
Non-secure EL2&0 or EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE2IS, TLBI ALLE2ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE2IS, TLBI ALLE2ISNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1102
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH,
TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH,
TLBI_AllAttr);

TLBI ALLE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b000

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1103
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISH,
TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH,
TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1104
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.6 TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

The TLBI ALLE2OS and TLBI ALLE2OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any
address using the Secure EL2&0 or EL2 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any
address using the Non-secure EL2&0 or EL2 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any
address using the Realm EL2&0 or EL2 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any address using the
Secure EL2&0 or EL2 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any address using the
Non-secure EL2&0 or EL2 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ALLE2OS, TLBI ALLE2OSNXS are UNDEFINED.

Attributes

TLBI ALLE2OS, TLBI ALLE2OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE2OS, TLBI ALLE2OSNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1105
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH,
TLBI_AllAttr);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH,
TLBI_AllAttr);

TLBI ALLE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b000

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1106
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSH,
TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSH,
TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1107
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.7 TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3

The TLBI ALLE3 and TLBI ALLE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE3, TLBI ALLE3NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE3, TLBI ALLE3NXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1108
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_NSH,
TLBI_AllAttr);

TLBI ALLE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_NSH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1109
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.8 TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable

The TLBI ALLE3IS and TLBI ALLE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE3IS, TLBI ALLE3ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE3IS, TLBI ALLE3ISNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1110
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_ISH,
TLBI_AllAttr);

TLBI ALLE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_ISH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1111
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.9 TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable

The TLBI ALLE3OS and TLBI ALLE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ALLE3OS, TLBI ALLE3OSNXS are UNDEFINED.

Attributes

TLBI ALLE3OS, TLBI ALLE3OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI ALLE3OS, TLBI ALLE3OSNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ALLE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1112
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_OSH,
TLBI_AllAttr);

TLBI ALLE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_OSH,
TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1113
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.10 TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1

The TLBI ASIDE1 and TLBI ASIDE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate an address using the EL1&0
translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate an address using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate an address using the EL1&0 translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1, TLBI ASIDE1NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

ASID

63 48

RES0

47 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1114
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI ASIDE1, TLBI ASIDE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ASIDE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIASIDE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr, X[t, 64]);

TLBI ASIDE1NXS{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b010

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1115
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIASIDE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1116
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.11 TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable

The TLBI ASIDE1IS and TLBI ASIDE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate an address using the EL1&0
translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate an address using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate an address using the EL1&0 translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1IS, TLBI ASIDE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

RES0

47 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1117
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [47:0]

Reserved, RES0.

Executing TLBI ASIDE1IS, TLBI ASIDE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ASIDE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIASIDE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr, X[t, 64]);

TLBI ASIDE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b010

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1118
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIASIDE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1119
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.12 TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable

The TLBI ASIDE1OS and TLBI ASIDE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate an address using the EL1&0
translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate an address using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate an address using the EL1&0 translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI ASIDE1OS, TLBI ASIDE1OSNXS are UNDEFINED.

Attributes

TLBI ASIDE1OS, TLBI ASIDE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by
this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

RES0

47 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1120
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [47:0]

Reserved, RES0.

Executing TLBI ASIDE1OS, TLBI ASIDE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI ASIDE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIASIDE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_AllAttr, X[t, 64]);

TLBI ASIDE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b010

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1121
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIASIDE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1122
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.13 TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2,
EL1

The TLBI IPAS2E1 and TLBI IPAS2E1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from any
level of the translation table walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2E1, TLBI IPAS2E1NXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1123
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

NS

63

RES0

62 48

TTL

47 44 43 40 39 36 35 32

IPA[55:52] IPA[47:12]
IPA[51:48]

IPA[47:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1124
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

IPA[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

If ID_AA64MMFR0_EL1.PARange is 0b0111, bits IPA[55:48] form the upper part of the address
value.

If ID_AA64MMFR0_EL1.PARange is 0b0110, bits IPA[51:48] form the upper part of the address
value and bits IPA[55:52] are RES0.

If ID_AA64MMFR0_EL1.PARange is not 0b0110 and not 0b0111, bits IPA[55:48] are RES0.

Executing TLBI IPAS2E1, TLBI IPAS2E1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2E1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1125
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI IPAS2E1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1126
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.14 TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, EL1, Inner Shareable

The TLBI IPAS2E1IS and TLBI IPAS2E1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from any
level of the translation table walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1127
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

NS

63

RES0

62 48

TTL

47 44 43 40 39 36 35 32

IPA[55:52] IPA[47:12]
IPA[51:48]

IPA[47:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1128
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

IPA[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

If ID_AA64MMFR0_EL1.PARange is 0b0111, bits IPA[55:48] form the upper part of the address
value.

If ID_AA64MMFR0_EL1.PARange is 0b0110, bits IPA[51:48] form the upper part of the address
value and bits IPA[55:52] are RES0.

If ID_AA64MMFR0_EL1.PARange is not 0b0110 and not 0b0111, bits IPA[55:48] are RES0.

Executing TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2E1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1129
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI IPAS2E1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1130
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.15 TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, EL1, Outer Shareable

The TLBI IPAS2E1OS and TLBI IPAS2E1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from any
level of the translation table walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS are UNDEFINED.

Attributes

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1131
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

NS

63

RES0

62 48

TTL

47 44 43 40 39 36 35 32

IPA[55:52] IPA[47:12]
IPA[51:48]

IPA[47:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1132
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

IPA[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. For more information, see IPA[47:12].

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

If ID_AA64MMFR0_EL1.PARange is 0b0111, bits IPA[55:48] form the upper part of the address
value.

If ID_AA64MMFR0_EL1.PARange is 0b0110, bits IPA[51:48] form the upper part of the address
value and bits IPA[55:52] are RES0.

If ID_AA64MMFR0_EL1.PARange is not 0b0110 and not 0b0111, bits IPA[55:48] are RES0.

Executing TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2E1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1133
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI IPAS2E1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1134
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.16 TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage
2, Last level, EL1

The TLBI IPAS2LE1 and TLBI IPAS2LE1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from the
final level of the translation table walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2LE1, TLBI IPAS2LE1NXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1135
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

NS

63

RES0

62 48

TTL

47 44 43 40 39 36 35 32

IPA[55:52] IPA[47:12]
IPA[51:48]

IPA[47:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1136
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

IPA[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

If ID_AA64MMFR0_EL1.PARange is 0b0111, bits IPA[55:48] form the upper part of the address
value.

If ID_AA64MMFR0_EL1.PARange is 0b0110, bits IPA[51:48] form the upper part of the address
value and bits IPA[55:52] are RES0.

If ID_AA64MMFR0_EL1.PARange is not 0b0110 and not 0b0111, bits IPA[55:48] are RES0.

Executing TLBI IPAS2LE1, TLBI IPAS2LE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2LE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1137
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI IPAS2LE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1138
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.17 TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level, EL1, Inner Shareable

The TLBI IPAS2LE1IS and TLBI IPAS2LE1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from the
final level of the translation table walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1139
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

NS

63

RES0

62 48

TTL

47 44 43 40 39 36 35 32

IPA[55:52] IPA[47:12]
IPA[51:48]

IPA[47:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1140
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

IPA[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

If ID_AA64MMFR0_EL1.PARange is 0b0111, bits IPA[55:48] form the upper part of the address
value.

If ID_AA64MMFR0_EL1.PARange is 0b0110, bits IPA[51:48] form the upper part of the address
value and bits IPA[55:52] are RES0.

If ID_AA64MMFR0_EL1.PARange is not 0b0110 and not 0b0111, bits IPA[55:48] are RES0.

Executing TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2LE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1141
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI IPAS2LE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1142
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.18 TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address,
Stage 2, Last level, EL1, Outer Shareable

The TLBI IPAS2LE1OS and TLBI IPAS2LE1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from the
final level of the translation table walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS are UNDEFINED.

Attributes

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1143
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

NS

63

RES0

62 48

TTL

47 44 43 40 39 36 35 32

IPA[55:52] IPA[47:12]
IPA[51:48]

IPA[47:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1144
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

IPA[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to IPA[47:12]. For more information, see IPA[47:12].

Otherwise:

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. For more information, see IPA[47:12].

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48
bits, the upper bits of this field are RES0.

If ID_AA64MMFR0_EL1.PARange is 0b0111, bits IPA[55:48] form the upper part of the address
value.

If ID_AA64MMFR0_EL1.PARange is 0b0110, bits IPA[51:48] form the upper part of the address
value and bits IPA[55:52] are RES0.

If ID_AA64MMFR0_EL1.PARange is not 0b0110 and not 0b0111, bits IPA[55:48] are RES0.

Executing TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI IPAS2LE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1145
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI IPAS2LE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1146
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.19 TLBI PAALL, TLB Invalidate GPT Information by PA, All Entries, Local

The TLBI PAALL characteristics are:

Purpose

Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relates to a physical
address.

• The invalidation applies to all TLB entries containing GPT information.

• The invalidation affects only the TLBs for the PE executing the operation.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL,
TLBI PAALLOS, TLBI RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI
instructions.

Configurations

This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to
TLBI PAALL are UNDEFINED.

Attributes

TLBI PAALL is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI PAALL

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI PAALL{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_PAALL(Shareability_NSH);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1147
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.20 TLBI PAALLOS, TLB Invalidate GPT Information by PA, All Entries, Outer Shareable

The TLBI PAALLOS characteristics are:

Purpose

Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relates to a physical
address.

• The invalidation applies to all TLB entries containing GPT information.

• The invalidation affects all TLBs in the Outer Shareable domain.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL,
TLBI PAALLOS, TLBI RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI
instructions.

Configurations

This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to
TLBI PAALLOS are UNDEFINED.

Attributes

TLBI PAALLOS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI PAALLOS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI PAALLOS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_PAALL(Shareability_OSH);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1148
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.21 TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1

The TLBI RIPAS2E1 and TLBI RIPAS2E1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk up to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from any
level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1149
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2E1, TLBI RIPAS2E1NXS are UNDEFINED.

Attributes

TLBI RIPAS2E1, TLBI RIPAS2E1NXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1150
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
VTCR_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2E1, TLBI RIPAS2E1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1151
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2E1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1152
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.22 TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

The TLBI RIPAS2E1IS and TLBI RIPAS2E1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk up to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from any
level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1153
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS are UNDEFINED.

Attributes

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1154
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
VTCR_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1155
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2E1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1156
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.23 TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1, Outer Shareable

The TLBI RIPAS2E1OS and TLBI RIPAS2E1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk up to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from any
level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1157
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS are
UNDEFINED.

Attributes

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1158
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
VTCR_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2E1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1159
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2E1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1160
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.24 TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1

The TLBI RIPAS2LE1 and TLBI RIPAS2LE1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from the
leaf level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1161
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS are UNDEFINED.

Attributes

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1162
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
VTCR_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1163
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2LE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1164
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.25 TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner Shareable

The TLBI RIPAS2LE1IS and TLBI RIPAS2LE1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from the
leaf level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1165
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS are UNDEFINED.

Attributes

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1166
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
VTCR_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1167
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2LE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1168
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.26 TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Outer Shareable

The TLBI RIPAS2LE1OS and TLBI RIPAS2LE1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 2 only translation table entry, from the
leaf level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1169
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS are
UNDEFINED.

Attributes

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS is a 64-bit System instruction.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1170
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
VTCR_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1171
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RIPAS2LE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RIPAS2LE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b111

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1172
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.27 TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable

The TLBI RPALOS characteristics are:

Purpose

Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relates to a physical
address.

• The invalidation affects all TLBs in the Outer Shareable domain.

• Invalidates TLB entries containing GPT information from the final level of the GPT walk that
relates to the supplied physical address.

• Invalidations are range-based, invalidating TLB entries starting from the address in
BaseADDR, within the range as specified by SIZE.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL,
TLBI PAALLOS, TLBI RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI
instructions.

Configurations

This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to
TLBI RPALOS are UNDEFINED.

Attributes

TLBI RPALOS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

SIZE, bits [47:44]

Size of the range for invalidation.

If SIZE is a reserved value, no TLB entries are required to be invalidated.

0b0000 4KB.

0b0001 16KB.

0b0010 64KB.

0b0011 2MB.

0b0100 32MB.

0b0101 512MB.

0b0110 1GB.

0b0111 16GB.

0b1000 64GB.

0b1001 512GB.

RES0

63 48

SIZE

47 44 43 40

Address

39 32

Address[55:52]

Address

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1173
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
All other values are reserved.

If SIZE gives a range smaller than the configured physical granule size in GPCCR_EL3.PGS, then
the Effective value of SIZE is taken to be the size configured by GPCCR_EL3.PGS.

If GPCCR_EL3.PGS is configured to a reserved value, no TLB entries are required to be
invalidated.

If GPCCR_EL3.PGS is configured to different values at the broadcasting PE and receiving PE, no
TLB entries are required to be invalidated at the receiving PE.

Address[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to Address. For more information, see Address.

Otherwise:

Reserved, RES0.

Address, bits [39:0]

The starting address for the range of the maintenance instruction.

This field is decoded with reference to the value of GPCCR_EL3.PGS to give BaseADDR as
follows:

Other bits of BaseADDR are treated as zero, to give the Effective value of BaseADDR.

If the Effective value of BaseADDR is not aligned to the size of the Effective value of SIZE, no TLB
entries are required to be invalidated.

If the Effective value of BaseADDR targets an address above the implemented PA range that
ID_AA64MMFR0_EL1.PARange indicates, no TLB entries are required to be invalidated.

If ID_AA64MMFR0_EL1.PARange is 0b0111, Address[55:52] form the upper part of the
BaseADDR value. Otherwise, Address[55:52] are RES0.

Executing TLBI RPALOS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RPALOS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RPA(TLBILevel_Last, X[t, 64], Shareability_OSH);

GPCCR_EL3.PGS BaseADDR

0b00 (4KB) BaseADDR[51:12] = Xt[39:0]

0b10 (16KB) BaseADDR[51:14] = Xt[39:2]

0b01 (64KB) BaseADDR[51:16] = Xt[39:4]

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1174
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.28 TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable

The TLBI RPAOS characteristics are:

Purpose

Invalidates cached copies of GPT entries from TLBs. Details:

• The invalidation applies to TLB entries containing GPT information that relates to a physical
address.

• The invalidation affects all TLBs in the Outer Shareable domain.

• Invalidates TLB entries containing GPT information from all levels of the GPT walk that
relates to the supplied physical address.

• Invalidations are range-based, invalidating TLB entries starting from the address in
BaseADDR, within the range as specified by SIZE.

The full set of TLB maintenance instructions that invalidate cached GPT entries is: TLBI PAALL,
TLBI PAALLOS, TLBI RPALOS, and TLBI RPAOS.

These instructions have the same ordering, observability, and completion behavior as all other TLBI
instructions.

Configurations

This instruction is present only when FEAT_RME is implemented. Otherwise, direct accesses to
TLBI RPAOS are UNDEFINED.

Attributes

TLBI RPAOS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

SIZE, bits [47:44]

Size of the range for invalidation.

If SIZE is a reserved value, no TLB entries are required to be invalidated.

0b0000 4KB.

0b0001 16KB.

0b0010 64KB.

0b0011 2MB.

0b0100 32MB.

0b0101 512MB.

0b0110 1GB.

0b0111 16GB.

0b1000 64GB.

0b1001 512GB.

RES0

63 48

SIZE

47 44 43 40

Address

39 32

Address[55:52]

Address

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1175
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
All other values are reserved.

If SIZE gives a range smaller than the configured physical granule size in GPCCR_EL3.PGS, then
the Effective value of SIZE is taken to be the size configured by GPCCR_EL3.PGS.

If GPCCR_EL3.PGS is configured to a reserved value, no TLB entries are required to be
invalidated.

If GPCCR_EL3.PGS is configured to different values at the broadcasting PE and receiving PE, no
TLB entries are required to be invalidated at the receiving PE.

Address[55:52], bits [43:40]

When FEAT_D128 is implemented:

Extension to Address. For more information, see Address.

Otherwise:

Reserved, RES0.

Address, bits [39:0]

The starting address for the range of the maintenance instruction.

This field is decoded with reference to the value of GPCCR_EL3.PGS to give BaseADDR as
follows:

Other bits of BaseADDR are treated as zero, to give the Effective value of BaseADDR.

If the Effective value of BaseADDR is not aligned to the size of the Effective value of SIZE, no TLB
entries are required to be invalidated.

If the Effective value of BaseADDR targets an address above the implemented PA range that
ID_AA64MMFR0_EL1.PARange indicates, no TLB entries are required to be invalidated.

If ID_AA64MMFR0_EL1.PARange is 0b0111, Address[55:52] form the upper part of the
BaseADDR value. Otherwise, Address[55:52] are RES0.

Executing TLBI RPAOS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RPAOS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AArch64.TLBI_RPA(TLBILevel_Any, X[t, 64], Shareability_OSH);

GPCCR_EL3.PGS BaseADDR

0b00 (4KB) BaseADDR[51:12] = Xt[39:0]

0b10 (16KB) BaseADDR[51:14] = Xt[39:2]

0b01 (64KB) BaseADDR[51:16] = Xt[39:4]

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1176
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.29 TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

The TLBI RVAAE1 and TLBI RVAAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from any level
of the translation table walk, if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAAE1, TLBI RVAAE1NXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1177
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI RVAAE1, TLBI RVAAE1NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1178
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAAE1, TLBI RVAAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1179
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAAE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1180
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.30 TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner
Shareable

The TLBI RVAAE1IS and TLBI RVAAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from any level
of the translation table walk, if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1181
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAAE1IS, TLBI RVAAE1ISNXS are UNDEFINED.

Attributes

TLBI RVAAE1IS, TLBI RVAAE1ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1182
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAAE1IS, TLBI RVAAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1183
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1184
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.31 TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer
Shareable

The TLBI RVAAE1OS and TLBI RVAAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from any level
of the translation table walk, if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1185
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAAE1OS, TLBI RVAAE1OSNXS are
UNDEFINED.

Attributes

TLBI RVAAE1OS, TLBI RVAAE1OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1186
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAAE1OS, TLBI RVAAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1187
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1188
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.32 TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

The TLBI RVAALE1 and TLBI RVAALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the leaf level of the translation table walk,
indicated by the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from the leaf
level of the translation table walk, if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAALE1, TLBI RVAALE1NXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1189
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI RVAALE1, TLBI RVAALE1NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1190
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAALE1, TLBI RVAALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1191
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAALE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1192
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.33 TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level,
EL1, Inner Shareable

The TLBI RVAALE1IS and TLBI RVAALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the leaf level of the translation table walk,
indicated by the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from the leaf
level of the translation table walk, if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1193
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAALE1IS, TLBI RVAALE1ISNXS are UNDEFINED.

Attributes

TLBI RVAALE1IS, TLBI RVAALE1ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1194
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAALE1IS, TLBI RVAALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1195
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVAALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1196
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.34 TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level,
EL1, Outer Shareable

The TLBI RVAALE1OS and TLBI RVAALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the leaf level of the translation table walk,
indicated by the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from the leaf
level of the translation table walk, if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1197
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAALE1OS, TLBI RVAALE1OSNXS are
UNDEFINED.

Attributes

TLBI RVAALE1OS, TLBI RVAALE1OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1198
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAALE1OS, TLBI RVAALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1199
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVAALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1200
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.35 TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

The TLBI RVAE1 and TLBI RVAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE1, TLBI RVAE1NXS are UNDEFINED.

Attributes

TLBI RVAE1, TLBI RVAE1NXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1201
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1202
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE1, TLBI RVAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1203
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1204
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.36 TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

The TLBI RVAE1IS and TLBI RVAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1205
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE1IS, TLBI RVAE1ISNXS are UNDEFINED.

Attributes

TLBI RVAE1IS, TLBI RVAE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1206
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE1IS, TLBI RVAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1207
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1208
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.37 TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

The TLBI RVAE1OS and TLBI RVAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1209
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAE1OS, TLBI RVAE1OSNXS are
UNDEFINED.

Attributes

TLBI RVAE1OS, TLBI RVAE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1210
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE1OS, TLBI RVAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1211
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1212
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.38 TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

The TLBI RVAE2 and TLBI RVAE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE2, TLBI RVAE2NXS are UNDEFINED.

Attributes

TLBI RVAE2, TLBI RVAE2NXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1213
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1214
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL2.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE2, TLBI RVAE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1215
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1216
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.39 TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

The TLBI RVAE2IS and TLBI RVAE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE2IS, TLBI RVAE2ISNXS are UNDEFINED.

Attributes

TLBI RVAE2IS, TLBI RVAE2ISNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1217
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1218
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL2.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE2IS, TLBI RVAE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1219
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1220
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.40 TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

The TLBI RVAE2OS and TLBI RVAE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAE2OS, TLBI RVAE2OSNXS are
UNDEFINED.

Attributes

TLBI RVAE2OS, TLBI RVAE2OSNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1221
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1222
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL2.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE2OS, TLBI RVAE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1223
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVAE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1224
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.41 TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

The TLBI RVAE3 and TLBI RVAE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE3, TLBI RVAE3NXS are UNDEFINED.

Attributes

TLBI RVAE3, TLBI RVAE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1225
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL3.DS == 1) or (FEAT_D128 is implemented and
TCR_EL3.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVAE3, TLBI RVAE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1226
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1227
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.42 TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

The TLBI RVAE3IS and TLBI RVAE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVAE3IS, TLBI RVAE3ISNXS are UNDEFINED.

Attributes

TLBI RVAE3IS, TLBI RVAE3ISNXS is a 64-bit System instruction.

Field descriptions

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1228
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL3.DS == 1) or (FEAT_D128 is implemented and
TCR_EL3.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1229
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI RVAE3IS, TLBI RVAE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0010 0b001

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1230
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.43 TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

The TLBI RVAE3OS and TLBI RVAE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVAE3OS, TLBI RVAE3OSNXS are
UNDEFINED.

Attributes

TLBI RVAE3OS, TLBI RVAE3OSNXS is a 64-bit System instruction.

Field descriptions

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1231
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL3.DS == 1) or (FEAT_D128 is implemented and
TCR_EL3.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1232
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI RVAE3OS, TLBI RVAE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVAE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI RVAE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0101 0b001

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1233
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.44 TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

The TLBI RVALE1 and TLBI RVALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1234
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE1, TLBI RVALE1NXS are UNDEFINED.

Attributes

TLBI RVALE1, TLBI RVALE1NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1235
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE1, TLBI RVALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1236
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1237
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.45 TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner
Shareable

The TLBI RVALE1IS and TLBI RVALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1238
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE1IS, TLBI RVALE1ISNXS are UNDEFINED.

Attributes

TLBI RVALE1IS, TLBI RVALE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1239
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE1IS, TLBI RVALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1240
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1241
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.46 TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer
Shareable

The TLBI RVALE1OS and TLBI RVALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1242
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVALE1OS, TLBI RVALE1OSNXS are
UNDEFINED.

Attributes

TLBI RVALE1OS, TLBI RVALE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1243
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL1.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL1.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE1OS, TLBI RVALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1244
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1245
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1246
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.47 TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

The TLBI RVALE2 and TLBI RVALE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE2, TLBI RVALE2NXS are UNDEFINED.

Attributes

TLBI RVALE2, TLBI RVALE2NXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1247
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1248
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL2.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE2, TLBI RVALE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1249
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1250
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.48 TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner
Shareable

The TLBI RVALE2IS and TLBI RVALE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE2IS, TLBI RVALE2ISNXS are UNDEFINED.

Attributes

TLBI RVALE2IS, TLBI RVALE2ISNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1251
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1252
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL2.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE2IS, TLBI RVALE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1253
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1254
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.49 TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer
Shareable

The TLBI RVALE2OS and TLBI RVALE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk up
to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVALE2OS, TLBI RVALE2OSNXS are
UNDEFINED.

Attributes

TLBI RVALE2OS, TLBI RVALE2OSNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1255
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1256
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL2.DS == 1) or (FEAT_D128 is implemented and
TCR2_EL2.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE2OS, TLBI RVALE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1257
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI RVALE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1258
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.50 TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

The TLBI RVALE3 and TLBI RVALE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table walk
up to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE3, TLBI RVALE3NXS are UNDEFINED.

Attributes

TLBI RVALE3, TLBI RVALE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1259
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL3.DS == 1) or (FEAT_D128 is implemented and
TCR_EL3.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing TLBI RVALE3, TLBI RVALE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1260
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1261
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.51 TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner
Shareable

The TLBI RVALE3IS and TLBI RVALE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table walk
up to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct
accesses to TLBI RVALE3IS, TLBI RVALE3ISNXS are UNDEFINED.

Attributes

TLBI RVALE3IS, TLBI RVALE3ISNXS is a 64-bit System instruction.

Field descriptions

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1262
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL3.DS == 1) or (FEAT_D128 is implemented and
TCR_EL3.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1263
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI RVALE3IS, TLBI RVALE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0010 0b101

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1264
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.52 TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer
Shareable

The TLBI RVALE3OS and TLBI RVALE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table walk
up to the level indicated in the TTL hint.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

— If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

— If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

— If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

— If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

— If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is
implemented. Otherwise, direct accesses to TLBI RVALE3OS, TLBI RVALE3OSNXS are
UNDEFINED.

Attributes

TLBI RVALE3OS, TLBI RVALE3OSNXS is a 64-bit System instruction.

Field descriptions

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

BaseADDR

36 32

SCALE

BaseADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1265
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

BaseADDR, bits [36:0]

When (FEAT_LPA2 is implemented and TCR_EL3.DS == 1) or (FEAT_D128 is implemented and
TCR_EL3.D128 == 1):

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16]
for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1266
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI RVALE3OS, TLBI RVALE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI RVALE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI RVALE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0101 0b101

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1267
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.53 TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

The TLBI VAAE1 and TLBI VAAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from any level
of the translation table walk, if TTL is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAAE1, TLBI VAAE1NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1268
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1269
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAAE1, TLBI VAAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAAE1NXS{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b011

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1270
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1271
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.54 TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI VAAE1IS and TLBI VAAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from any level
of the translation table walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1272
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VAAE1IS, TLBI VAAE1ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1273
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAAE1IS, TLBI VAAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1274
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1275
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.55 TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

The TLBI VAAE1OS and TLBI VAAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from any level
of the translation table walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAAE1OS, TLBI VAAE1OSNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1276
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VAAE1OS, TLBI VAAE1OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1277
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAAE1OS, TLBI VAAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1278
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1279
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.56 TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

The TLBI VAALE1 and TLBI VAALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from the final
level of the translation table walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAALE1, TLBI VAALE1NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1280
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1281
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAALE1, TLBI VAALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VAALE1NXS{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b111

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1282
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1283
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.57 TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner
Shareable

The TLBI VAALE1IS and TLBI VAALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from the final
level of the translation table walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1284
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VAALE1IS, TLBI VAALE1ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1285
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAALE1IS, TLBI VAALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1286
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1287
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.58 TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer
Shareable

The TLBI VAALE1OS and TLBI VAALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, from the final
level of the translation table walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1288
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAALE1OS, TLBI VAALE1OSNXS are UNDEFINED.

Attributes

TLBI VAALE1OS, TLBI VAALE1OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1289
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAALE1OS, TLBI VAALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1290
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1291
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.59 TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

The TLBI VAE1 and TLBI VAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE1, TLBI VAE1NXS is a 64-bit System instruction.

Field descriptions

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1292
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1293
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAE1, TLBI VAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAE1NXS{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b001

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1294
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1295
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.60 TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

The TLBI VAE1IS and TLBI VAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note
From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1296
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VAE1IS, TLBI VAE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1297
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE1IS, TLBI VAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1298
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1299
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.61 TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

The TLBI VAE1OS and TLBI VAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note
When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1300
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAE1OS, TLBI VAE1OSNXS are UNDEFINED.

Attributes

TLBI VAE1OS, TLBI VAE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1301
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE1OS, TLBI VAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1302
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1303
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.62 TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

The TLBI VAE2 and TLBI VAE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be required to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE2, TLBI VAE2NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1304
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1305
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAE2, TLBI VAE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1306
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1307
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.63 TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

The TLBI VAE2IS and TLBI VAE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be required to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE2IS, TLBI VAE2ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1308
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1309
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAE2IS, TLBI VAE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1310
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1311
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.64 TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

The TLBI VAE2OS and TLBI VAE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be required to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAE2OS, TLBI VAE2OSNXS are UNDEFINED.

Attributes

TLBI VAE2OS, TLBI VAE2OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1312
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1313
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VAE2OS, TLBI VAE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

TLBI VAE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1314
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1315
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.65 TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3

The TLBI VAE3 and TLBI VAE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE3, TLBI VAE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1316
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE3, TLBI VAE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1317
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1318
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.66 TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable

The TLBI VAE3IS and TLBI VAE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VAE3IS, TLBI VAE3ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1319
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE3IS, TLBI VAE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1320
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1321
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.67 TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable

The TLBI VAE3OS and TLBI VAE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from any level of the translation table walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VAE3OS, TLBI VAE3OSNXS are UNDEFINED.

Attributes

TLBI VAE3OS, TLBI VAE3OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1322
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VAE3OS, TLBI VAE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VAE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1323
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VAE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1324
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.68 TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

The TLBI VALE1 and TLBI VALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE1, TLBI VALE1NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1325
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1326
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VALE1, TLBI VALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VALE1NXS{, <Xt>}

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b101

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1327
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1328
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.69 TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI VALE1IS and TLBI VALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1329
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VALE1IS, TLBI VALE1ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1330
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE1IS, TLBI VALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1331
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VALE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1332
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.70 TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

The TLBI VALE1OS and TLBI VALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VALE1OS, TLBI VALE1OSNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1333
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VALE1OS, TLBI VALE1OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1334
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE1OS, TLBI VALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1335
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VALE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1336
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.71 TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

The TLBI VALE2 and TLBI VALE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE2, TLBI VALE2NXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1337
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1338
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VALE2, TLBI VALE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE2{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VALE2NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1339
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1340
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.72 TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

The TLBI VALE2IS and TLBI VALE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE2IS, TLBI VALE2ISNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1341
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1342
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VALE2IS, TLBI VALE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE2IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VALE2ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1343
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1344
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.73 TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

The TLBI VALE2OS and TLBI VALE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VALE2OS, TLBI VALE2OSNXS are UNDEFINED.

Attributes

TLBI VALE2OS, TLBI VALE2OSNXS is a 64-bit System instruction.

Field descriptions

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

ASID

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1345
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1346
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Executing TLBI VALE2OS, TLBI VALE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE2OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

TLBI VALE2OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1347
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1348
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.74 TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3

The TLBI VALE3 and TLBI VALE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE3, TLBI VALE3NXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1349
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE3, TLBI VALE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE3{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1350
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE3NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1351
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.75 TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

The TLBI VALE3IS and TLBI VALE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VALE3IS, TLBI VALE3ISNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1352
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE3IS, TLBI VALE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE3IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1353
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE3ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1354
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.76 TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

The TLBI VALE3OS and TLBI VALE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VALE3OS, TLBI VALE3OSNXS are UNDEFINED.

Attributes

TLBI VALE3OS, TLBI VALE3OSNXS is a 64-bit System instruction.

Field descriptions

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

63 48

TTL

47 44

VA[55:12]

43 32

VA[55:12]

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1355
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing TLBI VALE3OS, TLBI VALE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VALE3OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1356
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VALE3OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1357
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.77 TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1

The TLBI VMALLE1 and TLBI VMALLE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1, TLBI VMALLE1NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLE1, TLBI VMALLE1NXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1358
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLE1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVMALLE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr);

TLBI VMALLE1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b000

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1359
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVMALLE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1360
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.78 TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner
Shareable

The TLBI VMALLE1IS and TLBI VMALLE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1IS, TLBI VMALLE1ISNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1361
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLE1IS, TLBI VMALLE1ISNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLE1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVMALLE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1362
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VMALLE1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVMALLE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1363
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.79 TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer
Shareable

The TLBI VMALLE1OS and TLBI VMALLE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VMALLE1OS, TLBI VMALLE1OSNXS are UNDEFINED.

Attributes

TLBI VMALLE1OS, TLBI VMALLE1OSNXS is a 64-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1364
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLE1OS, TLBI VMALLE1OSNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLE1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVMALLE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBI_AllAttr);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_AllAttr);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1365
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBI VMALLE1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVMALLE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBI_ExcludeXS);
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1366
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.80 TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

The TLBI VMALLS12E1 and TLBI VMALLS12E1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• If FEAT_RME is implemented, one of the following applies:

— If SCR_EL3.{NSE, NS} is {0, 0}, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.{NSE, NS} is {0, 1}, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

— If SCR_EL3.{NSE, NS} is {1, 1}, then:

— The entry would be required to translate an address using the Realm EL1&0
translation regime.

— The entry would be used with the current VMID.

• If FEAT_RME is not implemented, one of the following applies:

— If SCR_EL3.NS is 0, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.NS is 1, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

The invalidation applies to the PE that executes this System instruction.

Note
For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1367
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBI VMALLS12E1, TLBI VMALLS12E1NXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLS12E1, TLBI VMALLS12E1NXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLS12E1{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr);

TLBI VMALLS12E1NXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b110

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1368
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1369
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.81 TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2,
EL1, Inner Shareable

The TLBI VMALLS12E1IS and TLBI VMALLS12E1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• If FEAT_RME is implemented, one of the following applies:

— If SCR_EL3.{NSE, NS} is {0, 0}, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.{NSE, NS} is {0, 1}, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

— If SCR_EL3.{NSE, NS} is {1, 1}, then:

— The entry would be required to translate an address using the Realm EL1&0
translation regime.

— The entry would be used with the current VMID.

• If FEAT_RME is not implemented, one of the following applies:

— If SCR_EL3.NS is 0, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.NS is 1, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1370
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLS12E1IS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1371
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr);

TLBI VMALLS12E1ISNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1372
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.82 TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and
2, EL1, Outer Shareable

The TLBI VMALLS12E1OS and TLBI VMALLS12E1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table
walk.

• If FEAT_RME is implemented, one of the following applies:

— If SCR_EL3.{NSE, NS} is {0, 0}, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.{NSE, NS} is {0, 1}, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

— If SCR_EL3.{NSE, NS} is {1, 1}, then:

— The entry would be required to translate an address using the Realm EL1&0
translation regime.

— The entry would be used with the current VMID.

• If FEAT_RME is not implemented, one of the following applies:

— If SCR_EL3.NS is 0, then:

— The entry would be required to translate an address using the Secure EL1&0
translation regime.

— If FEAT_SEL2 is implemented and enabled, the entry would be used with the
current VMID.

— If SCR_EL3.NS is 1, then:

— The entry would be required to translate an address using the Non-secure
EL1&0 translation regime.

— If Non-secure EL2 is implemented, the entry would be used with the current
VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1373
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Note

For the EL1&0 translation regimes, the invalidation applies to both global entries and non-global
entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to
TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS are UNDEFINED.

Attributes

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS

The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBI VMALLS12E1OS{, <Xt>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1374
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_AllAttr);

TLBI VMALLS12E1OSNXS{, <Xt>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 AArch64.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBI_ExcludeXS);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBI_ExcludeXS);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1375
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.83 TLBIP IPAS2E1, TLBIP IPAS2E1NXS, TLB Invalidate Pair by Intermediate Physical Address,
Stage 2, EL1

The TLBIP IPAS2E1 and TLBIP IPAS2E1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from any level of the translation table
walk.

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP IPAS2E1, TLBIP IPAS2E1NXS are UNDEFINED.

Attributes

TLBIP IPAS2E1, TLBIP IPAS2E1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1376
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

IPA[55:12], bits [107:64]

Bits[55:12] of the intermediate physical address to match.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

127 108

IPA[55:12]

107 96

IPA[55:12]

95 64

NS

63

RES0

62 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1377
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP IPAS2E1, TLBIP IPAS2E1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP IPAS2E1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1378
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP IPAS2E1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1379
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.84 TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS, TLB Invalidate Pair by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

The TLBIP IPAS2E1IS and TLBIP IPAS2E1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from any level of the translation table
walk.

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS are UNDEFINED.

Attributes

TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1380
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

IPA[55:12], bits [107:64]

Bits[55:12] of the intermediate physical address to match.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

127 108

IPA[55:12]

107 96

IPA[55:12]

95 64

NS

63

RES0

62 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1381
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP IPAS2E1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1382
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP IPAS2E1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1383
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.85 TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS, TLB Invalidate Pair by Intermediate Physical
Address, Stage 2, EL1, Outer Shareable

The TLBIP IPAS2E1OS and TLBIP IPAS2E1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from any level of the translation table
walk.

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS are UNDEFINED.

Attributes

TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1384
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

IPA[51:48], bits [107:64]

Bits[55:12] of the intermediate physical address to match.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

127 108

IPA[51:48]

107 96

IPA[51:48]

95 64

NS

63

RES0

62 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1385
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP IPAS2E1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1386
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP IPAS2E1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1387
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.86 TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS, TLB Invalidate Pair by Intermediate Physical Address,
Stage 2, Last level, EL1

The TLBIP IPAS2LE1 and TLBIP IPAS2LE1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from the final level of the translation
table walk.

— A 64-bit stage 2 only translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS are UNDEFINED.

Attributes

TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1388
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

IPA[55:12], bits [107:64]

Bits[55:12] of the intermediate physical address to match.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

127 108

IPA[55:12]

107 96

IPA[55:12]

95 64

NS

63

RES0

62 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1389
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP IPAS2LE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1390
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP IPAS2LE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1391
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.87 TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS, TLB Invalidate Pair by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner Shareable

The TLBIP IPAS2LE1IS and TLBIP IPAS2LE1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from the final level of the translation
table walk.

— A 64-bit stage 2 only translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS are UNDEFINED.

Attributes

TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1392
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

IPA[55:12], bits [107:64]

Bits[55:12] of the intermediate physical address to match.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

127 108

IPA[55:12]

107 96

IPA[55:12]

95 64

NS

63

RES0

62 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1393
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP IPAS2LE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1394
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP IPAS2LE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1395
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.88 TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS, TLB Invalidate Pair by Intermediate Physical
Address, Stage 2, Last level, EL1, Outer Shareable

The TLBIP IPAS2LE1OS and TLBIP IPAS2LE1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from the final level of the translation
table walk.

— A 64-bit stage 2 only translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate the
specified IPA using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate the
specified IPA using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate the
specified IPA using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using
the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using
the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS are UNDEFINED.

Attributes

TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1396
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

IPA[51:48], bits [107:64]

Bits[55:12] of the intermediate physical address to match.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

RES0

127 108

IPA[51:48]

107 96

IPA[51:48]

95 64

NS

63

RES0

62 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1397
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP IPAS2LE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1398
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP IPAS2LE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1399
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.89 TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1

The TLBIP RIPAS2E1 and TLBIP RIPAS2E1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from any level of the translation table
walk up to the level indicated in the TTL hint.

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS are UNDEFINED.

Attributes

TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1400
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1401
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RIPAS2E1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1402
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RIPAS2E1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1403
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.90 TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

The TLBIP RIPAS2E1IS and TLBIP RIPAS2E1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from any level of the translation table
walk up to the level indicated in the TTL hint.

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS are UNDEFINED.

Attributes

TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1404
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1405
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RIPAS2E1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1406
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RIPAS2E1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1407
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.91 TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, EL1, Outer Shareable

The TLBIP RIPAS2E1OS and TLBIP RIPAS2E1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from any level of the translation table
walk up to the level indicated in the TTL hint.

— A 64-bit stage 2 only translation table entry, from any level of the translation table
walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS are UNDEFINED.

Attributes

TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1408
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1409
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RIPAS2E1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1410
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RIPAS2E1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1411
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.92 TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1

The TLBIP RIPAS2LE1 and TLBIP RIPAS2LE1NXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— If FEAT_D128 is implemented, a 64-bit stage 2 only translation table entry, from the
leaf level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS are UNDEFINED.

Attributes

TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1412
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1413
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RIPAS2LE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1414
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RIPAS2LE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1415
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.93 TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner Shareable

The TLBIP RIPAS2LE1IS and TLBIP RIPAS2LE1ISNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— If FEAT_D128 is implemented, a 64-bit stage 2 only translation table entry, from the
leaf level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS are UNDEFINED.

Attributes

TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1416
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1417
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RIPAS2LE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1418
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RIPAS2LE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1419
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.94 TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Outer Shareable

The TLBIP RIPAS2LE1OS and TLBIP RIPAS2LE1OSNXS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— If FEAT_D128 is implemented, a 64-bit stage 2 only translation table entry, from the
leaf level of the translation table walk, if TTL is 0b00.

• If FEAT_RME is implemented, one of the following applies:

— SCR_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA
in the specified address range using the Secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {0, 1} and the entry would be required to translate any IPA
in the specified address range using the Non-secure EL1&0 translation regime.

— SCR_EL3.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA
in the specified address range using the Realm EL1&0 translation regime.

• If FEAT_RME is not implemented, one of the following applies:

— SCR_EL3.NS is 0 and the entry would be required to translate any IPA in the specified
address range using the Secure EL1&0 translation regime.

— SCR_EL3.NS is 1 and the entry would be required to translate any IPA in the specified
address range using the Non-secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1420
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS are UNDEFINED.

Attributes

TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

NS, bit [63]

When FEAT_RME is implemented:

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 0}, NS selects the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {1, 1}, this field is RES0, and the
instruction applies only to the Realm IPA space.

When the instruction is executed and SCR_EL3.{NSE, NS} == {0, 1}, this field is RES0, and the
instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is implemented and FEAT_RME is not implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies
only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field
is RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

NS

63

RES0

62 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1421
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RIPAS2LE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1422
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RIPAS2LE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 return;
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1423
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.95 TLBIP RVAAE1, TLBIP RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

The TLBIP RVAAE1 and TLBIP RVAAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAAE1, TLBIP RVAAE1NXS are UNDEFINED.

Attributes

TLBIP RVAAE1, TLBIP RVAAE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1424
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1425
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAAE1, TLBIP RVAAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAAE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1426
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RVAAE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1427
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.96 TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner
Shareable

The TLBIP RVAAE1IS and TLBIP RVAAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1428
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS are UNDEFINED.

Attributes

TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1429
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAAE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1430
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RVAAE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1431
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.97 TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer
Shareable

The TLBIP RVAAE1OS and TLBIP RVAAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1432
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS are UNDEFINED.

Attributes

TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1433
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAAE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1434
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RVAAE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1435
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.98 TLBIP RVAALE1, TLBIP RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

The TLBIP RVAALE1 and TLBIP RVAALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— A 64-bit stage 1 translation table entry, from the leaf level of the translation table walk,
if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAALE1, TLBIP RVAALE1NXS are UNDEFINED.

Attributes

TLBIP RVAALE1, TLBIP RVAALE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1436
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1437
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAALE1, TLBIP RVAALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAALE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1438
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RVAALE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1439
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.99 TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level,
EL1, Inner Shareable

The TLBIP RVAALE1IS and TLBIP RVAALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— A 64-bit stage 1 translation table entry, from the leaf level of the translation table walk,
if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1440
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS are UNDEFINED.

Attributes

TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1441
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAALE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1442
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RVAALE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1443
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.100 TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last
Level, EL1, Outer Shareable

The TLBIP RVAALE1OS and TLBIP RVAALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

— A 64-bit stage 1 translation table entry, from the leaf level of the translation table walk,
if TTL is 0b00.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1444
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS are UNDEFINED.

Attributes

TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1445
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAALE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1446
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TLBIP RVAALE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1447
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.101 TLBIP RVAE1, TLBIP RVAE1NXS, TLB Range Invalidate by VA, EL1

The TLBIP RVAE1 and TLBIP RVAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE1, TLBIP RVAE1NXS are UNDEFINED.

Attributes

TLBIP RVAE1, TLBIP RVAE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1448
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1449
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE1, TLBIP RVAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1450
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1451
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.102 TLBIP RVAE1IS, TLBIP RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

The TLBIP RVAE1IS and TLBIP RVAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1452
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE1IS, TLBIP RVAE1ISNXS are UNDEFINED.

Attributes

TLBIP RVAE1IS, TLBIP RVAE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1453
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE1IS, TLBIP RVAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1454
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1455
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.103 TLBIP RVAE1OS, TLBIP RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

The TLBIP RVAE1OS and TLBIP RVAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1456
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE1OS, TLBIP RVAE1OSNXS are UNDEFINED.

Attributes

TLBIP RVAE1OS, TLBIP RVAE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1457
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE1OS, TLBIP RVAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1458
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1459
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.104 TLBIP RVAE2, TLBIP RVAE2NXS, TLB Range Invalidate by VA, EL2

The TLBIP RVAE2 and TLBIP RVAE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE2, TLBIP RVAE2NXS are UNDEFINED.

Attributes

TLBIP RVAE2, TLBIP RVAE2NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1460
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1461
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE2, TLBIP RVAE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE2{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE2NXS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0110 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1462
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1463
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.105 TLBIP RVAE2IS, TLBIP RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

The TLBIP RVAE2IS and TLBIP RVAE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE2IS, TLBIP RVAE2ISNXS are UNDEFINED.

Attributes

TLBIP RVAE2IS, TLBIP RVAE2ISNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1464
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1465
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE2IS, TLBIP RVAE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE2IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE2ISNXS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0010 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1466
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1467
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.106 TLBIP RVAE2OS, TLBIP RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

The TLBIP RVAE2OS and TLBIP RVAE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE2OS, TLBIP RVAE2OSNXS are UNDEFINED.

Attributes

TLBIP RVAE2OS, TLBIP RVAE2OSNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1468
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1469
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE2OS, TLBIP RVAE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE2OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE2OSNXS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0101 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1470
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1471
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.107 TLBIP RVAE3, TLBIP RVAE3NXS, TLB Range Invalidate by VA, EL3

The TLBIP RVAE3 and TLBIP RVAE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE3, TLBIP RVAE3NXS are UNDEFINED.

Attributes

TLBIP RVAE3, TLBIP RVAE3NXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1472
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE3, TLBIP RVAE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE3{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1473
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE3NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1474
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.108 TLBIP RVAE3IS, TLBIP RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

The TLBIP RVAE3IS and TLBIP RVAE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE3IS, TLBIP RVAE3ISNXS are UNDEFINED.

Attributes

TLBIP RVAE3IS, TLBIP RVAE3ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1475
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE3IS, TLBIP RVAE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE3IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1476
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE3ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1477
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.109 TLBIP RVAE3OS, TLBIP RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

The TLBIP RVAE3OS and TLBIP RVAE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVAE3OS, TLBIP RVAE3OSNXS are UNDEFINED.

Attributes

TLBIP RVAE3OS, TLBIP RVAE3OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1478
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVAE3OS, TLBIP RVAE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVAE3OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1479
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVAE3OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1480
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.110 TLBIP RVALE1, TLBIP RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

The TLBIP RVALE1 and TLBIP RVALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

For more information about the architectural requirements for this System instruction, see
Invalidating TLB entries from stage 2 translations.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE1, TLBIP RVALE1NXS are UNDEFINED.

Attributes

TLBIP RVALE1, TLBIP RVALE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1481
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1482
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE1, TLBIP RVALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1483
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1484
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.111 TLBIP RVALE1IS, TLBIP RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner
Shareable

The TLBIP RVALE1IS and TLBIP RVALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1485
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE1IS, TLBIP RVALE1ISNXS are UNDEFINED.

Attributes

TLBIP RVALE1IS, TLBIP RVALE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1486
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE1IS, TLBIP RVALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1487
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1488
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.112 TLBIP RVALE1OS, TLBIP RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer
Shareable

The TLBIP RVALE1OS and TLBIP RVALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range, and one
of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate any of the VAs in the
specified address range using the EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate any of the VAs in the specified address range using the EL2&0 translation
regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate any of the VAs in the specified address range using the EL1&0
translation regime for the Security state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1489
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE1OS, TLBIP RVALE1OSNXS are UNDEFINED.

Attributes

TLBIP RVALE1OS, TLBIP RVALE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1490
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE1OS, TLBIP RVALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1491
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1492
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.113 TLBIP RVALE2, TLBIP RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

The TLBIP RVALE2 and TLBIP RVALE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE2, TLBIP RVALE2NXS are UNDEFINED.

Attributes

TLBIP RVALE2, TLBIP RVALE2NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1493
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1494
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE2, TLBIP RVALE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE2{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE2NXS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0110 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1495
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1496
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.114 TLBIP RVALE2IS, TLBIP RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner
Shareable

The TLBIP RVALE2IS and TLBIP RVALE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE2IS, TLBIP RVALE2ISNXS are UNDEFINED.

Attributes

TLBIP RVALE2IS, TLBIP RVALE2ISNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1497
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1498
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE2IS, TLBIP RVALE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE2IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE2ISNXS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0010 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1499
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1500
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.115 TLBIP RVALE2OS, TLBIP RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer
Shareable

The TLBIP RVALE2OS and TLBIP RVALE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, if TTL is 0b00.

• The entry would be used to translate any VA in the range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)]
using the EL2 or EL2&0 translation regime, as determined by the Effective value of
HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE2OS, TLBIP RVALE2OSNXS are UNDEFINED.

Attributes

TLBIP RVALE2OS, TLBIP RVALE2OSNXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1501
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

ASID

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1502
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE2OS, TLBIP RVALE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE2OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE2OSNXS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0101 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1503
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1504
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.116 TLBIP RVALE3, TLBIP RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

The TLBIP RVALE3 and TLBIP RVALE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE3, TLBIP RVALE3NXS are UNDEFINED.

Attributes

TLBIP RVALE3, TLBIP RVALE3NXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1505
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE3, TLBIP RVALE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE3{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1506
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE3NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1507
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.117 TLBIP RVALE3IS, TLBIP RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner
Shareable

The TLBIP RVALE3IS and TLBIP RVALE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE3IS, TLBIP RVALE3ISNXS are UNDEFINED.

Attributes

TLBIP RVALE3IS, TLBIP RVALE3ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1508
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE3IS, TLBIP RVALE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE3IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1509
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE3ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1510
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.118 TLBIP RVALE3OS, TLBIP RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer
Shareable

The TLBIP RVALE3OS and TLBIP RVALE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk up to the level indicated in the TTL hint.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL is 0b00.

• The entry would be used to translate any of the VAs in the specified address range using the
EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA <
BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

For 128-bit translation table entry, the range of addresses invalidated is UNPREDICTABLE when
Block or Page size corresponding to TTL and TG, for the translation system is not aligned.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP RVALE3OS, TLBIP RVALE3OSNXS are UNDEFINED.

Attributes

TLBIP RVALE3OS, TLBIP RVALE3OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

BaseADDR[55:12]

107 96

BaseADDR[55:12]

95 64

RES0

63 48

TG

47 46 45 44

NUM

43 39

TTL

38 37

RES0

36 32

SCALE

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1511
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
BaseADDR[55:12], bits [107:64]

The starting address for the range of the maintenance instructions. This field is BaseADDR[55:12]
for all translation granules.

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the
translations used a different translation granule size than the one being specified, then the
architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value
is reserved and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Bits [36:0]

Reserved, RES0.

Executing TLBIP RVALE3OS, TLBIP RVALE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP RVALE3OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1512
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP RVALE3OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1513
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.119 TLBIP VAAE1, TLBIP VAAE1NXS, TLB Invalidate Pair by VA, All ASID, EL1

The TLBIP VAAE1 and TLBIP VAAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAAE1, TLBIP VAAE1NXS are UNDEFINED.

Attributes

TLBIP VAAE1, TLBIP VAAE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1514
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1515
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAAE1, TLBIP VAAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAAE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1516
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAAE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1517
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.120 TLBIP VAAE1IS, TLBIP VAAE1ISNXS, TLB Invalidate Pair by VA, All ASID, EL1, Inner
Shareable

The TLBIP VAAE1IS and TLBIP VAAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAAE1IS, TLBIP VAAE1ISNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1518
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBIP VAAE1IS, TLBIP VAAE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1519
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAAE1IS, TLBIP VAAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAAE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1520
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAAE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1521
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.121 TLBIP VAAE1OS, TLBIP VAAE1OSNXS, TLB Invalidate Pair by VA, All ASID, EL1, Outer
Shareable

The TLBIP VAAE1OS and TLBIP VAAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from any level of the translation table walk.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAAE1OS, TLBIP VAAE1OSNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1522
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBIP VAAE1OS, TLBIP VAAE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1523
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAAE1OS, TLBIP VAAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAAE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1524
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAAE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1525
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.122 TLBIP VAALE1, TLBIP VAALE1NXS, TLB Invalidate Pair by VA, All ASID, Last level, EL1

The TLBIP VAALE1 and TLBIP VAALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAALE1, TLBIP VAALE1NXS are UNDEFINED.

Attributes

TLBIP VAALE1, TLBIP VAALE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1526
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1527
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAALE1, TLBIP VAALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAALE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1528
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAALE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1529
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.123 TLBIP VAALE1IS, TLBIP VAALE1ISNXS, TLB Invalidate Pair by VA, All ASID, Last Level, EL1,
Inner Shareable

The TLBIP VAALE1IS and TLBIP VAALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1530
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAALE1IS, TLBIP VAALE1ISNXS are UNDEFINED.

Attributes

TLBIP VAALE1IS, TLBIP VAALE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1531
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAALE1IS, TLBIP VAALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAALE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1532
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAALE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1533
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.124 TLBIP VAALE1OS, TLBIP VAALE1OSNXS, TLB Invalidate Pair by VA, All ASID, Last Level,
EL1, Outer Shareable

The TLBIP VAALE1OS and TLBIP VAALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries and
non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1534
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAALE1OS, TLBIP VAALE1OSNXS are UNDEFINED.

Attributes

TLBIP VAALE1OS, TLBIP VAALE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1535
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAALE1OS, TLBIP VAALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAALE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1536
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAALE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1537
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.125 TLBIP VAE1, TLBIP VAE1NXS, TLB Invalidate Pair by VA, EL1

The TLBIP VAE1 and TLBIP VAE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE1, TLBIP VAE1NXS are UNDEFINED.

Attributes

TLBIP VAE1, TLBIP VAE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1538
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1539
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE1, TLBIP VAE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1540
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1541
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.126 TLBIP VAE1IS, TLBIP VAE1ISNXS, TLB Invalidate Pair by VA, EL1, Inner Shareable

The TLBIP VAE1IS and TLBIP VAE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE1IS, TLBIP VAE1ISNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1542
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBIP VAE1IS, TLBIP VAE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1543
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE1IS, TLBIP VAE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1544
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1545
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.127 TLBIP VAE1OS, TLBIP VAE1OSNXS, TLB Invalidate Pair by VA, EL1, Outer Shareable

The TLBIP VAE1OS and TLBIP VAE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE1OS, TLBIP VAE1OSNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1546
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBIP VAE1OS, TLBIP VAE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1547
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE1OS, TLBIP VAE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1548
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1549
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.128 TLBIP VAE2, TLBIP VAE2NXS, TLB Invalidate Pair by VA, EL2

The TLBIP VAE2 and TLBIP VAE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be required to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE2, TLBIP VAE2NXS are UNDEFINED.

Attributes

TLBIP VAE2, TLBIP VAE2NXS is a 128-bit System instruction.

Field descriptions

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1550
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1551
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE2, TLBIP VAE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE2{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE2NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1552
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1553
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.129 TLBIP VAE2IS, TLBIP VAE2ISNXS, TLB Invalidate Pair by VA, EL2, Inner Shareable

The TLBIP VAE2IS and TLBIP VAE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be required to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE2IS, TLBIP VAE2ISNXS are UNDEFINED.

Attributes

TLBIP VAE2IS, TLBIP VAE2ISNXS is a 128-bit System instruction.

Field descriptions

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1554
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1555
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE2IS, TLBIP VAE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE2IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE2ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1556
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1557
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.130 TLBIP VAE2OS, TLBIP VAE2OSNXS, TLB Invalidate Pair by VA, EL2, Outer Shareable

The TLBIP VAE2OS and TLBIP VAE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be required to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from any level of the translation
table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is from a level of the translation table walk above the final level and matches
the specified ASID.

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE2OS, TLBIP VAE2OSNXS are UNDEFINED.

Attributes

TLBIP VAE2OS, TLBIP VAE2OSNXS is a 128-bit System instruction.

Field descriptions

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1558
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1559
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE2OS, TLBIP VAE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE2OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE2OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b001

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1560
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1561
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.131 TLBIP VAE3, TLBIP VAE3NXS, TLB Invalidate Pair by VA, EL3

The TLBIP VAE3 and TLBIP VAE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from any level of the translation table walk.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE3, TLBIP VAE3NXS are UNDEFINED.

Attributes

TLBIP VAE3, TLBIP VAE3NXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1562
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE3, TLBIP VAE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE3{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1563
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE3NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1564
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.132 TLBIP VAE3IS, TLBIP VAE3ISNXS, TLB Invalidate Pair by VA, EL3, Inner Shareable

The TLBIP VAE3IS and TLBIP VAE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from any level of the translation table walk.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE3IS, TLBIP VAE3ISNXS are UNDEFINED.

Attributes

TLBIP VAE3IS, TLBIP VAE3ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1565
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE3IS, TLBIP VAE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE3IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1566
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE3ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1567
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.133 TLBIP VAE3OS, TLBIP VAE3OSNXS, TLB Invalidate Pair by VA, EL3, Outer Shareable

The TLBIP VAE3OS and TLBIP VAE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from any level of the translation table walk.

— A 64-bit stage 1 translation table entry, from any level of the translation table walk, if
TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VAE3OS, TLBIP VAE3OSNXS are UNDEFINED.

Attributes

TLBIP VAE3OS, TLBIP VAE3OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1568
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VAE3OS, TLBIP VAE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VAE3OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1569
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VAE3OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1570
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.134 TLBIP VALE1, TLBIP VALE1NXS, TLB Invalidate Pair by VA, Last level, EL1

The TLBIP VALE1 and TLBIP VALE1NXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE1, TLBIP VALE1NXS are UNDEFINED.

Attributes

TLBIP VALE1, TLBIP VALE1NXS is a 128-bit System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1571
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1572
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE1, TLBIP VALE1NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE1{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1573
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE1NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1574
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.135 TLBIP VALE1IS, TLBIP VALE1ISNXS, TLB Invalidate Pair by VA, Last level, EL1, Inner
Shareable

The TLBIP VALE1IS and TLBIP VALE1ISNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation
regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE1IS, TLBIP VALE1ISNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1575
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBIP VALE1IS, TLBIP VALE1ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1576
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE1IS, TLBIP VALE1ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE1IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1577
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE1ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1578
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.136 TLBIP VALE1OS, TLBIP VALE1OSNXS, TLB Invalidate Pair by VA, Last level, EL1, Outer
Shareable

The TLBIP VALE1OS and TLBIP VALE1OSNXS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• When EL2 is implemented and enabled in the current Security state:

— If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used
with the current VMID and would be required to translate the specified VA using the
EL1&0 translation regime for the Security state.

— If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required
to translate the specified VA using the EL2&0 translation regime for the Security state.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be
required to translate the specified VA using the EL1&0 translation regime for the Security
state.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is
defined to pass a VMID argument, or would be defined to pass a VMID argument if
SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the
Secure EL1&0 translation of a PE in the same required shareability domain with
SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0
translation of a System MMU in the same required shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE1OS, TLBIP VALE1OSNXS are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1579
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Attributes

TLBIP VALE1OS, TLBIP VALE1OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1580
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE1OS, TLBIP VALE1OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE1OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then

op0 op1 CRn CRm op2

0b01 0b000 0b1000 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1581
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE1OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_HCX) && (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS ==
'0') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL0) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL0) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL1) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b000 0b1001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1582
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.137 TLBIP VALE2, TLBIP VALE2NXS, TLB Invalidate Pair by VA, Last level, EL2

The TLBIP VALE2 and TLBIP VALE2NXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE2, TLBIP VALE2NXS are UNDEFINED.

Attributes

TLBIP VALE2, TLBIP VALE2NXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1583
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1584
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE2, TLBIP VALE2NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE2{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE2NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0111 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1585
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_NSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1586
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.138 TLBIP VALE2IS, TLBIP VALE2ISNXS, TLB Invalidate Pair by VA, Last level, EL2, Inner
Shareable

The TLBIP VALE2IS and TLBIP VALE2ISNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 64-bit stage 1 translation table entry.

— If FEAT_D128 is implemented, a 128-bit stage 1 translation table entry, if TTL[3:2] is
0b00.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE2IS, TLBIP VALE2ISNXS are UNDEFINED.

Attributes

TLBIP VALE2IS, TLBIP VALE2ISNXS is a 128-bit System instruction.

Field descriptions

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1587
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1588
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE2IS, TLBIP VALE2ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE2IS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE2ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0011 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1589
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_ISH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1590
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.139 TLBIP VALE2OS, TLBIP VALE2OSNXS, TLB Invalidate Pair by VA, Last level, EL2, Outer
Shareable

The TLBIP VALE2OS and TLBIP VALE2OSNXS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of
translation table entries from TLBs that meet all the following requirements:

• The entry is one of the following:

— A 128-bit stage 1 translation table entry.

— A 64-bit stage 1 translation table entry, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation
regime, as determined by the Effective value of HCR_EL2.E2H, for the Security state.

• If the Effective value of HCR_EL2.E2H is not 1, the entry is from the final level of the
translation table walk.

• If the Effective value of HCR_EL2.E2H is 1, one of the following applies:

— The entry is a global entry from the final level of the translation table walk.

— The entry is a non-global entry from the final level of the translation table walk that
matches the specified ASID.

The Security state is indicated by the value of SCR_EL3.NS if FEAT_RME is not implemented, or
SCR_EL3.{NSE, NS} if FEAT_RME is implemented.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE2OS, TLBIP VALE2OSNXS are UNDEFINED.

Attributes

TLBIP VALE2OS, TLBIP VALE2OSNXS is a 128-bit System instruction.

Field descriptions

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

ASID

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1591
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

ASID, bits [63:48]

When the Effective value of HCR_EL2.E2H is 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1592
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE2OS, TLBIP VALE2OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE2OS{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE2OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b01 0b100 0b1000 0b0001 0b101

op0 op1 CRn CRm op2

0b01 0b100 0b1001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1593
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif ELIsInHost(EL2) then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
 else
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL2) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
Shareability_OSH, TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1594
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.140 TLBIP VALE3, TLBIP VALE3NXS, TLB Invalidate Pair by VA, Last level, EL3

The TLBIP VALE3 and TLBIP VALE3NXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE3, TLBIP VALE3NXS are UNDEFINED.

Attributes

TLBIP VALE3, TLBIP VALE3NXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1595
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE3, TLBIP VALE3NXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE3{, <Xt>, <Xt2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1596
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE3NXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1597
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.141 TLBIP VALE3IS, TLBIP VALE3ISNXS, TLB Invalidate Pair by VA, Last level, EL3, Inner
Shareable

The TLBIP VALE3IS and TLBIP VALE3ISNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE3IS, TLBIP VALE3ISNXS are UNDEFINED.

Attributes

TLBIP VALE3IS, TLBIP VALE3ISNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1598
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE3IS, TLBIP VALE3ISNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE3IS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1599
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE3ISNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1600
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.142 TLBIP VALE3OS, TLBIP VALE3OSNXS, TLB Invalidate Pair by VA, Last level, EL3, Outer
Shareable

The TLBIP VALE3OS and TLBIP VALE3OSNXS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet
all the following requirements:

• The entry is one of the following

— A 128-bit stage 1 translation table entry, from the final level of the translation table
walk.

— A 64-bit stage 1 translation table entry, from the final level of the translation table
walk, if TTL[3:2] is 0b00.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that
executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS
qualifier waits for all memory accesses using in-scope old translation information to complete
before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these
memory accesses with XS attribute set to 0 are complete.

Configurations

This instruction is present only when FEAT_D128 is implemented. Otherwise, direct accesses to
TLBIP VALE3OS, TLBIP VALE3OSNXS are UNDEFINED.

Attributes

TLBIP VALE3OS, TLBIP VALE3OSNXS is a 128-bit System instruction.

Field descriptions

Bits [127:108]

Reserved, RES0.

VA[55:12], bits [107:64]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

RES0

127 108

VA[55:12]

107 96

VA[55:12]

95 64

RES0

63 48

TTL

47 44

RES0

43 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1601
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for
the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the
entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat as if TTL<3:2> is 0b00.

0b10 : Level 2.

0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.

0b01 : Level 1.

0b10 : Level 2.

0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:0]

Reserved, RES0.

Executing TLBIP VALE3OS, TLBIP VALE3OSNXS

Accesses to this instruction use the following encodings in the System instruction encoding space:

TLBIP VALE3OS{, <Xt>, <Xt2>}

op0 op1 CRn CRm op2

0b01 0b110 0b1000 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1602
ID032224 Non-Confidential

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_AllAttr, X[t2, 64]:X[t, 64]);

TLBIP VALE3OSNXS{, <Xt>, <Xt2>}

if !IsFeatureImplemented(FEAT_XS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then
 return;
 else
 AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Shareability_OSH,
TLBILevel_Last, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b110 0b1001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1603
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6 A64 System instructions for prediction restriction

This section lists the A64 System instructions for prediction restriction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1604
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.1 CFP RCTX, Control Flow Prediction Restriction by Context

The CFP RCTX characteristics are:

Purpose

Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources
that predict execution based on information gathered within the target execution context or contexts.

Control flow predictions determined by the actions of code in the target execution context or
contexts appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses
to CFP RCTX are UNDEFINED.

Attributes

CFP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 28 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

NSE GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1605
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is not
{1, 1}, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]

When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see CFP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]

When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.

• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.

• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

This instruction is treated as a NOP when executed at EL3 and either:

• CFP_RCTX.{NSE, NS} selects a reserved value.

• CFP_RCTX.{NSE, NS} == {1, 0} and CFP_RCTX.EL has a value other than 0b11.

Otherwise:

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1606
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.

Executing CFP RCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

CFP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_ControlFlow);
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.CFPRCTX == '1' then

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1607
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_ControlFlow);
elsif PSTATE.EL == EL2 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_ControlFlow);
elsif PSTATE.EL == EL3 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_ControlFlow);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1608
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.2 COSP RCTX, Clear Other Speculative Prediction Restriction by Context

The COSP RCTX characteristics are:

Purpose

Clear Other Speculative Prediction Restriction by Context applies to all prediction resources not
managed by other speculation restriction System instructions.

The actions of code in the target execution context or contexts appearing in program order before
the instruction cannot exploitatively control any predictions occurring after the instruction is
complete and synchronized.

This instruction applies to all speculative access except:

• Cache Prefetch predictions.

• Control Flow predictions.

• Data Value predictions.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the PE that executed the original restriction instruction, and a subsequent Context
Synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation Resources so long as the
behavior described for completion of this instruction is met by the implementation.

On some implementations, the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used rarely, such as on the roll-over of an ASID or VMID, but
should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES2 is implemented. Otherwise, direct accesses
to COSP RCTX are UNDEFINED.

Attributes

COSP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 and EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 28 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

NSE GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1609
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is not
{1, 1}, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]

When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see COSP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]

When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.

• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.

• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

This instruction is treated as a NOP when executed at EL3 and either:

• COSP_RCTX.{NSE, NS} selects a reserved value.

• COSP_RCTX.{NSE, NS} == {1, 0} and COSP_RCTX.EL has a value other than 0b11.

Otherwise:

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1610
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs, or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies to an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.

Executing COSP RCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

COSP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.COSPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_Other);
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1611
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.COSPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_Other);
elsif PSTATE.EL == EL2 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_Other);
elsif PSTATE.EL == EL3 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_Other);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1612
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.3 CPP RCTX, Cache Prefetch Prediction Restriction by Context

The CPP RCTX characteristics are:

Purpose

Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that
predict cache allocations based on information gathered within the target execution context or
contexts.

The actions of code in the target execution context or contexts appearing in program order before
the instruction cannot exploitatively control cache prefetch predictions occurring after the
instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.

• Data caches.

• TLB prefetching hardware used by the executing PE that applies to the supplied context or
contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation Resources so long as the
behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses
to CPP RCTX are UNDEFINED.

Attributes

CPP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 28 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

NSE GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1613
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
For target execution contexts other than EL0 and EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is not
{1, 1}, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]

When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see CPP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]

When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.

• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.

• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

This instruction is treated as a NOP when executed at EL3 and either:

• CPP_RCTX.{NSE, NS} selects a reserved value.

• CPP_RCTX.{NSE, NS} == {1, 0} and CPP_RCTX.EL has a value other than 0b11.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1614
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
Otherwise:

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.

Executing CPP RCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

CPP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1615
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.CPPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL2 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL3 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_CachePrefetch);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1616
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
C5.6.4 DVP RCTX, Data Value Prediction Restriction by Context

The DVP RCTX characteristics are:

Purpose

Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that
predict execution based on information gathered within the target execution context or contexts.

Note

The prediction of the PSTATE.{N,Z,C,V} values is not considered a data value for this purpose.

Data value predictions determined by the actions of code in the target execution context or contexts
appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses
to DVP RCTX are UNDEFINED.

Attributes

DVP RCTX is a 64-bit System instruction.

Field descriptions

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

63 49 48

VMID

47 32

GVMID

RES0

31 28 27

NS

26

EL

25 24

RES0

23 17 16

ASID

15 0

NSE GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1617
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.

• EL0 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is not
{1, 1}, this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

If the implementation supports 16 bits of VMID, then the upper 8 bits of the VMID must be written
to 0 by software when the context being affected only uses 8 bits.

Bits [31:28]

Reserved, RES0.

NSE, bit [27]

When FEAT_RME is implemented:

Together with the NS field, selects the Security state.

For a description of the values derived by evaluating NS and NSE together, see DVP_RCTX.NS.

Otherwise:

Reserved, RES0.

NS, bit [26]

When FEAT_RME is implemented:

Together with the NSE field, selects the Security state. Defined values are:

Some Effective values are determined by the current Security state:

• When executed in Secure state, the Effective value of NSE is 0.

• When executed in Non-secure state, the Effective value of {NSE, NS} is {0, 1}.

• When executed in Realm state, the Effective value of {NSE, NS} is {1, 1}.

This instruction is treated as a NOP when executed at EL3 and either:

• DVP_RCTX.{NSE, NS} selects a reserved value.

• DVP_RCTX.{NSE, NS} == {1, 0} and DVP_RCTX.EL has a value other than 0b11.

Otherwise:

Security State. Defined values are:

0b0 Secure state.

0b1 Non-secure state.

When executed in Non-secure state, the Effective value of NS is 1.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1618
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.

Otherwise this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written
to 0 by software when the context being affected only uses 8 bits.

Executing DVP RCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

DVP RCTX, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DVPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_DataValue);
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.DVPRCTX == '1' then

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1619
ID032224 Non-Confidential

The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.RestrictPrediction(X[t, 64], RestrictType_DataValue);
elsif PSTATE.EL == EL2 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_DataValue);
elsif PSTATE.EL == EL3 then
 AArch64.RestrictPrediction(X[t, 64], RestrictType_DataValue);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1620
ID032224 Non-Confidential

The A64 System Instruction Class
C5.7 A64 System instructions for the Branch Record Buffer Extension
C5.7 A64 System instructions for the Branch Record Buffer Extension

This section lists the A64 System instructions for the Branch Record Buffer Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1621
ID032224 Non-Confidential

The A64 System Instruction Class
C5.7 A64 System instructions for the Branch Record Buffer Extension
C5.7.1 BRB IALL, Invalidate the Branch Record Buffer

The BRB IALL characteristics are:

Purpose

Invalidates all Branch records in the Branch Record Buffer.

Configurations

This instruction is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRB IALL are UNDEFINED.

Attributes

BRB IALL is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing BRB IALL

Rt should be encoded as 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

BRB IALL

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.nBRBIALL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRB_IALL();
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'

op0 op1 CRn CRm op2

0b01 0b001 0b0111 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1622
ID032224 Non-Confidential

The A64 System Instruction Class
C5.7 A64 System instructions for the Branch Record Buffer Extension
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRB_IALL();
elsif PSTATE.EL == EL3 then
 BRB_IALL();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1623
ID032224 Non-Confidential

The A64 System Instruction Class
C5.7 A64 System instructions for the Branch Record Buffer Extension
C5.7.2 BRB INJ, Branch Record Injection into the Branch Record Buffer

The BRB INJ characteristics are:

Purpose

Injects the Branch Record held in BRBINFINJ_EL1, BRBSRCINJ_EL1, and BRBTGTINJ_EL1
into the Branch Record Buffer.

Configurations

This instruction is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRB INJ are UNDEFINED.

Attributes

BRB INJ is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing BRB INJ

Rt should be encoded as 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

BRB INJ

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.nBRBINJ == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRB_INJ();
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b01 0b001 0b0111 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1624
ID032224 Non-Confidential

The A64 System Instruction Class
C5.7 A64 System instructions for the Branch Record Buffer Extension
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRB_INJ();
elsif PSTATE.EL == EL3 then
 BRB_INJ();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1625
ID032224 Non-Confidential

The A64 System Instruction Class
C5.8 A64 System instructions for the Trace Extension
C5.8 A64 System instructions for the Trace Extension

This section lists the A64 System instructions for the Trace Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1626
ID032224 Non-Confidential

The A64 System Instruction Class
C5.8 A64 System instructions for the Trace Extension
C5.8.1 TRCIT, Trace Instrumentation

The TRCIT characteristics are:

Purpose

Generates an instrumentation packet in the trace.

Configurations

This instruction is present only when FEAT_ITE is implemented. Otherwise, direct accesses to
TRCIT are UNDEFINED.

Attributes

TRCIT is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Value to be included in the Instrumentation packet.

Executing TRCIT

Accesses to this instruction use the following encodings in the System instruction encoding space:

TRCIT <Xt>

if PSTATE.EL == EL0 then
 AArch64.TRCIT(X[t, 64]);
elsif PSTATE.EL == EL1 then
 AArch64.TRCIT(X[t, 64]);
elsif PSTATE.EL == EL2 then
 AArch64.TRCIT(X[t, 64]);
elsif PSTATE.EL == EL3 then
 AArch64.TRCIT(X[t, 64]);

VALUE

63 32

VALUE

31 0

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1627
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9 A64 System instructions for the Guarded Control Stack

This section lists the A64 System instructions for the Guarded Control Stack.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1628
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.1 GCSPOPCX, Guarded Control Stack Pop and Compare exception return record

The GCSPOPCX characteristics are:

Purpose

Loads an exception return record from the location indicated by the current Guarded Control Stack
Pointer register, compares the values loaded with the current ELR_ELx, SPSR_ELx, and LR, and
increments the current Guarded Control Stack Pointer register by the size of a Guarded Control
Stack exception return record.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPOPCX are UNDEFINED.

Attributes

GCSPOPCX is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing GCSPOPCX

Rt should be encoded as 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSPOPCX

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.nGCSEPP == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 GCSPOPCX();
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();
 else
 GCSPOPCX();
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '1' then
 EXLOCKException();

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1629
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
 else
 GCSPOPCX();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1630
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.2 GCSPOPM, Guarded Control Stack Pop

The GCSPOPM characteristics are:

Purpose

Loads the 64-bit doubleword that is pointed to by the current Guarded Control Stack Pointer, writes
it to the destination register, and increments the current Guarded Control Stack Pointer register by
the size of a Guarded Control Stack procedure return record.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPOPM are UNDEFINED.

Attributes

GCSPOPM is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Output value for Guarded Control Stack procedure return record.

Executing GCSPOPM

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSPOPM <Xt>

if PSTATE.EL == EL0 then
 X[t, 64] = GCSPOPM();
elsif PSTATE.EL == EL1 then
 X[t, 64] = GCSPOPM();
elsif PSTATE.EL == EL2 then
 X[t, 64] = GCSPOPM();
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSPOPM();

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0111 0b001

output for Guarded Control Stack procedure return record

63 32

output for Guarded Control Stack procedure return record

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1631
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.3 GCSPOPX, Guarded Control Stack Pop exception return record

The GCSPOPX characteristics are:

Purpose

Loads an exception return record from the location indicated by the current Guarded Control Stack
Pointer register, checks that the record is a Guarded Control Stack exception return record, and
increments the current Guarded Control Stack Pointer register by the size of a Guarded Control
Stack exception return record.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPOPX are UNDEFINED.

Attributes

GCSPOPX is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing GCSPOPX

Rt should be encoded as 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSPOPX

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 GCSPOPX();
elsif PSTATE.EL == EL2 then
 GCSPOPX();
elsif PSTATE.EL == EL3 then
 GCSPOPX();

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0111 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1632
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.4 GCSPUSHM, Guarded Control Stack Push

The GCSPUSHM characteristics are:

Purpose

Decrements the current Guarded Control Stack Pointer register by the size of a Guarded Control
Stack procedure return record and stores an entry to the Guarded Control Stack.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPUSHM are UNDEFINED.

Attributes

GCSPUSHM is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input value for Guarded Control Stack procedure return record.

Executing GCSPUSHM

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSPUSHM <Xt>

if PSTATE.EL == EL0 then
 if (!EL2Enabled() || HCR_EL2.TGE != '1') && GCSCRE0_EL1.PUSHMEn == '0' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.TGE == '1' && GCSCRE0_EL1.PUSHMEn == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 GCSPUSHM(X[t, 64]);
elsif PSTATE.EL == EL1 then
 if GCSCR_EL1.PUSHMEn == '0' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.nGCSPUSHM_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 GCSPUSHM(X[t, 64]);
elsif PSTATE.EL == EL2 then
 if GCSCR_EL2.PUSHMEn == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 GCSPUSHM(X[t, 64]);
elsif PSTATE.EL == EL3 then
 if GCSCR_EL3.PUSHMEn == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0111 0b000

input for Guarded Control Stack procedure return record

63 32

input for Guarded Control Stack procedure return record

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1633
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
 else
 GCSPUSHM(X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1634
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.5 GCSPUSHX, Guarded Control Stack Push exception return record

The GCSPUSHX characteristics are:

Purpose

Decrements the current Guarded Control Stack Pointer register by the size of a Guarded Control
Stack exception return record and stores a Guarded Control Stack exception return record to the
Guarded Control Stack.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPUSHX are UNDEFINED.

Attributes

GCSPUSHX is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing GCSPUSHX

Rt should be encoded as 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSPUSHX

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '0' then
 EXLOCKException();
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGITR_EL2.nGCSEPP == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 GCSPUSHX();
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '0' then
 EXLOCKException();
 else
 GCSPUSHX();
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_GCS) && GetCurrentEXLOCKEN() && !Halted() && PSTATE.EXLOCK
== '0' then
 EXLOCKException();
 else
 GCSPUSHX();

op0 op1 CRn CRm op2

0b01 0b000 0b0111 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1635
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.6 GCSSS1, Guarded Control Stack Switch Stack 1

The GCSSS1 characteristics are:

Purpose

Validates that the stack being switched to contains a Valid cap entry, stores an In-progress cap entry
on to the stack that is getting switched to and sets the current Guarded Control Stack Pointer to the
stack that is getting switched to.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSSS1 are UNDEFINED.

Attributes

GCSSS1 is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Input address, for the incoming Guarded Control Stack.

Executing GCSSS1

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSSS1 <Xt>

if PSTATE.EL == EL0 then
 GCSSS1(X[t, 64]);
elsif PSTATE.EL == EL1 then
 GCSSS1(X[t, 64]);
elsif PSTATE.EL == EL2 then
 GCSSS1(X[t, 64]);
elsif PSTATE.EL == EL3 then
 GCSSS1(X[t, 64]);

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0111 0b010

Input address, for the incoming Guarded Control Stack

63 32

Input address, for the incoming Guarded Control Stack

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1636
ID032224 Non-Confidential

The A64 System Instruction Class
C5.9 A64 System instructions for the Guarded Control Stack
C5.9.7 GCSSS2, Guarded Control Stack Switch Stack 2

The GCSSS2 characteristics are:

Purpose

Validates that the most recent entry of the Guarded Control Stack that is getting switched to contains
an In-progress cap entry, stores a Valid cap entry to the Guarded Control Stack that is getting
switched from, and sets Xt to the address of that Valid cap entry.

Configurations

This instruction is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSSS2 are UNDEFINED.

Attributes

GCSSS2 is a 64-bit System instruction.

Field descriptions

Bits [63:0]

Output address, for the outgoing Guarded Control Stack.

Executing GCSSS2

Accesses to this instruction use the following encodings in the System instruction encoding space:

GCSSS2 <Xt>

if PSTATE.EL == EL0 then
 X[t, 64] = GCSSS2();
elsif PSTATE.EL == EL1 then
 X[t, 64] = GCSSS2();
elsif PSTATE.EL == EL2 then
 X[t, 64] = GCSSS2();
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSSS2();

op0 op1 CRn CRm op2

0b01 0b011 0b0111 0b0111 0b011

Output address, for the outgoing Guarded Control Stack

63 32

Output address, for the outgoing Guarded Control Stack

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C5-1637
ID032224 Non-Confidential

Chapter C6
A64 Base Instruction Descriptions

This chapter describes the A64 base instructions.

It contains the following sections:

• About the A64 base instructions.

• Alphabetical list of A64 base instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1638
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions
C6.1 About the A64 base instructions

Alphabetical list of A64 base instructions gives full descriptions of the A64 instructions that are in the following
instruction groups:

• Branch, Exception generation, and System instructions.

• Loads and stores associated with the general-purpose registers.

• Data processing (immediate).

• Data processing (register).

A64 instruction set encoding provides an overview of the instruction encodings as well as of the instruction classes
within their functional groups.

The rest of this section is general description of the base instructions. It contains the following subsections:

• Register size.

• Use of the PC.

• Use of the stack pointer.

• Condition flags and related instructions.

C6.1.1 Register size

Most data processing, comparison, and conversion instructions that use the general-purpose registers as the source
or destination operand have two instruction variants that operate on either a 32-bit or a 64-bit value.

Where a 32-bit instruction form is selected, the following holds:

• The upper 32 bits of the source registers are ignored.

• The upper 32 bits of the destination register are set to zero.

• Right shifts and right rotates inject at bit[31], not at bit[63].

• The Condition flags, where set by the instruction, are computed from the lower 32 bits.

This distinction applies even when the results of a 32-bit instruction form are indistinguishable from the lower 32
bits computed by the equivalent 64-bit instruction form. For example, a 32-bit bitwise ORR could be performed using
a 64-bit ORR and simply ignoring the top 32 bits of the result. However, the A64 instruction set includes separate
32-bit and 64-bit forms of the ORR instruction.

As well as distinct sign-extend or zero-extend instructions, the A64 instruction set also provides the ability to extend
and shift the final source register of an ADD, SUB, ADDS, or SUBS instruction and the index register of a load/store
instruction. This enables array index calculations involving a 64-bit array pointer and a 32-bit array index to be
implemented efficiently.

The assembly language notation enables the distinct identification of registers holding 32-bit values and registers
holding 64-bit values. See Register names and Register indexed addressing.

C6.1.2 Use of the PC

A64 instructions have limited access to the PC. The only instructions that can read the PC are those that generate a
PC relative address:

• ADR and ADRP.

• The Load register (literal) instruction class.

• Direct branches that use an immediate offset.

• The unconditional branch with link instructions, BL and BLR, that use the PC to create the return link
address.

Only explicit control flow instructions can modify the PC:

• Conditional and unconditional branch and return instructions.

• Exception generation and exception return instructions.

For more details of instructions that can modify the PC, see Branches, Exception generating, and System
instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1639
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions
C6.1.3 Use of the stack pointer

A64 instructions can use the stack pointer only in a limited number of cases:

• Load/store instructions use the current stack pointer as the base address:

— When stack alignment checking is enabled by system software and the base register is SP, the current
stack pointer must be initially quadword aligned, That is, it must be aligned to 16 bytes. Misalignment
generates an SP alignment fault. See SP alignment checking for more information.

• Add and subtract data processing instructions in their immediate and extended register forms, use the current
stack pointer as a source register or the destination register or both.

• Logical data processing instructions in their immediate form use the current stack pointer as the destination
register.

C6.1.4 Condition flags and related instructions

The A64 base instructions that use the Condition flags as an input are:

• Conditional branch. The conditional branch instruction is B.cond.

• Add or subtract with carry. These instruction types include instructions to perform multi-precision arithmetic
and calculate checksums. The add or subtract with carry instructions are ADC, ADCS, SBC, and SBCS, or an
architectural alias for these instructions.

• Conditional select with increment, negate, or invert. This instruction type conditionally selects between one
source register and a second, incremented, negated, inverted, or unmodified source register. The conditional
select with increment, negate, or invert instructions are CSINC, CSINV, and CSNEG.

These instructions also implement:

— Conditional select or move. The Condition flags select one of two source registers as the destination
register. Short conditional sequences can be replaced by unconditional instructions followed by a
conditional select, CSEL.

— Conditional set. Conditionally selects between 0 and 1, or 0 and -1. This can be used to convert the
Condition flags to a Boolean value or mask in a general-purpose register, for example. These
instructions include CSET and CSETM.

• Conditional compare. This instruction type sets the Condition flags to the result of a comparison if the
original condition is true, otherwise it sets the Condition flags to an immediate value. It permits the flattening
of nested conditional expressions without using conditional branches or performing Boolean arithmetic
within the general-purpose registers. The conditional compare instructions are CCMP and CCMN.

The A64 base instructions that update the Condition flags as an output are:

• Flag-setting data processing instructions, such as ADCS, ADDS, ANDS, BICS, RMIF, SBCS, SETF8, SETF16, and SUBS,
and the aliases CMN, CMP, and TST.

• Conditional compare instructions such as CCMN, CCMP.

• The random number generation instructions MRS RNDR and MRS RNDRRS, see Effect of random number generation
instructions on Condition flags.

The A64 base instructions that manipulate the Condition flags are:

• The flag manipulation instruction CFINV, which inverts the value of the Carry flag.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1640
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.1 About the A64 base instructions
• If FEAT_FlagM2 is implemented, the base instructions AXFLAG and XAFLAG. These instructions convert
between the Arm floating point comparison PSTATE condition flag format and an alternative format shown
in Table C6-1.

The flags can be directly accessed for a read/write using the NZCV, Condition Flags.

The A64 base instructions also include conditional branch instructions that do not use the Condition flags as an
input:

• Compare and branch if a register is zero or nonzero, CBZ and CBNZ.

• Test a single bit in a register and branch if the bit is zero or nonzero, TBZ and TBNZ.

Effect of random number generation instructions on Condition flags

If FEAT_RNG is implemented, then:

• When a valid random number is returned, the PSTATE.NZCV flags are set to 0b0000.

• If the random number hardware is not capable of returning a random number in a reasonable period of time,
the PSTATE.NZCV flags are set to 0b0100, and the random number generation instructions return the value 0.

Note

The definition of “reasonable period of time” is IMPLEMENTATION DEFINED. The expectation is that software might
use this as an opportunity to reschedule or run a different routine, perhaps after a small number of retries have failed
to return a valid value.

Table C6-1 Relationship between ARM format and alternative format PSTATE condition flags

ARM format Alternative format

Result N Z C V N Z C V

Greater than 0 0 1 0 0 0 1 0

Less than 1 0 0 0 0 0 0 0

Equal 0 1 1 0 0 1 1 0

Unordered 0 0 1 1 0 1 0 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1641
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2 Alphabetical list of A64 base instructions

This section lists every instruction in the base category of the A64 instruction set. For details of the format used, see
Understanding the A64 instruction descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1642
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.1 ABS

Absolute value computes the absolute value of the signed integer value in the source register, and writes the result
to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

ABS <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

ABS <Xd>, <Xn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Abs(SInt(operand1));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1643
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1644
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.2 ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

ADC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];

 (result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1645
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1646
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.3 ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the
destination register. It updates the condition flags based on the result.

32-bit variant

Applies when sf == 0.

ADCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

sf 0 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1647
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1648
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.4 ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left
shift amount, and writes the result to the destination register. The argument that is extended from the <Rm> register
can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when sf == 0.

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 0 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1649
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1650
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1651
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.5 ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the
destination register.

This instruction is used by the alias MOV (to/from SP). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

Alias is preferred when

MOV (to/from SP) sh == '0' && imm12 == '000000000000' && (Rd == '11111' || Rn == '11111')

sf 0 0 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1652
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];

 (result, -) = AddWithCarry(operand1, imm, '0');

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1653
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.6 ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

32-bit variant

Applies when sf == 0.

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 0 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1654
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1655
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.7 ADDG

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register, modifies the
Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags
specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

Integer

(FEAT_MTE)

Encoding

ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
 bits(16) exclude = GCR_EL1.Exclude;
 bits(64) result;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
 else
 rtag = '0000';

 (result, -) = AddWithCarry(operand1, offset, '0');
 result = AArch64.AddressWithAllocationTag(result, rtag);

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

1 0 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0

op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1656
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.8 ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

Alias is preferred when

CMN (extended register) Rd == '11111'

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1657
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1658
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1659
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.9 ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Alias is preferred when

CMN (immediate) Rd == '11111'

sf 0 1 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1660
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, imm, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1661
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.10 ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the
result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

CMN (shifted register) Rd == '11111'

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1662
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(4) nzcv;

 (result, nzcv) = AddWithCarry(operand1, operand2, '0');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1663
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.11 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

Encoding

ADR <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo, 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction,
in the range +/-1MB, is encoded in "immhi:immlo".

Operation

 X[d, 64] = PC64 + imm;

0 immlo 1 0 0 0 0 immhi Rd

31 30 29 28 27 26 25 24 23 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1664
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.12 ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to
form a PC-relative address, with the bottom 12 bits masked out, and writes the result to the destination register.

Encoding

ADRP <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo:Zeros(12), 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of
this instruction, in the range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

 bits(64) base = PC64<63:12>:Zeros(12);
 X[d, 64] = base + imm;

1 immlo 1 0 0 0 0 immhi Rd

31 30 29 28 27 26 25 24 23 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1665
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.13 AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

32-bit variant

Applies when sf == 0 && N == 0.

AND <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

AND <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 AND imm;
 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

sf 0 0 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1666
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1667
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.14 AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value,
and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1668
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 AND operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1669
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.15 ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and
writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && N == 0.

ANDS <Wd>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

ANDS <Xd>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias is preferred when

TST (immediate) Rd == '11111'

sf 1 1 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1670
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 AND imm;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1671
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.16 ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

TST (shifted register) Rd == '11111'

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1672
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 AND operand2;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1673
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.17 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The remainder obtained by dividing the second source
register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the ASRV instruction. This means that:

• The encodings in this description are named to match the encodings of ASRV.

• The description of ASRV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

ASR <Wd>, <Wn>, <Wm>

 is equivalent to

ASRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

ASR <Xd>, <Xn>, <Xm>

 is equivalent to

ASRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1674
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1675
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.18 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of the sign bit in the upper bits and zeros in the lower bits, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 011111.

ASR <Wd>, <Wn>, #<shift>

 is equivalent to

SBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1 && imms == 111111.

ASR <Xd>, <Xn>, #<shift>

 is equivalent to

SBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1676
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1677
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.19 ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register
by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ASR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

ASRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ASRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1678
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1679
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.20 AT

Address Translate. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

AT <at_op>, <Xt>

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_AT.

Assembler symbols

<at_op> Is an AT instruction name, as listed for the AT system instruction group, encoded in the
"op1:CRm<0>:op2" field. It can have the following values:

S1E1R when op1 = 000, CRm<0> = 0, op2 = 000

S1E1W when op1 = 000, CRm<0> = 0, op2 = 001

S1E0R when op1 = 000, CRm<0> = 0, op2 = 010

S1E0W when op1 = 000, CRm<0> = 0, op2 = 011

S1E2R when op1 = 100, CRm<0> = 0, op2 = 000

S1E2W when op1 = 100, CRm<0> = 0, op2 = 001

S12E1R when op1 = 100, CRm<0> = 0, op2 = 100

S12E1W when op1 = 100, CRm<0> = 0, op2 = 101

S12E0R when op1 = 100, CRm<0> = 0, op2 = 110

S12E0W when op1 = 100, CRm<0> = 0, op2 = 111

S1E3R when op1 = 110, CRm<0> = 0, op2 = 000

S1E3W when op1 = 110, CRm<0> = 0, op2 = 001

When FEAT_PAN2 is implemented, the following values are also valid:

S1E1RP when op1 = 000, CRm<0> = 1, op2 = 000

S1E1WP when op1 = 000, CRm<0> = 1, op2 = 001

When FEAT_ATS1A is implemented, the following values are also valid:

S1E1A when op1 = 000, CRm<0> = 1, op2 = 010

S1E2A when op1 = 100, CRm<0> = 1, op2 = 010

S1E3A when op1 = 110, CRm<0> = 1, op2 = 010

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 1 0 0 x op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn CRm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1680
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1681
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.21 AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP>, for AUTDA.

• The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

Integer

(FEAT_PAuth)

AUTDA variant

Applies when Z == 0.

AUTDA <Xd>, <Xn|SP>

AUTDZA variant

Applies when Z == 1 && Rn == 11111.

AUTDZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTDA
 if n == 31 then source_is_sp = TRUE;
 else // AUTDZA
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthDA(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthDA(X[d, 64], X[n, 64], FALSE);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1682
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.22 AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.

• The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

Integer

(FEAT_PAuth)

AUTDB variant

Applies when Z == 0.

AUTDB <Xd>, <Xn|SP>

AUTDZB variant

Applies when Z == 1 && Rn == 11111.

AUTDZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTDB
 if n == 31 then source_is_sp = TRUE;
 else // AUTDZB
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthDB(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthDB(X[d, 64], X[n, 64], FALSE);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1683
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.23 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier
and key A.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.

• In X17, for AUTIA1716.

• In X30, for AUTIASP and AUTIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.

• The value zero, for AUTIZA and AUTIAZ.

• In X16, for AUTIA1716.

• In SP, for AUTIASP.

Integer

(FEAT_PAuth)

AUTIA variant

Applies when Z == 0.

AUTIA <Xd>, <Xn|SP>

AUTIZA variant

Applies when Z == 1 && Rn == 11111.

AUTIZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTIA
 if n == 31 then source_is_sp = TRUE;
 else // AUTIZA
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1684
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
AUTIA1716 variant

Applies when CRm == 0001 && op2 == 100.

AUTIA1716

AUTIASP variant

Applies when CRm == 0011 && op2 == 101.

AUTIASP

AUTIAZ variant

Applies when CRm == 0011 && op2 == 100.

AUTIAZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 100' // AUTIAZ
 d = 30;
 n = 31;
 when '0011 101' // AUTIASP
 d = 30;
 source_is_sp = TRUE;
 when '0001 100' // AUTIA1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthIA(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthIA(X[d, 64], X[n, 64], FALSE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 0 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1685
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.24 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier
and key B.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. For
information on behavior if the authentication fails, see Faulting on pointer authentication.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.

• In X17, for AUTIB1716.

• In X30, for AUTIBSP and AUTIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.

• The value zero, for AUTIZB and AUTIBZ.

• In X16, for AUTIB1716.

• In SP, for AUTIBSP.

Integer

(FEAT_PAuth)

AUTIB variant

Applies when Z == 0.

AUTIB <Xd>, <Xn|SP>

AUTIZB variant

Applies when Z == 1 && Rn == 11111.

AUTIZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // AUTIB
 if n == 31 then source_is_sp = TRUE;
 else // AUTIZB
 if n != 31 then UNDEFINED;

System

(FEAT_PAuth)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1686
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
AUTIB1716 variant

Applies when CRm == 0001 && op2 == 110.

AUTIB1716

AUTIBSP variant

Applies when CRm == 0011 && op2 == 111.

AUTIBSP

AUTIBZ variant

Applies when CRm == 0011 && op2 == 110.

AUTIBZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 110' // AUTIBZ
 d = 30;
 n = 31;
 when '0011 111' // AUTIBSP
 d = 30;
 source_is_sp = TRUE;
 when '0001 110' // AUTIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AuthIB(X[d, 64], SP[], FALSE);
 else
 X[d, 64] = AuthIB(X[d, 64], X[n, 64], FALSE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 1 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1687
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.25 AXFLAG

Convert floating-point condition flags from Arm to external format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar compare instruction
to an alternative representation required by some software.

System

(FEAT_FlagM2)

Encoding

AXFLAG

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM2) then UNDEFINED;

Operation

 bit z = PSTATE.Z OR PSTATE.V;
 bit c = PSTATE.C AND NOT(PSTATE.V);

 PSTATE.N = '0';
 PSTATE.Z = z;
 PSTATE.C = c;
 PSTATE.V = '0';

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1688
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.26 B

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call
or return.

Encoding

B <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 BranchTo(PC64 + offset, BranchType_DIR, FALSE);

0 0 0 1 0 1 imm26

31 30 29 28 27 26 25 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1689
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.27 B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

Encoding

B.<cond> <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 if ConditionHolds(cond) then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

0 1 0 1 0 1 0 0 imm19 0 cond

31 30 29 28 27 26 25 24 23 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1690
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.28 BC.cond

Branch Consistent conditionally to a label at a PC-relative offset, with a hint that this branch will behave very
consistently and is very unlikely to change direction.

19-bit signed PC-relative branch offset

(FEAT_HBC)

Encoding

BC.<cond> <label>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_HBC) then UNDEFINED;
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 if ConditionHolds(cond) then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

0 1 0 1 0 1 0 0 imm19 1 cond

31 30 29 28 27 26 25 24 23 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1691
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.29 BFC

Bitfield Clear sets a bitfield of <width> bits at bit position <lsb> of the destination register to zero, leaving the other
destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Leaving other bits unchanged

(FEAT_ASMv8p2)

32-bit variant

Applies when sf == 0 && N == 0.

BFC <Wd>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFC <Xd>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1692
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1693
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.30 BFI

Bitfield Insert copies a bitfield of <width> bits from the least significant bits of the source register to bit position
<lsb> of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFI <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFI <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms !=11111 Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1694
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1695
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.31 BFM

Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the other bits of the destination register remain unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL. See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && N == 0.

BFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

BFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 integer r;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 r = UInt(immr);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE, datasize);

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1696
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) dst = X[d, datasize];
 bits(datasize) src = X[n, datasize];

 // perform bitfield move on low bits
 bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, r) AND wmask);

 // combine extension bits and result bits
 X[d, datasize] = (dst AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias is preferred when

BFC Rn == '11111' && UInt(imms) < UInt(immr)

BFI Rn != '11111' && UInt(imms) < UInt(immr)

BFXIL
UInt(imms) >= UInt(immr)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1697
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.32 BFXIL

Bitfield Extract and Insert Low copies a bitfield of <width> bits starting from bit position <lsb> in the source register
to the least significant bits of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

• The encodings in this description are named to match the encodings of BFM.

• The description of BFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFXIL <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

BFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFXIL <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

BFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1698
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1699
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.33 BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1700
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1701
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.34 BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement
of an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags
based on the result.

32-bit variant

Applies when sf == 0.

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1702
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1703
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.35 BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a
subroutine call.

Encoding

BL <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 if IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL) then
 AddGCSRecord(PC64 + 4);
 X[30, 64] = PC64 + 4;

 BranchTo(PC64 + offset, BranchType_DIRCALL, FALSE);

1 0 0 1 0 1 imm26

31 30 29 28 27 26 25 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1704
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.36 BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

Encoding

BLR <Xn>

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

 bits(64) target = X[n, 64];

 if IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL) then
 AddGCSRecord(PC64 + 4);
 X[30, 64] = PC64 + 4;

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '10';
 BranchTo(target, BranchType_INDCALL, FALSE);

1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1705
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the
general-purpose register that is specified by <Xn>, using a modifier and the specified key, and calls a subroutine at
the authenticated address, setting register X30 to PC+4.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP>, for BLRAA and BLRAB.

• The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ. Key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to the general-purpose register.

Integer

(FEAT_PAuth)

Key A, zero modifier variant

Applies when Z == 0 && M == 0 && Rm == 11111.

BLRAAZ <Xn>

Key A, register modifier variant

Applies when Z == 1 && M == 0.

BLRAA <Xn>, <Xm|SP>

Key B, zero modifier variant

Applies when Z == 0 && M == 1 && Rm == 11111.

BLRABZ <Xn>

Key B, register modifier variant

Applies when Z == 1 && M == 1.

BLRAB <Xn>, <Xm|SP>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean use_key_a = (M == '0');
 boolean source_is_sp = ((Z == '1') && (m == 31));

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' && m != 31 then
 UNDEFINED;

1 1 0 1 0 1 1 Z 0 0 1 1 1 1 1 1 0 0 0 0 1 M Rn Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op A
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1706
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier,
encoded in the "Rm" field.

Operation

 bits(64) target = X[n, 64];

 bits(64) modifier = if source_is_sp then SP[] else X[m, 64];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 if IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL) then
 AddGCSRecord(PC64 + 4);
 X[30, 64] = PC64 + 4;

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '10';
 BranchTo(target, BranchType_INDCALL, FALSE);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1707
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.38 BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

Encoding

BR <Xn>

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

Operation

 bits(64) target = X[n, 64];

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 if InGuardedPage then
 if n == 16 || n == 17 then
 BTypeNext = '01';
 else
 BTypeNext = '11';
 else
 BTypeNext = '01';
 BranchTo(target, BranchType_INDIR, FALSE);

1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1708
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.39 BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose
register that is specified by <Xn>, using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP>, for BRAA and BRAB.

• The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ. Key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to the general-purpose register.

Integer

(FEAT_PAuth)

Key A, zero modifier variant

Applies when Z == 0 && M == 0 && Rm == 11111.

BRAAZ <Xn>

Key A, register modifier variant

Applies when Z == 1 && M == 0.

BRAA <Xn>, <Xm|SP>

Key B, zero modifier variant

Applies when Z == 0 && M == 1 && Rm == 11111.

BRABZ <Xn>

Key B, register modifier variant

Applies when Z == 1 && M == 1.

BRAB <Xn>, <Xm|SP>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean use_key_a = (M == '0');
 boolean source_is_sp = ((Z == '1') && (m == 31));

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' && m != 31 then
 UNDEFINED;

1 1 0 1 0 1 1 Z 0 0 0 1 1 1 1 1 0 0 0 0 1 M Rn Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op A
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1709
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier,
encoded in the "Rm" field.

Operation

 bits(64) target = X[n, 64];

 bits(64) modifier = if source_is_sp then SP[] else X[m, 64];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 if InGuardedPage then
 if n == 16 || n == 17 then
 BTypeNext = '01';
 else
 BTypeNext = '11';
 else
 BTypeNext = '01';
 BranchTo(target, BranchType_INDIR, FALSE);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1710
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.40 BRB

Branch Record Buffer. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_BRBE)

Encoding

BRB <brb_op>{, <Xt>}

 is equivalent to

SYS #1, C7, C2, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp('001','0111','0010',op2) == Sys_BRB.

Assembler symbols

<brb_op> Is a BRB instruction name, as listed for the BRB system instruction group, encoded in the "op2"
field. It can have the following values:

IALL when op2 = 100

INJ when op2 = 101

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1711
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.41 BRK

Breakpoint instruction. A BRK instruction generates a Breakpoint Instruction exception. The PE records the
exception in ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in
ESR_ELx.ISS.

Within a guarded memory region, while PSTATE.BTYPE != 0b00, a BRK instruction will not generate a Branch
Target Exception and will generate a Breakpoint Instruction exception as normal. For more information, see
PSTATE.BTYPE.

Encoding

BRK #<imm>

Decode for this encoding

 if IsFeatureImplemented(FEAT_BTI) then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.SoftwareBreakpoint(imm16);

1 1 0 1 0 1 0 0 0 0 1 imm16 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1712
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.42 BTI

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions that are not the
intended target of a branch.

Outside of a guarded memory region, a BTI instruction executes as a NOP. Within a guarded memory region, while
PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE will not generate
a Branch Target Exception and will allow execution of subsequent instructions within the memory region. For more
information, see PSTATE.BTYPE.

The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE that the BTI instruction
is compatible with.

System

(FEAT_BTI)

Encoding

BTI {<targets>}

Decode for this encoding

 SystemHintOp op;

 if CRm:op2 == '0100 xx0' then
 op = SystemHintOp_BTI;
 // Check branch target compatibility between BTI instruction and PSTATE.BTYPE
 SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
 else
 EndOfInstruction();

Assembler symbols

<targets> Is the type of indirection, encoded in the "op2<2:1>" field. It can have the following values:

(omitted) when op2<2:1> = 00

c when op2<2:1> = 01

j when op2<2:1> = 10

jc when op2<2:1> = 11

Operation

 case op of
 when SystemHintOp_YIELD
 Hint_Yield();

 when SystemHintOp_DGH
 Hint_DGH();

 when SystemHintOp_WFE
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFE(localtimeout, WFxType_WFE);

 when SystemHintOp_WFI
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFI(localtimeout, WFxType_WFI);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 x x 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1713
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 when SystemHintOp_SEV
 SendEvent();

 when SystemHintOp_SEVL
 SendEventLocal();

 when SystemHintOp_ESB
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

 when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();

 when SystemHintOp_TSB
 TraceSynchronizationBarrier();

 when SystemHintOp_GCSB
 GCSSynchronizationBarrier();

 when SystemHintOp_CHKFEAT
 X[16, 64] = AArch64.ChkFeat(X[16, 64]);

 when SystemHintOp_CSDB
 ConsumptionOfSpeculativeDataBarrier();

 when SystemHintOp_CLRBHB
 Hint_CLRBHB();

 when SystemHintOp_BTI
 SetBTypeNext('00');

 when SystemHintOp_NOP
 return; // do nothing

 otherwise
 Unreachable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1714
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.43 CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is
written to memory. If the write is performed, the read and write occur atomically such that no other modification of
the memory location can take place between the read and write.

• CASA and CASAL load from memory with acquire semantics.

• CASL and CASAL store to memory with release semantics.

• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or
<Xs>, is restored to the value held in the register before the instruction was executed.

No offset

(FEAT_LSE)

32-bit CAS variant

Applies when size == 10 && L == 0 && o0 == 0.

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASA variant

Applies when size == 10 && L == 1 && o0 == 0.

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASAL variant

Applies when size == 10 && L == 1 && o0 == 1.

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASL variant

Applies when size == 10 && L == 0 && o0 == 1.

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit CAS variant

Applies when size == 11 && L == 0 && o0 == 0.

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASA variant

Applies when size == 11 && L == 1 && o0 == 0.

1 x 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1715
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASAL variant

Applies when size == 11 && L == 1 && o0 == 1.

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASL variant

Applies when size == 11 && L == 0 && o0 == 1.

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = L == '1';
 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) comparevalue;
 bits(datasize) newvalue;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = X[s, datasize];
 newvalue = X[t, datasize];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1716
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 X[s, regsize] = ZeroExtend(data, regsize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1717
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.44 CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a
first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed,
the read and write occur atomically such that no other modification of the memory location can take place between
the read and write.

• CASAB and CASALB load from memory with acquire semantics.

• CASLB and CASALB store to memory with release semantics.

• CASB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset

(FEAT_LSE)

CASAB variant

Applies when L == 1 && o0 == 0.

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALB variant

Applies when L == 1 && o0 == 1.

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASB variant

Applies when L == 0 && o0 == 0.

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLB variant

Applies when L == 0 && o0 == 1.

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 boolean acquire = L == '1';

0 0 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1718
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) comparevalue;
 bits(8) newvalue;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = X[s, 8];
 newvalue = X[t, 8];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

 X[s, 32] = ZeroExtend(data, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1719
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.45 CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take
place between the read and write.

• CASAH and CASALH load from memory with acquire semantics.

• CASLH and CASALH store to memory with release semantics.

• CASH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset

(FEAT_LSE)

CASAH variant

Applies when L == 1 && o0 == 0.

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALH variant

Applies when L == 1 && o0 == 1.

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASH variant

Applies when L == 0 && o0 == 0.

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLH variant

Applies when L == 0 && o0 == 1.

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 boolean acquire = L == '1';

0 1 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1720
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) comparevalue;
 bits(16) newvalue;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = X[s, 16];
 newvalue = X[t, 16];

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

 X[s, 32] = ZeroExtend(data, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1721
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.46 CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords
from memory, and compares them against the values held in the first pair of registers. If the comparison is equal,
the values in the second pair of registers are written to memory. If the writes are performed, the reads and writes
occur atomically such that no other modification of the memory location can take place between the reads and
writes.

• CASPA and CASPAL load from memory with acquire semantics.

• CASPL and CASPAL store to memory with release semantics.

• CASP has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws> and
<W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction was executed.

No offset

(FEAT_LSE)

32-bit CASP variant

Applies when sz == 0 && L == 0 && o0 == 0.

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPA variant

Applies when sz == 0 && L == 1 && o0 == 0.

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPAL variant

Applies when sz == 0 && L == 1 && o0 == 1.

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPL variant

Applies when sz == 0 && L == 0 && o0 == 1.

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit CASP variant

Applies when sz == 1 && L == 0 && o0 == 0.

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPA variant

Applies when sz == 1 && L == 1 && o0 == 0.

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 1 1 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1722
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPAL variant

Applies when sz == 1 && L == 1 && o0 == 1.

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPL variant

Applies when sz == 1 && L == 0 && o0 == 1.

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs);

 constant integer datasize = 32 << UInt(sz);
 boolean acquire = L == '1';
 boolean release = o0 == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Ws> must be an even-numbered register.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Wt> must be an even-numbered register.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(2*datasize) comparevalue;
 bits(2*datasize) newvalue;
 bits(2*datasize) data;

 bits(datasize) s1 = X[s, datasize];
 bits(datasize) s2 = X[s+1, datasize];
 bits(datasize) t1 = X[t, datasize];
 bits(datasize) t2 = X[t+1, datasize];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1723
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_CAS, acquire, release, tagchecked);

 comparevalue = if BigEndian(accdesc.acctype) then s1:s2 else s2:s1;
 newvalue = if BigEndian(accdesc.acctype) then t1:t2 else t2:t1;
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemAtomic(address, comparevalue, newvalue, accdesc);

 if BigEndian(accdesc.acctype) then
 X[s, datasize] = data<2*datasize-1:datasize>;
 X[s+1, datasize] = data<datasize-1:0>;
 else
 X[s, datasize] = data<datasize-1:0>;
 X[s+1, datasize] = data<2*datasize-1:datasize>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1724
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.47 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label
at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return.
This instruction does not affect the condition flags.

32-bit variant

Applies when sf == 0.

CBNZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBNZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 constant integer datasize = 32 << UInt(sf);
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t, datasize];
 if IsZero(operand1) == FALSE then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

sf 0 1 1 0 1 0 1 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1725
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.48 CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

32-bit variant

Applies when sf == 0.

CBZ <Wt>, <label>

64-bit variant

Applies when sf == 1.

CBZ <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 constant integer datasize = 32 << UInt(sf);
 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(datasize) operand1 = X[t, datasize];
 if IsZero(operand1) == TRUE then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

sf 0 1 1 0 1 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1726
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.49 CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of
a register value and a negated immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMN <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;
 bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 (-, flags) = AddWithCarry(operand1, imm, '0');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1727
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1728
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.50 CCMN (register)

Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a
register value and the inverse of another register value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 (-, flags) = AddWithCarry(operand1, operand2, '0');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1729
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1730
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.51 CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register
value and an immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMP <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;
 bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2;
 operand2 = NOT(imm);
 (-, flags) = AddWithCarry(operand1, operand2, '1');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1731
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1732
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.52 CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers
if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when sf == 0.

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit variant

Applies when sf == 1.

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 bits(4) flags = nzcv;

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 if ConditionHolds(cond) then
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 operand2 = NOT(operand2);
 (-, flags) = AddWithCarry(operand1, operand2, '1');
 PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1733
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1734
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.53 CFINV

Invert Carry Flag. This instruction inverts the value of the PSTATE.C flag.

System

(FEAT_FlagM)

Encoding

CFINV

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM) then UNDEFINED;

Operation

 PSTATE.C = NOT(PSTATE.C);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1735
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.54 CFP

Control Flow Prediction Restriction by Context prevents control flow predictions that predict execution addresses
based on information gathered from earlier execution within a particular execution context. Control flow predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.

For more information, see CFP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES)

Encoding

CFP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #4, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1736
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.55 CHKFEAT

Check feature status. This instruction indicates the status of features.

If FEAT_CHK is not implemented, this instruction executes as a NOP.

System

(FEAT_CHK)

Encoding

CHKFEAT X16

Decode for this encoding

 if !IsFeatureImplemented(FEAT_CHK) then EndOfInstruction();

Operation

 X[16, 64] = AArch64.ChkFeat(X[16, 64]);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1737
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.56 CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the
condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINC instruction. This means that:

• The encodings in this description are named to match the encodings of CSINC.

• The description of CSINC gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CINC <Wd>, <Wn>, <cond>

 is equivalent to

CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CINC <Xd>, <Xn>, <cond>

 is equivalent to

CSINC <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 0 0 !=11111 !=111x 0 1 !=11111 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1738
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1739
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.57 CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the
condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.

• The description of CSINV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CINV <Wd>, <Wn>, <cond>

 is equivalent to

CSINV <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CINV <Xd>, <Xn>, <cond>

 is equivalent to

CSINV <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

sf 1 0 1 1 0 1 0 1 0 0 !=11111 !=111x 0 0 !=11111 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1740
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1741
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.58 CLRBHB

Clear Branch History clears the branch history for the current context to the extent that branch history information
created before the CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control
the execution of any indirect branches in code in the current context that appear in program order after the
instruction.

System

(FEAT_CLRBHB)

Encoding

CLRBHB

Decode for this encoding

 if !IsFeatureImplemented(FEAT_CLRBHB) then
 EndOfInstruction();

Operation

 Hint_CLRBHB();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1742
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.59 CLREX

Clear Exclusive clears the local monitor of the executing PE.

Encoding

CLREX {#<imm>}

Decode for this encoding

 // CRm field is ignored

Assembler symbols

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

 ClearExclusiveLocal(ProcessorID());

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1743
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.60 CLS

Count Leading Sign bits counts the number of leading bits of the source register that have the same value as the
most significant bit of the register, and writes the result to the destination register. This count does not include the
most significant bit of the source register.

32-bit variant

Applies when sf == 0.

CLS <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CLS <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 integer result;
 bits(datasize) operand1 = X[n, datasize];

 result = CountLeadingSignBits(operand1);

 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1744
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1745
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.61 CLZ

Count Leading Zeros counts the number of consecutive binary zero bits, starting from the most significant bit in the
source register, and places the count in the destination register.

32-bit variant

Applies when sf == 0.

CLZ <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CLZ <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 integer result;
 bits(datasize) operand1 = X[n, datasize];

 result = CountLeadingZeroBits(operand1);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1746
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.62 CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (extended register) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (extended register).

• The description of ADDS (extended register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

 is equivalent to

ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}

 is equivalent to

ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1747
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1748
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.63 CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (immediate).

• The description of ADDS (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn|WSP>, #<imm>{, <shift>}

 is equivalent to

ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn|SP>, #<imm>{, <shift>}

 is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1749
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1750
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.64 CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ADDS (shifted register).

• The description of ADDS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMN <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMN <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1751
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1752
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.65 CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (extended register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (extended register).

• The description of SUBS (extended register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

 is equivalent to

SUBS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}

 is equivalent to

SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1753
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1754
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.66 CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition
flags based on the result, and discards the result.

This instruction is an alias of the SUBS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (immediate).

• The description of SUBS (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn|WSP>, #<imm>{, <shift>}

 is equivalent to

SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn|SP>, #<imm>{, <shift>}

 is equivalent to

SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.

sf 1 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1755
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1756
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.67 CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (shifted register).

• The description of SUBS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CMP <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CMP <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1757
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1758
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.68 CMPP

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, updates the condition flags based on the result of the subtraction, and discards the result.

This instruction is an alias of the SUBPS instruction. This means that:

• The encodings in this description are named to match the encodings of SUBPS.

• The description of SUBPS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Integer

(FEAT_MTE)

Encoding

CMPP <Xn|SP>, <Xm|SP>

 is equivalent to

SUBPS XZR, <Xn|SP>, <Xm|SP>

and is always the preferred disassembly.

Assembler symbols

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

The description of SUBPS gives the operational pseudocode for this instruction.

1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

Xd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1759
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.69 CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSNEG instruction. This means that:

• The encodings in this description are named to match the encodings of CSNEG.

• The description of CSNEG gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CNEG <Wd>, <Wn>, <cond>

 is equivalent to

CSNEG <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1.

CNEG <Xd>, <Xn>, <cond>

 is equivalent to

CSNEG <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSNEG gives the operational pseudocode for this instruction.

sf 1 0 1 1 0 1 0 1 0 0 Rm !=111x 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op cond o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1760
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1761
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.70 CNT

Count bits counts the number of binary one bits in the value of the source register, and writes the result to the
destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

CNT <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CNT <Xd>, <Xn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = BitCount(operand1);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1762
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1763
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.71 COSP

Clear Other Speculative Prediction Restriction by Context prevents predictions, other than Cache prefetch, Control
flow, and Data Value predictions, that predict execution addresses based on information gathered from earlier
execution within a particular execution context. Predictions, other than Cache prefetch, Control flow, and Data
Value predictions, determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot exploitatively control any speculative access occurring after the
instruction is complete and synchronized.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES2)

Encoding

COSP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #6, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1764
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.72 CPP

Cache Prefetch Prediction Restriction by Context prevents cache allocation predictions that predict execution
addresses based on information gathered from earlier execution within a particular execution context. The actions
of code in the target execution context or contexts appearing in program order before the instruction cannot
exploitatively control cache prefetch predictions occurring after the instruction is complete and synchronized.

For more information, see CPP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES)

Encoding

CPP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #7, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1765
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.73 CPYFP, CPYFM, CPYFE

Memory Copy Forward-only. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYFP, then CPYFM, and
then CPYFE.

CPYFP performs some preconditioning of the arguments suitable for using the CPYFM instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory copy. CPYFM performs an IMPLEMENTATION DEFINED
amount of the memory copy. CPYFE performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFP, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFP, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1766
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFE [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFM [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFP [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1767
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1768
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1769
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1770
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.74 CPYFPN, CPYFMN, CPYFEN

Memory Copy Forward-only, reads and writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPN, then CPYFMN, and then CPYFEN.

CPYFPN performs some preconditioning of the arguments suitable for using the CPYFMN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1771
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1772
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1773
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1774
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1775
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.75 CPYFPRN, CPYFMRN, CPYFERN

Memory Copy Forward-only, reads non-temporal. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPRN,
then CPYFMRN, and then CPYFERN.

CPYFPRN performs some preconditioning of the arguments suitable for using the CPYFMRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFERN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1776
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1777
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1778
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1779
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1780
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.76 CPYFPRT, CPYFMRT, CPYFERT

Memory Copy Forward-only, reads unprivileged. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPRT,
then CPYFMRT, and then CPYFERT.

CPYFPRT performs some preconditioning of the arguments suitable for using the CPYFMRT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFERT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1781
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRT [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1782
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1783
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1784
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1785
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.77 CPYFPRTN, CPYFMRTN, CPYFERTN

Memory Copy Forward-only, reads unprivileged, reads and writes non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPRTN, then CPYFMRTN, and then CPYFERTN.

CPYFPRTN performs some preconditioning of the arguments suitable for using the CPYFMRTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFERTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1786
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRTN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1787
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1788
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1789
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1790
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.78 CPYFPRTRN, CPYFMRTRN, CPYFERTRN

Memory Copy Forward-only, reads unprivileged and non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPRTRN, then CPYFMRTRN, and then CPYFERTRN.

CPYFPRTRN performs some preconditioning of the arguments suitable for using the CPYFMRTRN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRTRN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFERTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRTRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRTRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1791
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERTRN option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRTRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1792
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1793
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1794
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1795
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.79 CPYFPRTWN, CPYFMRTWN, CPYFERTWN

Memory Copy Forward-only, reads unprivileged, writes non-temporal. These instructions perform a memory copy.
The prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPRTWN, then CPYFMRTWN, and then CPYFERTWN.

CPYFPRTWN performs some preconditioning of the arguments suitable for using the CPYFMRTWN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMRTWN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFERTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPRTWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPRTWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMRTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMRTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1796
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFERTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFERTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFERTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMRTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPRTWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1797
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1798
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1799
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1800
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.80 CPYFPT, CPYFMT, CPYFET

Memory Copy Forward-only, reads and writes unprivileged. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPT, then CPYFMT, and then CPYFET.

CPYFPT performs some preconditioning of the arguments suitable for using the CPYFMT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFET performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1801
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFET [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPT [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1802
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1803
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1804
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1805
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.81 CPYFPTN, CPYFMTN, CPYFETN

Memory Copy Forward-only, reads and writes unprivileged and non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPTN, then CPYFMTN, and then CPYFETN.

CPYFPTN performs some preconditioning of the arguments suitable for using the CPYFMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFETN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1806
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFETN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPTN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1807
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1808
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1809
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1810
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.82 CPYFPTRN, CPYFMTRN, CPYFETRN

Memory Copy Forward-only, reads and writes unprivileged, reads non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPTRN, then CPYFMTRN, and then CPYFETRN.

CPYFPTRN performs some preconditioning of the arguments suitable for using the CPYFMTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFETRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPTRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPTRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1811
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFETRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFETRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFETRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPTRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1812
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1813
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1814
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1815
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.83 CPYFPTWN, CPYFMTWN, CPYFETWN

Memory Copy Forward-only, reads and writes unprivileged, writes non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPTWN, then CPYFMTWN, and then CPYFETWN.

CPYFPTWN performs some preconditioning of the arguments suitable for using the CPYFMTWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMTWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFETWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPTWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPTWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1816
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFETWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFETWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFETWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPTWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1817
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1818
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1819
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1820
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.84 CPYFPWN, CPYFMWN, CPYFEWN

Memory Copy Forward-only, writes non-temporal. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPWN,
then CPYFMWN, and then CPYFEWN.

CPYFPWN performs some preconditioning of the arguments suitable for using the CPYFMWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1821
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1822
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1823
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1824
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1825
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.85 CPYFPWT, CPYFMWT, CPYFEWT

Memory Copy Forward-only, writes unprivileged. These instructions perform a memory copy. The prologue, main,
and epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYFPWT,
then CPYFMWT, and then CPYFEWT.

CPYFPWT performs some preconditioning of the arguments suitable for using the CPYFMWT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEWT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1826
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWT [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1827
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1828
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1829
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1830
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.86 CPYFPWTN, CPYFMWTN, CPYFEWTN

Memory Copy Forward-only, writes unprivileged, reads and writes non-temporal. These instructions perform a
memory copy. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: CPYFPWTN, then CPYFMWTN, and then CPYFEWTN.

CPYFPWTN performs some preconditioning of the arguments suitable for using the CPYFMWTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYFEWTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1831
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWTN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1832
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1833
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1834
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1835
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.87 CPYFPWTRN, CPYFMWTRN, CPYFEWTRN

Memory Copy Forward-only, writes unprivileged, reads non-temporal. These instructions perform a memory copy.
The prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPWTRN, then CPYFMWTRN, and then CPYFEWTRN.

CPYFPWTRN performs some preconditioning of the arguments suitable for using the CPYFMWTRN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWTRN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFEWTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWTRN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWTRN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1836
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWTRN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1837
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1838
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1839
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1840
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.88 CPYFPWTWN, CPYFMWTWN, CPYFEWTWN

Memory Copy Forward-only, writes unprivileged and non-temporal. These instructions perform a memory copy.
The prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYFPWTWN, then CPYFMWTWN, and then CPYFEWTWN.

CPYFPWTWN performs some preconditioning of the arguments suitable for using the CPYFMWTWN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYFMWTWN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYFEWTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

The memory copy performed by these instructions is in the forward direction only, so the instructions are suitable
for a memory copy only where there is no overlap between the source and destination locations, or where the source
address is greater than the destination address.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYFPWTWN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + saturated Xn.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of CPYFPWTWN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For CPYFMWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
copied in the memory copy in total.

For CPYFMWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1841
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory copy
in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

For CPYFEWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number and holds -1* the number of bytes remaining to be copied in the
memory copy in total.

• Xs holds the lowest address that the copy is copied from -Xn.

• Xd holds the lowest address that the copy is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For CPYFEWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be copied in the memory copy in total.

• Xs holds the lowest address that the copy is copied from.

• Xd holds the lowest address that the copy is copied to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYFEWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYFMWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYFPWTWN [<Xd>]!, [<Xs>]!, <Xn>!

sz 0 1 1 0 0 1 op1 0 Rs 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1842
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1843
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 memcpy.fromaddress = X[memcpy.s, 64];
 memcpy.cpysize = SInt(X[memcpy.n, 64]);
 memcpy.implements_option_a = CPYFOptionA();

 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize<63> == '1' then memcpy.cpysize = 0x7FFFFFFFFFFFFFFF;

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memcpy.forward = TRUE;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= -1 * memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress, memcpy.fromaddress,
memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1844
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);

 if IsFault(memstatus) then
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1845
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.89 CPYP, CPYM, CPYE

Memory Copy. These instructions perform a memory copy. The prologue, main, and epilogue instructions are
expected to be run in succession and to appear consecutively in memory: CPYP, then CPYM, and then CPYE.

CPYP performs some preconditioning of the arguments suitable for using the CPYM instruction, and performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYM performs an IMPLEMENTATION DEFINED amount of
the memory copy. CPYE performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYP, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYP, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYP, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1846
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is copied to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is made to.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1847
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from.

— Xd holds the highest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYE [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYM [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYP [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1848
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1849
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1850
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1851
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.90 CPYPN, CPYMN, CPYEN

Memory Copy, reads and writes non-temporal. These instructions perform a memory copy. The prologue, main, and
epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYPN, then
CPYMN, and then CPYEN.

CPYPN performs some preconditioning of the arguments suitable for using the CPYMN instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory copy. CPYMN performs an IMPLEMENTATION DEFINED
amount of the memory copy. CPYEN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1852
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1853
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1854
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1855
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1856
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1857
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.91 CPYPRN, CPYMRN, CPYERN

Memory Copy, reads non-temporal. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPRN, then CPYMRN,
and then CPYERN.

CPYPRN performs some preconditioning of the arguments suitable for using the CPYMRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1858
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1859
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1860
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1861
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1862
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1863
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.92 CPYPRT, CPYMRT, CPYERT

Memory Copy, reads unprivileged. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPRT, then CPYMRT,
and then CPYERT.

CPYPRT performs some preconditioning of the arguments suitable for using the CPYMRT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRT, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRT, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRT, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1864
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMRT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1865
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRT [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1866
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1867
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1868
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1869
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.93 CPYPRTN, CPYMRTN, CPYERTN

Memory Copy, reads unprivileged, reads and writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPRTN, then CPYMRTN, and then CPYERTN.

CPYPRTN performs some preconditioning of the arguments suitable for using the CPYMRTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRTN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRTN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRTN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1870
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMRTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1871
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRTN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1872
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1873
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1874
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1875
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.94 CPYPRTRN, CPYMRTRN, CPYERTRN

Memory Copy, reads unprivileged and non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPRTRN, then CPYMRTRN, and then CPYERTRN.

CPYPRTRN performs some preconditioning of the arguments suitable for using the CPYMRTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRTRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRTRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRTRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1876
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMRTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1877
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRTRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1878
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1879
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1880
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1881
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.95 CPYPRTWN, CPYMRTWN, CPYERTWN

Memory Copy, reads unprivileged, writes non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPRTWN, then CPYMRTWN, and then CPYERTWN.

CPYPRTWN performs some preconditioning of the arguments suitable for using the CPYMRTWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMRTWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYERTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPRTWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPRTWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPRTWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1882
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMRTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMRTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYERTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1883
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYERTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYERTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMRTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPRTWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1884
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1885
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1886
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1887
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.96 CPYPT, CPYMT, CPYET

Memory Copy, reads and writes unprivileged. These instructions perform a memory copy. The prologue, main, and
epilogue instructions are expected to be run in succession and to appear consecutively in memory: CPYPT, then
CPYMT, and then CPYET.

CPYPT performs some preconditioning of the arguments suitable for using the CPYMT instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory copy. CPYMT performs an IMPLEMENTATION DEFINED
amount of the memory copy. CPYET performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPT, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPT, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPT, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1888
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1889
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYET [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPT [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1890
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1891
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1892
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1893
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.97 CPYPTN, CPYMTN, CPYETN

Memory Copy, reads and writes unprivileged and non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPTN, then CPYMTN, and then CPYETN.

CPYPTN performs some preconditioning of the arguments suitable for using the CPYMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYETN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPTN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPTN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPTN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1894
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1895
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYETN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPTN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1896
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1897
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1898
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1899
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.98 CPYPTRN, CPYMTRN, CPYETRN

Memory Copy, reads and writes unprivileged, reads non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPTRN, then CPYMTRN, and then CPYETRN.

CPYPTRN performs some preconditioning of the arguments suitable for using the CPYMTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYETRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPTRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPTRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPTRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1900
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYETRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1901
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYETRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYETRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPTRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1902
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1903
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1904
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1905
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.99 CPYPTWN, CPYMTWN, CPYETWN

Memory Copy, reads and writes unprivileged, writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPTWN, then CPYMTWN, and then CPYETWN.

CPYPTWN performs some preconditioning of the arguments suitable for using the CPYMTWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMTWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYETWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPTWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPTWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPTWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1906
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYETWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1907
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYETWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYETWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPTWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1908
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1909
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1910
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1911
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.100 CPYPWN, CPYMWN, CPYEWN

Memory Copy, writes non-temporal. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPWN, then
CPYMWN, and then CPYEWN.

CPYPWN performs some preconditioning of the arguments suitable for using the CPYMWN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1912
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1913
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1914
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1915
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1916
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1917
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.101 CPYPWT, CPYMWT, CPYEWT

Memory Copy, writes unprivileged. These instructions perform a memory copy. The prologue, main, and epilogue
instructions are expected to be run in succession and to appear consecutively in memory: CPYPWT, then
CPYMWT, and then CPYEWT.

CPYPWT performs some preconditioning of the arguments suitable for using the CPYMWT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWT performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWT performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWT, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWT, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWT, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1918
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1919
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWT [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWT [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWT [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1920
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1921
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1922
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1923
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.102 CPYPWTN, CPYMWTN, CPYEWTN

Memory Copy, writes unprivileged, reads and writes non-temporal. These instructions perform a memory copy. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: CPYPWTN, then CPYMWTN, and then CPYEWTN.

CPYPWTN performs some preconditioning of the arguments suitable for using the CPYMWTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWTN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWTN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWTN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWTN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWTN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1924
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1925
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWTN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWTN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWTN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1926
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1927
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1928
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1929
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.103 CPYPWTRN, CPYMWTRN, CPYEWTRN

Memory Copy, writes unprivileged, reads non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPWTRN, then CPYMWTRN, and then CPYEWTRN.

CPYPWTRN performs some preconditioning of the arguments suitable for using the CPYMWTRN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWTRN performs an IMPLEMENTATION
DEFINED amount of the memory copy. CPYEWTRN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWTRN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWTRN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWTRN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1930
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWTRN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1931
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWTRN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWTRN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1932
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1933
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1934
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1935
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.104 CPYPWTWN, CPYMWTWN, CPYEWTWN

Memory Copy, writes unprivileged and non-temporal. These instructions perform a memory copy. The prologue,
main, and epilogue instructions are expected to be run in succession and to appear consecutively in memory:
CPYPWTWN, then CPYMWTWN, and then CPYEWTWN.

CPYPWTWN performs some preconditioning of the arguments suitable for using the CPYMWTWN instruction,
and performs an IMPLEMENTATION DEFINED amount of the memory copy. CPYMWTWN performs an
IMPLEMENTATION DEFINED amount of the memory copy. CPYEWTWN performs the last part of the memory copy.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory copy allows some optimization of the size that can
be performed.

For CPYPWTWN, the following saturation logic is applied:

If Xn<63:55> != 000000000, the copy size Xn is saturated to 0x007FFFFFFFFFFFFF.

After that saturation logic is applied, the direction of the memory copy is based on the following algorithm:

If (Xs > Xd) && (Xd + saturated Xn) > Xs, then direction = forward

Elsif (Xs < Xd) && (Xs + saturated Xn) > Xd, then direction = backward

Else direction = IMPLEMENTATION DEFINED choice between forward and backward.

The architecture supports two algorithms for the memory copy: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of CPYPWTWN, option A (which results in encoding PSTATE.C = 0):

• PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the forward direction, then:

— Xs holds the original Xs + saturated Xn.

— Xd holds the original Xd + saturated Xn.

— Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes copied.

• If the copy is in the backward direction, then:

— Xs and Xd are unchanged.

— Xn holds the saturated value of Xn - an IMPLEMENTATION DEFINED number of bytes copied.

After execution of CPYPWTWN, option B (which results in encoding PSTATE.C = 1):

• If the copy is in the forward direction, then:

— Xs holds the original Xs + an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {0,0,0}.

• If the copy is in the backward direction, then:

— Xs holds the original Xs + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xd holds the original Xd + saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes copied.

— PSTATE.{N,Z,V} are set to {1,0,0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1936
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For CPYMWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining
to be copied in the memory copy in total.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.

— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with the number of bytes remaining to be
copied in the memory copy in total.

For CPYMWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be copied in the memory
copy in total.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

For CPYEWTWN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• If the copy is in the forward direction (Xn is a negative number), then:

— Xn holds -1* the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the lowest address that the copy is copied from -Xn.

— Xd holds the lowest address that the copy is made to -Xn.

— At the end of the instruction, the value of Xn is written back with 0.

• If the copy is in the backward direction (Xn is a positive number), then:

— Xn holds the number of bytes remaining to be copied in the memory copy in total.

— Xs holds the highest address that the copy is copied from -Xn+1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1937
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— Xd holds the highest address that the copy is copied to -Xn+1.

— At the end of the instruction, the value of Xn is written back with 0.

For CPYEWTWN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes to be copied in the memory copy in total.

• If the copy is in the forward direction (PSTATE.N == 0), then:

— Xs holds the lowest address that the copy is copied from.

— Xd holds the lowest address that the copy is copied to.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the lowest address that has not been copied from.

— the value of Xd is written back with the lowest address that has not been copied to.

• If the copy is in the backward direction (PSTATE.N == 1), then:

— Xs holds the highest address that the copy is copied from +1.

— Xd holds the highest address that the copy is copied to +1.

— At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xs is written back with the highest address that has not been copied from +1.

— the value of Xd is written back with the highest address that has not been copied to +1.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op1 == 10.

CPYEWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Main variant

Applies when op1 == 01.

CPYMWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Prologue variant

Applies when op1 == 00.

CPYPWTWN [<Xd>]!, [<Xs>]!, <Xn>!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 CPYParams memcpy;
 memcpy.d = UInt(Rd);
 memcpy.s = UInt(Rs);
 memcpy.n = UInt(Rn);
 bits(4) options = op2;

sz 0 1 1 1 0 1 op1 0 Rs 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1938
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rnontemporal = options<3> == '1';
 boolean wnontemporal = options<2> == '1';

 case op1 of
 when '00' memcpy.stage = MOPSStage_Prologue;
 when '01' memcpy.stage = MOPSStage_Main;
 when '10' memcpy.stage = MOPSStage_Epilogue;
 otherwise SEE "Memory Copy and Memory Set";

 CheckMOPSEnabled();

 if (memcpy.s == memcpy.n || memcpy.s == memcpy.d || memcpy.n == memcpy.d || memcpy.d == 31 || memcpy.s
== 31 || memcpy.n == 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set CPY*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xs> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the source address, encoded in the "Rs" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the source
address and is updated by the instruction, encoded in the "Rs" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be transferred and is set to zero at the end of the instruction, encoded in
the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be transferred, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be transferred and is updated by the instruction to encode the remaining size and
destination, encoded in the "Rn" field.

Operation

 constant integer N = MaxBlockSizeCopiedBytes();
 bits(8*N) readdata;

 memcpy.nzcv = PSTATE.<N,Z,C,V>;
 memcpy.toaddress = X[memcpy.d, 64];
 memcpy.fromaddress = X[memcpy.s, 64];

 if memcpy.stage == MOPSStage_Prologue then
 memcpy.cpysize = UInt(X[memcpy.n, 64]);
 else
 memcpy.cpysize = SInt(X[memcpy.n, 64]);

 memcpy.implements_option_a = CPYOptionA();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1939
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 boolean rprivileged = if options<1> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;
 boolean wprivileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor raccdesc = CreateAccDescMOPS(MemOp_LOAD, rprivileged, rnontemporal);
 AccessDescriptor waccdesc = CreateAccDescMOPS(MemOp_STORE, wprivileged, wnontemporal);

 if memcpy.stage == MOPSStage_Prologue then
 if memcpy.cpysize > 0x007FFFFFFFFFFFFF then
 memcpy.cpysize = 0x007FFFFFFFFFFFFF;

 memcpy.forward = IsMemCpyForward(memcpy);

 if memcpy.implements_option_a then
 memcpy.nzcv = '0000';
 if memcpy.forward then
 // Copy in the forward direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.cpysize = 0 - memcpy.cpysize;
 else
 if !memcpy.forward then
 // Copy in the reverse direction offsets the arguments.
 memcpy.toaddress = memcpy.toaddress + memcpy.cpysize;
 memcpy.fromaddress = memcpy.fromaddress + memcpy.cpysize;
 memcpy.nzcv = '1010';
 else
 memcpy.nzcv = '0010';

 memcpy.stagecpysize = MemCpyStageSize(memcpy);

 if memcpy.stage != MOPSStage_Prologue then
 memcpy.forward = memcpy.cpysize < 0 || (!memcpy.implements_option_a && memcpy.nzcv<3> == '0');
 CheckMemCpyParams(memcpy, options);

 integer copied;
 boolean iswrite;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 boolean fault = FALSE;
 integer B;

 if memcpy.implements_option_a then
 while memcpy.stagecpysize != 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);

 if memcpy.forward then
 assert B <= -1 * memcpy.stagecpysize;
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;

 else
 assert B <= memcpy.stagecpysize;
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress + memcpy.cpysize,
memcpy.fromaddress + memcpy.cpysize, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 memcpy.cpysize = memcpy.cpysize + B;
 memcpy.stagecpysize = memcpy.stagecpysize + B;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1940
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 else
 while memcpy.stagecpysize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = CPYSizeChoice(memcpy);
 assert B <= memcpy.stagecpysize;

 if memcpy.forward then
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress,
memcpy.fromaddress, memcpy.forward, B, raccdesc, waccdesc);
 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress + B;
 memcpy.toaddress = memcpy.toaddress + B;
 else
 (copied, iswrite, memaddrdesc, memstatus) = MemCpyBytes(memcpy.toaddress - B,
memcpy.fromaddress - B, memcpy.forward, B, raccdesc, waccdesc);

 if copied != B then
 fault = TRUE;
 else
 memcpy.fromaddress = memcpy.fromaddress - B;
 memcpy.toaddress = memcpy.toaddress - B;

 if !fault then
 memcpy.cpysize = memcpy.cpysize - B;
 memcpy.stagecpysize = memcpy.stagecpysize - B;

 UpdateCpyRegisters(memcpy, fault, copied);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 AccessDescriptor accdesc = if iswrite then waccdesc else raccdesc;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memcpy.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memcpy.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1941
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.105 CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second
source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align
with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7
is used for the CRC calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all
implementations to implement this instruction.

Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC

(FEAT_CRC32)

CRC32B variant

Applies when sf == 0 && sz == 00.

CRC32B <Wd>, <Wn>, <Wm>

CRC32H variant

Applies when sf == 0 && sz == 01.

CRC32H <Wd>, <Wn>, <Wm>

CRC32W variant

Applies when sf == 0 && sz == 10.

CRC32W <Wd>, <Wn>, <Wm>

CRC32X variant

Applies when sf == 1 && sz == 11.

CRC32X <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sf == '1' && sz != '11' then UNDEFINED;
 if sf == '0' && sz == '11' then UNDEFINED;
 constant integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 0 sz Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

C

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1942
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

 bits(32) acc = X[n, 32]; // accumulator
 bits(size) val = X[m, size]; // input value
 bits(32) poly = 0x04C11DB7<31:0>;

 bits(32+size) tempacc = BitReverse(acc):Zeros(size);
 bits(size+32) tempval = BitReverse(val):Zeros(32);

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 X[d, 32] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1943
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.106 CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32C checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second
source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align
with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41
is used for the CRC calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all
implementations to implement this instruction.

Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC

(FEAT_CRC32)

CRC32CB variant

Applies when sf == 0 && sz == 00.

CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH variant

Applies when sf == 0 && sz == 01.

CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW variant

Applies when sf == 0 && sz == 10.

CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX variant

Applies when sf == 1 && sz == 11.

CRC32CX <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sf == '1' && sz != '11' then UNDEFINED;
 if sf == '0' && sz == '11' then UNDEFINED;
 constant integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 1 sz Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

C

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1944
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

 bits(32) acc = X[n, 32]; // accumulator
 bits(size) val = X[m, size]; // input value
 bits(32) poly = 0x1EDC6F41<31:0>;

 bits(32+size) tempacc = BitReverse(acc):Zeros(size);
 bits(size+32) tempval = BitReverse(val):Zeros(32);

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 X[d, 32] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1945
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.107 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution arising from data
value prediction. For more information and details of the semantics, see Consumption of Speculative Data Barrier
(CSDB).

Encoding

CSDB

Decode for this encoding

 // Empty.

Operation

 ConsumptionOfSpeculativeDataBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1946
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.108 CSEL

If the condition is true, Conditional Select writes the value of the first source register to the destination register. If
the condition is false, it writes the value of the second source register to the destination register.

32-bit variant

Applies when sf == 0.

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSEL <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else
 result = X[m, datasize];

 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1947
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1948
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.109 CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This instruction is an alias of the CSINC instruction. This means that:

• The encodings in this description are named to match the encodings of CSINC.

• The description of CSINC gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CSET <Wd>, <cond>

 is equivalent to

CSINC <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSET <Xd>, <cond>

 is equivalent to

CSINC <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 !=111x 0 1 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1949
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1950
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.110 CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits
to 0.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.

• The description of CSINV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

CSETM <Wd>, <cond>

 is equivalent to

CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSETM <Xd>, <cond>

 is equivalent to

CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 !=111x 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op Rm cond o2 Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1951
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1952
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.111 CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC and CSET. See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSINC <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias is preferred when

CINC Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

CSET Rm == '11111' && cond != '111x' && Rn == '11111'

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1953
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else
 result = X[m, datasize];
 result = result + 1;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1954
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.112 CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV and CSETM. See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSINV <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias is preferred when

CINV Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

CSETM Rm == '11111' && cond != '111x' && Rn == '11111'

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1955
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else
 result = X[m, datasize];
 result = NOT(result);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1956
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.113 CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the negated value of the second source register.

This instruction is used by the alias CNEG. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSNEG <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 bits(datasize) result;
 if ConditionHolds(cond) then
 result = X[n, datasize];
 else

Alias is preferred when

CNEG cond != '111x' && Rn == Rm

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1957
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 result = X[m, datasize];
 result = NOT(result);
 result = result + 1;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1958
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.114 CTZ

Count Trailing Zeros counts the number of consecutive binary zero bits, starting from the least significant bit in the
source register, and places the count in the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

CTZ <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

CTZ <Xd>, <Xn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = CountLeadingZeroBits(BitReverse(operand1));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1959
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1960
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.115 DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

DC <dc_op>, <Xt>

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_DC.

Assembler symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in the
"op1:CRm:op2" field. It can have the following values:

IVAC when op1 = 000, CRm = 0110, op2 = 001

ISW when op1 = 000, CRm = 0110, op2 = 010

CSW when op1 = 000, CRm = 1010, op2 = 010

CISW when op1 = 000, CRm = 1110, op2 = 010

ZVA when op1 = 011, CRm = 0100, op2 = 001

CVAC when op1 = 011, CRm = 1010, op2 = 001

CVAU when op1 = 011, CRm = 1011, op2 = 001

CIVAC when op1 = 011, CRm = 1110, op2 = 001

When FEAT_MTE2 is implemented, the following values are also valid:

IGVAC when op1 = 000, CRm = 0110, op2 = 011

IGSW when op1 = 000, CRm = 0110, op2 = 100

IGDVAC when op1 = 000, CRm = 0110, op2 = 101

IGDSW when op1 = 000, CRm = 0110, op2 = 110

CGSW when op1 = 000, CRm = 1010, op2 = 100

CGDSW when op1 = 000, CRm = 1010, op2 = 110

CIGSW when op1 = 000, CRm = 1110, op2 = 100

CIGDSW when op1 = 000, CRm = 1110, op2 = 110

When FEAT_MTE is implemented, the following values are also valid:

GVA when op1 = 011, CRm = 0100, op2 = 011

GZVA when op1 = 011, CRm = 0100, op2 = 100

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1961
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
CGVAC when op1 = 011, CRm = 1010, op2 = 011

CGDVAC when op1 = 011, CRm = 1010, op2 = 101

CGVAP when op1 = 011, CRm = 1100, op2 = 011

CGDVAP when op1 = 011, CRm = 1100, op2 = 101

CGVADP when op1 = 011, CRm = 1101, op2 = 011

CGDVADP when op1 = 011, CRm = 1101, op2 = 101

CIGVAC when op1 = 011, CRm = 1110, op2 = 011

CIGDVAC when op1 = 011, CRm = 1110, op2 = 101

When FEAT_DPB is implemented, the following value is also valid:

CVAP when op1 = 011, CRm = 1100, op2 = 001

When FEAT_DPB2 is implemented, the following value is also valid:

CVADP when op1 = 011, CRm = 1101, op2 = 001

When FEAT_MEC is implemented, the following values are also valid:

CIPAE when op1 = 100, CRm = 1110, op2 = 000

CIGDPAE when op1 = 100, CRm = 1110, op2 = 111

When FEAT_RME is implemented, the following values are also valid:

CIPAPA when op1 = 110, CRm = 1110, op2 = 001

CIGDPAPA when op1 = 110, CRm = 1110, op2 = 101

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1962
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.116 DCPS1

Debug Change PE State to EL1, when executed in Debug state:

• If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.

• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

• EL1 if the instruction is executed at EL0.

• Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.

• SPSR_ELx becomes UNKNOWN.

• ESR_ELx becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE == 1.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

Encoding

DCPS1 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1963
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.117 DCPS2

Debug Change PE State to EL2, when executed in Debug state:

• If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.

• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

• EL2 if the instruction is executed at an exception level that is not EL3.

• EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.

• SPSR_ELx becomes UNKNOWN.

• ESR_ELx becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:

• All exception levels if EL2 is not implemented.

• At EL0 and EL1 if EL2 is disabled in the current Security state.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

Encoding

DCPS2 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1964
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.118 DCPS3

Debug Change PE State to EL3, when executed in Debug state:

• If executed at EL3 selects SP_EL3.

• Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.

On executing a DCPS3 instruction:

• ELR_EL3 becomes UNKNOWN.

• SPSR_EL3 becomes UNKNOWN.

• ESR_EL3 becomes UNKNOWN.

• DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:

• EDSCR.SDD == 1.

• EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

Encoding

DCPS3 {#<imm>}

Decode for this encoding

 if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in
the "imm16" field.

Operation

 DCPSInstruction(LL);

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0

LL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1965
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.119 DGH

Data Gathering Hint is a hint instruction that indicates that it is not expected to be performance optimal to merge
memory accesses with Normal Non-cacheable or Device-GRE attributes appearing in program order before the hint
instruction with any memory accesses appearing after the hint instruction into a single memory transaction on an
interconnect.

System

(FEAT_DGH)

Encoding

DGH

Decode for this encoding

 if !IsFeatureImplemented(FEAT_DGH) then EndOfInstruction();

Operation

 Hint_DGH();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1966
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.120 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB).

Encoding

DMB <option>|#<imm>

Decode for this encoding

 MBReqDomain domain;
 MBReqTypes types;
 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1967
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the
#<imm> syntax. All unsupported and reserved options must execute as a full system barrier operation,
but software must not rely on this behavior. For more information on whether an access is before or
after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier
(DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

 DataMemoryBarrier(domain, types);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1968
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.121 DRPS

Debug restore PE state using the SPSR for the current Exception level. When executed, the PE restores PSTATE
from the SPSR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal exception returns
from AArch64 state.

This instruction is UNDEFINED at EL0.

This instruction is UNDEFINED in Non-debug state.

For more information on the operation of DRPS, see DRPS.

Encoding

DRPS

Decode for this encoding

 if !Halted() || PSTATE.EL == EL0 then UNDEFINED;

Operation

 DRPSInstruction();

1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1969
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.122 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB).

This instruction is used by the aliases PSSBB and SSBB. See Alias conditions for details of when each alias is
preferred.

Memory barrier

Encoding

DSB <option>|#<imm>

Decode for this encoding

 boolean nXS = FALSE;

 DSBAlias alias;
 case CRm of
 when '0000' alias = DSBAlias_SSBB;
 when '0100' alias = DSBAlias_PSSBB;
 otherwise alias = DSBAlias_DSB;

 MBReqDomain domain;
 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;

 MBReqTypes types;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Memory nXS barrier

(FEAT_XS)

Encoding

DSB <option>nXS

Decode for this encoding

 if !IsFeatureImplemented(FEAT_XS) then UNDEFINED;
 MBReqTypes types = MBReqTypes_All;
 boolean nXS = TRUE;
 DSBAlias alias = DSBAlias_DSB;
 MBReqDomain domain;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 imm2 1 0 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1970
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 case imm2 of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;

Alias conditions

Assembler symbols

<option> For the memory barrier variant: specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of "CRm", other than the values 0b0000 and 0b0100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) or see Data Synchronization Barrier (DSB).

Alias is preferred when

PSSBB CRm == '0100'

SSBB CRm == '0000'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1971
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

For the memory nXS barrier variant: specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as imm2 = 0b11.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as imm2 = 0b10.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as imm2 = 0b01.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as imm2 = 0b00.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation for all encodings

 case alias of
 when DSBAlias_SSBB
 SpeculativeStoreBypassBarrierToVA();
 when DSBAlias_PSSBB
 SpeculativeStoreBypassBarrierToPA();
 when DSBAlias_DSB
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 if !nXS && IsFeatureImplemented(FEAT_XS) then
 nXS = PSTATE.EL IN {EL0, EL1} && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1';
 DataSynchronizationBarrier(domain, types, nXS);
 otherwise
 Unreachable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1972
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.123 DVP

Data Value Prediction Restriction by Context prevents data value predictions that predict execution addresses based
on information gathered from earlier execution within a particular execution context. Data value predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.

For more information, see DVP RCTX.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_SPECRES)

Encoding

DVP RCTX, <Xt>

 is equivalent to

SYS #3, C7, C3, #5, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1973
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.124 EON (shifted register)

Bitwise Exclusive-OR NOT (shifted register) performs a bitwise exclusive-OR NOT of a register value and an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1974
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 EOR operand2;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1975
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.125 EOR (immediate)

Bitwise Exclusive-OR (immediate) performs a bitwise exclusive-OR of a register value and an immediate value,
and writes the result to the destination register.

32-bit variant

Applies when sf == 0 && N == 0.

EOR <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

EOR <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 EOR imm;

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

sf 1 0 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1976
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1977
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.126 EOR (shifted register)

Bitwise Exclusive-OR (shifted register) performs a bitwise exclusive-OR of a register value and an
optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when sf == 0.

EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 1 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1978
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 EOR operand2;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1979
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.127 ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE
from the SPSR, and branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal exception returns
from AArch64 state.

ERET is UNDEFINED at EL0.

Encoding

ERET

Decode for this encoding

 if PSTATE.EL == EL0 then UNDEFINED;

Operation

 AArch64.CheckForERetTrap(FALSE, TRUE);
 bits(64) target = ELR_ELx[];

 AArch64.ExceptionReturn(target, SPSR_ELx[]);

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A M Rn op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1980
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.128 ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the
modifier and the specified key, the PE restores PSTATE from the SPSR for the current Exception level, and branches
to the authenticated address.

Key A is used for ERETAA. Key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal exception returns
from AArch64 state.

ERETAA and ERETAB are UNDEFINED at EL0.

Integer

(FEAT_PAuth)

ERETAA variant

Applies when M == 0.

ERETAA

ERETAB variant

Applies when M == 1.

ERETAB

Decode for all variants of this encoding

 if PSTATE.EL == EL0 then UNDEFINED;
 boolean use_key_a = (M == '0');

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

Operation

 AArch64.CheckForERetTrap(TRUE, use_key_a);
 bits(64) target = ELR_ELx[];
 bits(64) modifier = SP[];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 AArch64.ExceptionReturn(target, SPSR_ELx[]);

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

A Rn op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1981
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.129 ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and
VDISR_EL2.

This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the Arm(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

System

(FEAT_RAS)

Encoding

ESB

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RAS) then EndOfInstruction();

Operation

 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1982
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.130 EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 0xxxxx.

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit variant

Applies when sf == 1 && N == 1.

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

Decode for all variants of this encoding

 if N != sf then UNDEFINED;
 if sf == '0' && imms<5> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 constant integer lsb = UInt(imms);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<lsb> For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63,
encoded in the "imms" field.

Alias is preferred when

ROR (immediate) Rn == Rm

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1983
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 bits(2*datasize) concat = operand1:operand2;

 result = concat<(lsb+datasize)-1:lsb>;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1984
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.131 GCSB

Guarded Control Stack Barrier. This instruction generates a GCSB effect.

If FEAT_GCS is not implemented, this instruction executes as a NOP.

System

(FEAT_GCS)

Encoding

GCSB DSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_GCS) then EndOfInstruction();

Operation

 GCSSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1985
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.132 GCSPOPCX

Guarded Control Stack Pop and Compare exception return record loads an exception return record from the location
indicated by the current Guarded control stack pointer register, compares the loaded values with the current
ELR_ELx, SPSR_ELx, and LR, and increments the pointer by the size of a Guarded control stack exception return
record.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPOPCX {<Xt>}

 is equivalent to

SYS #0, C7, C7, #5{, <Xt>}

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1986
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.133 GCSPOPM

Guarded Control Stack Pop loads the 64-bit doubleword that is pointed to by the current Guarded control stack
pointer, writes it to the destination register, and increments the current Guarded control stack pointer register by the
size of a Guarded control stack procedure return record.

This instruction is an alias of the SYSL instruction. This means that:

• The encodings in this description are named to match the encodings of SYSL.

• The description of SYSL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPOPM <Xt>

 is equivalent to

SYSL <Xt>, #3, C7, C7, #1

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

The description of SYSL gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1987
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.134 GCSPOPX

Guarded Control Stack Pop exception return record loads an exception return record from the location indicated by
the current Guarded control stack pointer register, checks that the record is an exception return record, and
increments the pointer by the size of a Guarded control stack exception return record.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPOPX {<Xt>}

 is equivalent to

SYS #0, C7, C7, #6{, <Xt>}

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1988
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.135 GCSPUSHM

Guarded Control Stack Push decrements the current Guarded control stack pointer register by the size of a Guarded
control procedure return record and stores an entry to the Guarded control stack.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPUSHM <Xt>

 is equivalent to

SYS #3, C7, C7, #0, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1989
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.136 GCSPUSHX

Guarded Control Stack Push exception return record decrements the current Guarded control stack pointer register
by the size of a Guarded control stack exception return record and stores an exception return record to the Guarded
control stack.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSPUSHX {<Xt>}

 is equivalent to

SYS #0, C7, C7, #4{, <Xt>}

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1990
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.137 GCSSS1

Guarded Control Stack Switch Stack 1 validates that the stack being switched to contains a Valid cap entry, stores
an In-progress cap entry to the stack that is being switched to, and sets the current Guarded control stack pointer to
the stack that is being switched to.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSSS1 <Xt>

 is equivalent to

SYS #3, C7, C7, #2, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1991
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.138 GCSSS2

Guarded Control Stack Switch Stack 2 validates that the most recent entry of the Guarded control stack being
switched to contains an In-progress cap entry, stores a Valid cap entry to the Guarded control stack that is being
switched from, and sets Xt to the Guarded control stack pointer that is being switched from.

This instruction is an alias of the SYSL instruction. This means that:

• The encodings in this description are named to match the encodings of SYSL.

• The description of SYSL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

System

(FEAT_GCS)

Encoding

GCSSS2 <Xt>

 is equivalent to

SYSL <Xt>, #3, C7, C7, #3

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

The description of SYSL gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1992
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.139 GCSSTR

Guarded Control Stack Store stores a doubleword from a register to memory. The address that is used for the store
is calculated from a base register.

Integer

(FEAT_GCS)

Encoding

GCSSTR <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_GCS) then UNDEFINED;
 integer n = UInt(Rn);
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) data;

 bits(2) effective_el = PSTATE.EL;

 if effective_el == PSTATE.EL then
 CheckGCSSTREnabled();

 AccessDescriptor accdesc = CreateAccDescGCS(effective_el, MemOp_STORE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 64];
 Mem[address, 8, accdesc] = data;

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1993
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.140 GCSSTTR

Guarded Control Stack unprivileged Store stores a doubleword from a register to memory. The address that is used
for the store is calculated from a base register.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1 and HCR_EL2.{NV, NV1} is not {1, 1}.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed.

Integer

(FEAT_GCS)

Encoding

GCSSTTR <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_GCS) then UNDEFINED;
 integer n = UInt(Rn);
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) data;

 bits(2) effective_el = if AArch64.IsUnprivAccessPriv() then PSTATE.EL else EL0;

 if effective_el == PSTATE.EL then
 CheckGCSSTREnabled();

 AccessDescriptor accdesc = CreateAccDescGCS(effective_el, MemOp_STORE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 64];
 Mem[address, 8, accdesc] = data;

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1994
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.141 GMI

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second source register,
writing the new excluded set to the destination register.

Integer

(FEAT_MTE)

Encoding

GMI <Xd>, <Xn|SP>, <Xm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.

Operation

 bits(64) address = if n == 31 then SP[] else X[n, 64];
 bits(64) mask = X[m, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(address);

 mask<UInt(tag)> = '1';
 X[d, 64] = mask;

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 1 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1995
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.142 HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

Some encodings described here are not allocated in this revision of the architecture, and behave as NOPs. These
encodings might be allocated to other hint functionality in future revisions of the architecture and therefore must
not be used by software.

Encoding

HINT #<imm>

Decode for this encoding

 SystemHintOp op;

 case CRm:op2 of
 when '0000 000' op = SystemHintOp_NOP;
 when '0000 001' op = SystemHintOp_YIELD;
 when '0000 010' op = SystemHintOp_WFE;
 when '0000 011' op = SystemHintOp_WFI;
 when '0000 100' op = SystemHintOp_SEV;
 when '0000 101' op = SystemHintOp_SEVL;
 when '0000 110'
 if !IsFeatureImplemented(FEAT_DGH) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_DGH;
 when '0000 111' SEE "XPACLRI";
 when '0001 xxx'
 case op2 of
 when '000' SEE "PACIA1716";
 when '010' SEE "PACIB1716";
 when '100' SEE "AUTIA1716";
 when '110' SEE "AUTIB1716";
 otherwise EndOfInstruction();
 when '0010 000'
 if !IsFeatureImplemented(FEAT_RAS) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_ESB;
 when '0010 001'
 if !IsFeatureImplemented(FEAT_SPE) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_PSB;
 when '0010 010'
 if !IsFeatureImplemented(FEAT_TRF) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_TSB;
 when '0010 011'
 if !IsFeatureImplemented(FEAT_GCS) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_GCSB;
 when '0010 100'
 op = SystemHintOp_CSDB;
 when '0010 110'
 if !IsFeatureImplemented(FEAT_CLRBHB) then
 EndOfInstruction();
 op = SystemHintOp_CLRBHB;
 when '0011 xxx'
 case op2 of
 when '000' SEE "PACIAZ";
 when '001' SEE "PACIASP";
 when '010' SEE "PACIBZ";
 when '011' SEE "PACIBSP";
 when '100' SEE "AUTIAZ";

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1996
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when '101' SEE "AUTIASP";
 when '110' SEE "AUTIBZ";
 when '111' SEE "AUTIBSP";
 when '0100 xx0'
 op = SystemHintOp_BTI;
 // Check branch target compatibility between BTI instruction and PSTATE.BTYPE
 SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
 when '0101 000'
 if !IsFeatureImplemented(FEAT_CHK) then EndOfInstruction(); // Instruction executes as NOP
 op = SystemHintOp_CHKFEAT;
 otherwise EndOfInstruction();

Assembler symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127, encoded in the "CRm:op2" field.

The encodings that are allocated to architectural hint functionality are described in the 'Hints' table
in the 'Index by Encoding'.

Note

For allocated encodings of "CRm:op2":

• A disassembler will disassemble the allocated instruction, rather than the HINT instruction.

• An assembler may support assembly of allocated encodings using HINT with the
corresponding <imm> value, but it is not required to do so.

Operation

 case op of
 when SystemHintOp_YIELD
 Hint_Yield();

 when SystemHintOp_DGH
 Hint_DGH();

 when SystemHintOp_WFE
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFE(localtimeout, WFxType_WFE);

 when SystemHintOp_WFI
 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFI(localtimeout, WFxType_WFI);

 when SystemHintOp_SEV
 SendEvent();

 when SystemHintOp_SEVL
 SendEventLocal();

 when SystemHintOp_ESB
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
 TakeUnmaskedSErrorInterrupts();

 when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();

 when SystemHintOp_TSB
 TraceSynchronizationBarrier();

 when SystemHintOp_GCSB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1997
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 GCSSynchronizationBarrier();

 when SystemHintOp_CHKFEAT
 X[16, 64] = AArch64.ChkFeat(X[16, 64]);

 when SystemHintOp_CSDB
 ConsumptionOfSpeculativeDataBarrier();

 when SystemHintOp_CLRBHB
 Hint_CLRBHB();

 when SystemHintOp_BTI
 SetBTypeNext('00');

 when SystemHintOp_NOP
 return; // do nothing

 otherwise
 Unreachable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1998
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.143 HLT

Halt instruction. An HLT instruction can generate a Halt Instruction debug event, which causes entry into Debug
state.

Within a guarded memory region, while PSTATE.BTYPE != 0b00, a HLT instruction that would cause entry into
Debug state will not generate a Branch Target Exception and will cause entry into Debug state as normal. For more
information, see PSTATE.BTYPE.

Encoding

HLT #<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
 if IsFeatureImplemented(FEAT_BTI) then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 FaultRecord fault = NoFault();
 Halt(DebugHalt_HaltInstruction, FALSE, fault);

1 1 0 1 0 1 0 0 0 1 0 imm16 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-1999
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.144 HVC

Hypervisor Call causes an exception to EL2. Software executing at EL1 can use this instruction to call the
hypervisor to request a service.

The HVC instruction is UNDEFINED:

• When EL3 is implemented and SCR_EL3.HCE is set to 0.

• When EL3 is not implemented and HCR_EL2.HCD is set to 1.

• When EL2 is not implemented.

• At EL1 if EL2 is not enabled in the current Security state.

• At EL0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELx, using
the EC value 0x16, and the value of the immediate argument.

Encoding

HVC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 if !HaveEL(EL2) || PSTATE.EL == EL0 || (PSTATE.EL == EL1 && !EL2Enabled()) then
 UNDEFINED;

 bits(1) hvc_enable = if HaveEL(EL3) then SCR_EL3.HCE else NOT(HCR_EL2.HCD);

 if hvc_enable == '0' then
 UNDEFINED;
 else
 AArch64.CallHypervisor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2000
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.145 IC

Instruction Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance,
address translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

IC <ic_op>{, <Xt>}

 is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_IC.

Assembler symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in the
"op1:CRm:op2" field. It can have the following values:

IALLUIS when op1 = 000, CRm = 0001, op2 = 000

IALLU when op1 = 000, CRm = 0101, op2 = 000

IVAU when op1 = 011, CRm = 0101, op2 = 001

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2001
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.146 IRG

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and writes the
result to the destination register. Any tags specified in the optional second source register or in GCR_EL1.Exclude
are excluded from the selection of the random Logical Address Tag.

Integer

(FEAT_MTE)

Encoding

IRG <Xd|SP>, <Xn|SP>{, <Xm>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.
Defaults to XZR if absent.

Operation

 bits(64) operand = if n == 31 then SP[] else X[n, 64];
 bits(64) exclude_reg = X[m, 64];
 bits(16) exclude = exclude_reg<15:0> OR GCR_EL1.Exclude;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 if GCR_EL1.RRND == '1' then
 if IsOnes(exclude) then
 rtag = '0000';
 else
 rtag = ChooseRandomNonExcludedTag(exclude);
 else
 bits(4) start_tag = RGSR_EL1.TAG;
 bits(4) offset = AArch64.RandomTag();

 rtag = AArch64.ChooseNonExcludedTag(start_tag, offset, exclude);

 RGSR_EL1.TAG = rtag;
 else
 rtag = '0000';

 bits(64) result = AArch64.AddressWithAllocationTag(operand, rtag);

 if d == 31 then

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 0 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2002
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 SP[] = result;
 else
 X[d, 64] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2003
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.147 ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).

Encoding

ISB {<option>|#<imm>}

Decode for this encoding

 // No additional decoding required

Assembler symbols

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of "CRm" are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

 InstructionSynchronizationBarrier();
 if IsFeatureImplemented(FEAT_BRBE) && BRBEBranchOnISB() then
 BRBEISB();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2004
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.148 LD64B

Single-copy Atomic 64-byte Load derives an address from a base register value, loads eight 64-bit doublewords
from a memory location, and writes them to consecutive registers, Xt to X(t+7). The data that is loaded is atomic
and is required to be 64-byte aligned.

Integer

(FEAT_LS64)

Encoding

LD64B <Xt>, [<Xn|SP> {,#0}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_LOAD;
 boolean tagchecked = n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckLDST64BEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = MemLoad64B(address, accdesc);

 for i = 0 to 7
 value = data<63+64*i:64*i>;
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 X[t+i, 64] = value;

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2005
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.149 LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.

• LDADD has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STADD, STADDL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDADD variant

Applies when size == 10 && A == 0 && R == 0.

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDA variant

Applies when size == 10 && A == 1 && R == 0.

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDAL variant

Applies when size == 10 && A == 1 && R == 1.

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDL variant

Applies when size == 10 && A == 0 && R == 1.

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDADD variant

Applies when size == 11 && A == 0 && R == 0.

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDA variant

Applies when size == 11 && A == 1 && R == 0.

LDADDA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2006
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDADDAL variant

Applies when size == 11 && A == 1 && R == 1.

LDADDAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDL variant

Applies when size == 11 && A == 0 && R == 1.

LDADDL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ADD, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STADD, STADDL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2007
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2008
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.150 LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it,
and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.

• LDADDLB and LDADDALB store to memory with release semantics.

• LDADDB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STADDB, STADDLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDADDAB variant

Applies when A == 1 && R == 0.

LDADDAB <Ws>, <Wt>, [<Xn|SP>]

LDADDALB variant

Applies when A == 1 && R == 1.

LDADDALB <Ws>, <Wt>, [<Xn|SP>]

LDADDB variant

Applies when A == 0 && R == 0.

LDADDB <Ws>, <Wt>, [<Xn|SP>]

LDADDLB variant

Applies when A == 0 && R == 1.

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2009
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ADD, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STADDB, STADDLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2010
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.151 LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a
register to it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

• LDADDLH and LDADDALH store to memory with release semantics.

• LDADDH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STADDH, STADDLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDADDAH variant

Applies when A == 1 && R == 0.

LDADDAH <Ws>, <Wt>, [<Xn|SP>]

LDADDALH variant

Applies when A == 1 && R == 1.

LDADDALH <Ws>, <Wt>, [<Xn|SP>]

LDADDH variant

Applies when A == 0 && R == 0.

LDADDH <Ws>, <Wt>, [<Xn|SP>]

LDADDLH variant

Applies when A == 0 && R == 1.

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2011
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ADD, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STADDH, STADDLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2012
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.152 LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from the derived address in memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

No offset

(FEAT_LRCPC)

32-bit variant

Applies when size == 10.

LDAPR <Wt>, [<Xn|SP> {,#0}]

64-bit variant

Applies when size == 11.

LDAPR <Xt>, [<Xn|SP> {,#0}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 integer offset = 0;
 boolean wb_unknown = FALSE;

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 constant integer regsize = if elsize == 64 then 64 else 32;
 constant integer datasize = elsize;
 boolean tagchecked = n != 31;

Post-index

(FEAT_LRCPC3)

1 x 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs

1 x 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2013
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
32-bit variant

Applies when size == 10.

LDAPR <Wt>, [<Xn|SP>], #4

64-bit variant

Applies when size == 11.

LDAPR <Xt>, [<Xn|SP>], #8

Decode for all variants of this encoding

 boolean wback = TRUE;

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << UInt(size);
 constant integer offset = 1 << UInt(size);

 boolean tagchecked = TRUE;

 boolean wb_unknown = FALSE;

 if n == t && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2014
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2015
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.153 LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived
address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC)

Encoding

LDAPRB <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

0 0 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2016
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2017
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.154 LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC)

Encoding

LDAPRH <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

0 1 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size Rs
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2018
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2019
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.155 LDAPUR

Load-Acquire RCpc Register (unscaled) calculates an address from a base register and an immediate offset, loads
a 32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when size == 10.

LDAPUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDAPUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;

1 x 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2020
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2021
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.156 LDAPURB

Load-Acquire RCpc Register Byte (unscaled) calculates an address from a base register and an immediate offset,
loads a byte from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];

0 0 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2022
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2023
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.157 LDAPURH

Load-Acquire RCpc Register Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a halfword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];

0 1 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2024
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2025
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.158 LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) calculates an address from a base register and an immediate
offset, loads a signed byte from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when opc == 11.

LDAPURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then

0 0 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2026
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 if memop == MemOp_LOAD then
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 elsif memop == MemOp_STORE then
 accdesc = CreateAccDescAcqRel(memop, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2027
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.159 LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) calculates an address from a base register and an
immediate offset, loads a signed halfword from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when opc == 11.

LDAPURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then

0 1 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2028
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 if memop == MemOp_LOAD then
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 elsif memop == MemOp_STORE then
 accdesc = CreateAccDescAcqRel(memop, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2029
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.160 LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled) calculates an address from a base register and an immediate
offset, loads a signed word from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

LDAPURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLDAcqPC(tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];

1 0 0 1 1 0 0 1 1 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2030
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2031
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.161 LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from
memory, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

32-bit variant

Applies when size == 10.

LDAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 constant integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2032
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2033
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.162 LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire,
Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2034
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.163 LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2035
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.164 LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or
two 64-bit doublewords from memory, and writes them to two registers. For information on single-copy atomicity
and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The PE
marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics,
as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when sz == 0.

LDAXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

LDAXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDAXP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 1 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L Rs o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2036
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t, datasize] = bits(datasize) UNKNOWN; // In this case t = t2
 elsif elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 X[t, datasize-elsize] = data<datasize-1:elsize>;
 X[t2, elsize] = data<elsize-1:0>;
 else
 X[t, elsize] = data<elsize-1:0>;
 X[t2, datasize-elsize] = data<datasize-1:elsize>;
 else // elsize == 64
 // 64-bit load exclusive pair (not atomic), but must be 128-bit aligned
 if !IsAligned(address, dbytes) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 bits(64) address2 = GenerateAddress(address, 8, accdesc);
 X[t, 64] = Mem[address, 8, accdesc];
 X[t2, 64] = Mem[address2, 8, accdesc];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2037
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.165 LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics as
described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDAXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2038
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2039
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.166 LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Encoding

LDAXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 1);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2040
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.167 LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in
Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store
addressing modes.

Encoding

LDAXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 2);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2041
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.168 LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result
back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.

• LDCLR has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STCLR, STCLRL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDCLR variant

Applies when size == 10 && A == 0 && R == 0.

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRA variant

Applies when size == 10 && A == 1 && R == 0.

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRAL variant

Applies when size == 10 && A == 1 && R == 1.

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRL variant

Applies when size == 10 && A == 0 && R == 1.

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDCLR variant

Applies when size == 11 && A == 0 && R == 0.

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRA variant

Applies when size == 11 && A == 1 && R == 0.

LDCLRA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2042
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDCLRAL variant

Applies when size == 11 && A == 1 && R == 1.

LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRL variant

Applies when size == 11 && A == 0 && R == 1.

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STCLR, STCLRL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2043
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2044
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.169 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.

• LDCLRLB and LDCLRALB store to memory with release semantics.

• LDCLRB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STCLRB, STCLRLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDCLRAB variant

Applies when A == 1 && R == 0.

LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

LDCLRALB variant

Applies when A == 1 && R == 1.

LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

LDCLRB variant

Applies when A == 0 && R == 0.

LDCLRB <Ws>, <Wt>, [<Xn|SP>]

LDCLRLB variant

Applies when A == 0 && R == 1.

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2045
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STCLRB, STCLRLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2046
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.170 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND
with the complement of the value held in a register on it, and stores the result back to memory. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

• LDCLRLH and LDCLRALH store to memory with release semantics.

• LDCLRH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STCLRH, STCLRLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDCLRAH variant

Applies when A == 1 && R == 0.

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

LDCLRALH variant

Applies when A == 1 && R == 1.

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

LDCLRH variant

Applies when A == 0 && R == 0.

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

LDCLRLH variant

Applies when A == 0 && R == 1.

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2047
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STCLRH, STCLRLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2048
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.171 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL

Atomic bit clear on quadword in memory atomically loads a 128-bit quadword from memory, performs a bitwise
AND with the complement of the value held in a pair of registers on it, and stores the result back to memory. The
value initially loaded from memory is returned in the same pair of registers.

• LDCLRPA and LDCLRPAL load from memory with acquire semantics.

• LDCLRPL and LDCLRPAL store to memory with release semantics.

• LDCLRP has neither acquire nor release semantics.

Integer

(FEAT_LSE128)

LDCLRP variant

Applies when A == 0 && R == 0.

LDCLRP <Xt1>, <Xt2>, [<Xn|SP>]

LDCLRPA variant

Applies when A == 1 && R == 0.

LDCLRPA <Xt1>, <Xt2>, [<Xn|SP>]

LDCLRPAL variant

Applies when A == 1 && R == 1.

LDCLRPAL <Xt1>, <Xt2>, [<Xn|SP>]

LDCLRPL variant

Applies when A == 0 && R == 1.

LDCLRPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE128) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);
 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 0 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2049
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) value1 = X[t, 64];
 bits(64) value2 = X[t2, 64];
 bits(128) data;
 bits(128) store_value;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_BIC, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) comparevalue = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 if rt_unknown then
 data = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = data<127:64>;
 X[t2, 64] = data<63:0>;
 else
 X[t, 64] = data<63:0>;
 X[t2, 64] = data<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2050
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.172 LDEOR, LDEORA, LDEORAL, LDEORL

Atomic Exclusive-OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive-OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• LDEOR has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STEOR, STEORL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDEOR variant

Applies when size == 10 && A == 0 && R == 0.

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORA variant

Applies when size == 10 && A == 1 && R == 0.

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORAL variant

Applies when size == 10 && A == 1 && R == 1.

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORL variant

Applies when size == 10 && A == 0 && R == 1.

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDEOR variant

Applies when size == 11 && A == 0 && R == 0.

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORA variant

Applies when size == 11 && A == 1 && R == 0.

LDEORA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2051
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDEORAL variant

Applies when size == 11 && A == 1 && R == 1.

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORL variant

Applies when size == 11 && A == 0 && R == 1.

LDEORL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_EOR, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STEOR, STEORL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2052
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2053
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.173 LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic Exclusive-OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive-OR
with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

• LDEORLB and LDEORALB store to memory with release semantics.

• LDEORB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STEORB, STEORLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDEORAB variant

Applies when A == 1 && R == 0.

LDEORAB <Ws>, <Wt>, [<Xn|SP>]

LDEORALB variant

Applies when A == 1 && R == 1.

LDEORALB <Ws>, <Wt>, [<Xn|SP>]

LDEORB variant

Applies when A == 0 && R == 0.

LDEORB <Ws>, <Wt>, [<Xn|SP>]

LDEORLB variant

Applies when A == 0 && R == 1.

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2054
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_EOR, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STEORB, STEORLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2055
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.174 LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic Exclusive-OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an
exclusive-OR with the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.

• LDEORLH and LDEORALH store to memory with release semantics.

• LDEORH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STEORH, STEORLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDEORAH variant

Applies when A == 1 && R == 0.

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

LDEORALH variant

Applies when A == 1 && R == 1.

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

LDEORH variant

Applies when A == 0 && R == 0.

LDEORH <Ws>, <Wt>, [<Xn|SP>]

LDEORLH variant

Applies when A == 0 && R == 1.

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2056
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_EOR, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STEORH, STEORLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2057
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.175 LDG

Load Allocation Tag loads an Allocation Tag from a memory address, generates a Logical Address Tag from the
Allocation Tag and merges it into the destination register. The address used for the load is calculated from the base
register and an immediate signed offset scaled by the Tag granule.

Integer

(FEAT_MTE)

Encoding

LDG <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation

 bits(64) address;
 bits(4) tag;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_LOAD);

 address = GenerateAddress(address, offset, accdesc);
 address = Align(address, TAG_GRANULE);

 tag = AArch64.MemTag[address, accdesc];
 X[t, 64] = AArch64.AddressWithAllocationTag(X[t, 64], tag);

1 1 0 1 1 0 0 1 0 1 1 imm9 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2058
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.176 LDGM

Load Tag Multiple reads a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and writes the Allocation Tag read from address A to the destination register at
4*A<7:4>+3:4*A<7:4>. Bits of the destination register not written with an Allocation Tag are set to 0.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Integer

(FEAT_MTE2)

Encoding

LDGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE2) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = Zeros(64);
 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
 address = Align(address, size);
 constant integer count = size >> LOG2_TAG_GRANULE;
 integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);
 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_LOAD);

 for i = 0 to count-1
 bits(4) tag = AArch64.MemTag[address, accdesc];
 Elem[data, index, 4] = tag;
 address = GenerateAddress(address, TAG_GRANULE, accdesc);
 index = index + 1;

 X[t, 64] = data;

1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2059
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.177 LDIAPP

Load-Acquire RCpc ordered Pair of registers calculates an address from a base register value and an optional offset,
loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers. For information
on single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of
data accesses. The instruction also has memory ordering semantics, as described in Load-Acquire,
Load-AcquirePC, and Store-Release, except that:

• The Memory effects associated with Xt1/Wt1 are Ordered-before the Memory effects associated with
Xt2/Wt2.

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC3)

32-bit variant

Applies when size == 10 && opc2 == 0001.

LDIAPP <Wt1>, <Wt2>, [<Xn|SP>]

32-bit post-index variant

Applies when size == 10 && opc2 == 0000.

LDIAPP <Wt1>, <Wt2>, [<Xn|SP>], #8

64-bit variant

Applies when size == 11 && opc2 == 0001.

LDIAPP <Xt1>, <Xt2>, [<Xn|SP>]

64-bit post-index variant

Applies when size == 11 && opc2 == 0000.

LDIAPP <Xt1>, <Xt2>, [<Xn|SP>], #16

Decode for all variants of this encoding

 boolean postindex;
 boolean wback;
 postindex = opc2<0> == '0';
 wback = opc2<0> == '0';

1 x 0 1 1 0 0 1 0 1 0 Rt2 0 0 0 x 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

size L opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2060
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

LDIAPP has the same CONSTRAINED UNPREDICTABLE behavior as LDP. For information about this CONSTRAINED
UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and
particularly LDP and LDIAPP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Shared decode for all encodings

 integer offset;
 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 constant integer scale = 2 + UInt(size<0>);
 constant integer datasize = 8 << scale;
 offset = if opc2<0> == '0' then (2 << scale) else 0;
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescLDAcqPC(tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2061
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 accdesc.ispair = TRUE;
 full_data = Mem[address, 2*dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;

 X[t, datasize] = data1;
 X[t2, datasize] = data2;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2062
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.178 LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information
about memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

32-bit variant

Applies when size == 10.

LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDLAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 constant integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_LOAD, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2063
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2064
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.179 LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information about
memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

Encoding

LDLARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_LOAD, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2065
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.180 LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information
about memory accesses, see Load/store addressing modes.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset

(FEAT_LOR)

Encoding

LDLARH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_LOAD, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2066
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.181 LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/store addressing modes. For information about Non-temporal
pair instructions, see Load/store non-temporal pair.

32-bit variant

Applies when opc == 00.

LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc<0> == '1' then UNDEFINED;

x 0 1 0 1 0 0 0 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2067
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, TRUE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 if IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 accdesc.ispair = TRUE;
 full_data = Mem[address, 2*dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 X[t, datasize] = data1;
 X[t2, datasize] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2068
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.182 LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory
accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

x 0 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2069
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDP and LDIAPP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
 boolean signed = (opc<0> != '0');
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2070
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if !signed && IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 accdesc.ispair = TRUE;
 full_data = Mem[address, 2*dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 data2 = full_data<(datasize-1):0>;
 data1 = full_data<(2*datasize-1):datasize>;
 else
 data1 = full_data<(datasize-1):0>;
 data2 = full_data<(2*datasize-1):datasize>;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 if signed then
 X[t, 64] = SignExtend(data1, 64);
 X[t2, 64] = SignExtend(data2, 64);
 else
 X[t, datasize] = data1;
 X[t2, datasize] = data2;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2071
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2072
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.183 LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads
two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about memory
accesses, see Load/store addressing modes.

Post-index

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

0 1 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

0 1 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

0 1 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2073
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDPSW.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the
range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 bits(64) offset = LSL(SignExtend(imm7, 64), 2);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 boolean wb_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(32) data1;
 bits(32) data2;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2074
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, 4, accdesc);
 data1 = Mem[address, 4, accdesc];
 data2 = Mem[address2, 4, accdesc];
 if rt_unknown then
 data1 = bits(32) UNKNOWN;
 data2 = bits(32) UNKNOWN;
 X[t, 64] = SignExtend(data1, 64);
 X[t2, 64] = SignExtend(data2, 64);
 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2075
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.184 LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/store addressing modes. The Unsigned offset variant scales the immediate offset value by the size of the
value accessed before adding it to the base register value.

Post-index

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

1 x 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 x 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2076
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDR (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;
 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

1 x 1 1 1 0 0 1 0 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2077
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2078
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.185 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 00.

LDR <Wt>, <label>

64-bit variant

Applies when opc == 01.

LDR <Xt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 MemOp memop = if opc == '11' then MemOp_PREFETCH else MemOp_LOAD;
 constant integer size = 4 << UInt(opc<0>);
 boolean signed = opc == '10';

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC64 + offset;
 bits(size*8) data;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, FALSE);
 case memop of
 when MemOp_LOAD
 data = Mem[address, size, accdesc];
 if signed then
 X[t, 64] = SignExtend(data, 64);
 else
 X[t, size*8] = data;

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

0 x 0 1 1 0 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2079
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2080
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.186 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For
information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

1 x 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2081
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2082
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.187 LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a
modifier of zero and the specified key, adds an immediate offset to the authenticated address, and loads a 64-bit
doubleword from memory at this resulting address into a register.

Key A is used for LDRAA. Key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. For information on behavior if the
authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction
is used. In this case, the address that is written back to the base register does not include the pointer authentication
code.

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_PAuth)

Key A, offset variant

Applies when M == 0 && W == 0.

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]

Key A, pre-indexed variant

Applies when M == 0 && W == 1.

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]!

Key B, offset variant

Applies when M == 1 && W == 0.

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]

Key B, pre-indexed variant

Applies when M == 1 && W == 1.

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_PAuth) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 boolean wback = (W == '1');
 boolean use_key_a = (M == '0');
 bits(10) S10 = S:imm9;
 bits(64) offset = LSL(SignExtend(S10, 64), 3);
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

1 1 1 1 1 0 0 0 M S 1 imm9 W 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2083
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting
to 0 and encoded in the "S:imm9" field as <simm>/8.

Operation

 bits(64) address;
 bits(64) data;
 boolean privileged = PSTATE.EL != EL0;
 boolean wb_unknown = FALSE;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);
 if wback && n == t && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 if use_key_a then
 address = AuthDA(address, X[31, 64], TRUE);
 else
 address = AuthDB(address, X[31, 64], TRUE);

 if n == 31 then
 CheckSPAlignment();

 address = GenerateAddress(address, offset, accdesc);
 data = Mem[address, 8, accdesc];
 X[t, 64] = data;

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2084
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.188 LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/store addressing modes.

Post-index

Encoding

LDRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2085
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRB (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2086
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2087
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.189 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Extended register variant

Applies when option != 011.

LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option == 011.

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 0 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2088
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, 0, 64);
 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2089
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.190 LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/store addressing modes.

Post-index

Encoding

LDRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRH <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRH <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

0 1 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 1 0 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2090
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRH (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2091
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2092
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.191 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Encoding

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 1 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2093
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2094
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.192 LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an immediate
offset. For information about memory accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

0 0 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2095
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSB (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (wback || n != 31);

0 0 1 1 1 0 0 1 1 x imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2096
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 boolean wb_unknown = FALSE;
 boolean rt_unknown = FALSE;
 Constraint c;

 if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2097
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2098
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.193 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

32-bit with extended register offset variant

Applies when opc == 11 && option != 011.

LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

32-bit with shifted register offset variant

Applies when opc == 11 && option == 011.

LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset variant

Applies when opc == 10 && option != 011.

LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

64-bit with shifted register offset variant

Applies when opc == 10 && option == 011.

LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

0 0 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2099
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, 0, 64);
 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2100
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.194 LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

0 1 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2101
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSH (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (wback || n != 31);

0 1 1 1 1 0 0 1 1 x imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2102
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 boolean wb_unknown = FALSE;
 boolean rt_unknown = FALSE;
 Constraint c;

 if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2103
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2104
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.195 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory
accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

0 1 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2105
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2106
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.196 LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result
to a register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/store addressing modes.

Post-index

Encoding

LDRSW <Xt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

LDRSW <Xt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 2);

1 0 1 1 1 0 0 0 1 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 0 1 1 1 0 0 0 1 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 0 1 1 1 0 0 1 1 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2107
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSW (immediate).

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to
0 and encoded in the "imm12" field as <pimm>/4.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean wb_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(32) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);
 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2108
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2109
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.197 LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to a register. For information about memory accesses, see Load/store addressing modes.

Encoding

LDRSW <Xt>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC64 + offset;
 bits(32) data;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, FALSE);
 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 0 0 1 1 0 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2110
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.198 LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value,
loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register value
can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/store addressing modes.

Encoding

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 2 else 0;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#2 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

1 0 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2111
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(32) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2112
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.199 LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.

• LDSET has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses see Load/store addressing modes.

This instruction is used by the alias STSET, STSETL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDSET variant

Applies when size == 10 && A == 0 && R == 0.

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETA variant

Applies when size == 10 && A == 1 && R == 0.

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETL variant

Applies when size == 10 && A == 0 && R == 1.

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSET variant

Applies when size == 11 && A == 0 && R == 0.

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETA variant

Applies when size == 11 && A == 1 && R == 0.

LDSETA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2113
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSETAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETL variant

Applies when size == 11 && A == 0 && R == 1.

LDSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STSET, STSETL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2114
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2115
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.200 LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

• LDSETLB and LDSETALB store to memory with release semantics.

• LDSETB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSETB, STSETLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSETAB variant

Applies when A == 1 && R == 0.

LDSETAB <Ws>, <Wt>, [<Xn|SP>]

LDSETALB variant

Applies when A == 1 && R == 1.

LDSETALB <Ws>, <Wt>, [<Xn|SP>]

LDSETB variant

Applies when A == 0 && R == 0.

LDSETB <Ws>, <Wt>, [<Xn|SP>]

LDSETLB variant

Applies when A == 0 && R == 1.

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2116
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSETB, STSETLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2117
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.201 LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with
the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.

• LDSETLH and LDSETALH store to memory with release semantics.

• LDSETH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSETH, STSETLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSETAH variant

Applies when A == 1 && R == 0.

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

LDSETALH variant

Applies when A == 1 && R == 1.

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

LDSETH variant

Applies when A == 0 && R == 0.

LDSETH <Ws>, <Wt>, [<Xn|SP>]

LDSETLH variant

Applies when A == 0 && R == 1.

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2118
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSETH, STSETLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2119
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.202 LDSETP, LDSETPA, LDSETPAL, LDSETPL

Atomic bit set on quadword in memory atomically loads a 128-bit quadword from memory, performs a bitwise OR
with the value held in a pair of registers on it, and stores the result back to memory. The value initially loaded from
memory is returned in the same pair of registers.

• LDSETPA and LDSETPAL load from memory with acquire semantics.

• LDSETPL and LDSETPAL store to memory with release semantics.

• LDSETP has neither acquire nor release semantics.

Integer

(FEAT_LSE128)

LDSETP variant

Applies when A == 0 && R == 0.

LDSETP <Xt1>, <Xt2>, [<Xn|SP>]

LDSETPA variant

Applies when A == 1 && R == 0.

LDSETPA <Xt1>, <Xt2>, [<Xn|SP>]

LDSETPAL variant

Applies when A == 1 && R == 1.

LDSETPAL <Xt1>, <Xt2>, [<Xn|SP>]

LDSETPL variant

Applies when A == 0 && R == 1.

LDSETPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE128) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 0 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2120
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) value1 = X[t, 64];
 bits(64) value2 = X[t2, 64];
 bits(128) data;
 bits(128) store_value;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_ORR, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) comparevalue = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 if rt_unknown then
 data = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = data<127:64>;
 X[t2, 64] = data<63:0>;
 else
 X[t, 64] = data<63:0>;
 X[t2, 64] = data<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2121
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.203 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.

• LDSMAX has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMAX, STSMAXL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDSMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2122
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMAX, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STSMAX, STSMAXL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2123
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2124
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.204 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.

• LDSMAXLB and LDSMAXALB store to memory with release semantics.

• LDSMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMAXB, STSMAXLB. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDSMAXAB variant

Applies when A == 1 && R == 0.

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALB variant

Applies when A == 1 && R == 1.

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXB variant

Applies when A == 0 && R == 0.

LDSMAXB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLB variant

Applies when A == 0 && R == 1.

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2125
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMAX, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMAXB, STSMAXLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2126
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.205 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.

• LDSMAXLH and LDSMAXALH store to memory with release semantics.

• LDSMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMAXH, STSMAXLH. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDSMAXAH variant

Applies when A == 1 && R == 0.

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALH variant

Applies when A == 1 && R == 1.

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXH variant

Applies when A == 0 && R == 0.

LDSMAXH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLH variant

Applies when A == 0 && R == 1.

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2127
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMAX, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMAXH, STSMAXLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2128
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.206 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.

• LDSMIN has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMIN, STSMINL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDSMIN variant

Applies when size == 10 && A == 0 && R == 0.

LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMIN variant

Applies when size == 11 && A == 0 && R == 0.

LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMINA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2129
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMINAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMIN, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STSMIN, STSMINL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2130
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2131
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.207 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.

• LDSMINLB and LDSMINALB store to memory with release semantics.

• LDSMINB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMINB, STSMINLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSMINAB variant

Applies when A == 1 && R == 0.

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

LDSMINALB variant

Applies when A == 1 && R == 1.

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

LDSMINB variant

Applies when A == 0 && R == 0.

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

LDSMINLB variant

Applies when A == 0 && R == 1.

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2132
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMIN, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMINB, STSMINLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2133
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.208 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.

• LDSMINLH and LDSMINALH store to memory with release semantics.

• LDSMINH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STSMINH, STSMINLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDSMINAH variant

Applies when A == 1 && R == 0.

LDSMINAH <Ws>, <Wt>, [<Xn|SP>]

LDSMINALH variant

Applies when A == 1 && R == 1.

LDSMINALH <Ws>, <Wt>, [<Xn|SP>]

LDSMINH variant

Applies when A == 0 && R == 0.

LDSMINH <Ws>, <Wt>, [<Xn|SP>]

LDSMINLH variant

Applies when A == 0 && R == 1.

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2134
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SMIN, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STSMINH, STSMINLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2135
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.209 LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that
is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

1 x 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2136
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2137
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.210 LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 0 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2138
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2139
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.211 LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

LDTRH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 1 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2140
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2141
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.212 LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes
the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDTRSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else

0 0 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2142
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2143
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.213 LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;

0 1 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2144
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2145
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.214 LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the
result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

1 0 1 1 1 0 0 0 1 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2146
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2147
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.215 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.

• LDUMAX has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMAX, STUMAXL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDUMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2148
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMAX, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STUMAX, STUMAXL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2149
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2150
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.216 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.

• LDUMAXLB and LDUMAXALB store to memory with release semantics.

• LDUMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMAXB, STUMAXLB. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDUMAXAB variant

Applies when A == 1 && R == 0.

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALB variant

Applies when A == 1 && R == 1.

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXB variant

Applies when A == 0 && R == 0.

LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLB variant

Applies when A == 0 && R == 1.

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2151
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMAX, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMAXB, STUMAXLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2152
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.217 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.

• LDUMAXLH and LDUMAXALH store to memory with release semantics.

• LDUMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMAXH, STUMAXLH. See Alias conditions for details of when each alias
is preferred.

Integer

(FEAT_LSE)

LDUMAXAH variant

Applies when A == 1 && R == 0.

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALH variant

Applies when A == 1 && R == 1.

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXH variant

Applies when A == 0 && R == 0.

LDUMAXH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLH variant

Applies when A == 0 && R == 1.

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2153
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMAX, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMAXH, STUMAXLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2154
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.218 LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.

• LDUMIN has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMIN, STUMINL. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

32-bit LDUMIN variant

Applies when size == 10 && A == 0 && R == 0.

LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINA variant

Applies when size == 10 && A == 1 && R == 0.

LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINAL variant

Applies when size == 10 && A == 1 && R == 1.

LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINL variant

Applies when size == 10 && A == 0 && R == 1.

LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMIN variant

Applies when size == 11 && A == 0 && R == 0.

LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINA variant

Applies when size == 11 && A == 1 && R == 0.

LDUMINA <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2155
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMINAL variant

Applies when size == 11 && A == 1 && R == 1.

LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINL variant

Applies when size == 11 && A == 0 && R == 1.

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) value;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMIN, acquire, release, tagchecked);

 value = X[s, datasize];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

Alias is preferred when

STUMIN, STUMINL A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2156
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if t != 31 then
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2157
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.219 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.

• LDUMINLB and LDUMINALB store to memory with release semantics.

• LDUMINB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMINB, STUMINLB. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDUMINAB variant

Applies when A == 1 && R == 0.

LDUMINAB <Ws>, <Wt>, [<Xn|SP>]

LDUMINALB variant

Applies when A == 1 && R == 1.

LDUMINALB <Ws>, <Wt>, [<Xn|SP>]

LDUMINB variant

Applies when A == 0 && R == 0.

LDUMINB <Ws>, <Wt>, [<Xn|SP>]

LDUMINLB variant

Applies when A == 0 && R == 1.

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2158
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) value;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMIN, acquire, release, tagchecked);

 value = X[s, 8];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMINB, STUMINLB A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2159
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.220 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.

• LDUMINLH and LDUMINALH store to memory with release semantics.

• LDUMINH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is used by the alias STUMINH, STUMINLH. See Alias conditions for details of when each alias is
preferred.

Integer

(FEAT_LSE)

LDUMINAH variant

Applies when A == 1 && R == 0.

LDUMINAH <Ws>, <Wt>, [<Xn|SP>]

LDUMINALH variant

Applies when A == 1 && R == 1.

LDUMINALH <Ws>, <Wt>, [<Xn|SP>]

LDUMINH variant

Applies when A == 0 && R == 0.

LDUMINH <Ws>, <Wt>, [<Xn|SP>]

LDUMINLH variant

Applies when A == 0 && R == 1.

LDUMINLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2160
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) value;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_UMIN, acquire, release, tagchecked);

 value = X[s, 16];
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, value, accdesc);

 if t != 31 then
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias is preferred when

STUMINH, STUMINLH A == '0' && Rt == '11111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2161
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.221 LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or
64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer regsize;

 regsize = if size == '11' then 64 else 32;
 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();

1 x 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2162
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, datasize DIV 8, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2163
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.222 LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from
memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/store
addressing modes.

Encoding

LDURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2164
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.223 LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Encoding

LDURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2165
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.224 LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

0 0 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2166
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 1, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2167
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.225 LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads
a signed halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses,
see Load/store addressing modes.

32-bit variant

Applies when opc == 11.

LDURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop;
 boolean signed;
 integer regsize;

 if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
 else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

0 1 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2168
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(memop, FALSE, privileged, tagchecked);

 if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, 2, accdesc];
 if signed then
 X[t, regsize] = SignExtend(data, regsize);
 else
 X[t, regsize] = ZeroExtend(data, regsize);

 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2169
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.226 LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a
signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/store addressing modes.

Encoding

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(32) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = Mem[address, 4, accdesc];
 X[t, 64] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 0 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2170
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.227 LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. For information on single-copy atomicity and
alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The PE marks
the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores. For information about memory accesses, see
Load/store addressing modes.

32-bit variant

Applies when sz == 0.

LDXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

LDXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDXP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L Rs o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2171
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

 if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t, datasize] = bits(datasize) UNKNOWN; // In this case t = t2
 elsif elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, accdesc];
 if BigEndian(accdesc.acctype) then
 X[t, datasize-elsize] = data<datasize-1:elsize>;
 X[t2, elsize] = data<elsize-1:0>;
 else
 X[t, elsize] = data<elsize-1:0>;
 X[t2, datasize-elsize] = data<datasize-1:elsize>;
 else // elsize == 64
 // 64-bit load exclusive pair (not atomic), but must be 128-bit aligned
 if !IsAligned(address, dbytes) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 bits(64) address2 = GenerateAddress(address, 8, accdesc);
 X[t, 64] = Mem[address, 8, accdesc];
 X[t2, 64] = Mem[address2, 8, accdesc];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2172
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.228 LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword
from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

LDXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 integer regsize = if elsize == 64 then 64 else 32;
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, dbytes);

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2173
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = Mem[address, dbytes, accdesc];
 X[t, regsize] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2174
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.229 LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an
exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses, see Load/store addressing modes.

Encoding

LDXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 1);

 data = Mem[address, 1, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2175
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.230 LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses, see Load/store addressing modes.

Encoding

LDXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 // Tell the Exclusives monitors to record a sequence of one or more atomic
 // memory reads from virtual address range [address, address+dbytes-1].
 // The Exclusives monitor will only be set if all the reads are from the
 // same dbytes-aligned physical address, to allow for the possibility of
 // an atomicity break if the translation is changed between reads.
 AArch64.SetExclusiveMonitors(address, 2);

 data = Mem[address, 2, accdesc];
 X[t, 32] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2176
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.231 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms != 011111.

LSL <Wd>, <Wn>, #<shift>

 is equivalent to

UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)

and is the preferred disassembly when imms + 1 == immr.

64-bit variant

Applies when sf == 1 && N == 1 && imms != 111111.

LSL <Xd>, <Xn>, #<shift>

 is equivalent to

UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)

and is the preferred disassembly when imms + 1 == immr.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31.

For the 64-bit variant: is the shift amount, in the range 0 to 63.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc

imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2177
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2178
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.232 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is an alias of the LSLV instruction. This means that:

• The encodings in this description are named to match the encodings of LSLV.

• The description of LSLV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

LSL <Wd>, <Wn>, <Wm>

 is equivalent to

LSLV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

LSL <Xd>, <Xn>, <Xm>

 is equivalent to

LSLV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSLV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2179
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2180
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.233 LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is used by the alias LSL (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSLV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSLV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2181
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2182
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.234 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 011111.

LSR <Wd>, <Wn>, #<shift>

 is equivalent to

UBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1 && imms == 111111.

LSR <Xd>, <Xn>, #<shift>

 is equivalent to

UBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2183
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2184
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.235 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the LSRV instruction. This means that:

• The encodings in this description are named to match the encodings of LSRV.

• The description of LSRV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

LSR <Wd>, <Wn>, <Wm>

 is equivalent to

LSRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

LSR <Xd>, <Xn>, <Xm>

 is equivalent to

LSRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSRV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2185
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2186
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.236 LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias LSR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2187
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2188
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.237 MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination
register.

This instruction is used by the alias MUL. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

MADD <Wd>, <Wn>, <Wm>, <Wa>

64-bit variant

Applies when sf == 1.

MADD <Xd>, <Xn>, <Xm>, <Xa>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);
 constant integer destsize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Alias is preferred when

MUL Ra == '11111'

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2189
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(destsize) operand1 = X[n, destsize];
 bits(destsize) operand2 = X[m, destsize];
 bits(destsize) operand3 = X[a, destsize];

 integer result;

 result = UInt(operand3) + (UInt(operand1) * UInt(operand2));

 X[d, destsize] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2190
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.238 MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This instruction is an alias of the MSUB instruction. This means that:

• The encodings in this description are named to match the encodings of MSUB.

• The description of MSUB gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MNEG <Wd>, <Wn>, <Wm>

 is equivalent to

MSUB <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MNEG <Xd>, <Xn>, <Xm>

 is equivalent to

MSUB <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0 Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2191
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2192
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.239 MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.

This instruction is an alias of the ORR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (immediate).

• The description of ORR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

MOV <Wd|WSP>, #<imm>

 is equivalent to

ORR <Wd|WSP>, WZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

64-bit variant

Applies when sf == 1.

MOV <Xd|SP>, #<imm>

 is equivalent to

ORR <Xd|SP>, XZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values
which could be encoded by MOVZ or MOVN.

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values
which could be encoded by MOVZ or MOVN.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

sf 0 1 1 0 0 1 0 0 N immr imms 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2193
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2194
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.240 MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This instruction is an alias of the MOVN instruction. This means that:

• The encodings in this description are named to match the encodings of MOVN.

• The description of MOVN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>

 is equivalent to

MOVN <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16).

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

 is equivalent to

MOVN <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw", but excluding 0xffff0000 and 0x0000ffff

For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVN gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2195
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2196
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.241 MOV (register)

Move (register) copies the value in a source register to the destination register.

This instruction is an alias of the ORR (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (shifted register).

• The description of ORR (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd>, <Wm>

 is equivalent to

ORR <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MOV <Xd>, <Xm>

 is equivalent to

ORR <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 1 0 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc shift N imm6 Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2197
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2198
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.242 MOV (to/from SP)

Move between register and stack pointer : Rd = Rn

This instruction is an alias of the ADD (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ADD (immediate).

• The description of ADD (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd|WSP>, <Wn|WSP>

 is equivalent to

ADD <Wd|WSP>, <Wn|WSP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

64-bit variant

Applies when sf == 1.

MOV <Xd|SP>, <Xn|SP>

 is equivalent to

ADD <Xd|SP>, <Xn|SP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

Operation

The description of ADD (immediate) gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S sh imm12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2199
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.243 MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This instruction is an alias of the MOVZ instruction. This means that:

• The encodings in this description are named to match the encodings of MOVZ.

• The description of MOVZ gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>

 is equivalent to

MOVZ <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

 is equivalent to

MOVZ <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".

For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVZ gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2200
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2201
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.244 MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits
unchanged.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVK <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVK <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 if sf == '0' && hw<1> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 constant integer datasize = 32 << UInt(sf);
 constant integer pos = UInt(hw:'0000');

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = X[d, datasize];
 result<pos+15:pos> = imm16;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2202
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2203
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.245 MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate). See Alias conditions for details of when each
alias is preferred.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVN <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVN <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 if sf == '0' && hw<1> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 constant integer datasize = 32 << UInt(sf);
 constant integer pos = UInt(hw:'0000');

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = Zeros(datasize);

Alias of variant is preferred when

MOV (inverted wide immediate) 64-bit ! (IsZero(imm16) && hw != '00')

MOV (inverted wide immediate) 32-bit ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16)

sf 0 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2204
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 result<pos+15:pos> = imm16;
 result = NOT(result);
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2205
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.246 MOVZ

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0 && hw == 0x.

MOVZ <Wd>, #<imm>{, LSL #<shift>}

64-bit variant

Applies when sf == 1.

MOVZ <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

 if sf == '0' && hw<1> == '1' then UNDEFINED;

 integer d = UInt(Rd);
 constant integer datasize = 32 << UInt(sf);
 constant integer pos = UInt(hw:'0000');

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

 bits(datasize) result;

 result = Zeros(datasize);

Alias is preferred when

MOV (wide immediate) ! (IsZero(imm16) && hw != '00')

sf 1 0 1 0 0 1 0 1 hw imm16 Rd

31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2206
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 result<pos+15:pos> = imm16;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2207
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.247 MRS

Move System Register to general-purpose register allows the PE to read an AArch64 System register into a
general-purpose register.

Encoding

MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

Decode for this encoding

 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in Chapter D23 AArch64 System Register Descriptions.

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t);

1 1 0 1 0 1 0 1 0 0 1 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2208
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.248 MRRS

Move System Register to two adjacent general-purpose registers allows the PE to read an AArch64 128-bit System
register into two adjacent 64-bit general-purpose registers.

System

(FEAT_SYSREG128)

Encoding

MRRS <Xt>, <Xt+1>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SYSREG128) then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);
 integer t2 = UInt(Rt + 1);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose destination register, encoded in the "Rt" field.

<Xt+1> Is the 64-bit name of the second general-purpose destination register, encoded as "Rt" +1.

<systemreg> Is a System register name, encoded in "o0:op1:CRn:CRm:op2".

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 AArch64.SysRegRead128(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t, t2);

1 1 0 1 0 1 0 1 0 1 1 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2209
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.249 MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see PSTATE.

The bits that can be written by this instruction are:

• PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.

• If FEAT_SSBS is implemented, PSTATE.SSBS.

• If FEAT_PAN is implemented, PSTATE.PAN.

• If FEAT_UAO is implemented, PSTATE.UAO.

• If FEAT_DIT is implemented, PSTATE.DIT.

• If FEAT_MTE is implemented, PSTATE.TCO.

• If FEAT_NMI is implemented, PSTATE.ALLINT.

• If FEAT_SME is implemented, PSTATE.SM and PSTATE.ZA.

• If FEAT_EBEP is implemented, PSTATE.PM.

This instruction is used by the aliases SMSTART and SMSTOP. See Alias conditions for details of when each alias
is preferred.

Encoding

MSR <pstatefield>, #<imm>

Decode for this encoding

 if op1 == '000' && op2 == '000' then SEE "CFINV";
 if op1 == '000' && op2 == '001' then SEE "XAFLAG";
 if op1 == '000' && op2 == '010' then SEE "AXFLAG";

 AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');
 bits(2) min_EL;
 boolean need_secure = FALSE;

 case op1 of
 when '00x'
 min_EL = EL1;
 when '010'
 min_EL = EL1;
 when '011'
 min_EL = EL0;
 when '100'
 min_EL = EL2;
 when '101'
 if !IsFeatureImplemented(FEAT_VHE) then
 UNDEFINED;
 min_EL = EL2;
 when '110'
 min_EL = EL3;
 when '111'
 min_EL = EL1;

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2210
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 need_secure = TRUE;

 if (UInt(PSTATE.EL) < UInt(min_EL) || (need_secure && CurrentSecurityState() != SS_Secure)) then
 UNDEFINED;

 PSTATEField field;
 case op1:op2 of
 when '000 011'
 if !IsFeatureImplemented(FEAT_UAO) then UNDEFINED;
 field = PSTATEField_UAO;
 when '000 100'
 if !IsFeatureImplemented(FEAT_PAN) then UNDEFINED;
 field = PSTATEField_PAN;
 when '000 101' field = PSTATEField_SP;
 when '001 000'
 case CRm of
 when '000x'
 if !IsFeatureImplemented(FEAT_NMI) then UNDEFINED;
 field = PSTATEField_ALLINT;
 when '001x'
 if !IsFeatureImplemented(FEAT_EBEP) then UNDEFINED;
 field = PSTATEField_PM;
 otherwise
 UNDEFINED;
 when '011 010'
 if !IsFeatureImplemented(FEAT_DIT) then UNDEFINED;
 field = PSTATEField_DIT;
 when '011 011'
 case CRm of
 when '001x'
 if !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
 field = PSTATEField_SVCRSM;
 when '010x'
 if !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
 field = PSTATEField_SVCRZA;
 when '011x'
 if !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
 field = PSTATEField_SVCRSMZA;
 otherwise
 UNDEFINED;
 when '011 100'
 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 field = PSTATEField_TCO;
 when '011 110' field = PSTATEField_DAIFSet;
 when '011 111' field = PSTATEField_DAIFClr;
 when '011 001'
 if !IsFeatureImplemented(FEAT_SSBS) then UNDEFINED;
 field = PSTATEField_SSBS;
 otherwise UNDEFINED;

Alias conditions

Assembler symbols

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in the "op1:op2:CRm" field. It
can have the following values:

SPSel when op1 = 000, op2 = 101, CRm = xxxx

Alias is preferred when

SMSTART op1 == '011' && CRm == '0xx1' && op2 == '011'

SMSTOP op1 == '011' && CRm == '0xx0' && op2 == '011'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2211
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
DAIFSet when op1 = 011, op2 = 110, CRm = xxxx

DAIFClr when op1 = 011, op2 = 111, CRm = xxxx

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011, CRm = xxxx

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100, CRm = xxxx

When FEAT_NMI is implemented, the following value is also valid:

ALLINT when op1 = 001, op2 = 000, CRm = 000x

When FEAT_EBEP is implemented, the following value is also valid:

PM when op1 = 001, op2 = 000, CRm = 001x

When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001, CRm = xxxx

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010, CRm = xxxx

When FEAT_SME is implemented, the following values are also valid:

SVCRSM when op1 = 011, op2 = 011, CRm = 001x

SVCRZA when op1 = 011, op2 = 011, CRm = 010x

SVCRSMZA when op1 = 011, op2 = 011, CRm = 011x

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100, CRm = xxxx

See PSTATE when op1 = 000, op2 = 00x, CRm = xxxx.

See PSTATE when op1 = 000, op2 = 010, CRm = xxxx.

The following encodings are reserved:

• op1 = 000, op2 = 11x, CRm = xxxx.

• op1 = 001, op2 = 000, CRm = 01xx.

• op1 = 001, op2 = 000, CRm = 1xxx.

• op1 = 001, op2 = 001, CRm = xxxx.

• op1 = 001, op2 = 01x, CRm = xxxx.

• op1 = 001, op2 = 1xx, CRm = xxxx.

• op1 = 010, op2 = xxx, CRm = xxxx.

• op1 = 011, op2 = 000, CRm = xxxx.

• op1 = 011, op2 = 011, CRm = 000x.

• op1 = 011, op2 = 011, CRm = 1xxx.

• op1 = 011, op2 = 101, CRm = xxxx.

• op1 = 1xx, op2 = xxx, CRm = xxxx.

 For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01 specifies
SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field. Restricted to the
range 0 to 1, encoded in "CRm<0>", when <pstatefield> is ALLINT, PM, SVCRSM, SVCRSMZA,
or SVCRZA.

Operation

 case field of
 when PSTATEField_SSBS
 PSTATE.SSBS = CRm<0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2212
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when PSTATEField_SP
 PSTATE.SP = CRm<0>;
 when PSTATEField_DAIFSet
 AArch64.CheckDAIFAccess(PSTATEField_DAIFSet);
 PSTATE.D = PSTATE.D OR CRm<3>;
 PSTATE.A = PSTATE.A OR CRm<2>;
 PSTATE.I = PSTATE.I OR CRm<1>;
 PSTATE.F = PSTATE.F OR CRm<0>;
 when PSTATEField_DAIFClr
 AArch64.CheckDAIFAccess(PSTATEField_DAIFClr);
 PSTATE.D = PSTATE.D AND NOT(CRm<3>);
 PSTATE.A = PSTATE.A AND NOT(CRm<2>);
 PSTATE.I = PSTATE.I AND NOT(CRm<1>);
 PSTATE.F = PSTATE.F AND NOT(CRm<0>);
 when PSTATEField_PAN
 PSTATE.PAN = CRm<0>;
 when PSTATEField_UAO
 PSTATE.UAO = CRm<0>;
 when PSTATEField_DIT
 PSTATE.DIT = CRm<0>;
 when PSTATEField_TCO
 PSTATE.TCO = CRm<0>;
 when PSTATEField_ALLINT
 if (PSTATE.EL == EL1 && IsHCRXEL2Enabled() && HCRX_EL2.TALLINT == '1' && CRm<0> == '1') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 PSTATE.ALLINT = CRm<0>;
 when PSTATEField_SVCRSM
 CheckSMEAccess();
 SetPSTATE_SM(CRm<0>);
 when PSTATEField_SVCRZA
 CheckSMEAccess();
 SetPSTATE_ZA(CRm<0>);
 when PSTATEField_SVCRSMZA
 CheckSMEAccess();
 SetPSTATE_SM(CRm<0>);
 SetPSTATE_ZA(CRm<0>);
 when PSTATEField_PM
 PSTATE.PM = CRm<0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2213
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.250 MSR (register)

Move general-purpose register to System Register allows the PE to write an AArch64 System register from a
general-purpose register.

Encoding

MSR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>

Decode for this encoding

 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in Chapter D23 AArch64 System Register Descriptions.

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

 AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t);

1 1 0 1 0 1 0 1 0 0 0 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2214
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.251 MSRR

Move two adjacent general-purpose registers to System Register allows the PE to write an AArch64 128-bit System
register from two adjacent 64-bit general-purpose registers.

System

(FEAT_SYSREG128)

Encoding

MSRR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>, <Xt+1>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SYSREG128) then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);
 integer t2 = UInt(Rt + 1);

 integer sys_op0 = 2 + UInt(o0);
 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Assembler symbols

<systemreg> Is a System register name, encoded in "o0:op1:CRn:CRm:op2".

<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:

2 when o0 = 0

3 when o0 = 1

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the first general-purpose source register, encoded in the "Rt" field.

<Xt+1> Is the 64-bit name of the second general-purpose source register, encoded as "Rt" +1.

Operation

 AArch64.SysRegWrite128(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, t, t2);

1 1 0 1 0 1 0 1 0 1 0 1 o0 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2215
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.252 MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the
result to the destination register.

This instruction is used by the alias MNEG. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

MSUB <Wd>, <Wn>, <Wm>, <Wa>

64-bit variant

Applies when sf == 1.

MSUB <Xd>, <Xn>, <Xm>, <Xa>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);
 constant integer destsize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Alias is preferred when

MNEG Ra == '11111'

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2216
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(destsize) operand1 = X[n, destsize];
 bits(destsize) operand2 = X[m, destsize];
 bits(destsize) operand3 = X[a, destsize];

 integer result;

 result = UInt(operand3) - (UInt(operand1) * UInt(operand2));
 X[d, destsize] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2217
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.253 MUL

Multiply : Rd = Rn * Rm

This instruction is an alias of the MADD instruction. This means that:

• The encodings in this description are named to match the encodings of MADD.

• The description of MADD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MUL <Wd>, <Wn>, <Wm>

 is equivalent to

MADD <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MUL <Xd>, <Xn>, <Xm>

 is equivalent to

MADD <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o0 Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2218
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.254 MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This instruction is an alias of the ORN (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORN (shifted register).

• The description of ORN (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

MVN <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

ORN <Wd>, WZR, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

MVN <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

ORN <Xd>, XZR, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2219
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of ORN (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2220
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.255 NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This instruction is an alias of the SUB (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUB (shifted register).

• The description of SUB (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NEG <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUB <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NEG <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUB <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2221
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2222
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.256 NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It
updates the condition flags based on the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (shifted register).

• The description of SUBS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NEGS <Wd>, <Wm>{, <shift> #<amount>}

 is equivalent to

SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NEGS <Xd>, <Xm>{, <shift> #<amount>}

 is equivalent to

SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 !=11111

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S Rn Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2223
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2224
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.257 NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to
the destination register.

This instruction is an alias of the SBC instruction. This means that:

• The encodings in this description are named to match the encodings of SBC.

• The description of SBC gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NGC <Wd>, <Wm>

 is equivalent to

SBC <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NGC <Xd>, <Xm>

 is equivalent to

SBC <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2225
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2226
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.258 NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is an alias of the SBCS instruction. This means that:

• The encodings in this description are named to match the encodings of SBCS.

• The description of SBCS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

NGCS <Wd>, <Wm>

 is equivalent to

SBCS <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

NGCS <Xd>, <Xm>

 is equivalent to

SBCS <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBCS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2227
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2228
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.259 NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used
for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

Encoding

NOP

Decode for this encoding

 // Empty.

Operation

 return; // do nothing

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2229
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.260 ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MVN. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

ORN <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ORN <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

Alias is preferred when

MVN Rn == '11111'

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2230
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 OR operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2231
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.261 ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and
writes the result to the destination register.

This instruction is used by the alias MOV (bitmask immediate). See Alias conditions for details of when each alias
is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

ORR <Wd|WSP>, <Wn>, #<imm>

64-bit variant

Applies when sf == 1.

ORR <Xd|SP>, <Xn>, #<imm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;
 if sf == '0' && N != '0' then UNDEFINED;
 (imm, -) = DecodeBitMasks(N, imms, immr, TRUE, datasize);

Alias conditions

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias is preferred when

MOV (bitmask immediate) Rn == '11111' && ! MoveWidePreferred(sf, N, imms, immr)

sf 0 1 1 0 0 1 0 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2232
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];

 result = operand1 OR imm;
 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2233
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.262 ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.

This instruction is used by the alias MOV (register). See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

ORR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ORR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

Alias is preferred when

MOV (register) shift == '00' && imm6 == '000000' && Rn == '11111'

sf 0 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2234
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(datasize) result;

 result = operand1 OR operand2;
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2235
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.263 PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.

• The value zero, for PACDZA.

Integer

(FEAT_PAuth)

PACDA variant

Applies when Z == 0.

PACDA <Xd>, <Xn|SP>

PACDZA variant

Applies when Z == 1 && Rn == 11111.

PACDZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACDA
 if n == 31 then source_is_sp = TRUE;
 else // PACDZA
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if source_is_sp then
 X[d, 64] = AddPACDA(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACDA(X[d, 64], X[n, 64]);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2236
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.264 PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.

• The value zero, for PACDZB.

Integer

(FEAT_PAuth)

PACDB variant

Applies when Z == 0.

PACDB <Xd>, <Xn|SP>

PACDZB variant

Applies when Z == 1 && Rn == 11111.

PACDZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACDB
 if n == 31 then source_is_sp = TRUE;
 else // PACDZB
 if n != 31 then UNDEFINED;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

 if source_is_sp then
 X[d, 64] = AddPACDB(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACDB(X[d, 64], X[n, 64]);

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2237
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.265 PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for a
64-bit value in the first source register, using a modifier in the second source register, and the Generic key. The
computed pointer authentication code is written to the most significant 32 bits of the destination register, and the
least significant 32 bits of the destination register are set to zero.

Integer

(FEAT_PAuth)

Encoding

PACGA <Xd>, <Xn>, <Xm|SP>

Decode for this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if m == 31 then source_is_sp = TRUE;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Rm" field.

Operation

 if source_is_sp then
 X[d, 64] = AddPACGA(X[n, 64], SP[]);
 else
 X[d, 64] = AddPACGA(X[n, 64], X[m, 64]);

1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2238
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.266 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIA and PACIZA.

• In X17, for PACIA1716.

• In X30, for PACIASP and PACIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIA.

• The value zero, for PACIZA and PACIAZ.

• In X16, for PACIA1716.

• In SP, for PACIASP.

A PACIASP instruction has an implicit BTI instruction. The implicit BTI instruction of a PACIASP instruction is always
compatible with PSTATE.BTYPE == 0b01 and PSTATE.BTYPE == 0b10. Controls in SCTLR_ELx configure
whether the implicit BTI instruction of a PACIASP instruction is compatible with PSTATE.BTYPE == 0b11. For more
information, see PSTATE.BTYPE.

Integer

(FEAT_PAuth)

PACIA variant

Applies when Z == 0.

PACIA <Xd>, <Xn|SP>

PACIZA variant

Applies when Z == 1 && Rn == 11111.

PACIZA <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACIA
 if n == 31 then source_is_sp = TRUE;
 else // PACIZA
 if n != 31 then UNDEFINED;

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2239
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
System

(FEAT_PAuth)

PACIA1716 variant

Applies when CRm == 0001 && op2 == 000.

PACIA1716

PACIASP variant

Applies when CRm == 0011 && op2 == 001.

PACIASP

PACIAZ variant

Applies when CRm == 0011 && op2 == 000.

PACIAZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 000' // PACIAZ
 d = 30;
 n = 31;
 when '0011 001' // PACIASP
 d = 30;
 source_is_sp = TRUE;
 if IsFeatureImplemented(FEAT_BTI) then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIASP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());
 when '0001 000' // PACIA1716
 d = 17;
 n = 16;
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 0 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2240
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AddPACIA(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACIA(X[d, 64], X[n, 64]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2241
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.267 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key B.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.

• In X17, for PACIB1716.

• In X30, for PACIBSP and PACIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.

• The value zero, for PACIZB and PACIBZ.

• In X16, for PACIB1716.

• In SP, for PACIBSP.

A PACIBSP instruction has an implicit BTI instruction. The implicit BTI instruction of a PACIBSP instruction is always
compatible with PSTATE.BTYPE == 0b01 and PSTATE.BTYPE == 0b10. Controls in SCTLR_ELx configure
whether the implicit BTI instruction of a PACIBSP instruction is compatible with PSTATE.BTYPE == 0b11. For more
information, see PSTATE.BTYPE.

Integer

(FEAT_PAuth)

PACIB variant

Applies when Z == 0.

PACIB <Xd>, <Xn|SP>

PACIZB variant

Applies when Z == 1 && Rn == 11111.

PACIZB <Xd>

Decode for all variants of this encoding

 boolean source_is_sp = FALSE;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

 if Z == '0' then // PACIB
 if n == 31 then source_is_sp = TRUE;
 else // PACIZB
 if n != 31 then UNDEFINED;

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2242
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
System

(FEAT_PAuth)

PACIB1716 variant

Applies when CRm == 0001 && op2 == 010.

PACIB1716

PACIBSP variant

Applies when CRm == 0011 && op2 == 011.

PACIBSP

PACIBZ variant

Applies when CRm == 0011 && op2 == 010.

PACIBZ

Decode for all variants of this encoding

 integer d;
 integer n;
 boolean source_is_sp = FALSE;

 case CRm:op2 of
 when '0011 010' // PACIBZ
 d = 30;
 n = 31;
 when '0011 011' // PACIBSP
 d = 30;
 source_is_sp = TRUE;
 if IsFeatureImplemented(FEAT_BTI) then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIBSP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());
 when '0001 010' // PACIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 1 x 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2243
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 if source_is_sp then
 X[d, 64] = AddPACIB(X[d, 64], SP[]);
 else
 X[d, 64] = AddPACIB(X[d, 64], X[n, 64]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2244
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.268 PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of a PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 bits(64) offset = LSL(ZeroExtend(imm12, 64), 3);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

SLC When FEAT_PRFMSLC is implemented, system level cache, encoded in the "Rt<2:1>"
field as 0b11.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to
0 and encoded in the "imm12" field as <pimm>/8.

1 1 1 1 1 0 0 1 1 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2245
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 bits(64) address;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_PREFETCH, FALSE, privileged, FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 Prefetch(address, t<4:0>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2246
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.269 PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely
to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one
or more caches.

The effect of a PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFM (<prfop>|#<imm5>), <label>

Decode for this encoding

 integer t = UInt(Rt);

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

SLC When FEAT_PRFMSLC is implemented, system level cache, encoded in the "Rt<2:1>"
field as 0b11.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

1 1 0 1 1 0 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2247
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address = PC64 + offset;

 Prefetch(address, t<4:0>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2248
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.270 PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of a PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 3 else 0;

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

SLC When FEAT_PRFMSLC is implemented, system level cache, encoded in the "Rt<2:1>"
field as 0b11.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

1 1 1 1 1 0 0 0 1 0 1 Rm x 1 x S 1 0 Rn !=11xxx

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc option Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2249
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_PREFETCH, FALSE, privileged, FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 Prefetch(address, t<4:0>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2250
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.271 PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address
are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of a PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/store addressing modes.

Encoding

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>"
field as 0.

STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the
"Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

1 1 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2251
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 bits(64) address;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_PREFETCH, FALSE, privileged, FALSE);

 if n == 31 then
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 Prefetch(address, t<4:0>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2252
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.272 PSB

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the
current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the
profiling buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer
have completed.

If FEAT_SPE is not implemented, this instruction executes as a NOP.

System

(FEAT_SPE)

Encoding

PSB CSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SPE) then EndOfInstruction();

Operation

 ProfilingSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2253
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.273 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing
earlier stores to the same physical address under certain conditions. For more information and details of the
semantics, see Physical Speculative Store Bypass Barrier (PSSBB).

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

PSSBB

 is equivalent to

DSB #4

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2254
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.274 RBIT

Reverse Bits reverses the bit order in a register.

32-bit variant

Applies when sf == 0.

RBIT <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

RBIT <Xd>, <Xn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 for i = 0 to datasize-1
 result<(datasize-1)-i> = operand<i>;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2255
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2256
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.275 RCWCAS, RCWCASA, RCWCASL, RCWCASAL

Read Check Write Compare and Swap doubleword in memory reads a 64-bit doubleword from memory, and
compares it against the value held in a register. If the comparison is equal, the value in a second register is
conditionally written to memory. Storing back to memory is conditional on RCW Checks. If the write is performed,
the read and the write occur atomically such that no other modification of the memory location can take place
between the read and the write. This instruction updates the condition flags based on the result of the update of
memory.

• RCWCASA and RCWCASAL load from memory with acquire semantics.

• RCWCASL and RCWCASAL store to memory with release semantics.

• RCWCAS has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWCAS variant

Applies when A == 0 && R == 0.

RCWCAS <Xs>, <Xt>, [<Xn|SP>]

RCWCASA variant

Applies when A == 1 && R == 0.

RCWCASA <Xs>, <Xt>, [<Xn|SP>]

RCWCASAL variant

Applies when A == 1 && R == 1.

RCWCASAL <Xs>, <Xt>, [<Xn|SP>]

RCWCASL variant

Applies when A == 0 && R == 1.

RCWCASL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

0 0 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2257
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[t, 64];
 bits(64) compdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[s, 64] = readdata; // Return the old value when s!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2258
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.276 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL

Read Check Write Compare and Swap quadword in memory reads a 128-bit quadword from memory, and compares
it against the value held in a pair of registers. If the comparison is equal, the value in a second pair of registers is
conditionally written to memory. Storing back to memory is conditional on RCW Checks. If the write is performed,
the read and the write occur atomically such that no other modification of the memory location can take place
between the read and the write. This instruction updates the condition flags based on the result of the update of
memory.

• RCWCASPA and RCWCASPAL load from memory with acquire semantics.

• RCWCASPL and RCWCASPAL store to memory with release semantics.

• RCWCASP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWCASP variant

Applies when A == 0 && R == 0.

RCWCASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWCASPA variant

Applies when A == 1 && R == 0.

RCWCASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWCASPAL variant

Applies when A == 1 && R == 1.

RCWCASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWCASPL variant

Applies when A == 0 && R == 1.

RCWCASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 0 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2259
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(128) newdata;
 bits(128) compdata;
 bits(128) readdata;
 bits(4) nzcv;

 bits(64) s1 = X[s, 64];
 bits(64) s2 = X[s+1, 64];
 bits(64) t1 = X[t, 64];
 bits(64) t2 = X[t+1, 64];

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, FALSE, acquire, release, tagchecked);

 compdata = if BigEndian(accdesc.acctype) then s1:s2 else s2:s1;
 newdata = if BigEndian(accdesc.acctype) then t1:t2 else t2:t1;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if BigEndian(accdesc.acctype) then
 X[s, 64] = readdata<127:64>;
 X[s+1, 64] = readdata<63:0>;
 else
 X[s, 64] = readdata<63:0>;
 X[s+1, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2260
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.277 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL

Read Check Write atomic bit Clear on doubleword in memory atomically loads a 64-bit doubleword from memory,
performs a bitwise AND with the complement of the value held in a register on it, and conditionally stores the result
back to memory. Storing of the result back to memory is conditional on RCW Checks. The value initially loaded
from memory is returned in the destination register. This instruction updates the condition flags based on the result
of the update of memory.

• RCWCLRA and RCWCLRAL load from memory with acquire semantics.

• RCWCLRL and RCWCLRAL store to memory with release semantics.

• RCWCLR has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWCLR variant

Applies when A == 0 && R == 0.

RCWCLR <Xs>, <Xt>, [<Xn|SP>]

RCWCLRA variant

Applies when A == 1 && R == 0.

RCWCLRA <Xs>, <Xt>, [<Xn|SP>]

RCWCLRAL variant

Applies when A == 1 && R == 1.

RCWCLRAL <Xs>, <Xt>, [<Xn|SP>]

RCWCLRL variant

Applies when A == 0 && R == 1.

RCWCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2261
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2262
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.278 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL

Read Check Write atomic bit Clear on quadword in memory atomically loads a 128-bit quadword from memory,
performs a bitwise AND with the complement of the value held in a pair of registers on it, and conditionally stores
the result back to memory. Storing of the result back to memory is conditional on RCW Checks. The value initially
loaded from memory is returned in the same pair of registers. This instruction updates the condition flags based on
the result of the update of memory.

• RCWCLRPA and RCWCLRPAL load from memory with acquire semantics.

• RCWCLRPL and RCWCLRPAL store to memory with release semantics.

• RCWCLRP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWCLRP variant

Applies when A == 0 && R == 0.

RCWCLRP <Xt1>, <Xt2>, [<Xn|SP>]

RCWCLRPA variant

Applies when A == 1 && R == 0.

RCWCLRPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWCLRPAL variant

Applies when A == 1 && R == 1.

RCWCLRPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWCLRPL variant

Applies when A == 0 && R == 1.

RCWCLRPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2263
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2264
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.279 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL

Read Check Write Software Compare and Swap doubleword in memory reads a 64-bit doubleword from memory,
and compares it against the value held in a register. If the comparison is equal, the value in a second register is
conditionally written to memory. Storing back to memory is conditional on RCW Checks and RCWS Checks. If the
write is performed, the read and the write occur atomically such that no other modification of the memory location
can take place between the read and the write. This instruction updates the condition flags based on the result of the
update of memory.

• RCWSCASA and RCWSCASAL load from memory with acquire semantics.

• RCWSCASL and RCWSCASAL store to memory with release semantics.

• RCWSCAS has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSCAS variant

Applies when A == 0 && R == 0.

RCWSCAS <Xs>, <Xt>, [<Xn|SP>]

RCWSCASA variant

Applies when A == 1 && R == 0.

RCWSCASA <Xs>, <Xt>, [<Xn|SP>]

RCWSCASAL variant

Applies when A == 1 && R == 1.

RCWSCASAL <Xs>, <Xt>, [<Xn|SP>]

RCWSCASL variant

Applies when A == 0 && R == 1.

RCWSCASL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs"
field.

0 1 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2265
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[t, 64];
 bits(64) compdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[s, 64] = readdata; // Return the old value when s!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2266
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.280 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL

Read Check Write Software Compare and Swap quadword in memory reads a 128-bit quadword from memory, and
compares it against the value held in a pair of registers. If the comparison is equal, the value in a second pair of
registers is conditionally written to memory. Storing back to memory is conditional on RCW Checks and RCWS
Checks. If the write is performed, the read and the write occur atomically such that no other modification of the
memory location can take place between the read and the write. This instruction updates the condition flags based
on the result of the update of memory.

• RCWSCASPA and RCWSCASPAL load from memory with acquire semantics.

• RCWSCASPL and RCWSCASPAL store to memory with release semantics.

• RCWSCASP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSCASP variant

Applies when A == 0 && R == 0.

RCWSCASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWSCASPA variant

Applies when A == 1 && R == 0.

RCWSCASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWSCASPAL variant

Applies when A == 1 && R == 1.

RCWSCASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

RCWSCASPL variant

Applies when A == 0 && R == 1.

RCWSCASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rs<0> == '1' then UNDEFINED;
 if Rt<0> == '1' then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

0 1 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2267
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the
"Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(128) newdata;
 bits(128) compdata;
 bits(128) readdata;
 bits(4) nzcv;

 bits(64) s1 = X[s, 64];
 bits(64) s2 = X[s+1, 64];
 bits(64) t1 = X[t, 64];
 bits(64) t2 = X[t+1, 64];

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_CAS, TRUE, acquire, release, tagchecked);

 compdata = if BigEndian(accdesc.acctype) then s1:s2 else s2:s1;
 newdata = if BigEndian(accdesc.acctype) then t1:t2 else t2:t1;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if BigEndian(accdesc.acctype) then
 X[s, 64] = readdata<127:64>;
 X[s+1, 64] = readdata<63:0>;
 else
 X[s, 64] = readdata<63:0>;
 X[s+1, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2268
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.281 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL

Read Check Write Software atomic bit Clear on doubleword in memory atomically loads a 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and conditionally stores
the result back to memory. Storing of the result back to memory is conditional on RCW Checks and RCWS Checks.
The value initially loaded from memory is returned in the destination register. This instruction updates the condition
flags based on the result of the update of memory.

• RCWSCLRA and RCWSCLRAL load from memory with acquire semantics.

• RCWSCLRL and RCWSCLRAL store to memory with release semantics.

• RCWSCLR has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSCLR variant

Applies when A == 0 && R == 0.

RCWSCLR <Xs>, <Xt>, [<Xn|SP>]

RCWSCLRA variant

Applies when A == 1 && R == 0.

RCWSCLRA <Xs>, <Xt>, [<Xn|SP>]

RCWSCLRAL variant

Applies when A == 1 && R == 1.

RCWSCLRAL <Xs>, <Xt>, [<Xn|SP>]

RCWSCLRL variant

Applies when A == 0 && R == 1.

RCWSCLRL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2269
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2270
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.282 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL

Read Check Write Software atomic bit Clear on quadword in memory atomically loads a 128-bit quadword from
memory, performs a bitwise AND with the complement of the value held in a pair of registers on it, and
conditionally stores the result back to memory. Storing of the result back to memory is conditional on RCW Checks
and RCWS Checks. The value initially loaded from memory is returned in the same pair of registers. This
instruction updates the condition flags based on the result of the update of memory.

• RCWSCLRPA and RCWSCLRPAL load from memory with acquire semantics.

• RCWSCLRPL and RCWSCLRPAL store to memory with release semantics.

• RCWSCLRP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSCLRP variant

Applies when A == 0 && R == 0.

RCWSCLRP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSCLRPA variant

Applies when A == 1 && R == 0.

RCWSCLRPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSCLRPAL variant

Applies when A == 1 && R == 1.

RCWSCLRPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSCLRPL variant

Applies when A == 0 && R == 1.

RCWSCLRPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 1 0 1 1 0 0 1 A R 1 Rt2 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2271
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_BIC, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2272
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.283 RCWSET, RCWSETA, RCWSETL, RCWSETAL

Read Check Write atomic bit Set on doubleword in memory atomically loads a 64-bit doubleword from memory,
performs a bitwise OR with the complement of the value held in a register on it, and conditionally stores the result
back to memory. Storing of the result back to memory is conditional on RCW Checks. The value initially loaded
from memory is returned in the destination register. This instruction updates the condition flags based on the result
of the update of memory.

• RCWSETA and RCWSETAL load from memory with acquire semantics.

• RCWSETL and RCWSETAL store to memory with release semantics.

• RCWSET has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSET variant

Applies when A == 0 && R == 0.

RCWSET <Xs>, <Xt>, [<Xn|SP>]

RCWSETA variant

Applies when A == 1 && R == 0.

RCWSETA <Xs>, <Xt>, [<Xn|SP>]

RCWSETAL variant

Applies when A == 1 && R == 1.

RCWSETAL <Xs>, <Xt>, [<Xn|SP>]

RCWSETL variant

Applies when A == 0 && R == 1.

RCWSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2273
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2274
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.284 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL

Read Check Write atomic bit Set on quadword in memory atomically loads a 128-bit quadword from memory,
performs a bitwise OR with the value held in a pair of registers on it, and conditionally stores the result back to
memory. Storing of the result back to memory is conditional on RCW Checks. The value initially loaded from
memory is returned in the same pair of registers. This instruction updates the condition flags based on the result of
the update of memory.

• RCWSETPA and RCWSETPAL load from memory with acquire semantics.

• RCWSETPL and RCWSETPAL store to memory with release semantics.

• RCWSETP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSETP variant

Applies when A == 0 && R == 0.

RCWSETP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSETPA variant

Applies when A == 1 && R == 0.

RCWSETPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSETPAL variant

Applies when A == 1 && R == 1.

RCWSETPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSETPL variant

Applies when A == 0 && R == 1.

RCWSETPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2275
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2276
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.285 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL

Read Check Write Software atomic bit Set on doubleword in memory atomically loads a 64-bit doubleword from
memory, performs a bitwise OR with the complement of the value held in a register on it, and conditionally stores
the result back to memory. Storing of the result back to memory is conditional on RCW Checks and RCWS Checks.
The value initially loaded from memory is returned in the destination register. This instruction updates the condition
flags based on the result of the update of memory.

• RCWSSETA and RCWSSETAL load from memory with acquire semantics.

• RCWSSETL and RCWSSETAL store to memory with release semantics.

• RCWSSET has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSSET variant

Applies when A == 0 && R == 0.

RCWSSET <Xs>, <Xt>, [<Xn|SP>]

RCWSSETA variant

Applies when A == 1 && R == 0.

RCWSSETA <Xs>, <Xt>, [<Xn|SP>]

RCWSSETAL variant

Applies when A == 1 && R == 1.

RCWSSETAL <Xs>, <Xt>, [<Xn|SP>]

RCWSSETL variant

Applies when A == 0 && R == 1.

RCWSSETL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2277
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2278
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.286 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL

Read Check Write Software atomic bit Set on quadword in memory atomically loads a 128-bit quadword from
memory, performs a bitwise OR with the value held in a pair of registers on it, and conditionally stores the result
back to memory. Storing of the result back to memory is conditional on RCW Checks and RCWS Checks. The value
initially loaded from memory is returned in the same pair of registers. This instruction updates the condition flags
based on the result of the update of memory.

• RCWSSETPA and RCWSSETPAL load from memory with acquire semantics.

• RCWSSETPL and RCWSSETPAL store to memory with release semantics.

• RCWSSETP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSSETP variant

Applies when A == 0 && R == 0.

RCWSSETP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSETPA variant

Applies when A == 1 && R == 0.

RCWSSETPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSETPAL variant

Applies when A == 1 && R == 1.

RCWSSETPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSETPL variant

Applies when A == 0 && R == 1.

RCWSSETPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 1 0 1 1 0 0 1 A R 1 Rt2 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2279
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_ORR, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2280
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.287 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL

Read Check Write Software Swap doubleword in memory atomically loads a 64-bit doubleword from a memory
location, and conditionally stores the value held in a register back to the same memory location. Storing back to
memory is conditional on RCW Checks and RCWS Checks. The value initially loaded from memory is returned in
the destination register. This instruction updates the condition flags based on the result of the update of memory.

• RCWSSWPA and RCWSSWPAL load from memory with acquire semantics.

• RCWSSWPL and RCWSSWPAL store to memory with release semantics.

• RCWSSWP has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSSWP variant

Applies when A == 0 && R == 0.

RCWSSWP <Xs>, <Xt>, [<Xn|SP>]

RCWSSWPA variant

Applies when A == 1 && R == 0.

RCWSSWPA <Xs>, <Xt>, [<Xn|SP>]

RCWSSWPAL variant

Applies when A == 1 && R == 1.

RCWSSWPAL <Xs>, <Xt>, [<Xn|SP>]

RCWSSWPL variant

Applies when A == 0 && R == 1.

RCWSSWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2281
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2282
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.288 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL

Read Check Write Software Swap quadword in memory atomically loads a 128-bit quadword from a memory
location, and conditionally stores the value held in a pair of registers back to the same memory location. Storing
back to memory is conditional on RCW Checks and RCWS Checks. The value initially loaded from memory is
returned in the same pair of registers. This instruction updates the condition flags based on the result of the update
of memory.

• RCWSSWPPA and RCWSSWPPAL load from memory with acquire semantics.

• RCWSSWPPL and RCWSSWPPAL store to memory with release semantics.

• RCWSSWPP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSSWPP variant

Applies when A == 0 && R == 0.

RCWSSWPP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSWPPA variant

Applies when A == 1 && R == 0.

RCWSSWPPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSWPPAL variant

Applies when A == 1 && R == 1.

RCWSSWPPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSSWPPL variant

Applies when A == 0 && R == 1.

RCWSSWPPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of

0 1 0 1 1 0 0 1 A R 1 Rt2 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2283
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, TRUE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2284
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.289 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL

Read Check Write Swap doubleword in memory atomically loads a 64-bit doubleword from a memory location, and
conditionally stores the value held in a register back to the same memory location. Storing back to memory is
conditional on RCW Checks. The value initially loaded from memory is returned in the destination register. This
instruction updates the condition flags based on the result of the update of memory.

• RCWSWPA and RCWSWPAL load from memory with acquire semantics.

• RCWSWPL and RCWSWPAL store to memory with release semantics.

• RCWSWP has neither acquire nor release semantics.

Integer

(FEAT_THE)

RCWSWP variant

Applies when A == 0 && R == 0.

RCWSWP <Xs>, <Xt>, [<Xn|SP>]

RCWSWPA variant

Applies when A == 1 && R == 0.

RCWSWPA <Xs>, <Xt>, [<Xn|SP>]

RCWSWPAL variant

Applies when A == 1 && R == 1.

RCWSWPAL <Xs>, <Xt>, [<Xn|SP>]

RCWSWPL variant

Applies when A == 0 && R == 1.

RCWSWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2285
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 if IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) newdata = X[s, 64];
 bits(64) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 bits(64) compdata = bits(64) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 X[t, 64] = readdata; // Return the old value when t!=31

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2286
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.290 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL

Read Check Write Swap quadword in memory atomically loads a 128-bit quadword from a memory location, and
conditionally stores the value held in a pair of registers back to the same memory location. Storing back to memory
is conditional on RCW Checks. The value initially loaded from memory is returned in the same pair of registers.
This instruction updates the condition flags based on the result of the update of memory.

• RCWSWPPA and RCWSWPPAL load from memory with acquire semantics.

• RCWSWPPL and RCWSWPPAL store to memory with release semantics.

• RCWSWPP has neither acquire nor release semantics.

Integer

(FEAT_D128 && FEAT_THE)

RCWSWPP variant

Applies when A == 0 && R == 0.

RCWSWPP <Xt1>, <Xt2>, [<Xn|SP>]

RCWSWPPA variant

Applies when A == 1 && R == 0.

RCWSWPPA <Xt1>, <Xt2>, [<Xn|SP>]

RCWSWPPAL variant

Applies when A == 1 && R == 1.

RCWSWPPAL <Xt1>, <Xt2>, [<Xn|SP>]

RCWSWPPL variant

Applies when A == 0 && R == 1.

RCWSWPPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_D128) || !IsFeatureImplemented(FEAT_THE) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2287
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 if !IsD128Enabled(PSTATE.EL) then UNDEFINED;
 bits(64) address;
 bits(64) value1;
 bits(64) value2;
 bits(128) newdata;
 bits(128) readdata;
 bits(4) nzcv;

 AccessDescriptor accdesc = CreateAccDescRCW(MemAtomicOp_SWP, FALSE, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 value1 = X[t, 64];
 value2 = X[t2, 64];

 newdata = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) compdata = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 (nzcv, readdata) = MemAtomicRCW(address, compdata, newdata, accdesc);

 PSTATE.<N,Z,C,V> = nzcv;
 if rt_unknown then
 readdata = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = readdata<127:64>;
 X[t2, 64] = readdata<63:0>;
 else
 X[t, 64] = readdata<63:0>;
 X[t2, 64] = readdata<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2288
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.291 RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine
return.

Encoding

RET {<Xn>}

Decode for this encoding

 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field. Defaults to X30 if absent.

Operation

 bits(64) target = X[n, 64];

 if (IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL)) then
 target = LoadCheckGCSRecord(target, GCSInstType_PRET);
 SetCurrentGCSPointer(GetCurrentGCSPointer() + 8);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '00';

 BranchTo(target, BranchType_RET, FALSE);

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A M Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2289
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.292 RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR,
using SP as the modifier and the specified key, and branches to the authenticated address, with a hint that this
instruction is a subroutine return.

Key A is used for RETAA. Key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. For information on behavior if
the authentication fails, see Faulting on pointer authentication.

The authenticated address is not written back to LR.

Integer

(FEAT_PAuth)

RETAA variant

Applies when M == 0.

RETAA

RETAB variant

Applies when M == 1.

RETAB

Decode for all variants of this encoding

 boolean use_key_a = (M == '0');

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

Operation

 GCSInstruction inst_type;
 bits(64) target = X[30, 64];

 bits(64) modifier = SP[];

 if use_key_a then
 target = AuthIA(target, modifier, TRUE);
 else
 target = AuthIB(target, modifier, TRUE);

 if (IsFeatureImplemented(FEAT_GCS) && GCSPCREnabled(PSTATE.EL)) then
 inst_type = if use_key_a then GCSInstType_PRETAA else GCSInstType_PRETAB;
 target = LoadCheckGCSRecord(target, inst_type);
 SetCurrentGCSPointer(GetCurrentGCSPointer() + 8);

 // Value in BTypeNext will be used to set PSTATE.BTYPE
 BTypeNext = '00';

 BranchTo(target, BranchType_RET, FALSE);

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Z op A Rn Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2290
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.293 REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64. The pseudo-instruction is never the preferred
disassembly.

32-bit variant

Applies when sf == 0 && opc == 10.

REV <Wd>, <Wn>

64-bit variant

Applies when sf == 1 && opc == 11.

REV <Xd>, <Xn>

Decode for all variants of this encoding

 if opc == '11' && sf == '0' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);
 constant integer container_size = 8 << UInt(opc);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 constant integer containers = datasize DIV container_size;
 for c = 0 to containers-1
 bits(container_size) container = Elem[operand, c, container_size];
 Elem[result, c, container_size] = Reverse(container, 8);

 X[d, datasize] = result;

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 x Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2291
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2292
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.294 REV16

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

32-bit variant

Applies when sf == 0.

REV16 <Wd>, <Wn>

64-bit variant

Applies when sf == 1.

REV16 <Xd>, <Xn>

Decode for all variants of this encoding

 if opc == '11' && sf == '0' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);
 constant integer container_size = 8 << UInt(opc);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 constant integer containers = datasize DIV container_size;
 for c = 0 to containers-1
 bits(container_size) container = Elem[operand, c, container_size];
 Elem[result, c, container_size] = Reverse(container, 8);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2293
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2294
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.295 REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

Encoding

REV32 <Xd>, <Xn>

Decode for this encoding

 if opc == '11' && sf == '0' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer datasize = 32 << UInt(sf);
 constant integer container_size = 8 << UInt(opc);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(datasize) operand = X[n, datasize];
 bits(datasize) result;

 constant integer containers = datasize DIV container_size;
 for c = 0 to containers-1
 bits(container_size) container = Elem[operand, c, container_size];
 Elem[result, c, container_size] = Reverse(container, 8);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

sf opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2295
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.296 REV64

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an
assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

This instruction is a pseudo-instruction of the REV instruction. This means that:

• The encodings in this description are named to match the encodings of REV.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of REV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

64-bit variant

REV64 <Xd>, <Xn>

 is equivalent to

REV <Xd>, <Xn>

and is never the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of REV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

sf opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2296
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.297 RMIF

Performs a rotation right of a value held in a general purpose register by an immediate value, and then inserts a
selection of the bottom four bits of the result of the rotation into the PSTATE flags, under the control of a second
immediate mask.

Integer

(FEAT_FlagM)

Encoding

RMIF <Xn>, #<shift>, #<mask>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM) then UNDEFINED;
 constant integer lsb = UInt(imm6);
 integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> Is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

<mask> Is the flag bit mask, an immediate in the range 0 to 15, which selects the bits that are inserted into
the NZCV condition flags, encoded in the "mask" field.

Operation

 bits(4) tmp;
 bits(64) tmpreg = X[n, 64];
 tmp = (tmpreg:tmpreg)<lsb+3:lsb>;
 if mask<3> == '1' then PSTATE.N = tmp<3>;
 if mask<2> == '1' then PSTATE.Z = tmp<2>;
 if mask<1> == '1' then PSTATE.C = tmp<1>;
 if mask<0> == '1' then PSTATE.V = tmp<0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 1 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn 0 mask

31 30 29 28 27 26 25 24 23 22 21 20 15 14 13 12 11 10 9 5 4 3 0

sf
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2297
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.298 ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the EXTR instruction. This means that:

• The encodings in this description are named to match the encodings of EXTR.

• The description of EXTR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0 && imms == 0xxxxx.

ROR <Wd>, <Ws>, #<shift>

 is equivalent to

EXTR <Wd>, <Ws>, <Ws>, #<shift>

and is the preferred disassembly when Rn == Rm.

64-bit variant

Applies when sf == 1 && N == 1.

ROR <Xd>, <Xs>, #<shift>

 is equivalent to

EXTR <Xd>, <Xs>, <Xs>, #<shift>

and is the preferred disassembly when Rn == Rm.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Ws> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xs> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<shift> For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms"
field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2298
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2299
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.299 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is an alias of the RORV instruction. This means that:

• The encodings in this description are named to match the encodings of RORV.

• The description of RORV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

ROR <Wd>, <Wn>, <Wm>

 is equivalent to

RORV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

ROR <Xd>, <Xn>, <Xm>

 is equivalent to

RORV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of RORV gives the operational pseudocode for this instruction.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2300
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2301
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.300 RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is used by the alias ROR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

RORV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

RORV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to
31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to
63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand2 = X[m, datasize];

 result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize, datasize);
 X[d, datasize] = result;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2302
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2303
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.301 RPRFM

Range Prefetch Memory signals the memory system that data memory accesses from a specified range of addresses
are likely to occur in the near future. The instruction may also signal the memory system about the likelihood of
data reuse of the specified range of addresses. The memory system can respond by taking actions that are expected
to speed up the memory accesses when they do occur, such as prefetching locations within the specified address
ranges into one or more caches. The memory system may also exploit the data reuse hints to decide whether to retain
the data in other caches upon eviction from the innermost caches or to discard it.

The effect of an RPRFM instruction is IMPLEMENTATION DEFINED, but because these signals are only hints, the
instruction cannot cause a synchronous Data Abort exception and is guaranteed not to access Device memory. It is
valid for the PE to treat this instruction as a NOP.

An RPRFM instruction specifies the type of accesses and range of addresses using the following parameters:

• 'Type', in the <rprfop> operand opcode bits, specifies whether the prefetched data will be accessed by load or
store instructions.

• 'Policy', in the <rprfop> operand opcode bits, specifies whether the data is likely to be reused or if it is a
streaming, non-temporal prefetch. If a streaming prefetch is specified, then the 'ReuseDistance' parameter is
ignored.

• 'BaseAddress', in the 64-bit base register, holds the initial block address for the accesses.

• 'ReuseDistance', in the metadata register bits[63:60], indicates the maximum number of bytes to be accessed
by this PE before executing the next RPRFM instruction that specifies the same range. This includes the total
number of bytes inside and outside of the range that will be accessed by the same PE. This parameter can be
used to influence cache eviction and replacement policies, in order to retain the data in the most optimal levels
of the memory hierarchy after each access. If software cannot easily determine the amount of other memory
that will be accessed, these bits can be set to zero to indicate that 'ReuseDistance' is not known. Otherwise,
these four bits encode decreasing powers of two in the range 512MiB (0b0001) to 32KiB (0b1111).

• 'Stride', in the metadata register bits[59:38], is a signed, two's complement integer encoding of the number of
bytes to advance the block address after 'Length' bytes have been accessed, in the range -2MiB to +2MiB-1B.
A negative value indicates that the block address is advanced in a descending direction.

• 'Count', in the metadata register bits[37:22], is an unsigned integer encoding of the number of blocks of data
to be accessed minus 1, representing the range 1 to 65536 blocks. If 'Count' is 0, then the 'Stride' parameter
is ignored and only a single block of contiguous bytes from 'BaseAddress' to ('BaseAddress' + 'Length' - 1)
is described.

• 'Length', in the metadata register bits[21:0], is a signed, two's complement integer encoding of the number of
contiguous bytes to be accessed starting from the current block address, without changing the block address,
in the range -2MiB to +2MiB-1B. A negative value indicates that the bytes are accessed in a descending
direction.

Note

Software is expected to honor the parameters it provides to the RPRFM instruction, and the same PE should access all
locations in the range, in the direction specified by the sign of the 'Length' and 'Stride' parameters. A range prefetch
is considered active on a PE until all locations in the range have been accessed by the PE. A range prefetch might
also be inactivated by the PE prior to completion, for example due to a software context switch or lack of hardware
resources.

Software should not specify overlapping addresses in multiple active ranges. If a range is expected to be accessed
by both load and store instructions (read-modify-write), then a single range with a 'Type' parameter of PST (prefetch
for store) should be specified.

Integer

(FEAT_RPRFM)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2304
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

RPRFM (<rprfop>|#<imm6>), <Xm>, [<Xn|SP>]

Decode for this encoding

 bits(6) operation = option<2>:option<0>:S:Rt<2:0>;
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<rprfop> Is the range prefetch operation, defined as <type><policy>.

<type> is one of:

PLD Prefetch for load, encoded in the "Rt<0>" field as 0.

PST Prefetch for store, encoded in the "Rt<0>" field as 1.

<policy> is one of:

KEEP Retained or temporal prefetch, for data that is expected to be kept in caches to be
accessed more than once, encoded in the "option<2>:option<0>:S:Rt<2:1>" fields as
0b00000.

STRM Streaming or non-temporal prefetch, for data that is expected to be accessed once and
not reused, encoded in the "option<2>:option<0>:S:Rt<2:1>" fields as 0b00010.

For other encodings of the "option<2>:option<0>:S:Rt<2:0>" fields, use <imm6>.

<imm6> Is the range prefetch operation encoding as an immediate, in the range 0 to 63, encoded in
"option<2>:option<0>:S:Rt<2:0>". This syntax is only for encodings that are not representable
using <rprfop>.

<Xm> Is the 64-bit name of the general-purpose register that holds an encoding of the metadata, encoded
in the "Rm" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address = if n == 31 then SP[] else X[n, 64];
 bits(64) metadata = X[m, 64];
 integer stride = SInt(metadata<59:38>);
 integer count = UInt(metadata<37:22>) + 1;
 integer length = SInt(metadata<21:0>);
 integer reuse;

 if metadata<63:60> == '0000' then
 reuse = -1; // Not known
 else
 reuse = 32768 << (15 - UInt(metadata<63:60>));

 Hint_RangePrefetch(address, length, stride, count, reuse, operation);

1 1 1 1 1 0 0 0 1 0 1 Rm x 1 x S 1 0 Rn 1 1 x x x

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc option Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2305
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.302 SB

Speculation Barrier is a barrier that controls speculation. For more information and details of the semantics, see
Speculation Barrier (SB).

System

(FEAT_SB)

Encoding

SB

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SB) then UNDEFINED;

Operation

 SpeculationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 (0) (0) (0) (0) 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2306
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.303 SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes
the result to the destination register.

This instruction is used by the alias NGC. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

SBC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SBC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];

 operand2 = NOT(operand2);

Alias is preferred when

NGC Rn == '11111'

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2307
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 (result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2308
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.304 SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0.

SBCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SBCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 bits(4) nzcv;

 operand2 = NOT(operand2);

Alias is preferred when

NGCS Rn == '11111'

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2309
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 (result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2310
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.305 SBFIZ

Signed Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits below the bitfield to zero, and the bits
above the bitfield to a copy of the most significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SBFIZ <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

SBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFIZ <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

SBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2311
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2312
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.306 SBFM

Signed Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below the bitfield are set to zero, and the bits above the bitfield are set to a copy
of the most significant bit of the bitfield.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW. See Alias
conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

SBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

SBFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 integer r;
 integer s;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 r = UInt(immr);
 s = UInt(imms);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE, datasize);

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2313
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) src = X[n, datasize];

 // perform bitfield move on low bits
 bits(datasize) bot = ROR(src, r) AND wmask;

 // determine extension bits (sign, zero or dest register)
 bits(datasize) top = Replicate(src<s>, datasize);

 // combine extension bits and result bits
 X[d, datasize] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias of variant is preferred when

ASR (immediate) 32-bit imms == '011111'

ASR (immediate) 64-bit imms == '111111'

SBFIZ -
UInt(imms) < UInt(immr)

SBFX -
BFXPreferred(sf, opc<1>, imms, immr)

SXTB - immr == '000000' && imms == '000111'

SXTH - immr == '000000' && imms == '001111'

SXTW - immr == '000000' && imms == '011111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2314
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2315
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.307 SBFX

Signed Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the
least significant bits of the destination register, and sets destination bits above the bitfield to a copy of the most
significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SBFX <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFX <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2316
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2317
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.308 SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result
to the destination register. The condition flags are not affected.

32-bit variant

Applies when sf == 0.

SDIV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result;

 if IsZero(operand2) then
 result = 0;
 else
 result = RoundTowardsZero(Real(Int(operand1, FALSE)) / Real(Int(operand2, FALSE)));

 X[d, datasize] = result<datasize-1:0>;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2318
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.309 SETF8, SETF16

Set the PSTATE.NZV flags based on the value in the specified general-purpose register. SETF8 treats the value as an
8 bit value, and SETF16 treats the value as an 16 bit value.

The PSTATE.C flag is not affected by these instructions.

Integer

(FEAT_FlagM)

SETF8 variant

Applies when sz == 0.

SETF8 <Wn>

SETF16 variant

Applies when sz == 1.

SETF16 <Wn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FlagM) then UNDEFINED;
 constant integer msb = (8 << UInt(sz)) - 1;
 integer n = UInt(Rn);

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 bits(32) tmpreg = X[n, 32];
 PSTATE.N = tmpreg<msb>;
 PSTATE.Z = if (tmpreg<msb:0> == Zeros(msb + 1)) then '1' else '0';
 PSTATE.V = tmpreg<msb+1> EOR tmpreg<msb>;
 //PSTATE.C unchanged;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 sz 0 0 1 0 Rn 0 1 1 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sf
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2319
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.310 SETGP, SETGM, SETGE

Memory Set with tag setting. These instructions perform a memory set using the value in the bottom byte of the
source register and store an Allocation Tag to memory for each Tag Granule written. The Allocation Tag is
calculated from the Logical Address Tag in the register which holds the first address that the set is made to. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETGP, then SETGM, and then SETGE.

SETGP performs some preconditioning of the arguments suitable for using the SETGM instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory set. SETGM performs an IMPLEMENTATION DEFINED amount
of the memory set. SETGE performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGP, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGP, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2320
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For SETGE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1000.

SETGE [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0100.

SETGM [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0000.

SETGP [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2321
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2322
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2323
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2324
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.311 SETGPN, SETGMN, SETGEN

Memory Set with tag setting, non-temporal. These instructions perform a memory set using the value in the bottom
byte of the source register and store an Allocation Tag to memory for each Tag Granule written. The Allocation Tag
is calculated from the Logical Address Tag in the register which holds the first address that the set is made to. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETGPN, then SETGMN, and then SETGEN.

SETGPN performs some preconditioning of the arguments suitable for using the SETGMN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETGMN performs an IMPLEMENTATION
DEFINED amount of the memory set. SETGEN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGPN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGPN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2325
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For SETGEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1010.

SETGEN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0110.

SETGMN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0010.

SETGPN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2326
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2327
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2328
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2329
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.312 SETGPT, SETGMT, SETGET

Memory Set with tag setting, unprivileged. These instructions perform a memory set using the value in the bottom
byte of the source register and store an Allocation Tag to memory for each Tag Granule written. The Allocation Tag
is calculated from the Logical Address Tag in the register which holds the first address that the set is made to. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETGPT, then SETGMT, and then SETGET.

SETGPT performs some preconditioning of the arguments suitable for using the SETGMT instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETGMT performs an IMPLEMENTATION
DEFINED amount of the memory set. SETGET performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGPT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGPT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2330
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For SETGET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1001.

SETGET [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0101.

SETGMT [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0001.

SETGPT [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2331
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2332
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2333
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2334
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.313 SETGPTN, SETGMTN, SETGETN

Memory Set with tag setting, unprivileged and non-temporal. These instructions perform a memory set using the
value in the bottom byte of the source register and store an Allocation Tag to memory for each Tag Granule written.
The Allocation Tag is calculated from the Logical Address Tag in the register which holds the first address that the
set is made to. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: SETGPTN, then SETGMTN, and then SETGETN.

SETGPTN performs some preconditioning of the arguments suitable for using the SETGMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETGMTN performs an IMPLEMENTATION
DEFINED amount of the memory set. SETGETN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETGPTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETGPTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFF0.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETGMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* number of bytes remaining to be set in
the memory set in total.

For SETGMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2335
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For SETGETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETGETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1011.

SETGETN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0111.

SETGMTN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0011.

SETGPTN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || !IsFeatureImplemented(FEAT_MTE) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

sz 0 1 1 1 0 1 1 1 0 Rs x x 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2336
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address (an integer multiple of 16) and for option B is updated by the
instruction, encoded in the "Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the destination address (an integer multiple of 16) and is updated by the instruction, encoded in
the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds an encoding
of the number of bytes to be set (an integer multiple of 16) and is set to zero at the end of the
instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded
in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set (an integer multiple of 16) and is updated by the instruction, encoded in the "Rn"
field.

<Xs> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the source
data, encoded in the "Rs" field.

For the main and prologue variant: is the 64-bit name of the general-purpose register that holds the
source data in bits<7:0>, encoded in the "Rs" field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = TRUE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETGOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescSTGMOPS(privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFF0 then
 memset.setsize = 0x7FFFFFFFFFFFFFF0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2337
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

 if ((memset.setsize != 0 && !IsAligned(memset.toaddress, TAG_GRANULE)) ||
!IsAligned(memset.setsize<63:0>, TAG_GRANULE)) then
 AArch64.Abort(memset.toaddress, AlignmentFault(accdesc));

 integer tagstep;
 bits(4) tag;
 bits(64) tagaddr;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= -1 * memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress + memset.setsize);

 while tagstep > 0 do
 tagaddr = memset.toaddress + memset.setsize + (tagstep - 1) * 16;
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 16);
 assert B <= memset.stagesetsize && B<3:0> == '0000';

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 tagstep = B DIV 16;
 tag = AArch64.AllocationTagFromAddress(memset.toaddress);
 while tagstep > 0 do
 tagaddr = memset.toaddress + (tagstep - 1) * 16;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2338
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AArch64.MemTag[tagaddr, accdesc] = tag;
 tagstep = tagstep - 1;

 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2339
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.314 SETP, SETM, SETE

Memory Set. These instructions perform a memory set using the value in the bottom byte of the source register. The
prologue, main, and epilogue instructions are expected to be run in succession and to appear consecutively in
memory: SETP, then SETM, and then SETE.

SETP performs some preconditioning of the arguments suitable for using the SETM instruction, and performs an
IMPLEMENTATION DEFINED amount of the memory set. SETM performs an IMPLEMENTATION DEFINED amount of
the memory set. SETE performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETP, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETP, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETM, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETM, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETE, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2340
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETE, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1000.

SETE [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0100.

SETM [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0000.

SETP [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2341
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2342
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2343
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.315 SETPN, SETMN, SETEN

Memory Set, non-temporal. These instructions perform a memory set using the value in the bottom byte of the
source register. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: SETPN, then SETMN, and then SETEN.

SETPN performs some preconditioning of the arguments suitable for using the SETMN instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory set. SETMN performs an IMPLEMENTATION DEFINED amount
of the memory set. SETEN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETPN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETPN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETMN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETMN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETEN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2344
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETEN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1010.

SETEN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0110.

SETMN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0010.

SETPN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2345
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2346
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2347
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.316 SETPT, SETMT, SETET

Memory Set, unprivileged. These instructions perform a memory set using the value in the bottom byte of the source
register. The prologue, main, and epilogue instructions are expected to be run in succession and to appear
consecutively in memory: SETPT, then SETMT, and then SETET.

SETPT performs some preconditioning of the arguments suitable for using the SETMT instruction, and performs
an IMPLEMENTATION DEFINED amount of the memory set. SETMT performs an IMPLEMENTATION DEFINED amount
of the memory set. SETET performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETPT, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETPT, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETMT, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETMT, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETET, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2348
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETET, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1001.

SETET [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0101.

SETMT [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0001.

SETPT [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2349
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2350
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2351
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.317 SETPTN, SETMTN, SETETN

Memory Set, unprivileged and non-temporal. These instructions perform a memory set using the value in the bottom
byte of the source register. The prologue, main, and epilogue instructions are expected to be run in succession and
to appear consecutively in memory: SETPTN, then SETMTN, and then SETETN.

SETPTN performs some preconditioning of the arguments suitable for using the SETMTN instruction, and
performs an IMPLEMENTATION DEFINED amount of the memory set. SETMTN performs an IMPLEMENTATION
DEFINED amount of the memory set. SETETN performs the last part of the memory set.

Note

The inclusion of IMPLEMENTATION DEFINED amounts of memory set allows some optimization of the size that can
be performed.

The architecture supports two algorithms for the memory set: option A and option B. Which algorithm is used is
IMPLEMENTATION DEFINED.

Note

Portable software should not assume that the choice of algorithm is constant.

After execution of SETPTN, option A (which results in encoding PSTATE.C = 0):

• If Xn<63> == 1, the set size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + saturated Xn.

• Xn holds -1* saturated Xn + an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

After execution of SETPTN, option B (which results in encoding PSTATE.C = 1):

• If Xn<63> == 1, the copy size is saturated to 0x7FFFFFFFFFFFFFFF.

• Xd holds the original Xd + an IMPLEMENTATION DEFINED number of bytes set.

• Xn holds the saturated Xn - an IMPLEMENTATION DEFINED number of bytes set.

• PSTATE.{N,Z,V} are set to {0,0,0}.

For SETMTN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.

• Xn holds -1* number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with -1* the number of bytes remaining to be
set in the memory set in total.

For SETMTN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with the number of bytes remaining to be set in the memory set in total.

— the value of Xd is written back with the lowest address that has not been set.

For SETETN, option A (encoded by PSTATE.C = 0), the format of the arguments is:

• Xn is treated as a signed 64-bit number.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2352
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• Xn holds -1* the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to -Xn.

• At the end of the instruction, the value of Xn is written back with 0.

For SETETN, option B (encoded by PSTATE.C = 1), the format of the arguments is:

• Xn holds the number of bytes remaining to be set in the memory set in total.

• Xd holds the lowest address that the set is made to.

• At the end of the instruction:

— the value of Xn is written back with 0.

— the value of Xd is written back with the lowest address that has not been set.

Integer

(FEAT_MOPS)

Epilogue variant

Applies when op2 == 1011.

SETETN [<Xd>]!, <Xn>!, <Xs>

Main variant

Applies when op2 == 0111.

SETMTN [<Xd>]!, <Xn>!, <Xs>

Prologue variant

Applies when op2 == 0011.

SETPTN [<Xd>]!, <Xn>!, <Xs>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_MOPS) || sz != '00' then UNDEFINED;

 SETParams memset;
 memset.d = UInt(Rd);
 memset.s = UInt(Rs);
 memset.n = UInt(Rn);
 bits(2) options = op2<1:0>;
 boolean nontemporal = options<1> == '1';

 case op2<3:2> of
 when '00' memset.stage = MOPSStage_Prologue;
 when '01' memset.stage = MOPSStage_Main;
 when '10' memset.stage = MOPSStage_Epilogue;
 otherwise UNDEFINED;

 CheckMOPSEnabled();

 if (memset.s == memset.n || memset.s == memset.d || memset.n == memset.d || memset.d == 31 || memset.n
== 31) then
 Constraint c = ConstrainUnpredictable(Unpredictable_MOPSOVERLAP31);

sz 0 1 1 0 0 1 1 1 0 Rs x x 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2353
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly Memory Copy and Memory Set SET*.

Assembler symbols

<Xd> For the epilogue and main variant: is the 64-bit name of the general-purpose register that holds an
encoding of the destination address and for option B is updated by the instruction, encoded in the
"Rd" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the destination
address and is updated by the instruction, encoded in the "Rd" field.

<Xn> For the epilogue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is set to zero at the end of the instruction, encoded in the "Rn" field.

For the main variant: is the 64-bit name of the general-purpose register that holds an encoding of
the number of bytes to be set and is updated by the instruction, encoded in the "Rn" field.

For the prologue variant: is the 64-bit name of the general-purpose register that holds the number of
bytes to be set and is updated by the instruction, encoded in the "Rn" field.

<Xs> Is the 64-bit name of the general-purpose register that holds the source data, encoded in the "Rs"
field.

Operation

 bits(8) data = X[memset.s, 8];
 integer B;

 memset.is_setg = FALSE;
 memset.nzcv = PSTATE.<N,Z,C,V>;
 memset.toaddress = X[memset.d, 64];
 if memset.stage == MOPSStage_Prologue then
 memset.setsize = UInt(X[memset.n, 64]);
 else
 memset.setsize = SInt(X[memset.n, 64]);
 memset.implements_option_a = SETOptionA();

 boolean privileged = if options<0> == '1' then AArch64.IsUnprivAccessPriv() else PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescMOPS(MemOp_STORE, privileged, nontemporal);

 if memset.stage == MOPSStage_Prologue then
 if memset.setsize > 0x7FFFFFFFFFFFFFFF then
 memset.setsize = 0x7FFFFFFFFFFFFFFF;

 if memset.implements_option_a then
 memset.nzcv = '0000';
 memset.toaddress = memset.toaddress + memset.setsize;
 memset.setsize = 0 - memset.setsize;
 else
 memset.nzcv = '0010';

 memset.stagesetsize = MemSetStageSize(memset);

 if memset.stage != MOPSStage_Prologue then
 CheckMemSetParams(memset, options);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2354
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 integer memory_set;
 boolean fault = FALSE;

 if memset.implements_option_a then
 while memset.stagesetsize < 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= -1 * memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress + memset.setsize, data, B,
accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.setsize = memset.setsize + B;
 memset.stagesetsize = memset.stagesetsize + B;

 else
 while memset.stagesetsize > 0 && !fault do
 // IMP DEF selection of the block size that is worked on. While many
 // implementations might make this constant, that is not assumed.
 B = SETSizeChoice(memset, 1);
 assert B <= memset.stagesetsize;

 (memory_set, memaddrdesc, memstatus) = MemSetBytes(memset.toaddress, data, B, accdesc);

 if memory_set != B then
 fault = TRUE;
 else
 memset.toaddress = memset.toaddress + B;
 memset.setsize = memset.setsize - B;
 memset.stagesetsize = memset.stagesetsize - B;

 UpdateSetRegisters(memset, fault, memory_set);

 if fault then
 if IsFault(memaddrdesc) then
 AArch64.Abort(memaddrdesc.vaddress, memaddrdesc.fault);
 else
 boolean iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, B, accdesc);

 if memset.stage == MOPSStage_Prologue then
 PSTATE.<N,Z,C,V> = memset.nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2355
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.318 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait for Event.

Encoding

SEV

Decode for this encoding

 // Empty.

Operation

 SendEvent();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2356
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.319 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

Encoding

SEVL

Decode for this encoding

 // Empty.

Operation

 SendEventLocal();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2357
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.320 SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result
to the 64-bit destination register.

This instruction is used by the alias SMULL. See Alias conditions for details of when each alias is preferred.

Encoding

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, FALSE) + (Int(operand1, FALSE) * Int(operand2, FALSE));

 X[d, 64] = result<63:0>;

Alias is preferred when

SMULL Ra == '11111'

1 0 0 1 1 0 1 1 0 0 1 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2358
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2359
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.321 SMAX (immediate)

Signed Maximum (immediate) determines the signed maximum of the source register value and immediate, and
writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMAX <Wd>, <Wn>, #<simm>

64-bit variant

Applies when sf == 1.

SMAX <Xd>, <Xn>, #<simm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<simm> Is a signed immediate, in the range -128 to 127, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Max(SInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 0 0 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2360
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2361
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.322 SMAX (register)

Signed Maximum (register) determines the signed maximum of the two source register values and writes the result
to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMAX <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SMAX <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Max(SInt(operand1), SInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2362
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2363
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.323 SMC

Secure Monitor Call causes an exception to EL3.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher
generates a Secure Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17, that is taken to EL3.

If the value of HCR_EL2.TSC is 1 and EL2 is enabled in the current Security state, execution of an SMC instruction
at EL1 generates an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

Encoding

SMC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.CheckForSMCUndefOrTrap(imm16);
 AArch64.CallSecureMonitor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2364
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.324 SMIN (immediate)

Signed Minimum (immediate) determines the signed minimum of the source register value and immediate, and
writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMIN <Wd>, <Wn>, #<simm>

64-bit variant

Applies when sf == 1.

SMIN <Xd>, <Xn>, #<simm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<simm> Is a signed immediate, in the range -128 to 127, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Min(SInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 1 0 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2365
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2366
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.325 SMIN (register)

Signed Minimum (register) determines the signed minimum of the two source register values and writes the result
to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

SMIN <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

SMIN <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Min(SInt(operand1), SInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2367
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2368
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.326 SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the
64-bit destination register.

This instruction is an alias of the SMSUBL instruction. This means that:

• The encodings in this description are named to match the encodings of SMSUBL.

• The description of SMSUBL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

SMNEGL <Xd>, <Wn>, <Wm>

 is equivalent to

SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 0 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2369
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.327 SMSTART

Enables access to Streaming SVE mode and SME architectural state.

SMSTART enters Streaming SVE mode, and enables the SME ZA storage.

SMSTART SM enters Streaming SVE mode, but does not enable the SME ZA storage.

SMSTART ZA enables the SME ZA storage, but does not cause an entry to Streaming SVE mode.

This instruction is an alias of the MSR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

System

(FEAT_SME)

Encoding

SMSTART {<option>}

 is equivalent to

MSR <pstatefield>, #1

and is always the preferred disassembly.

Assembler symbols

<option> Is an optional mode, encoded in the "CRm<2:1>" field. It can have the following values:

SM when CRm<2:1> = 01

ZA when CRm<2:1> = 10

[no specifier] when CRm<2:1> = 11

The encoding CRm<2:1> = 00 is reserved.

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in the "op1:op2:CRm" field. It
can have the following values:

SPSel when op1 = 000, op2 = 101, CRm = xxxx

DAIFSet when op1 = 011, op2 = 110, CRm = xxxx

DAIFClr when op1 = 011, op2 = 111, CRm = xxxx

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011, CRm = xxxx

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100, CRm = xxxx

When FEAT_NMI is implemented, the following value is also valid:

ALLINT when op1 = 001, op2 = 000, CRm = 000x

When FEAT_EBEP is implemented, the following value is also valid:

PM when op1 = 001, op2 = 000, CRm = 001x

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 x x 1 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0

op1 CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2370
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001, CRm = xxxx

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010, CRm = xxxx

When FEAT_SME is implemented, the following values are also valid:

SVCRSM when op1 = 011, op2 = 011, CRm = 001x

SVCRZA when op1 = 011, op2 = 011, CRm = 010x

SVCRSMZA when op1 = 011, op2 = 011, CRm = 011x

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100, CRm = xxxx

See PSTATE when op1 = 000, op2 = 00x, CRm = xxxx.

See PSTATE when op1 = 000, op2 = 010, CRm = xxxx.

The following encodings are reserved:

• op1 = 000, op2 = 11x, CRm = xxxx.

• op1 = 001, op2 = 000, CRm = 01xx.

• op1 = 001, op2 = 000, CRm = 1xxx.

• op1 = 001, op2 = 001, CRm = xxxx.

• op1 = 001, op2 = 01x, CRm = xxxx.

• op1 = 001, op2 = 1xx, CRm = xxxx.

• op1 = 010, op2 = xxx, CRm = xxxx.

• op1 = 011, op2 = 000, CRm = xxxx.

• op1 = 011, op2 = 011, CRm = 000x.

• op1 = 011, op2 = 011, CRm = 1xxx.

• op1 = 011, op2 = 101, CRm = xxxx.

• op1 = 1xx, op2 = xxx, CRm = xxxx.

 For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01 specifies
SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2371
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.328 SMSTOP

Disables access to Streaming SVE mode and SME architectural state.

SMSTOP exits Streaming SVE mode, and disables the SME ZA storage.

SMSTOP SM exits Streaming SVE mode, but does not disable the SME ZA storage.

SMSTOP ZA disables the SME ZA storage, but does not cause an exit from Streaming SVE mode.

This instruction is an alias of the MSR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

System

(FEAT_SME)

Encoding

SMSTOP {<option>}

 is equivalent to

MSR <pstatefield>, #0

and is always the preferred disassembly.

Assembler symbols

<option> Is an optional mode, encoded in the "CRm<2:1>" field. It can have the following values:

SM when CRm<2:1> = 01

ZA when CRm<2:1> = 10

[no specifier] when CRm<2:1> = 11

The encoding CRm<2:1> = 00 is reserved.

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in the "op1:op2:CRm" field. It
can have the following values:

SPSel when op1 = 000, op2 = 101, CRm = xxxx

DAIFSet when op1 = 011, op2 = 110, CRm = xxxx

DAIFClr when op1 = 011, op2 = 111, CRm = xxxx

When FEAT_UAO is implemented, the following value is also valid:

UAO when op1 = 000, op2 = 011, CRm = xxxx

When FEAT_PAN is implemented, the following value is also valid:

PAN when op1 = 000, op2 = 100, CRm = xxxx

When FEAT_NMI is implemented, the following value is also valid:

ALLINT when op1 = 001, op2 = 000, CRm = 000x

When FEAT_EBEP is implemented, the following value is also valid:

PM when op1 = 001, op2 = 000, CRm = 001x

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 x x 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 8 7 5 4 3 2 1 0

op1 CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2372
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
When FEAT_SSBS is implemented, the following value is also valid:

SSBS when op1 = 011, op2 = 001, CRm = xxxx

When FEAT_DIT is implemented, the following value is also valid:

DIT when op1 = 011, op2 = 010, CRm = xxxx

When FEAT_SME is implemented, the following values are also valid:

SVCRSM when op1 = 011, op2 = 011, CRm = 001x

SVCRZA when op1 = 011, op2 = 011, CRm = 010x

SVCRSMZA when op1 = 011, op2 = 011, CRm = 011x

When FEAT_MTE is implemented, the following value is also valid:

TCO when op1 = 011, op2 = 100, CRm = xxxx

See PSTATE when op1 = 000, op2 = 00x, CRm = xxxx.

See PSTATE when op1 = 000, op2 = 010, CRm = xxxx.

The following encodings are reserved:

• op1 = 000, op2 = 11x, CRm = xxxx.

• op1 = 001, op2 = 000, CRm = 01xx.

• op1 = 001, op2 = 000, CRm = 1xxx.

• op1 = 001, op2 = 001, CRm = xxxx.

• op1 = 001, op2 = 01x, CRm = xxxx.

• op1 = 001, op2 = 1xx, CRm = xxxx.

• op1 = 010, op2 = xxx, CRm = xxxx.

• op1 = 011, op2 = 000, CRm = xxxx.

• op1 = 011, op2 = 011, CRm = 000x.

• op1 = 011, op2 = 011, CRm = 1xxx.

• op1 = 011, op2 = 101, CRm = xxxx.

• op1 = 1xx, op2 = xxx, CRm = xxxx.

 For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01 specifies
SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2373
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.329 SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias SMNEGL. See Alias conditions for details of when each alias is preferred.

Encoding

SMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, FALSE) - (Int(operand1, FALSE) * Int(operand2, FALSE));
 X[d, 64] = result<63:0>;

Alias is preferred when

SMNEGL Ra == '11111'

1 0 0 1 1 0 1 1 0 0 1 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2374
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2375
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.330 SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit
destination register.

Encoding

SMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

 bits(64) operand1 = X[n, 64];
 bits(64) operand2 = X[m, 64];

 integer result;

 result = Int(operand1, FALSE) * Int(operand2, FALSE);

 X[d, 64] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2376
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.331 SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the SMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of SMADDL.

• The description of SMADDL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

SMULL <Xd>, <Wn>, <Wm>

 is equivalent to

SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 0 0 1 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2377
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.332 SSBB

Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions. For more information and details of the semantics, see
Speculative Store Bypass Barrier (SSBB).

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

SSBB

 is equivalent to

DSB #0

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2378
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.333 ST2G

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the store is
calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is
calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

ST2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

ST2G <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 1 0 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 0 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 0 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2379
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

ST2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, TAG_GRANULE, accdesc);

 AArch64.MemTag[address, accdesc] = tag;
 AArch64.MemTag[address2, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2380
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.334 ST64B

Single-copy Atomic 64-byte Store without status result stores eight 64-bit doublewords from consecutive registers,
Xt to X(t+7), to a memory location. The data that is stored is atomic and is required to be 64-byte aligned.

Integer

(FEAT_LS64)

Encoding

ST64B <Xt>, [<Xn|SP> {,#0}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_STORE;
 boolean tagchecked = n != 31;

Assembler symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckLDST64BEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 for i = 0 to 7
 value = X[t+i, 64];
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 MemStore64B(address, data, accdesc);

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2381
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.335 ST64BV

Single-copy Atomic 64-byte Store with status result stores eight 64-bit doublewords from consecutive registers, Xt
to X(t+7), to a memory location, and writes the status result of the store to a register. The data that is stored is atomic
and is required to be 64-byte aligned.

Integer

(FEAT_LS64_V)

Encoding

ST64BV <Xs>, <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64_V) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_STORE;
 integer s = UInt(Rs);
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.

The value returned is:

0xFFFFFFFF_FFFFFFFFIf the memory location accessed does not support this instruction. In this case,
the value at the memory location is UNKNOWN.

!= 0xFFFFFFFF_FFFFFFFFIf the memory location accessed does support this instruction. In this case,
the peripheral that provides the response defines the returned value and provides
information on the state of the memory update at the memory location.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckST64BVEnabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 bits(64) status;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 for i = 0 to 7
 value = X[t+i, 64];
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 1 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2382
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 status = MemStore64BWithRet(address, data, accdesc);

 if s != 31 then X[s, 64] = status;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2383
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.336 ST64BV0

Single-copy Atomic 64-byte EL0 Store with status result stores eight 64-bit doublewords from consecutive
registers, Xt to X(t+7), to a memory location, with the bottom 32 bits taken from ACCDATA_EL1, and writes the
status result of the store to a register. The data that is stored is atomic and is required to be 64-byte aligned.

Integer

(FEAT_LS64_ACCDATA)

Encoding

ST64BV0 <Xs>, <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_LS64_ACCDATA) then UNDEFINED;
 if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = MemOp_STORE;
 integer s = UInt(Rs);
 boolean tagchecked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.

The value returned is:

0xFFFFFFFF_FFFFFFFFIf the memory location accessed does not support this instruction. In this case,
the value at the memory location is UNKNOWN.

!= 0xFFFFFFFF_FFFFFFFFIf the memory location accessed does support this instruction. In this case,
the peripheral that provides the response defines the returned value and provides
information on the state of the memory update at the memory location.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckST64BV0Enabled();

 bits(512) data;
 bits(64) address;
 bits(64) value;
 bits(64) status;

 AccessDescriptor accdesc = CreateAccDescLS64(memop, tagchecked);
 bits(64) Xt = X[t, 64];
 value<31:0> = ACCDATA_EL1<31:0>;
 value<63:32> = Xt<63:32>;
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2384
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 data<63:0> = value;
 for i = 1 to 7
 value = X[t+i, 64];
 if BigEndian(accdesc.acctype) then value = BigEndianReverse(value);
 data<63+64*i:64*i> = value;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 status = MemStore64BWithRet(address, data, accdesc);

 if s != 31 then X[s, 64] = status;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2385
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.337 STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory.

• STADD does not have release semantics.

• STADDL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDADD, LDADDA, LDADDAL, LDADDL instruction. This means that:

• The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL,
LDADDL.

• The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDADD alias variant

Applies when size == 10 && R == 0.

STADD <Ws>, [<Xn|SP>]

 is equivalent to

LDADD <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDADDL alias variant

Applies when size == 10 && R == 1.

STADDL <Ws>, [<Xn|SP>]

 is equivalent to

LDADDL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDADD alias variant

Applies when size == 11 && R == 0.

STADD <Xs>, [<Xn|SP>]

 is equivalent to

LDADD <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2386
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDADDL alias variant

Applies when size == 11 && R == 1.

STADDL <Xs>, [<Xn|SP>]

 is equivalent to

LDADDL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2387
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.338 STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in
a register to it, and stores the result back to memory.

• STADDB does not have release semantics.

• STADDLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDADDB, LDADDAB, LDADDALB, LDADDLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDADDB, LDADDAB,
LDADDALB, LDADDLB.

• The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STADDB <Ws>, [<Xn|SP>]

 is equivalent to

LDADDB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STADDLB <Ws>, [<Xn|SP>]

 is equivalent to

LDADDLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2388
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2389
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.339 STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value
held in a register to it, and stores the result back to memory.

• STADDH does not have release semantics.

• STADDLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDADDH, LDADDAH, LDADDALH, LDADDLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDADDH, LDADDAH,
LDADDALH, LDADDLH.

• The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STADDH <Ws>, [<Xn|SP>]

 is equivalent to

LDADDH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STADDLH <Ws>, [<Xn|SP>]

 is equivalent to

LDADDLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2390
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2391
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.340 STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory.

• STCLR does not have release semantics.

• STCLRL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDCLR, LDCLRA, LDCLRAL, LDCLRL instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLR, LDCLRA, LDCLRAL,
LDCLRL.

• The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDCLR alias variant

Applies when size == 10 && R == 0.

STCLR <Ws>, [<Xn|SP>]

 is equivalent to

LDCLR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDCLRL alias variant

Applies when size == 10 && R == 1.

STCLRL <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDCLR alias variant

Applies when size == 11 && R == 0.

STCLR <Xs>, [<Xn|SP>]

 is equivalent to

LDCLR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2392
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDCLRL alias variant

Applies when size == 11 && R == 1.

STCLRL <Xs>, [<Xn|SP>]

 is equivalent to

LDCLRL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2393
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.341 STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRB does not have release semantics.

• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

• The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STCLRB <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STCLRLB <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2394
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2395
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.342 STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRH does not have release semantics.

• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH.

• The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STCLRH <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STCLRLH <Ws>, [<Xn|SP>]

 is equivalent to

LDCLRLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2396
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2397
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.343 STEOR, STEORL

Atomic Exclusive-OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive-OR with the value held in a register on it, and stores the result
back to memory.

• STEOR does not have release semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDEOR, LDEORA, LDEORAL, LDEORL instruction. This means that:

• The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL,
LDEORL.

• The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDEOR alias variant

Applies when size == 10 && R == 0.

STEOR <Ws>, [<Xn|SP>]

 is equivalent to

LDEOR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDEORL alias variant

Applies when size == 10 && R == 1.

STEORL <Ws>, [<Xn|SP>]

 is equivalent to

LDEORL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDEOR alias variant

Applies when size == 11 && R == 0.

STEOR <Xs>, [<Xn|SP>]

 is equivalent to

LDEOR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2398
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDEORL alias variant

Applies when size == 11 && R == 1.

STEORL <Xs>, [<Xn|SP>]

 is equivalent to

LDEORL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2399
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.344 STEORB, STEORLB

Atomic Exclusive-OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an
exclusive-OR with the value held in a register on it, and stores the result back to memory.

• STEORB does not have release semantics.

• STEORLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDEORB, LDEORAB, LDEORALB, LDEORLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB,
LDEORLB.

• The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STEORB <Ws>, [<Xn|SP>]

 is equivalent to

LDEORB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STEORLB <Ws>, [<Xn|SP>]

 is equivalent to

LDEORLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2400
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2401
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.345 STEORH, STEORLH

Atomic Exclusive-OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
performs an exclusive-OR with the value held in a register on it, and stores the result back to memory.

• STEORH does not have release semantics.

• STEORLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDEORH, LDEORAH, LDEORALH, LDEORLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDEORH, LDEORAH,
LDEORALH, LDEORLH.

• The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STEORH <Ws>, [<Xn|SP>]

 is equivalent to

LDEORH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STEORLH <Ws>, [<Xn|SP>]

 is equivalent to

LDEORLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2402
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2403
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.346 STG

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated from the base
register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical
Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STG <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 0 0 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 0 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 0 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2404
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STG <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);
 AArch64.MemTag[address, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2405
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.347 STGM

Store Tag Multiple writes a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and the Allocation Tag written to address A is taken from the source register at
4*A<7:4>+3:4*A<7:4>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Integer

(FEAT_MTE2)

Encoding

STGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE2) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = X[t, 64];
 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
 address = Align(address, size);
 constant integer count = size >> LOG2_TAG_GRANULE;
 integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);
 constant bits(64) curraddress = address;
 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 for i = 0 to count-1
 bits(4) tag = Elem[data, index, 4];
 AArch64.MemTag[address, accdesc] = tag;
 address = GenerateAddress(address, TAG_GRANULE, accdesc);
 index = index + 1;

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2406
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.348 STGP

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to memory, from
two registers. The address used for the store is calculated from the base register and an immediate signed offset
scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the base register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

0 1 1 0 1 0 0 0 1 0 simm7 Xt2 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

0 1 1 0 1 0 0 1 1 0 simm7 Xt2 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2407
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 integer t2 = UInt(Xt2);
 bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Xt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Xt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<imm> For the post-index and pre-index variant: is the signed immediate offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "simm7" field.

For the signed offset variant: is the optional signed immediate offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "simm7" field.

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(64) data1;
 bits(64) data2;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data1 = X[t, 64];
 data2 = X[t2, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if !IsAligned(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 address2 = GenerateAddress(address, 8, accdesc);
 Mem[address, 8, accdesc] = data1;
 Mem[address2, 8, accdesc] = data2;

 AArch64.MemTag[address, accdesc] = AArch64.AllocationTagFromAddress(address);

0 1 1 0 1 0 0 1 0 0 simm7 Xt2 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2408
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2409
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.349 STILP

Store-Release ordered Pair of registers calculates an address from a base register value and an optional offset, and
stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information on
single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of
data accesses. The instruction also has memory ordering semantics, as described in Load-Acquire,
Load-AcquirePC, and Store-Release, with the additional requirement that:

• When using the pre-index addressing mode, the Memory effects associated with Xt2/Wt2 are Ordered-before
the Memory effects associated with Xt1/Wt1.

• For all other addressing modes, the Memory effects associated with Xt1/Wt1 are Ordered-before the Memory
effects associated with Xt2/Wt2.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LRCPC3)

32-bit variant

Applies when size == 10 && opc2 == 0001.

STILP <Wt1>, <Wt2>, [<Xn|SP>]

32-bit pre-index variant

Applies when size == 10 && opc2 == 0000.

STILP <Wt1>, <Wt2>, [<Xn|SP>, #-8]!

64-bit variant

Applies when size == 11 && opc2 == 0001.

STILP <Xt1>, <Xt2>, [<Xn|SP>]

64-bit pre-index variant

Applies when size == 11 && opc2 == 0000.

STILP <Xt1>, <Xt2>, [<Xn|SP>, #-16]!

Decode for all variants of this encoding

 boolean wback;
 wback = opc2<0> == '0';

Notes for all encodings

STILP has the same CONSTRAINED UNPREDICTABLE behavior as STP. For information about this CONSTRAINED
UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and
particularly STP and STILP.

1 x 0 1 1 0 0 1 0 0 0 Rt2 0 0 0 x 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

size L opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2410
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Shared decode for all encodings

 integer offset;
 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 constant integer scale = 2 + UInt(size<0>);
 constant integer datasize = 8 << scale;
 offset = if opc2<0> == '0' then -1 * (2 << scale) else 0;

 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown && t == n then
 data1 = bits(datasize) UNKNOWN;
 else
 data1 = X[t, datasize];
 if rt_unknown && t2 == n then
 data2 = bits(datasize) UNKNOWN;
 else
 data2 = X[t2, datasize];

 if IsFeatureImplemented(FEAT_LSE2) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2411
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 bits(2*datasize) full_data;
 if BigEndian(accdesc.acctype) then
 full_data = data1:data2;
 else
 full_data = data2:data1;
 accdesc.ispair = TRUE;
 accdesc.highestaddressfirst = offset < 0;
 Mem[address, 2*dbytes, accdesc] = full_data;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 if offset < 0 then
 // Reverse the memory write order for negative pre-index.
 Mem[address2, dbytes, accdesc] = data2;
 Mem[address, dbytes, accdesc] = data1;
 else
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;
 if wback then
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2412
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.350 STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information
about memory accesses, see Load/store addressing modes.

No offset

(FEAT_LOR)

32-bit variant

Applies when size == 10.

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer elsize = 8 << UInt(size);
 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_STORE, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, elsize];
 Mem[address, dbytes, accdesc] = data;

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2413
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2414
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.351 STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information about memory
accesses, see Load/store addressing modes.

No offset

(FEAT_LOR)

Encoding

STLLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_STORE, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2415
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.352 STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease. For information about
memory accesses, see Load/store addressing modes.

No offset

(FEAT_LOR)

Encoding

STLLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescLOR(MemOp_STORE, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2416
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.353 STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release.
For information about memory accesses, see Load/store addressing modes.

No offset

32-bit variant

Applies when size == 10.

STLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 boolean wback = FALSE;
 integer offset = 0;
 boolean rt_unknown = FALSE;

 constant integer elsize = 8 << UInt(size);
 constant integer datasize = elsize;
 boolean tagchecked = n != 31;

Pre-index

(FEAT_LRCPC3)

32-bit variant

Applies when size == 10.

STLR <Wt>, [<Xn|SP>, #-4]!

64-bit variant

Applies when size == 11.

STLR <Xt>, [<Xn|SP>, #-8]!

Decode for all variants of this encoding

 boolean wback = TRUE;

 integer n = UInt(Rn);

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2

1 x 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2417
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 integer t = UInt(Rt);

 constant integer datasize = 8 << UInt(size);
 integer offset = -1 * (1 << UInt(size));
 boolean tagchecked = TRUE;

 boolean rt_unknown = FALSE;

 if n == t && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);
 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 data = X[t, datasize];
 Mem[address, dbytes, accdesc] = data;

 if wback then
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2418
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.354 STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information
about memory accesses, see Load/store addressing modes.

Encoding

STLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, 0, accdesc);
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2419
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.355 STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For
information about memory accesses, see Load/store addressing modes.

Encoding

STLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, 0, accdesc);
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L Rs o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2420
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.356 STLUR

Store-Release Register (unscaled) calculates an address from a base register value and an immediate offset, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

32-bit variant

Applies when size == 10.

STLUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STLUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

1 x 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2421
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2422
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.357 STLURB

Store-Release Register Byte (unscaled) calculates an address from a base register value and an immediate offset,
and stores a byte to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

STLURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

0 0 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2423
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2424
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.358 STLURH

Store-Release Register Halfword (unscaled) calculates an address from a base register value and an immediate
offset, and stores a halfword to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release

For information about memory accesses, see Load/store addressing modes.

Unscaled offset

(FEAT_LRCPC2)

Encoding

STLURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc;
 accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

0 1 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2425
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2426
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.359 STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location
if the PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store
was successful, or of 1 if no store was performed. See Synchronization and semaphores. For information on
single-copy atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of
data accesses. If a 64-bit pair Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit
memory location being updated. The instruction also has memory ordering semantics, as described in Load-Acquire,
Load-AcquirePC, and Store-Release. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when sz == 0.

STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXP.

1 sz 0 0 1 0 0 0 0 0 1 Rs 1 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2427
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 bits(datasize DIV 2) el1 = X[t, datasize DIV 2];
 bits(datasize DIV 2) el2 = X[t2, datasize DIV 2];
 data = if BigEndian(accdesc.acctype) then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2428
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2429
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.360 STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive
access to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1
if no store was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also
has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For
information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 8 << UInt(size);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXR.

1 x 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2430
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(elsize) UNKNOWN;
 else
 data = X[t, elsize];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2431
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2432
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.361 STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access
to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores. The memory access is atomic. The instruction also has memory ordering
semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory
accesses, see Load/store addressing modes.

Encoding

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRB.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

0 0 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2433
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 1, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2434
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.362 STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information
about memory accesses, see Load/store addressing modes.

Encoding

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRH.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

0 1 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2435
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 2, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 2, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2436
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.363 STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/store addressing modes. For information about Non-temporal pair
instructions, see Load/store non-temporal pair.

32-bit variant

Applies when opc == 00.

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc<0> == '1' then UNDEFINED;
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = n != 31;

x 0 1 0 1 0 0 0 0 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2437
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, TRUE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data1 = X[t, datasize];
 data2 = X[t2, datasize];
 address2 = GenerateAddress(address, dbytes, accdesc);
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2438
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.364 STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two
32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information about
memory accesses, see Load/store addressing modes.

Post-index

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

x 0 1 0 1 0 0 0 1 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 1 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L

x 0 1 0 1 0 0 1 0 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

opc L
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2439
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
32-bit variant

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STP and STILP.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc<1>);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2440
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;
 boolean privileged = PSTATE.EL != EL0;

 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown && t == n then
 data1 = bits(datasize) UNKNOWN;
 else
 data1 = X[t, datasize];
 if rt_unknown && t2 == n then
 data2 = bits(datasize) UNKNOWN;
 else
 data2 = X[t2, datasize];
 if IsFeatureImplemented(FEAT_LSE2) then
 bits(2*datasize) full_data;
 if BigEndian(accdesc.acctype) then
 full_data = data1:data2;
 else
 full_data = data2:data1;
 accdesc.ispair = TRUE;
 Mem[address, 2*dbytes, accdesc] = full_data;
 else
 address2 = GenerateAddress(address, dbytes, accdesc);
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2441
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.365 STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset. For information about memory accesses, see
Load/store addressing modes.

Post-index

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

1 x 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

1 x 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2442
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Unsigned offset

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(size);
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

1 x 1 1 1 0 0 1 0 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2443
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation for all encodings

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2444
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.366 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

1 x 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2445
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

 constant integer datasize = 8 << scale;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2446
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.367 STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/store addressing modes.

Post-index

Encoding

STRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

STRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2447
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRB (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2448
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2449
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.368 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/store
addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

Extended register variant

Applies when option != 011.

STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option == 011.

STRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 0 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2450
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, 0, 64);
 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2451
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.369 STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The
address that is used for the store is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/store addressing modes.

Post-index

Encoding

STRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Encoding

STRH <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Encoding

STRH <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

0 1 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 1 1 1 1 0 0 1 0 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2452
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRH (immediate).

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;
 Constraint c;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2453
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2454
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.370 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see
Load/store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

Encoding

STRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for this encoding

 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0

#1 when S = 1

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);

0 1 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2455
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, TRUE);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2456
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.371 STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back
to memory.

• STSET does not have release semantics.

• STSETL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSET, LDSETA, LDSETAL, LDSETL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL,
LDSETL.

• The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDSET alias variant

Applies when size == 10 && R == 0.

STSET <Ws>, [<Xn|SP>]

 is equivalent to

LDSET <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSETL alias variant

Applies when size == 10 && R == 1.

STSETL <Ws>, [<Xn|SP>]

 is equivalent to

LDSETL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSET alias variant

Applies when size == 11 && R == 0.

STSET <Xs>, [<Xn|SP>]

 is equivalent to

LDSET <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2457
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSETL alias variant

Applies when size == 11 && R == 1.

STSETL <Xs>, [<Xn|SP>]

 is equivalent to

LDSETL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2458
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.372 STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
OR with the value held in a register on it, and stores the result back to memory.

• STSETB does not have release semantics.

• STSETLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSETB, LDSETAB, LDSETALB, LDSETLB instruction. This means that:

• The encodings in this description are named to match the encodings of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

• The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSETB <Ws>, [<Xn|SP>]

 is equivalent to

LDSETB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSETLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSETLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2459
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2460
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.373 STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSETH does not have release semantics.

• STSETLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSETH, LDSETAH, LDSETALH, LDSETLH instruction. This means that:

• The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

• The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSETH <Ws>, [<Xn|SP>]

 is equivalent to

LDSETH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSETLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSETLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2461
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2462
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.374 STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as signed numbers.

• STSMAX does not have release semantics.

• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL.

• The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDSMAX alias variant

Applies when size == 10 && R == 0.

STSMAX <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMAXL alias variant

Applies when size == 10 && R == 1.

STSMAXL <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMAX alias variant

Applies when size == 11 && R == 0.

STSMAX <Xs>, [<Xn|SP>]

 is equivalent to

LDSMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2463
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMAXL alias variant

Applies when size == 11 && R == 1.

STSMAXL <Xs>, [<Xn|SP>]

 is equivalent to

LDSMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2464
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.375 STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

• STSMAXB does not have release semantics.

• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB instruction. This
means that:

• The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB.

• The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMAXB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMAXLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2465
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2466
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.376 STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers.

• STSMAXH does not have release semantics.

• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH instruction. This
means that:

• The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH.

• The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMAXH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMAXLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2467
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2468
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.377 STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as signed numbers.

• STSMIN does not have release semantics.

• STSMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMIN, LDSMINA, LDSMINAL, LDSMINL instruction. This means that:

• The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL,
LDSMINL.

• The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDSMIN alias variant

Applies when size == 10 && R == 0.

STSMIN <Ws>, [<Xn|SP>]

 is equivalent to

LDSMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMINL alias variant

Applies when size == 10 && R == 1.

STSMINL <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMIN alias variant

Applies when size == 11 && R == 0.

STSMIN <Xs>, [<Xn|SP>]

 is equivalent to

LDSMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2469
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDSMINL alias variant

Applies when size == 11 && R == 1.

STSMINL <Xs>, [<Xn|SP>]

 is equivalent to

LDSMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2470
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.378 STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

• STSMINB does not have release semantics.

• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB instruction. This means
that:

• The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB.

• The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMINB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMINLB <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2471
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2472
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.379 STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers.

• STSMINH does not have release semantics.

• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH instruction. This means
that:

• The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH.

• The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STSMINH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STSMINLH <Ws>, [<Xn|SP>]

 is equivalent to

LDSMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2473
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2474
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.380 STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

STTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

1 x 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2475
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2476
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.381 STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 0 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2477
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2478
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.382 STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used
for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/store addressing modes.

Encoding

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = AArch64.IsUnprivAccessPriv();
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

0 1 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2479
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2480
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.383 STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as unsigned numbers.

• STUMAX does not have release semantics.

• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL.

• The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode,
any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDUMAX alias variant

Applies when size == 10 && R == 0.

STUMAX <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMAXL alias variant

Applies when size == 10 && R == 1.

STUMAXL <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMAX alias variant

Applies when size == 11 && R == 0.

STUMAX <Xs>, [<Xn|SP>]

 is equivalent to

LDUMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2481
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMAXL alias variant

Applies when size == 11 && R == 1.

STUMAXL <Xs>, [<Xn|SP>]

 is equivalent to

LDUMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2482
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.384 STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

• STUMAXB does not have release semantics.

• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB instruction. This
means that:

• The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB.

• The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMAXB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2483
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2484
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.385 STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers.

• STUMAXH does not have release semantics.

• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses see Load/store addressing modes.

This instruction is an alias of the LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH instruction. This
means that:

• The encodings in this description are named to match the encodings of LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH.

• The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMAXH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2485
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode
for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2486
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.386 STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as unsigned numbers.

• STUMIN does not have release semantics.

• STUMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMIN, LDUMINA, LDUMINAL, LDUMINL instruction. This means that:

• The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
LDUMINL.

• The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Integer

(FEAT_LSE)

32-bit LDUMIN alias variant

Applies when size == 10 && R == 0.

STUMIN <Ws>, [<Xn|SP>]

 is equivalent to

LDUMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMINL alias variant

Applies when size == 10 && R == 1.

STUMINL <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMIN alias variant

Applies when size == 11 && R == 0.

STUMIN <Xs>, [<Xn|SP>]

 is equivalent to

LDUMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2487
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit LDUMINL alias variant

Applies when size == 11 && R == 1.

STUMINL <Xs>, [<Xn|SP>]

 is equivalent to

LDUMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2488
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.387 STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

• STUMINB does not have release semantics.

• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB.

• The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMINB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMINLB <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2489
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2490
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.388 STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as unsigned numbers.

• STUMINH does not have release semantics.

• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

For information about memory accesses, see Load/store addressing modes.

This instruction is an alias of the LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH instruction. This means
that:

• The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH.

• The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational
pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information for this
instruction.

Integer

(FEAT_LSE)

No memory ordering variant

Applies when R == 0.

STUMINH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMINLH <Ws>, [<Xn|SP>]

 is equivalent to

LDUMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

size A opc Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2491
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for
this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2492
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.389 STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/store addressing modes.

32-bit variant

Applies when size == 10.

STUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(size);
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 constant integer datasize = 8 << scale;
 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(datasize) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else

1 x 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2493
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2494
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.390 STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores
a byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/store
addressing modes.

Encoding

STURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(8) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 8];
 Mem[address, 1, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 0 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2495
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.391 STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see
Load/store addressing modes.

Encoding

STURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

 boolean tagchecked = n != 31;

Operation

 bits(64) address;
 bits(16) data;

 boolean privileged = PSTATE.EL != EL0;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, FALSE, privileged, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data = X[t, 16];
 Mem[address, 2, accdesc] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

0 1 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2496
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.392 STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory
location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. For information on single-copy
atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses.
If a 64-bit pair Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory location
being updated. For information about memory accesses, see Load/store addressing modes.

32-bit variant

Applies when sz == 0.

STXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

Applies when sz == 1.

STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2); // ignored by load/store single register
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 32 << UInt(sz);
 constant integer datasize = elsize * 2;
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXP.

1 sz 0 0 1 0 0 0 0 0 1 Rs 0 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

L o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2497
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(datasize) data;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(datasize) UNKNOWN;
 else
 bits(datasize DIV 2) el1 = X[t, datasize DIV 2];
 bits(datasize DIV 2) el2 = X[t2, datasize DIV 2];
 data = if BigEndian(accdesc.acctype) then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2498
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2499
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.393 STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores. For information about memory accesses, see Load/store
addressing modes.

32-bit variant

Applies when size == 10.

STXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 constant integer elsize = 8 << UInt(size);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXR.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 x 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2500
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(elsize) data;
 constant integer dbytes = elsize DIV 8;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(elsize) UNKNOWN;
 else
 data = X[t, elsize];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, dbytes, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, accdesc] = data;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2501
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2502
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.394 STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/store addressing modes.

Encoding

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXRB.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

0 0 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2503
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(8) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t, 8];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 1, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2504
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.395 STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/store addressing modes.

Encoding

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer s = UInt(Rs); // ignored by all loads and store-release

 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;
 boolean rn_unknown = FALSE;
 if s == t then
 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

0 1 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

size L o0 Rt2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2505
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

 bits(64) address;
 bits(16) data;

 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 elsif rn_unknown then
 address = bits(64) UNKNOWN;
 else
 address = X[n, 64];

 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t, 16];

 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].

 // If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address,
 // if accessed, would generate a synchronous Data Abort exception, it is
 // IMPLEMENTATION DEFINED whether the exception is generated.
 // It is a limitation of this model that synchronous Data Aborts are never
 // generated in this case, as Mem[] is not called.
 // If FEAT_SPE is implemented, it is also IMPLEMENTATION DEFINED whether or not the
 // physical address packet is output when permitted and when
 // AArch64.ExclusiveMonitorPass() returns FALSE for a Store Exclusive instruction.
 // This behavior is not reflected here due to the previously stated limitation.
 if AArch64.ExclusiveMonitorsPass(address, 2, accdesc) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 2, accdesc] = data;
 status = ExclusiveMonitorsStatus();
 X[s, 32] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2506
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.396 STZ2G

Store Allocation Tags, Zeroing stores an Allocation Tag to two Tag granules of memory, zeroing the associated data
locations. The address used for the store is calculated from the base register and an immediate signed offset scaled
by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STZ2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 1 1 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 1 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 1 1 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2507
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STZ2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;
 bits(64) address2;
 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, TAG_GRANULE, accdesc);

 if !IsAligned(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 Mem[address, TAG_GRANULE, accdesc] = Zeros(TAG_GRANULE * 8);
 Mem[address2, TAG_GRANULE, accdesc] = Zeros(TAG_GRANULE * 8);

 AArch64.MemTag[address, accdesc] = tag;
 AArch64.MemTag[address2, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2508
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.397 STZG

Store Allocation Tag, Zeroing stores an Allocation Tag to memory, zeroing the associated data location. The address
used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The
Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

(FEAT_MTE)

Encoding

STZG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = TRUE;

Pre-index

(FEAT_MTE)

Encoding

STZG <Xt|SP>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = TRUE;
 boolean postindex = FALSE;

Signed offset

(FEAT_MTE)

1 1 0 1 1 0 0 1 0 1 1 imm9 0 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 1 1 imm9 1 1 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

1 1 0 1 1 0 0 1 0 1 1 imm9 1 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2509
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Encoding

STZG <Xt|SP>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer n = UInt(Xn);
 integer t = UInt(Xt);
 bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
 boolean writeback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0
and encoded in the "imm9" field.

Operation for all encodings

 bits(64) address;

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 if !IsAligned(address, TAG_GRANULE) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 Mem[address, TAG_GRANULE, accdesc] = Zeros(TAG_GRANULE * 8);

 bits(64) data = if t == 31 then SP[] else X[t, 64];
 bits(4) tag = AArch64.AllocationTagFromAddress(data);
 AArch64.MemTag[address, accdesc] = tag;

 if writeback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);

 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2510
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.398 STZGM

Store Tag and Zero Multiple writes a naturally aligned block of N Allocation Tags and stores zero to the associated
data locations, where the size of N is identified in DCZID_EL0.BS, and the Allocation Tag is taken from the source
register bits<3:0>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Integer

(FEAT_MTE2)

Encoding

STZGM <Xt>, [<Xn|SP>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE2) then UNDEFINED;
 integer t = UInt(Xt);
 integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

 if PSTATE.EL == EL0 then
 UNDEFINED;

 bits(64) data = X[t, 64];
 bits(4) tag = data<3:0>;
 bits(64) address;
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 integer size = 4 * (2 ^ (UInt(DCZID_EL0.BS)));
 address = Align(address, size);
 integer count = size >> LOG2_TAG_GRANULE;
 AccessDescriptor accdesc = CreateAccDescLDGSTG(MemOp_STORE);

 for i = 0 to count-1
 AArch64.MemTag[address, accdesc] = tag;
 Mem[address, TAG_GRANULE, accdesc] = Zeros(8 * TAG_GRANULE);
 address = GenerateAddress(address, TAG_GRANULE, accdesc);

1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2511
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.399 SUB (extended register)

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when sf == 0.

SUB <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

SUB <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

sf 1 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2512
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2513
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2514
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.400 SUB (immediate)

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes the result to
the destination register.

32-bit variant

Applies when sf == 0.

SUB <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

SUB <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Assembler symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2;

 operand2 = NOT(imm);
 (result, -) = AddWithCarry(operand1, operand2, '1');

sf 1 0 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2515
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

 if d == 31 then
 SP[] = ZeroExtend(result, 64);
 else
 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2516
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.401 SUB (shifted register)

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes the result
to the destination register.

This instruction is used by the alias NEG (shifted register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUB <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

SUB <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

NEG (shifted register) Rn == '11111'

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2517
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2518
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.402 SUBG

Subtract with Tag subtracts an immediate value scaled by the Tag granule from the address in the source register,
modifies the Logical Address Tag of the address using an immediate value, and writes the result to the destination
register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical
Address Tag.

Integer

(FEAT_MTE)

Encoding

SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
 bits(16) exclude = GCR_EL1.Exclude;
 bits(64) result;
 bits(4) rtag;

 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
 else
 rtag = '0000';

 (result, -) = AddWithCarry(operand1, NOT(offset), '1');

 result = AArch64.AddressWithAllocationTag(result, rtag);

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

1 1 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 10 9 5 4 0

op3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2519
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.403 SUBP

Subtract Pointer subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, sign-extends the result to 64-bits, and writes the result to the destination register.

Integer

(FEAT_MTE)

Encoding

SUBP <Xd>, <Xn|SP>, <Xm|SP>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) operand2 = if m == 31 then SP[] else X[m, 64];
 operand1 = SignExtend(operand1<55:0>, 64);
 operand2 = SignExtend(operand2<55:0>, 64);

 bits(64) result;

 operand2 = NOT(operand2);
 (result, -) = AddWithCarry(operand1, operand2, '1');

 X[d, 64] = result;

1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2520
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.404 SUBPS

Subtract Pointer, setting Flags subtracts the 56-bit address held in the second source register from the 56-bit address
held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination register. It
updates the condition flags based on the result of the subtraction.

This instruction is used by the alias CMPP. See Alias conditions for details of when each alias is preferred.

Integer

(FEAT_MTE)

Encoding

SUBPS <Xd>, <Xn|SP>, <Xm|SP>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_MTE) then UNDEFINED;
 integer d = UInt(Xd);
 integer n = UInt(Xn);
 integer m = UInt(Xm);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the
"Xm" field.

Operation

 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) operand2 = if m == 31 then SP[] else X[m, 64];
 operand1 = SignExtend(operand1<55:0>, 64);
 operand2 = SignExtend(operand2<55:0>, 64);

 bits(64) result;
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;
 X[d, 64] = result;

Alias is preferred when

CMPP S == '1' && Xd == '11111'

1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2521
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.405 SUBS (extended register)

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by an optional
left shift amount, from a register value, and writes the result to the destination register. The argument that is extended
from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result.

This instruction is used by the alias CMP (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = UInt(imm3);
 if shift > 4 then UNDEFINED;

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

Alias is preferred when

CMP (extended register) Rd == '11111'

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2522
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<R> Is a width specifier, encoded in the "option" field. It can have the following values:

W when option = 00x

W when option = 010

X when option = x11

W when option = 10x

W when option = 110

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in
the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

LSL|UXTW when option = 010

UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

UXTB when option = 000

UXTH when option = 001

UXTW when option = 010

LSL|UXTX when option = 011

SXTB when option = 100

SXTH when option = 101

SXTW when option = 110

SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3"
is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2 = ExtendReg(m, extend_type, shift, datasize);
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2523
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2524
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.406 SUBS (immediate)

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMP (immediate). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);
 bits(datasize) imm;

 case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #12 when sh = 1

Alias is preferred when

CMP (immediate) Rd == '11111'

sf 1 1 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2525
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation

 bits(datasize) result;
 bits(datasize) operand1 = if n == 31 then SP[]<datasize-1:0> else X[n, datasize];
 bits(datasize) operand2;
 bits(4) nzcv;

 operand2 = NOT(imm);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2526
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.407 SUBS (shifted register)

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register value, and
writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the aliases CMP (shifted register) and NEGS. See Alias conditions for details of when
each alias is preferred.

32-bit variant

Applies when sf == 0.

SUBS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

SUBS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

 if shift == '11' then UNDEFINED;
 if sf == '0' && imm6<5> == '1' then UNDEFINED;

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias is preferred when

CMP (shifted register) Rd == '11111'

NEGS Rn == '11111' && Rd != '11111'

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2527
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount, datasize);
 bits(4) nzcv;

 operand2 = NOT(operand2);
 (result, nzcv) = AddWithCarry(operand1, operand2, '1');

 PSTATE.<N,Z,C,V> = nzcv;

 X[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2528
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.408 SVC

Supervisor Call causes an exception to be taken to EL1.

On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the
EC value 0x15, and the value of the immediate argument.

Encoding

SVC #<imm>

Decode for this encoding

 // Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 AArch64.CheckForSVCTrap(imm16);
 AArch64.CallSupervisor(imm16);

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2529
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.409 SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location,
and stores the value held in a register back to the same memory location. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire semantics.

• SWPL and SWPAL store to memory with release semantics.

• SWP has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LSE)

32-bit SWP variant

Applies when size == 10 && A == 0 && R == 0.

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPA variant

Applies when size == 10 && A == 1 && R == 0.

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPAL variant

Applies when size == 10 && A == 1 && R == 1.

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPL variant

Applies when size == 10 && A == 0 && R == 1.

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit SWP variant

Applies when size == 11 && A == 0 && R == 0.

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPA variant

Applies when size == 11 && A == 1 && R == 0.

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPAL variant

Applies when size == 11 && A == 1 && R == 1.

SWPAL <Xs>, <Xt>, [<Xn|SP>]

1 x 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2530
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
64-bit SWPL variant

Applies when size == 11 && A == 0 && R == 1.

SWPL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 constant integer datasize = 8 << UInt(size);
 integer regsize = if datasize == 64 then 64 else 32;
 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(datasize) data;
 bits(datasize) store_value;
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = X[s, datasize];

 bits(datasize) comparevalue = bits(datasize) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 X[t, regsize] = ZeroExtend(data, regsize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2531
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.410 SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register
back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.

• SWPLB and SWPALB store to memory with release semantics.

• SWPB has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LSE)

SWPAB variant

Applies when A == 1 && R == 0.

SWPAB <Ws>, <Wt>, [<Xn|SP>]

SWPALB variant

Applies when A == 1 && R == 1.

SWPALB <Ws>, <Wt>, [<Xn|SP>]

SWPB variant

Applies when A == 0 && R == 0.

SWPB <Ws>, <Wt>, [<Xn|SP>]

SWPLB variant

Applies when A == 0 && R == 1.

SWPLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2532
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(8) data;
 bits(8) store_value;
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = X[s, 8];

 bits(8) comparevalue = bits(8) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 X[t, 32] = ZeroExtend(data, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2533
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.411 SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in
a register back to the same memory location. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.

• SWPLH and SWPALH store to memory with release semantics.

• SWPH has neither acquire nor release semantics.

For more information about memory ordering semantics, see Load-Acquire, Load-AcquirePC, and Store-Release.

For information about memory accesses, see Load/store addressing modes.

Integer

(FEAT_LSE)

SWPAH variant

Applies when A == 1 && R == 0.

SWPAH <Ws>, <Wt>, [<Xn|SP>]

SWPALH variant

Applies when A == 1 && R == 1.

SWPALH <Ws>, <Wt>, [<Xn|SP>]

SWPH variant

Applies when A == 0 && R == 0.

SWPH <Ws>, <Wt>, [<Xn|SP>]

SWPLH variant

Applies when A == 0 && R == 1.

SWPLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE) then UNDEFINED;

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer s = UInt(Rs);

 boolean acquire = A == '1' && Rt != '11111';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2534
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(16) data;
 bits(16) store_value;
 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = X[s, 16];

 bits(16) comparevalue = bits(16) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 X[t, 32] = ZeroExtend(data, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2535
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.412 SWPP, SWPPA, SWPPAL, SWPPL

Swap quadword in memory atomically loads a 128-bit quadword from a memory location, and stores the value held
in a pair of registers back to the same memory location. The value initially loaded from memory is returned in the
same pair of registers.

• SWPPA and SWPPAL load from memory with acquire semantics.

• SWPPL and SWPPAL store to memory with release semantics.

• SWPP has neither acquire nor release semantics.

Integer

(FEAT_LSE128)

SWPP variant

Applies when A == 0 && R == 0.

SWPP <Xt1>, <Xt2>, [<Xn|SP>]

SWPPA variant

Applies when A == 1 && R == 0.

SWPPA <Xt1>, <Xt2>, [<Xn|SP>]

SWPPAL variant

Applies when A == 1 && R == 1.

SWPPAL <Xt1>, <Xt2>, [<Xn|SP>]

SWPPL variant

Applies when A == 0 && R == 1.

SWPPL <Xt1>, <Xt2>, [<Xn|SP>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_LSE128) then UNDEFINED;
 if Rt == '11111' then UNDEFINED;
 if Rt2 == '11111' then UNDEFINED;
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 integer n = UInt(Rn);

 boolean acquire = A == '1';
 boolean release = R == '1';
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LSE128OVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 0 0 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0

S o3 opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2536
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly CONSTRAINED UNPREDICTABLE
behavior for A64 instructions.

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 bits(64) address;
 bits(64) value1 = X[t, 64];
 bits(64) value2 = X[t2, 64];
 bits(128) data;
 bits(128) store_value;

 AccessDescriptor accdesc = CreateAccDescAtomicOp(MemAtomicOp_SWP, acquire, release, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 store_value = if BigEndian(accdesc.acctype) then value1:value2 else value2:value1;

 bits(128) comparevalue = bits(128) UNKNOWN; // Irrelevant when not executing CAS
 data = MemAtomic(address, comparevalue, store_value, accdesc);

 if rt_unknown then
 data = bits(128) UNKNOWN;

 if BigEndian(accdesc.acctype) then
 X[t, 64] = data<127:64>;
 X[t2, 64] = data<63:0>;
 else
 X[t, 64] = data<63:0>;
 X[t2, 64] = data<127:64>;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2537
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.413 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and writes the
result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SXTB <Wd>, <Wn>

 is equivalent to

SBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1.

SXTB <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc immr imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2538
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2539
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.414 SXTH

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the result to the
destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

SXTH <Wd>, <Wn>

 is equivalent to

SBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1 && N == 1.

SXTH <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc immr imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2540
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2541
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.415 SXTW

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.

• The description of SBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

64-bit variant

SXTW <Xd>, <Wn>

 is equivalent to

SBFM <Xd>, <Xn>, #0, #31

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2542
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.416 SYS

System instruction. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions for the
encodings of System instructions.

This instruction is used by the aliases AT, BRB, CFP, COSP, CPP, DC, DVP, GCSPOPCX, GCSPOPX,
GCSPUSHM, GCSPUSHX, GCSSS1, IC, TLBI, and TRCIT. See Alias conditions for details of when each alias is
preferred.

Encoding

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

Decode for this encoding

 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2543
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

 AArch64.SysInstr(1, sys_op1, sys_crn, sys_crm, sys_op2, t);

Alias is preferred when

AT CRn == '0111' && CRm == '100x' && SysOp(op1,'0111',CRm,op2) == Sys_AT

BRB op1 == '001' && CRn == '0111' && CRm == '0010' && SysOp('001','0111','0010',op2) ==
Sys_BRB

CFP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '100'

COSP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '110'

CPP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '111'

DC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_DC

DVP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '101'

GCSPOPCX op1 == '000' && CRn == '0111' && CRm == '0111' && op2 == '101'

GCSPOPX op1 == '000' && CRn == '0111' && CRm == '0111' && op2 == '110'

GCSPUSHM op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '000'

GCSPUSHX op1 == '000' && CRn == '0111' && CRm == '0111' && op2 == '100'

GCSSS1 op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '010'

IC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_IC

TLBI CRn == '100x' && SysOp(op1,CRn,CRm,op2) == Sys_TLBI

TRCIT op1 == '011' && CRn == '0111' && CRm == '0010' && op2 == '111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2544
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.417 SYSL

System instruction with result. For more information, see op0==0b01, cache maintenance, TLB maintenance,
address translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions for the
encodings of System instructions.

This instruction is used by the aliases GCSPOPM and GCSSS2. See Alias conditions for details of when each alias
is preferred.

Encoding

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

Decode for this encoding

 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Alias conditions

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

 // No architecturally defined instructions here.
 AArch64.SysInstrWithResult(1, sys_op1, sys_crn, sys_crm, sys_op2, t);

Alias is preferred when

GCSPOPM op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '001'

GCSSS2 op1 == '011' && CRn == '0111' && CRm == '0111' && op2 == '011'

1 1 0 1 0 1 0 1 0 0 1 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2545
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.418 SYSP

128-bit System instruction.

This instruction is used by the alias TLBIP. See Alias conditions for details of when each alias is preferred.

System

(FEAT_SYSINSTR128)

Encoding

SYSP #<op1>, <Cn>, <Cm>, #<op2>{, <Xt1>, <Xt2>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SYSINSTR128) then UNDEFINED;
 if Rt<0> == '1' && Rt != '11111' then UNDEFINED;
 AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

 integer t = UInt(Rt);
 integer t2 = if t == 31 then 31 else UInt(Rt) + 1;

 integer sys_op1 = UInt(op1);
 integer sys_op2 = UInt(op2);
 integer sys_crn = UInt(CRn);
 integer sys_crm = UInt(CRm);

Alias conditions

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 6, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 8 to 9, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 7, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt1> Is the 64-bit name of the first optional general-purpose source register, defaulting to '11111',
encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second optional general-purpose source register, defaulting to '11111',
encoded as "Rt" +1. Defaults to '11111' if "Rt" = '11111'.

Operation

 AArch64.SysInstr128(1, sys_op1, sys_crn, sys_crm, sys_op2, t, t2);

Alias is preferred when

TLBIP CRn == '100x' && SysOp(op1,CRn,CRm,op2) == Sys_TLBIP

1 1 0 1 0 1 0 1 0 1 0 0 1 op1 CRn CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2546
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.419 TBNZ

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and conditionally
branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine
call or return. This instruction does not affect condition flags.

Encoding

TBNZ <R><t>, #<imm>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 constant integer datasize = 32 << UInt(b5);
 integer bit_pos = UInt(b5:b40);
 bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R> Is a width specifier, encoded in the "b5" field. It can have the following values:

W when b5 = 0

X when b5 = 1

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted
when the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in
the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-32KB, is encoded as "imm14" times 4.

Operation

 bits(datasize) operand = X[t, datasize];
 if operand<bit_pos> == op then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

b5 0 1 1 0 1 1 1 b40 imm14 Rt

31 30 29 28 27 26 25 24 23 19 18 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2547
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.420 TBZ

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

Encoding

TBZ <R><t>, #<imm>, <label>

Decode for this encoding

 integer t = UInt(Rt);

 constant integer datasize = 32 << UInt(b5);
 integer bit_pos = UInt(b5:b40);
 bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R> Is a width specifier, encoded in the "b5" field. It can have the following values:

W when b5 = 0

X when b5 = 1

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted
when the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in
the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-32KB, is encoded as "imm14" times 4.

Operation

 bits(datasize) operand = X[t, datasize];
 if operand<bit_pos> == op then
 BranchTo(PC64 + offset, BranchType_DIR, TRUE);
 else
 BranchNotTaken(BranchType_DIR, TRUE);

b5 0 1 1 0 1 1 0 b40 imm14 Rt

31 30 29 28 27 26 25 24 23 19 18 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2548
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.421 TCANCEL

This instruction exits Transactional state and discards all state modifications that were performed transactionally.
Execution continues at the instruction that follows the TSTART instruction of the outer transaction. The destination
register of the TSTART instruction of the outer transaction is written with the immediate operand of TCANCEL.

System

(FEAT_TME)

Encoding

TCANCEL #<imm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;
 boolean retry = (imm16<15> == '1');
 bits(15) reason = imm16<14:0>;

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

 if !IsTMEEnabled() then UNDEFINED;

 if TSTATE.depth > 0 then
 FailTransaction(TMFailure_CNCL, retry, FALSE, reason);

1 1 0 1 0 1 0 0 0 1 1 imm16 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2549
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.422 TCOMMIT

This instruction commits the current transaction. If the current transaction is an outer transaction, then Transactional
state is exited, and all state modifications performed transactionally are committed to the architectural state.
TCOMMIT takes no inputs and returns no value.

Execution of TCOMMIT is UNDEFINED in Non-transactional state.

System

(FEAT_TME)

Encoding

TCOMMIT

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;

Operation

 if !IsTMEEnabled() then UNDEFINED;

 if TSTATE.depth == 0 then
 UNDEFINED;

 if TSTATE.depth == 1 then
 CommitTransactionalWrites();
 ClearExclusiveLocal(ProcessorID());

 TSTATE.depth = TSTATE.depth - 1;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2550
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.423 TLBI

TLB Invalidate operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, address
translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

TLBI <tlbi_op>{, <Xt>}

 is equivalent to

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,CRn,CRm,op2) == Sys_TLBI.

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbi_op> Is a TLBI instruction name, as listed for the TLBI system instruction group, encoded in the
"op1:CRn:CRm:op2" field. It can have the following values:

VMALLE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 000

VAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 001

ASIDE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 010

VAAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 011

VALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 101

VAALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 111

VMALLE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 000

VAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 001

ASIDE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 010

VAAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 011

VALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 101

VAALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 111

IPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 001

IPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 101

ALLE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 000

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 1 0 0 x CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2551
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
VAE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 001

ALLE1IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 100

VALE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 101

VMALLS12E1IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 110

IPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 001

IPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 101

ALLE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 000

VAE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 001

ALLE1 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 100

VALE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 101

VMALLS12E1 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 110

ALLE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 000

VAE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 001

VALE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 101

ALLE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 000

VAE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 001

VALE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 101

When FEAT_TLBIOS is implemented, the following values are also valid:

VMALLE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 000

VAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 001

ASIDE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 010

VAAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 011

VALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 101

VAALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 111

ALLE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 000

VAE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 001

ALLE1OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 100

VALE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 101

VMALLS12E1OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 110

IPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 000

IPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 100

ALLE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 000

VAE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 001

VALE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 101

When FEAT_TLBIRANGE is implemented, the following values are also valid:

RVAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 001

RVAAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 011

RVALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 101

RVAALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 111

RVAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 001

RVAAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 011

RVALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 101

RVAALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 111

RVAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2552
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
RVAAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 011

RVALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 101

RVAALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 111

RIPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 010

RIPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 110

RVAE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 001

RVALE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 101

RIPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 010

RIPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 011

RIPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 110

RIPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 111

RVAE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 001

RVALE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 101

RVAE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 001

RVALE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 101

RVAE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 001

RVALE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 101

RVAE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 001

RVALE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 101

RVAE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 001

RVALE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 101

When FEAT_XS is implemented, the following values are also valid:

VMALLE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 000

VAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 001

ASIDE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 010

VAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 011

VALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 101

VAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 111

RVAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 001

RVAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 011

RVALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 101

RVAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 111

VMALLE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 000

VAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 001

ASIDE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 010

VAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 011

VALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 101

VAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 111

RVAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 001

RVAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 011

RVALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 101

RVAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 111

RVAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 001

RVAAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2553
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
RVALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 101

RVAALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 111

VMALLE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 000

VAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 001

ASIDE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 010

VAAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 011

VALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 101

VAALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 111

IPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 001

RIPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 010

IPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 101

RIPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 110

ALLE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 000

VAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 001

ALLE1OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 100

VALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 101

VMALLS12E1OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 110

RVAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 001

RVALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 101

ALLE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 000

VAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 001

ALLE1ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 100

VALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 101

VMALLS12E1ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 110

IPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 000

IPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 001

RIPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 010

RIPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 011

IPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 100

IPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 101

RIPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 110

RIPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 111

RVAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 001

RVALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 101

RVAE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 001

RVALE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 101

ALLE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 000

VAE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 001

ALLE1NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 100

VALE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 101

VMALLS12E1NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 110

ALLE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 000

VAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 001

VALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2554
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
RVAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 001

RVALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 101

ALLE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 000

VAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 001

VALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 101

RVAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 001

RVALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 101

RVAE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 001

RVALE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 101

ALLE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 000

VAE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 001

VALE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 101

When FEAT_RME is implemented, the following values are also valid:

PAALLOS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 100

RPAOS when op1 = 110, CRn = 1000, CRm = 0100, op2 = 011

RPALOS when op1 = 110, CRn = 1000, CRm = 0100, op2 = 111

PAALL when op1 = 110, CRn = 1000, CRm = 0111, op2 = 100

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in
the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2555
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.424 TLBIP

TLB Invalidate Pair operation.

This instruction is an alias of the SYSP instruction. This means that:

• The encodings in this description are named to match the encodings of SYSP.

• The description of SYSP gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

System

(FEAT_D128)

Encoding

TLBIP <tlbip_op>{, <Xt1>, <Xt2>}

 is equivalent to

SYSP #<op1>, <Cn>, <Cm>, #<op2>{, <Xt1>, <Xt2>}

and is the preferred disassembly when SysOp(op1,CRn,CRm,op2) == Sys_TLBIP.

Assembler symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 6, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 8 to 9, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 7, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbip_op> Is a TLBIP instruction name, as listed for the TLBIP system pair instruction group, encoded in the
"op1:CRn:CRm:op2" field. It can have the following values:

VAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 001

VAAE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 011

VALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 101

VAALE1OS when op1 = 000, CRn = 1000, CRm = 0001, op2 = 111

RVAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 001

RVAAE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 011

RVALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 101

RVAALE1IS when op1 = 000, CRn = 1000, CRm = 0010, op2 = 111

VAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 001

VAAE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 011

VALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 101

VAALE1IS when op1 = 000, CRn = 1000, CRm = 0011, op2 = 111

RVAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 001

RVAAE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 011

RVALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 101

1 1 0 1 0 1 0 1 0 1 0 0 1 op1 1 0 0 x CRm op2 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L CRn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2556
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
RVAALE1OS when op1 = 000, CRn = 1000, CRm = 0101, op2 = 111

RVAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 001

RVAAE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 011

RVALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 101

RVAALE1 when op1 = 000, CRn = 1000, CRm = 0110, op2 = 111

VAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 001

VAAE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 011

VALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 101

VAALE1 when op1 = 000, CRn = 1000, CRm = 0111, op2 = 111

VAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 001

VAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 011

VALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 101

VAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0001, op2 = 111

RVAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 001

RVAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 011

RVALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 101

RVAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0010, op2 = 111

VAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 001

VAAE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 011

VALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 101

VAALE1ISNXS when op1 = 000, CRn = 1001, CRm = 0011, op2 = 111

RVAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 001

RVAAE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 011

RVALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 101

RVAALE1OSNXS when op1 = 000, CRn = 1001, CRm = 0101, op2 = 111

RVAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 001

RVAAE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 011

RVALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 101

RVAALE1NXS when op1 = 000, CRn = 1001, CRm = 0110, op2 = 111

VAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 001

VAAE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 011

VALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 101

VAALE1NXS when op1 = 000, CRn = 1001, CRm = 0111, op2 = 111

IPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 001

RIPAS2E1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 010

IPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 101

RIPAS2LE1IS when op1 = 100, CRn = 1000, CRm = 0000, op2 = 110

VAE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 001

VALE2OS when op1 = 100, CRn = 1000, CRm = 0001, op2 = 101

RVAE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 001

RVALE2IS when op1 = 100, CRn = 1000, CRm = 0010, op2 = 101

VAE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 001

VALE2IS when op1 = 100, CRn = 1000, CRm = 0011, op2 = 101

IPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2557
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
IPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 001

RIPAS2E1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 010

RIPAS2E1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 011

IPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 100

IPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 101

RIPAS2LE1 when op1 = 100, CRn = 1000, CRm = 0100, op2 = 110

RIPAS2LE1OS when op1 = 100, CRn = 1000, CRm = 0100, op2 = 111

RVAE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 001

RVALE2OS when op1 = 100, CRn = 1000, CRm = 0101, op2 = 101

RVAE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 001

RVALE2 when op1 = 100, CRn = 1000, CRm = 0110, op2 = 101

VAE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 001

VALE2 when op1 = 100, CRn = 1000, CRm = 0111, op2 = 101

IPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 001

RIPAS2E1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 010

IPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 101

RIPAS2LE1ISNXS when op1 = 100, CRn = 1001, CRm = 0000, op2 = 110

VAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 001

VALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0001, op2 = 101

RVAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 001

RVALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0010, op2 = 101

VAE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 001

VALE2ISNXS when op1 = 100, CRn = 1001, CRm = 0011, op2 = 101

IPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 000

IPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 001

RIPAS2E1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 010

RIPAS2E1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 011

IPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 100

IPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 101

RIPAS2LE1NXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 110

RIPAS2LE1OSNXS when op1 = 100, CRn = 1001, CRm = 0100, op2 = 111

RVAE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 001

RVALE2OSNXS when op1 = 100, CRn = 1001, CRm = 0101, op2 = 101

RVAE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 001

RVALE2NXS when op1 = 100, CRn = 1001, CRm = 0110, op2 = 101

VAE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 001

VALE2NXS when op1 = 100, CRn = 1001, CRm = 0111, op2 = 101

VAE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 001

VALE3OS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 101

RVAE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 001

RVALE3IS when op1 = 110, CRn = 1000, CRm = 0010, op2 = 101

VAE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 001

VALE3IS when op1 = 110, CRn = 1000, CRm = 0011, op2 = 101

RVAE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2558
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
RVALE3OS when op1 = 110, CRn = 1000, CRm = 0101, op2 = 101

RVAE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 001

RVALE3 when op1 = 110, CRn = 1000, CRm = 0110, op2 = 101

VAE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 001

VALE3 when op1 = 110, CRn = 1000, CRm = 0111, op2 = 101

VAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 001

VALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0001, op2 = 101

RVAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 001

RVALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0010, op2 = 101

VAE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 001

VALE3ISNXS when op1 = 110, CRn = 1001, CRm = 0011, op2 = 101

RVAE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 001

RVALE3OSNXS when op1 = 110, CRn = 1001, CRm = 0101, op2 = 101

RVAE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 001

RVALE3NXS when op1 = 110, CRn = 1001, CRm = 0110, op2 = 101

VAE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 001

VALE3NXS when op1 = 110, CRn = 1001, CRm = 0111, op2 = 101

<Xt1> Is the 64-bit name of the first optional general-purpose source register, defaulting to '11111',
encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second optional general-purpose source register, defaulting to '11111',
encoded as "Rt" +1. Defaults to '11111' if "Rt" = '11111'.

Operation

The description of SYSP gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2559
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.425 TRCIT

Trace Instrumentation generates an instrumentation trace packet that contains the value of the provided register.

This instruction is an alias of the SYS instruction. This means that:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

System

(FEAT_ITE)

Encoding

TRCIT <Xt>

 is equivalent to

SYS #3, C7, C2, #7, <Xt>

and is always the preferred disassembly.

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

L op1 CRn CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2560
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.426 TSB

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions, see
Trace Synchronization Barrier (TSB).

If FEAT_TRF is not implemented, this instruction executes as a NOP.

System

(FEAT_TRF)

Encoding

TSB CSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TRF) then EndOfInstruction();

Operation

 TraceSynchronizationBarrier();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2561
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.427 TST (immediate)

Test bits (immediate) , setting the condition flags and discarding the result : Rn AND imm

This instruction is an alias of the ANDS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS (immediate).

• The description of ANDS (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

TST <Wn>, #<imm>

 is equivalent to

ANDS WZR, <Wn>, #<imm>

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

TST <Xn>, #<imm>

 is equivalent to

ANDS XZR, <Xn>, #<imm>

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

The description of ANDS (immediate) gives the operational pseudocode for this instruction.

sf 1 1 1 0 0 1 0 0 N immr imms Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2562
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.428 TST (shifted register)

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted register value.
It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ANDS (shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS (shifted register).

• The description of ANDS (shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

32-bit variant

Applies when sf == 0.

TST <Wn>, <Wm>{, <shift> #<amount>}

 is equivalent to

ANDS WZR, <Wn>, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

TST <Xn>, <Xm>{, <shift> #<amount>}

 is equivalent to

ANDS XZR, <Xn>, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift"
field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

opc N Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2563
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2564
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.429 TSTART

This instruction starts a new transaction. If the transaction started successfully, the destination register is set to zero.
If the transaction failed or was canceled, then all state modifications that were performed transactionally are
discarded and the destination register is written with a nonzero value that encodes the cause of the failure.

System

(FEAT_TME)

Encoding

TSTART <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

 if !IsTMEEnabled() then UNDEFINED;

 boolean IsEL1Regime;
 bit tme;
 bit tmt;
 case PSTATE.EL of
 when EL0
 IsEL1Regime = S1TranslationRegime() == EL1;
 if IsEL1Regime then
 tme = SCTLR_EL1.TME0;
 tmt = SCTLR_EL1.TMT0;
 else
 tme = SCTLR_EL2.TME0;
 tmt = SCTLR_EL2.TMT0;
 when EL1
 tme = SCTLR_EL1.TME;
 tmt = SCTLR_EL1.TMT;
 when EL2
 tme = SCTLR_EL2.TME;
 tmt = SCTLR_EL2.TMT;
 when EL3
 tme = SCTLR_EL3.TME;
 tmt = SCTLR_EL3.TMT;
 otherwise
 Unreachable();

 boolean enable = tme == '1';
 boolean trivial = tmt == '1';

 if !enable then
 TransactionStartTrap(t);
 elsif trivial then
 TSTATE.nPC = NextInstrAddr(64);

1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2565
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
 TSTATE.Rt = t;
 FailTransaction(TMFailure_TRIVIAL, FALSE);
 elsif IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 FailTransaction(TMFailure_ERR, FALSE);
 elsif TSTATE.depth == 255 then
 FailTransaction(TMFailure_NEST, FALSE);
 elsif TSTATE.depth == 0 then
 TSTATE.nPC = NextInstrAddr(64);
 TSTATE.Rt = t;
 ClearExclusiveLocal(ProcessorID());
 TakeTransactionCheckpoint();
 StartTrackingTransactionalReadsWrites();

 TSTATE.depth = TSTATE.depth + 1;
 X[t, 64] = Zeros(64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2566
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.430 TTEST

This instruction writes the depth of the transaction to the destination register, or the value 0 otherwise.

System

(FEAT_TME)

Encoding

TTEST <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TME) then UNDEFINED;
 integer t = UInt(Rt);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

Operation

 if !IsTMEEnabled() then UNDEFINED;

 X[t, 64] = (TSTATE.depth)<63:0>;

1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2567
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.431 UBFIZ

Unsigned Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits above and below the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

UBFIZ <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

UBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

UBFIZ <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

UBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2568
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2569
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.432 UBFM

Unsigned Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit position
<immr> in the source register to the least significant bits of the destination register.

If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.

In both cases the destination bits below and above the bitfield are set to zero.

This instruction is used by the aliases LSL (immediate), LSR (immediate), UBFIZ, UBFX, UXTB, and UXTH. See
Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when sf == 0 && N == 0.

UBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit variant

Applies when sf == 1 && N == 1.

UBFM <Xd>, <Xn>, #<immr>, #<imms>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer datasize = 32 << UInt(sf);

 integer r;
 bits(datasize) wmask;
 bits(datasize) tmask;

 if sf == '1' && N != '1' then UNDEFINED;
 if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

 r = UInt(immr);
 (wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE, datasize);

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2570
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Operation

 bits(datasize) src = X[n, datasize];

 // perform bitfield move on low bits
 bits(datasize) bot = ROR(src, r) AND wmask;

 // combine extension bits and result bits
 X[d, datasize] = bot AND tmask;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

Alias of variant is preferred when

LSL (immediate) 32-bit imms != '011111' && imms + 1 == immr

LSL (immediate) 64-bit imms != '111111' && imms + 1 == immr

LSR (immediate) 32-bit imms == '011111'

LSR (immediate) 64-bit imms == '111111'

UBFIZ -
UInt(imms) < UInt(immr)

UBFX -
BFXPreferred(sf, opc<1>, imms, immr)

UXTB - immr == '000000' && imms == '000111'

UXTH - immr == '000000' && imms == '001111'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2571
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2572
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.433 UBFX

Unsigned Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to
the least significant bits of the destination register, and sets destination bits above the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

UBFX <Wd>, <Wn>, #<lsb>, #<width>

 is equivalent to

UBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

UBFX <Xd>, <Xn>, #<lsb>, #<width>

 is equivalent to

UBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2573
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2574
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.434 UDF

Permanently Undefined generates an Undefined Instruction exception (ESR_ELx.EC = 0b000000). The encodings
for UDF used in this section are defined as permanently UNDEFINED.

Encoding

UDF #<imm>

Decode for this encoding

 // The imm16 field is ignored by hardware.
 UNDEFINED;

Assembler symbols

<imm> is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field. The PE
ignores the value of this constant.

Operation

 // No operation.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 imm16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2575
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.435 UDIV

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value, and writes
the result to the destination register. The condition flags are not affected.

32-bit variant

Applies when sf == 0.

UDIV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 32 << UInt(sf);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result;

 if IsZero(operand2) then
 result = 0;
 else
 result = RoundTowardsZero(Real(Int(operand1, TRUE)) / Real(Int(operand2, TRUE)));

 X[d, datasize] = result<datasize-1:0>;

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2576
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.436 UMADDL

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result
to the 64-bit destination register.

This instruction is used by the alias UMULL. See Alias conditions for details of when each alias is preferred.

Encoding

UMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, TRUE) + (Int(operand1, TRUE) * Int(operand2, TRUE));

 X[d, 64] = result<63:0>;

Alias is preferred when

UMULL Ra == '11111'

1 0 0 1 1 0 1 1 1 0 1 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2577
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2578
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.437 UMAX (immediate)

Unsigned Maximum (immediate) determines the unsigned maximum of the source register value and immediate,
and writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMAX <Wd>, <Wn>, #<uimm>

64-bit variant

Applies when sf == 1.

UMAX <Xd>, <Xn>, #<uimm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = UInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<uimm> Is an unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Max(UInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 0 1 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2579
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2580
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.438 UMAX (register)

Unsigned Maximum (register) determines the unsigned maximum of the two source register values and writes the
result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMAX <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UMAX <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Max(UInt(operand1), UInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2581
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2582
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.439 UMIN (immediate)

Unsigned Minimum (immediate) determines the unsigned minimum of the source register value and immediate, and
writes the result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMIN <Wd>, <Wn>, #<uimm>

64-bit variant

Applies when sf == 1.

UMIN <Xd>, <Xn>, #<uimm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = UInt(imm8);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<uimm> Is an unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 integer result = Min(UInt(operand1), imm);
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

sf 0 0 1 0 0 0 1 1 1 0 0 1 1 imm8 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2583
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2584
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.440 UMIN (register)

Unsigned Minimum (register) determines the unsigned minimum of the two source register values and writes the
result to the destination register.

Integer

(FEAT_CSSC)

32-bit variant

Applies when sf == 0.

UMIN <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

UMIN <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CSSC) then UNDEFINED;
 constant integer datasize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

 bits(datasize) operand1 = X[n, datasize];
 bits(datasize) operand2 = X[m, datasize];
 integer result = Min(UInt(operand1), UInt(operand2));
 X[d, datasize] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2585
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2586
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.441 UMNEGL

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to
the 64-bit destination register.

This instruction is an alias of the UMSUBL instruction. This means that:

• The encodings in this description are named to match the encodings of UMSUBL.

• The description of UMSUBL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

UMNEGL <Xd>, <Wn>, <Wm>

 is equivalent to

UMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of UMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 0 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2587
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.442 UMSUBL

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias UMNEGL. See Alias conditions for details of when each alias is preferred.

Encoding

UMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Alias conditions

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Operation

 bits(32) operand1 = X[n, 32];
 bits(32) operand2 = X[m, 32];
 bits(64) operand3 = X[a, 64];

 integer result;

 result = Int(operand3, TRUE) - (Int(operand1, TRUE) * Int(operand2, TRUE));
 X[d, 64] = result<63:0>;

Alias is preferred when

UMNEGL Ra == '11111'

1 0 0 1 1 0 1 1 1 0 1 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2588
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2589
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.443 UMULH

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the
64-bit destination register.

Encoding

UMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

 bits(64) operand1 = X[n, 64];
 bits(64) operand2 = X[m, 64];

 integer result;

 result = Int(operand1, TRUE) * Int(operand2, TRUE);

 X[d, 64] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2590
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.444 UMULL

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the UMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of UMADDL.

• The description of UMADDL gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

UMULL <Xd>, <Wn>, <Wm>

 is equivalent to

UMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in
the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in
the "Rm" field.

Operation

The description of UMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 0 0 1 1 0 1 1 1 0 1 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

U o0 Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2591
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.445 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register, and writes
the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

UXTB <Wd>, <Wn>

 is equivalent to

UBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2592
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.446 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the register, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.

• The description of UBFM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

UXTH <Wd>, <Wn>

 is equivalent to

UBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 5 4 0

sf opc N immr imms
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2593
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.447 WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any
PE in the multiprocessor system. For more information, see Wait for Event.

As described in Wait for Event, the execution of a WFE instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level.

Encoding

WFE

Decode for this encoding

 // Empty.

Operation

 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFE(localtimeout, WFxType_WFE);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2594
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.448 WFET

Wait For Event with Timeout is a hint instruction that indicates that the PE can enter a low-power state and remain
there until either a local timeout event or a wakeup event occurs. Wakeup events include the event signaled as a
result of executing the SEV instruction on any PE in the multiprocessor system. For more information, see Wait for
Event.

As described in Wait for Event, the execution of a WFET instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level.

System

(FEAT_WFxT)

Encoding

WFET <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_WFxT) then UNDEFINED;

 integer d = UInt(Rd);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

 integer localtimeout = UInt(X[d, 64]);

 if Halted() && ConstrainUnpredictableBool(Unpredictable_WFxTDEBUG) then
 EndOfInstruction();

 Hint_WFE(localtimeout, WFxType_WFET);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2595
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.449 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until
a wakeup event occurs. For more information, see Wait for Interrupt mechanism.

As described in Wait for Interrupt mechanism, the execution of a WFI instruction that would otherwise cause entry
to a low-power state can be trapped to a higher Exception level.

Encoding

WFI

Decode for this encoding

 // Empty.

Operation

 integer localtimeout = 1 << 64; // No local timeout event is generated
 Hint_WFI(localtimeout, WFxType_WFI);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2596
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.450 WFIT

Wait For Interrupt with Timeout is a hint instruction that indicates that the PE can enter a low-power state and
remain there until either a local timeout event or a wakeup event occurs. For more information, see Wait for
Interrupt mechanism.

As described in Wait for Interrupt mechanism, the execution of a WFIT instruction that would otherwise cause entry
to a low-power state can be trapped to a higher Exception level.

System

(FEAT_WFxT)

Encoding

WFIT <Xt>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_WFxT) then UNDEFINED;

 integer d = UInt(Rd);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

 integer localtimeout = UInt(X[d, 64]);

 if Halted() && ConstrainUnpredictableBool(Unpredictable_WFxTDEBUG) then
 EndOfInstruction();

 Hint_WFI(localtimeout, WFxType_WFIT);

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2597
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.451 XAFLAG

Convert floating-point condition flags from external format to Arm format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from an alternative representation required by some software to a form representing the
result of an Arm floating-point scalar compare instruction.

System

(FEAT_FlagM2)

Encoding

XAFLAG

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FlagM2) then UNDEFINED;

Operation

 bit n = NOT(PSTATE.C) AND NOT(PSTATE.Z);
 bit z = PSTATE.Z AND PSTATE.C;
 bit c = PSTATE.C OR PSTATE.Z;
 bit v = NOT(PSTATE.C) AND PSTATE.Z;

 PSTATE.N = n;
 PSTATE.Z = z;
 PSTATE.C = c;
 PSTATE.V = v;

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2598
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.452 XPACD, XPACI, XPACLRI

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an address. The
address is in the specified general-purpose register for XPACI and XPACD, and is in LR for XPACLRI.

The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction addresses.

Integer

(FEAT_PAuth)

XPACD variant

Applies when D == 1.

XPACD <Xd>

XPACI variant

Applies when D == 0.

XPACI <Xd>

Decode for all variants of this encoding

 boolean data = (D == '1');
 integer d = UInt(Rd);

 if !IsFeatureImplemented(FEAT_PAuth) then
 UNDEFINED;

System

(FEAT_PAuth)

Encoding

XPACLRI

Decode for this encoding

 integer d = 30;
 boolean data = FALSE;

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 D 1 1 1 1 1 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

Rn

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2599
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
Operation for all encodings

 if IsFeatureImplemented(FEAT_PAuth) then
 X[d, 64] = Strip(X[d, 64], data);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2600
ID032224 Non-Confidential

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions
C6.2.453 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the
PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system
performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction, see The YIELD instruction.

Encoding

YIELD

Decode for this encoding

 // Empty.

Operation

 Hint_Yield();

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 3 2 1 0

CRm op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C6-2601
ID032224 Non-Confidential

Chapter C7
A64 Advanced SIMD and Floating-point Instruction
Descriptions

This chapter describes the A64 Advanced SIMD and floating-point instructions.

It contains the following sections:

• About the A64 Advanced SIMD and floating-point instructions.

• Alphabetical list of A64 Advanced SIMD and floating-point instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2602
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 Advanced SIMD and floating-point instructions
C7.1 About the A64 Advanced SIMD and floating-point instructions

Alphabetical list of A64 Advanced SIMD and floating-point instructions gives full descriptions of the A64
instructions that are in the following instruction groups:

• Loads and store instructions associated with the SIMD and floating-point registers.

• Data processing instructions with SIMD and floating-point registers.

A64 instruction set encoding in the A64 Instruction Encodings chapter provides an overview of the instruction
encodings as part of an instruction class within a functional group.

The rest of this section is a general description of the SIMD and floating-point instructions. It contains the following
subsections:

• Register size.

• Output element control.

• Data types.

• Condition flags and related instructions.

C7.1.1 Register size

A64 provides a comprehensive set of packed Single Instruction Multiple Data (SIMD) and scalar operations using
data held in the 32 entry 128-bit wide SIMD and floating-point register file.

Each SIMD and floating-point register can be used to hold:

• A single scalar value of the floating-point or integer type.

• A 64-bit wide vector containing one or more elements.

• A 128-bit wide vector containing two or more elements.

Where the entire 128-bit wide register is not fully utilized, the vector or scalar quantity is held in the least significant
bits of the register, with the most significant bits being cleared to zero on a write, see Advanced SIMD vector
formats.

The following instructions can insert data into individual elements within a SIMD and floating-pointer register
without clearing the remaining bits to zero:

• Insert vector element from another vector element or general-purpose register, INS.

• Load structure into a single lane, for example LD3.

• All second-part narrowing operations, for example SHRN2.

C7.1.2 Output element control

When FEAT_AFP is implemented, the FPCR.NEP bit controls how output elements are determined for the scalar
Advanced SIMD instructions for elements other than the lowest element of the vector.

If FPCR.NEP == 1, the following instructions determine output elements as follows:

• The 3-input floating-point scalar versions of FMLA (by element) and FMLS (by element) take output
elements other than the lowest element from the <Hd>, <Sd>, or <Dd> register.

• The 3-input floating-point FMADD, FMSUB, FNMADD, and FNMSUB instructions take output elements
other than the lowest element from the <Ha>, <Sa>, or <Da> register.

• The 2-input floating-point scalar versions of FCMGE (register), FCMGT (register), FCMEQ (register),
FACGE, FACGT, take output elements other than the lowest element from the <Hm>, <Sm>, or <Dm>
register.

• The 2-input floating-point scalar versions of FMULX, FRECPS, FRSQRTS, FABD, FMUL (by element),
FMUL (scalar), FDIV (scalar), FADD (scalar), FSUB (scalar), FMAX (scalar), FMIN (scalar), FMAXNM
(scalar), FMINNM (scalar), FNMUL (scalar), take output elements other than the lowest element from the
<Hn>, <Sn>, or <Dn> register.

• For 1-input floating-point scalar versions of the instructions FCVTNS (vector), FCVTMS (vector), FCVTAS
(vector), FCVTPS (vector), SCVTF (vector, integer), UCVTF (vector, integer) FCVTZS (vector, integer),
FCVTZU (vector, integer), FCVTNU (vector), FCVTMU (vector), FCVTAU (vector), FCVTPU (vector),
SCVTF (vector, fixed-point), UCVTF (vector, fixed-point), FCVTZS (vector, fixed-point), FCVTZU
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2603
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 About the A64 Advanced SIMD and floating-point instructions
(vector, fixed-point), SCVTF (scalar, integer), UCVTF (scalar, integer), SCVTF (scalar, fixed-point),
UCVTF (scalar, fixed-point), BFCVT, FCVT, FCVTXN, FRECPE, FRECPX, FRSQRTE, FABS (scalar),
FNEG (scalar), FSQRT (scalar), FRINTN (scalar), FRINTP (scalar), FRINTM (scalar), FRINTZ (scalar),
FRINTA (scalar), FRINTI (scalar), FRINTX (scalar), FRINT32Z (scalar), FRINT32X (scalar), FRINT64Z
(scalar), FRINT64X (scalar), take output elements other than the lowest element from the <Hd>, <Sd>, or
<Dd> register.

C7.1.3 Data types

The A64 instruction set provides support for arithmetic, conversion, and bitwise operations on:

• Half-precision, single-precision, and double-precision floating-points.

• Signed and unsigned integers.

• Polynomials over {0, 1}.

• When FEAT_FCMA is implemented, complex numbers.

For all AArch64 floating-point operations, including SIMD operations, the rounding mode and exception trap
handling are controlled by the FPCR.

Note

• AArch32 Advanced SIMD operations always use Arm standard floating-point arithmetic, regardless of the
rounding mode specified by the AArch64 FPCR or the AArch32 FPSCR.

• In AArch64 state, floating-point multiply-add operations are always performed as fused operations, but
AArch32 state provides both fused and chained multiply-add instructions.

In addition to operations that consume and produce values of the same width and type, the A64 instruction set
supports SIMD and scalar operations that produce a wider or narrower vector result:

• Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the A64 instruction set provides a
second-part operation, for example SHRN2, that can pack the result of a second operation into the upper part
of the same destination register.

• Where a SIMD operation widens a 64-bit vector to a 128-bit vector, the A64 instruction set provides a
second-part operation, for example SMLAL2, that can extract the source from the upper 64 bits of the source
registers.

All SIMD operations that could produce side-effects that are not limited to the destination SIMD and floating-point
register, for example a potential update of FPSR.Q or FPSR.IDC, have a dedicated scalar variant to support the use
of SIMD with loops requiring specialized head or tail handling, or both.

C7.1.4 Condition flags and related instructions

The A64 instruction set provides support for flag setting and conditional operations on the SIMD and floating-point
register file:

• Floating-point FCSEL and FCCMP instructions are equivalent to the integer CSEL and CCMP instructions.

• Floating-point FCMP, FCMPE, FCCMP, and FCCMP instructions set the PSTATE.{N, Z, C, V} flags based on the
result of the floating-point comparison.

• Floating-point FJCVTZS instruction sets the PSTATE.Z flag if the result of the conversion, when converted
back to a double-precision floating-point number, gives precisely the same value as the original. Other
PSTATE flags are cleared by this instruction.

• Floating-point and integer instructions provide a means of producing either a scalar or a vector mask based
on a comparison in a SIMD and floating-point register, for example FCMEQ.

Note

FCMP and FCMPE differ from the A32/T32 VCMP and VCMPE instructions, which use the dedicated FPSCR.NZCV field
for the result. A64 instructions store the result of an FCMP or FCMPE operation in the PSTATE.{N, Z, C, V} field.

If FEAT_FlagM2 is implemented, base instructions XAFLAG and AXFLAG convert between the PSTATE
condition flag format used by the FCMP instruction and an alternative format. See Table C6-1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2604
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

This section lists every section in the Advanced SIMD and floating-point categories of the A64 instruction set. For
details of the format used, see Structure of the A64 assembler language.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2605
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.1 ABS

Absolute value (vector). This instruction calculates the absolute value of each vector element in the source
SIMD&FP register, puts the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

ABS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

ABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2606
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2607
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.2 ADD (vector)

Add (vector). This instruction adds corresponding elements in the two source SIMD&FP registers, places the results
into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

ADD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (U == '1');

Vector

Encoding

ADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2608
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then
 Elem[result, e, esize] = element1 - element2;
 else
 Elem[result, e, esize] = element1 + element2;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2609
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.3 ADDHN, ADDHN2

Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the
corresponding vector element in the second source SIMD&FP register, places the most significant half of the result
into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.

The results are truncated. For rounded results, see RADDHN, RADDHN2.

The ADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the ADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2610
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(2*datasize) operand2 = V[m, 2*datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, 2*esize]);
 element2 = UInt(Elem[operand2, e, 2*esize]);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = RShr(sum, esize, round);
 Elem[result, e, esize] = sum<esize-1:0>;

 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2611
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.4 ADDP (scalar)

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD&FP register and writes
the scalar result into the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize * 2;

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the source arrangement specifier, encoded in the "size" field. It can have the following values:

2D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = IntReduce(ReduceOp_ADD, operand, esize);

0 1 0 1 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2612
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2613
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.5 ADDP (vector)

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements from the concatenated vector, adds each pair of values together, places the result into a vector, and
writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2614
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 Elem[result, e, esize] = element1 + element2;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2615
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.6 ADDV

Add across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes
the scalar result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ADDV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2616
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = IntReduce(ReduceOp_ADD, operand, esize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2617
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.7 AESD

AES single round decryption.

Advanced SIMD

(FEAT_AES)

Encoding

AESD <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d, 128];
 bits(128) operand2 = V[n, 128];
 bits(128) result;
 result = operand1 EOR operand2;
 result = AESInvSubBytes(AESInvShiftRows(result));
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2618
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.8 AESE

AES single round encryption.

Advanced SIMD

(FEAT_AES)

Encoding

AESE <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d, 128];
 bits(128) operand2 = V[n, 128];
 bits(128) result;
 result = operand1 EOR operand2;
 result = AESSubBytes(AESShiftRows(result));

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2619
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.9 AESIMC

AES inverse mix columns.

Advanced SIMD

(FEAT_AES)

Encoding

AESIMC <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand = V[n, 128];
 bits(128) result;
 result = AESInvMixColumns(operand);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2620
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.10 AESMC

AES mix columns.

Advanced SIMD

(FEAT_AES)

Encoding

AESMC <Vd>.16B, <Vn>.16B

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand = V[n, 128];
 bits(128) result;
 result = AESMixColumns(operand);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2621
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.11 AND (vector)

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD&FP registers, and
writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

AND <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 result = operand1 AND operand2;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

0 Q 0 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2622
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2623
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.12 BCAX

Bit Clear and exclusive-OR performs a bitwise AND of the 128-bit vector in a source SIMD&FP register and the
complement of the vector in another source SIMD&FP register, then performs a bitwise exclusive-OR of the
resulting vector and the vector in a third source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

BCAX <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Va = V[a, 128];
 V[d, 128] = Vn EOR (Vm AND NOT(Va));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

1 1 0 0 1 1 1 0 0 0 1 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2624
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2625
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.13 BFCVT

Floating-point convert from single-precision to BFloat16 format (scalar) converts the single-precision
floating-point value in the 32-bit SIMD&FP source register to BFloat16 format and writes the result in the 16-bit
SIMD&FP destination register.

ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Single-precision to BFloat16

(FEAT_BF16)

Encoding

BFCVT <Hd>, <Sn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(32) operand = V[n, 32];
 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 Elem[result, 0, 16] = FPConvertBF(operand, FPCR);

 V[d, 128] = result;

0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2626
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.14 BFCVTN, BFCVTN2

Floating-point convert from single-precision to BFloat16 format (vector) reads each single-precision element in the
SIMD&FP source vector, converts each value to BFloat16 format, and writes the results in the lower or upper half
of the SIMD&FP destination vector. The result elements are half the width of the source elements.

The BFCVTN instruction writes the half-width results to the lower half of the destination vector and clears the upper
half to zero, while the BFCVTN2 instruction writes the results to the upper half of the destination vector without
affecting the other bits in the register.

Vector single-precision to BFloat16

(FEAT_BF16)

Encoding

BFCVTN{2} <Vd>.<Ta>, <Vn>.4S

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer part = UInt(Q);
 integer elements = 64 DIV 16;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand = V[n, 128];
 bits(64) result;

 for e = 0 to elements-1
 Elem[result, e, 16] = FPConvertBF(Elem[operand, e, 32], FPCR);

 Vpart[d, part, 64] = result;

0 Q 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2627
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.15 BFDOT (by element)

BFloat16 floating-point dot product (vector, by element). This instruction delimits the source vectors into pairs of
BFloat16 elements. The BFloat16 pair within the second source vector is specified using an immediate index. The
index range is from 0 to 3 inclusive.

If FEAT_EBF16 is not implemented or FPCR.EBF is 0, this instruction:

• Performs an unfused sum-of-products of each pair of adjacent BFloat16 elements in the first source vector
with the specified pair of elements in the second source vector. The intermediate single-precision products
are rounded before they are summed, and the intermediate sum is rounded before accumulation into the
single-precision destination element that overlaps with the corresponding pair of BFloat16 elements in the
first source vector.

• Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds
an overflow to an appropriately signed Infinity.

• Flushes denormalized inputs and results to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disables alternative floating point behaviors, as if FPCR.AH is 0.

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the first source vector with
the specified pair of elements in the second source vector. The intermediate single-precision products are not
rounded before they are summed, but the intermediate sum is rounded before accumulation into the
single-precision destination element that overlaps with the corresponding pair of BFloat16 elements in the
first source vector.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as governed by
FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ.

Irrespective of FEAT_EBF16 and FPCR.EBF, this instruction:

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE, and
IOE) are all zero.

• Generates only the default NaN, as if FPCR.DN is 1.

ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector

(FEAT_BF16)

Encoding

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.2H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer d = UInt(Rd);
 integer i = UInt(H:L);

0 Q 0 0 1 1 1 1 0 1 L M Rm 1 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2628
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a pair of 16-bit elements in the range 0 to 3, encoded in the "H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(128) operand2 = V[m, 128];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;

 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
 bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
 bits(16) elt2_a = Elem[operand2, 2*i+0, 16];
 bits(16) elt2_b = Elem[operand2, 2*i+1, 16];

 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2629
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.16 BFDOT (vector)

BFloat16 floating-point dot product (vector). This instruction delimits the source vectors into pairs of BFloat16
elements.

If FEAT_EBF16 is not implemented or FPCR.EBF is 0, this instruction:

• Performs an unfused sum-of-products of each pair of adjacent BFloat16 elements in the source vectors. The
intermediate single-precision products are rounded before they are summed, and the intermediate sum is
rounded before accumulation into the single-precision destination element that overlaps with the
corresponding pair of BFloat16 elements in the source vectors.

• Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds
an overflow to an appropriately signed Infinity.

• Flushes denormalized inputs and results to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disables alternative floating point behaviors, as if FPCR.AH is 0.

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the source vectors. The
intermediate single-precision products are not rounded before they are summed, but the intermediate sum is
rounded before accumulation into the single-precision destination element that overlaps with the
corresponding pair of BFloat16 elements in the source vectors.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as governed by
FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ.

Irrespective of FEAT_EBF16 and FPCR.EBF, this instruction:

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE, and
IOE) are all zero.

• Generates only the default NaN, as if FPCR.DN is 1.

ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector

(FEAT_BF16)

Encoding

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 32;

0 Q 1 0 1 1 1 0 0 1 0 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2630
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;

 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
 bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
 bits(16) elt2_a = Elem[operand2, 2*e+0, 16];
 bits(16) elt2_b = Elem[operand2, 2*e+1, 16];

 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2631
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.17 BFMLALB, BFMLALT (by element)

BFloat16 floating-point widening multiply-add long (by element) widens the even-numbered (bottom) or
odd-numbered (top) 16-bit elements in the first source vector, and the indexed element in the second source vector
from Bfloat16 to single-precision format. The instruction then multiplies and adds these values without intermediate
rounding to single-precision elements of the destination vector that overlap with the corresponding BFloat16
elements in the first source vector.

ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector

(FEAT_BF16)

Encoding

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt('0':Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm"
field.

<index> Is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) result;
 bits(128) operand1 = V[n, 128];
 bits(128) operand2 = V[m, 128];
 bits(128) operand3 = V[d, 128];
 bits(16) element2 = Elem[operand2, index, 16];

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2*e+sel, 16];
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAddH(addend, element1, element2, FPCR);

0 Q 0 0 1 1 1 1 1 1 L M Rm 1 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2632
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2633
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.18 BFMLALB, BFMLALT (vector)

BFloat16 floating-point widening multiply-add long (vector) widens the even-numbered (bottom) or odd-numbered
(top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format. The instruction
then multiplies and adds these values without intermediate rounding to the single-precision elements of the
destination vector that overlap with the corresponding BFloat16 elements in the source vectors.

ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector

(FEAT_BF16)

Encoding

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.8H

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n, 128];
 bits(128) operand2 = V[m, 128];
 bits(128) operand3 = V[d, 128];
 bits(128) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2*e+sel, 16];
 bits(16) element2 = Elem[operand2, 2*e+sel, 16];
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAddH(addend, element1, element2, FPCR);

 V[d, 128] = result;

0 Q 1 0 1 1 1 0 1 1 0 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2634
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.19 BFMMLA

BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix.

If FEAT_EBF16 is not implemented or FPCR.EBF is 0, this instruction:

• Performs two unfused sums-of-products within each two pairs of adjacent BFloat16 elements while
multiplying the 2x4 matrix of BFloat16 values in the first source vector with the 4x2 matrix of BFloat16
values in the second source vector. The intermediate single-precision products are rounded before they are
summed and the intermediate sum is rounded before accumulation into the 2x2 single-precision matrix in the
destination vector. This is equivalent to accumulating two 2-way unfused dot products per destination
element.

• Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds
an overflow to an appropriately signed Infinity.

• Flushes denormalized inputs and results to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disables alternative floating point behaviors, as if FPCR.AH is 0.

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs two fused sums-of-products within each two pairs of adjacent BFloat16 elements while multiplying
the 2x4 matrix of BFloat16 values in the first source vector with the 4x2 matrix of BFloat16 values in the
second source vector. The intermediate single-precision products are not rounded before they are summed,
but the intermediate sum is rounded before accumulation into the 2x2 single-precision matrix in the
destination vector. This is equivalent to accumulating two 2-way fused dot products per destination element.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as governed by
FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ.

Irrespective of FEAT_EBF16 and FPCR.EBF, this instruction:

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE, and
IOE) are all zero.

• Generates only the default NaN, as if FPCR.DN is 1.

ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector

(FEAT_BF16)

Encoding

BFMMLA <Vd>.4S, <Vn>.8H, <Vm>.8H

Decode for this encoding

 if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

0 1 1 0 1 1 1 0 0 1 0 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2635
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) op1 = V[n, 128];
 bits(128) op2 = V[m, 128];
 bits(128) acc = V[d, 128];

 V[d, 128] = BFMatMulAdd(acc, op1, op2, FPCR);

Operational information

Arm expects that the BFMMLA instruction will deliver a peak BFloat16 multiply throughput that is at least as high
as can be achieved using two BFDOT (vector) instructions, with a goal that it should have significantly higher
throughput.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2636
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.20 BIC (vector, immediate)

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination SIMD&FP
register, performs a bitwise AND between each result and the complement of an immediate constant, places the
result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

16-bit variant

Applies when cmode == 10x1.

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit variant

Applies when cmode == 0xx1.

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 constant integer datasize = 64 << UInt(Q);
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

op cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2637
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in the "cmode<1>" field. It can have the
following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the
following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd, datasize];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd, datasize];
 result = operand AND NOT(imm);

 V[rd, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2638
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.21 BIC (vector, register)

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source SIMD&FP
register and the complement of the second source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BIC <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 AND operand2;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 0 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2639
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2640
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.22 BIF

Bitwise Insert if False. This instruction inserts each bit from the first source SIMD&FP register into the destination
SIMD&FP register if the corresponding bit of the second source SIMD&FP register is 0, otherwise leaves the bit in
the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BIF <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n, datasize];

 operand1 = V[d, datasize];
 operand3 = NOT(V[m, datasize]);

 V[d, datasize] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2641
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2642
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.23 BIT

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD&FP register into the SIMD&FP
destination register if the corresponding bit of the second source SIMD&FP register is 1, otherwise leaves the bit in
the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BIT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n, datasize];

 operand1 = V[d, datasize];
 operand3 = V[m, datasize];
 V[d, datasize] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2643
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2644
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.24 BSL

Bitwise Select. This instruction sets each bit in the destination SIMD&FP register to the corresponding bit from the
first source SIMD&FP register when the original destination bit was 1, otherwise from the second source SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

BSL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n, datasize];

 operand1 = V[m, datasize];
 operand3 = V[d, datasize];
 V[d, datasize] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2645
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2646
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.25 CLS (vector)

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the most
significant bit that are the same as the most significant bit in each vector element in the source SIMD&FP register,
places the result into a vector, and writes the vector to the destination SIMD&FP register. The count does not include
the most significant bit itself.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

CLS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 integer count;
 for e = 0 to elements-1
 if countop == CountOp_CLS then
 count = CountLeadingSignBits(Elem[operand, e, esize]);
 else

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2647
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 count = CountLeadingZeroBits(Elem[operand, e, esize]);
 Elem[result, e, esize] = count<esize-1:0>;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2648
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.26 CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most
significant bit, in each vector element in the source SIMD&FP register, places the result into a vector, and writes
the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

CLZ <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 integer count;
 for e = 0 to elements-1
 if countop == CountOp_CLS then
 count = CountLeadingSignBits(Elem[operand, e, esize]);
 else
 count = CountLeadingZeroBits(Elem[operand, e, esize]);

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2649
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Elem[result, e, esize] = count<esize-1:0>;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2650
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.27 CMEQ (register)

Compare bitwise Equal (vector). This instruction compares each vector element from the first source SIMD&FP
register with the corresponding vector element from the second source SIMD&FP register, and if the comparison is
equal sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets
every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMEQ <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean and_test = (U == '0');

Vector

Encoding

CMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean and_test = (U == '0');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2651
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if and_test then
 test_passed = !IsZero(element1 AND element2);
 else
 test_passed = (element1 == element2);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2652
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.28 CMEQ (zero)

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register
and if the value is equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register
to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMEQ <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMEQ <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2653
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2654
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2655
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.29 CMGE (register)

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the first source
SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first
signed integer value is greater than or equal to the second signed integer value sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGE <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2656
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2657
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2658
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.30 CMGE (zero)

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is greater than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGE <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMGE <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2659
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2660
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2661
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.31 CMGT (register)

Compare signed Greater than (vector). This instruction compares each vector element in the first source SIMD&FP
register with the corresponding vector element in the second source SIMD&FP register and if the first signed integer
value is greater than the second signed integer value sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGT <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2662
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2663
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2664
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.32 CMGT (zero)

Compare signed Greater than zero (vector). This instruction reads each vector element in the source SIMD&FP
register and if the signed integer value is greater than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMGT <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMGT <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2665
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2666
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2667
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.33 CMHI (register)

Compare unsigned Higher (vector). This instruction compares each vector element in the first source SIMD&FP
register with the corresponding vector element in the second source SIMD&FP register and if the first unsigned
integer value is greater than the second unsigned integer value sets every bit of the corresponding vector element in
the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMHI <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMHI <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2668
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2669
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2670
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.34 CMHS (register)

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first source
SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first
unsigned integer value is greater than or equal to the second unsigned integer value sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMHS <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

Vector

Encoding

CMHS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean cmp_eq = (eq == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2671
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2672
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2673
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.35 CMLE (zero)

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is less than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMLE <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector

Encoding

CMLE <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2674
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2675
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2676
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.36 CMLT (zero)

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD&FP register
and if the signed integer value is less than zero sets every bit of the corresponding vector element in the destination
SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMLT <V><d>, <V><n>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison = CompareOp_LT;

Vector

Encoding

CMLT <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison = CompareOp_LT;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2677
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean test_passed;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 case comparison of
 when CompareOp_GT test_passed = element > 0;
 when CompareOp_GE test_passed = element >= 0;
 when CompareOp_EQ test_passed = element == 0;
 when CompareOp_LE test_passed = element <= 0;
 when CompareOp_LT test_passed = element < 0;
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2678
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.37 CMTST

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source SIMD&FP
register, performs an AND with the corresponding vector element in the second source SIMD&FP register, and if
the result is not zero, sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

CMTST <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean and_test = (U == '0');

Vector

Encoding

CMTST <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean and_test = (U == '0');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2679
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if and_test then
 test_passed = !IsZero(element1 AND element2);
 else
 test_passed = (element1 == element2);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2680
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.38 CNT

Population Count per byte. This instruction counts the number of bits that have a value of one in each vector element
in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

CNT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '00' then UNDEFINED;
 constant integer esize = 8;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 1x, Q = x.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 integer count;
 for e = 0 to elements-1
 count = BitCount(Elem[operand, e, esize]);
 Elem[result, e, esize] = count<esize-1:0>;
 V[d, datasize] = result;

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2681
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2682
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.39 DUP (element)

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the specified element
index in the source SIMD&FP register into a scalar or each element in a vector, and writes the result to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (scalar). The alias is always the preferred disassembly.

Scalar

Encoding

DUP <V><d>, <Vn>.<T>[<index>]

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 constant integer index = UInt(imm5<4:size+1>);
 constant integer idxdsize = 64 << UInt(imm5<4>);

 constant integer esize = 8 << size;
 constant integer datasize = esize;
 integer elements = 1;

Vector

Encoding

DUP <Vd>.<T>, <Vn>.<Ts>[<index>]

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 constant integer index = UInt(imm5<4:size+1>);
 constant integer idxdsize = 64 << UInt(imm5<4>);

 if size == 3 && Q == '0' then UNDEFINED;
 constant integer esize = 8 << size;

0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2683
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<T> For the scalar variant: is the element width specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

For the vector variant: is an arrangement specifier, encoded in the "imm5:Q" field. It can have the
following values:

8B when imm5 = xxxx1, Q = 0

16B when imm5 = xxxx1, Q = 1

4H when imm5 = xxx10, Q = 0

8H when imm5 = xxx10, Q = 1

2S when imm5 = xx100, Q = 0

4S when imm5 = xx100, Q = 1

2D when imm5 = x1000, Q = 1

The following encodings are reserved:

• imm5 = x0000, Q = x.

• imm5 = x1000, Q = 0.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<V> Is the destination width specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2684
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n, idxdsize];
 bits(datasize) result;
 bits(esize) element;

 element = Elem[operand, index, esize];
 for e = 0 to elements-1
 Elem[result, e, esize] = element;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2685
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.40 DUP (general)

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source general-purpose
register into a scalar or each element in a vector, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

DUP <Vd>.<T>, <R><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 // imm5<4:size+1> is IGNORED

 if size == 3 && Q == '0' then UNDEFINED;
 constant integer esize = 8 << size;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "imm5:Q" field. It can have the following values:

8B when imm5 = xxxx1, Q = 0

16B when imm5 = xxxx1, Q = 1

4H when imm5 = xxx10, Q = 0

8H when imm5 = xxx10, Q = 1

2S when imm5 = xx100, Q = 0

4S when imm5 = xx100, Q = 1

2D when imm5 = x1000, Q = 1

The following encodings are reserved:

• imm5 = x0000, Q = x.

• imm5 = x1000, Q = 0.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
have the following values:

W when imm5 = xxxx1

W when imm5 = xxx10

W when imm5 = xx100

X when imm5 = x1000

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2686
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding imm5 = x0000 is reserved.

 Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(esize) element = X[n, esize];
 bits(datasize) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = element;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2687
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.41 EOR (vector)

Bitwise Exclusive-OR (vector). This instruction performs a bitwise exclusive-OR operation between the two source
SIMD&FP registers, and places the result in the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

EOR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1;
 bits(datasize) operand2;
 bits(datasize) operand3;
 bits(datasize) operand4 = V[n, datasize];

 operand1 = V[m, datasize];
 operand2 = Zeros(datasize);
 operand3 = Ones(datasize);
 V[d, datasize] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2688
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2689
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.42 EOR3

Three-way Exclusive-OR performs a three-way exclusive-OR of the values in the three source SIMD&FP registers,
and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

EOR3 <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Va = V[a, 128];
 V[d, 128] = Vn EOR Vm EOR Va;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 0 0 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2690
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.43 EXT

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second source
SIMD&FP register and the highest vector elements from the first source SIMD&FP register, concatenates the
results into a vector, and writes the vector to the destination SIMD&FP register vector. The index value specifies
the lowest vector element to extract from the first source register, and consecutive elements are extracted from the
first, then second, source registers until the destination vector is filled.

The following figure shows the operation of EXT doubleword operation for Q = 0 and imm4<2:0> = 3.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

EXT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<index>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if Q == '0' && imm4<3> == '1' then UNDEFINED;

 constant integer datasize = 64 << UInt(Q);
 constant integer position = 8 * UInt(imm4);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the lowest numbered byte element to be extracted, encoded in the "Q:imm4" field. It can have
the following values:

imm4<2:0> when Q = 0, imm4<3> = 0

imm4 when Q = 1, imm4<3> = x

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Vm Vn

Vd

0 Q 1 0 1 1 1 0 0 0 0 Rm 0 imm4 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2691
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding Q = 0, imm4<3> = 1 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) hi = V[m, datasize];
 bits(datasize) lo = V[n, datasize];
 bits(datasize*2) concat = hi:lo;

 V[d, datasize] = concat<(position+datasize)-1:position>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2692
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.44 FABD

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the elements of
the second source SIMD&FP register, from the corresponding floating-point values in the elements of the first
source SIMD&FP register, places the absolute value of each result in a vector, and writes the vector to the
destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FABD <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean abs = TRUE;

Scalar single-precision and double-precision

Encoding

FABD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean abs = TRUE;

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2693
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

Vector single-precision and double-precision

Encoding

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2694
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 bits(esize) diff;

 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 diff = FPSub(element1, element2, FPCR);
 Elem[result, e, esize] = if abs then FPAbs(diff, FPCR) else diff;

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2695
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.45 FABS (vector)

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector element in the
source SIMD&FP register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Single-precision and double-precision

Encoding

FABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2696
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 if neg then
 element = FPNeg(element, FPCR);
 else
 element = FPAbs(element, FPCR);
 Elem[result, e, esize] = element;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2697
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.46 FABS (scalar)

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD&FP source
register and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FABS <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FABS <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FABS <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else 0<127:0>;

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2698
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPAbs(operand, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2699
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.47 FACGE

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute value of
each floating-point value in the first source SIMD&FP register with the absolute value of the corresponding
floating-point value in the second source SIMD&FP register and if the first value is greater than or equal to the
second value sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FACGE <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FACGE <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2700
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2701
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2702
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[m, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1, FPCR);
 element2 = FPAbs(element2, FPCR);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2703
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.48 FACGT

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of each vector
element in the first source SIMD&FP register with the absolute value of the corresponding vector element in the
second source SIMD&FP register and if the first value is greater than the second value sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FACGT <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FACGT <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2704
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2705
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2706
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[m, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1, FPCR);
 element2 = FPAbs(element2, FPCR);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2707
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.49 FADD (vector)

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source SIMD&FP
registers, writes the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');

Single-precision and double-precision

Encoding

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2708
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2709
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.50 FADD (scalar)

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD&FP registers,
and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FADD <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FADD <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FADD <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2710
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPAdd(operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2711
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.51 FADDP (scalar)

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in the source
SIMD&FP register and writes the scalar result into the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FADDP <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer esize = 16;
 if sz == '1' then UNDEFINED;
 constant integer datasize = 32;

Single-precision and double-precision

Encoding

FADDP <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize * 2;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2712
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = FPReduce(ReduceOp_FADD, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2713
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.52 FADDP (vector)

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the
first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair
of adjacent vector elements from the concatenated vector, adds each pair of values together, places the result into a
vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');

Single-precision and double-precision

Encoding

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2714
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean pair = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2715
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.53 FCADD

Floating-point Complex Add.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 90 or 270 degrees.

• The rotated complex number is added to the complex number from the first source register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector

(FEAT_FCMA)

Encoding

FCADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '00' then UNDEFINED;
 if size == '01' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if Q == '0' && size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

0 Q 1 0 1 1 1 0 size 0 Rm 1 1 1 rot 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2716
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11, Q = 0.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

90 when rot = 0

270 when rot = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element3;

 for e = 0 to (elements DIV 2)-1
 case rot of
 when '0'
 element1 = FPNeg(Elem[operand2, e*2+1, esize], FPCR);
 element3 = Elem[operand2, e*2, esize];
 when '1'
 element1 = Elem[operand2, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, e*2, esize], FPCR);
 Elem[result, e*2, esize] = FPAdd(Elem[operand1, e*2, esize], element1, FPCR);
 Elem[result, e*2+1, esize] = FPAdd(Elem[operand1, e*2+1, esize], element3, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2717
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.54 FCCMP

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD&FP source register
values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N,
Z, C, V} flags are set to the flag bit specifier.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCCMP <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision variant

Applies when ftype == 00.

FCCMP <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision variant

Applies when ftype == 01.

FCCMP <Dn>, <Dm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 8 << UInt(ftype EOR '10');
 bits(4) flags = nzcv;

Assembler symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn 0 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2718
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2;

 operand2 = V[m, datasize];

 if ConditionHolds(cond) then
 flags = FPCompare(operand1, operand2, FALSE, FPCR);
 PSTATE.<N,Z,C,V> = flags;

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2719
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.55 FCCMPE

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD&FP source
register values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the
PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCCMPE <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision variant

Applies when ftype == 00.

FCCMPE <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision variant

Applies when ftype == 01.

FCCMPE <Dn>, <Dm>, #<nzcv>, <cond>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 8 << UInt(ftype EOR '10');
 bits(4) flags = nzcv;

Assembler symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn 1 nzcv

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2720
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2;

 operand2 = V[m, datasize];

 if ConditionHolds(cond) then
 flags = FPCompare(operand1, operand2, TRUE, FPCR);
 PSTATE.<N,Z,C,V> = flags;

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2721
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.56 FCMEQ (register)

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the first source
SIMD&FP register, with the corresponding floating-point value from the second source SIMD&FP register, and if
the comparison is equal sets every bit of the corresponding vector element in the destination SIMD&FP register to
one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMEQ <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FCMEQ <V><d>, <V><n>, <V><m>

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2722
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2723
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2724
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[m, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1, FPCR);
 element2 = FPAbs(element2, FPCR);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2725
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.57 FCMEQ (zero)

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is equal to zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMEQ <Hd>, <Hn>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMEQ <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2726
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2727
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) zero = FPZero('0', esize);
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2728
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.58 FCMGE (register)

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value in the first
source SIMD&FP register and if the value is greater than or equal to the corresponding floating-point value in the
second source SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register
to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGE <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FCMGE <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2729
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2730
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2731
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[m, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1, FPCR);
 element2 = FPAbs(element2, FPCR);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2732
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.59 FCMGE (zero)

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point value in
the source SIMD&FP register and if the value is greater than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGE <Hd>, <Hn>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMGE <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2733
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2734
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) zero = FPZero('0', esize);
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2735
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.60 FCMGT (register)

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first source
SIMD&FP register and if the value is greater than the corresponding floating-point value in the second source
SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGT <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

Encoding

FCMGT <V><d>, <V><n>, <V><m>

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2736
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

(FEAT_FP16)

Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U E ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2737
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 CompareOp cmp;
 boolean abs;

 case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2738
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean test_passed;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[m, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1, FPCR);
 element2 = FPAbs(element2, FPCR);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2739
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.61 FCMGT (zero)

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is greater than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMGT <Hd>, <Hn>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMGT <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2740
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2741
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) zero = FPZero('0', esize);
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2742
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.62 FCMLA (by element)

Floating-point Complex Multiply Accumulate (by element).

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on
complex numbers from the first source register and the destination register with the specified complex number from
the second source register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector

(FEAT_FCMA)

Encoding

Applies when size == 01.

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

Encoding

Applies when size == 10.

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 if !IsFeatureImplemented(FEAT_FP16) && size == '10' then UNDEFINED;
 if size == '10' && (L == '1' || Q == '0') then UNDEFINED;
 if size == '01' && H == '1' && Q == '0' then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer index;

0 Q 1 0 1 1 1 1 size L M Rm 0 rot 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2743
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if size == '01' then index = UInt(H:L);
 if size == '10' then index = UInt(H);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 10, Q = 0.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:H:L" field. It can have the following values:

H:L when size = 01

H when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;

 for e = 0 to (elements DIV 2)-1
 bits(esize) element1;
 bits(esize) element2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2744
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(esize) element3;
 bits(esize) element4;
 case rot of
 when '00'
 element1 = Elem[operand2, index*2, esize];
 element2 = Elem[operand1, e*2, esize];
 element3 = Elem[operand2, index*2+1, esize];
 element4 = Elem[operand1, e*2, esize];
 when '01'
 element1 = FPNeg(Elem[operand2, index*2+1, esize], FPCR);
 element2 = Elem[operand1, e*2+1, esize];
 element3 = Elem[operand2, index*2, esize];
 element4 = Elem[operand1, e*2+1, esize];
 when '10'
 element1 = FPNeg(Elem[operand2, index*2, esize], FPCR);
 element2 = Elem[operand1, e*2, esize];
 element3 = FPNeg(Elem[operand2, index*2+1, esize], FPCR);
 element4 = Elem[operand1, e*2, esize];
 when '11'
 element1 = Elem[operand2, index*2+1, esize];
 element2 = Elem[operand1, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, index*2, esize], FPCR);
 element4 = Elem[operand1, e*2+1, esize];

 Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
 Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2745
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.63 FCMLA

Floating-point Complex Multiply Accumulate.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector

(FEAT_FCMA)

Encoding

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '00' then UNDEFINED;
 if Q == '0' && size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 if !IsFeatureImplemented(FEAT_FP16) && esize == 16 then UNDEFINED;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 0 size 0 Rm 1 1 0 rot 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2746
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = 0.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) element3;
 bits(esize) element4;

 for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2, e*2, esize];
 element2 = Elem[operand1, e*2, esize];
 element3 = Elem[operand2, e*2+1, esize];
 element4 = Elem[operand1, e*2, esize];
 when '01'
 element1 = FPNeg(Elem[operand2, e*2+1, esize], FPCR);
 element2 = Elem[operand1, e*2+1, esize];
 element3 = Elem[operand2, e*2, esize];
 element4 = Elem[operand1, e*2+1, esize];
 when '10'
 element1 = FPNeg(Elem[operand2, e*2, esize], FPCR);
 element2 = Elem[operand1, e*2, esize];
 element3 = FPNeg(Elem[operand2, e*2+1, esize], FPCR);
 element4 = Elem[operand1, e*2, esize];
 when '11'
 element1 = Elem[operand2, e*2+1, esize];
 element2 = Elem[operand1, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, e*2, esize], FPCR);
 element4 = Elem[operand1, e*2+1, esize];

 Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
 Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2747
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.64 FCMLE (zero)

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point value in the
source SIMD&FP register and if the value is less than or equal to zero sets every bit of the corresponding vector
element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element
in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMLE <Hd>, <Hn>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

Encoding

FCMLE <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2748
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

(FEAT_FP16)

Encoding

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

Encoding

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2749
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 CompareOp comparison;
 case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) zero = FPZero('0', esize);
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2750
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.65 FCMLT (zero)

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is less than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCMLT <Hd>, <Hn>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison = CompareOp_LT;

Scalar single-precision and double-precision

Encoding

FCMLT <V><d>, <V><n>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

 CompareOp comparison = CompareOp_LT;

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2751
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison = CompareOp_LT;

Vector single-precision and double-precision

Encoding

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 CompareOp comparison = CompareOp_LT;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2752
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) zero = FPZero('0', esize);
 bits(esize) element;
 boolean test_passed;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones(esize) else Zeros(esize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2753
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.66 FCMP

Floating-point quiet Compare (scalar). This instruction compares the two SIMD&FP source register values, or the
first SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11 && opc == 00.

FCMP <Hn>, <Hm>

Half-precision, zero variant

Applies when ftype == 11 && Rm == (00000) && opc == 01.

FCMP <Hn>, #0.0

Single-precision variant

Applies when ftype == 00 && opc == 00.

FCMP <Sn>, <Sm>

Single-precision, zero variant

Applies when ftype == 00 && Rm == (00000) && opc == 01.

FCMP <Sn>, #0.0

Double-precision variant

Applies when ftype == 01 && opc == 00.

FCMP <Dn>, <Dm>

Double-precision, zero variant

Applies when ftype == 01 && Rm == (00000) && opc == 01.

FCMP <Dn>, #0.0

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer n = UInt(Rn);
 integer m = UInt(Rm); // ignored when opc<0> == '1'

 constant integer datasize = 8 << UInt(ftype EOR '10');

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 0 0 Rn 0 x 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2754
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean signal_all_nans = (opc<1> == '1');
 boolean cmp_with_zero = (opc<0> == '1');

Assembler symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in
the "Rn" field.

For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2;

 operand2 = if cmp_with_zero then FPZero('0', datasize) else V[m, datasize];

 PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR);

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2755
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.67 FCMPE

Floating-point signaling Compare (scalar). This instruction compares the two SIMD&FP source register values, or
the first SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11 && opc == 10.

FCMPE <Hn>, <Hm>

Half-precision, zero variant

Applies when ftype == 11 && Rm == (00000) && opc == 11.

FCMPE <Hn>, #0.0

Single-precision variant

Applies when ftype == 00 && opc == 10.

FCMPE <Sn>, <Sm>

Single-precision, zero variant

Applies when ftype == 00 && Rm == (00000) && opc == 11.

FCMPE <Sn>, #0.0

Double-precision variant

Applies when ftype == 01 && opc == 10.

FCMPE <Dn>, <Dm>

Double-precision, zero variant

Applies when ftype == 01 && Rm == (00000) && opc == 11.

FCMPE <Dn>, #0.0

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer n = UInt(Rn);
 integer m = UInt(Rm); // ignored when opc<0> == '1'

 constant integer datasize = 8 << UInt(ftype EOR '10');

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 0 0 Rn 1 x 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2756
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean signal_all_nans = (opc<1> == '1');
 boolean cmp_with_zero = (opc<0> == '1');

Assembler symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in
the "Rn" field.

For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded
in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded
in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();

 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2;

 operand2 = if cmp_with_zero then FPZero('0', datasize) else V[m, datasize];

 PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR);

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to
N=0, Z=0, C=1, and V=1.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2757
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.68 FCSEL

Floating-point Conditional Select (scalar). This instruction allows the SIMD&FP destination register to take the
value from either one or the other of two SIMD&FP source registers. If the condition passes, the first SIMD&FP
source register value is taken, otherwise the second SIMD&FP source register value is taken.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCSEL <Hd>, <Hn>, <Hm>, <cond>

Single-precision variant

Applies when ftype == 00.

FCSEL <Sd>, <Sn>, <Sm>, <cond>

Double-precision variant

Applies when ftype == 01.

FCSEL <Dd>, <Dn>, <Dm>, <cond>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer datasize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm cond 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2758
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

 CheckFPEnabled64();
 bits(datasize) result;

 result = if ConditionHolds(cond) then V[n, datasize] else V[m, datasize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2759
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.69 FCVT

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD&FP source
register to the precision for the destination register data type using the rounding mode that is determined by the
FPCR and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to single-precision variant

Applies when ftype == 11 && opc == 00.

FCVT <Sd>, <Hn>

Half-precision to double-precision variant

Applies when ftype == 11 && opc == 01.

FCVT <Dd>, <Hn>

Single-precision to half-precision variant

Applies when ftype == 00 && opc == 11.

FCVT <Hd>, <Sn>

Single-precision to double-precision variant

Applies when ftype == 00 && opc == 01.

FCVT <Dd>, <Sn>

Double-precision to half-precision variant

Applies when ftype == 01 && opc == 11.

FCVT <Hd>, <Dn>

Double-precision to single-precision variant

Applies when ftype == 01 && opc == 00.

FCVT <Sd>, <Dn>

Decode for all variants of this encoding

 if ftype == opc || ftype == '10' || opc == '10' then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer srcsize = 8 << UInt(ftype EOR '10');
 constant integer dstsize = 8 << UInt(opc EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 0 1 opc 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2760
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(srcsize) operand = V[n, srcsize];
 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 Elem[result, 0, dstsize] = FPConvert(operand, FPCR, dstsize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2761
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.70 FCVTAS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction converts
each element in a vector from a floating-point value to a signed integer value using the Round to Nearest with Ties
to Away rounding mode and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTAS <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTAS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2762
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTAS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTAS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2763
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2764
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.71 FCVTAS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to
Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTAS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTAS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTAS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTAS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTAS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTAS <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

sf 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2765
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, FALSE, FPCR, FPRounding_TIEAWAY, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2766
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.72 FCVTAU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This instruction converts
each element in a vector from a floating-point value to an unsigned integer value using the Round to Nearest with
Ties to Away rounding mode and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTAU <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTAU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2767
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTAU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTAU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPRounding_TIEAWAY;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2768
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2769
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.73 FCVTAU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTAU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTAU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTAU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTAU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTAU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTAU <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

sf 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2770
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, TRUE, FPCR, FPRounding_TIEAWAY, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2771
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.74 FCVTL, FCVTL2

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector in the
SIMD&FP source register, converts each value to double the precision of the source element using the rounding
mode that is determined by the FPCR, and writes each result to the equivalent element of the vector in the
SIMD&FP destination register.

Where the operation lengthens a 64-bit vector to a 128-bit vector, the FCVTL2 variant operates on the elements in the
top 64 bits of the source register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

FCVTL{2} <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16 << UInt(sz);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

4S when sz = 0

2D when sz = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

4H when sz = 0, Q = 0

8H when sz = 0, Q = 1

2S when sz = 1, Q = 0

4S when sz = 1, Q = 1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2772
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part, datasize];
 bits(2*datasize) result;

 for e = 0 to elements-1
 Elem[result, e, 2*esize] = FPConvert(Elem[operand, e, esize], FPCR, 2 * esize);

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2773
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.75 FCVTMS (vector)

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction converts a scalar
or each element in a vector from a floating-point value to a signed integer value using the Round towards Minus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTMS <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTMS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2774
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTMS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTMS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2775
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2776
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.76 FCVTMS (scalar)

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards
Minus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTMS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTMS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTMS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTMS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTMS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTMS <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 1 0 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2777
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2778
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.77 FCVTMU (vector)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards
Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTMU <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTMU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2779
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTMU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTMU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2780
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2781
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.78 FCVTMU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Minus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTMU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTMU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTMU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTMU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTMU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTMU <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 1 0 0 0 1 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2782
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2783
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.79 FCVTN, FCVTN2 (FP64 to FP32, FP32 to FP16)

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in the
SIMD&FP source register, converts each result to half the precision of the source element, writes the final result to
a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination
vector elements are half as long as the source vector elements. The rounding mode is determined by the FPCR.

FCVTN writes the vector to the lower half of the destination register and clears the upper half. FCVTN2 writes the vector
to the upper half of the destination register without affecting the other bits of the register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Encoding

FCVTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16 << UInt(sz);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

4H when sz = 0, Q = 0

8H when sz = 0, Q = 1

2S when sz = 1, Q = 0

4S when sz = 1, Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

4S when sz = 0

2D when sz = 1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2784
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n, 2*datasize];
 bits(datasize) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR, esize);

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2785
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.80 FCVTNS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to a signed integer value using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTNS <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTNS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2786
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTNS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTNS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2787
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2788
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.81 FCVTNS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest
rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTNS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTNS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTNS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTNS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTNS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTNS <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2789
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2790
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.82 FCVTNU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This instruction converts
a scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round to
Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTNU <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTNU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2791
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTNU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTNU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2792
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2793
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.83 FCVTNU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTNU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTNU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTNU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTNU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTNU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTNU <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2794
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2795
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.84 FCVTPS (vector)

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction converts a scalar
or each element in a vector from a floating-point value to a signed integer value using the Round towards Plus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTPS <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTPS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2796
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTPS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTPS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2797
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2798
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.85 FCVTPS (scalar)

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards
Plus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTPS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTPS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTPS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTPS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTPS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTPS <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 0 1 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2799
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2800
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.86 FCVTPU (vector)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards
Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTPU <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTPU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2801
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTPU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTPU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2802
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2803
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.87 FCVTPU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Plus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTPU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTPU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTPU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTPU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTPU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTPU <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 0 1 0 0 1 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2804
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2805
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.88 FCVTXN, FCVTXN2

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each vector
element in the source SIMD&FP register, narrows each value to half the precision of the source element using the
Round to Odd rounding mode, writes the result to a vector, and writes the vector to the destination SIMD&FP
register.

Note

This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008 standard. This
rounding mode ensures that if the result of the conversion is inexact the least significant bit of the mantissa is forced
to 1. This rounding mode enables a floating-point value to be converted to a lower precision format via an
intermediate precision format while avoiding double rounding errors. For example, a 64-bit floating-point value can
be converted to a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit
value and then using another instruction with the wanted rounding mode to convert the 32-bit value to the final
16-bit floating-point value.

The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the FCVTXN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

FCVTXN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '0' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

Vector

Encoding

FCVTXN{2} <Vd>.<Tb>, <Vn>.<Ta>

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2806
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '0' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64;
 integer elements = 2;
 integer part = UInt(Q);

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 1, Q = 0

4S when sz = 1, Q = 1

The encoding sz = 0, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

2D when sz = 1

The encoding sz = 0 is reserved.

<Vb> Is the destination width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 1

The encoding sz = 0 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "sz" field. It can have the following values:

D when sz = 1

The encoding sz = 0 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(2*datasize) operand = V[n, 2*datasize];
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR, FPRounding_ODD, esize);

 if merge then
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2807
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 Vpart[d, part, datasize] = Elem[result, 0, datasize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2808
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.89 FCVTZS (vector, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a scalar or
each element in a vector from floating-point to fixed-point signed integer using the Round towards Zero rounding
mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

FCVTZS <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Vector

Encoding

FCVTZS <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 0 1 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2809
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2810
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2811
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.90 FCVTZS (vector, integer)

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a scalar or each
element in a vector from a floating-point value to a signed integer value using the Round towards Zero rounding
mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTZS <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTZS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2812
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTZS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTZS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2813
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2814
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.91 FCVTZS (scalar, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point signed integer using the Round
towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZS <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZS <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZS <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZS <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZS <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZS <Xd>, <Dn>, #<fbits>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = 8 << UInt(ftype EOR '10');

sf 0 0 1 1 1 1 0 ftype 0 1 1 0 0 0 scale Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2815
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded
as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded
as 64 minus "scale".

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, fracbits, FALSE, FPCR, FPRounding_ZERO, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2816
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.92 FCVTZS (scalar, integer)

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the floating-point
value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Zero rounding
mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZS <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZS <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZS <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZS <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZS <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZS <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 1 1 0 0 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2817
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2818
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.93 FCVTZU (vector, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts a scalar
or each element in a vector from floating-point to fixed-point unsigned integer using the Round towards Zero
rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

FCVTZU <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Vector

Encoding

FCVTZU <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 1 1 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2819
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2820
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2821
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.94 FCVTZU (vector, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a scalar or
each element in a vector from a floating-point value to an unsigned integer value using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FCVTZU <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

FCVTZU <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2822
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector half precision

(FEAT_FP16)

Encoding

FCVTZU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

FCVTZU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 FPRounding rounding = FPDecodeRounding(o1:o2);
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2823
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2824
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.95 FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the
Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZU <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZU <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZU <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZU <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZU <Xd>, <Dn>, #<fbits>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = 8 << UInt(ftype EOR '10');

sf 0 0 1 1 1 1 0 ftype 0 1 1 0 0 1 scale Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2825
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded
as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is
the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded
as 64 minus "scale".

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, fracbits, TRUE, FPCR, FPRounding_ZERO, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2826
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.96 FCVTZU (scalar, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZU <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZU <Xd>, <Hn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZU <Wd>, <Sn>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZU <Xd>, <Sn>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZU <Wd>, <Dn>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZU <Xd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 1 1 0 0 1 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2827
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(decode_fltsize) fltval;
 bits(intsize) intval;

 fltval = V[n, decode_fltsize];
 intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding, intsize);
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2828
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.97 FDIV (vector)

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the first source
SIMD&FP register, by the floating-point values in the corresponding elements in the second source SIMD&FP
register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Single-precision and double-precision

Encoding

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2829
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPDiv(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2830
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.98 FDIV (scalar)

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD&FP
register by the floating-point value of the second source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FDIV <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FDIV <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FDIV <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2831
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPDiv(operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2832
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.99 FJCVTZS

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts the
double-precision floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round
towards Zero rounding mode, and writes the result to the general-purpose destination register. If the result is too
large to be represented as a signed 32-bit integer, then the result is the integer modulo 232, as held in a 32-bit signed
integer.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Double-precision to 32-bit

(FEAT_JSCVT)

Encoding

FJCVTZS <Wd>, <Dn>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if !IsFeatureImplemented(FEAT_JSCVT) then UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(64) fltval;
 bits(32) intval;

 bit z;
 fltval = V[n, 64];
 (intval, z) = FPToFixedJS(fltval, FPCR, TRUE, 32);
 PSTATE.<N,Z,C,V> = '0':z:'00';
 X[d, 32] = intval;

0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

sf ftype rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2833
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.100 FMADD

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source
registers, adds the product to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FMADD <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 1 ftype 0 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2834
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a, esize];
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[a, 128] else Zeros(128);

 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2835
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.101 FMAX (vector)

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, places the larger of each of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2836
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2837
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.102 FMAX (scalar)

Floating-point Maximum (scalar). This instruction compares the two source SIMD&FP registers, and writes the
larger of the two floating-point values to the destination SIMD&FP register.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMAX <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMAX <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMAX <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2838
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPMax(operand1, operand2, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2839
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.103 FMAXNM (vector)

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in the two
source SIMD&FP registers, writes the larger of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

Encoding

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2840
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2841
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.104 FMAXNM (scalar)

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD&FP
register values, and writes the larger of the two floating-point values to the destination SIMD&FP register.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMAXNM <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMAXNM <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMAXNM <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2842
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPMaxNum(operand1, operand2, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2843
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.105 FMAXNMP (scalar)

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector elements in the
source SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP
register.

Regardless of the value of FPCR.AH, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNMP <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 if sz == '1' then UNDEFINED;
 constant integer datasize = 32;

Single-precision and double-precision

Encoding

FMAXNMP <V><d>, <Vn>.<T>

0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2844
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize * 2;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = FPReduce(ReduceOp_FMAXNUM, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2845
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.106 FMAXNMP (vector)

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register,
reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of
values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
floating-point values.

Regardless of the value of FPCR.AH, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2846
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2847
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.107 FMAXNMV

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the source
SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the
values in this instruction are floating-point values.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXNMV <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);

Single-precision and double-precision

Encoding

FMAXNMV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED; // .4S only

0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2848
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = FPReduce(ReduceOp_FMAXNUM, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2849
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.108 FMAXP (scalar)

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in the source
SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP
register.

When FPCR.AH is 0, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows for each pairwise operation:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXP <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 if sz == '1' then UNDEFINED;
 constant integer datasize = 32;

Single-precision and double-precision

Encoding

FMAXP <V><d>, <Vn>.<T>

0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2850
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize * 2;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 V[d, esize] = FPReduce(ReduceOp_FMAX, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2851
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.109 FMAXP (vector)

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector elements
of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each
pair of adjacent vector elements from the concatenated vector, writes the larger of each pair of values into a vector,
and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point
values.

When FPCR.AH is 0, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows for each pairwise operation:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2852
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2853
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.110 FMAXV

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are floating-point values.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);

Single-precision and double-precision

Encoding

FMAXV <V><d>, <Vn>.<T>

0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2854
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED;

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 V[d, esize] = FPReduce(ReduceOp_FMAX, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2855
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.111 FMIN (vector)

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the two
source SIMD&FP registers, places the smaller of each of the two floating-point values into a vector, and writes the
vector to the destination SIMD&FP register.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2856
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2857
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.112 FMIN (scalar)

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD&FP register values,
and writes the smaller of the two floating-point values to the destination SIMD&FP register.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMIN <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMIN <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMIN <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2858
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPMin(operand1, operand2, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2859
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.113 FMINNM (vector)

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two
source SIMD&FP registers, writes the smaller of the two floating-point values into a vector, and writes the vector
to the destination SIMD&FP register.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

Encoding

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2860
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2861
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.114 FMINNM (scalar)

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD&FP register
values, and writes the smaller of the two floating-point values to the destination SIMD&FP register.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMINNM <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMINNM <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMINNM <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2862
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPMinNum(operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2863
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.115 FMINNMP (scalar)

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector elements in the
source SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination
SIMD&FP register.

Regardless of the value of FPCR.AH, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNMP <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 if sz == '1' then UNDEFINED;
 constant integer datasize = 32;

Single-precision and double-precision

Encoding

FMINNMP <V><d>, <Vn>.<T>

0 1 0 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2864
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize * 2;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = FPReduce(ReduceOp_FMINNUM, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2865
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.116 FMINNMP (vector)

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register,
reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair
of floating-point values into a vector, and writes the vector to the destination SIMD&FP register. All the values in
this instruction are floating-point values.

Regardless of the value of FPCR.AH, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (a == '1');

Single-precision and double-precision

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U a

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2866
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2867
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.117 FMINNMV

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the source
SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the
values in this instruction are floating-point values.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINNMV <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);

Single-precision and double-precision

Encoding

FMINNMV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED; // .4S only

0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2868
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 V[d, esize] = FPReduce(ReduceOp_FMINNUM, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2869
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.118 FMINP (scalar)

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in the source
SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP
register.

When FPCR.AH is 0, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows for each pairwise operation:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINP <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 if sz == '1' then UNDEFINED;
 constant integer datasize = 32;

Single-precision and double-precision

Encoding

FMINP <V><d>, <Vn>.<T>

0 1 0 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2870
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize * 2;

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can
have the following values:

H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can
have the following values:

2H when sz = 0

The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded
in the "sz" field. It can have the following values:

2S when sz = 0

2D when sz = 1

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 V[d, esize] = FPReduce(ReduceOp_FMIN, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2871
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.119 FMINP (vector)

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector elements
of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each
pair of adjacent vector elements from the concatenated vector, writes the smaller of each pair of values into a vector,
and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point
values.

When FPCR.AH is 0, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows for each pairwise operation:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Single-precision and double-precision

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2872
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean pair = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2873
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.120 FMINV

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are floating-point values.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMINV <V><d>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);

Single-precision and double-precision

Encoding

FMINV <V><d>, <Vn>.<T>

0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2874
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q != '01' then UNDEFINED;

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in
the "sz" field. It can have the following values:

S when sz = 0

The encoding sz = 1 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.

• Q = 1, sz = 1.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 V[d, esize] = FPReduce(ReduceOp_FMIN, operand, esize, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2875
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.121 FMLA (by element)

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector elements in
the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates
the results in the vector elements of the destination SIMD&FP register. All the values in this instruction are
floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMLA <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

Encoding

FMLA <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

0 1 0 1 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 1 0 1 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2876
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

0 Q 0 0 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2877
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2878
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) operand3 = V[d, datasize];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2879
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.122 FMLA (vector)

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding
floating-point values in the vectors in the two source SIMD&FP registers, adds the product to the corresponding
vector element of the destination SIMD&FP register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (a == '1');

Single-precision and double-precision

Encoding

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (op == '1');

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

a

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2880
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2881
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.123 FMLAL, FMLAL2 (by element)

Floating-point fused Multiply-Add Long to accumulator (by element). This instruction multiplies the vector
elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and
accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction
does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLAL

(FEAT_FHM)

Encoding

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 0;

FMLAL2

(FEAT_FHM)

Encoding

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

0 Q 0 0 1 1 1 1 1 0 L M Rm 0 0 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S

0 Q 1 0 1 1 1 1 1 0 L M Rm 1 0 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2882
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the element index, encoded in the "H:L:M" fields.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part, datasize DIV 2];
 bits(128) operand2 = V[m, 128];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2883
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.124 FMLAL, FMLAL2 (vector)

Floating-point fused Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding
half-precision floating-point values in the vectors in the two source SIMD&FP registers, and accumulates the
product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round
the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLAL

(FEAT_FHM)

Encoding

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 0;

FMLAL2

(FEAT_FHM)

Encoding

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

0 Q 0 0 1 1 1 0 0 0 1 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz

0 Q 1 0 1 1 1 0 0 0 1 Rm 1 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2884
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part, datasize DIV 2];
 bits(datasize DIV 2) operand2 = Vpart[m, part, datasize DIV 2];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 element2 = Elem[operand2, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2885
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.125 FMLS (by element)

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the vector
elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and
subtracts the results from the vector elements of the destination SIMD&FP register. All the values in this instruction
are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMLS <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

Encoding

FMLS <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

0 1 0 1 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 1 0 1 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2886
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (o2 == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

0 Q 0 0 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2887
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o2 == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2888
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) operand3 = V[d, datasize];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2889
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.126 FMLS (vector)

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding
floating-point values in the vectors in the two source SIMD&FP registers, negates the product, adds the result to the
corresponding vector element of the destination SIMD&FP register, and writes the result to the destination
SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (a == '1');

Single-precision and double-precision

Encoding

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

a

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2890
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean sub_op = (op == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2891
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.127 FMLSL, FMLSL2 (by element)

Floating-point fused Multiply-Subtract Long from accumulator (by element). This instruction multiplies the
negated vector elements in the first source SIMD&FP register by the specified value in the second source
SIMD&FP register, and accumulates the product to the corresponding vector element of the destination SIMD&FP
register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLSL

(FEAT_FHM)

Encoding

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 0;

FMLSL2

(FEAT_FHM)

Encoding

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

0 Q 0 0 1 1 1 1 1 0 L M Rm 0 1 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S

0 Q 1 0 1 1 1 1 1 0 L M Rm 1 1 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2892
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
 if sz == '1' then UNDEFINED;
 integer index = UInt(H:L:M);

 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the element index, encoded in the "H:L:M" fields.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part, datasize DIV 2];
 bits(128) operand2 = V[m, 128];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2893
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.128 FMLSL, FMLSL2 (vector)

Floating-point fused Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the
vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates
the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not
round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLSL

(FEAT_FHM)

Encoding

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 0;

FMLSL2

(FEAT_FHM)

Encoding

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

0 Q 0 0 1 1 1 0 1 0 1 Rm 1 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz

0 Q 1 0 1 1 1 0 1 0 1 Rm 1 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S sz
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2894
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz == '1' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (S == '1');
 integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2H when Q = 0

4H when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize DIV 2) operand1 = Vpart[n, part, datasize DIV 2];
 bits(datasize DIV 2) operand2 = Vpart[m, part, datasize DIV 2];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 element2 = Elem[operand2, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2895
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.129 FMOV (vector, immediate)

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant into every
element of the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMOV <Vd>.<T>, #<imm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer rd = UInt(Rd);

 constant integer datasize = 64 << UInt(Q);
 bits(datasize) imm;

 bits(8) imm8 = a:b:c:d:e:f:g:h;
 bits(16) imm16 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 2):imm8<5:0>:Zeros(6);

 imm = Replicate(imm16, datasize DIV 16);

Single-precision and double-precision

Single-precision variant

Applies when op == 0.

FMOV <Vd>.<T>, #<imm>

Double-precision variant

Applies when Q == 1 && op == 1.

FMOV <Vd>.2D, #<imm>

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 constant integer datasize = 64 << UInt(Q);
 bits(datasize) imm;
 bits(64) imm64;

 if cmode:op == '11111' then

0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 1 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 0 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2896
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have
the following values:

2S when Q = 0

4S when Q = 1

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded
in "a:b:c:d:e:f:g:h". For details of the range of constants available and the encoding of <imm>, see
Modified immediate constants in A64 floating-point instructions.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 V[rd, datasize] = imm;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2897
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.130 FMOV (register)

Floating-point Move register without conversion. This instruction copies the floating-point value in the SIMD&FP
source register to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMOV <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FMOV <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FMOV <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 bits(128) result = 0<127:0>;

 bits(esize) operand = V[n, esize];

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2898
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 Elem[result, 0, esize] = operand;
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2899
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.131 FMOV (general)

Floating-point Move to or from general-purpose register without conversion. This instruction transfers the contents
of a SIMD&FP register to a general-purpose register, or the contents of a general-purpose register to a SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11 && rmode == 00 && opcode == 110.

FMOV <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11 && rmode == 00 && opcode == 110.

FMOV <Xd>, <Hn>

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11 && rmode == 00 && opcode == 111.

FMOV <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00 && rmode == 00 && opcode == 111.

FMOV <Sd>, <Wn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00 && rmode == 00 && opcode == 110.

FMOV <Wd>, <Sn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11 && rmode == 00 && opcode == 111.

FMOV <Hd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01 && rmode == 00 && opcode == 111.

FMOV <Dd>, <Xn>

64-bit to top half of 128-bit variant

Applies when sf == 1 && ftype == 10 && rmode == 01 && opcode == 111.

FMOV <Vd>.D[1], <Xn>

sf 0 0 1 1 1 1 0 ftype 1 0 x 1 1 x 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2900
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01 && rmode == 00 && opcode == 110.

FMOV <Xd>, <Dn>

Top half of 128-bit to 64-bit variant

Applies when sf == 1 && ftype == 10 && rmode == 01 && opcode == 110.

FMOV <Xd>, <Vn>.D[1]

Decode for all variants of this encoding

 if ftype == '10' && opcode<2:1>:rmode != '11 01' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPConvOp op;
 FPRounding rounding;
 boolean unsigned;
 integer part;

 case opcode<2:1>:rmode of
 when '00 xx' // FCVT[NPMZ][US]
 rounding = FPDecodeRounding(rmode);
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_FtoI;
 when '01 00' // [US]CVTF
 rounding = FPRoundingMode(FPCR);
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_ItoF;
 when '10 00' // FCVTA[US]
 rounding = FPRounding_TIEAWAY;
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_FtoI;
 when '11 00' // FMOV
 if decode_fltsize != 16 && decode_fltsize != intsize then UNDEFINED;
 op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
 part = 0;
 when '11 01' // FMOV D[1]
 if intsize != 64 || ftype != '10' then UNDEFINED;
 op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
 part = 1;
 when '11 11' // FJCVTZS
 if !IsFeatureImplemented(FEAT_JSCVT) then UNDEFINED;
 rounding = FPRounding_ZERO;
 unsigned = (opcode<0> == '1');
 op = FPConvOp_CVT_FtoI_JS;
 otherwise
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2901
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 if op == FPConvOp_CVT_FtoI_JS then
 CheckFPAdvSIMDEnabled64();
 else
 CheckFPEnabled64();

 constant boolean merge = IsMerging(FPCR);
 constant integer fltsize = if op == FPConvOp_CVT_ItoF && merge then 128 else decode_fltsize;
 bits(fltsize) fltval;
 bits(intsize) intval;

 case op of
 when FPConvOp_CVT_FtoI
 fltval = V[n, fltsize];
 intval = FPToFixed(fltval, 0, unsigned, FPCR, rounding, intsize);
 X[d, intsize] = intval;
 when FPConvOp_CVT_ItoF
 intval = X[n, intsize];
 fltval = if merge then V[d, fltsize] else Zeros(fltsize);
 Elem[fltval, 0, decode_fltsize] = FixedToFP(intval, 0, unsigned, FPCR, rounding,
decode_fltsize);
 V[d, fltsize] = fltval;
 when FPConvOp_MOV_FtoI
 fltval = Vpart[n, part, fltsize];
 intval = ZeroExtend(fltval, intsize);
 X[d, intsize] = intval;
 when FPConvOp_MOV_ItoF
 intval = X[n, intsize];
 fltval = intval<fltsize-1:0>;
 Vpart[d, part, fltsize] = fltval;
 when FPConvOp_CVT_FtoI_JS
 bit z;
 fltval = V[n, fltsize];
 (intval, z) = FPToFixedJS(fltval, FPCR, TRUE, intsize);
 PSTATE.<N,Z,C,V> = '0':z:'00';
 X[d, intsize] = intval;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2902
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.132 FMOV (scalar, immediate)

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into the
SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMOV <Hd>, #<imm>

Single-precision variant

Applies when ftype == 00.

FMOV <Sd>, #<imm>

Double-precision variant

Applies when ftype == 01.

FMOV <Dd>, #<imm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);

 constant integer datasize = 8 << UInt(ftype EOR '10');
 bits(datasize) imm = VFPExpandImm(imm8, datasize);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded
in the "imm8" field. For details of the range of constants available and the encoding of <imm>, see
Modified immediate constants in A64 floating-point instructions.

Operation

 CheckFPEnabled64();

 V[d, datasize] = imm;

0 0 0 1 1 1 1 0 ftype 1 imm8 1 0 0 0 0 0 0 0 Rd

31 30 29 28 27 26 25 24 23 22 21 20 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2903
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.133 FMSUB

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP
source registers, negates the product, adds that to the value of the third SIMD&FP source register, and writes the
result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FMSUB <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 1 ftype 0 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2904
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a, esize];
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[a, 128] else Zeros(128);

 operand1 = FPNeg(operand1, FPCR);
 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2905
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.134 FMUL (by element)

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source SIMD&FP
register by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the
vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMUL <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

Encoding

FMUL <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

0 1 0 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 1 0 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2906
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

0 Q 0 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2907
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2908
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if mulx_op then
 Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2909
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.135 FMUL (vector)

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the vectors in
the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Single-precision and double-precision

Encoding

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2910
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2911
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.136 FMUL (scalar)

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMUL <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMUL <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMUL <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2912
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 bits(esize) product = FPMul(operand1, operand2, FPCR);
 Elem[result, 0, esize] = product;

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2913
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.137 FMULX (by element)

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in the vector
elements in the first source SIMD&FP register by the specified floating-point value in the second source SIMD&FP
register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of
the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

(FEAT_FP16)

Encoding

FMULX <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

Encoding

FMULX <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);

0 1 1 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 1 1 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2914
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean mulx_op = (U == '1');

Vector, half-precision

(FEAT_FP16)

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 integer index = UInt(H:L:M);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi = M;
 case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

 integer d = UInt(Rd);

0 Q 1 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2915
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean mulx_op = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"Q:sz" field. It can have the following values:

2S when Q = 0, sz = 0

4S when Q = 1, sz = 0

2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0
to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M"
fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H"
field. It can have the following values:

H:L when sz = 0, L = x

H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2916
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(esize) element1;
 bits(esize) element2 = Elem[operand2, index, esize];
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 if mulx_op then
 Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2917
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.138 FMULX

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the vectors of
the two source SIMD&FP registers, places the resulting floating-point values in a vector, and writes the vector to
the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of
the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FMULX <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FMULX <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2918
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2919
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 if elements == 1 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2920
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.139 FNEG (vector)

Floating-point Negate (vector). This instruction negates the value of each vector element in the source SIMD&FP
register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Single-precision and double-precision

Encoding

FNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2921
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 if neg then
 element = FPNeg(element, FPCR);
 else
 element = FPAbs(element, FPCR);
 Elem[result, e, esize] = element;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2922
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.140 FNEG (scalar)

Floating-point Negate (scalar). This instruction negates the value in the SIMD&FP source register and writes the
result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNEG <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FNEG <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FNEG <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else 0<127:0>;

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2923
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPNeg(operand, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2924
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.141 FNMADD

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first two
SIMD&FP source registers, negates the product, subtracts the value of the third SIMD&FP source register, and
writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FNMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FNMADD <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 1 ftype 1 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2925
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a, esize];
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[a, 128] else Zeros(128);

 operanda = FPNeg(operanda, FPCR);
 operand1 = FPNeg(operand1, FPCR);
 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2926
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.142 FNMSUB

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two
SIMD&FP source registers, subtracts the value of the third SIMD&FP source register, and writes the result to the
destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FNMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FNMSUB <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer a = UInt(Ra);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 1 ftype 1 Rm 1 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0

o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2927
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the
"Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

Operation

 CheckFPEnabled64();

 bits(esize) operanda = V[a, esize];
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[a, 128] else Zeros(128);

 operanda = FPNeg(operanda, FPCR);
 Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2928
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.143 FNMUL (scalar)

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two source
SIMD&FP registers, and writes the negation of the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FNMUL <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FNMUL <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FNMUL <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2929
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 bits(esize) product = FPMul(operand1, operand2, FPCR);
 product = FPNeg(product, FPCR);
 Elem[result, 0, esize] = product;

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2930
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.144 FRECPE

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each vector
element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRECPE <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRECPE <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2931
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2932
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 if elements == 1 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRecipEstimate(element, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2933
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.145 FRECPS

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the vectors of
the two source SIMD&FP registers, subtracts each of the products from 2.0, places the resulting floating-point
values in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRECPS <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRECPS <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2934
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2935
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 if elements == 1 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRecipStepFused(element1, element2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2936
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.146 FRECPX

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent for the
source SIMD&FP register and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRECPX <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;

Single-precision and double-precision

Encoding

FRECPX <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2937
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPEnabled64();
 bits(esize) operand = V[n, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 Elem[result, 0, esize] = FPRecpX(operand, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2938
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.147 FRINT32X (vector)

Floating-point Round to 32-bit Integer, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT32X <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2939
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2940
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.148 FRINT32X (scalar)

Floating-point Round to 32-bit Integer, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for
the corresponding result value} the most negative integer representable in the destination size, and an Invalid
Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT32X <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT32X <Dd>, <Dn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 if ftype IN {'1x'} then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer esize = 32 << UInt(ftype);

 FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 0 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2941
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundIntN(operand, FPCR, rounding, 32);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2942
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.149 FRINT32Z (vector)

Floating-point Round to 32-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer size using the
Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT32Z <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2943
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2944
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.150 FRINT32Z (scalar)

Floating-point Round to 32-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer size using the Round
towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the
{corresponding} input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the
instruction returns {for the corresponding result value} the most negative integer representable in the destination
size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT32Z <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT32Z <Dd>, <Dn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 if ftype IN {'1x'} then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer esize = 32 << UInt(ftype);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 0 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2945
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundIntN(operand, FPCR, FPRounding_ZERO, 32);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2946
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.151 FRINT64X (vector)

Floating-point Round to 64-bit Integer, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT64X <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2947
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2948
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.152 FRINT64X (scalar)

Floating-point Round to 64-bit Integer, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for
the corresponding result value} the most negative integer representable in the destination size, and an Invalid
Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT64X <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT64X <Dd>, <Dn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 if ftype IN {'1x'} then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer esize = 32 << UInt(ftype);
 constant integer intsize = 32 << 1;

 FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2949
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundIntN(operand, FPCR, rounding, intsize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2950
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.153 FRINT64Z (vector)

Floating-point Round to 64-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer size using the
Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision

(FEAT_FRINTTS)

Encoding

FRINT64Z <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer intsize = if op == '0' then 32 else 64;
 FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2951
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2952
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.154 FRINT64Z (scalar)

Floating-point Round to 64-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer size using the Round
towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the
{corresponding} input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the
instruction returns {for the corresponding result value} the most negative integer representable in the destination
size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Floating-point

(FEAT_FRINTTS)

Single-precision variant

Applies when ftype == 00.

FRINT64Z <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINT64Z <Dd>, <Dn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FRINTTS) then UNDEFINED;
 if ftype IN {'1x'} then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer esize = 32 << UInt(ftype);
 constant integer intsize = 32 << 1;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

ftype op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2953
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundIntN(operand, FPCR, FPRounding_ZERO, intsize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2954
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.155 FRINTA (vector)

Floating-point Round to Integral, to nearest with ties to Away (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
Round to Nearest with Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTA <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTA <Vd>.<T>, <Vn>.<T>

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2955
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2956
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.156 FRINTA (scalar)

Floating-point Round to Integral, to nearest with ties to Away (scalar). This instruction rounds a floating-point value
in the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest with
Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTA <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTA <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTA <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 0 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2957
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, FPRounding_TIEAWAY, FALSE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2958
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.157 FRINTI (vector)

Floating-point Round to Integral, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTI <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTI <Vd>.<T>, <Vn>.<T>

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2959
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2960
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.158 FRINTI (scalar)

Floating-point Round to Integral, using current rounding mode (scalar). This instruction rounds a floating-point
value in the SIMD&FP source register to an integral floating-point value of the same size using the rounding mode
that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTI <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTI <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTI <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');
 FPRounding rounding;
 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 1 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2961
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, rounding, FALSE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2962
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.159 FRINTM (vector)

Floating-point Round to Integral, toward Minus infinity (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards
Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTM <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTM <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2963
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2964
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.160 FRINTM (scalar)

Floating-point Round to Integral, toward Minus infinity (scalar). This instruction rounds a floating-point value in
the SIMD&FP source register to an integral floating-point value of the same size using the Round towards Minus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTM <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTM <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTM <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');
 FPRounding rounding;
 rounding = FPDecodeRounding('10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2965
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, rounding, FALSE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2966
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.161 FRINTN (vector)

Floating-point Round to Integral, to nearest with ties to even (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
Round to Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTN <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTN <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2967
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2968
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.162 FRINTN (scalar)

Floating-point Round to Integral, to nearest with ties to even (scalar). This instruction rounds a floating-point value
in the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTN <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTN <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTN <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');
 FPRounding rounding;
 rounding = FPDecodeRounding('00');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2969
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, rounding, FALSE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2970
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.163 FRINTP (vector)

Floating-point Round to Integral, toward Plus infinity (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards
Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTP <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTP <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2971
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2972
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.164 FRINTP (scalar)

Floating-point Round to Integral, toward Plus infinity (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value of the same size using the Round towards Plus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTP <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTP <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTP <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');
 FPRounding rounding;
 rounding = FPDecodeRounding('01');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2973
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, rounding, FALSE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2974
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.165 FRINTX (vector)

Floating-point Round to Integral exact, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

When a result value is not numerically equal to the corresponding input value, an Inexact exception is raised. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN
is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTX <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTX <Vd>.<T>, <Vn>.<T>

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2975
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2976
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.166 FRINTX (scalar)

Floating-point Round to Integral exact, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

When the result value is not numerically equal to the input value, an Inexact exception is raised. A zero input gives
a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated
as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTX <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTX <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTX <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');
 FPRounding rounding;
 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 1 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2977
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, rounding, TRUE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2978
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.167 FRINTZ (vector)

Floating-point Round to Integral, toward Zero (vector). This instruction rounds a vector of floating-point values in
the SIMD&FP source register to integral floating-point values of the same size using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FRINTZ <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

Encoding

FRINTZ <Vd>.<T>, <Vn>.<T>

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o2 o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2979
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean exact = FALSE;
 FPRounding rounding;
 case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2980
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.168 FRINTZ (scalar)

Floating-point Round to Integral, toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value of the same size using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and
a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTZ <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTZ <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTZ <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');
 FPRounding rounding;
 rounding = FPDecodeRounding('11');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 0

rmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2981
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPRoundInt(operand, FPCR, rounding, FALSE);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2982
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.169 FRSQRTE

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root for each
vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRSQRTE <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRSQRTE <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2983
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2984
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 if elements == 1 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRSqrtEstimate(element, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2985
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.170 FRSQRTS

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point values in the
vectors of the two source SIMD&FP registers, subtracts each of the products from 3.0, divides these results by 2.0,
places the results into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

FRSQRTS <Hd>, <Hn>, <Hm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;

Scalar single-precision and double-precision

Encoding

FRSQRTS <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;

Vector half precision

(FEAT_FP16)

0 1 0 1 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 0 1 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2986
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Encoding

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Vector single-precision and double-precision

Encoding

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2987
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 if elements == 1 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRSqrtStepFused(element1, element2, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2988
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.171 FSQRT (vector)

Floating-point Square Root (vector). This instruction calculates the square root for each vector element in the source
SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FSQRT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Single-precision and double-precision

Encoding

FSQRT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2989
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPSqrt(element, FPCR);

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2990
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.172 FSQRT (scalar)

Floating-point Square Root (scalar). This instruction calculates the square root of the value in the SIMD&FP source
register and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FSQRT <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FSQRT <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FSQRT <Dd>, <Dn>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2991
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPEnabled64();

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else 0<127:0>;

 bits(esize) operand = V[n, esize];

 Elem[result, 0, esize] = FPSqrt(operand, FPCR);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2992
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.173 FSUB (vector)

Floating-point Subtract (vector). This instruction subtracts the elements in the vector in the second source
SIMD&FP register, from the corresponding elements in the vector in the first source SIMD&FP register, places each
result into elements of a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

(FEAT_FP16)

Encoding

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

Single-precision and double-precision

Encoding

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean abs = (U == '1');

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2993
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];

 bits(esize) element1;
 bits(esize) element2;
 bits(esize) diff;

 bits(datasize) result;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 diff = FPSub(element1, element2, FPCR);
 Elem[result, e, esize] = if abs then FPAbs(diff, FPCR) else diff;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2994
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.174 FSUB (scalar)

Floating-point Subtract (scalar). This instruction subtracts the floating-point value of the second source SIMD&FP
register from the floating-point value of the first source SIMD&FP register, and writes the result to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FSUB <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FSUB <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FSUB <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer esize = 8 << UInt(ftype EOR '10');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2995
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPEnabled64();
 bits(esize) operand1 = V[n, esize];
 bits(esize) operand2 = V[m, esize];

 boolean merge = IsMerging(FPCR);
 bits(128) result = if merge then V[n, 128] else Zeros(128);

 Elem[result, 0, esize] = FPSub(operand1, operand2, FPCR);
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2996
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.175 INS (element)

Insert vector element from another vector element. This instruction copies the vector element of the source
SIMD&FP register to the specified vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (element). The alias is always the preferred disassembly.

Encoding

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;

 constant integer dst_index = UInt(imm5<4:size+1>);
 constant integer src_index = UInt(imm4<3:size>);
 constant integer idxdsize = 64 << UInt(imm4<3>);
 // imm4<size-1:0> is IGNORED

 constant integer esize = 8 << size;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index1> Is the destination element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2997
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index2> Is the source element index encoded in the "imm5:imm4" field. It can have the following values:

imm4<3:0> when imm5 = xxxx1

imm4<3:1> when imm5 = xxx10

imm4<3:2> when imm5 = xx100

imm4<3> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

 Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n, idxdsize];
 bits(128) result;

 result = V[d, 128];
 Elem[result, dst_index, esize] = Elem[operand, src_index, esize];
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2998
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.176 INS (general)

Insert vector element from general-purpose register. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (from general). The alias is always the preferred disassembly.

Encoding

INS <Vd>.<Ts>[<index>], <R><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer size = LowestSetBit(imm5);

 if size > 3 then UNDEFINED;
 constant integer index = UInt(imm5<4:size+1>);

 constant integer esize = 8 << size;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
have the following values:

W when imm5 = xxxx1

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-2999
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
W when imm5 = xxx10

W when imm5 = xx100

X when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(esize) element = X[n, esize];
 bits(128) result;

 result = V[d, 128];
 Elem[result, index, esize] = element;
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3000
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.177 LD1 (multiple structures)

Load multiple single-element structures to one, two, three, or four registers. This instruction loads multiple
single-element structures from memory and writes the result to one, two, three, or four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

One register variant

Applies when opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>]

Two registers variant

Applies when opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers variant

Applies when opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers variant

Applies when opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

One register, immediate offset variant

Applies when Rm == 11111 && opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>], <imm>

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 x x 1 x size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm x x 1 x size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3001
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
One register, register offset variant

Applies when Rm != 11111 && opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset variant

Applies when Rm == 11111 && opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset variant

Applies when Rm != 11111 && opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset variant

Applies when Rm != 11111 && opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset variant

Applies when Rm != 11111 && opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3002
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in the "Q"
field. It can have the following values:

#8 when Q = 0

#16 when Q = 1

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3003
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3004
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.178 LD1 (single structure)

Load one single-element structure to one lane of one register. This instruction loads a single-element structure from
memory and writes the result to the specified lane of the SIMD&FP register without affecting the other bits of the
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

LD1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

LD1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

LD1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

LD1 { <Vt>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

LD1 { <Vt>.B }[<index>], [<Xn|SP>], #1

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 1 0 Rm x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3005
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

LD1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

LD1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

LD1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

LD1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

LD1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

LD1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

LD1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3006
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3007
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3008
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.179 LD1R

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a single-element
structure from memory and replicates the structure to all the lanes of the SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD1R { <Vt>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD1R { <Vt>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD1R { <Vt>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode S

0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3009
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#1 when size = 00

#2 when size = 01

#4 when size = 10

#8 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3010
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3011
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.180 LD2 (multiple structures)

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures from
memory and writes the result to the two SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm 1 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3012
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3013
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3014
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.181 LD2 (single structure)

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure from
memory and writes the result to the corresponding elements of the two SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 1 1 Rm x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3015
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3016
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3017
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3018
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.182 LD2R

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-element
structure from memory and replicates the structure to all the lanes of the two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode S

0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3019
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#2 when size = 00

#4 when size = 01

#8 when size = 10

#16 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3020
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3021
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.183 LD3 (multiple structures)

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures from
memory and writes the result to the three SIMD&FP registers, with de-interleaving.

The following figure shows the operation of de-interleaving of a LD3.16 (multiple 3-element structures)
instruction:.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

A[0].x

A[0].y

A[0].z

A[1].x

A[1].y

A[1].z

A[2].x

A[2].y

A[2].z

A[3].x

A[3].y

A[3].z

Memory

Z3 Z2 Z1 Z0 D2

Y3 Y1 D1

X3 X2 X1 D0

Y2 Y0

X0

Registers

A is a packed array of

3-element structures.

Each element is a 16-bit

halfword.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm 0 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3022
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Register offset variant

Applies when Rm != 11111.

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3023
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3024
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.184 LD3 (single structure)

Load single 3-element structure to one lane of three registers. This instruction loads a 3-element structure from
memory and writes the result to the corresponding elements of the three SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 1 0 Rm x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3025
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3026
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3027
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3028
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.185 LD3R

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-element
structure from memory and replicates the structure to all the lanes of the three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode S

0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 1 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3029
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#3 when size = 00

#6 when size = 01

#12 when size = 10

#24 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3030
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3031
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.186 LD4 (multiple structures)

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures from
memory and writes the result to the four SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 1 0 Rm 0 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3032
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3033
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3034
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.187 LD4 (single structure)

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure from
memory and writes the result to the corresponding elements of the four SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 1 1 Rm x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3035
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3036
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3037
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3038
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.188 LD4R

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-element
structure from memory and replicates the structure to all the lanes of the four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode S

0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 1 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3039
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

#4 when size = 00

#8 when size = 01

#16 when size = 10

#32 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3040
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3041
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.189 LDAP1 (SIMD&FP)

Load-Acquire RCpc one single-element structure to one lane of one register. This instruction loads a single-element
structure from memory and writes the result to the specified lane of the SIMD&FP register without affecting the
other bits of the register.

The instruction has memory ordering semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/store addressing modes.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

64-bit

(FEAT_LRCPC3)

Encoding

LDAP1 { <Vt>.D }[<index>], [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> Is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3042
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMDAcqRel(memop, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3043
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3044
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.190 LDAPUR (SIMD&FP)

Load-Acquire RCpc SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from
memory. The address that is used for the load is calculated from a base register value and an optional immediate
offset.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Unscaled offset

(FEAT_LRCPC3)

8-bit variant

Applies when size == 00 && opc == 01.

LDAPUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant

Applies when size == 01 && opc == 01.

LDAPUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant

Applies when size == 10 && opc == 01.

LDAPUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11 && opc == 01.

LDAPUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant

Applies when size == 00 && opc == 11.

LDAPUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

size 0 1 1 1 0 1 x 1 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3045
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMDAcqRel(memop, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3046
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.191 LDNP (SIMD&FP)

Load Pair of SIMD&FP registers, with Non-temporal hint. This instruction loads a pair of SIMD&FP registers from
memory, issuing a hint to the memory system that the access is non-temporal. The address that is used for the load
is calculated from a base register value and an optional immediate offset.

For information about non-temporal pair instructions, see Load/store SIMD and floating-point non-temporal pair.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when opc == 00.

LDNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

LDNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

LDNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP (SIMD&FP).

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

opc 1 0 1 1 0 0 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3047
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation

 CheckFPEnabled64();
 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 V[t, datasize] = data1;
 V[t2, datasize] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3048
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.192 LDP (SIMD&FP)

Load Pair of SIMD&FP registers. This instruction loads a pair of SIMD&FP registers from memory. The address
that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

opc 1 0 1 1 0 0 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

opc 1 0 1 1 0 1 1 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3049
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDP (SIMD&FP).

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

opc 1 0 1 1 0 1 0 1 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3050
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a
multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16
in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = wback || n != 31;

 boolean rt_unknown = FALSE;

 if t == t2 then
 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

Operation for all encodings

 CheckFPEnabled64();
 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 address2 = GenerateAddress(address, dbytes, accdesc);
 data1 = Mem[address, dbytes, accdesc];
 data2 = Mem[address2, dbytes, accdesc];
 if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
 V[t, datasize] = data1;
 V[t2, datasize] = data2;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3051
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3052
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.193 LDR (immediate, SIMD&FP)

Load SIMD&FP Register (immediate offset). This instruction loads an element from memory, and writes the result
as a scalar to the SIMD&FP register. The address that is used for the load is calculated from a base register value,
a signed immediate offset, and an optional offset that is a multiple of the element size.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

8-bit variant

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>], #<simm>

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>], #<simm>

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>], #<simm>

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

size 1 1 1 1 0 0 x 1 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc

size 1 1 1 1 0 0 x 1 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3053
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit variant

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>, #<simm>]!

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>, #<simm>]!

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>, #<simm>]!

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

8-bit variant

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>{, #<pimm>}]

size 1 1 1 1 0 1 x 1 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3054
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>{, #<pimm>}]

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0
to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range
0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings

 CheckFPEnabled64();
 bits(64) address;
 bits(datasize) data;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3055
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 AccessDescriptor accdesc = CreateAccDescASIMD(memop, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3056
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.194 LDR (literal, SIMD&FP)

Load SIMD&FP Register (PC-relative literal). This instruction loads a SIMD&FP register from memory. The
address that is used for the load is calculated from the PC value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when opc == 00.

LDR <St>, <label>

64-bit variant

Applies when opc == 01.

LDR <Dt>, <label>

128-bit variant

Applies when opc == 10.

LDR <Qt>, <label>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 if opc == '11' then UNDEFINED;
 constant integer size = 4 << UInt(opc);

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 bits(64) address = PC64 + offset;
 bits(size*8) data;

 CheckFPEnabled64();
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, FALSE, FALSE);
 data = Mem[address, size, accdesc];
 V[t, size*8] = data;

opc 0 1 1 1 0 0 imm19 Rt

31 30 29 28 27 26 25 24 23 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3057
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3058
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.195 LDR (register, SIMD&FP)

Load SIMD&FP Register (register offset). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from a base register value and an offset register value. The offset can be
optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when size == 00 && opc == 01 && option != 011.

LDR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-bit variant

Applies when size == 00 && opc == 01 && option == 011.

LDR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-bit variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-bit variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

size 1 1 1 1 0 0 x 1 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3059
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in the "option" field. It can have the
following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to
LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the
"option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1
if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#1 when S = 1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where
it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#4 when S = 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3060
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 CheckFPEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3061
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.196 LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when size == 00 && opc == 01.

LDUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant

Applies when size == 01 && opc == 01.

LDUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant

Applies when size == 10 && opc == 01.

LDUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11 && opc == 01.

LDUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant

Applies when size == 00 && opc == 11.

LDUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

size 1 1 1 1 0 0 x 1 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3062
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 CheckFPEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3063
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.197 MLA (by element)

Multiply-Add to accumulator (vector, by element). This instruction multiplies the vector elements in the first source
SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the results with
the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer
values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

0 Q 1 0 1 1 1 1 size L M Rm 0 0 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3064
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) product;

 element2 = UInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3065
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.198 MLA (vector)

Multiply-Add to accumulator (vector). This instruction multiplies corresponding elements in the vectors of the two
source SIMD&FP registers, and accumulates the results with the vector elements of the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3066
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3067
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.199 MLS (by element)

Multiply-Subtract from accumulator (vector, by element). This instruction multiplies the vector elements in the first
source SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results
from the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer
values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

0 Q 1 0 1 1 1 1 size L M Rm 0 1 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3068
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) product;

 element2 = UInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3069
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.200 MLS (vector)

Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding elements in the vectors of
the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3070
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3071
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.201 MOV (scalar)

Move vector element to scalar. This instruction duplicates the specified vector element in the SIMD&FP source
register into a scalar, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the DUP (element) instruction. This means that:

• The encodings in this description are named to match the encodings of DUP (element).

• The description of DUP (element) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <V><d>, <Vn>.<T>[<index>]

 is equivalent to

DUP <V><d>, <Vn>.<T>[<index>]

and is always the preferred disassembly.

Assembler symbols

<V> Is the destination width specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the element width specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3072
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding imm5 = x0000 is reserved.

Operation

The description of DUP (element) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3073
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.202 MOV (element)

Move vector element to another vector element. This instruction copies the vector element of the source SIMD&FP
register to the specified vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the INS (element) instruction. This means that:

• The encodings in this description are named to match the encodings of INS (element).

• The description of INS (element) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

 is equivalent to

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index1> Is the destination element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index2> Is the source element index encoded in the "imm5:imm4" field. It can have the following values:

imm4<3:0> when imm5 = xxxx1

imm4<3:1> when imm5 = xxx10

0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3074
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
imm4<3:2> when imm5 = xx100

imm4<3> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

 Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation

The description of INS (element) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3075
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.203 MOV (from general)

Move general-purpose register to a vector element. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the INS (general) instruction. This means that:

• The encodings in this description are named to match the encodings of INS (general).

• The description of INS (general) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Vd>.<Ts>[<index>], <R><n>

 is equivalent to

INS <Vd>.<Ts>[<index>], <R><n>

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
have the following values:

W when imm5 = xxxx1

W when imm5 = xxx10

W when imm5 = xx100

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3076
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
X when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

The description of INS (general) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3077
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.204 MOV (vector)

Move vector. This instruction copies the vector in the source SIMD&FP register into the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the ORR (vector, register) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (vector, register).

• The description of ORR (vector, register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV <Vd>.<T>, <Vn>.<T>

 is equivalent to

ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>

and is the preferred disassembly when Rm == Rn.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3078
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.205 MOV (to general)

Move vector element to general-purpose register. This instruction reads the unsigned integer from the source
SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination
general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the UMOV instruction. This means that:

• The encodings in this description are named to match the encodings of UMOV.

• The description of UMOV gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

32-bit variant

Applies when Q == 0 && imm5 == xx100.

MOV <Wd>, <Vn>.S[<index>]

 is equivalent to

UMOV <Wd>, <Vn>.S[<index>]

and is always the preferred disassembly.

64-bit variant

Applies when Q == 1 && imm5 == x1000.

MOV <Xd>, <Vn>.D[<index>]

 is equivalent to

UMOV <Xd>, <Vn>.D[<index>]

and is always the preferred disassembly.

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> For the 32-bit variant: is the element index encoded in "imm5<4:3>".

For the 64-bit variant: is the element index encoded in "imm5<4>".

Operation

The description of UMOV gives the operational pseudocode for this instruction.

0 Q 0 0 1 1 1 0 0 0 0 x x x 0 0 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

imm5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3079
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3080
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.206 MOVI

Move Immediate (vector). This instruction places an immediate constant into every vector element of the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when op == 0 && cmode == 1110.

MOVI <Vd>.<T>, #<imm8>{, LSL #0}

16-bit shifted immediate variant

Applies when op == 0 && cmode == 10x0.

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate variant

Applies when op == 0 && cmode == 0xx0.

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones variant

Applies when op == 0 && cmode == 110x.

MOVI <Vd>.<T>, #<imm8>, MSL #<amount>

64-bit scalar variant

Applies when Q == 0 && op == 1 && cmode == 1110.

MOVI <Dd>, #<imm>

64-bit vector variant

Applies when Q == 1 && op == 1 && cmode == 1110.

MOVI <Vd>.2D, #<imm>

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 constant integer datasize = 64 << UInt(Q);
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx00' operation = ImmediateOp_MOVI;
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx10' operation = ImmediateOp_ORR;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x00' operation = ImmediateOp_MOVI;

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3081
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x10' operation = ImmediateOp_ORR;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x0' operation = ImmediateOp_MOVI;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11110' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a 64-bit immediate 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
encoded in "a:b:c:d:e:f:g:h".

<T> For the 8-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following
values:

8B when Q = 0

16B when Q = 1

For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in the "cmode<1>" field. It
can have the following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in the "cmode<2:1>" field. It
can have the following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in the "cmode<0>" field. It can
have the following values:

8 when cmode<0> = 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3082
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16 when cmode<0> = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd, datasize];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd, datasize];
 result = operand AND NOT(imm);

 V[rd, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3083
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.207 MUL (by element)

Multiply (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register
by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the vector
to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

0 Q 0 0 1 1 1 1 size L M Rm 1 0 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3084
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) product;

 element2 = UInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 Elem[result, e, esize] = product;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3085
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.208 MUL (vector)

Multiply (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if U == '1' && size != '00' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean poly = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3086
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if poly then
 product = PolynomialMult(element1, element2)<esize-1:0>;
 else
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 Elem[result, e, esize] = product;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3087
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.209 MVN

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the
inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the NOT instruction. This means that:

• The encodings in this description are named to match the encodings of NOT.

• The description of NOT gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

Encoding

MVN <Vd>.<T>, <Vn>.<T>

 is equivalent to

NOT <Vd>.<T>, <Vn>.<T>

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of NOT gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3088
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.210 MVNI

Move inverted Immediate (vector). This instruction places the inverse of an immediate constant into every vector
element of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

16-bit shifted immediate variant

Applies when cmode == 10x0.

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate variant

Applies when cmode == 0xx0.

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones variant

Applies when cmode == 110x.

MVNI <Vd>.<T>, #<imm8>, MSL #<amount>

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 constant integer datasize = 64 << UInt(Q);
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3089
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in the "cmode<1>" field. It
can have the following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in the "cmode<2:1>" field. It
can have the following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in the "cmode<0>" field. It can
have the following values:

8 when cmode<0> = 0

16 when cmode<0> = 1

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd, datasize];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd, datasize];
 result = operand AND NOT(imm);

 V[rd, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3090
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3091
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.211 NEG (vector)

Negate (vector). This instruction reads each vector element from the source SIMD&FP register, negates each value,
puts the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

NEG <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

NEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3092
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3093
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.212 NOT

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the
inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MVN. The alias is always the preferred disassembly.

Encoding

NOT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = NOT(element);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3094
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3095
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.213 ORN (vector)

Bitwise inclusive OR NOT (vector). This instruction performs a bitwise OR NOT between the two source
SIMD&FP registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ORN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 operand2 = NOT(operand2);

 result = operand1 OR operand2;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 Q 0 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3096
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3097
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.214 ORR (vector, immediate)

Bitwise inclusive OR (vector, immediate). This instruction reads each vector element from the destination
SIMD&FP register, performs a bitwise OR between each result and an immediate constant, places the result into a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

16-bit variant

Applies when cmode == 10x1.

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit variant

Applies when cmode == 0xx1.

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

Decode for all variants of this encoding

 integer rd = UInt(Rd);

 constant integer datasize = 64 << UInt(Q);
 bits(datasize) imm;
 bits(64) imm64;

 ImmediateOp operation;
 case cmode:op of
 when '0xx00' operation = ImmediateOp_MOVI;
 when '0xx10' operation = ImmediateOp_ORR;
 when '10x00' operation = ImmediateOp_MOVI;
 when '10x10' operation = ImmediateOp_ORR;
 when '110x0' operation = ImmediateOp_MOVI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11110' operation = ImmediateOp_MOVI;
 imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
 imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

2S when Q = 0

4S when Q = 1

0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 0

op cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3098
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in the "cmode<1>" field. It can have the
following values:

0 when cmode<1> = 0

8 when cmode<1> = 1

 defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the
following values:

0 when cmode<2:1> = 00

8 when cmode<2:1> = 01

16 when cmode<2:1> = 10

24 when cmode<2:1> = 11

 defaulting to 0 if LSL is omitted.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand;
 bits(datasize) result;

 case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd, datasize];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd, datasize];
 result = operand AND NOT(imm);

 V[rd, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3099
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.215 ORR (vector, register)

Bitwise inclusive OR (vector, register). This instruction performs a bitwise OR between the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (vector). See Alias conditions for details of when each alias is preferred.

Encoding

ORR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer datasize = 64 << UInt(Q);

Alias conditions

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 result = operand1 OR operand2;

 V[d, datasize] = result;

Alias is preferred when

MOV (vector) Rm == Rn

0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3100
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3101
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.216 PMUL

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

PMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if U == '1' && size != '00' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean poly = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 1x, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) product;

 for e = 0 to elements-1

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3102
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if poly then
 product = PolynomialMult(element1, element2)<esize-1:0>;
 else
 product = (UInt(element1)*UInt(element2))<esize-1:0>;
 Elem[result, e, esize] = product;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3103
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.217 PMULL, PMULL2

Polynomial Multiply Long. This instruction multiplies corresponding elements in the lower or upper half of the
vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

For information about multiplying polynomials, see Polynomial arithmetic over {0, 1}.

The PMULL instruction extracts each source vector from the lower half of each source register. The PMULL2 instruction
extracts each source vector from the upper half of each source register.

The PMULL and PMULL2 variants that operate on 64-bit source elements are defined only when FEAT_PMULL is
implemented.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

PMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '01' || size == '10' then UNDEFINED;
 if size == '11' && !IsFeatureImplemented(FEAT_PMULL) then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

1Q when size = 11

The following encodings are reserved:

• size = 01.

• size = 10.

The '1Q' arrangement is only allocated in an implementation that includes the Cryptographic
Extension, and is otherwise RESERVED.

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3104
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

1D when size = 11, Q = 0

2D when size = 11, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 10, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, 2*esize] = PolynomialMult(element1, element2);

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3105
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.218 RADDHN, RADDHN2

Rounding Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP
register to the corresponding vector element in the second source SIMD&FP register, places the most significant
half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.

The results are rounded. For truncated results, see ADDHN, ADDHN2.

The RADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3106
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(2*datasize) operand2 = V[m, 2*datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, 2*esize]);
 element2 = UInt(Elem[operand2, e, 2*esize]);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = RShr(sum, esize, round);
 Elem[result, e, esize] = sum<esize-1:0>;

 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3107
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.219 RAX1

Rotate and Exclusive-OR rotates each 64-bit element of the 128-bit vector in a source SIMD&FP register left by 1,
performs a bitwise exclusive-OR of the resulting 128-bit vector and the vector in another source SIMD&FP register,
and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

RAX1 <Vd>.2D, <Vn>.2D, <Vm>.2D

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 V[d, 128] = Vn EOR (ROL(Vm<127:64>, 1):ROL(Vm<63:0>, 1));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3108
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.220 RBIT (vector)

Reverse Bit order (vector). This instruction reads each vector element from the source SIMD&FP register, reverses
the bits of the element, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RBIT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(esize) element;
 bits(esize) rev;

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 for i = 0 to esize-1
 rev<(esize-1)-i> = element<i>;
 Elem[result, e, esize] = rev;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

0 Q 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3109
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3110
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.221 REV16 (vector)

Reverse elements in 16-bit halfwords (vector). This instruction reverses the order of 8-bit elements in each halfword
of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination
SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

REV16 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);

 constant integer csize = 64 >> UInt(o0:U);
 if csize <= esize then UNDEFINED;

 integer containers = datasize DIV csize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

The following encodings are reserved:

• size = 01, Q = x.

• size = 1x, Q = x.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 for c = 0 to containers-1
 bits(csize) container = Elem[operand, c, csize];
 Elem[result, c, csize] = Reverse(container, esize);

 V[d, datasize] = result;

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3111
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3112
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.222 REV32 (vector)

Reverse elements in 32-bit words (vector). This instruction reverses the order of 8-bit or 16-bit elements in each
word of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

REV32 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);

 constant integer csize = 64 >> UInt(o0:U);
 if csize <= esize then UNDEFINED;

 integer containers = datasize DIV csize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

The encoding size = 1x, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 for c = 0 to containers-1
 bits(csize) container = Elem[operand, c, csize];
 Elem[result, c, csize] = Reverse(container, esize);

 V[d, datasize] = result;

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3113
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3114
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.223 REV64

Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or 32-bit
elements in each doubleword of the vector in the source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

REV64 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);

 constant integer csize = 64 >> UInt(o0:U);
 if csize <= esize then UNDEFINED;

 integer containers = datasize DIV csize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 for c = 0 to containers-1
 bits(csize) container = Elem[operand, c, csize];
 Elem[result, c, csize] = Reverse(container, esize);

 V[d, datasize] = result;

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3115
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3116
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.224 RSHRN, RSHRN2

Rounding Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the vector in
the source SIMD&FP register, right shifts each result by an immediate value, writes the final result to a vector, and
writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements
are half as long as the source vector elements. The results are rounded. For truncated results, see SHRN, SHRN2.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3117
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in the
"immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;

 for e = 0 to elements-1
 element = RShr(UInt(Elem[operand, e, 2*esize]), shift, round);
 Elem[result, e, esize] = element<esize-1:0>;

 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3118
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.225 RSUBHN, RSUBHN2

Rounding Subtract returning High Narrow. This instruction subtracts each vector element of the second source
SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the most
significant half of the result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register.

The results are rounded. For truncated results, see SUBHN, SUBHN2.

The RSUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

RSUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3119
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(2*datasize) operand2 = V[m, 2*datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, 2*esize]);
 element2 = UInt(Elem[operand2, e, 2*esize]);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = RShr(sum, esize, round);
 Elem[result, e, esize] = sum<esize-1:0>;

 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3120
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.226 SABA

Signed Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second
source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates
the absolute values of the results into the elements of the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3121
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3122
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.227 SABAL, SABAL2

Signed Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or
upper half of the second source SIMD&FP register from the corresponding vector elements of the first source
SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SABAL instruction extracts each source vector from the lower half of each source register. The SABAL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3123
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d, 2*datasize] else Zeros(2 * datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3124
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.228 SABD

Signed Absolute Difference. This instruction subtracts the elements of the vector of the second source SIMD&FP
register from the corresponding elements of the first source SIMD&FP register, places the absolute values of the
results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3125
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3126
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.229 SABDL, SABDL2

Signed Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper half of the
second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register,
places the absolute value of the results into a vector, and writes the vector to the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements.

The SABDL instruction extracts each source vector from the lower half of each source register. The SABDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3127
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d, 2*datasize] else Zeros(2 * datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3128
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.230 SADALP

Signed Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent signed integer values from the
vector in the source SIMD&FP register and accumulates the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADALP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3129
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d, datasize];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3130
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.231 SADDL, SADDL2

Signed Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source
SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the results
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice
as long as the source vector elements. All the values in this instruction are signed integer values.

The SADDL instruction extracts each source vector from the lower half of each source register. The SADDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3131
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3132
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.232 SADDLP

Signed Add Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the
source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.
The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDLP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3133
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d, datasize];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3134
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.233 SADDLV

Signed Add Long across Vector. This instruction adds every vector element in the source SIMD&FP register
together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as
the source vector elements. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDLV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3135
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 integer sum;

 sum = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 sum = sum + Int(Elem[operand, e, esize], unsigned);

 V[d, 2*esize] = sum<2*esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3136
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.234 SADDW, SADDW2

Signed Add Wide. This instruction adds vector elements of the first source SIMD&FP register to the corresponding
vector elements in the lower or upper half of the second source SIMD&FP register, places the results in a vector,
and writes the vector to the SIMD&FP destination register.

The SADDW instruction extracts the second source vector from the lower half of the second source register. The SADDW2
instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3137
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3138
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.235 SCVTF (vector, fixed-point)

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from
fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SCVTF <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR);

Vector

Encoding

SCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 0 1 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3139
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3140
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3141
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.236 SCVTF (vector, integer)

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector from signed
integer to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

SCVTF <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

SCVTF <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3142
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

SCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

SCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3143
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 FPRounding rounding = FPRoundingMode(FPCR);
 bits(esize) element;
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3144
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.237 SCVTF (scalar, fixed-point)

Signed fixed-point Convert to Floating-point (scalar). This instruction converts the signed value in the 32-bit or
64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the
FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

SCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

SCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

SCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

SCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

SCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

SCVTF <Dd>, <Xn>, #<fbits>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = 8 << UInt(ftype EOR '10');

sf 0 0 1 1 1 1 0 ftype 0 0 0 0 1 0 scale Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3145
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding;

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as
64 minus "scale".

For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as
64 minus "scale".

Operation

 CheckFPEnabled64();

 constant boolean merge = IsMerging(FPCR);
 constant integer fltsize = if merge then 128 else decode_fltsize;
 bits(fltsize) fltval;
 bits(intsize) intval;

 intval = X[n, intsize];
 fltval = if merge then V[d, fltsize] else Zeros(fltsize);
 Elem[fltval, 0, decode_fltsize] = FixedToFP(intval, fracbits, FALSE, FPCR, rounding, decode_fltsize);
 V[d, fltsize] = fltval;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3146
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.238 SCVTF (scalar, integer)

Signed integer Convert to Floating-point (scalar). This instruction converts the signed integer value in the
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

SCVTF <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

SCVTF <Sd>, <Wn>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

SCVTF <Dd>, <Wn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

SCVTF <Hd>, <Xn>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

SCVTF <Sd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

SCVTF <Dd>, <Xn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 1 0 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3147
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 constant boolean merge = IsMerging(FPCR);
 constant integer fltsize = if merge then 128 else decode_fltsize;
 bits(fltsize) fltval;
 bits(intsize) intval;

 intval = X[n, intsize];
 fltval = if merge then V[d, fltsize] else Zeros(fltsize);
 Elem[fltval, 0, decode_fltsize] = FixedToFP(intval, 0, FALSE, FPCR, rounding, decode_fltsize);
 V[d, fltsize] = fltval;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3148
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.239 SDOT (by element)

Dot Product signed arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer index = UInt(H:L);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

0 Q 0 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3149
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> Is the element index, encoded in the "H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(128) operand2 = V[m, 128];
 bits(datasize) result = V[d, datasize];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3150
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.240 SDOT (vector)

Dot Product signed arithmetic (vector). This instruction performs the dot product of the four signed 8-bit elements
in each 32-bit element of the first source register with the four signed 8-bit elements of the corresponding 32-bit
element in the second source register, accumulating the result into the corresponding 32-bit element of the
destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 0 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3151
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 result = V[d, datasize];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3152
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.241 SHA1C

SHA1 hash update (choose).

Advanced SIMD

(FEAT_SHA1)

Encoding

SHA1C <Qd>, <Sn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) x = V[d, 128];
 bits(32) y = V[n, 32]; // Note: 32 not 128 bits wide
 bits(128) w = V[m, 128];
 bits(32) t;

 for e = 0 to 3
 t = SHAchoose(x<63:32>, x<95:64>, x<127:96>);
 y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
 x<63:32> = ROL(x<63:32>, 30);
 <y, x> = ROL(y:x, 32);
 V[d, 128] = x;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3153
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.242 SHA1H

SHA1 fixed rotate.

Advanced SIMD

(FEAT_SHA1)

Encoding

SHA1H <Sd>, <Sn>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;

Assembler symbols

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(32) operand = V[n, 32]; // read element [0] only, [1-3] zeroed
 V[d, 32] = ROL(operand, 30);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3154
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.243 SHA1M

SHA1 hash update (majority).

Advanced SIMD

(FEAT_SHA1)

Encoding

SHA1M <Qd>, <Sn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) x = V[d, 128];
 bits(32) y = V[n, 32]; // Note: 32 not 128 bits wide
 bits(128) w = V[m, 128];
 bits(32) t;

 for e = 0 to 3
 t = SHAmajority(x<63:32>, x<95:64>, x<127:96>);
 y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
 x<63:32> = ROL(x<63:32>, 30);
 <y, x> = ROL(y:x, 32);
 V[d, 128] = x;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3155
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.244 SHA1P

SHA1 hash update (parity).

Advanced SIMD

(FEAT_SHA1)

Encoding

SHA1P <Qd>, <Sn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) x = V[d, 128];
 bits(32) y = V[n, 32]; // Note: 32 not 128 bits wide
 bits(128) w = V[m, 128];
 bits(32) t;

 for e = 0 to 3
 t = SHAparity(x<63:32>, x<95:64>, x<127:96>);
 y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
 x<63:32> = ROL(x<63:32>, 30);
 <y, x> = ROL(y:x, 32);
 V[d, 128] = x;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3156
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.245 SHA1SU0

SHA1 schedule update 0.

Advanced SIMD

(FEAT_SHA1)

Encoding

SHA1SU0 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d, 128];
 bits(128) operand2 = V[n, 128];
 bits(128) operand3 = V[m, 128];
 bits(128) result;

 result = operand2<63:0>:operand1<127:64>;
 result = result EOR operand1 EOR operand3;
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3157
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.246 SHA1SU1

SHA1 schedule update 1.

Advanced SIMD

(FEAT_SHA1)

Encoding

SHA1SU1 <Vd>.4S, <Vn>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d, 128];
 bits(128) operand2 = V[n, 128];
 bits(128) result;
 bits(128) T = operand1 EOR LSR(operand2, 32);
 result<31:0> = ROL(T<31:0>, 1);
 result<63:32> = ROL(T<63:32>, 1);
 result<95:64> = ROL(T<95:64>, 1);
 result<127:96> = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3158
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.247 SHA256H2

SHA256 hash update (part 2).

Advanced SIMD

(FEAT_SHA256)

Encoding

SHA256H2 <Qd>, <Qn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) result;
 result = SHA256hash(V[n, 128], V[d, 128], V[m, 128], FALSE);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

P

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3159
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.248 SHA256H

SHA256 hash update (part 1).

Advanced SIMD

(FEAT_SHA256)

Encoding

SHA256H <Qd>, <Qn>, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) result;
 result = SHA256hash(V[d, 128], V[n, 128], V[m, 128], TRUE);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

P

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3160
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.249 SHA256SU0

SHA256 schedule update 0.

Advanced SIMD

(FEAT_SHA256)

Encoding

SHA256SU0 <Vd>.4S, <Vn>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d, 128];
 bits(128) operand2 = V[n, 128];
 bits(128) result;
 bits(128) T = operand2<31:0>:operand1<127:32>;
 bits(32) elt;

 for e = 0 to 3
 elt = Elem[T, e, 32];
 elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
 Elem[result, e, 32] = elt + Elem[operand1, e, 32];
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3161
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.250 SHA256SU1

SHA256 schedule update 1.

Advanced SIMD

(FEAT_SHA256)

Encoding

SHA256SU1 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) operand1 = V[d, 128];
 bits(128) operand2 = V[n, 128];
 bits(128) operand3 = V[m, 128];
 bits(128) result;
 bits(128) T0 = operand3<31:0>:operand2<127:32>;
 bits(64) T1;
 bits(32) elt;

 T1 = operand3<127:64>;
 for e = 0 to 1
 elt = Elem[T1, e, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 T1 = result<63:0>;
 for e = 2 to 3
 elt = Elem[T1, e-2, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 V[d, 128] = result;

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3162
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3163
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.251 SHA512H

SHA512 Hash update part 1 takes the values from the three 128-bit source SIMD&FP registers and produces a
128-bit output value that combines the sigma1 and chi functions of two iterations of the SHA512 computation. It
returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512H <Qd>, <Qn>, <Vm>.2D

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA512) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vtmp;
 bits(64) MSigma1;
 bits(64) tmp;
 bits(128) x = V[n, 128];
 bits(128) y = V[m, 128];
 bits(128) w = V[d, 128];

 MSigma1 = ROR(y<127:64>, 14) EOR ROR(y<127:64>, 18) EOR ROR(y<127:64>, 41);
 Vtmp<127:64> = (y<127:64> AND x<63:0>) EOR (NOT(y<127:64>) AND x<127:64>);
 Vtmp<127:64> = (Vtmp<127:64> + MSigma1 + w<127:64>);
 tmp = Vtmp<127:64> + y<63:0>;
 MSigma1 = ROR(tmp, 14) EOR ROR(tmp, 18) EOR ROR(tmp, 41);
 Vtmp<63:0> = (tmp AND y<127:64>) EOR (NOT(tmp) AND x<63:0>);
 Vtmp<63:0> = (Vtmp<63:0> + MSigma1 + w<63:0>);
 V[d, 128] = Vtmp;

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3164
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3165
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.252 SHA512H2

SHA512 Hash update part 2 takes the values from the three 128-bit source SIMD&FP registers and produces a
128-bit output value that combines the sigma0 and majority functions of two iterations of the SHA512 computation.
It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512H2 <Qd>, <Qn>, <Vm>.2D

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA512) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vtmp;
 bits(64) NSigma0;
 bits(128) x = V[n, 128];
 bits(128) y = V[m, 128];
 bits(128) w = V[d, 128];

 NSigma0 = ROR(y<63:0>, 28) EOR ROR(y<63:0>, 34) EOR ROR(y<63:0>, 39);
 Vtmp<127:64> = (x<63:0> AND y<127:64>) EOR (x<63:0> AND y<63:0>) EOR (y<127:64> AND y<63:0>);
 Vtmp<127:64> = (Vtmp<127:64> + NSigma0 + w<127:64>);
 NSigma0 = ROR(Vtmp<127:64>, 28) EOR ROR(Vtmp<127:64>, 34) EOR ROR(Vtmp<127:64>, 39);
 Vtmp<63:0> = ((Vtmp<127:64> AND y<63:0>) EOR (Vtmp<127:64> AND y<127:64>) EOR (y<127:64> AND y<63:0>));
 Vtmp<63:0> = (Vtmp<63:0> + NSigma0 + w<63:0>);

 V[d, 128] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3166
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3167
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.253 SHA512SU0

SHA512 Schedule Update 0 takes the values from the two 128-bit source SIMD&FP registers and produces a
128-bit output value that combines the gamma0 functions of two iterations of the SHA512 schedule update that are
performed after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512SU0 <Vd>.2D, <Vn>.2D

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA512) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(64) sig0;
 bits(128) Vtmp;
 bits(128) x = V[n, 128];
 bits(128) w = V[d, 128];
 sig0 = ROR(w<127:64>, 1) EOR ROR(w<127:64>, 8) EOR ('0000000':w<127:71>);
 Vtmp<63:0> = w<63:0> + sig0;
 sig0 = ROR(x<63:0>, 1) EOR ROR(x<63:0>, 8) EOR ('0000000':x<63:7>);
 Vtmp<127:64> = w<127:64> + sig0;
 V[d, 128] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3168
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.254 SHA512SU1

SHA512 Schedule Update 1 takes the values from the three source SIMD&FP registers and produces a 128-bit
output value that combines the gamma1 functions of two iterations of the SHA512 schedule update that are
performed after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD

(FEAT_SHA512)

Encoding

SHA512SU1 <Vd>.2D, <Vn>.2D, <Vm>.2D

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA512) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(64) sig1;
 bits(128) Vtmp;
 bits(128) x = V[n, 128];
 bits(128) y = V[m, 128];
 bits(128) w = V[d, 128];

 sig1 = ROR(x<127:64>, 19) EOR ROR(x<127:64>, 61) EOR ('000000':x<127:70>);
 Vtmp<127:64> = w<127:64> + sig1 + y<127:64>;
 sig1 = ROR(x<63:0>, 19) EOR ROR(x<63:0>, 61) EOR ('000000':x<63:6>);
 Vtmp<63:0> = w<63:0> + sig1 + y<63:0>;
 V[d, 128] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3169
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3170
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.255 SHADD

Signed Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP
registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination
SIMD&FP register.

The results are truncated. For rounded results, see SRHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3171
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = (element1 + element2) >> 1;
 Elem[result, e, esize] = sum<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3172
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.256 SHL

Shift Left (immediate). This instruction reads each value from a vector, left shifts each result by an immediate value,
writes the final result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SHL <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

Vector

Encoding

SHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

0 1 0 1 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3173
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in the "immh:immb"
field. It can have the following values:

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = LSL(Elem[operand, e, esize], shift);

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3174
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3175
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.257 SHLL, SHLL2

Shift Left Long (by element size). This instruction reads each vector element in the lower or upper half of the source
SIMD&FP register, left shifts each result by the element size, writes the final result to a vector, and writes the vector
to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector
elements.

The SHLL instruction extracts vector elements from the lower half of the source register. The SHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = esize;
 boolean unsigned = FALSE; // Or TRUE without change of functionality

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3176
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<shift> Is the left shift amount, which must be equal to the source element width in bits, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part, datasize];
 bits(2*datasize) result;
 integer element;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3177
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.258 SHRN, SHRN2

Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the source SIMD&FP
register, right shifts each result by an immediate value, puts the final result into a vector, and writes the vector to the
lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the
source vector elements. The results are truncated. For rounded results, see RSHRN, RSHRN2.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3178
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in the
"immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;

 for e = 0 to elements-1
 element = RShr(UInt(Elem[operand, e, 2*esize]), shift, round);
 Elem[result, e, esize] = element<esize-1:0>;

 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3179
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.259 SHSUB

Signed Halving Subtract. This instruction subtracts the elements in the vector in the second source SIMD&FP
register from the corresponding elements in the vector in the first source SIMD&FP register, shifts each result right
one bit, places each result into elements of a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;

 for e = 0 to elements-1

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3180
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = (element1 - element2) >> 1;
 Elem[result, e, esize] = diff<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3181
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.260 SLI

Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, left
shifts each vector element by an immediate value, and inserts the result into the corresponding vector element in the
destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their
existing value. Bits shifted out of the left of each vector element in the source register are lost.

The following figure shows the operation of shift left by 3 for an 8-bit vector element.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SLI <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

Vector

Encoding

SLI <Vd>.<T>, <Vn>.<T>, #<shift>

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]

63 56 55 0

63 56 55 0

63 56 55 0

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3182
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in the "immh:immb"
field. It can have the following values:

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2 = V[d, datasize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3183
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(datasize) result;
 bits(esize) mask = LSL(Ones(esize), shift);
 bits(esize) shifted;

 for e = 0 to elements-1
 shifted = LSL(Elem[operand, e, esize], shift);
 Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3184
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.261 SM3PARTW1

SM3PARTW1 takes three 128-bit vectors from the three source SIMD&FP registers and returns a 128-bit result in
the destination SIMD&FP register. The result is obtained by a three-way exclusive-OR of the elements within the
input vectors with some fixed rotations, see the Operation pseudocode for more information.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3PARTW1 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Vd = V[d, 128];
 bits(128) result;

 result<95:0> = (Vd EOR Vn)<95:0> EOR (ROL(Vm<127:96>, 15):ROL(Vm<95:64>, 15):ROL(Vm<63:32>, 15));

 for i = 0 to 3
 if i == 3 then
 result<127:96> = (Vd EOR Vn)<127:96> EOR (ROL(result<31:0>, 15));
 result<(32*i)+31:(32*i)> = (result<(32*i)+31:(32*i)> EOR ROL(result<(32*i)+31:(32*i)>, 15) EOR
ROL(result<(32*i)+31:(32*i)>, 23));
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3185
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3186
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.262 SM3PARTW2

SM3PARTW2 takes three 128-bit vectors from three source SIMD&FP registers and returns a 128-bit result in the
destination SIMD&FP register. The result is obtained by a three-way exclusive-OR of the elements within the input
vectors with some fixed rotations, see the Operation pseudocode for more information.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3PARTW2 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Vd = V[d, 128];
 bits(128) result;
 bits(128) tmp;
 bits(32) tmp2;
 tmp<127:0> = Vn EOR (ROL(Vm<127:96>, 7):ROL(Vm<95:64>, 7):ROL(Vm<63:32>, 7):ROL(Vm<31:0>, 7));
 result<127:0> = Vd<127:0> EOR tmp<127:0>;
 tmp2 = ROL(tmp<31:0>, 15);
 tmp2 = tmp2 EOR ROL(tmp2, 15) EOR ROL(tmp2, 23);
 result<127:96> = result<127:96> EOR tmp2;
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3187
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3188
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.263 SM3SS1

SM3SS1 rotates the top 32 bits of the 128-bit vector in the first source SIMD&FP register by 12, and adds that 32-bit
value to the two other 32-bit values held in the top 32 bits of each of the 128-bit vectors in the second and third
source SIMD&FP registers, rotating this result left by 7 and writing the final result into the top 32 bits of the vector
in the destination SIMD&FP register, with the bottom 96 bits of the vector being written to 0.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3SS1 <Vd>.4S, <Vn>.4S, <Vm>.4S, <Va>.4S

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer a = UInt(Ra);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Va = V[a, 128];
 bits(128) result;
 result<127:96> = ROL((ROL(Vn<127:96>, 12) + Vm<127:96> + Va<127:96>), 7);
 result<95:0> = Zeros(96);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 0 1 0 Rm 0 Ra Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3189
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3190
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.264 SM3TT1A

SM3TT1A takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value,
and returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive-OR of the three
32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the
following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive-OR.

• The result of the exclusive-OR of the top 32-bit element of the second source vector, Vn, with a rotation left
by 12 of the top 32-bit element of the first source vector.

• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from
elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT1A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Vd = V[d, 128];
 bits(32) WjPrime;
 bits(128) result;
 bits(32) TT1;
 bits(32) SS2;

 WjPrime = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3191
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
 TT1 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
 TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 9);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT1;
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3192
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.265 SM3TT1B

SM3TT1B takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the
three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and
the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.

• The result of the exclusive-OR of the top 32-bit element of the second source vector, Vn, with a rotation left
by 12 of the top 32-bit element of the first source vector.

• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from
elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT1B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Vd = V[d, 128];
 bits(32) WjPrime;
 bits(128) result;
 bits(32) TT1;
 bits(32) SS2;

 WjPrime = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3193
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
 TT1 = (Vd<127:96> AND Vd<63:32>) OR (Vd<127:96> AND Vd<95:64>) OR (Vd<63:32> AND Vd<95:64>);
 TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 9);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT1;
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3194
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.266 SM3TT2A

SM3TT2A takes three 128-bit vectors from three source SIMD&FP register and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive-OR of the three
32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the
following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive-OR.

• The 32-bit element held in the top 32 bits of the second source vector, Vn.

• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive-OR is performed of the result of this addition, the result of the addition rotated left by 9, and
the result of the addition rotated left by 17. The result of this exclusive-OR is returned as the top element of the
returned result. The other elements of this result are taken from elements of the first source vector, with the element
returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Vd = V[d, 128];
 bits(32) Wj;
 bits(128) result;
 bits(32) TT2;

 Wj = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3195
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 TT2 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
 TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 19);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3196
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.267 SM3TT2B

SM3TT2B takes three 128-bit vectors from three source SIMD&FP registers, and a 2-bit immediate index value,
and returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the
three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and
the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.

• The 32-bit element held in the top 32 bits of the second source vector, Vn.

• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive-OR is performed of the result of this addition, the result of the addition rotated left by 9, and
the result of the addition rotated left by 17. The result of this exclusive-OR is returned as the top element of the
returned result. The other elements of this result are taken from elements of the first source vector, with the element
returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD

(FEAT_SM3)

Encoding

SM3TT2B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer i = UInt(imm2);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) Vd = V[d, 128];
 bits(32) Wj;
 bits(128) result;
 bits(32) TT2;

 Wj = Elem[Vm, i, 32];

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3197
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 TT2 = (Vd<127:96> AND Vd<95:64>) OR (NOT(Vd<127:96>) AND Vd<63:32>);
 TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

 result<31:0> = Vd<63:32>;
 result<63:32> = ROL(Vd<95:64>, 19);
 result<95:64> = Vd<127:96>;
 result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3198
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.268 SM4E

SM4 Encode takes input data as a 128-bit vector from the first source SIMD&FP register, and four iterations of the
round key held as the elements of the 128-bit vector in the second source SIMD&FP register. It encrypts the data
by four rounds, in accordance with the SM4 standard, returning the 128-bit result to the destination SIMD&FP
register.

This instruction is implemented only when FEAT_SM4 is implemented.

Advanced SIMD

(FEAT_SM4)

Encoding

SM4E <Vd>.4S, <Vn>.4S

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM4) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vn = V[n, 128];
 bits(32) intval;
 bits(128) roundresult;
 bits(32) roundkey;

 roundresult = V[d, 128];
 for index = 0 to 3
 roundkey = Elem[Vn, index, 32];

 intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR roundkey;

 for i = 0 to 3
 Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

 intval = intval EOR ROL(intval, 2) EOR ROL(intval, 10) EOR ROL(intval, 18) EOR ROL(intval, 24);
 intval = intval EOR roundresult<31:0>;

 roundresult<31:0> = roundresult<63:32>;
 roundresult<63:32> = roundresult<95:64>;
 roundresult<95:64> = roundresult<127:96>;
 roundresult<127:96> = intval;

 V[d, 128] = roundresult;

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3199
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3200
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.269 SM4EKEY

SM4 Key takes an input as a 128-bit vector from the first source SIMD&FP register and a 128-bit constant from the
second SIMD&FP register. It derives four iterations of the output key, in accordance with the SM4 standard,
returning the 128-bit result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SM4 is implemented.

Advanced SIMD

(FEAT_SM4)

Encoding

SM4EKEY <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SM4) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(32) intval;
 bits(32) const;
 bits(128) roundresult;

 roundresult = V[n, 128];
 for index = 0 to 3
 const = Elem[Vm, index, 32];

 intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR const;

 for i = 0 to 3
 Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

 intval = intval EOR ROL(intval, 13) EOR ROL(intval, 23);
 intval = intval EOR roundresult<31:0>;

 roundresult<31:0> = roundresult<63:32>;
 roundresult<63:32> = roundresult<95:64>;
 roundresult<95:64> = roundresult<127:96>;
 roundresult<127:96> = intval;

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3201
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d, 128] = roundresult;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3202
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.270 SMAX

Signed Maximum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the larger of each pair of signed integer values into a vector, and writes the vector to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3203
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3204
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.271 SMAXP

Signed Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the largest of each pair of signed integer values into
a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3205
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3206
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.272 SMAXV

Signed Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction
are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3207
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d, esize] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3208
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.273 SMIN

Signed Minimum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the smaller of each of the two signed integer values into a vector, and writes the vector
to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3209
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3210
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.274 SMINP

Signed Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the smallest of each pair of signed integer values into
a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3211
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3212
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.275 SMINV

Signed Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMINV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3213
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d, esize] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3214
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.276 SMLAL, SMLAL2 (by element)

Signed Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element in the second source SIMD&FP
register, and accumulates the results with the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied. All the values in this instruction are signed
integer values.

The SMLAL instruction extracts vector elements from the lower half of the first source register. The SMLAL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3215
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3216
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3217
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.277 SMLAL, SMLAL2 (vector)

Signed Multiply-Add Long (vector). This instruction multiplies corresponding signed integer values in the lower or
upper half of the vectors of the two source SIMD&FP registers, and accumulates the results with the vector elements
of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are
multiplied.

The SMLAL instruction extracts each source vector from the lower half of each source register. The SMLAL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3218
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3219
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.278 SMLSL, SMLSL2 (by element)

Signed Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts vector elements from the lower half of the first source register. The SMLSL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3220
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3221
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3222
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.279 SMLSL, SMLSL2 (vector)

Signed Multiply-Subtract Long (vector). This instruction multiplies corresponding signed integer values in the
lower or upper half of the vectors of the two source SIMD&FP registers, and subtracts the results from the vector
elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements
that are multiplied.

The SMLSL instruction extracts each source vector from the lower half of each source register. The SMLSL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3223
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3224
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.280 SMMLA (vector)

Signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of signed 8-bit integer
values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

SMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

 if !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n, 128];
 bits(128) operand2 = V[m, 128];
 bits(128) addend = V[d, 128];

 V[d, 128] = MatMulAdd(addend, operand1, operand2, FALSE, FALSE);

Operational information

Arm expects that the SMMLA (vector) instruction will deliver a peak integer multiply throughput that is at least as
high as can be achieved using two SDOT (vector) instructions, with a goal that it should have significantly higher
throughput.

0 1 0 0 1 1 1 0 1 0 0 Rm 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3225
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.281 SMOV

Signed Move vector element to general-purpose register. This instruction reads the signed integer from the source
SIMD&FP register, sign-extends it to form a 32-bit or 64-bit value, and writes the result to destination
general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when Q == 0.

SMOV <Wd>, <Vn>.<Ts>[<index>]

64-bit variant

Applies when Q == 1.

SMOV <Xd>, <Vn>.<Ts>[<index>]

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer size = LowestSetBit(imm5);
 if size > 2 then UNDEFINED;
 constant integer esize = 8 << size;
 constant integer datasize = 32 << UInt(Q);
 if datasize <= esize then UNDEFINED;
 constant integer index = UInt(imm5<4:size+1>);
 constant integer idxdsize = 64 << UInt(imm5<4>);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

The encoding imm5 = xxx00 is reserved.

For the 64-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

The encoding imm5 = xx000 is reserved.

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3226
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> For the 32-bit variant: is the element index encoded in the "imm5" field. It can have the following
values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

The encoding imm5 = xxx00 is reserved.

For the 64-bit variant: is the element index encoded in the "imm5" field. It can have the following
values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

The encoding imm5 = xx000 is reserved.

Operation

 if index == 0 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n, idxdsize];

 X[d, datasize] = SignExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3227
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.282 SMULL, SMULL2 (by element)

Signed Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper
half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register,
places the result in a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts vector elements from the lower half of the first source register. The SMULL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3228
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = product;

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3229
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3230
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.283 SMULL, SMULL2 (vector)

Signed Multiply Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper
half of the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the
destination SIMD&FP register.

The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts each source vector from the lower half of each source register. The SMULL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3231
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3232
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.284 SQABS

Signed saturating Absolute value. This instruction reads each vector element from the source SIMD&FP register,
puts the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. All the
values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQABS <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

SQABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3233
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 (Elem[result, e, esize], sat) = SignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3234
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.285 SQADD

Signed saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP
registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQADD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

SQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

0 1 0 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3235
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 (Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3236
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.286 SQDMLAL, SQDMLAL2 (by element)

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, and accumulates the final results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLAL instruction extracts vector elements from the lower half of the first source register. The SQDMLAL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o2 == '1');

Vector

Encoding

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

0 1 0 1 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3237
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3238
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3239
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3240
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.287 SQDMLAL, SQDMLAL2 (vector)

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer values in
the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and accumulates
the final results with the vector elements of the destination SIMD&FP register. The destination vector elements are
twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLAL instruction extracts each source vector from the lower half of each source register. The SQDMLAL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLAL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o1 == '1');

Vector

Encoding

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3241
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3242
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3243
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.288 SQDMLSL, SQDMLSL2 (by element)

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector element
in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, and subtracts the final results from the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the
values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLSL instruction extracts vector elements from the lower half of the first source register. The SQDMLSL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLSL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o2 == '1');

Vector

Encoding

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

0 1 0 1 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2

0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3244
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3245
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3246
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3247
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.289 SQDMLSL, SQDMLSL2 (vector)

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed integer
values in the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and
subtracts the final results from the vector elements of the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMLSL instruction extracts each source vector from the lower half of each source register. The SQDMLSL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMLSL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 boolean sub_op = (o1 == '1');

Vector

Encoding

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);

0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3248
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3249
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 integer accum;
 boolean sat1;
 boolean sat2;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
 accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
 (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
 if sat1 || sat2 then FPSR.QC = '1';

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3250
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.290 SQDMULH (by element)

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each vector
element in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register, doubles the results, places the most significant half of the final results into a vector, and writes the vector
to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH (by element).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 boolean round = (op == '1');

Vector

Encoding

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;

0 1 0 1 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op

0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3251
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean round = (op == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3252
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 product = 2 * element1 * element2;
 product = RShr(product, esize, round);
 // The following only saturates if element1 and element2 equal -(2^(esize-1))
 (Elem[result, e, esize], sat) = SignedSatQ(product, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3253
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.291 SQDMULH (vector)

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of corresponding
elements of the two source SIMD&FP registers, doubles the results, places the most significant half of the final
results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH (vector).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULH <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean rounding = (U == '1');

Vector

Encoding

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean rounding = (U == '1');

0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3254
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 product = 2 * element1 * element2;
 product = RShr(product, esize, rounding);
 (Elem[result, e, esize], sat) = SignedSatQ(product, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3255
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3256
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.292 SQDMULL, SQDMULL2 (by element)

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, places the final results in a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMULL instruction extracts the first source vector from the lower half of the first source register. The SQDMULL2
instruction extracts the first source vector from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

Vector

Encoding

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;

0 1 0 1 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3257
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3258
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
 Elem[result, e, 2*esize] = product;
 if sat then FPSR.QC = '1';

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3259
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.293 SQDMULL, SQDMULL2 (vector)

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in the lower
or upper half of the two source SIMD&FP registers, doubles the results, places the final results in a vector, and
writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQDMULL instruction extracts each source vector from the lower half of each source register. The SQDMULL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQDMULL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

Vector

Encoding

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 0 1 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3260
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

S when size = 01

D when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3261
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
 Elem[result, e, 2*esize] = product;
 if sat then FPSR.QC = '1';

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3262
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.294 SQNEG

Signed saturating Negate. This instruction reads each vector element from the source SIMD&FP register, negates
each value, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQNEG <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean neg = (U == '1');

Vector

Encoding

SQNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean neg = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3263
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 (Elem[result, e, esize], sat) = SignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3264
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.295 SQRDMLAH (by element)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most
significant half of the final results with the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLAH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

0 1 1 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3265
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3266
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer element3;
 integer accum;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = (element3 << esize) - 2 * (element1 * element2);
 else
 accum = (element3 << esize) + 2 * (element1 * element2);
 accum = RShr(accum, esize, rounding);
 (Elem[result, e, esize], sat) = SignedSatQ(accum, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3267
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.296 SQRDMLAH (vector)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This instruction
multiplies the vector elements of the first source SIMD&FP register with the corresponding vector elements of the
second source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the
most significant half of the final results with the vector elements of the destination SIMD&FP register. The results
are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLAH <V><d>, <V><n>, <V><m>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3268
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer element3;
 integer accum;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = (element3 << esize) - 2 * (element1 * element2);
 else
 accum = (element3 << esize) + 2 * (element1 * element2);
 accum = RShr(accum, esize, rounding);
 (Elem[result, e, esize], sat) = SignedSatQ(accum, esize);
 if sat then FPSR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3269
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3270
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.297 SQRDMLSH (by element)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most
significant half of the final results from the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLSH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

0 1 1 1 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3271
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3272
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer element3;
 integer accum;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = (element3 << esize) - 2 * (element1 * element2);
 else
 accum = (element3 << esize) + 2 * (element1 * element2);
 accum = RShr(accum, esize, rounding);
 (Elem[result, e, esize], sat) = SignedSatQ(accum, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3273
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.298 SQRDMLSH (vector)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction multiplies
the vector elements of the first source SIMD&FP register with the corresponding vector elements of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most
significant half of the final results from the vector elements of the destination SIMD&FP register. The results are
rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

(FEAT_RDM)

Encoding

SQRDMLSH <V><d>, <V><n>, <V><m>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Vector

(FEAT_RDM)

Encoding

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3274
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean rounding = TRUE;
 boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer element3;
 integer accum;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = (element3 << esize) - 2 * (element1 * element2);
 else
 accum = (element3 << esize) + 2 * (element1 * element2);
 accum = RShr(accum, esize, rounding);
 (Elem[result, e, esize], sat) = SignedSatQ(accum, esize);
 if sat then FPSR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3275
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3276
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.299 SQRDMULH (by element)

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction multiplies each
vector element in the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, places the most significant half of the final results into a vector, and writes
the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH (by element).

If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 boolean round = (op == '1');

Vector

Encoding

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of

0 1 0 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op

0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3277
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean round = (op == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3278
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 element2 = SInt(Elem[operand2, index, esize]);
 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 product = 2 * element1 * element2;
 product = RShr(product, esize, round);
 // The following only saturates if element1 and element2 equal -(2^(esize-1))
 (Elem[result, e, esize], sat) = SignedSatQ(product, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3279
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.300 SQRDMULH (vector)

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the values of
corresponding elements of the two source SIMD&FP registers, doubles the results, places the most significant half
of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH (vector).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRDMULH <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean rounding = (U == '1');

Vector

Encoding

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' || size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean rounding = (U == '1');

0 1 1 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3280
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer product;
 boolean sat;

 for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 product = 2 * element1 * element2;
 product = RShr(product, esize, rounding);
 (Elem[result, e, esize], sat) = SignedSatQ(product, esize);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3281
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3282
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.301 SQRSHL

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first source
SIMD&FP register, shifts it by a value from the least significant byte of the corresponding vector element of the
second source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For
truncated results, see SQSHL (register).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3283
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3284
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.302 SQRSHRN, SQRSHRN2

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that
is half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. All the values in this instruction are signed integer values. The destination vector
elements are half as long as the source vector elements. The results are rounded. For truncated results, see SQSHRN,
SQSHRN2.

The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

SQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";

0 1 0 1 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3285
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3286
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, 2*esize], unsigned), shift, round);
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3287
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.303 SQRSHRUN, SQRSHRUN2

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer
value in the vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the
result to an unsigned integer value that is half the original width, places the final result into a vector, and writes the
vector to the destination SIMD&FP register. The results are rounded. For truncated results, see SQSHRUN,
SQSHRUN2.

The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQRSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other
bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQRSHRUN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Vector

Encoding

SQRSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3288
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3289
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = RShr(SInt(Elem[operand, e, 2*esize]), shift, round);
 (Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3290
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.304 SQSHL (immediate)

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD&FP
register, shifts each result by an immediate value, places the final result in a vector, and writes the vector to the
destination SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHL <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

Encoding

SQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);

0 1 0 1 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3291
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3292
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3293
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.305 SQSHL (register)

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP
register, shifts each element by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For
rounded results, see SQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3294
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3295
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.306 SQSHLU

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in the vector of
the source SIMD&FP register, shifts each value by an immediate value, saturates the shifted result to an unsigned
integer value, places the result in a vector, and writes the vector to the destination SIMD&FP register. The results
are truncated. For rounded results, see UQRSHL.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHLU <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

Encoding

SQSHLU <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3296
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3297
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3298
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.307 SQSHRN, SQSHRN2

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts and truncates each result by an immediate value, saturates each shifted result to a
value that is half the original width, puts the final result into a vector, and writes the vector to the lower or upper
half of the destination SIMD&FP register. All the values in this instruction are signed integer values. The destination
vector elements are half as long as the source vector elements. For rounded results, see SQRSHRN, SQRSHRN2.

The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

SQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;

0 1 0 1 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3299
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3300
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, 2*esize], unsigned), shift, round);
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3301
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.308 SQSHRUN, SQSHRUN2

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the
vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an
unsigned integer value that is half the original width, places the final result into a vector, and writes the vector to
the destination SIMD&FP register. The results are truncated. For rounded results, see SQRSHRUN, SQRSHRUN2.

The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSHRUN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Vector

Encoding

SQSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3302
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx

The following encodings are reserved:

• immh = 0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3303
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = RShr(SInt(Elem[operand, e, 2*esize]), shift, round);
 (Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3304
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.309 SQSUB

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register
from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQSUB <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

SQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3305
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 (Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3306
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.310 SQXTN, SQXTN2

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register,
saturates the value to half the original width, places the result into a vector, and writes the vector to the lower or
upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source
vector elements. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQXTN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer part = 0;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

SQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 0 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3307
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n, 2*datasize];
 bits(datasize) result;
 bits(2*esize) element;
 boolean sat;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3308
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 (Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3309
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.311 SQXTUN, SQXTUN2

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector of the
source SIMD&FP register, saturates the value to an unsigned integer value that is half the original width, places the
result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The
destination vector elements are half as long as the source vector elements.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQXTUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SQXTUN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer part = 0;
 integer elements = 1;

Vector

Encoding

SQXTUN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3310
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n, 2*datasize];
 bits(datasize) result;
 bits(2*esize) element;
 boolean sat;

 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 (Elem[result, e, esize], sat) = UnsignedSatQ(SInt(element), esize);
 if sat then FPSR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3311
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3312
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.312 SRHADD

Signed Rounding Halving Add. This instruction adds corresponding signed integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are rounded. For truncated results, see SHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SRHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3313
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = (element1 + element2 + 1) >> 1;
 Elem[result, e, esize] = sum<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3314
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.313 SRI

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register,
right shifts each vector element by an immediate value, and inserts the result into the corresponding vector element
in the destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their
existing value. Bits shifted out of the right of each vector element of the source register are lost.

The following figure shows the operation of shift right by 3 for an 8-bit vector element.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRI <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);

Vector

Encoding

SRI <Vd>.<T>, <Vn>.<T>, #<shift>

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]

63 56 55 0

63 56 55 0

63 56 55 0

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3315
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2 = V[d, datasize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3316
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 bits(datasize) result;
 bits(esize) mask = LSR(Ones(esize), shift);
 bits(esize) shifted;

 for e = 0 to elements-1
 shifted = LSR(Elem[operand, e, esize], shift);
 Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3317
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.314 SRSHL

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of the first
source SIMD&FP register, shifts it by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For
a truncating shift, see SSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3318
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3319
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.315 SRSHR

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, places the final result into a vector, and writes the vector to
the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are
rounded. For truncated results, see SSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SRSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3320
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3321
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.316 SRSRA

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The
results are rounded. For truncated results, see SSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SRSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SRSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3322
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3323
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.317 SSHL

Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first source
SIMD&FP register, shifts each value by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For
a rounding shift, see SRSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

SSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3324
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3325
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3326
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.318 SSHLL, SSHLL2

Signed Shift Left Long (immediate). This instruction reads each vector element from the source SIMD&FP register,
left shifts each vector element by the specified shift amount, places the result into a vector, and writes the vector to
the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.
All the values in this instruction are signed integer values.

The SSHLL instruction extracts vector elements from the lower half of the source register. The SSHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias SXTL, SXTL2. See Alias conditions for details of when each alias is preferred.

Encoding

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;
 boolean unsigned = (U == '1');

Alias conditions

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

Alias is preferred when

SXTL, SXTL2 immb == '000' && BitCount(immh) == 1

0 Q 0 0 1 1 1 1 0 !=0000 immb 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3327
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in the
"immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part, datasize];
 bits(datasize*2) result;
 integer element;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

 V[d, datasize*2] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3328
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.319 SSHR

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, places the final result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are signed integer values. The results are truncated. For
rounded results, see SRSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3329
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3330
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3331
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.320 SSRA

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The
results are truncated. For rounded results, see SRSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

SSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 0 0 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3332
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3333
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3334
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.321 SSUBL, SSUBL2

Signed Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source
SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the results
into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed
integer values. The destination vector elements are twice as long as the source vector elements.

The SSUBL instruction extracts each source vector from the lower half of each source register. The SSUBL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SSUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3335
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3336
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.322 SSUBW, SSUBW2

Signed Subtract Wide. This instruction subtracts each vector element in the lower or upper half of the second source
SIMD&FP register from the corresponding vector element in the first source SIMD&FP register, places the result
in a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are signed
integer values.

The SSUBW instruction extracts the second source vector from the lower half of the second source register. The SSUBW2
instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SSUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3337
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3338
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.323 ST1 (multiple structures)

Store multiple single-element structures from one, two, three, or four registers. This instruction stores elements to
memory from one, two, three, or four SIMD&FP registers, without interleaving. Every element of each register is
stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

One register variant

Applies when opcode == 0111.

ST1 { <Vt>.<T> }, [<Xn|SP>]

Two registers variant

Applies when opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers variant

Applies when opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers variant

Applies when opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

One register, immediate offset variant

Applies when Rm == 11111 && opcode == 0111.

ST1 { <Vt>.<T> }, [<Xn|SP>], <imm>

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 x x 1 x size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm x x 1 x size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3339
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
One register, register offset variant

Applies when Rm != 11111 && opcode == 0111.

ST1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset variant

Applies when Rm == 11111 && opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset variant

Applies when Rm != 11111 && opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset variant

Applies when Rm != 11111 && opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset variant

Applies when Rm == 11111 && opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset variant

Applies when Rm != 11111 && opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3340
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
1D when size = 11, Q = 0

2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in the "Q"
field. It can have the following values:

#8 when Q = 0

#16 when Q = 1

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in the
"Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3341
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3342
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.324 ST1 (single structure)

Store a single-element structure from one lane of one register. This instruction stores the specified element of a
SIMD&FP register to memory.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

ST1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

ST1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

ST1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

ST1 { <Vt>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

ST1 { <Vt>.B }[<index>], [<Xn|SP>], #1

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 0 0 Rm x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3343
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

ST1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

ST1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

ST1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

ST1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

ST1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

ST1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

ST1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3344
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3345
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3346
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.325 ST2 (multiple structures)

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element structures from
two SIMD&FP registers to memory, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm 1 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3347
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16 when Q = 0

#32 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3348
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3349
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.326 ST2 (single structure)

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to
memory from corresponding elements of two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 000.

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 0 1 Rm x x 0 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3350
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 010 && size == x0.

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 010 && size == x0.

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && size == 00.

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && size == 00.

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3351
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3352
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3353
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.327 ST3 (multiple structures)

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element structures to
memory from three SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm 0 1 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3354
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#24 when Q = 0

#48 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
 if n == 31 then
 CheckSPAlignment();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3355
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3356
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.328 ST3 (single structure)

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element structure to
memory from corresponding elements of three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 0 0 Rm x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3357
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3358
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3359
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3360
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.329 ST4 (multiple structures)

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element structures to
memory from four SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

Encoding

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

Immediate offset variant

Applies when Rm == 11111.

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 5 4 0

L opcode

0 Q 0 0 1 1 0 0 1 0 0 Rm 0 0 0 0 size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 0

L opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3361
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#32 when Q = 0

#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(size);
 integer elements = datasize DIV esize;

 integer rpt; // number of iterations
 integer selem; // structure elements

 case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(datasize) rval;
 integer tt;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3362
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt, datasize];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[eaddr, ebytes, accdesc];
 V[tt, datasize] = rval;
 else // memop == MemOp_STORE
 Mem[eaddr, ebytes, accdesc] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3363
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.330 ST4 (single structure)

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element structure to
memory from corresponding elements of four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 011 && size == x0.

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R o2 opcode

0 Q 0 0 1 1 0 1 1 0 1 Rm x x 1 S size Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

L R opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3364
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 011 && size == x0.

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset variant

Applies when Rm != 11111 && opcode == 011 && size == x0.

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && size == 00.

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && size == 00.

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset variant

Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 boolean wback = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3365
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm"
field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation for all encodings

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, nontemporal, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3366
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3367
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.331 STL1 (SIMD&FP)

Store-Release a single-element structure from one lane of one register. This instruction stores the specified element
of a SIMD&FP register to memory.

The instruction also has memory ordering semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release. For information about memory accesses, see Load/store addressing modes.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

64-bit

(FEAT_LRCPC3)

Encoding

STL1 { <Vt>.D }[<index>], [<Xn|SP>]

Decode for this encoding

 integer t = UInt(Rt);
 integer n = UInt(Rn);
 integer m = integer UNKNOWN;
 boolean wback = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> Is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Shared decode for all encodings

 bits(2) scale = opcode<2:1>;
 integer selem = UInt(opcode<0>:R) + 1;
 boolean replicate = FALSE;
 integer index;

 case scale of
 when '11'
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = size;
 replicate = TRUE;
 when '00'
 index = UInt(Q:S:size); // B[0-15]
 when '01'
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when '10'
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 11 10 9 5 4 0

L R opcode S size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3368
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = '11';

 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 64 << UInt(Q);
 constant integer esize = 8 << UInt(scale);

Operation

 CheckFPAdvSIMDEnabled64();

 bits(64) address;
 bits(64) eaddr;
 bits(64) offs;
 bits(128) rval;
 bits(esize) element;
 constant integer ebytes = esize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMDAcqRel(memop, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 offs = Zeros(64);
 if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 eaddr = GenerateAddress(address, offs, accdesc);
 element = Mem[eaddr, ebytes, accdesc];
 // replicate to fill 128- or 64-bit register
 V[t, datasize] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
 else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t, 128];
 eaddr = GenerateAddress(address, offs, accdesc);
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[eaddr, ebytes, accdesc];
 V[t, 128] = rval;
 else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[eaddr, ebytes, accdesc] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m, 64];
 address = GenerateAddress(address, offs, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3369
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3370
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.332 STLUR (SIMD&FP)

Store-Release SIMD&FP Register (unscaled offset). This instruction stores a single SIMD&FP register to memory.
The address that is used for the store is calculated from a base register value and an optional immediate offset.

The instruction has memory ordering semantics, as described in Load-Acquire, Load-AcquirePC, and
Store-Release.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Unscaled offset

(FEAT_LRCPC3)

8-bit variant

Applies when size == 00 && opc == 00.

STLUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant

Applies when size == 01 && opc == 00.

STLUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant

Applies when size == 10 && opc == 00.

STLUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11 && opc == 00.

STLUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant

Applies when size == 00 && opc == 10.

STLUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

size 0 1 1 1 0 1 x 0 0 imm9 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3371
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 CheckFPAdvSIMDEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMDAcqRel(memop, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3372
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.333 STNP (SIMD&FP)

Store Pair of SIMD&FP registers, with Non-temporal hint. This instruction stores a pair of SIMD&FP registers to
memory, issuing a hint to the memory system that the access is non-temporal. The address used for the store is
calculated from an address from a base register value and an immediate offset. For information about non-temporal
pair instructions, see Load/store SIMD and floating-point non-temporal pair.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when opc == 00.

STNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

STNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

STNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 // Empty.

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range
-1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

opc 1 0 1 1 0 0 0 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3373
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = n != 31;

Operation

 CheckFPEnabled64();
 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, TRUE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 data1 = V[t, datasize];
 data2 = V[t2, datasize];
 address2 = GenerateAddress(address, dbytes, accdesc);
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3374
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.334 STP (SIMD&FP)

Store Pair of SIMD&FP registers. This instruction stores a pair of SIMD&FP registers to memory. The address used
for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;

Pre-index

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

opc 1 0 1 1 0 0 1 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

opc 1 0 1 1 0 1 1 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3375
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;

Signed offset

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in
the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

opc 1 0 1 1 0 1 0 0 imm7 Rt2 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 15 14 10 9 5 4 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3376
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a
multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16
in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer t2 = UInt(Rt2);
 if opc == '11' then UNDEFINED;
 integer scale = 2 + UInt(opc);
 constant integer datasize = 8 << scale;
 bits(64) offset = LSL(SignExtend(imm7, 64), scale);
 boolean tagchecked = wback || n != 31;

Operation for all encodings

 CheckFPEnabled64();
 bits(64) address;
 bits(64) address2;
 bits(datasize) data1;
 bits(datasize) data2;
 constant integer dbytes = datasize DIV 8;

 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 data1 = V[t, datasize];
 data2 = V[t2, datasize];
 address2 = GenerateAddress(address, dbytes, accdesc);
 Mem[address, dbytes, accdesc] = data1;
 Mem[address2, dbytes, accdesc] = data2;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3377
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.335 STR (immediate, SIMD&FP)

Store SIMD&FP register (immediate offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Post-index

8-bit variant

Applies when size == 00 && opc == 00.

STR <Bt>, [<Xn|SP>], #<simm>

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>], #<simm>

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>], #<simm>

128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

8-bit variant

Applies when size == 00 && opc == 00.

size 1 1 1 1 0 0 x 0 0 imm9 0 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc

size 1 1 1 1 0 0 x 0 0 imm9 1 1 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3378
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
STR <Bt>, [<Xn|SP>, #<simm>]!

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>, #<simm>]!

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>, #<simm>]!

128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

8-bit variant

Applies when size == 00 && opc == 00.

STR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>{, #<pimm>}]

size 1 1 1 1 0 1 x 0 imm12 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3379
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0
to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0
to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0
to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range
0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings

 CheckFPEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3380
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 address = X[n, 64];

 if !postindex then
 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

 if wback then
 if postindex then
 address = GenerateAddress(address, offset, accdesc);
 if n == 31 then
 SP[] = address;
 else
 X[n, 64] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3381
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.336 STR (register, SIMD&FP)

Store SIMD&FP register (register offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an offset register value. The offset can
be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when size == 00 && opc == 00 && option != 011.

STR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-bit variant

Applies when size == 00 && opc == 00 && option == 011.

STR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 if option<1> == '0' then UNDEFINED; // sub-word index
 ExtendType extend_type = DecodeRegExtend(option);
 integer shift = if S == '1' then scale else 0;

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

size 1 1 1 1 0 0 x 0 1 Rm option S 1 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3382
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in the "option" field. It can have the
following values:

UXTW when option = 010

SXTW when option = 110

SXTX when option = 111

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to
LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the
"option" field. It can have the following values:

UXTW when option = 010

LSL when option = 011

SXTW when option = 110

SXTX when option = 111

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1
if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#1 when S = 1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it
is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#3 when S = 1

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where
it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following
values:

#0 when S = 0

#4 when S = 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3383
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 integer m = UInt(Rm);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH;

Operation

 bits(64) offset = ExtendReg(m, extend_type, shift, 64);
 CheckFPEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3384
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.337 STUR (SIMD&FP)

Store SIMD&FP register (unscaled offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant

Applies when size == 00 && opc == 00.

STUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant

Applies when size == 01 && opc == 00.

STUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant

Applies when size == 10 && opc == 00.

STUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11 && opc == 00.

STUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant

Applies when size == 00 && opc == 10.

STUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

 integer scale = UInt(opc<1>:size);
 if scale > 4 then UNDEFINED;
 bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

size 1 1 1 1 0 0 x 0 0 imm9 0 0 Rn Rt

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

opc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3385
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);
 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 constant integer datasize = 8 << scale;
 boolean tagchecked = memop != MemOp_PREFETCH && (n != 31);

Operation

 CheckFPEnabled64();
 bits(64) address;
 bits(datasize) data;

 AccessDescriptor accdesc = CreateAccDescASIMD(memop, FALSE, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n, 64];

 address = GenerateAddress(address, offset, accdesc);

 case memop of
 when MemOp_STORE
 data = V[t, datasize];
 Mem[address, datasize DIV 8, accdesc] = data;

 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, accdesc];
 V[t, datasize] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3386
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.338 SUB (vector)

Subtract (vector). This instruction subtracts each vector element in the second source SIMD&FP register from the
corresponding vector element in the first source SIMD&FP register, places the result into a vector, and writes the
vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SUB <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean sub_op = (U == '1');

Vector

Encoding

SUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3387
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then
 Elem[result, e, esize] = element1 - element2;
 else
 Elem[result, e, esize] = element1 + element2;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3388
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.339 SUBHN, SUBHN2

Subtract returning High Narrow. This instruction subtracts each vector element in the second source SIMD&FP
register from the corresponding vector element in the first source SIMD&FP register, places the most significant
half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.
All the values in this instruction are signed integer values.

The results are truncated. For rounded results, see RSUBHN, RSUBHN2.

The SUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

SUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean round = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3389
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(2*datasize) operand2 = V[m, 2*datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, 2*esize]);
 element2 = UInt(Elem[operand2, e, 2*esize]);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = RShr(sum, esize, round);
 Elem[result, e, esize] = sum<esize-1:0>;

 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3390
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.340 SUDOT (by element)

Dot product index form with signed and unsigned integers. This instruction performs the dot product of the four
signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination vector.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

SUDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED;
 boolean op1_unsigned = (US == '1');
 boolean op2_unsigned = (US == '0');
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer d = UInt(Rd);
 integer i = UInt(H:L);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a 32-bit group of four 8-bit values in the range 0 to 3, encoded in the "H:L"
fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(128) operand2 = V[m, 128];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;

0 Q 0 0 1 1 1 1 0 0 L M Rm 1 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

US
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3391
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = Int(Elem[operand1, 4*e+b, 8], op1_unsigned);
 integer element2 = Int(Elem[operand2, 4*i+b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3392
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.341 SUQADD

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of the vector
elements in the source SIMD&FP register to corresponding signed integer values of the vector elements in the
destination SIMD&FP register, and writes the resulting signed integer values to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

SUQADD <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

SUQADD <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3393
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 bits(datasize) operand2 = V[d, datasize];
 integer op1;
 integer op2;
 boolean sat;

 for e = 0 to elements-1
 op1 = Int(Elem[operand, e, esize], !unsigned);
 op2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
 if sat then FPSR.QC = '1';
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3394
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.342 SXTL, SXTL2

Signed extend Long. This instruction duplicates each vector element in the lower or upper half of the source
SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SXTL instruction extracts the source vector from the lower half of the source register. The SXTL2 instruction
extracts the source vector from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the SSHLL, SSHLL2 instruction. This means that:

• The encodings in this description are named to match the encodings of SSHLL, SSHLL2.

• The description of SSHLL, SSHLL2 gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

SXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

 is equivalent to

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

0 Q 0 0 1 1 1 1 0 !=0000 0 0 0 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh immb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3395
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

Operation

The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3396
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.343 TBL

Table vector Lookup. This instruction reads each value from the vector elements in the index source SIMD&FP
register, uses each result as an index to perform a lookup in a table of bytes that is described by one to four source
table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination SIMD&FP
register. If an index is out of range for the table, the result for that lookup is 0. If more than one source register is
used to describe the table, the first source register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Two register table variant

Applies when len == 01.

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table variant

Applies when len == 10.

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table variant

Applies when len == 11.

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table variant

Applies when len == 00.

TBL <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer datasize = 64 << UInt(Q);
 constant integer elements = datasize DIV 8;
 constant integer regs = UInt(len) + 1;
 boolean is_tbl = (op == '0');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3397
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vn> For the four register table, three register table and two register table variant: is the name of the first
SIMD&FP table register, encoded in the "Rn" field.

For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn"
field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) indices = V[m, datasize];
 bits(128*regs) table = Zeros(128 * regs);
 bits(datasize) result;
 integer index;

 // Create table from registers
 for i = 0 to regs-1
 table<128*i+127:128*i> = V[n, 128];
 n = (n + 1) MOD 32;

 result = if is_tbl then Zeros(datasize) else V[d, datasize];
 for i = 0 to elements-1
 index = UInt(Elem[indices, i, 8]);
 if index < 16 * regs then
 Elem[result, i, 8] = Elem[table, index, 8];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3398
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.344 TBX

Table vector lookup extension. This instruction reads each value from the vector elements in the index source
SIMD&FP register, uses each result as an index to perform a lookup in a table of bytes that is described by one to
four source table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination
SIMD&FP register. If an index is out of range for the table, the existing value in the vector element of the destination
register is left unchanged. If more than one source register is used to describe the table, the first source register
describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Two register table variant

Applies when len == 01.

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table variant

Applies when len == 10.

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table variant

Applies when len == 11.

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table variant

Applies when len == 00.

TBX <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 constant integer datasize = 64 << UInt(Q);
 constant integer elements = datasize DIV 8;
 constant integer regs = UInt(len) + 1;
 boolean is_tbl = (op == '0');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3399
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vn> For the four register table, three register table and two register table variant: is the name of the first
SIMD&FP table register, encoded in the "Rn" field.

For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn"
field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) indices = V[m, datasize];
 bits(128*regs) table = Zeros(128 * regs);
 bits(datasize) result;
 integer index;

 // Create table from registers
 for i = 0 to regs-1
 table<128*i+127:128*i> = V[n, 128];
 n = (n + 1) MOD 32;

 result = if is_tbl then Zeros(datasize) else V[d, datasize];
 for i = 0 to elements-1
 index = UInt(Elem[indices, i, 8]);
 if index < 16 * regs then
 Elem[result, i, 8] = Elem[table, index, 8];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3400
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.345 TRN1

Transpose vectors (primary). This instruction reads corresponding even-numbered vector elements from the two
source SIMD&FP registers, starting at zero, places each result into consecutive elements of a vector, and writes the
vector to the destination SIMD&FP register. Vector elements from the first source register are placed into
even-numbered elements of the destination vector, starting at zero, while vector elements from the second source
register are placed into odd-numbered elements of the destination vector.

Note

By using this instruction with TRN2, a 2 x 2 matrix can be transposed.

The following figure shows the operation of TRN1 and TRN2 halfword operations where Q = 0.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

TRN1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3401
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3402
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.346 TRN2

Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two
source SIMD&FP registers, places each result into consecutive elements of a vector, and writes the vector to the
destination SIMD&FP register. Vector elements from the first source register are placed into even-numbered
elements of the destination vector, starting at zero, while vector elements from the second source register are placed
into odd-numbered elements of the destination vector.

Note

By using this instruction with TRN1, a 2 x 2 matrix can be transposed.

The following figure shows the operation of TRN1 and TRN2 halfword operations where Q = 0.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

TRN2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3403
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3404
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.347 UABA

Unsigned Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second
source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates
the absolute values of the results into the elements of the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3405
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3406
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.348 UABAL, UABAL2

Unsigned Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or
upper half of the second source SIMD&FP register from the corresponding vector elements of the first source
SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values
in this instruction are unsigned integer values.

The UABAL instruction extracts each source vector from the lower half of each source register. The UABAL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3407
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d, 2*datasize] else Zeros(2 * datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3408
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.349 UABD

Unsigned Absolute Difference (vector). This instruction subtracts the elements of the vector of the second source
SIMD&FP register from the corresponding elements of the first source SIMD&FP register, places the absolute
values of the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 bits(esize) absdiff;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U ac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3409
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 result = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3410
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.350 UABDL, UABDL2

Unsigned Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper half of the
second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register,
places the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements. All the values in this instruction are
unsigned integer values.

The UABDL instruction extracts each source vector from the lower half of each source register. The UABDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean accumulate = (op == '0');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3411
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) absdiff;

 result = if accumulate then V[d, 2*datasize] else Zeros(2 * datasize);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3412
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.351 UADALP

Unsigned Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from
the vector in the source SIMD&FP register and accumulates the results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADALP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3413
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d, datasize];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3414
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.352 UADDL, UADDL2

Unsigned Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source
SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the result
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice
as long as the source vector elements. All the values in this instruction are unsigned integer values.

The UADDL instruction extracts each source vector from the lower half of each source register. The UADDL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3415
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3416
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.353 UADDLP

Unsigned Add Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the
source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.
The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDLP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV (2 * esize);
 boolean acc = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 00, Q = 0

8H when size = 00, Q = 1

2S when size = 01, Q = 0

4S when size = 01, Q = 1

1D when size = 10, Q = 0

2D when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3417
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 bits(2*esize) sum;
 integer op1;
 integer op2;

 if acc then result = V[d, datasize];
 for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3418
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.354 UADDLV

Unsigned sum Long across Vector. This instruction adds every vector element in the source SIMD&FP register
together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as
the source vector elements. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDLV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3419
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 integer sum;

 sum = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 sum = sum + Int(Elem[operand, e, esize], unsigned);

 V[d, 2*esize] = sum<2*esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3420
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.355 UADDW, UADDW2

Unsigned Add Wide. This instruction adds the vector elements of the first source SIMD&FP register to the
corresponding vector elements in the lower or upper half of the second source SIMD&FP register, places the result
in a vector, and writes the vector to the SIMD&FP destination register. The vector elements of the destination
register and the first source register are twice as long as the vector elements of the second source register. All the
values in this instruction are unsigned integer values.

The UADDW instruction extracts vector elements from the lower half of the second source register. The UADDW2
instruction extracts vector elements from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3421
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3422
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.356 UCVTF (vector, fixed-point)

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from
fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UCVTF <V><d>, <V><n>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = esize;
 integer elements = 1;

 integer fracbits = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR);

Vector

Encoding

UCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh IN {'000x'} || (immh IN {'001x'} && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = if immh IN {'1xxx'} then 64 else if immh IN {'01xx'} then 32 else 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer fracbits = (esize * 2) - UInt(immh:immb);

0 1 1 1 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3423
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean unsigned = (U == '1');
 FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The following encodings are reserved:

• immh = 0001, Q = x.

• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
in the "immh:immb" field. It can have the following values:

(32-Uint(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 bits(esize) element;
 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3424
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3425
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.357 UCVTF (vector, integer)

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector from an
unsigned integer value to a floating-point value using the rounding mode that is specified by the FPCR, and writes
the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

(FEAT_FP16)

Encoding

UCVTF <Hd>, <Hn>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Scalar single-precision and double-precision

Encoding

UCVTF <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 32 << UInt(sz);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3426
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Vector half precision

(FEAT_FP16)

Encoding

UCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 16;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Vector single-precision and double-precision

Encoding

UCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz:Q == '10' then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3427
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the
following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the
"sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];

 boolean merge = elements == 1 && IsMerging(FPCR);
 bits(128) result = if merge then V[d, 128] else Zeros(128);

 FPRounding rounding = FPRoundingMode(FPCR);
 bits(esize) element;
 for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, 0, unsigned, FPCR, rounding, esize);

 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3428
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.358 UCVTF (scalar, fixed-point)

Unsigned fixed-point Convert to Floating-point (scalar). This instruction converts the unsigned value in the 32-bit
or 64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the
FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

UCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

UCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

UCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

UCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

UCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

UCVTF <Dd>, <Xn>, #<fbits>

Decode for all variants of this encoding

 if ftype == '10' || (ftype == '11' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);
 constant integer decode_fltsize = 8 << UInt(ftype EOR '10');

sf 0 0 1 1 1 1 0 ftype 0 0 0 0 1 1 scale Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3429
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 FPRounding rounding;

 if sf == '0' && scale<5> == '0' then UNDEFINED;
 integer fracbits = 64 - UInt(scale);

 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as
64 minus "scale".

For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is
the number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as
64 minus "scale".

Operation

 CheckFPEnabled64();

 constant boolean merge = IsMerging(FPCR);
 constant integer fltsize = if merge then 128 else decode_fltsize;
 bits(fltsize) fltval;
 bits(intsize) intval;

 intval = X[n, intsize];
 fltval = if merge then V[d, fltsize] else Zeros(fltsize);
 Elem[fltval, 0, decode_fltsize] = FixedToFP(intval, fracbits, TRUE, FPCR, rounding, decode_fltsize);
 V[d, fltsize] = fltval;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3430
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.359 UCVTF (scalar, integer)

Unsigned integer Convert to Floating-point (scalar). This instruction converts the unsigned integer value in the
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

UCVTF <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

UCVTF <Sd>, <Wn>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

UCVTF <Dd>, <Wn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

UCVTF <Hd>, <Xn>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

UCVTF <Sd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

UCVTF <Dd>, <Xn>

Decode for all variants of this encoding

 if ftype == '10' then UNDEFINED;
 if ftype == '11' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer intsize = 32 << UInt(sf);

sf 0 0 1 1 1 1 0 ftype 1 0 0 0 1 1 0 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

rmode opcode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3431
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer decode_fltsize = if ftype == '10' then 64 else (8 << UInt(ftype EOR '10'));
 FPRounding rounding;

 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

 CheckFPEnabled64();

 constant boolean merge = IsMerging(FPCR);
 constant integer fltsize = if merge then 128 else decode_fltsize;
 bits(fltsize) fltval;
 bits(intsize) intval;

 intval = X[n, intsize];
 fltval = if merge then V[d, fltsize] else Zeros(fltsize);
 Elem[fltval, 0, decode_fltsize] = FixedToFP(intval, 0, TRUE, FPCR, rounding, decode_fltsize);
 V[d, fltsize] = fltval;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3432
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.360 UDOT (by element)

Dot Product unsigned arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer index = UInt(H:L);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3433
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<index> Is the element index, encoded in the "H:L" fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(128) operand2 = V[m, 128];
 bits(datasize) result = V[d, datasize];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3434
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.361 UDOT (vector)

Dot Product unsigned arithmetic (vector). This instruction performs the dot product of the four unsigned 8-bit
elements in each 32-bit element of the first source register with the four unsigned 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector

(FEAT_DotProd)

Encoding

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if size != '10' then UNDEFINED;
 boolean signed = (U == '0');
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3435
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 result = V[d, datasize];
 for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3436
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.362 UHADD

Unsigned Halving Add. This instruction adds corresponding unsigned integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are truncated. For rounded results, see URHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3437
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = (element1 + element2) >> 1;
 Elem[result, e, esize] = sum<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3438
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.363 UHSUB

Unsigned Halving Subtract. This instruction subtracts the vector elements in the second source SIMD&FP register
from the corresponding vector elements in the first source SIMD&FP register, shifts each result right one bit, places
each result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;

 for e = 0 to elements-1

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3439
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = (element1 - element2) >> 1;
 Elem[result, e, esize] = diff<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3440
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.364 UMAX

Unsigned Maximum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the larger of each pair of unsigned integer values into a vector, and writes the vector to
the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3441
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3442
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.365 UMAXP

Unsigned Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first
source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of
adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of unsigned integer
values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3443
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3444
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.366 UMAXV

Unsigned Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMAXV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3445
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d, esize] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3446
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.367 UMIN

Unsigned Minimum (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, places the smaller of each of the two unsigned integer values into a vector, and writes the
vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer maxmin;

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3447
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3448
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.368 UMINP

Unsigned Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first
source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of
adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair of unsigned integer
values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 integer element1;

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3449
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer element2;
 integer maxmin;

 for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3450
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.369 UMINV

Unsigned Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMINV <V><d>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '100' then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 10, Q = 0.

• size = 11, Q = x.

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3451
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 integer maxmin;
 integer element;

 maxmin = Int(Elem[operand, 0, esize], unsigned);
 for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

 V[d, esize] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3452
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.370 UMLAL, UMLAL2 (by element)

Unsigned Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and accumulates the results with the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register. The UMLAL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 1 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3453
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3454
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3455
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.371 UMLAL, UMLAL2 (vector)

Unsigned Multiply-Add Long (vector). This instruction multiplies the vector elements in the lower or upper half of
the first source SIMD&FP register by the corresponding vector elements of the second source SIMD&FP register,
and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register. The UMLAL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3456
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3457
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.372 UMLSL, UMLSL2 (by element)

Unsigned Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower
or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The UMLSL instruction extracts vector elements from the lower half of the first source register. The UMLSL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');
 boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

0 Q 1 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3458
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• size = 00.

• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3459
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3460
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.373 UMLSL, UMLSL2 (vector)

Unsigned Multiply-Subtract Long (vector). This instruction multiplies corresponding vector elements in the lower
or upper half of the two source SIMD&FP registers, and subtracts the results from the vector elements of the
destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.
All the values in this instruction are unsigned integer values.

The UMLSL instruction extracts each source vector from the lower half of each source register. The UMLSL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3461
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) operand3 = V[d, 2*datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;
 bits(2*esize) accum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3462
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.374 UMMLA (vector)

Unsigned 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of unsigned 8-bit
integer values in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source
vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix
accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination
element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

UMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

 if !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n, 128];
 bits(128) operand2 = V[m, 128];
 bits(128) addend = V[d, 128];

 V[d, 128] = MatMulAdd(addend, operand1, operand2, TRUE, TRUE);

Operational information

Arm expects that the UMMLA (vector) instruction will deliver a peak integer multiply throughput that is at least as
high as can be achieved using two UDOT (vector) instructions, with a goal that it should have significantly higher
throughput.

0 1 1 0 1 1 1 0 1 0 0 Rm 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3463
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.375 UMOV

Unsigned Move vector element to general-purpose register. This instruction reads the unsigned integer from the
source SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination
general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (to general). See Alias conditions for details of when each alias is
preferred.

32-bit variant

Applies when Q == 0.

UMOV <Wd>, <Vn>.<Ts>[<index>]

64-bit variant

Applies when Q == 1 && imm5 == x1000.

UMOV <Xd>, <Vn>.<Ts>[<index>]

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 constant integer size = LowestSetBit(imm5);
 if size > 3 then UNDEFINED;
 constant integer esize = 8 << size;
 constant integer datasize = 32 << UInt(Q);
 if datasize == 64 && esize < 64 then UNDEFINED;
 if datasize == 32 && esize >= 64 then UNDEFINED;
 constant integer index = UInt(imm5<4:size+1>);
 constant integer idxdsize = 64 << UInt(imm5<4>);

Alias conditions

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Alias is preferred when

MOV (to general) imm5 == 'x1000'

MOV (to general) imm5 == 'xx100'

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3464
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Ts> For the 32-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the
following values:

B when imm5 = xxxx1

H when imm5 = xxx10

S when imm5 = xx100

The encoding imm5 = xx000 is reserved.

For the 64-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the
following values:

D when imm5 = x1000

The following encodings are reserved:

• imm5 = x0000.

• imm5 = xxxx1.

• imm5 = xxx10.

• imm5 = xx100.

<index> For the 32-bit variant: is the element index encoded in the "imm5" field. It can have the following
values:

imm5<4:1> when imm5 = xxxx1

imm5<4:2> when imm5 = xxx10

imm5<4:3> when imm5 = xx100

The encoding imm5 = xx000 is reserved.

For the 64-bit variant: is the element index encoded in "imm5<4>".

Operation

 if index == 0 then
 CheckFPEnabled64();
 else
 CheckFPAdvSIMDEnabled64();
 bits(idxdsize) operand = V[n, idxdsize];

 X[d, datasize] = ZeroExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3465
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.376 UMULL, UMULL2 (by element)

Unsigned Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper
half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register,
places the results in a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The UMULL instruction extracts vector elements from the lower half of the first source register. The UMULL2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

 constant integer idxdsize = 64 << UInt(H);
 integer index;
 bit Rmhi;
 case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rmhi:Rm);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

4S when size = 01

2D when size = 10

The following encodings are reserved:

• size = 00.

0 Q 1 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3466
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The following encodings are reserved:

• size = 00, Q = x.

• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have
the following values:

0:Rm when size = 01

M:Rm when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

 Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01

H:L when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(idxdsize) operand2 = V[m, idxdsize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 bits(2*esize) product;

 element2 = Int(Elem[operand2, index, esize], unsigned);
 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = product;

 V[d, 2*datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3467
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3468
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.377 UMULL, UMULL2 (vector)

Unsigned Multiply long (vector). This instruction multiplies corresponding vector elements in the lower or upper
half of the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the
values in this instruction are unsigned integer values.

The UMULL instruction extracts each source vector from the lower half of each source register. The UMULL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

0 Q 1 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3469
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3470
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.378 UQADD

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP
registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQADD <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

UQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

0 1 1 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3471
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer sum;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 (Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3472
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.379 UQRSHL

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first source
SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding vector
element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For
truncated results, see UQSHL (immediate).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

UQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3473
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3474
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.380 UQRSHRN, UQRSHRN2

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, puts the final result into a vector, and
writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction
are unsigned integer values. The results are rounded. For truncated results, see UQSHRN, UQSHRN2.

The UQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQRSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

UQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3475
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3476
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, 2*esize], unsigned), shift, round);
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3477
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.381 UQSHL (immediate)

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source SIMD&FP
register, shifts it by an immediate value, places the results in a vector, and writes the vector to the destination
SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSHL <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

Encoding

UQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);

0 1 1 1 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 1 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3478
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;

 boolean src_unsigned;
 boolean dst_unsigned;
 case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

(UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3479
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
(UInt(immh:immb)-64) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3480
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.382 UQSHL (register)

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first source
SIMD&FP register, shifts the element by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For
rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

UQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3481
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3482
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.383 UQSHRN, UQSHRN2

Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half
the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For
rounded results, see UQRSHRN, UQRSHRN2.

The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSHRN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then UNDEFINED;
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = esize;
 integer elements = 1;
 integer part = 0;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Vector

Encoding

UQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";

0 1 1 1 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3483
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (2 * esize) - UInt(immh:immb);
 boolean round = (op == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001

H when immh = 001x

S when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001

S when immh = 001x

D when immh = 01xx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3484
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:

• immh = 0000.

• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in
bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize*2) operand = V[n, datasize*2];
 bits(datasize) result;
 integer element;
 boolean sat;

 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, 2*esize], unsigned), shift, round);
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3485
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.384 UQSUB

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register
from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQSUB <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');

Vector

Encoding

UQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3486
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;
 integer diff;
 boolean sat;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 (Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSR.QC = '1';

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3487
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.385 UQXTN, UQXTN2

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register,
saturates each value to half the original width, places the result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

UQXTN <Vb><d>, <Va><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer part = 0;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

UQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3488
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

H when size = 00

S when size = 01

D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n, 2*datasize];
 bits(datasize) result;
 bits(2*esize) element;
 boolean sat;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3489
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 (Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
 if sat then FPSR.QC = '1';

 Vpart[d, part, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3490
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.386 URECPE

Unsigned Reciprocal Estimate. This instruction reads each vector element from the source SIMD&FP register,
calculates an approximate inverse for the unsigned integer value, places the result into a vector, and writes the vector
to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

URECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '1' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

The encoding sz = 1, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(32) element;

 for e = 0 to elements-1
 element = Elem[operand, e, 32];
 Elem[result, e, 32] = UnsignedRecipEstimate(element);

 V[d, datasize] = result;

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3491
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.387 URHADD

Unsigned Rounding Halving Add. This instruction adds corresponding unsigned integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are rounded. For truncated results, see UHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

URHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;
 integer element1;
 integer element2;

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3492
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = (element1 + element2 + 1) >> 1;
 Elem[result, e, esize] = sum<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3493
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.388 URSHL

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first source
SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding element
of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination
SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

URSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

URSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3494
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3495
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.389 URSHR

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the
destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are
rounded. For truncated results, see USHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

URSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

URSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3496
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3497
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.390 URSQRTE

Unsigned Reciprocal Square Root Estimate. This instruction reads each vector element from the source SIMD&FP
register, calculates an approximate inverse square root for each value, places the result into a vector, and writes the
vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

URSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if sz == '1' then UNDEFINED;
 constant integer esize = 32;
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0

4S when sz = 0, Q = 1

The encoding sz = 1, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;
 bits(32) element;

 for e = 0 to elements-1
 element = Elem[operand, e, 32];
 Elem[result, e, 32] = UnsignedRSqrtEstimate(element);

 V[d, datasize] = result;

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3498
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.391 URSRA

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the
vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values.
The results are rounded. For truncated results, see USRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

URSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

URSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 1 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3499
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3500
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.392 USDOT (vector)

Dot Product vector form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in the corresponding 32-bit element of the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;

 for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = UInt(Elem[operand1, 4*e+b, 8]);
 integer element2 = SInt(Elem[operand2, 4*e+b, 8]);

0 Q 0 0 1 1 1 0 1 0 0 Rm 1 0 0 1 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3501
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 res = res + element1 * element2;
 Elem[result, e, 32] = res;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3502
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.393 USDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED;
 boolean op1_unsigned = (US == '1');
 boolean op2_unsigned = (US == '0');
 integer n = UInt(Rn);
 integer m = UInt(M:Rm);
 integer d = UInt(Rd);
 integer i = UInt(H:L);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0

4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0

16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a 32-bit group of four 8-bit values in the range 0 to 3, encoded in the "H:L"
fields.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(128) operand2 = V[m, 128];
 bits(datasize) operand3 = V[d, datasize];
 bits(datasize) result;

0 Q 0 0 1 1 1 1 1 0 L M Rm 1 1 1 1 H 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

US
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3503
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

 for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = Int(Elem[operand1, 4*e+b, 8], op1_unsigned);
 integer element2 = Int(Elem[operand2, 4*i+b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3504
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.394 USHL

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP
register, shifts each element by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For
a rounding shift, see URSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USHL <V><d>, <V><n>, <V><m>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');
 if S == '0' && size != '11' then UNDEFINED;

Vector

Encoding

USHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 boolean unsigned = (U == '1');
 boolean rounding = (R == '1');
 boolean saturating = (S == '1');

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U R S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3505
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

• size = 0x.

• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 boolean sat;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 integer shift = SInt(Elem[operand2, e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // right shift
 shift = -shift;
 element = RShr(element, shift, rounding);

 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3506
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3507
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.395 USHLL, USHLL2

Unsigned Shift Left Long (immediate). This instruction reads each vector element in the lower or upper half of the
source SIMD&FP register, shifts the unsigned integer value left by the specified number of bits, places the result
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice
as long as the source vector elements.

The USHLL instruction extracts vector elements from the lower half of the source register. The USHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias UXTL, UXTL2. See Alias conditions for details of when each alias is preferred.

Encoding

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = UInt(immh:immb) - esize;
 boolean unsigned = (U == '1');

Alias conditions

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

Alias is preferred when

UXTL, UXTL2 immb == '000' && BitCount(immh) == 1

0 Q 1 0 1 1 1 1 0 !=0000 immb 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3508
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in the
"immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001

(UInt(immh:immb)-16) when immh = 001x

(UInt(immh:immb)-32) when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = Vpart[n, part, datasize];
 bits(datasize*2) result;
 integer element;

 for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

 V[d, datasize*2] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3509
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.396 USHR

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For
rounded results, see URSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USHR <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

USHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 0 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3510
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3511
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3512
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.397 USMMLA (vector)

Unsigned and signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of
unsigned 8-bit integer values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second
source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix
accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination
element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector

(FEAT_I8MM)

Encoding

USMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

 if !IsFeatureImplemented(FEAT_I8MM) then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(128) operand1 = V[n, 128];
 bits(128) operand2 = V[m, 128];
 bits(128) addend = V[d, 128];

 V[d, 128] = MatMulAdd(addend, operand1, operand2, TRUE, FALSE);

Operational information

Arm expects that the USMMLA (vector) instruction will deliver a peak integer multiply throughput that is at least
as high as can be achieved using two USDOT (vector) instructions, with a goal that it should have significantly
higher throughput.

0 1 0 0 1 1 1 0 1 0 0 Rm 1 0 1 0 1 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3513
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.398 USQADD

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the vector
elements in the source SIMD&FP register to corresponding unsigned integer values of the vector elements in the
destination SIMD&FP register, and accumulates the resulting unsigned integer values with the vector elements of
the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USQADD <V><d>, <V><n>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 constant integer esize = 8 << UInt(size);
 constant integer datasize = esize;
 integer elements = 1;

 boolean unsigned = (U == '1');

Vector

Encoding

USQADD <Vd>.<T>, <Vn>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3514
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) result;

 bits(datasize) operand2 = V[d, datasize];
 integer op1;
 integer op2;
 boolean sat;

 for e = 0 to elements-1
 op1 = Int(Elem[operand, e, esize], !unsigned);
 op2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
 if sat then FPSR.QC = '1';
 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3515
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.399 USRA

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The
results are truncated. For rounded results, see URSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Encoding

USRA <V><d>, <V><n>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh<3> != '1' then UNDEFINED;
 constant integer esize = 8 << 3;
 constant integer datasize = esize;
 integer elements = 1;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Vector

Encoding

USRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if immh == '0000' then SEE "Advanced SIMD modified immediate";
 if immh<3>:Q == '10' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(immh);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;

 integer shift = (esize * 2) - UInt(immh:immb);
 boolean unsigned = (U == '1');

0 1 1 1 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0

0 Q 1 0 1 1 1 1 0 !=0000 immb 0 0 0 1 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh o1 o0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3516
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
 boolean round = (o1 == '1');
 boolean accumulate = (o0 == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001

(32-UInt(immh:immb)) when immh = 001x

(64-UInt(immh:immb)) when immh = 01xx

(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate when immh = 0000.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand = V[n, datasize];
 bits(datasize) operand2;
 bits(datasize) result;
 integer element;

 operand2 = if accumulate then V[d, datasize] else Zeros(datasize);
 for e = 0 to elements-1
 element = RShr(Int(Elem[operand, e, esize], unsigned), shift, round);
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 V[d, datasize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3517
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3518
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.400 USUBL, USUBL2

Unsigned Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second
source SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the
result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
unsigned integer values. The destination vector elements are twice as long as the source vector elements.

The USUBL instruction extracts each source vector from the lower half of each source register. The USUBL2 instruction
extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

USUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3519
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = Vpart[n, part, datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3520
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.401 USUBW, USUBW2

Unsigned Subtract Wide. This instruction subtracts each vector element of the second source SIMD&FP register
from the corresponding vector element in the lower or upper half of the first source SIMD&FP register, places the
result in a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are
unsigned integer values.

The vector elements of the destination register and the first source register are twice as long as the vector elements
of the second source register.

The USUBW instruction extracts vector elements from the lower half of the first source register. The USUBW2 instruction
extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

USUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

 boolean sub_op = (o1 == '1');
 boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3521
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand1 = V[n, 2*datasize];
 bits(datasize) operand2 = Vpart[m, part, datasize];
 bits(2*datasize) result;
 integer element1;
 integer element2;
 integer sum;

 for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

 V[d, 2*datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3522
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.402 UXTL, UXTL2

Unsigned extend Long. This instruction copies each vector element from the lower or upper half of the source
SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the source vector elements.

The UXTL instruction extracts vector elements from the lower half of the source register. The UXTL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the USHLL, USHLL2 instruction. This means that:

• The encodings in this description are named to match the encodings of USHLL, USHLL2.

• The description of USHLL, USHLL2 gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

UXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

 is equivalent to

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001

4S when immh = 001x

2D when immh = 01xx

See Advanced SIMD modified immediate when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0

16B when immh = 0001, Q = 1

4H when immh = 001x, Q = 0

0 Q 1 0 1 1 1 1 0 !=0000 0 0 0 1 0 1 0 0 1 Rn Rd

31 30 29 28 27 26 25 24 23 22 19 18 16 15 14 13 12 11 10 9 5 4 0

U immh immb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3523
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
8H when immh = 001x, Q = 1

2S when immh = 01xx, Q = 0

4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

Operation

The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3524
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.403 UZP1

Unzip vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source
SIMD&FP registers, starting at zero, places the result from the first source register into consecutive elements in the
lower half of a vector, and the result from the second source register into consecutive elements in the upper half of
a vector, and writes the vector to the destination SIMD&FP register.

Note

This instruction can be used with UZP2 to de-interleave two vectors.

The following figure shows the operation of UZP1 and UZP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UZP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer part = UInt(op);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn

Vm

Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3525
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operandl = V[n, datasize];
 bits(datasize) operandh = V[m, datasize];
 bits(datasize) result;

 bits(datasize*2) zipped = operandh:operandl;
 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3526
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.404 UZP2

Unzip vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two
source SIMD&FP registers, places the result from the first source register into consecutive elements in the lower
half of a vector, and the result from the second source register into consecutive elements in the upper half of a vector,
and writes the vector to the destination SIMD&FP register.

Note

This instruction can be used with UZP1 to de-interleave two vectors.

The following figure shows the operation of UZP1 and UZP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

UZP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer part = UInt(op);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn

Vm

Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 0 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3527
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operandl = V[n, datasize];
 bits(datasize) operandh = V[m, datasize];
 bits(datasize) result;

 bits(datasize*2) zipped = operandh:operandl;
 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3528
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.405 XAR

Exclusive-OR and Rotate performs a bitwise exclusive-OR of the 128-bit vectors in the two source SIMD&FP
registers, rotates each 64-bit element of the resulting 128-bit vector right by the value specified by a 6-bit immediate
value, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD

(FEAT_SHA3)

Encoding

XAR <Vd>.2D, <Vn>.2D, <Vm>.2D, #<imm6>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA3) then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<imm6> Is a rotation right, encoded in "imm6".

Operation

 AArch64.CheckFPAdvSIMDEnabled();

 bits(128) Vm = V[m, 128];
 bits(128) Vn = V[n, 128];
 bits(128) tmp;
 tmp = Vn EOR Vm;
 V[d, 128] = ROR(tmp<127:64>, UInt(imm6)):ROR(tmp<63:0>, UInt(imm6));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 1 1 1 0 1 0 0 Rm imm6 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3529
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.406 XTN, XTN2

Extract Narrow. This instruction reads each vector element from the source SIMD&FP register, narrows each value
to half the original width, places the result into a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. The destination vector elements are half as long as the source vector elements.

The XTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
XTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

XTN{2} <Vd>.<Tb>, <Vn>.<Ta>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64;
 integer part = UInt(Q);
 integer elements = datasize DIV esize;

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:

[absent] when Q = 0

[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3530
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 01

2D when size = 10

The encoding size = 11 is reserved.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(2*datasize) operand = V[n, 2*datasize];
 bits(datasize) result;
 bits(2*esize) element;

 for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 Elem[result, e, esize] = element<esize-1:0>;
 Vpart[d, part, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3531
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.407 ZIP1

Zip vectors (primary). This instruction reads adjacent vector elements from the lower half of two source SIMD&FP
registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the destination
SIMD&FP register. The first pair from the first source register is placed into the two lowest vector elements, with
subsequent pairs taken alternately from each source register.

Note

This instruction can be used with ZIP2 to interleave two vectors.

The following figure shows the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ZIP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6

Vn

Vm

Vd Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3532
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 integer base = part * pairs;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3533
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
C7.2.408 ZIP2

Zip vectors (secondary). This instruction reads adjacent vector elements from the upper half of two source
SIMD&FP registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the
destination SIMD&FP register. The first pair from the first source register is placed into the two lowest vector
elements, with subsequent pairs taken alternately from each source register.

Note

This instruction can be used with ZIP1 to interleave two vectors.

The following figure shows the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Encoding

ZIP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);

 if size:Q == '110' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer datasize = 64 << UInt(Q);
 integer elements = datasize DIV esize;
 integer part = UInt(op);
 integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0

16B when size = 00, Q = 1

4H when size = 01, Q = 0

8H when size = 01, Q = 1

2S when size = 10, Q = 0

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6

Vn

Vm

Vd Vd

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 1 1 0 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3534
ID032224 Non-Confidential

A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
4S when size = 10, Q = 1

2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n, datasize];
 bits(datasize) operand2 = V[m, datasize];
 bits(datasize) result;

 integer base = part * pairs;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

 V[d, datasize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C7-3535
ID032224 Non-Confidential

Chapter C8
SVE Instruction Descriptions

This chapter describes the SVE instructions. It contains the following sections:

• About the SVE instructions.

• Alphabetical list of SVE instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3536
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.1 About the SVE instructions
C8.1 About the SVE instructions

Alphabetical list of SVE instructions gives full descriptions of the SVE instructions that are in the following
instruction groups:

• Loads and store instructions associated with the SVE registers.

• Data processing instructions with SVE registers.

A64 instruction set encoding provides an overview of the instruction encodings as part of an instruction class within
a functional group.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3537
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2 Alphabetical list of SVE instructions

This section lists every section in the SVE category of the A64 instruction set. For details of the format used, see
Structure of the A64 assembler language.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3538
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.1 ABS

Compute the absolute value of the signed integer in each active element of the source vector, and place the results
in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

ABS <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand, e, esize]);
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 0 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3539
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3540
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.2 ADCLB

Add the even-numbered elements of the first source vector and the 1-bit carry from the least-significant bit of the
odd-numbered elements of the second source vector to the even-numbered elements of the destination and
accumulator vector. The 1-bit carry output is placed in the corresponding odd-numbered element of the destination
vector.

Encoding

ADCLB <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand = Z[n, VL];
 bits(VL) carries = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for p = 0 to pairs-1
 bits(esize) element1 = Elem[result, 2*p + 0, esize];
 bits(esize) element2 = Elem[operand, 2*p + 0, esize];
 bit carry_in = Elem[carries, 2*p + 1, esize]<0>;

 (res, nzcv) = AddWithCarry(element1, element2, carry_in);
 carry_out = nzcv<1>;

 Elem[result, 2*p + 0, esize] = res;
 Elem[result, 2*p + 1, esize] = ZeroExtend(carry_out, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 0 sz 0 Zm 1 1 0 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

T

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3541
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3542
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.3 ADCLT

Add the odd-numbered elements of the first source vector and the 1-bit carry from the least-significant bit of the
odd-numbered elements of the second source vector to the even-numbered elements of the destination and
accumulator vector. The 1-bit carry output is placed in the corresponding odd-numbered element of the destination
vector.

Encoding

ADCLT <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand = Z[n, VL];
 bits(VL) carries = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for p = 0 to pairs-1
 bits(esize) element1 = Elem[result, 2*p + 0, esize];
 bits(esize) element2 = Elem[operand, 2*p + 1, esize];
 bit carry_in = Elem[carries, 2*p + 1, esize]<0>;

 (res, nzcv) = AddWithCarry(element1, element2, carry_in);
 carry_out = nzcv<1>;

 Elem[result, 2*p + 0, esize] = res;
 Elem[result, 2*p + 1, esize] = ZeroExtend(carry_out, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 0 sz 0 Zm 1 1 0 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

T

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3543
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3544
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.4 ADD (immediate)

Add an unsigned immediate to each element of the source vector, and destructively place the results in the
corresponding elements of the source vector. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

ADD <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3545
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = element1 + imm;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3546
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.5 ADD (vectors, predicated)

Add active elements of the second source vector to corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

Encoding

ADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element1 + element2;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 0 0 0 0 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3547
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3548
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.6 ADD (vectors, unpredicated)

Add all elements of the second source vector to corresponding elements of the first source vector and place the
results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

ADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 + element2;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3549
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3550
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.7 ADDHNB

Add each vector element of the first source vector to the corresponding vector element of the second source vector,
and place the most significant half of the result in the even-numbered half-width destination elements, while setting
the odd-numbered elements to zero. This instruction is unpredicated.

Encoding

ADDHNB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3551
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = (element1 + element2) >> halfesize;
 Elem[result, 2*e + 0, halfesize] = res<halfesize-1:0>;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3552
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.8 ADDHNT

Add each vector element of the first source vector to the corresponding vector element of the second source vector,
and place the most significant half of the result in the odd-numbered half-width destination elements, leaving the
even-numbered elements unchanged. This instruction is unpredicated.

Encoding

ADDHNT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3553
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = (element1 + element2) >> halfesize;
 Elem[result, 2*e + 1, halfesize] = res<halfesize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3554
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.9 ADDP

Add pairs of adjacent elements within each source vector, and interleave the results from corresponding lanes. The
interleaved result values are destructively placed in the first source vector.

Encoding

ADDP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand1, e, esize];
 else
 if IsEven(e) then
 element1 = UInt(Elem[operand1, e + 0, esize]);
 element2 = UInt(Elem[operand1, e + 1, esize]);
 else
 element1 = UInt(Elem[operand2, e - 1, esize]);
 element2 = UInt(Elem[operand2, e + 0, esize]);

0 1 0 0 0 1 0 0 size 0 1 0 0 0 1 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3555
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = element1 + element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3556
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.10 ADDPL

Add the current predicate register size in bytes multiplied by an immediate in the range -32 to 31 to the 64-bit source
general-purpose register or current stack pointer and place the result in the 64-bit destination general-purpose
register or current stack pointer.

Encoding

ADDPL <Xd|SP>, <Xn|SP>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm6);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) result = operand1 + (imm * (PL DIV 8));

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 1 1 Rn 0 1 0 1 0 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3557
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.11 ADDQV

Unsigned addition of the same element numbers from each 128-bit source vector segment, placing each result into
the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the source
vector are treated as zero.

SVE2

(FEAT_SVE2p1)

Encoding

ADDQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = TRUE;

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 0 0 1 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3558
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 integer dtmp;

 for e = 0 to elempersegment-1
 dtmp = 0;
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = dtmp + UInt(Elem[stmp, e, esize]);
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3559
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.12 ADDVL

Add the current vector register size in bytes multiplied by an immediate in the range -32 to 31 to the 64-bit source
general-purpose register or current stack pointer, and place the result in the 64-bit destination general-purpose
register or current stack pointer.

Encoding

ADDVL <Xd|SP>, <Xn|SP>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm6);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) result = operand1 + (imm * (VL DIV 8));

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 0 1 Rn 0 1 0 1 0 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3560
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.13 ADR

Optionally sign or zero-extend the least significant 32-bits of each element from a vector of offsets or indices in the
second source vector, scale each index by 2, 4 or 8, add to a vector of base addresses from the first source vector,
and place the resulting addresses in the destination vector. This instruction is unpredicated.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Packed offsets

Encoding

ADR <Zd>.<T>, [<Zn>.<T>, <Zm>.<T>{, <mod> <amount>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 constant integer osize = esize;
 boolean unsigned = TRUE;
 integer mbytes = 1 << UInt(msz);

Unpacked 32-bit signed offsets

Encoding

ADR <Zd>.D, [<Zn>.D, <Zm>.D, SXTW{ <amount>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 constant integer osize = 32;
 boolean unsigned = FALSE;
 integer mbytes = 1 << UInt(msz);

Unpacked 32-bit unsigned offsets

0 0 0 0 0 1 0 0 1 sz 1 Zm 1 0 1 0 msz Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 0 0 0 1 Zm 1 0 1 0 msz Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 0 0 1 1 Zm 1 0 1 0 msz Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3561
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

ADR <Zd>.D, [<Zn>.D, <Zm>.D, UXTW{ <amount>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 constant integer osize = 32;
 boolean unsigned = TRUE;
 integer mbytes = 1 << UInt(msz);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "msz" field. It can have the following values:

[absent] when msz = 00

LSL when msz = x1

LSL when msz = 10

<amount> Is the index shift amount, encoded in the "msz" field. It can have the following values:

[absent] when msz = 00

#1 when msz = 01

#2 when msz = 10

#3 when msz = 11

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) base = Z[n, VL];
 bits(VL) offs = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) addr = Elem[base, e, esize];
 integer offset = Int(Elem[offs, e, esize]<osize-1:0>, unsigned);
 Elem[result, e, esize] = addr + (offset * mbytes);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3562
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3563
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.14 AESD

The AESD instruction reads a 16-byte state array from each 128-bit segment of the first source vector, together with
a round key from the corresponding 128-bit segment of the second source vector. Each state array undergoes a single
round of the ADDROUNDKEY(), INVSUBBYTES() and INVSHIFTROWS() transformations in accordance with the AES
standard. Each updated state array is destructively placed in the corresponding segment of the first source vector.
This instruction is unpredicated.

ID_AA64ZFR0_EL1.AES indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_AES)

Encoding

AESD <Zdn>.B, <Zdn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE() || !HaveSVE2AES() then UNDEFINED;
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 result = operand1 EOR operand2;
 for s = 0 to segments-1
 Elem[result, s, 128] = AESInvSubBytes(AESInvShiftRows(Elem[result, s, 128]));

 Z[dn, VL] = result;

0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3564
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3565
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.15 AESE

The AESE instruction reads a 16-byte state array from each 128-bit segment of the first source vector together with
a round key from the corresponding 128-bit segment of the second source vector. Each state array undergoes a single
round of the ADDROUNDKEY(), SUBBYTES() and SHIFTROWS() transformations in accordance with the AES standard.
Each updated state array is destructively placed in the corresponding segment of the first source vector. This
instruction is unpredicated.

ID_AA64ZFR0_EL1.AES indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_AES)

Encoding

AESE <Zdn>.B, <Zdn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE() || !HaveSVE2AES() then UNDEFINED;
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 result = operand1 EOR operand2;
 for s = 0 to segments-1
 Elem[result, s, 128] = AESSubBytes(AESShiftRows(Elem[result, s, 128]));

 Z[dn, VL] = result;

0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3566
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3567
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.16 AESIMC

The AESIMC instruction reads a 16-byte state array from each 128-bit segment of the source register, and performs a
single round of the INVMIXCOLUMNS() transformation on each state array in accordance with the AES standard.
Each updated state array is destructively placed in the corresponding segment of the first source vector. This
instruction is unpredicated.

ID_AA64ZFR0_EL1.AES indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_AES)

Encoding

AESIMC <Zdn>.B, <Zdn>.B

Decode for this encoding

 if !HaveSVE() || !HaveSVE2AES() then UNDEFINED;
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand = Z[dn, VL];
 bits(VL) result;

 for s = 0 to segments-1
 Elem[result, s, 128] = AESInvMixColumns(Elem[operand, s, 128]);

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3568
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3569
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.17 AESMC

The AESMC instruction reads a 16-byte state array from each 128-bit segment of the source register, and performs a
single round of the MIXCOLUMNS() transformation on each state array in accordance with the AES standard. Each
updated state array is destructively placed in the corresponding segment of the first source vector. This instruction
is unpredicated.

ID_AA64ZFR0_EL1.AES indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_AES)

Encoding

AESMC <Zdn>.B, <Zdn>.B

Decode for this encoding

 if !HaveSVE() || !HaveSVE2AES() then UNDEFINED;
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand = Z[dn, VL];
 bits(VL) result;

 for s = 0 to segments-1
 Elem[result, s, 128] = AESMixColumns(Elem[operand, s, 128]);

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3570
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3571
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.18 AND (immediate)

Bitwise AND an immediate with each 64-bit element of the source vector, and destructively place the results in the
corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of ones or
zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is used by the pseudo-instruction BIC (immediate). The pseudo-instruction is never the preferred
disassembly.

Encoding

AND <Zdn>.<T>, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer dn = UInt(Zdn);
 bits(64) imm;
 (imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE, 64);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 64;
 bits(VL) operand = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(64) element1 = Elem[operand, e, 64];
 Elem[result, e, 64] = element1 AND imm;

0 0 0 0 0 1 0 1 1 0 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3572
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3573
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.19 AND (predicates)

Bitwise AND active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

This instruction is used by the alias MOV (predicate, predicated, zeroing). See Alias conditions for details of when
each alias is preferred.

Encoding

AND <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);

Alias is preferred when

MOV (predicate, predicated, zeroing) S == '0' && Pn == Pm

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3574
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 AND element2, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3575
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.20 AND (vectors, predicated)

Bitwise AND active elements of the second source vector with corresponding elements of the first source vector
and destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

Encoding

AND <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element1 AND element2;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 1 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3576
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3577
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.21 AND (vectors, unpredicated)

Bitwise AND all elements of the second source vector with corresponding elements of the first source vector and
place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

AND <Zd>.D, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

 Z[d, VL] = operand1 AND operand2;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 0 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3578
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.22 ANDQV

Bitwise AND of the same element numbers from each 128-bit source vector segment, placing each result into the
corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the source vector
are treated as all ones.

SVE2

(FEAT_SVE2p1)

Encoding

ANDQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 1 1 1 1 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3579
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) dtmp;

 for e = 0 to elempersegment-1
 dtmp = Ones(esize);
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = dtmp AND Elem[stmp, e, esize];
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3580
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.23 ANDS

Bitwise AND active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

This instruction is used by the alias MOVS (predicated). See Alias conditions for details of when each alias is
preferred.

Encoding

ANDS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1

Alias is preferred when

MOVS (predicated) S == '1' && Pn == Pm

0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3581
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 AND element2, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3582
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.24 ANDV

Bitwise AND horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as all ones.

Encoding

ANDV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) result = Ones(esize);

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 result = result AND Elem[operand, e, esize];

0 0 0 0 0 1 0 0 size 0 1 1 0 1 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3583
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3584
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.25 ASR (immediate, predicated)

Shift right by immediate, preserving the sign bit, each active element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The immediate shift amount is an unsigned value in
the range 1 to number of bits per element. Inactive elements in the destination vector register remain unmodified.

Encoding

ASR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer PL = VL DIV 8;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = ASR(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 tszh 0 0 0 0 0 0 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3585
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3586
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.26 ASR (immediate, unpredicated)

Shift right by immediate, preserving the sign bit, each element of the source vector, and place the results in the
corresponding elements of the destination vector. The immediate shift amount is an unsigned value in the range 1
to number of bits per element. This instruction is unpredicated.

Encoding

ASR <Zd>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 Elem[result, e, esize] = ASR(element1, shift);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3587
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3588
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.27 ASR (vectors)

Shift right, preserving the sign bit, active elements of the first source vector by corresponding elements of the second
source vector and destructively place the results in the corresponding elements of the first source vector. The shift
amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the element
size. Inactive elements in the destination vector register remain unmodified.

Encoding

ASR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = ASR(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3589
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3590
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.28 ASR (wide elements, predicated)

Shift right, preserving the sign bit, active elements of the first source vector by corresponding overlapping 64-bit
elements of the second source vector and destructively place the results in the corresponding elements of the first
source vector. The shift amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant,
and not used modulo the destination element size. Inactive elements in the destination vector register remain
unmodified.

Encoding

ASR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = ASR(element1, shift);
 else

0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3591
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and destination element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3592
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.29 ASR (wide elements, unpredicated)

Shift right, preserving the sign bit, all elements of the first source vector by corresponding overlapping 64-bit
elements of the second source vector and place the first in the corresponding elements of the destination vector. The
shift amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used
modulo the destination element size. This instruction is unpredicated.

Encoding

ASR <Zd>.<T>, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = ASR(element1, shift);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3593
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3594
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.30 ASRD

Shift right by immediate, preserving the sign bit, each active element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The result rounds toward zero as in a signed division.
The immediate shift amount is an unsigned value in the range 1 to number of bits per element. Inactive elements in
the destination vector register remain unmodified.

Encoding

ASRD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element1 = SInt(Elem[operand1, e, esize]);
 if element1 < 0 then
 element1 = element1 + ((1 << shift) - 1);
 Elem[result, e, esize] = (element1 >> shift)<esize-1:0>;

0 0 0 0 0 1 0 0 tszh 0 0 0 1 0 0 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3595
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3596
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.31 ASRR

Reversed shift right, preserving the sign bit, active elements of the second source vector by corresponding elements
of the first source vector and destructively place the results in the corresponding elements of the first source vector.
The shift amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the
element size. Inactive elements in the destination vector register remain unmodified.

Encoding

ASRR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 integer shift = Min(UInt(element1), esize);
 Elem[result, e, esize] = ASR(element2, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3597
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3598
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.32 BCAX

Bitwise AND elements of the second source vector with the corresponding inverted elements of the third source
vector, then exclusive OR the results with corresponding elements of the first source vector. The final results are
destructively placed in the corresponding elements of the destination and first source vector. This instruction is
unpredicated.

Encoding

BCAX <Zdn>.D, <Zdn>.D, <Zm>.D, <Zk>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 integer m = UInt(Zm);
 integer k = UInt(Zk);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zk> Is the name of the third source scalable vector register, encoded in the "Zk" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[k, VL];

 Z[dn, VL] = operand1 EOR (operand2 AND NOT(operand3));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 1 1 Zm 0 0 1 1 1 0 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3599
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3600
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.33 BDEP

This instruction scatters the lowest-numbered contiguous bits within each element of the first source vector to the
bit positions indicated by non-zero bits in the corresponding mask element of the second source vector, preserving
their order, and set the bits corresponding to a zero mask bit to zero. This instruction is unpredicated.

ID_AA64ZFR0_EL1.BitPerm indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_BitPerm)

Encoding

BDEP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() || !HaveSVE2BitPerm() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) data = Z[n, VL];
 bits(VL) mask = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements - 1
 Elem[result, e, esize] = BitDeposit(Elem[data, e, esize], Elem[mask, e, esize]);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3601
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3602
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.34 BEXT

This instruction gathers bits in each element of the first source vector from the bit positions indicated by non-zero
bits in the corresponding mask element of the second source vector to the lowest-numbered contiguous bits of the
corresponding destination element, preserving their order, and sets the remaining higher-numbered bits to zero. This
instruction is unpredicated.

ID_AA64ZFR0_EL1.BitPerm indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_BitPerm)

Encoding

BEXT <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() || !HaveSVE2BitPerm() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) data = Z[n, VL];
 bits(VL) mask = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements - 1
 Elem[result, e, esize] = BitExtract(Elem[data, e, esize], Elem[mask, e, esize]);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3603
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3604
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.35 BFADD (predicated)

Add active BFloat16 elements of the second source vector to corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFADD <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFAdd(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3605
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3606
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.36 BFADD (unpredicated)

Add all BFloat16 elements of the second source vector to corresponding elements of the first source vector and place
the results in the corresponding elements of the destination vector.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFADD <Zd>.H, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFAdd(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 Zm 0 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3607
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.37 BFCLAMP

Clamp each BFloat16 element in the destination vector to between the BFloat16 minimum value in the
corresponding element of the first source vector and the BFloat16 maximum value in the corresponding element of
the second source vector and destructively place the clamped results in the corresponding elements of the
destination vector.

Regardless of the value of FPCR.AH, the behavior is as follows for each minimum number and maximum number
operation:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFCLAMP <Zd>.H, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(VL) result;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 1 0 0 1 0 0 0 0 1 Zm 0 0 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3608
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand3 = Z[d, VL];

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 Elem[result, e, 16] = BFMinNum(BFMaxNum(element1, element3, FPCR), element2, FPCR);
 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3609
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.38 BFCVT

Convert to BFloat16 from single-precision in each active floating-point element of the source vector, and place the
results in the corresponding elements of the destination vector. Inactive elements in the destination vector register
remain unmodified.

Since the result type is smaller than the input type, the results are zero-extended to fill each destination element.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFCVT <Zd>.H, <Pg>/M, <Zn>.S

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, 32) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 32) then
 bits(32) element = Elem[operand, e, 32];
 Elem[result, 2*e, 16] = FPConvertBF(element, FPCR);
 Elem[result, 2*e+1, 16] = Zeros(16);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3610
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3611
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.39 BFCVTNT

Convert to BFloat16 from single-precision in each active floating-point element of the source vector, and place the
results in the odd-numbered 16-bit elements of the destination vector, leaving the even-numbered elements
unchanged. Inactive elements in the destination vector register remain unmodified.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFCVTNT <Zd>.H, <Pg>/M, <Zn>.S

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, 32) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 32) then
 bits(32) element = Elem[operand, e, 32];
 Elem[result, 2*e+1, 16] = FPConvertBF(element, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3612
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.40 BFDOT (indexed)

This instruction delimits the source vectors into pairs of BFloat16 elements. The BFloat16 pairs within the second
source vector are specified using an immediate index which selects the same BFloat16 pair position within each
128-bit vector segment. The index range is from 0 to 3.

If FEAT_EBF16 is not implemented or FPCR.EBF is 0, this instruction:

• Performs an unfused sum-of-products of each pair of adjacent BFloat16 elements in the first source vector
with the specified pair of elements in the second vector. The intermediate single-precision products are
rounded before they are summed, and the intermediate sum is rounded before accumulation into the
single-precision destination element that overlaps with the corresponding pair of BFloat16 elements in the
first source vector.

• Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds
an overflow to an appropriately signed Infinity.

• Flushes denormalized inputs and results to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disables alternative floating point behaviors, as if FPCR.AH is 0.

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the first source vector with
the specified pair of elements in the second vector. The intermediate single-precision products are not
rounded before they are summed, but the intermediate sum is rounded before accumulation into the
single-precision destination element that overlaps with the corresponding pair of BFloat16 elements in the
first source vector.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as governed by
FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ.

Irrespective of FEAT_EBF16 and FPCR.EBF, this instruction:

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE, and
IOE) are all zero.

• Generates only the default NaN, as if FPCR.DN is 1.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);

0 1 1 0 0 1 0 0 0 1 1 i2 Zm 0 1 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3613
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer da = UInt(Zda);
 integer index = UInt(i2);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 constant integer eltspersegment = 128 DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];

 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3614
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.41 BFDOT (vectors)

This instruction delimits the source vectors into pairs of BFloat16 elements.

If FEAT_EBF16 is not implemented or FPCR.EBF is 0, this instruction:

• Performs an unfused sum-of-products of each pair of adjacent BFloat16 elements in the source vectors. The
intermediate single-precision products are rounded before they are summed, and the intermediate sum is
rounded before accumulation into the single-precision destination element that overlaps with the
corresponding pair of BFloat16 elements in the source vectors.

• Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds
an overflow to an appropriately signed Infinity.

• Flushes denormalized inputs and results to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disables alternative floating point behaviors, as if FPCR.AH is 0.

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the source vectors. The
intermediate single-precision products are not rounded before they are summed, but the intermediate sum is
rounded before accumulation into the single-precision destination element that overlaps with the
corresponding pair of BFloat16 elements in the source vectors.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as governed by
FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ.

Irrespective of FEAT_EBF16 and FPCR.EBF, this instruction:

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE, and
IOE) are all zero.

• Generates only the default NaN, as if FPCR.DN is 1.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFDOT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

0 1 1 0 0 1 0 0 0 1 1 Zm 1 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3615
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];

 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3616
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.42 BFMAX

Determine the maximum of active BFloat16 elements of the second source vector and corresponding BFloat16
elements of the first source vector and destructively place the results in the corresponding elements of the first
source vector.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Inactive elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMAX <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];

0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3617
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFMax(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3618
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.43 BFMAXNM

Determine the maximum number value of active BFloat16 elements of the second source vector and corresponding
BFloat16 elements of the first source vector and destructively place the results in the corresponding elements of the
first source vector.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

Inactive elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMAXNM <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3619
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFMaxNum(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3620
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.44 BFMIN

Determine the minimum of active BFloat16 elements of the second source vector and corresponding BFloat16
elements of the first source vector and destructively place the results in the corresponding elements of the first
source vector.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Inactive elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMIN <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];

0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3621
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFMin(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3622
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.45 BFMINNM

Determine the minimum number value of active BFloat16 elements of the second source vector and corresponding
BFloat16 elements of the first source vector and destructively place the results in the corresponding elements of the
first source vector.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

Inactive elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMINNM <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3623
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFMinNum(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3624
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.46 BFMLA (indexed)

Multiply all BFloat16 elements within each 128-bit segment of the first source vector by the specified element in
the corresponding second source vector segment. The products are then destructively added without intermediate
rounding to the corresponding elements of the addend and destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to 7.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 constant integer eltspersegment = 128 DIV 16;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;

0 1 1 0 0 1 0 0 0 1 i3l Zm 0 0 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

op

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3625
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(16) element3 = Elem[result, e, 16];
 if op1_neg then element1 = BFNeg(element1);
 if op3_neg then element3 = BFNeg(element3);
 Elem[result, e, 16] = BFMulAdd(element3, element1, element2, FPCR);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3626
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.47 BFMLA (vectors)

Multiply the corresponding active BFloat16 elements of the first and second source vectors and add to elements of
the third source (addend) vector without intermediate rounding. Destructively place the results in the destination
and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMLA <Zda>.H, <Pg>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, 16) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];

0 1 1 0 0 1 0 1 0 0 1 Zm 0 0 0 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

op

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3627
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if op1_neg then element1 = BFNeg(element1);
 if op3_neg then element3 = BFNeg(element3);
 Elem[result, e, 16] = BFMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, 16] = Elem[operand3, e, 16];

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3628
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.48 BFMLALB (indexed)

This BFloat16 floating-point multiply-add long instruction widens the even-numbered BFloat16 elements in the
first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to
single-precision format and then destructively multiplies and adds these values without intermediate rounding to the
single-precision elements of the destination vector that overlap with the corresponding BFloat16 elements in the
first source vector. This instruction is unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 constant integer eltspersegment = 128 DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + 0, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 i3h Zm 0 1 0 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3629
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3630
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.49 BFMLALB (vectors)

This BFloat16 floating-point multiply-add long instruction widens the even-numbered BFloat16 elements in the
first source vector and the corresponding elements in the second source vector to single-precision format and then
destructively multiplies and adds these values without intermediate rounding to the single-precision elements of the
destination vector that overlap with the corresponding BFloat16 elements in the source vectors. This instruction is
unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFMLALB <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + 0, 16];
 bits(16) element2 = Elem[operand2, 2 * e + 0, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 Zm 1 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3631
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3632
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.50 BFMLALT (indexed)

This BFloat16 floating-point multiply-add long instruction widens the odd-numbered BFloat16 elements in the first
source vector and the indexed element from the corresponding 128-bit segment in the second source vector to
single-precision format and then destructively multiplies and adds these values without intermediate rounding to the
single-precision elements of the destination vector that overlap with the corresponding BFloat16 elements in the
first source vector. This instruction is unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 constant integer eltspersegment = 128 DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + 1, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 i3h Zm 0 1 0 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3633
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3634
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.51 BFMLALT (vectors)

This BFloat16 floating-point multiply-add long instruction widens the odd-numbered BFloat16 elements in the first
source vector and the corresponding elements in the second source vector to single-precision format and then
destructively multiplies and adds these values without intermediate rounding to the single-precision elements of the
destination vector that overlap with the corresponding BFloat16 elements in the source vectors. This instruction is
unpredicated.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE

(FEAT_BF16)

Encoding

BFMLALT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + 1, 16];
 bits(16) element2 = Elem[operand2, 2 * e + 1, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 Zm 1 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3635
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3636
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.52 BFMLS (indexed)

Multiply all BFloat16 elements within each 128-bit segment of the first source vector by the specified element in
the corresponding second source vector segment. The products are then destructively subtracted without
intermediate rounding from the corresponding elements of the addend and destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to 7.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMLS <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 constant integer eltspersegment = 128 DIV 16;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;

0 1 1 0 0 1 0 0 0 1 i3l Zm 0 0 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

op

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3637
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(16) element3 = Elem[result, e, 16];
 if op1_neg then element1 = BFNeg(element1);
 if op3_neg then element3 = BFNeg(element3);
 Elem[result, e, 16] = BFMulAdd(element3, element1, element2, FPCR);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3638
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.53 BFMLS (vectors)

Multiply the corresponding active BFloat16 elements of the first and second source vectors and subtract from
elements of the third source (addend) vector without intermediate rounding. Destructively place the results in the
destination and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMLS <Zda>.H, <Pg>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, 16) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];

0 1 1 0 0 1 0 1 0 0 1 Zm 0 0 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

op

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3639
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if op1_neg then element1 = BFNeg(element1);
 if op3_neg then element3 = BFNeg(element3);
 Elem[result, e, 16] = BFMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, 16] = Elem[operand3, e, 16];

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3640
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.54 BFMLSLB (indexed)

This BFloat16 floating-point multiply-subtract long instruction widens the even-numbered BFloat16 elements in
the first source vector and the indexed element from the corresponding 128-bit segment in the second source vector
to single-precision format and then destructively multiplies and subtracts these values without intermediate
rounding from the single-precision elements of the destination vector that overlap with the corresponding BFloat16
elements in the first source vector. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

BFMLSLB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 constant integer eltspersegment = 128 DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + 0, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if op1_neg then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 i3h Zm 0 1 1 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3641
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3642
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.55 BFMLSLB (vectors)

This BFloat16 floating-point multiply-subtract long instruction widens the even-numbered BFloat16 elements in
the first source vector and the corresponding elements in the second source vector to single-precision format and
then destructively multiplies and subtracts these values without intermediate rounding from the single-precision
elements of the destination vector that overlap with the corresponding BFloat16 elements in the source vectors. This
instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

BFMLSLB <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + 0, 16];
 bits(16) element2 = Elem[operand2, 2 * e + 0, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if op1_neg then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 Zm 1 0 1 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3643
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3644
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.56 BFMLSLT (indexed)

This BFloat16 floating-point multiply-subtract long instruction widens the odd-numbered BFloat16 elements in the
first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to
single-precision format and then destructively multiplies and subtracts these values without intermediate rounding
from the single-precision elements of the destination vector that overlap with the corresponding BFloat16 elements
in the first source vector. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

BFMLSLT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 constant integer eltspersegment = 128 DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + 1, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if op1_neg then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 i3h Zm 0 1 1 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3645
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3646
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.57 BFMLSLT (vectors)

This BFloat16 floating-point multiply-subtract long instruction widens the odd-numbered BFloat16 elements in the
first source vector and the corresponding elements in the second source vector to single-precision format and then
destructively multiplies and subtracts these values without intermediate rounding from the single-precision
elements of the destination vector that overlap with the corresponding BFloat16 elements in the source vectors. This
instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

BFMLSLT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + 1, 16];
 bits(16) element2 = Elem[operand2, 2 * e + 1, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if op1_neg then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 Zm 1 0 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3647
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3648
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.58 BFMMLA

If FEAT_EBF16 is not implemented or FPCR.EBF is 0, this instruction:

• Performs two unfused sums-of-products within each two pairs of adjacent BFloat16 elements while
multiplying the 2×4 matrix of BFloat16 values held in each 128-bit segment of the first source vector by the
4×2 matrix of BFloat16 values in the corresponding segment of the second source vector. The intermediate
single-precision products are rounded before they are summed and the intermediate sum is rounded before
accumulation into the 2×2 single-precision matrix in the corresponding segment of the destination vector.
This is equivalent to accumulating two 2-way unfused dot products per destination element.

• Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds
an overflow to an appropriately signed Infinity.

• Flushes denormalized inputs and results to zero, as if FPCR.{FZ, FIZ} is {1, 1}.

• Disables alternative floating point behaviors, as if FPCR.AH is 0.

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs two fused sums-of-products within each two pairs of adjacent BFloat16 elements while multiplying
the 2×4 matrix of BFloat16 values held in each 128-bit segment of the first source vector by the 4×2 matrix
of BFloat16 values in the corresponding segment of the second source vector. The intermediate
single-precision products are not rounded before they are summed, but the intermediate sum is rounded
before accumulation into the 2×2 single-precision matrix in the corresponding segment of the destination
vector. This is equivalent to accumulating two 2-way fused dot products per destination element.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as governed by
FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ.

Irrespective of FEAT_EBF16 and FPCR.EBF, this instruction:

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE, and
IOE) are all zero.

• Generates only the default NaN, as if FPCR.DN is 1.

This instruction is unpredicated and vector length agnostic.

ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_BF16)

Encoding

BFMMLA <Zda>.S, <Zn>.H, <Zm>.H

0 1 1 0 0 1 0 0 0 1 1 Zm 1 1 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3649
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;
 bits(128) op1, op2;
 bits(128) res, addend;

 for s = 0 to segments-1
 op1 = Elem[operand1, s, 128];
 op2 = Elem[operand2, s, 128];
 addend = Elem[operand3, s, 128];
 res = BFMatMulAdd(addend, op1, op2, FPCR);
 Elem[result, s, 128] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3650
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.59 BFMUL (indexed)

Multiply all BFloat16 elements within each 128-bit segment of the first source vector by the specified element in
the corresponding second source vector segment and place the results in the corresponding elements of the
destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to 7.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMUL <Zd>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 constant integer eltspersegment = 128 DIV 16;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, s, 16];

0 1 1 0 0 1 0 0 0 1 i3l Zm 0 0 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3651
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, 16] = BFMul(element1, element2, FPCR);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3652
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.60 BFMUL (vectors, predicated)

Multiply active BFloat16 elements of the second source vector to corresponding elements of the first source vector
and destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMUL <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFMul(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3653
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3654
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.61 BFMUL (vectors, unpredicated)

Multiply all BFloat16 elements of the second source vector to corresponding elements of the first source vector and
place the results in the corresponding elements of the destination vector.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFMUL <Zd>.H, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFMul(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 Zm 0 0 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3655
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.62 BFSUB (predicated)

Subtract active BFloat16 elements of the second source vector from corresponding BFloat16 elements of the first
source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFSUB <Zdn>.H, <Pg>/M, <Zdn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 16;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, 16) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 if ActivePredicateElement(mask, e, 16) then
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFSub(element1, element2, FPCR);
 else
 Elem[result, e, 16] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3656
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3657
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.63 BFSUB (unpredicated)

Subtract all BFloat16 elements of the second source vector from corresponding BFloat16 elements of the first
source vector and place the results in the corresponding elements of the destination vector.

This instruction follows SVE2.1 non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.B16B16 indicates whether this instruction is implemented.

SVE2

(FEAT_SVE_B16B16)

Encoding

BFSUB <Zd>.H, <Zn>.H, <Zm>.H

Decode for this encoding

 if (!HaveSVE2() && !HaveSME2()) || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFSub(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 Zm 0 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3658
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.64 BGRP

This instruction separates bits in each element of the first source vector by gathering from the bit positions indicated
by non-zero bits in the corresponding mask element of the second source vector to the lowest-numbered contiguous
bits of the corresponding destination element, and from positions indicated by zero bits to the highest-numbered bits
of the destination element, preserving the bit order within each group. This instruction is unpredicated.

ID_AA64ZFR0_EL1.BitPerm indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_BitPerm)

Encoding

BGRP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() || !HaveSVE2BitPerm() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) data = Z[n, VL];
 bits(VL) mask = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements - 1
 Elem[result, e, esize] = BitGroup(Elem[data, e, esize], Elem[mask, e, esize]);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3659
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3660
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.65 BIC (immediate)

Bitwise clear bits using immediate with each 64-bit element of the source vector, and destructively place the results
in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of
ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is a pseudo-instruction of the AND (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of AND (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of AND (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

BIC <Zdn>.<T>, <Zdn>.<T>, #<const>

 is equivalent to

AND <Zdn>.<T>, <Zdn>.<T>, #(-<const> - 1)

and is never the preferred disassembly.

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of AND (immediate) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 1 0 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3661
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3662
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.66 BIC (predicates)

Bitwise AND inverted active elements of the second source predicate with corresponding elements of the first
source predicate and place the results in the corresponding elements of the destination predicate. Inactive elements
in the destination predicate register are set to zero. Does not set the condition flags.

Encoding

BIC <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 AND (NOT element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 0 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3663
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3664
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.67 BIC (vectors, predicated)

Bitwise AND inverted active elements of the second source vector with corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements
in the destination vector register remain unmodified.

Encoding

BIC <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element1 AND (NOT element2);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 1 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3665
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3666
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.68 BIC (vectors, unpredicated)

Bitwise AND inverted all elements of the second source vector with corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

BIC <Zd>.D, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

 Z[d, VL] = operand1 AND (NOT operand2);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 1 1 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3667
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.69 BICS

Bitwise AND inverted active elements of the second source predicate with corresponding elements of the first
source predicate and place the results in the corresponding elements of the destination predicate. Inactive elements
in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on
the predicate result, and the V flag to zero.

Encoding

BICS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 AND (NOT element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 0 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3668
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3669
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.70 BRKA

Sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register remain unmodified or are set to
zero, depending on whether merging or zeroing predication is selected. Does not set the condition flags.

Encoding

BRKA <Pd>.B, <Pg>/<ZM>, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer d = UInt(Pd);
 boolean merging = (M == '1');
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<ZM> Is the predication qualifier, encoded in the "M" field. It can have the following values:

Z when M = 0

M when M = 1

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand = P[n, PL];
 bits(PL) operand2 = P[d, PL];
 boolean break = FALSE;
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean element = ActivePredicateElement(operand, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 bit pbit = if !break then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 break = break || element;
 elsif merging then
 bit pbit = PredicateElement(operand2, e, esize);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else

0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 Pg 0 Pn M Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

B S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3670
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3671
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.71 BRKAS

Sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST
(N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

Encoding

BRKAS <Pd>.B, <Pg>/Z, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer d = UInt(Pd);
 boolean merging = FALSE;
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand = P[n, PL];
 bits(PL) operand2 = P[d, PL];
 boolean break = FALSE;
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean element = ActivePredicateElement(operand, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 bit pbit = if !break then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 break = break || element;
 elsif merging then
 bit pbit = PredicateElement(operand2, e, esize);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then

0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

B S M
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3672
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3673
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.72 BRKB

Sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register remain unmodified or are set to
zero, depending on whether merging or zeroing predication is selected. Does not set the condition flags.

Encoding

BRKB <Pd>.B, <Pg>/<ZM>, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer d = UInt(Pd);
 boolean merging = (M == '1');
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<ZM> Is the predication qualifier, encoded in the "M" field. It can have the following values:

Z when M = 0

M when M = 1

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand = P[n, PL];
 bits(PL) operand2 = P[d, PL];
 boolean break = FALSE;
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean element = ActivePredicateElement(operand, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 break = break || element;
 bit pbit = if !break then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 elsif merging then
 bit pbit = PredicateElement(operand2, e, esize);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else

0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 Pg 0 Pn M Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

B S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3674
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3675
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.73 BRKBS

Sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST
(N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

Encoding

BRKBS <Pd>.B, <Pg>/Z, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer d = UInt(Pd);
 boolean merging = FALSE;
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand = P[n, PL];
 bits(PL) operand2 = P[d, PL];
 boolean break = FALSE;
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean element = ActivePredicateElement(operand, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 break = break || element;
 bit pbit = if !break then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 elsif merging then
 bit pbit = PredicateElement(operand2, e, esize);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then

0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

B S M
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3676
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3677
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.74 BRKN

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
leaves the destination and second source predicate unchanged. Does not set the condition flags.

Encoding

BRKN <Pdm>.B, <Pg>/Z, <Pn>.B, <Pdm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer dm = UInt(Pdm);
 boolean setflags = FALSE;

Assembler symbols

<Pdm> Is the name of the second source and destination scalable predicate register, encoded in the "Pdm"
field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[dm, PL];
 bits(PL) result;

 if LastActive(mask, operand1, 8) == '1' then
 result = operand2;
 else
 result = Zeros(PL);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(Ones(PL), result, 8);
 P[dm, PL] = result;

0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 Pg 0 Pn 0 Pdm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3678
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.75 BRKNS

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
leaves the destination and second source predicate unchanged. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

BRKNS <Pdm>.B, <Pg>/Z, <Pn>.B, <Pdm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer dm = UInt(Pdm);
 boolean setflags = TRUE;

Assembler symbols

<Pdm> Is the name of the second source and destination scalable predicate register, encoded in the "Pdm"
field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[dm, PL];
 bits(PL) result;

 if LastActive(mask, operand1, 8) == '1' then
 result = operand2;
 else
 result = Zeros(PL);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(Ones(PL), result, 8);
 P[dm, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 Pg 0 Pn 0 Pdm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3679
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.76 BRKPA

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

Encoding

BRKPA <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 boolean last = (LastActive(mask, operand1, 8) == '1');

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 8) then
 bit pbit = if last then '1' else '0';
 Elem[result, e, 1] = ZeroExtend(pbit, 1);
 last = last && (!ActivePredicateElement(operand2, e, 8));
 else
 Elem[result, e, 1] = ZeroExtend('0', 1);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 0 0 0 0 Pm 1 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3680
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.77 BRKPAS

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST
(N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

Encoding

BRKPAS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 boolean last = (LastActive(mask, operand1, 8) == '1');

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 8) then
 bit pbit = if last then '1' else '0';
 Elem[result, e, 1] = ZeroExtend(pbit, 1);
 last = last && (!ActivePredicateElement(operand2, e, 8));
 else
 Elem[result, e, 1] = ZeroExtend('0', 1);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 0 1 0 0 Pm 1 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3681
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3682
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.78 BRKPB

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

Encoding

BRKPB <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 boolean last = (LastActive(mask, operand1, 8) == '1');

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 8) then
 last = last && (!ActivePredicateElement(operand2, e, 8));
 bit pbit = if last then '1' else '0';
 Elem[result, e, 1] = ZeroExtend(pbit, 1);
 else
 Elem[result, e, 1] = ZeroExtend('0', 1);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 0 0 0 0 Pm 1 1 Pg 0 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3683
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.79 BRKPBS

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST
(N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

Encoding

BRKPBS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 boolean last = (LastActive(mask, operand1, 8) == '1');

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 8) then
 last = last && (!ActivePredicateElement(operand2, e, 8));
 bit pbit = if last then '1' else '0';
 Elem[result, e, 1] = ZeroExtend(pbit, 1);
 else
 Elem[result, e, 1] = ZeroExtend('0', 1);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 0 1 0 0 Pm 1 1 Pg 0 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3684
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3685
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.80 BSL

Selects bits from the first source vector where the corresponding bit in the third source vector is '1', and from the
second source vector where the corresponding bit in the third source vector is '0'. The result is placed destructively
in the destination and first source vector. This instruction is unpredicated.

Encoding

BSL <Zdn>.D, <Zdn>.D, <Zm>.D, <Zk>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 integer m = UInt(Zm);
 integer k = UInt(Zk);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zk> Is the name of the third source scalable vector register, encoded in the "Zk" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[k, VL];

 Z[dn, VL] = (operand1 AND operand3) OR (operand2 AND NOT(operand3));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

0 0 0 0 0 1 0 0 0 0 1 Zm 0 0 1 1 1 1 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3686
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3687
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.81 BSL1N

Selects bits from the inverted first source vector where the corresponding bit in the third source vector is '1', and
from the second source vector where the corresponding bit in the third source vector is '0'. The result is placed
destructively in the destination and first source vector. This instruction is unpredicated.

Encoding

BSL1N <Zdn>.D, <Zdn>.D, <Zm>.D, <Zk>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 integer m = UInt(Zm);
 integer k = UInt(Zk);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zk> Is the name of the third source scalable vector register, encoded in the "Zk" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[k, VL];

 Z[dn, VL] = (NOT(operand1) AND operand3) OR (operand2 AND NOT(operand3));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

0 0 0 0 0 1 0 0 0 1 1 Zm 0 0 1 1 1 1 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3688
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3689
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.82 BSL2N

Selects bits from the first source vector where the corresponding bit in the third source vector is '1', and from the
inverted second source vector where the corresponding bit in the third source vector is '0'. The result is placed
destructively in the destination and first source vector. This instruction is unpredicated.

Encoding

BSL2N <Zdn>.D, <Zdn>.D, <Zm>.D, <Zk>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 integer m = UInt(Zm);
 integer k = UInt(Zk);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zk> Is the name of the third source scalable vector register, encoded in the "Zk" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[k, VL];

 Z[dn, VL] = (operand1 AND operand3) OR (NOT(operand2) AND NOT(operand3));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

0 0 0 0 0 1 0 0 1 0 1 Zm 0 0 1 1 1 1 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3690
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3691
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.83 CADD

Add the real and imaginary components of the integral complex numbers from the first source vector to the complex
numbers from the second source vector which have first been rotated by 90 or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, when considered in polar representation, equivalent to
multiplying the complex numbers in the second source vector by ±J beforehand. Destructively place the results in
the corresponding elements of the first source vector. This instruction is unpredicated.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

Encoding

CADD <Zdn>.<T>, <Zdn>.<T>, <Zm>.<T>, <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);
 boolean sub_i = (rot == '0');
 boolean sub_r = (rot == '1');

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#90 when rot = 0

#270 when rot = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for p = 0 to pairs-1
 integer acc_r = SInt(Elem[operand1, 2 * p + 0, esize]);

0 1 0 0 0 1 0 1 size 0 0 0 0 0 0 1 1 0 1 1 rot Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3692
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer acc_i = SInt(Elem[operand1, 2 * p + 1, esize]);
 integer elt2_r = SInt(Elem[operand2, 2 * p + 0, esize]);
 integer elt2_i = SInt(Elem[operand2, 2 * p + 1, esize]);
 if sub_i then
 acc_r = acc_r - elt2_i;
 acc_i = acc_i + elt2_r;
 if sub_r then
 acc_r = acc_r + elt2_i;
 acc_i = acc_i - elt2_r;

 Elem[result, 2 * p + 0, esize] = acc_r<esize-1:0>;
 Elem[result, 2 * p + 1, esize] = acc_i<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3693
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.84 CDOT (indexed)

The complex integer dot product instructions delimit the source vectors into pairs of 8-bit or 16-bit signed integer
complex numbers. Within each pair, the complex numbers in the first source vector are multiplied by the
corresponding complex numbers in the second source vector and the resulting wide real or wide imaginary part of
the product is accumulated into a 32-bit or 64-bit destination vector element which overlaps all four of the elements
that comprise a pair of complex number values in the first source vector.

As a result each instruction implicitly deinterleaves the real and imaginary components of their complex number
inputs, so that the destination vector accumulates 4×wide real sums or 4×wide imaginary sums.

The complex numbers in the second source vector are rotated by 0, 90, 180 or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, when considered in polar representation, by performing the
following transformations prior to the dot product operations:

• If the rotation is #0, the imaginary parts of the complex numbers in the second source vector are negated. The
destination vector therefore accumulates the real parts of a complex dot product.

• If the rotation is #90, the real and imaginary parts of the complex numbers the second source vector are
swapped. The destination vector therefore accumulates the imaginary parts of a complex dot product.

• If the rotation is #180, there is no transformation. The destination vector therefore accumulates the real parts
of a complex conjugate dot product.

• If the rotation is #270, the real parts of the complex numbers in the second source vector are negated and then
swapped with the imaginary parts. The destination vector therefore accumulates the imaginary parts of a
complex conjugate dot product.

The indexed form of these instructions select a single pair of complex numbers within each 128-bit segment of the
second source vector as the multiplier for all pairs of complex numbers within the corresponding 128-bit segment
of the first source vector. The complex number pairs within the second source vector are specified using an
immediate index which selects the same complex number pair position within each 128-bit vector segment. The
index range is from 0 to one less than the number of complex number pairs per 128-bit segment, encoded in 1 or 2
bits depending on the size of the complex number pair.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

32-bit

Encoding

CDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>], <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_i = (rot<0> == rot<1>);

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 1 0 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3694
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

CDOT <Zda>.D, <Zn>.H, <Zm>.H[<imm>], <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_i = (rot<0> == rot<1>);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the immediate index of a 32-bit group of four 8-bit values within each
128-bit vector segment, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the immediate index of a 64-bit group of four 16-bit values within each
128-bit vector segment, in the range 0 to 1, encoded in the "i1" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 1 0 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3695
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 1
 integer elt1_r = SInt(Elem[operand1, 4 * e + 2 * i + 0, esize DIV 4]);
 integer elt1_i = SInt(Elem[operand1, 4 * e + 2 * i + 1, esize DIV 4]);
 integer elt2_a = SInt(Elem[operand2, 4 * s + 2 * i + sel_a, esize DIV 4]);
 integer elt2_b = SInt(Elem[operand2, 4 * s + 2 * i + sel_b, esize DIV 4]);
 if sub_i then
 res = (res + (elt1_r * elt2_a)) - (elt1_i * elt2_b);
 else
 res = res + (elt1_r * elt2_a) + (elt1_i * elt2_b);
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3696
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.85 CDOT (vectors)

The complex integer dot product instructions delimit the source vectors into pairs of 8-bit or 16-bit signed integer
complex numbers. Within each pair, the complex numbers in the first source vector are multiplied by the
corresponding complex numbers in the second source vector and the resulting wide real or wide imaginary part of
the product is accumulated into a 32-bit or 64-bit destination vector element which overlaps all four of the elements
that comprise a pair of complex number values in the first source vector.

As a result each instruction implicitly deinterleaves the real and imaginary components of their complex number
inputs, so that the destination vector accumulates 4×wide real sums or 4×wide imaginary sums.

The complex numbers in the second source vector are rotated by 0, 90, 180 or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, when considered in polar representation, by performing the
following transformations prior to the dot product operations:

• If the rotation is #0, the imaginary parts of the complex numbers in the second source vector are negated. The
destination vector therefore accumulates the real parts of a complex dot product.

• If the rotation is #90, the real and imaginary parts of the complex numbers the second source vector are
swapped. The destination vector therefore accumulates the imaginary parts of a complex dot product.

• If the rotation is #180, there is no transformation. The destination vector therefore accumulates the real parts
of a complex conjugate dot product.

• If the rotation is #270, the real parts of the complex numbers in the second source vector are negated and then
swapped with the imaginary parts. The destination vector therefore accumulates the imaginary parts of a
complex conjugate dot product.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

Encoding

CDOT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>, <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_i = (rot<0> == rot<1>);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3697
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

B when size<0> = 0

H when size<0> = 1

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 1
 integer elt1_r = SInt(Elem[operand1, 4 * e + 2 * i + 0, esize DIV 4]);
 integer elt1_i = SInt(Elem[operand1, 4 * e + 2 * i + 1, esize DIV 4]);
 integer elt2_a = SInt(Elem[operand2, 4 * e + 2 * i + sel_a, esize DIV 4]);
 integer elt2_b = SInt(Elem[operand2, 4 * e + 2 * i + sel_b, esize DIV 4]);
 if sub_i then
 res = (res + (elt1_r * elt2_a)) - (elt1_i * elt2_b);
 else
 res = res + (elt1_r * elt2_a) + (elt1_i * elt2_b);
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3698
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.86 CLASTA (scalar)

From the source vector register extract the element after the last active element, or if the last active element is the
final element extract element zero, and then zero-extend that element to destructively place in the destination and
first source general-purpose register. If there are no active elements then destructively zero-extend the least
significant element-size bits of the destination and first source general-purpose register.

Encoding

CLASTA <R><dn>, <Pg>, <R><dn>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Rdn);
 integer m = UInt(Zm);
 constant integer csize = if esize < 64 then 32 else 64;
 boolean isBefore = FALSE;

Assembler symbols

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<dn> Is the number [0-30] of the source and destination general-purpose register or the name ZR (31),
encoded in the "Rdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(esize) operand1 = X[dn, esize];
 bits(VL) operand2 = Z[m, VL];
 bits(csize) result;
 integer last = LastActiveElement(mask, esize);

0 0 0 0 0 1 0 1 size 1 1 0 0 0 0 1 0 1 Pg Zm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3699
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if last < 0 then
 result = ZeroExtend(operand1, csize);
 else
 if !isBefore then
 last = last + 1;
 if last >= elements then last = 0;
 result = ZeroExtend(Elem[operand2, last, esize], csize);

 X[dn, csize] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3700
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.87 CLASTA (SIMD&FP scalar)

From the source vector register extract the element after the last active element, or if the last active element is the
final element extract element zero, and then zero-extend that element to destructively place in the destination and
first source SIMD & floating-point scalar register. If there are no active elements then destructively zero-extend the
least significant element-size bits of the destination and first source SIMD & floating-point scalar register.

Encoding

CLASTA <V><dn>, <Pg>, <V><dn>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Vdn);
 integer m = UInt(Zm);
 boolean isBefore = FALSE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<dn> Is the number [0-31] of the source and destination SIMD&FP register, encoded in the "Vdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(esize) operand1 = V[dn, esize];
 bits(VL) operand2 = Z[m, VL];
 bits(esize) result;
 integer last = LastActiveElement(mask, esize);

0 0 0 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 Pg Zm Vdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3701
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if last < 0 then
 result = ZeroExtend(operand1, esize);
 else
 if !isBefore then
 last = last + 1;
 if last >= elements then last = 0;
 result = Elem[operand2, last, esize];

 V[dn, esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3702
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.88 CLASTA (vectors)

From the second source vector register extract the element after the last active element, or if the last active element
is the final element extract element zero, and then replicate that element to destructively fill the destination and first
source vector.

If there are no active elements then leave the destination and source vector unmodified.

Encoding

CLASTA <Zdn>.<T>, <Pg>, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean isBefore = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;
 integer last = LastActiveElement(mask, esize);

 if last < 0 then
 result = operand1;
 else
 if !isBefore then
 last = last + 1;
 if last >= elements then last = 0;
 for e = 0 to elements-1

0 0 0 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3703
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand2, last, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3704
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.89 CLASTB (scalar)

From the source vector register extract the last active element, and then zero-extend that element to destructively
place in the destination and first source general-purpose register. If there are no active elements then destructively
zero-extend the least significant element-size bits of the destination and first source general-purpose register.

Encoding

CLASTB <R><dn>, <Pg>, <R><dn>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Rdn);
 integer m = UInt(Zm);
 constant integer csize = if esize < 64 then 32 else 64;
 boolean isBefore = TRUE;

Assembler symbols

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<dn> Is the number [0-30] of the source and destination general-purpose register or the name ZR (31),
encoded in the "Rdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(esize) operand1 = X[dn, esize];
 bits(VL) operand2 = Z[m, VL];
 bits(csize) result;
 integer last = LastActiveElement(mask, esize);

0 0 0 0 0 1 0 1 size 1 1 0 0 0 1 1 0 1 Pg Zm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3705
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if last < 0 then
 result = ZeroExtend(operand1, csize);
 else
 if !isBefore then
 last = last + 1;
 if last >= elements then last = 0;
 result = ZeroExtend(Elem[operand2, last, esize], csize);

 X[dn, csize] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3706
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.90 CLASTB (SIMD&FP scalar)

From the source vector register extract the last active element, and then zero-extend that element to destructively
place in the destination and first source SIMD & floating-point scalar register. If there are no active elements then
destructively zero-extend the least significant element-size bits of the destination and first source SIMD &
floating-point scalar register.

Encoding

CLASTB <V><dn>, <Pg>, <V><dn>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Vdn);
 integer m = UInt(Zm);
 boolean isBefore = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<dn> Is the number [0-31] of the source and destination SIMD&FP register, encoded in the "Vdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(esize) operand1 = V[dn, esize];
 bits(VL) operand2 = Z[m, VL];
 bits(esize) result;
 integer last = LastActiveElement(mask, esize);

0 0 0 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 Pg Zm Vdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3707
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if last < 0 then
 result = ZeroExtend(operand1, esize);
 else
 if !isBefore then
 last = last + 1;
 if last >= elements then last = 0;
 result = Elem[operand2, last, esize];

 V[dn, esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3708
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.91 CLASTB (vectors)

From the second source vector register extract the last active element, and then replicate that element to
destructively fill the destination and first source vector.

If there are no active elements then leave the destination and source vector unmodified.

Encoding

CLASTB <Zdn>.<T>, <Pg>, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean isBefore = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;
 integer last = LastActiveElement(mask, esize);

 if last < 0 then
 result = operand1;
 else
 if !isBefore then
 last = last + 1;
 if last >= elements then last = 0;
 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[operand2, last, esize];

0 0 0 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3709
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3710
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.92 CLS

Count the number of consecutive sign bits, starting from the most significant bit in each active element of the source
vector, and place the results in the corresponding elements of the destination vector. Inactive elements in the
destination vector register remain unmodified.

Encoding

CLS <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = CountLeadingSignBits(element)<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3711
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3712
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.93 CLZ

Count the number of consecutive binary zero bits, starting from the most significant bit in each active element of
the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in
the destination vector register remain unmodified.

Encoding

CLZ <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = CountLeadingZeroBits(element)<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3713
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3714
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.94 CMLA (indexed)

Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270,
of the integral numbers in each 128-bit segment of the first source vector by the specified complex number in the
corresponding the second source vector segment rotated by 0, 90, 180 or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, when considered in polar representation.

Then add the products to the corresponding components of the complex numbers in the addend vector. Destructively
place the results in the corresponding elements of the addend vector. This instruction is unpredicated.

These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

16-bit

Encoding

CMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>], <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_r = (rot<0> != rot<1>);
 boolean sub_i = (rot<1> == '1');

32-bit

Encoding

CMLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>], <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i1);

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 1 1 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 1 1 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3715
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_r = (rot<0> != rot<1>);
 boolean sub_i = (rot<1> == '1');

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 32-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 32-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 constant integer pairspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for p = 0 to pairs-1
 integer segmentbase = p - (p MOD pairspersegment);
 integer s = segmentbase + index;
 integer elt1_a = SInt(Elem[operand1, 2 * p + sel_a, esize]);
 integer elt2_a = SInt(Elem[operand2, 2 * s + sel_a, esize]);
 integer elt2_b = SInt(Elem[operand2, 2 * s + sel_b, esize]);
 bits(esize) elt3_r = Elem[operand3, 2 * p + 0, esize];
 bits(esize) elt3_i = Elem[operand3, 2 * p + 1, esize];
 integer product_r = elt1_a * elt2_a;
 integer product_i = elt1_a * elt2_b;
 if sub_r then
 Elem[result, 2 * p + 0, esize] = elt3_r - product_r;
 else
 Elem[result, 2 * p + 0, esize] = elt3_r + product_r;
 if sub_i then
 Elem[result, 2 * p + 1, esize] = elt3_i - product_i;
 else
 Elem[result, 2 * p + 1, esize] = elt3_i + product_i;

 Z[da, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3716
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3717
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.95 CMLA (vectors)

Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270,
of the integral numbers in the first source vector by the corresponding complex number in the second source vector
rotated by 0, 90, 180 or 270 degrees in the direction from the positive real axis towards the positive imaginary axis,
when considered in polar representation.

Then add the products to the corresponding components of the complex numbers in the addend vector. Destructively
place the results in the corresponding elements of the addend vector. This instruction is unpredicated.

These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

Encoding

CMLA <Zda>.<T>, <Zn>.<T>, <Zm>.<T>, <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_r = (rot<0> != rot<1>);
 boolean sub_i = (rot<1> == '1');

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

0 1 0 0 0 1 0 0 size 0 Zm 0 0 1 0 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3718
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for p = 0 to pairs-1
 integer elt1_a = SInt(Elem[operand1, 2 * p + sel_a, esize]);
 integer elt2_a = SInt(Elem[operand2, 2 * p + sel_a, esize]);
 integer elt2_b = SInt(Elem[operand2, 2 * p + sel_b, esize]);
 bits(esize) elt3_r = Elem[operand3, 2 * p + 0, esize];
 bits(esize) elt3_i = Elem[operand3, 2 * p + 1, esize];
 integer product_r = elt1_a * elt2_a;
 integer product_i = elt1_a * elt2_b;
 if sub_r then
 Elem[result, 2 * p + 0, esize] = elt3_r - product_r;
 else
 Elem[result, 2 * p + 0, esize] = elt3_r + product_r;
 if sub_i then
 Elem[result, 2 * p + 1, esize] = elt3_i - product_i;
 else
 Elem[result, 2 * p + 1, esize] = elt3_i + product_i;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3719
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.96 CMP<cc> (immediate)

Compare active integer elements in the source vector with an immediate, and place the boolean results of the
specified comparison in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate
result, and the V flag to zero.

Equal

Encoding

CMPEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_EQ;
 integer imm = SInt(imm5);
 boolean unsigned = FALSE;

Greater than

<cc> Comparison

EQ equal

GE signed greater than or equal

GT signed greater than

HI unsigned higher than

HS unsigned higher than or same

LE signed less than or equal

LO unsigned lower than

LS unsigned lower than or same

LT signed less than

NE not equal

0 0 1 0 0 1 0 1 size 0 imm5 1 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne

0 0 1 0 0 1 0 1 size 0 imm5 0 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3720
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;
 integer imm = SInt(imm5);
 boolean unsigned = FALSE;

Greater than or equal

Encoding

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;
 integer imm = SInt(imm5);
 boolean unsigned = FALSE;

Higher

Encoding

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;
 integer imm = UInt(imm7);
 boolean unsigned = TRUE;

0 0 1 0 0 1 0 1 size 0 imm5 0 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

lt ne

0 0 1 0 0 1 0 0 size 1 imm7 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 14 13 12 10 9 5 4 3 0

lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3721
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Higher or same

Encoding

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;
 integer imm = UInt(imm7);
 boolean unsigned = TRUE;

Less than

Encoding

CMPLT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LT;
 integer imm = SInt(imm5);
 boolean unsigned = FALSE;

Less than or equal

Encoding

CMPLE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);

0 0 1 0 0 1 0 0 size 1 imm7 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 14 13 12 10 9 5 4 3 0

lt ne

0 0 1 0 0 1 0 1 size 0 imm5 0 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

lt ne

0 0 1 0 0 1 0 1 size 0 imm5 0 0 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3722
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LE;
 integer imm = SInt(imm5);
 boolean unsigned = FALSE;

Lower

Encoding

CMPLO <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LT;
 integer imm = UInt(imm7);
 boolean unsigned = TRUE;

Lower or same

Encoding

CMPLS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LE;
 integer imm = UInt(imm7);
 boolean unsigned = TRUE;

Not equal

0 0 1 0 0 1 0 0 size 1 imm7 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 14 13 12 10 9 5 4 3 0

lt ne

0 0 1 0 0 1 0 0 size 1 imm7 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 14 13 12 10 9 5 4 3 0

lt ne

0 0 1 0 0 1 0 1 size 0 imm5 1 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3723
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

CMPNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_NE;
 integer imm = SInt(imm5);
 boolean unsigned = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> For the equal, greater than, greater than or equal, less than, less than or equal and not equal variant:
is the signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

For the higher, higher or same, lower and lower or same variant: is the unsigned immediate operand,
in the range 0 to 127, encoded in the "imm7" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 boolean cond;
 case op of
 when Cmp_EQ cond = element1 == imm;
 when Cmp_NE cond = element1 != imm;
 when Cmp_GE cond = element1 >= imm;
 when Cmp_LT cond = element1 < imm;
 when Cmp_GT cond = element1 > imm;
 when Cmp_LE cond = element1 <= imm;
 bit pbit = if cond then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3724
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3725
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.97 CMP<cc> (vectors)

Compare active integer elements in the first source vector with corresponding elements in the second source vector,
and place the boolean results of the specified comparison in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C)
condition flags based on the predicate result, and the V flag to zero.

This instruction is used by the pseudo-instructions CMPLE (vectors), CMPLO (vectors), CMPLS (vectors), and
CMPLT (vectors). The pseudo-instruction is never the preferred disassembly.

Equal

Encoding

CMPEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_EQ;
 boolean unsigned = FALSE;

Greater than

Encoding

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

<cc> Comparison

EQ equal

GE signed greater than or equal

GT signed greater than

HI unsigned higher than

HS unsigned higher than or same

NE not equal

0 0 1 0 0 1 0 0 size 0 Zm 1 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne

0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3726
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;
 boolean unsigned = FALSE;

Greater than or equal

Encoding

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;
 boolean unsigned = FALSE;

Higher

Encoding

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;
 boolean unsigned = TRUE;

0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne

0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3727
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Higher or same

Encoding

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;
 boolean unsigned = TRUE;

Not equal

Encoding

CMPNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_NE;
 boolean unsigned = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne

0 0 1 0 0 1 0 0 size 0 Zm 1 0 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3728
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 boolean cond;
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 case op of
 when Cmp_EQ cond = element1 == element2;
 when Cmp_NE cond = element1 != element2;
 when Cmp_GE cond = element1 >= element2;
 when Cmp_LT cond = element1 < element2;
 when Cmp_GT cond = element1 > element2;
 when Cmp_LE cond = element1 <= element2;
 bit pbit = if cond then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3729
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.98 CMP<cc> (wide elements)

Compare active integer elements in the first source vector with overlapping 64-bit doubleword elements in the
second source vector, and place the boolean results of the specified comparison in the corresponding elements of
the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

Equal

Encoding

CMPEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_EQ;
 boolean unsigned = FALSE;

Greater than

<cc> Comparison

EQ equal

GE signed greater than or equal

GT signed greater than

HI unsigned higher than

HS unsigned higher than or same

LE signed less than or equal

LO unsigned lower than

LS unsigned lower than or same

LT signed less than

NE not equal

0 0 1 0 0 1 0 0 size 0 Zm 0 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne

0 0 1 0 0 1 0 0 size 0 Zm 0 1 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3730
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;
 boolean unsigned = FALSE;

Greater than or equal

Encoding

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;
 boolean unsigned = FALSE;

Higher

Encoding

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;
 boolean unsigned = TRUE;

0 0 1 0 0 1 0 0 size 0 Zm 0 1 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne

0 0 1 0 0 1 0 0 size 0 Zm 1 1 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3731
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Higher or same

Encoding

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;
 boolean unsigned = TRUE;

Less than

Encoding

CMPLT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LT;
 boolean unsigned = FALSE;

Less than or equal

Encoding

CMPLE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

0 0 1 0 0 1 0 0 size 0 Zm 1 1 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne

0 0 1 0 0 1 0 0 size 0 Zm 0 1 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne

0 0 1 0 0 1 0 0 size 0 Zm 0 1 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3732
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LE;
 boolean unsigned = FALSE;

Lower

Encoding

CMPLO <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LT;
 boolean unsigned = TRUE;

Lower or same

Encoding

CMPLS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LE;
 boolean unsigned = TRUE;

0 0 1 0 0 1 0 0 size 0 Zm 1 1 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne

0 0 1 0 0 1 0 0 size 0 Zm 1 1 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

U lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3733
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Not equal

Encoding

CMPNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_NE;
 boolean unsigned = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 boolean cond;
 integer element2 = Int(Elem[operand2, (e * esize) DIV 64, 64], unsigned);
 case op of
 when Cmp_EQ cond = element1 == element2;
 when Cmp_NE cond = element1 != element2;
 when Cmp_GE cond = element1 >= element2;
 when Cmp_LT cond = element1 < element2;
 when Cmp_GT cond = element1 > element2;

0 0 1 0 0 1 0 0 size 0 Zm 0 0 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3734
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 when Cmp_LE cond = element1 <= element2;
 bit pbit = if cond then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3735
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.99 CMPLE (vectors)

Compare active signed integer elements in the first source vector being less than or equal to corresponding signed
elements in the second source vector, and place the boolean results of the comparison in the corresponding elements
of the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This instruction is a pseudo-instruction of the CMP<cc> (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of CMP<cc> (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

CMPLE <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3736
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3737
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.100 CMPLO (vectors)

Compare active unsigned integer elements in the first source vector being lower than corresponding unsigned
elements in the second source vector, and place the boolean results of the comparison in the corresponding elements
of the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This instruction is a pseudo-instruction of the CMP<cc> (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of CMP<cc> (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

CMPLO <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3738
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3739
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.101 CMPLS (vectors)

Compare active unsigned integer elements in the first source vector being lower than or same as corresponding
unsigned elements in the second source vector, and place the boolean results of the comparison in the corresponding
elements of the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This instruction is a pseudo-instruction of the CMP<cc> (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of CMP<cc> (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

CMPLS <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3740
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3741
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.102 CMPLT (vectors)

Compare active signed integer elements in the first source vector being less than corresponding signed elements in
the second source vector, and place the boolean results of the comparison in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE
(Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This instruction is a pseudo-instruction of the CMP<cc> (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of CMP<cc> (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

CMPLT <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3742
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register or NZCV condition flags written by this instruction might be significantly
delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3743
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.103 CNOT

Logically invert the boolean value in each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Boolean TRUE is any non-zero value in a source, and one in a result element. Boolean FALSE is always zero.

Encoding

CNOT <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = ZeroExtend(IsZeroBit(element), esize);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3744
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3745
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.104 CNT

Count non-zero bits in each active element of the source vector, and place the results in the corresponding elements
of the destination vector. Inactive elements in the destination vector register remain unmodified.

Encoding

CNT <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = BitCount(element)<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3746
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3747
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.105 CNTB, CNTD, CNTH, CNTW

Determines the number of active elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then places the result in the scalar destination.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Byte

Encoding

CNTB <Xd>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer d = UInt(Rd);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Doubleword

Encoding

CNTD <Xd>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer d = UInt(Rd);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 0 0 0 pattern Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 0 0 0 pattern Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3748
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Halfword

Encoding

CNTH <Xd>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer d = UInt(Rd);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Word

Encoding

CNTW <Xd>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer d = UInt(Rd);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Assembler symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 0 0 0 pattern Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 0 0 0 pattern Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3749
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);

 X[d, 64] = (count * imm)<63:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3750
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.106 CNTP (predicate as counter)

Counts the number of true elements in the source predicate and places the scalar result in the destination
general-purpose register.

SVE2

(FEAT_SVE2p1)

Encoding

CNTP <Xd>, <PNn>.<T>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(PNn);
 integer d = UInt(Rd);
 constant integer width = 2 << UInt(vl);

Assembler symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<PNn> Is the name of the first source scalable predicate register, with predicate-as-counter encoding,
encoded in the "PNn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) pred = P[n, PL];
 bits(PL*4) mask = CounterToPredicate(pred<15:0>, PL*4);
 bits(64) sum = Zeros(64);
 constant integer limit = elements * width;

 for e = 0 to limit-1
 if ActivePredicateElement(mask, e, esize) then
 sum = sum + 1;
 X[d, 64] = sum;

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 1 0 0 0 0 vl 1 PNn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3751
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3752
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.107 CNTP (predicate)

Counts the number of active and true elements in the source predicate and places the scalar result in the destination
general-purpose register. Inactive predicate elements are not counted.

Encoding

CNTP <Xd>, <Pg>, <Pn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer d = UInt(Rd);

Assembler symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand = P[n, PL];
 bits(64) sum = Zeros(64);

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) && ActivePredicateElement(operand, e, esize) then
 sum = sum + 1;
 X[d, 64] = sum;

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 1 0 Pg 0 Pn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3753
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3754
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.108 COMPACT

Read the active elements from the source vector and pack them into the lowest-numbered elements of the
destination vector. Then set any remaining elements of the destination vector to zero.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

COMPACT <Zd>.<T>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Zeros(VL);
 integer x = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand1, e, esize];
 Elem[result, x, esize] = element;
 x = x + 1;

 Z[d, VL] = result;

0 0 0 0 0 1 0 1 size 1 0 0 0 0 1 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3755
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.109 CPY (immediate, merging)

Copy a signed integer immediate to each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it
may also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is used by the pseudo-instructions FMOV (zero, predicated) and MOV (immediate, predicated,
merging). The alias is always the preferred disassembly.

Encoding

CPY <Zd>.<T>, <Pg>/M, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer d = UInt(Zd);
 boolean merging = TRUE;
 integer imm = SInt(imm8);
 if sh == '1' then imm = imm << 8;

Alias conditions

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

Alias or pseudo-instruction is preferred when

FMOV (zero, predicated) Never

MOV (immediate, predicated, merging) Unconditionally

0 0 0 0 0 1 0 1 size 0 1 Pg 0 1 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0

M

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3756
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) dest = Z[d, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = imm<esize-1:0>;
 elsif merging then
 Elem[result, e, esize] = Elem[dest, e, esize];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3757
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.110 CPY (immediate, zeroing)

Copy a signed integer immediate to each active element in the destination vector. Inactive elements in the
destination vector register are set to zero.

The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it
may also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is used by the alias MOV (immediate, predicated, zeroing). The alias is always the preferred
disassembly.

Encoding

CPY <Zd>.<T>, <Pg>/Z, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer d = UInt(Zd);
 boolean merging = FALSE;
 integer imm = SInt(imm8);
 if sh == '1' then imm = imm << 8;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

0 0 0 0 0 1 0 1 size 0 1 Pg 0 0 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0

M

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3758
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) dest = Z[d, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = imm<esize-1:0>;
 elsif merging then
 Elem[result, e, esize] = Elem[dest, e, esize];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3759
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.111 CPY (scalar)

Copy the general-purpose scalar source register to each active element in the destination vector. Inactive elements
in the destination vector register remain unmodified.

This instruction is used by the alias MOV (scalar, predicated). The alias is always the preferred disassembly.

Encoding

CPY <Zd>.<T>, <Pg>/M, <R><n|SP>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) result = Z[d, VL];
 if AnyActiveElement(mask, esize) then
 bits(64) operand1;
 if n == 31 then
 operand1 = SP[];
 else

0 0 0 0 0 1 0 1 size 1 0 1 0 0 0 1 0 1 Pg Rn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3760
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 operand1 = X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = operand1<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3761
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.112 CPY (SIMD&FP scalar)

Copy the SIMD & floating-point scalar source register to each active element in the destination vector. Inactive
elements in the destination vector register remain unmodified.

This instruction is used by the alias MOV (SIMD&FP scalar, predicated). The alias is always the preferred
disassembly.

Encoding

CPY <Zd>.<T>, <Pg>/M, <V><n>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Vn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<n> Is the number [0-31] of the source SIMD&FP register, encoded in the "Vn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(esize) operand1 = if AnyActiveElement(mask, esize) then V[n, esize] else Zeros(esize);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then

0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 1 0 0 Pg Vn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3762
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = operand1;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3763
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.113 CTERMEQ, CTERMNE

Detect termination conditions in serialized vector loops. Tests whether the comparison between the scalar source
operands holds true and if not tests the state of the !LAST condition flag (C) which indicates whether the previous
flag-setting predicate instruction selected the last element of the vector partition.

The Z and C condition flags are preserved by this instruction. The N and V condition flags are set as a pair to
generate one of the following conditions for a subsequent conditional instruction:

The scalar source operands are 32-bit or 64-bit general-purpose registers of the same size.

Equal

Encoding

CTERMEQ <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 SVECmp op = Cmp_EQ;

Not equal

Encoding

CTERMNE <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 SVECmp op = Cmp_NE;

Condition N V Meaning

GE 0 0 Continue loop (compare failed and last element not selected)

LT 0 1 Terminate loop (last element selected)

LT 1 0 Terminate loop (compare succeeded)

GE 1 1 Never generated

0 0 1 0 0 1 0 1 1 sz 1 Rm 0 0 1 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

ne

0 0 1 0 0 1 0 1 1 sz 1 Rm 0 0 1 0 0 0 Rn 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 1 0

ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3764
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<R> Is a width specifier, encoded in the "sz" field. It can have the following values:

W when sz = 0

X when sz = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

Operation for all encodings

 CheckSVEEnabled();
 bits(esize) operand1 = X[n, esize];
 bits(esize) operand2 = X[m, esize];
 integer element1 = UInt(operand1);
 integer element2 = UInt(operand2);
 boolean term;

 case op of
 when Cmp_EQ term = element1 == element2;
 when Cmp_NE term = element1 != element2;
 if term then
 PSTATE.N = '1';
 PSTATE.V = '0';
 else
 PSTATE.N = '0';
 PSTATE.V = (NOT PSTATE.C);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3765
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.114 DECB, DECD, DECH, DECW (scalar)

Determines the number of active elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Byte

Encoding

DECB <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Doubleword

Encoding

DECD <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 0 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 0 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3766
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Halfword

Encoding

DECH <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Word

Encoding

DECW <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 0 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 0 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3767
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 constant integer VL = CurrentVL;
 bits(64) operand1 = X[dn, 64];

 X[dn, 64] = operand1 - (count * imm);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3768
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.115 DECD, DECH, DECW (vector)

Determines the number of active elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Doubleword

Encoding

DECD <Zdn>.D{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Halfword

Encoding

DECH <Zdn>.H{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 0 0 0 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 0 0 0 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3769
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Word

Encoding

DECW <Zdn>.S{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 0 0 0 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3770
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[operand1, e, esize] - (count * imm);

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3771
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.116 DECP (scalar)

Counts the number of true elements in the source predicate and then uses the result to decrement the scalar
destination.

Encoding

DECP <Xdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) operand1 = X[dn, 64];
 bits(PL) operand2 = P[m, PL];
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 X[dn, 64] = operand1 - count;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 size 1 0 1 1 0 1 1 0 0 0 1 0 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3772
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.117 DECP (vector)

Counts the number of true elements in the source predicate and then uses the result to decrement all destination
vector elements.

The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited
in a future release of the architecture.

Encoding

DECP <Zdn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) operand2 = P[m, PL];
 bits(VL) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[operand1, e, esize] - count;

 Z[dn, VL] = result;

0 0 1 0 0 1 0 1 size 1 0 1 1 0 1 1 0 0 0 0 0 0 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3773
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3774
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.118 DUP (immediate)

Unconditionally broadcast the signed integer immediate into each element of the destination vector. This instruction
is unpredicated.

The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it
may also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is used by the pseudo-instructions FMOV (zero, unpredicated) and MOV (immediate,
unpredicated). The alias is always the preferred disassembly.

Encoding

DUP <Zd>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer d = UInt(Zd);
 integer imm = SInt(imm8);
 if sh == '1' then imm = imm << 8;

Alias conditions

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

Alias or pseudo-instruction is preferred when

FMOV (zero, unpredicated) Never

MOV (immediate, unpredicated) Unconditionally

0 0 1 0 0 1 0 1 size 1 1 1 0 0 0 1 1 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3775
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(VL) result = Replicate(imm<esize-1:0>, VL DIV esize);
 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3776
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.119 DUP (indexed)

Unconditionally broadcast the indexed source vector element into each element of the destination vector. This
instruction is unpredicated.

The immediate element index is in the range of 0 to 63 (bytes), 31 (halfwords), 15 (words), 7 (doublewords) or 3
(quadwords). Selecting an element beyond the accessible vector length causes the destination vector to be set to
zero.

This instruction is used by the alias MOV (SIMD&FP scalar, unpredicated). See Alias conditions for details of when
each alias is preferred.

Encoding

DUP <Zd>.<T>, <Zn>.<T>[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if tsz == '00000' then UNDEFINED;
 constant integer lsb = LowestSetBit(tsz);
 constant integer esize = 8 << lsb;
 constant bits(7) imm = imm2:tsz;
 constant integer index = UInt(imm<6:(lsb+1)>);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Alias conditions

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsz" field. It can have the following values:

B when tsz = xxxx1

H when tsz = xxx10

S when tsz = xx100

D when tsz = x1000

Q when tsz = 10000

The encoding tsz = 00000 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> Is the immediate index, in the range 0 to one less than the number of elements in 512 bits, encoded
in "imm2:tsz".

Alias is preferred when

MOV (SIMD&FP scalar, unpredicated) BitCount(imm2:tsz) == 1

MOV (SIMD&FP scalar, unpredicated) BitCount(imm2:tsz) > 1

0 0 0 0 0 1 0 1 imm2 1 tsz 0 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3777
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;
 bits(esize) element;

 if index >= elements then
 element = Zeros(esize);
 else
 element = Elem[operand1, index, esize];
 result = Replicate(element, VL DIV esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3778
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.120 DUP (scalar)

Unconditionally broadcast the general-purpose scalar source register into each element of the destination vector.
This instruction is unpredicated.

This instruction is used by the alias MOV (scalar, unpredicated). The alias is always the preferred disassembly.

Encoding

DUP <Zd>.<T>, <R><n|SP>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Rn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer PL = VL DIV 8;
 bits(64) operand;
 if n == 31 then
 operand = SP[];
 else
 operand = X[n, 64];
 bits(VL) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = operand<esize-1:0>;

0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3779
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3780
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.121 DUPM

Unconditionally broadcast the logical bitmask immediate into each element of the destination vector. This
instruction is unpredicated. The immediate is a 64-bit value consisting of a single run of ones or zeros repeating
every 2, 4, 8, 16, 32 or 64 bits.

This instruction is used by the alias MOV. See Alias conditions for details of when each alias is preferred.

Encoding

DUPM <Zd>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer d = UInt(Zd);
 bits(esize) imm;
 (imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE, esize);

Alias conditions

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Alias is preferred when

MOV SVEMoveMaskPreferred(imm13)

0 0 0 0 0 1 0 1 1 1 0 0 0 0 imm13 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3781
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) result = Replicate(imm, VL DIV esize);
 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3782
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.122 DUPQ

Unconditionally broadcast the indexed element within each 128-bit source vector segment to all elements of the
corresponding destination vector segment. This instruction is unpredicated.

The immediate element index is in the range of 0 to 15 (bytes), 7 (halfwords), 3 (words) or 1 (doublewords).

SVE2

(FEAT_SVE2p1)

Encoding

DUPQ <Zd>.<T>, <Zn>.<T>[<imm>]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if tsz == '0000' then UNDEFINED;
 constant integer lsb = LowestSetBit(tsz);
 constant integer esize = 8 << lsb;
 constant bits(5) imm = i1:tsz;
 constant integer index = UInt(imm<4:(lsb+1)>);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsz" field. It can have the following values:

B when tsz = xxx1

H when tsz = xx10

S when tsz = x100

D when tsz = 1000

The encoding tsz = 0000 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> Is the immediate index, in the range 0 to one less than the number of elements in 128 bits, encoded
in "i1:tsz".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 bits(VL) operand = Z[n, VL];
 bits(VL) result;
 bits(esize) element;

 for s = 0 to segments-1
 element = Elem[operand, s * elements + index, esize];

0 0 0 0 0 1 0 1 0 0 1 i1 tsz 0 0 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3783
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, s, 128] = Replicate(element, 128 DIV esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3784
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.123 EON

Bitwise exclusive OR an inverted immediate with each 64-bit element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single
run of ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is a pseudo-instruction of the EOR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of EOR (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of EOR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

EON <Zdn>.<T>, <Zdn>.<T>, #<const>

 is equivalent to

EOR <Zdn>.<T>, <Zdn>.<T>, #(-<const> - 1)

and is never the preferred disassembly.

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of EOR (immediate) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 0 1 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3785
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3786
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.124 EOR (immediate)

Bitwise exclusive OR an immediate with each 64-bit element of the source vector, and destructively place the results
in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of
ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is used by the pseudo-instruction EON. The pseudo-instruction is never the preferred disassembly.

Encoding

EOR <Zdn>.<T>, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer dn = UInt(Zdn);
 bits(64) imm;
 (imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE, 64);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 64;
 bits(VL) operand = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(64) element1 = Elem[operand, e, 64];
 Elem[result, e, 64] = element1 EOR imm;

0 0 0 0 0 1 0 1 0 1 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3787
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3788
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.125 EOR (predicates)

Bitwise exclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

This instruction is used by the alias NOT (predicate). See Alias conditions for details of when each alias is preferred.

Encoding

EOR <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then

Alias is preferred when

NOT (predicate) Pm == Pg

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3789
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, psize] = ZeroExtend(element1 EOR element2, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3790
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.126 EOR (vectors, predicated)

Bitwise exclusive OR active elements of the second source vector with corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements
in the destination vector register remain unmodified.

Encoding

EOR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element1 EOR element2;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3791
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3792
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.127 EOR (vectors, unpredicated)

Bitwise exclusive OR all elements of the second source vector with corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

EOR <Zd>.D, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

 Z[d, VL] = operand1 EOR operand2;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 1 0 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3793
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.128 EOR3

Bitwise exclusive OR the corresponding elements of all three source vectors, and destructively place the results in
the corresponding elements of the destination and first source vector. This instruction is unpredicated.

Encoding

EOR3 <Zdn>.D, <Zdn>.D, <Zm>.D, <Zk>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 integer m = UInt(Zm);
 integer k = UInt(Zk);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zk> Is the name of the third source scalable vector register, encoded in the "Zk" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[k, VL];

 Z[dn, VL] = operand1 EOR operand2 EOR operand3;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

0 0 0 0 0 1 0 0 0 0 1 Zm 0 0 1 1 1 0 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3794
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3795
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.129 EORBT

Interleaving exclusive OR between the even-numbered elements of the first source vector register and the
odd-numbered elements of the second source vector register, placing the result in the even-numbered elements of
the destination vector, leaving the odd-numbered elements unchanged. This instruction is unpredicated.

Encoding

EORBT <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, 2*e + sel1, esize];
 bits(esize) element2 = Elem[operand2, 2*e + sel2, esize];
 Elem[result, 2*e + sel1, esize] = element1 EOR element2;

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

tb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3796
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3797
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.130 EORQV

Bitwise exclusive OR of the same element numbers from each 128-bit source vector segment, placing each result
into the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the
source vector are treated as all zeros.

SVE2

(FEAT_SVE2p1)

Encoding

EORQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 1 1 1 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3798
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) dtmp;

 for e = 0 to elempersegment-1
 dtmp = Zeros(esize);
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = dtmp EOR Elem[stmp, e, esize];
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3799
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.131 EORS

Bitwise exclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

This instruction is used by the alias NOTS. See Alias conditions for details of when each alias is preferred.

Encoding

EORS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);

Alias is preferred when

NOTS Pm == Pg

0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 1 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3800
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 EOR element2, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3801
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.132 EORTB

Interleaving exclusive OR between the odd-numbered elements of the first source vector register and the
even-numbered elements of the second source vector register, placing the result in the odd-numbered elements of
the destination vector, leaving the even-numbered elements unchanged. This instruction is unpredicated.

Encoding

EORTB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 1;
 integer sel2 = 0;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, 2*e + sel1, esize];
 bits(esize) element2 = Elem[operand2, 2*e + sel2, esize];
 Elem[result, 2*e + sel1, esize] = element1 EOR element2;

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

tb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3802
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3803
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.133 EORV

Bitwise exclusive OR horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar
destination register. Inactive elements in the source vector are treated as zero.

Encoding

EORV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) result = Zeros(esize);

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 result = result EOR Elem[operand, e, esize];

0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3804
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3805
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.134 EXT

Copy the indexed byte up to the last byte of the first source vector to the bottom of the result vector, then fill the
remainder of the result starting from the first byte of the second source vector. The result is placed destructively in
the destination and first source vector, or constructively in the destination vector. This instruction is unpredicated.

An index that is greater than or equal to the vector length in bytes is treated as zero, resulting in the first source
vector being copied to the result unchanged.

The Destructive encoding of this instruction might be immediately preceded in program order by a MOVPRFX
instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior
of the MOVPRFX and this instruction is UNPREDICTABLE: The MOVPRFX instruction must be unpredicated.
The MOVPRFX instruction must specify the same destination register as this instruction. The destination register
must not refer to architectural register state referenced by any other source operand register of this instruction.

Constructive

Encoding

EXT <Zd>.B, { <Zn1>.B, <Zn2>.B }, #<imm>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dst = UInt(Zd);
 integer s1 = UInt(Zn);
 integer s2 = (s1 + 1) MOD 32;
 constant integer position = UInt(imm8h:imm8l) * 8;

Destructive

Encoding

EXT <Zdn>.B, <Zdn>.B, <Zm>.B, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dst = UInt(Zdn);
 integer s1 = dst;
 integer s2 = UInt(Zm);
 constant integer position = UInt(imm8h:imm8l) * 8;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

0 0 0 0 0 1 0 1 0 1 1 imm8h 0 0 0 imm8l Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 0 0 1 imm8h 0 0 0 imm8l Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3806
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded in the "Zn"
field.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded in the
"Zn" field.

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8h:imm8l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[s1, VL];
 bits(VL) operand2 = Z[s2, VL];
 bits(VL) result;

 bits(VL*2) concat = operand2 : operand1;

 if position >= VL then
 result = concat<VL-1:0>;
 else
 result = concat<(position+VL)-1:position>;

 Z[dst, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3807
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.135 EXTQ

For each 128-bit vector segment of the result, copy the indexed byte up to and including the last byte of the
corresponding first source vector segment to the bottom of the result segment, then fill the remainder of the result
segment starting from the first byte of the corresponding second source vector segment. The result segments are
destructively placed in the corresponding first source vector segment. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

EXTQ <Zdn>.B, <Zdn>.B, <Zm>.B, #<imm>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 constant integer position = UInt(imm4) << 3;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<imm> Is the unsigned immediate operand, in the range 0 to 15, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 bits(256) concat = Elem[operand2, s, 128] : Elem[operand1, s, 128];
 Elem[result, s, 128] = concat<position+127:position>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 1 0 1 1 0 imm4 0 0 1 0 0 1 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3808
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3809
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.136 FABD

Compute the absolute difference of active floating-point elements of the second source vector and corresponding
floating-point elements of the first source vector and destructively place the result in the corresponding elements of
the first source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FABD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAbs(FPSub(element1, element2, FPCR), FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3810
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3811
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.137 FABS

Take the absolute value of each active floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. This clears the sign bit and cannot signal a floating-point
exception. Inactive elements in the destination vector register remain unmodified.

Encoding

FABS <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPAbs(element, FPCR);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3812
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3813
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.138 FAC<cc>

Compare active absolute values of floating-point elements in the first source vector with corresponding absolute
values of elements in the second source vector, and place the boolean results of the specified comparison in the
corresponding elements of the destination predicate. Inactive elements in the destination predicate register are set
to zero. Does not set the condition flags.

This instruction is used by the pseudo-instructions FACLE and FACLT. The pseudo-instruction is never the
preferred disassembly.

Greater than

Encoding

FACGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;

Greater than or equal

Encoding

FACGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);

<cc> Comparison

GE greater than or equal

GT greater than

LE less than or equal

LT less than

0 1 1 0 0 1 0 1 size 0 Zm 1 1 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

0 1 1 0 0 1 0 1 size 0 Zm 1 1 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3814
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 boolean res;
 case op of
 when Cmp_GE res = FPCompareGE(FPAbs(element1, FPCR), FPAbs(element2, FPCR), FPCR);
 when Cmp_GT res = FPCompareGT(FPAbs(element1, FPCR), FPAbs(element2, FPCR), FPCR);
 bit pbit = if res then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 P[d, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3815
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.139 FACLE

Compare active absolute values of floating-point elements in the first source vector being less than or equal to
corresponding absolute values of elements in the second source vector, and place the boolean results of the
comparison in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Does not set the condition flags.

This instruction is a pseudo-instruction of the FAC<cc> instruction. This means that:

• The encodings in this description are named to match the encodings of FAC<cc>.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of FAC<cc> gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

FACLE <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

FACGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FAC<cc> gives the operational pseudocode for this instruction.

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.

0 1 1 0 0 1 0 1 size 0 Zm 1 1 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3816
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.140 FACLT

Compare active absolute values of floating-point elements in the first source vector being less than corresponding
absolute values of elements in the second source vector, and place the boolean results of the comparison in the
corresponding elements of the destination predicate. Inactive elements in the destination predicate register are set
to zero. Does not set the condition flags.

This instruction is a pseudo-instruction of the FAC<cc> instruction. This means that:

• The encodings in this description are named to match the encodings of FAC<cc>.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of FAC<cc> gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

FACLT <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

FACGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FAC<cc> gives the operational pseudocode for this instruction.

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.

0 1 1 0 0 1 0 1 size 0 Zm 1 1 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3817
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.141 FADD (immediate)

Add an immediate to each active floating-point element of the source vector, and destructively place the results in
the corresponding elements of the source vector. The immediate may take the value +0.5 or +1.0 only. Inactive
elements in the destination vector register remain unmodified.

Encoding

FADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then FPPointFive('0', esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.5 when i1 = 0

#1.0 when i1 = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPAdd(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

0 1 1 0 0 1 0 1 size 0 1 1 0 0 0 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3818
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3819
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.142 FADD (vectors, predicated)

Add active floating-point elements of the second source vector to corresponding floating-point elements of the first
source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

Encoding

FADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 !=00 0 0 0 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3820
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3821
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.143 FADD (vectors, unpredicated)

Add all floating-point elements of the second source vector to corresponding elements of the first source vector and
place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

FADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 !=00 0 Zm 0 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3822
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.144 FADDA

Floating-point add a SIMD&FP scalar source and all active lanes of the vector source and place the result
destructively in the SIMD&FP scalar source register. Vector elements are processed strictly in order from low to
high, with the scalar source providing the initial value. Inactive elements in the source vector are ignored.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

FADDA <V><dn>, <Pg>, <V><dn>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Vdn);
 integer m = UInt(Zm);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<dn> Is the number [0-31] of the source and destination SIMD&FP register, encoded in the "Vdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(esize) operand1 = V[dn, esize];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 1 size 0 1 1 0 0 0 0 0 1 Pg Zm Vdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3823
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) result = operand1;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand2, e, esize];
 result = FPAdd(result, element, FPCR);

 V[dn, esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3824
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.145 FADDP

Add pairs of adjacent floating-point elements within each source vector, and interleave the results from
corresponding lanes. The interleaved result values are destructively placed in the first source vector.

Encoding

FADDP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result = Z[dn, VL];
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 if IsEven(e) then
 element1 = Elem[operand1, e + 0, esize];
 element2 = Elem[operand1, e + 1, esize];
 else
 element1 = Elem[operand2, e - 1, esize];
 element2 = Elem[operand2, e + 0, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

0 1 1 0 0 1 0 0 size 0 1 0 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3825
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3826
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.146 FADDQV

Floating-point addition of the same element numbers from each 128-bit source vector segment using a recursive
pairwise reduction, placing each result into the corresponding element number of the 128-bit SIMD&FP destination
register. Inactive elements in the source vector are treated as +0.0.

SVE2

(FEAT_SVE2p1)

Encoding

FADDQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 01

4S when size = 10

2D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPZero('0', esize);
 bits(128) result = Zeros(128);

0 1 1 0 0 1 0 0 size 0 1 0 0 0 0 1 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3827
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 constant integer p2bits = CeilPow2(segments*esize);
 constant integer p2elems = p2bits DIV esize;

 for e = 0 to elempersegment-1
 bits(p2bits) stmp;
 bits(esize) dtmp;
 for s = 0 to p2elems-1
 if s < segments && ActivePredicateElement(mask, s * elempersegment + e, esize) then
 Elem[stmp, s, esize] = Elem[operand, s * elempersegment + e, esize];
 else
 Elem[stmp, s, esize] = identity;
 dtmp = FPReduce(ReduceOp_FADD, stmp, esize, FPCR);
 Elem[result, e, esize] = dtmp;
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3828
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.147 FADDV

Floating-point add horizontally over all lanes of a vector using a recursive pairwise reduction, and place the result
in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as +0.0.

Encoding

FADDV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPZero('0', esize);

 V[d, esize] = FPReducePredicated(ReduceOp_FADD, operand, mask, identity, FPCR);

0 1 1 0 0 1 0 1 size 0 0 0 0 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3829
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.148 FCADD

Add the real and imaginary components of the active floating-point complex numbers from the first source vector
to the complex numbers from the second source vector which have first been rotated by 90 or 270 degrees in the
direction from the positive real axis towards the positive imaginary axis, when considered in polar representation,
equivalent to multiplying the complex numbers in the second source vector by ±J beforehand. Destructively place
the results in the corresponding elements of the first source vector. Inactive elements in the destination vector
register remain unmodified.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

Encoding

FCADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean sub_i = (rot == '0');
 boolean sub_r = (rot == '1');

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#90 when rot = 0

#270 when rot = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 bits(PL) mask = P[g, PL];

0 1 1 0 0 1 0 0 size 0 0 0 0 0 rot 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3830
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for p = 0 to pairs-1
 acc_r = Elem[operand1, 2 * p + 0, esize];
 acc_i = Elem[operand1, 2 * p + 1, esize];
 if ActivePredicateElement(mask, 2 * p + 0, esize) then
 elt2_i = Elem[operand2, 2 * p + 1, esize];
 if sub_i then elt2_i = FPNeg(elt2_i, FPCR);
 acc_r = FPAdd(acc_r, elt2_i, FPCR);
 if ActivePredicateElement(mask, 2 * p + 1, esize) then
 elt2_r = Elem[operand2, 2 * p + 0, esize];
 if sub_r then elt2_r = FPNeg(elt2_r, FPCR);
 acc_i = FPAdd(acc_i, elt2_r, FPCR);
 Elem[result, 2 * p + 0, esize] = acc_r;
 Elem[result, 2 * p + 1, esize] = acc_i;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3831
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.149 FCLAMP

Clamp each floating-point element in the destination vector to between the floating-point minimum value in the
corresponding element of the first source vector and the floating-point maximum value in the corresponding
element of the second source vector and destructively place the clamped results in the corresponding elements of
the destination vector.

Regardless of the value of FPCR.AH, the behavior is as follows for each minimum number and maximum number
operation:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

FCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) result;

0 1 1 0 0 1 0 0 !=00 1 Zm 0 0 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3832
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d, VL];

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 Elem[result, e, esize] = FPMinNum(FPMaxNum(element1, element3, FPCR), element2, FPCR);
 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3833
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.150 FCM<cc> (vectors)

Compare active floating-point elements in the first source vector with corresponding elements in the second source
vector, and place the boolean results of the specified comparison in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.

This instruction is used by the pseudo-instructions FCMLE (vectors) and FCMLT (vectors). The pseudo-instruction
is never the preferred disassembly.

Equal

Encoding

FCMEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_EQ;

Greater than

Encoding

FCMGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

<cc> Comparison

EQ equal

GE greater than or equal

GT greater than

NE not equal

UO unordered

0 1 1 0 0 1 0 1 size 0 Zm 0 1 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

cmpl

cmph

0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

cmpl

cmph
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3834
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;

Greater than or equal

Encoding

FCMGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;

Not equal

Encoding

FCMNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_NE;

0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

cmpl

cmph

0 1 1 0 0 1 0 1 size 0 Zm 0 1 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

cmpl

cmph
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3835
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Unordered

Encoding

FCMUO <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Pd);
 SVECmp op = Cmp_UN;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 boolean res;
 case op of
 when Cmp_EQ res = FPCompareEQ(element1, element2, FPCR);
 when Cmp_GE res = FPCompareGE(element1, element2, FPCR);
 when Cmp_GT res = FPCompareGT(element1, element2, FPCR);
 when Cmp_UN res = FPCompareUN(element1, element2, FPCR);
 when Cmp_NE res = FPCompareNE(element1, element2, FPCR);
 when Cmp_LT res = FPCompareGT(element2, element1, FPCR);

0 1 1 0 0 1 0 1 size 0 Zm 1 1 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3836
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 when Cmp_LE res = FPCompareGE(element2, element1, FPCR);
 bit pbit = if res then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 P[d, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3837
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.151 FCM<cc> (zero)

Compare active floating-point elements in the source vector with zero, and place the boolean results of the specified
comparison in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Does not set the condition flags.

Equal

Encoding

FCMEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_EQ;

Greater than

Encoding

FCMGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);

<cc> Comparison

EQ equal

GE greater than or equal

GT greater than

LE less than or equal

LT less than

NE not equal

UO unordered

0 1 1 0 0 1 0 1 size 0 1 0 0 1 0 0 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

eq lt ne

0 1 1 0 0 1 0 1 size 0 1 0 0 0 0 0 0 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

eq lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3838
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GT;

Greater than or equal

Encoding

FCMGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_GE;

Less than

Encoding

FCMLT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LT;

Less than or equal

Encoding

FCMLE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

0 1 1 0 0 1 0 1 size 0 1 0 0 0 0 0 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

eq lt ne

0 1 1 0 0 1 0 1 size 0 1 0 0 0 1 0 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

eq lt ne

0 1 1 0 0 1 0 1 size 0 1 0 0 0 1 0 0 1 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

eq lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3839
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_LE;

Not equal

Encoding

FCMNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 SVECmp op = Cmp_NE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 boolean res;

0 1 1 0 0 1 0 1 size 0 1 0 0 1 1 0 0 1 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

eq lt ne
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3840
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 case op of
 when Cmp_EQ res = FPCompareEQ(element, 0<esize-1:0>, FPCR);
 when Cmp_GE res = FPCompareGE(element, 0<esize-1:0>, FPCR);
 when Cmp_GT res = FPCompareGT(element, 0<esize-1:0>, FPCR);
 when Cmp_NE res = FPCompareNE(element, 0<esize-1:0>, FPCR);
 when Cmp_LT res = FPCompareGT(0<esize-1:0>, element, FPCR);
 when Cmp_LE res = FPCompareGE(0<esize-1:0>, element, FPCR);
 bit pbit = if res then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 P[d, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3841
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.152 FCMLA (indexed)

Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270,
of the floating-point complex numbers in each 128-bit segment of the first source vector by the specified complex
number in the corresponding the second source vector segment rotated by 0, 90, 180 or 270 degrees in the direction
from the positive real axis towards the positive imaginary axis, when considered in polar representation.

Then destructively add the products to the corresponding components of the complex numbers in the addend and
destination vector, without intermediate rounding.

These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

The complex numbers within the second source vector are specified using an immediate index which selects the
same complex number position within each 128-bit vector segment. The index range is from 0 to one less than the
number of complex numbers per 128-bit segment, encoded in 1 to 2 bits depending on the size of the complex
number. This instruction is unpredicated.

Half-precision

Encoding

FCMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>], <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean neg_i = (rot<1> == '1');
 boolean neg_r = (rot<0> != rot<1>);

Single-precision

Encoding

FCMLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>], <const>

0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>

0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3842
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean neg_i = (rot<1> == '1');
 boolean neg_r = (rot<0> != rot<1>);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the single-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the index of a Real and Imaginary pair, in the range 0 to 3, encoded
in the "i2" field.

For the single-precision variant: is the index of a Real and Imaginary pair, in the range 0 to 1,
encoded in the "i1" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 constant integer pairspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for p = 0 to pairs-1
 segmentbase = p - (p MOD pairspersegment);
 s = segmentbase + index;
 addend_r = Elem[operand3, 2 * p + 0, esize];
 addend_i = Elem[operand3, 2 * p + 1, esize];
 elt1_a = Elem[operand1, 2 * p + sel_a, esize];
 elt2_a = Elem[operand2, 2 * s + sel_a, esize];
 elt2_b = Elem[operand2, 2 * s + sel_b, esize];
 if neg_r then elt2_a = FPNeg(elt2_a, FPCR);
 if neg_i then elt2_b = FPNeg(elt2_b, FPCR);
 addend_r = FPMulAdd(addend_r, elt1_a, elt2_a, FPCR);
 addend_i = FPMulAdd(addend_i, elt1_a, elt2_b, FPCR);
 Elem[result, 2 * p + 0, esize] = addend_r;
 Elem[result, 2 * p + 1, esize] = addend_i;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3843
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3844
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.153 FCMLA (vectors)

Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270,
of the floating-point complex numbers in the first source vector by the corresponding complex number in the second
source vector rotated by 0, 90, 180 or 270 degrees in the direction from the positive real axis towards the positive
imaginary axis, when considered in polar representation.

Then destructively add the products to the corresponding components of the complex numbers in the addend and
destination vector, without intermediate rounding.

These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element. Inactive elements in the destination
vector register remain unmodified.

Encoding

FCMLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean neg_i = (rot<1> == '1');
 boolean neg_r = (rot<0> != rot<1>);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

0 1 1 0 0 1 0 0 size 0 Zm 0 rot Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3845
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for p = 0 to pairs-1
 addend_r = Elem[operand3, 2 * p + 0, esize];
 addend_i = Elem[operand3, 2 * p + 1, esize];
 if ActivePredicateElement(mask, 2 * p + 0, esize) then
 bits(esize) elt1_a = Elem[operand1, 2 * p + sel_a, esize];
 bits(esize) elt2_a = Elem[operand2, 2 * p + sel_a, esize];
 if neg_r then elt2_a = FPNeg(elt2_a, FPCR);
 addend_r = FPMulAdd(addend_r, elt1_a, elt2_a, FPCR);
 if ActivePredicateElement(mask, 2 * p + 1, esize) then
 bits(esize) elt1_a = Elem[operand1, 2 * p + sel_a, esize];
 bits(esize) elt2_b = Elem[operand2, 2 * p + sel_b, esize];
 if neg_i then elt2_b = FPNeg(elt2_b, FPCR);
 addend_i = FPMulAdd(addend_i, elt1_a, elt2_b, FPCR);
 Elem[result, 2 * p + 0, esize] = addend_r;
 Elem[result, 2 * p + 1, esize] = addend_i;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3846
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.154 FCMLE (vectors)

Compare active floating-point elements in the first source vector being less than or equal to corresponding elements
in the second source vector, and place the boolean results of the comparison in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

This instruction is a pseudo-instruction of the FCM<cc> (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of FCM<cc> (vectors).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of FCM<cc> (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

FCMLE <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

FCMGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FCM<cc> (vectors) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.

0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

cmpl

cmph
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3847
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.155 FCMLT (vectors)

Compare active floating-point elements in the first source vector being less than corresponding elements in the
second source vector, and place the boolean results of the comparison in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

This instruction is a pseudo-instruction of the FCM<cc> (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of FCM<cc> (vectors).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of FCM<cc> (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

FCMLT <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

 is equivalent to

FCMGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

and is never the preferred disassembly.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FCM<cc> (vectors) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.

0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

cmpl

cmph
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3848
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.156 FCPY

Copy a floating-point immediate into each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

This instruction is used by the alias FMOV (immediate, predicated). The alias is always the preferred disassembly.

Encoding

FCPY <Zd>.<T>, <Pg>/M, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer d = UInt(Zd);
 bits(esize) imm = VFPExpandImm(imm8, esize);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<const> Is a floating-point immediate value expressible as ±n÷16×2^r, where n and r are integers such that
16 ≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit
exponent, and 4-bit fractional part, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = imm;

 Z[d, VL] = result;

0 0 0 0 0 1 0 1 size 0 1 Pg 1 1 0 imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3849
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3850
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.157 FCVT

Convert the size and precision of each active floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Since the input and result types have a different size the smaller type is held unpacked in the least significant bits
of elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

Half-precision to single-precision

Encoding

FCVT <Zd>.S, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 32;

Half-precision to double-precision

Encoding

FCVT <Zd>.D, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 64;

Single-precision to half-precision

0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3851
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

FCVT <Zd>.H, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 16;

Single-precision to double-precision

Encoding

FCVT <Zd>.D, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 64;

Double-precision to half-precision

Encoding

FCVT <Zd>.H, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 16;

0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3852
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Double-precision to single-precision

Encoding

FCVT <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 32;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 bits(d_esize) res = FPConvertSVE(element<s_esize-1:0>, FPCR, d_esize);
 Elem[result, e, esize] = ZeroExtend(res, esize);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3853
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.158 FCVTLT

Convert odd-numbered floating-point elements from the source vector to the next higher precision, and place the
results in the active overlapping double-width elements of the destination vector. Inactive elements in the
destination vector register remain unmodified.

Half-precision to single-precision

Encoding

FCVTLT <Zd>.S, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Single-precision to double-precision

Encoding

FCVTLT <Zd>.D, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);

0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3854
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize DIV 2) element = Elem[operand, 2*e + 1, esize DIV 2];
 Elem[result, e, esize] = FPConvertSVE(element, FPCR, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3855
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.159 FCVTNT

Convert active floating-point elements from the source vector to the next lower precision, and place the results in
the odd-numbered half-width elements of the destination vector, leaving the even-numbered elements unchanged.
Inactive elements in the destination vector register remain unmodified.

Single-precision to half-precision

Encoding

FCVTNT <Zd>.H, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Double-precision to single-precision

Encoding

FCVTNT <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);

0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3856
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, 2*e + 1, esize DIV 2] = FPConvertSVE(element, FPCR, esize DIV 2);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3857
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.160 FCVTX

Convert active double-precision floating-point elements from the source vector to single-precision, rounding to
Odd, and place the results in the even-numbered 32-bit elements of the destination vector, while setting the
odd-numbered elements to zero. Inactive elements in the destination vector register remain unmodified.

Rounding to Odd (aka Von Neumann rounding) permits a two-step conversion from double-precision to
half-precision without incurring intermediate rounding errors.

Encoding

FCVTX <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 32;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 bits(d_esize) res = FPConvertSVE(element<s_esize-1:0>, FPCR, FPRounding_ODD, d_esize);
 Elem[result, e, esize] = ZeroExtend(res, esize);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3858
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3859
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.161 FCVTXNT

Convert active double-precision floating-point elements from the source vector to single-precision, rounding to
Odd, and place the results in the odd-numbered 32-bit elements of the destination vector, leaving the even-numbered
elements unchanged. Inactive elements in the destination vector register remain unmodified.

Rounding to Odd (aka Von Neumann rounding) permits a two-step conversion from double-precision to
half-precision without incurring intermediate rounding errors.

Encoding

FCVTXNT <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, 2*e + 1, esize DIV 2] = FPConvertSVE(element, FPCR, FPRounding_ODD, esize DIV 2);

 Z[d, VL] = result;

0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3860
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.162 FCVTZS

Convert to the signed integer nearer to zero from each active floating-point element of the source vector, and place
the results in the corresponding elements of the destination vector. Inactive elements in the destination vector
register remain unmodified.

If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are sign-extended to fill each destination element.

Half-precision to 16-bit

Encoding

FCVTZS <Zd>.H, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 16;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Half-precision to 32-bit

Encoding

FCVTZS <Zd>.S, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 32;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3861
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Half-precision to 64-bit

Encoding

FCVTZS <Zd>.D, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 64;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Single-precision to 32-bit

Encoding

FCVTZS <Zd>.S, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 32;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Single-precision to 64-bit

Encoding

FCVTZS <Zd>.D, <Pg>/M, <Zn>.S

0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3862
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 64;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Double-precision to 32-bit

Encoding

FCVTZS <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 32;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Double-precision to 64-bit

Encoding

FCVTZS <Zd>.D, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 64;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3863
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 bits(d_esize) res = FPToFixed(element<s_esize-1:0>, 0, unsigned, FPCR, rounding, d_esize);
 Elem[result, e, esize] = Extend(res, esize, unsigned);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3864
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.163 FCVTZU

Convert to the unsigned integer nearer to zero from each active floating-point element of the source vector, and
place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector
register remain unmodified.

If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

Half-precision to 16-bit

Encoding

FCVTZU <Zd>.H, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 16;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Half-precision to 32-bit

Encoding

FCVTZU <Zd>.S, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 32;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3865
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Half-precision to 64-bit

Encoding

FCVTZU <Zd>.D, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 64;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Single-precision to 32-bit

Encoding

FCVTZU <Zd>.S, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 32;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Single-precision to 64-bit

Encoding

FCVTZU <Zd>.D, <Pg>/M, <Zn>.S

0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3866
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 64;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Double-precision to 32-bit

Encoding

FCVTZU <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 32;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Double-precision to 64-bit

Encoding

FCVTZU <Zd>.D, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 64;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3867
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 bits(d_esize) res = FPToFixed(element<s_esize-1:0>, 0, unsigned, FPCR, rounding, d_esize);
 Elem[result, e, esize] = Extend(res, esize, unsigned);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3868
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.164 FDIV

Divide active floating-point elements of the first source vector by corresponding floating-point elements of the
second source vector and destructively place the quotient in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

FDIV <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPDiv(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3869
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3870
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.165 FDIVR

Reversed divide active floating-point elements of the second source vector by corresponding floating-point
elements of the first source vector and destructively place the quotient in the corresponding elements of the first
source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FDIVR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPDiv(element2, element1, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3871
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3872
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.166 FDOT (vectors)

This instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in each
32-bit element of the first source and second source vectors, without intermediate rounding, and then destructively
adds the single-precision sum-of-products to the corresponding single-precision element of the destination vector.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

FDOT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];

 sum = FPDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 0 0 1 Zm 1 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3873
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3874
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.167 FDOT (indexed)

This instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in each
32-bit element of the first source vector and a pair of half-precision floating-point values in an indexed 32-bit
element of the second source vector, without intermediate rounding, and then destructively adds the single-precision
sum-of-products to the corresponding single-precision element of the destination vector.

The half-precision floating-point pairs within the second source vector are specified using an immediate index
which selects the same pair position within each 128-bit vector segment. The index range is from 0 to 3.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

FDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i2);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 32;
 constant integer eltspersegment = 128 DIV 32;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];

0 1 1 0 0 1 0 0 0 0 1 i2 Zm 0 1 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3875
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(32) sum = Elem[operand3, e, 32];

 sum = FPDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3876
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.168 FDUP

Unconditionally broadcast the floating-point immediate into each element of the destination vector. This instruction
is unpredicated.

This instruction is used by the alias FMOV (immediate, unpredicated). The alias is always the preferred
disassembly.

Encoding

FDUP <Zd>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer d = UInt(Zd);
 bits(esize) imm = VFPExpandImm(imm8, esize);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<const> Is a floating-point immediate value expressible as ±n÷16×2^r, where n and r are integers such that
16 ≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit
exponent, and 4-bit fractional part, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = imm;

 Z[d, VL] = result;

0 0 1 0 0 1 0 1 size 1 1 1 0 0 1 1 1 0 imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3877
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.169 FEXPA

The FEXPA instruction accelerates the polynomial series calculation of the EXP(X) function.

The double-precision variant copies the low 52 bits of an entry from a hard-wired table of 64-bit coefficients,
indexed by the low 6 bits of each element of the source vector, and prepends to that the next 11 bits of the source
element (src<16:6>), setting the sign bit to zero.

The single-precision variant copies the low 23 bits of an entry from hard-wired table of 32-bit coefficients, indexed
by the low 6 bits of each element of the source vector, and prepends to that the next 8 bits of the source element
(src<13:6>), setting the sign bit to zero.

The half-precision variant copies the low 10 bits of an entry from hard-wired table of 16-bit coefficients, indexed
by the low 5 bits of each element of the source vector, and prepends to that the next 5 bits of the source element
(src<9:5>), setting the sign bit to zero.

A coefficient table entry with index M holds the floating-point value 2(m/64), or for the half-precision variant 2(m/32).
This instruction is unpredicated.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

FEXPA <Zd>.<T>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand = Z[n, VL];

0 0 0 0 0 1 0 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3878
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPExpA(element);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3879
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.170 FLOGB

This instruction returns the signed integer base 2 logarithm of each floating-point input element |X| after
normalization.

This is the unbiased exponent of X used in the representation of the floating-point value, such that, for positive X, X
= significand × 2exponent.

The integer results are placed in elements of the destination vector which have the same width (ESIZE) as the
floating-point input elements:

• If X is normal, the result is the base 2 logarithm of X.

• If X is subnormal, the result corresponds to the normalized representation.

• If X is infinite, the result is 2(esize-1)-1.

• If X is ±0.0 or NaN, the result is -2(esize-1).

Inactive elements in the destination vector register remain unmodified.

Encoding

FLOGB <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 1 1 0 0 1 0 1 0 0 0 1 1 size 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3880
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPLogB(element, FPCR);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3881
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.171 FMAD

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements
of the third (addend) vector without intermediate rounding. Destructively place the results in the destination and
first source (multiplicand) vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FMAD <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer a = UInt(Za);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];

0 1 1 0 0 1 0 1 size 1 Za 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3882
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element3 = Elem[operand3, e, esize];

 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3883
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.172 FMAX (immediate)

Determine the maximum of an immediate and each active floating-point element of the source vector, and
destructively place the results in the corresponding elements of the source vector. The immediate may take the value
+0.0 or +1.0 only.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if the element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if the element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both the element and the immediate are zeros, regardless of the sign of either zero, the result is the
immediate.

• If the element is a NaN, regardless of the value of FPCR.DN, the result is the immediate.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then Zeros(esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.0 when i1 = 0

#1.0 when i1 = 1

0 1 1 0 0 1 0 1 size 0 1 1 1 1 0 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3884
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPMax(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3885
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.173 FMAX (vectors)

Determine the maximum of active floating-point elements of the second source vector and corresponding
floating-point elements of the first source vector and destructively place the results in the corresponding elements
of the first source vector.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];

0 1 1 0 0 1 0 1 !=00 0 0 0 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3886
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3887
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.174 FMAXNM (immediate)

Determine the maximum number value of an immediate and each active floating-point element of the source vector,
and destructively place the results in the corresponding elements of the source vector. The immediate may take the
value +0.0 or +1.0 only.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If the element is a quiet NaN, the result is the immediate value.

• When FPCR.DN is 0, if the element is a signaling NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if the element is a signaling NaN, the result is Default NaN.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMAXNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then Zeros(esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.0 when i1 = 0

#1.0 when i1 = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 1 1 0 0 1 0 1 size 0 1 1 1 0 0 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3888
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPMaxNum(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3889
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.175 FMAXNM (vectors)

Determine the maximum number value of active floating-point elements of the second source vector and
corresponding floating-point elements of the first source vector and destructively place the results in the
corresponding elements of the first source vector.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMAXNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 1 !=00 0 0 0 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3890
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3891
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.176 FMAXNMP

Compute the maximum value of each pair of adjacent floating-point elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

Regardless of the value of FPCR.AH, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

Encoding

FMAXNMP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 0 size 0 1 0 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3892
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[dn, VL];
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 if IsEven(e) then
 element1 = Elem[operand1, e + 0, esize];
 element2 = Elem[operand1, e + 1, esize];
 else
 element1 = Elem[operand2, e - 1, esize];
 element2 = Elem[operand2, e + 0, esize];
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3893
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.177 FMAXNMQV

Floating-point maximum number of the same element numbers from each 128-bit source vector segment using a
recursive pairwise reduction, placing each result into the corresponding element number of the 128-bit SIMD&FP
destination register. Inactive elements in the source vector are treated as the default NaN.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

SVE2

(FEAT_SVE2p1)

Encoding

FMAXNMQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 01

4S when size = 10

2D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

0 1 1 0 0 1 0 0 size 0 1 0 1 0 0 1 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3894
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPDefaultNaN(FPCR, esize);
 bits(128) result = Zeros(128);

 constant integer p2bits = CeilPow2(segments*esize);
 constant integer p2elems = p2bits DIV esize;

 for e = 0 to elempersegment-1
 bits(p2bits) stmp;
 bits(esize) dtmp;
 for s = 0 to p2elems-1
 if s < segments && ActivePredicateElement(mask, s * elempersegment + e, esize) then
 Elem[stmp, s, esize] = Elem[operand, s * elempersegment + e, esize];
 else
 Elem[stmp, s, esize] = identity;
 dtmp = FPReduce(ReduceOp_FMAXNUM, stmp, esize, FPCR);
 Elem[result, e, esize] = dtmp;
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3895
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.178 FMAXNMV

Floating-point maximum number horizontally over all lanes of a vector using a recursive pairwise reduction, and
place the result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as the
default NaN.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

Encoding

FMAXNMV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

0 1 1 0 0 1 0 1 size 0 0 0 1 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3896
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPDefaultNaN(FPCR, esize);

 V[d, esize] = FPReducePredicated(ReduceOp_FMAXNUM, operand, mask, identity, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3897
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.179 FMAXP

Compute the maximum value of each pair of adjacent floating-point elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

When FPCR.AH is 0, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows for each pairwise operation:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Encoding

FMAXP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];

0 1 1 0 0 1 0 0 size 0 1 0 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3898
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result = Z[dn, VL];
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 if IsEven(e) then
 element1 = Elem[operand1, e + 0, esize];
 element2 = Elem[operand1, e + 1, esize];
 else
 element1 = Elem[operand2, e - 1, esize];
 element2 = Elem[operand2, e + 0, esize];
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3899
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.180 FMAXQV

Floating-point maximum of the same element numbers from each 128-bit source vector segment using a recursive
pairwise reduction, placing each result into the corresponding element number of the 128-bit SIMD&FP destination
register. Inactive elements in the source vector are treated as -Infinity.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

SVE2

(FEAT_SVE2p1)

Encoding

FMAXQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 01

4S when size = 10

2D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

0 1 1 0 0 1 0 0 size 0 1 0 1 1 0 1 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3900
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPInfinity('1', esize);
 bits(128) result = Zeros(128);

 constant integer p2bits = CeilPow2(segments*esize);
 constant integer p2elems = p2bits DIV esize;

 for e = 0 to elempersegment-1
 bits(p2bits) stmp;
 bits(esize) dtmp;
 for s = 0 to p2elems-1
 if s < segments && ActivePredicateElement(mask, s * elempersegment + e, esize) then
 Elem[stmp, s, esize] = Elem[operand, s * elempersegment + e, esize];
 else
 Elem[stmp, s, esize] = identity;
 dtmp = FPReduce(ReduceOp_FMAX, stmp, esize, FPCR);
 Elem[result, e, esize] = dtmp;
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3901
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.181 FMAXV

Floating-point maximum horizontally over all lanes of a vector using a recursive pairwise reduction, and place the
result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as -Infinity.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

Encoding

FMAXV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

0 1 1 0 0 1 0 1 size 0 0 0 1 1 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3902
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPInfinity('1', esize);

 V[d, esize] = FPReducePredicated(ReduceOp_FMAX, operand, mask, identity, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3903
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.182 FMIN (immediate)

Determine the minimum of an immediate and each active floating-point element of the source vector, and
destructively place the results in the corresponding elements of the source vector. The immediate may take the value
+0.0 or +1.0 only.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if the element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if the element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both the element and the immediate are zeros, regardless of the sign of either zero, the result is the
immediate.

• If the element is a NaN, regardless of the value of FPCR.DN, the result is the immediate.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then Zeros(esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.0 when i1 = 0

#1.0 when i1 = 1

0 1 1 0 0 1 0 1 size 0 1 1 1 1 1 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3904
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPMin(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3905
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.183 FMIN (vectors)

Determine the minimum of active floating-point elements of the second source vector and corresponding
floating-point elements of the first source vector and destructively place the results in the corresponding elements
of the first source vector.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];

0 1 1 0 0 1 0 1 !=00 0 0 0 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3906
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3907
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.184 FMINNM (immediate)

Determine the minimum number value of an immediate and each active floating-point element of the source vector,
and destructively place the results in the corresponding elements of the source vector. The immediate may take the
value +0.0 or +1.0 only.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If the element is a quiet NaN, the result is the immediate value.

• When FPCR.DN is 0, if the element is a signaling NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if the element is a signaling NaN, the result is Default NaN.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMINNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then Zeros(esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.0 when i1 = 0

#1.0 when i1 = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 1 1 0 0 1 0 1 size 0 1 1 1 0 1 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3908
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPMinNum(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3909
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.185 FMINNM (vectors)

Determine the minimum number value of active floating-point elements of the second source vector and
corresponding floating-point elements of the first source vector and destructively place the results in the
corresponding elements of the first source vector.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

Inactive elements in the destination vector register remain unmodified.

Encoding

FMINNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 1 !=00 0 0 0 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3910
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3911
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.186 FMINNMP

Compute the minimum value of each pair of adjacent floating-point elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

Regardless of the value of FPCR.AH, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

Encoding

FMINNMP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);

0 1 1 0 0 1 0 0 size 0 1 0 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3912
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[dn, VL];
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 if IsEven(e) then
 element1 = Elem[operand1, e + 0, esize];
 element2 = Elem[operand1, e + 1, esize];
 else
 element1 = Elem[operand2, e - 1, esize];
 element2 = Elem[operand2, e + 0, esize];
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3913
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.187 FMINNMQV

Floating-point minimum number of the same element numbers from each 128-bit source vector segment using a
recursive pairwise reduction, placing each result into the corresponding element number of the 128-bit SIMD&FP
destination register. Inactive elements in the source vector are treated as the default NaN.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

SVE2

(FEAT_SVE2p1)

Encoding

FMINNMQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 01

4S when size = 10

2D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

0 1 1 0 0 1 0 0 size 0 1 0 1 0 1 1 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3914
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPDefaultNaN(FPCR, esize);
 bits(128) result = Zeros(128);

 constant integer p2bits = CeilPow2(segments*esize);
 constant integer p2elems = p2bits DIV esize;

 for e = 0 to elempersegment-1
 bits(p2bits) stmp;
 bits(esize) dtmp;
 for s = 0 to p2elems-1
 if s < segments && ActivePredicateElement(mask, s * elempersegment + e, esize) then
 Elem[stmp, s, esize] = Elem[operand, s * elempersegment + e, esize];
 else
 Elem[stmp, s, esize] = identity;
 dtmp = FPReduce(ReduceOp_FMINNUM, stmp, esize, FPCR);
 Elem[result, e, esize] = dtmp;
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3915
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.188 FMINNMV

Floating-point minimum number horizontally over all lanes of a vector using a recursive pairwise reduction, and
place the result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as the
default NaN.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

Encoding

FMINNMV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

0 1 1 0 0 1 0 1 size 0 0 0 1 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3916
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPDefaultNaN(FPCR, esize);

 V[d, esize] = FPReducePredicated(ReduceOp_FMINNUM, operand, mask, identity, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3917
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.189 FMINP

Compute the minimum value of each pair of adjacent floating-point elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

When FPCR.AH is 0, the behavior is as follows for each pairwise operation:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows for each pairwise operation:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

Encoding

FMINP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];

0 1 1 0 0 1 0 0 size 0 1 0 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3918
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result = Z[dn, VL];
 bits(esize) element1;
 bits(esize) element2;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 if IsEven(e) then
 element1 = Elem[operand1, e + 0, esize];
 element2 = Elem[operand1, e + 1, esize];
 else
 element1 = Elem[operand2, e - 1, esize];
 element2 = Elem[operand2, e + 0, esize];
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3919
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.190 FMINQV

Floating-point minimum of the same element numbers from each 128-bit source vector segment using a recursive
pairwise reduction, placing each result into the corresponding element number of the 128-bit SIMD&FP destination
register. Inactive elements in the source vector are treated as +Infinity.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

SVE2

(FEAT_SVE2p1)

Encoding

FMINQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 01

4S when size = 10

2D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

0 1 1 0 0 1 0 0 size 0 1 0 1 1 1 1 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3920
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPInfinity('0', esize);
 bits(128) result = Zeros(128);

 constant integer p2bits = CeilPow2(segments*esize);
 constant integer p2elems = p2bits DIV esize;

 for e = 0 to elempersegment-1
 bits(p2bits) stmp;
 bits(esize) dtmp;
 for s = 0 to p2elems-1
 if s < segments && ActivePredicateElement(mask, s * elempersegment + e, esize) then
 Elem[stmp, s, esize] = Elem[operand, s * elempersegment + e, esize];
 else
 Elem[stmp, s, esize] = identity;
 dtmp = FPReduce(ReduceOp_FMIN, stmp, esize, FPCR);
 Elem[result, e, esize] = dtmp;
 V[d, 128] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3921
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.191 FMINV

Floating-point minimum horizontally over all lanes of a vector using a recursive pairwise reduction, and place the
result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as +Infinity.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either value is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both values are zeros, regardless of the sign of either zero, the result is the second value.

• If either value is a NaN, regardless of the value of FPCR.DN, the result is the second value.

Encoding

FMINV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

0 1 1 0 0 1 0 1 size 0 0 0 1 1 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3922
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) identity = FPInfinity('0', esize);

 V[d, esize] = FPReducePredicated(ReduceOp_FMIN, operand, mask, identity, FPCR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3923
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.192 FMLA (indexed)

Multiply all floating-point elements within each 128-bit segment of the first source vector by the specified element
in the corresponding second source vector segment. The products are then destructively added without intermediate
rounding to the corresponding elements of the addend and destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is
unpredicated.

Half-precision

Encoding

FMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

Single-precision

Encoding

FMLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

0 1 1 0 0 1 0 0 0 1 i3l Zm 0 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

op

i3h

0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

op

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3924
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Double-precision

Encoding

FMLA <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision and single-precision variant: is the name of the second source scalable vector
register Z0-Z7, encoded in the "Zm" field.

For the double-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l"
fields.

For the single-precision variant: is the immediate index, in the range 0 to 3, encoded in the "i2" field.

For the double-precision variant: is the immediate index, in the range 0 to 1, encoded in the "i1"
field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, s, esize];
 bits(esize) element3 = Elem[result, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);

0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3925
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3926
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.193 FMLA (vectors)

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements
of the third source (addend) vector without intermediate rounding. Destructively place the results in the destination
and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FMLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];

0 1 1 0 0 1 0 1 !=00 1 Zm 0 0 0 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

size N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3927
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand3, e, esize];

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3928
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.194 FMLALB (indexed)

This half-precision floating-point multiply-add long instruction widens the even-numbered half-precision elements
in the first source vector and the indexed element from the corresponding 128-bit segment in the second source
vector to single-precision format and then destructively multiplies and adds these values without intermediate
rounding to the single-precision elements of the destination vector that overlap with the corresponding
half-precision elements in the first source vector. This instruction is unpredicated.

Encoding

FMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);
 boolean op1_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 0, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, s, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 i3h Zm 0 1 0 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3929
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3930
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.195 FMLALB (vectors)

This half-precision floating-point multiply-add long instruction widens the even-numbered half-precision elements
in the first source vector and the corresponding elements in the second source vector to single-precision format and
then destructively multiplies and adds these values without intermediate rounding to the single-precision elements
of the destination vector that overlap with the corresponding half-precision elements in the source vectors. This
instruction is unpredicated.

Encoding

FMLALB <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 0, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, 2 * e + 0, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 Zm 1 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3931
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3932
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.196 FMLALT (indexed)

This half-precision floating-point multiply-add long instruction widens the odd-numbered half-precision elements
in the first source vector and the indexed element from the corresponding 128-bit segment in the second source
vector to single-precision format and then destructively multiplies and adds these values without intermediate
rounding to the single-precision elements of the destination vector that overlap with the corresponding
half-precision elements in the first source vector. This instruction is unpredicated.

Encoding

FMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);
 boolean op1_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 1, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, s, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 i3h Zm 0 1 0 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3933
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3934
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.197 FMLALT (vectors)

This half-precision floating-point multiply-add long instruction widens the odd-numbered half-precision elements
in the first source vector and the corresponding elements in the second source vector to single-precision format and
then destructively multiplies and adds these values without intermediate rounding to the single-precision elements
of the destination vector that overlap with the corresponding half-precision elements in the source vectors. This
instruction is unpredicated.

Encoding

FMLALT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 1, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, 2 * e + 1, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 Zm 1 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3935
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3936
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.198 FMLS (indexed)

Multiply all floating-point elements within each 128-bit segment of the first source vector by the specified element
in the corresponding second source vector segment. The products are then destructively subtracted without
intermediate rounding from the corresponding elements of the addend and destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is
unpredicated.

Half-precision

Encoding

FMLS <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

Single-precision

Encoding

FMLS <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

0 1 1 0 0 1 0 0 0 1 i3l Zm 0 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

op

i3h

0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

op

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3937
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Double-precision

Encoding

FMLS <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision and single-precision variant: is the name of the second source scalable vector
register Z0-Z7, encoded in the "Zm" field.

For the double-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l"
fields.

For the single-precision variant: is the immediate index, in the range 0 to 3, encoded in the "i2" field.

For the double-precision variant: is the immediate index, in the range 0 to 1, encoded in the "i1"
field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, s, esize];
 bits(esize) element3 = Elem[result, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);

0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

op

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3938
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3939
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.199 FMLS (vectors)

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third source (addend) vector without intermediate rounding. Destructively place the results in the
destination and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FMLS <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];

0 1 1 0 0 1 0 1 !=00 1 Zm 0 0 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

size N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3940
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand3, e, esize];

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3941
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.200 FMLSLB (indexed)

This half-precision floating-point multiply-subtract long instruction widens the even-numbered half-precision
elements in the first source vector and the indexed element from the corresponding 128-bit segment in the second
source vector to single-precision format and then destructively multiplies and subtracts these values without
intermediate rounding from the single-precision elements of the destination vector that overlap with the
corresponding half-precision elements in the first source vector. This instruction is unpredicated.

Encoding

FMLSLB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 0, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, s, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 i3h Zm 0 1 1 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3942
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3943
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.201 FMLSLB (vectors)

This half-precision floating-point multiply-subtract long instruction widens the even-numbered half-precision
elements in the first source vector and the corresponding elements in the second source vector to single-precision
format and then destructively multiplies and subtracts these values without intermediate rounding from the
single-precision elements of the destination vector that overlap with the corresponding half-precision elements in
the source vectors. This instruction is unpredicated.

Encoding

FMLSLB <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 0, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, 2 * e + 0, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 Zm 1 0 1 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3944
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3945
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.202 FMLSLT (indexed)

This half-precision floating-point multiply-subtract long instruction widens the odd-numbered half-precision
elements in the first source vector and the indexed element from the corresponding 128-bit segment in the second
source vector to single-precision format and then destructively multiplies and subtracts these values without
intermediate rounding from the single-precision elements of the destination vector that overlap with the
corresponding half-precision elements in the first source vector. This instruction is unpredicated.

Encoding

FMLSLT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer index = UInt(i3h:i3l);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 1, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, s, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 i3h Zm 0 1 1 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3946
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3947
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.203 FMLSLT (vectors)

This half-precision floating-point multiply-subtract long instruction widens the odd-numbered half-precision
elements in the first source vector and the corresponding elements in the second source vector to single-precision
format and then destructively multiplies and subtracts these values without intermediate rounding from the
single-precision elements of the destination vector that overlap with the corresponding half-precision elements in
the source vectors. This instruction is unpredicated.

Encoding

FMLSLT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize DIV 2) element1 = Elem[operand1, 2 * e + 1, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, 2 * e + 1, esize DIV 2];
 bits(esize) element3 = Elem[operand3, e, esize];
 if op1_neg then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAddH(element3, element1, element2, FPCR);

 Z[da, VL] = result;

0 1 1 0 0 1 0 0 1 0 1 Zm 1 0 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

o2 op T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3948
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3949
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.204 FMMLA

The floating-point matrix multiply-accumulate instruction supports single-precision and double-precision data
types in a 2×2 matrix contained in segments of 128 or 256 bits, respectively. It multiplies the 2×2 matrix in each
segment of the first source vector by the 2×2 matrix in the corresponding segment of the second source vector. The
resulting 2×2 matrix product is then destructively added to the matrix accumulator held in the corresponding
segment of the addend and destination vector. This is equivalent to performing a 2-way dot product per destination
element. This instruction is unpredicated. The single-precision variant is vector length agnostic. The
double-precision variant requires that the current vector length is at least 256 bits, and if the current vector length
is not an integer multiple of 256 bits then the trailing bits are set to zero.

ID_AA64ZFR0_EL1.F32MM indicates whether the single-precision variant is implemented.

ID_AA64ZFR0_EL1.F64MM indicates whether the double-precision variant is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

(FEAT_F32MM)

Encoding

FMMLA <Zda>.S, <Zn>.S, <Zm>.S

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP32MatMulExt() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

64-bit element

(FEAT_F64MM)

Encoding

FMMLA <Zda>.D, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 64;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

0 1 1 0 0 1 0 0 1 0 1 Zm 1 1 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 1 1 0 0 1 0 0 1 1 1 Zm 1 1 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3950
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < esize * 4 then UNDEFINED;
 constant integer segments = VL DIV (4 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result = Zeros(VL);
 bits(4*esize) op1, op2;
 bits(4*esize) res, addend;

 for s = 0 to segments-1
 op1 = Elem[operand1, s, 4*esize];
 op2 = Elem[operand2, s, 4*esize];
 addend = Elem[operand3, s, 4*esize];
 res = FPMatMulAdd(addend, op1, op2, esize, FPCR);
 Elem[result, s, 4*esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3951
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.205 FMOV (immediate, predicated)

Move a floating-point immediate into each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

This instruction is an alias of the FCPY instruction. This means that:

• The encodings in this description are named to match the encodings of FCPY.

• The description of FCPY gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

FMOV <Zd>.<T>, <Pg>/M, #<const>

 is equivalent to

FCPY <Zd>.<T>, <Pg>/M, #<const>

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<const> Is a floating-point immediate value expressible as ±n÷16×2^r, where n and r are integers such that
16 ≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit
exponent, and 4-bit fractional part, encoded in the "imm8" field.

Operation

The description of FCPY gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

0 0 0 0 0 1 0 1 size 0 1 Pg 1 1 0 imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3952
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3953
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.206 FMOV (immediate, unpredicated)

Unconditionally broadcast the floating-point immediate into each element of the destination vector. This instruction
is unpredicated.

This instruction is an alias of the FDUP instruction. This means that:

• The encodings in this description are named to match the encodings of FDUP.

• The description of FDUP gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

FMOV <Zd>.<T>, #<const>

 is equivalent to

FDUP <Zd>.<T>, #<const>

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<const> Is a floating-point immediate value expressible as ±n÷16×2^r, where n and r are integers such that
16 ≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit
exponent, and 4-bit fractional part, encoded in the "imm8" field.

Operation

The description of FDUP gives the operational pseudocode for this instruction.

0 0 1 0 0 1 0 1 size 1 1 1 0 0 1 1 1 0 imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3954
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.207 FMOV (zero, predicated)

Move floating-point constant +0.0 to each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

This instruction is a pseudo-instruction of the CPY (immediate, merging) instruction. This means that:

• The encodings in this description are named to match the encodings of CPY (immediate, merging).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of CPY (immediate, merging) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

FMOV <Zd>.<T>, <Pg>/M, #0.0

 is equivalent to

CPY <Zd>.<T>, <Pg>/M, #0

and is never the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

The description of CPY (immediate, merging) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

0 0 0 0 0 1 0 1 size 0 1 Pg 0 1 0 0 0 0 0 0 0 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0

M sh imm8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3955
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3956
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.208 FMOV (zero, unpredicated)

Unconditionally broadcast the floating-point constant +0.0 into each element of the destination vector. This
instruction is unpredicated.

This instruction is a pseudo-instruction of the DUP (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of DUP (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of DUP (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

FMOV <Zd>.<T>, #0.0

 is equivalent to

DUP <Zd>.<T>, #0

and is never the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

Operation

The description of DUP (immediate) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

sh imm8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3957
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.209 FMSB

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third (addend) vector without intermediate rounding. Destructively place the results in the
destination and first source (multiplicand) vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

FMSB <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer a = UInt(Za);
 boolean op1_neg = TRUE;
 boolean op3_neg = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];

0 1 1 0 0 1 0 1 size 1 Za 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3958
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];

 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3959
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.210 FMUL (immediate)

Multiply by an immediate each active floating-point element of the source vector, and destructively place the results
in the corresponding elements of the source vector. The immediate may take the value +0.5 or +2.0 only. Inactive
elements in the destination vector register remain unmodified.

Encoding

FMUL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then FPPointFive('0', esize) else FPTwo('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.5 when i1 = 0

#2.0 when i1 = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPMul(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

0 1 1 0 0 1 0 1 size 0 1 1 0 1 0 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3960
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3961
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.211 FMUL (indexed)

Multiply all floating-point elements within each 128-bit segment of the first source vector by the specified element
in the corresponding second source vector segment. The results are placed in the corresponding elements of the
destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is
unpredicated.

Half-precision

Encoding

FMUL <Zd>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Single-precision

Encoding

FMUL <Zd>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

0 1 1 0 0 1 0 0 0 1 i3l Zm 0 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

i3h

0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3962
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Double-precision

Encoding

FMUL <Zd>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision and single-precision variant: is the name of the second source scalable vector
register Z0-Z7, encoded in the "Zm" field.

For the double-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l"
fields.

For the single-precision variant: is the immediate index, in the range 0 to 3, encoded in the "i2" field.

For the double-precision variant: is the immediate index, in the range 0 to 1, encoded in the "i1"
field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, s, esize];
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3963
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.212 FMUL (vectors, predicated)

Multiply active floating-point elements of the first source vector by corresponding floating-point elements of the
second source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

FMUL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 !=00 0 0 0 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3964
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3965
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.213 FMUL (vectors, unpredicated)

Multiply all elements of the first source vector by corresponding floating-point elements of the second source vector
and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

FMUL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 !=00 0 Zm 0 0 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3966
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.214 FMULX

Multiply active floating-point elements of the first source vector by corresponding floating-point elements of the
second source vector except that ∞×0.0 gives 2.0 instead of NaN, and destructively place the results in the
corresponding elements of the first source vector. Inactive elements in the destination vector register remain
unmodified.

The instruction can be used with FRECPX to safely convert arbitrary elements in mathematical vector space to UNIT
VECTORS or DIRECTION VECTORS with length 1.

Encoding

FMULX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
 else

0 1 1 0 0 1 0 1 size 0 0 1 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3967
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3968
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.215 FNEG

Negate each active floating-point element of the source vector, and place the results in the corresponding elements
of the destination vector. This inverts the sign bit and cannot signal a floating-point exception. Inactive elements in
the destination vector register remain unmodified.

Encoding

FNEG <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPNeg(element, FPCR);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3969
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3970
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.216 FNMAD

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements
of the third (addend) vector without intermediate rounding. Destructively place the negated results in the destination
and first source (multiplicand) vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FNMAD <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer a = UInt(Za);
 boolean op1_neg = TRUE;
 boolean op3_neg = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];

0 1 1 0 0 1 0 1 size 1 Za 1 1 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3971
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element3 = Elem[operand3, e, esize];

 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3972
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.217 FNMLA

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements
of the third source (addend) vector without intermediate rounding. Destructively place the negated results in the
destination and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FNMLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = TRUE;
 boolean op3_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];

0 1 1 0 0 1 0 1 size 1 Zm 0 1 0 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3973
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element3 = Elem[operand3, e, esize];

 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand3, e, esize];

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3974
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.218 FNMLS

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third source (addend) vector without intermediate rounding. Destructively place the negated results
in the destination and third source (addend) vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

FNMLS <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_neg = FALSE;
 boolean op3_neg = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];

0 1 1 0 0 1 0 1 size 1 Zm 0 1 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3975
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];

 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand3, e, esize];

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3976
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.219 FNMSB

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third (addend) vector without intermediate rounding. Destructively place the negated results in the
destination and first source (multiplicand) vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

FNMSB <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer a = UInt(Za);
 boolean op1_neg = FALSE;
 boolean op3_neg = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];

0 1 1 0 0 1 0 1 size 1 Za 1 1 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

N op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3977
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];

 if op1_neg then element1 = FPNeg(element1, FPCR);
 if op3_neg then element3 = FPNeg(element3, FPCR);
 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3978
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.220 FRECPE

Find the approximate reciprocal of each floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

FRECPE <Zd>.<T>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRecipEstimate(element, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 1 1 0 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3979
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.221 FRECPS

Multiply corresponding floating-point elements of the first and second source vectors, subtract the products from
2.0 without intermediate rounding and place the results in the corresponding elements of the destination vector. This
instruction is unpredicated.

This instruction can be used to perform a single Newton-Raphson iteration for calculating the reciprocal of a vector
of floating-point values.

Encoding

FRECPS <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRecipStepFused(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3980
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.222 FRECPX

Invert the exponent and zero the fractional part of each active floating-point element of the source vector, and place
the results in the corresponding elements of the destination vector. Inactive elements in the destination vector
register remain unmodified.

The result of this instruction can be used with FMULX to convert arbitrary elements in mathematical vector space to
"unit vectors" or "direction vectors" of length 1.

Encoding

FRECPX <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRecpX(element, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3981
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3982
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.223 FRINT<r>

Round to an integral floating-point value with the specified rounding option from each active floating-point element
of the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements
in the destination vector register remain unmodified.

Current mode

Encoding

FRINTI <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

Current mode signalling inexact

Encoding

FRINTX <Zd>.<T>, <Pg>/M, <Zn>.<T>

<r> Rounding Option

N to nearest, with ties to even

A to nearest, with ties away from zero

M toward minus Infinity

P toward plus Infinity

Z toward zero

I current FPCR rounding mode

X current FPCR rounding mode, signalling inexact

0 1 1 0 0 1 0 1 size 0 0 0 1 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 size 0 0 0 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3983
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

Nearest with ties to away

Encoding

FRINTA <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_TIEAWAY;

Nearest with ties to even

Encoding

FRINTN <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_TIEEVEN;

0 1 1 0 0 1 0 1 size 0 0 0 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 size 0 0 0 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3984
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Toward zero

Encoding

FRINTZ <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Toward minus infinity

Encoding

FRINTM <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_NEGINF;

Toward plus infinity

Encoding

FRINTP <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);

0 1 1 0 0 1 0 1 size 0 0 0 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 size 0 0 0 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 1 1 0 0 1 0 1 size 0 0 0 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3985
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_POSINF;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3986
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.224 FRSQRTE

Find the approximate reciprocal square root of each active floating-point element of the source vector, and place the
results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

FRSQRTE <Zd>.<T>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRSqrtEstimate(element, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 1 1 1 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3987
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.225 FRSQRTS

Multiply corresponding floating-point elements of the first and second source vectors, subtract the products from
3.0 and divide the results by 2.0 without any intermediate rounding and place the results in the corresponding
elements of the destination vector. This instruction is unpredicated.

This instruction can be used to perform a single Newton-Raphson iteration for calculating the reciprocal square root
of a vector of floating-point values.

Encoding

FRSQRTS <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRSqrtStepFused(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3988
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.226 FSCALE

Multiply the active floating-point elements of the first source vector by 2.0 to the power of the signed integer values
in the corresponding elements of the second source vector and destructively place the results in the corresponding
elements of the first source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FSCALE <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 integer element2 = SInt(Elem[operand2, e, esize]);
 Elem[result, e, esize] = FPScale(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3989
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3990
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.227 FSQRT

Calculate the square root of each active floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

FSQRT <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPSqrt(element, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 1 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3991
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3992
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.228 FSUB (immediate)

Subtract an immediate from each active floating-point element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate may take the value +0.5 or +1.0 only.
Inactive elements in the destination vector register remain unmodified.

Encoding

FSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then FPPointFive('0', esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.5 when i1 = 0

#1.0 when i1 = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPSub(element1, imm, FPCR);
 else
 Elem[result, e, esize] = element1;

0 1 1 0 0 1 0 1 size 0 1 1 0 0 1 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3993
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3994
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.229 FSUB (vectors, predicated)

Subtract active floating-point elements of the second source vector from corresponding floating-point elements of
the first source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

FSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPSub(element1, element2, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 !=00 0 0 0 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3995
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3996
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.230 FSUB (vectors, unpredicated)

Subtract all floating-point elements of the second source vector from corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

FSUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPSub(element1, element2, FPCR);

 Z[d, VL] = result;

0 1 1 0 0 1 0 1 !=00 0 Zm 0 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3997
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.231 FSUBR (immediate)

Reversed subtract from an immediate each active floating-point element of the source vector, and destructively
place the results in the corresponding elements of the source vector. The immediate may take the value +0.5 or +1.0
only. Inactive elements in the destination vector register remain unmodified.

Encoding

FSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 bits(esize) imm = if i1 == '0' then FPPointFive('0', esize) else FPOne('0', esize);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in the "i1" field. It can have the following values:

#0.5 when i1 = 0

#1.0 when i1 = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = FPSub(imm, element1, FPCR);
 else
 Elem[result, e, esize] = element1;

0 1 1 0 0 1 0 1 size 0 1 1 0 1 1 1 0 0 Pg 0 0 0 0 i1 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3998
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-3999
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.232 FSUBR (vectors)

Reversed subtract active floating-point elements of the first source vector from corresponding floating-point
elements of the second source vector and destructively place the results in the corresponding elements of the first
source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

FSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPSub(element2, element1, FPCR);
 else
 Elem[result, e, esize] = element1;

 Z[dn, VL] = result;

0 1 1 0 0 1 0 1 size 0 0 0 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4000
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4001
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.233 FTMAD

The FTMAD instruction calculates the series terms for either SIN(X) or COS(X), where the argument X has been adjusted
to be in the range -π/4 < X ≤ π/4.

To calculate the series terms of SIN(X) and COS(X) the initial source operands of FTMAD should be zero in the first
source vector and X 2 in the second source vector. The FTMAD instruction is then executed eight times to calculate the
sum of eight series terms, which gives a result of sufficient precision.

The FTMAD instruction multiplies each element of the first source vector by the absolute value of the corresponding
element of the second source vector and performs a fused addition of each product with a value obtained from a
table of hard-wired coefficients, and places the results destructively in the first source vector.

The coefficients are different for SIN(X) and COS(X), and are selected by a combination of the sign bit in the second
source element and an immediate index in the range 0 to 7.

Double-precision coefficient table for sin(x) (s2<63> == '0')

Double-precision coefficient table for cos(x) (s2<63> == '1')

Index Hexadecimal Decimal Exact Value

0 3ff0 0000 0000 0000 1.0 = 1/1!

1 bfc5 5555 5555 5543 -0.1666666666666661 > -1/3!

2 3f81 1111 1110 f30c 0.8333333333320002e-02 < 1/5!

3 bf2a 01a0 19b9 2fc6 -0.1984126982840213e-03 > -1/7!

4 3ec7 1de3 51f3 d22b 0.2755731329901505e-05 < 1/9!

5 be5a e5e2 b60f 7b91 -0.2505070584637887e-07 > -1/11!

6 3de5 d840 8868 552f 0.1589413637195215e-09 < 1/13!

7 0000 0000 0000 0000 0.0 > -1/15!

Index Hexadecimal Decimal Exact Value

0 3ff0 0000 0000 0000 1.0 = 1/0!

1 bfe0 0000 0000 0000 -0.5000000000000000 = -1/2!

2 3fa5 5555 5555 5536 0.4166666666666645e-01 < 1/4!

3 bf56 c16c 16c1 3a0b -0.1388888888886111e-02 > -1/6!

4 3efa 01a0 19b1 e8d8 0.2480158728388683e-04 < 1/8!

5 be92 7e4f 7282 f468 -0.2755731309913950e-06 > -1/10!

6 3e21 ee96 d264 1b13 0.2087558253975872e-08 < 1/12!

7 bda8 f763 80fb b401 -0.1135338700720054e-10 > -1/14!
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4002
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Single-precision coefficient table for sin(x) (s2<31> == '0')

Single-precision coefficient table for cos(x) (s2<31> == '1')

Half-precision coefficient table for sin(x) (s2<15> == '0')

Index Hexadecimal Decimal Exact Value

0 3f80 0000 1.0 = 1/1!

1 be2a aaab -1.666666716337e-01 > -1/3!

2 3c08 8886 8.333330973983e-03 < 1/5!

3 b950 08b9 -1.983967522392e-04 > -1/7!

4 3636 9d6d 2.721174723774e-06 < 1/9!

5 0000 0000 0.0 > -1/11!

6 0000 0000 0.0 < 1/13!

7 0000 0000 0.0 > -1/15!

Index Hexadecimal Decimal Exact Value

0 3f80 0000 1.0 = 1/0!

1 bf00 0000 -5.000000000000e-01 = -1/2!

2 3d2a aaa6 4.166664928198e-02 < 1/4!

3 bab6 0705 -1.388759003021e-03 > -1/6!

4 37cd 37cc 2.446388680255e-05 < 1/8!

5 0000 0000 0.0 > -1/10!

6 0000 0000 0.0 < 1/12!

7 0000 0000 0.0 > -1/14!

Index Hexadecimal Decimal Exact Value

0 3c00 1.0 = 1/1!

1 b155 -1.666666716337e-01 > -1/3!

2 2030 8.333330973983e-03 < 1/5!

3 0000 0.0 > -1/7!

4 0000 0.0 < 1/9!

5 0000 0.0 > -1/11!

6 0000 0.0 < 1/13!

7 0000 0.0 > -1/15!
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4003
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Half-precision coefficient table for cos(x) (s2<15> == '1')

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

FTMAD <Zdn>.<T>, <Zdn>.<T>, <Zm>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer imm = UInt(imm3);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<imm> Is the unsigned immediate operand, in the range 0 to 7, encoded in the "imm3" field.

Index Hexadecimal Decimal Exact Value

0 3c00 1.0 = 1/0!

1 b800 -5.000000000000e-01 = -1/2!

2 293a 4.166664928198e-02 < 1/4!

3 0000 0.0 > -1/6!

4 0000 0.0 < 1/8!

5 0000 0.0 > -1/10!

6 0000 0.0 < 1/12!

7 0000 0.0 > -1/14!

0 1 1 0 0 1 0 1 size 0 1 0 imm3 1 0 0 0 0 0 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4004
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPTrigMAdd(imm, element1, element2, FPCR);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4005
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.234 FTSMUL

The FTSMUL instruction calculates the initial value for the FTMAD instruction. The instruction squares each element in
the first source vector and then sets the sign bit to a copy of bit 0 of the corresponding element in the second source
register, and places the results in the destination vector. This instruction is unpredicated.

To compute SIN(X) or COS(X) the instruction is executed with elements of the first source vector set to X, adjusted
to be in the range -π/4 < X ≤ π/4.

The elements of the second source vector hold the corresponding value of the quadrant Q number as an integer not
a floating-point value. The value Q satisfies the relationship (2q-1) × π/4 < X ≤ (2q+1) × π/4.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

FTSMUL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];

0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4006
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPTrigSMul(element1, element2, FPCR);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4007
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.235 FTSSEL

The FTSSEL instruction selects the coefficient for the final multiplication in the polynomial series approximation. The
instruction places the value 1.0 or a copy of the first source vector element in the destination element, depending on
bit 0 of the quadrant number Q held in the corresponding element of the second source vector. The sign bit of the
destination element is copied from bit 1 of the corresponding value of Q. This instruction is unpredicated.

To compute SIN(X) or COS(X) the instruction is executed with elements of the first source vector set to X, adjusted
to be in the range -π/4 < X ≤ π/4.

The elements of the second source vector hold the corresponding value of the quadrant Q number as an integer not
a floating-point value. The value Q satisfies the relationship (2q-1) × π/4 < X ≤ (2q+1) × π/4.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

FTSSEL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 0 0 0 0 1 0 0 size 1 Zm 1 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4008
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPTrigSSel(element1, element2);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4009
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.236 HISTCNT

This instruction compares each active 32 or 64-bit element of the first source vector with all active elements with
an element number less than or equal to its own in the second source vector, and places the count of matching
elements in the corresponding element of the destination vector. Inactive elements in the destination vector are set
to zero.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

HISTCNT <Zd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer d = UInt(Zd);
 integer n = UInt(Zn);
 integer m = UInt(Zm);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer count = 0;
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 for i = 0 to e
 if ActivePredicateElement(mask, i, esize) then

0 1 0 0 0 1 0 1 size 1 Zm 1 1 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4010
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) element2 = Elem[operand2, i, esize];
 if element1 == element2 then
 count = count + 1;
 Elem[result, e, esize] = count<esize-1:0>;

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4011
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.237 HISTSEG

This instruction compares each 8-bit byte element of the first source vector with all of the elements in the
corresponding 128-bit segment of the second source vector and places the count of matching elements in the
corresponding element of the destination vector. This instruction is unpredicated.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

HISTSEG <Zd>.B, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 if size != '00' then UNDEFINED;
 constant integer esize = 8;
 integer d = UInt(Zd);
 integer n = UInt(Zn);
 integer m = UInt(Zm);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for b = 0 to segments-1
 for s = 0 to eltspersegment-1
 integer count = 0;
 integer e = eltspersegment * b + s;
 bits(esize) element1 = Elem[operand1, e, esize];
 for i = 0 to eltspersegment-1
 integer e2 = eltspersegment * b + i;
 bits(esize) element2 = Elem[operand2, e2, esize];
 if element1 == element2 then
 count = count + 1;
 Elem[result, e, esize] = count<esize-1:0>;

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 size 1 Zm 1 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4012
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.238 INCB, INCD, INCH, INCW (scalar)

Determines the number of active elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Byte

Encoding

INCB <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Doubleword

Encoding

INCD <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 0 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 0 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4013
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Halfword

Encoding

INCH <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Word

Encoding

INCW <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 0 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 0 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4014
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 constant integer VL = CurrentVL;
 bits(64) operand1 = X[dn, 64];

 X[dn, 64] = operand1 + (count * imm);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4015
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.239 INCD, INCH, INCW (vector)

Determines the number of active elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Doubleword

Encoding

INCD <Zdn>.D{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Halfword

Encoding

INCH <Zdn>.H{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 0 0 0 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 0 0 0 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4016
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Word

Encoding

INCW <Zdn>.S{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 0 0 0 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4017
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[operand1, e, esize] + (count * imm);

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4018
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.240 INCP (scalar)

Counts the number of true elements in the source predicate and then uses the result to increment the scalar
destination.

Encoding

INCP <Xdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) operand1 = X[dn, 64];
 bits(PL) operand2 = P[m, PL];
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 X[dn, 64] = operand1 + count;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 size 1 0 1 1 0 0 1 0 0 0 1 0 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4019
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.241 INCP (vector)

Counts the number of true elements in the source predicate and then uses the result to increment all destination
vector elements.

The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited
in a future release of the architecture.

Encoding

INCP <Zdn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) operand2 = P[m, PL];
 bits(VL) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 for e = 0 to elements-1
 Elem[result, e, esize] = Elem[operand1, e, esize] + count;

 Z[dn, VL] = result;

0 0 1 0 0 1 0 1 size 1 0 1 1 0 0 1 0 0 0 0 0 0 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4020
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4021
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.242 INDEX (immediate, scalar)

Populates the destination vector by setting the first element to the first signed immediate integer operand and
monotonically incrementing the value by the second signed scalar integer operand for each subsequent element. The
scalar source operand is a general-purpose register in which only the least significant bits corresponding to the
vector element size are used and any remaining bits are ignored. This instruction is unpredicated.

Encoding

INDEX <Zd>.<T>, #<imm>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Rm);
 integer d = UInt(Zd);
 integer imm = SInt(imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is the signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(esize) operand2 = X[m, esize];
 integer element2 = SInt(operand2);
 bits(VL) result;

 for e = 0 to elements-1
 integer index = imm + e * element2;
 Elem[result, e, esize] = index<esize-1:0>;

0 0 0 0 0 1 0 0 size 1 Rm 0 1 0 0 1 0 imm5 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4022
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4023
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.243 INDEX (immediates)

Populates the destination vector by setting the first element to the first signed immediate integer operand and
monotonically incrementing the value by the second signed immediate integer operand for each subsequent
element. This instruction is unpredicated.

Encoding

INDEX <Zd>.<T>, #<imm1>, #<imm2>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer d = UInt(Zd);
 integer imm1 = SInt(imm5);
 integer imm2 = SInt(imm5b);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm1> Is the first signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

<imm2> Is the second signed immediate operand, in the range -16 to 15, encoded in the "imm5b" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) result;

 for e = 0 to elements-1
 integer index = imm1 + e * imm2;
 Elem[result, e, esize] = index<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 imm5b 0 1 0 0 0 0 imm5 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4024
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4025
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.244 INDEX (scalar, immediate)

Populates the destination vector by setting the first element to the first signed scalar integer operand and
monotonically incrementing the value by the second signed immediate integer operand for each subsequent
element. The scalar source operand is a general-purpose register in which only the least significant bits
corresponding to the vector element size are used and any remaining bits are ignored. This instruction is
unpredicated.

Encoding

INDEX <Zd>.<T>, <R><n>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Rn);
 integer d = UInt(Zd);
 integer imm = SInt(imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<imm> Is the signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(esize) operand1 = X[n, esize];
 integer element1 = SInt(operand1);
 bits(VL) result;

 for e = 0 to elements-1
 integer index = element1 + e * imm;

0 0 0 0 0 1 0 0 size 1 imm5 0 1 0 0 0 1 Rn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4026
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = index<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4027
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.245 INDEX (scalars)

Populates the destination vector by setting the first element to the first signed scalar integer operand and
monotonically incrementing the value by the second signed scalar integer operand for each subsequent element. The
scalar source operands are general-purpose registers in which only the least significant bits corresponding to the
vector element size are used and any remaining bits are ignored. This instruction is unpredicated.

Encoding

INDEX <Zd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(esize) operand1 = X[n, esize];
 integer element1 = SInt(operand1);
 bits(esize) operand2 = X[m, esize];
 integer element2 = SInt(operand2);
 bits(VL) result;

0 0 0 0 0 1 0 0 size 1 Rm 0 1 0 0 1 1 Rn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4028
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer index = element1 + e * element2;
 Elem[result, e, esize] = index<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4029
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.246 INSR (scalar)

Shift the destination vector left by one element, and then place a copy of the least-significant bits of the
general-purpose register in element 0 of the destination vector. This instruction is unpredicated.

Encoding

INSR <Zdn>.<T>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer m = UInt(Rm);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(VL) dest = Z[dn, VL];
 bits(esize) src = X[m, esize];
 Z[dn, VL] = dest<(VL-esize)-1:0> : src;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

0 0 0 0 0 1 0 1 size 1 0 0 1 0 0 0 0 1 1 1 0 Rm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4030
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4031
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.247 INSR (SIMD&FP scalar)

Shift the destination vector left by one element, and then place a copy of the SIMD&FP scalar register in element
0 of the destination vector. This instruction is unpredicated.

Encoding

INSR <Zdn>.<T>, <V><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer m = UInt(Vm);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<m> Is the number [0-31] of the source SIMD&FP register, encoded in the "Vm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(VL) dest = Z[dn, VL];
 bits(esize) src = V[m, esize];
 Z[dn, VL] = dest<(VL-esize)-1:0> : src;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

0 0 0 0 0 1 0 1 size 1 1 0 1 0 0 0 0 1 1 1 0 Vm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4032
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4033
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.248 LASTA (scalar)

If there is an active element then extract the element after the last active element modulo the number of elements
from the final source vector register. If there are no active elements, extract element zero. Then zero-extend and
place the extracted element in the destination general-purpose register.

Encoding

LASTA <R><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = if esize < 64 then 32 else 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Rd);
 boolean isBefore = FALSE;

Assembler symbols

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<d> Is the number [0-30] of the destination general-purpose register or the name ZR (31), encoded in the
"Rd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = Z[n, VL];
 bits(rsize) result;
 integer last = LastActiveElement(mask, esize);

 if isBefore then

0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 1 0 1 Pg Zn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4034
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if last < 0 then last = elements - 1;
 else
 last = last + 1;
 if last >= elements then last = 0;
 result = ZeroExtend(Elem[operand, last, esize], rsize);

 X[d, rsize] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4035
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.249 LASTA (SIMD&FP scalar)

If there is an active element then extract the element after the last active element modulo the number of elements
from the final source vector register. If there are no active elements, extract element zero. Then place the extracted
element in the destination SIMD&FP scalar register.

Encoding

LASTA <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean isBefore = FALSE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = Z[n, VL];
 integer last = LastActiveElement(mask, esize);

 if isBefore then
 if last < 0 then last = elements - 1;

0 0 0 0 0 1 0 1 size 1 0 0 0 1 0 1 0 0 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4036
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 last = last + 1;
 if last >= elements then last = 0;
 V[d, esize] = Elem[operand, last, esize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4037
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.250 LASTB (scalar)

If there is an active element then extract the last active element from the final source vector register. If there are no
active elements, extract the highest-numbered element. Then zero-extend and place the extracted element in the
destination general-purpose register.

Encoding

LASTB <R><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = if esize < 64 then 32 else 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Rd);
 boolean isBefore = TRUE;

Assembler symbols

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<d> Is the number [0-30] of the destination general-purpose register or the name ZR (31), encoded in the
"Rd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = Z[n, VL];
 bits(rsize) result;
 integer last = LastActiveElement(mask, esize);

 if isBefore then

0 0 0 0 0 1 0 1 size 1 0 0 0 0 1 1 0 1 Pg Zn Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4038
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if last < 0 then last = elements - 1;
 else
 last = last + 1;
 if last >= elements then last = 0;
 result = ZeroExtend(Elem[operand, last, esize], rsize);

 X[d, rsize] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4039
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.251 LASTB (SIMD&FP scalar)

If there is an active element then extract the last active element from the final source vector register. If there are no
active elements, extract the highest-numbered element. Then place the extracted element in the destination
SIMD&FP register.

Encoding

LASTB <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean isBefore = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = Z[n, VL];
 integer last = LastActiveElement(mask, esize);

 if isBefore then
 if last < 0 then last = elements - 1;

0 0 0 0 0 1 0 1 size 1 0 0 0 1 1 1 0 0 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

B

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4040
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 last = last + 1;
 if last >= elements then last = 0;
 V[d, esize] = Elem[operand, last, esize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4041
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.252 LD1B (scalar plus immediate, consecutive registers)

Contiguous load of unsigned bytes to elements of two or four consecutive vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LD1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 0 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 0 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4042
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4043
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4044
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.253 LD1B (scalar plus immediate, single register)

Contiguous load of unsigned bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective
of predication, and added to the base address. Inactive elements will not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

8-bit element

Encoding

LD1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

16-bit element

Encoding

LD1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 0 0 0 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 0 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4045
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit element

Encoding

LD1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

64-bit element

Encoding

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

1 0 1 0 0 1 0 0 0 1 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 1 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4046
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4047
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.254 LD1B (scalar plus scalar, consecutive registers)

Contiguous load of unsigned bytes to elements of two or four consecutive vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;

Four registers

(FEAT_SVE2p1)

Encoding

LD1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 0 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 0 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4048
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4049
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4050
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.255 LD1B (scalar plus scalar, single register)

Contiguous load of unsigned bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements will not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

8-bit element

Encoding

LD1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer msize = 8;
 boolean unsigned = TRUE;

16-bit element

Encoding

LD1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = TRUE;

1 0 1 0 0 1 0 0 0 0 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 0 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4051
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit element

Encoding

LD1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;

64-bit element

Encoding

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

1 0 1 0 0 1 0 0 0 1 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 1 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4052
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4053
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.256 LD1B (scalar plus vector)

Gather load of unsigned bytes to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to 64 bits. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked unscaled offset

Encoding

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LD1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 0 0 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 0 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4054
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit unscaled offset

Encoding

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 1 0 0 0 1 0 0 0 1 0 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4055
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4056
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.257 LD1B (vector plus immediate)

Gather load of unsigned bytes to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is in the range 0 to 31. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LD1B { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LD1B { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 0 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4057
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4058
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.258 LD1D (scalar plus immediate, consecutive registers)

Contiguous load of unsigned doublewords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LD1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 1 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 1 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4059
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4060
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4061
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.259 LD1D (scalar plus immediate, single register)

Contiguous load of unsigned doublewords to elements of a vector register from the memory address generated by
a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

SVE

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

SVE2

(FEAT_SVE2p1)

Encoding

LD1D { <Zt>.Q }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 64;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 1 0 0 1 0 1 1 1 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 1 0 0 1 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4062
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4063
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.260 LD1D (scalar plus scalar, consecutive registers)

Contiguous load of unsigned doublewords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;

Four registers

(FEAT_SVE2p1)

Encoding

LD1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 1 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 1 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4064
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4065
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4066
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.261 LD1D (scalar plus scalar, single register)

Contiguous load of unsigned doublewords to elements of a vector register from the memory address generated by
a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

SVE

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;

SVE2

(FEAT_SVE2p1)

Encoding

LD1D { <Zt>.Q }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 64;
 boolean unsigned = TRUE;

1 0 1 0 0 1 0 1 1 1 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 1 0 0 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4067
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4068
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.262 LD1D (scalar plus vector)

Gather load of doublewords to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 8. Inactive elements will not cause a read from Device memory or signal faults, and are set
to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked scaled offset

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 3;

32-bit unpacked unscaled offset

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 1 1 xs 1 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 1 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4069
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 3;

64-bit unscaled offset

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 1 1 1 1 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 1 1 0 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4070
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4071
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.263 LD1D (vector plus immediate)

Gather load of doublewords to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is a multiple of 8 in the range 0 to 248. Inactive elements will not cause a read
from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LD1D { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to
0, encoded in the "imm5" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

1 1 0 0 0 1 0 1 1 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4072
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4073
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.264 LD1H (scalar plus immediate, consecutive registers)

Contiguous load of unsigned halfwords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LD1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 0 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 0 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4074
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4075
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4076
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.265 LD1H (scalar plus immediate, single register)

Contiguous load of unsigned halfwords to elements of a vector register from the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

16-bit element

Encoding

LD1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

32-bit element

Encoding

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 0 1 0 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 1 1 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4077
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

1 0 1 0 0 1 0 0 1 1 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4078
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4079
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.266 LD1H (scalar plus scalar, consecutive registers)

Contiguous load of unsigned halfwords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;

Four registers

(FEAT_SVE2p1)

Encoding

LD1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 0 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 0 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4080
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4081
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4082
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.267 LD1H (scalar plus scalar, single register)

Contiguous load of unsigned halfwords to elements of a vector register from the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 2 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements will not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

16-bit element

Encoding

LD1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 16;
 boolean unsigned = TRUE;

32-bit element

Encoding

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;

1 0 1 0 0 1 0 0 1 0 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 1 1 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4083
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);

1 0 1 0 0 1 0 0 1 1 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4084
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4085
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.268 LD1H (scalar plus vector)

Gather load of unsigned halfwords to active elements of a vector register from memory addresses generated by a
64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits
and then optionally multiplied by 2. Inactive elements will not cause a read from Device memory or signal faults,
and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

32-bit unpacked scaled offset

Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

1 0 0 0 0 1 0 0 1 xs 1 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 xs 1 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4086
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

64-bit scaled offset

1 1 0 0 0 1 0 0 1 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 1 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 1 1 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4087
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 1;

64-bit unscaled offset

Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

1 1 0 0 0 1 0 0 1 1 0 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4088
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4089
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.269 LD1H (vector plus immediate)

Gather load of unsigned halfwords to active elements of a vector register from memory addresses generated by a
vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive elements will not cause
a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LD1H { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LD1H { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 1 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4090
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4091
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.270 LD1Q

Gather load of quadwords to active elements of a vector register from memory addresses generated by a vector base
plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from Device memory or signal
faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE2p1)

Encoding

LD1Q { <Zt>.Q }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 CheckNonStreamingSVEEnabled();
 constant integer elements = VL DIV 128;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, 128) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 128) then
 bits(64) baddr = Elem[base, 2*e, 64];

1 1 0 0 0 1 0 0 0 0 0 Rm 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4092
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 Elem[result, e, 128] = Mem[addr, 16, accdesc];
 else
 Elem[result, e, 128] = Zeros(128);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4093
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.271 LD1RB

Load a single unsigned byte from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is in the range 0 to 63.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

8-bit element

Encoding

LD1RB { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

16-bit element

Encoding

LD1RB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

1 0 0 0 0 1 0 0 0 1 imm6 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>

1 0 0 0 0 1 0 0 0 1 imm6 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4094
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit element

Encoding

LD1RB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

64-bit element

Encoding

LD1RB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 63, defaulting to 0, encoded in the
"imm6" field.

1 0 0 0 0 1 0 0 0 1 imm6 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>

1 0 0 0 0 1 0 0 0 1 imm6 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4095
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4096
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.272 LD1RD

Load a single doubleword from a memory address generated by a 64-bit scalar base address plus an immediate offset
which is a multiple of 8 in the range 0 to 504.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

Encoding

LD1RD { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 504, defaulting to
0, encoded in the "imm6" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 0 0 0 1 0 1 1 1 imm6 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4097
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4098
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.273 LD1RH

Load a single unsigned halfword from a memory address generated by a 64-bit scalar base address plus an
immediate offset which is a multiple of 2 in the range 0 to 126.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

16-bit element

Encoding

LD1RH { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

32-bit element

Encoding

LD1RH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

1 0 0 0 0 1 0 0 1 1 imm6 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>

1 0 0 0 0 1 0 0 1 1 imm6 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4099
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LD1RH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 126, defaulting to
0, encoded in the "imm6" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);

1 0 0 0 0 1 0 0 1 1 imm6 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4100
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4101
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.274 LD1ROB (scalar plus immediate)

Load thirty-two contiguous bytes to elements of a 256-bit (octaword) vector from the memory address generated by
a 64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the base
address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first thirty-two predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROB { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only

1 0 1 0 0 1 0 0 0 0 1 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4102
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4103
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.275 LD1ROB (scalar plus scalar)

Load thirty-two contiguous bytes to elements of a 256-bit (octaword) vector from the memory address generated by
a 64-bit scalar base address and scalar index which is added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first thirty-two predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROB { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only
 bits(64) offset;

1 0 1 0 0 1 0 0 0 0 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4104
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4105
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.276 LD1ROD (scalar plus immediate)

Load four contiguous doublewords to elements of a 256-bit (octaword) vector from the memory address generated
by a 64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the
base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first four predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROD { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only

1 0 1 0 0 1 0 1 1 0 1 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4106
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4107
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.277 LD1ROD (scalar plus scalar)

Load four contiguous doublewords to elements of a 256-bit (octaword) vector from the memory address generated
by a 64-bit scalar base address and scalar index which is multiplied by 8 and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first four predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROD { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only
 bits(64) offset;

1 0 1 0 0 1 0 1 1 0 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4108
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4109
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.278 LD1ROH (scalar plus immediate)

Load sixteen contiguous halfwords to elements of a 256-bit (octaword) vector from the memory address generated
by a 64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the
base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first sixteen predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROH { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only

1 0 1 0 0 1 0 0 1 0 1 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4110
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4111
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.279 LD1ROH (scalar plus scalar)

Load sixteen contiguous halfwords to elements of a 256-bit (octaword) vector from the memory address generated
by a 64-bit scalar base address and scalar index which is multiplied by 2 and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first sixteen predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROH { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only
 bits(64) offset;

1 0 1 0 0 1 0 0 1 0 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4112
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4113
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.280 LD1ROW (scalar plus immediate)

Load eight contiguous words to elements of a 256-bit (octaword) vector from the memory address generated by a
64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the base
address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first eight predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROW { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only

1 0 1 0 0 1 0 1 0 0 1 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4114
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4115
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.281 LD1ROW (scalar plus scalar)

Load eight contiguous words to elements of a 256-bit (octaword) vector from the memory address generated by a
64-bit scalar base address and scalar index which is multiplied by 4 and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.

The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.

Only the first eight predicate elements are used and higher numbered predicate elements are ignored.

ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_F64MM)

Encoding

LD1ROW { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 if VL < 256 then UNDEFINED;
 constant integer elements = 256 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low bits only
 bits(64) offset;

1 0 1 0 0 1 0 1 0 0 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4116
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(256) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4117
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.282 LD1RQB (scalar plus immediate)

Load sixteen contiguous bytes to elements of a short, 128-bit (quadword) vector from the memory address generated
by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112 added to the
base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first sixteen predicate elements are used and
higher numbered predicate elements are ignored.

Encoding

LD1RQB { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 1 0 0 1 0 0 0 0 0 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4118
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * 16) + (e * mbytes);
 bits(64) addr = GenerateAddress(base, eoff, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4119
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.283 LD1RQB (scalar plus scalar)

Load sixteen contiguous bytes to elements of a short, 128-bit (quadword) vector from the memory address generated
by a 64-bit scalar base address and scalar index which is added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first sixteen predicate elements are used and
higher numbered predicate elements are ignored.

Encoding

LD1RQB { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(64) offset;
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 0 0 0 0 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4120
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4121
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.284 LD1RQD (scalar plus immediate)

Load two contiguous doublewords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112
added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first two predicate elements are used and higher
numbered predicate elements are ignored.

Encoding

LD1RQD { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 1 0 0 1 0 1 1 0 0 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4122
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * 16) + (e * mbytes);
 bits(64) addr = GenerateAddress(base, eoff, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4123
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.285 LD1RQD (scalar plus scalar)

Load two contiguous doublewords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and scalar index which is multiplied by 8 and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first two predicate elements are used and higher
numbered predicate elements are ignored.

Encoding

LD1RQD { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(64) offset;
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 1 1 0 0 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4124
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4125
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.286 LD1RQH (scalar plus immediate)

Load eight contiguous halfwords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112
added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first eight predicate elements are used and higher
numbered predicate elements are ignored.

Encoding

LD1RQH { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 1 0 0 1 0 0 1 0 0 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4126
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * 16) + (e * mbytes);
 bits(64) addr = GenerateAddress(base, eoff, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4127
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.287 LD1RQH (scalar plus scalar)

Load eight contiguous halfwords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and scalar index which is multiplied by 2 and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first eight predicate elements are used and higher
numbered predicate elements are ignored.

Encoding

LD1RQH { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(64) offset;
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 0 1 0 0 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4128
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4129
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.288 LD1RQW (scalar plus immediate)

Load four contiguous words to elements of a short, 128-bit (quadword) vector from the memory address generated
by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112 added to the
base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first four predicate elements are used and higher
numbered predicate elements are ignored.

Encoding

LD1RQW { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 1 0 0 1 0 1 0 0 0 0 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4130
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * 16) + (e * mbytes);
 bits(64) addr = GenerateAddress(base, eoff, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4131
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.289 LD1RQW (scalar plus scalar)

Load four contiguous words to elements of a short, 128-bit (quadword) vector from the memory address generated
by a 64-bit scalar base address and scalar index which is multiplied by 4 and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first four predicate elements are used and higher
numbered predicate elements are ignored.

Encoding

LD1RQW { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = 128 DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL]; // low 16 bits only
 bits(64) offset;
 bits(128) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 1 0 0 0 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

ssz

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4132
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = Replicate(result, VL DIV 128);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4133
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.290 LD1RSB

Load a single signed byte from a memory address generated by a 64-bit scalar base address plus an immediate offset
which is in the range 0 to 63.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

16-bit element

Encoding

LD1RSB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm6);

32-bit element

Encoding

LD1RSB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm6);

1 0 0 0 0 1 0 1 1 1 imm6 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>

1 0 0 0 0 1 0 1 1 1 imm6 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4134
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LD1RSB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 63, defaulting to 0, encoded in the
"imm6" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);

1 0 0 0 0 1 0 1 1 1 imm6 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4135
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4136
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.291 LD1RSH

Load a single signed halfword from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is a multiple of 2 in the range 0 to 126.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

32-bit element

Encoding

LD1RSH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = UInt(imm6);

64-bit element

Encoding

LD1RSH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 1 0 1 imm6 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>

1 0 0 0 0 1 0 1 0 1 imm6 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4137
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 126, defaulting to
0, encoded in the "imm6" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4138
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.292 LD1RSW

Load a single signed word from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is a multiple of 4 in the range 0 to 252.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

Encoding

LD1RSW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 252, defaulting to
0, encoded in the "imm6" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 0 0 0 1 0 0 1 1 imm6 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4139
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4140
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.293 LD1RW

Load a single unsigned word from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is a multiple of 4 in the range 0 to 252.

Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If
all elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

32-bit element

Encoding

LD1RW { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

64-bit element

Encoding

LD1RW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = UInt(imm6);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 1 0 1 imm6 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>

1 0 0 0 0 1 0 1 0 1 imm6 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0

dtypeh<1>

dtypeh<0>

dtypel<0>

dtypel<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4141
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 252, defaulting to
0, encoded in the "imm6" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 bits(64) addr = GenerateAddress(base, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4142
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.294 LD1SB (scalar plus immediate)

Contiguous load of signed bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective
of predication, and added to the base address. Inactive elements will not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

16-bit element

Encoding

LD1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

32-bit element

Encoding

LD1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 1 1 1 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 1 0 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4143
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];

1 0 1 0 0 1 0 1 1 0 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4144
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4145
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.295 LD1SB (scalar plus scalar)

Contiguous load of signed bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements will not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

16-bit element

Encoding

LD1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = FALSE;

32-bit element

Encoding

LD1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;

1 0 1 0 0 1 0 1 1 1 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 1 0 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4146
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);

1 0 1 0 0 1 0 1 1 0 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4147
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4148
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.296 LD1SB (scalar plus vector)

Gather load of signed bytes to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to 64 bits. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked unscaled offset

Encoding

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LD1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 0 0 xs 0 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 0 xs 0 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4149
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit unscaled offset

Encoding

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 1 0 0 0 1 0 0 0 1 0 Zm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4150
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4151
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.297 LD1SB (vector plus immediate)

Gather load of signed bytes to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is in the range 0 to 31. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LD1SB { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LD1SB { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 0 0 1 imm5 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 1 imm5 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4152
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4153
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.298 LD1SH (scalar plus immediate)

Contiguous load of signed halfwords to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective
of predication, and added to the base address. Inactive elements will not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

32-bit element

Encoding

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

64-bit element

Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

1 0 1 0 0 1 0 1 0 0 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 0 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4154
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4155
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.299 LD1SH (scalar plus scalar)

Contiguous load of signed halfwords to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 2 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

32-bit element

Encoding

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;

64-bit element

Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 1 0 0 1 0 1 0 0 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 0 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4156
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4157
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.300 LD1SH (scalar plus vector)

Gather load of signed halfwords to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 2. Inactive elements will not cause a read from Device memory or signal faults, and are set
to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

32-bit unpacked scaled offset

Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

1 0 0 0 0 1 0 0 1 xs 1 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 xs 1 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4158
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

64-bit scaled offset

1 1 0 0 0 1 0 0 1 xs 0 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 1 xs 0 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 1 1 Zm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4159
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 1;

64-bit unscaled offset

Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

1 1 0 0 0 1 0 0 1 1 0 Zm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4160
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4161
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.301 LD1SH (vector plus immediate)

Gather load of signed halfwords to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive elements will not cause a read
from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LD1SH { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LD1SH { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 1 0 1 imm5 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 1 imm5 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4162
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4163
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.302 LD1SW (scalar plus immediate)

Contiguous load of signed words to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective
of predication, and added to the base address. Inactive elements will not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else

1 0 1 0 0 1 0 0 1 0 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4164
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4165
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.303 LD1SW (scalar plus scalar)

Contiguous load of signed words to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();

1 0 1 0 0 1 0 0 1 0 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4166
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4167
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.304 LD1SW (scalar plus vector)

Gather load of signed words to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 4. Inactive elements will not cause a read from Device memory or signal faults, and are set
to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked scaled offset

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

32-bit unpacked unscaled offset

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 1 0 xs 1 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 xs 0 Zm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4168
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 2;

64-bit unscaled offset

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 1 0 1 1 Zm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 1 0 Zm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4169
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4170
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.305 LD1SW (vector plus immediate)

Gather load of signed words to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements will not cause a read
from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LD1SW { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to
0, encoded in the "imm5" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

1 1 0 0 0 1 0 1 0 0 1 imm5 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4171
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4172
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.306 LD1W (scalar plus immediate, consecutive registers)

Contiguous load of unsigned words to elements of two or four consecutive vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LD1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 1 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 1 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4173
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4174
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4175
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.307 LD1W (scalar plus immediate, single register)

Contiguous load of unsigned words to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective
of predication, and added to the base address. Inactive elements will not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

32-bit element

Encoding

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

64-bit element

Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

128-bit element

(FEAT_SVE2p1)

1 0 1 0 0 1 0 1 0 1 0 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 1 1 0 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4176
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LD1W { <Zt>.Q }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else

1 0 1 0 0 1 0 1 0 0 0 1 imm4 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4177
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4178
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.308 LD1W (scalar plus scalar, consecutive registers)

Contiguous load of unsigned words to elements of two or four consecutive vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SVE2p1)

Encoding

LD1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;

Four registers

(FEAT_SVE2p1)

Encoding

LD1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 1 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 1 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4179
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4180
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4181
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.309 LD1W (scalar plus scalar, single register)

Contiguous load of unsigned words to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

32-bit element

Encoding

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;

64-bit element

Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;

128-bit element

(FEAT_SVE2p1)

1 0 1 0 0 1 0 1 0 1 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 1 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4182
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LD1W { <Zt>.Q }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 32;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);

1 0 1 0 0 1 0 1 0 0 0 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4183
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4184
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.310 LD1W (scalar plus vector)

Gather load of unsigned words to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 4. Inactive elements will not cause a read from Device memory or signal faults, and are set
to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

32-bit unpacked scaled offset

Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

1 0 0 0 0 1 0 1 0 xs 1 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 xs 1 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4185
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

64-bit scaled offset

1 1 0 0 0 1 0 1 0 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 1 0 xs 0 Zm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 1 1 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4186
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 2;

64-bit unscaled offset

Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

1 1 0 0 0 1 0 1 0 1 0 Zm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4187
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4188
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.311 LD1W (vector plus immediate)

Gather load of unsigned words to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements will not cause a read
from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LD1W { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LD1W { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 1 0 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 1 0 0 1 imm5 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4189
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to
0, encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4190
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.312 LD2B (scalar plus immediate)

Contiguous load two-byte structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

Encoding

LD2B { <Zt1>.B, <Zt2>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

1 0 1 0 0 1 0 0 0 0 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4191
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4192
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.313 LD2B (scalar plus scalar)

Contiguous load two-byte structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by two. The index register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

Encoding

LD2B { <Zt1>.B, <Zt2>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;

1 0 1 0 0 1 0 0 0 0 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4193
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4194
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.314 LD2D (scalar plus immediate)

Contiguous load two-doubleword structures, each to the same element number in two vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16
to 14 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination
vector registers.

Encoding

LD2D { <Zt1>.D, <Zt2>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

1 0 1 0 0 1 0 1 1 0 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4195
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4196
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.315 LD2D (scalar plus scalar)

Contiguous load two-doubleword structures, each to the same element number in two vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination
vector registers.

Encoding

LD2D { <Zt1>.D, <Zt2>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 1 1 0 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4197
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4198
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.316 LD2H (scalar plus immediate)

Contiguous load two-halfword structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination
vector registers.

Encoding

LD2H { <Zt1>.H, <Zt2>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

1 0 1 0 0 1 0 0 1 0 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4199
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4200
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.317 LD2H (scalar plus scalar)

Contiguous load two-halfword structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination
vector registers.

Encoding

LD2H { <Zt1>.H, <Zt2>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 0 1 0 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4201
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4202
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.318 LD2Q (scalar plus immediate)

Contiguous load two-quadword structures, each to the same element number in two vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16
to 14 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive quadwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination
vector registers.

SVE2

(FEAT_SVE2p1)

Encoding

LD2Q { <Zt1>.Q, <Zt2>.Q }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 0 1 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4203
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4204
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.319 LD2Q (scalar plus scalar)

Contiguous load two-quadword structures, each to the same element number in two vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive quadwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination
vector registers.

SVE2

(FEAT_SVE2p1)

Encoding

LD2Q { <Zt1>.Q, <Zt2>.Q }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #4]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;

1 0 1 0 0 1 0 0 1 0 1 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4205
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4206
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.320 LD2W (scalar plus immediate)

Contiguous load two-word structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

Encoding

LD2W { <Zt1>.S, <Zt2>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

1 0 1 0 0 1 0 1 0 0 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4207
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4208
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.321 LD2W (scalar plus scalar)

Contiguous load two-word structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

Encoding

LD2W { <Zt1>.S, <Zt2>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 1 0 0 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4209
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4210
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.322 LD3B (scalar plus immediate)

Contiguous load three-byte structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

Encoding

LD3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 0 0 1 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4211
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4212
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.323 LD3B (scalar plus scalar)

Contiguous load three-byte structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by three. The index register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

Encoding

LD3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;

1 0 1 0 0 1 0 0 0 1 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4213
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4214
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.324 LD3D (scalar plus immediate)

Contiguous load three-doubleword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24
to 21 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

Encoding

LD3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 1 1 1 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4215
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4216
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.325 LD3D (scalar plus scalar)

Contiguous load three-doubleword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

Encoding

LD3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;

1 0 1 0 0 1 0 1 1 1 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4217
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4218
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.326 LD3H (scalar plus immediate)

Contiguous load three-halfword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24
to 21 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

Encoding

LD3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 0 1 1 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4219
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4220
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.327 LD3H (scalar plus scalar)

Contiguous load three-halfword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

Encoding

LD3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;

1 0 1 0 0 1 0 0 1 1 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4221
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4222
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.328 LD3Q (scalar plus immediate)

Contiguous load three-quadword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24
to 21 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive quadwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

SVE2

(FEAT_SVE2p1)

Encoding

LD3Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;

1 0 1 0 0 1 0 1 0 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4223
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4224
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.329 LD3Q (scalar plus scalar)

Contiguous load three-quadword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive quadwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

SVE2

(FEAT_SVE2p1)

Encoding

LD3Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #4]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;

1 0 1 0 0 1 0 1 0 0 1 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4225
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4226
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.330 LD3W (scalar plus immediate)

Contiguous load three-word structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

Encoding

LD3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 0 1 0 0 1 0 1 0 1 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4227
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4228
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.331 LD3W (scalar plus scalar)

Contiguous load three-word structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by three. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

Encoding

LD3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;

1 0 1 0 0 1 0 1 0 1 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4229
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4230
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.332 LD4B (scalar plus immediate)

Contiguous load four-byte structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

Encoding

LD4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;

1 0 1 0 0 1 0 0 0 1 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4231
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4232
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.333 LD4B (scalar plus scalar)

Contiguous load four-byte structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by four. The index register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

Encoding

LD4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;

1 0 1 0 0 1 0 0 0 1 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4233
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4234
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.334 LD4D (scalar plus immediate)

Contiguous load four-doubleword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32
to 28 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination
vector registers.

Encoding

LD4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;

1 0 1 0 0 1 0 1 1 1 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4235
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4236
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.335 LD4D (scalar plus scalar)

Contiguous load four-doubleword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination
vector registers.

Encoding

LD4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;

1 0 1 0 0 1 0 1 1 1 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4237
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4238
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.336 LD4H (scalar plus immediate)

Contiguous load four-halfword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32
to 28 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination
vector registers.

Encoding

LD4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;

1 0 1 0 0 1 0 0 1 1 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4239
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4240
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.337 LD4H (scalar plus scalar)

Contiguous load four-halfword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination
vector registers.

Encoding

LD4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;

1 0 1 0 0 1 0 0 1 1 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4241
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4242
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.338 LD4Q (scalar plus immediate)

Contiguous load four-quadword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32
to 28 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive quadwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination
vector registers.

SVE2

(FEAT_SVE2p1)

Encoding

LD4Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q, <Zt4>.Q }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];

1 0 1 0 0 1 0 1 1 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4243
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4244
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.339 LD4Q (scalar plus scalar)

Contiguous load four-quadword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive quadwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination
vector registers.

SVE2

(FEAT_SVE2p1)

Encoding

LD4Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q, <Zt4>.Q }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #4]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;

1 0 1 0 0 1 0 1 1 0 1 Rm 1 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4245
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4246
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.340 LD4W (scalar plus immediate)

Contiguous load four-word structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

Encoding

LD4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;

1 0 1 0 0 1 0 1 0 1 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4247
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4248
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.341 LD4W (scalar plus scalar)

Contiguous load four-word structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by four. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

Encoding

LD4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;

1 0 1 0 0 1 0 1 0 1 1 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4249
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[(t+r) MOD 32, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4250
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.342 LDFF1B (scalar plus scalar)

Contiguous load with first-faulting behavior of unsigned bytes to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

8-bit element

Encoding

LDFF1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer msize = 8;
 boolean unsigned = TRUE;

16-bit element

Encoding

LDFF1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = TRUE;

1 0 1 0 0 1 0 0 0 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4251
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit element

Encoding

LDFF1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;

64-bit element

Encoding

LDFF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

1 0 1 0 0 1 0 0 0 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4252
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4253
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.343 LDFF1B (scalar plus vector)

Gather load with first-faulting behavior of unsigned bytes to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally sign or zero-extended
from 32 to 64 bits. Inactive elements will not cause a read from Device memory or signal faults, and are set to zero
in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked unscaled offset

Encoding

LDFF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LDFF1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 0 0 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 0 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4254
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit unscaled offset

Encoding

LDFF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then

1 1 0 0 0 1 0 0 0 1 0 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4255
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4256
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.344 LDFF1B (vector plus immediate)

Gather load with first-faulting behavior of unsigned bytes to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is in the range 0 to 31. Inactive elements will
not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1B { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LDFF1B { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 0 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4257
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4258
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.345 LDFF1D (scalar plus scalar)

Contiguous load with first-faulting behavior of doublewords to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements
will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #3}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;

1 0 1 0 0 1 0 1 1 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4259
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4260
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.346 LDFF1D (scalar plus vector)

Gather load with first-faulting behavior of doublewords to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or
zero-extended from 32 to 64 bits and then optionally multiplied by 8. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked scaled offset

Encoding

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 3;

32-bit unpacked unscaled offset

Encoding

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 1 1 xs 1 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 1 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4261
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 3;

64-bit unscaled offset

Encoding

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 1 1 1 1 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 1 1 0 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4262
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4263
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4264
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.347 LDFF1D (vector plus immediate)

Gather load with first-faulting behavior of doublewords to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 8 in the range 0 to 248.
Inactive elements will not cause a read from Device memory or signal faults, and are set to zero in the destination
vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDFF1D { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to
0, encoded in the "imm5" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;

1 1 0 0 0 1 0 1 1 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4265
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4266
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.348 LDFF1H (scalar plus scalar)

Contiguous load with first-faulting behavior of unsigned halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 2 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements
will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

16-bit element

Encoding

LDFF1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 16;
 boolean unsigned = TRUE;

32-bit element

Encoding

LDFF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;

1 0 1 0 0 1 0 0 1 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 1 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4267
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

1 0 1 0 0 1 0 0 1 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4268
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4269
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.349 LDFF1H (scalar plus vector)

Gather load with first-faulting behavior of unsigned halfwords to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or
zero-extended from 32 to 64 bits and then optionally multiplied by 2. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

LDFF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

32-bit unpacked scaled offset

Encoding

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

1 0 0 0 0 1 0 0 1 xs 1 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 xs 1 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4270
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LDFF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

64-bit scaled offset

1 1 0 0 0 1 0 0 1 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 1 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 1 1 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4271
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 1;

64-bit unscaled offset

Encoding

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

1 1 0 0 0 1 0 0 1 1 0 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4272
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4273
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.350 LDFF1H (vector plus immediate)

Gather load with first-faulting behavior of unsigned halfwords to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1H { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LDFF1H { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 1 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4274
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4275
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.351 LDFF1SB (scalar plus scalar)

Contiguous load with first-faulting behavior of signed bytes to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

16-bit element

Encoding

LDFF1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = FALSE;

32-bit element

Encoding

LDFF1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;

1 0 1 0 0 1 0 1 1 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 1 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4276
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

1 0 1 0 0 1 0 1 1 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4277
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4278
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.352 LDFF1SB (scalar plus vector)

Gather load with first-faulting behavior of signed bytes to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally sign or zero-extended
from 32 to 64 bits. Inactive elements will not cause a read from Device memory or signal faults, and are set to zero
in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked unscaled offset

Encoding

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LDFF1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 0 0 xs 0 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 0 xs 0 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4279
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit unscaled offset

Encoding

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then

1 1 0 0 0 1 0 0 0 1 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4280
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4281
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.353 LDFF1SB (vector plus immediate)

Gather load with first-faulting behavior of signed bytes to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is in the range 0 to 31. Inactive elements will
not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1SB { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 0 0 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4282
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4283
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.354 LDFF1SH (scalar plus scalar)

Contiguous load with first-faulting behavior of signed halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 2 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements
will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;

64-bit element

Encoding

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;

1 0 1 0 0 1 0 1 0 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4284
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4285
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4286
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.355 LDFF1SH (scalar plus vector)

Gather load with first-faulting behavior of signed halfwords to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or
zero-extended from 32 to 64 bits and then optionally multiplied by 2. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

32-bit unpacked scaled offset

Encoding

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

1 0 0 0 0 1 0 0 1 xs 1 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 xs 1 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4287
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

64-bit scaled offset

1 1 0 0 0 1 0 0 1 xs 0 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 0 1 xs 0 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 0 1 1 1 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4288
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 1;

64-bit unscaled offset

Encoding

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

1 1 0 0 0 1 0 0 1 1 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4289
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4290
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.356 LDFF1SH (vector plus immediate)

Gather load with first-faulting behavior of signed halfwords to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 0 0 0 0 1 0 0 1 0 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4291
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4292
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.357 LDFF1SW (scalar plus scalar)

Contiguous load with first-faulting behavior of signed words to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 4 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements
will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;

1 0 1 0 0 1 0 0 1 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4293
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4294
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.358 LDFF1SW (scalar plus vector)

Gather load with first-faulting behavior of signed words to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or
zero-extended from 32 to 64 bits and then optionally multiplied by 4. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked scaled offset

Encoding

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

32-bit unpacked unscaled offset

Encoding

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = FALSE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 0 0 0 1 0 1 0 xs 1 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 xs 0 Zm 0 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4295
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 2;

64-bit unscaled offset

Encoding

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = FALSE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 1 0 1 1 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 1 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4296
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4297
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4298
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.359 LDFF1SW (vector plus immediate)

Gather load with first-faulting behavior of signed words to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 4 in the range 0 to 124.
Inactive elements will not cause a read from Device memory or signal faults, and are set to zero in the destination
vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to
0, encoded in the "imm5" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;

1 1 0 0 0 1 0 1 0 0 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4299
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4300
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.360 LDFF1W (scalar plus scalar)

Contiguous load with first-faulting behavior of unsigned words to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 4 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements
will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;

64-bit element

Encoding

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;

1 0 1 0 0 1 0 1 0 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4301
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 bits(64) offset;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4302
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4303
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.361 LDFF1W (scalar plus vector)

Gather load with first-faulting behavior of unsigned words to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or
zero-extended from 32 to 64 bits and then optionally multiplied by 4. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

32-bit unpacked scaled offset

Encoding

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

1 0 0 0 0 1 0 1 0 xs 1 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 xs 1 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4304
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean unsigned = TRUE;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

64-bit scaled offset

1 1 0 0 0 1 0 1 0 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 0 0 0 0 1 0 1 0 xs 0 Zm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

1 1 0 0 0 1 0 1 0 1 1 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4305
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 2;

64-bit unscaled offset

Encoding

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean unsigned = TRUE;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

1 1 0 0 0 1 0 1 0 1 0 Zm 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4306
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4307
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.362 LDFF1W (vector plus immediate)

Gather load with first-faulting behavior of unsigned words to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 4 in the range 0 to 124.
Inactive elements will not cause a read from Device memory or signal faults, and are set to zero in the destination
vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDFF1W { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

64-bit element

Encoding

LDFF1W { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = UInt(imm5);

1 0 0 0 0 1 0 1 0 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>

1 1 0 0 0 1 0 1 0 0 1 imm5 1 1 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U ff

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4308
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to
0, encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 assert accdesc.first;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 if accdesc.first then
 // Mem[] will not return if a fault is detected for the first active element
 data = Mem[addr, mbytes, accdesc];
 accdesc.first = FALSE;
 else
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4309
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4310
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.363 LDNF1B

Contiguous load with non-faulting behavior of unsigned bytes to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

8-bit element

Encoding

LDNF1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

16-bit element

Encoding

LDNF1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 0 0 0 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 0 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4311
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit element

Encoding

LDNF1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

64-bit element

Encoding

LDNF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

1 0 1 0 0 1 0 0 0 1 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 0 1 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4312
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4313
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.364 LDNF1D

Contiguous load with non-faulting behavior of doublewords to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDNF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;

1 0 1 0 0 1 0 1 1 1 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4314
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4315
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.365 LDNF1H

Contiguous load with non-faulting behavior of unsigned halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

16-bit element

Encoding

LDNF1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

32-bit element

Encoding

LDNF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 0 1 0 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 0 1 1 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4316
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LDNF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then

1 0 1 0 0 1 0 0 1 1 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4317
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4318
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.366 LDNF1SB

Contiguous load with non-faulting behavior of signed bytes to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

16-bit element

Encoding

LDNF1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

32-bit element

Encoding

LDNF1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 1 1 1 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 1 0 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4319
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit element

Encoding

LDNF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then

1 0 1 0 0 1 0 1 1 0 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4320
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4321
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.367 LDNF1SH

Contiguous load with non-faulting behavior of signed halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDNF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

64-bit element

Encoding

LDNF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 1 0 0 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 0 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4322
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4323
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.368 LDNF1SW

Contiguous load with non-faulting behavior of signed words to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDNF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;

1 0 1 0 0 1 0 0 1 0 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4324
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4325
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.369 LDNF1W

Contiguous load with non-faulting behavior of unsigned words to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

LDNF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

64-bit element

Encoding

LDNF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;
 integer offset = SInt(imm4);

1 0 1 0 0 1 0 1 0 1 0 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>

1 0 1 0 0 1 0 1 0 1 1 1 imm4 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 22 21 20 19 16 15 14 13 12 10 9 5 4 0

dtype<3:1>

dtype<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4326
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 bits(VL) orig = Z[t, VL];
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean fault = FALSE;
 boolean faulted = FALSE;
 boolean unknown = FALSE;
 boolean contiguous = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVENF(contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + eoff * mbytes;
 // MemNF[] will return fault=TRUE if access is not performed for any reason
 (data, fault) = MemNF[addr, mbytes, accdesc];
 else
 (data, fault) = (Zeros(msize), FALSE);

 // FFR elements set to FALSE following a suppressed access/fault
 faulted = faulted || fault;
 if faulted then
 ElemFFR[e, esize] = '0';

 // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
 unknown = unknown || ElemFFR[e, esize] == '0';
 if unknown then
 if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
 Elem[result, e, esize] = Zeros(esize);
 else // merge
 Elem[result, e, esize] = Elem[orig, e, esize];
 else
 Elem[result, e, esize] = Extend(data, esize, unsigned);

 Z[t, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4327
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.370 LDNT1B (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of bytes to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 0 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 0 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4328
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4329
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4330
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.371 LDNT1B (scalar plus immediate, single register)

Contiguous load non-temporal of bytes to elements of a vector register from the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 0 0 0 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4331
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4332
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.372 LDNT1B (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of bytes to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 0 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 0 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4333
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4334
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4335
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.373 LDNT1B (scalar plus scalar, single register)

Contiguous load non-temporal of bytes to elements of a vector register from the memory address generated by a
64-bit scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements will not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 0 0 0 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4336
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4337
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.374 LDNT1B (vector plus scalar)

Gather load non-temporal of unsigned bytes to active elements of a vector register from memory addresses
generated by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

LDNT1B { <Zt>.S }, <Pg>/Z, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = TRUE;

64-bit unscaled offset

Encoding

LDNT1B { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = TRUE;

1 0 0 0 0 1 0 0 0 0 0 Rm 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 0 Rm 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4338
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4339
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.375 LDNT1D (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of doublewords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 1 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 1 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4340
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4341
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4342
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.376 LDNT1D (scalar plus immediate, single register)

Contiguous load non-temporal of doublewords to elements of a vector register from the memory address generated
by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 1 1 0 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4343
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4344
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.377 LDNT1D (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of doublewords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 1 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 1 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4345
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4346
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4347
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.378 LDNT1D (scalar plus scalar, single register)

Contiguous load non-temporal of doublewords to elements of a vector register from the memory address generated
by a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 1 1 0 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4348
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4349
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.379 LDNT1D (vector plus scalar)

Gather load non-temporal of doublewords to active elements of a vector register from memory addresses generated
by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDNT1D { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 boolean unsigned = TRUE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

1 1 0 0 0 1 0 1 1 0 0 Rm 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4350
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4351
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.380 LDNT1H (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of halfwords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 0 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 0 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4352
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4353
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4354
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.381 LDNT1H (scalar plus immediate, single register)

Contiguous load non-temporal of halfwords to elements of a vector register from the memory address generated by
a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 0 1 0 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4355
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4356
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.382 LDNT1H (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of halfwords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 0 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 0 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4357
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4358
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4359
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.383 LDNT1H (scalar plus scalar, single register)

Contiguous load non-temporal of halfwords to elements of a vector register from the memory address generated by
a 64-bit scalar base and scalar index which is multiplied by 2 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 0 1 0 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4360
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4361
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.384 LDNT1H (vector plus scalar)

Gather load non-temporal of unsigned halfwords to active elements of a vector register from memory addresses
generated by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

LDNT1H { <Zt>.S }, <Pg>/Z, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = TRUE;

64-bit unscaled offset

Encoding

LDNT1H { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = TRUE;

1 0 0 0 0 1 0 0 1 0 0 Rm 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 0 Rm 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4362
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4363
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.385 LDNT1SB

Gather load non-temporal of signed bytes to active elements of a vector register from memory addresses generated
by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

LDNT1SB { <Zt>.S }, <Pg>/Z, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 boolean unsigned = FALSE;

64-bit unscaled offset

Encoding

LDNT1SB { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 boolean unsigned = FALSE;

1 0 0 0 0 1 0 0 0 0 0 Rm 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 0 Rm 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4364
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4365
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.386 LDNT1SH

Gather load non-temporal of signed halfwords to active elements of a vector register from memory addresses
generated by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

LDNT1SH { <Zt>.S }, <Pg>/Z, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 boolean unsigned = FALSE;

64-bit unscaled offset

Encoding

LDNT1SH { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 boolean unsigned = FALSE;

1 0 0 0 0 1 0 0 1 0 0 Rm 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 0 Rm 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4366
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4367
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.387 LDNT1SW

Gather load non-temporal of signed words to active elements of a vector register from memory addresses generated
by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

LDNT1SW { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = FALSE;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

1 1 0 0 0 1 0 1 0 0 0 Rm 1 0 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4368
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4369
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.388 LDNT1W (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of words to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 0 0 imm4 0 1 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 0 0 imm4 1 1 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4370
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4371
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4372
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.389 LDNT1W (scalar plus immediate, single register)

Contiguous load non-temporal of words to elements of a vector register from the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 1 0 0 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4373
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4374
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.390 LDNT1W (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of words to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

LDNT1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;

Four registers

(FEAT_SVE2p1)

Encoding

LDNT1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;

1 0 1 0 0 0 0 0 0 0 0 Rm 0 1 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 0 Rm 1 1 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4375
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t+r, VL] = values[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4376
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4377
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.391 LDNT1W (scalar plus scalar, single register)

Contiguous load non-temporal of words to elements of a vector register from the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements will not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

LDNT1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(PL) mask = P[g, PL];
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 0 1 0 0 1 0 1 0 0 0 Rm 1 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4378
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4379
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.392 LDNT1W (vector plus scalar)

Gather load non-temporal of unsigned words to active elements of a vector register from memory addresses
generated by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

LDNT1W { <Zt>.S }, <Pg>/Z, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 boolean unsigned = TRUE;

64-bit unscaled offset

Encoding

LDNT1W { <Zt>.D }, <Pg>/Z, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 boolean unsigned = TRUE;

1 0 0 0 0 1 0 1 0 0 0 Rm 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>

1 1 0 0 0 1 0 1 0 0 0 Rm 1 1 0 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

U

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4380
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) result;
 bits(msize) data;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 data = Mem[addr, mbytes, accdesc];
 Elem[result, e, esize] = Extend(data, esize, unsigned);
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4381
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.393 LDR (predicate)

Load a predicate register from a memory address generated by a 64-bit scalar base, plus an immediate offset in the
range -256 to 255 which is multiplied by the current predicate register size in bytes. This instruction is unpredicated.

The load is performed as contiguous byte accesses, each containing 8 consecutive predicate bits in ascending
element order, with no endian conversion and no guarantee of single-copy atomicity larger than a byte. However, if
alignment is checked, then a general-purpose base register must be aligned to 2 bytes.

For programmer convenience, an assembler must also accept a predicate-as-counter register name for the
destination predicate register.

Encoding

LDR <Pt>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Pt);
 integer n = UInt(Rn);
 integer imm = SInt(imm9h:imm9l);

Assembler symbols

<Pt> Is the name of the destination scalable predicate register, encoded in the "Pt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in
the "imm9h:imm9l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = PL DIV 8;
 bits(64) base;
 integer offset = imm * elements;
 bits(PL) result;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 boolean aligned = IsAligned(base + offset, 2);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base + offset, AlignmentFault(accdesc));

1 0 0 0 0 1 0 1 1 0 imm9h 0 0 0 imm9l Rn 0 Pt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4382
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 Elem[result, e, 8] = AArch64.MemSingle[base + offset, 1, accdesc, aligned];
 offset = offset + 1;

 P[t, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4383
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.394 LDR (vector)

Load a vector register from a memory address generated by a 64-bit scalar base, plus an immediate offset in the
range -256 to 255 which is multiplied by the current vector register size in bytes. This instruction is unpredicated.

The load is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

Encoding

LDR <Zt>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer imm = SInt(imm9h:imm9l);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in
the "imm9h:imm9l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 8;
 bits(64) base;
 integer offset = imm * elements;
 bits(VL) result;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 boolean aligned = IsAligned(base + offset, 16);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base + offset, AlignmentFault(accdesc));

 for e = 0 to elements-1
 Elem[result, e, 8] = AArch64.MemSingle[base + offset, 1, accdesc, aligned];
 offset = offset + 1;

1 0 0 0 0 1 0 1 1 0 imm9h 0 1 0 imm9l Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4384
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[t, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4385
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.395 LSL (immediate, predicated)

Shift left by immediate each active element of the source vector, and destructively place the results in the
corresponding elements of the source vector. The immediate shift amount is an unsigned value in the range 0 to
number of bits per element minus 1. Inactive elements in the destination vector register remain unmodified.

Encoding

LSL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer PL = VL DIV 8;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = LSL(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 tszh 0 0 0 0 1 1 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4386
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4387
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.396 LSL (immediate, unpredicated)

Shift left by immediate each element of the source vector, and place the results in the corresponding elements of the
destination vector. The immediate shift amount is an unsigned value in the range 0 to number of bits per element
minus 1. This instruction is unpredicated.

Encoding

LSL <Zd>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 Elem[result, e, esize] = LSL(element1, shift);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4388
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4389
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.397 LSL (vectors)

Shift left active elements of the first source vector by corresponding elements of the second source vector and
destructively place the results in the corresponding elements of the first source vector. The shift amount operand is
a vector of unsigned elements in which all bits are significant, and not used modulo the element size. Inactive
elements in the destination vector register remain unmodified.

Encoding

LSL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = LSL(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4390
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4391
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.398 LSL (wide elements, predicated)

Shift left active elements of the first source vector by corresponding overlapping 64-bit elements of the second
source vector and destructively place the results in the corresponding elements of the first source vector. The shift
amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo
the destination element size. Inactive elements in the destination vector register remain unmodified.

Encoding

LSL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = LSL(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 1 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4392
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and destination element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4393
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.399 LSL (wide elements, unpredicated)

Shift left all elements of the first source vector by corresponding overlapping 64-bit elements of the second source
vector and place the first in the corresponding elements of the destination vector. The shift amount is a vector of
unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo the destination element
size. Inactive elements in the destination vector register remain unmodified.

Encoding

LSL <Zd>.<T>, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = LSL(element1, shift);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4394
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4395
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.400 LSLR

Reversed shift left active elements of the second source vector by corresponding elements of the first source vector
and destructively place the results in the corresponding elements of the first source vector. The shift amount operand
is a vector of unsigned elements in which all bits are significant, and not used modulo the element size. Inactive
elements in the destination vector register remain unmodified.

Encoding

LSLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 integer shift = Min(UInt(element1), esize);
 Elem[result, e, esize] = LSL(element2, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4396
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4397
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.401 LSR (immediate, predicated)

Shift right by immediate, inserting zeroes, each active element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate shift amount is an unsigned value in the
range 1 to number of bits per element. Inactive elements in the destination vector register remain unmodified.

Encoding

LSR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer PL = VL DIV 8;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = LSR(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 tszh 0 0 0 0 0 1 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4398
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4399
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.402 LSR (immediate, unpredicated)

Shift right by immediate, inserting zeroes, each element of the source vector, and place the results in the
corresponding elements of the destination vector. The immediate shift amount is an unsigned value in the range 1
to number of bits per element. This instruction is unpredicated.

Encoding

LSR <Zd>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 Elem[result, e, esize] = LSR(element1, shift);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4400
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4401
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.403 LSR (vectors)

Shift right, inserting zeroes, active elements of the first source vector by corresponding elements of the second
source vector and destructively place the results in the corresponding elements of the first source vector. The shift
amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the element
size. Inactive elements in the destination vector register remain unmodified.

Encoding

LSR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = LSR(element1, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4402
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4403
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.404 LSR (wide elements, predicated)

Shift right, inserting zeroes, active elements of the first source vector by corresponding overlapping 64-bit elements
of the second source vector and destructively place the results in the corresponding elements of the first source
vector. The shift amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant, and
not used modulo the destination element size. Inactive elements in the destination vector register remain
unmodified.

Encoding

LSR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = LSR(element1, shift);
 else

0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4404
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and destination element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4405
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.405 LSR (wide elements, unpredicated)

Shift right, inserting zeroes, all elements of the first source vector by corresponding overlapping 64-bit elements of
the second source vector and place the first in the corresponding elements of the destination vector. The shift amount
is a vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo the
destination element size. This instruction is unpredicated.

Encoding

LSR <Zd>.<T>, <Zn>.<T>, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
 integer shift = Min(UInt(element2), esize);
 Elem[result, e, esize] = LSR(element1, shift);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4406
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4407
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.406 LSRR

Reversed shift right, inserting zeroes, active elements of the second source vector by corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector. The
shift amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the
element size. Inactive elements in the destination vector register remain unmodified.

Encoding

LSRR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 integer shift = Min(UInt(element1), esize);
 Elem[result, e, esize] = LSR(element2, shift);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4408
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4409
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.407 MAD

Multiply the corresponding active elements of the first and second source vectors and add to elements of the third
(addend) vector. Destructively place the results in the destination and first source (multiplicand) vector. Inactive
elements in the destination vector register remain unmodified.

Encoding

MAD <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer a = UInt(Za);
 boolean sub_op = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer product = element1 * element2;
 if sub_op then

0 0 0 0 0 1 0 0 size 0 Zm 1 1 0 Pg Za Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4410
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4411
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.408 MATCH

This instruction compares each active 8-bit or 16-bit character in the first source vector with all of the characters in
the corresponding 128-bit segment of the second source vector. Where the first source element detects any matching
characters in the second segment it places true in the corresponding element of the destination predicate, otherwise
false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C)
condition flags based on the predicate result, and the V flag to zero.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

MATCH <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 if size IN {'1x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer d = UInt(Pd);
 integer n = UInt(Zn);
 integer m = UInt(Zm);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

B when size<0> = 0

H when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer segmentbase = e - (e MOD eltspersegment);

0 1 0 0 0 1 0 1 size 1 Zm 1 0 0 Pg Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4412
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, psize] = ZeroExtend('0', psize);
 bits(esize) element1 = Elem[operand1, e, esize];
 for i = segmentbase to (segmentbase + eltspersegment) - 1
 bits(esize) element2 = Elem[operand2, i, esize];
 if element1 == element2 then
 Elem[result, e, psize] = ZeroExtend('1', psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4413
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.409 MLA (indexed)

Multiply all integer elements within each 128-bit segment of the first source vector by the specified element in the
corresponding second source vector segment. The products are then destructively added to the corresponding
elements of the addend and destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is
unpredicated.

16-bit

Encoding

MLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

32-bit

Encoding

MLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

0 1 0 0 0 1 0 0 0 1 i3l Zm 0 0 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4414
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

MLA <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, s, esize]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + product;

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4415
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4416
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.410 MLA (vectors)

Multiply the corresponding active elements of the first and second source vectors and add to elements of the third
source (addend) vector. Destructively place the results in the destination and third source (addend) vector. Inactive
elements in the destination vector register remain unmodified.

Encoding

MLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean sub_op = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer product = element1 * element2;
 if sub_op then

0 0 0 0 0 1 0 0 size 0 Zm 0 1 0 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4417
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize];

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4418
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.411 MLS (indexed)

Multiply all integer elements within each 128-bit segment of the first source vector by the specified element in the
corresponding second source vector segment. The products are then destructively subtracted from the corresponding
elements of the addend and destination vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is
unpredicated.

16-bit

Encoding

MLS <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

32-bit

Encoding

MLS <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

0 1 0 0 0 1 0 0 0 1 i3l Zm 0 0 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4419
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

MLS <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, s, esize]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] - product;

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4420
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4421
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.412 MLS (vectors)

Multiply the corresponding active elements of the first and second source vectors and subtract from elements of the
third source (addend) vector. Destructively place the results in the destination and third source (addend) vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

MLS <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean sub_op = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer product = element1 * element2;
 if sub_op then

0 0 0 0 0 1 0 0 size 0 Zm 0 1 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4422
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize];

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4423
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.413 MOV

Unconditionally broadcast the logical bitmask immediate into each element of the destination vector. This
instruction is unpredicated. The immediate is a 64-bit value consisting of a single run of ones or zeros repeating
every 2, 4, 8, 16, 32 or 64 bits.

This instruction is an alias of the DUPM instruction. This means that:

• The encodings in this description are named to match the encodings of DUPM.

• The description of DUPM gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, #<const>

 is equivalent to

DUPM <Zd>.<T>, #<const>

and is the preferred disassembly when SVEMoveMaskPreferred(imm13).

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of DUPM gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 1 1 0 0 0 0 imm13 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4424
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4425
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.414 MOV

Read all elements from the source predicate and place in the destination predicate. This instruction is unpredicated.
Does not set the condition flags.

For programmer convenience, an assembler must also accept predicate-as-counter register names for the source and
destination predicate registers.

This instruction is an alias of the ORR (predicates) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (predicates).

• The description of ORR (predicates) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Pd>.B, <Pn>.B

 is equivalent to

ORR <Pd>.B, <Pn>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '0' && Pn == Pm && Pm == Pg.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of ORR (predicates) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4426
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.415 MOV (immediate, predicated, merging)

Move a signed integer immediate to each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it
may also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is an alias of the CPY (immediate, merging) instruction. This means that:

• The encodings in this description are named to match the encodings of CPY (immediate, merging).

• The description of CPY (immediate, merging) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <Pg>/M, #<imm>{, <shift>}

 is equivalent to

CPY <Zd>.<T>, <Pg>/M, #<imm>{, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

The description of CPY (immediate, merging) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 size 0 1 Pg 0 1 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0

M

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4427
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4428
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.416 MOV (immediate, predicated, zeroing)

Move a signed integer immediate to each active element in the destination vector. Inactive elements in the
destination vector register are set to zero.

The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it
may also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is an alias of the CPY (immediate, zeroing) instruction. This means that:

• The encodings in this description are named to match the encodings of CPY (immediate, zeroing).

• The description of CPY (immediate, zeroing) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <Pg>/Z, #<imm>{, <shift>}

 is equivalent to

CPY <Zd>.<T>, <Pg>/Z, #<imm>{, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

The description of CPY (immediate, zeroing) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 size 0 1 Pg 0 0 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 5 4 0

M

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4429
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4430
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.417 MOV (immediate, unpredicated)

Unconditionally broadcast the signed integer immediate into each element of the destination vector. This instruction
is unpredicated.

The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it
may also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is an alias of the DUP (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of DUP (immediate).

• The description of DUP (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, #<imm>{, <shift>}

 is equivalent to

DUP <Zd>.<T>, #<imm>{, <shift>}

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

The description of DUP (immediate) gives the operational pseudocode for this instruction.

0 0 1 0 0 1 0 1 size 1 1 1 0 0 0 1 1 sh imm8 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4431
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4432
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.418 MOV (predicate, predicated, merging)

Read active elements from the source predicate and place in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register remain unmodified. Does not set the condition flags.

This instruction is an alias of the SEL (predicates) instruction. This means that:

• The encodings in this description are named to match the encodings of SEL (predicates).

• The description of SEL (predicates) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Pd>.B, <Pg>/M, <Pn>.B

 is equivalent to

SEL <Pd>.B, <Pg>, <Pn>.B, <Pd>.B

and is the preferred disassembly when Pd == Pm.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of SEL (predicates) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4433
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.419 MOV (predicate, predicated, zeroing)

Read active elements from the source predicate and place in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.

This instruction is an alias of the AND (predicates) instruction. This means that:

• The encodings in this description are named to match the encodings of AND (predicates).

• The description of AND (predicates) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Pd>.B, <Pg>/Z, <Pn>.B

 is equivalent to

AND <Pd>.B, <Pg>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '0' && Pn == Pm.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of AND (predicates) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4434
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.420 MOV (scalar, predicated)

Move the general-purpose scalar source register to each active element in the destination vector. Inactive elements
in the destination vector register remain unmodified.

This instruction is an alias of the CPY (scalar) instruction. This means that:

• The encodings in this description are named to match the encodings of CPY (scalar).

• The description of CPY (scalar) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <Pg>/M, <R><n|SP>

 is equivalent to

CPY <Zd>.<T>, <Pg>/M, <R><n|SP>

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

The description of CPY (scalar) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 size 1 0 1 0 0 0 1 0 1 Pg Rn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4435
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4436
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.421 MOV (scalar, unpredicated)

Unconditionally broadcast the general-purpose scalar source register into each element of the destination vector.
This instruction is unpredicated.

This instruction is an alias of the DUP (scalar) instruction. This means that:

• The encodings in this description are named to match the encodings of DUP (scalar).

• The description of DUP (scalar) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <R><n|SP>

 is equivalent to

DUP <Zd>.<T>, <R><n|SP>

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "size" field. It can have the following values:

W when size = 01

W when size = x0

X when size = 11

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

The description of DUP (scalar) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4437
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4438
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.422 MOV (SIMD&FP scalar, predicated)

Move the SIMD & floating-point scalar source register to each active element in the destination vector. Inactive
elements in the destination vector register remain unmodified.

This instruction is an alias of the CPY (SIMD&FP scalar) instruction. This means that:

• The encodings in this description are named to match the encodings of CPY (SIMD&FP scalar).

• The description of CPY (SIMD&FP scalar) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <Pg>/M, <V><n>

 is equivalent to

CPY <Zd>.<T>, <Pg>/M, <V><n>

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<n> Is the number [0-31] of the source SIMD&FP register, encoded in the "Vn" field.

Operation

The description of CPY (SIMD&FP scalar) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 1 0 0 Pg Vn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4439
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4440
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.423 MOV (SIMD&FP scalar, unpredicated)

Unconditionally broadcast the SIMD&FP scalar into each element of the destination vector. This instruction is
unpredicated.

This instruction is an alias of the DUP (indexed) instruction. This means that:

• The encodings in this description are named to match the encodings of DUP (indexed).

• The description of DUP (indexed) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <Zn>.<T>[<imm>]

 is equivalent to

DUP <Zd>.<T>, <Zn>.<T>[<imm>]

and is the preferred disassembly when BitCount(imm2:tsz) > 1.

Encoding

MOV <Zd>.<T>, <V><n>

 is equivalent to

DUP <Zd>.<T>, <Zn>.<T>[0]

and is the preferred disassembly when BitCount(imm2:tsz) == 1.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsz" field. It can have the following values:

B when tsz = xxxx1

H when tsz = xxx10

S when tsz = xx100

D when tsz = x1000

Q when tsz = 10000

The encoding tsz = 00000 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> Is the immediate index, in the range 0 to one less than the number of elements in 512 bits, encoded
in "imm2:tsz".

<V> Is a width specifier, encoded in the "tsz" field. It can have the following values:

B when tsz = xxxx1

H when tsz = xxx10

S when tsz = xx100

0 0 0 0 0 1 0 1 imm2 1 tsz 0 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4441
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
D when tsz = x1000

Q when tsz = 10000

The encoding tsz = 00000 is reserved.

<n> Is the number [0-31] of the source SIMD&FP register, encoded in the "Zn" field.

Operation

The description of DUP (indexed) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4442
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.424 MOV (vector, predicated)

Move elements from the source vector to the corresponding elements of the destination vector. Inactive elements in
the destination vector register remain unmodified.

This instruction is an alias of the SEL (vectors) instruction. This means that:

• The encodings in this description are named to match the encodings of SEL (vectors).

• The description of SEL (vectors) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.<T>, <Pv>/M, <Zn>.<T>

 is equivalent to

SEL <Zd>.<T>, <Pv>, <Zn>.<T>, <Zd>.<T>

and is the preferred disassembly when Zd == Zm.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pv> Is the name of the vector select predicate register, encoded in the "Pv" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

Operation

The description of SEL (vectors) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

0 0 0 0 0 1 0 1 size 1 Zm 1 1 Pv Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4443
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4444
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.425 MOV (vector, unpredicated)

Move vector register. This instruction is unpredicated.

This instruction is an alias of the ORR (vectors, unpredicated) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (vectors, unpredicated).

• The description of ORR (vectors, unpredicated) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV <Zd>.D, <Zn>.D

 is equivalent to

ORR <Zd>.D, <Zn>.D, <Zn>.D

and is the preferred disassembly when Zn == Zm.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

Operation

The description of ORR (vectors, unpredicated) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 1 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4445
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.426 MOVPRFX (predicated)

The predicated MOVPRFX instruction is a hint to hardware that the instruction may be combined with the destructive
instruction which follows it in program order to create a single constructive operation. Since it is a hint it is also
permitted to be implemented as a discrete vector copy, and the result of executing the pair of instructions with or
without combining is identical. The choice of combined versus discrete operation may vary dynamically.

Unless the combination of a constructive operation with merging predication is specifically required, it is strongly
recommended that for performance reasons software should prefer to use the zeroing form of predicated MOVPRFX or
the unpredicated MOVPRFX instruction.

Although the operation of the instruction is defined as a simple predicated vector copy, it is required that the prefixed
instruction at PC+4 must be an SVE destructive binary or ternary instruction encoding, or a unary operation with
merging predication, but excluding other MOVPRFX instructions. The prefixed instruction must specify the same
predicate register, and have the same maximum element size (ignoring a fixed 64-bit "wide vector" operand), and
the same destination vector as the MOVPRFX instruction. The prefixed instruction must not use the destination register
in any other operand position, even if they have different names but refer to the same architectural register state.
Any other use is UNPREDICTABLE.

Encoding

MOVPRFX <Zd>.<T>, <Pg>/<ZM>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean merging = (M == '1');

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZM> Is the predication qualifier, encoded in the "M" field. It can have the following values:

Z when M = 0

M when M = 1

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

0 0 0 0 0 1 0 0 size 0 1 0 0 0 M 0 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4446
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) dest = Z[d, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand1, e, esize];
 Elem[result, e, esize] = element;
 elsif merging then
 Elem[result, e, esize] = Elem[dest, e, esize];
 else
 Elem[result, e, esize] = Zeros(esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4447
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.427 MOVPRFX (unpredicated)

The unpredicated MOVPRFX instruction is a hint to hardware that the instruction may be combined with the destructive
instruction which follows it in program order to create a single constructive operation. Since it is a hint it is also
permitted to be implemented as a discrete vector copy, and the result of executing the pair of instructions with or
without combining is identical. The choice of combined versus discrete operation may vary dynamically.

Although the operation of the instruction is defined as a simple unpredicated vector copy, it is required that the
prefixed instruction at PC+4 must be an SVE destructive binary or ternary instruction encoding, or a unary operation
with merging predication, but excluding other MOVPRFX instructions. The prefixed instruction must specify the same
destination vector as the MOVPRFX instruction. The prefixed instruction must not use the destination register in any
other operand position, even if they have different names but refer to the same architectural register state. Any other
use is UNPREDICTABLE.

Encoding

MOVPRFX <Zd>, <Zn>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(VL) result = Z[n, VL];
 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4448
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.428 MOVS (predicated)

Read active elements from the source predicate and place in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C)
condition flags based on the predicate result, and the V flag to zero.

This instruction is an alias of the ANDS instruction. This means that:

• The encodings in this description are named to match the encodings of ANDS.

• The description of ANDS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

MOVS <Pd>.B, <Pg>/Z, <Pn>.B

 is equivalent to

ANDS <Pd>.B, <Pg>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '1' && Pn == Pm.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of ANDS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4449
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.429 MOVS (unpredicated)

Read all elements from the source predicate and place in the destination predicate. This instruction is unpredicated.
Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This instruction is an alias of the ORRS instruction. This means that:

• The encodings in this description are named to match the encodings of ORRS.

• The description of ORRS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

MOVS <Pd>.B, <Pn>.B

 is equivalent to

ORRS <Pd>.B, <Pn>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '1' && Pn == Pm && Pm == Pg.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of ORRS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4450
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.430 MSB

Multiply the corresponding active elements of the first and second source vectors and subtract from elements of the
third (addend) vector. Destructively place the results in the destination and first source (multiplicand) vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

MSB <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 integer a = UInt(Za);
 boolean sub_op = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer product = element1 * element2;
 if sub_op then

0 0 0 0 0 1 0 0 size 0 Zm 1 1 1 Pg Za Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4451
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4452
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.431 MUL (immediate)

Multiply by an immediate each element of the source vector, and destructively place the results in the corresponding
elements of the source vector. The immediate is a signed 8-bit value in the range -128 to +127, inclusive. This
instruction is unpredicated.

Encoding

MUL <Zdn>.<T>, <Zdn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = SInt(imm8);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is the signed immediate operand, in the range -128 to 127, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 Elem[result, e, esize] = (element1 * imm)<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 1 0 0 0 0 1 1 0 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4453
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4454
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.432 MUL (indexed)

Multiply all integer elements within each 128-bit segment of the first source vector by the specified element in the
corresponding second source vector segment. The results are placed in the corresponding elements of the destination
vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is
unpredicated.

16-bit

Encoding

MUL <Zd>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

32-bit

Encoding

MUL <Zd>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

0 1 0 0 0 1 0 0 0 1 i3l Zm 1 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 1 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4455
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

MUL <Zd>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, s, esize]);
 integer res = element1 * element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 1 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4456
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4457
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.433 MUL (vectors, predicated)

Multiply active elements of the first source vector by corresponding elements of the second source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

Encoding

MUL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer product = element1 * element2;
 Elem[result, e, esize] = product<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 0 0 0 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

H U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4458
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4459
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.434 MUL (vectors, unpredicated)

Multiply all elements of the first source vector by corresponding elements of the second source vector and place the
results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

MUL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer product = element1 * element2;
 Elem[result, e, esize] = product<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4460
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4461
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.435 NAND

Bitwise NAND active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

Encoding

NAND <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(NOT(element1 AND element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 1 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4462
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4463
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.436 NANDS

Bitwise NAND active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

Encoding

NANDS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(NOT(element1 AND element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 1 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4464
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4465
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.437 NBSL

Selects bits from the first source vector where the corresponding bit in the third source vector is '1', and from the
second source vector where the corresponding bit in the third source vector is '0'. The inverted result is placed
destructively in the destination and first source vector. This instruction is unpredicated.

Encoding

NBSL <Zdn>.D, <Zdn>.D, <Zm>.D, <Zk>.D

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 integer m = UInt(Zm);
 integer k = UInt(Zk);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zk> Is the name of the third source scalable vector register, encoded in the "Zk" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[k, VL];

 Z[dn, VL] = NOT((operand1 AND operand3) OR (operand2 AND NOT(operand3)));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

0 0 0 0 0 1 0 0 1 1 1 Zm 0 0 1 1 1 1 Zk Zdn

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4466
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4467
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.438 NEG

Negate the signed integer value in each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

NEG <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand, e, esize]);
 element = -element;
 Elem[result, e, esize] = element<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 0 1 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4468
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4469
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.439 NMATCH

This instruction compares each active 8-bit or 16-bit character in the first source vector with all of the characters in
the corresponding 128-bit segment of the second source vector. Where the first source element detects no matching
characters in the second segment it places true in the corresponding element of the destination predicate, otherwise
false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C)
condition flags based on the predicate result, and the V flag to zero.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

NMATCH <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 if size IN {'1x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer d = UInt(Pd);
 integer n = UInt(Zn);
 integer m = UInt(Zm);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

B when size<0> = 0

H when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer segmentbase = e - (e MOD eltspersegment);

0 1 0 0 0 1 0 1 size 1 Zm 1 0 0 Pg Zn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4470
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, psize] = ZeroExtend('1', psize);
 bits(esize) element1 = Elem[operand1, e, esize];
 for i = segmentbase to (segmentbase + eltspersegment) - 1
 bits(esize) element2 = Elem[operand2, i, esize];
 if element1 == element2 then
 Elem[result, e, psize] = ZeroExtend('0', psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4471
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.440 NOR

Bitwise NOR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

Encoding

NOR <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(NOT(element1 OR element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 1 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4472
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4473
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.441 NORS

Bitwise NOR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

Encoding

NORS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(NOT(element1 OR element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 1 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4474
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4475
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.442 NOT (predicate)

Bitwise invert each active element of the source predicate, and place the results in the corresponding elements of
the destination predicate. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

This instruction is an alias of the EOR (predicates) instruction. This means that:

• The encodings in this description are named to match the encodings of EOR (predicates).

• The description of EOR (predicates) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

NOT <Pd>.B, <Pg>/Z, <Pn>.B

 is equivalent to

EOR <Pd>.B, <Pg>/Z, <Pn>.B, <Pg>.B

and is the preferred disassembly when Pm == Pg.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of EOR (predicates) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4476
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.443 NOT (vector)

Bitwise invert each active element of the source vector, and place the results in the corresponding elements of the
destination vector. Inactive elements in the destination vector register remain unmodified.

Encoding

NOT <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = NOT element;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4477
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4478
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.444 NOTS

Bitwise invert each active element of the source predicate, and place the results in the corresponding elements of
the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This instruction is an alias of the EORS instruction. This means that:

• The encodings in this description are named to match the encodings of EORS.

• The description of EORS gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

Encoding

NOTS <Pd>.B, <Pg>/Z, <Pn>.B

 is equivalent to

EORS <Pd>.B, <Pg>/Z, <Pn>.B, <Pg>.B

and is the preferred disassembly when Pm == Pg.

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of EORS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 1 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4479
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.445 ORN (immediate)

Bitwise inclusive OR an inverted immediate with each 64-bit element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single
run of ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is a pseudo-instruction of the ORR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of ORR (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of ORR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

Encoding

ORN <Zdn>.<T>, <Zdn>.<T>, #<const>

 is equivalent to

ORR <Zdn>.<T>, <Zdn>.<T>, #(-<const> - 1)

and is never the preferred disassembly.

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

0 0 0 0 0 1 0 1 0 0 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4480
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4481
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.446 ORN (predicates)

Bitwise inclusive OR inverted active elements of the second source predicate with corresponding elements of the
first source predicate and place the results in the corresponding elements of the destination predicate. Inactive
elements in the destination predicate register are set to zero. Does not set the condition flags.

Encoding

ORN <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 OR (NOT element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 0 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4482
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4483
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.447 ORNS

Bitwise inclusive OR inverted active elements of the second source predicate with corresponding elements of the
first source predicate and place the results in the corresponding elements of the destination predicate. Inactive
elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

Encoding

ORNS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 OR (NOT element2), psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 0 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4484
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4485
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.448 ORQV

Bitwise inclusive OR of the same element numbers from each 128-bit source vector segment, placing each result
into the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the
source vector are treated as all zeros.

SVE2

(FEAT_SVE2p1)

Encoding

ORQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 1 1 1 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4486
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) dtmp;

 for e = 0 to elempersegment-1
 dtmp = Zeros(esize);
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = dtmp OR Elem[stmp, e, esize];
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4487
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.449 ORR (immediate)

Bitwise inclusive OR an immediate with each 64-bit element of the source vector, and destructively place the results
in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of
ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is used by the pseudo-instruction ORN (immediate). The pseudo-instruction is never the preferred
disassembly.

Encoding

ORR <Zdn>.<T>, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer dn = UInt(Zdn);
 bits(64) imm;
 (imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE, 64);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "imm13<12>:imm13<5:0>" field. It can have the following
values:

S when imm13<12> = 0, imm13<5:0> = 0xxxxx

H when imm13<12> = 0, imm13<5:0> = 10xxxx

B when imm13<12> = 0, imm13<5:0> = 110xxx

B when imm13<12> = 0, imm13<5:0> = 1110xx

B when imm13<12> = 0, imm13<5:0> = 11110x

D when imm13<12> = 1, imm13<5:0> = xxxxxx

The following encodings are reserved:

• imm13<12> = 0, imm13<5:0> = 111110.

• imm13<12> = 0, imm13<5:0> = 111111.

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV 64;
 bits(VL) operand = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(64) element1 = Elem[operand, e, 64];
 Elem[result, e, 64] = element1 OR imm;

0 0 0 0 0 1 0 1 0 0 0 0 0 0 imm13 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4488
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4489
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.450 ORR (predicates)

Bitwise inclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

This instruction is used by the alias MOV. See Alias conditions for details of when each alias is preferred.

Encoding

ORR <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then

Alias is preferred when

MOV S == '0' && Pn == Pm && Pm == Pg

0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4490
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, psize] = ZeroExtend(element1 OR element2, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4491
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.451 ORR (vectors, predicated)

Bitwise inclusive OR active elements of the second source vector with corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements
in the destination vector register remain unmodified.

Encoding

ORR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element1 OR element2;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4492
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4493
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.452 ORR (vectors, unpredicated)

Bitwise inclusive OR all elements of the second source vector with corresponding elements of the first source vector
and place the first in the corresponding elements of the destination vector. This instruction is unpredicated.

This instruction is used by the alias MOV (vector, unpredicated). See Alias conditions for details of when each alias
is preferred.

Encoding

ORR <Zd>.D, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Alias conditions

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

 Z[d, VL] = operand1 OR operand2;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias is preferred when

MOV (vector, unpredicated) Zn == Zm

0 0 0 0 0 1 0 0 0 1 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4494
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4495
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.453 ORRS

Bitwise inclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

This instruction is used by the alias MOVS (unpredicated). See Alias conditions for details of when each alias is
preferred.

Encoding

ORRS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1

Alias is preferred when

MOVS (unpredicated) S == '1' && Pn == Pm && Pm == Pg

0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4496
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1 OR element2, psize);
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4497
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.454 ORV

Bitwise inclusive OR horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar
destination register. Inactive elements in the source vector are treated as zero.

Encoding

ORV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(esize) result = Zeros(esize);

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 result = result OR Elem[operand, e, esize];

0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4498
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4499
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.455 PEXT (predicate pair)

Expands the source predicate-as-counter into a four-predicate wide mask and copies two quarters of it into the
destination predicate registers.

SVE2

(FEAT_SVE2p1)

Encoding

PEXT { <Pd1>.<T>, <Pd2>.<T> }, <PNn>[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt('1':PNn);
 integer d0 = UInt(Pd);
 integer d1 = (UInt(Pd) + 1) MOD 16;
 integer part = UInt(i1);

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded in the "Pd" field.

<PNn> Is the name of the first source scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNn" field.

<imm> Is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) pred = P[n, PL];
 bits(PL*4) mask = CounterToPredicate(pred<15:0>, PL*4);
 bits(PL) result0;
 bits(PL) result1;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit pbit = PredicateElement(mask, part * 2 * elements + e, esize);
 Elem[result0, e, psize] = ZeroExtend(pbit, psize);

 for e = 0 to elements-1

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 0 1 1 1 0 1 0 i1 PNn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4500
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bit pbit = PredicateElement(mask, part * 2 * elements + elements + e, esize);
 Elem[result1, e, psize] = ZeroExtend(pbit, psize);

 P[d0, PL] = result0;
 P[d1, PL] = result1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4501
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.456 PEXT (predicate)

Expands the source predicate-as-counter into a four-predicate wide mask and copies one quarter of it into the
destination predicate register.

SVE2

(FEAT_SVE2p1)

Encoding

PEXT <Pd>.<T>, <PNn>[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt('1':PNn);
 integer d = UInt(Pd);
 integer part = UInt(imm2);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<PNn> Is the name of the first source scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNn" field.

<imm> Is the element index, in the range 0 to 3, encoded in the "imm2" field.

Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) pred = P[n, PL];
 bits(PL*4) mask = CounterToPredicate(pred<15:0>, PL*4);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit pbit = PredicateElement(mask, part * elements + e, esize);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);

 P[d, PL] = result;

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 0 1 1 1 0 0 imm2 PNn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4502
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4503
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.457 PFALSE

Set all elements in the destination predicate to false.

For programmer convenience, an assembler must also accept predicate-as-counter register name for the destination
predicate register.

Encoding

PFALSE <Pd>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer d = UInt(Pd);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 P[d, PL] = Zeros(PL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4504
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.458 PFIRST

Sets the first active element in the destination predicate to true, otherwise elements from the source predicate are
passed through unchanged. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result,
and the V flag to zero.

Encoding

PFIRST <Pdn>.B, <Pg>, <Pdn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer dn = UInt(Pdn);

Assembler symbols

<Pdn> Is the name of the source and destination scalable predicate register, encoded in the "Pdn" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) result = P[dn, PL];
 integer first = -1;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) && first == -1 then
 first = e;

 if first >= 0 then
 Elem[result, first, psize] = ZeroExtend('1', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[dn, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 Pg 0 Pdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4505
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.459 PMOV (to predicate)

Copy a packed bitmap, where bit value 0b1 represents TRUE and bit value 0b0 represents FALSE, from a portion
of the source vector register to elements of the destination SVE predicate register.

Because the number of bits in an SVE predicate element scales with the vector element size, the behavior varies
according to the specified element size.

• When the predicate element specifier is.B, each bit [N] from the least-significant VL/8 bits in the source
vector register is copied to bit [N] of the destination predicate register. The portion index, if specified, must
be 0.

• When the predicate element specifier is.H, each bit [N] within the indexed block of VL/16 bits in the source
vector register is copied to bit [N*2] of the destination predicate register, and the other bits in the predicate
are set to zero. The portion index is in the range 0 to 1, inclusive.

• When the predicate elements specifier is.S, each bit [N] within the indexed block of VL/32 bits in the source
vector register is copied to bit [N*4] of the destination predicate register, and the other bits in the predicate
are set to zero. The portion index is in the range 0 to 3, inclusive.

• When the predicate element specifier is.D, each bit [N] within the indexed block of VL/64 bits in the source
vector register is copied to bit [N*8] of the destination predicate register, and the other bits in the predicate
are set to zero. The portion index is in the range 0 to 7, inclusive.

The portion index is optional, defaulting to 0 if omitted.

Byte

(FEAT_SVE2p1)

Encoding

PMOV <Pd>.B, <Zn>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 constant integer esize = 8;
 constant integer imm = 0;

Doubleword

(FEAT_SVE2p1)

Encoding

PMOV <Pd>.D, <Zn>[<imm>]

0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0

0 0 0 0 0 1 0 1 1 1 0 1 i3l 0 0 0 1 1 1 0 Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4506
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 constant integer esize = 64;
 constant integer imm = UInt(i3h:i3l);

Halfword

(FEAT_SVE2p1)

Encoding

PMOV <Pd>.H, <Zn>[<imm>]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 constant integer esize = 16;
 constant integer imm = UInt(i1);

Word

(FEAT_SVE2p1)

Encoding

PMOV <Pd>.S, <Zn>[<imm>]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Pd);
 constant integer esize = 32;
 constant integer imm = UInt(i2);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> For the doubleword variant: is the portion index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the halfword variant: is the portion index, in the range 0 to 1, encoded in the "i1" field.

For the word variant: is the portion index, in the range 0 to 3, encoded in the "i2" field.

0 0 0 0 0 1 0 1 0 0 1 0 1 1 i1 0 0 0 1 1 1 0 Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0

0 0 0 0 0 1 0 1 0 1 1 0 1 i2 0 0 0 1 1 1 0 Zn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4507
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand = Z[n, VL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 Elem[result, e, psize] = ZeroExtend(operand<(elements * imm) + e>, psize);

 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4508
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.460 PMOV (to vector)

Copy the source SVE predicate register elements into the destination vector register as a packed bitmap with one
bit per predicate element, where bit value 0b1 represents a TRUE predicate element, and bit value 0b0 represents a
FALSE predicate element.

Because the number of bits in an SVE predicate element scales with the the vector element size, the behavior varies
according to the specified element size.

• When the predicate element specifier is.B, every bit in the predicate register is copied to the least-significant
VL/8 bits of the destination vector register. The portion index, if specified, must be 0.

• When the predicate element specifier is.H, every second bit in the predicate register is copied to the indexed
block of VL/16 bits in the destination vector register, where the portion index is in the range 0 to 1, inclusive.

• When the predicate element specifier is.S, every fourth bit in the predicate register is copied to the indexed
block of VL/32 bits in the destination vector register, where the portion index is in the range 0 to 3, inclusive.

• When the predicate element specifier is.D, every eighth bit in the predicate register is copied to the indexed
block of VL/64 bits in the destination vector register, where the portion index is in the range 0 to 7, inclusive.

The portion index is optional, defaulting to 0 if omitted. When the index is zero, the instruction writes zeroes to the
most significant VL-(VL/esize) bits of the destination vector register. When a non-zero index is specified, the
packed bitmap is inserted into the destination vector register, and the unindexed blocks remain unchanged.

Byte

(FEAT_SVE2p1)

Encoding

PMOV <Zd>, <Pn>.B

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Pn);
 integer d = UInt(Zd);
 constant integer esize = 8;
 constant integer imm = 0;

Doubleword

(FEAT_SVE2p1)

Encoding

PMOV <Zd>[<imm>], <Pn>.D

0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 Pn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

0 0 0 0 0 1 0 1 1 1 0 1 i3l 1 0 0 1 1 1 0 0 Pn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4509
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Pn);
 integer d = UInt(Zd);
 constant integer esize = 64;
 constant integer imm = UInt(i3h:i3l);

Halfword

(FEAT_SVE2p1)

Encoding

PMOV <Zd>[<imm>], <Pn>.H

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Pn);
 integer d = UInt(Zd);
 constant integer esize = 16;
 constant integer imm = UInt(i1);

Word

(FEAT_SVE2p1)

Encoding

PMOV <Zd>[<imm>], <Pn>.S

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer n = UInt(Pn);
 integer d = UInt(Zd);
 constant integer esize = 32;
 constant integer imm = UInt(i2);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<imm> For the doubleword variant: is the portion index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the halfword variant: is the portion index, in the range 0 to 1, encoded in the "i1" field.

For the word variant: is the portion index, in the range 0 to 3, encoded in the "i2" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

0 0 0 0 0 1 0 1 0 0 1 0 1 1 i1 1 0 0 1 1 1 0 0 Pn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

0 0 0 0 0 1 0 1 0 1 1 0 1 i2 1 0 0 1 1 1 0 0 Pn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4510
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) operand = P[n, PL];
 bits(VL) result;

 if imm == 0 then
 result = Zeros(VL);
 else
 result = Z[d, VL];

 for e = 0 to elements-1
 result<(elements * imm) + e> = PredicateElement(operand, e, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4511
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.461 PMUL

Polynomial multiply over [0, 1] all elements of the second source vector to corresponding elements of the first
source vector and place the results in the corresponding elements of the destination vector. This instruction is
unpredicated.

Encoding

PMUL <Zd>.B, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = PolynomialMult(element1, element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 0 0 1 Zm 0 1 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4512
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4513
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.462 PMULLB

Polynomial multiply over [0, 1] the corresponding even-numbered elements of the first and second source vectors,
and place the results in the overlapping double-width elements of the destination vector. This instruction is
unpredicated.

ID_AA64ZFR0_EL1.AES indicates whether the 128-bit element variant is implemented. The 128-bit element
variant is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.

16-bit or 64-bit elements

Encoding

PMULLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size<0> == '0' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

128-bit element

(FEAT_SVE_PMULL128)

Encoding

PMULLB <Zd>.Q, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE2PMULL128() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size<1>" field. It can have the following values:

H when size<1> = 0

D when size<1> = 1

0 1 0 0 0 1 0 1 !=00 0 Zm 0 1 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size U T

0 1 0 0 0 1 0 1 0 0 0 Zm 0 1 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4514
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size<1>" field. It can have the following values:

B when size<1> = 0

S when size<1> = 1

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize DIV 2) element1 = Elem[operand1, 2*e + 0, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, 2*e + 0, esize DIV 2];
 Elem[result, e, esize] = PolynomialMult(element1, element2);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4515
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.463 PMULLT

Polynomial multiply over [0, 1] the corresponding odd-numbered elements of the first and second source vectors,
and place the results in the overlapping double-width elements of the destination vector. This instruction is
unpredicated.

ID_AA64ZFR0_EL1.AES indicates whether the 128-bit element variant is implemented. The 128-bit element
variant is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.

16-bit or 64-bit elements

Encoding

PMULLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size<0> == '0' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

128-bit element

(FEAT_SVE_PMULL128)

Encoding

PMULLT <Zd>.Q, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE2PMULL128() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size<1>" field. It can have the following values:

H when size<1> = 0

D when size<1> = 1

0 1 0 0 0 1 0 1 !=00 0 Zm 0 1 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size U T

0 1 0 0 0 1 0 1 0 0 0 Zm 0 1 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4516
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size<1>" field. It can have the following values:

B when size<1> = 0

S when size<1> = 1

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize DIV 2) element1 = Elem[operand1, 2*e + 1, esize DIV 2];
 bits(esize DIV 2) element2 = Elem[operand2, 2*e + 1, esize DIV 2];
 Elem[result, e, esize] = PolynomialMult(element1, element2);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4517
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.464 PNEXT

An instruction used to construct a loop which iterates over all true elements in the vector select predicate register.
If all elements in the first source predicate register are false it determines the first true element in the vector select
predicate register, otherwise it determines the next true element in the vector select predicate register that follows
the last true element in the first source predicate register. All elements of the destination predicate register are set to
false, except the element corresponding to the determined vector select element, if any, which is set to true. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

Encoding

PNEXT <Pdn>.<T>, <Pv>, <Pdn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer v = UInt(Pv);
 integer dn = UInt(Pdn);

Assembler symbols

<Pdn> Is the name of the first source and destination scalable predicate register, encoded in the "Pdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pv> Is the name of the vector select predicate register, encoded in the "Pv" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[v, PL];
 bits(PL) operand = P[dn, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 integer next = LastActiveElement(operand, esize) + 1;

 while next < elements && (!ActivePredicateElement(mask, next, esize)) do
 next = next + 1;

 result = Zeros(PL);
 if next < elements then
 Elem[result, next, psize] = ZeroExtend('1', psize);

0 0 1 0 0 1 0 1 size 0 1 1 0 0 1 1 1 0 0 0 1 0 Pv 0 Pdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4518
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[dn, PL] = result;

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4519
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.465 PRFB (scalar plus immediate)

Contiguous prefetch of byte elements from the memory address generated by a 64-bit scalar base and immediate
index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of predication, and
added to the base address.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFB <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 0;
 integer offset = SInt(imm6);

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

1 0 0 0 0 1 0 1 1 1 imm6 0 0 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4520
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4521
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.466 PRFB (scalar plus scalar)

Contiguous prefetch of byte elements from the memory address generated by a 64-bit scalar base and scalar index
which is added to the base address. After each element prefetch the index value is incremented, but the index register
is not updated.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFB <prfop>, <Pg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 0;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

1 0 0 0 0 1 0 0 0 0 0 Rm 1 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4522
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(64) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4523
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.467 PRFB (scalar plus vector)

Gather prefetch of bytes from the active memory addresses generated by a 64-bit scalar base plus vector index. The
index values are optionally sign or zero-extended from 32 to 64 bits. Inactive addresses are not prefetched from
memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

PRFB <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 0;

32-bit unpacked scaled offset

Encoding

PRFB <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;

1 0 0 0 0 1 0 0 0 xs 1 Zm 0 0 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>

1 1 0 0 0 1 0 0 0 xs 1 Zm 0 0 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4524
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 0;

64-bit scaled offset

Encoding

PRFB <prfop>, <Pg>, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 0 0 1 1 Zm 1 0 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4525
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = base + (off << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4526
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.468 PRFB (vector plus immediate)

Gather prefetch of bytes from the active memory addresses generated by a vector base plus immediate index. The
index is in the range 0 to 31. Inactive addresses are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

PRFB <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 0;
 integer offset = UInt(imm5);

64-bit element

Encoding

PRFB <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 0;
 integer offset = UInt(imm5);

1 0 0 0 0 1 0 0 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>

1 1 0 0 0 1 0 0 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4527
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4528
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.469 PRFD (scalar plus immediate)

Contiguous prefetch of doubleword elements from the memory address generated by a 64-bit scalar base and
immediate index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFD <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 3;
 integer offset = SInt(imm6);

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

1 0 0 0 0 1 0 1 1 1 imm6 0 1 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4529
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4530
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.470 PRFD (scalar plus scalar)

Contiguous prefetch of doubleword elements from the memory address generated by a 64-bit scalar base and scalar
index which is multiplied by 8 and added to the base address. After each element prefetch the index value is
incremented, but the index register is not updated.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFD <prfop>, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 3;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

1 0 0 0 0 1 0 1 1 0 0 Rm 1 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4531
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(64) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4532
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.471 PRFD (scalar plus vector)

Gather prefetch of doublewords from the active memory addresses generated by a 64-bit scalar base plus vector
index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then multiplied by 8.
Inactive addresses are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

PRFD <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 3;

32-bit unpacked scaled offset

Encoding

PRFD <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;

1 0 0 0 0 1 0 0 0 xs 1 Zm 0 1 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>

1 1 0 0 0 1 0 0 0 xs 1 Zm 0 1 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4533
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 3;

64-bit scaled offset

Encoding

PRFD <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, LSL #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 3;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 0 0 1 1 Zm 1 1 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4534
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = base + (off << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4535
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.472 PRFD (vector plus immediate)

Gather prefetch of doublewords from the active memory addresses generated by a vector base plus immediate index.
The index is a multiple of 8 in the range 0 to 248. Inactive addresses are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

PRFD <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 3;
 integer offset = UInt(imm5);

64-bit element

Encoding

PRFD <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 3;
 integer offset = UInt(imm5);

1 0 0 0 0 1 0 1 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>

1 1 0 0 0 1 0 1 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4536
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to
0, encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4537
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.473 PRFH (scalar plus immediate)

Contiguous prefetch of halfword elements from the memory address generated by a 64-bit scalar base and
immediate index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFH <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 1;
 integer offset = SInt(imm6);

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

1 0 0 0 0 1 0 1 1 1 imm6 0 0 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4538
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4539
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.474 PRFH (scalar plus scalar)

Contiguous prefetch of halfword elements from the memory address generated by a 64-bit scalar base and scalar
index which is multiplied by 2 and added to the base address. After each element prefetch the index value is
incremented, but the index register is not updated.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFH <prfop>, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 constant integer esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 1;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

1 0 0 0 0 1 0 0 1 0 0 Rm 1 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4540
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(64) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4541
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.475 PRFH (scalar plus vector)

Gather prefetch of halfwords from the active memory addresses generated by a 64-bit scalar base plus vector index.
The index values are optionally first sign or zero-extended from 32 to 64 bits and then multiplied by 2. Inactive
addresses are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

PRFH <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 1;

32-bit unpacked scaled offset

Encoding

PRFH <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;

1 0 0 0 0 1 0 0 0 xs 1 Zm 0 0 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>

1 1 0 0 0 1 0 0 0 xs 1 Zm 0 0 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4542
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 1;

64-bit scaled offset

Encoding

PRFH <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, LSL #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 1;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 0 0 1 1 Zm 1 0 1 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4543
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = base + (off << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4544
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.476 PRFH (vector plus immediate)

Gather prefetch of halfwords from the active memory addresses generated by a vector base plus immediate index.
The index is a multiple of 2 in the range 0 to 62. Inactive addresses are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

PRFH <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 1;
 integer offset = UInt(imm5);

64-bit element

Encoding

PRFH <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 1;
 integer offset = UInt(imm5);

1 0 0 0 0 1 0 0 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>

1 1 0 0 0 1 0 0 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4545
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4546
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.477 PRFW (scalar plus immediate)

Contiguous prefetch of word elements from the memory address generated by a 64-bit scalar base and immediate
index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of predication, and
added to the base address.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFW <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 2;
 integer offset = SInt(imm6);

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

1 0 0 0 0 1 0 1 1 1 imm6 0 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4547
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4548
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.478 PRFW (scalar plus scalar)

Contiguous prefetch of word elements from the memory address generated by a 64-bit scalar base and scalar index
which is multiplied by 4 and added to the base address. After each element prefetch the index value is incremented,
but the index register is not updated.

The predicate may be used to suppress prefetches from unwanted addresses.

Encoding

PRFW <prfop>, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 2;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

1 0 0 0 0 1 0 1 0 0 0 Rm 1 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4549
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(64) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = base + (eoff << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4550
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.479 PRFW (scalar plus vector)

Gather prefetch of words from the active memory addresses generated by a 64-bit scalar base plus vector index. The
index values are optionally first sign or zero-extended from 32 to 64 bits and then multiplied by 4. Inactive addresses
are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

PRFW <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 2;

32-bit unpacked scaled offset

Encoding

PRFW <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;

1 0 0 0 0 1 0 0 0 xs 1 Zm 0 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>

1 1 0 0 0 1 0 0 0 xs 1 Zm 0 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4551
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer offs_size = 32;
 boolean offs_unsigned = (xs == '0');
 integer scale = 2;

64-bit scaled offset

Encoding

PRFW <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, LSL #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 2;

Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 0 0 0 1 0 0 0 1 1 Zm 1 1 0 Pg Rn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4552
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(64) base;
 bits(VL) offset;

 if AnyActiveElement(mask, esize) then
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = base + (off << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4553
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.480 PRFW (vector plus immediate)

Gather prefetch of words from the active memory addresses generated by a vector base plus immediate index. The
index is a multiple of 4 in the range 0 to 124. Inactive addresses are not prefetched from memory.

The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

PRFW <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 2;
 integer offset = UInt(imm5);

64-bit element

Encoding

PRFW <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer level = UInt(prfop<2:1>);
 boolean stream = (prfop<0> == '1');
 pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
 integer scale = 2;
 integer offset = UInt(imm5);

1 0 0 0 0 1 0 1 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>

1 1 0 0 0 1 0 1 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4554
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<prfop> Is the prefetch operation specifier, encoded in the "prfop" field. It can have the following values:

PLDL1KEEP when prfop = 0000

PLDL1STRM when prfop = 0001

PLDL2KEEP when prfop = 0010

PLDL2STRM when prfop = 0011

PLDL3KEEP when prfop = 0100

PLDL3STRM when prfop = 0101

#uimm4 when prfop = x11x

PSTL1KEEP when prfop = 1000

PSTL1STRM when prfop = 1001

PSTL2KEEP when prfop = 1010

PSTL2STRM when prfop = 1011

PSTL3KEEP when prfop = 1100

PSTL3STRM when prfop = 1101

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to
0, encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
 Hint_Prefetch(addr, pref_hint, level, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4555
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.481 PSEL

If the indexed element of the second source predicate is true, place the contents of the first source predicate register
into the destination predicate register, otherwise set the destination predicate to all-false. The indexed element is
determined by the sum of a general-purpose index register and an immediate, modulo the number of elements. Does
not set the condition flags.

For programmer convenience, an assembler must also accept predicate-as-counter register names for the destination
predicate register and the first source predicate register.

SVE2

(FEAT_SVE2p1)

Encoding

PSEL <Pd>, <Pn>, <Pm>.<T>[<Wv>, <imm>]

Decode for this encoding

 if !HaveSME() && !HaveSVE2p1() then UNDEFINED;
 bits(5) imm5 = i1:tszh:tszl;
 integer esize;
 integer imm;
 case tszh:tszl of
 when '0000' UNDEFINED;
 when '1000' esize = 64; imm = UInt(imm5<4>);
 when 'x100' esize = 32; imm = UInt(imm5<4:3>);
 when 'xx10' esize = 16; imm = UInt(imm5<4:2>);
 when 'xxx1' esize = 8; imm = UInt(imm5<4:1>);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer v = UInt('011':Rv);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = x, tszl = xx1

H when tszh = x, tszl = x10

S when tszh = x, tszl = 100

D when tszh = 1, tszl = 000

The encoding tszh = 0, tszl = 000 is reserved.

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<imm> Is the element index, in the range 0 to one less than the number of vector elements in a 128-bit vector
register, encoded in "i1:tszh:tszl".

0 0 1 0 0 1 0 1 i1 1 tszl Rv 0 1 Pn 0 Pm 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 10 9 8 5 4 3 0

S

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4556
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(32) idx = X[v, 32];
 integer element = (UInt(idx) + imm) MOD elements;
 bits(PL) result;

 if ActivePredicateElement(operand2, element, esize) then
 result = operand1;
 else
 result = Zeros(PL);

 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4557
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.482 PTEST

Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate source register, and the V flag to zero.

Encoding

PTEST <Pg>, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);

Assembler symbols

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(PL) result = P[n, PL];

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the predicate register written by this instruction might be significantly delayed.

0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 Pg 0 Pn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 10 9 8 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4558
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.483 PTRUE (predicate as counter)

Set the destination predicate as all-active elements, using the predicate-as-counter encoding.

SVE2

(FEAT_SVE2p1)

Encoding

PTRUE <PNd>.<T>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer d = UInt('1':PNd);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) result = EncodePredCount(esize, elements, elements, FALSE, PL);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 PNd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4559
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.484 PTRUE (predicate)

Set elements of the destination predicate to true if the element number satisfies the named predicate constraint, or
to false otherwise. If the constraint specifies more elements than are available at the current vector length then all
elements of the destination predicate are set to false.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception. Does not set the condition flags.

Encoding

PTRUE <Pd>.<T>{, <pattern>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer d = UInt(Pd);
 boolean setflags = FALSE;
 bits(5) pat = pattern;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

0 0 1 0 0 1 0 1 size 0 1 1 0 0 0 1 1 1 0 0 0 pattern 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4560
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit pbit = if e < count then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(result, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4561
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.485 PTRUES

Set elements of the destination predicate to true if the element number satisfies the named predicate constraint, or
to false otherwise. If the constraint specifies more elements than are available at the current vector length then all
elements of the destination predicate are set to false.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate
result, and the V flag to zero.

Encoding

PTRUES <Pd>.<T>{, <pattern>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer d = UInt(Pd);
 boolean setflags = TRUE;
 bits(5) pat = pattern;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

0 0 1 0 0 1 0 1 size 0 1 1 0 0 1 1 1 1 0 0 0 pattern 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4562
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit pbit = if e < count then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(result, result, esize);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the NZCV condition flags written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4563
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.486 PUNPKHI, PUNPKLO

Unpack elements from the lowest or highest half of the source predicate and place in elements of twice their size
within the destination predicate. This instruction is unpredicated.

High half

Encoding

PUNPKHI <Pd>.H, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Pn);
 integer d = UInt(Pd);
 boolean hi = TRUE;

Low half

Encoding

PUNPKLO <Pd>.H, <Pn>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Pn);
 integer d = UInt(Pd);
 boolean hi = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) operand = P[n, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1

0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0

H

0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4564
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bit pbit = PredicateElement(operand, if hi then e + elements else e, esize DIV 2);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);

 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4565
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.487 RADDHNB

Add each vector element of the first source vector to the corresponding vector element of the second source vector,
and place the most significant rounded half of the result in the even-numbered half-width destination elements,
while setting the odd-numbered elements to zero. This instruction is unpredicated.

Encoding

RADDHNB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4566
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = ((element1 + element2) + (1 << (halfesize - 1))) >> halfesize;
 Elem[result, 2*e + 0, halfesize] = res<halfesize-1:0>;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4567
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.488 RADDHNT

Add each vector element of the first source vector to the corresponding vector element of the second source vector,
and place the most significant rounded half of the result in the odd-numbered half-width destination elements,
leaving the even-numbered elements unchanged. This instruction is unpredicated.

Encoding

RADDHNT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4568
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = ((element1 + element2) + (1 << (halfesize - 1))) >> halfesize;
 Elem[result, 2*e + 1, halfesize] = res<halfesize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4569
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.489 RAX1

Rotate each 64-bit element of the second source vector left by 1 and exclusive OR with the corresponding elements
of the first source vector. The results are placed in the corresponding elements of the destination vector. This
instruction is unpredicated.

ID_AA64ZFR0_EL1.SHA3 indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled, or FEAT_SME2p1 is implemented.

SVE2

(FEAT_SVE_SHA3)

Encoding

RAX1 <Zd>.D, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSVE2SHA3() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 if HaveSME2p1() then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 64;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(64) element1 = Elem[operand1, e, 64];
 bits(64) element2 = Elem[operand2, e, 64];
 Elem[result, e, 64] = element1 EOR ROL(element2, 1);
 Z[d, VL] = result;

0 1 0 0 0 1 0 1 0 0 1 Zm 1 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4570
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4571
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.490 RBIT

Reverse bits in each active element of the source vector, and place the results in the corresponding elements of the
destination vector. Inactive elements in the destination vector register remain unmodified.

Encoding

RBIT <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = BitReverse(element);

 Z[d, VL] = result;

0 0 0 0 0 1 0 1 size 1 0 0 1 1 1 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4572
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4573
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.491 RDFFR (predicated)

Read the first-fault register (FFR) and place active elements in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

RDFFR <Pd>.B, <Pg>/Z

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer g = UInt(Pg);
 integer d = UInt(Pd);
 boolean setflags = FALSE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(PL) ffr = FFR[PL];
 bits(PL) result = ffr AND mask;

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, 8);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 Pg 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4574
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.492 RDFFR (unpredicated)

Read the first-fault register (FFR) and place in the destination predicate without predication.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

RDFFR <Pd>.B

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer d = UInt(Pd);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) ffr = FFR[PL];
 P[d, PL] = ffr;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4575
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.493 RDFFRS

Read the first-fault register (FFR) and place active elements in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST
(C) condition flags based on the predicate result, and the V flag to zero.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

RDFFRS <Pd>.B, <Pg>/Z

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer g = UInt(Pg);
 integer d = UInt(Pd);
 boolean setflags = TRUE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) mask = P[g, PL];
 bits(PL) ffr = FFR[PL];
 bits(PL) result = ffr AND mask;

 if setflags then
 PSTATE.<N,Z,C,V> = PredTest(mask, result, 8);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 Pg 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4576
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.494 RDVL

Multiply the current vector register size in bytes by an immediate in the range -32 to 31 and place the result in the
64-bit destination general-purpose register.

Encoding

RDVL <Xd>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer d = UInt(Rd);
 integer imm = SInt(imm6);

Assembler symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 integer len = imm * (VL DIV 8);
 X[d, 64] = len<63:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4577
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.495 REV (predicate)

Reverse the order of all elements in the source predicate and place in the destination predicate. This instruction is
unpredicated.

Encoding

REV <Pd>.<T>, <Pn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer d = UInt(Pd);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) operand = P[n, PL];
 bits(PL) result = Reverse(operand, esize DIV 8);
 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 1 size 1 1 0 1 0 0 0 1 0 0 0 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4578
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.496 REV (vector)

Reverse the order of all elements in the source vector and place in the destination vector. This instruction is
unpredicated.

Encoding

REV <Zd>.<T>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Reverse(operand, esize);
 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 1 size 1 1 1 0 0 0 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4579
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.497 REVB, REVH, REVW

Reverse the order of 8-bit bytes, 16-bit halfwords or 32-bit words within each active element of the source vector,
and place the results in the corresponding elements of the destination vector. Inactive elements in the destination
vector register remain unmodified.

Byte

Encoding

REVB <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer swsize = 8;

Halfword

Encoding

REVH <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer swsize = 16;

Word

Encoding

REVW <Zd>.D, <Pg>/M, <Zn>.D

0 0 0 0 0 1 0 1 size 1 0 0 1 0 0 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 0 0 1 0 1 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 0 0 1 1 0 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4580
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer swsize = 32;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> For the byte variant: is the size specifier, encoded in the "size" field. It can have the following
values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

For the halfword variant: is the size specifier, encoded in the "size<0>" field. It can have the
following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = Reverse(element, swsize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4581
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4582
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.498 REVD

Reverse the order of 64-bit doublewords within each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

SVE2

(FEAT_SVE2p1)

Encoding

REVD <Zd>.Q, <Pg>/M, <Zn>.Q

Decode for this encoding

 if !HaveSME() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 128;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer swsize = 64;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = Reverse(element, swsize);

 Z[d, VL] = result;

0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4583
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4584
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.499 RSHRNB

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the rounded
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is
unpredicated.

Encoding

RSHRNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4585
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 0, esize] = res<esize-1:0>;
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4586
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.500 RSHRNT

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the rounded
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is
unpredicated.

Encoding

RSHRNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4587
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 1, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4588
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.501 RSUBHNB

Subtract each vector element of the second source vector from the corresponding vector element in the first source
vector, and place the most significant rounded half of the result in the even-numbered half-width destination
elements, while setting the odd-numbered half-width destination elements to zero. This instruction is unpredicated.

Encoding

RSUBHNB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4589
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = ((element1 - element2) + (1 << (halfesize - 1))) >> halfesize;
 Elem[result, 2*e + 0, halfesize] = res<halfesize-1:0>;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4590
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.502 RSUBHNT

Subtract each vector element of the second source vector from the corresponding vector element in the first source
vector, and place the most significant rounded half of the result in the odd-numbered half-width destination
elements, leaving the even-numbered elements unchanged. This instruction is unpredicated.

Encoding

RSUBHNT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4591
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = ((element1 - element2) + (1 << (halfesize - 1))) >> halfesize;
 Elem[result, 2*e + 1, halfesize] = res<halfesize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4592
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.503 SABA

Compute the absolute difference between signed integer values in elements of the second source vector and
corresponding elements of the first source vector, and add the difference to the corresponding elements of the
destination vector. This instruction is unpredicated.

Encoding

SABA <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean unsigned = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 bits(esize) absdiff = Abs(element1 - element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 1 1 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4593
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4594
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.504 SABALB

Compute the absolute difference between even-numbered signed integer values in elements of the second source
vector and corresponding elements of the first source vector, and destructively add to the overlapping double-width
elements of the addend vector. This instruction is unpredicated.

Encoding

SABALB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 1 1 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4595
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) absdiff = Abs(element1 - element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4596
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.505 SABALT

Compute the absolute difference between odd-numbered signed elements of the second source vector and
corresponding elements of the first source vector, and destructively add to the overlapping double-width elements
of the addend vector. This instruction is unpredicated.

Encoding

SABALT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 1 1 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4597
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) absdiff = Abs(element1 - element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4598
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.506 SABD

Compute the absolute difference between signed integer values in active elements of the second source vector and
corresponding elements of the first source vector and destructively place the difference in the corresponding
elements of the first source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

SABD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer absdiff = Abs(element1 - element2);
 Elem[result, e, esize] = absdiff<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 0 1 1 0 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4599
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4600
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.507 SABDLB

Compute the absolute difference between even-numbered signed integer values in elements of the second source
vector and corresponding elements of the first source vector, and place the results in the overlapping double-width
elements of the destination vector. This instruction is unpredicated.

Encoding

SABDLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4601
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = Abs(element1 - element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4602
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.508 SABDLT

Compute the absolute difference between odd-numbered signed integer values in elements of the second source
vector and corresponding elements of the first source vector, and place the results in overlapping double-width
elements of the destination vector. This instruction is unpredicated.

Encoding

SABDLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4603
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = Abs(element1 - element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4604
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.509 SADALP

Add pairs of adjacent signed integer values and accumulate the results into the overlapping double-width elements
of the destination vector.

Encoding

SADALP <Zda>.<T>, <Pg>/M, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the second source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand_acc = Z[da, VL];
 bits(VL) operand_src = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand_acc, e, esize];

0 1 0 0 0 1 0 0 size 0 0 0 1 0 0 1 0 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4605
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 integer element1 = SInt(Elem[operand_src, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand_src, 2*e + 1, esize DIV 2]);
 bits(esize) sum = (element1 + element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand_acc, e, esize] + sum;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4606
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.510 SADDLB

Add the corresponding even-numbered signed elements of the first and second source vectors, and place the results
in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

SADDLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 0;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4607
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 + element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4608
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.511 SADDLBT

Add the even-numbered signed elements of the first source vector to the odd-numbered signed elements of the
second source vector, and place the results in the overlapping double-width elements of the destination vector. This
instruction is unpredicated.

Encoding

SADDLBT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S tb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4609
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 + element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4610
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.512 SADDLT

Add the corresponding odd-numbered signed elements of the first and second source vectors, and place the results
in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

SADDLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 1;
 integer sel2 = 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4611
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 + element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4612
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.513 SADDV

Signed add horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination register.
Narrow elements are first sign-extended to 64 bits. Inactive elements in the source vector are treated as zero.

Encoding

SADDV <Dd>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Dd> Is the 64-bit name of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = Z[n, VL];
 integer sum = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand, e, esize]);
 sum = sum + element;

 V[d, 64] = sum<63:0>;

0 0 0 0 0 1 0 0 size 0 0 0 0 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4613
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4614
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.514 SADDWB

Add the even-numbered signed elements of the second source vector to the overlapping double-width elements of
the first source vector and place the results in the corresponding double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

SADDWB <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4615
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 + element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4616
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.515 SADDWT

Add the odd-numbered signed elements of the second source vector to the overlapping double-width elements of
the first source vector and place the results in the corresponding double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

SADDWT <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4617
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 + element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4618
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.516 SBCLB

Subtract the even-numbered elements of the first source vector and the inverted 1-bit carry from the least-significant
bit of the odd-numbered elements of the second source vector from the even-numbered elements of the destination
and accumulator vector. The 1-bit carry output is placed in the corresponding odd-numbered element of the
destination vector.

Encoding

SBCLB <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand = Z[n, VL];
 bits(VL) carries = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for p = 0 to pairs-1
 bits(esize) element1 = Elem[result, 2*p + 0, esize];
 bits(esize) element2 = Elem[operand, 2*p + 0, esize];
 bit carry_in = Elem[carries, 2*p + 1, esize]<0>;

 (res, nzcv) = AddWithCarry(element1, NOT(element2), carry_in);
 carry_out = nzcv<1>;

 Elem[result, 2*p + 0, esize] = res;
 Elem[result, 2*p + 1, esize] = ZeroExtend(carry_out, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 1 sz 0 Zm 1 1 0 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

T

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4619
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4620
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.517 SBCLT

Subtract the odd-numbered elements of the first source vector and the inverted 1-bit carry from the least-significant
bit of the odd-numbered elements of the second source vector from the even-numbered elements of the destination
and accumulator vector. The 1-bit carry output is placed in the corresponding odd-numbered element of the
destination vector.

Encoding

SBCLT <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand = Z[n, VL];
 bits(VL) carries = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for p = 0 to pairs-1
 bits(esize) element1 = Elem[result, 2*p + 0, esize];
 bits(esize) element2 = Elem[operand, 2*p + 1, esize];
 bit carry_in = Elem[carries, 2*p + 1, esize]<0>;

 (res, nzcv) = AddWithCarry(element1, NOT(element2), carry_in);
 carry_out = nzcv<1>;

 Elem[result, 2*p + 0, esize] = res;
 Elem[result, 2*p + 1, esize] = ZeroExtend(carry_out, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 1 sz 0 Zm 1 1 0 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

T

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4621
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4622
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.518 SCLAMP

Clamp each signed element in the destination vector to between the signed minimum value in the corresponding
element of the first source vector and the signed maximum value in the corresponding element of the second source
vector and destructively write the results in the corresponding elements of the destination vector. This instruction is
unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer element3 = SInt(Elem[operand3, e, esize]);
 integer res = Min(Max(element1, element3), element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 size 0 Zm 1 1 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4623
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4624
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.519 SCVTF

Convert to floating-point from the signed integer in each active element of the source vector, and place the results
in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

16-bit to half-precision

Encoding

SCVTF <Zd>.H, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 16;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

32-bit to half-precision

Encoding

SCVTF <Zd>.H, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 16;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4625
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit to single-precision

Encoding

SCVTF <Zd>.S, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 32;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

32-bit to double-precision

Encoding

SCVTF <Zd>.D, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 64;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

64-bit to half-precision

Encoding

SCVTF <Zd>.H, <Pg>/M, <Zn>.D

0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4626
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 16;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

64-bit to single-precision

Encoding

SCVTF <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 32;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

64-bit to double-precision

Encoding

SCVTF <Zd>.D, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 64;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4627
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 bits(d_esize) fpval = FixedToFP(element<s_esize-1:0>, 0, unsigned, FPCR, rounding, d_esize);
 Elem[result, e, esize] = ZeroExtend(fpval, esize);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4628
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.520 SDIV

Signed divide active elements of the first source vector by corresponding elements of the second source vector and
destructively place the quotient in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

Encoding

SDIV <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer quotient;
 if element2 == 0 then
 quotient = 0;
 else
 quotient = RoundTowardsZero(Real(element1) / Real(element2));
 Elem[result, e, esize] = quotient<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 0 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4629
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4630
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.521 SDIVR

Signed reversed divide active elements of the second source vector by corresponding elements of the first source
vector and destructively place the quotient in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

Encoding

SDIVR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer quotient;
 if element1 == 0 then
 quotient = 0;
 else
 quotient = RoundTowardsZero(Real(element2) / Real(element1));
 Elem[result, e, esize] = quotient<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 1 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4631
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4632
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.522 SDOT (2-way, vectors)

The signed integer dot product instruction computes the dot product of a group of two signed 16-bit integer values
held in each 32-bit element of the first source vector multiplied by a group of two signed 16-bit integer values in the
corresponding 32-bit element of the second source vector, and then destructively adds the widened dot product to
the corresponding 32-bit element of the destination vector.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SDOT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 0 0 0 Zm 1 1 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4633
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4634
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.523 SDOT (2-way, indexed)

The signed integer indexed dot product instruction computes the dot product of a group of two signed 16-bit integer
values held in each 32-bit element of the first source vector multiplied by a group of two signed 16-bit integer values
in an indexed 32-bit element of the second source vector, and then destructively adds the widened dot product to the
corresponding 32-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * s + i, esize DIV 2]);
 res = res + element1 * element2;

0 1 0 0 0 1 0 0 1 0 0 i2 Zm 1 1 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4635
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4636
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.524 SDOT (4-way, indexed)

The signed integer indexed dot product instruction computes the dot product of a group of four signed 8-bit or 16-bit
integer values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four signed
8-bit or 16-bit integer values in an indexed 32-bit or 64-bit element of the second source vector, and then
destructively adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups per
128-bit segment, encoded in 1 to 2 bits depending on the size of the group. This instruction is unpredicated.

32-bit

Encoding

SDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

64-bit

Encoding

SDOT <Zda>.D, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4637
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the immediate index of a 32-bit group of four 8-bit values within each
128-bit vector segment, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the immediate index of a 64-bit group of four 16-bit values within each
128-bit vector segment, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4638
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.525 SDOT (4-way, vectors)

The signed integer dot product instruction computes the dot product of a group of four signed 8-bit or 16-bit integer
values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four signed 8-bit or
16-bit integer values in the corresponding 32-bit or 64-bit element of the second source vector, and then
destructively adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.

This instruction is unpredicated.

Encoding

SDOT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

B when size<0> = 0

H when size<0> = 1

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4639
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4640
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.526 SEL (predicates)

Read active elements from the first source predicate and inactive elements from the second source predicate and
place in the corresponding elements of the destination predicate. Does not set the condition flags.

This instruction is used by the alias MOV (predicate, predicated, merging). See Alias conditions for details of when
each alias is preferred.

Encoding

SEL <Pd>.B, <Pg>, <Pn>.B, <Pm>.B

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);

Alias conditions

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 bit element1 = PredicateElement(operand1, e, esize);
 bit element2 = PredicateElement(operand2, e, esize);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, psize] = ZeroExtend(element1, psize);

Alias is preferred when

MOV (predicate, predicated, merging) Pd == Pm

0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 10 9 8 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4641
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, psize] = ZeroExtend(element2, psize);

 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4642
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.527 SEL (vectors)

Select elements from the first source vector where the corresponding vector select predicate element is true, and
from the second source vector where the predicate element is false, placing them in the corresponding elements of
the destination vector.

This instruction is used by the alias MOV (vector, predicated). See Alias conditions for details of when each alias
is preferred.

Encoding

SEL <Zd>.<T>, <Pv>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer v = UInt(Pv);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Alias conditions

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pv> Is the name of the vector select predicate register, encoded in the "Pv" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[v, PL];

Alias is preferred when

MOV (vector, predicated) Zd == Zm

0 0 0 0 0 1 0 1 size 1 Zm 1 1 Pv Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4643
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) operand2 = if AnyActiveElement(NOT(mask), esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand1, e, esize];
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4644
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.528 SETFFR

Initialise the first-fault register (FFR) to all true prior to a sequence of first-fault or non-fault loads. This instruction
is unpredicated.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

SETFFR

Decode for this encoding

 if !HaveSVE() then UNDEFINED;

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 FFR[PL] = Ones(PL);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4645
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.529 SHADD

Add active signed elements of the first source vector to corresponding signed elements of the second source vector,
shift right one bit, and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

SHADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 + element2) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4646
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4647
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.530 SHRNB

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the truncated
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is
unpredicated.

Encoding

SHRNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4648
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = UInt(element) >> shift;
 Elem[result, 2*e + 0, esize] = res<esize-1:0>;
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4649
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.531 SHRNT

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the truncated
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is
unpredicated.

Encoding

SHRNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4650
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = UInt(element) >> shift;
 Elem[result, 2*e + 1, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4651
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.532 SHSUB

Subtract active signed elements of the second source vector from corresponding signed elements of the first source
vector, shift right one bit, and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

SHSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 - element2) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4652
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4653
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.533 SHSUBR

Subtract active signed elements of the first source vector from corresponding signed elements of the second source
vector, shift right one bit, and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

SHSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element2 - element1) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4654
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4655
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.534 SLI

Shift each source vector element left by an immediate value, and insert the result into the corresponding vector
element in the destination vector register, merging the shifted bits from each source element with existing bits in
each destination vector element. The immediate shift amount is an unsigned value in the range 0 to number of bits
per element minus 1. This instruction is unpredicated.

Encoding

SLI <Zd>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 bits(esize) element1 = Elem[result, e, esize];
 bits(esize) element2 = Elem[operand, e, esize];
 bits(esize) mask = LSL(Ones(esize), shift);
 bits(esize) shiftedval = LSL(element2, shift);
 Elem[result, e, esize] = (element1 AND (NOT mask)) OR shiftedval;

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4656
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4657
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.535 SM4E

The SM4E instruction reads 16 bytes of input data from each 128-bit segment of the first source vector, together with
four iterations of 32-bit round keys from the corresponding 128-bit segments of the second source vector. Each
block of data is encrypted by four rounds in accordance with the SM4 standard, and destructively placed in the
corresponding segments of the first source vector. This instruction is unpredicated.

ID_AA64ZFR0_EL1.SM4 indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_SM4)

Encoding

SM4E <Zdn>.S, <Zdn>.S, <Zm>.S

Decode for this encoding

 if !HaveSVE() || !HaveSVE2SM4() then UNDEFINED;
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 bits(128) key = Elem[operand2, s, 128];
 bits(32) intval;
 bits(8) sboxout;
 bits(128) roundresult = Elem[operand1, s, 128];
 bits(32) roundkey;

 for index = 0 to 3
 roundkey = Elem[key, index, 32];
 intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR roundkey;

 for i = 0 to 3
 Elem[intval, i,8] = Sbox(Elem[intval,i,8]);

 intval = intval EOR ROL(intval, 2) EOR ROL(intval,10) EOR ROL(intval,18) EOR ROL(intval, 24);

0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4658
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 intval = intval EOR roundresult<31:0>;

 roundresult<31:0> = roundresult<63:32>;
 roundresult<63:32> = roundresult<95:64>;
 roundresult<95:64> = roundresult<127:96>;
 roundresult<127:96> = intval;

 Elem[result, s, 128] = roundresult;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4659
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.536 SM4EKEY

The SM4EKEY instruction reads four rounds of 32-bit input key values from each 128-bit segment of the first source
vector, along with four rounds of 32-bit constants from the corresponding 128-bit segment of the second source
vector. The four rounds of output key values are derived in accordance with the SM4 standard, and placed in the
corresponding segments of the destination vector. This instruction is unpredicated.

ID_AA64ZFR0_EL1.SM4 indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE_SM4)

Encoding

SM4EKEY <Zd>.S, <Zn>.S, <Zm>.S

Decode for this encoding

 if !HaveSVE() || !HaveSVE2SM4() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 bits(128) source = Elem[operand2, s, 128];
 bits(32) intval;
 bits(8) sboxout;
 bits(32) const;
 bits(128) roundresult = Elem[operand1, s, 128];

 for index = 0 to 3
 const = Elem[source, index, 32];
 intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR const;
 for i = 0 to 3
 Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

0 1 0 0 0 1 0 1 0 0 1 Zm 1 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4660
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 intval = intval EOR ROL(intval, 13) EOR ROL(intval, 23);
 intval = intval EOR roundresult<31:0>;

 roundresult<31:0> = roundresult<63:32>;
 roundresult<63:32> = roundresult<95:64>;
 roundresult<95:64> = roundresult<127:96>;
 roundresult<127:96> = intval;

 Elem[result, s, 128] = roundresult;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4661
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.537 SMAX (immediate)

Determine the signed maximum of an immediate and each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is a signed 8-bit value in the range -128
to +127, inclusive. This instruction is unpredicated.

Encoding

SMAX <Zdn>.<T>, <Zdn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 boolean unsigned = FALSE;
 integer imm = Int(imm8, unsigned);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is the signed immediate operand, in the range -128 to 127, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 Elem[result, e, esize] = Max(element1, imm)<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 1 0 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4662
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4663
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.538 SMAX (vectors)

Determine the signed maximum of active elements of the second source vector and corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

SMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer maximum = Max(element1, element2);
 Elem[result, e, esize] = maximum<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 0 1 0 0 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4664
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4665
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.539 SMAXP

Compute the maximum value of each pair of adjacent signed integer elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

Encoding

SMAXP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand1, e, esize];
 else
 if IsEven(e) then
 element1 = SInt(Elem[operand1, e + 0, esize]);
 element2 = SInt(Elem[operand1, e + 1, esize]);
 else
 element1 = SInt(Elem[operand2, e - 1, esize]);

0 1 0 0 0 1 0 0 size 0 1 0 1 0 0 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4666
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 element2 = SInt(Elem[operand2, e + 0, esize]);
 integer res = Max(element1, element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4667
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.540 SMAXQV

Signed maximum of the same element numbers from each 128-bit source vector segment, placing each result into
the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the source
vector are treated as the minimum signed integer for the element size.

SVE2

(FEAT_SVE2p1)

Encoding

SMAXQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = FALSE;

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 0 1 1 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4668
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 integer dtmp;

 for e = 0 to elempersegment-1
 dtmp = if unsigned then 0 else -(2^(esize-1));
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = Max(dtmp, SInt(Elem[stmp, e, esize]));
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4669
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.541 SMAXV

Signed maximum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as the minimum signed integer for the element size.

Encoding

SMAXV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = FALSE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 integer maximum = if unsigned then 0 else -(2^(esize-1));

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = Int(Elem[operand, e, esize], unsigned);
 maximum = Max(maximum, element);

0 0 0 0 0 1 0 0 size 0 0 1 0 0 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4670
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = maximum<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4671
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.542 SMIN (immediate)

Determine the signed minimum of an immediate and each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is a signed 8-bit value in the range -128
to +127, inclusive. This instruction is unpredicated.

Encoding

SMIN <Zdn>.<T>, <Zdn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 boolean unsigned = FALSE;
 integer imm = Int(imm8, unsigned);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is the signed immediate operand, in the range -128 to 127, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 Elem[result, e, esize] = Min(element1, imm)<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 1 0 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4672
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4673
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.543 SMIN (vectors)

Determine the signed minimum of active elements of the second source vector and corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

SMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer minimum = Min(element1, element2);
 Elem[result, e, esize] = minimum<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 0 1 0 1 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4674
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4675
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.544 SMINP

Compute the minimum value of each pair of adjacent signed integer elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

Encoding

SMINP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand1, e, esize];
 else
 if IsEven(e) then
 element1 = SInt(Elem[operand1, e + 0, esize]);
 element2 = SInt(Elem[operand1, e + 1, esize]);
 else
 element1 = SInt(Elem[operand2, e - 1, esize]);

0 1 0 0 0 1 0 0 size 0 1 0 1 1 0 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4676
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 element2 = SInt(Elem[operand2, e + 0, esize]);
 integer res = Min(element1, element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4677
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.545 SMINQV

Signed minimum of the same element numbers from each 128-bit source vector segment, placing each result into
the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the source
vector are treated as the maximum signed integer for the element size.

SVE2

(FEAT_SVE2p1)

Encoding

SMINQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = FALSE;

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 0 1 1 1 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4678
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 integer dtmp;

 for e = 0 to elempersegment-1
 dtmp = if unsigned then (2^esize - 1) else (2^(esize-1) - 1);
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = Min(dtmp, SInt(Elem[stmp, e, esize]));
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4679
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.546 SMINV

Signed minimum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as the maximum signed integer for the element size.

Encoding

SMINV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = FALSE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 integer minimum = if unsigned then (2^esize - 1) else (2^(esize-1) - 1);

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = Int(Elem[operand, e, esize], unsigned);
 minimum = Min(minimum, element);

0 0 0 0 0 1 0 0 size 0 0 1 0 1 0 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4680
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = minimum<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4681
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.547 SMLALB (indexed)

Multiply the even-numbered signed elements within each 128-bit segment of the first source vector by the specified
signed element in the corresponding second source vector segment and destructively add to the overlapping
double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

64-bit

Encoding

SMLALB <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 0 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 0 0 i2l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4682
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4683
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.548 SMLALB (vectors)

Multiply the corresponding even-numbered signed elements of the first and second source vectors and destructively
add to the overlapping double-width elements of the addend vector. This instruction is unpredicated.

Encoding

SMLALB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + product;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4684
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4685
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.549 SMLALT (indexed)

Multiply the odd-numbered signed elements within each 128-bit segment of the first source vector by the specified
signed element in the corresponding second source vector segment and destructively add to the overlapping
double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

64-bit

Encoding

SMLALT <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 0 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 0 0 i2l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4686
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4687
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.550 SMLALT (vectors)

Multiply the corresponding odd-numbered signed elements of the first and second source vectors and destructively
add to the overlapping double-width elements of the addend vector. This instruction is unpredicated.

Encoding

SMLALT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + product;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4688
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4689
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.551 SMLSLB (indexed)

Multiply the even-numbered signed elements within each 128-bit segment of the first source vector by the specified
signed element in the corresponding second source vector segment and destructively subtract from the overlapping
double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SMLSLB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

64-bit

Encoding

SMLSLB <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 1 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 1 0 i2l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4690
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] - product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4691
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.552 SMLSLB (vectors)

Multiply the corresponding even-numbered signed elements of the first and second source vectors and destructively
subtract from the overlapping double-width elements of the addend vector. This instruction is unpredicated.

Encoding

SMLSLB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] - product;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4692
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4693
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.553 SMLSLT (indexed)

Multiply the odd-numbered signed elements within each 128-bit segment of the first source vector by the specified
signed element in the corresponding second source vector segment and destructively subtract from the overlapping
double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SMLSLT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

64-bit

Encoding

SMLSLT <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 1 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 1 0 i2l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4694
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] - product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4695
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.554 SMLSLT (vectors)

Multiply the corresponding odd-numbered signed elements of the first and second source vectors and destructively
subtract from the overlapping double-width elements of the addend vector. This instruction is unpredicated.

Encoding

SMLSLT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] - product;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4696
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4697
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.555 SMMLA

The signed integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of signed 8-bit integer values
held in each 128-bit segment of the first source vector by the 8×2 matrix of signed 8-bit integer values in the
corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product is then
destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend and
destination vector. This is equivalent to performing an 8-way dot product per destination element.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_I8MM)

Encoding

SMMLA <Zda>.S, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result = Zeros(VL);
 bits(128) op1, op2;
 bits(128) res, addend;

 for s = 0 to segments-1
 op1 = Elem[operand1, s, 128];
 op2 = Elem[operand2, s, 128];
 addend = Elem[operand3, s, 128];

0 1 0 0 0 1 0 1 0 0 0 Zm 1 0 0 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

uns<1>

uns<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4698
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned);
 Elem[result, s, 128] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4699
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.556 SMULH (predicated)

Widening multiply signed integer values in active elements of the first source vector by corresponding elements of
the second source vector and destructively place the high half of the result in the corresponding elements of the first
source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

SMULH <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer product = (element1 * element2) >> esize;
 Elem[result, e, esize] = product<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 0 1 0 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

H U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4700
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4701
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.557 SMULH (unpredicated)

Widening multiply signed integer values of all elements of the first source vector by corresponding elements of the
second source vector and place the high half of the result in the corresponding elements of the destination vector.
This instruction is unpredicated.

Encoding

SMULH <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer product = (element1 * element2) >> esize;
 Elem[result, e, esize] = product<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4702
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4703
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.558 SMULLB (indexed)

Multiply the even-numbered signed elements within each 128-bit segment of the first source vector by the specified
signed element in the corresponding second source vector segment, and place the results in the overlapping
double-width elements of the destination vector register.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SMULLB <Zd>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 0;

64-bit

Encoding

SMULLB <Zd>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 1 0 0 i3l 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 1 0 0 i2l 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4704
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer res = element1 * element2;
 Elem[result, e, 2*esize] = res<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4705
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.559 SMULLB (vectors)

Multiply the corresponding even-numbered signed elements of the first and second source vectors, and place the
results in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

SMULLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);
 integer res = element1 * element2;
 Elem[result, e, esize] = res<esize-1:0>;

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4706
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4707
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.560 SMULLT (indexed)

Multiply the odd-numbered signed elements within each 128-bit segment of the first source vector by the specified
element in the corresponding second source vector segment, and place the results in the overlapping double-width
elements of the destination vector register.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SMULLT <Zd>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 1;

64-bit

Encoding

SMULLT <Zd>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 1 0 0 i3l 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 1 0 0 i2l 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4708
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer res = element1 * element2;
 Elem[result, e, 2*esize] = res<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4709
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.561 SMULLT (vectors)

Multiply the corresponding odd-numbered signed elements of the first and second source vectors, and place the
results in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

SMULLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);
 integer res = element1 * element2;
 Elem[result, e, esize] = res<esize-1:0>;

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4710
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4711
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.562 SPLICE

Select a region from the first source vector and copy it to the lowest-numbered elements of the result. Then set any
remaining elements of the result to a copy of the lowest-numbered elements from the second source vector. The
region is selected using the first and last true elements in the vector select predicate register. The result is placed
destructively in the destination and first source vector, or constructively in the destination vector.

The Destructive encoding of this instruction might be immediately preceded in program order by a MOVPRFX
instruction. The MOVPRFX instruction must conform to all of the following requirements, otherwise the behavior
of the MOVPRFX and this instruction is UNPREDICTABLE: The MOVPRFX instruction must be unpredicated.
The MOVPRFX instruction must specify the same destination register as this instruction. The destination register
must not refer to architectural register state referenced by any other source operand register of this instruction.

Constructive

Encoding

SPLICE <Zd>.<T>, <Pv>, { <Zn1>.<T>, <Zn2>.<T> }

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer v = UInt(Pv);
 integer dst = UInt(Zd);
 integer s1 = UInt(Zn);
 integer s2 = (s1 + 1) MOD 32;

Destructive

Encoding

SPLICE <Zdn>.<T>, <Pv>, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer v = UInt(Pv);
 integer dst = UInt(Zdn);
 integer s1 = dst;
 integer s2 = UInt(Zm);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

0 0 0 0 0 1 0 1 size 1 0 1 1 0 1 1 0 0 Pv Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 0 1 1 0 0 1 0 0 Pv Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4712
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pv> Is the name of the vector select predicate register P0-P7, encoded in the "Pv" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded in the "Zn"
field.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded in the
"Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[v, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[s1, VL] else Zeros(VL);
 bits(VL) operand2 = Z[s2, VL];
 bits(VL) result;
 integer x = 0;
 boolean active = FALSE;
 constant integer lastnum = LastActiveElement(mask, esize);

 if lastnum >= 0 then
 for e = 0 to lastnum
 active = active || ActivePredicateElement(mask, e, esize);
 if active then
 Elem[result, x, esize] = Elem[operand1, e, esize];
 x = x + 1;

 constant integer nelements = (elements - x) - 1;
 for e = 0 to nelements
 Elem[result, x, esize] = Elem[operand2, e, esize];
 x = x + 1;

 Z[dst, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4713
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.563 SQABS

Compute the absolute value of the signed integer in each active element of the source vector, and place the results
in the corresponding elements of the destination vector. Each result element is saturated to the N-bit element's signed
integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination vector register remain unmodified.

Encoding

SQABS <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand, e, esize]);
 element = Abs(element);
 Elem[result, e, esize] = SignedSat(element, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 size 0 0 1 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4714
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4715
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.564 SQADD (immediate)

Signed saturating add of an unsigned immediate to each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

SQADD <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

0 0 1 0 0 1 0 1 size 1 0 0 1 0 0 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4716
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + imm, esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4717
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.565 SQADD (vectors, predicated)

Add active signed elements of the first source vector to corresponding signed elements of the second source vector
and destructively place the results in the corresponding elements of the first source vector. Each result element is
saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

SQADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = SInt(Sat(element1 + element2, esize, unsigned));
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4718
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4719
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.566 SQADD (vectors, unpredicated)

Signed saturating add all elements of the second source vector to corresponding elements of the first source vector
and place the results in the corresponding elements of the destination vector. Each result element is saturated to the
N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + element2, esize, unsigned);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4720
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.567 SQCADD

Add the real and imaginary components of the integral complex numbers from the first source vector to the complex
numbers from the second source vector which have first been rotated by 90 or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, when considered in polar representation, equivalent to
multiplying the complex numbers in the second source vector by ±J beforehand. Destructively place the results in
the corresponding elements of the first source vector. Each result element is saturated to the N-bit element's signed
integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

Encoding

SQCADD <Zdn>.<T>, <Zdn>.<T>, <Zm>.<T>, <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);
 boolean sub_i = (rot == '0');
 boolean sub_r = (rot == '1');

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#90 when rot = 0

#270 when rot = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for p = 0 to pairs-1

0 1 0 0 0 1 0 1 size 0 0 0 0 0 1 1 1 0 1 1 rot Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4721
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer acc_r = SInt(Elem[operand1, 2 * p + 0, esize]);
 integer acc_i = SInt(Elem[operand1, 2 * p + 1, esize]);
 integer elt2_r = SInt(Elem[operand2, 2 * p + 0, esize]);
 integer elt2_i = SInt(Elem[operand2, 2 * p + 1, esize]);
 if sub_i then
 acc_r = acc_r - elt2_i;
 acc_i = acc_i + elt2_r;
 if sub_r then
 acc_r = acc_r + elt2_i;
 acc_i = acc_i - elt2_r;

 Elem[result, 2 * p + 0, esize] = SignedSat(acc_r, esize);
 Elem[result, 2 * p + 1, esize] = SignedSat(acc_i, esize);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4722
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.568 SQCVTN

Saturate the signed integer value in each element of the group of two source vectors to half the original source
element width, and place the two-way interleaved results in the half-width destination elements.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SQCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 1
 bits(VL) operand = Z[n+i, VL];
 integer element = SInt(Elem[operand, e, 2 * esize]);
 Elem[result, 2*e + i, esize] = SignedSat(element, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

U

tszh

tszl<1>

tszl<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4723
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.569 SQCVTUN

Saturate the signed integer value in each element of the group of two source vectors to unsigned integer value that
is half the original source element width, and place the two-way interleaved results in the half-width destination
elements.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SQCVTUN <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 1
 bits(VL) operand = Z[n+i, VL];
 integer element = SInt(Elem[operand, e, 2 * esize]);
 Elem[result, 2*e + i, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

tszh

tszl<1>

tszl<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4724
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.570 SQDECB

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQDECB <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQDECB <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4725
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4726
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.571 SQDECD (scalar)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQDECD <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQDECD <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4727
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4728
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.572 SQDECD (vector)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 64-bit signed integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

SQDECD <Zdn>.D{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 1 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4729
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4730
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.573 SQDECH (scalar)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQDECH <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQDECH <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4731
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4732
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.574 SQDECH (vector)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 16-bit signed integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

SQDECH <Zdn>.H{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 1 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4733
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4734
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.575 SQDECP (scalar)

Counts the number of true elements in the source predicate and then uses the result to decrement the scalar
destination. The result is saturated to the source general-purpose register's signed integer range. A 32-bit saturated
result is then sign-extended to 64 bits.

32-bit

Encoding

SQDECP <Xdn>, <Pm>.<T>, <Wdn>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQDECP <Xdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 0 1 0 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf

0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 0 1 1 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4735
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(ssize) operand1 = X[dn, ssize];
 bits(PL) operand2 = P[m, PL];
 bits(ssize) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 integer element = Int(operand1, unsigned);
 (result, -) = SatQ(element - count, ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4736
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.576 SQDECP (vector)

Counts the number of true elements in the source predicate and then uses the result to decrement all destination
vector elements. The results are saturated to the element signed integer range.

The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited
in a future release of the architecture.

Encoding

SQDECP <Zdn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Zdn);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) operand2 = P[m, PL];
 bits(VL) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element - count, esize, unsigned);

 Z[dn, VL] = result;

0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 0 0 0 0 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4737
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4738
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.577 SQDECW (scalar)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQDECW <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQDECW <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 1 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4739
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4740
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.578 SQDECW (vector)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 32-bit signed integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

SQDECW <Zdn>.S{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 1 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4741
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4742
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.579 SQDMLALB (indexed)

Multiply then double the even-numbered signed elements within each 128-bit segment of the first source vector and
specified signed element in the corresponding second source vector segment. Each intermediate value is saturated
to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then destructively add to the overlapping
double-width elements of the addend and destination vector. Each destination element is saturated to the
double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SQDMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

64-bit

Encoding

SQDMLALB <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 0 0 1 0 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 0 0 1 0 i2l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4743
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer element3 = SInt(Elem[result, e, 2*esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, 2*esize));
 integer res = element3 + product;
 Elem[result, e, 2*esize] = SignedSat(res, 2*esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4744
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.580 SQDMLALB (vectors)

Multiply then double the corresponding even-numbered signed elements of the first and second source vectors. Each
intermediate value is saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then
destructively add to the overlapping double-width elements of the addend and destination vector. Each destination
element is saturated to the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction
is unpredicated.

Encoding

SQDMLALB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel1 = 0;
 integer sel2 = 0;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4745
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + sel1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + sel2, esize DIV 2]);
 integer element3 = SInt(Elem[result, e, esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, esize));
 Elem[result, e, esize] = SignedSat(element3 + product, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4746
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.581 SQDMLALBT

Multiply then double the corresponding even-numbered signed elements of the first and odd-numbered signed
elements of the second source vector. Each intermediate value is saturated to the double-width N-bit value's signed
integer range -2(N-1) to (2(N-1))-1. Then destructively add to the overlapping double-width elements of the addend
and destination vector. Each destination element is saturated to the double-width N-bit element's signed integer
range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQDMLALBT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel1 = 0;
 integer sel2 = 1;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4747
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + sel1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + sel2, esize DIV 2]);
 integer element3 = SInt(Elem[result, e, esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, esize));
 Elem[result, e, esize] = SignedSat(element3 + product, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4748
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.582 SQDMLALT (indexed)

Multiply then double the odd-numbered signed elements within each 128-bit segment of the first source vector and
the specified signed element in the corresponding second source vector segment. Each intermediate value is
saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then destructively add to the
overlapping double-width elements of the addend and destination vector. Each destination element is saturated to
the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SQDMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

64-bit

Encoding

SQDMLALT <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 0 0 1 0 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 0 0 1 0 i2l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4749
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer element3 = SInt(Elem[result, e, 2*esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, 2*esize));
 integer res = element3 + product;
 Elem[result, e, 2*esize] = SignedSat(res, 2*esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4750
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.583 SQDMLALT (vectors)

Multiply then double the corresponding odd-numbered signed elements of the first and second source vectors. Each
intermediate value is saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then
destructively add to the overlapping double-width elements of the addend and destination vector. Each destination
element is saturated to the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction
is unpredicated.

Encoding

SQDMLALT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel1 = 1;
 integer sel2 = 1;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4751
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + sel1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + sel2, esize DIV 2]);
 integer element3 = SInt(Elem[result, e, esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, esize));
 Elem[result, e, esize] = SignedSat(element3 + product, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4752
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.584 SQDMLSLB (indexed)

Multiply then double the even-numbered signed elements within each 128-bit segment of the first source vector and
the specified signed element in the corresponding second source vector segment. Each intermediate value is
saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then destructively subtract
from the overlapping double-width elements of the addend and destination vector. Each destination element is
saturated to the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SQDMLSLB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

64-bit

Encoding

SQDMLSLB <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 0 0 1 1 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 0 0 1 1 i2l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4753
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer element3 = SInt(Elem[result, e, 2*esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, 2*esize));
 integer res = element3 - product;
 Elem[result, e, 2*esize] = SignedSat(res, 2*esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4754
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.585 SQDMLSLB (vectors)

Multiply then double the corresponding even-numbered signed elements of the first and second source vectors. Each
intermediate value is saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then
destructively subtract from the overlapping double-width elements of the addend and destination vector. Each
destination element is saturated to the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This
instruction is unpredicated.

Encoding

SQDMLSLB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel1 = 0;
 integer sel2 = 0;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4755
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + sel1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + sel2, esize DIV 2]);
 integer element3 = SInt(Elem[result, e, esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, esize));
 Elem[result, e, esize] = SignedSat(element3 - product, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4756
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.586 SQDMLSLBT

Multiply then double the corresponding even-numbered signed elements of the first and odd-numbered signed
elements of the second source vector. Each intermediate value is saturated to the double-width N-bit value's signed
integer range -2(N-1) to (2(N-1))-1. Then destructively subtract from the overlapping double-width elements of the
addend and destination vector. Each destination element is saturated to the double-width N-bit element's signed
integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQDMLSLBT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel1 = 0;
 integer sel2 = 1;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4757
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + sel1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + sel2, esize DIV 2]);
 integer element3 = SInt(Elem[result, e, esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, esize));
 Elem[result, e, esize] = SignedSat(element3 - product, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4758
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.587 SQDMLSLT (indexed)

Multiply then double the odd-numbered signed elements within each 128-bit segment of the first source vector and
the specified signed element in the corresponding second source vector segment. Each intermediate value is
saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then destructively subtract
from the overlapping double-width elements of the addend and destination vector. Each destination element is
saturated to the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SQDMLSLT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

64-bit

Encoding

SQDMLSLT <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 0 0 1 1 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 0 0 1 1 i2l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4759
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer element3 = SInt(Elem[result, e, 2*esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, 2*esize));
 integer res = element3 - product;
 Elem[result, e, 2*esize] = SignedSat(res, 2*esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4760
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.588 SQDMLSLT (vectors)

Multiply then double the corresponding odd-numbered signed elements of the first and second source vectors. Each
intermediate value is saturated to the double-width N-bit value's signed integer range -2(N-1) to (2(N-1))-1. Then
destructively subtract from the overlapping double-width elements of the addend and destination vector. Each
destination element is saturated to the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This
instruction is unpredicated.

Encoding

SQDMLSLT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel1 = 1;
 integer sel2 = 1;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4761
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + sel1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + sel2, esize DIV 2]);
 integer element3 = SInt(Elem[result, e, esize]);
 integer product = SInt(SignedSat(2 * element1 * element2, esize));
 Elem[result, e, esize] = SignedSat(element3 - product, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4762
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.589 SQDMULH (indexed)

Multiply all signed elements within each 128-bit segment of the first source vector by the specified signed element
in the corresponding second source vector segment, double and place the most significant half of the result in the
corresponding elements of the destination vector register. Each result element is saturated to the N-bit element's
signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element.

16-bit

Encoding

SQDMULH <Zd>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

32-bit

Encoding

SQDMULH <Zd>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

0 1 0 0 0 1 0 0 0 1 i3l Zm 1 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 1 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4763
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

SQDMULH <Zd>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, s, esize]);
 integer res = 2 * element1 * element2;
 Elem[result, e, esize] = SignedSat(res >> esize, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 1 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

R

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4764
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4765
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.590 SQDMULH (vectors)

Multiply then double the corresponding signed elements of the first and second source vectors, and place the most
significant half of the results in the corresponding elements of the destination vector register. Each result element is
saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQDMULH <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer res = 2 * element1 * element2;
 Elem[result, e, esize] = SignedSat(res >> esize, esize);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

R

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4766
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4767
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.591 SQDMULLB (indexed)

Multiply then double the even-numbered signed elements within each 128-bit segment of the first source vector and
the specified element in the corresponding second source vector segment, and place the results in overlapping
double-width elements of the destination vector register. Each result element is saturated to the double-width N-bit
element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SQDMULLB <Zd>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 0;

64-bit

Encoding

SQDMULLB <Zd>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 1 1 0 i3l 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 1 1 0 i2l 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4768
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer res = 2 * element1 * element2;
 Elem[result, e, 2*esize] = SignedSat(res, 2*esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4769
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.592 SQDMULLB (vectors)

Multiply the corresponding even-numbered signed elements of the first and second source vectors, double and place
the results in the overlapping double-width elements of the destination vector. Each result element is saturated to
the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQDMULLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4770
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = 2 * element1 * element2;
 Elem[result, e, esize] = SignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4771
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.593 SQDMULLT (indexed)

Multiply then double the odd-numbered signed elements within each 128-bit segment of the first source vector and
the specified element in the corresponding second source vector segment, and place the results in overlapping
double-width elements of the destination vector register. Each result element is saturated to the double-width N-bit
element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

SQDMULLT <Zd>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 1;

64-bit

Encoding

SQDMULLT <Zd>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 1 1 0 i3l 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 1 1 0 i2l 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4772
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = SInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = SInt(Elem[operand2, 2 * s + index, esize]);
 integer res = 2 * element1 * element2;
 Elem[result, e, 2*esize] = SignedSat(res, 2*esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4773
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.594 SQDMULLT (vectors)

Multiply the corresponding odd-numbered signed elements of the first and second source vectors, double and place
the results in the overlapping double-width elements of the destination vector. Each result element is saturated to
the double-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQDMULLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4774
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = 2 * element1 * element2;
 Elem[result, e, esize] = SignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4775
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.595 SQINCB

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQINCB <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQINCB <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4776
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4777
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.596 SQINCD (scalar)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQINCD <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQINCD <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4778
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4779
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.597 SQINCD (vector)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 64-bit signed integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

SQINCD <Zdn>.D{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 0 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4780
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4781
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.598 SQINCH (scalar)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQINCH <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQINCH <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4782
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4783
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.599 SQINCH (vector)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 16-bit signed integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

SQINCH <Zdn>.H{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 0 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4784
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4785
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.600 SQINCP (scalar)

Counts the number of true elements in the source predicate and then uses the result to increment the scalar
destination. The result is saturated to the source general-purpose register's signed integer range. A 32-bit saturated
result is then sign-extended to 64 bits.

32-bit

Encoding

SQINCP <Xdn>, <Pm>.<T>, <Wdn>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQINCP <Xdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 0 1 0 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf

0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 0 1 1 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4786
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(ssize) operand1 = X[dn, ssize];
 bits(PL) operand2 = P[m, PL];
 bits(ssize) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 integer element = Int(operand1, unsigned);
 (result, -) = SatQ(element + count, ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4787
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.601 SQINCP (vector)

Counts the number of true elements in the source predicate and then uses the result to increment all destination
vector elements. The results are saturated to the element signed integer range.

The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited
in a future release of the architecture.

Encoding

SQINCP <Zdn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Zdn);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) operand2 = P[m, PL];
 bits(VL) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element + count, esize, unsigned);

 Z[dn, VL] = result;

0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 0 0 0 0 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4788
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4789
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.602 SQINCW (scalar)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then
sign-extended to 64 bits.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

SQINCW <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 32;

64-bit

Encoding

SQINCW <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 0 0 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4790
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;
 constant integer ssize = 64;

Assembler symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4791
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.603 SQINCW (vector)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 32-bit signed integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

SQINCW <Zdn>.S{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 0 0 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4792
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4793
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.604 SQNEG

Negate the signed integer value in each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Each result element is saturated to the N-bit element's signed
integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination vector register remain unmodified.

Encoding

SQNEG <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand, e, esize]);
 element = -element;
 Elem[result, e, esize] = SignedSat(element, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 size 0 0 1 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4794
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4795
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.605 SQRDCMLAH (indexed)

Multiply without saturation the duplicated real components for rotations 0 and 180, or imaginary components for
rotations 90 and 270, of the integral numbers in each 128-bit segment of the first source vector by the specified
complex number in the corresponding the second source vector segment rotated by 0, 90, 180 or 270 degrees in the
direction from the positive real axis towards the positive imaginary axis, when considered in polar representation.

Then double and add the products to the corresponding components of the complex numbers in the addend vector.
Destructively place the most significant rounded half of the results in the corresponding elements of the addend
vector. Each result element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This
instruction is unpredicated.

These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

16-bit

Encoding

SQRDCMLAH <Zda>.H, <Zn>.H, <Zm>.H[<imm>], <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_r = (rot<0> != rot<1>);
 boolean sub_i = (rot<1> == '1');

32-bit

Encoding

SQRDCMLAH <Zda>.S, <Zn>.S, <Zm>.S[<imm>], <const>

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 1 1 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 1 1 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4796
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_r = (rot<0> != rot<1>);
 boolean sub_i = (rot<1> == '1');

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 32-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 32-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

#180 when rot = 10

#270 when rot = 11

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 constant integer pairspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 integer res_r, res_i;

 for p = 0 to pairs-1
 integer segmentbase = p - (p MOD pairspersegment);
 integer s = segmentbase + index;
 integer elt1_a = SInt(Elem[operand1, 2 * p + sel_a, esize]);
 integer elt2_a = SInt(Elem[operand2, 2 * s + sel_a, esize]);
 integer elt2_b = SInt(Elem[operand2, 2 * s + sel_b, esize]);
 bits(esize) elt3_r = Elem[operand3, 2 * p + 0, esize];
 bits(esize) elt3_i = Elem[operand3, 2 * p + 1, esize];
 integer product_r = elt1_a * elt2_a;
 integer product_i = elt1_a * elt2_b;
 if sub_r then
 res_r = (SInt(elt3_r) << esize) - 2 * product_r;
 else
 res_r = (SInt(elt3_r) << esize) + 2 * product_r;
 res_r = (res_r + (1 << (esize-1))) >> esize;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4797
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, 2 * p + 0, esize] = SignedSat(res_r, esize);
 if sub_i then
 res_i = (SInt(elt3_i) << esize) - 2 * product_i;
 else
 res_i = (SInt(elt3_i) << esize) + 2 * product_i;
 res_i = (res_i + (1 << (esize-1))) >> esize;
 Elem[result, 2 * p + 1, esize] = SignedSat(res_i, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4798
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.606 SQRDCMLAH (vectors)

Multiply without saturation the duplicated real components for rotations 0 and 180, or imaginary components for
rotations 90 and 270, of the integral numbers in the first source vector by the corresponding complex number in the
second source vector rotated by 0, 90, 180 or 270 degrees in the direction from the positive real axis towards the
positive imaginary axis, when considered in polar representation.

Then double and add the products to the corresponding components of the complex numbers in the addend vector.
Destructively place the most significant rounded half of the results in the corresponding elements of the addend
vector. Each result element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This
instruction is unpredicated.

These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.

Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

Encoding

SQRDCMLAH <Zda>.<T>, <Zn>.<T>, <Zm>.<T>, <const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel_a = UInt(rot<0>);
 integer sel_b = UInt(NOT(rot<0>));
 boolean sub_r = (rot<0> != rot<1>);
 boolean sub_i = (rot<1> == '1');

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in the "rot" field. It can have the following values:

#0 when rot = 00

#90 when rot = 01

0 1 0 0 0 1 0 0 size 0 Zm 0 0 1 1 rot Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4799
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
#180 when rot = 10

#270 when rot = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 integer res_r, res_i;

 for p = 0 to pairs-1
 integer elt1_a = SInt(Elem[operand1, 2 * p + sel_a, esize]);
 integer elt2_a = SInt(Elem[operand2, 2 * p + sel_a, esize]);
 integer elt2_b = SInt(Elem[operand2, 2 * p + sel_b, esize]);
 bits(esize) elt3_r = Elem[operand3, 2 * p + 0, esize];
 bits(esize) elt3_i = Elem[operand3, 2 * p + 1, esize];
 integer product_r = elt1_a * elt2_a;
 integer product_i = elt1_a * elt2_b;
 if sub_r then
 res_r = (SInt(elt3_r) << esize) - 2 * product_r;
 else
 res_r = (SInt(elt3_r) << esize) + 2 * product_r;
 res_r = (res_r + (1 << (esize-1))) >> esize;
 Elem[result, 2 * p + 0, esize] = SignedSat(res_r, esize);
 if sub_i then
 res_i = (SInt(elt3_i) << esize) - 2 * product_i;
 else
 res_i = (SInt(elt3_i) << esize) + 2 * product_i;
 res_i = (res_i + (1 << (esize-1))) >> esize;
 Elem[result, 2 * p + 1, esize] = SignedSat(res_i, esize);

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4800
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.607 SQRDMLAH (indexed)

Multiply then double all signed elements within each 128-bit segment of the first source vector and the specified
signed element of the corresponding second source vector segment, and destructively add the rounded high half of
each result to the corresponding elements of the addend and destination vector. Each destination element is saturated
to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element.

16-bit

Encoding

SQRDMLAH <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

32-bit

Encoding

SQRDMLAH <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

0 1 0 0 0 1 0 0 0 1 i3l Zm 0 0 0 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4801
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

SQRDMLAH <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, s, esize]);
 integer element3 = SInt(Elem[operand3, e, esize]);
 integer res = (element3 << esize) + (2 * element1 * element2);
 Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4802
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4803
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.608 SQRDMLAH (vectors)

Multiply then double the corresponding signed elements of the first and second source vectors, and destructively
add the rounded high half of each result to the corresponding elements of the addend and destination vector. Each
destination element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is
unpredicated.

Encoding

SQRDMLAH <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer element3 = SInt(Elem[operand3, e, esize]);
 integer res = (element3 << esize) + (2 * element1 * element2);
 Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 1 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4804
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4805
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.609 SQRDMLSH (indexed)

Multiply then double all signed elements within each 128-bit segment of the first source vector and the specified
signed element of the corresponding second source vector segment, and destructively subtract the rounded high half
of each result to the corresponding elements of the addend and destination vector. Each destination element is
saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element.

16-bit

Encoding

SQRDMLSH <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

32-bit

Encoding

SQRDMLSH <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

0 1 0 0 0 1 0 0 0 1 i3l Zm 0 0 0 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4806
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

SQRDMLSH <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, s, esize]);
 integer element3 = SInt(Elem[operand3, e, esize]);
 integer res = (element3 << esize) - (2 * element1 * element2);
 Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4807
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4808
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.610 SQRDMLSH (vectors)

Multiply then double the corresponding signed elements of the first and second source vectors, and destructively
subtract the rounded high half of each result from the corresponding elements of the addend and destination vector.
Each destination element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This
instruction is unpredicated.

Encoding

SQRDMLSH <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer element3 = SInt(Elem[operand3, e, esize]);
 integer res = (element3 << esize) - (2 * element1 * element2);
 Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize);

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 1 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4809
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4810
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.611 SQRDMULH (indexed)

Multiply all signed elements within each 128-bit segment of the first source vector by the specified signed element
in the corresponding second source vector segment, double and place the most significant rounded half of the result
in the corresponding elements of the destination vector register. Each result element is saturated to the N-bit
element's signed integer range -2(N-1) to (2(N-1))-1.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 1 to 3 bits depending on the size of the element.

16-bit

Encoding

SQRDMULH <Zd>.H, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

32-bit

Encoding

SQRDMULH <Zd>.S, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

0 1 0 0 0 1 0 0 0 1 i3l Zm 1 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R

i3h

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 1 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4811
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit

Encoding

SQRDMULH <Zd>.D, <Zn>.D, <Zm>.D[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 16-bit and 32-bit variant: is the name of the second source scalable vector register Z0-Z7,
encoded in the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 16-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, s, esize]);
 integer res = 2 * element1 * element2;
 Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 1 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

R

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4812
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4813
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.612 SQRDMULH (vectors)

Multiply then double the corresponding signed elements of the first and second source vectors, and place the most
significant rounded half of the result in the corresponding elements of the destination vector. Each result element is
saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQRDMULH <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer res = 2 * element1 * element2;
 Elem[result, e, esize] = SignedSat((res + (1 << (esize - 1))) >> esize, esize);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

R

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4814
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4815
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.613 SQRSHL

Shift active signed elements of the first source vector by corresponding elements of the second source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element
is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination
vector register remain unmodified.

Encoding

SQRSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4816
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = SignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4817
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.614 SQRSHLR

Shift active signed elements of the second source vector by corresponding elements of the first source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element
is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination
vector register remain unmodified.

Encoding

SQRSHLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand2 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4818
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = SignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4819
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.615 SQRSHRN

Shift right by an immediate value, the signed integer value in each element of the group of two source vectors and
place the two-way interleaved rounded results in the half-width destination elements. Each result element is
saturated to the half-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is
an unsigned value in the range 1 to 16.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SQRSHRN <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);
 integer shift = esize - UInt(imm4);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 1
 bits(VL) operand = Z[n+i, VL];
 bits(2 * esize) element = Elem[operand, e, 2 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + i, esize] = SignedSat(res, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 1 0 1 1 imm4 0 0 1 0 1 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

U R

tszh

tszl
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4820
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.616 SQRSHRNB

Shift each signed integer value in the source vector elements right by an immediate value, and place the rounded
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.
Each result element is saturated to the half-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is
unpredicated.

Encoding

SQRSHRNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4821
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 0, esize] = SignedSat(res, esize);
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4822
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.617 SQRSHRNT

Shift each signed integer value in the source vector elements right by an immediate value, and place the rounded
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. Each
result element is saturated to the half-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. The immediate
shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SQRSHRNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4823
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 1, esize] = SignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4824
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.618 SQRSHRUN

Shift right by an immediate value, the signed integer value in each element of the group of two source vectors and
place the two-way interleaved rounded results in the half-width destination elements. Each result element is
saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an
unsigned value in the range 1 to 16.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

SQRSHRUN <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);
 integer shift = esize - UInt(imm4);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 1
 bits(VL) operand = Z[n+i, VL];
 bits(2 * esize) element = Elem[operand, e, 2 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + i, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 1 0 1 1 imm4 0 0 0 0 1 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

U R

tszh

tszl
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4825
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.619 SQRSHRUNB

Shift each signed integer value in the source vector elements right by an immediate value, and place the rounded
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.
Each result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate
shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SQRSHRUNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4826
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 0, esize] = UnsignedSat(res, esize);
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4827
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.620 SQRSHRUNT

Shift each signed integer value in the source vector elements right by an immediate value, and place the rounded
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. Each
result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift
amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SQRSHRUNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4828
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 1, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4829
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.621 SQSHL (immediate)

Shift left by immediate each active signed element of the source vector, and destructively place the results in the
corresponding elements of the source vector. Each result element is saturated to the N-bit element's signed integer
range -2(N-1) to (2(N-1))-1. The immediate shift amount is an unsigned value in the range 0 to number of bits per
element minus 1. Inactive elements in the destination vector register remain unmodified.

Encoding

SQSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = element1 << shift;
 Elem[result, e, esize] = SignedSat(res, esize);
 else

0 0 0 0 0 1 0 0 tszh 0 0 0 1 1 0 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4830
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4831
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.622 SQSHL (vectors)

Shift active signed elements of the first source vector by corresponding elements of the second source vector and
destructively place the results in the corresponding elements of the first source vector. A positive shift amount
performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element is
saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

SQSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 0 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4832
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = element >> shift;
 Elem[result, e, esize] = SignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4833
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.623 SQSHLR

Shift active signed elements of the second source vector by corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. A positive shift amount
performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element is
saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

SQSHLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand2 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4834
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = element >> shift;
 Elem[result, e, esize] = SignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4835
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.624 SQSHLU

Shift left by immediate each active signed element of the source vector, and destructively place the results in the
corresponding elements of the source vector. Each result element is saturated to the N-bit element's unsigned integer
range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 0 to number of bits per element
minus 1. Inactive elements in the destination vector register remain unmodified.

Encoding

SQSHLU <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = element1 << shift;
 Elem[result, e, esize] = UnsignedSat(res, esize);
 else

0 0 0 0 0 1 0 0 tszh 0 0 1 1 1 1 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4836
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4837
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.625 SQSHRNB

Shift each signed integer value in the source vector elements right by an immediate value, and place the truncated
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.
Each result element is saturated to the half-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is
unpredicated.

Encoding

SQSHRNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4838
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(VL) result;

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = SInt(element) >> shift;
 Elem[result, 2*e + 0, esize] = SignedSat(res, esize);
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4839
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.626 SQSHRNT

Shift each signed integer value in the source vector elements right by an immediate value, and place the truncated
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. Each
result element is saturated to the half-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. The immediate
shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SQSHRNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4840
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = SInt(element) >> shift;
 Elem[result, 2*e + 1, esize] = SignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4841
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.627 SQSHRUNB

Shift each signed integer value in the source vector elements right by an immediate value, and place the truncated
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.
Each result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate
shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SQSHRUNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4842
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = SInt(element) >> shift;
 Elem[result, 2*e + 0, esize] = UnsignedSat(res, esize);
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4843
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.628 SQSHRUNT

Shift each signed integer value in the source vector elements right by an immediate value, and place the truncated
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. Each
result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift
amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SQSHRUNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4844
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = SInt(element) >> shift;
 Elem[result, 2*e + 1, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4845
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.629 SQSUB (immediate)

Signed saturating subtract of an unsigned immediate from each element of the source vector, and destructively place
the results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

SQSUB <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

0 0 1 0 0 1 0 1 size 1 0 0 1 1 0 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4846
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - imm, esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4847
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.630 SQSUB (vectors, predicated)

Subtract active signed elements of the second source vector from corresponding signed elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Each result
element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the
destination vector register remain unmodified.

Encoding

SQSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = SInt(Sat(element1 - element2, esize, unsigned));
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4848
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4849
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.631 SQSUB (vectors, unpredicated)

Signed saturating subtract all elements of the second source vector from corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. Each result element is saturated
to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

Encoding

SQSUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - element2, esize, unsigned);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4850
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.632 SQSUBR

Subtract active signed elements of the first source vector from corresponding signed elements of the second source
vector and destructively place the results in the corresponding elements of the first source vector. Each result
element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the
destination vector register remain unmodified.

Encoding

SQSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = FALSE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = SInt(Sat(element2 - element1, esize, unsigned));
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4851
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4852
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.633 SQXTNB

Saturate the signed integer value in each source element to half the original source element width, and place the
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.

Encoding

SQXTNB <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 integer esize;
 case tsize of
 when '001' esize = 16;
 when '010' esize = 32;
 when '100' esize = 64;
 otherwise UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 10

S when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 10

D when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4853
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 bits(halfesize) res = SignedSat(element1, halfesize);
 Elem[result, 2*e + 0, halfesize] = res;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4854
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.634 SQXTNT

Saturate the signed integer value in each source element to half the original source element width, and place the
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged.

Encoding

SQXTNT <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 integer esize;
 case tsize of
 when '001' esize = 16;
 when '010' esize = 32;
 when '100' esize = 64;
 otherwise UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 10

S when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 10

D when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4855
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 bits(halfesize) res = SignedSat(element1, halfesize);
 Elem[result, 2*e + 1, halfesize] = res;

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4856
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.635 SQXTUNB

Saturate the signed integer value in each source element to an unsigned integer value that is half the original source
element width, and place the results in the even-numbered half-width destination elements, while setting the
odd-numbered elements to zero.

Encoding

SQXTUNB <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 integer esize;
 case tsize of
 when '001' esize = 16;
 when '010' esize = 32;
 when '100' esize = 64;
 otherwise UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 10

S when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 10

D when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4857
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• tszh = 1, tszl = 10.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 bits(halfesize) res = UnsignedSat(element1, halfesize);
 Elem[result, 2*e + 0, halfesize] = res;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4858
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.636 SQXTUNT

Saturate the signed integer value in each source element to an unsigned integer value that is half the original source
element width, and place the results in the odd-numbered half-width destination elements, leaving the
even-numbered elements unchanged.

Encoding

SQXTUNT <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 integer esize;
 case tsize of
 when '001' esize = 16;
 when '010' esize = 32;
 when '100' esize = 64;
 otherwise UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 10

S when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 10

D when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4859
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• tszh = 1, tszl = 10.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 bits(halfesize) res = UnsignedSat(element1, halfesize);
 Elem[result, 2*e + 1, halfesize] = res;

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4860
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.637 SRHADD

Add active signed elements of the first source vector to corresponding signed elements of the second source vector,
shift right one bit, and destructively place the rounded results in the corresponding elements of the first source
vector. Inactive elements in the destination vector register remain unmodified.

Encoding

SRHADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 + element2 + 1) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4861
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4862
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.638 SRI

Shift each source vector element right by an immediate value, and insert the result into the corresponding vector
element in the destination vector register, merging the shifted bits from each source element with existing bits in
each destination vector element. The immediate shift amount is an unsigned value in the range 1 to number of bits
per element. This instruction is unpredicated.

Encoding

SRI <Zd>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 bits(esize) element1 = Elem[result, e, esize];
 bits(esize) element2 = Elem[operand, e, esize];
 bits(esize) mask = LSR(Ones(esize), shift);
 bits(esize) shiftedval = LSR(element2, shift);
 Elem[result, e, esize] = (element1 AND (NOT mask)) OR shiftedval;

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4863
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4864
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.639 SRSHL

Shift active signed elements of the first source vector by corresponding elements of the second source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Inactive elements in
the destination vector register remain unmodified.

Encoding

SRSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;

0 1 0 0 0 1 0 0 size 0 0 0 0 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4865
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4866
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.640 SRSHLR

Shift active signed elements of the second source vector by corresponding elements of the first source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Inactive elements in
the destination vector register remain unmodified.

Encoding

SRSHLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand2 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;

0 1 0 0 0 1 0 0 size 0 0 0 1 1 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4867
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4868
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.641 SRSHR

Shift right by immediate each active signed element of the source vector, and destructively place the rounded results
in the corresponding elements of the source vector. The immediate shift amount is an unsigned value in the range 1
to number of bits per element. Inactive elements in the destination vector register remain unmodified.

Encoding

SRSHR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 tszh 0 0 1 1 0 0 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4869
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4870
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.642 SRSRA

Shift right by immediate each signed element of the source vector, preserving the sign bit, and add the rounded
intermediate result destructively to the corresponding elements of the addend vector. The immediate shift amount
is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SRSRA <Zda>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer da = UInt(Zda);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element = (SInt(Elem[operand1, e, esize]) + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4871
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4872
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.643 SSHLLB

Shift left by immediate each even-numbered signed element of the source vector, and place the results in the
overlapping double-width elements of the destination vector. The immediate shift amount is an unsigned value in
the range 0 to number of bits per element minus 1. This instruction is unpredicated.

Encoding

SSHLLB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 0 tszl imm3 1 0 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4873
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 bits(esize) element = Elem[operand, 2*e + 0, esize];
 integer shifted_value = SInt(element) << shift;
 Elem[result, e, 2*esize] = shifted_value<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4874
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.644 SSHLLT

Shift left by immediate each odd-numbered signed element of the source vector, and place the results in the
overlapping double-width elements of the destination vector. The immediate shift amount is an unsigned value in
the range 0 to number of bits per element minus 1. This instruction is unpredicated.

Encoding

SSHLLT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 0 tszl imm3 1 0 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4875
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 bits(esize) element = Elem[operand, 2*e + 1, esize];
 integer shifted_value = SInt(element) << shift;
 Elem[result, e, 2*esize] = shifted_value<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4876
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.645 SSRA

Shift right by immediate each signed element of the source vector, preserving the sign bit, and add the truncated
intermediate result destructively to the corresponding elements of the addend vector. The immediate shift amount
is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

SSRA <Zda>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer da = UInt(Zda);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element = SInt(Elem[operand1, e, esize]) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 0 0 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4877
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4878
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.646 SSUBLB

Subtract the even-numbered signed elements of the second source vector from the corresponding signed elements
of the first source vector, and place the results in the overlapping double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

SSUBLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 0;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4879
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 - element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4880
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.647 SSUBLBT

Subtract the odd-numbered signed elements of the second source vector from the even-numbered signed elements
of the first source vector, and place the results in the overlapping double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

SSUBLBT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S tb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4881
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 - element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4882
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.648 SSUBLT

Subtract the odd-numbered signed elements of the second source vector from the corresponding signed elements of
the first source vector, and place the results in the overlapping double-width elements of the destination vector. This
instruction is unpredicated.

Encoding

SSUBLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 1;
 integer sel2 = 1;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4883
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 - element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4884
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.649 SSUBLTB

Subtract the even-numbered signed elements of the second source vector from the odd-numbered signed elements
of the first source vector, and place the results in the overlapping double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

SSUBLTB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 1;
 integer sel2 = 0;
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 1 0 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S tb
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4885
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 - element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4886
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.650 SSUBWB

Subtract the even-numbered signed elements of the second source vector from the overlapping double-width
elements of the first source vector and place the results in the corresponding double-width elements of the
destination vector. This instruction is unpredicated.

Encoding

SSUBWB <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4887
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 - element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4888
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.651 SSUBWT

Subtract the even-numbered signed elements of the second source vector from the overlapping double-width
elements of the first source vector and place the results in the corresponding double-width elements of the
destination vector. This instruction is unpredicated.

Encoding

SSUBWT <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4889
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 - element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4890
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.652 ST1B (scalar plus immediate, consecutive registers)

Contiguous store of bytes from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

ST1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 0 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 0 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4891
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4892
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4893
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.653 ST1B (scalar plus immediate, single register)

Contiguous store of bytes from elements of a vector register to the memory address generated by a 64-bit scalar base
and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

Encoding

ST1B { <Zt>.<T> }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8 << UInt(size);
 constant integer msize = 8;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 0 0 size 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4894
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4895
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.654 ST1B (scalar plus scalar, consecutive registers)

Contiguous store of bytes from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;

Four registers

(FEAT_SVE2p1)

Encoding

ST1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 0 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 0 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4896
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4897
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4898
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.655 ST1B (scalar plus scalar, single register)

Contiguous store of bytes from elements of a vector register to the memory address generated by a 64-bit scalar base
and scalar index which is added to the base address. After each element access the index value is incremented, but
the index register is not updated. Inactive elements are not written to memory.

Encoding

ST1B { <Zt>.<T> }, <Pg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8 << UInt(size);
 constant integer msize = 8;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then

1 1 1 0 0 1 0 0 0 size Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4899
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4900
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.656 ST1B (scalar plus vector)

Scatter store of bytes from the active elements of a vector register to the memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to 64 bits. Inactive
elements are not written to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked unscaled offset

Encoding

ST1B { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

ST1B { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 1 0 0 1 0 0 0 0 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 0 1 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4901
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit unscaled offset

Encoding

ST1B { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

1 1 1 0 0 1 0 0 0 0 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4902
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 offset = Z[m, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4903
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.657 ST1B (vector plus immediate)

Scatter store of bytes from the active elements of a vector register to the memory addresses generated by a vector
base plus immediate index. The index is in the range 0 to 31. Inactive elements are not written to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

ST1B { <Zt>.S }, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;
 integer offset = UInt(imm5);

64-bit element

Encoding

ST1B { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

1 1 1 0 0 1 0 0 0 1 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 0 1 0 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4904
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4905
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.658 ST1D (scalar plus immediate, consecutive registers)

Contiguous store of doublewords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

ST1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 1 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 1 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4906
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4907
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4908
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.659 ST1D (scalar plus immediate, single register)

Contiguous store of doublewords from elements of a vector register to the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective
of predication, and added to the base address. Inactive elements are not written to memory.

SVE

Encoding

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 integer offset = SInt(imm4);

SVE2

(FEAT_SVE2p1)

Encoding

ST1D { <Zt>.Q }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 64;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

1 1 1 0 0 1 0 1 1 1 1 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 1 1 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4909
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4910
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.660 ST1D (scalar plus scalar, consecutive registers)

Contiguous store of doublewords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;

Four registers

(FEAT_SVE2p1)

Encoding

ST1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 1 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 1 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4911
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4912
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4913
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.661 ST1D (scalar plus scalar, single register)

Contiguous store of doublewords from elements of a vector register to the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 8 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements are not written to memory.

SVE

Encoding

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;

SVE2

(FEAT_SVE2p1)

Encoding

ST1D { <Zt>.Q }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 64;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

1 1 1 0 0 1 0 1 1 1 1 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 1 0 0 1 0 1 1 1 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4914
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4915
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.662 ST1D (scalar plus vector)

Scatter store of doublewords from the active elements of a vector register to the memory addresses generated by a
64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits
and then optionally multiplied by 8. Inactive elements are not written to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unpacked scaled offset

Encoding

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 3;

32-bit unpacked unscaled offset

Encoding

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 1 0 0 1 0 1 1 0 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 1 0 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4916
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, LSL #3]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 3;

64-bit unscaled offset

Encoding

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 1 0 0 1 0 1 1 0 1 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 1 0 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4917
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4918
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.663 ST1D (vector plus immediate)

Scatter store of doublewords from the active elements of a vector register to the memory addresses generated by a
vector base plus immediate index. The index is a multiple of 8 in the range 0 to 248. Inactive elements are not written
to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

ST1D { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to
0, encoded in the "imm5" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 src = Z[t, VL];

1 1 1 0 0 1 0 1 1 1 0 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4919
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4920
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.664 ST1H (scalar plus immediate, consecutive registers)

Contiguous store of halfwords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

ST1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 0 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 0 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4921
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4922
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4923
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.665 ST1H (scalar plus immediate, single register)

Contiguous store of halfwords from elements of a vector register to the memory address generated by a 64-bit scalar
base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

Encoding

ST1H { <Zt>.<T> }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8 << UInt(size);
 constant integer msize = 16;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;

1 1 1 0 0 1 0 0 1 size 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4924
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4925
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.666 ST1H (scalar plus scalar, consecutive registers)

Contiguous store of halfwords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;

Four registers

(FEAT_SVE2p1)

Encoding

ST1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 0 1 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 0 1 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4926
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4927
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4928
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.667 ST1H (scalar plus scalar, single register)

Contiguous store of halfwords from elements of a vector register to the memory address generated by a 64-bit scalar
base and scalar index which is multiplied by 2 and added to the base address. After each element access the index
value is incremented, but the index register is not updated. Inactive elements are not written to memory.

Encoding

ST1H { <Zt>.<T> }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8 << UInt(size);
 constant integer msize = 16;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 0 1 size Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4929
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4930
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.668 ST1H (scalar plus vector)

Scatter store of halfwords from the active elements of a vector register to the memory addresses generated by a
64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits
and then optionally multiplied by 2. Inactive elements are not written to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

ST1H { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

32-bit unpacked scaled offset

Encoding

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 1;

1 1 1 0 0 1 0 0 1 1 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 1 0 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4931
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

ST1H { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 1 0 0 1 0 0 1 0 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 1 1 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4932
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, LSL #1]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 1;

64-bit unscaled offset

Encoding

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 1 0 0 1 0 0 1 0 1 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 1 0 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4933
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4934
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.669 ST1H (vector plus immediate)

Scatter store of halfwords from the active elements of a vector register to the memory addresses generated by a
vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive elements are not written
to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

ST1H { <Zt>.S }, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;
 integer offset = UInt(imm5);

64-bit element

Encoding

ST1H { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

1 1 1 0 0 1 0 0 1 1 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 1 1 0 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4935
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4936
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.670 ST1Q

Scatter store of quadwords from the active elements of a vector register to the memory addresses generated by a
vector base plus a 64-bit unscaled scalar register offset. Inactive elements are not written to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE2

(FEAT_SVE2p1)

Encoding

ST1Q { <Zt>.Q }, <Pg>, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 CheckNonStreamingSVEEnabled();
 constant integer elements = VL DIV 128;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) src;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, 128) then
 base = Z[n, VL];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, 128) then
 bits(64) baddr = Elem[base, 2*e, 64];

1 1 1 0 0 1 0 0 0 0 1 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4937
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 Mem[addr, 16, accdesc] = Elem[src, e, 128];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4938
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.671 ST1W (scalar plus immediate, consecutive registers)

Contiguous store of words from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

ST1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 1 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 1 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4939
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4940
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4941
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.672 ST1W (scalar plus immediate, single register)

Contiguous store of words from elements of a vector register to the memory address generated by a 64-bit scalar
base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

SVE

Encoding

ST1W { <Zt>.<T> }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32 << UInt(sz);
 constant integer msize = 32;
 integer offset = SInt(imm4);

SVE2

(FEAT_SVE2p1)

Encoding

ST1W { <Zt>.Q }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 32;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 1 1 0 0 1 0 1 0 1 sz 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 0 0 0 0 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4942
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4943
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.673 ST1W (scalar plus scalar, consecutive registers)

Contiguous store of words from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SVE2p1)

Encoding

ST1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;

Four registers

(FEAT_SVE2p1)

Encoding

ST1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 1 0 PNg Rn Zt 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 1 0 PNg Rn Zt 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4944
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4945
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4946
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.674 ST1W (scalar plus scalar, single register)

Contiguous store of words from elements of a vector register to the memory address generated by a 64-bit scalar
base and scalar index which is multiplied by 4 and added to the base address. After each element access the index
value is incremented, but the index register is not updated. Inactive elements are not written to memory.

SVE

Encoding

ST1W { <Zt>.<T> }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32 << UInt(sz);
 constant integer msize = 32;

SVE2

(FEAT_SVE2p1)

Encoding

ST1W { <Zt>.Q }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer msize = 32;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

1 1 1 0 0 1 0 1 0 1 sz Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

1 1 1 0 0 1 0 1 0 0 0 Rm 0 1 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4947
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4948
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.675 ST1W (scalar plus vector)

Scatter store of words from the active elements of a vector register to the memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 4. Inactive elements are not written to memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit scaled offset

Encoding

ST1W { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

32-bit unpacked scaled offset

Encoding

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 2;

1 1 1 0 0 1 0 1 0 1 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 0 0 1 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4949
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit unpacked unscaled offset

Encoding

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

32-bit unscaled offset

Encoding

ST1W { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 constant integer offs_size = 32;
 boolean offs_unsigned = xs == '0';
 integer scale = 0;

1 1 1 0 0 1 0 1 0 0 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 0 1 0 Zm 1 xs 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4950
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
64-bit scaled offset

Encoding

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, LSL #2]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 2;

64-bit unscaled offset

Encoding

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Zm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 constant integer offs_size = 64;
 boolean offs_unsigned = TRUE;
 integer scale = 0;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

1 1 1 0 0 1 0 1 0 0 1 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 0 0 0 Zm 1 0 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4951
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<mod> Is the index extend and shift specifier, encoded in the "xs" field. It can have the following values:

UXTW when xs = 0

SXTW when xs = 1

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(VL) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = Z[m, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
 bits(64) addr = GenerateAddress(base, off << scale, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4952
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.676 ST1W (vector plus immediate)

Scatter store of words from the active elements of a vector register to the memory addresses generated by a vector
base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements are not written to
memory.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit element

Encoding

ST1W { <Zt>.S }, <Pg>, [<Zn>.S{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;
 integer offset = UInt(imm5);

64-bit element

Encoding

ST1W { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;
 integer offset = UInt(imm5);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

1 1 1 0 0 1 0 1 0 1 1 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 0 1 0 imm5 1 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4953
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to
0, encoded in the "imm5" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4954
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.677 ST2B (scalar plus immediate)

Contiguous store two-byte structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST2B { <Zt1>.B, <Zt2>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then

1 1 1 0 0 1 0 0 0 0 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4955
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4956
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.678 ST2B (scalar plus scalar)

Contiguous store two-byte structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by two. The index register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST2B { <Zt1>.B, <Zt2>.B }, <Pg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 0 0 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4957
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4958
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.679 ST2D (scalar plus immediate)

Contiguous store two-doubleword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16
to 14 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST2D { <Zt1>.D, <Zt2>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 1 1 0 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4959
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4960
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.680 ST2D (scalar plus scalar)

Contiguous store two-doubleword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST2D { <Zt1>.D, <Zt2>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;

1 1 1 0 0 1 0 1 1 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4961
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4962
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.681 ST2H (scalar plus immediate)

Contiguous store two-halfword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16
to 14 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST2H { <Zt1>.H, <Zt2>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 0 1 0 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4963
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4964
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.682 ST2H (scalar plus scalar)

Contiguous store two-halfword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST2H { <Zt1>.H, <Zt2>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;

1 1 1 0 0 1 0 0 1 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4965
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4966
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.683 ST2Q (scalar plus immediate)

Contiguous store two-quadword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16
to 14 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive quadwords in memory which make up each structure. Inactive structures are not written to
memory.

SVE2

(FEAT_SVE2p1)

Encoding

ST2Q { <Zt1>.Q, <Zt2>.Q }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;

1 1 1 0 0 1 0 0 0 1 0 0 imm4 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4967
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4968
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.684 ST2Q (scalar plus scalar)

Contiguous store two-quadword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive quadwords in memory which make up each structure. Inactive structures are not written to
memory.

SVE2

(FEAT_SVE2p1)

Encoding

ST2Q { <Zt1>.Q, <Zt2>.Q }, <Pg>, [<Xn|SP>, <Xm>, LSL #4]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 0 0 1 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4969
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4970
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.685 ST2W (scalar plus immediate)

Contiguous store two-word structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive words in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST2W { <Zt1>.S, <Zt2>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then

1 1 1 0 0 1 0 1 0 0 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4971
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4972
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.686 ST2W (scalar plus scalar)

Contiguous store two-word structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the two vector registers, or equivalently to
the two consecutive words in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST2W { <Zt1>.S, <Zt2>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer nreg = 2;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..1] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 1 0 0 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4973
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4974
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.687 ST3B (scalar plus immediate)

Contiguous store three-byte structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 0 0 1 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4975
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4976
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.688 ST3B (scalar plus scalar)

Contiguous store three-byte structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by three. The index register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;

1 1 1 0 0 1 0 0 0 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4977
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4978
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.689 ST3D (scalar plus immediate)

Contiguous store three-doubleword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24
to 21 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;

1 1 1 0 0 1 0 1 1 1 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4979
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4980
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.690 ST3D (scalar plus scalar)

Contiguous store three-doubleword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 1 1 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4981
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4982
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.691 ST3H (scalar plus immediate)

Contiguous store three-halfword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24
to 21 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;

1 1 1 0 0 1 0 0 1 1 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4983
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4984
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.692 ST3H (scalar plus scalar)

Contiguous store three-halfword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 0 1 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4985
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4986
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.693 ST3Q (scalar plus immediate)

Contiguous store three-quadword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24
to 21 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive quadwords in memory which make up each structure. Inactive structures are not written to
memory.

SVE2

(FEAT_SVE2p1)

Encoding

ST3Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 0 1 0 0 0 imm4 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4987
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4988
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.694 ST3Q (scalar plus scalar)

Contiguous store three-quadword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive quadwords in memory which make up each structure. Inactive structures are not written to
memory.

SVE2

(FEAT_SVE2p1)

Encoding

ST3Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q }, <Pg>, [<Xn|SP>, <Xm>, LSL #4]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;

1 1 1 0 0 1 0 0 1 0 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4989
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4990
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.695 ST3W (scalar plus immediate)

Contiguous store three-word structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

1 1 1 0 0 1 0 1 0 1 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4991
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4992
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.696 ST3W (scalar plus scalar)

Contiguous store three-word structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by three. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer nreg = 3;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..2] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 1 1 0 0 1 0 1 0 1 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4993
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4994
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.697 ST4B (scalar plus immediate)

Contiguous store four-byte structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 1 1 0 0 1 0 0 0 1 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4995
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4996
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.698 ST4B (scalar plus scalar)

Contiguous store four-byte structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by four. The index register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 0 0 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4997
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4998
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.699 ST4D (scalar plus immediate)

Contiguous store four-doubleword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32
to 28 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 1 1 1 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-4999
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5000
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.700 ST4D (scalar plus scalar)

Contiguous store four-doubleword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;

1 1 1 0 0 1 0 1 1 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5001
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5002
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.701 ST4H (scalar plus immediate)

Contiguous store four-halfword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32
to 28 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;

1 1 1 0 0 1 0 0 1 1 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5003
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5004
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.702 ST4H (scalar plus scalar)

Contiguous store four-halfword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

Encoding

ST4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;

1 1 1 0 0 1 0 0 1 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5005
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5006
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.703 ST4Q (scalar plus immediate)

Contiguous store four-quadword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32
to 28 that is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive quadwords in memory which make up each structure. Inactive structures are not written to
memory.

SVE2

(FEAT_SVE2p1)

Encoding

ST4Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q, <Zt4>.Q }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 128;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;

1 1 1 0 0 1 0 0 1 1 0 0 imm4 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5007
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5008
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.704 ST4Q (scalar plus scalar)

Contiguous store four-quadword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive quadwords in memory which make up each structure. Inactive structures are not written to
memory.

SVE2

(FEAT_SVE2p1)

Encoding

ST4Q { <Zt1>.Q, <Zt2>.Q, <Zt3>.Q, <Zt4>.Q }, <Pg>, [<Xn|SP>, <Xm>, LSL #4]

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 128;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];

1 1 1 0 0 1 0 0 1 1 1 Rm 0 0 0 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

num<1>

num<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5009
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5010
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.705 ST4W (scalar plus immediate)

Contiguous store four-word structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive words in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to
0, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;

1 1 1 0 0 1 0 1 0 1 1 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5011
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements * nreg) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5012
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.706 ST4W (scalar plus scalar)

Contiguous store four-word structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by four. The index register
is not updated by the instruction.

Each predicate element applies to the same element number in each of the four vector registers, or equivalently to
the four consecutive words in memory which make up each structure. Inactive structures are not written to memory.

Encoding

ST4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer nreg = 4;

Assembler symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo
32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(PL) mask = P[g, PL];
 bits(64) offset;
 constant integer mbytes = esize DIV 8;
 array [0..3] of bits(VL) values;

1 1 1 0 0 1 0 1 0 1 1 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5013
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 values[r] = Z[(t+r) MOD 32, VL];

 for e = 0 to elements-1
 for r = 0 to nreg-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + (e * nreg) + r;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[values[r], e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5014
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.707 STNT1B (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of bytes from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

STNT1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 0 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 0 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5015
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5016
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5017
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.708 STNT1B (scalar plus immediate, single register)

Contiguous store non-temporal of bytes from elements of a vector register to the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1B { <Zt>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 constant integer mbytes = esize DIV 8;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

1 1 1 0 0 1 0 0 0 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5018
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5019
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.709 STNT1B (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of bytes from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 8;

Four registers

(FEAT_SVE2p1)

Encoding

STNT1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 8;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 0 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 0 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5020
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5021
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5022
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.710 STNT1B (scalar plus scalar, single register)

Contiguous store non-temporal of bytes from elements of a vector register to the memory address generated by a
64-bit scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1B { <Zt>.B }, <Pg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 8;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

1 1 1 0 0 1 0 0 0 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5023
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5024
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.711 STNT1B (vector plus scalar)

Scatter store non-temporal of bytes from the active elements of a vector register to the memory addresses generated
by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

STNT1B { <Zt>.S }, <Pg>, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 8;

64-bit unscaled offset

Encoding

STNT1B { <Zt>.D }, <Pg>, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 8;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 1 1 0 0 1 0 0 0 1 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 0 0 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5025
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5026
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.712 STNT1D (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of doublewords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

STNT1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 1 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 1 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5027
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5028
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5029
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.713 STNT1D (scalar plus immediate, single register)

Contiguous store non-temporal of doublewords from elements of a vector register to the memory address generated
by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1D { <Zt>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 constant integer mbytes = esize DIV 8;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

1 1 1 0 0 1 0 1 1 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5030
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5031
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.714 STNT1D (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of doublewords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 64;

Four registers

(FEAT_SVE2p1)

Encoding

STNT1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 64;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 1 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 1 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5032
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5033
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5034
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.715 STNT1D (scalar plus scalar, single register)

Contiguous store non-temporal of doublewords from elements of a vector register to the memory address generated
by a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements are not written to
memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 1 1 0 0 1 0 1 1 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5035
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5036
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.716 STNT1D (vector plus scalar)

Scatter store non-temporal of doublewords from the active elements of a vector register to the memory addresses
generated by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

STNT1D { <Zt>.D }, <Pg>, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 64;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];

1 1 1 0 0 1 0 1 1 0 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5037
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5038
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.717 STNT1H (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of halfwords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

STNT1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 0 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 0 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5039
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5040
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5041
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.718 STNT1H (scalar plus immediate, single register)

Contiguous store non-temporal of halfwords from elements of a vector register to the memory address generated by
a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1H { <Zt>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 constant integer mbytes = esize DIV 8;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

1 1 1 0 0 1 0 0 1 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5042
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5043
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.719 STNT1H (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of halfwords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 16;

Four registers

(FEAT_SVE2p1)

Encoding

STNT1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 16;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 0 1 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 0 1 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5044
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5045
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5046
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.720 STNT1H (scalar plus scalar, single register)

Contiguous store non-temporal of halfwords from elements of a vector register to the memory address generated by
a 64-bit scalar base and scalar index which is multiplied by 2 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements are not written to
memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1H { <Zt>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 16;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();

1 1 1 0 0 1 0 0 1 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5047
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5048
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.721 STNT1H (vector plus scalar)

Scatter store non-temporal of halfwords from the active elements of a vector register to the memory addresses
generated by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

STNT1H { <Zt>.S }, <Pg>, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 16;

64-bit unscaled offset

Encoding

STNT1H { <Zt>.D }, <Pg>, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 16;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 1 1 0 0 1 0 0 1 1 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 0 1 0 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5049
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5050
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.722 STNT1W (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of words from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SVE2p1)

Encoding

STNT1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 0 0 1 1 0 imm4 0 1 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 1 1 0 imm4 1 1 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5051
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5052
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5053
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.723 STNT1W (scalar plus immediate, single register)

Contiguous store non-temporal of words from elements of a vector register to the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1W { <Zt>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer g = UInt(Pg);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 constant integer mbytes = esize DIV 8;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 src = Z[t, VL];

1 1 1 0 0 1 0 1 0 0 0 1 imm4 1 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5054
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = (offset * elements) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5055
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.724 STNT1W (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of words from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SVE2p1)

Encoding

STNT1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer t = UInt(Zt:'0');
 constant integer esize = 32;

Four registers

(FEAT_SVE2p1)

Encoding

STNT1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer t = UInt(Zt:'00');
 constant integer esize = 32;

1 0 1 0 0 0 0 0 0 0 1 Rm 0 1 0 PNg Rn Zt 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 1 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 0 0 0 1 Rm 1 1 0 PNg Rn Zt 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5056
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4 plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5057
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5058
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.725 STNT1W (scalar plus scalar, single register)

Contiguous store non-temporal of words from elements of a vector register to the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Encoding

STNT1W { <Zt>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if Rm == '11111' then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(64) base;
 bits(64) offset;
 bits(VL) src;
 bits(PL) mask = P[g, PL];
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

1 1 1 0 0 1 0 1 0 0 0 Rm 0 1 1 Pg Rn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5059
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer eoff = UInt(offset) + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5060
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.726 STNT1W (vector plus scalar)

Scatter store non-temporal of words from the active elements of a vector register to the memory addresses generated
by a vector base plus a 64-bit unscaled scalar register offset. Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

32-bit unscaled offset

Encoding

STNT1W { <Zt>.S }, <Pg>, [<Zn>.S{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 32;
 constant integer msize = 32;

64-bit unscaled offset

Encoding

STNT1W { <Zt>.D }, <Pg>, [<Zn>.D{, <Xm>}]

Decode for this encoding

 if !HaveSVE2() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Zn);
 integer m = UInt(Rm);
 integer g = UInt(Pg);
 constant integer esize = 64;
 constant integer msize = 32;

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

1 1 1 0 0 1 0 1 0 1 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>

1 1 1 0 0 1 0 1 0 0 0 Rm 0 0 1 Pg Zn Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5061
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation for all encodings

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) base;
 bits(64) offset;
 bits(VL) src;
 constant integer mbytes = msize DIV 8;
 boolean contiguous = FALSE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if AnyActiveElement(mask, esize) then
 base = Z[n, VL];
 offset = X[m, 64];
 src = Z[t, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(64) baddr = ZeroExtend(Elem[base, e, esize], 64);
 bits(64) addr = GenerateAddress(baddr, offset, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize]<msize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5062
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.727 STR (predicate)

Store a predicate register to a memory address generated by a 64-bit scalar base, plus an immediate offset in the
range -256 to 255 which is multiplied by the current predicate register size in bytes. This instruction is unpredicated.

The store is performed as contiguous byte accesses, each containing 8 consecutive predicate bits in ascending
element order, with no endian conversion and no guarantee of single-copy atomicity larger than a byte. However, if
alignment is checked, then a general-purpose base register must be aligned to 2 bytes.

For programmer convenience, an assembler must also accept a predicate-as-counter register name for the source
predicate register.

Encoding

STR <Pt>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Pt);
 integer n = UInt(Rn);
 integer imm = SInt(imm9h:imm9l);

Assembler symbols

<Pt> Is the name of the scalable predicate transfer register, encoded in the "Pt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in
the "imm9h:imm9l" fields.

Operation

 CheckSVEEnabled();
 constant integer PL = CurrentVL DIV 8;
 constant integer elements = PL DIV 8;
 bits(PL) src;
 bits(64) base;
 integer offset = imm * elements;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = P[t, PL];

 boolean aligned = IsAligned(base + offset, 2);

 if !aligned && AlignmentEnforced() then

1 1 1 0 0 1 0 1 1 0 imm9h 0 0 0 imm9l Rn 0 Pt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5063
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AArch64.Abort(base + offset, AlignmentFault(accdesc));

 for e = 0 to elements-1
 AArch64.MemSingle[base + offset, 1, accdesc, aligned] = Elem[src, e, 8];
 offset = offset + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5064
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.728 STR (vector)

Store a vector register to a memory address generated by a 64-bit scalar base, plus an immediate offset in the range
-256 to 255 which is multiplied by the current vector register size in bytes. This instruction is unpredicated.

The store is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

Encoding

STR <Zt>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 integer t = UInt(Zt);
 integer n = UInt(Rn);
 integer imm = SInt(imm9h:imm9l);

Assembler symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in
the "imm9h:imm9l" fields.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 8;
 bits(VL) src;
 bits(64) base;
 integer offset = imm * elements;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = Z[t, VL];

 boolean aligned = IsAligned(base + offset, 16);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base + offset, AlignmentFault(accdesc));

 for e = 0 to elements-1

1 1 1 0 0 1 0 1 1 0 imm9h 0 1 0 imm9l Rn Zt

31 30 29 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5065
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 AArch64.MemSingle[base + offset, 1, accdesc, aligned] = Elem[src, e, 8];
 offset = offset + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5066
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.729 SUB (immediate)

Subtract an unsigned immediate from each element of the source vector, and destructively place the results in the
corresponding elements of the source vector. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

SUB <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];

0 0 1 0 0 1 0 1 size 1 0 0 0 0 1 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5067
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = element1 - imm;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5068
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.730 SUB (vectors, predicated)

Subtract active elements of the second source vector from corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

Encoding

SUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element1 - element2;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 0 0 0 0 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5069
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5070
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.731 SUB (vectors, unpredicated)

Subtract all elements of the second source vector from corresponding elements of the first source vector and place
the results in the corresponding elements of the destination vector. This instruction is unpredicated.

Encoding

SUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 - element2;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5071
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5072
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.732 SUBHNB

Subtract each vector element of the second source vector from the corresponding vector element in the first source
vector, and place the most significant half of the result in the even-numbered half-width destination elements, while
setting the odd-numbered elements to zero. This instruction is unpredicated.

Encoding

SUBHNB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5073
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = (element1 - element2) >> halfesize;
 Elem[result, 2*e + 0, halfesize] = res<halfesize-1:0>;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5074
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.733 SUBHNT

Subtract each vector element of the second source vector from the corresponding vector element in the first source
vector, and place the most significant half of the result in the odd-numbered half-width destination elements, leaving
the even-numbered elements unchanged. This instruction is unpredicated.

Encoding

SUBHNT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 1 0 0 0 1 0 1 size 1 Zm 0 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S R T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5075
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer res = (element1 - element2) >> halfesize;
 Elem[result, 2*e + 1, halfesize] = res<halfesize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5076
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.734 SUBR (immediate)

Reversed subtract from an unsigned immediate each element of the source vector, and destructively place the results
in the corresponding elements of the source vector. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

SUBR <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);

0 0 1 0 0 1 0 1 size 1 0 0 0 1 1 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5077
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (imm - element1)<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5078
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.735 SUBR (vectors)

Reversed subtract active elements of the first source vector from corresponding elements of the second source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements
in the destination vector register remain unmodified.

Encoding

SUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element2 - element1;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 size 0 0 0 0 1 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5079
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5080
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.736 SUDOT

The signed by unsigned integer indexed dot product instruction computes the dot product of a group of four signed
8-bit integer values held in each 32-bit element of the first source vector multiplied by a group of four unsigned 8-bit
integer values in an indexed 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.

ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE

(FEAT_I8MM)

Encoding

SUDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveInt8MatMulExt() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector segment, in
the range 0 to 3, encoded in the "i2" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5081
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5082
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.737 SUNPKHI, SUNPKLO

Unpack elements from the lowest or highest half of the source vector and then sign-extend them to place in elements
of twice their size within the destination vector. This instruction is unpredicated.

High half

Encoding

SUNPKHI <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;
 boolean hi = TRUE;

Low half

Encoding

SUNPKLO <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;
 boolean hi = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

0 0 0 0 0 1 0 1 size 1 1 0 0 0 1 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U H

0 0 0 0 0 1 0 1 size 1 1 0 0 0 0 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U H
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5083
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer hsize = esize DIV 2;
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(hsize) element = if hi then Elem[operand, e + elements, hsize] else Elem[operand, e, hsize];
 Elem[result, e, esize] = Extend(element, esize, unsigned);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5084
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.738 SUQADD

Add active unsigned elements of the source vector to the corresponding signed elements of the addend vector, and
destructively place the results in the corresponding elements of the addend vector. Each result element is saturated
to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. Inactive elements in the destination vector register
remain unmodified.

Encoding

SUQADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = SignedSat(SInt(element1) + UInt(element2), esize);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 1 0 0 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5085
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5086
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.739 SXTB, SXTH, SXTW

Sign-extend the least-significant sub-element of each active element of the source vector, and place the results in
the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Byte

Encoding

SXTB <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer s_esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;

Halfword

Encoding

SXTH <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer s_esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;

Word

0 0 0 0 0 1 0 0 size 0 1 0 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

0 0 0 0 0 1 0 0 size 0 1 0 0 1 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

0 0 0 0 0 1 0 0 size 0 1 0 1 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5087
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

SXTW <Zd>.D, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer s_esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> For the byte variant: is the size specifier, encoded in the "size" field. It can have the following
values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

For the halfword variant: is the size specifier, encoded in the "size<0>" field. It can have the
following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = Extend(element<s_esize-1:0>, esize, unsigned);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5088
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5089
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.740 TBL

Reads each element of the second source (index) vector and uses its value to select an indexed element from a table
of elements consisting of one or two consecutive vector registers, where the first or only vector holds the lower
numbered elements, and places the indexed table element in the destination vector element corresponding to the
index vector element. If an index value is greater than or equal to the number of vector elements then it places zero
in the corresponding destination vector element.

Since the index values can select any element in a vector this operation is not naturally vector length agnostic.

SVE

Encoding

TBL <Zd>.<T>, { <Zn>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean double_table = FALSE;

SVE2

Encoding

TBL <Zd>.<T>, { <Zn1>.<T>, <Zn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean double_table = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

0 0 0 0 0 1 0 1 size 1 Zm 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

0 0 0 0 0 1 0 1 size 1 Zm 0 0 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5090
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded in the
"Zn" field.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded in
the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) indexes = Z[m, VL];
 bits(VL) result;
 constant integer table_size = if double_table then VL*2 else VL;
 constant integer table_elems = table_size DIV esize;
 bits(table_size) table;

 if double_table then
 bits(VL) top = Z[(n + 1) MOD 32, VL];
 bits(VL) bottom = Z[n, VL];
 table = (top:bottom)<table_size-1:0>;
 else
 table = Z[n, table_size];

 for e = 0 to elements-1
 integer idx = UInt(Elem[indexes, e, esize]);
 Elem[result, e, esize] = if idx < table_elems then Elem[table, idx, esize] else Zeros(esize);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5091
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.741 TBLQ

For each 128-bit destination vector segment, reads each element of the corresponding second source (index) vector
segment and uses its value to select an indexed element from the corresponding first source (table) vector segment.
The indexed table element is placed in the element of the destination vector that corresponds to the index vector
element. If an index value is greater than or equal to the number of elements in a 128-bit vector segment then it
places zero in the corresponding destination vector element. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

TBLQ <Zd>.<T>, { <Zn>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 for e = 0 to elements-1
 integer idx = UInt(Elem[operand2, s * elements + e, esize]);
 if idx < elements then
 Elem[result, s * elements + e, esize] = Elem[operand1, s * elements + idx, esize];
 else
 Elem[result, s * elements + e, esize] = Zeros(esize);

0 1 0 0 0 1 0 0 size 0 Zm 1 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5092
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5093
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.742 TBX

Reads each element of the second source (index) vector and uses its value to select an indexed element from a table
of elements in the first source vector, and places the indexed element in the destination vector element
corresponding to the index vector element. If an index value is greater than or equal to the number of vector elements
then the corresponding destination vector element is left unchanged.

Since the index values can select any element in a vector this operation is not naturally vector length agnostic.

Encoding

TBX <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 integer element2 = UInt(Elem[operand2, e, esize]);
 if element2 < elements then
 Elem[result, e, esize] = Elem[operand1, element2, esize];

 Z[d, VL] = result;

0 0 0 0 0 1 0 1 size 1 Zm 0 0 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5094
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5095
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.743 TBXQ

For each 128-bit destination vector segment, reads each element of the corresponding second source (index) vector
segment and uses its value to select an indexed element from the corresponding first source (table) vector segment.
The indexed table element is placed in the element of the destination vector that corresponds to the index vector
element. If an index value is greater than or equal to the number of elements in a 128-bit vector segment then the
corresponding destination vector element is left unchanged. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

TBXQ <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[d, VL];

 for s = 0 to segments-1
 for e = 0 to elements-1
 integer idx = UInt(Elem[operand2, s * elements + e, esize]);
 if idx < elements then
 Elem[result, s * elements + e, esize] = Elem[operand1, s * elements + idx, esize];

0 0 0 0 0 1 0 1 size 1 Zm 0 0 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5096
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5097
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.744 TRN1, TRN2 (predicates)

Interleave alternating even or odd-numbered elements from the first and second source predicates and place in
elements of the destination predicate. This instruction is unpredicated.

Even

Encoding

TRN1 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer part = 0;

Odd

Encoding

TRN2 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer part = 1;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 1 0 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

H

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 1 0 1 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5098
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (esize * 2);
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;

 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize DIV 8] = Elem[operand1, 2*p+part, esize DIV 8];
 Elem[result, 2*p+1, esize DIV 8] = Elem[operand2, 2*p+part, esize DIV 8];

 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5099
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.745 TRN1, TRN2 (vectors)

Interleave alternating even or odd-numbered elements from the first and second source vectors and place in
elements of the destination vector. This instruction is unpredicated.

The 128-bit element variant requires that the current vector length is at least 256 bits, and if the current vector length
is not an integer multiple of 256 bits then the trailing bits are set to zero. ID_AA64ZFR0_EL1.F64MM indicates
whether the 128-bit element variant is implemented. The 128-bit element variant is illegal when executed in
Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.

Even

Encoding

TRN1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Even (quadwords)

(FEAT_F64MM)

Encoding

TRN1 <Zd>.Q, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Odd

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5100
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

TRN2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Odd (quadwords)

(FEAT_F64MM)

Encoding

TRN2 <Zd>.Q, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 2 then UNDEFINED;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Zeros(VL);

 for p = 0 to pairs-1

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5101
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5102
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.746 UABA

Compute the absolute difference between unsigned integer values in elements of the second source vector and
corresponding elements of the first source vector, and add the difference to the corresponding elements of the
destination vector. This instruction is unpredicated.

Encoding

UABA <Zda>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean unsigned = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 bits(esize) absdiff = Abs(element1 - element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 size 0 Zm 1 1 1 1 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5103
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5104
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.747 UABALB

Compute the absolute difference between even-numbered unsigned elements of the second source vector and
corresponding elements of the first source vector, and destructively add to the overlapping double-width elements
of the addend vector. This instruction is unpredicated.

Encoding

UABALB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 1 1 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5105
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) absdiff = Abs(element1 - element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5106
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.748 UABALT

Compute the absolute difference between odd-numbered unsigned elements of the second source vector and
corresponding elements of the first source vector, and destructively add to the overlapping double-width elements
of the addend vector. This instruction is unpredicated.

Encoding

UABALT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 1 1 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5107
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) absdiff = Abs(element1 - element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5108
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.749 UABD

Compute the absolute difference between unsigned integer values in active elements of the second source vector
and corresponding elements of the first source vector and destructively place the difference in the corresponding
elements of the first source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

UABD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer absdiff = Abs(element1 - element2);
 Elem[result, e, esize] = absdiff<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 0 1 1 0 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5109
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5110
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.750 UABDLB

Compute the absolute difference between the even-numbered unsigned integer values in elements of the second
source vector and the corresponding elements of the first source vector, and place the results in the overlapping
double-width elements of the destination vector. This instruction is unpredicated.

Encoding

UABDLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5111
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = Abs(element1 - element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5112
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.751 UABDLT

Compute the absolute difference between the odd-numbered unsigned integer values in elements of the second
source vector and corresponding elements of the first source vector, and place the results in the overlapping
double-width elements of the destination vector. This instruction is unpredicated.

Encoding

UABDLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 1 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5113
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer res = Abs(element1 - element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5114
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.752 UADALP

Add pairs of adjacent unsigned integer values and accumulate the results into the overlapping double-width
elements of the destination vector.

Encoding

UADALP <Zda>.<T>, <Pg>/M, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the second source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand_acc = Z[da, VL];
 bits(VL) operand_src = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand_acc, e, esize];

0 1 0 0 0 1 0 0 size 0 0 0 1 0 1 1 0 1 Pg Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5115
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 integer element1 = UInt(Elem[operand_src, 2*e + 0, esize DIV 2]);
 integer element2 = UInt(Elem[operand_src, 2*e + 1, esize DIV 2]);
 bits(esize) sum = (element1 + element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand_acc, e, esize] + sum;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5116
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.753 UADDLB

Add the corresponding even-numbered unsigned elements of the first and second source vectors, and place the
results in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

UADDLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 0;
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5117
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 + element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5118
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.754 UADDLT

Add the corresponding odd-numbered unsigned elements of the first and second source vectors, and place the results
in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

UADDLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 1;
 integer sel2 = 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5119
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 + element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5120
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.755 UADDV

Unsigned add horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Narrow elements are first zero-extended to 64 bits. Inactive elements in the source vector are treated as
zero.

Encoding

UADDV <Dd>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);

Assembler symbols

<Dd> Is the 64-bit name of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 integer sum = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand, e, esize]);
 sum = sum + element;

 V[d, 64] = sum<63:0>;

0 0 0 0 0 1 0 0 size 0 0 0 0 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5121
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5122
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.756 UADDWB

Add the even-numbered unsigned elements of the second source vector to the overlapping double-width elements
of the first source vector and place the results in the corresponding double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

UADDWB <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5123
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 + element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5124
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.757 UADDWT

Add the odd-numbered unsigned elements of the second source vector to the overlapping double-width elements of
the first source vector and place the results in the corresponding double-width elements of the destination vector.
This instruction is unpredicated.

Encoding

UADDWT <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5125
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 + element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5126
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.758 UCLAMP

Clamp each unsigned element in the destination vector to between the unsigned minimum value in the
corresponding element of the first source vector and the unsigned maximum value in the corresponding element of
the second source vector and destructively write the results in the corresponding elements of the destination vector.
This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer element3 = UInt(Elem[operand3, e, esize]);
 integer res = Min(Max(element1, element3), element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

0 1 0 0 0 1 0 0 size 0 Zm 1 1 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5127
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5128
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.759 UCVTF

Convert to floating-point from the unsigned integer in each active element of the source vector, and place the results
in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

16-bit to half-precision

Encoding

UCVTF <Zd>.H, <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 16;
 constant integer d_esize = 16;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

32-bit to half-precision

Encoding

UCVTF <Zd>.H, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 16;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5129
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
32-bit to single-precision

Encoding

UCVTF <Zd>.S, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 32;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

32-bit to double-precision

Encoding

UCVTF <Zd>.D, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 32;
 constant integer d_esize = 64;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

64-bit to half-precision

Encoding

UCVTF <Zd>.H, <Pg>/M, <Zn>.D

0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5130
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 16;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

64-bit to single-precision

Encoding

UCVTF <Zd>.S, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 32;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

64-bit to double-precision

Encoding

UCVTF <Zd>.D, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 constant integer s_esize = 64;
 constant integer d_esize = 64;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U

0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

int_U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5131
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 bits(d_esize) fpval = FixedToFP(element<s_esize-1:0>, 0, unsigned, FPCR, rounding, d_esize);
 Elem[result, e, esize] = ZeroExtend(fpval, esize);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5132
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.760 UDIV

Unsigned divide active elements of the first source vector by corresponding elements of the second source vector
and destructively place the quotient in the corresponding elements of the first source vector. Inactive elements in
the destination vector register remain unmodified.

Encoding

UDIV <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer quotient;
 if element2 == 0 then
 quotient = 0;
 else
 quotient = RoundTowardsZero(Real(element1) / Real(element2));
 Elem[result, e, esize] = quotient<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 0 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5133
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5134
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.761 UDIVR

Unsigned reversed divide active elements of the second source vector by corresponding elements of the first source
vector and destructively place the quotient in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

Encoding

UDIVR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer quotient;
 if element1 == 0 then
 quotient = 0;
 else
 quotient = RoundTowardsZero(Real(element2) / Real(element1));
 Elem[result, e, esize] = quotient<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 1 1 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5135
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5136
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.762 UDOT (2-way, indexed)

The unsigned integer indexed dot product instruction computes the dot product of a group of two unsigned 16-bit
integer values held in each 32-bit element of the first source vector multiplied by a group of two unsigned 16-bit
integer values in an indexed 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * s + i, esize DIV 2]);
 res = res + element1 * element2;

0 1 0 0 0 1 0 0 1 0 0 i2 Zm 1 1 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5137
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5138
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.763 UDOT (2-way, vectors)

The unsigned integer dot product instruction computes the dot product of a group of two unsigned 16-bit integer
values held in each 32-bit element of the first source vector multiplied by a group of two unsigned 16-bit integer
values in the corresponding 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UDOT <Zda>.S, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 0 0 0 Zm 1 1 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5139
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5140
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.764 UDOT (4-way, indexed)

The unsigned integer indexed dot product instruction computes the dot product of a group of four unsigned 8-bit or
16-bit integer values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four
unsigned 8-bit or 16-bit integer values in an indexed 32-bit or 64-bit element of the second source vector, and then
destructively adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups per
128-bit segment, encoded in 1 to 2 bits depending on the size of the group. This instruction is unpredicated.

32-bit

Encoding

UDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

64-bit

Encoding

UDOT <Zda>.D, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer index = UInt(i1);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5141
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the immediate index of a 32-bit group of four 8-bit values within each
128-bit vector segment, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the immediate index of a 64-bit group of four 16-bit values within each
128-bit vector segment, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5142
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.765 UDOT (4-way, vectors)

The unsigned integer dot product instruction computes the dot product of a group of four unsigned 8-bit or 16-bit
integer values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four unsigned
8-bit or 16-bit integer values in the corresponding 32-bit or 64-bit element of the second source vector, and then
destructively adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.

This instruction is unpredicated.

Encoding

UDOT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

S when size<0> = 0

D when size<0> = 1

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size<0>" field. It can have the following values:

B when size<0> = 0

H when size<0> = 1

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);

0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5143
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5144
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.766 UHADD

Add active unsigned elements of the first source vector to corresponding unsigned elements of the second source
vector, shift right one bit, and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

UHADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 + element2) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5145
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5146
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.767 UHSUB

Subtract active unsigned elements of the second source vector from corresponding unsigned elements of the first
source vector, shift right one bit, and destructively place the results in the corresponding elements of the first source
vector. Inactive elements in the destination vector register remain unmodified.

Encoding

UHSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 - element2) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5147
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5148
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.768 UHSUBR

Subtract active unsigned elements of the first source vector from corresponding unsigned elements of the second
source vector, shift right one bit, and destructively place the results in the corresponding elements of the first source
vector. Inactive elements in the destination vector register remain unmodified.

Encoding

UHSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element2 - element1) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5149
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5150
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.769 UMAX (immediate)

Determine the unsigned maximum of an immediate and each element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The immediate is an unsigned 8-bit value in the range
0 to 255, inclusive. This instruction is unpredicated.

Encoding

UMAX <Zdn>.<T>, <Zdn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 boolean unsigned = TRUE;
 integer imm = Int(imm8, unsigned);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 Elem[result, e, esize] = Max(element1, imm)<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 1 0 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5151
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5152
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.770 UMAX (vectors)

Determine the unsigned maximum of active elements of the second source vector and corresponding elements of
the first source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

UMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer maximum = Max(element1, element2);
 Elem[result, e, esize] = maximum<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 0 1 0 0 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5153
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5154
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.771 UMAXP

Compute the maximum value of each pair of adjacent unsigned integer elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

Encoding

UMAXP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand1, e, esize];
 else
 if IsEven(e) then
 element1 = UInt(Elem[operand1, e + 0, esize]);
 element2 = UInt(Elem[operand1, e + 1, esize]);
 else
 element1 = UInt(Elem[operand2, e - 1, esize]);

0 1 0 0 0 1 0 0 size 0 1 0 1 0 1 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5155
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 element2 = UInt(Elem[operand2, e + 0, esize]);
 integer res = Max(element1, element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5156
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.772 UMAXQV

Unsigned maximum of the same element numbers from each 128-bit source vector segment, placing each result into
the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the source
vector are treated as zero.

SVE2

(FEAT_SVE2p1)

Encoding

UMAXQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = TRUE;

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 0 1 1 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5157
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 integer dtmp;

 for e = 0 to elempersegment-1
 dtmp = if unsigned then 0 else -(2^(esize-1));
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = Max(dtmp, UInt(Elem[stmp, e, esize]));
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5158
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.773 UMAXV

Unsigned maximum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as zero.

Encoding

UMAXV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 integer maximum = if unsigned then 0 else -(2^(esize-1));

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = Int(Elem[operand, e, esize], unsigned);
 maximum = Max(maximum, element);

0 0 0 0 0 1 0 0 size 0 0 1 0 0 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5159
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = maximum<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5160
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.774 UMIN (immediate)

Determine the unsigned minimum of an immediate and each element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The immediate is an unsigned 8-bit value in the range
0 to 255, inclusive. This instruction is unpredicated.

Encoding

UMIN <Zdn>.<T>, <Zdn>.<T>, #<imm>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 boolean unsigned = TRUE;
 integer imm = Int(imm8, unsigned);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 Elem[result, e, esize] = Min(element1, imm)<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 1 0 imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5161
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5162
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.775 UMIN (vectors)

Determine the unsigned minimum of active elements of the second source vector and corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

Encoding

UMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer minimum = Min(element1, element2);
 Elem[result, e, esize] = minimum<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 0 1 0 1 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5163
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5164
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.776 UMINP

Compute the minimum value of each pair of adjacent unsigned integer elements within each source vector, and
interleave the results from corresponding lanes. The interleaved result values are destructively placed in the first
source vector.

Encoding

UMINP <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;
 integer element1;
 integer element2;

 for e = 0 to elements-1
 if !ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Elem[operand1, e, esize];
 else
 if IsEven(e) then
 element1 = UInt(Elem[operand1, e + 0, esize]);
 element2 = UInt(Elem[operand1, e + 1, esize]);
 else
 element1 = UInt(Elem[operand2, e - 1, esize]);

0 1 0 0 0 1 0 0 size 0 1 0 1 1 1 1 0 1 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5165
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 element2 = UInt(Elem[operand2, e + 0, esize]);
 integer res = Min(element1, element2);
 Elem[result, e, esize] = res<esize-1:0>;

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5166
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.777 UMINQV

Unsigned minimum of the same element numbers from each 128-bit source vector segment, placing each result into
the corresponding element number of the 128-bit SIMD&FP destination register. Inactive elements in the source
vector are treated as the maximum unsigned integer for the element size.

SVE2

(FEAT_SVE2p1)

Encoding

UMINQV <Vd>.<T>, <Pg>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = TRUE;

Assembler symbols

<Vd> Is the name of the destination SIMD&FP register, encoded in the "Vd" field.

<T> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

16B when size = 00

8H when size = 01

4S when size = 10

2D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elempersegment = 128 DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(128) result = Zeros(128);
 bits(128) stmp = Zeros(128);

0 0 0 0 0 1 0 0 size 0 0 1 1 1 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5167
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 integer dtmp;

 for e = 0 to elempersegment-1
 dtmp = if unsigned then (2^esize - 1) else (2^(esize-1) - 1);
 for s = 0 to segments-1
 if ActivePredicateElement(mask, s * elempersegment + e, esize) then
 stmp = Elem[operand, s, 128];
 dtmp = Min(dtmp, UInt(Elem[stmp, e, esize]));
 Elem[result, e, esize] = dtmp<esize-1:0>;

 V[d, 128] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5168
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.778 UMINV

Unsigned minimum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as the maximum unsigned integer for the element size.

Encoding

UMINV <V><d>, <Pg>, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Vd);
 boolean unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 integer minimum = if unsigned then (2^esize - 1) else (2^(esize-1) - 1);

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = Int(Elem[operand, e, esize], unsigned);
 minimum = Min(minimum, element);

0 0 0 0 0 1 0 0 size 0 0 1 0 1 1 0 0 1 Pg Zn Vd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5169
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 V[d, esize] = minimum<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5170
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.779 UMLALB (indexed)

Multiply the even-numbered unsigned elements within each 128-bit segment of the first source vector by the
specified unsigned element in the corresponding second source vector segment and destructively add to the
overlapping double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

UMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

64-bit

Encoding

UMLALB <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 0 1 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 0 1 i2l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5171
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = UInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = UInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5172
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.780 UMLALB (vectors)

Multiply the corresponding even-numbered unsigned elements of the first and second source vectors and
destructively add to the overlapping double-width elements of the addend vector. This instruction is unpredicated.

Encoding

UMLALB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + product;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 0 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5173
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5174
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.781 UMLALT (indexed)

Multiply the odd-numbered unsigned elements within each 128-bit segment of the first source vector by the
specified unsigned element in the corresponding second source vector segment and destructively add to the
overlapping double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

UMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

64-bit

Encoding

UMLALT <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 0 1 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 0 1 i2l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5175
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = UInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = UInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5176
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.782 UMLALT (vectors)

Multiply the corresponding odd-numbered unsigned elements of the first and second source vectors and
destructively add to the overlapping double-width elements of the addend vector. This instruction is unpredicated.

Encoding

UMLALT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + product;

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5177
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5178
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.783 UMLSLB (indexed)

Multiply the even-numbered unsigned elements within each 128-bit segment of the first source vector by the
specified unsigned element in the corresponding second source vector segment and destructively subtract from the
overlapping double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

UMLSLB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

64-bit

Encoding

UMLSLB <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 1 1 i3l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 1 1 i2l 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5179
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = UInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = UInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] - product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5180
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.784 UMLSLB (vectors)

Multiply the corresponding even-numbered unsigned elements of the first and second source vectors and
destructively subtract from the overlapping double-width elements of the addend vector. This instruction is
unpredicated.

Encoding

UMLSLB <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5181
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] - product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5182
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.785 UMLSLT (indexed)

Multiply the odd-numbered unsigned elements within each 128-bit segment of the first source vector by the
specified unsigned element in the corresponding second source vector segment and destructively subtract from the
overlapping double-width elements of the addend vector.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

UMLSLT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

64-bit

Encoding

UMLSLT <Zda>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 0 1 1 i3l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 0 1 1 i2l 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

S U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5183
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = UInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = UInt(Elem[operand2, 2 * s + index, esize]);
 bits(2*esize) product = (element1 * element2)<2*esize-1:0>;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] - product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5184
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.786 UMLSLT (vectors)

Multiply the corresponding odd-numbered unsigned elements of the first and second source vectors and
destructively subtract from the overlapping double-width elements of the addend vector. This instruction is
unpredicated.

Encoding

UMLSLT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Z[da, VL];

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 0 size 0 Zm 0 1 0 1 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5185
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] - product;

 Z[da, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5186
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.787 UMMLA

The unsigned integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of unsigned 8-bit integer
values held in each 128-bit segment of the first source vector by the 8×2 matrix of unsigned 8-bit integer values in
the corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product is
then destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend
and destination vector. This is equivalent to performing an 8-way dot product per destination element.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_I8MM)

Encoding

UMMLA <Zda>.S, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = TRUE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result = Zeros(VL);
 bits(128) op1, op2;
 bits(128) res, addend;

 for s = 0 to segments-1
 op1 = Elem[operand1, s, 128];
 op2 = Elem[operand2, s, 128];
 addend = Elem[operand3, s, 128];

0 1 0 0 0 1 0 1 1 1 0 Zm 1 0 0 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

uns<1>

uns<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5187
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned);
 Elem[result, s, 128] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5188
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.788 UMULH (predicated)

Widening multiply unsigned integer values in active elements of the first source vector by corresponding elements
of the second source vector and destructively place the high half of the result in the corresponding elements of the
first source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

UMULH <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 if ActivePredicateElement(mask, e, esize) then
 integer product = (element1 * element2) >> esize;
 Elem[result, e, esize] = product<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 size 0 1 0 0 1 1 0 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

H U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5189
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5190
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.789 UMULH (unpredicated)

Widening multiply unsigned integer values of all elements of the first source vector by corresponding elements of
the second source vector and place the high half of the result in the corresponding elements of the destination vector.
This instruction is unpredicated.

Encoding

UMULH <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer product = (element1 * element2) >> esize;
 Elem[result, e, esize] = product<esize-1:0>;

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 1 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5191
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5192
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.790 UMULLB (indexed)

Multiply the even-numbered unsigned elements within each 128-bit segment of the first source vector by the
specified unsigned element in the corresponding second source vector segment, and place the results in the
overlapping double-width elements of the destination vector register.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

UMULLB <Zd>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 0;

64-bit

Encoding

UMULLB <Zd>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 0;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 1 0 1 i3l 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 1 0 1 i2l 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5193
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = UInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = UInt(Elem[operand2, 2 * s + index, esize]);
 integer res = element1 * element2;
 Elem[result, e, 2*esize] = res<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5194
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.791 UMULLB (vectors)

Multiply the corresponding even-numbered unsigned elements of the first and second source vectors, and place the
results in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

UMULLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 0, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);
 integer res = element1 * element2;
 Elem[result, e, esize] = res<esize-1:0>;

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5195
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5196
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.792 UMULLT (indexed)

Multiply the odd-numbered unsigned elements within each 128-bit segment of the first source vector by the
specified unsigned element in the corresponding second source vector segment, and place the results in the
overlapping double-width elements of the destination vector register.

The elements within the second source vector are specified using an immediate index which selects the same
element position within each 128-bit vector segment. The index range is from 0 to one less than the number of
elements per 128-bit segment, encoded in 2 or 3 bits depending on the size of the element.

32-bit

Encoding

UMULLT <Zd>.S, <Zn>.H, <Zm>.H[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer index = UInt(i3h:i3l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 1;

64-bit

Encoding

UMULLT <Zd>.D, <Zn>.S, <Zm>.S[<imm>]

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2h:i2l);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel = 1;

0 1 0 0 0 1 0 0 1 0 1 i3h Zm 1 1 0 1 i3l 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

0 1 0 0 0 1 0 0 1 1 1 Zm 1 1 0 1 i2l 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

U T

size<1>

size<0>

i2h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5197
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in
the "Zm" field.

For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in
the "Zm" field.

<imm> For the 32-bit variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the 64-bit variant: is the element index, in the range 0 to 3, encoded in the "i2h:i2l" fields.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 constant integer eltspersegment = 128 DIV (2 * esize);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer s = e - (e MOD eltspersegment);
 integer element1 = UInt(Elem[operand1, 2 * e + sel, esize]);
 integer element2 = UInt(Elem[operand2, 2 * s + index, esize]);
 integer res = element1 * element2;
 Elem[result, e, 2*esize] = res<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5198
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.793 UMULLT (vectors)

Multiply the corresponding odd-numbered unsigned elements of the first and second source vectors, and place the
results in the overlapping double-width elements of the destination vector. This instruction is unpredicated.

Encoding

UMULLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2*e + 1, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);
 integer res = element1 * element2;
 Elem[result, e, esize] = res<esize-1:0>;

0 1 0 0 0 1 0 1 size 0 Zm 0 1 1 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5199
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5200
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.794 UQADD (immediate)

Unsigned saturating add of an unsigned immediate to each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
unsigned integer range 0 to (2N)-1. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

UQADD <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

0 0 1 0 0 1 0 1 size 1 0 0 1 0 1 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5201
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + imm, esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5202
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.795 UQADD (vectors, predicated)

Add active unsigned elements of the first source vector to corresponding unsigned elements of the second source
vector and destructively place the results in the corresponding elements of the first source vector. Each result
element is saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination
vector register remain unmodified.

Encoding

UQADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = UInt(Sat(element1 + element2, esize, unsigned));
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5203
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5204
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.796 UQADD (vectors, unpredicated)

Unsigned saturating add all elements of the second source vector to corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. Each result element is saturated
to the N-bit element's unsigned integer range 0 to (2N)-1. This instruction is unpredicated.

Encoding

UQADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + element2, esize, unsigned);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5205
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.797 UQCVTN

Saturate the unsigned integer value in each element of the group of two source vectors to half the original source
element width, and place the two-way interleaved results in the half-width destination elements.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UQCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 1
 bits(VL) operand = Z[n+i, VL];
 integer element = UInt(Elem[operand, e, 2 * esize]);
 Elem[result, 2*e + i, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

U

tszh

tszl<1>

tszl<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5206
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.798 UQDECB

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQDECB <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQDECB <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5207
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5208
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.799 UQDECD (scalar)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQDECD <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQDECD <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5209
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5210
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.800 UQDECD (vector)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 64-bit unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

UQDECD <Zdn>.D{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 1 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5211
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5212
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.801 UQDECH (scalar)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQDECH <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQDECH <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5213
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5214
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.802 UQDECH (vector)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 16-bit unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

UQDECH <Zdn>.H{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 1 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5215
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5216
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.803 UQDECP (scalar)

Counts the number of true elements in the source predicate and then uses the result to decrement the scalar
destination. The result is saturated to the general-purpose register's unsigned integer range.

32-bit

Encoding

UQDECP <Wdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQDECP <Xdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 0 1 0 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf

0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 0 1 1 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5217
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(ssize) operand1 = X[dn, ssize];
 bits(PL) operand2 = P[m, PL];
 bits(ssize) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 integer element = Int(operand1, unsigned);
 (result, -) = SatQ(element - count, ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5218
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.804 UQDECP (vector)

Counts the number of true elements in the source predicate and then uses the result to decrement all destination
vector elements. The results are saturated to the element unsigned integer range.

The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited
in a future release of the architecture.

Encoding

UQDECP <Zdn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Zdn);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) operand2 = P[m, PL];
 bits(VL) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element - count, esize, unsigned);

 Z[dn, VL] = result;

0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 0 0 0 0 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5219
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5220
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.805 UQDECW (scalar)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQDECW <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQDECW <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 1 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5221
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5222
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.806 UQDECW (vector)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 32-bit unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

UQDECW <Zdn>.S{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 1 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5223
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5224
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.807 UQINCB

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQINCB <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQINCB <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5225
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5226
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.808 UQINCD (scalar)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQINCD <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQINCD <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5227
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5228
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.809 UQINCD (vector)

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 64-bit unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

UQINCD <Zdn>.D{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 64;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 0 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5229
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5230
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.810 UQINCH (scalar)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQINCH <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQINCH <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5231
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5232
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.811 UQINCH (vector)

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 16-bit unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

UQINCH <Zdn>.H{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 16;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 0 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5233
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5234
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.812 UQINCP (scalar)

Counts the number of true elements in the source predicate and then uses the result to increment the scalar
destination. The result is saturated to the general-purpose register's unsigned integer range.

32-bit

Encoding

UQINCP <Wdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQINCP <Xdn>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Rdn);
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 0 1 0 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf

0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 0 1 1 0 Pm Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U sf
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5235
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(ssize) operand1 = X[dn, ssize];
 bits(PL) operand2 = P[m, PL];
 bits(ssize) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 integer element = Int(operand1, unsigned);
 (result, -) = SatQ(element + count, ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is
dependent on the general-purpose register written by this instruction might be significantly delayed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5236
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.813 UQINCP (vector)

Counts the number of true elements in the source predicate and then uses the result to increment all destination
vector elements. The results are saturated to the element unsigned integer range.

The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited
in a future release of the architecture.

Encoding

UQINCP <Zdn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer m = UInt(Pm);
 integer dn = UInt(Zdn);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) operand2 = P[m, PL];
 bits(VL) result;
 integer count = 0;

 for e = 0 to elements-1
 if ActivePredicateElement(operand2, e, esize) then
 count = count + 1;

 for e = 0 to elements-1
 integer element = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element + count, esize, unsigned);

 Z[dn, VL] = result;

0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 0 0 0 0 Pm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

D U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5237
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5238
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.814 UQINCW (scalar)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

32-bit

Encoding

UQINCW <Wdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;
 constant integer ssize = 32;

64-bit

Encoding

UQINCW <Xdn>{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Rdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>

0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 0 1 pattern Rdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

sf D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5239
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 boolean unsigned = TRUE;
 constant integer ssize = 64;

Assembler symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation for all encodings

 CheckSVEEnabled();
 integer count = DecodePredCount(pat, esize);
 bits(ssize) operand1 = X[dn, ssize];
 bits(ssize) result;

 integer element1 = Int(operand1, unsigned);
 (result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
 X[dn, 64] = Extend(result, 64, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5240
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.815 UQINCW (vector)

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 32-bit unsigned integer range.

The named predicate constraint limits the number of active elements in a single predicate to:

• A fixed number (VL1 to VL256)

• The largest power of two (POW2)

• The largest multiple of three or four (MUL3 or MUL4)

• All available, implicitly a multiple of two (ALL).

Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

Encoding

UQINCW <Zdn>.S{, <pattern>{, MUL #<imm>}}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer dn = UInt(Zdn);
 bits(5) pat = pattern;
 integer imm = UInt(imm4) + 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in the "pattern" field. It can have the
following values:

POW2 when pattern = 00000

VL1 when pattern = 00001

VL2 when pattern = 00010

VL3 when pattern = 00011

VL4 when pattern = 00100

VL5 when pattern = 00101

VL6 when pattern = 00110

VL7 when pattern = 00111

VL8 when pattern = 01000

VL16 when pattern = 01001

0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 0 1 pattern Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 0

D U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5241
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
VL32 when pattern = 01010

VL64 when pattern = 01011

VL128 when pattern = 01100

VL256 when pattern = 01101

#uimm5 when pattern = 0111x

#uimm5 when pattern = 101x1

#uimm5 when pattern = 10110

#uimm5 when pattern = 1x0x1

#uimm5 when pattern = 1x010

#uimm5 when pattern = 1xx00

MUL4 when pattern = 11101

MUL3 when pattern = 11110

ALL when pattern = 11111

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer count = DecodePredCount(pat, esize);
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5242
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.816 UQRSHL

Shift active unsigned elements of the first source vector by corresponding elements of the second source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element
is saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

UQRSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5243
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = UnsignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5244
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.817 UQRSHLR

Shift active unsigned elements of the second source vector by corresponding elements of the first source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element
is saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

UQRSHLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand2 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5245
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = UnsignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5246
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.818 UQRSHRN

Shift right by an immediate value, the unsigned integer value in each element of the group of two source vectors
and place the two-way interleaved rounded results in the half-width destination elements. Each result element is
saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an
unsigned value in the range 1 to 16.

This instruction is unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UQRSHRN <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);
 integer shift = esize - UInt(imm4);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 1
 bits(VL) operand = Z[n+i, VL];
 bits(2 * esize) element = Elem[operand, e, 2 * esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + i, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;

0 1 0 0 0 1 0 1 1 0 1 1 imm4 0 0 1 1 1 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

U R

tszh

tszl
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5247
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.819 UQRSHRNB

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the rounded
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.
Each result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate
shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

UQRSHRNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5248
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 0, esize] = UnsignedSat(res, esize);
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5249
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.820 UQRSHRNT

Shift each unsigned integer value in the source vector elements by an immediate value, and place the rounded results
in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. Each result
element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift
amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

UQRSHRNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5250
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 2*e + 1, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5251
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.821 UQSHL (immediate)

Shift left by immediate each active unsigned element of the source vector, and destructively place the results in the
corresponding elements of the source vector. Each result element is saturated to the N-bit element's unsigned integer
range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 0 to number of bits per element
minus 1. Inactive elements in the destination vector register remain unmodified.

Encoding

UQSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = element1 << shift;
 Elem[result, e, esize] = UnsignedSat(res, esize);
 else

0 0 0 0 0 1 0 0 tszh 0 0 0 1 1 1 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5252
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5253
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.822 UQSHL (vectors)

Shift active unsigned elements of the first source vector by corresponding elements of the second source vector and
destructively place the results in the corresponding elements of the first source vector. A positive shift amount
performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element is
saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

UQSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 0 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5254
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = element >> shift;
 Elem[result, e, esize] = UnsignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5255
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.823 UQSHLR

Shift active unsigned elements of the second source vector by corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. A positive shift amount
performs a left shift, otherwise a right shift by the negated shift amount is performed. Each result element is
saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination vector
register remain unmodified.

Encoding

UQSHLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand2 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else

0 1 0 0 0 1 0 0 size 0 0 1 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5256
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 shift = -shift;
 res = element >> shift;
 Elem[result, e, esize] = UnsignedSat(res, esize);
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5257
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.824 UQSHRNB

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the truncated
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.
Each result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate
shift amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

UQSHRNB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 1 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5258
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = UInt(element) >> shift;
 Elem[result, 2*e + 0, esize] = UnsignedSat(res, esize);
 Elem[result, 2*e + 1, esize] = Zeros(esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5259
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.825 UQSHRNT

Shift each unsigned integer value in the source vector elements right by an immediate value, and place the truncated
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged. Each
result element is saturated to the half-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift
amount is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

UQSHRNT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result = Z[d, VL];

0 1 0 0 0 1 0 1 0 1 tszl imm3 0 0 1 1 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U R T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5260
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 for e = 0 to elements-1
 bits(2*esize) element = Elem[operand, e, 2*esize];
 integer res = UInt(element) >> shift;
 Elem[result, 2*e + 1, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5261
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.826 UQSUB (immediate)

Unsigned saturating subtract an unsigned immediate from each element of the source vector, and destructively place
the results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
unsigned integer range 0 to (2N)-1. This instruction is unpredicated.

The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also
be a positive multiple of 256 in the range 256 to 65280.

The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option
is specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

Encoding

UQSUB <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size:sh == '001' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn);
 integer imm = UInt(imm8);
 if sh == '1' then imm = imm << 8;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh"
field. It can have the following values:

LSL #0 when sh = 0

LSL #8 when sh = 1

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) result;

0 0 1 0 0 1 0 1 size 1 0 0 1 1 1 1 1 sh imm8 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5262
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - imm, esize, unsigned);

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5263
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.827 UQSUB (vectors, predicated)

Subtract active unsigned elements of the second source vector from corresponding unsigned elements of the first
source vector and destructively place the results in the corresponding elements of the first source vector. Each result
element is saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination
vector register remain unmodified.

Encoding

UQSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = UInt(Sat(element1 - element2, esize, unsigned));
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5264
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5265
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.828 UQSUB (vectors, unpredicated)

Unsigned saturating subtract all elements of the second source vector from corresponding elements of the first
source vector and place the results in the corresponding elements of the destination vector. Each result element is
saturated to the N-bit element's unsigned integer range 0 to (2N)-1. This instruction is unpredicated.

Encoding

UQSUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], -) = SatQ(element1 - element2, esize, unsigned);

 Z[d, VL] = result;

0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5266
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.829 UQSUBR

Subtract active unsigned elements of the first source vector from corresponding unsigned elements of the second
source vector and destructively place the results in the corresponding elements of the first source vector. Each result
element is saturated to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination
vector register remain unmodified.

Encoding

UQSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);
 boolean unsigned = TRUE;

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = UInt(Sat(element2 - element1, esize, unsigned));
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5267
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5268
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.830 UQXTNB

Saturate the unsigned integer value in each source element to half the original source element width, and place the
results in the even-numbered half-width destination elements, while setting the odd-numbered elements to zero.

Encoding

UQXTNB <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 integer esize;
 case tsize of
 when '001' esize = 16;
 when '010' esize = 32;
 when '100' esize = 64;
 otherwise UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 10

S when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 10

D when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5269
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result;
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 bits(halfesize) res = UnsignedSat(element1, halfesize);
 Elem[result, 2*e + 0, halfesize] = res;
 Elem[result, 2*e + 1, halfesize] = Zeros(halfesize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5270
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.831 UQXTNT

Saturate the unsigned integer value in each source element to half the original source element width, and place the
results in the odd-numbered half-width destination elements, leaving the even-numbered elements unchanged.

Encoding

UQXTNT <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 integer esize;
 case tsize of
 when '001' esize = 16;
 when '010' esize = 32;
 when '100' esize = 64;
 otherwise UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 10

S when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 10

D when tszh = 1, tszl = 00

The following encodings are reserved:

• tszh = 0, tszl = 00.

• tszh = x, tszl = 11.

• tszh = 1, tszl = 01.

• tszh = 1, tszl = 10.

0 1 0 0 0 1 0 1 0 1 tszl 0 0 0 0 1 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5271
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) result = Z[d, VL];
 constant integer halfesize = esize DIV 2;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 bits(halfesize) res = UnsignedSat(element1, halfesize);
 Elem[result, 2*e + 1, halfesize] = res;

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5272
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.832 URECPE

Find the approximate reciprocal of each active unsigned element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Encoding

URECPE <Zd>.S, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size != '10' then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = UnsignedRecipEstimate(element);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

0 1 0 0 0 1 0 0 size 0 0 0 0 0 0 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5273
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5274
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.833 URHADD

Add active unsigned elements of the first source vector to corresponding unsigned elements of the second source
vector, shift right one bit, and destructively place the rounded results in the corresponding elements of the first
source vector. Inactive elements in the destination vector register remain unmodified.

Encoding

URHADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 + element2 + 1) >> 1;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

0 1 0 0 0 1 0 0 size 0 1 0 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

R S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5275
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5276
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.834 URSHL

Shift active unsigned elements of the first source vector by corresponding elements of the second source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Inactive elements in
the destination vector register remain unmodified.

Encoding

URSHL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;

0 1 0 0 0 1 0 0 size 0 0 0 0 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5277
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5278
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.835 URSHLR

Shift active unsigned elements of the second source vector by corresponding elements of the first source vector and
destructively place the rounded results in the corresponding elements of the first source vector. A positive shift
amount performs a left shift, otherwise a right shift by the negated shift amount is performed. Inactive elements in
the destination vector register remain unmodified.

Encoding

URSHLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) operand2 = Z[dn, VL];
 bits(VL) result;

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;

0 1 0 0 0 1 0 0 size 0 0 0 1 1 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q R N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5279
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand2, e, esize];

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5280
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.836 URSHR

Shift right by immediate each active unsigned element of the source vector, and destructively place the rounded
results in the corresponding elements of the source vector. The immediate shift amount is an unsigned value in the
range 1 to number of bits per element. Inactive elements in the destination vector register remain unmodified.

Encoding

URSHR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(PL) mask = P[g, PL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 if ActivePredicateElement(mask, e, esize) then
 integer res = (element1 + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = res<esize-1:0>;
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 0 0 0 0 1 0 0 tszh 0 0 1 1 0 1 1 0 0 Pg tszl imm3 Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

L U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5281
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5282
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.837 URSQRTE

Find the approximate reciprocal square root of each active unsigned element of the source vector, and place the
results in the corresponding elements of the destination vector. Inactive elements in the destination vector register
remain unmodified.

Encoding

URSQRTE <Zd>.S, <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size != '10' then UNDEFINED;
 constant integer esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = UnsignedRSqrtEstimate(element);

 Z[d, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

0 1 0 0 0 1 0 0 size 0 0 0 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

Q

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5283
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5284
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.838 URSRA

Shift right by immediate each unsigned element of the source vector, inserting zeroes, and add the rounded
intermediate result destructively to the corresponding elements of the addend vector. The immediate shift amount
is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

URSRA <Zda>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer da = UInt(Zda);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element = (UInt(Elem[operand1, e, esize]) + (1 << (shift - 1))) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 0 1 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5285
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5286
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.839 USDOT (indexed)

The unsigned by signed integer indexed dot product instruction computes the dot product of a group of four
unsigned 8-bit integer values held in each 32-bit element of the first source vector multiplied by a group of four
signed 8-bit integer values in an indexed 32-bit element of the second source vector, and then destructively adds the
widened dot product to the corresponding 32-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.

ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE

(FEAT_I8MM)

Encoding

USDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveInt8MatMulExt() then UNDEFINED;
 constant integer esize = 32;
 integer index = UInt(i2);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector segment, in
the range 0 to 3, encoded in the "i2" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer eltspersegment = 128 DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) res = Elem[operand3, e, esize];

0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5287
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5288
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.840 USDOT (vectors)

The unsigned by signed integer dot product instruction computes the dot product of a group of four unsigned 8-bit
integer values held in each 32-bit element of the first source vector multiplied by a group of four signed 8-bit integer
values in the corresponding 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE

(FEAT_I8MM)

Encoding

USDOT <Zda>.S, <Zn>.B, <Zm>.B

Decode for this encoding

 if (!HaveSVE() && !HaveSME()) || !HaveInt8MatMulExt() then UNDEFINED;
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) res = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = res;

 Z[da, VL] = result;

0 1 0 0 0 1 0 0 1 0 0 Zm 0 1 1 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5289
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5290
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.841 USHLLB

Shift left by immediate each even-numbered unsigned element of the source vector, and place the results in the
overlapping double-width elements of the destination vector. The immediate shift amount is an unsigned value in
the range 0 to number of bits per element minus 1. This instruction is unpredicated.

Encoding

USHLLB <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 0 tszl imm3 1 0 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5291
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 bits(esize) element = Elem[operand, 2*e + 0, esize];
 integer shifted_value = UInt(element) << shift;
 Elem[result, e, 2*esize] = shifted_value<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5292
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.842 USHLLT

Shift left by immediate each odd-numbered unsigned element of the source vector, and place the results in the
overlapping double-width elements of the destination vector. The immediate shift amount is an unsigned value in
the range 0 to number of bits per element minus 1. This instruction is unpredicated.

Encoding

USHLLT <Zd>.<T>, <Zn>.<Tb>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(3) tsize = tszh:tszl;
 if tsize == '000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer shift = UInt(tsize:imm3) - esize;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

H when tszh = 0, tszl = 01

S when tszh = 0, tszl = 1x

D when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 0, tszl = 01

H when tszh = 0, tszl = 1x

S when tszh = 1, tszl = xx

The encoding tszh = 0, tszl = 00 is reserved.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 0 0 tszl imm3 1 0 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

U T

tszh
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5293
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 bits(esize) element = Elem[operand, 2*e + 1, esize];
 integer shifted_value = UInt(element) << shift;
 Elem[result, e, 2*esize] = shifted_value<2*esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5294
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.843 USMMLA

The unsigned by signed integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of unsigned 8-bit
integer values held in each 128-bit segment of the first source vector by the 8×2 matrix of signed 8-bit integer values
in the corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product
is then destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend
and destination vector. This is equivalent to performing an 8-way dot product per destination element.

This instruction is unpredicated.

ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

SVE

(FEAT_I8MM)

Encoding

USMMLA <Zda>.S, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(Zda);
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = FALSE;

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer segments = VL DIV 128;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[da, VL];
 bits(VL) result = Zeros(VL);
 bits(128) op1, op2;
 bits(128) res, addend;

 for s = 0 to segments-1
 op1 = Elem[operand1, s, 128];
 op2 = Elem[operand2, s, 128];
 addend = Elem[operand3, s, 128];

0 1 0 0 0 1 0 1 1 0 0 Zm 1 0 0 1 1 0 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

uns<1>

uns<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5295
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned);
 Elem[result, s, 128] = res;

 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5296
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.844 USQADD

Add active signed elements of the source vector to the corresponding unsigned elements of the addend vector, and
destructively place the results in the corresponding elements of the addend vector. Each result element is saturated
to the N-bit element's unsigned integer range 0 to (2N)-1. Inactive elements in the destination vector register remain
unmodified.

Encoding

USQADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer g = UInt(Pg);
 integer dn = UInt(Zdn);
 integer m = UInt(Zm);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = UnsignedSat(UInt(element1) + SInt(element2), esize);
 else
 Elem[result, e, esize] = Elem[operand1, e, esize];

0 1 0 0 0 1 0 0 size 0 1 1 1 0 1 1 0 0 Pg Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

S U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5297
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[dn, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5298
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.845 USRA

Shift right by immediate each unsigned element of the source vector, inserting zeroes, and add the truncated
intermediate result destructively to the corresponding elements of the addend vector. The immediate shift amount
is an unsigned value in the range 1 to number of bits per element. This instruction is unpredicated.

Encoding

USRA <Zda>.<T>, <Zn>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn);
 integer da = UInt(Zda);
 integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[da, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element = UInt(Elem[operand1, e, esize]) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

 Z[da, VL] = result;

0 1 0 0 0 1 0 1 tszh 0 tszl imm3 1 1 1 0 0 1 Zn Zda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0

R U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5299
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5300
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.846 USUBLB

Subtract the even-numbered unsigned elements of the second source vector from the corresponding unsigned
elements of the first source vector, and place the results in the overlapping double-width elements of the destination
vector. This instruction is unpredicated.

Encoding

USUBLB <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 0;
 integer sel2 = 0;
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5301
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 - element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5302
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.847 USUBLT

Subtract the odd-numbered unsigned elements of the second source vector from the corresponding unsigned
elements of the first source vector, and place the results in the overlapping double-width elements of the destination
vector. This instruction is unpredicated.

Encoding

USUBLT <Zd>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer sel1 = 1;
 integer sel2 = 1;
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

0 1 0 0 0 1 0 1 size 0 Zm 0 0 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5303
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, 2*e + sel1, esize DIV 2], unsigned);
 integer element2 = Int(Elem[operand2, 2*e + sel2, esize DIV 2], unsigned);
 integer res = element1 - element2;
 Elem[result, e, esize] = res<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5304
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.848 USUBWB

Subtract the even-numbered unsigned elements of the second source vector from the overlapping double-width
elements of the first source vector and place the results in the corresponding double-width elements of the
destination vector. This instruction is unpredicated.

Encoding

USUBWB <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, 2*e + 0, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5305
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 - element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5306
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.849 USUBWT

Subtract the odd-numbered unsigned elements of the second source vector from the overlapping double-width
elements of the first source vector and place the results in the corresponding double-width elements of the
destination vector. This instruction is unpredicated. This instruction is unpredicated.

Encoding

USUBWT <Zd>.<T>, <Zn>.<T>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, 2*e + 1, esize DIV 2]);

0 1 0 0 0 1 0 1 size 0 Zm 0 1 0 1 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

S U T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5307
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 Elem[result, e, esize] = (element1 - element2)<esize-1:0>;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5308
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.850 UUNPKHI, UUNPKLO

Unpack elements from the lowest or highest half of the source vector and then zero-extend them to place in elements
of twice their size within the destination vector. This instruction is unpredicated.

High half

Encoding

UUNPKHI <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;
 boolean hi = TRUE;

Low half

Encoding

UUNPKLO <Zd>.<T>, <Zn>.<Tb>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;
 boolean hi = FALSE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

0 0 0 0 0 1 0 1 size 1 1 0 0 1 1 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U H

0 0 0 0 0 1 0 1 size 1 1 0 0 1 0 0 0 1 1 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0

U H
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5309
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer hsize = esize DIV 2;
 bits(VL) operand = Z[n, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(hsize) element = if hi then Elem[operand, e + elements, hsize] else Elem[operand, e, hsize];
 Elem[result, e, esize] = Extend(element, esize, unsigned);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5310
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.851 UXTB, UXTH, UXTW

Zero-extend the least-significant sub-element of each active element of the source vector, and place the results in
the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

Byte

Encoding

UXTB <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer s_esize = 8;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;

Halfword

Encoding

UXTH <Zd>.<T>, <Pg>/M, <Zn>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size IN {'0x'} then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer s_esize = 16;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;

Word

0 0 0 0 0 1 0 0 size 0 1 0 0 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

0 0 0 0 0 1 0 0 size 0 1 0 0 1 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

0 0 0 0 0 1 0 0 size 0 1 0 1 0 1 1 0 1 Pg Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5311
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

UXTW <Zd>.D, <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 if size != '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer s_esize = 32;
 integer g = UInt(Pg);
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 boolean unsigned = TRUE;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> For the byte variant: is the size specifier, encoded in the "size" field. It can have the following
values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

For the halfword variant: is the size specifier, encoded in the "size<0>" field. It can have the
following values:

S when size<0> = 0

D when size<0> = 1

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
 bits(VL) result = Z[d, VL];

 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 bits(esize) element = Elem[operand, e, esize];
 Elem[result, e, esize] = Extend(element<s_esize-1:0>, esize, unsigned);

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5312
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate
register and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5313
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.852 UZP1, UZP2 (predicates)

Concatenate adjacent even or odd-numbered elements from the first and second source predicates and place in
elements of the destination predicate. This instruction is unpredicated.

Even

Encoding

UZP1 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer part = 0;

Odd

Encoding

UZP2 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer part = 1;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 1 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

H

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 1 1 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5314
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (esize * 2);
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;

 for p = 0 to pairs - 1
 Elem[result, p, esize DIV 8] = Elem[operand1, 2*p+part, esize DIV 8];

 for p = 0 to pairs - 1
 Elem[result, pairs+p, esize DIV 8] = Elem[operand2, 2*p+part, esize DIV 8];

 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5315
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.853 UZP1, UZP2 (vectors)

Concatenate adjacent even or odd-numbered elements from the first and second source vectors and place in
elements of the destination vector. This instruction is unpredicated.

Note

UZP1 is equivalent to truncating and packing each element from two source vectors into a single destination vector
with elements of half the size.

The 128-bit element variant requires that the current vector length is at least 256 bits, and if the current vector length
is not an integer multiple of 256 bits then the trailing bits are set to zero. ID_AA64ZFR0_EL1.F64MM indicates
whether the 128-bit element variant is implemented. The 128-bit element variant is illegal when executed in
Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.

Even

Encoding

UZP1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Even (quadwords)

(FEAT_F64MM)

Encoding

UZP1 <Zd>.Q, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5316
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Odd

Encoding

UZP2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Odd (quadwords)

(FEAT_F64MM)

Encoding

UZP2 <Zd>.Q, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5317
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 2 then UNDEFINED;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Zeros(VL);

 for p = 0 to pairs - 1
 Elem[result, p, esize] = Elem[operand1, 2*p+part, esize];

 for p = 0 to pairs - 1
 Elem[result, pairs+p, esize] = Elem[operand2, 2*p+part, esize];

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5318
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.854 UZPQ1

Concatenate adjacent even-numbered elements from the corresponding 128-bit vector segments of the first and
second source vectors and place in elements of the corresponding destination vector segment. This instruction is
unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UZPQ1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 constant integer pairs = elements DIV 2;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 for p = 0 to pairs-1
 Elem[result, s * elements + p, esize] = Elem[operand1, s * elements + 2 * p + part, esize];

 for p = 0 to pairs-1
 Elem[result, s * elements + pairs + p, esize] = Elem[operand2, s * elements + 2 * p + part,
esize];

0 1 0 0 0 1 0 0 size 0 Zm 1 1 1 0 1 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5319
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5320
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.855 UZPQ2

Concatenate adjacent odd-numbered elements from the corresponding 128-bit vector segments of the first and
second source vectors and place in elements of the corresponding destination vector segment. This instruction is
unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

UZPQ2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 constant integer pairs = elements DIV 2;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 for p = 0 to pairs-1
 Elem[result, s * elements + p, esize] = Elem[operand1, s * elements + 2 * p + part, esize];

 for p = 0 to pairs-1
 Elem[result, s * elements + pairs + p, esize] = Elem[operand2, s * elements + 2 * p + part,
esize];

0 1 0 0 0 1 0 0 size 0 Zm 1 1 1 0 1 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5321
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5322
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.856 WHILEGE (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the group
is true while the decrementing value of the first, signed scalar operand is greater than or equal to the second scalar
operand and false thereafter down to the lowest numbered element of the group.

If the second scalar operand is equal to the minimum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEGE <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = FALSE;
 boolean invert = TRUE;
 SVECmp op = Cmp_GE;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 0 0 Rn 1 0 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5323
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 - 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5324
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.857 WHILEGE (predicate pair)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, signed scalar operand is greater than or equal to the second scalar operand and false
thereafter down to the lowest numbered element of the pair.

If the second scalar operand is equal to the minimum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEGE { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = FALSE;
 SVECmp op = Cmp_GE;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 0 0 Rn 1 Pd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5325
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = (elements*2)-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5326
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.858 WHILEGE (predicate)

Generate a predicate that starting from the highest numbered element is true while the decrementing value of the
first, signed scalar operand is greater than or equal to the second scalar operand and false thereafter down to the
lowest numbered element.

If the second scalar operand is equal to the minimum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILEGE <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = FALSE;
 SVECmp op = Cmp_GE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 0 0 Rn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5327
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5328
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.859 WHILEGT (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the group
is true while the decrementing value of the first, signed scalar operand is greater than the second scalar operand and
false thereafter down to the lowest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEGT <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = FALSE;
 boolean invert = TRUE;
 SVECmp op = Cmp_GT;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 0 0 Rn 1 1 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5329
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 - 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5330
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.860 WHILEGT (predicate pair)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, signed scalar operand is greater than the second scalar operand and false thereafter
down to the lowest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEGT { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = FALSE;
 SVECmp op = Cmp_GT;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 0 0 Rn 1 Pd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5331
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = (elements*2)-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5332
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.861 WHILEGT (predicate)

Generate a predicate that starting from the highest numbered element is true while the decrementing value of the
first, signed scalar operand is greater than the second scalar operand and false thereafter down to the lowest
numbered element.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILEGT <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = FALSE;
 SVECmp op = Cmp_GT;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 0 0 Rn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5333
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5334
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.862 WHILEHI (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the group
is true while the decrementing value of the first, unsigned scalar operand is higher than the second scalar operand
and false thereafter down to the lowest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEHI <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = TRUE;
 boolean invert = TRUE;
 SVECmp op = Cmp_GT;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 1 0 Rn 1 1 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5335
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 - 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5336
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.863 WHILEHI (predicate pair)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, unsigned scalar operand is higher than the second scalar operand and false thereafter
down to the lowest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEHI { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = TRUE;
 SVECmp op = Cmp_GT;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 1 0 Rn 1 Pd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5337
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = (elements*2)-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5338
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.864 WHILEHI (predicate)

Generate a predicate that starting from the highest numbered element is true while the decrementing value of the
first, unsigned scalar operand is higher than the second scalar operand and false thereafter down to the lowest
numbered element.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILEHI <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = TRUE;
 SVECmp op = Cmp_GT;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 1 0 Rn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5339
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5340
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.865 WHILEHS (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the group
is true while the decrementing value of the first, unsigned scalar operand is higher or same as the second scalar
operand and false thereafter down to the lowest numbered element of the group.

If the second scalar operand is equal to the minimum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEHS <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = TRUE;
 boolean invert = TRUE;
 SVECmp op = Cmp_GE;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 1 0 Rn 1 0 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5341
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 - 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5342
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.866 WHILEHS (predicate pair)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, unsigned scalar operand is higher or same as the second scalar operand and false
thereafter down to the lowest numbered element of the pair.

If the second scalar operand is equal to the minimum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILEHS { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = TRUE;
 SVECmp op = Cmp_GE;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 1 0 Rn 1 Pd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5343
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = (elements*2)-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5344
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.867 WHILEHS (predicate)

Generate a predicate that starting from the highest numbered element is true while the decrementing value of the
first, unsigned scalar operand is higher or same as the second scalar operand and false thereafter down to the lowest
numbered element.

If the second scalar operand is equal to the minimum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILEHS <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = TRUE;
 SVECmp op = Cmp_GE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 1 0 Rn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5345
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = elements-1 downto 0
 boolean cond;
 case op of
 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 - 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5346
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.868 WHILELE (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the group
is true while the incrementing value of the first, signed scalar operand is less than or equal to the second scalar
operand and false thereafter up to the highest numbered element of the group.

If the second scalar operand is equal to the maximum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELE <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = FALSE;
 boolean invert = FALSE;
 SVECmp op = Cmp_LE;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 0 1 Rn 1 1 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5347
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 + 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5348
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.869 WHILELE (predicate pair)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, signed scalar operand is less than or equal to the second scalar operand and false
thereafter up to the highest numbered element of the pair.

If the second scalar operand is equal to the maximum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELE { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = FALSE;
 SVECmp op = Cmp_LE;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 0 1 Rn 1 Pd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5349
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to (elements*2)-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5350
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.870 WHILELE (predicate)

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
signed scalar operand is less than or equal to the second scalar operand and false thereafter up to the highest
numbered element.

If the second scalar operand is equal to the maximum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILELE <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = FALSE;
 SVECmp op = Cmp_LE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 0 1 Rn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5351
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5352
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.871 WHILELO (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the group
is true while the incrementing value of the first, unsigned scalar operand is lower than the second scalar operand
and false thereafter up to the highest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELO <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = TRUE;
 boolean invert = FALSE;
 SVECmp op = Cmp_LT;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 1 1 Rn 1 0 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5353
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 + 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5354
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.872 WHILELO (predicate pair)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, unsigned scalar operand is lower than the second scalar operand and false thereafter
up to the highest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELO { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = TRUE;
 SVECmp op = Cmp_LT;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 1 1 Rn 1 Pd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5355
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to (elements*2)-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5356
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.873 WHILELO (predicate)

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
unsigned scalar operand is lower than the second scalar operand and false thereafter up to the highest numbered
element.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILELO <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = TRUE;
 SVECmp op = Cmp_LT;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 1 1 Rn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5357
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5358
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.874 WHILELS (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the group
is true while the incrementing value of the first, unsigned scalar operand is lower or same as the second scalar
operand and false thereafter up to the highest numbered element of the group.

If the second scalar operand is equal to the maximum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELS <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = TRUE;
 boolean invert = FALSE;
 SVECmp op = Cmp_LE;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 1 1 Rn 1 1 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5359
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 + 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5360
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.875 WHILELS (predicate pair)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, unsigned scalar operand is lower or same as the second scalar operand and false
thereafter up to the highest numbered element of the pair.

If the second scalar operand is equal to the maximum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELS { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = TRUE;
 SVECmp op = Cmp_LE;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 1 1 Rn 1 Pd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5361
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to (elements*2)-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5362
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.876 WHILELS (predicate)

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
unsigned scalar operand is lower or same as the second scalar operand and false thereafter up to the highest
numbered element.

If the second scalar operand is equal to the maximum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILELS <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = TRUE;
 SVECmp op = Cmp_LE;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 1 1 Rn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5363
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5364
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.877 WHILELT (predicate as counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the group
is true while the incrementing value of the first, signed scalar operand is less than the second scalar operand and
false thereafter up to the highest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELT <PNd>.<T>, <Xn>, <Xm>, <vl>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt('1':PNd);
 boolean unsigned = FALSE;
 boolean invert = FALSE;
 SVECmp op = Cmp_LT;
 integer width = 2 << UInt(vl);

Assembler symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in the "vl" field. It can have the following values:

VLx2 when vl = 0

VLx4 when vl = 1

0 0 1 0 0 1 0 1 size 1 Rm 0 1 vl 0 0 1 Rn 1 0 PNd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 2 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5365
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation

 if HaveSVE2p1() then CheckSVEEnabled(); else CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = width * (VL DIV esize);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 integer count = 0;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 if last then count = count + 1;
 operand1 = operand1 + 1;

 result = EncodePredCount(esize, elements, count, invert, PL);
 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5366
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.878 WHILELT (predicate pair)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, signed scalar operand is less than the second scalar operand and false thereafter up
to the highest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based
on the predicate result, and the V flag to zero.

SVE2

(FEAT_SVE2p1)

Encoding

WHILELT { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

Decode for this encoding

 if !HaveSME2() && !HaveSVE2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 64;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d0 = UInt(Pd:'0');
 integer d1 = UInt(Pd:'1');
 boolean unsigned = FALSE;
 SVECmp op = Cmp_LT;

Assembler symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2 plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;

0 0 1 0 0 1 0 1 size 1 Rm 0 1 0 1 0 1 Rn 1 Pd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 1 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5367
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 bits(PL*2) mask = Ones(PL*2);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL*2) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to (elements*2)-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d0, PL] = result<PL-1:0>;
 P[d1, PL] = result<PL*2-1:PL>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5368
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.879 WHILELT (predicate)

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
signed scalar operand is less than the second scalar operand and false thereafter up to the highest numbered element.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

Encoding

WHILELT <Pd>.<T>, <R><n>, <R><m>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 constant integer rsize = 32 << UInt(sf);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);
 boolean unsigned = FALSE;
 SVECmp op = Cmp_LT;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<R> Is a width specifier, encoded in the "sf" field. It can have the following values:

W when sf = 0

X when sf = 1

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rn" field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the
"Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;

0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 0 1 Rn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

U lt eq
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5369
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(rsize) operand1 = X[n, rsize];
 bits(rsize) operand2 = X[m, rsize];
 bits(PL) result;
 boolean last = TRUE;
 constant integer psize = esize DIV 8;

 for e = 0 to elements-1
 boolean cond;
 case op of
 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

 last = last && cond;
 bit pbit = if last then '1' else '0';
 Elem[result, e, psize] = ZeroExtend(pbit, psize);
 operand1 = operand1 + 1;

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5370
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.880 WHILERW

This instruction checks two addresses for a conflict or overlap between address ranges of the form
[addr,addr+VL÷8), where VL is the accessible vector length in bits, that could result in a loop-carried dependency
through memory due to the use of these addresses by contiguous load and store instructions within the same iteration
of a loop. Generate a predicate whose elements are true while the addresses cannot conflict within the same iteration,
and false thereafter. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the
V flag to zero.

Encoding

WHILERW <Pd>.<T>, <Xn>, <Xm>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(64) src1 = X[n, 64];
 bits(64) src2 = X[m, 64];
 integer operand1 = UInt(src1);
 integer operand2 = UInt(src2);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 integer diff = Abs(operand2 - operand1) DIV (esize DIV 8);
 for e = 0 to elements-1
 if diff == 0 || e < diff then
 Elem[result, e, psize] = ZeroExtend('1', psize);

0 0 1 0 0 1 0 1 size 1 Rm 0 0 1 1 0 0 Rn 1 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

rw
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5371
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5372
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.881 WHILEWR

This instruction checks two addresses for a conflict or overlap between address ranges of the form
[addr,addr+VL÷8), where VL is the accessible vector length in bits, that could result in a loop-carried dependency
through memory due to the use of these addresses by contiguous load and store instructions within the same iteration
of a loop. Generate a predicate whose elements are true while the addresses cannot conflict within the same iteration,
and false thereafter. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the
V flag to zero.

Encoding

WHILEWR <Pd>.<T>, <Xn>, <Xm>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer d = UInt(Pd);

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 bits(PL) mask = Ones(PL);
 bits(64) src1 = X[n, 64];
 bits(64) src2 = X[m, 64];
 integer operand1 = UInt(src1);
 integer operand2 = UInt(src2);
 bits(PL) result;
 constant integer psize = esize DIV 8;

 integer diff = (operand2 - operand1) DIV (esize DIV 8);
 for e = 0 to elements-1
 if diff <= 0 || e < diff then
 Elem[result, e, psize] = ZeroExtend('1', psize);

0 0 1 0 0 1 0 1 size 1 Rm 0 0 1 1 0 0 Rn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 3 0

rw
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5373
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 else
 Elem[result, e, psize] = ZeroExtend('0', psize);

 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
 P[d, PL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5374
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.882 WRFFR

Read the source predicate register and place in the first-fault register (FFR). This instruction is intended to restore
a saved FFR and is not recommended for general use by applications.

This instruction requires that the source predicate contains a MONOTONIC predicate value, in which starting from bit
0 there are zero or more 1 bits, followed only by 0 bits in any remaining bit positions. If the source is not a monotonic
predicate value, then the resulting value in the FFR will be UNPREDICTABLE. It is not possible to generate a
non-monotonic value in FFR when using SETFFR followed by first-fault or non-fault loads.

This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and
enabled.

Encoding

WRFFR <Pn>.B

Decode for this encoding

 if !HaveSVE() then UNDEFINED;
 integer n = UInt(Pn);

Assembler symbols

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

 CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 bits(PL) operand = P[n, PL];

 constant integer hsb = HighestSetBit(operand);
 if hsb < 0 || IsOnes(operand<hsb:0>) then
 FFR[PL] = operand;
 else // not a monotonic predicate
 FFR[PL] = bits(PL) UNKNOWN;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 Pn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5375
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.883 XAR

Bitwise exclusive OR the corresponding elements of the first and second source vectors, then rotate each result
element right by an immediate amount. The final results are destructively placed in the corresponding elements of
the destination and first source vector. This instruction is unpredicated.

Encoding

XAR <Zdn>.<T>, <Zdn>.<T>, <Zm>.<T>, #<const>

Decode for this encoding

 if !HaveSVE2() && !HaveSME() then UNDEFINED;
 bits(4) tsize = tszh:tszl;
 if tsize == '0000' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer m = UInt(Zm);
 integer dn = UInt(Zdn);
 integer rot = (2 * esize) - UInt(tsize:imm3);

Assembler symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in the "tszh:tszl" field. It can have the following values:

B when tszh = 00, tszl = 01

H when tszh = 00, tszl = 1x

S when tszh = 01, tszl = xx

D when tszh = 1x, tszl = xx

The encoding tszh = 00, tszl = 00 is reserved.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in
"tszh:tszl:imm3".

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 bits(VL) operand1 = Z[dn, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = ROR(element1 EOR element2, rot);
 Z[dn, VL] = result;

0 0 0 0 0 1 0 0 tszh 1 tszl imm3 0 0 1 1 0 1 Zm Zdn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5376
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX
instruction must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this
instruction is UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5377
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.884 ZIP1, ZIP2 (predicates)

Interleave alternating elements from the lowest or highest halves of the first and second source predicates and place
in elements of the destination predicate. This instruction is unpredicated.

High halves

Encoding

ZIP2 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer part = 1;

Low halves

Encoding

ZIP1 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Pn);
 integer m = UInt(Pm);
 integer d = UInt(Pd);
 integer part = 0;

Assembler symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 0 1 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

H

0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 0 0 0 Pn 0 Pd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 5 4 3 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5378
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Operation for all encodings

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer pairs = VL DIV (esize * 2);
 bits(PL) operand1 = P[n, PL];
 bits(PL) operand2 = P[m, PL];
 bits(PL) result;

 integer base = part * pairs;
 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize DIV 8] = Elem[operand1, base+p, esize DIV 8];
 Elem[result, 2*p+1, esize DIV 8] = Elem[operand2, base+p, esize DIV 8];

 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5379
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.885 ZIP1, ZIP2 (vectors)

Interleave alternating elements from the lowest or highest halves of the first and second source vectors and place in
elements of the destination vector. This instruction is unpredicated.

The 128-bit element variant requires that the current vector length is at least 256 bits, and if the current vector length
is not an integer multiple of 256 bits then the trailing bits are set to zero. ID_AA64ZFR0_EL1.F64MM indicates
whether the 128-bit element variant is implemented. The 128-bit element variant is illegal when executed in
Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled.

High halves

Encoding

ZIP2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

High halves (quadwords)

(FEAT_F64MM)

Encoding

ZIP2 <Zd>.Q, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Low halves

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5380
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
Encoding

ZIP1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE() && !HaveSME() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Low halves (quadwords)

(FEAT_F64MM)

Encoding

ZIP1 <Zd>.Q, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSVE() || !HaveSVEFP64MatMulExt() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 if esize < 128 then CheckSVEEnabled(); else CheckNonStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 2 then UNDEFINED;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result = Zeros(VL);

 integer base = part * pairs;

0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5381
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5382
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.886 ZIPQ1

Interleave alternating elements from low halves of the corresponding 128-bit vector segments of the first and second
source vectors and place in elements of the corresponding destination vector segment. This instruction is
unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

ZIPQ1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 0;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 constant integer pairs = elements DIV 2;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 integer base = s * elements + part * pairs;
 for p = 0 to pairs-1
 Elem[result, s * elements + 2 * p + 0, esize] = Elem[operand1, base + p, esize];
 Elem[result, s * elements + 2 * p + 1, esize] = Elem[operand2, base + p, esize];

0 1 0 0 0 1 0 0 size 0 Zm 1 1 1 0 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5383
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5384
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions
C8.2.887 ZIPQ2

Interleave alternating elements from high halves of the corresponding 128-bit vector segments of the first and
second source vectors and place in elements of the corresponding destination vector segment. This instruction is
unpredicated.

SVE2

(FEAT_SVE2p1)

Encoding

ZIPQ2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSVE2p1() && !HaveSME2p1() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd);
 integer part = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer segments = VL DIV 128;
 constant integer elements = 128 DIV esize;
 constant integer pairs = elements DIV 2;
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for s = 0 to segments-1
 integer base = s * elements + part * pairs;
 for p = 0 to pairs-1
 Elem[result, s * elements + 2 * p + 0, esize] = Elem[operand1, base + p, esize];
 Elem[result, s * elements + 2 * p + 1, esize] = Elem[operand2, base + p, esize];

0 1 0 0 0 1 0 0 size 0 Zm 1 1 1 0 0 1 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0

H

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5385
ID032224 Non-Confidential

SVE Instruction Descriptions
C8.2 Alphabetical list of SVE instructions

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C8-5386
ID032224 Non-Confidential

Chapter C9
SME Instruction Descriptions

This chapter describes the SME instructions.

It contains the following sections:

• About the A64 Advanced SIMD and floating-point instructions.

• Alphabetical list of SME instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5387
ID032224 Non-Confidential

SME Instruction Descriptions
C9.1 About the SME instructions
C9.1 About the SME instructions

Alphabetical list of SME instructions gives full descriptions of the SME instructions.

A64 instruction set encoding in the A64 Instruction Encodings chapter provides an overview of the instruction
encodings as part of an instruction class within a functional group.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5388
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2 Alphabetical list of SME instructions

This section lists every section in the SME category of the A64 instruction set. For details of the format used, see
Structure of the A64 assembler language.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5389
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.1 ADD (array accumulators)

Destructively add all elements of the two or four source vectors to the corresponding elements of the ZA
single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

ADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

ADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 0 0 Rv 1 1 1 Zm 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 1 0 Rv 1 1 1 Zm 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5390
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zm"
times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zm"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = ZAvector[vec, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 + element2;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5391
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.2 ADD (array results, multiple and single vector)

Add all corresponding elements of the second source vector and the two or four first source vectors and place the
results in the corresponding elements of the ZA single-vector groups. The vector numbers forming the single-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

ADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

ADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 0 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 0 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5392
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 + element2;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5393
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.3 ADD (array results, multiple vectors)

Add all corresponding elements of the two or four second source vectors and first source vectors and place the
results in the corresponding elements of the ZA single-vector groups. The vector numbers forming the single-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

ADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

ADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 1 0 Zn 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 1 0 Zn 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5394
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 + element2;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5395
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5396
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.4 ADD (to vector)

Add elements of the second source vector to the corresponding elements of the two or four first source vectors and
destructively place the results in the corresponding elements of the two or four first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

ADD { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

ADD { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 1 1 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 1 1 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5397
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = element1 + element2;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5398
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.5 ADDHA

Add each element of the source vector to the corresponding active element of each horizontal slice of a ZA tile. The
tile elements are predicated by a pair of governing predicates. An element of a horizontal slice is considered active
if its corresponding element in the second governing predicate is TRUE and the element corresponding to its
horizontal slice number in the first governing predicate is TRUE. Inactive elements in the destination tile remain
unmodified.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

ADDHA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer da = UInt(ZAda);

64-bit

(FEAT_SME_I16I64)

Encoding

ADDHA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer da = UInt(ZAda);

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 10 9 5 4 3 2 1 0

V

1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 10 9 5 4 3 2 0

V

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5399
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand_src = Z[n, VL];
 bits(dim*dim*esize) operand_acc = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;

 for col = 0 to dim-1
 bits(esize) element = Elem[operand_src, col, esize];
 for row = 0 to dim-1
 bits(esize) res = Elem[operand_acc, row*dim+col, esize];
 if (ActivePredicateElement(mask1, row, esize) &&
 ActivePredicateElement(mask2, col, esize)) then
 res = res + element;
 Elem[result, row*dim+col, esize] = res;

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5400
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.6 ADDSPL

Add the Streaming SVE predicate register size in bytes multiplied by an immediate in the range -32 to 31 to the
64-bit source general-purpose register or current stack pointer and place the result in the 64-bit destination
general-purpose register or current stack pointer.

This instruction does not require the PE to be in Streaming SVE mode.

SME

(FEAT_SME)

Encoding

ADDSPL <Xd|SP>, <Xn|SP>, #<imm>

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm6);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

 CheckSMEEnabled();
 constant integer SVL = CurrentSVL;
 integer len = imm * (SVL DIV 64);
 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) result = operand1 + len;

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

0 0 0 0 0 1 0 0 0 1 1 Rn 0 1 0 1 1 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5401
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5402
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.7 ADDSVL

Add the Streaming SVE vector register size in bytes multiplied by an immediate in the range -32 to 31 to the 64-bit
source general-purpose register or current stack pointer, and place the result in the 64-bit destination
general-purpose register or current stack pointer.

This instruction does not require the PE to be in Streaming SVE mode.

SME

(FEAT_SME)

Encoding

ADDSVL <Xd|SP>, <Xn|SP>, #<imm>

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer d = UInt(Rd);
 integer imm = SInt(imm6);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

 CheckSMEEnabled();
 constant integer SVL = CurrentSVL;
 integer len = imm * (SVL DIV 8);
 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
 bits(64) result = operand1 + len;

 if d == 31 then
 SP[] = result;
 else
 X[d, 64] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

0 0 0 0 0 1 0 0 0 0 1 Rn 0 1 0 1 1 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5403
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5404
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.8 ADDVA

Add each element of the source vector to the corresponding active element of each vertical slice of a ZA tile. The
tile elements are predicated by a pair of governing predicates. An element of a vertical slice is considered active if
its corresponding element in the first governing predicate is TRUE and the element corresponding to its vertical
slice number in the second governing predicate is TRUE. Inactive elements in the destination tile remain
unmodified.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

ADDVA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer da = UInt(ZAda);

64-bit

(FEAT_SME_I16I64)

Encoding

ADDVA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer da = UInt(ZAda);

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 10 9 5 4 3 2 1 0

V

1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 12 10 9 5 4 3 2 0

V

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5405
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand_src = Z[n, VL];
 bits(dim*dim*esize) operand_acc = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;

 for row = 0 to dim-1
 bits(esize) element = Elem[operand_src, row, esize];
 for col = 0 to dim-1
 bits(esize) res = Elem[operand_acc, row*dim+col, esize];
 if (ActivePredicateElement(mask1, row, esize) &&
 ActivePredicateElement(mask2, col, esize)) then
 res = res + element;
 Elem[result, row*dim+col, esize] = res;

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5406
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.9 BFADD

Destructively add all elements of the two or four source vectors to the corresponding BFloat16 elements of the ZA
single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFADD ZA.H[<Wv>, <offs>{, VGx2}], { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFADD ZA.H[<Wv>, <offs>{, VGx4}], { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 Rv 1 1 1 Zm 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S

1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 Rv 1 1 1 Zm 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5407
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zm"
times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zm"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = ZAvector[vec, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFAdd_ZA(element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5408
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.10 BFCLAMP

Clamp each BFloat16 element in the two or four destination vectors to between the BFloat16 minimum value in the
corresponding element of the first source vector and the BFloat16 maximum value in the corresponding element of
the second source vector and destructively place the clamped results in the corresponding elements of the two or
four destination vectors.

Regardless of the value of FPCR.AH, the behavior is as follows for each minimum number and maximum number
operation:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFCLAMP { <Zd1>.H-<Zd2>.H }, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFCLAMP { <Zd1>.H-<Zd4>.H }, <Zn>.H, <Zm>.H

1 1 0 0 0 0 0 1 0 0 1 Zm 1 1 0 0 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 Zm 1 1 0 0 1 0 Zn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5409
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 Elem[results[r], e, 16] = BFMinNum(BFMaxNum(element1, element3, FPCR), element2, FPCR);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5410
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.11 BFCVT

Convert to BFloat16 from single-precision, each element of the two source vectors, and place the results in the
half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

BFCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 bits(VL) result;

 bits(VL) operand1 = Z[n+0, VL];
 bits(VL) operand2 = Z[n+1, VL];
 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, e, 32];
 bits(32) element2 = Elem[operand2, e, 32];
 bits(16) res1 = FPConvertBF(element1, FPCR);
 bits(16) res2 = FPConvertBF(element2, FPCR);
 Elem[result, e, 16] = res1;
 Elem[result, elements+e, 16] = res2;

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

N

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5411
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.12 BFCVTN

Convert to BFloat16 from single-precision, each element of the two source vectors, and place the two-way
interleaved results in the half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

BFCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 bits(VL) result;

 bits(VL) operand1 = Z[n+0, VL];
 bits(VL) operand2 = Z[n+1, VL];
 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, e, 32];
 bits(32) element2 = Elem[operand2, e, 32];
 bits(16) res1 = FPConvertBF(element1, FPCR);
 bits(16) res2 = FPConvertBF(element2, FPCR);
 Elem[result, 2*e + 0, 16] = res1;
 Elem[result, 2*e + 1, 16] = res2;

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 Zn 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

N

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5412
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.13 BFDOT (multiple and indexed vector)

The instruction computes the dot product of a pair of BF16 values held in the corresponding 32-bit elements of the
two or four first source vectors and the indexed 32-bit element of the second source vector. The single-precision dot
product results are destructively added to the corresponding single-precision elements of the ZA single-vector
groups.

The BF16 pairs within the second source vector are specified using an immediate index which selects the same
BF16 pair position within each 128-bit vector segment. The element index range is from 0 to 3. The vector numbers
forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

BFDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

BFDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5413
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer index = UInt(i2);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5414
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.14 BFDOT (multiple and single vector)

The instruction computes the dot product of a pair of BF16 values held in the corresponding 32-bit elements of the
two or four first source vectors and the second source vector. The single-precision dot product results are
destructively added to the corresponding single-precision elements of the ZA single-vector groups. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

BFDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

BFDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 0 0 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 0 0 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5415
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5416
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.15 BFDOT (multiple vectors)

The instruction computes the dot product of a pair of BF16 values held in the corresponding 32-bit elements of the
two or four first and second source vectors. The single-precision dot product results are destructively added to the
corresponding single-precision elements of the ZA single-vector groups. The vector numbers forming the
single-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

BFDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

BFDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 1 0 0 Zn 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5417
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5418
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.16 BFMAX (multiple and single vector)

Determine the maximum of BFloat16 elements of the second source vector and the corresponding BFloat16
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMAX { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMAX { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, <Zm>.H

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 0 0 0 1 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 1 0 0 1 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5419
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMax(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5420
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.17 BFMAX (multiple vectors)

Determine the maximum of BFloat16 elements of the two or four second source vectors and the corresponding
BFloat16 elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMAX { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMAX { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, { <Zm1>.H-<Zm4>.H }

1 1 0 0 0 0 0 1 0 0 1 Zm 0 1 0 1 1 0 0 0 1 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5421
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMax(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5422
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.18 BFMAXNM (multiple and single vector)

Determine the maximum number value of BFloat16 elements of the second source vector and the corresponding
BFloat16 elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMAXNM { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMAXNM { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, <Zm>.H

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 0 0 0 1 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 1 0 0 1 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5423
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMaxNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5424
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.19 BFMAXNM (multiple vectors)

Determine the maximum number value of BFloat16 elements of the two or four second source vectors and the
corresponding BFloat16 elements of the two or four first source vectors and destructively place the results in the
corresponding elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMAXNM { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMAXNM { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, { <Zm1>.H-<Zm4>.H }

1 1 0 0 0 0 0 1 0 0 1 Zm 0 1 0 1 1 0 0 0 1 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5425
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMaxNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5426
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.20 BFMIN (multiple and single vector)

Determine the minimum of BFloat16 elements of the second source vector and the corresponding BFloat16
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMIN { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMIN { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, <Zm>.H

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 0 0 0 1 0 0 0 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 1 0 0 1 0 0 0 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5427
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMin(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5428
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.21 BFMIN (multiple vectors)

Determine the minimum of BFloat16 elements of the two or four second source vectors and the corresponding
BFloat16 elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMIN { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMIN { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, { <Zm1>.H-<Zm4>.H }

1 1 0 0 0 0 0 1 0 0 1 Zm 0 1 0 1 1 0 0 0 1 0 0 0 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 0 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5429
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMin(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5430
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.22 BFMINNM (multiple and single vector)

Determine the minimum number value of BFloat16 elements of the second source vector and the corresponding
BFloat16 elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMINNM { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMINNM { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, <Zm>.H

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 0 0 0 1 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 0 Zm 1 0 1 0 1 0 0 1 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5431
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMinNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5432
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.23 BFMINNM (multiple vectors)

Determine the minimum number value of BFloat16 elements of the two or four second source vectors and the
corresponding BFloat16 elements of the two or four first source vectors and destructively place the results in the
corresponding elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2.1 non-widening BFloat16 numerical behaviors corresponding to instructions that
place their results in two or four SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two registers

(FEAT_SVE_B16B16)

Encoding

BFMINNM { <Zdn1>.H-<Zdn2>.H }, { <Zdn1>.H-<Zdn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SVE_B16B16)

Encoding

BFMINNM { <Zdn1>.H-<Zdn4>.H }, { <Zdn1>.H-<Zdn4>.H }, { <Zm1>.H-<Zm4>.H }

1 1 0 0 0 0 0 1 0 0 1 Zm 0 1 0 1 1 0 0 0 1 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 0 0 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5433
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[results[r], e, 16] = BFMinNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5434
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.24 BFMLA (multiple and indexed vector)

Multiply the indexed element of the second source vector by the corresponding BFloat16 floating-point elements
of the two or four first source vectors and destructively add without intermediate rounding to the corresponding
elements of the ZA single-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits. The
vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLA ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLA ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 1 i3h Zn 1 0 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 1 i3h Zn 0 1 0 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5435
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 16;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) element2 = Elem[operand2, s, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5436
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.25 BFMLA (multiple and single vector)

Multiply the corresponding BFloat16 floating-point elements of the two or four first source vector with
corresponding elements of the second source vector and destructively add without intermediate rounding to the
corresponding elements of the ZA single-vector groups. The vector numbers forming the single-vector group within
each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLA ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLA ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 1 1 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 1 1 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5437
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5438
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.26 BFMLA (multiple vectors)

Multiply the corresponding BFloat16 floating-point elements of the two or four first and second source vectors and
destructively add without intermediate rounding to the corresponding elements of the ZA single-vector groups. The
vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLA ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLA ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 1 0 0 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5439
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5440
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.27 BFMLAL (multiple and indexed vector)

This BFloat16 floating-point multiply-add long instruction widens all 16-bit BFloat16 elements in the one, two, or
four first source vectors and the indexed element of the second source vector to single-precision format, then
multiplies the corresponding elements and destructively adds these values without intermediate rounding to the
overlapping 32-bit single-precision elements of the ZA double-vector groups.

The BF16 elements within the second source vector are specified using a 3-bit immediate index which selects the
same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all,
half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 1 i3l Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

i3h

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 1 i3h Zn 0 1 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5441
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 1 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5442
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5443
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.28 BFMLAL (multiple and single vector)

This BFloat16 floating-point multiply-add long instruction widens all 16-bit BFloat16 elements in the one, two, or
four first source vectors and the second source vector to single-precision format, then multiplies the corresponding
elements and destructively adds these values without intermediate rounding to the overlapping 32-bit
single-precision elements of the ZA double-vector groups. The lowest of the two consecutive vector numbers
forming the double-vector group within all of, each half of, or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 1 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 0 Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5444
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA double-vectors

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 1 0 Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5445
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5446
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.29 BFMLAL (multiple vectors)

This BFloat16 floating-point multiply-add long instruction widens all 16-bit BFloat16 elements in the two or four
first and second source vectors to single-precision format, then multiplies the corresponding elements and
destructively adds these values without intermediate rounding to the overlapping 32-bit single-precision elements
of the ZA double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group
within each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

BFMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 0 1 0 Zn 0 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5447
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5448
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.30 BFMLS (multiple and indexed vector)

Multiply the indexed element of the second source vector by the corresponding BFloat16 floating-point elements
of the two or four first source vectors and destructively subtract without intermediate rounding from the
corresponding elements of the ZA single-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits. The
vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLS ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLS ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 1 i3h Zn 1 1 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 1 i3h Zn 0 1 1 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5449
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 16;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) element2 = Elem[operand2, s, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5450
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.31 BFMLS (multiple and single vector)

Multiply the corresponding BFloat16 floating-point elements of the two or four first source vector with
corresponding elements of the second source vector and destructively subtract without intermediate rounding from
the corresponding elements of the ZA single-vector groups. The vector numbers forming the single-vector group
within each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLS ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLS ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 1 1 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 1 1 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5451
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5452
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.32 BFMLS (multiple vectors)

Multiply the corresponding BFloat16 floating-point elements of the two or four first and second source vectors and
destructively subtract without intermediate rounding from the corresponding elements of the ZA single-vector
groups. The vector numbers forming the single-vector group within each half of or each quarter of the ZA array are
selected by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA
array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLS ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFMLS ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 1 0 0 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5453
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 bits(16) element3 = Elem[operand3, e, 16];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5454
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.33 BFMLSL (multiple and indexed vector)

This BFloat16 floating-point multiply-subtract long instruction widens all 16-bit BFloat16 elements in the one, two,
or four first source vectors and the indexed element of the second source vector to single-precision format, then
multiplies the corresponding elements and destructively subtracts these values without intermediate rounding from
the overlapping 32-bit single-precision elements of the ZA double-vector groups.

The BF16 elements within the second source vector are specified using a 3-bit immediate index which selects the
same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all,
half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 1 i3l Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

i3h

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 1 i3h Zn 0 1 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5455
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 1 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5456
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5457
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.34 BFMLSL (multiple and single vector)

This BFloat16 floating-point multiply-subtract long instruction widens all 16-bit BFloat16 elements in the one, two,
or four first source vectors and the second source vector to single-precision format, then multiplies the
corresponding elements and destructively subtracts these values without intermediate rounding from the
overlapping 32-bit single-precision elements of the ZA double-vector groups. The lowest of the two consecutive
vector numbers forming the double-vector group within all of, each half of, or each quarter of the ZA array are
selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA
array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 1 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 0 Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5458
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 1 0 Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5459
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5460
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.35 BFMLSL (multiple vectors)

This BFloat16 floating-point multiply-subtract long instruction widens all 16-bit BFloat16 elements in the two or
four first and second source vectors to single-precision format, then multiplies the corresponding elements and
destructively subtracts these values without intermediate rounding from the overlapping 32-bit single-precision
elements of the ZA double-vector groups. The lowest of the two consecutive vector numbers forming the
double-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

BFMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 0 1 0 Zn 0 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5461
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = BFNeg(element1);
 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5462
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.36 BFMOPA (non-widening)

This instruction works with a 16-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. The first source
is SVLH×1 vector and the second source is 1×SVLH vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLH×SVLH, is then destructively added to the destination tile. This is equivalent to
performing a single multiply-accumulate to each of the destination tile elements.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

SME2

(FEAT_SVE_B16B16)

Encoding

BFMOPA <ZAda>.H, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA1, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV 16;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

1 0 0 0 0 0 0 1 1 0 1 Zm Pm Pn Zn 0 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ZAda
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5463
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(dim*dim*16) operand3 = ZAtile[da, 16, dim*dim*16];
 bits(dim*dim*16) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(16) element1 = Elem[operand1, row, 16];
 bits(16) element2 = Elem[operand2, col, 16];
 bits(16) element3 = Elem[operand3, row*dim+col, 16];

 if ActivePredicateElement(mask1, row, 16) && ActivePredicateElement(mask2, col, 16) then
 if sub_op then element1 = BFNeg(element1);
 Elem[result, row*dim+col, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 else
 Elem[result, row*dim+col, 16] = element3;

 ZAtile[da, 16, dim*dim*16] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5464
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.37 BFMOPA (widening)

The BFloat16 floating-point sum of outer products and accumulate instruction works with a 32-bit element ZA tile.

This instruction multiplies the SVLS×2 sub-matrix of BFloat16 values held in the first source vector by the 2×SVLS
sub-matrix of BFloat16 values in the second source vector.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively added to the
single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and accumulate
to each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME BFloat16 numerical behaviors.

SME

(FEAT_SME)

Encoding

BFMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV 32;
 bits(PL) mask1 = P[a, PL];

1 0 0 0 0 0 0 1 1 0 0 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5465
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];
 bits(dim*dim*32) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 // determine row/col predicates
 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));

 bits(32) sum = Elem[operand3, row*dim+col, 32];
 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0', 16));
 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0', 16));
 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0', 16));
 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0', 16));
 if sub_op then
 boolean honor_altfp = FALSE; // Alternate handling ignored
 if prow_0 then erow_0 = BFNeg(erow_0, honor_altfp);
 if prow_1 then erow_1 = BFNeg(erow_1, honor_altfp);
 sum = BFDotAdd(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR);

 Elem[result, row*dim+col, 32] = sum;

 ZAtile[da, 32, dim*dim*32] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5466
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.38 BFMOPS (non-widening)

This instruction works with a 16-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. The first source
is SVLH×1 vector and the second source is 1×SVLH vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLH×SVLH, is then destructively subtracted from the destination tile. This is
equivalent to performing a single multiply-subtract from each of the destination tile elements.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

SME2

(FEAT_SVE_B16B16)

Encoding

BFMOPS <ZAda>.H, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA1, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV 16;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];

1 0 0 0 0 0 0 1 1 0 1 Zm Pm Pn Zn 1 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ZAda
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5467
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(dim*dim*16) operand3 = ZAtile[da, 16, dim*dim*16];
 bits(dim*dim*16) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(16) element1 = Elem[operand1, row, 16];
 bits(16) element2 = Elem[operand2, col, 16];
 bits(16) element3 = Elem[operand3, row*dim+col, 16];

 if ActivePredicateElement(mask1, row, 16) && ActivePredicateElement(mask2, col, 16) then
 if sub_op then element1 = BFNeg(element1);
 Elem[result, row*dim+col, 16] = BFMulAdd_ZA(element3, element1, element2, FPCR);
 else
 Elem[result, row*dim+col, 16] = element3;

 ZAtile[da, 16, dim*dim*16] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5468
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.39 BFMOPS (widening)

The BFloat16 floating-point sum of outer products and subtract instruction works with a 32-bit element ZA tile.

This instruction multiplies the SVLS×2 sub-matrix of BFloat16 values held in the first source vector by the 2×SVLS
sub-matrix of BFloat16 values in the second source vector.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively subtracted
from the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
subtract from each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME BFloat16 numerical behaviors.

SME

(FEAT_SME)

Encoding

BFMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV 32;
 bits(PL) mask1 = P[a, PL];

1 0 0 0 0 0 0 1 1 0 0 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5469
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];
 bits(dim*dim*32) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 // determine row/col predicates
 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));

 bits(32) sum = Elem[operand3, row*dim+col, 32];
 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0', 16));
 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0', 16));
 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0', 16));
 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0', 16));
 if sub_op then
 boolean honor_altfp = FALSE; // Alternate handling ignored
 if prow_0 then erow_0 = BFNeg(erow_0, honor_altfp);
 if prow_1 then erow_1 = BFNeg(erow_1, honor_altfp);
 sum = BFDotAdd(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR);

 Elem[result, row*dim+col, 32] = sum;

 ZAtile[da, 32, dim*dim*32] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5470
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.40 BFSUB

Destructively subtract all elements of the two or four source vectors from the corresponding BFloat16 elements of
the ZA single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter
of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter
the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2.1 ZA-targeting non-widening BFloat16 numerical behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.B16B16 indicates whether this instruction is implemented.

Two ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFSUB ZA.H[<Wv>, <offs>{, VGx2}], { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SVE_B16B16)

Encoding

BFSUB ZA.H[<Wv>, <offs>{, VGx4}], { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SVE_B16B16) then UNDEFINED;
 integer v = UInt('010':Rv);
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 Rv 1 1 1 Zm 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S

1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 Rv 1 1 1 Zm 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5471
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zm"
times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zm"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = ZAvector[vec, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, e, 16];
 bits(16) element2 = Elem[operand2, e, 16];
 Elem[result, e, 16] = BFSub_ZA(element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5472
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.41 BFVDOT

The instruction computes the sum-of-products of each vertical pair of BFloat16 values in the corresponding
elements of the two first source vectors with the pair of BFloat16 values in the indexed 32-bit group of the
corresponding 128-bit segment of the second source vector. The single-precision sum-of-products are destructively
added to the corresponding single-precision elements of the two ZA single-vector groups.

The BF16 pairs within the second source vector are specified using an immediate index which selects the same
BF16 pair position within each 128-bit vector segment. The element index range is from 0 to 3.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

BFVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 0 i2 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5473
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 2;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand1a = Z[n, VL];
 bits(VL) operand1b = Z[n+1, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) elt1_a = Elem[operand1a, 2 * e + r, 16];
 bits(16) elt1_b = Elem[operand1b, 2 * e + r, 16];
 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5474
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.42 BMOPA

This instruction works with 32-bit element ZA tile. This instruction generates an outer product of the first source
SVLS×1 vector and the second source 1×SVLS vector. Each outer product element is obtained as population count
of the bitwise XNOR result of the corresponding 32-bit elements of the first source vector and the second source
vector. Each source vector is independently predicated by a corresponding governing predicate. When either source
vector element is inactive the corresponding destination tile element remains unmodified. The resulting
SVLS×SVLS product is then destructively added to the destination tile.

SME2

(FEAT_SME2)

Encoding

BMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;

 for row = 0 to dim-1
 bits(esize) element1 = Elem[operand1, row, esize];
 for col = 0 to dim-1
 bits(esize) element2 = Elem[operand2, col, esize];

1 0 0 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 0 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5475
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(esize) element3 = Elem[operand3, row*dim + col, esize];
 if (ActivePredicateElement(mask1, row, esize) &&
 ActivePredicateElement(mask2, col, esize)) then
 integer res = BitCount(NOT(element1 EOR element2));
 if sub_op then res = -res;
 Elem[result, row*dim + col, esize] = element3 + res;
 else
 Elem[result, row*dim + col, esize] = element3;
 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5476
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.43 BMOPS

This instruction works with 32-bit element ZA tile. This instruction generates an outer product of the first source
SVLS×1 vector and the second source 1×SVLS vector. Each outer product element is obtained as population count
of the bitwise XNOR result of the corresponding 32-bit elements of the first source vector and the second source
vector. Each source vector is independently predicated by a corresponding governing predicate. When either source
vector element is inactive the corresponding destination tile element remains unmodified. The resulting
SVLS×SVLS product is then destructively subtracted from the destination tile.

SME2

(FEAT_SME2)

Encoding

BMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;

 for row = 0 to dim-1
 bits(esize) element1 = Elem[operand1, row, esize];
 for col = 0 to dim-1
 bits(esize) element2 = Elem[operand2, col, esize];

1 0 0 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 1 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5477
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(esize) element3 = Elem[operand3, row*dim + col, esize];
 if (ActivePredicateElement(mask1, row, esize) &&
 ActivePredicateElement(mask2, col, esize)) then
 integer res = BitCount(NOT(element1 EOR element2));
 if sub_op then res = -res;
 Elem[result, row*dim + col, esize] = element3 + res;
 else
 Elem[result, row*dim + col, esize] = element3;
 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5478
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.44 FADD

Destructively add all elements of the two or four source vectors to the corresponding elements of the ZA
single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FADD ZA.H[<Wv>, <offs>{, VGx2}], { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 0 0 Rv 1 1 1 Zm 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 Rv 1 1 1 Zm 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5479
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA single-vectors

(FEAT_SME2)

Encoding

FADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FADD ZA.H[<Wv>, <offs>{, VGx4}], { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors and two ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors and four ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the source multi-vector group, encoded as "Zm" times 4.

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 1 0 Rv 1 1 1 Zm 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 Rv 1 1 1 Zm 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5480
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zm"
times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zm"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = ZAvector[vec, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd_ZA(element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5481
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.45 FCLAMP

Clamp each floating-point element in the two or four destination vectors to between the floating-point minimum
value in the corresponding element of the first source vector and the floating-point maximum value in the
corresponding element of the second source vector and destructively place the clamped results in the corresponding
elements of the two or four destination vectors.

Regardless of the value of FPCR.AH, the behavior is as follows for each minimum number and maximum number
operation:

• Negative zero compares less than positive zero.

• If one value is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either value is a signaling NaN or if both values are NaNs, the result is a quiet NaN.

• When FPCR.DN is 1, if either value is a signaling NaN or if both values are NaNs, the result is Default NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FCLAMP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FCLAMP { <Zd1>.<T>-<Zd4>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);

1 1 0 0 0 0 0 1 !=00 1 Zm 1 1 0 0 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 Zm 1 1 0 0 1 0 Zn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5482
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt(Zm);
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 Elem[results[r], e, esize] = FPMinNum(FPMaxNum(element1, element3, FPCR), element2, FPCR);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5483
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.46 FCVT (narrowing)

Convert to half-precision from single-precision, each element of the two source vectors, and place the results in the
half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

FCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 bits(VL) result;

 bits(VL) operand1 = Z[n+0, VL];
 bits(VL) operand2 = Z[n+1, VL];
 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, e, 32];
 bits(32) element2 = Elem[operand2, e, 32];
 bits(16) res1 = FPConvertSVE(element1, FPCR, 16);
 bits(16) res2 = FPConvertSVE(element2, FPCR, 16);
 Elem[result, e, 16] = res1;
 Elem[result, elements+e, 16] = res2;

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

N

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5484
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.47 FCVT (widening)

Convert to single-precision from half-precision, each element of the source vector, and place the results in the
double-width destination elements of the destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F16F16 indicates whether this instruction is implemented.

SME2

(FEAT_SME_F16F16)

Encoding

FCVT { <Zd1>.S-<Zd2>.S }, <Zn>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd:'0');

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 16;
 bits(VL) operand = Z[n, VL];
 bits(2*VL) result;

 for e = 0 to elements-1
 bits(16) element = Elem[operand, e, 16];
 bits(32) res = FPConvertSVE(element, FPCR, 32);
 Elem[result, e, 32] = res;

 Z[d+0, VL] = result<VL-1:0>;
 Z[d+1, VL] = result<2*VL-1:VL>;

1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5485
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.48 FCVTL

Convert to single-precision from half-precision, each element of the source vector, and place the deinterleaved
results in the double-width destination elements of the destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F16F16 indicates whether this instruction is implemented.

SME2

(FEAT_SME_F16F16)

Encoding

FCVTL { <Zd1>.S-<Zd2>.S }, <Zn>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer n = UInt(Zn);
 integer d = UInt(Zd:'0');

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer pairs = VL DIV 32;
 bits(VL) operand = Z[n, VL];
 bits(VL) result0;
 bits(VL) result1;

 for p = 0 to pairs-1
 bits(16) element1 = Elem[operand, 2*p+0, 16];
 bits(16) element2 = Elem[operand, 2*p+1, 16];
 bits(32) res1 = FPConvertSVE(element1, FPCR, 32);
 bits(32) res2 = FPConvertSVE(element2, FPCR, 32);
 Elem[result0, p, 32] = res1;
 Elem[result1, p, 32] = res2;

 Z[d+0, VL] = result0;
 Z[d+1, VL] = result1;

1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 Zn Zd 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0

L

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5486
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.49 FCVTN

Convert to half-precision from single-precision, each element of the two source vectors, and place the two-way
interleaved results in the half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

FCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 bits(VL) result;

 bits(VL) operand1 = Z[n+0, VL];
 bits(VL) operand2 = Z[n+1, VL];
 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, e, 32];
 bits(32) element2 = Elem[operand2, e, 32];
 bits(16) res1 = FPConvertSVE(element1, FPCR, 16);
 bits(16) res2 = FPConvertSVE(element2, FPCR, 16);
 Elem[result, 2*e + 0, 16] = res1;
 Elem[result, 2*e + 1, 16] = res2;

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 Zn 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

N

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5487
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.50 FCVTZS

Convert to the signed 32-bit integer nearer to zero from single-precision, each element of the two or four source
vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FCVTZS { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Four registers

(FEAT_SME2)

Encoding

FCVTZS { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

U

1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5488
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FPToFixed(element, 0, unsigned, FPCR, rounding, 32);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5489
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.51 FCVTZU

Convert to the unsigned 32-bit integer nearer to zero from single-precision, each element of the two or four source
vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FCVTZU { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Four registers

(FEAT_SME2)

Encoding

FCVTZU { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 Zn 1 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

U

1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 Zn 0 1 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5490
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FPToFixed(element, 0, unsigned, FPCR, rounding, 32);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5491
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.52 FDOT (multiple and indexed vector)

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in the
corresponding 32-bit elements of the two or four first source vectors and the indexed 32-bit element of the second
source vector, without intermediate rounding. The single-precision sum-of-products are destructively added to the
corresponding single-precision elements of the ZA single-vector groups.

The half-precision floating-point pairs within the second source vector are specified using an immediate index
which selects the same pair position within each 128-bit vector segment. The element index range is from 0 to 3.
The vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected
by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5492
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer index = UInt(i2);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5493
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.53 FDOT (multiple and single vector)

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in the
corresponding 32-bit elements of the two or four first source vectors and the second source vector, without
intermediate rounding. The single-precision sum-of-products are destructively added to the corresponding
single-precision elements of the ZA single-vector groups. The vector numbers forming the single-vector group
within each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 0 0 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 0 0 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5494
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5495
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.54 FDOT (multiple vectors)

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in the
corresponding 32-bit elements of the two or four first and second source vectors, without intermediate rounding.
The single-precision sum-of-products are destructively added to the corresponding single-precision elements of the
ZA single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter
of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter
the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 1 0 0 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5496
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5497
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.55 FMAX (multiple and single vector)

Determine the maximum of floating-point elements of the second source vector and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 0 0 0 1 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 1 0 0 1 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5498
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMax(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5499
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.56 FMAX (multiple vectors)

Determine the maximum of floating-point elements of the two or four second source vectors and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

1 1 0 0 0 0 0 1 !=00 1 Zm 0 1 0 1 1 0 0 0 1 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5500
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMax(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5501
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.57 FMAXNM (multiple and single vector)

Determine the maximum number value of floating-point elements of the second source vector and the
corresponding floating-point elements of the two or four first source vectors and destructively place the results in
the corresponding elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMAXNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMAXNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 0 0 0 1 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 1 0 0 1 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5502
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMaxNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5503
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.58 FMAXNM (multiple vectors)

Determine the maximum number value of floating-point elements of the two or four second source vectors and the
corresponding floating-point elements of the two or four first source vectors and destructively place the results in
the corresponding elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMAXNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMAXNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');

1 1 0 0 0 0 0 1 !=00 1 Zm 0 1 0 1 1 0 0 0 1 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5504
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMaxNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5505
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.59 FMIN (multiple and single vector)

Determine the minimum of floating-point elements of the second source vector and the corresponding floating-point
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 0 0 0 1 0 0 0 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 1 0 0 1 0 0 0 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5506
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMin(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5507
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.60 FMIN (multiple vectors)

Determine the minimum of floating-point elements of the two or four second source vectors and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

When FPCR.AH is 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN.

• When FPCR.DN is 1, if either element is a NaN, the result is Default NaN.

When FPCR.AH is 1, the behavior is as follows:

• If both elements are zeros, regardless of the sign of either zero, the result is the second element.

• If either element is a NaN, regardless of the value of FPCR.DN, the result is the second element.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

1 1 0 0 0 0 0 1 !=00 1 Zm 0 1 0 1 1 0 0 0 1 0 0 0 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 0 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5508
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMin(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5509
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.61 FMINNM (multiple and single vector)

Determine the minimum number value of floating-point elements of the second source vector and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMINNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMINNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 0 0 0 1 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 0 Zm 1 0 1 0 1 0 0 1 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5510
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMinNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5511
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.62 FMINNM (multiple vectors)

Determine the minimum number value of floating-point elements of the two or four second source vectors and the
corresponding floating-point elements of the two or four first source vectors and destructively place the results in
the corresponding elements of the two or four first source vectors.

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one element is numeric and the other is a quiet NaN, the result is the numeric value.

• When FPCR.DN is 0, if either element is a signaling NaN or if both elements are NaNs, the result is a quiet
NaN.

• When FPCR.DN is 1, if either element is a signaling NaN or if both elements are NaNs, the result is Default
NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FMINNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

FMINNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');

1 1 0 0 0 0 0 1 !=00 1 Zm 0 1 0 1 1 0 0 0 1 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size

1 1 0 0 0 0 0 1 !=00 1 Zm 0 0 1 0 1 1 1 0 0 1 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5512
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[results[r], e, esize] = FPMinNum(element1, element2, FPCR);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5513
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.63 FMLA (multiple and indexed vector)

Multiply the indexed element of the second source vector by the corresponding floating-point elements of the two
or four first source vectors and destructively add without intermediate rounding to the corresponding elements of
the ZA single-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 1 to 2 bits depending on the size of the element. The vector numbers
forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLA ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Two ZA single-vectors of single precision elements

(FEAT_SME2)

Encoding

FMLA ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.S-<Zn2>.S }, <Zm>.S[<index>]

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 1 i3h Zn 0 0 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 0 i2 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5514
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Two ZA single-vectors of double precision elements

(FEAT_SME_F64F64)

Encoding

FMLA ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }, <Zm>.D[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLA ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 0 0 i1 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 0 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5515
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA single-vectors of single precision elements

(FEAT_SME2)

Encoding

FMLA ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.S-<Zn4>.S }, <Zm>.S[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Four ZA single-vectors of double precision elements

(FEAT_SME_F64F64)

Encoding

FMLA ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }, <Zm>.D[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors of double precision elements, two ZA single-vectors of half precision
elements and two ZA single-vectors of single precision elements variant: is the name of the first
scalable vector register of the first source multi-vector group, encoded as "Zn" times 2.

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 0 i2 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 0 i1 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5516
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the four ZA single-vectors of double precision elements, four ZA single-vectors of half
precision elements and four ZA single-vectors of single precision elements variant: is the name of
the first scalable vector register of the first source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of half precision elements and two ZA single-vectors of half
precision elements variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the four ZA single-vectors of single precision elements and two ZA single-vectors of single
precision elements variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the four ZA single-vectors of double precision elements and two ZA single-vectors of double
precision elements variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) element2 = Elem[operand2, s, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5517
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.64 FMLA (multiple and single vector)

Multiply the corresponding floating-point elements of the two or four first source vector with corresponding
elements of the second source vector and destructively add without intermediate rounding to the corresponding
elements of the ZA single-vector groups. The vector numbers forming the single-vector group within each half of
or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FMLA ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLA ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 0 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 1 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5518
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FMLA ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLA ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 0 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 1 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5519
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5520
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.65 FMLA (multiple vectors)

Multiply the corresponding floating-point elements of the two or four first and second source vectors and
destructively add without intermediate rounding to the corresponding elements of the ZA single-vector groups. The
vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FMLA ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLA ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 1 0 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 1 0 0 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5521
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FMLA ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLA ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 1 0 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5522
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors and two ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the first source multi-vector group, encoded as "Zn"
times 2.

For the four ZA single-vectors and four ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the first source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors and two ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the second source multi-vector group, encoded as "Zm"
times 2.

For the four ZA single-vectors and four ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the second source multi-vector group, encoded as "Zm"
times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5523
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.66 FMLAL (multiple and indexed vector)

This half-precision floating-point multiply-add long instruction widens all 16-bit half-precision elements in the one,
two, or four first source vectors and the indexed element of the second source vector to single-precision format, then
multiplies the corresponding elements and destructively adds these values without intermediate rounding to the
overlapping 32-bit single-precision elements of the ZA double-vector groups.

The half-precision elements within the second source vector are specified using a 3-bit immediate index which
selects the same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all,
half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 1 i3l Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

i3h

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 1 i3h Zn 0 0 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5524
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 0 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5525
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5526
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.67 FMLAL (multiple and single vector)

This half-precision floating-point multiply-add long instruction widens all 16-bit half-precision elements in the one,
two, or four first source vectors and the second source vector to single-precision format, then multiplies the
corresponding elements and destructively adds these values without intermediate rounding to the overlapping 32-bit
single-precision elements of the ZA double-vector groups. The lowest of the two consecutive vector numbers
forming the double-vector group within all of, each half of, or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 0 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5527
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA double-vectors

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 1 0 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5528
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5529
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.68 FMLAL (multiple vectors)

This half-precision floating-point multiply-add long instruction widens all 16-bit half-precision elements in the two
or four first and second source vectors to single-precision format, then multiplies the corresponding elements and
destructively adds these values without intermediate rounding to the overlapping 32-bit single-precision elements
of the ZA double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group
within each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

FMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 boolean sub_op = FALSE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 0 1 0 Zn 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5530
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5531
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.69 FMLS (multiple and indexed vector)

Multiply the indexed element of the second source vector by the corresponding floating-point elements of the two
or four first source vectors and destructively subtract without intermediate rounding from the corresponding
elements of the ZA single-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 1 to 2 bits depending on the size of the element. The vector numbers
forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLS ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Two ZA single-vectors of single precision elements

(FEAT_SME2)

Encoding

FMLS ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.S-<Zn2>.S }, <Zm>.S[<index>]

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 1 i3h Zn 0 1 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 0 i2 Zn 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5532
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Two ZA single-vectors of double precision elements

(FEAT_SME_F64F64)

Encoding

FMLS ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }, <Zm>.D[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLS ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 0 0 i1 Zn 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 1 i3l off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5533
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA single-vectors of single precision elements

(FEAT_SME2)

Encoding

FMLS ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.S-<Zn4>.S }, <Zm>.S[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Four ZA single-vectors of double precision elements

(FEAT_SME_F64F64)

Encoding

FMLS ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }, <Zm>.D[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors of double precision elements, two ZA single-vectors of half precision
elements and two ZA single-vectors of single precision elements variant: is the name of the first
scalable vector register of the first source multi-vector group, encoded as "Zn" times 2.

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 0 i2 Zn 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 0 i1 Zn 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5534
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the four ZA single-vectors of double precision elements, four ZA single-vectors of half
precision elements and four ZA single-vectors of single precision elements variant: is the name of
the first scalable vector register of the first source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of half precision elements and two ZA single-vectors of half
precision elements variant: is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

For the four ZA single-vectors of single precision elements and two ZA single-vectors of single
precision elements variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the four ZA single-vectors of double precision elements and two ZA single-vectors of double
precision elements variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) element2 = Elem[operand2, s, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5535
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.70 FMLS (multiple and single vector)

Multiply the corresponding floating-point elements of the two or four first source vector with corresponding
elements of the second source vector and destructively subtract without intermediate rounding from the
corresponding elements of the ZA single-vector groups. The vector numbers forming the single-vector group within
each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FMLS ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLS ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 0 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 1 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5536
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FMLS ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLS ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 0 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 1 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5537
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5538
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.71 FMLS (multiple vectors)

Multiply the corresponding floating-point elements of the two or four first and second source vectors and
destructively subtract without intermediate rounding from the corresponding elements of the ZA single-vector
groups. The vector numbers forming the single-vector group within each half of or each quarter of the ZA array are
selected by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA
array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FMLS ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLS ZA.H[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 1 0 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 1 0 0 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5539
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

FMLS ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FMLS ZA.H[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() || !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 1 0 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 1 0 0 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5540
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors and two ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the first source multi-vector group, encoded as "Zn"
times 2.

For the four ZA single-vectors and four ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the first source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors and two ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the second source multi-vector group, encoded as "Zm"
times 2.

For the four ZA single-vectors and four ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the second source multi-vector group, encoded as "Zm"
times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 bits(esize) element3 = Elem[operand3, e, esize];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5541
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.72 FMLSL (multiple and indexed vector)

This half-precision floating-point multiply-subtract long instruction widens all 16-bit half-precision elements in the
one, two, or four first source vectors and the indexed element of the second source vector to single-precision format,
then multiplies the corresponding elements and destructively subtracts these values without intermediate rounding
from the overlapping 32-bit single-precision elements of the ZA double-vector groups.

The half-precision elements within the second source vector are specified using a 3-bit immediate index which
selects the same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all,
half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 1 i3l Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

i3h

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 1 i3h Zn 0 0 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5542
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 1 i3h Zn 0 0 0 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5543
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, s, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5544
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.73 FMLSL (multiple and single vector)

This half-precision floating-point multiply-subtract long instruction widens all 16-bit half-precision elements in the
one, two, or four first source vectors and the second source vector to single-precision format, then multiplies the
corresponding elements and destructively subtracts these values without intermediate rounding from the
overlapping 32-bit single-precision elements of the ZA double-vector groups. The lowest of the two consecutive
vector numbers forming the double-vector group within all of, each half of, or each quarter of the ZA array are
selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA
array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 1 0 Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5545
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 1 0 Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5546
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5547
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.74 FMLSL (multiple vectors)

This half-precision floating-point multiply-subtract long instruction widens all 16-bit half-precision elements in the
two or four first and second source vectors to single-precision format, then multiplies the corresponding elements
and destructively subtracts these values without intermediate rounding from the overlapping 32-bit single-precision
elements of the ZA double-vector groups. The lowest of the two consecutive vector numbers forming the
double-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

FMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 boolean sub_op = TRUE;
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 0 1 0 Zn 0 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5548
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
 bits(32) element3 = Elem[operand3, e, 32];
 if sub_op then element1 = FPNeg(element1, FPCR);
 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR);
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5549
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.75 FMOPA (non-widening)

The single-precision variant works with a 32-bit element ZA tile.

The double-precision variant works with a 64-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. In case of the
single-precision variant, the first source is SVLS×1 vector and the second source is 1×SVLS vector. In case of the
double-precision variant, the first source is SVLD×1 vector and the second source is 1×SVLD vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLS×SVLS in case of single-precision variant or SVLD×SVLD in case of
double-precision variant, is then destructively added to the destination tile. This is equivalent to performing a single
multiply-accumulate to each of the destination tile elements.

This instruction follows SME ZA-targeting floating-point behaviors.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

Single-precision

(FEAT_SME)

Encoding

FMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;

Double-precision

(FEAT_SME_F64F64)

Encoding

FMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSMEF64F64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);

1 0 0 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

1 0 0 0 0 0 0 0 1 1 0 Zm Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5550
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;

Assembler symbols

<ZAda> For the single-precision variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the double-precision variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) element1 = Elem[operand1, row, esize];
 bits(esize) element2 = Elem[operand2, col, esize];
 bits(esize) element3 = Elem[operand3, row*dim+col, esize];

 if (ActivePredicateElement(mask1, row, esize) &&
 ActivePredicateElement(mask2, col, esize)) then
 if sub_op then element1 = FPNeg(element1);
 Elem[result, row*dim+col, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
 else
 Elem[result, row*dim+col, esize] = element3;

 ZAtile[da, esize, dim*dim*esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5551
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.76 FMOPA (widening)

The half-precision floating-point sum of outer products and accumulate instruction works with a 32-bit element ZA
tile.

This instruction widens the SVLS×2 sub-matrix of half-precision floating-point values held in the first source vector
to single-precision floating-point values and multiplies it by the widened 2×SVLS sub-matrix of half-precision
floating-point values in the second source vector to single-precision floating-point values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively added to the
single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and accumulate
to each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME ZA-targeting floating-point behaviors.

SME

(FEAT_SME)

Encoding

FMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

1 0 0 0 0 0 0 1 1 0 1 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5552
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV 32;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];
 bits(dim*dim*32) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 // determine row/col predicates
 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));

 bits(32) sum = Elem[operand3, row*dim+col, 32];
 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0', 16));
 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0', 16));
 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0', 16));
 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0', 16));
 if sub_op then
 if prow_0 then erow_0 = FPNeg(erow_0, FPCR);
 if prow_1 then erow_1 = FPNeg(erow_1, FPCR);
 sum = FPDotAdd_ZA(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR);

 Elem[result, row*dim+col, 32] = sum;

 ZAtile[da, 32, dim*dim*32] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5553
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.77 FMOPS (non-widening)

The single-precision variant works with a 32-bit element ZA tile.

The double-precision variant works with a 64-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. In case of the
single-precision variant, the first source is SVLS×1 vector and the second source is 1×SVLS vector. In case of the
double-precision variant, the first source is SVLD×1 vector and the second source is 1×SVLD vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLS×SVLS in case of single-precision variant or SVLD×SVLD in case of
double-precision variant, is then destructively subtracted from the destination tile. This is equivalent to performing
a single multiply-subtract from each of the destination tile elements.

This instruction follows SME ZA-targeting floating-point behaviors.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

Single-precision

(FEAT_SME)

Encoding

FMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;

Double-precision

(FEAT_SME_F64F64)

Encoding

FMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D, <Zm>.D

Decode for this encoding

 if !HaveSMEF64F64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);

1 0 0 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

1 0 0 0 0 0 0 0 1 1 0 Zm Pm Pn Zn 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5554
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;

Assembler symbols

<ZAda> For the single-precision variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the double-precision variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) element1 = Elem[operand1, row, esize];
 bits(esize) element2 = Elem[operand2, col, esize];
 bits(esize) element3 = Elem[operand3, row*dim+col, esize];

 if (ActivePredicateElement(mask1, row, esize) &&
 ActivePredicateElement(mask2, col, esize)) then
 if sub_op then element1 = FPNeg(element1);
 Elem[result, row*dim+col, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
 else
 Elem[result, row*dim+col, esize] = element3;

 ZAtile[da, esize, dim*dim*esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5555
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.78 FMOPS (widening)

The half-precision floating-point sum of outer products and subtract instruction works with a 32-bit element ZA tile.

This instruction widens the SVLS×2 sub-matrix of half-precision floating-point values held in the first source vector
to single-precision floating-point values and multiplies it by the widened 2×SVLS sub-matrix of half-precision
floating-point values in the second source vector to single-precision floating-point values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively subtracted
from the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
subtract from each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME ZA-targeting floating-point behaviors.

SME

(FEAT_SME)

Encoding

FMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV 32;

1 0 0 0 0 0 0 1 1 0 1 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5556
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];
 bits(dim*dim*32) result;

 for row = 0 to dim-1
 for col = 0 to dim-1
 // determine row/col predicates
 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));

 bits(32) sum = Elem[operand3, row*dim+col, 32];
 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0', 16));
 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0', 16));
 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0', 16));
 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0', 16));
 if sub_op then
 if prow_0 then erow_0 = FPNeg(erow_0, FPCR);
 if prow_1 then erow_1 = FPNeg(erow_1, FPCR);
 sum = FPDotAdd_ZA(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR);

 Elem[result, row*dim+col, 32] = sum;

 ZAtile[da, 32, dim*dim*32] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5557
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.79 FRINTA

Round to the nearest integral floating-point value, with ties rounding away from zero, each element of the two or
four source vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FRINTA { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_TIEAWAY;

Four registers

(FEAT_SME2)

Encoding

FRINTA { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_TIEAWAY;

1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5558
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FPRoundInt(element, FPCR, rounding, exact);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5559
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.80 FRINTM

Round down to an integral floating-point value, each element of the two or four source vectors, and place the results
in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FRINTM { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_NEGINF;

Four registers

(FEAT_SME2)

Encoding

FRINTM { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_NEGINF;

1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5560
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FPRoundInt(element, FPCR, rounding, exact);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5561
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.81 FRINTN

Round to the nearest integral floating-point value, with ties rounding to an even value, each element of the two or
four source vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FRINTN { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_TIEEVEN;

Four registers

(FEAT_SME2)

Encoding

FRINTN { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_TIEEVEN;

1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5562
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FPRoundInt(element, FPCR, rounding, exact);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5563
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.82 FRINTP

Round up to an integral floating-point value, each element of the two or four source vectors, and place the results
in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

FRINTP { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_POSINF;

Four registers

(FEAT_SME2)

Encoding

FRINTP { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean exact = FALSE;
 FPRounding rounding = FPRounding_POSINF;

1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5564
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FPRoundInt(element, FPCR, rounding, exact);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5565
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.83 FSUB

Destructively subtract all elements of the two or four source vectors from the corresponding elements of the ZA
single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented, and
ID_AA64SMFR0_EL1.F16F16 indicates whether the half-precision variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

FSUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Two ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FSUB ZA.H[<Wv>, <offs>{, VGx2}], { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 0 0 Rv 1 1 1 Zm 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 Rv 1 1 1 Zm 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5566
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA single-vectors

(FEAT_SME2)

Encoding

FSUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

Four ZA single-vectors of half precision elements

(FEAT_SME_F16F16)

Encoding

FSUB ZA.H[<Wv>, <offs>{, VGx4}], { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SME_F16F16) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 16;
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors and two ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors and four ZA single-vectors of half precision elements variant: is the
name of the first scalable vector register of the source multi-vector group, encoded as "Zm" times 4.

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 1 0 Rv 1 1 1 Zm 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 Rv 1 1 1 Zm 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

sz S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5567
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zm"
times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zm"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = ZAvector[vec, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPSub_ZA(element1, element2, FPCR);
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5568
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.84 FVDOT

The instruction computes the fused sum-of-products of each vertical pair of half-precision floating-point values in
the corresponding elements of the two first source vectors with the pair of half-precision floating-point values in the
indexed 32-bit group of the corresponding 128-bit segment of the second source vector, without intermediate
rounding. The single-precision sum-of-products are destructively added to the corresponding single-precision
elements of the two ZA single-vector groups.

The half-precision floating-point pairs within the second source vector are specified using an immediate index
which selects the same pair position within each 128-bit vector segment. The element index range is from 0 to 3.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

FVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 0 i2 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5569
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 2;
 integer eltspersegment = 128 DIV 32;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand1a = Z[n, VL];
 bits(VL) operand1b = Z[n+1, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(16) elt1_a = Elem[operand1a, 2 * e + r, 16];
 bits(16) elt1_b = Elem[operand1b, 2 * e + r, 16];
 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
 bits(32) sum = Elem[operand3, e, 32];
 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR);
 Elem[result, e, 32] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5570
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.85 LD1B (scalar plus immediate, strided registers)

Contiguous load of unsigned bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LD1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 0 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 0 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5571
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5572
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5573
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.86 LD1B (scalar plus scalar, strided registers)

Contiguous load of unsigned bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;

Four registers

(FEAT_SME2)

Encoding

LD1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 0 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 0 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5574
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5575
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5576
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.87 LD1B (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 8-bit elements in a vector. The immediate offset is in the range 0 to 15. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is added to the base address. Inactive elements will
not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

SME

(FEAT_SME)

Encoding

LD1B { ZA0<HV>.B[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = 0;
 integer offset = UInt(off4);
 constant integer esize = 8;
 boolean vertical = V == '1';

Assembler symbols

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];

1 1 1 0 0 0 0 0 0 0 0 Rm V Rs Pg Rn 0 off4

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5577
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 for e = 0 to dim - 1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);
 moffs = moffs + 1;

 ZAslice[t, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5578
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.88 LD1D (scalar plus immediate, strided registers)

Contiguous load of unsigned doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LD1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 1 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 1 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5579
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5580
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5581
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.89 LD1D (scalar plus scalar, strided registers)

Contiguous load of unsigned doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;

Four registers

(FEAT_SME2)

Encoding

LD1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 1 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 1 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5582
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5583
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5584
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.90 LD1D (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 64-bit elements in a vector. The immediate offset is in the range 0 to 1. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 8 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

SME

(FEAT_SME)

Encoding

LD1D { <ZAt><HV>.D[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #3}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = UInt(o1);
 constant integer esize = 64;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;

1 1 1 0 0 0 0 0 1 1 0 Rm V Rs Pg Rn 0 ZAt o1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 1 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5585
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 for e = 0 to dim - 1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);
 moffs = moffs + 1;

 ZAslice[t, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5586
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.91 LD1H (scalar plus immediate, strided registers)

Contiguous load of unsigned halfwords to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LD1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 0 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 0 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5587
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5588
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5589
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.92 LD1H (scalar plus scalar, strided registers)

Contiguous load of unsigned halfwords to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;

Four registers

(FEAT_SME2)

Encoding

LD1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 0 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 0 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5590
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5591
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5592
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.93 LD1H (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 16-bit elements in a vector. The immediate offset is in the range 0 to 7. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 2 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

SME

(FEAT_SME)

Encoding

LD1H { <ZAt><HV>.H[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = UInt(off3);
 constant integer esize = 16;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;

1 1 1 0 0 0 0 0 0 1 0 Rm V Rs Pg Rn 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

msz<1>

msz<0>

ZAt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5593
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 for e = 0 to dim - 1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);
 moffs = moffs + 1;

 ZAslice[t, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5594
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.94 LD1Q

The slice number in the tile is selected by the slice index register, modulo the number of 128-bit elements in a
Streaming SVE vector. The memory address is generated by scalar base and optional scalar offset which is
multiplied by 16 and added to the base address. Inactive elements will not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

SME

(FEAT_SME)

Encoding

LD1Q { <ZAt><HV>.Q[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #4}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = 0;
 constant integer esize = 128;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, with implicit value 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];

1 1 1 0 0 0 0 1 1 1 0 Rm V Rs Pg Rn 0 ZAt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5595
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 for e = 0 to dim - 1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);
 moffs = moffs + 1;

 ZAslice[t, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5596
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.95 LD1W (scalar plus immediate, strided registers)

Contiguous load of unsigned words to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LD1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 1 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 1 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5597
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5598
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5599
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.96 LD1W (scalar plus scalar, strided registers)

Contiguous load of unsigned words to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

Two registers

(FEAT_SME2)

Encoding

LD1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;

Four registers

(FEAT_SME2)

Encoding

LD1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 1 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 1 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5600
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5601
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5602
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.97 LD1W (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 32-bit elements in a vector. The immediate offset is in the range 0 to 3. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 4 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

SME

(FEAT_SME)

Encoding

LD1W { <ZAt><HV>.S[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = UInt(off2);
 constant integer esize = 32;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;

1 1 1 0 0 0 0 0 1 0 0 Rm V Rs Pg Rn 0 ZAt off2

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5603
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) result;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 for e = 0 to dim - 1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[result, e, esize] = Zeros(esize);
 moffs = moffs + 1;

 ZAslice[t, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5604
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.98 LDNT1B (scalar plus immediate, strided registers)

Contiguous load non-temporal of bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LDNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 0 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 0 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5605
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 constant integer esize = 8;
 integer offset = SInt(imm4);

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5606
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5607
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.99 LDNT1B (scalar plus scalar, strided registers)

Contiguous load non-temporal of bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;

Four registers

(FEAT_SME2)

Encoding

LDNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 0 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 0 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5608
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5609
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5610
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.100 LDNT1D (scalar plus immediate, strided registers)

Contiguous load non-temporal of doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LDNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 1 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 1 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5611
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 constant integer esize = 64;
 integer offset = SInt(imm4);

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5612
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5613
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.101 LDNT1D (scalar plus scalar, strided registers)

Contiguous load non-temporal of doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;

Four registers

(FEAT_SME2)

Encoding

LDNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 1 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 1 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5614
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5615
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5616
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.102 LDNT1H (scalar plus immediate, strided registers)

Contiguous load non-temporal of halfwords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LDNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 0 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 0 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5617
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 constant integer esize = 16;
 integer offset = SInt(imm4);

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5618
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5619
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.103 LDNT1H (scalar plus scalar, strided registers)

Contiguous load non-temporal of halfwords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;

Four registers

(FEAT_SME2)

Encoding

LDNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 0 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 0 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5620
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5621
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5622
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.104 LDNT1W (scalar plus immediate, strided registers)

Contiguous load non-temporal of words to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

LDNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);

1 0 1 0 0 0 0 1 0 1 0 0 imm4 0 1 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 0 0 imm4 1 1 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5623
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 constant integer esize = 32;
 integer offset = SInt(imm4);

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5624
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 for r = 0 to nreg-1
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5625
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.105 LDNT1W (scalar plus scalar, strided registers)

Contiguous load non-temporal of words to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

LDNT1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;

Four registers

(FEAT_SME2)

Encoding

LDNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;

1 0 1 0 0 0 0 1 0 0 0 Rm 0 1 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 0 Rm 1 1 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5626
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;

Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 array [0..3] of bits(VL) values;
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
 else
 Elem[values[r], e, esize] = Zeros(esize);

 for r = 0 to nreg-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5627
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 Z[t, VL] = values[r];
 t = t + tstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5628
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.106 LDR (array vector)

The ZA array vector is selected by the sum of the vector select register and immediate offset, modulo the number
of bytes in a Streaming SVE vector. The immediate offset is in the range 0 to 15. The memory address is generated
by a 64-bit scalar base, plus the same optional immediate offset multiplied by the current vector length in bytes. This
instruction is unpredicated.

The load is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME

(FEAT_SME)

Encoding

LDR ZA[<Wv>, <offs>], [<Xn|SP>{, #<offs>, MUL VL}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer v = UInt('011':Rv);
 integer offset = UInt(off4);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<offs> Is the vector select offset and optional memory offset, in the range 0 to 15, defaulting to 0, encoded
in the "off4" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckSMEAndZAEnabled();
 constant integer SVL = CurrentSVL;
 constant integer dim = SVL DIV 8;
 bits(64) base;
 integer moffs = offset * dim;
 bits(SVL) result;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD dim;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Rv 0 0 0 Rn 0 off4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5629
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 else
 base = X[n, 64];

 boolean aligned = IsAligned(base + moffs, 16);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base + moffs, AlignmentFault(accdesc));

 for e = 0 to dim-1
 Elem[result, e, 8] = AArch64.MemSingle[base + moffs, 1, accdesc, aligned];
 moffs = moffs + 1;

 ZAvector[vec, SVL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5630
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.107 LDR (table)

Load the 64-byte ZT0 register from the memory address provided in the 64-bit scalar base register. This instruction
is unpredicated.

The load is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME2

(FEAT_SME2)

Encoding

LDR ZT0, [<Xn|SP>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);

Assembler symbols

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckSMEEnabled();
 CheckSMEZT0Enabled();
 constant integer elements = 512 DIV 8;
 bits(64) base;
 bits(512) result;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 boolean aligned = IsAligned(base, 16);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base, AlignmentFault(accdesc));

 for e = 0 to elements-1
 Elem[result, e, 8] = AArch64.MemSingle[base + e, 1, accdesc, aligned];

1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5631
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZT0[512] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5632
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.108 LUTI2 (four registers)

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to four destination vectors using packed 2-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to
fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

Consecutive

(FEAT_SME2)

Encoding

LUTI2 { <Zd1>.<T>-<Zd4>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 2;
 integer n = UInt(Zn);
 integer dstride = 1;
 integer d = UInt(Zd:'00');
 integer imm = UInt(i2);
 constant integer nreg = 4;

Strided

(FEAT_SME2p1)

Encoding

LUTI2 { <Zd1>.<T>, <Zd2>.<T>, <Zd3>.<T>, <Zd4>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 if size == '10' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 2;
 integer n = UInt(Zn);
 integer dstride = 4;
 integer d = UInt(D:'00':Zd);
 integer imm = UInt(i2);
 constant integer nreg = 4;

1 1 0 0 0 0 0 0 1 0 0 0 1 1 i2 1 0 size 0 0 Zn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 2 1 0

1 1 0 0 0 0 0 0 1 0 0 1 1 1 i2 1 0 size 0 0 Zn D 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5633
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the consecutive variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

For the strided variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 of the
destination multi-vector group, encoded as "D:'00':Zd".

<T> For the consecutive variant: is the size specifier, encoded in the "size" field. It can have the
following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

For the strided variant: is the size specifier, encoded in the "size<0>" field. It can have the following
values:

B when size<0> = 0

H when size<0> = 1

<Zd2> Is the name of the second scalable vector register Z4-Z7 or Z20-Z23 of the destination multi-vector
group, encoded as "D:'01':Zd".

<Zd3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 of the destination multi-vector
group, encoded as "D:'10':Zd".

<Zd4> For the consecutive variant: is the name of the fourth scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4 plus 3.

For the strided variant: is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 of the
destination multi-vector group, encoded as "D:'11':Zd".

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 CheckSMEZT0Enabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer segments = esize DIV (isize * nreg);
 integer segment = imm MOD segments;
 bits(VL) indexes = Z[n, VL];
 bits(512) table = ZT0[512];

 for r = 0 to nreg-1
 integer base = (segment * nreg + r) * elements;
 bits(VL) result;
 for e = 0 to elements-1
 integer index = UInt(Elem[indexes, base+e, isize]);
 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
 Z[d, VL] = result;
 d = d + dstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5634
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5635
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.109 LUTI2 (single)

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to one destination vector using packed 2-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to
fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

LUTI2 <Zd>.<T>, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 2;
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer imm = UInt(i4);
 constant integer nreg = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 15, encoded in the "i4" field.

Operation

 CheckStreamingSVEEnabled();
 CheckSMEZT0Enabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer segments = esize DIV (isize * nreg);
 integer segment = imm MOD segments;
 bits(VL) indexes = Z[n, VL];
 bits(512) table = ZT0[512];

 for r = 0 to nreg-1
 integer base = (segment * nreg + r) * elements;
 bits(VL) result;

1 1 0 0 0 0 0 0 1 1 0 0 1 1 i4 size 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5636
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 for e = 0 to elements-1
 integer index = UInt(Elem[indexes, base+e, isize]);
 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
 Z[d+r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5637
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.110 LUTI2 (two registers)

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to two destination vectors using packed 2-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to
fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

Consecutive

(FEAT_SME2)

Encoding

LUTI2 { <Zd1>.<T>-<Zd2>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 2;
 integer n = UInt(Zn);
 integer dstride = 1;
 integer d = UInt(Zd:'0');
 integer imm = UInt(i3);
 constant integer nreg = 2;

Strided

(FEAT_SME2p1)

Encoding

LUTI2 { <Zd1>.<T>, <Zd2>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 if size == '10' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 2;
 integer n = UInt(Zn);
 integer dstride = 8;
 integer d = UInt(D:'0':Zd);
 integer imm = UInt(i3);
 constant integer nreg = 2;

1 1 0 0 0 0 0 0 1 0 0 0 1 1 i3 1 size 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 0 1 0 0 1 1 1 i3 1 size 0 0 Zn D 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5638
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the consecutive variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the strided variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 of the
destination multi-vector group, encoded as "D:'0':Zd".

<T> For the consecutive variant: is the size specifier, encoded in the "size" field. It can have the
following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

For the strided variant: is the size specifier, encoded in the "size<0>" field. It can have the following
values:

B when size<0> = 0

H when size<0> = 1

<Zd2> For the consecutive variant: is the name of the second scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2 plus 1.

For the strided variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31 of the
destination multi-vector group, encoded as "D:'1':Zd".

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 7, encoded in the "i3" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 CheckSMEZT0Enabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer segments = esize DIV (isize * nreg);
 integer segment = imm MOD segments;
 bits(VL) indexes = Z[n, VL];
 bits(512) table = ZT0[512];

 for r = 0 to nreg-1
 integer base = (segment * nreg + r) * elements;
 bits(VL) result;
 for e = 0 to elements-1
 integer index = UInt(Elem[indexes, base+e, isize]);
 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
 Z[d, VL] = result;
 d = d + dstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5639
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5640
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.111 LUTI4 (four registers)

Copy 16-bit or 32-bit elements from ZT0 to four destination vectors using packed 4-bit indices from a segment of
the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to fill
the destination vector. The segment is selected by the vector segment index modulo the total number of segments.

This instruction is unpredicated.

Consecutive

(FEAT_SME2)

Encoding

LUTI4 { <Zd1>.<T>-<Zd4>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 4;
 integer n = UInt(Zn);
 integer dstride = 1;
 integer d = UInt(Zd:'00');
 integer imm = UInt(i1);
 constant integer nreg = 4;

Strided

(FEAT_SME2p1)

Encoding

LUTI4 { <Zd1>.H, <Zd2>.H, <Zd3>.H, <Zd4>.H }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 if size != '01' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 4;
 integer n = UInt(Zn);
 integer dstride = 4;
 integer d = UInt(D:'00':Zd);
 integer imm = UInt(i1);
 constant integer nreg = 4;

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 i1 1 0 size 0 0 Zn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 2 1 0

1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 i1 1 0 size 0 0 Zn D 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5641
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the consecutive variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

For the strided variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 of the
destination multi-vector group, encoded as "D:'00':Zd".

<Zd2> Is the name of the second scalable vector register Z4-Z7 or Z20-Z23 of the destination multi-vector
group, encoded as "D:'01':Zd".

<Zd3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 of the destination multi-vector
group, encoded as "D:'10':Zd".

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

The following encodings are reserved:

• size = 00.

• size = 11.

<Zd4> For the consecutive variant: is the name of the fourth scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4 plus 3.

For the strided variant: is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 of the
destination multi-vector group, encoded as "D:'11':Zd".

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 CheckSMEZT0Enabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer segments = esize DIV (isize * nreg);
 integer segment = imm MOD segments;
 bits(VL) indexes = Z[n, VL];
 bits(512) table = ZT0[512];

 for r = 0 to nreg-1
 integer base = (segment * nreg + r) * elements;
 bits(VL) result;
 for e = 0 to elements-1
 integer index = UInt(Elem[indexes, base+e, isize]);
 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
 Z[d, VL] = result;
 d = d + dstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5642
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5643
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.112 LUTI4 (single)

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to one destination vector using packed 4-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to
fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

LUTI4 <Zd>.<T>, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 4;
 integer n = UInt(Zn);
 integer d = UInt(Zd);
 integer imm = UInt(i3);
 constant integer nreg = 1;

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 7, encoded in the "i3" field.

Operation

 CheckStreamingSVEEnabled();
 CheckSMEZT0Enabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer segments = esize DIV (isize * nreg);
 integer segment = imm MOD segments;
 bits(VL) indexes = Z[n, VL];
 bits(512) table = ZT0[512];

 for r = 0 to nreg-1
 integer base = (segment * nreg + r) * elements;
 bits(VL) result;

1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 i3 size 0 0 Zn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 14 13 12 11 10 9 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5644
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 for e = 0 to elements-1
 integer index = UInt(Elem[indexes, base+e, isize]);
 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
 Z[d+r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5645
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.113 LUTI4 (two registers)

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to two destination vectors using packed 4-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to
fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

Consecutive

(FEAT_SME2)

Encoding

LUTI4 { <Zd1>.<T>-<Zd2>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 4;
 integer n = UInt(Zn);
 integer dstride = 1;
 integer d = UInt(Zd:'0');
 integer imm = UInt(i2);
 constant integer nreg = 2;

Strided

(FEAT_SME2p1)

Encoding

LUTI4 { <Zd1>.<T>, <Zd2>.<T> }, ZT0, <Zn>[<index>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 if size == '10' || size == '11' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer isize = 4;
 integer n = UInt(Zn);
 integer dstride = 8;
 integer d = UInt(D:'0':Zd);
 integer imm = UInt(i2);
 constant integer nreg = 2;

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 i2 1 size 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 i2 1 size 0 0 Zn D 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5646
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> For the consecutive variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the strided variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 of the
destination multi-vector group, encoded as "D:'0':Zd".

<T> For the consecutive variant: is the size specifier, encoded in the "size" field. It can have the
following values:

B when size = 00

H when size = 01

S when size = 10

The encoding size = 11 is reserved.

For the strided variant: is the size specifier, encoded in the "size<0>" field. It can have the following
values:

B when size<0> = 0

H when size<0> = 1

<Zd2> For the consecutive variant: is the name of the second scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2 plus 1.

For the strided variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31 of the
destination multi-vector group, encoded as "D:'1':Zd".

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 CheckSMEZT0Enabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer segments = esize DIV (isize * nreg);
 integer segment = imm MOD segments;
 bits(VL) indexes = Z[n, VL];
 bits(512) table = ZT0[512];

 for r = 0 to nreg-1
 integer base = (segment * nreg + r) * elements;
 bits(VL) result;
 for e = 0 to elements-1
 integer index = UInt(Elem[indexes, base+e, isize]);
 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
 Z[d, VL] = result;
 d = d + dstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5647
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5648
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.114 MOV (array to vector, four registers)

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is an alias of the MOVA (array to vector, four registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (array to vector, four
registers).

• The description of MOVA (array to vector, four registers) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

 is equivalent to

MOVA { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

and is always the preferred disassembly.

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

The description of MOVA (array to vector, four registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Rv 0 1 1 0 0 off3 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5649
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5650
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.115 MOV (array to vector, two registers)

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is an alias of the MOVA (array to vector, two registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (array to vector, two registers).

• The description of MOVA (array to vector, two registers) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

 is equivalent to

MOVA { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

and is always the preferred disassembly.

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

The description of MOVA (array to vector, two registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Rv 0 1 0 0 0 off3 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5651
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5652
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.116 MOV (tile to vector, four registers)

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This instruction is an alias of the MOVA (tile to vector, four registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (tile to vector, four registers).

• The description of MOVA (tile to vector, four registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

8-bit

Encoding

MOV { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs4>]

 is equivalent to

MOVA { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs4>]

and is always the preferred disassembly.

16-bit

Encoding

MOV { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs4>]

 is equivalent to

MOVA { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs4>]

and is always the preferred disassembly.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 V Rs 0 0 1 0 0 0 off2 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 V Rs 0 0 1 0 0 0 o1 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5653
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
32-bit

Encoding

MOV { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs4>]

 is equivalent to

MOVA { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs4>]

and is always the preferred disassembly.

64-bit

Encoding

MOV { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs4>]

 is equivalent to

MOVA { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs4>]

and is always the preferred disassembly.

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off2" field times 4.

For the 16-bit variant: is the first slice index offset, encoded as "o1" field times 4.

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 V Rs 0 0 1 0 0 0 ZAn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 V Rs 0 0 1 0 0 ZAn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5654
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the 32-bit and 64-bit variant: is the first slice index offset, with implicit value 0.

<offs4> For the 8-bit variant: is the fourth slice index offset, encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the fourth slice index offset, encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the fourth slice index offset, with implicit value 3.

Operation for all encodings

The description of MOVA (tile to vector, four registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5655
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.117 MOV (tile to vector, single)

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements in a 128-bit
vector segment minus 1.

Inactive elements in the destination vector remain unmodified.

This instruction is an alias of the MOVA (tile to vector, single) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (tile to vector, single).

• The description of MOVA (tile to vector, single) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

8-bit

Encoding

MOV <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <offs>]

 is equivalent to

MOVA <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <offs>]

and is always the preferred disassembly.

16-bit

Encoding

MOV <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <offs>]

 is equivalent to

MOVA <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <offs>]

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 V Rs Pg 0 off4 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 V Rs Pg 0 off3 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

Q

size<1>

size<0>

ZAn

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 V Rs Pg 0 ZAn off2 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5656
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

MOV <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <offs>]

 is equivalent to

MOVA <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <offs>]

and is always the preferred disassembly.

64-bit

Encoding

MOV <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <offs>]

 is equivalent to

MOVA <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <offs>]

and is always the preferred disassembly.

128-bit

Encoding

MOV <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <offs>]

 is equivalent to

MOVA <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <offs>]

and is always the preferred disassembly.

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAn"
field.

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 V Rs Pg 0 ZAn o1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 V Rs Pg 0 ZAn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 5 4 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5657
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset, with implicit value 0.

Operation for all encodings

The description of MOVA (tile to vector, single) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5658
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.118 MOV (tile to vector, two registers)

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This instruction is an alias of the MOVA (tile to vector, two registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (tile to vector, two registers).

• The description of MOVA (tile to vector, two registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

8-bit

Encoding

MOV { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs2>]

 is equivalent to

MOVA { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs2>]

and is always the preferred disassembly.

16-bit

Encoding

MOV { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs2>]

 is equivalent to

MOVA { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs2>]

and is always the preferred disassembly.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 V Rs 0 0 0 0 0 off3 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 V Rs 0 0 0 0 0 off2 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5659
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
32-bit

Encoding

MOV { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs2>]

 is equivalent to

MOVA { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs2>]

and is always the preferred disassembly.

64-bit

Encoding

MOV { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs2>]

 is equivalent to

MOVA { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs2>]

and is always the preferred disassembly.

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off3" field times 2.

For the 16-bit variant: is the first slice index offset, encoded as "off2" field times 2.

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 V Rs 0 0 0 0 0 ZAn o1 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 V Rs 0 0 0 0 0 ZAn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5660
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the 32-bit variant: is the first slice index offset, encoded as "o1" field times 2.

For the 64-bit variant: is the first slice index offset, with implicit value 0.

<offs2> For the 8-bit variant: is the second slice index offset, encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the second slice index offset, encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the second slice index offset, encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the second slice index offset, with implicit value 1.

Operation for all encodings

The description of MOVA (tile to vector, two registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5661
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.119 MOV (vector to array, four registers)

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is an alias of the MOVA (vector to array, four registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (vector to array, four
registers).

• The description of MOVA (vector to array, four registers) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }

 is equivalent to

MOVA ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }

and is always the preferred disassembly.

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

The description of MOVA (vector to array, four registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Rv 0 1 1 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5662
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5663
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.120 MOV (vector to array, two registers)

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is an alias of the MOVA (vector to array, two registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (vector to array, two registers).

• The description of MOVA (vector to array, two registers) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

Encoding

MOV ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }

 is equivalent to

MOVA ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }

and is always the preferred disassembly.

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

The description of MOVA (vector to array, two registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Rv 0 1 0 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5664
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5665
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.121 MOV (vector to tile, four registers)

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This instruction is an alias of the MOVA (vector to tile, four registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (vector to tile, four registers).

• The description of MOVA (vector to tile, four registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

8-bit

Encoding

MOV ZA0<HV>.B[<Ws>, <offs1>:<offs4>], { <Zn1>.B-<Zn4>.B }

 is equivalent to

MOVA ZA0<HV>.B[<Ws>, <offs1>:<offs4>], { <Zn1>.B-<Zn4>.B }

and is always the preferred disassembly.

16-bit

Encoding

MOV <ZAd><HV>.H[<Ws>, <offs1>:<offs4>], { <Zn1>.H-<Zn4>.H }

 is equivalent to

MOVA <ZAd><HV>.H[<Ws>, <offs1>:<offs4>], { <Zn1>.H-<Zn4>.H }

and is always the preferred disassembly.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

size<1>

size<0>

ZAd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5666
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
32-bit

Encoding

MOV <ZAd><HV>.S[<Ws>, <offs1>:<offs4>], { <Zn1>.S-<Zn4>.S }

 is equivalent to

MOVA <ZAd><HV>.S[<Ws>, <offs1>:<offs4>], { <Zn1>.S-<Zn4>.S }

and is always the preferred disassembly.

64-bit

Encoding

MOV <ZAd><HV>.D[<Ws>, <offs1>:<offs4>], { <Zn1>.D-<Zn4>.D }

 is equivalent to

MOVA <ZAd><HV>.D[<Ws>, <offs1>:<offs4>], { <Zn1>.D-<Zn4>.D }

and is always the preferred disassembly.

Assembler symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAd"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAd"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAd"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off2" field times 4.

For the 16-bit variant: is the first slice index offset, encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the first slice index offset, with implicit value 0.

<offs4> For the 8-bit variant: is the fourth slice index offset, encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the fourth slice index offset, encoded as "o1" field times 4 plus 3.

1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5667
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the 32-bit and 64-bit variant: is the fourth slice index offset, with implicit value 3.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation for all encodings

The description of MOVA (vector to tile, four registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5668
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.122 MOV (vector to tile, single)

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements in a 128-bit
vector segment minus 1.

Inactive elements in the destination slice remain unmodified.

This instruction is an alias of the MOVA (vector to tile, single) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (vector to tile, single).

• The description of MOVA (vector to tile, single) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

8-bit

Encoding

MOV ZA0<HV>.B[<Ws>, <offs>], <Pg>/M, <Zn>.B

 is equivalent to

MOVA ZA0<HV>.B[<Ws>, <offs>], <Pg>/M, <Zn>.B

and is always the preferred disassembly.

16-bit

Encoding

MOV <ZAd><HV>.H[<Ws>, <offs>], <Pg>/M, <Zn>.H

 is equivalent to

MOVA <ZAd><HV>.H[<Ws>, <offs>], <Pg>/M, <Zn>.H

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V Rs Pg Zn 0 off4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 V Rs Pg Zn 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 2 0

Q

size<1>

size<0>

ZAd

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 V Rs Pg Zn 0 ZAd off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 2 1 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5669
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

MOV <ZAd><HV>.S[<Ws>, <offs>], <Pg>/M, <Zn>.S

 is equivalent to

MOVA <ZAd><HV>.S[<Ws>, <offs>], <Pg>/M, <Zn>.S

and is always the preferred disassembly.

64-bit

Encoding

MOV <ZAd><HV>.D[<Ws>, <offs>], <Pg>/M, <Zn>.D

 is equivalent to

MOVA <ZAd><HV>.D[<Ws>, <offs>], <Pg>/M, <Zn>.D

and is always the preferred disassembly.

128-bit

Encoding

MOV <ZAd><HV>.Q[<Ws>, <offs>], <Pg>/M, <Zn>.Q

 is equivalent to

MOVA <ZAd><HV>.Q[<Ws>, <offs>], <Pg>/M, <Zn>.Q

and is always the preferred disassembly.

Assembler symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAd"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAd"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAd"
field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAd"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 V Rs Pg Zn 0 ZAd o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 1 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 V Rs Pg Zn 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5670
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset, with implicit value 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

The description of MOVA (vector to tile, single) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5671
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.123 MOV (vector to tile, two registers)

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This instruction is an alias of the MOVA (vector to tile, two registers) instruction. This means that:

• The encodings in this description are named to match the encodings of MOVA (vector to tile, two registers).

• The description of MOVA (vector to tile, two registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

8-bit

Encoding

MOV ZA0<HV>.B[<Ws>, <offs1>:<offs2>], { <Zn1>.B-<Zn2>.B }

 is equivalent to

MOVA ZA0<HV>.B[<Ws>, <offs1>:<offs2>], { <Zn1>.B-<Zn2>.B }

and is always the preferred disassembly.

16-bit

Encoding

MOV <ZAd><HV>.H[<Ws>, <offs1>:<offs2>], { <Zn1>.H-<Zn2>.H }

 is equivalent to

MOVA <ZAd><HV>.H[<Ws>, <offs1>:<offs2>], { <Zn1>.H-<Zn2>.H }

and is always the preferred disassembly.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

size<1>

size<0>

ZAd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5672
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
32-bit

Encoding

MOV <ZAd><HV>.S[<Ws>, <offs1>:<offs2>], { <Zn1>.S-<Zn2>.S }

 is equivalent to

MOVA <ZAd><HV>.S[<Ws>, <offs1>:<offs2>], { <Zn1>.S-<Zn2>.S }

and is always the preferred disassembly.

64-bit

Encoding

MOV <ZAd><HV>.D[<Ws>, <offs1>:<offs2>], { <Zn1>.D-<Zn2>.D }

 is equivalent to

MOVA <ZAd><HV>.D[<Ws>, <offs1>:<offs2>], { <Zn1>.D-<Zn2>.D }

and is always the preferred disassembly.

Assembler symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAd"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAd"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAd"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off3" field times 2.

For the 16-bit variant: is the first slice index offset, encoded as "off2" field times 2.

For the 32-bit variant: is the first slice index offset, encoded as "o1" field times 2.

For the 64-bit variant: is the first slice index offset, with implicit value 0.

<offs2> For the 8-bit variant: is the second slice index offset, encoded as "off3" field times 2 plus 1.

1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 ZAd o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5673
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the 16-bit variant: is the second slice index offset, encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the second slice index offset, encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the second slice index offset, with implicit value 1.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

The description of MOVA (vector to tile, two registers) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5674
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.124 MOVA (array to vector, four registers)

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (array to vector, four registers). The alias is always the preferred
disassembly.

SME2

(FEAT_SME2)

Encoding

MOVA { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to nreg-1
 bits(VL) result = ZAvector[vec, VL];

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Rv 0 1 1 0 0 off3 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5675
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 Z[d + r, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5676
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.125 MOVA (array to vector, two registers)

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (array to vector, two registers). The alias is always the preferred
disassembly.

SME2

(FEAT_SME2)

Encoding

MOVA { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to nreg-1
 bits(VL) result = ZAvector[vec, VL];

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Rv 0 1 0 0 0 off3 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5677
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 Z[d + r, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5678
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.126 MOVA (tile to vector, four registers)

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This instruction is used by the alias MOV (tile to vector, four registers). The alias is always the preferred
disassembly.

8-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 8;
 integer d = UInt(Zd:'00');
 integer n = 0;
 integer offset = UInt(off2:'00');
 boolean vertical = V == '1';

16-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 16;
 integer d = UInt(Zd:'00');

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 V Rs 0 0 1 0 0 0 off2 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 V Rs 0 0 1 0 0 0 o1 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5679
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer n = UInt(ZAn);
 integer offset = UInt(o1:'00');
 boolean vertical = V == '1';

32-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 32;
 integer d = UInt(Zd:'00');
 integer n = UInt(ZAn);
 integer offset = 0;
 boolean vertical = V == '1';

64-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 64;
 integer d = UInt(Zd:'00');
 integer n = UInt(ZAn);
 integer offset = 0;
 boolean vertical = V == '1';

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 V Rs 0 0 1 0 0 0 ZAn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 V Rs 0 0 1 0 0 ZAn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5680
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off2" field times 4.

For the 16-bit variant: is the first slice index offset, encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the first slice index offset, with implicit value 0.

<offs4> For the 8-bit variant: is the fourth slice index offset, encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the fourth slice index offset, encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the fourth slice index offset, with implicit value 3.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
 integer slices = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;

 for r = 0 to nreg-1
 bits(VL) result = ZAslice[n, esize, vertical, slice + r, VL];
 Z[d + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5681
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.127 MOVA (tile to vector, single)

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements in a 128-bit
vector segment minus 1.

Inactive elements in the destination vector remain unmodified.

This instruction is used by the alias MOV (tile to vector, single). The alias is always the preferred disassembly.

8-bit

(FEAT_SME)

Encoding

MOVA <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = 0;
 integer offset = UInt(off4);
 constant integer esize = 8;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

16-bit

(FEAT_SME)

Encoding

MOVA <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = UInt(off3);
 constant integer esize = 16;

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 V Rs Pg 0 off4 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 V Rs Pg 0 off3 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 5 4 0

Q

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5682
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer d = UInt(Zd);
 boolean vertical = V == '1';

32-bit

(FEAT_SME)

Encoding

MOVA <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = UInt(off2);
 constant integer esize = 32;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

64-bit

(FEAT_SME)

Encoding

MOVA <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = UInt(o1);
 constant integer esize = 64;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

128-bit

(FEAT_SME)

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 V Rs Pg 0 ZAn off2 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 V Rs Pg 0 ZAn o1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5683
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

MOVA <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = 0;
 constant integer esize = 128;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset, with implicit value 0.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 V Rs Pg 0 ZAn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 5 4 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5684
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand = ZAslice[n, esize, vertical, slice, VL];
 bits(VL) result = Z[d, VL];

 for e = 0 to dim-1
 bits(esize) element = Elem[operand, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element;

 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5685
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.128 MOVA (tile to vector, two registers)

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This instruction is used by the alias MOV (tile to vector, two registers). The alias is always the preferred
disassembly.

8-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 8;
 integer d = UInt(Zd:'0');
 integer n = 0;
 integer offset = UInt(off3:'0');
 boolean vertical = V == '1';

16-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 16;
 integer d = UInt(Zd:'0');

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 V Rs 0 0 0 0 0 off3 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 V Rs 0 0 0 0 0 off2 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5686
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer n = UInt(ZAn);
 integer offset = UInt(off2:'0');
 boolean vertical = V == '1';

32-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 32;
 integer d = UInt(Zd:'0');
 integer n = UInt(ZAn);
 integer offset = UInt(o1:'0');
 boolean vertical = V == '1';

64-bit

(FEAT_SME2)

Encoding

MOVA { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 64;
 integer d = UInt(Zd:'0');
 integer n = UInt(ZAn);
 integer offset = 0;
 boolean vertical = V == '1';

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 V Rs 0 0 0 0 0 ZAn o1 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 V Rs 0 0 0 0 0 ZAn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5687
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off3" field times 2.

For the 16-bit variant: is the first slice index offset, encoded as "off2" field times 2.

For the 32-bit variant: is the first slice index offset, encoded as "o1" field times 2.

For the 64-bit variant: is the first slice index offset, with implicit value 0.

<offs2> For the 8-bit variant: is the second slice index offset, encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the second slice index offset, encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the second slice index offset, encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the second slice index offset, with implicit value 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
 integer slices = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;

 for r = 0 to nreg-1
 bits(VL) result = ZAslice[n, esize, vertical, slice + r, VL];
 Z[d + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5688
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.129 MOVA (vector to array, four registers)

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to array, four registers). The alias is always the preferred
disassembly.

SME2

(FEAT_SME2)

Encoding

MOVA ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 integer n = UInt(Zn:'00');
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to nreg-1
 bits(VL) result = Z[n + r, VL];

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Rv 0 1 1 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5689
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5690
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.130 MOVA (vector to array, two registers)

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to array, two registers). The alias is always the preferred
disassembly.

SME2

(FEAT_SME2)

Encoding

MOVA ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 integer n = UInt(Zn:'0');
 constant integer nreg = 2;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to nreg-1
 bits(VL) result = Z[n + r, VL];

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Rv 0 1 0 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5691
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5692
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.131 MOVA (vector to tile, four registers)

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to tile, four registers). The alias is always the preferred
disassembly.

8-bit

(FEAT_SME2)

Encoding

MOVA ZA0<HV>.B[<Ws>, <offs1>:<offs4>], { <Zn1>.B-<Zn4>.B }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 8;
 integer n = UInt(Zn:'00');
 integer d = 0;
 integer offset = UInt(off2:'00');
 boolean vertical = V == '1';

16-bit

(FEAT_SME2)

Encoding

MOVA <ZAd><HV>.H[<Ws>, <offs1>:<offs4>], { <Zn1>.H-<Zn4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 16;
 integer n = UInt(Zn:'00');

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

size<1>

size<0>

ZAd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5693
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer d = UInt(ZAd);
 integer offset = UInt(o1:'00');
 boolean vertical = V == '1';

32-bit

(FEAT_SME2)

Encoding

MOVA <ZAd><HV>.S[<Ws>, <offs1>:<offs4>], { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer d = UInt(ZAd);
 integer offset = 0;
 boolean vertical = V == '1';

64-bit

(FEAT_SME2)

Encoding

MOVA <ZAd><HV>.D[<Ws>, <offs1>:<offs4>], { <Zn1>.D-<Zn4>.D }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 64;
 integer n = UInt(Zn:'00');
 integer d = UInt(ZAd);
 integer offset = 0;
 boolean vertical = V == '1';

1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 V Rs 0 0 1 Zn 0 0 0 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5694
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAd"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAd"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAd"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off2" field times 4.

For the 16-bit variant: is the first slice index offset, encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the first slice index offset, with implicit value 0.

<offs4> For the 8-bit variant: is the fourth slice index offset, encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the fourth slice index offset, encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the fourth slice index offset, with implicit value 3.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
 integer slices = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;

 for r = 0 to nreg-1
 bits(VL) result = Z[n + r, VL];
 ZAslice[d, esize, vertical, slice + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5695
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.132 MOVA (vector to tile, single)

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements in a 128-bit
vector segment minus 1.

Inactive elements in the destination slice remain unmodified.

This instruction is used by the alias MOV (vector to tile, single). The alias is always the preferred disassembly.

8-bit

(FEAT_SME)

Encoding

MOVA ZA0<HV>.B[<Ws>, <offs>], <Pg>/M, <Zn>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(Zn);
 integer d = 0;
 integer offset = UInt(off4);
 constant integer esize = 8;
 boolean vertical = V == '1';

16-bit

(FEAT_SME)

Encoding

MOVA <ZAd><HV>.H[<Ws>, <offs>], <Pg>/M, <Zn>.H

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(Zn);
 integer d = UInt(ZAd);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V Rs Pg Zn 0 off4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 V Rs Pg Zn 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 2 0

Q

size<1>

size<0>

ZAd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5696
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 constant integer esize = 16;
 boolean vertical = V == '1';

32-bit

(FEAT_SME)

Encoding

MOVA <ZAd><HV>.S[<Ws>, <offs>], <Pg>/M, <Zn>.S

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(Zn);
 integer d = UInt(ZAd);
 integer offset = UInt(off2);
 constant integer esize = 32;
 boolean vertical = V == '1';

64-bit

(FEAT_SME)

Encoding

MOVA <ZAd><HV>.D[<Ws>, <offs>], <Pg>/M, <Zn>.D

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(Zn);
 integer d = UInt(ZAd);
 integer offset = UInt(o1);
 constant integer esize = 64;
 boolean vertical = V == '1';

128-bit

(FEAT_SME)

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 V Rs Pg Zn 0 ZAd off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 2 1 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 V Rs Pg Zn 0 ZAd o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 1 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5697
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

MOVA <ZAd><HV>.Q[<Ws>, <offs>], <Pg>/M, <Zn>.Q

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer g = UInt(Pg);
 integer s = UInt('011':Rs);
 integer n = UInt(Zn);
 integer d = UInt(ZAd);
 integer offset = 0;
 constant integer esize = 128;
 boolean vertical = V == '1';

Assembler symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAd"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAd"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAd"
field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAd"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset, with implicit value 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask = P[g, PL];
 bits(VL) operand = Z[n, VL];
 bits(32) index = X[s, 32];

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 V Rs Pg Zn 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 5 4 3 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5698
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) result = ZAslice[d, esize, vertical, slice, VL];

 for e = 0 to dim-1
 bits(esize) element = Elem[operand, e, esize];
 if ActivePredicateElement(mask, e, esize) then
 Elem[result, e, esize] = element;

 ZAslice[d, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5699
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.133 MOVA (vector to tile, two registers)

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to tile, two registers). The alias is always the preferred
disassembly.

8-bit

(FEAT_SME2)

Encoding

MOVA ZA0<HV>.B[<Ws>, <offs1>:<offs2>], { <Zn1>.B-<Zn2>.B }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 8;
 integer n = UInt(Zn:'0');
 integer d = 0;
 integer offset = UInt(off3:'0');
 boolean vertical = V == '1';

16-bit

(FEAT_SME2)

Encoding

MOVA <ZAd><HV>.H[<Ws>, <offs1>:<offs2>], { <Zn1>.H-<Zn2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

size<1>

size<0>

ZAd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5700
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer d = UInt(ZAd);
 integer offset = UInt(off2:'0');
 boolean vertical = V == '1';

32-bit

(FEAT_SME2)

Encoding

MOVA <ZAd><HV>.S[<Ws>, <offs1>:<offs2>], { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer d = UInt(ZAd);
 integer offset = UInt(o1:'0');
 boolean vertical = V == '1';

64-bit

(FEAT_SME2)

Encoding

MOVA <ZAd><HV>.D[<Ws>, <offs1>:<offs2>], { <Zn1>.D-<Zn2>.D }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 64;
 integer n = UInt(Zn:'0');
 integer d = UInt(ZAd);
 integer offset = 0;
 boolean vertical = V == '1';

1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 ZAd o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 V Rs 0 0 0 Zn 0 0 0 ZAd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5701
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAd"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAd"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAd"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off3" field times 2.

For the 16-bit variant: is the first slice index offset, encoded as "off2" field times 2.

For the 32-bit variant: is the first slice index offset, encoded as "o1" field times 2.

For the 64-bit variant: is the first slice index offset, with implicit value 0.

<offs2> For the 8-bit variant: is the second slice index offset, encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the second slice index offset, encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the second slice index offset, encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the second slice index offset, with implicit value 1.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
 integer slices = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;

 for r = 0 to nreg-1
 bits(VL) result = Z[n + r, VL];
 ZAslice[d, esize, vertical, slice + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5702
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.134 MOVAZ (array to vector, four registers)

The instruction operates on four ZA single-vector groups. The ZA single-vector groups are zeroed after moving
their contents to the destination vectors. The vector numbers forming the single-vector group within each quarter of
the ZA array are selected by the sum of the vector select register and immediate offset, modulo quarter the number
of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

SME2

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to nreg-1
 bits(VL) result = ZAvector[vec, VL];
 ZAvector[vec, VL] = Zeros(VL);
 Z[d + r, VL] = result;
 vec = vec + vstride;

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Rv 0 1 1 1 0 off3 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5703
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5704
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.135 MOVAZ (array to vector, two registers)

The instruction operates on two ZA single-vector groups. The ZA single-vector groups are zeroed after moving their
contents to the destination vectors. The vector numbers forming the single-vector group within each half of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo half the number of ZA array
vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

SME2

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to nreg-1
 bits(VL) result = ZAvector[vec, VL];
 ZAvector[vec, VL] = Zeros(VL);
 Z[d + r, VL] = result;
 vec = vec + vstride;

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 Rv 0 1 0 1 0 off3 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5705
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5706
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.136 MOVAZ (tile to vector, four registers)

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size. The tile slices are zeroed after moving their contents to the destination vectors.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

8-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 8;
 integer d = UInt(Zd:'00');
 integer n = 0;
 integer offset = UInt(off2:'00');
 boolean vertical = V == '1';

16-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 16;
 integer d = UInt(Zd:'00');
 integer n = UInt(ZAn);

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 V Rs 0 0 1 1 0 0 off2 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 V Rs 0 0 1 1 0 0 o1 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5707
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 boolean vertical = V == '1';

32-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 32;
 integer d = UInt(Zd:'00');
 integer n = UInt(ZAn);
 integer offset = 0;
 boolean vertical = V == '1';

64-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 4;
 constant integer esize = 64;
 integer d = UInt(Zd:'00');
 integer n = UInt(ZAn);
 integer offset = 0;
 boolean vertical = V == '1';

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 V Rs 0 0 1 1 0 0 ZAn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 V Rs 0 0 1 1 0 ZAn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 2 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5708
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off2" field times 4.

For the 16-bit variant: is the first slice index offset, encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the first slice index offset, with implicit value 0.

<offs4> For the 8-bit variant: is the fourth slice index offset, encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the fourth slice index offset, encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the fourth slice index offset, with implicit value 3.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
 integer slices = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;

 for r = 0 to nreg-1
 bits(VL) result = ZAslice[n, esize, vertical, slice + r, VL];
 ZAslice[n, esize, vertical, slice + r, VL] = Zeros(VL);
 Z[d + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5709
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.137 MOVAZ (tile to vector, single)

The instruction operates on a horizontal or vertical slice within a named ZA tile of the specified element size. The
tile slice is zeroed after moving its contents to the destination vector.

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of such elements in a vector. The immediate offset is in the range 0 to the number of elements in a 128-bit
vector segment minus 1.

This instruction is unpredicated.

8-bit

(FEAT_SME2p1)

Encoding

MOVAZ <Zd>.B, ZA0<HV>.B[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 integer n = 0;
 integer offset = UInt(off4);
 constant integer esize = 8;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

16-bit

(FEAT_SME2p1)

Encoding

MOVAZ <Zd>.H, <ZAn><HV>.H[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = UInt(off3);
 constant integer esize = 16;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 V Rs 0 0 0 1 off4 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 V Rs 0 0 0 1 off3 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 0

Q

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5710
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
32-bit

(FEAT_SME2p1)

Encoding

MOVAZ <Zd>.S, <ZAn><HV>.S[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = UInt(off2);
 constant integer esize = 32;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

64-bit

(FEAT_SME2p1)

Encoding

MOVAZ <Zd>.D, <ZAn><HV>.D[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = UInt(o1);
 constant integer esize = 64;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

128-bit

(FEAT_SME2p1)

1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 V Rs 0 0 0 1 ZAn off2 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 V Rs 0 0 0 1 ZAn o1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 0

Q

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 V Rs 0 0 0 1 ZAn Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 5 4 0

Q

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5711
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

MOVAZ <Zd>.Q, <ZAn><HV>.Q[<Ws>, <offs>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 integer n = UInt(ZAn);
 integer offset = 0;
 constant integer esize = 128;
 integer d = UInt(Zd);
 boolean vertical = V == '1';

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset, with implicit value 0.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) operand = ZAslice[n, esize, vertical, slice, VL];
 ZAslice[n, esize, vertical, slice, VL] = Zeros(VL);
 Z[d, VL] = operand;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5712
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5713
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.138 MOVAZ (tile to vector, two registers)

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size. The tile slices are zeroed after moving their contents to the destination vectors.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

8-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 8;
 integer d = UInt(Zd:'0');
 integer n = 0;
 integer offset = UInt(off3:'0');
 boolean vertical = V == '1';

16-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 16;
 integer d = UInt(Zd:'0');
 integer n = UInt(ZAn);

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 V Rs 0 0 0 1 0 off3 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 V Rs 0 0 0 1 0 off2 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

ZAn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5714
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off2:'0');
 boolean vertical = V == '1';

32-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 32;
 integer d = UInt(Zd:'0');
 integer n = UInt(ZAn);
 integer offset = UInt(o1:'0');
 boolean vertical = V == '1';

64-bit

(FEAT_SME2p1)

Encoding

MOVAZ { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer s = UInt('011':Rs);
 constant integer nreg = 2;
 constant integer esize = 64;
 integer d = UInt(Zd:'0');
 integer n = UInt(ZAn);
 integer offset = 0;
 boolean vertical = V == '1';

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 V Rs 0 0 0 1 0 ZAn o1 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

size<1>

size<0>

1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 V Rs 0 0 0 1 0 ZAn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 4 1 0

size<1>

size<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5715
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAn"
field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAn"
field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAn"
field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs1> For the 8-bit variant: is the first slice index offset, encoded as "off3" field times 2.

For the 16-bit variant: is the first slice index offset, encoded as "off2" field times 2.

For the 32-bit variant: is the first slice index offset, encoded as "o1" field times 2.

For the 64-bit variant: is the first slice index offset, with implicit value 0.

<offs2> For the 8-bit variant: is the second slice index offset, encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the second slice index offset, encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the second slice index offset, encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the second slice index offset, with implicit value 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
 integer slices = VL DIV esize;
 bits(32) index = X[s, 32];
 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;

 for r = 0 to nreg-1
 bits(VL) result = ZAslice[n, esize, vertical, slice + r, VL];
 ZAslice[n, esize, vertical, slice + r, VL] = Zeros(VL);
 Z[d + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5716
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.139 MOVT (scalar to table)

Move 8 bytes to the ZT0 register at the byte offset specified by the immediate index from a general-purpose register.
This instruction is UNDEFINED in Non-debug state.

SME2

(FEAT_SME2)

Encoding

MOVT ZT0[<offs>], <Xt>

Decode for this encoding

 if !HaveSME2() || !Halted() then UNDEFINED;
 integer t = UInt(Rt);
 integer offset = UInt(off3);

Assembler symbols

<offs> Is the immediate byte offset, a multiple of 8 in the range of 0 to 56, encoded in the "off3" field as
<offs>/8.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

Operation

 CheckSMEEnabled();
 CheckSMEZT0Enabled();
 bits(512) result = ZT0[512];

 Elem[result, offset, 64] = X[t, 64];
 ZT0[512] = result;

1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 off3 0 0 1 1 1 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5717
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.140 MOVT (table to scalar)

Move 8 bytes to a general-purpose register from the ZT0 register at the byte offset specified by the immediate index.
This instruction is UNDEFINED in Non-debug state.

SME2

(FEAT_SME2)

Encoding

MOVT <Xt>, ZT0[<offs>]

Decode for this encoding

 if !HaveSME2() || !Halted() then UNDEFINED;
 integer t = UInt(Rt);
 integer offset = UInt(off3);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<offs> Is the immediate byte offset, a multiple of 8 in the range of 0 to 56, encoded in the "off3" field as
<offs>/8.

Operation

 CheckSMEEnabled();
 CheckSMEZT0Enabled();
 bits(512) operand = ZT0[512];

 X[t, 64] = Elem[operand, offset, 64];

1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 off3 0 0 1 1 1 1 1 Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5718
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.141 RDSVL

Multiply the Streaming SVE vector register size in bytes by an immediate in the range -32 to 31 and place the result
in the 64-bit destination general-purpose register.

This instruction does not require the PE to be in Streaming SVE mode.

SME

(FEAT_SME)

Encoding

RDSVL <Xd>, #<imm>

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer d = UInt(Rd);
 integer imm = SInt(imm6);

Assembler symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

 CheckSMEEnabled();
 constant integer SVL = CurrentSVL;
 integer len = imm * (SVL DIV 8);
 X[d, 64] = len<63:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 imm6 Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5719
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.142 SCLAMP

Clamp each signed element in the two or four destination vectors to between the signed minimum value in the
corresponding element of the first source vector and the signed maximum value in the corresponding element of the
second source vector and destructively place the clamped results in the corresponding elements of the two or four
destination vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SCLAMP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

SCLAMP { <Zd1>.<T>-<Zd4>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 0 1 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 1 1 Zn Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5720
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d+r, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer element3 = SInt(Elem[operand3, e, esize]);
 integer res = Min(Max(element1, element3), element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5721
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.143 SCVTF

Convert to single-precision from signed 32-bit integer, each element of the two or four source vectors, and place the
results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SCVTF { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

Four registers

(FEAT_SME2)

Encoding

SCVTF { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean unsigned = FALSE;
 FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

U

1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5722
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FixedToFP(element, 0, unsigned, FPCR, rounding, 32);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5723
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.144 SDOT (2-way, multiple and indexed vector)

The signed integer dot product instruction computes the dot product of two signed 16-bit integer values held in each
32-bit element of the two or four first source vectors and two signed 16-bit integer values in the corresponding
indexed 32-bit element of the second source vector. The widened dot product result is destructively added to the
corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5724
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer index = UInt(i2);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 for i = 0 to 1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * s + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5725
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.145 SDOT (2-way, multiple and single vector)

The signed integer dot product instruction computes the dot product of two signed 16-bit integer values held in each
32-bit element of the two or four first source vectors and two signed 16-bit integer values in the corresponding 32-bit
element of the second source vector. The widened dot product result is destructively added to the corresponding
32-bit element of the ZA single-vector groups. The vector numbers forming the single-vector group within each half
of or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 1 0 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 1 0 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5726
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5727
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.146 SDOT (2-way, multiple vectors)

The signed integer dot product instruction computes the dot product of two signed 16-bit integer values held in each
32-bit element of the two or four first source vectors and two signed 16-bit integer values in the corresponding 32-bit
element of the two or four second source vectors. The widened dot product result is destructively added to the
corresponding 32-bit element of the ZA single-vector groups. The vector numbers forming the single-vector group
within each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 1 0 1 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5728
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5729
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.147 SDOT (4-way, multiple and indexed vector)

The signed integer dot product instruction computes the dot product of four signed 8-bit or 16-bit integer values held
in each 32-bit or 64-bit element of the two or four first source vectors and four signed 8-bit or 16-bit integer values
in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product result
is destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups
per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group. The vector numbers forming the
single-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA single-vectors of 32-bit elements

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Two ZA single-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SDOT ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 1 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 0 0 i1 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5730
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 constant integer nreg = 2;

Four ZA single-vectors of 32-bit elements

(FEAT_SME2)

Encoding

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 4;

Four ZA single-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 1 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 0 i1 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5731
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zn1> For the two ZA single-vectors of 32-bit elements and two ZA single-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 2.

For the four ZA single-vectors of 32-bit elements and four ZA single-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of 32-bit elements and two ZA single-vectors of 32-bit elements
variant: is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector
segment, in the range 0 to 3, encoded in the "i2" field.

For the four ZA single-vectors of 64-bit elements and two ZA single-vectors of 64-bit elements
variant: is the immediate index of a 64-bit group of four 16-bit values within each 128-bit vector
segment, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5732
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.148 SDOT (4-way, multiple and single vector)

The signed integer dot product instruction computes the dot product of four signed 8-bit or 16-bit integer values held
in each 32-bit or 64-bit element of the two or four first source vectors and four signed 8-bit or 16-bit integer values
in the corresponding 32-bit or 64-bit element of the second source vector. The widened dot product result is
destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 0 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 0 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5733
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5734
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.149 SDOT (4-way, multiple vectors)

The signed integer dot product instruction computes the dot product of four signed 8-bit or 16-bit integer values held
in each 32-bit or 64-bit element of the two or four first source vectors and four signed 8-bit or 16-bit integer values
in the corresponding 32-bit or 64-bit element of the two or four second source vectors. The widened dot product
result is destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups. The
vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, { <Zm1>.<Tb>-<Zm2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, { <Zm1>.<Tb>-<Zm4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 0 1 Zn 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5735
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5736
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5737
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.150 SEL

Read active elements from the two or four first source vectors and inactive elements from the two or four second
source vectors and place in the corresponding elements of the two or four destination vectors.

Two registers

(FEAT_SME2)

Encoding

SEL { <Zd1>.<T>-<Zd2>.<T> }, <PNg>, { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer d = UInt(Zd:'0');
 integer g = UInt('1':PNg);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

SEL { <Zd1>.<T>-<Zd4>.<T> }, <PNg>, { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer d = UInt(Zd:'00');
 integer g = UInt('1':PNg);
 constant integer nreg = 4;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 0 PNg Zn 0 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 10 9 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 Zm 0 1 1 0 0 PNg Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 10 9 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5738
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the first source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the first source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 Elem[results[r], e, esize] = Elem[operand1, e, esize];
 else
 Elem[results[r], e, esize] = Elem[operand2, e, esize];

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5739
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5740
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.151 SMAX (multiple and single vector)

Determine the signed maximum of elements of the second source vector and the corresponding elements of the two
or four first source vectors and destructively place the results in the corresponding elements of the two or four first
source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;
 boolean unsigned = FALSE;

Four registers

(FEAT_SME2)

Encoding

SMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 0 0 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 0 0 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5741
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Max(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5742
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.152 SMAX (multiple vectors)

Determine the signed maximum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;
 boolean unsigned = FALSE;

Four registers

(FEAT_SME2)

Encoding

SMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 0 0 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 0 0 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5743
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Max(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5744
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.153 SMIN (multiple and single vector)

Determine the signed minimum of elements of the second source vector and the corresponding elements of the two
or four first source vectors and destructively place the results in the corresponding elements of the two or four first
source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;
 boolean unsigned = FALSE;

Four registers

(FEAT_SME2)

Encoding

SMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 0 0 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 0 0 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5745
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Min(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5746
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.154 SMIN (multiple vectors)

Determine the signed minimum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;
 boolean unsigned = FALSE;

Four registers

(FEAT_SME2)

Encoding

SMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;
 boolean unsigned = FALSE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 0 0 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 0 0 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5747
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Min(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5748
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.155 SMLAL (multiple and indexed vector)

This signed integer multiply-add long instruction multiplies each signed 16-bit element in the one, two, or four first
source vectors with each signed 16-bit indexed element of the second source vector, widens each product to 32-bits
and destructively adds these values to the corresponding 32-bit elements of the ZA double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits. The
lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 1 1 0 0 Zm Rv 1 i3l Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

i3h

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 1 i3h Zn 0 0 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5749
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 1 i3h Zn 0 0 0 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5750
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, s, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5751
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.156 SMLAL (multiple and single vector)

This signed integer multiply-add long instruction multiplies each signed 16-bit element in the one, two, or four first
source vectors with each signed 16-bit element in the second source vector, widens each product to 32-bits and
destructively adds these values to the corresponding 32-bit elements of the ZA double-vector groups. The lowest of
the two consecutive vector numbers forming the double-vector group within all of, each half of, or each quarter of
the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter
the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 1 Zn 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 0 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5752
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA double-vectors

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 0 1 0 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5753
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5754
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.157 SMLAL (multiple vectors)

This signed integer multiply-add long instruction multiplies each signed 16-bit element in the two or four first
source vectors with each signed 16-bit element in the two or four second source vectors, widens each product to
32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA double-vector groups.
The lowest of the two consecutive vector numbers forming the double-vector group within each half of or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or
quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

SMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 0 1 0 Zn 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5755
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5756
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5757
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.158 SMLALL (multiple and indexed vector)

This signed integer multiply-add long-long instruction multiplies each signed 8-bit or 16-bit element in the one, two,
or four first source vectors with each signed 8-bit or 16-bit indexed element of second source vector, widens each
product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements of
the ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the four
consecutive vector numbers forming the quad-vector group within all of, each half of, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector of 32-bit elements

(FEAT_SME2)

Encoding

SMLALL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SMLALL ZA.D[<Wv>, <offs1>:<offs4>], <Zn>.H, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

U S

i4h

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 0 i3l Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5758
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

SMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SMLALL ZA.D[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn 0 0 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 0 0 Zn 0 0 0 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5759
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

SMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SMLALL ZA.D[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the first
vector select offset, encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the fourth vector select offset, encoded as "off2" field times 4 plus 3.

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 0 0 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 0 0 Zn 0 0 0 0 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5760
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the fourth
vector select offset, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and two
ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15, encoded in
the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and two
ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7, encoded in the
"i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 4 * segmentbase + index;
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, s, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5761
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5762
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.159 SMLALL (multiple and single vector)

This signed integer multiply-add long-long instruction multiplies each signed 8-bit or 16-bit element in the one, two,
or four first source vectors with each signed 8-bit or 16-bit element in the second source vector, widens each product
to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements of the ZA
quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector group within all
of, each half of, or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector

(FEAT_SME2)

Encoding

SMLALL ZA.<T>[<Wv>, <offs1>:<offs4>], <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

SMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 1 Zn 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 0 Zn 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5763
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

SMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 0 0 0 Zn 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5764
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5765
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.160 SMLALL (multiple vectors)

This signed integer multiply-add long-long instruction multiplies each signed 8-bit or 16-bit element in the two or
four first source vectors with each signed 8-bit or 16-bit element in the one, two, or four second source vectors,
widens each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit
elements of the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA quad-vectors

(FEAT_SME2)

Encoding

SMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, { <Zm1>.<Tb>-<Zm2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

SMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, { <Zm1>.<Tb>-<Zm4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 0 0 0 Zn 0 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 0 0 0 Zn 0 0 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5766
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "o1" field times 4.

<offs4> Is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5767
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5768
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.161 SMLSL (multiple and indexed vector)

This signed integer multiply-subtract long instruction multiplies each signed 16-bit element in the one, two, or four
first source vectors with each signed 16-bit indexed element of the second source vector, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the ZA double-vector
groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits. The
lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');

1 1 0 0 0 0 0 1 1 1 0 0 Zm Rv 1 i3l Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

i3h

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 1 i3h Zn 0 0 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5769
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 1 i3h Zn 0 0 0 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5770
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, s, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5771
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.162 SMLSL (multiple and single vector)

This signed integer multiply-subtract long instruction multiplies each signed 16-bit element in the one, two, or four
first source vectors with each signed 16-bit element in the second source vector, widens each product to 32-bits and
destructively subtracts these values from the corresponding 32-bit elements of the ZA double-vector groups. The
lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 0 Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5772
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA double-vectors

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 0 1 0 Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5773
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5774
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.163 SMLSL (multiple vectors)

This signed integer multiply-subtract long instruction multiplies each signed 16-bit element in the two or four first
source vectors with each signed 16-bit element in the two or four second source vectors, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the ZA double-vector
groups. The lowest of the two consecutive vector numbers forming the double-vector group within each half of or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

SMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 0 1 0 Zn 0 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5775
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5776
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5777
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.164 SMLSLL (multiple and indexed vector)

This signed integer multiply-subtract long-long instruction multiplies each signed 8-bit or 16-bit element in the one,
two, or four first source vectors with each signed 8-bit or 16-bit indexed element of second source vector, widens
each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or 64-bit
elements of the ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the four
consecutive vector numbers forming the quad-vector group within all of, each half of, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector of 32-bit elements

(FEAT_SME2)

Encoding

SMLSLL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SMLSLL ZA.D[<Wv>, <offs1>:<offs4>], <Zn>.H, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

U S

i4h

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 0 i3l Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5778
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

SMLSLL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SMLSLL ZA.D[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn 0 0 1 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 0 0 Zn 0 0 1 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5779
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

SMLSLL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

SMLSLL ZA.D[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the first
vector select offset, encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the fourth vector select offset, encoded as "off2" field times 4 plus 3.

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 0 0 1 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 0 0 Zn 0 0 0 1 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5780
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the fourth
vector select offset, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and two
ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15, encoded in
the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and two
ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7, encoded in the
"i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 4 * segmentbase + index;
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, s, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5781
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5782
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.165 SMLSLL (multiple and single vector)

This signed integer multiply-subtract long-long instruction multiplies each signed 8-bit or 16-bit element in the one,
two, or four first source vectors with each signed 8-bit or 16-bit element in the second source vector, widens each
product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or 64-bit
elements of the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector
group within all of, each half of, or each quarter of the ZA array are selected by the sum of the vector select register
and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector

(FEAT_SME2)

Encoding

SMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>], <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

SMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 1 Zn 0 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 0 Zn 0 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5783
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

SMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 0 0 0 Zn 0 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5784
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5785
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.166 SMLSLL (multiple vectors)

This signed integer multiply-subtract long-long instruction multiplies each signed 8-bit or 16-bit element in the two
or four first source vectors with each signed 8-bit or 16-bit element in the one, two, or four second source vectors,
widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or
64-bit elements of the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the
quad-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA quad-vectors

(FEAT_SME2)

Encoding

SMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, { <Zm1>.<Tb>-<Zm2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

SMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, { <Zm1>.<Tb>-<Zm4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 0 0 0 Zn 0 0 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 0 0 0 Zn 0 0 0 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5786
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "o1" field times 4.

<offs4> Is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5787
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5788
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.167 SMOPA (2-way)

This instruction works with a 32-bit element ZA tile.

The signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of signed 16-bit
integer values, and the second source holds 2×SVLS sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively added to the 32-bit
integer destination tile. This is equivalent to performing a 2-way dot product and accumulate to each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2

(FEAT_SME2)

Encoding

SMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean unsigned = FALSE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];

1 0 1 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 0 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5789
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 1
 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5790
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.168 SMOPA (4-way)

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed 8-bit
integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed 16-bit
integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

SMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = FALSE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5791
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

SMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = FALSE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 0 1 1 0 Zm Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5792
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5793
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.169 SMOPS (2-way)

This instruction works with a 32-bit element ZA tile.

The signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first source vector
by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of signed 16-bit integer
values, and the second source holds 2×SVLS sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively subtracted from the
32-bit integer destination tile. This is equivalent to performing a 2-way dot product and subtract from each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2

(FEAT_SME2)

Encoding

SMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean unsigned = FALSE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];

1 0 1 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 1 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5794
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 1
 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5795
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.170 SMOPS (4-way)

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first source vector
by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds SVLS×4
sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed 8-bit integer
values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed 16-bit integer
values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer
and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract from each
of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

SMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = FALSE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 0 1 0 0 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5796
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

SMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = FALSE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 0 1 1 0 Zm Pm Pn Zn 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5797
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5798
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.171 SQCVT (four registers)

Saturate the signed integer value in each element of the four source vectors to quarter the original source element
width, and place the results in the quarter-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQCVT <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 integer element = SInt(Elem[operand, e, 4 * esize]);
 Elem[result, r*elements + e, esize] = SignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 sz 0 1 1 0 0 1 1 1 1 1 0 0 0 Zn 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5799
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.172 SQCVT (two registers)

Saturate the signed integer value in each element of the two source vectors to half the original source element width,
and place the results in the half-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 integer element = SInt(Elem[operand, e, 2 * esize]);
 Elem[result, r*elements + e, esize] = SignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5800
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.173 SQCVTN

Saturate the signed integer value in each element of the four source vectors to quarter the original source element
width, and place the four-way interleaved results in the quarter-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQCVTN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 3
 bits(VL) operand = Z[n+i, VL];
 integer element = SInt(Elem[operand, e, 4 * esize]);
 Elem[result, 4*e + i, esize] = SignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 sz 0 1 1 0 0 1 1 1 1 1 0 0 0 Zn 1 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5801
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.174 SQCVTU (four registers)

Saturate the signed integer value in each element of the four source vectors to unsigned integer value that is quarter
the original source element width, and place the results in the quarter-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQCVTU <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 integer element = SInt(Elem[operand, e, 4 * esize]);
 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 sz 1 1 1 0 0 1 1 1 1 1 0 0 0 Zn 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5802
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.175 SQCVTU (two registers)

Saturate the signed integer value in each element of the two source vectors to unsigned integer value that is half the
original source element width, and place the results in the half-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQCVTU <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 integer element = SInt(Elem[operand, e, 2 * esize]);
 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5803
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.176 SQCVTUN

Saturate the signed integer value in each element of the four source vectors to unsigned integer value that is quarter
the original source element width, and place the four-way interleaved results in the quarter-width destination
elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQCVTUN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 3
 bits(VL) operand = Z[n+i, VL];
 integer element = SInt(Elem[operand, e, 4 * esize]);
 Elem[result, 4*e + i, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 sz 1 1 1 0 0 1 1 1 1 1 0 0 0 Zn 1 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5804
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.177 SQDMULH (multiple and single vector)

Multiply then double the corresponding signed elements of the two or four first source vectors and the signed
elements of the second source vector, and destructively place the most significant half of the result in the
corresponding elements of the two or four first source vectors. Each result element is saturated to the N-bit element's
signed integer range -2(N-1) to (2(N-1))-1.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SQDMULH { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

SQDMULH { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 1 0 0 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 1 0 0 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5805
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer res = 2 * element1 * element2;
 Elem[results[r], e, esize] = SignedSat(res >> esize, esize);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5806
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.178 SQDMULH (multiple vectors)

Multiply then double the corresponding signed elements of the two or four first and second source vectors, and
destructively place the most significant half of the result in the corresponding elements of the two or four first source
vectors. Each result element is saturated to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SQDMULH { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

SQDMULH { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 1 0 0 0 0 0 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 1 0 0 0 0 0 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5807
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, e, esize]);
 integer element2 = SInt(Elem[operand2, e, esize]);
 integer res = 2 * element1 * element2;
 Elem[results[r], e, esize] = SignedSat(res >> esize, esize);

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5808
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.179 SQRSHR (four registers)

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
rounded results in the quarter-width destination elements. Each result element is saturated to the quarter-width N-bit
element's signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is an unsigned value in the range 1
to number of bits per source element.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQRSHR <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if tsize == '00' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);
 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsize" field. It can have the following values:

B when tsize = 01

H when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "tsize" field. It can have the following values:

S when tsize = 01

D when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded in
"tsize:imm5".

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 0 Zn 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5809
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(4 * esize) element = Elem[operand, e, 4 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, r*elements + e, esize] = SignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5810
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.180 SQRSHR (two registers)

Shift right by an immediate value, the signed integer value in each element of the two source vectors and place the
rounded results in the half-width destination elements. Each result element is saturated to the half-width N-bit
element's signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is an unsigned value in the range 1
to 16.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQRSHR <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);
 integer shift = esize - UInt(imm4);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(2 * esize) element = Elem[operand, e, 2 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, r*elements + e, esize] = SignedSat(res, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 1 1 1 0 imm4 1 1 0 1 0 1 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5811
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.181 SQRSHRN

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
four-way interleaved rounded results in the quarter-width destination elements. Each result element is saturated to
the quarter-width N-bit element's signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is an
unsigned value in the range 1 to number of bits per source element.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQRSHRN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if tsize == '00' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);
 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsize" field. It can have the following values:

B when tsize = 01

H when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "tsize" field. It can have the following values:

S when tsize = 01

D when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded in
"tsize:imm5".

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 1 Zn 0 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5812
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 3
 bits(VL) operand = Z[n+i, VL];
 bits(4 * esize) element = Elem[operand, e, 4 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 4*e + i, esize] = SignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5813
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.182 SQRSHRU (four registers)

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
rounded results in the quarter-width destination elements. Each result element is saturated to the quarter-width N-bit
element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1 to
number of bits per source element.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQRSHRU <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if tsize == '00' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);
 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsize" field. It can have the following values:

B when tsize = 01

H when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "tsize" field. It can have the following values:

S when tsize = 01

D when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded in
"tsize:imm5".

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 0 Zn 1 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5814
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(4 * esize) element = Elem[operand, e, 4 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5815
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.183 SQRSHRU (two registers)

Shift right by an immediate value, the signed integer value in each element of the two source vectors and place the
rounded results in the half-width destination elements. Each result element is saturated to the half-width N-bit
element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1 to 16.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQRSHRU <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);
 integer shift = esize - UInt(imm4);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(2 * esize) element = Elem[operand, e, 2 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 1 1 1 1 imm4 1 1 0 1 0 1 Zn 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5816
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.184 SQRSHRUN

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
four-way interleaved rounded results in the quarter-width destination elements. Each result element is saturated to
the quarter-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned
value in the range 1 to number of bits per source element.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SQRSHRUN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if tsize == '00' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);
 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsize" field. It can have the following values:

B when tsize = 01

H when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "tsize" field. It can have the following values:

S when tsize = 01

D when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded in
"tsize:imm5".

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 1 Zn 1 0 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5817
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 3
 bits(VL) operand = Z[n+i, VL];
 bits(4 * esize) element = Elem[operand, e, 4 * esize];
 integer res = (SInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 4*e + i, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5818
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.185 SRSHL (multiple and single vector)

Shift the signed elements of the two or four first source vectors by corresponding elements of the second source
vector and destructively place the rounded results in the corresponding elements of the two or four first source
vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount is
performed.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SRSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

SRSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 1 0 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 1 0 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5819
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5820
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.186 SRSHL (multiple vectors)

Shift the signed elements of the two or four first source vectors by corresponding elements of the two or four second
source vectors and destructively place the rounded results in the corresponding elements of the two or four first
source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount is
performed.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SRSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

SRSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 1 0 0 0 1 Zdn 0

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 1 0 0 0 1 Zdn 0 0

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5821
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element = SInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5822
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.187 ST1B (scalar plus immediate, strided registers)

Contiguous store of bytes from elements of two or four strided vector registers to the memory address generated by
a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

ST1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 0 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 0 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5823
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5824
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5825
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.188 ST1B (scalar plus scalar, strided registers)

Contiguous store of bytes from elements of two or four strided vector registers to the memory address generated by
a 64-bit scalar base and scalar index which is added to the base address. After each element access the index value
is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;

Four registers

(FEAT_SME2)

Encoding

ST1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 0 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 0 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5826
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5827
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5828
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.189 ST1B (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 8-bit elements in a vector. The immediate offset is in the range 0 to 15. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is added to the base address. Inactive elements are
not written to memory.

SME

(FEAT_SME)

Encoding

ST1B { ZA0<HV>.B[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = 0;
 integer offset = UInt(off4);
 constant integer esize = 8;
 boolean vertical = V == '1';

Assembler symbols

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];

1 1 1 0 0 0 0 0 0 0 1 Rm V Rs Pg Rn 0 off4

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5829
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) src;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = ZAslice[t, esize, vertical, slice, VL];
 for e = 0 to dim-1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 moffs = moffs + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5830
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.190 ST1D (scalar plus immediate, strided registers)

Contiguous store of doublewords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

ST1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 1 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 1 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5831
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5832
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5833
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.191 ST1D (scalar plus scalar, strided registers)

Contiguous store of doublewords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;

Four registers

(FEAT_SME2)

Encoding

ST1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 1 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 1 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5834
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5835
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5836
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.192 ST1D (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 64-bit elements in a vector. The immediate offset is in the range 0 to 1. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 8 and added to the base address.
Inactive elements are not written to memory.

SME

(FEAT_SME)

Encoding

ST1D { <ZAt><HV>.D[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #3}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = UInt(o1);
 constant integer esize = 64;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;

1 1 1 0 0 0 0 0 1 1 1 Rm V Rs Pg Rn 0 ZAt o1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 1 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5837
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) src;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = ZAslice[t, esize, vertical, slice, VL];
 for e = 0 to dim-1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 moffs = moffs + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5838
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.193 ST1H (scalar plus immediate, strided registers)

Contiguous store of halfwords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

ST1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 0 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 0 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5839
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5840
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5841
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.194 ST1H (scalar plus scalar, strided registers)

Contiguous store of halfwords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;

Four registers

(FEAT_SME2)

Encoding

ST1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 0 1 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 0 1 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5842
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5843
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5844
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.195 ST1H (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 16-bit elements in a vector. The immediate offset is in the range 0 to 7. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 2 and added to the base address.
Inactive elements are not written to memory.

SME

(FEAT_SME)

Encoding

ST1H { <ZAt><HV>.H[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #1}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = UInt(off3);
 constant integer esize = 16;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;

1 1 1 0 0 0 0 0 0 1 1 Rm V Rs Pg Rn 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

msz<1>

msz<0>

ZAt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5845
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) src;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = ZAslice[t, esize, vertical, slice, VL];
 for e = 0 to dim-1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 moffs = moffs + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5846
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.196 ST1Q

The slice number in the tile is selected by the slice index register, modulo the number of 128-bit elements in a
Streaming SVE vector. The memory address is generated by scalar base and optional scalar offset which is
multiplied by 16 and added to the base address. Inactive elements are not written to memory.

SME

(FEAT_SME)

Encoding

ST1Q { <ZAt><HV>.Q[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #4}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = 0;
 constant integer esize = 128;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, with implicit value 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;

1 1 1 0 0 0 0 1 1 1 1 Rm V Rs Pg Rn 0 ZAt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5847
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) src;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = ZAslice[t, esize, vertical, slice, VL];
 for e = 0 to dim-1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 moffs = moffs + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5848
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.197 ST1W (scalar plus immediate, strided registers)

Contiguous store of words from elements of two or four strided vector registers to the memory address generated
by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

ST1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 1 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 1 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5849
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5850
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5851
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.198 ST1W (scalar plus scalar, strided registers)

Contiguous store of words from elements of two or four strided vector registers to the memory address generated
by a 64-bit scalar base and scalar index which is added to the base address. After each element access the index
value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

Two registers

(FEAT_SME2)

Encoding

ST1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;

Four registers

(FEAT_SME2)

Encoding

ST1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 1 0 PNg Rn T 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 1 0 PNg Rn T 0 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5852
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5853
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5854
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.199 ST1W (scalar plus scalar, tile slice)

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo the
number of 32-bit elements in a vector. The immediate offset is in the range 0 to 3. The memory address is generated
by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 4 and added to the base address.
Inactive elements are not written to memory.

SME

(FEAT_SME)

Encoding

ST1W { <ZAt><HV>.S[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #2}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('0':Pg);
 integer s = UInt('011':Rs);
 integer t = UInt(ZAt);
 integer offset = UInt(off2);
 constant integer esize = 32;
 boolean vertical = V == '1';

Assembler symbols

<ZAt> Is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in the "V" field. It can have the following values:

H when V = 0

V when V = 1

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(64) base;
 bits(64) addr;

1 1 1 0 0 0 0 0 1 0 1 Rm V Rs Pg Rn 0 ZAt off2

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

msz<1>

msz<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5855
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask = P[g, PL];
 bits(64) moffs = X[m, 64];
 bits(32) index = X[s, 32];
 integer slice = (UInt(index) + offset) MOD dim;
 bits(VL) src;
 constant integer mbytes = esize DIV 8;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if n == 31 then
 if AnyActiveElement(mask, esize) ||
 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 src = ZAslice[t, esize, vertical, slice, VL];
 for e = 0 to dim-1
 addr = GenerateAddress(base, UInt(moffs) * mbytes, accdesc);
 if ActivePredicateElement(mask, e, esize) then
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 moffs = moffs + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5856
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.200 STNT1B (scalar plus immediate, strided registers)

Contiguous store non-temporal of bytes from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

STNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 0 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 0 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5857
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5858
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5859
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.201 STNT1B (scalar plus scalar, strided registers)

Contiguous store non-temporal of bytes from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 8;

Four registers

(FEAT_SME2)

Encoding

STNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 8;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 0 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 0 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5860
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5861
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5862
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.202 STNT1D (scalar plus immediate, strided registers)

Contiguous store non-temporal of doublewords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

STNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 1 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 1 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5863
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5864
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5865
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.203 STNT1D (scalar plus scalar, strided registers)

Contiguous store non-temporal of doublewords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 64;

Four registers

(FEAT_SME2)

Encoding

STNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 64;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 1 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 1 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5866
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5867
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5868
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.204 STNT1H (scalar plus immediate, strided registers)

Contiguous store non-temporal of halfwords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

STNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 0 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 0 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5869
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5870
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5871
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.205 STNT1H (scalar plus scalar, strided registers)

Contiguous store non-temporal of halfwords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 16;

Four registers

(FEAT_SME2)

Encoding

STNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 16;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 0 1 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 0 1 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5872
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5873
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5874
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.206 STNT1W (scalar plus immediate, strided registers)

Contiguous store non-temporal of words from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

Four registers

(FEAT_SME2)

Encoding

STNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;
 integer offset = SInt(imm4);

1 0 1 0 0 0 0 1 0 1 1 0 imm4 0 1 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 1 1 0 imm4 1 1 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5875
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2 in the
range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4 in the
range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = offset * nreg * elements + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5876
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5877
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.207 STNT1W (scalar plus scalar, strided registers)

Contiguous store non-temporal of words from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

Two registers

(FEAT_SME2)

Encoding

STNT1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 2;
 integer tstride = 8;
 integer t = UInt(T:'0':Zt);
 constant integer esize = 32;

Four registers

(FEAT_SME2)

Encoding

STNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer g = UInt('1':PNg);
 constant integer nreg = 4;
 integer tstride = 4;
 integer t = UInt(T:'00':Zt);
 constant integer esize = 32;

1 0 1 0 0 0 0 1 0 0 1 Rm 0 1 0 PNg Rn T 1 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 0

N

msz<0>

msz<1>

1 0 1 0 0 0 0 1 0 0 1 Rm 1 1 0 PNg Rn T 1 0 Zt

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 10 9 5 4 3 2 1 0

N

msz<0>

msz<1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5878
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or Z16-Z23 to
be transferred, encoded as "T:'0':Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or Z16-Z19 to
be transferred, encoded as "T:'00':Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or Z24-Z31
to be transferred, encoded as "T:'1':Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or Z20-Z23
to be transferred, encoded as "T:'01':Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded as
"T:'10':Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred, encoded as
"T:'11':Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer elements = VL DIV esize;
 constant integer mbytes = esize DIV 8;
 bits(64) offset;
 bits(64) base;
 bits(VL) src;
 bits(PL) pred = P[g, PL];
 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
 boolean contiguous = TRUE;
 boolean nontemporal = TRUE;
 boolean tagchecked = TRUE;
 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if !AnyActiveElement(mask, esize) then
 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
 CheckSPAlignment();
 else
 if n == 31 then CheckSPAlignment();
 base = if n == 31 then SP[] else X[n, 64];
 offset = X[m, 64];

 for r = 0 to nreg-1
 src = Z[t, VL];
 for e = 0 to elements-1
 if ActivePredicateElement(mask, r * elements + e, esize) then
 integer eoff = UInt(offset) + r * elements + e;
 bits(64) addr = GenerateAddress(base, eoff * mbytes, accdesc);
 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
 t = t + tstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5879
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5880
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.208 STR (array vector)

The ZA array vector is selected by the sum of the vector select register and immediate offset, modulo the number
of bytes in a Streaming SVE vector. The immediate offset is in the range 0 to 15. The memory address is generated
by a 64-bit scalar base, plus the same optional immediate offset multiplied by the current vector length in bytes. This
instruction is unpredicated.

The store is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME

(FEAT_SME)

Encoding

STR ZA[<Wv>, <offs>], [<Xn|SP>{, #<offs>, MUL VL}]

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 integer n = UInt(Rn);
 integer v = UInt('011':Rv);
 integer offset = UInt(off4);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<offs> Is the vector select offset and optional memory offset, in the range 0 to 15, defaulting to 0, encoded
in the "off4" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckSMEAndZAEnabled();
 constant integer SVL = CurrentSVL;
 constant integer dim = SVL DIV 8;
 bits(64) base;
 integer moffs = offset * dim;
 bits(SVL) src;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD dim;
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];

1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 Rv 0 0 0 Rn 0 off4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5881
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 else
 base = X[n, 64];

 src = ZAvector[vec, SVL];

 boolean aligned = IsAligned(base + moffs, 16);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base + moffs, AlignmentFault(accdesc));

 for e = 0 to dim-1
 AArch64.MemSingle[base + moffs, 1, accdesc, aligned] = Elem[src, e, 8];
 moffs = moffs + 1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5882
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.209 STR (table)

Store the 64-byte ZT0 register to the memory address provided in the 64-bit scalar base register. This instruction is
unpredicated.

The store is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME2

(FEAT_SME2)

Encoding

STR ZT0, [<Xn|SP>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Rn);

Assembler symbols

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

 CheckSMEEnabled();
 CheckSMEZT0Enabled();
 constant integer elements = 512 DIV 8;
 bits(64) base;
 bits(512) table = ZT0[512];
 boolean contiguous = TRUE;
 boolean nontemporal = FALSE;
 boolean tagchecked = n != 31;
 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous, tagchecked);

 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 if n == 31 then
 CheckSPAlignment();
 base = SP[];
 else
 base = X[n, 64];

 boolean aligned = IsAligned(base, 16);

 if !aligned && AlignmentEnforced() then
 AArch64.Abort(base, AlignmentFault(accdesc));

 for e = 0 to elements-1
 AArch64.MemSingle[base + e, 1, accdesc, aligned] = Elem[table, e, 8];

1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 Rn 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5883
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— the timing of this instruction is insensitive to the value of the data being loaded or stored.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5884
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.210 SUB (array accumulators)

Destructively subtract all elements of the two or four source vectors from the corresponding elements of the ZA
single-vector groups. The vector numbers forming the single-vector group within each half of or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 0 0 Rv 1 1 1 Zm 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 sz 1 0 0 0 0 1 0 Rv 1 1 1 Zm 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5885
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zm"
times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zm"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = ZAvector[vec, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 - element2;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5886
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.211 SUB (array results, multiple and single vector)

Subtract all corresponding elements of the second source vector from the two or four first source vectors and place
the results in the corresponding elements of the ZA single-vector groups. The vector numbers forming the
single-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 1 0 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 1 0 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5887
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 - element2;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5888
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.212 SUB (array results, multiple vectors)

Subtract all corresponding elements of the two or four second source vectors from first source vectors and place the
results in the corresponding elements of the ZA single-vector groups. The vector numbers forming the single-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 1 0 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

S

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 1 0 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5889
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 bits(esize) element1 = Elem[operand1, e, esize];
 bits(esize) element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = element1 - element2;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5890
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5891
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.213 SUDOT (multiple and indexed vector)

The signed by unsigned integer dot product instruction computes the dot product of four signed 8-bit integer values
held in each 32-bit element of the two or four first source vectors and four unsigned 8-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SUDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SUDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 1 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 1 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5892
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer index = UInt(i2);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector segment, in
the range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5893
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.214 SUDOT (multiple and single vector)

The signed by unsigned integer dot product instruction computes the dot product of four signed 8-bit integer values
held in each 32-bit element of the two or four first source vectors and four unsigned 8-bit integer values in the
corresponding 32-bit element of the second source vector. The widened dot product result is destructively added to
the corresponding 32-bit element of the ZA single-vector groups. The vector numbers forming the single-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

SUDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

SUDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 0 1 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 0 1 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5894
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5895
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.215 SUMLALL (multiple and indexed vector)

This signed by unsigned integer multiply-add long-long instruction multiplies each signed 8-bit element in the one,
two, or four first source vectors with each unsigned 8-bit indexed element of the second source vector, widens each
product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA quad-vector
groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The element index range is from 0 to one less than the
number of elements per 128-bit segment, encoded in 4 bits. The lowest of the four consecutive vector numbers
forming the quad-vector group within all of, each half of, or each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA quad-vector

(FEAT_SME2)

Encoding

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn 1 0 1 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

U S

i4h

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn 1 1 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5896
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 15, encoded in the "i4h:i4l" fields.

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 1 1 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5897
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 4 * segmentbase + index;
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, s, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5898
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.216 SUMLALL (multiple and single vector)

This signed by unsigned integer multiply-add long-long instruction multiplies each signed 8-bit element in the two
or four first source vectors with each unsigned 8-bit element in the second source vector, widens each product to
32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA quad-vector groups. The
lowest of the four consecutive vector numbers forming the quad-vector group within each half of or each quarter of
the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA quad-vectors

(FEAT_SME2)

Encoding

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

SUMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 0 0 Zn 1 0 1 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sz U S

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 0 0 Zn 1 0 1 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sz U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5899
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "o1" field times 4.

<offs4> Is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5900
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.217 SUMOPA

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed by unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the
first source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
unsigned 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
signed 16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

SUMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = TRUE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 0 1 0 1 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5901
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

SUMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = TRUE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 0 1 1 1 Zm Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5902
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5903
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.218 SUMOPS

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed by unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first
source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed 16-bit
integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer
and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract from each
of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

SUMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = TRUE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 0 1 0 1 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5904
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

SUMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = FALSE;
 boolean op2_unsigned = TRUE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 0 1 1 1 Zm Pm Pn Zn 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5905
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5906
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.219 SUNPK

Unpack elements from one or two source vectors and then sign-extend them to place in elements of twice their size
within the two or four destination vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

SUNPK { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean unsigned = FALSE;

Four registers

(FEAT_SME2)

Encoding

SUNPK { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<Tb>-<Zn2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean unsigned = FALSE;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 size 1 0 0 1 0 1 1 1 1 0 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 1 0 1 0 1 1 1 1 0 0 0 Zn 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5907
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer hsize = esize DIV 2;
 constant integer sreg = nreg DIV 2;
 array [0..3] of bits(VL) results;

 for r = 0 to sreg-1
 bits(VL) operand = Z[n+r, VL];
 for i = 0 to 1
 for e = 0 to elements-1
 bits(hsize) element = Elem[operand, i*elements + e, hsize];
 Elem[results[2*r+i], e, esize] = Extend(element, esize, unsigned);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5908
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.220 SUVDOT

The signed by unsigned integer vertical dot product instruction computes the vertical dot product of the
corresponding signed 8-bit elements from the four first source vectors and four unsigned 8-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SUVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector segment, in
the range 0 to 3, encoded in the "i2" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 0 i2 Zn 0 1 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5909
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 4;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 bits(VL) operand1 = Z[n+i, VL];
 integer element1 = SInt(Elem[operand1, 4 * e + r, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5910
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.221 SVDOT (2-way)

The signed integer vertical dot product instruction computes the vertical dot product of the corresponding two
signed 16-bit integer values held in the two first source vectors and two signed 16-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product results are destructively
added to the corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

SVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 0 i2 Zn 1 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5911
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 2;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 1
 bits(VL) operand1 = Z[n+i, VL];
 integer element1 = SInt(Elem[operand1, 2 * e + r, esize DIV 2]);
 integer element2 = SInt(Elem[operand2, 2 * s + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5912
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.222 SVDOT (4-way)

The signed integer vertical dot product instruction computes the vertical dot product of the corresponding four
signed 8-bit or 16-bit integer values held in the four first source vectors and four signed 8-bit or 16-bit integer values
in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product results
are destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups
per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME2)

Encoding

SVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

64-bit

(FEAT_SME_I16I64)

Encoding

SVDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'00');

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 0 i2 Zn 0 1 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 1 i1 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5913
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the 32-bit variant: is the immediate index of a 32-bit group of four 8-bit values within each
128-bit vector segment, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the immediate index of a 64-bit group of four 16-bit values within each
128-bit vector segment, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 4;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 bits(VL) operand1 = Z[n+i, VL];
 integer element1 = SInt(Elem[operand1, 4 * e + r, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5914
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.223 UCLAMP

Clamp each unsigned element in the two or four destination vectors to between the unsigned minimum value in the
corresponding element of the first source vector and the unsigned maximum value in the corresponding element of
the second source vector and destructively place the clamped results in the corresponding elements of the two or
four destination vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UCLAMP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

UCLAMP { <Zd1>.<T>-<Zd4>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 0 1 Zn Zd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 0 1 1 Zn Zd 0 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5915
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = Z[d+r, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, e, esize]);
 integer element2 = UInt(Elem[operand2, e, esize]);
 integer element3 = UInt(Elem[operand3, e, esize]);
 integer res = Min(Max(element1, element3), element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5916
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.224 UCVTF

Convert to single-precision from unsigned 32-bit integer, each element of the two or four source vectors, and place
the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UCVTF { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

Four registers

(FEAT_SME2)

Encoding

UCVTF { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean unsigned = TRUE;
 FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 Zn 1 Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 1 0

U

1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 Zn 0 1 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5917
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of the source
multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV 32;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(32) element = Elem[operand, e, 32];
 Elem[results[r], e, 32] = FixedToFP(element, 0, unsigned, FPCR, rounding, 32);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5918
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.225 UDOT (2-way, multiple and indexed vector)

The unsigned integer dot product instruction computes the dot product of two unsigned 16-bit integer values held
in each 32-bit element of the two or four first source vectors and two unsigned 16-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5919
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer index = UInt(i2);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 for i = 0 to 1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * s + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5920
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.226 UDOT (2-way, multiple and single vector)

The unsigned integer dot product instruction computes the dot product of two unsigned 16-bit integer values held
in each 32-bit element of the two or four first source vectors and two unsigned 16-bit integer values in the
corresponding 32-bit element of the second source vector. The widened dot product result is destructively added to
the corresponding 32-bit element of the ZA single-vector groups. The vector numbers forming the single-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 1 0 1 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 1 0 1 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5921
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5922
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.227 UDOT (2-way, multiple vectors)

The unsigned integer dot product instruction computes the dot product of two unsigned 16-bit integer values held
in each 32-bit element of the two or four first source vectors and two unsigned 16-bit integer values in the
corresponding 32-bit element of the two or four second source vectors. The widened dot product result is
destructively added to the corresponding 32-bit element of the ZA single-vector groups. The vector numbers
forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 1 0 1 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5923
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5924
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.228 UDOT (4-way, multiple and indexed vector)

The unsigned integer dot product instruction computes the dot product of four unsigned 8-bit or 16-bit integer values
held in each 32-bit or 64-bit element of the two or four first source vectors and four unsigned 8-bit or 16-bit integer
values in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product
result is destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups
per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group. The vector numbers forming the
single-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA single-vectors of 32-bit elements

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Two ZA single-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UDOT ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 1 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 0 0 i1 Zn 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5925
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 constant integer nreg = 2;

Four ZA single-vectors of 32-bit elements

(FEAT_SME2)

Encoding

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 4;

Four ZA single-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 1 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 0 i1 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5926
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zn1> For the two ZA single-vectors of 32-bit elements and two ZA single-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 2.

For the four ZA single-vectors of 32-bit elements and four ZA single-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of 32-bit elements and two ZA single-vectors of 32-bit elements
variant: is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector
segment, in the range 0 to 3, encoded in the "i2" field.

For the four ZA single-vectors of 64-bit elements and two ZA single-vectors of 64-bit elements
variant: is the immediate index of a 64-bit group of four 16-bit values within each 128-bit vector
segment, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5927
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.229 UDOT (4-way, multiple and single vector)

The unsigned integer dot product instruction computes the dot product of four unsigned 8-bit or 16-bit integer values
held in each 32-bit or 64-bit element of the two or four first source vectors and four unsigned 8-bit or 16-bit integer
values in the corresponding 32-bit or 64-bit element of the second source vector. The widened dot product result is
destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 1 0 1 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 1 0 1 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5928
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5929
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.230 UDOT (4-way, multiple vectors)

The unsigned integer dot product instruction computes the dot product of four unsigned 8-bit or 16-bit integer values
held in each 32-bit or 64-bit element of the two or four first source vectors and four unsigned 8-bit or 16-bit integer
values in the corresponding 32-bit or 64-bit element of the two or four second source vectors. The widened dot
product result is destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups.
The vector numbers forming the single-vector group within each half of or each quarter of the ZA array are selected
by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, { <Zm1>.<Tb>-<Zm2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

UDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, { <Zm1>.<Tb>-<Zm4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 1 0 1 Zn 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5930
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off3);
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5931
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5932
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.231 UMAX (multiple and single vector)

Determine the unsigned maximum of elements of the second source vector and the corresponding elements of the
two or four first source vectors and destructively place the results in the corresponding elements of the two or four
first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;
 boolean unsigned = TRUE;

Four registers

(FEAT_SME2)

Encoding

UMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 0 0 0 0 0 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 0 0 0 0 0 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5933
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Max(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5934
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.232 UMAX (multiple vectors)

Determine the unsigned maximum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;
 boolean unsigned = TRUE;

Four registers

(FEAT_SME2)

Encoding

UMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 0 0 0 0 0 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 0 0 0 0 0 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5935
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Max(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5936
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.233 UMIN (multiple and single vector)

Determine the unsigned minimum of elements of the second source vector and the corresponding elements of the
two or four first source vectors and destructively place the results in the corresponding elements of the two or four
first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;
 boolean unsigned = TRUE;

Four registers

(FEAT_SME2)

Encoding

UMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 0 0 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 0 0 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5937
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Min(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5938
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.234 UMIN (multiple vectors)

Determine the unsigned minimum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;
 boolean unsigned = TRUE;

Four registers

(FEAT_SME2)

Encoding

UMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;
 boolean unsigned = TRUE;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 0 0 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 0 0 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5939
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element1 = Int(Elem[operand1, e, esize], unsigned);
 integer element2 = Int(Elem[operand2, e, esize], unsigned);
 integer res = Min(element1, element2);
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5940
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.235 UMLAL (multiple and indexed vector)

This unsigned integer multiply-add long instruction multiplies each unsigned 16-bit element in the one, two, or four
first source vectors with each unsigned 16-bit indexed element of the second source vector, widens each product to
32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits. The
lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 1 1 0 0 Zm Rv 1 i3l Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

i3h

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 1 i3h Zn 0 1 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5941
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 1 i3h Zn 0 0 1 0 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5942
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, s, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5943
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.236 UMLAL (multiple and single vector)

This unsigned integer multiply-add long instruction multiplies each unsigned 16-bit element in the one, two, or four
first source vectors with each unsigned 16-bit element in the second source vector, widens each product to 32-bits
and destructively adds these values to the corresponding 32-bit elements of the ZA double-vector groups. The
lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 1 Zn 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 0 Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5944
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA double-vectors

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 0 1 0 Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5945
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5946
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.237 UMLAL (multiple vectors)

This unsigned integer multiply-add long instruction multiplies each unsigned 16-bit element in the two or four first
source vectors with each unsigned 16-bit element in the two or four second source vectors, widens each product to
32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA double-vector groups.
The lowest of the two consecutive vector numbers forming the double-vector group within each half of or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or
quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

UMLAL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 0 1 0 Zn 0 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5947
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5948
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5949
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.238 UMLALL (multiple and indexed vector)

This unsigned integer multiply-add long-long instruction multiplies each unsigned 8-bit or 16-bit element in the one,
two, or four first source vectors with each unsigned 8-bit or 16-bit indexed element of second source vector, widens
each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements
of the ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the four
consecutive vector numbers forming the quad-vector group within all of, each half of, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector of 32-bit elements

(FEAT_SME2)

Encoding

UMLALL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UMLALL ZA.D[<Wv>, <offs1>:<offs4>], <Zn>.H, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

U S

i4h

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 0 i3l Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5950
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

UMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UMLALL ZA.D[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn 0 1 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 0 0 Zn 0 1 0 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5951
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

UMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UMLALL ZA.D[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the first
vector select offset, encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the fourth vector select offset, encoded as "off2" field times 4 plus 3.

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 0 1 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 0 0 Zn 0 0 1 0 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5952
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the fourth
vector select offset, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and two
ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15, encoded in
the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and two
ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7, encoded in the
"i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 4 * segmentbase + index;
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, s, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5953
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5954
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.239 UMLALL (multiple and single vector)

This unsigned integer multiply-add long-long instruction multiplies each unsigned 8-bit or 16-bit element in the one,
two, or four first source vectors with each unsigned 8-bit or 16-bit element in the second source vector, widens each
product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements of
the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector group
within all of, each half of, or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector

(FEAT_SME2)

Encoding

UMLALL ZA.<T>[<Wv>, <offs1>:<offs4>], <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

UMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 1 Zn 1 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 0 Zn 1 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5955
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

UMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 0 0 0 Zn 1 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5956
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5957
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.240 UMLALL (multiple vectors)

This unsigned integer multiply-add long-long instruction multiplies each unsigned 8-bit or 16-bit element in the two
or four first source vectors with each unsigned 8-bit or 16-bit element in the one, two, or four second source vectors,
widens each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit
elements of the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA quad-vectors

(FEAT_SME2)

Encoding

UMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, { <Zm1>.<Tb>-<Zm2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

UMLALL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, { <Zm1>.<Tb>-<Zm4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 0 0 0 Zn 0 1 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 0 0 0 Zn 0 0 1 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5958
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "o1" field times 4.

<offs4> Is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5959
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5960
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.241 UMLSL (multiple and indexed vector)

This unsigned integer multiply-subtract long instruction multiplies each unsigned 16-bit element in the one, two, or
four first source vectors with each unsigned 16-bit indexed element of the second source vector, widens each
product to 32-bits and destructively subtracts these values from the corresponding 32-bit elements of the ZA
double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits. The
lowest of the two consecutive vector numbers forming the double-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');

1 1 0 0 0 0 0 1 1 1 0 0 Zm Rv 1 i3l Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

i3h

1 1 0 0 0 0 0 1 1 1 0 1 Zm 0 Rv 1 i3h Zn 0 1 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5961
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 1 i3h Zn 0 0 1 1 i3l off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5962
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 2 * segmentbase + index;
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, s, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5963
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.242 UMLSL (multiple and single vector)

This unsigned integer multiply-subtract long instruction multiplies each unsigned 16-bit element in the one, two, or
four first source vectors with each unsigned 16-bit element in the second source vector, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the ZA double-vector
groups. The lowest of the two consecutive vector numbers forming the double-vector group within all of, each half
of, or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA double-vector

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>], <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3:'0');
 constant integer nreg = 1;

Two ZA double-vectors

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 1 Zn 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U S

1 1 0 0 0 0 0 1 0 1 1 0 Zm 0 Rv 0 1 0 Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5964
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA double-vectors

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 1 1 1 Zm 0 Rv 0 1 0 Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5965
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5966
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.243 UMLSL (multiple vectors)

This unsigned integer multiply-subtract long instruction multiplies each unsigned 16-bit element in the two or four
first source vectors with each unsigned 16-bit element in the two or four second source vectors, widens each product
to 32-bits and destructively subtracts these values from the corresponding 32-bit elements of the ZA double-vector
groups. The lowest of the two consecutive vector numbers forming the double-vector group within each half of or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA double-vectors

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off2:'0');
 constant integer nreg = 2;

Four ZA double-vectors

(FEAT_SME2)

Encoding

UMLSL ZA.S[<Wv>, <offs1>:<offs2>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off2:'0');
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 1 1 Zm 0 0 Rv 0 1 0 Zn 0 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 1 1 Zm 0 1 0 Rv 0 1 0 Zn 0 0 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5967
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "off2" field times 2.

<offs2> Is the second vector select offset, encoded as "off2" field times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 2);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 1
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5968
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5969
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.244 UMLSLL (multiple and indexed vector)

This unsigned integer multiply-subtract long-long instruction multiplies each unsigned 8-bit or 16-bit element in the
one, two, or four first source vectors with each unsigned 8-bit or 16-bit indexed element of second source vector,
widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or
64-bit elements of the ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the four
consecutive vector numbers forming the quad-vector group within all of, each half of, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector of 32-bit elements

(FEAT_SME2)

Encoding

UMLSLL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UMLSLL ZA.D[<Wv>, <offs1>:<offs4>], <Zn>.H, <Zm>.H[<index>]

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

U S

i4h

1 1 0 0 0 0 0 1 1 0 0 0 Zm Rv 0 i3l Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5970
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

UMLSLL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UMLSLL ZA.D[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn 0 1 1 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 0 Rv 0 0 Zn 0 1 1 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5971
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA quad-vectors of 32-bit elements

(FEAT_SME2)

Encoding

UMLSLL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements

(FEAT_SME_I16I64)

Encoding

UMLSLL ZA.D[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 constant integer esize = 64;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i3h:i3l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the first
vector select offset, encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements variant:
is the fourth vector select offset, encoded as "off2" field times 4 plus 3.

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 0 1 1 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 0 0 1 Zm 1 Rv 0 0 Zn 0 0 1 1 i3l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S

i3h
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5972
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements, two ZA
quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant: is the fourth
vector select offset, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of the first source multi-vector group,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and two
ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15, encoded in
the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and two
ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7, encoded in the
"i3h:i3l" fields.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 4 * segmentbase + index;
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, s, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5973
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5974
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.245 UMLSLL (multiple and single vector)

This unsigned integer multiply-subtract long-long instruction multiplies each unsigned 8-bit or 16-bit element in the
one, two, or four first source vectors with each unsigned 8-bit or 16-bit element in the second source vector, widens
each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or 64-bit
elements of the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector
group within all of, each half of, or each quarter of the ZA array are selected by the sum of the vector select register
and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

One ZA quad-vector

(FEAT_SME2)

Encoding

UMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>], <Zn>.<Tb>, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

UMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 1 Zn 1 1 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 0 sz 1 0 Zm 0 Rv 0 0 0 Zn 1 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5975
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

UMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

1 1 0 0 0 0 0 1 0 sz 1 1 Zm 0 Rv 0 0 0 Zn 1 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5976
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5977
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.246 UMLSLL (multiple vectors)

This unsigned integer multiply-subtract long-long instruction multiplies each unsigned 8-bit or 16-bit element in the
two or four first source vectors with each unsigned 8-bit or 16-bit element in the one, two, or four second source
vectors, widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding
32-bit or 64-bit elements of the ZA quad-vector groups. The lowest of the four consecutive vector numbers forming
the quad-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

Two ZA quad-vectors

(FEAT_SME2)

Encoding

UMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, { <Zm1>.<Tb>-<Zm2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

UMLSLL ZA.<T>[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, { <Zm1>.<Tb>-<Zm4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 32 << UInt(sz);
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 0 Rv 0 0 0 Zn 0 1 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S

1 1 0 0 0 0 0 1 1 sz 1 Zm 0 1 0 Rv 0 0 0 Zn 0 0 1 1 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5978
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "o1" field times 4.

<offs4> Is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5979
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5980
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.247 UMOPA (2-way)

This instruction works with a 32-bit element ZA tile.

The unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of unsigned 16-bit
integer values, and the second source holds 2×SVLS sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively added to the 32-bit
integer destination tile. This is equivalent to performing a 2-way dot product and accumulate to each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2

(FEAT_SME2)

Encoding

UMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean unsigned = TRUE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];

1 0 1 0 0 0 0 1 1 0 0 Zm Pm Pn Zn 0 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5981
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 1
 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5982
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.248 UMOPA (4-way)

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

UMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = TRUE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 1 1 0 1 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5983
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

UMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = TRUE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 1 1 1 1 Zm Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5984
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5985
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.249 UMOPS (2-way)

This instruction works with a 32-bit element ZA tile.

The unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of unsigned 16-bit
integer values, and the second source holds 2×SVLS sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively subtracted from the
32-bit integer destination tile. This is equivalent to performing a 2-way dot product and subtract from each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2

(FEAT_SME2)

Encoding

UMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean unsigned = TRUE;

Assembler symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];

1 0 1 0 0 0 0 1 1 0 0 Zm Pm Pn Zn 1 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5986
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 1
 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5987
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.250 UMOPS (4-way)

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer
and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract from each
of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

UMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = TRUE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 1 1 0 1 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5988
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

UMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = TRUE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 1 1 1 1 Zm Pm Pn Zn 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5989
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5990
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.251 UQCVT (four registers)

Saturate the unsigned integer value in each element of the four source vectors to quarter the original source element
width, and place the results in the quarter-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UQCVT <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 integer element = UInt(Elem[operand, e, 4 * esize]);
 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 sz 0 1 1 0 0 1 1 1 1 1 0 0 0 Zn 0 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5991
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.252 UQCVT (two registers)

Saturate the unsigned integer value in each element of the two source vectors to half the original source element
width, and place the results in the half-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UQCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 integer element = UInt(Elem[operand, e, 2 * esize]);
 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 Zn 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5992
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.253 UQCVTN

Saturate the unsigned integer value in each element of the four source vectors to quarter the original source element
width, and place the four-way interleaved results in the quarter-width destination elements.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UQCVTN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(sz);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "sz" field. It can have the following values:

B when sz = 0

H when sz = 1

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 3
 bits(VL) operand = Z[n+i, VL];
 integer element = UInt(Elem[operand, e, 4 * esize]);
 Elem[result, 4*e + i, esize] = UnsignedSat(element, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 sz 0 1 1 0 0 1 1 1 1 1 0 0 0 Zn 1 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5993
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.254 UQRSHR (four registers)

Shift right by an immediate value, the unsigned integer value in each element of the four source vectors and place
the rounded results in the quarter-width destination elements. Each result element is saturated to the quarter-width
N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1
to number of bits per source element.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UQRSHR <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if tsize == '00' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);
 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsize" field. It can have the following values:

B when tsize = 01

H when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "tsize" field. It can have the following values:

S when tsize = 01

D when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded in
"tsize:imm5".

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 0 Zn 0 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5994
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(4 * esize) element = Elem[operand, e, 4 * esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5995
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.255 UQRSHR (two registers)

Shift right by an immediate value, the unsigned integer value in each element of the two source vectors and place
the rounded results in the half-width destination elements. Each result element is saturated to the half-width N-bit
element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1 to 16.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UQRSHR <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 16;
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd);
 integer shift = esize - UInt(imm4);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (2 * esize);
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand = Z[n+r, VL];
 for e = 0 to elements-1
 bits(2 * esize) element = Elem[operand, e, 2 * esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;

1 1 0 0 0 0 0 1 1 1 1 0 imm4 1 1 0 1 0 1 Zn 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5996
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.256 UQRSHRN

Shift right by an immediate value, the unsigned integer value in each element of the four source vectors and place
the four-way interleaved rounded results in the quarter-width destination elements. Each result element is saturated
to the quarter-width N-bit element's unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned
value in the range 1 to number of bits per source element.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UQRSHRN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if tsize == '00' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(tsize);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd);
 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in the "tsize" field. It can have the following values:

B when tsize = 01

H when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in the "tsize" field. It can have the following values:

S when tsize = 01

D when tsize = 1x

The encoding tsize = 00 is reserved.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded in
"tsize:imm5".

Operation

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV (4 * esize);

1 1 0 0 0 0 0 1 tsize 1 imm5 1 1 0 1 1 1 Zn 0 1 Zd

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 7 6 5 4 0

N U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5997
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) result;

 for e = 0 to elements-1
 for i = 0 to 3
 bits(VL) operand = Z[n+i, VL];
 bits(4 * esize) element = Elem[operand, e, 4 * esize];
 integer res = (UInt(element) + (1 << (shift-1))) >> shift;
 Elem[result, 4*e + i, esize] = UnsignedSat(res, esize);

 Z[d, VL] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5998
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.257 URSHL (multiple and single vector)

Shift the unsigned elements of the two or four first source vectors by corresponding elements of the second source
vector and destructively place the rounded results in the corresponding elements of the two or four first source
vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount is
performed.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

URSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt('0':Zm);
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

URSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt('0':Zm);
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 0 0 1 0 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 0 Zm 1 0 1 0 1 0 1 0 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-5999
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for e = 0 to elements-1
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6000
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.258 URSHL (multiple vectors)

Shift the unsigned elements of the two or four first source vectors by corresponding elements of the two or four
second source vectors and destructively place the rounded results in the corresponding elements of the two or four
first source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount
is performed.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

URSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'0');
 integer m = UInt(Zm:'0');
 constant integer nreg = 2;

Four registers

(FEAT_SME2)

Encoding

URSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer dn = UInt(Zdn:'00');
 integer m = UInt(Zm:'00');
 constant integer nreg = 4;

Assembler symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination and
first source multi-vector group, encoded as "Zdn" times 4.

1 1 0 0 0 0 0 1 size 1 Zm 0 1 0 1 1 0 0 1 0 0 0 1 Zdn 1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 Zm 0 0 1 0 1 1 1 0 1 0 0 0 1 Zdn 0 1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6001
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

<Zdn4> Is the name of the fourth scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of the destination and first source multi-vector
group, encoded as "Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of the second source
multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 array [0..3] of bits(VL) results;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[dn+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for e = 0 to elements-1
 integer element = UInt(Elem[operand1, e, esize]);
 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
 integer res;
 if shift >= 0 then
 res = element << shift;
 else
 shift = -shift;
 res = (element + (1 << (shift - 1))) >> shift;
 Elem[results[r], e, esize] = res<esize-1:0>;

 for r = 0 to nreg-1
 Z[dn+r, VL] = results[r];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6002
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.259 USDOT (multiple and indexed vector)

The unsigned by signed integer dot product instruction computes the dot product of four unsigned 8-bit integer
values held in each 32-bit element of the two or four first source vectors and four signed 8-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half of or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

USDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

USDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 1 i2 Zn 1 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 1 i2 Zn 0 1 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6003
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer index = UInt(i2);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector segment, in
the range 0 to 3, encoded in the "i2" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6004
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.260 USDOT (multiple and single vector)

The unsigned by signed integer dot product instruction computes the dot product of four unsigned 8-bit integer
values held in each 32-bit element of the two or four first source vectors and four signed 8-bit integer values in the
corresponding 32-bit element of the second source vector. The widened dot product result is destructively added to
the corresponding 32-bit element of the ZA single-vector groups. The vector numbers forming the single-vector
group within each half of or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

USDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

USDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 1 0 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 1 0 1 Zn 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6005
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6006
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.261 USDOT (multiple vectors)

The unsigned by signed integer dot product instruction computes the dot product of four unsigned 8-bit integer
values held in each 32-bit element of the two or four first source vectors and four signed 8-bit integer values in the
corresponding 32-bit element of the two or four second source vectors. The widened dot product result is
destructively added to corresponding 32-bit element of the ZA single-vector groups. The vector numbers forming
the single-vector group within each half of or each quarter of the ZA array are selected by the sum of the vector
select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA single-vectors

(FEAT_SME2)

Encoding

USDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, { <Zm1>.B-<Zm2>.B }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(off3);
 constant integer nreg = 2;

Four ZA single-vectors

(FEAT_SME2)

Encoding

USDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, { <Zm1>.B-<Zm4>.B }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(off3);
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 1 0 1 Zn 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 1 0 1 Zn 0 0 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6007
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6008
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.262 USMLALL (multiple and indexed vector)

This unsigned by signed integer multiply-add long-long instruction multiplies each unsigned 8-bit element in the
one, two, or four first source vectors with each signed 8-bit indexed element of the second source vector, widens
each product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA
quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The element index range is from 0 to one less than the
number of elements per 128-bit segment, encoded in 4 bits. The lowest of the four consecutive vector numbers
forming the quad-vector group within all of, each half of, or each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA quad-vector

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');

1 1 0 0 0 0 0 1 0 0 0 0 Zm Rv i4l Zn 0 0 1 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 10 9 5 4 3 2 1 0

U S

i4h

1 1 0 0 0 0 0 1 0 0 0 1 Zm 0 Rv 0 i4h Zn 1 0 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6009
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 integer index = UInt(i4h:i4l);
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 15, encoded in the "i4h:i4l" fields.

1 1 0 0 0 0 0 1 0 0 0 1 Zm 1 Rv 0 i4h Zn 0 1 0 0 i4l o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6010
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = 4 * segmentbase + index;
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, s, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6011
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.263 USMLALL (multiple and single vector)

This unsigned by signed integer multiply-add long-long instruction multiplies each unsigned 8-bit element in the
one, two, or four first source vectors with each signed 8-bit element in the second source vector, widens each product
to 32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA quad-vector groups.
The lowest of the four consecutive vector numbers forming the quad-vector group within all of, each half of, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

One ZA quad-vector

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>], <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(off2:'00');
 constant integer nreg = 1;

Two ZA quad-vectors

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 0 1 Zn 0 0 1 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sz U S

1 1 0 0 0 0 0 1 0 0 1 0 Zm 0 Rv 0 0 0 Zn 0 0 1 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sz U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6012
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Four ZA quad-vectors

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn);
 integer m = UInt('0':Zm);
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn".

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1

1 1 0 0 0 0 0 1 0 0 1 1 Zm 0 Rv 0 0 0 Zn 0 0 1 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 5 4 3 2 1 0

sz U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6013
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
 bits(VL) operand2 = Z[m, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6014
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.264 USMLALL (multiple vectors)

This unsigned by signed integer multiply-add long-long instruction multiplies each unsigned 8-bit element in the
two or four first source vectors with each signed 8-bit element in the two or four second source vectors, widens each
product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the ZA quad-vector
groups. The lowest of the four consecutive vector numbers forming the quad-vector group within each half of or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

Two ZA quad-vectors

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx2}], { <Zn1>.B-<Zn2>.B }, { <Zm1>.B-<Zm2>.B }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'0');
 integer m = UInt(Zm:'0');
 integer offset = UInt(o1:'00');
 constant integer nreg = 2;

Four ZA quad-vectors

(FEAT_SME2)

Encoding

USMLALL ZA.S[<Wv>, <offs1>:<offs4>{, VGx4}], { <Zn1>.B-<Zn4>.B }, { <Zm1>.B-<Zm4>.B }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 32;
 integer v = UInt('010':Rv);
 integer n = UInt(Zn:'00');
 integer m = UInt(Zm:'00');
 integer offset = UInt(o1:'00');
 constant integer nreg = 4;

1 1 0 0 0 0 0 1 1 0 1 Zm 0 0 Rv 0 0 0 Zn 0 0 0 1 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 0

sz U S

1 1 0 0 0 0 0 1 1 0 1 Zm 0 1 0 Rv 0 0 0 Zn 0 0 0 0 1 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

sz U S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6015
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> Is the first vector select offset, encoded as "o1" field times 4.

<offs4> Is the fourth vector select offset, encoded as "o1" field times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the first
source multi-vector group, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of the second
source multi-vector group, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of the second source multi-vector group, encoded
as "Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of the second source multi-vector group, encoded
as "Zm" times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV nreg;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) result;
 vec = vec - (vec MOD 4);

 for r = 0 to nreg-1
 bits(VL) operand1 = Z[n+r, VL];
 bits(VL) operand2 = Z[m+r, VL];
 for i = 0 to 3
 bits(VL) operand3 = ZAvector[vec + i, VL];
 for e = 0 to elements-1
 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 bits(esize) product = (element1 * element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
 ZAvector[vec + i, VL] = result;
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6016
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6017
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.265 USMOPA

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned by signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the
first source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
signed 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
unsigned 16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

USMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = FALSE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 1 1 0 0 Zm Pm Pn Zn 0 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6018
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

USMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = FALSE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = FALSE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 1 1 1 0 Zm Pm Pn Zn 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6019
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6020
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.266 USMOPS

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned by signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first
source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products is
then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer
and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract from each
of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME)

Encoding

USMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

Decode for this encoding

 if !HaveSME() then UNDEFINED;
 constant integer esize = 32;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = FALSE;

64-bit

(FEAT_SME_I16I64)

1 0 1 0 0 0 0 1 1 0 0 Zm Pm Pn Zn 1 0 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 1 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6021
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

USMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

Decode for this encoding

 if !HaveSMEI16I64() then UNDEFINED;
 constant integer esize = 64;
 integer a = UInt(Pn);
 integer b = UInt(Pm);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer da = UInt(ZAda);
 boolean sub_op = TRUE;
 boolean op1_unsigned = TRUE;
 boolean op2_unsigned = FALSE;

Assembler symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer dim = VL DIV esize;
 bits(PL) mask1 = P[a, PL];
 bits(PL) mask2 = P[b, PL];
 bits(VL) operand1 = Z[n, VL];
 bits(VL) operand2 = Z[m, VL];
 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];
 bits(dim*dim*esize) result;
 integer prod;

 for row = 0 to dim-1
 for col = 0 to dim-1
 bits(esize) sum = Elem[operand3, row*dim+col, esize];
 for k = 0 to 3
 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
 if sub_op then prod = -prod;
 sum = sum + prod;

 Elem[result, row*dim+col, esize] = sum;

1 0 1 0 0 0 0 1 1 1 0 Zm Pm Pn Zn 1 0 ZAda

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 10 9 5 4 3 2 0

u0 u1 S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6022
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions

 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6023
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.267 USVDOT

The unsigned by signed integer vertical dot product instruction computes the vertical dot product of corresponding
unsigned 8-bit elements from the four first source vectors and four signed 8-bit integer values in the corresponding
indexed 32-bit element of the second source vector. The widened dot product result is destructively added to the
corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

USVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a 32-bit group of four 8-bit values within each 128-bit vector segment, in
the range 0 to 3, encoded in the "i2" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 0 i2 Zn 0 1 0 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6024
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 4;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 bits(VL) operand1 = Z[n+i, VL];
 integer element1 = UInt(Elem[operand1, 4 * e + r, esize DIV 4]);
 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6025
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.268 UUNPK

Unpack elements from one or two source vectors and then zero-extend them to place in elements of twice their size
within the two or four destination vectors.

This instruction is unpredicated.

Two registers

(FEAT_SME2)

Encoding

UUNPK { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<Tb>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer d = UInt(Zd:'0');
 constant integer nreg = 2;
 boolean unsigned = TRUE;

Four registers

(FEAT_SME2)

Encoding

UUNPK { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<Tb>-<Zn2>.<Tb> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 if size == '00' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn:'0');
 integer d = UInt(Zd:'00');
 constant integer nreg = 4;
 boolean unsigned = TRUE;

Assembler symbols

<Zd1> For the two registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 2.

For the four registers variant: is the name of the first scalable vector register of the destination
multi-vector group, encoded as "Zd" times 4.

1 1 0 0 0 0 0 1 size 1 0 0 1 0 1 1 1 1 0 0 0 Zn Zd 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 1 0

U

1 1 0 0 0 0 0 1 size 1 1 0 1 0 1 1 1 1 0 0 0 Zn 0 Zd 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 2 1 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6026
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<T> Is the size specifier, encoded in the "size" field. It can have the following values:

H when size = 01

S when size = 10

D when size = 11

The encoding size = 00 is reserved.

<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 2.

<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 01

H when size = 10

S when size = 11

The encoding size = 00 is reserved.

<Zn2> Is the name of the second scalable vector register of the source multi-vector group, encoded as "Zn"
times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 constant integer hsize = esize DIV 2;
 constant integer sreg = nreg DIV 2;
 array [0..3] of bits(VL) results;

 for r = 0 to sreg-1
 bits(VL) operand = Z[n+r, VL];
 for i = 0 to 1
 for e = 0 to elements-1
 bits(hsize) element = Elem[operand, i*elements + e, hsize];
 Elem[results[2*r+i], e, esize] = Extend(element, esize, unsigned);

 for r = 0 to nreg-1
 Z[d+r, VL] = results[r];

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6027
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.269 UVDOT (2-way)

The unsigned integer vertical dot product instruction computes the vertical dot product of the corresponding two
unsigned 16-bit integer values held in the two first source vectors and two unsigned 16-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product results are destructively
added to the corresponding 32-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2

(FEAT_SME2)

Encoding

UVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'0');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2.

<Zn2> Is the name of the second scalable vector register of the first source multi-vector group, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;

1 1 0 0 0 0 0 1 0 1 0 1 Zm 0 Rv 0 i2 Zn 1 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6028
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 2;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 1
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 1
 bits(VL) operand1 = Z[n+i, VL];
 integer element1 = UInt(Elem[operand1, 2 * e + r, esize DIV 2]);
 integer element2 = UInt(Elem[operand2, 2 * s + i, esize DIV 2]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6029
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.270 UVDOT (4-way)

The unsigned integer vertical dot product instruction computes the vertical dot product of the corresponding four
unsigned 8-bit or 16-bit integer values held in the four first source vectors and four unsigned 8-bit or 16-bit integer
values in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product
results are destructively added to the corresponding 32-bit or 64-bit element of the ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups
per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

32-bit

(FEAT_SME2)

Encoding

UVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 32;
 integer n = UInt(Zn:'00');
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i2);

64-bit

(FEAT_SME_I16I64)

Encoding

UVDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
 integer v = UInt('010':Rv);
 constant integer esize = 64;
 integer n = UInt(Zn:'00');

1 1 0 0 0 0 0 1 0 1 0 1 Zm 1 Rv 0 i2 Zn 0 1 1 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

1 1 0 0 0 0 0 1 1 1 0 1 Zm 1 Rv 0 1 i1 Zn 0 0 1 1 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 7 6 5 4 3 2 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6030
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer m = UInt('0':Zm);
 integer offset = UInt(off3);
 integer index = UInt(i1);

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as
"Zn" times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the 32-bit variant: is the immediate index of a 32-bit group of four 8-bit values within each
128-bit vector segment, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the immediate index of a 64-bit group of four 16-bit values within each
128-bit vector segment, in the range 0 to 1, encoded in the "i1" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 constant integer elements = VL DIV esize;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV 4;
 integer eltspersegment = 128 DIV esize;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 bits(VL) operand2 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 3
 bits(VL) operand3 = ZAvector[vec, VL];
 for e = 0 to elements-1
 integer segmentbase = e - (e MOD eltspersegment);
 integer s = segmentbase + index;
 bits(esize) sum = Elem[operand3, e, esize];
 for i = 0 to 3
 bits(VL) operand1 = Z[n+i, VL];
 integer element1 = UInt(Elem[operand1, 4 * e + r, esize DIV 4]);
 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
 sum = sum + element1 * element2;
 Elem[result, e, esize] = sum;
 ZAvector[vec, VL] = result;
 vec = vec + vstride;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6031
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.271 UZP (four registers)

Concatenate every fourth element from each of the four source vectors and place them in the corresponding
elements of the four destination vectors.

This instruction is unpredicated.

8-bit to 64-bit elements

(FEAT_SME2)

Encoding

UZP { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<T>-<Zn4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');

128-bit element

(FEAT_SME2)

Encoding

UZP { <Zd1>.Q-<Zd4>.Q }, { <Zn1>.Q-<Zn4>.Q }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

1 1 0 0 0 0 0 1 size 1 1 0 1 1 0 1 1 1 0 0 0 Zn 0 0 Zd 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 Zn 0 0 Zd 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6032
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 4 then UNDEFINED;
 constant integer quads = VL DIV (esize * 4);
 bits(VL) result0;
 bits(VL) result1;
 bits(VL) result2;
 bits(VL) result3;

 for r = 0 to 3
 bits(VL) operand = Z[n+r, VL];
 integer base = r * quads;
 for q = 0 to quads-1
 Elem[result0, base+q, esize] = Elem[operand, 4*q+0, esize];
 Elem[result1, base+q, esize] = Elem[operand, 4*q+1, esize];
 Elem[result2, base+q, esize] = Elem[operand, 4*q+2, esize];
 Elem[result3, base+q, esize] = Elem[operand, 4*q+3, esize];

 Z[d+0, VL] = result0;
 Z[d+1, VL] = result1;
 Z[d+2, VL] = result2;
 Z[d+3, VL] = result3;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6033
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.272 UZP (two registers)

Concatenate every second element from each of the first and second source vectors and place them in the
corresponding elements of the two destination vectors.

This instruction is unpredicated.

8-bit to 64-bit elements

(FEAT_SME2)

Encoding

UZP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');

128-bit element

(FEAT_SME2)

Encoding

UZP { <Zd1>.Q-<Zd2>.Q }, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 1 0 0 Zn Zd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 0 0 1 Zm 1 1 0 1 0 1 Zn Zd 1

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6034
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 2 then UNDEFINED;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) result0;
 bits(VL) result1;

 for r = 0 to 1
 integer base = r * pairs;
 bits(VL) operand = if r == 0 then Z[n, VL] else Z[m, VL];
 for p = 0 to pairs-1
 Elem[result0, base+p, esize] = Elem[operand, 2*p+0, esize];
 Elem[result1, base+p, esize] = Elem[operand, 2*p+1, esize];

 Z[d+0, VL] = result0;
 Z[d+1, VL] = result1;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6035
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.273 ZERO (double-vector)

The instruction zeroes one, two, or four ZA double-vector groups. The lowest of the two consecutive vector
numbers forming the double-vector group within all of, each half of, or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array
vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA double-vector
groups respectively.

One ZA double-vector

(FEAT_SME2p1)

Encoding

ZERO ZA.D[<Wv>, <offs1>:<offs2>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3:'0');
 constant integer ngrp = 1;
 constant integer nvec = 2;

Two ZA double-vectors

(FEAT_SME2p1)

Encoding

ZERO ZA.D[<Wv>, <offs1>:<offs2>, VGx2]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off2:'0');
 constant integer ngrp = 2;
 constant integer nvec = 2;

Four ZA double-vectors

(FEAT_SME2p1)

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 Rv 0 0 0 0 0 0 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rv 0 0 0 0 0 0 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 Rv 0 0 0 0 0 0 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6036
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

ZERO ZA.D[<Wv>, <offs1>:<offs2>, VGx4]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off2:'0');
 constant integer ngrp = 4;
 constant integer nvec = 2;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA double-vector variant: is the first vector select offset, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the first vector select offset,
encoded as "off2" field times 2.

<offs2> For the one ZA double-vector variant: is the second vector select offset, encoded as "off3" field
times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the second vector select
offset, encoded as "off2" field times 2 plus 1.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV ngrp;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 vec = vec - (vec MOD nvec);

 for r = 0 to ngrp-1
 for i = 0 to nvec-1
 ZAvector[vec + i, VL] = Zeros(VL);
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6037
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.274 ZERO (quad-vector)

The instruction zeroes one, two, or four ZA quad-vector groups. The lowest of the four consecutive vector numbers
forming the quad-vector group within all of, each half of, or each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively.

One ZA quad-vector

(FEAT_SME2p1)

Encoding

ZERO ZA.D[<Wv>, <offs1>:<offs4>]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off2:'00');
 constant integer ngrp = 1;
 constant integer nvec = 4;

Two ZA quad-vectors

(FEAT_SME2p1)

Encoding

ZERO ZA.D[<Wv>, <offs1>:<offs4>, VGx2]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(o1:'00');
 constant integer ngrp = 2;
 constant integer nvec = 4;

Four ZA quad-vectors

(FEAT_SME2p1)

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 Rv 0 0 0 0 0 0 0 0 0 0 0 off2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 Rv 0 0 0 0 0 0 0 0 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 Rv 0 0 0 0 0 0 0 0 0 0 0 0 o1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6038
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Encoding

ZERO ZA.D[<Wv>, <offs1>:<offs4>, VGx4]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(o1:'00');
 constant integer ngrp = 4;
 constant integer nvec = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs1> For the one ZA quad-vector variant: is the first vector select offset, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the first vector select offset,
encoded as "o1" field times 4.

<offs4> For the one ZA quad-vector variant: is the fourth vector select offset, encoded as "off2" field times
4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the fourth vector select offset,
encoded as "o1" field times 4 plus 3.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;
 integer vstride = vectors DIV ngrp;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;
 vec = vec - (vec MOD nvec);

 for r = 0 to ngrp-1
 for i = 0 to nvec-1
 ZAvector[vec + i, VL] = Zeros(VL);
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6039
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.275 ZERO (single-vector)

The instruction zeroes two or four ZA single-vector groups. The vector numbers forming the single-vector group
within each half of or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively.

Two ZA single-vectors

(FEAT_SME2p1)

Encoding

ZERO ZA.D[<Wv>, <offs>, VGx2]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 constant integer ngrp = 2;

Four ZA single-vectors

(FEAT_SME2p1)

Encoding

ZERO ZA.D[<Wv>, <offs>, VGx4]

Decode for this encoding

 if !HaveSME2p1() then UNDEFINED;
 integer v = UInt('010':Rv);
 integer offset = UInt(off3);
 constant integer ngrp = 4;

Assembler symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation for all encodings

 CheckStreamingSVEAndZAEnabled();
 constant integer VL = CurrentVL;
 integer vectors = VL DIV 8;

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 Rv 0 0 0 0 0 0 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 Rv 0 0 0 0 0 0 0 0 0 0 off3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6040
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
 integer vstride = vectors DIV ngrp;
 bits(32) vbase = X[v, 32];
 integer vec = (UInt(vbase) + offset) MOD vstride;

 for r = 0 to ngrp-1
 ZAvector[vec, VL] = Zeros(VL);
 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6041
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.276 ZERO (table)

Zero all bytes of the ZT0 register.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME2

(FEAT_SME2)

Encoding

ZERO { ZT0 }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;

Operation

 CheckSMEEnabled();
 CheckSMEZT0Enabled();

 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 ZT0[512] = Zeros(512);

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6042
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.277 ZERO (tiles)

Zeroes all bytes within each of the up to eight listed 64-bit element tiles named ZA0.D to ZA7.D, leaving the other
64-bit element tiles unmodified.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

For programmer convenience an assembler must also accept the names of 32-bit, 16-bit, and 8-bit element tiles
which are converted into the corresponding set of 64-bit element tiles.

In accordance with the architecturally defined mapping between different element size tiles:

• Zeroing the 8-bit element tile name ZA0.B, or the entire array name ZA, is equivalent to zeroing all eight
64-bit element tiles named ZA0.D to ZA7.D.

• Zeroing the 16-bit element tile name ZA0.H is equivalent to zeroing 64-bit element tiles named ZA0.D,
ZA2.D, ZA4.D, and ZA6.D.

• Zeroing the 16-bit element tile name ZA1.H is equivalent to zeroing 64-bit element tiles named ZA1.D,
ZA3.D, ZA5.D, and ZA7.D.

• Zeroing the 32-bit element tile name ZA0.S is equivalent to zeroing 64-bit element tiles named ZA0.D and
ZA4.D.

• Zeroing the 32-bit element tile name ZA1.S is equivalent to zeroing 64-bit element tiles named ZA1.D and
ZA5.D.

• Zeroing the 32-bit element tile name ZA2.S is equivalent to zeroing 64-bit element tiles named ZA2.D and
ZA6.D.

• Zeroing the 32-bit element tile name ZA3.S is equivalent to zeroing 64-bit element tiles named ZA3.D and
ZA7.D.

The preferred disassembly of this instruction uses the shortest list of tile names that represent the encoded
immediate mask.

For example:

• An immediate which encodes 64-bit element tiles ZA0.D, ZA1.D, ZA4.D, and ZA5.D is disassembled as
{ZA0.S, ZA1.S}.

• An immediate which encodes 64-bit element tiles ZA0.D, ZA2.D, ZA4.D, and ZA6.D is disassembled as
{ZA0.H}.

• An all-ones immediate is disassembled as {ZA}.

• An all-zeros immediate is disassembled as an empty list { }.

SME

(FEAT_SME)

Encoding

ZERO { <mask> }

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 imm8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6043
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
Decode for this encoding

 if !HaveSME() then UNDEFINED;
 bits(8) mask = imm8;
 constant integer esize = 64;

Assembler symbols

<mask> Is a list of up to eight 64-bit element tile names separated by commas, encoded in the "imm8" field.

Operation

 CheckSMEAndZAEnabled();
 constant integer SVL = CurrentSVL;
 constant integer dim = SVL DIV esize;
 bits(dim*dim*esize) result = Zeros(dim*dim*esize);

 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 for i = 0 to 7
 if mask<i> == '1' then ZAtile[i, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6044
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.278 ZIP (four registers)

Place the four-way interleaved elements from the four source vectors in the corresponding elements of the four
destination vectors.

This instruction is unpredicated.

8-bit to 64-bit elements

(FEAT_SME2)

Encoding

ZIP { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<T>-<Zn4>.<T> }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');

128-bit element

(FEAT_SME2)

Encoding

ZIP { <Zd1>.Q-<Zd4>.Q }, { <Zn1>.Q-<Zn4>.Q }

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn:'00');
 integer d = UInt(Zd:'00');

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

1 1 0 0 0 0 0 1 size 1 1 0 1 1 0 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0

1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 Zn 0 0 Zd 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6045
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd4> Is the name of the fourth scalable vector register of the destination multi-vector group, encoded as
"Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn"
times 4 plus 3.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 4 then UNDEFINED;
 constant integer quads = VL DIV (esize * 4);
 bits(VL) operand0 = Z[n, VL];
 bits(VL) operand1 = Z[n+1, VL];
 bits(VL) operand2 = Z[n+2, VL];
 bits(VL) operand3 = Z[n+3, VL];
 bits(VL) result;

 for r = 0 to 3
 integer base = r * quads;
 for q = 0 to quads-1
 Elem[result, 4*q+0, esize] = Elem[operand0, base+q, esize];
 Elem[result, 4*q+1, esize] = Elem[operand1, base+q, esize];
 Elem[result, 4*q+2, esize] = Elem[operand2, base+q, esize];
 Elem[result, 4*q+3, esize] = Elem[operand3, base+q, esize];
 Z[d+r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6046
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
C9.2.279 ZIP (two registers)

Place the two-way interleaved elements from the first and second source vectors in the corresponding elements of
the two destination vectors.

This instruction is unpredicated.

8-bit to 64-bit elements

(FEAT_SME2)

Encoding

ZIP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');

128-bit element

(FEAT_SME2)

Encoding

ZIP { <Zd1>.Q-<Zd2>.Q }, <Zn>.Q, <Zm>.Q

Decode for this encoding

 if !HaveSME2() then UNDEFINED;
 constant integer esize = 128;
 integer n = UInt(Zn);
 integer m = UInt(Zm);
 integer d = UInt(Zd:'0');

Assembler symbols

<Zd1> Is the name of the first scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2.

<T> Is the size specifier, encoded in the "size" field. It can have the following values:

B when size = 00

H when size = 01

S when size = 10

D when size = 11

1 1 0 0 0 0 0 1 size 1 Zm 1 1 0 1 0 0 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0

1 1 0 0 0 0 0 1 0 0 1 Zm 1 1 0 1 0 1 Zn Zd 0

31 30 29 28 27 26 25 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6047
ID032224 Non-Confidential

SME Instruction Descriptions
C9.2 Alphabetical list of SME instructions
<Zd2> Is the name of the second scalable vector register of the destination multi-vector group, encoded as
"Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation for all encodings

 CheckStreamingSVEEnabled();
 constant integer VL = CurrentVL;
 if VL < esize * 2 then UNDEFINED;
 constant integer pairs = VL DIV (esize * 2);
 bits(VL) operand0 = Z[n, VL];
 bits(VL) operand1 = Z[m, VL];
 bits(VL) result;

 for r = 0 to 1
 integer base = r * pairs;
 for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand0, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand1, base+p, esize];
 Z[d+r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. C9-6048
ID032224 Non-Confidential

Part D
The AArch64 System Level Architecture

Chapter D1
The AArch64 System Level Programmers’ Model

This chapter describes the AArch64 system level programmers’ model. It contains the following sections:

• Exception levels.

• Registers for instruction processing and exception handling.

• Exceptions.

• Process state, PSTATE.

• Resets and power domains.

• Mechanisms for entering a low-power state.

• Self-hosted debug.

• Event monitors.

• Interprocessing.

• Check Feature.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6050
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
D1.1 Exception levels

RFYTFG The architecture defines four Exception levels: EL0, EL1, EL2, and EL3.

RVPSDB EL3 is the highest Exception level and EL0 the lowest. Therefore, EL3 is higher than EL2, EL2 is higher than EL1,
and EL1 is higher than EL0.

RNXCRB A PE must implement EL1 and EL0.

RKPZJW A PE with FEAT_RME must implement EL3 and EL2.

In a PE without FEAT_RME, all the following are true:

• Whether EL3 is implemented is IMPLEMENTATION DEFINED.

• Whether EL2 is implemented is IMPLEMENTATION DEFINED.

• The PE is not required to implement a contiguous set of Exception levels.

IWRRKQ EL2 provides support for the virtualization of EL0 and EL1.

RCCQWK Unprivileged execution is any execution that occurs at EL0.

RNZZNS The current Exception level changes only when any of the following occur:

• Taking an exception.

• Returning from an exception.

• Processor reset.

• Exiting from Debug state.

• If in Debug state, executing a DCPSx instruction.

• If in Debug state, executing a DRPS instruction.

RXRQKF The target Exception level is the Exception level to which an exception is taken.

RFFJBB Each exception type has a target Exception level that is either:

• Implicit in the type of the exception.

• Defined by configuration bits in the System registers.

RTKYYF An exception cannot be taken to EL0.

RQNTPB An exception cannot cause entry to a lower Exception level.

D1.1.1 Execution state

RHTYJH The architecture defines two Execution states. The AArch32 Execution state uses 32-bit processing. The AArch64
Execution state uses 64-bit processing.

IWKKGD The AArch32 Execution state is compatible with Armv7-A operation.

RNKNVR An Exception level is described as:

• Using AArch64 when execution in that Exception level is in the AArch64 Execution state.

• Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

RVZTWD The PE can only change Execution state at reset, or when changing Exception level.

RQNVJL If an Exception level is using AArch32, then all lower Exception levels are using AArch32.

RBDMRT If an Exception level is using AArch64, then all higher Exception levels are using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6051
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
RMWGKL Interaction between the AArch64 and AArch32 Execution states is called interprocessing.

IKSMPY In this chapter, the described behavior assumes the highest implemented Exception level is using AArch64.

D1.1.2 Security states

RWPBBJ The architecture defines the following Security states:

• Secure state.

• Non-secure state.

• If FEAT_RME is implemented, also both of:

— Realm state.

— Root state.

IXKGPG Execution in:

• Secure state cannot be observed or modified by an agent associated with any of:

— Non-secure state.

— Realm state.

• Realm state cannot be observed or modified by an agent associated with any of:

— Non-secure state.

— Secure state.

• Root state cannot be observed or modified by an agent associated with any other Security state.

RNRXJT The architecture defines the following Physical Address (PA) spaces:

• Secure.

• Non-secure.

• If FEAT_RME is implemented, also both of:

— Realm.

— Root.

IRKGZF Memory assigned to the:

• Secure physical address space cannot be read or modified by an agent associated with any of:

— Non-secure state.

— Realm state.

• Realm physical address space cannot be read or modified by an agent associated with any of:

— Non-secure state.

— Secure state.

• Root physical address space cannot be read or modified by an agent associated with any other Security state.

RZFPTR EL3 is always in:

• Secure state in a PE without FEAT_RME.

• Root state in a PE with FEAT_RME.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6052
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
IHGPBB The Effective value of SCR_EL3.{NSE, NS} selects the Security state of EL2 and lower.

RSGMFG EL2 and lower cannot be in Root state.

RDVTDD EL2 can only be in Secure state if, in addition to the Effective value of SCR_EL3.{NSE, NS} selecting Secure state,
both of the following are true:

• FEAT_SEL2 is implemented.

• The Effective value of SCR_EL3.EEL2 is 0b1.

IZZCQM The state of SCR_EL3.NS, and SCR_EL3.NSE if FEAT_RME is implemented, can only change in EL3.

IDJJQJ In a PE with FEAT_RME, all the following are true:

• Root state, Realm state, and Non-secure state must be implemented.

• Whether Secure state is implemented is IMPLEMENTATION DEFINED.

• If Secure state is implemented, the PE must also implement FEAT_SEL2.

IZLZWD In a PE with FEAT_RME, software can discover whether Secure state is implemented by discovering whether
FEAT_SEL2 is implemented from ID_AA64PFR0_EL1.SEL2.

IYBGYV Figure D1-1 illustrates the Security states in a PE with FEAT_RME.

Figure D1-1 Security states

Where:

• RMM is Realm Management Monitor.

• SPM is Secure Partition Manager.

• VM is Virtual Machine.

D1.1.3 Effect of not implementing an Exception level

RKFGRW An exception cannot be taken to an unimplemented Exception level.

RHRDVX Any configurable instruction control that defines an exception to an unimplemented Exception level does not cause
that exception to the unimplemented Exception level. The Effective value of the configurable exception control is
the value that does not cause an exception to that Exception level.

......

OS kernel

App App

VM

Realm

RMM

TOS

TA TA

Hypervisor SPM

Monitor

Realm state Non-secure state Secure state

EL0

EL1

EL2

EL3

Realm

OS kernel

App App

VM

Secure
partition

...

Root state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6053
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
RWPVKJ System calls made to an unimplemented Exception level from a lower Exception level are UNDEFINED.

RWPXJS The translation regime associated with an unimplemented Exception level is not implemented.

RWKQBG Any exception return that targets an unimplemented Exception level is an illegal return.

RGTCCW Every accessible register associated with an unimplemented Exception level is RES0 unless the register is associated
with the Exception level only to provide the ability to transfer execution to a lower Exception level.

D1.1.3.1 Behavior when EL3 is not implemented

RBSNQL If EL3 is not implemented, SCR_EL3.NS has a fixed Effective value that is IMPLEMENTATION DEFINED.

IBWVTM An implementation can provide a configuration input that determines the Effective value of SCR_EL3.NS at reset.

RLBZCK If EL3 is not implemented, and the Effective value of SCR_EL3.NS is 0b0, all of the following are true:

• The Effective value of MDCR_EL3.EPMAD is 0b1.

• The Effective value of MDCR_EL3.EDAD is 0b1.

• The Effective value of MDCR_EL3.SPME is 0b1.

• The Effective value of MDCR_EL3.NSPB is 0b01.

• The Effective value of MDCR_EL3.SPD32 is 0b11.

• The Effective value of MDCR_EL3.STE is 0b1.

RZTWJS If EL3 is not implemented, the Effective value of MDCR_EL3.STE is the inverse of the Effective value of
SCR_EL3.NS.

RRDYPY If all of the following are true, the Effective value of SCR_EL3.EEL2 is 0b1:

• EL3 is not implemented.

• EL2 is implemented.

• The Effective value of SCR_EL3.NS is 0b0.

D1.1.3.2 Behavior when EL2 is not implemented

RPQDWN If EL2 is not implemented, all of the following are true:

• Virtual interrupts are disabled.

• The Effective value of CNTHCTL_EL2[1:0] is 0b11.

• The Effective value of HCR_EL2.E2H is 0b0.

• The Effective value of HCR_EL2.TGE is 0b0.

• The Effective value of MDCR_EL2.HPMN is the value of PMCR_EL0.N.

D1.1.3.3 Behavior when EL2 is not implemented and EL3 is implemented

RRJFFP If EL2 is not implemented and EL3 is implemented, all of the following are true:

• Except for any of the following registers, every accessible register associated with EL2 is RES0:

— If EL1 can use AArch32 then the following registers are not RES0:

— DACR32_EL2.

— DBGVCR32_EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6054
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
— FPEXC32_EL2.

— IFSR32_EL2.

— For VPIDR_EL2:

— Reads return the value of MIDR_EL1.

— Writes to VPIDR_EL2 are ignored.

— For VMPIDR_EL2:

— Reads return the value of MPIDR_EL1.

— Writes to VMPIDR_EL2 are ignored.

• The Effective value of HCR_EL2.RW is the value of SCR_EL3.RW.

• SCR_EL3.HCE is RES0.

• The following Address translation and TLB invalidation instructions are UNDEFINED:

— AT S1E2R.

— AT S1E2W.

— TLBI VAE2, TLBI VAE2NXS.

— TLBI VALE2, TLBI VALE2NXS.

— TLBI VAE2IS, TLBI VAE2ISNXS.

— TLBI VALE2IS, TLBI VALE2ISNXS.

— TLBI VAE2OS, TLBI VAE2OSNXS.

— TLBI VALE2OS, TLBI VALE2OSNXS.

— TLBI ALLE2, TLBI ALLE2NXS.

— TLBI ALLE2IS, TLBI ALLE2ISNXS.

— TLBI ALLE2OS, TLBI ALLE2OSNXS.

— TLBI RVAE2, TLBI RVAE2NXS.

— TLBI RVALE2, TLBI RVALE2NXS.

— TLBI RVAE2IS, TLBI RVAE2ISNXS.

— TLBI RVALE2IS, TLBI RVALE2ISNXS.

— TLBI RVAE2OS, TLBI RVAE2OSNXS.

— TLBI RVALE2OS, TLBI RVALE2OSNXS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6055
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.1 Exception levels
D1.1.3.4 Typical Exception level usage model

IWCCCB The architecture does not specify what software uses which Exception level. Such choices are outside the scope of
the architecture. However, the following is a common usage model for the Exception levels:

Exception level Usage

EL0 Applications.

EL1 OS kernel and associated functions that are typically described as privileged.

EL2 Hypervisor.

EL3 Monitor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6056
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.2 Registers for instruction processing and exception handling
D1.2 Registers for instruction processing and exception handling

IBCVRH In the Arm architecture, registers are split into two main categories:

• Registers that provide system control or status reporting.

• Registers that are used in instruction processing, for example to accumulate a result, and in handling
exceptions.

For more information, see Chapter D23 AArch64 System Register Descriptions.

D1.2.1 The general-purpose registers

RJBKTZ The general-purpose register bank comprises the 31 general-purpose registers, R0-R30.

IRKTLT The general-purpose register bank is associated with instructions in the base instruction set.

RYDKHJ The general-purpose registers can be accessed as either of the following:

• 31 64-bit registers, X0-X30.

• 31 32-bit registers, W0-W30.

IPVGXY When a Warm reset is asserted, the general-purpose registers are reset to an architecturally UNKNOWN value.

For more information, see Register size and Registers in AArch64 Execution state.

D1.2.2 The stack pointer registers

RBBRKH If in AArch64 state, each implemented Exception level has a dedicated stack pointer register. The stack pointer
registers are:

• SP_EL0.

• SP_EL1.

• If EL2 is implemented, SP_EL2.

• If EL3 is implemented, SP_EL3.

IYPMHQ When a Warm reset is asserted, the stack pointers are reset to an architecturally UNKNOWN value.

For more information, see Special-purpose registers and PC alignment checking.

D1.2.2.1 Stack pointer register selection

RCNNQX The PE uses the following stack pointers:

• If executing at EL0, then the PE uses the EL0 stack pointer, SP_EL0.

• If executing at EL1, EL2, or EL3, then the PE uses the stack pointer determined by PSTATE.SP:

— If PSTATE.SP is 0, then the PE uses the EL0 stack pointer, SP_EL0.

— If PSTATE.SP is 1, then the PE uses the stack pointer for the current Exception level.

ICSFMY When an exception is taken, the stack pointer for the target Exception level is selected.

IVYNZY The selected stack pointer can be indicated by a suffix to the Exception level:

• The t suffix, referring to thread, indicates use of the SP_EL0 stack pointer.

• The h suffix, referring to handler, indicates use of the SP_ELx stack pointer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6057
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.2 Registers for instruction processing and exception handling
IQZDYD The following are the AArch64 stack pointer options:

D1.2.3 The SIMD and floating-point registers

RJSCYH The SIMD and floating-point register bank comprises the 32 quadword (128-bit) SIMD and floating-point registers,
V0-V31.

ILMMMW The SIMD and floating-point register bank is used for floating-point, vector, and other SIMD-related scalar
operations.

RLFCJZ The SIMD and floating-point registers can be accessed as any of the following:

• 32 quadword (128-bit) registers, Q0-Q31.

• 32 doubleword (64-bit) registers, D0-D31.

• 32 word (32-bit) registers, S0-S31.

• 32 halfword (16-bit) registers, H0-H31.

• 32 byte (8-bit) registers, B0-B31.

• 128-bit vectors of elements.

• 64-bit vectors of elements.

IKFYJJ When a Warm reset is asserted, the SIMD and floating-point registers are reset to an architecturally UNKNOWN
value.

For more information, see Registers in AArch64 Execution state.

D1.2.4 Saved Program Status Registers

RPJSSD In AArch64 state, each implemented Exception level to which an exception can be taken has a Saved Program Status
Register (SPSR). The following are the SPSRs:

• For exceptions taken to EL1 using AArch64, SPSR_EL1.

• For exceptions taken to EL2 using AArch64, SPSR_EL2.

• For exceptions taken to EL3 using AArch64, SPSR_EL3.

IDVBPS When a Warm reset is asserted, the SPSRs are reset to an architecturally UNKNOWN value.

For more information, see Process state, PSTATE.

D1.2.5 Exception Link Registers

RJQBYN Exception Link Registers hold preferred exception return addresses.

RVCLNF In AArch64 state, each implemented Exception level to which an exception can be taken has an Exception Link
Register (ELR). The following are the ELRs:

• For exceptions taken to EL1, ELR_EL1.

Exception level (EL) Stack pointer (SP) option

EL0 SP_EL0

EL1 SP_EL1

EL2 SP_EL2

EL3 SP_EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6058
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.2 Registers for instruction processing and exception handling
• For exceptions taken to EL2, ELR_EL2.

• For exceptions taken to EL3, ELR_EL3.

ISHJSC When a Warm reset is asserted, the ELRs are reset to an architecturally UNKNOWN value.

For more information, see Preferred exception return address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6059
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
D1.3 Exceptions

D1.3.1 Exception entry terminology

D1.3.1.1 Taken, taken from, and taken to

RVDFHD When the PE responds to an exception, an exception is taken.

RFXGFX The PE state immediately before taking the exception is the state the exception is taken from.

RWTMVN The PE state immediately after taking the exception is the state the exception is taken to.

D1.3.1.2 Exception generating instructions

RQPPFN Exception generating instructions intentionally produce a precise exception in the instruction stream immediately
after the exception generating instruction. They are:

• HVC.

• SMC.

• SVC.

D1.3.1.3 Synchronous and asynchronous exceptions

RFQHGR If all of the following apply, an exception is synchronous:

• The exception is generated as a result of direct execution or attempted execution of an instruction.

• The preferred exception return address has an architecturally defined relationship with the instruction that
caused the exception.

• The exception is precise.

RPCXDH An exception is asynchronous if it is not synchronous.

RJPZPR Asynchronous exceptions taken to AArch64 state are also known as interrupts.

D1.3.1.4 Definition of a precise exception and imprecise exception

RTNVSL An exception is precise if on taking the exception, the PE state and the memory system state is consistent with the
PE having executed all of the instructions up to but not including the point in the instruction stream where the
exception was taken from, and none afterwards. However, for an instruction executing immediately at the point in
the instruction stream that the exception was taken from, the definition of precise also permits any of the following:

• For synchronous Data Abort and Watchpoint exceptions that are taken to AArch64 state generated by an
instruction that performs more than one single-copy atomic memory access, the values in registers or memory
affected by the instructions can be UNKNOWN, if all of the following apply:

— The accesses affecting those registers or memory locations do not, themselves, generate exceptions or
debug events.

— The registers are not involved in the calculation of the memory address used by the instruction.

• For synchronous Data Abort and Watchpoint exceptions that are generated from load or store instructions
executed in AArch64 state, all the following can occur:

— If the instruction was a load to either the base address register or the offset register, that register is
restored to the original value, and any other destination registers become UNKNOWN.

— If the instruction was a load that does not load the base address register or the offset register, then the
destination registers become UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6060
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• For implementations that include synchronous exception generation for floating-point exceptions, when a
floating-point exception is taken, it is permitted that the cumulative floating-point exception bits are not
restored.

• For a precise exception that is taken from AArch64 state during an instruction that performs more than one
single-copy atomic memory access, the values in registers or memory affected by the instructions can be
UNKNOWN, if all of the following apply:

— The instruction is not GCSSS2.

— The accesses affecting those registers or memory locations do not, themselves, generate exceptions or
debug events.

— The registers are not involved in the calculation of the memory address used by the instruction.

• For a synchronous exception or synchronous Debug state entry, generated by a Memory Copy and Memory
Set instruction, and for an asynchronous exception or asynchronous Debug state entry part way through the
execution of a Memory Copy and Memory Set instruction:

— The values of PSTATE.{N,Z,C,V} are UNKNOWN on exception entry. The values held in
SPSR_ELx.{N,Z,C,V} on exception entry, and DSPSR_EL0.{N,Z,C,V} on Debug state entry, are the
initial values for the instruction.

— All memory locations written by the pseudocode at the point at which the exception is taken are
updated.

— If the memory locations that are not written by the pseudocode at the point at which the exception is
taken are within the set of locations to be read by the instruction if it is restarted with the X[n], X[d],
and X[s] register values presented as part of taking the exception, then those memory locations are not
updated.

— For CPYF*T* and SET{G}*T* instructions, no memory locations that are not written by the
pseudocode at the point at which the exception is taken are updated.

— For Memory Copy and Memory Set instructions other than CPYF*T* and SET{G}*T*, any memory
location that does not itself generate a synchronous exception on a write becomes UNKNOWN if all the
following apply:

— The memory location is within the set of locations to be written by the instruction if it is
restarted with the X[n], X[d], and X[s] register values presented as part of taking the exception.

— The memory location is not within the set of locations to be read by the instruction on that
restart.

— Only for a synchronous exception or synchronous Debug state entry, generated by a Memory Copy
and Memory Set instruction:

— On taking the exception, the X[n], X[d], and, as appropriate, X[s] register values hold a
self-consistent set of values that correspond to the first element that was not copied or set, such
that return to the instruction enables resumption of the memory copy or memory set. That first
element does not need to be the element with a watchpoint, but can be an earlier element,
including the first element.

— If a memory location that generates a synchronous exception on a write is within the set of
locations to be written by the instruction if it is restarted with the X[n], X[d], and X[s] register
values presented as part of taking the exception, and if the memory location is not within the set
of locations to be read by the instruction on that restart, then the memory location is unchanged.

— For a synchronous exception, ELR_ELx points to the instruction that generated the exception.

— For a synchronous Debug state entry, DLR_EL0 points to the instruction that generated the
Debug state entry.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6061
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
— Only for an asynchronous exception or asynchronous Debug state entry part way through the
execution of a Memory Copy and Memory Set instruction:

— On taking the exception, the values of the registers that are updated by the instruction are
presented as a self-consistent set of values that correspond to the first element that was not
copied or set.

• If FEAT_SEBEP is implemented, then for any precise exception, including a PMU exception, the value of
all event counters counting at-retirement events and the instruction counter is precise.

RZNCXP An exception is imprecise if it is not a precise exception.

RLSGJD Except for SError interrupts, all exceptions taken to AArch64 state are precise. For each occurrence of an SError
interrupt, whether the interrupt is precise or imprecise is IMPLEMENTATION DEFINED.

IZNNNY An asynchronous Data Abort exception generated by a load that causes an SError exception to be taken at some
point later in the instruction stream than the load that generated the exception, is usually imprecise. The SError
exception is usually imprecise because the data returned from the load is UNKNOWN, and so can have corrupted the
state that is presented at the time that the exception is taken.

D1.3.1.5 Preferred exception return address

ILQPWH The preferred exception return address is an address that software might return to after handling an exception in
order to resume execution.

IHBQRX The preferred exception return address is determined by the type of the exception.

RDPLYN For an exception taken to an Exception level, ELx, using AArch64, the Exception Link Register for that Exception
level, ELR_ELx, is set to the preferred exception return address.

RVBQMV For asynchronous exceptions, the preferred exception return address is the address of the instruction following the
instruction boundary at which the interrupt occurs.

RQYCWH For synchronous exceptions other than exception generating instructions, the preferred exception return address is
the address of the instruction that generates the exception.

RDKWPP For an exception generating instruction that is executed, the preferred exception return address is the address of the
instruction that follows the exception generating instruction.

RLBLBR For an exception generating instruction that is trapped, disabled, or is UNDEFINED because the Exception level has
insufficient privilege to execute the instruction, the preferred exception return address is the address of the exception
generating instruction.

RXVMNH When an exception is taken from an Exception level using AArch32 to an Exception level, ELx, using AArch64,
ELR_ELx[63:32] are 0.

D1.3.1.6 Exception vectors

RFKKHH When an exception is taken to an Exception level that is using AArch64, execution starts at the exception vector.

IQLHPV The memory at the exception vector for an exception is expected to contain the handler code that corresponds to
that exception category.

RBRCKV The vector base address for an Exception level, ELx, is defined by the Vector Base Address Register, VBAR_ELx.

RPJKRC Each exception category has an exception vector at a fixed offset from the vector base address.

IYCTHH Exceptions taken to AArch64 are categorized for the purpose of assigning exception vectors based on the following
information:

• Whether the exception is one of the following:

— Synchronous exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6062
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
— SError.

— IRQ.

— FIQ.

• Information about the Exception level that the exception came from.

• Information about the SP in use.

• The state of the register file.

RRYXCL The following tables describe the offsets that are added to the vector base address to describe the exception vector:

Exception taken from Offset for exception type

Synchronous
exceptions,
excluding External
aborts

IRQ and vIRQ FIQ and vFIQ

Current Exception level
with SP_EL0.

0x000 0x080 0x100

Current Exception level
with SP_ELx, x > 0.

0x200 0x280 0x300

Lower Exception level,
where the implemented
level immediately lower
than the target level is using
AArch64.

0x400 0x480 0x500

Lower Exception level,
where the implemented
level immediately lower
than the target level is using
AArch32.

0x600 0x680 0x700

Exception taken from Offset for exception type

Synchronous
External aborts,
EASE == 0

SError and vSError
Synchronous
External aborts,
EASE == 1

Current Exception level
with SP_EL0.

0x000 0x180 0x180
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6063
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
The applicable value of EASE is the following:

• For an exception taken to EL1, the Effective value of SCTLR2_EL1.EASE.

• For an exception taken to EL2, the Effective value of SCTLR2_EL2.EASE.

• For an exception taken to EL3, the Effective value of SCR_EL3.EASE.

IFSZTB For the preceding tables, if EL3 is the target Exception level, the implemented Exception level immediately lower
than EL3 is either:

• EL2, if EL2 is implemented and enabled for the Security state of the Exception level the exception was taken
from.

• EL1, if EL2 is not implemented or not enabled for the Security state of the Exception level the exception was
taken from.

D1.3.2 Exception entry

RDQXFW When an exception is taken to an Exception level, ELx, that is using AArch64 state, all the following occur:

• The contents of PSTATE immediately before the exception was taken is written to SPSR_ELx.

• The preferred exception return address is written to ELR_ELx.

• The contents of PSTATE immediately after the exception is taken is as described in rule RWTXBY.

• For synchronous exceptions and SError interrupts, exception syndrome information is written to ESR_ELx.

• Execution starts from the exception vector at the target Exception level.

RWTXBY When an exception is taken to an Exception level, ELx, that is using AArch64 state, after recording the previous
values in SPSR_ELx, the following PSTATE bits are set:

• PSTATE.EL is set to the target Exception level.

• All of PSTATE.{D, A, I, F, SP, TCO, PM} are set to 1.

• PSTATE.SSBS is set to the value of SCTLR_ELx.DSSBS.

• PSTATE.{IL, nRW, UAO, PPEND} are set to 0.

Current Exception level
with SP_ELx, x > 0.

0x200 0x380 0x380

Lower Exception level,
where the implemented
level immediately lower
than the target level is using
AArch64.

0x400 0x580 0x580

Lower Exception level,
where the implemented
level immediately lower
than the target level is using
AArch32.

0x600 0x780 0x780

Exception taken from Offset for exception type

Synchronous
External aborts,
EASE == 0

SError and vSError
Synchronous
External aborts,
EASE == 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6064
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• PSTATE.BTYPE is set to 0b00.

• PSTATE.SS is set according to the rules in Chapter D2 AArch64 Self-hosted Debug.

• For any of the following situations, PSTATE.PAN is set to 1:

— The target Exception level is EL1 and SCTLR_EL1.SPAN is 0.

— The exception is taken from EL0, the target Exception level is EL2 using AArch64, HCR_EL2.{TGE,
E2H} is {1, 1}, and SCTLR_EL2.SPAN is 0.

• PSTATE.ALLINT is set to the inverse value of SCTLR_ELx.SPINTMASK.

• If FEAT_GCS is implemented, PSTATE.EXLOCK is updated based on the following situations:

— On taking an exception to the same Exception level,PSTATE.EXLOCK is set to the Effective value of
GCSCR_ELx.EXLOCKEN for the current Exception level.

— On taking an exception to a higher Exception level, PSTATE.EXLOCK is set to 0.

RSRXVW If the Effective value of SCTLR_ELx.IESB is 1 at the target Exception level, an exception taken to AArch64 state
is an error synchronization event.

RBBSRF If SCTLR_ELx.EIS is 1, exception entry is a Context synchronization event. If SCTLR_ELx.EIS is 0, exception
entry is not a Context synchronization event, but the indirect writes to ESR_ELx, FAR_ELx, SPSR_ELx,
ELR_ELx, and HPFAR_EL2 due to exception entry are synchronized so that a direct read of the register after
exception entry sees the indirectly written value caused by the exception entry.

IFZTLH The ordering of error synchronization and context synchronization on exception entry is described in the
pseudocode.

IWPBHV Memory copy and memory set operations are guaranteed to function correctly only if the prologue, main, and
epilogue Memory Copy and Memory Set instructions are executed in succession and are placed consecutively in
memory. Failure to execute the three instructions in succession can result in the instructions causing exceptions.
Software exception handlers are expected to require that the three instructions are placed consecutively in memory.
If the three instructions are not placed consecutively in memory, exception returns to the wrong instructions might
occur.

ILBHFM See also Taking error exceptions.

D1.3.2.1 Synchronous exception entry

RPMQBM For any of the following synchronous exceptions taken from an Exception level using AArch64, PSTATE.BTYPE
is copied to SPSR_ELx.BTYPE and then PSTATE.BTYPE is set to 0:

• Software Step exception.

• PC Alignment Fault exception.

• Instruction Abort exception.

• Breakpoint exception.

• Address Matching Vector Catch exception.

• Illegal Execution state exception.

• Software Breakpoint exception.

• Branch Target exception.

When taking any other synchronous exception from an Exception level using AArch64, it is CONSTRAINED
UNPREDICTABLE whether:

• SPSR_ELx.BTYPE is set to the value of PSTATE.BTYPE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6065
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• SPSR_ELx.BTYPE is set to 0.

PSTATE.BTYPE is then set to 0.

RZTSSH For any of the following synchronous exception types, when an exception is taken to an Exception level, ELx, a
virtual address (VA) that characterizes the exception is captured in FAR_ELx:

• An Instruction Abort exception.

• A Data Abort exception.

• A PC alignment fault exception.

• A Watchpoint exception.

For GPC exceptions, a VA that characterizes the exception is captured in FAR_EL3.

For synchronous External aborts that are not caused by translation table walks, it is CONSTRAINED UNPREDICTABLE
whether the FAR_ELx contains a VA that characterizes the exception. The ESR_ELx.FnV bit in the ISS encoding
for the External abort indicates the validity of the VA in FAR_ELx:

• If ESR_ELx.FnV in the ISS encoding for the External abort is 1, the VA in FAR_ELx is UNKNOWN.

• If ESR_ELx.FnV in the ISS encoding for the External abort is 0, the VA in FAR_ELx is valid.

For all other exceptions taken to ELx, FAR_ELx is UNKNOWN.

RFKLWR For Instruction Abort or Data Abort exceptions caused by any of the following faults, when an exception is taken
to EL2, an intermediate physical address (IPA) that characterizes the exception is captured in HPFAR_EL2:

• A Translation fault on a stage 2 translation.

• An Access Flag fault on a stage 2 translation.

• A stage 2 Address Size fault.

• A fault on stage 2 translation of an address accessed in a stage 1 translation table walk.

• A Granule Protection Fault (GPF) on an access for a stage 2 translation table.

For GPC exceptions due to a fault on an access for a stage 2 translation table walk, an IPA that characterizes the
exception is captured in HPFAR_EL2.

For all other exceptions taken to EL2 using AArch64, HPFAR_EL2 is UNKNOWN.

RBFJJV For GPC exceptions, a PA that characterizes the exception is captured in MFAR_EL3.

RJXPNL When an SME load or store instruction, or an SVE contiguous vector load or store instruction, causes a Data Abort
exception that sets ESR_ELx.ISV to 0:

• If the value written to FAR_ELx might not be the faulting VA, the PE sets ESR_ELx.FnP to 1 and sets
FAR_ELx to any address within the naturally-aligned fault granule that contains the faulting VA. The
naturally-aligned fault granule is as defined in the FAR_ELx register descriptions.

• Otherwise, the PE sets ESR_ELx.FnP to 0.

RTGQRC For Instruction Abort or Data Abort exceptions caused by an External abort, when FEAT_PFAR is implemented:

• If all of the following apply, then ESR_ELx.PFV is set to 0:

— The exception is taken to EL1.

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCR_EL2.VM is 1.

• Otherwise, ESR_ELx.PFV is set to an IMPLEMENTATION DEFINED value of 0 or 1.

For all other Instruction Aborts and Data Aborts, ESR_ELx.PFV is set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6066
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
On taking a synchronous External Abort, if ESR_ELx.PFV is set to 1 by the PE then:

• An address within the same naturally-aligned fault granule as the faulting physical address is written to
PFAR_ELx.PA or MFAR_EL3.PA as applicable. The fault granule size is defined by DLVGRB.

• The faulting physical address space is written to PFAR_ELx.{NSE,NS} or MFAR_EL3.{NSE,NS} as
applicable.

Note

PFAR_ELx never records the Intermediate Physical Address (IPA). PFAR_ELx might reveal a faulting physical
addresses to a guest operating system if stage 2 translation is not being used and some other method is used to hide
physical addresses from the guest (such as shadow page tables).

RZTNQN On taking a synchronous External Abort, the following registers are UNKNOWN based on the ESR_ELx.PFV value:

• If ESR_EL1.PFV is set to 0, PFAR_EL1 is UNKNOWN.

• If ESR_EL2.PFV is set to 0, PFAR_EL2 is UNKNOWN.

• If ESR_EL3.PFV is set to 0, MFAR_EL3 is UNKNOWN.

RTGRZL If an Instruction Abort or Breakpoint exception is generated part way through execution of a Memory Copy and
Memory Set instruction, presentation of the exception state is as described in RTNVSL for a synchronous exception
or synchronous Debug state entry from a watchpoint, generated by a Memory Copy and Memory Set instruction.

RZMSLS For a CPY* Memory Copy instruction, if both the read and write generate the Data Abort or Watchpoint exception,
it is CONSTRAINED UNPREDICTABLE whether the exception on the read or the exception on the write is presented.
ESR_ELx.ISS.WnR is set to be consistent with whether the exception was on the read or the write.

D1.3.2.1.1 SVE MOVPRFX exception entry behavior

RRWVTR When a MOVPRFX instruction pairs legally with another instruction and the execution of the pair generates a
synchronous exception:

• If the generated exception is a Breakpoint Instruction exception from a prefixed BRK instruction then MOVPRFX
updates the architectural state and ELR_ELx stores the address of BRK instruction.

• Otherwise, the return address that is stored in ELR_ELx is one of the following:

— When the MOVPRFX instruction did not cause a change to the architectural state, the address of the
MOVPRFX instruction is stored.

— When the MOVPRFX instruction caused a change to the architectural state, the address of the prefixed
instruction is stored.

RXRWVD When a MOVPRFX instruction pairs legally with another instruction and the execution of the pair causes synchronous
entry to Debug state:

• If the Debug state entry is due to a Halt Instruction debug event from a prefixed HLT instruction then MOVPRFX
updates the architectural state and DLR_EL0 stores the address of HLT instruction.

• Otherwise, the return address that is stored in DLR_EL0 is one of the following:

— When the MOVPRFX instruction did not cause a change to the architectural state, the address of the
MOVPRFX instruction is stored.

— When the MOVPRFX instruction caused a change to the architectural state, the address of the prefixed
instruction is stored.

RTPRKM When a MOVPRFX instruction pairs illegally with another instruction and execution of the pair generates a synchronous
exception, the return address recorded in ELR_ELx is a CONSTRAINED UNPREDICTABLE choice one of the following:

• The address of the MOVPRFX instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6067
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• The address of the prefixed instruction.

RJVNGC When a MOVPRFX instruction pairs illegally with another instruction and execution of the pair causes entry to Debug
state, the return address recorded in DLR_EL0 is a CONSTRAINED UNPREDICTABLE choice one of the following:

• The address of the MOVPRFX instruction.

• The address of the prefixed instruction.

RCRRPM When a prefixed instruction generates an Instruction Abort due to an MMU fault or synchronous External abort and
the MOVPRFX does not generate an Instruction Abort, then the address of the prefixed instruction is recorded in the
appropriate FAR_ELx or HPFAR_EL2 register and the address of the MOVPRFX instruction is recorded in the
appropriate ELR_ELx register.

RZJYDX When a prefixed instruction generates an Instruction Abort due to an MMU fault or synchronous External abort and
the MOVPRFX also generates an Instruction Abort, then the address of the MOVPRFX instruction is recorded in the
appropriate FAR_ELx or HPFAR_EL2 register and the appropriate ELR_ELx register.

D1.3.2.2 Asynchronous exception entry

RBWRCL When an asynchronous exception is taken from an Exception level using AArch64, PSTATE.BTYPE is copied to
SPSR_ELx.BTYPE and then PSTATE.BTYPE is set to 0.

RJBKRW If any of the following apply, when a physical SError interrupt exception is taken to AArch64 state, the pending
state of the physical SError is cleared:

• FEAT_DoubleFault is implemented.

• If FEAT_RAS is implemented, and on taking the SError interrupt, the syndrome recorded in ESR_ELx
indicates an SError other than IMPLEMENTATION DEFINED or uncategorized SError interrupt syndrome. See
Taking error exceptions.

Otherwise, it is IMPLEMENTATION DEFINED whether the pending state of the physical SError is cleared. This
IMPLEMENTATION DEFINED behavior might vary according to the type of the SError interrupt.

RSYZRH When a virtual SError interrupt exception is taken to AArch64 state, HCR_EL2.VSE is set to 0.

RNPSDK When FEAT_PFAR is implemented, on taking an SError exception to an Exception level using AArch64:

• If all of the following apply, ESR_ELx.PFV is set to 0:

— The exception is taken to EL1.

— EL2 is implemented and enabled in the current security state.

— The Effective value of HCR_EL2.VM is 0b1.

• Otherwise, ESR_ELx.PFV is set to an IMPLEMENTATION DEFINED value of 0 or 1.

On taking an SError exception, if ESR_ELx.PFV is set to 1 by the PE then:

• An address within the same naturally-aligned fault granule as the faulting physical address is written to
PFAR_ELx.PA or MFAR_EL3.PA as applicable. The fault granule size is defined by DLVGRB.

• The faulting physical address space is written to PFAR_ELx.{NSE,NS} or MFAR_EL3.{NSE,NS} as
applicable.

Note
PFAR_ELx never records the Intermediate Physical Address (IPA). PFAR_ELx might reveal a faulting physical
addresses to a guest operating system if stage 2 translation is not being used and some other method is used to hide
physical addresses from the guest (such as shadow page tables).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6068
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RYJTBL On taking an SError exception, the following registers is UNKNOWN based on the ESR_ELx.PFV value:

• If ESR_EL1.PFV is set to 0, PFAR_EL1 is UNKNOWN.

• If ESR_EL2.PFV is set to 0, PFAR_EL2 is UNKNOWN.

• If ESR_EL3.PFV is set to 0, MFAR_EL3 is UNKNOWN.

RGZVBJ An asynchronous exception or asynchronous Debug state entry part way through the execution of a Memory Copy
and Memory Set instruction is permissible. For an asynchronous exception, ELR_ELx points to the instruction that
the exception was taken on. For an asynchronous Debug state entry, DLR_EL0 points to the instruction that the
Debug state entry was taken on.

RMNGMW For an imprecise asynchronous exception part way through the execution of a Memory Copy and Memory Set
instruction, the following are UNKNOWN:

• The state of the X[n], X[d], and X[s] registers.

• The state of memory that was being written to by the instruction.

D1.3.3 Exception return terminology

D1.3.3.1 Return, return from, return to

RMMSFW An exception return is caused by the execution of an exception return instruction.

RJDJHH The PE state immediately before an exception return instruction is executed is the state the exception returns from.

RHNVMN The PE state immediately after the execution of an exception return instruction is the state the exception returns to.

D1.3.4 Exception return

RSKNJF In AArch64 state, the Exception return instructions are ERET, ERETAA, and ERETAB.

RPKJFB The Exception return instructions are UNDEFINED in EL0.

RSVBYH An exception return is either legal or illegal.

D1.3.4.1 Legal exception returns from AArch64 state

RBWCFK On a legal exception return from an Exception level, ELx, all of the following occur:

• If SCTLR_ELx.IESB is 1, and the Exception return instruction does not generate an exception, the PE inserts
an error synchronization event before the Exception return instruction.

• The PC is set to the value in ELR_ELx.

• If returning to an Exception level using AArch32 state, all the following apply:

— If SPSR_ELx.T is 0, ELR_ELx[1:0] are treated as being 0 for setting the PC.

— If SPSR_ELx.T is 1, ELR_ELx[0] is treated as being 0 for setting the PC.

• The contents of PSTATE are set to the values held in SPSR_ELx.

• If the PSTATE.IL bit copied from SPSR_ELx is 1 and the target Exception level for the return is using
AArch32 state, the PSTATE.{IT,T} bits are determined by an IMPLEMENTATION DEFINED choice of one of
the following:

— Set to 0.

— For returns initiated by an Exception return instruction or DRPS instruction, copied from SPSR_ELx.

— For debug exits, copied from DSPSR_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6069
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
The IMPLEMENTATION DEFINED choice might vary dynamically within the implementation. Software must regard
the value as being an UNKNOWN choice between the two values.

• The Event Register for the PE executing the Exception return instruction is set.

• The local Exclusives monitor for the PE executing the Exception return instruction is cleared. It is
IMPLEMENTATION DEFINED whether clearing the local Exclusives monitor also clears the global Exclusives
monitor.

• After the PC is set to the value held in ELR_ELx and the contents of PSTATE are set to the values held in
SPSR_ELx, ELR_ELx and SPSR_ELx become UNKNOWN.

• If the Effective value of SCTLR_ELx.EOS is 1, the exception return is a Context synchronization event.

• If the Effective value of SCTLR_ELx.EOS is 0, the exception return is not a Context synchronization event.

RQWBLS Unless the exception return instruction causes the PMU to set PSTATE.PPEND to 1, PSTATE.PPEND is set
according to RBVBYS.

D1.3.4.2 Illegal exception returns from AArch64 state

RTYTWB If in AArch64 state, any of the following situations can cause an illegal exception return:

• A return is made to an Exception level higher than the current Exception level.

• A return is made to an Exception level that is not implemented.

• If FEAT_RME is implemented, then if SCR_EL3.{NSE, NS} is {1, 0}, an exception return from EL3.

• If all of the following are true, and a return is made to EL1:

— EL2 is implemented and enabled in the current Security state

— HCR_EL2.TGE is 1.

• If all of the following are true, and a return is made to EL2:

— EL3 is implemented.

— SCR_EL3.NS is 0.

— FEAT_SEL2 is not implemented.

• If all of the following are true, and a return is made to EL2:

— EL3 is implemented.

— SCR_EL3.NS is 0.

— FEAT_SEL2 is implemented.

— SCR_EL3.EEL2 is 0.

• A return where the saved PSTATE.M[4] is 0 and at least one of the following is true:

— M[1] is 1.

— M[3:0] are 0b0001.

— The Exception level being returned to is using AArch32 state, as determined by SCR_EL3.RW,
HCR_EL2.RW, or as configured from reset.

• A return where the saved PSTATE.M[4] bit is 1, indicating a return to AArch32 state, and at least one of the
following are true:

— AArch32 state is not supported at any Exception level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6070
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
— The M field value is not a valid AArch32 state PE mode.

— The Exception level being returned to is using AArch64 state, as determined by SCR_EL3.RW,
HCR_EL2.RW, or as configured from reset.

• If the Effective value of GCSCR_ELx.EXLOCKEN is 1 and PSTATE.EXLOCK is 0, the execution of an
exception return instruction to return to the current Exception level.

RVWJHB On an illegal exception return from an Exception level, ELx, all of the following occur:

• If SCTLR_ELx.IESB is 1, the PE inserts an error synchronization event before the Exception return
instruction.

• The PC is set to the value in ELR_ELx. If the saved PSTATE.M[4] bit is 1, for illegal exception returns to
AArch32 state, all of the following are true:

— The PC bits[31:2] are set to the value in ELR_ELx.

— The PC bits[63:32, 1:0] are UNKNOWN.

• PSTATE.IL is set to 1.

• PSTATE.{EXLOCK, EL, nRW, SP} are unchanged.

• PSTATE.{N, Z, C, V, D, A, I, F, PAN, PM} are set to the associated values in SPSR_ELx.

• PSTATE.{PPEND, SS} are handled as if the return is a legal exception return.

• PSTATE.{TCO, DIT, UAO, SSBS, BTYPE, ALLINT} are UNKNOWN.

• If PSTATE.nRW is 1, indicating a return to AArch32 state, then the following PSTATE bits are also set:

— PSTATE.{Q, IT, GE, E} are set to the associated values in SPSR_ELx.

— It is CONSTRAINED UNPREDICTABLE whether PSTATE.T is 0 or set to the contents of SPSR_ELx.

• The Event Register for the PE executing the Exception return instruction is set.

• PSTATE.EXLOCK remains unchanged.

• The local Exclusives monitor for the PE executing the Exception return instruction is cleared. It is
IMPLEMENTATION DEFINED whether clearing the local Exclusives monitor also clears the global Exclusives
monitor.

• After the PC has been set to the value held in ELR_ELx and the contents of PSTATE have been set to the
value held in SPSR_ELx, the ELR_ELx and SPSR_ELx become UNKNOWN.

• If the Effective value of SCTLR_ELx.EOS is 1, the exception return is a Context synchronization event.

• If the Effective value of SCTLR_ELx.EOS is 0, the exception return is not a Context synchronization event.

D1.3.5 Synchronous exception types

RBZGXV All of the following are synchronous exceptions:

• Any exception generated by attempting to execute an instruction that is UNDEFINED, including:

— Attempts to execute instructions at an inappropriate Exception level.

— Attempts to execute instructions when they are disabled.

— Attempts to execute instruction bit patterns that are not allocated.

• Any exception caused by attempts to execute an instruction when the value of PSTATE.IL is 1. These are
called Illegal Execution State exceptions.

• Any exception caused by the use of a misaligned SP. These are called SP Alignment Fault exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6071
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• Any exception caused by attempting to execute an instruction with a misaligned PC. These are called PC
Alignment Fault exceptions.

• If executing inside a guarded memory region and PSTATE.BTYPE does not equal 0, any exception caused
by executing an instruction that is not compatible with the current value of PSTATE.BTYPE. These are called
Branch Target exceptions.

• Any exception caused by a pointer authentication instruction authentication failure. These are called PAC
Fail exceptions.

• Any exception caused by the exception generating instructions SVC, HVC, or SMC. These are respectively
called Supervisor Call (SVC) exceptions, Hypervisor Call (HVC) exceptions, or Secure Monitor Call (SMC)
exceptions.

• Traps on attempts to execute instructions that the System registers define as instructions that are trapped to a
higher Exception level. These are called Trap exceptions.

• Any exception caused by Instruction Aborts that were generated by the memory address translation system
that was associated with attempts to execute instructions from areas of memory that generate faults. These
are called Instruction Abort exceptions.

• Any exception caused by Data Aborts that were generated by the memory address translation system that are
associated with attempts to read or write memory that generate faults. These are called Data Abort
exceptions.

• Any exception caused by Data Aborts because of a misaligned address. These are called Data Abort
exceptions.

• If FEAT_MTE2 is implemented, any exception caused by a Data Abort as a result of a Tag Check Fault.
These are called Data Abort exceptions.

• If FEAT_SEBEP is implemented, a PMU exception that is enabled and unmasked in the current Exception
level, and is generated by an event counter in synchronous mode.

• If FEAT_RME is implemented, any exception that results from a Granule Protection Check (GPC) fault.
Depending on the cause of the exception, the GPC fault type, and the value of the routing control
SCR_EL3.GPF, these are called:

— GPC exceptions.

— Data Abort exceptions.

— Instruction Abort exceptions.

• Memory Copy exceptions and Memory Set exceptions. For more information, see Memory Copy and
Memory Set exceptions.

• Guarded Control Stack exceptions. For more information, see Guarded Control Stack exceptions.

• All of the debug exceptions:

— Breakpoint Instruction exceptions.

— Breakpoint exceptions.

— Watchpoint exceptions.

— Vector Catch exceptions.

— Software Step exceptions.

• In an implementation that supports the trapping of floating-point exceptions, any exception caused by trapped
floating-point exceptions. These are called Trapped Floating-point exceptions.

• An IMPLEMENTATION DEFINED set of exceptions caused by External aborts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6072
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
IXRFSY The architecture permits, but does not require, synchronous or asynchronous handling of External aborts.

IWRXPC The RAS architecture specifies some situations that must be handled synchronously.

D1.3.5.1 Taking synchronous exceptions from EL0

RDPLSC If EL2 is using AArch64 and the Effective value of HCR_EL2.TGE is 1, when any of the following exceptions are
taken from EL0, they are taken to EL2, unless routed to a higher Exception level. If EL2 is using AArch64 and the
Effective value of HCR_EL2.TGE is 0, when any of the following exceptions are taken from EL0, they are taken
to EL1, unless routed to a higher Exception level:

• Stage 1 Data Abort.

• Stage 1 Instruction Abort.

• PC Alignment fault.

• SP Alignment fault.

• Tag Check fault.

• Branch Target exception.

• Illegal Execution State exception.

• Trapped Floating-point exception.

• Supervisor Call.

• Undefined Instruction exception.

• PAC Fail exception.

• WFE trap.

• WFI trap.

• Advanced SIMD and floating-point Access trap.

• SVE Access trap.

• SME Access traps.

• SME Illegal Instruction exceptions.

• Synchronous External aborts.

• Memory Copy and Memory Set exceptions.

• PMU exceptions.

• Guarded Control Stack exceptions.

If EL2 is using AArch64 and either HCR_EL2.TGE is 1 or MDCR_EL2.TDE is 1, when any of the following debug
exceptions are taken from EL0, they are taken to EL2. If EL2 is using AArch64 and both HCR_EL2.TGE is 0 and
MDCR_EL2.TDE is 0, when any of the following debug exceptions are taken from EL0, they are taken to EL1:

• Breakpoint exception.

• Software Breakpoint exception.

• Software Step exception.

• Watchpoint exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6073
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
If EL2 is using AArch64 and either HCR_EL2.TGE is 1 or MDCR_EL2.TDE is 1, when a Vector Catch exception
is taken from EL0, it is taken to EL2. If EL2 is using AArch64 and both HCR_EL2.TGE is 0 and MDCR_EL2.TDE
is 0, a Vector Catch exception cannot be taken.

RJNBTN For an exception that is taken from EL0 to EL2 because the value of HCR_EL2.TGE is 1:

• If the exception would have been reported in ESR_EL1 using any EC value other than 0x07, then the EC
value and corresponding ISS encoding that would have been used to report the exception in ESR_EL1 are
used to report the exception in ESR_EL2.

• If the exception would have been reported in ESR_EL1 using the EC value 0x07, then the EC value 0x00 and
ISS encoding value 0x00 are reported in ESR_EL2.

D1.3.5.2 Exception levels for taking a synchronous External abort

RYNVLR A synchronous External abort exception taken from EL3 is taken to EL3.

RHBBPF When EL3 is implemented, EL3 is using AArch64, and SCR_EL3.EA is 1, a synchronous External abort exception
taken from EL2, EL1, or EL0 is taken to EL3.

RNTRCS When all of the following are true, a synchronous External abort exception taken from EL1 or EL0 is taken to EL2:

• EL2 is implemented and enabled in the current Security state.

• EL2 is using AArch64.

• The exception is not taken to EL3 by RHBBPF.

• Either the exception is taken from EL1 or the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• Any of the following are true:

— The Effective value of HCR_EL2.TEA is 1.

— The exception was generated by an External abort on a stage 2 translation table walk.

— The exception was generated by an External abort on a a System register access converted to a memory

access by FEAT_NV2. This can only occur at EL1.

— The exception is taken from EL0 and HCR_EL2.TGE is 1.

RHCYTT When FEAT_DoubleFault2 is implemented and all of the following are true, a synchronous External abort exception
taken from EL1 is taken to EL2:

• EL2 is implemented and enabled in the current Security state.

• EL2 is using AArch64.

• The exception is not taken to EL3 by RHBBPF.

• PSTATE.A is 1.

• The Effective value of HCRX_EL2.TMEA is 1.

RXMPHS When FEAT_DoubleFault2 is implemented and all of the following are true, a synchronous External abort exception
taken from EL2 or EL1 is taken to EL3:

• EL3 is implemented.

• EL3 is using AArch64.

• The exception is not taken to EL2 by RNTRCS or RHCYTT.

• PSTATE.A is 1.

• SCR_EL3.TMEA is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6074
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RKQLGW When all of the following are true, a synchronous External abort exception taken from EL2 or EL0 is taken to EL2:

• EL2 is implemented and enabled in the current Security state.

• The exception is not taken to EL3 by RHBBPF or RXMPHS.

• Any of the following are true:

— The exception is taken from EL2.

— The exception is taken from EL0, EL2 is using AArch64, and the Effective value of HCR_EL2.{E2H,
TGE} is {1, 1}.

RXJZKJ When all of the following are true, a synchronous External abort exception taken from EL1 or EL0 is taken to EL1:

• The exception is not taken to EL3 by RHBBPF or RXMPHS.

• The exception is not taken to EL2 by RNTRCS, RHCYTT, or RKQLGW.

IMBJFW The terms used in the tables in INDBHM have the following meanings:

INDBHM The following table summarizes the destination Exception level for a synchronous External abort exception taken
from ELx, and all of the following applies:

• SCR_EL3.{NS, EEL2} are not shown, IMBJFW describes Effective values involving Security states.

• The error was generated by a stage 1 fault on an access that is not a u System register access. See RNTRCS for
details of other cases.

Term Meaning

SCR_EL3 The Effective value of a field in SCR_EL3.

HCR If EL2 is using AArch32, this is the Effective value of a field in HCR. If EL2 is using AArch64, this is the Effective
value of a field in HCR_EL2.

HCRX_EL2 The Effective value of a field in HCRX_EL2.

PSTATE The Effective value of a field in PSTATE.

EA The Effective value of SCR_EL3.EA. If EL3 is not implemented, the Effective value of SCR_EL3.EA is 0.

TMEA The Effective value of SCR_EL3.TMEA or HCRX_EL2.TMEA,

If FEAT_DoubleFault2 is not implemented, the Effective values of SCR_EL3.TMEA and HCRX_EL2.TMEA are 0.

If EL2 is not implemented or EL2 is disabled in the current Security state, or the Effective value of SCR_EL3.HXEn
is 0, then the Effective value of HCRX_EL2.TMEA is 0.

TGE The Effective value of HCR.TGE. If EL2 is not implemented, or if EL2 is disabled in the current Security state, then
the Effective value of HCR.TGE is 0.

A The Effective value of PSTATE.A.

EL1 The exception is taken to EL1. If EL1 is using AArch32, then the exception is taken to the AArch32 Abort mode.

EL2 The exception is taken to EL2. If EL2 is using AArch32, then the exception is taken to the AArch32 Hyp mode.

EL3 The exception is taken to EL3 using AArch64.

n/a Not applicable. The field does not exist in the register in this configuration or the Exception level is not accessible in
this configuration.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6075
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• Either EDSCR.INTdis is 0b00 or invasive debug is disabled.

D1.3.5.3 Granule Protection Check (GPC) faults

IYRNGX If FEAT_RME is implemented, then when GPCCR_EL3.GPC is 0b1, Granule Protection Checks (GPCs) on
accesses to Physical Address (PA) space are enabled and might result in GPC faults.

RPYTGX GPC faults are reported as synchronous exceptions:

RFXMGJ GPC exceptions are taken to EL3.

Instruction Abort exceptions and Data Abort exceptions resulting from GPFs at:

• EL3 are taken to EL3.

• EL2 are taken to EL2.

SCR_EL3 HCR HCRX_EL2 PSTATE

EA TMEA TGE TEA TMEA A EL0 EL1 EL2 EL3

0b0 0b0 0b0 0b0 0b0 X EL1 EL1 EL2 EL3

0b0 0b0 0b0 0b0 0b1 0b0 EL1 EL1 EL2 EL3

0b0 0b0 0b0 0b0 0b1 0b1 EL1 EL2 EL2 EL3

0b0 0b0 0b0 0b1 X X EL2 EL2 EL2 EL3

0b0 0b0 0b1 X X X EL2 n/a EL2 EL3

0b0 0b1 0b0 0b0 0b0 0b1 EL1 EL3 EL3 EL3

0b0 0b1 0b0 0b0 X 0b0 EL1 EL1 EL2 EL3

0b0 0b1 0b0 0b0 0b1 0b1 EL1 EL2 EL3 EL3

0b0 0b1 0b0 0b1 X 0b0 EL2 EL2 EL2 EL3

0b0 0b1 0b0 0b1 X 0b1 EL2 EL2 EL3 EL3

0b0 0b1 0b1 X X 0b0 EL2 n/a EL2 EL3

0b0 0b1 0b1 X X 0b1 EL2 n/a EL3 EL3

0b1 X 0b0 X X X EL3 EL3 EL3 EL3

0b1 X 0b1 X X X EL3 n/a EL3 EL3

GPC fault Synchronous exception type

Granule Protection Fault (GPF) at EL3 Instruction Abort exception or Data Abort exception

GPF at EL2, EL1, or EL0 when SCR_EL3.GPF is 0b0 Instruction Abort exception or Data Abort exception

GPF at EL2, EL1, or EL0 when SCR_EL3.GPF is 0b1 GPC exception

Granule Protection Table (GPT) walk faults GPC exception

GPT address size faults GPC exception

Synchronous External abort on GPT fetch GPC exception
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6076
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• EL1 and EL0 are taken to:

— EL2 when the GPF is on an access for a stage 2 translation table, including for a hardware update of
stage 2 tables.

— Otherwise:

— EL1 when HCR_EL2.{TGE, GPF} is {0b0, 0b0}.

— EL2 when HCR_EL2.{TGE, GPF} is not {0b0, 0b0}.

IXWVCY For GPFs at EL2, EL1, or EL0 when SCR_EL3.GPF is 0b1, EL3 firmware can choose to delegate the resulting GPC
exception to a lower Exception level, as an Instruction Abort exception or Data Abort exception.

RJXSRX When the PE is in Debug state and EDSCR.SDD is 0b1, SCR_EL3.GPF is treated as 0b0, and the following GPC
faults are treated as a GPF for the purposes of causing an exception:

• GPT walk faults.

• GPT address size faults.

• Synchronous External abort on GPT fetch.

IZTKNY GPC exceptions due to a synchronous External abort on GPT fetch are subject to SCR_EL3.EASE.

IYJLPJ All GPC faults are reported with a priority consistent with the GPC being performed on any access to PA space.
That is, for each existing synchronous External abort, GPC faults are reported with immediately higher priority than
the corresponding synchronous External abort for that access. See MMU fault prioritization from a single address
translation stage.

IYHXKR When GPCCR_EL3.GPCP is 0b1, the PE can omit GPCs on fetches of translation table entries that are Table
descriptors for stage 2 translation table walks, for a performance optimization. Enabling this optimization is
dependent on the security model of the system.

RRWGJH If GPCCR_EL3.GPCP is 0b1 and the PE omits a GPC when fetching a translation table entry that is a Table
descriptor for a stage 2 translation table walk, then when the entry is processed:

• If the entry is not a Table descriptor, the PE must complete a GPC on the address of the entry before the
translation completes. This is permitted to occur concurrently with a GPC on the entry content, as long as the
priority order for fault reporting is maintained.

• Arm strongly recommends that the PE perform a GPC on the address of the entry if the entry generates a fault
that would report syndrome information from that entry. If the GPC results in a GPC fault, the fault is reported
as though GPCCR.EL3.GPCP is 0b0.

IZDKBX When a load or store instruction results in accesses to two granules, the access to each granule is subject to a GPC.

RGVSNZ If an instruction that stores to memory generates a GPC fault, the value of each memory location that instruction
attempted to store to is either:

• Unchanged if access to the location triggered the GPC fault.

• UNKNOWN for any location for which access did not trigger a fault or debug event.

IRFMWD A GPC fault might occur at any point in the translation process that requires access to a PA. For example, to perform
a store at EL1, a PE performs:

• A stage 1 translation for the VA.

• Stage 2 translations for:

— The output IPA from the stage 1 translation.

— The IPA of each stage 1 descriptor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6077
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• GPCs for all of:

— The PA that the VA translates to.

— The PA of each stage 1 descriptor.

— The PA of each stage 2 descriptor.

D1.3.5.4 SVE synchronous memory faults

IYLCFS In this section, the term Memory fault refers to the detection of an erroneous condition or debug event as a result of
performing a data memory access for an SVE load or store instruction.

RSKNTR When an SVE load or store instruction results in a data memory access, the detection of any of the following
conditions is considered to be a Memory fault:

• MMU fault.

• Alignment fault, excluding the SP alignment fault.

• Synchronous External abort, including synchronous parity error or ECC error.

• Watchpoint debug event.

• When FEAT_MTE2 is implemented, a Tag Check Fault.

For more information, see Memory aborts.

ILDTYT The detection or generation of a Memory fault by an SVE load or store instruction may or may not cause a
synchronous Data Abort or Watchpoint exception to be taken.

RLVCNH Unless otherwise specified in this section, SVE vector load and store instructions that detect a Memory fault cause
a Data Abort or Watchpoint exception to be taken, as described in SVE Data Abort and Watchpoint exceptions.

RFPVTT A Memory fault detected for a memory location that can only be accessed by an Inactive element of a predicated
SVE vector load or store instruction is ignored and does not cause a Data Abort or Watchpoint exception to be taken
by that instruction.

D1.3.5.4.1 SVE Data Abort and Watchpoint exceptions

RKJPTS Unless otherwise specified in this section, a Data Abort and Watchpoint exception caused by an SVE load or store
instruction follows the behaviors described in Definition of a precise exception and imprecise exception, Exception
entry, and Prioritization of Synchronous exceptions taken to AArch64 state.

IDGSNC SVE load and store instructions can generate a sequence of single-copy atomic memory accesses that might not be
completed due to a Memory fault causing a Data Abort or Watchpoint exception to be taken during the memory
access sequence.

RZKBRX When the execution of an SVE load or store instruction detects multiple Memory faults caused by different
single-copy atomic memory accesses, the Memory faults are not prioritized by the architecture.

IMSVYK When an SVE load or store instruction that has not been architecturally executed is restarted after an exception
return, any memory locations that it accessed before taking the exception might be accessed again. Therefore, SVE
load or store instructions might perform multiple accesses to memory locations that do not cause a Memory fault
but which are sensitive to the number of accesses, or have been modified between the accesses.

RZXNXT When execution of an SVE load instruction causes a Data Abort or Watchpoint exception to be taken and the
destination is not a vector register that is also used as a base or index register by the instruction, then all elements
of the destination register become UNKNOWN.

RSNJQR When execution of an SVE load instruction causes a Data Abort or Watchpoint exception to be taken and the
destination is a vector register that is also used as a base or index register by the instruction, then all elements of the
destination vector register are restored to their original value prior to execution of the load instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6078
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RDWYCY When execution of an SVE predicated vector store instruction causes a Data Abort or Watchpoint exception to be
taken, one or more of the following occurs:

• Memory locations that are associated with Active elements and which do not generate a Memory fault become
UNKNOWN.

• Memory locations that are associated with Active elements and which generate a Memory fault are
unchanged.

• Memory locations that are only associated with Inactive elements are unchanged.

D1.3.5.4.2 SVE First-fault and Non-fault loads

IJZBGW When a memory access performed for the First active element of an SVE First-fault vector load instruction detects
a Memory fault, this causes a synchronous exception to be taken as described in SVE Data Abort and Watchpoint
exceptions.

IDXBNG When a memory access performed for the First active element of an SVE First-fault vector load instruction does not
detect a Memory fault, the other elements are handled in the same way as the elements of an SVE Non-fault vector
load instruction.

RJKGYJ A Data Abort or Watchpoint exception is not generated when a Memory fault is detected by a memory access
performed for any of the following elements:

• Any Active element of an SVE Non-fault vector load.

• Any Active element of an SVE First-fault vector load except for the First active element.

RMNKNV The PE can choose to suppress a memory access performed for any of the following elements:

• Any Active element of an SVE Non-fault vector load.

• Any Active element of an SVE First-fault vector load except for the First active element.

RYFTRN When a memory access performed for any of the following elements detects a Memory fault or is suppressed for
any other reason, the FFR predicate elements starting from that element number, up to and including the
highest-numbered element, are set to FALSE:

• Any Active element of an SVE Non-fault vector load.

• Any Active element of an SVE First-fault vector load except for the First active element.

IBMQVT An FFR predicate element is never set to TRUE by an SVE vector load, therefore the fault indications are
cumulative.

IBXNTL A memory access performed for the First active element of an SVE First-fault vector load instruction is not precisely
equivalent to the memory access for an Active element of a regular SVE predicated vector load instruction. When
the initial value of the FFR element corresponding to the First active element is FALSE, then even if an access is
performed for that element and does not detect a Memory fault, the content of the corresponding destination vector
element is still CONSTRAINED UNPREDICTABLE, as described in rule RNGFTJ.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6079
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RNGFTJ After an SVE Non-fault vector load or First-fault vector load is executed, each destination vector element contains
one of the values listed in the following table:

RWCHSR In the previous table, watchpoints are not a mechanism for preventing access to memory.

D1.3.5.5 Prioritization of Synchronous exceptions taken to AArch64 state

RZFGJP The following list shows the priorities for synchronous exceptions taken to an Exception level using AArch64. The
highest priority is 1. The AArch64 Priority numbers correlate with the equivalent AArch32 and Debug prioritization
lists.

Corresponding
FFR element

Vector element
status

Content of destination vector element

FALSE Active Each byte of the element contains an independently CONSTRAINED UNPREDICTABLE choice
of one of the following:

• 0.

• The previous value of that byte in the destination vector register.

• If and only if all of the following apply, the value read from memory:

— The memory access for that byte was not an access to any type of Device
memory.

— The memory access for that byte does not return information that cannot be
accessed at the current or a lower level of privilege.

FALSE Inactive A CONSTRAINED UNPREDICTABLE choice of:

• 0.

• The previous value of that vector element.

TRUE Active The value read from memory.

TRUE Inactive 0.

Priority Synchronous exception type

1 Reset Catch debug event. See Reset Catch debug events.

2 Exception Catch debug event if it has a priority of 2. See Exception Catch debug event.

3 Halting Step debug event. See Halting Step debug events.

4 Software Step Exception used during Debug. See Software Step exceptions.

5 Synchronous PMU exception. See Synchronous exception-based event profiling.

6 Exception Catch debug events. See Exception Catch debug event.

7 PC alignment fault exception. See PC alignment checking.

8 Instruction Abort exceptions, including exceptions generated by an MMU fault for the translation of an instruction fetch.
If FEAT_RME is implemented, this includes GPC exceptions and Granule Protection Faults.

See MMU fault prioritization from a single address translation stage.

9 Breakpoint exceptions, or AArch32 Address Matching Vector Catch exceptions. See Breakpoint exceptions.and Vector
Catch exceptions.

10 Illegal Execution state exceptions. See Illegal exception returns from AArch64 state.

11 Software Breakpoint exceptions, caused by execution of a Breakpoint instruction.

12 Branch Target exception. See PSTATE.BTYPE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6080
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
13 EXLOCK Exception. See Guarded Control Stack exceptions.

14 Exceptions taken from EL1 to EL2 because of the configuration of one of the following:

• HSTR_EL2.Tn.

• HCR_EL2.TIDCP.

• If FEAT_NV is implemented, HCR_EL2.{NV1, NV}.

Exceptions taken from EL0 to EL1 or EL2 because of the configuration of the following:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP.

Exceptions taken from EL0 to EL2 because of the configuration of the following:

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP.

Priority Synchronous exception type
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6081
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
15 Exceptions that occur as a result of attempting to execute an instruction that is UNDEFINED for one or more of the following
reasons:

• Attempting to execute a UDF instruction.

• Attempting to execute an unallocated instruction encoding, including an encoding for an instruction that is not
implemented in the PE implementation.

• Attempting to execute an instruction that is defined to never be accessible at the current Exception level and Security
state, regardless of any enables or traps.

• Debug state execution of an instruction encoding that is not accessible in Debug state.

• Non-debug state execution of an instruction encoding that is not accessible in Non-debug state.

• Attempting to execute an HVC instruction, when HVC instructions are disabled by SCR_EL3.HCE or HCR_EL2.HCD.

• Attempting to execute an MSR or MRS instruction to SP_EL0, when SPSel.SP is 0.

• Attempting to execute an MSR or MRS instruction using an _EL12 register name, when HCR_EL2.E2H is 0.

• If FEAT_FGT and FEAT_PMUv3 are implemented, attempting to execute an MSR or MRS instruction in AArch64
state, or an MCR or MRC instruction in AArch32 state, that accesses a register associated with an unimplemented PMU
event counter.

• Attempting to execute an HLT instruction, when HLT instructions are disabled by EDSCR.HDE or halting is
prohibited.

• Attempting to execute an SVE instruction that is UNDEFINED because the Maximum implemented SVE vector length
in both Streaming SVE mode, and Non-streaming SVE mode, is less than the minimum required vector length for
that instruction. See Maximum implemented SVE vector lengths.

• Attempting to execute an SME instruction that is UNDEFINED because the Maximum implemented Streaming SVE
vector length is less than the minimum required vector length for that instruction. See Maximum implemented SVE
vector lengths.

• Attempting to execute an SVE MOVPRFX instruction with an immediately following instruction that the MOVPRFX cannot
predictably prefix, when the choice of resulting behavior is for either instruction to generate an Undefined
Instruction exception. See Move prefix.

• If in Debug state:

— Attempting to execute a DCPS1 instruction in Non-secure EL0 HCR_EL2.TGE is 1.

— Attempting to execute a DCPS2 instruction in EL1 or EL0, when EL2 is disabled in the current Security state
or is not implemented.

— Attempting to execute a DCPS3 instruction, when EDSCR.SDD is 1 or EL3 is not implemented.

— Attempting to execute in EL2, EL1, or EL0 an instruction that is configured by EL3 control registers to trap
to EL3, when EDSCR.SDD is 1. It is IMPLEMENTATION DEFINED whether this type of exception is prioritized
at this level or has the priority of the original trap exception.

• If in AArch32 state:

— If SCTLR_EL1.ITD is 1, attempting to execute an instruction in an IT block.

— If SCTLR_EL1.SED is 1, attempting to execute a SETEND instructions.

— If SCTLR_EL1.CP15BEN is 0, attempting to execute a CP15DMB, CP15DSB, or CP15ISB barrier instruction.

• Attempting to execute an instruction that is UNDEFINED because all of the following apply:

— EL0 is using AArch32.

— EL1 is using AArch64.

— Programming FPCR.{Stride, Len} to nonzero values is supported.

— One or more of FPCR.{Stride, Len} is nonzero.

16 If FEAT_SME or FEAT_SVE is implemented, an exception taken to EL1, or to EL2 if HCR_EL2.TGE is 1, due to one of
the following trap controls:

• CPACR_EL1.SMEN or CPACR_EL1.ZEN.

17 If all of the following apply, any exception that is generated by a configurable trap or enable:

• The exception is not already covered by priorities 4-16.

• The exception is taken to EL1, or, if HCR_EL2.TGE is 1, is taken to EL2.

Priority Synchronous exception type
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6082
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
18 As the result of one of the following configuration controls, an exception taken from EL0 to EL2:

• When the exception is taken to AArch64 state:

— HSTR_EL2.Tn.

— HCR_EL2.TIDCP.

• When the exception is taken to AArch32 state:

— HSTR.Tn.

— HCR.TIDCP.

19 If FEAT_SME or FEAT_SVE is implemented, an exception taken to EL2 due to one of the following trap controls:

• CPTR_EL2.SMEN or CPTR_EL2.ZEN, when HCR_EL2.E2H is 1.

• CPTR_EL2.TSM or CPTR_EL2.TZ, when HCR_EL2.E2H is 0.

20 As the result of one of the following configuration controls, an exception taken to EL2:

• When the exception is taken to AArch64 state: CPTR_EL2, other than those controls covered in priority 19.

• When the exception is taken to AArch32 state: in HCPTR.

21 As the result of a configuration control in one of the following registers, an exception taken to EL2:

• When the exception is taken to AArch64 state:

— HCR_EL2: Other than a setting made in the {TIDCP, NV} fields, and MRS/MSR instruction using an _EL12
register name when HCR_EL2.E2H is 0.

— CNTHCTL_EL2: Any setting.

— MDCR_EL2: Any setting.

Any of the following fine-grained traps:

— HAFGRTR_EL2.

— HDFGRTR_EL2.

— HDFGRTR2_EL2.

— HDFGWTR_EL2.

— HDFGWTR2_EL2.

— HFGITR_EL2.

— HFGITR2_EL2.

— HFGRTR_EL2.

— HFGRTR2_EL2.

— HFGWTR_EL2.

— HFGWTR2_EL2.

When the exception is taken to AArch32 state:

— HCR: Other than the TIDCP bit.

— CNTHCTL: Any setting.

— HDCR: Any setting.

22 Other than an exception defined by priorities 4-21 inclusive, any exception that is the result of a configurable access to
instructions, where the exception is taken to EL2.

23 An exception caused by the SMC instruction being UNDEFINED because SCR_EL3.SMD is 1.

24 An exception caused by any of the following Exception generating instructions:

• HVC.

• SMC.

• SVC.

For AArch64 State, see Branches, Exception generating, and System instructions.

25 If FEAT_SME or FEAT_SVE is implemented, an exception taken to EL3 due to one of the following trap controls:

• CPTR_EL3.ESM or CPTR_EL3.EZ.

Priority Synchronous exception type
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6083
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
26 An exception taken to EL3 as the result of configuration controls in CPTR_EL3, other than those controls covered in
priority 25. It is IMPLEMENTATION DEFINED whether the exception is prioritized as an UNDEFINED instruction or has the
priority of the original Trap exception.

27 Exceptions Trapped to EL3 from Secure EL1 using AArch32.

28 An Exception taken to EL3 from EL0, EL1, or EL2 as a result of configuration controls in MDCR_EL3. It is
IMPLEMENTATION DEFINED whether the exception is prioritized as an UNDEFINED instruction or has the priority of the
original Trap exception.

29 Other than an exception defined by priorities 4-28, inclusive, any exception taken to EL3 because of a configurable access
to an instruction. It is IMPLEMENTATION DEFINED whether the exception is prioritized as an UNDEFINED instruction or has
the priority of the original Trap exception.

30 SME illegal instruction exceptions due to attempting to execute an SME instruction when PSTATE.SM is 0, or attempting
to execute certain Advanced SIMD or SVE instructions when PSTATE.SM is 1.

See Streaming SVE mode.

31 SME illegal instruction exceptions due to attempting to access ZA storage or the ZT0 register when PSTATE.ZA is 0.

See ZA storage and SME2 ZT0 register.

32 SME illegal instruction exceptions due to attempting to access the ZT0 register when an SMCR_ELx.EZT0 control is 0.

See SME2 ZT0 register and SME traps and exceptions.

33 An exception as a result of attempting to execute an SVE or SME instruction that is UNDEFINED because the Effective SVE
vector length is less than the minimum required vector length for that instruction. See also Configurable SVE vector
lengths.

34 When FEAT_FPAC is implemented, a PAC Fail exception. See Faulting on pointer authentication.

35 When SIMD & Floating Point is implemented, any trapped floating-point exception. See Floating-point exceptions and
exception traps.

36 This priority number is used by debug events.

37 An SP alignment fault. See SP alignment checking.

38 When FEAT_MOPS is implemented, Memory Copy and Memory Set exceptions caused by the CPY* or SET* instruction
algorithm option of the implementation that an exception is taken from being different from the algorithm option of the
implementation that is returned to. See Memory Copy and Memory Set exceptions.

39 When FEAT_MOPS is implemented, Memory Copy and Memory Set exceptions that are not defined by Priority 38. See
Memory Copy and Memory Set exceptions.

For Priorities 40, 41, 42, 43, or 44: when an instruction results in more than one single-copy atomic memory access, the architecture
will not prioritize the individual Synchronous exceptions generated as the result of the multiple memory accesses.

When FEAT_GCS is implemented, a stricter requirement is defined for the GCSSS2 instruction in RXTZVS.

40 In descending priority order:

a) Data Abort exceptions on translation table walks and translation table entry updates.

b) GPC Exceptions on translation table walks and translation table entry updates, if FEAT_RME is implemented.

c) Data Abort exceptions due to synchronous External aborts on translation table walks and translation table entry updates.

d) Data Abort exceptions arising from an MMU fault not on a translation table walk, that are not covered by priorities 41
or 43.

See also:

• MMU fault prioritization from a single address translation stage.

• External aborts.

Priority Synchronous exception type
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6084
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
D1.3.5.6 Trapping of floating-point exceptions

RTSQFJ Execution of a floating-point instruction, or execution of an Advanced SIMD or SVE instruction that performs
floating-point operations, can generate an exceptional condition, called a floating-point exception.

RBBSGN For each of the following floating-point exceptions, it is IMPLEMENTATION DEFINED whether an implementation
includes synchronous exception generation:

• Input Denormal.

• Inexact.

• Underflow.

• Overflow.

• Divide by Zero.

• Invalid Operation.

IYRVSW The architecture does not support asynchronous reporting of floating-point exceptions. If an implementation does
not support synchronous exception generation from a floating-point exception, then that synchronous exception is
never generated and all statements on when that synchronous exception is generated do not apply.

IKJTLV For any of the implemented floating-point exceptions listed in RBBSGN, FPCR provides control bits to enable
synchronous exception generation.

RVJFJR The Exception level that a Trapped Floating-point exception is taken to is defined as follows:

• If executing at EL0:

— If the Effective value of HCR_EL2.TGE is 0, the exception is taken to EL1.

— If the Effective value of HCR_EL2.TGE is 1, the exception is taken to EL2.

• If executing at EL1, the exception is taken to EL1.

• If executing at EL2, the exception is taken to EL2.

• If executing at EL3, the exception is taken to EL3.

41 If prioritized here, then in descending priority order:

a) Data Abort exceptions due to a Granule Protection Fault (GPF) on the final physical address access of the address
translation process, if FEAT_RME is implemented.

b) GPC exceptions on the final physical address access of the address translation process, if FEAT_RME is implemented.

c) Any of:

 i) Data Abort exceptions due to synchronous External aborts on the final physical address access of the address
translation process.

 ii) Data Abort exceptions on Tag Check Faults, if FEAT_MTE2 is implemented.

Whether these are prioritized here or as Priority 43 is IMPLEMENTATION DEFINED.

See also:

• Tag Check Faults.

• External aborts.

42 Watchpoint exception. See Watchpoint exceptions.

43 The exceptions listed for priority 41 if they are prioritized as 43.

44 Guarded Control Stack Data Check exceptions. See Guarded Control Stack exceptions.

Priority Synchronous exception type
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6085
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RTRWMV If an implementation includes synchronous exception generation for floating-point exceptions in AArch64 state,
when the execution of separate operations in separate SIMD or SVE elements causes multiple floating-point
exceptions, the ESR_ELx reports only the exceptions associated with one element that the instruction uses. The
architecture does not specify which element is reported.

RVJNYH When a floating-point exception is trapped, all of the following apply:

• When the trapped floating-point exception is taken, it is IMPLEMENTATION DEFINED whether the FPSR is
restored to the value of the FPSR immediately before the instruction that generated the trapped floating-point
exception.When the trapped floating-point exception is taken, if the FPSR is not restored, it is CONSTRAINED
UNPREDICTABLE which untrapped floating-point exceptions, if any, are indicated by the corresponding FPSR
cumulative floating-point exception bits having the value 1.

• In ESR_ELx at the target Exception level, all of the following apply:

— The highest priority trapped floating-point exception has a floating-point exception trapped bit set to 1.

— If any other untrapped floating-point exceptions are generated by the same operation, each untrapped
exception has a floating-point exception trapped bit set to 0. This applies to both higher priority and
lower priority untrapped floating-point exceptions.

— If any lower priority trapped floating-point exceptions are generated by the same operation, for each
exception, it is CONSTRAINED UNPREDICTABLE whether the floating-point exception trapped bit is set
to 1.

RFTPRW For trapped floating-point exceptions from Advanced SIMD or SVE instructions, the architecture does not define
the floating-point exception prioritization between different elements of the instruction.

D1.3.5.7 Memory Copy and Memory Set exceptions

ITPJXM If an exception is taken during the execution of Memory Copy and Memory Set instructions, and execution of these
instructions restarts on a physical hardware PE implementation that is different from where the exception was taken
from, then a Memory Copy or Memory Set exception can be generated.

RJQZHK For CPYE*, CPYFE*, CPYFM*, and CPYM* instructions, if the instruction algorithm option indicated by the
value of PSTATE.C is different from the PSTATE.C value of the implementation, then a Memory Copy exception
is generated.

RXQQXB For SETE*, SETGE*, SETGM*, and SETM* instructions, if the instruction algorithm option indicated by the value
of PSTATE.C is different from the PSTATE.C value of the implementation, then a Memory Set exception is
generated.

RPHLLT For CPYE*, CPYFE*, CPYFM*, and CPYM* instructions, if the instruction alignment and size requirements of
the implementation that an exception is taken from are different from the alignment and size requirements of the
implementation that is returned to, then a Memory Copy exception is generated.

RBKCPW For SETE*, SETGE*, SETGM*, and SETM* instructions, if the instruction alignment and size requirements of the
implementation that an exception is taken from are different from the alignment and size requirements of the
implementation that is returned to, then a Memory Set exception is generated.

IQJFTK The Memory Copy and Memory Set exceptions that are caused by alignment and size requirement differences can
be avoided if the following apply:

• The CPYFP*, CPYP*, SETGP*, or SETP* instruction is executed before the appropriate CPYFM*,
CPYM*, SETGM*, or SETM* on the same implementation.

• The CPYFM*, CPYM*, SETGM*, or SETM* instruction is executed before the appropriate CPYFE*,
CPYE*, SETGE*, or SETE* on the same implementation.

ILNTYW The generic return routine for Memory Copy and Memory Set exceptions is to adjust the register arguments to be
consistent with performing a new memory copy or memory set, and then to return to the CPYFP*, CPYP*,
SETGP*, or SETP* instruction to restart the memory copy or memory set.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6086
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
ITTVQX The generic return routine for Memory Copy and Memory Set exceptions can be used by relying on the Memory
Copy and Memory Set instructions being placed consecutively in memory - prologue, then main, and then epilogue.

ICNTMJ The generic return routine for Memory Copy exceptions is shown in the following pseudocode:

 if OptionA && WrongOption || OptionB && !WrongOption then
 //format is from option B
 if SPSR_ELx.N=='1' then
 //backward copy
 DestReg = DestReg - SizeReg;
 SrcReg = SrcReg - SizeReg;
 else // format is from option A;
 if SizeReg<63>=='1' then
 // forward copy
 DestReg = DestReg + SizeReg;
 SrcReg = SrcReg + SizeReg;
 SizeReg = -1*SizeReg;

 if FromEpilogue then
 ReturnAddress = ELR_ELx - 8;

 else
 ReturnAddress = ELR_ELx - 4;

IMWFQH The generic return routine for Memory Set exceptions is shown in the following pseudocode:

 if !OptionA && WrongOption || (OptionA && !WrongOption) then
 // format is from Option A
 // forward set
 DestReg = DestReg + SizeReg;
 SizeReg = -1*SizeReg;
 if FromEpilogue then
 ReturnAddress = ELR_ELx - 8;
 else
 ReturnAddress = ELR_ELx - 4;

IPRXVQ The information in the ESR_ELx.ISS field is sufficient to allow the diagnosis of the reason for a Memory Copy or
Memory Set exception being generated and to allow a generic emulation of the memory copy or memory set.

RZHRJP The Exception levels that Memory Copy and Memory Set exceptions are taken to are as follows:

• From EL0, to EL1 if HCR_EL2.TGE is 0. Otherwise, they are taken to EL2.

• From EL1, to either EL1 or EL2, depending on the value of HCRX_EL2.MCE2.

• From EL2 or EL3, to the same Exception level.

INXHPS The HCRX_EL2.MCE2 control bit allows Memory Copy and Memory Set exceptions to be handled in a system
where Memory Copy and Memory Set instructions might be used at EL1 at times when taking an exception to EL1
is not acceptable. This is necessary only if there is a possibility of the migration of EL1 code between different
physical hardware PE implementations when EL1 is not tolerant of taking an exception.

D1.3.6 Asynchronous exception types

RZNTKG The Arm architecture Exception model distinguishes the following classes of asynchronous exceptions:

• Physical Interrupts

• Virtual Interrupts

• PMU exceptions, see Exception-based event profiling.

There are three types of physical interrupt:

• SError (also described as a System Error)

• IRQ

• FIQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6087
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
There are three types of virtual interrupt:

• vSError (also described as a Virtual System Error)

• vIRQ

• vFIQ

RSLLMN IRQ, FIQ, vIRQ, and vFIQ interrupts are precise asynchronous exceptions.

RGGWMZ If FEAT_NMI is implemented, then IRQ, FIQ, vIRQ, and vFIQ interrupts can have Superpriority as an additional
attribute.

IPYQBL When SCTLR_ELx.NMI is 0, the attribute of Superpriority has no effect on interrupts taken to ELx.

See also:

• Physical interrupt masking.

• Virtual interrupt masking.

RPBKNX The mechanism by which Superpriority is assigned is IMPLEMENTATION DEFINED.

RDXHJZ Each physical interrupt type can be assigned a target Exception level of EL1, EL2, or EL3.

RVMWYT ISR_EL1 shows the pending status of interrupts as follows:

• When read from EL2 or EL3, ISR_EL1 shows the pending status of each of the physical interrupts IRQ, FIQ,
and SError.

• When read from EL1, ISR_EL1 shows:

— The pending status of the virtual interrupts, vIRQ, vFIQ, and vSError if they are enabled by the
Effective values of the corresponding HCR_EL2.{IMO, FMO, AMO} enables.

— The pending status of the physical interrupts, IRQ, FIQ, and SError if the corresponding virtual
interrupts are not enabled by the Effective values of the HCR_EL2.{IMO, FMO, AMO} enables.

IRWYFW An implementation might support other mechanisms for signaling a virtual interrupt.

IWRGNC PMU exceptions can also be an asynchronous exception type. See Exception-based event profiling.

IXHCGZ The mechanism by which physical interrupts are signaled to the PE are IMPLEMENTATION DEFINED and might be
either edge or level sensitive. A common implementation choice is that the IRQ and FIQ interrupts are level
sensitive, and this is supported by the Generic Interrupt Controller (GIC).

IYSKZH The physical SError interrupt is often used, amongst other things, for communicating External aborts from the
memory system that are to be taken asynchronously.

RKTWMT For an External abort generated by the memory system that is taken asynchronously using the SError interrupt, the
SError interrupt always behaves as an edge-triggered interrupt. For any other sources of SError interrupts, it is
IMPLEMENTATION DEFINED whether they are edge-triggered or level-sensitive.

RHSFRC When taking an SError or a vSError interrupt to an Exception level using AArch64, ESR_ELx at the target
Exception level is updated to describe an SError interrupt. If FEAT_RAS is implemented, then when taking a
vSError interrupt to an Exception level using AArch64, ESR_ELx at the target Exception level is updated with
exception syndrome information from VSESR_EL2.

RRKDNV When taking an IRQ, vIRQ, FIQ or vFIQ interrupt to an Exception level using AArch64, ESR_ELx at the target
Exception level is not updated.

D1.3.6.1 Virtual interrupts

RMLLVN Each virtual interrupt type can be independently enabled from EL2. If a virtual interrupt type is enabled from EL2,
the target Exception level for the corresponding physical interrupt is not EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6088
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RQYBDH Each virtual interrupt type can be set to the pending state by EL2 using controls in HCR_EL2.

RRTLGR Pending vIRQ and vFIQ interrupts can be assigned Superpriority by using controls in HCRX_EL2.

RBCXJB If HCR_EL2.TGE is 0, setting an HCR_EL2.{FMO, IMO} routing control bit to 1 enables the corresponding virtual
interrupt. If HCR_EL2.TGE is 1, all virtual interrupts are disabled and the Effective values of HCR_EL2{FMO,
IMO} are 0.

RCDCKC If HCR_EL2.TGE is 0, setting the Effective value of either the HCR_EL2.AMO or HCRX_EL2.TMEA routing
control bit to 1 enables the virtual SError exception.

If HCR_EL2.TGE is 1. virtual SError exceptions are disabled.

RNVFXB If a virtual interrupt type is enabled, that type of interrupt can be generated by any one of the following:

• Execution at EL0 or EL1 if the corresponding virtual interrupt pending bit, HCR_EL2.{VSE, VI, VF}, is 1.

• For a vIRQ or a vFIQ, by an IMPLEMENTATION DEFINED mechanism. This might be a signal from an interrupt
controller.

RSDVLM If a virtual interrupt is disabled, the virtual interrupt cannot be taken.

INJPHG The following table describes the bits that enable virtual interrupts, the bits that cause virtual interrupts to be pending
in HCR_EL2, and the bits that enable signaling of pending virtual interrupts with Superpriority in HCRX_EL2:

RMZWNH When taking a vIRQ or a vFIQ interrupt, the corresponding virtual interrupt pending bit in HCR_EL2 retains its
state.

IQVCWH If the virtual interrupt pending bits are used, the vIRQ or vFIQ exception handler must cause software executing at
EL2 or EL3 to set their corresponding virtual interrupt pending bits to 0.

RYPRNB When taking a vSError interrupt, HCR_EL2.VSE is cleared to 0.

ILFSXS A virtual SError is never taken to EL2 or EL3, regardless of the values of HCRX_EL2.TMEA and
SCR_EL3.TMEA.

D1.3.6.2 Establishing the target Exception level of an asynchronous exception

RQZPXL The terms used in the table in RNMMXK have the following meanings:

Virtual interrupt type Enable control
Cause a virtual
interrupt to be pending

Pending virtual interrupt
has Superpriority

vSError HCR_EL2.AMO or
HCRX_EL2.TMEA

HCR_EL2.VSE n/a

vIRQ HCR_EL2.IMO HCR_EL2.VI HCRX_EL2.VINMI

vFIQ HCR_EL2.FMO HCR_EL2.VF HCRX_EL2.VFNMI

Term Meaning

SCR_EL3 The Effective value of a field in SCR_EL3.

EEL2 If EL3 is not implemented, the Effective value of SCR_EL3.EEL2 is 1.

FIQ

IRQ

The Effective value of the field that configures the asynchronous exception type in SCR_EL3. The Effective
value of the field is one of the following:

• If EL3 is implemented, the FIQ/IRQ fields are taken from SCR_EL3.

• If EL3 is not implemented, the Effective value of these fields is 0.

RW If EL3 is not implemented, the Effective value of SCR_EL3.RW is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6089
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RNMMXK The following table describes the routing of physical FIQ and IRQ interrupts if the highest implemented Exception
level is using AArch64 and either EDSCR.INTdis is 0b00 or invasive debug is disabled.

HCR If EL2 is using AArch32, this is the Effective value of a field in HCR. If EL2 is using AArch64, this is the
Effective value of a field in HCR_EL2.

TGE If EL2 is not implemented, the Effective value of HCR.TGE or HCR_EL2.TGE is 0.

FMO

IMO

The Effective value of the mask override field for the asynchronous exception type in HCR or HCR_EL2. The
Effective value of the field is one of the following:

• If EL2 is implemented, the FMO/IMO fields are taken from HCR_EL2.

• If EL2 is not implemented, the Effective value of these fields is 0.

E2H If EL2 is not implemented, the Effective value of HCR.E2H or HCR_EL2.E2H is 0.

RW If EL2 is not implemented, the Effective value of HCR_EL2.RW is the same as the Effective value of
SCR_EL3.RW.

EL1 The exception is taken to EL1 using AArch64.

EL2 The exception is taken to EL2 using AArch64.

EL3 The exception is taken to EL3 using AArch64.

C The interrupt is not taken and remains pending, regardless of the PSTATE.{I, F, ALLINT} interrupt masks.

FIQ,
IRQ,

The exception is taken to the AArch32 FIQ mode, the AArch32 IRQ mode or the AArch32 Abort mode
according to the type of asynchronous exception.

Hyp The exception is taken to AArch32 Hyp mode.

n/a Not applicable. The field does not exist in the register in this configuration or the Exception level is not
accessible in this configuration.

Term Meaning

Table D1-1 FIQ and IRQ interrupt exception targets

SCR_EL3 HCR Target when taken from

NS EEL2
IRQ

FIQ
RW TGE

IMO

FMO
E2H RW EL0 EL1 EL2 EL3

0 0 0 0 x x x x FIQ,
IRQ,

FIQ,
IRQ,

n/a C

0 0 0 1 x x x x EL1 EL1 n/a C

0 0 1 x x x x x EL3 EL3 n/a EL3

0 1 0 x 0 0 0 0 FIQ,
IRQ,

FIQ,
IRQ,

C C

0 1 0 x 0 0 0 1 EL1 EL1 C C

0 1 0 x 0 0 1 x EL1 EL1 C C

0 1 0 x 0 1 x x EL2 EL2 EL2 C

0 1 0 x 1 x x x EL2 n/a EL2 C

0 1 1 x 0 x x x EL3 EL3 EL3 EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6090
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RZZYHK The terms used in the tables in RMGNFZ have the following meanings:

0 1 1 x 1 x x x EL3 n/a EL3 EL3

1 x 0 0 0 0 n/a n/a FIQ,
IRQ,

FIQ,
IRQ,

Hyp C

1 x 0 0 0 1 n/a n/a Hyp Hyp Hyp C

1 x 0 0 1 x n/a n/a Hyp n/a Hyp C

1 x 0 1 0 0 0 0 FIQ FIQ C C

1 x 0 1 0 0 0 1 EL1 EL1 C C

1 x 0 1 0 0 1 x EL1 EL1 C C

1 x 0 1 0 1 x x EL2 EL2 EL2 C

1 x 0 1 1 x x x EL2 n/a EL2 C

1 x 1 x 0 x x x EL3 EL3 EL3 EL3

1 x 1 x 1 x x x EL3 n/a EL3 EL3

Table D1-1 FIQ and IRQ interrupt exception targets (continued)

SCR_EL3 HCR Target when taken from

NS EEL2
IRQ

FIQ
RW TGE

IMO

FMO
E2H RW EL0 EL1 EL2 EL3

Term Meaning

SCR_EL3 The Effective value of a field in SCR_EL3.

HCR_EL2 The Effective value of a field in HCR_EL2.

SCTLR2_EL2 The Effective value of a field in SCTLR2_EL2.

HCRX_EL2 The Effective value of a field in HCRX_EL2.

SCTLR2_EL1 The Effective value of a field in SCTLR2_EL1.

PSTATE The Effective value of a field in PSTATE.

HCR The Effective value of a field in HCR.

EA The Effective value of SCR_EL3.EA. If EL3 is not implemented, the Effective value of SCR_EL3.EA is 0.

TMEA The Effective value of SCR_EL3.TMEA or HCRX_EL2.TMEA,

If FEAT_DoubleFault2 is not implemented, the Effective values of SCR_EL3.TMEA and HCRX_EL2.TMEA
are 0.

If EL2 is not implemented or EL2 is disabled in the current Security state, or the Effective value of
SCR_EL3.HXEn is 0, then the Effective value of HCRX_EL2.TMEA is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6091
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RMGNFZ The following tables describe the routing of SError exceptions taken from ELx.

All of the following apply to these tables:

• SCR_EL3.{NS, EEL2} are not shown. RZZYHK describes Effective values involving Security states.

• Either EDSCR.INTdis is 0b00 or invasive debug is disabled.

NMEA The Effective value of SCR_EL3.NMEA, SCTLR2_EL2.NMEA, or SCTLR2_EL1.NMEA.

If FEAT_DoubleFault is not implemented, the Effective value of SCR_EL3.NMEA is 0.

If FEAT_DoubleFault2 is not implemented, the Effective values of SCTLR2_EL2.NMEA and
SCTLR2_EL1.NMEA are 0.

If EL2 is not implemented or EL2 is disabled in the current Security state, or if the Effective value of
SCR_EL3.SCTLR2En is 0, then the Effective value of SCTLR2_EL2.NMEA is 0.

If the Effective value of HCRX_EL2.SCTLR2En is 0 or the Effective value of SCR_EL3.SCTLR2En is 0, then
the Effective value of SCTLR2_EL1.NMEA is 0.

TGE The Effective value of HCR_EL2.TGE or HCR.TGE. If EL2 is not implemented, or if EL2 is disabled in the
current Security state, then the Effective value of HCR_EL2.TGE or HCR.TGE is 0.

E2H The Effective value of HCR_EL2.E2H. If EL2 is not implemented, or if EL2 is disabled in the current Security
state, the Effective value of HCR_EL2.E2H is 0.

AMO The Effective value of HCR_EL2.AMO or HCR.AMO. If EL2 is not implemented, or if EL2 is disabled in the
current Security state, the Effective value of HCR_EL2.AMO or HCR.AMO is 0.

A The Effective value of PSTATE.A.

EL1 The exception is taken to EL1. If EL1 is using AArch32, then the exception is taken to the AArch32 Abort
mode.

EL2 The exception is taken to EL2 using AArch64.

EL3 The exception is taken to EL3 using AArch64.

C The interrupt is not taken and remains pending, regardless of the PSTATE.A mask.

Abt The exception is taken to the AArch32 Abort mode.

Hyp The exception is taken to AArch32 Hyp mode.

n/a Not applicable. The field does not exist in the register in this configuration or the Exception level is not
accessible in this configuration.

Term Meaning

Table D1-2 SError exception target when EL2 is using AArch64

SCR_EL3 HCR_EL2
SCTLR2
_EL2

HCRX
_EL2

SCTLR2
_EL1

PSTATE Taken from

EA TMEA NMEA TGE E2H AMO NMEA TMEA NMEA A EL0 EL1 EL2 EL3

0b0 0b0 0b0 0b0 X 0b0 0b0 0b0 X X EL1 EL1 C C

0b0 0b0 0b0 0b0 X 0b0 0b0 0b1 0b0 0b1 EL2 EL2 C C

0b0 0b0 0b0 0b0 X 0b0 0b0 0b1 X 0b0 EL1 EL1 C C

0b0 0b0 0b0 0b0 X 0b0 0b0 0b1 0b1 0b1 EL1 EL2 C C

0b0 0b0 0b0 0b0 X 0b0 0b1 0b0 X X EL1 EL1 EL2 C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6092
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
0b0 0b0 0b0 0b0 X 0b0 0b1 0b1 0b0 0b1 EL2 EL2 EL2 C

0b0 0b0 0b0 0b0 X 0b0 0b1 0b1 X 0b0 EL1 EL1 EL2 C

0b0 0b0 0b0 0b0 X 0b0 0b1 0b1 0b1 0b1 EL1 EL2 EL2 C

0b0 0b0 0b0 0b0 X 0b1 X X X X EL2 EL2 EL2 C

0b0 0b0 0b0 0b1 X X X X X X EL2 n/a EL2 C

0b0 0b0 0b1 0b0 X 0b0 0b0 0b0 X X EL1 EL1 C EL3

0b0 0b0 0b1 0b0 X 0b0 0b0 0b1 0b0 0b1 EL2 EL2 C EL3

0b0 0b0 0b1 0b0 X 0b0 0b0 0b1 X 0b0 EL1 EL1 C EL3

0b0 0b0 0b1 0b0 X 0b0 0b0 0b1 0b1 0b1 EL1 EL2 C EL3

0b0 0b0 0b1 0b0 X 0b0 0b1 0b0 X X EL1 EL1 EL2 EL3

0b0 0b0 0b1 0b0 X 0b0 0b1 0b1 0b0 0b1 EL2 EL2 EL2 EL3

0b0 0b0 0b1 0b0 X 0b0 0b1 0b1 X 0b0 EL1 EL1 EL2 EL3

0b0 0b0 0b1 0b0 X 0b0 0b1 0b1 0b1 0b1 EL1 EL2 EL2 EL3

0b0 0b0 0b1 0b0 X 0b1 X X X X EL2 EL2 EL2 EL3

0b0 0b0 0b1 0b1 X X X X X X EL2 n/a EL2 EL3

0b0 0b1 0b0 0b0 X 0b0 0b0 X X 0b0 EL1 EL1 EL3 C

0b0 0b1 0b0 0b0 X 0b0 X 0b0 0b0 0b1 EL3 EL3 EL3 C

0b0 0b1 0b0 0b0 X 0b0 X 0b0 0b1 0b1 EL1 EL3 EL3 C

0b0 0b1 0b0 0b0 X 0b0 X 0b1 0b0 0b1 EL2 EL2 EL3 C

0b0 0b1 0b0 0b0 X 0b0 X 0b1 0b1 0b1 EL1 EL2 EL3 C

0b0 0b1 0b0 0b0 X 0b0 0b1 X X 0b0 EL1 EL1 EL2 C

0b0 0b1 0b0 0b0 X 0b1 X X X 0b0 EL2 EL2 EL2 C

0b0 0b1 0b0 0b0 X 0b1 X X X 0b1 EL2 EL2 EL3 C

0b0 0b1 0b0 0b1 0b0 X X X X 0b1 EL2 n/a EL3 C

0b0 0b1 0b0 0b1 X X X X X 0b0 EL2 n/a EL2 C

0b0 0b1 0b0 0b1 0b1 X 0b0 X X 0b1 EL3 n/a EL3 C

0b0 0b1 0b0 0b1 0b1 X 0b1 X X 0b1 EL2 n/a EL3 C

0b0 0b1 0b1 0b0 X 0b0 0b0 X X 0b0 EL1 EL1 EL3 EL3

0b0 0b1 0b1 0b0 X 0b0 X 0b0 0b0 0b1 EL3 EL3 EL3 EL3

0b0 0b1 0b1 0b0 X 0b0 X 0b0 0b1 0b1 EL1 EL3 EL3 EL3

Table D1-2 SError exception target when EL2 is using AArch64 (continued)

SCR_EL3 HCR_EL2
SCTLR2
_EL2

HCRX
_EL2

SCTLR2
_EL1

PSTATE Taken from

EA TMEA NMEA TGE E2H AMO NMEA TMEA NMEA A EL0 EL1 EL2 EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6093
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
D1.3.6.3 Asynchronous exception masking

RHDMYQ An interrupt can be masked. A masked interrupt is not taken and remains pending.

RPVHHQ Whether an interrupt is masked is determined by all of the following:

• The PSTATE.{A, I, F, ALLINT, SP} bits.

0b0 0b1 0b1 0b0 X 0b0 X 0b1 0b0 0b1 EL2 EL2 EL3 EL3

0b0 0b1 0b1 0b0 X 0b0 X 0b1 0b1 0b1 EL1 EL2 EL3 EL3

0b0 0b1 0b1 0b0 X 0b0 0b1 X X 0b0 EL1 EL1 EL2 EL3

0b0 0b1 0b1 0b0 X 0b1 X X X 0b0 EL2 EL2 EL2 EL3

0b0 0b1 0b1 0b0 X 0b1 X X X 0b1 EL2 EL2 EL3 EL3

0b0 0b1 0b1 0b1 0b0 X X X X 0b1 EL2 n/a EL3 EL3

0b0 0b1 0b1 0b1 X X X X X 0b0 EL2 n/a EL2 EL3

0b0 0b1 0b1 0b1 0b1 X 0b0 X X 0b1 EL3 n/a EL3 EL3

0b0 0b1 0b1 0b1 0b1 X 0b1 X X 0b1 EL2 n/a EL3 EL3

0b1 X X 0b0 X X X X X X EL3 EL3 EL3 EL3

0b1 X X 0b1 X X X X X X EL3 n/a EL3 EL3

Table D1-2 SError exception target when EL2 is using AArch64 (continued)

SCR_EL3 HCR_EL2
SCTLR2
_EL2

HCRX
_EL2

SCTLR2
_EL1

PSTATE Taken from

EA TMEA NMEA TGE E2H AMO NMEA TMEA NMEA A EL0 EL1 EL2 EL3

Table D1-3 SError exception target when EL2 is using AArch32

SCR_EL3 HCR PSTATE Taken from

EA TMEA TGE AMO A EL0 EL1 EL2

0b0 0b0 0b0 0b0 X Abt Abt Hyp

0b0 0b0 0b0 0b1 X Hyp Hyp Hyp

0b0 0b0 0b1 X X Hyp n/a Hyp

0b0 0b1 0b0 0b0 0b0 Abt Abt Hyp

0b0 0b1 0b0 0b0 0b1 EL3 EL3 EL3

0b0 0b1 0b0 0b1 0b0 Hyp Hyp Hyp

0b0 0b1 0b0 0b1 0b1 Hyp Hyp EL3

0b0 0b1 0b1 X 0b0 Hyp n/a Hyp

0b0 0b1 0b1 X 0b1 Hyp n/a EL3

0b1 X 0b0 X X EL3 EL3 EL3

0b1 X 0b1 X X EL3 n/a EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6094
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• The value of AllIntMask, as described in RXZPDT.

• Whether an IRQ or FIQ interrupt has Superpriority.

• The implemented Exception levels.

• The configuration of the Hypervisor Configuration Registers.

• For an SError, whether the exception is non-maskable.

• The configuration of the Secure Configuration Register.

RLMWZH If in AArch64 state and the target Exception level of an interrupt is lower than the current Exception level, the
interrupt is masked.

RXZPDT If FEAT_NMI is implemented and SCTLR_ELx.NMI is 1, all of the following apply:

• The AllIntMask variable is created and is defined as follows:

AllIntMask == PSTATE.ALLINT || (PSTATE.SP && SCTLR_ELx.SPINTMASK)

• When AllIntMask is 1 and execution is at ELx, an IRQ or FIQ interrupt that is targeted to ELx is masked
regardless of Superpriority.

• When AllIntMask is 0 and execution is at ELx:

— An IRQ or FIQ interrupt with Superpriority that is targeted to ELx is not masked by PSTATE.I or
PSTATE.F, respectively.

— An IRQ or FIQ interrupt without Superpriority that is targeted to ELx is masked by PSTATE.I or
PSTATE.F, respectively, in the same way as when the Effective value of SCTLR_ELx.NMI is 0.

IBXXWT AllIntMask does not affect the masking or routing of interrupts to a higher Exception level.

RSFMGZ If FEAT_NMI is not implemented or SCTLR_ELx.NMI is 0, the Effective value of AllIntMask is 0.

D1.3.6.3.1 Physical interrupt masking

RMHWBP If the target Exception level of a physical IRQ interrupt is the current Exception level, ELx, the following controls
determine whether the interrupt is masked:

PSTATE.I SCTLR_ELx.NMI AllIntMask IRQ IRQ with Superpriority

0 0 x Not masked Not masked

0 1 0 Not masked Not masked

0 1 1 Masked Masked

1 0 x Masked Masked

1 1 0 Masked Not masked

1 1 1 Masked Masked
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6095
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RGFXKY If the target Exception level of a physical FIQ interrupt is the current Exception level, ELx, the following controls
determine whether the interrupt is masked:

RGCTZC If the target Exception level of a physical SError is the current Exception level, the PSTATE.A control determines
whether the interrupt is masked.

However, if the target Exception level is the current Exception level, and if any of the following are true, the
PSTATE.A control is ignored, and the exception is taken:

• The target Exception level is EL3, FEAT_DoubleFault is implemented and the Effective value of
SCR_EL3.NMEA is 1.

• The target Exception level is EL2, FEAT_DoubleFault2 is implemented and the Effective value of
SCTLR2_EL2.NMEA is 1.

• The target Exception level is EL1, FEAT_DoubleFault2 is implemented and the Effective value of
SCTLR2_EL1.NMEA is 1.

RXBYXL If the target Exception level of a physical interrupt is higher than the current Exception level, all of the following
apply:

• If the target Exception level is EL3, the interrupt cannot be masked by the PSTATE.{A, I, F} bits.

• If the target Exception level is EL2 and any of the following are true, the interrupt cannot be masked by the
PSTATE.{A, I, F} bits.

— HCR_EL2.E2H is 0.

— HCR_EL2.TGE is 0.

• If the target Exception level is EL2 and all of the following are true, the interrupt can be masked by the
PSTATE.{A, I, F} bits:

— HCR_EL2.E2H is 1.

— HCR_EL2.TGE is 1.

— The interrupt does not have Superpriority or SCTLR_EL2.NMI is 0.

• If the target Exception level is EL1 and the interrupt does not have Superpriority or SCTLR_EL1.NMI is 0,
the interrupt can be masked by the PSTATE.{A, I, F} bits.

IKDYCN The ability to execute in EL0 with interrupts taken to EL1 masked is required by some user level driver code.

PSTATE.F SCTLR_ELx.NMI AllIntMask FIQ FIQ with Superpriority

0 0 x Not masked Not masked

0 1 0 Not masked Not masked

0 1 1 Masked Masked

1 0 x Masked Masked

1 1 0 Masked Not masked

1 1 1 Masked Masked
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6096
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RHPRNX The terms used in the table in RSXLWJ have the following meanings:

RSXLWJ The following table describes the target and masking of physical FIQ and IRQ interrupts, if the highest implemented
Exception level is using AArch64.

Term Meaning

SCR_EL3 This is the Effective value of a field in SCR_EL3.

EEL2 If EL3 is not implemented, the Effective value of SCR_EL3.EEL2 is 1. If FEAT_SEL2 is not implemented,
the Effective value of SCR_EL3.EEL2 is 0.

FIQ

IRQ

The Effective value of the field that configures the asynchronous exception type in SCR_EL3. If EL3 is
implemented, the FIQ/IRQ field are taken from SCR_EL3. If EL3 is not implemented, then the Effective value
of these fields is 0.

RW If EL3 is not implemented, the Effective value of SCR_EL3.RW is 1.

HCR If EL2 is using AArch32, this is the Effective value of a field in HCR. If EL2 is using AArch64, this is the
Effective value of a field in HCR_EL2.

TGE If EL2 is not implemented, the Effective value of HCR.TGE or HCR_EL2.TGE is 0.

E2H If EL2 is not implemented, the Effective value of HCR.E2H or HCR_EL2.E2H is 0.

FMO

IMO

The Effective value of the mask override field for the asynchronous exception type in HCR or HCR_EL2. The
Effective value of the field is one of the following:

• If EL2 is implemented, the FMO/IMO fields are taken from HCR_EL2.

• If EL2 is not implemented, the Effective value of these fields is 0.

A When the interrupt is pending, it is taken regardless of the value of the PSTATE.{A, I, F, ALLINT} interrupt
masks.

B When the interrupt is pending, it might be subject to masking, as defined in RMHWBP or RGFXKY. If the interrupt
is masked, it is not taken. If the interrupt is not masked, it is taken.

C When the interrupt is pending, it is not taken, regardless of the value of the PSTATE.{A, I, F, ALLINT}
interrupt masks.

n/a Not applicable. The PE cannot be executing at this Exception level for the specified state of HCR and
SCR_EL3.

Table D1-4 FIQ and IRQ interrupt exception targets and masking

Effective value of
Effect of the interrupt mask when executing at:

NS EEL2
IRQ

FIQ
RW TGE E2H

IMO

FMO
EL0 EL1 EL2 EL3

0 0 0 x x x x B B n/a C

0 0 1 x x x x A A n/a B

0 1 0 x 0 x 0 B B C C

0 1 0 x 0 x 1 A A B C

0 1 0 x 1 0 x A n/a B C

0 1 0 x 1 1 x B n/a B C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6097
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RQZPXL The terms used in the tables in RJFKMF have the following meanings:

0 1 1 x 0 x x A A A B

0 1 1 x 1 x x A n/a A B

1 x 0 0 0 n/a 0 B B B C

1 x 0 0 0 n/a 1 A A B C

1 x 0 0 1 n/a x A n/a B C

1 x 0 1 0 x 0 B B C C

1 x 0 1 0 x 1 A A B C

1 x 0 1 1 0 x A n/a B C

1 x 0 1 1 1 x B n/a B C

1 x 1 x 0 x x A A A B

1 x 1 x 1 x x A n/a A B

Table D1-4 FIQ and IRQ interrupt exception targets and masking (continued)

Effective value of
Effect of the interrupt mask when executing at:

NS EEL2
IRQ

FIQ
RW TGE E2H

IMO

FMO
EL0 EL1 EL2 EL3

Term Meaning

SCR_EL3 The Effective value of a field in SCR_EL3.

HCR_EL2 The Effective value of a field in HCR_EL2.

SCTLR2_EL2 The Effective value of a field in SCTLR2_EL2.

HCRX_EL2 The Effective value of a field in HCRX_EL2.

SCTLR2_EL1 The Effective value of a field in SCTLR2_EL1.

PSTATE The Effective value of a field in PSTATE.

HCR The Effective value of a field in HCR.

EA The Effective value of SCR_EL3.EA. If EL3 is not implemented, the Effective value of SCR_EL3.EA is 0.

TMEA The Effective value of SCR_EL3.TMEA or HCRX_EL2.TMEA,

If FEAT_DoubleFault2 is not implemented, the Effective values of SCR_EL3.TMEA and HCRX_EL2.TMEA
are 0.

If EL2 is not implemented or EL2 is disabled in the current Security state, or the Effective value of
SCR_EL3.HXEn is 0, then the Effective value of HCRX_EL2.TMEA is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6098
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RJFKMF The following tables describe the masking of SError exceptions.

All of the following apply to these tables:

• SCR_EL3.{NS, EEL2} are not shown, RQZPXL describes Effective values involving Security states.

• Either EDSCR.INTdis is 0b00 or invasive debug is disabled.

NMEA The Effective value of SCR_EL3.NMEA, SCTLR2_EL2.NMEA, or SCTLR2_EL1.NMEA.

If FEAT_DoubleFault is not implemented, the Effective value of SCR_EL3.NMEA is 0.

If FEAT_DoubleFault2 is not implemented, the Effective values of SCTLR2_EL2.NMEA and
SCTLR2_EL1.NMEA are 0.

If EL2 is not implemented or EL2 is disabled in the current Security state, or if the Effective value of
SCR_EL3.SCTLR2En is 0, then the Effective value of SCTLR2_EL2.NMEA is 0.

If the Effective value of HCRX_EL2.SCTLR2En is 0 or the Effective value of SCR_EL3.SCTLR2En is 0, then
the Effective value of SCTLR2_EL1.NMEA is 0.

TGE The Effective value of HCR_EL2.TGE or HCR.TGE. If EL2 is not implemented or EL2 is disabled in the
current Security state, then the Effective value of HCR_EL2.TGE or HCR.TGE is 0.

E2H The Effective value of HCR_EL2.E2H. If EL2 is not implemented or EL2 is disabled in the current Security
state, then the Effective value of HCR_EL2.E2H is 0.

AMO The Effective value of HCR_EL2.AMO or HCR.AMO. If EL2 is not implemented or EL2 is disabled in the
current Security state, then the Effective value of HCR_EL2.AMO or HCR.AMO is 0.

Aa The Effective value of PSTATE.A.

A When the exception is pending, it is taken regardless of the value of the PSTATE.A mask.

B When the exception is pending, it might be subject to masking, as defined in RGCTZC. If the interrupt is masked,
it is not taken. If the interrupt is not masked, it is taken.

C The exception is not taken and remains pending, regardless of the PSTATE.A mask.

n/a Not applicable. The field does not exist in the register in this configuration or the Exception level is not
accessible in this configuration.

a. When used in the table header under PSTATE.

Term Meaning

Table D1-5 SError exception masking when EL2 is using AArch64

SCR_EL3 HCR_EL2

S
C

T
L

R
2_

E
L

2

H
C

R
X

_E
L

2

S
C

T
L

R
2_

E
L

1

P
S

TA
T

E Effect of the interrupt mask
when executing at

EA TMEA NMEA TGE E2H AMO NMEA TMEA NMEA A EL0 EL1 EL2 EL3

0b0 0b0 0b0 0b0 X 0b0 0b0 0b0 0b0 0b1 B B C C

0b0 0b0 0b0 0b0 X 0b0 0b0 X 0b0 0b0 A B C C

0b0 0b0 0b0 0b0 X 0b0 0b0 X 0b1 X A A C C

0b0 0b0 0b0 0b0 X 0b0 0b0 0b1 0b0 0b1 A A C C

0b0 0b0 0b0 0b0 X 0b0 0b1 0b0 0b0 0b1 B B A C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6099
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
0b0 0b0 0b0 0b0 X 0b0 0b1 X 0b0 0b0 A B A C

0b0 0b0 0b0 0b0 X 0b0 0b1 X 0b1 X A A A C

0b0 0b0 0b0 0b0 X 0b0 0b1 0b1 0b0 0b1 A A A C

0b0 0b0 0b0 0b0 X 0b1 0b0 X X X A A B C

0b0 0b0 0b0 0b1 0b0 X 0b0 X X X A n/a B C

0b0 0b0 0b0 0b1 0b1 X 0b0 X X 0b0 A n/a B C

0b0 0b0 0b0 0b1 0b1 X 0b0 X X 0b1 B n/a B C

0b0 0b0 0b1 0b0 X 0b0 0b0 0b0 0b0 0b1 B B C A

0b0 0b0 0b1 0b0 X 0b0 0b0 X 0b0 0b0 A B C A

0b0 0b0 0b1 0b0 X 0b0 0b0 X 0b1 X A A C A

0b0 0b0 0b1 0b0 X 0b0 0b0 0b1 0b0 0b1 A A C A

0b0 0b0 0b1 0b0 X 0b0 0b1 0b0 0b0 0b1 B B A A

0b0 0b0 0b1 0b0 X 0b0 0b1 X 0b0 0b0 A B A A

0b0 0b0 0b1 0b0 X 0b0 0b1 X 0b1 X A A A A

0b0 0b0 0b1 0b0 X 0b0 0b1 0b1 0b0 0b1 A A A A

0b0 0b0 0b1 0b0 X 0b1 0b0 X X X A A B A

0b0 0b0 0b1 0b1 0b0 X 0b0 X X X A n/a B A

0b0 0b0 0b1 0b1 0b1 X 0b0 X X 0b0 A n/a B A

0b0 0b0 0b1 0b1 0b1 X 0b0 X X 0b1 B n/a B A

0b0 X 0b0 0b0 X 0b1 0b1 X X X A A A C

0b0 X 0b0 0b1 X X 0b1 X X X A n/a A C

0b0 X 0b1 0b0 X 0b1 0b1 X X X A A A A

0b0 X 0b1 0b1 X X 0b1 X X X A n/a A A

0b0 0b1 0b0 0b0 X 0b0 X X 0b0 0b0 A B A C

0b0 0b1 0b0 0b0 X 0b0 X X 0b0 0b1 A A A C

0b0 0b1 0b0 0b0 X 0b0 X X 0b1 X A A A C

0b0 0b1 0b0 0b0 X 0b1 0b0 X X 0b0 A A B C

0b0 0b1 0b0 0b0 X 0b1 0b0 X X 0b1 A A A C

Table D1-5 SError exception masking when EL2 is using AArch64 (continued)

SCR_EL3 HCR_EL2

S
C

T
L

R
2_

E
L

2

H
C

R
X

_E
L

2

S
C

T
L

R
2_

E
L

1

P
S

TA
T

E Effect of the interrupt mask
when executing at

EA TMEA NMEA TGE E2H AMO NMEA TMEA NMEA A EL0 EL1 EL2 EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6100
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
0b0 0b1 0b0 0b1 X X 0b0 X X 0b0 A n/a B C

0b0 0b1 0b0 0b1 X X 0b0 X X 0b1 A n/a A C

0b0 0b1 0b1 0b0 X 0b0 X X 0b0 0b0 A B A A

0b0 0b1 0b1 0b0 X 0b0 X X 0b0 0b1 A A A A

0b0 0b1 0b1 0b0 X 0b0 X X 0b1 X A A A A

0b0 0b1 0b1 0b0 X 0b1 0b0 X X 0b0 A A B A

0b0 0b1 0b1 0b0 X 0b1 0b0 X X 0b1 A A A A

0b0 0b1 0b1 0b1 X X 0b0 X X 0b0 A n/a B A

0b0 0b1 0b1 0b1 X X 0b0 X X 0b1 A n/a A A

0b1 X 0b0 0b0 X X X X X X A A A B

0b1 X 0b0 0b1 X X X X X X A n/a A B

0b1 X 0b1 0b0 X X X X X X A A A A

0b1 X 0b1 0b1 X X X X X X A n/a A A

Table D1-5 SError exception masking when EL2 is using AArch64 (continued)

SCR_EL3 HCR_EL2

S
C

T
L

R
2_

E
L

2

H
C

R
X

_E
L

2

S
C

T
L

R
2_

E
L

1

P
S

TA
T

E Effect of the interrupt mask
when executing at

EA TMEA NMEA TGE E2H AMO NMEA TMEA NMEA A EL0 EL1 EL2 EL3

Table D1-6 SError exception masking when EL2 is using AArch32

SCR_EL3 HCR PSTATE
Effect of the interrupt mask
when executing at

EA TMEA TGE AMO A EL0 EL1 EL2

0b0 0b0 0b0 0b0 0b1 B B B

0b0 0b0 0b0 0b1 X A A B

0b0 0b0 0b1 X X A n/a B

0b0 X 0b0 0b0 0b0 A B B

0b0 0b1 0b0 X 0b1 A A A

0b0 0b1 0b0 0b1 0b0 A A B

0b0 0b1 0b1 X 0b0 A n/a B

0b0 0b1 0b1 X 0b1 A n/a A

0b1 X 0b0 X X A A A

0b1 X 0b1 X X A n/a A
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6101
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
D1.3.6.3.2 Virtual interrupt masking

RSNLJH If the target Exception level of a virtual IRQ interrupt is the current Exception level, ELx, the following controls
determine whether the interrupt is masked:

RXSPSG If the target Exception level of a virtual FIQ interrupt is the current Exception level, ELx, the following controls
determine whether the interrupt is masked:

RGYGBD Virtual interrupts can only be taken from EL0 or EL1 and can only be taken to EL1. If EL2 is not enabled in the
current Security state, all types of virtual interrupts are always masked. If executing at EL2 or EL3, all types of
virtual interrupts are always masked.

RMMYBS If the target Exception level of a virtual SError interrupt is the current Exception level, ELx, the PSTATE.A control
determines whether the interrupt is masked. However, if all of the following are true, the PSTATE.A control is
ignored, and the interrupt is taken:

• The target Exception level is the current Exception level.

• FEAT_DoubleFault is implemented.

• SCR_EL3.NMEA is 1.

RWVZVM The terms used in the table in this section have the following meanings:

PSTATE.I SCTLR_ELx.NMI AllIntMask vIRQ vIRQ with Superpriority

0 0 x Not Masked Not Masked

0 1 0 Not Masked Not Masked

0 1 1 Masked Masked

1 0 x Masked Masked

1 1 0 Masked Not Masked

1 1 1 Masked Masked

PSTATE.F SCTLR_ELx.NMI AllIntMask vFIQ vFIQ with Superpriority

0 0 x Not Masked Not Masked

0 1 0 Not Masked Not Masked

0 1 1 Masked Masked

1 0 x Masked Masked

1 1 0 Masked Not Masked

1 1 1 Masked Masked

Term Meaning

SCR_EL3 This is the Effective value of a field in SCR_EL3.

HCR If EL2 is using AArch32, this is the Effective value of a field in HCR. If EL2 is using AArch64, this is the Effective value
of a field in HCR_EL2.

E2H If EL2 is using AArch32, the Effective value of HCR.E2H is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6102
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RBKHXL The following table describes the masking of virtual interrupts when the highest implemented Exception level is
using AArch64:

D1.3.6.4 Prioritization of interrupts

RBKHSW The prioritization of physical interrupts and virtual interrupts is IMPLEMENTATION DEFINED.

RRBZYL For all of the following Context synchronization events, if an interrupt is pending before the Context
synchronization event, and the interrupt remains pending and is not masked after the Context synchronization event,
the interrupt is taken before the first instruction after the Context synchronization event:

• Execution of an ISB instruction.

• If FEAT_ExS is not implemented, exception entry.

• If FEAT_ExS is implemented and the appropriate SCTLR_ELx.EIS bit is set, exception entry.

• If FEAT_ExS is not implemented, exception return.

• If FEAT_ExS is implemented and the appropriate SCTLR_ELx.EOS bit is set, exception exit.

• Exit from Debug state.

If the first instruction after the Context synchronizing event generates a synchronous exception, the architecture
does not define whether the PE takes the interrupt or the synchronous exception first.

IRDBWJ A RAS error synchronization event defines additional requirements for taking an SError interrupt.

RQVRHH Other than the behaviors described in RRBZYL, an unmasked, pending interrupt must be taken in finite time.

B When the interrupt is pending, it might be subject to masking, as defined in RSNLJH and RXSPSG. If the interrupt is masked,
it is not taken. If the interrupt is not masked, it is taken.

C When the interrupt is pending, it is not taken, regardless of the value of the PSTATE.{A, I, F, ALLINT, SP, PM} interrupt
masks.

n/a Not applicable. The PE cannot be executing at this Exception level for the specified state of HCR and SCR_EL3.

Term Meaning

Effective value of
Effect of the interrupt mask
when executing at:

EEL2 NS

EA

IRQ

FIQ

E2H TGE

AMO

IMO

FMO

EL0 EL1 EL2 EL3

0 0 x x x x C C n/a C

1 0 x x 0 0 C C C C

1 0 x x 0 1 B B C C

1 0 x x 1 x C n/a C C

x 1 x x 0 0 C C C C

x 1 x x 0 1 B B C C

x 1 x x 1 x C n/a C C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6103
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RZQPLL If an unmasked interrupt was pending but is changed to not pending before it is taken, it is CONSTRAINED
UNPREDICTABLE whether or not the interrupt is taken. If the interrupt is taken, it is taken before the first Context
synchronization event after the interrupt was changed to be not pending.

D1.3.6.5 Taking an interrupt during a multi-access load or store

RZBFSL If in AArch64 state, interrupts can be taken during a sequence of memory accesses caused by a single load or store
instruction. This is true regardless of the memory type being accessed.

In this situation, the behavior is consistent with the requirements described in RTNVSL in Definition of a precise
exception and imprecise exception.

D1.3.6.6 Taking an interrupt during an SVE instruction

RTFLTX Permitting SVE instructions to be interrupted by asynchronous exceptions is IMPLEMENTATION DEFINED.

RWFMZK When returning from an asynchronous exception, an interrupted SVE instruction is restarted and cannot resume at
the point the instruction was interrupted.

IQRQJP For Data Aborts taken asynchronously, see Definition of a precise exception and imprecise exception.

D1.3.7 UNDEFINED instructions

RZLJDF An instruction which is UNDEFINED generates a synchronous exception for that instruction unless there is a higher
priority exception generated for that instruction.

RSXYZB The Exception level that the synchronous Undefined Instruction exception is taken to is defined as follows:

• If executing at EL0:

— If the Effective value of HCR_EL2.TGE is 0, the exception is taken to EL1.

— If the Effective value of HCR_EL2.TGE is 1, the exception is taken to EL2.

• If executing at EL1, the exception is taken to EL1.

• If executing at EL2, the exception is taken to EL2.

• If executing at EL3, the exception is taken to EL3.

D1.3.8 Configurable instruction controls

RQMWPZ Configurable instruction controls are control bits held in System registers that determine whether attempting to
execute an instruction generates a synchronous exception at the point in the instruction stream of that instruction,
and the instruction is not executed.

IZSSHJ Configurable instruction controls might be referred to by any of the following names:

• Instruction enables.

• Instruction disables.

• Trap controls.

The definitions of each type overlap, and in some cases is historical. Describing a register control field as an
instruction enable, an instruction disable, or a trap control, gives no indication of how an exception that is generated
as a consequence of the value of that field is handled or reported. Each configurable instruction control defines how
the exception that is generated as a consequence of the configurable instruction control is handled or reported.

RVWWGJ An exception can only be generated as a result of a configurable instruction control if all the following apply:

• The instruction generating the exception does not also generate a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6104
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
• The instruction generating the exception is not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in the PE
state in which the instruction is executed.

RJTXTF It is UNPREDICTABLE / CONSTRAINED UNPREDICTABLE whether configurable instruction controls generate an
exception when the instruction is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in the PE state in which the
instruction is executed, with all of the following constraints:

• If the instruction description explicitly states that the configurable instruction control is applied with higher
priority than the CONSTRAINED UNPREDICTABLE behavior, then the configurable instruction control generates
an exception.

• The CONSTRAINED UNPREDICTABLE behaviors cannot lead to any behavior that is prohibited by the general
definition of UNPREDICTABLE.

IBJBMF UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions can generate exceptions as a result of configurable
instruction controls, but the architecture does not require them to do so.

Note: Many CONSTRAINED UNPREDICTABLE behaviors for instructions include an allowance that the CONSTRAINED
UNPREDICTABLE instruction behaves the same way as a closely related instruction that is not CONSTRAINED
UNPREDICTABLE. In those cases, the instruction enable, disable, or trap control that causes in exception on the
closely related instruction will cause the same exception on the CONSTRAINED UNPREDICTABLE instruction.

ITFGPW An implementation might provide more controls, in IMPLEMENTATION DEFINED registers, to provide control of
trapping of IMPLEMENTATION DEFINED features.

RQQLHG When a configurable instruction control causes an exception, the exception is taken and the instruction is not
executed, and therefore all the following are true:

• The preferred exception return address of the exception is the instruction that generates the exception.

• There are no changes to the registers accessed by the instruction, including as a result of side-effects of a
register access.

RSZCKN When a configurable instruction control causes a conditional instruction to generate an exception in AArch32 state,
it is IMPLEMENTATION DEFINED whether the exception applies to conditional AArch32 instructions that fail their
condition code check.

D1.3.8.1 EL0 and EL1 configurable instruction controls

ITJPQP The following EL0 and EL1 System registers contain configurable instruction controls:

RKYYYZ An exception caused by configurable instruction controls in EL1 can be taken from either AArch64 state or
AArch32 state.

Register name Register description

AMUSERENR_EL0 Activity Monitors User Enable Register

CPACR_EL1 Architectural Feature Access Control Register

MDSCR_EL1 Monitor System Debug Control Register

PMUSERENR_EL0 Performance Monitors User Enable Register

SCTLR_EL1 System Control Register (EL1)

TCR_EL1 Translation Control Register (EL1)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6105
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
D1.3.8.2 EL2 configurable instruction controls

IFFLBF The following EL2 System registers contain configurable instruction controls:

RJZJRG An exception caused by configurable instruction controls in EL2 can be taken from either AArch64 state or
AArch32 state.

RSNLNY EL2 configurable instruction controls are ignored in Secure state if Secure EL2 is not implemented or not enabled.

D1.3.8.3 EL3 configurable instruction controls

RLTKXZ The following EL3 System registers contain configurable instruction controls:

Register name Register description

CPTR_EL2 Architectural Feature Trap Register, EL2

HAFGRTR_EL2 Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCR_EL2 Hypervisor Configuration Register

HCRX_EL2 Extended Hypervisor Configuration Register

HDFGRTR_EL2 Hypervisor Debug Fine-Grained Read Trap Register

HDFGRTR2_EL2 Hypervisor Debug Fine-Grained Read Trap Register 2

HDFGWTR_EL2 Hypervisor Debug Fine-Grained Write Trap Register

HDFGWTR2_EL2 Hypervisor Debug Fine-Grained Write Trap Register 2

HFGITR_EL2 Hypervisor Fine-Grained Instruction Trap Register

HFGITR2_EL2 Hypervisor Fine-Grained Instruction Trap Register 2

HFGRTR_EL2 Hypervisor Fine-Grained Read Trap Register

HFGRTR2_EL2 Hypervisor Fine-Grained Read Trap Register 2

HFGWTR_EL2 Hypervisor Fine-Grained Write Trap Register

HFGWTR2_EL2 Hypervisor Fine-Grained Write Trap Register 2

HSTR_EL2 Hypervisor System Trap Register

MDCR_EL2 Monitor Debug Configuration Register, EL2

SCTLR_EL2 System Control Register, EL2

TCR_EL2 Translation Control Register, EL2

Register name Register description

CPTR_EL3 Architectural Feature Trap Register, EL3

MDCR_EL3 Monitor Debug Configuration Register, EL3

SCTLR_EL3 System Control Register, EL3

SCR_EL3 Secure Configuration Register

TCR_EL3 Translation Control Register, EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6106
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RNMCCJ An exception caused by configurable instruction controls in EL3 can be taken from either AArch64 state or
AArch32 state.

D1.3.9 Exception generating instructions

IYRYNQ The exception generating instructions are commonly called system calls and refer to the instructions that generate
any of the following synchronous exception types:

• Supervisor Call exception.

• Hypervisor Call exception.

• Secure Monitor Call exception.

RBRCQB A Supervisor Call is generated by executing an SVC instruction.

RTNSNV A Supervisor Call exception is taken to the following Exception levels:

• If executing at EL0:

— If the Effective value of HCR_EL2.TGE is 0, the exception is taken to EL1.

— If the Effective value of HCR_EL2.TGE is 1, the exception is taken to EL2.

• If executing at EL1, the exception is taken to EL1.

• If executing at EL2, the exception is taken to EL2.

• If executing at EL3, the exception is taken to EL3.

INCTDB A Supervisor Call enables software executing at EL0 to make a call to an operating system or other software
executing at EL1.

RLLLGJ If EL2 is implemented, a Hypervisor Call is generated by executing an HVC instruction.

RRWKMY A Hypervisor Call exception is taken to the following Exception levels:

• If Secure EL2 is implemented and enabled in the current Security state, when taken from EL1, the exception
is taken to EL2.

• When taken from EL2, the exception is taken to EL2.

• When taken from EL3, the exception is taken to EL3.

RZVTPR If any of the following is true, the HVC instruction is UNDEFINED:

• The PE is executing at EL0.

• If EL2 is not enabled in the current Security state, and the PE is executing at EL1.

• SCR_EL3.HCE is 0.

RNDGTC If EL3 is implemented, a Secure Monitor Call is generated by executing an SMC instruction. A Secure Monitor Call
is a synchronous exception that is taken to EL3.

RHMXQS If any of the following are true, the SMC instruction is UNDEFINED:

• The PE is executing at EL0.

• EL3 is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6107
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
D1.3.10 Program Counter and stack pointer alignment

D1.3.10.1 PC alignment checking

RQCCWG If bits [1:0] of the PC are not 0b00, there is a misaligned PC.

RSJLDM The execution of an instruction with a misaligned PC generates a synchronous PC Alignment exception on that
instruction.

RJKZZX A PC Alignment exception is taken to the following Exception levels:

• If executing at EL0:

— If HCR_EL2.TGE is 0, the exception is taken to EL1.

— If HCR_EL2.TGE is 1, the exception it taken to EL2.

• If executing at EL1, the exception is taken to EL1.

• If executing at EL2, the exception is taken to EL2.

• If executing at EL3, the exception is taken to EL3.

RMVTQT When a PC Alignment Fault exception is taken to an Exception level, ELx, using AArch64, the ELR_ELx and the
FAR_ELx both hold the entire PC in its misaligned form.

IVFXPV A misalignment of the PC is an indication of a serious error, for example software corruption of an address.

D1.3.10.2 SP alignment checking

RRDMXG When the SP is used as the base address of a calculation, regardless of any offset applied by the instruction, if bits
[3:0] of the SP are not 0b0000, there is a misaligned SP.

RTFVSM If SP alignment checking is enabled, then the execution of a load or store using the SP with a misaligned SP
generates a synchronous SP Alignment exception on that load or store.

RJQXVP PRFM instructions that use the SP do not perform stack alignment checking.

RSTDYJ The following bits enable SP alignment checking at each Exception level when that Exception level is using
AArch64.

• If HCR_EL2.{E2H, TGE} is {1, 1}, SCTLR_EL2.SA0 controls EL0. Otherwise, SCTLR_EL1.SA0 controls
EL0.

• SCTLR_EL1.SA controls EL1.

• SCTLR_EL2.SA controls EL2.

• SCTLR_EL3.SA controls EL3.

RNCGYQ An SP Alignment exception is taken to the following Exception levels:

• If executing at EL0:

— If HCR_EL2.TGE is 0, the exception is taken to EL1

— If HCR_EL2.TGE is 1, the exception it taken to EL2.

• If executing at EL1, the exception is taken to EL1.

• If executing at EL2, the exception is taken to EL2.

• If executing at EL3, the exception is taken to EL3.

RDLDVL If SP alignment checking is enabled and an SVE predicated load or store instruction with any Active elements uses
the current SP as the base address, then the SP register is checked for 16-byte alignment.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6108
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.3 Exceptions
RFNCJX If SP alignment checking is enabled and an SVE predicated load or store instruction with no Active elements uses
the current SP as the base address, then it is CONSTRAINED UNPREDICTABLE whether the SP register is checked for
16-byte alignment.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6109
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.4 Process state, PSTATE
D1.4 Process state, PSTATE

RSPCZF Process state, or PSTATE, is an abstraction of process state information.

ILPKMT All Arm instruction sets provide instructions that operate on elements of PSTATE.

IKXKMY PSTATE includes all of the following:

• Fields that are meaningful only in AArch32 state.

• Fields that are meaningful only in AArch64 state.

• Fields that are meaningful in both Execution states.

IZHGST PSTATE is defined in pseudocode as the PSTATE structure, of type ProcState.

D1.4.1 PSTATE fields that are meaningful in AArch64 state

ILLLXL PSTATE fields that are meaningful in AArch64 state are grouped into the following categories:

• Condition flags.

• Execution state controls.

• Exception mask bits.

• Access control bits.

• Timing control bits.

• Speculation control bits.

RPCDTX The following PSTATE bits are meaningful in AArch64 state:

PSTATE field name PSTATE field group
Required
implemented
feature

Value when a Warm
reset is asserted

Additional details

N, Negative condition flag Condition flags - - -

Z, Zero condition flag Condition flags - - -

C, Carry condition flag Condition flags - - -

V, Overflow condition flag Condition flags - - -

SS, Software Step bit Execution state controls - 0 -

IL, Illegal Execution state bit Execution state controls - 0 -

nRW, Current Execution state
bit

Execution state controls - 0 If the current
Execution state is
AArch64, the
PSTATE.nRW bit is
0.

EL, Current Exception level
field

Execution state controls - When a Warm reset is
asserted into an Exception
level using AArch64, the
PSTATE.EL field holds
the encoding for the
highest implemented
Exception level.

-

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6110
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.4 Process state, PSTATE
D1.4.1.1 Accessing PSTATE fields

RLYGBS In AArch64 state, PSTATE fields are accessed using Special-purpose registers that are directly read using the MRS
(register) instructions, and directly written using the MSR (register) instructions.

SP, Stack pointer register
selection bit

Execution state controls - 1 -

D, Debug exception mask bit Exception mask bits - 1 -

A, I, F Asynchronous exception
mask bits

Exception mask bits - 1 -

ALLINT, All interrupt mask bit Exception mask bits FEAT_NMI - -

PAN, Privileged Access Never
state bit

Access control bits FEAT_PAN - -

UAO, User Access Override bit Access control bits FEAT_UAO - -

TCO, Tag Check Override bit Access control bits FEAT_MTE - If FEAT_MTE2 is
not implemented, it
is CONSTRAINED
UNPREDICTABLE
whether the
PSTATE.TCO bit is
RES0 or behaves as if
FEAT_MTE2 is
implemented.

BTYPE, Branch target
identification bit

Access control bits FEAT_BTI - -

DIT, Data Independent Timing
bit

Timing control bits FEAT_DIT 0 -

SSBS, Speculative Store
Bypass Safe bit

Speculation control bits FEAT_SSBS IMPLEMENTATION
DEFINED

-

PM, PMU exception mask Exception mask bits FEAT_EBEP - -

PPEND, PMU exception
pending

Access control bits FEAT_SEBEP - -

EXLOCK, GCS exception state
lock

Access control bits FEAT_GCS 0 -

SM, Enables Streaming SVE
mode

Execution state controls FEAT_SME 0 -

ZA, Enables SME ZA storage Access control bits FEAT_SME 0 -

PSTATE field name PSTATE field group
Required
implemented
feature

Value when a Warm
reset is asserted

Additional details
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6111
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.4 Process state, PSTATE
RDGPCL If in AArch64 state, the following Special-purpose registers can access the PSTATE fields that hold AArch64 state:

All other PSTATE fields do not have direct read and write access.

RBRSMZ Software can use the MSR (immediate) instructions to directly write to PSTATE.{D, A, I, F, SP, PAN, UAO, SSBS,
TCO, PM, SM, ZA}.

RLDXKJ The following PSTATE fields can be accessed at EL0:

• PSTATE.{N, Z, C, V, SSBS, DIT, TCO, SM, ZA}.

• If SCTLR_EL1.UMA is 1, and the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, PSTATE.{D, A,
I, F}.

• PSTATE.{SM, ZA} access instructions can be executed at EL0 or higher.

• All other PSTATE access instructions can be executed at EL1 or higher and are UNDEFINED at EL0.

RHXYGT Writes to the PSTATE fields have side-effects on various aspects of the PE operation. For side-effects caused by
writes to a PSTATE field, all of the following are true:

• The side-effect is guaranteed not to be visible to earlier instructions in the Execution stream.

• The side-effect is guaranteed to be visible to later instructions in the Execution stream.

Other side-effects might occur but are not guaranteed.

Special-purpose register PSTATE fields

NZCV N, Z, C, V

DAIF D, A, I, F

CurrentEL EL

SPSel SP

PAN PAN

UAO UAO

DIT DIT

SSBS SSBS

TCO TCO

ALLINT ALLINT

PM PM

SVCR SM, ZA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6112
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.5 Resets and power domains
D1.5 Resets and power domains

IDQXXZ The PE logic is split into a Debug power domain and a Core power domain. Cold and Warm resets, reset elements
in the Core power domain. An External debug reset can reset the Debug power domain. Other resets might be
implemented.

D1.5.1 Power domains and reset domains

RJMTZY The PE logic is split into two logical power domains:

• The Core power domain.

• The Debug power domain.

IQBPTS The power domains are described as logical because the architecture does not require two physical power domains.

RPDMKB It is IMPLEMENTATION DEFINED whether the Core power domain and Debug power domain power up and power
down separately or together.

RZDVQQ The Core power domain contains:

• Non-debug registers and logic.

• Self-hosted debug registers and logic.

• Shared debug registers and logic.

• Some external debug registers and logic.

RGTVLN The Debug power domain contains:

• The interface between the PE and the external debugger.

• Some external debug registers.

RMLXWM If an external debugger is connected to the PE, the Debug power domain is powered up.

IKTSWK For more information on access permissions for the external debug interface registers, see Access permissions for
the External debug interface registers or the individual register descriptions.

D1.5.2 Reset types

IHDQLB The architecture defines the following resets:

• Warm reset.

• Cold reset.

• External Debug reset.

• Trace unit reset. See Resetting the trace unit.

IFMTCY Other resets are IMPLEMENTATION DEFINED and can be mapped onto the architecturally defined resets.

RPXXYQ Mechanisms to assert resets, other than RMR_ELx, are IMPLEMENTATION DEFINED. Any reset-asserting mechanism
that software can command, including hardware mechanisms directly exposed to software, must only be accessible
at the highest Exception level.

RHLDGD When a Cold reset is asserted, for each register in the Core power domain, the reset sets the register to its
architecturally defined reset value.

RPJXVL When a Warm reset is asserted, the logic on which the PE executes is reset. The Warm reset does not reset the
integrated debug functionality.

RNBKHK When an External Debug reset is asserted, the Debug power domain is reset. The Cold reset domain is not reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6113
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.5 Resets and power domains
IMWTXK If RMR_ELx is implemented, writing 1 to RMR_ELx.RR requests a Warm reset.

RSGXSW Writing 1 to RMR_ELx.RR is only a request for a Warm reset. The reset is not guaranteed to occur unless the
following code sequence is executed:

; In addition, interrupts and debug requests for this PE should be disabled
; in the system before running this sequence to ensure the WFI suspends execution,

MOV Wy, #3 ; for AArch64, #2 for AArch32; y is any register
DSB ; ensure all stores etc are complete
MSR RMR_ELx, Wy ; request the reset
ISB ; synchronize change to the RMR

Loop
WFI ; enter a quiescent state
B Loop

RDDTVZ It is IMPLEMENTATION DEFINED whether a Warm reset can be asserted without using RMR_ELx.

ILWNDC Arm recommends that a Warm reset can be asserted independently of a Cold reset.

IQLZGF A Warm reset allows debugging across a reset of the PE logic in the Core power domain.

RSKGMH It is IMPLEMENTATION DEFINED whether an External Debug reset and a Cold reset can be asserted independently.

IWTJYS Arm recommends that when separate Core and Debug power domains are implemented, the External Debug reset
and Cold reset can be asserted independently.

D1.5.3 Reset behavior

ITWYCF Immediately after a reset, much of the PE state is architecturally UNKNOWN. However, some of the PE state is
defined, see the individual register descriptions for more information. The state that is reset to known values is
sufficient to permit predictable initial execution at the highest Exception level, such that this execution is then
capable of initializing the remaining state of the system where necessary before use.

RJYLQV When a Cold or Warm reset is asserted, all of the following occur:

• The PE enters the highest implemented Exception level.

• The stack pointer for the highest implemented Exception level, SP_ELx, is selected.

RZBHGJ When a Cold or Warm reset is deasserted, execution starts at an IMPLEMENTATION DEFINED address, anywhere in
the Physical Address (PA) range. The RVBAR associated with the highest implemented Exception level
RVBAR_EL1, RVBAR_EL2, or RVBAR_EL3, holds the address at which the PE starts execution.

IQSCPY When a Cold or Warm reset is deasserted, the IMPLEMENTATION DEFINED address from which the PE starts
execution is typically set either by a hardwired configuration of the PE or by configuration input signals.

RRRJLM When a Cold or Warm reset is asserted, all of the following are UNKNOWN:

• All general-purpose, SIMD, and floating-point registers.

• The global exclusive monitor for the PE.

• The local exclusive monitor for the PE.

• System and Special-purpose registers with a reset value of UNKNOWN described in the AArch64 registers.

IKWHDG When a Cold or Warm reset is asserted, PSTATE.{SS, IL, nRW, EL, SP, D, A, I, F, DIT, EXLOCK} fields are set to
known values.

RBGSHC When a Cold or Warm reset is asserted, the TLBs and caches are in an IMPLEMENTATION DEFINED state.

RXNNNH When a Cold or Warm reset has been asserted and before the memory management system is enabled, the TLBs,
caches or both might need to be invalidated by IMPLEMENTATION DEFINED invalidation sequences.

RTZHFZ When a Cold or Warm reset has been asserted and before Normal memory accesses are permitted to be Cacheable,
the TLBs, caches or both might need to be invalidated by IMPLEMENTATION DEFINED invalidation sequences.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6114
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.5 Resets and power domains
RKMCGN If IMPLEMENTATION DEFINED resets are implemented, each IMPLEMENTATION DEFINED reset can treat the cache and
TLB state differently.

RTJGFQ If IMPLEMENTATION DEFINED resets are implemented, for each IMPLEMENTATION DEFINED reset, the TLBs, caches,
or both might require a different IMPLEMENTATION DEFINED invalidation sequence.

IPHDMZ The IMPLEMENTATION DEFINED invalidation sequence might be a NOP.

D1.5.3.1 External debug access to registers in reset

RVFMKQ If External Debug reset is asserted, for each register that can be accessed by the external debug interface, a register
access by the external debug interface has one of the following IMPLEMENTATION DEFINED results:

• The external debug interface can access the register, and the access result is IMPLEMENTATION DEFINED.

• The external debug interface cannot access the register.

IQHHMQ If either a Cold or Warm reset is asserted, accesses of registers or register fields might be direct accesses or indirect
side-effects of an access.

RYKRBF If either a Cold or Warm reset is asserted, external debug interface accesses of a register or register field have the
following effects:

Access Register or register field reset behavior Effect on register or register field

Write Reset by the reset signal Set to CONSTRAINED UNPREDICTABLE choice of the reset value or the
value written.

Write Not reset by the reset signal Set to the value written.

Read Reset by the reset signal Returns an UNKNOWN value.

Read Not reset by the reset signal Returns the value of the register or register field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6115
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Mechanisms for entering a low-power state
D1.6 Mechanisms for entering a low-power state

IRTNZD The architecture provides the following mechanisms that software can use to indicate that the PE can enter
low-power state:

• Wait for Event.

• Wait for Interrupt.

D1.6.1 Wait for Event

IZZQGW The Wait for Event mechanism behavior depends on the interaction of all of the following:

• The Event Register for the PE. See The Event Register.

• The Wait for Event (WFE) or Wait for Event with Timeout (WFET) instruction. See The Wait for Event and
Wait for Event with Timeout instructions.

• WFE wakeup events. See WFE wakeup events in AArch64 state.

• The Send Event instructions, SEV and SEVL, that can cause WFE wakeup events. See The Send Event
instructions.

RTJTFC The architecture does not define the exact nature of the low-power state entered by WFE or WFET, except that when
a WFE or WFET instruction is executed, memory coherency and architectural state are not lost.

IWBMQQ The Wait for Event mechanism is associated with suspending execution on a PE for power saving, therefore Arm
recommends that the Event Register is set infrequently. Software must only use the setting of the Event Register as
a hint, and must not assume that any particular message is sent as a result of the setting of the Event Register.

D1.6.1.1 The Event Register

RPVKKP The Event Register is a single bit register for each PE.

ITZVVM The event register is a conceptual register and cannot be explicitly accessed.

IPDJMB If the Event Register is set, then an event has occurred since the register was last cleared and the event might require
some action by the PE.

RRJYVC When the PE executes a WFE or WFET instruction, all of the following apply:

• If the Event Register is clear, then the PE can enter the low-power state.

• If the Event Register is set, then all of the following apply:

— The PE does not suspend operation.

— The Event Register is cleared.

— The WFE or WFET instruction completes immediately.

RDDGLZ The reset value of the Event Register is UNKNOWN.

RXRZRK The Event Register for a PE is set by any of the following:

• A Send Event instruction, SEV, executed by any PE in the system.

• A Send Event Local instruction, SEVL, executed by the PE.

• An exception return.

• The clearing of the global monitor for the PE.

• An event from a Generic Timer event stream, see Event streams.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6116
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Mechanisms for entering a low-power state
• An event sent by some IMPLEMENTATION DEFINED mechanism.

IPJZBB The Event Register is cleared only by a Wait for Event (WFE) instruction or a Wait for Event with Timeout (WFET)
instruction.

IZXJPD Software cannot read or write the value of the Event Register directly.

D1.6.1.2 The Wait for Event and Wait for Event with Timeout instructions

RQRXWZ If FEAT_WFxT is implemented, the Wait for Event with Timeout (WFET) instruction is implemented

RCSKPF If the Event Register is clear, when a WFE or WFET instruction is executed, the PE can suspend execution and enter
a low-power state.

RGZZQM If the PE enters a low-power state, the PE remains in the lower-power state until one of the following occurs:

• The PE detects a WFE wakeup event.

• An IMPLEMENTATION DEFINED wake event that is architecturally permitted to occur at any time.

• A reset is asserted.

IQGHTM The architecture permits all of the following:

• The PE is permitted to leave the low-power state for any reason.

• The PE is permitted to treat WFE as a NOP, but this is not recommended for lowest power operation.

RSLQVQ If the PE is in a low-power state, when the PE detects a WFE wakeup event, or earlier if the implementation chooses,
the WFE or WFET instruction completes. If the wakeup event sets the Event Register, when execution is restarted,
the state of the Event Register is IMPLEMENTATION DEFINED.

IDRSJV Software using the Wait for Event mechanism must tolerate spurious wakeup events, including multiple wakeup
events.

D1.6.1.3 Trapping of WFE and WFET

IKMHTB The WFE and WFET instructions are available at all Exception levels. Attempts to enter a low-power state made
by software executing at EL0, EL1, or EL2 can be configured to trap to a higher Exception level.

RJWKTL If FEAT_TWED is implemented, then all of the following apply:

• A delay before taking a WFE trap can be configured.

• If a delay before taking a WFE trap is configured, then the delay does not affect the priority of the traps.

IRDYQK For example, if execution is subject to a trap at EL1 because SCTLR_EL1.nTWE is 0 and HCR_EL2.TWE is 1, the
only trap that will be taken is a trap to EL1, even if the delay at EL1 is longer than the delay at EL2.

D1.6.1.4 WFE wakeup events in AArch64 state

IRJRLR In this section, AllIntMask refers to the value described in RXZPDT.

ILRPVP If a WFE or WFET instruction puts a PE into low-power state, a WFE wakeup event received by the PE causes that
PE to exit low-power state.

RKBMFC All of the following are WFE wakeup events:

• The execution of an SEV instruction on any PE in a multiprocessor system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6117
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Mechanisms for entering a low-power state
• Any physical SError interrupt, physical IRQ interrupt, or physical FIQ interrupt received by the PE that is
not disabled by EDSCR.INTdis and either of the following is true:

— The interrupt is marked as A in RSXLWJ in Asynchronous exception masking, regardless of the value
of the corresponding PSTATE.{A, I, F} mask bit.

— The interrupt is marked as B in RSXLWJ in Asynchronous exception masking, AllIntMask is 0, and any
of the following are true:

— The value of the corresponding PSTATE.{A, I, F} mask bit is 0.

— An IRQ or FIQ interrupt has Superpriority.

See RMHWBP and RGFXKY.

• If all of the following apply, any virtual SError interrupt, virtual IRQ interrupt, or virtual FIQ interrupt
received by the PE:

— The PE is executing at EL1 or EL0.

— The interrupt is not disabled by EDSCR.INTdis.

— The interrupt is marked as B in RBKHXL in Virtual interrupt masking, AllIntMask is 0, and any of the
following are true:

— The value of the corresponding PSTATE.{A, I, F} mask bit is 0.

— A vIRQ or vFIQ interrupt has Superpriority.

See RSNLJH and RXSPSG.

• If halting is allowed, an asynchronous External Debug Request debug event. For the definition of halting, see
Halting allowed and halting prohibited and External Debug Request debug event.

• An event sent by the timer event stream for the PE. See Event streams.

• An event caused by the clearing of the global monitor for the PE.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

• When FEAT_WFxT is implemented, for WFET instructions, a local timeout event caused by the virtual count
threshold value, expressed in CNTVCT_EL0, being equaled or exceeded.

IFRZZX Not all of the wakeup events in RKBMFC set the Event Register.

D1.6.1.5 The Send Event instructions

RDQRMZ The Send Event instructions are:

• SEV, Send Event: Causes an event to be signaled to all PEs in a multiprocessor system.

• SEVL, Send Event Local: Causes an event to be signaled locally without requiring the event to be signaled
to other PEs in a multiprocessor system.

IFVQBK An SEVL instruction might signal an event to other PEs by an IMPLEMENTATION DEFINED mechanism, but it is not
required to do so.

RHTDFW The mechanism that signals an event to other PEs is IMPLEMENTATION DEFINED.

RRLHHM When an event is signaled by an SEV instruction, the ordering of the event with respect to the completion of memory
accesses by instructions before the SEV instruction is not guaranteed.

IDVZXD Arm recommends that software includes a Data Synchronization Barrier (DSB) instruction before any SEV
instruction. DSB instruction ensures that no instructions, including any SEV instructions, that appear in program
order after the DSB instruction, can execute until the DSB instruction has completed. See Data Synchronization
Barrier (DSB) on page B2-149.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6118
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Mechanisms for entering a low-power state
RQJDQV The SEVL instruction appears to execute in program order relative to any subsequent WFE or WFET instruction
executed on the same PE.

IHWHBP The behavior in RQJDQV applies without the need for any explicit insertion of barrier instructions.

D1.6.2 Wait for Interrupt mechanism

ILMJGQ A PE can use the Wait for Interrupt mechanism to enter a low-power state.

RJHZBN When FEAT_WFxT is implemented, the Wait for Interrupt with Timeout (WFIT) instruction is implemented.

RDBXLJ Software can use the Wait for Interrupt (WFI) and Wait for Interrupt with Timeout (WFIT) instructions to cause the
PE to enter a low-power state.

RHSPJD If a Wait for Interrupt (WFI) and Wait for Interrupt with Timeout (WFIT) instructions causes the PE to enter a
low-power state, the PE remains in that low-power state until any of the following occur:

• The PE detects a WFI wakeup event.

• An IMPLEMENTATION DEFINED wake event that is architecturally permitted to occur at any time.

• A reset is asserted.

IMFLXH The architecture permits all of the following:

• The PE is permitted to leave the low-power state for any reason.

• The PE is permitted to treat WFI as a NOP, but this is not recommended for lowest power operation.

RMRVLC When the PE leaves a low-power state that was entered because of a WFI or WFIT instruction, the WFI or WFIT
instruction completes.

RHJPJY Except for all or the following, the architecture does not define the exact nature of the low-power state:

• When a WFI or WFIT instruction is executed, the architecture requires that memory coherency is not lost.

• If the system is configured such that the WFI or WFIT instruction can be completed, then the architecture
requires that the architectural state is not lost.

IWWYXS In some implementations, based on the configuration of system specific registers, WFI can be used as part of a
powerdown sequence where no interrupts will cause WFI wakeup events, and restoration of power involves
resetting of the PE. In those cases, the WFI is permitted to cause a loss of architectural state, as it is assumed that
this state will have been saved by software as part of the powerdown sequence before the WFI.

ICHMWP The WFI and WFIT instructions are available at all Exception levels. Attempts to enter a low-power state made by
software executing at EL0, EL1, or EL2 can be configured to trap to a higher Exception level.

D1.6.2.1 WFI wakeup events

ICYKVZ In this section, AllIntMask refers to the value described in RXZPDT.

IZWCCZ If a WFI or WFIT instruction puts a PE into low-power state, the PE remains in that low-power state until it receives
a WFE wakeup event.

RVRLPB All of the following are WFI wakeup events:

• Any physical SError interrupt, physical IRQ interrupt, or physical FIQ interrupt received by the PE that is
marked as A, B or A/B in the tables in Physical interrupt masking, regardless of the value of the
corresponding PSTATE.{A, I, F} mask bit.

• If the PE is executing at in EL1 or EL0, any virtual SError interrupt, virtual IRQ interrupt, or virtual FIQ
interrupt received by the PE, that is marked as B in the tables in Virtual interrupt masking, regardless of the
value of the corresponding PSTATE.{A, I, F} mask bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6119
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Mechanisms for entering a low-power state
• If halting is allowed, an asynchronous External Debug Request debug event. For the definition of halting, see
Halting allowed and halting prohibited and External Debug Request debug event.

• An event sent by an IMPLEMENTATION DEFINED mechanism.

• When FEAT_WFxT is implemented, for WFIT instructions, a local timeout event caused by the virtual count
threshold value, expressed in CNTVCT_EL0, being equaled or exceeded.

RNLVGY WFI wakeup events are never disabled by EDSCR.INTdis, and are never masked by the PSTATE.{A, I, F} mask
bits, or by the state of AllIntMask. If wakeup is invoked by an interrupt that is disabled or masked, the interrupt is
not taken.

IVCDGW Because debug events are WFI wakeup events, Arm recommends that Wait for Interrupt is used as part of an idle
loop rather than waiting for a single specific interrupt event to occur and then moving forward. This ensures that the
intervention of debug while waiting does not significantly change the function of the program being debugged.

IFXRXC If the PE is in WFx state when a PMU Capture event occurs, it must wake-up to service the request. Arm
recommends the Capture event is not treated as an IMPLEMENTATION DEFINED WFx wake-up event and the PE
returns to standby after. See PMU snapshots.

IZQWXZ The architecture does not require the WFI mechanism to drain down any pending memory activity before
suspending execution, and software must not rely on the WFI mechanism operating in this way.

D1.6.3 Pending PMU Exception

IWNMSV A pending PMU exception is not required to be a WFE wakeup event or WFI wakeup event.

Arm recommends that an unmasked asynchronous PMU exception that is pending when a WFE or WFI instruction is
executed is treated as an IMPLEMENTATION DEFINED wakeup event, to allow timely processing of the PMU event.
For example, when other telemetry data needs to be collected by software from the system.

However, if a PMU overflow occurs as the PE enters a low-power WFx state, then the PE might not register the
pending PMU exception before entering the WFx state.

A similar condition applies when using PMU interrupts, because the PE has to assert the interrupt request to the
interrupt controller before entering the WFx state for it to be a wakeup event. This is due to implementation-specific
timings that determine whether a PMU overflow causes a WFx wakeup or prevents the PE from entering the WFx
state.

Note

A pending synchronous PMU exception, as described by FEAT_SEBEP, must be taken before the WFI or WFE
instruction is executed.

IVPTQY In IWNMSV, pending means that, if the PMU exception were unmasked, a PMU exception would be taken by a
simple sequential execution of the program before the execution of the next instruction.

D1.6.4 Using WFI to indicate an idle state on bus interfaces

RTZPSV When all of the following are true, the IMPLEMENTATION DEFINED mechanism for entering powerdown state can be
completed:

• The IMPLEMENTATION DEFINED mechanism forces quiescence on a PE.

• The IMPLEMENTATION DEFINED mechanism prevents any possible WFI wakeup events.

RVWDWJ The mechanism for entering powerdown state is IMPLEMENTATION DEFINED.

IFFGGG Although the mechanism for entering powerdown state is IMPLEMENTATION DEFINED, the WFI and WFE
mechanisms are often used to enter powerdown state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6120
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.6 Mechanisms for entering a low-power state
RRMBKR If a WFI powerdown mechanism is implemented, when a WFI or WFIT instructions is executed, the PE completes
all current operations and any associated bus activity also completes. When all current PE operations and associated
bus activity are complete, the PE can signal to an external power controller that there is no ongoing bus activity.

RCLTZY After a WFI instruction is executed and all currently executing instructions and related bus activity has completed,
the PE is waiting for an interrupt and is in idle state. If in idle state, the PE can process memory-mapped or external
debug interface accesses to debug registers.

ICYBLG The indication of idle state to the system normally only applies to the non-debug functional interfaces used by the
PE, not the debug interfaces.

RDHHKY If OSDLR_EL1.DLK is 1, the PE does not signal the idle state to the control logic unless it can also guarantee that
the debug interface is idle. For more information about the OS Double Lock, see Debug behavior when the OS
Double Lock is locked.

IWRZGC In a PE that implements separate Core and Debug power domains, the debug interface referred to in this section is
the interface between the Core and Debug power domains, since the signal to the power controller indicates that the
Core power domain is idle. For more information about the power domains, see Power domains and debug.

IRFLDH The exact nature of the debug interface is IMPLEMENTATION DEFINED, but the use of Wait for Interrupt as the only
architecturally-defined mechanism that completely suspends execution makes it suitable as the preferred
powerdown entry mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6121
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.7 Self-hosted debug
D1.7 Self-hosted debug

IMJGPY The architecture supports both of the following:

Self-hosted debug

The PE itself hosts a debugger. The debugger programs the PE to generate debug exceptions. Debug exceptions are
accommodated in the Arm Exception model.

External debug

The PE is controlled by an external debugger. The debugger programs the PE to generate debug events, that cause
the PE to enter Debug state. In Debug state, the PE is halted.

D1.7.1 Debug exceptions

IPWPHY If a debugger has programmed the PE to generate Debug exceptions, the Debug exceptions occur during normal
program flow.

IDSWBH For example, a software developer might use a debugger contained in an operating system to debug an application.
To do this, the debugger might enable one or more debug exceptions.

IBXVCF The debug exceptions are all of the following:

• Breakpoint Instruction exceptions.

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

• Software Step exceptions.

IVYKHK The PE can only generate a particular debug exception if all of the following are true:

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level and Security state. Breakpoint Instruction exceptions are always
enabled from the current Exception level and Security state.

• A debugger has enabled that particular debug exception. All of the debug exceptions except for Breakpoint
Instruction exceptions have an enable control contained in the MDSCR_EL1. See The debug exception
enable controls.

IGRWSG Breakpoints and watchpoints can cause entry to Debug state instead of causing debug exceptions. See Chapter H1
About External Debug.

D1.7.2 The PSTATE debug mask bit, D

RDYRLS The debug exception mask bit, PSTATE.D, can mask Watchpoint, Breakpoint, and Software Step exceptions if the
target Exception level is the current Exception level.

RRDYDM If in AArch64 state and the target Exception level of a debug exception is lower than the current Exception level,
the debug exception is masked.

RJWZFQ If the target Exception level is higher than the current Exception level, debug exceptions are not masked by
PSTATE.D.

RKCHGM If PSTATE.D is 1 and the PE is already handling an exception in AArch64 state, the Watchpoint, Breakpoint, and
Software Step exceptions are masked.

ILVYYH If an exception is already being handled, masking prevents software from generating another instance of an
exception and prevents recursive entry into the exception handler and loss of return state.

RNCHXS Masking debug interrupts with PSTATE.D prevents the generation of new debug exceptions, therefore, any masked
debug exceptions are not taken if PSTATE.D is later set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6122
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.7 Self-hosted debug
IVSTYD The behavior described in RNCHXS differs from the behavior for interrupts, where the PSTATE.{A, I, F} mask
prevents the interrupt from being taken, but instead the interrupt remains pending.

IKWFMZ When an exception is taken, PSTATE.D is set to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6123
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.8 Event monitors
D1.8 Event monitors

IYVDTB The architecture supports the following non-invasive architectural components that allow for event monitoring:

Performance Monitors

The Performance Monitors have a wide feature set, flexible selection of counted events, and are read/write in
operation.

Activity Monitors

The Activity Monitors have a narrow feature set, limited selection of counted events, and are read-only in operation.

D1.8.1 The Performance Monitors Extension

IZSPVV The System registers provide access to a Performance Monitoring Unit (PMU), defined as the OPTIONAL
Performance Monitors Extension to the architecture, a non-invasive debug resource that provides information about
the operation of the PE.

The PMU provides:

• A 64-bit cycle counter.

• An IMPLEMENTATION DEFINED number of event counters. If FEAT_PMUv3p5 is implemented, the event
counters are 64-bit unsigned counters, otherwise the event counters are 32-bit event counters.Each event
counter can be configured to count occurrences of a specified event. The events that can be counted are:

— Architectural and microarchitectural events that are likely to be consistent across many
microarchitectures. The PMU architecture uses event numbers to identify an event, and the PMU
specification defines which event number must be used for each of these architectural and
microarchitectural events.

— Implementation-specific events. The PMU specification reserves event numbers for
implementation-specific events.

For more information, see Chapter D13 The Performance Monitors Extension.

D1.8.2 The Activity Monitors Extension

IPCKDC If the OPTIONAL Activity Monitors Extension is implemented, the System registers provide access to controls and
counters for the Activity Monitors Unit (AMU).

For more information, see Chapter D15 The Activity Monitors Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6124
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
D1.9 Interprocessing

RFKKJY Moving between the AArch64 and AArch32 Execution states is called interprocessing.

RNKBQL The Execution state can only change on a change of Exception level.

IWNJBK Therefore, Execution state can change only on taking an exception to a higher Exception level or returning from an
exception to a lower Exception level. For an exception that is taken to the same Exception level or is returning from
the same Exception level, the Execution state cannot change.

RGLNVF When taking an exception to a higher Exception level, the Execution state is one of the following:

• Unchanged.

• Changed from AArch32 state to AArch64 state.

RKTCXV When returning from an exception to a lower Exception level, the Execution state is one of the following:

• Unchanged.

• Changed from AArch64 state to AArch32 state.

D1.9.1 Register mappings between AArch32 state and AArch64 state

IXVDJR Register mappings between AArch32 state and AArch64 state describe the following:

• For exceptions taken from AArch32 state to AArch64 state, where the AArch32 register content is found.

• For exception returns from AArch64 state to AArch32 state, how the AArch32 register content is derived.

RPCCLL The AArch32 state register contents occupy the bottom 32 bits of the AArch64 state registers.

RCTBNQ If in AArch32 state, the upper 32 bits of AArch64 state registers are inaccessible and are ignored.

RGMLYF For bits[63:32] of AArch64 registers that are not mapped to AArch32 registers, the unmapped bits are unchanged
by AArch32 state execution.

D1.9.1.1 Mapping of the general-purpose registers between the Execution states

IPYKVS The following table shows the mappings of general-purpose registers between Execution states:

AArch32 register AArch64 register

R0 X0

R1 X1

R2 X2

R3 X3

R4 X4

R5 X5

R6 X6

R7 X7

R8_usr X8

R9_usr X9

R10_usr X10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6125
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
IJCWRB For some exceptions, the exception syndrome given in the ESR_ELx identifies one or more register numbers from
the issued instruction that generated the exception. If one of these exceptions is taken from an Exception level using
AArch32, the register numbers give the AArch64 view of the register.

IVSFBC For example, if an exception is taken from AArch32 Abort mode and the faulting instruction specified R14, the
ESR_ELx.ISS field would report this using the EC value 0b10100, because register X20 provides the AArch64 view
of LR_abt, which is the copy of R14 used in Abort mode.

D1.9.1.2 Mapping of the SIMD and floating-point registers between the Execution states

IDPNRF The following table shows the mappings of SIMD and floating-point registers between the Execution states:

R11_usr X11

R12_usr X12

SP_usr X13

LR_usr X14

SP_hyp X15

LR_irq X16

SP_irq X17

LR_svc X18

SP_svc X19

LR_abt X20

SP_abt X21

LR_und X22

SP_und X23

R8_fiq X24

R9_fiq X25

R10_fiq X26

R11_fiq X27

R12_fiq X28

SP_fiq X29

LR_fiq X30

AArch32 register AArch64 register

AArch32 register AArch64 register

V0 Q0

V1 Q1

V2 Q2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6126
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
RTJJVC The AArch64 state registers V16-V31 are not accessible from AArch32 state.

IVTZXL The mapping between the V, D, and S registers in AArch64 state is not the same as the mapping between the Q, D,
and S registers in AArch32 state.

RVSTPQ In AArch64 state, there are:

• 32 128-bit V registers, V0-V31.

• 32 64-bit D registers, D0-D31.

• 32 32-bit S registers, S0-S31.

RWJGSQ A smaller register occupies the least significant bytes of the corresponding larger register.

IFFHKC The following graphic shows the mapping of V, D, and S registers in AArch64 state:

RDHVZF In AArch32 state, there are:

• 16 128-bit Q registers, Q0-Q15.

• 32 64-bit D registers, D0-D31.

• 32 32-bit S registers, S0-S31.

RBPYPZ Smaller registers are packed into larger registers.

IYHYWN The following graphic shows the mapping of Q, D and S registers in AArch32 state:

RGXGJK In AArch32 state:

• There are no S registers that correspond to Q8-Q15.

• D16-D31 pack into Q8-Q15.

. .

. .

. .

V15 Q15

AArch32 register AArch64 register

127 64 63 32 31 0

Vn

Sn

Dn

127 64 63 32 31 0

Qn

S(4n)

D(2n)D(2n+1)

S(4n+1)S(4n+2)S(4n+3)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6127
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
IMKXYB If software executing in AArch64 state interprets D or S registers from AArch32 state, the software must unpack
the D or S registers from the V registers before it uses them.

D1.9.1.3 Mapping of the System registers between the Execution states

IMPMNZ For a full list of mappings of writable AArch64 System registers to the AArch32 System registers, see Mapping of
writable AArch64 System registers to the AArch32 System registers.

RBQSMK The relationship between the AArch64 System registers and the AArch32 System registers is architecturally
defined.

RLPDQL Modifications made to AArch32 System registers affect only the parts of the AArch64 state registers that are
mapped to the AArch32 System registers.

IHTCVH Supervisory code, such as a hypervisor, executing in AArch64 state, can save, restore, and interpret the System
registers belonging to a lower Exception level that is using AArch32.

ILYHXS In some cases, two AArch32 System registers are packed into a single AArch64 System register.

RQXNZN If EL3 is implemented and is using AArch32, some System registers are banked between Secure and Non-secure
states. In this type of banking, there is an instance of the register in Secure state and another instance of the register
in Non-secure state.

RTVZJS If any of the following are true, banking between Secure and Non-secure states is not supported:

• EL3 is not implemented.

• EL3 is implemented and is using AArch64.

IJRZXQ If EL3 is implemented and is using AArch64, the same, non-banked, registers are accessed in the following state:

• Secure EL1 with EL1 using AArch32.

• Non-secure EL1 with EL1 using AArch32.

IHSRHJ If EL3 is implemented and is using AArch64, it is not possible to architecturally determine whether an AArch64
register is mapped onto the Secure or the Non-secure instance of corresponding AArch32 register.

RMCZCY If EL3 is implemented and is using AArch64, the interrupt asserted by the AArch64 CNTP_* timer is the same
interrupt that is asserted by the Non-secure AArch32 CNTP_* timer when EL3 is using AArch32.

IJSZYM Although not required, Arm expects that implementations map many of the AArch64 registers for use by EL3 to the
Secure instances of the banked AArch32 registers, and map many of the AArch64 registers for use by EL1 to the
Non-secure instances of the banked AArch32 registers. However, if EL2 and EL3 are implemented and both support
use of AArch32, this mapping is not possible for the following registers:

• IFAR - This is because when EL3 is using AArch32, HIFAR is an alias of the Secure IFAR.

• DFAR - This is because when EL3 is using AArch32, HDFAR is an alias of the Secure DFAR.

IBYYWR There are some AArch32 System registers that are only used in AArch32 state and do not have an equivalent
AArch64 System register. However, there are AArch64 registers that can access, from a higher Exception level, the
AArch32 registers that do not have an AArch64 state equivalent.

IVGXRBR For a full list of AArch64 registers that access AArch32 System registers with no AArch64 equivalent, see AArch64
registers for accessing registers that are only used in AArch32 state.

IWRKYQ For a full list AArch64 registers that allow access to the AArch32 ID registers from AArch64 state, see AArch64
registers that access the AArch32 ID registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6128
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
D1.9.1.4 State of the general-purpose registers on taking an exception to AArch64 state

D1.9.1.4.1 If the general-purpose register was accessible from AArch32 state

RWWJWP When an exception is taken from AArch32 state to AArch64 state and the general- purpose register was accessible
from AArch32 state, the upper 32 bits have one of the following IMPLEMENTATION DEFINED values and might vary
dynamically within an implementation:

• The upper 32 bits retain the value that the same architectural register held before any AArch32 execution.

• The upper 32 bits are set to zero.

The IMPLEMENTATION DEFINED behavior applies regardless of whether any execution occurred at the Exception
level that was using AArch32.

ITKQYW For example, the IMPLEMENTATION DEFINED behavior described in RWWJWP applies even if AArch32 state was
entered by an exception return from AArch64 state, and another exception was immediately taken to AArch64 state
without any instruction execution in AArch32 state.

IQFBYM When an exception is taken from AArch32 state to AArch64 state, software must regard the value of the upper 32
bits as a CONSTRAINED UNPREDICTABLE choice between the two values described in RWWJWP.

D1.9.1.4.2 If the general-purpose register was not accessible from AArch32 state

RRHRQX If all of the following apply, when an exception is taken from AArch32 state to AArch64 state, the X15 register is
treated as if it is accessible and therefore the upper 32 bits of X15 might either be set to zero or retain their previous
value:

• The target Exception level is EL3.

• EL2 is not implemented or EL1 is in Secure state.

• SCR_EL3.RW is 0.

Otherwise, when an exception is taken from AArch32 state to AArch64 state, for a general-purpose register that was
not accessible from AArch32 state, the register retains the value it had before any AArch32 execution.

D1.9.1.4.3 Determining the upper 32 bits of AArch64 registers on taking an exception from
AArch32 state

RZJBSH Whether a general-purpose register has its upper 32 bits set to zero or retained on taking an exception from AArch32
to AArch64 is affected by all of the following:

• The AArch64 state target Exception level.

• The values of both:

— SCR_EL3.RW.

— HCR_EL2.RW or HCR.RW, where HCR.RW is a notional bit that is RES 0.

RDGVGF The following table shows which general-purpose registers can have their upper 32 bits set to zero on taking an
exception from AArch32 state to AArch64 state. In this table, a dash (-) indicates that the RW values are not valid
for the targeted Exception level.

SCR_EL3.RW
HCR_EL2.RW or

HCR.RW

Registers when the target Exception level is:

EL3 EL2 EL1

0 0 X0-X30 - -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6129
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
RWKWVT If EL2 is not implemented, or the SCR_EL3.NS or SCR.NS bits prevent its use, the registers that can have their
upper 32 bits set to zero on taking an exception from AArch32 state to AArch64 state are the same as when
HCR_EL2.RW has the same value as SCR_EL3.RW.

RWPVQR The following table shows which general-purpose registers can retain their upper 32 bits on taking an exception
from AArch32 state to AArch64 state. In this table, a dash (-) indicates that the RW values are not valid for the target
Exception level.

RLGSLY If EL2 is not implemented, or SCR_EL3.NS prevents its use, the registers that can have their upper 32 bits retained
on taking an exception to AArch64 state from AArch32 state are the same as when HCR_EL2.RW has the same
value as SCR_EL3.RW.

D1.9.1.5 SPSR, ELR, and AArch64 SP relationships on changing Execution state

IPSRRS The following table shows SPSR and ELR registers that are architecturally mapped between AArch32 state and
AArch64 state:

RCHHXX When an exception is taken from an Exception level using AArch32 to EL3 using AArch64 and EL2 has been using
AArch32 state, the upper 32 bits of ELR_EL2 have one of the following IMPLEMENTATION DEFINED values:

• The upper 32 bits retain the value that the same architectural register held before any AArch32 execution.

• The upper 32 bits are set to zero.

RWFDMR The following AArch32 registers are used only during execution in AArch32 state. However, they retain their state
if there is execution at EL1 and EL1 is using AArch64 state.

• SPSR_abt.

• SPSR_und.

0 1 Not valid because the RW bit values would imply that EL2 is AArch32 and EL1 is AArch64.

1 0 X0-X14, X16-X30 X0-X14, X16-X30 -

1 1 X0-X14 X0-X14 X0-X14

SCR_EL3.RW
HCR_EL2.RW or

HCR.RW

Registers when the target Exception level is:

EL3 EL2 EL1

SCR_EL3.RW
HCR_EL2.RW or

HCR.RW

Registers when the target Exception level is:

EL3 EL2 EL1

0 0 None - -

0 1 Not valid because the RW bit values would imply that EL2 is AArch32 and EL1 is AArch64.

1 0 X15 X15 -

1 1 X15-X30 X15-X30 X15-X30

AArch32 register AArch64 register

SPSR_svc SPSR_EL1

SPSR_hyp SPSR_EL2

ELR_hyp ELR_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6130
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.9 Interprocessing
• SPSR_irq.

• SPSR_fiq.

ITBFWN For the purposes of context switching, the registers in RWFDMR are accessible during execution in AArch64 state at
Exception levels higher than EL1.

IWRPZP If EL1 does not support execution in AArch32 state, the registers in RWFDMR are RES0.

RMBVJZ If an exception is taken from an Exception level using AArch32 to an Exception level using AArch64, the AArch64
stack pointers and Exception Link Registers associated with an Exception level that are not accessible during
AArch32 execution at the Exception level from which the exception was taken, retain the state that they had before
AArch32 execution. This applies to the following registers:

• SP_EL0.

• SP_EL1.

• SP_EL2.

• ELR_EL1.

D1.9.1.6 PSTATE.SM and PSTATE.ZA behaviors on changing Execution state

RSWQGH The values of PSTATE.{SM, ZA} do not change when any of the following occurs:

• An exception return from AArch64 to AArch32 Execution state.

• An exception taken from AArch32 to AArch64 Execution state.

RGXKNK In AArch32 state, the Effective value of PSTATE.SM is 0.

IMWQNV When PSTATE.SM is 1, a change in Execution state from AArch64 to AArch32, or from AArch32 to AArch64,
causes all implemented bits of the SVE registers (including SIMD&FP registers) and the FPSR to be reset to a fixed
value.

IWYKRM The value of PSTATE.ZA does not change in AArch32 Execution state. Therefore, a transition between
AArch64 and AArch32 Execution state when PSTATE.ZA is 1 has no effect on the contents of ZA storage, or the
ZT0 register when FEAT_SME2 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6131
ID032224 Non-Confidential

The AArch64 System Level Programmers’ Model
D1.10 Check Feature
D1.10 Check Feature

IFCDFK FEAT_CHK provides CHKFEAT with the following properties:

• CHKFEAT is allocated from the Hint instruction space, to allow it to be used on any PE, regardless of whether
FEAT_CHK is implemented.

• CHKFEAT takes a value as an input where one or more bits of the input value is set to 1 to test whether the
requested feature is enabled, and if the feature is enabled the relevant bit is cleared to 0. Otherwise, the bit is
unchanged.

• When FEAT_CHK is not implemented, the input value is unchanged, indicating the requested feature is not
enabled.

• CHKFEAT returns the state of GCSEnabled().

ICZRRH For the encoding allocation for CHKFEAT, see op0==0b00, architectural hints, barriers and CLREX, and PSTATE
access.

IQMQXS Since the CHKFEAT instruction is in the Hint instruction encoding space, it is effectively implemented on all PEs that
support AArch64. However, the CHKFEAT instruction only returns a result value that is different from the input value
when any of the features that are identified by the CHKFEAT are implemented.

RVXBTN An example of how CHKFEAT can be used in an implementation independent manner is shown below.

Example D1-1 Exemplary code for using CHKFEAT

 MOV X16, #0x1 ; X16 has bit [0] set to select GCS
 CHKFEAT X16 ; Updates X16 with the status of GCS
 TBNZ X16, #0, skipgcs ; Skip over GCS code if GCS is not enabled

 ... ; GCS related code

skipgcs:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D1-6132
ID032224 Non-Confidential

Chapter D2
AArch64 Self-hosted Debug

When the PE is using self-hosted debug, it generates debug exceptions. This chapter describes the AArch64
self-hosted debug Exception model. It is organized as follows:

Introductory information

• About self-hosted debug.

• The debug exception enable controls.

The debug Exception model

• Routing debug exceptions.

• Enabling debug exceptions from the current Exception level and Security state.

• The effect of powerdown on debug exceptions.

• Summary of the routing and enabling of debug exceptions.

• Pseudocode description of debug exceptions.

The debug exceptions

• Breakpoint Instruction exceptions.

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

• Software Step exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6133
ID032224 Non-Confidential

AArch64 Self-hosted Debug

Synchronization requirements

The behavior of self-hosted debug after changes to System registers, or after changes to the
authentication interface, but before a Context Synchronization event guarantees the effects of the
changes:

• Synchronization and debug exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6134
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
D2.1 About self-hosted debug

Self-hosted debug supports debugging through the generation and handling of debug exceptions, which are taken
using the Exception model described in Chapter D1 The AArch64 System Level Programmers’ Model. This section
introduces some terms that are used in describing self-hosted debug, and then introduces the debug exceptions. See:

• Definition of a debugger in the context of self-hosted debug.

• Context ID and Process ID.

• About debug exceptions.

D2.1.1 Definition of a debugger in the context of self-hosted debug

Within this chapter, debugger means that part of an operating system, or higher level of system software, that
handles debug exceptions and programs the Debug system registers. An operating system with rich application
environments might provide debug services that support a debugger user interface executing at EL0. From the
architectural perspective, the debug services are the debugger.

D2.1.2 Context ID and Process ID

A CONTEXTIDR_ELx identifies the current Context ID, which is used by:

• The debug logic, for breakpoint and watchpoint matching.

• Implemented trace logic, to identify the current process.

In AArch64 state, the CONTEXTIDR_ELx has a single field, PROCID, that is defined as the Process Identifier
(Process ID). Therefore, in AArch64 state, the Context ID and Process ID are identical.

D2.1.3 About debug exceptions

Debug exceptions occur during normal program flow if a debugger has programmed the PE to generate them. For
example, a software developer might use a debugger contained in an operating system to debug an application. To
do this, the debugger enables one or more debug exceptions. The debug exceptions that can be generated in stage 1
of an AArch64 translation regime are:

• Breakpoint Instruction exceptions.

• Breakpoint exceptions, generated by hardware breakpoints.

• Watchpoint exceptions, generated by hardware watchpoints.

• Software Step exceptions.

In addition, debug exceptions generated in an AArch32 translation regime might be routed to EL2 using AArch64.
See Routing debug exceptions. Chapter G2 describes the debug exceptions that can be generated in an AArch32
translation regime.

Vector Catch exceptions are exceptions that cannot be generated in an AArch64 translation regime but can be
generated in stage 1 of an AArch32 translation regime and routed to EL2 using AArch64. Vector Catch exceptions
describes the behavior for this case.

Other than Breakpoint Instruction exceptions, the PE can generate a particular debug exception only if all of the
following are true:

• The OS Lock is unlocked.

• DoubleLockStatus() == FALSE.

• Debug exceptions are not disabled from the current Exception level and Security state.

See Enabling debug exceptions from the current Exception level and Security state.

• A debugger has not disabled that particular debug exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6135
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
All of the debug exceptions except for Breakpoint Instruction exceptions have an enable control contained in
the MDSCR_EL1. See The debug exception enable controls.

Breakpoint Instruction exceptions are always enabled.

Note

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause entry to Debug state
instead of causing debug exceptions. In Debug state, the PE is halted.

For the definition of halting is allowed, see Halting allowed and halting prohibited.

The following list summarizes each of the debug exceptions:

Breakpoint Instruction exceptions

Breakpoint instructions generate these. Breakpoint instructions are instructions that software
developers can use to cause exceptions at particular points in the program flow.

The breakpoint instruction in the A64 instruction set is BRK #<immediate>. Whenever one of these is
committed for execution, the PE takes a Breakpoint Instruction exception.

Breakpoint Instruction exceptions cannot be masked. The PE takes Breakpoint Instruction
exceptions regardless of both of the following:

• The current Exception level.

• The current Security state.

For more information, see Breakpoint Instruction exceptions.

Breakpoint exceptions

The A-profile architecture provides 2-64 hardware breakpoints. These can be programmed to
generate Breakpoint exceptions based on one or more of particular instruction addresses, accesses
to any address in an instruction address range, or particular PE contexts.

For example, a software developer might program a hardware breakpoint to generate a Breakpoint
exception whenever the instruction with address 0x1000 is committed for execution.

The A-profile architecture supports the following types of hardware breakpoint for use in stage 1 of
an AArch64 translation regime:

• Address.

— Comparisons are made with the virtual address of each instruction in the program flow.

• Context:

— Context ID Match. Matches with the Context ID held in the CONTEXTIDR_EL1.

— VMID Match. Matches with the VMID value held in the VTTBR_EL2.

— Context ID and VMID Match. Matches with both the Context ID and the VMID value.

An Address breakpoint can link to a Context-matching breakpoint, so that the Address breakpoint
generates a Breakpoint exception only if the PE is in a particular context when the address match
occurs.

A breakpoint generates a Breakpoint exception whenever an instruction that causes a match is
committed for execution.

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints cause entry to Debug state. That
is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware breakpoints cause Breakpoint exceptions.

• If debug exceptions are disabled, hardware breakpoints are ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6136
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
For more information, see Breakpoint exceptions.

Watchpoint exceptions

The A-profile architecture provides 2-64 hardware watchpoints. These can be programmed to
generate Watchpoint exceptions based on accesses to particular data addresses, or based on accesses
to any address in a data address range.

For example, a software developer might program a hardware watchpoint to generate a Watchpoint
exception on an access to any address in the data address range 0x1000 - 0x101F.

A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is a Context
matching breakpoint with linking enabled. In this case, the watchpoint generates a Watchpoint
exception only if the PE is in a particular context when the data address match occurs.

A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is an address
breakpoint with linking enabled. In this case, the watchpoint generates a Watchpoint exception only
if the address of the instruction making the access matches the breakpoint.

The smallest data address size that a watchpoint can be programmed to match on is a byte. A single
watchpoint can be programmed to match on one or more bytes.

A watchpoint generates a Watchpoint exception whenever an instruction that initiates an access that
causes a match is committed for execution.

If halting is allowed and EDSCR.HDE is 1, hardware watchpoints cause entry to Debug state. That
is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware watchpoints cause Watchpoint exceptions.

• If debug exceptions are disabled, hardware watchpoints are ignored.

For more information, see Watchpoint exceptions.

Vector Catch exceptions

These are not generated in an AArch64 translation regime. They can be generated only in an
AArch32 translation regime. See Vector Catch exceptions.

Software Step exceptions

Software step is a resource that a debugger can use to make the PE single-step instructions.

For example, by using software step, debugger software executing at a higher Exception level can
debug software executing at a lower Exception level, by making it single-step instructions.

After the software being debugged has single-stepped an instruction, the PE takes a Software Step
exception.

Software step can be used only by a debugger executing in an Exception level that is using
AArch64. However, the instruction stepped might be executed in either Execution state, and
therefore Software Step exceptions can be taken from either Execution state.

If debug exceptions are enabled, Software Step exceptions can be generated.

If debug exceptions are disabled, software step is inactive.

For more information, see Software Step exceptions.

Table D2-1 summarizes PE behavior and shows the location of the pseudocode for each of the debug exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6137
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.1 About self-hosted debug
Table D2-1 PE behavior and pseudocode for each of the debug exceptions

Debug exception

PE behavior if debug
exceptions are:

Pseudocode

Enabled Disabled

Breakpoint Instruction
exceptions

Takes the
exception

Takes the
exception

Pseudocode description of Breakpoint Instruction exceptions

Breakpoint exceptions Takes the
exceptiona

Ignored Pseudocode description of Breakpoint exceptions taken from an
AArch64 stage 1 translation regime

Watchpoint exceptions Takes the
exceptiona

Ignored Pseudocode description of Watchpoint exceptions taken from AArch64
state

Vector Catch exceptions Takes the
exception

Ignored Pseudocode description of Vector Catch exceptions

Software Step
exceptions

Takes the
exception

Not
applicableb

Pseudocode description of Software Step exceptions

a. If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause the PE to enter Debug state instead of causing debug
exceptions. See Chapter H2 Debug State.

b. Software Step is inactive if debug exceptions are disabled. No Software Step exceptions can be generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6138
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.2 Routing debug exceptions
D2.2 Routing debug exceptions

Debug exceptions are routed according to the following controls:

• HCR_EL2.TGE.

• MDCR_EL2.TDE.

• The Security state when the exception is taken.

• The Exception level where the exception is taken.

Note

If EL2 is not implemented, the Effective value of HCR_EL2.TGE is 0 and the Effective value of MDCR_EL2.TDE
is 0. Throughout this section, references to the values of these fields are to the Effective values of the fields.

The routing of debug exceptions is as follows:

Debug exceptions taken when EL2 is implemented and enabled in the current Security state

The routing of debug exceptions taken depends on the values of MDCR_EL2.TDE and
HCR_EL2.TGE:

If the Effective value of {MDCR_EL2.TDE, HCR_EL2.TGE} is not {0, 0}

Debug exceptions are routed to EL2, ELD is EL2.

Otherwise

Debug exceptions behave as follows:

• Debug exceptions taken from EL1 and EL0 are routed to EL1. ELD is EL1.

• Breakpoint Instruction exceptions taken from EL2 are routed to EL2.

• All other debug exceptions are disabled from EL2 using AArch64.

When EL3 is implemented

Breakpoint Instruction exceptions taken from EL3 are routed to EL3.

All other debug exceptions are disabled from EL3 using AArch64.

Otherwise

Debug exceptions are routed to EL1. ELD is EL1.

This means that, for all debug exceptions, the debug target Exception level, ELD, is either EL1 or EL2.

Table D2-2, Table D2-3, and Table D2-4 show the routing of debug exceptions. In these tables:

NSE Means the Effective value of SCR_EL3.NSE. If FEAT_RME is not implemented, this is 0.

NS Means the Effective value of SCR_EL3.NS. If Secure state is not implemented, this is 1.

EEL2 Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this is 0.

TDE or TGE Means the logical OR of the Effective value of MDCR_EL2.TDE and the Effective value of
HCR_EL2.TGE.

(ELx) Means ELD is ELx. However:

• All debug exceptions other than Breakpoint Instruction exceptions are disabled from this
Exception level.

• Breakpoint Instruction exceptions taken when executing in this Exception level are routed to
the same Exception level. This may not be the same as the ELD Exception level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6139
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.2 Routing debug exceptions
ELx Means ELD is ELx.

D2.2.1 Pseudocode description of routing debug exceptions

DebugTarget() returns the current debug target Exception level.

DebugTargetFrom() returns the debug target Exception level for the specified Security state.

These functions are described in Chapter J1 Armv8 Pseudocode.

Table D2-2 Routing when both EL3 and EL2 are implemented

NSE NS EEL2
TDE
or TGE

ELD when executing in:

EL0 EL1 EL2 EL3

0 0 0 x EL1 EL1 n/a (EL1)

0 0 1 0 EL1 EL1 (EL1) (EL1)

0 0 1 1 EL2 EL2 EL2 (EL2)

x 1 x 0 EL1 EL1 (EL1) (EL1)

x 1 x 1 EL2 EL2 EL2 (EL2)

Table D2-3 Routing when EL3 is implemented and EL2 is not implemented

ELD when executing in:

EL0 EL1 EL3

EL1 EL1 (EL1)

Table D2-4 Routing when EL3 is not implemented and EL2 is implemented

TDE or
TGE

ELD when executing in:

EL0 EL1 EL2

0 EL1 EL1 (EL1)

1 EL2 EL2 EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6140
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.3 The debug exception enable controls
D2.3 The debug exception enable controls

The enable controls for each debug exception are as follows:

Breakpoint Instruction exceptions

None. Breakpoint Instruction exceptions are always enabled.

Breakpoint exceptions

MDSCR_EL1.MDE, plus an enable control for each breakpoint, DBGBCR<n>_EL1.E.

If more than 16 breakpoints are implemented, then extended breakpoint and watchpoint enable
controls are implemented for the additional breakpoints, MDCR_EL3.EBWE,
MDCR_EL2.EBWE, MDSCR_EL1.EMBWE, and EDSCR2.EHBWE.

Watchpoint exceptions

MDSCR_EL1.MDE, plus an enable control for each watchpoint, DBGWCR<n>_EL1.E.

If more than 16 watchpoints are implemented, then extended breakpoint and watchpoint enable
controls are implemented for the additional watchpoints, MDCR_EL3.EBWE,
MDCR_EL2.EBWE, MDSCR_EL1.EMBWE, and EDSCR2.EHBWE.

Vector Catch exceptions

MDSCR_EL1.MDE.

Software Step exceptions

MDSCR_EL1.SS.

In addition, for all debug exceptions other than Breakpoint Instruction exceptions, software must configure the
controls that enable debug exceptions from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level and Security state.

The PE cannot take a debug exception if debug exceptions are disabled from either the current Exception level or
the current Security state.

Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.

D2.3.1 Enabling debug exceptions from the current Exception level and Security state

Debug exceptions are enabled from the current Exception level, where ELD is the Exception level defined in
Routing debug exceptions, as follows:

• When executing at any Exception level that is higher than ELD:

— Breakpoint Instruction exceptions are enabled.

— All other debug exceptions are disabled.

• When executing at ELD:

— Breakpoint Instruction exceptions are enabled.

— All other debug exceptions are disabled if either of the following is true:

— The Local (kernel) Debug Enable bit, MDSCR_EL1.KDE, is 0.

— The Debug exception mask bit, PSTATE.D, is 1.

This means that a debugger must explicitly enable these debug exceptions from ELD by setting
MDSCR_EL1.KDE to 1 and PSTATE.D to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6141
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.3 The debug exception enable controls
• When executing at EL1, ELD is EL2, and FEAT_NV2 is implemented:

— Watchpoint debug exceptions generated by a System register access converted to a memory access
because HCR_EL2.NV2 is 1 are disabled if MDSCR_EL1.KDE is 0 and enabled if
MDSCR_EL1.KDE is 1. The value of PSTATE.D is ignored.

— All other debug exceptions are enabled.

• Otherwise all debug exceptions are enabled.

Table D2-5 shows when debug exceptions are enabled from the current Security state.

If EL3 and Secure state are implemented, software executing at EL3 can set the Secure Debug Disable bit,
MDCR_EL3.SDD, to 1 to disable all debug exceptions taken from AArch64 Secure state other than Breakpoint
Instruction exceptions.

The A-profile architecture does not support disabling debug exceptions in Non-secure state and, if FEAT_RME is
implemented, Realm state.

If EL3 is not implemented and the implementation is a Secure state only implementation, or Secure state is not
implemented, then the Effective value of MDCR_EL3.SDD is 0.

D2.3.2 Pseudocode description of enabling debug exceptions

AArch64.GenerateDebugExceptions() determines whether debug exceptions other than Breakpoint Instruction
exceptions are enabled from the current Exception level and Security state.

AArch64.GenerateDebugExceptionsFrom() determines whether debug exceptions other than Breakpoint Instruction
exceptions are enabled from the specified Exception level and Security state.

These functions are described in Chapter J1 Armv8 Pseudocode.

Table D2-5 Whether debug exceptions are enabled from the current Security state

Current
Security state

Breakpoint
Instruction
exceptions

All other debug exceptions

Non-secure Enabled Enabled

Secure Enabled Disabled if the Effective value of MDCR_EL3.SDD is 1.

Otherwise enabled.

Realm Enabled Enabled

Root Enabled Disabled
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6142
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.4 The effect of powerdown on debug exceptions
D2.4 The effect of powerdown on debug exceptions

Debug OS Save and Restore sequences describes the powerdown save routine and the restore routine.

When executing either routine, software must use the OS Lock to disable generation of all of the following:

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

• Software Step exceptions.

This is because the generation of these exceptions depends on the state of the debug registers, and the state of the
debug registers might be lost over these routines.

If the OS Lock is unlocked, and DoubleLockStatus()== FALSE, debug exceptions other than Breakpoint Instruction
exceptions are enabled.

If OS Lock is locked, or if DoubleLockStatus()==TRUE, debug exceptions other than Breakpoint Instruction
exceptions are disabled.

Breakpoint Instruction exceptions are enabled regardless of the state of the OS Lock and the OS Double Lock.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6143
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.5 Summary of the routing and enabling of debug exceptions
D2.5 Summary of the routing and enabling of debug exceptions

Behavior is as follows:

Breakpoint Instruction exceptions

These are always enabled, regardless of the current Exception level and Security state. A Breakpoint
Instruction exception taken from EL3 is always routed to EL3. A Breakpoint Instruction exception
taken from EL2 is routed to EL2. A Breakpoint Instruction exception taken from EL0 or EL1 is
always routed to ELD.

All other debug exceptions

Table D2-6 shows the valid combinations of MDCR_EL3.SDD, MDCR_EL2.TDE,
MDSCR_EL1.KDE, and PSTATE.D, and for each combination shows where these exceptions are
enabled from and where they are taken to. The table does not include the case when executing at
EL1, ELD is EL2, and FEAT_NV2 is implemented that is described in Enabling debug exceptions
from the current Exception level and Security state.

In the table:

Lock Means the value of (OSLSR_EL1.OSLK == ’1’ || DoubleLockStatus()).

NSE Means the Effective value of SCR_EL3.NSE. If FEAT_RME is not implemented, this
is 0.

NS Means the Effective value of SCR_EL3.NS. If Secure state is not implemented, this is 1.

SDD Means the Effective value of MDCR_EL3.SDD. See Disabling debug exceptions from
Secure state.

EEL2 Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this
is 0.

TGE Means the value of HCR_EL2.TGE. If EL2 is not implemented, the PE behaves as if
this is 0.

TDE Means the value of MDCR_EL2.TDE. If EL2 is not implemented, the PE behaves as if
this is 0.

KDE Means the value of MDSCR_EL1.KDE.

D Means the value of PSTATE.D.

n/a Means not applicable. The PE cannot be executing at this Exception level.

- Means that debug exceptions are disabled from that Exception level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6144
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.5 Summary of the routing and enabling of debug exceptions
Table D2-6 Routing of Breakpoint, Watchpoint, Software Step, and Vector Catch exceptions

Debug state Lock NSE NS SDD EEL2 TGE TDE KDE D
ELD when enabled from:

EL0 EL1 EL2 EL3

Yes X X X X X X X X X - - - -

No TRUE X X X X X X X X - - - -

FALSE 0 0 1 X X X X X - - - -

0 0 X X 0 X EL1 - n/a -

1 0 EL1 EL1 n/a -

1 EL1 - n/a -

1 0 0 0 X EL1 - - -

1 0 EL1 EL1 - -

1 EL1 - - -

No FALSE 0 0 0 1 0 1 0 X EL2 EL2 - -

1 0 EL2 EL2 EL2 -

1 EL2 EL2 - -

1 X 0 X EL2 n/a - -

1 0 EL2 n/a EL2 -

1 EL2 n/a - -

X 1 X X 0 0 0 X EL1 - - -

1 0 EL1 EL1 - -

1 EL1 - - -

1 0 X EL2 EL2 - -

1 0 EL2 EL2 EL2 -

1 EL2 EL2 - -

1 X 0 X EL2 n/a - -

1 0 EL2 n/a EL2 -

1 EL2 n/a - -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6145
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.6 Pseudocode description of debug exceptions
D2.6 Pseudocode description of debug exceptions

The AArch64.Abort() function processes FaultRecord objects, as described in Abort exceptions, and generates a
debug exception.

Some functions called by AArch64.Abort() are:

• AArch64.BreakpointException().

• AArch64.WatchpointException().

• AArch64.VectorCatchException().

• AArch64.InstructionAbort().

• AArch64.DataAbort().

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6146
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.7 Breakpoint Instruction exceptions
D2.7 Breakpoint Instruction exceptions

This section describes Breakpoint Instruction exceptions in an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing one of the following:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

• At EL0 using AArch32 when FEAT_VHE is implemented, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H,TGE} == {1,1}.

For software executing in an Exception level that is using AArch64, a Breakpoint Instruction exception results from
the execution of an A64 BRK instruction. However, within the AArch64 EL1&0 translation regime, executing a T32
or A32 BKPT instruction at EL0 using AArch32 generates a Breakpoint Instruction exception.

For more information about the T32 and A32 BKPT instructions, see:

• Breakpoint instruction in the A32 and T32 instruction sets.

• BKPT instructions as the first instruction in an IT block.

The following subsections describe Breakpoint Instruction exceptions in an AArch64 translation regime:

• About Breakpoint Instruction exceptions.

• Breakpoint instructions.

• Exception syndrome information and preferred return address.

• Pseudocode description of Breakpoint Instruction exceptions.

D2.7.1 About Breakpoint Instruction exceptions

A breakpoint is an event that results from the execution of an instruction, which is based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint Instruction exceptions, which this section describes, are software breakpoints. Breakpoint exceptions
describes hardware breakpoints.

There is no enable control for Breakpoint Instruction exceptions. They are always enabled, and cannot be masked.

A Breakpoint Instruction exception is generated whenever a breakpoint instruction is committed for execution,
regardless of all of the following:

• The current Exception level.

• The current Security state.

• Whether the debug target Exception level, ELD, is using AArch64 or AArch32.

Note

• The debug target Exception level, ELD, is the Exception level that debug exceptions are targeting. Routing
debug exceptions describes how ELD is derived.

• Debuggers using breakpoint instructions must be aware of the rules for concurrent modification and
execution of instructions. See Concurrent modification and execution of instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6147
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.7 Breakpoint Instruction exceptions
D2.7.2 Breakpoint instructions

The breakpoint instruction in the A64 instruction set is BRK #<immediate>. It is unconditional.

For details of the instruction encoding, see BRK.

The breakpoint instruction in the A32 and T32 instruction sets is BKPT #<immediate>.

For more information about the A32 and T32 breakpoint instruction, see Breakpoint instruction in the A32 and T32
instruction sets.

D2.7.3 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information.

• Preferred return address.

D2.7.3.1 Exception syndrome information

On taking a Breakpoint Instruction exception, the PE records information about the exception in the Exception
Syndrome Register (ESR) at the Exception level the exception is taken to. The ESR used is one of:

• ESR_EL1.

• ESR_EL2.

• ESR_EL3.

Note

Breakpoint Instruction exceptions are the only debug exception that can be taken to EL3 using AArch64.

Table D2-7 shows the information that the PE records.

Note

• If debug exceptions are routed to EL2, it is the exception that is routed, not the instruction that is trapped.
Therefore, if a Breakpoint Instruction exception is routed to EL2, ESR_EL2.EC is set to the same value as if
the exception was taken to EL1.

• For information about how debug exceptions can be routed to EL2, see Routing debug exceptions.

Table D2-7 Information recorded in the ESR_ELx

ESR_ELx field Information recorded in ESR_EL1, ESR_EL2, or ESR_EL3.

Exception Class, EC Whether the breakpoint instruction was executed in AArch64 state or AArch32 state. The PE
sets this to:

• 0x3C for an A64 BRK instruction.

• 0x38 for an A32 or T32 BKPT instruction.

Instruction Length, IL The PE sets this to:

• 0 for a 16-bit T32 BKPT instruction.

• 1 for an A64 BRK instruction, or an A32 BKPT instruction.

Instruction Specific Syndrome, ISS ISS[24:16] RES0.

ISS[15:0] The PE copies the instruction Comment field value into here, zero extended as
necessary.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6148
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.7 Breakpoint Instruction exceptions
D2.7.3.2 Preferred return address

The preferred return address is the address of the breakpoint instruction, not the next instruction. This is different
to the behavior of other exception-generating instructions, like SVC.

D2.7.4 Pseudocode description of Breakpoint Instruction exceptions

AArch64.SoftwareBreakpoint() generates a Breakpoint Instruction exception that is taken to AArch64 state.

This function is defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6149
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
D2.8 Breakpoint exceptions

This section describes Breakpoint exceptions in stage 1 of an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing one of the following:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

• At EL0 using AArch32 when FEAT_VHE is implemented, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H,TGE} == {1,1}.

This section contains the following subsections:

• About Breakpoint exceptions.

• Breakpoint types and linking of breakpoints.

• Execution conditions for which a breakpoint generates Breakpoint exceptions.

• Breakpoint instruction address comparisons.

• Breakpoint context comparisons.

• Breakpoint usage constraints.

• Preferred return address.

• Pseudocode description of Breakpoint exceptions taken from an AArch64 stage 1 translation regime.

D2.8.1 About Breakpoint exceptions

A breakpoint is an event that results from the execution of an instruction, which is based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint exceptions are generated by Breakpoint debug events. Breakpoint debug events are generated by
hardware breakpoints. Software breakpoints are described in Breakpoint Instruction exceptions.

An implementation can include between 2-64 hardware breakpoints.

If AArch32 is supported at EL1 or FEAT_Debugv8p9 is not implemented, then the PE does not implement more
than 16 breakpoints.

When more than 16 breakpoints are implemented, the number of breakpoints is identified to software by
ID_AA64DFR1_EL1.BRPs and EDDFR1.BRPs. Otherwise ID_AA64DFR0_EL1.BRPs shows how many are
implemented.

To use an implemented hardware breakpoint, a debugger programs the following registers for the breakpoint:

• The Breakpoint Control Register, DBGBCR<n>_EL1. This contains controls for the breakpoint, for example
an enable control.

• The Breakpoint Value Register, DBGBVR<n>_EL1. This holds the value used for breakpoint matching,
which is one of:

— An instruction virtual address.

— A Context ID.

— A VMID value.

— A concatenation of both a Context ID value and a VMID value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6150
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
— If FEAT_VHE is implemented, a concatenation of two Context ID values.

These registers are numbered, so that:

• DBGBCR0_EL1 and DBGBVR0_EL1 are for breakpoint number zero.

• DBGBCR1_EL1 and DBGBVR1_EL1 are for breakpoint number one.

• …

• DBGBCR<n-1>_EL1 and DBGBVR<n-1>_EL1 are for breakpoint number (n-1).

A debugger can link a breakpoint that is programmed with an address and a breakpoint that is programmed with
anything other than an address together, so that a Breakpoint debug event is generated only if both breakpoints
match.

For each instruction in the program flow, all of the breakpoints are tested. When a breakpoint is tested, it generates
a Breakpoint debug event if all of the following are true:

• The breakpoint is enabled. That is, the Effective value of DBGBCR<n>_EL1.E is 1.

• The conditions specified in the DBGBCR<n>_EL1 are met.

• The comparison with the value held in the DBGBVR<n>_EL1 is successful.

• If the breakpoint is linked to another breakpoint, the comparisons made by that other breakpoint are also
successful.

• The instruction is committed for execution.

The address of each instruction is compared against the DBGBVR<n>_EL1 values of all Address matching
breakpoints with linking disabled that can generate a breakpoint match at the current Exception level in the current
Security state, possibly after the application of a breakpoint mask, and:

• The Boolean equality comparison results of all the address match breakpoints are OR’d together to generate
a first result.

• The Boolean inequality comparison results of all the address mismatch breakpoints are AND’d together to
generate a second result.

Note
Because ranges have power-of-two sizes and are aligned, it is not possible to configure strictly overlapping
pairs of ranges. Only non-overlapping or subsets can be selected.

The resulting address match is:

• False, if there are no such breakpoints.

• The first result, if all such breakpoints are address match breakpoints.

• The second result, if all such breakpoints are address mismatch breakpoints.

• The logical-AND of the first result and the second result, if there is a mix of address match and address
mismatch breakpoints.

This address match result is OR’d with the Boolean results of all Context matching breakpoints with linking
disabled that are enabled and can generate a breakpoint match at the current Exception level in the current Security
state. The breakpoint generates the Breakpoint debug event regardless of the following:

• Whether the instruction passes its Condition code check.

• The instruction type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6151
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
Note

This does not apply to breakpoints with linking enabled. A breakpoint with linking enabled only delivers its result
to the breakpoint(s) and/or watchpoint(s) linked to it, if any.

If halting is allowed and EDSCR.HDE is 1, Breakpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are:

• Enabled, Breakpoint debug events generate Breakpoint exceptions.

• Disabled, Breakpoint debug events are ignored.

Note

The remainder of this Breakpoint exceptions section, including all subsections, describes breakpoints as generating
Breakpoint exceptions.

However, the behavior described also applies if breakpoints are causing entry to Debug state.

Example D2-1 shows an example of setting an address match breakpoint and an address mismatch breakpoint, and
the conditions that cause a breakpoint exception.

Example D2-1 Breakpoint address match and breakpoint address mismatch

The debug exception enable controls describes the enable controls for Breakpoint debug events.

Two breakpoints are programmed as follows:

Breakpoint 0 is programmed with:

— DBGBCR0_EL1.{BT2, BT} = Address match breakpoint.

— DBGBCR0_EL1.MASK = M0, where M0 > 2.

— DBGBVR0_EL1 = A0, where A0 is aligned to 2M0.

This means that breakpoint 0 will match an instruction address PC if it is within a range, as follows:

PC {A0, A0 + 4, … (A0 + 2M0 – 4)}

(A0 PC) (PC < A0 + 2M0)

Breakpoint 1 is programmed with:

— DBGBCR1_EL1.{BT2, BT} = Address mismatch breakpoint.

— DBGBCR1_EL1.MASK = M1, where M1 > 2.

— DBGBVR1_EL1 = A1, where A1 is aligned to 2M1.

– This means that breakpoint 1 will match an instruction address PC if it is outside of a range, as follows:

PC {A1, A1 + 4, … (A1 + 2M1 – 4)}

(PC A1) (PC A1 + 2M1)

Such that {A1, A1 + 4, … (A1 + 2M1 – 4)} {A0, A0 + 4, … (A0 + 2M0 – 4)}.

Both breakpoints match at the current Exception level in the current Security state.

Then the combination of these two breakpoints will only generate a breakpoint for an instruction address

PC if it is both within the first range and outside of the second range, as follows:

PC {A0, A0 + 4, … (A0 + 2M0 – 1)} PC {A1, A1 + 4, … (A1 + 2M1 – 4)}

PC {A0, A0 + 4, … (A1 – 4), (A1 + 2M1), (A1 + 2M1 + 4), … (A0 + 2M0 – 4)}

(A0 PC) (PC < A1)) ((PC A1 + 2M1) (PC < A0 + 2M0))
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6152
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
D2.8.2 Accessing breakpoint System registers

RMLTYN When any of the following are true, the Effective value of MDSELR_EL1.BANK is zero:

• Executing at EL3 and MDCR_EL3.EBWE is 0.

• Executing at EL2 and the Effective value of MDCR_EL2.EBWE is 0.

• Executing at EL1 and the Effective value of MDSCR_EL1.EMBWE is 0.

RJGQGB If all of the following are true, MDSELR_EL1 is RES0:

• FEAT_Debugv8p9 is implemented.

• 16 or fewer breakpoints are implemented.

• 16 or fewer watchpoints are implemented.

RKSCWV The MRS and MSR System register names for accessing breakpoint control registers DBGBCR<n>_EL1 and
breakpoint value registers DBGBVR<n>_EL1 are mapped to physical registers as follows:

• The register names DBGBCR0_EL1 through DBGBCR15_EL1 are mapped to the physical registers
DBGBCR<BANK×16+0>_EL1 through DBGBCR<BANK×16+15>_EL1.

• The register names DBGBVR0_EL1 through DBGBVR15_EL1 are mapped to the physical registers
DBGBVR<BANK×16+0>_EL1 through DBGBVR<BANK×16+15>_EL1.

IHMNFZ MSR and MRS instructions using the breakpoint System register names in RKSCWV make indirect reads of
MDSELR_EL1.BANK. This means that direct writes to MDSELR_EL1.BANK must be explicitly synchronized
before a direct read or direct write using any of these System register names.

D2.8.3 Breakpoint types and linking of breakpoints

Each implemented breakpoint is one of the following:

• A context-aware breakpoint. This is a breakpoint that can be programmed to generate a Breakpoint exception
on any one of the following:

— An instruction address match or mismatch.

— A Context ID match, with the value held in CONTEXTIDR_EL1 or the value held in
CONTEXTIDR_EL2.

— A VMID match, with the VMID value held in VTTBR_EL2.

— Both a Context ID match and a VMID match.

• A breakpoint that is not context-aware. These can only be programmed to generate a Breakpoint exception
on an instruction address match.

When more than 16 context-aware breakpoints are implemented, the number of context-aware breakpoints is
identified to software by ID_AA64DFR1_EL1.CTX_CMPs and EDDFR1.CTX_CMPs. Otherwise
ID_AA64DFR0_EL1.CTX_CMPs shows how many are implemented. The number of context-aware breakpoints
cannot be more than the number of implemented breakpoints, but at least one implemented breakpoint must be
context-aware.

If the number of implemented breakpoints is less than or equal to 16, then the context-aware breakpoints are the
highest numbered breakpoints.

If the number of implemented breakpoints is greater than 16, then the context-aware breakpoints are numbered
consecutively beginning with 0.

Any breakpoint that is programmed to generate a Breakpoint exception on an instruction address match is
categorized as an Address breakpoint. Breakpoints that are programmed to match on anything else are categorized
as Context breakpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6153
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
When a debugger programs a breakpoint to be an Address or a Context breakpoint, it must also program that
breakpoint so that it is either:

• Used in isolation. In this case, the breakpoint is called an Unlinked breakpoint.

• Linked to another Context matching breakpoint. In this case, the breakpoint is called a Linked breakpoint.

• Enabled for linking from another breakpoint or watchpoint. In this case, the breakpoint has Linking enabled
and does not generate debug events in isolation.

By linking an Address breakpoint and a Context breakpoint together, the debugger can create a breakpoint pair that
generates a Breakpoint exception only if the PE is in a particular context when an instruction address match occurs.
This is shown in Example D2-2.

Example D2-2 Linking an Address breakpoint and a Context breakpoint

For example, a debugger might:

1. Program breakpoint number one to be a Linked Address Match breakpoint.

2. Program breakpoint number five to be a Context matching breakpoint with linking enabled.

3. Link these two breakpoints together. A Breakpoint exception is generated only if both the instruction address
matches and the Context ID matches.

The Breakpoint Type fields for a breakpoint, DBGBCR<n>_EL1.{BT2, BT}, control the breakpoint type and
whether the breakpoint is enabled for linking.

If AArch32 state is implemented, Address breakpoints can be programmed to generate Breakpoint exceptions on
addresses that are halfword-aligned but not word-aligned. This makes it possible to breakpoint on T32 instructions.
See Specifying the halfword-aligned address that an Address breakpoint matches on.

D2.8.3.1 Rules for linking breakpoints

The rules for breakpoint linking are as follows:

• Only Linked breakpoint types can be linked.

• Any type of Linked Address breakpoint can link to any type of Context matching breakpoint with linking
enabled. The Linked Breakpoint Number field, DBGBCR<n>_EL1.{LBNX, LBN}, for the Linked Address
breakpoint specifies the particular Context matching breakpoint that the Linked Address breakpoint links to,
and:

— DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} for the Linked Address breakpoint define the
execution conditions that the breakpoint pair generates Breakpoint exceptions for. See Execution
conditions for which a breakpoint generates Breakpoint exceptions.

— DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} for the Context matching breakpoint with linking
enabled are ignored.

• Breakpoint types with linking enabled can only be linked to. The {LBNX, LBN} fields for Context
breakpoints are therefore ignored.

• Linked Address breakpoints cannot link to watchpoints. The {LBNX, LBN} fields always specify a
breakpoint.

• If a Linked Address breakpoint links to a breakpoint that is not context-aware or does not have linking
enabled, the behavior of the Linked Address breakpoint is CONSTRAINED UNPREDICTABLE. See Other usage
constraints for Address breakpoints.

• Multiple Linked Address breakpoints can link to a single Context matching breakpoint with linking enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6154
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
Note

Multiple Linked watchpoints can also link to a single Context matching breakpoint with linking enabled or,
if FEAT_ABLE is implemented, Address matching breakpoint with linking enabled. Watchpoint exceptions
describes watchpoints.

These rules mean that a single Context matching breakpoint with linking enabled might be linked to by all, or any
combination of, the following:

• Multiple Linked Address breakpoints.

• Multiple Linked watchpoints.

If FEAT_ABLE is implemented, a single Address matching breakpoint with linking enabled might be linked to by
multiple Linked watchpoints.

Note

If FEAT_NV2 is implemented, the hypervisor must use the {0b0, 0b1101}, CONTEXTIDR_EL2 Match breakpoint
with linking enabled type to guarantee a linked match, see Interaction with self-hosted and External debug.

It is also possible that a breakpoint with linking enabled might have no breakpoints or watchpoints linked to it. If
no linked breakpoints and no linked watchpoints link to a breakpoint programmed with linking enabled, then the
breakpoint does not generate any Breakpoint exceptions or debug events.

Figure D2-1 shows an example of permitted breakpoint and watchpoint linking.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6155
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
Figure D2-1 The role of linking in Breakpoint and Watchpoint exception generation

In Figure D2-1, each Linked Address breakpoint can generate a Breakpoint exception only if the comparisons made
by both it, and the breakpoint that it links to, are successful. Similarly, each Linked watchpoint can only generate a
Watchpoint exception if the comparisons made by both it, and the breakpoint that it links to, are successful.

D2.8.3.2 Breakpoint types defined by DBGBCR<n>_EL1.{BT2, BT}

If FEAT_ABLE is not implemented then the Effective value of DBGBCR<n>_EL1.BT2 is 0.

The following lists provides more detail about each breakpoint type:

{0b0, 0b0000}, Unlinked Address Match breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions for
which the breakpoint generates Breakpoint exceptions. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful address match, as described in Breakpoint instruction address comparisons.

DBGBCR<n>_EL1.{LBNX, LBN} for this breakpoint are ignored.

•
•
•

Linked watchpoint

Linked watchpoint

Unlinked watchpoint

Linked watchpoint

Links

Breakpoints WatchpointsBreakpoint or

watchpoint number

0

2

1

Linked watchpoint

Linked watchpoint

3

4

5

6

n

Unlinked Address type

Linked Address type

Linked Address type

Unlinked Address type

Context matching with

linking enabled

Context matching with

linking enabled

Unlinked Context type
Address breakpoint

with Linking enabled

Unlinked watchpoint

Linked watchpoint

•
•
•

•
•
•

If FEAT_ABLE

is implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6156
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
{0b0, 0b0001}, Linked Address Match breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} for this breakpoint. These define the
execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution
conditions for which a breakpoint generates Breakpoint exceptions.

• A successful address match defined by this breakpoint, as described in Breakpoint instruction
address comparisons.

• A successful context match defined by the Context breakpoint with linking enabled that this
breakpoint links to.

DBGBCR<n>_EL1.{LBNX, LBN} for this breakpoint selects the Context breakpoint with linking
enabled that this breakpoint links to.

{0b0, 0b0010}, Context ID Match breakpoint

{BT2, BT} == {0b0, 0b0010} is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions for
which the breakpoint generates Breakpoint exceptions. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons.

The value of DBGBVR<n>_EL1.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and HCR_EL2.E2H is set to 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR_EL1 holds the current Context ID.

DBGBCR<n>_EL1.{LBNX, LBN, BAS} for this breakpoint are ignored

{0b0, 0b0011}, Context ID Match breakpoint with linking enabled

{BT2, BT} == {0b0, 0b0011} is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

The value of DBGBVR<n>_EL1.ContextID is compared with the current Context ID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6157
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and HCR_EL2.E2H is set to 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR_EL1 holds the current Context ID.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

{0b0, 0b0100}, Unlinked Address Mismatch breakpoint

{BT2, BT} == {0b0, 0b0100} is a reserved value unless one of the following applies:

• FEAT_BWE is implemented.

• EL1 is using AArch32.

In stage 1 of an AArch64 translation regime, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions that
the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful address mismatch, as described in Breakpoint instruction address comparisons.

DBGBCR<n>_EL1.{LBNX, LBN} for this breakpoint is ignored.

0b0100, Unlinked Address Mismatch breakpoint describes the behavior of Address Mismatch
breakpoints in stage 1 of an AArch32 translation regime.

{0b0, 0b0101}, Linked Address Mismatch breakpoint

{BT2, BT} == {0b0, 0b0101} is a reserved value unless one of the following applies:

• FEAT_BWE is implemented.

• EL1 is using AArch32.

In stage 1 of an AArch64 translation regime, generation of a Breakpoint exception depends on all
of the following:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions that
the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful address mismatch defined by this breakpoint, as described in Breakpoint
instruction address comparisons.

• A successful context match defined by the Context matching breakpoint that this breakpoint
links to.

DBGBCR<n>_EL1.{LBNX, LBN} for this breakpoint selects the Context matching breakpoint
that this breakpoint links to.

0b0101, Linked Address Mismatch breakpoint describes the behavior of Address Mismatch
breakpoints in stage 1 of an AArch32 translation regime.

{0b0, 0b0110}, CONTEXTIDR_EL1 Match breakpoint

{BT2, BT} == {0b0, 0b0110} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6158
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
In an implementation that includes FEAT_VHE, for context-aware breakpoints, generation of a
Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions for
which the breakpoint generates Breakpoint exceptions.

• A successful Context ID match defined by this breakpoint, as described in Breakpoint context
comparisons.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of
DBGBVR<n>_EL1.ContextID is compared with the Context ID value held in
CONTEXTIDR_EL1.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBNX, LBN, BAS} for this breakpoint are ignored.

{0b0, 0b0111}, CONTEXTIDR_EL1 Match breakpoint with linking enabled

{BT2, BT} == {0b0, 0b0111} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

In an implementation that includes FEAT_VHE, for context-aware breakpoints, one of the
following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of
DBGBVR<n>_EL1.ContextID is compared with the Context ID value held in
CONTEXTIDR_EL1.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

{0b0, 0b1000}, VMID Match breakpoint

{BT2, BT} == {0b0, 0b1000} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6159
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions for
which the breakpoint generates Breakpoint exceptions. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful VMID match, as described in Breakpoint context comparisons.

DBGBCR<n>_EL1.{LBNX, LBN, BAS} for this breakpoint are ignored.

{0b0, 0b1001}, VMID Match breakpoint with linking enabled

{BT2, BT} == {0b0, 0b1001} is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address Match
breakpoint that links to this breakpoint. See Breakpoint instruction address
comparisons.

— A successful VMID match defined by this breakpoint, as described in Breakpoint
context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful VMID match defined by this breakpoint, as described in Breakpoint
context comparisons.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

{0b0, 0b1010}, Context ID and VMID Match breakpoint

{BT2, BT} == {0b0, 0b1010} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

When EL2 is implemented, for context-aware breakpoints, generation of a Breakpoint exception
depends on all of the following:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions that
the breakpoint generates a Breakpoint exception for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons.

• A successful VMID match.

The value of DBGBVR<n>_EL1.ContextID is compared with CONTEXTIDR_EL1.

Breakpoint context comparisons describes the requirements for a successful Context ID match and
a successful VMID match.

DBGBCR<n>_EL1.{LBNX, LBN, BAS} for this breakpoint are ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6160
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
{0b0, 0b1011}, Context ID and VMID Match breakpoint with linking enabled

{BT2, BT} == {0b0, 0b1011} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

When EL2 is implemented, for context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on all of the following:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

— A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on all of the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

— A successful VMID match defined by this breakpoint.

The value of DBGBVR<n>_EL1.ContextID is compared with CONTEXTIDR_EL1.

Breakpoint context comparisons describes the requirements for a successful Context ID match and
a successful VMID match by this breakpoint.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

{0b0, 0b1100}, CONTEXTIDR_EL2 Match breakpoint

{BT2, BT} == {0b0, 0b1100} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions for
which the breakpoint generates Breakpoint exceptions.

• A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons.

The Context ID check is made against the value in CONTEXTIDR_EL2. The value of
DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBNX, LBN, BAS} for this breakpoint are ignored.

{0b0, 0b1101}, CONTEXTIDR_EL2 Match breakpoint with linking enabled

{BT2, BT} == {0b0, 0b1101} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6161
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, either:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons.

The Context ID check is made against the value in CONTEXTIDR_EL2. The value of
DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

{0b0, 0b1110}, Full Context ID Match breakpoint

{BT2, BT} == {0b0, 0b1110} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC}. These define the execution conditions for
which the breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons.

The Context ID check is made against the values in both CONTEXTIDR_EL1 and
CONTEXTIDR_EL2. The value of DBGBVR<n>_EL1[31:0] is compared with the Context ID
value held in CONTEXTIDR_EL1, and the value of DBGBVR<n>_EL1[63:32] is compared with
the Context ID value held in CONTEXTIDR_EL2. Both comparisons must match for the Context
ID check.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBNX, LBN, BAS} for this breakpoint are ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6162
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
{0b0, 0b1111}, Full Context ID Match breakpoint with linking enabled

{BT2, BT} == {0b0, 0b1111} is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented,
for context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons.

— A successful Context ID match, as described in Breakpoint context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match, as described in Breakpoint context comparisons.

The Context ID check is made against the values in both CONTEXTIDR_EL1 and
CONTEXTIDR_EL2. The value of DBGBVR<n>_EL1[31:0] is compared with the Context ID
value held in CONTEXTIDR_EL1, and the value of DBGBVR<n>_EL1[63:32] is compared with
the Context ID value held in CONTEXTIDR_EL2. Both comparisons must match for the Context
ID check.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

{0b1, 0b0000}, Unlinked Address Match breakpoint with linking enabled

{BT2, BT} == {0b1, 0b0000} is a reserved value if the breakpoint does not support being configured
as an address matching breakpoint with linking enabled.

Otherwise, one of the following applies:

• If no Linked watchpoints link to this breakpoint, then the breakpoint does not generate any
debug exceptions.

• Generation of a Watchpoint exception by an instruction depends on the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful instruction address match, as described in Breakpoint instruction address
comparisons.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, PMC} for this breakpoint are ignored.

{0b1, 0b0001}, Linked Address Match breakpoint with linking enabled

{BT2, BT} == {0b1, 0b0001} is a reserved value if the breakpoint does not support being configured
as an address matching breakpoint with linking enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6163
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
Otherwise, one of the following applies:

• If no Linked watchpoints link to this breakpoint, then the breakpoint does not generate any
debug exceptions.

• Generation of a Watchpoint exception by an instruction depends on the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful instruction address match defined by this breakpoint, as described in
Breakpoint instruction address comparisons.

— A successful context match defined by the Context matching breakpoint with linking
enabled that this breakpoint links to.

DBGBCR<n>_EL1.{LBNX, LBN} for this breakpoint selects the Context matching breakpoint
with linking enabled that this breakpoint links to.

DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} for this breakpoint are ignored.

{0b1, 0b0100}, Unlinked Address Mismatch breakpoint with linking enabled

{BT2, BT} == {0b1, 0b0100} is a reserved value if one of the following applies:

• The breakpoint does not support being configured as an address matching breakpoint with
linking enabled.

• FEAT_BWE is not implemented.

Otherwise, one of the following applies:

• If no Linked watchpoints link to this breakpoint, then the breakpoint does not generate any
debug exceptions.

• Generation of a Watchpoint exception by an instruction depends on the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful instruction address match, as described in Breakpoint instruction address
comparisons.

DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC, HMC, PMC} for this breakpoint are ignored.

{0b1, 0b0101}, Linked Address Mismatch breakpoint with linking enabled

{BT2, BT} == {0b1, 0b0100} is a reserved value if one of the following applies:

• The breakpoint does not support being configured as an address matching breakpoint with
linking enabled.

• FEAT_BWE is implemented.

Otherwise, one of the following applies:

• If no Linked watchpoints link to this breakpoint, then the breakpoint does not generate any
debug exceptions.

• Generation of a Watchpoint exception by an instruction depends on the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful instruction address match defined by this breakpoint, as described in
Breakpoint instruction address comparisons.

— A successful context match defined by the Context matching breakpoint with linking
enabled that this breakpoint links to.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6164
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
DBGBCR<n>_EL1.{LBNX, LBN} for this breakpoint selects the Context matching breakpoint
that this breakpoint links to.

DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} for this breakpoint are ignored.

Note

See Reserved DBGBCR<n>_EL1.{BT2, BT} values for the behavior of breakpoints programmed with reserved
{BT2, BT} values.

D2.8.4 Execution conditions for which a breakpoint generates Breakpoint exceptions

Each breakpoint can be programmed so that it generates Breakpoint exceptions only for certain execution
conditions. For example, a breakpoint might be programmed to generate Breakpoint exceptions only when the PE
is executing at EL0 in Secure state.

DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} defines the execution conditions the breakpoint generates
Breakpoint exceptions for, as follows:

Security State Control Extension, SSCE, and Security State Control, SSC

SSCE and SSC control whether the breakpoint generates Breakpoint exceptions in only one
Security state or in multiple Security states.

Note

This is determined by the Security state of the PE, not from the physical address space attribute
returned by the translation of the virtual address on which the breakpoint is set.

Higher Mode Control, HMC, and Privileged Mode Control, PMC

HMC and PMC together control which Exception levels the breakpoint generates Breakpoint
exceptions in.

Table D2-8 shows the valid combinations of the values of HMC, SSCE, SSC, and PMC, and for each combination
shows which Exception levels breakpoints generate Breakpoint exceptions in.

In the table:

NS Non-secure state.

S Secure state.

RL In implementations that include FEAT_RME, Realm state.

RT In implementations that include FEAT_RME, Root state.

Y or - Means that a breakpoint programmed with the values of HMC, SSCE, SSC, and PMC shown in that
row:

Y Can generate Breakpoint exceptions in that Exception level and Security state.

- Cannot generate Breakpoint exceptions in that Exception level and Security state.

Table D2-8 Summary of breakpoint HMC, SSCE, SSC, and PMC encodings

HMC SSCE SSC PMC Security states EL3a EL2 EL1 EL0

0 0 00 01 RL, S, NS - - Y -

0 0 00 10 - - - Y

0 0 00 11 - - Y Y
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6165
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
0 0 01 01 NS - - Y -

0 0 01 10 - - - Y

0 0 01 11 - - Y Y

0 0 10 01 S - - Y -

0 0 10 10 - - - Y

0 0 10 11 - - Y Y

0 0 11 00 S - Y - -

0 0 11 01 - Y Y -

0 0 11 11 - Y Y Y

0 1 01 01 RL - - Y -

0 1 01 10 - - - Y

0 1 01 11 - - Y Y

1 0 00 01 RT, RL, S, NS Y Y Y -

1 0 00 11 Y Y Y Y

1 0 01 00 NS - Y - -

1 0 01 01 - Y Y -

1 0 01 11 - Y Y Y

1 0 10 00 RT or Sb Y - - -

1 0 10 01 RT, S Y Y Y -

1 0 10 11 Y Y Y Y

1 0 11 00 RL, S, NS - Y - -

1 0 11 01 - Y Y -

1 0 11 11 - Y Y Y

1 1 01 00 RL - Y - -

1 1 01 01 - Y Y -

1 1 01 11 - Y Y Y

a. Debug exceptions are not generated at EL3 using AArch64. This means that these
combinations of HMC, SSCE, SSC, and PMC are relevant only if breakpoints cause entry
to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSCE, SSC, and
PMC that generate Breakpoint exceptions at EL3 using AArch64.

b. If FEAT_RME is implemented, this combination specifies Root state. Otherwise, Secure
state.

Table D2-8 Summary of breakpoint HMC, SSCE, SSC, and PMC encodings (continued)

HMC SSCE SSC PMC Security states EL3a EL2 EL1 EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6166
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
All combinations of HMC, SSCE, SSC, and PMC that Table D2-8 does not show are reserved. A combination in
Table D2-8 might be reserved if an Exception level or Security state is not implemented. For information about
which combinations of HMC, SSCE, SSC and PMC are reserved if an Exception level or Security state are not
implemented, See Reserved DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} values.

D2.8.5 Breakpoint instruction address comparisons

In this subsection, the term AddrTop represents the most significant bit of a virtual address used by breakpoint data
address comparisons. AddrTop is:

• 55, if address tagging is used for the address. See Address tagging.

• 63, otherwise.

Note

When stage 1 translation is enabled, in AArch64 state, the virtual address size is determined by the configured input
address size for the stage 1 translation. Software can configure a smaller address width for a virtual address, see
Input address size configuration. Attempting to translate an address that is larger than the configured input address
size generates a Translation fault.

When stage 1 translation is disabled, using an address that is larger than the implemented PA size generates an
Address size fault. The implemented PA size is IMPLEMENTATION DEFINED, as described in Implemented physical
address size.

These faults have a higher priority than breakpoints.

An address comparison is successful if bits [AddrTop:2] of the current instruction virtual address are equal to
DBGBVR<n>_EL1[AddrTop:2].

Note

DBGBVR<n>_EL1 is a 64-bit register. The most significant bits of this register are sign-extension bits.
DBGBVR<n>_EL1[1:0] are RES0 and are ignored.

If EL1 is using AArch64 and EL0 is using AArch32, A32 and T32 instructions can be executed in stage 1 of an
AArch64 translation regime. In this case, the instruction addresses are zero-extended before comparison with the
breakpoint.

D2.8.5.1 Specifying the halfword-aligned address that an Address breakpoint matches
on

For Address Match breakpoints, if the implementation supports AArch32 state, a debugger must program the Byte
Address Selection field, DBGBCR<n>_EL1.BAS.

If the implementation is an AArch64-only implementation, all instructions are word-aligned and
DBGBCR<n>_EL1.BAS is RES1.

Figure D2-2 shows a summary of when Address Match breakpoints programmed with particular BAS values
generate Breakpoint exceptions. The figure contains four parts:

• A column showing the row number, on the left.

Table D2-9 Programmable BAS values

BAS Match instruction at Constraint for debuggers

0b0011 DBGBCR<n>_EL1 Use for T32 instructions.

0b1100 DBGBCR<n>_EL1 + 2 Use for T32 instructions.

0b1111 DBGBCR<n>_EL1 Use for A64 and A32 instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6167
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
• An instruction set and instruction size table.

• A location of instruction figure.

• A BAS field values table, on the right.

To use the figure, read across the rows. For example, row 7 shows that a breakpoint with DBGBCR<n>_EL1.BAS
programmed as either 0b0011 or 0b1111 generates Breakpoint exceptions for A64 instructions. A64 instructions are
always at word-aligned addresses.

Note

To breakpoint on an A64 instruction, Arm recommends that the debugger programs DBGBCR<n>_EL1.BAS as
0b1111.

In the figure:

Yes Means that the breakpoint generates a Breakpoint exception.

No Means that the breakpoint does not generate a Breakpoint exception.

UNP Means that is it CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint
exception. See Other usage constraints for Address breakpoints.

Figure D2-2 Summary of BAS field meanings for Address Match breakpoints

D2.8.5.2 Address Mismatch breakpoints

If FEAT_BWE is not implemented, then mismatch breakpoints do not generate a breakpoint match in AArch64
state.

If FEAT_BWE is implemented, then mismatch breakpoints can generate a breakpoint match in AArch64 state and
this can cause entry to Debug state.

The behavior of an address mismatch breakpoint is the same as for an address match breakpoint, except that the
result is inverted such that only addresses other than the specified address, or addresses outside of the range of
addresses, generate a breakpoint match.

Other breakpoint conditions specified by DBGBCR<n>_EL1 are not inverted.

-2 -1 +2+10 +3 +4Size

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

+5Instruction set

T32

T32

A32

Yes

UNP

UNP

Yes

UNP

Yes

0b0011

Yes

UNP

Yes

BAS[3:0]

0b1100 0b1111

No

Yes

No

No

No

UNP

Yes

UNP

Yes

Location of instruction
a

a. 0 means the word-aligned address held in the DBGBVR<n>_EL1[maxAddressSize:2]:00.

The other locations are as follows:

• -2 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) –

• -1 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) –

• ...

• ...

• +5 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) + 5).

The solid areas show the location of the instruction.

Row 1

ROW 2

ROW 3

Row 4

ROW 5

Row 6

A64 32-bit Yes YesUNPRow 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6168
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
D2.8.5.3 Programming a breakpoint range with eight or more bytes

A debugger can use the DBGBCR<n>_EL1.MASK field to program a single breakpoint with an instruction address
range if all of the following are true:

• It is a size that is:

— A power-of-two.

— A minimum of eight bytes.

— A maximum of 2GB.

• It starts at an address that is aligned to the size.

If m least significant address bits are masked, the breakpoint generates a Breakpoint exception on all of the
following:

• Address DBGBCR<n>_EL1[AddrTop:m]:000…

• Address DBGBCR<n>_EL1[AddrTop:m]:111…

• Any address between these two addresses.

For example, if the four least significant address bits are masked, Breakpoint exceptions are generated for all
addresses between DBGBCR<n>_EL1[AddrTop:4]:0000 and DBGBCR<n>_EL1[AddrTop:4]:1111, including these
addresses.

When masking address bits, a debugger must both:

• Program DBGBCR<n>_EL1.BAS to be 0b1111. See Programming dependencies of the BAS and MASK
fields.

• In DBGBVR<n>_EL1, set the masked address bits to zero. See Other usage constraints.

D2.8.6 Breakpoint context comparisons

The breakpoint type defined by DBGBCR<n>_EL1.BT determines what context comparison is required, if any.
Table D2-10 shows the BT values that require a comparison, and the match required for the comparison to be
successful.

Table D2-10 Breakpoint Context ID and VMID comparison tests

DBGBCR<n>.BT Test required for successful context comparison

0b001x • When FEAT_VHE is implemented, EL2 is using AArch64, the Effective value of HCR_EL2.E2H is 1,
and either the PE is executing at EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2,
CONTEXTIDR_EL2 must match the DBGBVR<n>_EL1. ContextID value.

• Otherwise, CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value.

0b011x CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value.

0b100x VTTBR_EL2.VMID must match the DBGBVR<n>_EL1.VMID value.

0b101x CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value and VTTBR_EL2.VMID must
match the DBGBVR<n>_EL1.VMID value.

0b110x CONTEXTIDR_EL2 must match the DBGBVR<n>_EL1.ContextID2 value, DBGBVR<n>_EL1[63:32].

0b111x Both:

• CONTEXTIDR_EL1 must match the DBGBVR<n>_EL1.ContextID value, DBGBVR<n>_EL1[31:0].

• CONTEXTIDR_EL2 must match the DBGBVR<n>_EL1.ContextID2 value,
DBGBVR<n>_EL1[63:32].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6169
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
No Context ID or VMID comparison is required for other valid DBGBCR<n>.BT values.

Context breakpoints do not generate Breakpoint exceptions when any of:

• The comparison uses the value of CONTEXTIDR_EL1 and any of:

— The PE is executing at EL3 using AArch64.

— The PE is executing at EL2.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is enabled in the current Security state, and
HCR_EL2.{E2H, TGE} == {1, 1}.

• The comparison uses the value of CONTEXTIDR_EL2 and any of:

— Neither FEAT_VHE is implemented, nor FEAT_Debugv8p2 is implemented.

— The PE is in Secure state, and either FEAT_SEL2 is not implemented, or Secure EL2 is disabled.

— The PE is executing at EL3.

— EL2 is using AArch32.

— EL2 is not implemented.

• The comparison uses the current VMID value and any of:

— EL2 is not implemented.

— The PE is in Secure state, and either FEAT_SEL2 is not implemented, or Secure EL2 is disabled.

— The PE is executing at EL2.

— The PE is executing at EL3.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is enabled in the current Security state, and
HCR_EL2.{E2H, TGE} == {1, 1}.

Note

• For all Context breakpoints, DBGBCR<n>_EL1.BAS is RES1 and is ignored.

• For Context matching breakpoints with linking enabled, DBGBCR<n>_EL1.{LBNX, LBN, SSCE, SSC,
HMC, PMC} are RES0 and are ignored.

D2.8.7 Breakpoint usage constraints

See the following sections:

• Reserved DBGBCR<n>_EL1.{BT2, BT} values.

• Reserved DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} values.

• Programming dependencies of the BAS and MASK fields.

• Reserved DBGBCR<n>_EL1.BAS values.

• Usage constraints on DBGBCR<n>_EL1.{LBNX, LBN} values.

• Reserved DBGWCR<n>_EL1.MASK values.

• Other usage constraints for Address breakpoints.

• Other usage constraints for Context breakpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6170
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
D2.8.7.1 Reserved DBGBCR<n>_EL1.{BT2, BT} values

Table D2-11 shows when particular DBGBCR<n>_EL1.BT values are reserved.

If FEAT_ABLE is implemented and BT2 is 1, all values of BT other than 0b0x0x are reserved.

If a breakpoint is programmed with one of these reserved {BT2, BT} values:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a {BT2, BT} value that is not reserved, other than for a direct or external read of
DBGBCR<n>_EL1.

• For a direct or external read of DBGBCR<n>_EL1, if the reserved {BT2, BT} value:

— Has no function for any execution conditions, the value read back is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the {BT2, BT} value so that the
breakpoint functions for the other execution conditions.

The behavior of breakpoints with reserved {BT2, BT} values might change in future revisions of the architecture.
For this reason, software must not rely on the behavior described here.

D2.8.7.2 Reserved DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} values

Table D2-12 shows when particular combinations of DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} are reserved
in stage 1 of an AArch64 translation regime.

Table D2-11 Reserved BT values when the Effective value of DBGBCR<n>_EL1.BT2 is 0

BT value Breakpoint type Reserved

0b001x Context ID Match If the breakpoint is not context-aware.

0b010x Address Mismatch If FEAT_BWE is not implemented and one of the following:

• In stage 1 of an AArch64 translation regime.

• EDSCR.HDE is 1 and halting is allowed.

0b011x CONTEXTIDR_EL1 Match If FEAT_VHE is not implemented, or the breakpoint is not context-aware.

0b100x VMID Match If EL2 is not implemented, or the breakpoint is not context-aware.

0b101x Context ID and VMID Match If EL2 is not implemented, or the breakpoint is not context-aware.

0b110x CONTEXTIDR_EL2 Match If FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, or if
the breakpoint is not context-aware.

0b111x Full Context ID Match

Table D2-12 Reserved HMC, SSCE, SSC, and PMC combinations

HMC, SSCE, SSC, and PMC combination Reserved

All combinations with SSCE set to 1. When FEAT_RME is not implemented.

All combinations with HMC set to 0, SSCE set to 0, and SSC set to 0b01 or 0b10. When Secure state is not implemented.

All combinations with SSCE set to 0 and SSC set to 0b01 or 0b10, except for the
combination with HMC set to 1, SSCE set to 0, SSC set to 0b01, and PMC set to
0b00.

When EL3 is not implemented and EL2 is
implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6171
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
For all breakpoints except Context matching breakpoints with linking enabled, if a breakpoint is programmed with
one of these reserved combinations:

• If the reserved combination has a function for other execution conditions:

— The breakpoint must behave as if it is disabled.

— A direct or external read of DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} returns the values written.
This means that software can save and restore the combination so that the breakpoint can function for
the other execution conditions.

• If the reserved combination does not have a function for other execution conditions:

— It must behave either as if it is programmed with a combination that is not reserved or as if it is
disabled.

— A direct or external read of DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} returns UNKNOWN values.

If the breakpoint is a Context matching breakpoint with linking enabled, then:

• The values of HMC, SSCE, SSC, and PMC are ignored.

• A direct or external read of DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} returns UNKNOWN values

The behavior of breakpoints with reserved combinations of HMC, SSCE, SSC, and PMC might change in future
revisions of the architecture. For this reason, software must not rely on the behavior described here.

D2.8.7.3 Programming dependencies of the BAS and MASK fields

When programming a breakpoint, a debugger must use either:

• The MASK field, to program the breakpoint with an address range that can be eight bytes to 2GB.

• The BAS field. Table D2-9 gives the valid values of the DBGBCR<n>_EL1.BAS field.

If the debugger uses the:

• MASK field, it must program BAS to be 0b1111, so that all bytes in the doubleword or word are selected.

• BAS field, it must program MASK to be 0b00000, so that the MASK field does not indicate any address
ranges.

If any of the following apply, then it is CONSTRAINED UNPREDICTABLE whether or not a Breakpoint exception is
generated:

• DBGBCR<n>_EL1.MASK is programmed with a reserved value.

Any combination with SSCE set to 0 where HMC or SSC is nonzero, except for the
combination with HMC set to 1, SSCE set to 0, SSC set to 0b01, and PMC set to
0b00, or combinations when SSC is set to 0b11.

When both of EL2 and EL3 are not
implemented.

The combination with HMC set to 1, SSCE set to 0, SSC set to 0b11, and PMC set
to 0b00.

When EL2 is not implemented.

The combinations with SSC set to 0b11 except the combination with HMC set to 1,
SSCE set to 0, SSC set to 0b11 and PMC set to 0b00.

When Secure EL2 is not implemented.

The combination with HMC set to 1, SSCE set to 0, SSC set to 0b01 and PMC set to
0b00.

When Secure EL2 is not implemented.

Combinations not included in Table D2-8. Always.

Table D2-12 Reserved HMC, SSCE, SSC, and PMC combinations (continued)

HMC, SSCE, SSC, and PMC combination Reserved
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6172
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
• DBGBCR<n>_EL1.MASK is a valid nonzero value and any of the following apply:

— DBGBCR<n>_EL1.BAS is not 0b1111, and AArch32 is supported at EL0.

— DBGBVR<n>_EL1[(MASK-1):0] is nonzero.

— DBGBCR<n>_EL1.{BT2, BT} is {0b0, 0b0x1x} or {0b0, 0b1xxx}, indicating a Context matching
breakpoint.

• DBGBCR<n>_EL1.MASK is zero, DBGBCR<n>_EL1.{BT2, BT} is {0b0, 0b010x}, indicating an address
mismatch breakpoint without linking enabled, and AArch32 is not supported at EL1.

Breakpoint <n> does not match in AArch64 state. A stand-alone mismatch of a single address is not
supported in AArch64 state.

When any of these conditions apply, the PE behaves as if one of the following applies:

• DBGBCR<n>_EL1.MASK has been programmed with a defined value, which might be 0b00000 (no mask),
other than for a direct read of DBGBCR<n>_EL1.

• The breakpoint is disabled.

The UNPREDICTABLE behavior is constrained to the generation of Breakpoint and Watchpoint exceptions and debug
events.

D2.8.7.4 Reserved DBGBCR<n>_EL1.BAS values

In an AArch64-only implementation, DBGBCR<n>_EL1.BAS for all breakpoints is RES1.

Otherwise:

For all Context breakpoints

DBGBCR<n>_EL1.BAS is RES1 and is ignored.

For all Address breakpoints

Table D2-9 gives the valid values of the DBGBCR<n>_EL1.BAS field.

If a breakpoint is programmed with a reserved BAS value:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BAS value that is not reserved, other than for a direct or external read of
DBGBCR<n>_EL1.

• A direct or external read of DBGBCR<n>_EL1.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

D2.8.7.5 Usage constraints on DBGBCR<n>_EL1.{LBNX, LBN} values

For Linked Address breakpoints

A Linked Address breakpoint must link to a context-aware breakpoint. For a Linked Address
breakpoint, any DBGBCR<n>_EL1.{LBNX, LBN} value that is not for a context-aware breakpoint
is reserved.

If a Linked Address breakpoint links to a breakpoint that is not implemented, or that is not
context-aware, then reads of DBGBCR<n>_EL1.{LBNX, LBN} return an UNKNOWN value and
behavior is CONSTRAINED UNPREDICTABLE. The Linked Address breakpoint behaves as if it is
either:

• Disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6173
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
• Linked to an UNKNOWN context-aware breakpoint.

If a Linked Address breakpoint links to a breakpoint that is implemented and that is context-aware,
but that is either not enabled or not programmed as a Context matching breakpoint with linking
enabled, it behaves as if it is disabled.

For all other breakpoint types

DBGBCR<n>_EL1.{LBNX, LBN} reads UNKNOWN and its value is ignored.

D2.8.7.6 Other usage constraints for Address breakpoints

For all Address breakpoints

• DBGBVR<n>_EL1[1:0] are RES0 and are ignored.

• If the implementation supports AArch32 state:

— For 32-bit instructions, if a breakpoint matches on the address of the second halfword
but not the address of the first halfword, it is CONSTRAINED UNPREDICTABLE whether
the breakpoint generates a Breakpoint exception.

— If DBGBCR<n>.BAS is 0b1111, it is CONSTRAINED UNPREDICTABLE whether the
breakpoint generates a Breakpoint exception for a T32 instruction starting at address
((DBGBVR<n>[48:2]:00) + 2). For T32 instructions, Arm recommends that the
debugger programs the BAS field with either 0b0011 or 0b1100.

D2.8.7.7 Other usage constraints for Context breakpoints

For all Context breakpoints

Any bits of DBGBVR<n>_EL1 that are not used to specify Context ID or VMID are RES0 and are
ignored.

For breakpoints with linking enabled

If no Linked Address breakpoints or Linked watchpoints link to a breakpoint with linking enabled,
the breakpoint with linking enabled does not generate any Breakpoint exceptions.

D2.8.8 Preferred return address

The preferred return address of a Breakpoint exception is the address of the instruction that was not executed
because the PE took the Breakpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

D2.8.9 Pseudocode description of Breakpoint exceptions taken from an AArch64 stage 1 translation
regime

AArch64.BreakpointValueMatch() tests the value in DBGBVR<n>_EL1.

AArch64.StateMatch() tests the values in DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} and, if the breakpoint links
to a breakpoint with linking enabled, also tests the Context matching breakpoint.

AArch64.BreakpointMatch() tests a committed instruction against all breakpoints.

AArch64.CheckBreakpoint() generates a Breakpoint exception if all of the following are true:

• MDSCR_EL1.MDE is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level and Security state.

• All of the conditions required for Breakpoint exception generation are met. See About Breakpoint exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6174
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.8 Breakpoint exceptions
Note

AArch64.CheckBreakpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

AArch64.BreakpointException() is called to generate a Breakpoint exception.

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6175
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
D2.9 Watchpoint exceptions

This section describes Watchpoint exceptions in stage 1 of an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing one of the following:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

• At EL0 using AArch32 when FEAT_VHE is implemented, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H,TGE} == {1,1}.

This section contains the following subsections:

• About Watchpoint exceptions.

• Watchpoint types and linking of watchpoints.

• Execution conditions for which a watchpoint generates Watchpoint exceptions.

• Watchpoint data address comparisons.

• Determining the memory location that caused a Watchpoint exception.

• Watchpoint behavior for certain instruction classes.

• Watchpoint behavior on accesses by SVE and SME instructions.

• Watchpoint usage constraints.

• Exception syndrome information and preferred return address.

• Pseudocode description of Watchpoint exceptions taken from AArch64 state.

D2.9.1 About Watchpoint exceptions

A watchpoint is an event that results from the execution of an instruction, based on a data address. Watchpoints are
also known as data breakpoints.

A watchpoint operates as follows:

1. A debugger programs the watchpoint with a data address, or a data address range.

2. The watchpoint generates a Watchpoint debug event on an access to the address, or any address in the address
range.

A watchpoint never generates a Watchpoint debug event on an instruction fetch.

An implementation can include between 2-16 watchpoints. In an implementation, ID_AA64DFR0_EL1.WRPs and
EDDFR1.WRPs show how many are implemented.

If AArch32 is supported at EL1 or FEAT_Debugv8p9 is not implemented, then the PE does not implement more
than 16 watchpoints.

To use an implemented watchpoint, a debugger programs the following registers for the watchpoint:

• The Watchpoint Control Register, DBGWCR<n>_EL1. This contains controls for the watchpoint, for
example an enable control.

• The Watchpoint Value Register, DBGWVR<n>_EL1. This holds the data virtual address used for watchpoint
matching.

These registers are numbered, so that:

• DBGWCR0_EL1 and DBGWVR0_EL1 are for watchpoint number zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6176
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
• DBGWCR1_EL1 and DBGWVR1_EL1 are for watchpoint number one.

• …

• DBGWCR<n-1>_EL1 and DBGWVR<n-1>_EL1 are for watchpoint number (n-1).

A watchpoint can:

• Be programmed to generate Watchpoint debug events on read accesses only, on write accesses only, or on
both types of access.

• Link to a Context matching breakpoint with linking enabled, so that a Watchpoint debug event is generated
only if the PE is in a particular context when the address match occurs.

• If FEAT_ABLE is implemented, link to an Address matching breakpoint with linking enabled so that a
Watchpoint debug event is generated only if the address of the instruction that made the matching access was
executed from a specific address or in range of addressed.

The Address matching breakpoint with linking enabled can also be linked to a Context matching breakpoint
with linking enabled.

A single watchpoint can be programmed to match on one or more address bytes. A watchpoint generates a
Watchpoint debug event on an access to any byte that it is watching. The number of bytes a watchpoint is watching
is either:

• One to eight bytes, provided that these bytes are contiguous and that they are all in the same naturally-aligned
doubleword. A debugger uses the Byte Address Select field, DBGWCR<n>_EL1.BAS, to select the bytes.
See Programming a watchpoint range with eight bytes or fewer.

• Eight bytes to 2GB, provided that both of the following are true:

— The number of bytes is a power-of-two.

— The range starts at an address that is aligned to the range size.

A debugger uses the MASK field, DBGWCR<n>_EL1.MASK, to program a watchpoint with eight bytes to
2GB. See Programming a watchpoint range with eight or more bytes.

A debugger must use either the BAS field or the MASK field. If it uses both, whether the watchpoint generates
Watchpoint debug events is CONSTRAINED UNPREDICTABLE. See Programming dependencies of the BAS and MASK
fields.

For each memory access, all of the watchpoints are tested. When a watchpoint is tested, it generates a Watchpoint
debug event if all of the following are true:

• The watchpoint is enabled. That is, the watchpoint enable control for it, DBGWCR<n>_EL1.E, is 1.

• The conditions specified in the DBGWCR<n>_EL1 are met.

• The comparison with the address held in the DBGWVR<n>_EL1 is successful.

• If the watchpoint links to a breakpoint with linking enabled, the comparison or comparisons made by the
breakpoint also are successful. See Figure D2-1. See also Rules for linking watchpoints.

• The instruction that initiates the memory access is committed for execution.

• The instruction that initiates the memory access passes its Condition code check.

• If the access is due to a System register access instruction executed at EL1 and transformed into a memory
access by the mechanism described in Enhanced support for nested virtualization and one of the following
is true:

— EDSCR.HDE is set to 1 and halting is allowed.

— Debug exceptions are enabled at EL2.

If halting is allowed and EDSCR.HDE is 1, Watchpoint debug events cause entry to Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6177
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
Otherwise, if debug exceptions are:

• Enabled, Watchpoint debug events generate Watchpoint exceptions.

• Disabled, Watchpoint debug events are ignored.

Note

The remainder of this Watchpoint Exceptions section, including all subsections, describes watchpoints as generating
Watchpoint exceptions.

However, unless specified otherwise, the behavior described also applies if watchpoints are causing entry to Debug
state.

The debug exception enable controls describes the enable controls for Watchpoint debug events.

D2.9.2 Accessing watchpoint System registers

RMLRFY The rules in Accessing breakpoint System registers that apply to MDSELR_EL1.BANK when accessing breakpoint
registers also apply to watchpoint registers. See RMLTYN, RJGQGB, and IHMNFZ.

RYKKCH The MRS and MSR System register names for accessing breakpoint control registers DBGWCR<n>_EL1 and
breakpoint value registers DBGWVR<n>_EL1 are mapped to physical registers as follows:

• The register names DBGWCR0_EL1 through DBGWCR15_EL1 are mapped to the physical registers
DBGWCR<BANK×16+0>_EL1 through DBGWCR<BANK×16+15>_EL1.

• The register names DBGWVR0_EL1 through DBGWVR15_EL1 are mapped to the physical registers
DBGWVR<BANK×16+0>_EL1 through DBGWVR<BANK×16+15>_EL1.

IXMTTT MSR and MRS instructions using the watchpoint System register names in RYKKCH make indirect reads of
MDSELR_EL1.BANK. This means that direct writes to MDSELR_EL1.BANK must be explicitly synchronized
before a direct read or direct write using any of these System register names.

D2.9.3 Watchpoint types and linking of watchpoints

When a debugger programs a watchpoint, it must program that watchpoint so that it is either:

• Used in isolation. In this case, the watchpoint is called an Unlinked watchpoint.

• Linked to a breakpoint with linking enabled. In this case, the watchpoint is called a Linked watchpoint.

When a Linked watchpoint links to an Address matching breakpoint with linking enabled, the Linked watchpoint
generates a Watchpoint exception only if the address of the instruction that made the matching access was executed
from a specific address or in range of addresses.

When a Linked watchpoint links to a Context matching breakpoint with linking enabled, or a Linked watchpoint
links to a Linked Address matching breakpoint with linking enabled that links to a Context matching breakpoint
with linking enabled, the Linked watchpoint generates a Watchpoint exception only if the PE is in a particular
context when the data address match occurs.

Example D2-3 Linking a watchpoint and an Address matching breakpoint

For example, a debugger might:

1. Program watchpoint number one with a data address.

2. Program breakpoint number five to be a Linked VMID Match breakpoint.

3. Link the watchpoint and the breakpoint together. A Watchpoint exception is generated only if both the data
address matches and the VMID matches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6178
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
D2.9.3.1 Rules for linking watchpoints

The rules for watchpoint linking are as follows:

• Only Linked watchpoints can be linked.

• A Linked watchpoint can be linked to any breakpoint with linking enabled.

• A Linked watchpoint can link to any type of breakpoint with linking enabled. The Linked Breakpoint Number
field, DBGWCR<n>_EL1.{LBNX, LBN}, for the Linked watchpoint specifies the particular breakpoint that
the Linked watchpoint links to, and:

— DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} for the Linked watchpoint defines the execution
conditions that the watchpoint generates Watchpoint exceptions for. See Execution conditions for
which a watchpoint generates Watchpoint exceptions.

— DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} for the breakpoint with linking enabled are ignored.

• A Linked watchpoint cannot link to another watchpoint. The {LBNX, LBN} fields always specify a
breakpoint.

• If any of the following apply, then the behavior of the Linked watchpoint is CONSTRAINED UNPREDICTABLE:

— The Linked watchpoint is linked to a breakpoint that does not support linking.

— FEAT_ABLE is not implemented and the Linked watchpoint is linked to a breakpoint that is not
context aware.

— FEAT_ABLE is not implemented and the Linked watchpoint is linked to an Address matching
breakpoint.

— The Linked watchpoint is linked to an unimplemented breakpoint.

— The Linked watchpoint or Linked breakpoint is linked to a breakpoint that does not have linking
enabled.

See Watchpoint usage constraints.

• If the access is due to a System register access instruction executed at EL1 and transformed into a memory
access by the mechanism described in Enhanced support for nested virtualization, and the watchpoint is
linked to a Context matching breakpoint with linking enabled, or a Linked Address matching breakpoint with
linking enabled that is linked to a Context matching breakpoint with linking enabled, then it is CONSTRAINED
UNPREDICTABLE whether there is a watchpoint match.

• Multiple Linked watchpoints can link to a single breakpoint with linking enabled.

Note
Multiple Address breakpoints can also link to a single breakpoint with linking enabled. Breakpoint exceptions
describes breakpoints.

• If an instruction address generates a breakpoint match for more than one enabled Address matching
breakpoint with linking enabled, then it is CONSTRAINED UNPREDICTABLE whether Watchpoint exceptions
and debug events are generated.

Figure D2-1 shows an example of permitted watchpoint linking.

D2.9.4 Execution conditions for which a watchpoint generates Watchpoint exceptions

Each watchpoint can be programmed so that it generates Watchpoint exceptions only for certain execution
conditions. For example, a watchpoint might be programmed to generate Watchpoint exceptions only for
Non-secure EL2 accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6179
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} define the execution conditions a watchpoint generates Watchpoint
exceptions for, as follows:

Security State Control Extension, SSCE, and Security State Control, SSC

SSCE and SSC control whether the watchpoint generates Watchpoint exceptions in only one
Security state or in multiple Security states.

Note
This is determined by the Security state of the PE, not from the physical address space attribute
returned by the translation of the virtual address on which the watchpoint is set.

Higher Mode Control, HMC, and Privileged Access Control, PAC

HMC and PAC together control which Exception levels and privilege levels the watchpoint
generates Watchpoint exceptions in.

The PAC control relates to the privilege of the memory access, not to the Exception level at which
the access was made:

• Load unprivileged or Store unprivileged instructions executed at EL1, or executed at EL2
when HCR_EL2.E2H is 1, are treated as unprivileged EL0 accesses.

• System register accesses executed at EL1 and transformed into a memory access by the
mechanism described in Enhanced support for nested virtualization are treated as EL2
accesses.

Example D2-4 PAC condition for generating a Watchpoint exception

This means that, if the PE executes a Load unprivileged or Store unprivileged instruction at EL1, the resulting data
access triggers a watchpoint only if both:

• PAC is programmed to a value that generates watchpoints on EL0 accesses.

• All other conditions for generating the watchpoint are met.

Example A64 Load unprivileged and Store unprivileged instructions are LDTR and STTR.

Table D2-13 shows the valid combinations of HMC, SSCE, SSC, and PAC, and for each combination shows which
Exception levels watchpoints generate Watchpoint exceptions in.

In the table:

NS Non-secure state.

S Secure state.

RL In implementations that include FEAT_RME, Realm state.

RT In implementations that include FEAT_RME, Root state.

Y or - Means that a watchpoint programmed with the values of HMC, SSCE, SSC, and PAC shown in that
row:

Y Can generate Watchpoint exceptions in that Exception level and Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6180
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
- Cannot generate Watchpoint exceptions in that Exception level and Security state.

Table D2-13 Summary of watchpoint HMC, SSCE, SSC, and PAC encodings

HMC SSCE SSC PAC Security states EL3a EL2 EL1 EL0

0 0 00 01 RL, S, NS - - Y -

0 0 00 10 - - - Y

0 0 00 11 - - Y Y

0 0 01 01 NS - - Y -

0 0 01 10 - - - Y

0 0 01 11 - - Y Y

0 0 10 01 S - - Y -

0 0 10 10 - - - Y

0 0 10 11 - - Y Y

0 0 11 00 S - Y - -

0 0 11 01 - Y Y -

0 0 11 11 - Y Y Y

0 1 01 01 RL - - Y -

0 1 01 10 - - - Y

0 1 01 11 - - Y Y

1 0 00 01 RT, RL, S, NS Y Y Y -

1 0 00 11 Y Y Y Y

1 0 01 00 NS - Y - -

1 0 01 01 - Y Y -

1 0 01 11 - Y Y Y

1 0 10 00 RT or Sb Y - - -

1 0 10 01 RT, S Y Y Y -

1 0 10 11 Y Y Y Y

1 0 11 00 RL, S, NS - Y - -

1 0 11 01 - Y Y -

1 0 11 11 - Y Y Y

1 1 01 00 RL - Y - -

1 1 01 01 - Y Y -

1 1 01 11 - Y Y Y
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6181
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
All combinations of HMC, SSCE, SSC, and PAC that Table D2-13 does not show are reserved. A combination in
Table D2-13 might be reserved if an Exception level or Security state is not implemented. For information about
which combinations of HMC, SSCE, SSC and PAC are reserved if an Exception level or Security state are not
implemented or enabled, see Reserved DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} values.

a. Debug exceptions are not generated at EL3 using AArch64. This means that these
combinations of HMC, SSCE, SSC, and PAC are relevant only if watchpoints cause entry
to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSCE, SSC, and
PMC that generate Watchpoint exceptions at EL3 using AArch64.

b. If FEAT_RME is implemented, this combination specifies Root state. Otherwise, Secure
state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6182
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
D2.9.5 Watchpoint data address comparisons

In this subsection, the term AddrTop represents the most significant bit of a virtual address used by watchpoint data
address comparisons. AddrTop is:

• 55, if address tagging is used for the address. See Address tagging.

• 63, otherwise.

Note

When stage 1 translation is enabled, in AArch64 state, the virtual address size is determined by the configured input
address size for the stage 1 translation. Software can configure a smaller address width for a virtual address. See
Input address size configuration. Attempting to translate an address that is larger than the configured input address
size generates a Translation fault.

When stage 1 translation is disabled, using an address that is larger than the implemented PA size generates an
Address size fault. The implemented PA size is IMPLEMENTATION DEFINED, as described in Implemented physical
address size.

These faults have a higher priority than watchpoints.

An address comparison is successful if bits [AddrTop:2] of the current data address are equal to
DBGWVR<n>_EL1[AddrTop:2], taking into account all of the following:

• The size of the access. See Size of the data access.

If EL1 is using AArch64 and EL0 is using AArch32, AArch32 instructions can be executed in stage 1 of an
AArch64 translation regime. In this case, data addresses are zero-extended before comparison with the
watchpoint.

• The bytes selected by DBGWVR<n>_EL1.BAS. See Programming a watchpoint range with eight bytes or
fewer.

• Any address ranges indicated by DBGWVR<n>_EL1.MASK. See Programming a watchpoint range with
eight or more bytes.

Note

• DBGWVR<n>_EL1 is a 64-bit register. The most significant bits of this register are sign-extension bits.

• DBGWVR<n>_EL1[1:0] are RES0 and are ignored.

D2.9.5.1 Size of the data access

Because watchpoints can be programmed to generate Watchpoint exceptions on individual bytes, the size of each
data access must be taken into account. See Example D2-5.

Example D2-5

1. A debugger programs a watchpoint to generate Watchpoint exceptions only when the byte at address 0x1009
is accessed.

2. The PE accesses the unaligned doubleword starting at address 0x1003.

In this scenario, the watchpoint must generate a Watchpoint exception.

The size of data accesses initiated by DC ZVA instructions is the DC ZVA block size that DCZID_EL0.BS defines.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6183
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
The size of data accesses initiated by DC IVAC instructions is an IMPLEMENTATION DEFINED size that is both:

• From the inclusive range between:

— The size that CTR_EL0.DminLine defines.

— 2KB.

• A power-of-two.

For both of these instructions:

• The lowest address accessed by the instruction is the address supplied to the instruction, rounded down to the
nearest multiple of the access size initiated by that instruction.

• The highest address accessed is (size - 1) bytes above the lowest address accessed.

See also, Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA, and DC GZVA
instructions.

D2.9.5.2 Programming a watchpoint range with eight bytes or fewer

The Byte Address Select field, DBGWCR<n>_EL1.BAS, selects which bytes in the doubleword starting at the
address contained in the DBGWVR<n>_EL1 the watchpoint generates Watchpoint exceptions for.

If the address programmed into the DBGWVR<n>_EL1 is:

• Doubleword-aligned:

— All eight bits of DBGWCR<n>_EL1.BAS are used, and the descriptions given in Table D2-14 apply.

• Word-aligned but not doubleword-aligned:

— Only DBGWCR<n>_EL1.BAS[3:0] are used, and the descriptions given in Table D2-15 apply. In this
case, DBGWCR<n>_EL1.BAS[7:4] are RES0.

Table D2-14 Supported BAS values when the DBGWVRn_EL1 address alignment is doubleword

BAS value Description

0b00000000 Watchpoint never generates a Watchpoint exception.

BAS[0] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:000 is
accessed.

BAS[1] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:001 is
accessed.

BAS[2] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:010 is
accessed.

BAS[3] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:011 is
accessed.

BAS[4] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:100 is
accessed.

BAS[5] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:101 is
accessed.

BAS[6] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:110 is
accessed.

BAS[7] == 1 Generates a Watchpoint exception if the byte at address DBGWVR<n>_EL1[AddrTop:3]:111 is
accessed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6184
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
If the BAS field is programmed with more than one byte, the bytes that it is programmed with must be contiguous.
For watchpoint behavior when its BAS field is programmed with non-contiguous bytes, see Other usage
constraints.

When programming the BAS field with anything other than 0b11111111, a debugger must program
DBGWCR<n>_EL1.MASK to be 0b00000. See Programming dependencies of the BAS and MASK fields.

A watchpoint generates a Watchpoint exception whenever a watched byte is accessed, even if:

• The access size is smaller or larger than the address region being watched.

• The access is misaligned, and the base address of the access is not in the doubleword or word of memory
addressed by the DBGWVR<n>_EL1[AddrTop:3]. See Example D2-5.

The following are some example configurations of the BAS field:

• To program a watchpoint to generate a Watchpoint exception on the byte at address 0x1003, program:

— DBGWVR<n>_EL1 with 0x1000.

— DBGWCR<n>_EL1.BAS to be 0b00001000.

• To program a watchpoint to generate a Watchpoint exception on the bytes at addresses 0x2003, 0x2004 and
0x2005, program:

— DBGWVR<n>_EL1 with 0x2000.

— DBGWCR<n>_EL1.BAS to be 0b00111000.

• If the address programmed into the DBGWVR<n>_EL1 is doubleword-aligned:

— To generate a Watchpoint exception when any byte in the word starting at the doubleword-aligned
address is accessed, program DBGWCR<n>_EL1.BAS to be 0b00001111.

— To generate a Watchpoint exception when any byte in the word starting at address
DBGWVR<n>_EL1[31:3]:100 is accessed, program DBGWCR<n>_EL1.BAS to be 0b11110000.

Note

Arm deprecates programming a DBGWVR<n>_EL1 with an address that is not doubleword-aligned.

Table D2-15 Supported BAS values when the DBGWVRn_EL1 address alignment is word

BAS valuea Description

0b00000000 Watchpoint never generates a Watchpoint exception

BAS[0] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:00 is
accessed.

BAS[1] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:01 is
accessed.

BAS[2] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:10 is
accessed.

BAS[3] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>_EL1[AddrTop:2]:11 is
accessed.

a. DBGWCR<n>_EL1.BAS[7:4] are RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6185
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
D2.9.5.3 Programming a watchpoint range with eight or more bytes

A debugger can use the MASK field, DBGWCR<n>_EL1.MASK, to program a single watchpoint with a data
address range. The range must meet all of the following criteria:

• It is a size that is:

— A power-of-two.

— A minimum of eight bytes.

— A maximum of 2GB.

• It starts at an address that is aligned to the size.

The MASK field specifies the number of least significant data address bits that must be masked. Up to 31 least
significant bits can be masked:

MASK 0b00000 No bits are masked.

0b00001 Reserved.

0b00010 Reserved.

0b00011 Three least significant bits are masked.

0b00100 Four least significant bits are masked.

0b00101 Five least significant bits are masked.

… …

0b11111 31 least significant bits are masked.

If m least significant address bits are masked, the watchpoint generates a Watchpoint exception on all of the
following:

• Address DBGWVR<n>_EL1[AddrTop:m]:000…

• Address DBGWVR<n>_EL1[AddrTop:m]:111…

• Any address between these two addresses.

For example, if the four least significant address bits are masked, Watchpoint exceptions are generated for all
addresses between DBGWVR<n>_EL1[AddrTop:4]:0000 and DBGWVR<n>_EL1[AddrTop:4]:1111, including
these addresses.

When masking address bits, a debugger must both:

• Program DBGWCR<n>_EL1.BAS to be 0b11111111. See Programming dependencies of the BAS and MASK
fields.

• In the DBGWVR<n>_EL1, set the masked address bits to 0. For watchpoint behavior when any of the
masked address bits are not 0, see Other usage constraints.

D2.9.6 Determining the memory location that caused a Watchpoint exception

On taking a Watchpoint exception, when the PE sets ESR_ELx.FnV to 0, the PE records an address in a Fault
Address Register that the debugger can use to determine the memory location that triggered the watchpoint.

The Fault Address Register (FAR) used is either:

• FAR_EL1, if the exception is taken to EL1.

• FAR_EL2, if the exception is taken to EL2.

In cases where one instruction triggers multiple watchpoints, only one address is recorded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6186
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
On entering Debug state on a Watchpoint debug event, when FEAT_EDHSR is not implemented or the PE sets
EDHSR.FnV to 0, the PE records the address in the EDWAR.

In the following subsections. naturally aligned block of memory means:

• A power-of-two size.

• No larger than the DC ZVA block size defined by the DCZID_EL0.BS field, if ESR_ELx.FnP or EDHSR.FnP
is 0.

• No larger than the smallest implemented translation granule if ESR_ELx.FnP or EDHSR.FnP is 1.

• Contains a watchpointed address accessed by the memory access or set of contiguous memory accesses that
triggered the watchpoint, or a watchpointed address in the address range permitted by RLVLYV in Watchpoint
behavior on accesses by SVE and SME instructions.

The size of the block is IMPLEMENTATION DEFINED. There is no architectural means of discovering the size.

For more information, see the subsections that follow. These are:

• Address recorded for Watchpoint exceptions generated by Memory Copy and Memory Set instructions.

• Address recorded for Watchpoint exceptions generated by zeroing and data cache maintenance instructions.

• Address recorded for Watchpoint exceptions generated by SVE and SME instructions.

• Address recorded for Watchpoint exceptions generated by other instructions.

D2.9.6.1 Address recorded for Watchpoint exceptions generated by Memory Copy and
Memory Set instructions

RFMRLD If FEAT_MOPS is implemented, when a watchpoint is triggered by a Memory Copy or Memory Set instruction, the
address recorded in FAR_ELx or EDWAR is both:

• In the inclusive range between:

— The lowest address accessed by the instruction that triggered the watchpoint.

— The highest watchpointed address accessed by the instruction that triggered the watchpoint.

• If the watchpoint generates an entry to Debug state and FEAT_EDHSR is not implemented, within a
naturally-aligned block of memory.

• Within the current translation granule of the watchpointed address.

D2.9.6.2 Address recorded for Watchpoint exceptions generated by zeroing and data
cache maintenance instructions

RGBDMM For a watchpoint triggered by a DC ZVA, DC GVA, DC GZVA, or STZGM instruction, or a Data Cache maintenance operation,
the address recorded in FAR_ELx or EDWAR is both:

• In the inclusive range between:

— The lowest address accessed by the instruction that triggered the watchpoint.

— The highest address accessed by the instruction that triggered the watchpoint.

• Within a naturally-aligned block of memory.

Note

Despite their mnemonics, the DC ZVA, DC GVA, and DC GZVA instructions are not data cache maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6187
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
D2.9.6.3 Address recorded for Watchpoint exceptions generated by SVE and SME
instructions

RGVKYZ For a watchpoint triggered by an SVE contiguous load/store instruction or by an SME load/store instruction, the
address recorded in FAR_ELx or EDWAR is both:

• In the inclusive range between:

— The lowest address accessed by the vector instruction that triggered the watchpoint, or the lowest
rounded address as permitted by RLVLYV in Watchpoint behavior on accesses by SVE and SME
instructions.

— The highest watchpointed address accessed by the vector instruction that triggered the watchpoint, or
the highest rounded address as permitted by RLVLYV.

• If either the watchpoint generates an entry to Debug state and FEAT_EDHSR is not implemented, or
FEAT_Debugv8p2 is not implemented, then the range is further restricted such that:

— The range includes a watchpointed address.

— The range does not include any Inactive elements.

Otherwise, the range might include Inactive elements. However, other than as permitted by RLVLYV, the
watchpoint was triggered by an Active element.

• Within a naturally-aligned block of memory.

D2.9.6.4 Address recorded for Watchpoint exceptions generated by other instructions

The address recorded by other instructions must be both:

• From the inclusive range between:

— The lowest address accessed by the memory access or set of contiguous memory accesses that
triggered the watchpoint.

— The highest watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint. A watchpointed address is an address that the watchpoint is
watching.

• Within a naturally-aligned block of memory.

Example D2-6 Address recorded for a watchpoint programmed on 0x8019

A debugger programs a watchpoint to generate a Watchpoint exception on any access to the byte 0x8019.

An A32 load multiple instruction then loads nine registers starting from address 0x8004 upwards. This triggers the
watchpoint.

If the DC ZVA block size is:

• 32 bytes, the address that the PE records must be between 0x8004 and 0x8019 inclusive.

• 16 bytes, the address that the PE records must be between 0x8010 and 0x8019 inclusive.

D2.9.7 Watchpoint behavior for certain instruction classes

Under normal operating conditions, the following do not generate Watchpoint exceptions:

• Instruction cache maintenance instructions.

• Address translation instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6188
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
• TLB maintenance instructions.

• Prefetch memory instructions.

• All data cache maintenance instructions except DC IVAC.

Note

Despite their mnemonics, the DC ZVA, DC GVA, and DC GZVA instructions are not data cache maintenance instructions.

However, the debug architecture allows for IMPLEMENTATION DEFINED controls, such as those in ACTLR registers,
to enable watchpoints on an implementation defined subset of these instructions. Whether a watchpoint treats the
instruction as a load or a store, and the access size of instruction cache, address translation, and TLB operations are
implementation defined.

The access size of the IMPLEMENTATION DEFINED instruction cache, address translation, and TLB operations which
generate Watchpoint exceptions are IMPLEMENTATION DEFINED.

See also the following subsections:

• Watchpoint behavior on accesses by Store-Exclusive instructions.

• Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA, and DC GZVA
instructions.

• Watchpoint behavior on accesses by SVE and SME instructions.

• Watchpoint behavior on accesses by Allocation tag load and store instructions.

D2.9.7.1 Watchpoint behavior on accesses by Store-Exclusive instructions

If a watchpoint matches on a data access caused by a Store-Exclusive instruction, then:

• If the store fails because an Exclusives monitor does not permit it, it is IMPLEMENTATION DEFINED whether
the watchpoint generates a Watchpoint exception.

• Otherwise, the watchpoint generates a Watchpoint exception.

D2.9.7.2 Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA,
DC GVA, and DC GZVA instructions

DC ZVA, DC GVA and DC GZVA operations can generate Watchpoint exceptions. If the Point of Coherency is before any
level of cache, it is IMPLEMENTATION DEFINED whether a DC IVAC instruction can generate a Watchpoint exception.
Otherwise, DC IVAC operations can generate Watchpoint exceptions.

DC IVAC, DC ZVA, DC GZVA and DC GVA operations are treated as data stores by DBGWCR<n>_EL1.LSC.

Note

For the size of data accesses performed by the DC IVAC instruction and the DC ZVA instruction, see Watchpoint data
address comparisons. The size of all data accesses must be considered because watchpoints can be programmed to
match on individual bytes.

D2.9.7.3 Watchpoint behavior on accesses by SVE and SME instructions

RZRWTZ For SVE predicated vector load or store instructions which are not First-fault vector loads or Non-fault vector loads,
when the instruction performs a non-speculative single-copy atomic access matching a configured watchpoint due
to an Active element, a Watchpoint debug event is generated.

RGLRCD For SVE predicated non-contiguous vector load or store instructions, if the instruction performs an access due to an
Inactive element, a Watchpoint debug event is not generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6189
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
RDYGMS For SVE Non-fault vector load instructions, when the instruction performs an access, a Watchpoint debug event is
not generated.

RLKKQG For SVE Non-fault vector load instructions, when the instruction performs a non-speculative single-copy atomic
access matching a configured watchpoint due to an Active element, the access is reported in the FFR.

RTLSCX For SVE First-fault vector load instructions, when the instruction performs a non-speculative single-copy atomic
access matching a configured watchpoint due to the First active element, a Watchpoint event is generated.

RXBBLW For SVE First-fault vector load instructions, when the instruction performs a non-speculative single-copy atomic
access matching a configured watchpoint due to an Active element that is not the First active element, a Watchpoint
debug event is not generated and the access is reported in the FFR.

RCKZFP Watchpoints are not a mechanism for preventing access to memory.

IZHXGG For SVE Non-fault and First-fault vector load instructions that do not generate a Watchpoint debug event, an access
that matches a configured watchpoint can return the data and set the appropriate FFR elements to FALSE.

DTDYYR A relaxed watchpoint access is a memory access or set of contiguous memory accesses generated by any of:

• SIMD&FP load/store instruction when the PE is in Streaming SVE mode.

• SVE contiguous vector load/store instruction.

• SME load/store instruction.

RLVLYV If all the following are true for a relaxed watchpoint access, then it is CONSTRAINED UNPREDICTABLE whether or not
a watchpoint is triggered:

• The watchpoint matches a range where the lowest accessed address is rounded down to the nearest multiple
of 16 bytes and the highest accessed address is rounded up to the nearest multiple of 16 bytes minus 1.

• The watchpoint does not the match the range of the original access or set of contiguous accesses.

• Either the watchpoint generates a Watchpoint exception, or FEAT_EDHSR is implemented.

IYVSFL If a Watchpoint debug event is triggered by a match on a rounded access address range that would not have been
triggered by the original access address range, then this may report a false-positive match. Debug software must
attempt to detect and step over false-positive matches. The architecture does not permit missed, or false-negative
matches.

D2.9.7.4 Watchpoint behavior on accesses by Allocation tag load and store instructions

If FEAT_MTE is implemented, an instruction that loads or stores an Allocation Tag is considered a load or store to
each location in the associated Tag Granule for the purpose of triggering Watchpoint exceptions.

D2.9.8 Watchpoint usage constraints

See the following:

• Reserved DBGBCR<n>_EL1.{BT2, BT} values when using Watchpoints.

• Reserved DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} values.

• Usage constraints on DBGWCR<n>_EL1.{LBNX, LBN} values.

• Programming dependencies of the BAS and MASK fields.

• Reserved DBGWCR<n>_EL1.BAS values.

• Reserved DBGWCR<n>_EL1.MASK values.

• Other usage constraints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6190
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
D2.9.8.1 Reserved DBGBCR<n>_EL1.{BT2, BT} values when using Watchpoints

It is CONSTRAINED UNPREDICTABLE whether Watchpoint exceptions and debug events are generated if
DBGBCR<n>_EL1.{BT2, BT} is a reserved value. See Reserved DBGBCR<n>_EL1.{BT2, BT} values.

D2.9.8.2 Reserved DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} values

Table D2-16 shows when particular combinations of DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} are reserved.

If a watchpoint is programmed with one of these reserved combinations:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with a combination that is not reserved, other than for a direct or external read of
DBGWCR<n>_EL1.

• For a direct or external read of DBGWCR<n>_EL1, if the reserved combination:

— Has no function for any execution conditions, the value read back for each of SSCE, SSC, HMC, and
PMC is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the combination so that the
watchpoint functions for the other execution conditions.

The behavior of watchpoints with reserved combinations of SSCE, SSC, HMC, and PAC might change in future
revisions of the architecture. For this reason, software must not rely on the behavior described here.

D2.9.8.3 Usage constraints on DBGWCR<n>_EL1.{LBNX, LBN} values

For Linked Watchpoints

A Linked watchpoint must link to a context-aware breakpoint. For a Linked watchpoint, any
DBGWCR<n>_EL1.{LBNX, LBN} value that is not for a context-aware breakpoint is reserved.

Table D2-16 Reserved SSCE, SSC, HMC, and PAC combinations

HMC, SSCE, SSC, and PAC combination Reserved

All combinations with SSCE set to 1. When FEAT_RME is not implemented.

All combinations with HMC set to 0, SSCE set to 0, and SSC set to 0b01 or 0b10. When Secure state is not implemented.

All combinations with SSCE set to 0 and SSC set to 0b01 or 0b10, except for the
combination with HMC set to 1, SSCE set to 0, SSC set to 0b01, and PAC set to 0b00.

When EL3 is not implemented and EL2 is
implemented.

All combinations with SSCE set to 0 where HMC or SSC is nonzero, except for the
combination with HMC set to 1, SSCE set to 0, SSC set to 0b01, and PAC set to 0b00 or
combinations with SSC set to 0b11.

When both EL2 and EL3 are not
implemented.

The combination with HMC set to 1, SSCE set to 0, SSC set to 0b11, and PAC set to 0b00. When EL2 is not implemented.

The combinations with SSC set to 0b11 except the combination with HMC set to 1, SSCE
set to 0, SSC set to 0b11, and PAC set to 0b00.

When Secure EL2 is not implemented.

The combination with HMC set to 1, SSCE set to 0, SSC set to 0b01, and PAC set to 0b00. When Secure EL2 is not implemented.

Combinations not included in Table D2-13. Always.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6191
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
If a Linked watchpoint links to a breakpoint that is not implemented, or does not support linking,
then reads of DBGWCR<n>_EL1.{LBNX, LBN} return an UNKNOWN value and the behavior is
CONSTRAINED UNPREDICTABLE. The Linked watchpoint behaves as if it is either:

• Disabled

• Linked to an UNKNOWN breakpoint that supports linking.

If a Linked watchpoint links to one of the following implemented breakpoints, then it behaves as if
it is disabled:

• A breakpoint that is context-aware, but that is either not enabled or not programmed as a
Context matching breakpoint with linking enabled.

• A breakpoint that supports address matching with linking and is not programmed as an
Address matching breakpoint with linking enabled.

It is CONSTRAINED UNPREDICTABLE whether Watchpoint exceptions and debug events are generated
if an instruction address generates a breakpoint match for more than one enabled Address matching
breakpoint with linking enabled.

For Unlinked Watchpoints For Unlinked watchpoints, DBGWCR<n>_EL1.{LBNX, LBN} reads UNKNOWN and
its value is ignored.

D2.9.8.4 Programming dependencies of the BAS and MASK fields

When programming a watchpoint, a debugger must use either:

• The MASK field, to program the watchpoint with an address range that can be eight bytes to 2GB.

• The BAS field, to select which bytes in the doubleword or word starting at the address contained in the
DBGWVR<n>_EL1 the watchpoint must generate Watchpoint exceptions for.

If the debugger uses the:

• MASK field, it must program BAS to be 0b11111111, so that all bytes in the doubleword or word are selected.

• BAS field, it must program MASK to be 0b00000, so that the MASK field does not indicate any address
ranges.

If an enabled watchpoint has a MASK field that is nonzero and a BAS field that is not set to 0b11111111, then for
each byte in the address range, it is CONSTRAINED UNPREDICTABLE whether or not a Watchpoint exception is
generated.

D2.9.8.5 Reserved DBGWCR<n>_EL1.BAS values

The BAS field must be programmed with a value Zeros(8-n-m):Ones(n):Zeros(m), where:

• n is a nonzero positive integer less-than-or-equal-to 8.

• m is a positive integer less-than 8.

• n+m is less-than-or-equal-to 8.

All other values are reserved.

Note

If x is zero, then Zeros(x) is an empty bitstring.

If DBGWVR<n>_EL1[2] is 1, DBGWCR<n>_EL1.BAS[7:4] are RES0 and are ignored.

If a watchpoint is programmed with a reserved BAS value:

• It is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint exception for each byte
in the doubleword or word of memory addressed by the DBGWVR<n>_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6192
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
• A direct or external read of DBGWCR<n>_EL1.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

D2.9.8.6 Reserved DBGWCR<n>_EL1.MASK values

If a watchpoint is programmed with a reserved MASK value:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with an UNKNOWN value that is not reserved, that might be 0b00000, other than for a direct
or external read of DBGWCR<n>_EL1.

• A direct or external read of DBGWCR<n>_EL1.MASK returns an UNKNOWN value.

D2.9.8.7 Other usage constraints

For all watchpoints:

• DBGWVR<n>_EL1[1:0] are RES0 and are ignored.

• If DBGWCR<n>_EL1.MASK is nonzero, and any masked bits of DBGWVR<n>_EL1 are
not 0, it is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint
exception when the unmasked bits match.

• A watchpoint never generates any Watchpoint exceptions if DBGWCR<n>_EL1.LSC is
0b00.

D2.9.9 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information.

• Preferred return address.

D2.9.9.1 Exception syndrome information

On taking a Watchpoint exception, the PE records all of the following:

• Information about the exception in the Exception Syndrome Register (ESR_ELx) at the Exception level the
exception is taken to.

• When the PE sets ESR_ELx.FnV to 0, an address that the debugger can use to determine the memory location
that caused the exception. The PE records this in a Fault Address Register (FAR).

The ESR and FAR used is either:

• ESR_EL1 and FAR_EL1, if the exception is taken to EL1.

• ESR_EL2 and FAR_EL2, if the exception is taken to EL2.

See ISS encoding for an exception from a Watchpoint exception for more information.

Note

Watchpoint exceptions cannot be taken to EL3 using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6193
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
On entering Debug state on a Watchpoint debug event generated by a watchpoint match, the PE records all of the
following:

• When FEAT_EDHSR is implemented, information about the debug event in the read-only External Debug
Halt status register (EDHSR).

• When FEAT_EDHSR is not implemented or the PE sets EDHSR.FnV to 0, an address that the debugger can
use to determine the memory location that triggered the watchpoint. The PE records this in EDWAR.

When FEAT_Debugv8p9 is implemented, EDHSR contains the additional VNCR, CM, and WnR fields, that are set
on entering Debug state on a Watchpoint debug event as for a Watchpoint exception.

If an instruction generates a watchpoint match where the watchpointed data address or data address range is not
accessed by the instruction, the PE:

• Sets ESR_ELx.WPF to 1, on taking a Watchpoint exception generated by the watchpoint match.

• If FEAT_EDHSR is implemented, sets EDHSR.WPF to 1, on entering Debug state on a Watchpoint debug
event generated by the watchpoint match.

Otherwise, ESR_ELx.WPF or EDHSR.WPF is set to an IMPLEMENTATION DEFINED choice of 0 or 1.

For example, when RLVLYV in Watchpoint behavior on accesses by SVE and SME instructions applies, a relaxed
watchpoint access might generate a watchpoint match for a data address or data address range that the instruction
does not access. Arm strongly recommends that ESR_ELx.WPF or EDHSR.WPF is set to 0 for all other cases.

If a watchpoint matches an access that is due to a relaxed watchpoint access, then the PE:

• Sets ESR_ELx.FnV to an IMPLEMENTATION DEFINED value, 0 or 1, on taking a Watchpoint exception
generated by the watchpoint match.

• If FEAT_EDHSR is implemented, sets EDHSR.FnV to an IMPLEMENTATION DEFINED value, 0 or 1, on
entering Debug state on a Watchpoint debug event generated by the watchpoint match.

Otherwise, ESR_ELx.FnV or EDHSR.FnV is set to 0.

When the PE sets ESR_ELx.FnV to 0 on taking a Watchpoint exception generated by a watchpoint match:

• If the lowest watchpointed address that is higher than or equal to the address recorded in FAR_ELx might not
have been accessed by the instruction, other than as permitted by RLVLYV, the PE sets ESR_ELx.FnP to 1.

• Otherwise, the PE sets ESR_ELx.FnP to 0.

When FEAT_EDHSR is implemented and the PE sets EDHSR.FnV to 0 on entering Debug state on a Watchpoint
debug event generated by a watchpoint match:

• If the lowest watchpointed address that is higher than or equal to the address recorded in EDWAR might not
have been accessed by the instruction, other than as permitted by RLVLYV, the PE sets EDHSR.FnP to 1.

• Otherwise the PE sets EDHSR.FnP to 0.

When FEAT_Debugv8p2 is implemented and FEAT_Debugv8p9 is not implemented, the PE behavior on taking a
Watchpoint exception is as follows:

• If the PE sets ESR_ELx.FnV to 1 or ESR_ELx.FnP to 1, then the PE sets ESR_ELx.WPTV to 1.

• If the address recorded in FAR_ELx is not within a naturally-aligned block of memory as described in
Determining the memory location that caused a Watchpoint exception, then the PE sets ESR_ELx.WPTV
to 1.

• Otherwise, the PE sets ESR_ELx.WPTV to an IMPLEMENTATION DEFINED value, 0 or 1.

When FEAT_Debugv8p2 is implemented and FEAT_Debugv8p9 is not implemented, the PE behavior on entering
Debug state on a Watchpoint debug event is as follows:

• If FEAT_EDHSR is implemented and the PE sets EDHSR.FnV to 1 or EDHSR.FnP to 1, then the PE sets
EDHSR.WPTV to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6194
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.9 Watchpoint exceptions
• If the address recorded in EDWAR is not within a naturally-aligned block of memory, where the
naturally-aligned block of memory is defined by then the PE sets EDHSR.WPTV to 1.

• Otherwise, if FEAT_EDHSR is implemented, then the PE sets EDHSR.WPTV to an IMPLEMENTATION
DEFINED value, 0 or 1.

When FEAT_Debugv8p9 is implemented, on a watchpoint match the PE:

• Sets ESR_ELx.WPTV to 1 on taking a Watchpoint exception generated by the watchpoint match.

• Sets EDHSR.WPTV to 1 on entering Debug state on a Watchpoint debug event generated by the watchpoint
match.

On a watchpoint match generated by watchpoint <n>:

• If the PE sets ESR_ELx.WPTV to 1 on taking a Watchpoint exception generated by the watchpoint match,
then ESR_ELx.WPT is set to <n>.

• If FEAT_EDHSR is implemented and the PE sets EDHSR.WPTV to 1 on entering Debug state on a
Watchpoint debug event generated by the watchpoint match, then EDHSR.WPT is set to <n>.

• Otherwise, ESR_ELx.WPT or EDHSR.WPT is UNKNOWN.

When an instruction generates multiple watchpoint matches and the PE sets ESR_ELx.WPTV to 1, or
FEAT_EDHSR is implemented and the PE sets EDHSR.WPTV is 1, then it is UNPREDICTABLE which matched
watchpoint is reported in ESR_ELx.WPT or EDHSR.WPT.

D2.9.9.2 Preferred return address

The preferred return address of a Watchpoint exception is the address of the instruction that was not executed
because the PE took the Watchpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

D2.9.10 Pseudocode description of Watchpoint exceptions taken from AArch64 state

AArch64.WatchpointByteMatch() tests an individual byte accessed by an operation.

AArch64.StateMatch() tests the values in DBGWCR<n>_EL1.{HMC, SSCE, SSC, PAC}, and if the watchpoint
links to a breakpoint with linking enabled, also tests the breakpoint that the watchpoint links to.

AArch64.WatchpointMatch() tests the value in DBGWVR<n>_EL1.

AArch64.CheckWatchpoint() generates a FaultRecord that AArch64.Abort() raises a Watchpoint exception for if all of
the following are true:

• MDSCR_EL1.MDE is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions from the current Exception level and Security state.

• All of the conditions required for Watchpoint exception generation are met. See About Watchpoint
exceptions.

Note

AArch64.CheckWatchpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

AArch64.WatchpointException() is called to generate a Watchpoint exception.

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6195
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.10 Vector Catch exceptions
D2.10 Vector Catch exceptions

Vector Catch exceptions are not generated in AArch64 translation regimes.

Note

This means that they are never taken to EL1 using AArch64 and are supported only if at least EL1 using AArch32
is supported.

A debugger that is executing in EL2 using AArch64 can route Vector Catch exceptions to EL2 using AArch64. See
Routing debug exceptions.

AArch64.VectorCatchException() is called to generate a Vector Catch exception.

Vector Catch exceptions describes Vector Catch exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6196
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
D2.11 Software Step exceptions

The following subsections describe Software Step exceptions:

• About Software Step exceptions.

• Rules for setting MDSCR_EL1.SS to 1.

• The software step state machine.

• Entering the active-not-pending state.

• Behavior in the active-not-pending state.

• Entering the active-pending state.

• Behavior in the active-pending state.

• Stepping T32 IT instructions.

• Exception syndrome information and preferred return address.

• Additional considerations.

• Pseudocode description of Software Step exceptions.

D2.11.1 About Software Step exceptions

Software step is a resource that a debugger can use to make the PE single-step instructions.

For example, by using software step, debugger software executing at a higher Exception level can single-step
instructions at a lower Exception level.

Operation is as follows:

1. A debugger:

a. Enables software step by setting MDSCR_EL1.SS to 1. See The debug exception enable controls.

b. Executes an exception return instruction, to branch to the instruction to be single-stepped in the
software being debugged.

2. The PE then:

a. Executes the instruction to be single-stepped.

b. Takes a Software Step exception on the next instruction, returning control to the debugger.

However, another exception might be generated while the instruction is being stepped. This exception is either:

• A synchronous exception that is generated by the instruction being stepped.

• An asynchronous exception that is taken before or after the instruction being stepped.

The PE can take a Software Step exception only if debug exceptions are enabled from the current Exception level
and Security state. See Enabling debug exceptions from the current Exception level and Security state.

A state machine describes the behavior of software step, shown in The software step state machine.

Throughout this Software Step exceptions section, including in all subsections, ELD means the Exception level that
Software Step exceptions are targeting. Routing debug exceptions defines ELD as the debug target Exception level.

D2.11.2 Rules for setting MDSCR_EL1.SS to 1

Debugger software must be executing in an Exception level and Security state that debug exceptions are disabled
from when it sets MDSCR_EL1.SS to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6197
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
The Exception level that hosts the debugger software must be using AArch64.

D2.11.3 The software step state machine

In Figure D2-3:

• The OS Lock is unlocked and DoubleLockStatus() == FALSE.

• The PE is not in Secure state with MDCR_EL3.SDD set to 1.

Figure D2-3 Software step state machine

By a debugger setting

MDSCR_EL1.SS to 1

Inactive

MDSCR_EL1.SS == 0

MDSCR_EL1.SS == 1

Execution is in the software being debugged, at

either:

• An Exception level that is lower than ELD.

• ELD with (PSTATE.D == 0 &&

MDSCR_EL1.KDE == 1).

Inactive

PSTATE.SS=0
Execution has returned to the debugger.

Execution is in the software being debugged, at

either:

• An Exception level that is lower than ELD.

• ELD with (PSTATE.D == 0 &&

MDSCR_EL1.KDE == 1).

A Software Step exception is pending.

Execution is at either:

• An Exception level that is higher than ELD.

• ELD with (PSTATE.D == 1 ||

MDSCR_EL1.KDE == 0).

This is termed execution in a debugger or above.

a. The step is the PE either:

• Taking an exception to an Exception level that debug exceptions are disabled from.

• If execution is at ELD with MDSCR_EL1.KDE == 1, executing an instruction that sets PSTATE.D to 1.

 Software step is inactive when debug exceptions are disabled from the current Exception level, and debug exceptions are disabled from ELD when

PSTATE.D is 1.

b. The step is the PE either:

• Executing the instruction to be stepped without taking an exception.

• Taking an exception to an Exception level that debug exceptions are enabled from. The Exception level might be using AArch64 or AArch32.

c. Or, if execution is at ELD with MDSCR_EL1.KDE == 1, by software setting PSTATE.D to 0.

To make the PE single-step an instruction, the

debugger:

1. Sets SPSR_ELx.SS to 1.

2. Programs the ELR_ELx to point to the

instruction to be stepped.

3. Executes an Exception return instruction.
By an Exception return instruction

setting PSTATE.SS to 1

By an Exception return instruction

setting PSTATE.SS to 0
c

Step completed
a

By an asynchronous exception

taken to an Exception level that

debug exceptions are disabled

from

Inactive

PSTATE.SS=0

Execution in a

debugger or above

Active-not-

pending

PSTATE.SS=1

Step completed
b

Active-pending
PSTATE.SS=0

Software Step

exception

By an asynchronous exception

taken to an Exception level that

debug exceptions are enabled

from

Execution in a

debugger or above
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6198
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
For a description of when debug exceptions are enabled or disabled from an Exception level, see Enabling debug
exceptions from the current Exception level and Security state.

For more information about how a step is completed, see Behavior in the active-not-pending state.

The software step states are:

Inactive Software step is inactive. It cannot generate any Software Step exceptions or affect PE execution.
Software step is inactive whenever any of the following are true:

• MDSCR_EL1.SS is 0.

• ELD is using AArch32.

• Debug exceptions are disabled from the current Exception level or Security state.

Active-not-pending

None of the conditions mentioned in Inactive are true, therefore software step is active.

The current instruction is the instruction to be stepped.

Active-pending

None of the conditions mentioned in Inactive are true, therefore software step is active.

A Software Step exception is pending on the current instruction.

Whenever software step is active, whether the state machine is in the active-not pending state or the active-pending
state depends on PSTATE.SS. Table D2-17 shows this.

D2.11.4 Entering the active-not-pending state

Software step can only enter the active-not-pending state from the inactive state.

Software step:

• Enters the active-not-pending state when an Exception return instruction writes 1 to PSTATE.SS, by copying
from SPSR_ELx.SS when it restores PSTATE.

• Might enter the active-not-pending state on exiting Debug state when DSPSR_EL0.SS or DSPSR.SS is 1.
See Exiting Debug state.

An Exception return instruction only copies 1 from SPSR_ELx.SS to PSTATE.SS if all of the following are true:

• MDSCR_EL1.SS is 1.

• ELD is using AArch64.

• Debug exceptions are disabled from the current Exception level.

• Debug exceptions are enabled from the Exception level that the Exception return instruction targets.

Table D2-17 State machine states

ELD using:
Debug exception enable status in the
current Exception level and Security state

MDSCR_EL1.SS PSTATE.SS
State machine
state

AArch32 X X X Inactive

AArch64 Disabled X X Inactive

AArch64 Enabled 0 X Inactive

AArch64 Enabled 1 1 Active-not-pending

AArch64 Enabled 1 0 Active-pending
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6199
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
Otherwise, Exception return instructions set PSTATE.SS to 0, regardless of the value of SPSR_ELx.SS.

Table D2-18 shows this. In the table:

Lock Means the value of (OSLSR_EL1.OSLK == ’1’ || DoubleLockStatus()).

NS Means the Effective value of SCR_EL3.NS.

SDD Means the Effective value of MDCR_EL3.SDD. See Disabling debug exceptions from Secure state.

EEL2 Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this is 0.

TGE Means the value of HCR_EL2.TGE. If EL2 is not implemented, the PE behaves as if this is 0.

TDE Means the Effective value of MDCR_EL2.TDE. See Routing debug exceptions.

EL1 is using The Execution state when the ELD is EL1.

EL2 is using The Execution state when the ELD is EL2.

Table D2-18 Value an Exception return instruction writes to PSTATE.SS

MDSCR_EL1.SS Lock NS SDD EEL2 TGE TDE
EL1 is
using

EL2 is
using

Value an Exception return
instruction writes to
PSTATE.SS

0 X X X X X X X X 0

1 TRUE X X X X X X X 0

FALSE 0 1 X X X X X 0

0 0 X X AArch32 n/a 0

AArch64 n/a See
Table D2-19

1 0 0 AArch32 n/a 0

AArch64 AArch64 See
Table D2-19

1 AArch32 AArch32 0

X AArch64 See
Table D2-20

1 X n/a AArch32 0

n/a AArch64 See
Table D2-20

1 X X 0 0 AArch32 n/a 0

AArch64 AArch64 See
Table D2-19

1 AArch32 AArch32 0

X AArch64 See
Table D2-20

1 X n/a AArch32 0

n/a AArch64 See
Table D2-20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6200
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
For:

• If ELD is EL1 using AArch64, Table D2-19 shows the value an Exception return instruction writes to
PSTATE.SS.

• If ELD is EL2 using AArch64, Table D2-20 shows the value an Exception return instruction writes to
PSTATE.SS.

In both tables:

From EL Means the Exception level at which the PE executes the Exception return instruction.

Target EL Is the target Exception level of the Exception return instruction.

Note
If the Exception return instruction is an illegal exception return, the target Exception level of the
Exception return instruction is the current Exception level. See Illegal exception returns from
AArch64 state.

KDE Is MDSCR_EL1.KDE. See Enabling debug exceptions from the current Exception level and
Security state.

Table D2-19 Value an Exception return instruction writes to PSTATE.SS if ELD is EL1 using AArch64

From
EL

Target
EL

KDE PSTATE.D SPSR_ELx.D

Software step enable
status at:

Value an Exception return
instruction writes to
PSTATE.SS

From EL Target EL

EL3 EL3 X X X Disabled Disabled 0

EL2 X X X Disabled Disabled 0

EL1 0 X X Disabled Disabled 0

1 X 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL3.SS

EL0 X X X Disabled Enabled SPSR_EL3.SS

EL2 EL2 X X X Disabled Disabled 0

EL1 0 X X Disabled Disabled 0

1 X 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL2.SS

EL0 X X X Disabled Enabled SPSR_EL2.SS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6201
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
EL1 EL1 0 X X Disabled Disabled 0

1 0 X Enableda -b 0

1 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL1.SS

EL0 0 X X Disabled Enabled SPSR_EL1.SS

1 0 X Enableda Enabled 0

1 X Disabled Enabled SPSR_EL1.SS

a. Because MDSCR_EL1.SS == 1, it means that the Exception return instruction is itself being stepped.

b. Depends on SPSR_EL1.D.

Table D2-19 Value an Exception return instruction writes to PSTATE.SS if ELD is EL1 using AArch64 (continued)

From
EL

Target
EL

KDE PSTATE.D SPSR_ELx.D

Software step enable
status at:

Value an Exception return
instruction writes to
PSTATE.SS

From EL Target EL

Table D2-20 Value an Exception return instruction writes to PSTATE.SS if ELD is EL2 using AArch64

From
EL

Target
EL

KDE PSTATE.D SPSR_ELx.D

Software step enable
status at:

Value an Exception return
instruction writes to
PSTATE.SS

From EL Target EL

EL3 EL3 X X X Disabled Disabled 0

EL2 0 X X Disabled Disabled 0

1 X 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL3.SS

EL1 X X X Disabled Enabled SPSR_EL3.SS

EL0 X X X Disabled Enabled SPSR_EL3.SS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6202
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
Note

No AArch32 instruction can set PSTATE.SS to 1.

D2.11.5 Behavior in the active-not-pending state

In this state, the PE does one of the following:

• Executes the instruction to be stepped and either:

— Completes it without taking a synchronous exception.

— Takes a synchronous exception if the instruction generates one.

• Takes an asynchronous exception without executing any instructions.

• Enters Debug state because of a Halting debug event.

If the PE executes the instruction without taking any exceptions, then the PE sets PSTATE.SS to 0, meaning that
after the instruction has been executed:

• If the instruction has disabled debug by setting PSTATE.D to 1 then software step advances to the inactive
state.

• If the instruction disables software step by a direct write to a System register, for example a write to
MDSCR_EL1.KDE or MDSCR_EL1.SS, then software step might advance to the inactive state. These
writes require explicit synchronization to guarantee their effect. See Synchronization and the software step
state machine.

EL2 EL2 0 X X Disabled Disabled 0

1 0 X Enableda -b 0

1 1 Disabled Disabled 0

0 Disabled Enabled SPSR_EL2.SS

EL1 0 X X Disabled Enabled SPSR_EL2.SS

1 0 X Enableda Enabled 0

1 X Disabled Enabled SPSR_EL2.SS

EL0 0 X X Disabled Enabled SPSR_EL2.SS

1 0 X Enableda Enabled 0

1 X Disabled Enabled SPSR_EL2.SS

EL1 EL1 X X X Enableda Enabled 0

EL0 X X X Enableda Enabled 0

a. Because MDSCR_EL1.SS == 1, it means that the Exception return instruction is itself being stepped.

b. Depends on SPSR_EL2.D.

Table D2-20 Value an Exception return instruction writes to PSTATE.SS if ELD is EL2 using AArch64 (continued)

From
EL

Target
EL

KDE PSTATE.D SPSR_ELx.D

Software step enable
status at:

Value an Exception return
instruction writes to
PSTATE.SS

From EL Target EL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6203
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
• Otherwise, software step advances to the active-pending state. See Behavior in the active-pending state.

If the PE takes either a synchronous or an asynchronous exception, behavior is as described in one of the following:

• If the PE takes an exception to an Exception level that is using AArch64.

• If the PE takes an exception to an Exception level that is using AArch32.

If the PE enters Debug state because of a Halting debug event, behavior is as described in Entering Debug state and
Software Step.

D2.11.5.1 If the PE takes an exception to an Exception level that is using AArch64

As part of exception entry, the PE does all of the following:

• Sets SPSR_ELx.SS to 0 or 1, depending on the exception. See Table D2-21.

• It is UNPREDICTABLE whether SPSR_ELx.SS to 0 or 1 when an SError interrupt is taken to ELx without
executing the instruction.

• Sets PSTATE.SS to 0. This causes software step to enter either the active-pending state or the inactive state,
depending on whether debug exceptions are enabled or disabled from the Exception level that the exception
is taken to:

Enabled Software step enters the active-pending state.

Disabled Software step enters the inactive state.

In either case, on taking the exception, a step is complete.

• Sets PSTATE.D to 1.

Note

If an SMC instruction executed at Non-secure EL1 is trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
Trap exception, not a Secure Monitor Call exception, and so SPSR_ELx.SS is set to 1, not 0.

D2.11.5.2 If the PE takes an exception to an Exception level that is using AArch32

This can happen only when all of the following is true:

• EL2 is implemented and is using AArch64, and the Effective value of MDCR_EL2.TDE is 1. Because
MDCR_EL2.TDE is 1, ELD is EL2.

• The exception is taken to EL1 using AArch32.

As part of exception entry, the PE sets PSTATE.SS to 0. This causes software step to enter the active-pending state.

Table D2-21 Categorization of exceptions, for setting SPSR_ELx.SS to 0 or 1

Exception description Exceptions SPSR_ELx.SS

Exceptions whose preferred return address is for the
instruction that follows the instruction to be stepped.

Supervisor Call (SVC) exceptions.

Hypervisor Call (HVC) exceptions.

Secure Monitor Call (SMC) exceptions.

0

Exceptions whose preferred return address is the
address of the instruction to be stepped.

All other synchronous exceptions, and asynchronous
exceptions that are taken before the instruction to be
stepped.

1

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6204
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
Note

• Software step always enters the active-pending state because the exception is taken to an Exception level that
debug exceptions are enabled from, EL1. Debug exceptions are enabled from EL1 because ELD is EL2, and
debug exceptions are always enabled from Exception levels that are lower than ELD.

• AArch32 SPSRs have no SS bit.

D2.11.5.3 Summary of behavior in the active-not-pending state

Table D2-22 summarizes behavior in the active-not-pending state.

D2.11.6 Entering the active-pending state

Software step enters the active-pending state after any of the following operations, provided that both:

• MDSCR_EL1.SS is 1.

• Debug exceptions are enabled from the Exception level and Security state that execution is in after the
operation.

The operations are:

While software step is in the active-not-pending state

The PE either:

• Executing the instruction to be stepped without taking any exceptions.

• Taking an exception.

While software step is in the active-pending state

The PE takes an asynchronous exception.

Table D2-22 Summary of behavior in the active-not-pending state

Event
Value written to
PSTATE.SS

Target
Exception
level
is using:

Detailsa Value written to
SPSR_ELx.SS

Next state

No exception 0 n/a Disables Software step n/a Inactive

Otherwise n/a Active-pending

Exception 0 AArch64 Supervisor Call (SVC)

Hypervisor Call (HVC)

Secure Monitor Call
(SMC)

0 Active-pending or inactiveb

Other 1

AArch32 All 0 Active-pending

a. For the No exception rows, this column shows the effect of the event.

For the Exception rows, this column shows the exception taken.

b. Which state software step enters depends on whether debug exceptions are enabled or disabled from the target Exception level. See
Figure D2-3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6205
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
While software step is in the inactive state

The PE executes either:

• An Exception return instruction when SPSR_ELx.SS is 0.

• An instruction that enables debug by setting PSTATE.D to 0.

Note

If entry to the active-pending state is because of the PE taking an exception, it means that the exception is one that
is taken to EL1 when MDCR_EL2.TDE is 1 and EL2 is implemented and enabled in the current Security state.
Otherwise, debug exceptions are masked by PSTATE.D, therefore they would be disabled from the target Exception
level of the exception.

In addition, software step might enter the active-pending state either:

• After a direct write to a System register, for example a write to MDSCR_EL1.KDE or MDSCR_EL1.SS.
These writes require explicit synchronization to guarantee their effect. See Synchronization and the software
step state machine.

• On exiting Debug state when DSPSR_EL0.SS or DSPSR.SS is 0. See Exiting Debug state.

D2.11.7 Behavior in the active-pending state

When the PE is in the active-pending state, a Software Step exception is taken before the PE executes an instruction.

The Software Step exception has higher priority than all other types of synchronous exception. However, the
prioritization of this exception with respect to any unmasked pending asynchronous exception is not defined by the
architecture.

For more information, see the following:

• Prioritization of Synchronous exceptions taken to AArch64 state.

• Prioritization of interrupts.

• Architectural requirements for taking asynchronous exceptions.

D2.11.8 Stepping T32 IT instructions

The A-profile architecture permits a combination of an IT instruction and another 16-bit T32 instruction to comprise
one 32-bit instruction.

For the purpose of stepping an item, it is IMPLEMENTATION DEFINED whether:

• The PE considers this combination to be one instruction.

• The PE considers this combination to be two instructions.

In an implementation that supports the ITD control, which can disable some uses of the IT instruction, it is then
IMPLEMENTATION DEFINED whether this behavior depends on the value of the applicable ITD field. For example:

• The PE might consider this combination to be one instruction, regardless of the state of the applicable ITD
field.

• The PE might consider this combination to be two instructions, regardless of the state of the applicable ITD
field.

• The PE might consider this combination to be one instruction when the applicable ITD field is 1, and two
instructions when it is 0.

The applicable ITD field is one of:

• SCTLR_EL1.ITD if execution is at EL0 using AArch32 when EL1 is using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6206
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
• SCTLR.ITD if execution is at EL0 or EL1 when EL1 is using AArch32.

• HSCTLR.ITD if execution is at Non-secure EL2 using AArch32.

D2.11.9 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information.

• Preferred return address.

D2.11.9.1 Exception syndrome information

On taking a Software Step exception, the PE records information about the exception in the Exception Syndrome
Register (ESR_ELx) at the Exception level the exception is taken to. See ISS encoding for an exception from a
Software Step exception for more information.

If no instruction was stepped because software step entered the active-pending state from the inactive state without
passing through the active-not-pending state, then ESR_ELx.{ISV, EX} are set to {0, 0}.

When an instruction has been stepped, if the stepped instruction was a conditional Load-Exclusive instruction that
failed its Condition code test, then ESR_ELx.ISV is set to 1 and ESR_ELx.EX is set to a CONSTRAINED
UNPREDICTABLE choice of 0 or 1.

When an instruction has been stepped, if the stepped instruction was an Exception return instruction or an ISB. then
ESR_ELx.ISV is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1, and ESR_ELx.EX is set to 0.

If the Effective value of MDCR_EL2.TDE == 1, EL2 is implemented and enabled in the current Security state, and
a different exception is taken before the Software Step exception, then ESR_ELx.ISV is set to a CONSTRAINED
UNPREDICTABLE choice of 0 or 1. In this case:

• If ESR_ELx.ISV is set to 1, then ESR_ELx.EX is set to the correct value for the instruction.

• If ESR_ELx.ISV is set to 0, then ESR_ELx.EX is set to zero.

Other than for the cases described above, when an instruction has been stepped:

• ESR_ELx.ISV is set to 1, to indicate that the EX bit is valid.

• The value of ESR_ELx.EX is set according to the instruction stepped. When:

— The instruction stepped was an instruction other than a Load-Exclusive instruction, an Exception
Return instruction, or an ISB, and no other exception was taken before the Software Step exception,
ESR_ELx.EX is set to 0.

— The instruction stepped was a Load-Exclusive instruction that was either not conditional or did not fail
its Condition code test, ESR_ELx.EX is set to 1.

Note

If the PE cannot determine the correct value of ESR_ELx.EX for the stepped instruction, then it sets
ESR_ELx.{ISV, EX} to {0, 0}. For example, the exception is taken before the PE decodes the stepped instruction,
or the exception means the PE has no valid stepped instruction to decode.

Note

A Load-Exclusive instruction is any one of the following:

• In the A64 instruction set, any instruction that has a mnemonic starting with either LDX or LDAX.

• In the A32 and T32 instruction sets, any instruction that has a mnemonic starting with either LDREX or LDAEX.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6207
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
Note

An implementation that always sets ISV to 0 and never sets EX is not compliant.

Table D2-23 summarizes the possible values that the PE can record in ESR_ELx.{ISV, EX}.

D2.11.9.2 Preferred return address

The preferred return of a Software Step exception is the address of the instruction that was not executed because the
PE took the Software Step exception instead.

D2.11.10 Additional considerations

This section contains the following:

• Behavior when an Exception return instruction is an illegal exception return.

• Behavior when the instruction stepped writes a misaligned PC value.

• Stepping code that uses Exclusives monitors.

• Synchronization and the software step state machine.

D2.11.10.1 Behavior when an Exception return instruction is an illegal exception return

If the conditions for entering the active-not-pending state in Entering the active-not-pending state are met, but the
PE executes an Exception return instruction that is an illegal exception return, the exception return must be taken to
the same Exception level that it was taken from. In this scenario, even though the Exception level remains the same
before and after the Exception return instruction, software step can advance from the inactive state to one of the
active states. Consider the following case:

1. MDSCR_EL1.SS is 1 and software step is inactive. The current Exception level is EL1 using AArch64, the
OS Lock and OS Double Lock are unlocked, and MDCR_EL2.TDE is 0, MDSCR_EL1.KDE is 1, and
PSTATE.D is 1.

Table D2-23 Values that the PE can record in ESR_ELx.{ISV, EX}

Description ESR_ELx.ISV ESR_ELx.EX

Syndrome data is not available because no instruction was stepped. 0 0

Syndrome data is available because an instruction was stepped. The instruction stepped
was a conditional Load-Exclusive instruction that failed its Condition code test.

1 0 or 1

Syndrome data is available because an instruction was stepped. The instruction stepped
was an Exception Return instruction or an ISB.

0 or 1 0

A different exception is taken before the Software Step exception. 0 0

1 Set to the correct value
for the instruction.

Syndrome data is available because an instruction was stepped. The instruction stepped
was an instruction other than a Load-Exclusive instruction, an Exception Return
instruction, or an ISB, and no other exception was taken before the Software Step
exception.

1 0

Syndrome data is available because an instruction was stepped. The instruction stepped
was a Load-Exclusive instruction that was either not conditional or did not fail its
Condition code test.

1 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6208
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
PSTATE.D == 1 is the reason why software step is inactive, because PSTATE.D == 1 means that debug
exceptions are disabled from the current Exception level.

2. The PE executes an Exception return instruction.

3. The intended target of the Exception return instruction is EL2. This means that the Exception return
instruction is an illegal exception return because the intended target is higher than the Exception level the
Exception return instruction it is executed at. In this case, the Exception return instruction must target EL1
instead of EL2.

If SPSR_EL1.D is 0, then on the Exception return instruction PSTATE.D becomes 0 and debug exceptions
become enabled from the current Exception level. Software step therefore advances from the inactive state
to one of the active states.

Which active state software step advances to depends on whether SPSR_ELx.SS is 1 or 0:

• If SPSR_ELx.SS is 1, software step advances to the active-not-pending state.

In this case, an Illegal Execution state exception is pending on the instruction to be stepped, and the PE takes
the Illegal Execution state exception instead of executing the instruction to be stepped.

• If SPSR_ELx.SS is 0, software step advances to the active-pending state.

In this case, a Software Step exception and an Illegal Execution state exception are both pending. The
Software Step exception has higher priority. On taking the Software Step exception, the PE sets
SPSR_ELx.IL to 1.

Note

Prioritization of Synchronous exceptions taken to AArch64 state shows the relative priorities of synchronous
exceptions.

D2.11.10.2 Behavior when the instruction stepped writes a misaligned PC value

An indirect branch that writes a misaligned PC value might generate a PC alignment fault exception at the target of
the branch. However, if the indirect branch is stepped using software step, the PE takes a Software Step exception
instead, because the Software Step exception has higher priority. Behavior on returning from the Software Step
exception depends on which Execution state the Exception level being returned to is using:

AArch64 A PC alignment fault exception is generated.

AArch32 The return from the Software Step exception forces the PC to the correct alignment, and no PC
alignment fault exception is generated.

Debugger software must therefore take care when using software step to single-step an indirect branch instruction
executed in AArch32 state, that it does not hide a PC alignment fault exception.

D2.11.10.3 Stepping code that uses Exclusives monitors

The A-profile architecture provides no mechanism for preserving the state of the Exclusives monitors when a
Load-Exclusive or a Store-Exclusive instruction is stepped.

However, for certain progressions through the software step state machine, on taking a Software Step exception, the
PE provides an indication of whether the instruction stepped was a Load-Exclusive instruction.

Debugger software can use this to detect the state of the Exclusives monitors. For example, if the PE reports that
the instruction stepped was a Load-Exclusive instruction, the debugger is aware that the next Store-Exclusive
operation will fail, because all Exclusives monitors are cleared on returning from the Software Step exception. The
debugger must then take action to ensure that the code being stepped makes forwards progress.

For more information on how the PE reports whether the instruction stepped was a Load-Exclusive instruction, see
Exception syndrome information and preferred return address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6209
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.11 Software Step exceptions
D2.11.10.4 Synchronization and the software step state machine

Any of the following can cause transitions between software step states:

• A direct write to a System register.

• A direct write to a Special-purpose register.

• A write to an external debug register.

The software step state machine indirectly reads some of these registers and so is not guaranteed to observe any new
values until after a Context Synchronization event has occurred.

Between a write to the register and the next Context Synchronization event, it is CONSTRAINED UNPREDICTABLE
whether software step uses the state of the PE before the write, or the state of the PE after the write.

After a Context Synchronization event, the state machine must use the state of the PE after the write.

Example D2-7 Example of synchronization and software step state machine changing states

1. Software changes MDSCR_EL1.SS from 0 to 1 when debug exceptions are enabled.

2. The PE executes some instructions.

3. A Context Synchronization event occurs.

During step 2, it is CONSTRAINED UNPREDICTABLE whether software step remains in the inactive state, as if
MDSCR_EL1.SS is 0, or enters the active-pending state because MDSCR_EL1.SS is 1. If it is in the:

• Inactive state, then after the Context Synchronization event, it must enter the active-pending state.

• Active-pending state, the PE might take a Software Step exception before the Context Synchronization event.

Note

A direct write to a Special-purpose register does not require explicit synchronization.

D2.11.11 Pseudocode description of Software Step exceptions

SSAdvance() advances software step from the active-not-pending state to the active-pending state, by setting
PSTATE.SS to 0. It is called on completing execution of each instruction.

CheckSoftwareStep() checks whether software step is in the active-pending state, and if it is, generates a Software
Step exception. It is called before each instruction executed, regardless of Execution state, before checking for any
other synchronous exceptions.

DebugExceptionReturnSS() returns the value to write to PSTATE.SS on an exception return or an exit from Debug
state. See Entering the active-not-pending state.

These functions are defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6210
ID032224 Non-Confidential

AArch64 Self-hosted Debug
D2.12 Synchronization and debug exceptions
D2.12 Synchronization and debug exceptions

The behavior of debug depends on all of the following:

• The state of the external debug authentication interface.

• Indirect reads of:

— External debug registers.

— System registers, including system debug registers.

— Special-purpose registers.

If a change is made to any of these, the effect of that change on debug exception generation cannot be relied on until
after a Context Synchronization event has occurred. Similarly, the effect of the change on the software step state
machine cannot be relied on until after a Context Synchronization event has occurred.

For any instructions executed between the time when the change is made and the time when the next Context
Synchronization event occurs, it is CONSTRAINED UNPREDICTABLE whether debug uses the state of the PE before the
change, or the state of the PE after the change.

Example D2-8 Example of synchronization and Breakpoint exception generation

1. Software changes MDSCR_EL1.MDE from 0 to 1.

2. An instruction is executed, that would cause a Breakpoint exception if self-hosted debug uses the state of the
PE after the change.

3. A Context Synchronization event occurs.

In this case, it is CONSTRAINED UNPREDICTABLE whether the instruction generates a Breakpoint exception.

Example D2-9 Example of synchronization and debug exceptions generation

1. Software unlocks the OS Lock.

2. The PE executes some instructions.

3. A Context Synchronization event occurs.

During the time when the PE is executing some instructions, step 2, it is CONSTRAINED UNPREDICTABLE whether
debug exceptions other than Breakpoint Instruction exceptions can be generated.

Note

Some register updates are self-synchronizing. Others require an explicit Context Synchronization event. For more
information, see:

• Accessing PSTATE fields.

• Synchronization requirements for AArch64 System registers.

• Synchronization of changes to the external debug registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D2-6211
ID032224 Non-Confidential

Chapter D3
AArch64 Self-hosted Trace

This chapter describes the AArch64 self-hosted trace:

Introductory information:

• About self-hosted trace.

• Trace sinks.

• Register controls to enable self-hosted trace.

Prohibited regions in trace:

• Controls to prohibit trace at Exception levels.

• Self-hosted trace and visibility of virtual data.

Timestamps and Synchronization:

• Self-hosted trace timestamps.

• Synchronization in self-hosted trace.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6212
ID032224 Non-Confidential

AArch64 Self-hosted Trace
D3.1 About self-hosted trace
D3.1 About self-hosted trace

A trace unit generates trace data to describe the program flow of the PE.

The trace unit can be an implementation of any of the following:

• In Armv8, a standard Arm Embedded Trace Macrocell (ETM). See Arm® Embedded Trace Macrocell
Architecture Specification, ETMv4.

• In Armv9, the Embedded Trace Extension (ETE). See Chapter D4 The Embedded Trace Extension.

• An IMPLEMENTATION DEFINED trace function.

If an Armv8.4-compliant PE implements an ETM Architecture trace unit that includes the ETM System register
interface, FEAT_TRF must be implemented.

If an Armv8.4-compliant PE implements a trace unit that is either not an ETM Architecture trace unit or does not
implement the ETM System register interface, Arm recommends that FEAT_TRF is implemented, but this is not
mandatory. This is not applicable in Armv9.

If an Armv9-compliant PE implements FEAT_ETE, FEAT_TRF must be implemented.

Self-hosted trace happens when the agent controlling the trace collection is part of the same software stack as the
software being traced. The agent controls prohibited regions. The information collected by the agent is sent to a trace
sink.

The trace unit and the PE must have the same view of the debug authentication interface. If FEAT_TRF is
implemented, ExternalNoninvasiveDebugEnabled() is always TRUE.

D3.1.1 Trace sinks

The trace unit sends the trace data to a trace sink. A system might include multiple trace sinks, and allow software
to configure which trace sink or sinks are used.

An example of an internal trace sink is an Embedded Trace Router (ETR), which allows software to define a buffer
in memory. Trace data is written to this buffer.

If FEAT_TRBE is implemented, the PE includes a Trace Buffer Unit. Trace data is written directly to memory by
the Trace Buffer Unit. See Chapter D6 The Trace Buffer Extension.

In Armv8, Arm recommends that a system that includes FEAT_TRF incorporates an ETR, and follows the system
architecture described by the CoreSight Base System Architecture (CS-BSA).

D3.1.2 Register controls to enable self-hosted trace

If FEAT_TRF is implemented, self-hosted trace is enabled if any of the following are true:

• EDSCR.TFO == 0.

• EDSCR.TFO == 1, EL3 is implemented, MDCR_EL3.STE == 1, and
ExternalSecureNoninvasiveDebugEnabled() == FALSE.

• EDSCR.TFO ==1, EL3 is not implemented, the PE executes in Secure state, and
ExternalSecureNoninvasiveDebugEnabled() == FALSE.

• EDSCR.TFO ==1, FEAT_RME is implemented, MDCR_EL3.RLTE == 1, and
ExternalRealmNoninvasiveDebugEnabled() == FALSE.

The pseudocode function SelfHostedTraceEnabled() shows these rules.

If FEAT_TRF is not implemented, SelfHostedTraceEnabled() returns FALSE.

While SelfHostedTraceEnabled() is FALSE, ExternalNoninvasiveDebugAllowed() controls whether tracing is
prohibited or allowed in each Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6213
ID032224 Non-Confidential

AArch64 Self-hosted Trace
D3.1 About self-hosted trace
The self-hosted trace extensions do not provide any mechanism to control software access to the trace unit external
debug interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6214
ID032224 Non-Confidential

AArch64 Self-hosted Trace
D3.2 Prohibited regions in self-hosted trace
D3.2 Prohibited regions in self-hosted trace

Trace is not generated in prohibited regions. The pseudocode function TraceAllowed() indicates whether tracing is
allowed in the current Security state and Exception level.

The IMPLEMENTATION DEFINED debug authentication interface can allow an external agent to disable the self-hosted
trace extension.

If SelfHostedTraceEnabled() == TRUE and EL3 is implemented, tracing is prohibited in Secure state when
MDCR_EL3.STE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited in Realm state when MDCR_EL3.RLTE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited in Root state.

D3.2.1 Controls to prohibit trace at Exception levels

If SelfHostedTraceEnabled() == TRUE, TRFCR_EL1 and TRFCR_EL2 control whether trace is prohibited at an
Exception level. While SelfHostedTraceEnabled() == FALSE, the registers TRFCR_EL1 and TRFCR_EL2 are
ignored.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL0 if one of the following is true:

• The Effective value of HCR_EL2.TGE == 0 and TRFCR_EL1.E0TRE == 0.

• The Effective value of HCR_EL2.TGE == 1 and TRFCR_EL2.E0HTRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL1 if TRFCR_EL1.E1TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL2 if TRFCR_EL2.E2TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL3 if one of the following is true:

• EL3 is using AArch64 state.

• EL3 is using AArch32 state and TRFCR.E1TRE == 0.

The pseudocode TraceAllowed() shows the above rules.

If SelfHostedTraceEnabled() == TRUE, no events are exported to the trace unit when tracing is prohibited.

If SelfHostedTraceEnabled() == FALSE, no events are exported to the trace unit when the PE is in Secure state and
counting in Secure state is prohibited.

If FEAT_ETE is not implemented, when PMCR_EL0.X==0 or PMCR.X==0, no PMU events are exported to the
trace unit.

Otherwise, PMU events are exported to the trace unit.

If SelfHostedTraceEnabled() == TRUE, Table D3-1 shows the prohibited regions by Exception level and state.

In the table:

RLTE Means the Effective value of MDCR_EL3.RLTE.

STE Means the Effective value of MDCR_EL3.STE or SDCR.STE, as applicable.

EEL2 Means the Effective value of SCR_EL3.EEL2.

TGE Means the Effective value of HCR_EL2.TGE.

P Means prohibited.

E2TRE Means prohibited if TRFCR_EL2.E2TRE == 0.

E1TRE Means prohibited if TRFCR_EL1.E1TRE == 0.

E0HTRE Means prohibited if TRFCR_EL2.E0HTRE == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6215
ID032224 Non-Confidential

AArch64 Self-hosted Trace
D3.2 Prohibited regions in self-hosted trace
E0TRE Means prohibited if TRFCR_EL1.E0TRE == 0.

n/a Not applicable.

If FEAT_TRBE is not implemented, trace is allowed unless otherwise prohibited in Table D3-1.

If FEAT_TRBE is implemented, the requirements in this section are extended. See The owning translation regime.

D3.2.2 Self-hosted trace and visibility of virtual data

A hypervisor can use TRFCR_EL2.CX to control visibility of CONTEXTIDR_EL2 and VTTBR_EL2.VMID.

If SelfHostedTraceEnabled() == TRUE and TRFCR_EL2.CX == 0, or if EL2 is not implemented:

• The values of CONTEXTIDR_EL2 and VTTBR_EL2.VMID are not traced.

• Comparisons between CONTEXTIDR_EL2 and VTTBR_EL2.VMID do not match and results of
comparison are not exposed through the comparators.

The trace unit can either prohibit trace for these values, or can record a CONTEXTIDR_EL2 or
VTTBR_EL2.VMID value of zero in the trace.

Table D3-1 Prohibited regions

Controls Tracing prohibited at

State RLTE STE EL3 using EEL2 TGE EL3 EL2 EL1 EL0

Non-secure X X X X 0 n/a E2TRE E1TRE E0TRE

X X X X 1 n/a E2TRE n/a E0HTRE

Secure X 0 X X X P P P P

X 1 AArch64 0 X P n/a E1TRE E0TRE

1 0 P E2TRE E1TRE E0TRE

1 1 P E2TRE n/a E0HTRE

n/a AArch32 X X E1TRE n/a n/a E0TRE

Realm 0 X X X X n/a P P P

1 X X X 0 n/a E2TRE E1TRE E0TRE

1 n/a E2TRE n/a E0HTRE

Root X X X X X P n/a n/a n/a
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6216
ID032224 Non-Confidential

AArch64 Self-hosted Trace
D3.3 Self-hosted trace timestamps
D3.3 Self-hosted trace timestamps

The trace timestamp is a value that represents the passage of time in real-time. It is calculated from a counter which
increments all the time, when the PE is generating trace and when the PE is in a prohibited region.

While SelfHostedTraceEnabled() == FALSE, the external trace provides the trace timestamp. If the external trace is
a standard CoreSight system, the relationship between CoreSight time and the Generic Timer counter is
IMPLEMENTATION DEFINED.

When SelfHostedTraceEnabled() == TRUE, the trace timestamp is one of the following:

• Physical time, which is defined by the physical count value returned by PhysicalCountInt().

• If FEAT_ECV is implemented, offset physical time, which is defined as the value of (PhysicalCountInt() -
CNTPOFF_EL2).

• Virtual time, which is defined as the value of (PhysicalCountInt() - CNTVOFF_EL2). The virtual offset is
always CNTVOFF_EL2, including when a read of CNTVCT_EL0 at the current Exception level would treat
the virtual offset as zero.

The fields TRFCR_EL2.TS, HTRFCR.TS, TRFCR_EL1.TS and TRFCR.TS control which counter is used for
self-hosted trace.

The timestamp used for trace is shown in Table D3-2.

In Table D3-2, if any of the following are true, the value of physical offset is zero, otherwise the value of physical
offset is the value of CNTPOFF_EL2:

• EL3 is using AArch32.

• EL2 is not implemented.

• FEAT_ECV is not implemented.

• The Effective value of SCR_EL3.{NSE, NS, RW} is {0, 1, 0}.

• CNTHCTL_EL2.ECV is 0.

• SCR_EL3.ECVEn is 0.

Note

The counter value used for the trace timestamp is not affected by the value of HCR_EL2.E2H, or whether EL2 is
enabled or disabled in the current Security state.

Table D3-2 Timestamp used for trace.

SelfHostedTraceEnabled() TRFCR_EL2.TS TRFCR_EL1.TS Timestamp traced

FALSE xx xx CoreSight time

TRUE 0b00 0b01 PhysicalCountInt() - CNTVOFF_EL2

0b00 0b10 PhysicalCountInt() - physical offset

0b00 0b11 PhysicalCountInt()

0b01 xx PhysicalCountInt() - CNTVOFF_EL2

0b10 xx PhysicalCountInt() - physical offset

0b11 xx PhysicalCountInt()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6217
ID032224 Non-Confidential

AArch64 Self-hosted Trace
D3.4 Synchronization in self-hosted trace
D3.4 Synchronization in self-hosted trace

The trace unit is an indirect observer of the System registers.

If FEAT_TRBE is implemented, the requirements in this section are extended. See Synchronization and the Trace
Buffer Unit.

While SelfHostedTraceEnabled() == TRUE, indirect reads of the trace filter control fields, TRFCR_EL1.{E1TRE,
E0TRE} and TRFCR_EL2.{E2TRE, E0HTRE} are treated as indirect reads made by the instruction being traced.
For these register fields, in addition to the standard requirements for synchronization of System register accesses,
when a trace filter control value is changed and synchronization is not explicitly specified, one of the following
occurs:

• The behavior of the PE must be consistent with the control value having the old value.

• The behavior of the PE must change the control value at a point in the simple sequential execution of the
program, so that before that point, the behavior of the PE is consistent with the control value having the old
value, and after that point the behavior of the PE is consistent with the control value having the new value.

If there are multiple direct writes to the register without explicit synchronization, the behavior is consistent with the
writes occurring in program order.

The TSB CSYNC operation is used to ensure that a trace operation, due to a trace unit generating trace for an instruction
has completed. The TSB CSYNC operation can be reordered with respect to other instructions, so must be combined
with at least one Context synchronization event to ensure the operations are executed in the required order. This
means that a direct write to TRFCR_EL1 or TRFCR_EL2 is guaranteed to be observed by the trace unit only after
a subsequent Context synchronization event. For more information, see Trace Synchronization Barrier (TSB).

While SelfHostedTraceEnabled() == FALSE, the trace unit might impose stronger synchronization requirements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D3-6218
ID032224 Non-Confidential

Chapter D4
The Embedded Trace Extension

This chapter describes the Embedded Trace Extension (ETE). It contains the following sections:

• About the Embedded Trace Extension.

• Programmers’ model.

• Trace elements.

• Instruction and exception classification.

• About the ETE trace unit.

• Resource operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6219
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
D4.1 About the Embedded Trace Extension

IJTPNL FEAT_ETE describes the operation of a trace unit. The trace unit provides details about software control flow
running on a PE which can be used to aid debugging or optimization. The trace unit provides filtering functionality
to allow the targeting of the information to specific code regions or periods of operation.

ILVKQS FEAT_ETE overlaps with the ETMv4 architecture, while also providing support for new architecture features. For
more information on the ETMv4 architecture, see the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064). FEAT_ETE does not support all the features of ETMv4. For more information on the
differences between FEAT_ETE and the ETMv4 architecture, see Differences between ETM and ETE.

D4.1.1 Attributes of tracing

IRGLSR The attributes of PE tracing are:

Trace is generated in real time.

Trace provides a means of observing the PE operation while the PE is running. For diagnostic purposes,
this is useful as some types of erroneous behavior are only solvable by observing the system during
runtime. In addition, because the PE trace can include cycle counts, trace can be used for PE profiling
purposes.

Trace has a minimal effect on functional performance of the PE.

Usually, trace has no effect on the functional performance of the PE. This attribute does depend on the
market use of the PE being debugged, however, and on the trace requirements for the PE and the trace
solution that is adopted to meet those requirements. For some markets, some impact on PE performance
is acceptable but for others, most notably in real-time systems, an impact on PE performance might be
unacceptable.

Trace is available for self-hosted analysis.

The trace from a PE or process is available for analysis by software running on the target. See
Self-hosted Trace.

Trace is deeply embedded in an SoC.

Trace provides a method of debugging software executing on PEs that are deeply embedded within an
SoC.

Trace is available for external analysis.

The trace from a PE or process can be exported off chip for analysis by external tools.

D4.1.2 Self-hosted Trace

IFNMRL Self-hosted trace is used for various purposes, including:

Non-invasive single stepping:

The trace provides a history of execution similar to that obtained by single-stepping through code.

Failure logging:

This is similar to a stack trace dump when a failure occurs.

Performance analysis:

The trace might be used with other trace sources or performance analysis units to analyze program
performance.

IVVSCJ Capturing the trace on-chip involves one of the following:

Use of system memory:

The trace output from the trace unit is directed to a buffer in main system memory through the Trace
Buffer Unit defined by FEAT_TRBE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6220
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
Use of existing shared system memory, where some main system memory is reserved for trace capture:

The trace output from the trace unit is directed to the reserved memory over the main system bus,
typically using CoreSight technology such as a CoreSight ETR.

Use of a dedicated on-chip buffer:

The trace output from the trace unit is directed to the dedicated memory, typically using CoreSight
technology such as a CoreSight ETB. A dedicated bus such as AMBA ATB is also usually implemented
between the trace unit and the dedicated memory. Use of dedicated memory means that PE tracing can
be performed with zero or minimal effect on system behavior.

AMBA ATB is defined by the AMBA® ATB Protocol Specification (ARM IHI 0032).

D4.1.3 External debug

ITQGBH External debug is commonly used in trace applications that require long-term logging of behavior. In addition,
external debug is more likely to be used when the impact of PE tracing on system performance must be minimized.

For example, external debug might be used:

• For debugging real-time systems.

• When analyzing programs that do not frequently vary their behavior.

• For debugging software, where a history of execution is required up to the point of failure.

Exporting the trace off-chip usually involves one of the following methodologies:

D4.1.3.1 Real-time continuous export

IVJBMM This can be done using either:

• A dedicated trace port capable of sustaining the bandwidth of the trace.

• An existing interface on the SoC, such as a USB or other high-speed port.

Use of a dedicated trace port means that the trace can be exported off-chip with zero or minimum effect on system
behavior. An existing interface is usually used when system constraints, such as cost or package size, mean that a
dedicated trace port is not possible. However, use of an existing interface might affect system behavior, because
both trace and normal interface traffic use the same port.

D4.1.3.2 Short-term on-chip capture with subsequent low speed export

IPXSSB This option is used when a low-cost method of exporting the trace is required, or when system constraints prevent
real-time continuous export. The trace output from the trace unit is stored temporarily on-chip, and then exported
using either:

• An existing debug port on the SoC, such as a JTAG-DP or SW-DP.

• Another existing interface on the SoC, such as USB.

Typically, the temporary storage is a circular buffer. If the buffer is full, newer trace overwrites older trace, which
means that the buffer always contains the most recent trace. In SoCs that employ Arm CoreSight technology, a
dedicated Embedded Trace Buffer (ETB) is provided for the on-chip capture of trace.

D4.1.4 Trace output

RSVDBD The trace unit outputs the trace byte stream to one or more of the following:

• The TRBE.

• One or more IMPLEMENTATION DEFINED interfaces. An AMBA ATB interface to a CoreSight subsystem is
an example of such an IMPLEMENTATION DEFINED interface.

RLGVCX If the Trace Buffer Unit is enabled, the trace byte stream is output solely to the Trace Buffer Unit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6221
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
RFJFNS If the Trace Buffer Unit is disabled, the trace byte stream is output to one or more of the other interfaces.

RHBBDV The ETE Trace Output Enable is always implemented when FEAT_ETEv1p3 is implemented and an
IMPLEMENTATION DEFINED trace output interface is present.

RRPHPJ The ETE Trace Output Enable is optional when FEAT_ETE is implemented and an IMPLEMENTATION DEFINED trace
output interface is present.

RFTSZG When the ETE Trace Output Enable is not implemented and the Trace Buffer Unit is disabled, trace is output to an
IMPLEMENTATION DEFINED trace output interface unless such output is disabled by an IMPLEMENTATION DEFINED
mechanism.

RPJYKY When the ETE Trace Output Enable is implemented and TRCEVENTCTL1R.OE is 0 or the Trace Buffer Unit is
enabled, trace is never output to any IMPLEMENTATION DEFINED trace output interface.

RMMCKW When the ETE Trace Output Enable is implemented and TRCEVENTCTL1R.OE is 1 and the Trace Buffer Unit is
disabled, trace is output to an IMPLEMENTATION DEFINED trace output interface.

Note

The addition of TRCEVENTCTL1R.OE is not backwards compatible, and requires a trace analyzer to explicitly
enable trace output to any IMPLEMENTATION DEFINED trace output interface.

ITVDMT If the trace output is captured by a single capture point dedicated to a PE, and does not mix with any other trace
streams, then the value programmed into TRCTRACEIDR.TRACEID does not need to be unique among all values
programmed into all trace units in the system. For example, the value 0x01 could be programmed into all trace units
that have their own dedicated trace capture point.

• One example of a dedicated trace capture point is the Trace Buffer Extension. When FEAT_TRBE is
implemented and enabled, the value of TRCTRACEIDR.TRACEID can be the same for all PEs that are using
the Trace Buffer Extension. For more information, see Chapter D6 The Trace Buffer Extension.

• Another example of a dedicated trace capture point is a CoreSight ETR connected through an AMBA ATB
interface and dedicated to a PE. If the AMBA ATB interface connects to the ETR without mixing with any
other trace streams, TRCTRACEIDR.TRACEID does not need to be unique when using the ETR, and when
ensuring the trace does not go to any other trace capture points.

RRWPFG If an AMBA ATB interface is implemented, the trace unit must support all of the following:

• ATB triggers, indicated by TRCIDR5.ATBTRIG.

• A 7-bit trace ID, indicated by TRCIDR5.TRACEIDSIZE.

IQJKVW Arm recommends that if the trace unit implements either an AMBA ATB interface, or an IMPLEMENTATION DEFINED
interface for trace output, then the path from the interface is not affected by a Warm reset of the PE. This ensures
tracing is possible through a Warm reset of the PE, which is useful for low level debugging scenarios.

RNLSSL While all trace outputs are disabled, the trace unit considers any generated trace data as having been output.

D4.1.5 Trace sessions

RGLTKQ At any one time, the trace unit is either enabled or disabled. For more information on the possible states of the trace
unit, see Trace unit programming states.

RXBPSQ A trace session is the period between the trace unit becoming enabled, and when the trace unit next becomes
disabled.

RMTLFH While the trace unit is enabled, the ViewInst() function is either active or inactive. While ViewInst() is active, the
trace unit generates trace for instructions that are executed, unless trace generation is inoperative.

RMFNWB Whether ViewInst() is active or inactive is independent of whether trace generation is operative or inoperative.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6222
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
RZVNKV Trace generation is operative while neither of the following are true:

• The trace unit is disabled.

• The trace unit is recovering from a trace unit buffer overflow.

RRDPSW Trace generation becomes operative when trace generation transitions from being inoperative to operative, and
occurs when any of the following occur:

• When the trace unit transitions from being disabled to being enabled.

• When the trace unit recovers from a trace unit buffer overflow.

RBDRKW Trace generation becomes inoperative when trace generation transitions from being operative to inoperative, and
occurs either:

• When the trace unit transitions from being enabled to being disabled.

• When the trace unit encounters a trace unit buffer overflow.

RLDDLP When the trace unit is unable to generate at least one trace packet which is required by the architecture, a trace unit
buffer overflow occurs.

IHDJWW A trace unit buffer overflow is typically caused when any buffering in the trace unit is unable to receive more trace
packets. Inability to receive trace packets is often caused by being unable to sustain output of trace packets to any
trace capture infrastructure.

Note

A trace unit buffer overflow is independent of the Trace Buffer Unit filling or wrapping a trace buffer in memory.
However a trace unit buffer overflow might be caused by the Trace Buffer Unit rejecting trace data due to
insufficient capacity, and the limit of any trace unit internal buffers is subsequently reached.

D4.1.6 Trace unit programming states

RWMGGP The trace unit is always in one of the states shown in Figure D4-1 and Table D4-1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6223
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
Figure D4-1 Trace unit programming states

RDXFFN When the trace unit becomes enabled, the trace unit transitions from the Idle state to the Enabling state.

RZFPHC The trace unit transitions from the Enabling state to the Running state in a finite amount of time.

RTZSRP When the trace unit becomes disabled, the trace unit transitions from the Running state to the Unstable state.

RCZHWF The trace unit transitions from the Unstable state to the Stable state in a finite amount of time.

RBPTKT While the trace unit is in the Stable and Idle states, the states of the following fields do not change other than by
direct writes or external writes:

• TRCVICTLR.SSSTATUS.

• TRCSEQSTR.STATE.

• TRCCNTVR<n>.VALUE.

• TRCSSCSR<n>.STATUS.

• TRCRSR.EVENT.

• TRCRSR.EXTIN.

• TRCRSR.TA.

Table D4-1 Trace unit programming states

State TRCSTATR.IDLE TRCSTATR.PMSTABLE Trace unit enabled

Idle 0b1 0b1 No

Enabling 0b1 UNKNOWN Yes

Running 0b0 UNKNOWN Yes

Unstable 0b0 0b0 No

Stable 0b0 0b1 No

Idle

Enabling

Unstable

Stable

Disabled

Enabled

Running
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6224
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
ITDLZL The trace unit programmers’ model state can be safely read when in any of the Stable or Idle states.

RTRZCP When the trace unit becomes fully idle and both of the following are true, the trace unit transitions from the Stable
state to the Idle state:

• The trace unit is drained of any trace.

• With the exception of the programming interfaces, all external interfaces on the trace unit are quiescent.

RRWYQD While the trace unit is not in the Idle state, direct writes and external writes to the trace unit registers are
CONSTRAINED UNPREDICTABLE, except for the following registers:

• TRCPRGCTLR.

• TRCCLAIMSET.

• TRCCLAIMCLR.

This CONSTRAINED UNPREDICTABLE behavior is one of the following:

• The write is ignored.

• The register takes an UNKNOWN value.

The trace byte stream might also be corrupted and analysis of the byte stream might be impossible.

RMDZDN While the trace unit is not in the Idle or Running states, changing the value of TRCPRGCTLR.EN is CONSTRAINED
UNPREDICTABLE.

This CONSTRAINED UNPREDICTABLE behavior is one of the following:

• The write is ignored.

• The register takes an UNKNOWN value.

IPRQRD For more information, see:

• Behavior on enabling.

• Behavior on disabling.

• Access permissions on the corresponding register page.

IFJPCN Figure D4-2 shows the procedure that must be used when programming the trace unit registers using the External
Debugger interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6225
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
Figure D4-2 External Debugger Interface programming procedure

IZGJRF Figure D4-3 shows the procedure that is used when programming the trace unit registers using the System
instruction interface.

�����

��� �	
��
�	�
����������

����	
��	�	

��
�	
��	�	
�����
���� ���������

���

������������� ������ !�
�� ��������!��������"�!���

�#��

��� �	
��
�	�
����������

����	
��	�	

��
�	
��	�	
�����
���� ���������

���

� �

�#��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6226
ID032224 Non-Confidential

The Embedded Trace Extension
D4.1 About the Embedded Trace Extension
Figure D4-3 System instruction programming procedure

�����

��� �	
��
�	�
����������

���

����	
��	�	

��
�	
��	�	
�����
���� ���������

���

���	��
������ ��������
�� �������	��������������

�$��

��� �	
��
�	�
����������

���

����	
��	�	

��
�	
��	�	
�����
���� ���������

���

���

�$��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6227
ID032224 Non-Confidential

The Embedded Trace Extension
D4.2 Programmers’ model
D4.2 Programmers’ model

D4.2.1 Accessing ETE registers

IVYNRB The ETE architecture provides registers for programming the ETE trace unit and reading back the programmed
settings. These registers can be accessed by using one or more of the following access mechanisms:

• An external debugger interface, for use by an external debugger.

• System instructions, for use by self-hosted software running on the PE being traced.

RNBPML When register accesses occur simultaneously from multiple access mechanisms, the trace unit behaves as if all
accesses occur atomically in any order.

D4.2.1.1 External debugger interface

IKPYGY The external debugger interface defines an address-mapped peripheral that occupies 4KB of address space.

Note

The PE does not have to be in Debug state to program the ETE registers.

ITBMWG Unless otherwise stated in this section, information for supported access sizes for external debugger interface is
covered in Supported access sizes.

RVQWLY The trace unit supports the following access sizes:

• Word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations.

• Doubleword-aligned 64-bit accesses to access 64-bit registers mapped to a doubleword-aligned pair of
adjacent 32-bit locations. The order in which the two halves are accessed is not specified.

Note

This means that a system implementing the Debug registers using a 32-bit bus, such as AMBA APB in CoreSight
systems, with a wider system interconnect must implement a bridge between the system and the debug bus that can
split 64-bit accesses.

RVNNPF All registers are only single-copy atomic at word granularity.

RKYDTQ The trace unit does not support the following accesses:

• Byte.

• Halfword.

• Unaligned word. These accesses are not single-copy atomic at word granularity.

• Unaligned doubleword. These accesses are not single-copy atomic at doubleword granularity.

• Doubleword accesses to a pair of 32-bit locations that are not a doubleword-aligned pair forming a 64-bit
register.

• Quadword or higher.

• Exclusives.

RCFRFW For accesses from the external debugger interface, the size of an access is determined by the interface. In an Arm
Debug Interface compliant Memory Access Port, MEM-AP, this is specified by the MEM-AP CSW register. The
CoreSight APB-AP supports only word accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6228
ID032224 Non-Confidential

The Embedded Trace Extension
D4.2 Programmers’ model
RYFRMG The behavior of the accesses that are unsupported by the trace unit is CONSTRAINED UNPREDICTABLE and is one of
the following:

• Accesses generate an External abort, and writes set the accessed register or registers to an UNKNOWN value
or values.

• Reads return UNKNOWN data and writes are ignored.

• Reads return UNKNOWN data and writes set the accessed register or registers to an UNKNOWN value. This is
the Arm preferred behavior.

RYSHRS For accesses from the external debugger interface which return an error response when AllowExternalTraceAccess()
returns FALSE, EDPRSR.STAD is only set to 1 when this is the highest priority cause of the error. The following
causes are higher priority than AllowExternalTraceAccess():

• The trace unit Core power domain is powered down.

• The OS Lock is locked and the register is defined to return an error response due to the OS Lock being locked.

RKQMKX Accesses from the external debugger interface to unimplemented or Reserved trace unit registers behave as follows:

• When the trace unit core power domain is off, the access returns an error.

• Otherwise:

— For accesses in the range of offsets 0xF00 to 0xFFC, the access behaves as RES0H.

— For accesses in the range of offsets 0x000 to 0xEFC:

— When the OS Lock is locked, the response is a CONSTRAINED UNPREDICTABLE choice of an error
response or behaving as RES0H.

— When the OS Lock is unlocked and AllowExternalTraceAccess() returns FALSE, the response
is a CONSTRAINED UNPREDICTABLE choice of an error response or behaving as RES0H.

— Otherwise, the access behaves as RES0H.

RWXKDP Reads of write-only registers are Reserved.

RSVSNR Writes to read-only registers are Reserved.

IWTJFD For accesses that return an error, see Behavior of a not permitted memory-mapped access for more details on how
this error is handled.

D4.2.1.2 System instructions

RVGVTS Instructions with CRn >= 0b1000 are not allocated for accessing trace unit registers.

RSGPQB While the PE is in EL0, all accesses are UNDEFINED.

IWCXDT For consistency with the Arm architecture, System instruction accesses to registers which are not implemented
generate an Undefined Instruction exception. These accesses include:

• Writes to read-only registers.

• Reads from write-only registers.

• Accesses to registers which are not present due to the configuration of the trace unit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6229
ID032224 Non-Confidential

The Embedded Trace Extension
D4.2 Programmers’ model
D4.2.2 Synchronization of register updates

D4.2.2.1 System registers

IKWCGH As defined in Synchronization requirements for AArch64 System registers, direct writes to trace unit registers are
only guaranteed to be visible to execution after a subsequent Context synchronization event, which consists of one
of the following:

• Taking an exception.

• Returning from an exception.

• Performing an Instruction Synchronization Barrier operation.

• Exit from Debug state.

• Executing a DCPS instruction in Debug state.

• Executing a DRPS instruction in Debug state.

IPNZZH Direct reads of trace unit registers while the trace unit is not in the Stable or Idle states are not guaranteed to contain
the results of the trace operation of execution previous to the direct read operation.

IQPVJQ As defined in Synchronization requirements for AArch64 System registers, a direct write to a register using the same
register number that was used by a previous System instruction to write it, the final result is the value of the second
write, without requiring any context synchronization between the two write instructions.

IWLGQK As defined in Synchronization requirements for AArch64 System registers, a direct read of a register using the same
register number that was used by an earlier direct write is guaranteed to observe the value that was written, without
requiring any context synchronization between the write and read instructions.

SHSXGZ Context synchronization events are important when changing the value of TRCPRGCTLR.EN or when changing
the OS Lock. After writing to TRCPRGCTLR to change the value of TRCPRGCTLR.EN, one read of TRCSTATR
is required before programming any other registers. A Context synchronization event is required between writing
to TRCPRGCTLR and reading TRCSTATR. If multiple reads of TRCSTATR are required, a Context
synchronization event is required between each read of TRCSTATR to ensure any change to the trace unit state is
observed.

RWPWWS When indirect writes or external writes to the registers in Table D4-2 occur, both of the following can observe the
writes:

• Direct reads in finite time without explicit synchronization.

• Subsequent indirect reads without explicit synchronization.

RJQTMC When the trace unit becomes enabled or disabled as a result of a direct write, for any instruction in program order
before the direct write, the new state of the trace unit does not affect trace operations.

Table D4-2 Registers with a guarantee of observability

Register Notes

TRCCLAIMSET Claim Tag Set Register

TRCCLAIMCLR Claim Tag Clear Register

TRCCNTVR<n> Counter Value Register <n>

TRCSEQSTR Sequencer State Register

TRCSSCSR<n> Single-shot Comparator Control Status Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6230
ID032224 Non-Confidential

The Embedded Trace Extension
D4.2 Programmers’ model
RKNQWS When the trace unit becomes enabled or disabled as a result of a direct write, for any instruction after a Context
synchronization event in program order after the direct write, the new state of the trace unit takes effect for any trace
operations.

Note

The registers which control whether the trace unit is enabled or disabled are:

• TRCPRGCTLR.

• OSLAR_EL1.

SYKGMP Arm recommends that a Context synchronization event is executed after programming the Trace Unit registers, to
ensure that all updates are synchronized to the trace unit before normal code execution resumes.

RWZQWC When a Context synchronization event occurs while the trace unit is in the Idle or Stable states, and at no other time,
indirect writes to the trace unit registers are guaranteed to be visible to direct reads.

RGQKGX When either of the following events occurs, and at no other time, indirect writes to the trace unit registers are
guaranteed to be visible to indirect reads or external reads:

• The trace unit transitions into the Stable state.

• The trace unit transitions into the Idle state.

RXLXQL The trace unit functions perform indirect writes to the registers and indirect reads from the registers in architectural
order.

IRCKQJ See Trace unit programming states for more details on programming the trace unit.

D4.2.2.2 External debugger registers

IKNWDX As defined in the Synchronization of changes to the external debug registers, this section refers to accesses from the
external debug interface as external reads and external writes.

IHMNWB As defined in Synchronization of changes to the external debug registers, explicit synchronization is not required
for an external read or an external write by an external agent to be observable to a following external read or external
write by that agent to the same register using the same address, so explicit synchronization is never required for
registers that are accessible only in the external debug interface.

IYXWFD As defined in Synchronization of changes to the external debug registers, when an external write to a register using
the same register number that was used by a previous external write is performed, the final result is the value of the
second write, without requiring any context synchronization between the two write accesses.

RPGTLX The trace unit does not require explicit synchronization for an external write to be visible to indirect reads.

RDYRZC The trace unit does not require explicit synchronization for an external write to be visible to subsequent external
reads.

IRDFSX As defined in Synchronization of changes to the external debug registers, explicit synchronization is required for
an external write to be visible to direct reads.

RMMYRJ While the trace unit is in the Stable or Idle states, the trace unit does not require explicit synchronization for indirect
writes to be visible to external reads.

D4.2.2.3 Synchronization and the authentication interface

RWYWMJ Changes to the authentication interface are indirect writes to TRCAUTHSTATUS by the controller of the
authentication interface. It is IMPLEMENTATION DEFINED whether a change on the authentication interface is
guaranteed to be observable to an external read of the register only after a Context synchronization event or in finite
time.

IXVVKN For more information, see Synchronization and the authentication interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6231
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
D4.3 Trace elements

IFNFWZ Trace elements form an AST which is used to describe the control flow of program execution. Different sequences
of the trace elements can be used to imply the same operation. In this way FEAT_ETE can be used by different
micro-architectures. This is similar to the approach used in previous trace protocols. For more information, see the
Arm® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

IXXBMZ A trace unit compresses the information on the execution of the PE and outputs a trace byte stream that comprises
of multiple packets of encoded data. The compression techniques that are used include:

Not having a trace element for every executed instruction in the instruction trace element stream

Instead, the trace unit generates P0 elements in the trace element stream when certain types of
instruction are executed. These certain types of instructions are known as P0 instructions. A P0 element
acts as a signpost in the program flow, indicating that execution is proceeding along a given path.

Consequently, the stream of P0 elements implies the execution of a greater number of instructions, and
a trace analyzer can reconstruct the stream of instructions that are executed between P0 elements by
using the P0 element stream and the program image.

Multiple trace elements in single packets

Common sequences of trace elements are encoded into single packets.

Removal of program addresses from the trace element stream

The trace analyzer can infer the addresses from the program image and previous history. This includes
the targets of direct branch instructions, where the target address is encoded in the instruction itself.

Removal of predictable trace elements

Some trace elements can be removed from the AST representation if the contents of the trace element
can be predicted by previous control flow choices in the software flow. For example the Target Address
element for returning from a subroutine might not be required if the branch to the subroutine has been
traced.

D4.3.1 Layer model

IXMFJT FEAT_ETE is based on a layer model. Each layer deals with a unique aspect of tracing the PE.

Figure D4-4 Layer model for compression and decompression

IGLPQZ Transport Layer

�������

�������

�������

��������

 !�"#��� ���

����	
 ���	�

��������
 ���	�
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6232
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
The transport layer either provides either:

• A path off chip.

• A path to a memory buffer for trace to be stored.

Layer 1

Layer 1 provides compression by:

• Grouping trace elements together to form packets.

• Removing trace elements that can be implied.

• Compression against previous values.

• Leading zero compression.

• Reordering of trace elements.

Layer 2

Layer 2 provides:

• Speculation resolution.

• Transactional Memory resolution.

Layer 3

At layer 3:

• PE behavior is converted into trace elements.

• Compression is achieved by removing the trace elements which can be predicted using the program image:

— Direct branch target addresses.

— Return stack optimization.

• Knowledge of the application is required in order to decompress. Processes that modify the instruction
opcodes require additional information to allow debugging.

D4.3.2 Trace protocol synchronization

ICLTCM The trace byte stream of a trace unit is typically stored in a circular buffer where, if the buffer is full, newer trace
overwrites older trace. To ensure that a trace stream can be analyzed when the trace has been stored in a circular
buffer, a trace unit must periodically generate trace protocol synchronization points in the trace byte stream.

IBPNSY The following trace elements or packets are used to provide synchronization information in the different layers.

ISFXXD Whenever a trace analyzer receives a Trace Info packet, the trace analyzer receives information about the current
state of the trace. However, the trace analyzer cannot begin analysis of program execution until it knows the context
in which instructions are being executed and it has an instruction address to start analysis from.

Table D4-3 Control of each layer

Layer Control

Layer 3 Context element and Target Address element

Layer 2 Trace Info element

Layer 1 Trace Info packet

Transport Layer Alignment Synchronization packet
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6233
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
RPGHPW When a Trace Info element is generated, the trace unit generates a Context element and a Target Address element
soon after the Trace Info element.

Note
There are common use cases where the ratio between the number of bytes associated with trace protocol
synchronization and other trace bytes increases significantly, resulting in a degradation of the usability of the trace.
Therefore Arm recommends that trace protocol synchronization only occurs when required.

D4.3.2.1 Non-periodic trace protocol synchronization

RQZRMQ When the trace unit becomes operative, non-periodic trace protocol synchronization occurs.

RTTLJC When non-periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet in the trace byte stream before any other trace packets are generated.

RHMDGL When non-periodic trace protocol synchronization occurs, the trace unit generates a Trace Info element in the trace
element stream before any other trace elements are generated, except Event elements and Instrumentation elements.

IMQNBT Arm recommends that if a trace protocol synchronization request occurs while ViewInst() is inactive, the Alignment
Synchronization packet is not output in the trace byte stream until just before any of the following:

• ViewInst() becomes active.

• An Event packet is output.

• An Instrumentation packet is output.

IMHGVF The generation of Instrumentation packets is independent of the ViewInst() function. Instrumentation packets can
therefore be generated when ViewInst() indicates instruction tracing is inactive.

D4.3.2.2 Periodic trace protocol synchronization

IYPRYM The trace unit can be programmed to generate trace protocol synchronization requests on a periodic basis, so that
the trace element streams and the trace byte streams can be analyzed when stored in a circular trace buffer.
TRCSYNCPR.PERIOD controls periodic trace protocol synchronization requests.

INTFYC Periodic trace protocol synchronization can also be requested by the trace capture infrastructure, for example if a
trace protocol synchronization request is received on an Arm AMBA ATB interface. For more information on the
Arm AMBA ATB interface, see the AMBA® ATB Protocol Specification (ARM IHI 0032).

RQHHSY When periodic trace protocol synchronization is requested, either by TRCSYNCPR.PERIOD or by other sources,
the trace unit performs periodic trace protocol synchronization.

RVMPYW When periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet. The trace unit then generates a Trace Info element to indicate a point where program execution trace analysis
can start. A Trace Info element is not required if only Event elements and Instrumentation elements are output.

IQYQRY Arm recommends that an Alignment Synchronization packet is only output in the trace byte stream if other trace
packets have been output since the previous Alignment Synchronization packet. This reduces the risk of a circular
buffer filling and overwriting trace.

INQYXW If two or more periodic trace protocol synchronization requests occur, and no trace is generated between these two
requests, then Arm recommends that a non-periodic trace protocol synchronization occurs before any further trace
is generated. This ensures that when tracing has been inactive for a long period of time, the trace stream is fully
synchronized when tracing is re-activated.

D4.3.2.3 Synchronization of instruction trace

RKKQGK When non-periodic trace protocol synchronization occurs, the trace unit generates a Context element and a Target
Address element before any P0 elements are generated, to provide the trace analyzer with Context information and
Address information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6234
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
RSVGNN When periodic trace protocol synchronization occurs, and ViewInst() is active when the corresponding Trace Info
element is generated, the trace unit generates a Context element and a Target Address element which provide the
Context information and Address information for the target of the most recent non-canceled P0 elements.

Note

If the trace unit generates the Context element and Target Address element immediately after the Trace Info element,
then the most recent non-canceled P0 elements might have occurred before the Trace Info element.

Figure D4-5 Example of Target Address element after Trace Info element.

RDLPYX When periodic trace protocol synchronization occurs, and ViewInst() is inactive when the corresponding Trace Info
element is generated, when ViewInst() becomes active and a Trace On element is generated, the trace unit generates
a Context element and a Target Address element before any Atom elements, Q elements, or Exception elements are
generated. This provides the trace analyzer with Context information and Address information.

Figure D4-6 Example of Target Address element after Trace Info element in a filtered region.

�������
��	

�

�

����
����

�����
������

������ ���

�

�������
��	

�����
����

�����
	

������
������

��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6235
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
IYZPCB If a Cancel element cancels any P0 elements before a Trace Info element, then the trace analyzer discards all of the
following:

• The canceled P0 elements.

• The Trace Info element.

• All elements after the Trace Info element, up to and including the Cancel element. This includes any Context
elements or Target Address elements.

Note

In this scenario, information from the canceled Trace Info element can still be used.

Figure D4-7 Example of Target Address element after Trace Info element in a mispredicted region.

RKGPTB When a Cancel element is generated which cancels any P0 elements before a Trace Info element, the trace unit
generates a new Context element and a new Target Address element, which indicate the target of the most recent P0
element that has not been canceled.

ICHTFM The Target Address element and Context element might indicate the target of a P0 element from before the Trace
Info element, or might be delayed until after the next P0 element, and therefore indicate the target of that P0 element.

Note

If the trace unit generates the new Context element and Target Address element prior to the next new P0 element,
then this might prevent the indication of execution of some instructions before the Trace Info element.

INSWTK If the Cancel element cancels all P0 elements after a Trace Info element, but no P0 elements prior to the Trace Info
element, then it might be necessary for the trace unit to immediately generate a Context element and Target Address
element. This is because a Context element and Target Address element might have been present in the trace element
stream after the Trace Info element, and those Context element and Target Address element are now discarded.

�������
���

�

�

�����
����

������
������

������� ���

�

����������

������
������

������� ���
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6236
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
D4.3.3 Speculation in the trace element stream

INVBWS FEAT_ETE supports the correction of trace. This might be because of:

• The tracing of speculative execution of instructions by a PE.

• For some implementations, the tracing of the Transactional Memory Extension.

IRTJNK A FEAT_ETE trace unit traces speculatively-executed instructions in the same way as all other instructions, so that
both speculatively-executed instructions and architecturally-executed instructions appear in the instruction trace
element stream. This means that some of the program execution information that is shown in the trace element
stream might be incorrect, because some of the speculatively executed instructions might be mis-speculated.

Note
The level of speculation that is revealed in the trace is IMPLEMENTATION SPECIFIC.

IXLLKT The trace unit resolves this speculation by generating trace elements to confirm the status of each instruction in the
instruction trace element stream. That is, the trace unit generates trace elements to show whether each instruction
has been committed for execution, or canceled because of mis-speculation. This means that a trace analyzer does
not know the status of a traced instruction until the trace analyzer receives a trace element that indicates whether the
instruction has been committed for execution, or canceled because the instruction was mis-speculated.

RZJJKY When speculatively-executed instructions are traced, the trace unit subsequently generates trace elements that
indicate whether the instructions have been committed for execution, or have been canceled.

IKYXKZ A trace analyzer takes the appropriate action, which might involve canceling some trace elements, to determine the
actual program execution.

IGGFML Trace elements that resolve the status of a traced instruction are called speculation resolution elements. For more
information on speculation elements, see Speculation Resolution Elements.

RKYGRF When trace is generated for speculative execution, for mis-speculated execution, the trace unit does not trace any
information that cannot be accessed by software executing at the same or at a lower level of privilege than the
mis-speculated execution.

RQHQLY When a Context synchronization event is speculated as being taken or executed, the trace unit does not generate
trace for any speculative execution after the Context synchronization event until the Context synchronization event
is resolved.

RLWJCQ When a speculated Context synchronization event is resolved as being not taken or not executed, the trace unit does
not generate trace for mis-speculated execution that occurred after the Context synchronization event.

RYGSGJ When an exit from a Trace Prohibited region is speculated as being taken, the trace unit does not generate trace for
any speculative execution after the exit from the Trace Prohibited region, until the exit from the Trace Prohibited
region is resolved.

RSRLCG When a speculated exit from a Trace Prohibited region is resolved as being not taken, the trace unit does not generate
trace for mis-speculated execution that occurred after the exit from a Trace Prohibited region.

D4.3.3.1 Tracing transactions

IKBTHL The Transactional Memory Extension defines the Transactional state. For instructions executed in Transactional
state, the trace stream indicates which instructions are executed in Transactional state, and provides indicators for a
trace analyzer to determine whether the transaction was successful or failed.

IFWGBM If the instruction is executed in Transactional state then the result of the instruction is not known until the transaction
succeeds or fails. Transactions can be of an arbitrary length and can be nested, so the ETE architecture does not
guarantee an entire transaction is traced, if any of the transactions is traced.

IVJTLG The execution of transactions is represented in the trace element stream by 3 elements:

• Transaction Start element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6237
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
• Transaction Commit element.

• Transaction Failure element.

These provide markers in the trace element stream to indicate the sections which represent transactions. The
Transaction Start element indicates that any following instructions are executed in Transactional state. When the PE
leaves Transactional state, either the Transaction Commit element or Transaction Failure element are traced to
indicate the resolution of the transaction.

IQZNBZ An entry to Transactional state might be traced using a Transaction Start element and the subsequent exit from
Transactional state might be traced, without tracing any execution in Transactional state. There might have been no
execution in Transactional state, or the trace unit might have been programmed to not trace such execution.

D4.3.3.1.1 Implementation flexibility

RVVFQZ If no speculation in the trace element stream is implemented, TRCIDR8.MAXSPEC == 0x0 and
TRCIDR0.COMMTRANS indicates that the Transaction Start element is a P0 element.

D4.3.3.1.2 Filtering of trace

IZYNHF The ETE architecture supports filtering of the trace within a transaction.

IBRWSS Filtering of a transaction can be due to any of the following:

• The ViewInst function.

• Prohibited regions.

• Asynchronous events.

IZNYSY Due to filtering the start of the transaction might not necessarily be traced. See the Transaction Start element for
details.

IVXTQS Due to filtering the end of a transaction might not necessarily be traced. See the Transaction Commit element and
Transaction Failure element for details.

IPCSKD If an instruction is traced which was executed in Transactional state, then the trace analyzer must be aware, so that
the effect of the instructions executed in the Transactional state can be determined.

RNMWFJ When an instruction is traced and the PE is in Transactional state, the trace unit traces the result of the transaction
unless any of the following occur:

• The trace unit becomes disabled.

• A trace unit buffer overflow occurs.

• The PE enters a Trace Prohibited region.

In the above scenarios, the trace unit generates a Transaction Failure element, and the resolution of the transaction
is UNKNOWN.

D4.3.4 Trace element stream

ILTBWR A Trace element stream is a sequence of elements which describe:

• The software control path of PE execution traced by the trace unit.

• Event-based trace.

• Temporal information.

ILBSZF A Trace Info element provides a point in the trace element stream where analysis of the trace element stream can
begin.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6238
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
Trace Info elements include setup information about:

• The static trace programming that does not change during a trace session, including:

— Whether cycle counting is enabled, and if enabled, the cycle count threshold.

• Dynamic information that might change during a trace session, such as:

— The speculation depth. This indicates how many unresolved P0 elements were traced before the Trace
Info element.

— Whether the trace unit has traced that the PE is executing in Transactional state.

D4.3.5 P0 element

ILLDBJ P0 elements imply the execution of instructions.

IXPZXL P0 elements are generated speculatively and must be either committed or canceled. For more information on
speculation elements, see Speculation Resolution Elements.

RXVHWG P0 elements must be generated in sequential execution order.

D4.3.5.1 Atom element

IXPFJG An Atom element implies that one or more instructions have been executed, up to and including the next P0
instruction. Only certain instructions generate an Atom element. See Instruction and exception classification for
more information on these instructions.

RPRNZH The Atom element is one of the following types:

• E Atom.

• N Atom.

ICYMYM The meaning of the type of an Atom element depends on the instruction it is encoding. For example, branch
instructions are represented as an E Atom element if the branch was taken and an N Atom element if not taken.

D4.3.5.2 Exception element

IYVMSC An Exception element indicates a change in program flow which cannot be calculated by the analysis of the program
image, or which is caused by an instruction which is not a P0 instruction. Such a change in program flow is
described as an Exceptional occurrence.

RMKPFJ An Exceptional occurrence consists of the following:

• PE Architectural exceptions.

• ETE defined exceptions.

• IMPLEMENTATION DEFINED exceptions.

Note

Transaction failure is not classified as an Exceptional occurrence, although it is traced using an Exception packet.

IJLZPY An Exception element indicates:

• That an Exceptional occurrence has occurred.

• The type of Exceptional occurrence.

• The virtual address where the Exceptional occurrence was taken from, also known as the preferred exception
return address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6239
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
RDXJBQ The instruction set for the preferred exception return address for an Exception element is one of the following:

• AArch64 A64.

• AArch32 A32.

• AArch32 T32.

RYPPRH An Exception element is a P0 element.

D4.3.5.2.1 PE Architectural exceptions

RPZRFL The following exception types are used to indicate PE Architectural exceptions:

• IRQ.

• FIQ.

• Trap.

• Call.

• Inst fault.

• Data fault.

• Inst debug.

• Data debug.

• Alignment.

• System Error.

• Debug halt.

See Instruction and exception classification for information on the mapping between the PE Architectural
exceptions and these exception types.

RSFYMW Table D4-4 defines the preferred exception return address for each exception type for PE Architectural exceptions.

Table D4-4 Preferred exception return address for PE Architectural exceptions

Exception type Preferred exception return address

IRQ Instruction after the last executed instruction

FIQ Instruction after the last executed instruction

Trap For a trapped instruction or UNDEFINED instruction, the preferred exception return address is the
address of the instruction. For a trapped exception, the preferred exception return address is the
address of the instruction that caused the exception.

Call Instruction after the call instruction

Inst fault Instruction that caused the exception

Data fault Instruction that caused the exception

Inst debug Instruction that caused the exception

Data debug Instruction that caused the exception
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6240
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
IGZKGC The nature of System Error means that execution might not complete up to the preferred exception return address,
or it might perform some operations after the preferred exception return address. This behavior is IMPLEMENTATION
DEFINED and might vary depending on the cause of the exception.

RGFJZF When an imprecise System Error exception occurs, the preferred exception return address is the address stored in
the relevant ELR when the exception is taken.

SGKMTH When a System Error exception occurs, the trace analyzer must be aware that the preferred exception return address
might not indicate the exact point at which program execution was interrupted. The trace analyzer should not rely
on the preferred exception return address for inferring exactly which instructions were executed. This behavior only
occurs for imprecise System Error exceptions.

RLBLWT When an imprecise Debug halt exception occurs, the preferred exception return address is the address stored in DLR
or DLR_EL0 when the exception is taken.

SRDJXM When an imprecise Debug halt exception occurs, the trace analyzer must be aware that the preferred exception
return address might not indicate the exact point at which program execution was interrupted. The trace analyzer
should not rely on the preferred exception return address for inferring exactly which instructions were executed. An
imprecise Debug halt exception can only occur under direct control of a debugger, usually by controlling
EDRCR.CBRRQ.

D4.3.5.2.2 ETE defined exceptions

RMZJTJ In addition to the Arm Architectural exceptions, the ETE specifies the following Exceptional occurrences that are
traced using Exception elements:

• PE Reset, which indicates that a PE Warm reset has occurred.

RNRJGC Table D4-5 defines the preferred exception return address for each exception type for ETE defined exceptions.

RJRNYF When a PE Reset occurs, the preferred exception return address and context are UNKNOWN. Therefore for an
Exception element indicating a PE Reset the preferred exception return address and context are UNKNOWN. No
instruction execution is indicated between the previous P0 element and the Exception element.

IQJYYZ When an Exception element indicating a PE Reset occurs:

• The target address and target context of the previous P0 element might be UNKNOWN.

• If there are no P0 elements between a Trace On element and the Exception element, then the initial address
and context after the previous Trace On element might be UNKNOWN.

D4.3.5.2.3 IMPLEMENTATION DEFINED exceptions

RZVYQW ETE defines some exception types which are IMPLEMENTATION DEFINED, including but not limited to:

• ECC error correction.

Alignment Instruction that caused the alignment exception

System Error Instruction after the last executed instruction

Debug halt The instruction after the last executed instruction, that is, the value loaded into the DLR register.

Table D4-4 Preferred exception return address for PE Architectural exceptions (continued)

Exception type Preferred exception return address

Table D4-5 Preferred exception return address for ETE defined exceptions

Exception type Preferred exception return address

PE Reset UNKNOWN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6241
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
• Generic replay of program execution.

IXHFLL The use of the IMPLEMENTATION DEFINED exceptions is optional and IMPLEMENTATION DEFINED. IMPLEMENTATION
DEFINED exceptions are not required to be traced but are intended to be used to simplify tracing of certain
micro-architectural situations.

IDFLDJ In general, the preferred exception return address is the address of the instruction after the last executed instruction,
before the exception occurs.

D4.3.5.3 Source Address element

IDJTGL The Source Address element indicates execution up to and including a provided P0 instruction address, and indicates
the P0 instruction is taken. All P0 instructions except the final P0 instruction are not taken, which means that
explicit N Atom elements are not required to be traced for those P0 instructions. A Source Address element indicates
both of the following for the final P0 instruction:

• The instruction set.

• The virtual address of the instruction.

RHVVRK The instruction set for a Source Address element is one of the following:

• AArch64 A64.

• AArch32 A32.

• AArch32 T32.

RWTRBB A Source Address element is a P0 element.

D4.3.5.4 Q element

RJRFYT A Q element belongs to the P0 element group in the instruction trace element stream, and must be explicitly resolved
or canceled.

IXPNWS A Q element can optionally include a number, M. The number is a count of the instructions that are executed since
the most recent P0 element, which might be a Q element. If it does not include a count of instructions, then the
number of instructions that are executed since the most recent P0 element is UNKNOWN.

RXWBMW The trace unit generates Q elements in the program order in which they occur, and the trace protocol encode and
decode process maintains this order.

RJBYXC A Q element does not imply Exceptional occurrences.

RKPNGG When a Q element implies an Exception return instruction which is taken, that instruction is the last instruction that
is implied by the Q element.

RYRLJR When a Q element implies an executed ISB instruction, this is the last instruction implied by the Q element if
execution continues from a new context after the ISB.

RLZLDH When execution continues from a new context after a Q element is generated, the trace unit generates a Context
element after the Q element.

IBTNZC The Context element might be generated before or after the Target Address element that is also required after the Q
element.

If a context change occurs at a point that is not a Context synchronization event, then the last instruction that is
implied by a Q element must be the last instruction that is executed with the old context. The trace unit can then
generate a Context element after the Q element to indicate the new context.

D4.3.5.5 Transaction Start Element

RCTLXL TRCIDR0.COMMTRANS indicates whether the Transaction Start element is a P0 element. See Transaction Start
element for more information about the Transaction Start element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6242
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
D4.3.6 Virtual Address Space Element

D4.3.6.1 Trace On element

RNHDCF A Trace On element indicates a discontinuity in the trace element stream. The trace unit inserts a Trace On element
after a gap in the generation of the trace element stream:

• When the trace generation becomes operative and before any P0 elements.

• If some instructions are filtered out of the trace.

• The first traced instructions after:

— A Trace Prohibited region.

— The PE leaves Debug state.

• When instruction trace is lost because a trace unit buffer overflow occurs.

RKMFKP When a Trace On element is generated, the trace unit generates a Target Address element before the next P0 element.

RTJLYH When a Trace On element is generated, the trace unit generates a Context element before the next Atom element,
Exception element or Q element, to indicate where tracing starts, unless the context has not changed since the
previous Context element was output.

RJKFBS When the first Trace On element is generated, the trace unit outputs the corresponding Context element before the
first P0 element.

D4.3.6.2 Target Address element

RQWBLT A Target Address element indicates both of the following for the next instruction to be executed:

• The instruction set.

• The virtual address of the instruction.

RJYKHH The instruction set for a Target Address element is one of the following:

• AArch64 A64.

• AArch32 A32.

• AArch32 T32.

RHMWHY The trace unit generates Target Address elements in program order relative to other P0 elements.

IXCKNM Target Address element values can be corrected by another Target Address element if both Target Address elements
are generated before the next P0 element or Trace On element.

D4.3.6.3 Context element

IKQKFF The Context element indicates the execution context for the next instruction to be executed.

RVHQYV The Context element provides the following Context information:

• The Security state.

• The Exception level.

• Whether the PE is executing in AArch64 state or AArch32 state.

RWSVRL The Context element can optionally provide the following Context information:

• The Context identifier.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6243
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
• The Virtual context identifier.

RWJDWF The trace unit generates Context elements in program order relative to P0 elements.

D4.3.7 Temporal elements

IHHXND Temporal elements provide information about the passage of time within the trace element stream. The following
temporal elements are supported by ETE:

The Cycle Count element

Indicates the passage of PE clock cycles within the trace element stream.

The Timestamp element

Indicates the passage of time within the trace element stream.

The Timestamp Marker element

Indicates that the most recent P0 element, Event element, Instrumentation element has been
timestamped and that a subsequent Timestamp element contains the timestamp value.

D4.3.7.1 Cycle Count element

INVGJP Each Cycle Count element is associated with a Commit element, and when a Commit element is generated, a Cycle
Count element might also be generated.

RBZQWX Each Cycle Count element is associated with the most recent Commit element.

RVZXNN A Cycle Count element indicates the number of PE clock cycles between the two most recent Commit elements that
both have an associated Cycle Count element.

IFHGKM Not every Commit element is required to have an associated Cycle Count element.

RVNYMN Cycle Count elements are generated in order relative to Commit elements.

D4.3.7.2 Timestamp element

ILKDJM The Timestamp element inserts a global timestamp value into the trace element stream.

IBLBJX The source for timestamp reported in the timestamp element is controlled by:

• TRFCR_EL1.TS.

• TRFCR_EL2.TS.

RBRJJF A timestamp value of zero indicates that the timestamp value is UNKNOWN.

IVTLTF An UNKNOWN timestamp value might occur if the system does not support timestamping or if the timestamp is
temporarily unavailable.

IYQJDR The source for the payload of Timestamp elements is controlled by the TRFCR registers and the virtual timers. It is
expected that these registers will be changed by context switch software. As a result it is possible that payloads of
Timestamp elements might appear to have discontinuities, and even go backwards, if the source of the timestamp
changes, or any context switching changes the System registers which control the timestamp value.

RMCSGX If FEAT_ETEv1p1 is implemented, then when there has been a Timestamp Marker element before the Timestamp
element, the Timestamp element contains the timestamp value of the most recent of the following before the
Timestamp Marker element:

• P0 element.

• Event element.

• Instrumentation element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6244
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
RDGTJZ If FEAT_ETEv1p1 is not implemented or if there has not been a Timestamp Marker element before the Timestamp
element, the Timestamp element contains the timestamp value of the most recent of the following before the
Timestamp element:

• P0 element.

• Event element.

• Instrumentation element.

IPXZVX If TRCIDR0.TSMARK is 1 and there is no previous Timestamp Marker element, the Timestamp element is for a P0
element, Event element, or Instrumentation element which is before the start of the trace. This scenario might occur
when trace analysis starts at a Trace Info element which is not the first Trace Info element, and the Timestamp
Marker element was generated before the Trace Info element.

ICSZYW The requirement for a Timestamp Marker element for every Timestamp element is to avoid needing to indicate if
there has been a Timestamp Marker element at a Trace Info point. This allows a trace analyzer to assume there is a
Timestamp Marker element (or not) before the Trace Info, based on a static piece of information.

D4.3.7.3 Timestamp Marker element

RRFYPT The Timestamp Marker element indicates the most recent P0 element, Event element, or Instrumentation element
has been timestamped, and that a Timestamp element will follow containing the timestamp value.

RSZRHP Timestamp Marker elements are generated in order with respect to P0 elements, Event elements, and
Instrumentation element.

RDCRVK Timestamp Marker elements are not canceled by Cancel elements.

IDLCLX A Cancel element might cause a P0 element to be canceled and if there is a Timestamp Marker element that is
associated with that P0 element then the Timestamp Marker element is not associated with any P0 element. The
Timestamp element which is associated with the Timestamp Marker element is unaffected, and is still usable for
timestamping the approximate position in the trace stream.

RVWJVC If 2 Timestamp Marker elements occur without a Timestamp element between them, the oldest Timestamp Marker
element is ignored.

RJNWJY If an Overflow element or Discard element occurs after a Timestamp Marker element and before a Timestamp
element, the Timestamp Marker element is ignored.

RLWZXK If Timestamp Marker elements are generated by the trace unit, every Timestamp element must have a corresponding
Timestamp Marker element generated before the Timestamp element.

IJGKZJ The generation of Timestamp Marker elements is indicated in TRCIDR0.TSMARK.

D4.3.8 Speculation Resolution Elements

IYYMXT The ETE architecture allows trace to be generated speculatively and then later committed or removed by the
decompression process. Each P0 element is traced and is considered speculative until either committed by a Commit
element or canceled by a Cancel element. This method of generating speculative trace allows for the tracing of
speculative execution, including the tracing of transactions when the Transactional Memory Extension is
implemented in the PE.

ISRRZZ Speculation resolution elements provide a trace analyzer with information about which trace elements were
correctly or incorrectly generated, and ensure the trace analyzer can reconstruct the program execution. The
following speculation resolution elements are supported by ETE:

The Mispredict element

Corrects the most recent Atom element.

The Cancel element

Indicates that one or more P0 elements are canceled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6245
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
The Commit element

Indicates that one or more P0 elements are resolved for execution.

The Discard element

Removes all speculative P0 elements.

IXLHWT TRCIDR8.MAXSPEC specifies the maximum number of uncommitted P0 elements which can be discarded at a
later stage using Cancel elements.

D4.3.8.1 Commit element

IKQQML A Commit element indicates that a number of unresolved P0 elements have been resolved for execution. The
resolved P0 elements are the oldest P0 elements.

RPNBGQ The Commit element resolves all types of P0 element.

IKHYLN Commit elements might be merged if the total number of P0 elements resolved is less than TRCIDR8.MAXSPEC.
Commit elements are merged by adding their respective commit count values together.

Figure D4-8 shows an example operation for a Commit element:

Figure D4-8 Commit Operation Example

D4.3.8.2 Cancel element

IMRGLC The Cancel element indicates the number of youngest unresolved and uncanceled P0 elements that are canceled
from execution. A trace unit might cancel elements because of many reasons, including but not limited to:

• A P0 instruction is mis-speculated.

• An exception occurs.

RWLTNX The Cancel element cancels all types of P0 element.

INDQKN Cancel elements might be merged if no P0 elements have been generated in between. Cancel elements are merged
by adding their respective cancel numbers together.

Figure D4-9 shows an example operation for a Cancel element:

��
�
�
�
�
�
�

	�

�
��� ��

�
�
�
�
�
�

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6246
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
Figure D4-9 Cancel Operation Example

D4.3.8.3 Discard element

ITCWCN A Discard element is generated if uncommitted P0 elements remain when trace generation becomes inoperative or
if the resolution of uncommitted P0 elements cannot be output by the trace unit.

ISTXQZ If trace generation remains inoperative, the outcomes of instructions that are traced by P0 elements, such as
conditional P0 instructions, cannot be resolved, and therefore a Discard element indicates that all uncommitted P0
elements must be discarded.

D4.3.8.4 Mispredict element

IGBKKQ The Mispredict element indicates that the most recent non-canceled Atom element has the incorrect E or N status.

IRGVGL For example, if a branch instruction is predicted as taken, it is traced with an E Atom element. If the prediction
becomes incorrect, then a Mispredict element is traced to indicate to a trace analyzer that the E Atom element
changes to an N Atom element.

D4.3.9 Instrumentation element

IZLFFN The Instrumentation element indicates execution of a TRCIT instruction.

RBXTXK If Instrumentation tracing is prohibited, then no trace is generated by the TRCIT instruction, and TRCIT behaves as a
NOP.

RJJZXW If tracing is prohibited, then no ETE trace is generated by the TRCIT instruction, and TRCIT behaves as a NOP.

TraceAllowed() defines when tracing is prohibited.

RBWHCS If Instrumentation tracing is not prohibited and tracing is enabled and not prohibited, then execution of the TRCIT
instruction requests an Instrumentation element to be generated in the ETE trace stream.

TraceInstrumentationAllowed() defines when Instrumentation tracing is not prohibited.

RNHJLQ When an Instrumentation element is requested, the Instrumentation element is generated if and only if any of the
following are true:

• The TRCIT instruction is architecturally executed.

• The Instrumentation element is permitted by RKBSTS.

	�
�
�
�
�
�
�

	�

��������

�
�
�
�
�
	

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6247
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
RKBSTS When FEAT_TME is implemented and an Instrumentation element is requested in Transactional state and the
transaction fails or is canceled, it is CONSTRAINED UNPREDICTABLE whether an Instrumentation element is
generated, and the element is only generated if all of the following are true:

• The TRCIT instruction would have architecturally executed had the transaction been committed.

• For all requests for an Instrumentation element due to TRCIT instructions in the same outer transaction and in
program order before this TRCIT instruction, an Instrumentation element has been generated.

IQKTGM RKBSTS permits Instrumentation elements to be generated for TRCIT instructions inside a transaction that fails or is
canceled, but also does not require any Instrumentation elements for such instructions. However, when one or more
TRCIT instructions inside the same outer transaction do not generate an Instrumentation element, then no further
Instrumentation elements are generated for TRCIT instructions within the same outer transaction. This means that for
a sequence of TRCIT instructions inside a transaction that fails or is canceled, the corresponding sequence of
Instrumentation elements might be truncated. The point at which this sequence is truncated does not necessarily
indicate the point at which the transaction failed or was canceled.

RVPFGH If the Instrumentation element cannot be generated when required, then a trace unit buffer overflow occurs.

RCJRNL Instrumentation elements are not discarded by Cancel elements.

D4.3.10 Other elements

D4.3.10.1 Event element

IRBKYZ The Event element indicates when a programmed ETEEvent occurs and its payload contains a number to identify
the ETEEvent number. See TRCEVENTCTL0R, and TRCEVENTCTL1R, for information about the programming
of arbitrary ETEEvents.

RSMLVB Event elements maintain order relative to other Event elements.

D4.3.10.2 Overflow element

IRFQKZ The Overflow element indicates that the trace unit buffer has overflowed, and at least one trace element might have
been lost.

D4.3.11 Transactional Memory

RLLCQG The TSTART instruction is a P0 instruction.

D4.3.11.1 Transaction Start element

IQNFVH The Transaction Start element indicates that subsequent elements are within a transaction, until any of the following
are traced:

• A Transaction Failure element.

• A Transaction Commit element.

• A Cancel element which cancels the Transaction Start element.

RKMNXW When the PE enters Transactional state, a Transaction Start element is generated before any instructions are traced.
This indicates to the trace analyzer that subsequent elements have been executed in Transactional state.

RMMCQD Only a single Transaction Start element is generated for each outer transaction, unless the trace unit indicated the
transaction had finished by generating a Transaction Failure element.

IMQZZY An example of when the trace unit generates a Transaction Failure element without the PE leaving Transactional
state is when a trace unit buffer overflow occurs. In this example, tracing might resume after the trace unit buffer
overflow, and if the PE is still in the same outer transaction then a new Transaction Start element would be
generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6248
ID032224 Non-Confidential

The Embedded Trace Extension
D4.3 Trace elements
RDPNGP The Transaction Start element appears in program order relative to other P0 elements.

RCYHKB When a TSTART instruction for an outer transaction is traced and tracing continues in Transactional state, the trace
unit generates a Transaction Start element after the P0 element that is generated by the TSTART instruction, and before
any subsequent P0 element.

RRKGLY When a TSTART instruction for an outer transaction is not traced and tracing becomes active while the PE is in
Transactional state, the trace unit generates a Transaction Start element after the Trace On element and before any
P0 elements.

D4.3.11.2 Transaction Commit element

IXTXHN The Transaction Commit element indicates that the PE has exited Transactional state, that the transaction has
completed successfully, and that all execution since the most recent Transaction Start element has been executed.

D4.3.11.3 Transaction Failure element

IXHLPG The Transaction Failure element indicates that the transaction did not complete successfully and the trace analyzer
discards all the execution since the most recent Transaction Start element, including any P0 elements which have
been committed by Commit elements.

IHLQGS A sophisticated trace analyzer might be able to use the discarded elements to create a heuristic on why the
transaction failed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6249
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4 Instruction and exception classification

INMJBZ This section defines all of the P0 instructions.

RPBVZM P0 instructions comprise all of the following:

• All direct P0 instructions.

• All indirect P0 instructions.

RGFNRJ Direct P0 instructions comprise all of the following:

• All direct branch instructions.

• ISB instructions.

• TSTART instructions.

• WFE, WFET, WFI, and WFIT instructions, when indicated by TRCIDR2.WFXMODE.

RDJMQM Indirect P0 instructions comprise all of the following:

• All indirect branch instructions.

RKJTCL All uses of ISB in this section apply to all variants of the ISB instruction, including the CP15ISB instruction.

D4.4.1 AArch64 instructions

D4.4.1.1 Direct P0 instructions

RTWTMK The following table describes the A64 direct P0 instructions.

Table D4-6 A64 direct P0 instructions

Instruction Description

B Unconditional Branch

B.cond Conditional Branch

BC.cond Branch Consistent conditionally

BL Branch with link

CBZ or CBNZ Compare with zero and branch

ISB Instruction Synchronization Barrier

TBZ or TBNZ Test and branch

TSTART Initiates a new transaction.

WFE, WFET Wait For Event

WFI, WFIT Wait For Interrupt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6250
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.1.2 Indirect P0 instructions

RLTZGC The following table describes the A64 indirect P0 instructions.

D4.4.1.3 Return from exception instructions

RBVKWS The following table describes the A64 return from exception instructions.

Table D4-7 A64 indirect P0 instructions

Instruction Description

BLR Branch with link to register

BLRAA Authenticate and branch with link

BLRAAZ Authenticate and branch with link

BLRAB Authenticate and branch with link

BLRABZ Authenticate and branch with link

BR Branch to register

BRAA Authenticate and branch

BRAAZ Authenticate and branch

BRAB Authenticate and branch

BRABZ Authenticate and branch

ERET Return From Exception

ERETAA Authenticate and Exception return

ERETAB Authenticate and Exception return

RET Return From subroutine

RETAA Authenticate and function return

RETAB Authenticate and function return

Table D4-8 A64 return from exception instructions

Instruction Description

ERET Return From Exception

ERETAA Authenticate and Exception return

ERETAB Authenticate and Exception return
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6251
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.1.4 Branch with link instructions

RDVKBK The following table describes the A64 branch with link instructions.

D4.4.1.5 Meaning of Atom elements

RHGDNB The following table describes the meaning of Atom elements in AArch64 A64.

Table D4-9 A64 branch with link instructions

Instruction Description

BL Branch with link

BLR Branch with link to register

BLRAA Authenticate and branch with link

BLRAAZ Authenticate and branch with link

BLRAB Authenticate and branch with link

BLRABZ Authenticate and branch with link

Table D4-10 Meaning of Atom elements in AArch64 A64

Instruction E N

B The branch was taken RESERVED.

B.cond The branch was taken The branch was not taken

BC.cond The branch was taken The branch was not taken

BL The branch was taken RESERVED.

BLR The branch was taken RESERVED.

BLRAA The branch was taken RESERVED.

BLRAAZ The branch was taken RESERVED.

BLRAB The branch was taken RESERVED.

BLRABZ The branch was taken RESERVED.

BR The branch was taken RESERVED.

BRAA The branch was taken RESERVED.

BRAAZ The branch was taken RESERVED.

BRAB The branch was taken RESERVED.

BRABZ The branch was taken RESERVED.

CBZ or CBNZ The branch was taken The branch was not taken

ERET The branch was taken and the PE returned from the Exception RESERVED.

ERETAA The branch was taken and the PE returned from Exception RESERVED.

ERETAB The branch was taken and the PE returned from Exception RESERVED.

ISB The ISB performed a Context synchronization event and is considered as taken RESERVED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6252
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.2 AArch32 A32 instructions

D4.4.2.1 Direct P0 instructions

RGWKSD The following table describes the A32 direct P0 instructions.

D4.4.2.2 Indirect P0 instructions

RDTZVJ The following table describes the A32 indirect P0 instructions.

RET The branch was taken and the PE returned from the subroutine RESERVED.

RETAA The branch was taken and the PE returned from the subroutine RESERVED.

RETAB The branch was taken and the PE returned from the subroutine RESERVED.

TBZ or TBNZ The branch was taken The branch was not taken

TSTART Transaction started and the instruction is considered as taken. RESERVED.

WFE, WFET The instruction was executed and is considered as taken RESERVED.

WFI, WFIT The instruction was executed and is considered as taken RESERVED.

Table D4-10 Meaning of Atom elements in AArch64 A64 (continued)

Instruction E N

Table D4-11 A32 direct P0 instructions

Instruction Description

B Unconditional Branch

B.cond Conditional Branch

BL Branch with link

BLX <immed> Branch with link and exchange

ISB Instruction Synchronization Barrier

WFE Wait For Event

WFI Wait For Interrupt

Table D4-12 A32 indirect P0 instructions

Instruction Description

BLX <reg> Branch with Link and Exchange

BX Branch and Exchange

BXJ Branch and Exchange

Data processing instructions that modify the PC -

ERET Exception Return
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6253
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.2.3 Branch with link instructions

RPLXGS The following table describes the A32 branch with link instructions.

D4.4.2.4 Meaning of Atom elements

RYVVSN The following table describes the meaning of Atom elements in AArch32 A32.

LDM including the PC Load Multiple to the PC

LDR PC Load a word to the PC

RFE Return From Exception

Table D4-12 A32 indirect P0 instructions (continued)

Instruction Description

Table D4-13 A32 branch with link instructions

Instruction Description

BL Branch with link

BLX <immed> Branch with link and exchange

BLX <reg> Branch with Link and Exchange

Table D4-14 Meaning of Atom elements in AArch32 A32

Instruction E N

B The branch was taken The branch was not taken

B.cond The branch was taken The branch was not taken

BL The branch was taken The branch was not taken

BLX <immed> The branch was taken The branch was not taken

BLX <reg> The branch was taken The branch was not taken

BX The branch was taken The branch was not taken

BXJ The branch was taken The branch was not taken

Data processing instructions that
modify the PC

The branch was taken The branch was not taken

ERET The branch was taken and the
PE returned from an Exception

The branch was not taken and the PE did not return
from an Exception

ISB The ISB performed a Context
synchronization event and is
considered as taken

The ISB did not perform a Context
synchronization event and is considered as not
taken

LDM including the PC The branch was taken The branch was not taken

LDR PC The branch was taken The branch was not taken
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6254
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.3 AArch32 T32 instructions

D4.4.3.1 Direct P0 instructions

RNRJKR The following table describes the T32 direct P0 instructions.

D4.4.3.2 Indirect P0 instructions

RWXDRS The following table describes the T32 indirect P0 instructions.

RFE The branch was taken and the
PE returned from the Exception

RESERVED.

WFE The instruction either passed its
condition code check or failed
its condition code check, but it is
considered as taken

The instruction failed its condition code check and
is considered as not taken

WFI The instruction either passed its
condition code check or failed
its condition code check, but it is
considered as taken

The instruction failed its condition code check and
is considered as not taken

Table D4-14 Meaning of Atom elements in AArch32 A32 (continued)

Instruction E N

Table D4-15 T32 direct P0 instructions

Instruction Description

B Unconditional Branch

B<cc> Conditional Branch

BL Branch with Link

BLX <immed> Branch with Link and Exchange

CBNZ Compare and Branch on Nonzero

CBZ Compare and Branch on Zero

ISB Instruction Synchronization Barrier, including CP15 encodings

WFE Wait For Event

WFI Wait For Interrupt

Table D4-16 T32 indirect P0 instructions

Instruction Description

BLX <reg> Branch with Link and Exchange

BX Branch and Exchange

BXJ Branch and Exchange

Data processing instructions that modify the PC -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6255
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.3.3 Branch with link instructions

RBHLTJ The following table describes the T32 branch with link instructions.

D4.4.3.4 Meaning of Atom elements

RPLGZG The following table describes the meaning of Atom elements in AArch32 T32.

LDM including the PC Load Multiple including to the PC

LDR to the PC Load to the PC

POP {..,PC} Load the PC from the stack

RFE Return From Exception

TBB Table Branch

TBH Table Branch

Table D4-16 T32 indirect P0 instructions (continued)

Instruction Description

Table D4-17 T32 branch with link instructions

Instruction Description

BL Branch with Link

BLX <immed> Branch with Link and Exchange

BLX <reg> Branch with Link and Exchange

Table D4-18 Meaning of Atom elements in AArch32 T32

Instruction E N

B The branch was taken The branch was not taken

B<cc> The branch was taken The branch was not taken

BL The branch was taken The branch was not taken

BLX <immed> The branch was taken The branch was not taken

BLX <reg> The branch was taken The branch was not taken

BX The branch was taken The branch was not taken

BXJ The branch was taken The branch was not taken

CBNZ The branch was taken The branch was not taken

CBZ The branch was taken The branch was not taken

Data processing instructions that
modify the PC

The branch was taken The branch was not taken

ISB The ISB performed a
Context synchronization
event and is considered as
taken

The ISB did not perform a
Context synchronization event
and is considered as not taken
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6256
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
D4.4.4 Exceptions to Exception element encoding

RGZQKS The following table shows the Exception mapping for exceptions taken to AArch64 state.

LDM including the PC The branch was taken The branch was not taken

LDR to the PC The branch was taken The branch was not taken

POP {..,PC} The branch was taken The branch was not taken

RFE The branch was taken and
the PE returned from the
Exception

The branch was not taken and the
PE did not return from the
Exception

TBB The branch was taken The branch was not taken

TBH The branch was taken The branch was not taken

WFE The instruction either passed
its condition code check or
failed its condition code
check, but it is considered as
taken

The instruction failed its
condition code check and is
considered as not taken

WFI The instruction either passed
its condition code check or
failed its condition code
check, but it is considered as
taken

The instruction failed its
condition code check and is
considered as not taken

Table D4-18 Meaning of Atom elements in AArch32 T32 (continued)

Instruction E N

Table D4-19 Exception mapping for exceptions taken to AArch64 state

Reason Type

Branch Target exception Inst fault

Breakpoint Inst debug

Exceptions due to SME functionality Trap

EXLOCK exception Inst fault

FIQ FIQ

GPC exception due to data access Data fault

GPC exception due to instruction access Inst fault

Guarded Control Stack Data Check exception Data fault

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

Instruction Abort Inst fault
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6257
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
RGPYBB The following table shows the Exception mapping for exceptions taken to AArch32 state.

Instruction or event trapped by a control bit Trap

MemCopy or MemSet Trap

Misaligned PC Alignment

PAC Fail Data fault

PMU exception Inst debug

SError interrupt System Error

SMC due to HCR_EL2.TSC Trap

SMC other than due to HCR_EL2.TSC Call

SVC due to HFGITR_EL2.SVC_EL0 or HFGITR_EL2.SVC_EL1 Trap

SVC other than due to HFGITR_EL2.SVC_EL0 or HFGITR_EL2.SVC_EL1 Call

Software Breakpoint Instruction Inst debug

Software Step Inst debug

Stack Pointer Misalignment Alignment

Synchronous Data Abort Data fault

Traps due to GCSSTR and GCSSTTR Trap

UNDEFINED instruction Trap

Watchpoint Data debug

Table D4-19 Exception mapping for exceptions taken to AArch64 state (continued)

Reason Type

Table D4-20 Exception mapping for exceptions taken to AArch32 state

Reason Type

Breakpoint Inst fault

FIQ FIQ

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

Instruction or event trapped by a control bit Trap

Prefetch Abort Inst fault

SError interrupt System Error

SMC Call

SVC Call
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6258
ID032224 Non-Confidential

The Embedded Trace Extension
D4.4 Instruction and exception classification
Software Breakpoint Instruction Inst fault

Synchronous Data Abort Data fault

UNDEFINED instruction Trap

Vector Catch exception Inst fault

Watchpoint Data fault

Table D4-20 Exception mapping for exceptions taken to AArch32 state (continued)

Reason Type
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6259
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5 About the ETE trace unit

IGBYNF Figure D4-10 shows the stages of trace generation:

Figure D4-10 Stages of trace generation

D4.5.1 Resetting the trace unit

RPCXJC A trace unit includes a trace unit reset, which resets all of the:

• Trace unit trace registers.

• Trace unit management registers.

RPTZDH When the trace unit Core power domain is powered up, a trace unit reset is applied.

IZXRHG It is IMPLEMENTATION DEFINED whether the system has a mechanism to initiate a trace unit reset on demand.

SWVMHS In a PE with FEAT_TRF, a PE Cold reset causes EDSCR.TFO to be reset to 0 which means that tracing is prohibited
after the Cold reset until explicitly permitted by software. If tracing from a Cold reset is required, the debugger needs
to ensure any relevant controls, including EDSCR.TFO, are programmed to permit tracing. Programming such
registers might involve causing the PE to enter Debug state to ensure the registers can be programmed before the
PE starts executing instructions.

RWKLGX When a trace unit reset is applied, the trace unit resets the values of all trace unit registers to the values described in
the individual register descriptions.

ICQWFH Some other Arm trace architectures support multiple types of reset for the trace unit.

D4.5.2 System behaviors

RGFMRH The trace unit outputs all of the trace byte stream, without external stimulus, within finite time.

D4.5.2.1 Behavior on enabling

RVBMLV While both of the following are true, the trace unit is enabled:

• TRCPRGCTLR.EN is set to 1.

• The OS Lock is unlocked.

ILFBBP Some Arm trace architectures have a dedicated trace unit OS Lock, whereas ETE depends on the PE OS Lock.

RKBFFQ While the trace unit is enabled, the trace unit can trace all PE execution, except when any of the following are true:

• A trace unit buffer overflow occurs.

• The authentication interface prohibits the tracing of certain pieces of code.

• FEAT_TRF or FEAT_TRBE prohibit the tracing of certain pieces of code.

IKCDMH No sequences of code or PE operations are exempt from this requirement. However, while the trace unit is
transitioning from an enabled to a disabled state, or from a disabled to an enabled state, some loss of trace is
permitted.

IGDNWY While the trace unit is enabled, writes to most trace unit trace registers might be ignored. It is UNKNOWN whether
writes to these registers succeed. When the writes are successful, the behavior of the trace unit is UNPREDICTABLE.

����������� �����	
������� ��������� 	������
������� ���

�����
������� ���
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6260
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
SBXQJH Trace analyzers must not write to most trace unit trace registers while the trace unit is enabled, or if
TRCSTATR.IDLE indicates that the trace unit is not idle.

ITPTRW While the trace unit is enabled or idle, all resources that are visible in the programmers’ model might have unstable
values. Therefore, a trace analysis tool must be aware that the following values might be dynamically changing as
they are being read:

• The Counter values, indicated by the TRCCNTVR<n>.

• The Sequencer state, indicated by TRCSEQSTR.

• The ViewInst start/stop function, indicated by TRCVICTLR.

• The Single-shot Comparator Control status, indicated by the TRCSSCSR<n>.

RVNGFG When the trace unit becomes enabled, the trace unit does not reset the state of any of the resources in the trace unit,
including the Counters, the Sequencer, and the ViewInst start/stop function.

SLMPNV While the trace unit is disabled, and before it is enabled, a trace analyzer ensures the trace unit resources are
programmed with a valid initial state.

D4.5.2.2 Behavior on disabling

IGZPBM While the trace unit is disabled:

• The trace unit cannot generate trace.

• The trace unit resources are disabled.

For more information, see Behavior of the resources while in the Pausing state.

RTMLTF While either of the following is true, the trace unit is disabled:

• TRCPRGCTLR.EN is set to 0.

• The OS Lock is locked.

IWSFFP Some Arm trace architectures have a dedicated trace unit OS Lock. ETE depends on the PE OS Lock.

RZDTLK When the trace unit becomes disabled, the trace unit stops generating trace and empties the trace buffers by
outputting any data in them.

RTNYDD When the trace buffers are empty, after the trace unit has become idle after becoming disabled, TRCSTATR.IDLE
indicates that the trace unit is idle.

RTMVLW When the trace unit becomes disabled, all resources that are visible in the programmers’ model retain their values
and become stable at those values.

RQVYMJ When the trace unit becomes disabled, when the resources are stable, TRCSTATR.PMSTABLE indicates that the
programmers’ model is stable.

RGLBHL When the trace unit becomes disabled after the trace unit has generated Event elements, the trace unit outputs the
Event elements before TRCSTATR.IDLE indicates that the trace unit is idle.

RYFLJT While the trace unit is disabled, the following are true:

• No trace is generated.

• All trace unit resources and ETEEvents are disabled.

D4.5.2.3 Behavior on flushing

IXRMWS The trace unit is allowed to buffer the trace byte stream to make efficient use of system infrastructure.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6261
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IWHZBD As the trace unit is allowed to delay the output of the trace byte stream to the system infrastructure, there are system
events that require all of the trace byte stream to be observable to other observers in the system.

ICXLCR Making the trace byte stream visible to other observers is known as a trace unit flush.

RJLRQH When any of the following occur, a trace unit flush is requested:

• The trace unit transitions from an enabled to a disabled state.

• The trace capture infrastructure requests a trace unit flush.

• A TSB CSYNC instruction is executed in a Trace Prohibited region while the Trace Buffer Extension is
implemented and enabled.

IKGJRL A trace unit flush might be requested for IMPLEMENTATION DEFINED reasons. For example:

• Before the trace unit enters either:

— The low-power state.

— A powerdown state.

• The PE enters Debug state.

IZWHKM An example of a trace unit flush is one requested on an Arm AMBA ATB interface. For more information on the
Arm AMBA ATB interface, see the AMBA® ATB Protocol Specification (ARM IHI 0032).

RHGYLG When a trace unit flush is requested, the trace unit performs the following tasks before responding to the flush
request:

1. Encode any remaining elements into trace packets.

2. Complete any packets that are in the process of being generated.

3. Output all trace packets for all PE execution that occurred before the flush request was received.

ILMVMT An example of when the trace unit might need to encode remaining elements into trace packets before a trace unit
flush is when there are Commit elements that are not yet encoded.

RTWBVY When a trace unit flush occurs while the trace unit is recovering from a trace unit buffer overflow, the trace unit
outputs the corresponding Overflow element before responding to the flush request.

IGHKFH When a trace unit flush occurs, the trace unit either continues to generate trace or stops generating trace, depending
on what condition caused the trace flush. For example, if a flush occurs because the trace unit is entering a disabled
state, then tracing becomes inactive after the trace flush.

RTTDBB When a condition causes both a trace unit flush and the trace unit to stop generating trace, the trace unit stops
generating trace before responding to the flush request, and before indicating that the trace unit is idle.

INHBMZ On entry to Debug state, Arm recommends that the Exception element indicating entry to Debug state is included
in the flushed trace data if tracing is active.

RPFHWW When a trace unit flush is requested, the trace unit outputs the data within a finite period.

RDKFRL When a trace unit flush is requested and the cause of the flush request requires an acknowledgment, the trace unit
generates the acknowledgment within a finite period.

ISCBMG The flush request mechanism on AMBA ATB is an example of a cause of a flush request that also requires an
acknowledgment.

D4.5.2.4 Low-power state

IGHHNW The low-power state in the trace unit is a mechanism to improve energy efficiency during periods where trace
generation is limited.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6262
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
Scenarios where the trace unit might be in the low-power state are any of the following:

• The PE is in a low-power state.

• The PE is in Debug state.

RLHDSS The trace unit is only permitted to be in the low-power state when any of the following are true:

• The PE is in a low-power state due to the Wait for Event mechanism.

• The PE is in a low-power state due to the Wait for Interrupt mechanism.

• The PE is in Debug state.

• The trace unit is Disabled.

D4.5.2.5 Trace unit behavior when the PE is in a low-power state

IMSTWP The PE that is being traced might support a low-power state where no execution occurs. This low-power state might
be invoked, for example, when the PE executes a WFI, WFIT, WFE, or WFET instruction.

IDPFXN When the PE is in a low-power state, it might be advantageous if the trace unit also enters a low-power state.

RFBMYZ It is IMPLEMENTATION DEFINED whether a trace unit supports the low-power state.

RWMPTL While the trace unit is in the disabled state, the trace unit does not stop the PE from entering a low-power state.

RYLDDV While the trace unit is in Low-power Override Mode, the trace unit does not affect the operation of the PE.

D4.5.2.6 Trace unit behavior in the low-power state

RFMXFM While the trace unit is enabled, when the trace unit enters the low-power state, the trace unit continues to appear
enabled throughout the time it is in the low-power state.

RKQVNN When the trace unit enters or leaves the low-power state, the trace unit does not lose resource events that are in
transition through the trace unit, except those permitted when moving through the Pausing state of the resources.
For more information on the resource events that are permitted to be lost when in the Pausing state, see Behavior of
the resources while in the Pausing state.

IRVKHK Observation of resource events that are in transition through the trace unit when it enters the low-power state might
not occur until after the trace unit leaves the low-power state.

RRGFJY While the trace unit is not in the low-power state, and before it enters the low-power state, the resources enter the
Paused state. For more information on the pausing of resources, see Behavior of the resources while in the Paused
state.

IMXHHN If WFI and WFE instructions are classified as P0 instructions, see TRCIDR2.WFXMODE, and the trace unit enters the
low-power state as a result of a WFI or WFE instruction, Arm strongly recommends that the following elements are
generated before the trace unit enters the low-power state:

• The Atom element that represents a WFI, WFIT, WFE, or WFET instruction.

• Any pending Commit elements.

RLBDSM While the trace unit is in the low-power state, the trace unit does not generate trace, including ETEEvent trace.

RMFBDT While the trace unit is in the low-power state, the resources remain in the state that they were in before the trace unit
entered the low-power state.

IQXBYK The resources are:

• The Counters.

• The Sequencer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6263
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
• The ViewInst start/stop function.

• The Single-shot Comparator Controls.

RFHYHC While the trace unit is in the low-power state, the trace unit drives all External Outputs low.

RDNKDV While the trace-unit is in the low-power state, the PE and external debuggers ability to access the trace unit trace
registers and trace unit management registers is unaffected.

RXTBQX While the trace unit is in the low-power state, when a trace protocol synchronization request occurs, the trace unit
handles the trace protocol synchronization request correctly. For more information on how the trace unit handles
trace protocol synchronization requests, see Trace protocol synchronization.

RTWQJT While the trace unit is in a retention state, external debugger accesses to the trace unit behave as if there is no power
to the trace unit Core power domain.

IRCXZX While the trace unit is in the low-power state, the trace unit might not recognize external events, such as the assertion
of any External Inputs.

IBPQTL While the trace unit is in the low-power state, it is IMPLEMENTATION DEFINED whether the cycle counter continues
to count or not.

IVTRBC While the trace unit is in the low-power state, timestamp requests might be ignored.

IZTDMB It is possible that the trace unit might intermittently leave and reenter the low-power state while the PE is in a
low-power state. If this happens, the trace unit resources might become intermittently active during this time. In
addition, trace generation might also become intermittently active, and this means that the trace unit might output
some packets. This behavior is IMPLEMENTATION DEFINED.

IZVDSF There is no additional requirement for the trace unit to generate a Trace Info element or Trace On element when
leaving the low-power state. However, if the trace unit entered the low-power state because the PE was in Debug
state, the normal requirements for restarting trace after leaving Debug state apply, including generation of a Trace
On element. For more information on the PE Debug state, see Trace unit behavior while the PE is in Debug state.

ILQFRD The trace unit can be programmed so that it does not enter the low-power state, by enabling Low-power Override
Mode. Low-power Override Mode is selected using TRCEVENTCTL1R.LPOVERRIDE.

RVHSFL When Low-power Override Mode is enabled, the resources continue operating and the trace unit can generate trace.

IFRMMP Low-power Override Mode does not affect the operation of the PE, however it is not required to prevent the PE from
entering a low-power state. This means that even though the trace unit can generate trace, it might only generate
Event elements.

D4.5.3 Trace unit behavior while the PE is in Debug state

RXJXQS While ViewInst is active, when the PE enters Debug state, the trace unit generates an Exception element which
indicates that the PE has entered Debug state.

RYMJFJ When the PE enters Debug state, ViewInst becomes inactive, and remains inactive throughout the time the PE is in
Debug state.

RDPKSC While the PE is in Debug state, the trace unit does not trace:

• Instructions that are executed.

• The effects of instructions that are executed.

• Exceptional occurrences.

RHBNFJ When the PE exits Debug state and ViewInst becomes active, the trace unit generates a Trace On element.

RTGFHM While the PE is in Debug state, the ViewInst start/stop function maintains its state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6264
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IWFYLQ If an Exceptional occurrence occurs between the PE exiting Debug state and the PE executing the first instruction,
the value of TRCRSR.TA is used to determine if the Exceptional occurrence is traced. In general, if the entry to
Debug state was traced then TRCRSR.TA will be set to 1, and therefore this Exceptional occurrence on exit from
Debug state is traced.

INPQLT If a PE Reset occurs when the PE is in Debug state this is treated as leaving Debug state. This means that a Trace
On element and an Exception element indicating a PE Reset are traced if tracing is not prohibited and either of the
following are true:

• TRCRSR.TA is 1.

• Forced tracing of PE Resets is active.

D4.5.4 Trace unit behavior on a trace unit buffer overflow

RPQGXB When a trace unit buffer overflow occurs, trace generation becomes inoperative until the trace unit can recover from
the overflow.

RRQHFH When a trace unit buffer overflow occurs, the trace unit does not output a partial trace packet, that is, the trace unit
can only output complete packets.

ITDCNT The Overflow element indicates to a trace analyzer that a trace unit buffer overflow has occurred. For more details
on the generation of an Overflow element, see Overflow element.

RDQBDH When the trace unit recovers from a trace unit buffer overflow, the following occur:

• Trace protocol synchronization is requested.

• Trace protocol synchronization occurs before the trace unit outputs any packets.

IVQYYH When an Overflow packet is generated, the trace unit might output any of the following packets before it outputs an
Alignment Synchronization packet:

• Event packet.

• Overflow packet.

• Discard packet.

• Ignore packet.

IYYNRQ Arm recommends that the Alignment Synchronization packet is the first packet output after the Overflow packet.

D4.5.5 Instrumentation extension

ITLZTW FEAT_ITE provides a mechanism to allow software to inject instrumentation information into the ETE trace stream,
allowing the ETE trace to be augmented with software-defined information that can aid with debugging and
interpretation of the ETE trace.

Examples of instrumentation information include the following:

• Context information about the program being executed.

• Parameters to functions.

• Data addresses and values of variables and other data structures.

IGRJLV All of the following registers control the behavior of FEAT_ITE:

• TRCITECR_EL1, providing EL1 with controls over FEAT_ITE.

• TRCITECR_EL2, providing EL2 with controls over FEAT_ITE.

• TRCITEEDCR, TRCCONFIGR and EDSCR.TFO, providing an external debugger with controls over
FEAT_ITE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6265
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
• MDCR_EL3.EnITE, providing an EL3 trap control over access to TRCITECR_EL1 and TRCITECR_EL2.

• HDFGRTR2_EL2.nTRCITECR_EL1 and HDFGWTR2_EL2.nTRCITECR_EL1, providing EL2 trap
controls over access to TRCITECR_EL1.

ICMDFW The controls provided in TRCITECR_EL1 and TRCITECR_EL2 are similar in function to TRFCR_ELx provided
for FEAT_TRF.

RFLGVJ If SelfHostedTraceEnabled() is TRUE, then the controls in TRCITECR_EL1 and TRCITECR_EL2 control when
Instrumentation trace is prohibited.

See TraceInstrumentationAllowed().

RRTKDL If SelfHostedTraceEnabled() is FALSE and TRCCONFIGR.ITO is 1, then the fields in TRCITEEDCR control when
Instrumentation trace is prohibited.

See TraceInstrumentationAllowed().

RDKCFL If SelfHostedTraceEnabled() is FALSE and TRCCONFIGR.ITO is 0, then the fields in TRCITEEDCR,
TRCITECR_EL1, and TRCITECR_EL2 control when Instrumentation trace is prohibited.

See TraceInstrumentationAllowed().

ISRTGR TRCCONFIGR.ITO and TRCITEEDCR allow an external debugger to one of the following:

• Completely control when Instrumentation trace is allowed and prohibited.

• Share control of when Instrumentation trace is allowed with software running on the PE.

D4.5.6 Trace unit power states

IGNFXM The Arm architecture defines the following power states:

Normal

The trace unit Core power domain is fully powered up and the trace unit registers are accessible.

Standby

The trace unit Core power domain is on, but there are measures to reduce energy consumption. Standby
is transparent, meaning that to software and to an external debugger it is indistinguishable from normal
operation.

Retention

The OS takes some measures, including IMPLEMENTATION DEFINED code sequences and registers, to
reduce energy consumption. Trace unit registers cannot be accessed. A trace unit reset does not occur
on leaving retention.

Powerdown

The OS takes some measures to reduce energy consumption by turning the trace unit Core power
domain off. Trace registers cannot be accessed. A trace unit reset occurs on leaving powerdown.

IMNDVQ A trace unit might support a low-power state, which is equivalent to the standby state.

IBMSVN A trace unit might support a retention state or a powerdown state, and both of these states are considered to be a
state where the trace unit Core power domain is powered down.

IZVBZF If the trace unit is implemented in a power domain which is separate from the PE power domain, all of the following
are true:

• The trace unit Core power domain might be able to be powered down without powering down the PE power
domain.

• The trace unit Core power domain is always powered down when the PE power domain is powered down.

ICNZJH A read of TRCPDSR returns information about the current state of the trace unit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6266
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
Table D4-21 describes the meanings of the returned value.

RCMKXK When the trace unit Core power domain transitions from powered down to powered up, if the trace unit register state
has been preserved over the powerdown, then TRCPDSR.STICKYPD is restored to the value before powerdown.

RFQMXQ When the trace unit Core power domain transitions from powered down to powered up, if the trace unit register state
has not been preserved over the power down then TRCPDSR.STICKYPD is set to 0b1.

Note

ETE only supports a single power domain and therefore TRCPDSR.POWER is always 0b1.

IFRMBB A system might support a Debug power domain that contains the interface between the trace unit and the external
debugger. The Debug power domain usually needs to be powered up when the external debugger needs to connect
to the system. Such a Debug power domain is described in Resets and power domains.

RGYLKD If the trace unit Core power domain can be powered down independently of the Debug power domain, Arm
recommends that the system implements an external debug component with a powerup request mechanism which
can request the trace unit Core power domain to be powered up.

RZNSNS Arm strongly recommends the powerup request mechanism is a CoreSight Class 0x9 ROM Table containing a
parent entry for the trace unit. A parent entry of a component is one of:

• An entry in the ROM table that locates the component.

• An entry in a first ROM table that locates a second ROM table that includes a parent entry for the component.

The second ROM table is a descendant of the first ROM table.

ITLYXG This definition of a parent entry is recursive, and therefore the powerup request mechanism might be high up in a
hierarchy of ROM tables. The ROM table and any descendants might describe other debug components, including
debug components for other PEs. The ROM table might have parent entries in other ROM tables, and those parent
entries might also have a powerup request mechanism in those ROM tables.

RZPCZC If the powerup request mechanism is implemented, in the Class 0x9 ROM Table containing the powerup request
mechanism for the trace unit:

• The POWERIDVALID bit in the parent entry must be 0b1.

• The POWERID field in the parent entry has an IMPLEMENTATION DEFINED value.

IDXHPS It is IMPLEMENTATION DEFINED whether the trace unit Core power domain is the PE Core power domain or some
other power domain. For more information on the CoreSight Class 0x9 ROM Table, see the Arm® CoreSight®
Architecture Specification (ARM IHI 0029).

D4.5.7 Visibility of the PE operation

IBMPFH This section describes the ability of the trace unit to trace the execution of the operation of the PE.

RQCFMC When the trace unit performs indirect reads of PE System registers, the trace unit complies with the rules associated
with Context synchronization events.

RQHTYC When the trace unit performs indirect reads of PE System registers, the trace unit complies with the rules associated
with the TSB CSYNC instruction as defined in Chapter D6 The Trace Buffer Extension.

Table D4-21 Meaning of TRCPDSR values

STICKYPD POWER Meaning

0b0 0b1 The trace unit Core power domain is powered and the trace unit registers are accessible.

0b1 0b1 The trace unit Core power domain is powered and the trace unit registers are accessible. A trace
unit reset or power interruption has occurred so the trace unit register state might not be valid.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6267
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RQCFSS When instructions are executed outside of any Trace Prohibited region, the trace unit observes the execution.

RCDNKX When observable instructions are executed, the trace unit observes all execution before a PE Context
synchronization event occurs, as defined in Chapter D6 The Trace Buffer Extension.

RQMBKJ When an Exceptional occurrence occurs outside of any Trace Prohibited region, the trace unit observes the
Exceptional occurrence.

IXBJFP Executing a TSB CSYNC instruction generates a Trace synchronization event as defined in Chapter D6 The Trace
Buffer Extension.

RFCBLJ When a TSB CSYNC instruction is executed in a Trace Prohibited region, the TSB CSYNC instruction does not become
microarchitecturally-finished until the resources are in the Paused state or the trace unit is in the Idle or Stable state.

IJYJDZ While the PE is outside a transaction, after a TSB CSYNC instruction executed inside a Trace Prohibited region
generates a Trace synchronization event, the Trace synchronization event is microarchitecturally-finished when the
trace operation has microarchitecturally-finished for every instruction before the Context synchronization event
before the TSB CSYNC instruction that generated the Trace synchronization event.

For more details on the TSB CSYNC instruction, see RMRVPT.

RTSLRT While the PE is inside a transaction, when a Trace synchronization event occurs, the Trace synchronization event
becomes microarchitecturally-finished within a finite period.

IHNSGS While the PE is inside a transaction, the completion of a Trace synchronization event is not dependent on the
resolution of the transaction. It might still depend on other aspects of the trace operation.

RXLVQM When a TSB CSYNC instruction executed in a Trace Prohibited region becomes microarchitecturally-finished, the trace
unit generates no more trace until the PE leaves the Trace Prohibited region.

ICZLXW When a TSB CSYNC is executed in a Trace Prohibited region, the rules around generation of a trace flush and requiring
no more trace to be generated in the Trace Prohibited region mean that only whole trace packets are output, and the
last byte output is the end of a packet.

IGSXJJ These rules ensure that no new trace is generated and allows various System registers to be changed, such as those
controlling the Trace Buffer Extension, without the risk of any trace being generated while those registers are being
changed.

RXRWPV When the trace unit becomes enabled in a Trace Prohibited region, the trace unit generates no trace until the PE
leaves the Trace Prohibited region.

Note

This ensures that no trace is generated until the PE leaves the Trace Prohibited region, and therefore allows various
System registers to be changed, such as those controlling the Trace Buffer Extension, without the risk of any trace
being generated while those registers are being changed.

IKXDDS The trace operation as defined in Chapter D6 The Trace Buffer Extension can be split into operations that are
performed by one of the following:

• The PE.

• The ETE trace unit.

• The trace buffer.

The operation of the trace unit is defined by the ETE trace operation.

RRFJQN If the Trace Buffer Unit is implemented and enabled, when a Trace synchronization event occurs, and after all of
the trace byte stream generated by the trace unit is flushed to the trace buffer, the Trace synchronization event
completes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6268
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
ICNJYL

D4.5.7.1 ETE trace operation

RYCJXC Each instruction has all of the following state information:

• PC.

• PSTATE.T.

• PSTATE.EL.

• The Security state.

• CONTEXTIDR_EL1.PROCID.

• CONTEXTIDR_EL2.PROCID.

• TRFCR_EL1.

• TRFCR_EL2.

• MDCR_EL3.STE.

• TxNestingLevel.

IGCLMS The trace information generated contains Address information in Target Address elements, Source Address elements,
Exception elements, and Q elements. The Address information contains:

• The virtual address of an instruction.

• The instruction set, known as the sub_isa.

IJTLPL The trace information generated contains Context information in Context elements. The Context information
contains:

• The current Security state.

• The current Exception level.

• The current Execution state, which is AArch32 or AArch64.

Table D4-22 Labels for ordering diagrams

Notation Name Description

po program-order head is in program order after tail.

rf Reads-from tail Reads-from head.

co Coherence-after head is Coherence-after tail.

fr from-read As co, except that the operation at head is a read.

ob Observed-by tail is Observed-by head. Only applies for different Observers.

tb traced-by head is the trace operation for the instruction at tail.

gb generated by head is an operation generated by the instruction at tail.

seo speculative execution-order The PE speculated that the instruction at head was executed after tail, but the instruction
was later Canceled or was part of a Transaction that Failed or was Canceled. An seo
arrow might be paired with a can arrow that shows this.

can canceled The instruction at tail was Canceled when the instruction at head was resolved, or the
Transaction containing tail Failed or was Canceled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6269
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
• The current Context identifier, as stored in CONTEXTIDR_EL1.PROCID.

• The current Virtual context identifier, as stored in CONTEXTIDR_EL2.PROCID.

RWBCRN When an instruction is executed and all the trace elements for the instruction have been generated, the trace
operation for the instruction is complete.

IWXNXB Trace elements generated for an instruction might include:

• Global timestamp elements.

• Cycle count elements.

• Speculation resolution elements.

• Transaction resolution elements.

IFKTKY For example, the tracing of PE execution is where:

• Resolved instruction A is executed in program order before a Resolved instruction B.

• tA is all the trace elements that are generated due to the tracing of instruction A.

• tB is all the trace elements that are generated due to the tracing of instruction B.

• The trace elements for tA must be observed before tB.

This is shown in Figure D4-11.

Figure D4-11 Trace operation

D4.5.7.2 Impact on PE behavior

ILLKFT The ETE architecture places no requirements on the impact that trace generation has on the functional performance
of a PE. Arm expects that trace unit implementations are designed according to the market requirements of the PEs
being traced, and according to the trace requirements for those PEs. For some markets and trace requirements, the
trace solution might always have some performance impact on the PE and the ETE architecture does not prohibit
this.

D4.5.7.3 Behavior on a PE Warm reset

RYYHBF A PE Warm reset does not cause a Trace unit reset.

Note
This ensures that tracing is possible through a PE Warm reset.

IQBSCX A PE Warm reset might occur at the same time as a Trace unit reset, however, these are asynchronous and unrelated
events.

� ���

� �

��

� �

��

��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6270
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5.7.4 Instruction block

ITYXHR How instructions are executed can vary significantly between PE designs. To allow for these variations the ETE
architecture allows some flexibility within the filtering model. Rather than applying the filtering model to individual
instructions it is applied to blocks of instructions.

RBQTBL An instruction block contains one or more instructions.

RGDZBX An instruction block can contain zero or one P0 instruction.

RCVJQH When an instruction block is generated which contains a P0 instruction, the instruction block has the P0 instruction
as the last instruction in the block.

RHPJTP Exceptional occurrences do not occur between instructions in an instruction block.

RLDJXZ The addresses of the instructions within an instruction block are sequential.

IJCQHC The number of instructions in a block can vary from block to block and can vary each time the same sequence of
instructions are executed.

IHRBJG For example, the tracing of an instruction block is where:

• Resolved instruction A is executed in program order before a Resolved instruction B.

• tA is all the trace elements that are generated due to the tracing of instruction A.

• tA is all the trace elements that are generated due to the tracing of instruction B.

This is shown in Figure D4-12.

Figure D4-12 Instruction block trace operation

D4.5.7.5 Exposing speculation

IDCDNQ For some PE microarchitectures, the tracing of execution-order only might not be achievable. The ETE architecture
provides the ability to trace speculatively executed instructions.

RTRVLX When speculative instructions are observed, the trace unit indicates whether each instruction is resolved or canceled
with a resolve operation or a cancel operation.

RPPJSK A resolve operation indicates that one or more instructions have, or will be, architecturally executed.

RWZBLY A cancel operation indicates that one or more instructions, although observed by the trace unit, did not
architecturally execute.

IKQYZB There is no requirement to expose any speculation to the trace unit.

IDKDHD For example, the tracing of speculation execution is where:

• S is executed in speculative execution-order after a Resolved instruction A.

• A is executed in program order before a Resolved instruction B.

• S is not in speculative execution-order after B.

• Q is executed in speculative execution-order after a Resolved instruction B.

� ���

� �
��

��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6271
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
This is shown in Figure D4-13.

Figure D4-13 Observation of Speculative Trace operation

D4.5.7.6 Trace Prohibited Regions

ITHCBC Trace Prohibited regions are instruction address regions or periods of execution by the PE that are not to be traced.
Instructions and Exceptional occurrences which are not prohibited are not necessarily traced because the trace unit
has a number of trace filtering functions to limit the amount of trace generated to the sections or periods of interest.

IRJYNL An executable program might contain regions of code that are prohibited to trace. These regions might be associated
with another Security state, or with the PE entering a privileged mode so that it can execute the instructions that are
contained within them.

Tracing might be prohibited while the PE is operating in certain states or modes. For example:

• Non-invasive debug might be prohibited while the PE is in Secure, Realm, or Root state.

• FEAT_TRF might prohibit tracing.

• FEAT_TRBE might prohibit tracing.

Trace might also become prohibited if, while tracing program execution, an authentication interface changes the
currently permitted level of non-invasive debug. For example, if trace is permitted and active while the PE is
operating in Secure state, and then the permitted level of non-invasive debug changes from being permitted for
Secure state, to not permitted, then trace becomes prohibited.

IZPXRJ Chapter D6 The Trace Buffer Extension describes when FEAT_TRBE prohibits tracing.

RHYZLQ If an optional authentication interface is implemented, while non-invasive debug is disabled in a Security state other
than Non-secure state according to that optional authentication interface and while SelfHostedTraceEnabled()
returns FALSE, then for execution in that Security state, the PE executes in a Trace Prohibited region.

INVSDD An example of an optional authentication interface is the CoreSight Authentication interface. For more information,
see the Arm® CoreSight® Architecture Specification (ARM IHI 0029).

RFFVYM While the PE is executing code from a Trace Prohibited region, the trace unit does not trace instructions or
Exceptional occurrences, including PE Resets.

RKTMLZ While the PE is executing code from a Trace Prohibited region, instruction Address Comparators do not match on
any instructions in the Trace Prohibited region.

RSZRZR While cycle counting is enabled and the PE is executing code from a Trace Prohibited region, the cycle counter
continues to count.

IMCCBH When the PE leaves a Trace Prohibited region and tracing restarts, the cycle counter includes cycles spent in the
Trace Prohibited region in the cycle count.

ISDSGK The behavior of the resources when entering a Trace Prohibited region is defined in Behavior of the resources while
in the Paused state.

� ���

�

�	�

�

�	�

���

� �

	

� �

	

�

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6272
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RVHRGM While the PE is executing code from a Trace Prohibited region, the trace unit does not output any trace that might
provide information about the execution in the Trace Prohibited region.

IJSKLD Examples of information about execution in a Trace Prohibited region that trace might provide are the context of
execution, instruction addresses, and the address of the first instruction in the Trace Prohibited region.

IMKQWS The most common cause of an entry into a Trace Prohibited region is an Exceptional occurrence or Context
synchronization event.

RTHBVD When an Exceptional occurrence that must be traced causes the PE to enter a Trace Prohibited region, the trace unit
generates an Exception element that indicates the exception type.

RCKZMR When the PE enters a Trace Prohibited region and there are unresolved speculative P0 elements remaining in the
trace byte stream, when the resolution of the speculative elements is known the trace unit generates the appropriate
Commit elements or Cancel elements.

RRXMJF When the PE leaves a Trace Prohibited region and ViewInst is active, that is, any filtering applied dictates that
ViewInst is active, the trace unit generates a Trace On element.

IQGFJF The purpose of the trace unit generating a Trace On element when the PE exits a Trace Prohibited region and
ViewInst is active is to indicate to the trace analyzer that there has been a discontinuity in the trace element stream.

IJBFTB If the PE leaves a Trace Prohibited region other than when a Context synchronization event occurs, the Trace
Prohibited region is permitted to extend up to the next Context synchronization event. Typically, a PE leaves a Trace
Prohibited region via a Context synchronization event, but a PE might leave a Trace Prohibited region when the
authentication interface changes, or when moving from a higher Security state to a lower Security state without an
exception return.

IDMXPF If an Exceptional occurrence occurs between the PE exiting a Trace Prohibited region and the PE executing the first
instruction, the value of TRCRSR.TA is used to determine if the Exceptional occurrence is traced.

D4.5.7.7 Multi-threaded processor

RKBZTZ Processors with multiple threads or PEs have a trace unit for each thread or PE.

IKHSWQ The processor might support enabling and disabling of threads, either at PE Reset time or dynamically. The trace
units for the threads that are disabled might behave in one of the following ways:

• The trace unit Core power domain is powered down.

• The trace unit Core power domain is held in the trace unit reset state.

IRFSNL Arm recommends that the trace units for threads that are permanently disabled are not visible: either they are not
included, or they are marked as not present in any ROM tables that describe the system.

D4.5.7.8 Sharing between multiple PEs

ITSWXS Previous Trace architectures have allowed the trace unit to be shared between multiple PEs.

RTLJSQ A trace unit only traces a single PE, that is, it cannot be shared between multiple PEs.

D4.5.8 Speculation resolution

IRKYCD The trace unit implements a maximum speculation depth, that is, the maximum permitted number of P0 elements
that can be speculative at any instance. TRCIDR8.MAXSPEC indicates the IMPLEMENTATION DEFINED maximum
speculation depth.

RGLQPL The trace unit never outputs more speculative P0 elements than the maximum speculation depth.

IKCFGW If a trace unit is not exposed to any speculative execution, then Arm recommends that the trace unit implements a
maximum speculation depth of zero, and in this case:

• Cancel elements are not generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6273
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
• Commit elements are generated after each P0 element, causing each P0 element to be immediately resolved
when it is generated. The instruction trace protocol implicitly generates these Commit elements for each P0
element, meaning that explicit Commit packets are not required.

• Mispredict elements are not generated.

IQLKDL The ETE architecture defines Commit element and Cancel elements to allow the speculation of the P0 elements to
be resolved by the trace analyzer. The trace unit is required to calculate the number of P0 elements which are
committed or canceled. There are many methods by which these numbers can be calculated, but in the generic case
the trace unit can use the following mathematical procedure.

The PE can speculatively indicate blocks of instructions to the trace unit. Each block of instructions is given a tag
where tag belongs to 0…m and m is the number of rewind points supported by the PE.

The number of instructions per block can be random from the set N and there is a maximum of one P0 instruction
per block. The order in which the tags are used can be random, but a tag cannot be reused until the previous block
with that tag has been resolved, canceled or merged.

This procedure generates a transform from the potentially random sequence of core tags to a more usable space. The
transform T evolves over time as the tags are reused and provides the mapping onto the new space,

ci is the mapping for core tag i.

ci belongs to 0…q, where q is greater than m.

D4.5.8.1 Initialization

IHRDQL To perform the necessary calculations, the trace unit tracks the transform of the last resolved block. γt is the last
committed indicator. The algorithm is initialized at t=0 to

D4.5.8.2 New block operation

ISMGSG The sequence of the numbers in the transformed space, xt, is defined by the following equation:

D4.5.8.3 Resolved operation

IBJFLR The PE can resolve one or more blocks in an atomic operation. This is performed by indicating the youngest block’s
tag to be resolved, and by inference all older blocks.

Tt = [c0, . . . , cm]

∀i ∈ 0, . . . ,m : T0[i] = γ0

x0 = γ0

xt+1 =

{
|(xt + 1) mod q| If a traced P0 instruction

xt Otherwise

Tt+1[tagt] =

{
|(xt + 1) mod q| If a traced P0 instruction

Tt[tagt] Otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6274
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
The number required by the Commit element is calculated by

 The state of the transform is updated by

where l is the youngest block’s tag.

D4.5.8.4 Cancel operation

IHJYQH The PE can cancel one or more blocks in an atomic operation. This is performed by indicating the oldest block to
be canceled.

The number required by the Cancel element is calculated by

 The state of the transform is updated by

where r is the oldest block’s tag.

D4.5.9 Filtering trace generation

ICCWZG The amount of trace that can be generated by the trace unit can be significant. Not all the operations of the PE are
always relevant. The amount of trace generated can be reduced by the use of the trace unit filter functions.

D4.5.9.1 ViewInst function

RGQFSB The filtering function of the instruction trace is expressed as a calculation evaluated for each instruction.

RBZXFH While ViewInst is high, the trace unit traces all instructions.

n+ = |(Tt[l]− γt) mod q|

γt+1 = Tt[l]

n− = |(xt − Tt[r]) mod q|

xt+1 = Tt[r]

ViewInsti =

⎧⎪⎨
⎪⎩
0 When Prohibited

0 When in Debug state

Si ∧ Ii ∧ Ei ∧Ni Otherwise

Si = ViewInst start/stop function

Ii = ViewInst include/exclude function

Ei = Exception level filtering

Ni = Resource event based filtering
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6275
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IMJMCV Instructions for which ViewInst is low might be traced. This might be as a result of tracing the next P0 element or
optimizations in the trace unit.

RXPNZL When ViewInst is high for an instruction in an instruction block, the trace unit traces the entire instruction block.

RKHDNX When ViewInst becomes high, the trace unit traces the next P0 instruction or Exceptional occurrence.

INSMSV Some instruction types cause the trace unit to generate P0 elements, so that they are explicitly traced. Other
instruction types however are not explicitly traced. The execution of these other instruction types can be inferred
from the P0 elements. This means that the following scenario is possible:

• While ViewInst is high, some instructions are executed. This means that ViewInst is indicating that those
instructions must be traced. However, none of the executed instructions cause the trace unit to generate a P0
element, therefore none of the instructions are traced.

• ViewInst then goes low.

• The PE then executes an instruction that, whenever ViewInst is high, causes the trace unit to generate a P0
element.

In this scenario, although ViewInst is low when the instruction in step 3 is executed, indicating that the instruction
is not traced, tracing of the instruction is permitted because this is the only way that the preceding instructions can
be traced.

IFGSBW There is no requirement for the target address of a P0 instruction or Exceptional occurrence to be traced if ViewInst
has transitioned to a low state by the time program execution has moved to the target.

ILCXHX Unless the target instruction block is traced, any Target Address elements indicating the target address of a P0
instruction or Exceptional occurrence cannot be relied on.

D4.5.9.1.1 Resource event based filtering

RBQNWP The resource event based filtering part of the ViewInst function is expressed as the following equation:

Where Fn(TRCVICTLR.EVENT.SEL, TRCVICTLR.EVENT.TYPE) selects the combination of Resource
Selectors used for resource event based filtering.

IKMXNS The timing of the resource event based filtering is IMPLEMENTATION SPECIFIC.

IDWWVR Resource event based filtering can be used to make ViewInst active based on system conditions or on trace unit
resources. For example:

• Sampling based on cycle counts.

• Activating tracing on the nth function call.

• Performance Monitoring Unit events.

RNBYKR When an instruction block is processed by the trace unit during a cycle, the trace unit samples the ViewInst function
resource event input during that cycle.

RSRMMD When no instruction blocks are processed by the trace unit during a cycle, the trace unit does not sample the
ViewInst function resource event input during that cycle.

D4.5.9.1.2 Exception level filtering

IHNPYV This function provides a simple method of filtering out information about different Exception levels without the
need to use of additional resources.

Ni = Fn(TRCVICTLR.EVENT.SEL,TRCVICTLR.EVENT.TYPE)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6276
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RLWYJR The Exception level based filtering part of the ViewInst function is expressed as the following equation:

D4.5.9.2 ViewInst start/stop function filtering

IPJQSC The ViewInst start/stop function is useful when the requirement is to trace a particular piece of code with all the
functions that the piece of code calls.

The ViewInst start/stop function uses the Single Address Comparators and the PE Comparator Inputs to define start
points and stop points.

A start point is any of the following:

• The instruction address which matches a Single Address Comparator selected for the ViewInst start/stop
function using TRCVISSCTLR.START.

• The instruction address which matches a PE Comparator selected for the ViewInst start/stop function using
TRCVIPCSSCTLR.START.

A stop point is any of the following:

• The instruction address which matches a Single Address Comparator selected for the ViewInst start/stop
function using TRCVISSCTLR.STOP.

• The instruction address which matches a PE Comparator selected for the ViewInst start/stop function using
TRCVIPCSSCTLR.STOP.

Multiple start points can be selected. Multiple stop points can be selected.

RMVDJT When a start point is encountered, the ViewInst start/stop function becomes active for the instruction at the start
point.

RCDFBP When a stop point is encountered, the ViewInst start/stop function becomes inactive immediately after the
instruction at the stop point.

RLMQPR When the ViewInst start/stop function causes ViewInst to become active, the trace unit traces the instruction at the
start address.

RBWXLS When the ViewInst start/stop function causes ViewInst to become inactive, the trace unit traces up to and including
the instruction at the stop address.

Ei =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬TRCVICTLR.EXLEVEL S EL0 Secure EL0

¬TRCVICTLR.EXLEVEL S EL1 Secure EL1

¬TRCVICTLR.EXLEVEL S EL2 Secure EL2

¬TRCVICTLR.EXLEVEL S EL3 EL3

¬TRCVICTLR.EXLEVEL NS EL0 Non-secure EL0

¬TRCVICTLR.EXLEVEL NS EL1 Non-secure EL1

¬TRCVICTLR.EXLEVEL NS EL2 Non-secure EL2

¬(TRCACATRn.EXLEVEL RL EL0 ⊕
TRCACATRn.EXLEVEL NS EL0) Realm EL0

¬(TRCACATRn.EXLEVEL RL EL1 ⊕
TRCACATRn.EXLEVEL NS EL1) Realm EL1

¬(TRCACATRn.EXLEVEL RL EL2 ⊕
TRCACATRn.EXLEVEL NS EL2) Realm EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6277
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RXHFYQ While a ViewInst start/stop function start address is the same as a stop address, the behavior of the ViewInst
start/stop function is UNPREDICTABLE.

RKCYTR The ViewInst start/stop function part of the ViewInst function is expressed as the following equations:

If TRCIDR4.NUMPC == 0b0000, then:

If TRCIDR4.NUMPC != 0b0000, then:

RMVFYN The following have no effect on the ViewInst start/stop function:

• Exceptional occurrences.

• Execution in Debug state.

• Execution in a Trace Prohibited region.

• A trace unit buffer overflow.

RGRSVY When disabling the trace unit, the ViewInst start/stop function becomes static and retains its state until the trace unit
is enabled again.

SXMMLP For each of TRCVICTLR.SSSTATUS, TRCVISSCTLR, and TRCVIPCSSCTLR, if the register is implemented, it
must be programmed with an initial state when the trace unit is programmed before a trace session.

RHYLDM If an implementation makes speculation visible to the trace unit, the ViewInst start/stop function behaves as if no
speculation has occurred. That is, when the instruction at a start or stop point is executed speculatively and is later
canceled, the ViewInst start/stop function behaves as if the instruction at the start or stop point was not executed.

TRCVICTLR.SSSTATUSi+1 = Si ∧ ¬Stopi

Si = TRCVICTLR.SSSTATUSi ∨ Starti

Starti =
∑
n

(SAC[n] ∧ TRCVISSCTLR.START[n])

Stopi =
∑
n

(SAC[n] ∧ TRCVISSCTLR.STOP[n])

Starti =
∑
n

(SAC[n] ∧ TRCVISSCTLR.START[n])

∨
∑
m

(PECMP[m] ∧ TRCVIPCSSCTLR.START[m])

Stopi =
∑
n

(SAC[n] ∧ TRCVISSCTLR.STOP[n])

∨
∑
m

(PECMP[m] ∧ TRCVIPCSSCTLR.STOP[m])
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6278
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RBZSXR When the trace unit becomes disabled and there are instructions at start points or stop points which are still
speculative, the behavior of the ViewInst start/stop function is IMPLEMENTATION DEFINED and one of the following:

• The ViewInst start/stop function behaves as if the instructions at the start points or stop points were
incorrectly speculated. That is, the trace unit behaves as if those start points and stop points did not occur.

• The ViewInst start/stop function behaves as if the instructions at the start points or stop points were correctly
speculated. That is, the trace unit updates the state of the ViewInst start/stop function as if those start points
and stop points occurred.

RHMKSZ When mis-speculation occurs and the PE returns to a point in execution before the trace unit was enabled, the
ViewInst start/stop function reverts to the state it was in when the trace unit became enabled.

RCYQZV When a transaction failure occurs the ViewInst start/stop function reverts back to the state to point immediately after
the TSTART instruction for the outer transaction.

This is the value of TRCVICTLR.SSSTATUS for the instruction block that contains the TSTART instruction for the
outer transaction.

RZBTPF When a transaction failure causes the PE to return to a point in execution before the trace unit was enabled, the
ViewInst start/stop function reverts to the state it was in when the trace unit became enabled.

RLRBDC When the trace unit becomes disabled and the PE is executing in Transactional state, the behavior of the ViewInst
start/stop function is IMPLEMENTATION DEFINED and one of the following:

• The ViewInst start/stop function behaves as if the transaction failed. That is, the trace unit behaves as if those
start points and stop points did not occur.

• The ViewInst start/stop function behaves as if the transaction was successful. That is, the trace unit updates
the state of the ViewInst start/stop function as if those start points and stop points occurred.

RFFZDC When tracing becomes prohibited and the PE is executing in Transactional state, the behavior of the ViewInst
start/stop function is IMPLEMENTATION DEFINED and one of the following:

• The ViewInst start/stop function behaves as if the transaction failed. That is, the trace unit behaves as if those
start points and stop points did not occur.

• The ViewInst start/stop function behaves as if the transaction was successful. That is, the trace unit behaves
as if those start points and stop points did occur.

• The ViewInst start/stop function uses the real resolution of the transaction, when that resolution is eventually
known.

RPBFMY When the state of the ViewInst start/stop function is changed by anything other than a direct write to TRCVICTLR,
the PE considers the write to be an indirect write to TRCVICTLR.SSSTATUS.

IBVYPM In many common usage scenarios, entry to a Trace Prohibited region or disabling of the trace unit does not occur
while in a transaction.

D4.5.9.2.1 Instruction blocks

RPTTKL When an instruction block that contains instructions at ViewInst start points and no instructions at ViewInst stop
points is executed, the ViewInst start/stop function remains active for the entire instruction block.

RWJLMR While the ViewInst start/stop function is active, when an instruction block is executed that contains at least one
ViewInst stop address and no ViewInst start addresses, the ViewInst start/stop function remains active for the whole
instruction block and becomes inactive for the next instruction block, unless the next instruction block contains a
ViewInst start address.

RSMGJZ When an instruction block that contains at least one instruction at a ViewInst start point and at least one instruction
at a ViewInst stop point is executed, the ViewInst start/stop function obeys the order of the start and stop points in
the block, with the following consequences:

• The ViewInst start/stop function is active for the whole of the instruction block.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6279
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
• When the final instruction in the block at a ViewInst start or stop point is at a ViewInst start point, the
ViewInst start/stop function is active for the next instruction block.

• When the final instruction in the block at a ViewInst start or stop point is at a ViewInst stop point, the
ViewInst start/stop function is inactive for the next instruction block, unless the next block contains an
instruction at a new ViewInst start point.

RSFXZB The trace analyzer ensures that for all of the SACs selected for ViewInst start points or stop points, any SAC
programmed with a lower address than another SAC is a lower-numbered SAC than the other SAC. That is, the
SACs contain addresses in address order.

IRYPMM While the SACs selected for ViewInst do not contain addresses in address order, the behavior of the ViewInst
start/stop function is UNPREDICTABLE.

RZLDKC The trace analyzer ensures that for all of the PE Comparator Inputs selected for ViewInst start points or stop points,
any PE comparator programmed with a lower address than another PE comparator is a lower-numbered PE
comparator than the other PE comparator. That is, the PE comparators contain addresses in address order.

ICKTWT While the PE Comparator Inputs selected for ViewInst do not contain addresses in address order, the behavior of
the ViewInst start/stop function is UNPREDICTABLE.

RVFFWS If more than one instruction Address Comparator is programmed with the same instruction address, then
programming one or more of those comparators as start comparators, and one or more as stop comparators, results
in the following CONSTRAINED UNPREDICTABLE behavior of the ViewInst start/stop function:

• The ViewInst start/stop function is either active or inactive for the instruction at that address.

• The ViewInst start/stop function is either active or inactive after that instruction.

D4.5.9.3 ViewInst include/exclude function filtering

INDYFG The ViewInst include/exclude function is useful if:

• Specific ranges of instructions are required to be included in the trace.

• Specific ranges of instructions are required to be excluded from the trace.

• A combination of including and excluding instruction ranges is required.

ILDDGL The ViewInst include/exclude function is comprised of two functions:

There are between zero and eight instruction Address Range Comparators available for the ViewInst
include/exclude function. Some of these comparators can be selected for the ViewInst include function, and some
for the ViewInst exclude function.

SVNWYT For example, if all instructions in the address range from 0x00 to 0x2C are required, but no other instructions are
required, an Address Range Comparator can be selected for the ViewInst include function and be programmed with
these two addresses. All instructions that are in this address range, including those at the start and end addresses,
are traced.

INKLJR The ViewInst include/exclude function differs from the ViewInst start/stop function in the following ways:

• When the ViewInst start/stop function is used, the trace unit starts tracing on a specified start instruction
address and stops tracing on a specified stop instruction address. However, if execution branches or jumps to
an address between the start and stop points, without first accessing the instruction at the start address, then
the instruction that it has branched or jumped to is not traced. Instructions in the start/stop range are only

Function Meaning

ViewInst include function Includes one or more instruction address ranges

ViewInst exclude function Excludes one or more instruction address ranges
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6280
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
traced if the instruction at the start address is accessed, so that the trace unit is triggered to start tracing. When
triggered, and as execution continues sequentially towards the stop address, all functions that the piece of
code calls are traced.

• When the ViewInst include/exclude function is used, for example by programming an Address Range
Comparator with an include address range, then if execution branches or jumps to any instruction address
anywhere in that range, that instruction is always traced. This is true regardless of whether the instruction at
the start address has been accessed or not.

In addition, unlike the ViewInst start/stop function, as program execution continues through the address range
towards the end address, no functions that the piece of code calls are traced.

RSKZHH The ViewInst include/exclude function part of the ViewInst function is expressed as the following equations:

D4.5.9.3.1 Instruction blocks

RRNPWD When an instruction in an instruction block is included to be traced by the ViewInst include/exclude function, the
ViewInst include/exclude function includes all of the instruction block.

RPLCQJ When an instruction block contains at least one instruction excluded by the ViewInst include/exclude function, and
only when all the instructions in the instruction block are excluded, the ViewInst include/exclude function excludes
the instruction block.

ILBNVM If a block of instructions is not entirely covered by at least one individual ARC selected by
TRCVIIECTLR.EXCLUDE, it is CONSTRAINED UNPREDICTABLE whether the block is excluded or not. This applies
even if other ARCs selected by TRCVIIECTLR.EXCLUDE cover the rest of the block.

D4.5.9.4 Guidelines for interpreting the ViewInst function result

ITCGMV The result of the ViewInst function is either:

If it is expected that instructions being executed are not traced, then there are occasions when it is permitted to trace
some of those instructions. This section provides guidelines for when it is permitted to trace instructions that
ViewInst indicates are not traced.

D4.5.9.4.1 When ViewInst transitions from low to high

IGMYYC If execution occurs while ViewInst is low, it is permitted for a trace unit to trace instructions in certain
circumstances. For more information on ViewInst low, see Occasions when tracing instructions when ViewInst is
low is permitted.

IRVCQT Tracing of instructions is permitted while ViewInst is low, but if no instructions or Exceptional occurrences that
occur are traced, then there is a discontinuity in the trace. When a discontinuity in the trace occurs, when ViewInst
becomes high, a Trace On element must be generated.

IYXGLK Any instructions that are executed while ViewInst is high must be traced.

Result Meaning

High Indicates that instructions being executed must be traced

Low It is expected that instructions being executed are not traced
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6281
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5.9.4.2 Occasions when tracing instructions when ViewInst is low is permitted

IVFYXG ETE permits tracing of instructions when ViewInst is low, in the following scenarios:

• When the instruction that ViewInst indicates is not to be traced is in the same instruction block as an
instruction that ViewInst indicates must be traced. This is because the only way to trace the instruction that
must be traced is to trace the whole instruction block.

• When the instruction that ViewInst indicates is not to be traced is in an instruction block that precedes or
follows an instruction block containing an instruction that ViewInst indicates must be traced.

An implementation always traces the instruction block that contains an instruction that must be traced. However,
additional blocks of instructions might also be traced. This is more likely to occur when many instructions are
executed in close proximity.

ICDLHB Except for the scenarios that are mentioned, if the ViewInst function indicates that an instruction is not to be traced,
then in general it is expected that it is not traced.

IFJMHL In Figure D4-14, the instruction block 1 is in execution order before instruction block 2. The ViewInst calculation
for the second block returns true, as indicated by the transition labeled (a). As ViewInst is true for this instruction
block then all the instructions in this block must be traced, as indicated by the transition labeled (b). Instruction block
1 might be traced as it is in the same PE cycle as block 2, as indicated by the transition labeled (c).

Figure D4-14 Example of close proximity

D4.5.9.5 Rules for tracing Exceptional occurrences

RCGVJD When an Exceptional occurrence occurs, the Exceptional occurrence does not affect the comparators used by the
ViewInst function, and none of the comparators used by the ViewInst function match.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6282
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IVFDMQ The comparators used by the ViewInst function include the following:

• Single Address Comparators.

• Address Range Comparators.

• Context Identifier Comparators.

• Virtual Context Identifier Comparators.

IVFNZR When an Exception element is traced, it might indicate execution of instructions up to a specified address. These
instructions might have an impact on the comparators, but the Exceptional occurrence itself does not.

This means that when an Exceptional occurrence occurs, the ViewInst function does not indicate whether the
Exceptional occurrence must be traced. However, it is useful to trace Exceptional occurrences, to determine why
execution has departed from the normal program flow.

IBVGXZ When an instruction executes or Exceptional occurrence occurs outside a Trace Prohibited region, the trace unit
remembers whether the instruction or Exceptional occurrence was traced. The trace unit performs indirect writes to
TRCRSR.TA to store this state. When an Exceptional occurrence occurs, the trace unit uses TRCRSR.TA to
determine whether to trace the Exceptional occurrence.

RBFSWZ When an instruction executes or Exceptional occurrence occurs outside a Trace Prohibited region and the instruction
or Exceptional occurrence is traced, TRCRSR.TA is set to 1.

RMLTTK When an instruction executes or Exceptional occurrence occurs outside a Trace Prohibited region and the instruction
or Exceptional occurrence is not traced, TRCRSR.TA is set to 0.

RCJTJM When an instruction or Exceptional occurrence is canceled, TRCRSR.TA is set to the value of TRCRSR.TA
immediately before the canceled instruction or Exceptional occurrence.

RDPMBQ When an Exceptional occurrence occurs, it is traced if all of the following are true:

• The PE is not in Debug state.

• TRCRSR.TA is 1.

RBJQDP While any of the following are true, TRCRSR.TA is unchanged by any execution:

• The PE is in Debug state.

• The PE is in a Trace Prohibited region.

RQZPJD When a trace unit buffer overflow occurs, the behavior of TRCRSR.TA is IMPLEMENTATION DEFINED and is one of
the following:

• TRCRSR.TA is set to 0.

• TRCRSR.TA is set to the value of TRCRSR.TA for the most recent instruction or Exceptional occurrence
before the trace unit buffer overflow occurred.

D4.5.9.6 Forced tracing of Exceptional occurrences

IMFQND The trace unit can be programmed so that it always traces certain Exceptional occurrences, regardless of whether
the instruction or Exceptional occurrence immediately before the Exceptional occurrence must be traced. This
option is enabled by setting either or both:

• TRCVICTLR.TRCERR to 1. This forces the trace unit to trace System Error exceptions regardless of the
value of ViewInst.

• TRCVICTLR.TRCRESET to 1. This forces the trace unit to trace PE Resets regardless of the value of
ViewInst.

RSJXYS While the PE is executing in a Trace Prohibited region, forced tracing of System Error exceptions is inactive.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6283
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RVLNMN While the PE is not executing a Trace Prohibited region and forced tracing of System Error exceptions is enabled,
forced tracing of System Error exceptions is active.

RLTLBB While forced tracing of System Error exceptions is active, when a System Error exception occurs, the trace unit
generates an Exception element indicating a System Error exception, regardless of the value of ViewInst.

RNCXJN While the PE is executing in a Trace Prohibited region, forced tracing of PE Resets is inactive, regardless of whether
the PE Reset causes the PE to leave a Trace Prohibited region or not.

RNQJNL While the PE is not executing in a Trace Prohibited region, while forced tracing of PE Resets is enabled, forced
tracing of PE Resets is active.

RGPKSH While forced tracing of PE Resets is active, when a PE Reset occurs, the trace unit generates an Exception element
indicating a PE Reset, regardless of the value of ViewInst.

RBBBBT While tracing is inactive, before an Exception element is generated due to forced tracing of either a PE Reset of a
System Error exception, the trace unit generates a Trace On element and then a Target Address element.

ILXLKS When an Exception element is generated as a result of forced tracing, the Trace On element generated before the
Exception element indicates that tracing becomes active, and the Target Address element indicates where tracing
becomes active.

RNZNDM When a System Error exception occurs and TRCRSR.TA is 0 and the exception is traced because forced tracing of
System Error exceptions is enabled, then it is IMPLEMENTATION DEFINED whether TRCRSR.TA is set to 1 or remains
at 0.

RYFKGM When a PE Reset occurs and TRCRSR.TA is 0 and the PE Reset is traced because forced tracing of PE Resets is
enabled, then it is IMPLEMENTATION DEFINED whether TRCRSR.TA is set to 1 or remains at 0.

IGWHRM In scenarios where a System Error exception occurs at approximately the same time as an exit from a Trace
Prohibited region, after all execution inside the Trace Prohibited region and before any instruction execution outside
the Trace Prohibited region, it is UNPREDICTABLE whether the System Error exception is considered to have
occurred inside or outside the Trace Prohibited region. It is also UNPREDICTABLE whether the forced tracing of
System Error exceptions is active for this exception.

These scenarios do not include scenarios where the System Error exception caused the exit from a Trace Prohibited
region, because the System Error exception occurred inside the Trace Prohibited region.

IJGVSY In scenarios where a System Error exception occurs at approximately the same time as an entry to a Trace Prohibited
region, after all execution before the Trace Prohibited region and before any instruction execution inside the Trace
Prohibited region, it is UNPREDICTABLE whether the System Error exception is considered to have occurred inside
or outside the Trace Prohibited region. It is also UNPREDICTABLE whether the forced tracing of System Error
exceptions is active for this exception.

These scenarios do not include scenarios where the System Error exception caused the entry to a Trace Prohibited
region, because the System Error exception occurred outside the Trace Prohibited region.

RTSVKN When a System Error exception occurs immediately after the PE exits a Trace Prohibited region and the System
Error exception is traced, the preferred exception return address in the Exception element indicating the System
Error exception does not include information about the Trace Prohibited region.

IPXJWM In scenarios where a PE Reset occurs at approximately the same time as an exit from a Trace Prohibited region, after
all execution inside the Trace Prohibited region and before any instruction execution outside the Trace Prohibited
region, it is UNPREDICTABLE whether the PE Reset is considered to have occurred inside or outside the Trace
Prohibited region. It is UNPREDICTABLE whether the forced tracing of PE Resets is active for this PE Reset.

These scenarios do not include scenarios where the PE Reset caused the exit from a Trace Prohibited region, because
the PE Reset occurred inside the Trace Prohibited region.

IJKQHF In scenarios where a PE Reset occurs at approximately the same time as an entry to a Trace Prohibited region, after
all execution before the Trace Prohibited region and before any instruction execution inside the Trace Prohibited
region, it is UNPREDICTABLE whether the PE Reset is considered to have occurred inside or outside the Trace
Prohibited region. It is UNPREDICTABLE whether the forced tracing of PE Resets is active for this PE Reset.

These scenarios do not include scenarios where the PE Reset caused the entry to a Trace Prohibited region, because
the PE Reset occurred outside the Trace Prohibited region.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6284
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RNRNFS When a PE Reset occurs immediately after the PE exits a Trace Prohibited region and the PE Reset is traced, the
preferred exception return address in the Exception element indicating the PE Reset does not include information
about the Trace Prohibited region.

D4.5.10 Element Generation

D4.5.10.1 Trace Info element generation

RTFQRM When a trace protocol synchronization request is serviced, the trace unit generates a Trace Info element to indicate
where program execution trace analysis can start. A Trace Info element is not required to indicate where Event
element and Instrumentation element analysis can start.

Note
There is no requirement to generate a new Trace Info element every time that ViewInst becomes active. This is
because, despite the discontinuity in the trace that is caused by the filtering, the programming of the trace remains
the same.

RWJJNK While the PE is in Transactional state and the trace unit has previously generated a Transaction Start element for
this transaction, when a Trace Info element is generated, the trace unit sets the Transactional state indicator in the
Trace Info element to 1.

RWMXVM While the PE is not in Transactional state, or the PE is in Transactional state but the trace unit has not generated a
Transaction Start element for this transaction, when a Trace Info element is generated, the trace unit sets the
Transactional state indicator in the Trace Info element to 0.

RQMTSR When the trace unit generates the first Trace Info element after an Overflow element, the Transactional state
indicator is set to 0.

RCRPJZ When an Overflow element is generated, before any subsequent P0 elements indicating execution in Transactional
state are traced, the trace unit generates a new Transaction Start element, even if a Transaction Start element has
previously been traced for this transaction prior to the Overflow element.

D4.5.10.2 Atom element

RXCJGD When a P0 instruction is taken, the trace unit generates one of the following:

• An E Atom element.

• A Source Address element.

RSRYKV When a P0 instruction is not taken, the trace unit generates one of the following:

• An N Atom element.

• Nothing.

RTZZRH When a P0 instruction is not taken and the trace unit does not generate an N Atom element, for all future not taken
P0 instructions until the next taken P0 instruction or Exceptional occurrence, the trace unit does not generate an N
Atom element.

RNZTGQ When a P0 instruction is not taken and the trace unit does not generate an N Atom element, when an Exceptional
occurrence occurs before the next taken P0 instruction, the trace unit generates an Exception element.

RFWCQR When a P0 instruction is not taken and the trace unit does not generate an N Atom element, when no Exceptional
occurrence occurs before the next taken P0 instruction, the trace unit generates a Source Address element for the
next taken P0 instruction.

RNTMMM When a P0 instruction is not taken and the trace unit does not generate an N Atom element, and the P0 instruction
is subsequently mispredicted, the trace unit generates a Source Address element and does not generate a Mispredict
element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6285
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RZRYPK The trace unit generates Atom elements in the program order in which they occur, and the trace protocol encode and
decode process maintains this order.

ITGQNB For conditional branch instructions, an E Atom element indicates that the instruction passed its condition code check,
and an N Atom element indicates that the instruction failed its condition code check, although a trace unit might use
a Mispredict element to modify the Atom element.

IBXBNQ The trace unit might trace unconditional P0 instructions using an E Atom element or an N Atom element.

RRNYNV When an unconditional P0 instruction is traced using an N Atom element, the trace unit generates either a Mispredict
element or a Cancel element to correct the N Atom element.

RLMDZV When an ISB instruction does not pass the condition code check, and the ISB instruction does not perform a Context
synchronization event, the trace unit treats the ISB instruction as a not taken instruction.

RNZPLB When an ISB instruction does not pass the condition code check, and the ISB instruction performs a Context
synchronization event, the trace unit treats the ISB instruction as a taken instruction.

RCPFBS When an ISB instruction passes the condition code check, the trace unit treats the ISB instruction as a taken
instruction.

Note

For an ISB instruction, a trace analyzer must not infer the value of the PSTATE condition flags from an Atom
element.

RQBGXJ It is IMPLEMENTATION DEFINED whether the trace unit classifies WFI, WFIT, WFE, and WFET instructions as P0
instructions. When WFI, WFIT, WFE, and WFET are classified as P0 instructions, execution of these instructions
generates an Atom element. See Low-power state and TRCIDR2.WFXMODE.

RHJHHV When WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions and a conditional WFE or WFI instruction
is executed, if the instruction passes its condition code check then an E Atom element is generated.

RBMXDT When WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions and a conditional WFE or WFI instruction
is executed, if the instruction fails its condition code check then either an E Atom element or an N Atom element is
generated.

Note

For a WFI, WFIT, WFE, or WFET instruction which is classified as a P0 instruction, a trace analyzer must not infer the
value of the PSTATE condition flags from an E Atom element.

IPZRCT P0 instructions that fail or are predicted to fail their condition code check either generate an Undefined Instruction
exception or are executed as a NOP, if the instruction is also UNDEFINED.

RYCRVD When a P0 instruction fails or is predicted to fail its condition code check, and the P0 instruction is executed as a
NOP, the trace unit generates an N Atom element for the P0 instruction.

RTSQGH When a P0 instruction fails or is predicted to fail its condition code check, and the P0 instruction generates an
Undefined Instruction exception, the trace unit does not generate an Atom element for the instruction and generates
an Exception element instead. The preferred exception return address for the generated Exception element is the
UNDEFINED instruction, which indicates that the instruction did not execute.

RNQPPX The trace unit generates all Atom elements speculatively, and explicitly resolves or cancels each Atom element by
generating Commit elements or Cancel elements.

INGJYB A trace analyzer can infer execution from an Atom element, but only after the Atom element has been resolved by a
Commit element.

SMFDNZ For taken direct P0 instructions, a trace analyzer must infer the target address and instruction set of the instruction
from the opcode in the program image.

STJSRY If a taken direct P0 instruction is from a branch broadcasting region, the trace analyzer does not need to infer the
target address and instruction set because this is explicitly traced using a Target Address element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6286
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5.10.3 Exception element

RQHRVX When an Exceptional occurrence occurs, if the Exceptional occurrence is required to be traced, the trace unit
generates an Exception element.

RLYYMG The trace unit generates Exception elements in program order relative to other P0 elements.

IPCMYT To be consistent with the rules for generating Target Address elements, under the following scenarios the trace unit
must generate a Target Address element before an Exception element, unless the Target Address element would be
removed due to a return stack match:

• The Exceptional occurrence is taken from the target of a taken indirect P0 instruction.

• The Exceptional occurrence is taken from the target of a taken direct P0 instruction in a branch broadcasting
region.

• The Exceptional occurrence is taken from the target of another Exception element.

RXGXKK When an Exceptional occurrence occurs, if the Context information changes at the target of the P0 element
preceding the Exceptional occurrence, then the trace unit generates a Context element before the Exception element.
The Context element provides Context information about the address and context where the Exceptional occurrence
was taken from.

ICMRCN An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as one of the following:

• When FEAT_LVA3 is implemented, 56.

• When FEAT_LVA is implemented, 52.

• Otherwise, 48.

RRJCBT When the PE attempts to execute an instruction at an invalid address and the trace unit generates an Exception
element, the preferred exception return address in the Exception element indicates one of the following:

• The full 64-bit invalid address.

• Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

IGYJKB When a branch to an invalid address occurs and an Exception element is generated for an exception taken from that
invalid address, Arm recommends that the preferred exception return address in the Exception element is the same
as the invalid address indicated by the Target Address element for the branch.

D4.5.10.4 Source address element

RDCHPQ When a P0 instruction which must be traced is not taken and the trace unit does not generate an N Atom element,
then when a subsequent P0 instruction is taken, the trace unit generates a Source Address element.

IKDTRV A trace unit can generate a Source Address element to imply that at least one instruction has been executed, including
a taken P0 instruction.

RWVBQW When the trace unit generates a Source Address element to imply that a taken P0 instruction has been executed, the
address associated with the Source Address element is the virtual address of the taken P0 instruction.

D4.5.10.5 Q element

RFZTZP A trace unit can generate a Q element to imply that at least one instruction has been executed, possibly including P0
instructions.

RWHLPS When a Q element is generated, the trace unit generates a Target Address element that indicates where execution is
to continue after all the instructions that are implied by the Q element have been executed.

RMNWCK When a Q element is generated and the last instruction implied by the Q element is a P0 instruction, the trace unit
generates a Target Address element that indicates the target of the P0 instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6287
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RBJLRS When a Q element is generated and the last instruction implied by the Q element is not a P0 instruction, the trace
unit generates a Target Address element that indicates the instruction address immediately following the last
instruction that is implied by the Q element.

RFPHFM When the PE leaves a region where Q elements are permitted, either by a P0 instruction or by sequential execution
out of the region, and a Q element implies the execution of the last instruction in the region, the Q element does not
imply any more instructions after the last instruction in the region.

RDTWYZ When the PE enters a region where Q elements are permitted, either by a P0 instruction or by an Exceptional
occurrence, the trace unit traces the P0 instruction or Exceptional occurrence using elements other than Q elements.

Note

Although the trace unit does not trace with Q elements a P0 instruction or Exceptional occurrence that causes the
PE to enter a region where Q elements are permitted, any subsequent instructions in the region where Q elements
are permitted might be traced using Q elements.

IYRZWY When the PE enters by sequential execution a region where Q elements are permitted, any instructions that are
executed since the last P0 element outside the permitted region might be traced using a Q element. These
instructions can always be inferred unambiguously from the Q element.

RSJSGX When the PE enters by sequential execution a region where Q elements are permitted, and P0 instructions executed
since the last P0 element outside the permitted region are traced by a Q element, the Q element does not indicate
execution of any P0 instructions outside the permitted region.

D4.5.10.6 Event element

RWJPTB The trace unit generates Event elements independently of ViewInst.

RKKLYB While TRCEVENTCTL1R.INSTEN<n> is 1 and the resource event selected by TRCEVENTCTL0R.EVENT<n>
is active, while trace generation is operative, the trace unit generates an Event element <n> on each PE clock cycle.

RSPYTT When an Event element is generated between two P0 elements or at the same time as a P0 element that follows
another, the trace unit inserts the Event element after the first P0 element but before the P0 element that is an
IMPLEMENTATION DEFINED number of P0 elements after the first P0 element.

IXLJKP Arm recommends that the IMPLEMENTATION DEFINED number of P0 elements is less than or equal to the number of
P0 elements the PE can process simultaneously.

RSHYMY While trace generation is inoperative due to a trace unit buffer overflow, when a programmed ETEEvent <n> occurs,
the trace unit generates at least one Event element <n> before it generates the Overflow element corresponding to
the trace unit buffer overflow.

D4.5.10.7 Cancel element generation

RHYCXR When one or more P0 elements are canceled, the trace unit generates a Cancel element.

RGKDYR The trace unit generates Cancel elements in execution order relative to P0 elements.

RKDTVX When a Cancel element causes execution to return to a point in the program flow that is not adjacent to a P0
instruction, the trace unit generates an Exception element that indicates which instructions were executed up to that
point in the program flow before it generates any P0 elements.

D4.5.10.8 Commit element generation

RQNLYJ When one or more traced P0 elements are resolved for execution, the trace unit generates a Commit element.

IMDSCN An Atom element might be corrected using a Mispredict element after it has been resolved.

RMNXTW The trace unit never generates more speculative P0 elements than the maximum speculation depth of the trace unit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6288
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RXXFBC When trace generation becomes inoperative due to the trace unit being disabled, the trace unit outputs any Commit
elements which have not been output.

IBNLZT If cycle counting is enabled some Commit elements have Cycle Count elements associated with them, that provide
counts of processor clock cycles. The cycle count values given in Cycle Count elements can be used to obtain a
cumulative count.

RZHWDD Commit elements with associated Cycle Count elements cannot be merged with later Commit elements.

IPSFTD For more information, see Cycle Count element.

D4.5.10.9 Transaction Start element

RDGRTZ When the PE enters an outer transaction, before the first instruction is traced, the trace unit generates a Transaction
Start element.

IQLXNC A Transaction Start element is not required for each Trace On element if the instructions are all part of the same
outer transaction.

RTWNQP When the PE leaves Transactional state and a Transaction Start element was generated for the transaction, the trace
unit traces the result of the transaction using one of the following:

• A Transaction Commit element, if the transaction was successful.

• A Transaction Failure element, if the transaction failed.

• A Cancel element which cancels the Transaction Start element.

IGWZDH The trace element stream only indicates that the PE is in Transactional state. It does not indicate the transactional
nesting depth.

D4.5.10.10 Transaction Commit element

RBGMKL When the PE exits Transactional state successfully, and a Transaction Start element was generated for the
transaction, the trace unit generates a Transaction Commit element.

RPCKKS When a Transaction Commit element is generated, the trace unit traces the Transaction Commit element after the
P0 element which is generated before the TCOMMIT instruction, and before the next Transaction Start element is
traced.

ICQLFV Arm recommends that the Transaction Commit element is generated and output as soon as possible after the PE
leaves Transactional state.

ILVPTL The rules on the Transaction Commit element mean that a Transaction Commit element is permitted to be output
later than the P0 element which implies execution of the TCOMMIT instruction.

The TCOMMIT instruction is not a P0 instruction. This means that the Transaction Commit element might be traced
before the P0 element which implies execution of the TCOMMIT instruction.

D4.5.10.11 Transaction Failure element

RMHBCG When a transaction failure occurs, and a Transaction Start element was generated for the transaction, the trace unit
generates a Transaction Failure element.

RXQSPC When the PE enters a Trace Prohibited region and is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

RZJXHP When the trace unit becomes disabled and the PE is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

RYTKLN When a trace unit buffer overflow occurs and the PE is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

IDLKJR A Transaction Failure element is encoded as an Exception packet with a type of Transaction Failure.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6289
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IFBFDB When a Transaction Failure element is generated, the following behavior applies:

• The target address and target context of the previous P0 element might be UNKNOWN.

• If there are no P0 elements between a Trace On element and the Transaction Failure element, the initial
address and context after the previous Trace On element might be UNKNOWN.

RQWGXL When a PE reset occurs and the PE is in Transactional state, and a Transaction Start element was generated for the
transaction, the trace unit generates a Transaction Failure element.

ILTJDG A Transaction Failure element caused by a PE reset might be traced using any of the following:

• A single Exception packet with TYPE indicating PE reset. This packet can imply the Transaction Failure
element.

• An Exception packet with TYPE indicating Transaction Failure.

• An Exception packet with TYPE indicating PE reset, if the PE reset is required to be traced.

D4.5.10.12 Context element

RBDFDQ The trace unit generates a Context element in the following situations:

• While tracing is active, when any of the Context information changes, before any P0 element which indicates
execution from the new context.

• After a Trace Info element is generated due to a non-periodic trace protocol synchronization request, and
before any P0 element.

• After a Trace Info element is generated due to a periodic trace protocol synchronization request.

• When mis-speculation results in an incorrect Context element being output, before any P0 element which
indicates execution from the correct context.

RJNXJT While Virtual context identifier tracing is enabled and TRFCR_EL2.CX disallows the tracing of the Virtual context
identifier, when the trace unit generates a Context element, the Virtual context identifier in the Context element has
the value 0x0.

ITBJPL A Context element might also be output at other points, which might include after all Context synchronization
events, or at any other point at which the Context information changes.

RMKKZN If the highest implemented Exception level is using AArch64, the Context identifier value is the value of
CONTEXTIDR_EL1.

IWXVHT Some of the Context information might change at points other than at Context synchronization events. These
changes occur when system instructions are used to change a piece of Context information, including:

• Writes to the current CONTEXTIDR_EL1.

• Writes to the CONTEXTIDR_EL2.

• Changes from a higher Security state to a lower Security state without using an exception return.

• Changes in Exception level other than due to an exception or an exception return.

RHXNXF When a System instruction writes to a System register and the Context information changes, the trace unit generates
a Context element containing the new context value, after the P0 element prior to the System instruction but before
the P0 element following a Context synchronization event after the System instruction.

Note
If the Context element is output before the first P0 element after the System instruction, this might imply that some
instructions before the System instruction were executed with the new context. This is acceptable because the code
which changes the context is usually executed in a state where it does not matter whether the old or new context
values are used.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6290
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IWTSTB If the PE takes an exception after performing a write to a System register that changes the context, but a P0 element
has not been generated since the write, then a Context element indicating the new context is not required to be output
before the Exception element. This is because no instructions or Exceptional occurrences are indicated to have been
executed from the new context. A Context element indicating the new context must be generated after the Exception
element if the Exceptional occurrence is a Context synchronization event. If the Exceptional occurrence changes the
context, then the Context element must indicate the new context. This might happen if, for example, the Security
state changes.

RHTYGF When a PE reset occurs, until the relevant PE registers are updated, the trace unit traces the Context identifier and
Virtual context identifier as zero.

IKTPVJ A trace unit is not required to generate a Context element if tracing becomes inactive before any instructions are
executed in the new context.

IQWSVJ Additional Context elements might be output by a trace unit in some scenarios, but these must only be output where
they do no affect the analysis of the trace element stream. Such a scenario might include when a change in the
Context information is incorrectly speculated and a subsequent Context element corrects the value of a previous
incorrect Context element. Arm recommends that the generation of additional unnecessary Context elements is
minimized to ensure trace bandwidth is minimized.

D4.5.10.13 Target Address element

RHLRZJ When the trace analyzer cannot infer the address or instruction set from the trace, the trace unit generates a Target
Address element.

IFRTGM Occasions when the trace analyzer might not be able to infer the address or instruction set from previous trace
include:

• At the target of an indirect P0 instruction which is taken.

• At the target of a direct P0 instruction which is taken in a branch broadcasting region, see TRCBBCTLR for
more information.

• At the target of an Exceptional occurrence.

• At the target of a Transaction Failure element.

• When mis-speculation occurs and the address cannot be inferred.

• After a Q element is generated.

RZRYSN When the trace analyzer cannot infer the address or instruction set from the trace, the trace unit generates the
resulting Target Address element before the next P0 element, unless any of the following are true:

• The Target Address element can be omitted because of a return stack match.

• Tracing is inactive at the target of the P0 instruction or Exceptional occurrence.

• A transaction failure occurs and tracing is inactive at the target of the transaction failure.

RRGPTK When non-periodic trace protocol synchronization occurs, the trace unit generates a Target Address element after
the Trace Info element and Trace On element corresponding to the non-periodic trace protocol synchronization, and
before the next P0 element is generated.

RMDTYL When periodic trace protocol synchronization occurs, after the corresponding Trace Info element has been
generated, the trace unit generates a Target Address element containing the address of the target of the most recent
P0 element before the Target Address element.

IYMLXQ When non-periodic trace protocol synchronization occurs, the Target Address element does not need to indicate the
target of the most recent P0 element, since tracing might not become active at the target of a P0 element.

IGBMWG When periodic trace protocol synchronization occurs, the Target Address element needs to indicate the target of the
most recent P0 element, since tracing is continuing from that P0 element. Furthermore, the Target Address element
might indicate the target of a P0 element from before the Trace Info element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6291
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RQCSJJ When a Trace On element is generated, the trace unit generates a Target Address element before the next P0 element.

IDTQDH Typically, a Target Address element is required after an Exception element to indicate the target of the Exceptional
occurrence, since a trace analyzer is not usually able to infer the target of an Exceptional occurrence.

IYHQGL In some scenarios, an Exception element might be generated in the trace where the Exceptional occurrence target
address is the next sequential instruction from the last instruction before the Exceptional occurrence. This behavior
depends on many factors and might only occur for IMPLEMENTATION DEFINED Exceptional occurrences. If an
Exceptional occurrence is taken to the next sequential instruction, the trace unit is not required to output a Target
Address element indicating the target address of the Exceptional occurrence because this can be inferred from the
previous execution.

IGVZJZ A trace analyzer needs both a Target Address element and a Context element before it can determine the instruction
set in use, because the Target Address element provides the instruction set and the Context element provides
information on whether the PE is in AArch32 or AArch64 state.

RRHDMW When a change of instruction set occurs that switches between AArch32 state and AArch64 state, the trace unit
generates a Context element indicating the new state.

IKZXQW An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as one of the following:

• When FEAT_LVA3 is implemented, 56.

• When FEAT_LVA is implemented, 52.

• Otherwise, 48.

RVWVWR When the PE attempts to execute an instruction at an invalid address and the trace unit generates a Target Address
element, the Target Address element indicates one of the following:

• The full 64-bit invalid address.

• Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

IYJYFM When a branch to an invalid address occurs and an Exception element is generated for an exception taken from that
invalid address, Arm recommends that the preferred exception return address in the Exception element is the same
as the invalid address indicated by the Target Address element for the branch.

RSBCPK While tagged addresses are in use, the virtual address in the trace element stream does not include the tag and is the
PC value, that is, depending on the state of the PE at the address, bits[63:56] are one of the following:

• The sign-extension of bit[55].

• Zero.

IYGGGK The Translation Control Registers, TCR_ELx, contain the TBI field for controlling whether to ignore the top byte
of an address. If the current TBI field is changed from 0 to 1, and before the next Context synchronization event the
PE takes an exception because of an invalid top address byte, the branch target address to the invalid address or the
preferred exception return address of the Exception element might not contain the full invalid address and might
contain the address with the top byte masked. Furthermore, the branch target address might be the invalid address
and therefore might be different from the preferred exception return address. Trace analysis tools must be aware that
if a branch target address is substantially different from a preferred exception return address which follows, then
there might have been a change in the TBI field which caused this large change in address.

RHHKGB When a pointer authentication check fails and an exception is taken from the resulting invalid address, the preferred
exception return address is one of the following:

• The full 64-bit invalid address.

• Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

ICRSTX Arm recommends that when a pointer authentication check fails and an exception is taken from the resulting invalid
address, the preferred exception return address is the full 64-bit invalid address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6292
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RFSWRC The bottom bits of an address are ignored, in the following way:

• Bits[1:0] of addresses that are used in A64 or A32 instructions are always traced as zero.

• Bit[0] of addresses that are used in T32 instructions is always traced as zero.

IMDZJL Additional Target Address elements might be output by a trace unit in some scenarios, but these must only be output
where they do not affect the analysis of the trace element stream. These scenarios include, but are not limited to:

• When an instruction address is incorrectly speculated, and a subsequent Target Address element corrects the
value of a previous incorrect Target Address element.

• When an instruction address can be inferred by the trace analyzer, for example for the target of a direct P0
instruction, but a Target Address element is output anyway with the same address.

Arm recommends that the generation of additional unnecessary Target Address elements is minimized to ensure
trace bandwidth is minimized.

D4.5.10.14 Mispredict element

RYJCNT When the status of the last non-canceled Atom element has been changed by the PE, the trace unit generates a
Mispredict element.

RSCKBZ The trace unit only generates a Mispredict element to change the status of an Atom element.

IXYDNP A trace unit might generate multiple Mispredict elements for the same Atom element. A trace analyzer must use each
Mispredict element to determine the final status of the Atom element. For example, if an E Atom element has two
Mispredict elements, the first Mispredict element indicates the Atom element is an N Atom element and the second
Mispredict element indicates it is an E Atom element.

IHVWCN If a PE mispredicts only the target address of a P0 element, then it does not generate a Mispredict element.

The trace unit uses a Target Address element to correct the mispredicted target address. When analyzing a Mispredict
element, any Target Address elements between the mispredicted Atom element and the Mispredict element must be
discarded.

D4.5.10.15 Overflow element

RHRYKY When a trace unit buffer overflow occurs, after all trace elements that were generated prior to the trace unit buffer
overflow are output, the trace unit outputs an Overflow element.

RRPSPH When a trace unit buffer overflow occurs, and the trace unit is disabled after recovering from the trace unit buffer
overflow, the trace unit outputs the corresponding Overflow element before the trace unit becomes idle.

D4.5.10.16 Timestamp element

RYYWTR While TRCCONFIGR.TS is 1 and any of the following occur, a timestamp request occurs:

• The timestamp resource event occurs, as controlled by TRCTSCTLR.

• The trace unit generates a Trace Info element.

• The trace unit recovers from a trace unit buffer overflow.

• When not in a Trace Prohibited region and a Context synchronization event is caused by any of the following:

— The PE takes an exception.

— The PE returns from an exception.

— An ISB instruction is executed.

• A trace unit flush is requested.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6293
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RCKNFV While TRCCONFIGR.TS is 1 and when not in a Trace Prohibited region, a timestamp request might occur when
any of the following occur but do not cause a Context synchronization event:

• The PE takes an exception.

• The PE returns from an exception.

• An ISB instruction is executed.

RNGXNQ The state of the ViewInst function does not affect whether a timestamp request occurs.

RHZSYP When a timestamp request occurs and ViewInst is inactive, the timestamp request is permitted to be delayed until
after the first of the following occurs:

• A P0 element is generated.

• An Event element is generated.

• An Instrumentation element is generated.

IWFXVV There is no requirement for a Timestamp element to be generated in the trace element stream on each occasion that
ViewInst becomes active.

RRMSVV When a timestamp request occurs and is not ignored, the trace unit generates a Timestamp element.

RDWCYP When a timestamp request occurs but the trace unit does not have the capacity to generate the Timestamp element
immediately, then the generation of the Timestamp element is delayed until there is capacity.

ITQDHQ A trace unit might not have the capacity to generate a Timestamp element for multiple reasons, including avoiding
a trace unit buffer overflow. A delayed Timestamp element means that a timestamp value might not be the exact time
of the incident that resulted in the timestamp request. A timestamp is only a time indicator inserted in the trace
element stream somewhere near the time of the request.

RXMJGY When a timestamp request occurs while in a Trace Prohibited region, then the generation of the Timestamp element
is delayed until the PE leaves the Trace Prohibited region.

RCWHHW When the first timestamp request occurs after trace generation becomes operative, the trace unit delays generation
of the corresponding Timestamp element until after the trace unit has generated either a P0 element, an Event
element, or an Instrumentation element.

ISDPZZ This is so that the timestamp value can correspond to the most recent of these elements.

RSZNMB A timestamp request is permitted to be ignored if a previous timestamp request has not yet generated a Timestamp
element, due to a delay in the generation.

RDWFTT A trace unit might ignore the second request of two successive timestamp requests if all of the following are true:

• The second request is not caused as a result of a trace protocol synchronization request.

• No P0 elements, Event elements, or Instrumentation elements have been generated between the two requests.

• The timestamp value would be the same in both Timestamp elements.

RZMQLT While TRCCONFIGR.CCI is 1, each Timestamp element contains a cycle count that indicates the number of cycles
between the element with which the Timestamp is associated and the most recent Cycle Count element before that
element.

RMWJHD The cycle count associated with a Timestamp element is different from the Cycle Count element in the following
ways:

• The cycle count does not affect the cumulative cycle count.

• The cycle count value can be zero.

IHTGCM When the cycle count associated with a Timestamp element is zero, this indicates that no cycles passed between the
previous Cycle Count element and the element with which the Timestamp element is associated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6294
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
ITYVDN The cycle count associated with a Timestamp element is not a Cycle Count element, and therefore has no effect on
the cycle counter.

RJNSWW When the trace unit is first enabled, while cycle counting is enabled, when a Timestamp element is generated before
any Cycle Count elements, the Timestamp element reports the cycle count as UNKNOWN.

RNPYKS When a Timestamp element is generated and the cycle counter has exceeded the maximum supported value, the
Timestamp element reports the cycle count as UNKNOWN.

D4.5.10.17 Trace On element

RLMLSN When an instruction block is traced immediately after an instruction block was not traced or a trace unit buffer
overflow occurred, the trace unit generates a Trace On element.

IGPQZW When an Exception element indicating a PE reset is traced, the preferred exception return address is UNKNOWN. Any
instructions since the most recent unresolved P0 element are not traced. If ViewInst was active for these instructions,
this is not considered a gap in the trace element stream and a Trace On element is not required.

In some scenarios where mis-speculation occurs or instructions are canceled, after Cancel elements have been
processed there might be Trace On elements in the trace element stream even though no trace discontinuity occurred
in the architecturally-executed instruction trace. This typically only occurs when the trace is filtered using the
ViewInst function, which causes the Trace On element to be inserted.

IMHFJB Trace analyzers must be aware that these additional Trace On elements might be traced.

D4.5.10.18 Cycle Count element

RTYNZR The cycle counter has an IMPLEMENTATION DEFINED size of between 12 and 20 bits, as indicated by
TRCIDR2.CCSIZE. The cycle counter therefore supports values from 1 to 220-1.

RGWQGS While TRCCONFIGR.CCI is 1 and the cycle count is equal to or greater than the value of
TRCCCCTLR.THRESHOLD, when a Commit element is generated, a Cycle Count element request occurs.

RKJXDK While TRCCCCTLR.THRESHOLD is programmed with a value less than TRCIDR3.CCITMIN, the generation of
Cycle Count elements is CONSTRAINED UNPREDICTABLE.

RGDTBW When a request for a Cycle Count element occurs, one of the following occurs:

• The trace unit generates a Cycle Count element immediately and before any future Commit element.

• The trace unit delays generation of the Cycle Count element until after one or more further Commit elements
have been generated.

ITCFRL Arm recommends that when a request for a Cycle Count element occurs, the Cycle Count element is generated
immediately, and that Cycle Count element generation is only delayed in rare and non-repetitive circumstances.

RBMVKB When a Cycle Count element is generated, the Cycle Count element contains the value of the cycle counter at the
time the most recent Commit element was generated, and the cycle counter is reset to the number of cycles since the
most recent Commit element was generated.

RPFZXK A value of 0 indicates that the cycle count value is UNKNOWN.

RYVWJW When the cycle counter exceeds the maximum supported value, the cycle count value is UNKNOWN.

RYFMWB When the trace unit becomes enabled, an UNKNOWN cycle count value occurs for the first Cycle Count element
generated.

RHQKWH When a trace unit buffer overflow occurs, an UNKNOWN cycle count value occurs for the first Cycle Count element
generated.

IPDBDY The first Cycle Count element after the PE clock has been restarted should have an UNKNOWN cycle count.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6295
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5.10.19 Discard element

RWDWGV When trace generation becomes inoperative and any of the following are true, the trace unit generates a Discard
element:

• P0 elements have been generated but the trace unit is unable to output the resolution of those P0 elements.

• A Transaction Start element has been generated and trace generation becomes inoperative before the
transaction either succeeds or fails.

RFHQDX When trace generation becomes inoperative due to the trace unit becoming disabled, and a Discard element is
generated, the trace unit outputs the Discard element after all other elements.

RNSMJF When a PE reset occurs and any of the following are true, the trace unit generates a Discard element:

• P0 elements have been generated but the trace unit is unable to output the resolution of those P0 elements.

• A Transaction Start element has been generated and the PE reset occurs before the transaction either succeeds
or fails.

ISKJSP A trace unit might not generate a Discard element if no P0 elements are speculative.

ITGXKV A trace unit might generate a Discard element even if no P0 elements are speculative.

RCTYFK When a Discard element is generated, all uncommitted P0 elements are discarded, that is, the current speculation
depth is set to zero.

ITYXLL When a Discard element is generated, and a Transaction Start element has been traced but the transaction has not
succeeded or failed, the trace unit does not indicate the resolution of the transaction.

RWXTQS When a Discard element is generated and tracing subsequently becomes operative for the same transaction, the trace
unit generates a new Transaction Start element before any P0 elements are generated for the transaction.

D4.5.10.20 Instrumentation element

RSTQSN The Instrumentation element for a first TRCIT instruction is generated before the Instrumentation element for any
TRCIT instruction in program order after that first TRCIT instruction.

RWYYPN The Instrumentation element contains the following information:

• The doubleword contained in the Xt register parameter of the TRCIT instruction.

• The Exception level at which the TRCIT instruction was executed.

IXWZNW If Instrumentation tracing is prohibited and tracing is not prohibited, then Arm recommends that the behavior of the
TRCIT instruction is unaffected by the state of the trace unit.

IKGBZX The TRCIT instruction is added to the list of instructions that support concurrent modification and execution, to allow
live patching of the TRCIT instruction. A TRCIT instruction is only permitted to be modified to be a NOP instruction or
another encoding of the TRCIT instruction. Only a NOP instruction or a TRCIT instruction is permitted to be modified
to be a TRCIT instruction.

RSRSGF The architecture guarantees that for NOP and TRCIT instructions, after modification of the instruction, behavior is
consistent with execution of either:

• The instruction originally fetched.

• A fetch of the modified instruction.

RLGWQF Each Instrumentation element generates an Instrumentation packet.

IBXHZM When non-periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet before any Instrumentation packet. See RTTLJC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6296
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IYWJZW There are no requirements on the order between Instrumentation packets and other ETE packets, except for the
requirements around an Alignment Synchronization packet and the requirements for ordering Timestamp packets
and Timestamp Marker packets.

D4.5.11 Trace unit features

IBFHRC The architecture defines a number of optional and mandatory features that are provided to modify the trace element
stream to provide additional information to aid debugging. These features include the following:

• Q element regions.

• Branch broadcasting.

• Context identifier tracing.

• Cycle counting.

• Event trace.

• No overflow.

• PE Stalling and overflow avoidance.

• Timestamping.

• Virtual context identifier tracing.

For the optional features, the inclusion of these optional features is indicated in TRCIDR0-TRCIDR13.

D4.5.11.1 Q regions

IXFPKH The support for Q element is OPTIONAL, as indicated by TRCIDR0.QSUPP.

IFSXRY The use of Q elements must be explicitly enabled if the trace unit is to use them.

ICGQZJ While Q elements are enabled, the trace element stream might not contain enough information to determine the
complete program flow, because some changes in flow might not be explicitly indicated.

IQLVSG Arm recommends that Q elements are only used in cases where generating the full ETE instruction trace element
stream might cause the performance of the PE being traced to degrade significantly.

ITNPWC The use of Q elements degrades the information that can be extracted from the trace element stream. Arm
recommends that Q element filtering, as indicated by TRCIDR0.QFILT, is also implemented.

ICBKXZ If TRCQCTLR is implemented, the trace unit supports the ability to control when Q elements are permitted in the
trace element stream using ARCs. The Q element filtering operates in either Exclude mode, or Include mode,
selected by TRCQCTLR.MODE.

RDSFJZ If Q elements are enabled and Q element filtering is in Include mode, the ARCs selected by TRCQCTLR.RANGE
define where Q elements are permitted.

RWXRDY If Q elements are enabled and Q element filtering is in Exclude mode, the ARCs selected by TRCQCTLR.RANGE
define where Q elements are not permitted.

RRBPJF When an instruction block contains at least one instruction where Q elements are permitted, the entire instruction
block is permitted to generate Q elements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6297
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RNQSLS The following equation is calculated for each instruction block and defines when Q elements are permitted.

RSGFHP While TRCCONFIGR.QE indicates that Q elements are disabled, the trace unit does not generate any Q elements.

RCGHSK While TRCCONFIGR.QE indicates that Q elements are disabled, the trace unit is able to generate all of the elements
required to trace the instruction sequence.

D4.5.11.2 Branch broadcasting

IWLPLZ The branch broadcasting feature forces the trace unit to explicitly trace the target addresses of taken direct P0
instructions.

The target addresses are traced using Target Address elements in the instruction trace stream.

IDCYQT Branch broadcasting is enabled by performing both of the following actions:

• Setting TRCCONFIGR.BB to 1.

• Programming TRCBBCTLR to specify how branch broadcasting behaves. TRCBBCTLR selects Address
Range Comparators to define when branch broadcasting is active, and selects the operating mode of branch
broadcasting:

— Branch broadcasting is active for all instructions inside the selected ranges. This is known as Include
mode.

— Branch broadcasting is active for all instructions outside the selected ranges. This is known as Exclude
mode.

RMHYFV When a direct P0 instruction for which branch broadcasting is active is taken, the trace unit generates a Target
Address element to explicitly trace the target of the instruction, regardless of whether the P0 instruction is
mispredicted.

RVQTVR While branch broadcasting is enabled, while the return stack is enabled, the trace unit prioritizes branch
broadcasting over the return stack, that is, the return stack does not match on the target of any instruction for which
branch broadcasting is active.

RXSVSX If TRCBBCTLR is not implemented, while branch broadcasting is enabled, branch broadcasting is active for all
instructions.

D4.5.11.3 Context identifier tracing

IRJJZW The trace unit can be programmed to include information about the current execution context of the program being
executed on the PE, including:

• The current process identifier, stored in CONTEXTIDR_EL1. This is known as the Context identifier.

• The current VMID, stored in CONTEXTIDR_EL2. This is known as the Virtual context identifier.

RGVMFG The trace unit supports tracing of the Context identifier, with TRCIDR2.CIDSIZE indicating a 32-bit Context
identifier size.

D4.5.11.4 Cycle counting

IMKQVC The use of the cycle counting feature introduces Cycle Count elements into the trace element stream to indicate the
passage of PE clock cycles.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6298
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IBMCMB Counting the number of clock cycles the PE uses to perform a certain function can be useful as a way of measuring
program performance, or for profiling the PE.

RJMLLY While cycle counting is enabled, the trace unit outputs Cycle Count packets that contain processor clock cycle count
values.

ITVCCV Cycle Count elements are associated with Commit elements, so that when a Commit element is generated, a Cycle
Count element might also be generated. Whether a Cycle Count element is generated when a Commit element is
generated depends on what cycle count threshold has been specified when programming
TRCCCCTLR.THRESHOLD.

When a Commit element is generated and the cycle count value is equal to or more than the threshold value, then a
Cycle Count element is generated and a Cycle Count packet is output. The cycle count value that is contained in that
packet is associated with the Commit element that triggered it.

RBHYWB While cycle counting is enabled, and when a Commit element is generated and the cycle count value is greater than
or equal to the threshold value that is programmed in TRCCCCTLR.THRESHOLD, the trace unit generates a Cycle
Count element.

ILFLCZ Also, because cycle counting is associated with Commit elements, a Cycle Count packet might imply the generation
of Commit elements, and so in addition to the cycle count value, some Cycle Count packets also contain a value for
the number of Commit elements that the trace unit has generated.

IMWQNZ The value of cycle count that is given in a new Cycle Count packet indicates the number of processor clock cycles
between the new Commit element that the packet is associated with, and the most recent Commit element prior to
the new Commit element that had a Cycle Count element associated with it.

This means that if there is a requirement for a cumulative cycle count total, the cycle count values from the
successive Cycle Count packets can be added together to obtain this.

D4.5.11.5 Event trace

IGGMQT The ETE architecture supports the tracing of additional information in the trace stream. These are known as
ETEEvents, also known as Event trace. The trace unit supports up to 4 ETEEvents. The generation of ETEEvents is
controlled by selecting resources selectors. The occurrence of ETEEvents can be communicated in the following
ways:

• To the system by External Outputs.

• To the trace analyzer by Event Packet.

D4.5.11.6 No overflow

IDJCLX A trace unit might include an optional feature to prevent overflows, which is indicated by
TRCIDR3.NOOVERFLOW.

RYSPHL TRCSTALLCTLR.NOOVERFLOW controls the no overflow feature.

SBSPDF Enabling the no overflow feature might have a significant impact on PE performance.

RLCGZJ While the no overflow feature is enabled, and while the number or frequency of ETEEvents is below an
IMPLEMENTATION DEFINED threshold, the trace unit does not overflow.

RVHMZX The threshold is greater than or equal to one of each numbered ETEEvent, for each trace session.

RMYMKW When TRCIDR3.SYSSTALL is 0 the Effective value of TRCSTALLCTLR.NOOVERFLOW is 0 which means the
no overflow feature is disabled.

RJYYLV When TRCSTALLCTLR.ISTALL is 0 and TRCSTALLCTLR.NOOVERFLOW is 1, it is CONSTRAINED
UNPREDICTABLE whether any stalling is disabled or whether the no overflow feature is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6299
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5.11.7 Stalling the execution of the PE

IMPBVQ The trace unit can be programmed to reduce the likelihood of a trace unit buffer overflow. If the trace unit is
configured to support PE stalling, TRCIDR3.STALLCTL indicates that PE stalling is implemented and
TRCIDR3.SYSSTALL indicates that PE stalling is permitted, then the execution of the PE can be slowed.

IHPFQP It is permissible that the operation of the PE can be affected by the programming of the trace unit. The amount of
intrusion and when stalling occurs is IMPLEMENTATION DEFINED. Additional stalling of the PE execution can be
achieved by enabling this feature.

IVZSVK Trace unit stalling of the PE is independent of the operation of the PE.

RNVBGS PE operations which explicitly interact with the trace unit complete independently of the programming of the ability
of the trace unit to stall the PE.

RSCLVV The trace unit does not stall the PE while any of the following are true:

• The trace unit is in the Disabled state.

• The PE is executing in a Trace Prohibited region (see Trace Prohibited Regions).

• The PE is in Debug State.

• The PE does not allow stalling, that is, TRCIDR3.SYSSTALL == 0b0.

• SelfHostedTraceEnabled() == FALSE and ExternalInvasiveDebugEnabled() == FALSE.

• When TRCSTALLCTLR.ISTALL == 0b0 and TRCSTALLCTLR.NOOVERFLOW == 0b0.

• Trace output is disabled.

RRWTYJ When all of the following are true, the trace unit is permitted to stall the PE:

• Stalling of the PE is not prohibited by RSCLVV.

• TRCSTALLCTLR.ISTALL == 0b1.

• Any of the following are true:

— TRCSTALLCTLR.NOOVERFLOW == 0b1.

— The available space in the internal storage of the trace unit is below the level indicated in
TRCSTALLCTLR.LEVEL.

Otherwise, the trace unit does not stall the PE due to the stalling feature or no overflow feature.

RNVKXX The trace unit does not indefinitely stall the operation of the PE.

IXPRQJ In a multi-threaded processor, if the trace unit stalls a PE, Arm recommends that stalling or disruption of the
processing of other PEs is minimized. In particular, if tracing of one or more PEs in a multi-threaded processor is
enabled but tracing of other PEs in the multi-threaded processor is disabled, Arm recommends that if the PEs being
traced are stalled by their respective trace units then the stall has minimal effect on the PEs which are not being
traced.

IKBXXH The levels indicated in TRCSTALLCTLR.LEVEL are the levels of intrusion allowed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6300
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
IZRQBK A summary of the stalling and no overflow scenarios is shown in Table D4-23, when TRCIDR3.STALLCTL is 1
and TRCIDR3.SYSSTALL is 1.

D4.5.11.8 Timestamping

IYVBBW The trace unit supports timestamping, where a common global time value is inserted in to the trace stream. These
timestamps may be used to correlate between multiple trace streams, including those from other PEs or other
sources of trace. These timestamps may be used to determine the passage of time, for analyzing performance.

IVFWQS When timestamping is enabled, the trace unit inserts Timestamp elements in to the trace stream. Each Timestamping
element indicates the time that a recent P0 element, Event element, or Instrumentation element occurred, and can be
used to accurately determine when that element occurred.

IYFPDZ The time value included in Timestamp elements is selected by TRFCR_EL1 and TRFCR_EL2 and is one of:

• Physical time, as seen by the generic timers in the PE.

• Virtual time, as seen by the generic timers in the PE.

• An IMPLEMENTATION DEFINED time value, often supplied by a CoreSight system.

ICLZKR The insertion of Timestamp elements is controlled by TRCCONFIGR.TS and TRCTSCTLR.

D4.5.11.9 Virtual context identifier tracing

IVMGBJ Whether an implementation supports Virtual context identifier tracing is IMPLEMENTATION DEFINED. If it does, the
trace unit can be programmed to output the identifier of a virtual machine that the PE is executing.

IFDDXM This option is enabled by setting TRCCONFIGR.VMID to 0b1.

RPTVYD If the PE implements EL2, the trace unit supports a 32-bit Virtual context identifier, with TRCIDR2.VMIDSIZE
indicating a 32-bit Virtual context identifier size. The source of the Virtual context identifier is
CONTEXTIDR_EL2.PROCID.

RBRDYF If the PE does not implement EL2, the trace unit does not support a Virtual context identifier, with
TRCIDR2.VMIDSIZE indicating Virtual context identifier tracing is not supported.

Note
Previous trace architectures from Arm supported the ability to select the source of the Virtual context identifier. This
specification does not support Virtual context identifier selection, and only permits CONTEXTIDR_EL2.PROCID
as the source of the Virtual context identifier. See TRCIDR2.VMIDOPT for more details.

Table D4-23 Summary of TRCSTALLCTLR stalling and no overflow features

ISTALL NOOVERFLOW LEVEL Description

0 0 x Stalling is disabled.

0 1 x It is CONSTRAINED UNPREDICTABLE whether the no overflow feature is enabled or
stalling is disabled.

1 0 Zero Stalling is enabled at the minimum level.

1 0 Nonzero Stalling is enabled and is based on the value in TRCSTALLCTLR.LEVEL.

1 1 Zero The no overflow feature is enabled, preventing overflows.

1 1 Nonzero The no overflow feature is enabled, preventing overflows, and
TRCSTALLCTLR.LEVEL might cause stalling earlier than necessary to prevent
overflows.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6301
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
D4.5.12 Compression

IWVBMT Additional compression of the trace byte stream is achieved by the following methods:

• Removing elements that can be implied by the trace analyzer:

— Implying the existence of Commit elements based on the tracing of other elements.

— Removing Target Address elements that can be calculated by the trace analyzer by analysis of previous
traced PE execution.

• Combining multiple elements together into a single packet:

— Combining Atom elements into a single packet.

— Combining Cancel elements and Mispredict elements into a single packet.

D4.5.12.1 Implied commits

IBTGGX The ETE trace protocol provides mechanisms to minimize the number of Commit elements which need to be
explicitly output in the trace byte stream. When a P0 element is output in the trace byte stream, if the number of
speculative P0 elements output exceeds TRCIDR8.MAXSPEC, then a Commit element is implied which resolves
the oldest speculative P0 element.

RYKLRM The trace unit does not generate commit packets for Commit elements that have been implied by the trace protocol.

D4.5.12.2 Atom packing

IQMVNP The ETE trace protocol provides packets which allow groups of consecutive Atom elements to be packed into a
single trace packet. Figure D4-15 shows the decision tree for generating the different formats of Atom packets.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6302
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
Figure D4-15 Atom packing

IXXSGS Cancel Packets can indicate a number of Atom elements and the Cancel element.

IKWWHP The Mispredict Packets can indicate a number of Atom elements and the Mispredict element.

D4.5.12.3 Address compression

ILFFCR The trace unit can remove program addresses from the trace stream. The trace analyzer can infer the addresses from
the program image and previous history.

This includes the targets of direct P0 instructions, where the target address is encoded in the instruction itself.

RSJPYH The trace unit retains the Address information of up to the last three addresses that were explicitly output in the trace
protocol, as contained in:

• Target Address packets.

����

����

�

��

��

��

��

�

��

��

��

��

���	 ���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

�������

��

����

��

����

��

����

��

����

��

����

��

���� �����

��

�����

��

�����

��

�����

��

��� ��

��������

��

�

�� ��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6303
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
• Source Address packets.

• Exception packets.

• Transaction Failure packets.

• PE Reset packets.

• Q packets.

ISXNYK The explicitly output addresses that the trace unit retains are known as the address history buffer.

ILPYRK For optimized trace protocol efficiency, Arm recommends that the address history buffer is three entries deep.

RLMHFW When any of the following packets are generated, the trace unit pushes the address value and sub_isa to the address
history buffer:

• Target Address packet.

• Source Address packet.

• Q packet that implies a Target Address element.

RCMCRT When an Exception packet is generated, the trace unit pushes the preferred exception return address value and
sub_isa to the address history buffer.

RFPDFJ When one of the following packets is generated with an UNKNOWN address, the trace unit pushes an address value
of 0x0 and sub_isa of IS0 to the address history buffer.

• Transaction Failure packet.

• PE Reset packet.

RBPRDC When a Target Address packet is generated, the trace unit uses the address history buffer to identify when a Target
Address Exact Match packet can be used. When a Target Address Exact Match packet cannot be used, the most
recent entry in the address history buffer is used for the Target Address packet selection.

RGWKFD When a Source Address packet is generated, the trace unit uses the address history buffer to identify when a Source
Address Exact Match packet can be used. When a Source Address Exact Match packet cannot be used, the most
recent entry in the address history buffer is used for the Source Address packet selection.

RYLXFK When an Exception packet is generated, the trace unit uses the address history buffer to identify when an Exception
Exact Match Address packet can be used. When an Exception Exact Match Address packet cannot be used, the most
recent entry in the address history buffer is used for the Exception Address packet selection.

RYCMCG When a Q packet is generated which implies a Target Address element, the trace unit uses the address history buffer
to identify when a Q with Exact Match Address packet can be used. When a Q with Exact Match Address packet
cannot be used, the most recent entry in the address history buffer is used for the Q Address packet selection.

RBTWGD When a Trace Info packet is generated, the trace unit sets all entries of the address history buffer to have an address
value of 0x0 and sub_isa of IS0.

D4.5.12.4 Return stack address matching

INHWVZ The trace unit might contain the optional return stack function. The return stack operates when Branch with Link
instructions or indirect P0 instructions are taken, and provides a mechanism to allow the trace unit to remove certain
Target Address elements from the trace element stream. The trace analyzer maintains an independent copy of the
return stack which is used to determine when Target Address elements have been removed and then infer the target
of indirect P0 instructions.

RHNDJJ The depth of the return stack is IMPLEMENTATION DEFINED from 0 to 15 entries.

IBLYHW For optimized trace protocol efficiency, Arm recommends the trace unit implements the return stack with at least 3
entries.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6304
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RHFCTC While TRCCONFIGR.RS is 1, when a Branch with Link instruction is predicted as taken and is traced, the trace
unit pushes the following Address information to the return stack:

• The instruction address + the instruction size, that is, the return address for the Branch with Link instruction.

• The sub_isa from the instruction set encoding.

RZKTHK When a return stack push occurs, all existing entries are shifted down one place on the return stack and the new entry
is pushed to the top entry of the return stack.

RZSVDQ While the return stack is full, when a return stack push occurs, the oldest entry on the return stack is discarded.

RFFXPW When a Branch with Link instruction is predicted as taken and traced with an E Atom element, when a return stack
push occurs, the trace unit pushes to the return stack, even if the prediction is incorrect and is subsequently corrected
to an N Atom element.

RNYHFH When a Branch with Link instruction is predicted as not taken and traced with an N Atom element, the trace unit
does not push to the return stack, even if the prediction is incorrect and is subsequently corrected to an E Atom
element.

RGVLKJ When a Branch with Link instruction is implied by a Q element, the trace unit does not push to the return stack.

RWRXCW When a Branch with Link instruction is executed in a branch broadcasting region, the trace unit does not push to the
return stack.

RQHSBN When an indirect P0 instruction is taken and traced, and the Address information in the resultant Target Address
element matches the address and sub_isa on the top of the return stack, the trace unit performs a return stack pop.

RHTKJS When a return stack pop occurs, both of the following occur:

• The trace unit discards the Target Address element that matches the address and sub_isa on the top of the
return stack.

• The trace unit removes the top entry of the return stack, and shifts each older entry up one position.

RWBCJG When an indirect P0 instruction is implied by a Q element, the trace unit does not perform a return stack pop.

IBCWSQ When an indirect P0 instruction is taken, it is possible that the target address is predicted incorrectly by the PE.

RYMRGB When the target address of a taken indirect P0 instruction is incorrectly predicted, and the incorrect target address
is traced with a Target Address element, the trace unit corrects the incorrect address by generating a new Target
Address element with the correct target address, and neither of the target addresses cause a return stack pop.

RGBHNP When the target address of a taken indirect P0 instruction is incorrectly predicted, and the incorrect target address
matches the top entry of the return stack, the trace unit subsequently generates a Target Address element with the
correct target address, and neither of the target addresses cause a return stack pop.

RZCCBS When the final status of the Atom element corresponding to an indirect P0 instruction is E, including when one or
more Mispredict elements change the status of the Atom element, the trace unit performs a return stack pop.

Note
A return stack push only occurs if the initial Atom element state for the Branch with Link instruction is E.
Conversely, a return stack pop only occurs if the final Atom element state for the indirect P0 instruction is E.

RSLDXR When an instruction that is both a Branch with Link instruction and an indirect P0 instruction is executed, the trace
unit performs the following actions on the return stack, in order:

1. Determine whether a return stack push is possible and push if required.

2. Determine whether a return stack pop is possible and pop if required.

Note
Some Arm trace architectures use a different order of operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6305
ID032224 Non-Confidential

The Embedded Trace Extension
D4.5 About the ETE trace unit
RSBZJB When any of the following occur, the trace unit discards the contents of the return stack:

• The trace unit generates a Trace Info element.

• The trace unit generates a Trace On element.

• The PE enters a branch broadcasting region.

IXRQHQ A trace unit might discard the contents of the return stack at any time.

IDCNGF When the return stack contents are discarded, there is no requirement for the trace analyzer to be aware that this
discard operation has occurred. This is because even though the contents of the trace unit return stack are discarded,
there are no adverse consequences if the contents of the trace analyzer return stack are retained, but never used.

RGZSSX After a Trace Info element, a Target Address element and a Context element are required but might not be generated
immediately. If the Target Address element and the Context element are not generated before the next P0 element,
then any Branch with Link instructions must not push on to the return stack until both the Target Address element
and the Context element have been generated.

Note

This restriction prevents the trace unit from performing return stack pushes for instructions that the trace analyzer
cannot analyze, because it is not yet fully synchronized.

D4.5.12.5 Timestamp value compression

IGYYNG The trace analyzer maintains a copy of the last Timestamp element value broadcast. The Timestamp element value
might be compressed relative to the last value and only the bits that have changed need to be encoded.

RGPGQQ When a Trace Info packet is generated, the trace unit sets its maintained value of the last Timestamp element to zero,
and when the trace unit generates a subsequent Timestamp packet the value is compressed relative to this new zero
value. This means that the first Timestamp packet after a Trace Info packet contains all nonzero bits of the
Timestamp value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6306
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
D4.6 Resource operation

IPKCDG FEAT_ETE has a number of resources that can be used to provide advanced filtering functionality.

RPWBZK The resources operate in one of the following states:

Running

All the resources are active.

Pausing

The resources are progressing to the Paused state.

Paused

All the resources are static and inactive except for External Input Selectors.

Figure D4-16 Resources operation

IHWYYK As described in System behaviors, the trace unit can be disabled by either:

• Setting TRCPRGCTLR.EN to 0.

• Locking the OS Lock, by setting OSLAR_EL1.OSLK to 1.

RJLLVN While the resources are in the Running state, and when any of the following occur, the resources enter the Pausing
state:

• The trace unit becomes disabled.

• The trace unit enters the low-power state.

• The PE begins executing in a Trace Prohibited region.

RYWDVJ While the resources are in the Pausing state, the resources enter the Paused state in finite time.

RLYFDT While the trace unit is in the Paused state, when all of the following are true, the resources enter the Running state:

• The trace unit is enabled.

• The trace unit is not in the low-power state.

• The PE is not executing in a Trace Prohibited region.

RTMPZZ A trace unit buffer overflow has no impact on the behavior of the resources.

�������

���	���

���	
�
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6307
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
D4.6.1 Behavior of the resources while in the Running state

SJVYQP The time taken for the resources to operate might vary between different trace unit implementations.

D4.6.2 Behavior of the resources while in the Pausing state

RRDCGC When the resources enter the Pausing state, the resources perform the following procedure:

1. All resources, except for the Sequencer and any Counters, are driven low as inputs to the Resource Selector
logic. The Counters and the Sequencer behave as normal.

2. The states that the inputs were at before they were driven low are propagated through the Resource Selector
logic.

3. The states of the Counters and the Sequencer are propagated through the Resource Selector logic one more
time. That is, the states of the Counters and the Sequencer are propagated through the Resource Selector logic
for the length of time that it takes for the state of a resource to be propagated through the Resource Selector
logic.

4. The resources enter the Paused state.

ILGWRK The procedure that the resources perform when the resources are in the Pausing state has the result that, for resource
events that are activated by a resource that is not a Counter or a Sequencer, no activity is lost, because all those
resource events are updated.

ICQNGN When Counter and Sequencer states are propagated back as resources, so that a loop is created, then the following
are true:

• If a Counter at zero resource is being used to activate the Sequencer or a Counter, then that Counter at zero
resource might be propagating through the Resource Selector logic at the time when the procedure ends. In
this case, the Sequencer state resource or other Counter at zero resource that is activated by that Counter at
zero resource might be lost.

• If a Sequencer state resource is being used to activate a Counter, then that Sequencer state resource might be
propagating through the Resource Selector logic at the time when the procedure ends. In this case, the
Counter at zero resource that is activated by that Sequencer state resource might be lost.

IBRZXY When the trace unit becomes disabled, the behavior of the resources in the Pausing state ensures that the
programmers’ model provides a consistent view of the state of the trace unit resources. That is, regarding the
Counters and the Sequencer, the following are true:

• If the state of the Sequencer propagated back as a resource, then the view of the Sequencer as a resource event
and the view of the Sequencer resource state both show the same Sequencer state.

• If the state of a Counter is propagated back as a resource, then the view of the Counter as a resource event
and the view of the Counter resource state both show the same Counter state.

The Counter state might be one of the following:

— The Counter is at zero.

— The Counter is not at zero.

D4.6.3 Behavior of the resources while in the Paused state

IYXKSQ The behavior of the resources when the PE enters the low-power state or a Trace Prohibited region differs from other
trace architectures defined by Arm.

RFHYQW While the resources are in the Paused state and the trace unit is not disabled, the resources do not lose resource
events that are in transition, except those permitted when moving through the Pausing state of the resources. See
Behavior of the resources while in the Pausing state for details on the resource events that are permitted to be lost
when in the Pausing state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6308
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
IHZRSS While the resources are in the Paused state, the resources might not observe resource events that are in transition
until after the resources leave the Paused state.

RYWQNQ While the resources are in the Paused state, the resources remain in the state they are in.

RBQSMN While the resources are in the Paused state, the trace unit drives all External Outputs low.

RMVZYP When the trace unit becomes disabled and the resources enter the Paused state, and not before, the trace unit might
set TRCSTATR.PMSTABLE to 1.

RRWNTS While TRCSTATR.PMSTABLE is set to 1, all resources and resource events remain in a quiescent state.

IZSHWT The behavior of the External Input Selectors is detailed in Operation while in Paused state.

D4.6.4 Behavior of resources on a Trace synchronization event

RRFSRY When the following resources have finished calculations for all instructions prior to the previous Context
synchronization event, a Trace synchronization event completes:

• Address Comparators.

• Context Identifier Comparators.

• Virtual Context Identifier Comparators.

• Single-shot Comparator Controls.

D4.6.5 Resource organization

INJLRF There are 2 types of resources:

• Precise resources.

• Imprecise resources.

IJCKLL Each resource has a current state, which is output as a Resource state. The Resource state is selected by Resource
Selectors, and then used by various trace unit functions as a Resource event, see Figure D4-17.

Figure D4-17 Resources organization

D4.6.5.1 Precise resources

IQSPKY The precise resources are used in the evaluation of the ViewInst include/exclude function and the ViewInst start/stop
function.

RWNGDH The trace unit evaluates the precise resources for each instruction block. See Instruction block for more details.

RNFDCZ The trace unit maintains execution order of the precise resources.

��������� ��������	�
�
� ��������
����
�� ��������	����
 �����	���

���
����
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6309
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-18 Precise resource path

D4.6.5.2 Imprecise resources

INNHSY If a Resource is not a precise resource, it is an imprecise resource.

�������	
�������������
���	���

�������	
�	��	��	��
���	���

�������	�������
�������	���

���	��
���	��	
����	����

�������	���

���	��	
����	����
�������	���

��
�������	��
���	�
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6310
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-19 Imprecise resource path

D4.6.5.3 Selecting a resource or a pair of resources

IBRQFW A resource is selected by using a Resource Selector.

RQDJVV Each Resource Selector uses one of the 30 TRCRSCTLR<n> registers. The trace unit implements Resource
Selectors in pairs, so that a maximum of 15 programmable pairs can be implemented.

RNRSGN Resource Selector 0 always provides a FALSE result.

RSXSQT While the resources are in the Running state, Resource Selector 1 provides a TRUE result.

ITQVKS TRCIDR4.NUMRSPAIR indicates how many pairs of Resource Selectors are implemented.

IMSHWC Resource Selectors can be used in pairs or used individually. When a pair of Resource Selectors is used, a Boolean
function can be applied to the outputs of the combination of selected resources. See Figure D4-21.

�������
��	
�������

�������
���������

�������
���������

��	
�������

�������
�������
���������

��	
�������

�����������
��	
������
��������

��������

���������

���� !����
 ����������
��
���������

� ���	
������
��
���

�������
 !����"��

��������

���������

���#����

$�	����	

�������

% $!����%
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6311
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RWZVDQ While TRCRSCTLR<n>.SELECT[m] is 1, the Resource Selector selects the Resource Number m of the group
selected by TRCRSCTLR<n>.GROUP as described in Table D4-24.

RHVNQG While TRCRSCTLR<n>.INV is set to 0 and one or more resources in a group are selected, when any of the outputs
of the selected resources are high, the Resource Selector fires.

RWFGMY While TRCRSCTLR<n>.INV is set to 1, when none of the outputs of the selected resources are high, the Resource
Selector fires.

ISZZMP Figure D4-20 summarizes the process of resource selection.

Table D4-24 Resource grouping

Group Resource Number Resource

0b0000 0-3 External Input Selectors 0-3

4-15 Reserved

0b0001 0-7 PE Comparator Inputs 0-7

8-15 Reserved

0b0010 0 Counter 0 at zero

1 Counter 1 at zero

2 Counter 2 at zero

3 Counter 3 at zero

4 Sequencer state 0

5 Sequencer state 1

6 Sequencer state 2

7 Sequencer state 3

8-15 Reserved

0b0011 0-7 Single-shot Comparator Control 0-7

8-15 Reserved

0b0100 0-15 Single Address Comparator 0-15

0b0101 0-7 Address Range Comparator 0-7

8-15 Reserved

0b0110 0-7 Context Identifier Comparator 0-7

8-15 Reserved

0b0111 0-7 Virtual Context Identifier Comparator 0-7

8-15 Reserved

0b1xxx 0-15 Reserved
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6312
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-20 A Resource Selector

D4.6.5.4 A Resource Selector pair

IDLRMJ The Resource Selectors are arranged in pairs, and the result of each of a pair of Resource Selectors can be combined
using a Boolean function and used to drive other resources and events in the trace unit.

RKTNJM For each TRCRSCTLR<n> register which is the lower register for a pair of Resource Selectors, the
TRCRSCTLR<n> register has the TRCRSCTLR<n>.PAIRINV field.

IQKTSJ For example:

• TRCRSCTLR2 and TRCRSCTLR3 constitute a Resource Selector pair. In this case:

— TRCRSCTLR2 is the lower register.

— TRCRSCTLR2.PAIRINV optionally inverts the result of the Boolean function that is applied to the
outputs of the combination of selected resources.

— TRCRSCTLR3 is the upper register.

— TRCRSCTLR3.PAIRINV is RES0.

This means that, when a Resource Selector pair is used, the following scenario is possible:

• One TRCRSCTLR<n> might select only one resource within the group.

• The other TRCRSCTLR<n> might select more than one resource from the group, so that the result is a logical
OR of the selected resources.

• A Boolean function, for example a logical AND, might be applied to the outputs of the combination of
selected resources.

• The result of that Boolean function might be inverted by using PAIRINV.

ILPJXK In Figure D4-21, the Boolean function is selected by using the INV field for each Resource Selector, with the
PAIRINV field for each Resource Selector pair, see Table D4-25.

�������	
��

������������
����
�������	���	�
�	����	
����	����

�����	
�����
��	

��� ����� ������

�� !��"

#��

��

���

�����	
��������
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6313
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-21 A Resource Selector pair

D4.6.6 Address comparators

ILGGVG An ETE trace unit provides between 0 and 16 Single Address Comparators (SACs), each of which compares the
instruction address with a user-programmed value.

RYCRNP The trace unit implements SACs in pairs, so that a trace unit implementation contains an even number of SACs.

IMNTCY TRCIDR4.NUMACPAIRS indicates how many pairs of SACs are implemented.

Table D4-25 Selecting a Boolean function

Function PAIRINV Resource A INV Resource B INV

A AND B 0b0 0b0 0b0

NOT(A AND B) 0b1 0b0 0b0

Reserved 0b0 0b0 0b1

NOT(A) OR B 0b1 0b0 0b1

NOT(A) AND B 0b0 0b1 0b0

Reserved 0b1 0b1 0b0

NOT(A) AND NOT(B) 0b0 0b1 0b1

A OR B 0b1 0b1 0b1

�������	
��

������������
����
�������	���	�
�	����	
����	�����

����	������	
�����
��	

������� ��� ����� ������

������������
����
�������	���	�
�	����	
����	����

�� !��"

$��

��

���

�����	
���

��%

���&'��(������	
�

����	������	
�����
��	

��� ����� ������

�� !��"

$��

��

���

�����	
��)

$��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6314
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RYMVDZ When the PE executes instructions in Debug state, Address Comparators do not match.

RYPWLR When the PE executes instructions in a Trace Prohibited region, Address Comparators do not match.

IRFTWJ Address Comparators might match in failed transactions.

IWDJPG Address Comparators might match on Speculative execution.

D4.6.6.1 Single Address Comparators

ISSHHT A SAC can be used in the following ways:

• As inputs to the ViewInst start/stop function in the ViewInst function. For more information, see ViewInst
start/stop function filtering.

• As an individual resource.

• The comparator can be programmed so that, whenever the PE is in a specific Security state, the comparator
only matches in certain Exception levels.

RDKCFF An SAC only matches on Exception levels and Security states as indicated by TRCACATR<n>.

SAC ELi[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬TRCACATRn.EXLEVEL S EL0 Secure EL0

¬TRCACATRn.EXLEVEL S EL1 Secure EL1

¬TRCACATRn.EXLEVEL S EL2 Secure EL2

¬TRCACATRn.EXLEVEL S EL3 EL3

¬TRCACATRn.EXLEVEL NS EL0 Non-secure EL0

¬TRCACATRn.EXLEVEL NS EL1 Non-secure EL1

¬TRCACATRn.EXLEVEL NS EL2 Non-secure EL2

¬(TRCACATRn.EXLEVEL RL EL0 ⊕
TRCACATRn.EXLEVEL NS EL0) Realm EL0

¬(TRCACATRn.EXLEVEL RL EL1 ⊕
TRCACATRn.EXLEVEL NS EL1) Realm EL1

¬(TRCACATRn.EXLEVEL RL EL2 ⊕
TRCACATRn.EXLEVEL NS EL2) Realm EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6315
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RQFNSK An SAC only matches on the context indicated by TRCACATR<n>.CONTEXT and
TRCACATR<n>.CONTEXTTYPE.

RPYMZV When an instruction is executed, and the address of the lowest byte of the instruction exactly matches the
programmed address of an SAC, the SAC matches.

ISPFXX For example, for a 4-byte instruction at address 0x1000:

• The lowest byte of the instruction is at 0x1000.

• The second byte of the instruction is at 0x1001.

• The third byte of the instruction is at 0x1002.

• The highest byte of the instruction is at 0x1003.

If an SAC is programmed with 0x1000, then it always matches on that instruction at address 0x1000.

IJZXFJ It is IMPLEMENTATION DEFINED whether an SAC matches when its programmed address matches any byte of an
instruction which is not the lowest byte of the instruction.

IVSFSS The Arm architecture supports disabling IT instructions on more than one subsequent instruction, using the ITD bits
in the SCTLR, HSCTLR, and SCTLR_EL1 System registers. If any of the ITD bits are set to 1 and are affecting IT
operation, and a SAC is programmed to match on the address of the instruction that is immediately after an IT
instruction, when the instruction immediately after the IT instruction is executed it is CONSTRAINED UNPREDICTABLE
whether that comparator matches.

STFYFT If any of the ITD bits are set to 1, Arm recommends that a SAC is programmed to match on the address of the IT
instruction, instead of the instruction immediately after the IT instruction.

SMLDYK To avoid unexpected behavior from an SAC, Arm recommends that the SAC is always programmed with an address
that is for the lowest byte of an instruction.

IMCKFH When the instruction immediately after a MOVPRFX instruction executes, if a SAC is programmed to match on the
address of this instruction, then it is CONSTRAINED UNPREDICTABLE whether that comparator matches.

SFPTHL Arm recommends that a SAC is programmed to match on the address of the MOVPRFX instruction, instead of the
instruction immediately after the MOVPRFX instruction.

m = TRCACATRn.CONTEXT

type = TRCACATRn.CONTEXTTYPE

SAC CONTEXTi[n] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 type is 0

CIDCOMP[m] type is 1

VMIDCOMP[m] type is 2

CIDCOMP[m]∧
VMIDCOMP[m] type is 3

SAC ADDRi[n] = (ThisInstrAddr()i ≡ TRCACVRn.ADDRESS)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6316
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
ITBNTJ The operation of a SAC is as follows:

D4.6.6.2 Address Range Comparators

IHDFQM Pairs of SACs are arranged to form one Address Range Comparator (ARC). An ARC is programmed with an
address range, so that whenever any address in that range is accessed, the ARC matches. A trace unit contains
between zero and eight ARCs. ARCs can be used in the following ways:

• Selected for the ViewInst include/exclude function in the ViewInst function. See ViewInst include/exclude
function filtering.

• As individual resources.

An ARC is programmed by programming the SACs as follows:

• The first SAC is programmed with the start address of the instruction range.

• The second SAC is programmed with the end address of the instruction range.

SWFSPV The address that the second SAC is programmed with must be greater than or equal to the address that the first SAC
is programmed with, that is, the end address must be greater than or equal to the start address.

RMXCGD While the start address of an ARC is greater than the end address, the behavior of the ARC is CONSTRAINED
UNPREDICTABLE, that is, at any time the ARC might do one of the following:

• Match.

• Not match.

RXYJLC While the TRCACATR<n> registers for the SACs in an ARC are programmed to different values, the behavior of
the ARC is CONSTRAINED UNPREDICTABLE.

RLLQPL While an ARC is programmed with an instruction address range, when the PE executes an instruction at an address
in the following range, the ARC matches:

RYYXSQ When an instruction is executed, and the address of the lowest byte of the instruction is within the programmed
address range of an ARC, the ARC matches.

IRPFWZ When an instruction is executed and the programmed address range of an ARC contains addresses for one or more
bytes of the instruction, but does not contain the address for the lowest byte of the instruction, it is IMPLEMENTATION
SPECIFIC whether the ARC matches.

IRZFPT For example, for a 4-byte instruction at address 0x1000:

• The lowest byte of the instruction is at 0x1000.

• The second byte of the instruction is at 0x1001.

start address = TRCACVRn.ADDRESS

end address = TRCACVR(n+1).ADDRESS

ARC ADDRi[n/2] = (ThisInstrAddr()i � start address) ∧ (ThisInstrAddr()i
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6317
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
• The third byte of the instruction is at 0x1002.

• The highest byte of the instruction is at 0x1003.

If the programmed address range contains 0x1000, then the ARC always matches. However, if the programmed
address range starts at either 0x1001, 0x1002, or 0x1003, then it is IMPLEMENTATION SPECIFIC whether the ARC
matches.

SHSFTQ To avoid unexpected behavior from an ARC, Arm recommends that the ARC is always programmed with an address
range that starts with an address for the lowest byte of an instruction.

IVRRHS The Arm architecture supports disabling IT instructions on more than one subsequent instruction, using the ITD bits
in the SCTLR, HSCTLR, and SCTLR_EL1 System registers. If any of the ITD bits are set to 1 and are affecting IT
operation, and an ARC is programmed to include the address of the instruction that is immediately after an IT
instruction but not include the IT instruction, when the instruction immediately after the IT instruction is executed
then it is CONSTRAINED UNPREDICTABLE whether that comparator matches.

SDMHQH If any of the ITD bits are set to 1, Arm recommends that an ARC is programmed to include both the IT instruction
and the instruction immediately after the IT instruction.

IPBKPJ When the instruction immediately after a MOVPRFX instruction is executed, if an ARC is programmed to include the
address of the instruction that is after the MOVPRFX instruction but not the MOVPRFX instruction, then it is CONSTRAINED
UNPREDICTABLE whether that comparator matches.

SHVTHL Arm recommends that an ARC is programmed to include both the MOVPRFX instruction and the instruction
immediately after the MOVPRFX instruction.

IHTXLT It might be possible for multiple matches to occur simultaneously. The definition of when matches occur
simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime conditions. However, an example
of when multiple matches might occur simultaneously is when multiple instructions are observed in the same
processor clock cycle, so that multiple comparisons take place with each address in the programmed range. In this
case, any of the following might occur:

• An address in the range is matched more than once.

• More than one address in the range is matched simultaneously.

RHMYMX When multiple ARC matches occur simultaneously for one ARC, both of the following are true:

• The ARC signals a match at least once.

• The ARC does not signal more matches than the number of instructions that are executed with an address
that matches an address in the programmed range.

ICTBDN Each ARC can be used with one, or a combination of, the following:

• A Context Identifier Comparator.

• A Virtual Context Identifier Comparator.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6318
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RTMCJX An ARC only matches on Exception levels and Security states as indicated by TRCACATR<2n>.

RVSBJF An ARC only matches on the context indicated by TRCACATR<2n>.CONTEXT and
TRCACATR<2n>.CONTEXTTYPE.

RRTXJN The operation of an ARC is as follows:

D4.6.7 Context Identifier Comparator

IKDSNY An ETE trace unit provides between zero and eight Context Identifier Comparators. Each Context Identifier
Comparator can be used in any of the following ways:

• Associated with a SAC.

• Associated with an ARC.

• As an individual resource.

ARC CONTEXTi[n] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 type is 0

CIDCOMP[m] type is 1

VMIDCOMP[m] type is 2

CIDCOMP[m]∧
VMIDCOMP[m] type is 3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6319
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RDCCBY While a Context Identifier Comparator is associated with either an SAC or an ARC, only while the PE is executing
with the Context identifier that the Context Identifier Comparator is programmed with and when an address is
accessed which the SAC or ARC is programmed to match on, the SAC or ARC signals a match.

RBKQKQ While a Context Identifier Comparator is used as an individual resource, when an instruction block is executed with
the Context identifier that the Context Identifier Comparator is programmed with, the Context Identifier
Comparator matches.

IPBXRH When using a Context Identifier Comparator as an independent resource to activate a resource event, the time that
the resource event is activated relative to the time that the Context Identifier Comparator becomes active might be
imprecise.

IRBLYL It might be possible for multiple matches of a Context Identifier Comparator to occur simultaneously. The definition
of when matches occur simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime
conditions. However, an example of when multiple matches might occur simultaneously is when multiple
instructions are observed in the same processor clock cycle, so that multiple comparisons take place.

RMPJBW When multiple Context Identifier Comparator matches occur simultaneously for one Context Identifier Comparator,
all of the following are true:

• The Context Identifier Comparator signals a match at least once.

• The Context Identifier Comparator does not signal more matches than the number of instructions that are
executed with the Context identifier that the Context Identifier Comparator is programmed with.

IHDCJK A Context Identifier Comparator might match on Speculative execution, that is, a Context Identifier Comparator
might match if the PE speculatively changes the Context identifier.

RMCYYC When the PE executes instructions in Debug state, Context Identifier Comparators do not match.

RSRZGJ When the PE executes instructions in a Trace Prohibited region, Context Identifier Comparators do not match.

IGKDRL The Context identifier might change at points that are not Context synchronization events, for example when a
System instruction is used to write to the current Context identifier register. In these scenarios, the Context Identifier
Comparator might compare against the old or new Context identifier value for any instruction after the P0 element
before the System instruction, up to the Context synchronization event after the System instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6320
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
D4.6.8 Virtual Context Identifier Comparators

IBXVPG An ETE trace unit provides between zero and eight Virtual Context Identifier Comparators. Each Virtual Context
Identifier Comparator can be used in any of the following ways:

• Associated with a SAC.

• Associated with an ARC.

• As an individual resource.

RRTRBM While a Virtual Context Identifier Comparator is associated with either an SAC or an ARC, only while the PE is
executing with the Virtual context identifier that the Virtual Context Identifier Comparator is programmed with and
when an address is accessed which the SAC or ARC is programmed to match on, the SAC or ARC signals a match.

RVWYMY While a Virtual Context Identifier Comparator is used as an individual resource, when an instruction block is
executed with the Virtual context identifier that matches the Virtual Context Identifier Comparator value, the Virtual
Context Identifier Comparator matches.

RFLXQL While TRFCR_EL2.CX indicates that Virtual Context Identifier Comparators cannot match, Virtual Context
Identifier Comparators do not match.

RLPKBR When the PE executes instructions in Debug state, Virtual Context Identifier Comparators do not match.

RWZWLT When the PE executes instructions in a Trace Prohibited region, Virtual Context Identifier Comparators do not
match.

ISCPJP When using a Virtual Context Identifier Comparator as an independent resource to activate a resource event, the
time at which the resource event is activated relative to the time at which the Virtual Context Identifier Comparator
becomes active might be imprecise.

RLJRPW A Virtual Context Identifier Comparator is associated with an SAC by programming TRCACATR<n>.CONTEXT
for the SAC.

IGJCRG It might be possible for multiple matches of a Virtual context identifier to occur simultaneously. The definition of
when matches occur simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime conditions.
However, an example of when multiple matches might occur simultaneously is when multiple instructions are
observed in the same processor clock cycle, so that multiple comparisons take place.

RJNNDL When multiple Virtual Context Identifier Comparator matches occur simultaneously for one Virtual Context
Identifier Comparator, both of the following are true:

• The Virtual Context Identifier Comparator signals a match at least once.

• The Virtual Context Identifier Comparator does not signal more matches than the number of instructions that
are executed with the Virtual context identifier that the Virtual Context Identifier Comparator is programmed
with.

INPPCF A Virtual Context Identifier Comparator might signal a match on Speculative execution, that is, a Virtual Context
Identifier Comparator might signal a match when the PE speculatively changes the Virtual context identifier.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6321
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
IPPWXT The Virtual context identifier might change at points which are not Context synchronization events, for example
when a System instruction is used to write to CONTEXTIDR_EL2. In these scenarios, the Virtual Context Identifier
Comparator might compare against the old or new Virtual context identifier value for any instruction after the P0
element before the System instruction, up to the Context synchronization event after the System instruction.

D4.6.9 Counters

INCCBM The Counters that are employed by the ETE architecture are all decrement counters.

The ETE architecture enables a trace unit to connect Counter outputs to resource events, so that a Counter at zero
state can be used as a resource to activate a resource event. For example, a Counter at zero state might be used to
assert an External Output or to make ViewInst active.

An ETE trace unit provides up to four 16-bit Counters. TRCIDR5.NUMCNTR indicates how many Counters are
implemented. For each Counter, the following can be specified:

• The initial counter value. This can be programmed using TRCCNTVR<n>.

• The reload value. This can be programmed using TRCCNTRLDVR<n>.

• The resource event that causes the Counter to reload with the reload value. This resource event is called
RLDEVENT. In addition, if required, the Counter can be programmed so that it automatically reloads
whenever it reaches zero.

• The resource event that enables the Counter to decrement. This resource event is called CNTEVENT. The
Counter decrements whenever CNTEVENT is active.

RRBMQM The processor clock clocks the Counters in the trace unit.

RPZQGV While the PE is stalled, the Counters continue to count.

RFHFMP While the resources are in the Paused state, the Counters do not count.

RLFVYH When a Counter value is changed by anything other than a direct write to TRCCNTVR<n>, the trace unit considers
the change to be an indirect write to TRCCNTVR<n>.VALUE.

IMLDXC Each Counter operates in one of the two following possible modes:

• Normal mode.

• Self-reload mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6322
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RSBQPN While the Counter is in Normal mode, when the Counter reaches zero, the Counter remains at zero until the reload
resource event, RLDEVENT, occurs.

RHYLGG While the Counter is in Normal mode, the Counter-at-zero resource is active for the whole of the time that the
Counter is at zero.

RYLYPH While the Counter is in Self-reload mode, when the Counter reaches zero, when the decrement resource event is
next active, the trace unit reloads the Counter with the reload value.

RVGJNL While the Counter is in Self-reload mode, when the Counter value is zero, the decrement resource event is active
and the reload resource event is not active, the Counter-at-zero resource is active for one cycle.

IKTRXV The following examples show various operating scenarios for a single Counter. Each Counter is programmed with
a reload value of 0x3.

Figure D4-22 Counter Example 1, Normal mode

Figure D4-23 Counter Example 2, Normal mode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6323
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-24 Counter Example 3, Self-reload mode

Figure D4-25 Counter Example 4, Self-reload mode

Figure D4-26 Counter Example 5, Self-reload mode

RKXLKC While the decrement resource event is inactive, the Counters do not decrement.

RDDCDK The trace unit prioritizes the reload resource event over the count decrement resource event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6324
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
D4.6.9.1 Counter Operation in Normal mode

IBRLYH This table describes the counter operation in Normal mode.

D4.6.9.2 Counter Operation in Self-reload mode

ISHWBT This table describes the counter operation in Self-reload mode:

D4.6.9.3 Forming a larger Counter from two separate Counters

ITYLSH Some Counters can be chained together to form a larger counter, so that every time one Counter reloads, another
Counter decrements.

IMMDRW The following example shows an operating scenario for 2 Counters chained together. Counter 0 is programmed with
a reload value of 0x2.

RLDEVENT dec_action Counter value Action Resource Active Notes

Inactive x 0 Stable Yes Resource is active while Counter is at zero
and remains at zero

Inactive 0 > 0 Stable No No activity

Inactive 1 > 0 Decrement No Decrement when not zero

Active x 0 Reload Yes Reload, but resource is active because
Counter is at zero

Active x > 0 Reload No Reload

RLDEVENT dec_action Counter value Action Resource Active Notes

Inactive 0 x Stable No No activity, resource is not active even if
the Counter is at zero

Inactive 1 0 Reload Yes Reload because dec_action is active and
the Counter is at zero,

resource is active only in this cycle

Inactive 1 > 0 Decrement No Decrement when not zero

Active x x Reload No Reload regardless of decrement action
and the value of the Counter, resource is
never active
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6325
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-27 Chained Counter Example 1

RWPWQD Only certain Counters can be programmed to be chained together, as follows:

• Counter 1 can be programmed to decrement when Counter 0 reloads.

• Counter 3 can be programmed to decrement when Counter 2 reloads.

RQHZFW The decrement resource event for the higher Counter n is active when either of the following occurs:

• The lower Counter reloads due to one of the following:

— The reload resource event that is selected by TRCCNTCTLR<n-1>.RLDEVENT.

— The Self-reload mechanism that is controlled by TRCCNTCTLR<n-1>.RLDSELF.

• The decrement resource event that is selected by TRCCNTCTLR<n>.CNTEVENT is active.

RBDPDN While two Counters are chained together to form a larger counter, the larger counter appears as a 32-bit counter
without any tearing of the values between the two Counters.

IFTDHL For example, if Counter 0 is in Self-reload mode and has a value of 0x0000 and a reload value of 0xFFFF, and
Counter 1 is in Normal mode and has a value of 0x1234, then when a decrement resource event occurs on Counter
0, Counter 0 reloads to 0xFFFF. The reload of Counter 0 causes Counter 1 to decrement, resulting in a value of 0x1233.
Therefore the sequence on the Counters on consecutive cycles is 0x12340000 and 0x1233FFFF.

IBCMGM For Counters 1 and 3, TRCCNTCTLR<n>.CNTCHAIN is an RW field that determines whether the Counter is
chained. For Counters 0 and 2, TRCCNTCTLR<n>.CNTCHAIN is RES0.

Note
The CounterAtZero resource might not be asserted at the same time that the Counter is at zero. For example, this
could happen if the trace unit implementation pipelines some logic.

IKJSDV The CounterAtZero resource might not be asserted at the same time that the Counter is at zero. For example, this
could happen if the trace unit implementation pipelines some logic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6326
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
D4.6.9.4 Pseudocode

D4.6.9.4.1 EvalAllCounters()

// The counter-at-zero resources
array boolean CounterAtZero[0..3];

//
// EvalAllCounters() is called each clock cycle
//
EvalAllCounters()
 array boolean reload[0..3];
 reload[0] = EvalCounter(0, FALSE);
 reload[1] = EvalCounter(1, reload[0]);
 reload[2] = EvalCounter(2, FALSE);
 reload[3] = EvalCounter(3, reload[2]);

//
// EvalCounter() is called for each counter
//
boolean EvalCounter(integer index, boolean lower_reloads)
 boolean dec_action;
 boolean resource_active;
 bits(16) next_value;
 boolean reload;
 boolean decrement;

 // A dec_action signal is constructed which indicates whether the counter
 // decrements. This is based on TRCCNTCTLR[n].CNTEVENT and, for counters
 // which support chaining, on TRCCNTCTLR[n].CNTCHAIN and on whether or not
 // the lower counter is reloading.
 dec_action = IsEventActive(TRCCNTCTLR[index].CNTEVENT) ||
 (TRCCNTCTLR[index].CNTCHAIN && lower_reloads);

 // The counter-at-zero resource is active if the counter is
 // currently at zero and is either in Normal mode or in
 // Self-Reload mode and dec_action is active and the reload
 // event is not active.
 resource_active = (TRCCNTVR[index] == 0) &&
 (!TRCCNTCTLR[index].RLDSELF ||
 (dec_action && !IsEventActive(TRCCNTCTLR[index].RLDEVENT)
)
);

 // The counter reloads if the reload event is active or the self-reload
 // mechanism causes a reload.
 reload = IsEventActive(TRCCNTCTLR[index].RLDEVENT) ||
 (TRCCNTCTLR[index].RLDSELF && dec_action && TRCCNTVR[index] == 0);

 // The counter only decrements if it is nonzero and does not reload and
 // dec_action is active.
 decrement = !reload && (TRCCNTVR[index] != 0) && dec_action;

 // Determine the next value of the counter
 if reload then
 TRCCNTVR[index] = TRCCNTRLDVR[index].VALUE;
 else if decrement then
 TRCCNTVR[index] = TRCCNTVR[index] - 1;
 else
 TRCCNTVR[index] = TRCCNTVR[index];

 CounterAtZero[index] = resource_active;
 return reload;

D4.6.10 Sequencer

IBGGRG An ETE trace unit can contain a Sequencer state machine that has four states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6327
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
Figure D4-28 Sequencer state machine

IPTVBH TRCIDR5.NUMSEQSTATE indicates whether the state machine is implemented.

RQYNJH If the Sequencer state machine is implemented, it has four states, numbered 0 to 3.

RTQWHX When the trace unit leaves the Disabled state, the Sequencer state machine starts in the state programmed in
TRCSEQSTR.STATE.

ISYCBV The Sequencer can be connected to resource events, so that the Sequencer transitions from one state to another when
certain resource events occur. The TRCSEQEVR<n> registers can be used to specify which resource events cause
the state machine to transition.

Each register can be used to specify the following:

• A resource event that causes the state machine to progress to the next state.

• A resource event that causes the state machine to transition backwards to the previous state.

Different resource events can be chosen to cause the Sequencer to transition between different states. For example,
a particular resource event might cause an F0 transition from state 0 to state 1 on one processor clock cycle, whereas
a different resource event might cause an F1 transition from state 1 to state 2 on the next processor clock cycle. A
third independent resource event might cause a B1 transition backwards from state 2 to state 1 on the third clock
cycle.

RNPVRQ The trace unit prioritizes forward transitions over backward transitions in the Sequencer state machine. That is,
when two resource events occur that result in a forward transition conflicting with a backward transition in the same
processor clock cycle, the trace unit gives priority to the forward transition and ignores the backward transition.

IQNFJZ The Sequencer can progress through multiple states in a single processor clock cycle. For example, if the Sequencer
is in state 0 and the resource events that cause an F0 and F1 transition to take place both become active in one clock
cycle, then the Sequencer progresses from state 0 to state 2.

IDMZGJ The Sequencer can be reset to state 0 from any other state. TRCSEQRSTEVR can be used to specify a resource
event to reset the Sequencer.

RHQBBF When a resource event that causes an RST transition occurs, the Sequencer finishes the clock cycle in state 0 and
does not progress to another state until the next clock cycle.

RKVSXC The trace unit prioritizes RST transitions over all other transitions. That is, when a resource event that causes an
RST transition is active in the same clock cycle as resource events that cause other transitions, the trace unit gives
priority to the RST transition and ignores all other transitions.

RJDPYL The following table defines all of the possible state transitions.

������� ���������
��

������	��
��

������

�	
�	���

To

From 0 1 2 3

0 RST | !F0 F0 & !F1 F0 & F1 & !F2 F0 & F1 & F2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6328
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
IYQZGV If multiple resource events that cause transitions become active in one processor clock cycle, there is no guarantee
that the order of these resource events becoming active is observed. For example, you might program:

• F0 to be active on an instruction Address Comparator at address 0x1000.

• F1 to be active on an instruction Address Comparator at address 0x1004.

If the instruction at 0x1000 and the instruction at 0x1004 are executed in the same processor clock cycle, then the
transition from state 0 to state 2 occurs regardless of the program order of the two instructions.

RVDTDP When the Sequencer state is changed by anything other than a direct write to TRCSEQSTR, the trace unit considers
the change to be an indirect write to TRCSEQSTR.STATE.

IWYFZH The ETE architecture provides each Sequencer state as a resource, so that states can be used to trigger other resource
events in the trace unit.

Figure D4-29 Sequencer operation

RHQHFT When the Sequencer progresses through multiple states in a single processor clock cycle, for each state that it passes
through, the resource state that the Sequencer triggers is active for that cycle.

IDCFMF For example, if the Sequencer is in state 0, and in one processor clock cycle it moves to state 3, then the resource
events that state 1 and state 2 are connected to must be active for that clock cycle. The same rule applies if the
Sequencer is transitioning backwards, so that if it is in state 3, and in one processor clock cycle B2 and B1 cause it
move to state 1, then the resource event that state 2 is connected to must be active for that clock cycle.

1 RST | (B0 & !F1 & !F0) (!B0 | F0) & !F1 F1 & !F2 F1 & F2

2 RST | (B0 & B1 & !F2 & !F1 & !F0) B1 & (!B0 | F0) & !F1 & !F2 (!B1 | F1) & !F2 F2

3 RST | (B0 & B1 & B2 & !F2 & !F1 & !F0) B2 & B1 & (!B0 | F0) & !F2 & !F1 B2 & (!B1 | F1) & !F2 !B2 | F2

To

��������������

��� �	�
�� ���

��
��
���

����	������
����������
�	��

��
��
���

����
����������

��
��
���
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6329
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
The exception to this is when an RST transition causes the Sequencer to return to state 0. For example, if the
Sequencer is in state 3, and in one processor clock cycle it moves to state 0, then the resource events that state 2 and
stage 1 are connected to must not become active.

Figure D4-30 Example of State Transitions

D4.6.10.1 Pseudocode

D4.6.10.1.1 EvalSequencer()

// The sequencer state resources
array boolean SequencerState[0..3];

// EvalSequencer()
// ===============

EvalSequencer()
 (rst, txn0, txn1, txn2, txn3) = SequencerTransitions();
 // Sequencer State resources
 SequencerState[0] = FALSE;
 SequencerState[1] = FALSE;
 SequencerState[2] = FALSE;
 SequencerState[3] = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6330
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
 SequencerResource(rst, txn0, txn1, txn2, txn3);
 SequencerNextState(rst, txn0, txn1, txn2, txn3);

D4.6.10.1.2 SequencerTransitions()

// SequencerTransitions()
// ======================

(boolean rst,
 array boolean txn0[0..3],
 array boolean txn1[0..3],
 array boolean txn2[0..3],
 array boolean txn3[0..3]) SequencerTransitions()
 boolean F0 = IsEventActive(TRCSEQEVR0.F);
 boolean B0 = IsEventActive(TRCSEQEVR0.B);

 boolean F1 = IsEventActive(TRCSEQEVR1.F);
 boolean B1 = IsEventActive(TRCSEQEVR1.B);

 boolean F2 = IsEventActive(TRCSEQEVR2.F);
 boolean B2 = IsEventActive(TRCSEQEVR2.B);

 boolean rst = IsEventActive(TRCSEQRSTEVR);

 array boolean txn0[0..3];
 array boolean txn1[0..3];
 array boolean txn2[0..3];
 array boolean txn3[0..3];

 txn0[1] = F0 && !F1;
 txn0[2] = F0 && F1 && !F2;
 txn0[3] = F0 && F1 && F2;

 txn1[0] = B0 && !F0 && !F1;
 txn1[1] = (!B0 || F0) && !F1;
 txn1[2] = F1 && !F2;
 txn1[3] = F1 && F2;

 txn2[0] = B0 && !F0 && B1 && !F1 && !F2;
 txn2[1] = (!B0 || F0) && B1 && !F1 && !F2;
 txn2[2] = (!B1 || F1) && !F2;
 txn2[3] = F2;

 txn3[0] = B0 && !F0 && B1 && !F1 && B2 && !F2;
 txn3[1] = (!B0 || F0) && B1 && !F1 && B2 && !F2;
 txn3[2] = (!B1 || F1) && B2 && !F2;
 txn3[3] = (!B2 || F2);

 return (rst, txn0, txn1, txn2, txn3)

D4.6.10.1.3 SequencerResource()

// SequencerResource()
// ===================

SequencerResource(boolean rst,
 array boolean txn0[0..3],
 array boolean txn1[0..3],
 array boolean txn2[0..3],
 array boolean txn3[0..3])

 case TRCSEQSTR.STATE of
 0 then SequencerState[0] = TRUE;
 1 then SequencerState[1] = TRUE;
 2 then SequencerState[2] = TRUE;
 3 then SequencerState[3] = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6331
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
 // If the statemachine passes through
 // several states in one iteration then
 // set the SequencerState as appropriate.
 if !rst then
 case TRCSEQSTR.STATE of
 0 then
 if txn0[2] then
 SequencerState[1] = TRUE;
 if txn0[3] then
 SequencerState[1] = TRUE;
 SequencerState[2] = TRUE;
 1 then
 if txn1[3] then
 SequencerState[1] = TRUE;
 SequencerState[2] = TRUE;
 2 then
 if txn2[0] then
 SequencerState[1] = TRUE;
 3 then
 if txn3[0] then
 SequencerState[1] = TRUE;
 SequencerState[2] = TRUE;
 if txn3[1] then
 SequencerState[2] = TRUE;

D4.6.10.1.4 SequencerNextState()

// SequencerNextState()
// ====================

SequencerNextState(boolean rst,
 array boolean txn0[0..3],
 array boolean txn1[0..3],
 array boolean txn2[0..3],
 array boolean txn3[0..3])

 if rst then
 TRCSEQSTR.STATE = 0;
 else
 case TRCSEQSTR.STATE of
 0 then
 if txn0[1] then
 TRCSEQSTR.STATE = 1;
 if txn0[2] then
 TRCSEQSTR.STATE = 2;
 if txn0[3] then
 TRCSEQSTR.STATE = 3;
 1 then
 if txn1[0] then
 TRCSEQSTR.STATE = 0;
 if txn1[1] then
 TRCSEQSTR.STATE = 1;
 if txn1[2] then
 TRCSEQSTR.STATE = 2;
 if txn1[3] then
 TRCSEQSTR.STATE = 3;
 2 then
 if txn2[0] then
 TRCSEQSTR.STATE = 0;
 if txn2[1] then
 TRCSEQSTR.STATE = 1;
 if txn2[2] then
 TRCSEQSTR.STATE = 2;
 if txn2[3] then
 TRCSEQSTR.STATE = 3;
 3 then
 if txn3[0] then
 TRCSEQSTR.STATE = 0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6332
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
 if txn3[1] then
 TRCSEQSTR.STATE = 1;
 if txn3[2] then
 TRCSEQSTR.STATE = 2;
 if txn3[3] then
 TRCSEQSTR.STATE = 3;

D4.6.11 Single-shot Comparator Controls

IQSKXC If a trace unit is exposed to speculative execution or execution in Transactional state, when Address Comparators
are used to activate resource events in the trace unit, then those resource events might be activated when speculative
execution occurs:

• A Single Address Comparator might signal a match on speculative execution or within a transaction.

• An Address Range Comparator might signal a match on speculative execution or within a transaction.

For example, this means that if an Address Comparator is used to activate a Counter or assert an External Output,
then that Counter might decrement, or that External Output might become asserted, as a result of speculative
execution. The Single-shot Comparator Controls for Address Comparators make it possible for resource events in
the trace unit to be activated based only on non-speculative execution, that is, only on architectural execution.

A trace unit can provide up to eight Single-shot Comparator Controls. Each Single-shot Comparator Control can be
used with one or more Address Comparators.

ITLFLF Single-shot Comparator Controls can be used as a trace unit resource, to activate trace unit resource events. For
example, a Single-shot Comparator Control can be selected to:

• Enable or reload a trace unit Counter.

• Initiate a transition in the trace unit Sequencer state machine.

• Assert an External Output.

A Single-shot Comparator Control can therefore, if programmed to assert an External Output, be used to indicate to
a trace analyzer that a particular instruction has been resolved for execution. This means that a trace analyzer can
start or stop trace capture that is based on the architectural execution of that instruction.

IRBMXW If a trace unit contains one or more Address Comparators, Arm recommends that at least one Single-shot
Comparator Control is implemented.

IVNBPG A Single-shot Comparator Control works in the following way:

1. One or more Address Comparators are selected by using the TRCSSCCR<n> for the Single-shot Comparator
Control. The selected Address Comparators can be all Single Address Comparators, all Address Range
Comparators, or a combination of both.

2. When one of the selected Address Comparators matches, then when the instruction is confirmed to have
architecturally executed, the Single-shot Comparator Control fires.

When a selected Address Comparator matches, but the instruction is confirmed to have not architecturally executed,
the Single-shot Comparator Control does not fire.

RXVVYX When an instruction which matches an Address Comparator is confirmed to have architecturally executed, and the
Address Comparator is selected by TRCSSCCR<n>, and TRCSSCSR<n>.STATUS is 0 or TRCSSCCR<n>.RST is
1, the Single-shot Comparator Control <n> fires.

RXFJGB When a TSB CSYNC instruction is executed while a Single-shot Comparator Control is programmed to fire due to the
TSB CSYNC instruction, only when the related Trace synchronization event has completed, the Single-shot
Comparator fires.

RSWNFV When a Single-shot Comparator Control fires, the trace unit considers this an indirect write to set
TRCSSCSR<n>.STATUS to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6333
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RGBDCK While the resources are in the Paused state, when the conditions for a Single-shot Comparator Control to fire are
met:

• If TRCSSCCR<n>.RST is 1 or TRCSSCSR<n>.STATUS is 0 then TRCSSCSR<n>.PENDING is indirectly
written to 1.

• If TRCSSCCR<n>.RST is 0 and TRCSSCSR<n>.STATUS is 1 then TRCSSCSR<n>.PENDING is either
indirectly written to 1 or is unchanged.

RSDDWY When one of the Address Comparators selected for a Single-shot Comparator Control matches, when the instruction
that it matches on is in a Transaction which fails or is canceled, the Single-shot Comparator Control does not fire.

RNKKSN When the trace unit becomes disabled and an Address Comparator selected by a Single-shot Comparator Control
has matched on an instruction that is still speculative, the Single-shot Comparator Control does not fire.

RKFMKS While the PE is executing in Transactional state, when the trace unit becomes disabled and an Address Comparator
selected by a Single-shot Comparator Control has matched on an instruction in Transactional state, the Single-shot
Comparator Control does not fire.

RDQZSD When tracing becomes prohibited and an Address Comparator selected by a Single-shot Comparator Control has
matched on an instruction that is still speculative, the Single-shot Comparator Control waits until the instruction
speculation is resolved and fires if the instruction is architecturally executed.

RXRSYH While the PE is executing in Transactional state, when tracing becomes prohibited and an Address Comparator
selected by a Single-shot Comparator Control has matched on an instruction in Transactional state, the behavior of
the Single-shot Comparator Control is IMPLEMENTATION DEFINED and is one of the following:

• The Single-shot Comparator Control does not fire.

• The Single-shot Comparator Control waits for the transaction to be resolved and fires if the transaction
completes successfully.

RVTWXJ While a Single-shot Comparator Control is used for instruction address comparisons, when the conditions for the
Single-shot Comparator Control to fire are met, the Single-shot Comparator Control fires, regardless of whether
either of the following are true:

• The instruction fails its condition code check.

• The instruction is a failed store-exclusive operation.

IXZKFW When a Single-shot Comparator Control is used to activate a resource event, the resource event might not become
activated until some time after the trace unit has traced the instruction. This is because although the trace unit traces
the instruction it is executed, the PE might not confirm whether the instruction was architecturally executed or
canceled because of mis-speculation until some time later, and therefore the Single-shot Comparator Control might
not fire until some time later.

D4.6.11.1 Single-shot Comparator Control modes

IXZJSV Each Single-shot Comparator Control operates in one of the following modes:

• Single-shot mode: The Single-shot Comparator Control only fires once. That is, after it has fired, it never
fires again.

• Multi-shot mode: The Single-shot Comparator Control resets after each time it fires. That is, it can fire again
when a selected Address Comparator next signals an address match for an instruction is architecturally
executed.

TRCSSCCR<n>.RST selects the mode.

RKJBCH While a Single-shot Comparator Control is in multi-shot mode, when the Single-shot Comparator Control fires, it
fires for a maximum of one processor clock cycle.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6334
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RSNDBZ While a Single-shot Comparator Control is in multi-shot mode, when multiple of the comparators selected for the
Single-shot Comparator Control match in close succession, only the first match is guaranteed to cause the
Single-shot Comparator Control to fire.

IHSGTY Examples of multiple comparator matches in close succession include:

• More than one of the Address Comparators that are selected signal an address match simultaneously.

• One Address Comparator matches multiple times while a first match is still waiting to be resolved.

D4.6.11.2 Operation while in Paused state

ISPQLS The resolution of a speculative instruction might occur after the PE has entered a Trace Prohibited region and the
resources have entered the Paused state. If the conditions for the Single-shot Comparator Control to fire are met
while the resources are in the Paused state, then the Single-shot Comparator Control resource event is delayed to
ensure that the Single-shot Comparator Control resource event is seen.

RTQHNK While the resources are in the Paused state, the Single-shot Comparator Controls do not fire.

RPVRGR When the resources enter the Running state while TRCSSCSR<n>.PENDING is 1, the following occur:

• If TRCSSCCR<n>.RST is 1 or TRCSSCSR<n>.STATUS is 0, the Single-shot Comparator Control fires.

• TRCSSCSR<n>.PENDING is indirectly written to 0.

IDMGDY Some implementations might have no scenarios where TRCSSCSR<n>.PENDING can be set to 1 by an indirect
write by the trace unit, in particular if the trace unit is not exposed to any speculative execution. However all
implementations support software setting TRCSSCSR<n>.PENDING to 1, and the Single-shot Comparator fires
when the trace unit enters the Running state. This behavior ensures the state from one trace unit can be migrated to
a different trace unit.

D4.6.12 External Outputs

IBZHDF The ETE architecture supports between zero and four External Outputs. The number of outputs that a trace unit has
is IMPLEMENTATION DEFINED, and Arm recommends that at least one output is implemented.

IQPQFJ External Outputs are used to indicate ETEEvents to a trace analyzer.

ETEEvents are controlled by resources events. For example, an instruction Address Comparator can be used to drive
one of the resource events.

If an External Output is programmed to be asserted based on program execution, such as an Address Comparator,
the External Output might not be asserted at the same time as any trace generated by that program execution is
output by the trace unit.

IPNVWQ Typically, the generated trace might be buffered in a trace unit which means that the External Output would be
asserted before the trace is output.

SMFTNW To program an External Output, use TRCEVENTCTL0R to select a resource.

SRBKWB The TRCIDR0.NUMEVENT field shows how many ETEEvents are supported for the particular implementation.

IRFLGF The External Outputs are connected to the Cross Trigger Interface (CTI) for the PE. See Chapter H5 The Embedded
Cross-Trigger Interface.

RRFGJD In a PE where the Trace Unit reset is independent of the PE Warm reset and the CTI reset is independent of the PE
Warm reset, transmission of External Outputs to the CTI is unaffected by a PE Warm reset.

D4.6.12.1 Operation while in Paused state

INXCSB While the resources are in the Paused state an ETEEvent might occur, but any associated trace packets might not be
generated. TRCRSR.EVENT provides a mechanism for recording this occurrence so that the trace unit state can be
saved and restored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6335
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RBCMYM While the resources are in the Paused state, the ETEEvent selector retains that one or more ETEEvents have been
generated but not traced.

RSNKFL When an ETEEvent has been generated and the associated External Output has been asserted, any associated Event
packets are generated.

RFVCMB When an ETEEvent has been generated but the associated External Output has not been asserted, any associated
Event packets are not generated.

RGYWLS When an ETEEvent occurs while the resources are in the Paused state and the Event packet is not output, the trace
unit sets the associated TRCRSR.EVENT[n] to 1.

RDCLHJ When an ETEEvent occurs while the resources are in the Paused state, this is considered an indirect write to
TRCRSR.

RSWBRL When the trace unit enters the Running state while TRCRSR.EVENT[n] is 1, the associated ETEEvent resource is
active for a single PE clock cycle, and the trace unit clears TRCRSR.EVENT[n] to 0 and considers the action an
indirect write to TRCRSR.

IKZYKM When the trace unit enters the Running state while TRCRSR.EVENT[n] is 1, the resource event selected by
TRCEVENTCTL0R.EVENT<n> might also be active on the same PE clock cycle. If this happens, the associated
ETEEvent resource is active for the single PE clock cycle and might not generate 2 separate ETEEvents for these 2
causes of the ETEEvent.

D4.6.13 External inputs

ITPPSC The trace unit uses the PMU events as External Inputs.

RMTGKB If a PMU event number that is selected is not implemented, then the External Input resource event is inactive.

RYCNCR Unless otherwise specified by the PMU event, the following PMU events are selectable by the trace unit:

• All PMU events required by the Performance Monitors Extension.

• If FEAT_PMUv3 is implemented, all Common architectural and microarchitectural events implemented by
the Performance Monitors Extension.

Note

This includes Common events defined by other extensions, such as SVE and SPE.

IXJBHV Additional ASIC-specific events can be selected by using a number in the IMPLEMENTATION DEFINED region.

IVWHTZ There is no requirement that all IMPLEMENTATION DEFINED events are visible by the trace unit, PMU counters, and
the PMUEVENT bus.

RPHDQT For ETE, export of PMU events to the trace unit is not affected by PMCR.X or PMCR_EL0.X.

RRFWZB When SelfHostedTraceEnabled() == TRUE and tracing is prohibited, only the PMU events defined by rules RVBCBZ
and RKRSMY are exported to the trace unit.

RWSXTC When SelfHostedTraceEnabled() == FALSE and counting in the current Security state of the PE is prohibited, only
the PMU events defined by rules RVBCBZ and RKRSMY are exported to the trace unit.

RVBCBZ The following PMU events are always exported to the trace unit:

• CTI_TRIGOUT4.

• CTI_TRIGOUT5.

• CTI_TRIGOUT6.

• CTI_TRIGOUT7.

• PMU_OVFS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6336
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
• TRB_WRAP.

• TRB_TRIG.

RKRSMY The following PMU events are always exported to the trace unit, unless SelfHostedTraceEnabled() == TRUE and
TRFCR_EL2.E2TRE is 0:

• PMU_HOVFS.

RQPDHK When multiple occurrences of the same PMU event occur during the same cycle, the trace unit only observes a
single occurrence of the PMU event.

IMHHNV The operation of the PMU events and the generation of trace within the trace unit are not tightly coupled, and there
is no guarantee that enabling ViewInst due to a PMU event will cause the instruction that caused the PMU event to
be traced.

RXGMPN When the PMU event SW_INCR is selected as an External Input and PMSWINC_EL0 is written from EL2 or EL3,
the External Input is asserted if any bit [n] written has the value 1 and the relevant PMU counter <n> is implemented.

RBXPZK When the PMU event SW_INCR is selected as an External Input and PMSWINC_EL0 is written from EL1 or EL0,
the External Input is asserted if any bit [n] written has the value 1 and the relevant PMU counter <n> is implemented
and any of the following are true:

• EL2 is implemented and enabled in the current Security state and <n> is less than MDCR_EL2.HPMN.

• EL2 is implemented and disabled in the current Security state.

• EL2 is not implemented.

RTTPPY In a PE where the trace unit reset is independent of the PE Warm reset and the CTI reset is independent of the PE
Warm reset, transmission of the CTI_TRIGOUTn events from the CTI to the trace unit is unaffected by a PE Warm
reset.

D4.6.13.1 Operation while in Paused state

IHZLDV The External Input Selectors are guaranteed to be active while in the Paused state. This is so that while the resources
are Paused any cross trigger event is not lost but will occur when the resources resume running.

TRCRSR.EXTIN provides a mechanism to capture the sticky state of the External Input Selectors while in the
Paused state so that the ETE state can be saved and restored.

IZQFND When one or more selected External Inputs have been asserted, while the resources are in the Paused state, the trace
unit retains the knowledge that one or more selected External Inputs have been asserted.

RKCXLF While the resources are in the Pausing or Paused states and the trace unit is not disabled and is not in the low-power
state, when an External Input Selector n detects the selected External Input is asserted, the trace unit performs an
indirect write to set TRCRSR.EXTIN[n] to 1.

RQWYSK When the resources enter the Running state while TRCRSR.EXTIN[n] is 1, the External Input Selector resource is
active for a single PE clock cycle, and the trace unit clears TRCRSR.EXTIN[n] and considers the action an indirect
write to TRCRSR.

D4.6.13.2 Operation while in low-power state

RKVFVS While the trace unit is in the low-power state, the External Input Selectors are inactive.

D4.6.14 PE Comparator Inputs

ICXBPR The ETE architecture provides up to eight PE Comparator Inputs, that is, inputs that can be driven from comparators
within the PE. For example, a PE might contain IMPLEMENTATION DEFINED comparators.

RCNVSS The number of PE Comparator Inputs is indicated by TRCIDR4.NUMPC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6337
ID032224 Non-Confidential

The Embedded Trace Extension
D4.6 Resource operation
RBDWHM While the PE is executing in a Trace Prohibited region, the PE Comparator Inputs are inactive.

RTNHHY The PE Comparator Inputs are only used in IMPLEMENTATION SPECIFIC code.

IDDXFB Each PE Comparator Input can be used in any of the following ways:

• To control the ViewInst start/stop function.

• To control the Single-shot Comparator Controls.

• As an independent resource.

ISKDCW The behavior of the PE Comparator Inputs on the resources and the filtering of the trace unit is IMPLEMENTATION
DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D4-6338
ID032224 Non-Confidential

Chapter D5
ETE Protocol Descriptions

This chapter describes the ETE packets. It contains the following sections:

• About the ETE protocol.

• Summary list of ETE packets.

• Alphabetical list of ETE packets.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6339
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.1 About the ETE protocol
D5.1 About the ETE protocol

IXCCWQ An ETE trace unit generates a trace byte stream. The protocol is a byte-based packet protocol, which means that the
trace byte stream is constructed of multiple packets, where each packet contains one or more bytes of data.

RBVTNX A packet consists of a single header byte, followed by zero or more payload bytes.

D5.1.1 Encoding schemes

Field encodings

ITGRRZ Bit Replacement:

The packet outputs bits which update a piece of state. Bits output by the packet replace only those bits
in the piece of state. Bits not output by the packet remain unchanged in the piece of state.

INKPMZ Unsigned LE128n:

The data is encoded as an unsigned number. The least significant bits of the number are output in the
least significant bits of the packet. Bits not output by the packet are 0.

IWYBBG POD:

The encoding is specific to the packet.

IQXHHT Unary code:

The sequence for this variable is one of the following:

• A 0.

• A number of 1s followed by a 0.

• All 1s for the size of the variable, as defined by the packet.

For example, the permitted values for a 4-bit variable are:

• 0b0.

• 0b10.

• 0b110.

• 0b1110.

• 0b1111.

Instruction set encoding

RFXNDF For any virtual instruction address, the instruction set is output as a combination of the following two pieces of
information:

• The SF bit encoded in Context packets.

• The sub_isa encoded by the type of the following groups of packets:

— Target Address packets.

— Exception packets.

— Q packets.

— Source Address packets.

The sub_isa indicates either:

• IS0.

• IS1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6340
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.1 About the ETE protocol
Table D5-1 indicates how the combination of the SF bit and sub_isa indicate the instruction set.

IWKMNL The sub_isa also indicates the alignment of the virtual instruction addresses. Table D5-2 indicates the alignment of
each sub_isa.

INSZMB The following packets encode the sub_isa:

• Exception Short Address IS0 Packet.

• Exception Short Address IS1 Packet.

• Exception 32-bit Address IS0 Packet.

• Exception 32-bit Address IS1 Packet.

• Exception 64-bit Address IS0 Packet.

• Exception 64-bit Address IS1 Packet.

• Exception 32-bit Address IS0 with Context Packet.

• Exception 32-bit Address IS1 with Context Packet.

• Exception 64-bit Address IS0 with Context Packet.

• Exception 64-bit Address IS1 with Context Packet.

• Target Address Short IS0 Packet.

• Target Address Short IS1 Packet.

• Target Address 32-bit IS0 Packet.

• Target Address 32-bit IS1 Packet.

• Target Address 64-bit IS0 Packet.

• Target Address 64-bit IS1 Packet.

• Target Address with Context 32-bit IS0 Packet.

• Target Address with Context 32-bit IS1 Packet.

• Target Address with Context 64-bit IS0 Packet.

• Target Address with Context 64-bit IS1 Packet.

• Source Address Short IS0 Packet.

• Source Address Short IS1 Packet.

• Source Address 32-bit IS0 Packet.

• Source Address 32-bit IS1 Packet.

• Source Address 64-bit IS0 Packet.

• Source Address 64-bit IS1 Packet.

Table D5-1 Instruction set encodings

SF Bit sub_isa Instruction Set

0b0 IS0 AArch32 A32

0b0 IS1 AArch32 T32

0b1 IS0 AArch64 A64

Table D5-2 Virtual instruction address alignment

sub_isa Alignment

IS0 Word-aligned

IS1 Halfword-aligned
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6341
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.1 About the ETE protocol
• Q short address IS0 Packet.

• Q short address IS1 Packet.

• Q 32-bit address IS0 Packet.

• Q 32-bit address IS1 Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6342
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.2 Summary list of ETE packets
D5.2 Summary list of ETE packets

Table D5-3 lists the ETE packets ordered by the header byte.

Table D5-3 ETE Packets

Header
byte

Name Purpose

00000000 Alignment Synchronization Packet Identifies a packet boundary.

00000000 Discard Packet Indicates a Discard element.

00000000 Overflow Packet Indicates that a trace unit buffer overflow has occurred.

00000001 Trace Info Packet Resets trace compression to a known architectural state.

0000001x Timestamp Packet Indicates a Timestamp element.

00000100 Trace On Packet Indicates that there has been a discontinuity in the trace element stream.

00000110 PE Reset Packet Indicates that a PE Reset has occurred.

00000110 Transaction Failure Packet Indicates that a Transaction Failure has occurred.

00000110 Exception 32-bit Address IS0 with
Context Packet

Indicates that an exception has occurred.

00000110 Exception 32-bit Address IS1 with
Context Packet

Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS0 with
Context Packet

Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS1 with
Context Packet

Indicates that an exception has occurred.

00000110 Exception Exact Match Address Packet Indicates that an exception has occurred.

00000110 Exception Short Address IS0 Packet Indicates that an exception has occurred.

00000110 Exception Short Address IS1 Packet Indicates that an exception has occurred.

00000110 Exception 32-bit Address IS0 Packet Indicates that an exception has occurred.

00000110 Exception 32-bit Address IS1 Packet Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS0 Packet Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS1 Packet Indicates that an exception has occurred.

00001001 Instrumentation Packet Indicates an Instrumentation element.

00001010 Transaction Start Packet Indicates that the PE has started to execute in Transactional state.

00001011 Transaction Commit Packet Indicates that the PE has successfully finished an outer transaction and is
leaving Transactional state.

00001100 Cycle Count Format 2_0 small commit
Packet

Indicates a Commit element and a Cycle Count element.

00001101 Cycle Count Format 2_1 Packet Indicates a Cycle Count element.

00001101 Cycle Count Format 2_0 large commit
Packet

Indicates a Commit element and a Cycle Count element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6343
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.2 Summary list of ETE packets
00001110 Cycle Count Format 1_1 with count
Packet

Indicates a Cycle Count element.

00001110 Cycle Count Format 1_0 with count
Packet

Indicates zero or one Commit elements followed by a Cycle Count element.

00001111 Cycle Count Format 1_1 unknown
count Packet

Indicates a Cycle Count element.

00001111 Cycle Count Format 1_0 unknown
count Packet

Indicates zero or one Commit elements followed by a Cycle Count element
with an UNKNOWN cycle count value.

000100xx Cycle Count Format 3_1 Packet Indicates a Cycle Count element.

0001xxxx Cycle Count Format 3_0 Packet Indicates a Commit element and a Cycle Count element.

00101101 Commit Packet Indicates a Commit element.

0010111x Cancel Format 1 Packet Indicates a Cancel element optionally followed by a Mispredict element.

001100xx Mispredict Packet Indicates 0-2 E or N Atom elements followed by one Mispredict element.

001101xx Cancel Format 2 Packet Indicates zero or more E or N Atom elements followed by a Cancel element
and a Mispredict element.

00111xxx Cancel Format 3 Packet Indicates zero or one E Atom element followed by a Cancel element with a
payload of 2-5 and one Mispredict element.

01110000 Ignore Packet To align packet boundary to memory boundary.

0111xxxx Event Packet Indicates 1-4 Event elements.

10000000 Context Same Packet Indicates a Context element.

10000001 Context Packet Indicates a Context element.

10000010 Target Address with Context 32-bit IS0
Packet

Indicates a Target Address element and a Context element.

10000011 Target Address with Context 32-bit IS1
Packet

Indicates a Target Address element and a Context element.

10000101 Target Address with Context 64-bit IS0
Packet

Indicates a Target Address element and a Context element.

10000110 Target Address with Context 64-bit IS1
Packet

Indicates a Target Address element and a Context element.

10001000 Timestamp Marker Packet Indicates a Timestamp Marker element.

100100xx Target Address Exact Match Packet Indicates a Target Address element.

10010101 Target Address Short IS0 Packet Indicates a Target Address element.

10010110 Target Address Short IS1 Packet Indicates a Target Address element.

10011010 Target Address 32-bit IS0 Packet Indicates a Target Address element.

10011011 Target Address 32-bit IS1 Packet Indicates a Target Address element.

10011101 Target Address 64-bit IS0 Packet Indicates a Target Address element.

Table D5-3 ETE Packets (continued)

Header
byte

Name Purpose
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6344
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.2 Summary list of ETE packets
10011110 Target Address 64-bit IS1 Packet Indicates a Target Address element.

101000xx Q with Exact match address Packet Indicates that some instructions have executed with an address of the next
instruction.

10100101 Q short address IS0 Packet Indicates that some instructions have executed with an address of the next
instruction.

10100110 Q short address IS1 Packet Indicates that some instructions have executed with an address of the next
instruction.

10101010 Q 32-bit address IS0 Packet Indicates that some instructions have executed with an address of the next
instruction.

10101011 Q 32-bit address IS1 Packet Indicates that some instructions have executed with an address of the next
instruction.

10101100 Q with count Packet Indicates that some instructions have executed.

10101111 Q Packet Indicates that some instructions have executed, without a count of the
number of instructions.

101100xx Source Address Exact Match Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

10110100 Source Address Short IS0 Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

10110101 Source Address Short IS1 Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

10110110 Source Address 32-bit IS0 Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

10110111 Source Address 32-bit IS1 Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

10111000 Source Address 64-bit IS0 Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

10111001 Source Address 64-bit IS1 Packet Indicates the source address of a P0 instruction, and that the instruction was
taken.

110101xx Atom Format 5.2 Packet Indicates five Atom elements.

110110xx Atom Format 2 Packet Indicates two Atom elements.

110111xx Atom Format 4 Packet Indicates four Atom elements.

11110101 Atom Format 5.1 Packet Indicates five Atom elements.

1111011x Atom Format 1 Packet Indicates one Atom element.

11111xxx Atom Format 3 Packet Indicates three Atom elements.

11xxxxxx Atom Format 6 Packet Indicates 3-23 E Atom elements, plus a subsequent E Atom or N Atom
element.

Table D5-3 ETE Packets (continued)

Header
byte

Name Purpose
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6345
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3 Alphabetical list of ETE packets

This section lists each ETE packet and their description.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6346
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.1 Alignment Synchronization Packet

Purpose

Identifies a packet boundary.

Configurations

All.

This packet forms a unique bit and byte pattern. Searching for this pattern allows the trace analyzer to identify
packet boundaries.

Packet Layout

Figure D5-1 Alignment Synchronization Packet

Additional information

For more information about the decoding of this packet see Parse_ExtensionPacket().

For more information about the generation of this packet see Trace protocol synchronization.

RBXZZJ Any byte that follows this unique sequence of bits is the header byte of a new packet.

RVRKLP This packet must be output before the first Trace Info packet.

01234567

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6347
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.2 Atom Format 1 Packet

Purpose

Indicates one Atom element.

Configurations

All.

Packet Layout

Figure D5-2 Atom Format 1 Packet

Field descriptions

A

Indicates a single Atom element.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see AtomFormat1Packet().

For more information about the generation of this packet see Atom packing.

01234567

1101111 A

0b0 One N Atom element

0b1 One E Atom element
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6348
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.3 Atom Format 2 Packet

Purpose

Indicates two Atom elements.

Configurations

All.

Packet Layout

Figure D5-3 Atom Format 2 Packet

Field descriptions

A

Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see AtomFormat2Packet().

For more information about the generation of this packet see Atom packing.

01234567

011011 A

0b00 1. N Atom element.

2. N Atom element.

0b01 1. E Atom element.

2. N Atom element.

0b10 1. N Atom element.

2. E Atom element.

0b11 1. E Atom element.

2. E Atom element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6349
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.4 Atom Format 3 Packet

Purpose

Indicates three Atom elements.

Configurations

All.

Packet Layout

Figure D5-4 Atom Format 3 Packet

Field descriptions

A

Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

01234567

11111 A

0b000 1. N Atom element.

2. N Atom element.

3. N Atom element.

0b001 1. E Atom element.

2. N Atom element.

3. N Atom element.

0b010 1. N Atom element.

2. E Atom element.

3. N Atom element.

0b011 1. E Atom element.

2. E Atom element.

3. N Atom element.

0b100 1. N Atom element.

2. N Atom element.

3. E Atom element.

0b101 1. E Atom element.

2. N Atom element.

3. E Atom element.

0b110 1. N Atom element.

2. E Atom element.

3. E Atom element.

0b111 1. E Atom element.

2. E Atom element.

3. E Atom element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6350
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Additional information

For more information about the decoding of this packet see AtomFormat3Packet().

For more information about the generation of this packet see Atom packing.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6351
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.5 Atom Format 4 Packet

Purpose

Indicates four Atom elements.

Configurations

All.

Packet Layout

Figure D5-5 Atom Format 4 Packet

Field descriptions

A

Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see AtomFormat4Packet().

For more information about the generation of this packet see Atom packing.

01234567

111011 A

0b00 1. N Atom element.

2. E Atom element.

3. E Atom element.

4. E Atom element.

0b01 1. N Atom element.

2. N Atom element.

3. N Atom element.

4. N Atom element.

0b10 1. N Atom element.

2. E Atom element.

3. N Atom element.

4. E Atom element.

0b11 1. E Atom element.

2. N Atom element.

3. E Atom element.

4. N Atom element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6352
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.6 Atom Format 5.1 Packet

Purpose

Indicates five Atom elements.

Configurations

All.

Packet Layout

Figure D5-6 Atom Format 5.1 Packet

Element sequence

This packet encodes the following sequence:

1. N Atom element.

2. E Atom element.

3. E Atom element.

4. E Atom element.

5. E Atom element.

Additional information

For more information about the decoding of this packet see AtomFormat5_1Packet().

For more information about the generation of this packet see Atom packing.

01234567

10101111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6353
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.7 Atom Format 5.2 Packet

Purpose

Indicates five Atom elements.

Configurations

All.

Packet Layout

Figure D5-7 Atom Format 5.2 Packet

Field descriptions

A

Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see AtomFormat5_2Packet().

For more information about the generation of this packet see Atom packing.

01234567

101011 A

0b01 1. N Atom element.

2. N Atom element.

3. N Atom element.

4. N Atom element.

5. N Atom element.

0b10 1. N Atom element.

2. E Atom element.

3. N Atom element.

4. E Atom element.

5. N Atom element.

0b11 1. E Atom element.

2. N Atom element.

3. E Atom element.

4. N Atom element.

5. E Atom element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6354
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.8 Atom Format 6 Packet

Purpose

Indicates 3-23 E Atom elements, plus a subsequent E Atom or N Atom element.

Configurations

All.

Packet Layout

Figure D5-8 Atom Format 6 Packet

Field descriptions

A

Indicates an E Atom element or N Atom element, after the E Atom elements indicated by COUNT.

The encoding for this field is POD.

COUNT

Indicates a number of E Atom elements. The number is 3 + COUNT. Permitted values of COUNT
are 0b00000 to 0b10100.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see AtomFormat6Packet().

For more information about the generation of this packet see Atom packing.

01234567

11 A COUNT

0b0 One E Atom element

0b1 One N Atom element
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6355
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.9 Commit Packet

Purpose

Indicates a Commit element.

Configurations

TRCIDR8.MAXSPEC > 0.

Packet Layout

Figure D5-9 Commit Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

COMMIT

The number of P0 elements to be resolved.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.

Additional information

For more information about the decoding of this packet see CommitPacket().

01234567

10110100

COMMIT[6:0]C0

COMMIT[13:7]C0

COMMIT[20:14]C0

COMMIT[27:21]C0

COMMIT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6356
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.10 Context Packet

Purpose

Indicates a Context element.

Configurations

All.

Packet Layout - Variant 1

Figure D5-10 Context Packet (1)

Packet Layout - Variant 2

Figure D5-11 Context Packet (2)

Packet Layout - Variant 3

Figure D5-12 Context Packet (3)

01234567

10000001

EL(0)NSESFNS00

01234567

10000001

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

01234567

10000001

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6357
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 4

Figure D5-13 Context Packet (4)

Field descriptions

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL

Exception level.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

01234567

10000001

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6358
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Context element.

Additional information

For more information about the decoding of this packet see Parse_ContextBytes().

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6359
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.11 Context Same Packet

Purpose

Indicates a Context element.

Configurations

All.

Packet Layout

Figure D5-14 Context Same Packet

Element sequence

This packet encodes the following sequence:

1. Context element.

Additional information

For more information about the decoding of this packet see Parse_ContextBytes().

01234567

00000001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6360
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.12 Cycle Count Format 1_0 unknown count Packet

Purpose

Indicates zero or one Commit elements followed by a Cycle Count element with an UNKNOWN cycle
count value.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-15 Cycle Count Format 1_0 unknown count Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

COMMIT

If this field is zero, there is no Commit element. Otherwise, there is a Commit element before the
Cycle Count element and this field indicates the number of P0 elements committed by the Commit
element.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.

2. Cycle Count element with an unknown cycle count.

Additional information

For more information about the decoding of this packet see CycleCountFormat1Packet().

01234567

11110000

COMMIT[6:0]C0

COMMIT[13:7]C0

COMMIT[20:14]C0

COMMIT[27:21]C0

COMMIT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6361
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.13 Cycle Count Format 1_0 with count Packet

Purpose

Indicates zero or one Commit elements followed by a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-16 Cycle Count Format 1_0 with count Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

C1

Continuation Bit.

The encoding for this field is Unary code.

COMMIT

If this field is zero, there is no Commit element. Otherwise, there is a Commit element before the
Cycle Count element and this field indicates the number of P0 elements committed by the Commit
element.

The encoding for this field is unsigned LE128n.

01234567

01110000

COMMIT[6:0]C0

COMMIT[13:7]C0

COMMIT[20:14]C0

COMMIT[27:21]C0

COMMIT[31:28](0) (0) (0) (0)

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[19:14](0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6362
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
COUNT

Indicates the number of PE clock cycles that have occurred between the 2 most recent Commit
elements that both had a Cycle Count element associated with them. The cycle count is
COUNT+cc_threshold.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.

2. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat1Packet().
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6363
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.14 Cycle Count Format 1_1 unknown count Packet

Purpose

Indicates a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-17 Cycle Count Format 1_1 unknown count Packet

Element sequence

This packet encodes the following sequence:

1. Cycle Count element with an unknown cycle count.

Additional information

For more information about the decoding of this packet see CycleCountFormat1Packet().

01234567

11110000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6364
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.15 Cycle Count Format 1_1 with count Packet

Purpose

Indicates a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-18 Cycle Count Format 1_1 with count Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

COUNT

Indicates the number of PE clock cycles that have occurred between the 2 most recent Commit
elements that both had a Cycle Count element associated with them. The cycle count is
COUNT+cc_threshold.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat1Packet().

01234567

01110000

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[19:14](0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6365
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.16 Cycle Count Format 2_0 large commit Packet

Purpose

Indicates a Commit element and a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-19 Cycle Count Format 2_0 large commit Packet

Field descriptions

AAAA

Indicates the number of P0 elements to be resolved indicated by TRCIDR8.MAXSPEC + field - 15.

The number of P0 elements to be resolved must be greater than 0.

If the number of P0 elements to be resolved is less than 17 then it is preferred that a Cycle Count
Format 2_0 small commit Packet is used.

The encoding for this field is POD.

BBBB

Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.

2. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat2Packet().

01234567

10110000

BBBBAAAA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6366
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.17 Cancel Format 1 Packet

Purpose

Indicates a Cancel element optionally followed by a Mispredict element.

Configurations

TRCIDR8.MAXSPEC > 0.

Packet Layout

Figure D5-20 Cancel Format 1 Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

CANCEL

The number of P0 elements to be canceled.

The encoding for this field is unsigned LE128n.

M

Mispredict element included in the packet.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see CancelFormat1Packet().

01234567

1110100 M

CANCEL[6:0]C0

CANCEL[13:7]C0

CANCEL[20:14]C0

CANCEL[27:21]C0

CANCEL[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b0 Reserved

0b0 No Mispredict element occurred

0b1 A Mispredict element occurred after the Cancel element
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6367
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.18 Cancel Format 2 Packet

Purpose

Indicates zero or more E or N Atom elements followed by a Cancel element and a Mispredict
element.

Configurations

TRCIDR8.MAXSPEC > 0.

Packet Layout

Figure D5-21 Cancel Format 2 Packet

Field descriptions

A

Indicates the number of Atom elements that occurred before the Cancel element.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see CancelFormat2Packet().

01234567

101100 A

0b00 1. Cancel element.

2. Mispredict element.

0b01 1. E Atom element.

2. Cancel element.

3. Mispredict element.

0b10 1. E Atom element.

2. E Atom element.

3. Cancel element.

4. Mispredict element.

0b11 1. N Atom element.

2. Cancel element.

3. Mispredict element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6368
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.19 Cancel Format 3 Packet

Purpose

Indicates zero or one E Atom element followed by a Cancel element with a payload of 2-5 and one
Mispredict element.

Configurations

TRCIDR8.MAXSPEC > 0.

Packet Layout

Figure D5-22 Cancel Format 3 Packet

Field descriptions

A

Indicates the number of Atom elements that occurred before the Cancel element.

The encoding for this field is POD.

CC

The number of P0 elements to be canceled.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see CancelFormat3Packet().

01234567

11100 CC A

0b0 1. Cancel element.

0b1 1. E Atom element.

2. Cancel element.

0b00 Cancel 2 P0 elements

0b01 Cancel 3 P0 elements

0b10 Cancel 4 P0 elements

0b11 Cancel 5 P0 elements
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6369
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.20 Cycle Count Format 2_0 small commit Packet

Purpose

Indicates a Commit element and a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-23 Cycle Count Format 2_0 small commit Packet

Field descriptions

AAAA

Indicates the number of P0 elements to be resolved indicated by this field + 1.

The encoding for this field is POD.

BBBB

Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.

2. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat2Packet().

01234567

00110000

BBBBAAAA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6370
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.21 Cycle Count Format 2_1 Packet

Purpose

Indicates a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-24 Cycle Count Format 2_1 Packet

Field descriptions

BBBB

Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat2Packet().

01234567

10110000

BBBB1111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6371
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.22 Cycle Count Format 3_0 Packet

Purpose

Indicates a Commit element and a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-25 Cycle Count Format 3_0 Packet

Field descriptions

AA

The number of P0 elements to be resolved indicated by this field + 1.

The encoding for this field is POD.

BB

Indicates the cycle value. The cycle count is calculated from cc_threshold + BB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.

2. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat3Packet().

01234567

1000 BBAA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6372
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.23 Cycle Count Format 3_1 Packet

Purpose

Indicates a Cycle Count element.

Configurations

All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

Figure D5-26 Cycle Count Format 3_1 Packet

Field descriptions

BB

Indicates the cycle value. The cycle count is calculated from cc_threshold + BB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see CycleCountFormat3Packet().

01234567

001000 BB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6373
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.24 Discard Packet

Purpose

Indicates a Discard element.

Configurations

All.

Indicates a Discard element.

Packet Layout

Figure D5-27 Discard Packet

Element sequence

This packet encodes the following sequence:

1. Discard element.

Additional information

For more information about the decoding of this packet see DiscardPacket().

For more information about the generation of this packet see Trace protocol synchronization.

IRTFPP This packet is used to discard any speculative trace that the trace analyzer might still be holding onto.

01234567

00000000

11000000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6374
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.25 Event Packet

Purpose

Indicates 1-4 Event elements.

Configurations

All.

Packet Layout

Figure D5-28 Event Packet

Field descriptions

V0

Event 0 indicator.

The encoding for this field is POD.

V1

Event 1 indicator.

The encoding for this field is POD.

V2

Event 2 indicator.

The encoding for this field is POD.

V3

Event 3 indicator.

The encoding for this field is POD.

01234567

1110 V3 V2 V1 V0

0b0 ETEEvent 0 did not occur

0b1 ETEEvent 0 occurred

0b0 ETEEvent 1 did not occur

0b1 ETEEvent 1 occurred

0b0 ETEEvent 2 did not occur

0b1 ETEEvent 2 occurred

0b0 ETEEvent 3 did not occur

0b1 ETEEvent 3 occurred
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6375
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Additional information

For more information about the decoding of this packet see EventTracingPacket().

Note

[V3, V2, V1, V0] != 0b0000 as this is decoded as an Ignore Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6376
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.26 Exception 32-bit Address IS0 Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-29 Exception 32-bit Address IS0 Packet

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

The encoding for this field is POD.

01234567

01100000

0 E[0]E[1] TYPE

01011001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6377
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6378
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.27 Exception 32-bit Address IS0 with Context Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout - Variant 1

Figure D5-30 Exception 32-bit Address IS0 with Context Packet (1)

Packet Layout - Variant 2

Figure D5-31 Exception 32-bit Address IS0 with Context Packet (2)

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS00

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6379
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 3

Figure D5-32 Exception 32-bit Address IS0 with Context Packet (3)

Packet Layout - Variant 4

Figure D5-33 Exception 32-bit Address IS0 with Context Packet (4)

Field descriptions

A

Preferred Exception Return address.

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6380
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

EL

Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

0b01 1. Context element.

2. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Context element.

3. Exception element (TYPE, ADDRESS).

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6381
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

TYPE

The exception type.

The encoding for this field is POD.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6382
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
All other values are reserved. Reserved values might be defined in a future version of the
architecture.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6383
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.28 Exception 32-bit Address IS1 Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-34 Exception 32-bit Address IS1 Packet

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

The encoding for this field is POD.

01234567

01100000

0 E[0]E[1] TYPE

11011001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6384
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6385
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.29 Exception 32-bit Address IS1 with Context Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout - Variant 1

Figure D5-35 Exception 32-bit Address IS1 with Context Packet (1)

Packet Layout - Variant 2

Figure D5-36 Exception 32-bit Address IS1 with Context Packet (2)

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS00

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6386
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 3

Figure D5-37 Exception 32-bit Address IS1 with Context Packet (3)

Packet Layout - Variant 4

Figure D5-38 Exception 32-bit Address IS1 with Context Packet (4)

Field descriptions

A

Preferred Exception Return address.

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6387
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

EL

Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

0b01 1. Context element.

2. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Context element.

3. Exception element (TYPE, ADDRESS).

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6388
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

TYPE

The exception type.

The encoding for this field is POD.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6389
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
All other values are reserved. Reserved values might be defined in a future version of the
architecture.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6390
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.30 Exception 64-bit Address IS0 Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-39 Exception 64-bit Address IS0 Packet

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

01234567

01100000

0 E[0]E[1] TYPE

10111001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6391
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6392
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.31 Exception 64-bit Address IS0 with Context Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout - Variant 1

Figure D5-40 Exception 64-bit Address IS0 with Context Packet (1)

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6393
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 2

Figure D5-41 Exception 64-bit Address IS0 with Context Packet (2)

Packet Layout - Variant 3

Figure D5-42 Exception 64-bit Address IS0 with Context Packet (3)

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6394
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 4

Figure D5-43 Exception 64-bit Address IS0 with Context Packet (4)

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E

Identifies the elements that are indicated by this packet.

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6395
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

EL

Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

TYPE

The exception type.

0b01 1. Context element.

2. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Context element.

3. Exception element (TYPE, ADDRESS).

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6396
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6397
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6398
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.32 Exception 64-bit Address IS1 Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-44 Exception 64-bit Address IS1 Packet

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

01234567

01100000

0 E[0]E[1] TYPE

01111001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6399
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6400
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.33 Exception 64-bit Address IS1 with Context Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout - Variant 1

Figure D5-45 Exception 64-bit Address IS1 with Context Packet (1)

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6401
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 2

Figure D5-46 Exception 64-bit Address IS1 with Context Packet (2)

Packet Layout - Variant 3

Figure D5-47 Exception 64-bit Address IS1 with Context Packet (3)

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6402
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 4

Figure D5-48 Exception 64-bit Address IS1 with Context Packet (4)

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E

Identifies the elements that are indicated by this packet.

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6403
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

EL

Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

TYPE

The exception type.

0b01 1. Context element.

2. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Context element.

3. Exception element (TYPE, ADDRESS).

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6404
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6405
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6406
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.34 Exception Exact Match Address Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-49 Exception Exact Match Address Packet

Field descriptions

A

Preferred Exception Return address.

The encoding for this field is POD.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

The encoding for this field is POD.

01234567

01100000

0 E[0]E[1] TYPE

001001 A

0b00 The Preferred Exception Return is the same as address history buffer entry 0.

0b01 The Preferred Exception Return is the same as address history buffer entry 1.

0b10 The Preferred Exception Return is the same as address history buffer entry 2.

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6407
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6408
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.35 Exception Short Address IS0 Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-50 Exception Short Address IS0 Packet

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

01234567

01100000

0 E[0]E[1] TYPE

10101001

A[8:2]C0

A[16:9]

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6409
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6410
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.36 Exception Short Address IS1 Packet

Purpose

Indicates that an exception has occurred.

Configurations

All.

Packet Layout

Figure D5-51 Exception Short Address IS1 Packet

Field descriptions

A

Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

TYPE

The exception type.

01234567

01100000

0 E[0]E[1] TYPE

01101001

A[7:1]C0

A[15:8]

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b01 1. Exception element (TYPE, ADDRESS).

0b10 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6411
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6412
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.37 Ignore Packet

Purpose

To align packet boundary to memory boundary.

Configurations

All.

Packet Layout

Figure D5-52 Ignore Packet

01234567

00001110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6413
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.38 Instrumentation Packet

Purpose

Indicates an Instrumentation element.

Configurations

When FEAT_ITE is implemented.

Packet Layout

Figure D5-53 Instrumentation Packet

Field descriptions

EL

Exception level at which the corresponding TRCIT instruction was executed.

The encoding for this field is POD.

VALUE

Value provided in Xn of the TRCIT instruction.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Instrumentation element.

01234567
10010000

(0) (0) (0) (0) (0) (0) EL

VALUE[7:0]

VALUE[15:8]

VALUE[31:24]

VALUE[39:32]

VALUE[47:40]

VALUE[23:16]

VALUE[55:48]

VALUE[63:56]

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6414
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.39 Mispredict Packet

Purpose

Indicates 0-2 E or N Atom elements followed by one Mispredict element.

Configurations

All.

Packet Layout

Figure D5-54 Mispredict Packet

Field descriptions

A

Indicates the number of Atom elements that occurred before the Mispredict element.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see MispredictPacket().

01234567

001100 A

0b00 1. Mispredict element.

0b01 1. E Atom element.

2. Mispredict element.

0b10 1. E Atom element.

2. E Atom element.

3. Mispredict element.

0b11 1. N Atom element.

2. Mispredict element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6415
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.40 Overflow Packet

Purpose

Indicates that a trace unit buffer overflow has occurred.

Configurations

All.

Indicates that a trace unit buffer overflow has occurred and data might have been lost.

Packet Layout

Figure D5-55 Overflow Packet

Element sequence

This packet encodes the following sequence:

1. Overflow element.

2. Discard element.

Additional information

For more information about the decoding of this packet see OverflowPacket().

01234567

00000000

10100000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6416
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.41 PE Reset Packet

Purpose

Indicates that a PE Reset has occurred.

Configurations

All.

Packet Layout

Figure D5-56 PE Reset Packet

Field descriptions

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

01234567

01100000

E[0]E[1] 000000

00001110

0b01 1. Exception element (PE_Reset, UNKNOWN).

0b10 1. Target Address element (UNKNOWN).

2. Exception element (PE_Reset, UNKNOWN).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6417
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.42 Q 32-bit address IS0 Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations

All.

Packet Layout

Figure D5-57 Q 32-bit address IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.

01234567

01010101

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6418
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
2. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6419
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.43 Q 32-bit address IS1 Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations

All.

Packet Layout

Figure D5-58 Q 32-bit address IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.

01234567

11010101

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6420
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
2. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6421
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.44 Q Packet

Purpose

Indicates that some instructions have executed, without a count of the number of instructions.

Configurations

All.

Packet Layout

Figure D5-59 Q Packet

Element sequence

This packet encodes the following sequence:

1. Q element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

01234567

11110101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6422
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.45 Q short address IS0 Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations

All.

Packet Layout

Figure D5-60 Q short address IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

C1

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of instructions executed.

The encoding for this field is unsigned LE128n.

01234567

10100101

A[8:2]C0

A[16:9]

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[20:14]C1

COUNT[27:21]C1

COUNT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6423
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Element sequence

This packet encodes the following sequence:

1. Q element.

2. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6424
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.46 Q short address IS1 Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations

All.

Packet Layout

Figure D5-61 Q short address IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

C1

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of instructions executed.

The encoding for this field is unsigned LE128n.

01234567

01100101

A[7:1]C0

A[15:8]

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[20:14]C1

COUNT[27:21]C1

COUNT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6425
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Element sequence

This packet encodes the following sequence:

1. Q element.

2. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6426
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.47 Q with count Packet

Purpose

Indicates that some instructions have executed.

Configurations

All.

Packet Layout

Figure D5-62 Q with count Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

01234567

00110101

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6427
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.48 Q with Exact match address Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations

All.

Packet Layout

Figure D5-63 Q with Exact match address Packet

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of instructions executed.

The encoding for this field is unsigned LE128n.

TYPE

The TYPE field indicates what form the rest of the Packet takes.

The encoding for this field is POD.

01234567

000101 TYPE

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b00 A packet with this TYPE value also indicates a Target Address element with an address the same as address history buffer entry
0.

0b01 A packet with this TYPE value also indicates a Target Address element with an address the same as address history buffer entry
1.

0b10 A packet with this TYPE value also indicates a Target Address element with an address the same as address history buffer entry
2.

0b11 RESERVED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6428
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Element sequence

This packet encodes the following sequence:

1. Q element.

2. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_QPacket().

For more information about the generation of this packet see Address compression.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6429
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.49 Source Address 32-bit IS0 Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-64 Source Address 32-bit IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

01101101

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6430
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.50 Source Address 32-bit IS1 Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-65 Source Address 32-bit IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

11101101

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6431
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.51 Source Address 64-bit IS0 Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-66 Source Address 64-bit IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

00011101

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6432
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.52 Source Address 64-bit IS1 Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-67 Source Address 64-bit IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

10011101

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6433
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.53 Source Address Exact Match Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-68 Source Address Exact Match Packet

Field descriptions

QE

Instruction virtual address.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

01234567

001101 QE

0b00 The address is the same as address history buffer entry 0.

0b01 The address is the same as address history buffer entry 1.

0b10 The address is the same as address history buffer entry 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6434
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.54 Source Address Short IS0 Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-69 Source Address Short IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

00101101

A[8:2]C0

A[16:9]

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6435
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.55 Source Address Short IS1 Packet

Purpose

Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations

All.

Packet Layout

Figure D5-70 Source Address Short IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see Parse_SourceAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

10101101

A[7:1]C0

A[15:8]

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6436
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.56 Timestamp Marker Packet

Purpose

Indicates a Timestamp Marker element.

Configurations

TRCIDR0.TSSIZE != 0b00000 and TRCIDR0.TSMARK == 0b1

Packet Layout

Figure D5-71 Timestamp Marker Packet

01234567

00010001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6437
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.57 Timestamp Packet

Purpose

Indicates a Timestamp element.

Configurations

TRCIDR0.TSSIZE != 0b00000.

Packet Layout - Variant 1

Figure D5-72 Timestamp Packet (1)

Packet Layout - Variant 2

Figure D5-73 Timestamp Packet (2)

01234567

1000000 0

TS[6:0]C0

TS[13:7]C0

TS[20:14]C0

TS[27:21]C0

TS[34:28]C0

TS[41:35]C0

TS[48:42]C0

TS[55:49]C0

TS[63:56]

01234567

1000000 1

TS[6:0]C0

TS[13:7]C0

TS[20:14]C0

TS[27:21]C0

TS[34:28]C0

TS[41:35]C0

TS[48:42]C0

TS[55:49]C0

TS[63:56]

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[19:14](0) (0)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6438
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

C1

Continuation Bit.

The encoding for this field is Unary code.

COUNT

The number of PE clock cycles between the most recent Cycle Count element and the element
related to the Timestamp. When the COUNT field is not present, the cycle count value is UNKNOWN.

The encoding for this field is unsigned LE128n.

TS

Timestamp Value.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Timestamp element.

Additional information

For more information about the decoding of this packet see TimestampPacket().

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6439
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.58 Target Address 32-bit IS0 Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-74 Target Address 32-bit IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

01011001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6440
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.59 Target Address 32-bit IS1 Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-75 Target Address 32-bit IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

11011001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6441
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.60 Target Address 64-bit IS0 Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-76 Target Address 64-bit IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

10111001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6442
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.61 Target Address 64-bit IS1 Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-77 Target Address 64-bit IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

01111001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6443
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.62 Target Address Exact Match Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-78 Target Address Exact Match Packet

Field descriptions

QE

Instruction virtual address.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

01234567

001001 QE

0b00 The address is the same as address history buffer entry 0.

0b01 The address is the same as address history buffer entry 1.

0b10 The address is the same as address history buffer entry 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6444
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.63 Target Address Short IS0 Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-79 Target Address Short IS0 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

10101001

A[8:2]C0

A[16:9]

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6445
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.64 Target Address Short IS1 Packet

Purpose

Indicates a Target Address element.

Configurations

All.

Packet Layout

Figure D5-80 Target Address Short IS1 Packet

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0

Continuation Bit.

The encoding for this field is Unary code.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

01234567

01101001

A[7:1]C0

A[15:8]

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6446
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.65 Target Address with Context 32-bit IS0 Packet

Purpose

Indicates a Target Address element and a Context element.

Configurations

All.

Packet Layout - Variant 1

Figure D5-81 Target Address with Context 32-bit IS0 Packet (1)

Packet Layout - Variant 2

Figure D5-82 Target Address with Context 32-bit IS0 Packet (2)

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS00

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6447
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 3

Figure D5-83 Target Address with Context 32-bit IS0 Packet (3)

Packet Layout - Variant 4

Figure D5-84 Target Address with Context 32-bit IS0 Packet (4)

Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6448
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL

Exception level at this address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6449
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

2. Context element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6450
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.66 Target Address with Context 32-bit IS1 Packet

Purpose

Indicates a Target Address element and a Context element.

Configurations

All.

Packet Layout - Variant 1

Figure D5-85 Target Address with Context 32-bit IS1 Packet (1)

Packet Layout - Variant 2

Figure D5-86 Target Address with Context 32-bit IS1 Packet (2)

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS00

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6451
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 3

Figure D5-87 Target Address with Context 32-bit IS1 Packet (3)

Packet Layout - Variant 4

Figure D5-88 Target Address with Context 32-bit IS1 Packet (4)

Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6452
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL

Exception level at this address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

The encoding for this field is POD.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6453
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

2. Context element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6454
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.67 Target Address with Context 64-bit IS0 Packet

Purpose

Indicates a Target Address element and a Context element.

Configurations

All.

Packet Layout - Variant 1

Figure D5-89 Target Address with Context 64-bit IS0 Packet (1)

Packet Layout - Variant 2

Figure D5-90 Target Address with Context 64-bit IS0 Packet (2)

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS00

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6455
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 3

Figure D5-91 Target Address with Context 64-bit IS0 Packet (3)

Packet Layout - Variant 4

Figure D5-92 Target Address with Context 64-bit IS0 Packet (4)

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6456
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Field descriptions

A

Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL

Exception level at this address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6457
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

2. Context element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6458
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.68 Target Address with Context 64-bit IS1 Packet

Purpose

Indicates a Target Address element and a Context element.

Configurations

All.

Packet Layout - Variant 1

Figure D5-93 Target Address with Context 64-bit IS1 Packet (1)

Packet Layout - Variant 2

Figure D5-94 Target Address with Context 64-bit IS1 Packet (2)

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS00

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6459
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 3

Figure D5-95 Target Address with Context 64-bit IS1 Packet (3)

Packet Layout - Variant 4

Figure D5-96 Target Address with Context 64-bit IS1 Packet (4)

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0)NSESFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6460
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Field descriptions

A

Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID

Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context
identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL

Exception level at this address.

The encoding for this field is POD.

NS

Security state.

The encoding for this field is POD.

NSE

Security state, for more details see the NS field.

The encoding for this field is POD.

SF

AArch64 state.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

When NSE == 0b0:

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

When NSE == 0b1:

0b0 The PE is in Root state.

0b1 The PE is in Realm state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6461
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is POD.

VMID

Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output
Virtual context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.

• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

2. Context element.

Additional information

For more information about the decoding of this packet see Parse_TargetAddressPacket().

For more information about the generation of this packet see Address compression.

For more information about the encoding of this packet see Instruction set encoding.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6462
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.69 Trace Info Packet

Purpose

Resets trace compression to a known architectural state.

Configurations

All.

The trace info packet resets the trace compression to a known state.

Any fields which are not output are treated as if the value is zero.

Packet Layout - Variant 1

Figure D5-97 Trace Info Packet (1)

Packet Layout - Variant 2

Figure D5-98 Trace Info Packet (2)

Packet Layout - Variant 3

Figure D5-99 Trace Info Packet (3)

01234567

10000000

00000000

01234567

10000000

10000000

CC(0) (0) (0) (0) (0) T(0)

01234567

10000000

00100000

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6463
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 4

Figure D5-100 Trace Info Packet (4)

Packet Layout - Variant 5

Figure D5-101 Trace Info Packet (5)

Packet Layout - Variant 6

Figure D5-102 Trace Info Packet (6)

01234567

10000000

10100000

CC(0) (0) (0) (0) (0) T(0)

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

01234567

10000000

00010000

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

01234567

10000000

10010000

CC(0) (0) (0) (0) (0) T(0)

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6464
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
Packet Layout - Variant 7

Figure D5-103 Trace Info Packet (7)

Packet Layout - Variant 8

Figure D5-104 Trace Info Packet (8)

Field descriptions

C0

Continuation Bit.

The encoding for this field is Unary code.

C1

Continuation Bit.

01234567

10000000

00110000

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

01234567

10000000

10110000

CC(0) (0) (0) (0) (0) T(0)

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6465
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
The encoding for this field is Unary code.

CC

Cycle count enable indicator.

When this field is not output, it is treated as if it is zero.

The encoding for this field is POD.

CYCT

The cycle count threshold.

When this field is not output, it is treated as if it is zero.

The encoding for this field is unsigned LE128n.

SPEC

The number of uncommitted P0 elements in the trace.

When this field is not output, it is treated as if it is zero.

The encoding for this field is unsigned LE128n.

T

Transactional state indicator.

When this field is not output, it is treated as if it is zero.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Trace Info element.

Additional information

For more information about the decoding of this packet see TraceInfoPacket().

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

0b0 Cycle counting is not enabled.

0b1 Cycle counting is enabled.

0b0 The PE is not currently executing in Transactional state.

0b1 The PE is currently executing in Transactional state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6466
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.70 Trace On Packet

Purpose

Indicates that there has been a discontinuity in the trace element stream.

Configurations

All.

A Trace On packet indicates to a trace analyzer that the trace unit has generated a Trace On element.

Packet Layout

Figure D5-105 Trace On Packet

Element sequence

This packet encodes the following sequence:

1. Trace On element.

Additional information

For more information about the decoding of this packet see TraceOnPacket().

01234567

00100000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6467
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.71 Transaction Commit Packet

Purpose

Indicates that the PE has successfully finished an outer transaction and is leaving Transactional
state.

Configurations

All.

Packet Layout

Figure D5-106 Transaction Commit Packet

Element sequence

This packet encodes the following sequence:

1. Transaction Commit element.

Additional information

For more information about the decoding of this packet see TransactionCommitPacket().

01234567

11010000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6468
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.72 Transaction Start Packet

Purpose

Indicates that the PE has started to execute in Transactional state.

Configurations

All.

Packet Layout

Figure D5-107 Transaction Start Packet

Element sequence

This packet encodes the following sequence:

1. Transaction Start element.

Additional information

For more information about the decoding of this packet see TransactionStartPacket().

01234567

01010000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6469
ID032224 Non-Confidential

ETE Protocol Descriptions
D5.3 Alphabetical list of ETE packets
D5.3.73 Transaction Failure Packet

Purpose

Indicates that a Transaction Failure has occurred.

Configurations

All.

Packet Layout

Figure D5-108 Transaction Failure Packet

Field descriptions

E

Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Additional information

For more information about the decoding of this packet see Parse_ExceptionPacket().

For more information about the generation of this packet see Address compression.

01234567

01100000

E[0]E[1] 000110

00001110

0b01 1. Transaction Failure element.

0b10 1. Target Address element (UNKNOWN).

2. Transaction Failure element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D5-6470
ID032224 Non-Confidential

Chapter D6
The Trace Buffer Extension

This chapter describes the Trace Buffer Extension (TRBE). It contains the following sections:

• About the Trace Buffer Extension.

• The trace buffer.

• Trace buffer management.

• Synchronization and the Trace Buffer Unit.

• Trace synchronization and memory barriers.

• Trace of Speculative execution.

• Trace in Debug state.

• Synchronization litmus tests.

• UNPREDICTABLE behavior.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6471
ID032224 Non-Confidential

The Trace Buffer Extension
D6.1 About the Trace Buffer Extension
D6.1 About the Trace Buffer Extension

IMRFPK The Trace Buffer Extension feature is identified as FEAT_TRBE.

When FEAT_TRBE is implemented, the PE includes a Trace Buffer Unit. There is one logical Trace Buffer Unit for
each PE in the processor.

When the Trace Buffer Unit is enabled, Program Flow Trace generated by the trace unit is written directly to
memory by the Trace Buffer Unit, rather than routing it to a trace fabric. Figure D6-1 shows this.

Figure D6-1 Logical organization of an Armv9-A PE including a trace unit and a Trace Buffer Unit

In this figure:

• EIS is an internal representation of the executed instruction stream.

• The trace unit converts the EIS into formatted trace data.

• Sink is described by the section Trace Buffer Unit disabled.

IFGGXR To allow use by self-hosted software in a platform OS environment, a Trace Buffer Unit or ETR must support a trace
buffer that is mapped to a set of non-contiguous physical blocks in memory. The Trace Buffer Unit achieves this by
using the PE VMSA-based MMU.

This means that all of the following apply:

• The trace buffer is normally virtually addressed.

• The trace buffer has an owning Exception level and owning Security state that define the translation regime
the trace buffer uses.

• FEAT_TRBE provides a synchronization instruction, TSB CSYNC, that is used with a DSB operation to flush
trace to the trace buffer.

• For FEAT_TRBE, trace is implicitly prohibited when the owning translation regime is not in context. That
is, trace is prohibited if executing at a higher Exception level than the owning Exception level, or not
executing in the owning Security state. This is in addition to the behavior in FEAT_ETE and FEAT_TRF for
when trace is prohibited.

����������

����

��
��	
��	����

���
	
���

���

��
���������	

���

�����
��	��

��

��

�	���������	�

���
	 ����
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6472
ID032224 Non-Confidential

The Trace Buffer Extension
D6.1 About the Trace Buffer Extension
IFGPMM FEAT_TRBE also allows the trace buffer to be defined using physical addresses. This allows the Trace Buffer Unit
to be used for debugging software that changes the virtual address mappings. In this configuration, the buffer must
be contiguously mapped in physical memory.

ISTZGC The Trace Buffer Unit supports the following operational modes:

Trace buffer mode

Controls how the Trace Buffer Unit uses the trace buffer.

Trigger mode

Controls how the Trace Buffer Unit reacts to a trigger condition signaled by the trace unit.

RPLYXP Other than where stated otherwise, this chapter describes a simple sequential model of the Trace Buffer Unit. That
is, one which performs the simple loop of:

1. Collect a single byte of trace data from the trace unit.

2. If required, translate the current write pointer virtual address to a physical address.

3. If permitted, write the byte of trace data to the write address.

4. If collection is not stopped, increment the current write pointer.

5. If necessary, decrement the Trigger Counter.

Trace buffer management events are processed as part of this operation loop.

Implementations compliant with the architecture conform with the described behavior of the Trace Buffer Unit.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with this specification is the same as a simple sequential model. Trace appears to be written sequentially
by the Trace Buffer Unit.

IPTDZC If FEAT_TRBE_EXT is implemented, then the Trace Buffer Unit can be controlled externally from the PE instead
of by self-hosted software. The following are possible methods of external Trace Buffer Unit control:

• An external trace debugger that programs the Trace Buffer Unit through an external debug interface.

• An external trace debugger executing on the same SoC as the PE being traced where trace is controlled
through the memory-mapped external debug interface.

For more information, see Trace buffer External mode.

D6.1.1 The trace buffer pointers

RWKBRT The trace buffer is defined by three trace buffer pointer addresses:

• The Base pointer.

• The Limit pointer.

• The current write pointer.

RFVPBS The trace buffer starts at the Base pointer and extends to the Limit pointer. The location at the Base pointer is
included in the trace buffer. The location at the Limit pointer is not included in the trace buffer.

RXBLPK The Base pointer and Limit pointer must be aligned by software to the smallest implemented translation granule
size.

RVHNTF For each byte of trace that the Trace Buffer Unit accepts and writes to the trace buffer at the address in the current
write pointer, one of the following applies:

• If the current write pointer is not equal to the Limit pointer minus one, then the current write pointer is
incremented by one.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6473
ID032224 Non-Confidential

The Trace Buffer Extension
D6.1 About the Trace Buffer Extension
• If the current write pointer is equal to the Limit pointer minus one, then all of the following occur:

— The current write pointer is wrapped by setting it to the Base pointer.

— TRBSR_EL1.WRAP is set to 1.

— The TRB_WRAP event is generated.

RBGBCJ The current write pointer is not incremented when collection is stopped.

RVMVJH The required alignment of the current write pointer is IMPLEMENTATION DEFINED.

IBTSCF The Trace Buffer Unit can write trace data to memory in quantized units. The behavior is as if the bytes are written
sequentially.

RJMPCB The Base pointer is (TRBBASER_EL1.BASE << 12). Bits [11:0] of the Base pointer are zero.

RLLBBS The Limit pointer is (TRBLIMITR_EL1.LIMIT << 12). Bits [11:0] of the Limit pointer are zero.

RKXRTY The current write pointer is TRBPTR_EL1.PTR[63:0].

RPBGNS The Trigger Counter is TRBTRG_EL1.TRG.

D6.1.2 System events

IXDSQV The trace unit can be configured to react to PE events and events from the CTI. The CTI is for use by external
debuggers.

As part of FEAT_TRBE and FEAT_ETE, the PMU and FEAT_ETE event sources are unified into a single event
number space. Unless otherwise stated, all architecturally defined common events that can be counted by the PMU
are usable as an event at the trace unit.

The following architecturally-defined events are provided:

• The CTI_TRIGOUT<n> events, such as CTI_TRIGOUT4, are defined to map the system events from the
CTI into the PMU event number space. As well as defining these events for the trace unit, this also provides
a standard mechanism for counting external events passed to the PE.

• The TRCEXTOUT<n> events, such as TRCEXTOUT0, are defined to allow the PMU to count the events
that a FEAT_ETE implementation of the trace unit might generate.

• The PMU_OVFS and PMU_HOVFS events are defined to allow the trace unit to trigger directly from a PMU
overflow without using the Performance Monitors overflow trigger for PMU counters accessible to EL1 and
EL0, and EL2, respectively.

• The TRB_WRAP event is defined to allow the trace unit to trigger when the current write pointer reaches the
end of the trace buffer and is wrapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6474
ID032224 Non-Confidential

The Trace Buffer Extension
D6.2 The trace buffer
D6.2 The trace buffer

RSDCKT The Trace Buffer Unit uses one of the following:

• If SelfHostedTraceEnabled() is TRUE, then Self-hosted mode.

• If FEAT_TRBE_EXT is implemented and SelfHostedTraceEnabled() is FALSE, then External mode.

RYCHKJ If and only if one of the following is true, then the Trace Buffer Unit is enabled:

• The Trace Buffer Unit is using Self-hosted mode and TRBLIMITR_EL1.E is 1.

• The Trace Buffer Unit is using External mode and TRBLIMITR_EL1.XE is 1.

Otherwise, the Trace Buffer Unit is disabled.

RJYXPM If the Trace Buffer Unit is not enabled, then the Trace Buffer Unit is disabled. See Trace Buffer Unit disabled.

The pseudocode function TraceBufferEnabled describes this.

RBGLHT If and only if all of the following are true, then the Trace Buffer Unit is running:

• The Trace Buffer Unit is enabled.

• TRBSR_EL1.S is 0.

The pseudocode function TraceBufferRunning shows this.

RFRHXV If and only if all of the following are true, then collection is stopped:

• The Trace Buffer Unit is enabled.

• TRBSR_EL1.S is 1.

The pseudocode function TraceBufferRunning shows this.

IJYSQZ While the Trace Buffer Unit is enabled, it collects trace data from the trace unit and does one of the following:

• Accepts the trace data and writes it to the trace buffer in memory.

• Discards the trace data. The trace data is lost.

• Rejects the trace data.

RYMYQX When the Trace Buffer Unit is enabled and running, and the Trace Buffer Unit is able to accept the trace data, the
Trace Buffer Unit accepts the trace data from the trace unit and writes it into the trace buffer.

RLNTVR When the Trace Buffer Unit is enabled and running, and the Trace Buffer Unit is not able to accept the trace data,
the Trace Buffer Unit rejects the trace data from the trace unit. The trace data might be retained by the trace unit
until the Trace Buffer Unit accepts the trace data.

ISQYCT For example, the Trace Buffer Unit might not be able to accept trace data while its internal buffers are full.

ITRCDR If the Trace Buffer Unit rejects trace data and the trace unit is not able to retain the trace data, then the trace unit
discards it and enters an Overflow state. Details of Overflow state and how the trace unit recovers from Overflow
state are defined by the trace unit. See Trace unit behavior on a trace unit buffer overflow.

RYMVZL When the Trace Buffer Unit is enabled and collection is stopped, the Trace Buffer Unit discards trace data from the
trace unit. The trace data is lost.

RPHSKP When used with a trace unit that implements FEAT_ETE, the Trace Buffer Unit ignores the value of the ETE
TRCTRACEIDR register.

D6.2.1 Trace Buffer Unit disabled

RHNTLG When the Trace Buffer Unit is disabled, the Trace Buffer Unit discards trace data from the trace unit.

RBSMLW The Trace Buffer Unit does not prefetch and cache address translations when the Trace Buffer Unit is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6475
ID032224 Non-Confidential

The Trace Buffer Extension
D6.2 The trace buffer
IYHJDQ When the Trace Buffer Unit is disabled the trace unit might send trace data to an IMPLEMENTATION DEFINED trace
bus.

RJYTYH The trace unit does not send trace data to the IMPLEMENTATION DEFINED trace bus when the Trace Buffer Unit is
enabled.

IFPXHD Figure D6-1 shows this IMPLEMENTATION DEFINED trace bus as a dotted line to an external trace Sink.

Details of this bus are outside the scope of this architecture, and might require further configuration. For example,
if the trace unit implements FEAT_ETE and the trace bus is AMBA ATB, the ATID value is configured through the
trace unit external trace registers.

D6.2.2 Restrictions on programming the Trace Buffer Unit

RMSPSD A current write pointer value is out-of-range if any of the following are true:

• The current write pointer is less-than the Base pointer, treating both pointers as unsigned integers.

• The current write pointer is greater-than-or-equal-to the Limit pointer, treating both pointers as unsigned
integers.

• Bits [63:56] of the current write pointer are not equal to bits [63:56] of the Base pointer.

• Bits [63:56] of the current write pointer are not equal to bits [63:56] of the Limit pointer.

Note: RMSPSD means the current write pointer is out-of-range if the Base pointer is not less-than the Limit pointer
or bits [63:56] of the Base pointer are not equal to bits [63:56] of the Limit pointer.

RXXZHM A current write pointer or Trigger Counter value is misaligned if it is not a multiple of an IMPLEMENTATION DEFINED
alignment specified by TRBIDR_EL1.Align.

RHXZZM A current write pointer or Trigger Counter value is a valid restart value if it was previously initialized with a value
that was not out-of-range and not misaligned and later read from the applicable register when all of the following
are true:

• The Trace Buffer Unit is disabled.

• All trace operations are complete. See RNSFRQ for the definition of complete.

• No External abort has been reported to the Trace Buffer Unit. TRBSR_EL1.EA is 0.

• No write by the Trace Buffer Unit has generated an Alignment fault.

• No write by the Trace Buffer Unit has generated an asynchronous SError interrupt exception.

RXZWXQ A current write pointer or Trigger Counter value is a fault value if it was previously initialized with a value that was
not out-of-range and not misaligned or a value that was a valid restart value, and later read from the applicable
register when all of the following are true:

• The Trace Buffer Unit is disabled.

• All trace operations are complete. See RNSFRQ for the definition of complete.

• One of the following is true:

— An External abort has been reported to the Trace Buffer Unit. TRBSR_EL1.EA is 1.

— A write by the Trace Buffer Unit has generated an Alignment fault.

— A write by the Trace Buffer Unit has generated an asynchronous SError interrupt exception.

See also INZHQC.

ICRSGP An MMU fault does not generate a fault value. If software is able to fix the fault, then the Trace Buffer Unit can
restart using the current write pointer and Trigger Counter values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6476
ID032224 Non-Confidential

The Trace Buffer Extension
D6.2 The trace buffer
However, following an MMU fault:

• RYMVZL means the Trace Buffer Unit discards trace because collection is stopped. That is, trace will be lost.

• RBQTGW means that the Trigger Counter might be incorrect if a Detected Trigger has occurred.

See also SGTLCY.

ISFTPM Following a trace buffer management event, or on a context switch, the current write pointer and Trigger Counter
might be misaligned. If TRBIDR_EL1.Align is nonzero, software should treat bits [M:0] as SBZP when writing to
the applicable register, where M is (TRBIDR_EL1.Align-1) in each of the following situations:

• When first creating a trace buffer, software sets bits [M:0] to zero, meaning the registers are set to an aligned
value.

• On a context switch, the definitions of a restart value and fault value mean software does not have to validate
or modify the value read from hardware.

A current write pointer restart value or fault value will not be out-of-range.

IVRFQC A fault value is for error handling purposes only. Software must not cause the Trace Buffer Unit to become enabled
and running with the current write pointer having a fault value.

Software context switching the Trace Buffer Unit will avoid this issue because the trace buffer management event
sets TRBSR_EL1.S to 1, meaning the Trace Buffer Unit will not become running following the context switch.

RJWWWM If the current write pointer is written by a direct write with a misaligned value that is not a restart value and not a
fault value, the value returned by a subsequent direct read of the current write pointer is UNKNOWN.

RMGZWR If the current write pointer has an out-of-range value, or a misaligned value that is not a restart value when the Trace
Buffer Unit attempts to write to the trace buffer, then any of the following might occur:

• If the value is out-of-range, the current write pointer might be wrapped before or after the write, and the
TRB_WRAP event might be generated.

• If the value is misaligned, the write might generate an Alignment fault.

• The Trace Buffer Unit might write the trace data to any address in memory that is writable by a privileged
access in the owning translation regime. These addresses are:

— For Self-hosted mode:

— Virtual addresses in the owning translation regime if TRBLIMITR_EL1.nVM is 0.

— Intermediate physical addresses in the owning Security state if TRBLIMITR_EL1.nVM is 1
and the owning translation regime has stage 2 translations.

— Physical addresses in the owning Security state if TRBLIMITR_EL1.nVM is 1 and the owning
translation regime has no stage 2 translation.

— For External mode, any address in the physical address space specified by TRBMAR_EL1.PAS.

• The write might generate a trace buffer management event with an UNKNOWN reason:

— TRBSR_EL1.S is either set to 1 or unchanged.

— TRBSR_EL1.WRAP is either set to 1 or unchanged.

— TRBSR_EL1.EC is set to an UNKNOWN value.

— TRBSR_EL1.MSS is set to an UNKNOWN value.

— The TRB_WRAP event might be generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6477
ID032224 Non-Confidential

The Trace Buffer Extension
D6.2 The trace buffer
RCPDDM If the Trigger Counter is written by a direct write with a misaligned value that is not a restart value, then all of the
following apply:

• If the value is not a fault value, the value returned by a subsequent direct read of the Trigger Counter register
is UNKNOWN.

• The generation of a Trigger Event while the Trace Buffer Unit remains enabled and running is
UNPREDICTABLE.

IYSXXN RXXZHM and RCPDDM mean an implementation that always keeps the current write pointer and/or Trigger Counter
aligned to the IMPLEMENTATION DEFINED alignment specified by TRBIDR_EL1.Align, where TRBIDR_EL1.Align
is greater-than-zero (byte alignment), can implement bits [M:0] of the applicable register(s) as RAZ/WI bits, where
M is (TRBIDR_EL1.Align-1).

RHXZZM allows an implementation where an External abort is reported to the Trace Buffer Unit and handled
synchronously to implement TRBPTR_EL1[M:N], where N is IMPLEMENTATION SPECIFIC and typically determined
by the minimum memory access granule, as read/write bits for the purpose of reporting an External abort fault
address, but otherwise ignore the value in these bits. If N>0, bits [(N-1):0] can be implemented as RAZ/WI.

RDJMDD When the following conditions apply, the PE might ignore a direct or external write to any of certain Trace Buffer
Unit registers, other than a direct write or external write to TRBLIMITR_EL1 that clears the conditions:

• TRBLIMITR_EL1.E is 1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is using
Self-hosted mode.

• TRBLIMITR_EL1.XE is 1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using External
mode.

The Trace Buffer Unit registers affected are:

• The current write pointer, TRBPTR_EL1.

• The Base pointer, TRBBASER_EL1.

• The Limit pointer, TRBLIMITR_EL1.

• The Trigger Counter, TRBTRG_EL1.

• TRBSR_EL1.

• TRBMAR_EL1.

• TRBMPAM_EL1, if FEAT_TRBE_MPAM is implemented.

• TRBITCTRL, if implemented as part of FEAT_TRBE_EXT.

Writes to TRBCR are not affected.

SDSSHH Software must use appropriate Context synchronization operations to order a direct write that modifies
TRBLIMITR_EL1.E with respect to other direct writes to Trace Buffer Unit registers. This includes a write to
enable the Trace Buffer Unit by setting TRBLIMITR_EL1.E to 1.

See also:

• Synchronization and the Trace Buffer Unit.

• UNPREDICTABLE behavior.

• Context switching.

D6.2.3 Effect on the exclusive monitors and transactions

RDCVBN If an operation between Load-Exclusive and Store-Exclusive instructions is traced, and the trace data is written to
an unrelated address, then the write has no effect on the exclusive monitors.

RMDJNK If an operation inside a transaction is traced, and the trace data is written to an unrelated address, then the write has
no effect on the transaction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6478
ID032224 Non-Confidential

The Trace Buffer Extension
D6.2 The trace buffer
RNWSKV If the Trace Buffer Unit writes to the marked address of an exclusives monitor in the Exclusive Access state, then
one of the following occurs, and it is CONSTRAINED UNPREDICTABLE which:

• The write has the same effect on the exclusives monitor as a store by the PE or any other Observer to that
address.

• The write has no effect on the exclusives monitor.

RFVRXJ If the Trace Buffer Unit writes to the working set of a transaction, then one of the following occurs, and it is
CONSTRAINED UNPREDICTABLE which:

• The write has the same effect on the transaction as a store by any other Observer to that address.

• The write has no effect on this transaction.

D6.2.4 Effect of MTE

RYGMLW If FEAT_MTE is implemented, then the Trace Buffer Unit generates an Unchecked access for each access to the
trace buffer.

Note: This is the case even when a Tagged Normal memory type is accessed.

See also Chapter D10 The Memory Tagging Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6479
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
D6.3 Trace buffer Self-hosted mode

D6.3.1 Behavior when address translation is enabled

RXRNCQ If TRBLIMITR_EL1.nVM is 0, then the Base pointer, Limit pointer, and current write pointer are virtual addresses
in the stage 1 translation regime of the owning translation regime.

RCMDTG If TRBLIMITR_EL1.nVM is 0, then the stage 1 translation process for translating virtual addresses and checking
for MMU faults is identical to that for any other virtual address in the owning translation regime.

IGKBYK If TRBLIMITR_EL1.nVM is 0, then RCMDTG means all of the following apply:

• The virtual addresses are translated to stage 1 output addresses by stage 1 translation, and checked for stage 1
MMU faults. The stage 1 output addresses are:

— Physical address in the owning Security state if the owning translation regime has no stage 2
translation.

— Intermediate physical addresses (IPAs) in the owning Security state if the owning translation regime
has stage 2 translations.

• If stage 1 translation is enabled for the owning translation regime, the memory type and, as applicable,
Cacheability, Shareability, and Device type attributes, for stage 1 output addresses are defined by the
translation table entries for the virtual address being written to.

• If stage 1 translation is disabled for the owning translation regime, the memory type of the stage 1 output
addresses is Device-nGnRnE, unless overridden by stage 2 controls.

• If SCTLR_ELx.C is 0 for the owning translation regime and stage 1 translation is enabled, then all accesses
to Normal memory are Non-cacheable.

• TRBPTR_EL1[63:56] are ignored by address translation if the respective TBI bit is 1.

RSJFRQ When the Trace Buffer Unit is enabled, the Trace Buffer Unit might prefetch and cache address translations for the
translation regime of the owning Exception level, including when the owning Exception level is out-of-context.

IQXJZX RSJFRQ means that, when the Trace Buffer Unit is enabled and the owning Exception level is a lower Exception
level, then the Trace Buffer Unit might make memory accesses to translation table entries from the translation
regime of the owning Exception level, using the settings of the System registers associated with that translation
regime.

If the PE is not executing in the owning Security state, or the PE is executing at EL3 and SCR_EL3.{NSE, NS}
does not indicate the owning Security state, then the translation regime of the owning Exception level might not be
the owning translation regime.

These memory accesses might be observed by other observers, to the extent that those accesses are required to be
observed as determined by the Shareability and Cacheability of those translation table entries.

This is an exception to the rules in the section Speculative memory accesses from out-of-context translation regimes.

See also Context switching.

D6.3.2 Behavior when address translation disabled

RPBZRZ If TRBLIMITR_EL1.nVM is 1, the Base pointer, Limit pointer, and current write pointer are:

• Physical address in the owning Security state if the owning translation regime has no stage 2 translation.

• Intermediate physical addresses (IPAs) in the owning Security state if the owning translation regime has stage
2 translations.

These addresses are output directly by stage 1 without any address translation.

RFJKLW If TRBLIMITR_EL1.nVM is 1, then unless overridden by stage 2 controls, TRBMAR_EL1 defines the memory
type, and, as applicable, Cacheability, Shareability, and Device type attributes, for the stage 1 output addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6480
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
IGLNHS If TRBLIMITR_EL1.nVM is 1, the values of SCTLR_ELx.{C, M} for the owning translation regime are ignored
for the purposes of determining the trace buffer Cacheability attributes.

SZMPXW If TRBLIMITR_EL1.nVM is 1 it is possible to generate mismatched attributes for a location from within the same
stage 1 translation regime, using TRBMAR_EL1.

Software must be aware of the consequences of and permitted behaviors when accessing a memory location with
mismatched attributes. For more information, including a full definition of mismatched attributes and the permitted
behaviors, see Mismatched memory attributes.

RMXRFD If TRBLIMITR_EL1.nVM is 1 and TRBPTR_EL1[top:PAMax()] is nonzero, a stage 1 Address Size fault is
generated when the Trace Buffer Unit attempts to write to memory, and:

• If FEAT_LPA is implemented, top is 51.

• If FEAT_LPA is not implemented, top is 47.

RBRRRK If TRBLIMITR_EL1.nVM is 1 and TRBPTR_EL1[63:(top+1)] is nonzero when the Trace Buffer Unit attempts to
write to the trace buffer, then one of the following occurs, and it is CONSTRAINED UNPREDICTABLE which:

• A stage 1 Address Size fault is generated.

• TRBPTR_EL1[63:(top+1)] are ignored and treated as zero.

The value of top is as defined by RMXRFD.

D6.3.3 Effect of stage 2 translation

RJCMKS If the owning translation regime has stage 2 translations, the stage 2 process of translating the stage 1 output
intermediate physical addresses and attributes to a physical address and attributes, and checking for MMU faults, is
identical to that for any other intermediate physical address generated by the owning translation regime.

IZSDMR For example:

• The intermediate physical addresses are translated to physical addresses by stage 2 translation, and checked
for stage 2 MMU faults.

• The attributes from stage 1 are combined with the attributes from the stage 2 translation to generate the
physical memory attributes.

• If the Effective value of HCR_EL2.DC in the owning translation regime is 1, then stage 1 translation is
disabled and the memory type produced by stage 1 is Normal Non-shareable, Inner Write-Back Cacheable
Read-Allocate Write-Allocate, Outer Write-Back Cacheable Read-Allocate Write-Allocate, regardless of the
values of SCTLR_EL1.C and TRBMAR_EL1.

• If the Effective value of HCR_EL2.MIOCNCE in the owning translation regime is 0, then for permitted
accesses to a memory location that use a common definition of the Shareability and Cacheability of the
location, there is no loss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

D6.3.4 Accesses to the trace buffer

RJTVDD Writes to the trace buffer by the Trace Buffer Unit are privileged writes within the owning translation regime.

RLDVQH If ELx stage 1 translates an address and stage 1 Indirect permissions are used, the Trace Buffer Unit indirectly reads
PIR_ELx. The effect of PSTATE.PAN is not applied to the stage 1 Base permissions.

RCQPGF If ELx stage 1 translates an address and stage 1 Overlay permissions are used, the effect of stage 1 Overlay
permissions apply to the memory access and the Trace Buffer Unit indirectly reads POR_ELx.

RBMKDC If stage 2 translates an address and stage 2 Overlay permissions are used, the effect of stage 2 Overlay permissions
apply to the memory access and the Trace Buffer Unit indirectly reads S2POR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6481
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
ITTKZQ For accesses made by the Trace Buffer Unit, the memory type and, as applicable, Cacheability, Shareability, and
Device type attributes are determined by the translation tables or TRBMAR_EL1.

See:

• RCMDTG and IGKBYK, if translation is enabled.

• RFJKLW, if translation is disabled.

• RJCMKS and IZSDMR, if the owning translation regime has stage 2 translations.

RFBKCC From Armv9.3, hardware management of the Access flag and dirty state for accesses made by the Trace Buffer Unit
is controlled in the same way as explicit memory accesses in the trace buffer owning translation regime. Otherwise,
it is IMPLEMENTATION DEFINED whether hardware management of the Access flag and dirty state for accesses made
by the Trace Buffer Unit is controlled in the same way as explicit memory accesses in the trace buffer owning
translation regime. This is discoverable by software using TRBIDR_EL1.F. See Hardware management of the dirty
state and Hardware management of the Access flag.

RTNLBZ If FEAT_HAFT is implemented, for an architecturally executed memory access that is translated by a translation
stage with Table descriptor Access flag hardware management enabled, the Trace Buffer Unit is required to set the
Access flag (AF) to 1 in all Table descriptors accessed during the translation table walk for that access that have the
AF set to 0.

RSHWSL If all of the following apply, the Trace Buffer Unit can speculatively update the translation table descriptor for any
Page or Block in the trace buffer before writing data to it:

• Hardware management of dirty state by the Trace Buffer Unit is implemented.

• Hardware management of dirty state is enabled for the owning translation regime.

• The write is otherwise permitted.

This includes the case where a trace buffer management event means the Trace Buffer Unit stops writing data before
the Page or Block is written to.

RBWNRF The access granule for writes to the trace buffer by the Trace Buffer Unit is IMPLEMENTATION DEFINED, up to a
maximum of 2KB, and might vary from time to time.

RCMSNC Writes to any Device memory type by the Trace Buffer Unit occur once.

RRZTDD A memory access from the Trace Buffer Unit that crosses a Page or Block boundary to a memory location that has
a different memory type or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the
implementation performs one of the following behaviors:

• Each memory access generated by the Trace Buffer Unit uses the memory type and Shareability attribute
associated with its own address.

• The access generates an Alignment fault caused by the memory type:

— If only the stage 1 translation generated the mismatch, or there is only one stage of translation in the
owning translation regime, the resulting trace buffer management event is a stage 1 Data Abort.

— If only the stage 2 translation generated the mismatch, the resulting trace buffer management event is
a stage 2 Data Abort.

— If both stages of translation generate the mismatch, the resulting trace buffer management event is
either a stage 1 Data Abort or a stage 2 Data Abort.

• The trace data is discarded and the current write pointer might not be updated.

RXRQTN A memory access from the Trace Buffer Unit to Device memory that crosses a boundary corresponding to the
smallest translation granule size of the implementation causes CONSTRAINED UNPREDICTABLE behavior. In this case,
the implementation performs one of the following behaviors:

• Each memory accesses generated by the Trace Buffer Unit is performed as if the boundary has no effect on
the memory accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6482
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
• Each memory accesses generated by the Trace Buffer Unit is performed as if the boundary has no effect on
the memory accesses except that there is no guarantee of ordering between it and other memory accesses.

• The access generates an Alignment fault caused by the memory type:

— If only the stage 1 translation causes the boundary to be crossed, or there is only one stage of
translation in the owning translation regime, the resulting trace buffer management event is a stage 1
Data Abort.

— If only the stage 2 translation causes the boundary to be crossed, the resulting trace buffer management
event is a stage 2 Data Abort.

— If both stages of translation cause the boundary to be crossed, the resulting trace buffer management
event is either a stage 1 Data Abort or a stage 2 Data Abort.

• The trace data is discarded and the current write pointer might not be updated.

Note: The boundary is between two Device memory regions that are both:

• Of the size of the smallest implemented translation granule.

• Aligned to the size of the smallest implemented translation granule.

IVKQBR Although the Trace Buffer Unit behaves as if trace data is written a byte at a time, it is not required to do so.

For example, RBWNRF and RCMSNC mean that if the memory type for the trace buffer is Device-nGnRnE, then all
of the following apply:

• Writes are not repeated and not reordered.

• A write Completes only after it reaches its endpoint in the memory system.

• The access granule size at the endpoint in the memory system is not defined by the architecture. However, a
specific implementation might define the granule to permit interoperability with specific devices.

The access granule is not required to be fixed. For example, the Trace Buffer Unit might output a smaller granule
when flushing trace data to the trace buffer.

See also IQQKZF.

D6.3.5 The owning translation regime

RDPGJG The owning translation regime is defined by the owning Security state and the owning Exception level.

RHBZNT When the Trace Buffer Unit is enabled, the owning Security state is:

• Non-secure state if and only if at least one of the following is true:

— EL3 is not implemented and the PE executes in Non-secure state.

— The Effective value of MDCR_EL3.NSTBE is 0 and MDCR_EL3.NSTB is either 0b10 or 0b11.

• Secure state if and only if Secure state is implemented and at least one of the following is true:

— EL3 is not implemented and the PE executes in Secure state.

— The Effective value of MDCR_EL3.NSTBE is 0 and MDCR_EL3.NSTB is either 0b00 or 0b01.

• Realm state if and only if FEAT_RME is implemented, MDCR_EL3.NSTBE is 1, and MDCR_EL3.NSTB
is either 0b10 or 0b11.

RSKVWG When the Trace Buffer Unit is enabled, the owning Exception level is:

• EL1 if and only if at least one of the following is true:

— EL2 is not implemented in the owning Security state.

— EL2 is disabled in the owning Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6483
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
— MDCR_EL2.E2TB is either 0b10 or 0b11.

• EL2 if and only if all of the following is true:

— EL2 is implemented and enabled in the owning Security state.

— MDCR_EL2.E2TB is 0b00.

RXWDZV When the Trace Buffer Unit is enabled and the owning Exception level is EL1, all of the following apply:

• The owning translation regime is EL1&0.

• If TRBLIMITR_EL1.nVM is 0, the trace buffer pointer addresses are virtual addresses in the EL1&0
translation regime using the current ASID from TTBRx_EL1.

• If TRBLIMITR_EL1.nVM is 1, the trace buffer pointer addresses are intermediate physical addresses.

• Intermediate physical addresses (whether from the output of stage 1, or the pointers, as applicable) are subject
to stage 2 translation using the current VMID if EL2 is implemented and enabled and HCR_EL2.VM is 1.

• If the Trace Buffer Unit is using Self-hosted mode, then the following are prohibited trace regions:

— EL3.

— EL2.

— EL0, if EL2 is implemented and enabled and HCR_EL2.TGE is 1.

RSHXTV When the Trace Buffer Unit is enabled and the owning Exception level is EL2, all of the following apply:

• If HCR_EL2.E2H is 0, the owning translation regime is EL2.

• If HCR_EL2.E2H is 1, the owning translation regime is EL2&0.

• If HCR_EL2.E2H is 0 and TRBLIMITR_EL1.nVM is 0, the trace buffer pointer addresses are virtual
addresses in the EL2 translation regime.

• If HCR_EL2.E2H is 1 and TRBLIMITR_EL1.nVM is 0, the trace buffer pointer addresses are virtual
addresses in the EL2&0 translation regime using the current ASID from TTBRx_EL2.

• If TRBLIMITR_EL1.nVM is 1, the trace buffer pointer addresses are physical addresses.

• If the Trace Buffer Unit is using Self-hosted mode, then EL3 is a prohibited trace region.

IQCKVZ The following table summarizes the owning translation regime.

In this table:

Enabled

is the value of the function TraceBufferEnabled().

NSTBE

is the Effective value of MDCR_EL3.NSTBE.

NSTB

is the Effective value of MDCR_EL3.NSTB.

E2TB

is the Effective value of MDCR_EL2.E2TB.

EEL2

is the Effective value of SCR_EL3.EEL2.

E2H

is the Effective value of HCR_EL2.E2H.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6484
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
The pseudocode function TraceBufferOwner describes this.

RRRCNN When any of the following is true, the translation of addresses generated by the Trace Buffer Unit is CONSTRAINED
UNPREDICTABLE:

• The owning Security state is Secure and SCR_EL3.NS is 1.

• When FEAT_RME is not implemented and the owning Security state is Non-secure and SCR_EL3.NS is 0.

• When FEAT_RME is implemented and the owning Security state is Non-secure and SCR_EL3.{NSE,NS}
is not {0,1}.

• When FEAT_RME is implemented and the owning Security state is Realm and SCR_EL3.NSE is 0.

For these translations, the PE behaves as if one of the following is true:

• The owning Security state is Secure and SCR_EL3.NS is 0.

• When FEAT_RME is not implemented, the owning Security state is Non-secure and SCR_EL3.NS is 1.

• When FEAT_RME is not implemented, the owning Security state is Non-secure and SCR_EL3.{NSE,NS}
is {0,1}.

• When FEAT_RME is not implemented, the owning Security state is Realm and SCR_EL3.{NSE,NS} is
{1,1}.

Note: The behavior might differ within the same translation.

IMJMWG RRRCNN means that if software executing at EL3 changes the value of SCR_EL3.NS or SCR_EL3.NSE before
ensuring all trace operations are complete, this might cause CONSTRAINED UNPREDICTABLE behaviors. This means
that software must execute a TSB CSYNC instruction to force any trace to be written to the Trace Buffer before
changing context.

RMFFGX When the Trace Buffer Unit is enabled and the owning Security state is Non-secure state, Secure state and Realm
state are prohibited trace regions.

RVGWJN When the Trace Buffer Unit is enabled and the owning Security state is Secure state, Non-secure state and Realm
state are prohibited trace regions.

RRRBFN When the Trace Buffer Unit is enabled and the owning Security state is Realm state, Non-secure state and Secure
state are prohibited trace regions.

Enabled NSTBE NSTB E2TB EEL2 E2H Owning translation regime

FALSE x x x x x Disabled

TRUE 0b0 0b0x x 0b0 x Secure EL1&0

TRUE 0b0 0b0x 0b00 0b1 0b0 Secure EL2

TRUE 0b0 0b0x 0b00 0b1 0b1 Secure EL2&0

TRUE 0b0 0b0x 0b1x 0b1 x Secure EL1&0

TRUE 0b0 0b1x 0b00 x 0b0 Non-secure EL2

TRUE 0b0 0b1x 0b00 x 0b1 Non-secure EL2&0

TRUE 0b0 0b1x 0b1x x x Non-secure EL1&0

TRUE 0b1 0b1x 0b00 x 0b0 Realm EL2

TRUE 0b1 0b1x 0b00 x 0b1 Realm EL2&0

TRUE 0b1 0b1x 0b1x x x Realm EL1&0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6485
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
IDCRYN FEAT_TRF, provides additional controls to define Trace Prohibited regions.

The following table summarizes the Trace Prohibited regions, by Exception level and state, when all of the
following apply:

• TraceBufferEnabled() is TRUE.

• EL3, Non-secure EL2, and Secure EL2 are all implemented.

• EL3 is using AArch64.

• FEAT_RME is implemented.

In this table:

NSE

is the Effective value of SCR_EL3.NSE.

NS

is the Effective value of SCR_EL3.NS.

RLTE

is the Effective value of MDCR_EL3.RLTE.

STE

is the Effective value of MDCR_EL3.STE.

NSTBE

is the Effective value of MDCR_EL3.NSTBE.

NSTB

is the Effective value of MDCR_EL3.NSTB.

E2TB

is the Effective value of MDCR_EL2.E2TB.

EEL2

is the Effective value of SCR_EL3.EEL2.

TGE

is the Effective value of HCR_EL2.TGE.

Reserved values are not shown in the table.

The EL3, EL2, EL1, EL0 columns show which control, if any, enables tracing at the Exception level. In these
columns:

P

means tracing is prohibited.

E2TRE

means tracing is allowed if TRFCR_EL2.E2TRE is 1 and prohibited otherwise.

E1TRE

means tracing is allowed if TRFCR_EL1.E1TRE is 1 and prohibited otherwise.

E0HTRE

means tracing is allowed if TRFCR_EL2.E0HTRE is 1 and prohibited otherwise.

E0TRE

means tracing is allowed if TRFCR_EL1.E0TRE is 1 and prohibited otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6486
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
The pseudocode function TraceAllowed describes this.

RMCYDC When the Trace Buffer Unit is disabled or not using Self-hosted mode, the owning translation regime, owning
Security state, and owning Exception level are not defined.

RRTGLJ When FEAT_RME and FEAT_TRBE are implemented, if the Trace Buffer Unit is enabled and using Self-hosted
mode, and MDCR_EL3.{NSTB, NSTBE} selects a reserved value, then the behavior is CONSTRAINED
UNPREDICTABLE, and the Trace Buffer Unit does one of:

• Behaves as if the Trace Buffer Unit is disabled.

• Selects an implemented Security state as the owning Security state.

• When trace data is received from the trace unit, it is not written to memory and the Trace Buffer Unit
generates a trace buffer management event:

— TRBSR_EL1.IRQ is set to 0b1.

— If TRBSR_EL1.S is 0b0, then all of the following occur:

— TRBSR_EL1.S is set to 0b1, collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

— TRBSR_EL1.BSC is set to 0b000000, access not allowed.

NSE NS RLTE STE NSTBE NSTB E2TB EEL2 TGE EL3 EL2 EL1 EL0

0b0 0b0 x 0b0 x x x x x P P P P

0b0 0b0 x 0b1 0b0 0b0x x 0b0 x P n/a E1TRE E0TRE

0b0 0b0 x 0b1 0b0 0b0x 0b00 0b1 0b0 P E2TRE E1TRE E0TRE

0b0 0b0 x 0b1 0b0 0b0x 0b00 0b1 0b1 P E2TRE n/a E0HTRE

0b0 0b0 x 0b1 0b0 0b0x 0b1x 0b1 0b0 P P E1TRE E0TRE

0b0 0b0 x 0b1 0b0 0b0x 0b1x 0b1 0b1 P P n/a P

0b0 0b0 x 0b1 x 0b1x x x x P P P P

0b0 0b1 x x 0b0 0b0x x x x P P P P

0b0 0b1 x x 0b0 0b1x 0b00 x 0b0 P E2TRE E1TRE E0TRE

0b0 0b1 x x 0b0 0b1x 0b00 x 0b1 P E2TRE n/a E0HTRE

0b0 0b1 x x 0b0 0b1x 0b1x x 0b0 P P E1TRE E0TRE

0b0 0b1 x x 0b0 0b1x 0b1x x 0b1 P P n/a P

0b0 0b1 x x 0b1 0b1x x x x P P P P

0b1 0b1 0b0 x x x x x x P P P P

0b1 0b1 0b1 x 0b0 x x x x P P P P

0b1 0b1 0b1 x 0b1 0b1 0b00 x 0b0 P E2TRE E1TRE E0TRE

0b1 0b1 0b1 x 0b1 0b1 0b00 x 0b1 P E2TRE n/a E0HTRE

0b1 0b1 0b1 x 0b1 0b1 0b1x x 0b0 P P E1TRE E0TRE

0b1 0b1 0b1 x 0b1 0b1 0b1x x 0b1 P P n/a P
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6487
ID032224 Non-Confidential

The Trace Buffer Extension
D6.3 Trace buffer Self-hosted mode
— The other fields in TRBSR_EL1 are unchanged.

D6.3.6 Cache and TLB operations

IWYVXK Translations used by the Trace Buffer Unit might be cached in a TLB.

RGQJMC TLB maintenance operations that affect the TLB of the PE also affect any TLB caching translations for the Trace
Buffer Unit of that PE.

RRNPNM The PE is permitted, but not required, to cache all translations used by the Trace Buffer Unit in TLB caching
structures that combine stage 1 and stage 2 of the translation. This includes when TRBLIMITR_EL1.nVM is 1 and
the owning translation regime has stage 2 translations.

SLSZDR When TRBLIMITR_EL1.nVM is 1 and the owning translation regime has stage 2 translations, the Trace Buffer
Unit uses intermediate physical addresses (IPAs). RRNPNM permits, but does not require, such translations to be
cached in a TLB in such a way that an IPAS2 TLB maintenance operation is not sufficient to invalidate the cached
copies. In this case, there is no VA for the translation.

If TRBLIMITR_EL1.nVM is 1 and the owning translation regime has stage 2 translations, then the following code
executed at EL2 or above is sufficient to invalidate all cached copies of the stage 2 translations used by the Trace
Buffer Unit of the IPA held in Xt for the current VMID:

TLBI IPAS2E1, Xt
DSB
TLBI VMALLE1

Equivalent architectural requirements apply to the IPAS2L instruction, except that the only TLB entries that must be
invalidated by an IPAS2L instruction are those that come from the final level of the translation table lookup.

Equivalent sequences guaranteed to invalidate all entries invalidated by the above code sequence can be used, such
as TLBI ALL or TLBI VMALLS1S2.

RDNFWB Cache maintenance operations that affect the caches of the PE also affect data caching by the Trace Buffer Unit of
that PE.

IMZQPT RGQJMC and RDNFWB mean that the completion of any cache or TLB maintenance instruction includes its
completion on all Trace Buffer Units for PEs that are affected by both the instruction and the DSB operation that is
required to guarantee visibility of the maintenance instruction. See Synchronization litmus tests for more
information.

D6.3.7 Self-hosted mode and MEC

RRKSNW If FEAT_MEC is implemented and the Trace Buffer Unit is using Self-hosted mode, accesses made by the Trace
Buffer Unit to the trace buffer are associated with a MECID that is determined by the owning translation regime,
owning Security state, and owning Exception level. For more information, see Memory Encryption Contexts.

D6.3.8 Self-hosted mode and MPAM

RWXSYG If FEAT_MPAM is implemented and the Trace Buffer Unit is using Self-hosted mode, then the MPAM information
for accesses made by the Trace Buffer Unit to the trace buffer use the MPAM values of the owning Exception level
and owning Security state.

IXLNWD For example, if the owning Exception level is EL2 the trace buffer writes use MPAM2_EL2.PARTID_D and
MPAM2_EL2.PMG_D. MPAM_NS is set for the owning Security state.

See also About the MPAM Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6488
ID032224 Non-Confidential

The Trace Buffer Extension
D6.4 Trace buffer External mode
D6.4 Trace buffer External mode

D6.4.1 The external Trace Buffer debug component

RRGHMG The external Trace Buffer debug component is defined by the external views of all of the following:

• TRBBASER_EL1.

• TRBIDR_EL1.

• TRBLIMITR_EL1.

• TRBMAR_EL1.

• TRBMPAM_EL1, if implemented.

• TRBPTR_EL1.

• TRBSR_EL1.

• TRBTRG_EL1.

• Trace Buffer Management Registers, if implemented.

Where applicable, the external views are mapped to the equivalent System registers.

ILSZMG The Trace Buffer Management Registers are those with offsets ranging from 0xF00 through 0xFFC, as defined by
Management registers and CoreSight compliance.

IQSMXY The external Trace Buffer debug component is a separate component in the external debug interface.

IDCWTT An external access to a Trace Buffer Unit register might return an error response if one or more of the following
apply:

Off

The Core power domain is powered down or is in low-power state where the registers cannot be
accessed.

DLK

FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is locked.

Note

The implementation of FEAT_DoubleLock in an Armv9 implementation is prohibited.

OSLK

OSLSR_EL1.OSLK is 0b1. The OS Lock is locked.

ETBAD

AllowExternalTraceBufferAccess == FALSE for the access. The access is disabled by
MDCR_EL3.ETBAD.

RMXBCY For reserved accesses to the external Trace Buffer debug component:

• If the Core power domain is powered down or is in a low-power state where the registers cannot be accessed,
then the access returns an error response.

• Otherwise:

— For addresses in the range 0xF00 through 0xFFC, the access is RES0H.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6489
ID032224 Non-Confidential

The Trace Buffer Extension
D6.4 Trace buffer External mode
— For all other addresses, if any of the following conditions apply, then the access is either RES0H or
returns an error response:

DLK

FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double
Lock is locked.

Note
The implementation of FEAT_DoubleLock in an Armv9 implementation is prohibited.

OSLK

OSLSR_EL1.OSLK is 0b1. The OS Lock is locked.

ETBAD

AllowExternalTraceBufferAccess == FALSE for the access. The access is disabled by
MDCR_EL3.ETBAD.

Otherwise, the access is RES0H.

IRFYXF For more information on reserved accesses, see Access requirements for reserved and unallocated registers.

IZTKSS Table D6-1 shows the external Trace Buffer debug register map.

Table D6-1 Summary of external Trace Buffer debug registers

Offset Name Description Access

0x000 TRBBASER_EL1 Trace Buffer Base Address Register RW

0x008 TRBPTR_EL1 Trace Buffer Write Pointer Register RW

0x010 TRBLIMITR_EL1 Trace Buffer Limit Address Register RW

0x018 TRBSR_EL1 Trace Buffer Status/syndrome Register RW

0x020 TRBTRG_EL1 Trace Buffer Trigger Counter Register RW

0x028 TRBMAR_EL1 Trace Buffer Memory Attribute Register RW

0x030 TRBIDR_EL1 Trace Buffer ID Register RO

0x038 TRBCR Trace Buffer Control Register RW

0x040 TRBMPAM_EL1 Trace Buffer MPAM Configuration Register RW

0xF00 TRBITCTRL Integration Mode Control Register RW

0xFA8 TRBDEVAFF Device Affinity Register RO

0xFB0 TRBLAR Lock Access Register WO

0xFB4 TRBLSR Lock Status Register RO

0xFB8 TRBAUTHSTATUS Authentication Status Register RO

0xFBC TRBDEVARCH Trace Buffer Device Architecture Register RO

0xFC0 TRBDEVID2 Device Configuration Register 2 RO

0xFC4 TRBDEVID1 Device Configuration Register 1 RO

0xFC8 TRBDEVID Device Configuration Register RO

0xFCC TRBDEVTYPE Device Type Register RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6490
ID032224 Non-Confidential

The Trace Buffer Extension
D6.4 Trace buffer External mode
D6.4.2 Behavior in External mode

RDFCSS The rules in this section apply only when the Trace Buffer Unit is enabled and using External mode.

RNHTSY The Base pointer, Limit pointer, and current write pointer are physical addresses.

RXXFVW TRBMAR_EL1 defines the memory type, and, as applicable, Cacheability, Shareability, and Device type attributes,
and the physical address space for the physical addresses.

RWNCWG The IMPLEMENTATION DEFINED authentication interface controls which physical address spaces can be used.

RCMYYF If the authentication interface prohibits invasive debug of the Security state corresponding to the physical address
space selected by TRBMAR_EL1.PAS, or TRBMAR_EL1.PAS is set to a reserved value, then no trace is written
to the trace buffer and all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• If TRBSR_EL1.S is 0, then all of the following occur:

— TRBSR_EL1.S is set to 1, collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

— TRBSR_EL1.BSC is set to 0b000000, access not allowed.

• The other fields in TRBSR_EL1 are unchanged.

IPGLYR The trace unit defines the trace prohibited regions.

When the Trace Buffer Unit is using Self-hosted mode, EL3 is always a prohibited region. This is not the case when
the Trace Buffer Unit is using External mode.

RWMPMV A write of 1 to TRBCR.ManStop generates a trace unit flush, and on completion of the trace unit flush all of the
following apply:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

0xFD0 TRBPIDR4 Peripheral Identification Register 4 RO

0xFD4 TRBPIDR5 Peripheral Identification Register 5 RO

0xFD8 TRBPIDR6 Peripheral Identification Register 6 RO

0xFDC TRBPIDR7 Peripheral Identification Register 7 RO

0xFE0 TRBPIDR0 Peripheral Identification Register 0 RO

0xFE4 TRBPIDR1 Peripheral Identification Register 1 RO

0xFE8 TRBPIDR2 Peripheral Identification Register 2 RO

0xFEC TRBPIDR3 Peripheral Identification Register 3 RO

0xFF0 TRBCIDR0 Component Identification Register 0 RO

0xFF4 TRBCIDR1 Component Identification Register 1 RO

0xFF8 TRBCIDR2 Component Identification Register 2 RO

0xFFC TRBCIDR3 Component Identification Register 3 RO

Table D6-1 Summary of external Trace Buffer debug registers (continued)

Offset Name Description Access
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6491
ID032224 Non-Confidential

The Trace Buffer Extension
D6.4 Trace buffer External mode
• If TRBSR_EL1.S is 0, then all of the following occur:

— TRBSR_EL1.S is set to 1, collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

— TRBSR_EL1.BSC is set to 0b000011, Manual Stop event.

• The other fields in TRBSR_EL1 are unchanged.

After the trace buffer management event is generated:

• The Trace Buffer Unit writes all trace data it has accepted from the trace unit to memory, adding padding data
if necessary.

• The current write pointer points to one of the following:

— If the last trace byte written to the trace buffer was the last byte in the trace buffer, then the Base
pointer.

— Otherwise, the first byte after the last trace byte written to the trace buffer.

IYBKZD Setting TRBCR.ManStop to 1 has the effects described in RWMPMV even if collection is stopped. Other than a
Trigger Event, other trace buffer management events do not guarantee a trace unit flush, and following any other
management events, including a Trigger Event, setting TRBCR.ManStop to 1 is required to force the Trace Buffer
Unit to write all trace data to memory.

IKMQKF When stopping trace at the end of a trace session using External mode, software does the following:

1. Stops and disables the trace unit.

2. Sets TRBCR.ManStop to 1.

3. Polls for TRBSR_EL1.{DAT, S} = {0, 1}.

4. Disables the Trace Buffer Unit.

To ensure the Trace Buffer Unit writes are Complete, the software is required to issue a DSB instruction. This might
require an external debugger to halt the PE to execute the instruction. See Cross-halt trigger event.

D6.4.3 External mode and the Realm Management Extension

RWGMTL When all of the following are true, each physically addressed access made by the Trace Buffer Unit is subject to
Granule Protection Checks:

• FEAT_RME is implemented.

• The Trace Buffer Unit is using Self-hosted mode or ExternalRootInvasiveDebugEnabled() is FALSE.

• GPCCR_EL3.GPC is 1.

Otherwise, each physically addressed access made by the Trace Buffer Unit is not subject to Granule Protection
Checks.

RTYJGF When all the following are true, the Trace Buffer Unit rejects trace:

• FEAT_RME is implemented.

• The Trace Buffer Unit is using External mode and ExternalRootInvasiveDebugEnabled() is FALSE.

• GPCCR_EL3.{TBGPCD, GPC} is {0, 0}.

ILJVQH If FEAT_RME is implemented, ExternalRootInvasiveDebugEnabled() is FALSE, and the Trace Buffer Unit is using
External mode, then on a Warm reset, the PE enters a trace prohibited region and trace remains prohibited until the
PE has left Root state and entered a trace allowed region.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6492
ID032224 Non-Confidential

The Trace Buffer Extension
D6.4 Trace buffer External mode
IBWDGK GPCCR_EL3.TBGPCD provides firmware with a control to allow trace to be written to physically addressed
memory without Granule Protection Checks even when ExternalRootInvasiveDebugEnabled() is FALSE and the
Trace Buffer Unit is using External mode. For example, if the system firmware will not enable Granule Protection
Checks.

If GPCCR_EL3.GPC is 1, ExternalRootInvasiveDebugEnabled() is TRUE or the Trace Buffer Unit is using
Self-hosted mode, then GPCCR_EL3.TBGPCD is ignored.

GPCCR_EL3.TBGPCD is reset to 0 on a Cold reset and preserved on a Warm reset.

D6.4.4 External mode and MEC

IYPPVQ RRKSNW defines the interaction of Self-hosted mode and MEC.

RMVPSY If FEAT_MEC is implemented and the Trace Buffer Unit is using External mode, then accesses made by the Trace
Buffer Unit to the trace buffer use the default MECID of zero.

D6.4.5 External mode and MPAM

RSFTXK If FEAT_MPAM is implemented, FEAT_TRBE_MPAM is not implemented, and the Trace Buffer Unit is using
External mode, then accesses made by the Trace Buffer Unit to the trace buffer use the default MPAM values.

RGJFRD If FEAT_MPAM and FEAT_TRBE_MPAM are implemented and the Trace Buffer Unit is using External mode,
then accesses made by the Trace Buffer Unit to the trace buffer use one of the following:

• The default MPAM values if TRBMPAM_EL1.EN is 0.

• If TRBMPAM_EL1.EN is 1, then the TRBMPAM_EL1.{PARTID, PMG, MPAM_SP}.

IJRQWG The external debugger can choose any PARTID and PMG values from the selected the MPAM_SP PARTID space.

IQSRZX System register access to TRBMPAM_EL1 is also provided, to allow software to save and restore the register over
power-down. TRBMPAM_EL1 is not used in Self-hosted mode.

RZXFRR The IMPLEMENTATION DEFINED authentication interface controls which MPAM_SP PARTID spaces can be used.

RVVWKG If the authentication interface prohibits invasive debug of the Security state corresponding to the
MPAM_SP.PARTID space selected by TRBMPAM_EL1.MPAM_SP, or TRBMPAM_EL1.MPAM_SP is set to a
reserved value, then no trace is written to the trace buffer and all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• If TRBSR_EL1.S is 0, then all of the following occur:

— TRBSR_EL1.S is set to 1, collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

— TRBSR_EL1.BSC is set to 0b000000, access not allowed.

• The other fields in TRBSR_EL1 are unchanged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6493
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
D6.5 Trace buffer management

IGYHBH FEAT_TRBE supports the following trace buffer modes:

Circular Buffer mode

In Circular Buffer mode, when the current write pointer reaches the Limit pointer, it is wrapped by
setting it to the Base pointer.

Wrap mode

As Circular Buffer mode, except that an interrupt request is generated when the current write pointer is
wrapped.

Fill mode

As Wrap mode, except that trace collection stops when the current write pointer is wrapped.

IFZXSV The trace buffer mode is controlled by TRBLIMITR_EL1.FM.

INFZKS A trace buffer management event occurs:

• On an Alignment fault or MMU fault.

• On an External abort.

• On a Trigger Event, if enabled.

• When the current write pointer is wrapped to the Base pointer and the trace buffer mode is not Circular Buffer
mode. This event is known as:

— A buffer wrap event, if the trace buffer mode is Wrap mode.

— A buffer full event, if the trace buffer mode is Fill mode.

• On a programming error, when permitted as an UNPREDICTABLE behavior of the PE. For more information,
see Restrictions on programming the Trace Buffer Unit and UNPREDICTABLE behavior.

• On an IMPLEMENTATION DEFINED event.

Note: The trace buffer management event behavior differs from that of the SPE Profiling Buffer management event.

RHLKSG On a trace buffer management event, all of the following occurs:

• The interrupt request bit, TRBSR_EL1.IRQ, is set to 1.

• The trace buffer management interrupt signal, TRBIRQ, is asserted.

• Additional syndrome for the event might be written to TRBSR_EL1.MSS.

RLRTBP TRBIRQ is a level triggered interrupt request driven by TRBSR_EL1.IRQ. This means that all of the following
apply:

• A direct write that sets TRBSR_EL1.IRQ to 1 causes the interrupt request to be asserted.

• The interrupt request remains asserted until software clears TRBSR_EL1.IRQ to 0.

RTPPCF When a GIC is implemented, TRBIRQ is configured as a PPI. TRBIRQ is signaled by the PE that implements the
Trace Buffer Unit.

IHHRLX The PPI number is not defined by the architecture. Arm recommends that the PPI number is discoverable to an
Operating System, for example using ACPI or devicetree interfaces.

SXLNJY Software must configure the trace buffer management interrupt to be taken to the correct Exception level.

IHJFLC Buffer full, Alignment fault, and MMU fault trace buffer management events are synchronous. This means that the
effect of these trace buffer management events setting TRBSR_EL1.S to 1, collection is stopped, happens before
any further trace is collected by the Trace Buffer Unit from the trace unit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6494
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
IJLZDN When the trigger mode is Stop on Trigger, a Trigger Event initiates a trace unit flush meaning more trace might be
written to the trace buffer before any collection is stopped by the Trigger Event trace buffer management event. This
additional trace might cause a second trace buffer management event to be generated before the Trigger Event trace
buffer management event.

IZLVHR The TRBIRQ interrupt is always taken asynchronously by the PE, even if the event is reported synchronously to
the Trace Buffer Unit.

IGVGPB Following an Alignment fault, MMU fault, or External abort trace buffer management event, TRBPTR_EL1 serves
as a Fault Address Register.

For a fault or synchronous External abort trace buffer management event, the frozen TRBPTR_EL1 is the address
that generated the fault or External abort.

For an asynchronous External abort trace buffer management event, the frozen TRBPTR_EL1 is not guaranteed to
be the address that generated the External abort.

D6.5.1 Prioritization of a trace buffer management event

RMKCHT Where multiple synchronous trace buffer management events occur on writing trace data, the PE prioritizes them
from highest to lowest priority, reporting the highest priority event as follows:

1. Synchronous fault.

2. Synchronous External abort.

3. Buffer full event.

4. Buffer wrap event.

IBRLXK Do not confuse the prioritization of trace buffer management events with the prioritization of trace buffer
management interrupts by an interrupt controller.

RGTMJD Asynchronous and IMPLEMENTATION DEFINED trace buffer management events are not prioritized relative to
synchronous trace buffer management events.

D6.5.2 Buffer full and buffer wrap events

RMBSHC If the current write pointer is wrapped to the Base pointer and the trace buffer mode is Fill mode, then all of the
following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.WRAP is set to 1.

• The TRB_WRAP event is generated.

• If TRBSR_EL1.S is 0, then all of the following occur:

— TRBSR_EL1.S is set to 1, collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

— TRBSR_EL1.BSC is set to 0b000001, buffer filled.

• The other fields in TRBSR_EL1 are unchanged.

After the trace buffer management event, the current write pointer will point to the Base pointer.

RVBDJZ If the current write pointer is wrapped to the Base pointer and the trace buffer mode is Wrap mode, then all of the
following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.WRAP is set to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6495
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
• The other fields in TRBSR_EL1 are unchanged.

• The TRB_WRAP event is generated.

Because TRBSR_EL1.S is unchanged, trace continues to be collected and written to the trace buffer.

IGDSTS If the current write pointer is wrapped to the Base pointer and the trace buffer mode is Circular Buffer mode, then
all of the following occur:

• TRBSR_EL1.WRAP is set to 1.

• The other fields in TRBSR_EL1 are unchanged.

• The TRB_WRAP event is generated.

IVCDNP If TRBSR_EL1.S is 1, the current write pointer is not updated, meaning the current write pointer is never wrapped
when TRBSR_EL1.S is already 1.

SHKNBM Software can configure the PMU to count the TRB_WRAP event and monitor how many times the current write
pointer has wrapped, particularly in Circular Buffer mode or Wrap mode.

IJSQPH See also Controlling generation of trace buffer management events.

D6.5.3 Trigger event

IHHLBM The Trace Buffer Extension supports detection of a trigger condition from the trace unit. A trigger condition is
typically used to stop trace capture to ensure trace is captured around a point of interest.

The trace unit defines how software programs the trace unit to generate trigger conditions.

A Detected Trigger is signaled to the Trace Buffer Unit by the trace unit when the trace unit detects a trigger
condition. The trace unit defines whether the Detected Trigger is signaled synchronously or asynchronously to the
trace data stream.

A Trigger Event occurs when the Trigger Counter has counted the specified number of trace bytes after a Detected
Trigger. Software can set the Trigger Counter to zero to skip this step.

The Trigger Counter is a counter used to delay a Trigger Event for a specified number of trace bytes after a Detected
Trigger.

Figure D6-2 shows this.

Figure D6-2 Trigger condition to Trigger Event

IYRQCN For a trace unit that implements FEAT_ETE, event 0 is the trigger condition.

SDHJTB When the trigger mode is set to Stop on trigger, software uses the Trigger Counter to control how trace is collected
around the Detected Trigger as follows:

• Set the Trigger Counter to zero to trace before the Detected Trigger.

• Set the Trigger Counter to half the size of the trace buffer to trace around the Detected Trigger.

• Set the Trigger Counter to the size of the trace buffer to trace after the Detected Trigger.

IKLRBB Restrictions on programming the Trace Buffer Unit defines additional constraints on writing to the Trigger Counter.

���������	
�� ��	 �������
�������

���	���������	�������

���	��������
����������	�

���	��������

���	��������
���	��������
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6496
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
RKSQJW If a Detected Trigger occurs while the Trace Buffer Unit is enabled, then all of the following occur:

• TRBSR_EL1.TRG is set to 1.

• The other fields in TRBSR_EL1 are unchanged.

RBQTGW If all of the following are true, then the Trace Buffer Unit decrements the Trigger Counter by 1 for each byte of trace
data written to the trace buffer by the Trace Buffer Unit:

• The Trigger Counter is nonzero.

• TRBSR_EL1.TRG is set to 1.

If the write generates an Alignment fault, MMU fault, or External abort, it is UNPREDICTABLE whether the Trigger
Counter is decremented.

RQFGNQ If a Detected Trigger occurs when the Trigger Counter is nonzero and TRBSR_EL1.TRG is 0, the Trace Buffer Unit
might decrement the Trigger Counter by an amount up to the value specified by TRBIDR_EL1.Align without
writing any additional trace data to the trace buffer.

IQQKZF An implementation might include an internal buffer that collects bytes of trace data into more convenient units
before writing them to memory. For example, the width of the system bus or the length of a cache line.

In such an implementation, TRBIDR_EL1.Align specifies the size of this unit, and the Trigger Counter is
decremented by the size of this unit when the write occurs, meaning the Trigger Counter is always aligned to the
size specified by TRBIDR_EL1.Align.

However, this means that if the Detected Trigger occurs when such an internal buffer is not empty, the Trace Buffer
Unit will over-decrement the counter when the internal buffer is written to memory. RQFGNQ permits this.

See also RBWNRF.

RDHLQG A Trigger Event is generated when the Trace Buffer Unit is enabled and one of the following occurs:

• A Detected Trigger occurs when the Trigger Counter is zero and TRBSR_EL1.TRG is 0.

• The Trace Buffer Unit decrements the Trigger Counter to zero.

IZGFSK A Trigger Event is not generated when a Detected Trigger occurs, the Trigger Counter is set to zero, and
TRBSR_EL1.TRG is already 1.

A Trigger Event is not generated when the Trace Buffer Unit is disabled.

RRWJNN The Detected Trigger might be generated by a trace operation tT. This might be the trace operation generated by an
instruction that also matched the trigger condition, or might be a trace operation generated asynchronously by the
trace unit to mark the trigger condition in the trace data. The trace unit defines this relationship for triggers.

RMLZZW A Trigger Event might be generated by a trace operation as follows:

• If the Trigger Event is generated when a Detected Trigger occurs when the Trigger Counter is zero and
TRBSR_EL1.TRG is 0, and the Detected Trigger is generated by a trace operation tT then the Trigger Event
is generated by the same trace operation tT.

• If the Trigger Event is generated when the Trace Buffer Unit decrements the Trigger Counter to zero, then
Trigger Event is generated by the trace operation that generated the trace data that caused the Trigger Counter
to decrement to zero.

A Trigger Event is not generated by a specific trace operation if the Trigger Event is generated when a Detected
Trigger occurs when the Trigger Counter is zero and TRBSR_EL1.TRG is 0, and the Detected Trigger is not
generated by a specific trace operation.

IGPHHS The link between a Trigger Event and a trace operation that generated it affects when the trace operation is
Microarchitecturally-finished and the behavior of the TSB CSYNC instruction. See RJQDJD.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6497
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
INGLLQ FEAT_TRBE supports the following trigger modes:

Stop on trigger

Trace collection is stopped and an interrupt request is generated after a Trigger Event.

IRQ on trigger

An interrupt request is generated after a Trigger Event.

Ignore trigger

The Trace Buffer Unit ignores the trigger condition.

In the Stop on trigger and IRQ on trigger modes, software specifies the amount of trace that is collected after the
trigger condition before the Trigger Event.

RXRRWP If a Trigger Event is generated when collection is not stopped and the trigger mode is Stop on trigger, then all of the
following occur:

• The Trace Buffer Unit initiates a trace unit flush of the trace unit.

• The TRB_TRIG event is generated.

On completion of the trace unit flush, all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• If TRBSR_EL1.S is 0, then all of the following occur:

— TRBSR_EL1.S is set to 1, collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

— TRBSR_EL1.BSC is set to 0b000010, Trigger Event.

• The other fields in TRBSR_EL1 are unchanged.

After the trace buffer management event, the current write pointer will point to either the first byte after the last trace
byte written to the trace buffer, or, if the last trace byte written to the trace buffer was the last byte in the trace buffer,
the Base pointer.

IMCGFL The trace unit defines the behavior and completion of a trace unit flush, including which trace operations, if any, are
accepted by the Trace Buffer Unit before the trace unit flush completes.

If the Detected Trigger is generated by a trace operation tT, then the trace unit flush does not complete before the
Trace Buffer Unit accepts the trace data for tT.

IVPLRF Because the Trace Buffer Unit initiates a trace unit flush before stopping this means that, before TRBSR_EL1.S is
set to 1:

• More trace might be written to the trace buffer after the Trigger Event is detected.

• This might generate other management events that set TRBSR_EL1.S to 1.

RXYPYF If a Trigger Event is generated when collection is not stopped and the trigger mode is IRQ on trigger, then all of the
following occur:

• The Trace Buffer Unit initiates a trace unit flush of the trace unit.

• The TRB_TRIG event is generated.

On completion of the trace unit flush, all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• The other fields in TRBSR_EL1 are unchanged.

Because TRBSR_EL1.S is unchanged, trace continues to be collected and written to the trace buffer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6498
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
ILMQHK If a Trigger Event is generated and the trigger mode is Ignore trigger, then all of the following occur:

• TRBSR_EL1 is unchanged.

• The TRB_TRIG event is generated.

RMWWHM If a Trigger Event is generated when collection is stopped, then all of the following occur:

• TRBSR_EL1 is unchanged.

• The TRB_TRIG event is generated.

INZYNN These rules mean that trace might be collected after the Trigger Event, but are included to ensure that trace for the
instructions that caused the trigger condition is not discarded in common cases.

IJDWMT The trigger mode is controlled by TRBLIMITR_EL1.TM.

ISJWBD See also Controlling generation of trace buffer management events.

D6.5.4 Faults

RQKLXR A write by the Trace Buffer Unit might generate one or more of the following faults:

Alignment fault

If TRBPTR_EL1 is misaligned, the behavior is UNPREDICTABLE and a write to the trace buffer by the
Trace Buffer Unit might generate an Alignment fault. See also RMGZWR.

Translation fault

Any access outside the virtual address or intermediate physical address space generates a Translation
fault.

The translation of a virtual address or intermediate physical address to a physical address might generate
Translation fault.

Writes to the trace buffer are made as privileged writes in the owning translation regime, meaning they
are not affected by the TCR_ELx.E0PDy bits for the owning translation regime.

Address Size fault

The translation of a virtual address or intermediate physical address to a physical address, or use of an
out-of-range physical address, might generate an Address Size fault.

Permission fault

Writes to the trace buffer are made as privileged writes in the owning translation regime. If the write
does not have write permission, a Permission fault is generated. The value of PSTATE.PAN is ignored.

If the Trace Buffer Unit does not manage the dirty state in translation tables, then accesses ignore the
Dirty Bit Modifier bit in Page and Block descriptors and as a result, might generate a Permission fault.

Access Flag fault

If the Trace Buffer Unit does not manage the Access flag in translation tables or hardware management
of the Access flag state is disabled for the owning translation regime, then any access to a Page or Block
with the Access flag bit set to 0 in a descriptor will generate an Access Flag fault.

TLB Conflict fault

IMPLEMENTATION DEFINED.

Unsupported atomic hardware update fault

If hardware update of the translation tables is not guaranteed atomic in regard to other agents that access
the memory, the translation of a virtual address to a physical address might generate an Unsupported
atomic hardware update fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6499
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
External abort on translation table walk, translation table update, or Granule Protection Table (GPT) walk

The translation of a virtual address to a physical address might generate an External abort on the
translation table walk, translation table update, or GPT walk, and be treated as a synchronous MMU
fault. See also External aborts.

Granule Protection Check fault (GPC fault)

Writes to the trace buffer are subject to granule protection checks and might generate GPC faults.

MMU fault means any of these faults other than an Alignment fault.

RYQMQK MMU faults other than GPC faults are not generated in External mode.

RFYBCG Writes to the trace buffer by the Trace Buffer Unit never generate watchpoints.

IDTKGB Faults do not generate an actual Data Abort exception. The ESR and FAR registers are unchanged.

SGTLCY To avoid MMU faults, Arm recommends:

• Software pins the Pages or Blocks used for the trace buffer. This includes a hypervisor pinning these Pages
or Blocks in the stage 2 translation.

• If the Trace Buffer Unit does not manage the Access Flag and dirty state, software marks the Pages or Blocks
as accessed and dirty. Software can discover whether address translations performed by the Trace Buffer Unit
manage dirty state and the Access flag from TRBIDR_EL1.F.

• The IPA corresponding to trace buffer pointer does not have the AssuredOnly attribute when
TRBLIMITR_EL1.nVM is 1. Otherwise, any Trace Buffer Unit writes would generate a stage 2 permission
fault.

RFSPBK If a write by the Trace Buffer Unit generates an Alignment fault or MMU fault, including GPC faults, and
TRBSR_EL1.S is 0, then all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.S is set to 1, collection is stopped.

• TRBSR_EL1.EC is set to the appropriate one of the following values:

— 0x24, stage 1 Data Abort on write to trace buffer.

— 0x25, stage 2 Data Abort on write to trace buffer.

• TRBSR_EL1.FSC is set to indicate the type of the fault.

• TRBPTR_EL1 is set to the address that generated the fault.

• The other fields in TRBSR_EL1 are unchanged.

If a write by the Trace Buffer Unit generates an External abort on a translation table walk or translation table update,
it is IMPLEMENTATION DEFINED whether TRBSR_EL1.EA is set to 1 or unchanged.

RLYHGV For a stage 2 MMU fault on Trace Buffer Unit writes, TRBSR_EL1.TopLevel is set as follows:

• 1, for a stage 2 Permission fault due to the TopLevel attribute.

• 0, for any other stage 2 fault.

RYCPZX For a stage 2 MMU fault on Trace Buffer Unit writes, TRBSR_EL1.AssuredOnly is set as follows:

• 1, for a stage 2 Permission fault due to the AssuredOnly attribute.

• 0, for any other stage 2 fault.

IZNPQG In the case of a stage 2 Data Abort on a write to trace buffer, the PE does not record whether the fault was due to a
stage 2 fault on the access, or a stage 2 fault on a stage 1 translation table access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6500
ID032224 Non-Confidential

The Trace Buffer Extension
D6.5 Trace buffer management
D6.5.5 External aborts

RDJLWB A write to the trace buffer might generate an External abort, including an External abort on a translation table walk
or translation table update:

External abort

The write might generate a synchronous or asynchronous External abort.

External abort on translation table walk, translation table update, or GPT walk

The translation of a virtual address or intermediate physical address to a physical address might generate
an External abort.

However, an External abort on a translation table walk, translation table update, or GPT walk might be
treated as a synchronous MMU fault. See Faults.

RLZRMS When a write by the Trace Buffer Unit generates an External abort, all of the following mechanisms are permitted:

• Writes do not generate External aborts. An implementation that ignores External aborts has the same visible

behavior.

• The error pends an SError interrupt at the PE. No syndrome regarding the error is written to Trace Buffer

Unit registers.

In both cases, TRBSR_EL1 is not modified. TRBSR_EL1.S and TRBSR_EL1.EA are not set to 1, which means
trace collection is not disabled by the External abort. TRBSR_EL1.{EC, MSS} are not updated with any syndrome
for the error.

Note

From Armv9.3, TRBSR_EL1.EA is RES0.

ILNXGR External aborts on a translation table walk made by the Trace Buffer Unit can still generate a Trace Buffer
management event and be reported as an MMU fault using TRBSR_EL1.

RTTMSZ On taking an SError interrupt caused by an External abort on a write generated by the Trace Buffer Unit, the PE
error state indicated by ESR_ELx.AET is defined by the RAS PE Architecture.

INZHQC When taking the SError interrupt, the ESR_ELx syndrome does not report all of the following:

• That the External abort was signaled on a write.

• That the External abort was generated by Trace Buffer Unit.

This additional information might allow recovery software to temper its response to an error condition. However,
such errors are not expected in production systems.

D6.5.6 IMPLEMENTATION DEFINED management events

RCHNSL When IMPLEMENTATION DEFINED conditions are met all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.S is set to 1, collection is stopped.

• TRBSR_EL1.EC is set to 0x1F, IMPLEMENTATION DEFINED buffer management event.

• TRBSR_EL1.MSS is set to an IMPLEMENTATION DEFINED value.

• The other fields in TRBSR_EL1 are unchanged.

ILKLHH The intent of this event is for cases such as errata workarounds to allow an implementation to report any failure to
write data to the buffer that is not covered by other codes. Arm recommends that such mechanisms are disabled on
reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6501
ID032224 Non-Confidential

The Trace Buffer Extension
D6.6 Synchronization and the Trace Buffer Unit
D6.6 Synchronization and the Trace Buffer Unit

INMWZY Program Flow Trace data is generated by traced instructions. When an instruction is executed:

1. The PE decides whether to create a trace operation for the instruction.

2. If created, the trace operation generates the Program Flow Trace data.

For some trace unit implementations, Speculative instructions might generate trace operations, as well as
architecturally Resolved instructions.

See Appendix K6 Stages of Execution for more information on these terms.

The trace unit might also generate asynchronous trace operations, that are not causally related to an executed
instruction. If the trace unit implements the FEAT_ETE then the ETE Resources can generate trace operations that
are not causally related to an instruction or Speculative instruction.

The architecture defines a Trace Synchronization event that synchronizes the operation of trace operations with the
execution of instructions. Without correct use of the Trace Synchronization event, a trace operation might for
instance read a stale value from a System register, causing trace data to be written to the wrong memory location,
or the Trace Buffer Unit to otherwise generate UNPREDICTABLE software behavior. See also UNPREDICTABLE
behavior.

RZVDST Trace operations operate independently of the instructions that are executed on the PE and make indirect reads and
indirect writes of System registers as an external agent.

ITPVQR The synchronization requirements for direct reads, direct writes, indirect reads, and indirect writes of System
registers made by instructions and external agents are defined in Synchronization requirements for AArch64 System
registers.

RNRLDV Synchronization in self-hosted trace defines that indirect reads of the TRFCR_EL1.{E1TRE, E0TRE} and
TRFCR_EL2.{E2TRE, E0HTRE} trace filter controls when determining whether the current Execution stream is
part of a prohibited trace region and an instruction A should generate a trace operation, are treated as indirect reads
made by A.

RSXXQJ Each System register access made by the trace unit is one of the following, and the trace unit defines which:

• An indirect read or indirect write rwA made by an instruction A. For example, to determine whether to
generate a trace operation for A.

• An indirect read or indirect write rwtA made by a trace operation tA. This is in addition to System register
accesses defined by this manual as indirect reads or indirect writes made by the Trace Buffer Unit.

• An other indirect read or indirect write rw, not directly related to either an instruction or trace operation. The
trace unit defines the synchronization requirements for these registers.

IDDLVC In addition to the registers listed by RNRLDV, for the ETE, the following ETE System registers are indirectly read
by an instruction A to determine whether A should generate a trace operation:

• TRCPRGCTLR.EN, the Trace unit enable bit in the Programming Control Register.

• TRCOSLSR.OSLK, the Trace OS Lock Status Register.

This manual defines which System registers are indirectly read or indirectly written by the Trace Buffer Unit as part
of the trace operation tA for a traced instruction A. For example:

• Trace Buffer Unit System registers.

• VMSA System registers and SCR_EL3.NS, when translating addresses generated by the Trace Buffer Unit.

Other System registers are indirectly read or indirectly written by the trace unit as part of the trace operation tA for
a traced instruction A. For example:

• Other ETE System registers.

• If context tracing is enabled, the applicable Context ID register or registers, CONTEXTIDR_EL1 or
CONTEXTIDR_EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6502
ID032224 Non-Confidential

The Trace Buffer Extension
D6.6 Synchronization and the Trace Buffer Unit
• If trace timestamping is enabled, any applicable counter offset, CNTVOFF_EL2 or CNTPOFF_EL2.

Some ETE System registers are indirectly read or indirectly written by, for example, the ETE Resources when
generating trace operations or updating the ETE Resources, and are made by neither a trace operation of an
instruction nor an instruction.

The behavior of the ETE is defined by FEAT_ETE. See also Trace synchronization and the Trace Unit.

IGVCVL The indirect reads and indirect writes to Trace Buffer Unit, VMSA and other System registers made by the Trace
Buffer Unit are made by the trace operation tOP.

IBYSGH To synchronize trace operations, software must use the TSB CSYNC instruction to generate a Trace Synchronization
event.

RGTCKK In the absence of any explicit synchronization, the trace unit generates the trace data for an instruction and the Trace
Buffer Unit accepts, discards, or rejects the trace data in finite time. However:

• If the Trace Buffer Unit accepts the trace data, then the write of the trace data to memory requires explicit
synchronization to Complete.

• The indirect writes to System registers made by a trace operation require explicit synchronization to
guarantee they are observable.

RNNLMC If FEAT_TRBE_EXT is implemented and TRBSR_EL1.DAT is 0, then all Trace operations Accepted by the Trace
Buffer Unit will Complete in finite time.

D6.6.1 Trace Synchronization event

RVWJNN Executing a TSB CSYNC instruction generates a Trace Synchronization event.

RJQDJD A trace operation tOP is not Microarchitecturally-finished before all of the following are true:

• All indirect reads and indirect writes of System registers made by tOP have been performed.

• If tOP generates a Trigger Event that in turn initiates a trace unit flush, then all of the following are true:

— The trace unit flush is complete.

— All trace operations the Trace Buffer Unit accepts before the trace unit flush completes are
Microarchitecturally-finished.

— All indirect writes to System registers made by the Trace Buffer Unit on completion of the trace unit
flush have been performed.

Indirect reads and writes include but are not limited to the following:

• All indirect reads and indirect writes of the Trace Buffer Unit, VMSA System registers, and
SCR_EL3.{NSE, NS} made by memory accesses performed by tOP.

• All indirect writes to System registers made by a trace buffer management event generated by tOP.

However, this does explicitly exclude any indirect writes of System registers made in response to an External abort
by the access.

RNSFRQ A trace operation tOP is complete when it is Microarchitecturally-finished and all memory accesses performed by
tOP are Complete and any indirect writes of System registers made in response to an External abort response to the
access have been performed.

RMRVPT If, following a Context synchronization event CSE the PE is executing in a Trace Prohibited region, a TSB CSYNC
executed in the Trace Prohibited region and Non-debug state in program order after CSE is not
Microarchitecturally-finished before all of the following are true:

• All trace operations tA generated by instructions A in program order before CSE are
Microarchitecturally-finished.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6503
ID032224 Non-Confidential

The Trace Buffer Extension
D6.6 Synchronization and the Trace Buffer Unit
• All trace operations tS generated by Speculative instructions S that are not in speculative execution order after
CSE are Microarchitecturally-finished.

• All trace operations tR generated by the trace unit are Microarchitecturally-finished.

• The trace unit enters a state where the trace unit does not generate further trace operations and does not signal
a Detected Trigger. The trace unit remains in this state while the PE is executing in the Trace Prohibited
region.

• If a trace unit flush is initiated by a Trigger Event before the TSB CSYNC is Microarchitecturally-finished, the
trace unit flush is complete, all trace operations the Trace Buffer Unit accepts before the trace unit flush
completes are Microarchitecturally-finished, and any indirect writes made by the Trace Buffer Unit on
completion of the trace unit flush have been performed.

These trace operations are synchronized by the TSB CSYNC.

RZCDDS A direct write W2 to a System register made by an instruction B is Coherence-after an indirect read or indirect write
rw1 of the same System register made by a trace operation tA for a traced instruction A if all of the following are true:

• Either A is executed in program order before a Context synchronization event CSE, or A is CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• B is executed in program order after TSB.

• After executing CSE, the PE is in a Trace Prohibited region and TSB is executed in Non-debug state in the
same Trace Prohibited region.

IFZHQG RZCDDS emerges from the requirement in RMRVPT for the trace operations to be Microarchitecturally-finished by the
TSB CSYNC operation.

Self-hosted trace extension synchronization rules and Trace in Debug state define further rules for the operation of
TSB CSYNC.

IZKRZH The PE does not stall indefinitely (or until interrupted) waiting for a TSB CSYNC. For example, the TSB CSYNC must not
wait until there is no trace data left to write if the trace unit is capable of producing a constant stream of trace data.

IZLDPS A PE might abandon a TSB CSYNC executed in Non-debug state before it is Microarchitecturally-finished to take an
interrupt, so long as the preferred return address is set such that the TSB CSYNC is re-executed when the interrupt
handler completes. That is, the TSB CSYNC is only Speculatively executed.

RCKVWP Absent any Context synchronization event or DSB Data synchronization barrier, a TSB CSYNC instruction is not
required to execute in program order with respect to other instructions or memory accesses. This means that
software must execute additional barriers to guarantee that the trace operations are Microarchitecturally-finished
and/or complete.

D6.6.2 Trace synchronization and the Trace Unit

IZYZGZ The ETE has Resources that can generate trace operations that are not directly generated by an instruction or
Speculative instruction.

The ETE specification defines the following rules:

• The Resources do not generate trace operations in the Paused state.

• If, following a Context synchronization event, the PE is executing in a Trace Prohibited region and the ETE
is enabled, the ETE pauses the ETE Resources.

• How software synchronizes indirect writes to System registers made by trace operations generated by
Resources.

The behavior of the ETE is defined by FEAT_ETE.

IGFJWK If FEAT_RME is implemented, further rules are defined for the behavior of the trace unit when a TSB CSYNC
instruction is executed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6504
ID032224 Non-Confidential

The Trace Buffer Extension
D6.6 Synchronization and the Trace Buffer Unit
RQVGHP A trace operation tR generated by ETE Resources inherits the synchronization requirements for a trace operation
generated by an instruction A, even if no trace operation is generated by A, provided that one of the following
applies:

• The requirement is that A is executed in program-order after CSE and tracing was prohibited before CSE
and is allowed after CSE.

• The requirement is that either A is executed in program-order before CSE or A is CSE, and tracing was
allowed before CSE and is prohibited after CSE.

RYWSDB If the trace unit becomes enabled when the PE is executing a Trace Prohibited region, it does not generate any trace
operations, including trace operations for Speculative instructions and other trace operations not generated by
instructions, until the PE enters a region where tracing is allowed.

IXGQRM The trace unit defines the sequence by which software enables the trace unit.

D6.6.3 Self-hosted trace extension synchronization rules

ICMGRF FEAT_TRF defines further rules for the TSB CSYNC instruction. In particular, how a TSB CSYNC instruction
synchronizes direct reads and indirect writes to a System register with respect to indirect reads and indirect writes
of the same System register made by trace operations.

These rules restate the synchronization behavior described in Memory barriers and Synchronization in self-hosted
trace.

RTSPXF is similar to RZCDDS and RXQVZW. However:

• RTSPXF applies whether the TSB CSYNC operation is executed in a trace prohibited or trace allowed region, in
both Non-debug state and Debug state. RZCDDS applies only when the TSB CSYNC is executed in a Trace
Prohibited region and the PE is in Non-debug state, and RXQVZW applies only when the TSB CSYNC is executed
when the trace unit is disabled and the PE is in Debug state.

• RTSPXF applies only to System registers accessed by the trace unit as part of a trace operation. RZCDDS and
RXQVZW apply to all System register accesses made by the trace operation and includes indirect reads and
indirect writes made by the Trace Buffer Unit.

See RSXXQJ and IDDLVC.

RBFJKD An indirect read r1 of a System register made by a trace operation tA for a traced instruction A Reads-from a direct
write W2 to the same System register made by an instruction B if all of the following are true:

• A is executed in program order after a Context synchronization event CSE.

• B is executed in program order before CSE.

See also IFVBPF.

SYPWVJ RBFJKD means that, if the PE enters a region where tracing is allowed by executing a Context synchronization event,
such as an ERET instruction when SCTLR_ELx.EOS is 1, then all indirect reads and writes of System registers made
by trace operations generated after entering the tracing allowed region will observe the values in those System
registers written by direct writes before the Context synchronization event.

RMJQXM An indirect write w1 of a System register made by a trace operation tA for a traced instruction A is Coherence-after
a direct write W2 of the same System register made by an instruction B if all of the following are true:

• A is executed in program order after a Context synchronization event CSE.

• B is executed in program order before CSE.

See also IFVBPF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6505
ID032224 Non-Confidential

The Trace Buffer Extension
D6.6 Synchronization and the Trace Buffer Unit
RTSPXF A direct write W2 to a System register made by an instruction B is Coherence-after an indirect read or indirect write
rw1 of the same System register made by the trace unit as part of a trace operation tA for a traced instruction A if all
of the following are true:

• Either A is executed in program order before a Context synchronization event CSE, or A is CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• B is executed in program order after TSB.

See also IMQTRQ.

RVTNCS A direct read R2 of a System register made by an instruction B Reads-from an indirect write w1 to the same System
register made by a trace operation tA for a traced instruction A if all of the following are true:

• Either A is executed in program order before a first Context synchronization event CSE1, or A is CSE1.

• CSE1 is in program order before a Trace synchronization barrier TSB.

• TSB is executed in program order before a second Context synchronization event CSE2.

• B is executed in program order after CSE2.

See also ISLWRW.

RNNRHD An instruction A in program-order after a direct write W that modifies one of the trace filter controls,
TRFCR_EL1.{E1TRE, E0TRE} and TRFCR_EL2.{E2TRE, E0HTRE}, Reads-from W when determining
whether A should generate a trace operation, if there is no intervening direct write to the same register and any of
the following is true:

• A is in program-order after a Context synchronization event CSE and CSE is in program-order after W.

• An instruction B Reads-from W when determining whether B should generate a trace operation, and A is in
program-order after B.

IVKRGM RNNRHD means that for the instructions between a direct write to one of the trace filter controls to either enable or
disable trace at the current Exception level and a following Context synchronization event, although it is
UNPREDICTABLE whether each instruction observes the old or new values of the trace filter controls, once one
instruction has observed the new value, all subsequent instructions also observe the new value.

However this might not happen, and all instructions might observe the old values until the Context synchronization
event occurs.

This guarantees that trace switches either on and off cleanly, and is required by Program Flow Trace protocols.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6506
ID032224 Non-Confidential

The Trace Buffer Extension
D6.7 Trace synchronization and memory barriers
D6.7 Trace synchronization and memory barriers

RVLWDM If, following a Context synchronization event CSE, the PE is executing in a Trace Prohibited region, a DSB with
required access types of reads and write is executed in program order after a TSB CSYNC operation that is executed in
the Trace Prohibited region in program order after CSE, then in addition to the requirements in this manual, the DSB
does not complete until all explicit memory accesses of the required access type made by the trace operations
synchronized by the TSB CSYNC are Complete for the set of observers in the required Shareability domain.

See also RMPXXN.

RDFHWV An explicit read, explicit write, translation table walk, cache maintenance operation, or TLB invalidate operation
M1 will be Observed-by a read or a write RW2 of a Location made by a trace operation tA relating to a traced
instruction A if all of the following are true:

• A is executed in program-order after a Context synchronization event CSE.

• CSE is in program order after a Data Synchronization Barrier DSB.

• DSB does not complete before M1 is complete.

INLHGN In RDFHWV, CSE is required to allow A to be traced as a Speculative instruction before it is Canceled or Resolved.
The equivalent rule for SPE does not require CSE as SPE cannot write profiling records to memory until the profiled
operation is Canceled or Resolved. See Trace of Speculative execution.

RJPPZZ For the indirect writes to TRBPTR_EL1 and TRBSR_EL1 that are made as a result of an External abort on a write
of trace data to memory, the synchronization rules apply only after the write to memory has completed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6507
ID032224 Non-Confidential

The Trace Buffer Extension
D6.8 Trace of Speculative execution
D6.8 Trace of Speculative execution

IZGCVG In the standard model of execution for an instruction, instructions are executed as Speculative operations and then
later become one of the following:

• Resolved. These instructions will then proceed to Complete.

• Canceled.

• Transaction-failed, if FEAT_TME is implemented.

• Transaction-canceled, if FEAT_TME is implemented.

A trace unit might generate trace for Speculative instructions before they are Resolved, Canceled,
Transaction-failed or Transaction-canceled, and this trace can be written to memory. This means that, as well as
indirectly reading System registers or memory, a trace operation tS for a Speculative instruction S might perform
any of the following:

• Indirectly write to System registers.

• Write to memory.

This sets trace operations apart from the normal operation of instructions, as the Arm architecture prohibits, for
example, a Canceled instruction from updating a System register or memory. (Performance Monitors and Statistical
Profiling can also cause speculative updates of System registers and memory.)

IHBYGS The preceding rules deal with the ordering of trace operations for Resolved (and ultimately Complete) instructions,
and the requirements for synchronization based on the position of those instructions in the program order of the
Execution stream.

This section extends the rules to cover Speculative instructions that are later Canceled, Transaction-canceled or
Transaction-failed, and for trace operations generated by ETE Resources. Because these trace operations are not
generated by instructions that Complete, they cannot be determined to be in program order with respect to
architecturally Complete instructions.

RFBFRS A Speculative instruction S is in speculative execution-order after an instruction A if S will be in program order
after A if S is Resolved, even if S is subsequently Canceled, Transaction-failed, or Transaction-canceled.

IVFLVX For example, a Speculative instruction S is in speculative execution-order after a Resolved instruction A if either of
the following are true:

• The branch predictor mispredicted A and, had the prediction been correct, S would be in program order after
A. Branch predictor means any structure that causes the PE to execute Speculative instructions. This
includes, for example, branch history buffers, branch target caches, and instruction trace caches. It is not
limited to structures that predict only the direction and/or target of branch instructions.

• S forms part of a Transaction T that was Transaction-canceled or Transaction-failed and A is the Resolved
TSTART operation for the outermost Transaction containing T.

IKTCMP Speculative execution-order does not provide a complete ordering. A pair of Speculative instructions A and B might
not be ordered with respect to each other. For example, if A and B are respectively the result of different incorrect
predictions by the branch predictor. However, each Speculative instruction is in speculative execution-order after at
least one Resolved instruction.

IVBBVY The architecture requires that instructions that generate Context synchronization events do not appear to be executed
speculatively.

RHCVVS A trace operation tS generated by a Speculative instruction S that is in speculative execution-order after a Resolved
instruction A inherits the synchronization requirements for a trace operation generated by A, even if no trace
operation is generated by A, provided that one of the following applies:

• The requirement is that A is executed in program-order after CSE, and S is in speculative execution-order
after CSE.

• The requirement is that either A is executed in program-order before CSE or A is CSE, and S is not in
speculative execution-order after CSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6508
ID032224 Non-Confidential

The Trace Buffer Extension
D6.8 Trace of Speculative execution
See also IWLLQH and IJGXWM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6509
ID032224 Non-Confidential

The Trace Buffer Extension
D6.9 Trace in Debug state
D6.9 Trace in Debug state

RWYHRT If the trace unit is disabled, then a TSB CSYNC executed in Debug state is not Microarchitecturally-finished before all
of the following are true:

• All trace operations tA generated by instructions A in program order before the PE entered Debug state are
Microarchitecturally-finished.

• All trace operations tS generated by Speculative instructions S that are not in speculative execution order after
the entry to Debug state are Microarchitecturally-finished.

• All trace operations tR generated by the trace unit are Microarchitecturally-finished.

• The trace unit enters a state where the trace unit does not generate further trace operations and does not signal
a Detected Trigger. The trace unit remains in this state while the PE is in Debug state.

• If a trace unit flush is initiated by a Trigger Event before the TSB CSYNC is Microarchitecturally-finished, the
trace unit flush is complete, all trace operations the Trace Buffer Unit accepts before the trace unit flush
completes are Microarchitecturally-finished, and any indirect writes made by the Trace Buffer Unit on
completion of the trace unit flush have been performed.

These trace operations are synchronized by the TSB CSYNC.

RXQVZW A direct write W2 to a System register made by an instruction B is Coherence-after an indirect read or indirect write
RW1 of the same System register made by a trace operation tA for a traced instruction A if all of the following are
true:

• A is executed in program order before the PE entered Debug state.

• B is executed in program order after a Trace synchronization barrier TSB.

• TSB was executed in Debug state when the trace unit was disabled.

IVHGVC RXQVZW emerges from the requirement in RWYHRT for the trace operations to be Microarchitecturally-finished by
the TSB CSYNC operation.

Trace Synchronization event and Self-hosted trace extension synchronization rules define further rules for the
operation of TSB CSYNC.

RMPXXN A DSB with required access types of reads and write is executed after a TSB CSYNC operation executed in Debug state,
then in addition to the requirements in this manual, the DSB does not complete until all explicit memory accesses of
the required access type made by the trace operations synchronized by the TSB CSYNC are Complete for the set of
observers in the required Shareability domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6510
ID032224 Non-Confidential

The Trace Buffer Extension
D6.10 Synchronization litmus tests
D6.10 Synchronization litmus tests

IDJJBQ This section details example synchronization scenarios and litmus tests for TSB CSYNC. These are derived from
FEAT_TRF and Trace Synchronization event.

This section uses the terms program order, Reads-from and Coherence-after to define the ordering of System
register and memory accesses made by trace operations. These terms are defined for memory accesses in Definition
of the Arm memory model. For the purposes of this section, these terms are used for System registers as well as
memory accesses.

The terms external agent, Observer, and Observed-by, also used in this section, are also defined in Definition of
the Arm memory model.

This section does not describe the synchronization rules in Debug state defined in Trace in Debug state. In general,
litmus tests for Debug state can be derived by applying the following modifications:

• Where a rule mentions a Context synchronization event (CSE) coming before a TSB CSYNC operation, if the
TSB CSYNC is executed in Debug state, then the entry to Debug state can replace that CSE for the rule.

• Where a rule mentions the PE executing instructions in a Trace Prohibited region following the CSE, then
executing the instructions in Debug state with the trace unit disabled is sufficient for the rule.

Exit from Debug state is a Context synchronization event.

IFVBPF Figure D6-3 shows RBFJKD and RMJQXM.

Figure D6-3 Indirect read or indirect write by Trace operation after direct write

IMQTRQ Figure D6-4 shows RTSPXF.

Figure D6-4 Direct write after indirect read or indirect write by Trace operation

ISLWRW In RVTNCS, the second Context synchronization event CSE2 is required to ensure the direct read B is not executed
before the synchronization barrier TSB. Figure D6-5 shows this.

� �����

��

��

���

� �

��

	

�

��
��
	�

� �����

� �

�

����� ���

	

��

���

�� ��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6511
ID032224 Non-Confidential

The Trace Buffer Extension
D6.10 Synchronization litmus tests
Figure D6-5 Direct read after indirect write by Trace operation

ILPPFQ If the trace is not prohibited after the Context synchronization event, further trace operations might be generated
that are not guaranteed to be synchronized by the TSB CSYNC. For ISLWRW, this applies to the first Context
synchronization event CSE1.

Trace is prohibited at higher Exception levels than the owning Exception level. This means that if the PE takes an
exception to a higher Exception level than the owning Exception level then trace is prohibited at by taking the
exception.

INWRPJ Figure D6-6 shows RDFHWV for an explicit read or a write M1 of a Location made by an instruction B in program
order before DSB.

Figure D6-6 Trace operation observing memory operation

IJBRHG If all of the following are true, RVLWDM requires that a DSB with required access types of reads and writes does not
complete until at least all reads or writes RW made by the Trace Buffer Unit for all trace operations tA relating to a
traced instruction A are complete for the set of the observers in the required Shareability domain:

• Either A is executed in program order before a Context synchronization event CSE, or A is CSE.

• The PE is executing in a Trace Prohibited region after CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• TSB is executed in program order before the DSB.

Figure D6-7 shows a read or a write RW1 of a Location made by the Trace Buffer Unit for a trace operation tA
relating to a traced instruction A is complete and therefore will be Observed-by a read or a write RW2 of the same
Location made by an instruction B executed in program order after a DSB ISH instruction.

� ����
��

� �

��

����� ���

�� ���

	

��

��

�� ��

 �����

��

��

����� 	��

 	

��

��

��

��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6512
ID032224 Non-Confidential

The Trace Buffer Extension
D6.10 Synchronization litmus tests
Figure D6-7 Observation of Trace operation memory access

IWLLQH RHCVVS defines Trace synchronization for Speculative instructions.

For example, an indirect read r1 of a System register made by a trace operation tS for a traced Speculative instruction
S Reads-from a direct write W2 to the same System register made by an instruction B, if all of the following are true:

• S is executed in speculative execution-order after a Resolved instruction A.

• A is executed in program order after a Context synchronization event CSE.

• B is executed in program order before CSE.

Figure D6-8 shows this.

Figure D6-8 Speculative indirect read or indirect write by Trace operation after direct write

IJGXWM RHCVVS defines Trace synchronization for Speculative instructions.

For example, if all of the following are true, a DSB with required access types of reads and writes does not complete
until at least all reads or writes RW made by the Trace Buffer Unit for all trace operations tS relating to a traced
Speculative instructions S are complete for the required Shareability domain:

• S is executed in speculative execution-order after a Resolved instruction A.

• A is executed in program order before a Context synchronization event CSE.

• S is not in speculative execution-order after CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• The PE is executing in a Trace Prohibited region after CSE.

• TSB is executed in program order before the DSB.

� �����

� �

��

����� ����� ���

���

��

���

��

��

	
����

�

��

��� ����

� �

	�

	

�

��
�

��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6513
ID032224 Non-Confidential

The Trace Buffer Extension
D6.10 Synchronization litmus tests
Figure D6-9 shows a read or a write RW1 of a Location made by the Trace Buffer Unit for a trace operation tS
relating to a traced Speculative instruction S is Complete and therefore will be Observed-by a read or a write RW2
of the same Location made by an instruction B executed in program order after a DSB ISH instruction.

Figure D6-9 Observation of Speculative Trace operation memory access

�
����

�

���

����� ����� ���

���

��

���

� �

��

��	

��

��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6514
ID032224 Non-Confidential

The Trace Buffer Extension
D6.11 UNPREDICTABLE behavior
D6.11 UNPREDICTABLE behavior

RPFJJZ In the absence of correct synchronization events, it is UNPREDICTABLE whether an indirect read made by a trace
operation of a System register updated by a direct write will return the old or the new values. A trace operation might
make multiple indirect reads of a System register, and each might return a different one of the old or the new values.

IGGGPH For example, a trace operation might read MDCR_EL2.E2TB twice, as follows:

1. When the trace operation is first generated, to evaluate TraceAllowed() and determine whether trace is
prohibited.

2. When the trace operation is complete and ready to be written to memory, to evaluate TraceBufferOwner() to
determine the context for TRBPTR_EL1.

If MDCR_EL2.E2TB is updated without proper synchronization between these two events, both the old and new
value might be used.

INRQQF In the absence of correct synchronization events, it is UNPREDICTABLE whether a direct read of a System register
updated by an indirect write made by a trace operation will return the old or the new values.

ITRWFM If an instruction is traced because the Trace Buffer Unit is enabled and running, but a later indirect read of a System
register by the trace operation for the instruction determines that the trace data cannot be written to memory, because
the Trace Buffer Unit now appears to be disabled, then one of the following occurs, and it is CONSTRAINED
UNPREDICTABLE which:

• The trace data is written to memory.

• The trace data is sent to an IMPLEMENTATION DEFINED trace bus.

• The trace data is written to memory and sent to an IMPLEMENTATION DEFINED trace bus.

• The Trace Buffer Unit discards the trace data.

This also includes any trace data that might be flushed by the trace unit, for example due to a TSB CSYNC operation.

If the Trace Buffer Unit discards the trace data, a trace buffer management event might be generated:

• TRBSR_EL1.EC is set to a CONSTRAINED UNPREDICTABLE choice of the following values:

— 0x00, other buffer management event.

— 0x1F, IMPLEMENTATION DEFINED buffer management event.

• If TRBSR_EL1.EC is set to 0x00, then TRBSR_EL1.BSC is set to 0b000000 to indicate that the trace buffer
is not full.

It is also CONSTRAINED UNPREDICTABLE whether any of the following occur, whether or not the trace data is written
to memory:

• The current write pointer and, if TRBSR_EL1.TRG is 1, the Trigger Counter are updated for the trace data.

• A trace buffer management event that would have been generated is observed and/or generated.

• A PMU event that would have been generated is generated.

ILLCLK See also Context switching.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D6-6515
ID032224 Non-Confidential

Chapter D7
The AArch64 System Level Memory Model

This chapter provides a system level view of the general features of the memory system. It contains the following
sections:

• About the memory system architecture.

• Address space.

• Mixed-endian support in AArch64.

• Memory Encryption Contexts.

• Cache support.

• External aborts.

• Memory barrier instructions.

• Pseudocode description of general memory System instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6516
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.1 About the memory system architecture
D7.1 About the memory system architecture

The Arm architecture supports different implementation choices for the memory system microarchitecture and
memory hierarchy, depending on the requirements of the system being implemented. In this respect, the memory
system architecture describes a design space in which an implementation is made. The architecture does not
prescribe a particular form for the memory systems. Key concepts are abstracted in a way that permits
implementation choices to be made while enabling the development of common software routines that do not have
to be specific to a particular microarchitectural form of the memory system. For more information about the concept
of a hierarchical memory system see Memory hierarchy.

If FEAT_MTE2 is implemented, the definitions of the memory model which apply to data accesses and data apply
to Allocation Tag accesses and Allocation tags, unless otherwise specified in Chapter D10 The Memory Tagging
Extension.

D7.1.1 Form of the memory system architecture

The A-profile architecture includes a Virtual Memory System Architecture (VMSA). Chapter D8 The AArch64
Virtual Memory System Architecture describes the AArch64 view of the VMSA.

D7.1.2 Memory attributes

Memory types and attributes describes the memory attributes, including how different memory types have different
attributes. Each location in memory has a set of memory attributes, and the translation tables define the virtual
memory locations, and the attributes for each location.

Table D7-1 shows the memory attributes that are visible at the system level.

For more information on cacheability and shareability see Shareable Normal memory, Non-shareable Normal
memory, and Caches and memory hierarchy.

Table D7-1 Memory attribute summary

Memory type Shareability Cacheability

Devicea

a. Takes additional attributes, see Device memory.

Outer Shareable Non-cacheable.

Normal One of:

• Non-shareable.

• Inner Shareable.

• Outer Shareable.

One ofb:

• Non-cacheable.

• Write-Through Cacheable.

• Write-Back Cacheable.

b. See also Cacheability, cache allocation hints, and cache transient hints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6517
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.2 Address space
D7.2 Address space

The architecture is designed to support a wide range of applications with different memory requirements. It supports
a range of physical address (PA) sizes, and provides associated control and identification mechanisms. For more
information, see Implemented physical address size.

D7.2.1 Virtual address space overflow

When a PE performs a Simple sequential execution of instructions, it calculates:

(address_of_current_instruction) + (size_of_executed_instruction)

This calculation is performed after each instruction to determine which instruction to execute next.

If the address calculation performed after executing an instruction overflows 0xFFFF FFFF FFFF FFFF, the program
counter becomes UNKNOWN. Similarly, if the address calculation based on the program counter for the value of the
link register or exception link register overflows 0xFFFF FFFF FFFF FFFF, then those registers also become
UNKNOWN.

Note

Address tags are not propagated to the program counter, so the tag does not affect the address calculation.

Where an instruction accesses a sequential set of bytes that crosses the 0xFFFF_FFFF_FFFF_FFFF boundary when
tagged addresses are not used, or the 0xxxFF_FFFF_FFFF_FFFF boundary when tagged addresses are used, then the
virtual address accessed for the bytes above this boundary is UNKNOWN.

The UNKNOWN virtual address behavior also applies to the set of bytes addressed by SVE and SME predicated,
contiguous loads and stores that cross the 0xFFFF_FFFF_FFFF_FFFF boundary, even if all of the virtual addresses below
the boundary correspond to Inactive elements. Conversely, for SVE gather loads and scatter stores, the UNKNOWN
address behavior applies only to accesses corresponding to an individual Active element that crosses the boundary.

When tagged addresses are used, the value of the tag associated with the address also becomes UNKNOWN.

Note

The behaviors described in this section apply only for the upper bound of the upper VA range, in translation regimes
that have two VA ranges. They do not apply for address calculations relating to the top of the lower VA range.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6518
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.3 Mixed-endian support in AArch64
D7.3 Mixed-endian support in AArch64

A control bit, SCTLR_EL1.E0E is provided to allow the endianness of explicit data accesses made while executing
at EL0 to be controlled independently of those made while executing at EL1. Table D7-2 shows the endianness of
explicit data accesses and translation table walks.

Note

SCTLR_EL1.E0E has no effect on the endianness of the LDTR, LDTRH, LDTRSH, and LDTRSW instructions, or on the
endianness of the STTR and STTRH instructions, when these are executed at EL1.

AArch64 state provides the following options for endianness support:

• All Exception levels support mixed-endianness:

— SCTLR_ELx.EE, SCTLR_EL1.E0E, and SCTLR_EL2.E0E are RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:

— SCTLR_ELx.EE is RES0, and SCTLR_EL1.E0E and SCTLR_EL2.E0E are RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:

— SCTLR_ELx.EE is RES1, and SCTLR_EL1.E0E and SCTLR_EL2.E0E are RW.

• All Exception levels support only little-endianness:

— SCTLR_ELx.EE, SCTLR_EL1.E0E, and SCTLR_EL2.E0E are RES0.

• All Exception levels support only big-endianness:

— SCTLR_ELx.EE, SCTLR_EL1.E0E, and SCTLR_EL2.E0E are RES1.

If mixed endian support is implemented for an Exception level using AArch32, endianness is controlled by
PSTATE.E. For exception returns to AArch32 state, PSTATE.E is copied from SPSR_ELx.E. If the target Exception
level supports only little-endian accesses, SPSR_ELx.E is RES0. If the target Exception level supports only
big-endian accesses, SPSR_ELx.E is RES1. PSTATE.E is ignored in AArch64 state.

The BigEndian() function determines whether the current Exception level and Execution state are using big-endian
data. This function is defined in Chapter J1 Armv8 Pseudocode.

For more information about endianness in the Arm architecture see Endian support.

Table D7-2 Endianness support

Exception level Explicit data accesses Stage 1 translation table walks Stage 2 translation table walks

EL0 SCTLR_EL1.E0Ea SCTLR_EL1.EE SCTLR_EL2.EE

EL1 SCTLR_EL1.EE SCTLR_EL1.EE SCTLR_EL2.EE

EL2 SCTLR_EL2.EE SCTLR_EL2.EE n/a

EL3 SCTLR_EL3.EE SCTLR_EL3.EE n/a

a. When HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.E0E.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6519
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.4 Memory Encryption Contexts
D7.4 Memory Encryption Contexts

IQLZZR The Memory Encryption Contexts Extension (MEC Extension) introduces memory encryption contexts (MECs) to
all PA spaces. Multiple memory encryption contexts are provided to the Realm physical address space for
assignment to Realm virtual machines, with policy controlled by Realm EL2. The Root, Secure and Non-Secure
physical address spaces each have one context.

RLZNNK All statements in this section and subsections require implementation of FEAT_MEC.

D7.4.1 Memory Encryption Context IDs

INCBSV A Memory Encryption Context ID (MECID) is used to associate a memory access with a MEC.

ITMSCH The associated MEC is based on the current Security state, Exception level, and translation configuration.

RDWCZM A MEC is uniquely identified by the tuple of PA space and MECID.

RPNKQV All memory accesses, in addition to PA space and PA, are associated with a MECID.

ILGNTZ Memory accesses associated with a MECID include reads, speculative reads, writes, atomics, instruction fetches
and translation table lookups.

RZSBJB Each PA space has a default MECID, defined as MECID of zero.

IGHVCX For PA spaces that support memory encryption, memory accesses associated with the default MECID of zero are
encrypted.

RJQXXL The Non-secure, Secure, and Root PA address spaces each support only one MEC.

RRWTKJ Accesses to the Non-secure, Secure, and Root PA spaces are associated with a default MECID of zero.

RTPDCN The Realm PA space supports multiple MECs.

IRMWYN Accesses to the Realm PA space can be associated with multiple MECIDs.

RMWFGC For accesses to Realm PA space, a MECID value of 0 is equivalent to the default MECID of zero.

IKZJFJ Each MECID is bound to a cryptographic context for encrypted memory locations. A single MECID can be bound
to different cryptographic contexts for different resources. For example, multiple memory banks can have dedicated
encryption engines with independent keys.

IXJZYD A MECID value is not a system-global identifier and it must be qualified by a PA space.

RTRNQY If and how a device interprets the MECID associated with a register read or write is IMPLEMENTATION DEFINED.

IMXBDR Devices are not anticipated to be MECID aware.

IWVTBQ The MECIDs are configured in System registers for each supported execution context and translation regime.

IVVJGP Software is permitted to manage MECID allocation independently from VMID and ASID allocation.

D7.4.1.1 MECID width

RWVFDT The MECID width is 1 to 16 bits.

RRBXBC For a PE, the supported MECID has an IMPLEMENTATION DEFINED bit width specified by
MECIDR_EL2.MECIDWidthm1.

IQDYKJ System components may be integrated that support MECIDs of different widths. The common MECID width is the
smallest supported MECID width for the entire system.

IBKQHQ If the common MECID width is less than the value reported by MECIDR_EL2.MECIDWidthm1, then software
should pad the upper bits with zeros.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6520
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.4 Memory Encryption Contexts
IHGBXB Because the MECID width has a finite size, MECIDs are expected to be used and re-used during the lifetime of a
running system.

D7.4.1.2 MECID mismatch

IQBBQC If the MECID associated with a memory access to a location is different than the MECID associated with a copy of
the location in a cache, then a MECID mismatch occurs within that cache. A MECID mismatch can occur as the
result of any memory access, including explicit read accesses, explicit write accesses, speculative read accesses,
instruction fetches, and translation table lookups.

IYDGXJ MECID mismatches are caused by software mis-configurations, such as:

• Multiple translation table mappings to a PA with different associated MECID values.

• Insufficient cache maintenance operations when re-assigning MECID values to a granule.

• Insufficient TLB maintenance and barriers when updating MECID registers, or MEC configuration.

• Using a common MECID width that is too large for the system.

IGWPRT If MECIDR_EL2.MECIDWidthm1 is wider than the common MECID width, then all of the following can occur:

• The memory system exhibits the behaviors due to a MECID mismatch.

• Aliased sets of MECIDs result in non-uniquely-encrypted memory.

IBLZTF Memory accesses with a MECID mismatch can cause either or both data corruption and data leakage across
contexts.

IBVDCG Recovery from a MECID mismatch requires software to correct the configuration state and perform a clean and
invalidate to the PoE for all memory that might have been exposed to the MECID mismatch.

D7.4.2 Memory encryption block size

IZQSGL The block size that memory encryption engines use to encrypt data depends on the algorithm. A memory write to a
location updates the entire encryption data block.

RLTWYZ A memory encryption data block size is not permitted to be larger than the smallest supported translation granule
size.

IRGMPP Two or more memory writes with different MECID values to locations within the same smallest supported
translation granule can corrupt the entire granule.

D7.4.3 Restrictions on the effects of speculation

RKLWFT The MECID system registers are associated with the respective translation regime.

IPMLCM The PE does not use configured MECID values from MECID system registers for speculative memory accesses for
any translation regime that is out-of-context. For speculative memory accesses, the architecture requires all of the
following:

• When executing at EL3 or EL2, the PE must not use the registers associated with the EL1&0 translation
regime.

• When executing at EL3 the PE must not use the registers associated with the EL2 or EL2&0 translation
regimes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6521
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
D7.5 Cache support

This section describes the cache identification and control mechanisms, and the A64 cache maintenance
instructions, in the following sections:

• General behavior of the caches.

• Cache identification.

• Cacheability, cache allocation hints, and cache transient hints.

• Enabling and disabling the caching of memory accesses.

• Behavior of caches at reset

• Non-cacheable accesses and instruction caches.

• About cache maintenance in AArch64 state.

• A64 Cache maintenance instructions

• Data cache zero instruction.

• Cache lockdown.

• System level caches.

• Branch prediction.

• Execution, data prediction and prefetching restriction System instructions.

See also Caches.

D7.5.1 General behavior of the caches

When a memory location has a Normal Cacheable memory attribute, determining whether a copy of the memory
location is held in a cache still depends on many aspects of the implementation. The following non-exhaustive list
of factors might be involved:

• The size, line length, and associativity of the cache.

• The cache allocation algorithm.

• Activity by other elements of the system that can access the memory.

• Speculative instruction fetching algorithms.

• Speculative data fetching algorithms.

• Interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the architecture
cannot guarantee whether:

• A memory location present in the cache remains in the cache.

• A memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

• The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is
IMPLEMENTATION DEFINED, and lockdown might not be supported by:

— A particular implementation.

— Some memory attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6522
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an
unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not
assume that an unlocked item that remains in the cache remains dirty.

• A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a
locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

Note

For more information, see The interaction of cache lockdown with cache maintenance instructions.

• Any memory location that has a Normal Cacheable attribute at either the current Exception level or at a
higher Exception level can be allocated to a cache at any time.

• It is guaranteed that no memory location will be allocated into a Data or Unified cache if that location does
not have a Normal Cacheable attribute in either:

— The translation regime at the current Exception level.

— The translation regime at any higher Exception level.

• For data accesses, any memory location with a Normal Inner Shareable or Normal Outer Shareable attribute
is guaranteed to be coherent with all Requesters in its shareability domain.

• Any memory location is not guaranteed to remain incoherent with the rest of memory.

• The eviction of a cache entry from a cache level can overwrite memory that has been written by another
observer only if the entry contains a memory location that has been written to by an observer in the
shareability domain of that memory location. The maximum size of the memory that can be overwritten is
called the Cache Write-back Granule. In some implementations the CTR_EL0 identifies the Cache
Write-back Granule.

• The allocation of a memory location into a cache cannot cause the most recent value of that memory location
to become invisible to an observer if it was previously visible to that observer.

Note

The Cacheability attribute of an address is determined by the applicable translation table entry for that address, as
modified by any applicable System register Cacheability controls, such as the SCTLR_EL1.{I, C} controls.

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of contiguous
address space, aligned to the size of the cache entry.

D7.5.2 Cache identification

The cache identification registers describe the implemented caches that are affected by cache maintenance
instructions executed on the PE. This includes the cache maintenance instructions that:

• Affect the entire cache, for example IC IALLU.

• Operate by VA, for example IC IVAU.

• Operate by set/way, for example DC ISW.

The cache identification registers are:

• The Cache Type Register, CTR_EL0, that defines:

— The minimum line length of any of the instruction caches affected by the instruction cache
maintenance instructions.

— The minimum line length of any of the data or unified caches, affected by the data cache maintenance
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6523
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
— The cache indexing and tagging policy of the Level 1 instruction cache.

Note

It is IMPLEMENTATION DEFINED whether caches beyond the PoC will be reported by this mechanism, and
because of the possible existence of system caches some caches before the PoC might not be reported. For
more information about system caches see System level caches.

• A single Cache Level ID Register, CLIDR_EL1, that defines:

— The type of cache that is implemented and can be maintained using the architected cache maintenance
instructions that operate by set/way or operate on the entire cache at each cache level, up to the
maximum of seven levels.

— The Level of Coherence (LoC) for the caches. See Terms used in describing the cache maintenance
instructions for the definition of LoC.

— The Level of Unification Uniprocessor (LoUU) for the caches. See Terms used in describing the cache
maintenance instructions for the definition of LoUU.

— An optional ICB field to indicate the boundary between the caches use for caching Inner Cacheable
memory regions and those used only for caching Outer Cacheable regions.

• A single Cache Size Selection Register, CSSELR_EL1, that selects the cache level and sort of cache
(Instruction, Data/Unified/Tag) of the current Cache Size Identification Register.

• For each implemented cache that is identifiable by this mechanism, across all the levels of caching, a Cache
Size Identification Register, CCSIDR_EL1, that defines:

— Whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate.

— The number of sets, associativity and line length of the cache. See Terms used in describing the cache
maintenance instructions for a definition of these terms.

Note

From Armv8.3, multiple formats of the Cache Size Identification Register are supported. For more
information, see Possible formats of the Cache Size Identification Register, CCSIDR_EL1.

To determine the cache topology associated with a PE:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction cache.
This register also provides the size of the smallest cache lines used for the instruction caches, and for the data
and unified caches. These values are used in cache maintenance instructions.

2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven Cache
type fields, for cache levels 1 to 7. Scanning these fields, starting from Level 1, identifies the instruction, data
or unified caches implemented at each level. This scan ends when it reaches a level at which no caches are
defined. The Cache Level ID Register also specifies the Level of Unification (LoU) and the Level of
Coherence (LoC) for the cache implementation.

3. For each cache identified at stage 2:

• Write to the Cache Size Selection Register to select the required cache. A cache is identified by its
level, and whether it is:

— An instruction cache.

— A data or unified cache.

• Read the Cache Size Identification Register to find details of the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6524
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
D7.5.2.1 Possible formats of the Cache Size Identification Register, CCSIDR_EL1

From Armv8.3, the Cache Size Identification Register, CCSIDR_EL1 has two different formats available for
defining the number of sets and associativity of the cache. For a definition of these terms, see Terms used in
describing the cache maintenance instructions.

When FEAT_CCIDX is implemented:

• CCSIDR_EL1 is a 64-bit register.

• The length of the CCSIDR_EL1.Assoc field is 21 bits. This limits the associativity of the currently selected
cache to 221.

• The length of the CCSIDR_EL1.NumSets field is 24 bits. This limits the number of sets in the currently
selected cache to 224.

This is the 64-bit format of the Cache Size Identification Register.

When FEAT_CCIDX is not implemented:

• CCSIDR_EL1 is a 32-bit register.

• The length of the CCSIDR_EL1.Assoc field is 10 bits. This limits the associativity of the currently selected
cache to 210.

• The length of the CCSIDR_EL1.NumSets field is 15 bits. This limits the number of sets in the currently
selected cache to 215.

This is the 32-bit format of the Cache Size Identification Register.

When one of these formats is implemented, it is implemented across all the levels of caching.

D7.5.3 Cacheability, cache allocation hints, and cache transient hints

Cacheability applies only to Normal memory, and can be defined independently for Inner and Outer cache locations.
All types of Device memory are always treated as Non-cacheable.

As described in Memory types and attributes, the memory attributes include a cacheability attribute that is one of:

• Non-cacheable.

• Write-Through cacheable.

• Write-Back cacheable.

Cacheability attributes other than Non-cacheable can be complemented by a cache allocation hint. This is an
indication to the memory system of whether allocating a value to a cache is likely to improve performance. In
addition, it is IMPLEMENTATION DEFINED whether a cache transient hint is supported, see Transient cacheability
hint.

The cache allocation hints are assigned independently for read and write accesses, and therefore when the Transient
hint is supported the following cache allocation hints can be assigned:

For read accesses: Read-Allocate, Transient Read-Allocate, or No Read-Allocate.

For write accesses: Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Note

• A Cacheable location with both No Read-Allocate and No Write-Allocate hints is not the same as a
Non-cacheable location. A Non-cacheable location has coherency guarantees for all observers within the
system that do not apply for a location that is Cacheable, No Read-Allocate, No Write-Allocate.

• Implementations can use the cache allocation hints to limit cache pollution to a part of a cache, such as to a
subset of ways.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6525
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• For VMSAv8-64 translation table walks, the TCR_ELx.{IRGNn, ORGNn} fields define the memory
attributes of the translation tables, including the cacheability. However, this assignment supports only a
subset of the cacheability attributes described in this section.

The architecture does not require an implementation to make any use of cache allocation hints. This means an
implementation might not make any distinction between memory locations with attributes that differ only in their
cache allocation hint.

D7.5.3.1 Transient cacheability hint

In Armv8, it is IMPLEMENTATION DEFINED whether a Transient hint is supported. In an implementation that supports
the Transient hint, the Transient hint is a qualifier of the cache allocation hints, and indicates that the benefit of
caching is for a relatively short period. It indicates that it might be better to restrict allocation of transient entries, to
avoid possibly casting-out other, less transient, entries.

Note

The architecture does not specify what is meant by a relatively short period.

The description of the AArch64 MAIR_EL1, MAIR_EL2, and MAIR_EL3 registers, and the AArch32 MAIR0,
MAIR1, HMAIR0, and HMAIR1 registers, includes the assignment of the Transient hint in an implementation that
supports this option. In this assignment:

• The Transient hint is defined independently for Inner Cacheable and Outer Cacheable memory regions.

• A single Transient hint applies to both read and write accesses to a memory region.

D7.5.4 Cacheable MEC transactions

RKLLJD All statements in this section and subsections require implementation of FEAT_MEC.

INWLXR Each cache level is permitted to independently implement the behaviors described in this section.

RNMSQG Any memory location that has a Normal Cacheable attribute can be allocated into a cache, associated with the
MECID of the translation that provided the Normal Cacheable attribute.

RFKNTM In situations where Normal Non-cacheable memory is permitted to be cached in an instruction cache, it is associated
with the MECID of the translation that provided the Non-cacheable attribute.

IRDDXP Speculative allocation of Normal memory only occurs from the current Exception level or a higher Exception level.

RMVGSH If a Normal memory location is allocated to a cache entry due to a write access or a cache writeback, then the cache
entry is associated with the MECID of that write access.

RKZCZX If a cache entry for a Normal memory location is updated due to a write access or a cache writeback, then it is
optional to associate the cache entry with the MECID of that write access.

RPJNMC If a write access targets a location that is cached and associated with a different MECID, and the write access is
smaller than the Cache writeback granule, then one of the following CONSTRAINED UNPREDICTABLE behaviors
occur:

• The write access succeeds, the location contents become UNKNOWN, and the MECID value associated with
the cache entry is updated.

• The write access succeeds as though the MECID values did not mismatch, and it is OPTIONAL whether the
MECID value associated with the cache entry is updated.

RVXMVW If a read access, including a data read, instruction fetch, or a translation table lookup, targets a location that is cached
and associated with a different MECID, then one of the following CONSTRAINED UNPREDICTABLE behaviors occur:

• The data returned by the read access is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6526
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• The read access succeeds as though the MECID values did not mismatch.

RNTHZN A MECID mismatch that results in UNKNOWN data does not cause a plaintext data leak between MECIDs.

ITYGBH If a cache detects a MECID mismatch, then it is permitted to record the PA and mismatched MECIDs and generate
an IMPLEMENTATION DEFINED interrupt.

RBSTPQ Associating Normal Cacheable memory accesses with a MECID is required whether or not the target location is
encrypted.

D7.5.5 Enabling and disabling the caching of memory accesses

Cacheability control fields can force all memory locations with the Normal memory type to be treated as
Non-cacheable, regardless of their assigned Cacheability attribute. Independent controls are provided for each stage
of address translation, with separate controls for:

• Data accesses. These controls also apply to accesses to the translation tables.

• Instruction accesses.

Note

These Cacheability controls replace the cache enable controls provided in previous versions of the Arm architecture.

The Cacheability control fields and their effects are as follows:

For the EL1&0 translation regime

• When the value of SCTLR_EL1.C is 0:

— All stage 1 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the EL1&0 stage 1 translation tables are Non-cacheable.

• When the value of SCTLR_EL1.I is 0:

— All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR_EL2.CD is 1:

— All stage 2 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the EL1&0 stage 2 translation tables are Non-cacheable.

• When the value of HCR_EL2.ID is 1:

— All stage 2 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR_EL2.DC is 1, all stage 1 translations and all accesses to the EL1&0
stage 1 translation tables, are treated as accesses to Normal Non-shareable Inner Write-Back
Cacheable Read-Allocate Write-Allocate, Outer Write-Back Cacheable Read-Allocate
Write-Allocate memory, regardless of the value of SCTLR_EL1.{I, C}. This applies to
translations for both data and instruction accesses.

Note

• The stage 1 and stage 2 cacheability attributes are combined as described in Combining stage
1 and stage 2 Cacheability attributes for Normal memory.

• The SCTLR_EL1.{C, I} and HCR_EL2.DC fields have no effect on the EL2, EL2&0, and
EL3 translation regimes.

• The HCR_EL2.{ID, CD} fields affect only stage 2 of the EL1&0 translation regime.

• When EL2 is using AArch64 and EL1 is using AArch32, the HCR_EL2.{ID, CD, DC}
controls apply as described here, but the EL1 controls are SCTLR.{C, I}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6527
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• When FEAT_XS is implemented, the SCTLR_EL1.{C, I} and HCR_EL2.{ID, CD} fields
have no effect on the value of the XS attribute.

For the EL2 translation regime

• When the value of SCTLR_EL2.C is 0:

— All data accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

— All accesses to the EL2 translation tables are Non-cacheable.

• When the value of SCTLR_EL2.I is 0:

— All instruction accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

Note

• The SCTLR_EL2.{I, C} fields have no effect on the EL1&0 and EL3 translation regimes.

• When FEAT_XS is implemented, the SCTLR_EL2.{I, C} fields have no effect on the value
of the XS attribute.

For the EL2&0 translation regime

• When the value of SCTLR_EL2.C is 0:

— All stage 1 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the EL2&0 stage 1 translation tables are Non-cacheable.

• When the value of SCTLR_EL2.I is 0:

— All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

Note

When FEAT_XS is implemented, the SCTLR_EL2.{I, C} fields have no effect on the value of the
XS attribute.

For the EL3 translation regime

• When the value of SCTLR_EL3.C is 0:

— All data accesses to Normal memory using the EL3 translation regime are
Non-cacheable.

— All accesses to the EL3 translation tables are Non-cacheable.

• When the value of SCTLR_EL3.I is 0:

— All instruction accesses to Normal memory using the EL3 translation regime are
Non-cacheable.

Note

• The SCTLR_EL3{I, C} fields have no effect on the EL1&0, EL2, and EL2&0 translation
regimes.

• When FEAT_XS is implemented, the SCTLR_EL3.{I, C} fields have no effect on the value
of the XS attribute.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6528
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
In addition:

• For translation regimes other than the EL1&0 translation regime, if the value of SCTLR_ELx.M is 0,
indicating that stage 1 translations are disabled for that translation regime, then:

— If the value of SCTLR_ELx.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

— If the value of SCTLR_ELx.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through
cacheable.

• For the EL1&0 translation regime, if the value of SCTLR_EL1.M is 0, indicating that stage 1 translations are
disabled for that translation regime, and the value of HCR_EL2.DC is 0:

— If the value of SCTLR_EL1.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

— If the value of SCTLR_EL1.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through Cacheable, Outer Write-Through
Cacheable.

The effect of SCTLR_ELx.C, HCR_EL2.DC and HCR_EL2.CD is reflected in the result of the address translation
instructions in the PAR when these bits have an effect on the stages of translation being reported in the PAR.

Note

• In conjunction with the requirements in Non-cacheable accesses and instruction caches, the requirements in
this section mean the architecturally required effect of SCTLR_ELx.I is limited to its effect on caching
instruction accesses in unified caches.

• This specification can give rise to different cacheability attributes between instruction and data accesses to
the same location. Where this occurs, the measures for mismatch memory attributes described in Mismatched
memory attributes must be followed to manage the corresponding loss of coherency.

D7.5.6 Behavior of caches at reset

The behavior of caches at reset is as follows:

• All caches reset to IMPLEMENTATION DEFINED states that might be UNKNOWN.

• The Cacheability control fields described in Enabling and disabling the caching of memory accesses reset to
values that force all memory locations to be treated as Non-cacheable.

Note

This applies only to the controls that apply to the Translation regime that is used by the Exception level and
Security state entered on reset.

• An implementation can require the use of a specific cache initialization routine to invalidate its storage array
before caching is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED,
and the routine must be documented clearly as part of the documentation of the device.

• If an implementation permits cache hits when the Cacheability control fields force all memory locations to
be treated as Non-cacheable then the cache initialization routine must:

— Provide a mechanism to ensure the correct initialization of the caches.

— Be documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory
locations to be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization
routine must avoid any possibility of running from an uninitialized cache. It is acceptable for an initialization
routine to require a fixed instruction sequence to be placed in a restricted range of memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6529
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• Arm recommends that whenever an invalidation routine is required, it is based on the cache maintenance
instructions.

See also TLB behavior at reset.

D7.5.7 Non-cacheable accesses and instruction caches

In AArch64 state, instruction accesses to Non-cacheable Normal memory can be held in instruction caches.

Correspondingly, the sequence for ensuring that modifications to instructions are available for execution must
include invalidation of the modified locations from the instruction cache, even if the instructions are held in Normal
Non-cacheable memory. This includes cases where System register Cacheability control fields force instruction
accesses to memory to be Non-cacheable.

Therefore when using self-modified code in Non-cacheable space in a uniprocessor system, the following sequence
is required:

; Enter this code with <Wt> containing the new 32-bit instruction
; to be held at a location pointed to by <Xn> in Normal Non-cacheable memory.
STR <Wt>, [Xn]
DSB ISH; Ensure visibility of the data stored
IC IVAU, [Xn] ; Invalidate instruction cache by VA to PoU
DSB ISH; Ensure completion of the invalidations
ISB ;

In a multiprocessor system, the IC IVAU for a non-cacheable location is broadcast to all PEs within the Inner
Shareable domain of the PE running this sequence. This is despite non-cacheable normal memory locations being
treated as Outer Shared in other parts of the architecture.

Additional software steps might be required to synchronize the threads with other PEs. This might be necessary so
that the PEs executing the modified instructions can execute an ISB after completing the invalidation, and to avoid
issues associated with concurrent modification and execution of instruction sequences. See also Concurrent
modification and execution of instructions and Concurrent modification and execution of instructions.

Larger blocks of instructions can be modified using the IC IALLU instruction for a uniprocessor system, or an IC
IALLUIS for a multiprocessor system.

Note

This section applies even when the Cacheability control fields force instruction accesses to memory in AArch64
state to be Non-cacheable, as described in Enabling and disabling the caching of memory accesses.

D7.5.8 About cache maintenance in AArch64 state

The following sections give general information about cache maintenance:

• Terms used in describing the cache maintenance instructions.

• Abstraction of the cache hierarchy.

The following sections describe the A64 cache maintenance instructions:

• The instruction cache maintenance instruction (IC).

• The data cache maintenance instruction (DC).

Note

Some descriptions of the cache maintenance instructions refer to the cacheability of the address on which the
instruction operates. The Cacheability of an address is determined by the applicable translation table entry for that
address, as modified by any applicable System register Cacheability controls, such as the SCTLR_EL1.{I, C}
controls.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6530
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
D7.5.8.1 Terms used in describing the cache maintenance instructions

A memory location is a byte that is associated with an address in a particular address space. For example, address
0x1000 in the Root physical address space is a different memory location from address 0x1000 in the Secure physical
address space.

The term Resource means a physical entity that can be accessed at one or more memory locations. A Resource
associated with a physical address space is accessible in that physical address space.

Note

Examples of a Resource include:

• An MMIO register that is accessible at both the memory location with address 0x2000 in the Non-secure
physical address space, and at memory location with address 0x2000 in the Secure address space.

• An SRAM that is accessible only at the memory location with address 0x3000 in the Root physical address
space.

• A byte of memory that can be accessible at a fixed address but in different physical address spaces,
determined by a configuration option.

Cache maintenance instructions are defined to act on particular memory locations. Depending on the instruction
type, the scope is defined as one of:

• By the virtual address of the memory location to be maintained, referred to as operating by VA.

• By the physical address of the memory location to be maintained, referred to as operating by PA.

• By a mechanism that describes the location in the hardware of the cache, referred to as operating by set/way.

In addition, for instruction caches, there are instructions that invalidate all entries.

The following subsections define the terms used in the descriptions of the cache maintenance instructions:

• Terminology for cache maintenance instructions operating by set/way.

• Terminology for Clean, Invalidate, and Clean and Invalidate instructions.

Note

There is no terminology specific to cache maintenance instructions that operate by VA. When all applicable stages
of translation are disabled, the VA used is identical to the PA. For more information about memory system behavior
when address translation is disabled, see The effects of disabling an address translation stage.

D7.5.8.1.1 Terminology for cache maintenance instructions operating by set/way

Cache maintenance instruction that operate by set/way refer to the particular structures in a cache. Three parameters
describe the location in a cache hierarchy that an instruction works on. These parameters are:

Level The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION DEFINED. The
cache levels that can be managed using the architected cache maintenance instructions that operate
by set/way can be determined from the CLIDR_EL1.

In the Arm architecture, the lower numbered cache levels are those closest to the PE. See Memory
hierarchy.

Set Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache level
to which an address can be assigned. Usually, the set number is an IMPLEMENTATION DEFINED
function of an address.

In the Arm architecture, sets are numbered from 0.

Way The associativity of a cache is the number of locations in a set to which a specific address can be
assigned. The way number specifies one of these locations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6531
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
In the Arm architecture, ways are numbered from 0.

Note

Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, Arm expects
that most portable software will use only the cache maintenance instructions by set/way as single steps in a routine
to perform maintenance on the entire cache.

D7.5.8.1.2 Terminology for Clean, Invalidate, and Clean and Invalidate instructions

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a PE that accesses a cache might not be visible to other observers that
can access memory. This can occur because new updates are still in the cache and are not visible yet to the
other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a PE that
accesses a cache. This can occur when the cache contains an old, or stale, copy of the memory location that
has been updated.

The Clean and Invalidate instructions address these two issues. The definitions of these instructions are:

Clean A cache clean instruction ensures that updates made by an observer that controls the cache are made
visible to other observers that can access memory at the point to which the instruction is performed.
Once the Clean has completed, the new memory values are guaranteed to be visible to the point to
which the instruction is performed, for example to the Point of Unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another
observer only if the entry contains a location that has been written to by an observer in the
shareability domain of that memory location.

Invalidate A cache invalidate instruction ensures that updates made visible by observers that access memory
at the point to which the invalidate is defined, are made visible to an observer that controls the cache.
This might result in the loss of updates to the locations affected by the invalidate instruction that
have been written by observers that access the cache, if those updates have not been cleaned from
the cache since they were made.

If the address of an entry on which the invalidate instruction operates is Normal, Non-cacheable or
any type of Device memory then an invalidate instruction also ensures that this address is not
present in the cache.

Note

Entries for addresses that are Normal Cacheable can be allocated to the cache at any time, and so
the cache invalidate instruction cannot ensure that the address is not present in a cache.

Clean and Invalidate

A cache clean and invalidate instruction behaves as the execution of a clean instruction followed
immediately by an invalidate instruction. Both instructions are performed to the same location.

The points to which a cache maintenance instruction can be defined differ depending on whether the instruction
operates by VA or by set/way:

• For instructions operating by set/way, the point is defined to be to the next level of caching. For the All
operations, the point is defined as the Point of Unification for each location held in the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6532
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• For instructions operating by VA, the following conceptual points are defined:

Point of Coherency (PoC)

The point at which all agents that can access memory are guaranteed to see the same copy of a
memory location for accesses of any memory type or cacheability attribute. In many cases this is
effectively the main system memory, although the architecture does not prohibit the
implementation of caches beyond the PoC that have no effect on the coherency between memory
system agents.

Note

The presence of system caches can affect the determination of the point of coherency as described
in System level caches.

Point of Physical Aliasing (PoPA)

The point at which updates to one memory location of a Resource are visible to all other memory
locations of that Resource, for accesses to that point of any memory type or cacheability attribute,
for all agents that can access memory. The relationship between the PoPA and the PoC is such
that a clean of a written memory location to the PoPA means that no agent in the system can
subsequently reveal an old value of the memory location by performing an invalidate operation
to the PoC.

Point of Encryption (PoE)

The point in the memory system where any write that has reached that point is encrypted with the
context associated with the MECID that is associated with that write.

Cache maintenance operations to the PoPA are sufficient to affect all caches before the PoE.

Point of Unification (PoU)

The PoU for a PE is the point by which the instruction and data caches and the translation table
walks of that PE are guaranteed to see the same copy of a memory location. In many cases, the
Point of Unification is the point in a uniprocessor memory system by which the instruction and
data caches and the translation table walks have merged.

The PoU for an Inner Shareable shareability domain is the point by which the instruction and data
caches and the translation table walks of all the PEs in that Inner Shareable shareability domain
are guaranteed to see the same copy of a memory location. Defining this point permits
self-modifying software to ensure future instruction fetches are associated with the modified
version of the software by using the standard correctness policy of:

1. Clean data cache entry by address.

2. Invalidate instruction cache entry by address.

Point of Persistence (PoP)

When FEAT_DPB is implemented:

The point in a memory system, if it exists, at or beyond the Point of Coherency, where
a write to memory is maintained when system power is removed, and reliably
recovered when power is restored to the affected locations in memory.

When FEAT_DPB and FEAT_DPB2 are implemented:

The point in a memory system where there is a system guarantee that there is
sufficient energy within the system to ensure that a write to memory will be persistent
if system power is removed.

Note

Such memory is sometimes called non-volatile memory. For example, the Storage-class memory
shown in Figure B2-1 could be used as target memory for this feature.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6533
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
Point of Deep Persistence (PoDP)

The point in a memory system where any writes that have reached that point are persistent, even
in the event of an instantaneous hardware failure of the power system.

The following fields in the CLIDR_EL1 relate to the PoC and PoU:

LoC, Level of Coherence

This field defines the last level of cache that must be cleaned or invalidated when cleaning or
invalidating to the Point of Coherency. The LoC value is a cache level, so, for example, if LoC
contains the value 3:

• A clean to the Point of Coherency operation requires the level 1, level 2 and level 3 caches
to be cleaned.

• Level 4 cache is the first level that does not have to be maintained.

If the LoC field value is 0x0, this means that no levels of cache need to cleaned or invalidated
when cleaning or invalidating to the Point of Coherency.

If the LoC field value is a nonzero value that corresponds to a level that is not implemented, this
indicates that all implemented caches are before the Point of Coherency.

LoUU, Level of Unification, uniprocessor

This field defines the last level of data cache that must be cleaned, or the last level of instruction
cache that must be invalidated, when cleaning or invalidating to the Point of Unification for the
PE. As with LoC, the LoUU value is a cache level.

If the LoUU field value is 0x0, this means that no levels of data cache need to be cleaned or
invalidated when cleaning or invalidating to the Point of Unification.

If the LoUU field value is a nonzero value that corresponds to a level that is not implemented,
this indicates that all implemented caches are before the Point of Unification.

LoUIS, Level of Unification, Inner Shareable

In any implementation:

• This field defines the last level of data or unified cache that must be cleaned, or the last
level of instruction or unified cache that must be invalidated, when cleaning or
invalidating to the Point of Unification for the Inner Shareable shareability domain. As
with LoC, the LoUIS value is a cache level.

• If the LoUIS field value is 0x0, this means that no levels of data or unified cache need to
cleaned or invalidated when cleaning or invalidating to the Point of Unification for the
Inner Shareable shareability domain.

• If the LoUIS field value is a nonzero value that corresponds to a level that is not
implemented, this indicates that all implemented caches are before the Point of
Unification.

D7.5.8.2 Abstraction of the cache hierarchy

The following subsections describe the abstraction of the cache hierarchy:

• Cache maintenance instructions that operate by VA.

• Cache maintenance instructions that operate by set/way.

D7.5.8.2.1 Cache maintenance instructions that operate by VA

The VA-based cache maintenance instructions are described as operating by VA. Each of these instructions is always
qualified as being one of:

• Performed to the Point of Coherency.

• Performed to the Point of Unification.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6534
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• When FEAT_DPB is implemented, performed to the Point of Persistence.

See Terms used in describing the cache maintenance instructions for definitions of these terms, and for more
information about possible meanings of VA.

A64 Cache maintenance instructions lists the VA-based maintenance instructions.

The CTR_EL0 holds minimum line length values for:

• The instruction caches.

• The data and unified caches.

These values support efficient invalidation of a range of VAs, because this value is the most efficient address stride
to use to apply a sequence of VA-based maintenance instructions to a range of VAs.

For the Invalidate data or unified cache line by VA instruction, the Cache Write-back Granule field of the CTR_EL0
defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache
Write-back Granule is in addition to its defining the maximum size that can be written back.

D7.5.8.2.2 Cache maintenance instructions that operate by set/way

A64 Cache maintenance instructions lists the set/way-based maintenance instructions. Some encodings of these
instructions include a required field that specifies the cache level for the instruction:

• A clean instruction cleans from the level of cache specified through to at least the next level of cache, moving
further from the PE.

• An invalidate instruction invalidates only at the level specified.

D7.5.9 A64 Cache maintenance instructions

The A64 cache maintenance instructions are part of the A64 System instruction class in the register encoding space.
For encoding details and other general information on these System instructions, see System instructions, SYS and
Cache maintenance instructions, and data cache zero operation.

Table D7-3 shows the AArch64 System instructions that perform instruction or data cache maintenance.
Instructions that take an argument include Xt in the entry in the System instruction column.

Note

• In Table D7-3 the Point of Unification is the Point of Unification of the PE executing the cache maintenance
instruction.

• In general, the AArch32 instruction and data cache maintenance instructions provide equivalent functionality
to the AArch64 cache maintenance instructions, see AArch32 cache and branch predictor maintenance
instructions. However, the Data Cache Clean to the Point of Persistence instruction, implemented when
FEAT_DPB is implemented, is supported in AArch64 state only.

Table D7-3 System instructions for cache maintenance

System instruction Instruction Notes

Instruction cache maintenance instructions

IC IALLUIS Invalidate all to Point of Unification, Inner Shareable EL1 or higher access.

IC IALLU Invalidate all to Point of Unification EL1 or higher access.

IC IVAU, Xt Invalidate by virtual address to Point of Unification When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise, EL1 or higher access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6535
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
Data cache maintenance instructions

DC IVAC, Xt Invalidate by virtual address to Point of Coherency EL1 or higher access.

DC IGVAC, Xt Invalidate of Allocation Tags by virtual address to
Point of Coherency

EL1 or higher access.

DC IGDVAC, Xt Invalidate of data and Allocation Tags by virtual
address to Point of Coherency

EL1 or higher access.

DC ISW, Xt Invalidate by set/way EL1 or higher access.

DC CVAC, Xt Clean by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGVAC, Xt Clean of Allocation Tags by virtual address to Point of
Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGDVAC, Xt Clean of data and Allocation Tags by virtual address
to Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CVADP, Xt Clean by virtual address to Point of Deep Persistence When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGVADP, Xt Clean of Allocation Tags by virtual address to Point of
Deep Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGDVADP, Xt Clean of data and Allocation Tags by virtual address
to Point of Deep Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGDVAP, Xt Clean of data and Allocation Tags by virtual address
to Point of Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CGVAP, Xt Clean of Allocation Tags by virtual address to Point of
Persistence

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CVAP, Xt Clean by virtual address to Point of Persistenceb When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CSW, Xt Clean by set/way EL1 or higher access.

DC CVAU, Xt Clean by virtual address to Point of Unification When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIVAC, Xt Clean and invalidate by virtual address to
Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIGVAC, Xt Clean and invalidate of Allocation Tags by virtual
address to Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIGDVAC, Xt Clean and invalidate of data and Allocation Tags by
virtual address to Point of Coherency

When SCTLR_EL1.UCIa == 1, EL0 access.
Otherwise EL1 or higher access.

DC CIPAPA, Xt Clean and invalidate by physical address to PoPAc EL3 only. UNDEFINED at EL2 and below.

DC CIGDPAPA, Xt Clean and invalidate of data and Allocation Tags by
physical address to PoPAd

EL3 only. UNDEFINED at EL2 and below.

Table D7-3 System instructions for cache maintenance (continued)

System instruction Instruction Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6536
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
A DSB or DMB instruction intended to ensure the completion of cache or branch predictor maintenance instructions
must have an access type of both loads and stores.

The following subsections give more information about these instructions:

• The instruction cache maintenance instruction (IC).

• The data cache maintenance instruction (DC).

• EL0 accessibility of cache maintenance instructions.

• General requirements for the scope of maintenance instructions.

• Effects of instructions that operate by VA to the PoC.

• Effects of instructions that operate by VA to the PoP.

• Effects of instructions that operate by VA to the PoU.

• Effects of All and set/way maintenance instructions.

• Effects of virtualization and Security state on the cache maintenance instructions.

• Boundary conditions for cache maintenance instructions.

• Ordering and completion of data and instruction cache instructions.

• Performing cache maintenance instructions.

D7.5.9.1 The instruction cache maintenance instruction (IC)

System instructions describes the A64 assembly syntax for this instruction.

When an IC instruction requires an address argument this takes the form of a 64-bit register that holds the VA
argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, or at EL2 when HCR_EL2.E2H==1, the current ASID.

• The current Security state.

• Whether the instruction was executed at EL1 or EL2.

• For an instruction executed at EL1, the current VMID.

DC CIPAE, Xt Clean and invalidate by physical address to PoEe in
the Realm PA space

EL3 and Realm EL2. Otherwise UNDEFINED.

DC CIGDPAE, Xt Clean and invalidate of data and Allocation Tags by
physical address to PoPAf in the Realm PA space

EL3 and Realm EL2. Otherwise UNDEFINED.

DC CISW, Xt Clean and invalidate by set/way EL1 or higher access.

a. When HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.

b. Supported only when FEAT_DPB is implemented.

c. Supported only when FEAT_RME is implemented.

d. Supported only when FEAT_RME and FEAT_MTE2 are implemented.

e. Supported only when FEAT_MEC is implemented.

f. Supported only when FEAT_MEC and FEAT_MTE2 are implemented.

Table D7-3 System instructions for cache maintenance (continued)

System instruction Instruction Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6537
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
That VA to PA translation might fault. However, for an instruction cache maintenance instruction that operates by
VA:

• It is IMPLEMENTATION DEFINED whether the instruction can generate:

— An Access flag fault.

— A Translation fault.

• The instruction cannot generate a Permission fault, except for:

— The possible generation of a Permission fault by the execution of an IC IVAU instruction at EL0 when
the specified address does not have read access at EL0, as described in EL0 accessibility of cache
maintenance instructions.

— When FEAT_CMOW is implemented, the possible generation of a Permission fault by:

— The execution of an IC IVAU instruction at EL0 when the specified address has stage 1 read
permission, but does not have stage 1 write permission.

— The execution of an IC IVAU instruction at EL1 or EL0 when the specified address has stage 2
read permission, but does not have stage 2 write permission.

— The possible Permission fault on a Stage 2 fault on a stage 1 translation table walk.

For more information about possible faults on a cache maintenance instruction that operates by VA, see Memory
aborts.

See also Ordering and completion of data and instruction cache instructions.

D7.5.9.2 The data cache maintenance instruction (DC)

System instructions describes the A64 assembly syntax for this instruction.

When a DC instruction requires a set/way/level argument this takes the form of a 64-bit register, the upper 32 bits of
which are RES0.

If a data cache maintenance by set/way instruction specifies a set, way, or level argument that is larger than the value
supported by the implementation then the instruction is CONSTRAINED UNPREDICTABLE, see Out of range values of
the Set/Way/Index fields in cache maintenance instructions or the instruction description.

When a DC instruction requires an address argument this takes the form of a 64-bit register that holds the VA
argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, or at EL2 when HCR_EL2.E2H is 1, the current ASID.

• The current Security state.

• Whether the instruction is executed at EL1 or EL2.

• For an instruction executed at EL1, the current VMID.

That VA to PA translation might fault. However, a data or unified cache maintenance instruction that operates by
VA cannot generate a Permission fault except in the following cases:

• The possible generation of a Permission fault by:

— The execution of a DC IVAC instruction when the specified address does not have write permission.

— The execution of an enabled DC instruction at EL0 when the specified address does not have read access
at EL0, as described in EL0 accessibility of cache maintenance instructions.

The description of Permission faults includes possible constraints on the generation of Permission faults on
cache maintenance by VA instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6538
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• When FEAT_CMOW is implemented, the possible generation of a Permission fault by:

— The execution of a DC CIVAC, DC CIGVAC, or DC CIGDVAC instruction at EL0 when the specified address
has stage 1 read permission, but does not have stage 1 write permission.

— The execution of a DC CIVAC, DC CIGVAC, or, DC CIGDVAC instruction at EL1 or EL0 when the specified
address has stage 2 read permission, but does not have stage 2 write permission.

• The possible Permission fault on a Stage 2 fault on a stage 1 translation table walk.

For more information about possible faults on a VA to PA translation, see Memory aborts.

When executed at EL1, a DC ISW instruction performs a clean and invalidate, meaning it performs the same
maintenance as a DC CISW instruction, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• Either:

— The value of HCR_EL2.SWIO is 1, forcing a cache clean to perform a clean and invalidate.

— The value of HCR_EL2.VM is 1, meaning EL1&0 stage two address translation is enabled.

When executed at EL1, a DC IVAC instruction performs a clean and invalidate, meaning it performs the same
maintenance as a DC CIVAC instruction, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• The value of HCR_EL2.VM is 1, meaning EL1&0 stage two address translation is enabled.

Note

The forcing of a clean instruction to perform a clean invalidate applies to the AArch32 cache maintenance
instructions DCIMVAC and DCISW. See AArch32 data cache maintenance instructions (DC*).

When FEAT_DPB is implemented, meaning the DC CVAP instruction is implemented, if the memory system does not
support the Point of Persistence, a data cache clean to the PoP, DC CVAP, behaves as a data cache clean to the PoC,
DC CVAC.

Note

• Support for the Point of Persistence does not change the definition or behavior of the CLIDR_EL1 System
register.

• Because a DSB SYS instruction will not complete until all previous DC CVAP instructions have completed, the
following sequence can be used to ensure the completion of any store to the Point of Persistence, where the
store might be to Non-cacheable memory:

 DMB ; Note this can be any DMB that applies to both loads and stores
 DC CVAP, Xt
 DSB SYS

• If caches that are invisible to the programmer exist beyond the Point of Coherency but before the Point of
Persistence and hold data that is marked as Non-cacheable, the DC CVAP operation causes the Non-cacheable
locations to be cleaned from those caches.

If a memory fault that sets the FAR for the translation regime applicable for the cache maintenance instruction is
generated from a data cache maintenance instruction, the FAR holds the address specified in the register argument
of the instruction.

Note

Despite its mnemonic, DC ZVA is not a cache maintenance instruction.

See also EL0 accessibility of cache maintenance instructions and Ordering and completion of data and instruction
cache instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6539
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
D7.5.9.3 EL0 accessibility of cache maintenance instructions

Software executing at EL0 can access data cache maintenance instructions and instruction cache maintenance
instructions that operate by virtual address. When EL0 use of these instructions is disabled because
SCTLR_EL1.UCI == 0, executing one of these instructions at EL0 generates a trap to EL1, which is reported using
EC = 0x18. When HCR_EL2.{E2H,TGE} == {1,1}, the control is from SCTLR_EL2.

Note

DC CVAP is implemented only if FEAT_DPB is implemented.

For these instructions read access permission for the virtual address is required. When the value of
SCTLR_EL1.UCI is 1:

• If the DC instruction is executed at EL0 and the address specified in the argument cannot be read at EL0, a
Permission fault might be generated.

• For the IC IVAU instruction, if the instruction is executed at EL0 and the address specified in the argument
cannot be read at EL0, it is IMPLEMENTATION DEFINED whether a Permission fault is generated.

• When FEAT_CMOW is implemented, for the DC CIVAC, DC CIGVAC, DC CIGDVAC, and IC IVAU instructions, both
read and write access permission is required:

— When SCTLR_EL1.CMOW is 1, if the instruction executed at EL0 has stage 1 read permission, but
does not have stage 1 write permission, a Permission fault is generated.

— When HCRX_EL2.CMOW is 1, if the instruction executed at EL0 has stage 2 read permission, but
does not have stage 2 write permission, a Permission fault is generated.

Note

This stage 2 access permission also applies to the DCCIMVAC and ICIMVAU AArch32 cache maintenance
instructions.

For more information, see the description of Permission faults, In the case of a DC instruction executed at EL0 when
the address specified cannot be read at EL0 the Permission fault is generated unless one of the permitted constraints
described in that section applies and means the fault cannot be generated.

Software can read the CTR_EL0 to discover the stride needed for cache maintenance instructions. The
SCTLR_EL1.UCT bit enables EL0 access to the CTR_EL0. When EL0 access to the Cache Type register is
disabled, a register access instruction executed at EL0 is trapped to EL1 using EC = 0x18.

D7.5.9.4 General requirements for the scope of maintenance instructions

The specification of the cache maintenance instructions describes what each instruction is guaranteed to do in a
system. It does not limit other behaviors that might occur, provided they are consistent with the requirements
described in General behavior of the caches, Behavior of caches at reset, and Preloading caches.

This means that as a side-effect of a cache maintenance instruction:

• Any location in the cache might be cleaned.

• Any unlocked location in the cache might be cleaned and invalidated.

Note

Arm recommends that, for best performance, such side-effects are kept to a minimum. Arm strongly recommends
that the side-effects of operations performed in one Security state do not have a significant performance impact on
execution in another Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6540
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
If an implementation can overwrite Allocation Tags in memory that have been written by another observer, where
the Allocation Tags have not been written by an observer in the Shareability domain of that memory location, then:

• A cache maintenance operation which cleans data from a cache level must also clean the associated
Allocation Tags.

• A cache maintenance operation which invalidates, or cleans and invalidates data from a cache level, must
also clean and invalidate the associated Allocation Tags.

D7.5.9.5 Effects of instructions that operate by VA to the PoC

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, cache maintenance instructions that
operate by VA to the PoC must affect the caches of other PEs in the shareability domain described by the shareability
attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must
affect the caches of all PEs in the Outer Shareable shareability domain of the PE on which the instruction is
operating.

In all cases, for any affected PE, these instructions affect all data and unified caches to the PoC. Table D7-4 shows
the scope of these Data and unified cache maintenance instructions.

Note

It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on the
caches of observers that are not PEs within the affected shareability domain to which the cache maintenance
instructions apply.

D7.5.9.6 Effects of instructions that operate by PA to the PoPA

Caches are affected by cache maintenance instructions to the PoPA. For those caches, the operations behave as a
clean and invalidate. Data cache maintenance instructions that operate by PA to the PoPA have all of the following
properties:

• The instructions affect all caches in the Outer Shareable shareability domain to the PoPA for all copies of the
memory location specified by the instruction.

• The instructions are permitted to affect other memory locations of the same Resource, For example, a cached
copy of the same Resource that is associated with a different PA space. If multiple memory locations of the
Resource have been written, it is CONSTRAINED UNPREDICTABLE which additional copies are cleaned to the
PoPA. This CONSTRAINED UNPREDICTABLE behavior is guaranteed to be avoided if granule protection checks
are configured to ensure that only one memory location of the Resource is writable at any time.

• The instructions affect all caches before the PoPA, even if the caches are after the PoC and are otherwise
invisible to the programmer.

Table D7-4 PEs affected by cache maintenance instructions to the PoC

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The PoC of the entire system

Inner Shareable All PEs in the same Inner Shareable shareability domain as the PE executing the
instruction

The PoC of the entire system

Outer Shareable All PEs in the same Outer Shareable shareability domain as the PE executing the
instruction

The PoC of the entire system
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6541
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• The instructions have the same ordering, observability, and completion behavior as VA-based cache
maintenance instructions issued to the Outer Shareable shareability domain. This includes aspects relating to
the minimum size of cache lines, indicated by CTR_EL0.DminLine.

• The instructions are not subject to granule protection checks.

• If the instructions target a PA above the implemented PA size, then no cache entries are required to be cleaned
or invalidated.

In a system that contains caches associated with observers outside the Outer Shareable domain, for each of those
caches at least one of the following properties must apply:

• The cache is affected by DC PAPA operations. For that cache, it is permitted for DC PAPA operations to be treated
as invalidate operations rather than clean and invalidate operations.

• Any accesses from the cache that propagate into the Outer Shareable domain are subject to granule protection
checks, and the system additionally provides one of the following properties:

— The cache can only store memory locations from the Non-secure physical address space.

— Accesses from the cache are subject to translation controlled by the Security state associated with the
cache line.

D7.5.9.7 Effects of instructions that operate by PA to the PoE

RJBRCM Data cache maintenance instructions that operate by PA to the PoE have all of the following properties:

• The instructions affect all caches in the Outer Shareable shareability domain to the PoE for all copies of the
memory location specified by the instruction.

• The instructions affect all caches before the PoE, even if the caches are after the PoC and are otherwise
invisible to the programmer.

• The instructions have the same ordering, observability, and completion behavior as VA-based cache
maintenance instructions issued to the Outer Shareable shareability domain. This includes aspects relating to
the minimum size of cache lines, indicated by CTR_EL0.DminLine.

• The instructions clean and invalidate all copies of the memory location specified by the instruction,
irrespective of any MECID associated with the memory location. Memory accesses resulting from the Clean
operation use the MECID associated with the cache entry.

• It is IMPLEMENTATION DEFINED whether the instructions are subject to granule protection checks.

• If HCR_EL2.NV is 1, then executing the instructions at Realm EL1 is trapped to Realm EL2. Exceptions
generated by these traps are reported using EC = 0x18 with its associated ISS field.

D7.5.9.8 Effects of instructions that operate by VA to the PoP

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, cache maintenance instructions that
operate by VA to the PoP must affect the caches of other PEs in the shareability domain described by the shareability
attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must
affect the caches of all PEs in the Outer Shareable shareability domain of the PE on which the instruction is
operating.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6542
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
In all cases, for any affected PE, these instructions affect all data and unified caches to the PoP. Table D7-5 shows
the scope of these Data and unified cache maintenance to the PoP instructions.

Note

It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on the
caches of observers that are not PEs within the affected shareability domain to which the cache maintenance
instructions apply.

D7.5.9.9 Effects of instructions that operate by VA to the PoU

For cache maintenance instructions that operate by VA to the PoU, Table D7-6 shows how, for a VA in a Normal or
Device memory location, the shareability attribute of the VA determines the minimum set of PEs affected, and the
point to which the instruction must be effective.

Note

• The set of PEs guaranteed to be affected is never greater than the PEs in the Inner Shareable shareability
domain containing the PE executing the instruction.

• It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on
the caches of observers that are not PEs within the affected shareability domain to which the cache
maintenance instructions apply.

D7.5.9.10 Effects of All and set/way maintenance instructions

The DC set/way instructions apply only to the caches of the PE that performs the instruction. IC IALLU instructions
apply only to the caches of the PE that performs the instruction, unless HCR_EL2.FB=1, which causes the
instructions to be broadcast within the Inner Shareable domain when executed from EL1.

The IC IALLUIS instruction can affect the caches of all PEs in the same Inner Shareable shareability domain as the
PE that performs the instruction. This instruction has an effect to the Point of Unification of instruction cache fills,
data cache fills, and write-backs, and translation table walks, of all PEs in the same Inner Shareable shareability
domain.

Table D7-5 PEs affected by cache maintenance instructions to the PoP

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The PoP of the entire system

Inner Shareable All PEs in the same Inner Shareable shareability domain as the PE executing the
instruction

The PoP of the entire system

Outer Shareable All PEs in the same Outer Shareable shareability domain as the PE executing the
instruction

The PoP of the entire system

Table D7-6 PEs affected by cache maintenance instructions to the PoU

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The PoU of instruction cache fills, data cache fills and
write-backs, and translation table walks, on the PE
executing the instruction

Inner Shareable
or
Outer Shareable

All PEs in the same Inner Shareable shareability
domain as the PE executing the instruction

The PoU of instruction cache fills, data cache fills and
write-backs, and translation table walks, of all PEs in
the same Inner Shareable shareability domain as the PE
executing the instruction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6543
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
Note

• The possible presence of system caches, as described in System level caches, means architecture does not
guarantee that all levels of the cache can be maintained using set/way instructions.

• It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on
the caches of observers that are not PEs within the affected shareability domain to which the cache
maintenance instructions apply.

D7.5.9.11 Effects of virtualization and Security state on the cache maintenance
instructions

Each Security state has its own physical address (PA) space, therefore cache entries are associated with PA space.

Table D7-7 shows the effects of virtualization and security on the cache maintenance instructions. In the table, the
Specified entries are entries that the architecture requires the instruction to affect.

Note

The rules described in General behavior of the caches mean that an instruction might also affect other entries.

Table D7-7 Effects of virtualization and security on the maintenance instructions

Cache maintenance instructions Security state Specified entries

Data or unified cache maintenance instructions

Invalidate, Clean, or Clean and
Invalidate by VA:

DC IVAC, DC CVAC, DC CVAP,

DC CVAU, DC CIVAC, DC CVAP

Non-secure and
Secure.

When FEAT_RME
is implemented,
Realm and Root.

All lines that hold the PA that, in the current Security state, is mapped
to by the combination of all of:

• The specified VA.

• For an instruction executed at EL1, EL0, or at EL2 when
HCR_EL2.E2H is 1, the current ASID if the location is mapped
to by a non-global page.

• For an instruction executed at EL1 when SCR_EL3.NS is 1 or
SCR_EL3.EEL2 is 1, the current VMID.a

• For an instruction executed at EL0 when (SCR_EL3.NS is 1 or
SCR_EL3.EEL2 is 1) and (HCR_EL2.E2H is 0 or
HCR_EL2.TGE is 0), the current VMID.a

Invalidate, Clean, or Clean and
Invalidate by set/way:

DC ISW, DC CSW, DC CISW,

DC IGSW, DC CGSW, DC CIGSW,

DC IGDSW, DC CGDSW, DC CIGDSW

Non-secure Line specified by set/way provided that the entry comes from the
Non-secure PA space.

Secure Line specified by set/way provided that the entry comes from the
Secure or Non-secure PA space.

When FEAT_RME is implemented, the following cases are added:

Realm Line specified by set/way provided that the entry comes from the
Realm or Non-secure PA space.

Root Line specified by set/way regardless of the PA space that the entry has
come from.

Instruction cache maintenance instructions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6544
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
For locked entries and entries that might be locked, the behavior of cache maintenance instructions described in The
interaction of cache lockdown with cache maintenance instructions applies.

With an implementation that generates aborts if entries are locked or might be locked in the cache, when the use of
lockdown aborts is enabled, these aborts can occur on any cache maintenance instructions.

Invalidate by VA:

IC IVAU

Non-secure and
Secure.

When FEAT_RME
is implemented,
Realm and Root.

All lines corresponding to the specified VAb in the current translation
regime and:

• For an instruction executed at EL1, EL0, or at EL2 when
HCR_EL2.E2H is 1, the current ASID.

• For an instruction executed at EL1 when SCR_EL3.NS is 1 or
SCR_EL3.EEL2 is 1, the current VMID.a

• For an instruction executed at EL0 when (SCR_EL3.NS is 1 or
SCR_EL3.EEL2 is 1) and (HCR_EL2.E2H is 0 or
HCR_EL2.TGE is 0), the current VMID.a

Invalidate All:

IC IALLU, IC IALLUIS

Non-secure and
Secure.

For an instruction executed at:

• EL1 when the Effective value of SCR_EL3.{NSE, NS} is
{0, 0} and SCR_EL3.EEL2 == 1, all instruction cache lines
containing Secure or Non-secure entries associated with the
current VMID.

• EL1 when the Effective value of SCR_EL3.{NSE, NS} is
{0, 1}, all instruction cache lines containing Non-secure entries
associated with the current VMID.

• EL2 when the Effective value of SCR_EL3.{NSE, NS} is
{0, 1}, all instruction cache lines containing Non-secure
entries.

• EL1 when the Effective value of SCR_EL3.{EEL2, NSE, NS}
is {0, 0, 0}, EL2 when SCR_EL3.{EEL2, NSE, NS} is
{1, 0, 0}, or EL3, all instruction cache lines containing Secure
or Non-secure entries.

Realm For an instruction executed at:

• EL1 when the Effective value of SCR_EL3.{NSE, NS} is
{1, 1}, all instruction cache lines containing Realm or
Non-secure entries associated with the current VMID.

• EL2 when the Effective value of SCR_EL3.{NSE, NS} is
{1, 1}, all instruction cache lines containing Realm or
Non-secure entries.

Root For an instruction executed at EL3, all instruction cache lines
regardless of the PA space that the entries have come from.

a. Dependencies on the VMID apply even when HCR_EL2.VM is set to 0. The architecture does not define a reset value for
VTTBR_EL2.VMID, and therefore, in any implementation that includes EL2, the boot software executed when reset is deasserted must
initialize VTTBR_EL2.VMID.

b. The type of instruction cache used affects the interpretation of the specified entries in this table such that:
� For a PIPT instruction cache, the cache maintenance applies to all entries whose physical address corresponds to the specified address.
� For a VIPT instruction cache, the cache maintenance applies to entries whose virtual index and physical tag corresponds to the specified
address.

For information on types of instruction cache see Instruction caches.

Table D7-7 Effects of virtualization and security on the maintenance instructions (continued)

Cache maintenance instructions Security state Specified entries
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6545
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
In an implementation that includes EL2:

• The architecture does not require cache cleaning when switching between virtual machines. Cache
invalidation by set/way must not present an opportunity for one virtual machine to corrupt state associated
with a second virtual machine. To ensure this requirement is met, invalidate by set/way instructions can,
instead, perform a clean and invalidate by set/way.

• As described in The data cache maintenance instruction (DC), the AArch64 Data cache invalidate
instructions, DC IVAC and DC ISW, when executed at EL1 and EL0, and the AArch32 Data cache invalidate
instructions DCIMVAC and DCISW, when executed at EL1, can be configured to perform a cache clean as well as
a cache invalidation.

• TLB invalidate instructions and IC IALLU instructions executed at EL1 are broadcast across the Inner
Shareable domain when all of the following are true:

— EL2 is implemented and enabled in the current Security state.HCR_EL2

— The value of HCR_EL2.FB is 1.SCR_EL3SCR_EL3

For more information about the cache maintenance instructions, see About cache maintenance in AArch64 state,
A64 Cache maintenance instructions, and Chapter D8 The AArch64 Virtual Memory System Architecture.

D7.5.9.12 Boundary conditions for cache maintenance instructions

Cache maintenance instructions operate on the caches regardless of whether the System register Cacheability
controls force all memory accesses to be Non-cacheable.

For VA-based cache maintenance instructions, the instruction operates on the caches regardless of the memory type
and cacheability attributes marked for the memory address in the VMSA translation table entries. This means that
the effects of the cache maintenance instructions can apply regardless of:

• Whether the address accessed:

— Is Normal memory or Device memory.

— Has the Cacheable attribute or the Non-cacheable attribute.

• Any applicable domain control of the address accessed.

• The access permissions for the address accessed, other than the effect of the stage two write permission on
data or unified cache invalidation instructions.

D7.5.9.13 Ordering and completion of data and instruction cache instructions

All data cache instructions, other than DC ZVA, DC GVA, and DC GZVA that specify an address:

• Execute in program order relative to loads or stores that have all of the following properties:

— Access an address in Normal memory with either Inner Write Through or Inner Write Back attributes
within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.

— Use an address with the same cacheability attributes as the address passed to the data cache instruction.

• Can execute in any order relative to loads or stores that have all of the following properties:

— Access an address in Normal memory with either Inner Write Through or Inner Write Back attributes
within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.

— Use an address with different cacheability attributes as the address passed to the data cache instruction.

— Do not have a DMB or DSB executed between the load or store instruction and the data cache
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6546
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• Can execute in any order relative to loads or stores that access any address with the Device memory attribute,
or with Normal memory with Inner Non-cacheable attribute unless a DMB or DSB is executed between the
instructions.

• Execute in program order relative to other data cache instructions, other than DC ZVA, DC GVA, and DC GZVA that
specify an address within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.

• Can execute in any order relative to loads or stores that access an address in a different cache line of minimum
size, as indicated by CTR_EL0.DMinLine, unless a DMB or DSB is executed between the instructions.

• Can execute in any order relative to other data cache instructions, other than DC ZVA, DC GVA, and DC GZVA that
specify an address in a different cache line of minimum size, as indicated by CTR_EL0.DMinLine, unless a
DMB or DSB is executed between the instructions.

• Can execute in any order relative to instruction cache maintenance instructions unless a DSB is executed
between the instructions.

• Can execute in any order relative to data cache maintenance instructions that do not specify an address unless
a DMB or DSB is executed between the instructions.

Note

Despite their mnemonics, the DC ZVA, DC GVA, and DC GZVA instructions are not data cache maintenance
instructions.

Note

• Data cache ordering rules by address are consistent with physically indexed physically tagged caches. See
Data and unified caches.

• Data cache zero instruction describes the ordering and completion rules for Data Cache Zero.

All data cache maintenance instructions that do not specify an address:

• Can execute in any order relative to data cache maintenance instructions that do not specify an address unless
a DMB or DSB is executed between the instructions.

• Can execute in any order relative to data cache maintenance instructions that specify an address, other than
DC ZVA, DC GVA, and DC GZVA, unless a DMB or DSB is executed between the instructions.

• Can execute in any order relative to loads or stores unless a DMB or DSB is executed between the instructions.

• Can execute in any order relative to instruction cache maintenance instructions unless a DSB is executed
between the instructions.

All instruction cache maintenance instructions can execute in any order relative to other instruction cache
instructions, data cache instructions, loads, and stores unless a DSB is executed between the instructions.

A cache maintenance instruction can complete at any time after it is executed, but is only guaranteed to be complete,
and its effects visible to other observers, following a DSB instruction executed by the PE that executed the cache
maintenance instruction. See also the requirements for cache maintenance instructions in Completion and endpoint
ordering.

In all cases, where the text in this section refers to a DMB or a DSB, this means a DMB or DSB whose required access type
is both loads and stores.

Note

These ordering requirements are extended from the requirements in AArch32 state given in:

• Ordering of cache and branch predictor maintenance instructions.

• AArch32 instruction cache maintenance instructions (IC*).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6547
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
D7.5.9.13.1 Ordering and completion of Data Cache Clean to Point of Persistence

The update of the persistent memory as a result of Data Cache Clean to the Point of Persistence is guaranteed to
have occurred either after:

• The execution of a DSB applying to both reads and writes after the execution of the Data Cache Clean to the
Point of Persistence.

• The update to persistent memory caused by a different Data Cache Clean to the Point of Persistence that is
ordered after a DMB applying to both reads and writes that appears after the original Data Cache Clean to the
Point of Persistence.

Note

This second point is an aspect of the fact that the Data Cache Clean to the Point of Persistence instructions are
ordered by DMB, and this controls the order of arrival in persistent memory.

The ordering effect for the Data Cache Clean to the Point of Persistence by DMB applying to both read and writes is
not sufficient to ensure that in Example D7-1, observation of the value '1' in the memory location X3 implies that
the Data Cache Clean to the Point of Persistence has caused an update of persistent memory:

Example D7-1 The ordering effect for the Data Cache Clean to the Point of Persistence

; initial condition has [X3]=0

DC CVADP, X1
DMB
MOV X2,#1
STR X2, [X3]

However, in Example D7-2, the ordering effects of the DMB instruction will ensure that the location pointed by P0:
X1 will reach the Point of Persistence before, or at the same time as, the location pointed by P1:X8.

Example D7-2 The ordering effect for the Data Cache Clean to the Point of Persistence

; initial conditions has P0: X3 and P1: X3 point to the same location, which is 0 at the start of this
example

P0
DC CVAP, X1
DMB
MOV X2, #1
STR X2, [X3]

P1
loop

LDR X2, [X3]
 CBZ X2, loop
 DMB
 DC CVAP, X8

D7.5.9.13.2 Ordering and completion of Data Cache Clean to Point of Deep Persistence

The update of the deep persistent memory as a result of Data Cache Clean to the Point of Deep Persistence is
guaranteed to have occurred either after:

• The execution of a DSB applying to both reads and writes after the execution of the Data Cache Clean to the
Point of Deep Persistence.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6548
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• The update to deep persistent memory caused by a different Data Cache Clean to the Point of Deep
Persistence that is ordered after a DMB applying to both reads and writes that appears after the original Data
Cache Clean to the Point of Deep Persistence.

Note

This second point is an aspect of the fact that the Data Cache Clean to the Point of Deep Persistence instructions are
ordered by DMB, and this controls the order of arrival in deep persistent memory.

The ordering effect for the Data Cache Clean to the Point of Deep Persistence by DMB applying to both read and
writes is not sufficient to ensure that in Example D7-3, observation of the value '1' in the memory location X3
implies that the Data Cache Clean to the Point of Deep Persistence has caused an update of deep persistent memory:

Example D7-3 The ordering effect for the Data Cache Clean to the Point of Deep Persistence

; initial conditions has [X3]=0

DC CVADP, X1
DMB
MOV X2,#1
STR X2, [X3]

However, in Example D7-4, the ordering effects of the DMB instruction will ensure that the location pointed by P0:
X1 will reach the Point of Deep Persistence before, or at the same time as, the location pointed by P1: X8.

Example D7-4 The ordering effect for the Data Cache Clean to the Point of Deep Persistence

; initial conditions has P0: X3 and P1: X3 point to the same location, which is 0 at the start of this
example
P0

DC CVADP, X1
DMB
MOV X2, #1
STR X2, [X3]

P1
loop
 LDR X2, [X3]
 CBZ X2, loop
 DMB
 DC CVADP, X8

D7.5.9.14 Performing cache maintenance instructions

To ensure all cache lines in a block of address space are maintained through all levels of cache Arm strongly
recommends that software:

• For data or unified cache maintenance, uses the CTR_EL0.DMinLine value to determine the loop increment
size for a loop of data cache maintenance by VA instructions.

• For instruction cache maintenance, uses the CTR_EL0.IMinLine value to determine the loop increment size
for a loop of instruction cache maintenance by VA instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6549
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
D7.5.9.14.1 Example code for cache maintenance instructions

The cache maintenance instructions by set/way can clean or invalidate, or both, the entirety of one or more levels
of cache attached to a PE. However, unless all PEs attached to the caches regard all memory locations as
Non-cacheable, it is not possible to prevent locations being allocated into the cache during such a sequence of the
cache maintenance instructions.

Note

Since the set/way instructions are performed only locally, there is no guarantee of the atomicity of cache
maintenance between different PEs, even if those different PEs are each executing the same cache maintenance
instructions at the same time. Since any cacheable line can be allocated into the cache at any time, it is possible for
a cache line to migrate from an entry in the cache of one PE to the cache of a different PE in a way that means the
line is not affected by set/way based cache maintenance. Therefore, Arm strongly discourages the use of set/way
instructions to manage coherency in coherent systems. The expected use of the cache maintenance instructions that
operate by set/way is limited to the cache maintenance associated with the powerdown and powerup of caches, if
this is required by the implementation.

The limitations of cache maintenance by set/way mean maintenance by set/way does not happen on multiple PEs,
and cannot be made to happen atomically for each address on each PE. Therefore in multiprocessor or multithreaded
systems, the use of cache maintenance by set/way to clean, or clean and invalidate, the entire cache for coherency
management with very large buffers or with buffers with unknown address can fail to provide the expected
coherency results because of speculation by other PEs, or possibly by other threads. The only way that these
instructions can be used in this way is to first ensure that all PEs that might cause speculative accesses to caches that
need to be maintained are not capable of generating speculative accesses. This can be achieved by ensuring that
those PEs have no memory locations with a Normal Cacheable attribute. Such an approach can have very large
system performance effects, and Arm advises implementers to use hardware coherency mechanisms in systems
where this will be an issue.

System level caches refers to other limitations of cache maintenance by set/way.

The following example code for cleaning a data or unified cache to the Point of Coherency illustrates a generic
mechanism for cleaning the entire data or unified cache to the Point of Coherency. It assumes that the current Cache
Size Identification Register is in 32-bit format. For more information, see Possible formats of the Cache Size
Identification Register, CCSIDR_EL1.

 MRS X0, CLIDR_EL1
 AND W3, W0, #0x07000000 // Get 2 x Level of Coherence
 LSR W3, W3, #23
 CBZ W3, Finished
 MOV W10, #0 // W10 = 2 x cache level
 MOV W8, #1 // W8 = constant 0b1
Loop1: ADD W2, W10, W10, LSR #1 // Calculate 3 x cache level
 LSR W1, W0, W2 // extract 3-bit cache type for this level
 AND W1, W1, #0x7
 CMP W1, #2
 B.LT Skip // No data or unified cache at this level
 MSR CSSELR_EL1, X10 // Select this cache level
 ISB // Synchronize change of CSSELR
 MRS X1, CCSIDR_EL1 // Read CCSIDR
 AND W2, W1, #7 // W2 = log2(linelen)-4
 ADD W2, W2, #4 // W2 = log2(linelen)
 UBFX W4, W1, #3, #10 // W4 = max way number, right aligned
 CLZ W5, W4 // W5 = 32-log2(ways), bit position of way in DC operand
 LSL W9, W4, W5 // W9 = max way number, aligned to position in DC operand
 LSL W16, W8, W5 // W16 = amount to decrement way number per iteration
Loop2: UBFX W7, W1, #13, #15 // W7 = max set number, right aligned
 LSL W7, W7, W2 // W7 = max set number, aligned to position in DC operand
 LSL W17, W8, W2 // W17 = amount to decrement set number per iteration
Loop3: ORR W11, W10, W9 // W11 = combine way number and cache number ...
 ORR W11, W11, W7 // ... and set number for DC operand
 DC CSW, X11 // Do data cache clean by set and way
 SUBS W7, W7, W17 // Decrement set number
 B.GE Loop3
 SUBS X9, X9, X16 // Decrement way number
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6550
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
 B.GE Loop2
Skip: ADD W10, W10, #2 // Increment 2 x cache level
 CMP W3, W10
 DSB // Ensure completion of previous cache maintenance instruction
 B.GT Loop1
Finished:

Similar approaches can be used for all cache maintenance instructions.

D7.5.10 Data cache zero instruction

The Data Cache Zero by Address instruction, DC ZVA, writes 0x00 to each byte of a block of N bytes, aligned in
memory to N bytes in size, where:

• The block in memory is identified by the address supplied as an argument to the DC ZVA instruction. There are
no alignment restrictions on this address.

Note

This means that each byte of the block of memory that includes the supplied address is set to zero.

• The DCZID_EL0 register indicates the block size, N bytes, that is written with byte values of zero.

Software can restrict access to this instruction. See Configurable instruction controls and the description of the DC
ZVA instruction.

The DC ZVA instruction behaves as a set of stores to the location being accessed, and:

• Generates a Permission fault if the translation regime being used when the instruction is executed does not
permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store
instruction.

In addition:

• When the instruction is executed, it can generate memory faults or watchpoints that are prioritized in the same
way as other memory related faults or watchpoints. Where a synchronous Data Abort fault or a watchpoint
is generated, the CM bit in the syndrome field is not set to 1, which would be the case for all other cache
maintenance instructions. See ISS encoding for an exception from a Data Abort for more information about
the encoding of the associated ESR_ELx.ISS field.

• If the memory region being zeroed is any type of Device memory, then DC ZVA generates an Alignment fault
which is prioritized in the same way as other alignment faults that are determined by the memory type.

Note

The architecture makes no statements about whether or not a DC ZVA instruction causes allocation to any particular
level of the cache, for addresses that have a cacheable attribute for those levels of cache.

Despite its mnemonic, the DC ZVA instruction is not a data cache maintenance instruction.

D7.5.11 Cache lockdown

The concept of an entry locked in a cache is allowed, but not architecturally defined. How lockdown is achieved is
IMPLEMENTATION DEFINED and might not be supported by:

• An implementation.

• Some memory attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6551
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked
cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an
unlocked item that remains in the cache remains dirty.

A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked
cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

D7.5.11.1 The interaction of cache lockdown with cache maintenance instructions

The interaction of cache lockdown and cache maintenance instructions is IMPLEMENTATION DEFINED. However, an
architecturally-defined cache maintenance instruction on a locked cache line must comply with the following
general rules:

• Cache maintenance operations to the PoPA affect cache entries regardless of lockdown status.

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:

— Cache clean by set/way, DC CSW.

— Cache invalidate by set/way, DC ISW.

— Cache clean and invalidate by set/way, DC CISW.

— Instruction cache invalidate all, IC IALLU and IC IALLUIS.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is not invalidated from the cache.

2. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the DFSC value defined for this purpose, see ISS encoding for an
exception from a Data Abort.

This permits a usage model for cache invalidate routines to operate on a large range of addresses by
performing the required operation on the entire cache, without having to consider whether any cache entries
are locked.

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:

— Cache clean by virtual address, DC CVAC, DC CVAP, and DC CVAU.

— Cache invalidate by virtual address, DC IVAC.

— Cache clean and invalidate by virtual address, DC CIVAC.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is invalidated from the cache. For the clean
and invalidate instructions, the entry must be cleaned before it is invalidated.

2. If the instruction specified an invalidation, a locked entry is not invalidated from the cache. If the
instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the DFSC value defined for this purpose. See ESR_ELx.

In an implementation that includes EL2 enabled in the current Security state, if HCR_EL2.TIDCP is set to 1, any
exception relating to lockdown of an entry is routed to EL2.

Note

An implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on
entries that are not locked down.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6552
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• Implement one of the other permitted alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use
architecturally-defined instructions. This minimizes the number of customized instructions required.

In addition, an implementation that uses an abort to handle cache maintenance instructions for entries that might be
locked must provide a mechanism that ensures that no entries are locked in the cache.

The reset setting of the cache must be that no cache entries are locked.

D7.5.11.1.1 Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the
IMPLEMENTATION DEFINED spaces reserved for Cache Lockdown, see Reserved encodings for IMPLEMENTATION
DEFINED registers.

D7.5.12 System level caches

The Arm Architecture defines a system cache as a cache that is not described in the PE Cache Identification
registers, CCSIDR_EL1 and CLIDR_EL1, and for which the set/way cache maintenance instructions do not apply.

Conceptually, three classes of system cache can be envisaged:

1. System caches which lie before the point of coherency and cannot be managed by any cache maintenance
instructions. Such systems fundamentally undermine the concept of cache maintenance instructions
operating to the point of coherency, as they imply the use of non-architecture mechanisms to manage
coherency. The use of such systems in the Arm architecture is explicitly prohibited.

2. System caches which lie before the point of coherency and can be managed by cache maintenance by address
instructions that apply to the point of coherency, but cannot be managed by cache maintenance by set/way
instructions. Where maintenance of the entirety of such a cache must be performed, as in the case for power
management, it must be performed using non-architectural mechanisms.

3. System caches which lie beyond the point of coherency and so are invisible to the software. The management
of such caches is outside the scope of the architecture.

D7.5.13 Branch prediction

If FEAT_CLRBHB is not implemented, then the architecture does not define any branch predictor maintenance
instructions for AArch64 state.

If branch prediction is architecturally visible, cache maintenance must also apply to branch prediction.

When FEAT_CLRBHB is implemented, the CLRBHB instruction available. When the CLRBHB instruction is executed,
the branch history is cleared for the current context to the extent that branch history information created before the
CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control the execution of
any code in the current context appearing in program order after the instruction.

When FEAT_ECBHB is implemented, the branch history information created in a context before an exception to a
higher Exception level using AArch64 cannot be used by code before that exception to exploitatively control the
execution of any indirect branches in code in a different context after the exception.

D7.5.14 Execution, data prediction and prefetching restriction System instructions

When FEAT_SPECRES is implemented alone or alongside FEAT_SPECRES2, the System instructions listed in
A64 System instructions for prediction restriction prevent predictions based on information gathered from earlier
execution within a particular execution context (CTX), from affecting the later speculative execution within that
CTX, to the extent that the speculative execution is observable through side-channels.

The prediction restriction System instructions being used by a particular CTX apply to:

• All control flow prediction resources that predict execution addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6553
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
• Data value prediction.

• Cache allocation prediction.

For these System instructions, the CTX is defined by:

• The Security state.

• The Exception level.

• When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.

• When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.

• When executing at EL0 when using the EL1&0 translation regime, the ASID and, if EL2 is implemented and
enabled in the current Security state, the VMID.

• When executing at EL0 when using the EL2&0 translation regime, the ASID.

Note

• The data value prediction applies to all prediction resources that use some form of training to speculate data
values as part of an execution.

• The cache allocation applies to all instruction and data caches, and TLB prefetching hardware used by the
executing PE that applies to the supplied context.

The context information is passed as a register argument, and is restricted so that:

• Execution of the System instruction at EL0 only applies to the current hardware defined context.

• Execution of the System instruction at EL1only applies to the current VMID and Security state, and does not
apply to EL2 or EL3.

• Execution of the System instruction at EL2 can only apply to the current Security state, and does not apply
to EL3.

If the System instruction is specified to apply to a combination of Security state and Exception level that is not
implemented, or an Exception level which is higher than the Exception level that the System instruction is executed
at, then the System instruction is treated as a NOP.

When the System instruction is complete and synchronized, no predictions of the restricted type for the affected
context are influenced by the execution of the program before the System instruction in a manner that can be
observed by the use of any side channels.

Note

• Prediction restriction System instructions do not require the invalidation of prediction structures so long as
the behavior described for completion is met by an implementation.

• Prediction restriction System instructions are permitted to invalidate more prediction information than is
defined by the supplied execution context.

These System instructions are guaranteed to be complete following a DSB that covers both read and write behavior
on the same PE that executed the original instruction. A subsequent Context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

In AArch64 state, EL0 access to the System instructions is controlled by:

• When HCR_EL2.{E2H, TGE} is not {1, 1}, SCTLR_EL1.EnRCTX.

• When HCR_EL2.{E2H, TGE} == {1, 1}, SCTLR_EL2.EnRCTX.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6554
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.5 Cache support
Note

If the SCR_EL3.EEL2 is changed, in order to remove all VMID tagging from Secure EL1 and Secure EL0 entries,
each prediction resource should be invalidated for:

• Secure EL0 for all ASID and VMID values.

• Secure EL1 for all VMID values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6555
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.6 External aborts
D7.6 External aborts

The Arm architecture defines External aborts as errors that occur in the memory system, other than those that are
detected by the MMU or debug logic. An External abort might signal a data corruption to the PE. For example, a
memory location might have been corrupted, and this corruption is detected by hardware using a parity or error
correction code (ECC). The error might have been propagated. The RAS Extension provides mechanisms for
software to determine the extent of the corruption and contain propagation of the error. For more information, see
Chapter D19 RAS PE Architecture.

An External abort is one of the following:

• Synchronous.

• Precise asynchronous.

• Imprecise asynchronous.

For more information, see Exception entry terminology.

The RAS Extension provides a more granular taxonomy of aborts. When the RAS Extension is not implemented,
the Arm architecture does not provide any method to distinguish between precise asynchronous and imprecise
asynchronous External aborts.

It is IMPLEMENTATION DEFINED which External aborts, if any, are supported.

External aborts on data accesses and translation table walks on data accesses can be either synchronous or
asynchronous.

When FEAT_DoubleFault is not implemented, External aborts on instruction fetches and translation table walks on
instruction fetches can be either synchronous or asynchronous.

When FEAT_DoubleFault is implemented, all External abort exceptions on instruction fetches and translation table
walks on instruction fetches must be synchronous.

A synchronous External abort on an instruction fetch, including a translation table walk on an instruction fetch, is
taken precisely using the Instruction Abort exception.

A synchronous External abort on a data read or write, including a translation table walk on a data read or write, is
taken precisely using the Data Abort exception.

See Synchronous exception types.

An asynchronous External abort is taken using the SError interrupt exception. See Asynchronous exception types.

The effect of a failed memory access is described in Definition of a precise exception and imprecise exception.

Normally, External aborts are rare. An imprecise asynchronous External abort is likely to be fatal to the process that
is running, Arm recommends that implementations make External aborts precise wherever possible.

The following subsections give more information about possible External aborts:

• Provision for the classification of External aborts.

• Parity or ECC error reporting, RAS Extension not implemented.

D7.6.1 Provision for the classification of External aborts

In AArch64 state, an implementation can use ESR_ELx.EA, ISS[9], to provide more information about
synchronous External aborts. For all synchronous aborts other than synchronous External aborts, ESR_ELx.EA,
ISS[9], returns a value of 0.

If the FEAT_RAS is implemented:

• The ESR_ELx.SET field provides information about the state of the PE following a synchronous External
abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6556
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.6 External aborts
• The ESR_ELx.AET field might contain more information following an asynchronous abort taken as an
SError interrupt.

• The implementation might define error record registers.

For more information, see:

• ISS encoding for an exception from an Instruction Abort.

• ISS encoding for an exception from a Data Abort.

• ISS encoding for an SError exception.

• Taking error exceptions.

D7.6.2 Parity or ECC error reporting, RAS Extension not implemented

The Arm architecture supports the reporting of both synchronous and asynchronous parity or ECC errors from the
cache system. It is IMPLEMENTATION DEFINED what parity or ECC errors in the cache systems, if any, result in
synchronous or asynchronous parity or ECC errors.

A fault code is defined for reporting parity or ECC errors. However, when parity or ECC error reporting is
implemented, it is implementation defined whether a parity or ECC error is reported using the assigned fault code
or using another appropriate encoding.

For all purposes other than the Fault status encoding, parity or ECC errors are treated as External aborts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6557
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.7 Memory barrier instructions
D7.7 Memory barrier instructions

Memory barriers describes the memory barrier instructions. This section describes the system level controls of those
instructions.

D7.7.1 EL2 control of the shareability of data barrier instructions executed at EL0 or EL1

In an implementation that includes EL2 enabled in the current Security state and supports shareability limitations
on the data barrier instructions, the HCR_EL2.BSU field can modify the required shareability of an instruction that
is executed at EL0 or EL1. Table D7-8 shows the encoding of this field.

For an instruction executed at EL0 or EL1, Table D7-9 shows how the HCR_EL2.BSU is combined with the
shareability specified by the argument of the DMB or DSB instruction to give the scope of the instruction.

Table D7-8 EL2 control of shareability of barrier instructions executed at EL0 or EL1

HCR_EL2.BSU Minimum shareability of barrier instructions

00 No effect, shareability is as specified by the instruction

01 Inner Shareable

10 Outer Shareable

11 Full system

Table D7-9 Effect of HCR_EL2.BSU on barrier instructions executed at EL1 or EL0

Shareability specified by the DMB or DSB argument HCR_EL2.BSU Resultant shareability

Full system Any Full system

Outer Shareable 00, 01, or 10 Outer Shareable

11, Full system Full system

Inner Shareable 00 or 01 Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system

Non-shareable 00, No effect Non-shareable

01, Inner Shareable Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6558
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.8 Pseudocode description of general memory System instructions
D7.8 Pseudocode description of general memory System instructions

This section lists the pseudocode describing general memory operations:

• Memory data type definitions.

• Basic memory access.

• Aligned memory access.

• Unaligned memory access.

• Exclusives monitors operations.

• Access permission checking.

• Abort exceptions.

• Memory barriers.

D7.8.1 Memory data type definitions

This section lists the memory data types.

The memory data types are:

• Address descriptor, defined by the AddressDescriptor type.

• Full address, defined by the FullAddress type.

• Memory attributes, defined by the MemoryAttributes type.

• Memory type, defined by the MemType enumeration.

• Device memory type, defined by the DeviceType enumeration.

• Normal memory attributes, defined by the MemAttrHints type.

• Cacheability attributes, defined by the MemAttr_NC, MemAttr_WT, and MemAttr_WB constants.

• Allocation hints, defined by the MemHint_No, MemHint_WA, MemHint_RA, and MemHint_RWA constants.

• Access permissions, defined by the Permissions type.

These types are defined in Chapter J1 Armv8 Pseudocode.

D7.8.2 Basic memory access

The PhysMemRead() and PhysMemWrite() functions perform single-copy atomic, aligned, little-endian memory
accesses of size bytes to or from the underlying physical memory array of bytes.

The attributes in memaddrdesc.memattrs are used by the memory system to determine caching and ordering behaviors
as described in Memory types and attributes, Ordering relations, and Atomicity in the Arm architecture.

D7.8.3 Aligned memory access

The two MemSingle[] accessors, non-assignment (memory read) AArch64.MemSingle[] and assignment (memory
write) AArch64.MemSingle[], make atomic, little-endian accesses of size bytes.

D7.8.4 Unaligned memory access

The two Mem[] accessors, Non-assignment (memory read) Mem[] and Assignment (memory write) Mem[], make
accesses of the required type. If an access is not architecturally defined to be atomic, Mem[] synthesizes accesses
from multiple calls to AArch64.MemSingle[]. It also reverses the byte order if the access is big-endian.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6559
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.8 Pseudocode description of general memory System instructions
The IsAligned() function checks the alignment of memory accesses.

D7.8.5 Exclusives monitors operations

The AArch64.SetExclusiveMonitors() function sets the Exclusives monitors for a block of bytes, the size of which
is determined by size, at the virtual address defined by address.

The AArch64.ExclusiveMonitorsPass() function checks whether the Exclusives monitors are set to include the
location of a number of bytes specified by size, at the virtual address defined by address. The atomic write that
follows after the Exclusives monitors have been set must be to the same physical address. It is permitted, but not
required, for this function to return FALSE if the virtual address is not the same as that used in the previous call to
AArch64.SetExclusiveMonitors().

The ExclusiveMonitorsStatus() function returns 0 if the previous atomic write was to the same physical memory
locations selected by AArch64.ExclusiveMonitorsPass() and therefore succeeded. Otherwise the function returns 1,
indicating that the address translation delivered a different physical address.

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and
the size of the transfer. The procedure records that the PE processorid has requested exclusive access covering at
least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED,
up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It
is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address
by the same PE to be cleared.

The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and
the size of the transfer. The procedure records in a local record that PE processorid has requested exclusive access
to an address covering at least size bytes from address paddress. The size of the location marked as exclusive is
IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and
is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure
also performs a MarkExclusiveGlobal() using the same parameters.

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked in a global record an address range
as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED
whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested.
If no address is marked in a global record as exclusive access, IsExclusiveGlobal() returns FALSE.

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked an address range as exclusive
access requested that covers at least the size bytes from address paddress. It is IMPLEMENTATION DEFINED whether
this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of size
bytes from address paddress. If no address is marked as exclusive access requested, then this function returns
FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of IsExclusiveGlobal() with
the same parameters.

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the PE identifier processorid
and the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an
address region including any of size bytes starting from paddress has had a request for an exclusive access. It is
IMPLEMENTATION DEFINED whether the equivalent global record of the PE processorid is also cleared if any of size
bytes starting from paddress has had a request for an exclusive access, or if any other address has had a request for
an exclusive access.

The ClearExclusiveLocal() procedure takes as arguments the PE identifier processorid. The procedure clears the
local record of PE processorid for which an address has had a request for an exclusive access. It is IMPLEMENTATION
DEFINED whether this operation also clears the global record of PE processorid that an address has had a request for
an exclusive access.

D7.8.6 Access permission checking

The AArch64.S1CheckPermissions() and AArch64.S2CheckPermissions() functions are used by the architecture to
perform access permission checking based on attributes derived from the Translation Tables descriptors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6560
ID032224 Non-Confidential

The AArch64 System Level Memory Model
D7.8 Pseudocode description of general memory System instructions
The interpretation of access permission is shown in Memory access control.

D7.8.7 Abort exceptions

The AArch64.Abort() function generates either a Data Abort or an Instruction Abort exception by calling
AArch64.DataAbort() or AArch64.InstructionAbort(). It also can generate a debug exception for debug related faults,
see Chapter D2 AArch64 Self-hosted Debug.

The AArch64.DataAbort() function generates a Data Abort exception, routes the exception to EL2 or EL3, and
records the information required for the Exception Syndrome registers, ESR_ELx. See ISS encoding for an
exception from a Data Abort. A second stage abort might also record the intermediate physical address, IPA, but
this depends on the type of the abort.

For a synchronous abort, AArch64.DataAbort() also sets the FAR to the VA of the abort.

The AArch64.InstructionAbort() function generates an Instruction Abort exception, routes the exception to EL2 or
EL3, and records the information required for the Exception Syndrome registers, ESR_ELx, see ISS encoding for
an exception from an Instruction Abort. A second stage abort might also record the intermediate physical address,
IPA, but this depends on the type of the abort.

For a synchronous abort, AArch64.InstructionAbort() also sets the FAR to the VA of the abort.

The FaultRecord type describes a fault. Functions that check for faults return a record of this type appropriate to the
type of fault.

The function NoFault() returns a null record that indicates no fault. The IsFault() function tests whether a
FaultRecord contains a fault.

D7.8.8 Memory barriers

The definition for the memory barrier functions is given by the enumerations MBReqDomain and MBReqTypes.

These enumerations define the required shareability domains and required access types used as arguments for DMB
and DSB instructions.

The procedures DataMemoryBarrier, DataSynchronizationBarrier, and InstructionSynchronizationBarrier perform
the memory barriers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D7-6561
ID032224 Non-Confidential

Chapter D8
The AArch64 Virtual Memory System Architecture

This chapter provides a system level view of the AArch64 Virtual Memory System Architecture (VMSA), the
memory system architecture of an A-profile implementation that is executing in AArch64 state. It contains the
following sections:

• Address translation.

• Translation process.

• Translation table descriptor formats.

• Memory access control.

• Memory region attributes.

• Other descriptor fields.

• Address tagging.

• Pointer authentication.

• Memory Encryption Contexts extension.

• Virtualization Host Extensions.

• Nested virtualization.

• Memory aborts.

• Translation Lookaside Buffers.

• TLB maintenance.

• Caches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6562
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture

• Pseudocode description of VMSAv8-64 address translation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6563
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
D8.1 Address translation

RDWFWP If an implementation is executing in AArch64 state, then that implementation uses either or both of the VMSAv8-64
and the VMSAv9-128 translation systems.

RRKHJV All of the following determine whether a translation stage uses the VMSAv9-128 translation system:

• For stage 1 translations in the EL1&0 translation regime, the Effective value of TCR2_EL1.D128 is 1.

• For stage 1 translations in the EL2&0 translation regime, the Effective value of TCR2_EL2.D128 is 1.

• For stage 1 translations in the EL3 translation regime, the Effective value of TCR_EL3.D128 is 1.

• For stage 2 translations, the Effective value of VTCR_EL2.D128 is 1.

Otherwise, the translation stage uses the VMSAv8-64 translation system.

This applies even when the translation stage is disabled.

ICCTQS Address translation converts the addresses used by instructions to the addresses used by the physical memory
system.

RCRPHV When a data address or instruction address is used in an instruction, it is a virtual address (VA). This includes any
address stored in one of the following registers:

• Program counter (PC).

• Stack pointers (SP).

• Link register (LR).

• Exception link register (ELR).

RCRDGS When an access is made to the physical memory system, a physical address (PA) is used.

RKCNRX An address translation maps a VA to a PA.

RCCCQQ An address translation requires one of the following:

• A single translation stage, stage 1.

• Two sequential translation stages, stage 1 and stage 2.

RZKJWW An address translation stage maps an input address (IA) to an output address (OA).

RBCKLH If one address translation stage is used, then a VA is mapped to a PA using all of the following steps:

1. The VA is input as the IA to the translation stage.

2. The PA is output as the OA from the translation stage.

RKXSMJ If two address translation stages are used, then a VA is mapped to a PA using all of the following steps:

1. The VA is input as the IA to the stage 1 translation.

2. The intermediate physical address (IPA) is output as the OA from the stage 1 translation.

3. The IPA is input as the IA to the stage 2 translation.

4. The PA is output as the OA from the stage 2 translation.

IMBNVX If an address translation stage is disabled, then the value of the OA is the same as the IA.

IYXNZL When an IA is translated to an OA, an address translation stage uses a set of memory mapped translation tables that
hold all of the following information:

• The OA corresponding to the IA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6564
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
• For accesses made from Secure state, whether the OA access is to the Secure or Non-secure address map.

• The OA memory access permissions.

• The OA memory region attributes.

IFJFQR When an IA is translated by an address translation stage, all of the following apply:

• A translation table lookup reads an entry from a translation table.

• A translation table entry resolves a subset of the IA.

• Multiple translation table entries can be required to completely resolve an IA.

• An address translation can require multiple lookups across different lookup levels and multiple translation
tables.

RJTYJP When memory is accessed, the Memory Management Unit (MMU) controls address translation, memory access
permissions, memory attribute determination, and memory attribute checking.

RRJPRG When the MMU cannot translate the IA, an MMU fault is generated.

RFLRHM When an address translation stage generates an MMU fault, it is one of the following:

• When a stage 1 translation cannot translate an IA, a stage 1 MMU fault is generated.

• When a stage 2 translation cannot translate an IA, a stage 2 MMU fault is generated.

IZWCKD For more information, see:

• Implemented physical address size.

• Output address size configuration.

• Supported virtual address ranges.

• Input address size configuration.

• Intermediate physical address size configuration.

• Translation process.

• The effects of disabling an address translation stage.

• Memory aborts

D8.1.1 Translation granules

IGZDPY The translation granule size determines the number of bits resolved by each lookup level when mapping from an IA
to OA, and the maximum size of a single translation table.

RZVQXW The VMSA defines all of the following translation granule sizes:

• 4KB.

• 16KB.

• 64KB.

RJZCBC For each translation granule size, and translation stage, support is IMPLEMENTATION DEFINED.

RVKNXT Each address translation stage can be independently configured to use one of the supported translation granule sizes.

RQKCFY A page is the smallest memory region in which an IA to OA mapping can be specified.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6565
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
IMGPLT The translation granule determines all of the following:

• The translation process used to resolve an IA to an OA.

• The page size of the address translation stage.

• The number of address bits required to address a page.

• The maximum translation table size of the address translation stage.

• The number of address bits that can be resolved in a single translation table lookup.

IKZLYC For all of the following reasons, a larger translation granule can reduce the number of translation lookup levels:

• The larger granule uses a larger translation table with more entries.

• A single lookup can resolve more IA bits.

• The larger page size means more of the least significant address bits are used to address within a page and do
not require translation because those bits are flat-mapped from IA to OA.

IQRLDB Arm recommends separating memory-mapped peripherals by an integer multiple of the largest granule size
supported by the PEs in the system, to allow independent management of each peripheral.

IXKKTX If FEAT_GTG is not implemented, then the ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} fields specify
the translation granules supported in both stage 1 and stage 2 translations.

IFXFSZ If FEAT_GTG is implemented, then support for translation granule sizes are determined by all of the following:

• The ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} fields specify the translation granules supported
in stage 1 translations.

• The ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2} fields specify the translation granules
supported in stage 2 translations.

D8.1.2 Translation regimes

ICJMWY A translation regime determines how a VA is mapped to a PA. The translation regime is affected by the current
Security state, the current Exception level, the enabled Exception levels, HCR_EL2 settings, and implemented
features.

IHLQTD The architecture defines all of the following translation regimes:

• Non-secure EL1&0 translation regime.

• Secure EL1&0 translation regime.

• Realm EL1&0 translation regime.

• Non-secure EL2&0 translation regime.

• Secure EL2&0 translation regime.

• Realm EL2&0 translation regime.

• Non-secure EL2 translation regime.

• Secure EL2 translation regime.

• Realm EL2 translation regime.

• EL3 translation regime.

IDQHFH The implemented Exception levels affect the supported translation regimes and translation stages.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6566
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
RFVYPX For each Security state, configuration of stage 1 and stage 2 translation can produce output addresses only in
physical address spaces marked as YES in the following table:

RTSFYG Only the EL1&0 translation regimes support a stage 2 translation.

IDTPTJ If a software agent, such as an operating system, uses or configures stage 1 translations, then that software agent
might be unaware of all of the following:

• The stage 2 translation.

• The distinction between IPA and PA.

RZQYNV If the Effective value of HCR_EL2.E2H is 0, then only the EL1&0 translation regime, stage 1, can support two VA
ranges.

RQLSFG If the Effective value of HCR_EL2.E2H is 1, then the EL2&0 translation regime, stage 1, can support two VA
ranges.

IQCFSC If a stage 1 translation supports two VA ranges, then that translation stage also supports two privilege levels.

IMZRPG Support for execution in Realm state at EL0 in AArch32 is IMPLEMENTATION DEFINED. Use of the Realm translation
regimes at EL0 in AArch32 depends on that support for AArch32 at EL0. Support for execution in Realm state at
other Exception levels is available in AArch64 only.

D8.1.2.1 Non-secure EL1&0 translation regime

RQJSCR If all of the following apply and EL2 is disabled, then the Non-secure EL1&0 translation regime is used to translate
addresses:

• The memory accesses occur in Non-secure state.

• Memory is accessed from EL1 or EL0.

• The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

RLLNVY If Non-secure EL2 is not implemented, then the Non-secure EL1&0 translation regime has a single address
translation stage, stage 1, that does all the following:

• Maps VAs to PAs.

• Supports two VA ranges and the use of ASIDs.

RPMRVM If Non-secure EL2 is implemented, then the Non-secure EL1&0 translation regime supports all of the following:

• Translation stage 1 that does all the following:

— Maps VAs to IPAs.

— Supports two VA ranges and the use of ASIDs.

• Translation stage 2 that does all the following:

— Maps stage 1 IPAs to PAs.

Table D8-1 Relationship between Security state and permitted PA space

PA space Non-secure state Secure state Realm state Root state

Non-secure Yes Yes Yes Yes

Secure No Yes No Yes

Realm No No Yes Yes

Root No No No Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6567
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
— Supports a single IPA range.

• The translations are associated with a VMID.

• Translation stage 1 and translation stage 2 can be enabled independent of each other.

For more information, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

IFYLSZ Non-secure EL2 is effectively disabled if it is not implemented.

D8.1.2.2 Secure EL1&0 translation regime

RDKYXN If all of the following apply, then the Secure EL1&0 translation regime is used to translate addresses:

• The memory accesses occur in Secure state.

• Memory is accessed from EL1 or EL0.

• The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

RYTZXB If Secure EL2 is disabled or not implemented, then the Secure EL1&0 translation regime has a single address
translation stage, stage 1, that does all the following:

• Maps VAs to PAs.

• Supports two VA ranges and the use of ASIDs.

RJMRWC If Secure EL2 is enabled, then the Secure EL1&0 translation regime, supports all of the following:

• Translation stage 1 that does all the following:

— Maps VAs to IPAs.

— Supports two VA ranges and the use of ASIDs.

• Translation stage 2 that does all the following:

— Maps stage 1 IPAs to PAs.

— Supports a single Non-secure IPA range and a single Secure IPA range.

• The translations are associated with a VMID.

• Translation stage 1 and translation stage 2 can be enabled independent of each other.

For more information, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

D8.1.2.3 Realm EL1&0 translation regime

RBTYVG If all of the following apply, then the Realm EL1&0 translation regime is used to translate addresses:

• The memory accesses occur in Realm state.

• Memory is accessed from EL1 or EL0.

• The Effective value of HCR_EL2.TGE is 0.

RYXQTB The Realm EL1&0 translation regime supports all of the following:

• Translation stage 1 that does all the following:

— Maps VAs to Realm IPAs.

— Supports two VA ranges and the use of ASIDs.

• Translation stage 2 that does all the following:

— Supports one IPA range.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6568
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
— Maps stage 1 Realm IPAs to Realm PAs or Non-secure PAs.

— The translation is associated with a VMID.

• The translations are associated with a VMID.

• Translation stage 1 and translation stage 2 can be enabled independent of each other.

For more information, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

RHMWYX All features supported for the Non-secure EL1&0 stage 1 translation regime are supported for the Realm EL1&0
stage 1 translation regime.

RPDRZK All features supported for the Non-secure EL1&0 stage 2 translations are supported for Realm EL1&0 stage 2
translations.

D8.1.2.4 Non-secure EL2&0 translation regime

RKBSNT If all of the following apply, then the Non-secure EL2&0 translation regime is used to translate addresses:

• The memory accesses occur in Non-secure state.

• One of the following applies:

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 0} and memory accesses are from EL2.

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and memory accesses are from EL2 or EL0.

For more information, see Virtualization Host Extensions.

RMNQBD The Non-secure EL2&0 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to PAs.

• Supports two VA ranges and the use of ASIDs.

For more information, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

D8.1.2.5 Secure EL2&0 translation regime

RRJHRJ If all of the following apply, then the Secure EL2&0 translation regime is used to translate addresses:

• The Effective value of SCR_EL3.EEL2 is 1.

• The memory accesses occur in Secure state.

• One of the following applies:

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 0} and memory accesses are from EL2.

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and memory accesses are from EL2 or EL0.

For more information, see Virtualization Host Extensions.

RRRQTL The Secure EL2&0 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to Secure PAs or Non-secure PAs.

• Supports two VA ranges and the use of ASIDs.

For more information, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

D8.1.2.6 Realm EL2&0 translation regime

RJYGWW If all of the following apply, then the Realm EL2&0 translation regime is used to translate addresses:

• The memory accesses occur in Realm state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6569
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
• One of the following applies:

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 0} and memory accesses are from EL2.

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and memory accesses are from EL2 or EL0.

For more information, see Virtualization Host Extensions.

RPMTLC The Realm EL2&0 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to Realm PAs or Non-secure PAs.

• Supports two VA ranges and the use of ASIDs.

For more information, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

D8.1.2.7 Non-secure EL2 translation regime

RLCPJJ If all of the following apply, then the Non-secure EL2 translation regime is used to translate addresses:

• The memory accesses occur in Non-secure state.

• The Effective value of HCR_EL2.E2H is 0.

• Memory is accessed from EL2.

RPYJCB The Non-secure EL2 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to PAs.

• Supports a single VA range.

D8.1.2.8 Secure EL2 translation regime

RGFVNF If all of the following apply, then the Secure EL2 translation regime is used to translate addresses:

• The Effective value of SCR_EL3.EEL2 is 1.

• The memory accesses occur in Secure state.

• The Effective value of HCR_EL2.E2H is 0.

• Memory is accessed from EL2.

RCTSYJ The Secure EL2 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to Secure PAs or Non-secure PAs.

• Supports a single VA range.

D8.1.2.9 Realm EL2 translation regime

RFMHTT If all of the following apply, then the Realm EL2 translation regime is used to translate addresses:

• The memory accesses occur in Realm state.

• The Effective value of HCR_EL2.E2H is 0.

• Memory is accessed from EL2.

RWYXPT The Realm EL2 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to Realm PAs or Non-secure PAs.

• Supports a single VA range.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6570
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
D8.1.2.10 EL3 translation regime

RPCRZX If memory is accessed from EL3, then the EL3 translation regime is used to translate addresses.

RDCCTQ The EL3 translation regime has a single address translation stage, stage 1, that does all the following:

• Maps VAs to PAs in all supported PA spaces.

• Supports a single VA range.

D8.1.3 Relationship between translation regimes and implemented Exception levels

IVNQXD The set of translation regimes that an implementation supports depend on the set of Exception levels that the
implementation supports.

RGFKSR If an implementation does not include EL2, then all of the following apply:

• If the implementation does not include EL3, then the MMU provides a single EL1&0 stage 1 translation
regime with an IMPLEMENTATION DEFINED Security state.

• If the implementation includes EL3, then the MMU provides an EL1&0 stage 1 translation regime in each
Security state.

RRJWCS For each translation stage supported by a translation regime, the following table shows what is required to support
that translation stage.

Table D8-2 Translation regimes, translation stages, and associated controls

Translation stage Requires

Non-secure EL2 stage 1 EL2 is implemented and EL2 uses AArch64.

The Effective value of SCR_EL3.{NSE, NS} is {0, 1}.

HCR_EL2.E2H is 0.

Non-secure EL2&0 stage 1 EL2 is implemented and EL2 uses AArch64.

The Effective value of SCR_EL3.NS is 1.

The Effective value of HCR_EL2.E2H is 1.

Non-secure EL1&0 stage 2 EL2 is implemented and EL2 uses AArch64.

The Effective value of SCR_EL3.{NSE, NS} is {0, 1}.

Non-secure EL1&0 stage 1 EL1 uses AArch64.

The Effective value of SCR_EL3.{NSE, NS} is {0, 1}.

Secure EL2 stage 1 EL2 is implemented and EL2 uses AArch64.

The Effective value of SCR_EL3.EEL2 is 1.

The Effective value of SCR_EL3.{NSE, NS} is {0, 0}.

HCR_EL2.E2H is 0.

Secure EL2&0 stage 1 EL2 is implemented and EL2 uses AArch64.

The Effective value of SCR_EL3.EEL2 is 1.

The Effective value of SCR_EL3.{NSE, NS} is {0, 0}.

The Effective value of HCR_EL2.E2H is 1.

Secure EL1&0 stage 2 EL2 is implemented and EL2 uses AArch64.

The Effective value of SCR_EL3.EEL2 is 1.

The Effective value of SCR_EL3.{NSE, NS} is {0, 0}.

Secure EL1&0 stage 1 EL1 uses AArch64.

The Effective value of SCR_EL3.{NSE, NS} is {0, 0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6571
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
RVDVPR For a stage 1 translation, if EL0 uses AArch32 state and one or more of the following applies, then VMSAv8-64
translation is required:

• EL1 uses AArch64 and the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• EL2 uses AArch64 and the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

RWNBMG For a stage 2 translation, if either EL1 or EL0 uses AArch32 state and EL2 uses AArch64, then VMSAv8-64
translation is required.

RKXSWD If EL0 uses AArch32, then accesses from EL0 have all of the following properties:

• Accesses use the EL1&0 or EL2&0 translation regime.

• Accesses use the AArch32 application-level memory model.

• Accesses are limited to a 32-bit VA range.

IMQXXQ For more information, see Chapter B1 The AArch64 Application Level Programmers’ Model.

D8.1.4 System registers relevant to MMU operation

IRJZKJ If a System register name has a numeric suffix, then the suffix indicates the lowest Exception level that can access
the register.

ITNCZR Translation stages are enabled and controlled by the registers specified in the following table.

Realm EL2 stage 1 FEAT_RME is implemented.

SCR_EL3.{NSE, NS} is {1, 1}.

HCR_EL2.E2H is 0.

Realm EL2&0 stage 1 FEAT_RME is implemented.

SCR_EL3.{NSE, NS} is {1, 1}.

The Effective value of HCR_EL2.E2H is 1.

Realm EL1&0 stage 2 FEAT_RME is implemented.

SCR_EL3.{NSE, NS} is {1, 1}.

Realm EL1&0 stage 1 FEAT_RME is implemented.

SCR_EL3.{NSE, NS} is {1, 1}.

EL3 stage 1 EL3 is implemented and EL3 uses AArch64.

Table D8-2 Translation regimes, translation stages, and associated controls (continued)

Translation stage Requires

Table D8-3 Registers that enable and control translation stages

Translation Stage Controlled from Controlling registers

Non-secure EL2 stage 1 Non-secure EL2 SCTLR_EL2, SCTLR2_EL2, TCR_EL2, TCR2_EL2, MAIR_EL2,
MAIR2_EL2, AMAIR_EL2, AMAIR2_EL2, TTBR0_EL2

Non-secure EL2&0 stage 1 Non-secure EL2 SCTLR_EL2, SCTLR2_EL2, TCR_EL2, TCR2_EL2, MAIR_EL2,
MAIR2_EL2, AMAIR_EL2, AMAIR2_EL2, TTBR0_EL2, TTBR1_EL2,
HCR_EL2

Non-secure EL1&0 stage 2 Non-secure EL2 SCTLR_EL2, SCTLR2_EL2, VTCR_EL2, VTTBR_EL2, HCR_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6572
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
IDDTVD The following table lists the System register common abbreviations used in VMSAv8-64. The common
abbreviation is used to describe features that apply to multiple translation regimes or translation stages.

Non-secure EL1&0 stage 1 Non-secure EL1 SCTLR_EL1, SCTLR2_EL1, TCR_EL1, TCR2_EL1, MAIR_EL1,
MAIR2_EL1, AMAIR_EL1, AMAIR2_EL1, TTBR0_EL1, TTBR1_EL1,
HCR_EL2

Secure EL2 stage 1 Secure EL2 SCTLR_EL2, SCTLR2_EL2, TCR_EL2, TCR2_EL2, MAIR_EL2,
MAIR2_EL2, AMAIR_EL2, AMAIR2_EL2, TTBR0_EL2, SCR_EL3

Secure EL2&0 stage 1 Secure EL2 SCTLR_EL2, SCTLR2_EL2, TCR_EL2, TCR2_EL2, MAIR_EL2,
MAIR2_EL2, AMAIR_EL2, AMAIR2_EL2, TTBR0_EL2, TTBR1_EL2,
HCR_EL2, SCR_EL3

Secure EL1&0 stage 2 Secure EL2 SCTLR_EL2, SCTLR2_EL2, VSTCR_EL2, VSTTBR_EL2, VTCR_EL2,
VTTBR_EL2, HCR_EL2, SCR_EL3

Secure EL1&0 stage 1 Secure EL1 SCTLR_EL1, SCTLR2_EL1, TCR_EL1, TCR2_EL1, MAIR_EL1,
MAIR2_EL1, AMAIR_EL1, AMAIR2_EL1, TTBR0_EL1, TTBR1_EL1,
HCR_EL2, SCR_EL3

Realm EL2 stage 1 Realm EL2 SCTLR_EL2, SCTLR2_EL2, TCR_EL2, TCR2_EL2, MAIR_EL2,
MAIR2_EL2, AMAIR_EL2, AMAIR2_EL2, TTBR0_EL2

Realm EL2&0 stage 1 Realm EL2 SCTLR_EL2, SCTLR2_EL2, TCR_EL2, TCR2_EL2, MAIR_EL2,
MAIR2_EL2, AMAIR_EL2, AMAIR2_EL2, TTBR0_EL2, TTBR1_EL2,
HCR_EL2

Realm EL1&0 stage 2 Realm EL2 SCTLR_EL2, SCTLR2_EL2, VTCR_EL2, VTTBR_EL2, HCR_EL2

Realm EL1&0 stage 1 Realm EL1 SCTLR_EL1, SCTLR2_EL1, TCR_EL1, TCR2_EL1, MAIR_EL1,
MAIR2_EL1, AMAIR_EL1, AMAIR2_EL1, TTBR0_EL1, TTBR1_EL1,
HCR_EL2

EL3 stage 1 EL3 SCTLR_EL3, SCTLR2_EL3, SCR_EL3, TCR_EL3, MAIR_EL3,
MAIR2_EL3, AMAIR_EL3, AMAIR2_EL3, TTBR0_EL3

Table D8-3 Registers that enable and control translation stages (continued)

Translation Stage Controlled from Controlling registers

Table D8-4 Common system register abbreviations used in VMSAv8-64

Common

Abbreviation

Translation

stage

Exception level

EL1
EL2 EL3

AMAIR_ELx - AMAIR_EL1 AMAIR_EL2 AMAIR_EL3

AMAIR2_ELx - AMAIR2_EL1 AMAIR2_EL2 AMAIR2_EL3

MAIR_ELx - MAIR_EL1 MAIR_EL2 MAIR_EL3

MAIR2_ELx - MAIR2_EL1 MAIR2_EL2 MAIR2_EL3

SCTLR_ELx - SCTLR_EL1 SCTLR_EL2 SCTLR_EL3

SCTLR2_ELx - SCTLR2_EL1 SCTLR2_EL2 SCTLR2_EL3

TCR_ELx Stage 1
Stage 2

TCR_EL1 TCR_EL2
VTCR_EL2, VSTCR_EL2

TCR_EL3

TCR2_ELx Stage 1 TCR2_EL1 TCR2_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6573
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
IRGGJW When software that enables or disables an address translation stage uses a PA that differs from the VA, speculative
instruction fetching can cause complications. If software controls address translations that apply to the software
itself, then when that software enables or disables an address translation stage, Arm recommends that the software
uses a PA that is identical to the VA.

ICVKWB For more information, see:

• Relationship between translation regimes and implemented Exception levels.

• Register name disambiguation by Exception level.

D8.1.5 Out-of-context translation regimes

IPTDBT Software is required to consider the effects on registers and translation tables when a context switch is made from
one translation regime to another.

D8.1.5.1 Speculative memory accesses from out-of-context translation regimes

RNRJPP If an implementation is executing at EL3 or EL2, the PE is not permitted to use the registers associated with the
EL1&0 translation regime to speculatively access memory or translation tables.

RFCZXS If an implementation is executing at EL3, the PE is not permitted to use the registers associated with the EL2 and
EL2&0 translation regimes to speculatively access memory or translation tables.

RLFHQG When an exception to a higher Exception level occurs, memory accesses caused by the translation table walk for
the lower exception level can continue speculatively after the higher Exception level is entered.

IQVPYJ When an exception to a higher Exception level occurs, executing a DSB instruction after entering that higher
Exception level ensures that the memory accesses caused by the translation table walk are completed.

IGFKHK If the Statistical Profiling Unit (SPU) is not in use at a lower Exception level, when a DSB instruction is executed
and completed after entering a higher Exception level, all of the following apply regarding memory accesses caused
by speculative translation table walks from the lower Exception level:

• All of the speculative memory accesses are observed as required by the Shareability and Cacheability
attributes of the lower Exception level translation table entries.

• If it is impossible to determine that the speculative memory accesses have been observed by the observers,
then these speculative memory accesses can still occur.

• No new memory accesses using the lower Exception level translation table entries occur.

IJZRDG If the SPU is in use at a lower Exception level, when a PSB instruction and a subsequent DSB instruction are
executed after entering a higher Exception level, all of the following apply regarding memory accesses caused by
speculative translation table walks from a lower Exception level:

• All of the speculative memory accesses are observed as required by the Shareability and Cacheability
attributes of the lower Exception level translation table entries.

TTBR_ELx Stage 1
Stage 2

TTBR0_EL1, TTBR1_EL1 TTBR0_EL2, TTBR1_EL2
VTTBR_EL2, VSTTBR_EL2

TTBR0_EL3

TTBRn_ELx Stage 1 TTBR0_EL1, TTBR1_EL1 TTBR0_EL2, TTBR1_EL2 TTBR0_EL3

TTBR0_ELx Stage 1 TTBR0_EL1 TTBR0_EL2 TTBR0_EL3

TTBR1_ELx Stage 1 TTBR1_EL1 TTBR1_EL2

Table D8-4 Common system register abbreviations used in VMSAv8-64 (continued)

Common

Abbreviation

Translation

stage

Exception level

EL1
EL2 EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6574
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
• If it is impossible to determine that the speculative memory accesses have been observed by the observers,
then these speculative memory accesses can still occur.

• No new memory accesses using the lower Exception level translation table entries occur.

D8.1.5.2 Register changes when changing virtual machine

IXHBRX If EL2 is enabled, when a switch from one virtual machine to another occurs, software executing at EL0 or EL1
expects register fields controlling or affecting the EL1&0 regime are modified consistently before the next virtual
machine starts execution.

ISFZVV If the registers fields controlling or affecting the EL1&0 translation regime are modified when changing a virtual
machine, then all of the following apply:

• Software executing at EL2 does the modification.

• The registers are modified out-of-context from software executing at EL1 or EL0.

• When modifying the registers, no synchronization precautions are required until the exception return to EL1
or EL0.

D8.1.6 Implemented physical address size

ITRRHX The implemented PA size is indicated by the value of the ID_AA64MMFR0_EL1.PARange field, as shown in the
following table. All other values of the ID_AA64MMFR0_EL1.PARange field are reserved.

RHGNFW If the implemented PA size is greater than 48 bits, then FEAT_LPA is required.

RNRJPM A PA size greater than 52 bits is only supported by the VMSAv9-128 translation system.

RZHZNT If the VMSAv8-64 translation system is used in an implementation that supports the VMSAv9-128 translation
system, then PA bits [55:52] are set to 0b0000.

D8.1.7 Output address size configuration

RQQQSJ For a translation stage that uses the VMSAv8-64 translation system, the maximum OA size that can be described
by translation table entries is one of the following:

• For a translation regime controlled by TCR_ELx, if the 4KB or 16KB translation granule is used, then one
of the following:

— If the Effective value of TCR_ELx.DS is 0, then 48 bits.

Table D8-5 Implemented physical address size

ID_AA64MMFR0_EL1.PARange PA memory size PA address size

0b0000 4GB 32 bits, PA[31:0]

0b0001 64GB 36 bits, PA[35:0]

0b0010 1TB 40 bits, PA[39:0]

0b0011 4TB 42 bits, PA[41:0]

0b0100 16TB 44 bits, PA[43:0]

0b0101 256TB 48 bits, PA[47:0]

0b0110 4PB 52 bits, PA[51:0]

0b0111 64PB 56 bits, PA[55:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6575
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
— If the Effective value of TCR_ELx.DS is 1, then 52 bits.

• For any translation regime, if the 64KB translation granule is used, then one of the following:

— If FEAT_LPA is not implemented, then 48 bits.

— If FEAT_LPA is implemented, then 52 bits.

RLWWHG For a translation stage that uses the VMSAv9-128 translation system, the maximum OA size that can be described
by translation table entries is 56 bits.

RMRYSR The name of the TCR_ELx.{I}PS field is one of the following:

• If the register is TCR_EL1, then the field is TCR_EL1.IPS.

• If the register is TCR_EL2, then one of the following:

— If the Effective value of HCR_EL2.E2H is 0, then the field is TCR_EL2.PS.

— If the Effective value of HCR_EL2.E2H is 1, then the field is TCR_EL2.IPS.

• If the register is TCR_EL3, then the field is TCR_EL3.PS.

IYDDNK The OA size from a translation stage is configured by the associated TCR_ELx.{I}PS field, as shown in the
following table.

Note
For the TCR_EL2.PS field, if HCR_EL2.E2H is 0, then the value 0b111 is reserved.

IMNZFV The TCR_ELx.{I}PS field is three bits and has the same encoding as the three least significant bits of
ID_AA64MMFR0_EL1.PARange.

RCLPQT The OA size from a translation stage cannot be larger than the implemented PA size. If the value of TCR_ELx.{I}PS
is larger than the implemented PA size, then {I}PS is treated as being the same as the implemented PA size.

IPKBTM Arm strongly recommends that software avoids configuring TCR_ELx.{I}PS to a value greater than the
implemented PA size.

IHGDWP If a translation stage is enabled and the translation stage OA size is larger than the implemented PA size, then an
Address size fault is generated at the lookup level in the translation stage that generated the OA.

RBZHGM If all of the following apply, then a stage 2 Translation fault is generated:

• Two address translation stages are used.

Table D8-6 Output address size configuration

TCR_ELx.{I}PS OA memory size OA address size

0b000 4GB 32 bits, OA[31:0]

0b001 64GB 36 bits, OA[35:0]

0b010 1TB 40 bits, OA[39:0]

0b011 4TB 42 bits, OA[41:0]

0b100 16TB 44 bits, OA[43:0]

0b101 256TB 48 bits, OA[47:0]

0b110 4PB 52 bits, OA[51:0]

0b111 64PB 56 bits, OA[55:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6576
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
• Stage 2 address translation is enabled.

• The stage 1 OA size does not generate a stage 1 Address size fault.

• The stage 1 OA size is larger than the specified stage 2 translation IA size.

D8.1.8 Supported virtual address ranges

IYMKBT The VA size is determined by configuring the stage 1 translation IA size.

For more information, see Input address size configuration.

RHYPNC For the VMSAv8-64 translation system, the maximum VA size is one of the following:

• For a translation regime controlled by TCR_ELx, if the 4KB or 16KB translation granule is used, then one
of the following:

— If the Effective value of TCR_ELx.DS is 0, then 48 bits.

— If the Effective value of TCR_ELx.DS is 1, then 52 bits.

• For any translation regime, if the 64KB translation granule is used, then one of the following:

— If FEAT_LVA is not implemented, then 48 bits.

— If FEAT_LVA is implemented, then 52 bits.

RXQGZR For the VMSAv9-128 translation system, the maximum VA size is 56 bits.

IKRQBC Only stage 1 address translation in the EL1&0 and EL2&0 translation regimes support two VA ranges.

RBXWQW If a translation regime supports two VA ranges, then each VA range represents an independent mapping from IA to
OA.

RGZPNP If a translation regime supports a single VA range, then all of the following apply:

• The maximum IA width is 56 bits.

• If the maximum VA size is 48 bits, then the maximum VA range is 0x0000000000000000 to 0x0000FFFFFFFFFFFF.

• If the maximum VA size is 52 bits, then the maximum VA range is 0x0000000000000000 to 0x000FFFFFFFFFFFFF.

• If the maximum VA size is 56 bits, then the maximum VA range is 0x0000000000000000 to 0x00FFFFFFFFFFFFFF.

RHYYQH If a translation regime supports two VA ranges, then all of the following apply:

• The maximum IA width is 55 bits.

• IA bit[55] determines one of the following VA ranges:

— If IA bit[55] is 0, the lower VA range is used.

— If IA bit[55] is 1, the upper VA range is used.

• The maximum lower VA range is one of the following:

— If the maximum VA size is 48 bits, then the maximum VA range is 0x0000000000000000 to
0x0000FFFFFFFFFFFF.

— If the maximum VA size is 52 bits, then the maximum VA range is 0x0000000000000000 to
0x000FFFFFFFFFFFFF.

— If the maximum VA size is 55 bits, then the maximum VA range is 0x0000000000000000 to
0x007FFFFFFFFFFFFF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6577
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
• The maximum upper VA range is one of the following:

— If the maximum VA size is 48 bits, then the maximum VA range is 0xFFFF000000000000 to
0xFFFFFFFFFFFFFFFF.

— If the maximum VA size is 52 bits, then the maximum VA range is 0xFFF0000000000000 to
0xFFFFFFFFFFFFFFFF.

— If the maximum VA size is 55 bits, then the maximum VA range is 0xFF80000000000000 to
0xFFFFFFFFFFFFFFFF.

RCSSJN If the configured size of the upper VA range is less than the maximum, then all of the following apply:

• The range starting address is greater than the address used by the maximum VA size.

• The range ending address is 0xFFFFFFFFFFFFFFFF.

ITHWTD A 48-bit VA range defines an address space of 256TB. A 52-bit VA range defines an address space of 4PB. A 56-bit
VA range defines an address space of 64PB.

D8.1.9 Input address size configuration

RTLMML If a translation stage supports a single VA range, then TCR_ELx.T0SZ configures the IA size, translated using
TTBR0_ELx.

RGMLRF If a translation stage supports two VA ranges, then all of the following TCR_ELx.TnSZ fields specify the IA size:

• TCR_ELx.T0SZ configures the IA size of the lower VA range, translated using TTBR0_ELx.

• TCR_ELx.T1SZ configures the IA size of the upper VA range, translated using TTBR1_ELx.

IGRZSP The stage 1 translation IA size is defined as 64-TCR_ELx.TnSZ.

RPLCGL For all translation stages, the following table shows how the maximum permitted TnSZ value is determined:

IFTBXR If TCR_ELx.TnSZ configures an IA size that is smaller than the maximum size, then each one-bit reduction in the
IA size has one of the following effects on the lookup level that the table walk starts with:

• The translation table size is reduced by one half.

• The table walk starts one level later.

RYXNYW If the value of TnSZ is greater than the maximum permitted value, then any use of the TnSZ value causes one of the
following IMPLEMENTATION DEFINED behaviors to occur:

• For all purposes other than reading back the value, the implementation behaves as if the TnSZ field has the
maximum permitted value.

• Any use generates a level 0 Translation fault.

Table D8-7 Determining the maximum permitted TnSZ value

Translation granule size FEAT_TTST not implemented FEAT_TTST implemented

4KB 39 48

16KB 39 48

64KB 39 47
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6578
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
RGTJBY For a stage 1 translation using the VMSAv8-64 translation system, the minimum Effective value of TnSZ is one of
the following:

• For the 4KB or 16KB translation granule, one of the following:

— If the Effective value of TCR_ELx.DS is 0, then the minimum Effective value of TnSZ is 16.

— If the Effective value of TCR_ELx.DS is 1, then the minimum Effective value of TnSZ is 12.

• For the 64KB translation granule, one of the following:

— If FEAT_LVA is not implemented, then the minimum Effective value of TnSZ is 16.

— If FEAT_LVA is implemented, then the minimum Effective value of TnSZ is 12.

RVRKKV For a stage 1 translation using the VMSAv9-128 translation system, the minimum Effective value of TnSZ is one
of the following:

• If the translation regime supports a single IA range, then 8.

• If the translation regime supports two IA ranges, then 9.

RVCDSW If all of the following apply, then a stage 1 level 0 Address size fault is generated:

• Stage 1 translation is disabled.

• The IA size is larger than the implemented PA size.

IQZVXG For an address translation stage, when an attempt is made to translate an address larger than the configured IA size,
a level 0 Translation fault at that translation stage is generated.

RSXWGM For a stage 1 address translation, if the value of TnSZ is smaller than the minimum Effective value, then when using
the TnSZ value to translate an address, one of the following applies:

• If FEAT_LVA is not implemented, then it is IMPLEMENTATION DEFINED which of the following behaviors
occurs:

— For all uses other than reading back the value, the implementation behaves as if the TnSZ field has a
value of 16.

— When using the TnSZ value to translate an address, a stage 1 level 0 Translation fault is generated.

• If FEAT_LVA is implemented, then when using the TnSZ value to translate an address, a stage 1 level 0
Translation fault is generated.

ITFBDN For more information, see Relationship between translation regimes and implemented Exception levels.

D8.1.10 Intermediate physical address size configuration

RSCJMS When a stage 2 translation occurs, the configured IPA size is specified by one of the following T0SZ values:

• If the IPA is in Non-secure or Realm address space, then VTCR_EL2.T0SZ

• If the IPA is in Secure address space, then VSTCR_EL2.T0SZ

RTDJSG The implemented PA size constrains all of the following:

• The maximum IPA size.

• The effective minimum T0SZ value, VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ, used to specify the
configured IPA size.

• The stage 2 initial lookup level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6579
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
RDRRZZ When all of the following apply, the stage 2 translation IPA size check generates a stage 2 level 0 Translation fault:

• Stage 2 translation is enabled.

• The OA size from the stage 1 translation, whether or not stage 1 translation is enabled, is larger than the IA
size specified by VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ.

RDTLMN When a stage 2 translation occurs, the effective minimum value of T0SZ is determined by the implemented PA size
as shown in the following table:

RSRKBC Table D8-9 shows the permitted initial stage 2 lookup levels for each of the effective minimum T0SZ values. For
the 4KB granule, an initial lookup level of 3 is only supported if FEAT_TTST is implemented and the PE is
executing in AArch64 state.

Table D8-8 Determining the effective minimum T0SZ value for stage 2 translations

Implemented PA size Effective minimum T0SZ value

32 bits 32 if EL1 is using AArch64

32 bits 24 if EL1 is using AArch32

36 bits 28 if EL1 is using AArch64

36 bits 24 if EL1 is using AArch32

40 bits 24

42 bits 22

44 bits 20

48 bits 16

52 bits 12

56 bits 8 if the translation regime uses the
VMSAv9-128 translation system

Table D8-9 Implications of the effective minimum T0SZ value on the initial stage 2 lookup level

Supported PA size
Effective minimum T0SZ

value

Valid initial lookup levels

4KB granule 16KB granule 64KB granule

32 bits 32, if EL1 is using AArch64

24, if EL1 is using AArch32

3, 2, 1 3, 2 3, 2

36 bits 28, if EL1 is using AArch64

24, if EL1 is using AArch32

3, 2, 1 3, 2 3, 2

40 bits 24 3, 2, 1 3, 2 3, 2

42 bits 22 3, 2, 1 3, 2, 1 3, 2

44 bits 20 3, 2, 1, 0 3, 2, 1 3, 2, 1

48 bits 16 3, 2, 1, 0 3, 2, 1 3, 2, 1

52 bits 12 3, 2, 1, 0, -1 3, 2, 1, 0 3, 2, 1

56 bits 8 3, 2, 1, 0, -1, -2 3, 2, 1, 0, -1 3, 2, 1, 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6580
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.1 Address translation
For more information, see:

• VMSAv8-64 Stage 2 address translation using the 4KB translation granule

• VMSAv8-64 Stage 2 address translation using the 16KB translation granule

• VMSAv8-64 Stage 2 address translation using the 64KB translation granule

• Translation using the VMSAv9-128 translation system

RMWXYY For a stage 2 address translation, if FEAT_LPA is not implemented and the value of T0SZ is smaller than the
effective minimum value, then it is IMPLEMENTATION DEFINED which of the following behaviors occurs:

• For all purposes other than reading back the value of the field, the implementation treats the T0SZ field as
having the effective minimum value.

• The implementation generates a stage 2 level 0 Translation fault.

RMYXHB For a stage 2 address translation, if FEAT_LPA is implemented and the value of the T0SZ field is smaller than the
effective minimum value, then a stage 2 level 0 Translation fault is generated.

IZZJJF If the T0SZ field is programmed to a value smaller than the effective minimum value, then a larger address range
cannot be supported because an Address size fault is generated due to one of the following reasons:

• For a VMSAv8-64 stage 1 translation, the stage 1 OA is larger than the PA size.

• For a VMSAv8-32 stage 1 translation, the stage 1 OA is larger than 40 bits.

INLYLM For more information, see:

• Implemented physical address size.

• Translation table walk.

• Memory aborts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6581
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
D8.2 Translation process

IGDSWV The translation of a VA to a PA begins with reading the translation table base address register, followed by a walk
through the translation tables to read the descriptors associated with the mapping.

D8.2.1 Translation table walk

RBTTHB A translation table walk is the set of translation table lookups that are required to do all of the following:

• For a single stage translation at stage 1, translate a VA to a PA.

• For two translation stages and stage 1 is disabled, translate an IPA to a PA.

• For a two stage translation, all of the following:

— For a stage 1 translation, translate a VA to an IPA.

— For a stage 2 translation, translate an IPA to a PA for each of the stage 1 translation table lookups.

— For a stage 2 translation, translate an IPA to a PA for the stage 1 OA.

RRHQPX When a translation table walk begins, the initial translation table lookup uses the translation table base address
stored in the TTBR_ELx register to locate the translation table.

RYKQTS When a translation table lookup occurs, the descriptor held in the translation table entry is read as one of the
following:

• For the VMSAv8-64 translation system, an 8-byte single-copy atomic access.

• For the VMSAv9-128 translation system, a 16-byte single-copy atomic access.

For information on the translation table alignment requirements, see Translation table alignment.

RYPWQG The descriptor type indicates one of the following:

• The translation table walk is complete and the translation table entry is the final entry.

• The translation table walk requires an extra lookup at the next higher lookup level.

• The descriptor is invalid.

RNMTJN All of the following descriptor types conclude the translation process:

• Page descriptor.

• Block descriptor.

• Invalid descriptor.

For more information, see Translation table descriptor formats.

IWMLYG When an Invalid descriptor is returned during the translation process, a Translation fault at the current lookup level
is generated.

IQPHCD When an extra lookup level is required, the descriptor contains all of the following information:

• The translation table base address of the next lookup level.

• For stage 1 descriptors, if the Effective value of TCR_ELx.HPDn is 0, then the descriptor has hierarchical
access permissions that are applied to the final translation.

• If the translation is made in a Secure translation regime, then a stage 1 descriptor indicates whether the base
address is in the Secure address space or the Non-secure address space, unless a hierarchical control at a
previous lookup level has indicated that it is required to be in the Non-secure address space.

For more information, see Security state of translation table lookups.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6582
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RVSJGV For a translation lookup level, the translation table base address is one of the following:

• For the initial lookup level, the aligned value of the appropriate TTBR_ELx.BADDR field.

• For subsequent lookup levels, the next-level translation table base address returned by the previous lookup
level.

IHFBGP For the VMSAv9-128 translation system, the Skip level (SKL) field in the descriptors and translation table base
address registers permit the translation table walk to skip subsequent lookup levels.

IZMMXH When the last lookup level of a translation stage returns a valid descriptor, it contains all of the following:

• The OA from the translation stage.

• The memory region access permissions.

• The memory region attributes.

For more information, see Memory region attributes and Memory access control.

RRZHGL For a translation regime that uses two translation stages, the stage 1 descriptor addresses require stage 2 translation
from IPA to PA.

RNLLYJ When a translation table walk succeeds, all of the following are returned:

• The OA.

• If the translation table walk is made in a Secure translation regime, then the information returned indicates
whether the OA is in the Secure IPA or PA space, or the Non-secure IPA or PA space.

• If the translation table walk is made in a Realm translation regime, then the information returned indicates
whether the OA is in the Realm PA space, or the Non-secure PA space.

• If the translation table walk is made in Root state, then the OA can be in the Root, Realm, Secure, or
Non-secure PA spaces.

• The output memory region attributes.

• The output memory region access permissions.

For more information, see Security state of translation table lookups.

IVPFHD The following figure is a generalized view of a single address translation stage with three lookup levels.

Figure D8-1 Generalized view of a single address translation stage

TTBR

Level 1 table

Memory

page

D_Block
Memory

region

D_Table

Level 3 table

D_Page

Level 2 table

D_Block
Memory

region

D_Table

a

a

a

a Indexed by bits from the input address.

Each lookup level resolves additional bits.

 D_Block is a Block descriptor.

 D_Page is a Page descriptor.

 D_Table is a Table descriptor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6583
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
IJWQFM If all of the following are true, then a translation table entry is permitted to be cached in a Translation Lookaside
Buffer (TLB):

• The entry is valid.

• Using the entry does not generate a Translation fault, an Address size fault, or an Access flag fault.

IZTRGT TLB caching can reduce the number of required translation table lookups.

IJQDTN If two address translation stages are used and when a full translation table walk at both stages is required, then all
of the following apply:

• S1 is the number of lookup levels required for a stage 1 translation.

• S2 is the number of lookup levels required for a stage 2 translation.

• The maximum number of translation table lookups required is (S1+1)*(S2+1)-1.

D8.2.2 Concatenated translation tables

RMCGQP All statements in this section apply only to the VMSAv8-64 translation system.

ITDMHR For the initial lookup of a stage 2 address translation, up to 16 translation tables can be concatenated.

RHRSBS For a stage 2 translation, if the translation table in the initial lookup level would require 16 or fewer entries, then the
stage 2 translation can be configured to have all of the following properties:

• The initial lookup of the stage 2 translation starts at the next lookup level.

• A number of translation tables corresponding to the original number of translation table entries at the
previously initial lookup level are concatenated at that next lookup level.

RDXBSH For the 16KB translation granule, if the Effective value of VTCR_EL2.DS is 0 and a 48-bit address size is translated
by the stage 2 translation, then the initial lookup is required to start at level 1 with two concatenated translation
tables.

RJKZFY For the initial lookup in a stage 2 translation, if concatenated translation tables are used, then all of the following
apply:

• Up to four additional IA bits are resolved by the initial lookup.

• For each additional n IA bits resolved by the initial lookup, the number of least significant translation table
base address bits held in the TTBR_ELx is reduced by n bits.

• For each additional n IA bits resolved by the initial lookup, 2n concatenated translation tables are required at
the initial lookup level.

IDRXGV Using a concatenated translation table eliminates the overhead of an extra lookup level.

IYXFPJ If concatenated translation tables are used, then software is required to do all of the following:

• Align the base address of the first translation table to the sum of the size of the memory occupied by the
concatenated translation tables.

• Program VTTBR_EL2 or VSTTBR_EL2 with the address of the first translation table in the set of
concatenated translation tables.

• Program VTCR_EL2 or VSTCR_EL2 with the initial lookup level.

D8.2.3 Translation table base address register

ITLWRN For a translation stage, the translation table base address register, TTBR_ELx, holds the translation table base
address of the initial lookup.

RDXLKR For a translation stage that supports two VA ranges, two translation table base address registers are required.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6584
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
IHPFDM Software can use TCR_ELx.TnSZ to configure the translation stage IA size to be smaller than the supported size.

RQKFFR If EL2 is disabled or not implemented, then for the stage 1 EL1&0 regime, all of the following apply:

• The translation table base address held in the TTBR_ELx register is a PA.

• The translation table base address returned by a Table descriptor is a PA.

RQSWHS If EL2 is enabled, then for all address translation stages other than stage 1 in EL1&0, all of the following apply:

• The translation table base address held in the TTBR_ELx register is a PA.

• The translation table base address returned by a Table descriptor is a PA.

RPNHHK If EL2 is enabled, then for stage 1 address translations in EL1&0, all of the following apply:

• The stage 1 translation table base address held in the TTBR_ELx register is an IPA.

• The stage 1 translation table base address returned by a Table descriptor is an IPA.

• Accesses to stage 1 translation tables are subject to a stage 2 translation.

RGYQHZ For an address translation stage, the translation table base address in TTBR_ELx is defined for the supported OA
size of that stage.

ISXSYL For the VMSAv8-64 translation system, the number of {I}PA bits held in TTBR_ELx is determined by the granule
size and OA address size. The bits used for each granule size when using the maximum OA address size of 48 bits
or 52 bits are shown in the following table. Software might be required to set one or more of the low-order base
address bits to zero to align the table to the table size.

IQTPMQ If an address translation stage uses an OA size smaller than the maximum, then the upper bits of the translation table
base address in TTBR_ELx corresponding to the upper bits of OA size are required to be set by software to zero.

ILXTNH If TCR_ELx.TnSZ specifies an IA size that is smaller than the maximum size resolved at the initial lookup level,
then more low-order TTBR_ELx bits are used to hold the translation table base address.

RVPBBF If an address translation stage uses an OA size smaller than the maximum and if the bits above the configured OA
size of the translation table base address in TTBR_ELx are not set to zero, then an Address size fault is generated
and reports all of the following:

• A translation level 0 lookup as generating the fault, regardless of whether or not the translation stage starts
with a level 0 lookup.

• The translation stage that generated the fault.

RDYDPX Direct writes to TTBR0_ELx and TTBR1_ELx occur in program order relative to one another, without the need for
explicit synchronization. For any one translation, all indirect reads of TTBR0_ELx and TTBR1_ELx that are made
as part of the translation observe only one point in that order of direct writes.

IRBMTM Consistent with the general requirements for direct writes to System registers, direct writes to TTBR_ELx are not
required to be observed by indirect reads until completion of a Context synchronization event.

Table D8-10 {I}PA bits held in TTBR_ELx

Granule size Maximum OA size
Translation table
base address

{I}PA bits held in
TTBR_ELx

4KB, 16KB, or 64KB 52 bits TTBR_ELx[5:2] {I}PA[51:48]

4KB 48 bits or 52 bits TTBR_ELx[47:12] {I}PA[47:12]

16KB 48 bits or 52 bits TTBR_ELx[47:14] {I}PA[47:14]

64KB 48 bits or 52 bits TTBR_ELx[47:16] {I}PA[47:16]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6585
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
IQBVNF Example D8-1 Changing translation table base address and ASID value when TCR_EL1.A1=0

The following is an example software sequence for changing translation table base address and ASID value when
TCR_EL1.A1=0:

Change TTBR1 to point only at global entries
Change TTBR0 (includes changing the ASID)
Change TTBR1 to point at tables containing non-global entries
ISB

IGRBLY Example D8-2 Changing translation table base address and ASID value when TCR_EL1.A1=1

The following is an example software sequence for changing translation table base address and ASID value when
TCR_EL1.A1=1:

Change TTBR0 to point to no valid entries
Change TTBR1 (includes changing the ASID)
Change TTBR0 to point at tables containing valid entries
ISB

IBSFJP For more information, see System registers relevant to MMU operation.

D8.2.4 Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported

RHCTPT If a stage 1 translation regime supports two VA ranges, then the translation regime TTBR_ELx registers point to all
of the following address ranges:

• For the lower VA range that begins at address 0x0000000000000000, TTBR0_ELx points to the translation table
for the initial lookup level.

• For the upper VA range that ends at address 0xFFFFFFFFFFFFFFFF, TTBR1_ELx points to the translation table
for the initial lookup level.

RYYVYV If a stage 1 translation regime supports two VA ranges, then the TCR_ELx.{T0SZ, T1SZ} fields configure all of the
following address range sizes:

• The lower VA range is 0x0000000000000000 to (2(64-T0SZ) - 1).

• The upper VA range is (264 - 2(64-T1SZ)) to 0xFFFFFFFFFFFFFFFF.

ITHCZK If a stage 1 translation regime supports two VA ranges, when an accessed address is not in the lower VA range or
the upper VA range, a stage 1 level 0 Translation fault is generated.

IBCMMD The following figure illustrates the two address ranges translated by the tables the TTBR_ELx registers point to.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6586
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-2 Example of a stage 1 translation that supports two VA ranges

RVZCSR If a stage 1 translation regime supports two VA ranges, then all of the following are used to select the TTBR_ELx:

• If VA bit[55] is zero, then TTBR0_ELx is selected.

• If VA bit[55] is one, then TTBR1_ELx is selected.

IZFSYQ If a stage 1 translation regime supports two VA ranges and TCR_ELx.EPDn is one, then when a TLB miss occurs
based on TTBRn_ELx, a level 0 Translation fault is generated, and no translation table walk is done.

ISMKQB For the VMSAv9-128 translation system, if a stage 1 translation regime supports two VA ranges, then the maximum
supported VA width is 55 bits, and the smallest permitted value of the TnSZ field is 9.

IQBLKT For more information, see Address tagging.

D8.2.4.1 Preventing EL0 access to halves of the address map

RBNDVG All statements in this section require implementation of FEAT_E0PD.

IPZZHN The TCR_ELx.{E0PD0, E0PD1} fields can be used to prevent EL0 access to the addresses translated by the
corresponding TTBR0_ELx or TTBR1_ELx.

IRFRSQ When the TCR_ELx.{E0PD0, E0PD1} fields prevent EL0 access to an address translated by TTBR0_ELx or
TTBR1_ELx, then a level 0 Translation fault is generated.

RDDFWH When the TCR_ELx.{E0PD0, E0PD1} fields generate a level 0 Translation fault, then all of the following apply:

• The time needed to take the fault should be the same whether or not the address accessed is present in a TLB,
to mitigate attacks that use fault timing.

• The fault generated does not affect any micro-architectural state of the PE in a manner that is different if the
address accessed is present in a TLB or not, to prevent this information being used to determine the presence
of the address in a TLB.

RCZWGX When the TCR_ELx.{E0PD0, E0PD1} fields generate a level 0 Translation fault, the fault is not counted as a TLB
miss for performance monitoring features.

D8.2.5 Translation table and translation table lookup properties

ISLRTY Translation table and translation table lookup properties include the table size, table alignment, table endianness,
and memory attributes.

0x0000_0000_0000_0000

0xFFFF_FFFF_FFFF_FFFF

0xFFFF_0000_0000_0000

0x0000_FFFF_FFFF_FFFF Boundary, when TCR_ELx.T0SZ==16

TTBR1_ELx

region

TTBR0_ELx

region

Access generates

a Translation

fault, see text

Boundary, when TCR_ELx.T1SZ==16

Effect of increasing TCR_ELx.T1SZ

Effect of increasing TCR_ELx.T0SZ

VA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6587
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
D8.2.5.1 Translation table size

RYDJDH The descriptor size in a translation table entry is one of the following:

• For the VMSAv8-64 translation system, an eight-byte, or 64-bit, object.

• For the VMSAv9-128 translation system, a 16-byte, or 128-bit, object.

RWDRNX If n is the number of bits resolved by a lookup level, then the number of translation table entries required at that
lookup level is 2n.

RNVTHS The size of a translation table in bytes is determined by multiplying the number of entries by the descriptor size.

IZMLQD The maximum number of translation table entries is determined by the translation granule size, which is defined by
one of the following:

• For a stage 1 translation that supports one VA range, TCR_ELx.TG0.

• For a stage 1 translation that can support two VA ranges, all of the following:

— For the lower VA range, TCR_ELx.TG0.

— For the upper VA range, TCR_ELx.TG1.

• For a stage 2 translation in the Non-secure EL1&0 translation regime, VTCR_EL2.TG0.

• For a stage 2 translation in the Secure EL1&0 translation regime, one of the following:

— If the stage 2 IA is a Non-secure IPA, then VTCR_EL2.TG0.

— If the stage 2 IA is a Secure IPA, then VSTCR_EL2.TG0.

• For a stage 2 translation in the Realm EL1&0 translation regime, VTCR_EL2.TG0.

D8.2.5.2 Translation table alignment

RKBLCR A translation table is required to be aligned to one of the following:

• For the VMSAv8-64 translation system, if the translation table has fewer than eight entries and an OA size
greater than 48 bits is used, then the table is aligned to 64 bytes.

• Otherwise, the translation table is aligned to the size of that translation table.

ITBPFK Only when all of the following are true is it possible to have fewer than 8 translation table entries:

• The translation table is at the initial lookup level.

• Concatenated translation tables are not used.

RVCLZN If concatenated translation tables are used, then the concatenated translation tables are required to be aligned to the
overall size of the memory occupied by the concatenated translation tables.

D8.2.5.3 Translation table lookup endianness

ILBMWQ When a translation table lookup reads a translation table entry, all of the following apply:

• If the VMSAv8-64 translation system is used, the read is an 8-byte single-copy atomic access.

• If the VMSAv9-128 translation system is used, the read is a 16-byte single-copy atomic access.

RFDKMS The endianness of a translation table lookup is determined by the appropriate SCTLR_ELx.EE bit.

RPZVGH Changing an SCTLR_ELx.EE bit requires synchronization before the change is guaranteed to be visible to
subsequent operations.

For more information, see Synchronization requirements for AArch64 System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6588
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
IQJDJV Arm does not recommend changing an SCTLR_ELx.EE bit unless one or more of the following apply:

• The translation table lookups affected by the modified SCTLR_ELx.EE bit belong to an out-of-context
translation regime.

• For any translation stage affected by the modified SCTLR_ELx.EE bit, address translation is disabled.

D8.2.5.4 Translation table lookup memory attributes

ITXCPH For a translation table lookup in an address translation stage, the TCR_ELx and VTCR_EL2 registers determine the
memory Cacheability and Shareability attributes that apply.

RZZSYD For a translation table lookup in an address translation stage, the required memory type is Normal memory.

IRMDMS For a two stage translation regime, when a translation table lookup from stage 1 occurs, all of the following apply:

• Arm recommends that the stage 2 translation of the stage 1 translation table lookup does not map to Device
memory.

• Software can configure HCR_EL2.PTW to protect stage 2 table walks from mapping stage 1 translation
tables to Device memory.

For more information, see Stage 2 fault on a stage 1 translation table walk.

RXGXKR When memory locations that hold the translation tables are accessed by software, and the memory accesses and the
translation table walks have mismatched memory attributes, the behavior is the same as different memory accesses
to the same memory location using mismatched memory attributes.

For more information, see Mismatched memory attributes.

IBSKKL Arm recommends that the memory attributes applied by the TCR_ELx to the translation tables are the same as the
attributes that are applied by other accesses to the memory that holds the translation tables.

IWVTXS For more information on Normal and Device memory and on the Cacheability and Shareability attributes, see
Memory types and attributes.

D8.2.6 Translation table walk properties

D8.2.6.1 Ordering of memory accesses from translation table walks

RTGRMW A translation table walk is considered to be a separate observer. An explicit write to the translation tables might be
observed by that separate observer for either of the following:

• A translation table walk caused by a different explicit write generated by the same instruction.

• A translation table walk caused by an explicit access generated by any instruction appearing in program order
after the instruction doing the explicit write to the translation table.

RSPVBD The explicit write to the translation tables is guaranteed to be observable, to the extent required by the Shareability
attributes, only after the execution of a DSB instruction. This DSB instruction and the instruction that performed
the explicit write to the translation tables must have been executed by the same PE.

RRGPMV Any writes to the translation tables are not observed by any translation table accesses associated with an explicit
memory access generated by a load or store that occurs in program order before the instruction that performs the
write to the translation tables.

RNNFPF If FEAT_ETS2 is implemented, E1 is an Explicit Memory Effect, E2 is an Implicit Read of a TTD, and all of the
following apply, then E1 is Ordered-before E2:

• E1 is program-order-before a Fault Effect E3.

• E2 is Translation-intrinsically-before E3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6589
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
ILTSNZ For more information, see:

• Ordering relations.

• External ordering constraints.

• Memory barriers.

D8.2.6.2 Security state of translation table lookups

RPXRPP For a translation table walk in a Non-secure translation regime, all translation table lookups are done to Non-secure
IPA or PA space.

IMBWLG When EL2 is enabled, the OA space of the Secure EL1&0 stage 1 translation regime is IPA space. In all other cases,
the OA space for a Secure stage 1 translation regime is PA space.

RSCHHQ For a stage 1 translation table walk in a Secure Translation Regime, including the EL3 translation regime when
FEAT_RME is not implemented, the OA space at stage 1 of the translation table lookups is determined by all of the
following:

• The initial translation table lookup is done to Secure OA space.

• When the Table descriptor lookup is to Secure OA space, the descriptor NSTable bit determines one of the
following:

— If NSTable is zero, the next translation table lookup is done to Secure OA space.

— If NSTable is one, the next translation table lookup is done to Non-secure OA space.

• When the Table descriptor lookup is to Non-secure OA space, the next translation table lookup is done to
Non-secure OA space.

For more information, see Hierarchical control of Secure or Non-secure memory accesses.

IVRNWF For a stage 2 translation in a Secure translation regime, the PA space of translation table lookups is determined by
one of the following:

• When translating an address in Secure IPA space, the Effective value of the VSTCR_EL2.SW bit.

• When translating an address in Non-secure IPA space, the Effective value of the VTCR_EL2.NSW bit.

IKXGHL When an IPA from a Secure translation regime is translated by stage 2 translation, the output PA space of the
translation is determined by one of the following:

• When translating an address in Secure IPA space, the Effective value of the VSTCR_EL2.SA bit.

• When translating an address in Non-secure IPA space, the Effective value of the VTCR_EL2.NSA bit.

RDVGRP For a stage 1 translation table walk in the Realm EL2 or Realm EL2&0 translation regime, all translation table
lookups are done to the Realm PA space.

ITGPMX Regardless of whether stage 1 translation is enabled or disabled in the Realm EL1&0 translation regime, Realm EL2
is always enabled and the OA of a Realm EL1&0 stage 1 translation is a Realm IPA.

RPGRQD For a stage 2 translation table walk in the Realm EL1&0 translation regime, all translation table lookups are done
to the Realm PA space.

IKCYMF For a stage 2 translation table walk in the Realm EL1&0 translation regime, VTCR_EL2[30:29] are RES0 and there
is no equivalent of the NSA, NSW fields.

RCFPDJ For a stage 1 translation table walk in the EL3 translation regime, if FEAT_RME is implemented, then all translation
table lookups are done to the Root PA space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6590
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
D8.2.7 Translation Hardening Extension

RFYNMT All statements in this section and subsections require implementation of the OPTIONAL feature, FEAT_THE.

IYGPNC To protect the integrity of kernel translations, the Translation Hardening Extension, FEAT_THE, prevents the
Exception level that owns the translation tables from modifying an arbitrary subset of those translation table entries.

D8.2.7.1 Stage 1 Protected Attribute

RMCDSQ For stage 1 of each translation regime using VMSAv8-64, the value of PnCH is determined as shown in the
following table:

RNHZZY If one of the following is true, then Protection is enabled:

• If stage 1 translation is using VMSAv8-64 and PnCH is 1.

• If stage 1 translation is using VMSAv9-128.

Otherwise, Protection is disabled. This applies even when stage 1 translation is not enabled.

RNBVJL If Protection is enabled, then the value of the Protected bit in the stage 1 descriptor indicates all of the following:

• If the Protected bit is 0, the descriptor is said to be Non-protected.

• If the Protected bit is 1, the descriptor is said to be Protected.

This applies even when stage 1 translation is not enabled.

RVDPDW For a stage 1 descriptor, if Protection is enabled and any of the following checks fail, then RCW and RCWS instructions
do not update that descriptor:

• An RCW State check in all of the following cases:

— For a Protected descriptor, there is an attempt to change the protection or validity of that descriptor.

— For a Non-protected descriptor, there is an attempt to change the protection of that descriptor.

• An RCW Mask check in all of the following cases:

— For a Protected and valid descriptor, when an attempt is made to update a bit in that descriptor and the
Effective value of the corresponding RCWMASK_EL1 bit is 0.

RNYFNK For a stage 1 descriptor, if any of the following checks fail, then RCWS instructions do not update that descriptor:

• An RCWS State check when there is an attempt to change the validity of that descriptor.

• For a valid descriptor, an RCWS Mask check when an attempt is made to update a bit in that descriptor and
the Effective value of the corresponding RCWSMASK_EL1 bit is 0.

ILBYCD Even when a descriptor is not Protected, the bitmask in RCWSMASK_EL1 controls which fields in a descriptor are
permitted to be updated by an RCWS instruction, as follows:

• A value of 0 indicates that the corresponding bit of the descriptor cannot be changed.

Table D8-11 Determination of PnCH

Translation regime Field

EL1&0 TCR2_EL1.PnCH.

EL2&0 TCR2_EL2.PnCH.

EL2 TCR2_EL2.PnCH.

EL3 TCR_EL3.PnCH.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6591
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
• A value of 1 indicates that the corresponding bit of the descriptor can be changed.

IQSXGJ It is expected that the contents of RCWMASK_EL1 and RCWSMASK_EL1 registers are set once by the hypervisor
for each instance of a Virtual Machine.

RCRSZF If Protection is not enabled, then RCW instructions can change all bits in a stage 1 descriptor.

ILWWYX RCWS instructions are subject to the RCWS State and Mask checks, even if Protection is disabled.

RQVMPP When stage 1 translation is disabled at ELx, all of the following apply:

• RCW instructions are subjected to RCW checks.

• RCWS instructions are subjected to RCW checks and RCWS checks.

IXSNQG It is expected that RCW instructions at ELx are used to update stage 1 descriptors owned by ELx. RCW instructions at
ELx are not expected to update stage 1 descriptors not owned by ELx, or stage 2 descriptors.

IMWKTV It is expected that RCWS instructions are used to update bits in descriptors that are reserved for software use and,
correspondingly, only bits reserved for software use are set to 1 in RCWSMASK_EL1. If descriptor changes affect
only bits that are interpreted by software, then it is not necessary to do TLB maintenance to synchronize the effect
on the TLB.

D8.2.7.2 Stage 1 Reduced Coherence write

RNRVRT A write has the Reduced Coherence property if and only if it is written by an RCWS instruction and Permit Translation
Table Walk Incoherence, PTTWI, is 1 on the PE executing that RCWS instruction.

RQWZDZ For stage 1 translations in a translation regime, the value of PTTWI is obtained as shown in the following table:

RDTFHS If all of the following apply, a read of a memory location as part of a translation table walk is permitted to observe
the most-recent write entry without the Reduced Coherence property, W1, in the coherence order of that memory
location:

• The read is done as part of a translation table walk.

• The read is not the read effect due to a hardware update of a translation table entry.

• The read is permitted by the memory model to observe a write entry with the Reduced Coherence property,
W2, in the coherence order of that memory location.

RGLBZZ The effect of PTTWI on RCWS instructions applies regardless of whether translation is enabled or disabled.

RYHRDF It is permitted to implement each PTTWI bit as a read-only bit with a fixed value of 0.

IBBTRQ PTTWI is permitted to be cached in a TLB.

Table D8-12 Determination of PTTWI

Translation Regime Field

EL1&0 If EL2 is not enabled, then TCR2_EL1.PTTWI.

If EL2 is enabled, then TCR2_EL1.PTTWI && HCRX_EL2.PTTWI.

EL2&0 TCR2_EL2.PTTWI

EL2 TCR2_EL2.PTTWI

EL3 TCR_EL3.PTTWI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6592
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
D8.2.7.3 Assured translation

RSSRXH If all of the following apply, the level of the stage 1 translation table walk for a VA has the Assured Translation
property:

• The EL1&0 translation regime has two translation stages enabled.

• For the initial lookup level of a walk, one of the following applies:

— The walk is from TTBR0_EL1 and VTCR_EL2.TL0 is 1.

— The walk is from TTBR1_EL1 and VTCR_EL2.TL1 is 1.

• For subsequent levels, all of the following apply:

— All previous levels of the stage 1 walk have the Assured Translation property.

— The stage 1 translation table descriptor is a Protected descriptor and is fetched from an IPA with the
with stage 2 MRO permission.

Note

When Stage 2 Overlay permissions are enabled, S2OverlayPerm can provide MRO permission for an IPA. To ensure
that EL1 cannot create Assured translations for itself, EL2 must either disable Stage 2 Overlay permissions or
disable EL1 access to S2POR_EL1. For more information, see Stage 2 Overlay permissions.

RYXKRB The IPA AssuredOnly attribute is determined as shown in the following table:

RWWYDL If an IPA is translated by a stage 2 Block or Page descriptor with the AssuredOnly attribute set to 1, and any of the
following apply, then any access translated by that descriptor generates a stage 2 Permission fault:

• The level of the stage 1 translation table walk that generated the IPA does not have the Assured Translation
property.

• Stage 1 translation is disabled.

RQNQZJ If all of the following apply, privileged Guarded control stack data accesses from EL1 to a memory location generate
a stage 2 Permission fault due to an AssuredOnly check, independent of whether the stage 1 translation has the
Assured Translation property:

• VTCR_EL2.GCSH is 1.

• Stage 2 translation is enabled.

• The memory location is translated using a stage 2 Block or Page descriptor with the AssuredOnly attribute
set to 0.

For more information, see Guarded Control Stack data accesses.

D8.2.7.4 Stage 2 TopLevel checks

IZCRKQ If stage 2 translation is enabled, then the stage 2 TopLevel0 and TopLevel1 permissions indicate that the IPA can be
used as a top level table for TTBR0_EL1 and TTBR1_EL1 respectively.

For more information, see Stage 2 Base permissions.

Table D8-13 Determination of AssuredOnly

Stage 2 format VTCR_EL2.AssuredOnly AssuredOnly attribute

VMSAv8-64 0 0

VMSAv8-64 1 Block or Page descriptor AssuredOnly field

VMSAv9-128 RES0 Block or Page descriptor AssuredOnly field
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6593
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RBCSRJ For a VA translated by TTBR0_EL1, the stage 2 translation of the initial lookup level of the stage 1 translation table
walk generates a stage 2 Permission fault due to the TopLevel checks according to the conditions in the following
table:

For more information, see Stage 2 Base permissions.

RSWLZW For a VA translated by TTBR1_EL1, the stage 2 translation of the initial lookup level of the stage 1 translation table
walk generates a stage 2 Permission fault due to the TopLevel checks according to the conditions in the following
table:

For more information, see Stage 2 Base permissions.

D8.2.8 VMSAv8-64 translation using the 4KB granule

RLCVYF All statements in this section and subsections require a translation stage use the VMSAv8-64 translation system.

ISZLLC Address translations that use the 4KB granule have a 4KB page size. Depending on the settings and supported
features, up to 40 address bits are resolved using up to 5 lookup levels.

RFMKVP Throughout this section, if an address translation stage is not specified, then references to the Effective value of
TCR_ELx.DS also apply to VTCR_EL2.DS.

IVNNCG For the 4KB translation granule, the maximum VA and PA supported by a translation regime is one of the following:

• If the Effective value of TCR_ELx.DS is 0, then the maximum VA and PA supported is 48 bits.

• If the Effective value of TCR_ELx.DS is 1, then the maximum VA and PA supported is 52 bits.

RQGLQX For the 4KB translation granule, if the Effective value of TCR_ELx.DS is 0, then OA[51:48] are treated as 0b0000.

VTCR_EL2.TL0 VTCR_EL2.TL1 {TopLevel0, TopLevel1} Permission fault

0 0 {x, x} No

0 1 {0, 1} Yes

{0, 0}, {1, x} No

1 x {0, x} Yes

{1, x} No

VTCR_EL2.TL0 VTCR_EL2.TL1 {TopLevel0, TopLevel1} Permission fault

0 0 {x, x} No

1 0 {1, 0} Yes

{0, 0}, {x, 1} No

x 1 {x, 0} Yes

{x, 1} No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6594
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RKSBQV For each lookup level supported by the 4KB translation granule, the following table describes the translation table
properties at that level.

RYLGLV For the 4KB translation granule, a translation resolved by a Page descriptor at lookup level 3 has all of the following
properties:

• The page size is 4KB.

• The translation can resolve a page using one of the following maximum address ranges:

— If the Effective value of TCR_ELx.DS is 0, then IA[47:12].

— If the Effective value of TCR_ELx.DS is 1, then IA[51:12].

• The page is addressed by one of the following:

— If the Effective value of TCR_ELx.DS is 0, then OA[47:12].

— If the Effective value of TCR_ELx.DS is 1, then OA[51:12].

• IA[11:0] is mapped directly to OA[11:0].

RNKQNK For the 4KB translation granule, a translation resolved by a Block descriptor at the specified lookup level has all of
the properties shown in the following table:

IXLXHW For the 4KB translation granule, the following figure shows how the maximum 52-bit IA size is resolved. An IA
larger than 48 bits requires that the Effective value of TCR_ELx.DS is 1.

Table D8-14 4KB granule translation table properties at each lookup level

Lookup
level

Index into
translation
table

Maximum
entries in
table

Contents of translation table
entries

Additional requirements

-1 -
IA[51:48]

-
16

Lookup level not supported
Table descriptors

Effective value of TCR_ELx.DS is 0
Effective value of TCR_ELx.DS is 1

0 IA[47:39] 512 Table descriptors
Table descriptors and Block descriptors

Effective value of TCR_ELx.DS is 0
Effective value of TCR_ELx.DS is 1

1 IA[38:30] 512 Table descriptors and Block descriptors -

2 IA[29:21] 512 Table descriptors and Block descriptors -

3 IA[20:12] 512 Page descriptors -

Table D8-15 4KB granule block descriptor properties at each lookup level

Lookup
level

Size of memory
region addressed
by Block descriptor

Bit range that is direct
mapped from IA to OA

IA bit range that selects
Block descriptor

Effective value
of TCR_ELx.DS

0 Not supported
512GB

-
IA[38:0] maps to OA[38:0]

-
IA[51:39]

0
1

1 1GB IA[29:0] maps to OA[29:0] IA[47:30]
IA[51:30]

0
1

2 2MB IA[20:0] maps to OA[20:0] IA[47:21]
IA[51:21]

0
1

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6595
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-3 52-bit IA resolved using 4KB translation granule

D8.2.8.1 VMSAv8-64 Stage 1 address translation using the 4KB translation granule

RGWNBR For the 4KB translation granule, when a stage 1 translation table walk is started, the initial lookup level is
determined by the value of the TCR_ELx.TnSZ field as shown in the following table.

IJCHLN For a stage 1 translation in the 4KB translation granule, depending on the IA size, the initial lookup level is indexed
by up to 9 bits and all remaining lookup levels are indexed by exactly 9 bits.

IVKJBP For the 4KB translation granule and a 52-bit IA, the following figure is a generalized view of a stage 1 address
translation. An IA and an OA larger than 48 bits requires that the Effective value of TCR_ELx.DS is 1. The 512GB
block size requires that the Effective value of TCR_ELx.DS is 1.

Input address (IA)

47 30 29 021 20 12 1139 38

Using the 4KB translation granule

IA[11:0]

IA[20:12]

Index the level 3 translation table
†

or

OA[20:12]
‡

OA[11:0]

Index the level 2 translation table
†

or

OA[29:21]
‡

IA[29:21]

Index the level 0 translation table
†

IA[47:39]

Index the level -1 translation tableIA[51:48]

OA Output address
†

Table entry at previous lookup level
‡

Block entry at previous lookup level

4851

Index the level 1 translation table
†

or

OA[38:30]
‡

IA[38:30]

Table D8-16 4KB granule, determining stage 1 initial lookup level

Initial
lookup
level

TnSZ
minimum
value

Maximum
IA bits
resolved

TnSZ
maximum
value

Minimum
IA bits
resolved

Additional requirements

-1 12 IA[51:12] 15 IA[48:12] Effective value of TCR_ELx.DS is 1

0 16 IA[47:12] 24 IA[39:12] -

1 25 IA[38:12] 33 IA[30:12] -

2 34 IA[29:12] 39 IA[24:12] -

2 40 IA[23:12] 42 IA[21:12] FEAT_TTST is implemented

3 43 IA[20:12] 48 IA[15:12] FEAT_TTST is implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6596
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-4 Generalized view of a stage 1 address translation using the 4KB granule

D8.2.8.2 VMSAv8-64 Stage 2 address translation using the 4KB translation granule

IGVFLG For the 4KB translation granule, when a stage 2 translation table walk is started, the initial lookup level is
determined by one of the following:

• If the Effective value of VTCR_EL2.DS is 0, then the initial lookup level is determined by one of
VTCR_EL2.SL0 or VSTCR_EL2.SL0, and VTCR_EL2.SL2 and VSTCR_EL2.SL2 are RES0.

• If the Effective value of VTCR_EL2.DS is 1, then the initial lookup level is determined by the combination
of VTCR_EL2.SL0 and VTCR_EL2.SL2, or VSTCR_EL2.SL0 and VSTCR_EL2.SL2.

IPBGCS For the 4KB translation granule, when a stage 2 translation table walk is started, the following table shows the initial
lookup level determined by VTCR_EL2.SL0 or VSTCR_EL2.SL0 and, when the Effective value of
VTCR_EL2.DS is 1, the corresponding VTCR_EL2.SL2 or VSTCR_EL2.SL2.

D_Block

D_Table

Level -1 table

Level 0 table

4KB

memory

page
1GB

region

Level 3 table

Level 1 table

2MB

region

a

b

d

TTBR_ELx

D_Page

D_Block

D_Table
D_Block

D_Table

D_Table

512GB

region

Level 2 table

c

e

b Indexed by IA[47:39].

c Indexed by IA[38:30].

d Indexed by IA[29:21].

e Indexed by IA[20:12].

 D_Block is a Block descriptor.

 D_Page is a Page descriptor.

 D_Table is a Table descriptor.

Key:

a Indexed by IA[n:48], where IA width is (n+1) bits.

Table D8-17 4KB granule, determining stage 2 initial lookup level

SL2 SL0 Initial lookup level

0b0 0b00 Level 2

0b0 0b01 Level 1

0b0 0b10 Level 0

0b0 0b11 Level 3

0b1 0b00 Level -1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6597
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RDBNDG For the 4KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is -1,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

RPZFHQ For the 4KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 0, the
following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

RMKPBG For the 4KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 1, the
following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

0b1 0b01 Reserved

0b1 0b10 Reserved

0b1 0b11 Reserved

Table D8-17 4KB granule, determining stage 2 initial lookup level (continued)

SL2 SL0 Initial lookup level

Table D8-18 4KB granule, stage 2 initial lookup at level -1

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[51:12]-IA[48-12] 12-15 Effective value of VTCR_EL2.DS is 1

Table D8-19 4KB granule, stage 2 initial lookup at level 0

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[47:12]-IA[39:12] 16-24 -

2 IA[48:12] 15 Effective value of VTCR_EL2.DS is 1

4 IA[49:12] 14 Effective value of VTCR_EL2.DS is 1

8 IA[50:12] 13 Effective value of VTCR_EL2.DS is 1

16 IA[51:12] 12 Effective value of VTCR_EL2.DS is 1

Table D8-20 4KB granule, stage 2 initial lookup at level 1

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[38:12]-IA[30:12] 25-33 -

2 IA[39:12] 24 -

4 IA[40:12] 23 -

8 IA[41:12] 22 -

16 IA[42:12] 21 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6598
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RKKRSZ For the 4KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 2, the
following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

RTJMNP For the 4KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 3, the
following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

ISWBVJ For the 4KB translation granule and a 52-bit IA, the following figure is a generalized view of a stage 2 address
translation. An IA larger than 48 bits requires that the Effective value of VTCR_EL2.DS is 1. The 512GB block size
requires that the Effective value of VTCR_EL2.DS is 1.

Table D8-21 4KB granule, stage 2 initial lookup at level 2

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[23:12]-IA[21:12] 40-42 FEAT_TTST is implemented

None (1 table) IA[29:12]-IA[24:12] 34-39 -

2 IA[30:12] 33 -

4 IA[31:12] 32 -

8 IA[32:12] 31 -

16 IA[33:12] 30 -

Table D8-22 4KB granule, stage 2 initial lookup at level 3

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[20:12]-IA[15:12] 43-48 FEAT_TTST is implemented

2 IA[21:12] 42 FEAT_TTST is implemented

4 IA[22:12] 41 FEAT_TTST is implemented

8 IA[23:12] 40 FEAT_TTST is implemented

16 IA[24:12] 39 FEAT_TTST is implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6599
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-5 Generalized view of a stage 2 address translation using the 4KB granule

RKTKWK For the 4KB translation granule, when a stage 2 translation table walk is started and one of the following is true, a
stage 2 level 0 Translation fault is generated:

• If the Effective value of VTCR_EL2.DS is 0, then one or more of the following is true:

— The VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value is not consistent with the corresponding
VTCR_EL2.SL0 or VSTCR_EL2.SL0 value.

— VTCR_EL2.SL0 or VSTCR_EL2.SL0 is programmed to a reserved value.

• If the Effective value of VTCR_EL2.DS is 1, then one or more of the following is true:

— The VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value is not consistent with the corresponding
VTCR_EL2.{SL2, SL0} or VSTCR_EL2.{SL2, SL0} value.

Up to 16 concatenated

tables at the initial level

VTCR_EL2.{SL2, SL0} defines the start level.

Starting at level -1

D_Block

D_Table

4KB

memory

page
1GB

region

Level 3 table

Level 1 table

2MB

region

d

D_Page

D_Block

D_Table

Level 2 table

e

Starting at level 0

Level -1 table

Level 0 table

a

b1

VTTBR_EL2

D_Block

D_Table

D_Table

512GB

region

c

D_Block

D_TableLevel 0 table

4KB

memory

page1GB

region

Level 3 table

Level 1 table
2MB

region

b2

d

VTTBR_EL2

D_Page

D_Block

D_Table
D_Block

D_Table

512GB

region

Level 2 table

c

e

D_Table

b1 Indexed by IA[47:39].

c Indexed by IA[38:30].

d Indexed by IA[29:21].

e Indexed by IA[20:12].

 D_Block is a Block descriptor.

 D_Page is a Page descriptor.

 D_Table is a Table descriptor.

Key for both diagrams:

a Indexed by IA[n:48], where IA width is (n+1) bits.

b2 Indexed by IA[n:39], where IA width is (n+1) bits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6600
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
— VTCR_EL2.{SL2, SL0} or VSTCR_EL2.{SL2, SL0} is programmed to a reserved value.

IHBWKN For more information, see Concatenated translation tables.

D8.2.8.3 Finding the descriptor when using the VMSAv8-64 4KB translation granule

RVMRQS For the 4KB translation granule, the following table shows the algorithm to find the descriptor address at each
supported lookup level, using of all of the following information:

• The translation table base address, BaseAddr.

• The number of bits in the supported PA size, PAsize.

• The IA supplied to the translation stage and used as an index into the translation table.

• For each initial lookup level, the permitted range of values for TCR_ELx.TnSZ.

• For a stage 2 translation, all of the following:

— The value of VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ.

— The value of VTCR_EL2.SL0 or VSTCR_EL2.SL0.

— If the Effective value of VTCR_EL2.DS is 1, then the value of VTCR_EL2.SL2 or VSTCR_EL2.SL2.

D8.2.9 VMSAv8-64 translation using the 16KB granule

RQSQNQ All statements in this section and subsections require a translation stage use the VMSAv8-64 translation system.

Table D8-23 4KB granule, finding the descriptor address

Lookup
level

Stage 1 translation table descriptor
address

Stage 2 translation table descriptor
address

-1 if 12 <= TnSZ <= 15
 then x = (19 - TnSZ)

BaseAddr[PAsize-1:x]:IA[x+44:48]:0b000

if SL2==1 and SL0==0
 then if 12 <= T0SZ <= 15
 then x = (19 - T0SZ)
BaseAddr[PAsize-1:x]:IA[x+44:48]:0b000

0 if 16 <= TnSZ <= 24
 then x = (28 - TnSZ)
else x = 12

BaseAddr[PAsize-1:x]:IA[x+35:39]:0b000

if SL0==2
 then if 12 <= T0SZ <= 24
 then x = (28 - T0SZ)
else x = 12
BaseAddr[PAsize-1:x]:IA[x+35:39]:0b000

1 if 25 <= TnSZ <= 33
 then x = (37 - TnSZ)
else x = 12

BaseAddr[PAsize-1:x]:IA[x+26:30]:0b000

if SL0==1
 then if 21 <= T0SZ <= 33
 then x = (37 - T0SZ)
else x = 12
BaseAddr[PAsize-1:x]:IA[x+26:30]:0b000

2 if 34 <= TnSZ <= 42
 then x = (46 - TnSZ)
else x = 12

BaseAddr[PAsize-1:x]:IA[x+17:21]:0b000

if SL0==0
 then if 30 <= T0SZ <= 42
 then x = (46 - T0SZ)
else x = 12
BaseAddr[PAsize-1:x]:IA[x+17:21]:0b000

3 if 43 <= TnSZ <= 48
 then x = (55 - TnSZ)
else x = 12

BaseAddr[PAsize-1:x]:IA[x+8:12]:0b000

if SL0==3
 then if 39 <= T0SZ <= 48
 then x = (55 - T0SZ)
else x = 12
BaseAddr[PAsize-1:x]:IA[x+8:12]:0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6601
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
ITDTCY Address translations that use the 16KB granule have a 16KB page size. Depending on the settings and supported
features, up to 38 address bits are resolved using up to 4 lookup levels.

RVQYZX Throughout this section, if an address translation stage is not specified, then references to the Effective value of
TCR_ELx.DS also apply to VTCR_EL2.DS.

IJCYXY For the 16KB translation granule, the maximum VA and PA supported by a translation regime is one of the
following:

• If the Effective value of TCR_ELx.DS is 0, then the maximum VA and PA supported is 48 bits.

• If the Effective value of TCR_ELx.DS is 1, then the maximum VA and PA supported is 52 bits.

RCDLYH For the 16KB translation granule, if the Effective value of TCR_ELx.DS is 0, then OA[51:48] are treated as 0b0000.

RVGVLD For each lookup level supported by the 16KB translation granule, the following table describes the translation table
properties at that level.

RRYDBQ For the 16KB translation granule, a translation resolved by a Page descriptor at lookup level 3 has all of the
following properties:

• The page size is 16KB.

• The translation can resolve a page using one of the following maximum address ranges:

— If the Effective value of TCR_ELx.DS is 0, then IA[47:14].

— If the Effective value of TCR_ELx.DS is 1, then IA[51:14].

• The page is addressed by one of the following:

— If the Effective value of TCR_ELx.DS is 0, then OA[47:14].

— If the Effective value of TCR_ELx.DS is 1, then OA[51:14].

• IA[13:0] is mapped directly to OA[13:0].

Table D8-24 16KB granule translation table properties at each lookup level

Lookup
level

Index into
translation
table

Maximum
entries in
table

Contents of translation table entries Additional requirements

0 IA[47]

IA[51:47]

232 Table descriptors
Lookup level 0 supported only at stage 1
Table descriptors
Lookup level 0 supported at stages 1 and 2

Effective value of TCR_ELx.DS is 0

Effective value of TCR_ELx.DS is 1

1 IA[46:36] 2048 Table descriptors
Table descriptors and Block descriptors

Effective value of TCR_ELx.DS is 0
Effective value of TCR_ELx.DS is 1

2 IA[35:25] 2048 Table descriptors and Block descriptors -

3 IA[24:14] 2048 Page descriptors -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6602
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RFFHSQ For the 16KB translation granule, a translation resolved by a Block descriptor at the specified lookup level has all
of the properties shown in the following table:

IMJSJR For the 16KB translation granule, the following figure shows how the maximum 52-bit IA size is resolved. An IA
larger than 48 bits requires that the Effective value of TCR_ELx.DS is 1.

Figure D8-6 52-bit IA resolved using 16KB translation granule

D8.2.9.1 VMSAv8-64 Stage 1 address translation using the 16KB translation granule

RJHFFJ For the 16KB translation granule, when a stage 1 translation table walk is started, the initial lookup level is
determined by the value of the TCR_ELx.TnSZ field as shown in the following table:

Table D8-25 16KB granule block descriptor properties at each lookup level

Lookup
level

Size of
memory region
addressed by
Block descriptor

Bit range that is direct
mapped from IA to OA

IA bit range
that selects
Block descriptor

Effective value of
TCR_ELx.DS

1 Not supported
64GB

-
IA[35:0] maps to OA[35:0]

-
IA[51:36]

0
1

2 32MB IA[24:0] maps to OA[24:0] IA[47:25]
IA[51:25]

0
1

Input address (IA)

46 025 24 14 1336 35

Using the 16KB translation granule

IA[13:0]

IA[24:14]

Index the level 3 translation table
†

or

OA[24:14]
‡

OA[13:0]

Index the level 2 translation table
†

or

OA[35:25]
‡

IA[35:25]

Index the level 0 translation tableIA[51:47]

OA Output address
†

Table entry at previous lookup level
‡

Block entry at previous lookup level

4751

Index the level 1 translation table
†

IA[46:36]

Table D8-26 16KB granule, determining stage 1 initial lookup level

Initial
lookup
level

TnSZ
minimum
value

Maximum
IA bits
resolved

TnSZ
maximum
value

Minimum
IA bits
resolved

Additional requirements

0 12 IA[51:14] 15 IA[48:14] Effective value of TCR_ELx.DS is 1

0 16 IA[47:14] 16 IA[47:14] -

1 17 IA[46:14] 27 IA[36:14] -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6603
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
IFLDKN For a stage 1 translation in the 16KB translation granule, depending on the IA size, the initial lookup level is indexed
by up to 11 bits and all remaining lookup levels are indexed by exactly 11 bits.

IKSSHJ For the 16KB translation granule and a 52-bit IA, the following figure is a generalized view of a stage 1 address
translation. An IA and an OA larger than 48 bits requires that the Effective value of TCR_ELx.DS is 1. The 64GB
block size requires that the Effective value of TCR_ELx.DS is 1.

Figure D8-7 Generalized view of a stage 1 address translation using the 16KB granule

D8.2.9.2 VMSAv8-64 Stage 2 address translation using the 16KB translation granule

IQDHZV For the 16KB translation granule, when a stage 2 translation table walk is started, the initial lookup level is
determined by the corresponding VTCR_EL2.SL0 or VSTCR_EL2.SL0 value.

2 28 IA[35:14] 38 IA[25:14] -

3 39 IA[24:14] 39 IA[24:14] -

3 40 IA[23:14] 48 IA[15:14] FEAT_TTST is implemented

Table D8-26 16KB granule, determining stage 1 initial lookup level (continued)

Initial
lookup
level

TnSZ
minimum
value

Maximum
IA bits
resolved

TnSZ
maximum
value

Minimum
IA bits
resolved

Additional requirements

TTBR_ELx

Level 0 table

Level 1 table

16KB

memory

page

Level 3 table

D_Page

Level 2 table

d

a Indexed by IA[51:47].

b Indexed by IA[46:36].

c Indexed by IA[35:25].

d Indexed by IA[24:14].

 D_Block is a Block descriptor.

 D_Page is a Page descriptor.

 D_Table is a Table descriptor.

Key:D_Table

a

D_Block
32MB

region

D_Table

c
D_Block

64GB

region

D_Table

b

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6604
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
IMKHHJ For the 16KB translation granule, when a stage 2 translation table walk is started, the following table shows the
initial lookup level determined by SL0:

RJKYLY For the 16KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 0,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

RFBHPY For the 16KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 1,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

RMJPYK For the 16KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 2,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

Table D8-27 16KB granule, determining stage 2 initial lookup level

SL0 Initial lookup level

0b00 Level 3

0b01 Level 2

0b10 Level 1

0b11 Level 0

Table D8-28 16KB granule, stage 2 initial lookup at level 0

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[51:14]-IA[47:14] 12-16 Effective value of VTCR_EL2.DS is 1

Table D8-29 16KB granule, stage 2 initial lookup at level 1

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[46:14]-IA[36:14] 17-27 -

2 IA[47:14] 16 -

4 IA[48:14] 15 Effective value of VTCR_EL2.DS is 1

8 IA[49:14] 14 Effective value of VTCR_EL2.DS is 1

16 IA[50:14] 13 Effective value of VTCR_EL2.DS is 1

Table D8-30 16KB granule, stage 2 initial lookup at level 2

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[35:14]-IA[25:14] 28-38 -

2 IA[36:14] 27 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6605
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RWDMGC For the 16KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 3,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

IGBRMW For the 16KB translation granule and a 52-bit IA, the following figure is a generalized view of a stage 2 address
translation. An IA larger than 48 bits requires that the Effective value of VTCR_EL2.DS is 1. The 64GB block size
requires that the Effective value of VTCR_EL2.DS is 1.

4 IA[37:14] 26 -

8 IA[38:14] 25 -

16 IA[39:14] 24 -

Table D8-30 16KB granule, stage 2 initial lookup at level 2 (continued)

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

Table D8-31 16KB granule, stage 2 initial lookup at level 3

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[23:14]-IA[15:14] 40-48 FEAT_TTST is implemented

None (1 table) IA[24:14] 39 -

2 IA[25:14] 38 -

4 IA[26:14] 37 -

8 IA[27:14] 36 -

16 IA[28:14] 35 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6606
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-8 Generalized view of a stage 2 address translation using the 16KB granule

RNWPLD For the 16KB translation granule, when a stage 2 translation table walk is started and one of the following is true, a
stage 2 level 0 Translation fault is generated:

• The VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value is not consistent with the corresponding
VTCR_EL2.SL0 or VSTCR_EL2.SL0 value.

• VTCR_EL2.SL0 or VSTCR_EL2.SL0 is programmed to a reserved value.

IFXRPG For more information, see Concatenated translation tables.

D8.2.9.3 Finding the descriptor when using the VMSAv8-64 16KB translation granule

RKMTBZ For the 16KB translation granule, the following table shows the algorithm to find the descriptor address at each
supported lookup level, using of all of the following information:

• The translation table base address, BaseAddr.

• The number of bits in the supported PA size, PAsize.

VTCR_EL2.SL0 defines the start level.

Starting at level 0

Starting at level 1

Up to 16 concatenated

tables at the initial level

D_Table

D_Table

D_Block

b2

VTTBR_EL2

Level 0 table

Level 1 table

16KB

memory

page

Level 3 table

D_Page

Level 2 table

d

D_Table

a

D_Block
32MB

region

D_Table

c

D_Block
64GB

region

D_Table

b1

VTTBR_EL2

Level 1 table

16KB

memory

page

Level 3 table

D_Page

Level 2 table

d
D_Block

32MB

region

D_Table

c

64GB

region

a Indexed by IA[n:47], where IA width is (n+1) bits.

b1 Indexed by IA[46:36].

d Indexed by IA[24:14].

b2 Indexed by IA[n:36], where IA width is (n+1) bits.

D_Block is a Block descriptor.

D_Page is a Page descriptor.

D_Table is a Table descriptor.

Key for both diagrams:

c Indexed by IA[35:25].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6607
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
• The IA supplied to the translation stage and used as an index into the translation table.

• For each initial lookup level, the permitted range of values for TCR_ELx.TnSZ.

• For a stage 2 translation, all of the following:

— The value of VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ.

— The value of VTCR_EL2.SL0 or VSTCR_EL2.SL0.

D8.2.10 VMSAv8-64 translation using the 64KB granule

RRGNZV All statements in this section and subsections require a translation stage use the VMSAv8-64 translation system.

IVDPWL Address translations that use the 64KB granule have a 64KB page size. Depending on the settings and supported
features, up to 36 address bits are resolved using up to 3 lookup levels.

ILRFQD For the 64KB translation granule, the maximum VA size supported by a translation regime is one of the following:

• If FEAT_LVA is not implemented, then the maximum VA supported is 48 bits.

• If FEAT_LVA is implemented, then the maximum VA supported is 52 bits.

IYZDPC For the 64KB translation granule, the maximum PA size supported by a translation regime is one of the following:

• If FEAT_LPA is not implemented, then the maximum PA supported is 48 bits.

• If FEAT_LPA is implemented, then the maximum PA supported is 52 bits.

RNSQXP For the 64KB translation granule, if FEAT_LPA is not implemented, then OA[51:48] are treated as 0b0000.

Table D8-32 16KB granule, finding the descriptor address

Lookup
level

Stage 1 translation table descriptor
address

Stage 2 translation table descriptor
address

0 if 12 <= TnSZ <= 16
 then x = (20 - TnSZ)

BaseAddr[PAsize-1:x]:IA[x+43:47]:0b000

if SL0==3
 then if 12 <= T0SZ <= 16
 then x = (20 - T0SZ)
BaseAddr[PAsize-1:x]:IA[x+43:47]:0b000

1 if 17 <= TnSZ <= 27
 then x = (31 - TnSZ)
else x = 14

BaseAddr[PAsize-1:x]:IA[x+32:36]:0b000

if SL0==2
 then if 13 <= T0SZ <= 27
 then x = (31 - T0SZ)
else x = 14
BaseAddr[PAsize-1:x]:IA[x+32:36]:0b000

2 if 28 <= TnSZ <= 38
 then x = (42 - TnSZ)
else x = 14

BaseAddr[PAsize-1:x]:IA[x+21:25]:0b000

if SL0==1
 then if 24 <= T0SZ <= 38
 then x = (42 - T0SZ)
else x = 14
BaseAddr[PAsize-1:x]:IA[x+21:25]:0b000

3 if 39 <= TnSZ <= 48
 then x = (53 - TnSZ)
else x = 14

BaseAddr[PAsize-1:x]:IA[x+10:14]:0b000

if SL0==0
 then if 35 <= T0SZ <= 48
 then x = (53 - T0SZ)
else x = 14
BaseAddr[PAsize-1:x]:IA[x+10:14]:0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6608
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RMLLGN For each lookup level supported by the 64KB translation granule, the following table describes the translation table
properties at that level.

RZWQBH For the 64KB translation granule, a translation resolved by a Page descriptor at lookup level 3 has all of the
following properties:

• The page size is 64KB.

• For stage 1, the translation can resolve a page using one of the following maximum address ranges:

— If FEAT_LVA is not implemented, then IA[47:16].

— If FEAT_LVA is implemented, then IA[51:16].

• For stage 2, the translation can resolve a page using one of the following maximum address ranges:

— If FEAT_LPA is not implemented, then IA[47:16].

— If FEAT_LPA is implemented, then IA[51:16].

• For stage 1 and stage 2, the page is addressed by one of the following:

— If FEAT_LPA is not implemented, then OA[47:16].

— If FEAT_LPA is implemented, then OA[51:16].

• IA[15:0] is mapped directly to OA[15:0].

RRBNGS For the 64KB translation granule, a translation resolved by a Block descriptor at the specified lookup level has all
of the properties shown in the following table:

ITVDSK For the 64KB translation granule, the following figure shows how the maximum 52-bit IA size is resolved. For a
stage 1 translation, an IA larger than 48 bits requires the implementation of FEAT_LVA. For a stage 2 translation,
an IA larger than 48 bits requires the implementation of FEAT_LPA.

Table D8-33 64KB granule translation table properties at each lookup level

Lookup
level

Index into
translation
table

Maximum
entries
in table

Contents of translation table
entries

Additional
requirements for
stage 1

Additional
requirements
for stage 2

1 IA[47:42]

IA[51:42]

64

1024

Table descriptors
Table descriptors and Block descriptors
Table descriptors
Table descriptors and Block descriptors

-
FEAT_LPA
FEAT_LVA
FEAT_LVA, FEAT_LPA

-
FEAT_LPA
-
FEAT_LPA

2 IA[41:29] 8192 Table descriptors and Block descriptors - -

3 IA[28:16] 8192 Page descriptors - -

Table D8-34 64KB granule block descriptor properties at each lookup level

Lookup
level

Size of
memory region
addressed by
Block descriptor

Bit range that is direct
mapped from IA to OA

IA bit range that
selects Block
descriptor

Additional
requirements for
stage 1

Additional
requirements
for stage 2

1 4TB IA[41:0] maps to OA[41:0] IA[47:42]
IA[51:42]

FEAT_LPA
FEAT_LVA, FEAT_LPA

FEAT_LPA
FEAT_LPA

2 512MB IA[28:0] maps to OA[28:0] IA[47:29]
IA[51:29]

-
FEAT_LVA

-
FEAT_LPA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6609
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-9 52-bit IA resolved using 64KB translation granule

D8.2.10.1 VMSAv8-64 Stage 1 address translation using the 64KB translation granule

RFMBKV For the 64KB translation granule, when a stage 1 translation table walk is started, the initial lookup level is
determined by the value of the TCR_ELx.TnSZ field as shown in the following table:

IFQFFW For a stage 1 translation in the 64KB translation granule, depending on the IA size, the initial lookup level is indexed
by up to 13 bits and all remaining lookup levels are indexed by exactly 13 bits.

IMRDWZ For the 64KB translation granule and a 52-bit IA, the following figure is a generalized view of a stage 1 address
translation. An IA larger than 48 bits requires implementation of FEAT_LVA, and an OA larger than 48 bits requires
implementation of FEAT_LPA. The 4TB block size requires implementation of FEAT_LPA.

Input address (IA)

51 29 28 016 1542 41

Using the 64KB translation granule

IA[15:0] OA[15:0]

IA[28:16]

Index the level 3 translation table
†

or

OA[28:16]
‡

Index the level 2 translation table
†

or

OA[41:29]
‡

IA[41:29]

Index the level 1 translation tableIA[51:42]

OA Output address
†

Table entry at previous lookup level
‡

Block entry at previous lookup level

Table D8-35 64KB granule, determining stage 1 initial lookup level

Initial
lookup
level

TnSZ
minimum
value

Maximum
IA bits
resolved

TnSZ
maximum
value

Minimum
IA bits
resolved

Additional requirements

1 12 IA[51:16] 15 IA[48:16] FEAT_LVA is implemented

1 16 IA[47:16] 21 IA[42:16] -

2 22 IA[41:16] 34 IA[29:16] -

3 35 IA[28:16] 39 IA[24:16] -

3 40 IA[23:16] 47 IA[16:16] FEAT_TTST is implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6610
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-10 Generalized view of a stage 1 address translation using the 64KB granule

D8.2.10.2 VMSAv8-64 Stage 2 address translation using the 64KB translation granule

IHHFJP For the 64KB translation granule, when a stage 2 translation table walk is started, the initial lookup level is
determined by the corresponding VTCR_EL2.SL0 or VSTCR_EL2.SL0 value.

IVLBLQ For the 64KB translation granule, when a stage 2 translation table walk is started, the following table shows the
initial lookup level determined by SL0:

RQCSFP For the 64KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 1,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

TTBR_ELx

Level 1 table

D_Table

Level 2 table

64KB

page
D_Block

512MB

region

D_Table

Level 3 table

D_Page

a

b

c

D_Block
4TB

region

 D_Block is a Block descriptor.

 D_Page is a Page descriptor.

 D_Table is a Table descriptor.

Key:

a Indexed by IA[n:42], where IA width is (n+1) bits.

b Indexed by IA[41:29].

c Indexed by IA[28:16].

Table D8-36 64KB granule, determining stage 2 initial lookup level

SL0 Initial lookup level

0b00 Level 3

0b01 Level 2

0b10 Level 1

0b11 Reserved

Table D8-37 64KB granule, stage 2 initial lookup at level 1

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[51:16]-IA[48:16] 12-15 FEAT_LPA is implemented

None (1 table) IA[47:16]-IA[42:16] 16-21 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6611
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RWHSBD For the 64KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 2,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

RPLLHG For the 64KB translation granule, when a stage 2 translation table walk is started and the initial lookup level is 3,
the following table shows all of the permitted concatenated translation table configurations and the corresponding
VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value:

ISYRCT For the 64KB translation granule and a 52-bit IA, the following figure is a generalized view of a stage 2 address
translation. An IA larger than 48 bits requires the implementation of FEAT_LPA. The 4TB block size requires
implementation of FEAT_LPA.

Table D8-38 64KB granule, stage 2 initial lookup at level 2

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[41:16]-IA[29:16] 22-34 -

2 IA[42:16] 21 -

4 IA[43:16] 20 -

8 IA[44:16] 19 -

16 IA[45:16] 18 -

Table D8-39 64KB granule, stage 2 initial lookup at level 3

Number of concatenated
translation tables

IA bits resolved T0SZ Additional requirements

None (1 table) IA[23:16]-IA[16:16] 40-47 FEAT_TTST is implemented

None (1 table) IA[28:16]-IA[24:16] 35-39 -

2 IA[29:16] 34 -

4 IA[30:16] 33 -

8 IA[31:16] 32 -

16 IA[32:16] 31 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6612
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
Figure D8-11 Generalized view of a stage 2 address translation using the 64KB granule

RSGCBS For the 64KB translation granule, when a stage 2 translation table walk is started and one of the following is true, a
stage 2 level 0 Translation fault is generated:

• The VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ value is not consistent with the corresponding
VTCR_EL2.SL0 or VSTCR_EL2.SL0 value.

• VTCR_EL2.SL0 or VSTCR_EL2.SL0 is programmed to a reserved value.

IDKRJG For more information, see Concatenated translation tables.

D8.2.10.3 Finding the descriptor when using the VMSAv8-64 64KB translation granule

RLMDCR For the 64KB translation granule, the following table shows the algorithm to find the descriptor address at each
supported lookup level, using of all of the following information:

• The translation table base address, BaseAddr.

• The number of bits in the supported PA size, PAsize.

• The IA supplied to the translation stage and used as an index into the translation table.

VTTBR_EL2

Level 1 table

D_Table

Level 2 table

VTCR_EL2.SL0 defines the start level.

Starting at level 1

D_Block
512MB

region

D_Table

64KB

page

Level 3 table

D_Page

D_Table

VTTBR_EL2

Starting at level 2

Level 2 table

D_Block
512MB

region

D_Table

64KB

page

Level 3 table

D_Page

Up to 16 concatenated

tables at the initial level

a

b1

b2

c

c

a Indexed by IA[n:42],

where IA width is (n+1) bits.

b1 Indexed by IA[41:29].

b2 Indexed by IA[n:29],

where IA width is (n+1) bits.

c Indexed by IA[28:16].

D_Block is a Block descriptor.

D_Page is a Page descriptor.

D_Table is a Table descriptor.

Key for both diagrams

D_Block
4TB

region
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6613
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
• For each initial lookup level, the permitted range of values for TCR_ELx.TnSZ.

• For a stage 2 translation, all of the following:

— The value of VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ.

— The value of VTCR_EL2.SL0 or VSTCR_EL2.SL0.

D8.2.11 Translation using the VMSAv9-128 translation system

RTZZMT All statements in this section and subsections require a translation stage use the VMSAv9-128 translation system.

RKWKRB For a translation granule used in the VMSAv9-128 translation system, all of the following properties apply:

• The Stride is the minimum number of bits used to index a lookup level other than the initial lookup level.

• The minimum number of translation table entries at lookup levels other than the initial lookup level is 2Stride.

• The number of address bits resolved by a Page descriptor at lookup level 3, PageIndex, is Stride+4.

Those properties are shown in the following table.

Table D8-40 64KB granule, finding the descriptor address

Lookup
level

Stage 1 translation table descriptor
address

Stage 2 translation table descriptor
address

1 if 12 <= TnSZ <= 21

 then x = (25 - TnSZ)

BaseAddr[PAsize-1:x]:IA[x+38:42]:0b000

if SL0==2

 then if 12 <= T0SZ <= 21

 then x = (25 - T0SZ)
BaseAddr[PAsize-1:x]:IA[x+38:42]:0b000

2 if 22 <= TnSZ <= 34
 then x = (38 - TnSZ)
else x = 16

BaseAddr[PAsize-1:x]:IA[x+25:29]:0b000

if SL0==1
 then if 18 <= T0SZ <= 34
 then x = (38 - T0SZ)
else x = 16
BaseAddr[PAsize-1:x]:IA[x+25:29]:0b000

3 if 35 <= TnSZ <= 47
 then x = (51 - TnSZ)
else x = 16

BaseAddr[PAsize-1:x]:IA[x+12:16]:0b000

if SL0==0
 then if 31 <= T0SZ <= 47
 then x = (51 - T0SZ)
else x = 16
BaseAddr[PAsize-1:x]:IA[x+12:16]:0b000

Table D8-41 Translation granule properties at lookup levels other than the initial lookup level

Translation granule Minimum number of translation table entries Stride PageIndex

4KB 256 8 12

16KB 1024 10 14

64KB 4096 12 16
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6614
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
D8.2.11.1 Starting the VMSAv9-128 translation

RBYPBM The regular start level is determined by the translation granule size and the TnSZ fields in the corresponding
TCR_ELx, as shown in the following table:

RDBQZN When a translation table walk begins, the start level is determined by adding the value of the TTBR_ELx.SKL field
to the regular start level.

RFYTMS If the start level is greater than 3, a level 0 Translation fault is generated.

Note
This can be due to misprogramming the TTBR_ELx.SKL and TCR_ELx.{TGn, TnSZ} fields.

IJHGNJ When stage 2 uses the VMSAv9-128 translation system, the VTCR_EL2.{SL2, SL0} and VSTCR_EL2.{SL2,
SL0} fields are RES0.

IDHBWG For a translation granule, the properties of the start level translation table and the start level address are calculated
using of all of the following information:

• The translation table base address, BaseAddr, in TTBR_ELx.BADDR.

• The IA supplied to the translation and used as an index into the start level translation table.

• The permitted range of values for TCR_ELx.TnSZ.

• The translation granule Stride value.

• The translation table base address register SKL value.

RJXBPC The number of address bits resolved by the table walk process, X, is 64-TnSZ-PageIndex.

Table D8-42 Regular start levels in the VMSAv9-128 translation system

Translation granule TnSZ maximum value TnSZ minimum value Regular start level

4KB 11 8 -2

19 12 -1

27 20 0

35 28 1

43 36 2

48 44 3

16KB 9 8 -1

19 10 0

29 20 1

39 30 2

48 40 3

64KB 11 8 0

23 12 1

35 24 2

47 36 3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6615
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RZZDZK The number of address bits resolved at all lookup levels other than the start level, Y, is (3-start level)*Stride.

RCNZNY The number of address bits resolved at the start level, Z, is X-Y.

RYQVMK The size of the start level translation table is 2Z*16 bytes.

RTBNJK The start level address used to fetch the first descriptor is determined by appending BaseAddr to an index
determined from the IA supplied to the translation stage, as follows:

• Start level address = BaseAddr[55:Z+4]:IA[64-TnSZ-1:64-TnSZ-Z]:0b0000.

RPMSLB If the high order start level address bits greater than the OA size are not 0, then an Address size fault is generated at
level 0.

D8.2.11.2 Continuing the VMSAv9-128 translation

RDZXSB When a Table descriptor is returned at the current lookup level and does not generate an MMU fault, the translation
table walk continues to the next lookup level.

RRCJXL The number of address bits resolved by all remaining lookup levels, K, is (3-current lookup level)*Stride.

RCWNTJ The next lookup level is current lookup level + 1 + Table descriptor SKL field.

RFSZKG The number of address bits resolved at the next lookup level, N, is (SKL+1)*Stride.

RZRZLX The size of the next level translation table is 2N*16 bytes, determined according to the following table:

Note

For each translation granule, the list of translation table sizes in Table D8-43 is the same as the list of supported
block and page sizes in Table D8-44, although the table sizes are not limited to specific lookup levels.

RQYWCB If the size of the next level table is greater than the permitted translation table size, then a Translation fault at the
current lookup level is generated. See Table D8-44.

Table D8-43 Next level translation table sizes

Translation granule Descriptor SKL field Translation table size

4KB 0 4KB

1 1MB

2 256MB

3 64GB

16KB 0 16KB

1 16MB

2 16GB

3 Invalid descriptor

64KB 0 64KB

1 256MB

2 1TB

3 Invalid descriptor
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6616
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
RKMLSH The next level address used to fetch the next descriptor is determined by appending the next level table address to
an index determined from the IA supplied to the translation stage, as follows:

• Next level address = Next level table address[55:N+4]:IA[K+Pageindex-1:K+PageIndex-N]:0b0000.

RRNCRQ If the high order next level address bits greater than the OA size are not 0, then an Address size fault is generated at
the current lookup level.

D8.2.11.3 Completing the VMSAv9-128 translation

RWXRFL When a Block or Page descriptor is returned at the current lookup level, the translation table walk completes and
the current lookup level is the final lookup level.

RMYHXN For the VMSAv9-128 translation system, a translation resolved by a Block or Page descriptor has all of the
properties shown in the following table. In this table, all of the following apply:

• OA base (OAB) is the OA supplied by the descriptor at the final lookup level.

• IA is the IA supplied to the translation stage.

• Final address is the OA supplied by the translation stage.

RBFVYY For the final address supplied by a translation stage, if the address bits above the OA size are not set to zero, then
an Address size fault is generated at the current lookup level.

D8.2.12 The effects of disabling an address translation stage

IHBZJC Stage 1 and stage 2 translations can be disabled independently, and doing so affects the MMU behavior.

D8.2.12.1 Behavior when stage 1 address translation is disabled

RPPDBS If stage 1 address translation is disabled, then all of the following apply to memory accesses that would otherwise
be translated at stage 1:

• The stage 1 IA is flat mapped to the OA.

• No Translation faults, Access flag faults, or Permission faults can be generated.

Table D8-44 Block and Page descriptor properties in the VMSAv9-128 translation system

Translation
Granule

Lookup
level

Supported block or page size Final address

4KB 0 64GB block OAB[55:36]:IA[35:0]

1 256MB block OAB[55:28]:IA[27:0]

2 1MB block OAB[55:20]:IA[19:0]

3 4KB page OAB[55:12]:IA[11:0]

16KB 1 16GB block OAB[55:34]:IA[33:0]

2 16MB block OAB[55:24]:IA[23:0]

3 16KB page OAB[55:14]:IA[13:0]

64KB 1 1TB block OAB[55:40]:IA[39:0]

2 256MB block OAB[55:28]:IA[27:0]

3 64KB page OAB[55:16]:IA[15:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6617
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
• Address size faults and Alignment faults can be generated.

• No memory is guarded.

• The access is to one of the following IPA or PA spaces:

— For accesses from Non-secure state, the access is to Non-secure IPA or PA space.

— For accesses from Secure state, the access is to Secure IPA or PA space.

— For accesses from Realm state, the access is to Realm IPA or PA space.

— For accesses from Root state, the access is to Root PA space.

RWFZPW If stage 1 address translation is disabled, then the stage 1 translation assigns one of the following attributes to
memory accesses:

• For memory accesses using the EL1&0 regime, if the effective value of HCR_EL2.DC is 1, then all of the
following memory attributes are assigned:

— The Tagged attribute is set according to HCR_EL2.DCT.

— Normal Inner Write-Back Cacheable Read-Allocate Write-Allocate.

— Normal Outer Write-Back Cacheable Read-Allocate Write-Allocate.

— Non-shareable.

— If FEAT_XS is implemented, then the XS attribute is set to 0.

• For all other memory accesses, one of the following memory attributes are assigned:

— For a data access, the Device-nGnRnE memory attribute.

— For an instruction access, the Normal memory attribute and one of the following:

— If SCTLR_ELx.I is 0, then the Non-cacheable and Outer Shareable attributes.

— If SCTLR_ELx.I is 1, then the Cacheable, Inner Write-Through Read-Allocate No
Write-Allocate, Outer Write-Through Read-Allocate No Write-Allocate Outer Shareable
attribute.

— For data accesses and instruction accesses, if FEAT_XS is implemented, then the XS attribute is set to
1.

RCSDNK If all of the following apply, then the stage 1 memory attribute assignments and OA can be modified by the stage 2
translation:

• EL1&0 stage 2 address translation is enabled.

• An access using the EL1&0 translation regime occurs.

RLBPTY If HCR_EL2.DC is 1, then all of the following apply:

• For all purposes other than reading the value of the bit, the Effective value of SCTLR_EL1.M is 0, disabling
stage 1 address translation in the EL1&0 translation regime.

• If EL2 is enabled, then for all purposes other than reading the value of the bit, the Effective value of
HCR_EL2.VM is 1, enabling stage 2 address translation in the EL1&0 translation regime.

D8.2.12.2 Behavior when stage 2 address translation is disabled

RQVLSD If stage 2 address translation is disabled, then all of the following apply to memory accesses that would otherwise
be translated at stage 2:

• No stage 2 MMU faults can be generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6618
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
• The IPA is flat mapped to the PA.

• The memory attributes and permissions assigned by the stage 1 translation are assigned to the PA.

• The access is to one of the following PA spaces:

— For accesses from the Non-secure IPA space, the access is to the Non-secure PA space.

— For accesses from the Secure IPA space, the access is to the Secure PA space.

— For accesses from the Realm IPA space, the access is to the Realm PA space.

D8.2.12.3 Instruction fetch behavior when all translation stages are disabled

IDLNTB If all associated address translation stages are disabled, then software is required to place instructions that will be
executed in memory regions where those regions and the memory regions immediately following each have all the
following properties:

• The memory region size is equal to the minimum implemented translation granule size.

• The memory region is tolerant to speculative accesses.

• The memory region is naturally aligned.

RWLVZN If execution is in AArch64 state and all associated address translation stages are disabled, a memory location might
be accessed as a result of an instruction fetch, including a speculative instruction fetch, in all of the following cases:

• The memory location is in the same memory region, or in the next contiguous memory region, as an
instruction that simple sequential program execution either requires to be fetched now or has required to be
fetched since the last reset.

• The memory location is the target of a direct branch that simple sequential program execution would have
taken since the most recent of one of the following:

— The last reset.

— The last synchronization of instruction cache maintenance targeting the branch instruction address.

IFZQCN If all address translation stages are disabled, then speculative instruction fetches can cause unintended memory
location accesses, regardless of whether the fetched instruction is committed to execution.

D8.2.12.4 Effect of disabling address translation on maintenance and address
translation instructions

RSJBMV Cache maintenance instructions act on the target location regardless of all of the following:

• Whether or not any address translation stages are disabled.

• The memory attribute values.

RZSSPZ For an address translation stage that is disabled, cache maintenance instructions use flat address mapping.

RFZYGN If an address translation stage is disabled, TLB maintenance operations are not affected.

IHRNPD For more information, see:

• A64 Cache maintenance instructions.

• Address translation instructions.

• TLB maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6619
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
D8.2.13 Address translation instructions

ITMFCK Address translation instructions return the result of translating an IA using a specified translation stage or regime.

IBDZFF An address translation instruction has all of the following properties:

• An IA is supplied as the argument to the instruction.

• The instruction encoding determines the translation stage and regime used by the translation.

• The PAR_EL1 register is updated with the translation result.

• For the security state of the instruction as selected by SCR_EL3.{NSE, NS}, the architecture guarantees all
of the following:

— If executed in Non-secure state, then no result is returned from a Secure, Realm, or Root address
translation stage.

— If executed in Secure state, then no result is returned from a Realm or Root address translation stage.

— If executed in Realm state, then no result is returned from a Secure or Root address translation stage.

• If an address translation stage is controlled by a higher Exception level than the Exception level at which the
address translation instruction is executed, then the instruction is UNDEFINED.

ICSYQZ If FEAT_MTE2 is enabled, then the results of AT* instructions reflect whether the translation is Tagged or Untagged.

For more information, see Memory region tagging types.

ITSJPJ The A64 assembly language syntax of an address translation instruction is AT <operation>, <Xt>.

IPRNLQ The <operation> in AT <operation>, <Xt> is one of the following:

• S1E1R, S1E1W, S1E0R, S1E0W, S12E1R, S12E1W, S12E0R, S12E0W, S1E2R, S1E2W, S1E3R, or S1E3W.

• If FEAT_PAN2 is implemented, then S1E1WP or S1E1RP.

• If FEAT_ATS1A is implemented, then S1E1A, S1E2A, or S1E3A.

ICQWJY The <operation> in AT <operation>, <Xt> has a structure of <stages><el>(<read|write>{<pan>})|<ignore> with all
of the following components:

• <stages> is one of the following address translation stages:

— S1 specifies a stage 1 translation.

— S12 specifies a stage 1 translation followed by a stage 2 translation.

• <el> is one of the following Exception levels that apply to the translation:

— E0 specifies EL0.

— E1 specifies EL1.

— E2 specifies EL2.

— E3 specifies EL3.

• <read|write> is one of the following:

— R specifies Read.

— W specifies Write.

• If FEAT_PAN2 is implemented, then the <pan> component is included and has all of the following properties:

— P determines whether the PSTATE.PAN value is considered when determining permissions. For more
information, see PSTATE.PAN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6620
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
— The field is optional.

— If <stages>=S1 and <el>=E1, the field is permitted.

— If <stages>!=S1 or <el>!=E1, the field is not permitted.

• If FEAT_ATS1A is implemented, then the <ignore> component is included and has all of the following
properties:

— A specifies that the permission checks are ignored.

— The field is optional.

— If this field is specified, the <read|write> and <pan> fields are not permitted.

IXLYWF If <el> is higher than the current Exception level, then the address translation instruction is UNDEFINED.

ISYHWD The <Xt> in AT <operation>, <Xt> specifies the 64-bit register holding the address to be translated.

IGSXHM When an address translation instruction applies to a translation regime that is using AArch32, VA[63:32] is RES0.

RNJGLC When an address is translated by an address translation instruction, no alignment restrictions exist and therefore an
address translation instruction cannot generate an Alignment fault.

For more information, see MMU faults generated by address translation instructions.

RNWDPJ When an address translation instruction is executed, the specified translation stage and regime determines all of the
following:

• The entries in TLB caching structures that are permitted to be used.

• How the translation table walk is done.

RNPZWX When an address translation instruction is executed, it is IMPLEMENTATION DEFINED whether the result can be
returned from a TLB, or a translation table walk occurs.

IWGXJK If TLB entries might differ from the underlying translation tables held in memory, such as when waiting for a
maintenance or synchronization event to complete after updating the translation tables, Arm recommends not using
the address translation instructions.

D8.2.13.1 Address translation instructions, successful address translation

RLRYRY When an address translation instruction successfully translates an address, all of the following are updated in
PAR_EL1:

• PAR_EL1.F is set to 0.

• The resulting OA is returned in PAR_EL1.PA, and the resulting attributes are returned in the other fields of
PAR_EL1.

IPVCPF When populating PAR_EL1 with the result of an address translation instruction, the fetches of stage 1 or stage 2
descriptors use the appropriate MECID register values for the translation regime.

IQKWHX The architecture defines a single PAR, PAR_EL1, that is used regardless of all of the following:

• The Exception level at which the address translation instruction was executed.

• The Exception level that controls the address translation stage or stages used by the address translation
instruction.

RYLPDG If single-stage address translation instructions, ATS1*, target the VMSAv9-128 translation system, then they report
their result using the 128-bit format of PAR_EL1.

RXVCRF If one of the following is true, then ATS12* instructions report their result using the 128-bit format of PAR_EL1:

• Stage 2 of the target translation system is enabled and the stage 2 translation system uses VMSAv9-128.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6621
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.2 Translation process
• Stage 2 of the target translation system is disabled and the stage 1 translation system uses VMSAv9-128.

Otherwise, the 64-bit format of PAR_EL1 is used.

D8.2.13.2 Address translation instructions, effect of translation regime

RFKTKP If EL2 is disabled or not implemented, the AT S1E2R, AT S1E2W, and AT S1E2A instructions are UNDEFINED.

RNYXTL If EL3 is implemented, then when an address translation instruction that applies to an Exception level lower than
EL3 is executed, the Effective value of SCR_EL3.{NSE, NS} determines the target Security state that the
instruction applies to, as shown in the following table:

RRKBPZ If EL3 is implemented and EL2 is disabled or not implemented for the target Security state, then all of the following
apply to the AT S12E** instruction behavior:

• The instruction has the same behavior as the equivalent AT S1E** instruction.

• The instruction behaves consistently with an implementation that has all of the following characteristics:

— EL2 is implemented.

— Stage 2 translation is disabled.

RPXNSR If the Effective value of SCR_EL3.{NSE, NS} is {0, 0} and Secure EL2 is disabled or not implemented, then
executing the following AT instructions at EL3 is UNDEFINED:

• AT S1E2R.

• AT S1E2W.

• AT S1E2A.

IKJDTT The value of HCR_EL2.DC affects all of the following instructions:

• AT S1E0*.

• AT S1E1*.

• AT S12E0*.

• AT S12E1*.

D8.2.13.3 Address translation instructions, synchronization requirements

IJTYVP When an address translation instruction is executed, explicit synchronization is required to guarantee the result is
visible to subsequent direct reads of PAR_EL1.

For more information, see Synchronization requirements for AArch64 System registers.

IPCPWC Requiring explicit synchronization after executing an address translation instruction is consistent with the general
requirement that the effect of a write to a System register requires explicit synchronization before the result is
guaranteed to be visible to subsequent instructions.

NSE, NS Security State

0, 0 Secure

0, 1 Non-secure

1, 0 Instruction is UNDEFINED

1, 1 Realm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6622
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
D8.3 Translation table descriptor formats

RHJXKZ If an address translation stage is controlled by an Exception level that is using AArch64, then the translation table
uses one of the following:

• For the VMSAv8-64 translation system, 64-bit descriptors.

• For the VMSAv9-128 translation system, 128-bit descriptors.

RJXLYN A translation descriptor has one of the following formats:

• An invalid descriptor format.

• A Table descriptor format that points to the next-level translation table.

• A Block descriptor or Page descriptor format that defines the memory access properties.

• A reserved format.

RKHVQT The value of descriptor bit[0] determines one of the following:

• If descriptor bit[0] is 0, then the descriptor is invalid.

• If descriptor bit[0] is 1, then the descriptor is valid.

RRWMFF For 64-bit descriptors used by the VMSAv8-64 translation system, if descriptor bit[0] is 1, then the descriptor type
is determined by one of the following values of descriptor bit[1]:

• For lookup levels less than lookup level 3, one of the following:

— If bit[1] is 0, then the descriptor is a Block descriptor.

— If bit[1] is 1, then the descriptor is a Table descriptor.

• For lookup level 3, one of the following:

— If bit[1] is 0, then the descriptor is reserved, and treated as invalid.

— If bit[1] is 1, then the descriptor is a Page descriptor.

RBPTPZ For 128-bit descriptors used by the VMSAv9-128 translation system, if descriptor bit[0] is 1, then the descriptor
type is determined by the sum of the current lookup level and the descriptor SKL field in descriptor bits[110:109],
as follows:

• If the sum is less than 3, then one of the following:

— If a table of the resulting size is permitted, then a Table descriptor.

— If a table of the resulting size is not permitted, then an Invalid descriptor.

Table D8-45 Determination of descriptor type, VMSAv8-64 translation system

Descriptor
Descriptor type Condition

bit[0] bit[1]

0 - Invalid -

1 0 Block Lookup level is not 3

Reserved, treated as invalid Lookup level is 3

1 Table Lookup level is not 3

Page Lookup level is 3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6623
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
• If the sum is equal to 3, then one of the following:

— If a block of the resulting size is permitted at the resulting level, then a Block or Page descriptor.

— If a block of the resulting size is not permitted at the resulting level, then an Invalid descriptor.

• If the sum is greater than 3, then an Invalid descriptor.

RCQGPJ For Table descriptors, if the Effective value of the SKL field is 0, then the next-level table address is one of the
following:

• For a level -2 Table descriptor, the base address of a level -1 table.

• For a level -1 Table descriptor, the base address of a level 0 table.

• For a level 0 Table descriptor, the base address of a level 1 table.

• For a level 1 Table descriptor, the base address of a level 2 table.

• For a level 2 Table descriptor, the base address of a level 3 table.

RFRLRB For Table descriptors, the next-level table address is one of the following:

• For the EL1&0 stage 1 translation regimes, if EL2 is enabled, then the IPA of the target table.

• For all other translation regimes, the PA of the target table.

D8.3.1 VMSAv8-64 descriptor formats

D8.3.1.1 VMSAv8-64 Table descriptor format

RPGHRP Throughout this section, if an address translation stage is not specified, then references to the Effective value of
TCR_ELx.DS also apply to VTCR_EL2.DS.

ITWKLX The following figure shows all of following stage 1 and stage 2 VMSAv8-64 Table descriptor formats:

• 4KB, 16KB, and 64KB granules using a 48-bit next-level table address.

• If the Effective value of TCR_ELx.DS is 1, the 4KB and 16KB granules using a 52-bit next-level table
address.

• If FEAT_LPA is implemented, the 64KB granule using a 52-bit next-level table address.

Table D8-46 Determination of descriptor type, VMSAv9-128 translation system

Descriptor bit[0]
Current lookup level +
descriptor SKL field

Descriptor type Condition

0 - Invalid -

1 Less than 3 Table Table size is permitted

Invalid Table size is not permitted

Equal to 3 Block or Page Block size is permitted

Invalid Block size is not permitted

Greater than 3 Invalid -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6624
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
Figure D8-12 VMSAv8-64 Table descriptor formats

ILZSBS For a stage 1 translation, the following figure shows the next-level attribute fields in a VMSAv8-64 Table descriptor.
For a stage 2 translation, all of the following apply:

• Bit[63] is RES0.

• Bits[62:59] are one of the following:

— If stage 2 Indirect permissions are disabled, then RES0.

— If stage 2 Indirect permissions are enabled, then IGNORED.

• Bits[58:51] are IGNORED.

Figure D8-13 Stage 1 next-level attribute fields in a VMSAv8-64 Table descriptor

IGNORED Next-level table address[47:16]RES0 IGNOREDTA[51:48]
‡

1

63 59 58 51 50 12 11 2 1 0

Attributes 1Table

‡ TA[51:48] indicates bits [51:48] of the next-level table address.

4748

64KB granule, 52-bit OA
16 15

IGNORED Next-level table address[47:m]RES0 IGNOREDRES0
‡

1

63 59 58 51 50 12 11 2 1 0

Attributes 1Table

With the 4KB granule size m is 12
‡
, with the 16KB granule size m is 14, and with the 64KB granule size m is 16.

‡ When m is 12, the RES0 field shown for bits[(m-1):12] is absent.

m m-14748

4KB, 16KB, and 64KB granules, 48-bit OA

IGNORED Next-level table address[49:m] RES0
‡

1

63 59 58 51 12 11 2 1 0

Attributes 1Table

With the 4KB granule size m is 12
‡
 and with the 16KB granule size m is 14.

‡ When m is 12, the RES0 field shown for bits[(m-1):12] is absent.

m m-1 10 89 74950

IGNORED

Next-level table address[51:50]

4KB and 16KB granules, 52-bit OA

RES0

IGNORED

63 62 61 60 59 58 51

IGNORED

NSTable

APTable

UXNTable or

PXNTable or

XNTable

RES0 or

52

IGNORED

Protected or

IGNORED

IGNORED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6625
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
RYWCCT For stage 1 translations, the following table defines the fields in the VMSAv8-64 Table descriptor. In this table,
NLTA is the next level table address.

Table D8-47 Stage 1 VMSAv8-64 Table descriptor fields

Bit position Field Condition

[63] RES0 The Security state is not Secure state.

NSTable Secure state.

See Hierarchical control of Secure or Non-secure memory accesses.

[62:61] APTable[1:0] Hierarchical permissions are enabled.

See Hierarchical control of data access Direct permissions.

For EL1&0 translations, if the Effective value of HCR_EL2.{NV, NV1} is {1, 1}, then
APTable[0] is treated as 0 regardless of the actual value.

See Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1.

[60] XNTable Hierarchical permissions are enabled and the translation regime supports a single privilege level.

See Hierarchical control of instruction execution for Direct permissions.

UXNTable Hierarchical permissions are enabled and the translation regime supports two privilege levels.

See Hierarchical control of instruction execution for Direct permissions.

PXNTable Hierarchical permissions are enabled, the EL1&0 translation regime, and the Effective value of
HCR_EL2.{NV, NV1} is {1, 1}.

See Hierarchical control of instruction execution for Direct permissions.

[59] RES0 Hierarchical permissions are enabled and one of the following applies:

• The translation regime supports a single privilege level.

• The EL1&0 translation regime and the Effective value of HCR_EL2.{NV, NV1} is
{1, 1}.

See Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1.

PXNTable Hierarchical permissions are enabled and the translation regime supports two privilege levels.

See Hierarchical control of instruction execution for Direct permissions.

[58:53] IGNORED -

[52] IGNORED The Effective value of PnCH is 0.

Protected The Effective value of PnCH is 1.

See Stage 1 Protected Attribute.

[51] IGNORED -

[50] RES0 -

[49:48] RES0 The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 0, or
the 64KB translation granule is used.

NLTA[49:48] The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6626
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
ILPCPS For stage 1 translations in the EL3 translation regime, the removal of NSTable in Root state is a change from the
behavior of EL3 in Secure state.

RXFNBW For stage 2 translations, the following table defines the fields in the VMSAv8-64 Table descriptor. In this table,
NLTA is the next level table address.

[47:12] NLTA[47:12] The 4KB translation granule is used.

NLTA[47:14] The 16KB translation granule is used.

Descriptor bits [13:12] are RES0.

NLTA[47:16] The 64KB translation granule is used and FEAT_LPA is not implemented.

Descriptor bits [15:12] are RES0.

NLTA[47:16]:

NLTA[51:48]

The 64KB translation granule is used and FEAT_LPA is implemented.

[11] IGNORED -

[10] IGNORED Hardware managed Table descriptor Access flag is not enabled.

Access flag (AF) Hardware managed Table descriptor Access flag is enabled.

See Hardware management of the Table descriptor Access Flag.

[9:8] IGNORED The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 0, or
the 64KB translation granule is used.

NLTA[51:50] The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 1.

[7:2] IGNORED -

[1] Table descriptor 1, for lookup levels less than lookup level 3.

[0] Valid descriptor 1.

Table D8-47 Stage 1 VMSAv8-64 Table descriptor fields (continued)

Bit position Field Condition

Table D8-48 Stage 2 VMSAv8-64 Table descriptor fields

Bit position Field Condition

[63] RES0 -

[62:59] RES0 Stage 2 Indirect permissions are disabled.

IGNORED Stage 2 Indirect permissions are enabled.

See Stage 2 Indirect permissions.

[58:51] IGNORED -

[50] RES0 -

[49:48] RES0 The 4KB or 16KB translation granule is used, and the Effective value of VTCR_EL2.DS is 0, or
the 64KB translation granule is used.

NLTA[49:48] The 4KB or 16KB translation granule is used, and the Effective value of VTCR_EL2.DS is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6627
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
D8.3.1.2 VMSAv8-64 Block descriptor and Page descriptor formats

RWLDSK Throughout this section, if an address translation stage is not specified, then references to the Effective value of
TCR_ELx.DS also apply to VTCR_EL2.DS.

IGBPDK The following figure shows all of the following VMSAv8-64 Block descriptor formats:

• 4KB, 16KB, and 64KB granules using a 48-bit OA.

• If the Effective value of TCR_ELx.DS is 1, the 4KB and 16KB granules using a 52-bit OA.

• If FEAT_LPA is supported, the 64KB granule using a 52-bit OA.

[47:12] NLTA[47:12] The 4KB translation granule is used.

NLTA[47:14] The 16KB translation granule is used.

Descriptor bits [13:12] are RES0.

NLTA[47:16] The 64KB translation granule is used and FEAT_LPA is not implemented.

Descriptor bits [15:12] are RES0.

NLTA[47:16]:

NLTA[51:48]

The 64KB translation granule is used and FEAT_LPA is implemented.

[11] IGNORED -

[10] IGNORED Hardware managed Table descriptor Access flag is not enabled.

Access flag (AF) Hardware managed Table descriptor Access flag is enabled.

See Hardware management of the Table descriptor Access Flag.

[9:8] IGNORED The 4KB or 16KB translation granule is used, and the Effective value of VTCR_EL2.DS is 0, or
the 64KB translation granule is used.

NLTA[51:50] The 4KB or 16KB translation granule is used, and the Effective value of VTCR_EL2.DS is 1.

[7:2] IGNORED -

[1] Table descriptor 1, for lookup levels less than lookup level 3.

[0] Valid descriptor 1.

Table D8-48 Stage 2 VMSAv8-64 Table descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6628
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
Figure D8-14 VMSAv8-64 Block descriptor formats

IWNCLB The following figure shows all of the following VMSAv8-64 Page descriptor formats:

• 4KB, 16KB, and 64KB granules using a 48-bit OA.

• If the Effective value of TCR_ELx.DS is 1, the 4KB and 16KB granules using a 52-bit OA.

• If FEAT_LPA is supported, the 64KB granule using a 52-bit OA.

Lower attributes

Output address[51:50]

Lower attributes

nT RES0RES0 1Upper attributes

63 4748 12 11 2 1 0

Output address[47:n] RES0 Lower attributes 0Block

n n-1 151650 49

For the 4KB granule size, the level 0 descriptor n is 39, the level 1 descriptor n is 30, and the level 2 descriptor n is 21.

For the 16KB granule size, the level 1 descriptor n is 36, and the level 2 descriptor n is 25.

For the 64KB granule size, the level 1 descriptor n is 42, and the level 2 descriptor n is 29.

nTRES0RES0 1Upper attributes

63 50 4748 n n-1 12 11 2 1 0

Output address[47:n] OA[51:48] Lower attributes 0Block

16 1549

4KB and 16KB granules, 52-bit OA

4KB, 16KB, and 64KB granules, 48-bit OA

64KB granule, 52-bit OA

For the 4KB granule size, the level 1 descriptor n is 30, and the level 2 descriptor n is 21.

For the 16KB granule size, the level 2 descriptor n is 25.

For the 64KB granule size, the level 2 descriptor n is 29.

nT RES0 1Upper attributes

63 12 11 2 1 0

Output address[49:n] RES0 0Block

n n-1 151650 49 10 89 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6629
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
Figure D8-15 VMSAv8-64 Page descriptor formats

IGLMLD For a stage 1 translation, the following figure shows the attribute fields in VMSAv8-64 Block descriptors and Page
descriptors, split into upper attributes and lower attributes.

Figure D8-16 Stage 1 attribute fields in VMSAv8-64 Block and Page descriptors

1Upper attributes

63 49 4748 12 11 2 1 0

RES0 Output address[47:12] Lower attributes 1

4KB granule 48-bit OA

Page

1Upper attributes

63 12 11 2 1 0

Output address[49:12] 1

4KB granule 52-bit OA

10 89 749

Output address[51:50]

Lower attributes

Lower attributes

Page

1Upper attributes

63 49 4748 12 11 2 1 0

RES0 Output address[47:16] Lower attributes 1

64KB granule 52-bit OA

Page OA[51:48]

1516

1Upper attributes

63 49 4748 12 11 2 1 0

RES0 Output address[47:16] Lower attributes 1

64KB granule 48-bit OA

Page RES0

1516

1Upper attributes

63 49 4748 12 11 2 1 0

RES0 Output address[47:14] Lower attributes 1

16KB granule 48-bit OA

Page RES0

1314

1Upper attributes

63 12 11 2 1 0

Output address[49:14] 1

16KB granule 52-bit OA

10 89 749

Output address[51:50]

Lower attributes

Lower attributes

Page RES0

1314

50

50

50

50

50

50

nT

Upper attributes Lower attributes

63 59 58 55 54 53 52

IGNORED

11 10 9 8 7 6 5 4 2

nG or NSE

AF

SH[1:0] or OA[51:50]

AP[2] or nDirty

NS

AttrIndx[2:0]

5162

AMEC

UXN, XN, PXN, or PIIndex[3]

PXN or PIIndex[2]

Contiguous or Protected

Reserved for software use

DBM or PIIndex[1]

121516

OA[51:48]GP

50

PBHA[3:1] or

POIndex[2:0]

PBHA[0] or

AttrIndx[3]

60

AP[1] or PIIndex[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6630
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
RJJNHR For stage 1 translations, the following table defines the fields in the VMSAv8-64 Block and Page descriptors. In this
table, OAB is the OA base that is appended to the IA supplied to the translation stage to produce the final OA
supplied by the translation stage.

Table D8-49 Stage 1 VMSAv8-64 Block and Page descriptor fields

Bit position Field Condition

[63] IGNORED Non-secure or Secure state, or Realm EL1&0 translation regime.

Alternate
MECID (AMEC)

Realm EL2 or Realm EL2&0 translation regimes, and the descriptor NS field is 0.

See Memory Encryption Contexts extension.

RES0 Realm EL2 or Realm EL2&0 translation regimes, and the descriptor NS field is 1.

[62:60] IGNORED Both of the following apply:

• FEAT_HPDS2 is not implemented or PBHA is not enabled by the corresponding
TCR_ELx.HWUnn control bit.

• FEAT_S1POE is not implemented or stage 1 Overlay permissions are not enabled.

PBHA[3:1] FEAT_HPDS2 is implemented and the PBHA bit is enabled by the corresponding
TCR_ELx.HWUnn control bit.

See Page Based Hardware attributes.

POIndex[2:0] Stage 1 Overlay permissions enabled.

See Stage 1 Overlay permissions.

[59] IGNORED Both of the following apply:

• FEAT_HPDS2 is not implemented or PBHA is not enabled by the corresponding
TCR_ELx.HWUnn control bit.

• FEAT_AIE is not implemented or the stage 1 Attribute Index Extension is not enabled.

PBHA[0] FEAT_HPDS2 is implemented and the PBHA bit is enabled by the corresponding
TCR_ELx.HWUnn control bit.

See Page Based Hardware attributes.

AttrIndx[3] FEAT_AIE is enabled.

See Stage 1 memory type and Cacheability attributes.

[58:56] Reserved for
software use

-

[55] IGNORED -

[54] Execute-never
(XN)

The translation regime supports a single privilege level.

See Stage 1 instruction execution using Direct permissions.

Unprivileged
Execute-never
(UXN)

The translation regime supports two privilege levels.

See Stage 1 instruction execution using Direct permissions.

Privileged
Execute-never
(PXN)

The EL1&0 translation regime and the Effective value of HCR_EL2.{NV, NV1} is {1, 1}.

The Effective value of UXN is 0.

See Stage 1 instruction execution using Direct permissions and Additional behavior when
HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1.

PIIndex[3] Stage 1 Indirect permissions enabled, regardless of other feature settings.

See Stage 1 Indirect permissions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6631
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
[53] RES0 One of the following:

• The translation regime supports a single privilege level.

• The EL1&0 translation regime and the Effective value of HCR_EL2.{NV, NV1} is
{1, 1}.

See Stage 1 instruction execution using Direct permissions and Additional behavior when
HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1.

PXN The translation regime supports two privilege levels.

See Stage 1 instruction execution using Direct permissions.

PIIndex[2] Stage 1 Indirect permissions enabled, regardless of other feature settings.

See Stage 1 Indirect permissions.

[52] Contiguous The Effective value of PnCH is 0.

See The Contiguous bit.

Protected The Effective value of PnCH is 1.

See Stage 1 Protected Attribute.

[51] Dirty bit modifier
(DBM)

Stage 1 Indirect permissions are disabled.

See Hardware management of the dirty state.

PIIndex[1] Stage 1 Indirect permissions are enabled.

See Stage 1 Indirect permissions.

[50] RES0 FEAT_BTI is not implemented.

Guarded Page
(GP)

FEAT_BTI is implemented.

See PSTATE.BTYPE.

[49:48] RES0 One of the following:

• The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is
0.

• The 64KB translation granule is used.

OAB[49:48] The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 1.

Table D8-49 Stage 1 VMSAv8-64 Block and Page descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6632
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
Block[47:17] OAB[47:39] The 4KB translation granule, the Effective value of TCR_ELx.DS is 1, and the descriptor is a
level 0 Block descriptor.

Descriptor bits [38:17] are RES0.

OAB[47:30] The 4KB translation granule and the descriptor is a level 1 Block descriptor.

Descriptor bits [29:17] are RES0.

OAB[47:21] The 4KB translation granule and the descriptor is a level 2 Block descriptor.

Descriptor bits [20:17] are RES0.

OAB[47:36] The 16KB translation granule, the Effective value of TCR_ELx.DS is 1, and the descriptor is a
level 1 Block descriptor.

Descriptor bits [35:17] are RES0.

OAB[47:25] The 16KB translation granule and the descriptor is a level 2 Block descriptor.

Descriptor bits [24:17] are RES0.

OAB[47:42] The 64KB translation granule, FEAT_LPA is implemented, and the descriptor is a level 1 Block
descriptor.

Descriptor bits [41:17] are RES0.

OAB[47:29] The 64KB translation granule and the descriptor is a level 2 Block descriptor.

Descriptor bits [28:17] are RES0.

Block[16] RES0 FEAT_BBM is not implemented.

nT FEAT_BBM is implemented.

See Block translation entry.

Block[15:12] RES0 One of the following:

• FEAT_LPA is not implemented.

• FEAT_LPA is implemented, and the 4KB or 16KB translation granule is used.

OAB[51:48] FEAT_LPA is implemented and the 64KB translation granule is used.

Page[47:12] OAB[47:12] The 4KB translation granule is used.

OAB[47:14] The 16KB translation granule is used.

Descriptor bits [13:12] are RES0.

OAB[47:16] The 64KB translation granule and FEAT_LPA is not implemented.

Descriptor bits [15:12] are RES0.

OAB[47:16]:
OAB[51:48]

The 64KB translation granule and FEAT_LPA is implemented.

[11] RES0 The translation regime supports a single privilege level and the Security state is not Root state.

NSE Root state.

See Controlling memory access Security state.

Not global (nG) The translation regime supports two privilege levels.

See Global and process-specific translation table entries.

[10] Access flag (AF) -

See The Access flag.

Table D8-49 Stage 1 VMSAv8-64 Block and Page descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6633
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
IBJRZD For a stage 2 translation, the following figure shows the attribute fields in VMSAv8-64 Block descriptors and Page
descriptors, split into upper attributes and lower attributes.

Figure D8-17 Stage 2 attribute fields in VMSAv8-64 Block and Page descriptors

[9:8] Shareability
(SH[1:0])

One of the following:

• The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is
0.

• The 64KB translation granule is used.

See Stage 1 Shareability attributes.

OAB[51:50] The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 1.

[7] AP[2] Stage 1 Indirect permissions are disabled.

See Stage 1 data accesses using Direct permissions.

nDirty Stage 1 Indirect permissions are enabled.

See The dirty state.

[6] RES1 Stage 1 Indirect permissions are disabled and the translation regime supports a single privilege
level.

AP[1] Stage 1 Indirect permissions are disabled and the translation regime supports two privilege
levels.

See Stage 1 data accesses using Direct permissions.

PIIndex[0] Stage 1 Indirect permissions are enabled.

See Stage 1 Indirect permissions.

[5] RES0 The access is from Non-secure state, or from Realm state using the EL1&0 translation regime.

NS The access is from Secure state, from Realm state using the EL2 or EL2&0 translation regimes,
or from Root state.

[4:2] AttrIndx[2:0] See Stage 1 memory type and Cacheability attributes.

[1] Block descriptor 0, for lookup levels less than lookup level 3.

Page descriptor 1, for lookup level 3.

[0] Valid descriptor 1.

Table D8-49 Stage 1 VMSAv8-64 Block and Page descriptor fields (continued)

Bit position Field Condition

nT

Lower attributes

11 10 9 8 7 6 5 2

Upper attributes

63 59 58 55 54 53 52

XN[1:0] or PIIndex[3:2]

Contiguous

Reserved for software use

5162

DBM or PIIndex[1]

AMEC

121516

OA[51:48]

MemAttr[3:0]

AF

SH[1:0] or

OA[51:50]

S2AP[1] or

Dirty

FnXS

PBHA[3:0] or

POIndex[3:0]

57 56

AssuredOnly

NS

S2AP[0] or

PIIndex[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6634
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
RDMBGN For stage 2 translations, the following table defines the fields in the VMSAv8-64 Block and Page descriptors. In this
table, OAB is the OA base that is appended to the IA supplied to the translation stage to produce the final OA
supplied by the translation stage.

Table D8-50 Stage 2 VMSAv8-64 Block and Page descriptor fields

Bit position Field Condition

[63] RES0 One of the following:

• Non-secure or Secure state.

• Realm state and the descriptor NS field is 1.

Alternate
MECID (AMEC)

Realm state and the descriptor NS field is 0.

See Memory Encryption Contexts extension.

[62:60] Reserved for use
by a System
MMU

One of the following:

• FEAT_HPDS2 is not implemented.

• FEAT_HPDS2 is implemented and the PBHA bit is not enabled by the corresponding
TCR_ELx.HWUnn control bit.

PBHA[3:1] FEAT_HPDS2 is implemented and the PBHA bit is enabled by the corresponding
TCR_ELx.HWUnn control bit.

See Page Based Hardware attributes.

POIndex[3:1] Stage 2 Overlay permissions enabled, regardless of other feature settings.

See Stage 2 Overlay permissions.

[59] IGNORED FEAT_HPDS2 is implemented and the PBHA bit is enabled by the corresponding
TCR_ELx.HWUnn control bit.

See Page Based Hardware attributes.

PBHA[0] FEAT_HPDS2 is implemented and PBHA bit is enabled by the corresponding
TCR_ELx.HWUnn control bit.

See Page Based Hardware attributes.

POIndex[0] Stage 2 Overlay permissions enabled, regardless of other feature settings.

See Stage 2 Overlay permissions.

[58] Reserved for
software use

VTCR_EL2.AssuredOnly is 0.

AssuredOnly VTCR_EL2.AssuredOnly is 1.

See Assured translation.

[57:56] Reserved for
software use

-

[55] Non-secure (NS) Realm state.

See Controlling memory access Security state.

IGNORED Security state other than Realm state.

[54] Execute-never
(XN)

FEAT_XNX is not implemented.

See Stage 2 instruction execution using Direct permissions.

XN[1] FEAT_XNX is implemented.

See Stage 2 instruction execution using Direct permissions.

PIIndex[3] Stage 2 Indirect permissions enabled, regardless of other feature settings.

See Stage 2 Indirect permissions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6635
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
[53] RES0 FEAT_XNX is not implemented.

XN[0] FEAT_XNX is implemented.

See Stage 2 instruction execution using Direct permissions.

PIIndex[2] Stage 2 Indirect permissions enabled, regardless of other feature settings.

See Stage 2 Indirect permissions.

[52] Contiguous -

See The Contiguous bit.

[51] Dirty bit modifier
(DBM)

Stage 2 Indirect permissions are disabled.

See Hardware management of the dirty state.

PIIndex[1] Stage 2 Indirect permissions are enabled.

See Stage 2 Indirect permissions.

[50] RES0 -

[49:48] RES0 The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 0, or
the 64KB translation granule.

OAB[49:48] The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 1.

Block[47:17] OAB[47:39] The 4KB translation granule, the Effective value of TCR_ELx.DS is 1, and the descriptor is a
level 0 Block descriptor.

Descriptor bits [38:17] are RES0.

OAB[47:30] The 4KB translation granule and the descriptor is a level 1 Block descriptor.

Descriptor bits [29:17] are RES0.

OAB[47:21] The 4KB translation granule and the descriptor is a level 2 Block descriptor.

Descriptor bits [20:17] are RES0.

OAB[47:36] The 16KB translation granule, the Effective value of TCR_ELx.DS is 1, and the descriptor is a
level 1 Block descriptor.

Descriptor bits [35:17] are RES0.

OAB[47:25] The 16KB translation granule and the descriptor is a level 2 Block descriptor.

Descriptor bits [24:17] are RES0.

OAB[47:42] The 64KB translation granule, FEAT_LPA is implemented, and the descriptor is a level 1 Block
descriptor.

Descriptor bits [41:17] are RES0.

OAB[47:29] The 64KB translation granule and the descriptor is a level 2 Block descriptor.

Descriptor bits [28:17] are RES0.

Block[16] RES0 FEAT_BBM is not implemented.

nT FEAT_BBM is implemented.

See Block translation entry.

Block[15:12] RES0 One of the following:

• FEAT_LPA is not implemented.

• FEAT_LPA is implemented, and the 4KB or 16KB translation granule is used.

OAB[51:48] FEAT_LPA is implemented and the 64KB translation granule is used.

Table D8-50 Stage 2 VMSAv8-64 Block and Page descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6636
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
IGKSKW The VMSAv8-64 Block descriptor and Page descriptor format defines the data Access Permissions bits, AP[2:1],
and does not define an AP[0] bit.

Page[47:12] OAB[47:12] The 4KB translation granule is used.

OAB[47:14] The 16KB translation granule is used.

Descriptor bits [13:12] are RES0.

OAB[47:16] The 64KB translation granule and FEAT_LPA is not implemented.

Descriptor bits [15:12] are RES0.

OAB[47:16]:
OAB[51:48]

The 64KB translation granule and FEAT_LPA is implemented.

[11] RES0 FEAT_XS is not implemented.

FnXS FEAT_XS is implemented.

See XS attribute modifier.

[10] Access flag (AF) -

See The Access flag.

[9:8] Shareability
(SH[1:0])

The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 0, or
the 64KB translation granule.

See Stage 2 Shareability attributes.

OAB[51:50] The 4KB or 16KB translation granule is used, and the Effective value of TCR_ELx.DS is 1.

[7] S2AP[1] Stage 2 Indirect permissions are disabled.

See Stage 2 data accesses using Direct permissions.

Dirty Stage 2 Indirect permissions are enabled.

See The dirty state.

[6] S2AP[0] Stage 2 Indirect permissions are disabled.

See Stage 2 data accesses using Direct permissions.

PIIndex[0] Stage 2 Indirect permissions are enabled.

See Stage 2 Indirect permissions.

[5] RES0 The Effective value of HCR_EL2.FWB is 1.

MemAttr[3] The Effective value of HCR_EL2.FWB is 0.

See Stage 2 memory type and Cacheability attributes when FWB is disabled.

[4:2] MemAttr[2:0] -

See Stage 2 memory type and Cacheability attributes when FWB is disabled and Stage 2 memory
type and Cacheability attributes when FWB is enabled.

[1] Block descriptor 0, for lookup levels less than lookup level 3.

Page descriptor 1, for lookup level 3.

[0] Valid descriptor 1.

Table D8-50 Stage 2 VMSAv8-64 Block and Page descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6637
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
D8.3.1.3 VMSAv8-64 Invalid descriptor format

RVRYZC For stage 1 translations, the following table defines the fields in the VMSAv8-64 Invalid descriptor. IGNORED fields
are available for software use.

RJYLCV For stage 2 translations, the following table defines the fields in the VMSAv8-64 Invalid descriptor. IGNORED fields
are available for software use.

D8.3.2 VMSAv9-128 descriptor formats

D8.3.2.1 VMSAv9-128 Table descriptor format

IBCKNF For stage 1 translations, the following figure shows the format of the VMSAv9-128 Table descriptor.

Figure D8-18 Stage 1 VMSAv9-128 Table descriptor

Table D8-51 Stage 1 VMSAv8-64 Invalid descriptor fields

Bit position Field Condition

[63:53] IGNORED -

[52] IGNORED The Effective value of PnCH is 0.

Protected The Effective value of PnCH is 1.

See Stage 1 Protected Attribute.

[51:1] IGNORED -

[0] Invalid descriptor 0.

Table D8-52 Stage 2 VMSAv8-64 Invalid descriptor fields

Bit position Field Condition

[63:1] IGNORED -

[0] Invalid descriptor 0.

RES0

127

IGNORED

126 125 124 121 120 119 118 115 114 113 112 111 110 109 108 101 100 91 90 64

Protected

IGNORED

DISCH

IGNORED

SKL[1:0] RES0 Software usage RES0RES0 RES0 IGNORED

1

63

Next Level Table Address [55:12]

56 55 12 11 10 9 0

RES0

7 6 5 12

IGNORED

AF

nT

NSTable

IGNORED IGNORED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6638
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
RFHFQV For stage 1 translations, the following table defines the fields in the VMSAv9-128 Table descriptor. In this table,
NLTA is the next level table address.

Table D8-53 Stage 1 VMSAv9-128 Table descriptor fields

Bit position Field Condition

[127] RES0 The Security state is not Secure state.

NSTable Secure state.

See Hierarchical control of Secure or Non-secure memory accesses.

[126:125] RES0 -

[124:121] RES0 Stage 1 Overlay permissions disabled.

IGNORED Stage 1 Overlay permissions enabled.

See Stage 1 Overlay permissions.

[120:119] RES0 -

[118:115] IGNORED -

[114] RES0 FEAT_THE is not implemented.

Protected FEAT_THE is implemented.

See Stage 1 Protected Attribute.

[113] IGNORED -

[112] Disable
contiguous bit
(DisCH)

-

See The Contiguous bit.

[111] IGNORED -

[110:109] Skip level

(SKL)

-

See Translation using the VMSAv9-128 translation system, and to determine the descriptor type,
Table D8-46.

[108:101] RES0 -

[100:91] Software usage -

[90:56] RES0 -

[55:12] NLTA[55:12] 4KB translation granule.

NLTA[55:14] 16KB translation granule.

Descriptor bits [13:12] are RES0.

NLTA[55:16] 64KB translation granule.

Descriptor bits [15:12] are RES0.

[11] RES0 The translation regime supports a single privilege level and the Security state is not Root state.

IGNORED The translation regime supports two privilege levels or the Security state is Root state.

[10] IGNORED Hardware managed Table descriptor Access flag is not enabled.

Access flag (AF) Hardware managed Table descriptor Access flag is enabled.

See Hardware management of the Table descriptor Access Flag.

[9:7] IGNORED -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6639
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
ITKQXW For stage 2 translations, the following figure shows the format of the VMSAv9-128 Table descriptor.

Figure D8-19 Stage 2 VMSAv9-128 Table descriptor

RMYLYC For stage 2 translations, the following table defines the fields in the VMSAv9-128 Table descriptor. In this table,
NLTA is the next level table address.

[6] RES0 SKL is 0b00.

nT SKL is not 0b00.

See Block translation entry.

[5:2] IGNORED -

[1] RES0 -

[0] Valid descriptor 1.

Table D8-53 Stage 1 VMSAv9-128 Table descriptor fields (continued)

Bit position Field Condition

RES0

127

IGNORED

126 125 124 121 120 119 118 114 113 112 111 110 109 108 101 100 91 90 64

IGNORED

SKL[1:0] RES0 Software usage RES0RES0 RES0 IGNORED

1

63

Next Level Table Address [55:12]

56 55 12 11 10 9 0

RES0

7 6 5 12

IGNORED

AF

nT

IGNORED

IGNORED IGNORED

RES0

Table D8-54 Stage 2 VMSAv9-128 Table descriptor fields

Bit position Field Condition

[127] IGNORED Realm EL1&0 translation regime.

RES0 Translation regime is not the Realm EL1&0 translation regime.

[126:125] RES0 -

[124:121] RES0 Stage 2 Overlay permissions disabled.

IGNORED Stage 2 Overlay permissions enabled.

See Stage 2 Overlay permissions.

[120:119] RES0 -

[118:115] IGNORED -

[114] RES0 FEAT_THE is not implemented.

IGNORED FEAT_THE is implemented.

[113:112] RES0 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6640
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
D8.3.2.2 VMSAv9-128 Block descriptor and Page descriptor formats

IYCWMS For stage 1 translations, the following figure shows the format of the VMSAv9-128 Block and Page descriptor.

[111] IGNORED -

[110:109] Skip level

(SKL)

-

See Translation using the VMSAv9-128 translation system, and to determine the descriptor type,
Table D8-46.

[108:101] RES0 -

[100:91] Software usage -

[90:56] RES0 -

[55:12] NLTA[55:12] 4KB translation granule.

NLTA[55:14] 16KB translation granule.

Descriptor bits [13:12] are RES0.

NLTA[55:16] 64KB translation granule.

Descriptor bits [15:12] are RES0.

[11] IGNORED -

[10] IGNORED Hardware managed Table descriptor Access flag is not enabled.

Access flag (AF) Hardware managed Table descriptor Access flag is enabled.

See Hardware management of the Table descriptor Access Flag.

[9:7] IGNORED -

[6] RES0 SKL is 0b00.

nT SKL is not 0b00.

See Block translation entry.

[5:2] IGNORED -

[1] RES0 -

[0] Valid descriptor 1.

Table D8-54 Stage 2 VMSAv9-128 Table descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6641
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
Figure D8-20 Stage 1 VMSAv9-128 Block and Page descriptor

RFPNKM For stage 1 translations, the following table defines the fields in the VMSAv9-128 Block and Page descriptor. In
this table, OAB is the OA base that is appended to the IA supplied to the translation stage to produce the final OA
supplied by the translation stage.

RES0

NS

127

POIndex[3:0]

126 125 124 121 120 119 118 115 114 113 112 111 110 109 108 101 100 91 90 64

Protected

GP

IGNORED

Contiguous

SKL[1:0] RES0 Software usage RES0RES0 RES0 PIIndex[3:0]

1

63

Output Address [55:12]

56 55 12 11 10 9 0

RES0

8 7 6 5 12

NSE or NG

AF

SH[1:0]

nDirty

nT

AttrIndx[3:0]

Table D8-55 Stage 1 VMSAv9-128 Block and Page descriptor fields

Bit position Field Condition

[127] RES0 The access is from Non-secure state, or from Realm state using the EL1&0 translation regime.

NS The access is from Secure state, from Realm state using the EL2 or EL2&0 translation regimes,
or from Root state.

[126:125] RES0 -

[124:121] RES0 Stage 1 Overlay permissions disabled.

POIndex[3:0] Stage 1 Overlay permissions enabled.

See Stage 1 Overlay permissions.

[120:119] RES0 -

[118:115] PIIndex[3:0] -

[114] RES0 FEAT_THE is not implemented.

Protected FEAT_THE is implemented.

See Stage 1 Protected Attribute.

[113] Guarded Page
(GP)

-

See PSTATE.BTYPE.

[112] IGNORED -

[111] Contiguous -

See The Contiguous bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6642
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
ILFZDC For stage 2 translations, the following figure shows the format of the VMSAv9-128 Block and Page descriptor. In
this table, OAB is the OA base that is appended to the IA supplied to the translation stage to produce the final OA
supplied by the translation stage.

[110:109] Skip level

(SKL)

-

See Translation using the VMSAv9-128 translation system, and to determine the descriptor type,
Table D8-46.

[108:101] RES0 -

[100:91] Software usage -

[90:56] RES0 -

[55:12] OAB[55:12] 4KB translation granule.

OAB[55:14] 16KB translation granule.

Descriptor bits [13:12] are RES0.

OAB[55:16] 64KB translation granule.

Descriptor bits [15:12] are RES0.

[11] RES0 The translation regime supports a single privilege level and the Security state is not Root state.

NSE Root state.

See Controlling memory access Security state.

Not global (nG) The translation regime supports two privilege levels.

See Global and process-specific translation table entries.

[10] Access flag (AF) -

See The Access flag.

[9:8] Shareability
(SH[1:0])

-

See Stage 1 Shareability attributes.

[7] nDirty -

See The dirty state.

[6] RES0 SKL is 0b00.

nT SKL is not 0b00.

See Block translation entry.

[5] IGNORED FEAT_AIE is not implemented or not enabled.

AttrIndx[3] FEAT_AIE is implemented and enabled.

See Stage 1 memory type and Cacheability attributes.

[4:2] AttrIndx[2:0] -

See Stage 1 memory type and Cacheability attributes.

[1] RES0 -

[0] Valid descriptor 1.

Table D8-55 Stage 1 VMSAv9-128 Block and Page descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6643
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
Figure D8-21 Stage 2 VMSAv9-128 Block and Page descriptor

RNQYBF For stage 2 translations, the following table defines the fields in the VMSAv9-128 Block and Page descriptors:

NS

127

POIndex[3:0]

126 125 124 121 120 119 118 115 114 113 112 111 110 109 108 101 100 91 90 64

AssuredOnly

Contiguous

SKL[1:0] RES0 Software usage RES0RES0 RES0 PIIndex[3:0] RES0

RES0 1

63

Output Address [55:12]

56 55 12 11 10 9 0

RES0

8 7 6 5 12

FnXS

AF

SH[1:0]

Dirty

nT

MemAttr[3:0]

Table D8-56 Stage 2 VMSAv9-128 Block and Page descriptor fields

Bit position Field Condition

[127] RES0 The access is not from the Realm EL1&0 translation regime.

NS The access is from the Realm EL1&0 translation regime.

[126:125] RES0 -

[124:121] RES0 Stage 2 Overlay permissions disabled.

POIndex[3:0] Stage 2 Overlay permissions enabled.

See Stage 2 Overlay permissions.

[120:119] RES0 -

[118:115] PIIndex[3:0] -

[114] RES0 FEAT_THE is not implemented.

AssuredOnly FEAT_THE is implemented.

See Assured translation.

[113:112] RES0 -

[111] Contiguous -

See The Contiguous bit.

[110:109] Skip level

(SKL)

-

See Translation using the VMSAv9-128 translation system, and to determine the descriptor type,
Table D8-46.

[108:101] RES0 -

[100:91] Software usage -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6644
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
D8.3.2.3 VMSAv9-128 Invalid descriptor format

RJRLVJ For the VMSAv9-128 translation system, the following table defines the fields in the Invalid descriptor. IGNORED
fields are available for software use.

[90:56] RES0 -

[55:12] OAB[55:12] 4KB translation granule.

OAB[55:14] 16KB translation granule.

Descriptor bits [13:12] are RES0.

OAB[55:16] 64KB translation granule.

Descriptor bits [15:12] are RES0.

[11] FnXS -

See XS attribute modifier.

[10] Access flag (AF) -

See The Access flag.

[9:8] Shareability
(SH[1:0])

-

See Stage 1 Shareability attributes.

[7] Dirty -

See The dirty state.

[6] RES0 SKL is 0b00.

nT SKL is not 0b00.

See Block translation entry.

[5] RES0 The Effective value of HCR_EL2.FWB is 1.

MemAttr[3] The Effective value of HCR_EL2.FWB is 0.

See Stage 2 memory type and Cacheability attributes when FWB is disabled.

[4:2] MemAttr[2:0] -

See Stage 2 memory type and Cacheability attributes when FWB is disabled and Stage 2 memory
type and Cacheability attributes when FWB is enabled.

[1] RES0 -

[0] Invalid descriptor 0.

Valid descriptor 1.

Table D8-56 Stage 2 VMSAv9-128 Block and Page descriptor fields (continued)

Bit position Field Condition

Table D8-57 VMSAv9-128 Invalid descriptor fields

Bit position Field Condition

[127:115] IGNORED -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6645
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.3 Translation table descriptor formats
[114] Protected Stage 1 and FEAT_THE is implemented.

See Assured translation.

IGNORED Stage 2 or FEAT_THE is not implemented.

[113:1] IGNORED -

[0] Invalid descriptor 0.

Table D8-57 VMSAv9-128 Invalid descriptor fields (continued)

Bit position Field Condition
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6646
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
D8.4 Memory access control

ISHRMH Fields in the descriptors, PSTATE, and system registers determine the permissions used to control access to memory
and instruction execution.

RMNKWG Direct permissions use one or more of the following to determine the base permissions that control whether or not
a location can be accessed, the type of access that is permitted, and the privilege level necessary to access the
location:

• The access permissions in Block descriptors and Page descriptors.

• If enabled, then the hierarchical access permissions in Table descriptors.

RXRLBM Indirect permissions use all of the following to determine the base permissions that control whether or not a location
can be accessed, the type of access that is permitted, and the privilege level necessary to access the location:

• The Permission Indirection Index (PIIndex) field in Block descriptors and Page descriptors.

• For each translation regime, a Permission Indirection Register (PIR) indexed by PIIndex.

RSHZSG If enabled, Overlay permissions use all of the following to further restrict permissions from what is configured for
the base permissions:

• The Permission Overlay Index (POIndex) field in Block descriptors and Page descriptors.

• For each Exception level, a Permission Overlay Register (POR) indexed by POIndex.

Note

Overlay permissions allow permissions to be progressively restricted by processes running at EL0 while reducing
the number of calls to supervisory software at more privileged Exception levels, and without the cost of TLB
maintenance.

D8.4.1 Stage 1 permissions

RTDNYB All statements in this section apply when stage 1 uses VMSAv8-64 or VMSAv9-128.

RWBLJK The following table lists the stage 1 permissions and the access type that is permitted when that permission is
present. If the stage 1 permission is not present, that access type is not permitted.

IXFDFY All of the following controls can ensure that memory locations are not both writable and executable:

• For privileged accesses in all translation regimes, PrivWXN.

Table D8-58 Stage 1 permissions

Stage 1 permission Access type permitted

UnprivRead Unprivileged data read in the EL1&0 and EL2&0 translation regimes.

UnprivWrite Unprivileged data write in the EL1&0 and EL2&0 translation regimes.

PrivRead Privileged data read in the EL1&0, EL2&0, EL2, and EL3 translation regimes.

PrivWrite Privileged data write in the EL1&0, EL2&0, EL2, and EL3 translation regimes.

UnprivGCS Unprivileged GCS access in the EL1&0 and EL2&0 translation regimes.

PrivGCS Privileged GCS access in the EL1&0, EL2&0, EL2, and EL3 translation regimes.

UnprivExecute Unprivileged instruction execution in the EL1&0 and EL2&0 translation regimes.

PrivExecute Privileged instruction execution in the EL1&0, EL2&0, EL2, and EL3 translation regimes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6647
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
• For unprivileged accesses in the EL1&0 and EL2&0 translation regimes, UnprivWXN.

IKWYWX UnprivRead, UnprivWrite, UnprivGCS, UnprivExecute, and UnprivWXN do not apply to the EL2 and EL3
translation regimes.

RVBBBJ If stage 1 translation is disabled, then stage 1 permits all data accesses, instruction executions, and GCS accesses.

IMTSDS If stage 1 translation is enabled, then stage 1 permissions are determined by all of the following:

• Stage 1 Base permissions. For more information, see Stage 1 Base permissions.

• Stage 1 Overlay permissions. For more information, see Stage 1 Overlay permissions.

D8.4.1.1 Stage 1 Base permissions

IPJNLQ Stage 1 Base permissions can be determined by one of the following:

• Stage 1 Direct permissions. For more information, see Stage 1 Direct permissions.

• Stage 1 Indirect permissions. For more information, see Stage 1 Indirect permissions.

ISXTJD If FEAT_S1PIE is not implemented, then stage 1 Direct permissions are used.

IVYHZC If stage 1 translation uses VMSAv8-64, then the choice between Direct and Indirect permissions is determined by
one of the following:

• If the Exception level is not EL3, then TCR2_ELx.PIE.

• If the Exception level is EL3, then TCR_EL3.PIE.

IBSXJT Stage 1 Direct permissions are not supported by VMSAv9-128. If stage 1 translation uses VMSAv9-128, then it uses
Indirect permissions and the Effective value of the PIE field is 1.

D8.4.1.2 Stage 1 Direct permissions

D8.4.1.2.1 Stage 1 data accesses using Direct permissions

RCBNKR For a stage 1 translation that supports one Exception level, the following table shows the possible data access
permissions.

RMGGZM For a stage 1 translation that supports one Exception level, AP[1] is RES1.

RRNGJG For a stage 1 translation that supports two Exception levels, the following table shows the possible data access
permissions at EL0 and the corresponding higher Exception level.

Table D8-59 Data access permissions for a stage 1 translation supporting one Exception level

AP[2] Permissions

0 PrivRead, PrivWrite

1 PrivRead

Table D8-60 Data access permissions for a stage 1 translation supporting two Exception levels

AP[2:1] Permissions

00 PrivRead, PrivWrite
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6648
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RPSZJJ If stage 1 is enabled and stage 1 Base permissions use Direct permissions, then GCS access is not permitted and
UnprivGCS and PrivGCS are not present.

IZRMQJ For the EL1&0 translation regime in the current Security state, if the Effective value of HCR_EL2.{NV, NV1} is
{1, 1}, then AP[1] is treated as 0 regardless of the actual value.

For more information, see Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1.

IBVWWD If hardware management of dirty state is enabled at stage 1, then the AP[2] bit can be cleared by hardware in some
situations.

For more information, see Hardware management of the dirty state.

D8.4.1.2.2 Hierarchical control of data access Direct permissions

IVZXYY Translation table entries at a given lookup level can limit data access Direct permissions at subsequent lookup levels.

IVWPGP For a translation regime, if Overlay permissions are enabled, then hierarchical data access Direct permissions are
disabled. See Stage 1 Overlay permissions.

RYTXKB For a stage 1 translation, when hierarchical control is enabled, the Table descriptor APTable[1:0] field limits the
data access permissions of subsequent stage 1 translation lookup levels, regardless of the Direct permissions in
subsequent lookup levels, as shown in the following table:

IGQYCH For a Permission fault, the level of the Block descriptor or Page descriptor is reported regardless of whether the lack
of permissions was caused by configuration of the APTable or AP fields.

IPCLHM For translation regimes that support one Exception level, APTable[0] is RES0.

ITPCPS The APTable[1:0] settings are combined with the descriptor access permissions in subsequent lookup levels. They
do not change the values entered in those descriptors, nor restrict what values can be entered.

IPKGJC For the translation regime controlled by a TCR_ELx, one or more of the following can be used to disable the Table
descriptor APTable[1:0] field so that it is IGNORED by the PE and the behavior is as if the value is 0:

• If the Effective value of TCR_ELx.HPD{0} is 1, hierarchical data access permission is disabled in the
translation tables pointed to by TTBR0_ELx.

• If the Effective value of TCR_ELx.HPD1 is 1, hierarchical data access permission is disabled in the
translation tables pointed to by TTBR1_ELx.

01 PrivRead, PrivWrite, UnprivRead, UnprivWrite

10 PrivRead

11 PrivRead, UnprivRead

Table D8-60 Data access permissions for a stage 1 translation supporting two Exception levels

AP[2:1] Permissions

Table D8-61 Effect of APTable[1:0] on subsequent lookup levels

APTable[1:0] Effect at subsequent lookup levels

00 No effect on data access permissions.

01 Removes UnprivRead and UnprivWrite.

10 Removes UnprivWrite and PrivWrite.

11 Removes UnprivRead, UnprivWrite, and PrivWrite.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6649
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IYQWJF The descriptor APTable field affects all subsequent lookup levels. When an APTable field is changed, software is
required to use a break-before-make sequence, including TLB maintenance for all lookup levels for the VA range
translated by the descriptor.

D8.4.1.2.3 Stage 1 instruction execution using Direct permissions

IDXKST The instruction Execute-never, Unprivileged execute-never, and Privileged execute-never fields in a Block
descriptor and Page descriptor are used to control instruction execution permissions under the Direct permissions
scheme by a stage 1 translation.

RTRZVM For a stage 1 translation that supports one Exception level, the XN field in the Block descriptor and Page descriptor
has all of the following properties:

• If the Effective value of XN is 0, then PrivExecute is not removed by this bit.

• If the Effective value of XN is 1, then PrivExecute is removed.

RRBDFT For a stage 1 translation that supports two Exception levels, the UXN field in the Block descriptor and Page
descriptor has all of the following properties:

• If the Effective value of UXN is 0, then UnprivExecute is not removed by this bit.

• If the Effective value of UXN is 1, then UnprivExecute is removed.

RLWPVL For a stage 1 translation that supports two Exception levels, the PXN field in the Block descriptor and Page
descriptor has all of the following properties:

• If the Effective value of PXN is 0, then PrivExecute is not removed by this bit.

• If the Effective value of PXN is 1, then PrivExecute is removed.

RVWLLR For stage 1 translations that support two Exception levels, if UnprivWrite is present, then PrivExecute is removed.

D8.4.1.2.4 Preventing execution from writable locations

IKDRYB There are register control fields that can be used to force writable memory to be treated as XN, PXN, or UXN,
regardless of the value of the corresponding descriptor fields.

RFYMXJ For unprivileged accesses in the EL1&0 and EL2&0 translation regimes, if SCTLR_ELx.WXN is 1, UnprivWrite
is present, and UnprivExecute is present, then UnprivWXN is applied. Otherwise, UnprivWXN is removed.

RSYMMB For privileged accesses in all translation regimes, if SCTLR_ELx.WXN is 1, PrivWrite is present, and PrivExecute
is present, then PrivWXN is applied. Otherwise, PrivWXN is removed.

ITBVCH For a stage 1 translation in a translation regime that supports two Exception levels, the corresponding
SCTLR_ELx.WXN field does all of the following:

• If the value is 0, then there is no effect on access permissions.

• If the value is 1, then all of the following apply:

— If the memory region has UnprivWrite, then UnprivExecute is removed, regardless of the value of the
Block descriptor or Page descriptor UXN field.

— If the memory region has PrivWrite, then PrivExecute is removed, regardless of the value of the Block
descriptor or Page descriptor PXN field.

IFQVWM For a stage 1 translation in a translation regime that applies to a single Exception level, the corresponding
SCTLR_ELx.WXN field does all of the following:

• If the value is 0, then there is no effect on access permissions.

• If the value is 1 and if the memory region is PrivWrite, then PrivExecute is removed, regardless of the value
of the Block descriptor or Page descriptor XN field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6650
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IXLDPQ The SCTLR_ELx.WXN field reduces the memory footprint available for code injection attacks by introducing an
invariant that writable memory regions are not executable.

IRNXSK For the lifetime of a given virtual machine, Arm expects the SCTLR_ELx.WXN field to remain static in normal
operation.

IPNSFD SCTLR_ELx.WXN is permitted to be cached in a TLB.

D8.4.1.2.5 Hierarchical control of instruction execution for Direct permissions

IJCPHF Stage 1 translation table entries at a given lookup level can limit instruction execution controls expressed using
Direct permissions at subsequent lookup levels.

IXMMSD For a translation regime, if Overlay permissions are enabled, then hierarchical instruction execution controls
expressed using Direct permissions are disabled. See Stage 1 Overlay permissions.

RRLQFP For a stage 1 translation, the value of the XNTable Table descriptor field has one of the following effects:

• If the Effective value of the XNTable field is 0, then the field has no effect.

• If the Effective value of the XNTable field is 1, then all of the following apply:

— The XN field in Block descriptors and Page descriptors is treated as 1 in subsequent lookup levels,
regardless of the actual value of XN.

— The value and interpretation of the XNTable and XN fields in all subsequent lookup levels are
otherwise unaffected.

RWSFPB For a stage 1 translation, the value of the UXNTable Table descriptor field has one of the following effects:

• If the Effective value of the UXNTable field is 0, then the field has no effect.

• If the Effective value of the UXNTable field is 1, then all of the following apply:

— The UXN field in Block descriptors and Page descriptors is treated as 1 in subsequent lookup levels,
regardless of the actual value of UXN.

— The value and interpretation of the UXNTable and UXN fields in all subsequent lookup levels are
otherwise unaffected.

RNJJNG For a stage 1 translation, the value of the PXNTable Table descriptor field has one of the following effects:

• If the Effective value of the PXNTable field is 0, then the field has no effect.

• If the Effective value of the PXNTable field is 1, then all of the following apply:

— The PXN field in Block descriptors and Page descriptors is treated as 1 in subsequent lookup levels,
regardless of the actual value of PXN.

— The value and interpretation of the PXNTable and PXN fields all subsequent lookup levels are
otherwise unaffected.

ISRRJF The UXNTable, XNTable, and PXNTable Table descriptor fields control stage 1 translations. The corresponding bit
positions are RES0 in the stage 2 Table descriptors.

INYWHQ For the translation regime controlled by a TCR_ELx, one or more of the following can be used to disable the Table
descriptor XNTable, UXNTable, and PXNTable fields so they are IGNORED by the PE and the system behavior is as
if the values are zero:

• If the Effective value of TCR_ELx.HPD{0} is 1, then hierarchical instruction execution permission is
disabled in the translation tables pointed to by TTBR0_ELx.

• If the Effective value of TCR_ELx.HPD1 is 1, then hierarchical instruction execution permission is disabled
in the translation tables pointed to by TTBR1_ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6651
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IZGSNV The Table descriptor UXNTable, XNTable, and PXNTable fields affect all subsequent lookup levels, including stage
1 translation output. When a UXNTable, XNTable, or PXNTable field is changed, software is required to use a
break-before-make sequence, including TLB maintenance for all lookup levels for the VA range translated by the
descriptor.

D8.4.1.2.6 Summary of Direct permissions for stage 1 translations

IWXKKQ If a translation regime applies to EL0 and a higher Exception level, then the following table shows the possible stage
1 memory access permissions, using all of the following notations:

• PXN and UXN are the Effective values of PXN and UXN after the effects of PXNTable and UXNTable,
respectively.

• AP[2:1] is the Effective value of AP[2:1] after the effects of APTable are applied.

• If hardware update of dirty state is enabled, then AP[2] is considered to be 0 for the purposes of computing
execute permission in some situations.

• WXN is in the SCTLR_ELx register at the higher Exception level to which the translation regime applies.

Table D8-62 Summary of possible memory access permissions using Direct permissions for a
stage 1 translation supporting two Exception levels

UXN PXN AP[2:1] WXN Permission

0 0 00 0 PrivRead, PrivWrite, PrivExecute, UnprivExecute

0 0 00 1 PrivRead, PrivWrite, PrivWXN, UnprivExecute

0 0 01 0 PrivRead, PrivWrite, UnprivRead, UnprivWrite, UnprivExecute

0 0 01 1 PrivRead, PrivWrite, UnprivRead, UnprivWrite, UnprivWXN

0 0 10 x PrivRead, PrivExecute, UnprivExecute

0 0 11 x PrivRead, PrivExecute, UnprivRead, UnprivExecute

0 1 00 x PrivRead, PrivWrite, UnprivExecute

0 1 01 0 PrivRead, PrivWrite, UnprivRead, UnprivWrite, UnprivExecute

0 1 01 1 PrivRead, PrivWrite, UnprivRead, UnprivWrite, UnprivWXN

0 1 10 x PrivRead, UnprivExecute

0 1 11 x PrivRead, UnprivRead, UnprivExecute

1 0 00 0 PrivRead, PrivWrite, PrivExecute

1 0 00 1 PrivRead, PrivWrite, PrivWXN

1 0 01 x PrivRead, PrivWrite, UnprivRead, UnprivWrite

1 0 10 x PrivRead, PrivExecute

1 0 11 x PrivRead, PrivExecute, UnprivRead

1 1 00 x PrivRead, PrivWrite

1 1 01 x PrivRead, PrivWrite, UnprivRead, UnprivWrite

1 1 10 x PrivRead

1 1 11 x PrivRead, UnprivRead
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6652
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
ILJHZZ For a memory location, if a translation regime applies to a single Exception level, then the following table shows
the stage 1 access Direct permissions, using all of the following notations:

• WXN is in the SCTLR_ELx register at the higher Exception level to which the translation regime applies.

• AP[2] is the effective value of AP[2] after the effects of APTable are applied.

• If hardware update of dirty state is enabled, then AP[2] is considered to be 0 for the purposes of computing
execute permission in some situations.

IJZPHK For more information, see Implications of enabling the dirty state management mechanism.

D8.4.1.3 Stage 1 Indirect permissions

RJJWXH All statements in this section require implementation of FEAT_S1PIE.

ILYWDV For the EL1&0 and EL2&0 translation regimes, the following Permission Indirection Registers determine
unprivileged stage 1 Base permissions, S1UnprivBasePerm:

• PIRE0_EL1.

• PIRE0_EL2.

RDJZHM For all purposes other than a direct read of the register, if the Effective value of HCR_EL2.{NV, NV1} is {1, 1},
then the value of PIRE0_EL1 is treated as 0.

IBSMJB For all translation regimes, the following Permission Indirection Registers determine privileged stage 1 Base
permissions, S1PrivBasePerm:

• PIR_EL1.

• PIR_EL2.

• PIR_EL3.

RBCPGD The following table shows how the 4-bit PIIndex field in stage 1 Block descriptors and Page descriptors is used to
index into the Permission Indirection Registers to obtain S1UnprivBasePerm and S1PrivBasePerm:

Table D8-63 Summary of possible memory access permissions using Direct permissions for a
stage 1 translation supporting one Exception level

XN AP[2] WXN Access permission

0 0 0 PrivRead, PrivWrite, PrivExecute

0 0 1 PrivRead, PrivWrite, PrivWXN

0 1 x PrivRead, PrivExecute

1 0 x PrivRead, PrivWrite

1 1 x PrivRead

Table D8-64 Using PIIndex to determine stage 1 Base permissions

Translation
regime

S1UnprivBasePerm S1PrivBasePerm

EL1&0 PIRE0_EL1[(PIIndex*4 + 3): PIIndex*4] PIR_EL1[(PIIndex*4 + 3): PIIndex*4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6653
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IMYXBN Stage 1 Base permissions are computed using the following steps:

1. Stage 1 Base permissions are decoded from the PIR_ELx register.

2. If PrivExecute or PrivGCS is present, and UnprivWrite or UnprivGCS is additionally present, then all Base
permissions are removed. See RVFPJF.

3. For the translation, if an inappropriate OA space is selected, then each of PrivExecute, UnprivExecute,
PrivGCS, UnprivGCS are removed. See RCYSKB and RYBDFF.

4. The effects of PSTATE.PAN are applied. It is IMPLEMENTATION DEFINED whether this is prioritized here or
above step 3. See RTBKKB.

RLLZDZ The following table shows the privileged and unprivileged stage 1 Base permissions that are applied as determined
by the corresponding S1PrivBasePerm and S1UnprivBasePerm values, and whether stage 1 Overlay permissions
are applied to those stage 1 Base permissions:

EL2&0 PIRE0_EL2[(PIIndex*4 + 3): PIIndex*4] PIR_EL2[(PIIndex*4 + 3): PIIndex*4]

EL2 PIR_EL2[(PIIndex*4 + 3): PIIndex*4]

EL3 PIR_EL3[(PIIndex*4 + 3): PIIndex*4]

Table D8-64 Using PIIndex to determine stage 1 Base permissions (continued)

Translation
regime

S1UnprivBasePerm S1PrivBasePerm

Table D8-65 Determination of stage 1 Base permissions and Overlay application

S1PrivBasePerm / S1UnprivBasePerm Stage 1 Base Permissions Stage 1 Overlay applied

0b0000 - Yes

0b0001 PrivRead / UnprivRead Yes

0b0010 PrivExecute / UnprivExecute Yes

0b0011 PrivRead / UnprivRead,

PrivExecute / UnprivExecute

Yes

0b0100 Reserved, treated as No access Yes

0b0101 PrivRead / UnprivRead,

PrivWrite / UnprivWrite

Yes

0b0110 PrivRead / UnprivRead,

PrivWrite / UnprivWrite,

PrivExecute / UnprivExecute

Yes

0b0111 PrivRead / UnprivRead,

PrivWrite / UnprivWrite,

PrivExecute / UnprivExecute

Yes

0b1000 PrivRead / UnprivRead No

0b1001 PrivRead / UnprivRead,

PrivGCS / UnprivGCS

No

0b1010 PrivRead / UnprivRead,

PrivExecute / UnprivExecute

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6654
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
Note

For each row in Table D8-65, stage 1 Base permissions are removed unless stated in the table.

Bit [3] in S1PrivBasePerm and S1UnprivBasePerm determines whether stage 1 Overlay permissions are applied to
the corresponding stage 1 privileged and unprivileged permissions.

RHJYGR The following table shows how the PrivWXN and UnprivWXN controls are determined by the corresponding
S1PrivBasePerm and S1UnprivBasePerm values.

IPMKFB If stage 1 Indirect permissions are used, then SCTLR_ELx.WXN has no effect and is RES0.

IKDZDQ PrivWXN and UnprivWXN are not permissions, but controls that affect the computation of Write and Execute
permissions at stage 1. For the details of how this is computed, see Combining stage 1 Base permissions and Overlay
permissions.

RRSXJG If stage 1 translation is using Indirect permissions, then a memory region is execute-never at stage 1 if PrivExecute
and UnprivExecute are not present.

RVFPJF For the EL1&0 and EL2&0 translation regimes, all of the following combinations of S1PrivBasePerm and
S1UnprivBasePerm are reserved, and the stage 1 Base permissions are removed:

• S1PrivBasePerm is one of {0b0010, 0b0011, 0b0110, 0b0111, 0b1001, 0b1010, 0b1110}, which apply PrivExecute
or PrivGCS.

• S1UnprivBasePerm is one of {0b0101, 0b0110, 0b0111, 0b1001, 0b1100, 0b1110}, which apply UnprivWrite or
UnprivGCS.

Note

The combination of unprivileged write or unprivileged GCS access to memory locations that are also privileged
executable or privileged GCS accessible is considered unsafe and should never be used by software. As a safety
mechanism, all access permissions are removed. This is different than the mechanism used by Direct permissions.
In that case, if unprivileged write permission to a memory location is permitted, then privileged execute permission
is removed, but other permissions are retained.

This behavior is independent of stage 1 Overlay permissions.

0b1011 Reserved, treated as No access No

0b1100 PrivRead / UnprivRead,

PrivWrite / UnprivWrite

No

0b1101 Reserved, treated as No access No

0b1110 PrivRead / UnprivRead,
PrivWrite / UnprivWrite,
PrivExecute / UnprivExecute

No

0b1111 Reserved, treated as No access No

Table D8-65 Determination of stage 1 Base permissions and Overlay application (continued)

S1PrivBasePerm / S1UnprivBasePerm Stage 1 Base Permissions Stage 1 Overlay applied

Table D8-66 Determination of PrivWXN and UnprivWXN

S1PrivBasePerm / S1UnprivBasePerm PrivWXN / UnprivWXN control

0b0110 Applied

Others Removed
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6655
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RCYSKB If any of the following are true, then the stage 1 Base permissions, PrivGCS and UnprivGCS, are removed:

• For Secure translation regimes, the stage 1 OA resides in the Non-secure address space.

• For Root state, the stage 1 OA does not reside in the Root address space.

• For the Realm EL2 and Realm EL2&0 translation regimes, the stage 1 OA does not reside in the Realm
address space.

RYBDFF If any of the following are true, then the stage 1 Base permissions, PrivExecute and UnprivExecute, are removed:

• For Secure translation regimes when SCR_EL3.SIF is set to 1, the stage 1 OA resides in the Non-secure
address space.

• For Root state, the stage 1 OA does not reside in the Root address space.

• For the Realm EL2 and Realm EL2&0 translation regimes, the stage 1 OA does not reside in the Realm
address space.

RTBKKB For the EL1&0 and EL2&0 translation regimes, if the Effective value of PSTATE.PAN is 1 and S1UnprivBasePerm
is not 0b0000, then the stage 1 Base permissions, PrivRead and PrivWrite, are removed.

It is IMPLEMENTATION DEFINED whether this applies when the S1UnprivBasePerm is a reserved value, which is
therefore treated as 0b0000.

It is IMPLEMENTATION DEFINED whether this applies when the effect of SCR_EL3.SIF and the PA space, as
described in RYBDFF, results in removal of all unprivileged stage 1 base permissions.

Note

The effect of PSTATE.PAN does not depend on the value of SCTLR_ELx.EPAN. If stage 1 uses Indirect
permissions, then SCTLR_ELx.EPAN is RES1.

ILSZBZ When the Effective value of PSTATE.PAN is 1, RTBKKB ensures that memory with any form of user permissions is
not accessible by privileged data accesses.

RFBQWG Except for the impact of PSTATE.PAN, the Effective value of the stage 1 Base permissions are permitted to be
cached in a TLB.

RJHSVW If Indirect permissions are used, then hierarchical permissions are disabled and TCR_ELx.HPDn are RES1.

D8.4.1.4 Stage 1 Overlay permissions

RJCYSC If FEAT_S1POE is not implemented, then S1UnprivOverlay and S1PrivOverlay are disabled.

RRSKVR All remaining statements in this section require implementation of FEAT_S1POE.

RRQWXN The stage 1 Permission Overlay Enable (POE) is determined by the following table:

IKPGBV The POE field is not permitted to be cached in a TLB.

Table D8-67 Determination of stage 1 POE value

Translation Regime Field

EL1&0 TCR2_EL1.POE

EL2&0 TCR2_EL2.POE

EL2 TCR2_EL2.POE

EL3 TCR_EL3.POE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6656
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RTMNYQ For the EL1&0 translation regime, if the Effective value of HCR_EL2.{NV, NV1} is {1, 1}, the value of the stage
1 EL0 Permission Overlay Enable (E0POE) is 0. Otherwise, the E0POE field is determined by the following table:

ISDBKH The E0POE field is not permitted to be cached in a TLB.

RBVXDG For a translation regime, if one or more of the following apply, then hierarchical permissions are disabled and the
corresponding TCR_ELx.HPDn are RES1:

• For any translation regime, POE is 1.

• For the EL1&0 and EL2&0 translation regimes, E0POE is 1.

RGDVJK If E0POE is 1 and one of the following applies, then stage 1 unprivileged overlay, S1UnprivOverlay, is enabled,
otherwise it is disabled:

• Stage 1 uses Direct permissions.

• Stage 1 uses Indirect permissions and the Unprivileged Base permission configuration selects a value for
which Overlay is applied.

RDPZHF If POE is 1 and one of the following applies, then stage 1 privilege overlay, S1PrivOverlay, is enabled, otherwise it
is disabled:

• Stage 1 uses Direct permissions.

• Stage 1 uses Indirect permissions and the Privileged Base permission configuration selects a value for which
Overlay is applied.

ISXYLW For the EL1&0 and EL2&0 translation regimes, the POR_EL0 Permission Overlay register determines the
unprivileged stage 1 overlay permissions, S1UnprivOverlayPerm.

IYQTQJ For all translation regimes, the following Permission Overlay registers determine privileged stage 1 overlay
permissions, S1PrivOverlayPerm:

• POR_EL1.

• POR_EL2.

• POR_EL3.

IJGCLT The size of the POIndex field in Block descriptors and Page descriptors is one of the following:

• In VMSAv8-64, 3-bits.

• In VMSAv9-128, 4-bits.

Table D8-68 Determination of stage 1 E0POE value

Translation Regime Field

EL1&0 TCR2_EL1.E0POE

EL2&0 TCR2_EL2.E0POE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6657
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RBXJBV The following table shows how the POIndex field in stage 1 Block descriptors and Page descriptors is used to index
into the Permission Overlay registers to obtain S1UnprivOverlayPerm and S1PrivOverlayPerm:

RPGLZR The following table shows the effect of applying stage 1 Overlay permissions to restrict stage 1 permissions:

Note

GCS permissions are not affected by stage 1 Overlay permissions.

RWDCGP The following table shows the privileged and unprivileged stage 1 overlay permissions that are applied as
determined by the corresponding S1PrivOverlayPerm and S1UnprivOverlayPerm values:

Table D8-69 Using POIndex to determine stage 1 overlay permissions

Translation
Regime

S1UnprivOverlayPerm S1PrivOverlayPerm

EL1&0 POR_EL0[(POIndex*4 + 3): POIndex*4] POR_EL1[(POIndex*4 + 3): POIndex*4]

EL2&0 POR_EL0[(POIndex*4 + 3): POIndex*4] POR_EL2[(POIndex*4 + 3): POIndex*4]

EL2 POR_EL2[(POIndex*4 + 3): POIndex*4]

EL3 POR_EL3[(POIndex*4 + 3): POIndex*4]

Table D8-70 Effect of stage 1 Overlay permissions

Stage 1 Overlay permission Effect when permission is 0

UnprivRead Restricts read permissions for unprivileged data accesses in the EL1&0 and
EL2&0 translation regimes.

Not Applicable in the EL2 and EL3 translation regimes.

UnprivWrite Restricts write permissions for unprivileged data accesses in the EL1&0
and EL2&0 translation regimes.

Not Applicable in the EL2 and EL3 translation regimes.

PrivRead Restricts read permissions for privileged data accesses in the EL1&0,
EL2&0, EL2, and EL3 translation regimes.

PrivWrite Restricts write permissions for privileged data accesses in the EL1&0,
EL2&0, EL2, and EL3 translation regimes.

UnprivExecute Restricts permission for unprivileged instruction execution in the EL1&0
and EL2&0 translation regimes.

Not Applicable in the EL2 and EL3 translation regimes.

PrivExecute Restricts permission for privileged instruction execution in the EL1&0,
EL2&0, EL2, and EL3 translation regimes.

Table D8-71 Determination of stage 1 Overlay permissions

S1PrivOverlayPerm / S1UnprivOverlayPerm Stage 1 Overlay permissions

0b0000 -

0b0001 PrivRead / UnprivRead

0b0010 PrivExecute / UnprivExecute
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6658
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
Note

For each row in Table D8-71, stage 1 Overlay permissions are 0 unless stated in the table.

ISKPNZ Stage 1 Overlay permissions are not permitted to be cached in a TLB. POIndex is permitted to be cached in a TLB.

IVCQZV For a translation regime using VMSAv8-64 that is in-context, when TCR_ELx.{HPDn, POE} or TCR_ELx.{HPDn,
E0P0E} transition from {0, 0} to {0, 1} or to {1, 1}, or vice-versa, the resulting stage 1 permissions are
CONSTRAINED UNPREDICTABLE, as described in CONSTRAINED UNPREDICTABLE behaviors due to caching of
control or data values.

IVRTYL For a translation regime using VMSAv8-64 that is in-context, when TCR_ELx.{HWUnn, POE} or
TCR_ELx.{HWUnn, E0P0E} transition from {1, 0} to {0, 1} or to {1,1}, or vice-versa, the resulting stage 1 PBHA
attributes and stage 1 permissions are CONSTRAINED UNPREDICTABLE, as described in CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values.

D8.4.1.5 Combining stage 1 Base permissions and Overlay permissions

RQXXPC If PrivWXN is present, then all of the following apply to stage 1 Base permissions and stage 1 Overlay permissions:

• If S1PrivOverlay is disabled and the decoded stage 1 Base permission PrivWrite is present, then the stage 1
Base permission PrivExecute is removed.

• If S1PrivOverlay is enabled and the stage 1 Overlay permission PrivExecute is present, then the stage 1
Overlay permission PrivWrite is removed.

RHQCYT If PrivWXN is removed, then it has no effect on stage 1 Base permissions and stage 1 Overlay permissions.

RNPBXC If UnprivWXN is present, then all of the following apply to stage 1 Base permissions and stage 1 Overlay
permissions:

• If S1UnprivOverlay is disabled and the decoded stage 1 Base permission UnprivWrite is present, then the
stage 1 Base permission UnprivExecute is removed.

• If S1UnprivOverlay is enabled and the stage 1 Overlay permission UnprivExecute is present, then the stage
1 Overlay permission UnprivWrite is removed.

RGZLXV If UnprivWXN is removed, then it has no effect on stage 1 Base permissions and stage 1 Overlay permissions.

RNHNQC PrivWXN and UnprivWXN are permitted to be cached in a TLB.

0b0011 PrivRead / UnprivRead

PrivExecute / UnprivExecute

0b0100 PrivWrite / UnprivWrite

0b0101 PrivRead / UnprivRead

PrivWrite / UnprivWrite

0b0110 PrivWrite / UnprivWrite

PrivExecute / UnprivExecute

0b0111 PrivRead / UnprivRead

PrivWrite / UnprivWrite

PrivExecute / UnprivExecute

0b1xxx Reserved, treated as 0b0000

Table D8-71 Determination of stage 1 Overlay permissions (continued)

S1PrivOverlayPerm / S1UnprivOverlayPerm Stage 1 Overlay permissions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6659
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IXGFTP Before applying PSTATE.PAN, stage 1 Base permissions are permitted to be cached in a TLB, therefore the effect
of PrivWXN and UnprivWXN on stage 1 Base permissions is also permitted to be cached in a TLB. Stage 1 Overlay
permissions are not permitted to be cached in a TLB, therefore the effect of PrivWXN and UnprivWXN on stage 1
Overlay permissions is also not permitted to be cached in a TLB.

RCZCYQ All of the following determine whether stage 1 permissions are present or removed:

• For PrivGCS and UnprivGCS, if the corresponding Effective stage 1 Base permission is present, then the
permission is present. Otherwise, it is removed.

• PrivRead, PrivWrite, and PrivExecute are determined by one of the following:

— If S1PrivOverlay is disabled, then the corresponding Effective stage 1 Base permission is present, the
permission is present. Otherwise, it is removed.

— If S1PrivOverlay is enabled, then when both the corresponding Effective stage 1 Base permission and
corresponding Effective stage 1 Overlay permission are present, the permission is present. Otherwise,
it is removed.

• UnprivRead, UnprivWrite, and UnprivExecute are determined by one of the following:

— If S1UnprivOverlay is disabled, then the corresponding Effective stage 1 Base permission is present,
the permission is present. Otherwise, it is removed.

— If S1UnprivOverlay is enabled, then when both the corresponding Effective stage 1 Base permission
and corresponding Effective stage 1 Overlay permission are present, the permission is present.
Otherwise, it is removed.

RRPXZR If any of the following applies, then a stage 1 Permission fault due to Overlay is generated:

• S1PrivOverlay is enabled and a privileged access is removed by the Effective value of the stage 1 Overlay
permission.

• S1UnprivOverlay is enabled and an unprivileged access is removed by the Effective value of the stage 1
Overlay permission.

IDWBGP For information on the priority of a stage 1 Permission fault due to Overlay, see Prioritization of Permission faults.

D8.4.2 Stage 2 permissions

RVHFGB All statements in this section apply when stage 2 uses VMSAv8-64 or VMSAv9-128.

RBHXHT The following table lists the stage 2 permissions and the access type that is permitted when the value of that
permission is 1.

Table D8-72 Stage 2 permissions

Stage 2 permission Permitted access

RO Read only, including Data Read, RCW Read, MMU Read

WO Write only, including Data Write, RCW Write, MMU Write

RW Read and write, including Data Read, Data Write, RCW Read, RCW Write, MMU Read,
MMU Write

MRO Mostly read only, including Data Read, RCW Read, RCW Write, MMU Read, MMU Write

uX Unprivileged Execute

pX Privileged Execute

puX Privileged Execute, Unprivileged Execute
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6660
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RBBLJH If stage 2 translation is disabled, then stage 2 permits all data accesses, instruction executions, and MMU accesses.

RZRSPR Stage 2 permissions are determined by one of the following:

• Stage 2 Direct permissions. For more information, see Stage 2 Direct permissions.

• Stage 2 Indirect permissions, which combine stage 2 Base permissions with, if enabled, stage 2 Overlay
permissions. For more information, see Stage 2 Indirect permissions.

RKXXWX If FEAT_S2PIE is not implemented, then stage 2 Direct permissions are used.

RJMGVS If stage 2 translation uses VMSAv9-128, then the Effective value of the stage 2 Permission Indirection Enable
(S2PIE) is 1. If the translation regime uses VMSAv8-64, then the stage 2 S2PIE value is determined by
VTCR_EL2.S2PIE.

IJGTWJ Stage 2 Direct permissions are not combined with stage 2 Overlay permissions described in Stage 2 Overlay
permissions. This is different from stage 1 Base permissions where stage 1 Direct permissions are combined with
stage 1 Overlay permissions.

D8.4.2.1 Stage 2 Direct permissions

IHHYYW Stage 2 Direct permissions are not supported by VMSAv9-128.

RTVZYF For stage 2 Direct permissions, then:

• Read permission implies MMU Read and RCW(S) Read permissions.

• Write permission implies MMU Write and RCW(S) Write permissions.

D8.4.2.1.1 Stage 2 data accesses using Direct permissions

RYLJXV For the EL1&0 translation regime, if stage 2 translation is enabled, then the S2AP descriptor field determines the
stage 2 data access permissions.

RHBFHL The following table shows encoding of the S2AP descriptor field:

IHXWLL The S2AP data access permissions do not distinguish between EL1 accesses and EL0 accesses.

RFQNDX If an attempt is made to access memory that is not permitted by the value of the S2AP field, then a stage 2 Permission
fault is generated.

INTJRL If hardware management of dirty state is enabled at stage 2, then the S2AP[1] bit can be set to 1 by hardware in
some situations.

For more information, see Hardware management of the dirty state.

D8.4.2.1.2 Stage 2 instruction execution using Direct permissions

IGNDQQ The instruction Execute-never field in a Block descriptor and Page descriptor is used to control instruction execution
permissions by a stage 2 translation.

Table D8-73 Data access permissions for a stage 2 translation

S2AP[1:0] Access permission from EL1&0

00 No data access

01 RO

10 WO

11 RW
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6661
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RPRCFD For a stage 2 translation, if FEAT_XNX is not implemented, then the XN field in the Block descriptor and Page
descriptor controls instruction execution permissions as shown in the following table:

RSTCTY For a stage 2 translation, if FEAT_XNX is implemented, then the XN[1:0] field in the Block descriptor and Page
descriptor controls instruction execution permissions as shown in the following table:

D8.4.2.2 Stage 2 Indirect permissions

RWCPLC All statements in this section require implementation of FEAT_S2PIE.

IWJDFF Stage 2 Indirect permissions determine the stage 2 permissions by combining all of the following:

• Stage 2 Base permissions. For more information, see Stage 2 Base permissions.

• Stage 2 Overlay permissions. For more information, see Stage 2 Overlay permissions.

D8.4.2.2.1 Stage 2 Base permissions

RWKZJP Stage 2 Base permissions are determined by all of the following:

• Stage 2 General permissions.

• Stage 2 Special permissions.

RWLVPJ The following table shows the stage 2 General permissions and the permitted accesses:

Table D8-74 Stage 2 instruction access permissions, FEAT_XNX not implemented

XN Access

0 The stage 2 control does not forbid execution at EL1 and EL0.

1 The stage 2 control does not permit execution at EL1 or EL0.

Table D8-75 Stage 2 instruction access permissions, FEAT_XNX implemented

XN[1] XN[0] Access

0 0 The stage 2 control does not forbid execution at EL1 and EL0.

0 1 The stage 2 control does not permit execution at EL1, but does not forbid execution at EL0.

1 0 The stage 2 control does not permit execution at EL1 or EL0.

1 1 The stage 2 control does not forbid execution at EL1, but does not permit execution at EL0.

Table D8-76 Accesses permitted by stage 2 General permissions

General permission Permitted access

NoAccess No Access

RO Data Read, RCW Read, and MMU Read

RW Data Read, Data Write, RCW Read, RCW Write, MMU Read, and MMU Write

uX Unprivileged Execute

pX Privileged Execute

puX Privileged Execute and Unprivileged Execute
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6662
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RWRFCR The following table shows the stage 2 Special permissions and the permitted accesses:

Note

The stage 2 MRO* permissions do not provide data write permission.

IBPBBQ The Mostly Read Only (MRO) permission prevents explicit write accesses from the EL1&0 translation regime to
EL1 translation tables while permitting hardware updates to the Access flag, dirty state, and the writes due to RCW
and RCWS instructions.

RBQJWZ If an IPA is marked as MRO in stage 2, then it has the following MRO access permissions:

• A write to that IPA from an RCW instruction at EL1 or EL0 is permitted by stage 2.

• A write to that IPA from a stage 1 translation table walk as part of an Access flag or dirty state update is
permitted by stage 2.

• Any other write to that IPA is not permitted by stage 2 and generates a stage 2 Permission fault.

IHHBFN All of the following TopLevel permissions determine the outcome of the TopLevel checks:

• For a VA translated by TTBR0_EL1, when TopLevel0 is 1, the IPA is permitted to be used by the first level
of the translation table walk.

• For a VA translated by TTBR1_EL1, when TopLevel1 is 1, the IPA is permitted to be used by the first level
of the translation table walk.

For more information, see Stage 2 TopLevel checks.

RCWZCV The following table shows how the stage 2 MRO TopLevel permissions are determined:

RJDVSM For stage 2 permissions not affected by VTCR_EL2.GCSH, all of the following apply:

• If data read is permitted, then GCS read is permitted.

• If data write is permitted, then GCS write is permitted.

See also Stage 2 TopLevel checks.

IWMGMR The stage 2 Base permissions, S2BasePerm, are determined by S2PIR_EL2.

Table D8-77 Accesses permitted by stage 2 Special permissions

Permission Permitted Access

WO Data Write

MRO Mostly read only, including Data Read, RCW Read,
RCW Write, MMU Read, MMU Write

MRO-TL0, MRO-TL1, MRO-TL01 Data Read, RCW Read, RCW Write, MMU Read,
MMU Write

Table D8-78 Stage 2 MRO TopLevel permissions

MRO TopLevel permission TopLevel attributes

MRO-TL0 {TopLevel0, TopLevel1} is {1, 0}

MRO-TL1 {TopLevel0, TopLevel1} is {0, 1}

MRO-TL01 {TopLevel0, TopLevel1} is {1, 1}

Otherwise {TopLevel0, TopLevel1} is {0, 0}
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6663
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RCYQGN The following shows how the 4-bit PIIndex field in stage 2 Block descriptors and Page descriptors is used to index
into S2PIR_EL2 to obtain S2BasePerm:

• S2BasePerm is S2PIR_EL2[(PIIndex*4 + 3): PIIndex*4]

IXLRNP For information on the S2BasePerm encodings, see Table D8-79.

RZCKWH S2PIR_EL2 is permitted to be cached in a TLB, and therefore so is S2BasePerm.

D8.4.2.2.2 Stage 2 Overlay permissions

RQNYFF If FEAT_S2POE is not implemented, then stage 2 Overlay permissions are disabled.

RMMYHQ If stage 2 Indirect permissions are disabled, then stage 2 Overlay permissions are disabled.

IXFWQD If FEAT_S2POE is implemented and stage 2 uses Indirect permissions, then VTCR_EL2.S2POE determines
whether stage 2 Overlay permissions are enabled.

ISXTQD The value of VTCR_EL2.S2POE is not permitted to be cached in a TLB. However, the effect of this field is
permitted to be cached in a TLB to a limited extent, as described later in this section.

IWWPGP The stage 2 Overlay permissions, S2OverlayPerm, are determined by S2POR_EL1.

RQPQFD The following shows how the 4-bit POIndex field in stage 2 Block descriptors and Page descriptors is used to index
into S2POR_EL1 to obtain S2OverlayPerm:

• S2OverlayPerm is S2POR_EL1[(POIndex*4 + 3): POIndex*4]

ILCWFG For information on the S2OverlayPerm encodings, see Table D8-79.

RDTTDG S2OverlayPerm is not permitted to be cached in a TLB.

RLJKKX If all of the following apply, then the effect of S2OverlayPerm is permitted to be cached in a TLB to a limited extent:

• Stage 1 and stage 2 translations are enabled.

• Stage 2 Overlay permissions are enabled.

• For the fetch of a stage 1 translation table entry, the stage 2 translation and S2OverlayPerm permit access to
that stage 1 translation table entry.

• That stage 1 translation table entry is permitted to be cached in a TLB.

• The limited extent is that a subsequent change to S2POR_EL1 is not required to affect the use of that stage 1
translation table entry unless it has been explicitly invalidated from the TLB. This applies to each stage 1
translation table entry of a multi-level translation table walk.

ISRYDP POIndex is permitted to be cached in a TLB.

IXHYZM When VTCR_EL2.{HWUnn, S2POE} transitions from {1, 0} to {0, 1} or to {1,1}, or vice-versa, without a change
of VMID or appropriate TLB maintenance, the resulting stage 2 PBHA attributes and stage 2 permissions are
CONSTRAINED UNPREDICTABLE, as described in CONSTRAINED UNPREDICTABLE behaviors due to caching of
control or data values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6664
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
D8.4.2.2.3 Stage 2 permission encodings

RCXFCS The following table shows the stage 2 Base permissions and Overlay permissions that are applied as determined by
the corresponding other S2BasePerm and S2OverlayPerm values:

D8.4.2.2.4 Combining stage 2 Base permissions and Overlay permissions

IYHPCG S2BasePerm and S2OverlayPerm are combined to produce the stage 2 permissions, S2Perm.

RHPVST If all of the following apply, then S2Perm gets the value of S2BasePerm:

• Stage 2 Indirect permissions are enabled.

• Stage 2 Overlay permissions are disabled.

RXLNQX If all of the following apply, then the stage 2 permission attributes, {TopLevel0, TopLevel1} are {0, 0}, and S2Perm
is determined by the bitwise-AND of the encodings of S2BasePerm and S2OverlayPerm:

• Stage 2 Indirect permissions are enabled.

• Stage 2 Overlay permissions are enabled.

• S2BasePerm are stage 2 General permissions.

• S2OverlayPerm are stage 2 General permissions.

RSPGVL If all of the following apply, then S2Perm is determined by S2BasePerm and the corresponding S2OverlayPerm, as
shown in Table D8-80:

• Stage 2 Indirect permissions are enabled.

Table D8-79 Determination of stage 2 Base permissions and Overlay permissions

S2BasePerm / S2OverlayPerm Stage 2 permissions

0b0000 NoAccess

0b0001 Reserved, treated as NoAccess

0b0010 MRO

0b0011 MRO-TL1

0b0100 WO

0b0101 Reserved, treated as NoAccess

0b0110 MRO-TL0

0b0111 MRO-TL01

0b1000 RO

0b1001 RO and uX

0b1010 RO and pX

0b1011 RO and puX

0b1100 RW

0b1101 RW and uX

0b1110 RW and pX

0b1111 RW and puX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6665
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
• Stage 2 Overlay permissions are enabled.

• S2BasePerm are stage 2 Special permissions.

• S2OverlayPerm are stage 2 Special permissions.

RGZNFT If all of the following apply, then S2Perm is determined by S2BasePerm and the corresponding S2OverlayPerm, as
shown in Table D8-81:

• Stage 2 Indirect permissions are enabled.

• Stage 2 Overlay permissions are enabled.

• Only one of S2BasePerm or S2OverlayPerm are stage 2 General permissions.

• The corresponding other S2BasePerm or S2OverlayPerm are stage 2 Special permissions.

RSYLGW If S2BasePerm does not permit Privileged Execute and does not permit Unprivileged Execute, then stage 2 Indirect
permissions are execute-never.

RZBXQM For stage 2 Realm EL1&0 translations, if the stage 2 OA is not in the Realm PA space, then the Effective value of
S2BasePerm removes MMU read, MMU write, and execute permissions.

Table D8-80 Determination of stage 2 permissions from Special permissions

S2BasePerm / S2OverlayPerm S2OverlayPerm / S2BasePerm S2Perm

WO WO WO

WO MRO, MRO-TL0, MRO-TL1, or
MRO-TL01

NoAccess

MRO MRO MRO

MRO-TL0 MRO or MRO-TL0 MRO-TL0

MRO-TL1 MRO or MRO-TL1 MRO-TL1

MRO-TL0 MRO-TL1 MRO-TL01

MRO-TL01 MRO, MRO-TL0, MRO-TL1, or
MRO-TL01

MRO-TL01

Table D8-81 Determination of stage 2 permissions from General and Special permissions

S2BasePerm / S2OverlayPerm S2OverlayPerm / S2BasePerm S2Perm

MRO, MRO-TL0, MRO-TL1, and MRO-TL01 NoAccess NoAccess

WO NoAccess NoAccess

MRO, MRO-TL0, MRO-TL1, and MRO-TL01 RO, optionally with any of uX, pX, puX RO

MRO RW, optionally with any of uX, pX, puX MRO

MRO-TL0 RW, optionally with any of uX, pX, puX MRO-TL0

MRO-TL1 RW, optionally with any of uX, pX, puX MRO-TL1

MRO-TL01 RW, optionally with any of uX, pX, puX MRO-TL01

WO RO, optionally with any of uX, pX, puX NoAccess

WO RW, optionally with any of uX, pX, puX WO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6666
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IPRXVM For any stage 2 translation, if all of the following apply, then the Effective value of S2BasePerm removes MMU
read and MMU write permissions:

• The combined memory attributes result in the Device memory type.

• HCR_EL2.PTW is 1, enabling Protected Table Walk.

IPDJWZ For the cases described in RZBXQM and IPRXVM, the Effective value of S2BasePerm can be determined by removing
these permissions from the Stage 2 Base permissions and caching the result in a TLB, and combining the result with
the Stage 2 Overlay permissions, if enabled.

RRRNDT If all of the following are true, then a stage 2 Permission fault due to Overlay is generated:

• Stage 2 Overlay permissions are enabled and an access is not permitted by S2OverlayPerm,

• The access does not generate a Permission fault due to the Stage 2 TopLevel checks,

IDLDFD For more information on the priority of a stage 2 Permission fault due to Overlay with respect to other Permission
faults, see Prioritization of Permission faults.

D8.4.3 Effect of both stage 1 and stage 2 on data access permissions

IQGWYR The combination of both the stage 1 and stage 2 permissions determine the final data access permissions.

RKKXMY If both stage 1 and stage 2 translations are enabled, then in the absence of other higher-priority MMU faults, the
data access permissions are combined in one of the following ways:

1. If data access to memory is not permitted by the stage 1 permissions, then a stage 1 Permission fault is
generated, regardless of the stage 2 permissions.

2. If data access to memory is permitted by the stage 1 permissions, but is not permitted by the stage 2
permissions, then a stage 2 Permission fault is generated.

3. If data access to memory is permitted by both the stage 1 permissions and the stage 2 permissions, then a
Permission fault is not generated.

For more information, see MMU fault prioritization from a single address translation stage.

IJYHLR If EL2 is enabled, then all of the following apply to the EL1&0 translation regime:

• For stage 1 translations, all of the following apply:

— The stage 1 translation is configured and controlled from EL1.

— Stage 1 MMU faults are taken to EL1.

• For enabled stage 2 translations, all of the following apply:

— The stage 2 translation is configured and controlled from EL2.

— The stage 2 data access permissions do not differentiate between accesses at EL1 or EL0.

— Software executing at EL2 can assign a write-only permission to a memory region.

— Stage 2 MMU faults are taken to EL2.

IBLVHL Stage 1 Permission faults are reported with a higher priority than stage 2 Permission faults.

IFNZDL For a virtualization implementation, a hypervisor can define the stage 2 translation permissions to be more
restrictive than the stage 1 translation permissions defined by a Guest OS. The final access permissions are the more
restrictive of the permissions defined by:

• The Guest OS, in the stage 1 translation tables.

• The hypervisor, in the stage 2 translation tables.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6667
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
ISZJGX The effects of combining access permissions defined by the hypervisor are expected to be functionally transparent
to the Guest OS.

ISMZSR For more information, see MMU fault prioritization from a single address translation stage.

D8.4.4 Effects on instruction execution permissions and restrictions on instruction fetch

ICSNFS The descriptors contain fields used to control instruction execution permissions in stage 1 and stage 2 translations.

RSKGLB If instruction execution is not permitted by one of the following, then the memory region is execute-never:

• Stage 1 Direct permissions are in use, and XN is 1, or both UXN and PXN are 1.

• Stage 1 Indirect permissions are in use and mark the region as execute-never.

• Stage 2 Direct permissions are in use, and XN is 1, or both UXN and PXN are 1.

• Stage 2 Indirect permissions are in use and the Base permissions mark the region as execute-never.

See also RRSXJG and RSYLGW.

RBFDZQ If a memory region is execute-never at the current Exception level, then speculative instruction fetch from that
memory region is prohibited.

RDYKWD If a memory region is execute-never at the current Exception level, then when an attempt to execute from that
memory region occurs, a Permission fault is generated at the first translation stage that determines the region is
execute-never.

IPTMPK If Device memory is not execute-never, then speculative instruction fetch from that memory region is permitted.

IZZSZZ For all Exception levels from which a read-sensitive memory region can be accessed, to avoid the possibility of a
speculative fetch affecting that memory region, software is expected to define that memory region as execute-never.

RWRCYB Except for the purposes of PSTATE.PAN, the descriptor execute-never fields do not prevent data accesses to the
memory region translated by the descriptor.

D8.4.4.1 Effect of both stage 1 and stage 2 on instruction access permissions

IMLMFS Both the stage 1 and stage 2 permissions determine the final instruction access permissions.

INYXWS If both stage 1 and stage 2 translations are enabled, then in the absence of other higher-priority MMU faults, the
instruction execution permissions are combined in one of the following ways:

1. If instruction execution is not permitted by the stage 1 permissions, then a stage 1 Permission fault is
generated, regardless of the stage 2 permissions.

2. If instruction execution is permitted by the stage 1 permissions, but is not permitted by the stage 2
permissions, then a stage 2 Permission fault is generated.

3. If instruction execution is permitted by both the stage 1 permissions and the stage 2 permissions, then a
Permission fault is not generated.

For more information, see MMU fault prioritization from a single address translation stage.

D8.4.4.2 Restriction on Secure instruction fetch

ISBXWZ The SCR_EL3.SIF bit can be used to prevent instruction execution from Non-secure memory at stage 1 when the
PE is executing in Secure state.

RFNVTF If all of the following apply, then an attempt to execute an instruction fetched from memory defined by the stage 1
translation as Non-secure generates a Permission fault:

• The Effective value of SCR_EL3.SIF is 1.

• Execution is in Secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6668
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RWWBFB If FEAT_RME is implemented, then the SCR_EL3.SIF bit has no effect on execution in EL3.

RZWRVD During execution at EL3, if FEAT_RME is implemented, then any attempt to execute an instruction fetched from
physical memory other than the Root physical address space causes a Permission fault.

ILNCZM SCR_EL3.SIF does not prevent speculative instruction fetch. If Secure software wants to prevent speculative
instruction fetch from a memory region, including Non-secure mappings of that region, then that software needs to
define the region as Device, XN.

ISQGVJ SCR_EL3.SIF is permitted to be cached in a TLB.

IKYSPD TLB entries might reflect the value of SCR_EL3.SIF, therefore any change to the value of that bit requires
synchronization and TLB invalidation.

RJDPXL For an implementation that does not implement EL3, the Effective value of SCR_EL3.SIF is 0.

D8.4.4.3 Restriction on Realm instruction fetch

RPKTDS If execution is using the Realm EL2 or Realm EL2&0 translation regime, then an attempt to execute an instruction
fetched from physical memory other than the Realm PA space generates a stage 1 Permission fault.

RHGXXY For the purpose of PAN, if FEAT_PAN3 is implemented, then it is IMPLEMENTATION DEFINED whether a stage 1
translation in the Realm EL2&0 translation regime that resolves to a Non-secure address is treated as Unprivileged
execute-never.

RYMCSL If execution is using the Realm EL1&0 translation regime, then any attempt to execute an instruction fetched from
physical memory other than the Realm PA space generates a stage 2 Permission fault.

IMQQXW If stage 2 translation is disabled in the Realm EL1&0 translation regime, then all OAs are in the Realm PA space
and Permission faults due to RYMCSL can never occur.

D8.4.5 Effect of PSTATE on access permission

ILGNSH PSTATE.PAN affects memory access permissions decoded from memory access control fields in the descriptors.
PSTATE.UAO affects the privilege level of a memory access. The PSTATE.BTYPE field is part of the
determination of whether a branch access to a guarded memory region generates a Branch Target exception.

For more information on PSTATE, see Process state, PSTATE.

D8.4.5.1 PSTATE.PAN

IKTCFZ PSTATE.PAN is used to prevent privileged data accesses to virtual memory addresses that are accessible from EL0.

RNCMTC All statements in this section require implementation of FEAT_PAN.

RTBYDZ For a translation regime, if one or more of the following apply, then the PSTATE.PAN bit has no effect in that
regime:

• Stage 1 translation is disabled.

• Stage 1 translation supports a single privilege level.

RXTSQH If the Effective value of PSTATE.PAN is 1, then a privileged data access from any of the following Exception levels
to a virtual memory address that is accessible to data accesses at EL0 generates a stage 1 Permission fault:

• A privileged data access from EL1.

• If HCR_EL2.E2H is 1, then a privileged data access from EL2.

RDGQQK If the value of PSTATE.PAN is 0, then a privileged data access is permitted from the corresponding privileged
Exception level to a virtual memory address that is accessible at EL0.

IZBRBM When taking an exception from an EL in AArch64 state to an ELx, PSTATE.PAN is saved to and restored from
SPSR_ELx.PAN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6669
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
IPWXVY When taking an exception from an EL in AArch32 state to an ELx in AArch64 state, CPSR.PAN is saved to and
restored from SPSR_ELx.PAN.

IFNLWP When entering and exiting Debug state, PSTATE.PAN is saved to and restored from DSPSR_EL0.PAN.

IRTHGD When an exception occurs, one of the following determines whether PSTATE.PAN is set to 1 or the value of
PSTATE.PAN is unchanged:

• When taking an exception to EL1, SCTLR_EL1.SPAN.

• When taking an exception to EL2, SCTLR_EL2.SPAN.

RZGCNT If FEAT_PAN3 is implemented, PSTATE.PAN is 1, and unprivileged instruction execution is permitted to a VA,
then all of the following prevent privileged data accesses to that VA:

• For a data access from EL1, when SCTLR_EL1.EPAN is 1, a Permission fault is generated.

• For a data access from EL2, when HCR_EL2.E2H is 1 and SCTLR_EL2.EPAN is 1, a Permission fault is
generated.

RWHHYZ For the purpose of PAN, if FEAT_PAN3 is implemented, then it is IMPLEMENTATION DEFINED whether
SCR_EL3.SIF is used to determine instruction execution permission.

IHKGQP If FEAT_PAN3 is implemented, then the SCTLR_EL1.EPAN and SCTLR_EL2.EPAN bits affect the AT S1E1RP
and AT S1E1WP instructions, consistent with those instructions using PSTATE.PAN to determine whether the
memory access generates a Permission fault.

RPMTWB The PSTATE.PAN bit has no effect on all of the following:

• Instruction fetches.

• Data cache instructions, except DC ZVA, DC GZVA, and DC GVA.

• If FEAT_PAN2 is not implemented, then address translation instructions.

• If FEAT_PAN2 is implemented, then the address translation instructions other than AT S1E1RP and AT
S1E1WP.

IYMLJD If the current Exception level is EL1 and HCR_EL2.{NV, NV1} is {1, 1}, then PSTATE.PAN is treated as 0 for all
purposes except reading the bit value.

IZRSWJ Software can access PSTATE.PAN using all of the following instructions:

• Software can use MSR (immediate) PAN, #Imm4 to modify PSTATE.PAN.

• Software can use MSR (register) PAN, Xt to modify PSTATE.PAN.

• Software can use MRS Xt, PAN to read PSTATE.PAN.

IGYGGV If the PE is in Debug state, then a debugger can use the DRPS instruction to modify PSTATE.PAN.

D8.4.5.2 PSTATE.UAO

IWZGDY PSTATE.UAO is used to cause unprivileged load/store register instructions to behave as if they are load/store
register instructions.

RNMGWS All statements in this section require implementation of FEAT_UAO.

RQKWDX If the value of PSTATE.UAO is 1, then a load/store unprivileged instruction executed at any of the following
Exception levels is subject to the same access permissions as the corresponding load/store register instruction:

• EL1.

• If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, EL2.

RXTKCD If the value of PSTATE.UAO is 0, then load/store unprivileged instructions are not affected.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6670
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
ICVRWF When an exception occurs, all of the following apply to PSTATE.UAO:

• When taking an exception to ELx, PSTATE.UAO is saved to SPSR_ELx.UAO and then set to 0.

• When returning from an exception at ELx, PSTATE.UAO is restored from SPSR_ELx.UAO.

IPHDNT If the PE is in AArch32 state, then when an exception occurs and the exception is taken to AArch64 state, all of the
following occur:

• PSTATE.UAO is set to 0.

• The corresponding SPSR_ELx.UA0 is set to 0.

IQWJDP When entering and exiting Debug state, PSTATE.UAO is saved to and restored from DSPSR_EL0.UAO.

IJQRCG Software can access PSTATE.UAO using all of the following instructions:

• Software can use MSR (immediate) UAO, #Imm4 to modify PSTATE.UAO.

• Software can use MSR (register) UAO, Xt to modify PSTATE.UAO.

• Software can use MRS Xt, UAO to read PSTATE.UAO.

IVCMLT If the PE is in Debug state, a debugger can use the DRPS instruction to modify PSTATE.UAO.

D8.4.5.3 PSTATE.BTYPE

IYYZDP PSTATE.BTYPE is part of a mechanism used to guard memory pages against executing instructions that are not the
intended target of a branch.

RJJMBN All statements in this section require implementation of FEAT_BTI.

RYWFHD When an instruction completes execution, the value of the PSTATE.BTYPE field is determined by all of the
following, as shown in the following table:

• The instruction that was executed.

• Whether or not the memory region is guarded.

• The register accessed by the instruction.

Table D8-82 Values taken by PSTATE.BTYPE on execution of an instruction

Instruction executed
Memory
region

Register
accessed

PSTATE.BTYPE

BR, BRAA, BRAAZ, BRAB, BRABZ Guarded Any register except
X16 or X17

0b11

BLR, BLRAA, BLRAAZ, BLRAB, BLRABZ Any Any register 0b10

BR, BRAA, BRAAZ, BRAB, BRABZ Guarded X16 or X17 0b01

BR, BRAA, BRAAZ, BRAB, BRABZ Non-guarded Any register 0b01

Any instruction except BR, BRAA, BRAAZ, BRAB, BRABZ, BLR,
BLRAA, BLRAAZ, BLRAB, BLRABZ

Any Any register 0b00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6671
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
ICNBPL When the BTI instruction is executed, the <targets> operand determines the compatibility between the BTI
instruction and different PSTATE.BTYPE values as shown in the following table:

IJRBGR If stage 1 translation is enabled, the GP bit in Block and Page descriptors indicates whether the memory region is
guarded. For more information, see FEAT_BTI.

If stage 1 translation is disabled, no memory regions are guarded. For more information, see Behavior when stage
1 address translation is disabled.

RLJHCL If the PSTATE.BTYPE field is not 0b00 and an attempt is made to execute an instruction within a guarded page, a
Branch Target exception is generated unless the instruction is one of the following:

• A BTI instruction that is compatible with the PSTATE.BTYPE field.

• A PACIASP or PACIBSP instruction, and the PSTATE.BTYPE is consistent with implicit BTI behavior of these
instructions.

• A Breakpoint Instruction exception.

• A Halt Instruction debug event.

RVWTMW When a Branch Target exception occurs, it is taken to one of the following:

• When executing at EL0 and HCR_EL2.TGE is 0, the Branch Target exception is taken to EL1.

• When executing at EL0 and HCR_EL2.TGE is 1, the Branch Target exception is taken to EL2.

• When executing at ELx, where x is 1, 2, or 3, the Branch Target exception is taken to ELx.

IVWNCG When a Branch Target exception occurs, ESR_ELx.EC is 0x0D.

For more information, see ISS encoding for an exception from Branch Target Identification instruction.

IGMGRS The PACIASP and PACIBSP instructions have an implicit BTI behavior that is compatible with any of the following:

• The PSTATE.BTYPE value is 0b10 or 0b01.

• The PSTATE.BTYPE value is 0b11, and one of the following:

— The PE is executing at EL0, the value of HCR_EL2.{E2H, TGE} is not {1, 1}, and SCTLR_EL1.BT0
is 0.

— The PE is executing at EL0, the value of HCR_EL2.{E2H, TGE} is {1, 1}, and SCTLR_EL2.BT0 is 0.

— The PE is executing at EL1, and SCTLR_EL1.BT1 is 0.

— The PE is executing at EL2, the value of HCR_EL2.{E2H, TGE} is not {1, 1}, and SCTLR_EL2.BT
is 0.

— The PE is executing at EL2, the value of HCR_EL2.{E2H, TGE} is {1, 1}, and SCTLR_EL2.BT1 is 0.

— The PE is executing at EL3, and SCTLR_EL3.BT is 0.

Table D8-83 Compatibility of BTI instruction to different PSTATE.BTYPE values

<targets>
PSTATE.BTYPE value

0b00 0b01 0b10 0b11

(omitted) N/A Not compatible Not compatible Not compatible

c N/A Compatible Compatible Not compatible

j N/A Compatible Not compatible Compatible

jc N/A Compatible Compatible Compatible
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6672
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RDFHDM The implicit branch target identification property of PACIASP and PACIBSP is independent of the setting of the
SCTLR_ELx.{EnIA, EnIB} bits.

ICKJFH In a non-guarded page, the BTI instruction executes as a NOP.

IWCDBN The effect of a NOP on PSTATE.BTYPE is described in RYWFHD.

ICPYQW There is no mechanism for direct reads or direct writes of the PSTATE.BTYPE field.

D8.4.6 Controlling memory access Security state

IRLRVY The Non-secure, NS, bit in Block descriptors and Page descriptors, and the Non-secure table, NSTable, bit in Table
descriptors are used to provide control over accesses from Secure state to Secure and Non-secure memory.

RPRTVS In this section and subsections, IPA or PA space refers to the OA space of stage 1 translations.

RKZLVM For a Secure translation regime, if the translation table entry is in Secure IPA or PA space, then the Block descriptor
and Page descriptor NS determines all of the following:

• If NS is 0, an access to the OA specified by the descriptor is to Secure IPA or PA space.

• If NS is 1, an access to the OA specified by the descriptor is to Non-secure IPA or PA space.

RLXLSC For all of the following, if a Block or Page descriptor has NS set to 1, then the OA is in the Non-secure PA space.
Otherwise, the OA is in the Realm PA space:

• Stage 1 translation in the Realm EL2 translation regime.

• Stage 1 translation in the Realm EL2&0 translation regime.

• Stage 2 translation in the Realm EL1&0 translation regime.

RQMLYQ If the stage 2 translation for a Realm stage 1 translation table walk resolves to an address not in the Realm PA space,
it causes a stage 2 Permission fault.

RVZYQL For a Non-secure translation regime, the NS and NSTable bits are RES0 and the OA or next-level table base address
is in Non-secure IPA or PA space.

RFKJXR For a Secure translation regime, when the descriptor is fetched from Non-secure IPA or PA space, all of the
following apply to the descriptor:

• The descriptor NS and NSTable bits exist but they are SBZ instead of RES0.

• The OA or next-level table base address specified by the descriptor is in Non-secure IPA or PA space.

RQSJJS For the EL3 stage 1 translation regime, if FEAT_RME is not implemented, then the NS field in a Block descriptor
or Page descriptor determines the output PA space as shown in the following table:

Table D8-84 Output PA space

NS Output PA space

0 Secure.

1 Non-secure.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6673
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.4 Memory access control
RXTYPW For the EL3 stage 1 translation regime, if FEAT_RME is implemented, then the NSE and NS fields in a Block
descriptor or Page descriptor determine the output PA space as shown in the following table:

D8.4.6.1 Hierarchical control of Secure or Non-secure memory accesses

RWGTQD For a Secure translation regime, when a Table descriptor is accessed from a stage 1 translation table in Secure IPA
or PA space, the NSTable field determines all of the following:

• If NSTable is 0, the next-level translation table address in the Table descriptor is in Secure IPA or PA space.

• If NSTable is 1, the next-level translation table address in the Table descriptor is in Non-secure IPA or PA
space.

RYPMZG If the next-level translation table address in the Table descriptor is in Non-secure IPA or PA space, then the address
specified by a descriptor in the next lookup-level translation table is in Non-secure IPA or PA space.

IXGNKR If stage 2 translation is enabled, the VSTCR_EL2.SA, VTCR_EL2.NSA, VSTCR_EL2.SW, and VTCR_EL2.NSW
fields can map an IPA space to a PA space not matching the Security of the IPA space.

RKRBNK If all of the following apply, then a stage 1 translation is treated as non-global, meaning the Effective value of nG
is 1, regardless of the actual value of the Block descriptor or Page descriptor nG bit:

• The stage 1 translation supports two privilege levels.

• The PE is in Secure state.

• NSTable is 1 at any level of the translation table walk.

For more information, see Global and process-specific translation table entries.

ITKPLZ The descriptor NSTable field affects all subsequent lookup levels and the translation IPA or PA space. When an
NSTable field is changed, software is required to use a break-before-make sequence, including TLB maintenance
for all lookup levels for the VA range translated by the descriptor.

For more information, see TLB maintenance and Using break-before-make when updating translation table entries.

Table D8-85 Output PA space

NSE NS Output PA space

0 0 If FEAT_SEL2 is implemented, then Secure.
Otherwise, Non-secure.

0 1 Non-secure.

1 0 Root.

1 1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6674
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
D8.5 Hardware updates to the translation tables

IFNBGK All of the following determine whether hardware can update the descriptor access flag and dirty state:

• The features implemented and enabled by the PE.

• The descriptor type.

• The translation regime.

• The translation stage.

ICGGMJ Hardware updates to the translation tables are subject to memory ordering requirements and restrictions on the
memory types.

D8.5.1 The Access flag

RXFXTY The AF in a Block descriptor and Page descriptor indicates one of the following:

• If the value is 0, then the memory region has not been accessed since the value of AF was last set to 0.

• If the value is 1, then the memory region has been accessed since the value of AF was last set to 0.

RDWZCQ Descriptors with AF set to zero can never be cached in a TLB.

For more information about when translation table entries are permitted to be cached in a TLB, see Translation
Lookaside Buffers.

D8.5.1.1 Software management of the Access flag

ICDQDG If the AF is not managed by hardware, software management of the AF is required.

RSWTYY For an implementation that does not manage the AF in hardware, when an attempt is made to translate an address
using a descriptor with an AF of 0, an Access flag fault is generated.

IFDYZF For an implementation that does not manage the AF in hardware, when an Access flag fault is generated, software
is expected to set the AF to 1 in the descriptor that generated the fault.

IKQMYT Setting the AF to 1 prevents the Access flag fault from being generated the next time an attempt is made to translate
an address using that descriptor.

IHQBRF When software sets the AF to 1, there is no requirement to perform TLB invalidation after setting the flag because
entries with an AF set to 0 are never held in a TLB.

IBMRWH If a system incorporates components that can autonomously update translation table entries that are shared with the
PE, then any changes by system software to translation table entries with an AF of 0 should avoid the possibility of
simultaneous updates. This excludes changes to the AF value. For example, this can be done by using a
Load-Exclusive/Store-Exclusive loop or an atomic compare-and-swap operation.

D8.5.1.2 Hardware management of the Access flag

RWMGCW All statements in this section require implementation of the OPTIONAL feature, FEAT_HAFDBS.

RLFTXR When the PE performs a hardware update of the AF, it sets the AF to 1 in the corresponding descriptor in memory,
in a coherent manner, using an atomic read-modify-write of that descriptor.

RHDHQG For a translation stage, if the value of the corresponding TCR_ELx.HA is 1, then AF hardware management is
enabled.

IBDRJG For each translation stage, AF hardware management can be enabled independently.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6675
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
RHDTRB If AF hardware management is enabled, then hardware updates the AF when a memory access is made using a Block
descriptor or Page descriptor and all of the following apply:

• The access does not generate an Alignment fault based on the memory type, or a Permission fault.

• If AF hardware management was disabled or not implemented, the access would have generated an Access
flag fault.

RQSPMS If AF hardware management is enabled, then it is CONSTRAINED UNPREDICTABLE whether hardware updates the AF
when a memory access is made using a Block descriptor or Page descriptor and all of the following apply:

• The access generates an Alignment fault based on the memory type, a Permission fault, or any fault that has
a lower priority than a Permission fault from that stage of translation.

• If AF hardware management were disabled or not implemented, the access would have generated an Access
flag fault.

IRGQLZ If hardware does not update the AF from 0 to 1, then the descriptor is not permitted to be cached in a TLB.

RVNHWC If AF hardware management is enabled in one or both translation stages, then when a memory access occurs, one
or more of the following can be updated:

• The stage 1 AF.

• Each of the stage 2 AFs used to translate accesses to the stage 1 translation table walk and the OA.

ICVNQR For stage 1 translations, if AF hardware management is enabled, then when stage 2 translation does not permit
access to the OA returned by the stage 1 translation, it is permitted, but not required, for the stage 1 AF to be updated.

IMYQJN For stage 2 translations, if AF hardware management is enabled, then when stage 1 translation does not permit
access, it is permitted, but not required, for the stage 2 AF to be updated.

RLHQRX If AF hardware management is enabled and a speculative access is successfully translated, then it is permitted, but
not required, for hardware to update the AF.

RGGYFS When a speculative access occurs, the rules determining the AF hardware update apply.

IGXGPN When the translation of an architecturally executed memory access occurs, the architecture requires that AF is set
to 1.

ILLCCB When a translation occurs, the AF is permitted to be set to 1 even in the case where no architecturally executed
memory access occurs. This could be due to a speculative memory access.

IPJWQY When hardware updates of the Access Flag are enabled, it is permitted to update the Access Flag speculatively. This
is not affected by the granule protection check on the output address of the translation.

RXQSMX For an address translation stage, if AF hardware management is enabled, then when an address translation
instruction is executed, all of the following apply:

• Hardware is permitted, but not required, to update the AF.

• If hardware attempts to update the AF and the update generates a fault, it is IMPLEMENTATION DEFINED
whether this is reported as a Data Abort or not.

• If a Data Abort does not occur, then the instruction reports a result in the PAR as if the descriptors used to
translate the address have an AF value of 1.

IZWQRX For more information, see Using break-before-make when updating translation table entries.

D8.5.1.3 Hardware management of the Table descriptor Access Flag

RLWKQH All statements in this section require implementation of FEAT_HAFT.

RPJFRD All statements in this section apply when the translation stage uses VMSAv8-64 or VMSAv9-128. They do not
apply when the translation stage uses VMSAv8-32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6676
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
IHZHJT Software management of the Table descriptor AF is not supported, and no Access Flag fault is generated from Table
descriptors.

RFWSJH For a translation stage, the Hardware managed Access Flag for Tables (HAFT) value is determined according to the
following table:

RSNVTX For a translation stage, if the value of TCR_ELx.HA is 0, then the Effective value of the corresponding HAFT is 0.

RHTTKB The Effective value of HAFT is permitted to be cached in a TLB.

RYCTVZ The HAFT value determines whether the Table descriptor AF is managed by hardware, as shown in the following
table:

IPDQYR Table descriptor AF hardware management can be enabled for each translation stage independently.

RBCWSB When the PE performs a hardware update of the Table descriptor AF, it sets the AF to 1 in the corresponding
descriptor in memory, in a coherent manner, using an atomic read-modify-write of that descriptor.

RZGNSH If Table descriptor AF hardware management is enabled at a translation stage, then a speculative memory access is
permitted to cause a hardware update to set the AF to 1 in any Table descriptor that is accessed during the translation
table walk for the access and for which the AF is 0.

RMDMYP When a speculative access occurs, the rules determining the Table descriptor AF hardware update apply.

RCGKWB For an architecturally executed memory access translated by a translation stage with Table descriptor AF hardware
management enabled, the PE is required to set the AF to 1 in all Table descriptors accessed during the translation
table walk for that access that have the AF set to 0.

RXYNNS For a translation stage with Table descriptor AF hardware management enabled, if the AF is updated in a Table
descriptor, Block descriptor, or Page descriptor, then all Table descriptors that are accessed from memory leading
up to that descriptor in the translation table walk are required to either already have AF set to 1 or update AF to 1.

IQYLZN For information on the memory ordering requirements and restrictions on the memory types when hardware updates
the Table descriptor AF, see Hardware updates to the translation tables.

IVPNMG Updates to the stage 1 Table descriptors are subject to stage 2 permission checks.

RJFCYB For a translation stage with Table descriptor AF hardware management enabled, a Table descriptor with AF set to
0 is not permitted to be cached in a TLB.

Table D8-86 Determination of HAFT value

Translation stage Translation regime HAFT value

Stage 1 EL1&0 TCR2_EL1.HAFT

EL2&0 TCR2_EL2.HAFT

EL2 TCR2_EL2.HAFT

EL3 TCR_EL3.HAFT

Stage 2 EL1&0 VTCR_EL2.HAFT

Table D8-87 Meaning of HAFT value

HAFT value Meaning

0 There is no AF in Table descriptors.

1 Hardware management of the Table descriptor AF is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6677
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
D8.5.2 The dirty state

IHTJWZ The dirty state is used to indicate a memory block or page has been modified. When hardware update of the dirty
state is enabled, the descriptor DBM field indicates whether the descriptor is a candidate for hardware updates of
the dirty state.

RLRMSH For the purpose of FEAT_HAFDBSdirty state management, a Block descriptor or Page descriptor can be described
as having one of the following states:

• Non-writable.

• Writable-clean.

• Writable-dirty.

RXSTDV If a Block descriptor or Page descriptor is not writable-clean and not writable-dirty, then it is described as
non-writable.

RCLBGT For a translation stage using Indirect permissions, software or hardware is permitted to manage the dirty state.

RDQQCV For a translation stage using Direct permissions, only hardware is permitted to manage the dirty state.

RVRNVZ For more information on managing the dirty state in hardware, see Hardware management of the dirty state.

ICPTSY For a stage 1 translation using Indirect permissions at ELx, if the Effective value of TCR_ELx.HD is 0, then dirty
state is managed by software.

IZCPYX For stage 2 translations using Indirect permissions, if the Effective value of VTCR_EL2.HD is 0, then dirty state is
managed by software.

RQXCRT For stage 1 translations using Indirect permissions that grant write permission, the following table shows the
descriptor state based on the Block descriptor and Page descriptor nDirty field:

Note
The polarity of the nDirty field matches the polarity of the AP[2] field used by Direct permissions.

RXXBLY For stage 2 translations using Indirect permissions that grant write permission, the following table shows the
descriptor state based on the Block descriptor and Page descriptor Dirty field:

RPPGMC For write accesses translated by a writable-clean descriptor, if the descriptor dirty state is managed by software, then
a Permission fault due to dirty state is generated. For information on the priority of a Permission fault due to dirty
state, see Prioritization of Permission faults.

D8.5.2.1 Hardware management of the dirty state

RQRTKG All statements in this section require implementation of the OPTIONAL feature, FEAT_HAFDBS, which supports
both hardware update of the Access flag and hardware update of the dirty state.

nDirty field Descriptor state

0 Writable-dirty

1 Writable-clean

Dirty field Descriptor state

0 Writable-clean

1 Writable-dirty
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6678
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
IFLYZP For stage 1 translations, if all of the following apply, then dirty state hardware management is enabled:

• The value of the corresponding TCR_ELx.HD is 1.

• The value of the corresponding TCR_ELx.HA is 1.

IMHJZP For stage 2 translations, if all of the following apply, then dirty state hardware management is enabled:

• The value of VTCR_EL2.HD is 1.

• The value of VTCR_EL2.HA is 1.

IDLNSK If a translation stage uses Direct permissions and hardware update of the dirty state is enabled, then the descriptor
DBM field indicates whether the descriptor is a candidate for hardware updates of the dirty state.

RPZFQC For translations using Direct permissions, if the DBM field in a Block descriptor or Page descriptor is 0, then all of
the following apply:

• For write accesses translated by the descriptor, the generation of Permission faults are unaffected by
FEAT_HAFDBS.

• Hardware does not update the dirty state.

RXZFQH For each translation stage using Direct permissions, if all of the following apply, then a Block descriptor or Page
descriptor is described as writable-clean:

• Dirty state hardware update is enabled at that translation stage.

• The descriptor DBM field is 1.

• For a descriptor used by stage 1 translation, the AP[2] field is 1 and this is the only reason that a Permission
fault would be generated due to a write access if dirty state hardware management were disabled.

• For a descriptor used by stage 2 translation, the S2AP[1] field is 0 and this is the only reason that a Permission
fault would be generated due to a write access if dirty state hardware management were disabled.

RBRFGY For each translation stage using Direct permissions, if all of the following apply, then a Block descriptor or Page
descriptor is described as writable-dirty:

• Dirty state hardware update is enabled at that translation stage.

• The descriptor DBM field is 1.

• For a stage 1 translation, the AP[2] field is 0.

• For a stage 2 translation, the S2AP[1] field is 1.

IHFBCN If a translation stage uses Indirect permissions, then dirty state hardware management is not separately determined
by each Block descriptor and Page descriptor. This is different from the case where a translation stage uses Direct
permissions, and the DBM field indicates whether the descriptor is a candidate for dirty state hardware updates.

IBFDYL Only if a descriptor is writable-clean, then hardware can update the dirty state.

RTYCNM For write accesses translated by a writable-clean descriptor, if the descriptor dirty state is managed by hardware,
then a Permission fault due to dirty state is not generated.

RNSXRD For write accesses translated by a writable-clean descriptor, if all of the following apply, then hardware updates that
descriptor to writable-dirty:

• The descriptor dirty state is managed by hardware.

• The only reason that a Permission fault would be generated due to that write access would be if dirty state
hardware management were disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6679
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
RPQJJR For a translation stage, when the dirty state is updated by hardware, the PE updates the corresponding descriptor in
memory, in a coherent manner, using an atomic read-modify-write of that descriptor to change the descriptor from
writable-clean to writable-dirty.

RPRHKD If the requirements to update both the Access flag and dirty state by hardware are met, the PE is permitted to update
the Access flag to 1 as part of the same atomic read-modify-write of the descriptor that performs the dirty state
update.

IDSHLJ For a translation stage, Access flag faults are reported with higher priority than Permission faults. Therefore, it is
not permitted for hardware to update the dirty state so that a descriptor is writable-dirty but has the Access flag clear.

RSGJBL When the dirty state is updated by hardware, the PE is required to check that any copy of the descriptor cached in a
TLB is not stale with regard to the descriptor in memory.

IYZSVV If the descriptor has changed, then the PE is required to use the new information from the descriptor in memory,
regardless of whether the modified descriptor has a different OA, different attributes, or generates a fault.

IWZRPC For performance purposes, when the dirty state is updated by hardware, the PE should update or invalidate any TLB
entry that contains a previously-cached copy of the descriptor. This is to prevent multiple writes by the PE from
causing multiple updates to the descriptor.

IHQBGN Arm expects many implementations to cause a translation table walk to occur when dirty state hardware
management causes an update of a translation table descriptor.

RRNMLQ If a write access translated by a writable-clean descriptor is performed architecturally, then hardware updates the
dirty state of that descriptor.

RDYCFD If a write access translated by a writable-clean descriptor is not performed architecturally, then unless specified here
hardware does not update the dirty state of that descriptor. In all of the following cases, hardware is permitted to
update the dirty state while attempting to translate the explicit write access:

• The translation generates an MMU fault that is reported with lower priority than a Permission fault at that
translation stage.

• The access is non-speculative and the translation generates an Alignment fault only because the memory type
indicated by the descriptor is Device, and the hardware update would have occurred if the Alignment fault
was not generated.

• The descriptor is for a stage 1 translation, the access is non-speculative, and the stage 2 translation of the OA
from stage 1 generates a stage 2 MMU fault.

• The descriptor is used to translate accesses from the Statistical Profiling Buffer. For more information, see
The Profiling Buffer.

• The final OA from the translation generates a Granule Protection Check fault (GPC fault).

• FEAT_MTE_PERM is implemented and all of the following apply:

— The descriptor is for a stage 2 translation.

— The access is non-speculative.

— The stage 2 translation generates a Permission fault due to the NoTagAccess attribute.

• FEAT_MTE_CANONICAL_TAGS is implemented and all of the following apply:

— The descriptor is for a stage 1 translation.

— The access is non-speculative.

— The stage 1 translation generates a Permission fault due to a Canonical Tag Check operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6680
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
RBZXVS If a tag write by an instruction that does not also write data is translated by a writable-clean descriptor, but the tag
write effect is IGNORED due to one of the following reasons, then if all of the other requirements for a hardware
update of Dirty state are met, it is CONSTRAINED UNPREDICTABLE whether hardware updates the dirty state of that
descriptor:

• The stage 1 descriptor does not have the Tagged attribute.

• Allocation Tag Access is disabled for the instruction by SCR_EL3.ATA, HCR_EL2.ATA, or
SCTLR_ELx.{ATA, ATA0}.

RBDJJL If both translation stages are enabled, and the conditions to update a stage 1 descriptor by hardware are met, then
the stage 2 translation of the location holding that stage 1 descriptor results in one of the following:

• The stage 2 translation grants write permissions and the stage 1 hardware update occurs, including both of
the following cases:

— The stage 2 translation already grants write permission and does not need to be updated.

— The stage 2 translation is writable-clean and is successfully updated to writable-dirty.

• The stage 2 translation generates a Permission fault due to lack of write access and the stage 1 hardware
update does not occur.

ITZTHF If a speculative update of a stage 1 Access flag would otherwise be permitted, but the stage 2 translation of the stage
1 descriptor is read-only, then the speculative update of the stage 1 Access flag does not occur.

RJCXVS If all of the following apply, hardware can update the dirty state of a stage 2 descriptor even if the stage 1 descriptor
is not updated, including the case where the stage 1 descriptor is not a Block descriptor or Page descriptor:

• Stage 1 hardware updates of the Access flag or dirty state are enabled.

• The stage 2 translation of a stage 1 translation table walk uses a writable-clean descriptor.

RLXCKP The dirty state hardware update mechanism does not affect the fault reporting priority except in all of the following
cases:

• If all of the following stage 2 MMU faults are generated due to a non-speculative access that causes a stage
1 hardware update, then either fault is permitted to be reported:

— That stage 1 hardware update generates a stage 2 MMU fault.

— The stage 2 translation of the stage 1 OA generates a stage 2 MMU fault.

• If a hardware update is permitted, that update is permitted to generate a synchronous External abort or an
IMPLEMENTATION DEFINED abort caused by a memory type not supporting an atomic read-modify-write.

RQDRWL If an instruction that generates more than one single-copy atomic memory access has a fault on some, but not all, of
those memory accesses, then all of the following apply:

• All accesses that do not fault are permitted to cause hardware updates of the dirty state.

• For faulting accesses that meet the requirements for hardware updates of the dirty state, those accesses are
also permitted to cause hardware updates of the dirty state.

IBSLWF For more information, see:

• MMU fault prioritization from a single address translation stage.

• Faults and watchpoints

D8.5.2.2 Implications of enabling the dirty state management mechanism

RYWCDD All statements in this section require implementation of the OPTIONAL feature, FEAT_HAFDBS, which supports
both hardware update of the Access flag and hardware update of the dirty state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6681
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
RTTLCV For stage 1 translations, translations using a descriptor in the writable-clean state are considered writable for the
purposes of the corresponding SCTLR_ELx.WXN control.

INSYYW For stage 1 translations, if the corresponding SCTLR_ELx.WXN is 1, then all of the following apply:

• For a translation regime that supports a single privilege level, translations using a writable-clean descriptor
are treated as execute-never.

• For a translation regime that supports two privilege levels, translations using a privileged writable-clean
descriptor are treated as privileged execute-never.

• For a translation regime that supports two privilege levels, translations using an unprivileged writable-clean
descriptor are treated as unprivileged execute-never.

RNKLQN For a translation regime that supports two privilege levels, translations using an unprivileged writable-clean
descriptor are treated as privileged execute-never.

RZYGHJ Cache invalidation instructions and address translation instructions never cause a dirty state hardware update of
either:

• The stage 1 Block descriptor or Page descriptor translating the address specified in the instruction.

• The stage 2 Block descriptor or Page descriptor translating the OA from the stage 1 translation.

RRKMHW For the following instructions that require write permission, if the address specified in the instruction is translated
by a writable-clean descriptor, then the descriptor is considered to grant write access:

• Data cache invalidation instruction, DC IVAC.

• Address translation instructions, AT S12E0W, AT S12E1W, AT S1E0W, AT S1E1W, AT S1E2W, AT
S1E3W.

RQXXXL For all of the following cases, if the stage 1 descriptor is writable-clean, then it is IMPLEMENTATION DEFINED
whether hardware updates the dirty state:

• A Store-Exclusive instruction to the memory location fails because the Exclusives monitor is not in the
exclusive state.

• A GPC fault is generated on a write to the memory location.

• A synchronous External abort is generated on a write to the memory location.

• A Watchpoint exception is generated on a write to the memory location.

RSJQGP For all of the following cases, if the stage 2 descriptor is writable-clean, then it is IMPLEMENTATION DEFINED
whether hardware updates the dirty state:

• A Store-Exclusive instruction to the memory location fails because the Exclusives monitor is not in the
exclusive state.

• A GPC fault is generated on a write to the memory location.

• A synchronous External abort is generated on a write to the memory location.

• A Watchpoint exception is generated on a write to the memory location.

RKLVVN A hardware update of the dirty state performed by one PE does not require invalidation of any corresponding TLB
entries in other PEs.

RTXGHB For a CAS or CASP instruction to an address translated by a writable-clean descriptor, if the comparison fails and the
location is therefore not updated, then it is CONSTRAINED UNPREDICTABLE whether hardware updates the dirty state.

RSMTCW For an RCW or RCWS instruction to an address translated by a writable-clean descriptor, if the RCW checks or RCWS
checks fail and the location is therefore not updated, then it is CONSTRAINED UNPREDICTABLE whether hardware
updates the dirty state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6682
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
RKTXCF For a stage 2 writable-clean descriptor with the S2AP[1:0] bits set to 0b00, if an atomic instruction to the address
translated by the descriptor generates a stage 2 Permission fault as a result of not having read permission, then it is
CONSTRAINED UNPREDICTABLE whether hardware updates the dirty state.

D8.5.3 Ordering of hardware updates to the translation tables

RMKHJS A hardware update to the translation table that is caused by a load or a store, including an atomic instruction, is
guaranteed to be observed, to the extent required by the Shareability attributes:

• Before a load or store, including an atomic instruction, to an arbitrary address, other than the address of the
translation table entry, that appears in program order after the load or store, including an atomic instruction,
causing the update to the translation table entry only if a DSB with the appropriate Shareability attributes,
where the DSB applies to both loads and stores, is executed between the load or store, including an atomic
instruction, that caused the update to the translation table and the subsequent load or store.

• Before a load to the translation table entry that is being updated that appears in program order after the load
or store, including an atomic instruction, causing the update to the translation table entry only if a DSB with
the appropriate Shareability attributes, where the DSB applies to both loads and stores, is executed between
the load or store, including an atomic instruction, that caused the update to the translation table and the
subsequent load.

• Before a store or atomic access to the translation table entry that is being updated that appears in program
order after the load or store, including an atomic instruction, causing the update to the translation table entry.

• Before a cache maintenance instruction to an arbitrary address appearing in program order after the load or
store, including an atomic instruction, causing the update to the translation table entry only if a DSB with the
appropriate Shareability attributes, where the DSB applies to both loads and stores, is executed between the
load or store, including an atomic instructing that caused the update to the translation table entry and the
subsequent cache maintenance instruction.

RPLLLM An update to the translation table that is caused by a load is not ordered with respect to the load itself.

RFSZNW An update to the translation table that is caused by a store or an atomic access is observed by all observers, to the
extent required by the Shareability attributes, before the store itself in the case that the store is to the same location
as the translation table update.

RRZYCN An update to the translation table that is caused by a store or an atomic access is not ordered with respect to the store
itself in the case that the store is not the same location as the translation table update.

D8.5.4 Restriction on memory types for hardware updates to translation tables

IYTWWW A translation table can be placed in Normal memory with any Cacheability.

IXPRCJ If hardware update of translation table entries is enabled, software is required to ensure that the translation table is
located in memory that supports atomic read-modify-write updates in a coherent manner.

IMYHXH Atomicity properties can only be met at the system level, and some system implementations might not support this
functionality in all memory regions, including all of the following:

• Any system memory type that does not support hardware cache coherency.

• Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does not
support hardware cache coherency.

IPCHYY The system implementation determines which memory type is treated as Non-cacheable.

RWLTNL All of the following Conventional memory types architecturally guarantee that hardware updates of the translation
tables are atomic:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with read allocation hints and write
allocation hints and not transient.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6683
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with read allocation hints and write
allocation hints and not transient.

RNNNMB If a translation table hardware update is not atomic as observed by other agents that can access memory, then the
update can have one or more of the following effects:

• A synchronous External abort on the translation table walk is generated.

• The instruction generates an SError interrupt.

• An MMU fault is generated, reported as an Unsupported atomic hardware update using one of the following
Fault status codes:

— For Data Abort exceptions, ESR_ELx.DFSC = 0b110001.

— For Instruction Abort exceptions, ESR_ELx.IFSC = 0b110001.

— For an abort on a write to the Statistical Profiling buffer, PMBSR_EL1.FSC = 0b110001.

• The hardware updates occur and all of the following apply:

— There is no guarantee that the memory accesses are done atomically in regard to accesses to memory
by other agents.

— The instruction might also generate an SError interrupt.

RVSXXT If a translation table hardware update is not atomic as observed by other agents that can access memory, and the
update generates an MMU fault, all of the following apply:

• If EL2 is implemented and enabled in the current Security state, then for the EL1&0 translation regime, one
of the following:

— If the atomic hardware update is not supported in the stage 1 translation due to the defined memory
type, or if the stage 2 translation is not enabled, then this exception is a stage 1 abort and is taken to
EL1.

— In all other cases, the exception is a stage 2 abort and is taken to EL2.

• For a translation stage, the MMU fault priority is at an IMPLEMENTATION DEFINED point between all of the
following:

— Immediately before the priority of an Access flag fault that is generated at the same translation stage.

— Immediately after the priority of a Permission fault that is generated at the same translation stage.

RYQMMR If translation table hardware updates are not atomic as observed by other agents that can access memory, then in all
of the following cases, the architecture permits, but does not require, an address translation instruction to generate
an MMU fault, reported as an Unsupported atomic hardware update using PAR_EL1.FST = 0b110001:

• For a stage 1 translation at EL1, stage 1 translation table hardware updates are enabled.

• For EL2 or EL3, translation table hardware updates are enabled.

IFGVJW For more information, see Possible implementation restrictions on using atomic instructions.

D8.5.5 Use of the Contiguous bit with hardware updates to the translation tables

RXDPXQ When hardware updates any of the AF, AP[2] or S2AP[1] bits, then the update applies to a single translation table
entry.

RLCGVS If hardware updates a translation table entry, and if the Contiguous bit in that entry is 1, then the members in a group
of contiguous translation table entries can have different AF, AP[2], and S2AP[1] values.

RGPHKF If all of the following apply, then the architecture does not require a hardware update of the AF:

• An access is to a location translated by an entry that has the Contiguous bit set to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6684
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.5 Hardware updates to the translation tables
• At least one descriptor in the set of contiguous translation table entries has AF set to 1.

RJKCXG If all of the following apply, then the architecture does not require a hardware update of the AP[2] or S2AP[1] bit:

• A write is done to a location translated by a descriptor that has the Contiguous bit set to 1.

• The corresponding AP[2] or S2AP[1] bit in at least one descriptor in the set of contiguous translation table
entries indicates that the entry is dirty.

IQDCMP The Contiguous bit permits, but does not require, hardware to hold a single entry in a TLB for the set of translation
table entries in the group, and to have updated only one or more of the AF and the AP[2] bit or S2AP[1] bit in the
single translation table entry that resulted in the TLB entry.

INFFSV Software is required to combine the AF values and AP[2] or S2AP[1] values across all translation table entries in a
contiguous group to determine whether any of the entries have been accessed or are dirty.

IQKKDC For more information on the Contiguous bit, see The Contiguous bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6685
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
D8.6 Memory region attributes

ISGDKK The memory region attributes in a descriptor define the memory type, Memory Tagging attributes, the XS attribute,
Cacheability, and whether the memory region is Shareable. For translation regimes that support two translation
stages, the stage 1 and stage 2 memory region attributes are combined to produce a resultant memory type and
Cacheability, and Shareability.

IHJZQP All of the following apply to the memory region attributes:

• The stage 1 OA attributes are derived from a combination of the Block descriptor and Page descriptor
AttrIndx[3:0] field, and the MAIR_ELx and MAIR2_ELx register fields.

• The stage 1 translation table walk attributes are derived from the TCR_ELx.{IRGNn, ORGNn, SHn} fields.

• The SCTLR_ELx.{C, I} fields might override stage 1 attributes.

• The HCR_EL2.PTW field might override stage 2 translation attributes of a stage 1 translation table walk.

• If EL2 is enabled, then for the EL1&0 translation regime the HCR_EL2.{CD, DC} fields might override
stage 1 and stage 2 attributes.

• All of the following HCR_EL2.FWB values affect the stage 2 attributes:

— When the Effective value of HCR_EL2.FWB is 0, stage 2 attributes are derived from the stage 2
MemAttr[3:2] descriptor bits, then combined with stage 1 attributes.

— When the Effective value of HCR_EL2.FWB is 1, stage 2 attributes are derived from the stage 2
MemAttr[2:0] descriptor bits.

• For Device memory and Normal Non-cacheable mappings from stage 1, normalization of the Shareability
that is input to stage 2 is IMPLEMENTATION DEFINED.

• For Device memory and Normal Non-cacheable mappings from stage 2, Shareability is always normalized
to Outer Shareable.

IGJJZB For a virtualization implementation, combining memory attributes from stage 1 and stage 2 translations support all
of the following functions that are useful to a hypervisor executing at EL2:

• Reduce or increase the permitted Cacheability of a region.

• Increase the required Shareability of a region.

ILHJDF The effects of combining memory attributes defined by the hypervisor are expected to be functionally transparent
to the Guest OS.

D8.6.1 Stage 1 memory type and Cacheability attributes

RNWZCF If FEAT_AIE is implemented, then all of the following apply:

• If a stage 1 translation regime uses VMSAv9-128, then the Effective value of the stage 1 Attribute Index
Extension (AIE) is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6686
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
• If a stage 1 translation regime uses VMSAv8-64, then the AIE value is determined by the following table:

RSXRTL If FEAT_AIE is not implemented, then the Effective value of AIE is 0.

RHHGNL For a stage 1 translation, the Block descriptor and Page descriptor AttrIndx[2:0] field holds the value n used to select
the 8-bit field MAIR_ELx.Attr<n> that specifies the memory region attributes of the descriptor OA.

RYJLRL If FEAT_AIE is implemented, then all of the following apply to the Block descriptor and Page descriptor AttrIndx
field:

• If AIE is disabled, or if AIE is enabled and AttrIndx[3] is 0, then AttrIndx[2:0] holds the value n used to select
the 8-bit field in all of the following registers:

— MAIR_ELx.Attr<n> that specifies the memory region attributes of the descriptor OA.

— AMAIR_ELx.Attr<n> that specifies the IMPLEMENTATION DEFINED memory region attributes of the
descriptor OA.

• If AIE is enabled and AttrIndx[3] is 1, then AttrIndx[2:0] holds the value n used to select the 8-bit field in all
of the following registers:

— MAIR2_ELx.Attr<n> that specifies the memory region attributes of the descriptor OA.

— AMAIR2_ELx.Attr<n> that specifies the IMPLEMENTATION DEFINED memory region attributes of the
descriptor OA.

RBXFVK If AIE is enabled, then AttrIndx[3:0] is used to index into AMAIR_ELx as follows:

• When AttrIndx[3] is 0, stage 1 Auxiliary Memory Attributes are obtained from
AMAIR_ELx[AttrIndx[2:0]*8+7:AttrIndx[2:0]*8].

• When AttrIndx[3] is 1, stage 1 Auxiliary Memory Attributes are obtained from additional
AMAIR2_ELx[AttrIndx[2:0]*8+7:AttrIndx[2:0]*8].

IDKDPN FEAT_AIE enables use of page based IMPLEMENTATION DEFINED memory attributes by using AttrIndx to select an
8-bit field from AMAIR_ELx.Attr<n> or AMAIR2_ELx.Attr<n>. If FEAT_AIE in not implemented, indexing of
AMAIR_ELx.Attr<n> is IMPLEMENTATION DEFINED.

IFVLFZ For the memory region specified by a Block descriptor and Page descriptor, the MAIR_ELx.Attr<n> or
MAIR2_ELx.Attr<n> field selected by the descriptor AttrIndx[2:0] field defines all of the following:

• The Device or Normal memory type.

• For Device memory, all of the following:

— One of the Device-nGnRnE, Device-nGnRE, Device-nGRE, or Device-GRE Device memory types.

— If FEAT_XS is implemented, then the XS attribute.

• For Normal memory, all of the following:

— For both inner and outer Cacheability, one of the Non-cacheable, Write-Through, or Write-Back
attributes.

Table D8-88 Determination of AIE value

Translation regime AIE value

EL1&0 TCR2_EL1.AIE

EL2&0 TCR2_EL2.AIE

EL2 TCR2_EL2.AIE

EL3 TCR_EL3.AIE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6687
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
— For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate and
Write-Allocate hints, each of which is Allocate or No Allocate, and the Transient allocation hints.

— If FEAT_MTE2 is implemented, then the Tagged attribute.

— If FEAT_XS is implemented, then the XS attribute.

For more information, see XS attribute modifier and Memory region tagging types.

RQVNKY If FEAT_AIE is implemented, then the value 0x00 in AMAIR_ELx.Attr<n> or AMAIR2_ELx.Attr<n> does not
give IMPLEMENTATION DEFINED memory region attributes for translations using that Attr<n> field at stage 1.

INSVYS The memory attributes obtained from MAIR_ELx.Attr<n>, MAIR2_ELx.Attr<n>, AMAIR_ELx.Attr<n>, and
AMAIR2_ELx.Attr<n> are permitted to be cached in a TLB.

IQNNGV For some translation regimes, the memory region attributes determined from translation tables, MAIR_ELx, and
MAIR2_ELx values might be overridden by the configuration of SCTLR_ELx.{C, I} and HCR_EL2.DC.

RMJGNV For stage 1 of a translation regime using VMSAv8-64, if AIE is enabled, then hierarchical permissions are disabled
and the corresponding TCR_ELx.HPDn are RES1.

D8.6.2 Stage 1 Shareability attributes

RZWYSH For Normal Cacheable memory, if the Effective value of TCR_ELx.DS is 0, then the SH[1:0] field in a stage 1
translation Block descriptor and Page descriptor encodes the Shareability attributes of the descriptor OA, as shown
in the following table:

RPYFVQ If a region is mapped as Device memory or Normal Non-cacheable memory after all enabled translation stages, then
the region has an effective Shareability attribute of Outer Shareable.

RNSCNC If stage 2 translation is enabled and stage 1 maps a region as Device memory or Normal Non-cacheable memory,
then it is IMPLEMENTATION DEFINED whether:

• The Shareability attribute configured for stage 1 is input into stage 2 translation.

• An effective Outer Shareable attribute is input into stage 2 translation.

IHRNGF If the Effective value of TCR_ELx.DS is 1, then the stage 1 translation descriptor bits[9:8] are OA[51:50] instead
of SH[1:0].

IGJPJW For Normal Cacheable memory, if the Effective value of TCR_ELx.DS is 1, then the stage 1 translation Shareability
is treated as being mapped by one of the following:

• For the EL3 translation regime, TCR_EL3.SH0.

• For the EL2 translation regime, if HCR_EL2.E2H is 0, then TCR_EL2.SH0.

• For the EL2 and EL2&0 translation regimes, if HCR_EL2.E2H is 1 and the VA is an address that is translated
using tables pointed to by TTBR0_EL2, then TCR_EL2.SH0.

• For the EL2 and EL2&0 translation regimes, if HCR_EL2.E2H is 1 and the VA is an address that is translated
using tables pointed to by TTBR1_EL2, then TCR_EL2.SH1.

Table D8-89 Stage 1 Shareability attributes

SH[1:0] Normal memory

00 Non-shareable

01 Reserved, CONSTRAINED UNPREDICTABLE as described in Reserved values in System and
memory-mapped registers and translation table entries.

10 Outer Shareable

11 Inner Shareable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6688
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
• For the EL1&0 translation regime, if the VA is an address that is translated using tables pointed to by
TTBR0_EL1, then TCR_EL1.SH0.

• For the EL1&0 translation regime, if the VA is an address that is translated using tables pointed to by
TTBR1_EL1, then TCR_EL1.SH1.

D8.6.3 Stage 2 memory type and Cacheability attributes

RWYQVN For any stage 2 translation, if the final memory type any is Normal Cacheable type, then all of the following apply:

• If the output of stage 1 specifies a Cacheable memory type, then the final cache allocation hints are the stage
1 cache allocation hints.

• If the output of stage 1 does not specify a Cacheable memory type, then the final cache allocation hints are
Read Allocate, Write Allocate.

RKTSYP Stage 2 translation configuration does not assign cache allocation hints.

IBBJDH If the memory type from a stage 2 translation causes a stage 1 translation table walk to a Device memory type, then
one of the following occurs:

• If HCR_EL2.PTW is 0, then the translation table walk occurs as if it is to Normal Non-cacheable memory,
and the walk can be done speculatively.

• If HCR_EL2.PTW is 1, then the memory access generates a stage 2 Permission fault.

D8.6.4 Stage 2 Memory Tagging attributes

RKVBTQ All statements in this section and subsections require implementation of FEAT_MTE_PERM.

IHKMRJ If the stage 1 Tagged attribute is not defined for a memory region then the NoTagAccess attribute is not defined.

IFWGDY The NoTagAccess attribute is a permission and has no effect on the cacheability of Allocation Tags.

RXSYYN If all of the following are true, then a stage 2 Permission fault due to the NoTagAccess attribute is generated on a
memory access:

• The access is an explicit Allocation Tag read, explicit Allocation Tag write or a Tag Checked access.

• The memory region tagging type for the access is Tagged. See Memory region tagging types.

• The combined stage 1 and stage 2 memory attributes specify the NoTagAccess attribute.

IFYRCG A Permission fault due to the NoTagAccess attribute is not generated for a Tag Unchecked memory access.

RYMSKV On a stage 2 Permission fault due to the NoTagAccess attribute, all of the following are true:

• The fault is taken to EL2.

• The fault is reported as a Data Abort from a lower Exception level.

• ESR_EL2.TagAccess is 1.

• The value of ESR_EL2.WnR is set to one of the following:

— If the fault is due to a Tag write effect, then 1.

— If the fault is due to a Tag read effect, then 0.

• FAR_EL2 is valid.

RPYQZB For the purpose of determining whether a Permission fault due to the NoTagAccess attribute is generated for a Tag
Checked access, if a Tag Check Fault is configured to have no effect on the PE due to SCTLR_ELx.{TCF, TCF0},
then the access is treated as Tag Unchecked.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6689
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
IXRKQK For more information about the prioritization of a Permission fault due to the NoTagAccess attribute, see
Prioritization of Permission faults.

D8.6.5 Stage 2 memory type and Cacheability attributes when FWB is disabled

RMFDHF All statements in this section and subsections require that the Effective value of HCR_EL2.FWB is 0.

RQPHXK If the Effective value of HCR_EL2.FWB is 0, then the stage 1 and stage 2 memory type and Cacheability attributes
are combined.

RHMNDG For stage 2 translations, the MemAttr[3:0] field in a Block descriptor and Page descriptor encodes the memory type
and Cacheability of the memory region addressed by the descriptor OA, as shown in the following table:

Table D8-90 Stage 2 MemAttr[3:0] encoding

MemAttr[3:0] Memory type Cacheability Condition

0000 Device-nGnRnE Not applicable -

0001 Device-nGnRE Not applicable -

0010 Device-nGRE Not applicable -

0011 Device-GRE Not applicable -

0100 Normal

NoTagAccess

Outer Write-Back Cacheable

Inner Write-Back Cacheable

FEAT_MTE_PERM is implemented

Reserved Reserved, CONSTRAINED UNPREDICTABLE FEAT_MTE_PERM is not implemented

0101 Normal Outer Non-cacheable

Inner Non-cacheable

-

0110 Normal Outer Non-cacheable

Inner Write-Through Cacheable

-

0111 Normal Outer Non-cacheable

Inner Write-Back Cacheable

-

1000 Reserved Reserved, CONSTRAINED UNPREDICTABLE -

1001 Normal Outer Write-Through Cacheable

Inner Non-cacheable

-

1010 Normal Outer Write-Through Cacheable

Inner Write-Through Cacheable

-

1011 Normal Outer Write-Through Cacheable

Inner Write-Back Cacheable

-

1100 Normal Reserved, CONSTRAINED UNPREDICTABLE -

1101 Normal Outer Write-Back Cacheable

Inner Non-cacheable

-

1110 Normal Outer Write-Back Cacheable

Inner Write-Through Cacheable

-

1111 Normal Outer Write-Back Cacheable

Inner Write-Back Cacheable

-

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6690
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
ILJCRP For more information, see:

• Reserved values in System and memory-mapped registers and translation table entries.

• Combining stage 1 and stage 2 memory type attributes.

D8.6.5.1 Combining stage 1 and stage 2 memory type attributes

RTNHFM If the Effective value of HCR_EL2.FWB is 0, then the stage 1 and stage 2 memory type attributes are combined as
shown in the following table:

D8.6.5.2 Combining stage 1 and stage 2 Cacheability attributes for Normal memory

RGQFSF If the Effective value of HCR_EL2.FWB is 0, then the stage 1 and stage 2 Inner Cacheability and Outer Cacheability
attributes are combined as shown in the following table:

IMCQKW For stage 2 translations, if the Effective value of HCR_EL2.FWB is 0 and the stage 2 MemAttr[3:0] field is 0b1111,
then the combined memory type and Cacheability attributes are the output memory type and Cacheability attributes
from stage 1.

RJSXRX If FEAT_MTE_PERM is implemented, all of the following apply:

• If either translation stage assigns a Device, Non-cacheable, or Write-through memory type, then the stage 1
memory type is treated as not having the Tagged attribute and the resultant memory type is as defined in Stage
2 memory type and Cacheability attributes when FWB is enabled.

Table D8-91 Combining stage 1 and stage 2 memory type attributes

Rule
If either translation
stage assigns:

Resultant memory
type is:

Device has precedence
over Normal

Any Device
memory type

Any Device
memory type

Non-Gathering has precedence
over Gathering

A Device-nGxx
memory type

A Device-nGxx
memory type

Non-Reordering has precedence
over Reordering

A Device-nGnRx
memory type

A Device-nGnRx
memory type

No Early write acknowledge has precedence
over Early write acknowledge

The Device-nGnRnE
memory type

The Device-nGnRnE
memory type

Table D8-92 Combining stage 1 and stage 2 Cacheability attributes for Normal memory

Assignment in stage 1 Assignment in stage 2 Resultant Cacheability

Non-cacheable Any Non-cacheable

Any Non-cacheable Non-cacheable

Write-Through Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Through Cacheable Write-Back Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Back Cacheable Write-Back Cacheable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6691
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
• Otherwise, the stage 1 and stage 2 attributes are combined as shown in Table D8-93.

D8.6.6 Stage 2 memory type and Cacheability attributes when FWB is enabled

RLNQJQ All statements in this section and subsections require that the Effective value of HCR_EL2.FWB is 1.

RZNGNK For stage 2 translations, if FEAT_MTE_PERM is not implemented, then FEAT_S2FWB has all of the following
effects on the MemAttr[3:2] bits:

• MemAttr[3] is RES0.

• The value of MemAttr[2] determines the interpretation of the MemAttr[1:0] bits.

RNQDNZ For stage 2 translations, if FEAT_MTE_PERM is implemented, then MemAttr[3] is not RES0 and all bits of
MemAttr[3:0] determine the memory region type and Cacheability attributes.

RJXGKQ For stage 2 translations, if FEAT_MTE_PERM is implemented, then all of the following values of MemAttr[3:2]
apply:

• 0b10 is Reserved.

• All other values determine the interpretation of the MemAttr[1:0] bits.

RVRJSW For stage 2 translations, if MemAttr[2] is 0, or if FEAT_MTE_PERM is implemented and MemAttr[3:2] is 0b00,
then the MemAttr[1:0] bits define Device memory attributes as shown in the following table:

RRHWZM For stage 2 translations, the MemAttr[1:0] bits affect the memory type and Cacheability as shown in the following
table:

Table D8-93 Combined stage 1 and stage 2 attributes if FEAT_MTE_PERM is implemented

Stage 1 memory type

and Cacheability attribute

Stage 2 memory type

and Cacheability attribute

Resultant memory type

and Cacheability attribute

Normal Write-back Any Normal Write-back

Normal Write-Back, Tagged Normal Write-Back Normal Write-Back, Tagged

Normal Write-Back, Tagged Normal Write-back, NoTagAccess Normal Write-back, Tagged, NoTagAccess

Table D8-94 Stage 2 MemAttr[1:0] encoding when MemAttr[2] is 0, FEAT_S2FWB enabled

Stage 2 MemAttr[1:0] Device Memory Attribute

00 Device-nGnRnE

01 Device-nGnRE

10 Device-nGRE

11 Device-GRE

Table D8-95 Stage 2 MemAttr[1:0] encoding, FEAT_S2FWB enabled

Stage 2
MemAttr[1:0]

Stage 1 memory type and
Cacheability attribute

Stage 2
MemAttr[1:0]

Resultant memory type and
Cacheability attribute

01 Device<attr> 01 Device<attr>

01 Normal Non-cacheable 01 Normal Non-cacheable

01 Normal Write-Through 01 Normal Non-cacheable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6692
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
RRMTWN If the stage 1 translation specifies a Device memory type, and the stage 2 descriptor MemAttr[2:0] field is 0b110,
then all of the following apply:

• If an atomic memory access occurs, then it is IMPLEMENTATION DEFINED whether it is supported in the same
way as accesses to memory locations with a resultant Device memory type.

• If an exclusive access occurs, then it is IMPLEMENTATION DEFINED whether it is supported in the same way
as accesses to memory locations with a resultant Device memory type.

• If a misaligned access occurs, then it is CONSTRAINED UNPREDICTABLE whether the resultant stage 1 memory
type generates a stage 1 Alignment fault.

• For a DC ZVA, DC GZVA, or DC GVA instruction, it is CONSTRAINED UNPREDICTABLE whether the resultant stage
1 memory type generates a stage 1 Alignment fault.

• If the translation applies to any Active element of an SVE Non-fault vector load instruction, or to an Active
element that is not the First active element of an SVE First-fault vector load instruction, then it is
CONSTRAINED UNPREDICTABLE whether the element access is performed, or is suppressed and reported in the
FFR.

IRRDBK The architecture requires that CLIDR_EL1.{LoUU, LoIUS} are {0, 0} so that no data cache levels need to be
cleaned to manage coherency with instruction fetches.

RDPDXS If the stage 1 translation specifies a Normal memory type with Cacheability other than Write-Back Cacheable, and
the stage 2 descriptor MemAttr[2:0] field is 0b110, then it is CONSTRAINED UNPREDICTABLE whether accesses
generated by the following instruction types follow the alignment requirements in the same way as accesses to a
Normal memory type with Cacheability other than Write-Back Cacheable:

• Load-Exclusive, Store-Exclusive and Atomic instructions.

• Non-atomic Load-Acquire/Store-Release instructions.

ILJRWR For more information, see:

• XS attribute modifier.

01 Normal Write-Back 01 Normal Non-cacheable

01 Normal Write-Back, Tagged 1x Normal Write-Back, Tagged

11 - 01 Reserved

11 Normal Write-Back, Tagged 1x Normal Write-Back, Tagged, NoTagAccess

x1 - 00 Reserved

x1 Device<attr> 10 Normal Write-Back

x1 Normal Non-cacheable 10 Normal Write-Back

x1 Normal Write-Through 10 Normal Write-Back

x1 Device<attr> 11 Device<attr>

x1 Normal Non-cacheable 11 Normal Non-cacheable

x1 Normal Write-Through 11 Normal Write-Through

x1 Normal Write-Back 1x Normal Write-Back

Table D8-95 Stage 2 MemAttr[1:0] encoding, FEAT_S2FWB enabled (continued)

Stage 2
MemAttr[1:0]

Stage 1 memory type and
Cacheability attribute

Stage 2
MemAttr[1:0]

Resultant memory type and
Cacheability attribute
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6693
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
• Reserved values in System and memory-mapped registers and translation table entries.

• Alignment of data accesses.

D8.6.7 Stage 2 Shareability attributes

ICGGBV The stage 2 Shareability attributes are not affected by the Effective value of HCR_EL2.FWB.

RDNZJQ For Normal Cacheable memory, if the Effective value of VTCR_EL2.DS is 0, then the SH[1:0] field in a stage 2
translation Block descriptor and Page descriptor encodes the Shareability attributes of the descriptor OA, as shown
in the following table:

RHTSGQ For Normal Cacheable memory, if the Effective value of VTCR_EL2.DS is 1, then the stage 2 translation
Shareability is determined by VTCR_EL2.SH0.

RYHCTP For Device memory and Normal Non-cacheable memory, the Shareability attributes of the stage 2 translation
descriptor OA are treated as Outer Shareable.

ILPRLS If the Effective value of VTCR_EL2.DS is 1, then the stage 2 translation descriptor bits[9:8] are OA[51:50] instead
of SH[1:0].

IDPSTX For more information, see Reserved values in System and memory-mapped registers and translation table entries.

D8.6.7.1 Combining the stage 1 and stage 2 Shareability attributes for Normal memory

ILTFXF The value of HCR_EL2.FWB does not affect how Shareability attributes from stage 1 and stage 2 are combined.

RWLQYW If the resultant memory type from a stage 1 and stage 2 translation is one of the following, the memory region is
treated as Outer Shareable:

• Any Device memory type.

• Normal Inner Non-cacheable, Outer Non-cacheable.

RZNLRJ For a memory region with a resultant memory type of Normal that is not Inner Non-cacheable, Outer
Non-cacheable, the stage 1 and stage 2 Shareability attributes can be combined as shown in the following table:

Table D8-96 Stage 2 Shareability attributes

SH[1:0] Normal memory

00 Non-shareable

01 Reserved, CONSTRAINED UNPREDICTABLE

10 Outer Shareable

11 Inner Shareable

Table D8-97 Combining stage 1 and stage 2 Shareability attributes

Assignment in stage 1 Assignment in stage 2 Resultant Shareability

Outer Shareable Any Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable Inner Shareable

Inner Shareable Non-shareable Inner Shareable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6694
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.6 Memory region attributes
Non-shareable Outer Shareable Outer Shareable

Non-shareable Inner Shareable Inner Shareable

Non-shareable Non-shareable Non-shareable

Table D8-97 Combining stage 1 and stage 2 Shareability attributes (continued)

Assignment in stage 1 Assignment in stage 2 Resultant Shareability
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6695
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.7 Other descriptor fields
D8.7 Other descriptor fields

D8.7.1 The Contiguous bit

ILYNXC The Contiguous bit identifies a descriptor as belonging to a group of adjacent translation table entries that point to
a contiguous OA range.

RSKQHL If the Effective value of the Contiguous bit in a Block descriptor or Page descriptor is 1, and the descriptor would
otherwise be permitted to be cached in a TLB, then all of the following apply:

• The entry is permitted to be cached in a TLB as though it is one of a number of adjacent translation table
entries that point to a contiguous OA range with consistent attributes and permissions.

• Software is required to ensure that all of the adjacent translation table entries for the contiguous region point
to a contiguous OA range with consistent attributes and permissions.

RHMQXG For VMSAv8-64 translation system, the Contiguous bit is RES0 and has an Effective value of 0 in all of the following
Block descriptors:

• For the 4KB translation granule, if the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, then the
Contiguous bit is RES0 in the level 0 Block descriptor of that translation regime.

• For the 16KB translation granule, if the Effective value of TCR_ELx.DS or VTCR_EL2.DS is 1, then the
Contiguous bit is RES0 in the level 1 Block descriptor of that translation regime.

• For the 64KB translation granules, if FEAT_LPA is implemented, then the Contiguous bit is RES0 in a level
1 Block descriptor.

RCBXXM For a lookup level in a translation granule using the VMSAv8-64 translation system, if the Effective value of the
Contiguous bit is 1, then the entry is permitted to be cached in a TLB as though all of the properties shown in the
following table apply:

RRLJBB For the VMSAv9-128 translation system, the Contiguous bit is RES0 and has an Effective value of 0 in all of the
following Block descriptors:

• For the 4KB translation granule, the level 0 Block descriptor of that translation regime.

• For the 64KB translation granule, the level 1 Block descriptor of that translation regime.

Table D8-98 Permitted properties of caching a translation in a TLB when Effective value of Contiguous bit is 1,
VMSAv8-64 translation system

Translation
granule

Block or Page
lookup level

Number of
adjacent
translation table
entries

Alignment boundary of
adjacent translation
table entries within the
translation table

Alignment of contiguous
OA range

4KB 1 16 128 bytes 16GB

2 16 128 bytes 32MB

3 16 128 bytes 64KB

16KB 2 32 256 bytes 1GB

3 128 1KB 2MB

64KB 2 32 256 bytes 16GB

3 32 256 bytes 512KB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6696
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.7 Other descriptor fields
RCMKCR For a lookup level in a translation granule using the VMSAv9-128 translation system, if the Effective value of the
Contiguous bit is 1, then the entry is permitted to be cached in a TLB as though all of the properties shown in the
following table apply:

RJDLPG For the initial lookup table in a translation regime that uses the VMSAv9-128 translation system, the following table
shows how the Disable Contiguous bit, DisCHn, is determined:

RWSVXT For a translation regime that uses the VMSAv9-128 translation system, if the corresponding DisCHn field is 1, then
the Effective value of the Contiguous bit in the initial lookup table Block and Page descriptors is 0.

RBBRTL For the VMSAv9-128 translation system, if the DisCH field in the next level table descriptor is 1, then the Effective
value of the Contiguous bit in the stage 1 next level Block and Page descriptors is 0.

IVNXYF The architecture does not require descriptors with the Contiguous bit set to 1 to be cached as a single TLB entry for
the contiguous region. To avoid TLB coherency issues, software is required to perform TLB maintenance on the
entire address region that results from using the Contiguous bit.

ICQTNL If the Effective value of the Contiguous bit is 1, then hardware updates to the AF and dirty state can cause members
in a group of contiguous translation table entries to have different AF, AP[2], and S2AP[1] values.

For more information, see Use of the Contiguous bit with hardware updates to the translation tables.

Table D8-99 Permitted properties of caching a translation in a TLB when Effective value of Contiguous bit is 1,
VMSAv9-128 translation system

Translation
granule

Block or Page
lookup level

Number of
adjacent
translation table
entries

Alignment boundary of
adjacent translation
table entries within the
translation table

Alignment of contiguous
OA range

4KB 1 4 64 bytes 1GB

2 16 256 bytes 16MB

3 16 256 bytes 64KB

16KB 1 4 64 bytes 64GB

2 16 256 bytes 256MB

3 64 1KB 1MB

64KB 2 64 1KB 16GB

3 16 256 bytes 1MB

Table D8-100 Determination of DisCHn for the initial lookup table

Translation Regime VA Range (VA[55]) DisCH

EL1&0 Lower (0) TCR2_EL1.DisCH0

Upper (1) TCR2_EL1.DisCH1

EL2&0 Lower (0) TCR2_EL2.DisCH0

Upper (1) TCR2_EL2.DisCH1

EL3 - TCR_EL3.DisCH0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6697
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.7 Other descriptor fields
D8.7.1.1 Misprogramming the Contiguous bit

RQTRPM For all descriptors within the range indicated by one or more descriptors that have the Contiguous bit set to 1, if one
or more of the contiguous translation table entries does not have the Contiguous bit set to 1, then this is
misprogramming of the Contiguous bit, and a TLB might contain overlapping entries.

RNGLXZ For a TLB lookup in a contiguous region mapped by translation table entries that have the Contiguous bit
misprogrammed, that TLB lookup is permitted to produce one of the following:

• An OA, access permissions, and memory attributes that are consistent with any of the programmed
translation table values.

• If BBM support levels 1 and 2 are not implemented, then an OA, access permissions, or memory attributes
that are inconsistent with any of the programmed translation table values. For more information, see Support
levels for changing table or block size.

• A TLB conflict abort.

RJQQTC For a TLB lookup in a contiguous region mapped by translation table entries that have consistent values for the
Contiguous bit, but have the OA, attributes, or permissions misprogrammed, that TLB lookup is permitted to
produce an OA, access permissions, and memory attributes that are consistent with any one of the programmed
translation table values.

IPGVGZ The Contiguous bit is present only in valid Block and Page translation table descriptors, and therefore neither of the
following configurations are considered as misprogramming of the Contiguous bit:

• A contiguous range of descriptors that are each either invalid, or valid with Contiguous set to 1.

• A contiguous range of descriptors that are each either invalid, or valid with Contiguous set to 0.

D8.7.1.2 Architectural guarantees when the Contiguous bit is misprogrammed

RMWFWF If the Contiguous bit is misprogrammed, then the architecture guarantees all of the following:

• If physical memory regions are inaccessible through translation tables programmed at EL1 when the
Contiguous bit is not misprogrammed, then they remain inaccessible to software executing at EL1 or EL0.

• If memory attributes and permissions are unattainable through translation tables programmed at EL1 when
the Contiguous bit is not misprogrammed, then they remain unattainable to software executing at EL1 or
EL0.

• Software executing in Non-secure state cannot access Secure, Realm, or Root physical memory.

• Software executing in Secure state cannot access Realm or Root physical memory.

• Software executing in Realm state cannot access Secure or Root physical memory.

RXFDVL The PE is required to generate an Address Size fault on accesses to addresses above the configured OA size, even
in the case where the Contiguous bit is used to mark a set of Block descriptors as contiguous, such that the OA region
translated by that contiguous set of descriptors exceeds the configured OA size.

D8.7.1.3 Implementation options when the Contiguous bit is misprogrammed

RJHQPP An implementation is permitted to ignore the Contiguous bit to ensure that OA range checking is done.

IHQWXX If software does all of the following, it is considered a programming error:

• The Contiguous bit is used to mark a set of translation table entries as contiguous.

• The address range translated by the set of translation table entries is larger than the IA size configured for the
translation stage as determined by the TCR_ELx.TnSZ field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6698
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.7 Other descriptor fields
RWMNPV If the Contiguous bit is used to mark a set of translation table entries as contiguous and if the address range translated
by the translation table entries is larger than the IA size supported by the translation stage, as defined by the
TCR_ELx.TnSZ field, then an implementation is permitted, but not required to, do one or more of the following:

• Generate a Translation fault.

• When all of the following apply, an implementation is permitted to not generate a Translation fault:

— A translation table entry within a contiguous set of translation table entries is accessed.

— The translation table entry is valid.

D8.7.2 Page Based Hardware attributes

IRHDNL The PBHA bits can be used for IMPLEMENTATION DEFINED purposes.

RXCJVR All statements in this section require implementation of FEAT_HPDS2.

RJVMMH For a stage 1 translation that uses TTBR0_ELx, if all of the following apply, then hardware can use the PBHA bit
in the corresponding Block descriptor or Page descriptor bit[nn] for IMPLEMENTATION DEFINED purposes:

• The corresponding TCR_ELx.HWUnn bit, HWU62, HWU61, HWU60, or HWU59, is 1.

• TCR_ELx.HPD0 is 1.

RQSTMZ For a stage 1 translation that uses TTBR1_ELx, if all of the following apply, then hardware can use the PBHA bit
in the corresponding Block descriptor or Page descriptor bit[nn] for IMPLEMENTATION DEFINED purposes:

• The corresponding TCR_ELx.HWU1nn bit, HWU162, HWU161, HWU160, or HWU159, is 1.

• TCR_ELx.HPD1 is 1.

RBHQKX For a stage 2 translation, if the value of VTCR_EL2.HWUnn is 1, then hardware can use the PBHA bit in the
corresponding Block descriptor or Page descriptor bit[nn] for IMPLEMENTATION DEFINED purposes.

RVDFPM If the PBHA bit is used for IMPLEMENTATION DEFINED purposes, then setting the PBHA bit to 0 has the same
behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

RPFZRK If the Effective value of TCR_ELx.HWU{0, 1}nn is 0, then the PBHA bit in the corresponding Block descriptor or
Page descriptor bit[nn] is IGNORED.

RTDLFM For any translation stage, if Overlay permissions are enabled, or for stage 1 translations, the Attribute Index
Extension is enabled, then all of the following apply:

• The Effective value of PBHA[3:0] is 0b0000.

• For stage 1 translations, the Effective value of the corresponding TCR_ELx.HWUnn bits are 0.

• For stage 2 translations, the Effective value of the corresponding VTCR_EL2.HWUnn bits are 0.

For more information, see Stage 1 Overlay permissions, Stage 2 Overlay permissions, and Stage 1 memory type and
Cacheability attributes.

ITKJCZ The VMSAv9-128 translation system does not support the PBHA fields, and the TCR_ELx.HWU{0, 1}nn fields
are RES0.

D8.7.3 Block translation entry

RDFJNG All statements in this section require implementation of FEAT_BBM.

IPJZBK The nT bit is supported in the following descriptors:

• VMSAv8-64 Block descriptors.

• VMSAv9-128 descriptors, when the SKL field in that descriptor is not 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6699
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.7 Other descriptor fields
IXPRKH Setting the nT bit in a Table descriptor or Block descriptor guarantees that, when changing the table or block size,
accesses translated by the translation table entry do not break coherency, ordering guarantees or uniprocessor
semantics, or fail to clear the Exclusives monitors.

RMRRPW If the implementation meets either level 1 or level 2 support requirements for changing table or block size, then
when using a Table descriptor or Block descriptor with the nT bit set, the PE is permitted to do one of the following:

• Generate a Translation fault and not cache the entry in a TLB.

• If an entry that does not have the nT bit set is cached within a TLB and translates the same address to the
same output address with consistent memory attributes and permissions, then the PE guarantees that accesses
translated by the translation table entry with the nT bit set does not break coherency, ordering guarantees or
uniprocessor semantics, or fail to clear the Exclusives monitors.

For more information, see Support levels for changing table or block size.

IDXRJK If the nT bit in a Table descriptor or Block descriptor is set, then the translation performance can be significantly
impacted.

D8.7.4 XS attribute modifier

IPMZTD The XS attribute indicates that an access to the memory region could take a long time to complete. Variants of DSB
instructions and TLB maintenance instructions that do not depend on the completion of memory accesses with the
XS attribute set to 1 are defined.

RDNHCL All statements in this section require implementation of FEAT_XS.

RFQWJG For a stage 2 translation, the FnXS bit in a Block descriptor and Page descriptor has all of the following properties:

• If the FnXS bit is 0, then the XS attribute of the resultant memory translation is not modified.

• If the FnXS bit is 1, then the XS attribute of the resultant memory translation is set to 0.

RTDMCS For stage 2 translations, if the resultant memory attributes are Normal Inner Write-back, Outer Write-back
Cacheable, then the XS attribute is set to 0 on the resultant memory translation.

IZXKSJ If FEAT_XS is implemented and the stage 1 memory type defined by the MAIR_ELx or TCR_ELx registers is one
of the following, then the XS attribute is set to 0, otherwise the XS attribute is set to 1:

• Device memory types that use the MAIR_ELx.Attr<n> encoding 0b0000dd01.

• For Normal memory, one of the following:

— Inner Write-Back Cacheable, Outer Write-back Cacheable memory types defined in the MAIR_ELx
or TCR_ELx registers, including any memory types that are treated as Write-Back Cacheable as a
result of IMPLEMENTATION DEFINED choices in the architecture.

— Inner Write-through Cacheable and Outer Write-through Cacheable memory types that use the
MAIR_ELx.Attr<n> encoding 0b10100000.

— Inner Non-cacheable, Outer Non-cacheable memory types that use the MAIR_ELx.Attr<n> encoding
0b01000000.

ISQFSD The stage 2 impact of the FnXS bit applies for stage 1 translations in the EL1&0 translation regime from AArch32
or AArch64.

IMTRQS For more information, see:

• Enabling and disabling the caching of memory accesses.

• Stage 1 memory type and Cacheability attributes.

• Stage 2 memory type and Cacheability attributes when FWB is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6700
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.8 Address tagging
D8.8 Address tagging

IXWNGB When address tagging is enabled, the top eight bits of the VA are ignored for the purposes of address translation and
they are instead described as an address tag. An address tag might be used for software purposes, an MTE Logical
Address Tag, or both.

RLVTFP If address tagging is enabled in a translation regime, then the top eight bits of the VA, bits[63:56], have all of the
following properties:

• Bits[63:56] are the address tag.

• The bits are ignored during address translation.

• If the translation system is enabled, then the bits are ignored when determining whether the address is out of
range and therefore generates a Translation fault.

• If the translation system is not enabled, then the bits are ignored when determining whether the address is out
of range and therefore generates an Address size fault.

IPLXWZ If Logical Address Tagging is enabled, bits[59:56] are also the Logical Address Tag. For more information, see
Logical Address Tagging.

D8.8.1 Address tag control

ICKLSG Address tagging is controlled using the Top Byte Ignore (TBI) field in the TCR_ELx register.

RBLBYZ For a stage 1 translation that supports a single VA range, TCR_ELx.TBI{0} determines whether address tagging is
enabled.

RLPCSW For a stage 1 translation that supports two VA ranges, all of the following determine whether address tagging is
enabled:

• TCR_ELx.TBI0 determines whether the lower address range uses address tags.

• TCR_ELx.TBI1 determines whether the upper address range uses address tags.

RKYBQL The TCR_ELx.TBI{n} bit controls address tagging whether or not the corresponding stage 1 translation is enabled.

IPRTHR If FEAT_PAuth is implemented and a TCR_ELx.TBI{n} bit enables address tagging, then the corresponding
TCR_ELx.TBID{n} bit determines whether address tagging applies to both instruction addresses and data
addresses, or just data addresses. For more information, see Pointer authentication.

D8.8.2 Effect of address tagging on the PC

IWKJBM This section describes how the top byte of an address is considered when address tagging is enabled and an address
is propagated to the PC for a branch, procedure return, exception, or exception return occurs.

RBBQKQ For a stage 1 translation that supports a single VA range, if address tagging for instruction accesses is enabled in an
Exception level, ELx, then bits[63:56] of the address loaded into the PC are forced to 0x00 in all of the following
cases:

• A branch or procedure return within ELx.

• An exception is taken to ELx.

• When an exception return does not generate an Illegal exception return, any exception return to ELx.

• Exiting from Debug state to ELx.

RFWHLV For a stage 1 translation that supports two VA ranges, if address tagging for instruction accesses is enabled in an
Exception level, ELx, then bits[63:56] of the address loaded into the PC are a sign-extension of address bit[55] in
all of the following cases:

• A branch or procedure return within ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6701
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.8 Address tagging
• An exception is taken to ELx.

• When an exception return does not generate an Illegal exception return, any exception return to ELx.

• Exiting from Debug state to ELx.

ICCGCS If the value of the SPSR_ELx.M[4] bit of the saved process state is 1 when an Illegal exception return occurs,
indicating a return to AArch32 state, then PC bits[63:32] are UNKNOWN.

RWGTRC When address tagging is enabled and an address causes a Data Abort or a Watchpoint exception, the address tag is
included in the VA returned in the FAR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6702
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.9 Logical Address Tagging
D8.9 Logical Address Tagging

RMWZSJ All statements in this section require implementation of FEAT_MTE2.

RRYFYK For the purposes of address translation, when Logical Address Tagging is enabled in a translation regime,
bits[59:56] of the VA are ignored, and instead form a Logical Address Tag.

RHYJDX If all of the following are true, then the VA, bits[63:60], can be used to hold a PAC:

• Logical Address Tagging is enabled.

• Address tagging is disabled.

• FEAT_PAuth is implemented.

D8.9.1 Logical Address Tag control

RTQHWL For a stage 1 translation that supports a single VA range, all of the following determine whether Logical Address
Tagging is enabled:

• TCR_ELx.TBIn.

• If FEAT_MTE_NO_ADDRESS_TAGS is implemented, then TCR_ELx.MTXn.

RSHNLM For a stage 1 translation that supports two VA ranges, all of the following determine whether Logical Address
Tagging is enabled:

• For the lower address range:

— TCR_ELx.TBI0.

— If FEAT_MTE_NO_ADDRESS_TAGS is implemented, then TCR_ELx.MTX0.

• For the upper address range:

— TCR_ELx.TBI1.

— If FEAT_MTE_NO_ADDRESS_TAGS is implemented, then TCR_ELx.MTX1.

RPXNMX The TCR_ELx.TBI{n} bit, and if FEAT_MTE_NO_ADDRESS_TAGS the TCR_ELx.MTX{n} bit, controls
Logical Address Tagging whether or not the corresponding stage 1 translation is enabled.

IQVQJP When Address tagging is enabled for an address range, whether Logical Address Tagging is enabled has no effect
on a PE other than for use in:

• Tag Checking.

• Access to Allocation Tags in memory.

RNPYMC If Logical Address Tagging is enabled and Address tagging is disabled, then bits[59:56] of the VA have all of the
following properties:

• For a stage 1 translation that supports a single VA range, the bits are treated as 0b0000 in all of the following
cases:

— During address translation.

— If the translation system is enabled, then when determining whether the address is out of range and
therefore generates a Translation fault.

— If the translation system is not enabled, then when determining whether the address is out of range and
therefore generates an Address size fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6703
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.9 Logical Address Tagging
• For a stage 1 translation that supports two VA ranges, the bits are treated as a sign-extension of VA bit[55] in
all of the following cases:

— During address translation.

— If the translation system is enabled, then when determining whether the address is out of range and
therefore generates a Translation fault.

— If the translation system is not enabled, then when determining whether the address is out of range and
therefore generates an Address size fault.

IBBHPM For the properties of VA bits[59:56] when Address tagging is enabled, see Address tagging.

D8.9.1.1 Effect of Logical Address Tagging on address translation and cache
maintenance instructions

RPKRBM For the purpose of determining whether bits [59:56] hold a Logical Address Tag, all address translation instructions
and cache maintenance instructions that perform address translation are treated as memory accesses.

D8.9.1.2 Effect of Logical Address Tagging on the PC

RWCTSR When an address is used as an instruction address and not for a data access, Logical Address Tagging is treated as
disabled when loading an address into the PC in all of the following cases:

• A branch or procedure return within an Exception level.

• Taking an exception to an Exception level.

• Exception return to an Exception level.

• Exit from Debug state to an Exception level.

RHTSLR If FEAT_PAuth is implemented, Logical Address Tagging is treated as disabled on execution of any of the following
instructions that operate on a PAC field within an instruction address:

• AUTI*.

• PACI*.

• XPACI.

• XPACLRI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6704
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.10 Pointer authentication
D8.10 Pointer authentication

IXDNDT AArch64 state supports signing the contents of a 64-bit general-purpose register that contains an address with a
pointer authentication code (PAC), and authenticating the contents of a register with a PAC before the register is
used as the target of an indirect branch, or the base register of a load or store instruction.

RSTHJF All statements in this section and subsections require implementation of FEAT_PAuth.

RJZTGK Pointer authentication is supported only in AArch64 state.

IPKPFN If the value of one or more of the ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} or ID_AA64ISAR2_EL1.{GPA3,
APA3} fields is nonzero, then pointer authentication is implemented.

IGMTCR Pointer authentication functionality is the same whether address translation is enabled or disabled, but is useful only
when address translation is enabled.

D8.10.1 PAC field

IKQZPC The pointer authentication mechanism treats the upper bits of a pointer in a 64-bit general-purpose register as a PAC
field.

IBSXBR The TCR_ELx.{T0SZ, T1SZ} fields are used to configure the size and location of the PAC field.

RFWYCF If FEAT_CONSTPACFIELD is not implemented, when a 64-bit general-purpose register, Xd, holds an address with
a PAC field, the location of the PAC field is determined by all of the following:

• The bottom_PAC_bit is 64-TCR_ELx.TnSZ, and the value of n is determined as follows:

— If inserting a PAC into an address and address tagging is not used, then the value of Xd[63] is the value
of n.

— Otherwise, the value of Xd[55] is the value of n.

• If address tagging is used, then all of the following apply:

— If bottom_PAC_bit is > 52 and the stage 1 translation supports a single VA range, then the PAC field is
Xd[55:bottom_PAC_bit].

— Otherwise, the PAC field is Xd[54:bottom_PAC_bit].

• If address tagging is not used and logical address tagging is used, then all of the following apply:

— If bottom_PAC_bit is > 52 and the stage 1 translation supports a single VA range, then the PAC field is
Xd[63:60, 55:bottom_PAC_bit].

— Otherwise, the PAC field is Xd[63:60, 54:bottom_PAC_bit].

• If both address tagging and logical address tagging are not used, then all of the following apply:

— If bottom_PAC_bit is > 52 and the stage 1 translation supports a single VA range, then the PAC field is
Xd[63:bottom_PAC_bit].

— Otherwise, the PAC field is Xd[63:56, 54:bottom_PAC_bit].

For more information, see Address tagging and Logical Address Tagging.

Note

A TCR_ELx.TnSZ value less than 12 requires implementation of FEAT_LVA3.

If FEAT_LVA3 is implemented, and address tagging or logical address tagging are enabled, pointer authentication
might provide software with little to no benefit due to the reduced PAC field size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6705
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.10 Pointer authentication
RXTGWV If FEAT_CONSTPACFIELD is implemented, when a 64-bit general-purpose register, Xd, holds an address, the
location of the PAC field is determined by all of the following:

• The bottom_PAC_bit is 64-TCR_ELx.TnSZ.

• The value of Xd[55] is the value of n used in TnSZ.

• If address tagging is used, then all of the following apply:

— If bottom_PAC_bit is > 52 and the stage 1 translation supports a single VA range, then the PAC field is
Xd[55:bottom_PAC_bit].

— Otherwise, the PAC field is Xd[54:bottom_PAC_bit].

• If address tagging is not used and logical address tagging is used, then all of the following apply:

— If bottom_PAC_bit is > 52 and the stage 1 translation supports a single VA range, then the PAC field is
Xd[63:60, 55:bottom_PAC_bit].

— Otherwise, the PAC field is Xd[63:60, 54:bottom_PAC_bit].

• If both address tagging and logical address tagging are not used, then all of the following apply:

— If bottom_PAC_bit is > 52 and the stage 1 translation supports a single VA range, then the PAC field is
Xd[63:bottom_PAC_bit].

— Otherwise, the PAC field is Xd[63:56, 54:bottom_PAC_bit].

RNQZWG If FEAT_CONSTPACFIELD is implemented, then an implementation is permitted to use the value in Xd[55] to
determine the size of the PAC field when adding a PAC to Xd, even when address tagging is not used.

IVZRCW In the case where address tagging is not used, then any use of a VA that has differing values of bit [63] and bit [55]
is a non-canonical VA that will generate a fault. For this reason, the presence or absence of
FEAT_CONSTPACFIELD does not affect the use of pointer authentication when inserting a PAC into a canonical
VA.

IHLQVM If the TCR_ELx.TBID{n} bit is used to restrict address tagging to data addresses, then instruction addresses can
use Xd[63:56] bits to produce larger pointer authentication code fields.

IDJNGK For all of the following reasons, if FEAT_PAuth2 is implemented, FEAT_FPAC is not implemented, and stage 1
translation is disabled, then Arm recommends not setting the TCR_ELx.TnSZ values to indicate an address range
that is smaller than the PA size:

• For some PAC values, if TCR_ELx.TnSZ is set to indicate an address range that is smaller than the PA size,
the address generated by a failed PAC authentication might be an address within the PA size because the
upper address bits, those between the PA size and the size indicated by the TCR_ELx.TnSZ field, are taken
from the result of the authentication process.

• Accessing memory using such an address that has failed PAC authentication does not generate an Address
size fault.

• The memory access is done using upper address bits, those between the PA size and the size indicated by the
TCR_ELx.TnSZ field, taken from the result of the authentication process.

RVMZGK If the value in TCR_ELx.TnSZ is outside the permitted range, then one of the following CONSTRAINED
UNPREDICTABLE results occur:

• The TCR_ELx.TnSZ value configures the bottom_PAC_bit value.

• The minimum permitted TCR_ELx.TnSZ value configures the bottom_PAC_bit value.

• The maximum permitted TCR_ELx.TnSZ value configures the bottom_PAC_bit value.

RFCMCH If a PE treats an out of range TCR_ELx.TnSZ value as the maximum permitted field value or the minimum
permitted field value for all purposes except reading the field value, then that behavior also applies to determining
bottom_PAC_bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6706
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.10 Pointer authentication
D8.10.2 PAC generation and verification keys

IRSXKN For pointer authentication, all of the following 128-bit PAC keys are provided:

• Instruction address PAC key A, APIAKey_EL1, is the concatenation of the register values
APIAKeyHi_EL1:APIAKeyLo_EL1.

• Instruction address PAC key B, APIBKey_EL1, is the concatenation of the register values
APIBKeyHi_EL1:APIBKeyLo_EL1.

• Data address PAC key A, APDAKey_EL1, is the concatenation of the register values
APDAKeyHi_EL1:APDAKeyLo_EL1.

• Data address PAC key B, APDBKey_EL1, is the concatenation of the register values
APDBKeyHi_EL1:APDBKeyLo_EL1.

• Generic authentication PAC key A, APGAKey_EL1, is the concatenation of the register values
APGAKeyHi_EL1:APGAKeyLo_EL1.

IKBYGG For an Exception level, all of the following bits in the SCTLR_ELx registers are used to enable PAC generation and
validation:

• SCTLR_ELx.EnIA enables instruction address pointer authentication using the APIAKey_EL1 key.

• SCTLR_ELx.EnIB enables instruction address pointer authentication using the APIBKey_EL1 key.

• SCTLR_ELx.EnDA enables data address pointer authentication using the APDAKey_EL1 key.

• SCTLR_ELx.EnDB enables data address pointer authentication using the APDBKey_EL1 key.

IGMQNP All Exception levels use the same set of registers to hold PAC keys.

IGLRSR When switching between Exception levels, software is expected to apply all of the following:

• Software is expected to switch the PAC keys between Exception levels.

• Software is expected to not leave the values of the current keys present in memory, typically done by zeroing
those locations after switching.

D8.10.3 PAC instructions

IVXGGK When a 64-bit general-purpose register is used as the target of an indirect branch instruction or the base register in
a load instruction, all of the following instructions can be used to authenticate the register contents and prepare the
register to be used:

• Instructions that insert a PAC into the PAC field.

• Instructions that extract the value in the PAC field and check that the value is correct.

• Instructions that remove the PAC field in the register and replace it with the pointer sign-extension bits,
without verification.

IKCKSC An instruction that inserts a PAC into the PAC field of a 64-bit general-purpose register generates the PAC using the
value of the 64-register and one other 64-bit diversifier value.

RTMSKZ An instruction that inserts a PAC into the PAC field of a 64-bit general-purpose register, operates on the PAC field
in one of the following ways:

• If FEAT_PAuth2 is not implemented, then the pointer authentication mechanism replaces the PAC field with
the PAC.

• If FEAT_PAuth2 is implemented, then the pointer authentication mechanism exclusive-ORs the bits in the
PAC field with the PAC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6707
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.10 Pointer authentication
• If FEAT_EPAC is implemented, then when performing a PAC operation on a non-canonical address, the
pointer authentication mechanism sets the PAC field to 0.

IKBKGF An instruction that extracts the PAC from the PAC field and checks that the value is correct does all of the following:

• The check is based on the value of the register and one other 64-bit diversifier value.

• If the value is correct, the PAC is replaced with the extension bits.

• If the value is incorrect, all of the following occur:

— The PAC is replaced with the extension bits.

— Two extension bits are set to a unique, fixed value, such that the 64-bit value represents a
non-canonical VA. This is referred to as making the VA non-canonical.

IRZFZG Multiple versions of pointer authentication instructions support different use cases. Some instructions combine a
pointer authentication operation with another operation.

RWNKCJ If PAC generation and validation is disabled, then the PACGA and XPAC* instructions are not affected and are always
enabled.

RWDYDC If PAC generation and validation is disabled, then all of the following apply:

• Instructions that insert a PAC into the address in a 64-bit general-purpose register execute as NOPs.

• Instructions that authenticate a PAC execute as NOPs.

• If an instruction combines pointer authentication with another operation, then all of the following apply:

— The pointer authentication does not occur.

— The combined operation behaves the same as the equivalent instruction that does not do pointer
authentication.

IRHMHV All of the following are examples of the resulting behavior of instructions that combine pointer authentication with
another operation, if PAC generation and validation is disabled:

• A RETAA instruction operates as a RET instruction.

• A LDRAA Xt, [Xn, #<simm10>]! instruction operates as a LDR Xt, [Xn, #<simm10>]! instruction.

IZVGYK The PACGA instruction generates a 32-bit PAC from two 64-bit values and a generic key.

IZPGRZ The PACGA instruction can be used to protect small memory blocks. PACGA instructions can be chained to protect
an arbitrary-sized memory block.

IPXWQC For pointer authentication instructions other than the PACGA instruction, the PAC is generated using one of the
following IMPLEMENTATION DEFINED methods:

• If FEAT_PACQARMA5 is implemented, then ID_AA64ISAR1_EL1.APA is nonzero and the QARMA5
block cipher algorithm is used.

• If FEAT_PACIMP is implemented, then ID_AA64ISAR1_EL1.API is nonzero and an IMPLEMENTATION
DEFINED algorithm is used.

• If FEAT_PACQARMA3 is implemented, then ID_AA64ISAR2_EL1.APA3 is nonzero and the QARMA3
block cipher algorithm is used.

IWXMCQ For the PACGA instruction, the PAC is generated using one of the following IMPLEMENTATION DEFINED methods:

• If FEAT_PACQARMA5 is implemented, then ID_AA64ISAR1_EL1.GPA is nonzero and the QARMA5
block cipher algorithm is used.

• If FEAT_PACIMP is implemented, then ID_AA64ISAR1_EL1.GPI is nonzero and an IMPLEMENTATION
DEFINED algorithm is used.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6708
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.10 Pointer authentication
• If FEAT_PACQARMA3 is implemented, then ID_AA64ISAR2_EL1.GPA3 is nonzero and the QARMA3
block cipher algorithm is used.

RZYPJV If the PAC is generated using an IMPLEMENTATION DEFINED algorithm, then the IMPLEMENTATION DEFINED
algorithm uses the same arguments as the ComputePAC() pseudocode function.

RJTRCS For a set of arguments passed to the ComputePAC() pseudocode function, the same result is produced by all PEs that
an execution thread could migrate between.

For more information, see aarch64/functions/pac/computepac/ComputePAC.

D8.10.4 Faulting on pointer authentication

IXBGSY A PAC authentication failure for a given VA can cause a fault to be generated in the following three manners,
according to the type of the instruction and whether FEAT_FPAC and FEAT_FPACCOMBINE are implemented:

• The PAC instruction makes the VA non-canonical, such that a subsequent use of the VA generates a fault. In
this case, the PAC instruction does not directly generate the fault.

• The PAC instruction makes the VA non-canonical and uses that VA such that a fault is generated by that
instruction.

• The PAC instruction directly generates a PAC Fail exception, with EC code 0b011100.

RMLWGL If an instruction is a combined instruction that includes pointer authentication, then when the PAC is incorrect in a
given VA, one of the following behaviors occurs:

• For a combined authenticate and load instruction, then:

— If FEAT_FPACCOMBINE is not implemented, the VA is made non-canonical and then used as the
address for the load.

— If FEAT_FPACCOMBINE is implemented, then the instruction generates a PAC Fail exception, with
EC code 0b011100.

• For a combined authenticate and branch instruction, then:

— If FEAT_FPACCOMBINE is not implemented, the VA is made non-canonical and the PC is updated
to this non-canonical value.

— If FEAT_FPACCOMBINE is implemented, then the instruction generates a PAC Fail exception, with
EC code 0b011100.

RKJSRQ For a PAC authentication instruction, AUT*, when the PAC is incorrect for a given VA, one of the following behaviors
occurs:

• If FEAT_FPAC is not implemented, the VA is made non-canonical.

• If FEAT_FPAC is implemented, then the instruction generates a PAC Fail exception, with EC code 0b011100.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6709
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.11 Memory Encryption Contexts extension
D8.11 Memory Encryption Contexts extension

IYTBSD The Memory Encryption Contexts extension (MEC extension) introduces memory encryption contexts (MECs) to
all physical address (PA) spaces. Multiple memory encryption contexts are provided to the Realm physical address
space for assignment to Realm virtual machines, with policy controlled by Realm EL2. The Root, Secure and
Non-Secure physical address spaces each have one context.

RLFYSJ All statements in this section and subsections require implementation of FEAT_MEC.

D8.11.1 Effect of MEC on PA spaces

RGKRVJ PAs in the Root PA space are associated with the default MECID of zero.

RYJVST PAs in the Secure PA space are associated with the default MECID of zero.

RMRKMQ PAs in the Non-secure PA space are associated with the default MECID of zero.

RWGBXM Root, Secure and Non-Secure PA spaces do not support multiple encryption contexts.

D8.11.1.1 Effect on the EL3 translation regime

IHHCPS If FEAT_MEC is implemented, then FEAT_RME is also implemented and therefore execution in EL3 uses the Root
Security state.

RFMLTL For EL3 stage 1 translated addresses, if SCTLR2_EL3.EMEC is 0, then accesses to the Realm PA space use the
default MECID of zero.

RCCSND For EL3 stage 1 translated addresses, if SCTLR2_EL3.EMEC is 1, then accesses to the Realm PA space use the
Realm PA space Alternate MECID for EL3, configured in MECID_RL_A_EL3.

RLPNPC MECID_RL_A_EL3 is not permitted to be cached in a TLB.

ITZYKP EL3 software can only access the Realm PA space using translated addresses. The {NSE, NS} fields within the
Block or Page descriptors must equal {1, 1} to access the Realm PA space.

D8.11.1.2 Effect on the Realm EL2 and Realm EL2&0 translation regimes

RCBJVF If SCTLR2_EL2.EMEC is 0, then Realm EL2 and EL2&0 accesses to Realm PA space use the default MECID of
zero.

RFCSBF If SCTLR_EL2.M is 0 and SCTLR2_EL2.EMEC is 1, then Realm EL2 and EL2&0 accesses to Realm PA space
use the EL2&0 Primary 0 MECID, configured in MECID_P0_EL2.

RRXMFG For Realm EL2 stage 1 translations, if SCTLR_EL2.M is 1, SCTLR2_EL2.EMEC is 1, and HCR_EL2.E2H is 0,
then all lookup levels use the EL2&0 Primary 0 MECID, configured in MECID_P0_EL2.

RXBDTH For Realm EL2&0 stage 1 TTBR0 and TTBR1 translations, if SCTLR_EL2.M is 1, SCTLR2_EL2.EMEC is 1, and
HCR_EL2.E2H is 1, then all lookup levels use the MECID determined by the value of the TCR_EL2.A1 field.

ITSRTP TCR_EL2.A1 is not permitted to be cached in a TLB, and MECID values are not permitted to be cached in a TLB.
However, the choice of which MECID register is used for translation table walks is permitted to be cached in a TLB,
as long as it is only cached in TLB entries that are associated with the ASID that is also selected by the A1 field.

TCR_EL2.A1 Translation lookup MECID

0 MECID_P1_EL2

1 MECID_P0_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6710
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.11 Memory Encryption Contexts extension
RLZGSD For Realm EL2 and EL2&0 stage 1 TTBR0 translated addresses to Realm PA space, if SCTLR_EL2.M is 1,
SCTLR2_EL2.EMEC is 1, and TCR2_EL2.AMEC0 is 0, then the translation validity and MECID selection is
determined by the AMEC field in the Block or Page descriptor used for that translation.

RVWKVQ For Realm EL2&0 stage 1 TTBR1 translated addresses to Realm PA space, if SCTLR_EL2.M is 1,
SCTLR2_EL2.EMEC is 1, TCR2_EL2.AMEC1 is 0, and HCR_EL2.E2H is 1, then the translation validity and
MECID selection is determined by the AMEC field in the Block or Page descriptor used for that translation.

IPDRGM Changing the state of either TCR2_EL2.AMEC0 or TCR2_EL2.AMEC1 from 1 to 0 requires TLB maintenance
operations for the update to be visible.

RTHGCP For Realm EL2 and EL2&0 stage 1 TTBR0 translated addresses to Realm PA space, if SCTLR_EL2.M is 1,
SCTLR2_EL2.EMEC is 1, and TCR2_EL2.AMEC0 is 1, then MECID selection is determined by the AMEC field
in the Block or Page descriptor used for that translation.

RMQHXQ For Realm EL2&0 stage 1 TTBR1 translated addresses to Realm PA space, if SCTLR_EL2.M is 1,
SCTLR2_EL2.EMEC is 1, TCR2_EL2.AMEC1 is 1, and HCR_EL2.E2H is 1, then MECID selection is determined
by the AMEC field in the Block or Page descriptor used for that translation.

RXVLMT If NS is 1 in a Realm EL2 and EL2&0 stage 1 Block or Page descriptor, then the AMEC field is RES0 and does not
affect MECID selection.

RVKDBG MECID_P0_EL2, MECID_P1_EL2, MECID_A0_EL2, and MECID_A1_EL2 are not permitted to be cached in a
TLB.

D8.11.1.3 Effect on the Realm EL1&0 translation regime

RHDGTR If SCTLR2_EL2.EMEC is 0, then Realm EL1&0 accesses to Realm PA space use the default MECID of zero.

RYSNHS If SCTLR2_EL2.EMEC is 1 and HCR_EL2.VM is 0, then Realm EL1&0 accesses to Realm PA space use the
EL1&0 Primary MECID, configured in VMECID_P_EL2.

RFQFXK For Realm EL1&0 stage 1 translations, if SCTLR_EL2.EMEC is 1, HCR_EL2.VM is 0, and SCTLR_EL1.M is 1,
then all lookup levels use the EL1&0 Primary MECID, configured in VMECID_P_EL2.

TTD.AMEC Translation validity Output MECID

0 Valid MECID_P0_EL2

1 Translation fault N/A

TTD.AMEC Translation validity Output MECID

0 Valid MECID_P1_EL2

1 Translation fault N/A

TTD.AMEC Output MECID

0 MECID_P0_EL2

1 MECID_A0_EL2

TTD.AMEC Output MECID

0 MECID_P1_EL2

1 MECID_A1_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6711
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.11 Memory Encryption Contexts extension
RPDCWV For Realm EL1&0 stage 2 translations, if SCTLR2_EL2.EMEC is 1 and HCR_EL2.VM is 1, then all lookup levels
use the EL1&0 Primary MECID, configured in VMECID_P_EL2.

RXMTZH For Realm EL1&0 stage 2 translated addresses to Realm PA space, if SCTLR2_EL2.EMEC is 1 and HCR_EL2.VM
is 1, then MECID selection is determined by the AMEC field in the Block or Page descriptor used for that
translation.

RDQZTR If NS is 1 within a Realm EL1&0 stage 2 Block or Page descriptor, then the AMEC field is RES0 and does not affect
MECID selection.

RJQSMC VMECID_P_EL2 and VMECID_A_EL2 are not permitted to be cached in a TLB.

TTD.AMEC Output MECID

0 VMECID_P_EL2

1 VMECID_A_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6712
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
D8.12 Virtualization Host Extensions

IQJTJN Virtualization Host Extensions provide enhanced support for a Type 2 virtualization solution, where there is a Host
OS that is either more privileged than the hypervisor or is the hypervisor.

RSJSDF All statements in this chapter require implementation of FEAT_VHE.

RCSTLG If and only if an implementation includes EL2 using AArch64, then Virtualization Host Extensions, FEAT_VHE,
can apply.

RGNLPT FEAT_VHE adds all of the following state:

• The HCR_EL2.E2H configuration bit.

• The CONTEXTIDR_EL2 register, which has the same format and contents as the CONTEXTIDR_EL1
register.

• The TTBR1_EL2 register, which has the same format and contents as the TTBR1_EL1 register.

• The CNTHV_CTL_EL2, CNTHV_CVAL_EL2, and CNTHV_TVAL_EL2 registers, which have the same
format and contents as the CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0 registers,
respectively.

• An EL2 virtual timer with all of the following properties:

— It is accessed using the CNTHV_CTL_EL2, CNTHV_CVAL_EL2, and CNTHV_TVAL_EL2
registers.

— The virtual offset is treated as 0.

D8.12.1 Behavior of HCR_EL2.E2H

ISSMWM HCR_EL2.E2H enables a configuration where a host operating system is running in EL2, and the host operating
system applications are running in EL0. The host operating system might also manage guest virtual machines that
run EL1&0, with stage 2 translation enabled and controlled by the host operating system.

RVJBPM If HCR_EL2.E2H is 0, then all of the following apply:

• Execution at EL2 uses the EL2 translation regime.

• All of the following effects apply to the contents of TTBR1_EL2:

— The contents can be read by an MRS instruction and written by an MSR instruction.

— For all other hardware operations, the contents are ignored.

• The Context ID matching breakpoint has all of the following properties:

— It is disabled at EL2.

— It uses the value of CONTEXTIDR_EL1 at EL0 and EL1.

RMNWSS If HCR_EL2.E2H is 1, then the translation regime controlled by TCR_EL2 is the EL2&0 translation regime.

RQXCQP All of the following are properties of the EL2&0 translation regime:

• The EL2&0 translation regime behaves the same as stage 1 in the EL1&0 translation regime and uses an
upper address range translated by tables pointed to by TTBR1_EL2.

• TTBR0_EL2 translates the lower address range of the EL2&0 translation regime and is extended to have the
same format and contents as TTBR0_EL1.

• The Privileged Access Never mechanism applies to data accesses from EL2.

• When CNTVCT_EL0 is read from EL2, the virtual offset is reported as 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6713
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
• All of the following registers are redefined:

— CNTHCTL_EL2.

— CPTR_EL2.

— TCR_EL2.

RBLXMQ If the value of HCR_EL2.E2H is 1, then all of the following effects to the Context ID apply:

• When executing at EL2, a Context ID matching breakpoint uses CONTEXTIDR_EL2.

• Both VMID and VMID plus Context ID matching breakpoints do not match at EL2.

RFLVFR If HCR_EL2.{E2H, TGE} is {1, 0}, then accesses from EL1 and EL0 use the EL1&0 translation regime.

RVMWQQ If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then when executing at EL0, all of the following apply:

• The EL2&0 translation regime is used and accesses are treated as unprivileged.

• A Context ID matching breakpoint uses CONTEXTIDR_EL2.

• The following timer registers, and their equivalent AArch32 registers, are redefined to access the associated
EL2 register, rather than accessing the EL0 register:

— CNTP_CTL_EL0.

— CNTP_CVAL_EL0.

— CNTP_TVAL_EL0.

— CNTV_CTL_EL0.

— CNTV_CVAL_EL0.

— CNTV_TVAL_EL0.

• Both VMID and VMID plus Context ID matching breakpoints do not match at EL0.

RCFMND If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then when executing at EL2, all of the following apply:

• The EL2&0 translation regime is used.

• For permission and watchpoint checking, if the unprivileged instructions LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH,
LDTRSW, STTR, STTRB, and STTRH are executed, then the behavior is the same as executing at EL0.

RXCLCK If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then all of the following register effects apply:

• Except for the purpose of reading the value held in the register, some fields in HCR_EL2 and all fields in
HSTR_EL2 are treated as effectively having a specific value.

• SCTLR_EL2 is redefined in all of the following ways:

— Additional fields from SCTLR_EL1 are included.

— The register applies to execution at EL0.

• When CNTVCT_EL0 is read from EL0 or EL2, the virtual offset is treated as 0.

• SCTLR_EL1.UMA and SCTLR_EL1.A bit are both treated as 0 for all purposes other than reading the value
of the register.

RXXZKM If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then when an exception is taken from EL0 to EL2, the value of the
HCR_EL2.RW bit is ignored when determining the exception vector offset to use.

RQWHVM If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then the TLB maintenance and address translation instructions that
apply to the EL1&0 translation regime are redefined to apply to the EL2&0 translation regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6714
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
RHGWKR If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then when executing at EL2 or EL0, any physical interrupt that is
configured to be taken at EL2 is subject to the PSTATE.{D, A, I, F} interrupt masks, and if FEAT_NMI is
implemented, then the effect of PSTATE.ALLINT.

For more information, see The PSTATE debug mask bit, D and Asynchronous exception masking.

RKJKRH If the value of HCR_EL2.{E2H, TGE} is {1, 1}, then all of the following apply to EL1:

• Access from EL1 is not possible.

• CPACR_EL1 does not cause any instructions to be trapped to EL1.

• CNTKCTL_EL1 does not cause any instructions to be trapped to EL1, and the event stream caused by
CNTKCTL_EL1 is disabled.

D8.12.2 System and Special-purpose register redirection

RJGGMV If all of the conditions in the following list are true, then the System register mapping in the following table applies:

• The PE is executing at EL2.

• HCR_EL2.E2H is 1.

Table D8-101 System register redirection

Specified EL1 System register Equivalent EL2 System register accessed at EL2

AFSR0_EL1 AFSR0_EL2

AFSR1_EL1 AFSR1_EL2

AMAIR_EL1 AMAIR_EL2

AMAIR2_EL1 AMAIR2_EL2

BRBCR_EL1 BRBCR_EL2

CNTKCTL_EL1 CNTHCTL_EL2

CONTEXTIDR_EL1 CONTEXTIDR_EL2

CPACR_EL1 CPTR_EL2

ESR_EL1 ESR_EL2

FAR_EL1 FAR_EL2

GCSCR_EL1 GCSCR_EL2

GCSPR_EL1 GCSPR_EL2

MAIR_EL1 MAIR_EL2

MAIR2_EL1 MAIR2_EL2

MPAM1_EL1 MPAM2_EL2

PFAR_EL1 PFAR_EL2

PIR_EL1 PIR_EL2

PIRE0_EL1 PIRE0_EL2

PMSCR_EL1 PMSCR_EL2

POR_EL1 POR_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6715
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
RRZRWZ If all of the conditions in the following list are true, then the System register mapping in the following table applies:

• The PE is executing at EL2.

• HCR_EL2.E2H is 1.

• The Effective value of SCR_EL3.NS is 1.

RLLSLV If all of the conditions in the following list are true, then the System register mapping in the following table applies:

• The PE is executing at EL2.

• HCR_EL2.E2H is 1.

SCTLR_EL1 SCTLR_EL2

SCTLR2_EL1 SCTLR2_EL2

SCXTNUM_EL1 SCXTNUM_EL2

SMCR_EL1 SMCR_EL2

SPMACCESSR_EL1 SPMACCESSR_EL2

TCR_EL1 TCR_EL2

TCR2_EL1 TCR2_EL2

TFSR_EL1 TFSR_EL2

TRCITECR_EL1 TRCITECR_EL2

TRFCR_EL1 TRFCR_EL2

TTBR0_EL1 TTBR0_EL2

TTBR1_EL1 TTBR1_EL2

VBAR_EL1 VBAR_EL2

ZCR_EL1 ZCR_EL2

Table D8-101 System register redirection (continued)

Specified EL1 System register Equivalent EL2 System register accessed at EL2

Table D8-102 Additional System register redirection when the Effective value of SCR_EL3.NS is 1

Specified System register Equivalent EL2 System register accessed at EL2

CNTP_CTL_EL0 CNTHP_CTL_EL2

CNTP_CVAL_EL0 CNTHP_CVAL_EL2

CNTP_TVAL_EL0 CNTHP_TVAL_EL2

CNTV_CTL_EL0 CNTHV_CTL_EL2

CNTV_CVAL_EL0 CNTHV_CVAL_EL2

CNTV_TVAL_EL0 CNTHV_TVAL_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6716
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
• The Effective value of SCR_EL3.NS is 0.

RZNNRM If all of the conditions in the following list are true, then the Special-purpose register mapping in the following table
applies:

• The PE is executing at EL2.

• HCR_EL2.E2H is 1.

IWJCBD For more information, see System and Special-purpose register aliasing.

D8.12.3 System and Special-purpose register aliasing

RPHHPL If all of the conditions in the following list are true, then the System register mapping in the following table applies.
The aliases are UNDEFINED at EL1 and EL0.

• EL2 is enabled in the current Security state.

• HCR_EL2.E2H is 1.

• The PE is executing at EL2 or EL3.

Table D8-103 Additional System register redirection when the Effective value of SCR_EL3.NS is 0

Specified EL1 System register Equivalent EL2 System register accessed at EL2

CNTP_CTL_EL0 CNTHPS_CTL_EL2

CNTP_CVAL_EL0 CNTHPS_CVAL_EL2

CNTP_TVAL_EL0 CNTHPS_TVAL_EL2

CNTV_CTL_EL0 CNTHVS_CTL_EL2

CNTV_CVAL_EL0 CNTHVS_CVAL_EL2

CNTV_TVAL_EL0 CNTHVS_TVAL_EL2

Table D8-104 Special-purpose register redirection

Specified EL1 Special-purpose register Equivalent EL2 Special-purpose register accessed at EL2

ELR_EL1 ELR_EL2

SPSR_EL2 SPSR_EL1

Table D8-105 System register aliases

Alias mnemonic EL1 or EL0 System register accessed at EL2 or EL3

AFSR0_EL12 AFSR0_EL1

AFSR1_EL12 AFSR1_EL1

AMAIR_EL12 AMAIR_EL1

AMAIR2_EL12 AMAIR2_EL2

BRBCR_EL12 BRBCR_EL1

CNTKCTL_EL12 CNTKCTL_EL1

CNTP_CTL_EL02 CNTP_CTL_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6717
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
CNTP_CVAL_EL02 CNTP_CVAL_EL0

CNTP_TVAL_EL02 CNTP_TVAL_EL0

CNTV_CTL_EL02 CNTV_CTL_EL0

CNTV_CVAL_EL02 CNTV_CVAL_EL0

CNTV_TVAL_EL02 CNTV_TVAL_EL0

CONTEXTIDR_EL12 CONTEXTIDR_EL1

CPACR_EL12 CPACR_EL1

ESR_EL12 ESR_EL1

FAR_EL12 FAR_EL1

GCSCR_EL12 GCSCR_EL1

GCSPR_EL12 GCSPR_EL1

MAIR_EL12 MAIR_EL1

MAIR2_EL12 MAIR2_EL1

MPAM1_EL12 MPAM1_EL1

PFAR_EL12 PFAR_EL1

PIR_EL12 PIR_EL1

PIRE0_EL12 PIRE0_EL1

PMSCR_EL12 PMSCR_EL1

POR_EL12 POR_EL1

SCTLR_EL12 SCTLR_EL1

SCTLR2_EL12 SCTLR2_EL1

SCXTNUM_EL12 SCXTNUM_EL1

SMCR_EL12 SMCR_EL1

SPMACCESSR_EL12 SPMACCESSR_EL1

TCR_EL12 TCR_EL1

TCR2_EL12 TCR2_EL1

TFSR_EL12 TFSR_EL1

TRCITECR_EL12 TRCITECR_EL1

TRFCR_EL12 TRFCR_EL1

TTBR0_EL12 TTBR0_EL1

Table D8-105 System register aliases (continued)

Alias mnemonic EL1 or EL0 System register accessed at EL2 or EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6718
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.12 Virtualization Host Extensions
RKTWST If all of the conditions in the following list are true, then the Special-purpose register mapping in the following table
applies. The aliases are UNDEFINED at EL1 and EL0.

• EL2 is enabled in the current Security state.

• HCR_EL2.E2H is 1.

• The PE is executing at EL2 or EL3.

IZXNTN For more information, see System and Special-purpose register redirection.

TTBR1_EL12 TTBR1_EL1

VBAR_EL12 VBAR_EL1

ZCR_EL12 ZCR_EL1

Table D8-105 System register aliases (continued)

Alias mnemonic EL1 or EL0 System register accessed at EL2 or EL3

Table D8-106 Special-purpose register aliases

Alias mnemonic
Equivalent EL1 Special-purpose register accessed
at EL2 or EL3

ELR_EL12 ELR_EL1

SPSR_EL12 SPSR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6719
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
D8.13 Nested virtualization

IFDMLZ Nested virtualization is an OPTIONAL feature that enables a Host hypervisor executing at EL2 to run a Guest
hypervisor at EL1.

RQQDQK All statements in this section and subsections require implementation of FEAT_NV.

ICDTFC Nested virtualization adds the HCR_EL2.{NV, NV1, AT} fields.

IWHFTT An implementation is permitted to cache the HCR_EL2.{NV, NV1} fields in a TLB.

RRHQHT If a Guest hypervisor is run with HCR_EL2.E2H set to 0, then the Host hypervisor is required to set
HCR_EL2.TVM to 1 and CPTR_EL2.TCPAC to 1 to trap any Guest hypervisor accesses to the EL1 System
registers that would be accessed from any Guest OS running under the Guest hypervisor.

IFPHRW Nested virtualization does not modify either self-hosted debug or the Performance Monitors Extension.

IFFWLP Arm assumes that the Host hypervisor traps accesses to the Breakpoint registers and Performance Monitors registers
to EL2, so that it can process any accesses to these registers made by a Guest hypervisor or by a Guest OS running
under the Guest hypervisor.

D8.13.1 Behavior when HCR_EL2.NV is 1

IZMLPV Nested Virtualization traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if HCR_EL2.NV
was 0.

ITZTZL If HCR_EL2.NV is 1 and the current Exception level is EL1, then all of the following apply:

• If a read access or write access from EL1 to one of the following System registers or Special-purpose registers
occurs and that access is permitted at EL2, then that access is trapped to EL2 and reported using EC syndrome
value 0x18 in ESR_EL2:

— Any System register accessed using MRS or MSR named *_EL2, except SP_EL2.

— Any System register accessed using MRS or MSR named *_EL12.

— Any System register accessed using MRS or MSR named *_EL02.

— Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und, and SPSR_fiq, accessed using MRS or MSR.

— Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

• If one of the following instructions is executed from EL1, then the instruction is trapped to EL2 and reported
using EC syndrome value 0x18 in ESR_EL2:

— Address Translation instructions that are accessible only from EL2 and above.

— TLB maintenance instructions that are accessible only from EL2 and above.

• If the ERET, ERETAA, or ERETAB instruction is executed from EL1, then the instruction is trapped to EL2 and
reported using EC syndrome value 0x1A in ESR_EL2.

• If EL3 is not implemented and the Effective value of HCR_EL2.TSC is 1, then when an SMC instruction is
executed at EL1, all of the following apply:

— The SMC instruction is trapped to EL2.

— The exception is reported using EC syndrome value 0x17 in ESR_EL2.

RGFLDX If HCR_EL2.NV is 1 and the current Exception level is EL1, then EL1 read accesses to the CurrentEL register return
a value of 0x2 in bits[3:2].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6720
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
D8.13.2 Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0

IZJRNN If HCR_EL2.{NV, NV1} is {1, 0} and the current Exception level is EL1, then any exception taken from EL1 to
EL1 causes SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

D8.13.3 Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1

IJKLJK If HCR_EL2.{NV, NV1} is {1, 1} and the current Exception level is EL1, then all of the following apply:

• If an access to one of the following registers occurs, then the access is trapped to EL2 and reported using EC
syndrome value 0x18 in ESR_EL2:

— An access to VBAR_EL1.

— An access to ELR_EL1.

— An access to SPSR_EL1.

— If implemented, then an access from EL1 to SCXTNUM_EL1.

• For Block descriptors and Page descriptors in the EL1&0 translation regime, all of the following apply:

— Block descriptor and Page descriptor bit[54] holds PXN, not UXN.

— Block descriptor and Page descriptor bit[53] is RES0.

— Block descriptor and Page descriptor bit[6], AP[1], is treated as 0 regardless of the actual value.

• For Table descriptors in the EL1&0 translation regime, if hierarchical permissions are enabled, then all of the
following apply:

— Table descriptor bit[61], APTable[0], is treated as 0 regardless of the actual value.

— Table descriptor bit[60] holds PXNTable, not UXNTable.

— Table descriptor bit[59] is RES0.

• PSTATE.PAN is treated as 0 for all purposes except reading the value of the bit.

• If the LDTR* or the STTR* instructions are executed, then all of the following apply:

— The LDTR* instructions behave the same as the corresponding LDR* instructions.

— The STTR* instructions behave the same as the corresponding STR* instructions.

IFQZDC Arm expects software to clear the HCR_EL2.NV1 bit to 0 before permitting execution at EL0.

D8.13.4 Behavior when HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1

IKZNPS If HCR_EL2.{NV, NV1} is {0, 1} and the current Exception level is EL1, then one of the following CONSTRAINED
UNPREDICTABLE behaviors apply:

• For all purposes other than reading back the value of the HCR_EL2.NV bit, the implementation behaves as
if HCR_EL2.{NV, NV1} is {1, 1}.

• For all purposes other than reading back the value of the HCR_EL2.NV1 bit, the implementation behaves as
if HCR_EL2.{NV, NV1} is {0, 0}.

• The implementation behaves as defined when HCR_EL2.NV is 0, with HCR_EL2.NV1 set to 1 having the
effect of causing accesses to VBAR_EL1, ELR_EL1, and SPSR_EL1 from EL1 to be trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6721
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
D8.13.5 Effect of HCR_EL2.AT

IRBYYS If HCR_EL2.AT is 1, then all of the following are trapped to EL2 and reported using EC syndrome value 0x18 in
ESR_EL2:

• Executing AT S1E0R from EL1.

• Executing AT S1E0W from EL1.

• Executing AT S1E1R from EL1.

• Executing AT S1E1W from EL1.

• Executing AT S1E1RP from EL1.

• Executing AT S1E1WP from EL1.

D8.13.6 Enhanced support for nested virtualization

IGDQNK Enhanced support for nested virtualization provides a mechanism for hardware to transform reads and writes from
System registers into reads and writes from memory.

RJXWDQ All statements in this section and subsections require implementation of FEAT_NV2.

ITMCKW If HCR_EL2.NV2 is 1 and the current Exception level is EL1, then all of the following apply:

• Accesses to EL2 registers are redirected to EL1 registers.

• Accesses to System registers are transformed to memory accesses.

IVGFWB If HCR_EL2.NV2 is 0, then the behavior of HCR_EL2.{NV, NV1} is unchanged.

D8.13.6.1 Redirection of register accesses from EL2 to EL1

IRKLVD If HCR_EL2.{NV, NV2} is {1, 1} and the current Exception level is EL1, then accesses to all of the following EL2
Special-purpose registers are redirected to the corresponding EL1 register:

• An access from EL1 to SPSR_EL2 is redirected to SPSR_EL1.

• An access from EL1 to ELR_EL2 is redirected to ELR_EL1.

IDLGPW If HCR_EL2.{NV, NV2} is {1, 1} and the current Exception level is EL1, then accesses to all of the following EL2
System registers are redirected to the corresponding EL1 register:

• An access from EL1 to ESR_EL2 is redirected to ESR_EL1.

• An access from EL1 to FAR_EL2 is redirected to FAR_EL1.

IHFNHT For more information, see:

• op0==0b11, Moves to and from Special-purpose registers.

• Instructions for accessing non-debug System registers.

D8.13.6.2 Loads and stores generated by transforming register accesses

IKYDSS If HCR_EL2.{NV, NV2} is {1, 1} and the current Exception level is EL1, then when an MRS or MSR instruction
is executed to access one of the registers listed in Table D8-107, all of the following apply:

• The instruction is treated as an instruction executed at EL1.

• The register accesses do not generate an exception to EL2.

• The register accesses are transformed to memory accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6722
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
• The memory accesses are treated as EL2 accesses.

ILKWDD When register accesses are transformed to memory accesses, all of the following information is used to form the
memory address:

• A base address that is stored in the VNCR_EL2 register.

• For a register that is redirected to memory, a unique memory offset value.

• The memory address is a combination of the base address and the memory offset according to the formula
SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64).

RCSRPQ When register accesses are transformed to memory accesses, the following table shows the unique memory offset
that is assigned to the register.

Table D8-107 Memory address offset associated with transformed register access

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset

VTTBR_EL2 VTTBR_EL2 0x20

VSTTBR_EL2 VSTTBR_EL2 0x30

VTCR_EL2 VTCR_EL2 0x40

VSTCR_EL2 VSTCR_EL2 0x48

VMPIDR_EL2 VMPIDR_EL2 0x50

CNTVOFF_EL2 CNTVOFF_EL2 0x60

HCR_EL2 HCR_EL2 0x78

HSTR_EL2 HSTR_EL2 0x80

VPIDR_EL2 VPIDR_EL2 0x88

TPIDR_EL2 TPIDR_EL2 0x90

HCRX_EL2 HCRX_EL2 0xA0

VNCR_EL2 VNCR_EL2 0xB0

CPACR_EL12 CPACR_EL1 0x100

CONTEXTIDR_EL12 CONTEXTIDR_EL1 0x108

SCTLR_EL12 SCTLR_EL1 0x110

ACTLR_EL1 ACTLR_EL1 0x118

TCR_EL12 TCR_EL1 0x120

AFSR0_EL12 AFSR0_EL1 0x128

AFSR1_EL12 AFSR1_EL1 0x130

ESR_EL12 ESR_EL1 0x138

MAIR_EL12 MAIR_EL1 0x140

AMAIR_EL12 AMAIR_EL1 0x148

MDSCR_EL1 MDSCR_EL1 0x158

SPSR_EL12 SPSR_EL1 0x160
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6723
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
CNTV_CVAL_EL02 CNTV_CVAL_EL0 0x168

CNTV_CTL_EL02 CNTV_CTL_EL0 0x170

CNTP_CVAL_EL02 CNTP_CVAL_EL0 0x178

CNTP_CTL_EL02 CNTP_CTL_EL0 0x180

SCXTNUM_EL12 SCXTNUM_EL1 0x188

TFSR_EL12 TFSR_EL1 0x190

HDFGRTR2_EL2 HDFGRTR2_EL2 0x1A0

CNTPOFF_EL2 CNTPOFF_EL2 0x1A8

HDFGWTR2_EL2 HDFGWTR2_EL2 0x1B0

HFGRTR_EL2 HFGRTR_EL2 0x1B8

HFGWTR_EL2 HFGWTR_EL2 0x1C0

HFGITR_EL2 HFGITR_EL2 0x1C8

HDFGRTR_EL2 HDFGRTR_EL2 0x1D0

HDFGWTR_EL2 HDFGWTR_EL2 0x1D8

ZCR_EL12 ZCR_EL1 0x1E0

HAFGRTR_EL2 HAFGRTR_EL2 0x1E8

SMCR_EL12 SMCR_EL1 0x1F0

SMPRIMAP_EL2 SMPRIMAP_EL2 0x1F8

TTBR0_EL12 TTBR0_EL1 0x200

TTBR1_EL12 TTBR1_EL1 0x210

FAR_EL12 FAR_EL1 0x220

ELR_EL12 ELR_EL1 0x230

SP_EL1 SP_EL1 0x240

VBAR_EL12 VBAR_EL1 0x250

TCR2_EL12 TCR2_EL1 0x270

SCTLR2_EL12 SCTLR2_EL1 0x278

MAIR2_EL12 MAIR2_EL1 0x280

AMAIR2_EL12 AMAIR2_EL1 0x288

PIRE0_EL12 PIRE0_EL1 0x290

PIRE0_EL1 PIRE0_EL2 0x298

PIR_EL12 PIR_EL1 0x2A0

POR_EL12 POR_EL1 0x2A8

Table D8-107 Memory address offset associated with transformed register access (continued)

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6724
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
S2PIR_EL2 S2PIR_EL2 0x2B0

S2POR_EL1 S2POR_EL1 0x2B8

HFGRTR2_EL2 HFGRTR2_EL2 0x2C0

HFGWTR2_EL2 HFGWTR2_EL2 0x2C8

PFAR_EL12 PFAR_EL1 0x2D0

HFGITR2_EL2 HFGITR2_EL2 0x310

ICH_LR<n>_EL2 ICH_LR<n>_EL2 0x400+8*n

ICH_AP0R<n>_EL2 ICH_AP0R<n>_EL2 0x480+8*n

ICH_AP1R<n>_EL2 ICH_AP1R<n>_EL2 0x4A0+8*n

ICH_HCR_EL2 ICH_HCR_EL2 0x4C0

ICH_VMCR_EL2 ICH_VMCR_EL2 0x4C8

VDISR_EL2 VDISR_EL2 0x500

VSESR_EL2 VSESR_EL2 0x508

PMBLIMITR_EL1 PMBLIMITR_EL1 0x800

PMBPTR_EL1 PMBPTR_EL1 0x810

PMBSR_EL1 PMBSR_EL1 0x820

PMSCR_EL12 PMSCR_EL1 0x828

PMSEVFR_EL1 PMSEVFR_EL1 0x830

PMSICR_EL1 PMSICR_EL1 0x838

PMSIRR_EL1 PMSIRR_EL1 0x840

PMSLATFR_EL1 PMSLATFR_EL1 0x848

PMSNEVFR_EL1 PMSNEVFR_EL1 0x850

PMSDSFR_EL1 PMSDSFR_EL1 0x858

TRFCR_EL12 TRFCR_EL1 0x880

TRCITECR_EL12 TRCITECR_EL1 0x888

GCSPR_EL12 GCSPR_EL1 0x8C0

GCSCR_EL12 GCSCR_EL1 0x8D0

BRBCR_EL12 BRBCR_EL1 0x8E0

SPMACCESSR_EL12 SPMACCESSR_EL1 0x8E8

MPAM1_EL12 MPAM1_EL1 0x900

MPAMHCR_EL2 MPAMHCR_EL2 0x930

MPAMVPMV_EL2 MPAMVPMV_EL2 0x938

Table D8-107 Memory address offset associated with transformed register access (continued)

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6725
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
RQSKNK Unallocated memory offset values up to but not including 0x1000 are reserved.

RJSCYJ When a register access instruction targets a register that is not implemented, the PE treats access to that register as
unallocated.

RDHMDM When a System register access instruction is trapped by either or both of HCR_EL2.{NV, NV1}, then the instruction
is transformed into a memory access instruction instead of creating a trap.

ITFJCH When a System register access instruction is not trapped by either or both of HCR_EL2.{NV, NV1}, then the trap
is subject to the exception prioritization rules.

IRSCBR Accesses to all of the following registers that affect hypervisor execution by controlling the event stream are not
transformed into memory accesses:

• CNTHCTL_EL2.

• If HCR_EL2.NV1 is 0, then CNTKCTL_EL12.

• If HCR_EL2.NV1 is 1, then CNTKCTL_EL1.

RVFMQB When an MSR or MRS System register access is transformed into a memory access, the memory access has all of the
following properties:

• The memory access is translated by one of the following:

— If HCR_EL2.E2H is 0, then the EL2 translation regime.

— If HCR_EL2.E2H is 1, then the EL2&0 translation regime.

• The endianness of the memory access is defined by SCTLR_EL2.EE.

• The memory access is 64-bit single-copy atomic aligned to 64 bits.

• The memory access does not have Acquire or Release semantics.

• If there is no context synchronizing operation between the register access and a load or store instruction
accessing the address of the transformed memory access, then the transformed memory access can be
reordered with respect to any reads or writes at EL1 caused by load or store instructions to the same address.

• The memory access behaves as if PSTATE.PAN is 0.

MPAMVPM0_EL2 MPAMVPM0_EL2 0x940

MPAMVPM1_EL2 MPAMVPM1_EL2 0x948

MPAMVPM2_EL2 MPAMVPM2_EL2 0x950

MPAMVPM3_EL2 MPAMVPM3_EL2 0x958

MPAMVPM4_EL2 MPAMVPM4_EL2 0x960

MPAMVPM5_EL2 MPAMVPM5_EL2 0x968

MPAMVPM6_EL2 MPAMVPM6_EL2 0x970

MPAMVPM7_EL2 MPAMVPM7_EL2 0x978

AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0<n>_EL2 0xA00+8*n

AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1<n>_EL2 0xA80+8*n

Table D8-107 Memory address offset associated with transformed register access (continued)

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6726
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
• For fields in a transformed System register that are defined to be RES0 or RES1, the memory access does not
check that the fields are set correctly, nor are they forced to their dedicated value.

RBSBZP When an MSRR or MRRS System register access is transformed into a memory access, the memory access has all of the
following properties:

• The memory access is 128-bit aligned.

• If the target memory region is Inner and Outer Write-back Cacheable, then the access is 128-bit single-copy
atomic.

• If the target memory region is not Inner and Outer Write-back Cacheable, then it is CONSTRAINED
UNPREDICTABLE whether the access is 64-bit or 128-bit single-copy atomic.

• All other properties of the memory access are the same as for MSR and MRS operations that are transformed to
memory accesses.

ICRPJG All memory address offset values associated with transformed register accesses for 128-bit System registers are
aligned to 16-bytes.

ITRBJN For more information, see Prioritization of Synchronous exceptions taken to AArch64 state.

D8.13.6.3 Exceptions from transformed register accesses

IDBTLM If HCR_EL2.{NV, NV2} is {1, 1}, then any exception taken from EL1 and taken to EL1 causes the
SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

RYWCZS If a System register access is transformed to a memory access, then when the memory access generates a Data Abort,
the resulting fault has all of the following properties:

• The fault is taken to EL2, using the standard vector offset for exceptions from EL1 to EL2.

• The fault is reported as a Data Abort from the current Exception level with the ESR_EL2.EC code 0x25.

• FAR_EL2 is updated to hold the faulting address.

RFRWJX If a System register access is transformed to a memory access, then when the memory access generates a
synchronous External abort and External aborts are not configured to be taken to EL3, the resulting fault has all of
the following properties:

• The fault is taken to EL2, using the standard vector offset for exceptions from EL1 to EL2.

• The fault is reported as a Data Abort from the current Exception level with the ESR_EL2.EC code 0x25.

IZLKQZ The VNCR field in ESR_EL2 and ESR_EL3 identifies whether the fault came from use of VNCR_EL2 by EL1.

IBKFTF For more information, see ISS encoding for an exception from a Data Abort.

D8.13.6.4 Interaction with self-hosted and External debug

RCJQGX When a System register access is transformed into a memory access, all of the following operations treat the
instruction as being executed at EL1:

• PMU events filtered by Exception level.

• For trace or Statistical Profiling, instructions filtered by Exception level.

• Checking the instruction address against breakpoint registers or trace resources.

RZZSMN When a System register access is transformed into a memory access, all of the following operations treat the
memory access as being executed at EL2:

• The memory access is checked against the watchpoint registers.

• The memory address is recorded in a Statistical Profiling record.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6727
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.13 Nested virtualization
RZNPSG If all of the following apply, then it is CONSTRAINED UNPREDICTABLE whether there is a watchpoint match:

• A System register access is transformed into a memory access.

• The memory access matches an EL2 access in the watchpoint registers.

• A watchpoint is linked to a context-aware breakpoint that is programmed to match the value held in
CONTEXTIDR_EL1 or VMID.

RDDNDL If all of the following apply, then a watchpoint match generates a Watchpoint debug event:

• A System register access is transformed into a memory access.

• EDSCR.HDE is 1.

• Halting is enabled.

RYGWHK If all of the following apply, then a watchpoint match generates a Watchpoint exception:

• A System register access is transformed into a memory access.

• EDSCR.HDE is 0.

• Debug exceptions are enabled at EL2.

RDGCTK If a System register access is transformed to a memory access, then when a watchpoint match generates a
Watchpoint exception, the resulting exception has all of the following properties:

• The exception is taken to EL2.

• The fault is reported as a Watchpoint from the current Exception level with the ESR_EL2.EC code 0x35.

• FAR_EL2 is updated to hold the watchpointed address.

RVYZMX If a System register access is transformed to a memory access, then when a Watchpoint exception is generated, the
VNCR field in ESR_EL2 identifies whether the Watchpoint exception came from use of VNCR_EL2 by EL1.

RHZJLY If a System register access is transformed to a memory access, then the resulting loads and stores are treated by the
Performance Monitors as Memory-read operations and Memory-write operations.

RMVNHT If a System register access is transformed to a memory access, then when the Statistical Profiling Unit selects the
instruction generating the memory access for profiling, it records the operation as a Load/Store operation.

RZVXYL If a System register access is transformed to a memory access, then when the Statistical Profiling Unit selects the
instruction generating the memory access for profiling and Statistical Profiling is disabled at EL2, the VA for the
memory access is not recorded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6728
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
D8.14 Memory aborts

RSQLMR For a VMSAv8-64 implementation, all of the following abort mechanisms can cause the PE to take an exception
due to a failed memory access:

• A Debug exception generated by the self-hosted debug system. For more information, see Chapter D2
AArch64 Self-hosted Debug.

• An Alignment fault generated by a memory access that is not aligned as required by the operation. For more
information, see Alignment support.

• An MMU fault generated by the fault checking sequence in the appropriate translation regime. For more
information, see MMU fault types.

• An External abort generated by the memory system and not by self-hosted debug, alignment checking, or
MMU checking. For more information, see External aborts.

RXXMXW For AArch64 state, MMU faults are synchronous exceptions that are reported as one of the following:

• Data Aborts due to data memory access faults.

• Instruction Aborts due to instruction fetch faults.

For more information, see Synchronous exception types.

IWFYSR In some cases, an MMU fault generated as part of AT instruction execution is reported in PAR_EL1 rather than as a
synchronous abort.

IYMZWZ When an MMU fault is generated and reported as an Instruction Abort or Data Abort, the Exception level that the
exception is taken to depends on the translation regime and translation stage that caused the fault.

IDHWPX When a memory access abort generates an exception, all of the following registers are used to record context
information:

• A Fault Address Register, FAR_ELx.

• An Exception Syndrome Register, ESR_ELx.

IXLTCG When an MMU fault is generated, the fault context saved in the ESR_ELx at the Exception level that the fault is
taken to depends on all of the following:

• Whether the fault is reported as an Instruction Abort or as a Data Abort.

• Whether the exception is taken from the same or a lower Exception level.

IFVNYG For an Instruction Abort, only the following two exceptions have a higher priority in the exception priority
hierarchy:

• Software Step exception.

• PC alignment fault exception.

ISRPXB For a Data Abort, only Watchpoint exceptions have a lower priority in the exception priority hierarchy.

D8.14.1 MMU fault types

RYLSQG All of the following MMU fault types are supported, and there are no other MMU fault types:

• Alignment fault on a data access. For more information, see Alignment support.

• Translation fault.

• Address size fault.

• Synchronous External abort on a translation table walk.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6729
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
• Access flag fault.

• Permission fault.

• TLB conflict abort.

• Granule Protection Check fault (GPC fault). For more information, see GPC faults.

RGKZPW When an attempt to access Device memory generates an MMU fault, no memory access occurs.

RTQDJS If the memory attributes cannot be determined and the resultant memory region could be Device memory, then when
an attempt to access that region generates an MMU fault, no memory access occurs.

D8.14.1.1 Translation fault

RDYNYQ If descriptor bit[0] is 0 in any translation table entry, the descriptor is invalid. When a translation table lookup returns
an invalid descriptor, a Translation fault is generated and descriptor bits[63:1] are ignored.

RKRMJZ If descriptor bit[1] is 0 at a lookup level that does not support Block descriptors, then the descriptor encoding is
reserved. When a translation table lookup returns that descriptor, a Translation fault is generated.

RFDQJL If FEAT_BBM is implemented and supported at level 1 or higher, and the Block descriptor has the nT bit set, then
the implementation is permitted to generate a Translation fault.

IRRSLQ For any translation lookup level, when a Translation fault is generated, the reported fault code indicates the lookup
level.

RVZZSZ When one or more of the following apply, a level 0 Translation fault is generated on the relevant translation stage:

• The IA does not map onto a TTBR_ELx address range.

• If the IA maps onto the TTBR0_ELx address range and the IA contains any one bits above the configured IA
size as determined by TCR_ELx.T0SZ.

• If the IA maps onto the TTBR1_ELx address range and the IA contains any zero bits above the configured
IA size as determined by TCR_ELx.T1SZ.

• When a TLB miss occurs, the corresponding TCR_ELx.EPDn field prevents a translation table walk using
TTBRn_ELx.

• When FEAT_E0PD is implemented, the corresponding TCR_ELx.E0PDn field prevents unprivileged access
to an address translated by TTBRn_ELx.

RMLNTS A translation table entry that generates a Translation fault is not cached in a TLB.

IXFTPJ When a Translation fault is generated, the fault handler does not have to perform TLB maintenance to remove the
faulting entry.

IPXJFV For more information, see MMU faults generated by cache maintenance operations.

D8.14.1.2 Address size fault

RCVSBH For a translation stage, if an address in one of the following has nonzero address bits above the configured OA size,
then an Address size fault is generated:

• The TTBR_ELx used in the translation.

• A translation table entry.

• The translation OA.

RFTZHB An Address size fault can be generated at any translation lookup level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6730
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
RWDZFC For the 64KB translation granule, if the implementation does not support 52-bit PAs, then all of the following apply:

• It is IMPLEMENTATION DEFINED whether descriptor bits[15:12] being nonzero generates an Address size fault.

• For this case, it is deprecated to not generate an Address size fault.

RBFHQH When an Address size fault is generated, the reported fault code indicates one of the following:

• If the fault was generated due to the TTBR_ELx used in the translation having nonzero address bits above
the OA size, then a fault at level 0.

• If the fault was not generated due to the TTBR_ELx used in the translation, then the lookup level at which
the fault occurred.

RGGQPR When an Address size fault is generated, the translation table entry causing the fault is not cached in a TLB.

IPBYZQ When an Address size fault is generated, the fault handler does not have to perform TLB maintenance to remove
the faulting entry.

IWWYQH An implementation is required to ensure that the Contiguous bit does not prevent generation of Address size faults.
For more information, see Architectural guarantees when the Contiguous bit is misprogrammed.

IJTTDF For more information, see:

• MMU faults generated by cache maintenance operations.

• Output address size configuration.

D8.14.1.3 External abort on a translation table walk

RYLGBV If an External abort on a translation table walk is generated, then it is reported in one of the following ways:

• If the External abort is synchronous, then it is reported as one of the following:

— If the translation table walk is due to an instruction fetch, then a synchronous Instruction Abort
exception.

— If the translation table walk is due to a data access, an address translation instruction, or a cache
maintenance instruction operating by VA, then a synchronous Data Abort exception.

• If the External abort is asynchronous, then it is reported using the SError interrupt exception.

IJVVQN A TLB or intermediate TLB caching structure might support:

• An arbitrary number of translation table lookup levels.

• One or more translation stages that might not correspond to an address translation lookup stage.

RBGPQR If a synchronous External abort is generated due to a TLB or intermediate TLB caching structure, including parity
or ECC errors, then all of the following are permitted:

• If the PE cannot precisely determine the translation stage at which the error occurred, then it is reported and
prioritized as a stage 1 fault.

• If the PE cannot precisely determine the lookup level at which the error occurred, then the lookup level is
reported and prioritized as one of the following:

— The lowest-numbered lookup level that could have caused the error.

— If the PE cannot determine any information about the lookup level, then level 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6731
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
D8.14.1.4 Access flag fault

IBMSDD For an implementation that does not manage the AF in hardware, when and only when a non-speculative access is
made to an address and an attempt is made to translate that address using a descriptor with an AF of 0, an Access
flag fault is generated.

RLFGXS For a translation lookup of a Block descriptor or Page descriptor, when an Access flag fault is generated, the
reported fault code indicates the lookup level.

IPNQBP When an Access flag fault is generated, the translation table entry causing the fault is not cached in a TLB.

ITQXPT When an Access flag fault is generated, the fault handler does not have to perform TLB maintenance to remove the
faulting entry.

IRGFRF For more information, see:

• MMU faults generated by cache maintenance operations.

• Software management of the Access flag.

D8.14.1.5 Permission fault

RCSRQR When a Permission fault is generated, the reported fault code indicates the lookup level of the Block or Page
descriptor used in the translation, even if the lack of permission was caused by hierarchical permission controls.

RJVXRH A translation table entry that generates a Permission fault is permitted to be cached in a TLB.

IWJLXV If software updates a stage 1 or stage 2 translation table due to a Permission fault, then the software is required to
invalidate the appropriate TLB entry to prevent stale information in a TLB from being used by a subsequent memory
access.

IWHWDD For more information, see:

• Prioritization of Permission faults.

• MMU faults generated by cache maintenance operations.

• Memory access control.

• Stage 2 fault on a stage 1 translation table walk.

D8.14.1.6 TLB conflict abort

ICNNYQ When a TLB has not been properly invalidated, such as when architecturally required TLB invalidation is not done,
an address lookup might hit multiple TLB entries.

RZQNWZ When a lookup address hits multiple TLB entries, it is IMPLEMENTATION DEFINED whether a TLB conflict abort is
generated.

RWJMZJ When a TLB conflict abort is generated, it is reported as one of the following:

• On an instruction fetch it is reported as an Instruction Abort.

• On a data access or a cache management instruction, it is reported as a Data Abort.

• For an AT S1E0* or AT S1E1* instruction executed from EL1, when a TLB conflict abort is generated on a stage
2 translation, it is reported as a Data Abort.

IDHRWD For an AT instruction other than an AT S1E0* or AT S1E1* instruction executed from EL1, a TLB conflict does not
generate an abort.

RQWTKL When a TLB conflict abort is generated, it is IMPLEMENTATION DEFINED whether it is a stage 1 abort or a stage 2
abort.

RZMVZT If EL2 is enabled and stage 2 of the EL1&0 translation regime is disabled, then a stage 2 abort cannot be generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6732
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
IJYDXJ When a TLB conflict abort is generated, all of the following are reported:

• A 0b110000 Fault status code.

• The lookup address that caused the fault.

D8.14.2 MMU faults generated by address translation instructions

RXGWVV An address translation instruction uses the translation system and can generate all of the following faults:

• Translation fault.

• Address size fault.

• Synchronous External abort on a translation table walk.

• Access flag fault.

• Permission fault.

• TLB conflict abort.

• When translating using the AArch32 translation systems, a domain fault.

INPRRQ If FEAT_RME is implemented, the following faults are added to the list of faults that can be generated by an address
translation instruction:

• GPF.

• GPT address size fault.

• GPT walk fault.

• Synchronous External abort on GPT fetch.

These are collectively called Granule Protection Check faults (GPC faults). For more information, see GPC faults.

RNHWXL When an address translation instruction generates a fault and when none of the following generated the fault, the
fault is not taken as a synchronous exception, and PAR_EL1 is populated with PAR_EL1.F == 1 and the fault
syndrome information:

• A synchronous External abort during a translation table walk.

• An AT S1E0* or AT S1E1* instruction executed from EL1 generates a stage 2 fault on a memory access during
a translation table walk.

For more information, see Exceptions to reporting the fault in PAR_EL1.

IZCTWS If an address translation instruction requires two address translation stages, then a fault can be generated from either
stage 1 or stage 2.

ICLHMP If an address translation instruction requires two address translation stages in the EL1&0 translation regime, then a
fault can be generated on the stage 2 translation of an address accessed as part of the stage 1 translation table walk.

For more information, see Stage 2 fault on a stage 1 translation table walk.

IMXTJT When populating PAR_EL1 with the result of an address translation instruction, granule protection checks are not
performed on the final output address of a successful translation. However, granule protection checks are performed
on fetches of stage 1 or stage 2 descriptors and these checks could result in a GPC fault.

IKKHBS If FEAT_PAN2 is implemented, then the <pan> component of the AT instruction <operation> determines whether
the PSTATE.PAN value is considered when determining permissions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6733
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
D8.14.2.1 Exceptions to reporting the fault in PAR_EL1

RQBSVM For an address translation instruction executed at a particular Exception level, ELx, if a synchronous External abort
is generated on a stage 1 translation table walk, then the Data Abort exception is taken to the Exception level to
which a synchronous External abort on a stage 1 translation table walk for a memory access from ELx would be
taken.

RQCVQK When an address translation instruction executed at EL3 generates a synchronous External abort on a stage 2
translation table walk, a Data Abort exception is taken to EL3.

RYWCRL For an address translation instruction executed at the EL2 or EL1 Exception level, if a synchronous External abort
is generated on a stage 2 translation table walk, then the Data Abort exception is taken to the Exception level to
which a synchronous External abort on a stage 2 translation table walk for a memory access from that same EL2 or
EL1 Exception level would be taken.

RFDJKZ When an address translation instruction causes a synchronous External abort that is reported as an exception, all of
the following apply:

• PAR_EL1 is UNKNOWN.

• The ESR_ELx of the target Exception level indicates that the fault was generated by a translation table walk
due to a cache maintenance operation or address translation instruction.

• The FAR_ELx of the target Exception level holds the VA supplied to the address translation instruction.

RZWKYB When an AT S1E0* or AT S1E1* instruction is executed, all of the following can generate a stage 2 fault on a memory
access during a translation table walk:

• Stage 2 Translation fault.

• Stage 2 Address size fault.

• Synchronous External abort on a stage 2 translation table walk.

• Stage 2 Access fault.

• Stage 2 Permission fault.

• A TLB conflict abort that takes an IMPLEMENTATION DEFINED choice of reporting as a stage 2 abort.

RVMRFQ When an AT S1E0* or AT S1E1* instruction executed from EL1 generates a stage 2 fault on a memory access during
a translation table walk, one of the following occurs:

• If the fault is a synchronous External abort on a stage 2 translation table walk and SCR_EL3.EA is 1, then a
synchronous External abort on a stage 2 translation table walk is taken to EL3.

• The fault is taken as an exception to EL2 and all of the following apply:

— PAR_EL1 is UNKNOWN.

— ESR_EL2 indicates that a cache maintenance instruction faulted during a translation table walk.

— HPFAR_EL2 holds the IPA that faulted.

— FAR_EL2 holds the VA supplied to the address translation instruction.

RZTRDD In addition to the cases listed in Address translation instructions in the Arm architecture, the following faults as a
result of an address translation instruction are reported as an exception:

• GPC faults that would result in a GPC exception.

• GPC faults on fetches of stage 2 descriptors from AT S1E0* and AT S1E1* instructions executed from EL1.

• When HCR_EL2.GPF is 1, GPFs on fetches of stage 1 descriptors from AT S1E0* and AT S1E1* instructions
executed from EL1.

Otherwise, faults as a result of an address translation instruction are reported using PAR_EL1.FST.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6734
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
IVKPJB For more information, see Stage 2 fault on a stage 1 translation table walk.

D8.14.3 MMU faults generated by cache maintenance operations

IQZTRG There are no alignment requirements in cache maintenance instructions and execution of these instructions cannot
generate an Alignment fault.

RBDCCY If the Point of Coherency is before any cache level, then it is IMPLEMENTATION DEFINED whether the execution of
any cache clean instruction, or clean and invalidate instruction, that operates by VA to the Point of Coherency, can
generate any MMU fault.

RMZTNR If the Point of Unification is before any data cache level, then it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean instruction, or clean and invalidate instruction, that operates by VA to the Point
of Unification, can generate any MMU fault.

RDNZYL It is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate by VA to the Point of
Unification instruction can generate any MMU fault.

RTRTWX It is IMPLEMENTATION DEFINED whether execution of any cache maintenance instruction by VA can generate an
Access flag fault.

RMXZPX If SCTLR_ELx.UCI is 1, enabling EL0 execution of the data cache maintenance instructions that operate by VA,
then when the instruction is executed at EL0 to a location that does not have read permission at EL0, a Permission
fault can be generated.

RXJRNW If SCTLR_ELx.UCI is 1, enabling EL0 execution of the IC IVAU instruction, and if the instruction is executed at
EL0 to a location that does not have read permission at EL0, then it is IMPLEMENTATION DEFINED whether a
Permission fault is generated.

RFTXTG If the Effective value of SCTLR_EL1.CMOW is 1, then when executing an IC IVAU, DC CIVAC, DC CIGVAC,
or DC CIGDVAC instruction at EL0 that has stage 1 read permission, but does not have stage 1 write permission,
a stage 1 Permission fault is generated.

RBBLTJ If the Effective value of HCRX_EL2.CMOW is 1, then when executing an IC IVAU, DC CIVAC, DC CIGVAC, or
DC CIGDVAC instruction at EL1 or EL0 that has stage 2 read permission, but does not have stage 2 write
permission, a stage 2 Permission fault is generated.

RHGLYG If an IC IVAU, DC CIVAC, DC CIGVAC, or DC CIGDVAC instruction is implemented as a NOP, then it is
IMPLEMENTATION DEFINED whether the instruction generates a stage 1 or stage 2 Permission fault when it does not
have read and write permission.

IZNSBH When an implementation can generate MMU faults on execution of cache maintenance operations, Permission
faults are generated according to the type of cache maintenance operation and system register configuration.

RJQCHQ If a stage 2 translation of a stage 1 translation table walk is done as part of a cache maintenance instruction, then a
stage 2 Permission fault can be generated.

RJYWZL If a DC IVAC does not have write permission to the location it invalidates, then a Permission fault can be generated.

IXQZJB DC ZVA is not a cache maintenance instruction.

ILJLSP For more information, see:

• Data and unified caches.

• Instruction caches.

• Memory aborts.

• Permission fault.

• A64 Cache maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6735
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
D8.14.4 MMU fault-checking sequence

IPTYRT For a translation stage, when an IA is translated to an OA, the fault checking sequence is done using all of the
following steps:

1. If the IA is subject to an alignment check, then check the alignment and do one of the following:

• If the IA is not aligned, then an Alignment fault is generated.

• If the IA is aligned, then continue to the next step.

2. Check that the IA maps to a translation table base address register, TTBR, and do one of the following:

• If the IA does not map to a TTBR, then a Translation fault is generated.

• If the IA maps to a TTBR and translation using that TTBR is disabled, then a Translation fault is
generated.

• If the IA maps to a TTBR, then get the translation table base address and continue to the next step.

3. Check that the translation table base address size is valid and do one of the following:

• If the translation table base address size is not valid, then an Address size fault is generated.

• If the translation table base address size is valid, then continue to the next step.

4. Fetch the descriptor, using all of the following steps:

• If the descriptor address is an IPA from a stage 1 translation, then all of the following are done:

— The fault checking sequence is done on the stage 2 translation, using the IPA as an IA to the
stage 2 translation.

— The OA from the stage 2 translation is the descriptor PA.

• If the descriptor address is not an IPA from a stage 1 translation, then the descriptor address is the
descriptor PA.

• The descriptor fetch is initiated using the descriptor PA, and one of the following occurs:

— A Synchronous External abort is generated.

— The descriptor is returned.

5. Check that the descriptor is valid and do one of the following:

• If the descriptor is not valid, then a Translation fault is generated.

• If the descriptor is valid, then continue to the next step.

6. Check that the descriptor address size is valid and do one of the following:

• If the descriptor address size is not valid, then an Address size fault is generated.

• If the descriptor address size is valid, then continue to the next step.

7. Check the descriptor type and do one of the following:

• For a Table descriptor, get the descriptor address, get the hierarchical permissions and attributes that
apply to subsequent lookup levels, and go back to step 4 to fetch the next descriptor.

• For a Block descriptor or Page descriptor, continue to the next step.

8. If FEAT_BBM is implemented and supported at level 1 or higher, and the fetched descriptor is a block
descriptor with the nT bit set, then the implementation can generate a Translation fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6736
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
9. If AF hardware management is disabled or not implemented, check the descriptor AF bit and do one of the
following:

• If AF is 0, then an Access flag fault is generated.

• If AF is 1, then continue to the next step.

10. If AF hardware management is enabled, then the hardware attempts to update the AF and that might result in
a Permission fault at stage 2, or a Synchronous External abort.

11. Get the OA and OA space from the Block descriptor or Page descriptor returned by the translation table walk.

12. Check the alignment required for the output memory type and do one of the following:

• If the OA alignment is not valid, then an Alignment fault is generated.

• If the OA alignment is valid, then continue to the next step.

13. Check the OA space access permissions and do one of the following:

• If the OA space access is not permitted, then a Permission fault is generated.

• If the OA space access is permitted, then continue to the next step.

14. If dirty state hardware management is enabled, then the hardware attempts to update the dirty state and that
might result in a Permission fault at stage 2, or a Synchronous External abort.

15. The translation stage returns the OA and region attributes.

IJFVPZ For a translation stage, the following figure illustrates the MMU fault checking sequence.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6737
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
Figure D8-22 MMU fault checking sequence

Input address

Alignment

check?

Fetch descriptor ‡

No

Table

entry

?

Check address alignment

Misaligned

?

Alignment

fault

Check access permissions

Violation

?

Output address

Yes

Descriptor

valid?

Translation

fault
No

No

Yes
Permission

fault

A1†

A2†

No

Alignment

fault
Alignment

valid

?

AF bit

== 0

?

Access flag

fault

Translatable

?

Translation

fault
YesGet translation table base address

Address

size valid

?

Address

size fault

Yes

Yes

Address

size valid

?

Address

size fault

Yes

No

No

Yes

See 3See 3

See 4See 4

Yes

See 11

See 22

Granule Protection Check Violation

?

1 Is the access subject to an alignment check?1 Is the access subject to an alignment check?

2 Does the address map to a TTBR?2 Does the address map to a TTBR?

3 Not permitted at the lowest lookup level3 Not permitted at the lowest lookup level

4 Alignment constraints not met4 Alignment constraints not met

‡ See Fetching the descriptor flowchart

† Links to and from Fetching the descriptor flowchart

1 Is the access subject to an alignment check?

2 Does the address map to a TTBR?

3 Not permitted at the lowest lookup level

4 Alignment constraints not met

‡ See Fetching the descriptor flowchart

† Links to and from Fetching the descriptor flowchart

GPC

fault

No

Yes

Granule Protection Check

Violation

?

GPC

fault
Yes

No

Input address

Alignment

check?

Fetch descriptor ‡

No

Table

entry

?

Check address alignment

Misaligned

?

Alignment

fault

Check access permissions

Violation

?

Output address

Yes

Descriptor

valid?

Translation

fault
No

No

Yes
Permission

fault

A1†

A2†

No

Alignment

fault
Alignment

valid

?

AF bit

== 0

?

Access flag

fault

Translatable

?

Translation

fault
YesGet translation table base address

Address

size valid

?

Address

size fault

Yes

Yes

Address

size valid

?

Address

size fault

Yes

No

No

Yes

See 3

See 4

Yes

See 1

See 2

Granule Protection Check Violation

?

1 Is the access subject to an alignment check?

2 Does the address map to a TTBR?

3 Not permitted at the lowest lookup level

4 Alignment constraints not met

‡ See Fetching the descriptor flowchart

† Links to and from Fetching the descriptor flowchart

GPC

fault

No

Yes

Granule Protection Check

Violation

?

GPC

fault
Yes

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6738
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
IHZZMB For a translation stage, the following figure illustrates the steps taken to fetch a descriptor during a translation table
walk.

Figure D8-23 Fetching a descriptor during a translation table walk

IGLRRS For more information, see Permission fault.

D8.14.4.1 Stage 2 fault on a stage 1 translation table walk

IMQXNK For a translation regime that uses two translation stages, the memory access made as part of a stage 1 translation
table lookup can generate one or more of the following during a stage 2 translation:

• A Translation fault, Address size fault, Access flag fault, or Permission fault.

• A GPC fault on the stage 2 descriptor access.

• A synchronous External abort on the stage 2 descriptor access.

• A synchronous External abort on the memory access.

INGFYK If an Address size fault, Translation fault, Access flag fault, or Permission fault is generated on a stage 2 translation
of a stage 1 translation table walk, then all of the following apply:

• The exception is taken to EL2.

• ESR_EL2.ISS[7] is 1 to indicate a stage 2 fault during a stage 1 translation table walk.

• The part of the ISS field that might contain details of the instruction is invalid.

Descriptor address

Translate address.

Descriptor address is input

address for stage 2

translation A1

Fault checking sequence,

for stage 2 translation

A2

Returns descriptor PA

Fetch descriptor

No

Synchronous

External

abort ?

Synchronous

External abort on

translation table

walk or hardware

update of

translation table

Is this address an IPA for a

EL0 or EL1 access?

Return descriptor

No

Translation

Required?
Yes

Granule Protection Check

Violation

?

GPC

fault
Yes

No

Descriptor address

Translate address.

Descriptor address is input

address for stage 2

translation A1

Fault checking sequence,

for stage 2 translation

A2

Returns descriptor PA

Fetch descriptor

No

Synchronous

External

abort ?

Synchronous

External abort on

translation table

walk or hardware

update of

translation table

Is this address an IPA for a

EL0 or EL1 access?

Return descriptor

No

Translation

Required?
Yes

Granule Protection Check

Violation

?

GPC

fault
Yes

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6739
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
IMRJLZ If a synchronous External abort is generated on a stage 2 translation of a stage 1 translation table walk, then all of
the following apply:

• If SCR_EL3.EA is 0, then all of the following apply:

— The exception is taken to EL2.

— ESR_EL2.ISS[7] is 1 to indicate a stage 2 fault during a stage 1 translation table walk.

• If SCR_EL3.EA is 1, then all of the following apply:

— The exception is taken to EL3.

— ESR_EL3.ISS[7] is 1 to indicate a stage 2 fault during a stage 1 translation table walk.

• The part of the ISS field that might contain details of the instruction is invalid.

IZGDHT If the stage 2 translation of a stage 1 translation table walk returns a Device memory type, then the value of
HCR_EL2.PTW determines all of the following:

• If the value is 0, the translation table walk access is permitted and treated as an access to Normal,
Non-cacheable memory.

• If the value is 1, the translation table walk access generates a stage 2 Permission fault.

IVXKVL If the stage 2 translation of a stage 1 translation table lookup maps to Device memory, it likely indicates a Guest OS
error where the stage 1 translation table is corrupted, and it is appropriate to trap this access to the hypervisor.

ILWGSL If software updates HCR_EL2.PTW without changing the current VMID, then the software is required to invalidate
the TLBs because they might hold entries that depend on the effect of HCR_EL2.PTW.

IHPGQN For more information, see Permission fault.

D8.14.4.2 The lookup level associated with MMU faults

IXCCCM For MMU faults, the Data Fault Status Code (DFSC) and Instruction Fault Status Code (IFSC) in the ESR_ELx
report the translation lookup level associated with a given MMU fault type.

ICRKPZ When an MMU fault is generated, all of the following determine the lookup level associated with the fault:

• For a fault generated by a translation table walk, the lookup level at which the fault occurred.

• For a Translation fault, one of the following:

— The lookup level at which the fault occurred.

— If a fault is generated because translation table walks are disabled by TCR_ELx.EPDn, the IA is
outside the range specified by the associated TTBR_ELx, or FEAT_E0PD is enabled and prevents
access to addresses translated by TTBRn_ELx, then the fault is reported as a level 0 fault.

• For an Access flag fault, the lookup level at which the fault occurred.

• For a Permission fault, including a Permission fault generated by hierarchical permissions, the final lookup
level that returned the Block descriptor or Page descriptor.

ICJZVP For more information, see Permission fault.

D8.14.5 MMU fault prioritization from a single address translation stage

RXCHFJ For a single translation stage in a VMSAv8-64 translation regime, the following list shows the possible MMU faults
on a memory access, from highest priority to lowest priority, and includes where stage 2 faults that are generated
within a stage 1 translation table walk are prioritized:

1. For a stage 1 translation, an Alignment fault not caused by memory type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6740
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
2. If one or more of the following is true, then a Translation fault:

• The IA out of the translated address range.

• For a stage 1 translation, the IA requiring a TTBR_ELx that is disabled.

• For a stage 2 translation, VTCR_EL2.SL0 is inconsistent with VTCR_EL2.T0SZ.

• For a stage 2 translation, VSTCR_EL2.SL0 is inconsistent with VSTCR_EL2.T0SZ.

• For a stage 2 translation, SL0 is programmed to a reserved value.

• For a stage 2 translation, the Effective value of VTCR_EL2.DS is 1 and VTCR_EL2.{SL2, SL0} is
inconsistent with VTCR_EL2.T0SZ.

• For a stage 2 translation, the Effective value of VTCR_EL2.DS is 1 and VSTCR_EL2.{SL2, SL0} is
inconsistent with VSTCR_EL2.T0SZ.

• For a stage 2 translation, the Effective value of VTCR_EL2.DS is 1 and {SL2, SL0} is programmed
to a reserved value.

3. If one or more of the following is true, an Address size fault on the address in TTBR_ELx:

• The address size check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS fails.

• The programmed address is outside the implemented range.

4. If stage 2 address translation is enabled, then a stage 2 MMU fault on a level -1 memory access during a stage
1 table walk, including an Address size fault caused by a PA outside the implemented range.

5. A synchronous parity or ECC error on a level -1 lookup of a translation table walk.

6. A GPC fault on a level -1 lookup of a translation table walk.

7. A synchronous External abort on a level -1 lookup of a translation table walk.

8. Translation fault on a level -1 translation table entry.

9. If one or more of the following is true, an Address size fault on the address in a level -1 lookup translation
table entry:

• The address size check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS fails.

• The OA is out of the implemented range.

10. If stage 2 address translation is enabled, then a stage 2 MMU fault on a level 0 memory access during a stage
1 table walk, including an Address size fault caused by a PA outside the implemented range.

11. A synchronous parity or ECC error on a level 0 lookup of a translation table walk.

12. A GPC fault on a level 0 lookup of a translation table walk.

13. A synchronous External abort on a level 0 lookup of a translation table walk.

14. Translation fault on a level 0 translation table entry.

15. If one or more of the following is true, an Address size fault on the address in a level 0 lookup translation
table entry:

• The address size check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS fails.

• The OA is out of the implemented range.

16. If stage 2 address translation is enabled, then a stage 2 MMU fault on a level 1 memory access during a stage
1 table walk, including an Address size fault caused by a PA outside the implemented range.

17. A synchronous parity or ECC error on a level 1 lookup of a translation table walk.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6741
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
18. A GPC fault on a level 1 lookup of a translation table walk.

19. A synchronous External abort on a level 1 lookup of a translation table walk.

20. Translation fault on a level 1 translation table entry.

21. If one or more of the following is true, an Address size fault on the address in a level 1 lookup translation
table entry:

• The address size check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS fails.

• The OA is out of the implemented range.

22. If stage 2 address translation is enabled, then a stage 2 MMU fault on a level 2 memory access during a stage
1 table walk, including an Address size fault caused by a PA outside the implemented range.

23. A synchronous parity or ECC error on a level 2 lookup of a translation table walk.

24. A GPC fault on a level 2 lookup of a translation table walk.

25. A synchronous External abort on a level 2 lookup of a translation table walk.

26. Translation fault on a level 2 translation table entry.

27. If one or more of the following is true, an Address size fault on the address in a level 2 lookup translation
table entry:

• The address size check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS fails.

• The OA is out of the implemented range.

28. If stage 2 address translation is enabled, then a stage 2 MMU fault on a level 3 memory access during a stage
1 table walk, including an Address size fault caused by a PA outside the implemented range.

29. A synchronous parity or ECC error on a level 3 lookup of a translation table walk.

30. A GPC fault on a level 3 lookup of a translation table walk.

31. A synchronous External abort on a level 3 lookup of a translation table walk.

32. Translation fault on a level 3 translation table entry.

33. If one or more of the following is true, an Address size fault on the address in a level 3 lookup translation
table entry:

• The address size check on TCR_EL1.IPS, TCR_EL2.{I}PS, TCR_EL3.PS, or VTCR_EL2.PS fails.

• The OA is out of the implemented range.

34. Access flag fault.

35. Alignment fault caused by the memory type.

36. Permission fault. For more information, see Prioritization of Permission faults.

37. If stage 2 address translation is enabled, then a stage 2 fault on the memory access, including an Address size
fault caused by a PA outside the implemented range.

38. Synchronous parity or ECC error on the memory access.

39. A GPC fault on the memory access.

40. Synchronous External abort on the memory access.

RMJLPH If all the following apply, the prioritization between the stage 2 Permission fault on the stage 1 translation table walk
and the stage 1 abort caused by the stage 1 descriptor is IMPLEMENTATION DEFINED:

• Hardware management of the stage 1 access flag or dirty state is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6742
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
• The access flag or dirty state in a stage 1 descriptor needs to be updated.

• For the location of the stage 1 descriptor, the stage 2 translation has read permission but not write permission.

• The stage 1 descriptor generates an abort, which can be due to an Address size fault, an Alignment fault
caused by memory type, or a Permission fault.

For more information, see Hardware management of the dirty state.

RWLLHL When the use of a stage 1 Table descriptor generates a stage 1 Translation fault or Address Size fault, it is reported
with higher priority than any stage 2 MMU faults generated as part of hardware updates for that descriptor, except
in the following case:

• A synchronous External abort or an IMPLEMENTATION DEFINED abort caused by a memory type not
supporting an atomic read-modify-write at stage 2 is permitted to be reported to EL2 with higher priority than
a stage 1 Translation fault or Address Size fault.

RWLJCM For a TLB conflict abort, all of the following apply:

• The priority of the abort is IMPLEMENTATION DEFINED.

• The priority of the abort is required to be higher than any abort that depends on a value held in a TLB.

IHGZXP The cause of a TLB conflict abort depends on the TLB implementation.

ISYVYF For more information on GPC fault priority, see Table D9-1.

RCSFKV For an IMPLEMENTATION DEFINED MMU fault caused by a Load-Exclusive or Store-Exclusive to an unsupported
memory type, the priority is IMPLEMENTATION DEFINED.

RKYXHT For an MMU fault at a translation stage caused by an unsupported atomic hardware update, the priority of this fault
lies at an IMPLEMENTATION DEFINED point between all of the following:

• A priority immediately higher than an Access flag fault generated by the same translation stage as this MMU
fault.

• A priority immediately lower than a Permission fault generated by the same translation stage as this MMU
fault.

D8.14.5.1 Prioritization of Permission faults

RDFGCF The following list shows the priority order of stage 1 permission faults, from highest priority to lowest priority:

1. Fault due to Overlay permissions.

2. Fault due to stage 1 Base permissions.

3. Fault due to write of an Allocation Tag to a Canonically Tagged memory location.

4. Fault due to the dirty state.

RTLHDK The following list shows the priority order of stage 2 permission faults, from highest priority to lowest priority:

1. Fault due to TopLevel checks, causing a stage 2 abort during a stage 1 translation table walk.

2. Fault due to AssuredOnly check, including due to VTCR_EL2.GCSH, causing a stage 2 abort.

3. Fault due to stage 2 Overlay permissions.

4. Fault due to stage 2 Base permissions.

5. Fault due to NoTagAccess attribute, causing a stage 2 abort on the final access.

6. Fault due to the dirty state.

RLTQNW For priority checking at each translation stage, when an access requires both read and write permission, both
permissions are evaluated together at each step of the fault priority.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6743
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.14 Memory aborts
Note

Accesses that require both read and write permission include atomic, RCW, and RCWS instructions.

For example, if the Effective value of TCR_ELx.HD is 0 and the computed privileged stage 1 permissions are as
shown in the following table, an access will generate a stage 1 Permission fault with {Overlay, WnR, DirtyBit}
fields in the syndrome register updated to {1,1,0}:

Table D8-108 Example condition that generate a stage 1 Permission fault

Permission type PrivRead PrivWrite

Stage 1 Overlay permissions 1 0

Stage 1 Base permissions 0 0

TTD.nDirty Clean
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6744
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.15 Translation Lookaside Buffers
D8.15 Translation Lookaside Buffers

IZVNKM The Arm architecture does not specify any structure of Translation Lookaside Buffers (TLBs), and permits any
structure that complies with the requirements described in this section.

RXCLRD Translation table entries that generate a Translation fault, an Address size fault, or an Access flag fault are never
cached in a TLB.

RSQBCS When address translation is enabled, a translation table entry for an in-context translation regime that does not cause
a Translation fault, an Address size fault, or an Access flag fault is permitted to be cached in a TLB or intermediate
TLB caching structure as the result of an explicit or speculative access.

IRCGCH When address translation is enabled, if a translation table entry meets all of the following requirements, then that
translation table entry is permitted to be cached in a TLB or intermediate TLB caching structure at any time:

• The translation table entry itself does not generate a Translation fault, an Address size fault, or an Access flag
fault.

• The translation table entry is not from a translation regime configured by an Exception level that is lower
than the current Exception level.

ILBGNR The Arm architecture permits TLBs to cache certain information from System control registers, including when any
or all translation stages are disabled. The individual register descriptions specify System control register fields are
permitted to be cached in a TLB.

For more information, see Chapter D23 AArch64 System Register Descriptions.

RFXGNQ The TLB entries in all of the following translation regimes are out-of-context:

• When executing at EL3 or EL2, the TLB entries associated with the EL1&0 translation regime are
out-of-context.

• When executing at EL3, the TLB entries associated with the EL2 or EL2&0 translation regime are
out-of-context.

IRLTGW The VMSA provides TLB maintenance instructions for the management of TLB contents.

RNDCMB When a translation stage is disabled and then re-enabled, TLB entries are not corrupted.

D8.15.1 TLB behavior at reset

IGWZWM When a reset occurs, an implementation is not required to automatically invalidate a TLB.

RBQCDZ When a reset occurs, a TLB is affected in all of the following ways:

• All TLBs reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.

• It is IMPLEMENTATION DEFINED whether a specific TLB invalidation routine is required to invalidate a TLB
before translation is enabled after a reset.

IHXRSY For the ELx reset is taken to, when a reset occurs, SCTLR_ELx.M is reset to 0. For the translation regime controlled
by that SCTLR_ELx.M bit, when SCTLR_ELx.M is 0, TLB contents have no effect on address translation.

RQNFHZ If an implementation requires a specific TLB invalidation routine, then all of the following apply:

• The routine is IMPLEMENTATION DEFINED.

• The implementation documentation is required to clearly document the routine.

• Arm recommends that the routine is based on the TLB maintenance instructions.

IWVKXW On a Cold reset or Warm reset, an implementation might require TLBs to maintain their contents from before the
reset, including one or more of the following reasons:

• Power management.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6745
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.15 Translation Lookaside Buffers
• Debug requirements.

IWZHDM For more information on the TLB maintenance instructions used in a TLB invalidation routine, see TLB
maintenance instructions.

D8.15.2 TLB lockdown

RSSQZC TLB lockdown support is IMPLEMENTATION DEFINED.

RXXDPS If an implementation supports TLB lockdown, then all of the following apply:

• The lockdown mechanism is IMPLEMENTATION DEFINED.

• The implementation documentation is required to clearly document the interaction of the TLB lockdown
mechanism with the architecture.

• A locked TLB entry is guaranteed to remain in the TLB, unless the locked TLB entry is affected by a TLB
maintenance operation.

• An unlocked TLB entry is not guaranteed to remain in the TLB.

• If a translation table entry is modified, then it is not guaranteed that a locked TLB entry remains coherent
with the modified translation table entry.

IDXXYV If a translation table entry is modified, then it is not guaranteed that a locked TLB entry remains incoherent with the
modified translation table entry because the lockdown mechanism might permit a TLB maintenance instruction to
trigger an update of the locked TLB entry.

For more information, see The interaction of TLB lockdown with TLB maintenance instructions.

RDSQQW The implementation is permitted to use the reserved IMPLEMENTATION DEFINED register encodings to implement
TLB lockdown functions.

ILSKYV TLB lockdown functions might include, but are not limited to, all of the following:

• Unlock all locked TLB entries.

• Preload a translation table entry into a specific TLB level.

RDSLVY If an implementation supports TLB lockdown and EL2 is enabled, then when executing at EL1 or EL0, an exception
due to TLB lockdown can be routed to one of the following:

• EL1, as a Data Abort exception.

• EL2, as a Hyp Trap exception.

D8.15.3 Use of ASIDs and VMIDs to reduce TLB maintenance requirements

ILHWHR TLB maintenance can be reduced during context switches by associating the translation table lookups from some
translation regimes with an address space identifier (ASID), virtual machine identifier (VMID), or both.

D8.15.3.1 Global and process-specific translation table entries

IFRDGD For translation regimes that use an ASID, it is possible to mark translations as global or non-global.

RXXNPZ A TLB entry associated with a specific ASID value, or a specific ASID and a VMID value, can only be used to
translate a VA in a context that is associated with the same ASID value, or ASID and VMID value.

RWTVTJ For stage 1 of a translation regime that supports two privilege levels, non-global TLB entries are associated with a
specific ASID.

ILCNWN For stage 1 of a translation regime that can support two privilege levels, Arm expects that software configures
translations specific to a process to be associated with a specific ASID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6746
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.15 Translation Lookaside Buffers
RSHVGC For all of the following, the translation does not support association of a translation with an ASID, and all
translations are treated as global:

• A stage 1 translation that supports a single privilege level

• The stage 2 component of a two stage translation.

IHGKKC The ASID permits software to switch between process-specific translation table mappings without removing
previous mappings cached for another ASID from a TLB.

ILQMXG For stage 1 of a translation regime that can support two privilege levels, each TTBR0_ELx and TTBR1_ELx has
an ASID field.

RSCBSR All the following values of TCR_ELx.A1 determine the ASID value that is used by the translations of both the lower
VA range and upper VA range:

• If the value is 0, then the TTBR0_ELx.ASID is used.

• If the value is 1, then the TTBR1_ELx.ASID is used.

RQGKGF The nG bit in a Block descriptor and Page descriptor indicates one of the following:

• If the value is 0, the translation is global and the TLB entry applies to all ASID values.

• If the value is 1, the translation is non-global and the TLB entry applies to only the current ASID value.

RCHVGJ For a translation regime that supports global and non-global translations, translation table entries from lookup levels
other than the final lookup level are treated as non-global, regardless of the value of the nG bit in the final lookup
level.

RJYHZR For a translation in Secure state, if the NSTable bit in a Table descriptor is 1 at any level of the translation table walk,
then the resulting translation is treated as non-global, regardless of the nG bit value in the Block descriptor or Page
descriptor for the translation.

RQNPQX If EL2 is enabled, then for the EL1&0 translation regime, TLB entries created for the regime are associated with the
current VMID.

IYWBQX If EL2 is enabled, then for the EL1&0 translation regime, TLB entries are associated with the current VMID in all
cases, and include all of the following:

• For both global and non-global translations of any ASID value, and regardless of whether stage 2 translation
is disabled, TLB entries containing information from stage 1 translation.

• For both stage 1 translation table walks and stage 1 OA, and regardless of whether stage 1 translation is
disabled, TLB entries containing information from stage 2 translations.

ISLWFB If EL2 is enabled, then for the EL1&0 translation regime, TLB entries associated with a VMID are associated with
a specific virtual machine.

IHQXLL The VMID permits software to switch between virtual machines that have different VMIDs without removing
previous translation table mappings from a TLB.

IRWYWK VTTBR_EL2.VMID holds the current VMID.

D8.15.3.2 ASID size

RKHXQX The ASID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits.

INHTBK The maximum supported ASID size is indicated by ID_AA64MMFR0_EL1.ASIDBits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6747
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.15 Translation Lookaside Buffers
IBZXYN For an implementation that supports 16-bit ASIDs, all of the following values of TCR_ELx.AS specify whether
TTBR0_ELx.ASID[15:8] are used:

• If TCR_ELx.AS is 0, then TTBR0_ELx.ASID[15:8] are not used and are treated in all of the following ways:

— For every purpose other than direct reads of TTBR0_ELx.ASID and TTBR1_ELx.ASID, the bits are
ignored by hardware.

— When used for allocating and matching entries in a TLB, the bits are treated as if they are all zeros.

• If TCR_ELx.AS is 1, then TTBR0_ELx.ASID[15:8] are used for allocating and matching entries in a TLB.

IZRWYC Bits[15:8] of the ASID field in TLBI{P} instructions are considered by hardware regardless of the value of
TCR_ELx.AS.

RNKTBP For a translation using VMSAv8-32, if the implementation supports 16-bit ASIDs, then the 8-bit ASID used is
zero-extended to 16 bits.

IDJKMH The AArch32 ASID size is 8 bits.

D8.15.3.3 VMID size

RRPSHN The VMID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits.

IVLKQX The maximum supported VMID size is specified by ID_AA64MMFR1_EL1.VMIDBits.

IZDPJB If and only if EL2 is using AArch64, then use of a 16-bit VMID is permitted.

IMDGYK For an implementation that supports a 16-bit VMID, all of the following values of VTCR_EL2.VS specify whether
VTTBR_EL2.VMID[15:8] are used:

• If VTCR_EL2.VS is 0, then VTTBR_EL2.VMID[15:8] are not used and are treated in all of the following
ways:

— For every purpose other than direct reads of VTTBR_EL2.VMID, the bits are ignored by hardware.

— When used for allocating and matching entries in a TLB, the bits are treated as if they are all zeros.

• If VTCR_EL2.VS is 1, then VTTBR_EL2.VMID[15:8] are used.

D8.15.3.4 Common not private translations

IXJYLH FEAT_TTCNP allows multiple PEs in the same Inner Shareable domain and operating in the same translation
regime to use the same translation table entries in a given translation stage.

RFWQJZ If all of the following conditions are met, translation table entries pointed to by TTBR_ELx are shared with all other
PEs in the Inner Shareable domain, and are referred to as common not private translation tables:

• For the PEs that share the translation tables, the Effective value of the corresponding TTBR_ELx.CnP is 1.

• For the PEs that share the translation tables, the same translation regime in the same Security state applies to
the corresponding TTBR_ELx.

• If an ASID applies to the corresponding translation stage, then all of the PEs that share non-global translation
table entries are required to have the same current ASID.

• If a VMID applies to the corresponding translation stage, then all of the PEs that share translation table entries
are required to have the same current VMID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6748
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.15 Translation Lookaside Buffers
RLGDJT For a common not private translation table, if a System register field with all of the following characteristics is set
by a particular PE to a value that is different than the value set by the other PEs, then it is CONSTRAINED
UNPREDICTABLE whether the System register field is interpreted using the value of the particular PE or the value of
one of the other PEs that are sharing the translation table entry:

• The register field applies to the translation stage.

• The register field is permitted to be cached in a TLB.

RZVRZW For a translation regime with both stage 1 and stage 2 translations, a TLB entry can be shared between different PEs
in one or more of the following cases only if the value of the TTBR_ELx.CnP bit is 1 for both stages of translation:

• The TLB entry holds information from stage 1 translation only.

• The TLB entry combines information from stage 1 and stage 2 translations.

IYVLVD The TTBR_ELx.CnP bit is permitted to be cached in a TLB.

RQLGWZ For a common not private translation table, if a TTBR_ELx does not point to the same translation table as the other
TTBR_ELx registers, then the system is misconfigured and an address translation using that TTBR_ELx causes one
of the following to occur:

• Multiple hits in a TLB, which is permitted to generate a TLB conflict abort.

• A CONSTRAINED UNPREDICTABLE result due to caching of control or data values.

For more information, see TLB conflict abort and CONSTRAINED UNPREDICTABLE behaviors due to caching of
control or data values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6749
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
D8.16 TLB maintenance

RRVJDB For the purpose of TLB maintenance, a TLB entry is any structure that holds a translation table entry, including
intermediate TLB caching structures and temporary working registers in translation table walk hardware.

INDFND When a translation table walk occurs, translation table entries that are permitted to be cached in a TLB might be
held in TLB caching structures.

RNWYRD Entries held in a TLB are distinguished by all of the following context information:

• The Security state and translation regime.

• If applicable to the translation regime, then the VMID.

• If applicable to the translation regime, then whether the translation is global or non-global.

• If the translation is non-global, then the ASID.

RFFWJK TLBs, or TLB caching structures, are not guaranteed to remain coherent with changes to translation table entries,
and are therefore distinct from data caches.

RZYZYK Indexing an intermediate TLB structure by the IA is permitted.

RBKKRB If FEAT_nTLBPA is not implemented, then indexing an intermediate TLB structure by all of the following is also
permitted:

• The PA of the location holding the translation table entry.

• For stage 1 translations, the IPA of the location holding the translation table entry.

RTJQVP If FEAT_nTLBPA is not implemented, any TLB maintenance instruction that applies to a PE with the context
information that is relevant to the translation table entry ensures cached copies of translation table entries are
invalidated for that PE in all of the following implementations of intermediate TLB structures:

• Indexing the TLB using the PA of the location holding the translation table entry.

• For stage 1 translations, indexing the TLB using the IPA of the location holding the translation table entry.

IPFNFJ FEAT_nTLBPA permits software to determine the existence of intermediate TLB caching structures that are
indexed by PA or IPA and perform TLB maintenance accordingly when it would otherwise not be required.

RLGSCG When a TLB maintenance instruction targets only stage 1 entries, all of the following apply:

• The maintenance applies to any entries in caching structures that include stage 1 information used to translate
the address or range of addresses being invalidated.

• If the TLB maintenance targets a specific ASID, then entries in caching structures that are not tagged with
the specific ASID are not invalidated.

• If the stage 1 translation information contained in a single block or page has been collectively cached in
multiple TLB entries, then all entries containing that stage 1 information are invalidated, regardless of
whether the entry would be used to translate the address being invalidated.

RTVTYQ When a TLB maintenance instruction applies only to stage 2 entries, all of the following apply:

• The maintenance applies to any entries in caching structures that include only stage 2 information used to
translate the address or range of addresses being invalidated.

• If the stage 2 translation information contained in a single block or page has been collectively cached in
multiple TLB entries, then all entries containing that stage 1 information are invalidated, regardless of
whether the entry would be used to translate the address being invalidated.

• The maintenance is not required to apply to structures combining stage 1 and stage 2 information used to
translate the address or range of addresses being invalidated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6750
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
RGNJPZ When a TLB maintenance instruction applies to both stage 1 and stage 2 entries, all of the following apply:

• The maintenance applies to any entries in caching structures that include stage 1 information used to translate
the address or range of addresses being invalidated.

• The maintenance applies to any entries in caching structures that include stage 2 information used to translate
the address or range of addresses being invalidated.

• The maintenance applies to structures combining stage 1 and stage 2 information used to translate the address
or range of addresses being invalidated.

RGPPYH When a translation table entry associated with a specific VMID or ASID is modified, software is required to
invalidate the corresponding TLB entry to ensure that the modified translation table entry is visible to subsequent
execution, including speculative execution.

RVNRFW When a System register field is modified and that field is permitted to be cached in a TLB, software is required to
invalidate all TLB entries that might be affected by the field, at any address translation stage in the translation
regime even if the translation stage is disabled, using the appropriate VMID and ASID, after any required System
register synchronization.

For more information, see Synchronization requirements for AArch64 System registers.

IWZCBG When a translation table entry that generates a Translation fault, Address size fault, or Access flag fault is changed
to one that does not fault, all of the following apply to software:

• TLB invalidation is not required because an entry that generates one of the listed faults is never cached in a
TLB.

• A Context synchronization event is required to ensure that the completed change to the translation table entry
affects subsequent instruction fetches.

D8.16.1 Using break-before-make when updating translation table entries

RWHZWS If multiple execution threads use the same translation tables, then when a translation table entry is modified in one
or more of the following ways, the architecture requires software to use a break-before-make sequence:

• A change to the memory type, Shareability or Cacheability.

• The translation OA is changed and one or more of the following apply:

— Either or both of the old and new translations grant write permission, including cases where the DBM
bit is set and hardware updates of the dirty state is enabled.

— The memory contents at the new OA do not match the memory contents at the previous OA.

• If the requirements enabled by FEAT_BBM level 1 or above cannot be followed, all of the following changes
to the block size used by the translation system:

— Changing from a smaller size to a larger size, such as when a stage 2 Table descriptor is replaced with
a Block descriptor.

— Changing from a larger size to a smaller size, such as when a stage 2 Block descriptor is replaced with
a Table descriptor.

• A global entry is created that might overlap with non-global entries in a TLB.

IWZRHR A change to the translation OA space is considered a change to the translation OA.

ITHWDH Use of a break-before-make sequence to ensure that old and new translation table entries are never simultaneously
visible to different execution threads is guaranteed to prevent all of the following problems:

• Creating multiple TLB entries that apply to the same address.

• The effects of TLB caching breaking coherency.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6751
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
• The effects of TLB caching breaking single-copy atomicity properties.

• The effects of TLB caching breaking ordering guarantees or uniprocessor semantics.

• The effects of TLB caching causing a failure to clear the Exclusives monitors.

RDDMVT A break-before-make sequence requires all of the following steps:

1. Replace the old translation table entry with an invalid entry.

2. Execute a DSB instruction to ensure the invalid entry is visible.

3. Invalidate TLB entries based on the translation table entry with a broadcast TLB invalidation instruction.

4. Execute a DSB instruction to ensure the invalidation completes.

5. Write the new translation table entry

6. Execute a DSB instruction to ensure the new entry is visible.

IGXGZY For a translation stage with AF hardware management enabled, if a translation table entry is modified and the
break-before-make sequence is not followed, then all of the following failures associated with AF hardware updates
can occur:

• When a memory location associated with that translation table entry is accessed, the AF is not set.

• When hardware updates to that translation table entry are followed by stores appearing later in program order,
the ordering required is not followed.

RRTBRL For a translation stage with dirty state hardware management enabled, if a translation table entry is modified and
the break-before-make sequence is not followed, then all of the following failures associated with dirty state
hardware updates can occur:

• When a memory location associated with that translation table entry is not written, hardware modifies the
AP[2] or S2AP[1] descriptor bit.

• When a memory location associated with that translation table entry is written, hardware does not modify the
AP[2] or S2AP[1] descriptor bit.

• When hardware updates to that translation table entry are followed by stores appearing later in program order,
the ordering required is not followed.

RFVQCK If translation table entries are changed without appropriate TLB maintenance operations, including in the case
where use of the break-before-make sequence is required but software does not follow the break-before-make
sequence, it is possible that TLBs concurrently hold multiple different copies of those translation table entries.

In this situation, the following behaviors are permitted for a speculative or architectural access to the address
resolved by those TLB entries:

• Use of the address matches multiple entries in a TLB, and a TLB conflict abort is detected. In this case, no
access is made to memory based on those TLB entries. If the access is architectural, then the TLB conflict
abort is reported as an exception.

• The resulting behavior is CONSTRAINED UNPREDICTABLE, and gives a behavior consistent with translation
using one of the matching entries, or an amalgamation of more than one of the matching entries, but cannot
permit access to memory regions with permissions or attributes that would not be possible in the current
Security state at the current Exception level. This includes, for example:

— Insufficient TLB maintenance for stage 1 translations by EL1 must not permit it to bypass the
configuration of stage 2 translation.

— Insufficient TLB maintenance by Non-secure state must not permit it to access any memory in Secure
PA space.

IHLHBH For more information, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6752
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
D8.16.2 Support levels for changing table or block size

RKNVDX All statements in this section require implementation of FEAT_BBM.

RKFLJB When a translation table entry is modified to change the table or block size, the hardware provides one of the
following possible support levels affecting the break-before-make requirement to avoid breaking coherency,
ordering guarantees or uniprocessor semantics, or failing to clear the Exclusives monitors:

• If level 0 is supported, then software is required to use break-before-make.

• If level 1 is supported, then software can use the level 0 approach or use the block translation entry bit, nT,
in the Table descriptor or Block descriptor.

• If level 2 is supported, then all of the following apply:

— Software can use the level 0 approach or the level 1 approach.

— Changing table or block size does not break coherency, ordering guarantees or uniprocessor semantics,
or fail to clear the Exclusives monitors.

For more information, see Block translation entry.

IHYQMB If any level is supported and the TLB entries are not invalidated after the writes that modified the translation table
entries are completed, then a TLB conflict abort can be generated because in a TLB there might be multiple
translation table entries that all translate the same IA.

For Table descriptors, this also applies to intermediate TLB caching structures.

For more information, see TLB conflict abort.

RKHRBC If level 1 or level 2 is supported, then changing the Contiguous bit in a set of Block descriptors or Page descriptors
can be done without breaking coherency, ordering guarantees or uniprocessor semantics, or failing to clear the
Exclusives monitors.

RFCPSG If level 1 or level 2 is supported and the Contiguous bit in a set of Block descriptors or Page descriptors is changed,
then a TLB conflict abort can be generated because multiple translation table entries might exist within a TLB that
translates the same IA.

RFWRMB If all of the following apply, then a TLB conflict abort is reported to EL2:

• Level 1 or level 2 is supported.

• Stage 2 translations are enabled in the current translation regime.

• A TLB conflict abort is generated due to changing the block size or Contiguous bit.

ICFFVK If level 1 or level 2 is supported and a TLB conflict abort is generated, then TLB maintenance is required to remove
the multiple TLB entries that translate the same address.

For Table descriptors, this also applies to intermediate TLB caching structures.

For more information, see TLB maintenance due to TLB conflict.

IGQTBJ When a TLB conflict abort is generated, it is IMPLEMENTATION DEFINED whether it is a stage 1 abort or a stage 2
abort.

D8.16.3 TLB maintenance due to TLB conflict

RBLRKC If multiple TLB entries translate the same address, then the ALL or VMALL form of a TLB maintenance instruction that
targets the given translation regime is guaranteed to remove all TLB entries within that regime.

IJCCRT All of the following instructions are guaranteed to remove the TLB entries associated with a conflict:

• For the EL1&0 translation regime, when stage 2 translations are in use, either VMALLS12E1 or ALLE1.

• For the EL1&0 translation regime, when stage 2 translations are not in use, either VMALLE1 or ALLE1.

• For the EL2&0 translation regime, either VMALLE1 or ALLE2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6753
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
• For the EL2 translation regime, ALLE2.

• For the EL3 translation regime, ALLE3.

RGRVDR If multiple TLB entries translate the same address, then the minimum set of TLB maintenance operations required
to guarantee all TLB entries associated with that address and translation regime have been invalidated is
IMPLEMENTATION DEFINED.

D8.16.4 The interaction of TLB lockdown with TLB maintenance instructions

RVGPNS If a TLB entry is locked and a TLB invalidate all instruction is executed and, if that entry was not locked the TLB
invalidate all instruction would invalidate that entry, then one of the following IMPLEMENTATION DEFINED behaviors
occur:

• The locked TLB entry is not affected.

• If the TLB entry is locked or might be locked, an IMPLEMENTATION DEFINED Data Abort exception is
generated.

IFRJSL The IMPLEMENTATION DEFINED Data Abort on a TLB invalidate all instruction permits TLB invalidation routines
to choose to invalidate a large range of addresses, without considering whether any TLB entries are locked, or to
not affect locked TLB entries.

RBMHZW If a TLB entry is locked and a TLB invalidate by VA or invalidate by ASID instruction is executed and, if that entry
was not locked the TLB invalidate by VA or invalidate by ASID instruction would invalidate that entry, then one of
the following IMPLEMENTATION DEFINED behaviors occur:

• The locked TLB entry is invalidated.

• The locked TLB entry is not affected.

• If the TLB entry is locked or might be locked, an IMPLEMENTATION DEFINED Data Abort exception is
generated.

IFXBBY The exception syndrome definitions include a fault code for cache and TLB lockdown faults.

RBCLPC If an implementation uses an abort mechanism when entries that can be locked down are not actually locked down,
then all of the following are required:

• The IMPLEMENTATION DEFINED instruction sequences that perform the required operations on entries that are
not locked down are documented.

• An IMPLEMENTATION DEFINED mechanism is documented that ensures no TLB entries are locked.

• For locked entries, one of the other specified alternatives is implemented.

IDRZHY If an implementation supports TLB lockdown, then Arm recommends that IMPLEMENTATION DEFINED TLB
maintenance instruction sequences use the architecturally-defined operations to minimize the number of customized
operations required.

IPNDQN For more information on TLB lockdown, see TLB lockdown.

D8.16.5 TLB maintenance instructions

IQJNCT For a given translation regime, the architecture defines TLB maintenance instructions that provide all of the
following functions:

• Invalidate all corresponding entries in a TLB.

• Invalidate a corresponding single TLB entry by ASID for a non-global entry.

• Invalidate all corresponding TLB entries that match a specific ASID.

• Invalidate all corresponding TLB entries that match a specific VA, regardless of the ASID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6754
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
• Invalidate all corresponding TLB entries within a range of addresses.

IXMWNR Each TLB maintenance instruction can be applied to one of the following:

• Only the PE that executes the instruction

• All PEs in the same Shareability domain as the PE that executes the instruction.

IJFCRF The A64 assembly language syntax of a TLB maintenance instruction is TLBI{P} <operation>{, <Xt>}.

IKTDKY All of the following apply to the TLB maintenance instructions:

• The TLBI operations take zero or one register arguments, for cases where 64 bits or fewer of scope information
is required.

• The TLBIP operations take a pair of register arguments, for cases where more than 64 bits of scope information
is required.

ILHQBV When VMSAv9-128 is in use, all of the following apply:

• For TLBI RVA* instructions, BaseADDR[52:16] is determined by input bits [36:0], and BaseADDR[55:53] is treated
as having the same value as BaseADDR[52].

• For TLBI RIPA* instructions, BaseADDR[52:16] is determined by input bits [36:0], and BaseADDR[55:53] is
treated as 0.

IRJQTT For the TLBI instructions, the invalidation scope applies to VMSAv8-64 and VMSAv9-128 TLB entries, except for
all of the following:

• For TLBI VA* and TLBI RVA* instructions, when a translation table level hint is provided, the invalidation scope
only applies to stage 1 VMSAv8-64 TLB entries.

• For TLBI IPA*, TLBI RIPA* instructions, when a translation table level hint is provided, the invalidation scope
only applies to stage 2 VMSAv8-64 TLB entries.

IBDQZT For the TLBIP instructions, the invalidation scope applies to VMSAv8-64 and VMSAv9-128 TLB entries, except for
all of the following:

• For TLBIP VA* and TLBIP RVA* instructions, when a translation table level hint is provided, the invalidation
scope only applies to stage 1 VMSAv9-128 entries.

• For TLBIP IPA*, TLBIP RIPA* instructions, when a translation table level hint is provided, the invalidation
scope only applies to stage 2 VMSAv9-128 TLB entries.

INDJSJ The <operation> in TLBI{P} <operation>{, <Xt>} is one of the following:

• For TLBI instructions:

— ALLE1{NXS}, ALLE2{NXS}, ALLE3{NXS}, ALLE1IS{NXS}, ALLE2IS{NXS}, ALLE3IS{NXS}, ALLE1OS{NXS},
ALLE2OS{NXS}, or ALLE3OS{NXS}.

— VMALLE1{NXS}, VMALLE1IS{NXS}, VMALLE1OS{NXS}, VMALLS12E1{NXS}, VMALLS12E1IS{NXS}, or
VMALLS12E1OS{NXS}.

— ASIDE1{NXS}, ASIDE1IS{NXS}, or ASIDE1OS{NXS}.

• For TLBI and TLBIP instructions:

— {R}VA{L}E1{NXS}, {R}VA{L}E2{NXS}, {R}VA{L}E3{NXS}, {R}VA{L}E1IS{NXS}, {R}VA{L}E2IS{NXS},
{R}VA{L}E3IS{NXS}, {R}VA{L}E1OS{NXS}, {R}VA{L}E2OS{NXS}, or {R}VA{L}E3OS{NXS}.

— {R}VAA{L}E1{NXS}, {R}VAA{L}E1IS{NXS}, or {R}VAA{L}E1OS{NXS}.

— {R}IPAS2{L}E1{NXS}, {R}IPAS2{L}E1IS{NXS}, or {R}IPAS2{L}E1OS{NXS}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6755
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
IDMCXY The <operation> in TLBI{P} <operation>{, <Xt>} has a structure of {R}<type><regime><shareability>{NXS} with all
of the following components:

• R is optional and determines one of the following:

— When present, the instruction applies to all TLB entries translating addresses within the address range.

— When not present, the instruction applies to all TLB entries translating a single address that could be
used by the PE that executes the TLB maintenance instruction.

• <type> is one of the following:

— ALL specifies all translations at <regime>.

— VMALL specifies all stage 1 translations for the affected translation regime, and if applicable, matching
the current VMID.

— VMALLS12 specifies all stage 1 and stage 2 translations at EL1 with the current VMID.

— ASID specifies all non-global translations for the affected translation regime with the supplied ASID.

— VA{L} specifies all translations at <regime> using the supplied address and, if an ASID is supplied, the
supplied ASID or global entries.

— VAA{L} specifies all global entries and non-global entries, regardless of the ASID value, for the affected
translation regime using the supplied address.

— IPAS2{L} specifies all stage 2 translations using the supplied IPA.

• For the VA{L}, VAA{L}, and IPAS2{L} types, L is an optional parameter specifying that the invalidation applies
only to cached entries containing translation information returned by the final lookup level of the translation
table walk.

• <regime> is one of the following Exception levels:

— If E1, then EL1.

— If E2, then EL2.

— If E3, then EL3.

• <shareability> is one of the following:

— IS indicates that the instruction applies to all TLBs in the Inner Shareable domain.

— OS indicates that the instruction applies to all TLBs in the Outer Shareable domain.

— The parameter is optional, and no value indicates that the instruction applies to all TLBs that could be
used by the PE that executes the instruction.

• NXS has all of the following properties:

— The parameter is optional.

— When present, the instruction is considered complete after all issued memory transactions using
translation information held in TLB entries that have the associated XS attribute set to 0 and are within
the scope of the instruction, are complete.

— When not present, the instruction is considered complete after all issued memory transactions using
translation information held in TLB entries that are within the scope of the instruction are complete,
regardless of the XS attribute value.

— The parameter can only be present when FEAT_XS is implemented.

IYKBMJ If <regime> is higher than the current Exception level, then the TLB maintenance instruction is UNDEFINED.

IDJQYS All TLB maintenance instructions are UNDEFINED at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6756
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
IXMYBL TLBI ALLE1{NXS}, TLBI ALLE1IS{NXS}, TLBI ALLE1OS{NXS}, TLBI{P} {R}IPAS2{L}E1{NXS}, TLBI{P}
{R}IPAS2{L}E1IS{NXS}, TLBI{P} {R}IPAS2{L}E1OS{NXS}, TLBI VMALLS12E1{NXS}, TLBI VMALLS12E1IS{NXS}, and TLBI
VMALLS12E1OS{NXS} are UNDEFINED at EL1.

ISRWLL If EL2 is not implemented, the TLBI{P} {R}VA{L}E2{NXS}, TLBI{P} {R}VA{L}E2IS{NXS}, TLBI{P} {R}VA{L}E2OS{NXS},
TLBI ALLE2{NXS}, TLBI ALLE2IS{NXS}, and TLBI ALLE2OS{NXS} instructions are UNDEFINED.

IBWGVK When a TLB entry is invalidated by one PE, it is inconsistent with the architecture to allow another PE to refill that
TLB entry so that the new entry gives the appearance to software that the invalidation did not occur.

IBNSBV The <Xt> in TLBI{P} <operation>{, <Xt>} has all of the following properties:

• It specifies a register that passes one or both of an address and an ASID as an argument.

• For operations that include a VA, if FEAT_TTL is implemented, then the register passes the level hint.

• For range-based TLB maintenance operations, then the register passes information about the address range.

• It is required by the TLBI ASID, TLBI{P} {R}VA{L}, TLBI{P} {R}VAA{L}, and TLBI{P} {R}IPAS2{L} instructions.

D8.16.5.1 TLB maintenance instructions that do not apply to a range of addresses

IZVNJG For TLB maintenance instructions that take a VA, an ASID, or both as an argument, and that do not apply to a range
of addresses, the register specified by the Xt argument has the following format:

• Register bits[63:48] are one of the following:

— If the instruction requires an ASID argument, the ASID.

— If the instruction does not require an ASID argument, RES0.

• If FEAT_TTL is not implemented, then register bits[47:44] are RES0.

• If FEAT_TTL is implemented, then register bits[47:44] are one of the following:

— If the instruction requires a VA argument, the translation table level hint, TTL.

— If the instruction does not require a VA argument, RES0.

• Register bits[43:0] are one of the following:

— If the instruction requires a VA argument, VA[55:12].

— If the instruction does not require a VA argument, RES0.

RJGGKN For TLB maintenance instructions that take a VA, hardware interprets VA[63:56] as each having the same value as
VA[55].

RFGPTT For TLB maintenance instructions that take a VA, if the instruction targets a translation regime that is using
AArch32, then all of the following apply:

• Software is required to treat VA[55:32] as RES0

• VA[55:32] are ignored when the instruction is executed, and interpreted as being zero.

• VA[63:56] are interpreted as being zero.

ILHKCP If the implementation supports 16-bit ASIDs, then software is required to set the upper 8 bits of the ASID to 0 when
the context being invalidated uses only 8 bits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6757
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
ICPNYZ For TLB maintenance instructions that take a register argument that holds an IPA and that do not apply to a range
of addresses, the register specified by the Xt argument has the following format:

• Register bit[63] is one of the following:

— If the Effective value of SCR_EL3.{NSE, NS} is {0, 0}, the NS bit specifying the Secure or
Non-secure IPA space.

— If the Effective value of SCR_EL3.{NSE, NS} is {0, 1}, this field is RES0 and the instruction applies
to the Non-secure IPA space.

— If the Effective value of SCR_EL3.{NSE, NS} is {1, 1}, this field is RES0 and the instruction applies
to the Realm IPA space.

— If the Effective value of SCR_EL3.{NSE, NS} is {1, 0}, the instruction is not required to invalidate
any TLB entries.

• If FEAT_TTL is not implemented, then register bits[62:40] are RES0.

• If FEAT_TTL is implemented, then all of the following apply:

— Register bits[62:48] are RES0.

— Register bits[47:44] are the translation table level hint, TTL.

— Register bits[43:40] are RES0.

• Register bits[39:36] are one of the following:

— If 52-bit addresses are supported, IPA[51:48].

— If 52-bit addresses are not supported, RES0.

• Register bits[35:0] are IPA[47:12].

IHQTLK For TLB maintenance instructions that take a register argument that holds a VA or an IPA, register bits that hold the
address have all of the following properties:

• If the 4KB granule size is used, all address bits in the register bits are used by the invalidation instruction.

• If the 16KB granule size is used, register bits[1:0] are ignored because address bits[13:12] have no effect on
the invalidation instruction.

• If the 64KB granule size is used, register bits[3:0] are ignored because address bits[15:12] have no effect on
the invalidation instruction.

D8.16.5.2 TLB maintenance instructions that apply to a range of addresses

IQPHNP For TLB maintenance instructions that take a VA, or a VA and an ASID, and that apply to a range of addresses, the
register specified by the Xt argument has the following format:

• Register bits[63:48] are one of the following:

— If the instruction requires an ASID argument, the ASID.

— If the instruction does not require an ASID argument, RES0.

• Register bits[47:46] are the translation granule size, TG.

• Register bits[45:44] are the SCALE field that is the exponent element of the calculation that produces the
upper range.

• Register bits[43:39] are the NUM field that is the base element of the calculation that produces the upper
range.

• If FEAT_TTL is not implemented, then register bits[38:37] are RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6758
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
• If FEAT_TTL is implemented, then register bits[38:37] are the translation table level hint, TTL.

• Register bits[36:0] give the starting address of the range of addresses, BaseADDR.

IXPNPP For TLB maintenance instructions that take a register argument that holds an IPA and that apply to a range of
addresses, the register specified by the Xt argument has the following format:

• Register bit[63] is one of the following:

— If the Effective value of SCR_EL3.{NSE, NS} is {0, 0}, the NS bit specifying the Secure or
Non-secure IPA space.

— If the Effective value of SCR_EL3.{NSE, NS} is {0, 1}, this field is RES0 and the instruction applies
to the Non-secure IPA space.

— If the Effective value of SCR_EL3.{NSE, NS} is {1, 1}, this field is RES0 and the instruction applies
to the Realm IPA space.

— If the Effective value of SCR_EL3.{NSE, NS} is {1, 0}, the instruction is not required to invalidate
any TLB entries.

• Register bits[62:48] are RES0.

• Register bits[47:46] are the translation granule size, TG.

• Register bits[45:44] are the SCALE field that is the exponent element of the calculation that produces the
upper range.

• Register bits[43:39] are the NUM field that is the base element of the calculation that produces the upper
range.

• If FEAT_TTL is not implemented, then register bits[38:37] are RES0.

• If FEAT_TTL is implemented, then register bits[38:37] are the translation table level hint, TTL.

• Register bits[36:0] specify the starting address of the range of addresses, BaseADDR.

RPVVXP For TLB instructions that apply to a range of addresses, the following table shows the TG field encodings that define
the translation granule size for the translations that are being invalidated, and the Translation_Granule_Size in bytes
used in determining the address range.

RXKMMX For TLB instructions that apply to a range of addresses, if the translations use a different translation granule size
than the one specified by the TG field, then the architecture does not require that the instruction invalidate those
entries.

RQKRKL For all TLB range maintenance instructions, TLB entries that translate one or more addresses within the address
range determined by the following formula are invalidated:

[BaseADDR <= input_address < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)].

Table D8-109 TG field encodings in TLB instructions that apply to a range of addresses

TG Translation granule size Translation_Granule_Size

00 Reserved N/A

01 4KB translation granule 4096

10 16KB translation granule 16384

11 64KB translation granule 65536
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6759
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
RQNPXY For a translation regime that supports two VA ranges, if a TLB range maintenance instruction is issued with an
address in the TTBR1_ELx half of the VA space, and the SCALE and NUM values cause the range to exceed the
top of the address space, then the address is not considered to wrap on overflow and the PE is not required to
invalidate any entries inserted for the corresponding TTBR0_ELx half of the VA space.

IHKYNQ For a TLBI range maintenance instruction, BaseADDR is derived from bits[36:0] in the register specified by the Xt
argument as one of the following:

• For the 4KB granule size, one of the following:

— If the Effective value of TCR_EL1.DS is 0, then BaseADDR[48:12].

— If the Effective value of TCR_EL1.DS is 1, then BaseADDR[52:16]. In this case, BaseADDR[15:12] is
treated as all zero.

• For the 16KB granule size, one of the following:

— If the Effective value of TCR_EL1.DS is 0, then BaseADDR[50:14].

— If the Effective value of TCR_EL1.DS is 1, then BaseADDR[52:16]. In this case, BaseADDR[15:14] is
treated as all zero.

• For the 64KB granule size, BaseADDR[52:16].

ITYBWT For all of the following, the invalidated address range is UNPREDICTABLE:

• For the 4KB translation granule, one of the following:

— The Effective value of TCR_EL1.DS is 1, the TTL field is 0b00, and BaseADDR[38:12] are not all zero.

— The TTL field is 0b01 and BaseADDR[29:12] are not all zero.

— The TTL field is 0b10 and BaseADDR[20:12] are not all zero.

• For the 16KB translation granule, one of the following:

— The Effective value of TCR_EL1.DS is 1, the TTL field is 0b01, and BaseADDR[35:14] are not all zero.

— The TTL field is 0b10 and BaseADDR[24:14] are not all zero.

• For the 64KB translation granule, one of the following:

— The TTL field is 0b01 and BaseADDR[41:16] are not all zero.

— The TTL field is 0b10 and BaseADDR[28:16] are not all zero.

IZNXDY For more information, see Broadcast TLB maintenance.

D8.16.5.3 Translation table level hint

RBLDQZ All statements in this section require implementation of FEAT_TTL.

ILTZBK For the address being invalidated by a TLB maintenance instruction, the TTL field in the register specified by Xt
indicates the lookup level of the translation table walk holding the leaf entry.

IWVDLN Hardware can use the TTL field to determine if the page might have been splintered into multiple TLB entries.

RSQXYZ For an entry being invalidated by a TLB maintenance instruction, if an incorrect TTL value is specified, then the
architecture does not require any entries to be invalidated from a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6760
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
IVWPQL For TLB instructions that apply to a single address, the following table shows the 4-bit TTL field encodings.

Table D8-110 TTL field encodings in TLB instructions that apply to a single address

TTL[3:2]
Translation
granule

TTL[1:0] Information supplied

00 - RES0 No information supplied about the translation level. Hardware assumes that the leaf
entry can be from any level.

01 4KB 00 If FEAT_LPA2 is not implemented, then this value is reserved, and hardware treats
this as if TTL[3:2] is 0b00.
If FEAT_LPA2 is implemented, then the leaf entry for the address being invalidated
is on level 0 of the translation table walk.

01 The leaf entry for the address being invalidated is on level 1 of the translation table
walk.

10 The leaf entry for the address being invalidated is on level 2 of the translation table
walk.

11 The leaf entry for the address being invalidated is on level 3 of the translation table
walk.

10 16KB 00 This value is reserved, and hardware treats this as if TTL[3:2] is 0b00.

01 If FEAT_LPA2 is not implemented, then this value is reserved, and hardware treats
this as if TTL[3:2] is 0b00.
If FEAT_LPA2 is implemented, then the leaf entry for the address being invalidated
is on level 1 of the translation table walk.

10 The leaf entry for the address being invalidated is on level 2 of the translation table
walk.

11 The leaf entry for the address being invalidated is on level 3 of the translation table
walk.

11 64KB 00 This value is reserved, and hardware treats this as if TTL[3:2] is 0b00.

01 The leaf entry for the address being invalidated is on level 1 of the translation table
walk.

10 The leaf entry for the address being invalidated is on level 2 of the translation table
walk.

11 The leaf entry for the address being invalidated is on level 3 of the translation table
walk.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6761
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
IVNDBJ For TLB instructions that apply to a range of addresses, the following table shows the 2-bit TTL field encodings.

D8.16.5.4 TLB maintenance instruction scope

RWHKKS If <type> is ALL in a TLB maintenance instruction, then all of the following apply:

• For all values of <regime>, the instruction exists.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 and stage 2 translation table entries
from any lookup level in the translation table walk required to translate any address at the specified Exception
level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies to cached copies
of translation table entries with any VMID.

• For entries from a translation regime in which an ASID is valid, the instruction applies to all of the following
cached copies of translation table entries from any lookup level in the translation table walk:

— Global entries.

— Non-global entries with any ASID.

RPMNQC If <type> is VMALL in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, then the instruction applies to all of the following:

— When HCR_EL2.{E2H, TGE} is not {1, 1}, then the EL1&0 translation regime.

— When HCR_EL2.{E2H, TGE} is {1, 1}, then the EL2&0 translation regime.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 translation table entries from any
lookup level in the translation table walk required to translate any address at the specified Exception level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies only to cached
copies of translation table entries with the current VMID.

• For entries from a translation regime in which an ASID is valid, the instruction applies to all of the following
cached copies of translation table entries from any lookup level in the translation table walk:

— Global entries.

— Non-global entries with any ASID.

Table D8-111 TTL field encodings in TLB instructions that apply to a range of addresses

TTL Information supplied

00 The leaf entries in the range can be using any level for the translation table entries.

01 When the 4KB or 64KB translation granule is used, all leaf entries to invalidate are level 1 translation
table entries.
If FEAT_LPA2 is not implemented, then when using a 16KB translation granule, this value is reserved,
and hardware treats this as if TTL is 0b00.
If FEAT_LPA2 is implemented, then when using a 16KB translation granule, all leaf entries to
invalidate are level 1 translation table entries.

10 All leaf entries to invalidate are level 2 translation table entries.

11 All leaf entries to invalidate are level 3 translation table entries.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6762
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
RBMMCC If <type> is VMALLS12 in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, then the instruction applies to the EL1&0 translation regime.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 and stage 2 translation table entries
from any lookup level in the translation table walk required to translate any address at the specified Exception
level.

• The instruction applies only to cached copies of translation table entries with the current VMID.

• For entries from a translation regime in which an ASID is valid, the instruction applies to all of the following
cached copies of translation table entries from any lookup level in the translation table walk:

— Global entries.

— Non-global entries with any ASID.

• If one of the following is true and the instruction is executed at EL3, the instruction is not UNDEFINED and
has the same effect as TLBI VMALL because there are no stage 2 translations to invalidate:

— EL2 is not implemented.

— The Effective value of SCR_EL3.NS is 0 and EL2 is disabled

RFKSVM If <type> is ASID in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, then the instruction applies to all of the following:

— When HCR_EL2.{E2H, TGE} is not {1, 1}, then the EL1&0 translation regime when executing at
EL1.

— When HCR_EL2.{E2H, TGE} is {1, 1}, then the EL2&0 translation regime when executing at EL2.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 translation table entries from any
lookup level in the translation table walk required to translate any address at the specified Exception level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies only to cached
copies of translation table entries with the current VMID.

• The instruction applies only to non-global entries from the final lookup level that matches the specified
ASID.

RVMSWQ If <type> is VA in a TLB maintenance instruction, then all of the following apply:

• For all values of <regime>, the instruction exists.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 translation table entries from any
lookup level in the translation table walk required to translate the address at the specified Exception level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies only to cached
copies of translation table entries with the current VMID.

• For instructions where the value of <regime> is E2, the instruction applies to the EL2&0 or EL2 translation
regime, as determined by the value of HCR_EL2.E2H.

• For entries from a translation regime in which an ASID is valid, the instruction applies only to all of the
following cached copies of translation table entries:

— A non-global entry from any lookup level that matches the specified ASID.

— A global entry from the final lookup level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6763
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
RDRCZZ If <type> is VAL in a TLB maintenance instruction, then all of the following apply:

• For all values of <regime>, the instruction exists.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 translation table entries from the
final lookup level in the translation table walk required to translate the address at the specified Exception
level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies only to cached
copies of translation table entries from the final lookup level with the current VMID.

• For instructions where the value of <regime> is E2, the instruction applies to the EL2&0 or EL2 translation
regime, as determined by the value of HCR_EL2.E2H.

• For entries from a translation regime in which an ASID is valid, the instruction applies only to all of the
following cached copies of translation table entries:

— A non-global entry from the final lookup level that matches the specified ASID.

— A global entry from the final lookup level.

RZSXRQ If <type> is VAA in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, then the instruction applies to all of the following:

— When HCR_EL2.{E2H, TGE} is not {1, 1}, then the EL1&0 translation regime when executing at
EL1.

— When HCR_EL2.{E2H, TGE} is {1, 1}, then the EL2&0 translation regime when executing at EL2.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 translation table entries from any
lookup level in the translation table walk required to translate the address at the specified Exception level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies only to cached
copies of translation table entries with the current VMID.

• For instructions where the value of <regime> is E2, the instruction applies to the EL2&0 or EL2 translation
regime, as determined by the value of HCR_EL2.E2H.

• The instruction applies to all of the following cached copies of translation table entries from any lookup level
in the translation table walk:

— Global entries.

— Non-global entries with any ASID.

RJXKNN If <type> is VAAL in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, then the instruction applies to all of the following:

— When HCR_EL2.{E2H, TGE} is not {1, 1}, then the EL1&0 translation regime when executing at
EL1.

— When HCR_EL2.{E2H, TGE} is {1, 1}, then the EL2&0 translation regime when executing at EL2.

• For the Security state specified by the Effective value of SCR_EL3.{NSE, NS} and for the value of
SCR_EL3.EEL2, the instruction applies to all cached copies of the stage 1 translation table entries from the
final lookup level in the translation table walk required to translate the address at the specified Exception
level.

• If EL2 is enabled, then for entries from the EL1&0 translation regime the instruction applies only to cached
copies of translation table entries from the final lookup level with the current VMID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6764
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
• For instructions where the value of <regime> is E2, the instruction applies to the EL2&0 or EL2 translation
regime, as determined by the value of HCR_EL2.E2H.

• The instruction applies to all of the following cached copies of translation table entries from the final lookup
level in the translation table walk:

— Global entries.

— Non-global entries with any ASID.

RVZZVZ If <type> is IPAS2 in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, and if EL2 is enabled, then the instruction applies only to the EL1&0
translation regime.

• If all of the following apply, the instruction applies to all cached copies of the stage 2 translation table entries
from any lookup level in the translation table walk required to translate the address:

— The TLB entry holds only a stage 2 translation table entry.

— The entry applies only to the current VMID.

• The instruction is not required to invalidate TLB entries that combine stage 1 and stage 2 translation table
entries.

• If one of the following is true, then the instruction executes as a NOP:

— EL2 is not implemented.

— The Effective value of SCR_EL3.NS is 0 and EL2 is disabled.

RNSDNR If <type> is IPAS2L in a TLB maintenance instruction, then all of the following apply:

• If and only if the value of <regime> is E1, and if EL2 is enabled, then the instruction applies only to the EL1&0
translation regime.

• If all of the following apply, the instruction applies to all cached copies of the stage 2 translation table entries
from the final lookup level in the translation table walk required to translate the address:

— The TLB entry holds only a stage 2 translation table entry.

— The entry applies only to the current VMID.

• The instruction is not required to invalidate TLB entries that combine stage 1 and stage 2 translation table
entries.

• If one or more of the following is true, then the instruction executes as a NOP:

— EL2 is not implemented.

— The Effective value of SCR_EL3.NS is 0 and EL2 is disabled.

D8.16.6 Operation of the TLB maintenance instructions

RXQBCL A TLB maintenance instruction applies whether a translation stage is enabled or disabled.

RKKDKL A TLB maintenance instruction can affect any TLB entries that are not locked down.

IYGYRY There is no guarantee that an unlocked TLB entry remains in the cache. Therefore, it is not possible to determine
architecturally whether a TLB maintenance instruction has affected any TLB entries that were not specified by the
instruction.

ILMGTM The TLB maintenance instructions specify the Exception level of the translation regime to which they apply.

RTBLDD A TLB maintenance instruction never generates an MMU abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6765
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
IBDTLG If EL3 is implemented, then the Effective value of SCR_EL3.{NSE, NS} modifies the effect of the TLB
maintenance instructions in all of the following ways:

• For instructions that apply to the EL2 or EL2&0 translation regime, if SCR_EL3.{EEL2, NS} is not {0, 0},
then all of the following apply:

— If the Effective value of SCR_EL3.{NSE, NS} is {0, 0}, then the instruction applies to the Secure
variant of the corresponding regime.

— If the Effective value of SCR_EL3.{NSE, NS} is {0, 1}, then the instruction applies to the Non-secure
variant of the corresponding regime.

— If the Effective value of SCR_EL3.{NSE, NS} is {1, 1}, then the instruction applies to the Realm
variant of the corresponding regime.

— If the Effective value of SCR_EL3.{NSE, NS} is {1, 0}, then the instruction is not required to
invalidate any TLB entries.

• If SCR_EL3.{EEL2, NS} is {0, 0}, then instructions that apply to the EL2 or EL2&0 translation regime are
UNDEFINED.

• For instructions that apply to the EL3 translation regime, the Effective value of SCR_EL3.{NSE, NS} has
no effect.

IGDZCC A TLB maintenance instruction is not affected by the current state of all of the following control bits involved in
the translation process:

• In AArch64 state, all of the following:

— SCTLR_EL1.M.

— SCTLR_EL2.M.

— SCTLR_EL3.{M, RW}.

— HCR_EL2.{VM, RW}.

— TCR_EL1.{TG1, EPD1, T1SZ, TG0, EPD0, T0SZ, AS, A1}.

— If HCR_EL2.E2H is 0, then TCR_EL2.{TG0, T0SZ}.

— If the Effective value of HCR_EL2.E2H is 1, then TCR_EL2.{TG1, EPD1, T1SZ, TG0, EPD0, T0SZ,
AS, A1}.

— TCR_EL3.{TG0, T0SZ}.

— VTCR_EL2.{SL0, T0SZ}.

— TTBR0_EL1.ASID.

— TTBR1_EL1.ASID.

— If the Effective value of HCR_EL2.E2H is 1, then all of the following:

— TTBR0_EL2.ASID.

— TTBR1_EL2.ASID.

• In AArch32 state, all of the following:

— SCTLR.M.

— HCR.VM.

— TTBCR.{EAE, PD1, PD0, N, EPD1, T1SZ, EPD0, T0SZ, A1}.

— HTCR.T0SZ.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6766
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
— VTCR.{SL0, T0SZ}.

— TTBR0.ASID.

— TTBR1.ASID.

— CONTEXTIDR.ASID.

RFZTHY Address-based TLB maintenance instructions are applied to the extent of the <shareability> specified by the
instruction regardless of the Shareability assigned by any translation of the IA or Shareability attribute stored in
TLB entries.

RMLYGB For TLB maintenance instructions that operate only on instruction TLBs or only on data TLBs, Arm deprecates their
use in AArch32 state.

RLQLSD When a TLB maintenance instruction is executed, all of the following apply:

• The minimum size of a TLB entry that is required to be invalidated from the TLB is at least the size specified
by the corresponding translation table entry.

• The Contiguous bit does not affect the minimum size of a TLB entry that is required to be invalidated from
the TLB.

IJQPNP When invalidating a mapping greater than a translation granule size or block size, for example a mapping that is
specified using the Contiguous bit, software is required to issue a TLB maintenance instruction for each block or
granule within the configured contiguous region size to invalidate the entire mapping.

RMMZTY An implementation is permitted to invalidate more than the minimum required TLB entries.

IZWTPG Arm recommends not invalidating entries that are not required to be invalidated to minimize the performance
impact.

IRTRQB Arm expects software to mostly use address-based TLB invalidation instructions that apply to entries cached from
the last level of a stage 1 or a stage 2 translation table walk to avoid unnecessary loss of the cached intermediate
translation table entries.

RTLJCY For all of the following reasons, software is required to set VTTBR_EL2.VMID[7:0] to a known value as part of
the PE initialization sequence:

• The VTTBR_EL2.VMID field resets to a value that is architecturally UNKNOWN.

• If EL2 is enabled, then dependencies on the VMID in the EL1&0 translation regime apply whether stage 2
translation is enabled or disabled.

D8.16.6.1 Invalidating TLB entries from stage 2 translations

ILRXYX The following code is required to invalidate all cached copies of the stage 2 translation of the IPA held in Xt using
the current VMID, with the corresponding requirement applied to the broadcast versions of the instructions:

TLBI IPAS2E1, Xt
DSB
TLBI VMALLE1

ICKZGP The following code is required to invalidate all cached copies of the stage 2 translations of the IPA held in Xt used
to translate the VA, and the specified ASID when executing TLBI VAE1, held in Xt2, with the corresponding
requirement applied to the broadcast versions of the instructions:

TLBI IPAS2E1, Xt
DSB
TLBI VAE1, Xt2 ; or TLBI VAAE1, Xt2

IQKHVL The following code is required to invalidate all cached copies of the stage 2 translations of the IPA held in Xt used
to translate the IPA produced by the last level of stage 1 translation table lookup for the VA, and the specified ASID
when executing TLBI VALE1, held in Xt2, with the corresponding requirement applied to the broadcast versions of the
instructions:

TLBI IPAS2E1, Xt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6767
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
DSB
TLBI VALE1, Xt2 ; or TLBI VAALE1, Xt2

IXPBXT For an EL1&0 translation regime with stage 2 translation enabled, software is required to use the entire invalidation
sequences, even if stage 1 translation is disabled.

IRGYNM Equivalent architectural requirements apply to the IPAS2L instruction, except that the only TLB entries required to
be invalidated by an IPAS2L instruction are those that come from the final translation table lookup level.

D8.16.7 Broadcast TLB maintenance

RTHTWM If all of the following apply, then a TLB maintenance instruction executed by a PE in an Exception level that is using
AArch64 can affect a PE that executes the same Exception level using AArch32:

• The PE lies within the target Shareability domain of the TLB maintenance instruction.

• If VA matching is required, then the VA is 0x0000FFFFFFFF or lower in the memory map.

• If ASID matching is required, then one of the following:

— If the PE using AArch64 is using an 8-bit ASID, then the ASIDs match.

— If the PE using AArch64 is using a 16-bit ASID and the top 8 bits of the 16-bit ASID are zero, then
the ASIDs match.

• If VMID matching is required, then one of the following:

— If the PE using AArch64 is using an 8-bit VMID, then the VMIDs match.

— If the PE using AArch64 is using a 16-bit VMID and the top 8 bits of the 16-bit VMID are zero, then
the VMIDs match.

RVYLVH If all of the following apply, then a TLB maintenance instruction executed by a PE in an Exception level that is using
AArch32 can affect a PE that executes the same Exception level using AArch64:

• The PE lies within the same Inner Shareable Shareability domain of the TLB maintenance instruction.

• If VA matching is required, then when the supplied VA is zero-extended, the VAs match.

• If IPA matching is required, then when the supplied IPA is zero-extended, the IPAs match.

• If ASID matching is required, then one of the following:

— If the PE using AArch64 is using an 8-bit ASID, then the ASIDs match.

— If the PE using AArch64 is using a 16-bit ASID, then when the supplied ASID is zero-extended, then
the ASIDs match.

• If VMID matching is required, then one of the following:

— If the PE using AArch64 is using an 8-bit VMID, then the VMIDs match.

— If the PE using AArch64 is using a 16-bit VMID, then when the supplied VMID is zero-extended, the
VMIDs match.

RWMNBC If a PE with EL3 using AArch32 issues a broadcast AArch32 TLB maintenance instruction affecting entries in
Secure state, then the instruction is not required to affect one or more of the following in the Inner Shareable domain:

• The EL3 translation regime of the PEs with EL3 using AArch64.

• If EL2 is disabled, then the EL1&0 translation regime of the PEs with EL3 using AArch64, regardless of
whether the EL1&0 translation regime is using AArch64 or AArch32.

RSLJFD If a PE with EL3 using AArch64 issues a broadcast AArch64 TLB maintenance instruction affecting EL3 entries,
then the instruction is not required to affect the EL3 translation regime of the PEs with EL3 using AArch32 in the
Inner Shareable domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6768
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
RGKQML If a PE with EL3 using AArch64 issues a broadcast AArch64 TLB maintenance instruction affecting Secure EL1
entries, then the instruction is not required to affect the EL3 translation regime of the PEs with EL3 using AArch32
in the Inner Shareable domain.

RXMZFH In all of the following cases, a broadcast TLB maintenance instruction is not required to perform any invalidation
on the recipient PE within the target Shareability domain:

• A TLB maintenance instruction specifying a VA and affecting one of the following translation regimes is
broadcast from a PE using one translation granule size for that translation regime to a PE using a different
translation granule size for that VA in the same translation regime:

— The EL2 translation regime.

— The EL2&0 translation regime.

— The EL3 translation regime.

• A TLB maintenance instruction specifying a VA and affecting the EL1&0 translation regime is broadcast
from a PE using a stage 1 translation granule size for that translation regime to a PE using EL1 and a different
stage 1 translation granule size for that VA.

• If EL2 is enabled, then a TLB maintenance instruction specifying a VA and affecting the EL1&0 translation
regime is broadcast from a PE using a stage 2 translation granule size to a PE using a different stage 2
translation granule size.

• If EL2 is enabled, then a TLB maintenance instruction specifying an IPA and affecting the EL1&0 translation
regime is broadcast from a PE using a stage 2 translation granule size to a PE using a different stage 2
translation granule size.

• A TLB maintenance instruction specifying a range of VAs or IPAs is broadcast from one PE to a PE that does
not support the TLB range-based operations.

RYNPVV The set of Requesters containing TLBs that support TLB range-based operations is defined by the system
architecture.

IWHFDZ Arm strongly recommends that within an Inner Shareable domain, all PEs support the same set of broadcast TLB
range maintenance instructions.

RTVMHK If an Armv7 PE is in the same Inner Shareable domain as an Armv8 PE, and the Armv8 PE issues a broadcast TLB
maintenance instruction that is not defined in Armv7, then that instruction is not required to affect the TLBs of the
Armv7 PE.

IFSWKY All of the following TLB maintenance instructions are added to the Armv8 T32 and A32 instruction sets, and do
not exist in Armv7:

• For stage 1 translations, all of the following instructions that operate on TLB entries for the final level of
translation table walk:

— TLBIMVALIS.

— TLBIMVAALIS.

— TLBIMVALHIS.

— TLBIMVAL.

— TLBIMVAAL.

— TLBIMVALH.

• For stage 2 translations, all of the following instructions that operate by IPA on TLB entries:

— TLBIIPAS2IS.

— TLBIIPAS2LIS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6769
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
— TLBIIPAS2.

— TLBIIPAS2L.

D8.16.8 Ordering and completion of TLB maintenance instructions

RTGVWD For all of the following instructions, the effects of a TLB maintenance instruction can be observed in any order
relative to that instruction unless a DSB is executed between the instructions:

• Any load or store instruction.

• Another TLB maintenance instruction.

• A data or instruction cache maintenance instruction.

RQRNJC A TLB maintenance instruction executed by a PE causes a TLB maintenance operation to occur on each PE within
the Shareability domain specified by the instruction.

INVLMG If a TLB maintenance instruction has the nXS qualifier, then the associated TLB maintenance operations have the
nXS qualifier.

ISFCHD If a TLB maintenance instruction does not have the nXS qualifier and the Effective value of HCRX_EL2.FnXS is
1, then all of the following apply:

• When the instruction is not executed at EL1, the associated TLB maintenance operations do not have the nXS
qualifier.

• When the instruction is executed at EL1, the associated TLB maintenance operations have the nXS qualifier.

IBBMSB If a translation regime uses two translation stages, then the XS attribute used to determine the behavior of a TLB
maintenance instruction with the nXS qualifier is the attribute determined after both translation stages have been
applied.

RWWQZZ When a TLB maintenance instruction is executed, in-scope old translation information is any translation
information related to addresses within the scope of that instruction that is not consistent with one or more of the
following:

• The architectural translation information held in the translation tables.

• Any architecture translation information that is Coherence-after the information held in the translation tables.

IYMDMJ In-scope old translation information might be held in TLBs or other non-coherent caching structures.

ISTPSQ For a PE that handles a TLB maintenance operation without the nXS qualifier, the TLB maintenance operation is
finished when all of the following apply:

• All memory accesses generated by that PE using in-scope old translation information are complete.

• All memory accesses, RWx, generated by that PE are complete, where RWx is the set of all memory accesses
generated by instructions for that PE that appear in program order before an instruction I1 executed by that
PE, where all of the following apply:

— I1 uses the in-scope old translation information.

— The use of the in-scope old translation information generates a synchronous Data Abort.

— If I1 did not generate an abort from use of the in-scope old translation information, I1 would generate
a memory access that RWx would be locally-ordered-before.

ITSJSN For a PE that handles a TLB maintenance operation with the nXS qualifier, the TLB maintenance operation is
finished when all of the following apply:

• All memory accesses with the XS attribute set to 0 generated by that PE using in-scope old translation
information are complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6770
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.16 TLB maintenance
• All memory accesses, RWx, generated by that PE are complete, where RWx is the set of all memory accesses
generated by instructions for that PE that appear in program order before an instruction I1 executed by that
PE, where all of the following apply:

— I1 uses the in-scope old translation information.

— The use of the in-scope old translation information generates a synchronous Data Abort.

— If I1 did not generate an abort from use of the in-scope old translation information, I1 would generate
a memory access with the XS attribute set to 0 that RWx would be locally-ordered-before.

IKFTWB For best real-time performance, Arm recommends that the completion of a TLB maintenance instruction with the
nXS qualifier executed by a PE should not depend on the completion of any memory accesses with the XS attribute
set to 1 generated by a second PE.

RDCJQM When the TLB maintenance operations specified by a TLB maintenance instruction are finished for all PEs, the TLB
maintenance instruction is complete.

RLXHLD If a TLB maintenance instruction is complete, then no new memory accesses using the in-scope old translation
information are architecturally performed by any observer that is affected by the TLB maintenance instruction.

ICPZSM If it is impossible for software running on any observer to determine that the memory accesses have been performed,
then speculative memory accesses can be performed using in-scope old translation information.

RPSMWS When a DSB instruction is used to ensure the completion of TLB maintenance instructions, all of the following
apply:

• The DSB is required to apply to both loads and stores.

• A DSB NSH is sufficient to ensure completion of TLB maintenance instructions that apply to a single PE.

• A DSB ISH is sufficient to ensure completion of TLB maintenance instructions that apply to PEs in the same
Inner Shareable domain.

RYNJCP When a PE, PEx, executes a TLB maintenance instruction, the instruction can complete at any time after it is issued,
but the instruction is only guaranteed to be finished for a PE other than PEx after the execution of DSB by the PEx.

RBLDZX For the TLB of a PE that issues a TLB maintenance instruction, one of the following determines when the
instruction is guaranteed to be complete:

• If FEAT_ETS2 is not implemented, then the instruction is guaranteed to be complete after the execution of
DSB by that PE, followed by a Context synchronization event.

• If FEAT_ETS2 is implemented, all of the following determine when the instruction is guaranteed to be
complete:

— If the instruction applies only to translations without execute permission and where translation
information that is coherence-after also do not have execute permission, then the instruction is
guaranteed to be complete after the execution of DSB by that PE.

— If the instruction applies to any translations with execute permission, then the instruction is guaranteed
to be complete after the execution of DSB by that PE, followed by a Context synchronization event.

IMGRRK For more information, see Definition of the Arm memory model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6771
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.17 Caches
D8.17 Caches

D8.17.1 Data and unified caches

RJHVQL For data and unified caches, if all data accesses to an address do not use mismatched memory attributes, then the
use of address translation is transparent to any data access to the address.

For more information, see Mismatched memory attributes.

RCTGML For data accesses from the same observer to different VAs, if the accesses are translated to the same PA with the
same memory attributes, then they are coherent and all of the following behaviors are guaranteed without requiring
the use of barrier or cache maintenance instructions:

• Two writes to the same PA occur in program order.

• A read of a PA returns the value of the last successful write to that PA.

• A write to a PA that occurs, in program order, after a read of that PA, has no effect on the value returned by
that read.

RNGPVX When cache maintenance is done to a memory location, the effect of that cache maintenance is visible to all VA or
IPA aliases of that physical memory location.

IFHPPX The properties of data and unified caches are consistent with implementing the caches as physically-indexed,
physically-tagged caches.

D8.17.2 Instruction caches

RGXBMD An instruction cache has all of the following properties:

• An instruction cache is accessed only as a result of an instruction fetch.

• An instruction cache is never written to by a load or store instruction.

• Cache invalidation is the only cache maintenance that can be done on an instruction cache.

RXBHSB The Arm architecture permits all of the following instruction cache implementations:

• Physically-indexed, physically-tagged (PIPT) instruction cache.

• Virtually-indexed, physically-tagged (VIPT) instruction cache.

IXSPPH The CTR_EL0.L1Ip field identifies the form of the instruction caches.

RXLZJK For all permitted instruction cache implementations, the Arm IVIPT Extension is also implemented, which reduces
instruction cache maintenance requirements to requiring maintenance only after writing new data to a PA that holds
an instruction.

IQNJPN Previous versions of the Arm architecture permitted an instruction cache option that does not implement the Arm
IVIPT Extension.

IGWSPL For software to be portable between implementations that might use any of the permitted instruction cache
implementations, that software is required to invalidate the instruction cache whenever any condition occurs that
requires instruction cache maintenance on at least one of the instruction cache types.

D8.17.2.1 Physically-indexed, physically-tagged instruction caches

RYXNGL For PIPT instruction caches, all of the following apply:

• If all instruction fetches to an address do not use mismatched memory attributes, then the use of address
translation is transparent to any instruction fetch to the address.

• If instruction cache maintenance is done on a memory location, then the effect of that instruction cache
maintenance is visible to all VA or IPA aliases of that physical memory location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6772
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.17 Caches
D8.17.2.2 Virtually-indexed, physically-tagged instruction caches

RLYZYY For VIPT instruction caches, all of the following apply:

• If all instruction fetches to an address do not use mismatched memory attributes, then the use of address
translation is transparent to any instruction fetch to the address.

• If instruction cache maintenance by address is done on a memory location, then the effect of that instruction
cache maintenance is visible only to the VA supplied with the operation, and the effect of the invalidation
might not be visible to any other VA or IPA aliases of that physical memory location.

• The only architecturally-guaranteed way to invalidate all VA or IPA aliases of a PA from a VIPT instruction
cache is to invalidate the entire instruction cache.

D8.17.3 Cache maintenance requirements due to changing memory region attributes

IVPPPM If changes are made to the memory region attributes in translation table entries, TLB maintenance might be
required.

For more information, see TLB maintenance.

IZDQCY The behaviors caused by mismatched memory attributes mean that if any of the following changes are made to the
Inner Cacheability or Outer Cacheability attributes in translation table entries, then software is required to ensure
that any cached copies of affected locations are removed from the caches, typically by cleaning and invalidating the
locations from the cache levels that might hold copies of the locations affected by the attribute change:

• A change from Write-Back to Write-Through.

• A change from Write-Back to Non-cacheable.

• A change from Write-Through to Non-cacheable.

• A change from Write-Through to Write-Back.

For more information, see Mismatched memory attributes and Using break-before-make when updating translation
table entries.

RZNPYM If the Shareability attributes in translation table entries are changed, then software is required to execute the
following sequence to prevent possible coherency errors caused by mismatched memory attributes:

1. Make the memory location Non-cacheable, Outer Shareable.

2. Clean and invalidate the memory location from caches in the appropriate Shareability domain.

3. Change the Shareability attributes to the new values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6773
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.18 Pseudocode description of VMSAv8-64 address translation
D8.18 Pseudocode description of VMSAv8-64 address translation

RZMHCV The Arm architecture defines pseudocode that describes the translation table walk.

RSTKYL Full Physical Address

A complete PA necessary to identify a location in physical memory is captured by the type FullAddress. This is
composed of:

• A bitstring address, which identifies the PA.

• An enumeration paspace which identifies the PA space.

RMXLCQ Address translation

AArch64.TranslateAddress() acts as the entry point to VMSAv8-64 and performs the required address translation
based on the provided parameters and System register configurations. The function returns an AddressDescriptor()
structure holding valid data for either of the following:

• Target memory address and attributes for a non-faulting translation.

• Fault details holding data to be populated in syndrome registers.

RLTNYC AArch64.FullTranslate() selects the translation regime and performs first and potentially second stage of translation
returning the PA and attributes of target memory. AArch64.S1Translate() carries out the first stage of translation
when stage 1 is not disabled, mapping the VA to the IPA and carrying out permission checks. Otherwise,
AArch64.S1DisabledOutput() assigns the appropriate memory attributes and flat maps the input address to the output
address. AArch64.S2Translate() carries out stage 2 translation for the EL1&0 translation regime when enabled
mapping the IPA to the PA. Otherwise, the IPA is the PA.

RKKVJD Translation table walk

Each stage of translation has a separate walk function, AArch64.S1Walk() and AArch64.S2Walk(), corresponding to the
first and second stage of translation respectively. Each use walk parameters extracted from related System registers.
Parameters are collected based on the active translation regime. For instance, stage 1 EL2 translation regime
parameters are obtained and returned by the function AArch64.S1TTWParamsEL2(). Given these parameters, a walk
initializes a walk state of the type TTWState, holding the base address of the first translation table.

RXWTPZ The walk progressively fetches and decodes translation Table descriptors, updating the walk state to the next base
address as it descends through the levels of tables until a Block or Page descriptor is discovered or an invalid
descriptor is fetched. Decoding the descriptor for both stage 1 and stage 2 walks is carried out by the function
AArch64.DecodeDescriptorType().

RYMSFF For a non-faulting walk, three items are returned by a translation table walk:

• The final walk state.

• The final descriptor fetched.

• The address of the final descriptor.

RKGLCH The final descriptor and its address are used to update the descriptor as specified by Hardware management of the
Access flag and Hardware management of the dirty state.

RRQKNH A faulting walk could report one of the following at a specified level:

• Translation Fault.

• Address size Fault.

• Access flag Fault.

RDNSWC Hardware update of Translation Table descriptors
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6774
ID032224 Non-Confidential

The AArch64 Virtual Memory System Architecture
D8.18 Pseudocode description of VMSAv8-64 address translation
The walk parameters collected from System registers indicate the ability to update the access flag or set write
permissions within descriptors. This is controlled by the Dirty Bit Modifier, and the conditions specified in
Hardware management of the Access flag and Hardware management of the dirty state. The translation functions
AArch64.S1Translate() or AArch64.S2Translate() set the appropriate descriptor bits returned by the walk functions
and call AArch64.MemSwapTableDesc() to swap the old descriptor for the updated one in an atomic fashion.

RDKMRY Address decoding and calculation

The walk state is initialized to hold the base address of the first translation table, using AArch64.TTBaseAddress() to
decode TTBR0_ELx and TTBR1_ELx registers. The walk progressively fetches and decodes translation Table
descriptors, updating the walk state to the next base address utilizing AArch64.NextTableBase() as it descends through
the levels of tables. Prior to every descriptor fetch the base address is indexed by the function
AArch64.TTEntryAddress() to point to the specific table entry. Indexing at the start level of stage 2 tables is shown in
AArch64.S2SLTTEntryAddress() which caters for concatenated tables. The final walk state would hold the base address
for the output block or page; this is extracted from the Leaf descriptor in AArch64.BlockBase() or AArch64.PageBase()
respectively.

RGDTNP Memory attribute decoding

If a stage of translation is enabled, fetched descriptors that are blocks or pages encode memory attributes assigned
to the output of translation. Stage 1 memory attributes are decoded by the function S1DecodeMemAttrs(). Likewise,
the stage 2 memory attributes are decoded by the function S2DecodeMemAttrs() followed by combining stage 1 and
stage 2 attributes by the function S2CombineS1MemAttrs(). However, if FEAT_S2FWB is enabled, this behavior is
overridden and memory attributes are decoded as specified in Stage 2 memory type and Cacheability attributes
when FWB is enabled. This is captured by the function AArch64.S2ApplyFWBMemAttrs().

RHGFRX Fault detection

As soon as translation is invoked a reserve FaultRecord accompanies the process capturing the stage and level of
translation as it proceeds. When a fault is detected, it is reflected in the FaultRecord and reported back as the result
of translation with the most recent state to be reported already captured within. The following functions detect a
certain type of fault:

• The AArch64.S1CheckPermissions() and AArch64.S2CheckPermissions() functions check permissions for stage
1 and stage 2 respectively.

• The AArch64.S1HasAlignmentFault() and AArch64.S2HasAlignmentFault() functions detect an alignment fault
for stage 1 and stage 2 respectively.

• The AArch64.S1InvalidTxSZ() and AArch64.S2InvalidTxSZ() functions detect a Translation fault caused by
erroneous configuration of TCR_ELx.TnSZ field. Also, the AArch64.S2InconsistentSL() and
AArch64.S2InvalidSL() functions detect a stage 2 Translation fault caused by erroneous configuration of the
VTCR_EL2.{SL2, SL0} and VSTCR_EL2.{SL2, SL0} fields.

• AArch64.VAIsOutOfRange() detects a stage 1 Translation fault caused by VAs larger than the address input size
configured. Similarly, AArch64.IPAIsOutOfRange() detects a stage 2 Translation fault caused by the output of
stage 1 being larger than the configured input size for stage 2.

• AArch64.ContiguousBitFaults() detects a stage 1 or 2 Translation fault caused by a mis-programmed
contiguous bit within a fetched descriptor.

IPJBNQ For more information, see aarch64/translation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D8-6775
ID032224 Non-Confidential

Chapter D9
The Granule Protection Check Mechanism

Any access, after all enabled translation stages, targets a physical address (PA) in one of the four physical address
spaces. This chapter describes the Granule Protection Check (GPC) mechanism by which accesses to those PA
spaces are checked. The GPC mechanism is added by the Realm Management Extension (RME) and includes the
following:

• Mechanism to determine the protection information for a particular PA and PA space.

• Allocation and invalidation behavior for TLBs, data caches, and instruction caches.

• Configuration registers and descriptor formats for PA space protection information.

This chapter contains the following sections:

• GPC behavior overview.

• GPC faults.

• GPT caching and invalidation.

• GPT formats.

• GPT lookup process.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6776
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.1 GPC behavior overview
D9.1 GPC behavior overview

IBDSNC The PA space of an access is determined by all of the following:

• The Requester Security state.

• If enabled, then the stage 1 and stage 2 translation.

RBYRRZ If GPCCR_EL3.GPC is 0, disabling granule protection checks, then accesses to all four address spaces are not
subject to granule protection checks and cannot generate GPC faults.

RGRGXY If GPCCR_EL3.GPC is 1, enabling granule protection checks, then all accesses are subject to granule protection
checks, except for fetches of Granule Protection Table (GPT) information and accesses governed by the
GPCCR_EL3.GPCP control.

RTHJVJ GPT walks are made to the Root physical address space and are not subject to granule protection checks.

RXSWYP If the PoC is before any cache level and DC instructions to the PoC do not affect caches past the PoPA, then it is
IMPLEMENTATION DEFINED whether a data or unified cache maintenance by VA to the PoC instruction can generate
a GPC fault.

IRLDTY If GPCCR_EL3.GPC is 1, enabling granule protection checks, then an access might generate one of the following
GPC faults:

• Granule Protection Fault (GPF).

• GPT walk fault.

• GPT address size fault.

• Synchronous External abort on GPT fetch.

IQHSZT The GPCCR_EL3.GPCP control governs behavior of granule protection checks on fetches of stage 2 Table
descriptors.

IWJCYJ The granule protection mechanism permits association of a peripheral Resource with a PA space to be performed
by a Completer instead of the Requester, at a granularity finer than 4KB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6777
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.2 GPC faults
D9.2 GPC faults

RJWCSM If the GPC for an access requires use of configuration in GPCCR_EL3, and the configuration of GPCCR_EL3 is
invalid, then the access generates a GPT walk fault at level 0.

The configuration of GPCCR_EL3 is invalid if any of the following are true:

• Any field is programmed to a reserved value.

• Any field is programmed to an invalid value, as specified in the definition of GPCCR_EL3.

RKYZMZ If the GPC for an access requires consumption of any field in an invalid GPT entry, then the access generates a GPT
walk fault at level x, where x is the level of the invalid GPT entry.

RXVCKY If the GPC for an access requires use of the configured base address in GPTBR_EL3.BADDR, and the base address
exceeds the configured address size in GPCCR_EL3.PPS, then the access generates a GPT address size fault at level
0.

RJCGMZ If the GPC for an access requires consumption of a GPT Table descriptor with an address that exceeds the value
configured in GPCCR_EL3.PPS, then the access generates a GPT address size fault at level 0.

RDFCHJ If a fetch of GPT information to check an access experiences an External abort, then the access generates a
synchronous External abort on GPT fetch at level x, where x is the level of the fetch that experienced the External
abort.

RCPDSB If a Non-secure PA input to the GPC exceeds the PA range specified by GPCCR_EL3.PPS, then the access does not
generate any GPF.

RJFFHB If a Secure, Realm or Root PA input to the GPC exceeds the PA range specified by GPCCR_EL3.PPS, then the
access generates a Granule protection fault at Level 0.

RDQPWS An access is not permitted by the GPT if it is made to a PA space not permitted according to the Granule Protection
Information (GPI) value returned by the GPT lookup.

RHDDNW If an access is not permitted by the GPT, then the access generates a Granule protection fault at Level x, where x is
the level of the GPT entry that the access was checked against.

RVJLXG Accesses are checked against the GPC configuration for the physical granule being accessed, regardless of the stage
1 and stage 2 translation configuration.

IKLTDM For example, if GPCCR_EL3.PGS is configured to a smaller granule size than the configured stage 1 and stage 2
translation granule size, accesses are checked at the GPCCR_EL3.PGS granule size.

RGMGRR The following table shows the possible GPC faults, from highest priority to lowest priority, and the reasons they are
generated:

Table D9-1 GPC fault priority

Priority Fault reported Reason

1 GPT walk fault at Level 0 The configuration of GPCCR_EL3 is invalid

2 Granule protection fault at Level 0 A Secure, Realm or Root physical address exceeds
GPCCR_EL3.PPS

3 GPT address size fault at Level 0 The base address in GPTBR_EL3.BADDR exceeds
GPCCR_EL3.PPS

4 Synchronous External abort on GPT fetch at Level 0 An L0GPT fetch experiences an external abort

5 GPT walk fault at Level 0 An L0GPT entry is invalid

6 GPT address size fault at Level 0 An L0GPT entry contains an address exceeding
GPCCR_EL3.PPS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6778
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.2 GPC faults
7 Granule protection fault at Level 0 An L0GPT entry forbids access

8 Synchronous External abort on GPT fetch at Level 1 An L1GPT fetch experiences an external abort

9 GPT walk fault at Level 1 An L1GPT entry is invalid

10 Granule protection fault at Level 1 An L1GPT entry forbids access

Table D9-1 GPC fault priority (continued)

Priority Fault reported Reason
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6779
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.3 GPT caching and invalidation
D9.3 GPT caching and invalidation

RYJGPL All fetches of GPT information use Normal memory types.

RRKFVK The Cacheability and Shareability attributes of GPT fetches are configured in GPCCR_EL3.

ICDFPQ Fetched GPT information might be cached in a data cache, according to the Normal memory Cacheability attributes
and allocation hints configured in GPCCR_EL3.

IZJYLQ The Cacheability of GPT fetches is controlled by GPCCR_EL3.{IRGN, ORGN} and is not affected by the
SCTLR_ELx.C or HCR_EL2.{CD, DC} control bits.

RXNFGN GPT fetches are made with behavior consistent with PBHA being disabled or programmed to zero, regardless of the
PBHA configuration at stage 1 and stage 2. See Page Based Hardware attributes.

RYMSWK GPT entries are permitted to be cached in TLBs combined with stage 1 and stage 2 information, as long as the
requirements of TLB invalidation instructions are met.

RVFKSY TLBs containing GPT information are disabled at reset. Any IMPLEMENTATION DEFINED or UNKNOWN GPT
information in TLBs has no effect on accesses until granule protection checks, or any stages of translation are
enabled.

RYMRVT GPT information cached in a TLB is permitted to be shared across multiple PEs, except for PEs with
GPCCR_EL3.GPC set to 0 and all translation stages disabled.

RXLDKK For two PEs that are permitted to share GPT information cached in TLBs, if the configuration of GPCCR_EL3,
GPTBR_EL3, and the GPT is not consistent across those PEs, then the behavior on one PE is a CONSTRAINED
UNPREDICTABLE choice of:

• The configuration for that PE.

• The configuration of the other PE.

• A combination of the configuration of the two PEs.

IBSPQD To avoid CONSTRAINED UNPREDICTABLE behavior, Root firmware must ensure that both:

• Before GPCCR_EL3.GPC is set to 1, GPCCR_EL3 and GPTBR_EL3 are otherwise configured consistently
with other PEs.

• Before enabling any translation stage, GPCCR_EL3.GPC is set to 1.

RRQCBQ A level 0 GPT entry is reachable if the entry is in the configured PA range of GPTBR_EL3 and GPCCR_EL3, and
GPT configuration does not generate a GPC fault at level 0.

RMGSTK A level 1 GPT entry is reachable if a reachable or previously cached level 0 GPT entry points to it, and that level 0
GPT entry does not generate a GPC fault.

RBFQRM GPT entries may only be fetched if they are reachable.

RQBKYP GPT entries may only be cached in a TLB if they are reachable and valid.

IJMYRB Because GPT entries are permitted to be cached in a TLB if they are reachable and valid, translations that result in
a GPF are permitted to be cached in a TLB.

IPCYQZ TLB invalidation instructions that maintain GPT entries cached in a TLB are described using one of the following
syntaxes:

• TLBI RPA{L}OS, <Xt>.

• TLBI PAALLOS.

• TLBI PAALL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6780
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.3 GPT caching and invalidation
IDRHKK All of the following are the TLB maintenance instructions that invalidate cached GPT entries:

• TLBI RPAOS, <Xt>.

• TLBI RPALOS, <Xt>.

• TLBI PAALLOS.

• TLBI PAALL.

IYBBZK The TLBI *PA* instructions are only present at EL3. They are UNDEFINED at EL2 and below.

RNBJFD TLBI *PA* instructions invalidate GPT information cached in TLB entries, including in intermediate TLB caching
structures, according to the requirements specified in this section.

IJJHVQ The Arm architecture permits a range of TLB implementation styles, including TLB caching structures that store
entries that combine information from stage 1 and stage 2 translation table entries.

GPT information is permitted to be cached in combination with information from stage 1 and stage 2 translation
table entries, as long as the requirements for invalidation of GPT information by TLBI *PA* operations are met. For
example:

• An implementation that caches GPT information separately from stage 1 and stage 2 information is only
required to invalidate GPT information as a result of a TLBI *PA* operation.

• An implementation that caches entries that combine stage 2 OA information with GPT information must
invalidate all such entries in response to a TLBI PAALLOS operation.

• An implementation that caches entries that combine information from stage 2 level 2 Table descriptors with
GPT information must invalidate those entries in response to a TLBI *PA* operation that matches the
next-level address of those level 2 Table descriptors. It is not required to invalidate those entries when a TLBI
PA matches the PA that the level 2 descriptor was fetched from.

IXZTJV A TLBI RPA* instruction applies to TLB entries containing GPT information relating to the supplied PA range.

IZDVNB A TLBI PAALL* instruction applies to all TLB entries containing GPT information.

IBKJTM A TLBI PAALL* instruction also applies to any TLB entry derived from GPC configuration register fields that are
permitted to be cached in a TLB.

IJQRVK The remaining instruction syntax is the same as for Armv8-A. This means:

• {R} is a specifier denoting range-based invalidation.

• {L} is an optional specifier that reduces the scope of the invalidation to cached GPT entries fetched from the
final level of the GPT walk.

• {OS} specifies that the TLBI applies to all the TLBs in the Outer Shareable domain. TLBI *PA* operations
without OS are only required to apply to the PE executing the operation.

• <Xt> specifies that the instruction takes an X register as an argument to pass additional information about the
invalidation scope.

RLRKLF For TLBI *PA* instructions, Outer Shareable scope is sufficient to affect all TLBs in the system.

ISXTLQ The TLBI *PA* operations do not have an nXS qualifier and always behave as though they are issued without an nXS
qualifier.

IFRSHC The Arm architecture has IMPLEMENTATION DEFINED support for TLB lockdown, and the interaction between TLB
lockdown and existing data TLB maintenance instructions is IMPLEMENTATION DEFINED.

RBFXRL TLBI *PA* operations affect TLB entries containing GPT information regardless of any TLB lockdown
configuration.

ITMCTS The TLBI *PA* operations have the same rules for ordering, observability, and completion as all other TLBI
instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6781
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.3 GPT caching and invalidation
IPLYZN The TLBI RPAOS instruction invalidates TLB entries containing GPT information from any level of the GPT walk
relating to the supplied PA range.

IVLLLY The TLBI RPALOS instruction invalidates TLB entries containing GPT information from the final level of the GPT
walk relating to the supplied PA range.

IZZJVG Consistent with all other TLBI instructions, over-invalidation is permitted, and under-invalidation is not.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6782
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.4 GPT formats
D9.4 GPT formats

RQKHMJ The in-memory structure that describes the association of physical granules with PA spaces is the Granule
Protection Table (GPT).

IPZSYC For implementations that choose to do so for area or performance reasons, the architecture permits caching of GPT
information in a TLB.

RJLXZV A successful GPT lookup resolves an input PA to the GPI for that address.

RTRVSY A GPT descriptor is one of a Table, Block, Contiguous, or Granules descriptor.

RJXNXP A GPT descriptor is eight bytes.

RBQHPD All structures in the GPT are little-endian.

IKFVNY All GPT entries are naturally-aligned in memory.

RVXNGT The GPT has two levels of lookup.

RTRCQY All valid entries in a level 0 GPT are GPT Block or GPT Table descriptors.

RTXFXH A level 0 GPT entry that is not a GPT Block or GPT Table descriptor is invalid.

RDCTFM All valid entries in a level 1 GPT are GPT Contiguous or GPT Granules descriptors.

RTPBZN A level 1 GPT entry that is not a GPT Contiguous or GPT Granules descriptor is invalid.

RXNKFZ A GPT entry is invalid if any of the following are true:

• A field in the entry is configured with an encoding marked as reserved.

• A bit location in the entry marked as RES0 is nonzero.

IXJKRS This is to increase the probability of detecting errors relating to a loss of integrity of the memory holding the GPT.

D9.4.1 GPT Table descriptor

RRCTBJ A GPT Table descriptor contains a pointer to the base address of a next-level table, and fields describing properties
relating to the remaining levels of walk.

IHKPQF The following figure shows the level 0 GPT Table descriptor format:

Figure D9-1 Level 0 GPT Table descriptor format

RKCDQS GPT Table descriptor bits[63:52] are RES0.

RNWCYC GPT Table descriptor bits[51:12] are the next-level table address.

RSFPYD GPT Table descriptor bits[11:4] are RES0.

RGPPXX GPT level 0 entry bits[3:0] are 0b0011, indicating the entry is a GPT Table descriptor.

RDBTFW The alignment of the next-level table address depends on the value of GPCCR_EL3.PGS as follows:

Next-level table addressRES0 RES0 0b0011

63 04 3

Level 0 GPT Table descriptor
12 1152 51
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6783
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.4 GPT formats
Descriptor bits [s-p-2:12] are RES0, where:

• s is derived from GPCCR_EL3.L0GPTSZ as follows:

• p is derived from GPCCR_EL3.PGS as follows:

IBFKHR Level 1 tables are aligned to their size in memory. The size of level 1 tables is determined by GPCCR_EL3.PGS
and GPCCR_EL3.L0GPTSZ.

D9.4.2 GPT Block descriptor

INKQNF The following figure shows the level 0 GPT Block descriptor format:

Figure D9-2 Level 0 GPT Block descriptor format

RPHBLQ GPT Block descriptor bits[63:8] are RES0.

RFZGCP GPT Block descriptor bits[7:4] are the GPI value. For more information, see GPI field encoding in GPT descriptors.

RFGPWN GPT level 0 entry bits[3:0] are 0b0001, indicating the entry is a GPT Block descriptor.

RPLSSK GPT information from a level 0 GPT Block descriptor is permitted to be cached in a TLB as though the block is a
contiguous region of granules, each of the size configured in GPCCR_EL3.PGS.

RYNKWN If the range encoded in the SIZE field of the invalidation covers the full address range of the Block, as advertised
in GPCCR_EL3.L0GPTSZ, a TLBI RPA* operation is only required to invalidate cached information from a level 0
GPT Block descriptor.

RGXNNL When GPT configuration is changed between the two following structures, Granule protection checks continue to
be made correctly, even if a TLBI is not issued:

• A level 0 GPT Block descriptor indicating a GPI value for a region.

• A level 0 GPT Table descriptor pointing at a level 1 table of Contiguous or Granules descriptors that have the
same GPI value as the level 0 Block descriptor.

GPCCR_EL3.L0GPTSZ Size indicated s

0b0000 1GB 30

0b0100 16GB 34

0b0110 64GB 36

0b1001 512GB 39

GPCCR_EL3.PGS Size indicated p

0b00 4KB 12

0b10 16KB 14

0b01 64KB 16

GPI 0b0001

63 8 7 0

RES0

4 3

Level 0 GPT Block descriptor
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6784
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.4 GPT formats
When a level 0 Table descriptor is replaced with a level 0 Block descriptor, the hardware may continue to access the
level 1 Table until completion of a non-Last-level TLBI by PA, targeting at least the full address range of the level
0 descriptor. This means that the memory containing the level 1 Table cannot be reclaimed for other uses until
completion of that TLBI by PA operation.

D9.4.3 GPT Granules descriptor

INRSQJ The following figure shows the level 1 GPT Granules descriptor format:

Figure D9-3 Level 1 GPT Granules descriptor format

RHJWQH An 8-byte GPT Granules descriptor contains the GPI values for 16 physical granules. For more information, see
GPI field encoding in GPT descriptors.

RQDCZJ The following table describes how the GPI values within one Granules descriptor are indexed:

The GPI value to use is descriptor bits [(4*i) + 3 : (4*i)].

RGQPWL GPT level 1 entry bits[3:0] are a valid GPI encoding, indicating the entry is a GPT Granules descriptor. For more
information, see GPI field encoding in GPT descriptors.

D9.4.4 GPT Contiguous descriptor

ISPSCW The following figure shows the level 1 GPT Contiguous descriptor format:

Figure D9-4 Level 1 GPT Contiguous descriptor format

RMVVWZ GPT Contiguous descriptor bits[63:10] are RES0.

RJCXJC GPT Contiguous descriptor bits[9:8] are the Contig field.

RJLQNJ GPT Contiguous descriptor bits[7:4] are the GPI value. For more information, see GPI field encoding in GPT
descriptors.

RBSSVP GPT level 1 entry bits[3:0] are 0b0001, indicating the entry is a GPT Contiguous descriptor.

GPI GPI GPI GPIGPI GPI GPI GPI GPI GPI GPI GPI GPI GPI GPI GPI

63 0

Level 1 GPT Granules descriptor
4 312 11 8 716 1520 1924 2328 2732 3136 3540 3944 4348 4752 5156 5560 59

GPCCR_EL3.PGS Size indicated Within Granules descriptor

0b00 4KB i = PA[15:12]

0b10 16KB i = PA[17:14]

0b01 64KB i = PA[19:16]

Contig GPI 0b0001

63 0

RES0

Level 1 GPT Contiguous descriptor
4 38 710 9
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6785
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.4 GPT formats
RBFCGF The following table describes the Contig field encoding:

RMNZWK Information from a GPT Contiguous descriptor is permitted to be cached in a TLB or a table walk cache for an input
address range up to the size indicated by the Contig field.

RCZJSQ Contiguous regions are naturally-aligned.

IQJZQH For example, if the Contig field in the Contiguous descriptor for address 0x80004000 indicates a 2MB contiguous
region, the region is 0x80000000 to 0x801FFFFF.

RRQBNP GPT entries marked for contiguity are permitted, but not required, to be cached as block entries.

RSSKBB TLB Invalidation of GPT information is only guaranteed by TLB maintenance of the full contiguous range.

IKBTDW For example, this might be done by executing a TLBI RPALOS, <Xt> instruction covering the full range of the
contiguous GPT region.

INZJDP This requirement on TLBI scope is intended to be the same as the behavior of the Contiguous bit in the VMSA. For
more information, see The Contiguous bit.

RSPLJH If any of the GPI values in GPT descriptors within the range specified by a Contig field differ from each other, then
the GPT Contiguous descriptor has been misprogrammed.

RSMQTZ For an access to a memory location within the range specified by the Contig field, if a GPT Contiguous descriptor
has been misprogrammed, then in the absence of other faulting conditions it is CONSTRAINED UNPREDICTABLE
whether one of the following occurs:

• The access succeeds as though its PA space is permitted by a programmed GPI value in the range.

• The access experiences a GPF consistent with the access not being permitted by one of the GPI values
configured for the range.

RNNHCF If a GPT Contiguous descriptor has the Contig field configured to one value, and other GPT Granules descriptors
or Contiguous descriptors within the range indicated by that Contig field are all configured with the same GPI
values, then in the absence of both misprogramming and faulting conditions, accesses to that range are correctly
checked against the GPI value programmed for the range.

IJMVJS This behavior is intended to be the same as the level 2 behavior that is specified in the FEAT_BBM feature, but with
the option of TLB Conflict aborts removed. For more information, see Support levels for changing table or block
size.

IRQFBR For more information, see:

• GPC faults

• GPT caching and invalidation

Value Meaning

0b00 Reserved

0b01 2MB

0b10 32MB

0b11 512MB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6786
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.4 GPT formats
D9.4.5 GPI field encoding in GPT descriptors

RGYQGW The following table describes the GPI field encoding:

IYDVBY The GPI encoding All accesses permitted might be used for mapping peripherals that perform register banking based
on the PA space of an access.

Value Meaning

0b0000 No accesses permitted.

0b1000 Accesses permitted to Secure PA space only.

This encoding is reserved if FEAT_SEL2 is not implemented.

0b1001 Accesses permitted to Non-secure PA space only

0b1010 Accesses permitted to Root PA space only

0b1011 Accesses permitted to Realm PA space only

0b1111 All accesses permitted

Otherwise Reserved
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6787
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.5 GPT lookup process
D9.5 GPT lookup process

RNGQRV All accesses made by the MMU to the GPT are 64-bit single-copy atomic.

RQNGFY Tables at each GPT level are indexed by the input PA bits, according to the values of GPCCR_EL3.{PPS, PGS,
L0GPTSZ}.

IGRXPD The following table describes how the index information from a PA input is decoded into the GPT lookup:

Where:

• The bit position t has the same value as the configured protected PA size, decoded from GPCCR_EL3.PPS.

• The bit position s has the same value as the supported L0GPT entry size, decoded from
GPCCR_EL3.L0GPTSZ.

• The bit position p has the same value as the address width of the physical granule size configured in
GPCCR_EL3.PGS:

— 0b00, 4KB, p = 12

— 0b10, 16KB, p = 14

— 0b01, 64KB, p = 16

RRDYKY The following table describes how the level 0 table is indexed by PA bits:

The bit position s has the same value as the supported L0GPT entry size, decoded from GPCCR_EL3.L0GPTSZ.

If GPCCR_EL3.PPS is configured for a range smaller than or equal to the range advertised in
GPCCR_EL3.L0GPTSZ, then the level 0 table contains only one entry, at offset zero from the configured table base.

PA bits Interpretation

PA[51:t] Only applies if t < 52. Checked against GPCCR_EL3.PPS

PA[t-1:s] Index into level 0 table

PA[s-1:p+4] Index into level 1 table

PA[p+3:p] Index of GPI within level 1 table entry

GPCCR_EL3.PPS Level 0 index

0b000 PA[31:s]

0b001 PA[35:s]

0b010 PA[39:s]

0b011 PA[41:s]

0b100 PA[43:s]

0b101 PA[47:s]

0b110 PA[51:s]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6788
ID032224 Non-Confidential

The Granule Protection Check Mechanism
D9.5 GPT lookup process
RRSHYW The following table describes how the level 1 table is indexed by PA bits:

The bit position s has the same value as the supported L0GPT entry size, decoded from GPCCR_EL3.L0GPTSZ.

ILJQCV The following table shows how the amount of memory occupied by a level 1 table depends on
GPCCR_EL3.L0GPTSZ and GPCCR_EL3.PGS:

D9.5.1 Ordering of memory accesses from GPT walks

ICLGHP If FEAT_ETS2 is implemented, and a memory access RW1 is Ordered-before a second memory access RW2, then
RW1 is also Ordered-before any translation table walk generated by RW2 that generates any of the following:

• A Translation fault.

• An Address size fault.

• An Access flag fault.

For more information, see Ordering of memory accesses from translation table walks.

RCKTPD If FEAT_RME is implemented, and a memory access RW1 is Ordered-before a second memory access RW2, then
RW1 is also Ordered-before any GPT walk generated by RW2 that generates any of the following:

• A GPT walk fault.

• A GPT address size fault.

GPCCR_EL3.PGS Size indicated Level 1 index

0b00 4KB PA[s-1:16]

0b10 16KB PA[s-1:18]

0b01 64KB PA[s-1:20]

L0GPTSZ PGS=4KB PGS=16KB PGS=64KB

0b0000, 30 bits 128KB 32KB 8KB

0b0100, 34 bits 2MB 512KB 128KB

0b0110, 36 bits 8MB 2MB 512KB

0b1001, 39 bits 64MB 16MB 4MB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D9-6789
ID032224 Non-Confidential

Chapter D10
The Memory Tagging Extension

This chapter describes the Memory Tagging Extension. It contains the following sections:

• Introduction.

• Allocation Tags.

• Memory region tagging types.

• Tag checking.

• Physical Tag locations.

• Tag Check Faults.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6790
ID032224 Non-Confidential

The Memory Tagging Extension
D10.1 Introduction
D10.1 Introduction

IQGVTK The Memory Tagging Extension (MTE) describes the following concepts:

• Allocation Tags that are held at Tag locations and are associated with blocks of memory called Tag Granules.

• Logical Address Tags that form the upper bits of addresses used for Tag Checked memory accesses.

• Tag Check operations in which the Allocation Tags and Logical Address Tags are compared.

• Tag Check Faults that are generated from unsuccessful Tag Check operations.

IMFPTL For more information, see:

• Allocation Tags.

• Tag Checked memory accesses.

• Tag Check operations.

• Tag Check Faults.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6791
ID032224 Non-Confidential

The Memory Tagging Extension
D10.2 Allocation Tags
D10.2 Allocation Tags

DLLSFJ All statements in this section require implementation of FEAT_MTE2.

RCWPLY Each set of 16 naturally-aligned bytes in memory is a Tag Granule.

RXQBST Each Tag Granule is associated with an Allocation Tag in memory.

RCRCLC An Allocation Tag is a 4-bit value.

RQYCTT All accesses to any Allocation Tag are single-copy atomic.

RCPMDB All implicit and explicit accesses to Allocation Tags are regarded as streams of accesses to Allocation Tags, and no
atomicity between accesses to different Allocation Tags, or between accesses to Allocation Tags and accesses to
bytes, is ensured by the architecture.

RYSRGL An instruction that explicitly accesses an Allocation Tag at a VA accesses the Allocation Tag at the VA aligned to
the Tag Granule.

RPJCWS For an instruction that explicitly accesses both Allocation Tags and data, any MMU faults generated by the separate
accesses are not ordered.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6792
ID032224 Non-Confidential

The Memory Tagging Extension
D10.3 Memory region tagging types
D10.3 Memory region tagging types

RSWGZW A memory region tagging type is one of the following:

• Tagged if FEAT_MTE2 is implemented.

• Canonically Tagged if FEAT_MTE_CANONICAL_TAGS is implemented.

• Untagged.

RJJRJP The memory region tagging type for a memory region is:

• Tagged if all of the following are true:

— FEAT_MTE2 is implemented.

— Allocation Tag Access is enabled for the memory region. For more information, see Allocation Tag
Access controls.

— The stage 1 attributes define the Tagged attribute.

— The combined effects of stage 1 and stage 2 translations define the memory attributes as Normal
memory, Inner and Outer Write-Back, Non-Transient, Read-Allocate and Write-Allocate.

• Otherwise it is Canonically Tagged if all of the following are true:

— FEAT_MTE_CANONICAL_TAGS is implemented.

— Canonical Tagging is enabled for the memory region.

— The stage 1 attributes do not define the Tagged attribute.

• Otherwise it is Untagged.

RXNJXP If FEAT_MTE_CANONICAL_TAGS is implemented, Canonical Tagging is configured by the following controls:

• If the stage 1 translation supports two VA ranges, SCTLR_ELx.{ATA, ATA0} and TCR_ELx.{MTXn,
TBIn}.

• If the stage 1 translation supports a single VA range, SCTLR_ELx.ATA and TCR_ELx.{MTX, TBI}.

RGCCBJ For the purpose of determining the memory region tagging type for a memory region, if either of the following apply,
unprivileged load and store instructions are treated as if they are executed at EL0:

• The Effective value of PSTATE.UAO is 0, EL1.

• Both of the following apply, EL2:

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

— The Effective value of PSTATE.UAO is 0.

RYSLYC If the memory region tagging type for a memory region is:

• Tagged then all of the following are true:

— If the memory region has the Non-shareable attribute, it is IMPLEMENTATION DEFINED whether the
memory region is treated as Tagged or Untagged.

— If SCTLR_ELx.C is 0 for a memory access, it is CONSTRAINED UNPREDICTABLE whether the memory
region is treated as Tagged or Untagged.

• Canonically Tagged then all of the following are true:

— If the memory region has the Non-shareable attribute, it is IMPLEMENTATION DEFINED whether the
memory region is treated as Canonically Tagged or Untagged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6793
ID032224 Non-Confidential

The Memory Tagging Extension
D10.3 Memory region tagging types
— If SCTLR_ELx.C is 0 for a memory access, it is CONSTRAINED UNPREDICTABLE whether the memory
region is treated as Canonically Tagged or Untagged.

IQZXCY To ensure consistent behavior, software can set SCTLR_ELx.ATA to 0 when SCTLR_ELx.C is 0.

RWNMML For a read of an Allocation Tag all of the following are true:

• If the read is from an Untagged memory region:

— The read returns the value 0b0000.

— All effects of the access other than the read of the Allocation Tag from memory occur.

— The read is permitted to generate an External abort if a read of data at the same VA would generate an
External abort.

• If the read is from a Canonically Tagged memory region:

— For a translation regime where stage 1 translation supports two VA ranges, the read returns the value:

— 0b0000, if the VA, bit[55], is 0.

— 0b1111, if the VA, bit[55], is 1.

— For a translation regime where stage 1 translation supports a single VA range, the read returns the value
0b0000.

— All effects of the access other than the read of the Allocation Tag from memory occur.

— The read is permitted to generate an External abort if a read of data at the same VA would generate an
External abort.

RVBFYY For a write of an Allocation Tag all of the following are true:

• If the write is to an Untagged memory region:

— The write does not modify the Allocation Tag in memory.

— All effects of the access other than the write of the Allocation Tag to memory occur.

• If the write is to a Canonically Tagged memory region, the write generates a stage 1 Permission fault with
ESR_ELx.TnD set to 1, if the stage 1 of translation is enabled.

D10.3.1 Interactions with Device memory

INLXDF If a memory region has the Device memory type, the memory region is Untagged.

RWHXBY A STZGM instruction to any type of Device memory is CONSTRAINED UNPREDICTABLE between:

• Zeroing the data at the specified locations and leaving any associated Allocation Tags in memory unchanged.

• Generating an Alignment Fault determined by the memory type.

RJMXVK A DC GVA instruction to any type of Device memory is CONSTRAINED UNPREDICTABLE between:

• Not modifying Allocation Tags at the specified addresses.

• Generating an Alignment Fault determined by the memory type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6794
ID032224 Non-Confidential

The Memory Tagging Extension
D10.4 Tag checking
D10.4 Tag checking

DXPMJF All statements in this section require implementation of FEAT_MTE2.

D10.4.1 Tag Checked memory accesses

RCPKNZ A single-copy atomic explicit memory access can be either:

• A Tag Unchecked memory access.

• A Tag Checked memory access.

RDRGYL A single-copy atomic explicit memory access is Tag Unchecked due to any of the following, otherwise it is Tag
Checked:

• The access is:

— An instruction fetch.

— To an Untagged memory region.

— By an instruction that explicitly loads or stores an Allocation Tag.

— A read of an Allocation Tag due to a Tag Check operation.

— Due to a cache maintenance operation by VA other than DC ZVA.

— Due to a translation table walk.

— By a prefetch instruction.

— A load or store relative to VNCR_EL2 if FEAT_NV2 is implemented.

— Generated by the Trace Buffer Unit if FEAT_TRBE is implemented.

— Generated by the Statistical Profiling Unit if SPE is implemented.

— A fetch of GPT information if FEAT_RME is implemented.

— A Guarded Control Stack data access, if FEAT_GCS is implemented.

— A read generated by an instruction executed at ELx, if FEAT_MTE_STORE_ONLY is enabled at ELx.

• The access is by an instruction that uses any of the following addressing modes:

— A base register only, where SP is the base register.

— A base register plus immediate offset addressing form, where SP is the base register.

— Literal (PC-relative).

• The Effective value of PSTATE.TCO is 1.

• Logical Address Tagging is disabled for the VA range being accessed. See Logical Address Tagging for more
information.

• Irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not, the
Logical Address Tag has the value 0b0000 and either of the following conditions apply:

— If the stage 1 translation supports a single VA range, TCR_ELx.TCMA is 1.

— If the stage 1 translation supports two VA ranges, TCR_ELx.TCMA0 is 1 and the access is to the lower
address range.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6795
ID032224 Non-Confidential

The Memory Tagging Extension
D10.4 Tag checking
• Irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not, when
all of the following conditions apply:

— The Logical Address Tag has the value 0b1111.

— If the stage 1 translation supports two VA ranges, TCR_ELx.TCMA1 is 1 and the access is to the upper
address range.

RMCGNZ For the purpose of determining if a memory access is Tag Checked, unprivileged load and store instructions are
treated as if they are executed at EL0 when executed at either:

• EL1 if the Effective value of PSTATE.UAO is 0.

• EL2 if all of the following are true:

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

— The Effective value of PSTATE.UAO is 0.

RKVCNS When executing a Tag Checked Store-Exclusive instruction, that if Tag Unchecked would not perform the store, and
would return a status value of 1, it is CONSTRAINED UNPREDICTABLE whether the instruction generates either:

• A Tag Checked memory access.

• A Tag Unchecked memory access.

RBGGMD If FEAT_SME is implemented, it is IMPLEMENTATION DEFINED whether memory accesses due to the following
instructions are Tag Checked:

• SME, SVE, and SIMD&FP loads and stores that are executed when the PE is in Streaming SVE mode.

• SME LDR (array vector) and STR (array vector).

• SME2 LDR (table) and STR (table).

RHRQCL Memory accesses in Debug state follow the same rules as memory accesses in Non-Debug state for the purposes of
determining if a memory access is Tag Checked or Tag Unchecked.

IPVCHY Any MMU faults generated by a read of an Allocation Tag for a Tag Checked memory access are not ordered with
respect to any MMU faults generated by the memory access.

RZHPVP If FEAT_MTE_STORE_ONLY is implemented, Store-only Tag Checking can be configured by the
SCTLR_ELx{TCSO, TSCO0} controls.

RMNHCZ If FEAT_MTE_STORE_ONLY is implemented, for a Tag Checked Compare and swap instruction, if the compare
fails, it is CONSTRAINED UNPREDICTABLE whether the Tag Check operation is performed.

RMLCNN If a Tag Check Fault is configured to have no effect on a PE due to SCTLR_ELx.{TCF, TCF0}, whether a Tag
Checked access is observed in performance monitors and statistical profiling is IMPLEMENTATION DEFINED.

D10.4.2 Tag Check operations

RFDNHC When a Tag Checked memory access to a memory region occurs:

• If the memory region is Tagged, a Tag Check operation is performed.

• If the memory region is Canonically Tagged, a Canonical Tag Check operation is performed.

• If the memory region is Untagged, no Tag Checking occurs.

RQTQDK Bits [59:56] of a 64-bit VA used for a memory access are a Logical Address Tag.

For more information, see Logical Address Tagging.

RBJWLM A Tag Check operation at a VA:

• Performs an implicit read of an Allocation Tag at the VA aligned to the Tag Granule.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6796
ID032224 Non-Confidential

The Memory Tagging Extension
D10.4 Tag checking
• Compares the Allocation Tag with the Logical Address Tag.

• Generates a Tag Check Fault if the two tags are not equal.

RVJMHZ A Canonical Tag Check operation at a VA generates a Tag Check Fault if:

• For a translation regime where stage 1 translation supports two VA ranges the Logical Address Tag does not
have the value:

— 0b0000, if the VA, bit[55], is 0.

— 0b1111, if the VA, bit[55], is 1.

• For a translation regime where stage 1 translation supports a single VA range, the Logical Address Tag does
not have the value 0b0000.

URBPTM If FEAT_SME is implemented, an implementation is only expected to perform Tag Check operations when the PE
is in Streaming SVE mode if there is a similar performance impact relative to Tag Check operations performed due
to SVE and SIMD&FP loads and stores that are executed when the PE is not in Streaming SVE mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6797
ID032224 Non-Confidential

The Memory Tagging Extension
D10.5 Allocation Tag Access controls
D10.5 Allocation Tag Access controls

IGJZWR Allocation Tag Access is used for all of the following:

• Determining access to Allocation Tags in memory.

• Enabling Tag Checking of memory accesses.

• By instructions inserting Logical Address Tags into addresses.

RYLWMV The following table shows the System register controls that are used to enable Allocation Tag Access:

RCWPLR When executed at an Exception level where Allocation Tag Access is disabled, instructions that insert Logical
Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as zero.

SYHLJC Arm recommends that when software requires access to Allocation Tags in a context but Tag Checking is not
required, the SCTLR_ELx.{TCF, TCF0} field affecting that context is set to 0b00. For more information, see Tag

Check Faults.

Table D10-1 Allocation Tag Access controls

Exception level System register controls

EL3 SCTLR_EL3.ATA

EL2 SCR_EL3.ATA, SCTLR_EL2.ATA

EL1 SCR_EL3.ATA, HCR_EL2.ATA, SCTLR_EL1.ATA

EL0 SCR_EL3.ATA, HCR_EL2.ATA, SCTLR_ELx.ATA0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6798
ID032224 Non-Confidential

The Memory Tagging Extension
D10.6 Physical Tag locations
D10.6 Physical Tag locations

DJTNRZ All statements in this section require implementation of FEAT_MTE2.

D10.6.1 Accessing Tag locations

RFHWSD A Tag location is an Allocation Tag associated with an address in the PA space.

RFXRDJ An Allocation Tag and a byte at the same PA are separate locations.

RVPTKC An instruction accessing an Allocation Tag explicitly, or implicitly for a Tag Check operation, accesses a Tag
location.

RXTTLW An implicit or explicit access to an Allocation Tag uses the same translation, and has the same translation effects,
as an access to the associated Tag Granule.

IVYGYV There is no mechanism to generate an access to an Allocation Tag at a PA other than the PA of the start of a Tag
Granule.

RTQGBX If FEAT_RME is implemented, an access to a Tag location is subject to a granule protection check.

RFWSBS If FEAT_MEC is implemented, an access to a Tag location uses the same PA space and MECID as an access to the
associated Tag Granule.

D10.6.2 Allocation Tag Storage

RNGLPV Storage is provided for each Allocation Tag associated with a Tag Granule of Conventional memory. This is
Allocation Tag storage.

RBCFRK The result of an access to an Allocation Tag where Allocation Tag storage is not provided is IMPLEMENTATION
DEFINED.

D10.6.2.1 Access to Allocation Tag storage at data locations

DRQMQH The rules in this section only apply if Allocation Tag storage can be accessed using a data memory effect at a
separate PA.

RDYBTN It is IMPLEMENTATION DEFINED whether Allocation Tag storage can be accessed using a data memory effect at a
separate PA.

IRNGQD It is not architecturally required for an access to Allocation Tag storage at a Tag location to be coherent with an
access to the same Allocation Tag storage at a data memory location.

RJMJVY An access to Allocation Tag storage at a Tag location can be made visible to an access to that same Allocation Tag
storage at a data location, and vice versa, by the use of cache maintenance operations.

RLMRBP If FEAT_RME is implemented, Allocation Tag storage that can be accessed at a data memory location is only
accessible at a data memory location in the Root PA space.

RTJBLR If FEAT_MEC is implemented, if Allocation Tag storage is accessible at a data memory location, that data location
is only accessible in the Root PA space, using the default MECID of zero.

IVLYLK If FEAT_MEC is implemented, encryption of Allocation Tags in main memory is an optional defense in depth
capability for mitigating attempts to read or corrupt tags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6799
ID032224 Non-Confidential

The Memory Tagging Extension
D10.6 Physical Tag locations
D10.6.3 Caching of Allocation Tags

RPMQPF When data is evicted from a cache entry at a cache level, the evicted data can overwrite data in memory that has
been written by another observer if either, or any of the following are true:

• The data has been written by an Observer in the Shareability domain of that memory location, where the
maximum size of the memory that can be overwritten is defined by the Cache Write-Back Granule in
CTR_EL0.

• The associated Allocation Tags have been written to by an Observer in the Shareability domain of that
memory location, where the maximum size of the memory that can be overwritten is defined by the Cache
Write-Back Granule in CTR_EL0.

RXPPBK If Allocation Tag storage is accessible at a data memory location, when Allocation Tags are evicted from a cache
entry at a cache level, the evicted Allocation Tags can overwrite Allocation Tags in memory that have been written
by another observer if the Allocation Tags associated with memory within an address range of the size of the Cache
Write-Back Granule, and are aligned to that size, have been written by an observer in the Shareability domain of
that memory location.

RFYDLC If an implementation can overwrite Allocation Tags in memory that have been written by another Observer, where
the Allocation Tags have not been written by an Observer in the Shareability domain of that memory location, then
a cache maintenance operation which:

• Cleans data from a cache level must also clean the associated Allocation Tags.

• Invalidates, or cleans and invalidates data from a cache level, must also clean and invalidate the associated
Allocation Tags.

RCKJYV If a memory region is Untagged, a data cache invalidation operation that would invalidate Allocation Tags in that
memory region cleans and invalidates the Allocation Tags.

IVNMBR For more information, see:

• Definition of the Arm memory model.

• A64 System instructions for cache maintenance.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6800
ID032224 Non-Confidential

The Memory Tagging Extension
D10.7 Tag Check Faults
D10.7 Tag Check Faults

RWWXZR A Tag Check Fault can be configured using SCTLR_ELx.{TCF, TCF0} to have one of the following behaviors:

• Have no effect on the PE.

• Generate a synchronous Tag Check Fault exception. For more information see Synchronous exception types.

• If FEAT_MTE_ASYNC is implemented, asynchronously set a bit in TFSR_ELx or TFSRE0_EL1.

• If FEAT_MTE3 is implemented:

— On a write, asynchronously set a bit in TFSR_ELx or TFSRE0_EL1.

— On a read, generate a synchronous Tag Check Fault exception.

RFYYFC For the purpose of determining Tag Check Fault handling, unprivileged load and store instructions are treated as if
they are executed at EL0 when executed at either:

• EL1 if the Effective value of PSTATE.UAO is 0.

• EL2 if all of the following are true:

— The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

— The Effective value of PSTATE.UAO is 0.

RMDVXM If a Tag Check Fault is not configured to cause a synchronous exception, then there is no effect on either:

• The data access, that is the load or store completes unless another exception is taken.

• Any of the side effects caused by the completion of the data access.

IYHCSP A Tag Check Fault that is generated from a Canonical Tag Check operation is handled the same way as a Tag Check
Fault generated from a Tag Check operation.

D10.7.1 Asynchronous Tag Check Faults

DVVJZM All statements in this section require implementation of FEAT_MTE_ASYNC.

IRQYHY TFSR_ELx or TFSRE0_EL1 are the Tag Fault Status Registers.

RRJMFQ A Tag Fault Status Register is unchanged by a Tag Check operation that does not generate an asynchronous Tag
Check Fault.

RJNNZS An implicit write to a Tag Fault Status Register accessible at ELx that is caused by an asynchronous Tag Check Fault
is synchronized by any of the following:

• An exception entry to ELx if SCTLR_ELx.ITFSB is 1.

• A DSB over the Non-shareable domain at ELx in program order, after the instruction causing the Tag Check
Fault.

RSCVQH If an instruction that accesses memory generates both a synchronous Data Abort and an asynchronous Tag Check
Fault, and the value of the bit written to the Tag Fault Status Register is 0, then the bit in the Tag Fault Status Register
becomes UNKNOWN.

RTJDMP If an asynchronous Tag Check Fault has not been observed in a Tag Fault Status Register, and has not been
synchronized by a DSB or by the effects of SCTLR_ELx.ITSB, then when a write to a System register affecting Tag
Check Fault handling occurs, the effect of the Tag Check Fault is CONSTRAINED UNPREDICTABLE between the effect
of:

• The old value of the System register.

• The new value of the System register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6801
ID032224 Non-Confidential

The Memory Tagging Extension
D10.7 Tag Check Faults
RCFWVW If SVE is implemented and a load of an element in a SVE Non-fault or SVE First-fault load instruction causes an
asynchronous Tag Check Fault:

• A bit in a Tag Fault Status Register is not set if the element is not the First active element in a SVE First-fault
load.

• A bit in a Tag Fault Status Register is set if the element is the First active element.

RKSKCL If SVE is implemented, it is CONSTRAINED UNPREDICTABLE whether the FFR element associated with the read of
an Active element in an SVE Non-fault load, or an Active element which is not the First active element in an SVE
First-fault load, R2, to location X, is set to FALSE if all of the following are true:

• Tag Check Faults are configured as asynchronous for both reads and writes.

• A read or write RW1 to location Y causes a Tag Check Fault.

• A read to location X causes a Tag Check Fault.

• Tag Check Faults for locations X and Y are reported in the same status bit, either:

— TFSR_ELx.TFy.

— TFSRE0_EL1.TFy.

• RW1 is in program order before R2, or is the First active element in the SVE First-fault load instruction
causing R2.

• There are no other faults caused by R2 that are reported in FFR.

• There is not a DSB and an explicit write of 0 to that status bit appearing in program order between the
instruction causing RW1 and the instruction causing R2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D10-6802
ID032224 Non-Confidential

Chapter D11
The Guarded Control Stack

This chapter describes the Guarded Control Stack Extension. It contains the following sections:

• Introduction.

• The Guarded Control Stack.

• Procedure returns.

• Exception returns.

• Stage 1 permission model.

• Stage 2 Permission model.

• Guarded Control Stack switching.

• Guarded Control Stack exceptions.

• Guarded Control Stack data accesses.

• Detecting when FEAT_GCS is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6803
ID032224 Non-Confidential

The Guarded Control Stack
D11.1 Introduction
D11.1 Introduction

D11.1.1 Protection for return addresses

INTVZJ Return oriented programming (ROP) is a common method used by attackers to execute code in a way that was not
intended and to bypass security defenses. ROP techniques involve changing the return address of procedure calls to
cause execution to change to a different path. Since the return address of procedures is often stored on the stack,
once an attacker has basic write capabilities to data memory, it has the ability to change the return addresses.
Technologies such as Pointer Authentication help to significantly reduce the scope of an attack and the scenarios in
which attacks are possible.

GHMVDQ To further improve the integrity of return addresses, the Guarded Control Stack provides means to securely store
return addresses such that they are immutable, and provides means to check a return address has not been
compromised.

D11.1.2 Call stack recording

IZHHFX A history of the call stack provides useful information when debugging or optimizing a program. Typically, the call
stack is collected at important points by unwinding the stack to collect the return address stored in each frame. This
unwinding procedure can be intrusive or impractical, due to the need to analyze large amounts of memory and
because the stack frames are variable in size, although some of this is mitigated by the use of frame pointers.
Providing the call stack in a format which is simpler to extract at run time can substantially reduce the cost of
collecting the call stack, and make new usage models possible.

GHXYWV To reduce the costs of collecting the call stack information, the Guarded Control Stack provides means to
automatically collect return addresses in easily accessible memory.

D11.1.3 Overview

IVCTSV The Guarded Control Stack protects against use of procedure return instructions to return anywhere other than the
return address created when the procedure was called.

ICQCMQ Optionally, the Guarded Control Stack protection of procedure return instructions does not require the instruction
sequences for function calls, prologues, or epilogues to be modified.

IDMTVT The Guarded Control Stack provides protection against using exception return instructions to return anywhere other
than the intended return address, for exceptions taken within the same Exception level.

IHPDGB The Guarded Control Stack provides the ability to capture the call stack for multiple concurrent applications.

IYYFJV The contents of the Guarded Control Stack are immutable to software running at the same Exception level, unless
explicitly permitted by a higher Exception level.

ITGPWS The contents of the Guarded Control Stack are readable to software running at the same Exception level.

IJGNWV The management of the Guarded Control Stack does not require a call to privileged code when using various
performance critical user space software constructs which manipulate the main stack or switch between multiple
stacks. Such software constructs include soft exceptions, setjmp/longjmp, and software threads.

IDLBKT The Guarded Control Stack supports protection and recording in AArch64 state.

IJXYXZ The Guarded Control Stack is not supported in AArch32 state.

ILFRDH The Guarded Control Stack supports capturing the call stack for kernel and user space software independently.

IKLBVV When switching between stacks within an Exception level, FEAT_GCS provides the ability to switch between
different Guarded Control Stacks without affecting the immutability of any of the Guarded Control Stacks.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6804
ID032224 Non-Confidential

The Guarded Control Stack
D11.2 The Guarded Control Stack
D11.2 The Guarded Control Stack

GTHDMB FEAT_GCS allows software to use a separate and protected stack for storing control flow information.

DKSDTT The Guarded Control Stack Pointer Registers, GCSPR_ELx, are GCSPR_EL0, GCSPR_EL1, GCSPR_EL2,
GCSPR_EL3.

RWYQWD While executing at ELx, the Guarded Control Stack uses GCSPR_ELx as the current Guarded Control Stack pointer
register.

RWCVQY All GCSPR_ELx are 64 bits wide and hold a virtual address in the current translation regime.

DDWRNV Each entry in the Guarded Control Stack is called a Guarded Control Stack record.

DNKMHW A Guarded Control Stack record is one of the following:

• A Guarded Control Stack procedure return record.

• A Guarded Control Stack exception return record.

• A Guarded Control Stack cap record.

RKDDMV The size of a Guarded Control Stack procedure return record is 8 bytes.

RVNZWB The size of a Guarded Control Stack cap record is 8 bytes.

RKYFJK The size of a Guarded Control Stack exception return record is 32 bytes.

D11.2.1 Enabling the Guarded Control Stack

IRNKDG FEAT_GCS augments existing procedure call and return instructions to additionally push and pop to the Guarded
Control Stack.

RBYVYL The Guarded Control Stack at ELx is PCR Selected if GCSCR_ELx.PCRSEL is 1, where x is 1 or greater.

The Guarded Control Stack at EL0 is PCR Selected if GCSCRE0_EL1.PCRSEL is 1.

RKJHKJ The Guarded Control Stack at ELx is PCR Enabled if the Guarded Control Stack is PCR Selected and GCS Enabled
at ELx.

RWFTRC The Guarded Control Stack at ELx is GCS Enabled if all of the following are true:

• The PE is executing in AArch64 state.

• The Guarded Control Stack at ELx is PCR Selected.

• At EL0 and EL1, any of the following are true:

— EL2 is not implemented or disabled in the current Security state.

— HCR_EL2.<E2H,TGE> is {1,1}

— SCR_EL3.HXEn is 1 and HCRX_EL2.GCSEn is 1.

• At EL0, EL1, and EL2, any of the following are true:

— EL3 is not implemented.

— SCR_EL3.GCSEn is 1.

RGCVKH The Guarded Control Stack at ELx is GCS Disabled if the Guarded Control Stack is not GCS Enabled at ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6805
ID032224 Non-Confidential

The Guarded Control Stack
D11.3 Procedure returns
D11.3 Procedure returns

GBSBZN FEAT_GCS provides means to protect procedure return addresses.

GQLGCM FEAT_GCS provides means to record call stacks.

RMSYQB A procedure return address push operation performs the following:

1. Stores a doubleword to the virtual address defined by the current Guarded Control Stack pointer register
minus the size of a Guarded Control Stack procedure return record.

2. Decrements the current Guarded Control Stack pointer register by the size of a Guarded Control Stack
procedure return record.

RLWRMC A procedure return address pop and compare operation performs the following:

1. Loads a doubleword from the virtual address defined by the current Guarded Control Stack pointer register.

2. The value in the record is compared with the value in the branch target register:

• If the values are the same, increments the current Guarded Control Stack pointer register by the size
of a Guarded Control Stack procedure return record.

• If the values are not the same, a GCS Data Check exception is generated.

RBMMYF A procedure return address pop operation performs the following:

1. Loads a doubleword from the virtual address defined by the current Guarded Control Stack pointer register.

2. Increments the current Guarded Control Stack pointer register by the size of a Guarded Control Stack
procedure return record.

RQHNWF The Guarded Control Stack at ELx has Return value checking enabled if GCSCR_ELx.RVCHKEN is 1. x is any of
1, 2, 3.

The Guarded Control Stack at EL0 has Return value checking enabled if GCSCRE0_EL1.RVCHKEN is 1.

RZNPXD The Guarded Control Stack at ELx has Return value checking disabled at ELx if the Guarded Control Stack at ELx
does not have Return value checking enabled.

INLMNQ If the Guarded Control Stack at ELx has Return value checking disabled, this means the address present in the target
register of a procedure return instruction is ignored and the top entry on the Guarded Control Stack is popped and
used as the target address.

For example, for a RET instruction that uses the LR as the intended target address register, the value in LR is ignored.

IGNXCT Irrespective of whether address tagging for instruction addresses is enabled or not, all 64 bits are compared in the
compare operation of the procedure return address pop and compare operation.

IXFKQN Guarded Control Stacks are defined as full-descending stacks and there are no controls provided to operate the
Guarded Control Stacks as empty-descending stacks or ascending stacks.

DVKRDG Each Memory Write effect and Memory Read effect generated by the following instructions is referred to as a
Guarded Control Stack data access:

• Branch with link instructions.

• Procedure return instructions.

• GCSPOPM.

• GCSSS1.

• GCSSS2.

• GCSPUSHM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6806
ID032224 Non-Confidential

The Guarded Control Stack
D11.3 Procedure returns
• GCSPUSHX.

• GCSPOPX.

• GCSPOPCX.

• GCSSTR.

• GCSSTTR.

D11.3.1 Procedure call and return instructions

GPYLXG FEAT_GCS provides means to protect procedure return addresses without recompilation of functions or increasing
the code footprint of functions.

RMXSDP On executing any branch with link instruction, before branching to the target address, if the Guarded Control Stack
is PCR Enabled at the current Exception level then a procedure return address push operation is generated. The data
value for the store operation of the procedure return address push operation is the value of LR which is created by
the branch with link instruction.

RMMFFJ The branch with link instructions are defined as:

• BL.

• BLR.

• BLRAA, BLRAAZ, BLRAB, BLRABZ.

RQBJCD On executing a procedure return instruction, before branching to the target address, if the Guarded Control Stack at
the current Exception level is PCR Enabled, one of the following operation is generated:

• If the Guarded Control Stack at the current Exception level has Return value checking enabled, then a
procedure return address pop and compare operation is generated. The procedure return address pop and
compare operation has a lower priority than any authentication operation performed by the same instruction.

• If the Guarded Control Stack at the current Exception level has Return value checking disabled, then a
procedure return address pop operation is generated. The procedure return address pop operation has lower
priority than any authentication operation performed by the same instruction. The popped value is used as
the target address for branching to the next instruction.

RMRQPD The procedure return instructions are defined as:

• RET.

• RETAA, RETAB.

D11.3.2 Management of procedure return records

GTSLPS FEAT_GCS provides means for software to add a Guarded Control Stack procedure return record to a Guarded
Control Stack.

IMLRYX The GCSPUSHM instruction is provided to enable software to add a doubleword in the Guarded Control Stack.

IPYRNS The GCSSTR and the GCSSTTR instructions are provided to enable software to modify a doubleword in the Guarded
Control Stack.

IZBPNC The GCSPUSHM instruction does not sign extend the value that is being stored. This is to maintain consistency with the
GCSSTR instruction behavior.

IPPGKD The GCSPOPM instruction is provided to adjust the current Guarded Control Stack pointer register. This instruction can
be used in places where there is no return from subroutine instruction executed for a preceding branch with link
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6807
ID032224 Non-Confidential

The Guarded Control Stack
D11.3 Procedure returns
RQHJBM While the Guarded Control Stack is GCS Enabled at the current Exception level, the GCSPOPM instruction performs
the following operations:

1. Load a doubleword from the address pointed by the current Guarded Control Stack pointer register.

2. Check the [1:0] bits of the loaded value:

• If the value does not equal 0b00, a GCS Data Check exception is taken.

• If the value equals 0b00, the loaded value is written to the Xn register defined by GCSPOPM and the current
Guarded Control Stack pointer register is incremented by the size of a Guarded Control Stack procedure
return record.

RSXVRB When the Guarded Control Stack is GCS Disabled at the current Exception level, the GCSPOPM instruction does not
perform the load operation or the update to current Guarded Control Stack pointer register and executes as a NOP.

IQLKKL Arm strongly recommends software uses guard pages between Guarded Control Stacks to help detecting the
following:

• Malicious attacks that use GCSPOPM instruction to subvert the GCSPR_ELx value to an attacker defined value.

• An underflow or an overflow of the Guarded Control Stack for any other reasons.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6808
ID032224 Non-Confidential

The Guarded Control Stack
D11.4 Exception returns
D11.4 Exception returns

ITRBJS When an exception is taken, information regarding where the exception was taken from is captured in various
System registers, and is subsequently used to return from the exception. Such information is usually saved to
memory and is therefore potentially vulnerable to a variety of attacks which could modify the return state. Given
that exceptions can be taken from almost any location, exception returns are usually able to return to any location
and therefore are quite powerful. Ensuring the exception return state is protected against unwanted modification
provides additional protection against using exception returns to branch to any location.

GMDCFD FEAT_GCS provides means to protect exception return state from unwanted modification, for exceptions within the
same Exception level.

GHVKNT FEAT_GCS uses the protection mechanisms provided by the Guarded Control Stack to protect exception return
state, in addition to procedure return state.

GVQNZK FEAT_GCS provides protection against mis-use of exception return code sequences.

D11.4.1 Pushing and popping exception return state

IKLWLQ A set of instructions is provided to operate on the Guarded Control Stack specifically for exceptions and exception
returns, to allow software to add entries and check entries.

• GCSPUSHX

This instruction creates a new Guarded Control Stack exception return record on the Guarded Control Stack
containing the values of the ELR_ELx and SPSR_ELx for the current Exception level and the LR value. The
intent is that such data is the contents of the ELR_ELx and SPSR_ELx, pushed soon after taking an
exception. This instruction is more limited in its usage than GCSPUSHM, only allowing the ELR_ELx,
SPSR_ELx and LR to be pushed. This instruction also avoids the exception return state being moved to
general purpose registers before adding to the Guarded Control Stack, further reducing the attack surface.

• GCSPOPCX

This instruction pops a Guarded Control Stack exception return record from the top of the Guarded Control
Stack and compares the values popped with the ELR_ELx and SPSR_ELx for the current Exception level
and the LR value. If the values mismatch, a GCS Data Check exception is taken. The intent is that this
instruction is used just before an exception return, to validate that the intended exception return state is the
same as that which was pushed to the Guarded Control Stack on exception entry.

• GCSPOPX

This instruction pops a Guarded Control Stack exception return record from the top of the Guarded Control
Stack. If the record is not a Guarded Control Stack exception return record, a GCS Data Check exception is
taken. This instruction is intended to be used to remove a Guarded Control Stack exception return record,
when modification of such a record is needed.

SSLHZY Exception handling software can use the GCSPUSHX instruction to save the exception return state to a memory location
that is protected by the GCS permissions in stage 1 translations.

• A typical preemptible operating system might employ a kernel stack for kernel execution on behalf of a
thread. Software can create a Guarded Control Stack for each kernel stack and these instructions can be used
to save the exception return state in the Guarded Control Stack that corresponds to the kernel stack of a
thread.

• An interrupt handler might have its own stack that is different from the kernel stack of any thread. Software
can create a Guarded Control Stack that corresponds to the interrupt stack and these instructions can be used
to store the exception return state in that Guarded Control Stack.

ICCMMC PSTATE.EXLOCK is provided to allow software to ensure that the exception return state that is pushed to the
Guarded Control Stack is the state of the PE when the exception was taken, and to ensure that once the exception
return state is checked before an exception return that the values in ELR_ELx and SPSR_ELx are unable to be
changed. When enabled, PSTATE.EXLOCK prevents MSR instructions from modifying the state of the ELR_ELx
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6809
ID032224 Non-Confidential

The Guarded Control Stack
D11.4 Exception returns
and SPSR_ELx, by causing such instructions to generate an EXLOCK Exception. When enabled, execution of an
exception return instruction which targets the current Exception level will check PSTATE.EXLOCK and will set
PSTATE.IL to cause an Illegal exception return.

IRZZFL The Guarded Control Stack exception return record pushed by the GCSPUSHX instruction contains a doubleword with
the value 0x0000000000000009. This value allows a Guarded Control Stack exception return record to be
distinguishable from a Guarded Control Stack procedure return record, and allows the PE to ensure that an exception
return does not use a procedure return address or a procedure return does not use an exception return address.

• When a GCSPOPCX or GCSPOPX instruction is attempted where the top record on the Guarded Control Stack is a
Guarded Control Stack procedure return record, the GCSPOPCX or GCSPOPX instruction detects the value in the
lowest-addressed doubleword is not 0x0000000000000009, and takes a GCS Data Check exception.

• When a procedure return instruction is attempted where the top record on the Guarded Control Stack is not
a Guarded Control Stack procedure return record and therefore the bits [1:0] of the doubleword are not 0b00,
the procedure return will return to this location then take a PC Alignment exception.

• When a GCSPOPM instruction is attempted where the top record on the Guarded Control Stack is not a Guarded
Control Stack procedure return record and therefore bits [1:0] of the value popped are not 0b00, the GCSPOPM
instruction takes a GCS Data Check exception.

RTNHNB A GCSPUSHX instruction executed at ELx, where x is 1 or greater:

• Performs a GCS exception push operation when all of the following are true:

— The Guarded Control Stack at ELx is GCS Enabled.

— The Effective value of GCSCR_ELx.EXLOCKEN is 0 or PSTATE.EXLOCK is 1.

• Generates an EXLOCK Exception when all of the following are true:

— The Guarded Control Stack at ELx is GCS Enabled.

— The Effective value of GCSCR_ELx.EXLOCKEN is 1 and PSTATE.EXLOCK is 0.

• Performs no operation if neither a GCS exception push operation nor an EXLOCK Exception is triggered.

RTMRMG Execution of GCSPUSHX at EL0 is UNDEFINED.

RGWJCX A GCS exception push operation:

• Stores a Guarded Control Stack exception return record at the virtual address defined by the current Guarded
Control Stack pointer register minus 32 bytes, consisting of:

— The value of the LR, stored to the highest addressed doubleword of the Guarded Control Stack
exception return record.

— The value of the SPSR_ELx for the current Exception level, stored to the second-highest addressed
doubleword of the Guarded Control Stack exception return record.

— The value of the ELR_ELx for the current Exception level, stored to the third-highest addressed
doubleword of the Guarded Control Stack exception return record.

— A doubleword with the value 0x0000000000000009, stored to the lowest addressed doubleword of the
Guarded Control Stack exception return record.

• Decrements the current Guarded Control Stack pointer registerby the size of a Guarded Control Stack
exception return record.

• Sets PSTATE.EXLOCK to 0.

RJTRFY A GCSPOPCX instruction executed at ELx, where x is 1 or greater:

• Performs a GCS exception pop and compare operation when all of the following are true

— Guarded Control Stacks are GCS Enabled at ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6810
ID032224 Non-Confidential

The Guarded Control Stack
D11.4 Exception returns
— The Effective value of GCSCR_ELx.EXLOCKEN is 0 or PSTATE.EXLOCK is 0.

• Generates an EXLOCK Exception when all of the following are true:

— Guarded Control Stacks are GCS Enabled at ELx.

— The Effective value of GCSCR_ELx.EXLOCKEN is 1 and PSTATE.EXLOCK is 1.

• Performs no operation if neither a GCS exception pop and compare operation nor an EXLOCK Exception is
triggered.

RJYSCF Execution of GCSPOPCX at EL0 is UNDEFINED.

RPCQXX A GCS exception pop and compare operation:

• Loads four doublewords of a Guarded Control Stack exception return record from the virtual address defined
by the current Guarded Control Stack pointer register. Each access is single-copy atomic at doubleword
granularity.

• If the value loaded from the lowest addressed doubleword of the Guarded Control Stack exception return
record is not 0x0000000000000009 then a GCS Data Check exception is taken.

• Compares the value of LR with the value loaded from the highest addressed doubleword of the Guarded
Control Stack exception return record, and takes a GCS Data Check exception if the values are not equal.

• Compares the value of the SPSR_ELx for the current Exception level with the value loaded from the
second-highest addressed doubleword of the Guarded Control Stack exception return record, and takes a
GCS Data Check exception if the values are not equal.

• Compares the value of the ELR_ELx for the current Exception level with the value loaded from the
third-highest addressed doubleword of the Guarded Control Stack exception return record, and takes a GCS
Data Check exception if the values are not equal.

• If no exception is taken, increments the current Guarded Control Stack pointer register by the size of a
Guarded Control Stack exception return record.

• Sets PSTATE.EXLOCK to the value of the Effective value of GCSCR_ELx.EXLOCKEN.

IPTYBX Irrespective of whether address tagging for instruction addresses is enabled or not, all 64 bits of following registers
are compared in the compare operation of the GCSPOPCX instruction:

• ELR_ELx.

• LR.

RYMVVH Explicit synchronization is not required for direct writes to ELR_ELx and SPSR_ELx be observable to indirect
reads made by the GCSPUSHX instruction.

RSSMHC Explicit synchronization is not required for direct writes to ELR_ELx and SPSR_ELx be observable to indirect
reads made by the GCSPOPCX instruction.

RHXXCL If Guarded Control Stacks are GCS Enabled at ELx, where x is 1 or greater, a GCSPOPX instruction executed at ELx
performs the following operations:

• Load a Guarded Control Stack exception return record from the virtual address defined by the current
Guarded Control Stack pointer register.

• If the value loaded from the lowest addressed doubleword of the Guarded Control Stack exception return
record is not 0x0000000000000009 then a GCS Data Check exception is taken.

• Otherwise, the current Guarded Control Stack pointer register is incremented by the size of a Guarded
Control Stack exception return record.

RXHXGJ Execution of GCSPOPX at EL0 is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6811
ID032224 Non-Confidential

The Guarded Control Stack
D11.4 Exception returns
ICFFNS When an MSR instruction would write to the relevant ELR_ELx or SPSR_ELx for the current Exception level ELy,
the Effective value of GCSCR_ELy.EXLOCKEN and PSTATE.EXLOCK may prevent the write.

IQSVCQ For more information on exception entry and return, see Legal exception returns from AArch64 state, Illegal
exception returns from AArch64 state, and Exception entry.

IBGLWD For more information on FEAT_GCS in Debug state, see About Debug state.

RYZBWD The Effective value of GCSCR_ELx.EXLOCKEN is 1 for all purposes other than returning the value of a direct
read of GCSCR_ELx, if all of the following are true:

• GCSCR_ELx.EXLOCKEN is 1.

• The PE is executing in Non-debug state.

RWRDNF The Effective value of GCSCR_ELx.EXLOCKEN is 0 for all purposes other than returning the value of a direct
read of GCSCR_ELx, if any of the following are true:

• GCSCR_ELx.EXLOCKEN is 0.

• The PE is executing in Debug state.

Note

While executing in Debug state, ELR_ELx and SPSR_ELx registers are accessible at ELx irrespective of the value
of PSTATE.EXLOCK.

Execution of the GCSPUSHX instruction in Debug state is unaffected by the value of PSTATE.EXLOCK.

D11.4.2 Using the exception return protection features

SMQBXD Arm notes that the use of ERETAA, ERETAB for an exception return is unlikely when GCSPOPCX is used to validate the
exception return state. This is because a prior GCSPUSHX instruction will have pushed an exception return address
without a pointer authentication code to the Guarded Control Stack, and a GCSPOPCX will need to validate this
exception return address without a pointer authentication code. Therefore, the authentication would need to be
performed before the GCSPOPCX instruction.

Exception handling software needs to be aware of the Guarded Control Stack for scenarios where an exception
return does not return to the point where an exception was taken from, since this might require modification of the
exception return state held on the Guarded Control Stack.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6812
ID032224 Non-Confidential

The Guarded Control Stack
D11.5 Stage 1 permission model
D11.5 Stage 1 permission model

GFJCSY FEAT_GCS provides EL1 with controls to govern the behavior of EL0 Guarded Control Stacks when operating in
the EL1&0 translation regime, with little or no intervention from Exception levels higher than EL1.

GFHRKC FEAT_GCS provides EL2 with controls to govern the behavior of EL0 Guarded Control Stacks when operating in
the EL2&0 translation regime, with little or no intervention from Exception levels higher than EL2.

GRDKLS FEAT_GCS provides EL1 with controls to govern the behavior of EL1 Guarded Control Stacks, while allowing EL2
to opt-in to manage some aspects of EL1 Guarded Control Stacks to provide additional security.

GPDKVN FEAT_GCS provides EL2 with controls to govern the behavior of EL2 Guarded Control Stacks.

GLJFBN FEAT_GCS provides EL3 with controls to govern the behavior of EL3 Guarded Control Stacks.

ICZTDM FEAT_S1PIE is required to be implemented if FEAT_GCS is implemented.

D11.5.1 Stage 1 Base Permissions

IMDFXL The permissions encodings that permit Guarded Control Stack data access can only be configured when stage 1
translation uses the Indirect permission scheme.

IBVLMP For translation regimes that apply to EL0 and a higher Exception level and where a Guarded Control Stack is being
used for privileged execution, unprivileged data accesses do not write to such a Guarded Control Stack. For more
information, see Stage 1 permissions.

IZZMLZ For translation regimes that apply to EL0 and a higher Exception level and where a Guarded Control Stack is being
used for privileged execution but also accessible by any of unprivileged Data read accesses or unprivileged
Instruction accesses, such a Guarded Control Stack is accessible by privileged Guarded Control Stack data access
irrespective of the value of PSTATE.PAN. For more information, see Stage 1 permissions.

ILZXNK For the purpose of permission checking, the DC IVAC instruction is considered to produce a privileged explicit data
write access other than a Guarded Control Stack data access.

If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether the DC IVAC
instruction can generate a Permission fault.

IFRYGL When FEAT_CMOW is implemented and SCTLR_EL1.UCI is 1 and SCTLR_EL1.CMOW is 1, for the purpose of
permission checking, the following instructions executed at EL0 are considered as producing an unprivileged
explicit data write access other than a Guarded Control Stack data access:

• IC IVAU.

• DC CVAC.

• DC CIGVAC.

• DC CIGDVAC.

If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether the above
instructions can generate a Permission fault.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the above
instructions can generate a Permission fault.

SDBWHS EL0 Guarded Control Stack pages are expected to use:

• UnprivRead as 1, UnprivWrite as 0, UnprivExecute as 0 and UnprivGCS as 1 in S1UnprivBasePerm.

• PrivRead as 1, PrivWrite as 0 or 1, PrivExecute as 0 and PrivGCS as 0 in S1PrivBasePerm.

EL0 Guarded Control Stack pages are generally accessible from EL1, enabling management from EL1. If PrivWrite
is 0, then EL1 software should use the GCSSTTR instruction to manage the EL0 Guarded Control Stack.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6813
ID032224 Non-Confidential

The Guarded Control Stack
D11.5 Stage 1 permission model
SGRGDT EL1 Guarded Control Stack pages are expected to use:

• UnprivRead as 0, UnprivWrite as 0, UnprivExecute as 0 and UnprivGCS as 0 in S1UnprivBasePerm.

• PrivRead as 1, PrivWrite as 0, PrivExecute as 0 and PrivGCS as 1 in S1PrivBasePerm.

Management of EL1 Guarded Control Stack pages is possible from EL1 by using the GCSSTR or GCSPUSHM
instructions.

SYNDKX In a translation regime that applies to EL0 and a higher Exception level, the higher Exception level software cannot
use unprivileged store instructions that perform non-Guarded Control Stack data access to manage the Guarded
Control Stack pages of EL0. The higher Exception level software should use privileged store instructions or GCSSTTR
instead.

SHKJXY In a translation regime that applies to EL0 and a higher Exception level, the higher Exception level software can
make use of GCSSTR and GCSPUSHM instructions to manage the Guarded Control Stack pages of the higher Exception
level.

In a translation regime that applies to only one Exception level, software can make use of GCSSTR and GCSPUSHM
instructions to manage the Guarded Control Stack pages of the current Exception level.

Note: The GCSPUSHM instruction executes as a NOP when the Guarded Control Stack is Disabled at the current
Exception level. The GCSSTR instruction is functional even if the Guarded Control Stack is Disabled at the current
Exception level.

SMQRCG When PSTATE.PAN is 1, in a translation regime that applies to EL0 and a higher Exception level, the higher
Exception level software can use unprivileged load instructions that perform non-Guarded Control Stack data access
to manage the Guarded Control Stack pages of EL0.

Example:

;At EL0
BL ;produce a GCS store operation
SVC #0x0 ;exception to EL1 and PSTATE.PAN is set to 0b1
MRS x0,GCSPR_EL0
GCSB DSYNC
LDTR x1,[x0] ;read GCS contents of EL0

D11.5.2 Security states

IFYTRK A Guarded Control Stack data access generated in Secure state that is marked in the first stage of translation as being
Non-secure generates a Permission fault.

IFDCRS A Guarded Control Stack data access generated in Secure state is allowed to access Non-secure memory as
determined by Memory access control.

IRSDVG When FEAT_RME is implemented, during execution at EL3, a Guarded Control Stack data access to physical
memory other than the Root physical address space causes a stage 1 Permission fault.

IHGYTX If execution is using the Realm EL2 or Realm EL2&0 translation regime, a Guarded Control Stack data access to
physical memory other than the Realm physical address space causes a stage 1 Permission fault.

ITHLDW If execution is using the Realm EL1&0 translation regime, a Guarded Control Stack data access is allowed to access
physical memory that is not from the Realm physical address space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6814
ID032224 Non-Confidential

The Guarded Control Stack
D11.6 Stage 2 Permission model
D11.6 Stage 2 Permission model

IRXBNM Unless otherwise stated, for the purpose of permission checking in stage 2 translations and the purposes of granule
protection checks performed by FEAT_RME, Guarded Control Stack data access are considered as explicit data
accesses produced by other load/store instructions.

ISWMHZ While HCR_EL2.{E2H, TGE} is {0,1}, stage 1 translation is disabled and stage 2 does not have any special
permissions for the Guarded Control Stack at EL0. The architecture provides no additional protection for the EL0
Guarded Control Stack while the PE is executing in this configuration.

D11.6.1 Hardening Stage 1 translations

DDDFTT VTCR_EL2.GCSH provides an mechanism to enforce the use of stage 1 translations that are hardened by
FEAT_THE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6815
ID032224 Non-Confidential

The Guarded Control Stack
D11.7 Guarded Control Stack switching
D11.7 Guarded Control Stack switching

GXMPQT FEAT_GCS provides means to switch between multiple Guarded Control Stacks of an Exception level at the same
Exception level, without providing direct write access to the current Guarded Control Stack pointer register.

GGTMLR Arm expects that an individual Guarded Control Stack is used by only one PE at a time, to ensure the stack is not
being updated by one PE while being used by another.

IFZSVZ When a Guarded Control Stack is not currently in use, the top entry contains a special value which indicates it is
capped. The only way that the Guarded Control Stack can become uncapped is by execution of the GCSSS1 Xn and
GCSSS2 Xn instructions, to switch between two Guarded Control Stacks. These instructions check the cap on the
incoming Guarded Control Stack and then add a cap to the outgoing Guarded Control Stack. Since there is no direct
write access to the current Guarded Control Stack pointer register, the only way the current Guarded Control Stack
pointer register can be made to point to the new Guarded Control Stack is using these instructions, and the checks
performed by these instructions ensure that the value loaded is always pointing to a capped Guarded Control Stack.
This ensures that any arbitrary location in a Guarded Control Stack cannot be switched to.

Figure D11-1 shows the process of how these instructions perform the switching between 2 Guarded Control Stacks.

Figure D11-1 Guarded Control Stack switching

IGPHKD The instruction pair GCSSS1 Xn and GCSSS2 Xn provide means to switch between Guarded Control Stacks of the current
Exception level without directly accessing GCSPR_ELx at the same Exception level.

DPCHQS A value of 0b000000000001 in bits [11:0] of a Guarded Control Stack entry is called a Valid cap token.

DQJDCV An entry in the Guarded Control Stack is defined as a Valid cap entry, if bits [63:12] of the entry value are the same
as bits [63:12] of the address where the entry is stored and bits [11:0] contain a Valid cap token.

DZNSQG A value of 0b101 in bits [2:0] of a Guarded Control Stack entry is called an In-progress cap token.

A

B

C

T

U

V

P2[63:3] :001

P 1

A

B

C

T

U

V

P1:011

P 2

A

B

C

T

U

V

P 2 + 8

(P1[63:3] -1) :001

Outgoing GCS Incoming GCS

P1[63:3] :101

GCS pointer

GCSSS2 Xn

Xn will point to the outgoing stack after this instruction

GCSSS1 Xn

Xn points to the incoming capped stack (P2)

Incoming stack is capped

Incoming stack is marked with

an in-progress cap token

Outgoing stack is now capped
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6816
ID032224 Non-Confidential

The Guarded Control Stack
D11.7 Guarded Control Stack switching
DXGMLV An entry in the Guarded Control Stack is defined as an In-progress cap entry, if bits [63:3] of the value are the same
as bits [63:3] of the current Guarded Control Stack pointer register value and bits [2:0] contain an In-progress cap
token.

RQHSGP The GCSSS1 Xn instruction performs the following functionalities in order:

1. A doubleword is loaded from the Guarded Control Stack that is pointed to by Xn.

2. If the loaded value is a Valid cap entry:

• The top entry of the Guarded Control Stack pointed to by Xn is overwritten with an In-progress cap
entry:

— Bits [63:3] of the In-progress cap entry contain bits [63:3] of the current Guarded Control Stack
pointer register.

— Bits [2:0] of the In-progress cap entry contain 0b101.

• The current Guarded Control Stack pointer register is updated to the following value:

— Bits [63:3] are set to bits [63:3] of Xn.

— Bits [2:0] are set to 0b000.

3. If the loaded value is not a Valid cap entry, a GCS Data Check exception is generated.

4. All observers in the shareability domain observe the load and store atomically.

RPBWVT The GCSSS2 Xn instruction performs the following functionalities in order:

1. A doubleword is loaded from the memory pointed by the current Guarded Control Stack pointer register.

2. If the loaded value contains an In-progress cap token:

• A Valid cap entry is written to the outgoing GCS, with the following parameters:

— The target address of the write has:

— Bits [63:3] set to bits [63:3] of the loaded value, minus 1.

— Bits [2:0] set to 0b000.

— The data value written has:

— Bits [63:12] set to bits [63:12] of the target address.

— Bits [11:0] set to 0b000000000001.

• The current Guarded Control Stack pointer register is incremented by the size of a Guarded Control
Stack procedure return record.

• Xn is updated to contain:

— Bits [63:3] set to bits [63:3] of the loaded value, minus 1.

— Bits [2:0] are set to 0b000.

3. If the loaded value does not contain an In-progress cap token, a GCS Data Check exception is generated.

RKFMRX For the purpose of permission checking, and for watchpoints, the GCSSS1 Xn instruction is treated as performing both
a load and a store, even if the store does not happen.

GHMJGM FEAT_GCS allows software to use address tagging in a Guarded Control Stack Pointer.

IMGLTC While address tagging for data addresses is enabled, if the tag value in the target address register of the GCSSS1 Xn
instruction is not same as the tag value in the Valid cap entry, the comparison as part of the GCSSS1 Xn instruction
will cause a GCS Data Check exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6817
ID032224 Non-Confidential

The Guarded Control Stack
D11.7 Guarded Control Stack switching
IMBHFS While address tagging for data addresses is enabled, the In-progress cap entry stored by the GCSSS1 Xn instruction
will contain any tag value that is present in the current Guarded Control Stack pointer register.

RXWQDB All restrictions that are applicable to usage of the atomic instructions are also applicable to the usage of the GCSSS1
Xn instruction.

IDDFMX For example, the memory types for which it is architecturally guaranteed that the GCSSS1 Xn instruction will be
atomic are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

RPTCXM For the purpose of exception prioritization, a GCS Data Check exception from a GCSSS2 Xn instruction is considered
to be caused by the load that is part of the same GCSSS2 Xn instruction.

RXTZVS For the purpose of prioritizing exceptions and debug events, all exceptions and debug events due to load part of a
GCSSS2 Xn instruction are higher priority than exceptions and debug events due to store part of the same GCSSS2 Xn
instruction.

Note

This is a stricter requirement when compared to most of other instructions that cause multiple single copy atomic
accesses where the priority is not architecturally defined. See Prioritization of Synchronous exceptions taken to
AArch64 state for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6818
ID032224 Non-Confidential

The Guarded Control Stack
D11.8 Guarded Control Stack exceptions
D11.8 Guarded Control Stack exceptions

DWWXWR FEAT_GCS provides the GCS Data Check exception to report data mismatches in the comparison operations related
to the Guarded Control Stack.

IQXRVB For the comparison operations related to the Guarded Control Stack, see RPCQXX, RLWRMC, and RQHSGP.

DPRYMV FEAT_GCS provides the EXLOCK Exception to report any exceptions due to an incompatible value in
PSTATE.EXLOCK.

IRVKKZ For a GCS Data Check exception, an EXLOCK Exception, a trap on a GCSSTR instruction, or a trap on a GCSSTTR
instruction, the syndrome information is captured in ESR_ELx.

IWLNVC PMU events EXC_DABORT and EXC_TRAP_DABORT count occurrences of a GCS Data Check exception.

IPHRFN Traps on the GCSSTR and GCSSTTR instructions are counted by the EXC_UNDEF and EXC_TRAP_OTHER PMU
events.

IYLMVR An EXLOCK Exception is counted by the EXC_UNDEF and EXC_TRAP_OTHER PMU events, according to the
existing definitions of those PMU events.

ISGCVT For more information on tracing GCS exceptions, see:

• RLYGJZ.

• RGZQKS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6819
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
D11.9 Guarded Control Stack data accesses

RZMNSV A Guarded Control Stack data access that is not aligned to size of a Guarded Control Stack procedure return record
generates an Alignment fault.

IRYLTG If a Guarded Control Stack data access causes an Alignment fault, the resulting fault is reported with the
ESR_ELx.EC code 0b100100 or 0b100101.

RVDJXL Unless otherwise specified, a Guarded Control Stack data access is single-copy atomic at 64-bit granularity.

IBFHQY For more information on atomicity, see Requirements for single-copy atomicity.

IKNXKG A Guarded Control Stack data access might clear the state of the local Exclusives monitor if the local monitor is in
the Exclusive Access state. For more information on the effects on the local monitor, see Exclusive access
instructions and Non-shareable memory locations.

RFFJDX When a Guarded Control Stack data access accesses a memory type that is not one of the following, it is
CONSTRAINED UNPREDICTABLE whether:

• A Data Abort for unsupported access, using ESR_ELx.DFSC value 0b110101, is generated.

— In this case, it is IMPLEMENTATION DEFINED whether the Data Abort is generated according to the
memory type after all stages of translation, or at each stage of translation.

• The access proceeds using the specified memory type.

The memory types are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

SJBQRL If translation or data caches are disabled, then Guarded Control Stack data access use Device or Normal
Non-cacheable memory types respectively.

To avoid use of mismatched memory attributes or generation of a Data Abort for an unsupported access, software
should use the following sequence when disabling translation or data caches:

1. Disable GCS using GCSCR_ELx and GCSCRE0_EL1.

2. GCSB.

3. Disable translation and/or data caches.

RKSTSV For the purpose of Memory Partitioning and Monitoring, a Guarded Control Stack data access is treated in the same
way as any other load/store access at that Exception level.

RCYLYV The endianness of a Guarded Control Stack data access is same as the endianness of any other load/store access at
that Exception level.

RQYMTJ A Guarded Control Stack data access is checked against watchpoint debug events, similar to any other load/store
access.

IQJRGN There are no controls in the watchpoint control registers to select or deselect a Guarded Control Stack data access
independently of any other load/store access.

IWBHHX When FEAT_MTE is implemented, a Guarded Control Stack data access is a Tag Unchecked accesses as defined
by RDRGYL.

IWLNYQ If a Guarded Control Stack data access causes a synchronous Data Abort exception, the resulting fault is reported
as a Data Abort from the current Exception level with the ESR_ELx.EC code 0b100100 or 0b100101.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6820
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
IJGYZS If a Guarded Control Stack data access causes a Granule Protection Check exception, the resulting fault is reported
as the Granule Protection Check exception. For more information on the ISS encoding, see ISS encoding for a
Granule Protection Check exception.

IBQPPZ If a Guarded Control Stack data access causes a watchpoint exception, the resulting fault is reported as a watchpoint
exception from the current Exception level with the ESR_ELx.EC code 0b110100 or 0b110101.

IYMCFF For more information on the The Access flag when there is a GCS Data Check exception generated from an
instruction, see Hardware management of the Access flag.

IKDWGR When hardware management of the Access flag is enabled and if there is a GCS Data Check exception caused by a
GCSSS2 instruction, it is CONSTRAINED UNPREDICTABLE whether translations for the store part of the GCSSS2
instruction update the Access flag.

ILKVJG When hardware management of the dirty state mechanism is enabled and if there is a GCS Data Check exception
generated from a GCSSS1 instruction, it is CONSTRAINED UNPREDICTABLE whether translations for Guarded Control
Stack data access update the dirty state information.

RCQXHQ When hardware management of the dirty state mechanism is enabled and if there is a GCS Data Check exception
generated from a GCSSS2 instruction, translations for Guarded Control Stack data access do not update the dirty state
information.

IHGNJQ For the purposes of generating PMU events, Guarded Control Stack data accesses are:

• Memory-write operations and Memory-read operations.

• Demand accesses.

• Attributable to the Exception level where the instruction that generated the Guarded Control Stack data
access was executed.

This means that:

• A Guarded Control Stack data access is counted by events that count Memory-write operations or
Memory-read operations. For example, a Guarded Control Stack data access is counted by one or more of
MEM_ACCESS, LD_RETIRED, and ST_RETIRED events.

• For the purpose of event filtering, an Overshooting GCS Memory effect is considered as a data access
executed at the current Exception level irrespective of the effective privilege of the data access.

IVTQSX If FEAT_SPE is implemented, for information on sampling a Guarded Control Stack data access, see Chapter D16
The Statistical Profiling Extension.

INPBWN An Overshooting GCS Memory effect that is not associated with any instruction is not sampled.

IQRDQX For information on the Events packet in the Statistical Profiling Extension sample record, see Events packet.

D11.9.1 Guarded Control Stack data access behaviors

DNFPLW A GCS Memory Read effect is a Memory Read effect produced by any of the following instructions:

• A procedure return instruction; to read the data addressed by the current GCS pointer plus any applicable
offset.

• GCSPOPM; to read the data addressed by the current GCS pointer plus any applicable offset.

• GCSSS2; to read the data addressed by the current GCS pointer plus any applicable offset.

• GCSPOPCX; to read the data addressed by the current GCS pointer plus any applicable offset.

• GCSPOPX; to read the data addressed by the current GCS pointer plus any applicable offset.

A GCS Memory Write effect is a Memory Write effect produced by any of the following:

• A branch with link instruction; to write the data addressed by the current GCS pointer plus any applicable
offset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6821
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
• GCSSS2; to write the data addressed by a calculation from the data read by the same GCSSS2 instruction.

• GCSPUSHM; to write the data addressed by the current GCS pointer plus any applicable offset.

• GCSPUSHX; to write the data addressed by the current GCS pointer plus any applicable offset.

• GCSSTR; to write the data addressed by the Xn|SP operand of the instruction, plus any applicable offset.

• GCSSTTR; to write the data addressed by the Xn|SP operand of the instruction, plus any applicable offset.

• An Overshooting GCS Memory effect; to write the data addressed by the current GCS pointer plus any
applicable offset.

A GCS Memory effect is one of the following:

• A GCS Memory Read effect.

• A GCS Memory Write effect.

DMYKCM A GCSSS1 Memory effect is a Memory effect generated by a GCSSS1 instruction, to access the data addressed by the
Xt operand. A GCSSS1 Memory effect is one of the following:

• A GCSSS1 Memory Read effect, which occurs when reading the data.

• A GCSSS1 Memory Write effect, which occurs when writing the data.

DMVQYZ A GCSB effect is generated by any of the following instructions:

• GCSB.

• GCSSS2.

A GCSB effect provides the ability to manage the ordering and coherency of GCS Memory effects in relation to other
Memory effects.

DNHBBP A Guarded Control Stack data access is one of the following:

• A GCS Memory effect.

• A GCSSS1 Memory effect.

DQQLCF A GCS effect is one of the following:

• GCS Memory effect.

• A GCSSS1 Memory effect.

• A GCSB effect.

DCHDJM A GCSB instruction causes a GCSB effect.

A GCSSS2 instruction causes a GCSB effect.

A GCSB effect provides the ability to manage the ordering and coherency of GCS Memory effects in relation to other
Memory effects.

RFZRGP Two effects E1 and E2 to the Same Location follow the same ordering requirements as two Explicit Memory effects
to the Same Location if one of the following applies:

• E1 and E2 are both GCS Memory effects.

• E1 is a GCS Memory effect, E2 is an Explicit Memory effect, and there exists a GCSB effect E3 such that E1
appears in program-order before E3, and E3 appears in program order before E2.

• E1 is an Explicit Memory effect, E2 is a GCS Memory effect, and there exists a GCSB effect E3 such that E1
appears in program-ordered before E3, and E3 appears in program order before E2.

• E1 is a GCS Memory effect and E2 is a GCSSS1 Memory effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6822
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
• E1 is a GCSSS1 Memory effect and E2 is a GCS Memory effect.

• E1 and E2 are both GCSSS1 Memory effects.

• E1 is a GCSSS1 Memory effect and E2 is an Explicit Memory effect.

• E1 is an Explicit Memory effect and E2 is a GCSSS1 Memory effect.

RTDLVW A GCS effect E1 is Hardware-required-ordered-before another GCS effect E2 if one of the following applies:

• E1 is a GCSB effect and E2 is a GCS Memory effect. E1 appears in program order before E2.

• E1 is a GCS Memory effect and E2 is a GCSB effect. E1 appears in program order before E2.

RZRZQM A GCS effect E1 is Barrier-ordered-before an Explicit Memory effect E2, or conversely an Explicit Memory effect
E1 is Barrier-ordered-before a GCS effect E2, if the GCS effect is a GCSB or a GCSSS1 Memory effect, E1 appears in
program order before E2, and if and only if one of the following applies:

• E1 appears in program order before a DMB FULL effect E3 and E3 appears in program order before E2.

• E1 is the Memory Write effect generated by an atomic instruction with both Acquire and Release semantics.

• E1 is a Memory Read effect (R1) which appears in program order before a DMB LD that appears in program
order before E2.

E1 is a Memory Read effect (R1), except an Implicit Tag Memory Read effect, generated by an instruction
with Acquire or AcquirePC semantics.

• E2 is a Memory Write effect (W2) generated by an instruction with Release semantics.

• E1 is a Memory Write effect (W1) which appears in program order before a DMB ST that appears in program
order before E2.

RYJHMB GCSSS1 performs a read-modify-write and is therefore subjected to the Atomic-ordered-before ordering requirements
and the Atomic axiom.

RBGSJM GCSSS2 performs a Memory Read effect to access the data addressed by the current GCS pointer, which returns
address X, and is Intrinsically-ordered-before a Memory Write effect to X by the same GCSSS2 instruction.

RRCNPD The GCS Memory Write effect performed by a GCSSS2 instruction is Intrinsically-ordered-before the GCSB effect from
the same GCSSS2 instruction.

IYJSDD As GCSSS2 causes a GCSB effect, migrating a Guarded Control Stack between PEs does not require an explicit GCSB
instruction if the Guarded Control Stack is switched using the GCSSS1 and GCSSS2 instruction pair.

IWFDGZ Entry to Debug state or exit from Debug state is not required to cause a GCSB effect which means that a debugger
needs to manually cause such an event should such synchronization be required, for example by executing a GCSB
instruction.

GCXFHZ To allow efficient usage of cache lines, FEAT_GCS permits invalidating the dirty cache line contents that are
already consumed by the procedure return instructions.

RSJPKS On execution of a GCS Memory effect that is a read access R1 to a Location M and is produced by any of the
following instructions, without any exception caused by those instructions, a Memory Write effect is induced to the
Location M and the write value is a CONSTRAINED UNPREDICTABLE choice of the following:

• A value that is written to the same Location M, by a GCS Memory effect that is a write access W2 and all of
the following are true:

— W2 is in program order before R1.

— There is no Memory Write effect W3 to the same Location M, that is not a GCS Memory effect, that
exists in Coherence order after W2.

— There is no write access W4 to the same Location M, and all of the following are true for W4:

— W4 is a Guarded Control Stack data access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6823
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
— W4 is in program order after W2 and in program order before R1.

— There is a GCSB effect that appears in program order after W4 and appears in program order
before R1.

• A value that is written to the same Location M, by a Memory Write effect W2 that is not a Guarded Control
Stack data access and all of the following are true:

— W2 is in program order before R1.

— There is no write access W3 to the same Location M, that is not a Guarded Control Stack data access,
that exists in Coherence order after W2.

— There is no write access W4 to the same Location M, and all of the following are true for W4:

— W4 is a Guarded Control Stack data access.

— W4 is in program order after W2 and in program order before R1.

— There is a GCSB effect that appears in program order after W4 and appears in program order
before R1.

The induced Memory Write effect is not the same as the one generated by a store instruction or one generated by a
Branch with Link instruction. For example, the Memory Write effect:

• Does not cause any exceptions.

• Does not cause the side effects due to the translation.

• Does not affect the state of the local Exclusives monitor.

• Is transparent to translations and watchpoints.

The Memory Write effect is single-copy-atomic at doubleword granularity.

The Memory Write effect is part of the transactional write set if R1 is executed in Transactional state.

If R1 is not executed in Transactional state then one of the following must be true for W2 and W3:

• The Memory Write effect is executed outside Transactional state.

• The Memory Write effect is executed inside Transactional state and the transaction commits.

The instructions that can produce the Memory Read effect R1 mentioned above are:

• All procedure return instructions

• GCSPOPM.

• GCSPOPX.

• GCSPOPCX.

• GCSSS2.

Example D11-1

For example, the LDR instruction in the following sequence is permitted to read any one of the following values:

• 0x114.

• 0x110.

• 0x10C.

• 0x300.

• 0x000.

PC Instruction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6824
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
0x0F0 STR ;store 0x200 to an address 0x1000
0x0F4 GCSB DSYNC
0x0F8 BL ;store 0xFC to the address 0x1000
0x200 RET ;load from the address 0x1000
0x0FC GCSB DSYNC
0x100 STR ;store 0x300 to the address 0x1000
0x104 GCSB DSYNC ;make STR visible to subsequent load/stores from
 ;BL/RET instructions
0x108 BL ;store 0x10C to the address 0x1000
0x200 RET ;load from the address 0x1000
0x10C BL ;store 0x110 to the address 0x1000
0x200 RET ;load from the address 0x1000
0x110 BL ;store 0x114 to the address 0x1000
0x200 RET ;load from the address 0x1000
0x114 GCSB DSYNC ;make load/stores from BL/RET instructions visible
 ;to subsequent LDR instructions
0x118 LDR ;load from the address 0x1000

IXFLPD RSJPKS provides implementation flexibility with respect to partial cache line transfer by permitting zeros to be
written to entries below the current value of the GCS pointer.

RGZNKD An Overshooting GCS Memory effect is defined as the following:

• As a GCS Memory Write effect.

• With a write value of 0.

• As a write to a location M whose virtual address is lower than the current Guarded Control Stack pointer
register.

An Overshooting GCS Memory effect S1 is only permitted when all of the following are true:

• When the Guarded Control Stack is GCS Enabled at the current Exception level.

• An Overshooting GCS Memory effect has occurred to all Locations whose virtual address is greater than the
virtual address of Location M and less than the current Guarded Control Stack pointer register.

• If S1 was any other GCS Memory effect it would have updated Location M.

• When hardware management of dirty state mechanism is enabled, S1 updates the dirty state information like
any other GCS Memory effect.

RQQTVL Any transition of the local Exclusives monitor to the Open Access state caused by the Overshooting GCS Memory
effect must not indefinitely delay forward progress of execution.

SYTYHX It is anticipated that software uses guard pages between the Guarded Control Stacks of any two threads so that the
contents of a Guarded Control Stack that is not currently in use are not overwritten by speculative accesses.

SQDQQQ The Overshooting GCS Memory effect can cause potential race conditions when a GCSSTR or GCSSTTR instruction
accesses an address that is less than the address present in the applicable Guarded Control Stack register. Software
is expected to maintain appropriate values in the applicable Guarded Control Stack registers.

RRRBKD No more Overshooting GCS Memory effects are generated for the Guarded Control Stack of an Exception level if
any of the following are true:

• A GCSB effect occurs at that Exception level while the Guarded Control Stack is disabled for that Exception
level, and the Guarded Control Stack remains disabled while PE is executing at that Exception Level.

• A GCSB effect is executed at a different Exception level and PE continues to execute at a different Exception
level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6825
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
RLDSNT The meaning of completion for a Guarded Control Stack data access is as following:

• A Memory Read effect R1 that is a GCS Memory effect or GCSSS1 Memory effect to a Location is complete
for a shareability domain when all of the following are true:

— Any write to the same Location by an Observer within the shareability domain, that is not a GCS
Memory effect or GCSSS1 Memory effect, will be Coherence-after R1.

— Any write W1 to the same Location by an Observer within the shareability domain, that is a GCS
Memory effect or GCSSS1 Memory effect, will be Coherence-after R1 if a GCSB effect appears in
program order before W1 and R1 is Ordered-before the GCSB effect using a DSB instruction.

— Any translation table walks associated with R1 are complete for that shareability domain.

• A Memory Write effect W1 that is a GCS Memory effect or GCSSS1 Memory effect to a Location is complete
for a shareability domain when all of the following are true:

— Any write to the same Location by an Observer within the shareability domain, that is not a GCS
Memory effect or GCSSS1 Memory effect, will be Coherence-after W1.

— Any write W2 to the same Location by an Observer within the shareability domain, that is a GCS
Memory effect or GCSSS1 Memory effect, will be Coherence-after W1 if a GCSB effect appears in
program order before W2 and W1 is Ordered-before the GCSB effect using a DSB instruction.

— Any read to the same Location by an Observer within the shareability domain, that is not a GCS
Memory effect or GCSSS1 Memory effect, will either Reads-from W1 or Reads-from a Memory Write
effect that is Coherence-after W1.

— Any read R1 to the same Location by an Observer within the shareability domain, that is a GCS
Memory effect or GCSSS1 Memory effect, will either Reads-from W1 or Reads-from a Memory Write
effect that is Coherence-after W1 if a GCSB effect appears in program order before R1 and W1 is
Ordered-before the GCSB effect using a DSB instruction.

— Any translation table walks associated with the write are complete for that shareability domain.

RNKPMR In a TLB maintenance operation, for the purpose of completion requirements of memory accesses, a GCS Memory
effect or GCSSS1 Memory effect is treated in the same way as a Memory effect produced by a regular load/store
instruction.

RFKQCQ When a GCS Memory effect or GCSSS1 Memory effect A1 appears in program order before a data cache maintenance
instruction A2, for the purpose of creating ordering relationship between A1 and A2, A1 is treated as a Memory
effect produced by a regular load/store instruction.

RHLTYS When a data cache maintenance instruction A1 appears in program order before a GCS Memory effect or GCSSS1
Memory effect A2, for the purpose of creating ordering relationship between A1 and A2, A2 is treated as a Memory
effect produced by a regular load/store instruction.

RNLNHL For the purpose of creating ordering relationship between a data cache maintenance instruction A1 on PE1 and a
GCS Memory effect or GCSSS1 Memory effect A2 on PE2, A2 is treated as a Memory effect produced by a regular
load/store instruction if all of the following are true:

• A1 is Ordered-before a GCSB effect executed on PE2.

• A GCSB effect appears in program order before A2.

There is no ordering relationship defined between A1 and A2 if above conditions are not met.

RHZDQD For the purpose of creating ordering relationship between a GCS Memory effect or GCSSS1 Memory effect A1 on
PE1 and a data cache maintenance instruction A2 on PE2, A1 is treated as a Memory effect produced by a regular
load/store instruction if all of the following are true:

• A GCSB effect appears in program order after A1.

• A GCSB effect is Ordered-before A2.

There is no ordering relationship defined between A1 and A2 if above conditions are not met.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6826
ID032224 Non-Confidential

The Guarded Control Stack
D11.9 Guarded Control Stack data accesses
SXRJSB Context switching software is expected to use a GCSB effect as appropriate. For example code sequences, see
Switching EL0 Guarded Control Stacks from EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6827
ID032224 Non-Confidential

The Guarded Control Stack
D11.10 Detecting when FEAT_GCS is enabled
D11.10 Detecting when FEAT_GCS is enabled

GLCMSZ FEAT_GCS provides support for a common software supporting the Guarded Control Stack to run with minimal
overheads on a PE that does not implement FEAT_GCS.

GVTQRM FEAT_GCS provides support for a common software supporting the Guarded Control Stack to run on a PE which
implements FEAT_GCS when the Guarded Control Stack is disabled for this software. This software runs with
minimal additional overheads due to the Guarded Control Stack support.

IKZSCH Software might need to interact with the Guarded Control Stack at various points, in particular to manage the
contents including removing entries from the GCS using the GCSPOPM instruction. FEAT_CHK provides a
low-overhead mechanism to detect whether FEAT_GCS is enabled at the current Exception level, to allow such
software to avoid running such code when FEAT_GCS is disabled. For more information about FEAT_CHK, see
Check Feature.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D11-6828
ID032224 Non-Confidential

Chapter D12
The Generic Timer in AArch64 state

This chapter describes the implementation of the Arm Generic Timer. It includes an overview of the AArch64
System register interface to an Arm Generic Timer.

It contains the following sections:

• About the Generic Timer.

• The AArch64 view of the Generic Timer.

Chapter G6 The Generic Timer in AArch32 state describes the AArch32 view of the Generic Timer, and Chapter I2
System Level Implementation of the Generic Timer describes the system level implementation of the Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6829
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.1 About the Generic Timer
D12.1 About the Generic Timer

Figure D12-1 shows an example System on Chip that uses the Generic Timer as a system timer. In this figure:

• This manual defines the architecture of the individual PEs in the multiprocessor blocks.

• The Arm Generic Interrupt Controller Architecture Specification defines a possible architecture for the
interrupt controllers.

• Generic Timer functionality is distributed across multiple components.

Figure D12-1 Generic Timer example

The Generic Timer:

• Provides a system counter that measures the passing of time in real-time.

Note

The Generic Timer can also provide other components at a system level, but Figure D12-1 does not show any
such components.

• Supports virtual counters that measure the passing of virtual-time. That is, a virtual counter can measure the
passing of time on a particular virtual machine.

• Can trigger events after a period of time has passed. The timers:

— Can be used as count-up or as count-down timers.

— Can operate in real-time or in virtual-time.

This chapter describes an instance of the Generic Timer component that Figure D12-1 shows as Timer_0 or Timer_1
within the Multiprocessor A or Multiprocessor B block. This component can be accessed from AArch64 state or
AArch32 state, and this chapter describes access from AArch64 state. Chapter G6 The Generic Timer in AArch32
state describes access to this component from AArch32 state.

System

counter

Always-powered

domain

Power

controller

System Timer Bus

APB

Counter interface

Interrupt

Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

Memory interconnect and memory controller

Counter interface

Interrupt

Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

System

eventsnFIQ,

nIRQ
nFIQ,

nIRQ

Cache Cache Cache Cache

Multiprocessor A Multiprocessor B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6830
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.1 About the Generic Timer
A Generic Timer implementation must also include a memory-mapped system component. This component:

• Must provide the System counter shown in Figure D12-1.

• Optionally, can provide timer components for use at a system level.

Chapter I2 System Level Implementation of the Generic Timer describes this memory-mapped component.

D12.1.1 The full set of Generic Timer components

Within a system that might include multiple PEs, a full set of Generic Timer components is as follows:

The system counter

This provides a uniform view of system time, see The system counter. Because this must be
implemented at the system level, it is accessed through The system level memory-mapped
implementation of the Generic Timer. However, during initialization, a status register in each
implemented timer in the system must be programmed with the frequency of the system counter, so
that software can read this frequency.

PE implementations of the Generic Timer

Each PE implementation of the Generic Timer provides the following components:

• A physical counter, which gives access to the count value of the system counter. When
FEAT_ECV is implemented, the CNTPOFF_EL2 register allows offsetting of physical
timers and counters.

• A virtual counter, which gives access to virtual time. In AArch64 state, the CNTVOFF_EL2
register defines the offset between physical time, as defined by the value of the system
counter, and virtual time.

• A number of timers. In an implementation where all Exception levels are implemented and
can use AArch64 state, the timers that are accessible from AArch64 state are:

— An EL1 physical timer.

— A Non-secure EL2 physical timer.

— An EL3 physical timer.

— An EL1 virtual timer.

— A Non-secure EL2 virtual timer.

— A Secure EL2 virtual timer.

— A Secure EL2 physical timer.

The Non-secure EL2 virtual timer is available only when FEAT_VHE is implemented.

The Secure EL2 timers are available only when FEAT_SEL2 is implemented.

The AArch64 view of the Generic Timer describes these components.

The system level memory-mapped implementation of the Generic Timer

The memory-mapped registers that control the components of the system level implementation of
the Generic Timer are grouped into frames. The Generic Timer architecture defines the offset of
each register within its frame, but the base address of each frame is IMPLEMENTATION DEFINED, and
defined by the system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6831
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.1 About the Generic Timer
Each system level component has one or two register frames. The possible system level components
are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:

• A control frame, CNTControlBase.

• A status frame, CNTReadBase.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers,
and the memory-mapped timer control module identifies:

• Which timers are implemented.

• The features of each implemented timer.

This module has a single frame, CNTCTLBase.

Memory-mapped timers, optional

An implemented memory-mapped timer:

• Must provide a privileged view of the timer, in the CNTBaseN frame.

• Optionally. provides an unprivileged view of the timer in the CNTEL0BaseN
frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

Chapter I2 System Level Implementation of the Generic Timer describes these components.

D12.1.2 The system counter

The Generic Timer provides a system counter with the following specification:

Width From Armv8.0 to Armv8.5 inclusive, at least 56 bits wide. The value returned by any 64-bit read of
the counter is zero-extended to 64 bits.

From Armv8.6, must be 64 bits wide.

Frequency From Armv8.0 to Armv8.5 inclusive, increments at a fixed frequency, typically in the range
1-50MHz. It can support one or more alternative operating modes in which it increments by larger
amounts at a lower frequency, typically for power-saving.

From Armv8.6, increments at a fixed frequency of 1GHz.

Roll-over Roll-over time of not less than 40 years.

Accuracy Arm does not specify a required accuracy, but recommends that the counter does not gain or lose
more than ten seconds in a 24-hour period.

Use of lower-frequency modes must not affect the implemented accuracy.

Start-up Starts operating from zero.

The system counter, once configured and running, must provide a uniform view of system time. More precisely, it
must be impossible for the following sequence of events to show system time going backwards:

1. Device A reads the time from the system counter.

2. Device A communicates with another agent in the system, Device B.

3. After recognizing the communication from Device A, Device B reads the time from the system counter.

The system counter must be implemented in an always-on power domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6832
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.1 About the Generic Timer
To support lower-power operating modes in architectures from Armv8.0 to Armv8.5, the counter can increment by
larger amounts at a lower frequency. For example, a 10MHz system counter might either increment:

• By 1 at 10MHz.

• By 500 at 20kHz, when the system lowers the clock frequency, to reduce power consumption.

In this case, the counter must support transitions between high-frequency, high-precision operation, and
lower-frequency, lower-precision operation, without any impact on the required accuracy of the counter.

From Armv8.6 the counter operates at a higher fixed frequency of 1GHz.

Note

Though each unit of the counter is set to 1ns, this does not require that the counter is incremented every 1ns. A step
in the counter might be more than a single bit increment. Arm recommends that the count is not incremented at a
rate that is less than 50MHz in normal running operation.

The CNTFRQ_EL0 register is intended to hold a copy of the current clock frequency to allow fast reference to this
frequency by software running on the PE. For more information, see Initializing and reading the system counter
frequency.

The mechanism by which the count from the system counter is distributed to system components is
IMPLEMENTATION DEFINED, but each PE with a System register interface to the system counter must have a counter
input that can capture each increment of the counter.

Note

So that the system counter can be clocked independently from the PE hardware, the count value might be distributed
using a Gray code sequence. Gray count scheme for timer distribution scheme gives more information about this
possibility.

D12.1.2.1 Initializing and reading the system counter frequency

The CNTFRQ_EL0 register must be programmed to the clock frequency of the system counter. Typically, this is
done only during the system boot process, by using the System register interface to write the system counter
frequency to the CNTFRQ_EL0 register. Only software executing at the highest implemented Exception level can
write to CNTFRQ_EL0.

Note

The CNTFRQ_EL0 register is UNKNOWN at reset, and therefore the counter frequency must be set as part of the
system boot process.

Software can read the CNTFRQ_EL0 register, to determine the current system counter frequency, in the following
states:

• Non-secure, Secure, and Realm EL2.

• Non-secure, Secure, and Realm EL1.

• When CNTKCTL_EL1.{EL0PCTEN, EL0VCTEN} is not {0,0} and CNTHCTL_EL2.{EL0PCTEN,
EL0VCTEN} is not {0,0}, Non-secure, Secure, and Realm EL0.

D12.1.2.2 Memory-mapped controls of the system counter

Some system counter controls are accessible only through the memory-mapped interface to the system counter.
These controls are:

• Enabling and disabling the counter.

• Setting the counter value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6833
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.1 About the Generic Timer
• Changing the operating mode, to change the update frequency and increment value.

• Enabling Halt-on-debug, which a debugger can then use to suspend counting.

For descriptions of these controls, see Chapter I2 System Level Implementation of the Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6834
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
D12.2 The AArch64 view of the Generic Timer

The following sections describe the components and features of a PE implementation of the Generic Timer, as seen
from AArch64 state:

• The physical counter.

• The virtual counter.

• Event streams.

• Timers.

D12.2.1 The physical counter

The PE includes a physical counter that contains the count value of the system counter. The CNTPCT_EL0 register
holds the current physical counter value. This is defined as the pseudocode function PhysicalCountInt().

Reads of CNTPCT_EL0 register at EL2 or EL3 return the current value of PhysicalCountInt().

When FEAT_ECV is implemented, the CNTPOFF_EL2 register holds the optional physical offset that can be
applied at EL0 and EL1 whether EL0 and EL1 are using AArch64 state or AArch32 state. For more information,
see The physical offset register.

Reads of CNTPCT_EL0 can occur speculatively and out of order relative to other instructions executed on the same
PE.

D12.2.1.1 The self-synchronized view of the physical counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The
CNTPCTSS_EL0 register is a non-speculative view of the physical counter, as seen from the Exception level that
CNTPCTSS_EL0 is read from.

Accesses to the CNTPCTSS_EL0 are subject to the same traps as accesses to the CNTPCT_EL0.

Reads of CNTPCT_EL0 occur in program order relative to reads of CNTPCT_EL0 or CNTPCTSS_EL0.

Reads of CNTPCTSS_EL0 occur in program order relative to reads of CNTPCT_EL0 or CNTPCTSS_EL0.

Example D12-1 Ensuring reads of the physical counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTPCT_EL0 must be read,
an ISB is used to ensure that the read of CNTPCT_EL0 occurs after the signal has been read from memory, as shown
in the following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR X1, [X2]
 CMP X1, #1 ; has had the value 1 written to it
 B.NE loop
 ISB ; without this the CNTPCT_EL0 could be read before the memory location in [X2]

MRS X1, CNTPCT_EL0

When FEAT_ECV is implemented, an access to CNTPCTSS_EL0 can be used in place of the CNTPCT_EL0 which,
because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code
sequence can be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR X1, [X2]
CMP X1, #1 ; has had the value 1 written to it
B.NE loop
MRS X1, CNTPCTSS_EL0

Similarly where a read of the physical counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following code sequences can be used:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6835
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
... ; earlier loads and stores
DSB ; completes the earlier loads and stores
ISB ; without this the CNTPCT_EL0 could be read before the completion of the earlier

; loads and stores
MRS X1, CNTPCT_EL0

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRS X1, CNTPCTSS_EL0

Neither view of the physical counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Where there is a Dependency through registers dependency from the read of the physical counter to a Register effect
generated by a read or write, the read or write will be executed after the read of the counter.

Example D12-2 Ensuring reads of the physical counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, one of the following sequences should be used:

either:

DSB
ISB
MRS Xn, CNTPCT{SS}_EL0 ; either view of the physical counter has the same effect in this example

or

DMB
LDR Xa, [Xd] ; this could be any memory location, for example the stack pointer
CBZ Xa, next

next
ISB ; this ISB is not needed if the MRS is accessing CNTPCTSS_EL0
MRS Xn, CNTPCT{SS}_EL0

To ensure that a memory access occurs only after a read of the counter, then either of the following sequences should
be used:

MRS Xn, CNTPCT{SS}_EL0 ; either view of the physical counter has the same effect in this example
ISB
LDR Xa, [Xb] ; this load will be executed after the timer has been read

or

MRS Xn, CNTPCT{SS}_EL0 ; either view of the physical counter has the same effect in this example
EOR Xm, Xn, Xn
LDR Xa, [Xb, Xm] ; this load will be executed after the timer has been read

D12.2.1.2 The physical offset register

When FEAT_ECV is implemented, the CNTPOFF_EL2 register allows an offset to be applied to the physical
counter, as viewed from EL1 and EL0, and to the EL1 physical timer. The functionality of this 64-bit register is
affected by CNTHCTL_EL2.ECV.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6836
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
When CNTHCTL_EL2.ECV is 1, an MRS to CNTPCT_EL0 or CNTPCTSS_EL0 from either EL0 or EL1 that is
not trapped returns the value (PhysicalCountInt() - CNTPOFF_EL2). For information on how the EL1 physical timer
interrupt is triggered when CNTHCTL_EL2.ECV is 1, see Operation of the CompareValue views of the timers.

When EL2 is not enabled for the current Security state, or when CNTHCTL_EL2.ECV is 0, then:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return the value
PhysicalCountInt().

• The physical offset is treated as zero for all timer and counter calculations involving the physical offset.

When EL2 is not enabled for the current Security state, or when CNTHCTL_EL2.ECV is 0, then the behavior of
the counters and timers is as described for Armv8.5 and the optional physical offset is not used.

When SCR_EL3.ECVEn is 0, the value of CNTPOFF_EL2 is treated as 0 for all purposes other than direct reads
or writes to CNTPOFF_EL2 from EL3.

D12.2.2 The virtual counter

An implementation of the Generic Timer always includes a virtual counter, which indicates virtual time.

The virtual counter contains the value of the physical counter minus a 64-bit virtual offset. When executing at EL1
or EL0, the virtual offset value relates to the current virtual machine.

The CNTVOFF_EL2 register contains the virtual offset, see The virtual offset register.

The CNTVCT_EL0 register holds the current virtual counter value.

Reads of CNTVCT_EL0 can occur speculatively and out of order relative to other instructions executed on the same
PE.

D12.2.2.1 The self-synchronized view of the virtual counter

When FEAT_ECV is implemented, an alternative way to read the virtual counter is supported. The
CNTVCTSS_EL0 register is a non-speculative view of the virtual counter, as seen from the Exception level that
CNTVCTSS_EL0 is read from.

Accesses to the CNTVCTSS_EL0 are subject to the same traps as accesses to the CNTVCT_EL0.

Reads of CNTVCT_EL0 occur in program order relative to reads of CNTVCT_EL0 or CNTVCTSS_EL0.

Reads of CNTVCTSS_EL0 occur in program order relative to reads of CNTVCT_EL0 or CNTVCTSS_EL0.

Example D12-3 Ensuring reads of the virtual counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTVCT_EL0 must be read,
an ISB is used to ensure that the read of CNTVCT_EL0 occurs after the signal has been read from memory, as shown
in the following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR X1, [X2]
 CMP X1, #1 ; has had the value 1 written to it
 B.NE loop
 ISB ; without this the CNTVCT_EL0 could be read before the memory location in [X2]
 MRS X1, CNTVCT_EL0

When FEAT_ECV is implemented, an access to CNTVCTSS_EL0 can be used in place of the CNTVCT_EL0,
which, because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following
code sequence can be used:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6837
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
loop ; polling for some communication to indicate a requirement to read the timer
LDR X1, [X2]
CMP X1, #1 ; has had the value 1 written to it
B.NE loop
MRS X1, CNTVCTSS_EL0

Similarly where a read of the virtual counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following two sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this CNTPCT_EL0 could be read before the completion of the earlier

; loads and stores
MRS X1, CNTVCT_EL0

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRS X1, CNTVCTSS_EL0

Neither view of the virtual counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Where there is a Dependency through registers dependency from the read of the virtual counter to a Register effect
generated by a read or write, the read or write will be executed after the read of the counter.

Example D12-4 Ensuring reads of the virtual counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, one of the following sequences should be used:

either:

DSB
ISB
MRS Xn, CNTVCT{SS}_EL0 ; either view of the virtual counter has the same effect in this example

or

DMB
LDR Xa, [Xd] ; this could be any memory location, for example the stack pointer
CBZ Xa, next

next
ISB ; this ISB is not needed if the MRS is accessing CNTVCT{SS}_EL0
MRS Xn, CNTVCT{SS}_EL0

To ensure that a memory access occurs only after a read of the counter, then either of the following sequences should
be used:

MRS Xn, CNTVCT{SS}_EL0 ; either view of the virtual counter has the same effect in this example
ISB
LDR Xa, [Xb] ; this load will be executed after the timer has been read

or

MRS Xn, CNTVCT{SS}_EL0 ; either view of the virtual counter has the same effect in this example
EOR Xm, Xn, Xn
LDR Xa, [Xb, Xm] ; this load will be executed after the timer has been read
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6838
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
D12.2.2.2 The virtual offset register

The virtual counter is a counter that has a virtual offset relative to the physical counter as viewed from EL2 and EL3.
This virtual offset is held in the register CNTVOFF_EL2. The virtual counter value is the count compared by the
EL1 virtual timer.

If EL2 is not implemented and enabled, then the virtual counter uses a fixed offset of zero.

D12.2.3 Event streams

An implementation that includes the Generic Timer can use the system counter to generate one or more event
streams, to generate periodic wakeup events as part of the mechanism described in Wait for Event.

Note

An event stream might be used:

• To impose a time-out on a Wait For Event polling loop.

• To safeguard against any programming error that means an expected event is not generated.

The CNTKCTL_EL1.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated
from the virtual counter.

In all implementations, the CNTHCTL_EL2.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event
stream that is generated from the physical counter.

The event stream is configured as follows:

• EVNTI selects the counter bit that triggers the event.

• If FEAT_ECV is not implemented, EVNTI selects between bits[0:15].

• If FEAT_ECV is implemented, EVNTIS selects whether ENVTI selects between bits[0:15] or bits[8:23].

• EVNTDIR selects whether the event is generated on each 0 to 1 transition, or each 1 to 0 transition, of the
selected counter bit.

Note

If the event stream is configured to produce events from the low order bits of the counter when the counter frequency
is very high (for example 1GHz), then the practical update rate of the counter might mean that the event stream is
not generated as the low order bit might not change. Software can rely on an event stream rate of at least 1MHz in
normal operation.

The pseudocode descriptions of the operation of an event stream are SetEventRegister, TestEventCNTV, and
TestEventCNTP.

D12.2.4 Timers

In an implementation of the Generic Timer that includes EL3, if EL3 can use AArch64, the following timers are
implemented:

• An EL1 physical timer, which:

— In Non-secure state, can be accessed from EL1 unless those accesses are trapped to EL2.

— In Secure state, can be accessed from EL1.

— In Realm state, can be accessed from EL1 unless those accesses are trapped to EL2.

When this timer can be accessed from EL1, an EL1 control determines whether it can be accessed from EL0.

• A Non-secure EL2 physical timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6839
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
• An EL3 physical timer. SCR_EL3.ST determines whether this register is accessible from Secure EL1.

• An EL1 virtual timer.

• When FEAT_VHE is implemented, a Non-secure EL2 virtual timer.

• When FEAT_SEL2 is implemented, a Secure EL2 physical timer.

• When FEAT_SEL2 is implemented, a Secure EL2 virtual timer.

The output of each implemented timer:

• Provides an output signal to the system.

• If the PE interfaces to a Generic Interrupt Controller (GIC), signals a Private Peripheral Interrupt (PPI) to
that GIC. In a multiprocessor implementation, each PE must use the same interrupt number for each timer.

Each timer:

• Is based around a 64-bit CompareValue that provides a 64-bit unsigned upcounter.

• Provides an alternative view of the CompareValue, called the TimerValue, that appears to operate as a 32-bit
downcounter.

• Has, in addition, a 32-bit Control register.

D12.2.4.1 Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate
counter reaches the value programmed into its CompareValue register. When the timer condition is met, an interrupt
is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0,
CNTHP_CTL_EL2, CNTHPS_CTL_EL2, CNTPS_CTL_EL1, CNTV_CTL_EL0, CNTHV_CTL_EL2 or
CNTHVS_CTL_EL2. For CNTP_CTL_EL0, the asserted interrupt is the same as the interrupt asserted by the
Non-secure instance of the AArch32 register CNTP_CTL.

Table D12-1 Physical timer registers summary for the Generic Timer

Timera
register

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

EL1
physical timer

EL2
physical timer

Secure EL2
physical timerb

b. Present only when the implementation includes FEAT_SEL2.

EL3 physical timer

CV CNTP_CVAL_EL0 CNTHP_CVAL_EL2 CNTHPS_CVAL_EL2 CNTPS_CVAL_EL1

TV CNTP_TVAL_EL0 CNTHP_TVAL_EL2 CNTHPS_TVAL_EL2 CNTPS_TVAL_EL1

Control CNTP_CTL_EL0 CNTHP_CTL_EL2 CNTHPS_CTL_EL2 CNTPS_CTL_EL1

Table D12-2 Virtual timer register summary for the Generic Timer

Timera
register

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

EL1
virtual timer

EL2
virtual timerb

b. Only when the implementation includes FEAT_VHE.

Secure EL2
virtual timerc

c. Present only when the implementation includes FEAT_SEL2.

CV CNTV_CVAL_EL0 CNTHV_CVAL_EL2 CNTHVS_CVAL_EL2

TV CNTV_TVAL_EL0 CNTHV_TVAL_EL2 CNTHVS_TVAL_EL2

Control CNTV_CTL_EL0 CNTHV_CTL_EL2 CNTHVS_CTL_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6840
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
The operation of this view of a timer is:

TimerConditionMet = (((PhysicalCountInt() – Offset)[63:0] - CompareValue[63:0]) >= 0)

Where:

TimerConditionMet Is TRUE if the timer condition for this counter is met, and FALSE otherwise.

PhysicalCountInt() The physical counter value, which can be read from the CNTPCT_EL0 register when read
from EL2 or EL3.

Offset For the EL1 physical timer, the offset value is the value held in the CNTPOFF_EL2 register
when all of the following are true:

• SCR_EL3.{NS, EEL2} is not {0, 0}.

• SCR_EL3.ECVEn is 1,

• CNTHCTL_EL2.ECV is 1.

• HCR_EL2.{E2H, TGE} is not {1, 1}.

Otherwise the offset value of the EL1 physical timer is zero.

For the EL1 virtual timer, the offset value is held in the CNTVOFF_EL2 register.

For the EL2 physical and virtual timers, the offset value is zero.

CompareValue The value of the appropriate CompareValue register, CNTP_CVAL_EL0,
CNTHP_CVAL_EL2, CNTPS_CVAL_EL1, CNTHPS_CVAL_EL2, CNTV_CVAL_EL0,
CNTHV_CVAL_EL2, or CNTHVS_CVAL_EL2.

In this view of a timer, PhysicalCountInt(), Offset, and CompareValue are all 64-bit unsigned values.

Note

This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF_FFFF might never meet its timer
condition. However, there is no practical requirement to use values close to the counter wrap value.

Software can observe the counter value by the offset in some situations by reading CNTVCT_EL0.

D12.2.4.2 Operation of the TimerValue views of the timers

The TimerValue view of a timer appears to operate as a signed 32-bit downcounter. A TimerValue register is
programmed with a count value. This value decrements on each increment of the appropriate counter, and the timer
condition is met when the value reaches zero. When the timer condition is met, an interrupt is generated if the
interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0, CNTHP_CTL_EL2,
CNTHPS_CTL_EL2, CNTPS_CTL_EL1, CNTV_CTL_EL0, CNTHV_CTL_EL2, or CNTHVS_CTL_EL2.

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads TimerValue = (CompareValue[63:0] – (PhysicalCountInt()[63:0] - Offset[63:0]))[31:0]

Writes CompareValue = ((PhysicalCountInt()[63:0] -
Offset[63:0])[63:0] + SignExtend(TimerValue[31:0]))[63:0]

Where the arguments other than TimerValue have the definitions used in Operation of the CompareValue views of
the timers, and in addition:

TimerValue The value of a TimerValue register, CNTP_TVAL_EL0, CNTHP_TVAL_EL2,
CNTHPS_TVAL_EL2, CNTPS_TVAL_EL1, CNTV_TVAL_EL0, CNTHV_TVAL_EL2, or
CNTHVS_TVAL_EL2.

In this view of a timer, values are signed in standard two’s complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition
was met.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6841
ID032224 Non-Confidential

The Generic Timer in AArch64 state
D12.2 The AArch64 view of the Generic Timer
Note

• Operation of the CompareValue views of the timers gives a strict definition of TimerConditionMet. However,
provided that the TimerValue is not expected to wrap as a 32-bit signed value when decremented from
0x80000000, the TimerValue view can be used as giving an effect equivalent to:

TimerConditionMet = (TimerValue 0)

• Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to
an arithmetic overflow that causes the CompareValue to be a large positive value. This potentially delays
meeting the timer condition for a long period of time.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D12-6842
ID032224 Non-Confidential

Chapter D13
The Performance Monitors Extension

This chapter describes the implementation of the Arm Performance Monitors, which are an optional non-invasive
debug component. It describes version 3 of the Performance Monitor Unit (PMU) architecture, FEAT_PMUv3. It
contains the following sections:

• About the Performance Monitors.

• Accuracy of the Performance Monitors.

• Behavior on overflow.

• Attributability.

• Controlling the PMU counters.

• Multithreaded implementations.

• Event filtering.

• Event counting threshold.

• PMU snapshots.

• Performance Monitors and Debug state.

• Counter access.

• PMU events and event numbers.

• Performance Monitors Extension registers.

Note

Table K17-2 disambiguates the general register references used in this chapter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6843
ID032224 Non-Confidential

The Performance Monitors Extension
D13.1 About the Performance Monitors
D13.1 About the Performance Monitors

The Performance Monitors Extension is an OPTIONAL feature of an implementation, but Arm strongly recommends
that implementations include version 3 of the Performance Monitors Extension, FEAT_PMUv3.

Note

No previous versions of the Performance Monitors Extension can be implemented in architectures from Armv8.0.

The basic form of the Performance Monitors is:

• A 64-bit cycle counter, see Time as measured by the Performance Monitors cycle counter.

• An optional 64-bit instruction counter.

• A number of 64-bit or 32-bit event counters. If FEAT_PMUv3p5 is implemented and the highest Exception
level is using AArch64, the event counters are 64-bit. If FEAT_PMUv3p5 is not implemented, the event
counters are 32-bit.

• The event counted by each event counter is programmable. The architecture provides space for up to 31 event
counters. The actual number of event counters is IMPLEMENTATION DEFINED, and the specification includes
an identification mechanism.

Note

The Performance Monitors Extension permits an implementation with no event counters
(PMCR_EL0.N==0). However, Arm recommends that at least two event counters are implemented, and that
hypervisors provide at least this many event counters to guest operating systems.

• When EL2 is implemented, controls to partition the implemented event counters into the following ranges:

— A first range which is available for use by the guest operating system accessible at all Exception levels.

— A second range which is available for use by the hypervisor accessible at EL3 and EL2, and, if
FEAT_SEL2 is not implemented or if Secure EL2 is disabled, in Secure state.

For more information see Interaction with EL2.

• Controls for:

— Enabling counters. See Enabling PMU counters.

— Resetting counters. Resetting counters.

— Flagging overflows. See Behavior on overflow.

— Enabling interrupts on overflow. See Generating overflow interrupt requests.

— Freezing counters. See Freezing PMU counters.

— Prohibiting counting. See Prohibiting counting.

— Threshold counting. See Event counting threshold.

— Edge counting. See Edge conditions.

— Enabling access to the Performance Monitors from EL0. See EL0 access controls.

The PMU architecture uses event numbers to identify an event. It:

• Defines event numbers for common events, for use across many architectures and microarchitectures. See
Common event numbers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6844
ID032224 Non-Confidential

The Performance Monitors Extension
D13.1 About the Performance Monitors
Note

Implementations that include FEAT_PMUv3 must, as a minimum requirement, implement a subset of the
common events. See Common event numbers.

• Reserves a large event number space for IMPLEMENTATION DEFINED events. See IMPLEMENTATION
DEFINED event numbers.

The full set of events for an implementation is IMPLEMENTATION DEFINED. Arm recommends that implementations
include all of the events that are appropriate to the architecture profile and microarchitecture of the implementation.

When an implementation includes the Performance Monitors Extension, the architecture defines the following
possible interfaces to the Performance Monitors Extension registers:

• A System register interface. This interface is mandatory.

Note

In AArch32 state, the interface is in the (coproc==0b1111) encoding space.

• An external debug interface which optionally supports memory-mapped accesses. Implementation of this
interface is OPTIONAL. See Chapter I3 Recommended External Interface to the Performance Monitors.

An operating system can use the System registers to access the counters.

Also, if required, the operating system can enable application software to access the counters. This enables an
application to monitor its own performance with fine-grain control without requiring operating system support. For
example, an application might implement per-function performance monitoring.

To enable interaction with external monitoring, an implementation might consider additional enhancements, such
as providing:

• A set of events, from which a selection can be exported onto a bus for use as external events.

• The ability to count external events. This enhancement requires the implementation to include a set of
external event input signals.

The Performance Monitors Extension is common to AArch64 operation and AArch32 operation. This means the
architecture defines both AArch64 and AArch32 System registers to access the Performance Monitors. For
example, the Performance Monitors Cycle Count Register is accessible as:

• When executing in AArch64 state, PMCCNTR_EL0.

• When executing in AArch32 state, PMCCNTR.

When executing in AArch32 state, if FEAT_PMUv3p5 is implemented, bits [63:32] of the event counters are not
accessible. If the implementation does not support AArch64 at any Exception level, 64-bit event counters are not
required to be implemented.

When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0 is added, but is not
accessible in AArch32 state.

D13.1.1 Interaction with EL3

Software executing at EL3 can trap attempts by lower Exception levels to access the PMU. This means that the
Monitor can identify any software which is using the PMU and switch contexts, if required.

Software executing at EL3 can:

• Prohibit counting of events Attributable to Secure state.

• If FEAT_PMUv3p5 is implemented, prohibit the cycle counter from counting cycles in Secure state and at
EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6845
ID032224 Non-Confidential

The Performance Monitors Extension
D13.1 About the Performance Monitors
• If FEAT_PMUv3p7 is implemented:

— Prohibit event counters from counting events at EL3.

— Prohibit the cycle counter from counting cycles at EL3.

• If FEAT_PMUv3_ICNTR is implemented, prohibit the instruction counter from counting
architecturally-executed instructions in Secure state and at EL3.

For more information, see Controlling the PMU counters.

In AArch32 state, the Performance Monitors registers are Common registers, see Classification of System registers.

If FEAT_MTPMU is implemented and EL3 is implemented, MDCR_EL3.MTPME and SDCR.MTPME enable and
disable the PMEVTYPER<n>.MT bit.

D13.1.2 Interaction with EL2

Software executing at EL3 or EL2 can program HDCR.HPMN to partition the event counters into two ranges:

• If HDCR.HPMN is not 0 and is less-than PMCR.N, HDCR.HPMN divides the event counters into a first
range [0..(HDCR.HPMN-1)], and a second range [HDCR.HPMN..(PMCR.N-1)].

• If FEAT_HPMN0 is implemented and HDCR.HPMN is 0, all event counters are in the second range and none
are in the first range.

• If HDCR.HPMN is equal to PMCR.N, all event counters are in the first range and none are in the second
range.

This does not depend on whether EL2 is enabled in the current Security state. Each range of event counters has its
own global controls.

Counters in the second range are also described as reserved by EL2.

If FEAT_HPMN0 is not implemented and HDCR.HPMN is 0, the behavior is CONSTRAINED UNPREDICTABLE. See:

• The Performance Monitors Extension.

• The Performance Monitors Extension.

Software executing at EL3 or EL2 can:

• Trap an access at EL0 or EL1 to the PMU. This means the hypervisor can identify which Guest OSs are using
the PMU and intelligently employ switching of the PMU state. There is a separate trap for the PMCR register,
and if FEAT_FGT is implemented and enabled, fine-grained traps are provided.

• If FEAT_PMUv3p1 is implemented, prohibit counting of events Attributable to EL2 by the event counters in
the first range.

• If FEAT_PMUv3p5 is implemented, prohibit the cycle counter from counting cycles at EL2.

• If FEAT_PMUv3_ICNTR is implemented, prohibit the instruction counter from counting instructions at
EL2.

When EL2 is implemented and enabled in the current Security state, software executing at EL1 and, if enabled by
PMUSERENR, EL0:

• Will read the value of HDCR.HPMN for PMCR.N.

• Cannot access the event counters in the second range, or the controls associated with them.

If FEAT_MTPMU is implemented, EL3 is not implemented, and EL2 is implemented, MDCR_EL2.MTPME and
HDCR.MTPME enable and disable the PMEVTYPER<n>.MT bit.

For more information, see:

• Enabling PMU counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6846
ID032224 Non-Confidential

The Performance Monitors Extension
D13.1 About the Performance Monitors
• Counter access.

• Controlling the PMU counters.

• Multithreaded implementations.

D13.1.3 Time as measured by the Performance Monitors cycle counter

The Performance Monitors cycle counter, accessed through PMCCNTR_EL0 or PMCCNTR, increments from the
hardware processor clock, not PE clock cycles.

The relationship between the count recorded by the Performance Monitors cycle counter and the passage of real
time is IMPLEMENTATION DEFINED.

See Controlling the PMU counters for information about when the cycle counter does not increment.

Note

• This means that, in an implementation where PEs are multithreaded, when enabled, the cycle counter
continues to increment across all PEs, rather than only counting cycles for which the current PE is active.

• Although the architecture requires that direct reads of PMCCNTR_EL0 or PMCCNTR occur in program
order, there is no requirement that the count increments between two such reads. Even when the counter is
incrementing on every clock cycle, software might need check that the difference between two reads of the
counter is nonzero.

The architecture requires that an indirect write to the PMCCNTR_EL0 or PMCCNTR is observable to direct
reads of the register in finite time. The counter increments from the hardware processor clock are indirect
writes to these registers.

D13.1.4 Interaction with trace

It is IMPLEMENTATION DEFINED whether the implementation exports counter events to a trace unit, or other external
monitoring agent, to provide triggering information. The form of any exporting is also IMPLEMENTATION DEFINED.
If implemented, this exporting might be enabled as part of the performance monitoring control functionality.

Arm recommends system designers include a mechanism for importing a set of external events to be counted, but
such a feature is IMPLEMENTATION DEFINED. When implemented, this feature enables the trace unit to pass in events
to be counted.

Exporting PMU events to the ETM is prohibited for some Exception levels when SelfHostedTraceEnabled() ==
TRUE. For more information, see Controls to prohibit trace at Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6847
ID032224 Non-Confidential

The Performance Monitors Extension
D13.2 Accuracy of the Performance Monitors
D13.2 Accuracy of the Performance Monitors

The Performance Monitors:

• Are a non-invasive debug component. See Non-invasive behavior.

• Must provide broadly accurate and statistically useful count information.

However, the Performance Monitors allow for:

• A reasonable degree of inaccuracy in the counts to keep the implementation and validation cost low. See A
reasonable degree of inaccuracy.

• IMPLEMENTATION DEFINED controls, such as those in ACTLR registers, that software must configure before
using certain PMU events. For example, to configure how the PE generates PMU events for components such
as external caches and external memory.

• Other IMPLEMENTATION DEFINED controls, such as those in ACTLR registers, to optionally put the PE in an
operating state that might do one or both of the following:

— Change the level of non-invasiveness of the Performance Monitors so that enabling an event counter
can impact the performance or behavior of the PE.

— Allow inaccurate counts. This includes, but is not limited to, cycle counts.

D13.2.1 Non-invasive behavior

The Performance Monitors are a non-invasive debug feature. A non-invasive debug feature permits the observation
of data and program flow. Performance Monitors, PC Sample-based Profiling and Trace are non-invasive debug
features.

Non-invasive debug components do not guarantee that they do not make any changes to the behavior or
performance of the processor. Any changes that do occur must not be severe however, as this will reduce the
usefulness of event counters for performance measurement and profiling. This does not include any change to
program behavior that results from the same program being instrumented to use the Performance Monitors, or from
some other performance monitoring process being run concurrently with the process being profiled in a multitasking
operating system. As such, a reasonable variation in performance is permissible.

Note

Power consumption is one measure of performance. Therefore, a reasonable variation in power consumption is
permissible.

Arm does not define a reasonable variation in performance, but recommends that such a variation is kept within 5%
of normal operating performance, when averaged across a suite of code that is representative of the application
workload.

Note

For profiles other than A-profile, there is the potential for stronger requirements. Ultimately, performance
requirements are determined by end-users, and not set by the architecture.

For some common architectural events, this requirement to be non-invasive can conflict with the requirement to
present an accurate value of the count under normal operating conditions. Should an implementation require more
performance-invasive techniques to accurately count an event, there are the following options:

• If the event is optional, define an alternative IMPLEMENTATION DEFINED event that accurately counts the
event and document the impact on performance of enabling the event.

• Provide an implementation defined control that disables accurate counting of the event to restore broadly
accurate performance, and document the impact on performance of accurate counting.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6848
ID032224 Non-Confidential

The Performance Monitors Extension
D13.2 Accuracy of the Performance Monitors
When FEAT_SEBEP is implemented, generating synchronous PMU exceptions is likely to be locally performance
invasive. This means the invasiveness of enabling counters should be similar to the effect when synchronous PMU
exceptions are not used. However, as the counter value approaches overflow, implementations might become more
highly performance invasive. The value at which this occurs is IMPLEMENTATION DEFINED.

Note

The implementation defined invasiveness might include the PE disabling one or more performance optimizations
such as multi-issue, out-of-order execution, and pipelining.

A software implication is that the performance invasiveness is proportional to the sampling interval. This can
disproportionately affect profiling of rare events, because the population is smaller and therefore the interval will
tend to be smaller.

D13.2.2 A reasonable degree of inaccuracy

The Performance Monitors provide broadly accurate and statistically useful count information. To keep the
implementation, validation, and performance overhead costs low, a reasonable degree of inaccuracy in the counts
and the detection of overflow is acceptable. Arm does not define a reasonable degree of inaccuracy but recommends
the following guidelines:

• Under normal operating conditions, all of the following apply:

— The counters must present an accurate value of the count.

— When FEAT_SEBEP is implemented, the overflow of a counter in synchronous mode is observed by
the instruction generating the event that causes the overflow, so long as other architectural conditions
are met, such as the PMU exception is unmasked. For more information, see RNZLVW.

• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable
for the count to be inaccurate.

• In exceptional microarchitectural circumstances, including when the event occurs rapidly in close
succession, the overflow of a counter in synchronous mode might only be observed by a later instruction that
also generates the event.

This means that there might be temporal inaccuracy in the generation of the PMU exception. This is also
known as the shadow effect.

• Under very unusual, non-repeating pathological cases, the counts can be inaccurate. These cases are likely to
occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in the
count is very unlikely.

Note

An implementation must not introduce inaccuracies that can be triggered systematically by the execution of normal
pieces of software. For example, it is not reasonable for the count of branch behavior to be inaccurate when caused
by a systematic error generated by the loop structure producing a dropping in branch count.

However, dropping a single branch count as the result of a rare interaction with an interrupt is acceptable.

The architecture does not permit these behaviors for events that specifically count architectural exceptional
circumstances, such as a change in Exception level, for example, EXC_TAKEN.

If FEAT_SEBEP is implemented, then all of the following apply:

• Any shadow effect must be finite. An instruction generating the event must observe the overflow within a
finite number of occurrences of the event after the counter has overflowed.

• In all circumstances, when a synchronous PMU exception is taken:

— The counters present an accurate and precise value of the count, so that the exception is taken after
the instruction that generated the overflow has retired.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6849
ID032224 Non-Confidential

The Performance Monitors Extension
D13.2 Accuracy of the Performance Monitors
— The instruction that generated the exception by setting PSTATE.PPEND to 1 must have also generated
the event.

Note

The instruction that generates the event that causes overflow might be executed when the PMU exception is disabled
or masked, or the instruction causes the counter to increment by more than one. It is possible that on taking the PMU
exception, the counter that overflowed has overshot. This means that after overflowing the counter counts past zero
and the counter is nonzero when the PMU exception is taken. Any overshoot is reflected in the count value, and
software can take the size of the overshoot value into account to determine the impact of exception masking and/or
the shadow effect.

The permitted inaccuracy limits the possible uses of the Performance Monitors. In particular, the architecture does
not define the point in a pipeline where the event counter is incremented, relative to the point where a read of the
event counters is made. This means that pipelining effects can cause some imprecision, and can affect which events
are counted.

Where a direct write to a Performance Monitors control register disables a counter, and is followed by a Context
Synchronization event, any subsequent indirect read of the control register by the Performance Monitors to
determine whether the counter is enabled will return the updated value. Any subsequent direct read of the counter
or counter overflow status flags will return the value at the point the counter was disabled.

Note

The imprecision means that the counter might have counted an event around the time the counter was disabled, but
does not allow the event to be observed as counted after the counter was disabled.

A change of Security state can also affect the accuracy of the Performance Monitors, see Interaction with EL3.

In addition to this, entry to and exit from Debug state can disturb the normal running of the PE, causing further
inaccuracy in the Performance Monitors. Disabling the counters while in Debug state limits the extent of this
inaccuracy. An implementation can employ methods to limit this inaccuracy, for example by promptly disabling the
counters during the Debug state entry sequence.

An implementation must document any particular scenarios where significant inaccuracies are expected.

If FEAT_SEBEP is implemented, then implementations should document any specific microarchitectural
circumstances when the shadow effect is likely to occur. For example for relatively frequent events such as
INST_RETIRED. Implementations should minimize any shadow effect for less common events, such as
mispredicted branches and cache misses, eliminating the effect entirely in other than exceptional circumstances.

If all of the following apply, then PSTATE.PPEND will be set to 1 by an instruction B without any shadow effect:

• An instruction A is executed that is either a Context synchronization event or an MSR write to PSTATE.PM.

• When A completes execution, either the unsigned value of a PMU event counter <n> or the instruction
counter (n == 32) is greater-than-or-equal to an implementation-specific threshold value, or
PMOVSSET_EL0.P<n> is 1.

• B executes in program order after A.

• B meets all the conditions for an instruction in RNZLVW. See Synchronous exception-based event profiling.

• The PMU exception is enabled and unmasked from the instruction following A in program order up-to and
including B.

The threshold value might depend on the event.

Note

The maximum threshold value is 0xFFFFFFFF_FFFFFFFF so that a single event causes the counter to overflow and
generate a PMU exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6850
ID032224 Non-Confidential

The Performance Monitors Extension
D13.2 Accuracy of the Performance Monitors
The threshold value is implementation specific to allow for implementations where the actual threshold might vary
according to the type of event being monitored. In this case, it is not possible to document a single implementation
defined threshold value. Arm recommends that implementations document the threshold values for specific events
used in scenarios such as replay debugging, such as INST_RETIRED, BR_RETIRED, and PC_WRITE_RETIRED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6851
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
D13.3 Behavior on overflow

The event counters, PMEVCNTR<n> are either 32-bit or 64-bit unsigned counters that overflow in the following
situations:

• If FEAT_PMUv3p5 is not implemented, then 32-bit event counters are implemented, and if incrementing
PMEVCNTR<n> causes an unsigned overflow of an event counter, the PE sets PMOVSCLR[n] to 1.

• If FEAT_PMUv3p5 is implemented, then 64-bit event counters are implemented, HDCR.HPMN is not 0, and
either n is in the range [0 .. (HDCR.HPMN-1)] or EL2 is not implemented, then event counter overflow is
configured by PMCR.LP:

— When PMCR.LP is set to 0, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[31:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

— When PMCR.LP is set to 1, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[63:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of PMCR.LP is 1.

• If FEAT_PMUv3p5 is implemented, EL2 is implemented, and HDCR.HPMN is less-than PMCR.N, when n
is in the range [HDCR.HPMN .. (PMCR.N-1)], event counter overflow is configured by HDCR.HLP:

— When HDCR.HLP is set to 0, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[31:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

— When HDCR.HLP is set to 1, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits
[63:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of HDCR.HLP
is 1.

The cycle counter, PMCCNTR, is a 64-bit unsigned counter, that is configured by PMCR.LC:

• When PMCR.LC is set to 0, if incrementing PMCCNTR causes an unsigned overflow of bits [31:0] of the
cycle counter, the PE sets PMOVSCLR[31] to 1.

• When PMCR.LC is set to 1, if incrementing PMCCNTR causes an unsigned overflow of bits [63:0] of the
cycle counter, the PE sets PMOVSCLR[31] to 1.

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of PMCR.LC is 1.

If FEAT_PMUv3_ICNTR is implemented, then when incrementing PMICNTR_EL0 causes an unsigned overflow
of PMICNTR_EL0[63:0], the PE sets PMOVSCLR_EL0.F0 to 1.

The update of PMOVSCLR occurs synchronously with the update of the counter.

Note

The behavior of the PMU, and other functions that observe the PMU or are triggered by its state, such as the BRBE
freeze events, ignore the values of PMUSERENR_EL0 and PMUACR_EL1. For example, a counter that is not
currently accessible to EL0 might overflow and cause an unexpected PMU freeze-on-overflow or BRBE freeze
event when executing at EL0.

For all 64-bit counters, incrementing the counter is the same whether an unsigned overflow occurs at [31:0] or
[63:0]. If the counter increments for an event, bits [63:0] are always incremented,

When any overflow occurs, an interrupt request is generated if the PE is configured to generate counter overflow
interrupts. For more information, see Generating overflow interrupt requests.

If FEAT_EBEP is implemented, then a PMU overflow can generate a PMU exception. For more information, see
Exception-based event profiling.

If FEAT_SEBEP is implemented, then a PMU exception can be taken synchronously. For more information, see
Synchronous exception-based event profiling.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6852
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
If FEAT_BRBE is implemented, then a a PMU overflow can generate a BRBE freeze event. For more information,
see Branch record buffer operation.

If FEAT_PMUv3p9 and FEAT_Debugv8p9 are implemented, then the PMU counter overflow can be programmed
to cause the PE to halt and enter Debug state, see PMU Overflow external debug request.

A PMU overflow can be used as an input trigger event to the Cross Trigger Interface (CTI) for the PE. For more
information, see Performance Monitors overflow trigger event.

If FEAT_PMUv3p7 is implemented, event counting can be frozen after an unsigned overflow is detected, see
Freezing PMU counters.

Note

Software executing at EL1 or higher must take care that setting PMCR.LP or HDCR.HLP does not cause software
executing at lower Exception levels to malfunction. If legacy software accesses the PMU at lower Exception levels,
software at the higher Exception levels should not set the PMCR.LP or HDCR.HLP fields to 1. However, if the
legacy software does not use the counter overflow, it is not affected by setting the PMCR.LP or HDCR.HLP to 1.

D13.3.1 Generating overflow interrupt requests

Software can program the Performance Monitors so that an overflow interrupt request is generated when a counter
overflows. See PMINTENSET and PMINTENCLR.

Note

• The mechanism by which an interrupt request from the Performance Monitors generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

• Arm recommends that the overflow interrupt requests:

— Translate into a PMUIRQ signal, so that they are observable to external devices.

— Connect to inputs on an IMPLEMENTATION DEFINED Generic Interrupt Controller as a Private
Peripheral Interrupt (PPI) for the originating processor. See the ARM Generic Interrupt Controller
Architecture Specification for information about PPIs.

— Connect to a CTI, see Chapter H5 The Embedded Cross-Trigger Interface.

• Arm strongly discourages implementations from connecting overflow interrupt requests from multiple PEs
to the same System Peripheral Interrupt (SPI) identifier.

• From GICv3, the ARM® Generic Interrupt Controller Architecture Specification recommends that the Private
Peripheral Interrupt (PPI) with ID 23 is used for overflow interrupt requests.

Software can write to the counters to control the frequency at which interrupt requests occur. For example, software
might set a 32-bit counter to 0xFFFF0000, to generate another counter overflow after 65536 increments, and reset it
to this value every time an overflow interrupt occurs.

Note

If an event can occur multiple times in a single clock cycle, then counter overflow can occur without the counter
registering a value of zero.

The overflow interrupt request is a level-sensitive request. The PE signals a request for:

• Any implemented PMEVCNTR<n> counter, when the global enable control for the event counter is 1, the
value of PMOVSSET[n] is 1, and the value of PMINTENSET[n] is 1.

• The cycle counter, when the values of PMCR_EL0.E, PMOVSSET[31] and PMINTENSET[31] are all 1.

• The instruction counter, when the values of PMCR_EL0.E, PMOVSSET_EL0.F0, and
PMINTENSET_EL1.F0, are all 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6853
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
The overflow interrupt request is active in all Security states. In particular, if EL3 and EL2 are both implemented,
overflow events from PMEVCNTR<n> where n is greater than or equal to the value of HDCR.HPMN can be
signaled from all modes and states but only if the value of HDCR.HPME is 1.

The interrupt handler for the counter overflow request must cancel the interrupt request, by writing 1 to
PMOVSCLR[n] to clear the overflow bit to 0.

D13.3.1.1 Pseudocode description of overflow interrupt requests

See Chapter J1 Armv8 Pseudocode for a pseudocode description of overflow interrupt requests. The
CheckForPMUOverflow() pseudocode function signal PMU overflow interrupt requests to an interrupt controller and
PMU overflow trigger events to the cross-trigger interface.

D13.3.2 Exception-based event profiling

RCXBNL If FEAT_EBEP is implemented, a PMU exception is supported.

IFNPMD If FEAT_SEBEP is not implemented, the PMU exception is always taken asynchronously.

IJMSPM FEAT_EBEP allows a PMU exception to be generated when a counter overflow bit is set to 1.

IPFDLQ For backwards compatibility, software has to enable the PMU exception. The exception is enabled for all
implemented counters.

Enabling the PMU exception disables the PMU overflow interrupt request. The CTI Performance Monitors
overflow trigger event is unchanged.

RGWLVY A PMU exception is enabled and taken to one of the following:

• EL1 if all of the following are true:

— PMECR_EL1.PMEE is 0b11.

— EL2 is not implemented, EL2 is disabled in the current Security State, or MDCR_EL2.PMEE is 0b01.

— EL2 is not implemented, EL2 is disabled in the current Security State, or HCR_EL2.TGE is 0.

— EL3 is not implemented or MDCR_EL3.PMEE is 0b01.

• EL2 if all of the following are true:

— EL2 is implemented and enabled in the current Security State.

— One of the following is true:

— MDCR_EL2.PMEE is 0b11.

— PMECR_EL1.PMEE is 0b11, MDCR_EL2.PMEE is 0b01, and HCR_EL2.TGE is 1.

— EL3 is not implemented or MDCR_EL3.PMEE is 0b01.

• EL3 if all of the following are true:

— EL3 is implemented.

— MDCR_EL3.PMEE is 0b11.

The PMU exception is disabled otherwise.

The pseudocode function PMUExceptionEnabled() shows this.

RSCBDZ An enabled PMU exception is masked when any of the following are true:

• The PE is executing in Debug state.

• The PE is executing at a higher Exception level than the target Exception level of the PMU exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6854
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
• The PE is executing at EL2, the target Exception level of the PMU exception is EL2, and MDCR_EL2.PMEE
is not 0b11.

• The PE is executing at the target Exception level of the PMU exception, and PSTATE.PM is 1 or
PMECR_EL1.KPME is 0.

Otherwise an enabled PMU exception is unmasked.

The pseudocode function PMUExceptionMasked() shows this.

IPPSLS Table D13-1 shows the PMU exception enable and masking for each Exception level. For this table, EL2 is enabled
in the current Security state.

Each column in the left side of the table represents the Effective value of a control bit, as follows:

Each column in the right side of the table represents an Exception level the exception is taken from. In each cell for
each of these columns on each row representing a combination of control bits:

IRQ

Means the exception is disabled and the PMU interrupt request (PMUIRQ) is enabled.

Dis

Means the exception is disabled and the PMU interrupt request is disabled.

Msk

Means the exception is enabled and masked.

ELx

Means the exception is enabled and taken to ELx.

Column Control bit

PMEE EL3 MDCR_EL3.PMEE

PMEE EL2 MDCR_EL2.PMEE

TGE EL2 HCR_EL2.TGE

PMEE EL1 PMECR_EL1.PMEE

KPME EL1 PMECR_EL1.KPME

PM PSTATE PSTATE.PM

Table D13-1 PMU exception enable and masking for each Exception level

PMEE
EL3

PMEE
EL2

TGE
EL2

PMEE
EL1

KPME
EL1

PM
PSTATE

EL3 EL2 EL1 EL0

0b00 XX 0 XX X X IRQ IRQ IRQ IRQ

0b00 XX 1 XX X X IRQ IRQ n/a IRQ

0b01 0b00 0 XX X X IRQ IRQ IRQ IRQ

0b01 0b00 1 XX X X IRQ IRQ n/a IRQ

0b01 0b01 0 0b00 X X IRQ IRQ IRQ IRQ

0b01 0b01 0 0b10 X X Dis Dis Dis Dis

0b01 0b01 0 0b11 0 X Msk Msk Msk EL1

0b01 0b01 0 0b11 1 0 Msk Msk EL1 EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6855
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
RKBPMJ If the PMU exception is enabled and unmasked, and any of the following apply, then a PMU exception is taken
asynchronously:

• An event counter <n> is implemented, the global enable control for the event counter is 1,
PMINTENSET_EL1.P<n> is 1, PMOVSSET_EL0.P<n> is 1, and either FEAT_SEBEP is not implemented
or PMEVTYPER<n>_EL0.SYNC is 0.

• PMCR_EL0.E is 1, PMINTENSET_EL1.C is 1, and PMOVSSET_EL0.C is 1.

• FEAT_PMUv3_ICNTR is implemented, PMCR_EL0.E is 1, PMINTENSET_EL1.F0 is 1,
PMOVSSET_EL0.F0 is 1, and either FEAT_SEBEP is not implemented or PMICFILTR_EL0.SYNC is 0.

IGMXLL The prioritization of the asynchronous PMU exception over other exceptions is IMPLEMENTATION DEFINED, as
stated by RBKHSW in Asynchronous exception types.

RDKCTL An unmasked and enabled PMU exception taken asynchronously is taken in finite time.

0b01 0b01 0 0b11 1 1 Msk Msk Msk EL1

0b01 0b01 1 0b00 X X IRQ IRQ n/a IRQ

0b01 0b01 1 0b10 X X Dis Dis n/a Dis

0b01 0b01 1 0b11 X X Msk Msk n/a EL2

0b01 0b10 0 XX X X Dis Dis Dis Dis

0b01 0b10 1 XX X X Dis Dis n/a Dis

0b01 0b11 0 XX 0 X Msk Msk EL2 EL2

0b01 0b11 0 XX 1 0 Msk EL2 EL2 EL2

0b01 0b11 0 XX 1 1 Msk Msk EL2 EL2

0b01 0b11 1 XX 0 X Msk Msk n/a EL2

0b01 0b11 1 XX 1 0 Msk EL2 n/a EL2

0b01 0b11 1 XX 1 1 Msk Msk n/a EL2

0b10 XX 0 XX X X Dis Dis Dis Dis

0b10 XX 1 XX X X Dis Dis n/a Dis

0b11 XX 0 XX 0 X Msk EL3 EL3 EL3

0b11 XX 0 XX 1 0 EL3 EL3 EL3 EL3

0b11 XX 0 XX 1 1 Msk EL3 EL3 EL3

0b11 XX 1 XX 0 X Msk EL3 n/a EL3

0b11 XX 1 XX 1 0 EL3 EL3 n/a EL3

0b11 XX 1 XX 1 1 Msk EL3 n/a EL3

Table D13-1 PMU exception enable and masking for each Exception level (continued)

PMEE
EL3

PMEE
EL2

TGE
EL2

PMEE
EL1

KPME
EL1

PM
PSTATE

EL3 EL2 EL1 EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6856
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
RHFTPJ When all the following are true for a value <n>, a PMU exception will be taken before instruction B completes
execution:

• Instruction A does one of the following:

— Directly reads PMOVSSET_EL0 or PMOVSCLR_EL0 and observes that bit <n> is 1.

— Directly writes PMOVSSET_EL0 setting bit <n> to 1.

• The PMU exception is enabled and unmasked, and all other conditions for generating a PMU exception in
RKBPMJ relating to bit <n> apply when the exception is taken.

— If <n> is the index of an implemented event counter, then these are the conditions for event counter
<n>.

— If <n> is 31, then these are the conditions for the cycle counter PMCCNTR_EL0.

— If FEAT_PMUv3_ICNTR is implemented and <n> is 32, then these are the conditions for the
instruction counter PMICNTR_EL0.

Other values of <n> are not applicable in this rule.

• B is the first instruction in program order after a Context synchronization event C.

• C is in program order after A.

IKLVCH A PMU exception is taken to the exception vector offset for non-interrupt exceptions at the target Exception level.
This includes the asynchronous PMU exception.

D13.3.3 Synchronous exception-based event profiling

RGHRZF All statements in this section require implementation of FEAT_SEBEP.

RFHWMC If FEAT_SEBEP is implemented, the PMU exception can be taken synchronously.

RSSVKV For each event counter <n>, PMEVTYPER<n>_EL0.SYNC controls whether a PMU exception generated by the
event counter is synchronous or asynchronous. If all the following are true, then the event counter is in synchronous
mode

• The Effective value of PMEVTYPER<n>_EL0.SYNC is 1.

• The event configured by PMEVTYPER<n>_EL0.evtCount supports synchronous mode.

Otherwise, the event counter is not in synchronous mode.

The instruction counter is in synchronous mode when the Effective value of PMEVTYPER<n>_EL0.SYNC is 1.
Otherwise, the instruction counter is not in synchronous mode.

RFCXWT The cycle counter, PMCCNTR_EL0, does not support synchronous mode.

RKYPTP Events that can support synchronous mode and generate synchronous exceptions are called synchronous events.

Note

Both synchronous and asynchronous PMU exceptions are precise. See also RLSGJD in Exception entry terminology.

RXLMVX It is IMPLEMENTATION DEFINED which events are synchronous events. See Synchronous events for the events that
Arm recommends support synchronous mode when FEAT_SEBEP is implemented.

ITSHPG All of the following apply when a PMU exception is synchronous and precise:

• The instruction that caused the overflow was architecturally executed.

• The overflow flag was set as part of the instruction operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6857
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
• If no higher priority or asynchronous exception is taken first, then the PMU exception is taken in place of the
next instruction in the sequential execution order of the program.

IGQSRL If FEAT_SEBEP is implemented, then when any precise exception is taken, including PMU exceptions, the value
of all event counters counting at-retirement events and the instruction counter are precise. See RTNVSL in Definition
of a precise exception and imprecise exception.

RNZLVW If all the following apply as an instruction retires, then, other than as permitted by A reasonable degree of
inaccuracy, the instruction sets PSTATE.PPEND to 1 and records the instruction address in PMIAR_EL1:

• The instruction generated an event counted by an event counter <n>, or is counted by the instruction counter
(n == 32).

• The instruction does not generate an exception.

• PMINTENSET_EL1[n] is 1.

• The counter is enabled, is in synchronous mode, and counts the event or instruction.

• The instruction observes that PMOVSSET_EL0[n] is 1 after the event has been counted.

• The PMU exception is enabled and unmasked.

IHMXCY PMOVSSET_EL0[n] is set to 1 when counting an event causes an unsigned overflow of the counter. However,
RNZLVW does not require that the instruction generated the particular event which caused overflow, only that the
instruction generated the same type of event and that overflow has occurred. If the instruction does generate the
event that caused overflow, then the overflow is observed by the same instruction and the sequence of events
described in RNZLVW all occur in the same instruction.

RMQDPX If any of the following conditions in RNZLVW are changed by the instruction that generates the event, then it is
UNPREDICTABLE whether the rule uses the old or new values:

• PMINTENSET_EL1[n] is 1.

• The counter is enabled and is in synchronous mode.

• PMOVSSET_EL0[n] is 1, other than by the indirect write that occurs when the counter overflows.

• The PMU exception is enabled.

• The PMU exception is unmasked, other than the case of an exception return instruction executed when the
PMU exception is enabled and masked, that changes Exception level and/or clears PSTATE.PM, such that
the PMU exception becomes unmasked. For such an exception return, RNZLVW treats the PMU exception as
masked.

For example, the instruction writes to a System register or Special-purpose register.

The counter might count the event but not set PSTATE.PPEND to 1. If PSTATE.PPEND is not set to 1 then
PMIAR_EL1 is unchanged.

IHVZKZ When an instruction sets PSTATE.PPEND to 1, the updated value of PSTATE.PPEND is observed by the next
instruction in the sequential execution order of the program.

INPRDL If the counter in RNZLVW is not in synchronous mode, then all the following apply:

• The overflow is not guaranteed to be observed by the next instruction in the sequential execution order of the
program. This means that the PMU exception generated by the counter is taken asynchronously, as described
in Exception-based event profiling.

• PSTATE.PPEND and PMIAR_EL1 remain unchanged.

This includes counters counting events that are not synchronous events.

RHLYTW If all the following apply for an instruction, then a PMU exception is taken synchronously by the instruction:

• The PMU exception is enabled and unmasked.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6858
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
• The instruction observes PSTATE.PPEND is 1.

IHJQJP Between RNZLVW and RHLYTW, the PMU exception might be preempted by a higher priority or asynchronous
exception.

IBBFCX PSTATE.PPEND is ignored if the PMU exception is disabled or masked.

RBVBYS When taking an exception to ELx using AArch64 in Non-debug state, all of the following apply:

• PSTATE.PPEND is copied to SPSR_ELx[33].

• PSTATE.PPEND is set to 0.

Unless the exception return instruction causes the PMU to set PSTATE.PPEND to 1 as described by RNZLVW, then
when an exception returns from ELx using AArch64 to ELy in Non-debug state, all of the following apply:

• If all of the following apply, then PSTATE.PPEND is copied from SPSR_ELx[33]:

— The PMU exception is enabled.

— The PMU exception is masked when the exception return executes.

— The PMU exception will be unmasked after the exception return executes.

• Otherwise, PSTATE.PPEND is set to 0.

This includes an illegal exception return.

IBHLTG If the exception return instruction causes PSTATE.PPEND to be set to 1, then the PMU exception is taken before
the instruction at the target of the exception return completes. The target instruction is the instruction that observes
PSTATE.PPEND is 1.

RGBQFX When entering Debug state in AArch64 state, all of the following apply:

• PSTATE.PPEND is copied to DSPSR_EL0[33].

• PSTATE.PPEND is set to 0.

When exiting Debug state from ELx using AArch64 to ELy, all of the following apply:

• If all of the following apply, then PSTATE.PPEND is copied from DSPSR_EL0[33]:

— The PMU exception is enabled.

— The PMU exception will be unmasked in Non-debug state after the Debug state exit. For more
information, see RSCBDZ.

• Otherwise, PSTATE.PPEND is set to 0.

This includes an illegal return from Debug state.

RNHRCY When entering Debug state in AArch32 state, all of the following apply:

• PSTATE.PPEND is copied to DSPSR2[1].

• PSTATE.PPEND is set to UNKNOWN.

When exiting Debug state from EL0 using AArch32, all of the following apply:

• If the PMU exception is enabled, then PSTATE.PPEND is copied from DSPSR2[1].

• Otherwise, PSTATE.PPEND is set to 0.

This includes an illegal return from Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6859
ID032224 Non-Confidential

The Performance Monitors Extension
D13.3 Behavior on overflow
ICCQDC Table D13-2 summarizes how the PE sets PSTATE.PPEND on an exception return, based on whether the PMU
exception is enabled and unmasked or not before the exception return and after the exception return.

For case 3, an exception return that causes the PMU exception to become masked:

• RMQDPX allows RNZLVW to treat the exception as either masked or unmasked.

• If the PE treats the exception as unmasked and the other conditions defined by RNZLVW apply, then the PE
sets PSTATE.PPEND to 1.

• Otherwise, PSTATE.PPEND is 0.

Note

This means that the behavior is only CONSTRAINED UNPREDICTABLE if all of the other conditions defined by RNZLVW
apply.

For case 4, an exception return where the PMU exception stays unmasked:

• If all the conditions defined by RNZLVW apply, then the PE sets PSTATE.PPEND to 1.

• Otherwise, PSTATE.PPEND is 0.

How the PE sets PSTATE.PPEND on Debug state exit is similar, noting that PMU exceptions are always masked in
Debug state.

Table D13-2 Summary of setting PSTATE.PPEND on an exception return

Case Before return After return Behavior of return

1 Disabled or masked Disabled or masked PSTATE.PPEND is set to 0b0.

2 Masked Unmasked PSTATE.PPEND set to SPSR_ELx.PPEND.

3 Unmasked Masked Might be CONSTRAINED UNPREDICTABLE.

4 Unmasked Unmasked PSTATE.PPEND might be set by RNZLVW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6860
ID032224 Non-Confidential

The Performance Monitors Extension
D13.4 Attributability
D13.4 Attributability

An event caused by the PE counting the event is Attributable. If an agent other than the PE that is counting the events
causes an event, these events are Unattributable.

An event is defined as being either Attributable or Unattributable. If the event is Attributable, it is further defined
whether it is Attributable to:

• The current Security state of the PE.

• The current Exception level of the PE.

• When the PE is in Debug state, operations issued to the PE by the debugger through the external debug
interface.

In a multithreaded implementation, an event might be generated by another PE with the same values for affinity
level 1 and higher. This event is further defined as Attributable to:

• The current Security state of that PE.

• The current Exception level of that PE.

• When that PE is in Debug state, operations issued to that PE by the debugger through the external debug
interface.

See Multithreaded implementations for information about enabling and restricting counting events in a
multithreaded implementation.

Note

• In an implementation containing multiple PEs, each PE is identified by a unique affinity value reported by
MPIDR_EL1{Aff3, Aff2, Aff1, Aff0}, where the value of affinity level 0 is the most significant for
determining the PE behavior, and the values of higher affinity levels are less significant. Affinity level 3 is
only supported in AArch64 state.

• An implementation is described as multithreaded when the lowest level of affinity consists of logical PEs that
are implemented using a multithreading type approach. In this section, when referring to a multithreaded
implementation, thread is used to mean processing elements with:

— MPIDR_EL1.MT or MPIDR.MT set to 1,

— Different values for affinity level 0.

— The same values for affinity level 1 and higher.

An event can be defined as the combination of multiple subevents, which can be either Attributable or
Unattributable.

All architecturally defined events are Attributable, unless otherwise stated.

Unattributable events might be counted when Attributable events are not counted. See:

• Interaction with EL3.

• Event filtering.

• Performance Monitors and Debug state.

• Counting events from shared components
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6861
ID032224 Non-Confidential

The Performance Monitors Extension
D13.4 Attributability
These sections are summarized by Table D13-3 for events Attributable to the processor, and Unattributable events.
Table D13-3 entries apply when the counter and PMU are enabled and not frozen. Otherwise, events are not
counted.

Table D13-3 Counting events

State
Allowed or
prohibited

Filtered
Event type

If Attributable to: Then Else

Non-
debug

Allowed Not filtered X Count Count

Filtered Current Exception level Do not count IMPLEMENTATION
DEFINED

Prohibited X Current Security state Do not count IMPLEMENTATION
DEFINED

Debug X X Debugger operations or raw cycles Do not count IMPLEMENTATION
DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6862
ID032224 Non-Confidential

The Performance Monitors Extension
D13.5 Controlling the PMU counters
D13.5 Controlling the PMU counters

This section describes the mechanisms available for controlling the PMU event and cycle counters. The following
sections describe those mechanisms:

• Enabling PMU counters.

• Freezing PMU counters.

• Prohibiting counting.

D13.5.1 Enabling PMU counters

Counters are enabled by a combination of the global enable control for the counter and a counter enable control,
PMCNTENSET, as described in the following sections.

D13.5.1.1 Enabling the event counters

PMCNTENSET.P<n> is the counter enable control for event counter n.

If EL2 is not implemented, then PMCR.E is the global enable control for all event counters. Table D13-4 shows the
event counter enables when EL2 is not implemented.

If EL2 is implemented, then all of the following apply:

• For an event counter n reserved by EL2, the global enable control is HDCR.HPME.

• For all other event counters, the global enable control is PMCR.E.

For more information, see Interaction with EL2.

Table D13-5 shows the combined effect of all the counter enable controls.

Note

• The effect of HDCR.{HPME, HPMN} on the counter enables applies at all Exception levels and in all
Security states.

• The value returned for PMCR.N is not affected by HDCR.HPMN at:

— EL3.

Table D13-4 Event counter enables when an implementation does not include EL2

PMCR.E PMCNTENSET.P[n] == 0 PMCNTENSET.P[n] == 1

0 PMEVCNTR<n> disabled PMEVCNTR<n> disabled

1 PMEVCNTR<n> disabled PMEVCNTR<n> enabled

Table D13-5 Event counter enables when an implementation includes EL2

HDCR.HPME PMCR.E PMCNTENSET.P[n] == 0
PMCNTENSET.P[n] == 1

n < HDCR.HPMN n ≥ HDCR.HPMN

0 0 PMEVCNTR<n> disabled PMEVCNTR<n> disabled PMEVCNTR<n> disabled

0 1 PMEVCNTR<n> disabled PMEVCNTR<n> enabled PMEVCNTR<n> disabled

1 0 PMEVCNTR<n> disabled PMEVCNTR<n> disabled PMEVCNTR<n> enabled

1 1 PMEVCNTR<n> disabled PMEVCNTR<n> enabled PMEVCNTR<n> enabled
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6863
ID032224 Non-Confidential

The Performance Monitors Extension
D13.5 Controlling the PMU counters
— EL2.

— Secure EL1, if FEAT_SEL2 is not implemented or Secure EL2 is disabled.

— Secure EL0, if FEAT_SEL2 is not implemented or Secure EL2 is disabled.

When FEAT_SEBEP is implemented, if an event counter <n> is configured to count an event that is not a
synchronous event, and PMEVTYPER<n>_EL0.SYNC is 1, then counter <n> does not count.

D13.5.1.2 Enabling the cycle counter

For the cycle counter, PMCCNTR, the global enable control is PMCR.E.

For the cycle counter, the counter enable control is PMCNTENSET.C.

PMCR.DP controls whether the cycle counter is disabled when event counting is prohibited, as described in
Prohibiting counting.

D13.5.1.3 Enabling the instruction counter

When FEAT_PMUv3_ICNTR is implemented, for the instruction counter, PMICNTR_EL0, the global enable
control is PMCR.E and the counter enable control is PMCNTENSET_EL0.F0.

D13.5.2 Freezing PMU counters

If FEAT_SPEv1p2 is implemented, then the PMU can be configured to freeze PMU counters when an SPE buffer
management event occurs. A counter is disabled under the following conditions:

• If EL2 is not implemented, then all event counters PMEVCNTR<n>_EL0 do not count when all of the
following are true:

— PMBLIMITR_EL1.{PMFZ, E} is {1, 1}.

— PMBSR_EL1.S is 1.

— PMCR_EL0.FZS is 1.

• If EL2 is implemented and <n> is less than MDCR_EL2.HPMN, then event counter PMEVCNTR<n>_EL0
does not count when all of the following are true:

— PMBLIMITR_EL1.{PMFZ, E} is {1, 1}.

— PMBSR_EL1.S is 1.

— PMCR_EL0.FZS is 1.

• If EL2 is implemented and <n> is greater than or equal to MDCR_EL2.HPMN, then event counter
PMEVCNTR<n>_EL0 does not count when all of the following are true:

— PMBLIMITR_EL1.{PMFZ, E} is {1, 1}.

— PMBSR_EL1.S is 1.

— MDCR_EL2.HPMFZS is 1.

• If FEAT_PMUv3_ICNTR is implemented, then the instruction counter PMICNTR_EL0 does not count when
all of the following are true:

— PMBLIMITR_EL1.{PMFZ, E} is {1, 1}.

— PMBSR_EL1.S is 1.

— PMCR_EL0.FZS is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6864
ID032224 Non-Confidential

The Performance Monitors Extension
D13.5 Controlling the PMU counters
• If FEAT_SPE_DPFZS is implemented, then the cycle counter PMCCNTR_EL0 is disabled and does not
count when all the following are true

— PMBLIMITR_EL1.{PMFZ, E} is {1, 1}.

— PMBSR_EL1.S is 1.

— PMCR_EL0.{FZS, DP} is {1, 1}.

If FEAT_SPE_DPFZS is not implemented, then the cycle counter is not affected by PMCR_EL0.FZS.

Note

This also applies when EL2 is disabled in the current Security state.

Note

The occurrence of an SPE buffer management event is indicated when PMBSR_EL1.S is 1 and
PMBLIMITR_EL1.E is 1.

If the highest implemented Exception level is using AArch32, then the Effective value of PMBLIMITR_EL1.E is 0
and FEAT_SPEv1p2 does not affect the PMU event counters. Otherwise, the effect of FEAT_SPEv1p2 on PMU
event counters applies in AArch32 state. See Profiling Buffer management.

If FEAT_PMUv3p7 is implemented, then all of the following apply:

• Affected counters do not count when PMCR.FZO is 1 and any of the following are true:

— If EL2 is implemented, for any value of <m> less than HDCR.HPMN, PMOVSCLR.P<m> is 1, and
either FEAT_SEBEP is not implemented or PMEVTYPER<m>_EL0.SYNC is 0.

— If EL2 is not implemented, for any value of <m> less than PMCR.N, PMOVSCLR.P<m> is 1, and
either FEAT_SEBEP is not implemented or PMEVTYPER<m>_EL0.SYNC is 0.

— FEAT_PMUv3_ICNTR is implemented, PMOVSCLR_EL0.F0 is 1, and either FEAT_SEBEP is not
implemented or PMICFILTR_EL0.SYNC is 0.

• All of the following counters are affected by this control:

— If EL2 is implemented, event counters PMEVCNTR<n> for values of <n> less than HDCR.HPMN.
This applies even when EL2 is disabled in the current Security state.

— If EL2 is not implemented, all event counters PMEVCNTR<n>.

— If FEAT_PMUv3_ICNTR is implemented, PMICNTR_EL0.

— If PMCR.DP is 1, the cycle counter PMCCNTR.

• Other counters are not affected by this control. When PMCR.DP is 0, PMCCNTR is not affected by these
controls.

If FEAT_PMUv3p7 and EL2 are implemented, then all of the following apply:

• Affected counters do not count when HDCR.HPMFZO is 1 and any of the following are true:

— For any value of <m> greater than or equal to HDCR.HPMN, PMOVSCLR.P[m] is 1, and either
FEAT_SEBEP is not implemented or PMEVTYPER<m>_EL0.SYNC is 0.

• All of the following counters are affected by this control:

— Event counters PMEVCNTR<n>_EL0 for values of <n> greater than or equal to HDCR.HPMN. This
applies even when EL2 is disabled in the current Security state.

• Other counters are not affected by this control.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6865
ID032224 Non-Confidential

The Performance Monitors Extension
D13.5 Controlling the PMU counters
The cycle counter, PMCCNTR_EL0, is disabled when an unsigned overflow occurs, PMCR_EL0.FZO is 1, and
PMCR_EL0.DP is 1.

If FEAT_PMUv3_ICNTR is implemented, the instruction counter, PMICNTR_EL0, is disabled when an unsigned
overflow occurs and PMCR_EL0.FZO is 1.

When the applicable PMCR_EL0.FZO or MDCR_EL2.HPMFZO bit is 1, it is CONSTRAINED UNPREDICTABLE
whether any event happening at or about the same time as the event that caused the overflow is counted. This
includes other instances of the same event.

Note

The architecture does not define when PMU events are counted relative to the instructions that caused the event.
Events caused by an instruction might be counted before or after the instruction becomes architecturally executed,
and events might be counted for operations that are not architecturally executed. Events can be counted
speculatively, out-of-order, or both with respect to the simple sequential execution of the program. Events might
also be counted simultaneously by other event counters when the overflow occurs, including events from different
instructions. Multiple instances of an event might occur simultaneously, thus an event counter unsigned overflow
can yield a nonzero value in the event counter.

Arm recommends that such counting anomalies are minimized when software uses the freeze on overflow feature.

When the freeze on overflow feature is being used, software cannot assume that the event counter stops counting at
zero when an overflow occurs.

If FEAT_SEBEP is implemented, then the PMCR_EL0.FZO and MDCR_EL2.HPMFZO controls ignore the
overflow status bits for PMU counters in synchronous mode.

Note

Whether a PMU counter is in synchronous mode or not does not change how it is affected by the freeze-on-overflow
condition.

To freeze the PMU counter values on taking a synchronous PMU exception, software should configure the relevant
PMU counters to not count at the Exception level where the PMU exception is taken to and higher Exception levels.
This has the effect of stopping counting when the PMU exception is taken.

Note

This mechanism can only be used when profiling software that only executes at lower Exception levels.

If an event counter n overflows, where n is even and event counter n+1 is configured to count the CHAIN event, it
is CONSTRAINED UNPREDICTABLE whether the CHAIN event observes the overflow event when the applicable
PMCR_EL0.FZO or MDCR_EL2.HPMFZO bit is 1 and the corresponding PMCR_EL0.LP or MDCR_EL2.HLP
bit is 0.

If a direct read of PMOVSCLR_EL0 returns a nonzero value for a subset of the overflow flags, which means an
event counter n should not count, then a sequence of direct reads of PMEVCNTR<n>_EL0 ordered after the read
of PMOVSCLR_EL0 and before the PMOVSCLR_EL0 flags are cleared to zero, will return the same value for each
read, because the event counter has stopped counting.

Note

Direct reads of System registers require explicit synchronization for following direct reads of other System registers
to be ordered after the first direct read.

D13.5.3 Resetting counters

Software can reset all the event counters and/or the cycle counter in a single operation by writing 1 to PMCR.C
and/or PMCR.P.

If FEAT_PMUv3p9 is implemented, then counters can be individually reset together in a single operation using
PMZR_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6866
ID032224 Non-Confidential

The Performance Monitors Extension
D13.5 Controlling the PMU counters
D13.5.4 Prohibiting counting

If EL3 is not implemented, the current Security state does not affect the counting of events.

If EL3 is implemented and FEAT_Debugv8p2 is not implemented

Counting Attributable events is prohibited in Secure state unless any of the following is true:

• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

• EL3 is using AArch32 and the value of SDCR.SPME is 1.

• EL3 or EL1 is using AArch32, the PE is executing at EL0, and the value of
SDER32_EL3.SUNIDEN is 1.

• Counting is permitted by an IMPLEMENTATION DEFINED authentication interface, and
ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Note

Software can read the Authentication Status register, DBGAUTHSTATUS to determine the
state of an IMPLEMENTATION DEFINED authentication interface.

If EL3 is implemented and FEAT_Debugv8p2 is implemented and FEAT_PMUv3p7 is not implemented

Counting Attributable events is prohibited in Secure state unless any of the following is true:

• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

• EL3 is using AArch32 and the value of SDCR.SPME is 1.

• EL3 or EL1 is using AArch32, the PE is executing at EL0, and the value of
SDER32_EL3.SUNIDEN is 1.

If EL3 is implemented and FEAT_PMUv3p7 is implemented

Counting Attributable events is prohibited at EL3 unless any of the following is true:

• EL3 is using AArch64 and the value of MDCR_EL3.{SPME, MPMX} is {1, 0}.

• EL3 is using AArch64, the value of MDCR_EL3.{SPME, MPMX} is {1, 1}, EL2 is
implemented, MDCR_EL2.HPMN is less than PMCR_EL0.N, the event is being counted by
event counter n, and n is in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

• When FEAT_PMUv3_ICNTR is implemented, this includes counting instructions by the
instruction counter PMICNTR_EL0.

• EL3 is using AArch32 and the value of SDCR.SPME is 1.

Counting Attributable events is prohibited at EL2, EL1, and EL0 in Secure state unless any of the
following is true:

• EL3 is using AArch64 and the value of MDCR_EL3.{SPME, MPMX} is not {0, 0}.

• EL3 is using AArch32 and the value of SDCR.SPME is 1.

• EL3 or EL1 is using AArch32, the PE is executing at EL0, and the value of
SDER32_EL3.SUNIDEN is 1.

When EL2 is implemented, counting Attributable events is prohibited at EL2 unless any of the following is true:

• FEAT_PMUv3p1 is not implemented.

• HDCR.HPMD is 0.

• MDCR_EL2.HPMN is less than PMCR_EL0.N, the event is being counted by event counter n, and n is in
the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6867
ID032224 Non-Confidential

The Performance Monitors Extension
D13.5 Controlling the PMU counters
• When FEAT_PMUv3_ICNTR is implemented, this includes counting instructions by the instruction counter
PMICNTR_EL0.

If FEAT_SEL2 is implemented, counting Attributable events at Secure EL2 is allowed if and only if counting events
is allowed in Secure state, and counting events is allowed at EL2.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when counting Attributable
events is prohibited.

The accessibility of Performance Monitors registers is unaffected by whether event counting is enabled or
prohibited.

All of the following apply to the instruction counter, PMICNTR_EL0:

• Counting is prohibited at EL3 unless any of the following is true:

— EL3 is using AArch64 and the value of MDCR_EL3.{SPME, MPMX} is {1, 0}.

— EL3 is using AArch64, the value of MDCR_EL3.{SPME, MPMX} is {1, 1}, and EL2 is implemented.

• Counting is prohibited at EL2 unless MDCR_EL2.HPMD is 0.

• Counting is prohibited at EL2, EL1, and EL0 in Secure state unless EL3 is using AArch64 and the value of
MDCR_EL3.{SPME, MPMX} is not {0, 0}.

The cycle counter, PMCCNTR, counts unless any of the following is true:

• The cycle counter is disabled by PMCR_EL0.E or PMCNTENSET_EL0.C.

• PMCR.DP is 1 and one of the following is true:

— Event counting by event counters in the range [0 .. (HDCR.HPMN-1)] is prohibited.

— Event counting by event counters in the range [0 .. (HDCR.HPMN-1)] is frozen by PMCR.FZO.

— FEAT_SPE_DPFZS is implemented and event counting by event counters in the range
[0 .. (HDCR.HPMN-1)] is frozen by PMCR.FZS.

Note

When FEAT_HPMN0 is implemented and HDCR.HPMN is 0, the cycle counter is disabled by PMCR.DP
under the same conditions that would prohibit or freeze event counting by event counters in the range
[0..(HDCR.HPMN-1)] when HDCR.HPMN is not 0.

• The PE is in Debug state.

• FEAT_PMUv3p5 is implemented, EL3 is implemented, the PE is in Secure state, and SDCR.SCCD is 1.

• FEAT_PMUv3p5 is implemented, EL2 is implemented, the PE is executing at EL2, and HDCR.HCCD is 1.

• FEAT_PMUv3p7 is implemented, the PE is at EL3, EL3 is using AArch64, and MDCR_EL3.{SCCD,
MCCD} is not {0, 0}.

See CountPMUEvents() in Chapter J1 Armv8 Pseudocode for more information. The CountEvents(n) function returns
TRUE if PMEVCNTR<n> is enabled and allowed to count events at the current Exception level or state, and FALSE
otherwise. The function CountEvents(31) returns TRUE if the cycle counter is enabled and allowed to count cycles
at the current Exception level and state, and FALSE otherwise. The function CountEvents(32) returns TRUE if the
instruction counter is enabled and allowed to count instructions at the current Exception level and state, and FALSE
otherwise. However, these functions do not completely describe the behavior for Unattributable events.

The Performance Monitors are intended to be broadly accurate and statistically useful, see Accuracy of the
Performance Monitors. Some inaccuracy is permitted at the point of changing between a state where counting is
prohibited and a state where counting is allowed, however. To avoid the leaking of information, the permitted
inaccuracy is that transactions that are not prohibited can be uncounted. Where possible, prohibited transactions
must not be counted, but if they are counted, then that counting must not degrade security.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6868
ID032224 Non-Confidential

The Performance Monitors Extension
D13.6 Multithreaded implementations
D13.6 Multithreaded implementations

If an implementation is multithreaded and the Effective value of PMEVTYPER<n>.MT ==1, events on other PEs
with the same level 1 Affinity are also counted. A pair of PEs have the same level 1 Affinity if they have the same
values for all fields in MPIDR_EL1or MPIDR except the Aff0 field.

Events on other PEs are not counted when the Effective value of PMEVTYPER<n>.MT is 0.

If the CPU implements multithreading, and FEAT_MTPMU is not implemented, for Armv8.5 and earlier, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>.MT is implemented as RW or RES0. From Armv8.6, if the
optional FEAT_MTPMU feature is not implemented, the Effective value of PMEVTYPER<n>.MT is res0.

If FEAT_MTPMU is implemented, EL3 is implemented, and MDCR_EL3.MTPME is 0 or SDCR.MTPME is 0,
FEAT_MTPMU is disabled and the Effective value of PMEVTYPER<n>.MT is 0.

If FEAT_MTPMU is implemented, EL3 is not implemented, EL2 is implemented, and MDCR_EL2.MTPME is 0
or HDCR.MTPME is 0, FEAT_MTPMU is disabled and the Effective value of PMEVTYPER<n>.MT is 0.

If FEAT_MTPMU is disabled on a Processing Element PEA, it is IMPLEMENTATION DEFINED whether
FEAT_MTPMU is disabled on another Processing Element PEB, if all the following are true:

• FEAT_MTPMU is implemented on PEA and PEB.

• PEA and PEB have the same values for Affinity level 1 and higher.

• PEA and PEB both have MPIDR_EL1.MT or MPIDR.MT set to 1.

However, even when the Effective value of PMEVTYPER<n>.MT is 1, PEA does not count an event that is
Attributable to Secure state on PEB if counting events Attributable to Secure state is prohibited on PEA. Similarly,
PEA does not count an event that is Attributable to EL2 on PEB if counting events Attributable to EL2 is prohibited
on PEA. See Counting events from shared components.

Example D13-1 The effect of having PMEVTYPER<n>.MT == 1

If the value of MDCR_EL3.SPME is 0, and n is less than PMCR.N on PEA, then event counter n on PEA does not
count events Attributable to Secure state on PEB, even if one or both of the following applies:

• PEA is in Non-secure state.

• MDCR_EL3.SPME==1 on PEB.

Example D13-2 The effect of having PMEVTYPER<n>.MT == 1

When MDCR_EL2.HPMN is not 0, if the value of MDCR_EL2.HPMD is 1 and n is less than MDCR_EL2.HPMN
on PEA, then event counter n on PEA does not count events Attributable to EL2 on PEB, even if one of the following
applies:

• MDCR_EL2.HPMD==0 on PEB.

• PEA is not executing at EL2.

When the current configuration is not multithreaded, and PEA prohibits counting of events Attributable to Secure
state when PEA is in Secure state, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to Secure state when PEA is in Non-secure state is permitted.

• Counting Unattributable events related to other Secure operations in the system when PEA is in Non-secure
state is permitted.

Otherwise, counting events in Non-secure state is permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6869
ID032224 Non-Confidential

The Performance Monitors Extension
D13.6 Multithreaded implementations
When the current configuration is not multithreaded, and PEA prohibits counting of events Attributable to EL2
when PEA is at EL2, it is IMPLEMENTATION DEFINED whether:

• Counting events Attributable to EL2 when PEA is using another Exception level is permitted.

• Counting Unattributable events related to EL2 when PEA is using another Exception level is permitted.

Otherwise, counting events at another Exception level is permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6870
ID032224 Non-Confidential

The Performance Monitors Extension
D13.7 Event filtering
D13.7 Event filtering

The PMU can filter events by various combinations of Exception level and Security state. This gives software the
flexibility to count events across multiple processes.

D13.7.1 Filtering by Exception level and Security state

In AArch64 state:

• For each event counter, PMEVTYPER<n>_EL0 specifies the Exception levels in which the counter counts
events Attributable to Exception levels.

• PMCCFILTR_EL0 specifies the Exception levels in which the cycle counter counts.

• If FEAT_PMUv3_ICNTR is implemented, PMICFILTR_EL0 specifies the Exception levels in which the
instruction counter counts.

For an event that is Attributable to an Exception level, in a multithreaded implementation:

• When the Effective value of PMEVTYPER<n>_EL0.MT is 1, the specified filtering is evaluated using the
current Exception level and Security state of the thread to which the event is Attributable. See
Example D13-3.

• When the Effective value of PMEVTYPER<n>_EL0.MT is 0, the event is only counted if it is Attributable
to the counting thread, and the filtering is evaluated using the Exception level and Security state of the
counting thread.

Example D13-3 Example of the effect of the PMEVTYPER<n>_EL0.MT control

In a multithreaded implementation, if the Effective value of PMEVTYPER<n>_EL0.MT is 1 and the value of
PMEVTYPER<n>_EL0.U is 1 on the counting thread, then event counter n does not count events Attributable to
EL0 on another thread, even if the counting thread is not executing at EL0.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies. In a multithreaded
implementation, if the filtering applies to an Unattributable event, then the filtering is evaluated using the Exception
level and Security state of the counting thread.

In AArch32 state, the filtering controls are provided by the PMEVTYPER<n> and PMCCFILTR registers.

For more information, see the individual register descriptions and Multithreaded implementations.

D13.7.2 Accuracy of event filtering

For most events, it is acceptable that, during a transition between states, events generated by instructions executed
in one state are counted in the other state. The following sections describe the cases where event counts must not be
counted in the wrong state:

• Exception-related events.

• Software increment events.

D13.7.2.1 Exception-related events

The PMU must filter events related to exceptions and exception handling according to the Exception level in which
the event occurred. These events are:

• EXC_TAKEN, Exception taken.

• EXC_RETURN, Instruction architecturally executed, Condition code check pass, exception return.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6871
ID032224 Non-Confidential

The Performance Monitors Extension
D13.7 Event filtering
• CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
CONTEXTIDR.

• TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
translation table base.

• EXC_UNDEF, Exception taken, other synchronous.

• EXC_SVC, Exception taken, Supervisor Call.

• EXC_PABORT, Exception taken, Instruction Abort.

• EXC_DABORT, Exception taken, Data Abort or SError.

• EXC_IRQ, Exception taken, IRQ.

• EXC_FIQ, Exception taken, FIQ.

• EXC_SMC, Exception taken, Secure Monitor Call.

• EXC_HVC, Exception taken, Hypervisor Call.

• EXC_TRAP_PABORT, Exception taken, Instruction Abort not Taken locally.

• EXC_TRAP_DABORT, Exception taken, Data Abort or SError not Taken locally.

• EXC_TRAP_OTHER, Exception taken, other traps not Taken locally.

• EXC_TRAP_IRQ, Exception taken, IRQ not Taken locally.

• BRB_FILTRATE, Branch record captured.

The PMU must not count an exception after it has been taken because this could systematically report a result of
zero exceptions at EL0. Similarly, it is not acceptable for the PMU to count exception returns or writes to
CONTEXTIDR after the return from the exception.

If FEAT_SEBEP is implemented, then when any precise exception is taken, including PMU exceptions, the value
of all event counters counting at-retirement events and the instruction counter are precise. See RTNVSL in Definition
of a precise exception and imprecise exception.

D13.7.2.2 Software increment events

The PMU must filter software increment events according to the Exception level in which the software increment
occurred. Software increment counting must also be precise, meaning the PMU must count every architecturally
executed software increment event, and must not count any Speculatively executed software increment.

If the PE performs two architecturally executed writes to the PMSWINC_EL0 or PMSWINC register without an
intervening Context Synchronization event, then the counter is incremented twice.

For more information, see SW_INCR.

D13.7.3 Pseudocode description of event filtering

See CountPMUEvents() in Chapter J1 Armv8 Pseudocode for a pseudocode description of event filtering. However,
this function does not completely describe the behavior for Unattributable events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6872
ID032224 Non-Confidential

The Performance Monitors Extension
D13.8 Event counting threshold
D13.8 Event counting threshold

When FEAT_PMUv3_TH is implemented, threshold condition controls are accessible through each
PMEVTYPER<n>_EL0 register. This gives software the ability to count events described by PMEVTYPER<n>
only when they meet a threshold condition.

FEAT_PMUv3_EDGE is an optional extension to FEAT_PMUv3_TH that adds edge-detection logic to support
counting threshold crossing events.

D13.8.1 Enabling event counting threshold

When FEAT_PMUv3_TH is implemented, threshold counting for event counter n is disabled if both of the
following are true, and enabled otherwise:

• PMEVTYPER<n>_EL0.TC is 0b000.

• PMEVTYPER<n>_EL0.TH is zero.

D13.8.2 Threshold conditions

The PMEVTYPER<n>_EL0.{TC, TH} fields define the threshold condition.

If FEAT_PMUv3_TH is not implemented, or threshold counting for event counter n is disabled, VB[n] is the amount
that the event defined by PMEVTYPER<n>.{MT, evtCount} counts by in a given processor cycle.

Otherwise, on each processor cycle, VB[n] is compared with the value in PMEVTYPER<n>_EL0.TH to determine
whether it meets the threshold condition. PMEVTYPER<n>_EL0.TC determines the threshold condition, and
whether the counter increments by VB[n] or 1 when the threshold condition is met.

The following definitions apply to threshold conditions:

• CT[n] is the result of evaluating the threshold condition and is one (TRUE) or zero (FALSE).

• CP[n] is the value CT[n] took on the previous cycle if counting the event was allowed on the previous cycle,
and zero otherwise. Therefore CP[n] is one (TRUE) or zero (FALSE).

• VT[n] is the value that results from applying the threshold condition and is one of VB[n], one, or zero.

If an event counter m is disabled, then VB[m], CT[m], VT[m] are all zero.

CP[n] is UNKNOWN if the configuration of the PMU changes such that the event counter <n> might have counted a
different event, or not counted any event. For example, when any of the following occur:

• A write to PMEVTYPER<n>_EL0 that changes the register.

• Any action that either enables or disables event counter <n>.

PMMIR_EL1.THWIDTH describes the maximum value that can be written to PMEVTYPER<n>_EL0.TH. The
supported threshold conditions are:

• Less-than.

• Greater-than-or-equal-to.

• Not-equals.

• Equal-to.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6873
ID032224 Non-Confidential

The Performance Monitors Extension
D13.8 Event counting threshold
Table D13-7 summarizes the threshold conditions. In this table TH[n] is the value of PMEVTYPER<n>_EL0.TH.

Example D13-4 Incrementing event counter n by V when V meets the threshold condition

When all of the following are true, the event counter n will increment by four:

• PMEVTYPER<n>_EL0.TC is 0b010, equals, meaning threshold counting for event counter n is enabled.

• PMEVTYPER<n>_EL0.TH is 4.

• PMEVTYPER<n>.evtCount is 0x003F, STALL_SLOT.

• There are exactly four operation Slots not occupied by an operation Attributable to the PE on the cycle.

Example D13-5 Incrementing event counter n by 1 when V meets the threshold condition

When all of the following are true, the event counter n will increment by one:

• PMEVTYPER<n>_EL0.TC is 0b101, greater-than-or-equal, count, meaning threshold counting for event
counter n is enabled.

• PMEVTYPER<n>_EL0.TH is 2.

• PMEVTYPER<n>.evtCount is 0x80C1, FP_FIXED_OPS_SPEC.

• At least one floating-point multiply-add instruction is issued on the cycle.

Note
The event counter n also increments by 1 if, for example, two or more independent floating-point add
operations are issued on the cycle.

Table D13-6 Threshold conditions

TC[2:0] Description

0b000 Not-equal. The counter increments by VB[n] on each processor cycle when VB[n] is not equal to
TH[n].

0b001 Not-equal, count. The counter increments by 1 on each processor cycle when VB[n] is not equal
to TH[n].

0b010 Equals. The counter increments by VB[n] on each processor cycle when VB[n] is equal to TH[n].

0b011 Equals, count. The counter increments by 1 on each processor cycle when VB[n] is equal to TH[n].

0b100 Greater-than-or-equal. The counter increments by VB[n] on each processor cycle when VB[n] is
greater than or equal to TH[n].

0b101 Greater-than-or-equal, count. The counter increments by 1 on each processor cycle when VB[n] is
greater than or equal to TH[n].

0b110 Less-than. The counter increments by VB[n] on each processor cycle when VB[n] is less than
TH[n].

0b111 Less-than, count. The counter increments by 1 on each processor cycle when VB[n] is less than
TH[n].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6874
ID032224 Non-Confidential

The Performance Monitors Extension
D13.8 Event counting threshold
D13.8.3 Edge conditions

RGWTCZ If FEAT_PMUv3_EDGE is implemented, then PMEVTYPER<n>_EL0.TE controls whether edge counting for
event counter <n> is enabled or disabled.

RPHZGL For an event counter <n>, all of the following apply:

• CE[n] is the result of evaluating the edge condition and is one (TRUE) or zero (FALSE).

• VE[n] is the value that results from applying the edge condition and is one (TRUE) or zero (FALSE).

• V[n] is the value that results from applying both the threshold and edge conditions. V[n] is one of VE[n],
VT[n], or VB[n], depending on the configuration of counter <n>.

If an event counter n is disabled, then V[n] is zero.

RNXPYM The value of VE[n] is determined as follows, where TC[0] is the value of PMEVTYPER<n>_EL0.TC[0]:

• If CP[n] and CT[n] satisfy the edge condition evaluation, CE[n], then 1.

• Otherwise, 0.

where CE[n] is one of the following:

• If TC[0] is 0, indicating both edges, then CE[n] == CP[n] ≠ CT[n].

• If TC[0] is 1, indicating a single edge, then CE[n] == CP[n] =0 ? CT[n] ≠ 0.

Note

CP[n] and CT[n] are always 1 or 0.

IMJFBV Table D13-7 summarizes the edge condition settings.

IHQTXY VE[n] is evaluated after VT[n].

RHBWBB The event counter <n> increments by:

• VE[n], if FEAT_PMUv3_EDGE is implemented and edge counting for event counter <n> is enabled.

Table D13-7 Edge condition

TC[2:0] TE Description

X 0 Disabled. Described by FEAT_PMUv3_TH.

0b000 1 Reserved.

0b001 1 Equal to not-equal. (EQ → NE).

0b010 1 Equal to or from not-equal. (EQ ↔ NE).

0b011 1 Not-equal to equal. (NE → EQ).

0b100 1 Reserved.

0b101 1 Less-than to greater-than-or-equal. (LT → GE).

0b110 1 Less-than to or from greater-than-or-equal. (LT ↔ GE).

0b111 1 Greater-than-or-equal to less-than. (GE → LT).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6875
ID032224 Non-Confidential

The Performance Monitors Extension
D13.8 Event counting threshold
• VT[n], if FEAT_PMUv3_TH is implemented and threshold counting for event counter <n> is enabled.

• VB[n], otherwise.

IGNYJH Example D13-6 Using edge counting without threshold counting

To use edge counting without threshold counting, for example for a single-bit event (that is, VB[n] is either 0 or 1):

• Set PMEVTYPER<n>_EL0.TH to 0.

• Set PMEVTYPER<n>_EL0.TE to 1.

• Set PMEVTYPER<n>_EL0.TC to:

— 0b001 for a leading edge (zero to nonzero) count.

— 0b011 for a falling edge (nonzero to zero) count.

— 0b010 to count both edges.

D13.8.4 Accessing event counting threshold functionality

The PMEVTYPER<n>_EL0.{TC, TE, TH} fields are not accessible through the AArch32 PMEVTYPER<n>
System register. However, the applicable threshold and edge conditions still apply in AArch32 state, and
PMMIR_EL1.THWIDTH is readable in the AArch32 PMMIR System register.

When FEAT_PMUv3_TH is implemented, the PMEVTYPER<n>_EL0.{TC, TH} and, if FEAT_PMUv3_EDGE
is implemented, PMEVTYPER<n>_EL0.TE fields are accessible through the AArch64 PMEVTYPER<n>_EL0
System registers and the external interface PMEVTYPER<n>_EL0 registers. See Chapter I3 Recommended
External Interface to the Performance Monitors.

PMMIR_EL1.THWIDTH is readable in the external PMMIR register.

D13.8.5 Pseudocode description of event counting threshold and edge

See PMUCountValue() in Chapter J1 Armv8 Pseudocode for a pseudocode description of the operation of the threshold
and edge conditions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6876
ID032224 Non-Confidential

The Performance Monitors Extension
D13.9 PMU snapshots
D13.9 PMU snapshots

IVZCDM The PMU snapshot extension provides a mechanism to take a snapshot of the PMU state at a given cycle on request.

RSCLCQ If all of the following are true, then a Capture event is generated:

• FEAT_PMUv3_SS is implemented.

• Capture events are enabled.

• Any of the following occur:

— The value 1 is written to PMSSCR_EL1.SS.

— The assertion of an IMPLEMENTATION DEFINED external snapshot request mechanism. This indirectly
writes 1 to PMSSCR_EL1.SS.

• The Core power domain is powered on.

RMFJWS If Capture events are disabled, then PMSSCR_EL1.SS ignores writes.

RYWLFL If any of the following are true, then Capture events are disabled:

• EL3 is implemented and MDCR_EL3.PMSSE is 0b00.

• All of the following are true:

— EL3 is not implemented or MDCR_EL3.PMSSE is 0b01.

— EL2 is implemented.

— MDCR_EL2.PMSSE is 0b00.

This applies even when EL2 is disabled in the current Security state.

• All of the following are true:

— EL3 is not implemented or MDCR_EL3.PMSSE is 0b01.

— EL2 is not implemented or MDCR_EL2.PMSSE is 0b01. This applies even when EL2 is disabled in
the current Security state.

— PMECR_EL1.SSE is 0b00.

Otherwise, Capture events are enabled.

The pseudocode function PMUCaptureEventEnabled() shows this.

RTSYTY If all of the following are true, then Capture events are allowed:

• Capture events are enabled.

• The OS Lock is unlocked.

• Any of the following are true:

— EL3 is implemented and MDCR_EL3.PMSSE is 0b11.

— All of the following are true:

— EL3 is not implemented or MDCR_EL3.PMSSE is 0b01.

— EL2 is implemented.

— MDCR_EL2.PMSSE is 0b11.

This applies even when EL2 is disabled in the current Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6877
ID032224 Non-Confidential

The Performance Monitors Extension
D13.9 PMU snapshots
— All of the following are true:

— EL3 is not implemented or MDCR_EL3.PMSSE is 0b01.

— EL2 is not implemented or MDCR_EL2.PMSSE is 0b01. This applies even when EL2 is
disabled in the current Security state.

— PMECR_EL1.SSE is 0b11.

• Either the PE is in Non-debug state or the PE allows Capture events in Debug state.

Otherwise, Capture events are prohibited.

It is IMPLEMENTATION DEFINED, whether the PE allows Capture events in Debug state.

The pseudocode function PMUCaptureEventAllowed() shows this.

IMRCSY Table D13-8 summarizes the effect of the controls on PMU Capture events. In this table:

Disabled Means Capture events are disabled.

Prohibited Means Capture events are enabled and prohibited.

Allowed Means Capture events are enabled and allowed.

IWHYSQ Note

When all of the following apply, an EL3 Secure or Root monitor switching to Secure state should set
MDCR_EL2.PMSSE to 0b01:

• SCR_EL3.EEL2 is 0, disabling EL2 in Secure state.

• MDCR_EL3.PMSSE is 0b01, enabling use of PMU snapshot by lower Exception levels.

• MDCR_EL3.{MPMX, SPME} is not {0, 0}, meaning Secure state uses the PMU.

This ensures that control over PMU snapshot moves to PMECR_EL1. In such a scenario, the EL3 monitor might
have to rewrite other MDCR_EL2 fields. For example setting MDCR_EL2.HPMN to PMCR_EL0.N so that Secure
EL1 has full control over the PMU counters. Alternatively, if Secure EL1 does not support PMU snapshot, then the
EL3 monitor could set MDCR_EL3.PMSSE or MDCR_EL2.PMSSE to 0b00, and avoid also context switching
PMECR_EL1.

If Secure state is not using the PMU (MDCR_EL3.SPME is 0), then the EL3 monitor should leave
MDCR_EL2.PMSSE and PMECR_EL1 unchanged, so that external snapshot requests can be serviced.

Table D13-8 PMU Capture events

MDCR_EL3.PMSSE MDCR_EL2.PMSSE PMECR_EL1.SSE Capture Events

0b00 xx xx Disabled

0b01 0b00 xx Disabled

0b01 0b01 0b00 Disabled

0b01 0b01 0b10 Prohibited

0b01 0b01 0b11 Allowed

0b01 0b10 xx Prohibited

0b01 0b11 xx Allowed

0b10 xx xx Prohibited

0b11 xx xx Allowed
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6878
ID032224 Non-Confidential

The Performance Monitors Extension
D13.9 PMU snapshots
RVPZHN If a Capture event occurs when allowed, then the PE writes all of the following snapshot registers:

• Event counters PMEVCNTR<n>_EL0 are written to PMEVCNTSVR<n>_EL1.

• Cycle counter PMCCNTR_EL0 is written to PMCCNTSVR_EL1.

• If FEAT_PMUv3_ICNTR is implemented, instruction counter PMICNTR_EL0 is written to
PMICNTSVR_EL1.

• If FEAT_PCSRv8p9 is implemented and sampling on PMU snapshot Capture events is enabled by
PMPCSCTL.SS, then all of the following:

— If PC sampling is allowed and the PE is in Non-debug state, then all of the following:

— The address of a recently-executed instruction and the execution state are written to PMPCSR.

— If FEAT_PMUv3_EXT32 is implemented, then the Context ID registers CONTEXTIDR_EL2
and CONTEXTIDR_EL1 are written to PMCID2SR and PMCID1SR, respectively, and the
Virtual machine identifier (VMID) is written to PMVIDSR.

— If FEAT_PMUv3_EXT64 is implemented, CONTEXTIDR_EL2 and CONTEXTIDR_EL1 are
written to PMCCIDSR, and VMID and CONTEXTIDR_EL1 are written to PMVCIDSR.

In some circumstances, the address of a Recently-executed instruction is not available or UNKNOWN.

— Otherwise, PMPCSR[31:0] is set to 0xFFFFFFFF, and PMPCSR[63:32], PMCID1SR, PMCID2SR,
PMVIDSR, PMCCIDSR, and PMVCIDSR are unchanged.

If sampling on PMU snapshot is disabled then PMPCSR, PMCID1SR, PMCID2SR, PMVIDSR,
PMCCIDSR, and PMVCIDSR are unchanged.

After these writes are completed, PMSSCR_EL1.{NC, SS} is set to {0, 0} to indicate that a Capture event has
completed successfully.

RDBRSV PC sampling is allowed is defined by Controlling the PC Sample-based Profiling Extension.

RTYNSW Recently-executed means any instruction executed between the current and previous successful Capture events.

RWSVYM The sampled recently-executed instruction address and context values follow the same rules and constraints
described by Chapter H7 The PC Sample-based Profiling Extension when PMPCSR is read with PMPCSCTL.SS
set to 0. For example:

• When any of the following are true, the sampled instruction address and context might be unknown:

— The PE is in reset state.

— No branch instruction has retired since the PE left reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

— No branch instruction has retired since the previous Capture event.

— No branch instruction has retired since PMPCSCTL.SS was set to 1.

• When any of the following are true, it is permitted but not required for bits [31:0] of the sampled instruction
address to be recorded as 0xFFFFFFFF, and for PMPCSR[63:32], PMCID1SR, PMCID2SR, PMVIDSR,
PMCCIDSR, and PMVCIDSR to be unchanged:

— The PE has not retired any branch instruction since leaving a state where PC Sample-based profiling
was suspended.

— The first Capture event after PMPCSCTL.SS was set to 1.

IYSWSD The recently-executed instruction sampled in PMPCSR is captured before PMSSCR_EL1.{NC, SS} is set to {0, 0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6879
ID032224 Non-Confidential

The Performance Monitors Extension
D13.9 PMU snapshots
IMXCMM For a Capture event triggered by System register write, explicit synchronization is required between observing the
Capture event has completed and reading the snapshot registers. That is, for the following sequence, instruction C
observes the snapshot registers have been updated by the Capture event, when enabled:

1. An instruction A observes that a Capture event is complete.

2. Software executes a Context synchronization event B in program order after A.

3. An instruction C reads a snapshot register in program order after B.

Example D13-7 Synchronization between Capture event observation and snapshot register reads

The following sequence sets PMSSCR_EL1.SS to 1 to initiate a Capture event, and polls PMSSCR_EL1.SS to
detect whether the Capture event has completed:

 ; Set PMSSCR_EL1.SS to initiate Capture event request
MOV X0, #1
MSR PMSSCR_EL1, X0

loop:
; Test PMSSCR_EL1.SS to check whether the Capture event has completed
MRS X0, PMSSCR_EL1
ISB
TBNZ X0, #0, loop
; Read snapshot registers

RPLPCY When the PE sets PMSSCR_EL1.{NC, SS} to {0, 0} on a successful Capture event:

• If the PE is in Non-debug state then the PMU_SNAPSHOT event is generated.

This means that the PMU event is generated after any event counter that might be counting the event has been
captured.

• If the PE is in Debug state, it is CONSTRAINED UNPREDICTABLE whether the PMU_SNAPSHOT event is
generated.

IWRNBL On a successful Capture event, a BRBE freeze event might occur. See RLBQZR in Branch record buffer operation.

IHHHDQ When PMPCSCTL.SS is 1, the architecture does not require any relationship between the PC value captured by
PMPCSR and the branches captured in the frozen Branch records.

RMPZSB If a Capture event occurs when prohibited, then:

• PMCCNTSVR_EL1, PMICNTSVR_EL1, and PMEVCNTSVR<n>_EL1 are unchanged.

• The PC sample registers are unchanged.

• PMSSCR_EL1.{NC, SS} is set to {1, 0} to indicate that a Capture event has completed unsuccessfully.

• Generation of Branch records is unaffected.

IKGJMV Accesses to the snapshot registers are not affected by the OS Lock.

ILXYBX A Capture event can occur when the PE is executing in AArch32 state.

RVLKCZ The number of implemented PMU event counter snapshot registers, <n>, is implementation defined, and is the same
as the number of implemented PMU event counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6880
ID032224 Non-Confidential

The Performance Monitors Extension
D13.10 Performance Monitors and Debug state
D13.10 Performance Monitors and Debug state

Events that count cycles are not counted in Debug state.

Events Attributable to the operations issued by the debugger through the external debug interface are not counted
in Debug state.

In an implementation that supports multithreading, when the Effective value of PMEVTYPER<n>_EL0.MT is 1, if
an event is Attributable to an operation issued by the debugger through the external debug interface to another thread
that is in Debug state, then the event is not counted, and it is IMPLEMENTATION DEFINED whether the event is counted
when the counting thread is in Debug state.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when the counting PE is in
Debug state. If the event might be counted, then the rules in Filtering by Exception level and Security state apply
for the current Security state in Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6881
ID032224 Non-Confidential

The Performance Monitors Extension
D13.11 Counter access
D13.11 Counter access

All implemented event counters are accessible in EL3 and EL2. If EL2 is implemented the hypervisor uses
HDCR.HPMN to reserve an event counter, with the effect that if EL2 is enabled in the current Security state,
software cannot access that counter and its associated state from EL0 or EL1.

If FEAT_FGT is implemented, if PMSELR.SEL or n indicates an unimplemented event counter, access to
PMXEVTYPER, PMXEVCNTR, PMEVTYPER<n>, or PMEVCNTR<n> is UNDEFINED.

Note

Whether software can access an event counter at an Exception level does not affect whether the counter counts
events at that Exception level. For more information, see Controlling the PMU counters and Enabling PMU
counters.

D13.11.1 PMEVCNTR<n> event counters

Table D13-9 shows how the number of implemented event counters, PMCR.N, and if EL2 is implemented, the value
of the HDCR.HPMN field affects the behavior of permitted accesses to the PMEVCNTR<n> event counter registers
for values of n from 0 to 30.

Where Table D13-9 shows access succeeds for an event counter n, the access might be UNDEFINED or generate a
trap exception. See the descriptions of PMEVCNTR<n> and PMXEVCNTR for details.

Where Table D13-9 shows no access for an event counter n:

• When PMSELR.SEL is n, the PE prevents direct reads and direct writes of PMXEVTYPER or
PMXEVCNTR. See the register descriptions for more information.

• The PE prevents direct reads and direct writes of PMEVTYPER<n> or PMEVCNTR<n>. See the register
descriptions for more information.

• If FEAT_PMUv3_SS is implemented, the PE prevents direct reads and direct writes of
PMEVCNTSVR<n>_EL1. See the register descriptions for more information.

• Direct reads and direct writes of the following register fields are RAZ/WI: PMOVSCLR[n], PMOVSSET[n],
PMCNTENSET[n], PMCNTENCLR[n], PMINTENSET[n], PMINTENCLR[n], and, when
FEAT_PMUv3p9 is implemented, PMUACR_EL1[n].

• Direct writes to PMSWINC[n] are ignored, and, when FEAT_PMUv3p9 is implemented, direct writes to
PMZR_EL0[n] are ignored.

• A direct write of 1 to PMCR.P does not reset PMEVCNTR<n>.

Table D13-9 Result of PMEVCNTR<n> event counter accesses

Condition
Access at Exception level

EL3 EL2 EL1 EL0

n < PMCR.N and either EL2 is not implemented or EL2 is disabled in the
current Security state

Succeeds n/a Succeeds Succeeds

n < HDCR.HPMN and EL2 is implemented and enabled in the current Security
state

Succeeds Succeeds Succeeds Succeeds

n ≥ HDCR.HPMN and n < PMCR.N and EL2 is implemented and enabled in
the current Security state

Succeeds Succeeds No access No access

n ≥ PMCR.N No access No access No access No access
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6882
ID032224 Non-Confidential

The Performance Monitors Extension
D13.11 Counter access
D13.11.2 Cycle and instruction counters

The PMU does not provide any control that a hypervisor can use to reserve the cycle counter for its own use. If
FEAT_FGT is implemented, then controls to trap EL1 and EL0 accesses of the cycle counter to EL2 are provided.
However, access to the PMU registers are subject to the access permissions described in Configurable instruction
controls.

PMICNTR_EL0 counts in both AArch32 and AArch64 states. However, PMICNTR_EL0 and PMICFILTR_EL0
can only be accessed as a System register in AArch64 state. If FEAT_FGT2 is implemented, then controls to trap
EL1 and EL0 accesses of the instruction counter to EL2 are provided.

D13.11.3 EL0 access controls

IDXSHB PMUSERENR controls EL0 access to the Performance Monitors. When FEAT_PMUv3p9 is implemented,
PMUACR_EL1 provides fine-grained control over EL0 access to the Performance Monitors.
PMUSERENR_EL0.UEN enables use of PMUACR_EL1. The behavior of other PMUSERENR_EL0 controls also
depend on the value of PMUSERENR_EL0.UEN.

IKPPZZ Table D13-10 summarizes the behavior of accesses to at EL0 to PMEVCNTR<n>, PMCCNTR, PMSWINC, and,
if FEAT_PMUv3_ICNTR is implemented and the PE is executing in AArch64 state, PMICNTR_EL0. In this table:

UEN Means PMUSERENR_EL0.UEN. If FEAT_PMUv3p9 is not implemented, or EL1 is using AArch32,
then the Effective value of this bit is 0.

EN Means PMUSERENR.EN.

xR/W Means:

• PMUSERENR.ER for PMEVCNTR<n>.

• PMUSERENR.CR for PMCCNTR.

• PMUSERENR_EL0.IR for PMICNTR_EL0.

• PMUSERENR_EL0.SW for PMSWINC.P<n>.

PMUACR_EL1.y Means:

• PMUACR_EL1.P<n> for PMEVCNTR<n>_EL0 and PMSWINC_EL0.

• PMUACR_EL1.C for PMCCNTR_EL0.

• PMUACR_EL1.F0 for PMICNTR_EL0.

This table assumes that all the following apply:

• Event counter <n> is implemented.

• EL2 is not implemented or disabled in the current Security state, or n is less-than HDCR.HPMN.

• FEAT_PMUv3_ICNTR is implemented.

Table D13-10 Summary of counter accesses at EL0

UEN EN xR/W PMUACR_EL1.y
Access to
PMEVCNTR<n> or
PMCCNTR

Access to
PMICNTR_EL0

Access to
PMSWINC.P<n>

0b0 0b0 0b0 x UNDEFINED UNDEFINED UNDEFINED

0b0 0b0 0b1 x RO UNDEFINED WO

0b0 0b1 x x R/W UNDEFINED WO

0b1 x 0b0 0b0 RAZ/WI RAZ/WI WI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6883
ID032224 Non-Confidential

The Performance Monitors Extension
D13.11 Counter access
In Table D13-10, where the column Access to PMEVCNTR<n> or PMCCNTR or the column Access to
PMICNTR_EL0 shows access is RO or RAZ/WI, this also includes ignoring writes to PMZR_EL0[y].

0b1 x 0b1 0b0 RAZ/WI RAZ/WI WO

0b1 x 0b0 0b1 R/W R/W WO

0b1 x 0b1 0b1 RO RO WO

Table D13-10 Summary of counter accesses at EL0 (continued)

UEN EN xR/W PMUACR_EL1.y
Access to
PMEVCNTR<n> or
PMCCNTR

Access to
PMICNTR_EL0

Access to
PMSWINC.P<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6884
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12 PMU events and event numbers

The following sections describe the events that can be counted and their associated event numbers, and the
mnemonics for the events:

• Definitions.

• The PMU event number space and common events.

• Common event numbers.

• Cycle event counting.

• Meaningful combinations of common events.

• Required events.

• IMPLEMENTATION DEFINED event numbers.

D13.12.1 Definitions

The following subsections give more information about terms used in the event definitions:

• Definition of terms.

• Levels of caches and TLBs.

• Counting events from shared components.

• Counting exceptions taken locally or not taken locally.

D13.12.1.1 Definition of terms

This section describes terms used by PMU events as they relate to the implementation of the PMU. For more
definitions, see Glossary.

ALU operation counts

The PMU events 0x80C0 to 0x80C9 count the number of arithmetic logic unit operations performed
by each instruction.

Table D13-11 gives the ALU operation counts for complex ALU operations.

In this table:

Input size The element size of input operands other than the accumulator.

Acc size The element size of the accumulator operand.

Count The number of addition and multiply operations per 128 bits of input:

• Scalable vector operations increment the counter by the Count value for an
applicable *_SCALE_OPS_SPEC event.

• Advanced SIMD operations operating on a 128-bit register increment the counter
by the Count value for an applicable *_FIXED_OPS_SPEC event.

• Advanced SIMD operations operating on a 64-bit register increment the counter
by half the Count value for an applicable *_FIXED_OPS_SPEC event.

Type The data type classification for the operations. This determines for which events the
event counter counts the operation.

Predicated operations are counted even if the Governing predicate for the element is FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6885
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Note

The FP64 FMMLA instruction works on 256-bit segments, and performs 16 operations per 256-bit
segment. The table represents counts per 128 bits of input, so the counter increments by 8.

Note

Predicated operations are counted even if the governing predicate for the element is FALSE.

For other instructions, the PMU events that count ALU operations are incremented as follows:

• Multiply-add, multiply-subtract, fused multiply-add, and fused multiply-subtract instructions
generate two ALU operations of the specified type per input element. For floating-point
operations, these are the instructions counted by FP_FMA_SPEC.

• All other data processing operations generate one ALU operation of the specified type per
input element.

The PMU events 0x80CA to 0x80CF count the number of load or store operations performed by each
instruction:

• Non-SVE load and store of a single register instructions increment the counter by 1. This
includes loads and stores of Sx, Dx, and Qx SIMD&FP registers.

• Non-SVE load and store of a pair of registers instructions increment the counter by 2. This
includes loads and stores of pairs of Sx, Dx, and Qx SIMD&FP registers.

• AArch32 load and store multiple registers instructions increment the counter by the number
of registers transferred.

• Atomic store instructions increment the counter by 1. These are instructions that atomically
update a value in memory without returning a value to a register.

• Atomic load, compare and swap of a single register, and swap instructions increment the
counter by 2. Atomic load instructions are instructions that atomically update a value in
memory, returning a value to a register.

• Compare and swap of a pair of registers increment the counter by 4.

• SVE and Advanced SIMD LD1R instructions increment the counter by 1.

• SVE LD1RQ instructions increment the counter by (128 ÷ CSIZE).

Table D13-11 ALU operation counts

Operation Input size Acc size Count Type

SDOT, UDOT, USDOT, SUDOT 8 bits 32 bits 32 Integer

SDOT, UDOT 16 bits 64 bits 16 Integer

BFDOT 16 bits 32 bits 16 Single-precision floating point

BFMMLA 16 bits 32 bits 32 Single-precision floating point

BFMLAL, FMLAL, and FMLSL 16 bits 32 bits 8 Single-precision floating point

SMMLA, UMMLA, or USMMLA 8 bits 32 bits 64 Integer

FMMLA 32 bits 32 bits 16 Single-precision floating point

FMMLA 64 bits 64 bits 8 Double-precision floating point
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6886
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
elements transferred per vector multiplied by the number of transferred registers.

• DC ZVA and DC GZVA instructions increment by the counter by an IMPLEMENTATION DEFINED
amount.

Architectural

An architectural event is an event which gives the same result for the same program on any
implementation of the Arm architecture, subject to the program having the same inputs, including
asynchronous events triggered by the system, any IMPLEMENTATION DEFINED or UNPREDICTABLE
variation permitted by the event definition, and the reasonable degree of inaccuracy described in A
reasonable degree of inaccuracy. INST_RETIRED is an example of an architectural event.

An architectural event should not be confused with an event defined by the architecture, which is
referred to as a Common event.

At-retirement event

An at-retirement event is generated by an Architecturally executed instruction that does not generate
an exception, unless specified otherwise. This includes SVC, HVC, and SMC exceptions.

For cache and TLB events:

• The event counts each architecturally-executed instruction that generates the event.

• The event is only counted once, by the first instruction that causes it. This might not be the
first instruction in program order.

Note

Consider two loads that execute out of order that access the same cache line granule which
is not in the cache. The second instruction in program order causes the miss, and the first
instruction fetches data from the same cache miss result. Only the second instruction counts
the cache miss event. Also, the second instruction might be speculative and the first
instruction retired, meaning the cache miss is not counted at all.

• The population counts for the events are the architecturally-executed instruction counts.

CSIZE

Container size, in bits, that corresponds to the largest non-overlapping SVE or Advanced SIMD
vector element size or scalar register size that is encoded in the instruction opcode. This excludes
the 64-bit elements of the wide element variants of the SVE bitwise shift and integer compare
instructions that overlap the narrower source and destination elements.

Event in progress

Some events count when another event or condition is in progress. This might mean that the event
counts the occupancy of a queue or other microarchitectural structure tracking the event. It is usually
IMPLEMENTATION DEFINED when an event is in progress.

For example, the MEM_ACCESS_RD_PERCYC event counts when the MEM_ACCESS_RD
event is in progress, meaning on each Processor cycle, the counter increments by the number of
Memory-read operations that are in progress.

These events can be used to calculate the average number of events in progress. In the case of the
MEM_ACCESS_RD_PERCYC event, this is also the average read latency. However, the definition
of in progress might not include all parts of the operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6887
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Example D13-8 Stages of an operation not included in the definition of event in progress

In an example implementation, a Memory-read operation generated by a load instruction occupies three pipeline
stages in the PE before generating a MEM_ACCESS_RD event when the PE starts to access memory. The event is
then considered to be in progress until the data is returned to the PE. In the case of a Normal Cacheable access, the
PE first looks in the Level 1 data cache, and if the address is cached, returns data in two cycles. Once the data is
returned, it is another cycle before the result can be forwarded to any other instruction.

In this example, if all loads hit in the Level 1 cache, the average read latency calculated using the
MEM_ACCESS_RD_PERCYC and MEM_ACCESS_RD events might be two cycles. Although this value is
correct for the implementation-specific definition of this event, it has to be adjusted by a constant four additional
cycles to match the more commonly understood definition of Level 1 cache access latency, which for this example
would be quoted as six cycles.

Instruction architecturally executed

An instruction that is part of the Execution stream. See also Architecturally executed.

A reasonable degree of inaccuracy allows for counts to be inaccurate in exceptional circumstances.
For an event that counts instructions architecturally executed, this allows an implementation to
count instructions that do not form part of the Execution stream because of an exceptional event,
such as if the instruction generates a synchronous exception or entry to Debug state.

Instructions that have no visible effect on the architectural state of the PE are architecturally
executed and counted even if they form part of the Execution stream.

Examples of instructions that have no visible effect are:

• A NOP.

• A conditional instruction that fails its Condition code check.

• A Compare and Branch on Zero, CBZ, instruction that does not branch.

• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

However, for events that count only the execution of instructions that update System registers, such
as CID_WRITE_RETIRED, if such an instruction is executed twice without an intervening Context
Synchronization event, it is constrained unpredictable whether the first instruction is counted.

Instruction architecturally executed, Condition code check pass

Instruction architecturally executed, Condition code check pass is a class of events that explicitly
do not occur for:

• A conditional instruction that fails its Condition code check.

• A Compare and Branch on Zero, CBZ, instruction that does not branch.

• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

• A Test and Branch on Zero, TBZ, instruction that does not branch.

• A Test and Branch on Nonzero, TBNZ, instruction that does not branch.

• A Store-Exclusive instruction that does not write to memory.

Otherwise, the definition of architecturally executed is the same as for Instruction architecturally
executed.

A branch that is architecturally executed, with condition code check pass is also described as a
branch taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6888
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Instruction memory access

A PE acquires instructions for execution through instruction fetches. Instruction fetches might be
due to:

• Fetching instructions that are architecturally executed.

• The result of the execution of an instruction preload instruction, PLI.

• Speculation that a particular instruction might be executed in the future.

The relationship between the fetch of an individual instruction and an instruction memory access is
IMPLEMENTATION DEFINED. For example, an implementation might fetch many instructions
including a non-integer number of instructions in a single instruction memory access.

Memory-read operations

A PE accesses memory through memory-read operations and Memory-write operations. A
memory-read operation might be due to:

• The result of an architecturally executed Memory-reading instructions.

• The result of a Speculatively executed memory-reading instructions.

• A translation table walk.

• A GCS data read operation.

Note

A GCS data read operation is considered a memory-read operation regardless of whether
L1GCS_CACHE event is implemented.

For levels of cache hierarchy beyond the Level 1 caches, memory-read operations also include
accesses made as part of a refill of another cache closer to the PE. Such refills might be due to:

• Memory-read operations or Memory-write operations that miss in the cache

• The execution of a data preload instruction.

• The execution of a cache maintenance instruction.

Note

A preload instruction or cache maintenance instruction is not, in itself, an access to that
cache. However, it might generate cache refills which are then treated as memory-read
operations beyond that cache.

• Speculation that a future instruction might access the memory location.

• Instruction memory accesses to a unified cache, when the cache does not implement the
L<n>I_CACHE event.

This list is not exhaustive.

The relationship between memory-read instructions and memory-read operations is
IMPLEMENTATION DEFINED. For example, for some implementations an LDP instruction that reads
two 64-bit registers might generate one memory-read operation if the address is quadword-aligned,
but for other addresses it generates two or more memory-read operations.

Memory-reading instructions

An instruction with explicit Memory read effects, including Tag-read effects. Loads and atomic
instructions that return a value to the PE are counted as Memory-reading instructions. MSR and MSRR
instructions transformed to memory reads by FEAT_NV2 are counted as Memory-reading
instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6889
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Unless otherwise specified, this includes instructions that can have a Memory read effect, even if
the instruction does not actually read from memory for some other reason. For example, a
conditional load in AArch32 state that fails its condition code, an SVE predicated load with inactive
predicates, or a load that generates an MMU fault.

It is IMPLEMENTATION DEFINED whether the preload instructions PRFM, PLD, PLDW, and PLI count as
integer data-processing instructions or Memory-reading instructions. Arm recommends that if the
instruction is not implemented as a NOP then it is counted as a Memory-reading instruction.

Memory-writing instructions, other than atomics, that return a result in a PE register other than data
from the location being accessed are not counted as Memory-reading instructions. This includes
Store-exclusive, ST64BV, and ST64BV0.

Atomic instructions that do not return a value to the PE are not counted as Memory-reading
instructions.

Instructions with only a Tag-Check-read effect are not counted as Memory-reading instructions.

Memory-write operations

Memory-write operations might be due to:

• The result of an architecturally executed Memory-writing instructions.

• The result of a Speculatively executed Memory-writing instructions.

• A hardware update of a translation table entry.

• A GCS data write operation.

Note

A GCS data write operation is considered a Memory-write operation regardless of whether
L1GCS_CACHE event is implemented.

Note

Speculatively executed Memory-writing instructions that do not become architecturally executed
must not alter the architecturally defined view of memory. They can, however, generate a
Memory-write operation that is later undone in some implementation specific way.

For levels of cache hierarchy beyond the Level 1 caches, Memory-write operations also include
accesses made as part of a write-back from another cache closer to the PE. Such write-backs might
be due to:

• Evicting a dirty line from the cache, to allocate a cache line for a cache refill, see
Memory-read operations.

• The execution of a cache maintenance instruction.

Note
A cache maintenance instruction is not in itself an access to that cache. However, it might
generate write-backs which are then treated as Memory-write operations beyond that cache.

• The result of a coherency request from another PE.

This list is not exhaustive.

DC ZVA is counted as a Memory-write operation. ST64BV and ST64BV0 are Store with status result
instructions, but for the purpose of the PMU they are treated as Memory-write operations.

The relationship between Memory-writing instructions and Memory-write operations is
IMPLEMENTATION DEFINED. For example, for some implementations an STP instruction that writes
two 64-bit registers might generate one Memory-write operation if the address is quadword-aligned,
but for other addresses it generates two or more Memory-write operations. In some
implementations, the result of two STR instructions that write to adjacent memory might be merged
into a single Memory-write operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6890
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Note

The data written back from a cache that is shared with other PEs might not be data that was written
by the PE that performs the operation that leads to the write-back. Nevertheless, the event is counted
as a write-back event for that PE.

Memory-writing instructions

Are instructions with explicit Memory write effects, including Tag-write effects. Stores and atomic
instructions are counted as Memory-writing instructions.

Unless otherwise specified, this includes instructions that can have a Memory write effect, even if
the instruction does not actually write to memory for some other reason. For example, a conditional
store in AArch32 state that fails its condition code, an SVE predicated store with inactive predicates,
a CAS or Store-exclusive that does not update memory, or a store that generates an MMU fault.

DC ZVA, DC GVA, and DC GZVA are counted as Memory-writing instructions. MRS and MRRS instructions
transformed to memory writes by FEAT_NV2 are counted as Memory-writing instructions.

Microarchitectural

A microarchitectural event is any event which is not architectural. That is, it will give different
results for the same program on two different implementations of the Arm architecture, due to
microarchitectural differences in the implementations. L1D_CACHE_REFILL is an example of a
microarchitectural event.

A microarchitectural event should not be confused with an event defined by the implementation,
which is referred to as an IMPLEMENTATION DEFINED event.

MSIZE

Memory element access size, in bits, that corresponds to a load or store instruction mnemonic suffix,
where B=8, H=16, W=32 and D=64. When an instruction mnemonic does not end with B, H, W or
D, the memory access size is implied by the scalar transfer register size or SIMD transfer register
element size.

Non-SIMD SVE instructions

These instructions are:

• Vector address calculation instructions, ADDPL, ADDVL, and RDVL.

• The scalar Predicate counts instructions.

• The compare and terminate instructions, CTERMEQ, CTERMNE.

Operation

An instruction might create one or more microarchitectural operations (μ-ops) at any point in the
execution pipeline. Depending on the event definition, the μ-ops might be counted instead of
instructions. The definition of a μ-op is implementation specific. An architecture instruction might
create more than one μ-op for each instruction. μ-ops might also be removed or merged in the
execution stream, so an architecture instruction might create no μ-ops for an instruction. Any
arbitrary translation of instructions to an equivalent sequence of μ-ops is permitted.

This means the relationship between a μ-op and an architecturally executed instruction is
IMPLEMENTATION DEFINED.

Note

The architecture does not require that an implementation that generates μ-ops must count μ-ops for
operations. An implementation can choose to interpret operation as instruction.

The counting of operations can indicate the workload on the PE. However, there is no requirement
for operations to represent similar amounts of work, and direct comparisons between different
microarchitectures are not meaningful.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6891
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Operations might be defined with reference to a particular instruction or type of instruction. In the
case of operations this means operations with semantics that map to that type of instruction.

For example, an implementation splits an A32 or T32 LDM instruction of six registers into six μ-ops,
one for each load, and a seventh address-generation operation to determine the base address or
writeback address. Also, for doubleword alignment, the six load μ-ops might combine into four
operations, that is, a word load, two doubleword loads, and a second word load. This single
instruction can then be counted as five, or possibly six, events:

• Four (Operation speculatively executed - Load) events.

• One (Operation speculatively executed - Integer data processing) event.

• One (Operation speculatively executed - Software change of the PC) event if the PC was one
of the six registers in the LDM instruction.

Operation speculatively executed

An Operation that is Speculatively executed.

There is no architecturally guaranteed relationship between a Speculatively executed micro-op and
an architecturally executed instruction.

The results of such an operation can also be discarded, if it transpires that the operation was not
required, such as following a mispredicted branch. Therefore, the architecture defines these events
as operations speculatively executed, where appropriate.

Note

In some events, operation has a more specific meaning described in the event. See ALU operation
counts.

Processor cycle

For a non-multithreaded implementation, this means a cycle of the processor. For a multithreaded
implementation, processor cycle means each cycle of the multithreaded processor, not just those
cycles for which the PE counting the event is active.

Slot

An implementation of a PE might be able to execute multiple micro-ops in a single processor cycle.
The maximum number of micro-ops that can be executed might vary at different points in the
execution pipeline.

To allow profiling of the utilization of the resource of the PE, an implementation specific point in
the execution pipeline is chosen where the maximum number of micro-ops that can be executed is
an IMPLEMENTATION DEFINED fixed value.

Each possible micro-op that can be executed at that point in a cycle is called a Slot. The maximum
number of micro-ops that can be executed is defined by PMMIR.SLOTS.

Software change of the PC

Some events relate to instructions that cause a software change of the PC. This includes all:

• Branch instructions.

• Memory-reading instructions that explicitly write to the PC.

• Data-processing instructions that explicitly write to the PC.

• Exception return instructions.

It is IMPLEMENTATION DEFINED whether any or all of the following are treated as software changes
of the PC:

• BRK and BKPT instructions.

• An exception generated because an instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6892
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier ISB instructions.

Speculatively executed

An instruction or operation that is counted by an event when it might be Speculative.

The architecture does not define the point in a pipeline where an event is counted. For some events,
this means the operation or instruction is counted when the operation or instruction is Speculative.
The results of such an operation or instruction might later be discarded, if it transpires that the
operation was not required, such as following a mispredicted branch, or might be later resolved to
be Architecturally executed.

Different groups of events might be counted at different points in the pipeline and so can have
different IMPLEMENTATION DEFINED definitions of speculatively executed. Such groups share a
common base type, which the event name denotes. Each of the events in the previous example is of
the base type, operation speculatively executed.

For groups of events with a common base type, speculatively executed operations are all counted
on the same basis, which normally means at the same point in the pipeline. It is possible to compare
the counts and make meaningful observations about the program being profiled.

Taken locally

Taken locally is a qualifier that determines which instances of an exception are counted by particular
PMU events. See Counting exceptions taken locally or not taken locally.

In this context, an exception that is Taken locally means an exception that is one of:

• Taken to the current Exception level.

Note

This is not possible when the current Exception level is EL0.

• Taken from EL0 to EL1.

• Taken from EL0 to EL2 because the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Note

An exception taken from EL0 to EL2 because the Effective value of HCR_EL2.{E2H, TGE}
is {0, 1} is not Taken locally. This includes exceptions taken to EL2 using AArch32 when
HCR.TGE is 1.

VL

The current SVE vector length, in bits.

D13.12.1.2 Levels of caches and TLBs

The mapping of levels of cache and TLB to the PMU events is IMPLEMENTATION DEFINED. Although CLIDR_EL1
and CLIDR define the implemented levels of cache, these are not required to correspond with the levels of cache
defined for PMU events. The architecture does not provide any way of determining implemented levels of TLB.
Also, many implementations include structures that provide some caching at a higher level than the level 1 caches
or TLBs. Typically, these structures, that might be called Level 0 caches, or mini caches, or microcaches, are
invisible to software. The implementation-specific nature of cache and TLB implementations mean that, in general,
PMU event counts cannot be used reliably to make direct comparisons between different implementations, and Arm
recommends the following implementation guidelines:

• If L3D_CACHE events are implemented, then L2D_CACHE and if applicable L2I_CACHE events should
be implemented.

• If L2D_CACHE events are implemented, then L1D_CACHE and if applicable L1I_CACHE events should
be implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6893
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• If L2I_CACHE events are implemented, then L1I_CACHE events should be implemented.

• Where the Last Level of cache is also the Level 3 or Level 2 unified cache, the LL_CACHE events should
be implemented in preference to the L3D_CACHE or L2D_CACHE events as applicable.

• For the Level <n> cache, where <n> = 1 and <n> = 2:

— If the Level <n> cache is unified, but the cache can disambiguate between Data and Instruction
accesses to the cache, then both the L<n>D_CACHE and L<n>I_CACHE events should be
implemented.

— If the cache is unified and the cache cannot disambiguate between Data and Instruction accesses, then
only the L<n>D_CACHE should be implemented, counting all accesses.

This final property is IMPLEMENTATION DEFINED.

If an implementation uses separate caching structures to cache the GCS data and translations, the implementation
might be capable of separately tracking the Guarded Control Stack data accesses and their translations in the caches
and TLBs. See Tracking the Guarded Control Stack data accesses for more information.

D13.12.1.3 Counting events from shared components

There is no architectural concept of a shared component. However, when a cache, a bus, or any other system
component that might generate countable events is implemented, and:

• The extent of the first-order effects due to an event from that component are only applicable to a single PE,
then the event is not shared.

• Otherwise, the event is shared.

Second-order effects are not considered when determining if an event is shared.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0b0, then the counter
counts only events Attributable to the PE counting the event. For a multithreaded processor implementation, if the
cache is shared by PEs other than the PEs in the multithreaded processor and the Effective value of
PMEVTYPER<n>_EL0.MT for the counter is 0b1, the counter counts only events Attributable to PEs in the
multithreaded processor. In all other cases, it is IMPLEMENTATION DEFINED whether only events Attributable to the
PE counting the event or all events are counted and might depend on the Effective value of
PMEVTYPER<n>_EL0.MT.

If an implementation uses shared caching structures for GCS data and translations, the implementation might be
capable of separately tracking the Guarded Control Stack data accesses and their translations in the caches and
TLBs. See Tracking the Guarded Control Stack data accesses for more information.

Example D13-9 First and second order effects of a cache miss in a multiple-PE implementation

In an implementation that consists of two PEs, each with its own L1 cache, a cache miss by one of the PEs is a
first-order effect of an access to its cache. Any snoop that is performed on the L1 cache of the other PE in the
implementation as a result of that cache miss is a second order effect.

Note

Shared events are inherently linked to microarchitectures and so the implementer must make an informed decision
about how such events are implemented.

D13.12.1.4 Tracking the Guarded Control Stack data accesses

All of the following PMU events are GCS PMU events:

• L1GCS*.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6894
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• GCSTLB*.

• STALL_*_GCS*.

If an implementation is capable of separately tracking the Guarded Control Stack data accesses and their translations
in the caches and TLBs, all of the following apply:

• The GCS PMU events are permitted to be implemented and allow software to disambiguate the performance
aspects of Guarded Control Stack data accesses from other data accesses.

• L1GCS_CACHE* events and L1GCS_TLB* events are generated for Guarded Control Stack data accesses.

• L1D_CACHE* events and L1D_TLB* events are not generated for Guarded Control Stack data accesses.

If an implementation is not capable of separately tracking the Guarded Control Stack data accesses and their
translations in the caches and TLBs, all of the following apply:

• The GCS PMU events are not implemented, and software is not permitted to disambiguate the performance
aspects of Guarded Control Stack data accesses from other data accesses.

• L1GCS_CACHE* events and L1GCS_TLB* are not generated for Guarded Control Stack data accesses.

• L1D_CACHE* events and L1D_TLB* events are generated for Guarded Control Stack data accesses.

D13.12.1.5 Counting exceptions taken locally or not taken locally

Table D13-12 shows the events for exceptions taken to an Exception level using AArch64.

Table D13-12 Events for exceptions taken to an Exception level using AArch64

ESR.EC Description
Event number and classification for exceptions

Taken locally Not Taken locally

0x00 Unknown or uncategorized 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x01 WF* traps 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x03 AArch32 MCR/MRC traps on
(coproc==0b1111) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x04 AArch32 MCRR/MRRC traps on
(coproc==0b1111) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x05 AArch32 MCR/MRC traps on
(coproc==0b1110) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x06 AArch32 LDC/STC traps on
(coproc==0b1110) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x07 Advanced SIMD or FP traps 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x08 AArch32 MVFR* and FPSID traps - 0x008D, EXC_TRAP_OTHER

0x0C AArch32 MCRR/MRRC traps on
(coproc==0b1110) accesses

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x0E Illegal instruction set state 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x11 AArch32 SVC 0x0082, EXC_SVC 0x008D, EXC_TRAP_OTHER

0x12 AArch32 HVC that is not disabled - 0x008A, EXC_HVC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6895
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x13 AArch32 SMC that is not disabled

to
EL2

- 0x008D, EXC_TRAP_OTHER

to
EL3

- 0x0088, EXC_SMC

0x15 AArch64 SVC 0x0082, EXC_SVC 0x008D, EXC_TRAP_OTHER

0x16 AArch64 HVC that is not disabled 0x008A, EXC_HVC 0x008A, EXC_HVC

0x17 AArch64 SMC that is not disabled

to
EL2

- 0x008D, EXC_TRAP_OTHER

to
EL3

0x0088, EXC_SMC 0x0088, EXC_SMC

0x18 AArch64 MSR, MRS and System
instruction traps

0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x19 SVE traps 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x1E Granule Protection Check exception
Inst 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

Data 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x1F IMPLEMENTATION DEFINED exception
taken to EL3

IMPLEMENTATION
DEFINEDa

IMPLEMENTATION DEFINEDa

0x20 Instruction Abort from below 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x21 Instruction Abort from current
Exception level

0x0083, EXC_PABORT -

0x22 PC alignment 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x24 Data Abort from below 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x25 Data Abort from current Exception
level

0x0084, EXC_DABORT -

0x26 SP alignment fault exception 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x28 AArch32 FP exception 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x2C AArch64 FP exception 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

0x2F SError interrupt 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

0x30 Breakpoint from below 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x31 Breakpoint from current Exception
level

0x0083, EXC_PABORT -

0x32 Software step from below 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x33 Software step from current Exception
level

0x0083, EXC_PABORT -

0x34 Watchpoint from below 0x0084, EXC_DABORT 0x008C, EXC_TRAP_DABORT

Table D13-12 Events for exceptions taken to an Exception level using AArch64 (continued)

ESR.EC Description
Event number and classification for exceptions

Taken locally Not Taken locally
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6896
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Note

The Glossary defines the term Taken locally, that is used in event definitions in Common microarchitectural events.
See also Exception levels for more information.

D13.12.2 The PMU event number space and common events

In Armv8.0, the event number space is 10 bits. Armv8.1 extends the event number space, and therefore the
PMEVTYPER<n>_EL0.evtCount field, to 16 bits, and is allocated as Table D13-13 shows. For more information
about the entries in the Allocation column see the text that follows this table:

0x35 Watchpoint from current Exception
level

0x0084, EXC_DABORT -

0x38 AArch32 BKPT instruction 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x3A AArch32 Vector Catch debug event 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

0x3C AArch64 BRK instruction 0x0083, EXC_PABORT 0x008B, EXC_TRAP_PABORT

- IRQ interrupt 0x0086, EXC_IRQ 0x008E, EXC_TRAP_IRQ

- FIQ interrupt 0x0087, EXC_FIQ 0x008F, EXC_TRAP_FIQ

All other values All other exceptions 0x0081, EXC_UNDEF 0x008D, EXC_TRAP_OTHER

a. The exception reported with EC 0x1F is IMPLEMENTATION DEFINED, and therefore it is IMPLEMENTATION DEFINED which event counts the
exception, except that the event that counts the exception must correctly indicate whether the exception was Taken locally.

Table D13-12 Events for exceptions taken to an Exception level using AArch64 (continued)

ESR.EC Description
Event number and classification for exceptions

Taken locally Not Taken locally

Table D13-13 Allocation of the PMU event number space

Event numbers Allocation

In all versions from Armv8.0

0x0000-0x003F Common architectural and microarchitectural events.

0x0040-0x00BF When FEAT_PMUv3p8 is implemented, common architectural and microarchitectural events.

Previously Arm-recommended common architectural and microarchitectural events.

0x00C0-0x03FF IMPLEMENTATION DEFINED events.

From Armv8.1

0x0400-0x3FFF IMPLEMENTATION DEFINED events.

0x4000-0x403F Common architectural and microarchitectural events.

0x4040-0x40BF When FEAT_PMUv3p8 is implemented, common architectural and microarchitectural events.

Previously Arm-recommended common architectural and microarchitectural events.

0x40C0-0x7FFF IMPLEMENTATION DEFINED events.

0x8000-0x80FF Common architectural and microarchitectural events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6897
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The meaning of the entries in the Allocation column of Table D13-13 is as follows:

Common architectural and microarchitectural events

Arm defines the use of these event numbers. For more information see Common event numbers.

IMPLEMENTATION DEFINED event numbers

For more information about the use of these event numbers see IMPLEMENTATION DEFINED
event numbers.

See PMEVTYPER<n>.evtCount for details of the PE behavior when an event number for a reserved or
unimplemented PMU event is written to evtCount.

Table D13-14 lists the number and mnemonic of PMU events.

0x8100-0x81FF From Armv8.6, common architectural and microarchitectural events.

Previously reserved.

0x8200-0xC0BF Reserved.

0xC0C0-0xFFFF IMPLEMENTATION DEFINED events.

Table D13-13 Allocation of the PMU event number space (continued)

Event numbers Allocation

Table D13-14 Event index

Event
number

Mnemonic Description

 0x0000 SW_INCR Instruction architecturally executed, Condition code check pass,
software increment.

 0x0001 L1I_CACHE_REFILL Level 1 instruction cache refill.

 0x0002 L1I_TLB_REFILL Level 1 instruction TLB refill.

 0x0003 L1D_CACHE_REFILL Level 1 data cache refill.

 0x0004 L1D_CACHE Level 1 data cache access.

 0x0005 L1D_TLB_REFILL Level 1 data TLB refill.

 0x0006 LD_RETIRED Instruction architecturally executed, Condition code check pass,
load.

 0x0007 ST_RETIRED Instruction architecturally executed, Condition code check pass,
store.

 0x0008 INST_RETIRED Instruction architecturally executed.

 0x0009 EXC_TAKEN Exception taken.

 0x000A EXC_RETURN Instruction architecturally executed, Condition code check pass,
exception return.

 0x000B CID_WRITE_RETIRED Instruction architecturally executed, Condition code check pass,
write to CONTEXTIDR.

 0x000C PC_WRITE_RETIRED Instruction architecturally executed, Condition code check pass,
Software change of the PC.

 0x000D BR_IMMED_RETIRED Branch Instruction architecturally executed, immediate.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6898
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x000E BR_RETURN_RETIRED Branch Instruction architecturally executed, procedure return,
taken.

 0x000F UNALIGNED_LDST_RETIRED Instruction architecturally executed, Condition code check pass,
unaligned load or store.

 0x0010 BR_MIS_PRED Branch instruction Speculatively executed, mispredicted or not
predicted.

 0x0011 CPU_CYCLES Cycle.

 0x0012 BR_PRED Predictable branch instruction Speculatively executed.

 0x0013 MEM_ACCESS Data memory access.

 0x0014 L1I_CACHE Level 1 instruction cache access.

 0x0015 L1D_CACHE_WB Level 1 data cache write-back.

 0x0016 L2D_CACHE Level 2 data cache access.

 0x0017 L2D_CACHE_REFILL Level 2 data cache refill.

 0x0018 L2D_CACHE_WB Level 2 data cache write-back.

 0x0019 BUS_ACCESS Bus access.

 0x001A MEMORY_ERROR Local memory error.

 0x001B INST_SPEC Operation speculatively executed.

 0x001C TTBR_WRITE_RETIRED Instruction architecturally executed, Condition code check pass,
write to TTBR.

 0x001D BUS_CYCLES Bus cycle.

 0x001E CHAIN Chain a pair of event counters.

 0x001F L1D_CACHE_ALLOCATE Level 1 data cache allocation without refill.

 0x0020 L2D_CACHE_ALLOCATE Level 2 data cache allocation without refill.

 0x0021 BR_RETIRED Instruction architecturally executed, branch.

 0x0022 BR_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted.

 0x0023 STALL_FRONTEND No operation sent for execution due to the frontend.

 0x0024 STALL_BACKEND No operation sent for execution due to the backend.

 0x0025 L1D_TLB Level 1 data TLB access.

 0x0026 L1I_TLB Level 1 instruction TLB access.

 0x0027 L2I_CACHE Level 2 instruction cache access.

 0x0028 L2I_CACHE_REFILL Level 2 instruction cache refill.

 0x0029 L3D_CACHE_ALLOCATE Level 3 data cache allocation without refill.

 0x002A L3D_CACHE_REFILL Level 3 data cache refill.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6899
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x002B L3D_CACHE Level 3 data cache access.

 0x002C L3D_CACHE_WB Level 3 data cache write-back.

 0x002D L2D_TLB_REFILL Level 2 data TLB refill.

 0x002E L2I_TLB_REFILL Level 2 instruction TLB refill.

 0x002F L2D_TLB Level 2 data TLB access.

 0x0030 L2I_TLB Level 2 instruction TLB access.

 0x0031 REMOTE_ACCESS Access to a remote device.

 0x0032 LL_CACHE Last level cache access.

 0x0033 LL_CACHE_MISS Last level cache miss.

 0x0034 DTLB_WALK Data TLB access with at least one translation table walk.

 0x0035 ITLB_WALK Instruction TLB access with at least one translation table walk.

 0x0036 LL_CACHE_RD Last level cache access, read.

 0x0037 LL_CACHE_MISS_RD Last level cache miss, read.

 0x0038 REMOTE_ACCESS_RD Access to a remote device, read.

 0x0039 L1D_CACHE_LMISS_RD Level 1 data cache long-latency read miss.

 0x003A OP_RETIRED Micro-operation architecturally executed.

 0x003B OP_SPEC Micro-operation Speculatively executed.

 0x003C STALL No operation sent for execution.

 0x003D STALL_SLOT_BACKEND No operation sent for execution on a Slot due to the backend.

 0x003E STALL_SLOT_FRONTEND No operation sent for execution on a Slot due to the frontend.

 0x003F STALL_SLOT No operation sent for execution on a Slot.

 0x0040 L1D_CACHE_RD Level 1 data cache access, read.

 0x0041 L1D_CACHE_WR Level 1 data cache access, write.

 0x0042 L1D_CACHE_REFILL_RD Level 1 data cache refill, read.

 0x0043 L1D_CACHE_REFILL_WR Level 1 data cache refill, write.

 0x0044 L1D_CACHE_REFILL_INNER Level 1 data cache refill, inner.

 0x0045 L1D_CACHE_REFILL_OUTER Level 1 data cache refill, outer.

 0x0046 L1D_CACHE_WB_VICTIM Level 1 data cache write-back, victim.

 0x0047 L1D_CACHE_WB_CLEAN Level 1 data cache write-back, cleaning and coherency.

 0x0048 L1D_CACHE_INVAL Level 1 data cache invalidate.

 0x004C L1D_TLB_REFILL_RD Level 1 data TLB refill, read.

 0x004D L1D_TLB_REFILL_WR Level 1 data TLB refill, write.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6900
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x004E L1D_TLB_RD Level 1 data TLB access, read.

 0x004F L1D_TLB_WR Level 1 data TLB access, write.

 0x0050 L2D_CACHE_RD Level 2 data cache access, read.

 0x0051 L2D_CACHE_WR Level 2 data cache access, write.

 0x0052 L2D_CACHE_REFILL_RD Level 2 data cache refill, read.

 0x0053 L2D_CACHE_REFILL_WR Level 2 data cache refill, write.

 0x0056 L2D_CACHE_WB_VICTIM Level 2 data cache write-back, victim.

 0x0057 L2D_CACHE_WB_CLEAN Level 2 data cache write-back, cleaning and coherency.

 0x0058 L2D_CACHE_INVAL Level 2 data cache invalidate.

 0x005C L2D_TLB_REFILL_RD Level 2 data TLB refill, read.

 0x005D L2D_TLB_REFILL_WR Level 2 data TLB refill, write.

 0x005E L2D_TLB_RD Level 2 data TLB access, read.

 0x005F L2D_TLB_WR Level 2 data TLB access, write.

 0x0060 BUS_ACCESS_RD Bus access, read.

 0x0061 BUS_ACCESS_WR Bus access, write.

 0x0062 BUS_ACCESS_SHARED Bus access, Normal, Cacheable, Shareable.

 0x0063 BUS_ACCESS_NOT_SHARED Bus access, not Normal, Cacheable, Shareable.

 0x0064 BUS_ACCESS_NORMAL Bus access, normal.

 0x0065 BUS_ACCESS_PERIPH Bus access, peripheral.

 0x0066 MEM_ACCESS_RD Data memory access, read.

 0x0067 MEM_ACCESS_WR Data memory access, write.

 0x0068 UNALIGNED_LD_SPEC Unaligned access, read.

 0x0069 UNALIGNED_ST_SPEC Unaligned access, write.

 0x006A UNALIGNED_LDST_SPEC Unaligned access.

 0x006C LDREX_SPEC Exclusive operation Speculatively executed, Load-Exclusive.

 0x006D STREX_PASS_SPEC Exclusive operation Speculatively executed, Store-Exclusive
pass.

 0x006E STREX_FAIL_SPEC Exclusive operation Speculatively executed, Store-Exclusive fail.

 0x006F STREX_SPEC Exclusive operation Speculatively executed, Store-Exclusive.

 0x0070 LD_SPEC Operation speculatively executed, load.

 0x0071 ST_SPEC Operation speculatively executed, store.

 0x0072 LDST_SPEC Operation speculatively executed, load or store.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6901
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x0073 DP_SPEC Operation speculatively executed, integer data processing.

 0x0074 ASE_SPEC Operation speculatively executed, Advanced SIMD data
processing.

 0x0075 VFP_SPEC Operation speculatively executed, scalar floating-point data
processing.

 0x0076 PC_WRITE_SPEC Operation speculatively executed, Software change of the PC.

 0x0077 CRYPTO_SPEC Operation speculatively executed, cryptographic data processing.

 0x0078 BR_IMMED_SPEC Branch Speculatively executed, immediate branch.

 0x0079 BR_RETURN_SPEC Branch Speculatively executed, procedure return.

 0x007A BR_INDIRECT_SPEC Branch Speculatively executed, indirect branch.

 0x007C ISB_SPEC Barrier Speculatively executed, ISB.

 0x007D DSB_SPEC Barrier Speculatively executed, DSB.

 0x007E DMB_SPEC Barrier Speculatively executed, DMB.

 0x007F CSDB_SPEC Barrier Speculatively executed, CSDB.

 0x0081 EXC_UNDEF Exception taken, other synchronous.

 0x0082 EXC_SVC Exception taken, Supervisor Call.

 0x0083 EXC_PABORT Exception taken, Instruction Abort.

 0x0084 EXC_DABORT Exception taken, Data Abort or SError.

 0x0086 EXC_IRQ Exception taken, IRQ.

 0x0087 EXC_FIQ Exception taken, FIQ.

 0x0088 EXC_SMC Exception taken, Secure Monitor Call.

 0x008A EXC_HVC Exception taken, Hypervisor Call.

 0x008B EXC_TRAP_PABORT Exception taken, Instruction Abort not Taken locally.

 0x008C EXC_TRAP_DABORT Exception taken, Data Abort or SError not Taken locally.

 0x008D EXC_TRAP_OTHER Exception taken, other traps not Taken locally.

 0x008E EXC_TRAP_IRQ Exception taken, IRQ not Taken locally.

 0x008F EXC_TRAP_FIQ Exception taken, FIQ not Taken locally.

 0x0090 RC_LD_SPEC Release consistency operation Speculatively executed,
Load-Acquire.

 0x0091 RC_ST_SPEC Release consistency operation Speculatively executed,
Store-Release.

 0x00A0 L3D_CACHE_RD Level 3 data cache access, read.

 0x00A1 L3D_CACHE_WR Level 3 data cache access, write.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6902
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x00A2 L3D_CACHE_REFILL_RD Level 3 data cache refill, read.

 0x00A3 L3D_CACHE_REFILL_WR Level 3 data cache refill, write.

 0x00A6 L3D_CACHE_WB_VICTIM Level 3 data cache write-back, victim.

 0x00A7 L3D_CACHE_WB_CLEAN Level 3 data cache write-back, cleaning and coherency.

 0x00A8 L3D_CACHE_INVAL Level 3 data cache invalidate.

 0x4000 SAMPLE_POP Statistical Profiling sample population.

 0x4001 SAMPLE_FEED Statistical Profiling sample taken.

 0x4002 SAMPLE_FILTRATE Statistical Profiling sample taken and not removed by filtering.

 0x4003 SAMPLE_COLLISION Statistical Profiling sample collided with previous sample.

 0x4004 CNT_CYCLES Constant frequency cycles.

 0x4005 STALL_BACKEND_MEM Memory stall cycles.

 0x4006 L1I_CACHE_LMISS Level 1 instruction cache long-latency miss.

 0x4009 L2D_CACHE_LMISS_RD Level 2 data cache long-latency read miss.

 0x400A L2I_CACHE_LMISS Level 2 instruction cache long-latency miss.

 0x400B L3D_CACHE_LMISS_RD Level 3 data cache long-latency read miss.

 0x400C TRB_WRAP Trace buffer current write pointer wrapped.

 0x400D PMU_OVFS PMU overflow, counters accessible to EL1 and EL0.

 0x400E TRB_TRIG Trace buffer Trigger Event.

 0x400F PMU_HOVFS PMU overflow, counters reserved for use by EL2.

 0x4010 TRCEXTOUT0 Trace unit external output 0.

 0x4011 TRCEXTOUT1 Trace unit external output 1.

 0x4012 TRCEXTOUT2 Trace unit external output 2.

 0x4013 TRCEXTOUT3 Trace unit external output 3.

 0x4018 CTI_TRIGOUT4 Cross-trigger Interface output trigger 4.

 0x4019 CTI_TRIGOUT5 Cross-trigger Interface output trigger 5.

 0x401A CTI_TRIGOUT6 Cross-trigger Interface output trigger 6.

 0x401B CTI_TRIGOUT7 Cross-trigger Interface output trigger 7.

 0x4020 LDST_ALIGN_LAT Access with additional latency from alignment.

 0x4021 LD_ALIGN_LAT Load with additional latency from alignment.

 0x4022 ST_ALIGN_LAT Store with additional latency from alignment.

 0x4024 MEM_ACCESS_CHECKED Checked data memory access.

 0x4025 MEM_ACCESS_CHECKED_RD Checked data memory access, read.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6903
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x4026 MEM_ACCESS_CHECKED_WR Checked data memory access, write.

 0x4030 TSTART_RETIRED Instruction architecturally executed, outer transaction TSTART.

 0x4031 TCOMMIT_RETIRED Instruction architecturally executed, outer transaction TCOMMIT.

 0x4032 TME_TRANSACTION_FAILED Transaction failed or was canceled.

 0x4034 TME_INST_RETIRED_COMMITTED Instruction architecturally executed, in a committed transaction.

 0x4035 TME_CPU_CYCLES_COMMITTED PE cycle, in a committed transaction.

 0x4038 TME_FAILURE_CNCL Transaction failed with CNCL cause.

 0x4039 TME_FAILURE_NEST Transaction failed with NEST cause.

 0x403A TME_FAILURE_ERR Transaction failed with ERR cause.

 0x403B TME_FAILURE_IMP Transaction failed with IMP cause.

 0x403C TME_FAILURE_MEM Transaction failed with MEM cause.

 0x403D TME_FAILURE_SIZE Transaction failed with SIZE cause.

 0x403E TME_FAILURE_TLBI Transaction failed due to execution of TLBI by another PE.

 0x403F TME_FAILURE_WSET Transaction failed due to transactional write set limit overflow.

 0x8000 SIMD_INST_RETIRED Instruction architecturally executed, SIMD.

 0x8001 ASE_INST_RETIRED Instruction architecturally executed, Advanced SIMD.

 0x8002 SVE_INST_RETIRED Instruction architecturally executed, SVE.

 0x8003 ASE_SVE_INST_RETIRED Instruction architecturally executed, Advanced SIMD or SVE.

 0x8004 SIMD_INST_SPEC Operation speculatively executed, SIMD.

 0x8005 ASE_INST_SPEC Operation speculatively executed, Advanced SIMD.

 0x8006 SVE_INST_SPEC Operation speculatively executed, SVE.

 0x8007 ASE_SVE_INST_SPEC Operation speculatively executed, Advanced SIMD or SVE.

 0x8008 UOP_SPEC Microarchitectural Operation speculatively executed.

 0x8009 ASE_UOP_SPEC Microarchitectural Operation speculatively executed, Advanced
SIMD.

 0x800A SVE_UOP_SPEC Microarchitectural Operation speculatively executed, SVE.

 0x800B ASE_SVE_UOP_SPEC Microarchitectural Operation speculatively executed, Advanced
SIMD or SVE.

 0x800C SIMD_UOP_SPEC Microarchitectural Operation speculatively executed, SIMD.

 0x800E SVE_MATH_SPEC Operation speculatively executed, SVE math accelerator.

 0x8010 FP_SPEC Floating-point Operation speculatively executed, including
SIMD.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6904
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8011 ASE_FP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD.

 0x8012 SVE_FP_SPEC Floating-point Operation speculatively executed, SVE.

 0x8013 ASE_SVE_FP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE.

 0x8014 FP_HP_SPEC Floating-point Operation speculatively executed, half precision.

 0x8015 ASE_FP_HP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD half precision.

 0x8016 SVE_FP_HP_SPEC Floating-point Operation speculatively executed, SVE half
precision.

 0x8017 ASE_SVE_FP_HP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE half precision.

 0x8018 FP_SP_SPEC Floating-point Operation speculatively executed, single precision.

 0x8019 ASE_FP_SP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD single precision.

 0x801A SVE_FP_SP_SPEC Floating-point Operation speculatively executed, SVE single
precision.

 0x801B ASE_SVE_FP_SP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE single precision.

 0x801C FP_DP_SPEC Floating-point Operation speculatively executed, double
precision.

 0x801D ASE_FP_DP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD double precision.

 0x801E SVE_FP_DP_SPEC Floating-point Operation speculatively executed, SVE double
precision.

 0x801F ASE_SVE_FP_DP_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE double precision.

 0x8020 FP_DIV_SPEC Floating-point Operation speculatively executed, divide.

 0x8021 ASE_FP_DIV_SPEC Floating-point Operation speculatively executed, Advanced
SIMD divide.

 0x8022 SVE_FP_DIV_SPEC Floating-point Operation speculatively executed, SVE divide.

 0x8023 ASE_SVE_FP_DIV_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE divide.

 0x8024 FP_SQRT_SPEC Floating-point Operation speculatively executed, square root.

 0x8025 ASE_FP_SQRT_SPEC Floating-point Operation speculatively executed, Advanced
SIMD square root.

 0x8026 SVE_FP_SQRT_SPEC Floating-point Operation speculatively executed, SVE square
root.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6905
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8027 ASE_SVE_FP_SQRT_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE square-root.

 0x8028 FP_FMA_SPEC Floating-point Operation speculatively executed, FMA.

 0x8029 ASE_FP_FMA_SPEC Floating-point Operation speculatively executed, Advanced
SIMD FMA.

 0x802A SVE_FP_FMA_SPEC Floating-point Operation speculatively executed, SVE FMA.

 0x802B ASE_SVE_FP_FMA_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE FMA.

 0x802C FP_MUL_SPEC Floating-point Operation speculatively executed, multiply.

 0x802D ASE_FP_MUL_SPEC Floating-point Operation speculatively executed, Advanced
SIMD multiply.

 0x802E SVE_FP_MUL_SPEC Floating-point Operation speculatively executed, SVE multiply.

 0x802F ASE_SVE_FP_MUL_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE multiply.

 0x8030 FP_ADDSUB_SPEC Floating-point Operation speculatively executed, add or subtract.

 0x8031 ASE_FP_ADDSUB_SPEC Floating-point Operation speculatively executed, Advanced
SIMD add or subtract.

 0x8032 SVE_FP_ADDSUB_SPEC Floating-point Operation speculatively executed, SVE add or
subtract.

 0x8033 ASE_SVE_FP_ADDSUB_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE add or subtract.

 0x8034 FP_RECPE_SPEC Floating-point Operation speculatively executed, reciprocal
estimate.

 0x8035 ASE_FP_RECPE_SPEC Floating-point Operation speculatively executed, Advanced
SIMD reciprocal estimate.

 0x8036 SVE_FP_RECPE_SPEC Floating-point Operation speculatively executed, SVE reciprocal
estimate.

 0x8037 ASE_SVE_FP_RECPE_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE reciprocal estimate.

 0x8038 FP_CVT_SPEC Floating-point Operation speculatively executed, convert.

 0x8039 ASE_FP_CVT_SPEC Floating-point Operation speculatively executed, Advanced
SIMD convert.

 0x803A SVE_FP_CVT_SPEC Floating-point Operation speculatively executed, SVE convert.

 0x803B ASE_SVE_FP_CVT_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE convert.

 0x803C SVE_FP_AREDUCE_SPEC Floating-point Operation speculatively executed, SVE
accumulating reduction.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6906
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x803D ASE_FP_PREDUCE_SPEC Floating-point Operation speculatively executed, Advanced
SIMD pairwise add step.

 0x803E SVE_FP_VREDUCE_SPEC Floating-point Operation speculatively executed, SVE vector
reduction.

 0x803F ASE_SVE_FP_VREDUCE_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE vector reduction.

 0x8040 INT_SPEC Integer Operation speculatively executed.

 0x8041 ASE_INT_SPEC Integer Operation speculatively executed, Advanced SIMD.

 0x8042 SVE_INT_SPEC Integer Operation speculatively executed, SVE.

 0x8043 ASE_SVE_INT_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE.

 0x8044 INT_DIV_SPEC Integer Operation speculatively executed, divide.

 0x8045 INT_DIV64_SPEC Integer Operation speculatively executed, 64-bit divide.

 0x8046 SVE_INT_DIV_SPEC Integer Operation speculatively executed, SVE divide.

 0x8047 SVE_INT_DIV64_SPEC Integer Operation speculatively executed, SVE 64-bit divide.

 0x8048 INT_MUL_SPEC Integer Operation speculatively executed, multiply.

 0x8049 ASE_INT_MUL_SPEC Integer Operation speculatively executed, Advanced SIMD
multiply.

 0x804A SVE_INT_MUL_SPEC Integer Operation speculatively executed, SVE multiply.

 0x804B ASE_SVE_INT_MUL_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE multiply.

 0x804C INT_MUL64_SPEC Integer Operation speculatively executed, 64×64 multiply.

 0x804D SVE_INT_MUL64_SPEC Integer Operation speculatively executed, SVE 64×64 multiply.

 0x804E INT_MULH64_SPEC Integer Operation speculatively executed, 64×64 multiply
returning high part.

 0x804F SVE_INT_MULH64_SPEC Integer Operation speculatively executed, SVE 64×64 multiply
high part.

 0x8056 SVE_SPEC Operation speculatively executed, SVE data processing.

 0x8057 ASE_SVE_SPEC Operation speculatively executed, Advanced SIMD data
processing or scalable vector extension data processing.

 0x8058 NONFP_SPEC Non-floating-point Operation speculatively executed.

 0x8059 ASE_NONFP_SPEC Non-floating-point Operation speculatively executed, Advanced
SIMD.

 0x805A SVE_NONFP_SPEC Non-floating-point Operation speculatively executed, SVE.

 0x805B ASE_SVE_NONFP_SPEC Non-floating-point Operation speculatively executed, Advanced
SIMD or SVE.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6907
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x805D ASE_INT_VREDUCE_SPEC Integer Operation speculatively executed, Advanced SIMD
reduction.

 0x805E SVE_INT_VREDUCE_SPEC Integer Operation speculatively executed, SVE reduction.

 0x805F ASE_SVE_INT_VREDUCE_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE reduction.

 0x8060 SVE_PERM_SPEC Operation speculatively executed, SVE permute.

 0x8061 SVE_PERM_IGRANULE_SPEC Operation speculatively executed, SVE intra-granule permute.

 0x8062 SVE_PERM_XGRANULE_SPEC Operation speculatively executed, SVE cross-granule permute.

 0x8063 SVE_PERM_VARIABLE_SPEC Operation speculatively executed, SVE programmable permute.

 0x8064 SVE_XPIPE_SPEC Operation speculatively executed, SVE cross-pipe.

 0x8065 SVE_XPIPE_Z2R_SPEC Operation speculatively executed, SVE vector to scalar
cross-pipe.

 0x8066 SVE_XPIPE_R2Z_SPEC Operation speculatively executed, SVE scalar to vector
cross-pipe.

 0x8067 SVE_PGEN_NVEC_SPEC Operation speculatively executed, SVE predicate-only.

 0x8068 SVE_PGEN_SPEC Operation speculatively executed, SVE predicate generating.

 0x8069 SVE_PGEN_FLG_SPEC Operation speculatively executed, SVE predicate flag setting.

 0x806A SVE_PGEN_CMP_SPEC Operation speculatively executed, SVE vector compare.

 0x806B SVE_PGEN_FCM_SPEC Floating-point Operation speculatively executed, SVE vector
compare.

 0x806C SVE_PGEN_LOGIC_SPEC Operation speculatively executed, SVE predicate logical.

 0x806D SVE_PPERM_SPEC Operation speculatively executed, SVE predicate permute.

 0x806E SVE_PSCAN_SPEC Operation speculatively executed, SVE predicate scan.

 0x806F SVE_PCNT_SPEC Operation speculatively executed, SVE predicate count.

 0x8070 SVE_PLOOP_WHILE_SPEC Operation speculatively executed, SVE predicate loop while.

 0x8071 SVE_PLOOP_TEST_SPEC Operation speculatively executed, SVE predicate loop test.

 0x8072 SVE_PLOOP_ELTS_SPEC Operation speculatively executed, SVE predicate loop elements.

 0x8073 SVE_PLOOP_TERM_SPEC Operation speculatively executed, SVE predicate loop
termination.

 0x8074 SVE_PRED_SPEC Operation speculatively executed, SVE predicated.

 0x8075 SVE_PRED_EMPTY_SPEC Operation speculatively executed, SVE predicated with no active
elements.

 0x8076 SVE_PRED_FULL_SPEC Operation speculatively executed, SVE predicated with all active
elements.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6908
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8077 SVE_PRED_PARTIAL_SPEC Operation speculatively executed, SVE predicated with partially
active elements.

 0x8078 SVE_UNPRED_SPEC Operation speculatively executed, SVE unpredicated.

 0x8079 SVE_PRED_NOT_FULL_SPEC Operation speculatively executed, SVE predicated with at least
one inactive element.

 0x807C SVE_MOVPRFX_SPEC Operation speculatively executed, SVE MOVPRFX.

 0x807D SVE_MOVPRFX_Z_SPEC Operation speculatively executed, SVE MOVPRFX zeroing
predication.

 0x807E SVE_MOVPRFX_M_SPEC Operation speculatively executed, SVE MOVPRFX merging
predication.

 0x807F SVE_MOVPRFX_U_SPEC Operation speculatively executed, SVE MOVPRFX unfused.

 0x8080 SVE_LDST_SPEC Operation speculatively executed, SVE load, store, or prefetch.

 0x8081 SVE_LD_SPEC Operation speculatively executed, SVE load.

 0x8082 SVE_ST_SPEC Operation speculatively executed, SVE store.

 0x8083 SVE_PRF_SPEC Operation speculatively executed, SVE prefetch.

 0x8084 ASE_SVE_LDST_SPEC Operation speculatively executed, Advanced SIMD or SVE load
or store.

 0x8085 ASE_SVE_LD_SPEC Operation speculatively executed, Advanced SIMD or SVE load.

 0x8086 ASE_SVE_ST_SPEC Operation speculatively executed, Advanced SIMD or SVE store.

 0x8087 PRF_SPEC Operation speculatively executed, prefetch.

 0x8088 BASE_LDST_REG_SPEC Operation speculatively executed, general-purpose register load,
store, or prefetch.

 0x8089 BASE_LD_REG_SPEC Operation speculatively executed, general-purpose register load.

 0x808A BASE_ST_REG_SPEC Operation speculatively executed, general-purpose register store.

 0x808B BASE_PRF_SPEC Operation speculatively executed, general-purpose register
prefetch.

 0x808C FPASE_LDST_REG_SPEC Operation speculatively executed, SIMD&FP register load or
store.

 0x808D FPASE_LD_REG_SPEC Operation speculatively executed, SIMD&FP register load.

 0x808E FPASE_ST_REG_SPEC Operation speculatively executed, SIMD&FP register store.

 0x8090 SVE_LDST_REG_SPEC Operation speculatively executed, SVE unpredicated load or store
register.

 0x8091 SVE_LDR_REG_SPEC Operation speculatively executed, SVE unpredicated load
register.

 0x8092 SVE_STR_REG_SPEC Operation speculatively executed, SVE unpredicated store
register.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6909
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8094 SVE_LDST_PREG_SPEC Operation speculatively executed, SVE load or store predicate
register.

 0x8095 SVE_LDR_PREG_SPEC Operation speculatively executed, SVE load predicate register.

 0x8096 SVE_STR_PREG_SPEC Operation speculatively executed, SVE store predicate register.

 0x8098 SVE_LDST_ZREG_SPEC Operation speculatively executed, SVE load or store vector
register.

 0x8099 SVE_LDR_ZREG_SPEC Operation speculatively executed, SVE load vector register.

 0x809A SVE_STR_ZREG_SPEC Operation speculatively executed, SVE store vector register.

 0x809C SVE_LDST_CONTIG_SPEC Operation speculatively executed, SVE contiguous load, store, or
prefetch element.

 0x809D SVE_LD_CONTIG_SPEC Operation speculatively executed, SVE single vector contiguous
load element.

 0x809E SVE_ST_CONTIG_SPEC Operation speculatively executed, SVE contiguous store element.

 0x809F SVE_PRF_CONTIG_SPEC Operation speculatively executed, SVE contiguous prefetch
element.

 0x80A0 SVE_LDSTNT_CONTIG_SPEC Operation speculatively executed, SVE non-temporal contiguous
load or store element.

 0x80A1 SVE_LDNT_CONTIG_SPEC Operation speculatively executed, SVE non-temporal contiguous
load element.

 0x80A2 SVE_STNT_CONTIG_SPEC Operation speculatively executed, SVE non-temporal contiguous
store element.

 0x80A4 ASE_SVE_LDST_MULTI_SPEC Operation speculatively executed, Advanced SIMD or SVE
contiguous load or store multiple vector.

 0x80A5 ASE_SVE_LD_MULTI_SPEC Operation speculatively executed, Advanced SIMD or SVE
contiguous load multiple vector.

 0x80A6 ASE_SVE_ST_MULTI_SPEC Operation speculatively executed, Advanced SIMD or SVE
contiguous store multiple vector.

 0x80A8 SVE_LDST_MULTI_SPEC Operation speculatively executed, SVE contiguous load or store
multiple vector.

 0x80A9 SVE_LD_MULTI_SPEC Operation speculatively executed, SVE contiguous load multiple
vector.

 0x80AA SVE_ST_MULTI_SPEC Operation speculatively executed, SVE contiguous store multiple
vector.

 0x80AC SVE_LDST_NONCONTIG_SPEC Operation speculatively executed, SVE non-contiguous load,
store, or prefetch.

 0x80AD SVE_LD_GATHER_SPEC Operation speculatively executed, SVE gather-load.

 0x80AE SVE_ST_SCATTER_SPEC Operation speculatively executed, SVE scatter-store.

 0x80AF SVE_PRF_GATHER_SPEC Operation speculatively executed, SVE gather-prefetch.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6910
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x80B0 SVE_LDST64_NONCONTIG_SPEC Operation speculatively executed, SVE 64-bit non-contiguous
load, store, or prefetch.

 0x80B1 SVE_LD64_GATHER_SPEC Operation speculatively executed, SVE 64-bit gather-load.

 0x80B2 SVE_ST64_SCATTER_SPEC Operation speculatively executed, SVE 64-bit scatter-store.

 0x80B3 SVE_PRF64_GATHER_SPEC Operation speculatively executed, SVE 64-bit gather-prefetch.

 0x80B4 ASE_SVE_UNALIGNED_LDST_SPEC Advanced SIMD or SVE unaligned access.

 0x80B5 ASE_SVE_UNALIGNED_LD_SPEC Advanced SIMD or SVE unaligned read.

 0x80B6 ASE_SVE_UNALIGNED_ST_SPEC Advanced SIMD or SVE unaligned write.

 0x80B8
ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC

Advanced SIMD or SVE unaligned contiguous access.

 0x80B9 ASE_SVE_UNALIGNED_CONTIG_LD_SPEC Advanced SIMD or SVE unaligned contiguous read.

 0x80BA ASE_SVE_UNALIGNED_CONTIG_ST_SPEC Advanced SIMD or SVE unaligned contiguous write.

 0x80BC SVE_LDFF_SPEC Operation speculatively executed, SVE first-fault load.

 0x80BD SVE_LDFF_FAULT_SPEC Operation speculatively executed, SVE first-fault load which set
FFR bit to 0b0.

 0x80C0 FP_SCALE_OPS_SPEC Scalable floating-point element arithmetic operations
Speculatively executed.

 0x80C1 FP_FIXED_OPS_SPEC Non-scalable floating-point element arithmetic operations
Speculatively executed.

 0x80C2 FP_HP_SCALE_OPS_SPEC Scalable half-precision floating-point element arithmetic
operations Speculatively executed.

 0x80C3 FP_HP_FIXED_OPS_SPEC Non-scalable half-precision floating-point element arithmetic
operations Speculatively executed.

 0x80C4 FP_SP_SCALE_OPS_SPEC Scalable single-precision floating-point element arithmetic
operations Speculatively executed.

 0x80C5 FP_SP_FIXED_OPS_SPEC Non-scalable single-precision floating-point element arithmetic
operations Speculatively executed.

 0x80C6 FP_DP_SCALE_OPS_SPEC Scalable double-precision floating-point element arithmetic
operations Speculatively executed.

 0x80C7 FP_DP_FIXED_OPS_SPEC Non-scalable double-precision floating-point element arithmetic
operations Speculatively executed.

 0x80C8 INT_SCALE_OPS_SPEC Scalable integer element arithmetic operations Speculatively
executed.

 0x80C9 INT_FIXED_OPS_SPEC Non-scalable integer element arithmetic operations Speculatively
executed.

 0x80CA LDST_SCALE_OPS_SPEC Scalable load or store element Operation speculatively executed.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6911
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x80CB LDST_FIXED_OPS_SPEC Non-scalable load or store element Operation speculatively
executed.

 0x80CC LD_SCALE_OPS_SPEC Scalable load element Operation speculatively executed.

 0x80CD LD_FIXED_OPS_SPEC Non-scalable load element Operation speculatively executed.

 0x80CE ST_SCALE_OPS_SPEC Scalable store element Operation speculatively executed.

 0x80CF ST_FIXED_OPS_SPEC Non-scalable store element Operation speculatively executed.

 0x80DA LDST_SCALE_BYTES_SPEC Scalable load and store bytes Speculatively executed.

 0x80DB LDST_FIXED_BYTES_SPEC Non-scalable load and store bytes Speculatively executed.

 0x80DC LD_SCALE_BYTES_SPEC Scalable load bytes Speculatively executed.

 0x80DD LD_FIXED_BYTES_SPEC Non-scalable load bytes Speculatively executed.

 0x80DE ST_SCALE_BYTES_SPEC Scalable store bytes Speculatively executed.

 0x80DF ST_FIXED_BYTES_SPEC Non-scalable store bytes Speculatively executed.

 0x80E1 ASE_INT8_SPEC Integer Operation speculatively executed, Advanced SIMD 8-bit.

 0x80E2 SVE_INT8_SPEC Integer Operation speculatively executed, SVE 8-bit.

 0x80E3 ASE_SVE_INT8_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE 8-bit.

 0x80E5 ASE_INT16_SPEC Integer Operation speculatively executed, Advanced SIMD
16-bit.

 0x80E6 SVE_INT16_SPEC Integer Operation speculatively executed, SVE 16-bit.

 0x80E7 ASE_SVE_INT16_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE 16-bit.

 0x80E9 ASE_INT32_SPEC Integer Operation speculatively executed, Advanced SIMD
32-bit.

 0x80EA SVE_INT32_SPEC Integer Operation speculatively executed, SVE 32-bit.

 0x80EB ASE_SVE_INT32_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE 32-bit.

 0x80ED ASE_INT64_SPEC Integer Operation speculatively executed, Advanced SIMD
64-bit.

 0x80EE SVE_INT64_SPEC Integer Operation speculatively executed, SVE 64-bit.

 0x80EF ASE_SVE_INT64_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE 64-bit.

 0x80F1 ASE_FP_DOT_SPEC Floating-point Operation speculatively executed, Advanced
SIMD dot-product.

 0x80F2 SVE_FP_DOT_SPEC Floating-point Operation speculatively executed, SVE
dot-product.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6912
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x80F3 ASE_SVE_FP_DOT_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE dot-product.

 0x80F5 ASE_FP_MMLA_SPEC Floating-point Operation speculatively executed, Advanced
SIMD matrix multiply.

 0x80F6 SVE_FP_MMLA_SPEC Floating-point Operation speculatively executed, SVE matrix
multiply.

 0x80F7 ASE_SVE_FP_MMLA_SPEC Floating-point Operation speculatively executed, Advanced
SIMD or SVE matrix multiply.

 0x80F9 ASE_INT_DOT_SPEC Operation speculatively executed, Advanced SIMD integer
dot-product.

 0x80FA SVE_INT_DOT_SPEC Integer Operation speculatively executed, SVE dot-product.

 0x80FB ASE_SVE_INT_DOT_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE dot-product.

 0x80FD ASE_INT_MMLA_SPEC Integer Operation speculatively executed, Advanced SIMD
matrix multiply.

 0x80FE SVE_INT_MMLA_SPEC Integer Operation speculatively executed, SVE matrix multiply.

 0x80FF ASE_SVE_INT_MMLA_SPEC Integer Operation speculatively executed, Advanced SIMD or
SVE matrix multiply.

 0x8107 BR_SKIP_RETIRED Branch Instruction architecturally executed, not taken.

 0x8108 BR_IMMED_TAKEN_RETIRED Branch Instruction architecturally executed, immediate, taken.

 0x8109 BR_IMMED_SKIP_RETIRED Branch Instruction architecturally executed, immediate, not
taken.

 0x810A BR_IND_TAKEN_RETIRED Branch Instruction architecturally executed, indirect, taken.

 0x810B BR_IND_SKIP_RETIRED Branch Instruction architecturally executed, indirect, not taken.

 0x810C BR_INDNR_TAKEN_RETIRED Branch Instruction architecturally executed, indirect excluding
procedure return, taken.

 0x810D BR_INDNR_SKIP_RETIRED Branch Instruction architecturally executed, indirect excluding
procedure return, not taken.

 0x810E BR_RETURN_ANY_RETIRED Branch Instruction architecturally executed, procedure return.

 0x810F BR_RETURN_SKIP_RETIRED Branch Instruction architecturally executed, procedure return, not
taken.

 0x8110 BR_IMMED_PRED_RETIRED Branch Instruction architecturally executed, predicted immediate.

 0x8111 BR_IMMED_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted
immediate.

 0x8112 BR_IND_PRED_RETIRED Branch Instruction architecturally executed, predicted indirect.

 0x8113 BR_IND_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted
indirect.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6913
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8114 BR_RETURN_PRED_RETIRED Branch Instruction architecturally executed, predicted procedure
return.

 0x8115 BR_RETURN_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted
procedure return.

 0x8116 BR_INDNR_PRED_RETIRED Branch Instruction architecturally executed, predicted indirect
excluding procedure return.

 0x8117 BR_INDNR_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted indirect
excluding procedure return.

 0x8118 BR_TAKEN_PRED_RETIRED Branch Instruction architecturally executed, predicted branch,
taken.

 0x8119 BR_TAKEN_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted branch,
taken.

 0x811A BR_SKIP_PRED_RETIRED Branch Instruction architecturally executed, predicted branch, not
taken.

 0x811B BR_SKIP_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted branch,
not taken.

 0x811C BR_PRED_RETIRED Branch Instruction architecturally executed, predicted branch.

 0x811D BR_IND_RETIRED Instruction architecturally executed, indirect branch.

 0x811E BR_INDNR_RETIRED Branch Instruction architecturally executed, indirect excluding
procedure return.

 0x811F BRB_FILTRATE Branch Record captured.

 0x8120 INST_FETCH_PERCYC Instruction fetches in progress.

 0x8121 MEM_ACCESS_RD_PERCYC Data memory reads in progress.

 0x8122 SAMPLE_FEED_DS Statistical Profiling sample taken, selected Data Source.

 0x8123 SAMPLE_BUFFER_FULL Profiling Buffer full.

 0x8124 INST_FETCH Instruction memory access.

 0x8125 BUS_REQ_RD_PERCYC Bus read transactions in progress.

 0x8126 BUS_REQ_WR_PERCYC Bus write transactions in progress.

 0x8127 PMU_SNAPSHOT Successful PMU capture event.

 0x8128 DTLB_WALK_PERCYC Data translation table walks in progress.

 0x8129 ITLB_WALK_PERCYC Instruction translation table walks in progress.

 0x812A SAMPLE_FEED_BR Statistical Profiling sample taken, branch.

 0x812B SAMPLE_FEED_LD Statistical Profiling sample taken, load.

 0x812C SAMPLE_FEED_ST Statistical Profiling sample taken, store.

 0x812D SAMPLE_FEED_OP Statistical Profiling sample taken, matching operation type.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6914
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x812E SAMPLE_FEED_EVENT Statistical Profiling sample taken, matching events.

 0x812F SAMPLE_FEED_LAT Statistical Profiling sample taken, exceeding minimum latency.

 0x8130 L1D_TLB_RW Level 1 data TLB access, demand access.

 0x8131 L1I_TLB_RD Level 1 instruction TLB access, demand access.

 0x8132 L1D_TLB_PRFM Level 1 data TLB access, software preload.

 0x8133 L1I_TLB_PRFM Level 1 instruction TLB access, software preload.

 0x8134 DTLB_HWUPD Data TLB hardware update of translation table.

 0x8135 ITLB_HWUPD Instruction TLB hardware update of translation table.

 0x8136 DTLB_STEP Data TLB translation table walk, step.

 0x8137 ITLB_STEP Instruction TLB translation table walk, step.

 0x8138 DTLB_WALK_LARGE Data TLB large page translation table walk.

 0x8139 ITLB_WALK_LARGE Instruction TLB large page translation table walk.

 0x813A DTLB_WALK_SMALL Data TLB small page translation table walk.

 0x813B ITLB_WALK_SMALL Instruction TLB small page translation table walk.

 0x813C DTLB_WALK_RW Data TLB demand access, with at least one translation table walk.

 0x813D ITLB_WALK_RD Instruction TLB demand access, with at least one translation table
walk.

 0x813E DTLB_WALK_PRFM Data TLB software preload, with at least one translation table
walk.

 0x813F ITLB_WALK_PRFM Instruction TLB software preload, with at least one translation
table walk.

 0x8140 L1D_CACHE_RW Level 1 data cache demand access.

 0x8141 L1I_CACHE_RD Level 1 instruction cache demand fetch.

 0x8142 L1D_CACHE_PRFM Level 1 data cache software preload.

 0x8143 L1I_CACHE_PRFM Level 1 instruction cache software preload.

 0x8144 L1D_CACHE_MISS Level 1 data cache demand access miss.

 0x8145 L1I_CACHE_HWPRF Level 1 instruction cache hardware prefetch.

 0x8146 L1D_CACHE_REFILL_PRFM Level 1 data cache refill, software preload.

 0x8147 L1I_CACHE_REFILL_PRFM Level 1 instruction cache refill, software preload.

 0x8148 L2D_CACHE_RW Level 2 data cache demand access.

 0x8149 L2I_CACHE_RD Level 2 instruction cache demand fetch.

 0x814A L2D_CACHE_PRFM Level 2 data cache software preload.

 0x814B L2I_CACHE_PRFM Level 2 instruction cache software preload.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6915
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x814C L2D_CACHE_MISS Level 2 data cache demand access miss.

 0x814D L2I_CACHE_HWPRF Level 2 instruction cache hardware prefetch.

 0x814E L2D_CACHE_REFILL_PRFM Level 2 data cache refill, software preload.

 0x814F L2I_CACHE_REFILL_PRFM Level 2 instruction cache refill, software preload.

 0x8150 L3D_CACHE_RW Level 3 data cache demand access.

 0x8151 L3D_CACHE_PRFM Level 3 data cache software preload.

 0x8152 L3D_CACHE_MISS Level 3 data cache demand access miss.

 0x8153 L3D_CACHE_REFILL_PRFM Level 3 data cache refill, software preload.

 0x8154 L1D_CACHE_HWPRF Level 1 data cache hardware prefetch.

 0x8155 L2D_CACHE_HWPRF Level 2 data cache hardware prefetch.

 0x8156 L3D_CACHE_HWPRF Level 3 data cache hardware prefetch.

 0x8157 LL_CACHE_HWPRF Last level cache hardware prefetch.

 0x8158 STALL_FRONTEND_MEMBOUND Frontend stall cycles, memory bound.

 0x8159 STALL_FRONTEND_L1I Frontend stall cycles, level 1 instruction cache.

 0x815A STALL_FRONTEND_L2I Frontend stall cycles, level 2 instruction cache.

 0x815B STALL_FRONTEND_MEM Frontend stall cycles, last level PE cache or memory.

 0x815C STALL_FRONTEND_TLB Frontend stall cycles, TLB.

 0x8160 STALL_FRONTEND_CPUBOUND Frontend stall cycles, processor bound.

 0x8161 STALL_FRONTEND_FLOW Frontend stall cycles, flow control.

 0x8162 STALL_FRONTEND_FLUSH Frontend stall cycles, flush recovery.

 0x8163 STALL_FRONTEND_RENAME Frontend stall cycles, rename full.

 0x8164 STALL_BACKEND_MEMBOUND Backend stall cycles, memory bound.

 0x8165 STALL_BACKEND_L1D Backend stall cycles, level 1 data cache.

 0x8166 STALL_BACKEND_L2D Backend stall cycles, level 2 data cache.

 0x8167 STALL_BACKEND_TLB Backend stall cycles, TLB.

 0x8168 STALL_BACKEND_ST Backend stall cycles, store.

 0x816A STALL_BACKEND_CPUBOUND Backend stall cycles, processor bound.

 0x816B STALL_BACKEND_BUSY Backend stall cycles, backend busy.

 0x816C STALL_BACKEND_ILOCK Backend stall cycles, input dependency.

 0x816D STALL_BACKEND_RENAME Backend stall cycles, rename full.

 0x816E STALL_BACKEND_ATOMIC Backend stall cycles, atomic operation.

 0x816F STALL_BACKEND_MEMCPYSET Backend stall cycles, Memory Copy or Set operation.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6916
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8170 CAS_NEAR_FAIL Atomic memory Operation speculatively executed, Compare and
Swap fail.

 0x8171 CAS_NEAR_PASS Atomic memory Operation speculatively executed, Compare and
Swap pass.

 0x8172 CAS_NEAR_SPEC Atomic memory Operation speculatively executed, Compare and
Swap near.

 0x8173 CAS_FAR_SPEC Atomic memory Operation speculatively executed, Compare and
Swap far.

 0x8174 CAS_SPEC Atomic memory Operation speculatively executed, Compare and
Swap.

 0x8175 LSE_LD_SPEC Atomic memory Operation speculatively executed, load.

 0x8176 LSE_ST_SPEC Atomic memory Operation speculatively executed, store.

 0x8177 LSE_LDST_SPEC Atomic memory Operation speculatively executed, load or store.

 0x8178 REMOTE_ACCESS_WR Access to a remote device, write.

 0x8179 BRNL_INDNR_TAKEN_RETIRED Branch Instruction architecturally executed, indirect branch
without link excluding procedure return, taken.

 0x817A BL_TAKEN_RETIRED Branch Instruction architecturally executed, branch with link,
taken.

 0x817B BRNL_TAKEN_RETIRED Branch Instruction architecturally executed, branch without link,
taken.

 0x817C BL_IND_TAKEN_RETIRED Branch Instruction architecturally executed, indirect branch with
link, taken.

 0x817D BRNL_IND_TAKEN_RETIRED Branch Instruction architecturally executed, indirect branch
without link, taken.

 0x817E BL_IMMED_TAKEN_RETIRED Branch Instruction architecturally executed, direct branch with
link, taken.

 0x817F BRNL_IMMED_TAKEN_RETIRED Branch Instruction architecturally executed, direct branch without
link, taken.

 0x8180 BR_UNCOND_RETIRED Branch Instruction architecturally executed, unconditional
branch.

 0x8181 BR_COND_RETIRED Branch Instruction architecturally executed, conditional branch.

 0x8182 BR_COND_TAKEN_RETIRED Branch Instruction architecturally executed, conditional branch,
taken.

 0x8183 BR_HINT_COND_RETIRED Branch Instruction architecturally executed, hinted conditional.

 0x8184 BR_HINT_COND_PRED_RETIRED Branch Instruction architecturally executed, predicted hinted
conditional.

 0x8185 BR_HINT_COND_MIS_PRED_RETIRED Branch Instruction architecturally executed, mispredicted hinted
conditional.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6917
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8186 UOP_RETIRED Micro-operation architecturally executed.

 0x8188 DTLB_WALK_BLOCK Data TLB block translation table walk.

 0x8189 ITLB_WALK_BLOCK Instruction TLB block translation table walk.

 0x818A DTLB_WALK_PAGE Data TLB page translation table walk.

 0x818B ITLB_WALK_PAGE Instruction TLB page translation table walk.

 0x818D BUS_REQ_RD Bus request, read.

 0x818E BUS_REQ_WR Bus request, write.

 0x818F BUS_REQ Bus request.

 0x8190 ISNP_HIT_RD Snoop hit, demand instruction fetch.

 0x8191 ISNP_HIT_NEAR_RD Snoop hit in near local cache, demand instruction fetch.

 0x8192 ISNP_HIT_FAR_RD Snoop hit in far local cache, demand instruction fetch.

 0x8193 ISNP_HIT_REMOTE_RD Snoop hit in remote cache, demand instruction fetch.

 0x8194 DSNP_HIT_RD Snoop hit, demand data read.

 0x8195 DSNP_HIT_NEAR_RD Snoop hit in near local cache, demand data read.

 0x8196 DSNP_HIT_FAR_RD Snoop hit in far local cache, demand data read.

 0x8197 DSNP_HIT_REMOTE_RD Snoop hit in remote cache, demand data read.

 0x8198 DSNP_HIT_WR Snoop hit, demand data write.

 0x8199 DSNP_HIT_NEAR_WR Snoop hit in near local cache, demand data write.

 0x819A DSNP_HIT_FAR_WR Snoop hit in far local cache, demand data write.

 0x819B DSNP_HIT_REMOTE_WR Snoop hit in remote cache, demand data write.

 0x819C DSNP_HIT_RW Snoop hit, demand data access.

 0x819D DSNP_HIT_NEAR_RW Snoop hit in near local cache, demand data access.

 0x819E DSNP_HIT_FAR_RW Snoop hit in far local cache, demand data access.

 0x819F DSNP_HIT_REMOTE_RW Snoop hit in remote cache, demand data access.

 0x81A0 DSNP_HIT_PRFM Snoop hit, software data preload.

 0x81A1 DSNP_HIT_NEAR_PRFM Snoop hit in near local cache, software data preload.

 0x81A2 DSNP_HIT_FAR_PRFM Snoop hit in far local cache, software data preload.

 0x81A3 DSNP_HIT_REMOTE_PRFM Snoop hit in remote cache, software data preload.

 0x81A4 DSNP_HIT_HWPRF Snoop hit, hardware data prefetch.

 0x81A5 DSNP_HIT_NEAR_HWPRF Snoop hit in near local cache, hardware data prefetch.

 0x81A6 DSNP_HIT_FAR_HWPRF Snoop hit in far local cache, hardware data prefetch.

 0x81A7 DSNP_HIT_REMOTE_HWPRF Snoop hit in remote cache, hardware data prefetch.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6918
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x81A8 ISNP_HIT_PRFM Snoop hit, software instruction preload.

 0x81A9 ISNP_HIT_NEAR_PRFM Snoop hit in near local cache, software instruction preload.

 0x81AA ISNP_HIT_FAR_PRFM Snoop hit in far local cache, software instruction preload.

 0x81AB ISNP_HIT_REMOTE_PRFM Snoop hit in remote cache, software instruction preload.

 0x81AC ISNP_HIT_HWPRF Snoop hit, hardware instruction prefetch.

 0x81AD ISNP_HIT_NEAR_HWPRF Snoop hit in near local cache, hardware instruction prefetch.

 0x81AE ISNP_HIT_FAR_HWPRF Snoop hit in far local cache, hardware instruction prefetch.

 0x81AF ISNP_HIT_REMOTE_HWPRF Snoop hit in remote cache, hardware instruction prefetch.

 0x81B0 ISNP_HIT Snoop hit, instruction.

 0x81B1 ISNP_HIT_NEAR Snoop hit in near local cache, instruction access.

 0x81B2 ISNP_HIT_FAR Snoop hit in far local cache, instruction access.

 0x81B3 ISNP_HIT_REMOTE Snoop hit in remote cache, instruction access.

 0x81B4 DSNP_HIT Snoop hit, data.

 0x81B5 DSNP_HIT_NEAR Snoop hit in near local cache, data access.

 0x81B6 DSNP_HIT_FAR Snoop hit in far local cache, data access.

 0x81B7 DSNP_HIT_REMOTE Snoop hit in remote cache, data access.

 0x81B8 L1I_CACHE_REFILL_HWPRF Level 1 instruction cache refill, hardware prefetch.

 0x81B9 L2I_CACHE_REFILL_HWPRF Level 2 instruction cache refill, hardware prefetch.

 0x81BC L1D_CACHE_REFILL_HWPRF Level 1 data cache refill, hardware prefetch.

 0x81BD L2D_CACHE_REFILL_HWPRF Level 2 data cache refill, hardware prefetch.

 0x81BE L3D_CACHE_REFILL_HWPRF Level 3 data cache refill, hardware prefetch.

 0x81BF LL_CACHE_REFILL_HWPRF Last level cache refill, hardware prefetch.

 0x81C0 L1I_CACHE_HIT_RD Level 1 instruction cache demand fetch hit.

 0x81C1 L2I_CACHE_HIT_RD Level 2 instruction cache demand fetch hit.

 0x81C4 L1D_CACHE_HIT_RD Level 1 data cache demand access hit, read.

 0x81C5 L2D_CACHE_HIT_RD Level 2 data cache demand access hit, read.

 0x81C6 L3D_CACHE_HIT_RD Level 3 data cache demand access hit, read.

 0x81C7 LL_CACHE_HIT_RD Last level cache demand access hit, read.

 0x81C8 L1D_CACHE_HIT_WR Level 1 data cache demand access hit, write.

 0x81C9 L2D_CACHE_HIT_WR Level 2 data cache demand access hit, write.

 0x81CA L3D_CACHE_HIT_WR Level 3 data cache demand access hit, write.

 0x81CB LL_CACHE_HIT_WR Last level cache demand access hit, write.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6919
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x81CC L1D_CACHE_HIT_RW Level 1 data cache demand access hit.

 0x81CD L2D_CACHE_HIT_RW Level 2 data cache demand access hit.

 0x81CE L3D_CACHE_HIT_RW Level 3 data cache demand access hit.

 0x81CF LL_CACHE_HIT_RW Last level cache demand access hit.

 0x81D0 L1I_CACHE_HIT_RD_FPRFM Level 1 instruction cache demand fetch first hit, fetched by
software preload.

 0x81D1 L2I_CACHE_HIT_RD_FPRFM Level 2 instruction cache demand fetch first hit, fetched by
software preload.

 0x81D4 L1D_CACHE_HIT_RD_FPRFM Level 1 data cache demand access first hit, read, fetched by
software preload.

 0x81D5 L2D_CACHE_HIT_RD_FPRFM Level 2 data cache demand access first hit, read, fetched by
software preload.

 0x81D6 L3D_CACHE_HIT_RD_FPRFM Level 3 data cache demand access first hit, read, fetched by
software preload.

 0x81D7 LL_CACHE_HIT_RD_FPRFM Last level cache demand access first hit, read, fetched by software
preload.

 0x81D8 L1D_CACHE_HIT_WR_FPRFM Level 1 data cache demand access first hit, write, fetched by
software preload.

 0x81D9 L2D_CACHE_HIT_WR_FPRFM Level 2 data cache demand access first hit, write, fetched by
software preload.

 0x81DA L3D_CACHE_HIT_WR_FPRFM Level 3 data cache demand access first hit, write, fetched by
software preload.

 0x81DB LL_CACHE_HIT_WR_FPRFM Last level cache demand access first hit, write, fetched by
software preload.

 0x81DC L1D_CACHE_HIT_RW_FPRFM Level 1 data cache demand access first hit, fetched by software
preload.

 0x81DD L2D_CACHE_HIT_RW_FPRFM Level 2 data cache demand access first hit, fetched by software
preload.

 0x81DE L3D_CACHE_HIT_RW_FPRFM Level 3 data cache demand access first hit, fetched by software
preload.

 0x81DF LL_CACHE_HIT_RW_FPRFM Last level cache demand access first hit, fetched by software
preload.

 0x81E0 L1I_CACHE_HIT_RD_FHWPRF Level 1 instruction cache demand fetch first hit, fetched by
hardware prefetcher.

 0x81E1 L2I_CACHE_HIT_RD_FHWPRF Level 2 instruction cache demand fetch first hit, fetched by
hardware prefetcher.

 0x81E4 L1D_CACHE_HIT_RD_FHWPRF Level 1 data cache demand access first hit, read, fetched by
hardware prefetcher.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6920
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x81E5 L2D_CACHE_HIT_RD_FHWPRF Level 2 data cache demand access first hit, read, fetched by
hardware prefetcher.

 0x81E6 L3D_CACHE_HIT_RD_FHWPRF Level 3 data cache demand access first hit, read, fetched by
hardware prefetcher.

 0x81E7 LL_CACHE_HIT_RD_FHWPRF Last level cache demand access first hit, read, fetched by
hardware prefetcher.

 0x81E8 L1D_CACHE_HIT_WR_FHWPRF Level 1 data cache demand access first hit, write, fetched by
hardware prefetcher.

 0x81E9 L2D_CACHE_HIT_WR_FHWPRF Level 2 data cache demand access first hit, write, fetched by
hardware prefetcher.

 0x81EA L3D_CACHE_HIT_WR_FHWPRF Level 3 data cache demand access first hit, write, fetched by
hardware prefetcher.

 0x81EB LL_CACHE_HIT_WR_FHWPRF Last level cache demand access first hit, write, fetched by
hardware prefetcher.

 0x81EC L1D_CACHE_HIT_RW_FHWPRF Level 1 data cache demand access first hit, fetched by hardware
prefetcher.

 0x81ED L2D_CACHE_HIT_RW_FHWPRF Level 2 data cache demand access first hit, fetched by hardware
prefetcher.

 0x81EE L3D_CACHE_HIT_RW_FHWPRF Level 3 data cache demand access first hit, fetched by hardware
prefetcher.

 0x81EF LL_CACHE_HIT_RW_FHWPRF Last level cache demand access first hit, fetched by hardware
prefetcher.

 0x81F0 L1I_CACHE_HIT_RD_FPRF Level 1 instruction cache demand fetch first hit, fetched by
preload or prefetch.

 0x81F1 L2I_CACHE_HIT_RD_FPRF Level 2 instruction cache demand fetch first hit, fetched by
preload or prefetch.

 0x81F4 L1D_CACHE_HIT_RD_FPRF Level 1 data cache demand access first hit, read, fetched by
preload or prefetch.

 0x81F5 L2D_CACHE_HIT_RD_FPRF Level 2 data cache demand access first hit, read, fetched by
preload or prefetch.

 0x81F6 L3D_CACHE_HIT_RD_FPRF Level 3 data cache demand access first hit, read, fetched by
preload or prefetch.

 0x81F7 LL_CACHE_HIT_RD_FPRF Last level cache demand access first hit, read, fetched by preload
or prefetch.

 0x81F8 L1D_CACHE_HIT_WR_FPRF Level 1 data cache demand access first hit, write, fetched by
preload or prefetch.

 0x81F9 L2D_CACHE_HIT_WR_FPRF Level 2 data cache demand access first hit, write, fetched by
preload or prefetch.

 0x81FA L3D_CACHE_HIT_WR_FPRF Level 3 data cache demand access first hit, write, fetched by
preload or prefetch.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6921
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x81FB LL_CACHE_HIT_WR_FPRF Last level cache demand access first hit, write, fetched by preload
or prefetch.

 0x81FC L1D_CACHE_HIT_RW_FPRF Level 1 data cache demand access first hit, fetched by preload or
prefetch.

 0x81FD L2D_CACHE_HIT_RW_FPRF Level 2 data cache demand access first hit, fetched by preload or
prefetch.

 0x81FE L3D_CACHE_HIT_RW_FPRF Level 3 data cache demand access first hit, fetched by preload or
prefetch.

 0x81FF LL_CACHE_HIT_RW_FPRF Last level cache demand access first hit, fetched by preload or
prefetch.

 0x8200 L1I_CACHE_HIT Level 1 instruction cache hit.

 0x8201 L2I_CACHE_HIT Level 2 instruction cache hit.

 0x8204 L1D_CACHE_HIT Level 1 data cache hit.

 0x8205 L2D_CACHE_HIT Level 2 data cache hit.

 0x8206 L3D_CACHE_HIT Level 3 data cache hit.

 0x8207 LL_CACHE_HIT Last level cache hit.

 0x8208 L1I_CACHE_HIT_PRFM Level 1 instruction cache software preload hit.

 0x8209 L2I_CACHE_HIT_PRFM Level 2 instruction cache software preload hit.

 0x820C L1D_CACHE_HIT_PRFM Level 1 data cache software preload hit.

 0x820D L2D_CACHE_HIT_PRFM Level 2 data cache software preload hit.

 0x820E L3D_CACHE_HIT_PRFM Level 3 data cache software preload hit.

 0x820F LL_CACHE_HIT_PRFM Last level cache software preload hit.

 0x8214 L1D_CACHE_HITM_RD Level 1 data cache demand access hit modified, read.

 0x8215 L2D_CACHE_HITM_RD Level 2 data cache demand access hit modified, read.

 0x8216 L3D_CACHE_HITM_RD Level 3 data cache demand access hit modified, read.

 0x8217 LL_CACHE_HITM_RD Last level cache demand access hit modified, read.

 0x8218 L1D_CACHE_HITM_WR Level 1 data cache demand access hit modified, write.

 0x8219 L2D_CACHE_HITM_WR Level 2 data cache demand access hit modified, write.

 0x821A L3D_CACHE_HITM_WR Level 3 data cache demand access hit modified, write.

 0x821B LL_CACHE_HITM_WR Last level cache demand access hit modified, write.

 0x821C L1D_CACHE_HITM_RW Level 1 data cache demand access hit modified.

 0x821D L2D_CACHE_HITM_RW Level 2 data cache demand access hit modified.

 0x821E L3D_CACHE_HITM_RW Level 3 data cache demand access hit modified.

 0x821F LL_CACHE_HITM_RW Last level cache demand access hit modified.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6922
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8224 DSNP_HITM_RD Snoop hit, demand data read, modified.

 0x8225 DSNP_HITM_NEAR_RD Snoop hit in near local cache, demand data read, modified.

 0x8226 DSNP_HITM_FAR_RD Snoop hit in far local cache, demand data read, modified.

 0x8227 DSNP_HITM_REMOTE_RD Snoop hit in remote cache, demand data read, modified.

 0x8228 DSNP_HITM_WR Snoop hit, demand data write, modified.

 0x8229 DSNP_HITM_NEAR_WR Snoop hit in near local cache, demand data write, modified.

 0x822A DSNP_HITM_FAR_WR Snoop hit in far local cache, demand data write, modified.

 0x822B DSNP_HITM_REMOTE_WR Snoop hit in remote cache, demand data write, modified.

 0x822C DSNP_HITM_RW Snoop hit, demand data access, modified.

 0x822D DSNP_HITM_NEAR_RW Snoop hit in near local cache, demand data access, modified.

 0x822E DSNP_HITM_FAR_RW Snoop hit in far local cache, demand data access, modified.

 0x822F DSNP_HITM_REMOTE_RW Snoop hit in remote cache, demand data access, modified.

 0x8230 LOCAL_MEM Access to memory attached to this device.

 0x8231 LOCAL_MEM_RD Access to memory attached to this device, demand access, read.

 0x8232 LOCAL_MEM_WR Access to memory attached to this device, demand access, write.

 0x8233 LOCAL_MEM_RW Access to memory attached to this device, demand access.

 0x8234 LOCAL_MEM_PRFM Access to memory attached to this device, software preload.

 0x8235 LOCAL_MEM_LD_RETIRED Load Instruction architecturally executed, access to memory
attached to this device.

 0x8236 LOCAL_MEM_ST_RETIRED Store Instruction architecturally executed, access to memory
attached to this device.

 0x8237 LOCAL_MEM_LDST_RETIRED Load or store Instruction architecturally executed, access to
memory attached to this device.

 0x8238 REMOTE_MEM Access to memory attached to a remote device.

 0x8239 REMOTE_MEM_RD Access to memory attached to a remote device, demand access,
read.

 0x823A REMOTE_MEM_WR Access to memory attached to a remote device, demand access,
write.

 0x823B REMOTE_MEM_RW Access to memory attached to a remote device, demand access.

 0x823C REMOTE_MEM_PRFM Access to memory attached to a remote device, software preload.

 0x823D REMOTE_MEM_LD_RETIRED Load Instruction architecturally executed, access to memory
attached to a remote device.

 0x823E REMOTE_MEM_ST_RETIRED Store Instruction architecturally executed, access to memory
attached to a remote device.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6923
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x823F REMOTE_MEM_LDST_RETIRED Load or store Instruction architecturally executed, access to
memory attached to a remote device.

 0x8240 L1I_LFB_HIT_RD Level 1 instruction cache demand fetch line-fill buffer hit.

 0x8241 L2I_LFB_HIT_RD Level 2 instruction cache demand fetch line-fill buffer hit.

 0x8244 L1D_LFB_HIT_RD Level 1 data cache demand access line-fill buffer hit, read.

 0x8245 L2D_LFB_HIT_RD Level 2 data cache demand access line-fill buffer hit, read.

 0x8246 L3D_LFB_HIT_RD Level 3 data cache demand access line-fill buffer hit, read.

 0x8247 LL_LFB_HIT_RD Last level cache demand access line-fill buffer hit, read.

 0x8248 L1D_LFB_HIT_WR Level 1 data cache demand access line-fill buffer hit, write.

 0x8249 L2D_LFB_HIT_WR Level 2 data cache demand access line-fill buffer hit, write.

 0x824A L3D_LFB_HIT_WR Level 3 data cache demand access line-fill buffer hit, write.

 0x824B LL_LFB_HIT_WR Last level cache demand access line-fill buffer hit, write.

 0x824C L1D_LFB_HIT_RW Level 1 data cache demand access line-fill buffer hit.

 0x824D L2D_LFB_HIT_RW Level 2 data cache demand access line-fill buffer hit.

 0x824E L3D_LFB_HIT_RW Level 3 data cache demand access line-fill buffer hit.

 0x824F LL_LFB_HIT_RW Last level cache demand access line-fill buffer hit.

 0x8250 L1I_LFB_HIT_RD_FPRFM Level 1 instruction cache demand fetch line-fill buffer first hit,
recently fetched by software preload.

 0x8251 L2I_LFB_HIT_RD_FPRFM Level 2 instruction cache demand fetch line-fill buffer first hit,
recently fetched by software preload.

 0x8254 L1D_LFB_HIT_RD_FPRFM Level 1 data cache demand access line-fill buffer first hit, read,
recently fetched by software preload.

 0x8255 L2D_LFB_HIT_RD_FPRFM Level 2 data cache demand access line-fill buffer first hit, read,
recently fetched by software preload.

 0x8256 L3D_LFB_HIT_RD_FPRFM Level 3 data cache demand access line-fill buffer first hit, read,
recently fetched by software preload.

 0x8257 LL_LFB_HIT_RD_FPRFM Last level cache demand access line-fill buffer first hit, read,
recently fetched by software preload.

 0x8258 L1D_LFB_HIT_WR_FPRFM Level 1 data cache demand access line-fill buffer first hit, write,
recently fetched by software preload.

 0x8259 L2D_LFB_HIT_WR_FPRFM Level 2 data cache demand access line-fill buffer first hit, write,
recently fetched by software preload.

 0x825A L3D_LFB_HIT_WR_FPRFM Level 3 data cache demand access line-fill buffer first hit, write,
recently fetched by software preload.

 0x825B LL_LFB_HIT_WR_FPRFM Last level cache demand access line-fill buffer first hit, write,
recently fetched by software preload.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6924
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x825C L1D_LFB_HIT_RW_FPRFM Level 1 data cache demand access line-fill buffer first hit, recently
fetched by software preload.

 0x825D L2D_LFB_HIT_RW_FPRFM Level 2 data cache demand access line-fill buffer first hit, recently
fetched by software preload.

 0x825E L3D_LFB_HIT_RW_FPRFM Level 3 data cache demand access line-fill buffer first hit, recently
fetched by software preload.

 0x825F LL_LFB_HIT_RW_FPRFM Last level cache demand access line-fill buffer first hit, recently
fetched by software preload.

 0x8260 L1I_LFB_HIT_RD_FHWPRF Level 1 instruction cache demand fetch line-fill buffer first hit,
recently fetched by hardware prefetcher.

 0x8261 L2I_LFB_HIT_RD_FHWPRF Level 2 instruction cache demand fetch line-fill buffer first hit,
recently fetched by hardware prefetcher.

 0x8264 L1D_LFB_HIT_RD_FHWPRF Level 1 data cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher.

 0x8265 L2D_LFB_HIT_RD_FHWPRF Level 2 data cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher.

 0x8266 L3D_LFB_HIT_RD_FHWPRF Level 3 data cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher.

 0x8267 LL_LFB_HIT_RD_FHWPRF Last level cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher.

 0x8268 L1D_LFB_HIT_WR_FHWPRF Level 1 data cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher.

 0x8269 L2D_LFB_HIT_WR_FHWPRF Level 2 data cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher.

 0x826A L3D_LFB_HIT_WR_FHWPRF Level 3 data cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher.

 0x826B LL_LFB_HIT_WR_FHWPRF Last level cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher.

 0x826C L1D_LFB_HIT_RW_FHWPRF Level 1 data cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher.

 0x826D L2D_LFB_HIT_RW_FHWPRF Level 2 data cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher.

 0x826E L3D_LFB_HIT_RW_FHWPRF Level 3 data cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher.

 0x826F LL_LFB_HIT_RW_FHWPRF Last level cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher.

 0x8270 L1I_LFB_HIT_RD_FPRF Level 1 instruction cache demand fetch line-fill buffer first hit,
recently fetched by preload or prefetch.

 0x8271 L2I_LFB_HIT_RD_FPRF Level 2 instruction cache demand fetch line-fill buffer first hit,
recently fetched by preload or prefetch.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6925
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8274 L1D_LFB_HIT_RD_FPRF Level 1 data cache demand access line-fill buffer first hit, read,
recently fetched by preload or prefetch.

 0x8275 L2D_LFB_HIT_RD_FPRF Level 2 data cache demand access line-fill buffer first hit, read,
recently fetched by preload or prefetch.

 0x8276 L3D_LFB_HIT_RD_FPRF Level 3 data cache demand access line-fill buffer first hit, read,
recently fetched by preload or prefetch.

 0x8277 LL_LFB_HIT_RD_FPRF Last level cache demand access line-fill buffer first hit, read,
recently fetched by preload or prefetch.

 0x8278 L1D_LFB_HIT_WR_FPRF Level 1 data cache demand access line-fill buffer first hit, write,
recently fetched by preload or prefetch.

 0x8279 L2D_LFB_HIT_WR_FPRF Level 2 data cache demand access line-fill buffer first hit, write,
recently fetched by preload or prefetch.

 0x827A L3D_LFB_HIT_WR_FPRF Level 3 data cache demand access line-fill buffer first hit, write,
recently fetched by preload or prefetch.

 0x827B LL_LFB_HIT_WR_FPRF Last level cache demand access line-fill buffer first hit, write,
recently fetched by preload or prefetch.

 0x827C L1D_LFB_HIT_RW_FPRF Level 1 data cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch.

 0x827D L2D_LFB_HIT_RW_FPRF Level 2 data cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch.

 0x827E L3D_LFB_HIT_RW_FPRF Level 3 data cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch.

 0x827F LL_LFB_HIT_RW_FPRF Last level cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch.

 0x8280 L1I_CACHE_PRF Level 1 instruction cache, preload or prefetch hit.

 0x8281 L2I_CACHE_PRF Level 2 instruction cache, preload or prefetch hit.

 0x8284 L1D_CACHE_PRF Level 1 data cache, preload or prefetch hit.

 0x8285 L2D_CACHE_PRF Level 2 data cache, preload or prefetch hit.

 0x8286 L3D_CACHE_PRF Level 3 data cache, preload or prefetch hit.

 0x8287 LL_CACHE_PRF Last level cache, preload or prefetch hit.

 0x8288 L1I_CACHE_REFILL_PRF Level 1 instruction cache refill, preload or prefetch hit.

 0x8289 L2I_CACHE_REFILL_PRF Level 2 instruction cache refill, preload or prefetch hit.

 0x828C L1D_CACHE_REFILL_PRF Level 1 data cache refill, preload or prefetch hit.

 0x828D L2D_CACHE_REFILL_PRF Level 2 data cache refill, preload or prefetch hit.

 0x828E L3D_CACHE_REFILL_PRF Level 3 data cache refill, preload or prefetch hit.

 0x828F LL_CACHE_REFILL_PRF Last level cache refill, preload or prefetch hit.

 0x8290 ISNP_HIT_PRF Snoop hit, instruction preload or prefetch.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6926
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8291 ISNP_HIT_NEAR_PRF Snoop hit in near local cache, instruction preload or prefetch.

 0x8292 ISNP_HIT_FAR_PRF Snoop hit in far local cache, instruction preload or prefetch.

 0x8293 ISNP_HIT_REMOTE_PRF Snoop hit in remote cache, instruction preload or prefetch.

 0x8294 DSNP_HIT_PRF Snoop hit, data preload or prefetch.

 0x8295 DSNP_HIT_NEAR_PRF Snoop hit in near local cache, data preload or prefetch.

 0x8296 DSNP_HIT_FAR_PRF Snoop hit in far local cache, data preload or prefetch.

 0x8297 DSNP_HIT_REMOTE_PRF Snoop hit in remote cache, data preload or prefetch.

 0x8298 LL_CACHE_RW Last level cache demand access.

 0x8299 LL_CACHE_PRFM Last level cache software preload.

 0x829A LL_CACHE_REFILL Last level cache refill.

 0x829B LL_CACHE_REFILL_PRFM Last level cache refill, software preload.

 0x829C LL_CACHE_WB Last level cache write-back.

 0x829D LL_CACHE_WR Last level cache access, write.

 0x829F LL_CACHE_REFILL_WR Last level cache refill, write.

 0x82A0 MEM_ACCESS_RW Data memory access, demand access.

 0x82A1 INST_FETCH_RD Instruction memory access, demand fetch.

 0x82A2 MEM_ACCESS_PRFM Data memory access, software preload.

 0x82A3 INST_FETCH_PRFM Instruction memory access, software preload.

 0x82A4 ASE_SVE_RETIRED Instruction architecturally executed, Advanced SIMD data
processing or scalable vector extension data processing.

 0x82A8 LD_ANY_RETIRED Instruction architecturally executed, load.

 0x82A9 ST_ANY_RETIRED Instruction architecturally executed, store.

 0x82AA LDST_ANY_RETIRED Instruction architecturally executed, load or store.

 0x82AB DP_RETIRED Instruction architecturally executed, integer data processing.

 0x82AC ASE_RETIRED Instruction architecturally executed, Advanced SIMD data
processing.

 0x82AD VFP_RETIRED Instruction architecturally executed, scalar floating-point data
processing.

 0x82AE SVE_RETIRED Instruction architecturally executed, SVE data processing.

 0x82AF CRYPTO_RETIRED Instruction architecturally executed, cryptographic data
processing.

 0x82B0 L1I_CACHE_MISS_RETIRED Instruction architecturally executed, miss in Level 1 instruction
cache.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6927
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x82B1 L2I_CACHE_MISS_RETIRED Instruction architecturally executed, miss in Level 2 instruction
cache.

 0x82B4 L1D_CACHE_MISS_LD_RETIRED Load Instruction architecturally executed, miss in Level 1 data
cache.

 0x82B5 L2D_CACHE_MISS_LD_RETIRED Load Instruction architecturally executed, miss in Level 2 data
cache.

 0x82B6 L3D_CACHE_MISS_LD_RETIRED Load Instruction architecturally executed, miss in Level 3 data
cache.

 0x82B7 LL_CACHE_MISS_LD_RETIRED Load Instruction architecturally executed, miss in Last level
cache.

 0x82B8 L1D_CACHE_MISS_ST_RETIRED Store Instruction architecturally executed, miss in Level 1 data
cache.

 0x82B9 L2D_CACHE_MISS_ST_RETIRED Store Instruction architecturally executed, miss in Level 2 data
cache.

 0x82BA L3D_CACHE_MISS_ST_RETIRED Store Instruction architecturally executed, miss in Level 3 data
cache.

 0x82BB LL_CACHE_MISS_ST_RETIRED Store Instruction architecturally executed, miss in Last level
cache.

 0x82BC L1D_CACHE_MISS_LDST_RETIRED Load or store Instruction architecturally executed, miss in Level 1
data cache.

 0x82BD L2D_CACHE_MISS_LDST_RETIRED Load or store Instruction architecturally executed, miss in Level 2
data cache.

 0x82BE L3D_CACHE_MISS_LDST_RETIRED Load or store Instruction architecturally executed, miss in Level 3
data cache.

 0x82BF LL_CACHE_MISS_LDST_RETIRED Load or store Instruction architecturally executed, miss in Last
level cache.

 0x82C4 L1D_CACHE_HITM_LD_RETIRED Load Instruction architecturally executed, hit modified data in
Level 1 data cache.

 0x82C5 L2D_CACHE_HITM_LD_RETIRED Load Instruction architecturally executed, hit modified data in
Level 2 data cache.

 0x82C6 L3D_CACHE_HITM_LD_RETIRED Load Instruction architecturally executed, hit modified data in
Level 3 data cache.

 0x82C7 LL_CACHE_HITM_LD_RETIRED Load Instruction architecturally executed, hit modified data in
Last level cache.

 0x82C8 L1D_CACHE_HITM_ST_RETIRED Store Instruction architecturally executed, hit modified data in
Level 1 data cache.

 0x82C9 L2D_CACHE_HITM_ST_RETIRED Store Instruction architecturally executed, hit modified data in
Level 2 data cache.

 0x82CA L3D_CACHE_HITM_ST_RETIRED Store Instruction architecturally executed, hit modified data in
Level 3 data cache.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6928
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x82CB LL_CACHE_HITM_ST_RETIRED Store Instruction architecturally executed, hit modified data in
Last level cache.

 0x82CC L1D_CACHE_HITM_LDST_RETIRED Load or store Instruction architecturally executed, hit modified
data in Level 1 data cache.

 0x82CD L2D_CACHE_HITM_LDST_RETIRED Load or store Instruction architecturally executed, hit modified
data in Level 2 data cache.

 0x82CE L3D_CACHE_HITM_LDST_RETIRED Load or store Instruction architecturally executed, hit modified
data in Level 3 data cache.

 0x82CF LL_CACHE_HITM_LDST_RETIRED Load or store Instruction architecturally executed, hit modified
data in Last level cache.

 0x82D0 L1I_LFB_HIT_RETIRED Instruction architecturally executed, line-fill buffer hit in Level 1
instruction cache.

 0x82D1 L2I_LFB_HIT_RETIRED Instruction architecturally executed, line-fill buffer hit in Level 2
instruction cache.

 0x82D4 L1D_LFB_HIT_LD_RETIRED Load Instruction architecturally executed, line-fill buffer hit in
Level 1 data cache.

 0x82D5 L2D_LFB_HIT_LD_RETIRED Load Instruction architecturally executed, line-fill buffer hit in
Level 2 data cache.

 0x82D6 L3D_LFB_HIT_LD_RETIRED Load Instruction architecturally executed, line-fill buffer hit in
Level 3 data cache.

 0x82D7 LL_LFB_HIT_LD_RETIRED Load Instruction architecturally executed, line-fill buffer hit in
Last level cache.

 0x82D8 L1D_LFB_HIT_ST_RETIRED Store Instruction architecturally executed, line-fill buffer hit in
Level 1 data cache.

 0x82D9 L2D_LFB_HIT_ST_RETIRED Store Instruction architecturally executed, line-fill buffer hit in
Level 2 data cache.

 0x82DA L3D_LFB_HIT_ST_RETIRED Store Instruction architecturally executed, line-fill buffer hit in
Level 3 data cache.

 0x82DB LL_LFB_HIT_ST_RETIRED Store Instruction architecturally executed, line-fill buffer hit in
Last level cache.

 0x82DC L1D_LFB_HIT_LDST_RETIRED Load or store Instruction architecturally executed, line-fill buffer
hit in Level 1 data cache.

 0x82DD L2D_LFB_HIT_LDST_RETIRED Load or store Instruction architecturally executed, line-fill buffer
hit in Level 2 data cache.

 0x82DE L3D_LFB_HIT_LDST_RETIRED Load or store Instruction architecturally executed, line-fill buffer
hit in Level 3 data cache.

 0x82DF LL_LFB_HIT_LDST_RETIRED Load or store Instruction architecturally executed, line-fill buffer
hit in Last level cache.

 0x82E0 L1I_CACHE_HIT_RETIRED Instruction architecturally executed, hit in Level 1 instruction
cache.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6929
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x82E1 L2I_CACHE_HIT_RETIRED Instruction architecturally executed, hit in Level 2 instruction
cache.

 0x82E4 L1D_CACHE_HIT_LD_RETIRED Load Instruction architecturally executed, hit in Level 1 data
cache.

 0x82E5 L2D_CACHE_HIT_LD_RETIRED Load Instruction architecturally executed, hit in Level 2 data
cache.

 0x82E6 L3D_CACHE_HIT_LD_RETIRED Load Instruction architecturally executed, hit in Level 3 data
cache.

 0x82E7 LL_CACHE_HIT_LD_RETIRED Load Instruction architecturally executed, hit in Last level cache.

 0x82E8 L1D_CACHE_HIT_ST_RETIRED Store Instruction architecturally executed, hit in Level 1 data
cache.

 0x82E9 L2D_CACHE_HIT_ST_RETIRED Store Instruction architecturally executed, hit in Level 2 data
cache.

 0x82EA L3D_CACHE_HIT_ST_RETIRED Store Instruction architecturally executed, hit in Level 3 data
cache.

 0x82EB LL_CACHE_HIT_ST_RETIRED Store Instruction architecturally executed, hit in Last level cache.

 0x82EC L1D_CACHE_HIT_LDST_RETIRED Load or store Instruction architecturally executed, hit in Level 1
data cache.

 0x82ED L2D_CACHE_HIT_LDST_RETIRED Load or store Instruction architecturally executed, hit in Level 2
data cache.

 0x82EE L3D_CACHE_HIT_LDST_RETIRED Load or store Instruction architecturally executed, hit in Level 3
data cache.

 0x82EF LL_CACHE_HIT_LDST_RETIRED Load or store Instruction architecturally executed, hit in Last level
cache.

 0x82F0 ITLB_HIT_RETIRED Instruction architecturally executed, no translation table walk.

 0x82F1 DTLB_HIT_LD_RETIRED Load Instruction architecturally executed, no translation table
walk.

 0x82F2 DTLB_HIT_ST_RETIRED Store Instruction architecturally executed, no translation table
walk.

 0x82F3 DTLB_HIT_LDST_RETIRED Load or store Instruction architecturally executed, no translation
table walk.

 0x82F4 ITLB_WALK_RETIRED Instruction architecturally executed, at least one translation table
walk.

 0x82F5 DTLB_WALK_LD_RETIRED Load Instruction architecturally executed, at least one translation
table walk.

 0x82F6 DTLB_WALK_ST_RETIRED Store Instruction architecturally executed, at least one translation
table walk.

 0x82F7 DTLB_WALK_LDST_RETIRED Load or store Instruction architecturally executed, at least one
translation table walk.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6930
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x82F8 DTLB_WALK_PRF Data TLB preload or prefetch, with at least one translation table
walk.

 0x82F9 ITLB_WALK_PRF Instruction TLB preload or prefetch, with at least one translation
table walk.

 0x82FA DTLB_WALK_HWPRF Data TLB hardware prefetch, with at least one translation table
walk.

 0x82FB ITLB_WALK_HWPRF Instruction TLB hardware prefetch, with at least one translation
table walk.

 0x82FC L1D_TLB_PRF Level 1 data TLB access, preload or prefetch.

 0x82FD L1I_TLB_PRF Level 1 instruction TLB access, preload or prefetch.

 0x82FE L1D_TLB_HWPRF Level 1 data TLB access, hardware prefetch.

 0x82FF L1I_TLB_HWPRF Level 1 instruction TLB access, hardware prefetch.

 0x8304 DSNP_HITM_LD_RETIRED Load Instruction architecturally executed, snoop hit.

 0x8305 DSNP_HITM_NEAR_LD_RETIRED Load Instruction architecturally executed, snoop hit in near cache.

 0x8306 DSNP_HITM_FAR_LD_RETIRED Load Instruction architecturally executed, snoop hit in far cache.

 0x8307 DSNP_HITM_REMOTE_LD_RETIRED Load Instruction architecturally executed, snoop hit in remote
cache.

 0x8308 DSNP_HITM_ST_RETIRED Store Instruction architecturally executed, snoop hit.

 0x8309 DSNP_HITM_NEAR_ST_RETIRED Store Instruction architecturally executed, snoop hit in near cache.

 0x830A DSNP_HITM_FAR_ST_RETIRED Store Instruction architecturally executed, snoop hit in far cache.

 0x830B DSNP_HITM_REMOTE_ST_RETIRED Store Instruction architecturally executed, snoop hit in remote
cache.

 0x830C DSNP_HITM_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit.

 0x830D DSNP_HITM_NEAR_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit in
near cache.

 0x830E DSNP_HITM_FAR_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit in far
cache.

 0x830F DSNP_HITM_REMOTE_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit in
remote cache.

 0x8310 ISNP_HIT_RETIRED Instruction architecturally executed, instruction fetch snoop hit.

 0x8311 ISNP_HIT_NEAR_RETIRED Instruction architecturally executed, instruction fetch snoop hit in
near cache.

 0x8312 ISNP_HIT_FAR_RETIRED Instruction architecturally executed, instruction fetch snoop hit in
far cache.

 0x8313 ISNP_HIT_REMOTE_RETIRED Instruction architecturally executed, instruction fetch snoop hit in
remote cache.

 0x8314 DSNP_HIT_LD_RETIRED Load Instruction architecturally executed, snoop hit.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6931
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x8315 DSNP_HIT_NEAR_LD_RETIRED Load Instruction architecturally executed, snoop hit in near cache.

 0x8316 DSNP_HIT_FAR_LD_RETIRED Load Instruction architecturally executed, snoop hit in far cache.

 0x8317 DSNP_HIT_REMOTE_LD_RETIRED Load Instruction architecturally executed, snoop hit in remote
cache.

 0x8318 DSNP_HIT_ST_RETIRED Store Instruction architecturally executed, snoop hit.

 0x8319 DSNP_HIT_NEAR_ST_RETIRED Store Instruction architecturally executed, snoop hit in near cache.

 0x831A DSNP_HIT_FAR_ST_RETIRED Store Instruction architecturally executed, snoop hit in far cache.

 0x831B DSNP_HIT_REMOTE_ST_RETIRED Store Instruction architecturally executed, snoop hit in remote
cache.

 0x831C DSNP_HIT_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit.

 0x831D DSNP_HIT_NEAR_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit in
near cache.

 0x831E DSNP_HIT_FAR_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit in far
cache.

 0x831F DSNP_HIT_REMOTE_LDST_RETIRED Load or store Instruction architecturally executed, snoop hit in
remote cache.

 0x8320 L1D_CACHE_REFILL_PERCYC Level 1 data or unified cache refills in progress.

 0x8321 L2D_CACHE_REFILL_PERCYC Level 2 data or unified cache refills in progress.

 0x8322 L3D_CACHE_REFILL_PERCYC Level 3 data or unified cache refills in progress.

 0x8324 L1I_CACHE_REFILL_PERCYC Level 1 instruction or unified cache refills in progress.

 0x8325 L2I_CACHE_REFILL_PERCYC Level 2 instruction or unified cache refills in progress.

 0x8330 L1GCS_CACHE Level 1 GCS cache access.

 0x8331 L1GCS_CACHE_RW Level 1 GCS cache demand access.

 0x8332 L1GCS_CACHE_HWPRF Level 1 GCS cache hardware prefetch.

 0x8334 L1GCS_CACHE_MISS Level 1 GCS cache demand access miss.

 0x8335 L1GCS_CACHE_MISS_RD Level 1 GCS cache demand access read miss.

 0x8336 L1GCS_CACHE_HIT_RW Level 1 GCS cache demand access hit.

 0x8337 L1GCS_CACHE_HIT_RW_FHWPRF Level 1 GCS cache demand access first hit, fetched by GCS
hardware prefetcher.

 0x8338 L1GCS_CACHE_REFILL Level 1 GCS cache refill.

 0x8339 L1GCS_CACHE_REFILL_HWPRF Level 1 GCS cache refill, hardware prefetch.

 0x833A L1GCS_CACHE_REFILL_PERCYC Level 1 GCS cache refills in progress.

 0x833C L1GCS_LFB_HIT_RW Level 1 GCS cache demand access line-fill buffer hit.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6932
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
 0x833D L1GCS_LFB_HIT_RW_FHWPRF Level 1 GCS cache demand access line-fill buffer first hit,
recently fetched by GCS hardware prefetcher.

 0x833E L1GCS_CACHE_INVAL Level 1 GCS cache invalidate.

 0x8340 L1GCS_TLB Level 1 GCS TLB access.

 0x8341 L1GCS_TLB_RW Level 1 GCS demand TLB access.

 0x8342 L1GCS_TLB_HWPRF Level 1 GCS demand TLB access, GCS hardware prefetch.

 0x8344 GCSTLB_WALK GCS TLB access with at least one translation table walk.

 0x8345 GCSTLB_WALK_RW GCS TLB demand access with at least one translation table walk.

 0x8346 GCSTLB_WALK_PERCYC Translation table walks in progress.

 0x8347 GCSTLB_WALK_STEP GCS TLB translation table walk, step.

 0x8350 STALL_BACKEND_L1GCS Backend stall cycles, Level 1 GCS cache.

 0x8351 STALL_BACKEND_GCSTLB Backend stall cycles, GCS TLB.

Table D13-14 Event index (continued)

Event
number

Mnemonic Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6933
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.3 Common event numbers

The event numbers of the common architectural and microarchitectural events are reserved for the specified events.
Each of these event numbers must either:

• Be used for its assigned event.

• Not be used.

However, see Required events.

When an implementation supports monitoring of an event that is assigned a common architectural or
microarchitectural event number, Arm strongly recommends that it uses that number for the event. However,
software might encounter implementations where an event assigned a number in this range is monitored using an
event number from an IMPLEMENTATION DEFINED range.

Note

Arm might define other common architectural and microarchitectural event numbers. This is one reason why
software must not assume that an event with an assigned common architectural or microarchitectural event number
is never monitored using an event number from the IMPLEMENTATION DEFINED range.

It is IMPLEMENTATION DEFINED which events, including Common events, are generated by IMPLEMENTATION
DEFINED extensions to the architecture, including accesses to IMPLEMENTATION DEFINED System registers and
IMPLEMENTATION DEFINED System instructions. However, the functionality of the IMPLEMENTATION DEFINED
extension must be appropriate for the generated events.

The common events are described in the following sections:

• Common architectural events.

• Common microarchitectural events.

The supported common architectural and microarchitectural events in the ranges 0x0000-0x003F and 0x4000-0x403F
are discoverable to software through:

• The PMCEID0_EL0 and PMCEID1_EL0 registers in AArch64 state.

• The PMCEID0, PMCEID1, PMCEID2, and PMCEID3 registers in AArch32 state.

Arm recommends that the value of 0 is used for the PMCEID0_EL0 or PMCEID1_EL0 bit corresponding to any
event that an implementation never generates, even if the implementation is considered to support but never count
the event.

Note

• For example, if an implementation never generates the L1D_CACHE_ALLOCATE event, event 31, Arm
recommends that PMCEID0_EL0[31] is RAZ.

• In an implementation that supports both Execution states, each bit in the AArch64 PMCEID0_EL0 and
PMCEID1_EL0 registers corresponds to a single bit in the AArch32 PMCEID0, PMCEID1, PMCEID2, and
PMCEID3 registers, and corresponding bits must have the same behavior.

However, for some implementations, an event in the common events range might be generated by the system,
meaning behavior can vary between systems. In such a case, the corresponding PMCEIDn_EL0 bit might be RAO.

Event numbers that Table D13-13 shows as allocated for common architectural and microarchitectural events that
are not described in Common architectural events and Common microarchitectural events are reserved. Future
revisions of this Manual, or of the architecture, might assign these reserved values to additional common events.
Events that do not require additional features in the PMU can be implemented retrospectively, meaning an
implementation of a particular version of the PMU specification might support common events that are first defined
in a later version of the PMU specification.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6934
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Note

The requirement that an event that is implemented retrospectively does not require additional features in the PMU
means that it must be possible to represent the event n the PMEVTYPER<n>_EL0.evtCount field. This means, for
example, that an implementation with a 10-bit PMEVTYPER<n>_EL0.evtCount field can only implement events
with event numbers 0x0000-0x03FF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6935
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.3.1 Common architectural events

The Common architectural events are:

0x0000, SW_INCR, Instruction architecturally executed, Condition code check pass, software increment

The counter counts each write to the PMSWINC_EL0 and PMSWINC register, for each
implemented event counter <n>:

• In AArch64 state, if PMEVTYPER<n>_EL0.evtCount is 0x0000 then the counter counts each
MSR write to PMSWINC_EL0 with bit [n] set to 1.

• In AArch32 state, if PMEVTYPER<n>.evtCount is 0x0000 then the counter counts each MCR
write to PMSWINC with bit [n] set to 1.

If the PE performs two architecturally executed writes to the PMSWINC_EL0 or PMSWINC
register without an intervening Context synchronization event then the counter is incremented
twice.

Note

In a multithreaded implementation, if the Effective value of PMEVTYPER<n>_EL0.MT is 1, then
the counter counts writes by all PEs that have the same affinity at level 1 and above.

PMCEID0_EL0[0] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented.

0x0006, LD_RETIRED, Instruction architecturally executed, Condition code check pass, load

The counter counts each architecturally-executed Memory-reading instruction counted by
INST_RETIRED.

It is IMPLEMENTATION DEFINED whether the preload instructions PRFM, PLD, PLDW, and PLI count as
integer data-processing instructions or Memory-reading instructions. Arm recommends that if the
instruction is not implemented as a NOP then it is counted as a Memory-reading instruction.

PMCEID0_EL0[6] reads as 1 if this event is implemented and 0 otherwise.

0x0007, ST_RETIRED, Instruction architecturally executed, Condition code check pass, store

The counter counts each architecturally-executed Memory-writing instruction counted by
INST_RETIRED.

The counter does not count a Store-Exclusive instruction that fails.

PMCEID0_EL0[7] reads as 1 if this event is implemented and 0 otherwise.

0x0008, INST_RETIRED, Instruction architecturally executed

The counter counts each architecturally-executed instruction.

If FEAT_PMUv3p9 is implemented, then the counter counts architecturally-executed MOVPRFX
instructions.

Otherwise, it is IMPLEMENTATION DEFINED whether the counter counts architecturally-executed
MOVPRFX instructions.

PMCEID0_EL0[8] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if event INST_SPEC is not implemented.

0x0009, EXC_TAKEN, Exception taken

The counter counts each exception taken.

Note

The counter counts the PE exceptions described in:

• For exceptions taken to an Exception level using AArch64, Exception entry.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6936
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• For exceptions taken to an Exception level using AArch32, AArch32 state exception
descriptions.

PMCEID0_EL0[9] reads as 1 if this event is implemented and 0 otherwise.

0x000A, EXC_RETURN, Instruction architecturally executed, Condition code check pass, exception return

The counter counts each architecturally-executed exception return instruction. The following
sections define the counted instructions:

• For an exception return from an Exception level using AArch64, Exception return.

• For an exception return from an Exception level using AArch32, Exception return
instructions.

However, is CONSTRAINED UNPREDICTABLE whether this event counts the execution of an exception
return instruction if either:

• Execution of the instruction is, itself, CONSTRAINED UNPREDICTABLE.

• Execution of the instruction sets PSTATE.IL and does not generate an exception return.

Note

Examples of when an exception return instruction is CONSTRAINED UNPREDICTABLE are if the
instruction is executed at EL0, or in AArch32 state in System mode.

A particular consequence of this CONSTRAINED UNPREDICTABLE behavior is that an implementation
that does not support AArch32 state at EL1 or higher does not have to treat AArch32 MOVS PC, LR
instructions, and related instructions, as exception return instructions.

PMCEID0_EL0[10] reads as 1 if this event is implemented and 0 otherwise.

0x000B, CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
CONTEXTIDR

The counter counts each MSR write to CONTEXTIDR_EL1 and each MCR write to CONTEXTIDR.

If the PE performs two architecturally-executed writes to CONTEXTIDR without an intervening
Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first write is
counted.

The counter counts only writes to these named registers. For example:

• When FEAT_VHE or FEAT_Debugv8p2 is implemented, the counter does not count writes
using the register name CONTEXTIDR_EL2.

• When FEAT_VHE is implemented, the counter:

— Counts each write using the register name CONTEXTIDR_EL1, including when
executing at EL2 and HCR_EL2.E2H is 1.

— Does not count writes using the register name CONTEXTIDR_EL12.

• When FEAT_NV2 is implemented, the counter counts writes using the register name
CONTEXTIDR_EL1, including when executing at EL1 and the Effective value of
HCR_EL2.{NV2, NV1, NV} is {1, 1, 1}.

PMCEID0_EL0[11] reads as 1 if this event is implemented and 0 otherwise.

0x000C, PC_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, Software
change of the PC

The counter counts each architecturally-executed Software change of the PC that is taken. This
includes all:

• Branch instructions.

• Memory-reading instructions that explicitly write to the PC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6937
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• Data-processing instructions that explicitly write to the PC.

• Exception return instructions.

Note

Conditional branches are only counted if the branch is taken.

If FEAT_PMUv3p9 is implemented, then the following instructions are not included as a Software
change of the PC:

• A BRK or BKPT instruction.

• An UNDEFINED instruction that generates an exception.

• An exception-generating instruction, SVC, HVC, or SMC, that generates an exception.

• A Context synchronization barrier instruction, ISB.

If FEAT_PMUv3p9 is not implemented, then it is IMPLEMENTATION DEFINED whether any of these
instructions are included as a Software change of the PC.

The counter does not increment for exceptions other than those explicitly identified in these lists.

If PC_WRITE_RETIRED and BR_SKIP_RETIRED are both implemented, the PE must treat the
following types of instruction in the same way for both events:

• BRK and BKPT instructions.

• UNDEFINED instructions.

• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier instructions.

From Armv8.6, if BR_RETIRED is also implemented, the PE must also treat these types of
instruction in the same way for the BR_RETIRED, PC_WRITE_RETIRED, and
BR_SKIP_RETIRED events.

PMCEID0_EL0[12] reads as 1 if this event is implemented and 0 otherwise.

0x000D, BR_IMMED_RETIRED, Branch Instruction architecturally executed, immediate

The counter counts all architecturally-executed immediate branch instructions.

In AArch32 state, the counter increments each time the PE executes one of the following
instructions:

• B{<c>} <label>.

• BL{<c>} <label>.

• BLX{<c>} <label>.

• CBZ <Rn>, <label>.

• CBNZ <label>.

In AArch64 state, the counter increments each time the PE executes one of the following
instructions:

• B <label>.

• B.cond <label>.

• BL <label>.

• CBZ <Rn>, <label>.

• CBNZ <Rn>, <label>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6938
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• TBZ <Rn>, <label>.

• TBNZ <Rn>, <label>.

• BC.cond <label>.

Note
Conditional branches are always counted, regardless of whether the branch is taken or not taken.

If the Context synchronization barrier instruction ISB is counted as a Software change of the PC
instruction by PC_WRITE_RETIRED, then it is IMPLEMENTATION DEFINED whether ISB is counted
as an immediate branch instruction.

PMCEID0_EL0[13] reads as 1 if this event is implemented and 0 otherwise.

0x000E, BR_RETURN_RETIRED, Branch Instruction architecturally executed, procedure return, taken

In AArch32 state, the counter counts the following architecturally executed procedure return
instructions:

• BX R14.

• MOV PC, LR.

• POP {..., PC}.

• LDR PC, [SP], #offset.

Note

The counter counts only the listed instructions as procedure returns. For example, it does not count
the following as procedure return instructions:

• BX R0, because Rm ≠ R14.

• MOV PC, R0, because Rm ≠ R14.

• LDM SP, {..., PC}, because writeback is not specified.

• LDR PC, [SP, #offset], because this specifies the wrong addressing mode.

In AArch64 state, the counter counts architecturally executed RET, RETAA, and RETAB instructions.

PMCEID0_EL0[14] reads as 1 if this event is implemented and 0 otherwise.

0x000F, UNALIGNED_LDST_RETIRED, Instruction architecturally executed, Condition code check pass,
unaligned load or store

The counter counts each Memory-reading instruction or Memory-writing instruction access that
would generate an Alignment fault when Alignment fault checking is enabled.

The counter does not count accesses that would generate an SP alignment fault exception if the
applicable stack pointer alignment check is enabled, unless that access would also generate an
Alignment fault Data Abort exception if Alignment fault checking is enabled.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this event counts accesses
that generate an exception, including accesses that do generate Alignment fault Data Abort
exceptions.

PMCEID0_EL0[15] reads as 1 if this event is implemented and 0 otherwise.

0x001C, TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to
TTBR

The counter counts MSR writes to TTBR0_EL1 and TTBR1_EL1 in AArch64 state and MCR and MCRR
writes to TTBR0 and TTBR1 in AArch32 state.

If the PE executes two writes to the same TTBR, without an intervening Context synchronization
event, it is CONSTRAINED UNPREDICTABLE whether the first write to the TTBR, is counted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6939
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The counter counts only writes to these registers by name. For example:

• If EL3 is implemented, the counter does not count writes using the register name
TTBR0_EL3. However, when EL3 is using AArch32, the counter counts writes to either
banked copy of TTBR0 and TTBR1.

• If EL2 is implemented, the counter does not count writes using the register names
TTBR0_EL2, VTTBR_EL2, HTTBR, and VTTBR.

• When FEAT_VHE is implemented, the counter:

— Counts each write using the register names TTBR0_EL1 and TTBR1_EL1, including
when executing at EL2 and HCR_EL2.E2H is 1.

— Does not count writes using the register names TTBR1_EL2, TTBR0_EL12, and
TTBR1_EL12.

• When FEAT_NV2 is implemented, the counter counts each write using the register names
TTBR0_EL1 and TTBR1_EL1, including when executing at EL1 and the Effective value of
HCR_EL2.{NV2, NV1, NV} is {1, 1, 1}.

PMCEID0_EL0[28] reads as 1 if this event is implemented and 0 otherwise.

0x001E, CHAIN, Chain a pair of event counters

Even-numbered counters never increment as a result of this event.

For an odd-numbered counter <n+1>, the counter increments when an event increments the
preceding even-numbered counter <n> on the same PE causing unsigned overflow of bits [31:0] of
the event counter <n>, and any of the following are true:

• FEAT_PMUv3p5 is not implemented.

• EL2 is not implemented and PMCR.LP is 1.

• EL2 is implemented, <n> is less than HDCR.HPMN, and PMCR.LP is 0.

• EL2 is implemented, <n> is greater than or equal to HDCR.HPMN, and HDCR.HLP is 0.

This means the CHAIN event can be used to link the odd-numbered counter with the preceding
even-numbered counter to provide a 64-bit counter.

Note

When FEAT_PMUv3p5 is not implemented, the CHAIN event allows software to use the N event
counters as N 32-bit counters, N÷2 64-bit counters, or a mixture of 32-bit counters and 64-bit
counters.

The CHAIN event only counts overflows from the preceding even-numbered counter on the same
PE. This means it ignores the Effective value of PMEVTYPER<n>_EL0.MT.

The architecture does not provide atomic access to a pair of counters.

To filter the Exception levels and Security states in which the event is counted, software:

• Programs PMEVTYPER<n>_EL0 to count the event in the required conditions.

• Programs PMEVTYPER<n+1>_EL0 to count the CHAIN event in all Exception levels and
states.

The PE might ignore the filter settings for the CHAIN event and behave as if they are set to count
in all Exception levels and states. If software does not program the event in this way, the count
becomes UNPREDICTABLE.

The architecture does not define the latency between the low counter overflowing and the high
counter incrementing the CHAIN event. There is no requirement for updates to occur
synchronously, but software reading or enabling the counter pair by reading the low counter first
and the high counter second, with an intervening Context synchronization event, will not observe
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6940
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
the low counter incrementing and overflowing for the event and the high counter not incrementing
for the resulting CHAIN event. This means that the ISB executed after reading the low counter
ensures the completion of the update of the high counter by the CHAIN event.

PMCEID0_EL0[30] reads as 1 if this event is implemented and 0 otherwise.

0x0021, BR_RETIRED, Instruction architecturally executed, branch

The counter counts all branches on the architecturally executed path that would incur cost if
mispredicted.

If FEAT_PMUv3p9 is implemented:

• Unconditional direct branch instructions are counted.

• Exception return instructions are counted.

• Exception-generating instructions are not counted.

• Context synchronization instructions are not counted.

If FEAT_PMUv3p9 is not implemented, then it is IMPLEMENTATION DEFINED whether the counter
increments for any of these instructions.

The counter counts all other branch instructions, Memory-reading instructions and data-processing
instructions that explicitly write to the PC, at retirement.

Note

Conditional branches are always counted, regardless of whether the branch is taken.

Arm recommends that BR_RETIRED counts Unconditional direct branch instructions and
Exception return instructions.

From Armv8.6, if PC_WRITE_RETIRED and BR_RETIRED are both implemented, the PE must
treat the following types of instruction in the same way for both events:

• BRK and BKPT instructions.

• UNDEFINED instructions.

• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier instructions.

PMCEID1_EL0[1] reads as 1 if this event is implemented and 0 otherwise.

0x0081, EXC_UNDEF, Exception taken, other synchronous

The counter counts each exception counted by EXC_TAKEN that is Taken_locally and is not
counted as any of the following:

• Exception taken, Supervisor Call (EXC_SVC).

• Exception taken, Secure Monitor Call (EXC_SMC).

• Exception taken, Hypervisor Call (EXC_HVC).

• Exception taken, Instruction Abort (EXC_PABORT).

• Exception taken, Data Abort or SError (EXC_DABORT).

• Exception taken, IRQ (EXC_IRQ).

• Exception taken, FIQ (EXC_FIQ).

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0082, EXC_SVC, Exception taken, Supervisor Call

The counter counts each Supervisor Call exception counted by EXC_TAKEN that is Taken_locally.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6941
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0083, EXC_PABORT, Exception taken, Instruction Abort

The counter counts each Instruction Abort exception counted by EXC_TAKEN that is
Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0084, EXC_DABORT, Exception taken, Data Abort or SError

The counter counts each Guarded control stack Data Check Exception, Data Abort, SError interrupt,
or virtual SError interrupt exception counted by EXC_TAKEN that is Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0086, EXC_IRQ, Exception taken, IRQ

The counter counts each IRQ or virtual IRQ exception counted by EXC_TAKEN that is
Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0087, EXC_FIQ, Exception taken, FIQ

The counter counts each FIQ or virtual FIQ exception counted by EXC_TAKEN that is
Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0088, EXC_SMC, Exception taken, Secure Monitor Call

The counter counts each Secure Monitor Call exception counted by EXC_TAKEN. The counter
does not count SMC instructions that generate other exceptions, including Trap exceptions and
Undefined Instruction exceptions.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x008A, EXC_HVC, Exception taken, Hypervisor Call

The counter counts each Hypervisor Call exception counted by EXC_TAKEN. The counter does not
count HVC instructions that are UNDEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x008B, EXC_TRAP_PABORT, Exception taken, Instruction Abort not Taken locally

The counter counts each Instruction Abort exception counted by EXC_TAKEN that is not
Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x008C, EXC_TRAP_DABORT, Exception taken, Data Abort or SError not Taken locally

The counter counts each Guarded control stack Data Check Exception, Data Abort, SError interrupt,
or virtual SError interrupt exception counted by EXC_TAKEN, that is not Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x008D, EXC_TRAP_OTHER, Exception taken, other traps not Taken locally

The counter counts each exception counted by EXC_TAKEN that is not Taken_locally and not
counted as any of the following:

• Exception taken, Secure Monitor Call (EXC_SMC).

• Exception taken, Hypervisor Call (EXC_HVC).

• Exception taken, Instruction Abort not Taken_locally (EXC_TRAP_PABORT).

• Exception taken, Data Abort or SError not Taken_locally (EXC_TRAP_DABORT).

• Exception taken, IRQ not Taken_locally (EXC_TRAP_IRQ).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6942
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• Exception taken, FIQ not Taken_locally (EXC_TRAP_FIQ).

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x008E, EXC_TRAP_IRQ, Exception taken, IRQ not Taken locally

The counter counts each IRQ or virtual IRQ exception counted by EXC_TAKEN that is not
Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x008F, EXC_TRAP_FIQ, Exception taken, FIQ not Taken locally

The counter counts each FIQ or virtual FIQ exception counted by EXC_TAKEN that is not
Taken_locally.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x400C, TRB_WRAP, Trace buffer current write pointer wrapped

The event is generated each time the current write pointer is wrapped to the base pointer.

PMCEID0_EL0[44] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TRBE is implemented.

0x400D, PMU_OVFS, PMU overflow, counters accessible to EL1 and EL0

The event is generated each time one of the following occurs:

• An event is counted by an event counter <n> and all of the following are true:

— PMINTENSET_EL1[n] is 1.

— One of the following is true:

— Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[31:0],
and either FEAT_PMUv3p5 is not implemented or PMCR_EL0.LP is 0.

— Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[63:0],
FEAT_PMUv3p5 is implemented, and PMCR_EL0.LP is 1.

— Either EL2 is implemented and <n> in the range [0 .. (MDCR_EL2.HPMN-1)], or EL2
is not implemented and <n> is in the range [0 .. (PMCR_EL0.N-1)].

• A cycle is counted by PMCCNTR_EL0, PMINTENSET_EL1[31] is 1, and one of the
following is true:

— Counting the cycle causes unsigned overflow of PMCCNTR_EL0[31:0] and
PMCR_EL0.LC is 0.

— Counting the cycle causes unsigned overflow of PMCCNTR_EL0[63:0] and
PMCR_EL0.LC is 1.

This event cannot be counted by the PMU. PMCEID0_EL0[45] reads as 0.

This event must be implemented if all of the following are true:

• FEAT_PMUv3 is implemented.

• FEAT_ETE is implemented.

Implementation of this event requires that FEAT_ETE is implemented.

0x400E, TRB_TRIG, Trace buffer Trigger Event

The event is generated when a Trace Buffer Extension Trigger Event occurs.

It is IMPLEMENTATION DEFINED whether this event can be counted by the PMU.

PMCEID0_EL0[46] reads as 1 if this event is implemented and can be counted by the PMU, and 0
otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6943
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
This event must be implemented if all of the following are true:

• FEAT_TRBE is implemented.

• TRB_TRIG_COUNTED_BY_PMU is implemented.

• FEAT_TRBE is implemented.

Implementation of this event requires that FEAT_TRBE is implemented and TRB_TRIG is counted
by the PMU

0x400F, PMU_HOVFS, PMU overflow, counters reserved for use by EL2

The event is generated each time an event is counted by an event counter <n> and all of the
following are true:

• EL2 is implemented.

• PMINTENSET_EL1[n] is 1.

• One of the following is true:

— Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[31:0], and
either FEAT_PMUv3p5 is not implemented or MDCR_EL2.HLP is 0.

— Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[63:0],
FEAT_PMUv3p5 is implemented, and MDCR_EL2.HLP is 1.

• <n> in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

The event is not transmitted to a trace unit if SelfHostedTraceEnabled() is TRUE and
TRFCR_EL2.E2TRE is 0.

Note

This is in addition to the rules for the export of all events to a trace unit. See Controls to prohibit
trace at Exception levels.

This event cannot be counted by the PMU. PMCEID0_EL0[47] reads as 0.

This event must be implemented if all of the following are true:

• FEAT_PMUv3 is implemented.

• FEAT_ETE is implemented.

• EL2 is implemented.

Implementation of this event requires that FEAT_ETE is implemented.

0x4030, TSTART_RETIRED, Instruction architecturally executed, outer transaction TSTART

The counter counts each TSTART instruction counted by INST_RETIRED that starts an outer
transaction.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the TSTART
instruction is counted by the counter.

PMCEID1_EL0[48] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x4031, TCOMMIT_RETIRED, Instruction architecturally executed, outer transaction TCOMMIT

The counter counts each TCOMMIT instruction counted by INST_RETIRED that commits an outer
transaction.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the TCOMMIT
instruction is counted by the counter.

PMCEID1_EL0[49] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6944
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8000, SIMD_INST_RETIRED, Instruction architecturally executed, SIMD

The counter counts each architecturally executed SIMD instruction.

That is, the counter counts:

• SVE instructions other than non-SIMD SVE instructions.

• Advanced SIMD instructions other than Advanced SIMD scalar instructions.

• SME instructions other than non-SIMD SME instructions.

0x8001, ASE_INST_RETIRED, Instruction architecturally executed, Advanced SIMD

The counter counts each architecturally executed instruction counted by
ASE_SVE_INST_RETIRED that is an Advanced SIMD instruction.

The following instructions are counted as Advanced SIMD instructions:

• Advanced SIMD data-processing instructions.

• Advanced SIMD Cryptographic instructions.

• Advanced SIMD loads and stores.

If FEAT_PMUv3p9 is implemented, Advanced SIMD scalar instructions are not counted.

Otherwise, it is IMPLEMENTATION DEFINED whether the counter counts Advanced SIMD scalar
instructions.

0x8002, SVE_INST_RETIRED, Instruction architecturally executed, SVE

The counter counts each architecturally executed instruction counted by
ASE_SVE_INST_RETIRED that is an SVE instruction.

The following instructions are counted as SVE instructions:

• SVE data-processing instructions.

• SVE Cryptographic instructions.

• SVE load and store instructions.

If FEAT_PMUv3p9 is implemented, non-SIMD SVE instructions are not counted.

Otherwise, it is IMPLEMENTATION DEFINED whether the counter counts non-SIMD SVE instructions.

When FEAT_SME is implemented, operations involving SVE registers which also involve ZA or
ZT registers are not counted by this event.

This event must be implemented if event SVE_INST_SPEC is not implemented.

Implementation of this event requires that architecture variant supports FEAT_SVE or FEAT_SME.

0x8003, ASE_SVE_INST_RETIRED, Instruction architecturally executed, Advanced SIMD or SVE

The counter counts each architecturally executed instruction counted by INST_RETIRED that is an
Advanced SIMD or SVE instruction.

See ASE_INST_RETIRED and SVE_INST_RETIRED for these classifications.

0x8107, BR_SKIP_RETIRED, Branch Instruction architecturally executed, not taken

The counter counts each conditional Software change of the PC instruction that is not taken. This
includes all:

• Conditional branch instructions.

• Conditional Memory-reading instructions that explicitly write to the PC.

• Conditional data-processing instructions that explicitly write to the PC.

• Conditional exception return instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6945
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
These are the same instructions which, if unconditional, or conditional and taken, are counted by the
PC_WRITE_RETIRED event.

If FEAT_PMUv3p9 is implemented, then the following instructions are not included as a Software
change of the PC:

• A conditional UNDEFINED instruction that does not generate an exception.

• A conditional exception-generating instruction, SVC, HVC, or SMC, that does not generate an
exception.

• A conditional Context synchronization barrier instruction, ISB, that fails its condition code
check.

If FEAT_PMUv3p9 is not implemented, then it is IMPLEMENTATION DEFINED whether these
instructions are included as a Software change of the PC.

Note

Many of these instructions can only be conditional in the AArch32 instruction sets.

The counter does not increment for exceptions other than those explicitly identified in these lists.

If PC_WRITE_RETIRED and BR_SKIP_RETIRED are both implemented, the PE must treat the
following types of instruction in the same way for both events:

• BRK and BKPT instructions.

• UNDEFINED instructions.

• The exception-generating instructions, SVC, HVC, and SMC.

• Context synchronization barrier instructions.

From Armv8.6, if BR_RETIRED is also implemented, the PE must also treat these types of
instruction in the same way for the BR_RETIRED event.

0x8108, BR_IMMED_TAKEN_RETIRED, Branch Instruction architecturally executed, immediate, taken

The counter counts each instruction counted by both BR_IMMED_RETIRED and
PC_WRITE_RETIRED.

These are all direct branch instructions on the architecturally executed path, where the branch is
taken.

0x8109, BR_IMMED_SKIP_RETIRED, Branch Instruction architecturally executed, immediate, not taken

The counter counts each instruction counted by both BR_IMMED_RETIRED and
BR_SKIP_RETIRED.

These are all direct branch instructions on the architecturally executed path, where the branch is not
taken.

Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x810A, BR_IND_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect, taken

The counter counts each instruction counted by both BR_IND_RETIRED and
PC_WRITE_RETIRED.

These are all indirect branch instructions, including return instructions, on the architecturally
executed path, where the branch is taken.

Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x810B, BR_IND_SKIP_RETIRED, Branch Instruction architecturally executed, indirect, not taken

The counter counts each instruction counted by both BR_IND_RETIRED and
BR_SKIP_RETIRED.

These are all indirect branch instructions, including return instructions, on the architecturally
executed path, where the branch is not taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6946
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x810C, BR_INDNR_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect excluding
procedure return, taken

The counter counts each instruction counted by both BR_IND_RETIRED and
PC_WRITE_RETIRED, that is not counted by BR_RETURN_RETIRED.

These are all indirect branch instructions, excluding return instructions, on the architecturally
executed path, where the branch is taken.

0x810D, BR_INDNR_SKIP_RETIRED, Branch Instruction architecturally executed, indirect excluding
procedure return, not taken

The counter counts each instruction counted by both BR_INDNR_RETIRED and
BR_SKIP_RETIRED.

These are all indirect branch instructions, excluding return instructions, on the architecturally
executed path, where the branch is not taken.

Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x810E, BR_RETURN_ANY_RETIRED, Branch Instruction architecturally executed, procedure return

The counter counts each instruction counted by BR_IND_RETIRED where if taken, the branch
would be counted by BR_RETURN_RETIRED.

These are all return instructions on the architecturally executed path.

Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x810F, BR_RETURN_SKIP_RETIRED, Branch Instruction architecturally executed, procedure return, not
taken

The counter counts each instruction counted by both BR_RETURN_ANY_RETIRED and
BR_SKIP_RETIRED.

These are all return instructions on the architecturally executed path, where the branch is not taken.

Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x811D, BR_IND_RETIRED, Instruction architecturally executed, indirect branch

The counter counts each Software change of the PC that is not counted by BR_IMMED_RETIRED.

Software change of the PC has the same definition as for the PC_WRITE_RETIRED and
BR_SKIP_RETIRED events.

Note

Conditional branches are always counted, regardless of whether the branch is taken.

0x811E, BR_INDNR_RETIRED, Branch Instruction architecturally executed, indirect excluding procedure
return

The counter counts each instruction counted by BR_IND_RETIRED that is not counted by
BR_RETURN_ANY_RETIRED.

These are all indirect branch instructions, excluding return instructions, on the architecturally
executed path.

Implementation of this optional event requires that architecture variant supports FEAT_AA32EL0.

0x811F, BRB_FILTRATE, Branch Record captured

The counter counts each valid Branch record captured in the branch record buffer. Branch records
that are not captured because they are removed by filtering are not counted.

When BRB_FILTRATE is generated for an exception or an exception return, it is an
Exception-related event.

It is CONSTRAINED UNPREDICTABLE whether the counter counts Branch records injected by a BRB
INJ instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6947
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
If counting this event causes unsigned overflow of the event counter counting the event and this in
turn causes a BRBE freeze event then:

• The Branch record for the operation that generated the event will be generated and captured
in the Branch record buffer.

• It is CONSTRAINED UNPREDICTABLE whether the Branch Record Buffer Extension generates
Branch records for other operations in program order after the operation that generated the
event that would otherwise be generated when generation of Branch records is not Paused.

Note

Arm recommends that implementations minimize capture of additional branches.

This event must be implemented if FEAT_BRBE is implemented.

0x8179, BRNL_INDNR_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect branch
without link excluding procedure return, taken

The counter counts each branch counted by BRNL_IND_TAKEN_RETIRED that is not counted by
BR_RETURN_RETIRED.

These are all indirect branch without link excluding procedure return instructions on the
architecturally executed path, where the branch is taken.

0x817A, BL_TAKEN_RETIRED, Branch Instruction architecturally executed, branch with link, taken

The counter counts each Software change of the PC counted by PC_WRITE_RETIRED that calls a
subroutine and sets LR to return address.

These are all branch with link instructions on the architecturally executed path, where the branch is
taken.

0x817B, BRNL_TAKEN_RETIRED, Branch Instruction architecturally executed, branch without link, taken

The counter counts each Software change of the PC counted by PC_WRITE_RETIRED that is not
counted by BL_TAKEN_RETIRED.

These are all branch without link instructions on the architecturally executed path, where the branch
is taken.

0x817C, BL_IND_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect branch with
link, taken

The counter counts each branch counted by both BL_TAKEN_RETIRED and
BR_IND_TAKEN_RETIRED.

These are all indirect branch with link instructions on the architecturally executed path, where the
branch is taken.

0x817D, BRNL_IND_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect branch
without link, taken

The counter counts each branch counted by both BRNL_TAKEN_RETIRED and
BR_IND_TAKEN_RETIRED.

These are all indirect branch without link instructions on the architecturally executed path, where
the branch is taken.

0x817E, BL_IMMED_TAKEN_RETIRED, Branch Instruction architecturally executed, direct branch with
link, taken

The counter counts each branch counted by both BL_TAKEN_RETIRED and
BR_IMMED_TAKEN_RETIRED.

These are all direct branch with link instructions on the architecturally executed path, where the
branch is taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6948
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x817F, BRNL_IMMED_TAKEN_RETIRED, Branch Instruction architecturally executed, direct branch
without link, taken

The counter counts each branch counted by both BRNL_TAKEN_RETIRED and
BR_IMMED_TAKEN_RETIRED.

These are all direct branch without link instructions on the architecturally executed path, where the
branch is taken.

0x8180, BR_UNCOND_RETIRED, Branch Instruction architecturally executed, unconditional branch

The counter counts each Software change of the PC counted by BR_RETIRED that is not counted
by BR_COND_RETIRED.

These are all unconditional branch instructions on the architecturally executed path.

0x8181, BR_COND_RETIRED, Branch Instruction architecturally executed, conditional branch

The counter counts each Software change of the PC counted by BR_RETIRED that is a conditional
branch.

These are all conditional branch instructions on the architecturally executed path.

In the A64 instruction set, conditional branches are B.cond, BC.cond, CBNZ, CBZ, TBNZ, and TBZ. This
includes B.cond and BC.cond instructions with the AL or NV condition code.

In the A32 instruction set, conditional branches are Software change of the PC instructions that have
bits [31:29] of the instruction opcode not equal to 111.

In the T32 instruction set, conditional branches are B<c>, B<c>.W, Software change of the PC
instructions executed in an IT block, CBNZ, and CBZ. Branch instruction encodings, including B{<c>}
and B{<c>}.W, where <c> is either omitted or AL are only considered conditional branches when they
are the last instruction in an IT block.

0x8182, BR_COND_TAKEN_RETIRED, Branch Instruction architecturally executed, conditional branch,
taken

The counter counts each Software change of the PC counted by both BR_COND_RETIRED and
PC_WRITE_RETIRED.

These are all conditional branch instructions on the architecturally executed path, where the branch
is taken.

0x8183, BR_HINT_COND_RETIRED, Branch Instruction architecturally executed, hinted conditional

The counter counts each branch counted by BR_COND_RETIRED that is a hinted conditional
branch.

These are all hinted conditional branch instructions on the architecturally executed path.

The hinted conditional branch instruction is BC.cond.

Implementation of this optional event requires that architecture variant supports FEAT_HBC.

0x82A4, ASE_SVE_RETIRED, Instruction architecturally executed, Advanced SIMD data processing or
scalable vector extension data processing

The counter counts each architecturally executed instruction counted by INST_RETIRED that is
classified as an Advanced SIMD instruction or a scalable vector extension instruction.

See ASE_RETIRED and SVE_RETIRED for these classifications.

0x82A8, LD_ANY_RETIRED, Instruction architecturally executed, load

The counter counts each architecturally executed instruction counted by LDST_ANY_RETIRED
that is classified as a Memory-reading instruction.

It is IMPLEMENTATION DEFINED whether the preload instructions PRFM, PLD, PLDW, and PLI count as
integer data-processing instructions or Memory-reading instructions. Arm recommends that if the
instruction is not implemented as a NOP then it is counted as a Memory-reading instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6949
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82A9, ST_ANY_RETIRED, Instruction architecturally executed, store

The counter counts each architecturally executed instruction counted by LDST_ANY_RETIRED
that is classified as a Memory-writing instruction.

0x82AA, LDST_ANY_RETIRED, Instruction architecturally executed, load or store

The counter counts each architecturally executed instruction counted by INST_RETIRED that is
classified as a Memory-reading instruction or a Memory-writing instruction.

0x82AB, DP_RETIRED, Instruction architecturally executed, integer data processing

The counter counts each architecturally executed instruction counted by INST_RETIRED that is
classified as an integer data processing instruction.

The following instructions are counted as integer data-processing instructions:

• In AArch64 state:

— Instructions from Data processing - immediate.

— Instructions from Data processing - register.

— Instructions from System register instructions.

— Instructions from System instructions other than Memory-writing instructions.

— Instructions from Hint instructions.

— Instructions from Floating-point move (register) that transfer data between a
general-purpose register and a SIMD&FP register without conversion: FMOV (general).

— Instructions from SIMD move that transfer data between a general-purpose register
and an element or elements in a SIMD&FP register: DUP (general), SMOV, UMOV, and INS
(general). This includes the aliases MOV (from general) and MOV (to general).

— When FEAT_SVE is implemented, non-SIMD SVE instructions.

• In AArch32 state:

— Instructions from Data-processing instructions.

— Instructions from PSTATE and banked register access instructions.

— Instructions from Banked register access instructions.

— Instructions from Miscellaneous instructions other than ISB and preloads.

— Instructions from System register access instructions other than LDC and STC
instructions.

— VDUP (general-purpose register).

— All VMOV instructions that transfer data between a general-purpose register and a
SIMD&FP register.

— VMRS and VMSR.

This includes MOV and MVN instructions.

It is IMPLEMENTATION DEFINED whether the preload instructions PRFM, PLD, PLDW, and PLI count as
integer data-processing instructions or Memory-reading instructions. Arm recommends that if the
instruction is not implemented as a NOP then it is counted as a Memory-reading instruction.

When FEAT_PMUv3p9 is not implemented, it is IMPLEMENTATION DEFINED whether ISB is counted
as an integer data-processing instruction or a Software change of the PC.

When FEAT_PMUv3p9 is implemented, ISB is counted as an integer data-processing instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6950
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82AC, ASE_RETIRED, Instruction architecturally executed, Advanced SIMD data processing

The counter counts each architecturally executed instruction counted by ASE_SVE_RETIRED that
is classified as an Advanced SIMD instruction.

The following instructions are counted as Advanced SIMD data-processing instructions:

• For AArch64 state:

— The SIMD operations listed in Data processing - SIMD and floating-point.

— If the Cryptographic Extension is implemented, the Advanced SIMD PMULL, PMULL2
(1Q variants) instructions.

• For AArch32 state:

— Instructions from Advanced SIMD data-processing instructions.

— If the Cryptographic Extension is implemented, the VMULL (P64 variant) instruction.

This includes all instructions that operate on the SIMD&FP registers, except those that are counted
as one of the following:

• Integer data-processing instructions.

• Scalar floating-point data-processing instructions.

• Load or store instructions.

• Cryptographic data-processing instructions other than those included above.

Advanced SIMD scalar instructions are counted as Advanced SIMD instructions, including those
which operate on floating-point values.

0x82AD, VFP_RETIRED, Instruction architecturally executed, scalar floating-point data processing

The counter counts each architecturally executed instruction counted by INST_RETIRED that is
classified as a scalar floating-point instruction.

The following instructions are counted as scalar floating-point data-processing instructions:

• In AArch64 state:

— The scalar floating-point instructions from Data processing - SIMD and
floating-point. Only the scalar instructions are counted. SIMD floating-point
instructions are not counted.

— Instructions that take both an integer register and a floating-point register argument
and perform a type conversion (to/from integer or to/from fixed-point): FCVT{<mode>},
UCVTF, and SCVTF.

• In AArch32 state:

— Instructions from Floating-point data-processing instructions.

— Instructions that take both an integer register and a floating-point register argument
and perform a type conversion (to/from integer or to/from fixed-point): VCVT<mode>
(floating-point), VCVT, VCVTT, and VCVTB.

This includes all scalar instructions that operate on the SIMD&FP registers as floating-point values,
except those that are counted as one of the following:

• SIMD scalar instructions.

• Integer data-processing instructions.

• Load or store instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6951
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82AE, SVE_RETIRED, Instruction architecturally executed, SVE data processing

The counter counts each architecturally executed instruction counted by ASE_SVE_RETIRED that
is classified as an SVE data-processing instruction.

The following instructions are counted as SVE data-processing instructions:

• Data-processing instructions involving SVE scalable vector and predicate registers. This
includes instructions added by FEAT_SME which involve the SVE registers but do not
involve any ZA or ZT registers. This does not include non-SIMD SVE instructions.

• If the Cryptographic Extension and FEAT_SVE2 are implemented, the PMULLB, PMULLT (Q
variants) instructions.

This includes all instructions that operate on the SVE registers, except those that are counted as one
of the following:

• Load or store instructions.

• Cryptographic data-processing instructions other than those included above.

• When FEAT_SME is implemented, SME data-processing instructions.

0x82AF, CRYPTO_RETIRED, Instruction architecturally executed, cryptographic data processing

The counter counts each architecturally executed instruction counted by INST_RETIRED that is
classified as a cryptographic instruction.

The following instructions are counted as cryptographic data-processing instructions:

• In AArch64 state, instructions from the following sections:

— The Cryptographic Extension other than the Advanced SIMD PMULL, PMULL2 (1Q
variants) instructions.

— If FEAT_SVE2 is implemented, SVE2 Crypto Extensions other than the PMULLB, PMULLT
(Q variants) instructions.

• In AArch32 state, instructions from The Cryptographic Extension in AArch32 state other
than VMULL (P64 variant).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6952
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.3.2 Common microarchitectural events

The Common microarchitectural events are:

0x0001, L1I_CACHE_REFILL, Level 1 instruction cache refill

The counter counts each access counted by L1I_CACHE that causes a refill of the Level 1
instruction or unified cache from outside of the Level 1 instruction or unified cache.

A refill includes any access that causes data to be fetched from outside of the Level 1 caches, even
if the data is ultimately not allocated into the Level 1 instruction cache. For example, data might be
fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers are
treated as part of the cache.

For example, the counter counts accesses to the Level 1 instruction cache that cause a refill that is
satisfied by fetching data from memory, a Level 2 cache, or a Level 1 cache of another PE.

The counter does not count accesses that miss in the cache but are satisfied by the refill of a previous
miss and do not cause a new refill, even if that previous refill is not complete at the time of the miss.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[1] reads as 1 if this event is implemented and 0 otherwise.

0x0002, L1I_TLB_REFILL, Level 1 instruction TLB refill

The counter counts each Instruction memory access counted by L1I_TLB that causes a TLB refill
of the Level 1 instruction TLB.

This includes each Instruction memory access that causes a memory access due to a translation table
walk or an access to another level of TLB caching.

The counter does not count the access if any of the following are true:

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if any of the following are
true:

• The refill is not allocated in the TLB.

• The access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[2] reads as 1 if this event is implemented and 0 otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6953
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0003, L1D_CACHE_REFILL, Level 1 data cache refill

The counter counts each access counted by L1D_CACHE that causes a refill of the Level 1 data or
unified cache from outside of the Level 1 data or unified cache.

A refill includes any access that causes data to be fetched from outside of the Level 1 caches, even
if the data is ultimately not allocated into the Level 1 data cache. For example, data might be fetched
into a buffer but then discarded, rather than being allocated into a cache. These buffers are treated
as part of the cache.

For example, the counter counts accesses to the Level 1 data cache that cause a refill that is satisfier
by fetching data from memory, a Level 2 cache, or a Level 1 cache of another PE.

The counter does not count accesses that:

• Miss in the cache but are satisfied by the refill of a previous miss and do not cause a new
refill, even if that previous refill is not complete at the time of the miss.

• Miss in the cache but do not generate a refill, such as a write through the cache.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[3] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if the implementation includes a Level 1 data or unified cache.

0x0004, L1D_CACHE, Level 1 data cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Level 1 data or unified cache.

Each access to a cache line is counted including the multiple accesses caused by single instructions
such as LDM or STM. Each access to other Level 1 data or unified memory structures, for example refill
buffers, write buffers, and write-back buffers, is also counted.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that only
update the cache status information for a cache entry without accessing the content of the cache
entry are counted.

An example of cache status information is whether the cached data is held in an exclusive or shared
state.

When the L1D_CACHE_RW event is implemented:

• If the L1D_CACHE_PRFM event is implemented, accesses to the Level 1 data cache due to
a preload or prefetch instruction are counted. Otherwise, these accesses are not counted.

• If the L1D_CACHE_HWPRF event is implemented, accesses to the Level 1 data cache due
to a hardware prefetcher are counted. Otherwise these accesses are not counted.

When the L1D_CACHE_RW event is not implemented, it IMPLEMENTATION DEFINED whether
accesses to the Level 1 data cache due to preload or prefetch instructions or due to a hardware
prefetcher are counted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6954
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
When FEAT_GCS is implemented:

• If the L1GCS_CACHE event is implemented, GCS data read operations and GCS data write
operations are not counted.

• Otherwise, GCS data read operations and data write operations are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[4] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if the implementation includes a Level 1 data or unified cache.

0x0005, L1D_TLB_REFILL, Level 1 data TLB refill

The counter counts each access counted by L1D_TLB that causes a TLB refill of the Level 1 data
or unified TLB.

This includes each access that causes a memory access due to a translation table walk or an access
to another level of TLB caching.

The counter does not count the access if any of the following are true:

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if any of the following are
true:

• The refill is not allocated in the TLB.

• The access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[5] reads as 1 if this event is implemented and 0 otherwise.

0x0010, BR_MIS_PRED, Branch instruction Speculatively executed, mispredicted or not predicted

The counter counts each correction to the predicted program flow that occurs because of a
misprediction from, or no prediction from, the branch prediction resources and that relates to
instructions that the branch prediction resources are capable of predicting.

If no program-flow prediction resources are implemented, Arm recommends that the counter counts
all branches that are not taken.

PMCEID0_EL0[16] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if the implementation includes program-flow prediction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6955
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0011, CPU_CYCLES, Cycle

The counter increments on every cycle.

All counters are subject to changes in clock frequency, including when a WFI or WFE instruction stops
the clock. If FEAT_PMUv3p9 is implemented, then CPU_CYCLES does not increment when the
clocks are stopped by WFI and WFE instructions. Otherwise, it is CONSTRAINED UNPREDICTABLE
whether or not CPU_CYCLES continues to increment when the clocks are stopped by WFI and WFE
instructions.

Note
Unlike PMCCNTR or PMCCNTR_EL0, this count is not affected by the cycle counter controls:

• The counter is not incremented in prohibited regions, so is not affected by PMCR.DP or
PMCR_EL0.DP.

• The counter increments on every cycle, regardless of the setting of PMCR.D or
PMCR_EL0.D.

• The counter is reset when event counters are reset by PMCR.P and PMCR_EL0.P, never by
PMCR.C or PMCR_EL0.C.

• If FEAT_PMUv3p5 is implemented, the counter ignores SDCR.SCCD, MDCR_EL3.SCCD,
HDCR.HCCD, and MDCR_EL2.HCCD.

In a multithreaded implementation:

• If the Effective value of PMEVTYPER<n>_EL0.MT for the event counter is 0, then the
counter counts each Processor cycle when the counting PE is active.

• If the Effective value of PMEVTYPER<n>_EL0.MT for the event counter is 1, then the
counter counts each Processor cycle.

PMCEID0_EL0[17] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented.

0x0012, BR_PRED, Predictable branch instruction Speculatively executed

The counter counts every branch or other change in the program flow that the branch prediction
resources are capable of predicting.

If all branches are subject to prediction, for example a BTB or BTAC, then all branches are
predictable branches.

If branches are decoded before the predictor, so that the branch prediction logic dynamically
predicts only some branches, for example conditional and indirect branches, then it is
IMPLEMENTATION DEFINED whether other branches are counted as predictable branches. Arm
recommends that all branches are counted.

An implementation might include other structures that predict branches, such as a loop buffer that
predicts short backwards direct branches as taken. Each execution of such a branch is a predictable
branch. Terminating the loop might generate a misprediction event that is counted by
BR_MIS_PRED.

If no program-flow prediction resources are implemented, this event is optional, but Arm
recommends that BR_PRED counts all branches.

It is IMPLEMENTATION DEFINED when the branch is counted. Arm recommends that it is counted
when the branch is resolved, that is, at the same point in the instruction pipeline as when the
BR_MIS_PRED event would be counted if the branch resolves as mispredicted. This means that
(BR_PRED - BR_MIS_PRED) is the number of correctly predicted branches and the ratio
(BR_MIS_PRED ÷ BR_PRED) can be calculated in a meaningful way.

PMCEID0_EL0[18] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if the implementation includes program-flow prediction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6956
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0013, MEM_ACCESS, Data memory access

The counter counts each Memory-read operation or Memory-write operation that the PE makes.

The counter increments whether the access results in an access to a Level 1 data or unified cache, a
Level 2 data or unified cache, or neither of these.

The number of accesses generated by each instruction is IMPLEMENTATION DEFINED.

The counter does not count:

• Instruction memory accesses.

• Translation table walks.

• Write-back from any cache.

• Refilling of any cache.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

PMCEID0_EL0[19] reads as 1 if this event is implemented and 0 otherwise.

0x0014, L1I_CACHE, Level 1 instruction cache access

The counter counts each Instruction memory access to at least the Level 1 instruction or unified
cache.

Each Instruction memory access to other Level 1 instruction or unified memory structures, such as
refill buffers, is also counted.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that only
update the cache status information for a cache entry without accessing the content of the cache
entry are counted.

An example of cache status information is whether the cached data is held in an exclusive or shared
state.

When the L1I_CACHE_RD event is implemented:

• If the L1I_CACHE_PRFM event is implemented, accesses to the Level 1 instruction cache
due to a preload or prefetch instruction are counted. Otherwise, these are not counted.

• If the L1I_CACHE_HWPRF event is implemented, accesses to the Level 1 instruction cache
due to a hardware prefetcher are counted. Otherwise these events are not counted.

When the L1I_CACHE_RD event is not implemented, it IMPLEMENTATION DEFINED whether
accesses to the Level 1 instruction cache due to preload or prefetch instructions or due to a hardware
prefetcher are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[20] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_PMUv3p9 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6957
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0015, L1D_CACHE_WB, Level 1 data cache write-back

The counter counts each write-back of data from the Level 1 data or unified cache to outside of the
Level 1 caches. For example:

• A write-back of a dirty cache line to a Level 2 cache or memory.

• A write-back of a recently fetched cache line that has not been allocated to the Level 1 data
cache.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A transfer of a dirty cache line from the Level 1 data cache to outside of Level 1 caches made
as a result of a coherency request.

• Write-backs made as a result of cache maintenance instructions.

The counter does not count:

• The invalidation of a cache line without any write-back to outside of the Level 1 caches or
memory.

• Writes that write through the Level 1 data cache to outside of the Level 1 caches.

A write-back is attributable to the agent that generated the request that caused the write-back. This
might not be the same agent that caused the data being written back to be allocated into the cache.

An Unattributable write-back event occurs when a requestor outside of the PE makes a coherency
request that results in write-back. If the cache is shared, then an Unattributable write-back event is
not counted. If the cache is not shared, then the event is counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
software is streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA
operation.

PMCEID0_EL0[21] reads as 1 if this event is implemented and 0 otherwise.

0x0016, L2D_CACHE, Level 2 data cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Level 2 data or unified cache.

Each access to a cache line is counted including refills of and write-backs from other caches. Each
access to other Level 2 data or unified memory structures, for example refill buffers, write buffers,
and write-back buffers, is also counted.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that only
update the cache status information for a cache entry without accessing the content of the cache
entry are counted.

An example of cache status information is whether the cached data is held in an exclusive or shared
state.

When the L2D_CACHE_RW event is implemented:

• If the L2D_CACHE_PRFM event is implemented, accesses to the Level 2 data cache due to
a preload or prefetch instruction are counted. Otherwise, these accesses are not counted.

• If the L2D_CACHE_HWPRF event is implemented, accesses to the Level 2 data cache due
to a hardware prefetcher are counted. Otherwise these accesses are not counted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6958
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
When the L2D_CACHE_RW event is not implemented, it IMPLEMENTATION DEFINED whether
accesses to the Level 2 data cache due to preload or prefetch instructions or due to a hardware
prefetcher are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[22] reads as 1 if this event is implemented and 0 otherwise.

0x0017, L2D_CACHE_REFILL, Level 2 data cache refill

The counter counts each access counted by L2D_CACHE that causes a refill of the Level 2 data or
unified cache, or any Level 1 data, instruction, or unified cache of this PE, from outside of those
caches.

A refill includes any access that causes data to be fetched from outside of the Level 1 and Level 2
caches, even if the data is ultimately not allocated into the Level 2 data cache. For example, data
might be fetched into a buffer but then discarded, rather than being allocated into a cache. These
buffers are treated as part of the cache.

For example, the counter counts:

• Accesses to the Level 2 data cache that cause a refill that is satisfier by fetching data from
memory, a Level 3 cache, or a Level 2 cache of another PE.

• Refills of and write-backs from any Level 1 data, instruction, or unified cache of this PE that
cause a refill from outside of the Level 1 and Level 2 caches of this PE.

• Accesses to the Level 2 data cache that cause a refill of a Level 1 cache of this PE from
outside of the Level 1 and Level 2 caches of this PE, even if there is no refill of the Level 2
data cache.

The counter does not count accesses that:

• Miss in the cache but are satisfied by the refill of a previous miss and do not cause a new
refill, even if that previous refill is not complete at the time of the miss.

• Miss in the cache but do not generate a refill, such as a write through the cache.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[23] reads as 1 if this event is implemented and 0 otherwise.

0x0018, L2D_CACHE_WB, Level 2 data cache write-back

The counter counts each write-back of data from the Level 2 data or unified cache to outside of the
Level 1 and Level 2 caches. For example:

• A write-back of a dirty cache line to a Level 3 cache or memory.

• A write-back of a recently fetched cache line that has not been allocated to the Level 2 data
cache.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6959
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
It is IMPLEMENTATION DEFINED whether the counter counts:

• A transfer of a dirty cache line from the Level 2 data cache to outside of Level 1 and Level 2
caches made as a result of a coherency request.

• Write-backs made as a result of cache maintenance instructions.

The counter does not count:

• The invalidation of a cache line without any write-back to outside of the Level 1 and Level
2 caches or memory.

• Writes that write through the Level 2 data cache to outside of the Level 1 and Level 2 caches.

• Transfers of data from the Level 2 data cache to a Level 1 cache to satisfy a refill of the other
cache.

A write-back is attributable to the agent that generated the request that caused the write-back. This
might not be the same agent that caused the data being written back to be allocated into the cache.

An Unattributable write-back event occurs when a requestor outside of the PE makes a coherency
request that results in write-back. If the cache is shared, then an Unattributable write-back event is
not counted. If the cache is not shared, then the event is counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
software is streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA
operation.

PMCEID0_EL0[24] reads as 1 if this event is implemented and 0 otherwise.

0x0019, BUS_ACCESS, Bus access

The counter counts each Memory-read operation or Memory-write operation that accesses outside
of the boundary of the PE and its closely-coupled caches. Where this boundary lies with respect to
any implemented caches is IMPLEMENTATION DEFINED. Where an implementation has multiple
buses at this boundary, this event counts the sum of accesses across all buses.

A bus access is part of a bus transaction. The exact nature of a bus transaction is IMPLEMENTATION
DEFINED, but for the purposes of event monitoring consists of a single access comprising one or
more cycles, or beats, when the transaction occupies the bus. The BUS_ACCESS event counts each
beat of each transaction. That is, each bus cycle counted by BUS_CYCLES for which the bus is
active.

Bus transactions include refills of and write-backs from data, instruction, and unified caches.
Whether bus transactions include operations that use the bus but do not explicitly transfer data is
IMPLEMENTATION DEFINED.

An Unattributable bus transaction occurs when a requestor outside the PE makes a request that
results in a bus access, for example, a coherency request.

If a bus supports multiple accesses per cycle, for example through multiple channels, the counter
increments once for each channel that is active on a cycle, and so it might increment by more than
one in any given cycle.

The maximum increment in any given cycle is IMPLEMENTATION DEFINED.

PMCEID0_EL0[25] reads as 1 if this event is implemented and 0 otherwise.

0x001A, MEMORY_ERROR, Local memory error

The counter counts every occurrence of a memory error signaled by a memory closely coupled to
this PE. The definition of local memories is IMPLEMENTATION DEFINED but includes caches,
tightly-coupled memories, and TLB arrays.

Memory error refers to a physical error detected by the hardware, such as a parity or ECC error. It
includes errors that are correctable and those that are not. It does not include errors as defined in the
architecture, such as MMU faults.

PMCEID0_EL0[26] reads as 1 if this event is implemented and 0 otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6960
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x001B, INST_SPEC, Operation speculatively executed

The counter counts instructions that are Speculatively executed by the PE. This includes instructions
that are subsequently not architecturally executed. The definition of Speculatively executed is
IMPLEMENTATION DEFINED.

PMCEID0_EL0[27] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if event INST_RETIRED is not implemented.

0x001D, BUS_CYCLES, Bus cycle

The counter increments on every cycle of the interface at the boundary of the PE and its
closely-coupled caches. Where this boundary lies with respect to any implemented caches is
IMPLEMENTATION DEFINED.

Note

If the implementation clocks the external memory interface at the same rate as the processor
hardware, the counter counts every cycle.

PMCEID0_EL0[29] reads as 1 if this event is implemented and 0 otherwise.

0x001F, L1D_CACHE_ALLOCATE, Level 1 data cache allocation without refill

The counter counts each Memory-write operation that writes an entire line into the Level 1 data or
unified cache without fetching data from outside the Level 1 data or unified cache.

These are allocations of cache lines in the Level 1 data or unified cache that are not refills counted
by L1D_CACHE_REFILL. For example:

• A write of an entire cache line from a coalescing write buffer.

• An operation such as DC ZVA.

The counter counts only Memory-write operations Attributable to the PE counting the event, and,
if the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, other PEs in the
multithreaded implementation.

PMCEID0_EL0[31] reads as 1 if this event is implemented and 0 otherwise.

0x0020, L2D_CACHE_ALLOCATE, Level 2 data cache allocation without refill

The counter counts each Memory-write operation that writes an entire line into the Level 2 data or
unified cache without fetching data from outside the Level 2 data or unified cache.

These are allocations of cache lines in the Level 2 data or unified cache that are not refills counted
by L2D_CACHE_REFILL. For example:

• A write-back of an entire cache line from a Level 1 cache to the Level 2 data cache.

• A write of an entire cache line from a coalescing write buffer.

• An operation such as DC ZVA.

The counter counts only Memory-write operations Attributable to the PE counting the event, and,
if the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, other PEs in the
multithreaded implementation.

PMCEID1_EL0[0] reads as 1 if this event is implemented and 0 otherwise.

0x0022, BR_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted

The counter counts each instructions counted by BR_RETIRED that were not correctly predicted.

If no program-flow prediction resources are implemented, this event counts all retired not-taken
branches.

PMCEID1_EL0[2] reads as 1 if this event is implemented and 0 otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6961
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0023, STALL_FRONTEND, No operation sent for execution due to the frontend

The counter counts each cycle counted by CPU_CYCLES where no Attributable instruction or
operation was sent for execution and there was no Attributable instruction or operation available to
dispatch for the PE from the frontend.

The division between frontend and backend is IMPLEMENTATION DEFINED. All STALL events must
count at the same point in the pipeline.

Note

For a simplified pipeline model of Fetch-Decode-Issue-Execute-Retire, Arm recommends that the
events are counted when instructions are dispatched from Decode to Issue.

In a single cycle, both the STALL_BACKEND and STALL_FRONTEND events might be counted,
if both the backend is unable to accept any operations and there are no operations available to issue
from the frontend.

PMCEID1_EL0[3] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_PMUv3p1 is implemented.

0x0024, STALL_BACKEND, No operation sent for execution due to the backend

The counter counts each cycle counted by CPU_CYCLES where Attributable instructions or
operations for the PE are available to dispatch from the frontend to the backend, but no Attributable
instruction or operation is sent for execution because the backend is unable to accept any of the
instructions or operations available for the PE.

For example, the backend might be unable to accept operations because of a resource conflict or
non-availability.

It is IMPLEMENTATION DEFINED whether the counter also counts each cycle counted by
CPU_CYCLES where no Attributable instructions or operations for the PE are available to dispatch
from the frontend and the backend is unable to accept any instructions or operations for the PE.

The division between frontend and backend is IMPLEMENTATION DEFINED. For more information,
see STALL_FRONTEND. All STALL events must count at the same point in the pipeline.

Note

In a single cycle, both the STALL_BACKEND and STALL_FRONTEND events might be counted,
if both the backend is unable to accept any operations and there are no operations available to issue
from the frontend.

PMCEID1_EL0[4] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_PMUv3p1 is implemented.

0x0025, L1D_TLB, Level 1 data TLB access

The counter counts each Memory-read operation or Memory-write operation that causes a TLB
access to at least the Level 1 data or unified TLB.

Each access to a TLB entry is counted including multiple accesses caused by single instructions
such as LDM or STM.

When FEAT_GCS is implemented:

• If the L1GCS_TLB event is implemented, GCS data read operations and GCS data write
operations that causes a TLB access to at least a Level 1 TLB are not counted.

• Otherwise, GCS data read operations and data write operations that causes a TLB access to
at least a Level 1 TLB are counted.

The counter does not count the access if the access is due to a TLB maintenance instruction.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6962
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[5] reads as 1 if this event is implemented and 0 otherwise.

0x0026, L1I_TLB, Level 1 instruction TLB access

The counter counts each Instruction memory access that causes a TLB access to at least the Level 1
instruction TLB.

The counter does not count the access if the access is due to a TLB maintenance instruction.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[6] reads as 1 if this event is implemented and 0 otherwise.

0x0027, L2I_CACHE, Level 2 instruction cache access

The counter counts each Instruction memory access to at least the Level 2 instruction or unified
cache.

Each Instruction memory access to other Level 2 instruction or unified memory structures, such as
refill buffers, is also counted.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that only
update the cache status information for a cache entry without accessing the content of the cache
entry are counted.

An example of cache status information is whether the cached data is held in an exclusive or shared
state.

When the L2I_CACHE_RD event is implemented:

• If the L2I_CACHE_PRFM event is implemented, accesses to the Level 2 instruction cache
due to a preload or prefetch instruction are counted. Otherwise, these are not counted.

• If the L2I_CACHE_HWPRF event is implemented, accesses to the Level 2 instruction cache
due to a hardware prefetcher are counted. Otherwise these events are not counted.

When the L2I_CACHE_RD event is not implemented, it IMPLEMENTATION DEFINED whether
accesses to the Level 2 instruction cache due to preload or prefetch instructions or due to a hardware
prefetcher are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[7] reads as 1 if this event is implemented and 0 otherwise.

0x0028, L2I_CACHE_REFILL, Level 2 instruction cache refill

The counter counts each access counted by L2I_CACHE that causes a refill of the Level 2
instruction or unified cache, or any Level 1 data, instruction, or unified cache of this PE, from
outside of those caches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6963
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
A refill includes any access that causes data to be fetched from outside of the Level 1 and Level 2
caches, even if the data is ultimately not allocated into the Level 2 instruction cache. For example,
data might be fetched into a buffer but then discarded, rather than being allocated into a cache. These
buffers are treated as part of the cache.

For example, the counter counts:

• Accesses to the Level 2 instruction cache that cause a refill that is satisfied by fetching data
from memory, a Level 3 cache, or a Level 2 cache of another PE.

• Refills of any Level 1 instruction or unified cache of this PE that cause a refill from outside
of the Level 1 and Level 2 caches of this PE.

• Accesses to the Level 2 instruction cache that cause a refill of a Level 1 cache of this PE from
outside of the Level 1 and Level 2 caches of this PE, even if there is no refill of the Level 2
instruction cache.

The counter does not count accesses that miss in the cache but are satisfied by the refill of a previous
miss and do not cause a new refill, even if that previous refill is not complete at the time of the miss.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[8] reads as 1 if this event is implemented and 0 otherwise.

0x0029, L3D_CACHE_ALLOCATE, Level 3 data cache allocation without refill

The counter counts each Memory-write operation that writes an entire line into the Level 3 data or
unified cache without fetching data from outside the Level 3 data or unified cache.

These are allocations of cache lines in the Level 3 data or unified cache that are not refills counted
by L3D_CACHE_REFILL. For example:

• A write-back of an entire cache line from a Level 2 cache to the Level 3 data cache.

• A write of an entire cache line from a coalescing write buffer.

• An operation such as DC ZVA.

The counter counts only Memory-write operations Attributable to the PE counting the event, and,
if the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, other PEs in the
multithreaded implementation.

PMCEID1_EL0[9] reads as 1 if this event is implemented and 0 otherwise.

0x002A, L3D_CACHE_REFILL, Level 3 data cache refill

The counter counts each access counted by L3D_CACHE that causes a refill of the Level 3 data or
unified cache, or any Level 1 or Level 2 data, instruction, or unified cache of this PE, from outside
of those caches.

A refill includes any access that causes data to be fetched from outside of the Level 1 to Level 3
caches, even if the data is ultimately not allocated into the Level 3 data cache. For example, data
might be fetched into a buffer but then discarded, rather than being allocated into a cache. These
buffers are treated as part of the cache.

For example, the counter counts:

• Accesses to the Level 3 data cache that cause a refill that is satisfier by fetching data from
memory, a lower level cache, or a Level 3 cache of another PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6964
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• Refills of and write-backs from any Level 1 or Level 2 data, instruction, or unified caches of
this PE that cause a refill from outside of the Level 1 to Level 3 caches of this PE.

• Accesses to the Level 3 data cache that cause a refill of a Level 2 cache of this PE from
outside of the Level 1 to Level 3 caches of this PE, even if there is no refill of the Level 3
data cache.

The counter does not count accesses that:

• Miss in the cache but are satisfied by the refill of a previous miss and do not cause a new
refill, even if that previous refill is not complete at the time of the miss.

• Miss in the cache but do not generate a refill, such as a write through the cache.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[10] reads as 1 if this event is implemented and 0 otherwise.

0x002B, L3D_CACHE, Level 3 data cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Level 3 data or unified cache.

Each access to a cache line is counted including refills of and write-backs from other caches. Each
access to other Level 3 data or unified memory structures, for example refill buffers, write buffers,
and write-back buffers, is also counted.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that only
update the cache status information for a cache entry without accessing the content of the cache
entry are counted.

An example of cache status information is whether the cached data is held in an exclusive or shared
state.

When the L3D_CACHE_RW event is implemented:

• If the L3D_CACHE_PRFM event is implemented, accesses to the Level 3 data cache due to
a preload or prefetch instruction are counted. Otherwise, these accesses are not counted.

• If the L3D_CACHE_HWPRF event is implemented, accesses to the Level 3 data cache due
to a hardware prefetcher are counted. Otherwise these accesses are not counted.

When the L3D_CACHE_RW event is not implemented, it IMPLEMENTATION DEFINED whether
accesses to the Level 3 data cache due to preload or prefetch instructions or due to a hardware
prefetcher are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[11] reads as 1 if this event is implemented and 0 otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6965
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x002C, L3D_CACHE_WB, Level 3 data cache write-back

The counter counts each write-back of data from the Level 3 data or unified cache to outside of the
Level 1 to Level 3 caches. For example:

• A write-back of a dirty cache line to a lower level cache or memory.

• A write-back of a recently fetched cache line that has not been allocated to the Level 3 data
cache.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A transfer of a dirty cache line from the Level 3 data cache to outside of Level 1 to Level 3
caches made as a result of a coherency request.

• Write-backs made as a result of cache maintenance instructions.

The counter does not count:

• The invalidation of a cache line without any write-back to outside of the Level 1 to Level 3
caches or memory.

• Writes that write through the Level 3 data cache to outside of the Level 1 to Level 3 caches.

• Transfers of data from the Level 3 data cache to a Level 1 or Level 2 cache to satisfy a refill
of the other cache.

A write-back is attributable to the agent that generated the request that caused the write-back. This
might not be the same agent that caused the data being written back to be allocated into the cache.

An Unattributable write-back event occurs when a requestor outside of the PE makes a coherency
request that results in write-back. If the cache is shared, then an Unattributable write-back event is
not counted. If the cache is not shared, then the event is counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
software is streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA
operation.

PMCEID1_EL0[12] reads as 1 if this event is implemented and 0 otherwise.

0x002D, L2D_TLB_REFILL, Level 2 data TLB refill

The counter counts each access counted by L2D_TLB that causes a TLB refill of the Level 2 data
or unified TLB, or any Level 1 data, instruction, or unified TLBs of this PE.

This includes each access that causes a memory access due to a translation table walk or an access
to another level of TLB caching.

The counter does not count the access if any of the following are true:

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if any of the following are
true:

• The refill is not allocated in the TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6966
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• The access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[13] reads as 1 if this event is implemented and 0 otherwise.

0x002E, L2I_TLB_REFILL, Level 2 instruction TLB refill

The counter counts each Instruction memory access counted by L2I_TLB that causes a TLB refill
of the Level 2 instruction TLB, or any Level 1 data, instruction, or unified TLBs of this PE.

This includes each Instruction memory access that causes a memory access due to a translation table
walk or an access to another level of TLB caching.

The counter does not count the access if any of the following are true:

• The access misses in the TLB and generates a translation table walk but does not cause a refill
of the TLB.

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if any of the following are
true:

• The refill is not allocated in the TLB.

• The access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[14] reads as 1 if this event is implemented and 0 otherwise.

0x002F, L2D_TLB, Level 2 data TLB access

The counter counts each Memory-read operation or Memory-write operation that causes a TLB
access to at least the Level 2 data or unified TLB.

Each access to a TLB entry is counted including refills of Level 1 TLBs.

The counter does not count the access if the access is due to a TLB maintenance instruction.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[15] reads as 1 if this event is implemented and 0 otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6967
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0030, L2I_TLB, Level 2 instruction TLB access

The counter counts each Instruction memory access that causes a TLB access to at least the Level 2
instruction TLB.

The counter does not count the access if the access is due to a TLB maintenance instruction.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[16] reads as 1 if this event is implemented and 0 otherwise.

0x0031, REMOTE_ACCESS, Access to a remote device

The counter counts each Memory-read operation or Memory-write operation that causes an access
to a remote device. That is, a socket that does not contain the PE.

System topology is IMPLEMENTATION DEFINED. This means that it is IMPLEMENTATION DEFINED
which systems are defined as multi-socket systems, and, in systems defined as multi-socket systems,
which components are defined as being in the same or different sockets. Arm recommends that
devices where an access through that device incurs a significant latency penalty compared to other
accesses are treated as being in a different socket.

For example, in a system comprising multiple integrated circuits in a multi-chip module, an access
to a different integrated circuit in the same module might be treated as an access to another socket,
even though the multi-chip module is physically connected to a single socket at the motherboard.
However, in another system with many such multi-chip modules, an access to a different integrated
system in the same module might be treated as an access to the same socket because an access to an
integrated circuit on a different module has much higher latency.

The count includes all accesses to external memory counted by REMOTE_MEM. For more
information, see REMOTE_MEM.

It is IMPLEMENTATION DEFINED whether an access that causes a snoop into a different socket but
does not return data from or pass data to the remote socket is counted.

PMCEID1_EL0[17] reads as 1 if this event is implemented and 0 otherwise.

0x0032, LL_CACHE, Last level cache access

The counter counts each Memory-read operation or Memory-write operation that causes a cache
access to at least the Last level cache.

Each access to a cache line is counted including refills of and write-backs from other caches. Each
access to other Last level data or unified memory structures, for example refill buffers, write buffers,
and write-back buffers, is also counted.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If FEAT_PMUv3p4 is implemented, accesses that only update the cache status information for a
cache entry without accessing the content of the cache entry are not counted.

If FEAT_PMUv3p4 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that only
update the cache status information for a cache entry without accessing the content of the cache
entry are counted.

An example of cache status information is whether the cached data is held in an exclusive or shared
state.

When the LL_CACHE_RW event is implemented:

• If the LL_CACHE_PRFM event is implemented, accesses to the Last level cache due to a
preload or prefetch instruction are counted. Otherwise, these accesses are not counted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6968
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• If the LL_CACHE_HWPRF event is implemented, accesses to the Last level cache due to a
hardware prefetcher are counted. Otherwise these accesses are not counted.

When the LL_CACHE_RW event is not implemented, it IMPLEMENTATION DEFINED whether
accesses to the Last level cache due to preload or prefetch instructions or due to a hardware
prefetcher are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[18] reads as 1 if this event is implemented and 0 otherwise.

0x0033, LL_CACHE_MISS, Last level cache miss

If the LL_CACHE_RW event is implemented, the counter counts each access counted by
LL_CACHE_RW that is not completed by the Last level cache.

If the LL_CACHE_RW event is not implemented, the counter counts each access counted by
LL_CACHE that is not completed by the Last level cache.

That is, the access is one of the following:

• A Memory-read operation that does not return data from the Last level cache.

• A Memory-write operation that does not update the Last level cache.

The counter does not count operations that are completed by a cache above the Last level cache.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[19] reads as 1 if this event is implemented and 0 otherwise.

0x0034, DTLB_WALK, Data TLB access with at least one translation table walk

The counter counts each access counted by L1D_TLB that causes a refill of a data or unified TLB
involving at least one translation table walk access.

This includes each complete or partial translation table walk that causes an access to memory,
including to data or translation table walk caches.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that cause an
update of an existing TLB entry involving at least one translation table walk access are counted. If
Armv8.7 is implemented, these accesses are counted.

The counter does not count the access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6969
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[20] reads as 1 if this event is implemented and 0 otherwise.

0x0035, ITLB_WALK, Instruction TLB access with at least one translation table walk

The counter counts each access counted by L1I_TLB that causes a refill of an instruction TLB
involving at least one translation table walk access.

This includes each complete or partial translation table walk that causes an access to memory,
including to data or translation table walk caches.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether accesses that cause an
update of an existing TLB entry involving at least one translation table walk access are counted. If
Armv8.7 is implemented, these accesses are counted.

The counter does not count the access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[21] reads as 1 if this event is implemented and 0 otherwise.

0x0036, LL_CACHE_RD, Last level cache access, read

If the LL_CACHE_RW event is implemented, the counter counts each access counted by
LL_CACHE_RW that is a Memory-read operation.

If the LL_CACHE_RW event is not implemented, the counter counts each access counted by
LL_CACHE that is a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[22] reads as 1 if this event is implemented and 0 otherwise.

0x0037, LL_CACHE_MISS_RD, Last level cache miss, read

The counter counts each access counted by both LL_CACHE_MISS and LL_CACHE_RD.

That is, every miss of the Last level cache counted by LL_CACHE_MISS that is caused by a
Memory-read operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6970
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[23] reads as 1 if this event is implemented and 0 otherwise.

0x0038, REMOTE_ACCESS_RD, Access to a remote device, read

The counter counts each access counted by REMOTE_ACCESS that is a Memory-read operation.

PMCEID1_EL0[24] reads as 1 if this event is implemented and 0 otherwise.

0x0039, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency read miss

The counter counts each Memory-read operation to the Level 1 data or unified cache counted by
L1D_CACHE that incurs additional latency because it returns data from outside of the Level 1 data
or unified cache of this PE.

The event indicates to software that the access missed in the Level 1 data or unified cache and might
have a significant performance impact due to the additional latency compared to the latency of an
access that hits in the Level 1 data or unified cache.

The counter does not count:

• Accesses where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared to a miss in all Level 1 caches that the access looks up in and
results in an access being made to a Level 2 cache or elsewhere beyond the Level 1 data or
unified cache.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency, nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance operations are
counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID1_EL0[25] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_PMUv3p4 is implemented.

0x003A, OP_RETIRED, Micro-operation architecturally executed

The counter counts each operation counted by OP_SPEC that would be executed in a Simple
sequential execution of the program.

PMCEID1_EL0[26] reads as 1 if this event is implemented and 0 otherwise.

0x003B, OP_SPEC, Micro-operation Speculatively executed

The counter counts the number of operations executed by the PE, including those that are executed
speculatively and would not be executed in a Simple sequential execution of the program.

PMCEID1_EL0[27] reads as 1 if this event is implemented and 0 otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6971
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x003C, STALL, No operation sent for execution

The counter counts each cycle counted by CPU_CYCLES where no operation was sent for
execution.

On a multithreaded implementation:

• If the Effective value of PMEVTYPER<n>_EL0.MT is 0, then the counter counts cycles
when the PE is active and no operation for the PE is sent for execution, even if operations
Attributable to other PEs in the multithreaded implementation are sent for execution in that
cycle. The counter does not count cycles when the PE is not active.

• If the Effective value of PMEVTYPER<n>_EL0.MT is 1, then the counter counts all cycles
when no instructions or operations for any PE in the multithreaded implementation were sent
for execution.

All STALL events must count at the same point in the pipeline.

PMCEID1_EL0[28] reads as 1 if this event is implemented and 0 otherwise.

0x003D, STALL_SLOT_BACKEND, No operation sent for execution on a Slot due to the backend

The counter counts each Slot counted by STALL_SLOT where an Attributable instruction or
operation for the PE is available on the Slot to dispatch from the frontend to the backend, but is not
sent for execution because the backend is unable to accept the available instruction or operation for
the PE.

It is IMPLEMENTATION DEFINED whether the counter also counts each Slot counted by
STALL_SLOT where no Attributable instruction or operation for the PE is available on the Slot to
dispatch from the frontend and the backend is unable to accept any instruction or operation for the
PE.

The division between frontend and backend is IMPLEMENTATION DEFINED. For more information,
see STALL_FRONTEND. All STALL events must count at the same point in the pipeline. The
maximum value by which STALL_SLOT_BACKEND can count in a single cycle is an
IMPLEMENTATION DEFINED fixed value, slots. For more information, see STALL_SLOT.

Note

In a single cycle, the sum of values counted by STALL_SLOT_BACKEND and
STALL_SLOT_FRONTEND might be greater-than slots, if both the backend is unable to accept
some operations and there are fewer-than slots operations available to dispatch from the frontend.

PMCEID1_EL0[29] reads as 1 if this event is implemented and 0 otherwise.

0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the frontend

The counter counts each Slot counted by STALL_SLOT where no Attributable instruction or
operation was sent for execution and there was no Attributable instruction or operation available to
dispatch for the PE from the frontend for the Slot.

The division between frontend and backend is IMPLEMENTATION DEFINED. For more information,
see STALL_FRONTEND. All STALL events must count at the same point in the pipeline. The
maximum value by which STALL_SLOT_FRONTEND can count in a single cycle is an
IMPLEMENTATION DEFINED fixed value, slots. For more information, see STALL_SLOT.

Note

In a single cycle, the sum of values counted by STALL_SLOT_BACKEND and
STALL_SLOT_FRONTEND might be greater-than slots, if both the backend is unable to accept
some operations and there are fewer-than slots operations available to dispatch from the frontend.

PMCEID1_EL0[30] reads as 1 if this event is implemented and 0 otherwise.

0x003F, STALL_SLOT, No operation sent for execution on a Slot

The counter counts on each cycle the number of instruction or operation Slots that were not
occupied by an instruction or operation Attributable to the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6972
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
All STALL events must count at the same point in the pipeline. The maximum value by which
STALL_SLOT can count in a single cycle is an IMPLEMENTATION DEFINED fixed value, slots. The
definition of a Slot is IMPLEMENTATION DEFINED. The formula
STALL_SLOT÷(CPU_CYCLES×slots) gives the utilization of the Slots of the processor by
Attributable instruction or operations of this PE. Each Slot holds at most one instruction or operation
each cycle.

On a multithreaded implementation:

• If the Effective value of PMEVTYPER<n>_EL0.MT is 0, then the counter counts Slots
occupied by an instruction or operation Attributable to other PEs of the multithreaded
implementation only when the PE was active in that cycle. The counter does not count Slots
on cycles when the PE was not active.

• If the Effective value of PMEVTYPER<n>_EL0.MT is 1, then, for every cycle, the counter
counts all Slots not occupied by any instruction or operation for any PE of the multithreaded
implementation.

PMCEID1_EL0[31] reads as 1 if this event is implemented and 0 otherwise.

0x0040, L1D_CACHE_RD, Level 1 data cache access, read

If the L1D_CACHE_RW event is implemented, the counter counts each access counted by
L1D_CACHE_RW that is a Memory-read operation.

If the L1D_CACHE_RW event is not implemented, the counter counts each access counted by
L1D_CACHE that is a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0041, L1D_CACHE_WR, Level 1 data cache access, write

If the L1D_CACHE_RW event is implemented, the counter counts each access counted by
L1D_CACHE_RW that is a Memory-write operation.

If the L1D_CACHE_RW event is not implemented, the counter counts each access counted by
L1D_CACHE that is a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0042, L1D_CACHE_REFILL_RD, Level 1 data cache refill, read

The counter counts each access counted by both L1D_CACHE_RD and L1D_CACHE_REFILL.

That is, every refill of the Level 1 data or unified cache counted by L1D_CACHE_REFILL that is
caused by a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6973
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0043, L1D_CACHE_REFILL_WR, Level 1 data cache refill, write

The counter counts each access counted by both L1D_CACHE_REFILL and L1D_CACHE_WR.

That is, every refill of the Level 1 data or unified cache counted by L1D_CACHE_REFILL that is
caused by a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0044, L1D_CACHE_REFILL_INNER, Level 1 data cache refill, inner

The counter counts each access counted by L1D_CACHE_REFILL that generates a refill satisfied
by transfer from another cache inside of the immediate cluster.

Note

The boundary between inner and outer is IMPLEMENTATION DEFINED, and it is not necessarily linked
to other similar boundaries, such as the boundary between Inner Cacheable and Outer Cacheable or
the boundary between Inner Shareable and Outer Shareable.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0045, L1D_CACHE_REFILL_OUTER, Level 1 data cache refill, outer

The counter counts each access counted by L1D_CACHE_REFILL that generates a refill satisfied
by transfer from outside of the immediate cluster.

Note

The boundary between inner and outer is IMPLEMENTATION DEFINED, and it is not necessarily linked
to other similar boundaries, such as the boundary between Inner Cacheable and Outer Cacheable or
the boundary between Inner Shareable and Outer Shareable.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6974
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0046, L1D_CACHE_WB_VICTIM, Level 1 data cache write-back, victim

The counter counts each write-back counted by L1D_CACHE_WB that occurs because the line is
allocated for an access made by the PE.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0047, L1D_CACHE_WB_CLEAN, Level 1 data cache write-back, cleaning and coherency

The counter counts each write-back counted by L1D_CACHE_WB that occurs because of a
coherency operation made by another PE or, optionally, the execution of a cache maintenance
instruction.

Whether write-backs that are caused by the execution of a cache maintenance instruction are
counted is IMPLEMENTATION DEFINED.

Note

The transfer of a dirty cache line from the Level 1 data cache of this PE to the data cache of another
PE due to a hardware coherency operation is not counted unless the dirty cache line is also written
back to a Level 2 cache or memory.

If a coherency request from a requestor outside of the PE results in a write-back, it is an
Unattributable event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0048, L1D_CACHE_INVAL, Level 1 data cache invalidate

The counter counts each invalidation of a cache line in the Level 1 data or unified cache. For
example:

• Invalidation of a cache line because of a cache maintenance operation.

• Transfer of ownership of a cache line to another cache because of a coherency or refill
request.

The counter does not count events if a cache refill of the Level 1 data or unified cache invalidates a
line in the Level 1 data or unified cache.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache
maintenance instructions that operate by set/way.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether the counter counts
locally-executed cache maintenance instructions that operate by set/way.

Note
Software that uses this event must know whether the Level 1 data cache is shared with other PEs.
This event does not follow the general rule of Level 1 data cache events of only counting
Attributable events.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x004C, L1D_TLB_REFILL_RD, Level 1 data TLB refill, read

The counter counts each access counted by both L1D_TLB_RD and L1D_TLB_REFILL.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6975
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x004D, L1D_TLB_REFILL_WR, Level 1 data TLB refill, write

The counter counts each access counted by both L1D_TLB_REFILL and L1D_TLB_WR.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x004E, L1D_TLB_RD, Level 1 data TLB access, read

If the L1D_TLB_RW event is implemented, the counter counts each access counted by
L1D_TLB_RW that is a Memory-read operation.

If the L1D_TLB_RW event is not implemented, the counter counts each access counted by
L1D_TLB that is a Memory-read operation.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x004F, L1D_TLB_WR, Level 1 data TLB access, write

If the L1D_TLB_RW event is implemented, the counter counts each access counted by
L1D_TLB_RW that is a Memory-write operation.

If the L1D_TLB_RW event is not implemented, the counter counts each access counted by
L1D_TLB that is a Memory-write operation.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6976
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0050, L2D_CACHE_RD, Level 2 data cache access, read

If the L2D_CACHE_RW event is implemented, the counter counts each access counted by
L2D_CACHE_RW that is a Memory-read operation.

If the L2D_CACHE_RW event is not implemented, the counter counts each access counted by
L2D_CACHE that is a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0051, L2D_CACHE_WR, Level 2 data cache access, write

If the L2D_CACHE_RW event is implemented, the counter counts each access counted by
L2D_CACHE_RW that is a Memory-write operation.

If the L2D_CACHE_RW event is not implemented, the counter counts each access counted by
L2D_CACHE that is a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0052, L2D_CACHE_REFILL_RD, Level 2 data cache refill, read

The counter counts each access counted by both L2D_CACHE_RD and L2D_CACHE_REFILL.

That is, every refill of the Level 2 data or unified cache counted by L2D_CACHE_REFILL that is
caused by a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0053, L2D_CACHE_REFILL_WR, Level 2 data cache refill, write

The counter counts each access counted by both L2D_CACHE_REFILL and L2D_CACHE_WR.

That is, every refill of the Level 2 data or unified cache counted by L2D_CACHE_REFILL that is
caused by a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6977
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0056, L2D_CACHE_WB_VICTIM, Level 2 data cache write-back, victim

The counter counts each write-back counted by L2D_CACHE_WB that occurs because the line is
allocated for an access made by the PE.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0057, L2D_CACHE_WB_CLEAN, Level 2 data cache write-back, cleaning and coherency

The counter counts each write-back counted by L2D_CACHE_WB that occurs because of a
coherency operation made by another PE or, optionally, the execution of a cache maintenance
instruction.

Whether write-backs that are caused by the execution of a cache maintenance instruction are
counted is IMPLEMENTATION DEFINED.

Note

The transfer of a dirty cache line from the Level 2 data cache of this PE to the data cache of another
PE due to a hardware coherency operation is not counted unless the dirty cache line is also written
back to a Level 3 cache or memory.

If a coherency request from a requestor outside of the PE results in a write-back, it is an
Unattributable event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0058, L2D_CACHE_INVAL, Level 2 data cache invalidate

The counter counts each invalidation of a cache line in the Level 2 data or unified cache. For
example:

• Invalidation of a cache line because of a cache maintenance operation.

• Transfer of ownership of a cache line to another cache because of a coherency or refill
request.

The counter does not count events if a cache refill of the Level 2 data or unified cache invalidates a
line in the Level 2 data or unified cache.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache
maintenance instructions that operate by set/way.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether the counter counts
locally-executed cache maintenance instructions that operate by set/way.

Note

Software that uses this event must know whether the Level 2 data cache is shared with other PEs.
This event does not follow the general rule of Level 2 data cache events of only counting
Attributable events.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x005C, L2D_TLB_REFILL_RD, Level 2 data TLB refill, read

The counter counts each access counted by both L2D_TLB_RD and L2D_TLB_REFILL.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6978
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x005D, L2D_TLB_REFILL_WR, Level 2 data TLB refill, write

The counter counts each access counted by both L2D_TLB_REFILL and L2D_TLB_WR.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x005E, L2D_TLB_RD, Level 2 data TLB access, read

The counter counts each access counted by L2D_TLB that is a Memory-read operation.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x005F, L2D_TLB_WR, Level 2 data TLB access, write

The counter counts each access counted by L2D_TLB that is a Memory-write operation.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6979
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0060, BUS_ACCESS_RD, Bus access, read

The counter counts each access counted by BUS_ACCESS that is a Memory-read operation.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0061, BUS_ACCESS_WR, Bus access, write

The counter counts each access counted by BUS_ACCESS that is a Memory-write operation.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0062, BUS_ACCESS_SHARED, Bus access, Normal, Cacheable, Shareable

The counter counts each access counted by BUS_ACCESS that is Normal, Cacheable, Shareable.

Note
It is IMPLEMENTATION DEFINED how the PE translates the attributes from the translation table entry
for a region to the attributes on the bus.

In particular, a region of memory designated as Normal, Cacheable, Inner Shareable, Not Outer
Shareable by a translation table entry, might be marked as either shareable or Non-shareable at the
boundary of the PE and its closely-coupled caches. This depends on where the IMPLEMENTATION
DEFINED boundary lies, between Inner and Outer Shareable.

If the Inner Shareable extends beyond the PE boundary, and the bus indicates the distinction
between Inner and Outer Shareable, then either is counted as shareable for the purposes of defining
this event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0063, BUS_ACCESS_NOT_SHARED, Bus access, not Normal, Cacheable, Shareable

The counter counts each access counted by BUS_ACCESS that is not counted by
BUS_ACCESS_SHARED.

For example, the counter counts accesses marked as:

• Normal, Cacheable, Non-shareable.

• Normal, Non-cacheable.

• Device.

Note

It is IMPLEMENTATION DEFINED, how the PE translates the attributes from the translation table
entries for a region to the attributes on the bus.

In particular, a region of memory designated as Normal, Cacheable, Inner Shareable, Not Outer
Shareable by a translation table entry, might be marked as either shareable or Non-shareable at the
boundary of the PE and its closely-coupled caches. This depends on where the IMPLEMENTATION
DEFINED boundary lies, between Inner and Outer Shareable.

If the Inner Shareable extends beyond the PE boundary, and the bus indicates the distinction
between Inner and Outer Shareable, then either is counted as shareable for the purposes of defining
this event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0064, BUS_ACCESS_NORMAL, Bus access, normal

The counter counts each access counted by BUS_ACCESS that is to Normal or bulk memory.

For example, the counter counts Normal, Cacheable and Normal, Non-cacheable accesses but does
not count Device accesses.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6980
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x0065, BUS_ACCESS_PERIPH, Bus access, peripheral

The counter counts each access counted by BUS_ACCESS that is not counted by
BUS_ACCESS_NORMAL.

For example, the counter counts accesses to Device memory.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0066, MEM_ACCESS_RD, Data memory access, read

If the MEM_ACCESS_RW event is implemented, the counter counts each access counted by
MEM_ACCESS_RW that is a Memory-read operation.

If the MEM_ACCESS_RW event is not implemented, the counter counts each access counted by
MEM_ACCESS that is a Memory-read operation.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0067, MEM_ACCESS_WR, Data memory access, write

If the MEM_ACCESS_RW event is implemented, the counter counts each access counted by
MEM_ACCESS_RW that is a Memory-write operation.

If the MEM_ACCESS_RW event is not implemented, the counter counts each access counted by
MEM_ACCESS that is a Memory-write operation.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0068, UNALIGNED_LD_SPEC, Unaligned access, read

The counter counts each unaligned access counted by UNALIGNED_LDST_SPEC that is a
Memory-read operation.

The unaligned access is counted even if it is subsequently transformed into multiple aligned
accesses.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0069, UNALIGNED_ST_SPEC, Unaligned access, write

The counter counts each unaligned access counted by UNALIGNED_LDST_SPEC that is a
Memory-write operation.

The unaligned access is counted even if it is subsequently transformed into multiple aligned
accesses.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x006A, UNALIGNED_LDST_SPEC, Unaligned access

The counter counts each access counted by MEM_ACCESS that is an unaligned Memory-read
operation or unaligned Memory-write operation.

The unaligned access is counted even if it is subsequently transformed into multiple aligned
accesses.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x006C, LDREX_SPEC, Exclusive operation Speculatively executed, Load-Exclusive

The counter counts Load-Exclusive instructions Speculatively executed.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x006D, STREX_PASS_SPEC, Exclusive operation Speculatively executed, Store-Exclusive pass

The counter counts Store-Exclusive instructions Speculatively executed that completed a write.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the LDREX_SPEC event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6981
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x006E, STREX_FAIL_SPEC, Exclusive operation Speculatively executed, Store-Exclusive fail

The counter counts Store-Exclusive instructions Speculatively executed that fail to complete a
write. It is within the IMPLEMENTATION DEFINED definition of Speculatively executed whether this
includes conditional instructions that fail the condition code check.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for
the LDREX_SPEC event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x006F, STREX_SPEC, Exclusive operation Speculatively executed, Store-Exclusive

The counter counts Store-Exclusive instructions Speculatively executed.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but it must be the same as
for the LDREX_SPEC event.

Arm recommends that this event is implemented if it is not possible to implement the exclusive
operation Speculatively executed, Store-Exclusive pass, and exclusive operation Speculatively
executed, Store-Exclusive fail, events with the same degree of speculation as the LDREX_SPEC
event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0070, LD_SPEC, Operation speculatively executed, load

The counter counts each operation counted by LDST_SPEC that is a load operation.

Operations due to Memory-reading instructions are counted as load operations.

It is IMPLEMENTATION DEFINED whether the preload instructions PRFM, PLD, PLDW, and PLI count as
integer data-processing operations or load operations. Arm recommends that if the instruction is not
implemented as a NOP then it is counted as a load operation.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0071, ST_SPEC, Operation speculatively executed, store

The counter counts each operation counted by LDST_SPEC that is a store operation.

Operations due to Memory-writing instructions are counted as store operations.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0072, LDST_SPEC, Operation speculatively executed, load or store

The counter counts each operation counted by INST_SPEC that is a load operation or a store
operation.

See LD_SPEC and ST_SPEC for these classifications.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0073, DP_SPEC, Operation speculatively executed, integer data processing

The counter counts each operation counted by INST_SPEC that is an integer data processing
operation.

Operations due to the following instructions are counted as integer data-processing operations:

• In AArch64 state instructions from the following sections:

— Data processing - immediate.

— Data processing - register.

— System register instructions.

— System instructions other than Memory-writing instructions.

— Hint instructions.

— When FEAT_SVE is implemented and the SVE_SPEC event is implemented,
non-SIMD SVE instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6982
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• In AArch32 state instructions from the following sections:

— Data-processing instructions.

— PSTATE and banked register access instructions.

— Banked register access instructions.

— Miscellaneous instructions other than ISB and preloads.

— System register access instructions other than LDC and STC instructions.

This includes MOV and MVN instructions.

It is IMPLEMENTATION DEFINED whether the preload instructions PRFM, PLD, PLDW, and PLI count as
integer data-processing operations or load operations. Arm recommends that if the instruction is not
implemented as a NOP then it is counted as a load operation.

When FEAT_PMUv3p9 is not implemented, it is IMPLEMENTATION DEFINED whether ISB is counted
as an integer data-processing operation or a Software change of the PC.

When FEAT_PMUv3p9 is implemented, ISB is counted as an integer data-processing operation.

It is IMPLEMENTATION DEFINED whether the following instructions are counted as integer
data-processing operations, SIMD operations, or floating-point operations, but Arm recommends
that the instructions are all counted as integer data-processing operations:

• In AArch64 state:

— Instructions from Floating-point move (register) that transfer data between a
general-purpose register and a SIMD&FP register without conversion: FMOV (general).

— Instructions from SIMD move that transfer data between a general-purpose register
and an element or elements in a SIMD&FP register: DUP (general), SMOV, UMOV, and INS
(general). This includes the aliases MOV (from general) and MOV (to general).

— When FEAT_SVE is implemented and the SVE_SPEC event is not implemented,
non-SIMD SVE instructions.

• In AArch32 state:

— VDUP (general-purpose register).

— All VMOV instructions that transfer data between a general-purpose register and a
SIMD&FP register.

— VMRS and VMSR.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0074, ASE_SPEC, Operation speculatively executed, Advanced SIMD data processing

The counter counts each operation counted by ASE_SVE_SPEC that is an Advanced SIMD
operation.

Operations due to the following instructions are counted as Advanced SIMD data-processing
operations:

• For AArch64 state:

— The SIMD operations listed in Data processing - SIMD and floating-point.

— If the Cryptographic Extension is implemented, the Advanced SIMD PMULL, PMULL2
(1Q variants) instructions.

• For AArch32 state:

— Instructions from Advanced SIMD data-processing instructions.

— If the Cryptographic Extension is implemented, the VMULL (P64 variant) instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6983
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
This includes all operations that operate on the SIMD&FP registers, except those that are counted
as one of the following:

• Integer data-processing operations.

• Scalar floating-point data-processing operations.

• Load or store operations.

• Cryptographic data-processing operations other than those included above.

Advanced SIMD scalar operations are counted as Advanced SIMD operations, including those
which operate on floating-point values.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0075, VFP_SPEC, Operation speculatively executed, scalar floating-point data processing

The counter counts each operation counted by INST_SPEC that is a scalar floating-point operation.

Operations due to the following instructions are counted as scalar floating-point data-processing
operations:

• In AArch64 state:

— The scalar floating-point operations from Data processing - SIMD and floating-point.
Only the scalar operations are counted. SIMD floating-point operations are not
counted.

— Operations that take both an integer register and a floating-point register argument and
perform a type conversion (to/from integer or to/from fixed-point): FCVT{<mode>},
UCVTF, and SCVTF.

• In AArch32 state:

— Instructions from Floating-point data-processing instructions.

— Operations that take both an integer register and a floating-point register argument and
perform a type conversion (to/from integer or to/from fixed-point): VCVT<mode>
(floating-point), VCVT, VCVTT, and VCVTB.

This includes all scalar operations that operate on the SIMD&FP registers as floating-point values,
except those that are counted as one of the following:

• SIMD scalar operations.

• Integer data-processing operations.

• Load or store operations.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0076, PC_WRITE_SPEC, Operation speculatively executed, Software change of the PC

The counter counts each operation counted by INST_SPEC that is a Software change of the PC.

Software change of the PC operations are defined by the PC_WRITE_RETIRED event.

When FEAT_PMUv3p8 is implemented, the counter counts the operation even if the branch is not
taken. Otherwise, it is IMPLEMENTATION DEFINED whether the counter counts the operation when
the branch is not taken.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0077, CRYPTO_SPEC, Operation speculatively executed, cryptographic data processing

The counter counts each operation counted by INST_SPEC that is a cryptographic operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6984
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Operations due to the following instructions are counted as cryptographic data-processing
operations:

• In AArch64 state, instructions from the following sections:

— The Cryptographic Extension other than the Advanced SIMD PMULL, PMULL2 (1Q
variants) instructions.

— If FEAT_SVE2 is implemented, SVE2 Crypto Extensions other than the PMULLB, PMULLT
(Q variants) instructions.

• In AArch32 state, instructions from The Cryptographic Extension in AArch32 state other
than VMULL (P64 variant).

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0078, BR_IMMED_SPEC, Branch Speculatively executed, immediate branch

The counter counts immediate branch instructions Speculatively executed. Defined by the
Instruction architecturally executed, immediate branch event, see Common event numbers.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

See also BR_IMMED_RETIRED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0079, BR_RETURN_SPEC, Branch Speculatively executed, procedure return

The counter counts procedure return instructions Speculatively executed. Defined by the
BR_RETURN_RETIRED event.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

See also BR_RETURN_RETIRED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x007A, BR_INDIRECT_SPEC, Branch Speculatively executed, indirect branch

The counter counts indirect branch instructions Speculatively executed. This includes Software
change of the PC other than exception-generating instructions and immediate branch instructions.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x007C, ISB_SPEC, Barrier Speculatively executed, ISB

The counter counts Instruction Synchronization Barrier instructions Speculatively executed,
including CP15ISB.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x007D, DSB_SPEC, Barrier Speculatively executed, DSB

The counter counts data synchronization and speculative load barrier instructions Speculatively
executed, including CP15DSB, SSBB and PSSBB.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x007E, DMB_SPEC, Barrier Speculatively executed, DMB

The counter counts data memory barrier instructions Speculatively executed, including CP15DSB.
It does not include the implied barrier operations of load/store operations with release consistency
semantics.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6985
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x007F, CSDB_SPEC, Barrier Speculatively executed, CSDB

The counter counts control speculation barrier instructions Speculatively executed.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0090, RC_LD_SPEC, Release consistency operation Speculatively executed, Load-Acquire

The counter counts Memory-read operations with acquire or AcquirePC semantics that are
Speculatively executed.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x0091, RC_ST_SPEC, Release consistency operation Speculatively executed, Store-Release

The counter counts Memory-write operations with release semantics that are Speculatively
executed.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A0, L3D_CACHE_RD, Level 3 data cache access, read

If the L3D_CACHE_RW event is implemented, the counter counts each access counted by
L3D_CACHE_RW that is a Memory-read operation.

If the L3D_CACHE_RW event is not implemented, the counter counts each access counted by
L3D_CACHE that is a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A1, L3D_CACHE_WR, Level 3 data cache access, write

If the L3D_CACHE_RW event is implemented, the counter counts each access counted by
L3D_CACHE_RW that is a Memory-write operation.

If the L3D_CACHE_RW event is not implemented, the counter counts each access counted by
L3D_CACHE that is a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A2, L3D_CACHE_REFILL_RD, Level 3 data cache refill, read

The counter counts each access counted by both L3D_CACHE_RD and L3D_CACHE_REFILL.

That is, every refill of the Level 3 data or unified cache counted by L3D_CACHE_REFILL that is
caused by a Memory-read operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6986
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A3, L3D_CACHE_REFILL_WR, Level 3 data cache refill, write

The counter counts each access counted by both L3D_CACHE_REFILL and L3D_CACHE_WR.

That is, every refill of the Level 3 data or unified cache counted by L3D_CACHE_REFILL that is
caused by a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A6, L3D_CACHE_WB_VICTIM, Level 3 data cache write-back, victim

The counter counts each write-back counted by L3D_CACHE_WB that occurs because the line is
allocated for an access made by the PE.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A7, L3D_CACHE_WB_CLEAN, Level 3 data cache write-back, cleaning and coherency

The counter counts each write-back counted by L3D_CACHE_WB that occurs because of a
coherency operation made by another PE or, optionally, the execution of a cache maintenance
instruction.

Whether write-backs that are caused by the execution of a cache maintenance instruction are
counted is IMPLEMENTATION DEFINED.

Note

The transfer of a dirty cache line from the Level 3 data cache of this PE to the data cache of another
PE due to a hardware coherency operation is not counted unless the dirty cache line is also written
back to a lower level cache or memory.

If a coherency request from a requestor outside of the PE results in a write-back, it is an
Unattributable event.

When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x00A8, L3D_CACHE_INVAL, Level 3 data cache invalidate

The counter counts each invalidation of a cache line in the Level 3 data or unified cache. For
example:

• Invalidation of a cache line because of a cache maintenance operation.

• Transfer of ownership of a cache line to another cache because of a coherency or refill
request.

The counter does not count events if a cache refill of the Level 3 data or unified cache invalidates a
line in the Level 3 data or unified cache.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache
maintenance instructions that operate by set/way.

If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether the counter counts
locally-executed cache maintenance instructions that operate by set/way.

Note

Software that uses this event must know whether the Level 3 data cache is shared with other PEs.
This event does not follow the general rule of Level 3 data cache events of only counting
Attributable events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6987
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
When FEAT_PMUv3p8 is not implemented, this is an IMPLEMENTATION DEFINED event.

0x4000, SAMPLE_POP, Statistical Profiling sample population

The counter counts each operation that might be sampled, whether or not the operation was sampled.
Operations that are executed at an Exception level or Security state in which the Statistical Profiling
Extension is disabled are not counted.

PMCEID0_EL0[32] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_SPE is implemented.

0x4001, SAMPLE_FEED, Statistical Profiling sample taken

The counter counts each time the sample interval counter reaches zero and is reloaded, and the
sample does not collide with the previous sample. Samples that are removed by filtering, or
discarded, and not written to the Profiling Buffer are counted.

PMCEID0_EL0[33] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_SPE is implemented.

0x4002, SAMPLE_FILTRATE, Statistical Profiling sample taken and not removed by filtering

The counter counts each sample counted by SAMPLE_FEED that is not removed by filtering.

Sample records that are not removed by filtering, but are discarded before being written to the
Profiling Buffer because of a Profiling Buffer management event or because Discard mode is
implemented and enabled, are counted.

PMCEID0_EL0[34] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_SPE is implemented.

0x4003, SAMPLE_COLLISION, Statistical Profiling sample collided with previous sample

The counter counts each time the sample interval counter reaches zero and is reloaded, and the
sample collides with the previous sample because the previous sampled operation has not completed
generating its sample record.

PMCEID0_EL0[35] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_SPE is implemented.

0x4004, CNT_CYCLES, Constant frequency cycles

The counter increments at a constant frequency equal to the rate of increment of the System Counter,
CNTPCT_EL0.

PMCEID0_EL0[36] reads as 1 if this event is implemented and 0 otherwise.

0x4005, STALL_BACKEND_MEM, Memory stall cycles

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND where there is a
demand data miss in the last level of data or unified cache within the PE clock domain.

If Armv8.7 is implemented, the counter also counts backend stall cycles when a non-cacheable data
access is in progress.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether the counter counts backend
stall cycles when a non-cacheable data access is in progress.

PMCEID0_EL0[37] reads as 1 if this event is implemented and 0 otherwise.

0x4006, L1I_CACHE_LMISS, Level 1 instruction cache long-latency miss

If the L1I_CACHE_RD event is implemented, the counter counts each access to the Level 1
instruction or unified cache counted by L1I_CACHE_RD that incurs additional latency because it
returns instructions from outside of the Level 1 instruction or unified cache of this PE.

If the L1I_CACHE_RD event is not implemented, the counter counts each access to the Level 1
instruction or unified cache counted by L1I_CACHE that incurs additional latency because it
returns instructions from outside of the Level 1 instruction or unified cache of this PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6988
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The event indicates to software that the access missed in the Level 1 instruction or unified cache and
might have a significant performance impact due to the additional latency compared to the latency
of an access that hits in the Level 1 instruction or unified cache.

The counter does not count:

• Accesses where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared to a miss in all Level 1 caches that the access looks up in and
results in instructions being returned from a Level 2 cache or elsewhere beyond the Level 1
instruction or unified cache.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency, nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance operations are
counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[38] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_PMUv3p4 is implemented.

0x4009, L2D_CACHE_LMISS_RD, Level 2 data cache long-latency read miss

The counter counts each Memory-read operation to the Level 2 data or unified cache counted by
L2D_CACHE that incurs additional latency because it returns data from outside of the Level 1 and
Level 2 data or unified caches of this PE.

The event indicates to software that the access missed in the Level 2 data or unified cache and might
have a significant performance impact due to the additional latency compared to the latency of an
access that hits in the Level 2 data or unified cache.

The counter does not count:

• Accesses where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared to a miss in all Level 2 caches that the access looks up in and
results in an access being made to a Level 3 cache or elsewhere beyond the Level 2 data or
unified cache. This might be counted as a Level 1 cache miss.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency, nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance operations are
counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6989
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[41] reads as 1 if this event is implemented and 0 otherwise.

0x400A, L2I_CACHE_LMISS, Level 2 instruction cache long-latency miss

If the L2I_CACHE_RD event is implemented, the counter counts each access to the Level 2
instruction or unified cache counted by L2I_CACHE_RD that incurs additional latency because it
returns instructions from outside of the Level 1 and Level 2 instruction or unified caches of this PE.

If the L2I_CACHE_RD event is not implemented, the counter counts each access to the Level 2
instruction or unified cache counted by L2I_CACHE that incurs additional latency because it
returns instructions from outside of the Level 1 and Level 2 instruction or unified caches of this PE.

The event indicates to software that the access missed in the Level 2 instruction or unified cache and
might have a significant performance impact due to the additional latency compared to the latency
of an access that hits in the Level 2 instruction or unified cache.

The counter does not count:

• Accesses where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared to a miss in all Level 2 caches that the access looks up in and
results in instructions being returned from a Level 3 cache or elsewhere beyond the Level 2
instruction or unified cache. This might be counted as a Level 1 cache miss.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency, nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance operations are
counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[42] reads as 1 if this event is implemented and 0 otherwise.

0x400B, L3D_CACHE_LMISS_RD, Level 3 data cache long-latency read miss

The counter counts each Memory-read operation to the Level 3 data or unified cache counted by
L3D_CACHE that incurs additional latency because it returns data from outside of the Level 1 to
Level 3 data or unified caches of this PE.

The event indicates to software that the access missed in the Level 3 data or unified cache and might
have a significant performance impact due to the additional latency compared to the latency of an
access that hits in the Level 3 data or unified cache.

The counter does not count:

• Accesses where the additional latency is unlikely to be significantly performance-impacting.
For example, if the access hits in another cache in the same local cluster, and the additional
latency is small when compared to a miss in all Level 3 caches that the access looks up in and
results in an access being made to a lower level cache or elsewhere beyond the Level 3 data
or unified cache. This might be counted as a Level 2 cache miss.

• A miss that does not cause a new cache refill but is satisfied from a previous miss.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6990
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
An implementation is not required to measure the latency, nor to track the access to determine
whether the additional latency caused a performance impact. An implementation can extend the
definition of this event with additional scenarios where an access might have a significant
performance impact due to additional latency for the access.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance operations are
counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

PMCEID0_EL0[43] reads as 1 if this event is implemented and 0 otherwise.

0x4010, TRCEXTOUT0, Trace unit external output 0

The event is generated each time an event is signaled by the trace unit external event 0.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[48] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4011, TRCEXTOUT1, Trace unit external output 1

The event is generated each time an event is signaled by the trace unit external event 1.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[49] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4012, TRCEXTOUT2, Trace unit external output 2

The event is generated each time an event is signaled by the trace unit external event 2.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[50] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4013, TRCEXTOUT3, Trace unit external output 3

The event is generated each time an event is signaled by the trace unit external event 3.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[51] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4018, CTI_TRIGOUT4, Cross-trigger Interface output trigger 4

The event is generated each time an event is signaled on CTI output trigger 4.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[56] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if all of the following are true:

• FEAT_ETE is implemented.

• UInt(TRCIDR5.NUMEXTINSEL) > 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6991
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x4019, CTI_TRIGOUT5, Cross-trigger Interface output trigger 5

The event is generated each time an event is signaled on CTI output trigger 5.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[57] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if all of the following are true:

• FEAT_ETE is implemented.

• UInt(TRCIDR5.NUMEXTINSEL) > 1.

0x401A, CTI_TRIGOUT6, Cross-trigger Interface output trigger 6

The event is generated each time an event is signaled on CTI output trigger 6.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[58] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if all of the following are true:

• FEAT_ETE is implemented.

• UInt(TRCIDR5.NUMEXTINSEL) > 2.

0x401B, CTI_TRIGOUT7, Cross-trigger Interface output trigger 7

The event is generated each time an event is signaled on CTI output trigger 7.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[59] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if all of the following are true:

• FEAT_ETE is implemented.

• UInt(TRCIDR5.NUMEXTINSEL) > 3.

0x4020, LDST_ALIGN_LAT, Access with additional latency from alignment

The counter counts each access counted by MEM_ACCESS that, due to the alignment of the
address and size of data being accessed, incurred additional latency.

PMCEID1_EL0[32] reads as 1 if this event is implemented and 0 otherwise.

0x4021, LD_ALIGN_LAT, Load with additional latency from alignment

The counter counts each Memory-read operation counted by LDST_ALIGN_LAT.

PMCEID1_EL0[33] reads as 1 if this event is implemented and 0 otherwise.

0x4022, ST_ALIGN_LAT, Store with additional latency from alignment

The counter counts each Memory-write operation counted by LDST_ALIGN_LAT.

PMCEID1_EL0[34] reads as 1 if this event is implemented and 0 otherwise.

0x4024, MEM_ACCESS_CHECKED, Checked data memory access

The counter counts each memory access counted by MEM_ACCESS that accesses an Allocation
Tag due to a Tag Check operation.

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6992
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
PMCEID1_EL0[36] reads as 1 if this event is implemented and 0 otherwise.

Implementation of this optional event requires that architecture variant supports FEAT_MTE2.

0x4025, MEM_ACCESS_CHECKED_RD, Checked data memory access, read

The counter counts each Memory-read operation counted by MEM_ACCESS_CHECKED.

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.

PMCEID1_EL0[37] reads as 1 if this event is implemented and 0 otherwise.

Implementation of this optional event requires that architecture variant supports FEAT_MTE2.

0x4026, MEM_ACCESS_CHECKED_WR, Checked data memory access, write

The counter counts each Memory-write operation counted by MEM_ACCESS_CHECKED.

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.

PMCEID1_EL0[38] reads as 1 if this event is implemented and 0 otherwise.

Implementation of this optional event requires that architecture variant supports FEAT_MTE2.

0x4032, TME_TRANSACTION_FAILED, Transaction failed or was canceled

The counter counts each transaction that fails or is canceled.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[50] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x4034, TME_INST_RETIRED_COMMITTED, Instruction architecturally executed, in a committed
transaction

The counter counts each Instruction architecturally executed counted by INST_RETIRED when the
PE is in Transactional state and the currently executing outer transaction commits.

It is IMPLEMENTATION DEFINED whether the counter counts more than 2^32-1 instructions in a single
outer transaction.

Note

Two possible implementations of this event are as follows:

• The implementation accumulates events to the counter directly. If the transaction fails, the
counter is restored to the value it had when the transaction started.

• The implementation accumulates events without updating the counter. If the transaction
commits, the counter is updated with the accumulated value.

The counter does not count the instruction if the transaction fails or is canceled.

PMCEID1_EL0[52] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x4035, TME_CPU_CYCLES_COMMITTED, PE cycle, in a committed transaction

The counter counts each PE cycle counted by CPU_CYCLES when the PE is in Transactional state
and the currently executing outer transaction commits.

It is IMPLEMENTATION DEFINED whether the counter counts more than 2^32-1 cycles in a single
outer transaction.

Note

Two possible implementations of this event are as follows:

• The implementation accumulates events to the counter directly. If the transaction fails, the
counter is restored to the value it had when the transaction started.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6993
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• The implementation accumulates events without updating the counter. If the transaction
commits, the counter is updated with the accumulated value.

The counter does not count the cycle if the transaction fails or is canceled.

PMCEID1_EL0[53] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x4038, TME_FAILURE_CNCL, Transaction failed with CNCL cause

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
CNCL cause.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[56] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x4039, TME_FAILURE_NEST, Transaction failed with NEST cause

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
NEST cause.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[57] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x403A, TME_FAILURE_ERR, Transaction failed with ERR cause

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
ERR cause.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[58] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x403B, TME_FAILURE_IMP, Transaction failed with IMP cause

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
IMP cause.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[59] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x403C, TME_FAILURE_MEM, Transaction failed with MEM cause

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
MEM cause.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[60] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x403D, TME_FAILURE_SIZE, Transaction failed with SIZE cause

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
SIZE cause.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6994
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
PMCEID1_EL0[61] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x403E, TME_FAILURE_TLBI, Transaction failed due to execution of TLBI by another PE

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
IMP cause due to the execution of a TLBI instruction by another PE.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[62] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x403F, TME_FAILURE_WSET, Transaction failed due to transactional write set limit overflow

The counter counts each transaction counted by TME_TRANSACTION_FAILED that fails with
SIZE cause due to a memory access that causes an eviction of an entry from the transactional write
set.

If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not the transaction is
counted by the counter.

PMCEID1_EL0[63] reads as 1 if this event is implemented and 0 otherwise.

This event must be implemented if FEAT_TME is implemented.

0x8004, SIMD_INST_SPEC, Operation speculatively executed, SIMD

The counter counts each Speculatively executed operation due to any of:

• An SVE instruction that is not a non-SIMD SVE instruction.

• An A64 Advanced SIMD instruction that is not an Advanced SIMD scalar instruction.

• An SME instruction that is not a non-SIMD SME instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD operations are counted in AArch32 state.

0x8005, ASE_INST_SPEC, Operation speculatively executed, Advanced SIMD

The counter counts each Speculatively executed operation counted by ASE_SVE_INST_SPEC due
to an A64 Advanced SIMD instruction.

Operations due to the following instructions are counted as Advanced SIMD operations:

• Advanced SIMD data-processing instructions.

• Advanced SIMD Cryptographic instructions.

• Advanced SIMD loads and stores.

It is IMPLEMENTATION DEFINED whether the counter counts operations due to Advanced SIMD
scalar instructions.

It is IMPLEMENTATION DEFINED which Advanced SIMD operations are counted in AArch32 state.

0x8006, SVE_INST_SPEC, Operation speculatively executed, SVE

The counter counts each Speculatively executed operation counted by ASE_SVE_INST_SPEC due
to an SVE instruction.

Operations due to following instructions are counted as SVE operations:

• SVE data-processing instructions.

• SVE Cryptographic instructions.

• SVE load and store instructions.

It is IMPLEMENTATION DEFINED whether the counter counts operations due to non-SIMD SVE
instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6995
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
When FEAT_SME is implemented, operations involving SVE registers which also involve ZA or
ZT registers are not counted by this event.

This event must be implemented if event SVE_INST_RETIRED is not implemented.

Implementation of this event requires that architecture variant supports FEAT_SVE or FEAT_SME.

0x8007, ASE_SVE_INST_SPEC, Operation speculatively executed, Advanced SIMD or SVE

The counter counts each Speculatively executed operation counted by INST_SPEC due to an A64
Advanced SIMD or SVE instruction.

See ASE_INST_SPEC and SVE_INST_SPEC for these classifications.

0x8008, UOP_SPEC, Microarchitectural operation speculatively executed

The counter counts each Speculatively executed microarchitectural operation.

0x8009, ASE_UOP_SPEC, Microarchitectural operation speculatively executed, Advanced SIMD

The counter counts each Speculatively executed microarchitectural operation counted by
ASE_SVE_UOP_SPEC due to an A64 Advanced SIMD instruction.

It is IMPLEMENTATION DEFINED whether the counter counts microarchitectural operations due to
Advanced SIMD scalar instructions.

It is IMPLEMENTATION DEFINED which Advanced SIMD microarchitectural operations are counted
in AArch32 state.

0x800A, SVE_UOP_SPEC, Microarchitectural operation speculatively executed, SVE

The counter counts each Speculatively executed microarchitectural operation counted by
ASE_SVE_UOP_SPEC due to an SVE instruction.

It is IMPLEMENTATION DEFINED whether the counter counts microarchitectural operations due to
non-SIMD SVE instructions.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x800B, ASE_SVE_UOP_SPEC, Microarchitectural operation speculatively executed, Advanced SIMD or
SVE

The counter counts each Speculatively executed microarchitectural operation counted by
UOP_SPEC due to an A64 Advanced SIMD or SVE instruction.

It is IMPLEMENTATION DEFINED whether the counter counts microarchitectural operations due to
Advanced SIMD scalar and non-SIMD SVE instructions.

It is IMPLEMENTATION DEFINED which Advanced SIMD microarchitectural operations are counted
in AArch32 state.

0x800C, SIMD_UOP_SPEC, Microarchitectural operation speculatively executed, SIMD

The counter counts each Speculatively executed microarchitectural operation counted by
UOP_SPEC due to any of:

• An SVE instruction other than non-SIMD SVE instructions.

• An A64 Advanced SIMD instruction other than an Advanced SIMD scalar instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD microarchitectural operations are counted
in AArch32 state.

0x800E, SVE_MATH_SPEC, Operation speculatively executed, SVE math accelerator

The counter counts each Speculatively executed math function operation due to any of the following
instructions:

• SVE: FEXPA, FTMAD, FTSMUL, or FTSSEL.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6996
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8010, FP_SPEC, Floating-point operation speculatively executed, including SIMD

The counter counts each Speculatively executed floating-point data-processing operation due to any
of:

• An A64 scalar instruction.

• An A64 Advanced SIMD instruction.

• An SVE instruction.

• An SME instruction.

It is IMPLEMENTATION DEFINED whether the counter counts:

• Any operation due to a floating-point conversion instruction.

• Operations due to any of the following instructions:

— Scalar: FABS, FNEG (scalar).

— Advanced SIMD: FABS, FNEG (vector), FRECPE, FRSQRTE.

— SVE: FABS, FEXPA, FNEG, FRECPE, FRSQRTE, FTSSEL.

It is IMPLEMENTATION DEFINED which floating-point data-processing operations are counted in
AArch32 state.

Note

This event differs from the VFP_SPEC event which does not count SIMD operations.

0x8011, ASE_FP_SPEC, Floating-point operation speculatively executed, Advanced SIMD

The counter counts each Speculatively executed floating-point operation counted by
ASE_SVE_FP_SPEC due to an A64 Advanced SIMD instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD floating-point operations are counted in
AArch32 state.

0x8012, SVE_FP_SPEC, Floating-point operation speculatively executed, SVE

The counter counts each Speculatively executed floating-point operation counted by
ASE_SVE_FP_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8013, ASE_SVE_FP_SPEC, Floating-point operation speculatively executed, Advanced SIMD or SVE

The counter counts each Speculatively executed floating-point operation counted by FP_SPEC due
to an A64 Advanced SIMD or SVE instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD floating-point operations are counted in
AArch32 state.

0x8014, FP_HP_SPEC, Floating-point operation speculatively executed, half precision

The counter counts each Speculatively executed floating-point operation counted by FP_SPEC
where the largest type is half precision.

0x8015, ASE_FP_HP_SPEC, Floating-point operation speculatively executed, Advanced SIMD half precision

The counter counts each Speculatively executed half-precision floating-point operation counted by
ASE_SVE_FP_HP_SPEC due to an Advanced SIMD instruction.

0x8016, SVE_FP_HP_SPEC, Floating-point operation speculatively executed, SVE half precision

The counter counts each Speculatively executed half-precision floating-point operation counted by
ASE_SVE_FP_HP_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6997
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8017, ASE_SVE_FP_HP_SPEC, Floating-point operation speculatively executed, Advanced SIMD or SVE
half precision

The counter counts each Speculatively executed half-precision floating-point operation counted by
FP_HP_SPEC due to an Advanced SIMD or SVE instruction.

0x8018, FP_SP_SPEC, Floating-point operation speculatively executed, single precision

The counter counts each Speculatively executed floating-point operation counted by FP_SPEC
where the largest type is single precision.

0x8019, ASE_FP_SP_SPEC, Floating-point operation speculatively executed, Advanced SIMD single
precision

The counter counts each Speculatively executed single-precision floating-point operation counted
by ASE_SVE_FP_SP_SPEC due to an Advanced SIMD instruction.

0x801A, SVE_FP_SP_SPEC, Floating-point operation speculatively executed, SVE single precision

The counter counts each Speculatively executed single-precision floating-point operation counted
by ASE_SVE_FP_SP_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x801B, ASE_SVE_FP_SP_SPEC, Floating-point operation speculatively executed, Advanced SIMD or SVE
single precision

The counter counts each Speculatively executed single-precision floating-point operation counted
by FP_SP_SPEC due to an Advanced SIMD or SVE instruction.

0x801C, FP_DP_SPEC, Floating-point operation speculatively executed, double precision

The counter counts each Speculatively executed floating-point operation counted by FP_SPEC
where the largest type is double precision.

0x801D, ASE_FP_DP_SPEC, Floating-point operation speculatively executed, Advanced SIMD double
precision

The counter counts each Speculatively executed double-precision floating-point operation counted
by ASE_SVE_FP_DP_SPEC due to an Advanced SIMD instruction.

0x801E, SVE_FP_DP_SPEC, Floating-point operation speculatively executed, SVE double precision

The counter counts each Speculatively executed double-precision floating-point operation counted
by ASE_SVE_FP_DP_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x801F, ASE_SVE_FP_DP_SPEC, Floating-point operation speculatively executed, Advanced SIMD or SVE
double precision

The counter counts each Speculatively executed double-precision floating-point operation due to an
Advanced SIMD or SVE instruction.

0x8020, FP_DIV_SPEC, Floating-point operation speculatively executed, divide

The counter counts each Speculatively executed floating-point divide operation counted by
FP_SPEC due to any of the following A64 instructions:

• Scalar: FDIV.

• Advanced SIMD: FDIV.

• SVE: FDIV or FDIVR.

It is IMPLEMENTATION DEFINED which floating-point divide operations are counted in AArch32
state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6998
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8021, ASE_FP_DIV_SPEC, Floating-point operation speculatively executed, Advanced SIMD divide

The counter counts each Speculatively executed floating-point divide operation counted by
ASE_SVE_FP_DIV_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FDIV.

It is IMPLEMENTATION DEFINED which floating-point divide operations are counted in AArch32
state.

0x8022, SVE_FP_DIV_SPEC, Floating-point operation speculatively executed, SVE divide

The counter counts each Speculatively executed floating-point divide operation counted by
ASE_SVE_FP_DIV_SPEC due to any of the following instructions:

• SVE: FDIV or FDIVR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8023, ASE_SVE_FP_DIV_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE divide

The counter counts each Speculatively executed floating-point divide operation counted by
FP_DIV_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FDIV.

• SVE: FDIV or FDIVR.

It is IMPLEMENTATION DEFINED which floating-point divide operations are counted in AArch32
state.

0x8024, FP_SQRT_SPEC, Floating-point operation speculatively executed, square root

The counter counts each Speculatively executed floating-point square-root operation counted by
FP_SPEC due to any of the following A64 instructions:

• Scalar: FSQRT.

• Advanced SIMD: FSQRT.

• SVE: FSQRT.

It is IMPLEMENTATION DEFINED which floating-point square-root operations are counted in
AArch32 state.

0x8025, ASE_FP_SQRT_SPEC, Floating-point operation speculatively executed, Advanced SIMD square
root

The counter counts each Speculatively executed floating-point square-root operation counted by
ASE_SVE_FP_SQRT_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FSQRT.

It is IMPLEMENTATION DEFINED which floating-point square-root operations are counted in
AArch32 state.

0x8026, SVE_FP_SQRT_SPEC, Floating-point operation speculatively executed, SVE square root

The counter counts each Speculatively executed floating-point square-root operation counted by
ASE_SVE_FP_SQRT_SPEC due to any of the following instructions:

• SVE: FSQRT.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-6999
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8027, ASE_SVE_FP_SQRT_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE square-root

The counter counts each Speculatively executed floating-point square-root operation counted by
FP_SQRT_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FSQRT.

• SVE: FSQRT.

It is IMPLEMENTATION DEFINED which floating-point square-root operations are counted in
AArch32 state.

0x8028, FP_FMA_SPEC, Floating-point operation speculatively executed, FMA

The counter counts each Speculatively executed floating-point fused multiply-add or
multiply-subtract operation counted by FP_SPEC due to any of the following A64 instructions:

• Scalar: FMADD, FMSUB, FNMADD, or FNMSUB.

• Advanced SIMD: BFMLALB, BFMLALT, FCMLA, FMLA, or FMLS.

• SVE: BFMLALB (vectors), BFMLALT (vectors), FCMLA (vectors), FMAD, FMLA (vectors), FMLS
(vectors), FMSB, FNMAD, FNMLA, FNMLS, FNMSB, or FTMAD.

• SVE2: BFMLALB (vectors), BFMLALT (vectors), FMLALB (vectors), FMLALT (vectors), FMLSLB
(vectors), or FMLSLT (vectors).

It is IMPLEMENTATION DEFINED which floating-point fused multiply-add or multiply-subtract
operations are counted in AArch32 state.

0x8029, ASE_FP_FMA_SPEC, Floating-point operation speculatively executed, Advanced SIMD FMA

The counter counts each Speculatively executed floating-point fused multiply-add or
multiply-subtract operation counted by ASE_SVE_FP_FMA_SPEC due to any of the following
A64 instructions:

• Advanced SIMD: BFMLALB, BFMLALT, FCMLA, FMLA, or FMLS.

It is IMPLEMENTATION DEFINED which floating-point fused multiply-add or multiply-subtract
operations are counted in AArch32 state.

0x802A, SVE_FP_FMA_SPEC, Floating-point operation speculatively executed, SVE FMA

The counter counts each Speculatively executed floating-point fused multiply-add or
multiply-subtract operation counted by ASE_SVE_FP_FMA_SPEC due to any of the following
instructions:

• SVE: BFMLALB (vectors), BFMLALT (vectors), FCMLA (vectors), FMAD, FMLA (vectors), FMLS
(vectors), FMSB, FNMAD, FNMLA, FNMLS, FNMSB, or FTMAD.

• SVE2: BFMLALB (vectors), BFMLALT (vectors), FMLALB (vectors), FMLALT (vectors), FMLSLB
(vectors), or FMLSLT (vectors).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x802B, ASE_SVE_FP_FMA_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE FMA

The counter counts each Speculatively executed floating-point fused multiply-add or
multiply-subtract operation counted by FP_FMA_SPEC due to any of the following A64
instructions:

• Advanced SIMD: BFMLALB, BFMLALT, FCMLA, FMLA, or FMLS.

• SVE: BFMLALB (vectors), BFMLALT (vectors), FCMLA (vectors), FMAD, FMLA (vectors), FMLS
(vectors), FMSB, FNMAD, FNMLA, FNMLS, FNMSB, or FTMAD.

• SVE2: BFMLALB (vectors), BFMLALT (vectors), FMLALB (vectors), FMLALT (vectors), FMLSLB
(vectors), or FMLSLT (vectors).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7000
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
It is IMPLEMENTATION DEFINED which floating-point fused multiply-add or multiply-subtract
operations are counted in AArch32 state.

0x802C, FP_MUL_SPEC, Floating-point operation speculatively executed, multiply

The counter counts each Speculatively executed floating-point multiply operation counted by
FP_SPEC due to any of the following A64 instructions:

• Scalar: FMUL or FMULX.

• Advanced SIMD: FMUL or FMULX.

• SVE: FMUL, FMULX, or FTSMUL.

It is IMPLEMENTATION DEFINED which floating-point multiply operations are counted in AArch32
state.

0x802D, ASE_FP_MUL_SPEC, Floating-point operation speculatively executed, Advanced SIMD multiply

The counter counts each Speculatively executed floating-point multiply operation counted by
ASE_SVE_FP_MUL_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FMUL or FMULX.

It is IMPLEMENTATION DEFINED which floating-point multiply operations are counted in AArch32
state.

0x802E, SVE_FP_MUL_SPEC, Floating-point operation speculatively executed, SVE multiply

The counter counts each Speculatively executed floating-point multiply operation counted by
ASE_SVE_FP_MUL_SPEC due to any of the following instructions:

• SVE: FMUL, FMULX, or FTSMUL.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x802F, ASE_SVE_FP_MUL_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE multiply

The counter counts each Speculatively executed floating-point fused multiply-add or
multiply-subtract operation counted by FP_MUL_SPEC due to any of the following A64
instructions:

• Advanced SIMD: FMUL or FMULX.

• SVE: FMUL, FMULX, or FTSMUL.

It is IMPLEMENTATION DEFINED which floating-point fused multiply-add or multiply-subtract
operations are counted in AArch32 state.

0x8030, FP_ADDSUB_SPEC, Floating-point operation speculatively executed, add or subtract

The counter counts each Speculatively executed floating-point add or subtract operation counted by
FP_SPEC due to any of the following A64 instructions:

• Scalar: FADD or FSUB.

• Advanced SIMD: FABD, FADD, or FSUB.

• SVE: FABD, FADD, FSUB, or FSUBR.

It is IMPLEMENTATION DEFINED which floating-point add or subtract operations are counted in
AArch32 state.

0x8031, ASE_FP_ADDSUB_SPEC, Floating-point operation speculatively executed, Advanced SIMD add or
subtract

The counter counts each Speculatively executed floating-point add or subtract operation counted by
ASE_SVE_FP_ADDSUB_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FABD, FADD, or FSUB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7001
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
It is IMPLEMENTATION DEFINED which floating-point add or subtract operations are counted in
AArch32 state.

0x8032, SVE_FP_ADDSUB_SPEC, Floating-point operation speculatively executed, SVE add or subtract

The counter counts each Speculatively executed floating-point add or subtract operation counted by
ASE_SVE_FP_ADDSUB_SPEC due to any of the following instructions:

• SVE: FABD, FADD, FSUB, or FSUBR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8033, ASE_SVE_FP_ADDSUB_SPEC, Floating-point operation speculatively executed, Advanced SIMD
or SVE add or subtract

The counter counts each Speculatively executed floating-point add or subtract operation counted by
FP_ADDSUB_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FABD, FADD, or FSUB.

• SVE: FABD, FADD, FSUB, or FSUBR.

It is IMPLEMENTATION DEFINED which floating-point add or subtract operations are counted in
AArch32 state.

0x8034, FP_RECPE_SPEC, Floating-point operation speculatively executed, reciprocal estimate

The counter counts each Speculatively executed floating-point reciprocal estimate operation
counted by FP_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FRECPE or FRSQRTE.

• SVE: FRECPE or FRSQRTE.

It is IMPLEMENTATION DEFINED which floating-point reciprocal estimate operations are counted in
AArch32 state.

0x8035, ASE_FP_RECPE_SPEC, Floating-point operation speculatively executed, Advanced SIMD
reciprocal estimate

The counter counts each Speculatively executed floating-point reciprocal estimate operation
counted by ASE_SVE_FP_RECPE_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FRECPE or FRSQRTE.

It is IMPLEMENTATION DEFINED which floating-point reciprocal estimate operations are counted in
AArch32 state.

0x8036, SVE_FP_RECPE_SPEC, Floating-point operation speculatively executed, SVE reciprocal estimate

The counter counts each Speculatively executed floating-point reciprocal estimate operation
counted by ASE_SVE_FP_RECPE_SPEC due to any of the following instructions:

• SVE: FRECPE or FRSQRTE.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8037, ASE_SVE_FP_RECPE_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE reciprocal estimate

The counter counts each Speculatively executed floating-point reciprocal estimate operation
counted by FP_RECPE_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FRECPE or FRSQRTE.

• SVE: FRECPE or FRSQRTE.

It is IMPLEMENTATION DEFINED which floating-point reciprocal estimate operations are counted in
AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7002
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8038, FP_CVT_SPEC, Floating-point operation speculatively executed, convert

The counter counts each Speculatively executed floating-point convert operation due to any of:

• An A64 scalar floating-point conversion instruction.

• An Advanced SIMD floating-point conversion instruction.

• An SVE register targeting floating-point conversion instruction.

This includes both conversions between floating-point types, and conversions between integer and
floating-point types.

It is IMPLEMENTATION DEFINED which floating-point convert operations are counted in AArch32
state.

0x8039, ASE_FP_CVT_SPEC, Floating-point operation speculatively executed, Advanced SIMD convert

The counter counts each Speculatively executed floating-point convert operation counted by
ASE_SVE_FP_CVT_SPEC due to an A64 Advanced SIMD instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD floating-point convert operations are
counted in AArch32 state.

0x803A, SVE_FP_CVT_SPEC, Floating-point operation speculatively executed, SVE convert

The counter counts each Speculatively executed floating-point convert operation counted by
ASE_SVE_FP_CVT_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x803B, ASE_SVE_FP_CVT_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE convert

The counter counts each Speculatively executed floating-point convert operation counted by
FP_CVT_SPEC due to an A64 Advanced SIMD or SVE instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD floating-point convert operations are
counted in AArch32 state.

0x803C, SVE_FP_AREDUCE_SPEC, Floating-point operation speculatively executed, SVE accumulating
reduction

The counter counts each Speculatively executed floating-point accumulating reduction operation
counted by SVE_FP_SPEC due to any of the following instructions:

• SVE: FADDA.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x803D, ASE_FP_PREDUCE_SPEC, Floating-point operation speculatively executed, Advanced SIMD
pairwise add step

The counter counts each Speculatively executed floating-point pairwise operation counted by
ASE_FP_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FADDP, FMAXNMP, FMAXP, FMINNMP, or FMINP.

It is IMPLEMENTATION DEFINED which floating-point pairwise operations are counted in AArch32
state.

0x803E, SVE_FP_VREDUCE_SPEC, Floating-point operation speculatively executed, SVE vector reduction

The counter counts each Speculatively executed floating-point treewise or pairwise reduction
operation counted by SVE_FP_SPEC due to any of the following instructions:

• SVE: FADDV, FMAXNMV, FMAXV, FMINNMV, or FMINV.

• SVE2: FADDP, FMAXNMP, FMAXP, FMINNMP, or FMINP.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7003
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x803F, ASE_SVE_FP_VREDUCE_SPEC, Floating-point operation speculatively executed, Advanced SIMD
or SVE vector reduction

The counter counts each Speculatively executed floating-point treewise or pairwise reduction
operation counted by ASE_SVE_FP_SPEC due to any of the following A64 instructions:

• Advanced SIMD: FADDP, FMAXNMP, FMAXNMV, FMAXP, FMAXV, FMINNMP, FMINNMV, FMINP, or FMINV.

• SVE: FADDV, FMAXNMV, FMAXV, FMINNMV, or FMINV.

• SVE2: FADDP, FMAXNMP, FMAXP, FMINNMP, or FMINP.

It is IMPLEMENTATION DEFINED which floating-point reduction operations are counted in AArch32
state.

0x8040, INT_SPEC, Integer operation speculatively executed

The counter counts each Speculatively executed integer arithmetic operation due to any of:

• An A64 scalar data-processing instruction.

• An Advanced SIMD instruction.

• An SVE data-processing instruction.

• An SME data-processing instruction.

If any of the following are not counted by FP_SPEC, then they are counted by this event:

• Any operation due to a floating-point conversion instruction.

• Operations due to any of the following instructions:

— Scalar: FABS, FNEG (scalar).

— Advanced SIMD: FABS, FNEG (vector), FRECPE, FRSQRTE.

— SVE: FABS, FEXPA, FNEG, FRECPE, FRSQRTE, FTSSEL.

It is IMPLEMENTATION DEFINED which integer arithmetic operations are counted in AArch32 state.

0x8041, ASE_INT_SPEC, Integer operation speculatively executed, Advanced SIMD

The counter counts each Speculatively executed integer operation counted by
ASE_SVE_INT_SPEC due to an A64 Advanced SIMD instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD integer operations are counted in AArch32
state.

0x8042, SVE_INT_SPEC, Integer operation speculatively executed, SVE

The counter counts each Speculatively executed integer operation counted by
ASE_SVE_INT_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8043, ASE_SVE_INT_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE

The counter counts each Speculatively executed integer arithmetic operation counted by INT_SPEC
due to an A64 Advanced SIMD or SVE instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD integer operations are counted in AArch32
state.

0x8044, INT_DIV_SPEC, Integer operation speculatively executed, divide

The counter counts each Speculatively executed integer divide operation counted by INT_SPEC
due to any of the following A64 instructions:

• Scalar: SDIV or UDIV.

• SVE: SDIV, SDIVR, UDIV, or UDIVR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7004
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
It is IMPLEMENTATION DEFINED which integer divide operations are counted in AArch32 state.

0x8045, INT_DIV64_SPEC, Integer operation speculatively executed, 64-bit divide

The counter counts each Speculatively executed integer divide operation counted by INT_SPEC
due to any of the following A64 instructions:

• Scalar: SDIV or UDIV.

• SVE: SDIV, SDIVR, UDIV, or UDIVR.

The counter only counts operations with 64-bit operands or vector elements.

0x8046, SVE_INT_DIV_SPEC, Integer operation speculatively executed, SVE divide

The counter counts each Speculatively executed integer divide operation counted by
INT_DIV_SPEC due to any of the following instructions:

• SVE: SDIV, SDIVR, UDIV, or UDIVR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8047, SVE_INT_DIV64_SPEC, Integer operation speculatively executed, SVE 64-bit divide

The counter counts each Speculatively executed integer 64-bit divide operation counted by
INT_DIV64_SPEC due to any of the following instructions:

• SVE: SDIV, SDIVR, UDIV, or UDIVR.

The counter only counts operations with 64-bit operands or vector elements.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8048, INT_MUL_SPEC, Integer operation speculatively executed, multiply

The counter counts each Speculatively executed integer multiply or multiply-accumulate operation
counted by INT_SPEC due to any of the following A64 instructions:

• Scalar: MADD, MSUB, MUL, SMADDL, SMULH, UMADDL, or UMULH.

• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLS, SMLSL, SMULL, SQDMLAL, SQDMLSL,
SQDMULH, SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, or UMULL.

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, or UMULH.

• SVE2: CMLA, MLA, MLS, MUL, PMUL, SMLALB, SMLALT, SMLSLB, SMLSLT, SMULH, SMULLB, SMULLT,
SQDMLALB, SQDMLALBT, SQDMLALT, SQDMLSLB, SQDMLSLBT, SQDMLSLT, SQDMULH, SQDMULLB, SQDMULLT,
SQRDCMLAH, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLALB, UMLALT, UMLSLB, UMLSLT, UMULH, UMULLB, or
UMULLT.

It is IMPLEMENTATION DEFINED which integer multiply or multiply-accumulate operations are
counted in AArch32 state.

0x8049, ASE_INT_MUL_SPEC, Integer operation speculatively executed, Advanced SIMD multiply

The counter counts each Speculatively executed integer multiply or multiply-accumulate operation
counted by ASE_SVE_INT_MUL_SPEC due to any of the following A64 instructions:

• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLS, SMLSL, SMULL, SQDMLAL, SQDMLSL,
SQDMULH, SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, or UMULL.

It is IMPLEMENTATION DEFINED which integer multiply or multiply-accumulate operations are
counted in AArch32 state.

0x804A, SVE_INT_MUL_SPEC, Integer operation speculatively executed, SVE multiply

The counter counts each Speculatively executed integer multiply or multiply-accumulate operation
counted by ASE_SVE_INT_MUL_SPEC due to any of the following instructions:

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, or UMULH.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7005
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• SVE2: CMLA, MLA, MLS, MUL, PMUL, SMLALB, SMLALT, SMLSLB, SMLSLT, SMULH, SMULLB, SMULLT,
SQDMLALB, SQDMLALBT, SQDMLALT, SQDMLSLB, SQDMLSLBT, SQDMLSLT, SQDMULH, SQDMULLB, SQDMULLT,
SQRDCMLAH, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLALB, UMLALT, UMLSLB, UMLSLT, UMULH, UMULLB, or
UMULLT.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x804B, ASE_SVE_INT_MUL_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE
multiply

The counter counts each Speculatively executed integer multiply or multiply-accumulate operation
counted by INT_MUL_SPEC due to any of the following A64 instructions:

• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLS, SMLSL, SMULL, SQDMLAL, SQDMLSL,
SQDMULH, SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, or UMULL.

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, or UMULH.

• SVE2: CMLA, MLA, MLS, MUL, PMUL, SMLALB, SMLALT, SMLSLB, SMLSLT, SMULH, SMULLB, SMULLT,
SQDMLALB, SQDMLALBT, SQDMLALT, SQDMLSLB, SQDMLSLBT, SQDMLSLT, SQDMULH, SQDMULLB, SQDMULLT,
SQRDCMLAH, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLALB, UMLALT, UMLSLB, UMLSLT, UMULH, UMULLB, or
UMULLT.

It is IMPLEMENTATION DEFINED which integer multiply or multiply-accumulate operations are
counted in AArch32 state.

0x804C, INT_MUL64_SPEC, Integer operation speculatively executed, 64×64 multiply

The counter counts each Speculatively executed 64×64 integer multiply operation counted by
INT_SPEC due to any of the following A64 instructions:

• Scalar: MADD, MSUB, MUL, SMULH, or UMULH.

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, or UMULH.

• SVE2: CMLA (vectors), MLA, MLS, MUL, SMLALB, SMLALT, SMLSLB, SMLSLT, SMULH, SMULLB, SMULLT,
SQDMLALB, SQDMLALBT, SQDMLALT, SQDMLSLB, SQDMLSLBT, SQDMLSLT, SQDMULH, SQDMULLB, SQDMULLT,
SQRDCMLAH (vectors), SQRDMLAH, SQRDMLSH, SQRDMULH, UMLALB, UMLALT, UMLSLB, UMLSLT, UMULH,
UMULLB, or UMULLT.

The counter only counts operations that perform a 64-bit × 64-bit integer multiply operations.

0x804D, SVE_INT_MUL64_SPEC, Integer operation speculatively executed, SVE 64×64 multiply

The counter counts each Speculatively executed 64×64 integer multiply operation counted by
INT_MUL64_SPEC due to any of the following instructions:

• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, or UMULH.

• SVE2: CMLA (vectors), MLA, MLS, MUL, SMLALB, SMLALT, SMLSLB, SMLSLT, SMULH, SMULLB, SMULLT,
SQDMLALB, SQDMLALBT, SQDMLALT, SQDMLSLB, SQDMLSLBT, SQDMLSLT, SQDMULH, SQDMULLB, SQDMULLT,
SQRDCMLAH (vectors), SQRDMLAH, SQRDMLSH, SQRDMULH, UMLALB, UMLALT, UMLSLB, UMLSLT, UMULH,
UMULLB, or UMULLT.

The counter only counts operations that perform a 64-bit × 64-bit integer multiply operations.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x804E, INT_MULH64_SPEC, Integer operation speculatively executed, 64×64 multiply returning high part

The counter counts each Speculatively executed widening 64×64 integer multiply operation
counted by INT_SPEC due to any of the following A64 instructions:

• Scalar: SMULH or UMULH.

• SVE: SMULH or UMULH.

• SVE2: SMULH, SQDMULH, SQRDMULH, or UMULH.

These instructions perform 64-bit × 64-bit integer multiply operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7006
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x804F, SVE_INT_MULH64_SPEC, Integer operation speculatively executed, SVE 64×64 multiply high part

The counter counts each Speculatively executed 64×64 integer multiply returning high part
operation counted by INT_MULH64_SPEC due to any of the following instructions:

• SVE: SMULH or UMULH.

• SVE2: SMULH, SQDMULH, SQRDMULH, or UMULH.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8052, SVE_FP_BF16_SPEC, Floating-point operation speculatively executed, SVE BFloat16

The counter counts each Speculatively executed BFloat16 floating-point operation counted by
SVE_FP_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x8054, FP_BF16_SPEC, Floating-point operation speculatively executed, BFloat16

The counter counts each Speculatively executed floating-point operation counted by FP_SPEC
where the largest type is BFloat16.

Implementation of this optional event requires that architecture variant supports FEAT_BF16.

0x8056, SVE_SPEC, Operation speculatively executed, SVE data processing

The counter counts each operation counted by INST_SPEC that is an SVE data-processing
operation.

Operations due to the following instructions are counted as SVE data-processing operations:

• Data-processing operations involving SVE scalable vector and predicate registers. This
includes operations added by FEAT_SME which involve the SVE registers but do not
involve any ZA or ZT registers. This does not include non-SIMD SVE instructions.

• If the Cryptographic Extension and FEAT_SVE2 are implemented, the PMULLB, PMULLT
(Q variants) instructions.

This includes all operations that operate on the SVE registers, except those that are counted as one
of the following:

• Load or store operations.

• Cryptographic data-processing operations other than those included above.

• When FEAT_SME is implemented, SME data-processing operations.

0x8057, ASE_SVE_SPEC, Operation speculatively executed, Advanced SIMD data processing or scalable
vector extension data processing

The counter counts each operation counted by INST_SPEC that is an Advanced SIMD operation or
a scalable vector extension operation.

See ASE_SPEC and SVE_SPEC for these classifications.

0x8058, NONFP_SPEC, Non-floating-point operation speculatively executed

The counter counts each Speculatively executed data-processing operation due to any of:

• A scalar instruction that would be counted by the DP_SPEC event.

• An A64 Advanced SIMD data processing instruction defined in the section Data processing
- SIMD and floating-point that would not be counted by FP_SPEC.

• An SVE instruction with vector source or destination registers that would not be counted by
FP_SPEC.

• An SME instruction that would not be counted by FP_SPEC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7007
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
It is IMPLEMENTATION DEFINED which non-floating-point data processing operations are counted in
AArch32 state.

0x8059, ASE_NONFP_SPEC, Non-floating-point operation speculatively executed, Advanced SIMD

The counter counts each Speculatively executed non-floating-point operation counted by
ASE_SVE_NONFP_SPEC due to an A64 Advanced SIMD instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD non-floating-point data processing
operations are counted in AArch32 state.

0x805A, SVE_NONFP_SPEC, Non-floating-point operation speculatively executed, SVE

The counter counts each Speculatively executed non-floating-point operation counted by
ASE_SVE_NONFP_SPEC due to an SVE instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x805B, ASE_SVE_NONFP_SPEC, Non-floating-point operation speculatively executed, Advanced SIMD or
SVE

The counter counts each Speculatively executed non-floating-point operation counted by
NONFP_SPEC due to an A64 Advanced SIMD or SVE instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD non-floating-point data processing
operations are counted in AArch32 state.

0x805D, ASE_INT_VREDUCE_SPEC, Integer operation speculatively executed, Advanced SIMD reduction

The counter counts each Speculatively executed across-vector and pairwise integer reduction
operation counted by ASE_SVE_INT_VREDUCE_SPEC due to any of the following A64
instructions:

• Advanced SIMD: ADDP, ADDV, SADALP, SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADALP,
UADDLP, UADDLV, UMAXP, UMAXV, UMINP, or UMINV.

It is IMPLEMENTATION DEFINED which across-vector and pairwise integer reduction operations are
counted in AArch32 state.

0x805E, SVE_INT_VREDUCE_SPEC, Integer operation speculatively executed, SVE reduction

The counter counts each Speculatively executed across-vector and pairwise integer reduction
operation counted by ASE_SVE_INT_VREDUCE_SPEC due to any of the following instructions:

• SVE: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, or UMINV.

• SVE2: ADDP, SADALP, SMAXP, SMINP, UADALP, UMAXP, or UMINP.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x805F, ASE_SVE_INT_VREDUCE_SPEC, Integer operation speculatively executed, Advanced SIMD or
SVE reduction

The counter counts each Speculatively executed across-vector and pairwise integer reduction
operation counted by INT_SPEC due to any of the following A64 instructions:

• Advanced SIMD: ADDP, ADDV, SADALP, SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADALP,
UADDLP, UADDLV, UMAXP, UMAXV, UMINP, or UMINV.

• SVE: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, or UMINV.

• SVE2: ADDP, SADALP, SMAXP, SMINP, UADALP, UMAXP, or UMINP.

It is IMPLEMENTATION DEFINED which across-vector and pairwise integer reduction operations are
counted in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7008
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8060, SVE_PERM_SPEC, Operation speculatively executed, SVE permute

The counter counts each Speculatively executed vector or predicate permute operation due to any
of the following instructions:

• SVE: CLASTA, CLASTB, COMPACT, CPY (SIMD&FP scalar), CPY (scalar), DUP (indexed), DUP
(scalar), EXT, INSR, LASTA, LASTB, PUNPKHI, PUNPKLO, REV (vector), REVB, REVH, REVW, SPLICE,
SUNPKHI, SUNPKLO, TBL, TRN1 (vectors), TRN2 (vectors), UUNPKHI, UUNPKLO, UZP1 (vectors), UZP2
(vectors), ZIP1 (vectors), or ZIP2 (vectors).

• SVE2: EXT, SPLICE, TBL, TBX, TRN1, TRN2, UZP1, UZP2, ZIP1, or ZIP2.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8061, SVE_PERM_IGRANULE_SPEC, Operation speculatively executed, SVE intra-granule permute

The counter counts each Speculatively executed vector or predicate permute operation within a
128-bit vector granule or 16-bit predicate granule due to any of the following instructions:

• SVE: REVB, REVH, REVW, TRN1 (vectors), or TRN2 (vectors).

• SVE2: TRN1 or TRN2.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8062, SVE_PERM_XGRANULE_SPEC, Operation speculatively executed, SVE cross-granule permute

The counter counts each Speculatively executed vector or predicate permute operation that can
cross between 128-bit vector granules or 16-bit predicate granules due to any of the following
instructions:

• SVE: CLASTA, CLASTB, COMPACT, CPY (SIMD&FP scalar), CPY (scalar), DUP (indexed), DUP
(scalar), EXT, INSR, LASTA, LASTB, PUNPKHI, PUNPKLO, REV (vector), SPLICE, SUNPKHI, SUNPKLO, TBL,
UUNPKHI, UUNPKLO, UZP1 (vectors), UZP2 (vectors), ZIP1 (vectors), or ZIP2 (vectors).

• SVE2: EXT, SPLICE, TBL, TBX, UZP1, UZP2, ZIP1, or ZIP2.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8063, SVE_PERM_VARIABLE_SPEC, Operation speculatively executed, SVE programmable permute

The counter counts each Speculatively executed variable vector permute operation due to any of the
following instructions:

• SVE: CLASTA, CLASTB, COMPACT, LASTA, LASTB, SPLICE, or TBL.

• SVE2: SPLICE or TBL.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8064, SVE_XPIPE_SPEC, Operation speculatively executed, SVE cross-pipe

The counter counts each Speculatively executed cross-pipeline transfer operation due to any of the
following instructions:

• SVE: CLASTA (scalar), CLASTB (scalar), CNTP, CPY (scalar), DECP (scalar), DUP (scalar), INCP
(scalar), INDEX (immediate, scalar), INDEX (scalar, immediate), INDEX (scalars), INSR (scalar),
LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINCP (scalar), UQDECP (scalar), UQINCP (scalar),
WHILELE, WHILELO, WHILELS, or WHILELT.

• SVE2: WHILEGE, WHILEGT, WHILEHI, WHILEHS, WHILERW, or WHILEWR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8065, SVE_XPIPE_Z2R_SPEC, Operation speculatively executed, SVE vector to scalar cross-pipe

The counter counts each Speculatively executed vector to general-purpose scalar cross-pipeline
transfer operation counted by SVE_XPIPE_SPEC due to any of the following instructions:

• SVE: CLASTA (scalar), CLASTB (scalar), CNTP, DECP (scalar), INCP (scalar), LASTA (scalar), LASTB
(scalar), SQDECP (scalar), SQINCP (scalar), UQDECP (scalar), or UQINCP (scalar).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7009
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8066, SVE_XPIPE_R2Z_SPEC, Operation speculatively executed, SVE scalar to vector cross-pipe

The counter counts each Speculatively executed general-purpose scalar to vector cross-pipeline
transfer operation counted by SVE_XPIPE_SPEC due to any of the following instructions:

• SVE: CPY (scalar), DUP (scalar), INDEX (immediate, scalar), INDEX (scalar, immediate), INDEX
(scalars), INSR (scalar), WHILELE, WHILELO, WHILELS, or WHILELT.

• SVE2: WHILEGE, WHILEGT, WHILEHI, WHILEHS, WHILERW, or WHILEWR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8067, SVE_PGEN_NVEC_SPEC, Operation speculatively executed, SVE predicate-only

The counter counts each Speculatively executed predicate-generating operation that does not read
vector registers due to any of the following instructions:

• SVE: AND (predicates), ANDS, BIC (predicates), BICS, BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA,
BRKPAS, BRKPB, BRKPBS, EOR (predicates), EORS, NAND, NANDS, NOR, NORS, ORN (predicates), ORNS, ORR
(predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI, PUNPKLO, RDFFR, RDFFRS, REV
(predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates), UZP1 (predicates), UZP2
(predicates), ZIP1 (predicates), or ZIP2 (predicates).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8068, SVE_PGEN_SPEC, Operation speculatively executed, SVE predicate generating

The counter counts each Speculatively executed predicate-generating operation due to any of the
following instructions:

• SVE: AND (predicates), ANDS, BIC (predicates), BICS, BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA,
BRKPAS, BRKPB, BRKPBS, CMPEQ, CMPGE, CMPGT, CMPHI, CMPHS, CMPLE (immediate), CMPLE (wide
elements), CMPLO (immediate), CMPLO (wide elements), CMPLS (immediate), CMPLS (wide
elements), CMPLT (immediate), CMPLT (wide elements), CMPNE, EOR (predicates), EORS, FACGE,
FACGT, FCMEQ, FCMGE, FCMGT, FCMLE (zero), FCMLT (zero), FCMNE, FCMUO, NAND, NANDS, NOR, NORS, ORN
(predicates), ORNS, ORR (predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI,
PUNPKLO, RDFFR, RDFFRS, REV (predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates),
UZP1 (predicates), UZP2 (predicates), WHILELE, WHILELO, WHILELS, WHILELT, ZIP1 (predicates), or
ZIP2 (predicates).

• SVE2: MATCH, NMATCH, WHILEGE, WHILEGT, WHILEHI, WHILEHS, WHILERW, or WHILEWR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8069, SVE_PGEN_FLG_SPEC, Operation speculatively executed, SVE predicate flag setting

The counter counts each Speculatively executed predicate-generating operation that sets condition
flags due to any of the following instructions:

• SVE: ANDS, BICS, BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, CMPEQ, CMPGE, CMPGT, CMPHI, CMPHS, CMPLE
(immediate), CMPLE (wide elements), CMPLO (immediate), CMPLO (wide elements), CMPLS
(immediate), CMPLS (wide elements), CMPLT (immediate), CMPLT (wide elements), CMPNE, EORS,
NANDS, NORS, ORNS, ORRS, PFIRST, PNEXT, PTRUES, RDFFRS, WHILELE, WHILELO, WHILELS, or WHILELT.

• SVE2: MATCH, NMATCH, WHILEGE, WHILEGT, WHILEHI, WHILEHS, WHILERW, or WHILEWR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x806A, SVE_PGEN_CMP_SPEC, Operation speculatively executed, SVE vector compare

The counter counts each Speculatively executed vector compare operation due to any of the
following instructions:

• SVE: CMPEQ, CMPGE, CMPGT, CMPHI, CMPHS, CMPLE (immediate), CMPLE (wide elements), CMPLO
(immediate), CMPLO (wide elements), CMPLS (immediate), CMPLS (wide elements), CMPLT
(immediate), CMPLT (wide elements), CMPNE, FACGE, FACGT, FCMEQ, FCMGE, FCMGT, FCMLE (zero),
FCMLT (zero), FCMNE, or FCMUO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7010
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x806B, SVE_PGEN_FCM_SPEC, Floating-point operation speculatively executed, SVE vector compare

The counter counts each Speculatively executed vector floating-point compare operation due to any
of the following instructions:

• SVE: FACGE, FACGT, FCMEQ, FCMGE, FCMGT, FCMLE (zero), FCMLT (zero), FCMNE, or FCMUO.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x806C, SVE_PGEN_LOGIC_SPEC, Operation speculatively executed, SVE predicate logical

The counter counts each Speculatively executed predicate logical operation due to any of the
following instructions:

• SVE: AND (predicates), ANDS, BIC (predicates), BICS, EOR (predicates), EORS, NAND, NANDS, NOR,
NORS, ORN (predicates), ORNS, ORR (predicates), or ORRS.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x806D, SVE_PPERM_SPEC, Operation speculatively executed, SVE predicate permute

The counter counts each Speculatively executed predicate permute operation due to any of the
following instructions:

• SVE: PUNPKHI, PUNPKLO, REV (predicate), TRN1 (predicates), TRN2 (predicates), UZP1 (predicates),
UZP2 (predicates), ZIP1 (predicates), or ZIP2 (predicates).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x806E, SVE_PSCAN_SPEC, Operation speculatively executed, SVE predicate scan

The counter counts each Speculatively executed predicate scanning and generation operation due to
any of the following instructions:

• SVE: BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPB, BRKPBS, PFIRST, or PNEXT.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x806F, SVE_PCNT_SPEC, Operation speculatively executed, SVE predicate count

The counter counts each Speculatively executed predicate population count operation due to any of
the following instructions:

• SVE: CNTP, DECP, INCP, SQDECP, SQINCP, UQDECP, or UQINCP.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8070, SVE_PLOOP_WHILE_SPEC, Operation speculatively executed, SVE predicate loop while

The counter counts each Speculatively executed counted predicate generation operation due to any
of the following instructions:

• SVE: WHILELE, WHILELO, WHILELS, or WHILELT.

• SVE2: WHILEGE, WHILEGT, WHILEHI, or WHILEHS.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8071, SVE_PLOOP_TEST_SPEC, Operation speculatively executed, SVE predicate loop test

The counter counts each Speculatively executed loop predicate test operation due to any of the
following instructions:

• SVE: BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, WHILELE, WHILELO, WHILELS, or WHILELT.

• SVE2: WHILEGE, WHILEGT, WHILEHI, or WHILEHS.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7011
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8072, SVE_PLOOP_ELTS_SPEC, Operation speculatively executed, SVE predicate loop elements

The counter counts each Speculatively executed loop predicate generation operation due to any of
the following instructions:

• SVE: WHILELE, WHILELO, WHILELS, or WHILELT.

• SVE2: WHILEGE, WHILEGT, WHILEHI, or WHILEHS.

The counter increments by (128 ÷ CSIZE).

Note

Multiplying the counter value by (VL ÷ 128) determines the number of vector elements
speculatively processed by while loops.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8073, SVE_PLOOP_TERM_SPEC, Operation speculatively executed, SVE predicate loop termination

The counter counts each Speculatively executed loop-terminating predicate generation operation
due to any of:

• An SVE WHILELE, WHILELO, WHILELS, or WHILELT instruction which sets PSTATE.N to 0.

• An SVE BRKAS, BRKBS, BRKNS, BRKPAS, or BRKPBS instruction which sets PSTATE.C to 1.

• An SVE CTERMEQ or CTERMNE instruction which sets PSTATE.N to 1 and PSTATE.V to 0.

• An SVE2 WHILEGE, WHILEGT, WHILEHI, or WHILEHS instruction which sets PSTATE.N to 0.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8074, SVE_PRED_SPEC, Operation speculatively executed, SVE predicated

The counter counts each Speculatively executed SIMD data-processing, load, or store operation due
to an instruction with a single Governing predicate operand that determines the Active elements.

When FEAT_SME is implemented, both operations due to SVE instructions and operations due to
SME instructions operating on the SVE Z vectors with at least one Governing predicate operand are
counted.

Note

For outer product instructions which are widening, predication is considered with respect to the
input element size.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x8075, SVE_PRED_EMPTY_SPEC, Operation speculatively executed, SVE predicated with no active
elements

The counter counts each Speculatively executed predicated SIMD data-processing, load, or store
operation counted by SVE_PRED_NOT_FULL_SPEC where all elements are Inactive.

That is, all elements in the Governing predicate or predicates are FALSE.

When FEAT_SME is implemented, both SVE and SME operations with at least one Governing
predicate operand are counted.

Note

For outer product instructions which are widening, predication is considered with respect to the
input element size.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7012
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8076, SVE_PRED_FULL_SPEC, Operation speculatively executed, SVE predicated with all active
elements

The counter counts each Speculatively executed predicated SIMD data-processing, load, or store
operation counted by SVE_PRED_SPEC where all elements are Active.

That is, all elements in the Governing predicate or predicates are all TRUE.

When FEAT_SME is implemented, both SVE and SME operations with at least one Governing
predicate operand are counted.

Note

For outer product instructions which are widening, predication is considered with respect to the
input element size.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x8077, SVE_PRED_PARTIAL_SPEC, Operation speculatively executed, SVE predicated with partially
active elements

The counter counts each Speculatively executed predicated SIMD data-processing, load, or store
operation counted by SVE_PRED_NOT_FULL_SPEC where neither all elements are Active nor
all elements are Inactive.

That is, all elements in the Governing predicate or predicates are neither all TRUE nor all FALSE.

When FEAT_SME is implemented, both SVE and SME operations with at least one Governing
predicate operand are counted.

Note

For outer product instructions which are widening, predication is considered with respect to the
input element size.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x8078, SVE_UNPRED_SPEC, Operation speculatively executed, SVE unpredicated

The counter counts each Speculatively executed SIMD data-processing, load, or store operation due
to any of:

• An SVE instruction without a Governing predicate operand.

• An SME instruction without any Governing predicate operand.

If FEAT_SME is implemented, both operations due to SVE instructions and operations due to SME
instructions operating on the SVE Z vectors are counted.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x8079, SVE_PRED_NOT_FULL_SPEC, Operation speculatively executed, SVE predicated with at least one
inactive element

The counter counts each Speculatively executed predicated SIMD data-processing, load, or store
operation counted by SVE_PRED_SPEC where at least one element is Inactive.

That is, at least one element in the Governing predicate or predicates is FALSE.

When FEAT_SME is implemented, both SVE and SME operations with at least one Governing
predicate operand are counted.

Note

For outer product instructions which are widening, predication is considered with respect to the
input element size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7013
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x807C, SVE_MOVPRFX_SPEC, Operation speculatively executed, SVE MOVPRFX

The counter counts each Speculatively executed operation due to any of the following instructions:

• SVE: MOVPRFX.

The instruction is counted whether or not it is fused with the prefixed instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x807D, SVE_MOVPRFX_Z_SPEC, Operation speculatively executed, SVE MOVPRFX zeroing predication

The counter counts each Speculatively executed operation counted by SVE_MOVPRFX_SPEC
where the operation uses zeroing predication.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x807E, SVE_MOVPRFX_M_SPEC, Operation speculatively executed, SVE MOVPRFX merging predication

The counter counts each Speculatively executed operation counted by SVE_MOVPRFX_SPEC
where the operation uses merging predication.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x807F, SVE_MOVPRFX_U_SPEC, Operation speculatively executed, SVE MOVPRFX unfused

The counter counts each Speculatively executed operation counted by SVE_MOVPRFX_SPEC
where the MOVPRFX is not fused with the prefixed instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8080, SVE_LDST_SPEC, Operation speculatively executed, SVE load, store, or prefetch

The counter counts each Speculatively executed operation that reads from or writes to memory
counted by ASE_SVE_LDST_SPEC due to an SVE load, store, or prefetch instruction.

The following are classified as SVE load, store and prefetch instructions:

• Any load which writes to an SVE register.

• Any store which reads from an SVE register.

• Any of the following prefetch instructions which accept a Governing predicate:

— PRFB.

— PRFD.

— PRFH.

— PRFW.

When FEAT_SME is implemented, this includes SME loads and stores of the SVE Z vectors. SME
loads and stores of the ZA and ZT registers are not counted.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8081, SVE_LD_SPEC, Operation speculatively executed, SVE load

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_SPEC due to an SVE load instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8082, SVE_ST_SPEC, Operation speculatively executed, SVE store

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_SPEC due to an SVE store instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7014
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8083, SVE_PRF_SPEC, Operation speculatively executed, SVE prefetch

The counter counts each Speculatively executed prefetch operation counted by SVE_LDST_SPEC
due to any of the following instructions:

• SVE: PRFB, PRFD, PRFH, or PRFW.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8084, ASE_SVE_LDST_SPEC, Operation speculatively executed, Advanced SIMD or SVE load or store

The counter counts each Speculatively executed operation that reads from or writes to memory due
to an A64 Advanced SIMD or SVE load, store, or prefetch instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD load or store operations are counted in
AArch32 state.

0x8085, ASE_SVE_LD_SPEC, Operation speculatively executed, Advanced SIMD or SVE load

The counter counts each Speculatively executed operation that reads from memory counted by
ASE_SVE_LDST_SPEC due to an A64 Advanced SIMD or SVE load instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD load operations are counted in AArch32
state.

0x8086, ASE_SVE_ST_SPEC, Operation speculatively executed, Advanced SIMD or SVE store

The counter counts each Speculatively executed operation that writes to memory counted by
ASE_SVE_LDST_SPEC due to an A64 Advanced SIMD or SVE store instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD store operations are counted in AArch32
state.

0x8087, PRF_SPEC, Operation speculatively executed, prefetch

The counter counts each Speculatively executed prefetch operation due to any of the following A64
instructions:

• Scalar: PRFM.

• SVE: PRFB, PRFD, PRFH, or PRFW.

It is IMPLEMENTATION DEFINED which prefetch operations are counted in AArch32 state.

0x8088, BASE_LDST_REG_SPEC, Operation speculatively executed, general-purpose register load, store, or
prefetch

The counter counts each Speculatively executed operation that reads from or writes to memory due
to a general-purpose register load, store, or prefetch instruction.

It is IMPLEMENTATION DEFINED which load, store, and prefetch operations are counted in AArch32
state.

0x8089, BASE_LD_REG_SPEC, Operation speculatively executed, general-purpose register load

The counter counts each Speculatively executed operation that reads from memory counted by
BASE_LDST_REG_SPEC due to a general-purpose register load instruction.

It is IMPLEMENTATION DEFINED which load operations are counted in AArch32 state.

0x808A, BASE_ST_REG_SPEC, Operation speculatively executed, general-purpose register store

The counter counts each Speculatively executed operation that writes to memory counted by
BASE_LDST_REG_SPEC due to a general-purpose register store instruction.

It is IMPLEMENTATION DEFINED whether the counter counts operations due to DC ZVA instructions.

It is IMPLEMENTATION DEFINED which store operations are counted in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7015
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x808B, BASE_PRF_SPEC, Operation speculatively executed, general-purpose register prefetch

The counter counts each Speculatively executed prefetch operation counted by
BASE_LDST_REG_SPEC due to any of the following A64 instructions:

• Scalar: PRFM.

It is IMPLEMENTATION DEFINED which prefetch operations are counted in AArch32 state.

0x808C, FPASE_LDST_REG_SPEC, Operation speculatively executed, SIMD&FP register load or store

The counter counts each Speculatively executed operation that reads from or writes to memory due
to any of the following A64 instructions:

• Scalar: LDP (SIMD&FP), LDR (SIMD&FP), STP (SIMD&FP), or STR (SIMD&FP).

• Advanced SIMD: LD1, LD1R, or ST1.

It is IMPLEMENTATION DEFINED which load and store operations are counted in AArch32 state.

0x808D, FPASE_LD_REG_SPEC, Operation speculatively executed, SIMD&FP register load

The counter counts each Speculatively executed operation that reads from memory counted by
FPASE_LDST_REG_SPEC due to any of the following A64 instructions:

• Scalar: LDP (SIMD&FP) or LDR (SIMD&FP).

• Advanced SIMD: LD1 or LD1R.

It is IMPLEMENTATION DEFINED which load operations are counted in AArch32 state.

0x808E, FPASE_ST_REG_SPEC, Operation speculatively executed, SIMD&FP register store

The counter counts each Speculatively executed operation that writes to memory counted by
FPASE_LDST_REG_SPEC due to any of the following A64 instructions:

• Scalar: STP (SIMD&FP) or STR (SIMD&FP).

• Advanced SIMD: ST1.

It is IMPLEMENTATION DEFINED which store operations are counted in AArch32 state.

0x8090, SVE_LDST_REG_SPEC, Operation speculatively executed, SVE unpredicated load or store register

The counter counts each Speculatively executed SVE register load or store operation due to any of
the following instructions:

• SVE: LDR or STR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8091, SVE_LDR_REG_SPEC, Operation speculatively executed, SVE unpredicated load register

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_REG_SPEC due to any of the following instructions:

• SVE: LDR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8092, SVE_STR_REG_SPEC, Operation speculatively executed, SVE unpredicated store register

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_REG_SPEC due to any of the following instructions:

• SVE: STR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7016
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8094, SVE_LDST_PREG_SPEC, Operation speculatively executed, SVE load or store predicate register

The counter counts each Speculatively executed SVE predicate register load or store operation due
to any of the following instructions:

• SVE: LDR (predicate) or STR (predicate).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8095, SVE_LDR_PREG_SPEC, Operation speculatively executed, SVE load predicate register

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_PREG_SPEC due to any of the following instructions:

• SVE: LDR (predicate).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8096, SVE_STR_PREG_SPEC, Operation speculatively executed, SVE store predicate register

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_PREG_SPEC due to any of the following instructions:

• SVE: STR (predicate).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8098, SVE_LDST_ZREG_SPEC, Operation speculatively executed, SVE load or store vector register

The counter counts each Speculatively executed SVE vector register load or store operation due to
any of the following instructions:

• SVE: LDR (vector) or STR (vector).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x8099, SVE_LDR_ZREG_SPEC, Operation speculatively executed, SVE load vector register

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_ZREG_SPEC due to any of the following instructions:

• SVE: LDR (vector).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x809A, SVE_STR_ZREG_SPEC, Operation speculatively executed, SVE store vector register

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_ZREG_SPEC due to any of the following instructions:

• SVE: STR (vector).

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x809C, SVE_LDST_CONTIG_SPEC, Operation speculatively executed, SVE contiguous load, store, or
prefetch element

The counter counts each Speculatively executed SVE predictated single vector contiguous element
load, store, or prefetch operation due to any of:

• A predicated single vector contiguous load or store instruction operating on the SVE
registers.

• An SVE load and replicate LD1R or LD1RQ instruction.

When FEAT_SME is implemented, this includes the following instructions:

• SME: LD1B, LD1D, LD1H, LD1Q, LD1W, LDNT1B, LDNT1D, LDNT1H, LDNT1Q,
ST1B, ST1D, ST1H, ST1Q, ST1W, STNT1B, STNT1D, STNT1H, STNT1Q.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7017
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x809D, SVE_LD_CONTIG_SPEC, Operation speculatively executed, SVE single vector contiguous load
element

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_CONTIG_SPEC due to any of:

• A predicated single vector contiguous load instruction operating on the SVE registers.

• An SVE load and replicate LD1R or LD1RQ instruction.

When FEAT_SME is implemented, this includes the following instructions:

• SME: LD1B, LD1D, LD1H, LD1Q, LD1W, LDNT1B, LDNT1D, LDNT1H, LDNT1Q.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x809E, SVE_ST_CONTIG_SPEC, Operation speculatively executed, SVE contiguous store element

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_CONTIG_SPEC due to any of:

• A predicated single vector contiguous store instruction operating on the SVE registers.

When FEAT_SME is implemented, this includes the following instructions:

• SME: ST1B, ST1D, ST1H, ST1Q, ST1W, STNT1B, STNT1D, STNT1H, STNT1Q.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x809F, SVE_PRF_CONTIG_SPEC, Operation speculatively executed, SVE contiguous prefetch element

The counter counts each Speculatively executed operation counted by
SVE_LDST_CONTIG_SPEC due to an SVE predicated single contiguous element prefetch
instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80A0, SVE_LDSTNT_CONTIG_SPEC, Operation speculatively executed, SVE non-temporal contiguous
load or store element

The counter counts each Speculatively executed SVE non-temporal contiguous element load or
store operation.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80A1, SVE_LDNT_CONTIG_SPEC, Operation speculatively executed, SVE non-temporal contiguous load
element

The counter counts each Speculatively executed operation that reads from memory with a
non-temporal hint counted by SVE_LDSTNT_CONTIG_SPEC due to an SVE non-temporal
contiguous element load instruction.

When FEAT_SME is implemented, this includes SME non-temporal contiguous element load
instructions operating on the SVE registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80A2, SVE_STNT_CONTIG_SPEC, Operation speculatively executed, SVE non-temporal contiguous store
element

The counter counts each Speculatively executed operation that writes to memory with a
non-temporal hint counted by SVE_LDSTNT_CONTIG_SPEC due to an SVE non-temporal
contiguous element store instruction.

When FEAT_SME is implemented, this includes SME non-temporal contiguous element store
instructions operating on the SVE registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7018
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80A4, ASE_SVE_LDST_MULTI_SPEC, Operation speculatively executed, Advanced SIMD or SVE
contiguous load or store multiple vector

The counter counts each Speculatively executed operation due to an A64 Advanced SIMD or SVE
multiple vector contiguous structure load or store instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD contiguous structure load or store
operations are counted in AArch32 state.

0x80A5, ASE_SVE_LD_MULTI_SPEC, Operation speculatively executed, Advanced SIMD or SVE
contiguous load multiple vector

The counter counts each Speculatively executed operation that reads from memory counted by
ASE_SVE_LDST_MULTI_SPEC due to an A64 Advanced SIMD or SVE multiple vector
contiguous structure load instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD contiguous structure load operations are
counted in AArch32 state.

0x80A6, ASE_SVE_ST_MULTI_SPEC, Operation speculatively executed, Advanced SIMD or SVE
contiguous store multiple vector

The counter counts each Speculatively executed operation that writes to memory counted by
ASE_SVE_LDST_MULTI_SPEC due to an A64 Advanced SIMD or SVE multiple vector
contiguous structure store instruction.

It is IMPLEMENTATION DEFINED which Advanced SIMD contiguous structure store operations are
counted in AArch32 state.

0x80A8, SVE_LDST_MULTI_SPEC, Operation speculatively executed, SVE contiguous load or store multiple
vector

The counter counts each Speculatively executed operation that reads from or writes to memory due
to an SVE multiple vector contiguous structure load or store instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80A9, SVE_LD_MULTI_SPEC, Operation speculatively executed, SVE contiguous load multiple vector

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_MULTI_SPEC due to an SVE multiple vector contiguous structure load instruction.

When FEAT_SME is implemented, this includes SME multiple vector contiguous load instructions
operating on the SVE registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80AA, SVE_ST_MULTI_SPEC, Operation speculatively executed, SVE contiguous store multiple vector

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_MULTI_SPEC due to an SVE multiple vector contiguous structure store instruction.

When FEAT_SME is implemented, this includes SME multiple vector contiguous store instructions
operating on the SVE registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80AC, SVE_LDST_NONCONTIG_SPEC, Operation speculatively executed, SVE non-contiguous load,
store, or prefetch

The counter counts each Speculatively executed operation that reads from or writes to memory due
to an SVE non-contiguous gather-load, scatter-store, or gather-prefetch instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80AD, SVE_LD_GATHER_SPEC, Operation speculatively executed, SVE gather-load

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST_NONCONTIG_SPEC due to an SVE non-contiguous gather-load instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7019
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80AE, SVE_ST_SCATTER_SPEC, Operation speculatively executed, SVE scatter-store

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST_NONCONTIG_SPEC due to an SVE non-contiguous scatter-store instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80AF, SVE_PRF_GATHER_SPEC, Operation speculatively executed, SVE gather-prefetch

The counter counts each Speculatively executed prefetch operation counted by
SVE_LDST_NONCONTIG_SPEC due to an SVE non-contiguous gather-prefetch instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80B0, SVE_LDST64_NONCONTIG_SPEC, Operation speculatively executed, SVE 64-bit non-contiguous
load, store, or prefetch

The counter counts each Speculatively executed operation that reads from or writes to memory due
to an SVE non-continguous gather-load, scatter-store, or gather-prefetch operation with 64-bit
vector elements in the address.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80B1, SVE_LD64_GATHER_SPEC, Operation speculatively executed, SVE 64-bit gather-load

The counter counts each Speculatively executed operation that reads from memory counted by
SVE_LDST64_NONCONTIG_SPEC due to an SVE non-contiguous gather-load instruction with
64-bit vector elements in the address.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80B2, SVE_ST64_SCATTER_SPEC, Operation speculatively executed, SVE 64-bit scatter-store

The counter counts each Speculatively executed operation that writes to memory counted by
SVE_LDST64_NONCONTIG_SPEC due to an SVE non-contiguous scatter-store instruction with
64-bit vector elements in the address.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80B3, SVE_PRF64_GATHER_SPEC, Operation speculatively executed, SVE 64-bit gather-prefetch

The counter counts each Speculatively executed prefetch operation counted by
SVE_LDST64_NONCONTIG_SPEC due to an SVE non-contiguous gather-prefetch instruction
with 64-bit vector elements in the address.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80B4, ASE_SVE_UNALIGNED_LDST_SPEC, Advanced SIMD or SVE unaligned access

The counter counts each Speculatively executed A64 Advanced SIMD or SVE load or store
instruction where either:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the
vector and the cache line size, in bytes.

• A gather, scatter, or single element address is not aligned to the memory element access size,
in bytes.

The unaligned access is counted even if it is subsequently converted into multiple aligned accesses.

It is IMPLEMENTATION DEFINED which unaligned Advanced SIMD load or store operations are
counted in AArch32 state.

0x80B5, ASE_SVE_UNALIGNED_LD_SPEC, Advanced SIMD or SVE unaligned read

The counter counts each unaligned memory access counted by
ASE_SVE_UNALIGNED_LDST_SPEC due to an A64 Advanced SIMD or SVE load instruction.

The unaligned access is counted even if it is subsequently converted into multiple aligned accesses.

It is IMPLEMENTATION DEFINED which unaligned Advanced SIMD load operations are counted in
AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7020
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80B6, ASE_SVE_UNALIGNED_ST_SPEC, Advanced SIMD or SVE unaligned write

The counter counts each unaligned memory access counted by
ASE_SVE_UNALIGNED_LDST_SPEC due to an A64 Advanced SIMD or SVE store instruction.

The unaligned access is counted even if it is subsequently converted into multiple aligned accesses.

It is IMPLEMENTATION DEFINED which unaligned Advanced SIMD store operations are counted in
AArch32 state.

0x80B8, ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC, Advanced SIMD or SVE unaligned contiguous
access

The counter counts each Speculatively executed Advanced SIMD or SVE contiguous load or store
operation where the address is not aligned to the minimum of the in-memory size of the vector and
the cache line size, in bytes.

The unaligned access is counted even if it is subsequently converted into multiple aligned accesses.

It is IMPLEMENTATION DEFINED which unaligned contiguous Advanced SIMD load or store
operations are counted in AArch32 state.

0x80B9, ASE_SVE_UNALIGNED_CONTIG_LD_SPEC, Advanced SIMD or SVE unaligned contiguous read

The counter counts each unaligned memory access counted by
ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC due to an A64 Advanced SIMD or SVE load
instruction.

The unaligned access is counted even if it is subsequently converted into multiple aligned accesses.

It is IMPLEMENTATION DEFINED which unaligned contiguous Advanced SIMD load operations are
counted in AArch32 state.

0x80BA, ASE_SVE_UNALIGNED_CONTIG_ST_SPEC, Advanced SIMD or SVE unaligned contiguous
write

The counter counts each unaligned memory access counted by
ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC due to a A64 Advanced SIMD or SVE store
instruction.

The unaligned access is counted even if it is subsequently converted into multiple aligned accesses.

It is IMPLEMENTATION DEFINED which unaligned contiguous Advanced SIMD store operations are
counted in AArch32 state.

0x80BC, SVE_LDFF_SPEC, Operation speculatively executed, SVE first-fault load

The counter counts each Speculatively executedMemory-read operation counted by
SVE_LD_SPEC due to an SVE First-fault or Non-fault load instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80BD, SVE_LDFF_FAULT_SPEC, Operation speculatively executed, SVE first-fault load which set FFR bit
to 0b0

The counter counts each Speculatively executedMemory-read operation counted by
SVE_LDFF_SPEC due to an SVE First-fault or Non-fault load instruction that writes 0 to at least
one bit in FFR.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element arithmetic operations speculatively
executed

The counter counts each Speculatively executed floating-point arithmetic operation counted by
SVE_FP_SPEC, except that it is IMPLEMENTATION DEFINED whether operations due to instructions
other than those listed in SVE Floating-point arithmetic are counted.

See ALU operation counts for information on the counter increment for different types of
instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7021
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element arithmetic operations speculatively
executed

The counter counts each Speculatively executed floating-point arithmetic operation counted by
FP_SPEC but not by SVE_FP_SPEC, and it is IMPLEMENTATION DEFINED whether operations due
to instructions other than Floating-point arithmetic (scalar) and Floating-point arithmetic
(Advanced SIMD) are counted.

It does not count operations that are counted by FP_SCALE_OPS_SPEC.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80C2, FP_HP_SCALE_OPS_SPEC, Scalable half-precision floating-point element arithmetic operations
speculatively executed

The counter counts each Speculatively executed scalable floating-point element arithmetic
operation counted by FP_SCALE_OPS_SPEC where the largest type is half precision.

See ALU operation counts for information on the counter increment for different types of
instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80C3, FP_HP_FIXED_OPS_SPEC, Non-scalable half-precision floating-point element arithmetic
operations speculatively executed

The counter counts each Speculatively executed non-scalable floating-point arithmetic operation
counted by FP_FIXED_OPS_SPEC where the largest type is half precision.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80C4, FP_SP_SCALE_OPS_SPEC, Scalable single-precision floating-point element arithmetic operations
speculatively executed

The counter counts each Speculatively executed scalable floating-point element arithmetic
operation counted by FP_SCALE_OPS_SPEC where the largest type is single precision.

See ALU operation counts for information on the counter increment for different types of
instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80C5, FP_SP_FIXED_OPS_SPEC, Non-scalable single-precision floating-point element arithmetic
operations speculatively executed

The counter counts each Speculatively executed non-scalable floating-point arithmetic operation
counted by FP_FIXED_OPS_SPEC where the largest type is single precision.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80C6, FP_DP_SCALE_OPS_SPEC, Scalable double-precision floating-point element arithmetic operations
speculatively executed

The counter counts each Speculatively executed scalable floating-point element arithmetic
operation counted by FP_SCALE_OPS_SPEC where the largest type is double precision.

See ALU operation counts for information on the counter increment for different types of
instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80C7, FP_DP_FIXED_OPS_SPEC, Non-scalable double-precision floating-point element arithmetic
operations speculatively executed

The counter counts each Speculatively executed non-scalable floating-point arithmetic operation
counted by FP_FIXED_OPS_SPEC where the largest type is double precision.

See ALU operation counts for information on the counter increment for different types of
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7022
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80C8, INT_SCALE_OPS_SPEC, Scalable integer element arithmetic operations speculatively executed

The counter counts each integer arithmetic operation counted by SVE_INT_SPEC.

See ALU operation counts for information on the counter increment for different types of
instruction.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80C9, INT_FIXED_OPS_SPEC, Non-scalable integer element arithmetic operations speculatively executed

The counter counts each integer arithmetic operation counted by INT_SPEC that is not counted by
SVE_INT_SPEC.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80CA, LDST_SCALE_OPS_SPEC, Scalable load or store element Operation speculatively executed

The counter counts each Speculatively executedMemory-read operation or Memory-write operation
due to any of:

• An SVE predicated vector load or store instruction other than a replicating LD1R or LD1RQ
instruction.

• An SME vector load or store instruction.

See ALU operation counts for information on the counter increment for different types of
instruction.

The counter does not count tag loads or tag stores.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80CB, LDST_FIXED_OPS_SPEC, Non-scalable load or store element Operation speculatively executed

The counter counts each Speculatively executedMemory-read operation or Memory-write operation
due to any of:

• Any load, store, or atomic operation, other than loads and stores of the SVE P and Z registers,
and the SME ZA registers.

• Any SVE non-vector load or store operation.

• An SVE replicating LD1R or LD1RQ instruction.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80CC, LD_SCALE_OPS_SPEC, Scalable load element Operation speculatively executed

The counter counts each Speculatively executedMemory-read operation counted by
LDST_SCALE_OPS_SPEC due to any of:

• An SVE predicated vector load instruction other than a replicating LD1R or LD1RQ instruction.

• An SME vector load instruction.

See ALU operation counts for information on the counter increment for different types of
instruction.

The counter does not count tag loads.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7023
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80CD, LD_FIXED_OPS_SPEC, Non-scalable load element Operation speculatively executed

The counter counts each Speculatively executedMemory-read operation counted by
LDST_FIXED_OPS_SPEC due to any of:

• Any load or atomic operation, other than loads of the SVE P and Z registers, and the SME
ZA registers.

• Any SVE non-vector load or store operation.

• An SVE replicating LD1R or LD1RQ instruction.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80CE, ST_SCALE_OPS_SPEC, Scalable store element Operation speculatively executed

The counter counts each Speculatively executedMemory-write operation counted by
LDST_SCALE_OPS_SPEC due to any of:

• An SVE predicated vector store instruction.

• An SME vector store instruction.

See ALU operation counts for information on the counter increment for different types of
instruction.

The counter does not count tag stores.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80CF, ST_FIXED_OPS_SPEC, Non-scalable store element Operation speculatively executed

The counter counts each Memory-write operation counted by LDST_FIXED_OPS_SPEC due to
any of:

• Any store or atomic operation, other than stores of the SVE P and Z registers, and the SME
ZA registers.

• Any SVE non-vector store operation.

See ALU operation counts for information on the counter increment for different types of
instruction.

0x80DA, LDST_SCALE_BYTES_SPEC, Scalable load and store bytes Speculatively executed

The counter counts each byte speculatively read or written due to any of:

• An SVE vector load or store instruction other than a replicating LD1R or LD1RQ instruction.

• An SME vector load or store instruction.

For each instruction, the counter is incremented by (16 ÷ (CSIZE ÷ MSIZE)), multiplied by the
number of transferred vector registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80DB, LDST_FIXED_BYTES_SPEC, Non-scalable load and store bytes Speculatively executed

The counter counts each byte speculatively read or written due to any of:

• Any load, store, or atomic operation, other than loads and stores of the SVE P and Z registers,
and the SME ZA registers.

• Any SVE non-vector load or store operation.

• Any SVE replicating LD1R or LD1RQ instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7024
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
For each instruction, the counter is incremented by the number of bytes transferred per register
multiplied by the number of registers transferred multiplied by the number of transfers made per
register. For example, the counter counts bytes as follows:

• Load and store of a single register instructions, other than SVE and SME vector loads and
stores, increment the counter by (MSIZE ÷ 8).

• Load and store of a pair of registers instructions, other than SVE and SME vector loads and
stores, increment the counter by 2 × (MSIZE ÷ 8).

• AArch32 load and store multiple registers instructions increment the counter by the number
of registers transferred multiplied by (MSIZE ÷ 8).

• Atomic store instructions increment the counter by (MSIZE ÷ 8). These are instructions that
atomically update a value in memory without returning a value to a register.

• Atomic load, compare and swap of a single register, and swap instructions increment the
counter by 2 × (MSIZE ÷ 8). Atomic load instructions are instructions that atomically update
a value in memory, returning a value to a register.

• Compare and swap of a pair of registers increment the counter by 4 × (MSIZE ÷ 8).

• SVE and Advanced SIMD LD1R instructions increment the counter by (MSIZE ÷ 8).

• SVE LD1RQ instructions increment the counter by 16.

• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of
registers transferred multiplied by the number of bytes being transferred per register.

• DC ZVA and DC GZVA instructions increment by the counter by 2^(DCZID_EL0.BS).

• LDR (table) and STR (table) instructions increment the counter by 64.

0x80DC, LD_SCALE_BYTES_SPEC, Scalable load bytes Speculatively executed

The counter counts each byte speculatively read due to any of:

• An SVE vector load instruction other than a replicating LD1R or LD1RQ instruction.

• An SME vector load instruction.

For each instruction, the counter is incremented by (16 ÷ (CSIZE ÷ MSIZE)), multiplied by the
number of transferred vector registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80DD, LD_FIXED_BYTES_SPEC, Non-scalable load bytes Speculatively executed

The counter counts each byte speculatively read due to any of:

• Any load or atomic operation, other than loads of the SVE P and Z registers, and the SME
ZA registers.

• Any SVE non-vector load operation.

• Any SVE replicating LD1R or LD1RQ instruction.

For each instruction, the counter is incremented by the number of bytes transferred per register
multiplied by the number of registers transferred. That is, the counter is incremented by:

• Half the value that the LDST_FIXED_BYTES_SPEC event counts if the operation is a load
atomic, compare and swap, or compare operation.

• The same as for LDST_FIXED_BYTES_SPEC if the operation is any other load operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7025
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80DE, ST_SCALE_BYTES_SPEC, Scalable store bytes Speculatively executed

The counter counts each byte speculatively written due to any of:

• An SVE vector store instruction.

• An SME vector store instruction.

For each instruction, the counter is incremented by (16 ÷ (CSIZE ÷ MSIZE)), multiplied by the
number of transferred vector registers.

Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80DF, ST_FIXED_BYTES_SPEC, Non-scalable store bytes Speculatively executed

The counter counts each byte written due to any of:

• Any store or atomic operation, other than stores of the SVE P and Z registers, and the SME
ZA registers.

• Any SVE non-vector store operation.

For each instruction, the counter is incremented by the number of bytes transferred per register
multiplied by the number of registers transferred. That is, the counter is incremented by:

• Half the value that the LDST_FIXED_BYTES_SPEC event counts if the operation is a
compare and swap or compare operation.

• The same as for LDST_FIXED_BYTES_SPEC if the operation is any other store operation,
including an atomic store operation.

0x80E1, ASE_INT8_SPEC, Integer operation speculatively executed, Advanced SIMD 8-bit

The counter counts each operation counted by ASE_SVE_INT8_SPEC that is an Advanced SIMD
operation.

0x80E2, SVE_INT8_SPEC, Integer operation speculatively executed, SVE 8-bit

The counter counts each operation counted by ASE_SVE_INT8_SPEC that is an SVE operation.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80E3, ASE_SVE_INT8_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE 8-bit

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is 8-bit
integer.

0x80E5, ASE_INT16_SPEC, Integer operation speculatively executed, Advanced SIMD 16-bit

The counter counts each operation counted by ASE_SVE_INT16_SPEC that is an Advanced SIMD
operation.

0x80E6, SVE_INT16_SPEC, Integer operation speculatively executed, SVE 16-bit

The counter counts each operation counted by ASE_SVE_INT16_SPEC that is an SVE operation.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80E7, ASE_SVE_INT16_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE 16-bit

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is
16-bit integer.

0x80E8, FP_BF16_SCALE_OPS_SPEC, Scalable BFloat16 floating-point element arithmetic operations
speculatively executed

The counter counts each Speculatively executed scalable element arithmetic operation counted by
FP_SCALE_OPS_SPEC where the largest type is BFloat16.

See ALU operation counts for information on the counter increment for different types of
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7026
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Implementation of this optional event requires that architecture variant supports FEAT_SVE or
FEAT_SME.

0x80E9, ASE_INT32_SPEC, Integer operation speculatively executed, Advanced SIMD 32-bit

The counter counts each operation counted by ASE_SVE_INT32_SPEC that is an Advanced SIMD
operation.

0x80EA, SVE_INT32_SPEC, Integer operation speculatively executed, SVE 32-bit

The counter counts each operation counted by ASE_SVE_INT32_SPEC that is an SVE operation.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80EB, ASE_SVE_INT32_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE 32-bit

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is
32-bit integer.

0x80ED, ASE_INT64_SPEC, Integer operation speculatively executed, Advanced SIMD 64-bit

The counter counts each operation counted by ASE_SVE_INT64_SPEC that is an Advanced SIMD
operation.

0x80EE, SVE_INT64_SPEC, Integer operation speculatively executed, SVE 64-bit

The counter counts each operation counted by ASE_SVE_INT64_SPEC that is an SVE operation.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80EF, ASE_SVE_INT64_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE 64-bit

The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is
64-bit integer.

0x80F1, ASE_FP_DOT_SPEC, Floating-point operation speculatively executed, Advanced SIMD dot-product

The counter counts each dot-product operation counted by ASE_SVE_FP_DOT_SPEC due to any
of the following A64 instructions:

• Advanced SIMD: BFDOT.

It is IMPLEMENTATION DEFINED which dot-product operations are counted in AArch32 state.

0x80F2, SVE_FP_DOT_SPEC, Floating-point operation speculatively executed, SVE dot-product

The counter counts each dot-product operation counted by ASE_SVE_FP_DOT_SPEC due to any
of the following instructions:

• SVE: BFDOT.

• SVE2: BFDOT.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80F3, ASE_SVE_FP_DOT_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE dot-product

The counter counts each dot-product operation counted by FP_SPEC due to any of the following
A64 instructions:

• Advanced SIMD: BFDOT.

• SVE: BFDOT.

• SVE2: BFDOT.

It is IMPLEMENTATION DEFINED which dot-product operations are counted in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7027
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80F5, ASE_FP_MMLA_SPEC, Floating-point operation speculatively executed, Advanced SIMD matrix
multiply

The counter counts each floating-point matrix multiply operation counted by
ASE_SVE_FP_MMLA_SPEC due to any of the following A64 instructions:

• Advanced SIMD: BFMMLA.

It is IMPLEMENTATION DEFINED which floating-point matrix multiply operations are counted in
AArch32 state.

0x80F6, SVE_FP_MMLA_SPEC, Floating-point operation speculatively executed, SVE matrix multiply

The counter counts each floating-point matrix multiply operation counted by
ASE_SVE_FP_MMLA_SPEC due to any of the following instructions:

• SVE: BFMMLA or FMMLA.

• SVE2: BFMMLA or FMMLA.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80F7, ASE_SVE_FP_MMLA_SPEC, Floating-point operation speculatively executed, Advanced SIMD or
SVE matrix multiply

The counter counts each floating-point matrix multiply operation counted by FP_SPEC due to any
of the following A64 instructions:

• Advanced SIMD: BFMMLA.

• SVE: BFMMLA or FMMLA.

• SVE2: BFMMLA or FMMLA.

It is IMPLEMENTATION DEFINED which floating-point matrix multiply operations are counted in
AArch32 state.

0x80F9, ASE_INT_DOT_SPEC, Operation speculatively executed, Advanced SIMD integer dot-product

The counter counts each integer dot product operation counted by ASE_SVE_INT_DOT_SPEC
due to any of the following A64 instructions:

• Advanced SIMD: SDOT, SUDOT, UDOT, or USDOT.

It is IMPLEMENTATION DEFINED which integer dot product operations are counted in AArch32 state.

0x80FA, SVE_INT_DOT_SPEC, Integer operation speculatively executed, SVE dot-product

The counter counts each integer dot product operation counted by ASE_SVE_INT_DOT_SPEC
due to any of the following instructions:

• SVE: SDOT, SUDOT, UDOT, or USDOT.

• SVE2: CDOT, SUDOT, or USDOT.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80FB, ASE_SVE_INT_DOT_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE
dot-product

The counter counts each integer dot product operation counted by INT_SPEC due to any of the
following A64 instructions:

• Advanced SIMD: SDOT, SUDOT, UDOT, or USDOT.

• SVE: SDOT, SUDOT, UDOT, or USDOT.

• SVE2: CDOT, SUDOT, or USDOT.

It is IMPLEMENTATION DEFINED which integer dot product operations are counted in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7028
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x80FD, ASE_INT_MMLA_SPEC, Integer operation speculatively executed, Advanced SIMD matrix
multiply

The counter counts each integer matrix multiply operation counted by
ASE_SVE_INT_MMLA_SPEC due to any of the following A64 instructions:

• Advanced SIMD: SMMLA, UMMLA, or USMMLA.

It is IMPLEMENTATION DEFINED which integer matrix multiply operations are counted in AArch32
state.

0x80FE, SVE_INT_MMLA_SPEC, Integer operation speculatively executed, SVE matrix multiply

The counter counts each integer matrix multiply operation counted by
ASE_SVE_INT_MMLA_SPEC due to any of the following instructions:

• SVE: SMMLA, UMMLA, or USMMLA.

• SVE2: SMMLA, UMMLA, or USMMLA.

Implementation of this optional event requires that architecture variant supports FEAT_SVE.

0x80FF, ASE_SVE_INT_MMLA_SPEC, Integer operation speculatively executed, Advanced SIMD or SVE
matrix multiply

The counter counts each integer matrix multiply operation counted by INT_SPEC due to any of the
following A64 instructions:

• Advanced SIMD: SMMLA, UMMLA, or USMMLA.

• SVE: SMMLA, UMMLA, or USMMLA.

• SVE2: SMMLA, UMMLA, or USMMLA.

It is IMPLEMENTATION DEFINED which integer matrix multiply operations are counted in AArch32
state.

0x8110, BR_IMMED_PRED_RETIRED, Branch Instruction architecturally executed, predicted immediate

The counter counts each instruction counted by both BR_IMMED_RETIRED and
BR_PRED_RETIRED.

These are all direct branch instructions on the architecturally executed path, where the branch is
correctly predicted.

0x8111, BR_IMMED_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
immediate

The counter counts each instruction counted by both BR_IMMED_RETIRED and
BR_MIS_PRED_RETIRED.

These are all direct branch instructions on the architecturally executed path, where the branch is
mispredicted.

0x8112, BR_IND_PRED_RETIRED, Branch Instruction architecturally executed, predicted indirect

The counter counts each instruction counted by both BR_IND_RETIRED and
BR_PRED_RETIRED.

These are all indirect branch instructions, including return instructions, on the architecturally
executed path, where the branch is correctly predicted.

0x8113, BR_IND_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
indirect

The counter counts each instruction counted by both BR_IND_RETIRED and
BR_MIS_PRED_RETIRED.

These are all indirect branch instructions, including return instructions, on the architecturally
executed path, where the branch is mispredicted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7029
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8114, BR_RETURN_PRED_RETIRED, Branch Instruction architecturally executed, predicted procedure
return

The counter counts each instruction counted by BR_IND_PRED_RETIRED where if taken, the
branch would be counted by BR_RETURN_RETIRED.

These are all return instructions on the architecturally executed path, where the branch is correctly
predicted.

0x8115, BR_RETURN_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
procedure return

The counter counts each instruction counted by BR_IND_MIS_PRED_RETIRED where if taken,
the branch would also be counted by BR_RETURN_RETIRED.

These are all return instructions on the architecturally executed path, where the branch is
mispredicted.

0x8116, BR_INDNR_PRED_RETIRED, Branch Instruction architecturally executed, predicted indirect
excluding procedure return

The counter counts each instruction counted by BR_IND_PRED_RETIRED where if taken, the
branch would not be counted by BR_RETURN_RETIRED.

These are all indirect branch instructions, excluding return instructions, on the architecturally
executed path, where the branch is correctly predicted.

0x8117, BR_INDNR_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
indirect excluding procedure return

The counter counts each instruction counted by BR_IND_MIS_PRED_RETIRED where if taken,
the branch would not be counted by BR_RETURN_RETIRED.

These are all indirect branch instructions, excluding return instructions, on the architecturally
executed path, where the branch is mispredicted.

0x8118, BR_TAKEN_PRED_RETIRED, Branch Instruction architecturally executed, predicted branch,
taken

The counter counts each instruction counted by both BR_PRED_RETIRED and
PC_WRITE_RETIRED.

These are all branch instructions on the architecturally executed path, where the branch is correctly
predicted and taken.

0x8119, BR_TAKEN_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
branch, taken

The counter counts each instruction counted by both BR_MIS_PRED_RETIRED and
PC_WRITE_RETIRED.

These are all branch instructions on the architecturally executed path, where the branch is
mispredicted and taken.

0x811A, BR_SKIP_PRED_RETIRED, Branch Instruction architecturally executed, predicted branch, not
taken

The counter counts each instruction counted by both BR_PRED_RETIRED and
BR_SKIP_RETIRED.

These are all branch instructions on the architecturally executed path, where the branch is correctly
predicted and not taken.

0x811B, BR_SKIP_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
branch, not taken

The counter counts each instruction counted by both BR_MIS_PRED_RETIRED and
BR_SKIP_RETIRED.

These are all branch instructions on the architecturally executed path, where the branch is
mispredicted and not taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7030
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x811C, BR_PRED_RETIRED, Branch Instruction architecturally executed, predicted branch

The counter counts each instruction counted by BR_RETIRED that is not counted by
BR_MIS_PRED_RETIRED.

These are all branch instructions on the architecturally executed path, where the branch is correctly
predicted.

0x8120, INST_FETCH_PERCYC, Instruction fetches in progress

The counter counts by the number of instruction fetches counted by INST_FETCHin progress on
each Processor cycle.

The ratio INST_FETCH_PERCYC ÷ INST_FETCH is the mean duration of instruction fetches in
Processor cycles.

0x8121, MEM_ACCESS_RD_PERCYC, Data memory reads in progress

The counter counts by the number of data memory reads counted by MEM_ACCESS_RDin
progress on each Processor cycle.

The ratio MEM_ACCESS_RD_PERCYC ÷ MEM_ACCESS_RD is the mean duration of data
memory reads in Processor cycles.

0x8122, SAMPLE_FEED_DS, Statistical Profiling sample taken, selected Data Source

The counter counts each SPE sample that is a load operations where PMSDSFR_EL1[S] is 1 and S
is bits [5:0] of the sampled Data Source.

The values of PMSFCR_EL1.FDS are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPE_FDS is implemented.

0x8123, SAMPLE_BUFFER_FULL, Profiling Buffer full

The counter counts each Profiling Buffer full management event.

Implementation of this optional event requires that architecture variant supports FEAT_SPE.

0x8124, INST_FETCH, Instruction memory access

The counter counts each Instruction memory access that the PE makes. The counter increments
whether the access results in an access to a Level 1 instruction cache, a Level 2 instruction, data or
unified cache, or none of these.

The counter does not increment as a result of:

• Data memory accesses.

• Translation table walks.

• Refilling of any cache.

• Accesses that result from cache maintenance instructions.

0x8125, BUS_REQ_RD_PERCYC, Bus read transactions in progress

The counter counts by the number of bus read transactions counted by BUS_REQ_RDin progress
on each Processor cycle.

The ratio BUS_REQ_RD_PERCYC ÷ BUS_REQ_RD is the mean duration of bus read transactions
in Processor cycles.

A bus read transaction is in progress between the transaction starting and it completing. This
includes cycles when the transaction is not occupying the bus.

If the bus is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0, then
the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the bus is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7031
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8126, BUS_REQ_WR_PERCYC, Bus write transactions in progress

The counter counts by the number of bus write transactions counted by BUS_REQ_WRin progress
on each Processor cycle.

The ratio BUS_REQ_WR_PERCYC ÷ BUS_REQ_WR is the mean duration of bus write
transactions in Processor cycles.

A bus write transaction is in progress between the transaction starting and it completing. This
includes cycles when the transaction is not occupying the bus.

A mean duration value calculated using this event only measures the latency from the perspective
of the bus. This is not necessarily the same as the latency for the write to be Complete, as the write
might be completed on the bus before reaching its endpoint.

For some bus implementations, writes are posted, meaning that, from the perspective of the bus, the
write completes immediately. There is no response when the write reaches its Completion endpoint.
This event is not included for such implementations.

If the bus is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0, then
the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the bus is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8127, PMU_SNAPSHOT, Successful PMU capture event

The counter counts each PMU snapshot Capture event that was successful, that is,
PMSSCR_EL1.NC is set to 0.

It is CONSTRAINED UNPREDICTABLE whether the counter counts successful Capture events when the
PE is in Debug state.

This event must be implemented if FEAT_PMUv3_SS is implemented.

0x8128, DTLB_WALK_PERCYC, Data translation table walks in progress

The counter counts by the number of data translation table walks counted by DTLB_WALKin
progress on each Processor cycle.

The ratio DTLB_WALK_PERCYC ÷ DTLB_WALK is the mean duration of data translation table
walks in Processor cycles.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8129, ITLB_WALK_PERCYC, Instruction translation table walks in progress

The counter counts by the number of instruction translation table walks counted by ITLB_WALKin
progress on each Processor cycle.

The ratio ITLB_WALK_PERCYC ÷ ITLB_WALK is the mean duration of instruction translation
table walks in Processor cycles.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7032
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x812A, SAMPLE_FEED_BR, Statistical Profiling sample taken, branch

The counter counts each sample counted by SAMPLE_FEED that is a branch operation.

The values of PMSFCR_EL1.{B,FT} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPEv1p2 is implemented.

Implementation of this event requires that FEAT_SPE is implemented.

0x812B, SAMPLE_FEED_LD, Statistical Profiling sample taken, load

The counter counts each sample counted by SAMPLE_FEED that is a load or load atomic operation.

The values of PMSFCR_EL1.{LD,FT} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPEv1p2 is implemented.

Implementation of this event requires that FEAT_SPE is implemented.

0x812C, SAMPLE_FEED_ST, Statistical Profiling sample taken, store

The counter counts each sample counted by SAMPLE_FEED that is a store or atomic operation,
including load atomic operations.

The values of PMSFCR_EL1.{ST,FT} are ignored when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPEv1p2 is implemented.

Implementation of this event requires that FEAT_SPE is implemented.

0x812D, SAMPLE_FEED_OP, Statistical Profiling sample taken, matching operation type

The counter counts each sample counted by SAMPLE_FEED that meets the operation type filter
constraints.

The operation type filter constraints are specified by PMSFCR_EL1.{ST, LD, B}. That is, the
counter counts when any of the following are true for the sampled operation:

• The operation is a branch and PMSFCR_EL1.B is 1.

• The operation is a load or load atomic, and PMSFCR_EL1.LD is 1.

• The operation is a store or atomic operation, and PMSFCR_EL1.ST is 1.

The value of PMSFCR_EL1.FT is ignored when generating this event.

No event is generated if the operation type filter constraint controls are all zero.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPEv1p2 is implemented.

Implementation of this event requires that FEAT_SPE is implemented.

0x812E, SAMPLE_FEED_EVENT, Statistical Profiling sample taken, matching events

The counter counts each sample counted by SAMPLE_FEED that meets the Events packet filter
constraints.

That is, each sampled operation with all the events in the filter sets defined by PMSEVFR_EL1 and,
if implemented, PMSNEVFR_EL1 are counted. The values of PMSFCR_EL1.{FnE,FE} are
ignored when generating this event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7033
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPEv1p2 is implemented.

Implementation of this event requires that FEAT_SPE is implemented.

0x812F, SAMPLE_FEED_LAT, Statistical Profiling sample taken, exceeding minimum latency

The counter counts each sample counted by SAMPLE_FEED that meets the operation latency filter
constraints.

That is, each sampled operations with a total latency greater than or equal to the minimum latency
defined by PMSLATFR_EL1.MINLAT are counted. The value of PMSFCR_EL1.FL is ignored
when generating this event.

Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are
counted.

This event must be implemented if FEAT_SPEv1p2 is implemented.

Implementation of this event requires that FEAT_SPE is implemented.

0x8130, L1D_TLB_RW, Level 1 data TLB access, demand access

The counter counts each access counted by L1D_TLB that is due to a demand Memory-read
operation or demand Memory-write operation.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Arm recommends that this event is implemented if event L1D_TLB_PRFM is implemented.

0x8131, L1I_TLB_RD, Level 1 instruction TLB access, demand access

The counter counts each access counted by L1I_TLB that is due to a demand Instruction memory
access.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Arm recommends that this event is implemented if event L1I_TLB_PRFM is implemented.

0x8132, L1D_TLB_PRFM, Level 1 data TLB access, software preload

The counter counts each access counted by L1D_TLB_PRF that is due to a preload or prefetch
instruction.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Arm recommends that this event is implemented if event L1D_TLB_RW is implemented.

0x8133, L1I_TLB_PRFM, Level 1 instruction TLB access, software preload

The counter counts each access counted by L1I_TLB_PRF that is due to a preload or prefetch
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7034
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Arm recommends that this event is implemented if event L1I_TLB_RD is implemented.

0x8134, DTLB_HWUPD, Data TLB hardware update of translation table

The counter counts each access counted by L1D_TLB that causes a hardware update of a translation
table entry.

Each attempted hardware update of a translation table entry is counted once. If the PE requires
multiple translation table walk accesses to perform an update, this counts as a single update. If the
update fails because it would not be atomic and has to be retried, each retry is counted.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is an unprivileged access that generates a Translation fault because the applicable
TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x8135, ITLB_HWUPD, Instruction TLB hardware update of translation table

The counter counts each access counted by L1I_TLB that causes a hardware update of a translation
table entry.

Each attempted hardware update of a translation table entry is counted once. If the PE requires
multiple translation table walk accesses to perform an update, this counts as a single update. If the
update fails because it would not be atomic and has to be retried, each retry is counted.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is an unprivileged access that generates a Translation fault because the applicable
TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7035
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8136, DTLB_STEP, Data TLB translation table walk, step

The counter counts each translation table walk access made by a refill of the data or unified TLB.

The event is Attributable to the access that missed in the TLB and caused the walk, not to the owner
of the translation tables being accessed. For example, this means that if an EL0 access causes a
translation table walk consisting of accesses to both stage 1 and stage 2 translation tables, all
accesses are counted if event counting is allowed at EL0, regardless of whether event counting is
allowed at EL1 and/or EL2.

The counter does not count the event if any of the following are true:

• The access causing the refill generates a Translation fault because the applicable
TCR_ELx.EPDy bit is 1.

• The access causing the refill is an unprivileged access that generates a Translation fault
because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access causing the refill is a non-fault access that fails
because the applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the event if the access causing the refill
generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x8137, ITLB_STEP, Instruction TLB translation table walk, step

The counter counts each translation table walk access made by a refill of the instruction TLB.

The event is Attributable to the access that missed in the TLB and caused the walk, not to the owner
of the translation tables being accessed. For example, this means that if an EL0 access causes a
translation table walk consisting of accesses to both stage 1 and stage 2 translation tables, all
accesses are counted if event counting is allowed at EL0, regardless of whether event counting is
allowed at EL1 and/or EL2.

The counter does not count the event if any of the following are true:

• The access causing the refill generates a Translation fault because the applicable
TCR_ELx.EPDy bit is 1.

• The access causing the refill is an unprivileged access that generates a Translation fault
because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the event if the access causing the refill
generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x8138, DTLB_WALK_LARGE, Data TLB large page translation table walk

The counter counts each translation table walk counted by DTLB_WALK where the result of the
walk yields a large page size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7036
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The set of large page sizes is the complement of the set of small page sizes defined by the
DTLB_WALK_SMALL event. For example, these translations might cached by dedicated TLB
resources. This set is IMPLEMENTATION_DEFINED and might differ between instruction and
data TLBs.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x8139, ITLB_WALK_LARGE, Instruction TLB large page translation table walk

The counter counts each translation table walk counted by ITLB_WALK where the result of the
walk yields a large page size.

The set of large page sizes is the complement of the set of small page sizes defined by the
ITLB_WALK_SMALL event. For example, these translations might cached by dedicated TLB
resources. This set is IMPLEMENTATION_DEFINED and might differ between instruction and
data TLBs.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x813A, DTLB_WALK_SMALL, Data TLB small page translation table walk

The counter counts each translation table walk counted by DTLB_WALK where the result of the
walk yields a small page size.

The set of small page sizes is the complement of the set of large page sizes defined by the
DTLB_WALK_LARGE event. For example, these translations might cached by dedicated TLB
resources. This set is IMPLEMENTATION_DEFINED and might differ between instruction and
data TLBs.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x813B, ITLB_WALK_SMALL, Instruction TLB small page translation table walk

The counter counts each translation table walk counted by ITLB_WALK where the result of the
walk yields a small page size.

The set of small page sizes is the complement of the set of large page sizes defined by the
ITLB_WALK_LARGE event. For example, these translations might cached by dedicated TLB
resources. This set is IMPLEMENTATION_DEFINED and might differ between instruction and
data TLBs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7037
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x813C, DTLB_WALK_RW, Data TLB demand access, with at least one translation table walk

The counter counts each demand access counted by L1D_TLB_RW that causes a refill or update of
a data or unified TLB involving at least one translation table walk access.

The counter does not count the demand access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the demand access if the access
generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x813D, ITLB_WALK_RD, Instruction TLB demand access, with at least one translation table walk

The counter counts each demand access counted by L1I_TLB_RD that causes a refill or update of
an instruction TLB involving at least one translation table walk access.

The counter does not count the demand access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the demand access if the access
generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x813E, DTLB_WALK_PRFM, Data TLB software preload, with at least one translation table walk

The counter counts each software preload access counted by L1D_TLB_PRFM that causes a refill
or update of a data or unified TLB involving at least one translation table walk access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7038
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The counter does not count the software preload access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the software preload access if the access
generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x813F, ITLB_WALK_PRFM, Instruction TLB software preload, with at least one translation table walk

The counter counts each software preload access counted by L1I_TLB_PRFM that causes a refill
or update of an instruction TLB involving at least one translation table walk access.

The counter does not count the software preload access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the software preload access if the access
generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8140, L1D_CACHE_RW, Level 1 data cache demand access

The counter counts each access counted by L1D_CACHE that is due to a demand Memory-read
operation or demand Memory-write operation.

This includes accesses made by Speculatively executed instructions.

Arm recommends that this event is implemented if any of the following are true:

• Event L1D_CACHE_PRFM is implemented.

• Event L1D_CACHE_HWPRF is implemented.

0x8141, L1I_CACHE_RD, Level 1 instruction cache demand fetch

The counter counts each access counted by L1I_CACHE that is due to a demand Instruction
memory access.

This includes instruction prefetches made by the PE for Speculatively executed instructions.

Arm recommends that this event is implemented if any of the following are true:

• Event L1I_CACHE_PRFM is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7039
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• Event L1I_CACHE_HWPRF is implemented.

0x8142, L1D_CACHE_PRFM, Level 1 data cache software preload

The counter counts each access counted by L1D_CACHE_PRF that is due to a preload or prefetch
instruction.

Arm recommends that this event is implemented if event L1D_CACHE_RW is implemented.

0x8143, L1I_CACHE_PRFM, Level 1 instruction cache software preload

The counter counts each access counted by L1I_CACHE_PRF that is due to a preload or prefetch
instruction.

Arm recommends that this event is implemented if event L1I_CACHE_RD is implemented.

0x8144, L1D_CACHE_MISS, Level 1 data cache demand access miss

The counter counts each demand access counted by L1D_CACHE_RW that misses in the Level 1
data or unified cache, causing an access to outside of the Level 1 caches of this PE.

0x8145, L1I_CACHE_HWPRF, Level 1 instruction cache hardware prefetch

The counter counts each access counted by L1I_CACHE_PRF that is due to a hardware prefetch.

The hardware prefetch is generated by a hardware prefetcher at the Level 1 instruction or unified
cache.

The PE might prefetch instructions as part of instruction pipelining, and might do so for
Speculatively executed instruction paths. PE instruction prefetching is not counted as hardware
prefetching. Unlike PE instruction prefetching, a hardware prefetch only allocates instructions into
the cache.

0x8146, L1D_CACHE_REFILL_PRFM, Level 1 data cache refill, software preload

The counter counts each access counted by L1D_CACHE_PRFM that causes a refill of the Level 1
data or unified cache from outside of the Level 1 data or unified cache.

0x8147, L1I_CACHE_REFILL_PRFM, Level 1 instruction cache refill, software preload

The counter counts each access counted by L1I_CACHE_PRFM that causes a refill of the Level 1
instruction or unified cache from outside of the Level 1 instruction or unified cache.

0x8148, L2D_CACHE_RW, Level 2 data cache demand access

The counter counts each access counted by L2D_CACHE that is due to a demand Memory-read
operation or demand Memory-write operation.

This includes:

• Accesses made by Speculatively executed instructions.

• Accesses to the Level 2 data or unified cache due to a refill of another cache caused by a
demand Memory-read operation or demand Memory-write operation.

Arm recommends that this event is implemented if any of the following are true:

• Event L2D_CACHE_PRFM is implemented.

• Event L2D_CACHE_HWPRF is implemented.

0x8149, L2I_CACHE_RD, Level 2 instruction cache demand fetch

The counter counts each access counted by L2I_CACHE that is due to a demand Instruction
memory access.

This includes:

• Instruction prefetches made by the PE for Speculatively executed instructions.

• Accesses to the Level 2 instruction or unified cache due to a refill of another cache caused by
a demand Instruction memory access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7040
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Arm recommends that this event is implemented if any of the following are true:

• Event L2I_CACHE_PRFM is implemented.

• Event L2I_CACHE_HWPRF is implemented.

0x814A, L2D_CACHE_PRFM, Level 2 data cache software preload

The counter counts each access counted by L2D_CACHE_PRF that is due to a preload or prefetch
instruction.

This includes accesses to the Level 2 data or unified cache due to a refill of another cache caused
by a preload or prefetch instruction.

Arm recommends that this event is implemented if event L2D_CACHE_RW is implemented.

0x814B, L2I_CACHE_PRFM, Level 2 instruction cache software preload

The counter counts each access counted by L2I_CACHE_PRF that is due to a preload or prefetch
instruction.

This includes accesses to the Level 2 instruction or unified cache due to a refill of another cache
caused by a preload or prefetch instruction.

Arm recommends that this event is implemented if event L2I_CACHE_RD is implemented.

0x814C, L2D_CACHE_MISS, Level 2 data cache demand access miss

The counter counts each demand access counted by L2D_CACHE_RW that misses in the Level 1
and Level 2 data or unified caches, causing an access to outside of the Level 1 and Level 2 caches
of this PE.

0x814D, L2I_CACHE_HWPRF, Level 2 instruction cache hardware prefetch

The counter counts each access counted by L2I_CACHE_PRF that is due to a hardware prefetch.

The hardware prefetch is generated by a hardware prefetcher at the Level 2 instruction or unified
cache.

0x814E, L2D_CACHE_REFILL_PRFM, Level 2 data cache refill, software preload

The counter counts each access counted by L2D_CACHE_PRFM that causes a refill of the Level 2
data or unified cache, or any Level 1 data, instruction, or unified cache of this PE, from outside of
those caches.

0x814F, L2I_CACHE_REFILL_PRFM, Level 2 instruction cache refill, software preload

The counter counts each access counted by L2I_CACHE_PRFM that causes a refill of the Level 2
instruction or unified cache, or any Level 1 data, instruction, or unified cache of this PE, from
outside of those caches.

0x8150, L3D_CACHE_RW, Level 3 data cache demand access

The counter counts each access counted by L3D_CACHE that is due to a demand Memory-read
operation or demand Memory-write operation.

This includes:

• Accesses made by Speculatively executed instructions.

• Accesses to the Level 3 data or unified cache due to a refill of another cache caused by a
demand Memory-read operation or demand Memory-write operation.

Arm recommends that this event is implemented if any of the following are true:

• Event L3D_CACHE_PRFM is implemented.

• Event L3D_CACHE_HWPRF is implemented.

0x8151, L3D_CACHE_PRFM, Level 3 data cache software preload

The counter counts each access counted by L3D_CACHE_PRF that is due to a preload or prefetch
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7041
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
This includes accesses to the Level 3 data or unified cache due to a refill of another cache caused
by a preload or prefetch instruction.

Arm recommends that this event is implemented if event L3D_CACHE_RW is implemented.

0x8152, L3D_CACHE_MISS, Level 3 data cache demand access miss

The counter counts each demand access counted by L3D_CACHE_RW that misses in the Level 1
to Level 3 data or unified caches, causing an access to outside of the Level 1 to Level 3 caches of
this PE.

0x8153, L3D_CACHE_REFILL_PRFM, Level 3 data cache refill, software preload

The counter counts each access counted by L3D_CACHE_PRFM that causes a refill of the Level 3
data or unified cache, or any Level 1 or Level 2 data, instruction, or unified cache of this PE, from
outside of those caches.

0x8154, L1D_CACHE_HWPRF, Level 1 data cache hardware prefetch

The counter counts each access counted by L1D_CACHE_PRF that is due to a hardware prefetch.

The hardware prefetch is generated by a hardware prefetcher at the Level 1 data or unified cache.

0x8155, L2D_CACHE_HWPRF, Level 2 data cache hardware prefetch

The counter counts each access counted by L2D_CACHE_PRF that is due to a hardware prefetch.

The hardware prefetch is generated by a hardware prefetcher at the Level 2 data or unified cache.

0x8156, L3D_CACHE_HWPRF, Level 3 data cache hardware prefetch

The counter counts each access counted by L3D_CACHE_PRF that is due to a hardware prefetch.

The hardware prefetch is generated by a hardware prefetcher at the Level 3 data or unified cache.

0x8157, LL_CACHE_HWPRF, Last level cache hardware prefetch

The counter counts each access counted by LL_CACHE_PRF that is due to a hardware prefetch.

The hardware prefetch is generated by a hardware prefetcher at the Last level cache.

0x8158, STALL_FRONTEND_MEMBOUND, Frontend stall cycles, memory bound

The counter counts each cycle counted by STALL_FRONTEND when no instructions are delivered
from the memory system.

The counter counts stalls that occur when the frontend interface to memory is busy or stalled. This
includes the stalls counted by STALL_FRONTEND_L1I, STALL_FRONTEND_L2I,
STALL_FRONTEND_MEM, and STALL_FRONTEND_TLB, and any other IMPLEMENTATION
DEFINED memory stalls.

It does not include stalls that are counted by STALL_FRONTEND_CPUBOUND. However both
events will count the same cycle counted by STALL_FRONTEND if there are both memory and
processor-resource stall conditions active.

0x8159, STALL_FRONTEND_L1I, Frontend stall cycles, level 1 instruction cache

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand instruction miss in the first level of instruction cache.

The counter does not count the cycle if any of the following are true:

• The STALL_FRONTEND_L2I event is implemented and there is a demand instruction miss
in the second level of instruction cache, meaning the STALL_FRONTEND_L2I event counts
the cycle.

• There is a demand instruction miss in the last level of instruction cache within the PE clock
domain, meaning the STALL_FRONTEND_MEM event counts the cycle.

Implementation of this optional event requires that the first level of instruction cache is
implemented within the PE clock domain and is not the last level of instruction cache within the PE
clock domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7042
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x815A, STALL_FRONTEND_L2I, Frontend stall cycles, level 2 instruction cache

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand instruction miss in the second level of instruction or unified cache.

The counter does not count the cycle if any of the following are true:

• There is a demand instruction miss in the last level of instruction cache within the PE clock
domain, meaning the STALL_FRONTEND_MEM event counts the cycle.

Implementation of this optional event requires that the second level of instruction cache is
implemented within the PE clock domain and is not the last level of instruction cache within the PE
clock domain.

0x815B, STALL_FRONTEND_MEM, Frontend stall cycles, last level PE cache or memory

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand instruction miss in the last level of instruction or unified cache within the PE clock domain
or a non-cacheable instruction fetch in progress.

0x815C, STALL_FRONTEND_TLB, Frontend stall cycles, TLB

The counter counts each cycle counted by STALL_FRONTEND_MEMBOUND when there is a
demand instruction miss in the instruction or unified TLB.

0x8160, STALL_FRONTEND_CPUBOUND, Frontend stall cycles, processor bound

The counter counts each cycle counted by STALL_FRONTEND when the frontend is stalled on a
frontend processor resource, not including memory.

The counter counts stalls that occur when a frontend processor resource is busy. This includes the
stalls counted by STALL_FRONTEND_FLOW, STALL_FRONTEND_FLUSH, and
STALL_FRONTEND_RENAME, and any other IMPLEMENTATION DEFINED processor resource
stalls.

It does not include stalls that are counted by STALL_FRONTEND_MEMBOUND. However both
events will count the same cycle counted by STALL_FRONTEND if there are both memory and
processor-resource stall conditions active.

0x8161, STALL_FRONTEND_FLOW, Frontend stall cycles, flow control

The counter counts each cycle counted by STALL_FRONTEND_CPUBOUND when the frontend
is stalled on unavailability of prediction flow resources.

Note
This event is not counting stalls due to mispredictions, but rather stalls when the frontend is unable
to make a prediction.

0x8162, STALL_FRONTEND_FLUSH, Frontend stall cycles, flush recovery

The counter counts each cycle counted by STALL_FRONTEND_CPUBOUND when the frontend
is recovering from a pipeline flush.

The situations where the frontend is flushed are IMPLEMENTATION DEFINED. For example, the
frontend might be flushed on a branch misprediction or on a Context synchronization event.

0x8163, STALL_FRONTEND_RENAME, Frontend stall cycles, rename full

The counter counts each cycle counted by STALL_FRONTEND_CPUBOUND when operations
are available from the frontend but at least one is not ready to be sent to the backend because no
rename register is available.

If this event is implemented and counts such stalls then the STALL_BACKEND_RENAME event
counts as zero.

0x8164, STALL_BACKEND_MEMBOUND, Backend stall cycles, memory bound

The counter counts each cycle counted by STALL_BACKEND when the backend is waiting for a
memory access to complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7043
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The counter counts stalls that occur when the backend interface to memory is busy or stalled. This
includes the stalls counted by STALL_BACKEND_ATOMIC, STALL_BACKEND_L1D,
STALL_BACKEND_L2D, STALL_BACKEND_MEM, STALL_BACKEND_MEMCPYSET,
STALL_BACKEND_ST, and STALL_BACKEND_TLB, and any other IMPLEMENTATION
DEFINED memory stalls.

It does not include stalls that are counted by STALL_BACKEND_CPUBOUND, although both
events might count on the same cycle counted by STALL_BACKEND if there are both memory and
processor-resource stall conditions active.

0x8165, STALL_BACKEND_L1D, Backend stall cycles, level 1 data cache

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in the first level of data or unified cache.

The counter does not count the cycle if any of the following are true:

• The STALL_BACKEND_L2D event is implemented and there is a demand data miss in the
second level of data or unified cache, meaning the STALL_BACKEND_L2D event counts
the cycle.

• There is a demand data miss in the last level of data or unified cache within the PE clock
domain, meaning the STALL_BACKEND_MEM event counts the cycle.

Implementation of this optional event requires that the first level of data or unified cache is
implemented within the PE clock domain and is not the last level of data or unified cache within the
PE clock domain.

0x8166, STALL_BACKEND_L2D, Backend stall cycles, level 2 data cache

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in the second level of data or unified cache.

The counter does not count the cycle if any of the following are true:

• There is a demand data miss in the last level of data or unified cache within the PE clock
domain, meaning the STALL_BACKEND_MEM event counts the cycle.

Implementation of this optional event requires that the second level of data or unified cache is
implemented within the PE clock domain and is not the last level of data or unified cache within the
PE clock domain.

0x8167, STALL_BACKEND_TLB, Backend stall cycles, TLB

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in the data or unified TLB.

0x8168, STALL_BACKEND_ST, Backend stall cycles, store

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when the backend
is stalled waiting for a store.

0x816A, STALL_BACKEND_CPUBOUND, Backend stall cycles, processor bound

The counter counts each cycle counted by STALL_BACKEND when the backend is stalled on a
processor resource, not including memory.

The counter counts stalls that occur when a backend processor resource is busy. This includes the
stalls counted by STALL_BACKEND_RENAME, and any other IMPLEMENTATION DEFINED
processor resource stalls.

It does not include stalls that are counted by STALL_BACKEND_MEMBOUND, although both
events might count on the same cycle counted by STALL_BACKEND if there are both memory and
processor-resource stall conditions active.

0x816B, STALL_BACKEND_BUSY, Backend stall cycles, backend busy

The counter counts each cycle counted by STALL_BACKEND when operations are available from
the frontend but the backend is not able to accept an operation because an execution unit is busy.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7044
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
For example a complex operation unit such as a divider is executing a previous operation and cannot
accept a new operation.

0x816C, STALL_BACKEND_ILOCK, Backend stall cycles, input dependency

The counter counts each cycle counted by STALL_BACKEND when operations are available from
the frontend but at least one is not ready to be sent to the backend because of an input dependency.

0x816D, STALL_BACKEND_RENAME, Backend stall cycles, rename full

The counter counts each cycle counted by STALL_BACKEND_CPUBOUND when operations are
available from the frontend but at least one is not ready to be sent to the backend because no rename
register is available.

If this event is implemented and counts such stalls then the STALL_FRONTEND_RENAME event
counts as zero.

0x816E, STALL_BACKEND_ATOMIC, Backend stall cycles, atomic operation

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when the backend
is processing an Atomic operation.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x816F, STALL_BACKEND_MEMCPYSET, Backend stall cycles, Memory Copy or Set operation

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when the backend
is processing an Memory Copy or Set instruction.

The Memory Copy instructions are CPY and CPYF. The Memory Set instructions are SET and SETG.

Implementation of this optional event requires that architecture variant supports FEAT_MOPS.

0x8170, CAS_NEAR_FAIL, Atomic memory Operation speculatively executed, Compare and Swap fail

The counter counts each Compare and Swap operation counted by CAS_NEAR_SPEC that does not
update the location accessed.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8171, CAS_NEAR_PASS, Atomic memory Operation speculatively executed, Compare and Swap pass

The counter counts each Compare and Swap operation counted by CAS_NEAR_SPEC that updates
the location accessed.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8172, CAS_NEAR_SPEC, Atomic memory Operation speculatively executed, Compare and Swap near

The counter counts each Compare and Swap operation counted by CAS_SPEC that executes locally
to the PE.

The definition of locally is IMPLEMENTATION_DEFINED. Operations counted by
CAS_NEAR_SPEC also generate one of the CAS_NEAR_PASS or CAS_NEAR_FAIL events.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8173, CAS_FAR_SPEC, Atomic memory Operation speculatively executed, Compare and Swap far

The counter counts each Compare and Swap operation counted by CAS_SPEC that does not execute
locally to the PE.

The definition of locally is IMPLEMENTATION_DEFINED. Operations counted by
CAS_FAR_SPEC do not generate CAS_NEAR_PASS or CAS_NEAR_FAIL events.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8174, CAS_SPEC, Atomic memory Operation speculatively executed, Compare and Swap

The counter counts each Compare and Swap operation.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7045
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8175, LSE_LD_SPEC, Atomic memory Operation speculatively executed, load

The counter counts each Atomic memory operation counted by LSE_LDST_SPEC that returns a
value to the PE, including Swap and Compare-and-Swap operations.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8176, LSE_ST_SPEC, Atomic memory Operation speculatively executed, store

The counter counts each Atomic memory operation counted by LSE_LDST_SPEC that does not
return a value to the PE.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8177, LSE_LDST_SPEC, Atomic memory Operation speculatively executed, load or store

The counter counts each operation counted by LDST_SPEC that is an Atomic memory operation.

Implementation of this optional event requires that architecture variant supports FEAT_LSE.

0x8178, REMOTE_ACCESS_WR, Access to a remote device, write

The counter counts each access counted by REMOTE_ACCESS that is a Memory-write operation.

0x8184, BR_HINT_COND_PRED_RETIRED, Branch Instruction architecturally executed, predicted hinted
conditional

The counter counts each branch counted by both BR_HINT_COND_RETIRED and
BR_PRED_RETIRED.

These are all hinted conditional branch instructions on the architecturally executed path, where the
branch is correctly predicted.

Implementation of this optional event requires that architecture variant supports FEAT_HBC.

0x8185, BR_HINT_COND_MIS_PRED_RETIRED, Branch Instruction architecturally executed,
mispredicted hinted conditional

The counter counts each branch counted by both BR_HINT_COND_RETIRED and
BR_MIS_PRED_RETIRED.

These are all hinted conditional branch instructions on the architecturally executed path, where the
branch is mispredicted.

Implementation of this optional event requires that architecture variant supports FEAT_HBC.

0x8186, UOP_RETIRED, Micro-operation architecturally executed

The counter counts each micro-operation that would be executed in a Simple sequential execution
of the program.

Unlike OP_RETIRED, this event is not linked to the definition of OP_SPEC, meaning it counts
micro-operations that are created from other operations after those operations are counted by
OP_SPEC.

0x8188, DTLB_WALK_BLOCK, Data TLB block translation table walk

The counter counts each translation table walk counted by DTLB_WALK where the result of the
walk yields a Block.

That is, the translation table walk ends at a Block descriptor, at other than the last level of translation
table.

If two stages of translation are used and Stage 1 and Stage 2 yield different granule sizes, the counter
counts the translation table walk only if both are a Block.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7046
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x8189, ITLB_WALK_BLOCK, Instruction TLB block translation table walk

The counter counts each translation table walk counted by ITLB_WALK where the result of the
walk yields a Block.

That is, the translation table walk ends at a Page descriptor, at other than the last level of translation
table.

If two stages of translation are used and Stage 1 and Stage 2 yield different granule sizes, the counter
counts the translation table walk only if both are a Block.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x818A, DTLB_WALK_PAGE, Data TLB page translation table walk

The counter counts each translation table walk counted by DTLB_WALK where the result of the
walk yields a Page.

That is, the translation table walk ends at a Block descriptor, at the last level of translation table.

If two stages of translation are used and Stage 1 and Stage 2 yield different granule sizes, the counter
counts the translation table walk only if either is a Page.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.

0x818B, ITLB_WALK_PAGE, Instruction TLB page translation table walk

The counter counts each translation table walk counted by ITLB_WALK where the result of the
walk yields a Page.

That is, the translation table walk ends at a Page descriptor, at the last level of translation table.

If two stages of translation are used and Stage 1 and Stage 2 yield different granule sizes, the counter
counts the translation table walk only if either is a Page.

The counter does not count the walk if the access generates a Translation fault.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Implementation of this optional event requires that FEAT_E0PD is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7047
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x818D, BUS_REQ_RD, Bus request, read

The counter counts each transaction counted by BUS_REQ that is a Memory-read operation.

0x818E, BUS_REQ_WR, Bus request, write

The counter counts each transaction counted by BUS_REQ that is a Memory-write operation.

0x818F, BUS_REQ, Bus request

The counter counts each request generated by a Memory-read operation or Memory-write operation
that accesses outside of the boundary of the PE and its closely-coupled caches. Where this boundary
lies with respect to any implemented caches is IMPLEMENTATION DEFINED. Where an
implementation has multiple buses at this boundary, this event counts the sum of requests across all
buses.

A bus request is the start of a bus transaction. The exact nature of a bus transaction is
IMPLEMENTATION DEFINED, but for the purposes of event monitoring consists of a single access
comprising one or more cycles, or beats, when the transaction occupies the bus. The BUS_REQ
event therefore counts the number of transactions. The BUS_ACCESS event counts the occupancy
of the transaction on the bus.

Bus transactions include refills of and write-backs from data, instruction, and unified caches.
Whether bus transactions include operations that use the bus but do not explicitly transfer data is
IMPLEMENTATION DEFINED. This must be the same for the BUS_REQ and BUS_ACCESS events.

An Unattributable bus transaction occurs when a requestor outside the PE makes a request that
results in a bus transaction, for example, a coherency request.

The maximum increment in any given cycle is IMPLEMENTATION DEFINED.

If the bus is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0, then
the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the bus is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8190, ISNP_HIT_RD, Snoop hit, demand instruction fetch

The counter counts each snoop generated by the PE in response to a demand Instruction memory
access that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8191, ISNP_HIT_NEAR_RD, Snoop hit in near local cache, demand instruction fetch

The counter counts each snoop generated by the PE in response to a demand Instruction memory
access counted by ISNP_HIT_RD that hits in a cache outside of the cache hierarchy of this PE in
the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8192, ISNP_HIT_FAR_RD, Snoop hit in far local cache, demand instruction fetch

The counter counts each snoop generated by the PE in response to a demand Instruction memory
access counted by ISNP_HIT_RD that hits in a cache outside the local PE cluster on the same
device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8193, ISNP_HIT_REMOTE_RD, Snoop hit in remote cache, demand instruction fetch

The counter counts each snoop generated by the PE in response to a demand Instruction memory
access counted by ISNP_HIT_RD that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7048
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8194, DSNP_HIT_RD, Snoop hit, demand data read

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_RW that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8195, DSNP_HIT_NEAR_RD, Snoop hit in near local cache, demand data read

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_RD that hits in a cache outside of the cache hierarchy of this PE in the local
PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8196, DSNP_HIT_FAR_RD, Snoop hit in far local cache, demand data read

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_RD that hits in a cache outside the local PE cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8197, DSNP_HIT_REMOTE_RD, Snoop hit in remote cache, demand data read

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_RD that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8198, DSNP_HIT_WR, Snoop hit, demand data write

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_RW that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8199, DSNP_HIT_NEAR_WR, Snoop hit in near local cache, demand data write

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_WR that hits in a cache outside of the cache hierarchy of this PE
in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x819A, DSNP_HIT_FAR_WR, Snoop hit in far local cache, demand data write

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_WR that hits in a cache outside the local PE cluster on the same
device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x819B, DSNP_HIT_REMOTE_WR, Snoop hit in remote cache, demand data write

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_WR that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x819C, DSNP_HIT_RW, Snoop hit, demand data access

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x819D, DSNP_HIT_NEAR_RW, Snoop hit in near local cache, demand data access

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_RW that hits in a cache outside of the
cache hierarchy of this PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7049
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x819E, DSNP_HIT_FAR_RW, Snoop hit in far local cache, demand data access

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_RW that hits in a cache outside the
local PE cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x819F, DSNP_HIT_REMOTE_RW, Snoop hit in remote cache, demand data access

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_RW that hits in a cache on a remote
device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A0, DSNP_HIT_PRFM, Snoop hit, software data preload

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction counted by DSNP_HIT_PRF that hits in a cache outside of the cache hierarchy of this
PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A1, DSNP_HIT_NEAR_PRFM, Snoop hit in near local cache, software data preload

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction counted by DSNP_HIT_PRFM that hits in a cache outside of the cache hierarchy of this
PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A2, DSNP_HIT_FAR_PRFM, Snoop hit in far local cache, software data preload

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction counted by DSNP_HIT_PRFM that hits in a cache outside the local PE cluster on the
same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A3, DSNP_HIT_REMOTE_PRFM, Snoop hit in remote cache, software data preload

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction counted by DSNP_HIT_PRFM that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A4, DSNP_HIT_HWPRF, Snoop hit, hardware data prefetch

The counter counts each snoop generated by a data hardware prefetch counted by DSNP_HIT_PRF
that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A5, DSNP_HIT_NEAR_HWPRF, Snoop hit in near local cache, hardware data prefetch

The counter counts each snoop generated by a data hardware prefetch counted by
DSNP_HIT_HWPRF that hits in a cache outside of the cache hierarchy of this PE in the local PE
cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A6, DSNP_HIT_FAR_HWPRF, Snoop hit in far local cache, hardware data prefetch

The counter counts each snoop generated by a data hardware prefetch counted by
DSNP_HIT_HWPRF that hits in a cache outside the local PE cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A7, DSNP_HIT_REMOTE_HWPRF, Snoop hit in remote cache, hardware data prefetch

The counter counts each snoop generated by a data hardware prefetch counted by
DSNP_HIT_HWPRF that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7050
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x81A8, ISNP_HIT_PRFM, Snoop hit, software instruction preload

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction counted by ISNP_HIT_PRF that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81A9, ISNP_HIT_NEAR_PRFM, Snoop hit in near local cache, software instruction preload

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction counted by ISNP_HIT_PRFM that hits in a cache outside of the cache hierarchy of this
PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81AA, ISNP_HIT_FAR_PRFM, Snoop hit in far local cache, software instruction preload

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction counted by ISNP_HIT_PRFM that hits in a cache outside the local PE cluster on the
same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81AB, ISNP_HIT_REMOTE_PRFM, Snoop hit in remote cache, software instruction preload

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction counted by ISNP_HIT_PRFM that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81AC, ISNP_HIT_HWPRF, Snoop hit, hardware instruction prefetch

The counter counts each snoop generated by an instruction hardware prefetch counted by
ISNP_HIT_PRF that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81AD, ISNP_HIT_NEAR_HWPRF, Snoop hit in near local cache, hardware instruction prefetch

The counter counts each snoop generated by an instruction hardware prefetch counted by
ISNP_HIT_HWPRF that hits in a cache outside of the cache hierarchy of this PE in the local PE
cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81AE, ISNP_HIT_FAR_HWPRF, Snoop hit in far local cache, hardware instruction prefetch

The counter counts each snoop generated by an instruction hardware prefetch counted by
ISNP_HIT_HWPRF that hits in a cache outside the local PE cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81AF, ISNP_HIT_REMOTE_HWPRF, Snoop hit in remote cache, hardware instruction prefetch

The counter counts each snoop generated by an instruction hardware prefetch counted by
ISNP_HIT_HWPRF that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B0, ISNP_HIT, Snoop hit, instruction

The counter counts each snoop that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B1, ISNP_HIT_NEAR, Snoop hit in near local cache, instruction access

The counter counts each snoop counted by ISNP_HIT that hits in a cache outside of the cache
hierarchy of this PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B2, ISNP_HIT_FAR, Snoop hit in far local cache, instruction access

The counter counts each snoop counted by ISNP_HIT that hits in a cache outside the local PE cluster
on the same device.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7051
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B3, ISNP_HIT_REMOTE, Snoop hit in remote cache, instruction access

The counter counts each snoop counted by ISNP_HIT that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B4, DSNP_HIT, Snoop hit, data

The counter counts each snoop that hits in a cache outside of the cache hierarchy of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B5, DSNP_HIT_NEAR, Snoop hit in near local cache, data access

The counter counts each snoop counted by DSNP_HIT that hits in a cache outside of the cache
hierarchy of this PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B6, DSNP_HIT_FAR, Snoop hit in far local cache, data access

The counter counts each snoop counted by DSNP_HIT that hits in a cache outside the local PE
cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B7, DSNP_HIT_REMOTE, Snoop hit in remote cache, data access

The counter counts each snoop counted by DSNP_HIT that hits in a cache on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x81B8, L1I_CACHE_REFILL_HWPRF, Level 1 instruction cache refill, hardware prefetch

The counter counts each hardware prefetch counted by L1I_CACHE_HWPRF that causes a refill
of the Level 1 instruction or unified cache from outside of the Level 1 instruction or unified cache.

0x81B9, L2I_CACHE_REFILL_HWPRF, Level 2 instruction cache refill, hardware prefetch

The counter counts each hardware prefetch counted by L2I_CACHE_HWPRF that causes a refill
of the Level 2 instruction or unified cache, or any Level 1 data, instruction, or unified cache of this
PE, from outside of those caches.

0x81BC, L1D_CACHE_REFILL_HWPRF, Level 1 data cache refill, hardware prefetch

The counter counts each hardware prefetch counted by L1D_CACHE_HWPRF that causes a refill
of the Level 1 data or unified cache from outside of the Level 1 data or unified cache.

0x81BD, L2D_CACHE_REFILL_HWPRF, Level 2 data cache refill, hardware prefetch

The counter counts each hardware prefetch counted by L2D_CACHE_HWPRF that causes a refill
of the Level 2 data or unified cache, or any Level 1 data, instruction, or unified cache of this PE,
from outside of those caches.

0x81BE, L3D_CACHE_REFILL_HWPRF, Level 3 data cache refill, hardware prefetch

The counter counts each hardware prefetch counted by L3D_CACHE_HWPRF that causes a refill
of the Level 3 data or unified cache, or any Level 1 or Level 2 data, instruction, or unified cache of
this PE, from outside of those caches.

0x81BF, LL_CACHE_REFILL_HWPRF, Last level cache refill, hardware prefetch

The counter counts each hardware prefetch counted by LL_CACHE_HWPRF that causes a refill of
the Last level cache, or any other data, instruction, or unified cache of this PE, from outside of those
caches.

0x81C0, L1I_CACHE_HIT_RD, Level 1 instruction cache demand fetch hit

The counter counts each demand fetch counted by L1I_CACHE_RD that hits in the Level 1
instruction or unified cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7052
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x81C1, L2I_CACHE_HIT_RD, Level 2 instruction cache demand fetch hit

The counter counts each demand fetch counted by L2I_CACHE_RD that hits in the Level 2
instruction or unified cache.

0x81C4, L1D_CACHE_HIT_RD, Level 1 data cache demand access hit, read

The counter counts each demand read counted by L1D_CACHE_RD that hits in the Level 1 data or
unified cache.

0x81C5, L2D_CACHE_HIT_RD, Level 2 data cache demand access hit, read

The counter counts each demand read counted by L2D_CACHE_RD that hits in the Level 2 data or
unified cache.

0x81C6, L3D_CACHE_HIT_RD, Level 3 data cache demand access hit, read

The counter counts each demand read counted by L3D_CACHE_RD that hits in the Level 3 data or
unified cache.

0x81C7, LL_CACHE_HIT_RD, Last level cache demand access hit, read

The counter counts each demand read counted by LL_CACHE_RD that hits in the Last level cache.

0x81C8, L1D_CACHE_HIT_WR, Level 1 data cache demand access hit, write

The counter counts each demand write counted by L1D_CACHE_WR that hits in the Level 1 data
or unified cache.

0x81C9, L2D_CACHE_HIT_WR, Level 2 data cache demand access hit, write

The counter counts each demand write counted by L2D_CACHE_WR that hits in the Level 2 data
or unified cache.

0x81CA, L3D_CACHE_HIT_WR, Level 3 data cache demand access hit, write

The counter counts each demand write counted by L3D_CACHE_WR that hits in the Level 3 data
or unified cache.

0x81CB, LL_CACHE_HIT_WR, Last level cache demand access hit, write

The counter counts each demand write counted by LL_CACHE_WR that hits in the Last level
cache.

0x81CC, L1D_CACHE_HIT_RW, Level 1 data cache demand access hit

The counter counts each demand access counted by L1D_CACHE_RW that hits in the Level 1 data
or unified cache.

0x81CD, L2D_CACHE_HIT_RW, Level 2 data cache demand access hit

The counter counts each demand access counted by L2D_CACHE_RW that hits in the Level 2 data
or unified cache.

0x81CE, L3D_CACHE_HIT_RW, Level 3 data cache demand access hit

The counter counts each demand access counted by L3D_CACHE_RW that hits in the Level 3 data
or unified cache.

0x81CF, LL_CACHE_HIT_RW, Last level cache demand access hit

The counter counts each demand access counted by LL_CACHE_RW that hits in the Last level
cache.

0x81D0, L1I_CACHE_HIT_RD_FPRFM, Level 1 instruction cache demand fetch first hit, fetched by
software preload

The counter counts each demand fetch first hit counted by L1I_CACHE_HIT_RD_FPRF where the
cache line was fetched in response to a preload or prefetch instruction.

That is, the L1I_CACHE_REFILL_PRFM event was generated when the cache line was fetched
into the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7053
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81D1, L2I_CACHE_HIT_RD_FPRFM, Level 2 instruction cache demand fetch first hit, fetched by
software preload

The counter counts each demand fetch first hit counted by L2I_CACHE_HIT_RD_FPRF where the
cache line was fetched in response to a preload or prefetch instruction.

That is, the L2I_CACHE_REFILL_PRFM event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81D4, L1D_CACHE_HIT_RD_FPRFM, Level 1 data cache demand access first hit, read, fetched by
software preload

The counter counts each first hit counted by L1D_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-read operation.

0x81D5, L2D_CACHE_HIT_RD_FPRFM, Level 2 data cache demand access first hit, read, fetched by
software preload

The counter counts each first hit counted by L2D_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-read operation.

0x81D6, L3D_CACHE_HIT_RD_FPRFM, Level 3 data cache demand access first hit, read, fetched by
software preload

The counter counts each first hit counted by L3D_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-read operation.

0x81D7, LL_CACHE_HIT_RD_FPRFM, Last level cache demand access first hit, read, fetched by software
preload

The counter counts each first hit counted by LL_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-read operation.

0x81D8, L1D_CACHE_HIT_WR_FPRFM, Level 1 data cache demand access first hit, write, fetched by
software preload

The counter counts each first hit counted by L1D_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-write operation.

0x81D9, L2D_CACHE_HIT_WR_FPRFM, Level 2 data cache demand access first hit, write, fetched by
software preload

The counter counts each first hit counted by L2D_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-write operation.

0x81DA, L3D_CACHE_HIT_WR_FPRFM, Level 3 data cache demand access first hit, write, fetched by
software preload

The counter counts each first hit counted by L3D_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-write operation.

0x81DB, LL_CACHE_HIT_WR_FPRFM, Last level cache demand access first hit, write, fetched by software
preload

The counter counts each first hit counted by LL_CACHE_HIT_RW_FPRFM that is due to a
demand Memory-write operation.

0x81DC, L1D_CACHE_HIT_RW_FPRFM, Level 1 data cache demand access first hit, fetched by software
preload

The counter counts each demand access first hit counted by L1D_CACHE_HIT_RW_FPRF where
the cache line was fetched in response to a preload or prefetch instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7054
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
That is, the L1D_CACHE_REFILL_PRFM event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81DD, L2D_CACHE_HIT_RW_FPRFM, Level 2 data cache demand access first hit, fetched by software
preload

The counter counts each demand access first hit counted by L2D_CACHE_HIT_RW_FPRF where
the cache line was fetched in response to a preload or prefetch instruction.

That is, the L2D_CACHE_REFILL_PRFM event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81DE, L3D_CACHE_HIT_RW_FPRFM, Level 3 data cache demand access first hit, fetched by software
preload

The counter counts each demand access first hit counted by L3D_CACHE_HIT_RW_FPRF where
the cache line was fetched in response to a preload or prefetch instruction.

That is, the L3D_CACHE_REFILL_PRFM event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81DF, LL_CACHE_HIT_RW_FPRFM, Last level cache demand access first hit, fetched by software
preload

The counter counts each demand access first hit counted by LL_CACHE_HIT_RW_FPRF where
the cache line was fetched in response to a preload or prefetch instruction.

That is, the LL_CACHE_REFILL_PRFM event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81E0, L1I_CACHE_HIT_RD_FHWPRF, Level 1 instruction cache demand fetch first hit, fetched by
hardware prefetcher

The counter counts each demand fetch first hit counted by L1I_CACHE_HIT_RD_FPRF where the
cache line was fetched by a hardware prefetcher.

That is, the L1I_CACHE_REFILL_HWPRF event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81E1, L2I_CACHE_HIT_RD_FHWPRF, Level 2 instruction cache demand fetch first hit, fetched by
hardware prefetcher

The counter counts each demand fetch first hit counted by L2I_CACHE_HIT_RD_FPRF where the
cache line was fetched by a hardware prefetcher.

That is, the L2I_CACHE_REFILL_HWPRF event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81E4, L1D_CACHE_HIT_RD_FHWPRF, Level 1 data cache demand access first hit, read, fetched by
hardware prefetcher

The counter counts each first hit counted by L1D_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-read operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7055
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x81E5, L2D_CACHE_HIT_RD_FHWPRF, Level 2 data cache demand access first hit, read, fetched by
hardware prefetcher

The counter counts each first hit counted by L2D_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-read operation.

0x81E6, L3D_CACHE_HIT_RD_FHWPRF, Level 3 data cache demand access first hit, read, fetched by
hardware prefetcher

The counter counts each first hit counted by L3D_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-read operation.

0x81E7, LL_CACHE_HIT_RD_FHWPRF, Last level cache demand access first hit, read, fetched by
hardware prefetcher

The counter counts each first hit counted by LL_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-read operation.

0x81E8, L1D_CACHE_HIT_WR_FHWPRF, Level 1 data cache demand access first hit, write, fetched by
hardware prefetcher

The counter counts each first hit counted by L1D_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-write operation.

0x81E9, L2D_CACHE_HIT_WR_FHWPRF, Level 2 data cache demand access first hit, write, fetched by
hardware prefetcher

The counter counts each first hit counted by L2D_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-write operation.

0x81EA, L3D_CACHE_HIT_WR_FHWPRF, Level 3 data cache demand access first hit, write, fetched by
hardware prefetcher

The counter counts each first hit counted by L3D_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-write operation.

0x81EB, LL_CACHE_HIT_WR_FHWPRF, Last level cache demand access first hit, write, fetched by
hardware prefetcher

The counter counts each first hit counted by LL_CACHE_HIT_RW_FHWPRF that is due to a
demand Memory-write operation.

0x81EC, L1D_CACHE_HIT_RW_FHWPRF, Level 1 data cache demand access first hit, fetched by hardware
prefetcher

The counter counts each demand access first hit counted by L1D_CACHE_HIT_RW_FPRF where
the cache line was fetched by a hardware prefetcher.

That is, the L1D_CACHE_REFILL_HWPRF event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81ED, L2D_CACHE_HIT_RW_FHWPRF, Level 2 data cache demand access first hit, fetched by hardware
prefetcher

The counter counts each demand access first hit counted by L2D_CACHE_HIT_RW_FPRF where
the cache line was fetched by a hardware prefetcher.

That is, the L2D_CACHE_REFILL_HWPRF event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81EE, L3D_CACHE_HIT_RW_FHWPRF, Level 3 data cache demand access first hit, fetched by hardware
prefetcher

The counter counts each demand access first hit counted by L3D_CACHE_HIT_RW_FPRF where
the cache line was fetched by a hardware prefetcher.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7056
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
That is, the L3D_CACHE_REFILL_HWPRF event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81EF, LL_CACHE_HIT_RW_FHWPRF, Last level cache demand access first hit, fetched by hardware
prefetcher

The counter counts each demand access first hit counted by LL_CACHE_HIT_RW_FPRF where
the cache line was fetched by a hardware prefetcher.

That is, the LL_CACHE_REFILL_HWPRF event was generated when the cache line was fetched
into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81F0, L1I_CACHE_HIT_RD_FPRF, Level 1 instruction cache demand fetch first hit, fetched by preload
or prefetch

The counter counts each demand fetch first hit counted by L1I_CACHE_HIT_RD where the cache
line was fetched in response to a preload or prefetch instruction or by a hardware prefetcher.

That is, the L1I_CACHE_REFILL_PRF event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81F1, L2I_CACHE_HIT_RD_FPRF, Level 2 instruction cache demand fetch first hit, fetched by preload
or prefetch

The counter counts each demand fetch first hit counted by L2I_CACHE_HIT_RD where the cache
line was fetched in response to a preload or prefetch instruction or by a hardware prefetcher.

That is, the L2I_CACHE_REFILL_PRF event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81F4, L1D_CACHE_HIT_RD_FPRF, Level 1 data cache demand access first hit, read, fetched by preload
or prefetch

The counter counts each first hit counted by L1D_CACHE_HIT_RW_FPRF that is due to a demand
Memory-read operation.

0x81F5, L2D_CACHE_HIT_RD_FPRF, Level 2 data cache demand access first hit, read, fetched by preload
or prefetch

The counter counts each first hit counted by L2D_CACHE_HIT_RW_FPRF that is due to a demand
Memory-read operation.

0x81F6, L3D_CACHE_HIT_RD_FPRF, Level 3 data cache demand access first hit, read, fetched by preload
or prefetch

The counter counts each first hit counted by L3D_CACHE_HIT_RW_FPRF that is due to a demand
Memory-read operation.

0x81F7, LL_CACHE_HIT_RD_FPRF, Last level cache demand access first hit, read, fetched by preload or
prefetch

The counter counts each first hit counted by LL_CACHE_HIT_RW_FPRF that is due to a demand
Memory-read operation.

0x81F8, L1D_CACHE_HIT_WR_FPRF, Level 1 data cache demand access first hit, write, fetched by preload
or prefetch

The counter counts each first hit counted by L1D_CACHE_HIT_RW_FPRF that is due to a demand
Memory-write operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7057
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x81F9, L2D_CACHE_HIT_WR_FPRF, Level 2 data cache demand access first hit, write, fetched by preload
or prefetch

The counter counts each first hit counted by L2D_CACHE_HIT_RW_FPRF that is due to a demand
Memory-write operation.

0x81FA, L3D_CACHE_HIT_WR_FPRF, Level 3 data cache demand access first hit, write, fetched by preload
or prefetch

The counter counts each first hit counted by L3D_CACHE_HIT_RW_FPRF that is due to a demand
Memory-write operation.

0x81FB, LL_CACHE_HIT_WR_FPRF, Last level cache demand access first hit, write, fetched by preload or
prefetch

The counter counts each first hit counted by LL_CACHE_HIT_RW_FPRF that is due to a demand
Memory-write operation.

0x81FC, L1D_CACHE_HIT_RW_FPRF, Level 1 data cache demand access first hit, fetched by preload or
prefetch

The counter counts each demand access first hit counted by L1D_CACHE_HIT_RW where the
cache line was fetched in response to a preload or prefetch instruction or by a hardware prefetcher.

That is, the L1D_CACHE_REFILL_PRF event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81FD, L2D_CACHE_HIT_RW_FPRF, Level 2 data cache demand access first hit, fetched by preload or
prefetch

The counter counts each demand access first hit counted by L2D_CACHE_HIT_RW where the
cache line was fetched in response to a preload or prefetch instruction or by a hardware prefetcher.

That is, the L2D_CACHE_REFILL_PRF event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81FE, L3D_CACHE_HIT_RW_FPRF, Level 3 data cache demand access first hit, fetched by preload or
prefetch

The counter counts each demand access first hit counted by L3D_CACHE_HIT_RW where the
cache line was fetched in response to a preload or prefetch instruction or by a hardware prefetcher.

That is, the L3D_CACHE_REFILL_PRF event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x81FF, LL_CACHE_HIT_RW_FPRF, Last level cache demand access first hit, fetched by preload or
prefetch

The counter counts each demand access first hit counted by LL_CACHE_HIT_RW where the cache
line was fetched in response to a preload or prefetch instruction or by a hardware prefetcher.

That is, the LL_CACHE_REFILL_PRF event was generated when the cache line was fetched into
the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8200, L1I_CACHE_HIT, Level 1 instruction cache hit

The counter counts each access counted by L1I_CACHE that hits in the Level 1 instruction or
unified cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7058
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8201, L2I_CACHE_HIT, Level 2 instruction cache hit

The counter counts each access counted by L2I_CACHE that hits in the Level 2 instruction or
unified cache.

0x8204, L1D_CACHE_HIT, Level 1 data cache hit

The counter counts each access counted by L1D_CACHE that hits in the Level 1 data or unified
cache.

0x8205, L2D_CACHE_HIT, Level 2 data cache hit

The counter counts each access counted by L2D_CACHE that hits in the Level 2 data or unified
cache.

0x8206, L3D_CACHE_HIT, Level 3 data cache hit

The counter counts each access counted by L3D_CACHE that hits in the Level 3 data or unified
cache.

0x8207, LL_CACHE_HIT, Last level cache hit

The counter counts each access counted by LL_CACHE that hits in the Last level cache.

0x8208, L1I_CACHE_HIT_PRFM, Level 1 instruction cache software preload hit

The counter counts each software preload counted by L1I_CACHE_PRFM that hits in the Level 1
instruction or unified cache.

0x8209, L2I_CACHE_HIT_PRFM, Level 2 instruction cache software preload hit

The counter counts each software preload counted by L2I_CACHE_PRFM that hits in the Level 2
instruction or unified cache.

0x820C, L1D_CACHE_HIT_PRFM, Level 1 data cache software preload hit

The counter counts each software preload counted by L1D_CACHE_PRFM that hits in the Level 1
data or unified cache.

0x820D, L2D_CACHE_HIT_PRFM, Level 2 data cache software preload hit

The counter counts each software preload counted by L2D_CACHE_PRFM that hits in the Level 2
data or unified cache.

0x820E, L3D_CACHE_HIT_PRFM, Level 3 data cache software preload hit

The counter counts each software preload counted by L3D_CACHE_PRFM that hits in the Level 3
data or unified cache.

0x820F, LL_CACHE_HIT_PRFM, Last level cache software preload hit

The counter counts each software preload counted by LL_CACHE_PRFM that hits in the Last level
cache.

0x8214, L1D_CACHE_HITM_RD, Level 1 data cache demand access hit modified, read

The counter counts each cache access counted by L1D_CACHE_HIT_RD that accesses a
previously modified cache location.

0x8215, L2D_CACHE_HITM_RD, Level 2 data cache demand access hit modified, read

The counter counts each cache access counted by L2D_CACHE_HIT_RD that accesses a
previously modified cache location.

0x8216, L3D_CACHE_HITM_RD, Level 3 data cache demand access hit modified, read

The counter counts each cache access counted by L3D_CACHE_HIT_RD that accesses a
previously modified cache location.

0x8217, LL_CACHE_HITM_RD, Last level cache demand access hit modified, read

The counter counts each cache access counted by LL_CACHE_HIT_RD that accesses a previously
modified cache location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7059
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8218, L1D_CACHE_HITM_WR, Level 1 data cache demand access hit modified, write

The counter counts each cache access counted by L1D_CACHE_HIT_WR that accesses a
previously modified cache location.

0x8219, L2D_CACHE_HITM_WR, Level 2 data cache demand access hit modified, write

The counter counts each cache access counted by L2D_CACHE_HIT_WR that accesses a
previously modified cache location.

0x821A, L3D_CACHE_HITM_WR, Level 3 data cache demand access hit modified, write

The counter counts each cache access counted by L3D_CACHE_HIT_WR that accesses a
previously modified cache location.

0x821B, LL_CACHE_HITM_WR, Last level cache demand access hit modified, write

The counter counts each cache access counted by LL_CACHE_HIT_WR that accesses a previously
modified cache location.

0x821C, L1D_CACHE_HITM_RW, Level 1 data cache demand access hit modified

The counter counts each cache access counted by L1D_CACHE_HIT_RW that accesses a
previously modified cache location.

0x821D, L2D_CACHE_HITM_RW, Level 2 data cache demand access hit modified

The counter counts each cache access counted by L2D_CACHE_HIT_RW that accesses a
previously modified cache location.

0x821E, L3D_CACHE_HITM_RW, Level 3 data cache demand access hit modified

The counter counts each cache access counted by L3D_CACHE_HIT_RW that accesses a
previously modified cache location.

0x821F, LL_CACHE_HITM_RW, Last level cache demand access hit modified

The counter counts each cache access counted by LL_CACHE_HIT_RW that accesses a previously
modified cache location.

0x8224, DSNP_HITM_RD, Snoop hit, demand data read, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_RD that accesses a previously modified cache location.

0x8225, DSNP_HITM_NEAR_RD, Snoop hit in near local cache, demand data read, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_NEAR_RD that accesses a previously modified cache location.

0x8226, DSNP_HITM_FAR_RD, Snoop hit in far local cache, demand data read, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_FAR_RD that accesses a previously modified cache location.

0x8227, DSNP_HITM_REMOTE_RD, Snoop hit in remote cache, demand data read, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
counted by DSNP_HIT_REMOTE_RD that accesses a previously modified cache location.

0x8228, DSNP_HITM_WR, Snoop hit, demand data write, modified

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_WR that accesses a previously modified cache location.

0x8229, DSNP_HITM_NEAR_WR, Snoop hit in near local cache, demand data write, modified

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_NEAR_WR that accesses a previously modified cache location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7060
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x822A, DSNP_HITM_FAR_WR, Snoop hit in far local cache, demand data write, modified

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_FAR_WR that accesses a previously modified cache location.

0x822B, DSNP_HITM_REMOTE_WR, Snoop hit in remote cache, demand data write, modified

The counter counts each snoop generated by the PE in response to a demand Memory-write
operation counted by DSNP_HIT_REMOTE_WR that accesses a previously modified cache
location.

0x822C, DSNP_HITM_RW, Snoop hit, demand data access, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_RW that accesses a previously
modified cache location.

0x822D, DSNP_HITM_NEAR_RW, Snoop hit in near local cache, demand data access, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_NEAR_RW that accesses a previously
modified cache location.

0x822E, DSNP_HITM_FAR_RW, Snoop hit in far local cache, demand data access, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_FAR_RW that accesses a previously
modified cache location.

0x822F, DSNP_HITM_REMOTE_RW, Snoop hit in remote cache, demand data access, modified

The counter counts each snoop generated by the PE in response to a demand Memory-read operation
or demand Memory-write operation counted by DSNP_HIT_REMOTE_RW that accesses a
previously modified cache location.

0x8230, LOCAL_MEM, Access to memory attached to this device

The counter counts each Memory-read operation or Memory-write operation access to external
memory attached to this device.

In a multi-socket system this means attached to the socket that contains the PE. For more
information, see REMOTE_ACCESS.

In systems where there multiple types of memory attached to this device with different performance
characteristics, it is IMPLEMENTATION DEFINED whether accesses to all external memory types are
counted by this event, or are classified as remote accesses and counted by REMOTE_MEM.

For example, in a system with an expansion memory connected to the device that has significantly
higher latency than the main system memory, accesses to the main system memory might be
counted by this event and accesses to the expansion memory by REMOTE_MEM.

0x8231, LOCAL_MEM_RD, Access to memory attached to this device, demand access, read

The counter counts each access counted by LOCAL_MEM_RW that is a demand Memory-read
operation.

0x8232, LOCAL_MEM_WR, Access to memory attached to this device, demand access, write

The counter counts each access counted by LOCAL_MEM_RW that is a demand Memory-write
operation.

0x8233, LOCAL_MEM_RW, Access to memory attached to this device, demand access

The counter counts each access counted by LOCAL_MEM that is a demand Memory-read
operation or demand Memory-write operation.

It is IMPLEMENTATION DEFINED whether an access to external memory due to a prefetch to a cache
is counted by LOCAL_MEM_RW or LOCAL_MEM_PRFM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7061
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8234, LOCAL_MEM_PRFM, Access to memory attached to this device, software preload

The counter counts each access counted by LOCAL_MEM that is due to a preload or prefetch
instruction.

It is IMPLEMENTATION DEFINED whether an access to external memory due to a prefetch to a cache
is counted by LOCAL_MEM_RW or LOCAL_MEM_PRFM.

0x8235, LOCAL_MEM_LD_RETIRED, Load Instruction architecturally executed, access to memory
attached to this device

The counter counts each architecturally executed instruction counted by
LOCAL_MEM_LDST_RETIRED that is a Memory-reading instruction.

0x8236, LOCAL_MEM_ST_RETIRED, Store Instruction architecturally executed, access to memory
attached to this device

The counter counts each architecturally executed instruction counted by
LOCAL_MEM_LDST_RETIRED that is a Memory-writing instruction.

0x8237, LOCAL_MEM_LDST_RETIRED, Load or store Instruction architecturally executed, access to
memory attached to this device

The counter counts each Memory-reading instruction or Memory-writing Instruction architecturally
executed counted by LDST_ANY_RETIRED that accessed external memory attached to this
device.

0x8238, REMOTE_MEM, Access to memory attached to a remote device

The counter counts each Memory-read operation or Memory-write operation access counted by
REMOTE_ACCESS to external memory attached to a remote device.

The counter also counts any accesses to external memory that are not counted by LOCAL_MEM
because the implementation classifies them as remote accesses. For example, accesses to expansion
memory connected to the device that has significantly higher latency than the main system memory
might be classified as remote accesses. For more information, see LOCAL_MEM.

0x8239, REMOTE_MEM_RD, Access to memory attached to a remote device, demand access, read

The counter counts each access counted by REMOTE_MEM_RW that is a demand Memory-read
operation.

0x823A, REMOTE_MEM_WR, Access to memory attached to a remote device, demand access, write

The counter counts each access counted by REMOTE_MEM_RW that is a demand Memory-write
operation.

0x823B, REMOTE_MEM_RW, Access to memory attached to a remote device, demand access

The counter counts each access counted by REMOTE_MEM that is a demand Memory-read
operation or demand Memory-write operation.

0x823C, REMOTE_MEM_PRFM, Access to memory attached to a remote device, software preload

The counter counts each access counted by REMOTE_MEM that is due to a preload or prefetch
instruction.

0x823D, REMOTE_MEM_LD_RETIRED, Load Instruction architecturally executed, access to memory
attached to a remote device

The counter counts each architecturally executed instruction counted by
REMOTE_MEM_LDST_RETIRED that is a Memory-reading instruction.

0x823E, REMOTE_MEM_ST_RETIRED, Store Instruction architecturally executed, access to memory
attached to a remote device

The counter counts each architecturally executed instruction counted by
REMOTE_MEM_LDST_RETIRED that is a Memory-writing instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7062
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x823F, REMOTE_MEM_LDST_RETIRED, Load or store Instruction architecturally executed, access to
memory attached to a remote device

The counter counts each Memory-reading instruction or Memory-writing Instruction architecturally
executed counted by LDST_ANY_RETIRED that accessed external memory attached to a remote
device.

0x8240, L1I_LFB_HIT_RD, Level 1 instruction cache demand fetch line-fill buffer hit

The counter counts each demand access counted by L1I_CACHE_HIT_RD that hits a recently
fetched line in the Level 1 instruction or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x8241, L2I_LFB_HIT_RD, Level 2 instruction cache demand fetch line-fill buffer hit

The counter counts each demand access counted by L2I_CACHE_HIT_RD that hits a recently
fetched line in the Level 2 instruction or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x8244, L1D_LFB_HIT_RD, Level 1 data cache demand access line-fill buffer hit, read

The counter counts each demand access counted by L1D_CACHE_HIT_RD that hits a recently
fetched line in the Level 1 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x8245, L2D_LFB_HIT_RD, Level 2 data cache demand access line-fill buffer hit, read

The counter counts each demand access counted by L2D_CACHE_HIT_RD that hits a recently
fetched line in the Level 2 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x8246, L3D_LFB_HIT_RD, Level 3 data cache demand access line-fill buffer hit, read

The counter counts each demand access counted by L3D_CACHE_HIT_RD that hits a recently
fetched line in the Level 3 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 3 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x8247, LL_LFB_HIT_RD, Last level cache demand access line-fill buffer hit, read

The counter counts each demand access counted by LL_CACHE_HIT_RD that hits a recently
fetched line in the Last level cache.

That is, the access hits a cache line that is in the process of being loaded into the Last level cache,
and so does not generate a new refill, but has to wait for the previous refill to complete.

0x8248, L1D_LFB_HIT_WR, Level 1 data cache demand access line-fill buffer hit, write

The counter counts each demand access counted by L1D_CACHE_HIT_WR that hits a recently
fetched line in the Level 1 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7063
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8249, L2D_LFB_HIT_WR, Level 2 data cache demand access line-fill buffer hit, write

The counter counts each demand access counted by L2D_CACHE_HIT_WR that hits a recently
fetched line in the Level 2 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x824A, L3D_LFB_HIT_WR, Level 3 data cache demand access line-fill buffer hit, write

The counter counts each demand access counted by L3D_CACHE_HIT_WR that hits a recently
fetched line in the Level 3 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 3 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x824B, LL_LFB_HIT_WR, Last level cache demand access line-fill buffer hit, write

The counter counts each demand access counted by LL_CACHE_HIT_WR that hits a recently
fetched line in the Last level cache.

That is, the access hits a cache line that is in the process of being loaded into the Last level cache,
and so does not generate a new refill, but has to wait for the previous refill to complete.

0x824C, L1D_LFB_HIT_RW, Level 1 data cache demand access line-fill buffer hit

The counter counts each demand access counted by L1D_CACHE_HIT_RW that hits a recently
fetched line in the Level 1 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x824D, L2D_LFB_HIT_RW, Level 2 data cache demand access line-fill buffer hit

The counter counts each demand access counted by L2D_CACHE_HIT_RW that hits a recently
fetched line in the Level 2 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x824E, L3D_LFB_HIT_RW, Level 3 data cache demand access line-fill buffer hit

The counter counts each demand access counted by L3D_CACHE_HIT_RW that hits a recently
fetched line in the Level 3 data or unified cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 3 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete.

0x824F, LL_LFB_HIT_RW, Last level cache demand access line-fill buffer hit

The counter counts each demand access counted by LL_CACHE_HIT_RW that hits a recently
fetched line in the Last level cache.

That is, the access hits a cache line that is in the process of being loaded into the Last level cache,
and so does not generate a new refill, but has to wait for the previous refill to complete.

0x8250, L1I_LFB_HIT_RD_FPRFM, Level 1 instruction cache demand fetch line-fill buffer first hit, recently
fetched by software preload

The counter counts each demand fetch line-fill buffer first hit counted by L1I_LFB_HIT_RD_FPRF
where the cache line was fetched in response to a preload or prefetch instruction.

That is, the fetch hits a cache line that is in the process of being loaded into the Level 1 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L1I_CACHE_REFILL_PRFM event was generated when the cache line was
fetched into the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7064
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8251, L2I_LFB_HIT_RD_FPRFM, Level 2 instruction cache demand fetch line-fill buffer first hit, recently
fetched by software preload

The counter counts each demand fetch line-fill buffer first hit counted by L2I_LFB_HIT_RD_FPRF
where the cache line was fetched in response to a preload or prefetch instruction.

That is, the fetch hits a cache line that is in the process of being loaded into the Level 2 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L2I_CACHE_REFILL_PRFM event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8254, L1D_LFB_HIT_RD_FPRFM, Level 1 data cache demand access line-fill buffer first hit, read,
recently fetched by software preload

The counter counts each line-fill buffer first hit counted by L1D_LFB_HIT_RW_FPRFM that is due
to a demand Memory-read operation.

0x8255, L2D_LFB_HIT_RD_FPRFM, Level 2 data cache demand access line-fill buffer first hit, read,
recently fetched by software preload

The counter counts each line-fill buffer first hit counted by L2D_LFB_HIT_RW_FPRFM that is due
to a demand Memory-read operation.

0x8256, L3D_LFB_HIT_RD_FPRFM, Level 3 data cache demand access line-fill buffer first hit, read,
recently fetched by software preload

The counter counts each line-fill buffer first hit counted by L3D_LFB_HIT_RW_FPRFM that is due
to a demand Memory-read operation.

0x8257, LL_LFB_HIT_RD_FPRFM, Last level cache demand access line-fill buffer first hit, read, recently
fetched by software preload

The counter counts each line-fill buffer first hit counted by LL_LFB_HIT_RW_FPRFM that is due
to a demand Memory-read operation.

0x8258, L1D_LFB_HIT_WR_FPRFM, Level 1 data cache demand access line-fill buffer first hit, write,
recently fetched by software preload

The counter counts each line-fill buffer first hit counted by L1D_LFB_HIT_RW_FPRFM that is due
to a demand Memory-write operation.

0x8259, L2D_LFB_HIT_WR_FPRFM, Level 2 data cache demand access line-fill buffer first hit, write,
recently fetched by software preload

The counter counts each line-fill buffer first hit counted by L2D_LFB_HIT_RW_FPRFM that is due
to a demand Memory-write operation.

0x825A, L3D_LFB_HIT_WR_FPRFM, Level 3 data cache demand access line-fill buffer first hit, write,
recently fetched by software preload

The counter counts each line-fill buffer first hit counted by L3D_LFB_HIT_RW_FPRFM that is due
to a demand Memory-write operation.

0x825B, LL_LFB_HIT_WR_FPRFM, Last level cache demand access line-fill buffer first hit, write, recently
fetched by software preload

The counter counts each line-fill buffer first hit counted by LL_LFB_HIT_RW_FPRFM that is due
to a demand Memory-write operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7065
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x825C, L1D_LFB_HIT_RW_FPRFM, Level 1 data cache demand access line-fill buffer first hit, recently
fetched by software preload

The counter counts each demand access line-fill buffer first hit counted by
L1D_LFB_HIT_RW_FPRF where the cache line was fetched in response to a preload or prefetch
instruction.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L1D_CACHE_REFILL_PRFM event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x825D, L2D_LFB_HIT_RW_FPRFM, Level 2 data cache demand access line-fill buffer first hit, recently
fetched by software preload

The counter counts each demand access line-fill buffer first hit counted by
L2D_LFB_HIT_RW_FPRF where the cache line was fetched in response to a preload or prefetch
instruction.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L2D_CACHE_REFILL_PRFM event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x825E, L3D_LFB_HIT_RW_FPRFM, Level 3 data cache demand access line-fill buffer first hit, recently
fetched by software preload

The counter counts each demand access line-fill buffer first hit counted by
L3D_LFB_HIT_RW_FPRF where the cache line was fetched in response to a preload or prefetch
instruction.

That is, the access hits a cache line that is in the process of being loaded into the Level 3 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L3D_CACHE_REFILL_PRFM event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x825F, LL_LFB_HIT_RW_FPRFM, Last level cache demand access line-fill buffer first hit, recently fetched
by software preload

The counter counts each demand access line-fill buffer first hit counted by
LL_LFB_HIT_RW_FPRF where the cache line was fetched in response to a preload or prefetch
instruction.

That is, the access hits a cache line that is in the process of being loaded into the Last level cache,
and so does not generate a new refill, but has to wait for the previous refill to complete, and the
LL_CACHE_REFILL_PRFM event was generated when the cache line was fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8260, L1I_LFB_HIT_RD_FHWPRF, Level 1 instruction cache demand fetch line-fill buffer first hit,
recently fetched by hardware prefetcher

The counter counts each demand fetch line-fill buffer first hit counted by L1I_LFB_HIT_RD_FPRF
where the cache line was fetched by a hardware prefetcher.

That is, the fetch hits a cache line that is in the process of being loaded into the Level 1 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L1I_CACHE_REFILL_HWPRF event was generated when the cache line was
fetched into the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7066
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8261, L2I_LFB_HIT_RD_FHWPRF, Level 2 instruction cache demand fetch line-fill buffer first hit,
recently fetched by hardware prefetcher

The counter counts each demand fetch line-fill buffer first hit counted by L2I_LFB_HIT_RD_FPRF
where the cache line was fetched by a hardware prefetcher.

That is, the fetch hits a cache line that is in the process of being loaded into the Level 2 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L2I_CACHE_REFILL_HWPRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8264, L1D_LFB_HIT_RD_FHWPRF, Level 1 data cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by L1D_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-read operation.

0x8265, L2D_LFB_HIT_RD_FHWPRF, Level 2 data cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by L2D_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-read operation.

0x8266, L3D_LFB_HIT_RD_FHWPRF, Level 3 data cache demand access line-fill buffer first hit, read,
recently fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by L3D_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-read operation.

0x8267, LL_LFB_HIT_RD_FHWPRF, Last level cache demand access line-fill buffer first hit, read, recently
fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by LL_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-read operation.

0x8268, L1D_LFB_HIT_WR_FHWPRF, Level 1 data cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by L1D_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-write operation.

0x8269, L2D_LFB_HIT_WR_FHWPRF, Level 2 data cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by L2D_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-write operation.

0x826A, L3D_LFB_HIT_WR_FHWPRF, Level 3 data cache demand access line-fill buffer first hit, write,
recently fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by L3D_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-write operation.

0x826B, LL_LFB_HIT_WR_FHWPRF, Last level cache demand access line-fill buffer first hit, write, recently
fetched by hardware prefetcher

The counter counts each line-fill buffer first hit counted by LL_LFB_HIT_RW_FHWPRF that is
due to a demand Memory-write operation.

0x826C, L1D_LFB_HIT_RW_FHWPRF, Level 1 data cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher

The counter counts each demand access line-fill buffer first hit counted by
L1D_LFB_HIT_RW_FPRF where the cache line was fetched by a hardware prefetcher.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7067
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
That is, the access hits a cache line that is in the process of being loaded into the Level 1 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L1D_CACHE_REFILL_HWPRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x826D, L2D_LFB_HIT_RW_FHWPRF, Level 2 data cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher

The counter counts each demand access line-fill buffer first hit counted by
L2D_LFB_HIT_RW_FPRF where the cache line was fetched by a hardware prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L2D_CACHE_REFILL_HWPRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x826E, L3D_LFB_HIT_RW_FHWPRF, Level 3 data cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher

The counter counts each demand access line-fill buffer first hit counted by
L3D_LFB_HIT_RW_FPRF where the cache line was fetched by a hardware prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Level 3 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L3D_CACHE_REFILL_HWPRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x826F, LL_LFB_HIT_RW_FHWPRF, Last level cache demand access line-fill buffer first hit, recently
fetched by hardware prefetcher

The counter counts each demand access line-fill buffer first hit counted by
LL_LFB_HIT_RW_FPRF where the cache line was fetched by a hardware prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Last level cache,
and so does not generate a new refill, but has to wait for the previous refill to complete, and the
LL_CACHE_REFILL_HWPRF event was generated when the cache line was fetched into the
cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8270, L1I_LFB_HIT_RD_FPRF, Level 1 instruction cache demand fetch line-fill buffer first hit, recently
fetched by preload or prefetch

The counter counts each demand fetch line-fill buffer first hit counted by L1I_LFB_HIT_RD where
the cache line was fetched in response to a preload or prefetch instruction or by a hardware
prefetcher.

That is, the fetch hits a cache line that is in the process of being loaded into the Level 1 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L1I_CACHE_REFILL_PRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7068
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8271, L2I_LFB_HIT_RD_FPRF, Level 2 instruction cache demand fetch line-fill buffer first hit, recently
fetched by preload or prefetch

The counter counts each demand fetch line-fill buffer first hit counted by L2I_LFB_HIT_RD where
the cache line was fetched in response to a preload or prefetch instruction or by a hardware
prefetcher.

That is, the fetch hits a cache line that is in the process of being loaded into the Level 2 instruction
or unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L2I_CACHE_REFILL_PRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8274, L1D_LFB_HIT_RD_FPRF, Level 1 data cache demand access line-fill buffer first hit, read, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by L1D_LFB_HIT_RW_FPRF that is due
to a demand Memory-read operation.

0x8275, L2D_LFB_HIT_RD_FPRF, Level 2 data cache demand access line-fill buffer first hit, read, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by L2D_LFB_HIT_RW_FPRF that is due
to a demand Memory-read operation.

0x8276, L3D_LFB_HIT_RD_FPRF, Level 3 data cache demand access line-fill buffer first hit, read, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by L3D_LFB_HIT_RW_FPRF that is due
to a demand Memory-read operation.

0x8277, LL_LFB_HIT_RD_FPRF, Last level cache demand access line-fill buffer first hit, read, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by LL_LFB_HIT_RW_FPRF that is due to
a demand Memory-read operation.

0x8278, L1D_LFB_HIT_WR_FPRF, Level 1 data cache demand access line-fill buffer first hit, write, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by L1D_LFB_HIT_RW_FPRF that is due
to a demand Memory-write operation.

0x8279, L2D_LFB_HIT_WR_FPRF, Level 2 data cache demand access line-fill buffer first hit, write, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by L2D_LFB_HIT_RW_FPRF that is due
to a demand Memory-write operation.

0x827A, L3D_LFB_HIT_WR_FPRF, Level 3 data cache demand access line-fill buffer first hit, write, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by L3D_LFB_HIT_RW_FPRF that is due
to a demand Memory-write operation.

0x827B, LL_LFB_HIT_WR_FPRF, Last level cache demand access line-fill buffer first hit, write, recently
fetched by preload or prefetch

The counter counts each line-fill buffer first hit counted by LL_LFB_HIT_RW_FPRF that is due to
a demand Memory-write operation.

0x827C, L1D_LFB_HIT_RW_FPRF, Level 1 data cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch

The counter counts each demand access line-fill buffer first hit counted by L1D_LFB_HIT_RW
where the cache line was fetched in response to a preload or prefetch instruction or by a hardware
prefetcher.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7069
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
That is, the access hits a cache line that is in the process of being loaded into the Level 1 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L1D_CACHE_REFILL_PRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x827D, L2D_LFB_HIT_RW_FPRF, Level 2 data cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch

The counter counts each demand access line-fill buffer first hit counted by L2D_LFB_HIT_RW
where the cache line was fetched in response to a preload or prefetch instruction or by a hardware
prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Level 2 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L2D_CACHE_REFILL_PRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x827E, L3D_LFB_HIT_RW_FPRF, Level 3 data cache demand access line-fill buffer first hit, recently
fetched by preload or prefetch

The counter counts each demand access line-fill buffer first hit counted by L3D_LFB_HIT_RW
where the cache line was fetched in response to a preload or prefetch instruction or by a hardware
prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Level 3 data or
unified cache, and so does not generate a new refill, but has to wait for the previous refill to
complete, and the L3D_CACHE_REFILL_PRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x827F, LL_LFB_HIT_RW_FPRF, Last level cache demand access line-fill buffer first hit, recently fetched
by preload or prefetch

The counter counts each demand access line-fill buffer first hit counted by LL_LFB_HIT_RW
where the cache line was fetched in response to a preload or prefetch instruction or by a hardware
prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Last level cache,
and so does not generate a new refill, but has to wait for the previous refill to complete, and the
LL_CACHE_REFILL_PRF event was generated when the cache line was fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8280, L1I_CACHE_PRF, Level 1 instruction cache, preload or prefetch hit

The counter counts each access counted by L1I_CACHE that is due to a preload or prefetch
instruction, or hardware prefetch.

0x8281, L2I_CACHE_PRF, Level 2 instruction cache, preload or prefetch hit

The counter counts each access counted by L2I_CACHE that is due to a preload or prefetch
instruction, or hardware prefetch.

This includes accesses to the Level 2 instruction or unified cache due to a refill of another cache
caused by a preload or prefetch instruction, or hardware prefetch.

0x8284, L1D_CACHE_PRF, Level 1 data cache, preload or prefetch hit

The counter counts each access counted by L1D_CACHE that is due to a preload or prefetch
instruction, or hardware prefetch.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7070
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8285, L2D_CACHE_PRF, Level 2 data cache, preload or prefetch hit

The counter counts each access counted by L2D_CACHE that is due to a preload or prefetch
instruction, or hardware prefetch.

This includes accesses to the Level 2 data or unified cache due to a refill of another cache caused
by a preload or prefetch instruction, or hardware prefetch.

0x8286, L3D_CACHE_PRF, Level 3 data cache, preload or prefetch hit

The counter counts each access counted by L3D_CACHE that is due to a preload or prefetch
instruction, or hardware prefetch.

This includes accesses to the Level 3 data or unified cache due to a refill of another cache caused
by a preload or prefetch instruction, or hardware prefetch.

0x8287, LL_CACHE_PRF, Last level cache, preload or prefetch hit

The counter counts each access counted by LL_CACHE that is due to a preload or prefetch
instruction, or hardware prefetch.

This includes accesses to the Last level cache due to a refill of another cache caused by a preload or
prefetch instruction, or hardware prefetch.

0x8288, L1I_CACHE_REFILL_PRF, Level 1 instruction cache refill, preload or prefetch hit

The counter counts each access counted by L1I_CACHE_PRF that causes a refill of the Level 1
instruction or unified cache from outside of the Level 1 instruction or unified cache.

0x8289, L2I_CACHE_REFILL_PRF, Level 2 instruction cache refill, preload or prefetch hit

The counter counts each access counted by L2I_CACHE_PRF that causes a refill of the Level 2
instruction or unified cache, or any Level 1 data, instruction, or unified cache of this PE, from
outside of those caches.

0x828C, L1D_CACHE_REFILL_PRF, Level 1 data cache refill, preload or prefetch hit

The counter counts each access counted by L1D_CACHE_PRF that causes a refill of the Level 1
data or unified cache from outside of the Level 1 data or unified cache.

0x828D, L2D_CACHE_REFILL_PRF, Level 2 data cache refill, preload or prefetch hit

The counter counts each access counted by L2D_CACHE_PRF that causes a refill of the Level 2
data or unified cache, or any Level 1 data, instruction, or unified cache of this PE, from outside of
those caches.

0x828E, L3D_CACHE_REFILL_PRF, Level 3 data cache refill, preload or prefetch hit

The counter counts each access counted by L3D_CACHE_PRF that causes a refill of the Level 3
data or unified cache, or any Level 1 or Level 2 data, instruction, or unified cache of this PE, from
outside of those caches.

0x828F, LL_CACHE_REFILL_PRF, Last level cache refill, preload or prefetch hit

The counter counts each access counted by LL_CACHE_PRF that causes a refill of the Last level
cache, or any other data, instruction, or unified cache of this PE, from outside of those caches.

0x8290, ISNP_HIT_PRF, Snoop hit, instruction preload or prefetch

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction, or by an instruction hardware prefetch that hits in a cache outside of the cache hierarchy
of this PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8291, ISNP_HIT_NEAR_PRF, Snoop hit in near local cache, instruction preload or prefetch

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction, or by an instruction hardware prefetch counted by ISNP_HIT_PRF that hits in a cache
outside of the cache hierarchy of this PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7071
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8292, ISNP_HIT_FAR_PRF, Snoop hit in far local cache, instruction preload or prefetch

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction, or by an instruction hardware prefetch counted by ISNP_HIT_PRF that hits in a cache
outside the local PE cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8293, ISNP_HIT_REMOTE_PRF, Snoop hit in remote cache, instruction preload or prefetch

The counter counts each snoop generated by the PE in response to an instruction preload or prefetch
instruction, or by an instruction hardware prefetch counted by ISNP_HIT_PRF that hits in a cache
on a remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8294, DSNP_HIT_PRF, Snoop hit, data preload or prefetch

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction, or by a data hardware prefetch that hits in a cache outside of the cache hierarchy of this
PE.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8295, DSNP_HIT_NEAR_PRF, Snoop hit in near local cache, data preload or prefetch

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction, or by a data hardware prefetch counted by DSNP_HIT_PRF that hits in a cache outside
of the cache hierarchy of this PE in the local PE cluster.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8296, DSNP_HIT_FAR_PRF, Snoop hit in far local cache, data preload or prefetch

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction, or by a data hardware prefetch counted by DSNP_HIT_PRF that hits in a cache outside
the local PE cluster on the same device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8297, DSNP_HIT_REMOTE_PRF, Snoop hit in remote cache, data preload or prefetch

The counter counts each snoop generated by the PE in response to a data preload or prefetch
instruction, or by a data hardware prefetch counted by DSNP_HIT_PRF that hits in a cache on a
remote device.

The event is counted by the PE generating the snoop, not the PE being snooped.

0x8298, LL_CACHE_RW, Last level cache demand access

The counter counts each access counted by LL_CACHE that is due to a demand Memory-read
operation or demand Memory-write operation.

This includes:

• Accesses made by Speculatively executed instructions.

• Accesses to the Last level cache due to a refill of another cache caused by a demand
Memory-read operation or demand Memory-write operation.

Arm recommends that this event is implemented if any of the following are true:

• Event LL_CACHE_PRFM is implemented.

• Event LL_CACHE_HWPRF is implemented.

0x8299, LL_CACHE_PRFM, Last level cache software preload

The counter counts each access counted by LL_CACHE_PRF that is due to a preload or prefetch
instruction.

This includes accesses to the Last level cache due to a refill of another cache caused by a preload or
prefetch instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7072
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Arm recommends that this event is implemented if event LL_CACHE_RW is implemented.

0x829A, LL_CACHE_REFILL, Last level cache refill

The counter counts each access counted by LL_CACHE that causes a refill of the Last level cache,
or any other data, instruction, or unified cache of this PE, from outside of those caches.

A refill includes any access that causes data to be fetched from outside of the Level 1 to Last level
caches, even if the data is ultimately not allocated into the Last level cache. For example, data might
be fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers
are treated as part of the cache.

For example, the counter counts:

• Accesses to the Last level cache that cause a refill that is satisfier by fetching data from
memory, or a Last level cache of another PE.

• Refills of and write-backs from any other data, instruction, or unified caches of this PE that
cause a refill from outside of the Level 1 to Last level caches of this PE.

• Accesses to the Last level cache that cause a refill of a higher level cache of this PE from
outside of the Level 1 to Last level caches of this PE, even if there is no refill of the Last level
cache.

The counter does not count accesses that:

• Miss in the cache but are satisfied by the refill of a previous miss and do not cause a new
refill, even if that previous refill is not complete at the time of the miss.

• Miss in the cache but do not generate a refill, such as a write through the cache.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x829B, LL_CACHE_REFILL_PRFM, Last level cache refill, software preload

The counter counts each access counted by LL_CACHE_PRFM that causes a refill of the Last level
cache, or any other data, instruction, or unified cache of this PE, from outside of those caches.

0x829C, LL_CACHE_WB, Last level cache write-back

The counter counts each write-back of data from the Last level cache to outside of the Level 1 to
Last level caches. For example:

• A write-back of a dirty cache line to memory.

• A write-back of a recently fetched cache line that has not been allocated to the Last level
cache.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:

• A transfer of a dirty cache line from the Last level cache to outside of Level 1 to Last level
caches made as a result of a coherency request.

• Write-backs made as a result of cache maintenance instructions.

The counter does not count:

• The invalidation of a cache line without any write-back to outside of the Level 1 to Last level
caches or memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7073
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• Writes that write through the Last level cache to outside of the Level 1 to Last level caches.

• Transfers of data from the Last level cache to another cache to satisfy a refill of the other
cache.

A write-back is attributable to the agent that generated the request that caused the write-back. This
might not be the same agent that caused the data being written back to be allocated into the cache.

An Unattributable write-back event occurs when a requestor outside of the PE makes a coherency
request that results in write-back. If the cache is shared, then an Unattributable write-back event is
not counted. If the cache is not shared, then the event is counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the
eviction of a line from the cache, is counted. For example, this applies when the PE determines
software is streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA
operation.

0x829D, LL_CACHE_WR, Last level cache access, write

If the LL_CACHE_RW event is implemented, the counter counts each access counted by
LL_CACHE_RW that is a Memory-write operation.

If the LL_CACHE_RW event is not implemented, the counter counts each access counted by
LL_CACHE that is a Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x829F, LL_CACHE_REFILL_WR, Last level cache refill, write

The counter counts each access counted by both LL_CACHE_REFILL and LL_CACHE_WR.

That is, every refill of the Last level cache counted by LL_CACHE_REFILL that is caused by a
Memory-write operation.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82A0, MEM_ACCESS_RW, Data memory access, demand access

The counter counts each access counted by MEM_ACCESS that is a demand Memory-read
operation or demand Memory-write operation.

This includes accesses made by speculative instructions.

0x82A1, INST_FETCH_RD, Instruction memory access, demand fetch

The counter counts each fetch counted by INST_FETCH that is a demand Instruction memory
access.

This includes any fetch made for a speculative instruction.

0x82A2, MEM_ACCESS_PRFM, Data memory access, software preload

The counter counts each access counted by MEM_ACCESS that is due to a preload or prefetch
instruction.

0x82A3, INST_FETCH_PRFM, Instruction memory access, software preload

The counter counts each fetch counted by INST_FETCH that is due to a preload or prefetch
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7074
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82B0, L1I_CACHE_MISS_RETIRED, Instruction architecturally executed, miss in Level 1 instruction
cache

The counter counts each Instruction architecturally executed counted by INST_RETIRED that
missed in Level 1 instruction or unified cache when fetched.

0x82B1, L2I_CACHE_MISS_RETIRED, Instruction architecturally executed, miss in Level 2 instruction
cache

The counter counts each Instruction architecturally executed counted by INST_RETIRED that
missed in Level 2 instruction or unified cache when fetched.

0x82B4, L1D_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Level 1 data
cache

The counter counts each architecturally executed instruction counted by
L1D_CACHE_MISS_LDST_RETIRED that is a Memory-reading instruction.

0x82B5, L2D_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Level 2 data
cache

The counter counts each architecturally executed instruction counted by
L2D_CACHE_MISS_LDST_RETIRED that is a Memory-reading instruction.

0x82B6, L3D_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Level 3 data
cache

The counter counts each architecturally executed instruction counted by
L3D_CACHE_MISS_LDST_RETIRED that is a Memory-reading instruction.

0x82B7, LL_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Last level
cache

The counter counts each architecturally executed instruction counted by
LL_CACHE_MISS_LDST_RETIRED that is a Memory-reading instruction.

0x82B8, L1D_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Level 1 data
cache

The counter counts each architecturally executed instruction counted by
L1D_CACHE_MISS_LDST_RETIRED that is a Memory-writing instruction.

0x82B9, L2D_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Level 2 data
cache

The counter counts each architecturally executed instruction counted by
L2D_CACHE_MISS_LDST_RETIRED that is a Memory-writing instruction.

0x82BA, L3D_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Level 3 data
cache

The counter counts each architecturally executed instruction counted by
L3D_CACHE_MISS_LDST_RETIRED that is a Memory-writing instruction.

0x82BB, LL_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Last level
cache

The counter counts each architecturally executed instruction counted by
LL_CACHE_MISS_LDST_RETIRED that is a Memory-writing instruction.

0x82BC, L1D_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Level 1 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that missed in Level 1 data or unified cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7075
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82BD, L2D_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Level 2 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that missed in Level 2 data or unified cache.

0x82BE, L3D_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Level 3 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that missed in Level 3 data or unified cache.

0x82BF, LL_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Last level cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that missed in Last level cache.

0x82C4, L1D_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data
in Level 1 data cache

The counter counts each architecturally executed instruction counted by
L1D_CACHE_HITM_LDST_RETIRED that is a Memory-reading instruction.

0x82C5, L2D_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data
in Level 2 data cache

The counter counts each architecturally executed instruction counted by
L2D_CACHE_HITM_LDST_RETIRED that is a Memory-reading instruction.

0x82C6, L3D_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data
in Level 3 data cache

The counter counts each architecturally executed instruction counted by
L3D_CACHE_HITM_LDST_RETIRED that is a Memory-reading instruction.

0x82C7, LL_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data in
Last level cache

The counter counts each architecturally executed instruction counted by
LL_CACHE_HITM_LDST_RETIRED that is a Memory-reading instruction.

0x82C8, L1D_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data
in Level 1 data cache

The counter counts each architecturally executed instruction counted by
L1D_CACHE_HITM_LDST_RETIRED that is a Memory-writing instruction.

0x82C9, L2D_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data
in Level 2 data cache

The counter counts each architecturally executed instruction counted by
L2D_CACHE_HITM_LDST_RETIRED that is a Memory-writing instruction.

0x82CA, L3D_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data
in Level 3 data cache

The counter counts each architecturally executed instruction counted by
L3D_CACHE_HITM_LDST_RETIRED that is a Memory-writing instruction.

0x82CB, LL_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data in
Last level cache

The counter counts each architecturally executed instruction counted by
LL_CACHE_HITM_LDST_RETIRED that is a Memory-writing instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7076
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82CC, L1D_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Level 1 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by L1D_CACHE_HIT_LDST_RETIRED that hit modified data in Level 1 data
or unified cache.

0x82CD, L2D_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Level 2 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by L2D_CACHE_HIT_LDST_RETIRED that hit modified data in Level 2 data
or unified cache.

0x82CE, L3D_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Level 3 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by L3D_CACHE_HIT_LDST_RETIRED that hit modified data in Level 3 data
or unified cache.

0x82CF, LL_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Last level cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LL_CACHE_HIT_LDST_RETIRED that hit modified data in Last level
cache.

0x82D0, L1I_LFB_HIT_RETIRED, Instruction architecturally executed, line-fill buffer hit in Level 1
instruction cache

The counter counts each Instruction architecturally executed counted by
L1I_CACHE_HIT_RETIRED that hit a recently fetched line in Level 1 instruction or unified cache
when fetched.

0x82D1, L2I_LFB_HIT_RETIRED, Instruction architecturally executed, line-fill buffer hit in Level 2
instruction cache

The counter counts each Instruction architecturally executed counted by
L2I_CACHE_HIT_RETIRED that hit a recently fetched line in Level 2 instruction or unified cache
when fetched.

0x82D4, L1D_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in
Level 1 data cache

The counter counts each architecturally executed instruction counted by
L1D_LFB_HIT_LDST_RETIRED that is a Memory-reading instruction.

0x82D5, L2D_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in
Level 2 data cache

The counter counts each architecturally executed instruction counted by
L2D_LFB_HIT_LDST_RETIRED that is a Memory-reading instruction.

0x82D6, L3D_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in
Level 3 data cache

The counter counts each architecturally executed instruction counted by
L3D_LFB_HIT_LDST_RETIRED that is a Memory-reading instruction.

0x82D7, LL_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in Last
level cache

The counter counts each architecturally executed instruction counted by
LL_LFB_HIT_LDST_RETIRED that is a Memory-reading instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7077
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82D8, L1D_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in
Level 1 data cache

The counter counts each architecturally executed instruction counted by
L1D_LFB_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82D9, L2D_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in
Level 2 data cache

The counter counts each architecturally executed instruction counted by
L2D_LFB_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82DA, L3D_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in
Level 3 data cache

The counter counts each architecturally executed instruction counted by
L3D_LFB_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82DB, LL_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in Last
level cache

The counter counts each architecturally executed instruction counted by
LL_LFB_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82DC, L1D_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Level 1 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by L1D_CACHE_HIT_LDST_RETIRED that hit a recently fetched line in
Level 1 data or unified cache.

0x82DD, L2D_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Level 2 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by L2D_CACHE_HIT_LDST_RETIRED that hit a recently fetched line in
Level 2 data or unified cache.

0x82DE, L3D_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Level 3 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by L3D_CACHE_HIT_LDST_RETIRED that hit a recently fetched line in
Level 3 data or unified cache.

0x82DF, LL_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Last level cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LL_CACHE_HIT_LDST_RETIRED that hit a recently fetched line in Last
level cache.

0x82E0, L1I_CACHE_HIT_RETIRED, Instruction architecturally executed, hit in Level 1 instruction cache

The counter counts each Instruction architecturally executed counted by INST_RETIRED that hit
in Level 1 instruction or unified cache when fetched.

0x82E1, L2I_CACHE_HIT_RETIRED, Instruction architecturally executed, hit in Level 2 instruction cache

The counter counts each Instruction architecturally executed counted by INST_RETIRED that hit
in Level 2 instruction or unified cache when fetched.

0x82E4, L1D_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Level 1 data
cache

The counter counts each architecturally executed instruction counted by
L1D_CACHE_HIT_LDST_RETIRED that is a Memory-reading instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7078
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82E5, L2D_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Level 2 data
cache

The counter counts each architecturally executed instruction counted by
L2D_CACHE_HIT_LDST_RETIRED that is a Memory-reading instruction.

0x82E6, L3D_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Level 3 data
cache

The counter counts each architecturally executed instruction counted by
L3D_CACHE_HIT_LDST_RETIRED that is a Memory-reading instruction.

0x82E7, LL_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Last level cache

The counter counts each architecturally executed instruction counted by
LL_CACHE_HIT_LDST_RETIRED that is a Memory-reading instruction.

0x82E8, L1D_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Level 1 data
cache

The counter counts each architecturally executed instruction counted by
L1D_CACHE_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82E9, L2D_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Level 2 data
cache

The counter counts each architecturally executed instruction counted by
L2D_CACHE_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82EA, L3D_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Level 3 data
cache

The counter counts each architecturally executed instruction counted by
L3D_CACHE_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82EB, LL_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Last level cache

The counter counts each architecturally executed instruction counted by
LL_CACHE_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x82EC, L1D_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in
Level 1 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that hit in Level 1 data or unified cache.

0x82ED, L2D_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in
Level 2 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that hit in Level 2 data or unified cache.

0x82EE, L3D_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in
Level 3 data cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that hit in Level 3 data or unified cache.

0x82EF, LL_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in Last
level cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that hit in Last level cache.

0x82F0, ITLB_HIT_RETIRED, Instruction architecturally executed, no translation table walk

The counter counts each instruction which was architecturally executed counted by
INST_RETIRED that did not cause a refill of an instruction TLB involving at least one translation
table walk access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7079
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The counter does not count the instruction which was architecturally executed if any of the
following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the instruction which was
architecturally executed if the access generates a Translation fault for any other reason.

0x82F1, DTLB_HIT_LD_RETIRED, Load Instruction architecturally executed, no translation table walk

The counter counts each Memory-reading Instruction architecturally executed counted by
DTLB_HIT_LDST_RETIRED that did not cause a refill of a data TLB involving at least one
translation table walk access.

0x82F2, DTLB_HIT_ST_RETIRED, Store Instruction architecturally executed, no translation table walk

The counter counts each Memory-writing Instruction architecturally executed counted by
DTLB_HIT_LDST_RETIRED that did not cause a refill of a data TLB involving at least one
translation table walk access.

0x82F3, DTLB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, no translation
table walk

The counter counts each Memory-reading instruction or Memory-writing Instruction architecturally
executed counted by LDST_ANY_RETIRED that did not cause a refill of a data TLB involving at
least one translation table walk access.

0x82F4, ITLB_WALK_RETIRED, Instruction architecturally executed, at least one translation table walk

The counter counts each instruction which was architecturally executed counted by
INST_RETIRED that caused a refill of an instruction TLB involving at least one translation table
walk access.

The counter does not count the instruction which was architecturally executed if any of the
following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the instruction which was
architecturally executed if the access generates a Translation fault for any other reason.

0x82F5, DTLB_WALK_LD_RETIRED, Load Instruction architecturally executed, at least one translation
table walk

The counter counts each Memory-reading Instruction architecturally executed counted by
DTLB_WALK_LDST_RETIRED that caused a refill of a data TLB involving at least one
translation table walk access.

The counter does not count the Memory-reading Instruction architecturally executed if any of the
following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the Memory-reading Instruction
architecturally executed if the access generates a Translation fault for any other reason.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7080
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x82F6, DTLB_WALK_ST_RETIRED, Store Instruction architecturally executed, at least one translation
table walk

The counter counts each Memory-writing Instruction architecturally executed counted by
DTLB_WALK_LDST_RETIRED that caused a refill of a data TLB involving at least one
translation table walk access.

The counter does not count the Memory-writing Instruction architecturally executed if any of the
following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the Memory-writing Instruction
architecturally executed if the access generates a Translation fault for any other reason.

0x82F7, DTLB_WALK_LDST_RETIRED, Load or store Instruction architecturally executed, at least one
translation table walk

The counter counts each Memory-reading instruction or Memory-writing Instruction architecturally
executed counted by LDST_ANY_RETIRED that caused a refill of a data TLB involving at least
one translation table walk access.

The counter does not count the Memory-reading instruction or Memory-writing Instruction
architecturally executed if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the Memory-reading instruction or
Memory-writing Instruction architecturally executed if the access generates a Translation fault for
any other reason.

0x82F8, DTLB_WALK_PRF, Data TLB preload or prefetch, with at least one translation table walk

The counter counts each software preload or hardware prefetch access counted by L1D_TLB_PRF
that causes a refill or update of a data or unified TLB involving at least one translation table walk
access.

The counter does not count the software preload or hardware prefetch access if any of the following
are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the software preload or hardware
prefetch access if the access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7081
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82F9, ITLB_WALK_PRF, Instruction TLB preload or prefetch, with at least one translation table walk

The counter counts each software preload or hardware prefetch access counted by L1I_TLB_PRF
that causes a refill or update of an instruction TLB involving at least one translation table walk
access.

The counter does not count the software preload or hardware prefetch access if any of the following
are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the software preload or hardware
prefetch access if the access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82FA, DTLB_WALK_HWPRF, Data TLB hardware prefetch, with at least one translation table walk

The counter counts each hardware prefetch access counted by L1D_TLB_HWPRF that causes a
refill or update of a data or unified TLB involving at least one translation table walk access.

The counter does not count the hardware prefetch access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the hardware prefetch access if the
access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82FB, ITLB_WALK_HWPRF, Instruction TLB hardware prefetch, with at least one translation table walk

The counter counts each hardware prefetch access counted by L1I_TLB_HWPRF that causes a
refill or update of an instruction TLB involving at least one translation table walk access.

The counter does not count the hardware prefetch access if any of the following are true:

• The access is due to a TLB maintenance instruction.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7082
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the hardware prefetch access if the
access generates a Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82FC, L1D_TLB_PRF, Level 1 data TLB access, preload or prefetch

The counter counts each access counted by L1D_TLB that is due to a preload or prefetch instruction,
or hardware prefetch.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82FD, L1I_TLB_PRF, Level 1 instruction TLB access, preload or prefetch

The counter counts each access counted by L1I_TLB that is due to a preload or prefetch instruction,
or hardware prefetch.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82FE, L1D_TLB_HWPRF, Level 1 data TLB access, hardware prefetch

The counter counts each access counted by L1D_TLB_PRF that is due to a hardware prefetch.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7083
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x82FF, L1I_TLB_HWPRF, Level 1 instruction TLB access, hardware prefetch

The counter counts each access counted by L1I_TLB_PRF that is due to a hardware prefetch.

The counter does not count the access if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8304, DSNP_HITM_LD_RETIRED, Load Instruction architecturally executed, snoop hit

The counter counts each architecturally executed instruction counted by
DSNP_HITM_LDST_RETIRED that is a Memory-reading instruction.

0x8305, DSNP_HITM_NEAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in near
cache

The counter counts each architecturally executed instruction counted by
DSNP_HITM_NEAR_LDST_RETIRED that is a Memory-reading instruction.

0x8306, DSNP_HITM_FAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in far
cache

The counter counts each architecturally executed instruction counted by
DSNP_HITM_FAR_LDST_RETIRED that is a Memory-reading instruction.

0x8307, DSNP_HITM_REMOTE_LD_RETIRED, Load Instruction architecturally executed, snoop hit in
remote cache

The counter counts each architecturally executed instruction counted by
DSNP_HITM_REMOTE_LDST_RETIRED that is a Memory-reading instruction.

0x8308, DSNP_HITM_ST_RETIRED, Store Instruction architecturally executed, snoop hit

The counter counts each architecturally executed instruction counted by
DSNP_HITM_LDST_RETIRED that is a Memory-writing instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7084
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8309, DSNP_HITM_NEAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in near
cache

The counter counts each architecturally executed instruction counted by
DSNP_HITM_NEAR_LDST_RETIRED that is a Memory-writing instruction.

0x830A, DSNP_HITM_FAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in far cache

The counter counts each architecturally executed instruction counted by
DSNP_HITM_FAR_LDST_RETIRED that is a Memory-writing instruction.

0x830B, DSNP_HITM_REMOTE_ST_RETIRED, Store Instruction architecturally executed, snoop hit in
remote cache

The counter counts each architecturally executed instruction counted by
DSNP_HITM_REMOTE_LDST_RETIRED that is a Memory-writing instruction.

0x830C, DSNP_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that hit modified data in a data cache outside the
cache hierarchy of this PE.

0x830D, DSNP_HITM_NEAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop
hit in near cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by DSNP_HITM_LDST_RETIRED that hit modified data outside of the cache
hierarchy of this PE in the local PE cluster.

0x830E, DSNP_HITM_FAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit
in far cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by DSNP_HITM_LDST_RETIRED that hit modified data outside the local PE
cluster on the same device.

0x830F, DSNP_HITM_REMOTE_LDST_RETIRED, Load or store Instruction architecturally executed,
snoop hit in remote cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by DSNP_HITM_LDST_RETIRED that hit modified data on a remote device.

0x8310, ISNP_HIT_RETIRED, Instruction architecturally executed, instruction fetch snoop hit

The counter counts each Instruction architecturally executed counted by INST_RETIRED that hit
in an instruction cache outside the cache hierarchy of this PE when fetched.

0x8311, ISNP_HIT_NEAR_RETIRED, Instruction architecturally executed, instruction fetch snoop hit in
near cache

The counter counts each Instruction architecturally executed counted by ISNP_HIT_RETIRED that
hit outside of the cache hierarchy of this PE in the local PE cluster when fetched.

0x8312, ISNP_HIT_FAR_RETIRED, Instruction architecturally executed, instruction fetch snoop hit in far
cache

The counter counts each Instruction architecturally executed counted by ISNP_HIT_RETIRED that
hit outside the local PE cluster on the same device when fetched.

0x8313, ISNP_HIT_REMOTE_RETIRED, Instruction architecturally executed, instruction fetch snoop hit
in remote cache

The counter counts each Instruction architecturally executed counted by ISNP_HIT_RETIRED that
hit on a remote device when fetched.

0x8314, DSNP_HIT_LD_RETIRED, Load Instruction architecturally executed, snoop hit

The counter counts each architecturally executed instruction counted by
DSNP_HIT_LDST_RETIRED that is a Memory-reading instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7085
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8315, DSNP_HIT_NEAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in near
cache

The counter counts each architecturally executed instruction counted by
DSNP_HIT_NEAR_LDST_RETIRED that is a Memory-reading instruction.

0x8316, DSNP_HIT_FAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in far cache

The counter counts each architecturally executed instruction counted by
DSNP_HIT_FAR_LDST_RETIRED that is a Memory-reading instruction.

0x8317, DSNP_HIT_REMOTE_LD_RETIRED, Load Instruction architecturally executed, snoop hit in
remote cache

The counter counts each architecturally executed instruction counted by
DSNP_HIT_REMOTE_LDST_RETIRED that is a Memory-reading instruction.

0x8318, DSNP_HIT_ST_RETIRED, Store Instruction architecturally executed, snoop hit

The counter counts each architecturally executed instruction counted by
DSNP_HIT_LDST_RETIRED that is a Memory-writing instruction.

0x8319, DSNP_HIT_NEAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in near
cache

The counter counts each architecturally executed instruction counted by
DSNP_HIT_NEAR_LDST_RETIRED that is a Memory-writing instruction.

0x831A, DSNP_HIT_FAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in far cache

The counter counts each architecturally executed instruction counted by
DSNP_HIT_FAR_LDST_RETIRED that is a Memory-writing instruction.

0x831B, DSNP_HIT_REMOTE_ST_RETIRED, Store Instruction architecturally executed, snoop hit in
remote cache

The counter counts each architecturally executed instruction counted by
DSNP_HIT_REMOTE_LDST_RETIRED that is a Memory-writing instruction.

0x831C, DSNP_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by LDST_ANY_RETIRED that hit in a data cache outside the cache hierarchy
of this PE.

0x831D, DSNP_HIT_NEAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit
in near cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by DSNP_HIT_LDST_RETIRED that hit outside of the cache hierarchy of this
PE in the local PE cluster.

0x831E, DSNP_HIT_FAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit in
far cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by DSNP_HIT_LDST_RETIRED that hit outside the local PE cluster on the
same device.

0x831F, DSNP_HIT_REMOTE_LDST_RETIRED, Load or store Instruction architecturally executed, snoop
hit in remote cache

The counter counts each architecturally executed Memory-reading instruction or Memory-writing
instruction counted by DSNP_HIT_LDST_RETIRED that hit on a remote device.

0x8320, L1D_CACHE_REFILL_PERCYC, Level 1 data or unified cache refills in progress

The counter counts by the number of cache refills counted by L1D_CACHE_REFILLin progress
on each Processor cycle.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7086
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The ratio L1D_CACHE_REFILL_PERCYC ÷ L1D_CACHE_REFILL is the mean duration of
cache refills in Processor cycles.

0x8321, L2D_CACHE_REFILL_PERCYC, Level 2 data or unified cache refills in progress

The counter counts by the number of cache refills counted by L2D_CACHE_REFILLin progress
on each Processor cycle.

The ratio L2D_CACHE_REFILL_PERCYC ÷ L2D_CACHE_REFILL is the mean duration of
cache refills in Processor cycles.

0x8322, L3D_CACHE_REFILL_PERCYC, Level 3 data or unified cache refills in progress

The counter counts by the number of cache refills counted by L3D_CACHE_REFILLin progress
on each Processor cycle.

The ratio L3D_CACHE_REFILL_PERCYC ÷ L3D_CACHE_REFILL is the mean duration of
cache refills in Processor cycles.

0x8324, L1I_CACHE_REFILL_PERCYC, Level 1 instruction or unified cache refills in progress

The counter counts by the number of cache refills counted by L1I_CACHE_REFILLin progress on
each Processor cycle.

The ratio L1I_CACHE_REFILL_PERCYC ÷ L1I_CACHE_REFILL is the mean duration of cache
refills in Processor cycles.

0x8325, L2I_CACHE_REFILL_PERCYC, Level 2 instruction or unified cache refills in progress

The counter counts by the number of cache refills counted by L2I_CACHE_REFILLin progress on
each Processor cycle.

The ratio L2I_CACHE_REFILL_PERCYC ÷ L2I_CACHE_REFILL is the mean duration of cache
refills in Processor cycles.

0x8330, L1GCS_CACHE, Level 1 GCS cache access

The counter counts each GCS data read operation or GCS data write operation that causes a cache
access to at least a Level 1 cache.

Each access to a cache line is counted including the multiple accesses caused by single instructions
such as GCSPUSHX or GCSPOPX. Each access to other Level 1 memory structures, for example
refill buffers, write buffers, and write-back buffers, is also counted.

Accesses to a Level 1 cache due to a GCS hardware prefetcher as well are counted.

When there are separate GCS caching structures implemented:

• It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance
instructions are counted.

• Accesses that only update the cache status information for a cache entry without accessing
the content of the cache entry are not counted.

0x8331, L1GCS_CACHE_RW, Level 1 GCS cache demand access

The counter counts each access counted by L1GCS_CACHE that is due to a demand Memory-read
operation or demand Memory-write operation.

This includes accesses made by Speculatively executed instructions.

Arm recommends that this event is implemented if event L1GCS_CACHE_HWPRF is
implemented.

0x8332, L1GCS_CACHE_HWPRF, Level 1 GCS cache hardware prefetch

The counter counts each access counted by L1GCS_CACHE that is due to a GCS hardware
prefetcher.

0x8334, L1GCS_CACHE_MISS, Level 1 GCS cache demand access miss

The counter counts each access counted by L1GCS_CACHE_RW that misses in the Level 1 caches
causing an access to outside of the Level 1 caches of this PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7087
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8335, L1GCS_CACHE_MISS_RD, Level 1 GCS cache demand access read miss

The counter counts each access counted by L1GCS_CACHE_MISS that is also a Memory-read
operation.

It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions
are counted.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

Arm recommends that this event is implemented if event L1GCS_CACHE is implemented.

0x8336, L1GCS_CACHE_HIT_RW, Level 1 GCS cache demand access hit

The counter counts each access counted by L1GCS_CACHE_RW that hits in a Level 1 cache.

0x8337, L1GCS_CACHE_HIT_RW_FHWPRF, Level 1 GCS cache demand access first hit, fetched by GCS
hardware prefetcher

The counter counts each demand access first hit counted by L1GCS_CACHE_HIT_RW where the
cache line was fetched by a GCS hardware prefetcher.

That is, the L1GCS_CACHE_REFILL_HWPRF event was generated when the cache line was
fetched into the cache.

Only the first hit by a demand access is counted. After this event is generated for a cache line, the
event is not generated again for the same cache line while it remains in the cache.

0x8338, L1GCS_CACHE_REFILL, Level 1 GCS cache refill

The counter counts each access counted by L1GCS_CACHE that causes a refill of a Level 1 cache
from outside of the Level 1 cache.

A refill includes any access that causes data to be fetched from outside of the Level 1 caches, even
if the data is ultimately not allocated into the Level 1 cache. For example, data might be fetched into
a buffer but then discarded, rather than being allocated into a cache. These buffers are treated as part
of the cache.

For example, the counter counts accesses to the Level 1 cache that cause a refill that is satisfied by
fetching data from memory, a Level 2 cache, or a Level 1 cache of another PE.

The counter does not count accesses that:

• Miss in the cache but are satisfied by the refill of a previous miss and do not cause a new
refill, even if that previous refill is not complete at the time of the miss.

• Miss in the cache but do not generate a refill, such as a write through the cache.

If the cache is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the cache is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8339, L1GCS_CACHE_REFILL_HWPRF, Level 1 GCS cache refill, hardware prefetch

The counter counts each hardware prefetch counted by L1GCS_CACHE_HWPRF that causes a
refill of a Level 1 cache from outside of the Level 1 cache.

0x833A, L1GCS_CACHE_REFILL_PERCYC, Level 1 GCS cache refills in progress

The counter counts by the number of Level 1 GCS cache refills counted by
L1GCS_CACHE_REFILLin progress on each Processor cycle.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7088
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
The ratio L1GCS_CACHE_REFILL_PERCYC ÷ L1GCS_CACHE_REFILL is the mean duration
of Level 1 GCS cache refills in Processor cycles.

0x833C, L1GCS_LFB_HIT_RW, Level 1 GCS cache demand access line-fill buffer hit

The counter counts each demand access counted by L1GCS_CACHE_HIT_RW that hits a recently
fetched line in a Level 1 cache.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 cache, and
so does not generate a new refill, but has to wait for the previous refill to complete.

0x833D, L1GCS_LFB_HIT_RW_FHWPRF, Level 1 GCS cache demand access line-fill buffer first hit,
recently fetched by GCS hardware prefetcher

The counter counts each demand access line-fill buffer first hit counted by L1GCS_LFB_HIT_RW
where the cache line was fetched by a GCS hardware prefetcher.

That is, the access hits a cache line that is in the process of being loaded into the Level 1 cache, and
so does not generate a new refill, but has to wait for the previous refill to complete, and the
L1GCS_CACHE_REFILL_HWPRF event was generated when the cache line was fetched into the
cache.

0x833E, L1GCS_CACHE_INVAL, Level 1 GCS cache invalidate

The counter counts each invalidation of a cache line in a Level 1 GCS cache. For example:

• Invalidation of a cache line because of a GCSB effect.

• Transfer of ownership of a cache line to another cache because of a coherency or refill
request.

The counter does not count events if a cache refill of the Level 1 cache invalidates a line in the Level
1 cache.

Note: Software that uses this event must know whether the Level 1 cache is shared with other PEs.
This event does not follow the general rule of Level 1 cache events of only counting Attributable
events.

0x8340, L1GCS_TLB, Level 1 GCS TLB access

The counter counts each GCS data read operation or GCS data write operation that causes a TLB
access to at least a Level 1 TLB.

Each access to a TLB entry is counted including multiple accesses caused by single instructions
such as GCSPUSHX or GCSPOPX.

The counter does not count the access if the access is due to a TLB maintenance instruction.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8341, L1GCS_TLB_RW, Level 1 GCS demand TLB access

The counter counts each access counted by L1GCS_TLB that is due to a demand Memory-read
operation or demand Memory-write operation.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7089
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8342, L1GCS_TLB_HWPRF, Level 1 GCS demand TLB access, GCS hardware prefetch

The counter counts each access counted by L1GCS_TLB that is due to a GCS hardware prefetch.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8344, GCSTLB_WALK, GCS TLB access with at least one translation table walk

The counter counts each access counted by L1GCS_TLB that causes a refill of a TLB involving at
least one translation table walk access.

This includes each complete or partial translation table walk that causes an access to memory,
including to data or translation table walk caches.

Accesses that cause an update of an existing TLB entry involving at least one translation table walk
access are counted.

The counter does not count the access if any of the following are true:

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• The access is due to a TLB maintenance instruction.

It is IMPLEMENTATION DEFINED whether the counter counts the access if the access generates a
Translation fault for any other reason.

The counter does not count the event if any of the following are true:

• The access generates a Translation fault because the applicable TCR_ELx.EPDy bit is 1.

• FEAT_E0PD is implemented and the access is an unprivileged access that generates a
Translation fault because the applicable TCR_ELx.E0PDy bit is 1.

• FEAT_SVE is implemented and the access is a non-fault access that fails because the
applicable TCR_ELx.NFDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the event if the access generates a
Translation fault for any other reason.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8345, GCSTLB_WALK_RW, GCS TLB demand access with at least one translation table walk

The counter counts each demand access counted by L1GCS_TLB_RW and is also counted by
GCSTLB_WALK.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7090
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x8346, GCSTLB_WALK_PERCYC, Translation table walks in progress

The counter counts by the number of translation table walks counted by GCSTLB_WALKin
progress on each Processor cycle.

The ratio GCSTLB_WALK_PERCYC ÷ GCSTLB_WALK is the mean duration of translation table
walks in Processor cycles.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8347, GCSTLB_WALK_STEP, GCS TLB translation table walk, step

The counter counts each translation table walk access made by a refill of a TLB.

The translation table walk must be due to either GCS data read operation or GCS data write
operation.

The event is Attributable to the access that missed in the TLB and caused the walk, not to the owner
of the translation tables being accessed. For example, this means that if an EL0 access causes a
translation table walk consisting of accesses to both stage 1 and stage 2 translation tables, all
accesses are counted if event counting is allowed at EL0, regardless of whether event counting is
allowed at EL1 and/or EL2.

The counter does not count the event if any of the following are true:

• The access causing the refill generates a Translation fault because the applicable
TCR_ELx.EPDy bit is 1.

• The access causing the refill is an unprivileged access that generates a Translation fault
because the applicable TCR_ELx.E0PDy bit is 1.

It is IMPLEMENTATION DEFINED whether the counter counts the event if the access causing the refill
generates a Translation fault for any other reason.

Implementation of this optional event requires that FEAT_E0PD is implemented.

If the TLB is shared and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 0,
then the counter counts only events Attributable to the PE counting the event. For a multithreaded
processor implementation, if the TLB is shared by PEs other than the PEs in the multithreaded
processor and the Effective value of PMEVTYPER<n>_EL0.MT for the counter is 1, then the
counter counts only events Attributable to PEs in the multithreaded processor. In all other cases, it
is IMPLEMENTATION DEFINED whether only events Attributable to the PE counting the event or all
events are counted, and might depend on the Effective value of PMEVTYPER<n>_EL1.MT.

0x8350, STALL_BACKEND_L1GCS, Backend stall cycles, Level 1 GCS cache

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in a first level cache. The demand data miss must be due to either GCS data read
operation or GCS data write operation.

The counter does not count the cycle if any of the following are true:

• The STALL_BACKEND_L2D event is implemented and there is a demand data miss in the
second level of data or unified cache, meaning the STALL_BACKEND_L2D event counts
the cycle.

• There is a demand data miss in the last level of data or unified cache within the PE clock
domain, meaning the STALL_BACKEND_MEM event counts the cycle.

Implementation of this optional event requires that the first level cache is implemented within the
PE clock domain and is not the last level cache within the PE clock domain.

Implementation of this optional event requires implementing L1GCS_CACHE event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7091
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Note: It is possible that both the events STALL_BACKEND_L1GCS and
STALL_BACKEND_L1D events may be counted on a same cycle.

0x8351, STALL_BACKEND_GCSTLB, Backend stall cycles, GCS TLB

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in a TLB.

The demand data miss must be due to translation of a GCS data read operation or GCS data write
operation.

Implementation of this optional event requires implementing L1GCS_TLB event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7092
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.4 Cycle event counting

The CPU_CYCLES event and the cycle counter, PMCCNTR, count cycles. The duration of a cycle is subject to any
changes in clock frequency, including clock stopping caused by the WFI and WFE instructions.

It is implementation specific whether CPU_CYCLES and PMCCNTR count when the PE is in WFI or WFE state,
even if the clocks are not stopped.

In addition, events such as STALL, STALL_FRONTEND and STALL_BACKEND that are defined to only count
cycles that are counted by the CPU_CYCLES event have the same limitation.

D13.12.4.1 Multithreaded implementations

Multithreaded implementations can have various forms, some examples of these are:

• Simultaneous Multithreading (SMT), where every PE thread is active on every Processor cycle.

• Fine-grained Multithreading (FGMT), also known as a Barrel processor, where one PE thread is active on
each Processor cycle, and this changes regularly.

• Switch on Event Multithreading (SoEMT), also known as Coarse-grained Multithreading (CGMT), where
high latency events cause the processor to switch the active PE thread.

In the above examples, active means that the PE might execute the instructions. A PE can be active but not executing
instructions when no instruction is available or because of limited execution resources.

It is implementation specific whether a thread is active when the thread is in WFE or WFI state. This applies for all
forms of multithreaded implementation.

When the PMU implementation supports multithreading, and the Effective value of PMEVTYPER<n>_EL0.MT bit
is 0, the CPU_CYCLES event does not count Processor cycles on which the thread was not active. For the example
multithreaded implementations, this means that, if the event counter is enabled, event counting is not prohibited,
and the thread is not in WFE or WFI state:

• For an SMT implementation, the CPU_CYCLES event counts every Processor cycle.

• For a particular FGMT implementation, that alternates between two threads on each Processor cycle, the
CPU_CYCLES event counts every other Processor cycle.

• For a particular SoEMT implementation, that is waiting for a long latency operation, the CPU_CYCLES
event does not count Processor cycles, as the PE thread is not active.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the CPU_CYCLES event counts each Processor cycle,
and can only count a maximum of one each Processor cycle.

Events that only count cycles that are counted by the CPU_CYCLES event have the same limitation. For example,
in an SMT implementation, if a PE thread cannot issue an instruction because of contention with other PE threads,
these are counted as STALL_BACKEND cycles.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the PE only counts cycles on which no operation is
issued from any thread.

Note

The cycle counter, PMCCNTR, is not affected by whether the thread is active or inactive. When enabled,
PMCCNTR counts every processor cycle.

See Multithreaded implementations, MDCR_EL3.MTPME, SDCR.MTPME, MDCR_EL2.MTPME, and
HDCR.MTPME for more information about when the Effective value of PMEVTYPER<n>_EL0.MT is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7093
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.5 Meaningful combinations of common events

The architecture highlights some meaningful combinations of common events. The following tables list the
highlighted combinations:

• Table D13-15, REFILL events and associated access events.

• Table D13-16, Meaningful combinations of latency events.

• Table D13-17, Cache hit events and associated data source events.

• Table D13-18, Meaningful combinations of cache line state tracking events.

• Table D13-19, Meaningful combinations of TLB events.

• Table D13-20, Meaningful combinations of at-retirement events.

Table D13-15 REFILL events and associated access events

Numerator Denominator Ratio

0x0001 L1I_CACHE_REFILL 0x0014 L1I_CACHE Attributable Level 1 instruction cache refill rate

0x0002 L1I_TLB_REFILL 0x0026 L1I_TLB Attributable Level 1 instruction TLB refill rate

0x0003 L1D_CACHE_REFILL 0x0004 L1D_CACHE Attributable Level 1 data or unified cache refill rate

0x0005 L1D_TLB_REFILL 0x0025 L1D_TLB Attributable Level 1 data or unified TLB refill rate

0x0017 L2D_CACHE_REFILL 0x0016 L2D_CACHE Attributable Level 2 data or unified cache refill rate

0x0028 L2I_CACHE_REFILL 0x0027 L2I_CACHE Attributable Level 2 instruction cache refill rate

0x002A L3D_CACHE_REFILL 0x002B L3D_CACHE Attributable Level 3 data or unified cache refill rate

0x002D L2D_TLB_REFILL 0x002F L2D_TLB Attributable Level 2 data or unified TLB refill rate

0x002E L2I_TLB_REFILL 0x0030 L2I_TLB Attributable Level 2 instruction TLB refill rate

0x0019 BUS_ACCESS 0x001D BUS_CYCLES Attributable Bus accesses per cycle

0x0033LL_CACHE_MISS 0x0032LL_CACHE Attributable Last Level data or unified cache refill rate

0x0034DTLB_WALK 0x0025 L1D_TLB Attributable data TLB miss rate

0x0035ITLB_WALK 0x0026L1I_TLB Attributable instruction TLB miss rate

0x0037LL_CACHE_MISS_RD 0x0036LL_CACHE_RD Attributable memory read operation miss rate

0x0038REMOTE_ACCESS_RD 0x0031 REMOTE_ACCESS Attributable read accesses to another socket in a
multi-socket system

0x0042 L1D_CACHE_REFILL_RD 0x0040 L1D_CACHE_RD Attributable Level 1 cache refill rate, read

0x0043 L1D_CACHE_REFILL_WR 0x0041 L1D_CACHE_WR Attributable Level 1 cache refill rate, write

0x004C L1D_TLB_REFILL_RD 0x004E L1D_TLB_RD Attributable Level 1 TLB refill rate, read

0x004D L1D_TLB_REFILL_WR 0x004F L1D_TLB_WR Attributable Level 1 TLB refill rate, write

0x0052 L2D_CACHE_REFILL_RD 0x0050 L2D_CACHE_RD Attributable Level 2 data cache refill rate, read

0x0053 L2D_CACHE_REFILL_WR 0x0051 L2D_CACHE_WR Attributable Level 2 data cache refill rate, write

0x005C L2D_TLB_REFILL_RD 0x005E L2D_TLB_RD Attributable Level 2 data TLB refill rate, read
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7094
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
0x005D L2D_TLB_REFILL_WR 0x005F L2D_TLB_WR Attributable Level 2 data TLB refill rate, write

0x00A2 L3D_CACHE_REFILL_RD 0x00A0 L3D_CACHE_RD Attributable Level 3 data cache refill rate, read

0x00A3 L3D_CACHE_REFILL_WR 0x00A1 L3D_CACHE_WR Attributable Level 3 data cache refill rate, write

Table D13-16 Meaningful combinations of latency events

Numerator Denominator Ratio

0x8120 INST_FETCH_PERCYC 0x8124 INST_FETCH Mean duration of instruction fetch events in
processor cycles

0x8121 MEM_ACCESS_RD_PERCYC 0x0066 MEM_ACCESS_RD Mean duration of memory read access events in
processor cycles

0x8125, BUS_REQ_RD_PERCYC 0x818D, BUS_REQ_RD Bus read transaction average latency

0x8128 DTLB_WALK_PERCYC 0x0034 DTLB_WALK Mean duration of data or unified TLB walk
events in processor cycles

0x8129 ITLB_WALK_PERCYC 0x0035 ITLB_WALK Mean duration of instruction TLB walk events
in processor cycles

0x8320, L1D_CACHE_REFILL_PERCYC 0x0003, L1D_CACHE_REFILL Level 1 data cache refill average duration

Table D13-17 Cache hit events and associated data source events

Numerator Denominator Ratio

0x820C, L1D_CACHE_HIT_PRFMa 0x8142, L1D_CACHE_PRFMa Level 1 data or unified cache software preload hit ratioa

0x81CC, L1D_CACHE_HIT_RWa 0x82A0, MEM_ACCESS_RW Level 1 data or unified cache demand cache hit ratea

0x81CF, LL_CACHE_HIT_RW 0x82A0, MEM_ACCESS_RW Last level cache demand cache hit rate

0x8232, LOCAL_MEM_RW 0x82A0, MEM_ACCESS_RW Local memory demand access rate

0x823B, REMOTE_MEM_RW 0x82A0, MEM_ACCESS_RW Remote memory demand access rate

0x821D, L2D_CACHE_HITM_RWa 0x81CD, L2D_CACHE_HIT_RWa Level 2 data or unified cache demand cache hit ratea

a. Similar ratios can be defined for other caches.

Table D13-18 Meaningful combinations of cache line state tracking events

Ratio Meaning

1 - (0x81EC, L1D_CACHE_HIT_RW_FHWPRF ÷ 0x8154, L1D_CACHE_HWPRF)a Level 1 data or unified cache data fetched by
hardware prefetcher not useda

1 - (0x81DC, L1D_CACHE_HIT_RW_FPRFM ÷ 0x8142, L1D_CACHE_PRFM)a Level 1 data or unified cache data fetched by
software preload not useda

0x825C, L1D_LFB_HIT_RW_FPRFM ÷ 0x8142, L1D_CACHE_PRFMa Level 1 data or unified cache data fetched late
by software preloada

a. Similar ratios can be defined for other caches.

Table D13-15 REFILL events and associated access events (continued)

Numerator Denominator Ratio
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7095
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.5.1 Scalar-equivalent operations

IRDHPB The number of speculatively executed operations performed on individual scalar values, assuming that all SVE
vector elements are active, can be determined from a pair of event counters. For example, the total number of
individual floating-point operations performed can be computed as follows:

FP_SCALE_OPS_SPEC × VL ÷ 128 + FP_FIXED_OPS_SPEC

A summary of these event pairs is given below. Combined multiply-add and multiply-subtract instructions are
counted as two operations per element.

Table D13-19 Meaningful combinations of TLB events

Numerator Denominator Ratio

0x8188, DTLB_WALK_BLOCKa 0x0034, DTLB_WALKa Data TLB block translation table walk fractiona

0x818A, DTLB_WALK_PAGEa 0x0034, DTLB_WALKa Data TLB page translation table walk fractiona

a. Similar ratios can be defined for instruction TLB accesses.

Table D13-20 Meaningful combinations of at-retirement events

Numerator Denominator Ratio

0x82B0, L1I_CACHE_HIT_RETIRED 0x0008, INST_RETIRED Architecturally executed instruction hit Level 1
instruction cache

0x82E0, L2I_CACHE_MISS_RETIRED 0x0008, INST_RETIRED Architecturally executed instruction missed
Level 2 instruction cache

0x82EC, L1D_CACHE_HIT_LDST_RETIRED 0x0008, INST_RETIRED Architecturally executed load or store
instruction hit in Level 1 data cache

0x82C9, L2D_CACHE_HITM_ST_RETIRED 0x0008, INST_RETIRED Architecturally executed store instruction hit
modified data in Level 2 data cache

0x82B7, LL_CACHE_MISS_LD_RETIRED 0x0008, INST_RETIRED Architecturally executed load instruction
missed in Last level cache

0x82F0, ITLB_HIT_RETIRED 0x0008, INST_RETIRED Architecturally executed instruction which hit
in the ITLB

0x82F7, DTLB_WALK_LDST_RETIRED 0x82AA, LDST_ANY_RETIRED Architecturally executed LDST instructions
DTLB miss fraction

0x82AF, CRYPTO_RETIRED 0x0008, INST_RETIRED Architecturally executed cryptographic data
processing fraction

Operation type Scalable operations Fixed width operations

Floating-point operations (any precision) FP_SCALE_OPS_SPEC FP_FIXED_OPS_SPEC

Half-precision floating-point operations FP_HP_SCALE_OPS_SPEC FP_HP_FIXED_OPS_SPEC

Single-precision floating-point operations FP_SP_SCALE_OPS_SPEC FP_SP_FIXED_OPS_SPEC

Double-precision floating-point operation FP_DP_SCALE_OPS_SPEC FP_DP_FIXED_OPS_SPEC

Integer operations (any size) INT_SCALE_OPS_SPEC INT_FIXED_OPS_SPEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7096
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.5.2 Bytes loaded and stored

INYJRH The number of bytes speculatively loaded from memory or stored to memory, assuming that all SVE vector
elements are active, can be determined from a pair of event counters. For example, the total number of bytes loaded
from memory can be computed as follows:

LD_SCALE_BYTES_SPEC × VL ÷ 128 + LD_FIXED_BYTES_SPEC

A summary of the total byte count pairs is as follows:

D13.12.5.3 Overall vector utilization

IMVTZM Vector utilization rates for SVE events which ignore the number of Active elements can be estimated by adjusting
them using the following ratios:

D13.12.5.4 Vector loop efficiency

IMXYQS The effectiveness with which sequential or scalar source loops are vectorized can be estimated using ratios of the
SVE_PLOOP_*_SPEC predicated loop events, as shown in the following table:

Load/store accesses (any size) LDST_SCALE_OPS_SPEC LDST_FIXED_OPS_SPEC

Load accesses (any size) LD_SCALE_OPS_SPEC LD_FIXED_OPS_SPEC

Store accesses (any size) ST_SCALE_OPS_SPEC ST_FIXED_OPS_SPEC

Operation type Scalable operations Fixed width operations

Operation type Scalable operations Fixed width operations

Load/store byte count LDST_SCALE_BYTES_SPEC LDST_FIXED_BYTES_SPEC

Load byte count LD_SCALE_BYTES_SPEC LD_FIXED_BYTES_SPEC

Store byte count ST_SCALE_BYTES_SPEC ST_FIXED_BYTES_SPEC

Utilization rate Ratio

All predicates active SVE_PRED_FULL_SPEC ÷ SVE_PRED_SPEC

Partial predicates active SVE_PRED_PARTIAL_SPEC ÷ SVE_PRED_SPEC

No predicates active SVE_PRED_EMPTY_SPEC ÷ SVE_PRED_SPEC

Vector loop metric Ratio

Source level iterations per loop SVE_PLOOP_ELTS_SPEC ÷ SVE_PLOOP_TERM_SPEC

Vectorized iterations per loop SVE_PLOOP_TEST_SPEC ÷ SVE_PLOOP_TERM_SPEC

Parallelism per vector loop SVE_PLOOP_ELTS_SPEC ÷ SVE_PLOOP_TEST_SPEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7097
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
D13.12.6 Required events

FEAT_PMUv3 requires that an implementation includes the following common events:

• 0x0000, SW_INCR, Instruction architecturally executed, Condition code check pass, software increment.

• 0x0003, L1D_CACHE_REFILL, Level 1 data cache refill.

Note

Event 0x0003 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0004, L1D_CACHE, Level 1 data cache access.

Note

Event 0x0004 is only required if the implementation includes a Level 1 data or unified cache.

• 0x0010, BR_MIS_PRED, Mispredicted or not predicted branch Speculatively executed.

Note

Event 0x0010 is only required if the implementation includes program-flow prediction. However, Arm
strongly recommends that the event is implemented as described in Common microarchitectural events.

• 0x0011, CPU_CYCLES, Cycle.

• 0x0012, BR_PRED, Predictable branch Speculatively executed.

Note

Event 0x0012 is only required if the implementation includes program-flow prediction. However, Arm
recommends that the event is implemented as described in Common microarchitectural events.

• When FEAT_PMUv3_ICNTR is implemented:

— 0x0008, INST_RETIRED, Instruction architecturally executed.

— Otherwise, at least one of:

— 0x0008, INST_RETIRED, Instruction architecturally executed.

— 0x001B, INST_SPEC, Operation Speculatively executed.

Note
•

Arm strongly recommends that event 0x0008 is implemented.

• When FEAT_PMUv3p1 is implemented:

— 0x0023, STALL_FRONTEND, No operation issued due to the frontend.

— 0x0024, STALL_BACKEND, No operation issued due to the backend.

• When SVE is implemented, at least one of:

— 0x8002, SVE_INST_RETIRED, SVE instruction architecturally retired.

— 0x8006, SVE_INST_SPEC, SVE operation speculatively executed.

• When FEAT_SPE is implemented:

— 0x4000, SAMPLE_POP, Statistical Profiling sample population.

— 0x4001, SAMPLE_FEED, Statistical Profiling sample taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7098
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
— 0x4002, SAMPLE_FILTRATE, Statistical Profiling sample filtered.

— 0x4003, SAMPLE_COLLISION, Statistical Profiling sample collision.

• When FEAT_PMUv3p4 is implemented:

— 0x003C, STALL, No operation sent for execution.

— 0x0039, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency read miss.

— 0x4006, L1I_CACHE_LMISS, Level 1 instruction cache long-latency miss.

— 0x0040, L1D_CACHE_RD, Level 1 data cache read.

• When FEAT_SPEv1p2 is implemented:

— 0x812A, SAMPLE_FEED_BR, Statistical Profiling sample taken, branch.

— 0x812B, SAMPLE_FEED_LD, Statistical Profiling sample taken, load.

— 0x812C, SAMPLE_FEED_ST, Statistical Profiling sample taken, store.

— 0x812D, SAMPLE_FEED_OP, Statistical Profiling sample taken, matching operation type.

— 0x812E, SAMPLE_FEED_EVENT, Statistical Profiling sample taken, matching events.

— 0x812F, SAMPLE_FEED_LAT, Statistical Profiling sample taken, exceeding minimum latency.

• When FEAT_PMUv3p9 is implemented:

— 0x0014, L1I_CACHE, Level 1 instruction cache access,

• When FEAT_PMUv3_SS is implemented:

— 0x8127, PMU_SNAPSHOT, Successful PMU capture event,

• When FEAT_SPE_FDS is implemented:

— 0x8122, SAMPLE_FEED_DS, Statistical Profiling sample taken, selected Data Source,

When any of the following common events are implemented, all three of them are implemented:

• 0x003D, STALL_SLOT_BACKEND, No operation sent for execution on a Slot due to the backend,

• 0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the frontend.

• 0x003F, STALL_SLOT, No operation sent for execution on a Slot.

Arm strongly recommends that the following events are implemented:

• 0x0021, BR_RETIRED.

• 0x0022, BR_MIS_PRED_RETIRED.

• 0x003A, OP_RETIRED.

• 0x003B, OP_SPEC.

• 0x003D, STALL_SLOT_BACKEND.

• 0x003E, STALL_SLOT_FRONTEND.

• 0x003F, STALL_SLOT.

D13.12.7 Synchronous events

Only events that count instructions at retirement can be synchronous events, but not all such events are required to
be synchronous events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7099
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
An at-retirement event is an event generated by an architecturally-executed instruction that does not generate an
exception.

Arm expects the set of synchronous events to include, but not be limited to:

• Existing events that count instructions at retirement:

— INST_RETIRED.

— Events that count instructions based on a taxonomy of instruction types.

— Other existing branch events that count branches at retirement based on their behavior during
execution.

• Events that count retired instructions that missed or hit in the instruction TLB or cache.

• Events that count retired load instructions that missed or hit in the data TLB or cache.

Events that are not attributable to an instruction, or are attributable to an instruction that generates an exception,
such as EXC_TAKEN, are never synchronous events.

Note

Software requires a priori knowledge of which events are synchronous events. There is no hardware identification
mechanism. A systematic software ID mechanism, such as a table in firmware, should be implemented.

If FEAT_SEBEP is implemented, then the following events support synchronous mode:

• 0x0000, SW_INCR, Instruction architecturally executed, Condition code check pass, software increment.

• 0x0008, INST_RETIRED, Instruction architecturally executed.

• 0x000C, PC_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, Software
change of the PC.

• 0x0021, BR_RETIRED, Instruction architecturally executed, branch.

• 0x0022, BR_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted.

If FEAT_SEBEP and FEAT_BRBE are implemented, then the following event supports synchronous mode:

• 0x811F, BRB_FILTRATE, Branch Record captured.

If FEAT_SEBEP is implemented, then Arm recommends that the following events that count retired branches
support synchronous mode:

• 0x000D, BR_IMMED_RETIRED, Branch Instruction architecturally executed, immediate.

• 0x000E, BR_RETURN_RETIRED, Branch Instruction architecturally executed, procedure return, taken.

• 0x8107, BR_SKIP_RETIRED, Branch Instruction architecturally executed, not taken.

• 0x8108, BR_IMMED_TAKEN_RETIRED, Branch Instruction architecturally executed, immediate, taken.

• 0x8109, BR_IMMED_SKIP_RETIRED, Branch Instruction architecturally executed, immediate, not taken.

• 0x810A, BR_IND_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect, taken.

• 0x810B, BR_IND_SKIP_RETIRED, Branch Instruction architecturally executed, indirect, not taken.

• 0x810C, BR_INDNR_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect excluding
procedure return, taken.

• 0x810D, BR_INDNR_SKIP_RETIRED, Branch Instruction architecturally executed, indirect excluding
procedure return, not taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7100
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• 0x810F, BR_RETURN_SKIP_RETIRED, Branch Instruction architecturally executed, procedure return, not
taken.

• 0x8110, BR_IMMED_PRED_RETIRED, Branch Instruction architecturally executed, predicted immediate.

• 0x8111, BR_IMMED_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
immediate.

• 0x8112, BR_IND_PRED_RETIRED, Branch Instruction architecturally executed, predicted indirect.

• 0x8113, BR_IND_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
indirect.

• 0x8114, BR_RETURN_PRED_RETIRED, Branch Instruction architecturally executed, predicted procedure
return.

• 0x8115, BR_RETURN_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
procedure return.

• 0x8116, BR_INDNR_PRED_RETIRED, Branch Instruction architecturally executed, predicted indirect
excluding procedure return.

• 0x8117, BR_INDNR_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
indirect excluding procedure return.

• 0x8118, BR_TAKEN_PRED_RETIRED, Branch Instruction architecturally executed, predicted branch,
taken.

• 0x8119, BR_TAKEN_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
branch, taken.

• 0x811A, BR_SKIP_PRED_RETIRED, Branch Instruction architecturally executed, predicted branch, not
taken.

• 0x811B, BR_SKIP_MIS_PRED_RETIRED, Branch Instruction architecturally executed, mispredicted
branch, not taken.

• 0x811C, BR_PRED_RETIRED, Branch Instruction architecturally executed, predicted branch.

• 0x811D, BR_IND_RETIRED, Instruction architecturally executed, indirect branch.

• 0x811E, BR_INDNR_RETIRED, Branch Instruction architecturally executed, indirect excluding procedure
return.

• 0x8179, BRNL_INDNR_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect branch
without link excluding procedure return, taken.

• 0x817A, BL_TAKEN_RETIRED, Branch Instruction architecturally executed, branch with link, taken.

• 0x817B, BRNL_TAKEN_RETIRED, Branch Instruction architecturally executed, branch without link, taken.

• 0x817C, BL_IND_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect branch with link,
taken.

• 0x817D, BRNL_IND_TAKEN_RETIRED, Branch Instruction architecturally executed, indirect branch
without link, taken.

• 0x817E, BL_IMMED_TAKEN_RETIRED, Branch Instruction architecturally executed, direct branch with
link, taken.

• 0x817F, BRNL_IMMED_TAKEN_RETIRED, Branch Instruction architecturally executed, direct branch
without link, taken.

• 0x8180, BR_UNCOND_RETIRED, Branch Instruction architecturally executed, unconditional branch.

• 0x8181, BR_COND_RETIRED, Branch Instruction architecturally executed, conditional branch.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7101
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• 0x8182, BR_COND_TAKEN_RETIRED, Branch Instruction architecturally executed, conditional branch,
taken.

• 0x8183, BR_HINT_COND_RETIRED, Branch Instruction architecturally executed, hinted conditional.

• 0x8184, BR_HINT_COND_PRED_RETIRED, Branch Instruction architecturally executed, predicted hinted
conditional.

• 0x8185, BR_HINT_COND_MIS_PRED_RETIRED, Branch Instruction architecturally executed,
mispredicted hinted conditional.

If FEAT_SEBEP is implemented, then Arm recommends that the following events that count retired loads and
stores support synchronous mode:

• 0x82A8, LD_ANY_RETIRED, Instruction architecturally executed, load.

• 0x82A9, ST_ANY_RETIRED, Instruction architecturally executed, store.

• 0x82AA, LDST_ANY_RETIRED, Instruction architecturally executed, load or store.

If FEAT_SEBEP is implemented, then Arm recommends that the following cache events for load instructions, that
are applicable for the system architecture, support synchronous mode:

• 0x8235, LOCAL_MEM_LD_RETIRED, Load Instruction architecturally executed, access to memory
attached to this device.

• 0x8236, LOCAL_MEM_ST_RETIRED, Store Instruction architecturally executed, access to memory
attached to this device.

• 0x8237, LOCAL_MEM_LDST_RETIRED, Load or store Instruction architecturally executed, access to
memory attached to this device.

• 0x823D, REMOTE_MEM_LD_RETIRED, Load Instruction architecturally executed, access to memory
attached to another socket in a multi-socket system.

• 0x823E, REMOTE_MEM_ST_RETIRED, Store Instruction architecturally executed, access to memory
attached to another socket in a multi-socket system.

• 0x823F, REMOTE_MEM_LDST_RETIRED, Load or store Instruction architecturally executed, access to
memory attached to another socket in a multi-socket system.

• 0x82AA, LDST_ANY_RETIRED, Instruction architecturally executed, load or store.

• 0x82B0, L1I_CACHE_MISS_RETIRED, Instruction architecturally executed, miss in Level 1 instruction
cache.

• 0x82B1, L2I_CACHE_MISS_RETIRED, Instruction architecturally executed, miss in Level 2 instruction
cache.

• 0x82B4, L1D_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Level 1
data cache.

• 0x82B5, L2D_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Level 2
data cache.

• 0x82B6, L3D_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Level 3
data cache.

• 0x82B7, LL_CACHE_MISS_LD_RETIRED, Load Instruction architecturally executed, miss in Last level
cache.

• 0x82B8, L1D_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Level 1 data
cache.

• 0x82B9, L2D_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Level 2 data
cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7102
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• 0x82BA, L3D_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Level 3 data
cache.

• 0x82BB, LL_CACHE_MISS_ST_RETIRED, Store Instruction architecturally executed, miss in Last level
cache.

• 0x82BC, L1D_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Level 1 data cache.

• 0x82BD, L2D_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Level 2 data cache.

• 0x82BE, L3D_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Level 3 data cache.

• 0x82BF, LL_CACHE_MISS_LDST_RETIRED, Load or store Instruction architecturally executed, miss in
Last level cache.

• 0x82C4, L1D_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data
in Level 1 data cache.

• 0x82C5, L2D_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data
in Level 2 data cache.

• 0x82C6, L3D_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data
in Level 3 data cache.

• 0x82C7, LL_CACHE_HITM_LD_RETIRED, Load Instruction architecturally executed, hit modified data in
Last level cache.

• 0x82C8, L1D_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data
in Level 1 data cache.

• 0x82C9, L2D_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data
in Level 2 data cache.

• 0x82CA, L3D_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data
in Level 3 data cache.

• 0x82CB, LL_CACHE_HITM_ST_RETIRED, Store Instruction architecturally executed, hit modified data in
Last level cache.

• 0x82CC, L1D_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Level 1 data cache.

• 0x82CD, L2D_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Level 2 data cache.

• 0x82CE, L3D_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Level 3 data cache.

• 0x82CF, LL_CACHE_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, hit
modified data in Last level cache.

• 0x82D0, L1I_LFB_HIT_RETIRED, Instruction architecturally executed, line-fill buffer hit in Level 1
instruction cache.

• 0x82D1, L2I_LFB_HIT_RETIRED, Instruction architecturally executed, line-fill buffer hit in Level 2
instruction cache.

• 0x82D4, L1D_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in
Level 1 data cache.

• 0x82D5, L2D_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in
Level 2 data cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7103
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• 0x82D6, L3D_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in
Level 3 data cache.

• 0x82D7, LL_LFB_HIT_LD_RETIRED, Load Instruction architecturally executed, line-fill buffer hit in Last
level cache.

• 0x82D8, L1D_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in
Level 1 data cache.

• 0x82D9, L2D_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in
Level 2 data cache.

• 0x82DA, L3D_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in
Level 3 data cache.

• 0x82DB, LL_LFB_HIT_ST_RETIRED, Store Instruction architecturally executed, line-fill buffer hit in Last
level cache.

• 0x82DC, L1D_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Level 1 data cache.

• 0x82DD, L2D_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Level 2 data cache.

• 0x82DE, L3D_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Level 3 data cache.

• 0x82DF, LL_LFB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, line-fill buffer
hit in Last level cache.

• 0x82E0, L1I_CACHE_HIT_RETIRED, Instruction architecturally executed, hit in Level 1 instruction cache.

• 0x82E1, L2I_CACHE_HIT_RETIRED, Instruction architecturally executed, hit in Level 2 instruction cache.

• 0x82E4, L1D_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Level 1 data
cache.

• 0x82E5, L2D_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Level 2 data
cache.

• 0x82E6, L3D_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Level 3 data
cache.

• 0x82E7, LL_CACHE_HIT_LD_RETIRED, Load Instruction architecturally executed, hit in Last level cache.

• 0x82E8, L1D_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Level 1 data
cache.

• 0x82E9, L2D_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Level 2 data
cache.

• 0x82EA, L3D_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Level 3 data
cache.

• 0x82EB, LL_CACHE_HIT_ST_RETIRED, Store Instruction architecturally executed, hit in Last level cache.

• 0x82EC, L1D_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in
Level 1 data cache.

• 0x82ED, L2D_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in
Level 2 data cache.

• 0x82EE, L3D_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in
Level 3 data cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7104
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• 0x82EF, LL_CACHE_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, hit in Last
level cache.

• 0x8304, DSNP_HITM_LD_RETIRED, Load Instruction architecturally executed, snoop hit.

• 0x8305, DSNP_HITM_NEAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in near
cache.

• 0x8306, DSNP_HITM_FAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in far
cache.

• 0x8307, DSNP_HITM_REMOTE_LD_RETIRED, Load Instruction architecturally executed, snoop hit in
remote cache.

• 0x8308, DSNP_HITM_ST_RETIRED, Store Instruction architecturally executed, snoop hit.

• 0x8309, DSNP_HITM_NEAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in near
cache.

• 0x830A, DSNP_HITM_FAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in far
cache.

• 0x830B, DSNP_HITM_REMOTE_ST_RETIRED, Store Instruction architecturally executed, snoop hit in
remote cache.

• 0x830C, DSNP_HITM_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit.

• 0x830D, DSNP_HITM_NEAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop
hit in near cache.

• 0x830E, DSNP_HITM_FAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit
in far cache.

• 0x830F, DSNP_HITM_REMOTE_LDST_RETIRED, Load or store Instruction architecturally executed,
snoop hit in remote cache.

• 0x8310, ISNP_HIT_RETIRED, Instruction architecturally executed, instruction fetch snoop hit.

• 0x8311, ISNP_HIT_NEAR_RETIRED, Instruction architecturally executed, instruction fetch snoop hit in
near cache.

• 0x8312, ISNP_HIT_FAR_RETIRED, Instruction architecturally executed, instruction fetch snoop hit in far
cache.

• 0x8313, ISNP_HIT_REMOTE_RETIRED, Instruction architecturally executed, instruction fetch snoop hit in
remote cache.

• 0x8314, DSNP_HIT_LD_RETIRED, Load Instruction architecturally executed, snoop hit.

• 0x8315, DSNP_HIT_NEAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in near
cache.

• 0x8316, DSNP_HIT_FAR_LD_RETIRED, Load Instruction architecturally executed, snoop hit in far cache.

• 0x8317, DSNP_HIT_REMOTE_LD_RETIRED, Load Instruction architecturally executed, snoop hit in
remote cache.

• 0x8318, DSNP_HIT_ST_RETIRED, Store Instruction architecturally executed, snoop hit.

• 0x8319, DSNP_HIT_NEAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in near
cache.

• 0x831A, DSNP_HIT_FAR_ST_RETIRED, Store Instruction architecturally executed, snoop hit in far cache.

• 0x831B, DSNP_HIT_REMOTE_ST_RETIRED, Store Instruction architecturally executed, snoop hit in
remote cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7105
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
• 0x831C, DSNP_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit.

• 0x831D, DSNP_HIT_NEAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit
in near cache.

• 0x831E, DSNP_HIT_FAR_LDST_RETIRED, Load or store Instruction architecturally executed, snoop hit in
far cache.

• 0x831F, DSNP_HIT_REMOTE_LDST_RETIRED, Load or store Instruction architecturally executed, snoop
hit in remote cache.

If FEAT_SEBEP is implemented, then Arm recommends that the following TLB events support synchronous mode:

• 0x82F0, ITLB_HIT_RETIRED, Instruction architecturally executed, no translation table walk.

• 0x82F1, DTLB_HIT_LD_RETIRED, Load Instruction architecturally executed, no translation table walk.

• 0x82F2, DTLB_HIT_ST_RETIRED, Store Instruction architecturally executed, no translation table walk.

• 0x82F3, DTLB_HIT_LDST_RETIRED, Load or store Instruction architecturally executed, no translation
table walk.

• 0x82F4, ITLB_WALK_RETIRED, Instruction architecturally executed, at least one translation table walk.

• 0x82F5, DTLB_WALK_LD_RETIRED, Load Instruction architecturally executed, at least one translation
table walk.

• 0x82F6, DTLB_WALK_ST_RETIRED, Store Instruction architecturally executed, at least one translation
table walk.

• 0x82F7, DTLB_WALK_LDST_RETIRED, Load or store Instruction architecturally executed, at least one
translation table walk.

If FEAT_SEBEP is implemented, then Arm recommends that the following instruction type events support
synchronous mode:

• 0x82A4, ASE_SVE_RETIRED, Instruction architecturally executed, Advanced SIMD data processing or
scalable vector extension data processing.

• 0x82A8, LD_ANY_RETIRED, Instruction architecturally executed, load.

• 0x82A9, ST_ANY_RETIRED, Instruction architecturally executed, store.

• 0x82AA, LDST_ANY_RETIRED, Instruction architecturally executed, load or store.

• 0x82AB, DP_RETIRED, Instruction architecturally executed, integer data processing.

• 0x82AC, ASE_RETIRED, Instruction architecturally executed, Advanced SIMD data processing.

• 0x82AD, VFP_RETIRED, Instruction architecturally executed, scalar floating-point data processing.

• 0x82AE, SVE_RETIRED, Instruction architecturally executed, scalable vector extension data processing.

• 0x82AF, CRYPTO_RETIRED, Instruction architecturally executed, cryptographic data processing.

D13.12.8 IMPLEMENTATION DEFINED event numbers

Arm recommends that implementers establish a standardized numbering scheme for their IMPLEMENTATION
DEFINED events, with common definitions, and common event numbers, applied to all of their implementations. In
general, the recommended approach is for standardization across implementations with common features. However,
Arm recognizes that attempting to standardize the encoding of microarchitectural features across too wide a range
of implementations is not productive.

The Arm architecture guarantees not to define any event prefixed with IMP_ as part of the standard Arm
architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7106
ID032224 Non-Confidential

The Performance Monitors Extension
D13.12 PMU events and event numbers
Arm strongly recommends that at least the following classes of event are identified in the IMPLEMENTATION
DEFINED events:

• Separating each of the STALL_FRONTEND and STALL_SLOT_FRONTEND events to count holes in
instruction availability.

• Separating each of the STALL_BACKEND and STALL_SLOT_BACKEND events, to count, for example,
cumulative duration of stalls, unavailability of execution resources, or missed superscalar issue opportunities.

• Miss rates for additional levels of caches and TLBs.

• Any external events passed to the PE through an IMPLEMENTATION DEFINED mechanism.

• Cumulative duration of a PSTATE.{A, I, F} interrupt mask set to 1.

• Cumulative occupancy for resource queues, such as data access queues, and entry/exit counts, so that average
latencies can be determined, separating out counts for key resources that might exist. An implementation
might also provide registers in the IMPLEMENTATION DEFINED space to further extend such counts, for
example by specifying a minimum latency for an event to be counted.

• Any other microarchitectural features that the implementer considers are valuable to count.

If FEAT_RME is implemented, IMPLEMENTATION DEFINED events are permitted to count all of:

• Granule Protection Table (GPT) accesses.

• For address translations subject to Granule Protection Checks (GPC):

— TLB hits. These are called GPT-related TLB hits.

— TLB misses. These are called GPT-related TLB misses.

The range of possible IMPLEMENTATION DEFINED event numbers is described in The PMU event number space and
common events.

It is not required that implementations document the behavior of all IMPLEMENTATION DEFINED PMU events,
including which PMU event numbers are used for these IMPLEMENTATION DEFINED events. However, Arm strongly
recommends that implementations do include and document IMPLEMENTATION DEFINED PMU events. In particular
events related to microarchitectural characteristics of the implementation not covered by Common events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7107
ID032224 Non-Confidential

The Performance Monitors Extension
D13.13 Performance Monitors Extension registers
D13.13 Performance Monitors Extension registers

Further information on the Performance Monitors Extension Registers can be found in the following sections:

• Table K17-2 lists the Performance Monitors register names for AArch32 and AArch64 states.

• Performance monitors registers summarizes the Performance Monitors Extension registers in AArch64 state.

• Performance monitors registers summarizes the Performance Monitors Extension registers in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D13-7108
ID032224 Non-Confidential

Chapter D14
The System Performance Monitors Extension

This chapter describes the implementation of the Arm System Performance Monitors that are an OPTIONAL
non-invasive debug component. It contains the following sections:

• About the System Performance Monitors.

• System PMU configuration.

• Accessing System PMUs.

• Accessing System PMU registers.

• Accessing System PMU counters.

• Generating System PMU overflow interrupt requests.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D14-7109
ID032224 Non-Confidential

The System Performance Monitors Extension
D14.1 About the System Performance Monitors
D14.1 About the System Performance Monitors

RXVHSR A System PMU is a PMU other than the PMU implemented by a PE that is accessible to that PE. For more
information on the PMU, see Chapter D13 The Performance Monitors Extension.

RKGSQX A System PMU might be accessible to other PEs in the system.

IXDHVC The System Performance Monitors Extension is an OPTIONAL feature of an implementation. The architecture does
not require that System PMUs are implemented using FEAT_SPMU. Arm recommends that System PMUs are
implemented using FEAT_SPMU or The CoreSight PMU Architecture. FEAT_SPMU and The CoreSight PMU
Architecture share a conceptual model for performance monitors.

IDDTRR The System Performance Monitors Extension supports up to 32 System PMUs.

INYCYF The basic form of a System PMU is:

• A number of 64-bit event counters, SPMEVCNTR<n>_EL0. Each System PMU can support up to 64 event
counters.

• It is IMPLEMENTATION DEFINED whether the event counted by each event counter is fixed or programmable.
Event configuration registers, SPMEVTYPER<n>_EL0, SPMEVFILTR<n>_EL0, and
SPMEVFILT2R<n>_EL0 are provided for this.

• Controls for:

— Enabling and resetting counters, in the System PMU control register SPMCR_EL0.

— Count enable set and clear registers, SPMCNTENSET_EL0 and SPMCNTENCLR_EL0,
respectively.

— Counter overflow set and clear registers, SPMOVSSET_EL0 and SPMOVSCLR_EL0, respectively.

— Interrupt enable set and clear registers, SPMINTENSET_EL1 and SPMINTENCLR_EL1,
respectively.

— System PMU access control registers SPMACCESSR_EL3, SPMACCESSR_EL2, and
SPMACCESSR_EL1.

— If Secure EL1 is implemented, an OPTIONAL Secure state observability control register
SPMSCR_EL1.

— If FEAT_RME is implemented, an OPTIONAL Root and Realm state observability control register
SPMROOTCR_EL3.

• Read-only identification registers:

— Implementation and architecture identification registers, SPMIIDR_EL1 and SPMDEVARCH_EL1,
respectively.

— If the System PMU is accessible to other PEs in the system, then affinity register SPMDEVAFF_EL1.

— Implementation configuration register SPMCFGR_EL1.

— If the System PMU implements more than one Counter Group, then Counter Group configuration
registers SPMCGCR<n>_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D14-7110
ID032224 Non-Confidential

The System Performance Monitors Extension
D14.2 System PMU configuration
D14.2 System PMU configuration

IXCMGX A System PMU is identified to software by the following registers:

• SPMIIDR_EL1 uniquely identifies the component implementor and provides a part number code specific to
that implementation. This register is OPTIONAL, and if the register is not implemented, it is RAZ.

• SPMDEVARCH_EL1 describes a generic programmers’ model for the System PMU that might be shared by
multiple implementations. This register is OPTIONAL, and if the register is not implemented, it is RAZ.

• SPMDEVAFF_EL1 describes which PEs the System PMU is shared with, if any.

• SPMCFGR_EL1 describes the capabilities of the System PMU, including, but not limited to, the number and
size of counters implemented by the System PMU.

• If SPMCFGR_EL1.NCG indicates the System PMU implements more than one Counter Group, then
SPMCGCR<n>_EL1 indicates the number of counters in each Counter Group. Otherwise,
SPMCGCR<n>_EL1 are RAZ and all the counters are in the first Counter Group.

When these registers are implemented by a System PMU, software can use these registers along with pre-existing
knowledge to determine configuration information about the System PMU, as follows:

1. If software recognizes the identity of the System PMU in SPMIIDR_EL1, it can load a configuration for the
System PMU.

2. Otherwise, if software recognizes the architecture in SPMDEVARCH_EL1, it can load a generic
configuration for the System PMU.

3. Otherwise, software can use the capabilities described by SPMCFGR_EL1 to define a generic configuration
for the System PMU.

The configuration contains, for instance, details of how the event configuration registers SPMEVTYPER<n>_EL0,
SPMEVFILTR<n>_EL0, and SPMEVFILT2R<n>_EL0, are programmed, including but not limited to the
following IMPLEMENTATION DEFINED information:

• Field assignments.

• Whether additional features are implemented, such as threshold and edge detection.

• Whether an interrupt on counter overflow is implemented.

• Assignment of event codes to events.

• Definitions of events.

• Details of any fixed-function counters.

• Useful metrics derived from events.

• Security policies for allowing access to the System PMU from lower Exception levels.

IYKJXW A System PMU might statically divide its counters into an IMPLEMENTATION DEFINED number of Counter Groups.
The number of Counter Groups is identified to software by SPMCFGR_EL1.NCG. At most 15 Counter Groups can
be implemented. If SPMCFGR_EL1.NCG is 0b0000, then only one Counter Group is implemented, and all counters
are in the first Counter Group.

Each Counter Group has an IMPLEMENTATION DEFINED number of counters in that group, from zero to the value
max. The number of counters in Counter Group <n 8 m>, is identified to software by
SPMCGCR<n>_EL1.N<m>. The first counter in Counter Group <n> is SPMEVCNTR<n max>_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D14-7111
ID032224 Non-Confidential

The System Performance Monitors Extension
D14.2 System PMU configuration
The value max depends on the number of Counter Groups implemented, and is defined by the following table:

Example D14-1 Determining the number of counters in a System PMU

The number of counters in a System PMU can be determined as described in the following example:

• SPMCFGR_EL1.NCG reads as 0b0001, indicating 2 Counter Groups.

• SPMCGCR0_EL1 reads as 0x00000604, indicating:

— Group 0 has four counters: SPMEVCNTR0_EL0 to SPMEVCNTR3_EL0.

— Group 1 has six counters: SPMEVCNTR32_EL0 to SPMEVCNTR37_EL0.

• SPMCFGR_EL1.N reads as 0x09, indicating 10 counters are implemented overall.

Table D14-1 Value of max when determining the first counter in a Counter Group

Number of Counter Groups max

2 32

3 or 4 16

Between 5 and 8 8

Between 9 and 15 4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D14-7112
ID032224 Non-Confidential

The System Performance Monitors Extension
D14.3 Accessing System PMUs
D14.3 Accessing System PMUs

IVXVXK A System PMU <s> is selected by setting SPMSELR_EL0.SYSPMUSEL to <s>, where 0 s 31. This determines
which System PMU is being accessed by the System PMU registers. If enabled, then the System PMUs are always
monitoring.

IWYLYL The largest value of SPMSELR_EL0.SYSPMUSEL is identified by ID_AA64DFR1_EL1.SYSPMUID.

IBWTWP Implemented System PMUs might not be contiguously accessible. That is, if System PMU <s> is not implemented,
this does not imply System PMU <s+1> is not implemented. Therefore, the value of
ID_AA64DFR1_EL1.SYSPMUID does not necessarily indicate the total number of accessible System PMUs.

RJJNZK Accesses to System PMU <s> are controlled by SPMACCESSR_EL1.P<s>, SPMACCESSR_EL2.P<s>,
SPMACCESSR_EL3.P<s>, and if implemented by the System PMU, SPMSCR_EL1 and SPMROOTCR_EL3.

IFKZLR FEAT_SPMU does not provide an equivalent of the fine-grained EL0 controls provided for the PE PMU by
PMUSERENR_EL0 and PMUACR_EL1.

D14.3.1 Accessing System PMU registers

RNKSGW A System PMU that is shared by multiple PEs implements multi-copy atomicity for writes to the System PMU
registers, with each of those PEs being observers of writes to the registers:

• All writes to the same System PMU register are serialized, meaning they are observed in the same order by
all observers, although some observers might not observe all of the writes.

• A read of a System PMU register does not observe a direct write until all observers observe that direct write.

ITZFBD Example D14-2 Observing a write to System PMU registers

When observing a write to System PMU registers, this means observing all effects of the write. For example:

• The effect writing to SPMEVCNTR<n>_EL0 is to set the value of the counter to the value that was written.

• The effect writing a 1 to SPMOVSCLR_EL0[n] is to clear both SPMOVSCLR_EL0[n] and
SPMOVSSET_EL0[n] to 0.

RTVFHH The System PMU is also an observer of writes to the System PMU registers that makes indirect reads and indirect
writes of the registers when counting events.

RXFHMP A direct write to a System PMU register that has been synchronized by a Context synchronization event on the PE
performing the direct write will be observable to all observers in finite time.

RBXJVP A DSB instruction ordered after a direct write to a System PMU register does not complete until all observers observe
the direct write. A Context synchronization event is required to create the order between the direct write and the DSB
instruction.

IYPSBB Because a direct read from a System register in program order following a direct write to the same System register
will observe the write to the register, reading back from that register also guarantees that all observers observe the
direct write.

D14.3.2 Accessing System PMU counters

IZWVKD A System PMU counter <n> is selected by setting SPMSELR_EL0.BANK to <n DIV 16>, where 0 n 63.

IRHHZC There are no mechanisms to trap accesses to individual counters, ranges of counters, or unimplemented counters in
a System PMU. If not trapped by a higher priority exception, then accesses to unimplemented counters in a System
PMU are RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D14-7113
ID032224 Non-Confidential

The System Performance Monitors Extension
D14.4 Generating System PMU overflow interrupt requests
D14.4 Generating System PMU overflow interrupt requests

RTCYDX It is IMPLEMENTATION DEFINED whether a System PMU implements a counter overflow flag for each counter
SPMEVCNTR<n>_EL0 implemented by the System PMU.

If the System PMU implements a counter overflow flag for SPMEVCNTR<n>_EL0, then all of the following apply:

• When incrementing SPMEVCNTR<n>_EL0 causes an unsigned overflow of the counter, the System PMU
sets SPMOVSCLR_EL0[n] to 1.

• SPMOVSCLR_EL0[n] is R/W1C.

• SPMOVSSET_EL0[n] is R/W1S.

Otherwise, SPMOVSCLR_EL0[n] and SPMOVSSET_EL0[n] are RAZ/WI.

Note

If an event can occur multiple times in a single clock cycle, then a counter overflow can occur without the counter
registering a value of zero.

RNZHDW The size of each counter implemented by a System PMU is IMPLEMENTATION DEFINED, between 1 and 64 bits.
Unimplemented bits in each counter register are RES0.

RNBPGV If a System PMU implements a counter overflow flag for any counter SPMEVCNTR<n>_EL0 implemented by the
System PMU, then it is IMPLEMENTATION DEFINED whether the System PMU implements an overflow interrupt
request.

INJGBT Each System PMU that implements an overflow interrupt request has its own interrupt request, and it is
IMPLEMENTATION DEFINED whether the interrupts are implemented as a Shared Peripheral Interrupt (SPI) or a
Private Peripheral Interrupt (PPI). A System PMU that is not shared with other PEs should use a PPI.

Interrupt IDs are IMPLEMENTATION DEFINED.

RPGYZY When the overflow interrupt request is implemented, software can program SPMINTENSET_EL1 and
SPMINTENCLR_EL1 such that an overflow interrupt request is generated when a counter overflow flag is 1.

If the System PMU implements the overflow interrupt request and implements a counter overflow flag for
SPMEVCNTR<n>_EL0, then all of the following apply:

• SPMINTENCLR_EL1[n] is R/W1C.

• SPMINTENSET_EL1[n] is R/W1S.

Otherwise, SPMINTENCLR_EL1[n] and SPMINTENSET_EL1[n] are RAZ/WI.

If the overflow interrupt request is implemented as a level-sensitive request, then the System PMU signals an
overflow interrupt request when all of the following are true for any implemented counter SPMEVCNTR<n>_EL0:

• SPMCR_EL0.E is 1.

• SPMOVSCLR_EL0[n] is 1.

• SPMINTENCLR_EL1[n] is 1.

For more information, see SPMINTENSET_EL1 and SPMINTENCLR_EL1.

IMZGZJ The architecture does not provide any support for a System PMU interrupt implemented as a message-signaled
interrupt (MSI). To support implementing the interrupt as an MSI, additional IMPLEMENTATION DEFINED registers
must be defined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D14-7114
ID032224 Non-Confidential

Chapter D15
The Activity Monitors Extension

This chapter describes version 1 of the Activity Monitor Unit (AMU) architecture, AMUv1, an optional
non-invasive component. It contains the following sections:

• About the Activity Monitors Extension.

• Properties and behavior of the activity monitors.

• AMU events and event numbers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D15-7115
ID032224 Non-Confidential

The Activity Monitors Extension
D15.1 About the Activity Monitors Extension
D15.1 About the Activity Monitors Extension

The Activity Monitors Extension is an OPTIONAL extension to the Armv8.4 architecture.

The Activity Monitors Extension implements version 1 of the Activity Monitors architecture, AMUv1, and
interfaces to the registers defined by AMUv1, the Activity Monitors registers.

Version 1 of the Activity Monitors architecture implements:

• A counter group of four architected 64-bit event counters. The events counted by the architected event
counter are fixed and architecturally defined.

Note
The Activity Monitors architecture provides space for up to 16 architected event counters. Future versions of
the Activity Monitors architecture might use this space to implement additional architected event counters.

• A counter group of up to 16 auxiliary 64-bit event counters. The event counted for each auxiliary event
counter can be fixed or programmable, and whether it is fixed or programmable is IMPLEMENTATION
DEFINED. When the event counted by an auxiliary event counter is fixed, this event is IMPLEMENTATION
DEFINED.

• Controls for enabling and disabling counters.

• When the event counted by an auxiliary event counter is programmable, controls for assigning an event to
the counter.

• Controls that determine whether the activity monitor counters continue to count while the PE is halted in
Debug state.

The read-only registers AMCFGR and AMCGCR provide information about features supported by the Activity
Monitors Extension, the number of counter groups implemented, the total number of counters implemented, the
number of counters implemented within each group, and the size of the counters.

The Activity Monitors Extension provides:

• A mandatory System register interface to the Activity Monitors registers, for both AArch64 and AArch32
states.

Base system registers lists the AArch64 Activity Monitors registers, and Base system registers lists the
AArch32 Activity Monitors registers. Table K17-3 shows the relationship between the AArch64 and the
AArch32 Activity Monitors register.

• Controls that allow software to enable or disable access by software running at lower Exception levels to the
Activity Monitors registers.

• When FEAT_AMUv1p1 is implemented, and the hypervisor is using AArch64, offset registers that support
virtualization of the Activity Monitor event counters.

• An optional external interface providing read-only memory-mapped access to the Activity Monitors
registers.

Alphabetical index of memory-mapped registers lists the Activity Monitors memory-mapped registers. For
more information on the recommended external interface, see Chapter I4 Recommended External Interface
to the Activity Monitors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D15-7116
ID032224 Non-Confidential

The Activity Monitors Extension
D15.2 Properties and behavior of the activity monitors
D15.2 Properties and behavior of the activity monitors

D15.2.1 Basic characteristics of the activity monitor event counters

Every activity monitor event counter is a 64-bit wrapping counter. When an activity monitor event counter wraps,
the counter overflows.

Note

The Activity Monitor architecture does not provide support for overflow status indication or interrupts.

The state of the authentication signals do not affect counting.

Any change in clock frequency, including when a WFI and WFE instruction stops the clock, can affect any counter.

If FEAT_AMUv1p1 is implemented, for the architected event counters 0, 2 and 3, and each auxiliary event counter
configured to use an offset, there is an offset register which is used to virtualize the count on a read from EL1 or
EL0. At EL2, EL3 or from the memory-mapped view, permitted accesses to the counters use the physical view
without any offset. See Virtualization

D15.2.2 Counter configuration and controls

For each architected event counter AMEVCNTR0<n>, there is a corresponding event type register
AMEVTYPER0<n> which provides information on the event counted by that counter. The event type registers
AMEVTYPER0<n> are read-only.

For each auxiliary event counter AMEVCNTR1<n>, there is a corresponding event type register
AMEVTYPER1<n> which provides information on the event counted by that counter. When the event counted by
an auxiliary event counter is fixed, the corresponding event type register AMEVTYPER1<n> is read-only. When
the event counted by an auxiliary event counter is programmable, the corresponding event type register
AMEVTYPER1<n> is read/write.

For each counter group, there is a pair of separate controls to enable and disable the counters in that counter group.
AMCNTENCLR0 and AMCNTENSET0 are used to disable and enable the architected event counters.
AMCNTENCLR1 and AMCNTENSET1 are used to disable and enable the auxiliary event counters.

While the PE is halted in Debug state, AMCR.HDBG controls whether activity monitor counting is halted.

AMUSERENR.EN controls access from EL0 to the Activity Monitor Extension System registers. CPTR_EL2.TAM
and HCPTR.TAM control access from EL0 and EL1 to the Activity Monitor Extension System registers.
CPTR_EL3.TAM control access from EL0, EL1, and EL2 to the Activity Monitor Extension System registers.

Note

These controls obey the priority order described in Prioritization of Synchronous exceptions taken to AArch64 state
and Synchronous exception prioritization for exceptions taken to AArch32 state.

AMUSERENR.EN is configurable at EL1, EL2, and EL3. All other controls, as well as the value of the counters,
are configurable only at the highest implemented Exception level.

If FEAT_AMUv1p1 is implemented, AMCG1IDR_EL0 defines which auxiliary counters are implemented, and if
virtual offsets are enabled, indicates which of the implemented auxiliary counters have a virtual offset when read
from EL0 and EL1.

If FEAT_AMUv1p1 is implemented, AMCR.CG1RZ controls whether the auxiliary event counters read as zero if
they are accessed at an Exception level lower than the highest implemented Exception level.

D15.2.3 Power and reset domains

The power domain of the Activity Monitoring Unit is IMPLEMENTATION DEFINED and named the AMU domain.

The reset domain of the Activity Monitoring Unit is IMPLEMENTATION DEFINED and named the AMU reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D15-7117
ID032224 Non-Confidential

The Activity Monitors Extension
D15.2 Properties and behavior of the activity monitors
The AMU power domain may be the Core power domain.

When an AMU reset of the AMU power domain occurs, the Activity Monitoring Unit is reset and the counters are
reset to zero.

When the PE is not in reset, the Activity Monitoring Unit is available

D15.2.4 Accuracy and non-invasive behavior

The activity monitors are a non-invasive component which must provide broadly accurate and statistically useful
count information.

The implementation of an architecturally required event might create a conflict between the requirement to be
non-invasive and the requirement to present an accurate value of the count under normal operating conditions. An
implementation might provide an IMPLEMENTATION DEFINED control that disables accurate count of the event to
restore performance and document the impact on performance of accurate counting. The expectations for
non-invasive behavior and the degree of inaccuracy of the activity monitors are otherwise as described for the
Performance Monitors architecture.

Note

For information on the expectations for non-invasive behavior and the degree of inaccuracy of the Performance
Monitors, see Non-invasive behavior and A reasonable degree of inaccuracy.

D15.2.5 Virtualization

FEAT_AMUv1p1 supports virtualized access to the Activity Monitors event counters at EL1 and EL0.

The fields HCR_EL2.AMVOFFEN and SCR_EL3.AMVOFFEN enable and disable virtualization. When enabled,
the architected event counters 0, 2 and 3 have counter offsets. Architected event counter 1 does not have an offset.
The register AMCG1IDR_EL0 indicates which of the implemented auxiliary event counters has implemented
counter offsets. An implemented event counter that does not have a defined offset has an effective offset of zero.
The offset registers can be accessed only at EL2 or EL3, and affect views of the event counters at EL1 and EL0 from
the System register interfaces only.

The AMEVCNTVOFF0<n>_EL2 registers hold the offsets for the implemented and enabled architected event
counters.

The AMEVCNTVOFF1<n>_EL2 registers hold the offsets for the implemented and enabled auxiliary event
counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D15-7118
ID032224 Non-Confidential

The Activity Monitors Extension
D15.3 AMU events and event numbers
D15.3 AMU events and event numbers

The Activity Monitors architecture uses the event number space defined by the Performance Monitors architecture
to identify events.

The Activity Monitors architecture defines additional events and adds them to the event number space defined by
the Performance Monitors architecture for common events.

If the event is counting an IMPLEMENTATION DEFINED event, it must use an event number from the IMPLEMENTATION
DEFINED event space.

When an implementation supports monitoring of an event that is assigned a common architectural or
microarchitectural event number, Arm strongly recommends that it uses that number for the event.

When a common event is available to both the Performance Monitors architecture and the Activity Monitors
architecture within one implementation, both architectures use the same event number.

D15.3.1 Architected event counters

Version 1 of the Activity Monitors architecture, AMUv1, requires four events to be counted by the architected
activity monitor event counters.

The events required to be counted are:

0x0011, CPU_CYCLES, Processor frequency cycles

The counter increments on every cycle when the PE is not in WFI or WFE state. When the PE is in
WFI or WFE state, this counter does not increment.

This event is counted by AMEVCNTR0<n>, where n is 0.

0x4004, CNT_CYCLES, Constant frequency cycles

The counter increments at a constant frequency when the PE is not in WFI or WFE state, equal to
the rate of increment of the System counter, CNTPCT_EL0. When the PE is in WFI or WFE state,
this counter does not increment.

This event is counted by AMEVCNTR0<n>, where n is 1.

0x0008, INST_RETIRED, Instructions retired

This event is defined identically to INST_RETIRED in the FEAT_PMUv3 architecture.

This event is counted by AMEVCNTR0<n>, where n is 2.

0x4005, STALL_BACKEND_MEM, Memory stall cycles

The counter counts cycles in which the PE is unable to dispatch instructions from the frontend to
the backend of the PE due to a backend stall caused by a demand data miss in the last level of data
or unified cache within the PE clock domain or, if Armv8.7 is implemented, a Non-cacheable data
access in progress.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether the counter counts backend
stall cycles when a Non-cacheable data access is in progress.

This event is counted by AMEVCNTR0<n>, where n is 3.

D15.3.2 Auxiliary event counters

Auxiliary event counters can count events defined by the Performance Monitors architecture and IMPLEMENTATION
DEFINED events defined specifically for activity monitoring.

Implementations must not reuse an IMPLEMENTATION DEFINED event number for different hardware events across
the Performance Monitors architecture and the Activity Monitors architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D15-7119
ID032224 Non-Confidential

Chapter D16
The Statistical Profiling Extension

This chapter describes the Statistical Profiling Extension. It contains the following sections:

• About the Statistical Profiling Extension.

• Defining the sample population.

• Controlling when an operation is sampled.

• Enabling profiling.

• Filtering sample records.

• The profiling data.

• The Profiling Buffer.

• Profiling Buffer management.

• Synchronization and Statistical Profiling.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7120
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.1 About the Statistical Profiling Extension
D16.1 About the Statistical Profiling Extension

When the Statistical Profiling Extension is implemented, the PE includes a Statistical Profiling Unit (SPU). When
profiling is enabled, the SPU does the following:

1. Chooses an operation from a sample population, that can be restricted by Exception level, at a programmable
interval that might have some random, or pseudorandom, perturbation.

2. Takes a trace of the sampled operation. This includes the PC, events, timings, and data addresses, related to
the sampled operation. This is the profiling operation.

3. If defined, filters out potential sample records generated by the profiling operation by reference to any or all
of the following:

a. The type of operation.

b. Events.

c. Latency.

d. Data source, for loads.

4. Creates a record that contains the traced information. Sample records that meet the criteria of the filter are
written to and stored in a memory buffer. These sample records can be processed by software when the
memory buffer is full.

D16.1.1 Non-invasive behavior

Statistical Profiling is a non-invasive debug operation:

• While profiling is enabled, the operation and performance of the processing element (PE) must not be
significantly impacted between sampled operations, that is, other than for writing out sample records and
processing Profiling Buffer management interrupts.

• The performance of the sampled operation and the performance of the PE in general must not be significantly
impacted. The sample records are not written to memory until after the sampled operation has finished
execution. However, this does not apply if the sample records are physical addresses for data access
operations. In this case, the impact is IMPLEMENTATION DEFINED.

• The profiling operation to write sample records must not be excessively impactful on the performance of the
sampled operation or the performance of the PE generally.

D16.1.2 PMU extensions

If the Statistical Profiling and Performance Monitors Extensions are implemented, then the following PMU events
must be implemented:

• SAMPLE_POP.

• SAMPLE_FEED.

• SAMPLE_FILTRATE.

• SAMPLE_COLLISION.

Note

These events are discoverable through a read of PMCEID0_EL0[35:32].

If FEAT_SPEv1p2 is implemented, the following PMU events must be implemented:

• SAMPLE_FEED_BR.

• SAMPLE_FEED_LD.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7121
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.1 About the Statistical Profiling Extension
• SAMPLE_FEED_ST.

• SAMPLE_FEED_OP.

• SAMPLE_FEED_EVENT.

• SAMPLE_FEED_LAT.

If FEAT_SPE_FDS is implemented, the following PMU events must be implemented:

• SAMPLE_FEED_DS.

D16.1.3 Multithreaded implementations

In a multithreaded implementation:

• Statistical Profiling is implemented per-thread.

• The sample interval counter counts only operations for the thread that is being profiled.

• Latency and other cycle counters count each cycle for the PE for which the thread was active and could issue
an operation.

The architecture does not define features for inter-thread profiling and does not support sharing the Profiling Buffer
between threads.

Note

An implementation is described as multithreaded when the lowest level of affinity consists of logical processors that
are implemented using a multithreading type approach. That is, the performance of processors at the lowest affinity
level is interdependent.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7122
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.2 Defining the sample population
D16.2 Defining the sample population

All samples are taken from a population of operations. The population is dynamic rather than static. That is, if a
program executes the same operation multiple times (for example, because of loops and subroutines) then that
operation appears multiple times in the population.

The operations are an IMPLEMENTATION DEFINED choice between:

• Architecture instructions.

• IMPLEMENTATION DEFINED microarchitectural operations (micro-ops).

Architecture instruction means a single instruction that is defined by the A-profile instruction set architecture in
AArch64 state.

An architecture instruction might create one or more micro-ops at any point in the execution pipeline. The definition
of a micro-op is implementation specific. An architecture instruction might create more than one micro-op for each
instruction. A micro-op might also be removed or merged with another micro-op in the Execution stream, so an
architecture instruction might create no micro-ops for an instruction.

Any arbitrary translation of architecture instructions to an equivalent sequence of micro-ops is permitted. In some
implementations, the relationship between architecture instructions and micro-ops might vary over time.

Note

Sampling from architecture instructions does not require that the instruction is architecturally executed.

D16.2.1 Operations that might be excluded from the sample population

It is IMPLEMENTATION DEFINED whether each of the following operations is part of the sample population:

• Operations on misspeculated paths.

• Operations (specifically micro-ops) that do not relate to any architecture instruction.

• Operations that generate non-architectural exceptions.

If the operation is not part of the sample population, the operation does not cause the sample interval counter to
decrement, is not counted by the SAMPLE_POP event and therefore is never sampled.

If the operation is part of the sample population, the operation causes the sample interval counter to decrement, is
counted by the SAMPLE_POP event, and might be sampled and counted by the SAMPLE_FEED event. However,
it is IMPLEMENTATION DEFINED whether the sample record for such a sampled operation is captured in the Profiling
Buffer. For more information, see Sample operation records for misspeculated and non-architectural operations
and Non-architectural exceptions.

If such a sample record is not captured into the Profiling Buffer, then no packets are output and the sample is not
counted by the SAMPLE_FILTRATE event.

Note

If the owning Exception level passes this data to less privileged software for processing, it can set
PMSFCR_EL1.FE to 1 and PMSEVFR_EL1[1] to 1 to prevent speculative instructions from being recorded in the
Profiling Buffer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7123
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.3 Controlling when an operation is sampled
D16.3 Controlling when an operation is sampled

The sample interval counter, PMSICR_EL1.COUNT controls when an operation is selected for sampling. In some
implementations, a secondary sample interval counter, PMSICR_EL1.ECOUNT, is also used.

The following sections describe the operation of the sample interval counters.

Details of the random or pseudorandom number generator used when PMSIRR_EL1.RND is set to 1 are
IMPLEMENTATION DEFINED. See Generating random numbers for sampling.

D16.3.1 Operation sampling

A sample operation is as follows:

1. A sampling interval is written to PMSICR_EL1.COUNT by software. The interval is measured in operations.

2. The sample interval counter is decremented by hardware for each operation when sampling is enabled.

3. When the sample interval counter reaches zero, then:

a. If random perturbation is enabled, the PE continues to count for a random number of further operations
while sampling is enabled.

b. An operation is chosen for profiling. The choice of operation around the sampling point is
implementation-specific, but does not introduce sampling bias.

4. The sample interval counter is reloaded and the process loops to step 2. It is IMPLEMENTATION DEFINED
whether the sample interval counter is reloaded before step 3.a) or at step 3.b). That is, before or after
counting the random number of further operations.

5. The chosen operation is marked as the sampled operation. The PE collects information about the sampled
operation as it executes by a profiling operation.

6. The sample record is created when the sampled operation has finished execution.

D16.3.2 Generating random numbers for sampling

The random number generator is IMPLEMENTATION DEFINED. Implementations might use a pseudorandom number.
The random number generator must be reset into a useable state. An implementation might include
IMPLEMENTATION DEFINED registers to further configure the random number generator.

It is IMPLEMENTATION DEFINED whether the PE adds the random number to the sample interval counter prior to
counting down the interval, or after the counter reaches zero and the counter has been reloaded.

D16.3.3 Initializing the sample interval counters

When the PE moves from a state where profiling is disabled to a state where profiling is enabled:

• If PMSICR_EL1 is nonzero, then sampling restarts from the current values in PMSICR_EL1.

• If PMSICR_EL1 is zero, then it is loaded with an initial value. The behavior depends on PMSIRR_EL1.RND
and an IMPLEMENTATION DEFINED choice discoverable by a read of PMSIDR_EL1.ERnd.

— If PMSIRR_EL1.RND is 0:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

— If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7124
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.3 Controlling when an operation is sampled
— PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to
0xFF.

— If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

D16.3.4 Behavior of the sample interval counter while profiling is enabled

While profiling is enabled, the counters control when an operation is selected for sampling. The behavior depends
on PMSIRR_EL1.RND and an IMPLEMENTATION DEFINED choice discoverable in PMSIDR_EL1.ERnd.

D16.3.4.1 If PMSIRR_EL1.RND is 0:

While nonzero, the sample interval counter decrements by 1 for each member of the sample population. When the
counter reaches zero:

• A member of the sampling population is selected for sampling.

• The counter is set as follows:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

Note

Because the counter counts down to zero, when PMSIRR_EL1.RND is 0 the interval between operations being
selected for sampling is (INTERVAL×256+1).

D16.3.4.2 If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0

While nonzero, the sample interval counter decrements by 1 for each member of the sample population. When the
counter reaches zero:

• A member of the sampling population is selected for sampling.

• The counter is set as follows:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to 0xFF.

Note

When PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0, the mean interval between operations being selected
for sampling is (INTERVAL×256+128), if the random number generator is uniform.

D16.3.4.3 If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1

While nonzero, the primary sample interval counter decrements by 1 for each member of the sample population.
When the primary counter reaches zero:

• The primary sample interval counter is set as follows:

— PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.

— PMSICR_EL1.COUNT[7:0] is set to 0x00.

• The secondary sample interval counter, PMSICR_EL1.ECOUNT, is set to a random or pseudorandom value
in the range 0x00 to 0xFF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7125
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.3 Controlling when an operation is sampled
While the secondary sample interval counter is nonzero, the secondary sample interval counter decrements by 1 for
each member of the sample population. The primary sample interval counter also continues to decrement because
it is also nonzero.

When the secondary sample interval counter reaches zero, an operation is selected for sampling.

Note

When PMSIRR_EL1.RND is set to 1 and PMSIDR_EL1.ERnd is 1, the mean interval between operations being
selected for sampling is (INTERVAL×256+1), if the random number generator is uniform.

D16.3.5 Behavior of the sample interval counter while profiling is disabled

When profiling is disabled:

• No operations are selected for sampling.

• No sample records are collected.

• The sample interval counters retain their values and do not decrement.

D16.3.6 Where operations are sampled

The exact point in the sampled lifespan of operations at which operations are chosen for profiling is
IMPLEMENTATION DEFINED.

Note

Arm recommends that the point at which operations are sampled is linked to the definition of the Performance
Monitors Extension (PMU) STALL_FRONTEND and STALL_BACKEND events, so that sampling records
information for STALL_BACKEND stalls.

D16.3.7 Sample collisions

The maximum number of sampled operations that a PE can support simultaneously is IMPLEMENTATION DEFINED.
If the maximum number of simultaneous sampled operations has been reached at the point when a new operation
must be sampled, the new sample is said to have collided with a previous sampled operation.

The PE records the fact that a sampled operation has collided with another sampled operation. Software can also
count the number of collisions and gauge the impact of the collisions.

On a sample collision:

• The PMU event SAMPLE_COLLISION is generated.

• PMBSR_EL1.COLL is set to 1.

• The new operation is not sampled.

Following a Context synchronization event, an indirect write to PMBSR_EL1.COLL is guaranteed to be visible to
instructions in program order after the sampled operation that collided. There is no guarantee of visibility without
a Context synchronization event. For more information, see Synchronization and Statistical Profiling.

Note

This means that following a Context synchronization event PMBSR_EL1.COLL will not change on entry to a state
where profiling is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7126
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.4 Enabling profiling
D16.4 Enabling profiling

Profiling is enabled when all of the following are true:

• The PE is in AArch64 state.

• PMBLIMITR_EL1.E is 1 and PMBSR_EL1.S is 0.

• The PE is executing at either the Profiling Buffer owning Exception level or any lower Exception level.

• The PE is executing in the Profiling Buffer owning Security state.

• The PE is in Non-debug state.

• PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} enable profiling at the current
Exception level.

Note

The owning Security state is controlled by MDCR_EL3.{NSPBE, NSPB} and the owning Exception level is
controlled by MDCR_EL2.E2PB. See The owning translation regime.

PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} enable sampling by Exception level:

• In a guest operating system or Secure state, PMSCR_EL1.E1SPE enables profiling at EL1 and
PMSCR_EL1.E0SPE at EL0.

• In a hypervisor or host operating system, PMSCR_EL2.E2SPE enables profiling at EL2 and
PMSCR_EL2.E0HSPE at EL0.

• Sampling is always disabled at EL3.

Table D16-1 defines the valid combinations of the Effective values of SCR_EL3.NSE, SCR_EL3.NS,
SCR_EL3.EEL2, MDCR_EL3.NSPBE, MDCR_EL3.NSPB, MDCR_EL2.E2PB, and HCR_EL2.TGE that define
when sampling is enabled.

In Table D16-1:

D Disabled.

E2SPE Enabled if PMSCR_EL2.E2SPE == 1, disabled otherwise.

E1SPE Enabled if PMSCR_EL1.E1SPE == 1, disabled otherwise.

E0HSPE Enabled if PMSCR_EL2.E0HSPE == 1, disabled otherwise.

E0SPE Enabled if PMSCR_EL1.E0SPE == 1, disabled otherwise.

Table D16-1 Enabling by Exception level and Security state (for all Exception levels using
AArch64 state)

Controls Sampling enabled at

NSE NS NSPBE NSPB E2PB EEL2 TGE EL3 EL2 EL1 EL0

0 1 1 0b0x x x x D D D D

0 0b1x 0b1x x 0 D D E1SPE E0SPE

0b1x x 1 D D n/a D

0b00 x 0 D E2SPE E1SPE E0SPE

0b00 x 1 D E2SPE n/a E0HSPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7127
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.4 Enabling profiling
This is described in the pseudocode function StatisticalProfilingEnabled().

0 0 0 0b1x x x x D D D D

0b0x x 0 x D n/a E1SPE E0SPE

0b1x 1 0 D D E1SPE E0SPE

0b1x 1 1 D D n/a D

0b00 1 0 D E2SPE E1SPE E0SPE

0b00 1 1 D E2SPE n/a E0HSPE

1 0 1 0b0x x x x D D D D

0b1x 0b1x x 0 D D E1SPE E0SPE

0b1x x 1 D D n/a D

0b00 x 0 D E2SPE E1SPE E0SPE

0b00 x 1 D E2SPE n/a E0HSPE

Table D16-1 Enabling by Exception level and Security state (for all Exception levels using
AArch64 state) (continued)

Controls Sampling enabled at

NSE NS NSPBE NSPB E2PB EEL2 TGE EL3 EL2 EL1 EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7128
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.5 Filtering sample records
D16.5 Filtering sample records

PMSFCR_EL1.FT enables filtering by operation type. When enabled PMSFCR_EL1.{ST, LD, B} define the
collected types:

• ST enables collection of store sampled operations, including all atomic operations.

• LD enables collection of load sampled operations, including atomic operations that return a value to a
register.

• B enables collection of branch sampled operations, including direct and indirect branches and exception
returns.

When FEAT_GCS is implemented, an operation executing both a Branch and the Guarded Control Stack data access
is treated as both a branch and a load or store for the purposes of filtering.

Note

When micro-op sampling is implemented, filtering is based on the micro-op type.

Table D16-2 summarizes the controls for filtering by operation type. In this table:

Load Atomic Refers to atomic operations which return a value to a general-purpose register. Other atomic
operations are classed as Store.

D Indicates that the operation is discarded.

C Indicates that the operation is collected.

C/D Indicates it is CONSTRAINED UNPREDICTABLE whether the operation is collected or discarded.

PMSFCR_EL1.FE enables filtering by a set of events that are defined by PMSEVFR_EL1. When enabled, only
sampled operations with all the events in the filter set are recorded and written to the Profiling Buffer.

If FEAT_SPEv1p2 is implemented, PMSFCR_EL1.FnE enables filtering by a set of events that are defined by
PMSNEVFR_EL1. When enabled, only sampled operations with all the events in the filter clear are recorded and
written to the Profiling Buffer.

PMSFCR_EL1.FL enables filtering by total latency. PMSLATFR_EL1.MINLAT defines the minimum latency.
When enabled, only sampled operations with a total latency greater than or equal to the minimum latency are
recorded and written to the Profiling Buffer.

Table D16-2 Filtering by Operation type

PMSFCR_EL1 field Operation type

FT LD ST B Load Load Atomic Store Branch Other

0 X X X C C C C C

1 0 0 0 C/D C/D C/D C/D C/D

1 D D D C D

1 0 D C C D D

1 D C C C D

1 0 0 C C D D D

1 C C D C D

1 0 C C C D D

1 C C C C D
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7129
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.5 Filtering sample records
If FEAT_SPE_FDS is implemented, PMSFCR_EL1.FDS enables filtering by a data source mask defined by
PMSDSFR_EL1. When enabled, sampled load operations with a Data Source packet value DS are recorded only if
PMSDSFR_EL1[UInt(DS[5:0])] is 1. Load operations without a Data Source and other sampled operations are not
affected by PMSFCR_EL1.FDS and PMSDSFR_EL1.

Load operations without a Data Source and other sampled operations are not affected by PMSFCR_EL1.FDS and
PMSDSFR_EL1.

These controls combine together as a logical AND.

Example D16-1 Collection of sampled operations

If PMSFCR_EL1.FE is 1, PMSFCR_EL1.FnE is 0, PMSFCR_EL1.FT is 1, and PMSFCR_EL1.FL is 1, then only
sampled operations that meet all of the following criteria are recorded and written to the Profiling Buffer:

• The sampled operation is one of the selected operation types.

• The operation has all of the events in the filter set.

• The total latency is equal to or greater than the minimum latency.

This is described in the pseudocode function SPECollectRecord().

D16.5.1 Discard mode

FEAT_SPEv1p2 adds an operating mode, Discard mode, that allows all sampled operations to be discarded and not
written to the Profiling Buffer. Discard mode is enabled when PMBLIMITR_EL1.FM is 0b10, and has all of the
following effects:

• All profiling data is discarded after filtering.

• The PMBLIMITR_EL1.LIMIT and PMBPTR_EL1 fields are ignored. PMBPTR_EL1 does not increment
for each sampled operation.

• The restrictions on setting PMBLIMITR_EL1.LIMIT and PMBPTR_EL1 do not apply, see Restrictions on
the current write pointer.

• Buffer management events are not generated.

Other profiling behaviors are unchanged, including:

• The discarding of profiling data logically occurs after SAMPLE_FILTRATE and other PMU events are
counted.

• Sample collisions will still set PMBSR_EL1.COLL to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7130
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
D16.6 The profiling data

Unless otherwise stated, all sample records that are generated by a profiling operation contain:

• A timestamp, if enabled. This is one of:

— The physical counter, PhysicalCountInt().

— The offset physical counter, PhysicalCountInt() - CNTPOFF_EL2. When any of the following are
true, the Effective value of CNTPOFF_EL2 is 0 for all profiling purposes:

— EL3 is using AArch32.

— EL2 is not implemented.

— FEAT_ECV is not implemented.

— The Effective value of SCR_EL3.{NS,RW} is {1,0}.

— CNTHCTL_EL2.ECV is 0.

— SCR_EL3.ECVEn is 0.

— The virtual counter, (PhysicalCountInt() - CNTVOFF_EL2).

It is IMPLEMENTATION DEFINED how this timestamp relates to the sampled operation. It might be the time
when the sampled operation was taken or any later time during the lifetime of the sampled operation, that is,
up to the time when the sampled operation finishes execution.

If the Generic Timer system counter is disabled and timestamps are enabled, then it is IMPLEMENTATION
DEFINED whether:

— The SPU behaves as if timestamps are disabled.

— The timestamp that is collected in the sample record is UNKNOWN.

Note

This behavior describes when CNTCR.EN is 0, the Generic Timer system counter is disabled. This behavior
does not apply when the Generic Timer system counter is enabled but not accessible at the current Exception
level.

• The context, if enabled, which is one or more of:

— CONTEXTIDR_EL1.

— CONTEXTIDR_EL2.

— The Exception level.

— The Security state.

• Information about whether the sampled operation generated an exception:

— The target address for an exception generating operation is not collected.

• Information about whether the sampled operation was Architecturally executed.

If the sampled operation is Architecturally executed and does not generate an exception, the sample record also
contains:

• The PC virtual address for the sampled operation.

• Information about whether the sampled operation is a branch, a load, a load atomic, a store, or other.

• Information about whether the sampled operation is conditional, conditional select, or not.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7131
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
• The total latency, a cycle count from the start of the sampled operation up to the point where the operation
has finished execution and is no longer capable of stalling any instruction that consumes its output.

• The issue latency, a cycle count from the start of the sampled operation up to the point when at least one part
of the sampled operation starts executing. A sampled operation might be delayed, for example, because the
input operands were not available.

If the sampled operation is not Architecturally executed or generates an exception, it is UNPREDICTABLE whether the
record contains all or any of this information and the other information about the operation listed in this section and
the following subsections. For information on exceptions being taken in sampled operations, see Exceptions.

The architecture defines a set of additional data that is collected in the sample record for each sampled operation.
This is described in the following subsections, and comprises:

• Events, which are required to be implemented consistently with PMU Events. For more information, see
Chapter D17 Statistical Profiling Extension Sample Record Specification and Chapter D13 The Performance
Monitors Extension.

• Cycle counters. Cycle count values as described in this architecture, which, for a particular implementation,
are fixed with an IMPLEMENTATION DEFINED value, might be omitted from the sample record.

• Addresses.

In addition, the architecture permits IMPLEMENTATION DEFINED events, counters, and addresses to be collected.

D16.6.1 Information collected for micro-ops

Because architectural instructions might create zero, one, or more micro-ops, micro-ops might have different
characteristics from the architectural instructions they are created from. The data collected for each micro-op is
IMPLEMENTATION DEFINED. Implementations should collect the subset of data appropriate to the micro-op.

Example D16-2 Sampling of micro-ops

If an architectural load instruction is split into an address generation micro-op and a load micro-op, then when
generating the sample record and filtering based on operation type:

• If the address generation micro-op is sampled, the sampled operation is treated as other.

• If the load micro-op is sampled, the sampled operation is treated as a load.

D16.6.2 Additional information for each profiled branch or exception return

For an Architecturally executed sampled branch or exception return operation, the profiling operation records:

• The sampled operation type as an unconditional branch or a conditional branch. Sampled exception returns
are treated as unconditional branches by the Statistical Profiling Extension.

• If the branch is taken, the target virtual address of the branch. The target virtual address of the branch includes
the Exception level and Security state of the target. The target virtual address includes the Exception level
and Security state of the target. If the sampled operation is an illegal exception return, it is CONSTRAINED
UNPREDICTABLE whether the context information recorded in the target virtual address is the actual target
context, or the target context that is described by the SPSR.

• If the PE implements branch prediction, whether the branch was correctly predicted or mispredicted.

• Whether the branch was taken or not taken.

• Whether the branch was direct or indirect.

• If the branch is not taken, a target virtual address might be recorded. Software must treat this value if present
as UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7132
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
• If the optional behavior in FEAT_SPEv1p2 is implemented, the target address of the most recently executed
branch that was taken and retired in program order before the sampled operation.

• If FEAT_SPE_CRR is implemented, whether the branch was a branch with link, a procedure return, or
neither of these.

If an operation executes both a Branch and the Guarded Control Stack data access, then the following information
is recorded for a sampled operation:

• The Operation Type packet for the operation is Branch.

• The information for both the branch and the load or store is collected.

Note

A sampled operation that generates an exception is not treated as a branch.

It is IMPLEMENTATION DEFINED whether an ISB instruction is treated as a branch to the next instruction.

D16.6.2.1 Previous branch target

FEAT_SPEv1p2 adds an optional capability to record a packet for each event that provides the target address of the
previous taken branch. PMSIDR_EL1.PBT describes whether this feature is implemented.

When implemented, the profiling operation records the target address of the most recent branch that was taken and
retired in program order before the sampled operation.

It is IMPLEMENTATION DEFINED whether or not the profiling operation records the target address of the most recently
taken branch instruction in the following cases:

• The sampled operation is not a sampled retired taken branch operation.

• The most recently taken branch instruction was a Context synchronization operation, exception-generating
instruction, or exception return.

• No branch instruction has been retired, prior to the sampled operation, since the most recent Context
synchronization operation or taken exception.

The profiling operation does not record the target address of the most recently taken branch instruction in the
following cases:

• The most recently taken branch instruction was executed when profiling was disabled or prohibited.

• Either the most recently taken branch instruction or the sampled operation is still speculative.

D16.6.3 Additional information for each profiled memory access operation

For an Architecturally executed sampled load, store, or atomic operation that does not generate an exception, the
profiling operation records:

• The data virtual and, if enabled, physical addresses being accessed.

— If the applicable Top Byte Ignore (TBI) bit is set to one, the virtual address includes any top-byte tag.

— The physical address is the address the PE accesses in the physical address space, and so includes the
Secure address space identifier.

• The sampled operation type, which includes:

— Whether the sampled operation is a load, store, or atomic.

— When FEAT_SPEv1p3 and FEAT_MTE are implemented, whether the sampled operation is a Tag
load or store.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7133
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
— When FEAT_NV2 is implemented, whether the sampled operation is a System register access
transformed into a memory access.

— When FEAT_SPEv1p3 and FEAT_MOPS are implemented, whether the sampled operation is a
Memory Copy or Memory Set load or store.

— Whether the sampled operation is Load-Exclusive, Store-Exclusive or Load-acquire, Store-release.

— Whether the sampled operation accesses the general-purpose or SIMD&FP registers.

• The translation latency. Cycle count from a virtual address being passed to the MMU for translation to the
result of the translation being available.

• Whether the sampled operation accessed the Level 1 data cache and the result.

• Whether the sampled operation accessed the data TLB and the result.

• An optional record of whether the sampled operation accessed Last Level data cache and the result.

• An optional record of whether the sampled operation accessed another socket in a multi-socket system.

• An optional, IMPLEMENTATION DEFINED, indicator of the data source for a load. If the sampled operation
makes multiple accesses, it is IMPLEMENTATION DEFINED whether this indicator combines information for all
parts of the load or applies only for a chosen part of the load.

• If FEAT_SPEv1p1 is implemented, an optional indication that the sampled memory operation is non-optimal
for the access size. For more information, see Data Alignment Flag.

• If FEAT_SPEv1p2 is implemented, all of the following:

— An optional record of whether the sampled operation accessed the Level 2 data cache, and the result.

— An optional record of whether the sampled operation accessed the modified data in a cache, and
whether the sampled operation accessed a recently fetched cache line.

— An optional record of whether the sampled operation snooped data from a cache outside of the cache
hierarchy of this PE.

• If FEAT_GCS is implemented, whether the operation includes a Guarded Control Stack data access.

For each of the cache and another socket indicators, it is IMPLEMENTATION DEFINED and might be UNPREDICTABLE
whether this information is present for store accesses.

For more information, see Events packet.

Note

A store might be marked as not accessing a cache or another socket because it microarchitecturally finished before
doing so. For example, the write was placed into a write buffer. This behavior is IMPLEMENTATION DEFINED and
might change from time to time, and such events must be interpreted with care.

If the sampled load, store, or atomic operation performs multiple accesses, it is IMPLEMENTATION DEFINED whether
the implementation chooses to profile all of the access or a chosen part of that access.

If the implementation chooses to profile a chosen part of the access:

• It is IMPLEMENTATION DEFINED how the PE chooses the part of the access. The choice does not introduce any
systematic bias.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7134
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
Note

For an example of inadvertent systematic bias, consider an implementation where a multiple-register load
operation is split into multiple accesses. If the PE systematically chooses the first operation at the lower
address for sampling translation latency and data source indicator, and the operation is executed in a loop
with an incrementing address, then the first access has better spatial locality with preceding accesses than
later accesses and is more likely to both:

— Hit in the TLB, giving a shorter translation latency.

— Return data from the Level 1 data cache.

In this case, or if the PE systematically chooses the last access at the higher address, then sampling would be
biased.

• If the accesses are architecturally contiguous, it is further IMPLEMENTATION DEFINED whether the recorded
data virtual address is the lowest virtual address that is accessed by the sampled operation or applies to the
chosen part of the access.

• If the accesses are not architecturally contiguous, the recorded data virtual address applies for the chosen part
of the access.

• It is IMPLEMENTATION DEFINED whether the events and total operation latency apply to the whole operation
or the chosen part of the operation.

• The translation latency applies to the chosen part of the operation, and is the count of cycles for which the
chosen part of the operation is waiting for the MMU to complete an address translation.

Arm recommends that if the implementation chooses to profile a chosen part of the access, then the recorded
addresses, events, and total operation latency apply to the chosen access. That is, the PE behaves as if the chosen
part of the access is the sampled operation.

If the sampled load, store, or atomic operation performs a single access, or the implementation chooses to profile
all parts of a multiple access:

• If the accesses are architecturally contiguous, the recorded data virtual addresses is the lowest virtual address
that is accessed by the sampled operation.

• If the accesses are not architecturally contiguous, the recorded data virtual addresses apply for the chosen part
of the access.

• The events and total operation latency apply to the whole operation. For example, when recording whether
the sampled operation accessed the Level 1 data cache, the PE records whether any part of the access accessed
the Level 1 data cache, and the result, and the total operation latency applies from the issue of the operation
to the completion of all parts of the operation.

• The translation latency is an IMPLEMENTATION DEFINED choice between:

— The count of cycles for which at least one part of the operation is waiting for the MMU to complete
an address translation, and no part of the operation is accessing memory.

— The count of cycles for which at least one part of the operation is waiting for the MMU to complete
an address translation.

The sampled data physical address packet is not output if any of the following are true:

• The sampled operation operates on a virtual address and any of the following are true:

— The PE does not translate the address, for example because it does not perform the access.

— The sampled data virtual address packet is not output.

• Sampling of physical addresses is prohibited by System register controls.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7135
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
If AArch64.ExclusiveMonitorsPass() or AArch32.ExclusiveMonitorsPass() returns FALSE for a Store-Exclusive
instruction, it is IMPLEMENTATION DEFINED whether or not the physical address packet is output when permitted by
the above rules.

If a sampled virtual address packet is not output, or the PE does not perform the access, then all of the following
apply:

• It is IMPLEMENTATION DEFINED whether the Translation latency Counter packet for the load or store is either
not recorded, or recorded with a value of zero. If the access does not occur and the address is not translated,
the packet is not recorded.

• It is IMPLEMENTATION DEFINED whether the bits corresponding to the access in the Events packet are
recorded or always zero. If the access does not occur, these bits are zero.

D16.6.3.1 Additional effects when FEAT_MTE is implemented

If profiling is enabled, each Allocation Tag covers multiple locations in a Tag Granule. It is IMPLEMENTATION
DEFINED whether the implementation treats each Allocation Tag access as an access to the data location addressed
in the operation, or the whole Tag Granule. That is, whether the data virtual address associated with the sampled
access or chosen part of the access is the address of the location being accessed, or the lowest address covered by
the same Allocation Tag or Allocation Tags.

An instruction that loads or stores an Allocation Tag is treated as a load or store for the purpose of Statistical
Profiling.

When a sampled data access virtual address is from a context using Memory Tagging with Address tagging disabled,
the TAG byte in the Address packet payload holds bits[63:56] of the address.

If the operation is an access to an Allocation Tag or multiple Allocation Tags, the sampled data physical address has
two possibilities:

• The address generated from translating the sampled data virtual address.

• The address generated from translating the lowest address covered by the same Allocation Tag or Allocation
Tags.

If the two possibilities have different values, it is IMPLEMENTATION DEFINED which one is used as the sampled data
physical address. Otherwise, the sampled data physical address is the address generated from translating the
sampled data virtual address.

If FEAT_SPEv1p3 is implemented, instructions that load or store Allocation Tags are sampled using a dedicated
Operation Type packet subclass, (Tags load/store). See Operation Type packet payload (Load/store, general).

Note

Operations that store both Tags and data are recorded as store operations targeting the general-purpose registers or
targeting an unspecified registers subclass.

For more information, see Chapter D10 The Memory Tagging Extension.

D16.6.3.2 Additional effects when FEAT_NV2 is implemented

When the sampled operation is a System register access transformed into a memory access by the mechanism
described in Enhanced support for nested virtualization, the operation is recorded as an MRS or MSR operation at EL1
transformed into a load/store. If Statistical Profiling is disabled at EL2, the virtual address for the memory access is
not recorded.

D16.6.3.3 Additional effects when FEAT_MOPS is implemented

Memory Copy and Memory Set instructions are sampled as retired if they have started processing. This is true even
if the execution is not completed at the time of sampling, for example, due to an interrupt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7136
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
Memory Copy operations CPY and CPYF are sampled using Operation Type packet subclass (Memory Copy
load/store), and Memory Set operations SET and SETG are sampled using Operation Type packet subclass (Memory
Set load/store).

If a sampled Memory Copy operation performs both a load and a store, then the following are true:

• The sampled data virtual address is:

— The corresponding one of load and store addresses if the filter controls are set to sample only one of
load and store operations, respectively.

— An unbiased sampling of one of load and store addresses if the filter controls are set to sample both
load and store operations.

• The value of the LDST bit in the Operation Type packet is 0 if the source address is sampled, and 1 if the
destination address is sampled.

D16.6.3.4 Additional effects when FEAT_LS64, FEAT_LS64_V, and
FEAT_LS64_ACCDATA are implemented

FEAT_LS64, FEAT_LS64_V, and FEAT_LS64_ACCDATA add the LD64B, ST64B, ST64BV, and ST64BV0 instructions.
For SPE:

• LD64B is treated as a load.

• ST64B, ST64BV, and ST64BV0 are treated as stores. ST64BV and ST64BV0 are store with status result instructions
and might have performance properties similar to a Device memory load. Sampled ST64BV and ST64BV0
instructions might have the following additional behaviors normally associated with sampled loads:

— A Data Source packet is generated. This is optional for these instructions. For example, if the Data
Source packet can only describe Normal memory sources, then they are not relevant for these
instructions.

— The total latency counter for the sampled operation preferably includes cycles to the point where the
return value is returned to the PE.

Note

These behaviors are optional. The information in these packets might not be available or relevant for all
implementations.

D16.6.3.5 Additional effects when FEAT_GCS is implemented

If a sampled operation from GCSSS2 instruction performs both a load and a store, then the following is true:

• The sampled data virtual address is:

— The corresponding one of load and store addresses if the filter controls are set to sample only one of
load and store operations, respectively.

— An unbiased sampling of one of load and store addresses if the filter controls are set to sample both
load and store operations.

• The value of the LDST bit in the Operation Type packet payload depends on the address sampled:

— If the source address is sampled, the value is 0.

— If the destination address is sampled, the value is 1.

For an operation executing both a Branch and the Guarded Control Stack data access, if one of the branch and load
or store is filtered out, the sampled operation will continue to record the information for both operations. For
example, the Total latency packet or Issue latency packet includes the latencies of both the branch and the load or
store operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7137
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
D16.6.3.6 Data Alignment Flag

If FEAT_SPEv1p1 is implemented Events packet.E[11] is set to 1 for a sampled memory operation if the address
alignment is non-optimal for the access size.

Address alignment is defined as non-optimal if that access incurs an additional performance penalty only because
of the address alignment, and is unrelated to whether the access is architecturally misaligned for the access size.

Example D16-3 Data Alignment Flag operation

• A 32-bit word access that is not word aligned is architecturally misaligned, but (if Alignment faults are
disabled) might not incur an additional penalty because of this alignment unless the word also happens to
span a cache-line boundary.

• A contiguous load operation that loads a vector that is the length of two cache lines is optimally aligned if it
has cache-line alignment, even though the operation makes two cache line accesses.

• A non-contiguous SVE load operation that makes a sequence of access is optimal only if all of the access are
optimal.

The definition of non-optimal is IMPLEMENTATION DEFINED and support for the Alignment Flag is OPTIONAL.

D16.6.4 Additional information for each profiled conditional instruction

For an Architecturally executed sampled conditional operation that finishes execution, the profiling operation
records:

• That the sampled operation was conditional.

• Whether the condition passed or failed.

A conditional compare operation is treated as a conditional operation.

It is IMPLEMENTATION DEFINED which conditional select operations (both integer and floating-point), including
general-purpose, SIMD&FP, and SVE operations, are treated as conditional:

• Conditional select.

• Conditional select increment.

• Conditional select negate.

• Conditional select invert operations.

Predicated SVE operations are not conditional operations, as the conditionality of the operation is controlled by a
predicate.

Micro-ops might have different characteristics from the architectural instructions they are created from. See
Information collected for micro-ops for more information.

Note

If the implementation samples architectural instructions, for some alias instructions, the alias specifies the opposite
condition to the machine instruction that they alias. For example, CSET and CSETM. The event as captured by SPE
always captures the result of the machine instruction, not the alias.

For conditional branches, see Additional information for each profiled branch or exception return.

D16.6.5 Additional information for each profiled Scalable Vector Extension operation

When FEAT_SPEv1p1 and SVE are implemented, SVE operations are sampled as described in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7138
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
In this section the following terms are used:

Maximum implemented SVE vector length

Means the implemented width of the vector registers. This value is IMPLEMENTATION DEFINED.

Effective SVE vector length

Means the accessible width of the SVE vector registers at the current Exception level, as constrained
by the ZCR_EL1, ZCR_EL2 or ZCR_EL3 System registers. The Effective SVE vector length is
always less-than-or-equal-to the Maximum implemented SVE vector length.

Sampled SVE operation

Means an instruction in SVE Instruction Descriptions and sampled by the SPU that has a vector or
a predicate as an input or output. This includes instructions with scalar outputs, but excludes the
Non-SIMD SVE instructions.

If an implementation samples micro-operations, then it is IMPLEMENTATION DEFINED, and might
vary between operation types, whether an operation for which all the following are true is treated as
a Sampled SVE operation or the equivalent Advanced SIMD operation:

• The Effective SVE vector length is 128 bits.

• The operation is unpredicated, and does not have a predicate register as an input or output.

• The operation has an equivalent Advanced SIMD operation.

This includes SVE load and store operations where an equivalent Advanced SIMD operation is
defined.

Sampled operation vector

Means the portion of the accessible vector operated on by the Sampled SVE operation.

Sampled Effective vector length

Is the length of the Sampled operation vector.

Note

The Effective SVE vector length is always quantized into a power of two. However, the Sampled
operation vector can be any size down to the element size of the operation.

Sampled predicated SVE operation

Means a Sampled SVE operation that is one of:

• An SVE operation that writes to a vector destination register under a Governing predicate
using either zeroing or merging predication.

• A predicated store of a vector register or registers.

For an implementation that samples micro-operations, an SVE instruction might be split up into one
or more micro-operations, some of which are predicated and some of which are not predicated.

Note

Sampled predicated SVE operation excludes operations that do not write a vector register, or do so but not using
zeroing or merging predication, and applies to machine instructions rather than aliases. For example, the following
instructions are not predicated SVE instructions under this definition:

• CNTP, LASTA, and PTRUE do not write to vector registers.

• FADDV, and SMAXV write scalar values to SIMD&FP registers.

• COMPACT and SEL (vectors) write to vector registers, and have a predicate operand, but do not use that
predicate as a Governing predicate for zeroing or merging predication.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7139
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
• MOV (vector, predicated) appears to be a predicated SVE instruction because it specifies merging predication
through the <PG>/M operand, but it is actually an alias for the SEL (vectors) instruction.

If an implementation samples micro-operations, it is IMPLEMENTATION DEFINED whether individual elements, or
groups of elements, are treated as single micro-operations.

The division of instructions into micro-operations must be fixed prior to sampling to guarantee consistently accurate
statistical sampling.

Example D16-4 Vector length

To support a vector length of 1024 bits, an implementation might split all instructions into four micro-operations on
256-bit vector paths. The implementation must, however, implement 1024-bit wide vector registers.

This behavior might vary based on operation type. For example, an implementation that has a full-width data-path
for most operations might choose to break certain complex operations, such as non-contiguous load or stores, into
shorter vectors.

Example D16-5 Effective SVE vector length less-than the Maximum implemented

To support an Effective SVE vector length less-than the Maximum implemented SVE vector length, an
implementation might choose to do all operations at the Maximum implemented SVE vector length and discard the
results above the Effective SVE vector length. Discarded results, arising from difference between Maximum
implemented SVE vector length and Effective SVE vector length, do not form part of the sampled operation and the
Sampled Effective vector length must not include any discarded portions of the vector.

Results discarded because of predication are part of the sampled operation.

For a sampled SVE cache prefetch operation:

• The profiling operation captures an IMPLEMENTATION DEFINED subset of the information captured for an SVE
load instruction.

• The profiling operation treats the operation type as Other when generating the sample records and filtering
based on operation.

• It is IMPLEMENTATION DEFINED whether the operation is treated as a Sampled SVE operation:

— If treated as a Sampled SVE operation, the Operation Type packet payload format is the Operation
Type packet.

— If not treated as a Sampled SVE operation, the Operation Type packet format is the Operation Type
packet payload (Data processing, SVE vector).

For a Sampled SVE operation, the Operation Type packet is one of:

• The SVE operation format.

• The SVE load or store format.

For a Sampled SVE operation, the Operation Type packet.EVL field records an upper bound on the Sampled
Effective vector length. The value recorded in the Operation Type packet.EVL field is the Sampled Effective vector
length rounded up to a power-of-two value.

For a Sampled SVE operation that is a Sampled predicated SVE operation;

• Operation Type packet.PRED, Predicated SVE operation, is set to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7140
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
• If any elements in the Sampled operation vector are Inactive elements, then Events packet.E[17], Partial
predicate, is set to 1.

• If all elements in the Sampled operation vector are Inactive elements, then Events packet.E[18],Empty
predicate, is set to 1 and Events packet.E[17] (Partial predicate) is set to 1.

• If all elements in the Sampled operation vector are Active elements then Events packet.E[18:17] is set to 0b00.

For a Sampled SVE operation that is not a Sampled predicated SVE operation:

• Operation Type packet.PRED, Predicated SVE operation, is set to 0.

• Events packet.E[18:17] is set to 0b00.

For a sampled non-contiguous SVE load or store operation that makes multiple memory accesses, the sampled data
virtual address is the address accessed by a random one of the load or store operations chosen from the Sampled
operation vector. If the chosen load or store operation is for an Inactive element, the data virtual address packet is
not output.

For more information on memory access operations, see Additional information for each profiled memory access
operation.

For a sampled contiguous SVE load or store operation that makes multiple memory accesses, the sampled data
virtual address is an IMPLEMENTATION DEFINED choice of:

• The address accessed for the lowest element in the Sampled operation vector.

• The address used for the access containing the lowest Active element in the Sampled operation vector.

If the corresponding element is an Inactive element, it is IMPLEMENTATION DEFINED whether the data virtual address
packet is output.

D16.6.6 Sample operation records for misspeculated and non-architectural operations

It is IMPLEMENTATION DEFINED whether each of the following operations is part of the sample population:

• Operations on misspeculated paths.

• Operations that do not relate to any architecture instruction.

If the operation is part of the sample population, it is further IMPLEMENTATION DEFINED whether the sample record
for the sampled operation is captured in the Profiling Buffer. For more information, see Operations that might be
excluded from the sample population.

If such an operation is part of the sample population and the sample record is captured in the Profiling Buffer, then
some information for the operation might not be present. However, the Events packet and either the End packet or
the Timestamp packet is always output. Neither event 0 (generated exception) nor event 1 (architecturally retired)
will be set in the Events packet.

The record must not contain information that cannot be accessed by privileged software of the owning Exception
level.

D16.6.7 Additional information for other operations

For cache maintenance operations by virtual address, cache prefetch, other than SVE cache prefetch, or address
translation instructions, the profiling operation:

• Captures an IMPLEMENTATION DEFINED subset of the information captured for a load instruction.

• Treats the operation type as other when generating the sample record and filtering based on operation type.

See Filtering sample records, Operation Type packet and Additional information for each profiled Scalable Vector
Extension operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7141
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
D16.6.8 Controlling the data that is collected

Certain data in sample records is collected only if permitted by one or both of EL1 and EL2. This is to restrict
exposure of data to a lower Exception level or to Non-secure state.

CONTEXTIDR_EL1 is collected only if PMSCR_EL1.CX is set to 1, the PE is executing at EL1 or EL0 and any
of the following are true when an operation is sampled:

• EL2 is not implemented.

• FEAT_SEL2 is implemented and EL2 is disabled for the current Security state.

• The Effective value of HCR_EL2.TGE is 0.

CONTEXTIDR_EL2 is collected only if the Effective value of PMSCR_EL2.CX is 1 and EL2 is implemented and
enabled for the current Security state.

This is described in the pseudocode functions CollectContextIDR1() and CollectContextIDR2().

Timestamps are collected only if one of the following is true:

• PMSCR_EL1.TS is set to 1 and the Profiling Buffer is owned by EL1.

• PMSCR_EL2.TS is set to 1 and the Profiling Buffer is owned by EL2.

The timestamp is a choice between:

• Physical time, which is defined by the physical count value returned by PhysicalCountInt().

• If FEAT_ECV is implemented, offset physical time, which is defined as the value of (PhysicalCountInt() -
CNTPOFF_EL2). However, the physical offset is treated as zero if FEAT_ECV is disabled.

• Virtual time, which is defined as the value of (PhysicalCountInt() - CNTVOFF_EL2). However, the virtual
offset is treated as zero if a read of CNTVCT_EL0 at the current Exception level would treat the virtual offset
as zero.

Table D16-3 summarizes the choice of value for the Timestamp packet when FEAT_ECV is implemented and
StatisticalProfilingEnabled() is TRUE. In Table D16-3:

Owning EL This is the Exception level that owns the Profiling Buffer. This is returned by the function
ProfilingBufferOwner(). If EL2 is disabled in the current Security state, this is always EL1.

EL2 enabled This is TRUE when EL2 is enabled in the current Security state. When EL2 is disabled in the current
Security state, this is FALSE.

Virtual offset If any of the following are true, the virtual offset is zero, otherwise the virtual offset is the value of
CNTVOFF_EL2:

• The Effective value of HCR_EL2.E2H is 1, and the sampled operation was executed at EL2.

• The Effective values of HCR_EL2.{E2H, TGE} is {1, 1}, and the sampled operation was
executed at EL0.

Physical offset If any of the following are true, the physical offset is zero, otherwise the physical offset is the value
of CNTPOFF_EL2:

• EL2 is not implemented.

• FEAT_ECV is not implemented.

• CNTHCTL_EL2.ECV is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7142
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
• SCR_EL3.ECVEn is 0.

If EL2 is not implemented, see the register descriptions of PMSCR_EL1.PCT and PMSCR_EL2.PCT for details of
their behavior. This behavior is described by the pseudocode function CollectTimeStamp().

Physical data addresses are collected only if one of the following is true:

• PMSCR_EL1.PA is set to 1 and the Profiling Buffer is owned by Secure EL1, and Secure EL2 is disabled or
is not implemented.

• PMSCR_EL2.PA is set to 1 and the Profiling Buffer is owned by Secure or Non-secure EL2.

• PMSCR_EL1.PA is set to 1 and PMSCR_EL2.PA is set to 1 and either the Profiling Buffer is owned by
Non-secure EL1, or the Profiling Buffer is owned by Secure EL1 and Secure EL2 is implemented and
enabled.

If EL2 is not implemented or is disabled for the current Security state, the PE behaves as if PMSCR_EL2.PA is set
to 1, other than for a direct read of the register.

Physical data address collection is described by the pseudocode function CollectPhysicalAddress().

Enabling collection of the physical data addresses has an IMPLEMENTATION DEFINED impact on the sampled
operation.

D16.6.9 Exceptions

All sample records written to the Profiling Buffer contain the Events packet and either the End packet or the
Timestamp packet.

If the sampled operation generates an exception condition, it is UNPREDICTABLE whether the sample record contains
any other information. This includes operations that generate faults or other exception conditions but do not
generate exceptions. For example:

• An instruction on a misspeculated path.

• A load operation that is part of a Non-fault load instruction or is not the First active element of a First-fault
load instruction that generates an MMU fault or watchpoint.

• An address translation operation or prefetch instruction that generates an MMU fault.

Table D16-3 Recorded timestamp when FEAT_ECV is implemented

EL2 enabled Owning EL
PMSCR_EL2 PMSCR_EL1

Recorded timestamp
PCT[1:0] TS PCT[1:0] TS

x EL1 xx x xx 0 None

0b00 1 PhysicalCountInt() - virtual offset

FALSE EL1 xx x 0b01 1 PhysicalCountInt()

0b11 1 PhysicalCountInt() - physical offset

TRUE EL1 0b00 x xx 1 PhysicalCountInt() - virtual offset

0b01 x 0b01 1 PhysicalCountInt()

0b11 1 PhysicalCountInt() - physical offset

0b11 x 0b01 1 PhysicalCountInt() - physical offset

0b11 1 PhysicalCountInt() - physical offset

EL2 xx 0 xx x None

0b00 1 xx x PhysicalCountInt() - virtual offset

0b01 1 xx x PhysicalCountInt()

0b11 1 xx x PhysicalCountInt() - physical offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7143
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.6 The profiling data
Where a sampled operation generates an exception and the type of exception means that a particular item is not
computed by the sampled operation, that information is not collected by the profiling operation. For more
information, see Synchronization and Statistical Profiling.

Example D16-6 Translation Faults

If a sampled operation generates a Translation Fault, the physical address for the sampled operation was not
generated by the MMU and cannot be recorded.

D16.6.9.1 Non-architectural exceptions

It is IMPLEMENTATION DEFINED whether operations that generate non-architectural exceptions are part of the sample
population. If such an operation is part of the sample population, it is further IMPLEMENTATION DEFINED whether
the sample record for a sampled operation that generates a non-architectural exception is captured in the Profiling
Buffer. For more information, see Operations that might be excluded from the sample population.

If such an operation is part of the sample population and the sample record is captured in the Profiling Buffer, then
the sample might record handling of the non-architectural exception. If the sample record does not record handling
of the non-architectural exception, then the sampled operation is not Architecturally executed because of the
non-architectural exception and it is recorded using E[1] == 0 (operation is not architecturally executed) in the
Events packet. Bit E[0] (operation generated an exception) might be used to indicate the operation did not complete
because of the non-architectural exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7144
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.7 The Profiling Buffer
D16.7 The Profiling Buffer

When the SPU is not in Discard mode, profile data is collected in a memory Profiling Buffer. The Profiling Buffer
is defined by:

• PMBPTR_EL1, the current write pointer.

• PMBLIMITR_EL1, the write limit pointer.

The Profiling Buffer starts at the current write pointer and extends to the current limit pointer minus one. The write
limit pointer must be aligned to the smallest implemented translation granule size. The alignment of the current
write pointer is IMPLEMENTATION DEFINED.

PMBLIMITR_EL1 and PMBPTR_EL1 are virtual addresses in the stage 1 translation regime of the owning
Exception level in the owning Security state. This is called the owning translation regime.

Note

The translation of virtual addresses to physical addresses is identical to that for any other virtual address in the
owning translation regime. For example, PMBPTR_EL1[63:56] are ignored by address translation if the respective
TBI bit is set to 1.

D16.7.1 Restrictions on the current write pointer

This section describes the software rules on setting the current write pointer, PMBPTR_EL1. If these rules are not
followed, the value returned for a direct read of PMBPTR_EL1 is UNKNOWN, the behavior is UNPREDICTABLE, and
the PE might do any of the following at any point after profiling is enabled:

• Write sample records to any virtual address that is writable at the owning Exception level in the owning
translation regime.

• Generate a Profiling Buffer management event, with or without indicating data loss, for one of the following
reasons:

— The Profiling Buffer is full.

— Any MMU Fault.

When profiling becomes enabled, all the following must be true:

• The current write pointer must be at least one sample record below the write limit pointer. That is:

UInt(PMBPTR_EL1.PTR) <= UInt(PMBLIMITR_EL1.LIMIT:Zeros(12)) - 2PMSIDR_EL1.MaxSize.

• PMBPTR_EL1.PTR[63:56] must equal PMBLIMITR_EL1.LIMIT[63:56].

When the Profiling Buffer is first configured, PMBPTR_EL1.PTR must be aligned to PMBIDR_EL1.Align. That
is, if PMBIDR_EL1.Align is nonzero, PMBPTR_EL1.PTR [UInt(PMBIDR_EL1.Align)-1:0] must be all zeros.

However, the current write pointer can usually be restored to the saved write pointer value it had when profiling was
disabled, providing a PSB and a Context synchronization event were executed before reading PMBPTR_EL1:

• If no Profiling Buffer management event was signaled then profiling can be restarted from the saved write
pointer. In this case, the saved write pointer points within one sample record of the write limit pointer.

• If a Profiling Buffer management event was signaled then:

— If PMBSR_EL1.S is restored to 1, then profiling is not being enabled, and there are no constraints on
the value written to PMBPTR_EL1.

— If PMBSR_EL1.S is restored to 0, and the Profiling Buffer management event was caused by an MMU
fault, profiling can be restarted from the saved write pointer; if PMBSR_EL1.{EA, DL} did not also
indicate an External abort or data loss, and the saved write pointer is at least one sample record below
the write limit pointer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7145
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.7 The Profiling Buffer
Note

If a signaled MMU fault has not been corrected, the SPU generates a new MMU fault Profiling Buffer
management event when it next tries to write a sample record.

— If PMBSR_EL1.S is restored to 0, and the Profiling Buffer management event was caused by a buffer
full event, the Profiling Buffer can be extended and profiling restarted from the saved write pointer; if
PMBSR_EL1.{EA, DL} did not also indicate an External abort or data loss and the saved write pointer
is at least one sample record below the extended write limit pointer.

The current write pointer must not be restored from the saved write pointer following a Profiling Buffer
management event if PMBSR_EL1.DL was set to 1.

The saved write pointer might not be aligned to 2PMBIDR_EL1.Align and might point to within one sample record of
the write limit pointer.

For more information, see Synchronization and Statistical Profiling.

D16.7.2 The owning translation regime

The owning translation regime is defined by the owning Security state and the owning Exception level.

When the Statistical Profiling Unit is enabled, the owning Security state is:

• Non-secure state if and only if one of the following is true:

— EL3 is not implemented and the PE executes in Non-secure state.

— FEAT_RME is not implemented, EL3 is implemented, and MDCR_EL3.NSPB is either 0b10 or 0b11.

— FEAT_RME is implemented and MDCR_EL3.{NSPBE, NSPB} is either {0b0, 0b10} or {0b0, 0b11}.

• Secure state if and only if one of the following is true:

— EL3 is not implemented and the PE executes in Secure state.

— FEAT_RME is not implemented, EL3 is implemented, and MDCR_EL3.NSPB is either 0b00 or 0b01.

— FEAT_RME is implemented, Secure state is implemented, and MDCR_EL3.{NSPBE, NSPB} is
either {0b0, 0b00} or {0b0, 0b01}.

• Realm state if and only if all of the following are true:

— FEAT_RME is implemented.

— MDCR_EL3.{NSPBE, NSPB} is either {0b1, 0b10} or {0b1, 0b11}.

When the Statistical Profiling Unit is enabled, the owning Exception level is:

• EL1 if and only if at least one of the following is true:

— EL2 is not implemented in the owning Security state.

— EL2 is disabled in the owning Security state.

— MDCR_EL2.E2PB is either 0b10 or 0b11.

• EL2, if and only if all of the following are true:

— EL2 is implemented and enabled in the owning Security state.

— MDCR_EL2.E2PB is 0b00.

When the Statistical Profiling Unit is enabled and the owning Exception level is EL1, all of the following apply:

• The owning translation regime is EL1&0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7146
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.7 The Profiling Buffer
• The Profiling Buffer addresses are virtual addresses using the current ASID from TTBRx_EL1.

• The intermediate physical addresses from the output of stage 1 are subject to stage 2 translation using the
current VMID if EL2 is implemented and enabled, and HCR_EL2.VM is 1.

• Profiling is disabled at the following Exception levels:

— EL3.

— EL2.

— EL0, if EL2 is implemented and enabled and HCR_EL2.TGE is 1.

When the Statistical Profiling Unit is enabled and the owning Exception level is EL2, all of the following apply:

• If HCR_EL2.E2H is 0, the owning translation regime is EL2.

• If HCR_EL2.E2H is 1, the owning translation regime is EL2&0.

• If HCR_EL2.E2H is 0, the Profiling Buffer addresses are virtual addresses in the EL2 translation regime.

• If HCR_EL2.E2H is 1, the Profiling Buffer addresses are virtual addresses in the EL2&0 translation regime
using the current ASID from TTBRx_EL2.

• Profiling is disabled at EL3.

When the Statistical Profiling Unit is enabled, all of the following apply:

• If the owning Security state is Non-secure state, profiling is disabled in Secure and Realm states.

• If the owning Security state is Secure state, profiling is disabled in Non-secure and Realm states.

• If the owning Security state is Realm state, profiling is disabled in Non-secure and Secure states.

If FEAT_MEC is implemented, accesses made by the Statistical Profiling Unit to the profiling buffer are associated
with a MECID that is determined by the owning translation regime, owning Security state, and owning Exception
level, as defined in Memory Encryption Contexts extension.

D16.7.2.1 Summary of the owning translation regime

Profiling is disabled if any of the following are true:

• The owning Exception level is using AArch32 state.

• PMBLIMITR_EL1.E is 0.

Table D16-4 summarizes the owning translation regime. In this table:

E is the value of PMBLIMITR_EL1.E.

NSE is the Effective value of SCR_EL3.NSE.

NS is the Effective value of SCR_EL3.NS.

NSPBE is the Effective value of MDCR_EL3.NSPBE.

NSPB is the Effective value of MDCR_EL3.NSPB.

E2PB is the Effective value of MDCR_EL2.E2PB.

EEL2 is the Effective value of SCR_EL3.EEL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7147
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.7 The Profiling Buffer
E2H is the Effective value of HCR_EL2.E2H.

D16.7.3 Memory access types and coherency

Writes to any Device memory type by the SPU occur once.

The memory type and attributes that are used for a write by the SPU to the Profiling Buffer is taken from the
translation table entries for the virtual address being written to. That is:

• The writes are treated as coming from an observer that is coherent with all observers in the Shareability
domain that is defined by the translation tables.

• There is no requirement to manage coherency for observers in the same Shareability domain but coherency
for other observers in the system might require explicit management.

For more information, see Synchronization and Statistical Profiling.

If FEAT_MTE2 is implemented, a PE will generate a Tag Unchecked access for each access to the Profiling Buffer
as part of writing a sample record.

For more information on FEAT_MTE2, see Chapter D10 The Memory Tagging Extension.

Writes to the Profiling Buffer are made as privileged writes within the owning translation regime. However, the
value of PSTATE.PAN is ignored for these writes and treated as zero, see Faults and watchpoints.

This means that if FEAT_E0PD is implemented, the values of TCR_ELx.E0PDy, where ELx is the owning
Exception level, do not apply to accesses to the Profiling Buffer made by the SPU.

Table D16-4 Summary of owning translation regime (for all Exception levels using AArch64 state)

E NSE NS EEL2 NSPBE NSPB E2PB E2H Owning translation regime

0b0 x x x x x x x Disabled

0b1 0b0 0b0 0 0b0 0b0x x x Secure EL1&0

0b1 0b0 0b0x 0b1x x Secure EL1&0

0b00 0b0 Secure EL2

0b1 Secure EL2&0

x 0b0 0b1x x x Disabled in Secure state

0b1 x 0b0 0b1x 0b1x x Non-secure EL1&0

0b00 0b0 Non-secure EL2

0b1 Non-secure EL2&0

0b0x x x Disabled in Non-secure state

0b1 0b1 x 0b1 0b1x 0b1x x Realm EL1&0

0b00 0b0 Realm EL2

0b1 Realm EL2&0

0b0x x x Disabled in Non-secure state

x x x x 0b1 0b0x x x Reserved
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7148
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.7 The Profiling Buffer
D16.7.4 Memory access and crossing page boundaries

A memory access from the SPU that crosses a page boundary to a memory location that has a different memory type
or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the implementation
performs one of the following behaviors:

• Each memory access generated by the SPU uses the memory type and Shareability attribute associated with
its own address.

• The access generates an Alignment fault caused by the memory type:

— If only the stage 1 translation generated the mismatch, or there is only one stage of translation in the
owning translation regime, the resulting Buffer Management event is a stage 1 Data Abort.

— If only the stage 2 translation generated the mismatch, the resulting Buffer Management event is a
stage 2 Data Abort.

— If both stages of translation generate the mismatch, the resulting Buffer Management event is either a
stage 1 Data Abort or a stage 2 Data Abort.

• Some or all of the data is discarded. The write pointer is either updated by the amount of data written not
including the discarded data or the amount of data written including the discarded data.

A memory access from the SPU to Device memory that crosses a boundary corresponding to the smallest translation
granule size of the implementation causes CONSTRAINED UNPREDICTABLE behavior. In this case, the implementation
performs one of the following behaviors:

• All memory accesses generated by the SPU are performed as if the boundary has no effect on the memory
accesses.

• All memory accesses generated by the SPU are performed as if the boundary has no effect on the memory
accesses except that there is no guarantee of ordering between memory accesses.

• The access generates an Alignment fault caused by the memory type:

— If only the stage 1 translation causes the boundary to be crossed, or there is only one stage of
translation in the owning translation regime, the resulting Buffer Management event is a stage 1 Data
Abort.

— If only the stage 2 translation causes the boundary to be crossed, the resulting Buffer Management
event is a stage 2 Data Abort.

— If both stages of translation cause the boundary to be crossed, the resulting Buffer Management event
is either a stage 1 Data Abort or a stage 2 Data Abort.

• Some or all of the data is discarded. The write pointer is either updated by the amount of data written not
including the discarded data or the amount of data written including the discarded data.

Note

The boundary referred to is between two Device memory regions that are both:

• Of the size of the smallest implemented translation granule.

• Aligned to the size of the smallest implemented translation granule.

If PMSIDR_EL1.MaxSize indicates the same value as PMBIDR_EL1.Align, then records are a fixed power-of-two
size and never cross a page boundary.

D16.7.5 Cache and TLB operations

TLB maintenance operations that affect the TLB of the PE also affect any TLB caching translations for the SPU of
that PE.

Cache maintenance operations that affect the caches of the PE also affect data caching by the SPU of that PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7149
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.7 The Profiling Buffer
This means that the completion of any cache or TLB maintenance instruction includes its completion on all SPUs
for PEs that are affected by both the instruction and the DSB operation that is required to guarantee visibility of the
maintenance instruction. See Completion and endpoint ordering.

D16.7.6 Effect on the exclusive monitors

If a Load-exclusive instruction or an operation between Load-exclusive and Store-exclusive instructions is sampled,
and the sample record is written to an unrelated address, then to avoid a probe effect, Arm recommends that the
Store-exclusive does not systematically fail on account of the sampled operation.

If a Store-exclusive instruction is sampled, and the sample record is written to an unrelated address, then the
Store-exclusive must not systematically fail on account of the instruction having been sampled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7150
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.8 Profiling Buffer management
D16.8 Profiling Buffer management

A Profiling Buffer management event occurs:

• On a fault, see Faults and watchpoints.

• On an External abort, see External aborts.

• When the Profiling Buffer fills, see Buffer full event.

• When the access is not allowed for other reasons, see Access not allowed.

• For IMPLEMENTATION DEFINED reasons, see Implementation defined reason.

Note

The Profiling Buffer management event behavior differs from that of the FEAT_TRBE trace buffer management
event.

On a Profiling Buffer management event:

• The service bit, PMBSR_EL1.S, is set to 1.

• The data loss bit, PMBSR_EL1.DL, is set as described in the event description.

• The Profiling Buffer management interrupt request signal, PMBIRQ, is asserted:

— PMBIRQ is a level-sensitive interrupt request driven by PMBSR_EL1.S. This means that a direct
write that sets PMBSR_EL1.S to 1 causes the interrupt to be asserted, and PMBIRQ remains
asserted until software clears PMBSR_EL1.S to 0.

— If a Generic Interrupt Controller (GIC) is implemented, PMBIRQ must be configured as a Private
Peripheral Interrupt (PPI) in a multiprocessor system. PMBIRQ is signaled by the PE that implements
the SPU.

Note

A standard PPI number is allocated by the Arm® Base System Architecture (BSA).

• Additional syndrome for the event is written to PMBSR_EL1.MSS. Unless otherwise stated in the event
description, other PMBSR_EL1 fields are unchanged.

While PMBSR_EL1.S is set to 1:

• The buffer is disabled and profiling is disabled.

• All remaining buffered sample records are discarded.

• The values in PMBPTR_EL1 are retained and PMSICR_EL1 does not decrement.

Buffer full events and MMU fault Profiling Buffer management events are reported synchronously.

Note

Reported synchronously means that profiling is disabled before the SPU samples further operations. The interrupt
exception resulting from asserting the Profiling Buffer interrupt request is an asynchronous exception.

It is IMPLEMENTATION DEFINED whether External aborts are reported to the SPU synchronously or asynchronously.
If External aborts are reported as asynchronous:

• The External abort might not be received until after a first Profiling Buffer management event has set
PMBSR_EL1.S to 1.

• Writes to the buffer might generate a second Profiling Buffer management event after the External abort has
set PMBSR_EL1.S to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7151
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.8 Profiling Buffer management
The architecture does not require that a sample record is written sequentially by the SPU, only that:

• The SPU never writes past the PMBLIMITR_EL1 limit pointer.

• On a Profiling Buffer management interrupt, PMBSR_EL1.DL indicates whether PMBPTR_EL1 points to
the first byte after the last complete sample record.

• On an MMU fault or synchronous External abort, PMBPTR_EL1 serves as a Fault Address Register.

Note

• This means that it must not be assumed that:

— There is ever any valid data beyond the current PMBPTR_EL1 write pointer.

— The PE has not written a valid sample record between the current PMBPTR_EL1 write pointer and the
PMBLIMITR_EL1 limit pointer.

— If PMBSR_EL1.DL is set to 1 on a Profiling Buffer management interrupt, that there is any valid data
between the end of the last complete sample record and the current PMBPTR_EL1 write pointer.

— Any valid data has been written to the Profiling Buffer if an External abort is reported asynchronously
to the SPU.

• The last complete sample record must end at most 2(PMSIDR_EL1.MaxSize) bytes below PMBPTR_EL1.

D16.8.1 Prioritization of Profiling Buffer management events

Where multiple synchronous Profiling Buffer management events occur on writing a sample record, the PE
prioritizes them as follows (from highest to lowest priority):

1. Synchronous fault.

2. Synchronous External abort.

3. Buffer full event.

Asynchronous External aborts are not prioritized with respect to other events.

Note

Prioritization of Profiling Buffer management interrupt requests is managed by the interrupt controller. Profiling
Buffer management events are prioritized internally by the PE.

D16.8.2 Buffer full event

If, after writing a sample record, there is not sufficient space in the Profiling Buffer for a sample record of the size
indicated by PMSIDR_EL1.MaxSize, and PMBSR_EL1.S is 0, a Profiling Buffer management event is generated:

• PMBSR_EL1.EC is set to 0b000000, other buffer management event.

• The BSC field of PMBSR_EL1.MSS is set as follows:

— PMBSR_EL1.BSC is set to 0b000001, buffer filled.

• PMBPTR_EL1 is set to the first byte after the last complete sample record. PMBSR_EL1.DL is unchanged.

• The other PMBSR_EL1 fields are unchanged.

• PMBSR_EL1.S is set to 1.

That is, the Profiling Buffer management event is generated when the PE writes past the write limit pointer minus
2(PMSIDR_EL1.MaxSize). The SPU never writes beyond the write limit pointer.

For more information, see Restrictions on the current write pointer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7152
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.8 Profiling Buffer management
D16.8.3 Faults and watchpoints

Table D16-5 lists the faults that might be generated by a write to the Profiling Buffer by the SPU.

Writes to the Profiling Buffer never generate watchpoints.

If a write to the Profiling Buffer generates an MMU fault, GPC fault, or Alignment fault and PMBSR_EL1.S is 0,
then a Profiling Buffer management event is generated:

• PMBSR_EL1.S is set to 1.

• PMBSR_EL1.EC is set to one of:

— 0b100100, stage 1 Data Abort on write to the Profiling Buffer.

— 0b100101, stage 2 Data Abort on write to the Profiling Buffer.

— 0b011110, GPC fault, other than GPF, on write to the Profiling Buffer.

• The FSC field of PMBSR_EL1.MSS is set as follows:

— PMBSR_EL1.FSC is set to indicate the type of the fault.

• If FEAT_THE is implemented, then PMBSR_EL1.TopLevel is set as follows:

— 1, for a stage 2 Permission fault due to a TopLevel check.

Table D16-5 Faults

Fault Conditions

Translation The translation of a virtual address to a physical address might generate a Translation fault.

Address Size The translation of a virtual address to a physical address might generate an Address Size fault.

Alignment If PMBPTR_EL1 is not aligned to an IMPLEMENTATION DEFINED minimum alignment, the behavior is
UNPREDICTABLE and a write to the Profiling Buffer by the SPU might generate an Alignment fault. For more
information, see Restrictions on the current write pointer.

Permission Writes to the Profiling Buffer are made as privileged writes. If the write does not have write permission, a
Permission fault is generated. The value of PSTATE.PAN is ignored and treated as zero. If the SPU does not
manage the dirty state in translation tables, then accesses ignore the Dirty Bit Modifier bit in Page and Block
descriptors and an access might as a result generate a Permission fault. For more information, see Hardware
management of the dirty state.a

Access flag If the SPU does not manage the Access flag in translation tables or hardware management of the Access flag
state is disabled for the owning translation regime, then any access to a Page or Block with the Access Flag
bit set to 0 in a descriptor will generate an Access Flag fault. For more information, see The Access flag.a

TLB Conflict fault IMPLEMENTATION DEFINED.

Unsupported atomic
hardware update fault

If hardware update of the translation tables is not guaranteed atomic in regard to other agents that access the
memory, the translation of a virtual address to a physical address might generate an Unsupported atomic
hardware update fault.

External abort on
translation table walk,
translation table
update, or GPT walk

The translation of a virtual address to a physical address might generate an External abort on the translation
table walk, translation table update, or GPT walk, and be treated as a synchronous MMU fault. For more
information, see External aborts.

Granule Protection
Check

The translation of a virtual address to a physical address might generate a GPC fault.

a. PMBIDR_EL1.F defines whether the SPU manages the Access flag and dirty state in the translation tables.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7153
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.8 Profiling Buffer management
— 0, otherwise.

• If FEAT_THE is implemented, then PMBSR_EL1.AssuredOnly is set as follows:

— 1, for a stage 2 Permission fault due to the AssuredOnly attribute.

— 0, otherwise.

• PMBPTR_EL1 is set to the address that generated the fault.

• If PMBPTR_EL1 is not the address of the first byte after the last complete sample record written by the SPU,
then PMBSR_EL1.DL is set to 1. Otherwise, PMBSR_EL1.DL is unchanged.

• The other PMBSR_EL1 fields are unchanged.

If a write to the Profiling Buffer generates an External abort on a translation table walk or translation table update,
it is IMPLEMENTATION DEFINED whether PMBSR_EL1.EA is set to 1 or unchanged.

Note

Each of these faults causes a Profiling Buffer management interrupt, not an actual MMU fault exception. The ESR
and FAR registers are unchanged.

For more information, see MMU fault-checking sequence.

D16.8.3.1 Hardware management of dirty state and the Access flag by the Statistical
Profiling Extension

If FEAT_SPEv1p3 is implemented, address translations performed by the SPU manage dirty state and the Access
flag in Block and Page descriptors. Otherwise, it is IMPLEMENTATION DEFINED whether address translations
performed by the SPU manage dirty state and the Access flag. This is discoverable by software using
PMBIDR_EL1.F. See Hardware management of the dirty state and Hardware management of the Access flag.

If the SPU manages dirty state and hardware management of dirty state is enabled for the owning translation regime,
then the SPU can speculatively update the Translation Table descriptor for any Page or Block in the Statistical
Profiling buffer before writing data to it, if the write is otherwise permitted. This includes the case where a buffer
management event means the SPU stops writing data before the page or block is written to. For more information,
see The Profiling Buffer.

If FEAT_HAFT is implemented and the SPU manages dirty state, for an architecturally executed memory access
that is translated by a translation stage with Table descriptor Access flag hardware management enabled, the SPU
sets the Access flag to 1 in all Table descriptors accessed during the translation table walk for that access that have
the Access flag set to 0.

D16.8.4 External aborts

When a write to the Profiling Buffer generates an External abort, including an External abort on a translation table
walk or translation table update, the permitted IMPLEMENTATION DEFINED behaviors are:

• The External abort is ignored.

• The External abort generates an SError interrupt exception.

• If FEAT_SPEv1p3 is not implemented, the External abort is reported to the SPU. The SPU generates a
Profiling Buffer management event.

The choice of IMPLEMENTATION DEFINED behavior is not required to be the same for each of:

• An External abort on the write to the Profiling Buffer.

• An External abort on a translation table walk.

• An External abort on a translation table update.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7154
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.8 Profiling Buffer management
• An External abort on a GPT walk.

An External abort on a translation table walk, translation table update, or GPT walk might be treated as a
synchronous MMU fault, as described by Faults and watchpoints.

PMBIDR_EL1.EA indicates to software the mechanism used by the SPU when a write to memory generates an
External abort.

The originator of the abort might additionally take other actions. For more information, see Chapter D19 RAS PE
Architecture.

D16.8.4.1 The External abort is ignored

If the External abort is ignored, this has the same visible behavior as when a write does not generate any External
abort. PMBSR_EL1 is not modified.

D16.8.4.2 The External abort generates an SError interrupt exception

If a write to the Profiling Buffer generates an External abort that is taken as an SError interrupt exception, the PE
takes the SError interrupt exception as normal, and PMBSR_EL1 fields are unchanged.

D16.8.4.3 The External abort is reported to the SPU

This behavior is not permitted if FEAT_SPEv1p3 is implemented.

If a write to the Profiling Buffer generates an External abort that is reported to the SPU:

• The External abort bit, PMBSR_EL1.EA, is set to 1.

• The SPU stops writing sample records to the Profiling Buffer. It is IMPLEMENTATION DEFINED whether an
External abort on a write to the Profiling Buffer is reported as synchronous or asynchronous:

— The External abort is reported as synchronous if PMBPTR_EL1 is set to the address that was
externally aborted.

— The External abort is reported as asynchronous if PMBPTR_EL1 is not guaranteed to be set to the
address that was externally aborted.

• If the External abort is reported as asynchronous or PMBPTR_EL1 is not the address of the first byte of the
sample record being written by the SPU, then PMBSR_EL1.DL is set to 1. Otherwise, PMBSR_EL1.DL is
unchanged.

Note

Following an External abort reported asynchronously to the SPU, software must not assume that any valid
data has been written to the Profiling Buffer.

• If PMBSR_EL1.S is 0, a buffer management event is generated:

— PMBSR_EL1.S is set to 1.

— PMBSR_EL1.EC is set to one of:

— 0b100100, stage 1 Data Abort on write to buffer.

— 0b100101, stage 2 Data Abort on write to buffer.

— PMBSR_EL1.MSS is set as follows:

— PMBSR_EL1.FSC is set to indicate a synchronous or asynchronous External abort.

• The other PMBSR_EL1 fields are unchanged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7155
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.8 Profiling Buffer management
D16.8.5 Access not allowed

An SPU might detect that a write to the Profiling Buffer cannot occur, usually because software has created an
architecturally UNPREDICTABLE situation. In these cases, when profiling data is generated, the SPU might discard
the data and generate a Profiling Buffer management event:

• If PMBSR_EL1.S is 0, then all of the following occur:

— PMBSR_EL1.S is set to 1.

— PMBSR_EL1.DL is set to 1.

— PMBSR_EL1.EC is set to 0x00, other buffer management event.

— PMBSR_EL1.BSC is set to 0b000000, access not allowed.

• The other fields in PMBSR_EL1 are unchanged.

D16.8.6 Implementation defined reason

An implementation might include support for generating Profiling Buffer events for IMPLEMENTATION DEFINED
reasons. These should normally be disabled unless enabled by IMPLEMENTATION DEFINED controls. The
PMBSR_EL1.EC code 0x1F is reserved for this purpose.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7156
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.9 Synchronization and Statistical Profiling
D16.9 Synchronization and Statistical Profiling

The profiling operation of the SPU:

• Makes indirect reads and indirect writes of System registers.

• Writes to memory.

• Makes further indirect writes to PMBPTR_EL1 as a result of an External abort on a write to memory.

The indirect reads of the PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} controls when
determining whether to select an operation for profiling are treated as indirect reads made by the instruction being
executed, and subject to the standard requirements for synchronization.

Otherwise, although the profiling operation is generated by a sampled operation, the profiling operation executes
independently of the instructions that are executed on the PE.

A DSB instruction guarantees that all memory transactions that are made by the PE are observable by writes made
by a profiling operation relating to a sampled operation in program order after the DSB instruction.

A Context Synchronization event guarantees that a direct write to a System register made by the PE in program order
before the Context synchronization event are observable by indirect reads and indirect writes of the same System
register made by a profiling operation relating to a sampled operation in program order after the Context
synchronization event.

To synchronize previous profiling operations, software must execute a PSB Buffer Synchronization instruction.

Note

The PSB CSYNC instruction is not defined in the AArch32 instruction set architecture.

Following a Context synchronization event, a PSB instruction is guaranteed to synchronize the profiling operations
for all instructions that are executed in program order before the Context synchronization event.

Synchronized by the PSB instruction means:

• A direct read of a System register in program order following a PSB instruction requires explicit
synchronization to observe an indirect write to the same System register made by a profiling operation
synchronized by the PSB instruction.

• An indirect write to a System register made by a profiling operation synchronized by a PSB instruction does
not affect a direct write to the same System register made in program order following the PSB instruction.

• A direct write to a System register in program order following a PSB instruction is not allowed to affect an
indirect read of the same System register made by a profiling operation synchronized by the PSB instruction.

• A DSB instruction in program order following a PSB instruction does not complete before the writes to the
Profiling Buffer of sample records for profiling operations synchronized by the PSB instruction have
completed. The DSB instruction must apply to both loads and stores.

For the indirect write to PMBSR_EL1 that is made as a result of an External abort on a write of a sample record to
memory, the synchronization rules apply only after the write has completed.

Note

If profiling is not disabled when the Context synchronization event occurs, further profiling operations might be
generated that are not guaranteed to be synchronized by the PSB instruction.

If the PE takes an exception to an Exception level where profiling is disabled, no new operations are selected for
sampling. Profiling is always disabled if the owning Exception level is a lower Exception level than the current
Exception level.

In the absence of a Context synchronization event, a PSB instruction is not required to execute in program order with
respect to sampled operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7157
ID032224 Non-Confidential

The Statistical Profiling Extension
D16.9 Synchronization and Statistical Profiling
D16.9.1 UNPREDICTABLE behavior

In the absence of correct Context synchronization events, it is UNPREDICTABLE whether an indirect read of a System
register made by a profiling operation will return the old or the new values.

If the indirect reads mean that ProfilingBufferEnabled() returns FALSE when a sample record or records are about
to be written to memory, then it is further CONSTRAINED UNPREDICTABLE whether the sample record or records:

• Are written to memory.

• Are silently discarded and not written to memory.

• Are discarded and not written to memory, and an Access Not Allowed Profiling Buffer management event is
generated.

If SCR_EL3.{NSE, NS} does not match the owning Security state, then it is CONSTRAINED UNPREDICTABLE
whether the sample record or records:

• Are written to memory using a virtual address formed using the identity of the owning translation regime.

• Are written to memory using a virtual address formed using the value of SCR_EL3.{NSE, NS}.

• Are silently discarded and not written to memory.

• Are discarded and not written to memory, and an Access Not Allowed Profiling Buffer management event is
generated.

When FEAT_RME is implemented and MDCR_EL3.{NSPB,NSPBE} selects a reserved value, then it is further
CONSTRAINED UNPREDICTABLE whether the sample record or records:

• Are written to memory using a virtual address formed using any implemented Security state.

• Are silently discarded and not written to memory.

• Are discarded and not written to memory, and an Access Not Allowed Profiling Buffer management event is
generated.

Software must execute a PSB instruction to force any sample records to be written to the Profiling Buffer before
changing context.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D16-7158
ID032224 Non-Confidential

Chapter D17
Statistical Profiling Extension Sample Record
Specification

This chapter describes the sample records generated by the Statistical Profiling Extension. It contains the following
sections:

• About the Statistical Profiling Extension sample records.

• Alphabetical list of Statistical Profiling Extension packets.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7159
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.1 About the Statistical Profiling Extension sample records
D17.1 About the Statistical Profiling Extension sample records

The Statistical Profiling Extension sample record format version is identified by PMSIDR_EL1.Format. The
architecture currently defines only version 0.

Note

Armv8.7 defines the SPE sample record format version, allowing future architecture updates to extend or change
the record format. PMSIDR_EL1.Format was previously a res0 field in a read-only register. Software that reads and
checks PMSIDR_EL1.Format on any implementation prior to Armv8.7 that includes SPE will read a value
indicating format version 0 is supported.

The sample record format version 0 is self-describing and extensible. This format allows software to parse profile
data even when that profile data contains extended information.

The Statistical Profiling Extension writes a series of sample records to memory, each record consisting of a sequence
of packets, and each packet consisting of:

• One or two header bytes.

• Zero, 1, 2, 4, or 8 payload bytes.

D17.1.1 Headers

The first header byte encodes the number of payload bytes:

0x00-0x1F Single byte header, no payload.

0x20-0x3F First byte of extended header. Second byte encodes the payload length.

0x40-0x4F, 0x80-0x8F, 0xC0-0xCF

Header with an 8-bit payload.

0x50-0x5F, 0x90-0x9F, 0xD0-0xDF

Header with a 16-bit payload.

0x60-0x6F, 0xA0-0xAF, 0xE0-0xEF

Header with a 32-bit payload.

0x70-0x7F, 0xB0-0xBF, 0xF0-0xFF

Header with a 64-bit payload.

D17.1.2 Records

A record consists of multiple packets. A record comprises, in ascending address order:

• A sequence of headers, each followed by their payload byte or bytes.

• Either:

— An End packet header.

— A Timestamp packet.

Figures in this chapter show each packet as a sequence of bytes. Figure D17-1 shows how bytes are stored in
memory in increasing addresses from left to right.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7160
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.1 About the Statistical Profiling Extension sample records
Figure D17-1 Convention for packet descriptions

In some sections, the figures are split into separate figures for the header byte and payload bytes. For instance, where
the number of payload bytes varies according to a field in the header.

The header bytes and payload bytes are described in ascending memory address order. Within a payload value,
values are in little-endian byte order.

The size of the access granule for writes to the Profiling Buffer by the Statistical Profiling Unit is IMPLEMENTATION
DEFINED, up to a maximum of 2KB. The size of the access granule can vary from time to time.

D17.1.3 Protocol framing packets and forwards compatibility

The padding header, alignment command, Timestamp packet, and end packet are protocol framing packets that
frame the records created by the Statistical Profiling Unit. Only padding headers and alignment commands are
permitted between records.

Note

PMBIDR_EL1.Align defines a minimum alignment for records. However, implementations must nevertheless
create a valid protocol stream that can be parsed without knowledge of the minimum alignment.

The packet types are described in the following sections. Software must ignore unknown packets, using the size
field encoded in the header. This includes packets containing reserved values in fields.

The following sections give an overview of the Statistical Profiling Unit packets output to a memory-mapped
Profiling Buffer or Device memory:

• Statistical Profiling Extension protocol packet headers

D17.1.4 Statistical Profiling Extension protocol packet headers

8-bit headers

For Address packets and Counter packets, the 8-bit header format is described as the short format.

First byte 1 2 3 4 Last Byte

Header

(16-bit data) LSB MSB

Header

(8-bit data)
Data

0x01

End Packet

Data

1 2 3

LSB MSB

Header

(8-bit data)

4

Data

5

0x71

Timestamp

Packet

6

TS [7:0]

... 12 Last Byte

... TS [55:48] TS [63:56]

First Byte

Header

(16-bit

data)

Data

Table D17-1 8-bit header encodings

[7] [6] [5] [4] [3] [2] [1] [0] Description

0 0 0 0 0 0 0 0 Padding

0 0 0 0 0 0 0 1 End packet

0 1 1 1 0 0 0 1 Timestamp packet

0 1 x x 0 0 1 0 Events packet
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7161
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.1 About the Statistical Profiling Extension sample records
16-bit headers

For Address packets and Counter packets, the 16-bit header format is described as the extended format.

0 1 x x 0 0 1 1 Data Source packet

0 1 1 0 0 1 x x Context packet

0 1 0 0 1 0 x x Operation Type packet

1 0 1 1 0 x x x Address packet (Short format)

1 0 0 1 1 x x x Counter packet (Short format)

Table D17-1 8-bit header encodings (continued)

[7] [6] [5] [4] [3] [2] [1] [0] Description

Table D17-2 16-bit header encodings

Byte 0 Byte 1
Description

[7] [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]

0 0 1 0 0 0 x x 1 0 1 1 0 x x x Address packet

0 0 1 0 0 0 x x 1 0 0 1 1 x x x Counter packet
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7162
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2 Alphabetical list of Statistical Profiling Extension packets

This section lists every SPE packet and their description.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7163
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.1 Address packet

The Address packet characteristics are:

Purpose

Provides an address value for the record. Addresses are always 64 bits.

Attributes

Multi-part packet comprising:

• 8 or 16-bit header.

• 64-bit payload.

Address packet header

When Extended format, the Address packet header bit assignments are:

When Short format, the Address packet header bit assignments are:

Byte 1 bits [7:6], when Extended format, Byte 0 bits [7:6], when Short format

This field reads as 0b10.

SZ, byte 1 bits [5:4], when Extended format, SZ, byte 0 bits [5:4], when Short format

Payload size. The defined values of this field are:

This field reads as 0b11.

Byte 1 bit [3], when Extended format, Byte 0 bit [3], when Short format

This bit reads as 0b0.

INDEX, byte 0 bits [1:0], byte 1 bits [2:0], when Extended format,
INDEX, byte 0 bits [2:0], when Short format

The defined values of this field are:

 0b11 Doubleword.

01234567

INDEX[4:3]0 0 00 0 1 Byte 0

INDEX[2:0]0
1 1

SZ
1 0 Byte 1

01234567

INDEX0
1 1

SZ
1 0 Byte 0

 0b00000 Instruction virtual address (PC). The virtual address of the sampled operation.

 0b00001 Branch target address. The target virtual address of a sampled branch operation.

 0b00010 Data access virtual address. The virtual address accessed by a sampled data memory accessing operation.

 0b00011 Data access physical address. The physical address accessed by a sampled data memory accessing operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7164
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
All other values are reserved.

In the Short format header, INDEX[4:3] are zero.

Byte 0 bits [7:5], when Extended format

This field reads as 0b001.

Byte 0 bits [4:2], when Extended format

This field reads-as-zero.

Address packet payload (instruction virtual address or branch target address)

The Address packet payload (instruction virtual address or branch target address) bit assignments are:

NS, byte 7 bit [7]

Non-secure state.

For an instruction virtual address (PC) this is the Security state the instruction was executed in. For
a branch target address, this is the Security state at the target of the branch.

 0b00100 Previous branch target address. The target virtual address of the most recently taken branch operation in program order
before the sampled operation.

This value is defined only if all of the following are true:

• FEAT_SPEv1p2 is implemented.

• PMSIDR_EL1.PBT == 0b1.

This value is reserved otherwise.

 0b0011x IMPLEMENTATION DEFINED address.

 0b1xxxx IMPLEMENTATION DEFINED address.

01234567

ADDR[7:0] Byte 0

ADDR[15:8] Byte 1

ADDR[23:16] Byte 2

ADDR[31:24] Byte 3

ADDR[39:32] Byte 4

ADDR[47:40] Byte 5

ADDR[55:48] Byte 6

0 0 0 0NSEELNS Byte 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7165
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Note

For an Exception Return, the Security state at the target of the branch might be different to the
Security state the instruction was executed in.

When FEAT_RME is implemented

With the NSE bit, indicates the Security state associated with the address. The defined
values of this bit are:

All other values are reserved.

Note
There is no encoding for Root because records are not generated at EL3.

Otherwise

The Security state associated with the address. The defined values of this bit are:

EL, byte 7 bits [6:5]

Exception level. The Exception level associated with the address. For an instruction virtual address
(PC) this is the Exception level the instruction was executed in. For a branch target address, this is
the Exception level at the target of the branch. The defined values of this field are:

Note

For an Exception Return, the Exception level at the target of the branch might be different to the
Exception level the instruction was executed in.

NSE, byte 7 bit [4]

Security state.

When FEAT_RME is implemented

Together with the NS bit, indicates the Security state associated with the address.

Otherwise

This bit reads-as-zero.

NSE NS Description

 0b0 0b0 Secure state.

This value is defined only if Secure state is implemented, and reserved otherwise.

 0b0 0b1 Non-secure state.

 0b1 0b1 Realm state.

 0b0 Secure state.

 0b1 Non-secure state.

 0b00 EL0.

 0b01 EL1.

 0b10 EL2.

 0b11 EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7166
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Byte 7 bits [3:0]

This field reads as 0b0000.

ADDR, bytes <6:0>

Address. Bits [55:0] of the instruction virtual address or branch target address.

Address packet payload (data access virtual address)

The Address packet payload (data access virtual address) bit assignments are:

TAG, byte <7>

Top-byte tag.

If the applicable TBI bit is 1, a data access virtual address includes the top-byte tag. If the applicable
TBI bit is 0, it is IMPLEMENTATION DEFINED whether this field reads as zero or holds the address tag
of the applicable address.

ADDR, bytes <6:0>

Address. Bits [55:0] of the data access virtual address.

01234567

ADDR[7:0] Byte 0

ADDR[15:8] Byte 1

ADDR[23:16] Byte 2

ADDR[31:24] Byte 3

ADDR[39:32] Byte 4

ADDR[47:40] Byte 5

ADDR[55:48] Byte 6

TAG Byte 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7167
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Address packet payload (data access physical address)

The Address packet payload (data access physical address) bit assignments are:

NSE, byte 7 bit [7]

Physical address space.

When FEAT_RME is implemented

Together with the NS bit, indicates the physical address space associated with the
address.

Otherwise

This bit reads-as-zero.

CH, byte 7 bit [6]

Tag Checked.

When FEAT_MTE2 is implemented

Indicates whether the access was checked against an Allocation Tag in memory. The
defined values of this bit are:

If Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or
SCTLR_ELx.TCF0, it is IMPLEMENTATION DEFINED whether this bit is 1 or 0 on a Tag
Checked access.

If FEAT_MTE_CANONICAL_TAGS is implemented and a sampled data access
physical address is Canonically Tagged, then the value of this bit is 0b0.

Otherwise

This bit reads-as-zero.

Byte 7 bit [5]

This bit reads as 0b0.

 0b0 Access not checked.

 0b1 Access checked against an Allocation Tag in memory.

01234567

ADDR[7:0] Byte 0

ADDR[15:8] Byte 1

ADDR[23:16] Byte 2

ADDR[31:24] Byte 3

ADDR[39:32] Byte 4

ADDR[47:40] Byte 5

ADDR[55:48] Byte 6

PATNS0CHNSE Byte 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7168
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
NS, byte 7 bit [4]

Physical address space identifier.

When FEAT_RME is implemented

With the NSE bit, indicates the physical address space of the physical address. The
defined values of this bit are:

All other values are reserved.

Note
There is no encoding for Root because records are not generated at EL3.

Otherwise

The physical address space of the physical address. The defined values of this bit are:

PAT, byte 7 bits [3:0]

Physical Address Tag.

When FEAT_MTE2 is implemented

Physical Address Tag for a checked access. If the access is not checked then this field
reads as an IMPLEMENTATION DEFINED choice between 0b0000 and the Physical Address
Tag used to perform the access.

Otherwise

This field reads-as-zero.

ADDR, bytes <6:0>

Address. Bits [55:0] of the data access physical address.

NSE NS Description

 0b0 0b0 Secure physical address space.

This value is defined only if Secure PAS is implemented, and reserved otherwise.

 0b0 0b1 Non-secure physical address space.

 0b1 0b1 Realm physical address space.

 0b0 Secure physical address space.

 0b1 Non-secure physical address space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7169
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.2 Context packet

The Context packet characteristics are:

Purpose

Provides context information for the record.

Attributes

Multi-part packet comprising:

• 8-bit header.

• 32-bit payload.

Context packet header

The Context packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

This field reads as 0b10.

Byte 0 bits [3:2]

This field reads as 0b01.

INDEX, byte 0 bits [1:0]

Identifies the context value. The defined values of this field are:

All other values are reserved.

 0b10 Word.

 0b00 CONTEXTIDR_EL1. Included for all operations if enabled by CollectContextIDR1.

 0b01 CONTEXTIDR_EL2. Included for all operations if enabled by CollectContextIDR2.

01234567

INDEX0 1
1 0

SZ
0 1 Byte 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7170
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Context packet payload

The Context packet payload bit assignments are:

CONTEXT, bytes <3:0>

The context value.

01234567

CONTEXT[7:0] Byte 0

CONTEXT[15:8] Byte 1

CONTEXT[23:16] Byte 2

CONTEXT[31:24] Byte 3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7171
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.3 Counter packet

The Counter packet characteristics are:

Purpose

Count of cycles the operation spent performing all or part of its behavior. The counter value
occupies the least significant bits of the payload. The remaining bits are set to zero.

Attributes

Multi-part packet comprising:

• 8 or 16-bit header.

• 16-bit payload.

Counter packet header

When Extended format, the Counter packet header bit assignments are:

When Short format, the Counter packet header bit assignments are:

Byte 1 bits [7:6], when Extended format, Byte 0 bits [7:6], when Short format

This field reads as 0b10.

SZ, byte 1 bits [5:4], when Extended format, SZ, byte 0 bits [5:4], when Short format

Payload size. The defined values of this field are:

This field reads as 0b01.

Byte 1 bit [3], when Extended format, Byte 0 bit [3], when Short format

This bit reads as 0b1.

INDEX, byte 0 bits [1:0], byte 1 bits [2:0], when Extended format,
INDEX, byte 0 bits [2:0], when Short format

The defined values of this field are:

 0b01 Halfword.

01234567

INDEX[4:3]0 0 00 0 1 Byte 0

INDEX[2:0]1
0 1

SZ
1 0 Byte 1

01234567

INDEX1
0 1

SZ
1 0 Byte 0

 0b00000 Total latency. Cycle count from the operation being dispatched for issue to the operation being complete. Included for all
operations.

 0b00001 Issue latency. Cycle count from the operation being dispatched for issue to the operation being issued for execution. This
counts any delay in waiting the operation being ready to issue. Included for all operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7172
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
All other values are reserved.

In the Short format header, INDEX[4:3] are zero.

Dispatched for issue means:

• The operation has been decoded.

• The operation might not be ready to start execution because it is waiting for input values. The
operation might be put into a queue.

Issued for execution means the operation is ready to start executing:

• For example, for a memory operation, this should be indicative of the cycle count from
memory operation being dispatched for issue to access being initiated (virtual address).

Complete means:

• The operation has completed execution and is no longer capable of stalling any instruction
that consumes its output.

• It is IMPLEMENTATION DEFINED whether the operation has committed its results to the
architectural state of the PE.

• For example:

— For an arithmetic, FP or SIMD operation with variable timing, such as divide the
results of the operation are available.

— For load and atomic operations that return data, all data have been returned from
memory.

— For store and atomic operations that do not return data, it is not required that the store
has reached its end point for it to be complete.

— For branch operations, the branch has been resolved as taken or not taken.

— For barrier operations, the barrier has completed.

For WFE and WFI operations, it is IMPLEMENTATION DEFINED whether:

• The instruction is complete before the PE enters a low-power state or when the PE wakes
from the low-power state.

• Counters count in the low power state.

• Sampling an operation is itself a wakeup event.

Byte 0 bits [7:5], when Extended format

This field reads as 0b001.

Byte 0 bits [4:2], when Extended format

This field reads-as-zero.

Counter packet payload

When 12-bit counters are implemented, the Counter packet payload bit assignments are:

 0b00010 Translation latency. Cycle count from a virtual address being passed to the MMU for translation to the result of the
translation being available. Included for all load, store, and atomic operations.

 0b0011x IMPLEMENTATION DEFINED counter value.

 0b1xxxx IMPLEMENTATION DEFINED counter value.

01234567

COUNT[7:0] Byte 0

COUNT[11:8]0 0 0 0 Byte 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7173
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
When 16-bit counters are implemented, the Counter packet payload bit assignments are:

Byte 1 bits [7:4], when 12-bit counters are implemented

This field reads as 0b0000.

COUNT, byte 1 bits [3:0], byte <0>, when 12-bit counters are implemented, COUNT, bytes <1:0>, when
16-bit counters are implemented

The counter value occupies the least significant bits of the payload. The remaining bits are set to
zero. The counters are:

• Unsigned numbers.

• 12 or 16 bits.

• Saturating.

PMSIDR_EL1.CountSize indicates the size of counter implemented, and:

• If 12-bit counters are implemented, the value 0xFFF indicates the count has saturated.

• If 16-bit counters are implemented, the value 0xFFFF indicates the count has saturated.

01234567

COUNT[7:0] Byte 0

COUNT[15:8] Byte 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7174
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.4 Data Source packet

The Data Source packet characteristics are:

Purpose

If the implementation includes support for indicating the loaded data source, the Data Source packet
indicates where the data returned for a load operation was sourced. It might also include other
information, such as the state of the data at the source. It is IMPLEMENTATION DEFINED and might
be UNPREDICTABLE whether this is included for load and atomic operations that generate an External
Abort. It is IMPLEMENTATION DEFINED whether this is included for atomic operations that do not
return data to a PE register. Included for all other load and atomic operations.

Attributes

Multi-part packet comprising:

• 8-bit header.

• 8 or 16-bit payload.

Data Source packet header

The Data Source packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

Byte 0 bits [3:0]

This field reads as 0b0011.

Data Source packet payload

When SZ == 0b00, the Data Source packet payload bit assignments are:

 0b00 Byte.

 0b01 Halfword.

01234567

0 0 1 1SZ0 1 Byte 0

01234567

SOURCE Byte 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7175
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
When SZ == 0b01, the Data Source packet payload bit assignments are:

SOURCE, byte <0>, when SZ == 0b00, SOURCE, bytes <1:0>, when SZ == 0b01

Because the list of data sources varies from system to system, the definition of this field is
IMPLEMENTATION DEFINED. If a sampled operation generated multiple data accesses, it is
IMPLEMENTATION DEFINED how the data source information is combined.

01234567

SOURCE[7:0] Byte 0

SOURCE[15:8] Byte 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7176
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.5 End packet

The End packet characteristics are:

Purpose

Defines the end of a record if a Timestamp packet is not present.

Attributes

8-bit packet.

Field descriptions

The End packet bit assignments are:

Byte <0>

This field reads as 0b00000001.

01234567

0 0 0 0 0 0 0 1 Byte 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7177
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.6 Events packet

The Events packet characteristics are:

Purpose

Indicates up to 64 events generated by the sampled operation. If the sampled operation generates
one of the specified events, then the corresponding field is set to 0b1. Otherwise, the corresponding
field is set to 0b0. Where applicable, a corresponding PMU event is defined for each event in the
packet.

Attributes

Multi-part packet comprising:

• 8-bit header.

• 8, 16, 32, or 64-bit payload.

Events packet header

The Events packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

Software must treat bits that are not output as zero.

Byte 0 bits [3:0]

This field reads as 0b0010.

Events packet payload

When SZ == 0b00, the Events packet payload bit assignments are:

When SZ == 0b01, the Events packet payload bit assignments are:

 0b00 Byte.

 0b01 Halfword.

 0b10 Word.

 0b11 Doubleword.

01234567

0 0 1 0SZ0 1 Byte 0

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

E[8]E[9]E[10]E[11]E[15:12] Byte 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7178
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
When SZ == 0b10, the Events packet payload bit assignments are:

When SZ == 0b11, the Events packet payload bit assignments are:

E[63:48], bytes <7:6>, when SZ == 0b11

Events 63 to 48. IMPLEMENTATION DEFINED.

Bytes <5:4>, when SZ == 0b11

This field reads-as-zero.

E[31:24], byte <3>, when SZ == 0b10 or SZ == 0b11

Events 31 to 24.

When FEAT_SPEv1p4 is implemented

This field reads-as-zero.

Otherwise

This field reads as an IMPLEMENTATION DEFINED value.

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

E[8]E[9]E[10]E[11]E[15:12] Byte 1

E[16]E[17]E[18]E[19]E[20]E[21]E[22]E[23] Byte 2

E[31:24] Byte 3

01234567

E[0]E[1]E[2]E[3]E[4]E[5]E[6]E[7] Byte 0

E[8]E[9]E[10]E[11]E[15:12] Byte 1

E[16]E[17]E[18]E[19]E[20]E[21]E[22]E[23] Byte 2

E[31:24] Byte 3

0 0 0 0 0 0 0 0 Byte 4

0 0 0 0 0 0 0 0 Byte 5

E[55:48] Byte 6

E[63:56] Byte 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7179
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
E[23], byte 2 bit [7], when SZ == 0b10 or SZ == 0b11

Data snooped.

When FEAT_SPEv1p4 is implemented

The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event and FEAT_PMUv3 are implemented, this event is implemented
consistently with DSNP_HIT_RD.

Otherwise

This bit reads-as-zero.

E[22], byte 2 bit [6], when SZ == 0b10 or SZ == 0b11

Recently fetched.

When FEAT_SPEv1p4 is implemented

The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event and FEAT_PMUv3 are implemented, this event is implemented
consistently with L1D_LFB_HIT_RD, L2D_LFB_HIT_RD, and LL_LFB_HIT_RD.

Otherwise

This bit reads-as-zero.

E[21], byte 2 bit [5], when SZ == 0b10 or SZ == 0b11

Cache data modified.

When FEAT_SPEv1p4 is implemented

The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event and FEAT_PMUv3 are implemented, this event is implemented
consistently with DSNP_HITM_RD, L1D_CACHE_HITM_RD,
L2D_CACHE_HITM_RD, and LL_CACHE_HITM_RD.

It is IMPLEMENTATION DEFINED whether this bit is valid for a cache hit
(L<n>D_CACHE_HITM_RD), a snoop hit (DSNP_HITM_RD), or both.

Otherwise

This bit reads-as-zero.

 0b0 Not a load or did not access a cache outside the cache hierarchy of this PE.

 0b1 Load operation that snooped data from a cache outside the cache hierarchy of this PE.

 0b0 Not a load or did not hit a recently-fetched cache line.

 0b1 Load operation hit a recently-fetched line in a cache.

 0b0 Not a load or did not access modified data.

 0b1 Load operation accessed modified data in a cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7180
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
E[20], byte 2 bit [4], when SZ == 0b10 or SZ == 0b11

Level 2 data cache miss.

When FEAT_SPEv1p4 is implemented

The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event and FEAT_PMUv3 are implemented, this event is implemented
consistently with L2D_CACHE_LMISS_RD.

Otherwise

This bit reads-as-zero.

E[19], byte 2 bit [3], when SZ == 0b10 or SZ == 0b11

Level 2 data cache access.

When FEAT_SPEv1p4 is implemented

The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event and FEAT_PMUv3 are implemented, this event is implemented
consistently with L2D_CACHE_RD.

Otherwise

This bit reads-as-zero.

E[18], byte 2 bit [2], when SZ == 0b10 or SZ == 0b11

Empty predicate.

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented or FEAT_SME is
implemented

The defined values of this bit are:

When FEAT_PMUv3 is implemented, this event is implemented consistently with
SVE_PRED_EMPTY_SPEC.

Note
For outer product instructions which are widening, predication is considered with
respect to the input element size.

Otherwise

This bit reads-as-zero.

 0b0 Not a load or did not access level 2 data cache.

 0b1 Load operation accessed and missed the level 2 data or unified cache. This excludes accesses that do not cause a new cache refill
but are satisfied from refilling data of a previous miss.

 0b0 Not a load or did not access level 2 data cache.

 0b1 Load operation caused a cache access to at least the level 2 data or unified cache.

 0b0 Operation was neither an SVE nor SME operation, was not predicated, or at least one element in the Governing predicate or
predicates was TRUE.

 0b1 Operation was an SVE or SME operation, and all elements in the Governing predicate or predicates were FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7181
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
E[17], byte 2 bit [1], when SZ == 0b10 or SZ == 0b11

Partial or empty predicate.

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented or FEAT_SME is
implemented

The defined values of this bit are:

When FEAT_PMUv3 is implemented, this event is implemented consistently with
SME_PRED2_NOT_FULL_SPEC and SVE_PRED_NOT_FULL_SPEC.

Note
For outer product instructions which are widening, predication is considered with
respect to the input element size.

Otherwise

This bit reads-as-zero.

E[16], byte 2 bit [0], when SZ == 0b10 or SZ == 0b11

Transactional.

When FEAT_TME is implemented

The defined values of this bit are:

Otherwise

This bit reads-as-zero.

E[15:12], byte 1 bits [7:4], when SZ == 0b01, SZ == 0b10, or SZ == 0b11

Events 15 to 12. IMPLEMENTATION DEFINED.

E[11], byte 1 bit [3], when SZ == 0b01, SZ == 0b10, or SZ == 0b11

Misalignment.

When FEAT_SPEv1p1 is implemented

The defined values of this bit are:

When FEAT_PMUv3 is implemented, this event is implemented consistently with
LDST_ALIGN_LAT.

Otherwise

This bit reads-as-zero.

 0b0 Operation was neither an SVE nor SME operation, was not predicated, or all elements in the Governing predicate or predicates
were TRUE.

 0b1 Operation was an SVE or SME operation, and at least one element in the Governing predicate or predicates was FALSE.

 0b0 Operation executed in Non-transactional state.

 0b1 Operation executed in Transactional state.

 0b0 Load/store operation that was optimally aligned for the size of data being accessed.

 0b1 Load/store operation that, due to the alignment of the address and size of data being accessed, incurred additional latency.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7182
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
E[10], byte 1 bit [2], when SZ == 0b01, SZ == 0b10, or SZ == 0b11

Remote access. The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event is implemented, it is further IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether a store can finish execution before this event is generated, meaning this
event is never recorded for stores.

When this event and FEAT_PMUv3 are implemented, this event is implemented consistently with
REMOTE_ACCESS or REMOTE_ACCESS_RD.

E[9], byte 1 bit [1], when SZ == 0b01, SZ == 0b10, or SZ == 0b11

Last Level cache miss. The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event is implemented, it is further IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether a store can finish execution before this event is generated, meaning this
event is never recorded for stores.

When this event and FEAT_PMUv3 are implemented, this event is implemented consistently with
LL_CACHE_MISS or LL_CACHE_MISS_RD.

E[8], byte 1 bit [0], when SZ == 0b01, SZ == 0b10, or SZ == 0b11

Last Level cache access. The defined values of this bit are:

This event is optional. When this event is not implemented, this bit reads-as-zero.

When this event is implemented, it is further IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether a store can finish execution before this event is generated, meaning this
event is never recorded for stores.

When this event and FEAT_PMUv3 are implemented, this event is implemented consistently with
LL_CACHE or LL_CACHE_RD.

Note
The architecture does not define the Last Level cache. The Last Level cache is typically the largest
cache on this device shared by all PEs in the inner or outer Shareable domain of this PE. In a
multi-socket system, it is IMPLEMENTATION DEFINED whether this includes caches on other sockets.

 0b0 Did not cause access to another socket.

 0b1 Load/store operation caused an access to another socket in a multi-socket system. This includes each data memory access that
accesses another socket in a multi-socket system, including those that do not return data.

 0b0 Did not miss Last Level cache.

 0b1 Load/store operation caused an access to at least the Last Level cache but is not completed by the Last Level cache. That is, each:

• Load operation that does not return data from the Last Level cache.

• Store operation that does not update the Last Level cache.

The event is not set for operations that are completed by a cache above the Last Level cache.

 0b0 Did not access Last Level data or unified cache.

 0b1 Load/store operation caused a cache access to at least the Last Level data or unified cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7183
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
E[7], byte 0 bit [7]

Mispredicted. The defined values of this bit are:

When FEAT_PMUv3 is implemented, this event is implemented consistently with BR_MIS_PRED
or BR_MIS_PRED_RETIRED.

E[6], byte 0 bit [6]

Not taken. The defined values of this bit are:

This field is valid only if the OpType defines this as either a Conditional Branch or a Conditional

operation, and is RAZ otherwise.

E[5], byte 0 bit [5]

TLB walk. The defined values of this bit are:

When FEAT_PMUv3 is implemented, this event is implemented consistently with DTLB_WALK.

E[4], byte 0 bit [4]

TLB access. The defined values of this bit are:

When FEAT_PMUv3 is implemented, this event is implemented consistently with L1D_TLB.

E[3], byte 0 bit [3]

Level 1 data cache refill. The defined values of this bit are:

When FEAT_SPEv1p4 is implemented

The defined values of this bit are:

 0b0 Did not cause correction to the predicted program flow.

 0b1 A branch that caused a correction to the predicted program flow.

 0b0 Did not fail condition code check.

 0b1 A conditional instruction that failed its condition code check. This includes conditional branches, compare-and-branch,
conditional select, and conditional compares:

• For a conditional branch or compare-and-branch instruction, this means the branch was not taken.

• For a conditional select, this means the second operand was written to the result.

• For a condition compare, this means the condition flags were set to the immediate value and not the result of the compare.

 0b0 Did not generate TLB walk.

 0b1 Load/store operation that causes a refill of a data or unified TLB, involving at least one translation table walk access. This
includes each complete or partial translation table walk that causes an access to memory, including to data or translation table
walk caches.

 0b0 Did not access TLB.

 0b1 Load/store operation caused an access to at least the first level of data or unified TLB.

 0b0 Did not miss in the level 1 data cache.

 0b1 Load/store operation accessed and missed the first level of data or unified cache.
This excludes accesses that do not cause a new cache refill but are satisfied from refilling data of
a previous miss.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7184
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
When this event is implemented, it is further IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether a store can finish execution before this event is generated,
meaning this event is never recorded for stores.

When FEAT_PMUv3 is implemented, this event is implemented consistently with
L1D_CACHE_MISS or L1D_CACHE_MISS_RD.

Otherwise

The defined values of this bit are:

When this event is implemented, it is further IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether a store can finish execution before this event is generated,
meaning this event is never recorded for stores.

When FEAT_PMUv3 is implemented, this event is implemented consistently with
L1D_CACHE_REFILL or L1D_CACHE_REFILL_RD.

E[2], byte 0 bit [2]

Level 1 data cache access. The defined values of this bit are:

When this event is implemented, it is further IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether a store can finish execution before this event is generated, meaning this
event is never recorded for stores.

When FEAT_PMUv3 is implemented, this event is implemented consistently with L1D_CACHE or
L1D_CACHE_RD.

E[1], byte 0 bit [1]

Architecturally retired.

When the PE supports sampling of speculative instructions

The defined values of this bit are:

Note
A conditional instruction can retire even if it fails its condition code check.

When FEAT_PMUv3 is implemented, this event is implemented consistently with
INST_RETIRED.

Otherwise

This bit reads-as-one.

E[0], byte 0 bit [0]

Generated exception.

 0b0 Did not cause level 1 data cache refill.

 0b1 Load/store operation caused a refill of at least the first level of data or unified cache.
This includes each data memory access that causes a refill from outside the cache. It excludes
accesses that do not cause a new cache refill but are satisfied from refilling data of a previous miss.

 0b0 Did not access level 1 data cache.

 0b1 Load/store operation caused a cache access to at least the first level of data or unified cache.

 0b0 Did not retire.

 0b1 Committed its results to the architectural state of the PE, or completed with a synchronous architectural exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7185
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
The defined values of this bit are:

If E[1] in the same Events packet is 0, then the meaning of this bit is IMPLEMENTATION DEFINED.

When FEAT_PMUv3 is implemented, this event is implemented consistently with EXC_TAKEN.

 0b0 Did not generate an exception.

 0b1 Completed with a synchronous exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7186
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.7 Operation Type packet

The Operation Type packet characteristics are:

Purpose

Defines the type of operation sampled. Included for all operations.

Attributes

Multi-part packet comprising:

• 8-bit header.

• 8-bit payload.

Operation Type packet header

The Operation Type packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

This field reads as 0b00.

Byte 0 bits [3:2]

This field reads as 0b10.

CLASS, byte 0 bits [1:0]

Top-level operation class. The defined values of this field are:

All other values are reserved.

 0b00 Byte.

01234567

CLASS1 0
0 0

SZ
0 1 Byte 0

 0b00 Other. The payload is one of the following and the SUBCLASS field in the payload encodes which:

• Other.

• Data processing, SVE vector.

 0b01 Load, store, or atomic. The payload is one of the following and the SUBCLASS field in the payload encodes which:

• Load/store, general.

• Load/store, extended.

• Load/store, SVE.

• Load/store, Memory Copy.

• Load/store, Memory Set.

• Load/store, GCS.

 0b10 Branch or exception return.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7187
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Operation Type packet payload (Other)

The Operation Type packet payload (Other) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Describes the operation type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b00 or reserved.

This field reads as 0b0000000x.

COND, byte 0 bit [0]

Conditional. The defined values of this bit are:

Operation Type packet payload (Data processing, SVE vector)

Configurations

Defined only if all of the following are true:

• FEAT_SPEv1p1 is implemented.

• FEAT_SVE is implemented.

The Operation Type packet payload (Data processing, SVE vector) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Describes the operation type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b00 or reserved.

This field reads as 0b0xxx1xx0.

EVL, byte 0 bits [6:4]

Sampled Effective Vector Length.

Describes the size in bits of the vector operated on by the sampled SVE SIMD operation.

 0b0000000x Other operation. Bit [0] is further defined as the COND field.

 0b0 Unconditional operation.

 0b1 Conditional operation or conditional compare. See Additional information for each profiled
conditional instruction.

 0b0xxx1xx0 SVE vector operation. Bits [6:4,2:1] are further defined as the EVL, PRED, and FP fields.

01234567

0 0 0 0 0 0 0 COND Byte 0

SUBCLASS

01234567

0 1 0FPPREDEVL Byte 0

SUBCLASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7188
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
The defined values of this field are:

All other values are reserved.

When the sampled effective vector length for the input operands of the sampled SVE SIMD
operation and the sampled effective vector length for the output operand of the sampled SVE SIMD
operation differ, the sampled effective vector length of the output operand is used.

The Effective SVE vector length is always a power of two. However, the sampled effective vector
length can be any size down to the smallest element size.

If the sampled effective vector length is not a power of two, or is less than 32 bits, the value is
rounded up before it is encoded in this field.

PRED, byte 0 bit [2]

Predicated SVE operation. The defined values of this bit are:

FP, byte 0 bit [1]

Floating-point operation. The defined values of this bit are:

Operation Type packet payload (Load/store, general)

When Allocation Tag load/store, the Operation Type packet payload (Load/store, general) bit assignments are:

When General-purpose load/store, the Operation Type packet payload (Load/store, general) bit assignments are:

 0b000 32 bits.

 0b001 64 bits.

 0b010 128 bits.

 0b011 256 bits.

 0b100 512 bits.

 0b101 1024 bits.

 0b110 2048 bits.

 0b0 Not predicated.

 0b1 Predicated SVE operation. The operation is an SVE operation that writes to a vector destination register under a Governing
predicate using either zeroing or merging predication.

 0b0 Not a floating-point operation.

 0b1 Floating-point operation.

01234567

0 0 0 1 0 1 0 LDST Byte 0

SUBCLASS

01234567

0 0 0 0 0 0 0 LDST Byte 0

SUBCLASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7189
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
When SIMD&FP load/store, the Operation Type packet payload (Load/store, general) bit assignments are:

When System register access transformed to a load/store, the Operation Type packet payload (Load/store, general)
bit assignments are:

When Unspecified load/store, the Operation Type packet payload (Load/store, general) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Indicates the load/store type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b01 or reserved.

Bit [0] is further defined as the LDST field.

LDST, byte 0 bit [0]

Store not load. The defined values of this bit are:

Memory-reading instruction and Memory-writing instruction are defined in Definitions.

01234567

0 0 0 0 0 1 0 LDST Byte 0

SUBCLASS

01234567

0 0 1 1 0 0 0 LDST Byte 0

SUBCLASS

01234567

0 0 0 1 0 0 0 LDST Byte 0

SUBCLASS

 0b0000000x A load/store targeting the general-purpose registers, other than an atomic operation, load-acquire, store-release or
exclusive.

 0b0000010x A load/store targeting the SIMD&FP registers, or, if FEAT_SPEv1p1 is not implemented, the SVE registers.

 0b0001000x A load/store targeting unspecified registers.

This value is defined only if FEAT_SPEv1p1 is implemented, and reserved otherwise.

 0b0001010x A load/store of an Allocation Tag or multiple Allocation Tags.

This value is defined only if all of the following are true:

• FEAT_SPEv1p3 is implemented.

• FEAT_MTE is implemented.

This value is reserved otherwise.

 0b0011000x An MRS or MSR operation at EL1 transformed to a load/store when HCR_EL2.NV2 is 0b1.

This value is defined only if FEAT_NV2 is implemented, and reserved otherwise.

 0b0 Memory-reading instruction. That is, a load, a swap, or an atomic that returns a value to the PE.

 0b1 Not a memory-reading instruction. That is, a store or an atomic that does not return a value to the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7190
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Operation Type packet payload (Load/store, extended)

The Operation Type packet payload (Load/store, extended) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Indicates the load/store type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b01 or reserved.

This field reads as 0b000xxx1x.

AR, byte 0 bit [4]

Acquire/Release. The defined values of this bit are:

EXCL, byte 0 bit [3]

Exclusive. The defined values of this bit are:

AT, byte 0 bit [2]

Atomic load/store. The defined values of this bit are:

LDST, byte 0 bit [0]

Store not load. The defined values of this bit are:

Memory-reading instruction and Memory-writing instruction are defined in Definitions.

Operation Type packet payload (Load/store, SVE)

Configurations

Defined only if all of the following are true:

• FEAT_SPEv1p1 is implemented.

01234567

0 0 0 1 LDSTATEXCLAR Byte 0

SUBCLASS

 0b000xxx1x An atomic operation, load-acquire, store-release or exclusive. Bits [4:2,0] are further defined as the AT, EXCL, AR, and
LDST fields.

 0b0 Load/store/atomic without Acquire or Release semantics.

 0b1 Load/store/atomic with Acquire or Release semantics.

 0b0 Load/store/atomic without Exclusive.

 0b1 Load/store with Exclusive.

 0b0 Not atomic.

 0b1 Atomic.

 0b0 Memory-reading instruction. That is, a load, a swap, or an atomic that returns a value to the PE.

 0b1 Not a memory-reading instruction. That is, a store or an atomic that does not return a value to the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7191
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
• FEAT_SVE is implemented.

The Operation Type packet payload (Load/store, SVE) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Indicates the load/store type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b01 or reserved.

This field reads as 0bxxxx1x0x.

SG, byte 0 bit [7]

Gather/scatter SVE load/store. The defined values of this bit are:

EVL, byte 0 bits [6:4]

Sampled Effective Vector Length.

Describes the size in bits of the vector operated on by the sampled SVE SIMD load/store operation.

If the load/store operation accesses multiple vectors, then the length of a single vector is encoded.

The defined values of this field are:

All other values are reserved.

The Effective SVE vector length is always a power of two. However, the sampled effective vector
length can be any size down to the smallest element size.

If the sampled effective vector length is not a power of two, or is less than 32 bits, the value is
rounded up before it is encoded in this field.

01234567

1 0 LDSTPREDEVLSG Byte 0

SUBCLASS

 0bxxxx1x0x A load/store targeting the SVE registers. Bits [7:4,2,0] are further defined as the PRED, EVL, SG, and LDST fields.

 0b0 Neither gather load nor scatter store.

 0b1 Gather load or scatter store.

 0b000 32 bits.

 0b001 64 bits.

 0b010 128 bits.

 0b011 256 bits.

 0b100 512 bits.

 0b101 1024 bits.

 0b110 2048 bits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7192
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
PRED, byte 0 bit [2]

Predicated SVE store. The defined values of this bit are:

If FEAT_SPEv1p2 is not implemented, it is IMPLEMENTATION DEFINED whether this field is 0 or 1
for a predicated load operation that writes to one or more vector destination registers under a
Governing predicate using zeroing predication.

Accessing this bit has the following behavior:

• This bit reads-as-zero if the operation is a load.

• Otherwise, this bit is read-only.

LDST, byte 0 bit [0]

Store not load. The defined values of this bit are:

Operation Type packet payload (Load/store, Memory Copy)

Configurations

Defined only if all of the following are true:

• FEAT_SPEv1p3 is implemented.

• FEAT_MOPS is implemented.

The Operation Type packet payload (Load/store, Memory Copy) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Indicates the load/store type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b01 or reserved.

This field reads as 0b0010000x.

 0b0 Not predicated.

 0b1 Predicated SVE store.

The operation is one of the following:

• If FEAT_SPEv1p2 is implemented, a predicated load operation that writes to one
or more vector destination registers under a Governing predicate using zeroing
predication.

• A predicated store of one or more vector registers.

 0b0 Load.

 0b1 Store.

 0b0010000x A load/store from a Memory Copy operation. Bit [0] is further defined as the LDST field.

01234567

0 0 1 0 0 0 0 LDST Byte 0

SUBCLASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7193
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
LDST, byte 0 bit [0]

Store not load. The defined values of this bit are:

Operation Type packet payload (Load/store, Memory Set)

Configurations

Defined only if all of the following are true:

• FEAT_SPEv1p3 is implemented.

• FEAT_MOPS is implemented.

The Operation Type packet payload (Load/store, Memory Set) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Indicates the load/store type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b01 or reserved.

This field reads as 0b00100101.

Operation Type packet payload (Load/store, GCS)

Configurations

Defined only if all of the following are true:

• FEAT_GCS is implemented.

• FEAT_SPEv1p4 is implemented.

The Operation Type packet payload (Load/store, GCS) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Indicates the load/store type. The defined values of this field are:

Other values are either defined by other payload types for CLASS==0b01 or reserved.

This field reads as 0b01000x0x.

 0b0 Load. The sampled virtual address is the source address.

 0b1 Store. The sampled virtual address is the destination address.

 0b00100101 A store from a Memory Set operation.

 0b01000x0x A load/store from a GCS operation. Bits [2,0] are further defined as the COMM and LDST fields.

01234567

0 0 1 0 0 1 0 1 Byte 0

SUBCLASS

01234567

0 1 0 0 0 0 LDSTCOMM Byte 0

SUBCLASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7194
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
COMM, byte 0 bit [2]

Common. Indicates whether or not the sampled load/store operation is from a Branch with link or
Procedure return instruction. The defined values of this bit are:

LDST, byte 0 bit [0]

Store not load. The defined values of this bit are:

Operation Type packet payload (Branch)

The Operation Type packet payload (Branch) bit assignments are:

SUBCLASS, byte <0>

Second-level operation class. Describes the operation type. The defined values of this field are:

Other values are reserved.

This field reads as 0b000xxxxx.

CR, byte 0 bits [4:3]

Call Return. The defined values of this field are:

If FEAT_SPE_CRR is not implemented, the only permitted value is 0b00.

If FEAT_SPE_CRR is implemented, the value of 0b00 is not permitted.

 0b0 Branch with link or Procedure return.

 0b1 Neither a Branch with link nor a Procedure return.

 0b0 Load or swap that returns a value to the PE.

 0b1 Store.

 0b000xxxxx Branch. Bits [4:0] are further defined as the CR, GCS, IND, and COND fields.

01234567

0 0 0 CONDINDGCSCR Byte 0

SUBCLASS

 0b00 Whether the sampled branch operation is a Branch with link or a Procedure return operation is not recorded.

 0b01 Branch with link.

 0b10 Procedure return.

 0b11 Neither Branch with link nor Procedure return.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7195
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
GCS, byte 0 bit [2]

Guarded control stack data access.

When FEAT_SPEv1p4 is implemented

Indicates whether the sampled branch operation generated a Guarded control stack data
access. The defined values of this bit are:

If FEAT_GCS is not implemented, the only permitted value is 0b0.

Otherwise

This bit reads-as-zero.

IND, byte 0 bit [1]

Indirect. The defined values of this bit are:

COND, byte 0 bit [0]

Conditional. The defined values of this bit are:

 0b0 No Guarded control stack data access.

 0b1 Guarded control stack data access.

 0b0 Direct branch.

 0b1 Indirect branch.

 0b0 Unconditional branch.

 0b1 Conditional branch.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7196
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.8 Padding

The Padding characteristics are:

Purpose

Allows the PE to create alignment in the protocol buffer.

Attributes

8-bit packet.

Field descriptions

The Padding bit assignments are:

Byte <0>

This field reads as 0b00000000.

01234567

0 0 0 0 0 0 0 0 Byte 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7197
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
D17.2.9 Timestamp packet

The Timestamp packet characteristics are:

Purpose

The 64-bit timestamp value when the operation was sampled. The Timestamp packet must come at
the end of the record. If the Timestamp packet is not present, an End packet must come at the end
of the record.

Attributes

Multi-part packet comprising:

• 8-bit header.

• 64-bit payload.

Timestamp packet header

The Timestamp packet header bit assignments are:

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

This field reads as 0b11.

Byte 0 bits [3:0]

This field reads as 0b0001.

 0b11 Doubleword.

01234567

0 0 0 1
1 1

SZ
0 1 Byte 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7198
ID032224 Non-Confidential

Statistical Profiling Extension Sample Record Specification
D17.2 Alphabetical list of Statistical Profiling Extension packets
Timestamp packet payload

The Timestamp packet payload bit assignments are:

TS, bytes <7:0>

Timestamp value when the operation was sampled. The value depends on the result of
CollectTimeStamp():

• If TimeStamp_Virtual, the value of PhysicalCountInt() - CNTVOFF_EL2.

• If TimeStamp_Physical, the value of PhysicalCountInt().

• If TimeStamp_OffsetPhysical, the value of PhysicalCountInt() - CNTPOFF_EL2. Only
supported when FEAT_ECV is implemented.

If CollectTimeStamp () returns TimeStamp_None, then the Timestamp packet is not included and an
End packet must come at the end of the record.

However, if the Generic Timer System counter is disabled and CollectTimeStamp() returns a value
other than TimeStamp_None, then it is IMPLEMENTATION DEFINED which of the following occurs:

• The Statistical Profiling Unit behaves as if CollectTimeStamp() returns the value
TimeStamp_None.

• The value of this field in the record is UNKNOWN.

Note

This set of behaviors is only permitted when the actual System counter is disabled, that is, when
CNTEN.EN is 0b0. It does not apply when the System counter is enabled but not accessible at the
current Exception level.

01234567

TS[7:0] Byte 0

TS[15:8] Byte 1

TS[23:16] Byte 2

TS[31:24] Byte 3

TS[39:32] Byte 4

TS[47:40] Byte 5

TS[55:48] Byte 6

TS[63:56] Byte 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D17-7199
ID032224 Non-Confidential

Chapter D18
The Branch Record Buffer Extension

This chapter describes the Branch Record Buffer Extension (BRBE). It contains the following sections:

• About the Branch Record Buffer Extension.

• Branch record filtering.

• Branch record buffer operation.

• Branch record buffer.

• Programmers’ model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7200
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension

ILQHFJ The Branch Record Buffer Extension provides control path information for compiling and optimizing software.
These directed optimizations extract information about hotspots and common control paths in the code.

FEAT_BRBE provides a mechanism for capturing control path history in a low-cost manner.

FEAT_BRBEv1p1 extends FEAT_BRBE to enable branch recording at EL3.

D18.1.1 Branch records

IJBTBH Each Branch record consists of 3 registers:

• BRBINF<n>_EL1.

• BRBSRC<n>_EL1.

• BRBTGT<n>_EL1.

IGBCQW Taken branch instructions, as defined by Branches, Exception generating, and System instructions, generate a
Branch record.

ILFVJR Exceptions generate a Branch record.

RRPVXK A Half-source Branch record has BRBINF<n>_EL1.VALID set to 0b10.

RLPLYK A Half-target Branch record has BRBINF<n>_EL1.VALID set to 0b01.

RGSMRH A Full Branch record has BRBINF<n>_EL1.VALID set to 0b11.

RXRHTY BRBINF<n>_EL1.VALID indicates the validity of a Branch record:

• If BRBINF<n>_EL1.VALID is 0b00, the Branch record is invalid.

• Otherwise, the Branch record is valid.

RMLGCF When a Branch record is generated for any branch or exception which does not transition between a BRBE
Prohibited region and a BRBE Non-prohibited region, the Branch record is a Full Branch record.

See Branch records for exceptions and Branch records for exception returns for more details on when a Half-source
Branch record or a Half-target Branch record is generated.

IZCHRF When an Instruction Synchronization Barrier instruction causes a Context synchronization event which
synchronizes an update to one or more System registers which are indirectly read when generating a Branch record,
the synchronization of those register updates occurs before the registers are indirectly read. Such order is generally
consistent with indirect reads of System registers performed by events which cause a Context synchronization event.

RZHDCC When an exception or exception return instruction causes a Context synchronization event which synchronizes an
update to one or more System registers which are used to determine whether the source of the Branch record is from
a BRBE Prohibited region, indirect reads of those System registers are permitted to occur before the Context
synchronization event. Specifically, the registers indirectly read by BranchRecordAllowed().

All other indirect reads of System registers used for creation of a Branch record occur after the Context
synchronization event, including those for determining whether the Branch record is filtered or not, and those used
for determining whether Branch recording is prohibited at the target.

RCBHRY The reason for the Branch record is captured in BRBINF<n>_EL1.TYPE.

D18.1.2 Cycle counting

IRRBFF Each Branch record contains a cycle count value which is representative of the time taken between each Branch
record being generated. The cycle count value can be used to determine the relative performance of the program
between each Branch record. For large cycle count values, the value stored in each Branch record is encoded to use
less storage, with a small loss of precision in the value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7201
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension
RHQXNW The size of the cycle counter used to generate cycle count values is IMPLEMENTATION DEFINED, from one of the sizes
indicated in BRBIDR0_EL1.CC.

RKVRBB Each Branch record contains a cycle count value which indicates the number of PE clock cycles that occurred
between the previous Branch record being generated and this Branch record being generated.

RSBXCF In a multithreaded implementation, the cycle counter only counts cycles on which the thread was active.

IVPPYW The Branch record counts cycles in the same way as the CPU_CYCLES PMU event counts cycles when
PMEVTYPER<n>_EL0.MT is 0. For more information, see Cycle event counting.

RPGXMB For the purposes of the cycle count, a Branch record is generated only when the corresponding branch instruction
or exception is guaranteed to be architecturally executed and the target address has been calculated. Arm
recommends that the Branch record is generated as soon after this point as possible.

IKBDLR When a branch target address contains an address tag, the target address captured in the Branch record is the virtual
address with the address tag removed.

RMJDLC The cycle count value in a Branch record is Branch cycle count unknown when any of the following are true:

• If EL2 is implemented, BRBCR_EL2.CC is 0.

• BRBCR_EL1.CC is 0.

• This is the first Branch record after the PE exited a BRBE Prohibited region.

• This is the first Branch record after cycle counting has been enabled.

• This is the first Branch record after BRBFCR_EL1.PAUSED is cleared from 1 to 0.

• This is the first Branch record after execution of a BRB IALL instruction.

Note

This applies even when EL2 is disabled in the current Security state.

RPBJTJ When the cycle count value in a Branch record is Branch cycle count unknown:

• BRBINF<n>_EL1.CCU has the value 1.

• BRBINF<n>_EL1.CC contains a value which is all zeros.

The number of cycles indicated by this Branch record is UNKNOWN.

RXGSSZ If the cycle count value in a Branch record would exceed the maximum value of the cycle counter, then:

• BRBINF<n>_EL1.CCU has the value 0.

• BRBINF<n>_EL1.CC contains a value which is all ones.

RJZWPG If the cycle count value in a Branch record is not UNKNOWN and would not exceed the maximum value of the cycle
counter, then:

• BRBINF<n>_EL1.CCU has the value 0.

• BRBINF<n>_EL1.CC contains the cycle count value, encoded as defined in BRBINF<n>_EL1.CC.

D18.1.3 Mispredicted branches

IQHGFW Each Branch record generated for a branch instruction contains an indication of whether the branch was correctly
or incorrectly predicted by the PE. Branch prediction behavior is IMPLEMENTATION DEFINED and this is an indication
of whether such prediction succeeded, or not.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7202
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension
RXHWRB For a Branch record of a branch instruction, one of the following occurs:

• If EL2 is implemented and BRBCR_EL2.MPRED is 0, then BRBINF<n>_EL1.MPRED is set to 0.

• Else if BRBCR_EL1.MPRED is 0, then BRBINF<n>_EL1.MPRED is set to 0.

• Otherwise:

— BRBINF<n>_EL1.MPRED is 0 for a correctly predicted branch.

— BRBINF<n>_EL1.MPRED is 1 for an incorrectly predicted branch.

Note: This applies even when EL2 is disabled in the current Security state.

RDHNPJ For a Branch record of an exception, BRBINF<n>_EL1.MPRED has the value 0.

RLBRGV An incorrectly predicted branch is when any of the following is true:

• The direction of a conditional branch was incorrectly predicted at least once during the execution of the
instruction.

• The target of a branch was incorrectly predicted at least once during the execution of the instruction.

• The branch was not predicted by a branch predictor.

RRDLQF A correctly predicted branch is one that is not incorrectly predicted.

D18.1.4 BRBE Prohibited regions

INVWPM An executable program might contain regions of code that are prohibited to generate Branch records, and these
regions are called BRBE Prohibited regions. These regions are usually associated with a different Security state or
Exception level.

IDMPQZ BRBE Prohibited regions are controlled by the following:

• BRBCR_EL1.E0BRE.

• BRBCR_EL1.E1BRE.

• BRBCR_EL2.E0HBRE.

• BRBCR_EL2.E2BRE.

• MDCR_EL3.SBRBE.

IHPZWM While executing outside a BRBE Prohibited region, Branch records might not be generated because the Branch
Record Buffer Extension has a number of filtering functions.

RFHGJN Execution in AArch32 state is a BRBE Prohibited region.

RLPYBQ Execution in Debug state is a BRBE Prohibited region.

RJWWFY When FEAT_BRBEv1p1 and EL3 are implemented:

• When MDCR_EL3.{E3BREC, E3BREW} is {0b0, 0b1} or MDCR_EL3.{E3BREC, E3BREW} is {0b1,
0b0}, self-hosted EL3 branch recording is enabled.

• When MDCR_EL3.{E3BREC, E3BREW} is {0b0, 0b0} or MDCR_EL3.{E3BREC, E3BREW} is {0b1,
0b1}, self-hosted EL3 branch recording is disabled.

RGLKGW Execution at EL3 is a BRBE Prohibited region when any of the following are true:

• FEAT_BRBEv1p1 is not implemented.

• Self-hosted EL3 branch recording is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7203
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension
RSFZQD Execution at EL2 is a BRBE Prohibited region when any of the following are true:

• BRBCR_EL2.E2BRE is 0.

• MDCR_EL3.SBRBE is 0b00.

• MDCR_EL3.SBRBE is 0b01 and the PE is in Secure state.

RYPHYG Execution at EL1 is a BRBE Prohibited region when any of the following are true:

• BRBCR_EL1.E1BRE is 0.

• MDCR_EL3.SBRBE is 0b00.

• MDCR_EL3.SBRBE is 0b01 and the PE is in Secure state.

RDBPCP Execution at EL0 is a BRBE Prohibited region when any of the following are true:

• EL2 is disabled in the current Security state or HCR_EL2.TGE is 0, and BRBCR_EL1.E0BRE is 0.

• EL2 is enabled in the current Security state and HCR_EL2.TGE is 1, and BRBCR_EL2.E0HBRE is 0.

• MDCR_EL3.SBRBE is 0b00.

• MDCR_EL3.SBRBE is 0b01 and the PE is in Secure state.

RYGGSC While the PE is executing code from a BRBE Prohibited region, no data is captured in Branch records that might
provide information about execution in the BRBE Prohibited region.

D18.1.5 Branch records for exceptions

RYSKQK When an exception is taken from a BRBE Prohibited region to a BRBE Prohibited region, no Branch record is
generated.

RKRJQC When an exception is taken from a BRBE Non-prohibited region, or an exception is taken to a BRBE
Non-prohibited region:

• If the target Exception level is EL1, a Branch record is generated only if BRBCR_EL1.EXCEPTION is 1.

• If the target Exception level is EL2, a Branch record is generated only if BRBCR_EL2.EXCEPTION is 1.

• If the target Exception level is EL3, a Branch record is generated only if FEAT_BRBEv1p1 is implemented
and self-hosted EL3 branch recording is enabled.

RYBJDJ When a Branch record is generated for an exception:

• If the exception is taken from a BRBE Prohibited region, then a Half-target Branch record is generated.

• If the exception is taken from a BRBE Non-prohibited region to a BRBE Prohibited region, then a
Half-source Branch record is generated.

• If the exception is taken from a BRBE Non-prohibited region to a BRBE Non-prohibited region, then a Full
Branch record is generated.

RLLCTG When entering Debug state:

• If the entry is from a BRBE Prohibited region, no Branch record is generated.

• If the entry is from a BRBE Non-prohibited region, then a Half-source Branch record is generated.

IMZNRY When a Half-source Branch record or a Full Branch record is generated for an Illegal Execution state exception, the
source information in the Branch record indicates where the exception was taken from, in the same way as all other
exceptions.

RBZCRW A Branch record for an exception which contains a valid source address has the source address set to the preferred
exception return address for the exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7204
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension
RFYLTC A Branch record for an exception which contains a valid target address has the target address set to the address of
the exception vector.

D18.1.6 Branch records for exception returns

RLMXHS When an exception return instruction is executed in a BRBE Prohibited region and branches to a BRBE Prohibited
region, no Branch record is generated.

RZSHDL When an exception return instruction is executed in a BRBE Non-prohibited region, or an exception return
instruction branches to a BRBE Non-prohibited region:

• If the exception return instruction is executed at EL3, a Branch record is generated only if FEAT_BRBEv1p1
is implemented and self-hosted EL3 branch recording is enabled.

• If the exception return instruction is executed at EL2, a Branch record is generated only if
BRBCR_EL2.ERTN is 1.

• If the exception return instruction is executed at EL1, a Branch record is generated only if
BRBCR_EL1.ERTN is 1.

RZTGMW When a Branch record is generated for an exception return instruction:

• If the exception return instruction is executed in a BRBE Prohibited region, then a Half-target Branch record
is generated.

• If the exception return instruction is executed in a BRBE Non-prohibited region and branches to a BRBE
Prohibited region, then a Half-source Branch record is generated.

• If the exception return instruction is executed in a BRBE Non-prohibited region and branches to a BRBE
Non-prohibited region, then a Full Branch record is generated.

RRBCFP When exiting from Debug state:

• If the exit is to a BRBE Prohibited region, no Branch record is generated.

• If the exit is to a BRBE Non-prohibited region, then a Half-target Branch record is generated.

INGWPR When a Half-target Branch record or a Full Branch record is generated for an exception return instruction which is
an illegal return or a legal return which sets Process state, PSTATE.IL to 1, the target information in the Branch
record indicates the target of the branch:

• BRBTGT<n>_EL1.ADDRESS contains the target of the branch.

• BRBINF<n>_EL1.EL contains the value that is loaded in to Process state, PSTATE.EL.

IJCYHD When a Half-target Branch record or a Full Branch record is generated for an exception return instruction which is
an illegal return or a legal return which sets Process state, PSTATE.IL to 1, for the purposes of determining whether
the target is a BRBE Prohibited region the value that is loaded in to Process state, PSTATE.EL is used as the target
Exception level.

Process state, PSTATE.EL is unchanged on an illegal return, so the current Exception level is the target of the illegal
return, regardless of where the return was attempting to return to.

D18.1.7 The Branch Record Buffer Extension and the Transactional Memory Extension

RGVCJH When an entire transaction is executed in a BRBE Non-prohibited region and the transaction fails or is canceled
then BRBFCR_EL1.LASTFAILED is set to 1.

RJMSZF When an entire transaction is executed in a BRBE Prohibited region and the transaction fails or is canceled then
BRBFCR_EL1.LASTFAILED is unchanged.

RCBTBH When a transaction is executed partially in a BRBE Prohibited region and partially in a BRBE Non-prohibited
region and the transaction fails or is canceled then it is CONSTRAINED UNPREDICTABLE whether
BRBFCR_EL1.LASTFAILED is set to 1 or is unchanged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7205
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.1 About the Branch Record Buffer Extension
RKBSZM When a Branch record is generated, other than through the injection mechanism, the value of
BRBFCR_EL1.LASTFAILED is copied to the LASTFAILED field in the Branch record and
BRBFCR_EL1.LASTFAILED is set to 0.

IHJZWG When a transaction fails or is canceled, a Branch record is not generated.

IJBPHS When a transaction fails or is canceled, Branch records generated in the transaction are not removed from the Branch
record buffer.

ITFKNW Attempting to execute the BRB IALL or BRB INJ instructions in Transactional state results in the transaction failing
with ERR cause.

D18.1.8 PE speculation

RKXTKS The Branch records only contain information for a branch, exception, or exception return that is architecturally
executed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7206
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.2 Branch record filtering
D18.2 Branch record filtering

INZWBP For Branch records generated outside a BRBE Prohibited region, it is useful to reduce the number of records that
are generated to match their use. Table D18-1 lists some different use cases.

D18.2.1 Filtering on type

IFSNVG The Branch records can be filtered by independently enabling the generation of the following types:

• Exception.

• Exception return.

• Direct Branch with link.

• Indirect Branch with link.

• Return from subroutine.

• Indirect Branches.

• Conditional Direct Branches.

• Unconditional Direct Branches.

RLYGJZ Control of when Branch records for exceptions are generated is controlled by BRBCR_EL1.EXCEPTION and
BRBCR_EL2.EXCEPTION. See Branch records for exceptions for details.

Table D18-1 Example use cases for filtering

Use case Description

Control path • All branches

• Subroutine returns

• Exceptions

• Exception returns

Call path • Branch with link instructions

• Subroutine returns

Kernel calls • Exceptions

• Exception returns

Table D18-2 Exception mapping for exceptions taken to AArch64 state

Reason Type

Branch Target exception Inst fault

Breakpoint Inst debug

Exceptions due to SME functionality Trap

EXLOCK exception Inst fault

FIQ FIQ

GPC exception due to data access Data fault

GPC exception due to instruction access Inst fault

Guarded Control Stack Data Check exception Data fault
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7207
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.2 Branch record filtering
RRCGVB Control of when Branch records for exception return instructions are generated is controlled by
BRBCR_EL1.ERTN and BRBCR_EL2.ERTN. See Branch records for exception returns for details.

RRBDXK Each of the direct branch with link instructions only generates a Branch record when the instruction is executed in
a BRBE Non-prohibited region and if any of the following are true:

• BRBFCR_EL1.DIRCALL is 1 and BRBFCR_EL1.EnI is 0.

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

Instruction Abort Inst fault

Instruction or event trapped by a control bit Trap

MemCopy or MemSet Trap

Misaligned PC Alignment

PAC Fail Data fault

PMU exception Inst debug

SError interrupt System Error

SMC due to HCR_EL2.TSC Trap

SMC other than due to HCR_EL2.TSC Call

SVC due to HFGITR_EL2.SVC_EL0 or HFGITR_EL2.SVC_EL1 Trap

SVC other than due to HFGITR_EL2.SVC_EL0 or HFGITR_EL2.SVC_EL1 Call

Software Breakpoint Instruction Inst debug

Software Step Inst debug

Stack Pointer Misalignment Alignment

Synchronous Data Abort Data fault

Traps of GCSSTR and GCSSTTR Trap

UNDEFINED instruction Trap

Watchpoint Data debug

Table D18-2 Exception mapping for exceptions taken to AArch64 state (continued)

Reason Type

Table D18-3 A64 return from exception instructions

Instruction Description

ERET Return From Exception

ERETAA Authenticate and Exception return

ERETAB Authenticate and Exception return
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7208
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.2 Branch record filtering
• BRBFCR_EL1.DIRCALL is 0 and BRBFCR_EL1.EnI is 1.

RVBGTZ Each of the indirect branch with link instructions only generates a Branch record when the instruction is executed
in a BRBE Non-prohibited region and if any of the following are true:

• BRBFCR_EL1.INDCALL is 1 and BRBFCR_EL1.EnI is 0.

• BRBFCR_EL1.INDCALL is 0 and BRBFCR_EL1.EnI is 1.

RCKNBH Each of the return from subroutine instructions only generates a Branch record, when the instruction is executed in
a BRBE Non-prohibited region and if any of the following are true:

• BRBFCR_EL1.RTN is 1 and BRBFCR_EL1.EnI is 0.

• BRBFCR_EL1.RTN is 0 and BRBFCR_EL1.EnI is 1.

RKKLDV Unless covered by other rules, each of the indirect branch instructions only generates a Branch record when the
instruction is executed in a BRBE Non-prohibited region and if any of the following are true:

• BRBFCR_EL1.INDIRECT is 1 and BRBFCR_EL1.EnI is 0.

• BRBFCR_EL1.INDIRECT is 0 and BRBFCR_EL1.EnI is 1.

Table D18-4 A64 direct branch with link instructions

Instruction Description

BL Branch with link

Table D18-5 A64 indirect branch with link instructions

Instruction Description

BLR Branch with link to register

BLRAA Authenticate and branch with link

BLRAAZ Authenticate and branch with link

BLRAB Authenticate and branch with link

BLRABZ Authenticate and branch with link

Table D18-6 A64 return from subroutine instructions

Instruction Description

RET Return From subroutine

RETAA Authenticate and function return

RETAB Authenticate and function return

Table D18-7 A64 indirect branch instructions

Instruction Description

BR Branch to register

BRAA Authenticate and branch
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7209
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.2 Branch record filtering
RBBNSZ Unless covered by other rules, each of the conditional direct branch instructions only generates a Branch record
when the instruction is taken, is executed in a BRBE Non-prohibited region, and if any of the following are true:

• BRBFCR_EL1.CONDDIR is 1 and BRBFCR_EL1.EnI is 0.

• BRBFCR_EL1.CONDDIR is 0 and BRBFCR_EL1.EnI is 1.

Note: BC.cond and B.cond instructions with the AL or NV condition code are considered conditional.

RFJYVT Unless covered by other rules, each of the unconditional direct branch instructions only generates a Branch record
when the instructions are executed in a BRBE Non-prohibited region and if any of the following are true:

• BRBFCR_EL1.DIRECT is 1 and BRBFCR_EL1.EnI is 0.

• BRBFCR_EL1.DIRECT is 0 and BRBFCR_EL1.EnI is 1.

RFJYDC It is IMPLEMENTATION DEFINED whether Branch records are generated for each of the following taken unconditional
direct branch instructions when the instruction is executed in a BRBE Non-prohibited region and if any of the
following are true:

• BRBFCR_EL1.DIRECT is 1 and BRBFCR_EL1.EnI is 0.

• BRBFCR_EL1.DIRECT is 0 and BRBFCR_EL1.EnI is 1.

SXZRTW Writing a value of 0b0000_0001 to the filter controls, BRBFCR_EL1<23:16>, ensures Branch records are generated
for all branch instructions.

BRAAZ Authenticate and branch

BRAB Authenticate and branch

BRABZ Authenticate and branch

Table D18-7 A64 indirect branch instructions (continued)

Instruction Description

Table D18-8 A64 conditional direct branch instructions

Instruction Description

B.cond Conditional Branch

BC.cond Branch Consistent conditionally

CBZ or CBNZ Compare with zero and branch

TBZ or TBNZ Test and branch

Table D18-9 A64 unconditional direct branch instructions

Instruction Description

B Unconditional Branch

Table D18-10 Optional A64 unconditional direct branch instructions

Instruction Description

ISB Instruction Synchronization Barrier
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7210
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.3 Branch record buffer operation
D18.3 Branch record buffer operation

RLKWNB The Branch Record Buffer Extension operation is controlled by the BRBCR_EL1, BRBCR_EL2, and
BRBFCR_EL1 registers.

RPYBRZ Generation of Branch records is paused when BRBFCR_EL1.PAUSED is 1.

RYDZNK When generation of Branch records is paused, Branch records are not generated.

RNXCWF If EL2 is implemented, a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL1.FZP is 1.

• Generation of Branch records is not paused.

• PMOVSCLR_EL0[(MDCR_EL2.HPMN-1):0] is nonzero.

• The PE is in a BRBE Non-prohibited region.

RGXGWY If EL2 is implemented, a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL2.FZP is 1.

• Generation of Branch records is not paused.

• PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is nonzero.

• The PE is in a BRBE Non-prohibited region.

This applies even when EL2 is disabled in the current Security state.

RPKTXQ If EL2 is not implemented, a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL1.FZP is 1.

• Generation of Branch records is not paused.

• PMOVSCLR_EL0[(PMCR_EL0.N-1):0] is nonzero.

• The PE is in a BRBE Non-prohibited region.

RLDMVK If FEAT_BRBE is implemented, then a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL1.FZP is 1.

• Generation of Branch records is not paused.

• PMOVSCLR_EL0.F0 is 1.

• The PE is in a BRBE non-Prohibited Region.

RLBQZR If FEAT_PMUv3_SS is implemented, on a successful Capture event, then a BRBE freeze event occurs when all of
the following are true:

• FEAT_BRBE is implemented.

• BRBCR_EL1.FZPSS is 1.

• Either EL2 is not implemented or BRBCR_EL2.FZPSS is 1.

This applies even when EL2 is disabled in the current Security state.

• Generation of Branch records is not paused.

• The PE is in a non-Prohibited Region.

RVMSDM The BRBCR_EL1.FZP and BRBCR_EL2.FZP controls ignore the overflow status bits for PMU counters in
synchronous mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7211
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.3 Branch record buffer operation
IBVSGF To capture Branch records on taking a synchronous PMU exception, software should configure the Prohibited
Regions of the BRBE to include the Exception level where the PMU exception is taken to and higher Exception
levels. This has the effect of stopping branch recording when the PMU exception is taken.

Note

This mechanism can only be used when profiling software that only executes at lower Exception levels.

RBHYTD On a BRBE freeze event:

• BRBFCR_EL1.PAUSED is set to 1.

• The current timestamp is captured in BRBTS_EL1.

RQKQZL The source of value of the timestamp captured in BRBTS_EL1 is selected by the combination of programming of
BRBCR_EL2.TS and BRBCR_EL1.TS. See Table D18-11 and BRBETimeStamp().

If EL2 is not implemented, the Effective value of BRBCR_EL2.TS is 0b00.

If any of the following are true, the physical offset is zero, otherwise the physical offset is the value of
CNTPOFF_EL2:

• FEAT_ECV is not implemented.

• EL2 is not implemented.

• EL3 is implemented and SCR_EL3.ECVEn is 0.

• CNTHCTL_EL2.ECV is 0.

RGWMZV When a valid Branch record is captured in the Branch record buffer storage, the BRB_FILTRATE event is
generated.

RGMCHN When BRB_FILTRATE is generated for an exception or an exception return, it is an Exception-related event. For
more information on PMU event filtering, see Exception-related events.

IWGZSC It is CONSTRAINED UNPREDICTABLE whether a BRB_FILTRATE event is generated after a BRB INJ causes a Branch
record to be injected.

ISJDRW It is expected that the Branch record buffer storage is in a BRBE Prohibited region during software context switches.

During software context switches, if the PMU event counters are not prohibited from counting events, it is expected
that event counters set to count the BRB_FILTRATE event are prohibited from counting.

IRMGDV The architecture does not define when PMU events are counted relative to the instructions that caused the event.
Events generated by an instruction might be counted before or after the instruction becomes architecturally
executed, and events might be counted for operations that do not become architecturally executed. This means that
events can be counted speculatively and/or out-of-order regarding the simple sequential execution of the program.

Table D18-11 Captured timestamp

BRBCR_EL2.TS BRBCR_EL1.TS Captured timestamp

0b00 (delegate) 0b01 (virtual) PhysicalCountInt() - CNTVOFF_EL2

0b10 (offset physical) PhysicalCountInt() - physical offset

0b11 (physical) PhysicalCountInt()

0b01 (virtual) 0bxx PhysicalCountInt() - CNTVOFF_EL2

0b10 (offset physical) 0bxx PhysicalCountInt() - physical offset

0b11 (physical) 0bxx PhysicalCountInt()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7212
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.3 Branch record buffer operation
Events might also be counted simultaneously by other event counters when the overflow occurs, including events
from different instructions. In addition, multiple instances of an event might occur simultaneously, meaning that an
event counter unsigned overflow can yield a nonzero value in the event counter.

Furthermore, the Branch records are generated only for architecturally executed operations. See RKXTKS.

These properties mean that, unless otherwise stated, on a BRBE freeze event, it is CONSTRAINED UNPREDICTABLE
whether the branches that define the basic block containing the instruction causing that event are captured in the
Branch record buffer.

An exception to this relaxation applies for the BRB_FILTRATE event.

SJCHLT If a direct read of PMOVSCLR_EL0 returns a nonzero value for a subset of the overflow flags, such that one of
RNXCWF, RGXGWY, or RPKTXQ means that a BRBE freeze event should occur, then a direct read of BRBFCR_EL1
ordered after the direct read of PMOVSCLR_EL0 will return BRBFCR_EL1.PAUSED is 1.

IQNBDV Direct reads of System registers require explicit synchronization for following direct reads of other System registers
to be ordered after the first direct read. For more information, see General behavior of accesses to the AArch64
System registers.

RSRJND If a direct read of BRBFCR_EL1.PAUSED returns 1, then no operations ordered after the direct read will generate
further Branch records until BRBFCR_EL1.PAUSED is cleared by software.

Note: The subsequent operations can be ordered by a Context synchronization event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7213
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.4 Branch record buffer
D18.4 Branch record buffer

IFBHCC The Branch record buffer can contain:

• 8 Branch records.

• 16 Branch records.

• 32 Branch records.

• 64 Branch records.

This is known as the Branch record buffer storage.

RKSLSM The Branch record buffer storage has a maximum number of Branch records as defined by
BRBIDR0_EL1.NUMREC.

IPPBZP The Branch record buffer provides System registers to access the Branch records stored in the Branch record buffer
storage. These System registers provide access to up to 32 Branch records without the need for explicit
synchronization between each System register read. When more than 32 Branch records are implemented, the
Branch record buffer provides a banking mechanism to provide access to multiple banks, each bank containing up
to 32 Branch records. BRBFCR_EL1.BANK controls which bank is currently selected, and updates to
BRBFCR_EL1.BANK require explicit synchronization before accessing the bank.

RWLSWP Accessing Branch records 0-31 is performed by setting BRBFCR_EL1.BANK to 0b00.

RWRJLW Accessing Branch records 32-63 is performed by setting BRBFCR_EL1.BANK to 0b01.

RTJGLK The Branch record with index 0 is the youngest captured branch.

RHTRNR The Branch record with index n is younger than Branch record with index n+1.

RDTPDK On the generation of a new Branch record, if the Branch record buffer storage is full, then the oldest Branch record
is lost.

RSQLCX When the buffer contains M valid Branch records, where M > 0 and M is less than the maximum number of Branch
records, all of the following are true:

• Branch records with index 0 to M-1 are all valid.

• All other Branch records are invalid.

RPGDLX The creation of a Branch record is considered an indirect write to BRBTGT<n>_EL1, BRBSRC<n>_EL1 and
BRBINF<n>_EL1, and therefore requires explicit synchronization before being read.

ISFFNF The generation of Branch records performs indirect reads and indirect writes of System registers.

IKFYTV Synchronization requirements for AArch64 System registers defines the synchronization requirements for direct
reads, direct writes, indirect reads, and indirect writes of System registers made by instructions and external agents.

D18.4.1 Invalidating the record buffer

RLLHYN Execution of BRB IALL causes all Branch records to be invalidated.

RPFRNW A Branch record, R, is invalidated by the instruction BRB IALL, W, if all of the following are true:

• R is caused by a branch operation or exception, B.

• B is either:

— In program order before a Context synchronization event, CSE.

— Is the Context synchronization event.

• CSE is in program order before W.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7214
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.4 Branch record buffer
RLWPKR A Branch record R is not invalidated by the instruction BRB IALL, W, if all of the following are true:

• R is caused by a branch operation or exception, B.

• B is in program order after a Context synchronization event, CSE

• CSE is in program order after W.

RWMZKF It is CONSTRAINED UNPREDICTABLE whether a Branch record R is invalidated by the instruction BRB IALL, W, if all
of the following are true:

• CSE1 is in program order before W.

• R is caused by a branch operation or exception, B.

• B is in program order after a Context synchronization event, CSE1

• B is either:

— In program order before a Context synchronization event, CSE2.

— Is the Context synchronization event, CSE2.

• CSE2 is in program order after W and there are no other CSEs between CSE1 and CSE2.

If a Branch record is invalidated, all older Branch records are invalidated.

RJSCWK When a Branch record has been invalidated, it remains invalid until it is overwritten by any of the following:

• A new Branch record is created.

• A Branch record is injected using the BRB INJ instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7215
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.5 Programmers’ model
D18.5 Programmers’ model

RBNGTH Reads from an unimplemented Branch record return the value zero.

RPKZCF All Branch records captured while generation of Branch records is not paused, must represent a continuous block
of execution for all BRBE Non-prohibited regions.

IXSBPR The captured Branch records might not represent a continuous block if generation of Branch records is paused at
any time. To avoid this non-continuous nature, the BRB IALL instruction can be used to invalidate all Branch records
while generation is paused.

RPMRRL If a Branch record cannot be captured for a branch instruction or exception that is not prohibited and has been
selected to generate a record, then all the Branch records must be invalidated. The reasons for a PE being unable to
capture a Branch record are IMPLEMENTATION DEFINED and Arm recommends that such reasons are rare.

IQJFSV When a process is migrated to a PE with a smaller number of Branch records implemented then the information
from the older Branch records will be lost.

IBDKJJ When FEAT_BRBE is implemented, the following fields are provided in System registers to control access to the
Branch record buffer functionality:

• When EL2 is implemented:

— HDFGRTR_EL2.nBRBIDR.

— HDFGRTR_EL2.nBRBCTL.

— HDFGWTR_EL2.nBRBCTL.

— HDFGRTR_EL2.nBRBDATA.

— HDFGWTR_EL2.nBRBDATA.

— HFGITR_EL2.nBRBINJ.

— HFGITR_EL2.nBRBIALL.

• When EL3 is implemented:

— MDCR_EL3.SBRBE.

SGCYTK When self-hosted EL3 branch recording is enabled, the following registers must be programmed:

• BRBCR_EL1 and BRBCR_EL2. Software must program these registers to control the following:

— Recording of exceptions taken to EL1 and EL2.

— Recording of exception returns from EL1 and EL2.

— Branch recording at EL0, EL1, and EL2.

— Occurrence of BRBE freeze events on PMU overflows.

— Timestamp source.

— Misprediction information.

— Cycle count information.

• BRBFCR_EL1. Software must program this register to control the following:

— Selection of Branch record buffer bank.

— Selection of branch types to record at all Exception levels.

— Pausing of Branch recording.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7216
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.5 Programmers’ model
— If FEAT_TME is implemented, recording of transaction failure information.

Software should also consider how MDCR_EL3.SBRBE should be programmed to either allow or prohibit access
to the captured branch records from lower Exception levels. Even if self-hosted EL3 branch recording is not being
used, software should consider whether a BRB IALL instruction should be executed before executing software at
lower Exception levels.

SYLMQQ Software must invalidate the Branch records after a PE reset to ensure that details of execution before the reset event
are not leaked.

IFPJPQ MDCR_EL3.E3BREC resets to 0 on a Cold reset, and MDCR_EL3.E3BREW resets to 0 on a Warm reset. This
allows software to program MDCR_EL3.E3BREC and MDCR_EL3.E3BREW such that the BRBE continues
recording after Warm reset, or stops recording at Warm reset.

INZMWQ When FEAT_BRBEv1p1 is implemented, certain fields in the following registers are reset to an architecturally
UNKNOWN value on a Cold reset and unchanged on a Warm reset:

• BRBCR_EL1.

• BRBCR_EL2.

• BRBFCR_EL1.

D18.5.1 Manual injection of Branch records

IDXNLX The Branch Record Buffer Extension supports the ability to manually create Branch records and inject them in to
the Branch record buffer storage. The primary purpose of the injection functionality is to support the restore of the
Branch record buffer storage contents, particularly during software context switch events, including migration of
software between PEs. The Branch record buffer storage contents are read out using direct reads of
BRBSRC<n>_EL1, BRBTGT<n>_EL1, and BRBINF<n>_EL1.

RFYXNL The Branch Record Injection data registers are:

• BRBSRCINJ_EL1.

• BRBTGTINJ_EL1.

• BRBINFINJ_EL1.

IFJHMP Branch record injection consists of creating a single Branch record using direct writes to the Branch Record
Injection data registers, then injecting the record into the Branch record buffer storage using BRB INJ. This process
injects a single Branch record as the youngest entry in the Branch record buffer storage. This process is repeated for
each Branch record to be added to the Branch record buffer storage.

IBCZRK When BRB INJ is executed outside of a BRBE Prohibited region, it is CONSTRAINED UNPREDICTABLE whether a
Branch record is injected.

RXVDNN When BRB INJ is executed inside a BRBE Prohibited region, the contents of the Branch Record Injection data
registers are used to create a Branch record which is added to the Branch record buffer storage as the youngest entry.

RSMBVK When a BRB INJ instruction is executed inside a BRBE Prohibited region and the contents of the Branch Record
Injection data registers indicates an invalid record, it is CONSTRAINED UNPREDICTABLE whether a Branch record is
injected to the Branch record buffer. An invalid record is one with BRBINFINJ_EL1.VALID set to 0b00.

RHNCSX For a BRB INJ instruction, it is CONSTRAINED UNPREDICTABLE whether a Branch record is injected to the Branch
record buffer when all of the following are true:

• The BRB INJ instruction is executed inside a BRBE Prohibited region.

• The contents of the Branch Record Injection data registers indicates a valid record.

• The other contents of the Branch Record Injection data registers indicate an incorrectly formatted record.

If a Branch record is injected, then the contents of the Branch record are CONSTRAINED UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7217
ID032224 Non-Confidential

The Branch Record Buffer Extension
D18.5 Programmers’ model
IJLVPS An example of an incorrectly formatted record is one where BRBINFINJ_EL1.VALID is 0b01 and
BRBINFINJ_EL1.MPRED is 0b1.

RPWKFJ Execution of BRB INJ does not require explicit synchronization to use the result of direct writes to the Branch Record
Injection data registers in program order before BRB INJ.

ITVDMK The creation of a Branch record as a result of execution of BRB INJ does not use the result of direct writes to the
Branch Record Injection data registers in program order after BRB INJ. Explicit synchronization is not required to
ensure this ordering. For more information, see Synchronization requirements for AArch64 System registers.

RLKDTJ After the execution of BRB INJ, the contents of the Branch Record Injection data registers are UNKNOWN.

ICPBKF Changes to the BRB registers are subject to the rules for synchronization for System registers. See Synchronization
requirements for AArch64 System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D18-7218
ID032224 Non-Confidential

Chapter D19
RAS PE Architecture

This chapter describes the RAS Extension PE Architecture. It contains the following sections:

• About the RAS Extension.

• PE error handling.

• Generating error exceptions.

• Taking error exceptions.

• Error synchronization event.

• Virtual SError exceptions.

• Error records in the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7219
ID032224 Non-Confidential

RAS PE Architecture
D19.1 About the RAS Extension
D19.1 About the RAS Extension

ILBKPL The RAS Extension extends the exception syndrome registers to include fields that allow the PE to report a PE error
state when an Error exception is taken.

ITHGHB The RAS Extension defines System registers that are specific to RAS, including to access optional Error records
defined by the RAS System Architecture. The format of the error record registers is defined in Error record System
register view.

RYWXWL The RAS Extension does not prescribe the level of reliability, availability, and serviceability in the PE. The RAS
features that the system and PE include, for example to detect, correct, contain, or defer errors, are IMPLEMENTATION
DEFINED. The RAS Extension defines a framework for building RAS features in a PE.

Example D19-1 Minimal implementation of RAS Extension

For systems without a requirement for high reliability and availability, a minimal approach to RAS might include:

• There is no error detection. ERRIDR_EL1.NUM is zero, indicating that no error records are implemented.
See Error record System register view.

• Any error signaled to the PE generates an asynchronous SError exception, and on taking the SError
exception:

— The PE error state is recorded as Uncontainable (UC).

— ESR_ELx.FnV is set to 1, meaning FAR_ELx is UNKNOWN and not valid.

FEAT_PFAR is not implemented. See Taking error exceptions.

• The ESB instruction only has an effect on virtual SError exceptions, and only if EL2 is implemented.
Otherwise, ESB is implemented as a no-op. See ESB and Virtual SError exceptions.

Example D19-2 Common error handling for RAS features

For a system with a requirement for high reliability and error containment:

• When errors are detected, they are recorded in error records. This includes both correctable and uncorrectable
errors. Error correction and detection logic exists on all significant memory structures, and might include
other non-memory structures.

• Most uncorrectable errors generate poison values to defer the error.

• On consuming poison from the memory system, a load instruction that would corrupt PE state generates a
synchronous External Abort exception, regardless of the memory type. For systems where the performance
impact of this approach might be an issue, the controls defined by FEAT_ANERR and FEAT_ADERR are
provided.

• On taking error exceptions, the PE error state is Recoverable state (UER).

• FEAT_PFAR is implemented, and the PE makes a best effort attempt to record the faulting physical address
in PFAR_ELx or MFAR_ELx, setting ESR_ELx.PFV to 1.

IQGLBZ See also Chapter I5 RAS System Architecture for more information about the framework for building RAS features
in a system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7220
ID032224 Non-Confidential

RAS PE Architecture
D19.2 PE error handling
D19.2 PE error handling

D19.2.1 PE error detection

IKRYQW When a PE accesses memory or other state, an error might be detected in that memory or state, and corrected,
deferred, or signaled to the PE as a detected error with an in-band error response.

Note:

• An error that is deferred might be signaled to the PE with an in-band error response. See RLMCVC in
Chapter I5 RAS System Architecture.

• An error might also be signaled to a PE by means other than an in-band error response. See RFNVVJ.

ISLYLK The response from memory or other state is defined by Detecting and consuming errors in the RAS System
Architecture.

IDWWQJ When an error is detected by a component on a read or a cache maintenance operation from the PE:

• If the error can be corrected, it is corrected and corrected data is returned.

• If the error cannot be corrected and can be deferred, it is deferred. For example, on a load by poisoning the
PE state, if this is supported by the PE implementation.

• If the error cannot be corrected and if implemented and enabled at the component, the detected error is
signaled to the PE as an in-band error response.

IBKVQP When an error is detected by a component consuming a write from the PE:

• If the error can be corrected, it is corrected.

• If the error cannot be corrected and can be deferred, it is deferred to the consumer. For example, by poisoning
the location being written.

• If the error cannot be corrected and if implemented and enabled at the component, the detected error is
signaled to the PE as an in-band error response.

IPDDNB The component might record the detected error and generate a Fault handling interrupt and/or Error recovery
interrupt.

IVRYFF If the component implements the RAS System Architecture, its behavior is defined by the RAS System
Architecture, and depends on the nature of the error and IMPLEMENTATION DEFINED properties of the component.
In each of these cases, the component might be a part of the processor, such as a cache, or might be outside of the
processor.

The component might also report the error to a RAS System Architecture node, which records the error and might
generate one or more of a Fault handling interrupt, Error recovery interrupt, or Critical Error interrupt depending on
the features and configuration of the node.

See also Other errors.

IFLXTY An in-band error response is sometimes referred to as an External abort. To avoid confusion with the External abort
exception, the RAS sections in this Manual use in-band error response to describe the response to the PE for a
memory access.

See In-band error response signaling.

RWLTPV The size of the protection granule for any implemented error detection mechanism in memory is IMPLEMENTATION
DEFINED.

IJJJGW A system might implement multiple error detection mechanisms with differing protection granule sizes.

RFNGVW The mechanism for clearing an error or poison from a memory protection granule is IMPLEMENTATION DEFINED,
and it is IMPLEMENTATION DEFINED whether any such mechanism exists.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7221
ID032224 Non-Confidential

RAS PE Architecture
D19.2 PE error handling
IGLFCV For some systems, a single-copy atomic write of at least the whole protection granule can reset the state of the
granule and clear any error or poison. In other systems, a DC ZVA operation might also clear the error. However, the
protection granule might be larger than the DC ZVA block size and/or the largest single-copy atomic access that the
PE can perform.

A system might require software to stop using the protection granule until the error can be removed. For example,
by not using the physical page containing the granule until the system is reset. The architecture does not set any limit
on the size of a protection granule and it might be larger than a translation granule.

Any mechanism for purging the system of errors is IMPLEMENTATION DEFINED.

D19.2.2 PE error propagation

INTXKV The program-visible architectural state of the PE, referred to as the PE state, includes:

• General-purpose, SIMD&FP, and SVE registers.

• SME and SME2 registers.

• System registers.

• Special-purpose registers.

• PSTATE.

RXMBNW An error is consumed by the PE by any of the following:

• An instruction commits the corruption into the PE state.

• The error is on an instruction fetch and the corrupt instruction is committed for execution.

• The error is on a translation table walk for a committed load, store, or instruction fetch.

IHVFKW For a PE, Error propagation applies to the propagation of detected error by the PE between the PE state, and any
other PE state or memory.

Note: Memory includes structures that cache the contents of memory, such as an instruction cache, data cache, or
TLB.

RVGXBJ An error is propagated by the PE by one or more of the following occurring that would not have been permitted to
occur had the fault not been activated:

• Consumption of the corrupt value by any instruction, propagating the error to the target(s) of the instruction.
This includes:

— A store of a corrupt value.

— A write of a corrupt value to a System register, Special-purpose register, or PSTATE. Infecting a
System register state might mean that the PE generates transactions that would not otherwise be
permitted.

• Any operation occurring that should not have occurred, including:

— A load, translation table walk, or instruction fetch that would not have been permitted, including those
from hardware speculation or prefetching.

— A store to an incorrect address, or a store that would not have been made or not permitted.

— A direct or indirect write to a Special-purpose or System register that would not have been made or
not permitted.

— Assertion of any signal, such as an interrupt, that would not have been asserted.

• Any operation not occurring that should have occurred.

• Causing the PE to take an imprecise exception, other than an Error exception in response to the error itself.
For more information, see Definition of a precise exception and imprecise exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7222
ID032224 Non-Confidential

RAS PE Architecture
D19.2 PE error handling
• The PE discarding data that it holds in a modified state.

• Any other loss of required uniprocessor semantics, ordering, or coherency.

IRMZNK In RVGXBJ, not have been permitted to occur means that the observable behavior of the PE is a deviation from the
correct service of the PE, as defined by the architecture. Deviations from the normal behavior of the PE
implementation that would otherwise be permitted by the architecture are not deviations from correct service.

Example D19-3

A PE takes an Error exception asynchronously as follows, in program order:

1. A load returns a corrupt value from a first location to a general-purpose register.

2. The PE suppresses a store of the register to a second memory location. In particular, the location is not
updated and so retains its previous value.

3. The Error exception is taken.

4. At the point when the Error exception is taken, the ordering constraints imposed by the architecture have not
been violated, in particular those relating to the observability of the store at step 2.

Although the error has not been propagated, the PE state is not consistent with the PE having executed all of the
instructions up to the point when the Error exception is taken, and so it would be unlikely that software would be
able to recover execution.

RNQDWB An error propagated by the PE is silently propagated by the PE only if all of the following are true:

1. The propagation is not part of the required operation of the PE in taking an Error exception generated by the
error.

2. The propagation is not part of the required operation of the PE executing an ESB instruction that synchronizes
the error.

3. The error is not signaled to the consumer as a detected error or deferred error.

4. Any of the following are true:

• The corrupt value is held in other than the general-purpose, SIMD&FP, SVE, SME, and SME2
registers.

• The error is propagated by an instruction in program order before either taking an Error exception
generated by the error or executing an ESB instruction that synchronizes the error, and is propagated to
outside of the general-purpose, SIMD&FP, SVE, SME, and SME2 registers.

• The error is propagated other than by an instruction that consumes the corrupt value as an input
operand but otherwise behaves correctly.

IBRBFF In RNQDWB, item 4 means that after taking the Error exception generated by the error, or an ESB, propagating an error
by, for example, storing the corrupt value to memory, is not considered as silent propagation of the error by the PE.

Example D19-4

A PE takes an Error exception in response to a load that returns a corrupt value to a general-purpose register. The
error is not silently propagated to outside of the general-purpose registers before the Error exception is taken.

Neither of the following are considered silent propagation of the error by the PE:

• Taking the Error exception causes the ESR_ELx, ELR_ELx, and SPSR_ELx registers to be updated. This is
part of the required operation of the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7223
ID032224 Non-Confidential

RAS PE Architecture
D19.2 PE error handling
• After taking the Error exception, software stores the contents of the general-purpose register to memory, and
this is not signaled to memory as a deferred error. This happens in program order after the exception is taken.

The error is not silently propagated by the PE.

Example D19-5

Further to Example D19-3, if either of the following example additional operations occur between 2 and 3, then the
PE has silently propagated the error:

• A second store to a third location is performed by the PE, and the architecture requires that the first store is
ordered-before the second store. For example, the second store is a store-release operation. In this case, the
PE violates the external ordering constraints for the two stores, and the error is silently propagated to any
observer of the second store.

• A second load from the second location returns the previous value, and a second store writes that value to a
third location. In this case, the PE has violated the internal visibility requirement between the first store and
second load, and this error silently propagates to any observer of the second store.

If instead of the PE suppressing the store at 2, the PE poisons the second memory location, and in the second
example propagates that poison through the second load and third second store, then the error is not silently
propagated.

RDTRFQ The features that a PE includes to prevent silent propagation of an error are IMPLEMENTATION DEFINED.

Example D19-6

An implementation ensures that a corrupt value in a general-purpose, SIMD&FP, SVE, or SME register is not
silently propagated, by signalling a deferred error on any write of data to any memory location, such that the
memory location is poisoned.

D19.2.3 Other errors

IKRQMR The RAS Extension deals mostly with errors detected by components outside of the PE, such as memory, and
consumed by the PE.

Other errors might be detected from within the processor that implements the PE. If the error is not an error in the
PE state then the error might be treated as an error detected by another component.

In the following examples, the component reports these errors to a RAS System Architecture node that implements
Error records and records the errors, and might generate one or more of a Fault handling interrupt, Error recovery
interrupt, or Critical Error interrupt depending on the features and configuration of the node.

Example D19-7

A processor cache can be treated as a component outside the PE.

The cache detects an error in the cache state that cannot be corrected:

• If the error is detected in dirty cache data being evicted from the cache when the PE makes an access, then
the error might be deferred by the cache writing poison in the evicted cache data.

• If the PE is performing a partial write that does not completely overwrite the protection granule, then the error
might be deferred by the cache writing poisoned to the cache location, and/or evicting the cache line with
poison. Deferring the error means the error is not consumed by the PE.

Otherwise, the cache component generates the in-band error response to the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7224
ID032224 Non-Confidential

RAS PE Architecture
D19.2 PE error handling
Example D19-8

A processor memory interface can be treated as a component outside the PE.

A processor detects a corrupt or poisoned value being returned on the interface that is not being signaled as an
in-band error response and cannot be corrected or deferred. For example, in response to a non-cacheable read or a
cache refill.

The memory interface component generates the in-band error response to the PE.

IVNTWD An implementation might include error detection logic within the PE state itself. When the PE detects an error in
the PE state, the instruction that uses that state consumes the error, and the PE generates an IMPLEMENTATION
DEFINED Error exception, taken as an SError exception. See RFNVVJ.

In this case, the processor that implements the PE includes a RAS System Architecture node that implements Error
records that record these errors.

IJRQDM An implementation might support poisoning within the PE state. When the PE consumes a deferred error, for
example a poisoned value, from memory into the PE state, the PE state becomes poisoned. Subsequent operations
that read the poisoned value can continue to defer the error by poisoning the result of the operation.

However, if the PE attempts to execute an operation that reads the poisoned value and cannot defer the error further,
the PE generates an IMPLEMENTATION DEFINED Error exception, taken as an SError exception. See RFNVVJ.

In this case, the processor that implements the PE includes a RAS System Architecture node that implements Error
records that record these errors.

IJHQVK Components outside of the PE might detect errors that are not consumed by the PE. These components might report
such errors to a PE using Error recovery interrupts.

RXJNNT For implementations that include the Statistical Profiling Extension, the Statistical Profiling Extension behaves like
a separate component.

IMJQQZ Errors from software faults are outside the scope of the RAS Extension. For more information, see Software faults.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7225
ID032224 Non-Confidential

RAS PE Architecture
D19.3 Generating error exceptions
D19.3 Generating error exceptions

RVJRKF An Error exception is generated when a detected error is signaled to the PE as an in-band error response to an
architecturally-executed memory access or cache maintenance operation. This includes any explicit data access,
instruction fetch, translation table walk, or hardware update to the translation tables made by an
architecturally-executed instruction.

IPJHZS An Error exception is taken as an asynchronous SError exception, a synchronous External Data Abort exception, or
a synchronous External Instruction Abort exception.

RMBNBH It is IMPLEMENTATION DEFINED whether an Error exception can be generated for an error that is consumed by
hardware speculation or prefetching by a PE, but that is not committed to the architecturally visible state of the PE.

RSHKJB It is IMPLEMENTATION DEFINED whether an Error exception can be generated for a detected error that is deferred.

RGVWJD It is IMPLEMENTATION DEFINED whether an Error exception can be generated for a detected error that is corrected.

RFNVVJ An Error exception can also be generated for IMPLEMENTATION DEFINED causes. An Error exception generated for
an IMPLEMENTATION DEFINED cause is taken as an SError exception.

Example D19-9

An error is detected and neither corrected nor deferred to the PE, and signaled to the PE by means other than an
in-band error response, such as a wired SError exception pin. Asserting the SError exception pin causes the PE to
generate an SError exception.

Example D19-10

An error is detected by the PE in the PE state, or in the result of a calculation performed by the PE. The detected
error generates an SError exception.

IZXHDP See also:

• Exceptions.

• Taking error exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7226
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
D19.4 Taking error exceptions

RVXFYS For an error signaled on a non-speculative instruction fetch or a translation table walk or hardware update of
translation tables:

• If FEAT_DoubleFault is implemented, then the Error exception is taken as a synchronous Instruction Abort
exception.

• Otherwise, it is IMPLEMENTATION DEFINED whether an Error exception on these accesses is taken as a
synchronous External Abort exception or as an asynchronous SError exception.

RHWVPC When FEAT_ANERR is implemented and the Effective value of SCTLR2_ELx.EnANERR is 0b0, an error signaled
on a load from Normal memory is handled precisely and synchronously.

This applies to exceptions taken from both AArch64 and AArch32 Execution states.

Note

There might be implementation-specific exceptions to this rule. See the description of SCTLR2_ELx.EnANERR
for more information.

RSYQGN When FEAT_ADERR is implemented and the Effective value of SCTLR2_ELx.EnADERR is 0b0, an error signaled
on a load from Device memory is handled precisely and synchronously.

This applies to exceptions taken from both AArch64 and AArch32 Execution states.

Note

There might be implementation-specific exceptions to this rule. See the description of SCTLR2_ELx.EnADERR
for more information.

RVLFTP Unless otherwise stated, it is IMPLEMENTATION DEFINED whether an Error exception is handled synchronously and
precisely, or is taken as an asynchronous SError exception for each non-speculative:

• Explicit memory access made by an instruction.

• Cache maintenance operation.

• If FEAT_MTE is implemented, access to an Allocation Tag in memory made by an instruction.

• Translation table walk or hardware update of translation tables.

DTSYLW In this section, handled precisely and synchronously means:

• If an access is due to any Active element of an SVE non-fault vector load instruction, or an Active element
that is not the First active element of an SVE First-fault vector load instruction, then the error is reported in
the FFR.

• Otherwise, the error generates a precise synchronous Data Abort exception.

RCLFJM All Error exceptions generated by speculative memory accesses are taken as an asynchronous SError exception.

RWFNJG When an Error exception is taken as an asynchronous SError exception, the exception is taken in finite time.

RBCXKN When any of the following exceptions are taken, the PE records the PE error state in the exception syndrome
register:

• A synchronous External abort taken to AArch64 state.

• An SError exception taken to either AArch32 or AArch64 state.

RTYVYR When a synchronous External abort is taken to AArch32 state, the PE does not record the PE error state.

IGGCQQ The exception type and target Execution state determine the set of PE error state values the PE can record.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7227
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
IWSYXB The recorded PE error state informs software whether software can recover execution and, if so, whether any action
by the recovery software to locate and repair the error is necessary first.

ITRWXF Other than as described by IWBVYC, the PE error state recorded in the exception syndrome register describes the
recovery of the PE state only. For example, the PE state might be recoverable when the state of system is such that
system-level recovery is not possible. See also IZQRGL.

INFDSM Software is only able to successfully recover execution and make progress from a restart address for the exception
by executing an Exception Return instruction to branch to the instruction at this restart address if all of the following
are true:

• The error has not been silently propagated by the PE.

• At the point when the Exception Return instruction is executed, the PE state and memory system state are
consistent with the PE having executed all of the instructions up to but not including the instruction at the
restart address, and none afterwards. That is, at least one of the following restart conditions is true:

— The error has been not architecturally consumed by the PE and infected the PE state.

— Executing the instruction at the restart address will not consume the error and will correct any corrupt
state by overwriting it with the correct value or values.

RDCKHJ On taking an Error exception, the PE determines that software is able to recover execution at the point where the
exception is taken, with no additional action from software, if and only if all of the following are true:

• The error has not been silently propagated by the PE.

• The restart conditions are met because all of the following are true:

— Either the error does not remain latent or executing the instruction at the restart address will not
consume the error and will correct any corrupt PE state.

— The restart address is the preferred return address for the exception.

• The PE has not elected to determine that software is not able to recover execution, and has not elected to
determine that software is able to recover execution if software takes action to locate and repair the error.

RJBHWY On taking an Error exception, the PE determines that software is able to recover execution if software takes action
to locate and repair the error, to get the PE state and memory system state into this consistent state before attempting
recovery, if and only if all the following are true:

• The error has not been silently propagated by the PE.

• The restart conditions can be met because the restart address is the preferred return address for the exception
and at least one of the following is true:

— The error remains latent and executing the instruction at the restart address will access the corrupt
state. If the error is removed then executing the instruction at the restart address will correct any
corrupt PE state and/or corrupt memory state. For example, the instruction at the restart address is a
load that will consume the error and corrupts PE state.

— The error does not remain latent and the PE has elected to determine that software is able to recover
execution if software takes action to locate and repair the error.

— Executing the instruction at the restart address will not consume the error and the PE has elected to
determine that software is able to recover execution if software takes action to locate and repair the
error.

• The PE has not elected to determine that software is not able to recover execution.

RGJQWN On taking an Error exception, the PE determines that software is not able to recover execution if and only if one or
more of the following are true:

• The error has been silently propagated by the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7228
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
• The restart conditions cannot be met even if software takes action to locate and repair the error. This is
because at least one of the following is true:

— The error remains latent and executing the instruction at the restart address will consume the error and
corrupt PE state. Either the error cannot be removed or executing the instruction at the restart address
will not correct any corrupt PE state.

— The restart address is not the preferred return address for the exception.

• The PE has elected to determine that software is not able to recover execution.

IXMCCR That the PE determines that software is able to recover execution if software takes action to locate and repair the
error does not mean that software can locate and repair. For example, the error in memory might be one which
cannot be located or cannot be repaired. See IZQRGL.

Error recovery software might instead make the PE state and memory system state consistent with an alternative
execution of the program.

Example D19-11

An Error exception is generated by a load from a location in a clean page of memory that is infected by an error.
Software might be able to repair the error by:

• Reloading the page from a backing store. This makes the memory system state consistent with the
uncorrupted view. Executing the instruction at the restart address will load the uncorrupted value into the PE
state.

• Invalidating the clean page and marking it page as inaccessible. Executing the instruction at the restart
address will result in a Translation fault being generated when the program tries to access the page. The target
of the load will contain an UNKNOWN value, which is permitted by the architecture. The MMU fault handler
can then reload the page from the backing store, as it would for a page that has not been previously accessed
or has been paged out.

Either approach might result in the virtual address to physical address mapping for the page being changed by
software, meaning the memory system state is not consistent with the previously executed instructions. However,
the memory system state is consistent with a valid alternative view of the execution of the program that allows
software to recover execution.

This recovery is only possible if the error can be isolated to a location.

IRHPPV A PE might include additional IMPLEMENTATION DEFINED mechanisms to aid software locate and repair the error.

If software has to use IMPLEMENTATION DEFINED mechanisms to locate and repair the error, then the PE reports that
it has determined that software is not able to recover execution. The PE might use IMPLEMENTATION DEFINED
additional syndrome registers to report that software is able to recover execution if software takes action to locate
and repair the error using the IMPLEMENTATION DEFINED mechanisms.

IRLQVJ See also:

• PE error state classification.

• PE error state recording in the exception syndrome.

D19.4.1 PE error state recording in the exception syndrome

RWPKYM When an asynchronous SError exception is taken to AArch64 state, the PE records the PE error state in the
ESR_ELx exception syndrome register as the applicable one of:

• Uncontainable (UC).

• Unrecoverable state (UEU).

• Recoverable state (UER).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7229
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
• Restartable state (UEO).

• Corrected (CE).

• Uncategorized error.

• IMPLEMENTATION DEFINED syndrome.

ISDDLL When an asynchronous SError exception is taken to AArch64 state:

• Uncategorized error is recorded by setting ESR_ELx.ISS to zero. This includes setting ESR_ELx.IDS and
ESR_ELx.DFSC to zero.

• IMPLEMENTATION DEFINED syndrome is recorded by setting ESR_ELx.IDS to 0b1. The remainder of
the ESR_ELx.ISS syndrome is IMPLEMENTATION DEFINED.

Other values for the PE error state are recorded in ESR_ELx.AET, by setting ESR_ELx.IDS to 0b0 and
ESR_ELx.DFSC to the applicable nonzero fault status code, indicating ESR_ELx.AET is valid.

RZSKKG If FEAT_RASv2 is implemented and any of the following are true, then an error exception is taken as an SError
exception:

• The error has been silently propagated by the PE.

• The PE determines that software is not able to recover execution from the preferred return address of the
exception.

RFKHHF When a synchronous External abort exception is taken to AArch64 state, the PE records the PE error state in
ESR_ELx.SET as the applicable one of the following:

• If FEAT_RASv2 is not implemented, Uncontainable (UC).

• Recoverable state (UER).

• Restartable state (UEO).

Other values for the PE error state are not supported by synchronous External abort exceptions taken to AArch64
state.

RPWKBL When an asynchronous SError exception is taken to AArch32 state, the PE records the PE error state in DFSR.AET
or HSR.AET as appropriate, as the applicable one of:

• Uncontainable (UC).

• Unrecoverable state (UEU).

• Recoverable state (UER).

• Restartable state (UEO).

Other values for the PE error state are not supported by asynchronous SError exceptions taken to AArch32 state.

IQVVSM Table D19-1 summarizes the supported PE error state syndrome values for each type of Error exception.

Table D19-1 Summary of Error exception types and supported PE error state syndrome values

PE error state
External abort to
AArch64 state

SError exception to
AArch64 state

External abort to
AArch32 state

SError exception to
AArch32 state

Recorded in: ESR_ELx.SET ESR_ELx.AET No syndrome DFSR.AET

Uncategorized error No Yes (ISS==0) - No

IMPLEMENTATION
DEFINED syndrome

No Yes (IDS==1) - No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7230
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
D19.4.2 PE error state classification

ICCKWK The PE determines which PE error state to record based on the following criteria:

• The PE error state syndrome values supported by the type of Error exception being taken. See PE error state
recording in the exception syndrome.

• The following implementation-specific properties and behaviors of the PE on taking the exception:

— Whether the error has been silently propagated by the PE.

— Whether the PE determines that software is able to recover execution at the point where the exception
is taken.

— If the PE determines that software can recover execution, whether software needs locate and repair the
error before attempting to recover. If software does not locate and repair the error, then attempting to
recover execution might cause the Error exception to be generated again.

— If the PE determines that software cannot recover execution, whether the error is a synchronizable
error.

• Whether the implementation elects to record the PE error state as another state. The PE only does this when
the criteria for the other, recorded state are met. The conditions under which the PE elects to record the PE
error state as another state are IMPLEMENTATION DEFINED.

The recorded PE error state is defined by the rules in this section.

RQKZLB If and only if all of the following are true, then on taking an Error exception the PE error state is recorded as
Uncontainable (UC):

• One or more of the following are true:

— The error has been silently propagated by the PE.

— The PE determines that software is not able to recover execution from the preferred return address of
the exception and the error is not a synchronizable error.

Uncontainable (UC),
FEAT_RASv2
implemented

No Yes (0b000) - Yes (0b00)

Uncontainable (UC),
FEAT_RASv2 not
implemented

Yes (0b10) Yes (0b000) - Yes (0b00)

Unrecoverable state
(UEU)

No Yes (0b001) - Yes (0b01)

Recoverable state
(UER)

Yes (0b00) Yes (0b011) - Yes (0b11)

Restartable state
(UEO)

Yes (0b11) Yes (0b010) - Yes (0b10)

Deferred (DE) No No - No

Corrected (CE) No Yes (0b110) - No

Table D19-1 Summary of Error exception types and supported PE error state syndrome values (continued)

PE error state
External abort to
AArch64 state

SError exception to
AArch64 state

External abort to
AArch32 state

SError exception to
AArch32 state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7231
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
— The PE determines that software is not able to recover execution from the preferred return address of
the exception and the Error exception is taken as a synchronous External abort to AArch64 state. (That
is, the type of Error exception does not support reporting the PE error state as Unrecoverable state
(UEU).)

— The implementation has elected to record the PE error state as Uncontainable (UC).

• The Error exception is not taken as a synchronous External abort to AArch32 state.

• Either FEAT_RASv2 is not implemented, or the Error exception is not taken as a synchronous External abort
to AArch64 state.

• The implementation has not elected to record the PE error state as IMPLEMENTATION DEFINED
syndrome or Uncategorized error, or the type of Error exception does not support reporting the PE error state
as IMPLEMENTATION DEFINED syndrome or Uncategorized error.

RQGNYD If and only if all of the following are true, then on taking an Error exception the PE error state is recorded as
Unrecoverable state (UEU):

• The error has not been silently propagated by the PE.

• The Error exception is taken as an SError exception.

• One or more of the following are true:

— The PE determines that software is not able to recover execution from the preferred return address of
the exception and the error is a synchronizable error.

— The implementation has elected to record the PE error state as Unrecoverable state (UEU).

• The implementation has not elected to record the PE error state as Uncontainable (UC),
IMPLEMENTATION DEFINED syndrome, or Uncategorized error.

IFJCZP Error synchronization event defines synchronizable error.

RJHNVT If and only if all of the following are true, then on taking an Error exception the PE error state is recorded as
Recoverable state (UER):

• The error has not been silently propagated by the PE.

• The Error exception is not taken as a synchronous External abort to AArch32 state.

• The PE determines that software is able to recover execution from the preferred return address of the
exception.

• One or more of the following are true:

— The PE determines that software must take action to locate and repair the error to successfully recover
execution. This might be because the exception was taken before the error was architecturally
consumed by the PE, at the point when the PE was not be able to make correct progress without either
consuming the error or otherwise making the state of the PE unrecoverable.

— The implementation has elected to record the PE error state as Recoverable state (UER).

• The implementation has not elected to record the PE error state as Unrecoverable state (UEU), Uncontainable
(UC), IMPLEMENTATION DEFINED syndrome, or Uncategorized error.

RMBVCF If and only if all of the following are true, then on taking an Error exception the PE error state is recorded as
Restartable state (UEO):

• The error has not been silently propagated by the PE.

• The Error exception is not taken as a synchronous External abort to AArch32 state.

• The PE determines that software can recover execution from the preferred return address of the exception
without the need for software to take action to locate and repair the error first.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7232
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
• One or more of the following are true:

— The error is an uncorrected error. This includes a deferred error.

— The error is a corrected error and the Error exception is not taken as an SError exception taken to
AArch64 state.

— The implementation has elected to record the PE error state as Restartable state (UEO).

• The implementation has not elected to record the PE error state as any of Recoverable state (UER),
Unrecoverable state (UEU), Uncontainable (UC), IMPLEMENTATION DEFINED syndrome, or
Uncategorized error.

RLFXRD If and only if all of the following are true, then on taking an Error exception the PE error state is recorded as
Corrected (CE):

• The error has been corrected and not silently propagated by the PE.

• The Error exception is taken as an SError exception taken to AArch64 state.

• Software can recover execution from the preferred return address of the exception. Because the error has been
corrected, software does not need to take action to locate and repair the error.

• The implementation has not elected to record the PE error state as any other type.

RNZYRP If and only if all the following are true, then on taking an Error exception the PE error state is recorded as an
Uncategorized error:

• The Error exception is taken as an asynchronous SError exception taken to AArch64 state.

• The implementation has elected to record the PE error state as an Uncategorized error.

RVHWHD If and only if all the following are true, then on taking an Error exception the PE error state is recorded as an
implementation defined syndrome

• The Error exception is taken as an asynchronous SError exception taken to AArch64 state.

• The implementation has elected to record the PE error state as an IMPLEMENTATION DEFINED
syndrome.

ISRPJD The IMPLEMENTATION DEFINED syndrome type might provide additional IMPLEMENTATION DEFINED
syndrome recorded in the exception syndrome register. Software might be able to determine the state of the PE from
this syndrome, or other IMPLEMENTATION DEFINED syndrome registers.

IWLZRP Uncategorized error and IMPLEMENTATION DEFINED syndrome are defined for backwards compatibility with
previous versions of the architecture. Arm does not recommend use of these PE error state values in new
implementations that include other RAS features.

IVKMZB The PE error states are summarized by Figure D19-1. Figure D19-1 assumes the type of Error exception supports
the resulting PE error state, never elects to record an error as a different PE error state when permitted, and does not
show Uncategorized error or IMPLEMENTATION DEFINED syndrome.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7233
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
Figure D19-1 PE error states

IZQRGL If the PE error state reports that software can recover execution, or that software isolation might be possible because
the error is a synchronizable error, then this does not necessarily mean that the error can be recovered from because
the error in the system might be one which does not allow software to recover the operation. Rather, software might
be able to recover if it can repair the error and continue.

Example D19-12

A component detects an error when accessed by a PE, and records in a RAS System Architecture node that the error
is uncontainable at the component, meaning the system has to be shut down to avoid catastrophic failure.

The component signals the error with an in-band error response to a PE, which does not report the severity of the
error. The recorded PE error state refers only to the PE, not the system error state.

IWBVYC If the in-band error response can signal the severity of the error to the PE, then the PE might use this information to
elect to report the PE error state as the severity of error reported to it, if permitted by the preceding rules.

However, this is not required, and software must not rely on this behavior and should determine from the system
whether the error is recoverable at the system level.

Example D19-13

A processor cache detects an uncontainable tag RAM error, and the PE reports the PE error state as Uncontainable
(UC), even though the state of the PE itself is Recoverable state (UER). RQKZLB allows this.

ITXFMY An SError exception that is masked when it is generated remains pending until taken later when no longer masked,
and when taken, if FEAT_RASv2 is implemented, is reported with ESR_ELx.ELS set to 0b0. In these cases, the PE
error state is also unlikely to be Restartable or Recoverable.

	�������	
����	

����
����������

����
���������

	�

�������	�
���

�������	�
���

�
�����
������������

	�

����	���
�����������

	�

�	��	���	����
����

����� ��
��������	

	�

���������
���

���

	�

 ����������
��!�

���

"����	
��#$�����

���

�	�����������
����

�����
	��

 ����������
�� �

����� 	�
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7234
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
ITGPQZ See also:

• PE error propagation.

• Error synchronization event.

D19.4.2.1 Using the PE error state classification

SXSKNS When the PE error state is recorded as Uncontainable (UC):

• The error handling software must assume that either:

— The error has been silently propagated by the PE.

— Software is not able to recover execution from the preferred return address of the exception and the
error was not a synchronizable error.

• If the error handling software cannot isolate the error to an application or VM, or both, by other means, then
the system must be shut down by software to avoid catastrophic failure.

SHYWFL When the PE error state is recorded as Unrecoverable state (UEU):

• The error handling software can assume the error has not been silently propagated by the PE.

• The error handler cannot safely recover execution from the preferred return address of the exception, even if
it takes action to locate and repair the error. The state of the affected software, or both, is unrecoverable.
However, if the software includes Error synchronization events, the error handler can use the properties of
the Error synchronization event to determine which software is affected by the error.

• The affected software cannot continue and must be isolated by the error handling software.

SLSFYM When the PE error state is recorded as Recoverable state (UER):

• The uncorrected error might remain latent in the system.

• If the error handling software takes action to locate and repair the uncorrected error, then the error handler
can safely recover execution from the preferred return address of the exception. Otherwise on restart of the
affected software the PE might attempt to consume the error again, causing a further Error exception. If the
error handler cannot locate and repair the error, then the affected software must be isolated by the error
handling software.

SGLPZY When the PE error state is recorded as Restartable state (UEO):

• The error might remain latent in the system.

• The error handling software might take action to locate and repair the error before it is consumed. However,
the affected software can be safely restarted by the error handler without software taking any action to locate
and repair the error.

For example, the error was signaled when the PE speculatively accessed corrupt data.

SGRZQS When the PE error state is recorded as IMPLEMENTATION DEFINED syndrome or Uncategorized error, if the
error handling software is not able to determine the actual state of the PE and memory, it should treat
IMPLEMENTATION DEFINED syndrome and Uncategorized error as Uncontainable (UC).

D19.4.2.2 Recording the physical address

DLVGRB When FEAT_PFAR is implemented, the address written to PFAR_ELx.PA or MFAR_EL3.PA on taking a
synchronous External Abort or SError exception can be any address within a naturally-aligned fault granule that
contains the faulting physical address.

RTHPSG The fault granule size is IMPLEMENTATION DEFINED and no larger than the size of the range of values permitted to
be recorded in FAR_ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7235
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
Note

To aid with data recovery, it is recommended that the fault granule is no larger than the error protection granule used
in the system.

RJZCNK When FEAT_PFAR is implemented, Execution at EL0 makes PFAR_EL1 become UNKNOWN, and Execution at EL1
or EL0 makes PFAR_EL2 become UNKNOWN.

D19.4.3 Multiple SError exceptions

ICPJLW Multiple physical and/or virtual SError exception conditions might be pending together. The architecture does not
define relative priorities for asynchronous exceptions.

RDHKQZ If multiple physical and/or virtual SError exception conditions are pending, then it is IMPLEMENTATION DEFINED
whether the multiple pending SError exception conditions are taken as a single SError exception.

RJBQSC On taking an SError exception for more than one SError condition:

• If the exception is taken to AArch64 state and one or more pending SError conditions would be reported as
IMPLEMENTATION DEFINED syndrome or Uncategorized error, then the syndrome recorded in
ESR_ELx.ISS is IMPLEMENTATION DEFINED.

• Otherwise, the recorded PE error state applies recorded by combined effect of the errors.

IGNHXJ Any pending SError conditions that are not taken with other SError exceptions as a single SError exception remains
pending after the SError exception is taken.

D19.4.4 Target Exception level for External abort and SError exceptions taken to AArch64 state

DFWSVH This section is included for completeness. It repeats the definitions from this Manual and so is non-normative.

These definitions also apply to synchronous External abort exceptions and SError exceptions taken from AArch32
state to AArch64 state.

INRZXZ The default target Exception level for synchronous External abort exceptions taken to AArch64 state is:

• EL1, if taken from EL0 or EL1.

• EL2, if taken from EL2.

• EL3, if taken from EL3.

The default target Exception level for SError exceptions taken to AArch64 state is EL1.

However:

• If EL3 is implemented and SCR_EL3.EA is 0b1, then the target Exception level for all SError exceptions and
synchronous External abort exceptions is EL3.

• Otherwise, if EL2 is implemented and enabled in the current Security state, then:

— If HCR_EL2.AMO is 0b1 or HCR_EL2.TGE is 0b1, then the target Exception level for SError
exceptions is EL2.

— If HCR_EL2.TEA is 0b1 or HCR_EL2.TGE is 0b1, then the target Exception level for synchronous
External abort exceptions taken from EL0 and EL1 is EL2.

When executing in AArch64 state at a higher Exception level than the target Exception level for SError exceptions,
SError exceptions are implicitly masked and not taken.

IBPGXV See also Chapter D1 The AArch64 System Level Programmers’ Model.

D19.4.5 Target Exception level for External abort and SError exceptions taken to AArch32 state

DWFQWP This section is included for completeness. It repeats the definitions from this Manual and so is non-normative.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7236
ID032224 Non-Confidential

RAS PE Architecture
D19.4 Taking error exceptions
IBMBXM The default target mode for SError and synchronous External abort exceptions taken to AArch32 state is:

• Abort mode, if taken from EL0, EL1 or EL3, including from Monitor mode.

• Hyp mode, if taken from EL2.

However:

• If EL3 is implemented, EL3 is using AArch32, and SCR.EA is 0b1, then the target mode for SError
exceptions and synchronous External abort exceptions is Monitor mode.

• Otherwise, if EL2 is implemented, EL2 is using AArch32, and the PE is in Non-secure state:

— If HCR.AMO is 0b1 or HCR.TGE is 0b1, then the target mode for SError exceptions taken from EL0
and EL1 is Hyp mode, using vector offset 0x14.

— If HCR.TEA is 0b1 or HCR.TGE is 0b1, then the target mode for synchronous External abort
exceptions taken from EL0 and EL1 is Hyp mode, using vector offset 0x14.

Unless otherwise stated, vector offset 0x10 is used for SError exceptions and synchronous Data Abort exceptions,
and vector offset 0x0C is used for Prefetch Abort exceptions.

ICCPMY See also Chapter G1 The AArch32 System Level Programmers’ Model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7237
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
D19.5 Error synchronization event

RGRJVN An Error synchronization event is generated by any of the following:

• Executing an ESB instruction.

• When FEAT_IESB is implemented, and one of the following is true, taking an exception to an Exception
level, ELx, using AArch64:

— The appropriate SCTLR_ELx.IESB bit is 0b1.

— FEAT_DoubleFault is implemented, the Exception level is EL3, and SCR_EL3.NMEA is 0b1.

In Debug state this also applies to executing a DCPSx instruction to ELx.

• When FEAT_IESB is implemented, and one of the following is true, executing an exception return
instruction at an Exception level, ELx, using AArch64:

— The appropriate SCTLR_ELx.IESB bit is 0b1.

— FEAT_DoubleFault is implemented, the Exception level is EL3, and SCR_EL3.NMEA is 0b1.

In Debug state this also applies to executing a DRET instruction at ELx.

IPMGVM In addition to generating an Error synchronization event, the ESB instruction might additionally record and then clear
a masked pending asynchronous SError exception. This is also referred to as deferring the pending asynchronous
SError exception.

RWPPWC A synchronizable error is one of a subset of errors specific to the implementation that are synchronized by Error
synchronization events, generated by an instruction executed on the same PE as the Error synchronization events.

Note: Synchronizable error must not be confused with a synchronous error exception. An Error exception for a
synchronizable error might be taken asynchronously.

RBZPTV If the Error exception for a synchronizable error is taken in program order after the Error synchronization event
completes, and either physical SError exceptions are unmasked when the Error synchronization event occurs or the
Error exception is taken synchronously, then all of the following are true:

• The instruction that generated the synchronizable error is in program order after the Error synchronization
event.

• On completion of the Error synchronization event, the PE state and memory system state are consistent with
the PE having executed all instructions in program order before the Error synchronization event.

RZRHDD If the Error exception for a synchronizable error is taken asynchronously as an SError exception, physical SError
exceptions are masked when the Error synchronization event occurs, and the SError exception is not pending when
the Error synchronization event completes, then all of the following are true:

• The instruction that generated the synchronizable error is in program order after the Error synchronization
event.

• On completion of the Error synchronization event, the PE state and memory system state are consistent with
the PE having executed all instructions in program order before the Error synchronization event.

The SError exception is not pending when the Error synchronization event completes if a subsequent read of
ISR_EL1.A or ISR.A returns 0b0.

RYCJTN If the Error exception for a synchronizable error is taken asynchronously as an SError exception, the Error
synchronization event is generated by an ESB instruction executed when physical SError exceptions are masked, and
the ESB instruction does not set DISR_EL1.A or DISR.A to 0b1, then all of the following are true:

• The instruction that generated the synchronizable error is in program order after the ESB.

• On completion of the ESB, the PE state and memory system state are consistent with the PE having executed
all instructions in program order before the ESB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7238
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
RNFKMQ Taken in program order after the Error synchronization event completes means:

• For an Error synchronization event generated by an ESB instruction, the exception is taken in program order
after the instruction.

• For an Error synchronization event generated by an exception return instruction when FEAT_IESB
implemented, the exception is taken in program order after the instruction.

• For an Error synchronization event generated by an exception entry when FEAT_IESB is implemented, one
of the following is true:

— The exception is taken in program order strictly after the first instruction of the exception handler at
the exception vector address.

— The exception is taken from the first instruction of the exception handler at the exception vector
address and the ESR_ELx.IESB syndrome bit is recorded as 0b0.

IQZSHG The definition of synchronizable error means that if the error that is a synchronizable error is generated by an
instruction in program order before the Error synchronization event, then either the Error exception is taken before
the Error synchronization event, or on executing the Error synchronization event the following apply:

• If physical SError exceptions are unmasked or the Error exception is taken synchronously, then the Error
synchronization event ensures that the Error exception is not taken in program order after the Error
synchronization event. This allows isolation of the software affected by the error.

• If physical SError exceptions are masked and the Error exception is taken asynchronously, then:

— If the Error synchronization event was generated by an ESB, then the error is recorded in DISR_EL1 or
DISR. Software can use the PE error state recorded in DISR_EL1 or DISR to determine what recovery
is possible.

— Otherwise, the Error exception is pending when the Error synchronization event completes.

The SError exception might have been pending before or made pending by the Error synchronization event.

The definition does not mean that if the error is generated by a instruction in program order after the Error
synchronization event, then the Error exception will only be taken after the Error synchronization event. The Error
exception might be taken before the Error synchronization event, if the PE speculated past the Error synchronization
event and speculatively executed the instruction that generated the error. This might cause software to generate a
false failure. Error synchronization events are not speculation barriers.

ISQCFG The criteria for the PE error state mean that if the PE reports the PE error state as one of the following, then the error
must be either explicitly or implicitly a synchronizable error:

• Unrecoverable state (UEU).

• Recoverable state (UER).

• Restartable state (UEO).

This is because whether the error is a synchronizable error is a criterion for Unrecoverable state (UEU), and the
criteria for Recoverable state (UER) and Restartable state (UEO) satisfy the definition of synchronizable error.

For other physical errors:

• An error that has been silently propagated by the PE and is not reported as either IMPLEMENTATION
DEFINED syndrome or Uncategorized error must be reported as Uncontainable (UC) and is not containable
even if the error is a synchronizable error. Software must assume the error has been silently propagated even
if the error is a synchronizable error.

• It is implementation-specific whether an error reported with an ESR_ELx.ISS syndrome that is
IMPLEMENTATION DEFINED syndrome or Uncategorized error is a synchronizable error.

• The following errors have not been consumed by the PE:

— A Deferred error.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7239
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
— A Corrected error.

— An Error exception from a read by hardware speculation that does not corrupt the state of the PE.

Software can recover execution from these errors regardless of whether the error is a synchronizable error.

• An implementation might have other IMPLEMENTATION DEFINED Error exception and other sources of SError
exception, see RFNVVJ. If an IMPLEMENTATION DEFINED SError exception is generated by a level-sensitive
interrupt signal, then the SError exception cannot be a synchronizable error.

IVFFYW An Error synchronization event might operate as follows:

1. The PE ensures that any synchronizable error generated by an instruction in program order before the Error
synchronization event has caused a physical SError exception to become pending.

2. If a physical SError exception is pending for a synchronizable error and generated by an instruction in
program order before the Error synchronization event, and physical SError exceptions are not masked at the
current Exception level, then the physical SError exception is taken before completion of the Error
synchronization event. The SError exception might have been made pending by the Error synchronization
event, or might have been pending before the Error synchronization event.

RNPPGJ If an SError exception for a synchronizable error is pending after completing the Error synchronization event
generated by an ESB instruction, and physical SError exceptions are masked at the current Exception level, then the
ESB instruction performs the following steps:

1. The pending physical SError exception is recorded in DISR_EL1 or DISR. This includes the PE error state
that the pending Error exception would record if taken.

2. The DISR_EL1.A bit or DISR.A bit is set to 0b1.

3. The pending state of the physical SError exception is cleared.

The SError exception might have been made pending by the Error synchronization event, or might have been
pending before the Error synchronization event.

RBLRTM The criteria for ESB recording the PE error state in DISR_EL1 or DISR are the same as for that for recording the PE
error state in ESR_ELx or DFSR when an SError exception taken to the current execution state.

RKNWBN If an SError exception is taken as part of an Error synchronization event generated by an ESB instruction, then the
ESB instruction address is the preferred return address of the exception.

For the definition of the preferred return address for an exception, see Preferred return address.

RSFHDS On executing an ESB instruction when SError exceptions are masked, any pending SError exception generated by an
error that is not a synchronizable error:

• Remains pending after completion of the Error synchronization event.

• Does not update DISR_EL1 or DISR.

ICQKXL The Error recovery interrupt, Fault handling interrupt, and Critical Error interrupt interrupts described by RAS
System Architecture are asynchronous interrupts, and so are not synchronizable errors.

IBBGXN If multiple SError exception conditions are pending, then an Error synchronization event synchronizes all errors that
are synchronizable errors.

SVFHGT Software must be aware that an SError exception taken at an Error synchronization event or recorded in the
DISR_EL1 or DISR register by an ESB instruction might have been generated by hardware speculation of an
instruction in program order after the Error synchronization event.

D19.5.1 ESB and Virtual SError exceptions

RLLLVR If all of the following are true, then an ESB instruction executed at EL0 or EL1 synchronizes a pending virtual SError
exception:

• EL2 is implemented and enabled in the current Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7240
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
• Any of the following are true:

— EL2 is using AArch64, HCR_EL2.AMO is 0b1, HCR_EL2.TGE is 0b0, and HCR_EL2.VSE is 0b1.

— EL2 is using AArch32, HCR.AMO is 0b1, HCR.TGE is 0b0, and HCR.VA is 0b1.

• The VSESR_EL2 and, if implemented, VDFSR registers are writable.

In these cases, a virtual SError exception is pending, and the following occur when an ESB instruction is executed at
EL0 or EL1:

• If the virtual SError exception is unmasked at the current Exception level, then the exception is taken before
the completion of the ESB instruction.

• If the virtual SError exception is masked at the current Exception level, then all the following occur:

— HCR_EL2.VSE or HCR.VA cleared to 0b0.

— The virtual SError exception syndrome from VSESR_EL2 or VDFSR is recorded in VDISR_EL2 or
VDISR. See RHDCTW and RFLYGZ.

— VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError exception was pending prior to the
execution of the ESB instruction.

RGXHYX If all of the following are true, then it is IMPLEMENTATION DEFINED whether or not an ESB instruction executed at
EL0 or EL1 synchronizes a pending virtual SError exception:

• EL2 is implemented and enabled in the current Security state.

• Any of the following are true:

— EL2 is using AArch64, HCR_EL2.AMO is 0b1, HCR_EL2.TGE is 0b0, and HCR_EL2.VSE is 0b1.

— EL2 is using AArch32, HCR.AMO is 0b1, HCR.TGE is 0b0, and HCR.VA is 0b1.

• The VSESR_EL2 and, if implemented, VDFSR registers are implemented as RAZ/WI.

In these cases, a virtual SError exception is pending, If the ESB instruction synchronizes a pending virtual SError
exception in this case, then the following occur when an ESB instruction is executed at EL0 or EL1:

• If the virtual SError exception is unmasked at the current Exception level, then the exception is taken before
the completion of the ESB instruction.

• If the virtual SError exception is masked at the current Exception level, then all the following occur:

— HCR_EL2.VSE or HCR.VA cleared to 0b0.

— The virtual SError exception syndrome in VDISR_EL2 or VDISR is set to zero. See RHDCTW and
RFLYGZ.

— VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError exception was pending prior to the
execution of the ESB instruction.

If the ESB instruction does not synchronize a pending virtual SError exception, then an ESB instruction executed at
EL0 or EL1 ignores the pending virtual SError exception and the virtual SError exception stays pending.

RYVBSH If all of the following are true, then it is IMPLEMENTATION DEFINED whether or not an ESB instruction executed at
EL0 or EL1 synchronizes a pending virtual SError exception from an IMPLEMENTATION DEFINED source:

• EL2 is implemented and enabled in the current Security state.

• Any of the following are true:

— EL2 is using AArch64, HCR_EL2.AMO is 0b1, and HCR_EL2.TGE is 0b0.

— EL2 is using AArch32, HCR.AMO is 0b1, and HCR.TGE is 0b0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7241
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
If a virtual SError exception from an IMPLEMENTATION DEFINED source that is a synchronizable error is pending,
then the following occur when an ESB instruction is executed at EL0 or EL1:

• If the virtual SError exception is unmasked at the current Exception level, then the exception is taken before
the completion of the ESB instruction.

• If the virtual SError exception is masked at the current Exception level, then all the following occur:

— The pending state of the virtual SError exception is cleared.

— The virtual SError exception syndrome is set to the IMPLEMENTATION DEFINED syndrome for the
virtual SError exception. See RYZCYX and RJQGXD.

— VDISR_EL2.A or VDISR.A is set to 0b1 to indicate the SError exception was pending prior to the
execution of the ESB instruction.

If a virtual SError exception from an IMPLEMENTATION DEFINED source that is not a synchronizable error is pending,
then an ESB instruction executed at EL0 or EL1 ignores the pending virtual SError exception and the virtual SError
exception stays pending.

IVYGVB RLLLVR, RGXHYX, and RYVBSH happen in parallel with the Error synchronization event for physical SError
exceptions.

INNLGF See also Fields in VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR..

D19.5.2 Extension for synchronization at exception entry and return

DDPSJR The rules in this section apply when FEAT_IESB is implemented.

IWDSBL An implicit Error synchronization event has no effect on DISR_EL1 or VDISR_EL2.

RKJWNS When FEAT_DoubleFault is implemented, and the Effective value of SCR_EL3.NMEA is 0b1, SCTLR_EL3.IESB
is ignored and its Effective value is 0b1.

RHLVWK When FEAT_DoubleFault2 is implemented and the PE is in Non-debug state, all of the following apply:

• If the Effective value of SCTLR2_EL1.NMEA is 0b1, then SCTLR_EL1.IESB is ignored and the PE behaves
as if SCTLR_EL1.IESB is 0b1 for all purposes other than a direct read of the register.

• If the Effective value of SCTLR2_EL2.NMEA is 0b1, then SCTLR_EL2.IESB is ignored and the PE behaves
as if SCTLR_EL2.IESB is 0b1 for all purposes other than a direct read of the register.

D19.5.2.1 Synchronization on exception entry

RRNZWY For each value of ELx in EL1, EL2, EL3, if all of the following are true, then each exception that is taken to ELx
generates an Error synchronization event:

• ELx is using AArch64.

• The Effective value of SCTLR_ELx.IESB is 0b1.

RRPBWR For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing a DCPSx instruction generates
an Error synchronization event:

• The PE is in Debug state.

• ELx is using AArch64.

• The Effective value of SCTLR_ELx.IESB is 0b1.

RJQSKQ If an SError exception is taken to the Exception level ELy as a result of the Error synchronization event generated
on exception entry by the FEAT_IESB mechanism, then all the following occur:

• The PE sets the ESR_ELy.IESB bit in the SError exception syndrome to 0b1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7242
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
• The preferred return address for the SError exception is the exception vector address for the original
exception.

Note: ELy might be the same Exception level as ELx.

IFWZHV If SError exceptions are masked at ELx, then any SError exception made pending by the Error synchronization
event stays pending.

IMMVJW The prioritization of asynchronous exceptions is IMPLEMENTATION DEFINED. This means that an implementation
might choose to behave as if the SError exception was taken before the implicit Error synchronization event, if the
SError exception was not masked, taking the SError exception in place of the original exception.

In this case, ESR_ELy.IESB is set to 0b0 and the reported PE error state correctly indicates, for instance, whether
software can recover execution from the preferred return address for the SError exception in ELR_ELy.

IBVBKS When FEAT_DoubleFault is implemented, Arm recommends that an implicit Error synchronization event is
inserted before taking an exception to EL3.

When FEAT_DoubleFault2 is implemented, Arm recommends that an implicit Error synchronization event is
inserted before taking an exception to the target Exception level for an SError exception.

D19.5.2.2 Synchronization on exception return

RSKRCR For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing an exception return
instruction at ELx generates an Error synchronization event:

• The instruction does not generate any exception.

• ELx is using AArch64.

• The Effective value of SCTLR_ELx.IESB is 0b1.

IGPPXQ On an illegal return event, the exception return instruction sets PSTATE.IL to 0b1, which causes the next instruction
to generate an Illegal State exception. The exception return instruction does not generate the exception.

RCVPDN For each value of ELx in EL1, EL2, EL3, if all of the following are true, then executing an DRPS instruction at ELx
generates an Error synchronization event:

• The PE is in Debug state and the instruction does not generate any exception.

• ELx is using AArch64.

• The Effective value of SCTLR_ELx.IESB is 0b1.

RGXQYD Any SError exception taken as part of the Error synchronization event terminates execution of the instruction.

RLPKVM If an SError exception is taken to an Exception level, ELy, as a result of the Error synchronization event generated
on exception return by the FEAT_IESB mechanism, then all the following occur:

• The PE sets the ESR_ELy.IESB bit in the SError exception syndrome to an IMPLEMENTATION DEFINED
choice of 0b0 or 0b1.

• The preferred return address for the SError exception is the address of the ERET instruction.

IJZHDB If SError interrupt exceptions are masked at ELx, then any SError exception made pending by the Error
synchronization event stays pending.

D19.5.3 Error synchronization barriers in a minimal implementation

IGQQCK Error synchronization events and the ESB instruction can be implemented as no-ops if all of the following apply:

• Either there are no sources of SError exceptions, or all SError exceptions are reported as Uncategorized error
and are not synchronizable errors.

• Either EL2 is not implemented, or VSESR_EL2 and VDFSR are implemented as RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7243
ID032224 Non-Confidential

RAS PE Architecture
D19.5 Error synchronization event
This allows for a very low cost implementation of the RAS Extension.

IHSHJG See also Fields in VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR..
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7244
ID032224 Non-Confidential

RAS PE Architecture
D19.6 Virtual SError exceptions
D19.6 Virtual SError exceptions

ILSSCN When implemented, EL2 provides a virtual SError exception.

Virtual SError exceptions are generated by one of the following:

• Software sets HCR_EL2.AMO to 0b1 to enable the virtual SError exception mechanism and HCR_EL2.VSE
to 0b1 to inject a virtual SError exception. In AArch32 state, these are the HCR.AMO and HCR.VA bits
respectively.

• An IMPLEMENTATION DEFINED source of virtual SError exceptions.

FEAT_RAS provides:

• Mechanisms to allow a hypervisor to specify the syndrome value reported to a guest Operating System on
taking a virtual SError exception injected using HCR_EL2.VSE or HCR.VA.

• Support for EL0 or EL1 to isolate a virtual SError exception injected using the HCR_EL2.VSE or HCR.VA
mechanism as if it were a physical SError exception.

DHRDYK The following rules in this section apply when FEAT_RAS is implemented.

RHDCTW When a virtual SError exception injected using HCR_EL2.VSE is taken to EL1 using AArch64, the PE sets
ESR_EL1.ISS to the value of the Virtual syndrome register, VSESR_EL2.

RFLYGZ When a virtual SError exception injected using HCR_EL2.VSE or HCR.VA is taken to EL1 using AArch32,
DFSR.{AET, ExT} are set to values from VSESR_EL2 or VDFSR.

The remainder of DFSR is set as defined by VMSAv8-32.

RYZCYX When a virtual SError exception from an IMPLEMENTATION DEFINED source is taken to EL1 using AArch64,
ESR_EL1.ISS is set to an IMPLEMENTATION DEFINED value that must report the PE error state as either:

• An IMPLEMENTATION DEFINED syndrome. That is, ESR_EL1.ISS[24] is 0b1.

• An Uncategorized error. That is, ESR_EL1.ISS is zero.

RJQGXD When a virtual SError exception from an IMPLEMENTATION DEFINED source is taken to EL1 using AArch32,
DFSR.{AET, ExT} are set to IMPLEMENTATION DEFINED values.

IJXKXG See also:

• Virtual interrupts.

• ESB and Virtual SError exceptions.

• Fields in VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR..
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7245
ID032224 Non-Confidential

RAS PE Architecture
D19.7 Error records in the PE
D19.7 Error records in the PE

IKMMPK A component that records detected errors is called a node by the RAS System Architecture. Each node implements
one or more Error records.

RVNLPC It is IMPLEMENTATION DEFINED whether the processor that implements a PE implements any nodes.

RXKDRX A PE implementing the RAS Extension might implement the System register interface to nodes.

ISCVSB The System register interface to nodes is not restricted to accessing only PE nodes.

IZRKKQ When an error is recorded by a PE node, one or more of the following might be generated, according to the
configuration of the node:

• A Fault handling interrupt.

• An Error recovery interrupt.

• A Critical Error interrupt.

• An in-band error response.

D19.7.1 Error record System register view

ISLVDW If the System register interface to a node is implemented, then software can access the Error records of the node
using Error record System registers.

RBYLZQ The number of Error records that can be accessed using the System registers is IMPLEMENTATION DEFINED, and
might be zero. The ERRIDR_EL1 and ERRIDR registers indicate the highest numbered index of the Error records
that can be accessed using System registers, plus one.

INWBNQ The AArch64 Error record System registers are those registers with an ERX*_EL1 mnemonic.

The AArch32 Error record System registers are those registers with an ERX* mnemonic.

IBJNDF The following tables describe the AArch32 and AArch64 Error record System registers.

The descriptions in this section apply whether the Error record is accessed through the indirection mechanism, as
described in Table D19-2 and Table D19-3, or as memory-mapped registers, as described in RAS registers summary.

Table D19-2 Using AArch32 System registers, System register map

Use To Access Access Description

ERXADDR ERR<n>ADDR[31:0] RW Error Record <n> Address Register

ERXADDR2 ERR<n>ADDR[63:32] RW Error Record <n> Address Register

ERXCTLR ERR<n>CTLR[31:0] RW Error Record <n> Control Register

ERXCTLR2 ERR<n>CTLR[63:32] RW Error Record <n> Control Register

ERXFR ERR<n>FR[31:0] RO Error Record <n> Feature Register

ERXFR2 ERR<n>FR[63:32] RO Error Record <n> Feature Register

ERXMISC0 ERR<n>MISC0[31:0] RW Error Record <n> Miscellaneous Register 0

ERXMISC1 ERR<n>MISC0[63:32] RW Error Record <n> Miscellaneous Register 0

ERXMISC2 ERR<n>MISC1[31:0] RW Error Record <n> Miscellaneous Register 1

ERXMISC3 ERR<n>MISC1[63:32] RW Error Record <n> Miscellaneous Register 1

ERXMISC4a ERR<n>MISC2[31:0] RW Error Record <n> Miscellaneous Register 2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7246
ID032224 Non-Confidential

RAS PE Architecture
D19.7 Error records in the PE
RZBCFZ If FEAT_RASv1p1 is implemented, then all Error records accessible through System registers implement RAS
System Architecture version 1.1.

RMBSFP If FEAT_RASv2 is implemented, then all Error records accessible through System registers implement RAS System
Architecture version 2.

SVBBNY To access an Error record, software:

1. Sets the error selection register, ERRSELR_EL1.SEL or ERRSELR.SEL, to the index of the record being
accessed.

2. Accesses the Error record using the ERX*_EL1 or ERX* System registers, as described in IBJNDF.

IWKXSB The Error records accessed through the System registers might be accessible only to the PE associated with those
System registers, or they might be shared and therefore accessible to other PEs through either System registers or
as a memory-mapped component.

IJMVVD Direct reads of the System registers, including Error record System registers, can occur speculatively and
out-of-order relative to other instructions executed on the same PE.

ERXMISC5a ERR<n>MISC2[63:32] RW Error Record <n> Miscellaneous Register 2

ERXMISC6a ERR<n>MISC3[31:0] RW Error Record <n> Miscellaneous Register 3

ERXMISC7a ERR<n>MISC3[63:32] RW Error Record <n> Miscellaneous Register 3

ERXSTATUS ERR<n>STATUS RW Error Record <n> Primary Status Register

a. If FEAT_RASv1p1 is implemented.

Table D19-2 Using AArch32 System registers, System register map (continued)

Use To Access Access Description

Table D19-3 Using AArch64 System registers, System register map

Use To Access Access Description

ERXADDR_EL1 ERR<n>ADDR RW Error Record <n> Address Register

ERXCTLR_EL1 ERR<n>CTLR RW Error Record <n> Control Register

ERXFR_EL1 ERR<n>FR RO Error Record <n> Feature Register

ERXMISC0_EL1 ERR<n>MISC0 RW Error Record <n> Miscellaneous Register 0

ERXMISC1_EL1 ERR<n>MISC1 RW Error Record <n> Miscellaneous Register 1

ERXMISC2_EL1a ERR<n>MISC2 RW Error Record <n> Miscellaneous Register 2

ERXMISC3_EL1a ERR<n>MISC3 RW Error Record <n> Miscellaneous Register 3

ERXPFGCDN_EL1 ERR<n>PFGCDN RW Error Record <n> Pseudo-fault Generation Countdown Register

ERXPFGCTL_EL1 ERR<n>PFGCTL RW Error Record <n> Pseudo-fault Generation Control Register

ERXPFGF_EL1 ERR<n>PFGF RO Error Record <n> Pseudo-fault Generation Feature Register

ERXSTATUS_EL1 ERR<n>STATUS RW Error Record <n> Primary Status Register

ERXGSR_EL1b ERRGSR{<n>} RO Error Group Status Register

a. If FEAT_RASv1p1 is implemented.

b. If FEAT_RASv2 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7247
ID032224 Non-Confidential

RAS PE Architecture
D19.7 Error records in the PE
RWFPWF Direct reads and writes of the Error records through the ERX*_EL1 AArch64 System registers, as described in
IBJNDF, are indirect reads of ERRSELR_EL1.

RFZBLM Direct reads and writes of the Error records through the ERX* AArch32 System registers, as described in IBJNDF,
are indirect reads of ERRSELR.

IYMGGY Explicit synchronization is required after reading an ERXGSR_EL1 AArch64 System register and before reading
ERXSTATUS_EL1.

Example D19-14 Direct reads of ERXGSR_EL1 cause indirect reads of ERRSELR_EL1

1. An instruction A writes the value <n> to ERRSELR_EL1.SEL. <n> is the index of an implemented System
register error record.

2. Software executes a first Context synchronization event B in program order after A.

3. An instruction C in program order after B reads ERXGSR_EL1, and observes bit [n MOD 64] == 0b1.

4. Software executes a second Context synchronization event D in program order after C.

5. An instruction E in program order after D reads ERXSTATUS_EL1.

If there is no other direct or external write to ERR<n>STATUS that clears ERR<n>STATUS.V between C and E,
then instruction E observes ERR<n>STATUS.V == 0b1.

D19.7.1.1 Fields in VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR.

IRGMHN ESR_ELx, HSR, and DFSR are exception syndrome registers. The PE records syndrome information in an
exception syndrome register on taking a physical SError exception or synchronous External abort exception.
ESR_ELx, HSR, and DFSR are also used by other exceptions.

DISR_EL1 and DISR are the deferred error syndrome registers. The PE records syndrome information in a deferred
error syndrome register on deferring a physical SError exception.

The PE also records a virtual syndrome value in ESR_EL1, DFSR, DISR_EL1, or DISR on taking or deferring a
virtual SError exception. The virtual syndrome value is provided by software in a corresponding virtual error
syndrome register, VSESR_EL2, VDFSR, VDISR_EL2, or VDISR respectively.

RSLNMV For a given implementation:

• If ESB never synchronizes any errors, then DISR_EL1.A and DISR.A might be RES0.

• The deferred and virtual syndrome registers are capable of storing any syndrome value that might be recorded
by the PE in an exception syndrome register on taking a physical SError exception or synchronous External
abort exception.

• If any of ESR_ELx[24:0], HSR[11:9], and DFSR[15:14,12] is not used and always set to zero by the PE on
taking a physical SError exception or synchronous External abort exception, then that bit can be RES0 in that
exception syndrome register.

• A bit that is not used and always set to zero or always set to one by the PE on taking a physical SError
exception is permitted to be RES0 or RES1 respectively in the corresponding deferred and virtual error
syndrome registers. See Table D19-4.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7248
ID032224 Non-Confidential

RAS PE Architecture
D19.7 Error records in the PE
In Table D19-4, the deferred or virtual error syndrome register bit described in the left-hand column is permitted to
be RES0 or RES1 only if the corresponding bit is always set to zero or always set to one (respectively) on taking a
physical SError exception in all of the implemented exception syndrome registers listed in the other columns
marked Yes on that row. Otherwise, the bit is read/write.

IFWGLF RSLNMV means that VSESR_EL2 and VDFSR can be implemented as RAZ/WI when ESR_ELx[24:0], HSR[11:9],
and DFSR[15:14,12] are always set to zero by the PE on taking a physical SError exception or synchronous External
abort exception. When this is the case, the PE error state is always reported as Uncategorized error when a physical
SError exception is taken to AArch64 state.

IGQQCK then further allows ESB to be executed as a no-op, meaning DISR_EL1, DISR, VDISR_EL2, and VDISR
can also be implemented as RAZ/WI.

This allows for a very low-cost implementation of the RAS Extension.

Table D19-4 Permitted relaxations for bits in deferred and virtual error syndrome registers

Bit is permitted to be RES0 or RES1
ESR_ELx[n]

n [24:0]

HSR[n]

n [11:9]

DFSR[n]

n [15:14,12]

VSESR_EL2[n] Yes - Yes

VDISR_EL2[n] Yes - Yes

DISR_EL1[n] Yes - -

VDFSR[n] - - Yes

VDISR[n] - - Yes

DISR[n] - Yes Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D19-7249
ID032224 Non-Confidential

Chapter D20
MPAM PE Architecture

This chapter describes the MPAM Extension PE Architecture. It contains the following sections:

Introductory information:

• About the MPAM Extension.

• Memory-system resource partitioning.

• Memory-system resource usage monitoring.

• Memory-system components.

• Versions of the MPAM Extension.

ID Types, Properties, and Spaces:

• ID Types, Properties, and Spaces.

• ID types and properties.

• Physical address spaces.

• PARTID spaces and properties.

• Maximum PARTID number.

• Default PARTID.

• Default PMG.

Memory System Propagation of MPAM Information:

• Memory-System Propagation of MPAM information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7250
ID032224 Non-Confidential

MPAM PE Architecture

System Model:

• PE behavior.

• Other Requesters with MPAM.

• The MPAM for RME system.

PE Generation of MPAM Information

• PE Generation of MPAM Information.

• MPAM System registers.

• Instruction, data, translation table walk, and other accesses.

• Security.

• PARTID virtualization.

• MPAM AArch32 interoperability.

• Support for nested virtualization.

• MPAM errors and default ID generation.

• MPAM for RME PE generation of MPAM information.

System Registers

• Synchronization of MPAM System register changes.

• Summary of System registers.

• MPAM enable.

• SDEFLT.

• Lower-EL MPAM register access trapping.

• FORCE_NS.

• Reset.

• Unimplemented Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7251
ID032224 Non-Confidential

MPAM PE Architecture
D20.1 About the MPAM Extension
D20.1 About the MPAM Extension

Computer systems running multiple applications or virtual machines (VMs) concurrently and on shared memory
often have one or more of the following requirements:

• A requirement to control the performance effects of non-conforming software on the performance of other
software.

• A requirement to bound the performance impact on software by other software.

• A requirement to minimize the performance impact of some software on other software.

These scenarios are common in enterprise networking and server systems. The Memory System Resource
Partitioning and Monitoring (MPAM) extension addresses these scenarios with two approaches that work together,
under software control, to apportion the performance-giving resources of the memory system. The apportionment
can be used to align the division of memory system performance between software, to meet higher-level goals for
dividing the performance of the system between software environments.

These approaches are:

• Memory-system resource partitioning.

• Memory-system resource usage monitoring.

The MPAM Extension describes:

• A mechanism for attaching partition identifiers and a monitoring property, for executing software on an Arm
Processing element (PE).

• Propagation of a Partition ID (PARTID) and Performance Monitoring Group (PMG) through the memory
system.

For more information about memory-system components, see: Arm® Architecture Reference Manual Supplement,
Memory System Resource Partitioning and Monitoring (MPAM), for A-profile architecture (ARM DDI 0598) which
describes:

• A framework for memory-system component (MSC) controls that partition one or more of the performance
resources of the component.

• An extension of the framework for MSCs to have performance monitoring that is sensitive to a combination
of PARTID and PMG.

• Some implementation-independent, memory-mapped interfaces to memory-system component controls for
performance resource controls most likely to be deployed in systems.

• Some implementation-independent memory-mapped interfaces to memory-system component resource
monitoring that are required to monitor the partitioning of memory-system resources.

There are different versions of this MPAM Extension. See Versions of the MPAM Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7252
ID032224 Non-Confidential

MPAM PE Architecture
D20.2 Memory-system resource partitioning
D20.2 Memory-system resource partitioning

The performance of programs running on a computer system is affected by the memory-system performance, which
is in part controlled by several resources in the memory system. In a memory system shared by multiple virtual
machines, operating systems, and applications, the resources available to one software environment can vary,
depending on the other programs running that might consume more or less of an uncontrolled memory-system
resource.

Memory-system resource partitioning provides controls on the limits and use of previously uncontrolled
memory-system resources.

Shared, partitionable memory-system resources that can affect performance of a VM, OS, or application, include:

• Shared caches, in which one application can displace the cached data of another application.

• Interconnect bandwidth, in which use by one application can interfere with use by another application due to
contention for buffers, communication links, or other interconnect resources.

• Memory bandwidth, in which use by one application can interfere with the use by another application due to
contention for DRAM bus bandwidth.

Memory-system performance resource partitioning is performed by MPAM resource controls located within the
MSCs. Each memory-system component can implement zero or more MPAM resource controls within that
particular component.

An MPAM resource control uses the PARTID that is set for one or more software environments. A PARTID for the
current software environment labels each memory-system request. Each MPAM resource control has control
settings for each PARTID. The PARTID in a request selects the control settings for that PARTID, which are then
used to control the partitioning of the performance resources of that memory-system component.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7253
ID032224 Non-Confidential

MPAM PE Architecture
D20.3 Memory-system resource usage monitoring
D20.3 Memory-system resource usage monitoring

Memory-system resource-usage monitoring measures memory-system resource usage. MSCs can have resource
monitors. An MPAM monitor must be configured and enabled before it can be queried for resource-usage
information. A monitor can be configured to be sensitive to a particular PARTID, or PARTID and PMG, and some
monitors can be configured to subcategories of the resource. For example, the memory bandwidth used by writes
that use a PARTID and PMG.

A monitor can measure resource usage or capacity usage, depending on the resource. For example, a cache can have
monitors for cache storage that measure the usage of the cache by a PARTID and PMG.

Monitors can serve several purposes. A memory-system resource monitor might be used to find software
environments to partition, or the reads of a monitor might be used to tune the memory-system partitioning controls.
A PMG value can be used to subdivide the software environments within a PARTID for finer-grained monitoring
results, or to make measurements over prospective partitions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7254
ID032224 Non-Confidential

MPAM PE Architecture
D20.4 Memory-system components
D20.4 Memory-system components

A Memory-System Component (MSC) is a function, unit, or design block in a memory system that can have
partitionable resources. MSCs consist of all units that handle load or store requests issued by any MPAM Requester.
These can include cache memories, interconnects, Memory Management Units, memory channel controllers,
queues, buffers, and rate adapters.

An MSC might also be a part of another system component. For example, a PE can contain caches, which might
contain MSCs.

For more information about memory-system components, see Arm® Architecture Reference Manual Supplement,
Memory System Resource Partitioning and Monitoring (MPAM), for A-profile architecture (ARM DDI 0598).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7255
ID032224 Non-Confidential

MPAM PE Architecture
D20.5 Versions of the MPAM Extension
D20.5 Versions of the MPAM Extension

The identification of architecture versions and the features present within a version differ between PEs, and are
described in:

• MPAM versions for PEs.

• Relationships between MPAM versions.

• Interoperation of components with different MPAM versions.

D20.5.1 MPAM versions for PEs

There are multiple different versions of the MPAM Extension. The architecture version of the MPAM Extension
implemented in a PE is given in ID_AA64PFR0_EL1.MPAM for the major version and
ID_AA64PFR1_EL1.MPAM_frac for the minor version. Table D20-1 shows how ID_AA64PFR0_EL1.MPAM
and ID_AA64PFR1_EL1.MPAM_frac values indicate the MPAM architecture version.

The optional MPAM features and MPAM identifier sizes supported by a PE that supports a version of the MPAM
Extension are indicated in the fields of MPAMIDR_EL1.

D20.5.2 MPAM system features by MPAM version

MPAM system features that vary by version are described in Table D20-2:

Table D20-1 MPAM Extension implemented by a PE

ID_AA64PR
F0_EL1.
MPAM

ID_AA64PR
F1_EL1.
MPAM_frac

MPAM Extension
Architecture version

Notes

0b0000 0b0000 None MPAM is not implemented.

0b0000 0b0001 v0.1 MPAM v0.1 is implemented.
MPAM v0.1 is the same as MPAM v1.1 with FORCE_NS which
is incompatible with MPAM v1.0.

0b0001 0b0000 v1.0 MPAM v1.0 is implemented.

0b0001 0b0001 v1.1 MPAM v1.1 is implemented. MPAM v1.1 includes all features of
MPAM v1.0.

It must not include FORCE_NS.

Table D20-2 System features by MPAM version

MPAM feature MPAM v0.1 MPAM v1.0 MPAM v1.1 MPAM for RME

MPAM_NS signal Required Required Required Prohibited

MPAM_SP signal Prohibited Prohibited Prohibited Required
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7256
ID032224 Non-Confidential

MPAM PE Architecture
D20.5 Versions of the MPAM Extension
D20.5.3 MPAM PE features by MPAM version

The MPAM PE features implemented in each MPAM version are summarized in Table D20-3.

D20.5.4 Relationships between MPAM versions

This section describes the relationships between MPAM versions.

D20.5.4.1 MPAM v0.1

An MPAM v0.1 PE implements any permitted subset of the features of MPAM v1.1 and also implements
MPAM3_EL3.FORCE_NS. The FORCE_NS field cannot be present in any other MPAM version.

In a PE that implements MPAM v0.1, the MPAM features available, either Required or Optional, are described in
MPAM PE features by MPAM version.

For more information see SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use and
MPAM3_EL3, MPAM3 Register (EL3) for FORCE_NS.

D20.5.4.2 MPAM v1.0

MPAM v1.0 is the base version of MPAM. Unless explicitly defined, all features from MPAM v1.0 are present in
the other versions of MPAM.

In a PE that implements MPAM v1.0, the MPAM features available, either Required or Optional, are described in
Table D20-3.

D20.5.4.3 MPAM v1.1

MPAM v1.1 adds features beyond the base version of MPAM. Unless explicitly removed, all features from MPAM
v1.1 are present in MPAM v0.1 and in MPAM for RME.

In a PE that implements MPAM v1.1, the MPAM features available, (either Required or Optional, are described in
Table D20-3.

D20.5.4.4 MPAM for RME

The MPAM for RME architecture supports the Realm Management Extension (RME) in systems, PEs, and MSCs.

MPAM for RME requires MPAM v1.1 or higher.

In a PE that implements both RME and MPAM, MPAM for RME is required.

In a PE, MPAM for RME requires the MPAM feature ALTSP.

Table D20-3 MPAM PE features by MPAM version

MPAM feature
MPAM
v0.1

MPAM
v1.0

MPAM
v1.1

MPAM for
RME

ID field

PARTID Virtualization Optional Optional Optional Optional MPAMIDR_EL1.HAS_HCR

Force secure PARTID to
NS

Required Prohibited Prohibited Prohibited MPAMIDR_EL1.HAS_FORCE_NS

Secure Default PARTID Optional Prohibited Optional Optional MPAMIDR_EL1.HAS_SDEFLT

TIDR in MPAM2_EL2 Required Prohibited Required Required MPAMIDR_EL1.HAS_TIDR

Four PARTID Spaces Prohibited Prohibited Prohibited Required MPAMIDR_EL1.SP4

Alternative PARTID
spaces

Prohibited Prohibited Prohibited Required MPAMIDR_EL1.HAS_ALTSP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7257
ID032224 Non-Confidential

MPAM PE Architecture
D20.5 Versions of the MPAM Extension
In a PE that implements MPAM for RME, the MPAM features available, either Required or Optional, are described
in Table D20-3.

An MPAM for RME implementation requires support for 4 PARTID spaces.

D20.5.5 Interoperation of components with different MPAM versions

Hardware must not prevent PEs that implement different versions of the MPAM architecture to coexist within a
system. However, PEs that implement different versions of the MPAM architecture might cause software issues.

There is no required relationship between the MPAM architecture version of a PE and the MPAM architecture
version of an MSC accessed by the PE. See Arm Architecture Reference Manual Supplement, Memory System
Resource Partitioning and Monitoring (MPAM) for A-profile architecture (ARM DDI 0598).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7258
ID032224 Non-Confidential

MPAM PE Architecture
D20.6 Example uses
D20.6 Example uses

This section is informative. It presents examples of partitioning uses that reduce memory-system interactions.

D20.6.1 Separate systems combined

With faster processors, it is often less expensive to integrate into a single computer system the functions previously
performed by two or more systems. If any of these previously separate systems was real-time or otherwise
performance-sensitive, it may be necessary to isolate the performance of that function from others in the integrated
system.

Memory system performance can be monitored, and the measured usage can guide optimization of system
partitioning.

Partitioning is often statically determined by the system developer. Partitions may be given non-shared resource
allocations to improve real-time predictability. The number of partitions required could be small, similar to the
number of previously separate systems.

D20.6.2 Foreground and background job optimization

When foreground and background jobs are run on the same system, the foreground job’s response time should not
be compromised, and the background job’s throughput should be optimized. The performance of the foreground and
background jobs can be monitored, and the resource allocations can be changed dynamically to track system loading
while optimizing foreground response time and background throughput.

An example of this approach is proposed in Heracles: Improving Resource Efficiency at Scale. This paper describes
a system that requires only two partitions, one for web-facing applications and another for best-effort applications.
The Heracles approach measures the service-level objective of tail latency for web service and adjusts the division
of resources between the two partitions. Resource-usage monitoring is also used to tune resource allocation for
particular resources.

D20.6.3 Service-level provisioning in multi-tenant VM servers

When a server runs multiple VMs for different users, it is necessary to prevent one VM from using more resource
than it has paid for and thereby prevent other tenants from being able to use the resource they have paid for. MPAM
partitions provide a means to regulate the memory-system resources used by a VM.

While there need only be a few service levels provisioned onto a server, each VM needs a separate PARTID so that
resource-usage controls can be separately responsive to the resource demands of that VM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7259
ID032224 Non-Confidential

MPAM PE Architecture
D20.7 ID Types, Properties, and Spaces
D20.7 ID Types, Properties, and Spaces

MPAM operation is based on the MPAM information that Requesters include with requests made to the memory
system.

This section defines the components of that MPAM information bundle, which consist of:

• Partition ID space (PARTID space).

• Partition number.

• Performance monitoring group.

Together, the Partition ID space and Partition number uniquely identify an MPAM resource partition.

The MPAM information bundle is used by each MPAM-controlled resource that is accessed in handling of a request.
The Partition ID space and Partition number select resource control parameters particular to the resource.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7260
ID032224 Non-Confidential

MPAM PE Architecture
D20.8 ID types and properties
D20.8 ID types and properties

A partition is identified by its partition ID space and its partition number.

Partition ID spaces are related to the Security states and the physical address spaces but are distinct from them as
described in sections Physical address spaces and PARTID spaces and properties.

A partition number references a specific partition within a partition ID space. A partition number in one partition
ID space does not reference the same partition as the same partition number in a different partition ID space. For
example, partition number 5 in one partition ID space is not the same as partition number 5 in a different partition
ID space.

The numerical value of a partition number has no inherent meaning. The partition ID space and partition number in
a request to the memory system are used to select resource control parameters in memory- system components
involved in transporting, handling, and completing the request.

Each controlled resource of each memory- system component has resource control parameters. The resource control
settings for a particular partition are independent of the settings for other resources, other memory- system
components, and other partitions.

An MPAM resource partition has a single property, the performance monitoring group. The performance monitoring
group is used to provide an additional filter for MPAM resource usage monitors to monitor a subset of software
using a single partition.

In this document, PARTID is used for the partition number fields in registers. In the MPAM information bundle that
accompanies memory- system requests, MPAM_SP or MPAM_NS is used for the partition ID space as it is encoded
on the bus. PMG is used for the performance monitoring group fields in registers and on the bus.

The architectural maximum width of a PARTID field is 16 bits.

The architectural maximum width of a PMG field is 8 bits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7261
ID032224 Non-Confidential

MPAM PE Architecture
D20.9 Physical address spaces
D20.9 Physical address spaces

The Armv8-A architecture defines two physical address spaces:

• Non-secure physical address space.

• Secure physical address space.

FEAT_RME provides two additional physical address spaces:

• Realm physical address space.

• Root physical address space.

MPAM makes use of the physical address spaces to access the resource control settings in memory-system
components. The controls for each PARTID space are accessed in the physical address space associated with that
PARTID space.

For detailed information about the physical address spaces to access memory-system component control settings
for PARTID spaces, see Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning
and Monitoring (MPAM) for A-profile architecture (ARM DDI 0598).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7262
ID032224 Non-Confidential

MPAM PE Architecture
D20.10 PARTID spaces and properties
D20.10 PARTID spaces and properties

MPAM has multiple PARTID spaces to permit separate management of the partition numbers and partition resource
configurations by environments that cannot be managed as a single PARTID space due to separation or trust
concerns.

Both the PARTID space and the physical address space of a Request are dependent on the Security state producing
the request, but the two are separately determined. The PARTID space is determined by the Security state of the
Requester. In a PE, the Exception level, MPAM virtualization controls, and alternative space controls also affect the
PARTID space used. Other factors, such as translation configuration, affect the physical address space of a memory
access but not the physical PARTID space used.

MPAM uses physical PARTID spaces to communicate between Requesters and other memory- system components.
Partitions in physical PARTID spaces are used to select the resource control settings in those memory- system
components. Those control settings regulate the resource usage in that memory- system component. See
Memory-System Propagation of MPAM information.

PEs have optional virtual PARTID spaces. A partition number in a virtual PARTID space is resolved to the partition
number in the corresponding physical PARTID space via a mechanism appropriate to the Requester. Virtual
PARTID spaces are described in Virtual PARTID spaces.

In systems that do not implement FEAT_RME, MPAM uses two PARTID spaces to label memory system requests:

• Non-secure physical PARTID space. This space is accessed when a Requester is executing in a Non-secure
Security state.

• Secure physical PARTID space. This space is only accessed when a Requester is executing in a Secure
Security state.

In systems that do not implement the Secure state, the Secure physical PARTID space is not used.

If FEAT_RME is implemented, MPAM for RME provides two additional PARTID spaces:

• Non-secure physical PARTID space. This space is accessed when a Requester is executing in a Non-secure
Security state.

• Secure physical PARTID space. This space is only accessed when a Requester is executing in a Secure
Security state.

• Realm physical PARTID space. This space is only accessed when a Requester is executing in a Realm
Security state.

Table D20-4 Primary PARTID space for each Exception level and Security state

Security
state

EL3 EL2 EL1 EL0

Non-secure - Non-secure PARTID
space

Non-secure PARTID
space

Non-secure PARTID
space

Secure Secure PARTID space Secure PARTID space Secure PARTID space Secure PARTID space
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7263
ID032224 Non-Confidential

MPAM PE Architecture
D20.10 PARTID spaces and properties
• Root physical PARTID space. This space is only accessed when a Requester is executing in a Root Security
state.

In systems that do not implement the Secure state, the Secure physical PARTID space is not used.

In a PE that implements FEAT_RME and does not implement FEAT_SEL2, the Secure security state is not present
and the Secure PARTID space is not used.

D20.10.1 Alternative PARTID spaces

If FEAT_RME is implemented, MPAM has an optional MPAM feature for PEs to collapse co-managed PARTID
spaces into a single PARTID space by providing an optional alternative PARTID space for PARTIDs generated in
some Security states and Exception levels. See Alternative PARTID spaces and selection.

D20.10.2 Virtual PARTID spaces

PEs have optional virtual PARTID spaces:

• Non-secure virtual PARTID space. This space exists in a PE only when the PE has the MPAM virtualization
option implemented and enabled for the current Exception level.

• Secure virtual PARTID space. This space exists in a PE only when the PE implements the Secure Security
state and has the MPAM virtualization option implemented and enabled for the current Exception level.

If FEAT_RME is supported and MPAM virtualization is also implemented, there is one additional virtual PARTID
space in the PE or other Requester:

• Realm virtual PARTID space. This space exists in a PE only when the PE has the MPAM virtualization option
implemented and enabled for the current Exception level.

Note

There is no Root virtual PARTID space.

See MPAM virtual ID spaces.

D20.10.3 PARTID space signals

The MPAM information bundle sent with memory- system requests contains the physical PARTID space encoded
on the MPAM_NS or MPAM_SP signal. MPAM_NS is a single-bit signal used in systems that do not implement
FEAT_RME or in a two-space region of a system implementing FEAT_RME. (See The MPAM for RME system).
MPAM_SP is a two-bit signal in systems that implement FEAT_RME.

Table D20-5 Primary PARTID space for each Exception level and Security state in RME

Security state EL3 EL2 EL1 EL0

Non-secure - Non-secure PARTID space Non-secure PARTID space Non-secure PARTID space

Secure - Secure PARTID space Secure PARTID space Secure PARTID space

Realm - Realm PARTID space Realm PARTID space Realm PARTID space

Root Root PARTID space - - -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7264
ID032224 Non-Confidential

MPAM PE Architecture
D20.10 PARTID spaces and properties
When FEAT_RME is not implemented, MPAM_NS indicates the PARTID space of a physical PARTID. When
MPAM_NS is 0 it indicates the Secure physical PARTID space. When MPAM_NS is 1, this indicates the
Non-secure physical PARTID space.

In systems that do not implement the Secure state, the Secure physical PARTID space is not used and MPAM_NS
value of 0b0 is RESERVED.

When FEAT_RME is implemented, the MPAM_NS component of the MPAM information bundle is redefined to a
2-bit value, MPAM_SP. The value of MPAM_SP[1:0] is given in Table D20-7.

In systems that do not implement the Secure state, the Secure physical PARTID space is not used and the MPAM_SP
value 0b00 is RESERVED.

In a PE that implements FEAT_RME and does not implement FEAT_SEL2, the Secure security state is not present,
the Secure PARTID space is not used, and the MPAM_SP value 0b00 is not output by the PE.

Systems can be constructed from Requesters that support MPAM_NS, MPAM_SP, or a combination of some
Requesters that support MPAM_NS and others that support MPAM_SP. See The MPAM for RME system.

Table D20-6 Encoding of MPAM_NS

MPAM_NS MPAM PARTID space

0b0 Secure PARTID space

0b1 Non-secure PARTID space

Table D20-7 Encoding of 2-bit MPAM_SP

MPAM_SP[1:0] MPAM PARTID space

0b00 Secure PARTID space

0b01 Non-secure PARTID space

0b10 Root PARTID space

0b11 Realm PARTID space
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7265
ID032224 Non-Confidential

MPAM PE Architecture
D20.11 Maximum PARTID number
D20.11 Maximum PARTID number

Each component implements a maximum PARTID number in each PARTID space that it supports. The component
types are MSC, PE, or other Requester.

The range of valid PARTIDs is 0 to the maximum PARTID, inclusive. The maximum values of a PARTID
implemented by a PE and by different MSCs is not required to be the same.

Each MSC has an MPAM identification register with which to discover the maximum PARTID implemented in each
physical PARTID space. The maximum Non-secure PARTID supported by an MSC is indicated in its
MPAMF_IDR.PARTID_MAX. The maximum Secure PARTID supported by an MSC is indicated in its
MPAMF_SIDR.PARTID_MAX.

The maximum PARTID supported by a PE is indicated in MPAMIDR_EL1.PARTID_MAX.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7266
ID032224 Non-Confidential

MPAM PE Architecture
D20.12 Default PARTID
D20.12 Default PARTID

Each MPAM PARTID space has a default PARTID number value. PARTID number 0 is the default PARTID value
in each MPAM PARTID space.

The default physical PARTID number must be generated when MPAM PARTID generation is disabled by
MPAMn_ELn.MPAMEN == 0, where n is the highest Exception level implemented.

The PARTID space of a default PARTID is selected according to the current Security state. It is always the primary
PARTID space for the Security state unless either the FORCE_NS MPAM feature or the alternative PARTID space
MPAM feature is implemented.

In MPAM v0.1 only, if the FORCE_NS feature is implemented, MPAM3_EL3.FORCE_NS is 1 and the primary
PARTID space is the Secure PARTID space, the Non-secure PARTID space is used.

If FEAT_RME and the alternative PARTID space features are implemented, the selection of the primary or
alternative PARTID space chooses the PARTID space to use. This is in conjunction with some controls over the
alternative PARTID space used for Security state by fields in MPAM2_EL2 and MPAM3_EL3. See Alternative
PARTID spaces and selection.

MPAM PARTID generation is permitted to produce the default PARTID when the generation encounters an error.

The PARTID error conditions in a PE are described in MPAM errors and default ID generation.

Note

System designers can choose to output the default IDs on requests generated by Requesters that do not support
MPAM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7267
ID032224 Non-Confidential

MPAM PE Architecture
D20.13 Default PMG
D20.13 Default PMG

The default PMG must be generated when MPAMEN == 0.

It is CONSTRAINED UNPREDICTABLE whether MPAM PMG generation produces the PMG value from the
MPAMn_ELx register field or the default PMG in each of two cases:

• When the PMG generation encounters an error, such as out-of-range PMG.

• When a default PARTID is generated due to a PARTID generation error.

In other cases, when MPAMEN == 1, the PMG must be the PMG value from the MPAMn_ELx register field.

The PMG error conditions in a PE are described in MPAM errors and default ID generation.

Note

System designers can opt to output the default IDs on requests generated by Requesters that do not support MPAM.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7268
ID032224 Non-Confidential

MPAM PE Architecture
D20.14 Memory-System Propagation of MPAM information
D20.14 Memory-System Propagation of MPAM information

The MPAM information bundle is propagated through the memory-system components, or MSCs, that have MPAM
resource controls, or monitoring. The MPAM information bundle is described in About the MPAM Extension.

MPAM information propagates in the direction of requests from Requesters towards terminating Completer
components. This is the downstream direction. The upstream direction is from Completers towards Requesters.

For detailed information about the propagation behavior in the memory system, see Arm® Architecture Reference
Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM) for A-profile architecture
(ARM DDI 0598).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7269
ID032224 Non-Confidential

MPAM PE Architecture
D20.15 PE behavior
D20.15 PE behavior

Processing elements (PEs) issue memory-system requests. PEs must implement the MPAMn_ELx registers
(page D23-9496) and their behaviors to generate the PARTID and PMG fields of memory-system requests.

See PE Generation of MPAM Information.

D20.15.1 PARTID generation

When a PE generates a memory-system request, it must label the request with the PARTID from the MPAMn_ELx
register for the current Exception level. MPAM_NS or MPAM_SP must be set according to the current execution
Security state as described in PARTID spaces and properties, Security, and MPAM for RME PE generation of MPAM
information.

If the MPAM Virtualization Extension is implemented and enabled for the current Exception level, the PARTID
from the MPAMn_ELx register must be mapped through the virtual partition mapping registers, see MPAM
registers, to produce a physical PARTID. See PARTID virtualization.

D20.15.2 Information flow

When a PE with MPAM support issues a request to the rest of the system, it labels those commands with the PARTID
and PMG supplied by software in the MPAMn_ELx register in effect (and if MPAM1_EL1 or MPAM0_EL1 with
virtual PARTID mapping is enabled, with the virtual PARTID mapped to a physical PARTID).

In addition to the PARTID and PMG, the request must also have the MPAM_NS bit to indicate whether the PARTID
is to be interpreted as in the Secure PARTID space or the Non-secure PARTID space.

When FEAT_RME is implemented, Root and Realm PARTID spaces are also available. In this case the MPAM_SP
bits are used to indicate whether the PARTID is to be interpreted as in the Secure PARTID space, Non-secure
PARTID space, Root PARTID space or Realm PARTID space. See PARTID spaces and properties.

D20.15.3 Resource partitioning

If a PE contains internal resources with MPAM partitioning controls, it must have memory-mapped registers to
identify and configure those features.

The PE can include caches. The included caches can implement memory-system partitioning, such as
cache-capacity partitioning controls.

An MSC within a PE can have priority partitioning. This generates a priority or QoS value for the downstream traffic
from that MSC, effectively giving priority or QoS values tied to the software environment that generated that traffic.

D20.15.4 Resource-usage monitoring

A PE can have internal resource monitors that can measure the use by a PARTID and PMG of an MPAM resource.
If a PE contains such features, they must have memory-mapped registers to identify and configure those features.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7270
ID032224 Non-Confidential

MPAM PE Architecture
D20.16 Other Requesters with MPAM
D20.16 Other Requesters with MPAM

Other Requesters that support MPAM, such as a DMA controller, must issue requests to the system that have the
MPAM information. Non-PE Requesters can have schemes different from those implemented in PEs for associating
MPAM information with requests. These other schemes are not described in this document.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7271
ID032224 Non-Confidential

MPAM PE Architecture
D20.17 The MPAM for RME system
D20.17 The MPAM for RME system

D20.17.1 Introduction

The MPAM for RME system supports RME PEs and at least one PE that supports both RME and MPAM for RME.

RME PEs support:

• Four Security states.

• Four physical address spaces.

A PE that supports RME and MPAM must also support MPAM for RME.

MPAM for RME requires support in the PE for:

• MPAM v1.1.

• Four MPAM PARTID spaces.

• MPAM alternative space, ALTSP feature.

There are three types of MPAM PARTID space regions that might be present in an MPAM for RME system. The
regions are:

• Four-space regions.

• Two-space regions.

• Non-MPAM regions.

Note

The system must include a four-space region, but does not have to include two-space regions or non-MPAM regions.

D20.17.1.1 Four-space region

This type of region is distinguished by propagating MPAM information containing the 2-bit MPAM_SP:

• Contains one or more application PEs implementing FEAT_RME and FEAT_MPAM1p1.

• Contains caches associated with those PEs.

• Contains cache-coherent interconnect among those PEs that carry MPAM information containing the 2-bit
MPAM_SP with requests.

• Contains only MSCs supporting the Non-secure PARTID space, the Realm PARTID space, the Root PARTID
space and the Secure PARTID space.

All components in a four-space region must support and use four PARTID spaces.

If no Requester implements the Secure PARTID space because the Secure Security state is not implemented, the
MPAM_SP encoding for the Secure PARTID space is unused and can be considered to be RESERVED.

D20.17.1.2 Two-space region

This type of region contains a single two-space MPAM component or many two-space MPAM components
connected as a subsystem through a two-space interconnect component. This component can connect to a four-space
region using a bridging scheme.

Two-space MPAM components support two PARTID spaces. These are compatible with MPAM v1.0 and MPAM
v1.1 but lack support for the Root and Realm PARTID spaces.

Two-space MPAM components can be used in an MPAM for RME system, but with some loss of functionality and
with some complication to the MPAM software.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7272
ID032224 Non-Confidential

MPAM PE Architecture
D20.17 The MPAM for RME system
If a two-space region is within a system that has no Requesters supporting the Secure physical address space or the

Secure PARTID space, the MPAM_NS encoding for the Secure PARTID space can be considered as RESERVED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7273
ID032224 Non-Confidential

MPAM PE Architecture
D20.18 PE Generation of MPAM Information
D20.18 PE Generation of MPAM Information

In a PE, the generation of PARTID, PMG, and PARTID space MPAM_SP, if RME is implemented, and MPAM_NS
if not, labels for memory-system requests are controlled by software running at the current Exception level or
higher. The set of MPAM information for:

• An application running at EL0 is controlled from EL1.

• An OS or guest OS running at EL1 is controlled from EL1 or EL2, according to settings controlled at EL2
and EL3.

• A hypervisor or host OS running at EL2 is controlled from EL2 or EL3, according to settings controlled at
EL3.

• A guest hypervisor running at EL1 is controlled from EL1 or EL2, according to settings controlled at EL2
and EL3.

• Secure instances of all of the above. If FEAT_RME is implemented, Realm instances of all the above.

• Monitor software running at EL3 is controlled only from EL3.

Note

For information on the presence of MPAM functionality in a PE, see MPAM versions for PEs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7274
ID032224 Non-Confidential

MPAM PE Architecture
D20.19 MPAM System registers
D20.19 MPAM System registers

The MPAM PARTID numbers are assigned to software by hypervisor and/or kernel software, and a partition
number, performance monitoring group, and PARTID space (either MPAM_SP or MPAM_NS) are associated with
all memory-system requests originated by the PE.

The MPAMn_ELx System registers contain fields for two PARTIDs and the PMG property for each as shown in
Table D20-8.

The MPAMn_ELx System registers use the register-name syntax shown in Figure D20-1. These registers control
MPAM PARTID and PMG, as shown in Table D20-9 and Summary of System registers and MPAM registers.

Figure D20-1 MPAM System register name syntax

Table D20-8 MPAM System register PARTID and PMG fields

Field name Description

PARTID_D Partition number used for data
requests.

PARTID_I Partition number used for instruction
requests.

PMG_D Performance monitoring group
property for PARTID_D.

PMG_I Performance monitoring group
property for PARTID_I.

MPAMn_ELx

x: Lowest Exception level at which

this register can be accessed.

n: Exception level at which

MPAMn_ELx register is the source of

PARTID and PMG values during

execution at ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7275
ID032224 Non-Confidential

MPAM PE Architecture
D20.19 MPAM System registers
Table D20-9 shows the PE MPAM System registers. The table does not include the following System registers:
MPAMIDR_EL1, MPAMVPMn_EL2, MPAMVPMV_EL2, MPAMHCR_EL2.

Table D20-10 shows the selection of MPAMn_ELx System register for MPAM generation. All of the fields named
are in MPAMHCR_EL2:

• GSTAPP_PLK is MPAMHCR_EL2.GSTAPP_PLK.

• EL0_VPMEN is MPAMHCR_EL2.EL0_VPMEN.

• EL1_VPMEN is MPAMHCR_EL2.EL1_VPMEN.

Table D20-9 PE MPAM System registers

System
register

Controlled
from

Supplies PARTID and
PMG when Executing in

Notes

MPAM0_EL1 EL3

EL2

EL1

EL0

(Applications)

With the virtualization option and
MPAMHCR_EL2.EL0_VPMEN == 1, MPAM0_EL1 PARTIDs
can be treated as virtual and mapped to a physical PARTID with
virtualization option.

Overridden by MPAM1_EL1 when
MPAMHCR_EL2.GSTAPP_PLK is set.

MPAM0_EL1 can be controlled from only EL3 if
MPAM3_EL3.TRAPLOWER == 1, from only EL2 or EL3 if
MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM0EL1 == 1 or from EL1, EL2 or
EL3 if MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM0EL1 == 0.

MPAM1_EL1 EL3

EL2

EL1

EL1

(Guest OS)

Overrides MPAM0_EL1 when
MPAMHCR_EL2.GSTAPP_PLK is set.

With the virtualization option and
MPAMHCR_EL2.EL1_VPMEN == 1, MPAM1_EL1 PARTIDs
are treated as virtual and mapped to a physical PARTID.

MPAM1_EL1 can be controlled only from EL3 if
MPAM3_EL3.TRAPLOWER == 1, only from EL2 or EL3 if
MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM1EL1 == 1, or from EL1, EL2
or EL3 if MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM1_EL1 == 0.

When HCR_EL2.E2H == 1, accesses to MPAM1_EL1 through
the MSR and MRS instructions are aliased to access
MPAM2_EL2 instead.

MPAM2_EL2 EL3

EL2

EL2

(Hypervisor or host OS)

MPAM2_EL2 is controlled only from EL3 if
MPAM3_EL3.TRAPLOWER == 1, or from EL2 or EL3 if
MPAM3_EL3.TRAPLOWER == 0.

MPAM3_EL3 EL3 EL3

(Monitor)

MPAM3_EL3 is controlled only from EL3.

MPAM1_EL12 EL2 EL1 Alias to MPAM1_EL1 for type 2 hypervisor host executing with
HCR_EL2.E2H == 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7276
ID032224 Non-Confidential

MPAM PE Architecture
D20.19 MPAM System registers
Table D20-10 Selection of MPAMn_ELx System register for MPAM generation

Current Exception level Use PARTID and PMG fields from: Perform MPAM virtual PARTID mapping

EL0 with GSTAPP_PLK == 0 MPAM0_EL1 If EL0_VPMEN == 1

EL0 with GSTAPP_PLK == 1 MPAM1_EL1 If EL1_VPMEN == 1

EL1 MPAM1_EL1 If EL1_VPMEN == 1

EL2 MPAM2_EL2 Never

EL3 MPAM3_EL3 Never
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7277
ID032224 Non-Confidential

MPAM PE Architecture
D20.20 Instruction, data, translation table walk, and other accesses
D20.20 Instruction, data, translation table walk, and other accesses

When a PE generates a memory-system request for an instruction access, the PARTID_I field of an MPAMn_ELx
register is used, as shown in Table D20-10. All translation table walk accesses for instructions use the same
PARTID_I field that their instruction accesses use.

When a PE generates a memory-system request for a data access, the PARTID_D field of an MPAMn_ELx register
is used, as shown in Table D20-10. All translation table walk accesses, including hardware updates of translation
tables, for data access use the same PARTID_D field that their data accesses use.

PARTID_D and PARTID_I fields of an MPAMn_ELx register can be set by software to the same or different
PARTIDs, with the following requirements:

• If PARTID_D is used for an access, including hardware updates of translation tables, PMG_D from the same
register must also be used.

• If PARTID_I is used for an access, including hardware updates of translation tables, PMG_I from the same
register must also be used.

D20.20.1 Load unprivileged and store unprivileged instructions

When executed at EL1 or at EL2 with EL2 Host (E2H), load unprivileged and store unprivileged instructions
perform an access using permission-checking for an unprivileged access. These instructions do not change the
MPAM labeling of the resulting memory-system requests from the labels that is generated by other load or store
instructions.

D20.20.2 Accesses by enhanced support for nested virtualization

If FEAT_NV2 is implemented and HCR_EL2.{NV, NV2} is {1, 1}, then MRS and MSR accesses to certain
registers from EL1 are transformed into a load or a store respectively. The PARTID and PMG values for these
accesses, and translation table walks generated for these accesses, are taken from MPAM2_EL2.PARTID_D and
MPAM2_EL2.PMG_D, respectively.

See Support for nested virtualization.

D20.20.3 Accesses by statistical profiling extension

Armv8.2 introduced the Statistical Profiling Extension (SPE). A PE with SPE can be configured to record
statistically sampled events into a Profiling Buffer in memory. The buffer is accessed through the owning Exception
level's translation regime.

MPAM PARTID, PMG, and MPAM_NS for SPE writes to the Profiling Buffer must use the SPE’s owning
Exception level MPAM data access values.

For example, if the owning Exception level is EL2, the Profiling Buffer writes must be performed with
MPAM2_EL2.PARTID_D, MPAM2_EL2.PMG_D, and MPAM_NS reflecting the Security state of the owning
Exception level.

D20.20.4 Translation table accesses by AT instructions

Accesses to translation tables by AT instructions are given the MPAM information specified for translation table
accesses by a data load instruction that is issued from the Exception level that the AT instruction was executed from.
The stage and Exception level specified in the AT instructions do not affect the MPAM information to use.

D20.20.5 MPAM information for Granule Protection Table access

In MPAM for RME, accesses to the Granule Protection Table (GPT) use MPAM information according to the
current execution Exception Level and Security state and the type of access. See MPAM information for Granule
Protection Table access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7278
ID032224 Non-Confidential

MPAM PE Architecture
D20.21 Security
D20.21 Security

The Security state affects MPAM behavior in the PE and in MSCs. While the physical address spaces for
memory-system accesses are distinct, the memory-system resources are potentially shared in an implementation.
For higher security, running with segregated resources can reduce the effectiveness for side-channel attacks.

The generation of PARTID and PMG for a memory-system request is the same at an ELn in any Security state for
the same n. The difference is that requests have the PARTID space derived from the Security state indicated on
MPAM_NS by PEs that do not implement RME and on MPAM_SP by PEs that implement RME.

MPAM security behavior in MSCs is covered in Arm® Architecture Reference Manual Supplement, Memory System
Resource Partitioning and Monitoring (MPAM), for A-profile architecture (ARM DDI 0598).

D20.21.1 Secure and Non-secure PARTID space

In a two-space and four-space PE, generation of Secure PARTIDs are governed by the following Secure MPAM
PARTID space rules, described in PARTID spaces and properties:

• PARTIDs in the Secure PARTID space are communicated with MPAM_NS as 0b0 when RME is not
implemented or with MPAM_SP as 0b00 if RME is implemented.

• PARTIDs in the Non-secure PARTID space are communicated with MPAM_NS as 0b1 when RME is not
implemented or MPAM_SP as 0b01 when RME is implemented.

• When in Secure state:

— If the MPAM version is v1.0 or greater, MPAM_NS is always 0b0.

— If the MPAM version is less than v1.0, MPAM_NS might be 0b0 or 0b1. For more information, see
SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use.

— In MPAM for RME, MPAM_SP in the Secure state can be either 0b00 or 0b01. For more information,
see MPAM for RME PE generation of MPAM information.

• For RME, the MPAM_NS component of the MPAM information bundle is redefined to be a 2-bit value,
MPAM_SP. See PARTID spaces and properties.

In Secure execution, the sourcing of PARTID and PMG in a PE are as described in this specification for Non-secure
execution. The PARTID and PMG generation uses MPAMn_ELx to source the labels for the request when executing
at Exception level ELn. Non-secure and Secure PARTID generation is the same, including virtual-to-physical
PARTID translation, if Secure EL2 is present and enabled, and the MPAM virtualization feature is present and
enabled for the MPAM0_EL1 or MPAM1_EL1 register used.

See also PARTID virtualization.

D20.21.2 Relationship of PARTID space and physical address space

The PARTID space and the physical address space of a memory transaction initiated by a PE are both based on the
Security state, either the current Security state of the PE or in some limited situations, the Security state of the
owning Exception level.

The primary PARTID space is always based on the Security state as given in Primary PARTID space for each
Exception level and Security state. However, the PARTID space can be changed by MPAM3_EL3.FORCE_NS in
MPAM v0.1 or by the alternative PARTID space MPAM feature in MPAM for RME. See Settings to control Secure
MPAM PARTID use in MPAM v0.1 implementations and Settings to control MPAM PARTID use in MPAM for RME.

The physical address space is also based on the PE Security state but can be altered by the MMU in limited
situations. For more information, see Memory access control.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7279
ID032224 Non-Confidential

MPAM PE Architecture
D20.21 Security
D20.21.3 SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use

The settings to control the use of Secure MPAM PARTIDs vary depending on the version of MPAM implemented.
MPAMv1.0 does not implement MPAM3_EL3.{SDEFLT, FORCE_NS} and so the settings are as described in
Secure and Non-secure PARTID space. The Secure MPAM PARTID use settings for MPAMv1.1 and MPAMv0.1
are detailed in:

• Settings to control Secure MPAM PARTID use in MPAM v1.1 implementations

• Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations

D20.21.3.1 Settings to control Secure MPAM PARTID use in MPAM v1.1 implementations

The MPAM3_EL3.SDEFLT control enables partial support of Secure PARTIDs as in Table D20-11.

D20.21.3.2 Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations

The MPAM3_EL3.SDEFLT and MPAM3_EL3.FORCE_NS controls enable partial support of Secure PARTIDs as
in Table D20-12.

Table D20-11 Behaviors of MPAM3_EL3.SDEFLT in MPAMv1.1 implementations

MPAM3_EL3.SDEFLT
Behavior

Non-secure state Secure state

0b0 Compatible with MPAMv1.0.
PARTID is in the Non-secure PARTID
space.
PARTID and PMG are generated from
MPAMn_ELx registers.

Compatible with MPAMv1.0

PARTID is in the Secure PARTID space.

PARTID and PMG are generated from
MPAMn_ELx registers.

0b1 PARTID is in the Secure PARTID space.

PARTID and PMG are generated as the default
PARTID and default PMG.

Table D20-12 Behaviors of MPAM3_EL3.SDEFLT and MPAM3_EL3.FORCE_NS

MPAM3_EL3 Behavior

SDEFLT FORCE_NS Non-secure state Secure state

0b0 0b0 Compatible with MPAMv1.0.

PARTID is in the Non-secure PARTID
space.

PARTID and PMG are generated from
MPAMn_ELx registers.

Compatible with MPAMv1.0.

PARTID is in the Secure PARTID space.

PARTID and PMG are generated from MPAMn_ELx
registers.

0b1 PARTID is in the Non-secure PARTID space.

PARTID and PMG are generated from MPAMn_ELx
registers.

0b1 0b0 PARTID is in the Secure PARTID space.

PARTID and PMG are generated as the default
PARTID and default PMG.

0b1 PARTID is in the Non-secure PARTID space.

PARTID and PMG are generated as the default
PARTID and default PMG.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7280
ID032224 Non-Confidential

MPAM PE Architecture
D20.21 Security
If an implementation has MPAMIDR_EL1.HAS_FORCE_NS enabled, the implementation has two options:

• Secure PARTIDs are not implemented. MPAM3_EL3.FORCE_NS is RAO/WI.

• MPAM3_EL3.FORCE_NS can be written by software. MPAM3_EL3.FORCE_NS is RW.

Software can discover which of these options is implemented by testing whether MPAM3_EL3.FORCE_NS is
writable to zero.

D20.21.3.3 Settings to control MPAM PARTID use in MPAM for RME

When RME is implemented, the PE has four Security states. The controls that affect PARTID space and value
involve alternative PARTID space selection with fields in MPAM3_EL3 and MPAM2_EL2 affecting the behavior
in all Exception levels and Security states. The MPAM3_EL3.SDEFLT control uses only PARTID 0 for all
PARTIDs generated in the Secure Security state. The behaviors are also dependent on whether the feature ALTSP
is used (see Alternative PARTID spaces and selection).

These behaviors are described in Table D20-13. The Alternative space selected column indicates whether the
alternative PARTID space is selected instead of the primary PARTID space. If alternative PARTID space MPAM
feature is not implemented, the alternative PARTID space is never selected.

Table D20-13 Behaviors of MPAM3_EL3 and MPAM2_EL2 controls on PARTID use in MPAM for RME

MPAM3_EL3.SDEFLT
Alternative
space
selected

Root state
behavior

Secure state
behavior

Realm state
behavior

Non-secure
state behavior

0 No EL3 PARTID
generated from
MPAM3_EL3 in
the Root PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Secure PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Realm PARTID
space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.

1 No EL3 PARTID
generated from
MPAM3_EL3 in
the Root PARTID
space.

EL2-EL0 PARTID
generated as
PARTID 0 in the
Secure PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Realm PARTID
space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.

0 Yes EL3 PARTID
generated from
MPAM3_EL3 in
the Secure or
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.

1 Yes EL3 PARTID
generated from
MPAM3_EL3 in
the Secure or
Non-secure
PARTID space.

EL2-EL0 PARTID
generated as
PARTID 0 in the
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7281
ID032224 Non-Confidential

MPAM PE Architecture
D20.22 PARTID virtualization
D20.22 PARTID virtualization

The PARTID virtualization features described in this section are only available in a Security state in which all of the
following conditions are met:

• EL2 is implemented and enabled in the Security state. See also Unimplemented Exception levels.

• MPAM virtualization is supported, as indicated by MPAMIDR_EL1.HAS_HCR == 1.

The hardware and software involved in supporting MPAM virtualization includes:

• Accesses made from EL1 to the MPAMIDR_EL1 register are trapped to EL2 under control of the
MPAMHCR_EL2.TRAP_MPAMIDR_EL1 and MPAM2_EL2.TIDR bits. This is done so that the hypervisor
can emulate an MPAMIDR_EL1 access and present an altered view of the register to the guest OS running
at EL1. This altered view shows that the PARTID_MAX field is a maximum that is equal to the largest virtual
PARTID that the hypervisor has set up for the guest OS to use. See Trap accesses to EL2 and EL1 System
registers.

Note

MPAM2_EL2.TIDR is present when MPAM v0.1 or MPAM v1.1 are implemented and
MPAMIDR_EL1.HAS_TIDR is 1.

• Guest accesses to MPAM MSC control interfaces page-fault in the stage-2 page tables, thereby trapping to
EL2 so that the virtual PARTID used can be access-controlled and mapped to the correct physical PARTID
by the hypervisor. The hypervisor can give IPA mappings to an MSC’s MPAM feature page that fault at stage
2 to produce this behavior.

• Mapping of guest OS-assigned virtual PARTID values into the physical PARTID space when running guest
applications at EL0 and the guest OS at EL1.

• Optionally, an invalid virtual PARTID (that is, one in which the valid bit, MPAMVPMV_EL2, is 0) can cause
a default virtual PARTID to be used. See Invalid virtual PARTID behavior.

• Support for type 2 hypervisors (for example, kvm) with the HCR_EL2.E2H bit set when running the host OS
in EL2 with hypervisor functionality. See Support for type 2 hypervisors.

These functions work together to give a guest OS the ability to control its virtual partitions and not trap to the
hypervisor when context-switching between applications.

D20.22.1 MPAM virtual ID spaces

MPAM virtual ID spaces only exist if the MPAM virtualization option is implemented, as indicated in
MPAMIDR_EL1.HAS_HCR.

When MPAMEN is 0, a default physical PARTID must be generated for all memory- system requests. The value of
the default physical PARTID is determined by the Security state. It can be modified by either the
MPAM3_EL3.FORCE_NS setting if FORCE_NS is implemented, or by the alternative PARTID space settings in
MPAM3_EL3 if the alternative PARTID space feature is implemented.

Virtual PARTID spaces can be independently enabled for MPAM0_EL1 and MPAM1_EL1 in MPAMHCR_EL2.
See Table D20-10. These virtual spaces are mapped into physical PARTID spaces by MPAM virtual PARTID
mapping System registers (MPAMVPM0_EL2 through MPAMVPM7_EL2) in PEs. The virtual PARTID mapping
registers are set up from EL2 by the hypervisor.

When PARTID is being virtualized, the virtual PARTID is used to index an array of physical IDs contained in the
virtual PARTID mapping registers. The index is also used to check the valid flag for that virtual PARTID mapping
entry. If the virtual PARTID has a valid mapping, the physical PARTID from the selected virtual PARTID mapping
register is used for the memory-system request.

If the virtual PARTID is greater than (4 * VPMR_MAX) + 3, it is outside of the range of virtual PARTID mapping
register indices. An out-of-range virtual PARTID is permitted to be replaced by any other in-range virtual PARTID,
and this replacement virtual PARTID is used to access the virtual PARTID mapping registers and valid bits. See
Example of virtual-to-physical PARTID mapping.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7282
ID032224 Non-Confidential

MPAM PE Architecture
D20.22 PARTID virtualization
If the virtual PARTID mapping entry accessed is invalid, the default virtual PARTID is used, if it is valid. If neither
the accessed virtual PARTID mapping entry nor the default virtual PARTID mapping entry is valid, the default
physical PARTID is used for the memory-system request. See Default PARTID.

D20.22.2 Support for type 2 hypervisors

This section describes how a type 2 hypervisor (host OS) might use the MPAM hardware:

• MPAM1_EL12 is accessed by the host OS running at EL2 and is an alias for MPAM1_EL1. This register
controls the MPAM PARTIDs and PMGs used when running a guest at EL1.

• MPAM1_EL1 is accessed by the host OS running at EL2 and is an alias for MPAM2_EL2. This register
controls the host’s access to its own MPAM controls.

• MPAM0_EL1 is accessed by the host OS running at EL2. This permits the host OS to control the MPAM
PARTIDs and PMGs used by its applications. E2H does not alter this access. When running host applications
at EL0, the host also sets HCR_EL2_TGE == 1 to route exceptions in the EL0 application to the host in EL2
rather than EL1.

• MPAMHCR_EL2 access is used by the host at EL2 to control the enables for virtual PARTID mapping and
the trapping of MPAMIDR_EL1. E2H does not alter this access.

• MPAMVPMV_EL2 is used by the host at EL2 to control the validity of virtual PARTID mapping entries used
to virtualize the guest’s PARTIDs. E2H does not alter this access.

• MPAMVPMn_EL2 registers are used by the host at EL2 to contain the virtual PARTID mapping entries.
These are set by the hypervisor at EL2 and used when running the guest OS and its applications. E2H does
not alter this access.

The use of MPAM System registers by a guest OS is not altered by E2H:

• MPAM0_EL1 is accessed from EL1. This permits a guest OS to control the MPAM PARTIDs and PMGs used
by its applications. E2H does not alter this access.

• MPAM1_EL1 is accessed by the guest OS running at EL1 to change MPAM context for the guest OS running
at EL1, unless trapped to EL2 by MPAM2_EL2.TRAPMPAM1EL1 == 1, or trapped to EL3 by
MPAM3_EL3.TRAPLOWER == 1. E2H does not alter this access.

D20.22.3 Mapping of guest OS virtual PARTIDs

This section describes how software can use MPAM hardware.

When virtualizing MPAM, the hypervisor controls the use of PARTIDs by guest OSs. The hypervisor can:

• Set the number of virtual PARTIDs that a guest OS is permitted to assign and use. This number is
communicated by trapping access by the guest to MPAMIDR_EL1.

• Permit the guest OS to use virtual PARTIDs for applications running at EL0 and to change them by writing
to MPAM0_EL1.

• Permit the guest OS to also use virtual PARTIDs when running at EL1 and to change them by writing to
MPAM1_EL1.

• Map each of the guest’s virtual PARTIDs from the range of 0 to the maximum guest PARTID into a physical
PARTID for the current Security state. It does this by means of the MPAMVPMn virtual PARTID mapping
registers that are managed by the hypervisor.

PMGs modify PARTID and do not require any further virtualization support.

Virtualized guests are limited to using PARTIDs in the range of 0 to n, where n is the implemented virtual PARTID
mapping entries. The parameters are:

• MPAMIDR_EL1.VPMR_MAX has the number of virtual PARTID mapping registers implemented. Each
virtual PARTID mapping register contains four mapping entries.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7283
ID032224 Non-Confidential

MPAM PE Architecture
D20.22 PARTID virtualization
• The largest virtual PARTID is n = (4 * VPMR_MAX) + 3.

If VPMR_MAX == 0, there is only one virtual PARTID mapping register, 4 virtual PARTID mapping entries, and
the maximum corresponding virtual PARTID is 3.

The following registers and fields are used to control virtualization:

MPAMHCR_EL2 control fields:

• EL0_VPMEN: Enable virtual PARTID mapping from MPAM0_EL1 when executing an application at EL0.
If HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1, MPAM is not virtualized EL0. If GSTAPP_PLK == 1,
MPAM1_EL1 is used instead of MPAM0_EL1 when executing at EL0 and virtualization of PARTIDs is
controlled by EL1_VPMEN.

• EL1_VPMEN: Enable virtual PARTID mapping from MPAM1_EL1 when executing a guest OS at EL1. If
GSTAPP_PLK == 1 when executing at EL0, MPAM1_EL1 is used instead of MPAM0_EL1 and MPAM
virtualization is controlled by EL1_VPMEN instead of EL0_VPMEN.

MPAMVPM0_EL2 to MPAMVPM7_EL2 registers:

• Each register has four 16-bit fields. Each field contains a physical PARTID.

• Together they form a virtual PARTID mapping vector that maps the virtual PARTIDs into the physical
PARTID space.

• Within each physical PARTID field, only sufficient low-order bits are required to represent the
MPAMIDR_EL1.PARTID_MAX. Higher-order bits can be implemented as RAZ/WI.

MPAMVPMV_EL2 register:

• MPAMVPMV_EL2 contains 4*(m+1) valid bits, indexed from 0 to (4*m + 3), one bit for each of the
implemented virtual PARTIDs supported in the MPAMVPMn_EL2 registers, where m =
MPAMIDR_EL1.VPMR_MAX and n ranges from 0 to n.

• There can be up to 32 virtual-to-physical PARTID mappings. If a virtual PARTID is greater than the
maximum index supported, an in-range virtual PARTID is permitted to be accessed instead (MPAM AArch32
interoperability).

D20.22.3.1 Example of virtual-to-physical PARTID mapping

• If the current execution level is EL1:

— If EL1_VPMEN == 0, then virtualization is disabled at EL1, and MPAM1_EL1.PARTID_D and
MPAM1_EL1.PARTID_I are physical PARTIDs.

— If EL1_VPMEN == 1, then virtualization is enabled at EL1 and MPAM1_EL1.PARTID_D and
MPAM1_EL1.PARTID_I are virtual PARTIDs that are to be mapped to physical PARTIDs.

• Assume MPAMIDR_EL1.VPMR_MAX == 0b010. That means the largest virtual PARTID is 4*2+3 = 11.
Therefore, 12 virtual PARTIDs, from 0 to 11, can be mapped to physical PARTIDs.

• Assume MPAM1_EL1.PARTID_D contains 6:

— MPAMVPMV_EL2.VPM_V<6> is checked to determine if the mapping for virtual PARTID 6 is
valid. MPAMVPMV_EL2.VPM_V<6> == 1 means virtual PARTID 6 is valid.
MPAMVPMV_EL2.VPM_V<6> == 0 means virtual PARTID 6 is invalid.

— If a valid mapping exists (VPM_V<6> == 1), the physical PARTID is in
MPAMVPM1_EL2.Phys_PARTID6.

— If a valid mapping does not exist (VPM_V<6> == 0), the mapping for the default virtual PARTID is
used.

If a valid mapping does not exist for the default virtual PARTID, the default physical PARTID is used.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7284
ID032224 Non-Confidential

MPAM PE Architecture
D20.22 PARTID virtualization
• For out-of-range virtual PARTIDs, an implementation can choose any other virtual PARTID to use instead.
This permits truncation of inputs that have too many bits. It also permits other reductions to in-range
PARTIDs. For example, if VPMR_MAX is 2, the virtual PARTID 13 is out of range. In this example, an
implementation might save time by forcing the 8s bit (bit number 4) to 0 when both the 8s bit and 4s bit (bit
number 3) are 1 in the virtual PARTID. This technique selects virtual PARTID mapping entry 5 instead of
out-of-range 13. The technique is sometimes called “replacement virtual PARTID”. One must still do the
steps of bullet 3, above, on the replacement virtual PARTID.

D20.22.4 Guest OS and all its applications under single PARTID

GSTAPP_PLK is a control bit in MPAMHCR_EL2. The bit causes MPAM1_EL1 to be used instead of
MPAM0_EL1 when executing at EL0. This GSTAPP_PLK function runs all EL0 applications of a VM in the same
partition as the EL1 guest OS.

When GSTAPP_PLK is active, MPAM0_EL1 is not used for PARTID or PMG generation. If virtual PARTID
mapping is enabled for EL1, the EL1 PARTID_I or PARTID_D is mapped to a physical PARTID before being used
for requests originating from applications at EL0, as well as for the guest OS at EL1.

Note

The guest OS at EL1 cannot determine whether GSTAPP_PLK is active or not. EL1 access to read and write
MPAM0_EL1 is not affected by GSTAPP_PLK == 1.

D20.22.5 Trap accesses to EL2 and EL1 System registers

The available traps include those that:

• Virtualize MPAMIDR_EL1.

• Control access by EL1 to MPAM1_EL1 and MPAM0_EL1.

• Control access to MPAM registers from EL2 and EL1.

D20.22.5.1 Virtualizing MPAMIDR_EL1

EL2 software can force accesses to MPAMIDR_EL1 to trap to EL2 by setting
MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 or MPAM2_EL2.TIDR == 1. By trapping MPAMIDR_EL1, an
EL2 hypervisor can provide an emulated value for MPAMIDR_EL1 to the EL1 software.

Note

MPAM2_EL2.TIDR is present when MPAMIDR_EL1.HAS_TIDR is 1. Arm recommends that when MPAM v0.1
or MPAM v1.1 are implemented, MPAMIDR_EL1.HAS_TIDR is set to 1 and MPAM2_EL2.TIDR is implemented.

D20.22.5.2 Trapping accesses to MPAM2_EL2

Accesses to MPAM2_EL2 from EL2 are trapped to EL3 when MPAM3_EL3.TRAPLOWER == 1.

D20.22.5.3 Controlling accesses to MPAM1_EL1

EL2 software can control whether EL1 software can access MPAM1_EL1. Accesses to MPAM1_EL1 from EL1 are
trapped to EL2 when MPAM2_EL2.TRAPMPAM1EL1 == 1.

MPAM1_EL12 is an alias for MPAM1_EL1 accessed from EL2. It is therefore not subject to traps from
MPAM2_EL2.TRAPMPAM1EL1.

When HCR_EL2.E2H == 1, MPAM1_EL1 is an alias for MPAM2_EL2 accessed from EL2. It is therefore not
subject to traps from MPAM2_EL2.TRAPMPAM1EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7285
ID032224 Non-Confidential

MPAM PE Architecture
D20.22 PARTID virtualization
D20.22.5.4 Controlling accesses to MPAM0_EL1

EL2 software can control whether EL1 software can access MPAM0_EL1. Accesses to MPAM0_EL1 from EL1 are
trapped to EL2 when MPAM2_EL2.TRAPMPAM0EL1 == 1.

D20.22.5.5 Trapping all MPAM registers

When EL2 or EL1 software does not context switch MPAM state, such as when the software does not support
MPAM at all, the MPAM System registers might be used to pass information between virtual machines or
applications.

EL3 software can trap accesses to MPAM registers from all lower Exception levels to EL3 by setting
MPAM3_EL3.TRAPLOWER == 1.

TRAPLOWER protects against misuse of the MPAM state registers when EL2 software does not support MPAM
context switching.

If EL2 software is present and supports MPAM but EL1 software does not, MPAM2_EL2.TRAPMPAM1EL1 and
TRAPMPAM0EL1 protect against misuse by an unaware guest while permitting EL2 to set up an MPAM
environment for that guest.

If there is no EL2 or no EL2 software, TRAPLOWER can prevent misuse of MPAM registers by EL1 software.

MPAM3_EL3.TRAPLOWER traps have priority over all traps controlled by MPAM2_EL2 and MPAMHCR_EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7286
ID032224 Non-Confidential

MPAM PE Architecture
D20.23 MPAM AArch32 interoperability
D20.23 MPAM AArch32 interoperability

MPAM System registers are not accessible from AArch32, so the MPAM PARTIDs and PMGs for any Exception
level that uses AArch32 state must be set up by a higher Exception level that uses AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7287
ID032224 Non-Confidential

MPAM PE Architecture
D20.24 Support for nested virtualization
D20.24 Support for nested virtualization

Armv8.3 Extensions added FEAT_NV for nested virtualization, and Armv8.4 Extensions added FEAT_NV2 to the
nested virtualization support. This section describes the support of MPAM with these extensions.

D20.24.1 Nested virtualization extension

If the PE implements FEAT_NV, the nested virtualization extension is implemented.

Table D20-14 lists the System registers that are trapped from EL1 to EL2 rather than being UNDEFINED when
HCR_EL2.NV == 1, and HCR_EL2.NV2 == 0, and MPAM3_EL3.TRAPLOWER == 0.

When HCR_EL2.NV == 1, and HCR_EL2.NV2 == 0, and MPAM3_EL3.TRAPLOWER == 1, access to any of the
listed MPAM System registers from EL1 traps to EL3.

There are no other changes to the v8.3 nested virtualization extension to support the MPAM Extension.

D20.24.2 Enhanced nested virtualization extension

Armv8.4 Extensions introduced FEAT_NV2, an enhancement for nested virtualization. This enhancement
transforms direct reads or writes (the terms “direct reads” and “direct writes” are defined in the Arm ARM) of
several registers (that is, the target System register names in an MRS or MSR instruction) from EL1 to loads or
stores, respectively, in the same Security state.

The remainder of this section applies only if both the FEAT_NV and FEAT_NV2 extensions are implemented.

If HCR_EL2.NV2 == 0, MSR or MRS instructions do not cause reads or writes to occur to the memory, and the
behavior of the HCR_EL2.NV and HCR_EL2.NV1 bits is as described in the Armv8.3 architecture.

Table D20-14 Registers trapped from EL1 to EL2 when HCR_EL2.NV == 1

MPAM1_EL12 MPAMVPMV_EL2 MPAMVPM2_EL2 MPAMVPM5_EL2

MPAM2_EL2 MPAMVPM0_EL2 MPAMVPM3_EL2 MPAMVPM6_EL2

MPAMHCR_EL2 MPAMVPM1_EL2 MPAMVPM4_EL2 MPAMVPM7_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7288
ID032224 Non-Confidential

MPAM PE Architecture
D20.24 Support for nested virtualization
If HCR_EL2.NV2 == 1:

• If HCR_EL2.NV == 1 and HCR_EL2.NV1 ==0 for a Security state, direct reads or writes of any of the
following MPAM register names (that is, the target System register names in the MRS or MSR instruction)
from EL1 in the same Security state to be treated as loads or stores respectively. The memory address access
is VNCR_EL2.BADDR<<12 + Offset from Table D20-15 as described in Armv8.4 Extensions.

• If HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 for a Security state, direct reads or writes of any of the
registers in Table D20-16 (that is, the target System register names in an MRS or MSR instruction) from EL1
in the same Security state are treated as loads or stores, respectively, in the same Security state. The memory
address access is VNCR_EL2.BADDR<<12 + Offset from Table D20-14 as described in Armv8.4
Extensions.

Table D20-15 Enhanced nested virtualization offsets of System registers (NV2 == 1, NV1 == 0, and
NV ==1)

Register Name Offset

MPAM1_EL12 0x900

MPAMHCR_EL2 0x930

MPAMVPMV_EL2 0x938

MPAMVPM0_EL2 0x940

MPAMVPM1_EL2 0x948

MPAMVPM2_EL2 0x950

MPAMVPM3_EL2 0x958

MPAMVPM4_EL2 0x960

MPAMVPM5_EL2 0x968

MPAMVPM6_EL2 0x970

MPAMVPM7_EL2 0x978

Table D20-16 Enhanced nested virtualization offsets of System registers (NV2 == 1, NV1 == 1 and
NV == 1)

Register Name Offset

MPAM1_EL1 0x900

MPAMHCR_EL2 0x930

MPAMVPMV_EL2 0x938

MPAMVPM0_EL2 0x940

MPAMVPM1_EL2 0x948

MPAMVPM2_EL2 0x950

MPAMVPM3_EL2 0x958

MPAMVPM4_EL2 0x960
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7289
ID032224 Non-Confidential

MPAM PE Architecture
D20.24 Support for nested virtualization
When HCR_EL2.NV == 1 and HCR_EL2.NV2 == 1, MPAM3_EL3.TRAPLOWER is overridden for those
registers listed in Table D20-15 if HCR_EL2.NV1 == 0 or in Table D20-16 if HCR_EL2.NV1 == 1. When
HCR_EL2.NV == 1 and HCR_EL2.NV2 == 1, MPAM3_EL3.TRAPLOWER == 1 does not cause an access from
EL1 to an MPAM System register in the tables to be trapped to EL3, but that access is converted to a memory read
or write as described in this subsection.

MPAMVPM5_EL2 0x968

MPAMVPM6_EL2 0x970

MPAMVPM7_EL2 0x978

Table D20-16 Enhanced nested virtualization offsets of System registers (NV2 == 1, NV1 == 1 and
NV == 1) (continued)

Register Name Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7290
ID032224 Non-Confidential

MPAM PE Architecture
D20.25 MPAM errors and default ID generation
D20.25 MPAM errors and default ID generation

MPAM errors are detected when a memory request is generated by a load, store, fetch, or table-walk with the
following conditions:

• Physical or virtual PARTID or PMG is out of range.

• Virtual PARTID n is invalid, as indicated by MPAMVPMV_EL2<n>.

In a given implementation, some errors might never occur. For example, an implementation with only w bits of
PARTID and MPAMIDR.PARTID_MAX as (2w – 1), and that truncates PARTID values with non-zero bits higher
than w – 1, can never have a physical PARTID out-of-range error. See Maximum PARTID number.

D20.25.1 Out-of-range PARTID behavior

The behavior of a PE when a physical or virtual PARTID from PARTID_I or PARTID_D of an MPAMn_ELx
register is out of range is CONSTRAINED UNPREDICTABLE as one of:

• The out-of-range PARTID is replaced by the default PARTID in the same PARTID space.

• The out-of-range PARTID is replaced by any in-range PARTID in the same PARTID space.

D20.25.2 Out-of-range PMG behavior

The behavior of a PE when an MPAMn_ELx register’s PMG_I or PMG_D is out-of-range CONSTRAINED
UNPREDICTABLE is one of:

• The out-of-range PMG is replaced by the default PMG.

• The out-of-range PMG is replaced by any in-range PMG.

D20.25.3 Invalid virtual PARTID behavior

The behavior of a PE, when (i) a PARTID_I or PARTID_D from an MPAMn_ELx register (or a replacement
PARTID as in Out-of-range PARTID behavior) is used as a virtual PARTID n, and (ii) the corresponding bit
MPAM_VMPV_EL2<n> == 0, the default virtual PARTID must be used if it is valid (MPAM_VPMV_EL2<0> ==
1). If neither the accessed virtual PARTID mapping entry nor the default virtual PARTID mapping entry is valid, the
default physical PARTID must be used for the memory-system request. See Default PARTID.

D20.25.4 PARTID space on error

When an error is encountered in the generation of PARTID, the replacement PARTID is generated in the PARTID
space as shown in Table D20-17.

Table D20-17 PARTID space for PARTID generation errors

Error Space of replacement PARTID

NS virtual PARTID out of range NS virtual PARTID

NS virtual PARTID mapping entry invalid NS virtual PARTID

NS default virtual PARTID is invalid NS physical PARTID

S virtual PARTID out of range S virtual PARTID

S virtual PARTID mapping entry invalid S virtual PARTID

NS physical PARTID out of range NS physical PARTID

S physical PARTID out of range S virtual PARTID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7291
ID032224 Non-Confidential

MPAM PE Architecture
D20.25 MPAM errors and default ID generation
D20.25.5 MPAM3_EL3.SDEFLT and MPAM generation errors

When executing in Secure state, MPAM3_EL3.SDEFLT sets the MPAM generation to produce only zero for
PARTIDs. The default PARTID is always valid, so PARTID Out-of-range errors cannot occur in Secure state when
MPAM3_EL3.SDEFLT is 1. The PARTID space for the default PARTID is determined by the Table D20-12 when
RME is not implemented and Table D20-13 when RME is implemented.

Note

MPAM3_EL3.MPAMEN and MPAM3_EL3.SDEFLT have a similar function. However, when
MPAM3_EL3.MPAMEN is 0 in any Security state:

• MPAM generation produces only zero for the physical PARTID in all memory-system requests.

• Virtual PARTID mapping is not performed.

• PARTIDs cannot generate Out-of-range errors.

When MPAM3_EL3.SDEFLT is 1, PMG is always 0, and always valid. PMG generation is not virtualized.

D20.25.6 MPAM3_EL3.FORCE_NS and MPAM generation errors

MPAM3_EL3.FORCE_NS is only present in MPAM v0.1. When in Secure state, MPAM3_EL3.FORCE_NS
changes the MPAM generation in the PE so that MPAM_NS is set to 1 rather than 0. This means that only
Non-secure MPAM information will accompany memory system requests from a PE, so MSCs will receive
Non-secure PARTIDs from those requests.

FORCE_NS does not change the way that the value of the PARTID is produced, only whether the generated
PARTID is a Secure PARTID or a Non-secure PARTID. This means that generation of the physical PARTID and
PMG for the MPAM information to label memory system requests are unchanged by FORCE_NS. The generation
of MPAM information in the PE can produce any of the MPAM generation error behaviors described in MPAM
errors and default ID generation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7292
ID032224 Non-Confidential

MPAM PE Architecture
D20.26 MPAM for RME PE generation of MPAM information
D20.26 MPAM for RME PE generation of MPAM information

A PE that implements FEAT_RME has the capability to execute in the Realm and Root Security states and to
generate accesses to the Realm and Root physical address spaces.

D20.26.1 PE and MPAM

A PE that implements FEAT_RME must generate the PARTID space according to the Security state from which the
memory system request is made.

Each Security state has a primary PARTID space named for that Security state as shown in Table D20-18.

The alternative PARTID space MPAM feature, ALTSP, allows an alternative PARTID space to be used in each
Security space rather than the primary PARTID space. See Alternative PARTID spaces and selection.

Support by the PE for the four PARTID spaces is identified in MPAMIDR_EL1. In a PE that implements RME and
MPAM, MPAMIDR_EL1.SP4 must be 1.

D20.26.2 Alternative PARTID spaces and selection

The alternative PARTID Space feature, ALTSP, defines alternative PARTID spaces for each of the Security states.

MPAM3_EL3 and MPAM2_EL2 have fields to control whether the primary or alternative PARTID space is used at
those Exception levels and lower Exception levels.

The ALTSP feature permits the selection of either the primary PARTID space or the alternative PARTID space for
PARTIDs in the MPAMn_ELx registers. The primary and alternative PARTID spaces for each Security state are
shown in Table D20-19. The primary PARTID space is shown, where the PARTID space name is the same as the
Security state.

The choice of the alternative space for Root is made in MPAM3_EL3 in the RT_ALTSP_NS field:

• 0b1 selects the Non-secure PARTID space as the alternative PARTID space for the Root Security state.

• 0b0 selects the Secure PARTID space as the alternative PARTID space for the Root Security state.

The ALTSP feature controls do not affect the PARTID space when used in the Non-secure state. The Non-secure
PARTID space is always used in the Non-secure Security state.

Table D20-18 MPAM_SP encoding for each PARTID space

PARTID Space MPAM_SP[1:0]

Non-secure PARTID space 0b01

Secure PARTID space 0b00

Realm PARTID space 0b11

Root PARTID space 0b10

Table D20-19 Primary and alternative PARTID spaces

Security state Primary PARTID space Alternative PARTID Space

Non-secure Non-secure PARTID space Same

Secure Secure PARTID space Non-secure PARTID space

Realm Realm PARTID space Non-secure PARTID space

Root Root PARTID space Secure or Non-secure PARTID space
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7293
ID032224 Non-Confidential

MPAM PE Architecture
D20.26 MPAM for RME PE generation of MPAM information
See MPAM3_EL3 and MPAM2_EL2 for details of these controls. The ALTSP feature is identified in
MPAMIDR_EL1.HAS_ALTSP.

D20.26.2.1 Selection of primary or alternative PARTID space when executing at EL3

When executing at EL3, the PE is in the Root Security state.

The selection of primary or alternative PARTID space for memory-system requests generated in the Root Security
state is controlled by these bits in MPAM3_EL3:

• RT_ALTSP_NS sets whether the alternative PARTID space in the Root Security state is the Non-secure
PARTID space or the Secure PARTID space.

• ALTSP_EL3 sets whether memory-system requests generated from EL3 use the alternative PARTID space
or the primary PARTID space. The selected PARTID space is used for all accesses that use
MPAM3_EL3.PARTID_I or MPAM3_EL3.PARTID_D.

These two bits combine to give three combinations for PARTID space used for accesses from EL3 in the Root state.

D20.26.2.2 Selection of primary or alternative PARTID space when executing at EL2,
EL1 and EL0

When executing at EL2, EL1 or EL0, the Security state can be one of Secure, Non-secure, or Realm. The current
Security state for all Exception levels below EL3 is set in SCR_EL3 by the NS and NSE bits.

The Root firmware running in EL3 can either permit EL2 to control its own PARTID space and the PARTID space
used by EL1 and EL0, or it can force the primary or alternative space to be selected for EL2, EL1, and EL0.

If EL3 is not forcing a selection on EL2, EL2 can select whether PARTIDs generated at EL2 use the primary or
alternative PARTID space using MPAM2_EL2.ALTSP_EL2. When EL3 is not forcing a selection on EL2, EL2 can
also select whether the primary or alternative PARTID space is used by EL1 and EL0.

EL3 forces a selection on all lower ELs by clearing MPAM3_EL3.ALTSP_HEN and setting
MPAM3_EL3.ALTSP_HFC to force the alternative PARTID space or clearing ALTSP_HFC to force the primary
PARTID space on all lower ELs.

When EL2 is implemented but is disabled for the Security state, the alternative PARTID space is selected for EL1
and EL0 when MPAM3_EL3.ALTSP_HEN is 0 and MPAM3_EL3.ALTSP_HFC is 1. Otherwise the primary
PARTID space is selected.

The set of combinations for EL2 PARTID space selection are shown in Table D20-21.

Table D20-20 EL3 PARTID space selection

MPAM3_EL3.RT_ALTSP_NS MPAM3_EL3.ALTSP_EL3 PARTID space

x 0 Root PARTID space

0 1 Secure PARTID space

1 1 Non-secure PARTID space

Table D20-21 EL2 PARTID space selection

MPAM3_EL3.ALTSP_HEN MPAM3_EL3. ALTSP_HFC MPAM2_EL2. ALTSP_EL2 EL2 PARTID space

0 0 x Primary

0 1 x Alternative

1 x 0 Primary

1 x 1 Alternative
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7294
ID032224 Non-Confidential

MPAM PE Architecture
D20.26 MPAM for RME PE generation of MPAM information
The set of combinations for EL1 and EL0 PARTID space selection are shown in Table D20-22. When EL2 is not
implemented or when EL2 is implemented but not enabled for the Security state, read Table D20-22 as if
MPAM2_EL2.ALTSP_HFC is 0.

D20.26.2.3 Determining forced PARTID space in EL2, EL1 and EL0

In each of MPAM2_EL2 and MPAM1_EL1, the ALTSP_FRCD bit indicates that the alternative PARTID space has
been forced on PARTIDs in MPAM2_EL2 and on PARTIDs in MPAM1_EL1 and MPAM0_EL1, respectively.
Since EL1 and EL0 selection is always identical and EL1 controls PARTIDs in MPAM0_EL1, there is no
requirement for a separate indication in MPAM0_EL1.

There is no means provided for software running in EL0 to determine whether it is using the primary or alternative
PARTID space. The PARTID space selection at EL0 is the same as for the Exception level of the operating system
that controls the EL0 application. That OS is at EL2 if the virtualization host extension, host mode, is being used as
indicated when MPAMHCR_EL2.E2H and MPAMHCR_EL2.TGE are both set to 1. Otherwise, the controlling
operating system is at EL1.

D20.26.2.4 Alternative PARTID space and PARTID virtualization

As the choice of primary or alternative PARTID spaces at EL1 and EL0 can be controlled from EL2 and as
MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are in the same PARTID space, EL2 can set up PARTID
virtualization into the correct PARTID space for EL1.

Similarly, MPAM1_EL1.PARTID_I and MPAM0_EL1.PARTID_D are in the same PARTID space as the
MPAM1_EL1 PARTIDs so that the PARTID virtualization setup for EL1 can also be used for EL0.

PARTID virtualization is enabled for MPAM1_EL1 PARTIDs by setting MPAMHCR_EL2.EL1_VPMEN and for
MPAM0_EL1 PARTIDs by setting MPAMHCR_EL2.EL0_VPMEN. Setting up PARTID virtualization also
requires EL2 software to program physical PARTIDs from the selected PARTID space into the
MPAMVPM<n>_EL2 registers, and enable those translations in the MPAMVPMV_EL2 register.

D20.26.2.5 ALTSP and FORCE_NS

ALTSP can have the same effect of forcing PARTIDs in the Secure state to be in the Non-secure PARTID space as
MPAM3_EL3.FORCE_NS. ALTSP also provides controls for the Root and Realm Security state selection of
PARTID space.

Note

ALTSP and FORCE_NS are conflicting MPAM features. The ALTSP feature is required and the FORCE_NS
feature is prohibited in PEs that implement MPAM for RME.

D20.26.2.6 ALTSP in Host mode at EL0

When a host OS running at EL2 executes an application, it expects the same behavior as if it was an EL1 OS running
an application. The behaviors to support running a host OS at EL2 are controlled by HCR_EL2.E2H. The control
bit HCR_EL2.TGE supports running an application of the host OS at EL0.

Table D20-22 EL1 and EL0 PARTID space selection

MPAM3_EL3. ALTSP_HEN MPAM3_EL3. ALTSP_HFC MPAM2_EL2. ALTSP_HFC EL1 and EL0 PARTID space

0 0 x Primary

0 1 x Alternative

1 x 0 Primary

1 x 1 Alternative
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7295
ID032224 Non-Confidential

MPAM PE Architecture
D20.26 MPAM for RME PE generation of MPAM information
When running at EL0 in host mode, the EL2 selection of primary versus alternative PARTID space is used to govern
the selection in EL0.

When HCR_EL2.E2H and HCR_EL2.TGE are both 1, the alternative PARTID space in EL0 is selected only if the
alternative space is selected in EL2. When either E2H or TGE is 0, the alternative PARTID space in EL0 is selected
only if the alternative space is selected in EL1.

D20.26.3 MPAM information for Granule Protection Table access

In MPAM for RME, accesses to the Granule Protection Table (GPT) as a result of a data access, instruction access,
or translation table walk access, are actioned as follows:

• A GPT access as the result of a data access uses the same PARTID, PMG, and PARTID space as the data
access.

• A GPT access as the result of an instruction access uses the same PARTID, PMG and PARTID space as the
instruction access. See Instruction, data, translation table walk, and other accesses.

• A GPT access as the result of a translation table walk uses the same PARTID, PMG, and PARTID space as
access to the translation table. See Instruction, data, translation table walk, and other accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7296
ID032224 Non-Confidential

MPAM PE Architecture
D20.27 Synchronization of MPAM System register changes
D20.27 Synchronization of MPAM System register changes

Direct writes to System registers and register field values computed as a result of such direct writes are only
guaranteed to be visible to indirect reads after a Context Synchronization event.

Writes to MPAM System registers and field updates computed as result of writes to registers must be visible for
generation of MPAM information in new memory requests after a Context synchronization event.

When MPAM System registers are set at one Exception level and used for generation of MPAM information at
another Exception level, the change of Exception level is a Context synchronization event that makes the previous
direct writes to MPAM registers visible for generating MPAM information.

Examples of register fields whose value is computed as results of writes to other registers are ALTSP_FRCD and
FORCED_NS.

ALTSP_FRCD is a register field present in MPAM2_EL2 and in MPAM1_EL1. This field indicates that an
alternative PARTID space has been selected. It reflects the status of MPAM3_EL3.ALTSP_HEN,
MPAM3_EL3.ALTSP_HFC, and MPAM2_EL2.ALTSP_EL2, or MPAM3_EL3.ALTSP_HEN,
MPAM3_EL3.ALTSP_HFC and MPAM2_EL2.ALTSP_HFC, respectively.

FORCED_NS is a register field in MPAM1_EL1, and reflects the state of MPAM3_EL3.FORCE_NS.

If an MPAM register is updated at the same Exception level at which it is used for generation of MPAM information
on memory-system requests, software must ensure that a Context synchronization event, such as an Instruction
Synchronization Barrier, is executed after the direct write to the MPAM System register and before the changed
System register value is confirmed for labeling memory-system requests.

As described in the definition of a Context Synchronization event, it is required that a direct write to a System
register must not affect instructions before the direct System register write in program order.

If System registers are used for configuration of memory-system controls that are implemented in the PE, a Data
Synchronization Barrier must ensure that the prior memory accesses are completed before the update. No such
System registers are defined here. Additional requirements will be described if and when such requirements are
added.

When MPAM System registers are updated, TLB maintenance is not required. Only a Context synchronization
event is required before the updated value is guaranteed to be used for memory requests. This means that MPAM
information is not permitted to be cached in a TLB and used instead of using System registers for the generation of
MPAM information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7297
ID032224 Non-Confidential

MPAM PE Architecture
D20.28 Summary of System registers
D20.28 Summary of System registers

In a PE, the MPAM System registers shown in Table D20-23 control the generation of PARTID and PMG by the
PE, according to the Exception level and configuration of MPAM. See Versions of the MPAM Extension.

Table D20-23 Summary of System registers

op1 CRn CRm op2 System register Description

0 10 5 1 MPAM0_EL1 MPAM context for EL0 execution.

0 10 5 0 MPAM1_EL1 MPAM context for EL1 execution.

4 10 5 0 MPAM2_EL2 MPAM context for EL2 execution.

6 10 5 0 MPAM3_EL3 MPAM context for EL3 execution.

5 10 5 0 MPAM1_EL12 MPAM context for EL1 execution on type 2 hypervisor.

4 10 4 0 MPAMHCR_EL2 Hypervisor configuration register for virtualization of PARTID
in EL0.

4 10 4 1 MPAMVPMV_EL2 Virtual PARTID map valid bits.

4 10 6 0-7 MPAMVPM0_EL2 to
MPAMVPM7_EL2

Virtual PARTID mapping for virtualization.

0 10 4 4 MPAMIDR_EL1 MPAM identification register.

0 10 4 3 MPAMSM_EL1 SME register to generate MPAM labels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7298
ID032224 Non-Confidential

MPAM PE Architecture
D20.29 MPAM enable
D20.29 MPAM enable

A single, writable MPAMEN bit exists only in the MPAMn_ELx register for the highest implemented Exception
level. The highest Exception level might be EL3, EL2, or EL1. For example, if the highest implemented level is
EL3, MPAM3_EL3 contains the MPAMEN bit. A read-only copy of MPAMEN is present in each of MPAM2_EL2
and MPAM1_EL1 that is implemented and not the highest implemented Exception level.

When the MPAMEN bit is set, MPAM PARTID and PMG are generated as described in this document. When the
MPAMEN bit is clear, default values are generated for MPAM physical PARTID and PMG with MPAM_NS
reflecting the current security state of the PE. See PARTID spaces and properties for more on default IDs.

The MPAMEN bit is reset to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7299
ID032224 Non-Confidential

MPAM PE Architecture
D20.30 SDEFLT
D20.30 SDEFLT

In MPAM v0.1 and from MPAM v1.1, when MPAMIDR_EL1.HAS_SDEFLT is 1, the writable
MPAM3_EL3.SDEFLT is implemented. When MPAMIDR_EL1.HAS_SDEFLT is 0, MPAM3_EL3.SDEFLT is
RES0, and Secure PARTID generation is as if no SDEFLT functionality is present.

The SDEFLT bit only affects the generation of MPAM PARTIDs from the Secure state. When
MPAM3_EL3.SDEFLT is 1:

• A Secure physical PARTID is always generated as the default Secure PARTID. If
MPAMIDR_EL1.HAS_FORCE_NS is 1 and MPAM3_EL3.FORCE_NS is 1, the generated PARTID is the
default Non-secure PARTID, otherwise it is the default Secure PARTID.

• A PMG is always generated as the default PMG.

When the SDEFLT bit is 0, all accesses have the PARTID and PMG generated as normal. For more information on
default IDs, see PARTID spaces and properties.

The SDEFLT bit is reset to an UNKNOWN value.

D20.30.1 Interaction of SDEFLT and MPAMEN

In MPAM v0.1 and from MPAM v1.1, when MPAMIDR_EL1.HAS_SDEFLT is 1, the writable
MPAM3_EL3.SDEFLT is implemented:

• When MPAMEN is 0, all accesses from Secure and Non-secure states have the physical PARTID and the
PMG generated as 0.

• When MPAMEN is 1 and SDEFLT is 0, all accesses from Secure and Non-secure states have the PARTID
and PMG generated as normal.

• When MPAMEN is 1 and SDEFLT is 1:

— All accesses from Secure state have the physical PARTID as 0 and PMG as 0.

— All accesses from Non-secure state have the PARTID and PMG generated as normal.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7300
ID032224 Non-Confidential

MPAM PE Architecture
D20.31 Lower-EL MPAM register access trapping
D20.31 Lower-EL MPAM register access trapping

When MPAM3_EL3.TRAPLOWER == 1, direct accesses to MPAM System registers from EL1 or EL2 that are not
UNDEFINED trap to EL3. These registers remain accessible from EL3, which permits EL3 to set up the MPAM
environments for lower levels that are not MPAM-aware.

MPAM3_EL3.TRAPLOWER traps have priority over traps controlled by MPAM2_EL2 and MPAMHCR_EL2.

HCR_EL2.NV == 1 alters the behavior of TRAPLOWER as it makes some _EL2 and _EL12 registers that are
UNDEFINED at EL1 trap to EL2. HCR_EL2.NV == 1 does not affect accesses from EL0, EL2, or EL3. When
HCR_EL2.NV == 1 and MPAM3_EL3.TRAPLOWER == 1, accesses to MPAM registers from EL2 are trapped to
EL3. See Nested virtualization extension for details.

HCR_EL2.NV2 == 1 alters the behavior of MPAM3_EL3.TRAPLOWER because it converts accesses to some
_EL2 and EL12 registers from EL1 that are undefined into accesses to memory. See Enhanced nested virtualization
extension for details.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7301
ID032224 Non-Confidential

MPAM PE Architecture
D20.32 FORCE_NS
D20.32 FORCE_NS

In MPAMv0.1, when MPAMIDR_EL1.HAS_FORCE_NS is 1, MPAM3_EL3.FORCE_NS is implemented, and
must implement either one of two behaviors:

• Secure PARTIDs are not implemented.

• FORCE_NS can be written by software.

If an implementation does not implement Secure PARTIDs, then MPAM3_EL3.FORCE_NS is RAO/WI and
MPAM_NS is always generated as 1 on accesses from Secure state and Non-secure state.

If an implementation allows MPAM3_EL3.FORCE_NS to be written by software, then:

• MPAM3_EL3.FORCE_NS is reset to 0.

• When MPAM3_EL3.FORCE_NS is 0, MPAM_NS is generated as 0 on accesses from Secure state.

• When MPAM3_EL3.FORCE_NS is 1, MPAM_NS is generated as 1 on accesses from Secure state.

• Generation of MPAM_NS from Non-secure state is unaffected.

When MPAMIDR_EL1.HAS_FORCE_NS is 0, MPAM3_EL3.FORCE_NS is RES0, and Secure PARTID
generation is as if no FORCE_NS functionality is present.

The FORCE_NS bit is reset to an UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7302
ID032224 Non-Confidential

MPAM PE Architecture
D20.33 Reset
D20.33 Reset

MPAM System registers are only minimally reset.

• The MPAMEN bit must be set to 0 by Warm or Cold reset of the PE.

• The MPAM3_EL3.TRAPLOWER bit must be set to 1 by Warm or Cold reset of the PE.

• If MPAMIDR_EL1.HAS_FORCE_NS is 1 and MPAM3_EL3.FORCE_NS is implemented as writable,
MPAM3_EL3.FORCE_NS must be reset to 0 on a Warm or Cold reset of the PE.

• The power and reset domain of each MSC component is specific to that particular component.

The MPAM2_EL2.TRAPMPAM1EL1, MPAM2_EL2.TRAPMPAM0EL1, and
MPAMHCR_EL2.TRAP_MPAMIDR_EL1 bits are not reset if EL3 exists, but all three bits are reset to 1 if EL3
does not exist.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7303
ID032224 Non-Confidential

MPAM PE Architecture
D20.34 Unimplemented Exception levels
D20.34 Unimplemented Exception levels

The following sections describe MPAM behavior relating to unimplemented Exception levels.

D20.34.1 Effects if EL3 is not implemented

• MPAM3_EL3 is UNDEFINED.

• MPAM3_EL3.TRAPLOWER: All references to this bit behave as if it == 0.

• MPAM2_EL2.MPAMEN is present and RW if EL2 exists. If EL2 does not exist, MPAM1_EL1.MPAMEN
is present and RW.

D20.34.2 Effects if EL2 is implemented in neither Security state

• MPAM2_EL2 is RES0 when accessed from EL3. It is UNDEFINED from all other Exception levels.

• MPAM2_EL2.TRAPMPAM1EL1: All references to it behave as if it == 0.

• MPAM2_EL2.TRAPMPAM0EL1: All references to it behave as if it == 0.

• MPAM1_EL12 is UNDEFINED when accessed from any Exception level.

• MPAMHCR_EL2 is RES0 when accessed from EL3.

• MPAMHCR_EL2.TRAP_MPAM_IDR_EL1: All references to it behave as if it == 0.

• MPAMHCR_EL2.GSTAPP_PLK: All references to it behave as if it == 0.

• MPAMHCR_EL2.EL1_VPMEN: All references to it behave as if it == 0.

• MPAMHCR_EL2.EL0_VPMEN: All references to it behave as if it == 0.

• MPAMVPMV_EL2 is RES0 when accessed from EL3.

• MPAMVPM0_EL2 through MPAMVPM7_EL2 are RES0 when accessed from EL3.

D20.34.3 Effects if EL2 is implemented only in Non-secure state, or if implemented but disabled by
SCR_EL2.EEL2 = 0 in Secure state

• MPAM2_EL2 is RW when accessed from EL3 or from Non-secure EL2. This register is UNDEFINED from all
other Exception levels.

• MPAM2_EL2.TRAPMPAM1EL1: All references to it behave as if it == 0 in the Secure state.

• MPAM2_EL2.TRAPMPAM0EL1: All references to it behave as if it == 0 in the Secure state.

• MPAM1_EL12 is RW from EL3 or from NS_EL2 when HCR_EL2.E2H == 1. This register is UNDEFINED
when accessed from EL1 or EL0 or when HCR_EL2.E2H == 0.

• MPAMHCR_EL2 is RW when accessed from EL3 or from Non-secure EL2. This register is UNDEFINED from
all other EL.

• MPAMHCR_EL2.TRAP_MPAM_IDR_EL1: All references to it behave as if it == 0 in the Secure state.

• MPAMHCR_EL2.GSTAPP_PLK: All references to it behave as if it == 0 in the Secure state.

• MPAMHCR_EL2.EL1_VPMEN: All references to it behave as if it == 0 in the Secure state.

• MPAMHCR_EL2.EL0_VPMEN: All references to it behave as if it == 0 in the Secure state.

• MPAMVPMV_EL2 is RW when accessed from EL3 or from Non-secure EL2. This register is UNDEFINED
from all other Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7304
ID032224 Non-Confidential

MPAM PE Architecture
D20.34 Unimplemented Exception levels
• MPAMVPM0_EL2 through MPAMVPM7_EL2 are RW when accessed from EL3 or Non-secure EL2. These
registers are UNDEFINED from all other Exception levels.

If an implementation supports Secure state and Secure EL2 does not exist, all behaviors listed in Effects if EL2 is
implemented only in Non-secure state, or if implemented but disabled by SCR_EL2.EEL2 = 0 in Secure state must
be followed by the MPAM implementation on the Secure side.

If SCR_EL3.EEL2 == 0, Secure EL2 behaves as if it is not implemented, and all behaviors listed in Effects if EL2
is implemented only in Non-secure state, or if implemented but disabled by SCR_EL2.EEL2 = 0 in Secure state must
be followed by the MPAM implementation on the Secure side.

If Non-secure EL2 exists, the behaviors in Effects if EL2 is implemented in neither Security state do not apply to the
MPAM implementation on the Non-secure side.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D20-7305
ID032224 Non-Confidential

Chapter D21
The Scalable Matrix Extension

This chapter describes the Scalable Matrix Extension. It contains the following sections:

• Overview.

• SME traps and exceptions.

• Validity of SME and SVE state.

• Streaming execution priority.

• Floating-point behaviors in Streaming SVE mode.

• Floating-point behaviors for instructions that target the SME ZA array.

• Security and power considerations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7306
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.1 Overview
D21.1 Overview

IYVCPK The Scalable Matrix Extension (SME) defines:

• Architectural state capable of holding two-dimensional matrix tiles.

• A Streaming SVE processing mode, which supports execution of SVE2 instructions with a vector length that

matches the tile width.

• Instructions that accumulate the outer product of vectors into a tile.

• Load, store, and move instructions that transfer a vector to or from a tile row or column.

The extension also defines System registers and fields that identify the presence and capabilities of SME, and enable
and control its behavior at each Exception level.

IPYQMB The Scalable Matrix Extension version 2 (SME2) extends the SME architecture to increase the number of
applications that can benefit from the computational efficiency of SME resources, beyond their initial focus on outer
products and matrix-matrix multiplication.

SME2 adds data processing instructions with multi-vector operands and a multi-vector predication mechanism.

These include:

• Multi-vector multiply-accumulate instructions, that read SVE Z vectors and accumulate into the SME ZA
array vectors to permit reuse of the SME outer product hardware for vector operations, including widening
multiplies that accumulate into more vectors than they read.

• Multi-vector instructions that read and write multiple SVE Z vectors to preprocess inputs and post-process
outputs of the multi-vector multiply-accumulate and outer product instructions.

• An alternative predication mechanism to the SVE predication mechanism, to control operations performed
on multiple vector registers.

SME2 also adds:

• Compressed neural network capability using dedicated lookup table instructions and outer product
instructions that support binary neural networks.

• A 512-bit architectural register, ZT0, to support the lookup table feature.

DFZHSK Unless stated otherwise, the acronym SME applies to all implemented versions of the Scalable Matrix Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7307
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.2 SME traps and exceptions
D21.2 SME traps and exceptions

IQZNRN This section provides additional details for SME-related exceptions. For a list of exception priorities, see RZFGJP.

RJZTCQ If FEAT_SME is not implemented, then SME and SME2 instructions are UNDEFINED.

RGTKQD If FEAT_SME2 is not implemented, then SME2 instructions are UNDEFINED.

RPLYVH If any of the following is true, an SVE instruction is UNDEFINED:

• FEAT_SME is not implemented and FEAT_SVE is not implemented.

• FEAT_SVE is not implemented and the instruction is illegal when the PE is in Streaming SVE mode.

DDMBHW The SME-related instructions are:

• SME data-processing instructions.

• SMSTART and SMSTOP instructions.

• AArch64 MRS and MSR instructions which directly access any of the SVCR, SMCR_EL1, SMCR_EL2, or
SMCR_EL3 registers.

IBLTMB The CPACR_EL1.SMEN, CPTR_EL2.{SMEN, TSM}, CPTR_EL3.ESM trap and enable controls apply to all
SME-related instructions.

IRGBVJ The SMCR_ELx.EZT0 enable controls apply to the following SME2 instructions that access the ZT0 register:

• LDR (table).

• LUTI2, LUTI4.

• MOVT.

• STR (table).

• ZERO (table).

IXKMKY FEAT_SME adds an SME exception syndrome in ESR_ELx to identify instructions that are trapped because of any
of:

• The SME trap controls in CPACR_EL1, CPTR_EL2, and CPTR_EL3.

• The SME2 trap controls SMCR_ELx.EZT0.

• The PSTATE.SM and PSTATE.ZA modes.

INWNQZ When the PE is in Streaming SVE mode or when FEAT_SVE is not implemented, the CPACR_EL1.SMEN,
CPTR_EL2.{SMEN,TSM}, CPTR_EL3.ESM controls configure SVE instructions to trap, and the
CPACR_EL1.ZEN, CPTR_EL2.{ZEN, TZ}, CPTR_EL3.EZ controls do not cause any SVE instructions to be
trapped.

IPKGPR When the PE is not in Streaming SVE mode and FEAT_SVE is implemented, the CPACR_EL1.ZEN,
CPTR_EL2.{ZEN, TZ}, CPTR_EL3.EZ controls configure SVE instructions to trap, and the CPACR_EL1.SMEN,
CPTR_EL2.{SMEN, TSM}, CPTR_EL3.ESM controls do not cause any SVE instructions to be trapped.

RGGLFV When an SVE MOVPRFX instruction predictably prefixes an SVE instruction that is illegal due to the current value of
PSTATE.SM or PSTATE.ZA, then the execution of either of the instructions generates an exception due to SME
functionality, consistent with the behaviors defined by RRWVTR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7308
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.3 Validity of SME and SVE state
D21.3 Validity of SME and SVE state

IVBJBR The Effective value of PSTATE.SM and the value of PSTATE.ZA configure whether SME architectural state is valid
and accessible.

IWFHKZ CPACR_EL1.SMEN, CPTR_EL2.{TSM, SMEN}, and CPTR_EL3.ESM configure whether SME-related
instructions can be executed or are trapped.

IKKFXN SMCR_ELx.EZT0 configures whether SME2 instructions that access the ZT0 register can be executed or are
trapped.

RXCCXW The controls for trapping SME-related instructions and the controls for the validity of SME architectural state are
independent.

IJGRTR Because the trap and architectural state validity are controlled independently, the following scenarios are all
permissible:

• Instructions trap, state invalid.

— For example, an OS traps the first usage of SME-related instructions by a process.

• Instructions trap, state valid.

— For example, a process was running with valid SME architectural state and an OS configures traps to

detect when the next usage of SME architectural state occurs.

— Enabling the trap does not affect or corrupt the SME architectural state.

• Instructions permitted, state invalid.

— For example, a process is permitted to execute SME-related instructions but is currently not running
in Streaming SVE mode. SME data-processing instructions which access SVE vector or predicate
registers are illegal and are trapped, but SVE instructions operate on the Non-streaming SVE register
state. The process can execute an SMSTART instruction to enter Streaming SVE mode.

— For example, a process is running in Streaming SVE mode, but has not enabled access to the ZA
storage. SME instructions that access ZA are illegal and are trapped, but the process can execute an
SMSTART instruction to enable access to the ZA storage.

• Instructions permitted, state valid.

— For example, a process is running in Streaming SVE mode, and has enabled access to ZA storage.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7309
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.4 Streaming execution priority
D21.4 Streaming execution priority

DDXMSW Streaming execution refers to the execution of instructions by a PE when that PE is in Streaming SVE mode.

ICMRVS Arm expects a variety of implementation styles for SME, including styles where more than one PE shares SME and
Streaming SVE compute resources.

IPQNJS Shared SME and Streaming SVE compute resources are called a Streaming Mode Compute Unit (SMCU).

IMZXWD For implementations that share an SMCU, this architecture provides per-PE mechanisms that software can use to
dynamically prioritize performance characteristics experienced by each PE.

D21.4.1 Streaming execution priority for shared implementations

IYYRZQ Execution of certain instructions by a PE in Streaming SVE mode might experience a performance dependency on
other PEs in the system that are also executing instructions in Streaming SVE mode. For example, this might occur
when an SMCU is shared between PEs.

IWPQVV The architecture provides a mechanism to control the streaming execution priority of a PE, in SMPRI_EL1. The
streaming execution priority of a PE is relative to the streaming execution priority of other PEs, when a performance
dependency exists between PEs executing in Streaming SVE mode.

IKTYTD An implementation that does not share SMCUs or has no performance dependency between PEs might not need to
limit or prioritize execution of one PE relative to another.

IHQXBH The streaming execution priority mechanism is optional.

DDGRTS All PEs that share a given SMCU form a Priority domain.

DYQFWM Different Priority domains represent unrelated SMCUs.

RWPVQK All PEs in a Priority domain have the same value of SMPRI_EL1.Affinity and SMPRI_EL1.Affinity2.

RCVLSF PEs in different Priority domains have different values of SMPRI_EL1.Affinity or SMPRI_EL1.Affinity2.

RGGDRC The streaming execution priority in SMPRI_EL1 affects execution of a PE relative to all other PEs in the same
Priority domain.

RSBCRG All SMCUs in the system have a consistent interpretation of the streaming execution priority values.

RRQXFC The streaming execution priority mechanism affects the execution of instructions by a shared SMCU when the PE
is in Streaming SVE mode and does not directly control the execution of other types of instruction.

IBLMYK If system software does not support differentiation of streaming execution priority of threads, it is safe to use a value
of 0 for all threads.

IYBQNW The architecture considers Priority domain to be non-overlapping sets, meaning that in a shared-SMCU system, a
PE is associated with at most one SMCU.

D21.4.1.1 Streaming execution context management

IPRNMJ Arm expects that the SVE and SME instructions used by save, restore, and clear routines for the Streaming SVE
mode SVE registers, the ZA storage, and the ZT0 register when FEAT_SME2 is implemented, are limited to using
the following SME and SVE instructions:

• SME LDR (array vector) and STR (array vector) instructions.

• SME2 LDR (table) and STR (table) instructions.

• SVE LDR (vector) and STR (vector) instructions.

• SVE LDR (predicate) and STR (predicate) instructions.

• SME ZERO (tiles) instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7310
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.4 Streaming execution priority
• SME2 ZERO (table) instruction.

• SVE DUP (immediate) instruction with zero immediate.

• SVE PFALSE instruction.

For implementations with a shared SMCU, PEs are expected to execute these instructions in a way that experiences
a reduced effect of contention for the SMCU from other PEs, compared to other SME and SVE instructions executed
in Streaming SVE mode.

D21.4.1.2 Streaming execution priority control

IRMDCP The streaming execution priority is controlled by a 4-bit priority value. When the streaming execution priority
mechanism is not supported, the priority value is ignored.

IFJQRG A higher priority value corresponds to a higher streaming execution priority. Priority value 15 is the highest priority.

IQHKWP The behavior of any given priority value relative to that of another PE is IMPLEMENTATION DEFINED.

D21.4.1.3 Streaming execution priority virtualization

ISQBCZ The Effective streaming execution priority is either the value configured in SMPRI_EL1 or, if EL2 is implemented
and enabled in the current Security state, the value of SMPRI_EL1 mapped into a new value by indexing the fields
in SMPRIMAP_EL2. This choice is affected by the current Exception level, and the HCRX_EL2.SMPME
configuration.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7311
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.5 Floating-point behaviors in Streaming SVE mode
D21.5 Floating-point behaviors in Streaming SVE mode

DDMPBW Unless stated otherwise, the behaviors in this section apply when the PE is in Streaming SVE mode, to floating-point
instructions that place their results in SIMD&FP registers or SVE Z vector registers, except the SVE BFloat16
instructions BFDOT and BFMMLA, for which, see BFloat16 behaviors for instructions that compute sum-of-products.

The instructions:

RPHDZL • Honor FPCR.{DN, FZ, RMode, FZ16, AH, FIZ}, unless specified otherwise in Flushing denormalized
numbers to zero or Alternate BFloat16 behaviors.

RGTYSK • Produce the expected IEEE 754 default result and update the FPSR cumulative exception flag bits, unless
specified otherwise in Alternate BFloat16 behaviors.

RFBFNT • Disable trapped floating-point exceptions as if FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are all 0, and treat
the NEP element preserve control as if it is 0, if FEAT_SME_FA64 is not implemented or not enabled at the
current Exception level.

See also:

• Streaming SVE mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7312
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.6 Floating-point behaviors for instructions that target the SME ZA array
D21.6 Floating-point behaviors for instructions that target the SME ZA array

DHTZVK Unless stated otherwise, the behaviors in this section apply to SME and SME2 floating-point instructions that place
their results in the ZA array, except the SME BFloat16 instructions BFMOPA (widening), BFMOPS (widening), BFDOT,
and BFVDOT, for which, see BFloat16 behaviors for instructions that compute sum-of-products.

The instructions:

RWLPHB • Honor FPCR.{FZ, RMode, FZ16, AH, FIZ}, unless specified otherwise in Flushing denormalized numbers
to zero or Alternate BFloat16 behaviors.

RRKHHZ • Generate the Default NaN, as if FPCR.DN is 1.

RTGSKG • Produce the expected IEEE 754 default result but do not update the FPSR cumulative exception flag bits.

RFSWYW • Disable trapped floating-point exceptions, as if FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are all 0.

RBWKKQ The SME instructions that accumulate dot products of pairs of adjacent half-precision elements in the source vectors
into single-precision elements in the ZA array:

• Perform a fused sum-of-products without rounding of the intermediate products, but rounding the
single-precision sum before addition to the accumulator tile or multi-vector operand element.

• Generate the default NaN as intermediate sum-of-products when any of the following are true:

— Any multiplier input is a NaN.

— Any product is infinity × 0.0.

— Both products are infinity of differing signs.

• Generate an intermediate sum-of-products of the same infinity when there are products that are infinity all
with the same sign.

RRPSLK If FEAT_AFP is implemented, the instructions honor FPCR.{AH, FIZ}, in which case:

• When FPCR.AH is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.

• When FPCR.AH is 1 and FPCR.FZ is 1, a denormal result, detected after rounding with an unbounded
exponent has been applied, is flushed to zero.

• When FPCR.AH is 1, the FPCR.FZ control does not cause denormalized inputs to be flushed to zero.

• When FPCR.FIZ is 1, all denormalized inputs are flushed to zero.

RTCLRM • Honor FPCR.RMode, supporting all four IEEE 754 rounding modes.

RVVVNR • Honor FPCR.FZ.

RTXKVK • Honor FPCR.FZ16.

RJRRMJ Those instructions that multiply single elements from each source vector and accumulate their product into the ZA
array perform a fused multiply-add to each accumulator tile or multi-vector operand element without rounding of
the intermediate products.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7313
ID032224 Non-Confidential

The Scalable Matrix Extension
D21.7 Security and power considerations
D21.7 Security and power considerations

D21.7.1 Security considerations

IDXRGG All SME load and store instructions adhere to the memory access permissions model in Chapter D8 The AArch64
Virtual Memory System Architecture.

IMGLWR SME architectural state can be access-controlled, meaning that higher levels of privilege can trap access to the state
from the same or lower levels of privilege.

ICYPJJ System software has controls available to save and restore state between unrelated pieces of software, and must
ensure that steps are taken to preserve isolation and privacy.

ITDPHC Operations performed in Streaming SVE mode respect the requirements of PSTATE.DIT. FEAT_DIT requires
data-independent timing when enabled.

D21.7.2 Power considerations

IVGWQW An implementation might use the activity of PSTATE.{SM, ZA} to influence the choice of power-saving states for
both functional units and retention of architected state. A PE might consume less power when PSTATE.{SM, ZA}
are {0, 0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D21-7314
ID032224 Non-Confidential

Chapter D22
AArch64 System Register Encoding

This chapter describes the AArch64 System register encoding space. It contains the following sections:

• The System register encoding space.

• Moves to and from debug and trace System registers.

• Moves to and from non-debug System registers, Special-purpose registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7315
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.1 The System register encoding space
D22.1 The System register encoding space

The A64 instruction set includes instructions that access the System register encoding space. These instructions
provide:

• Access to System registers, including the debug registers, that provide system control, and system status
information.

• Access to Special-purpose registers such as SPSR_ELx, ELR_ELx, and the equivalent fields of the Process
State.

• The cache and TLB maintenance instructions and address translation instructions.

• Barriers and the CLREX instruction.

• Architectural hint instructions.

This section describes the parts of the System register encoding space that provides access to the System registers
described in Chapter D23 AArch64 System Register Descriptions.

Note

• See Fixed values in AArch64 instruction and System register descriptions for information about
abbreviations used in the System instruction descriptions.

• In AArch32 state, much of this functionality is provided through the System register interface described in
The AArch32 System register interface. In AArch64 state, the parameters used to characterize the System
register encoding space are {op0, op1, CRn, CRm, op2}. These are based on the parameters that characterize the
AArch32 System register encoding space, which reflect the original implementation of these registers, as
described in Background to the System register interface. There is no particular significance to the naming
of these parameters, and no functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding describes some general properties of these encodings. System
instruction class encoding overview then describes the top-level encoding of these instructions, identifying that:

• Entries in the encoding space are characterized by the parameter set {op0, op1, CRn, CRm, op2}.

• op0 is the most significant parameter for determining allocations in this space.

Much of this encoding space is used for System instructions, as described in Chapter C5 The A64 System Instruction
Class. This chapter describes only the part of the encoding space that is used for System registers, in the following
sections:

• Moves to and from debug and trace System registers.

• Moves to and from non-debug System registers, Special-purpose registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7316
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.2 Moves to and from debug and trace System registers
D22.2 Moves to and from debug and trace System registers

The instructions that move data to and from the debug, Execution environment, and trace System registers are
encoded with op0==0b10. This means the encoding of these instructions is:

Note

• The section describes the use of all of the op0==0b10 region of the System register encoding space.

• These encodings access the registers that are equivalent to the AArch32 System registers in the
(coproc==0b1110) encoding space.

The value of op1 provides the next level of decode of these instructions, as follows:

op1 == {0, 3, 4}

Debug. See Instructions for accessing debug System registers

Note

The standard encoding of debug registers is op0==0b10, op1=={0, 3, 4}. The registers in the
op0==0b11 encoding space that are classified as debug registers are DLR_EL0, DSPSR_EL0,
MDCR_EL2, MDCR_EL3, and SDER32_EL3. See Instructions for accessing non-debug System
registers for the encodings of these registers.

op1 == 1 Trace and BRBE registers. See FEAT_ETE, FEAT_BRBE, or the appropriate trace architecture
specification for more information.

D22.2.1 Instructions for accessing debug System registers

The instructions for accessing debug System registers are:

MSR <System register>, Xt ; Write to System register
MRS Xt, <System register> ; Read from System register

Where <System_register> is the register name, for example MDCCSR_EL0.

This section includes only the System register access encodings for which both:

• op0 is 0b10.

• The value of op1 is one of {0, 1, 3, 4, 5}.

Note

These encodings access the registers that are equivalent to the AArch32 System registers in the (coproc==0b1110)
encoding space.

Table D22-1 shows the mapping of the System register encodings for debug System register access.

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 0

Table D22-1 Instruction encodings for debug System register access

op0 op1 CRn CRm op2 Access Mnemonic Register

10 000 0000 0000 010 RW OSDTRRX_EL1 OSDTRRX_EL1

10 000 0000 0010 000 RW MDCCINT_EL1 MDCCINT_EL1

10 000 0000 0010 010 RW MDSCR_EL1 MDSCR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7317
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.2 Moves to and from debug and trace System registers
10 000 0000 0011 010 RW OSDTRTX_EL1 OSDTRTX_EL1

10 000 0000 0100 010 RW MDSELR_EL1 MDSELR_EL1

10 000 0000 0110 010 RW OSECCR_EL1 OSECCR_EL1

10 000 0000 m[3:0] 100 RW DBGBVR<n>_EL1 DBGBVR_EL1

10 000 0000 m[3:0] 100 RW DBGBVR<n>_EL1 DBGBVR_EL1[]

10 000 0000 m[3:0] 101 RW DBGBCR<n>_EL1 DBGBCR_EL1

10 000 0000 m[3:0] 101 RW DBGBCR<n>_EL1 DBGBCR_EL1[]

10 000 0000 m[3:0] 110 RW DBGWVR<n>_EL1 DBGWVR_EL1

10 000 0000 m[3:0] 110 RW DBGWVR<n>_EL1 DBGWVR_EL1[]

10 000 0000 m[3:0] 111 RW DBGWCR<n>_EL1 DBGWCR_EL1

10 000 0000 m[3:0] 111 RW DBGWCR<n>_EL1 DBGWCR_EL1[]

10 000 0001 0000 000 RO MDRAR_EL1 MDRAR_EL1

10 000 0001 0000 100 WO OSLAR_EL1 OSLAR_EL1

10 000 0001 0001 100 RO OSLSR_EL1 OSLSR_EL1

10 000 0001 0011 100 RW OSDLR_EL1 OSDLR_EL1

10 000 0001 0100 100 RW DBGPRCR_EL1 DBGPRCR_EL1

10 000 0111 1000 110 RW DBGCLAIMSET_EL1 DBGCLAIMSET_EL1

10 000 0111 1001 110 RW DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1

10 000 0111 1110 110 RO DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1

10 000 1001 1101 00:m[0] RO SPMCGCR<n>_EL1 SPMCGCR_EL1

10 000 1001 1101 011 RW SPMACCESSR_EL1 SPMACCESSR_EL1

10 000 1001 1101 011 RW SPMACCESSR_EL1 SPMACCESSR_EL2

10 000 1001 1101 011 RW SPMACCESSR_EL2 SPMACCESSR_EL1

10 000 1001 1101 011 RW SPMACCESSR_EL2 SPMACCESSR_EL2

10 000 1001 1101 100 RO SPMIIDR_EL1 SPMIIDR_EL1

10 000 1001 1101 101 RO SPMDEVARCH_EL1 SPMDEVARCH_EL1

10 000 1001 1101 110 RO SPMDEVAFF_EL1 SPMDEVAFF_EL1

10 000 1001 1101 111 RO SPMCFGR_EL1 SPMCFGR_EL1

10 000 1001 1110 001 RW SPMINTENSET_EL1 SPMINTENSET_EL1

10 000 1001 1110 010 RW SPMINTENCLR_EL1 SPMINTENCLR_EL1

10 000 1110 1011 111 RO PMCCNTSVR_EL1 PMCCNTSVR_EL1

10 000 1110 10:m[4:3] m[2:0] RO PMEVCNTSVR<n>_EL1 PMEVCNTSVR_EL1[]

Table D22-1 Instruction encodings for debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7318
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.2 Moves to and from debug and trace System registers
10 000 1110 1100 000 RO PMICNTSVR_EL1 PMICNTSVR_EL1

10 001 0000 0000 001 RW TRCTRACEIDR TRCTRACEIDR

10 001 0000 0000 010 RW TRCVICTLR TRCVICTLR

10 001 0000 0000 110 RO TRCIDR8 TRCIDR8

10 001 0000 0000 111 RW TRCIMSPEC0 TRCIMSPEC0

10 001 0000 0001 000 RW TRCPRGCTLR TRCPRGCTLR

10 001 0000 0001 001 RW TRCQCTLR TRCQCTLR

10 001 0000 0001 010 RW TRCVIIECTLR TRCVIIECTLR

10 001 0000 0001 110 RO TRCIDR9 TRCIDR9

10 001 0000 0010 001 RW TRCITEEDCR TRCITEEDCR

10 001 0000 0010 010 RW TRCVISSCTLR TRCVISSCTLR

10 001 0000 0010 110 RO TRCIDR10 TRCIDR10

10 001 0000 0011 000 RO TRCSTATR TRCSTATR

10 001 0000 0011 010 RW TRCVIPCSSCTLR TRCVIPCSSCTLR

10 001 0000 0011 110 RO TRCIDR11 TRCIDR11

10 001 0000 00:m[1:0] 100 RW TRCSEQEVR<n> TRCSEQEVR[]

10 001 0000 00:m[1:0] 101 RW TRCCNTRLDVR<n> TRCCNTRLDVR[]

10 001 0000 0100 000 RW TRCCONFIGR TRCCONFIGR

10 001 0000 0100 110 RO TRCIDR12 TRCIDR12

10 001 0000 0101 110 RO TRCIDR13 TRCIDR13

10 001 0000 0110 000 RW TRCAUXCTLR TRCAUXCTLR

10 001 0000 0110 100 RW TRCSEQRSTEVR TRCSEQRSTEVR

10 001 0000 0111 100 RW TRCSEQSTR TRCSEQSTR

10 001 0000 01:m[1:0] 101 RW TRCCNTCTLR<n> TRCCNTCTLR[]

10 001 0000 0:m[2:0] 111 RW TRCIMSPEC<n> TRCIMSPEC[]

10 001 0000 1000 000 RW TRCEVENTCTL0R TRCEVENTCTL0R

10 001 0000 1000 111 RO TRCIDR0 TRCIDR0

10 001 0000 1001 000 RW TRCEVENTCTL1R TRCEVENTCTL1R

10 001 0000 1001 111 RO TRCIDR1 TRCIDR1

10 001 0000 1010 000 RW TRCRSR TRCRSR

10 001 0000 1010 111 RO TRCIDR2 TRCIDR2

10 001 0000 1011 000 RW TRCSTALLCTLR TRCSTALLCTLR

Table D22-1 Instruction encodings for debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7319
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.2 Moves to and from debug and trace System registers
10 001 0000 1011 111 RO TRCIDR3 TRCIDR3

10 001 0000 10:m[1:0] 100 RW TRCEXTINSELR<n> TRCEXTINSELR[]

10 001 0000 10:m[1:0] 101 RW TRCCNTVR<n> TRCCNTVR[]

10 001 0000 1100 000 RW TRCTSCTLR TRCTSCTLR

10 001 0000 1100 111 RO TRCIDR4 TRCIDR4

10 001 0000 1101 000 RW TRCSYNCPR TRCSYNCPR

10 001 0000 1101 111 RO TRCIDR5 TRCIDR5

10 001 0000 1110 000 RW TRCCCCTLR TRCCCCTLR

10 001 0000 1110 111 RO TRCIDR6 TRCIDR6

10 001 0000 1111 000 RW TRCBBCTLR TRCBBCTLR

10 001 0000 1111 111 RO TRCIDR7 TRCIDR7

10 001 0001 0001 100 RO TRCOSLSR TRCOSLSR

10 001 0001 0:m[2:0] 010 RW TRCSSCCR<n> TRCSSCCR[]

10 001 0001 0:m[2:0] 011 RW TRCSSPCICR<n> TRCSSPCICR[]

10 001 0001 1:m[2:0] 010 RW TRCSSCSR<n> TRCSSCSR[]

10 001 0001 m[3:0] 00:m[4] RW TRCRSCTLR<n> TRCRSCTLR[]

10 001 0010 m[2:0]:0 00:m[3] RW TRCACVR<n> TRCACVR[]

10 001 0010 m[2:0]:0 01:m[3] RW TRCACATR<n> TRCACATR[]

10 001 0011 0000 010 RW TRCCIDCCTLR0 TRCCIDCCTLR0

10 001 0011 0001 010 RW TRCCIDCCTLR1 TRCCIDCCTLR1

10 001 0011 0010 010 RW TRCVMIDCCTLR0 TRCVMIDCCTLR0

10 001 0011 0011 010 RW TRCVMIDCCTLR1 TRCVMIDCCTLR1

10 001 0011 m[2:0]:0 000 RW TRCCIDCVR<n> TRCCIDCVR[]

10 001 0011 m[2:0]:0 001 RW TRCVMIDCVR<n> TRCVMIDCVR[]

10 001 0111 0010 111 RO TRCDEVID TRCDEVID

10 001 0111 1000 110 RW TRCCLAIMSET TRCCLAIMSET

10 001 0111 1001 110 RW TRCCLAIMCLR TRCCLAIMCLR

10 001 0111 1110 110 RO TRCAUTHSTATUS TRCAUTHSTATUS

10 001 0111 1111 110 RO TRCDEVARCH TRCDEVARCH

10 001 1000 m[3:0] m[4]:00 RO BRBINF<n>_EL1 BRBINF_EL1[]

10 001 1000 m[3:0] m[4]:01 RO BRBSRC<n>_EL1 BRBSRC_EL1[]

10 001 1000 m[3:0] m[4]:10 RO BRBTGT<n>_EL1 BRBTGT_EL1[]

Table D22-1 Instruction encodings for debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7320
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.2 Moves to and from debug and trace System registers
10 001 1001 0000 000 RW BRBCR_EL1 BRBCR_EL1

10 001 1001 0000 000 RW BRBCR_EL1 BRBCR_EL2

10 001 1001 0000 000 RW BRBCR_EL2 BRBCR_EL1

10 001 1001 0000 000 RW BRBCR_EL2 BRBCR_EL2

10 001 1001 0000 001 RW BRBFCR_EL1 BRBFCR_EL1

10 001 1001 0000 010 RW BRBTS_EL1 BRBTS_EL1

10 001 1001 0001 000 RW BRBINFINJ_EL1 BRBINFINJ_EL1

10 001 1001 0001 001 RW BRBSRCINJ_EL1 BRBSRCINJ_EL1

10 001 1001 0001 010 RW BRBTGTINJ_EL1 BRBTGTINJ_EL1

10 001 1001 0010 000 RO BRBIDR0_EL1 BRBIDR0_EL1

10 011 0000 0001 000 RO MDCCSR_EL0 MDCCSR_EL0

10 011 0000 0100 000 - DBGDTR_EL0 -

10 011 0000 0101 000 - DBGDTRRX_EL0 -

10 011 0000 0101 000 - DBGDTRTX_EL0 -

10 011 1001 1100 000 RW SPMCR_EL0 SPMCR_EL0

10 011 1001 1100 001 RW SPMCNTENSET_EL0 SPMCNTENSET_EL0

10 011 1001 1100 010 RW SPMCNTENCLR_EL0 SPMCNTENCLR_EL0

10 011 1001 1100 011 RW SPMOVSCLR_EL0 SPMOVSCLR_EL0

10 011 1001 1100 101 RW SPMSELR_EL0 SPMSELR_EL0

10 011 1001 1110 011 RW SPMOVSSET_EL0 SPMOVSSET_EL0

10 011 1110 000:m[3] m[2:0] RW SPMEVCNTR<n>_EL0 SPMEVCNTR_EL0

10 011 1110 001:m[3] m[2:0] RW SPMEVTYPER<n>_EL0 SPMEVTYPER_EL0

10 011 1110 010:m[3] m[2:0] RW SPMEVFILTR<n>_EL0 SPMEVFILTR_EL0

10 011 1110 011:m[3] m[2:0] RW SPMEVFILT2R<n>_EL0 SPMEVFILT2R_EL0

10 100 0000 0111 000 RW DBGVCR32_EL2 DBGVCR32_EL2

10 100 1001 0000 000 RW BRBCR_EL2 BRBCR_EL2

10 100 1001 1101 011 RW SPMACCESSR_EL2 SPMACCESSR_EL2

10 101 1001 0000 000 RW BRBCR_EL12 BRBCR_EL1

10 101 1001 1101 011 RW SPMACCESSR_EL12 SPMACCESSR_EL1

10 110 1001 1101 011 RW SPMACCESSR_EL3 SPMACCESSR_EL3

10 110 1001 1110 111 RW SPMROOTCR_EL3 SPMROOTCR_EL3

10 111 1001 1110 111 RW SPMSCR_EL1 SPMSCR_EL1

Table D22-1 Instruction encodings for debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7321
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.2 Moves to and from debug and trace System registers
For more information, see Mapping of the System registers between the Execution states.

Note

Table D22-1 lists the Armv8 debug System registers. For encoding information of the registers introduced by
Armv9, see the register descriptions in Chapter D23 AArch64 System Register Descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7322
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
D22.3 Moves to and from non-debug System registers, Special-purpose registers

The instructions that move data to and from non-debug System registers are encoded with op0==0b11, except that
some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these
instructions is:

The value of CRn provides the next level of decode of these instructions, as follows:

CRn=={0, 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14}

See Instructions for accessing non-debug System registers.

CRn==4 See Instructions for accessing Special-purpose registers.

CRn=={11, 15} See Reserved encodings for IMPLEMENTATION DEFINED registers.

D22.3.1 Instructions for accessing non-debug System registers

The A64 instructions for accessing System registers are:

MSR <System register>, Xt ; Write to System register
MRS Xt, <System register> ; Read from System register

Where <System_register> is the register name, for example MIDR_EL1.

This section includes only the System register access encodings for which both:

• op0 is 0b11.

• The value of CRn is one of {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14}.

Note

• These encodings access the registers that are equivalent to the AArch32 System registers in the
(coproc==0b1111) encoding space.

• While this group is described as accessing the non-debug System registers, its correct characterization is by
the {op0, CRn} values given in this subsection, and the group includes the debug registers DLR_EL0,
DSPSR_EL0, MDCR_EL2, MDCR_EL3, and SDER32_EL3, which are described in Debug registers. These
registers are exceptions to the standard encoding of debug registers, which has op0==0b10, see Instructions
for accessing debug System registers.

• All unused encodings in the range Op0 == 3, op1 == 0, CRn == 0, CRm == {2-7}, op2 == {0-7} are defined
to be accessible as Reserved, RAZ to ensure correct behavior if the encodings are used for ID registers in the
future.

The instruction encoding for these accesses is:

Table D22-2 shows the encodings of the register access instructions.

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 1

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0

1 0 1 0 1 0 1 0 0 L op1 CRn CRm op2

op0

1 1

See text for permitted values of CRn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7323
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
See the register descriptions for information about the control that determines whether these accesses are permitted.

Table D22-2 Instruction encodings for non-debug System register access

op0 op1 CRn CRm op2 Access Mnemonic Register

11 000 0000 0000 000 RO MIDR_EL1 MIDR_EL1

11 000 0000 0000 000 RO MIDR_EL1 VPIDR_EL2

11 000 0000 0000 000 RO VPIDR_EL2 MIDR_EL1

11 000 0000 0000 000 RO VPIDR_EL2 VPIDR_EL2

11 000 0000 0000 101 RO MPIDR_EL1 MPIDR_EL1

11 000 0000 0000 101 RO MPIDR_EL1 VMPIDR_EL2

11 000 0000 0000 101 RO VMPIDR_EL2 MPIDR_EL1

11 000 0000 0000 101 RO VMPIDR_EL2 VMPIDR_EL2

11 000 0000 0000 110 RO REVIDR_EL1 REVIDR_EL1

11 000 0000 0001 000 RO ID_PFR0_EL1 ID_PFR0_EL1

11 000 0000 0001 001 RO ID_PFR1_EL1 ID_PFR1_EL1

11 000 0000 0001 010 RO ID_DFR0_EL1 ID_DFR0_EL1

11 000 0000 0001 011 RO ID_AFR0_EL1 ID_AFR0_EL1

11 000 0000 0001 100 RO ID_MMFR0_EL1 ID_MMFR0_EL1

11 000 0000 0001 101 RO ID_MMFR1_EL1 ID_MMFR1_EL1

11 000 0000 0001 110 RO ID_MMFR2_EL1 ID_MMFR2_EL1

11 000 0000 0001 111 RO ID_MMFR3_EL1 ID_MMFR3_EL1

11 000 0000 0010 000 RO ID_ISAR0_EL1 ID_ISAR0_EL1

11 000 0000 0010 001 RO ID_ISAR1_EL1 ID_ISAR1_EL1

11 000 0000 0010 010 RO ID_ISAR2_EL1 ID_ISAR2_EL1

11 000 0000 0010 011 RO ID_ISAR3_EL1 ID_ISAR3_EL1

11 000 0000 0010 100 RO ID_ISAR4_EL1 ID_ISAR4_EL1

11 000 0000 0010 101 RO ID_ISAR5_EL1 ID_ISAR5_EL1

11 000 0000 0010 110 RO ID_MMFR4_EL1 ID_MMFR4_EL1

11 000 0000 0010 111 RO ID_ISAR6_EL1 ID_ISAR6_EL1

11 000 0000 0011 000 RO MVFR0_EL1 MVFR0_EL1

11 000 0000 0011 001 RO MVFR1_EL1 MVFR1_EL1

11 000 0000 0011 010 RO MVFR2_EL1 MVFR2_EL1

11 000 0000 0011 100 RO ID_PFR2_EL1 ID_PFR2_EL1

11 000 0000 0011 101 RO ID_DFR1_EL1 ID_DFR1_EL1

11 000 0000 0011 110 RO ID_MMFR5_EL1 ID_MMFR5_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7324
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 0000 0100 000 RO ID_AA64PFR0_EL1 ID_AA64PFR0_EL1

11 000 0000 0100 001 RO ID_AA64PFR1_EL1 ID_AA64PFR1_EL1

11 000 0000 0100 010 RO ID_AA64PFR2_EL1 ID_AA64PFR2_EL1

11 000 0000 0100 100 RO ID_AA64ZFR0_EL1 ID_AA64ZFR0_EL1

11 000 0000 0100 101 RO ID_AA64SMFR0_EL1 ID_AA64SMFR0_EL1

11 000 0000 0101 000 RO ID_AA64DFR0_EL1 ID_AA64DFR0_EL1

11 000 0000 0101 001 RO ID_AA64DFR1_EL1 ID_AA64DFR1_EL1

11 000 0000 0101 100 RO ID_AA64AFR0_EL1 ID_AA64AFR0_EL1

11 000 0000 0101 101 RO ID_AA64AFR1_EL1 ID_AA64AFR1_EL1

11 000 0000 0110 000 RO ID_AA64ISAR0_EL1 ID_AA64ISAR0_EL1

11 000 0000 0110 001 RO ID_AA64ISAR1_EL1 ID_AA64ISAR1_EL1

11 000 0000 0110 010 RO ID_AA64ISAR2_EL1 ID_AA64ISAR2_EL1

11 000 0000 0111 000 RO ID_AA64MMFR0_EL1 ID_AA64MMFR0_EL1

11 000 0000 0111 001 RO ID_AA64MMFR1_EL1 ID_AA64MMFR1_EL1

11 000 0000 0111 010 RO ID_AA64MMFR2_EL1 ID_AA64MMFR2_EL1

11 000 0000 0111 011 RO ID_AA64MMFR3_EL1 ID_AA64MMFR3_EL1

11 000 0000 0111 100 RO ID_AA64MMFR4_EL1 ID_AA64MMFR4_EL1

11 000 0001 0000 000 RW SCTLR_EL1 SCTLR_EL1

11 000 0001 0000 000 RW SCTLR_EL1 SCTLR_EL2

11 000 0001 0000 000 RW SCTLR_EL2 SCTLR_EL1

11 000 0001 0000 000 RW SCTLR_EL2 SCTLR_EL2

11 000 0001 0000 001 RW ACTLR_EL1 ACTLR_EL1

11 000 0001 0000 010 RW CPACR_EL1 CPACR_EL1

11 000 0001 0000 010 RW CPACR_EL1 CPTR_EL2

11 000 0001 0000 010 RW CPTR_EL2 CPACR_EL1

11 000 0001 0000 010 RW CPTR_EL2 CPTR_EL2

11 000 0001 0000 011 RW SCTLR2_EL1 SCTLR2_EL1

11 000 0001 0000 011 RW SCTLR2_EL1 SCTLR2_EL2

11 000 0001 0000 011 RW SCTLR2_EL2 SCTLR2_EL1

11 000 0001 0000 011 RW SCTLR2_EL2 SCTLR2_EL2

11 000 0001 0000 101 RW RGSR_EL1 RGSR_EL1

11 000 0001 0000 110 RW GCR_EL1 GCR_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7325
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 0001 0010 000 RW ZCR_EL1 ZCR_EL1

11 000 0001 0010 000 RW ZCR_EL1 ZCR_EL2

11 000 0001 0010 000 RW ZCR_EL2 ZCR_EL1

11 000 0001 0010 000 RW ZCR_EL2 ZCR_EL2

11 000 0001 0010 001 RW TRFCR_EL1 TRFCR_EL1

11 000 0001 0010 001 RW TRFCR_EL1 TRFCR_EL2

11 000 0001 0010 001 RW TRFCR_EL2 TRFCR_EL1

11 000 0001 0010 001 RW TRFCR_EL2 TRFCR_EL2

11 000 0001 0010 011 RW TRCITECR_EL1 TRCITECR_EL1

11 000 0001 0010 011 RW TRCITECR_EL1 TRCITECR_EL2

11 000 0001 0010 011 RW TRCITECR_EL2 TRCITECR_EL1

11 000 0001 0010 011 RW TRCITECR_EL2 TRCITECR_EL2

11 000 0001 0010 100 RW SMPRI_EL1 SMPRI_EL1

11 000 0001 0010 110 RW SMCR_EL1 SMCR_EL1

11 000 0001 0010 110 RW SMCR_EL1 SMCR_EL2

11 000 0001 0010 110 RW SMCR_EL2 SMCR_EL1

11 000 0001 0010 110 RW SMCR_EL2 SMCR_EL2

11 000 0010 0000 000 RW TTBR0_EL1 TTBR0_EL1

11 000 0010 0000 000 RW TTBR0_EL1 TTBR0_EL2

11 000 0010 0000 000 RW TTBR0_EL2 TTBR0_EL1

11 000 0010 0000 000 RW TTBR0_EL2 TTBR0_EL2

11 000 0010 0000 001 RW TTBR1_EL1 TTBR1_EL1

11 000 0010 0000 001 RW TTBR1_EL1 TTBR1_EL2

11 000 0010 0000 001 RW TTBR1_EL2 TTBR1_EL1

11 000 0010 0000 001 RW TTBR1_EL2 TTBR1_EL2

11 000 0010 0000 010 RW TCR_EL1 TCR_EL1

11 000 0010 0000 010 RW TCR_EL1 TCR_EL2

11 000 0010 0000 010 RW TCR_EL2 TCR_EL1

11 000 0010 0000 010 RW TCR_EL2 TCR_EL2

11 000 0010 0000 011 RW TCR2_EL1 TCR2_EL1

11 000 0010 0000 011 RW TCR2_EL1 TCR2_EL2

11 000 0010 0000 011 RW TCR2_EL2 TCR2_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7326
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 0010 0000 011 RW TCR2_EL2 TCR2_EL2

11 000 0010 0001 000 RW APIAKeyLo_EL1 APIAKeyLo_EL1

11 000 0010 0001 001 RW APIAKeyHi_EL1 APIAKeyHi_EL1

11 000 0010 0001 010 RW APIBKeyLo_EL1 APIBKeyLo_EL1

11 000 0010 0001 011 RW APIBKeyHi_EL1 APIBKeyHi_EL1

11 000 0010 0010 000 RW APDAKeyLo_EL1 APDAKeyLo_EL1

11 000 0010 0010 001 RW APDAKeyHi_EL1 APDAKeyHi_EL1

11 000 0010 0010 010 RW APDBKeyLo_EL1 APDBKeyLo_EL1

11 000 0010 0010 011 RW APDBKeyHi_EL1 APDBKeyHi_EL1

11 000 0010 0011 000 RW APGAKeyLo_EL1 APGAKeyLo_EL1

11 000 0010 0011 001 RW APGAKeyHi_EL1 APGAKeyHi_EL1

11 000 0010 0101 000 RW GCSCR_EL1 GCSCR_EL1

11 000 0010 0101 000 RW GCSCR_EL1 GCSCR_EL2

11 000 0010 0101 000 RW GCSCR_EL2 GCSCR_EL1

11 000 0010 0101 000 RW GCSCR_EL2 GCSCR_EL2

11 000 0010 0101 001 RW GCSPR_EL1 GCSPR_EL1

11 000 0010 0101 001 RW GCSPR_EL1 GCSPR_EL2

11 000 0010 0101 001 RW GCSPR_EL2 GCSPR_EL1

11 000 0010 0101 001 RW GCSPR_EL2 GCSPR_EL2

11 000 0010 0101 010 RW GCSCRE0_EL1 GCSCRE0_EL1

11 000 0100 0000 000 RW SPSR_EL1 SPSR_EL1

11 000 0100 0000 000 RW SPSR_EL1 SPSR_EL2

11 000 0100 0000 000 RW SPSR_EL2 SPSR_EL1

11 000 0100 0000 000 RW SPSR_EL2 SPSR_EL2

11 000 0100 0000 001 RW ELR_EL1 ELR_EL1

11 000 0100 0000 001 RW ELR_EL1 ELR_EL2

11 000 0100 0000 001 RW ELR_EL2 ELR_EL1

11 000 0100 0000 001 RW ELR_EL2 ELR_EL2

11 000 0100 0001 000 RW SP_EL0 SP_EL0

11 000 0100 0010 000 - SPSel -

11 000 0100 0010 010 - CurrentEL -

11 000 0100 0010 011 - PAN -

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7327
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 0100 0010 100 - UAO -

11 000 0100 0011 000 - ALLINT -

11 000 0100 0011 001 - PM -

11 000 0100 0110 000 RW ICC_PMR_EL1 ICC_PMR_EL1

11 000 0100 0110 000 RW ICC_PMR_EL1 ICV_PMR_EL1

11 000 0100 0110 000 RW ICV_PMR_EL1 ICC_PMR_EL1

11 000 0100 0110 000 RW ICV_PMR_EL1 ICV_PMR_EL1

11 000 0101 0001 000 RW AFSR0_EL1 AFSR0_EL1

11 000 0101 0001 000 RW AFSR0_EL1 AFSR0_EL2

11 000 0101 0001 000 RW AFSR0_EL2 AFSR0_EL1

11 000 0101 0001 000 RW AFSR0_EL2 AFSR0_EL2

11 000 0101 0001 001 RW AFSR1_EL1 AFSR1_EL1

11 000 0101 0001 001 RW AFSR1_EL1 AFSR1_EL2

11 000 0101 0001 001 RW AFSR1_EL2 AFSR1_EL1

11 000 0101 0001 001 RW AFSR1_EL2 AFSR1_EL2

11 000 0101 0010 000 RW ESR_EL1 ESR_EL1

11 000 0101 0010 000 RW ESR_EL1 ESR_EL2

11 000 0101 0010 000 RW ESR_EL2 ESR_EL1

11 000 0101 0010 000 RW ESR_EL2 ESR_EL2

11 000 0101 0011 000 RO ERRIDR_EL1 ERRIDR_EL1

11 000 0101 0011 001 RW ERRSELR_EL1 ERRSELR_EL1

11 000 0101 0011 010 RO ERXGSR_EL1 ERXGSR_EL1

11 000 0101 0100 000 RO ERXFR_EL1 ERXFR_EL1

11 000 0101 0100 001 RW ERXCTLR_EL1 ERXCTLR_EL1

11 000 0101 0100 010 RW ERXSTATUS_EL1 ERXSTATUS_EL1

11 000 0101 0100 011 RW ERXADDR_EL1 ERXADDR_EL1

11 000 0101 0100 100 RO ERXPFGF_EL1 ERXPFGF_EL1

11 000 0101 0100 101 RW ERXPFGCTL_EL1 ERXPFGCTL_EL1

11 000 0101 0100 110 RW ERXPFGCDN_EL1 ERXPFGCDN_EL1

11 000 0101 0101 000 RW ERXMISC0_EL1 ERXMISC0_EL1

11 000 0101 0101 001 RW ERXMISC1_EL1 ERXMISC1_EL1

11 000 0101 0101 010 RW ERXMISC2_EL1 ERXMISC2_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7328
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 0101 0101 011 RW ERXMISC3_EL1 ERXMISC3_EL1

11 000 0101 0110 000 RW TFSR_EL1 TFSR_EL1

11 000 0101 0110 000 RW TFSR_EL1 TFSR_EL2

11 000 0101 0110 000 RW TFSR_EL2 TFSR_EL1

11 000 0101 0110 000 RW TFSR_EL2 TFSR_EL2

11 000 0101 0110 001 RW TFSRE0_EL1 TFSRE0_EL1

11 000 0110 0000 000 RW FAR_EL1 FAR_EL1

11 000 0110 0000 000 RW FAR_EL1 FAR_EL2

11 000 0110 0000 000 RW FAR_EL2 FAR_EL1

11 000 0110 0000 000 RW FAR_EL2 FAR_EL2

11 000 0110 0000 101 RW PFAR_EL1 PFAR_EL1

11 000 0110 0000 101 RW PFAR_EL1 PFAR_EL2

11 000 0111 0100 000 RW PAR_EL1 PAR_EL1

11 000 1001 1001 000 RW PMSCR_EL1 PMSCR_EL1

11 000 1001 1001 000 RW PMSCR_EL1 PMSCR_EL2

11 000 1001 1001 000 RW PMSCR_EL2 PMSCR_EL1

11 000 1001 1001 000 RW PMSCR_EL2 PMSCR_EL2

11 000 1001 1001 001 RW PMSNEVFR_EL1 PMSNEVFR_EL1

11 000 1001 1001 010 RW PMSICR_EL1 PMSICR_EL1

11 000 1001 1001 011 RW PMSIRR_EL1 PMSIRR_EL1

11 000 1001 1001 100 RW PMSFCR_EL1 PMSFCR_EL1

11 000 1001 1001 101 RW PMSEVFR_EL1 PMSEVFR_EL1

11 000 1001 1001 110 RW PMSLATFR_EL1 PMSLATFR_EL1

11 000 1001 1001 111 RO PMSIDR_EL1 PMSIDR_EL1

11 000 1001 1010 000 RW PMBLIMITR_EL1 PMBLIMITR_EL1

11 000 1001 1010 001 RW PMBPTR_EL1 PMBPTR_EL1

11 000 1001 1010 011 RW PMBSR_EL1 PMBSR_EL1

11 000 1001 1010 100 RW PMSDSFR_EL1 PMSDSFR_EL1

11 000 1001 1010 111 RO PMBIDR_EL1 PMBIDR_EL1

11 000 1001 1011 000 RW TRBLIMITR_EL1 TRBLIMITR_EL1

11 000 1001 1011 001 RW TRBPTR_EL1 TRBPTR_EL1

11 000 1001 1011 010 RW TRBBASER_EL1 TRBBASER_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7329
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 1001 1011 011 RW TRBSR_EL1 TRBSR_EL1

11 000 1001 1011 100 RW TRBMAR_EL1 TRBMAR_EL1

11 000 1001 1011 101 RW TRBMPAM_EL1 TRBMPAM_EL1

11 000 1001 1011 110 RW TRBTRG_EL1 TRBTRG_EL1

11 000 1001 1011 111 RO TRBIDR_EL1 TRBIDR_EL1

11 000 1001 1101 011 RW PMSSCR_EL1 PMSSCR_EL1

11 000 1001 1110 001 RW PMINTENSET_EL1 PMINTENSET_EL1

11 000 1001 1110 010 RW PMINTENCLR_EL1 PMINTENCLR_EL1

11 000 1001 1110 100 RW PMUACR_EL1 PMUACR_EL1

11 000 1001 1110 101 RW PMECR_EL1 PMECR_EL1

11 000 1001 1110 110 RO PMMIR_EL1 PMMIR_EL1

11 000 1001 1110 111 RW PMIAR_EL1 PMIAR_EL1

11 000 1010 0010 000 RW MAIR_EL1 MAIR_EL1

11 000 1010 0010 000 RW MAIR_EL1 MAIR_EL2

11 000 1010 0010 000 RW MAIR_EL2 MAIR_EL1

11 000 1010 0010 000 RW MAIR_EL2 MAIR_EL2

11 000 1010 0010 001 RW MAIR2_EL1 MAIR2_EL1

11 000 1010 0010 001 RW MAIR2_EL1 MAIR2_EL2

11 000 1010 0010 001 RW MAIR2_EL2 MAIR2_EL1

11 000 1010 0010 001 RW MAIR2_EL2 MAIR2_EL2

11 000 1010 0010 010 RW PIRE0_EL1 PIRE0_EL1

11 000 1010 0010 010 RW PIRE0_EL1 PIRE0_EL2

11 000 1010 0010 010 RW PIRE0_EL2 PIRE0_EL1

11 000 1010 0010 010 RW PIRE0_EL2 PIRE0_EL2

11 000 1010 0010 011 RW PIR_EL1 PIR_EL1

11 000 1010 0010 011 RW PIR_EL1 PIR_EL2

11 000 1010 0010 011 RW PIR_EL2 PIR_EL1

11 000 1010 0010 011 RW PIR_EL2 PIR_EL2

11 000 1010 0010 100 RW POR_EL1 POR_EL1

11 000 1010 0010 100 RW POR_EL1 POR_EL2

11 000 1010 0010 100 RW POR_EL2 POR_EL1

11 000 1010 0010 100 RW POR_EL2 POR_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7330
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 1010 0010 101 RW S2POR_EL1 S2POR_EL1

11 000 1010 0011 000 RW AMAIR_EL1 AMAIR_EL1

11 000 1010 0011 000 RW AMAIR_EL1 AMAIR_EL2

11 000 1010 0011 000 RW AMAIR_EL2 AMAIR_EL1

11 000 1010 0011 000 RW AMAIR_EL2 AMAIR_EL2

11 000 1010 0011 001 RW AMAIR2_EL1 AMAIR2_EL1

11 000 1010 0011 001 RW AMAIR2_EL1 AMAIR2_EL2

11 000 1010 0011 001 RW AMAIR2_EL2 AMAIR2_EL1

11 000 1010 0011 001 RW AMAIR2_EL2 AMAIR2_EL2

11 000 1010 0100 000 RW LORSA_EL1 LORSA_EL1

11 000 1010 0100 001 RW LOREA_EL1 LOREA_EL1

11 000 1010 0100 010 RW LORN_EL1 LORN_EL1

11 000 1010 0100 011 RW LORC_EL1 LORC_EL1

11 000 1010 0100 100 RO MPAMIDR_EL1 MPAMIDR_EL1

11 000 1010 0100 111 RO LORID_EL1 LORID_EL1

11 000 1010 0101 000 RW MPAM1_EL1 MPAM1_EL1

11 000 1010 0101 000 RW MPAM1_EL1 MPAM2_EL2

11 000 1010 0101 000 RW MPAM2_EL2 MPAM1_EL1

11 000 1010 0101 000 RW MPAM2_EL2 MPAM2_EL2

11 000 1010 0101 001 RW MPAM0_EL1 MPAM0_EL1

11 000 1010 0101 011 RW MPAMSM_EL1 MPAMSM_EL1

11 000 1100 0000 000 RW VBAR_EL1 VBAR_EL1

11 000 1100 0000 000 RW VBAR_EL1 VBAR_EL2

11 000 1100 0000 000 RW VBAR_EL2 VBAR_EL1

11 000 1100 0000 000 RW VBAR_EL2 VBAR_EL2

11 000 1100 0000 001 RO RVBAR_EL1 RVBAR_EL1

11 000 1100 0000 010 RW RMR_EL1 RMR_EL1

11 000 1100 0001 000 RO ISR_EL1 ISR_EL1

11 000 1100 0001 001 RW DISR_EL1 DISR_EL1

11 000 1100 0001 001 RW DISR_EL1 VDISR_EL2

11 000 1100 0001 001 RW VDISR_EL2 DISR_EL1

11 000 1100 0001 001 RW VDISR_EL2 VDISR_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7331
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 1100 1000 000 RO ICC_IAR0_EL1 ICC_IAR0_EL1

11 000 1100 1000 000 RO ICC_IAR0_EL1 ICV_IAR0_EL1

11 000 1100 1000 000 RO ICV_IAR0_EL1 ICC_IAR0_EL1

11 000 1100 1000 000 RO ICV_IAR0_EL1 ICV_IAR0_EL1

11 000 1100 1000 001 WO ICC_EOIR0_EL1 ICC_EOIR0_EL1

11 000 1100 1000 001 WO ICC_EOIR0_EL1 ICV_EOIR0_EL1

11 000 1100 1000 001 WO ICV_EOIR0_EL1 ICC_EOIR0_EL1

11 000 1100 1000 001 WO ICV_EOIR0_EL1 ICV_EOIR0_EL1

11 000 1100 1000 010 RO ICC_HPPIR0_EL1 ICC_HPPIR0_EL1

11 000 1100 1000 010 RO ICC_HPPIR0_EL1 ICV_HPPIR0_EL1

11 000 1100 1000 010 RO ICV_HPPIR0_EL1 ICC_HPPIR0_EL1

11 000 1100 1000 010 RO ICV_HPPIR0_EL1 ICV_HPPIR0_EL1

11 000 1100 1000 011 RW ICC_BPR0_EL1 ICC_BPR0_EL1

11 000 1100 1000 011 RW ICC_BPR0_EL1 ICV_BPR0_EL1

11 000 1100 1000 011 RW ICV_BPR0_EL1 ICC_BPR0_EL1

11 000 1100 1000 011 RW ICV_BPR0_EL1 ICV_BPR0_EL1

11 000 1100 1000 1:m[1:0] RW ICC_AP0R<n>_EL1 ICC_AP0R_EL1[]

11 000 1100 1000 1:m[1:0] RW ICC_AP0R<n>_EL1 ICV_AP0R_EL1[]

11 000 1100 1000 1:m[1:0] RW ICV_AP0R<n>_EL1 ICC_AP0R_EL1[]

11 000 1100 1000 1:m[1:0] RW ICV_AP0R<n>_EL1 ICV_AP0R_EL1[]

11 000 1100 1001 0:m[1:0] RW ICC_AP1R<n>_EL1 ICC_AP1R_EL1[]

11 000 1100 1001 0:m[1:0] RW ICC_AP1R<n>_EL1 ICC_AP1R_EL1_NS[]

11 000 1100 1001 0:m[1:0] RW ICC_AP1R<n>_EL1 ICC_AP1R_EL1_S[]

11 000 1100 1001 0:m[1:0] RW ICC_AP1R<n>_EL1 ICV_AP1R_EL1[]

11 000 1100 1001 0:m[1:0] RW ICV_AP1R<n>_EL1 ICC_AP1R_EL1[]

11 000 1100 1001 0:m[1:0] RW ICV_AP1R<n>_EL1 ICC_AP1R_EL1_NS[]

11 000 1100 1001 0:m[1:0] RW ICV_AP1R<n>_EL1 ICC_AP1R_EL1_S[]

11 000 1100 1001 0:m[1:0] RW ICV_AP1R<n>_EL1 ICV_AP1R_EL1[]

11 000 1100 1001 101 RO ICC_NMIAR1_EL1 ICC_NMIAR1_EL1

11 000 1100 1001 101 RO ICC_NMIAR1_EL1 ICV_NMIAR1_EL1

11 000 1100 1001 101 RO ICV_NMIAR1_EL1 ICC_NMIAR1_EL1

11 000 1100 1001 101 RO ICV_NMIAR1_EL1 ICV_NMIAR1_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7332
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 1100 1011 001 WO ICC_DIR_EL1 ICC_DIR_EL1

11 000 1100 1011 001 WO ICC_DIR_EL1 ICV_DIR_EL1

11 000 1100 1011 001 WO ICV_DIR_EL1 ICC_DIR_EL1

11 000 1100 1011 001 WO ICV_DIR_EL1 ICV_DIR_EL1

11 000 1100 1011 011 RO ICC_RPR_EL1 ICC_RPR_EL1

11 000 1100 1011 011 RO ICC_RPR_EL1 ICV_RPR_EL1

11 000 1100 1011 011 RO ICV_RPR_EL1 ICC_RPR_EL1

11 000 1100 1011 011 RO ICV_RPR_EL1 ICV_RPR_EL1

11 000 1100 1011 101 WO ICC_SGI1R_EL1 ICC_SGI1R_EL1

11 000 1100 1011 110 WO ICC_ASGI1R_EL1 ICC_ASGI1R_EL1

11 000 1100 1011 111 WO ICC_SGI0R_EL1 ICC_SGI0R_EL1

11 000 1100 1100 000 RO ICC_IAR1_EL1 ICC_IAR1_EL1

11 000 1100 1100 000 RO ICC_IAR1_EL1 ICV_IAR1_EL1

11 000 1100 1100 000 RO ICV_IAR1_EL1 ICC_IAR1_EL1

11 000 1100 1100 000 RO ICV_IAR1_EL1 ICV_IAR1_EL1

11 000 1100 1100 001 WO ICC_EOIR1_EL1 ICC_EOIR1_EL1

11 000 1100 1100 001 WO ICC_EOIR1_EL1 ICV_EOIR1_EL1

11 000 1100 1100 001 WO ICV_EOIR1_EL1 ICC_EOIR1_EL1

11 000 1100 1100 001 WO ICV_EOIR1_EL1 ICV_EOIR1_EL1

11 000 1100 1100 010 RO ICC_HPPIR1_EL1 ICC_HPPIR1_EL1

11 000 1100 1100 010 RO ICC_HPPIR1_EL1 ICV_HPPIR1_EL1

11 000 1100 1100 010 RO ICV_HPPIR1_EL1 ICC_HPPIR1_EL1

11 000 1100 1100 010 RO ICV_HPPIR1_EL1 ICV_HPPIR1_EL1

11 000 1100 1100 011 RW ICC_BPR1_EL1 ICC_BPR1_EL1

11 000 1100 1100 011 RW ICC_BPR1_EL1 ICC_BPR1_EL1_NS

11 000 1100 1100 011 RW ICC_BPR1_EL1 ICC_BPR1_EL1_S

11 000 1100 1100 011 RW ICC_BPR1_EL1 ICV_BPR1_EL1

11 000 1100 1100 011 RW ICV_BPR1_EL1 ICC_BPR1_EL1

11 000 1100 1100 011 RW ICV_BPR1_EL1 ICC_BPR1_EL1_NS

11 000 1100 1100 011 RW ICV_BPR1_EL1 ICC_BPR1_EL1_S

11 000 1100 1100 011 RW ICV_BPR1_EL1 ICV_BPR1_EL1

11 000 1100 1100 100 RW ICC_CTLR_EL1 ICC_CTLR_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7333
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 1100 1100 100 RW ICC_CTLR_EL1 ICC_CTLR_EL1_NS

11 000 1100 1100 100 RW ICC_CTLR_EL1 ICC_CTLR_EL1_S

11 000 1100 1100 100 RW ICC_CTLR_EL1 ICV_CTLR_EL1

11 000 1100 1100 100 RW ICV_CTLR_EL1 ICC_CTLR_EL1

11 000 1100 1100 100 RW ICV_CTLR_EL1 ICC_CTLR_EL1_NS

11 000 1100 1100 100 RW ICV_CTLR_EL1 ICC_CTLR_EL1_S

11 000 1100 1100 100 RW ICV_CTLR_EL1 ICV_CTLR_EL1

11 000 1100 1100 101 RW ICC_SRE_EL1 ICC_SRE_EL1

11 000 1100 1100 101 RW ICC_SRE_EL1 ICC_SRE_EL1_NS

11 000 1100 1100 101 RW ICC_SRE_EL1 ICC_SRE_EL1_S

11 000 1100 1100 110 RW ICC_IGRPEN0_EL1 ICC_IGRPEN0_EL1

11 000 1100 1100 110 RW ICC_IGRPEN0_EL1 ICV_IGRPEN0_EL1

11 000 1100 1100 110 RW ICV_IGRPEN0_EL1 ICC_IGRPEN0_EL1

11 000 1100 1100 110 RW ICV_IGRPEN0_EL1 ICV_IGRPEN0_EL1

11 000 1100 1100 111 RW ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1

11 000 1100 1100 111 RW ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1_NS

11 000 1100 1100 111 RW ICC_IGRPEN1_EL1 ICC_IGRPEN1_EL1_S

11 000 1100 1100 111 RW ICC_IGRPEN1_EL1 ICV_IGRPEN1_EL1

11 000 1100 1100 111 RW ICV_IGRPEN1_EL1 ICC_IGRPEN1_EL1

11 000 1100 1100 111 RW ICV_IGRPEN1_EL1 ICC_IGRPEN1_EL1_NS

11 000 1100 1100 111 RW ICV_IGRPEN1_EL1 ICC_IGRPEN1_EL1_S

11 000 1100 1100 111 RW ICV_IGRPEN1_EL1 ICV_IGRPEN1_EL1

11 000 1101 0000 001 RW CONTEXTIDR_EL1 CONTEXTIDR_EL1

11 000 1101 0000 001 RW CONTEXTIDR_EL1 CONTEXTIDR_EL2

11 000 1101 0000 001 RW CONTEXTIDR_EL2 CONTEXTIDR_EL1

11 000 1101 0000 001 RW CONTEXTIDR_EL2 CONTEXTIDR_EL2

11 000 1101 0000 011 RW RCWSMASK_EL1 RCWSMASK_EL1

11 000 1101 0000 100 RW TPIDR_EL1 TPIDR_EL1

11 000 1101 0000 101 RW ACCDATA_EL1 ACCDATA_EL1

11 000 1101 0000 110 RW RCWMASK_EL1 RCWMASK_EL1

11 000 1101 0000 111 RW SCXTNUM_EL1 SCXTNUM_EL1

11 000 1101 0000 111 RW SCXTNUM_EL1 SCXTNUM_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7334
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 000 1101 0000 111 RW SCXTNUM_EL2 SCXTNUM_EL1

11 000 1101 0000 111 RW SCXTNUM_EL2 SCXTNUM_EL2

11 000 1110 0001 000 RW CNTHCTL_EL2 CNTHCTL_EL2

11 000 1110 0001 000 RW CNTHCTL_EL2 CNTKCTL_EL1

11 000 1110 0001 000 RW CNTKCTL_EL1 CNTKCTL_EL1

11 001 0000 0000 000 RO CCSIDR_EL1 CCSIDR_EL1

11 001 0000 0000 001 RO CLIDR_EL1 CLIDR_EL1

11 001 0000 0000 010 RO CCSIDR2_EL1 CCSIDR2_EL1

11 001 0000 0000 100 RO GMID_EL1 GMID_EL1

11 001 0000 0000 110 RO SMIDR_EL1 SMIDR_EL1

11 001 0000 0000 111 RO AIDR_EL1 AIDR_EL1

11 010 0000 0000 000 RW CSSELR_EL1 CSSELR_EL1

11 011 0000 0000 001 RO CTR_EL0 CTR_EL0

11 011 0000 0000 111 RO DCZID_EL0 DCZID_EL0

11 011 0010 0100 000 RO RNDR RNDR

11 011 0010 0100 001 RO RNDRRS RNDRRS

11 011 0010 0101 001 RW GCSPR_EL0 GCSPR_EL0

11 011 0100 0010 000 - NZCV -

11 011 0100 0010 001 - DAIF -

11 011 0100 0010 010 - SVCR -

11 011 0100 0010 101 - DIT -

11 011 0100 0010 110 - SSBS -

11 011 0100 0010 111 - TCO -

11 011 0100 0100 000 RW FPCR FPCR

11 011 0100 0100 001 RW FPSR FPSR

11 011 0100 0101 000 RW DSPSR_EL0 DSPSR_EL0

11 011 0100 0101 001 RW DLR_EL0 DLR_EL0

11 011 1001 0100 000 RW PMICNTR_EL0 PMICNTR_EL0

11 011 1001 0110 000 RW PMICFILTR_EL0 PMICFILTR_EL0

11 011 1001 1100 000 RW PMCR_EL0 PMCR_EL0

11 011 1001 1100 001 RW PMCNTENSET_EL0 PMCNTENSET_EL0

11 011 1001 1100 010 RW PMCNTENCLR_EL0 PMCNTENCLR_EL0

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7335
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 011 1001 1100 011 RW PMOVSCLR_EL0 PMOVSCLR_EL0

11 011 1001 1100 100 WO PMSWINC_EL0 PMSWINC_EL0

11 011 1001 1100 101 RW PMSELR_EL0 PMSELR_EL0

11 011 1001 1100 110 RO PMCEID0_EL0 PMCEID0_EL0

11 011 1001 1100 111 RO PMCEID1_EL0 PMCEID1_EL0

11 011 1001 1101 000 RW PMCCNTR_EL0 PMCCNTR_EL0

11 011 1001 1101 001 RW PMXEVTYPER_EL0 PMCCFILTR_EL0

11 011 1001 1101 001 RW PMXEVTYPER_EL0 PMEVTYPER_EL0

11 011 1001 1101 010 RW PMXEVCNTR_EL0 PMEVCNTR_EL0

11 011 1001 1101 100 - PMZR_EL0 -

11 011 1001 1110 000 RW PMUSERENR_EL0 PMUSERENR_EL0

11 011 1001 1110 011 RW PMOVSSET_EL0 PMOVSSET_EL0

11 011 1010 0010 100 RW POR_EL0 POR_EL0

11 011 1101 0000 010 RW TPIDR_EL0 TPIDR_EL0

11 011 1101 0000 011 RW TPIDRRO_EL0 TPIDRRO_EL0

11 011 1101 0000 101 RW TPIDR2_EL0 TPIDR2_EL0

11 011 1101 0000 111 RW SCXTNUM_EL0 SCXTNUM_EL0

11 011 1101 0010 000 RW AMCR_EL0 AMCR_EL0

11 011 1101 0010 001 RO AMCFGR_EL0 AMCFGR_EL0

11 011 1101 0010 010 RO AMCGCR_EL0 AMCGCR_EL0

11 011 1101 0010 011 RW AMUSERENR_EL0 AMUSERENR_EL0

11 011 1101 0010 100 RW AMCNTENCLR0_EL0 AMCNTENCLR0_EL0

11 011 1101 0010 101 RW AMCNTENSET0_EL0 AMCNTENSET0_EL0

11 011 1101 0010 110 RO AMCG1IDR_EL0 AMCG1IDR_EL0

11 011 1101 0011 000 RW AMCNTENCLR1_EL0 AMCNTENCLR1_EL0

11 011 1101 0011 001 RW AMCNTENSET1_EL0 AMCNTENSET1_EL0

11 011 1101 010:m[3] m[2:0] RW AMEVCNTR0<n>_EL0 AMEVCNTR0_EL0[]

11 011 1101 011:m[3] m[2:0] RO AMEVTYPER0<n>_EL0 AMEVTYPER0_EL0[]

11 011 1101 110:m[3] m[2:0] RW AMEVCNTR1<n>_EL0 AMEVCNTR1_EL0[]

11 011 1101 111:m[3] m[2:0] RW AMEVTYPER1<n>_EL0 AMEVTYPER1_EL0[]

11 011 1110 0000 000 RW CNTFRQ_EL0 CNTFRQ_EL0

11 011 1110 0000 001 - CNTPCT_EL0 -

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7336
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 011 1110 0000 010 - CNTVCT_EL0 -

11 011 1110 0000 101 - CNTPCTSS_EL0 -

11 011 1110 0000 110 - CNTVCTSS_EL0 -

11 011 1110 0010 000 - CNTHP_TVAL_EL2 -

11 011 1110 0010 000 - CNTHPS_TVAL_EL2 -

11 011 1110 0010 000 - CNTP_TVAL_EL0 -

11 011 1110 0010 001 RW CNTHP_CTL_EL2 CNTHPS_CTL_EL2

11 011 1110 0010 001 RW CNTHP_CTL_EL2 CNTHP_CTL_EL2

11 011 1110 0010 001 RW CNTHP_CTL_EL2 CNTP_CTL_EL0

11 011 1110 0010 001 RW CNTHPS_CTL_EL2 CNTHPS_CTL_EL2

11 011 1110 0010 001 RW CNTHPS_CTL_EL2 CNTHP_CTL_EL2

11 011 1110 0010 001 RW CNTHPS_CTL_EL2 CNTP_CTL_EL0

11 011 1110 0010 001 RW CNTP_CTL_EL0 CNTHPS_CTL_EL2

11 011 1110 0010 001 RW CNTP_CTL_EL0 CNTHP_CTL_EL2

11 011 1110 0010 001 RW CNTP_CTL_EL0 CNTP_CTL_EL0

11 011 1110 0010 010 RW CNTHP_CVAL_EL2 CNTHPS_CVAL_EL2

11 011 1110 0010 010 RW CNTHP_CVAL_EL2 CNTHP_CVAL_EL2

11 011 1110 0010 010 RW CNTHP_CVAL_EL2 CNTP_CVAL_EL0

11 011 1110 0010 010 RW CNTHPS_CVAL_EL2 CNTHPS_CVAL_EL2

11 011 1110 0010 010 RW CNTHPS_CVAL_EL2 CNTHP_CVAL_EL2

11 011 1110 0010 010 RW CNTHPS_CVAL_EL2 CNTP_CVAL_EL0

11 011 1110 0010 010 RW CNTP_CVAL_EL0 CNTHPS_CVAL_EL2

11 011 1110 0010 010 RW CNTP_CVAL_EL0 CNTHP_CVAL_EL2

11 011 1110 0010 010 RW CNTP_CVAL_EL0 CNTP_CVAL_EL0

11 011 1110 0011 000 - CNTHV_TVAL_EL2 -

11 011 1110 0011 000 - CNTHVS_TVAL_EL2 -

11 011 1110 0011 000 - CNTV_TVAL_EL0 -

11 011 1110 0011 001 RW CNTHV_CTL_EL2 CNTHVS_CTL_EL2

11 011 1110 0011 001 RW CNTHV_CTL_EL2 CNTHV_CTL_EL2

11 011 1110 0011 001 RW CNTHV_CTL_EL2 CNTV_CTL_EL0

11 011 1110 0011 001 RW CNTHVS_CTL_EL2 CNTHVS_CTL_EL2

11 011 1110 0011 001 RW CNTHVS_CTL_EL2 CNTHV_CTL_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7337
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 011 1110 0011 001 RW CNTHVS_CTL_EL2 CNTV_CTL_EL0

11 011 1110 0011 001 RW CNTV_CTL_EL0 CNTHVS_CTL_EL2

11 011 1110 0011 001 RW CNTV_CTL_EL0 CNTHV_CTL_EL2

11 011 1110 0011 001 RW CNTV_CTL_EL0 CNTV_CTL_EL0

11 011 1110 0011 010 RW CNTHV_CVAL_EL2 CNTHVS_CVAL_EL2

11 011 1110 0011 010 RW CNTHV_CVAL_EL2 CNTHV_CVAL_EL2

11 011 1110 0011 010 RW CNTHV_CVAL_EL2 CNTV_CVAL_EL0

11 011 1110 0011 010 RW CNTHVS_CVAL_EL2 CNTHVS_CVAL_EL2

11 011 1110 0011 010 RW CNTHVS_CVAL_EL2 CNTHV_CVAL_EL2

11 011 1110 0011 010 RW CNTHVS_CVAL_EL2 CNTV_CVAL_EL0

11 011 1110 0011 010 RW CNTV_CVAL_EL0 CNTHVS_CVAL_EL2

11 011 1110 0011 010 RW CNTV_CVAL_EL0 CNTHV_CVAL_EL2

11 011 1110 0011 010 RW CNTV_CVAL_EL0 CNTV_CVAL_EL0

11 011 1110 10:m[4:3] m[2:0] RW PMEVCNTR<n>_EL0 PMEVCNTR_EL0[]

11 011 1110 1111 111 RW PMCCFILTR_EL0 PMCCFILTR_EL0

11 011 1110 11:m[4:3] m[2:0] RW PMEVTYPER<n>_EL0 PMEVTYPER_EL0[]

11 100 0000 0000 000 RO VPIDR_EL2 MIDR_EL1

11 100 0000 0000 000 RW VPIDR_EL2 VPIDR_EL2

11 100 0000 0000 101 RO VMPIDR_EL2 MPIDR_EL1

11 100 0000 0000 101 RW VMPIDR_EL2 VMPIDR_EL2

11 100 0001 0000 000 RW SCTLR_EL2 SCTLR_EL2

11 100 0001 0000 001 RW ACTLR_EL2 ACTLR_EL2

11 100 0001 0000 011 RW SCTLR2_EL2 SCTLR2_EL2

11 100 0001 0001 000 RW HCR_EL2 HCR_EL2

11 100 0001 0001 001 RW MDCR_EL2 MDCR_EL2

11 100 0001 0001 010 RW CPTR_EL2 CPTR_EL2

11 100 0001 0001 011 RW HSTR_EL2 HSTR_EL2

11 100 0001 0001 100 RW HFGRTR_EL2 HFGRTR_EL2

11 100 0001 0001 101 RW HFGWTR_EL2 HFGWTR_EL2

11 100 0001 0001 110 RW HFGITR_EL2 HFGITR_EL2

11 100 0001 0001 111 RW HACR_EL2 HACR_EL2

11 100 0001 0010 000 RW ZCR_EL2 ZCR_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7338
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 100 0001 0010 001 RW TRFCR_EL2 TRFCR_EL2

11 100 0001 0010 010 RW HCRX_EL2 HCRX_EL2

11 100 0001 0010 011 RW TRCITECR_EL2 TRCITECR_EL2

11 100 0001 0010 101 RW SMPRIMAP_EL2 SMPRIMAP_EL2

11 100 0001 0010 110 RW SMCR_EL2 SMCR_EL2

11 100 0001 0011 001 RW SDER32_EL2 SDER32_EL2

11 100 0010 0000 000 RW TTBR0_EL2 TTBR0_EL2

11 100 0010 0000 001 RW TTBR1_EL2 TTBR1_EL2

11 100 0010 0000 010 RW TCR_EL2 TCR_EL2

11 100 0010 0000 011 RW TCR2_EL2 TCR2_EL2

11 100 0010 0001 000 RW VTTBR_EL2 VTTBR_EL2

11 100 0010 0001 010 RW VTCR_EL2 VTCR_EL2

11 100 0010 0010 000 RW VNCR_EL2 VNCR_EL2

11 100 0010 0101 000 RW GCSCR_EL2 GCSCR_EL2

11 100 0010 0101 001 RW GCSPR_EL2 GCSPR_EL2

11 100 0010 0110 000 RW VSTTBR_EL2 VSTTBR_EL2

11 100 0010 0110 010 RW VSTCR_EL2 VSTCR_EL2

11 100 0011 0000 000 RW DACR32_EL2 DACR32_EL2

11 100 0011 0001 000 RW HDFGRTR2_EL2 HDFGRTR2_EL2

11 100 0011 0001 001 RW HDFGWTR2_EL2 HDFGWTR2_EL2

11 100 0011 0001 010 RW HFGRTR2_EL2 HFGRTR2_EL2

11 100 0011 0001 011 RW HFGWTR2_EL2 HFGWTR2_EL2

11 100 0011 0001 100 RW HDFGRTR_EL2 HDFGRTR_EL2

11 100 0011 0001 101 RW HDFGWTR_EL2 HDFGWTR_EL2

11 100 0011 0001 110 RW HAFGRTR_EL2 HAFGRTR_EL2

11 100 0011 0001 111 RW HFGITR2_EL2 HFGITR2_EL2

11 100 0100 0000 000 RW SPSR_EL1 SPSR_EL1

11 100 0100 0000 000 RW SPSR_EL1 SPSR_EL2

11 100 0100 0000 000 RW SPSR_EL2 SPSR_EL1

11 100 0100 0000 000 RW SPSR_EL2 SPSR_EL2

11 100 0100 0000 001 RW ELR_EL1 ELR_EL1

11 100 0100 0000 001 RW ELR_EL1 ELR_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7339
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 100 0100 0000 001 RW ELR_EL2 ELR_EL1

11 100 0100 0000 001 RW ELR_EL2 ELR_EL2

11 100 0100 0001 000 RW SP_EL1 SP_EL1

11 100 0100 0011 000 RW SPSR_irq SPSR_irq

11 100 0100 0011 001 RW SPSR_abt SPSR_abt

11 100 0100 0011 010 RW SPSR_und SPSR_und

11 100 0100 0011 011 RW SPSR_fiq SPSR_fiq

11 100 0101 0000 001 RW IFSR32_EL2 IFSR32_EL2

11 100 0101 0001 000 RW AFSR0_EL2 AFSR0_EL2

11 100 0101 0001 001 RW AFSR1_EL2 AFSR1_EL2

11 100 0101 0010 000 RW ESR_EL1 ESR_EL1

11 100 0101 0010 000 RW ESR_EL1 ESR_EL2

11 100 0101 0010 000 RW ESR_EL2 ESR_EL1

11 100 0101 0010 000 RW ESR_EL2 ESR_EL2

11 100 0101 0010 011 RW VSESR_EL2 VSESR_EL2

11 100 0101 0011 000 RW FPEXC32_EL2 FPEXC32_EL2

11 100 0101 0110 000 RW TFSR_EL1 TFSR_EL1

11 100 0101 0110 000 RW TFSR_EL1 TFSR_EL2

11 100 0101 0110 000 RW TFSR_EL2 TFSR_EL1

11 100 0101 0110 000 RW TFSR_EL2 TFSR_EL2

11 100 0110 0000 000 RW FAR_EL1 FAR_EL1

11 100 0110 0000 000 RW FAR_EL1 FAR_EL2

11 100 0110 0000 000 RW FAR_EL2 FAR_EL1

11 100 0110 0000 000 RW FAR_EL2 FAR_EL2

11 100 0110 0000 100 RW HPFAR_EL2 HPFAR_EL2

11 100 0110 0000 101 RW PFAR_EL2 PFAR_EL2

11 100 1001 1001 000 RW PMSCR_EL2 PMSCR_EL2

11 100 1010 0001 001 RW MAIR2_EL2 MAIR2_EL2

11 100 1010 0010 000 RW MAIR_EL2 MAIR_EL2

11 100 1010 0010 010 RW PIRE0_EL2 PIRE0_EL2

11 100 1010 0010 011 RW PIR_EL2 PIR_EL2

11 100 1010 0010 100 RW POR_EL2 POR_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7340
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 100 1010 0010 101 RW S2PIR_EL2 S2PIR_EL2

11 100 1010 0011 000 RW AMAIR_EL2 AMAIR_EL2

11 100 1010 0011 001 RW AMAIR2_EL2 AMAIR2_EL2

11 100 1010 0100 000 RW MPAMHCR_EL2 MPAMHCR_EL2

11 100 1010 0100 001 RW MPAMVPMV_EL2 MPAMVPMV_EL2

11 100 1010 0101 000 RW MPAM2_EL2 MPAM2_EL2

11 100 1010 0110 000 RW MPAMVPM0_EL2 MPAMVPM0_EL2

11 100 1010 0110 001 RW MPAMVPM1_EL2 MPAMVPM1_EL2

11 100 1010 0110 010 RW MPAMVPM2_EL2 MPAMVPM2_EL2

11 100 1010 0110 011 RW MPAMVPM3_EL2 MPAMVPM3_EL2

11 100 1010 0110 100 RW MPAMVPM4_EL2 MPAMVPM4_EL2

11 100 1010 0110 101 RW MPAMVPM5_EL2 MPAMVPM5_EL2

11 100 1010 0110 110 RW MPAMVPM6_EL2 MPAMVPM6_EL2

11 100 1010 0110 111 RW MPAMVPM7_EL2 MPAMVPM7_EL2

11 100 1010 1000 000 RW MECID_P0_EL2 MECID_P0_EL2

11 100 1010 1000 001 RW MECID_A0_EL2 MECID_A0_EL2

11 100 1010 1000 010 RW MECID_P1_EL2 MECID_P1_EL2

11 100 1010 1000 011 RW MECID_A1_EL2 MECID_A1_EL2

11 100 1010 1000 111 RO MECIDR_EL2 MECIDR_EL2

11 100 1010 1001 000 RW VMECID_P_EL2 VMECID_P_EL2

11 100 1010 1001 001 RW VMECID_A_EL2 VMECID_A_EL2

11 100 1100 0000 000 RW VBAR_EL2 VBAR_EL2

11 100 1100 0000 001 RO RVBAR_EL2 RVBAR_EL2

11 100 1100 0000 010 RW RMR_EL2 RMR_EL2

11 100 1100 0001 001 RW VDISR_EL2 VDISR_EL2

11 100 1100 1000 0:m[1:0] RW ICH_AP0R<n>_EL2 ICH_AP0R_EL2[]

11 100 1100 1001 0:m[1:0] RW ICH_AP1R<n>_EL2 ICH_AP1R_EL2[]

11 100 1100 1001 101 RW ICC_SRE_EL2 ICC_SRE_EL2

11 100 1100 1011 000 RW ICH_HCR_EL2 ICH_HCR_EL2

11 100 1100 1011 001 RO ICH_VTR_EL2 ICH_VTR_EL2

11 100 1100 1011 010 RO ICH_MISR_EL2 ICH_MISR_EL2

11 100 1100 1011 011 RO ICH_EISR_EL2 ICH_EISR_EL2

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7341
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 100 1100 1011 101 RO ICH_ELRSR_EL2 ICH_ELRSR_EL2

11 100 1100 1011 111 RW ICH_VMCR_EL2 ICH_VMCR_EL2

11 100 1100 110:m[3] m[2:0] RW ICH_LR<n>_EL2 ICH_LR_EL2[]

11 100 1101 0000 001 RW CONTEXTIDR_EL2 CONTEXTIDR_EL2

11 100 1101 0000 010 RW TPIDR_EL2 TPIDR_EL2

11 100 1101 0000 111 RW SCXTNUM_EL2 SCXTNUM_EL2

11 100 1101 100:m[3] m[2:0] RW AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0_EL2[]

11 100 1101 101:m[3] m[2:0] RW AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1_EL2[]

11 100 1110 0000 011 RW CNTVOFF_EL2 CNTVOFF_EL2

11 100 1110 0000 110 RW CNTPOFF_EL2 CNTPOFF_EL2

11 100 1110 0001 000 RW CNTHCTL_EL2 CNTHCTL_EL2

11 100 1110 0010 000 - CNTHP_TVAL_EL2 -

11 100 1110 0010 001 RW CNTHP_CTL_EL2 CNTHP_CTL_EL2

11 100 1110 0010 010 RW CNTHP_CVAL_EL2 CNTHP_CVAL_EL2

11 100 1110 0011 000 - CNTHV_TVAL_EL2 -

11 100 1110 0011 001 RW CNTHV_CTL_EL2 CNTHV_CTL_EL2

11 100 1110 0011 010 RW CNTHV_CVAL_EL2 CNTHV_CVAL_EL2

11 100 1110 0100 000 - CNTHVS_TVAL_EL2 -

11 100 1110 0100 001 RW CNTHVS_CTL_EL2 CNTHVS_CTL_EL2

11 100 1110 0100 010 RW CNTHVS_CVAL_EL2 CNTHVS_CVAL_EL2

11 100 1110 0101 000 - CNTHPS_TVAL_EL2 -

11 100 1110 0101 001 RW CNTHPS_CTL_EL2 CNTHPS_CTL_EL2

11 100 1110 0101 010 RW CNTHPS_CVAL_EL2 CNTHPS_CVAL_EL2

11 101 0001 0000 000 RW SCTLR_EL12 SCTLR_EL1

11 101 0001 0000 010 RW CPACR_EL12 CPACR_EL1

11 101 0001 0000 011 RW SCTLR2_EL12 SCTLR2_EL1

11 101 0001 0010 000 RW ZCR_EL12 ZCR_EL1

11 101 0001 0010 001 RW TRFCR_EL12 TRFCR_EL1

11 101 0001 0010 011 RW TRCITECR_EL12 TRCITECR_EL1

11 101 0001 0010 110 RW SMCR_EL12 SMCR_EL1

11 101 0010 0000 000 RW TTBR0_EL12 TTBR0_EL1

11 101 0010 0000 001 RW TTBR1_EL12 TTBR1_EL1

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7342
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 101 0010 0000 010 RW TCR_EL12 TCR_EL1

11 101 0010 0000 011 RW TCR2_EL12 TCR2_EL1

11 101 0010 0101 000 RW GCSCR_EL12 GCSCR_EL1

11 101 0010 0101 001 RW GCSPR_EL12 GCSPR_EL1

11 101 0100 0000 000 RW SPSR_EL12 SPSR_EL1

11 101 0100 0000 001 RW ELR_EL12 ELR_EL1

11 101 0101 0001 000 RW AFSR0_EL12 AFSR0_EL1

11 101 0101 0001 001 RW AFSR1_EL12 AFSR1_EL1

11 101 0101 0010 000 RW ESR_EL12 ESR_EL1

11 101 0101 0110 000 RW TFSR_EL12 TFSR_EL1

11 101 0110 0000 000 RW FAR_EL12 FAR_EL1

11 101 0110 0000 101 RW PFAR_EL12 PFAR_EL1

11 101 1001 1001 000 RW PMSCR_EL12 PMSCR_EL1

11 101 1010 0010 000 RW MAIR_EL12 MAIR_EL1

11 101 1010 0010 001 RW MAIR2_EL12 MAIR2_EL1

11 101 1010 0010 010 RW PIRE0_EL12 PIRE0_EL1

11 101 1010 0010 011 RW PIR_EL12 PIR_EL1

11 101 1010 0010 100 RW POR_EL12 POR_EL1

11 101 1010 0011 000 RW AMAIR_EL12 AMAIR_EL1

11 101 1010 0011 001 RW AMAIR2_EL12 AMAIR2_EL1

11 101 1010 0101 000 RW MPAM1_EL12 MPAM1_EL1

11 101 1100 0000 000 RW VBAR_EL12 VBAR_EL1

11 101 1101 0000 001 RW CONTEXTIDR_EL12 CONTEXTIDR_EL1

11 101 1101 0000 111 RW SCXTNUM_EL12 SCXTNUM_EL1

11 101 1110 0001 000 RW CNTKCTL_EL12 CNTKCTL_EL1

11 101 1110 0010 000 - CNTP_TVAL_EL02 -

11 101 1110 0010 001 RW CNTP_CTL_EL02 CNTP_CTL_EL0

11 101 1110 0010 010 RW CNTP_CVAL_EL02 CNTP_CVAL_EL0

11 101 1110 0011 000 - CNTV_TVAL_EL02 -

11 101 1110 0011 001 RW CNTV_CTL_EL02 CNTV_CTL_EL0

11 101 1110 0011 010 RW CNTV_CVAL_EL02 CNTV_CVAL_EL0

11 110 0001 0000 000 RW SCTLR_EL3 SCTLR_EL3

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7343
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
11 110 0001 0000 001 RW ACTLR_EL3 ACTLR_EL3

11 110 0001 0000 011 RW SCTLR2_EL3 SCTLR2_EL3

11 110 0001 0001 000 RW SCR_EL3 SCR_EL3

11 110 0001 0001 001 RW SDER32_EL3 SDER32_EL3

11 110 0001 0001 010 RW CPTR_EL3 CPTR_EL3

11 110 0001 0010 000 RW ZCR_EL3 ZCR_EL3

11 110 0001 0010 110 RW SMCR_EL3 SMCR_EL3

11 110 0001 0011 001 RW MDCR_EL3 MDCR_EL3

11 110 0010 0000 000 RW TTBR0_EL3 TTBR0_EL3

11 110 0010 0000 010 RW TCR_EL3 TCR_EL3

11 110 0010 0001 100 RW GPTBR_EL3 GPTBR_EL3

11 110 0010 0001 110 RW GPCCR_EL3 GPCCR_EL3

11 110 0010 0101 000 RW GCSCR_EL3 GCSCR_EL3

11 110 0010 0101 001 RW GCSPR_EL3 GCSPR_EL3

11 110 0100 0000 000 RW SPSR_EL3 SPSR_EL3

11 110 0100 0000 001 RW ELR_EL3 ELR_EL3

11 110 0100 0001 000 RW SP_EL2 SP_EL2

11 110 0101 0001 000 RW AFSR0_EL3 AFSR0_EL3

11 110 0101 0001 001 RW AFSR1_EL3 AFSR1_EL3

11 110 0101 0010 000 RW ESR_EL3 ESR_EL3

11 110 0101 0110 000 RW TFSR_EL3 TFSR_EL3

11 110 0110 0000 000 RW FAR_EL3 FAR_EL3

11 110 0110 0000 101 RW MFAR_EL3 MFAR_EL3

11 110 1010 0001 001 RW MAIR2_EL3 MAIR2_EL3

11 110 1010 0010 000 RW MAIR_EL3 MAIR_EL3

11 110 1010 0010 011 RW PIR_EL3 PIR_EL3

11 110 1010 0010 100 RW POR_EL3 POR_EL3

11 110 1010 0011 000 RW AMAIR_EL3 AMAIR_EL3

11 110 1010 0011 001 RW AMAIR2_EL3 AMAIR2_EL3

11 110 1010 0101 000 RW MPAM3_EL3 MPAM3_EL3

11 110 1010 1010 001 RW MECID_RL_A_EL3 MECID_RL_A_EL3

11 110 1100 0000 000 RW VBAR_EL3 VBAR_EL3

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7344
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
D22.3.1.1 About the GIC System registers

From version 3.0 of the GIC architecture specification, the specification defines three groups of System registers,
identified by the prefix of the register name:

ICC_ GIC physical CPU interface System registers.

ICH_ GIC virtual interface control System registers.

ICV_ GIC Virtual CPU interface System registers.

Note

These registers are in addition to the GIC memory-mapped register groups GICC_, GICD_, GICH_, GICR_,
GICV_, and GITS_.

When implemented, the GIC System registers form part of an Arm processor implementation, and therefore these
registers are included in the register summaries. However, the registers are defined only in the GIC Architecture
Specification.

As Table D22-2 shows, the ICV_* registers have the same {op0, op1, CRn, CRm, op2} encodings as the corresponding
ICC_* registers. For these encodings, GIC register configuration fields determine which register is accessed.

For more information, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 (ARM IHI 0069).

D22.3.2 Reserved encodings for IMPLEMENTATION DEFINED registers

The System register encoding space with op0==0b11 reserves the following encodings for IMPLEMENTATION
DEFINED registers:

The value of L defines the access type and the use of Rt as follows:

0 Write the value in Rt to the IMPLEMENTATION DEFINED register.

11 110 1100 0000 001 RO RVBAR_EL3 RVBAR_EL3

11 110 1100 0000 010 RW RMR_EL3 RMR_EL3

11 110 1100 1100 100 RW ICC_CTLR_EL3 ICC_CTLR_EL3

11 110 1100 1100 101 RW ICC_SRE_EL3 ICC_SRE_EL3

11 110 1100 1100 111 RW ICC_IGRPEN1_EL3 ICC_IGRPEN1_EL3

11 110 1101 0000 010 RW TPIDR_EL3 TPIDR_EL3

11 110 1101 0000 111 RW SCXTNUM_EL3 SCXTNUM_EL3

11 111 1110 0010 000 - CNTPS_TVAL_EL1 -

11 111 1110 0010 001 RW CNTPS_CTL_EL1 CNTPS_CTL_EL1

11 111 1110 0010 010 RW CNTPS_CVAL_EL1 CNTPS_CVAL_EL1

11 op1[2:0] 1x11 Cm[3:0] op2[2:0] - S3_<op1>_<Cn>_<Cm>_<op2> -

Table D22-2 Instruction encodings for non-debug System register access (continued)

op0 op1 CRn CRm op2 Access Mnemonic Register

Rt1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 4 0

1 0 1 0 1 0 1 0 0 L 1 1 1 x 1 1

11 5

op1

op0 CRn

CRm op2

8 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7345
ID032224 Non-Confidential

AArch64 System Register Encoding
D22.3 Moves to and from non-debug System registers, Special-purpose registers
1 Read the value of the IMPLEMENTATION DEFINED register to Rt.

For more information about these encodings, see S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION
DEFINED Registers. As that section describes, any IMPLEMENTATION DEFINED registers are accessed in a similar
way to architecturally-defined System registers, using MRS and MSR instructions, see:

• MRS.

• MSR (immediate).

• MSR (register).

The Arm architecture guarantees not to define any register name prefixed with IMP_ as part of the standard Arm
architecture.

Note

Arm strongly recommends that any register names created in the IMPLEMENTATION DEFINED register spaces be
prefixed with IMP_ and postfixed with _ELx, where appropriate.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D22-7346
ID032224 Non-Confidential

Chapter D23
AArch64 System Register Descriptions

This chapter defines the AArch64 System registers. It contains the following sections:

• About the AArch64 System registers.

• General system control registers.

• Debug registers.

• Trace registers.

• Performance Monitors registers.

• Activity Monitors registers.

• Statistical Profiling Extension registers.

• Branch Record Buffer Extension registers.

• RAS registers.

• Generic Timer registers.

• Guarded Control Stack registers.

• MPAM registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7347
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
D23.1 About the AArch64 System registers

The following sections describe common features of the AArch64 registers:

• Fixed values and reserved values in the System register descriptions.

• General behavior of accesses to the AArch64 System registers.

• Principles of the ID scheme for fields in ID registers.

D23.1.1 Fixed values and reserved values in the System register descriptions

See Fixed values in AArch64 instruction and System register descriptions. This section defines how the glossary
terms RAZ, RES0, RAO, and RES1 can be represented in the System register descriptions.

See Reserved values in System and memory-mapped registers and translation table entries. This section describes
the behavior of reserved values in the System register descriptions.

D23.1.2 General behavior of accesses to the AArch64 System registers

The following subsections give general information about the behavior of accesses to the System registers:

• Reset behavior of AArch64 System registers.

• Synchronization requirements for AArch64 System registers.

Reset behavior of AArch64 System registers

Reset values apply only to RW registers and fields, however:

• Some RO registers or fields, including feature ID registers and some status registers or register fields, always
return a known value.

• Some RW and RO registers or register fields return status information about the PE. Unless the register
description indicates that the value is UNKNOWN on reset, a read of the register immediately after a reset
returns valid information.

• Some RW and RO registers and fields are aliases of other registers or fields. In these cases, the reset behavior
of the aliased register or field determines the value returned by a read of the register immediately after a reset.

• WO registers that only have an effect on writes do not have meaningful reset values. However, an access to
a WO register might affect underlying state, and that state might have a defined reset value.

• IMPLEMENTATION DEFINED registers have IMPLEMENTATION DEFINED reset behavior.

After a reset, only a limited subset of the PE state is guaranteed to be set to defined values. Also, for debug and trace
System registers, reset requirements must take account of different levels of reset. For more information about the
reset behavior of System registers when the PE resets into an Exception level that is using AArch64, see:

• Reset behavior.

• The appropriate Trace architecture specification, for the Trace System registers.

For a PE reset into an Exception level that is using AArch64, the architecture defines which AArch64 System
registers have a defined reset value, and when that defined reset value applies. The register descriptions include this
information, and Reset behavior summarizes these architectural requirements. Otherwise, RW registers that have a
meaningful reset value reset to an architecturally UNKNOWN value.

Note

When the PE resets into an Exception level that is using AArch32, no PE state that relates to execution in AArch64
state is accessible until another reset causes the Execution state to change to AArch64. Therefore, on a reset into
AArch32 state, PE state that relates only to execution in AArch64 state cannot have a meaningful reset value.

Pseudocode description of resetting System registers

The AArch64.ResetSystemRegisters() pseudocode function resets all System registers, and register fields, that have
defined reset values, as described in this section and Reset behavior.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7348
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
Note

For debug and trace System registers, this function resets registers as defined for the appropriate level of reset.

Synchronization requirements for AArch64 System registers

Reads of the System registers can occur out of order with respect to earlier instructions executed on the same PE,
provided that both:

• Any data dependencies between the instructions, including read-after-read dependencies, are respected.

• The reads to the register do not occur earlier than the most recent Context Synchronization event to its
architectural position in the instruction stream.

Note

In particular, the values read from System registers that hold self-incrementing counts, such as the Performance
Monitors counters or the Generic Timer counter or timers, could be accessed from any time after the previous
Context Synchronization event. For example, where a memory access is used to communicate a read of such a
counter, an ISB must be inserted between the read of the memory location that is known to have returned its data,
either as a result of a condition on that data or of the read having completed, and the read of the counter, if it is
necessary that the counter returns a count value after the memory communication.

Direct writes using the instructions in Table D22-2 require synchronization before software can rely on the effects
of changes to the System registers to affect instructions appearing in program order after the direct write to the
System register. Direct writes to these registers are not allowed to affect any instructions appearing in program order
before the direct write. The only exceptions are:

• All direct writes to the same register, that use the same encoding for that register, are guaranteed to occur in
program order relative to each other.

• All direct writes to a register occur in program order with respect to all direct reads to the same register using
the same encoding.

• Any System register access that an Arm Architecture Specification or equivalent specification defines as not
requiring synchronization.

• When FEAT_BRBE is implemented, execution of BRB INJ does not require explicit synchronization to use
the result of direct writes to the Branch record injection data registers in program order before BRB INJ.

Explicit synchronization occurs as a result of a Context Synchronization event, which is one of the following events:

• Execution of an ISB instruction.

• Exception entry, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and defines that
exception entries to this Exception level are context synchronization events.

• Exception return, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and defines that
exception returns from this Exception level are context synchronization events.

• Execution of a DCPS instruction in Debug state.

• Execution of a DRPS instruction in Debug state.

• Exit from Debug state.

Note

The ISB and exception entry events are applicable both in Debug state and in Non-debug state.

The pseudocode for each of these events defines the point at which the explicit synchronization takes effect, as a
result of a call to the SynchronizeContext() function or InstructionSynchronizationBarrier() function.The principle
behind the position of the call to SynchronizeContext() or InstructionSynchronizationBarrier() is that it occurs
before indirect reads of System registers that are used in the construction of the target context, but is permitted to
occur after indirect reads of System registers that apply to the context in which the instruction is executed or from
which the event is taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7349
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
Note

For some instructions, this means that some System registers are indirectly read before the explicit synchronization,
and therefore changes to those System registers might need an explicit Context synchronization event before the
instruction. For example, changes to some fields of HCR_EL2 at EL2 need an explicit ISB in program order before
an ERET instruction.

In addition, any system instructions that cause a write to a System register must be synchronized before the result
is guaranteed to be visible to subsequent direct reads of that System register.

Direct and indirect reads and writes to RGSR_EL1, Random Allocation Tag Seed Register, appear to occur in
program order relative to other instructions, without the need for any explicit synchronization.

Direct reads to any one of the following registers, using the same encoding, occur in program order relative to each
other:

• ISR_EL1.

• The Generic Timer registers, that is, CNTPCT_EL0 and CNTVCT_EL0, and the Counter registers
CNTP_TVAL_EL0, CNTV_TVAL_EL0, CNTHP_TVAL_EL2, and CNTPS_TVAL_EL1.

• DBGCLAIMCLR_EL1.

• The PMU Counters, that is, PMCCNTR_EL0, PMEVCNTR<n>_EL0, PMXEVCNTR_EL0,
PMOVSCLR_EL0, and PMOVSSET_EL0.

• The System PMU Counters, that is, SPMEVCNTR<n>_EL0, SPMOVSCLR_EL0, and SPMOVSSET_EL0.

• The Debug Communications Channel registers, that is, DBGDTRRX_EL0, DBGDTR_EL0, and
MDCCSR_EL0.

All other direct reads of System registers can occur in any order if synchronization has not been performed.

Table D23-1 describes the synchronization requirements between two successive read or write accesses to the same
register, where the ordering of the read or write accesses is:

1. Program order, in the event that both the reads or writes are caused by an instruction executed on this PE,
other than one caused by a memory access by this PE.

2. The order of arrival of asynchronous reads and writes at the PE relative to the execution of instructions that
cause reads or writes.

3. The order of arrival of asynchronous reads and writes at the PE relative to each other.

Table D23-1 Synchronization requirements

First read/write Second read/write Synchronization requirement

Direct read Direct read None

Direct write None

Indirect read None

Indirect write None, see Notes

Direct write Direct read None

Direct write None

Indirect read Required

Indirect write None, see Notes

Indirect read Direct read None

Direct write None

Indirect read None

Indirect write None
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7350
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
Notes

The terms Direct read, Direct write, Indirect read, and Indirect write, as used in Table D23-1, are defined as follows:

Direct read Where software uses an MRS or MRRS system register access instruction to read that register into
a general purpose register.

Where a direct read of a register has a side-effect that changes the contents of a register, the effect
of a direct read on that register is defined to be an indirect write. In this case, the indirect write is
only guaranteed to have occurred, and be visible to subsequent direct or indirect reads or writes, if
synchronization is performed after the direct read.

Direct write Where software uses an MSR (register) or MSRR access instruction to write to that register from a
general purpose register.

Where a direct write to a register has an effect on the register that means that the value in the register
is not always the last value that is written (as is the case with set and clear registers), the effect of a
direct write on that register is defined to be an indirect write. In this case, the indirect write is only
guaranteed to be visible to subsequent direct or indirect reads or writes if synchronization is
performed after the direct write and before the subsequent direct or indirect reads or writes.

Indirect read Where an instruction uses a System register to establish operating conditions for the instruction, for
example, the TTBR_ELx address or whether memory accesses are forced to be Non-cacheable. This
includes situations where the contents of one System register selects what value is read or written
using a different register. Indirect reads also include reads of the System register by external agents
such as debuggers. Where an indirect read of a register has a side-effect that changes the contents
of that register, that is defined to be an indirect write.

Indirect write Where a System register is written as the consequence of some other instruction, exception,
operation, or by the asynchronous operation of an external agent, including the passage of time as
seen in counters, timers, or performance counters, the assertion of interrupts, or writes from an
external debugger.

Note

Since an exception is context synchronizing, registers such as the Exception Syndrome registers that
are indirectly written as part of exception entry do not require additional synchronization.

Where a direct read or write to a register is followed by an indirect write caused by an external agent, autonomous
asynchronous event, or as a result of memory mapped write, synchronization is required to guarantee the order of
those two accesses.

Where an indirect write caused by a direct write is followed by an indirect write caused by an external agent,
autonomous asynchronous event, or as a result of memory mapped write, synchronization is required to guarantee
the order of those two indirect accesses.

Where a direct read to one register causes a bit or field in a different register (or the same register using a different
encoding) to be updated, the change to the different register (or same register using a different encoding) is defined
to be an indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect
reads or writes if synchronization is performed after the direct read and before the subsequent direct or indirect reads
or writes.

Indirect write Direct read Required, see Notes

Direct write None, see Notes

Indirect read Required, see Notes

Indirect write None, see Notes

Table D23-1 Synchronization requirements (continued)

First read/write Second read/write Synchronization requirement
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7351
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
Where a direct write to one register causes a bit or field in a different register (or the same register using a different
encoding) to be updated as a side-effect of that direct write (as opposed to simply being a direct write to the different
encoding), the change to the different register (or same register using a different encoding) is defined to be an
indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect reads
or writes if synchronization is performed after the direct write and before the subsequent direct or indirect reads or
writes.

Where indirect writes are caused by the actions of external agents such as debuggers, or by memory-mapped reads
or writes by the PE, then an indirect write by that agent and mechanism to a register, followed by an indirect read
by that agent and mechanism to the same register using the same address, does not require synchronization.

Where an indirect write occurs as a side-effect of an access, this happens atomically with the access, meaning no
other accesses are allowed between the register access and its side-effect.

Note

Even though the 64-bit and 128-bit form of a system register share the same values of {op0, op1, CRn, CRm, op2},
they are considered to be distinct encodings. Therefore, explicit synchronization is required to guarantee ordering
in all of the following cases:

• MSRR followed by an MRS from the same register.

• MSR (register) followed by an MRRS from the same register.

Where indirect writes to GCSPR_ELx are made by the following instructions, explicit synchronization is not
required to be visible to direct reads, indirect reads, and indirect writes in program order after the initial indirect
write:

• All Branch with Link instructions.

• All procedure return instructions.

• GCSPOPM and GCSPUSHM.

• GCSPOPX, GCSPOPCX, and GCSPUSHX.

• GCSSS1 and GCSSS2.

Indirect writes caused by external agents, autonomous asynchronous events, or as a result of memory-mapped
writes, to the registers shown in Table D23-2, are required to be observable to:

• Direct reads in finite time without explicit synchronization.

• Subsequent indirect reads without explicit synchronization.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two
or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a
result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order.
This applies even if the accesses occur simultaneously.

Table D23-2 Registers with a guarantee of observability, VMSAv8-64

Registers Notes

ISR_EL1 Interrupt Status Register

DBGCLAIMCLR_EL1, DBGCLAIMSET_EL1 Debug CLAIM registers

CNTPCT_EL0, CNTVCT_EL0, CNTP_TVAL_EL0, CNTV_TVAL_EL0,
CNTHP_TVAL_EL2, CNTPS_TVAL_EL1

Generic Timer registers

PMCCNTR_EL0, PMEVCNTR<n>_EL0, PMXEVCNTR_EL0, PMOVSCLR_EL0,
PMOVSSET_EL0

PMU Counters
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7352
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
In addition to the requirements shown in Table D23-2:

• Indirect writes to the following registers as a result of memory-mapped writes, including accesses by external
agents, are required to be observable to the indirect read made in determining the response to a subsequent
memory-mapped access without explicit synchronization:

— OSLAR_EL1. OSLAR_EL1 is indirectly read to determine whether the subsequent access is
permitted.

— EDLAR, if implemented. EDLAR is indirectly read to determine whether a subsequent write or
side-effect of an access is ignored.

Note

This requirement is stricter than the general requirement for the observability of indirect writes.

• The requirement that an indirect write to the registers in Table D23-2 is observable to direct reads in finite
time does not imply that all observers will observe the indirect write at the same time.

For example, an increment of the system counter is an autonomous asynchronous event that performs an
indirect write to the counter. This asynchronous event might generate a timer interrupt request, resulting in a
Context Synchronization event. When a GIC is used, the timer interrupt might arrive at the GIC after the PE
has taken an interrupt request from another source, but before software reads the current interrupt ID from
the GIC. This means that the GIC might identify the timer interrupt as the current interrupt. Software must
not assume that a subsequent direct read of the counter register is guaranteed to observe the updated value of
that register.

Although this example uses the counter-timer registers, it applies equally to other registers that might be
linked to interrupt requests, including the PMU and Statistical Profiling status registers.

• When the PE is in Debug state, there are synchronization requirements for the Debug Communication
Channel and Instruction Transfer registers. See DCC and ITR access in Debug state.

Note

• The provision of explicit synchronization requirements to System registers is provided to allow the direct
access to these registers to be implemented in a small number of cycles, and that updates to multiple registers
can be performed quickly with the synchronization penalty being paid only when the updates have occurred.

• Since toolkits might use registers such as the thread-local storage registers within compiled code, it is
recommended that access to these registers is implemented to take a small number of cycles.

• While no synchronization is required between a direct write and a direct read, or between a direct read and
an indirect write, this does not imply that a direct read causes synchronization of a previous direct write. That
is, the sequence direct write → direct read → indirect read, with no intervening context synchronization,
does not guarantee that the indirect read observes the result of the direct write.

• If FEAT_MTE2 is implemented, a DSB instruction over the Non-shareable domain or an exception entry to
ELy with SCTLR_ELy.ITFSB = 0b1 is required between an indirect write to TFSRE0_EL1, or any
TFSR_ELx accessible at ELy, and a direct read or direct write of that register.

SPMEVCNTR<n>_EL0, SPMOVSCLR_EL0, SPMOVSSET_EL0 System PMU Counters

DBGDTRTX_EL0, DBGDTRRX_EL0, DBGDTR_EL0, and the DCC flags in
MDCCSR_EL0 and EDSCR

Debug Communication Channel
registers

EDSCR.PipeAdv External Debug Status and Control
Register

Table D23-2 Registers with a guarantee of observability, VMSAv8-64 (continued)

Registers Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7353
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
D23.1.3 Principles of the ID scheme for fields in ID registers

The Arm architecture specifies a number of ID registers that are characterized as comprising a set of 4-bit ID fields,
Each ID field identifies the presence, and possibly the level of support for, a particular feature in an implementation
of the architecture. These fields follow an architectural model that aids their use by software and provides future
compatibility. This section describes that model. ID registers to which this scheme applies identifies the set of ID
registers.

A small number of ID fields do not follow the scheme described in this section. In these cases, the field description
states that it does not follow this scheme.

Note

• The ID fields described here are unlike the ones that enumerate the number of resources, such as the number
of breakpoints, watchpoints, or performance monitors.

• ID fields that do not follow this scheme include the ID_AA64DFR0_EL1.PMUVer,
ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, see Alternative ID scheme used
for the Performance Monitors Extension version.

• The presence of an ID field for a feature does not imply that the feature is optional.

To provide forward compatibility, software can rely on the features of these fields that are described in this section.

The ID fields, which are either signed or unsigned, use increasing numerical values to indicate increases in
functionality. Therefore, for an unsigned ID field, if the value 0x1 indicates the presence of some instructions, then
the value 0x2 will indicate the presence of those instructions plus some additional instructions or functionality. This
means software can be written in the form:

if (value >= number) {
// do something that relies on the value of the feature

}

For ID fields where the value 0x0 defines that a feature is not present, the field holds an unsigned value. This covers
the vast majority of such fields.

In a few cases, the architecture has been changed to permit implementations to exclude a feature that has previously
been required and for which no ID field has been defined. In these cases, a new ID field is defined and:

• The field holds a signed value.

• The field value 0x0 indicates that the feature is implemented.

• The field value 0xF indicates that the feature is not implemented.

• Increasingly negative values indicate additional aspects of the architecture that are not implemented as a
result of the feature not being implemented.

• Software that depends on the feature can use the test:
if value >= 0 {

// Software features that depend on the presence of the hardware feature
}

In some cases, it has been decided retrospectively that the increase in functionality between two consecutive
numerical values is too great, and it is desirable to permit an intermediate degree of functionality, and the means to
discover this. This is done by the introduction of a fractional field that both:

• Is referred to in the definition of the original field.

• Applies only when the original field is at the lower value of the step.

In principle, a fractional field can be used for two different fractional steps, with different meanings associated with
each of these steps. For this reason, a fractional field must be interpreted in the context of the field to which it relates
and the value of that field. Example D23-1 shows the use of such a field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7354
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
Example D23-1 Example of the use of a fractional field

For a field describing some class of functionality:

• The value 0x1 was defined as indicating that item A is present.

• The value 0x2 was defined as indicating that items B and C are present, in addition to item A.

Subsequently, it might be necessary to introduce a second ID field to indicate that A and B only are present. This
new field is a fractional field, and might be defined as having the value 0x1 when A and B only are present. This
fractional field is valid only when the original ID field has the value 0x1.

This approach means that:

• Software that depends on the test if (value >= 0x2) can rely on features A, B, and C being present,

• Software that depends on the test if (value >= 0x1) can rely on feature A being present.

• If new software needs to check only that features A and B are present, then it can test:
if (value >= 0x2 || (value == 0x1 && fractional_value >= 0x1)) {

// Software features that depend on A and B only
}

A fractional field uses the same approach of increasing numerical values indicating increasing functionality, and the
fractional approach can also be applied recursively to fractional fields.

Unused ID fields, and fractional fields that are not applicable, are RES0 to allow their future use when features, or
fractional implementation options, are added.

ID registers to which this scheme applies

This scheme applies to the following registers:

AArch64 System registers

• The AArch64 views of the AArch32 feature ID registers given by:

— The AArch32 Auxiliary Feature register ID_AFR0_EL1.

— The AArch32 Processor Feature registers ID_PFR0_EL1 and ID_PFR1_EL1.

— The AArch32 Debug Feature register ID_DFR0_EL1.

— The AArch32 Memory Model Feature registers ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

— The AArch32 Instruction Set Attribute registers ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

— The AArch32 Media and VFP Feature registers MVFR0_EL1, MVFR1_EL1, and
MVFR2_EL1.

• The AArch64 Auxiliary Feature registers ID_AA64AFR0_EL1 and ID_AA64AFR1_EL1.

• The AArch64 Processor Feature registers ID_AA64PFR0_EL1 and ID_AA64PFR1_EL1.

• The AArch64 Debug Feature registers ID_AA64DFR0_EL1 and ID_AA64DFR1_EL1.

• The AArch64 Memory Model Feature registers ID_AA64MMFR0_EL1,
ID_AA64MMFR1_EL1, ID_AA64MMFR2_EL1 and ID_AA64MMFR3_EL1.

• The AArch64 Instruction Set Attribute registers ID_AA64ISAR0_EL1,
ID_AA64ISAR1_EL1, and ID_AA64ISAR2_EL1.

AArch32 System registers

• The AArch32 Auxiliary Feature register ID_AFR0.

• The AArch32 Processor Feature registers ID_PFR0 and ID_PFR1.

• The AArch32 Debug Feature register ID_DFR0.

• The AArch32 Memory Model Feature registers ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, and ID_MMFR4.

• The AArch32 Instruction Set Attribute registers ID_ISAR0, ID_ISAR1, ID_ISAR2,
ID_ISAR3, ID_ISAR4, and ID_ISAR5.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7355
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.1 About the AArch64 System registers
• The AArch32 Media and FP Feature registers MVFR0, MVFR1, and MVFR2.

Memory-mapped registers

• The External Debug Processor Feature register EDPFR.

• The External Debug Feature register EDDFR.

Alternative ID scheme used for the Performance Monitors Extension version

The ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields,
that identify the version of the Performance Monitors Extension, do not follow the standard ID scheme. Software
must treat these fields as follows:

• The value 0xF indicates that the Arm-architected Performance Monitors Extension is not implemented.

• If the field value is not 0xF, the field is treated as an unsigned value, as described for the standard ID scheme.

This means that software that depends on the implementation of a particular version of the Arm Performance
Monitors Extension must be written in the form:

if (value != 0xF and value >= number) {
// do something that relies on version 'number' of the feature

}

For these fields, Arm deprecates use of the value 0xF in new implementations.

Alternative ID scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes

The ID_AA64MMFR0_EL1.{TGran4_2, TGran64_2, TGran16_2} fields that identify the memory translation
stage 2 granule size, do not follow the standard ID scheme. Software must treat these fields as follows:

• The value 0x0 indicates that support is identified by another field.

• If the field value is not 0x0, the value indicates the level of support provided.

This means that software should use a test of the form:

if (field !=0 and field > value) {
// do something that relies on the value of the feature

}

Alternative ID scheme used for ID_AA64SMFR0_EL1

Apart from the ID_AA64SMFR0_EL1.SMEver field, which is a 4-bit unsigned integer conforming to the standard
scheme, software must treat the other fields in this register as follows:

• A 4-bit field indicates whether a group of related SME instructions is implemented, with permitted values
defined in the field description. Bits within such a field which only permit the value 0b0000 might be used
to identify new instructions in a future version of SME, without changing the meaning of those bits that
permit the value 0b0001.

• A 1-bit field value where the bit is 0b0 indicates that the SME feature or instructions described by this field
are not implemented.

• A 1-bit field value where the bit is 0b1 indicates that the SME feature or instructions described by this field
are implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7356
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2 General system control registers

This section lists the System registers in AArch64 that are not part of one of the other listed groups.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7357
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.1 ACCDATA_EL1, Accelerator Data

The ACCDATA_EL1 characteristics are:

Purpose

Holds the lower 32 bits of the data that is stored by an ST64BV0, Single-copy atomic 64-byte EL0
store instruction.

Configurations

This register is present only when FEAT_LS64_ACCDATA is implemented. Otherwise, direct
accesses to ACCDATA_EL1 are UNDEFINED.

Attributes

ACCDATA_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ACCDATA, bits [31:0]

Accelerator Data field. Holds bits[31:0] of the data that is stored by an ST64BV0 instruction.

Accessing ACCDATA_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACCDATA_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ADEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nACCDATA_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ACCDATA_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ADEn == '0' then
 UNDEFINED;

RES0

63 32

ACCDATA

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7358
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ACCDATA_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ACCDATA_EL1;

MSR ACCDATA_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ADEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nACCDATA_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ACCDATA_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ADEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ACCDATA_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ACCDATA_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7359
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.2 ACTLR_EL1, Auxiliary Control Register (EL1)

The ACTLR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and
EL0.

Note

Arm recommends the contents of this register have no effect on the PE when the Effective value of
HCR_EL2.{E2H, TGE} is {1, 1}, and instead the configuration and control fields are provided by
the ACTLR_EL2 register. This avoids the need for software to manage the contents of these register
when switching between a Guest OS and a Host OS.

Configurations

AArch64 System register ACTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ACTLR[31:0].

AArch64 System register ACTLR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register ACTLR2[31:0].

Attributes

ACTLR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TACR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x118];
 else

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7360
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = ACTLR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ACTLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ACTLR_EL1;

MSR ACTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TACR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x118] = X[t, 64];
 else
 ACTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 ACTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ACTLR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7361
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.3 ACTLR_EL2, Auxiliary Control Register (EL2)

The ACTLR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL2.

Note
Arm recommends the contents of this register are updated to apply to EL0 when the Effective value
of HCR_EL2.{E2H, TGE} is {1, 1}, gaining configuration and control fields from the
ACTLR_EL1. This avoids the need for software to manage the contents of these register when
switching between a Guest OS and a Host OS.

Configurations

AArch64 System register ACTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HACTLR[31:0].

AArch64 System register ACTLR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HACTLR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ACTLR_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7362
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ACTLR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ACTLR_EL2;

MSR ACTLR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ACTLR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ACTLR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7363
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.4 ACTLR_EL3, Auxiliary Control Register (EL3)

The ACTLR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ACTLR_EL3
are UNDEFINED.

Attributes

ACTLR_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ACTLR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ACTLR_EL3;

MSR ACTLR_EL3, <Xt>

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7364
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 ACTLR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7365
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.5 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

The AFSR0_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

AArch64 System register AFSR0_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ADFSR[31:0].

Attributes

AFSR0_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR0_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic AFSR0_EL1 or AFSR0_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x128];
 else
 X[t, 64] = AFSR0_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR0_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7366
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = AFSR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR0_EL1;

MSR AFSR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x128] = X[t, 64];
 else
 AFSR0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AFSR0_EL2 = X[t, 64];
 else
 AFSR0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AFSR0_EL1 = X[t, 64];

MRS <Xt>, AFSR0_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x128];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR0_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR0_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7367
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR AFSR0_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x128] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AFSR0_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 AFSR0_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7368
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.6 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

The AFSR0_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR0_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HADFSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AFSR0_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR0_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic AFSR0_EL2 or AFSR0_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = AFSR0_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR0_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7369
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR AFSR0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AFSR0_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AFSR0_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, AFSR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x128];
 else
 X[t, 64] = AFSR0_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR0_EL2;
 else
 X[t, 64] = AFSR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR0_EL1;

 When FEAT_VHE is implemented : MSR AFSR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7370
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x128] = X[t, 64];
 else
 AFSR0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AFSR0_EL2 = X[t, 64];
 else
 AFSR0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AFSR0_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7371
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.7 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

The AFSR0_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR0_EL3
are UNDEFINED.

Attributes

AFSR0_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR0_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR0_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR0_EL3;

MSR AFSR0_EL3, <Xt>

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7372
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AFSR0_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7373
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.8 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

The AFSR1_EL1 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

AArch64 System register AFSR1_EL1 bits [31:0] are architecturally mapped to AArch32 System
register AIFSR[31:0].

Attributes

AFSR1_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR1_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic AFSR1_EL1 or AFSR1_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x130];
 else
 X[t, 64] = AFSR1_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR1_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7374
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = AFSR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR1_EL1;

MSR AFSR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x130] = X[t, 64];
 else
 AFSR1_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AFSR1_EL2 = X[t, 64];
 else
 AFSR1_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AFSR1_EL1 = X[t, 64];

MRS <Xt>, AFSR1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x130];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR1_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR1_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7375
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR AFSR1_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x130] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AFSR1_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 AFSR1_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7376
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.9 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

The AFSR1_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR1_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HAIFSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AFSR1_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR1_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic AFSR1_EL2 or AFSR1_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = AFSR1_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR1_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7377
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR AFSR1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AFSR1_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AFSR1_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, AFSR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x130];
 else
 X[t, 64] = AFSR1_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AFSR1_EL2;
 else
 X[t, 64] = AFSR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR1_EL1;

 When FEAT_VHE is implemented : MSR AFSR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.AFSR1_EL1 == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7378
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x130] = X[t, 64];
 else
 AFSR1_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AFSR1_EL2 = X[t, 64];
 else
 AFSR1_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AFSR1_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7379
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.10 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

The AFSR1_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR1_EL3
are UNDEFINED.

Attributes

AFSR1_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AFSR1_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AFSR1_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AFSR1_EL3;

MSR AFSR1_EL3, <Xt>

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7380
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AFSR1_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7381
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.11 AIDR_EL1, Auxiliary ID Register

The AIDR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be interpreted in conjunction with the value of MIDR_EL1.

Configurations

AArch64 System register AIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register AIDR[31:0].

Attributes

AIDR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing AIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = AIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = AIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AIDR_EL1;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7382
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.12 AMAIR2_EL1, Extended Auxiliary Memory Attribute Indirection Register (EL1)

The AMAIR2_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR2_EL1.

Configurations

This register is present only when FEAT_AIE is implemented. Otherwise, direct accesses to
AMAIR2_EL1 are UNDEFINED.

Attributes

AMAIR2_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nAMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x288];
 else

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7383
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = AMAIR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = AMAIR2_EL2;
 else
 X[t, 64] = AMAIR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR2_EL1;

MSR AMAIR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nAMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x288] = X[t, 64];
 else
 AMAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 AMAIR2_EL2 = X[t, 64];
 else
 AMAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMAIR2_EL1 = X[t, 64];

MRS <Xt>, AMAIR2_EL12

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7384
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x288];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMAIR2_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = AMAIR2_EL1;
 else
 UNDEFINED;

MSR AMAIR2_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x288] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMAIR2_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 AMAIR2_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7385
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.13 AMAIR2_EL2, Extended Auxiliary Memory Attribute Indirection Register (EL2)

The AMAIR2_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR2_EL2.

Configurations

This register is present only when FEAT_AIE is implemented. Otherwise, direct accesses to
AMAIR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

AMAIR2_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing AMAIR2_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name AMAIR2_EL2 or AMAIR2_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7386
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = AMAIR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR2_EL2;

MSR AMAIR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMAIR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMAIR2_EL2 = X[t, 64];

MRS <Xt>, AMAIR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nAMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x288];
 else
 X[t, 64] = AMAIR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7387
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = AMAIR2_EL2;
 else
 X[t, 64] = AMAIR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR2_EL1;

MSR AMAIR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nAMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x288] = X[t, 64];
 else
 AMAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 AMAIR2_EL2 = X[t, 64];
 else
 AMAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMAIR2_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7388
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.14 AMAIR2_EL3, Extended Auxiliary Memory Attribute Indirection Register (EL3)

The AMAIR2_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR2_EL3.

Configurations

This register is present only when FEAT_AIE is implemented. Otherwise, direct accesses to
AMAIR2_EL3 are UNDEFINED.

Attributes

AMAIR2_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing AMAIR2_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR2_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR2_EL3;

MSR AMAIR2_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7389
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AMAIR2_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7390
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.15 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

The AMAIR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL1.

Configurations

AArch64 System register AMAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register AMAIR0[31:0].

AArch64 System register AMAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register AMAIR1[31:0].

Attributes

AMAIR_EL1 is a 64-bit register.

Field descriptions

AMAIR_EL1 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic AMAIR_EL1 or AMAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x148];

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7391
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = AMAIR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AMAIR_EL2;
 else
 X[t, 64] = AMAIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR_EL1;

MSR AMAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x148] = X[t, 64];
 else
 AMAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AMAIR_EL2 = X[t, 64];
 else
 AMAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t, 64];

MRS <Xt>, AMAIR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x148];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AMAIR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = AMAIR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7392
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;

MSR AMAIR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x148] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AMAIR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 AMAIR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7393
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.16 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

The AMAIR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL2.

Configurations

AArch64 System register AMAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HAMAIR0[31:0].

AArch64 System register AMAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HAMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AMAIR_EL2 is a 64-bit register.

Field descriptions

AMAIR_EL2 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic AMAIR_EL2 or AMAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7394
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = AMAIR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR_EL2;

MSR AMAIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AMAIR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMAIR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, AMAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x148];
 else
 X[t, 64] = AMAIR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = AMAIR_EL2;
 else
 X[t, 64] = AMAIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR_EL1;

 When FEAT_VHE is implemented : MSR AMAIR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7395
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x148] = X[t, 64];
 else
 AMAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 AMAIR_EL2 = X[t, 64];
 else
 AMAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7396
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.17 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

The AMAIR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by
MAIR_EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AMAIR_EL3
are UNDEFINED.

Attributes

AMAIR_EL3 is a 64-bit register.

Field descriptions

AMAIR_EL3 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMAIR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMAIR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMAIR_EL3;

MSR AMAIR_EL3, <Xt>

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7397
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AMAIR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7398
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.18 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])

The APDAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key A used for authentication of data pointer values.

Note
The term APDAKey_EL1 is used to describe the concatenation of APDAKeyHi_EL1:
APDAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDAKeyHi_EL1 are UNDEFINED.

Attributes

APDAKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDAKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDAKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7399
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDAKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDAKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APDAKeyHi_EL1;

MSR APDAKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APDAKeyHi_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7400
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.19 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])

The APDAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key A used for authentication of data pointer values.

Note
The term APDAKey_EL1 is used to describe the concatenation of APDAKeyHi_EL1:
APDAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDAKeyLo_EL1 are UNDEFINED.

Attributes

APDAKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDAKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDAKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7401
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDAKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APDAKeyLo_EL1;

MSR APDAKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APDAKeyLo_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7402
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.20 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])

The APDBKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key B used for authentication of data pointer values.

Note
The term APDBKey_EL1 is used to describe the concatenation of APDBKeyHi_EL1:
APDBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDBKeyHi_EL1 are UNDEFINED.

Attributes

APDBKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDBKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDBKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7403
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDBKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDBKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APDBKeyHi_EL1;

MSR APDBKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APDBKeyHi_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7404
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.21 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])

The APDBKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key B used for authentication of data pointer values.

Note
The term APDBKey_EL1 is used to describe the concatenation of APDBKeyHi_EL1:
APDBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APDBKeyLo_EL1 are UNDEFINED.

Attributes

APDBKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APDBKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APDBKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7405
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDBKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APDBKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APDBKeyLo_EL1;

MSR APDBKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APDBKeyLo_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7406
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.22 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])

The APGAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key used for generic pointer authentication code.

Note
The term APGAKey_EL1 is used to describe the concatenation of APGAKeyHi_EL1:
APGAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APGAKeyHi_EL1 are UNDEFINED.

Attributes

APGAKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APGAKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APGAKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7407
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APGAKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APGAKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APGAKeyHi_EL1;

MSR APGAKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APGAKeyHi_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7408
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.23 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])

The APGAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key used for generic pointer authentication code.

Note
The term APGAKey_EL1 is used to describe the concatenation of APGAKeyHi_EL1:
APGAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APGAKeyLo_EL1 are UNDEFINED.

Attributes

APGAKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APGAKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APGAKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7409
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APGAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APGAKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APGAKeyLo_EL1;

MSR APGAKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APGAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APGAKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APGAKeyLo_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7410
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.24 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])

The APIAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key A used for authentication of instruction pointer values.

Note
The term APIAKey_EL1 is used to describe the concatenation of APIAKeyHi_EL1:
APIAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIAKeyHi_EL1 are UNDEFINED.

Attributes

APIAKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIAKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIAKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7411
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIAKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIAKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APIAKeyHi_EL1;

MSR APIAKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APIAKeyHi_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7412
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.25 APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])

The APIAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key A used for authentication of instruction pointer values.

Note
The term APIAKey_EL1 is used to describe the concatenation of APIAKeyHi_EL1:
APIAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIAKeyLo_EL1 are UNDEFINED.

Attributes

APIAKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIAKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIAKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7413
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIAKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APIAKeyLo_EL1;

MSR APIAKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIAKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APIAKeyLo_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7414
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.26 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])

The APIBKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key B used for authentication of instruction pointer values.

Note
The term APIBKey_EL1 is used to describe the concatenation of APIBKeyHi_EL1:
APIBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIBKeyHi_EL1 are UNDEFINED.

Attributes

APIBKeyHi_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIBKeyHi_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIBKeyHi_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[127:64] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7415
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIBKeyHi_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIBKeyHi_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APIBKeyHi_EL1;

MSR APIBKeyHi_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyHi_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APIBKeyHi_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7416
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.27 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])

The APIBKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key B used for authentication of instruction pointer values.

Note
The term APIBKey_EL1 is used to describe the concatenation of APIBKeyHi_EL1:
APIBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to
APIBKeyLo_EL1 are UNDEFINED.

Attributes

APIBKeyLo_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing APIBKeyLo_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, APIBKeyLo_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

63 32

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

31 0

64 bit value, bits[63:0] of the 128 bit
pointer authentication key value

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7417
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIBKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = APIBKeyLo_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = APIBKeyLo_EL1;

MSR APIBKeyLo_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.APIBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APIBKeyLo_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 APIBKeyLo_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7418
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.28 CCSIDR2_EL1, Current Cache Size ID Register 2

The CCSIDR2_EL1 characteristics are:

Purpose

Provides the information about the architecture of the currently selected cache from bits[63:32] of
CCSIDR_EL1.

Configurations

AArch64 System register CCSIDR2_EL1 bits [31:0] are architecturally mapped to AArch32
System register CCSIDR2[31:0].

This register is present only when FEAT_CCIDX is implemented. Otherwise, direct accesses to
CCSIDR2_EL1 are UNDEFINED.

In an implementation which does not support AArch32 at EL1, it is IMPLEMENTATION DEFINED
whether reading this register gives an UNKNOWN value or is UNDEFINED.

The implementation includes one CCSIDR2_EL1 for each cache that it can access. CSSELR_EL1
selects which Cache Size ID Register is accessible.

Attributes

CCSIDR2_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Accessing CCSIDR2_EL1

If CSSELR_EL1.{TnD, Level, InD} is programmed to a cache level that is not implemented, then on a read of the
CCSIDR2_EL1 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2_EL1 read is treated as NOP.

• The CCSIDR2_EL1 read is UNDEFINED. If FEAT_IDST is implemented, this is permitted to be reported with
EC code 0x18.

• The CCSIDR2_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CCSIDR2_EL1

RES0

63 32

RES0

31 24

NumSets

23 0

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7419
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CCSIDR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CCSIDR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CCSIDR2_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7420
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.29 CCSIDR_EL1, Current Cache Size ID Register

The CCSIDR_EL1 characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

Configurations

AArch64 System register CCSIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CCSIDR[31:0].

AArch64 System register CCSIDR_EL1 bits [63:32] are architecturally mapped to AArch32
System register CCSIDR2[31:0].

The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1
selects which Cache Size ID Register is accessible.

Attributes

CCSIDR_EL1 is a 64-bit register.

Field descriptions

When FEAT_CCIDX is implemented:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [63:56]

Reserved, RES0.

NumSets, bits [55:32]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line
length.

• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

RES0

63 56

NumSets

55 32

RES0

31 24

Associativity

23 3 2 0

LineSize
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7421
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

The C++ 17 specification has two defined parameters relating to the granularity of memory that
does not interfere. For generic software and tools, Arm will set the
hardware_destructive_interference_size parameter to 256 bytes and the
hardware_constructive_interference_size parameter to 64 bytes.

When FEAT_MTE2 is implemented, where a cache only holds Allocation tags, this field is RES0.

Otherwise:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [63:32]

Reserved, RES0.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line
length.

• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

When FEAT_MTE2 is implemented, where a cache only holds Allocation tags, this field is RES0.

Note

The C++ 17 specification has two defined parameters relating to the granularity of memory that
does not interfere. For generic software and tools, Arm will set the
hardware_destructive_interference_size parameter to 256 bytes and the
hardware_constructive_interference_size parameter to 64 bytes.

RES0

63 32

UNKNOWN

31 28

NumSets

27 13

Associativity

12 3 2 0

LineSize
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7422
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing CCSIDR_EL1

If CSSELR_EL1.{TnD, Level, InD} is programmed to a cache level that is not implemented, then on a read of the
CCSIDR_EL1 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR_EL1 read is treated as NOP.

• The CCSIDR_EL1 read is UNDEFINED. If FEAT_IDST is implemented, this is permitted to be reported with
EC code 0x18.

• The CCSIDR_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CCSIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CCSIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CCSIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CCSIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CCSIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7423
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.30 CLIDR_EL1, Cache Level ID Register

The CLIDR_EL1 characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using
the architected cache maintenance instructions that operate by set/way, up to a maximum of seven
levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache
hierarchy.

Configurations

AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CLIDR[31:0].

Attributes

CLIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:47]

Reserved, RES0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 7 to 1

When FEAT_MTE2 is implemented:

Tag cache type. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy.

0b00 No Tag Cache.

0b01 Separate Allocation Tag Cache.

0b10 Unified Allocation Tag and Data cache, Allocation Tags and Data in unified lines.

0b11 Unified Allocation Tag and Data cache, Allocation Tags and Data in separate lines.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory
regions.

0b000 Not disclosed by this mechanism.

0b001 L1 cache is the highest Inner Cacheable level.

0b010 L2 cache is the highest Inner Cacheable level.

0b011 L3 cache is the highest Inner Cacheable level.

0b100 L4 cache is the highest Inner Cacheable level.

0b101 L5 cache is the highest Inner Cacheable level.

0b110 L6 cache is the highest Inner Cacheable level.

0b111 L7 cache is the highest Inner Cacheable level.

RES0

63 47

Ttype<n>

46 33 32

ICB

ICB

31 30

LoUU

29 27

LoC

26 24

LoUIS

23 21

Ctype7

20 18

Ctype6

17 15

Ctype5

14 12

Ctype4

11 9

Ctype3

8 6

Ctype2

5 3

Ctype1

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7424
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and
Invalidate instructions.

Note
This field does not describe the requirements for instruction cache invalidation. See CTR_EL0.DIC.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and
Invalidate instructions.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and
Invalidate instructions.

Note

This field does not describe the requirements for instruction cache invalidation. See CTR_EL0.DIC.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy. Possible values of each field are:

0b000 No cache.

0b001 Instruction cache only.

0b010 Data cache only.

0b011 Separate instruction and data caches.

0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no
caches that can be managed using the architected cache maintenance instructions that operate by
set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type
field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7425
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing CLIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CLIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CLIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CLIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CLIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CLIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7426
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.31 CONTEXTIDR_EL1, Context ID Register (EL1)

The CONTEXTIDR_EL1 characteristics are:

Purpose

Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

AArch64 System register CONTEXTIDR_EL1 bits [31:0] are architecturally mapped to AArch32
System register CONTEXTIDR[31:0].

Attributes

CONTEXTIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

Note

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.

In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the EL1&0 translation
regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CONTEXTIDR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CONTEXTIDR_EL1 or CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

RES0

63 32

PROCID

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7427
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CONTEXTIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x108];
 else
 X[t, 64] = CONTEXTIDR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CONTEXTIDR_EL2;
 else
 X[t, 64] = CONTEXTIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CONTEXTIDR_EL1;

MSR CONTEXTIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x108] = X[t, 64];
 else
 CONTEXTIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CONTEXTIDR_EL2 = X[t, 64];
 else
 CONTEXTIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CONTEXTIDR_EL1 = X[t, 64];

MRS <Xt>, CONTEXTIDR_EL12

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7428
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x108];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CONTEXTIDR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = CONTEXTIDR_EL1;
 else
 UNDEFINED;

MSR CONTEXTIDR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x108] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CONTEXTIDR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CONTEXTIDR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7429
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.32 CONTEXTIDR_EL2, Context ID Register (EL2)

The CONTEXTIDR_EL2 characteristics are:

Purpose

Identifies the current Process Identifier for EL2.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

This register is present only when FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented. Otherwise, direct accesses to CONTEXTIDR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CONTEXTIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CONTEXTIDR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CONTEXTIDR_EL2 or CONTEXTIDR_EL1 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CONTEXTIDR_EL2

RES0

63 32

PROCID

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7430
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CONTEXTIDR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CONTEXTIDR_EL2;

MSR CONTEXTIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CONTEXTIDR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CONTEXTIDR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, CONTEXTIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x108];
 else
 X[t, 64] = CONTEXTIDR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CONTEXTIDR_EL2;
 else
 X[t, 64] = CONTEXTIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CONTEXTIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7431
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 When FEAT_VHE is implemented : MSR CONTEXTIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x108] = X[t, 64];
 else
 CONTEXTIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CONTEXTIDR_EL2 = X[t, 64];
 else
 CONTEXTIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CONTEXTIDR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7432
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.33 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, SME, Streaming SVE, SVE, and Advanced SIMD and floating-point
functionality.

Configurations

AArch64 System register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CPACR[31:0].

When EL2 is implemented and enabled in the current Security state and the Effective value of
HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at EL0 and
EL1. In this case, the controls provided by CPTR_EL2 are used.

Attributes

CPACR_EL1 is a 64-bit register.

Field descriptions

Bits [63:30]

Reserved, RES0.

E0POE, bit [29]

When FEAT_S1POE is implemented:

Enable access to POR_EL0.

Traps EL0 accesses to POR_EL0, from AArch64 state only to EL1, or to EL2 when it is
implemented and enabled in the current Security state and HCR_EL2.TGE is 1. The exception is
reported using ESR_ELx.EC value 0x18.

0b0 This control causes EL0 access to POR_EL0 to be trapped.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers from both Execution
states to EL1, or to EL2 when it is implemented and enabled in the current Security state and
HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using ESR_ELx.EC value
0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using
ESR_ELx.EC value 0x05.

RES0

63 32

RES0

31 30 29 28

RES0

27 26

SMEN

25 24

RES0

23 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

E0POE TTA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7433
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using
ESR_ELx.EC value 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 This control causes EL0 and EL1 System register accesses to all implemented trace
registers to be trapped.

Note

• The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace
unit implements FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are
UNDEFINED, and any resulting exception is higher priority than an exception that would be
generated because the value of CPACR_EL1.TTA is 1.

• The Arm architecture does not provide traps on trace register accesses through the optional
memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SMEN, bits [25:24]

When FEAT_SME is implemented:

Traps execution at EL1 and EL0 of SME instructions, SVE instructions when FEAT_SVE is not
implemented or the PE is in Streaming SVE mode, and instructions that directly access the SVCR
or SMCR_EL1 System registers to EL1, or to EL2 when EL2 is implemented and enabled in the
current Security state and HCR_EL2.TGE is 1.

When instructions that directly access the SVCR System register are trapped with reference to this
control, the MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_ELx.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPACR_EL1.SMEN has precedence over a trap taken as a result of
CPACR_EL1.FPEN.

0b00 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:22]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7434
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FPEN, bits [21:20]

Traps execution at EL1 and EL0 of instructions that access the Advanced SIMD and floating-point
registers from both Execution states to EL1, reported using ESR_ELx.EC value 0x07, or to EL2
reported using ESR_ELx.EC value 0x00 when EL2 is implemented and enabled in the current
Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers
V0-V31, including their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including
their views as D0-D31 registers or S0-31 registers.

Traps execution at EL1 and EL0 of SME and SVE instructions to EL1, or to EL2 when EL2 is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The exception is
reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPACR_EL1.SMEN has precedence over a trap taken as a result of
CPACR_EL1.FPEN.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of
CPACR_EL1.FPEN.

0b00 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPACR_EL1.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps execution at EL1 and EL0 of SVE instructions when the PE is not in Streaming SVE mode,
and instructions that directly access the ZCR_EL1 System register to EL1, or to EL2 when EL2 is
implemented and enabled in the current Security state and HCR_EL2.TGE is 1.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of
CPACR_EL1.FPEN.

0b00 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7435
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Accessing CPACR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CPACR_EL1 or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x100];
 else
 X[t, 64] = CPACR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = CPTR_EL2;
 else
 X[t, 64] = CPACR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CPACR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7436
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR CPACR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x100] = X[t, 64];
 else
 CPACR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 CPTR_EL2 = X[t, 64];
 else
 CPACR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CPACR_EL1 = X[t, 64];

MRS <Xt>, CPACR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x100];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7437
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = CPACR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = CPACR_EL1;
 else
 UNDEFINED;

MSR CPACR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x100] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CPACR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CPACR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7438
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.34 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of accesses to CPACR, CPACR_EL1, trace, Activity Monitor, SME,
Streaming SVE, SVE, and Advanced SIMD and floating-point functionality.

Configurations

AArch64 System register CPTR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HCPTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CPTR_EL2 is a 64-bit register.

Field descriptions

When the Effective value of HCR_EL2.E2H is 1:

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2, when EL2 is enabled in
the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

31 30 29 28

RES0

27 26

SMEN

25 24

RES0

23 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TCPAC
TAM

TTA
E0POE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7439
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2,
as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x18:

— AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0,
AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and
reported using ESR_ELx.EC value 0x03:

— AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1,
AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and
AMEVTYPER1<n>.

• In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>,
are trapped to EL2, reported using ESR_ELx.EC value 0x04.

0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor registers are trapped to EL2, when
EL2 is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0POE, bit [29]

When FEAT_S1POE is implemented:

Enable access to POR_EL0.

Traps EL0 accesses to POR_EL0 to EL2, from AArch64 state only. The exception is reported using
ESR_ELx.EC value 0x18.

0b0 This control causes EL0 access to POR_EL0 to be trapped.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers from both Execution states to EL2,
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped
to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are trapped to EL2, reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1 or EL2, to execute a System register access to an implemented
trace register is trapped to EL2, when EL2 is enabled in the current Security state, unless
HCR_EL2.TGE is 0 and it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7440
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a System register
access to an implemented trace register is trapped to EL2, when EL2 is enabled in the
current Security state.

Note

The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace unit
implements FEAT_ETMv4 or ETE, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the value
of CPTR_EL2.TTA is 1.

EL2 does not provide traps on trace register accesses through the optional Memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SMEN, bits [25:24]

When FEAT_SME is implemented:

Traps execution at EL2, EL1, and EL0 of SME instructions, SVE instructions when FEAT_SVE is
not implemented or the PE is in Streaming SVE mode, and instructions that directly access the
SVCR, SMCR_EL1, or SMCR_EL2 System registers to EL2, when EL2 is enabled in the current
Security state.

When instructions that directly access the SVCR System register are trapped with reference to this
control, the MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_EL2.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL2.SMEN has precedence over a trap taken as a result of
CPTR_EL2.FPEN.

0b00 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution of any instructions to
be trapped.

When HCR_EL2.TGE is 1, this control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:22]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7441
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FPEN, bits [21:20]

Traps execution at EL2, EL1, and EL0 of instructions that access the Advanced SIMD and
floating-point registers from both Execution states to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x07.

Traps execution at EL2, EL1, and EL0 of SME and SVE instructions to EL2, when EL2 is enabled
in the current Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.SMEN has precedence over a trap taken as a result of
CPTR_EL2.FPEN.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of
CPTR_EL2.FPEN.

0b00 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution of any instructions to
be trapped.

When HCR_EL2.TGE is 1, this control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPTR_EL2.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions when the PE is not in Streaming SVE
mode, and instructions that directly access the ZCR_EL1 or ZCR_EL2 System registers to EL2,
when EL2 is enabled in the current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of
CPTR_EL2.FPEN.

0b00 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution of any instructions to
be trapped.

When HCR_EL2.TGE is 1, this control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7442
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Otherwise:

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the following registers are trapped to EL2, when EL2 is enabled in the
current Security state:

• CPACR_EL1.

• CPACR.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2,
as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x18:

— AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0,
AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

RES0

63 32

31 30

RES0

29 21 20

RES0

19 14 13 12 11 10 9

TZ

8

RES1

7 0

TCPAC TAM TTA RES1
TSM

RES1
TFP

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7443
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and
reported using ESR_ELx.EC value 0x03:

— AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1,
AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and
AMEVTYPER1<n>.

• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<n> and AMEVCNTR1<n>,
are trapped to EL2, reported using ESR_ELx.EC value 0x04.

0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor registers are trapped to EL2, when
EL2 is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers from both Execution states to EL2,
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped
to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are trapped to EL2, reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1, or EL2, to execute a System register access to an
implemented trace register is trapped to EL2, when EL2 is enabled in the current
Security state, unless it is trapped by one of the following controls:

• CPACR_EL1.TTA.

• CPACR.TRCDIS.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bit [13]

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7444
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TSM, bit [12]

When FEAT_SME is implemented:

Traps execution at EL2, EL1, and EL0 of SME instructions, SVE instructions when FEAT_SVE is
not implemented or the PE is in Streaming SVE mode, and instructions that directly access the
SVCR, SMCR_EL1, or SMCR_EL2 System registers to EL2, when EL2 is enabled in the current
Security state.

When instructions that directly access the SVCR System register are trapped with reference to this
control, the MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_EL2.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL2.TSM has precedence over a trap taken as a result of
CPTR_EL2.TFP.

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality,
from both Execution states to EL2, when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x07:

— FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers
V0-V31, including their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x07:

— MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point
registers Q0-15, including their views as D0-D31 registers or S0-31 registers. For the
purposes of this trap, the architecture defines a VMSR access to FPSID from EL1 or
higher as an access to a SIMD and floating-point register. Otherwise, permitted VMSR
accesses to FPSID are ignored.

Traps execution at the same Exception levels of SME and SVE instructions to EL2, when EL2 is
enabled in the current Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.TSM has precedence over a trap taken as a result of
CPTR_EL2.TFP.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of
CPTR_EL2.TFP.

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7445
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [9]

Reserved, RES1.

TZ, bit [8]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions when the PE is not in Streaming SVE
mode, and instructions that directly access the ZCR_EL2 or ZCR_EL1 System registers to EL2,
when EL2 is enabled in the current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of
CPTR_EL2.TFP.

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [7:0]

Reserved, RES1.

Accessing CPTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = CPTR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CPTR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7446
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR CPTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CPTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CPTR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, CPACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x100];
 else
 X[t, 64] = CPACR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = CPTR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7447
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = CPACR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CPACR_EL1;

 When FEAT_VHE is implemented : MSR CPACR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x100] = X[t, 64];
 else
 CPACR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 CPTR_EL2 = X[t, 64];
 else
 CPACR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CPACR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7448
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.35 CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

Purpose

Controls trapping to EL3 of accesses to CPACR, CPACR_EL1, HCPTR, CPTR_EL2, trace,
Activity Monitor, SME, Streaming SVE, SVE, and Advanced SIMD and floating-point
functionality.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3
are UNDEFINED.

Attributes

CPTR_EL3 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Execution states and any Security state.

• EL2 accesses to CPTR_EL2, reported using ESR_ELx.EC value 0x18, or HCPTR, reported
using ESR_ELx.EC value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using ESR_ELx.EC value 0x18, or CPACR
reported using ESR_ELx.EC value 0x03.

When CPTR_EL3.TCPAC is:

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the
CPACR_EL1 or CPACR, are trapped to EL3, unless they are trapped by
CPTR_EL2.TCPAC.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL2, EL1, and EL0 accesses to all Activity Monitor registers
to EL3.

RES0

63 32

31 30

RES0

29 21 20

RES0

19 13 12 11 10 9

EZ

8

RES0

7 0

TCPAC TAM TTA ESM
RES0

RES0
TFP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7449
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to the Activity Monitors registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported with ESR_ELx.EC
value 0x18:

— AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0,
AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0,
AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, accesses with MRC or MCR to the following registers reported with
ESR_ELx.EC value 0x03:

— AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1,
AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and
AMEVTYPER1<n>.

• In AArch32 state, accesses with MRRC or MCRR to the following registers, reported with
ESR_ELx.EC value 0x04:

— AMEVCNTR0<n>, AMEVCNTR1<n>.

0b0 Accesses from EL2, EL1, and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from EL2, EL1, and EL0 to Activity Monitor registers are trapped to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, any
Security state, and both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL3
and reported using EC syndrome value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14,
opc1=1, and CRn<0b1000 are reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.

0b1 Any System register access to the trace registers is trapped to EL3, unless it is trapped
by CPACR.TRCDIS, CPACR_EL1.TTA, or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

Note

The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace unit
implements FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED, and
any resulting exception is higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, no side-effects occur before the exception is taken, see Configurable instruction controls.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7450
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ESM, bit [12]

When FEAT_SME is implemented:

Traps execution of SME instructions, SVE instructions when FEAT_SVE is not implemented or the
PE is in Streaming SVE mode, and instructions that directly access the SMCR_EL1, SMCR_EL2,
SMCR_EL3, SMPRI_EL1, SMPRIMAP_EL2, or SVCR System registers, from all Exception
levels and any Security state, to EL3.

When instructions that directly access the SVCR System register are trapped with reference to this
control, the MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

When direct accesses to SMPRI_EL1 and SMPRIMAP_EL2 are trapped, the exception is reported
using an ESR_EL3.EC value of 0x18. Otherwise, the exception is reported using an ESR_EL3.EC
value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL3.ESM has precedence over a trap taken as a result of
CPTR_EL3.TFP.

0b0 This control causes execution of these instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality,
from all Exception levels, any Security state, and both Execution states, to EL3.

This includes the following registers, all reported using ESR_ELx.EC value 0x07:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31,
including their views as D0-D31 registers or S0-S31 registers.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point
registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers.

• VMSR accesses to FPSID.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture
defines a VMSR access to the FPSID from EL1 or higher as an access to a SIMD and floating-point
register.

Traps execution at all Exception levels of SME and SVE instructions to EL3 from any Security
state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL3.ESM has precedence over a trap taken as a result of
CPTR_EL3.TFP.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of
CPTR_EL3.TFP.

Defined values are:

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at all Exception levels to be trapped.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7451
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When FEAT_SVE is implemented:

Traps execution of SVE instructions when the PE is not in Streaming SVE mode, and instructions
that directly access the ZCR_EL3, ZCR_EL2, or ZCR_EL1 System registers, from all Exception
levels and any Security state, to EL3.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of
CPTR_EL3.TFP.

0b0 This control causes execution of these instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

Accessing CPTR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CPTR_EL3;

MSR CPTR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7452
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 CPTR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7453
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.36 CSSELR_EL1, Cache Size Selection Register

The CSSELR_EL1 characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level
and the cache type (either instruction or data cache).

Configurations

AArch64 System register CSSELR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register CSSELR[31:0].

Attributes

CSSELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

TnD, bit [4]

When FEAT_MTE2 is implemented:

Allocation Tag not Data bit.

0b0 Data, Instruction or Unified cache.

0b1 Separate Allocation Tag cache.

When CSSELR_EL1.InD == 1, this bit is RES0.

If CSSELR_EL1.{TnD, Level, InD} is programmed to a cache level that is not implemented, then
the value for this field on a read of CSSELR_EL1 is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache.

0b000 Level 1 cache.

0b001 Level 2 cache.

0b010 Level 3 cache.

0b011 Level 4 cache.

0b100 Level 5 cache.

0b101 Level 6 cache.

0b110 Level 7 cache.

All other values are reserved.

RES0

63 32

RES0

31 5 4

Level

3 1 0

TnD InD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7454
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If CSSELR_EL1.{TnD, Level, InD} is programmed to a cache level that is not implemented, then
the value for this field on a read of CSSELR_EL1 is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [0]

Instruction not Data bit.

0b0 Data or unified cache.

0b1 Instruction cache.

If CSSELR_EL1.{TnD, Level, InD} is programmed to a cache level that is not implemented, then
a read of CSSELR_EL1 is CONSTRAINED UNPREDICTABLE, and returns UNKNOWN values for
CSSELR_EL1.{Level, InD}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CSSELR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CSSELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.CSSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CSSELR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CSSELR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CSSELR_EL1;

MSR CSSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b010 0b0000 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b010 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7455
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.CSSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CSSELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 CSSELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CSSELR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7456
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.37 CTR_EL0, Cache Type Register

The CTR_EL0 characteristics are:

Purpose

Provides information about the architecture of the caches.

Configurations

AArch64 System register CTR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register CTR[31:0].

Attributes

CTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:38]

Reserved, RES0.

TminLine, bits [37:32]

When FEAT_MTE2 is implemented:

Tag minimum Line. Log2 of the number of words covered by Allocation Tags in the smallest cache
line of all caches which can contain Allocation tags that are controlled by the PE.

Note

• For an implementation with cache lines containing 64 bytes of data and 4 Allocation Tags,
this will be log2(64/4) = 4.

• For an implementation with Allocations Tags in separate cache lines of 128 Allocation Tags
per line, this will be log2(128*16/4) = 9.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

RES0

63 38

TminLine

37 32

31 30 29 28

CWG

27 24

ERG

23 20

DminLine

19 16

L1Ip

15 14

RES0

13 4

IminLine

3 0

RES1
RES0

IDC
DIC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7457
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instruction cache invalidation to the Point of Unification is required for data to
instruction coherence.

0b1 Instruction cache invalidation to the Point of Unification is not required for data to
instruction coherence.

All PEs in the same Inner Shareable shareability domain must have a common value of this field.

Access to this field is RO.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Data cache clean to the Point of Unification is required for instruction to data coherence,
unless CLIDR_EL1.LoC == 0b000 or (CLIDR_EL1.LoUIS == 0b000 and
CLIDR_EL1.LoUU == 0b000).

0b1 Data cache clean to the Point of Unification is not required for instruction to data
coherence.

If CTR_EL0.DIC is 1 then the value reported in this field must also be 1.

The Effective value of IDC is 1 if any of the following are true:

• CTR_EL0.IDC == 1.

• CLIDR_EL1.LoC == 0b000.

• CLIDR_EL1.LoUIS == 0b000 and CLIDR_EL1.LoUU == 0b000.

All PEs in the same Inner Shareable shareability domain must have a common Effective value of
IDC.

Access to this field is RO.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be
overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information
and either:

• The architectural maximum of 512 words (2KB) must be assumed.

• The Cache writeback granule can be determined from maximum cache line size encoded in
the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this
field as 0b0001. This applies, for example, to an implementation that supports only write-through
caches.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

ERG, bits [23:20]

Exclusives reservation granule, and, if FEAT_TME is implemented, transactional reservation
granule. Log2 of the number of words of the maximum size of the reservation granule for the
Load-Exclusive and Store-Exclusive instructions, and, if FEAT_TME is implemented, for detecting
transactional conflicts.

A value of 0b0000 indicates that this register does not provide granule information and the
architectural maximum of 512 words (2KB) must be assumed.

Value 0b0001 and values greater than 0b1001 are reserved.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7458
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that
are controlled by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction
cache.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Reserved.

0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT).

0b10 Virtual Index, Physical Tag (VIPT).

0b11 Physical Index, Physical Tag (PIPT).

From Armv8.0, the value 0b01 is reserved.

Access to this field is RO.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are
controlled by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing CTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CTR_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.UCT == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.UCT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CTR_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID2 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

op0 op1 CRn CRm op2

0b11 0b011 0b0000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7459
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
== '1') && HFGRTR_EL2.CTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CTR_EL0;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CTR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CTR_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7460
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.38 DACR32_EL2, Domain Access Control Register

The DACR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 DACR register from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register DACR32_EL2 bits [31:0] are architecturally mapped to AArch32 System
register DACR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DACR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Attributes

DACR32_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

D<n>, bits [2n+1:2n], for n = 15 to 0

Domain n access permission, where n = 0 to 15. Permitted values are:

0b00 No access. Any access to the domain generates a Domain fault.

0b01 Client. Accesses are checked against the permission bits in the translation tables.

0b11 Manager. Accesses are not checked against the permission bits in the translation tables.

The value 0b10 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DACR32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DACR32_EL2

if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then

RES0

63 32

D15

31 30

D14

29 28

D13

27 26

D12

25 24

D11

23 22

D10

21 20

D9

19 18

D8

17 16

D7

15 14

D6

13 12

D5

11 10

D4

9 8

D3

7 6

D2

5 4

D1

3 2

D0

1 0

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7461
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = DACR32_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DACR32_EL2;

MSR DACR32_EL2, <Xt>

if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 DACR32_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 DACR32_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7462
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.39 DCZID_EL0, Data Cache Zero ID Register

The DCZID_EL0 characteristics are:

Purpose

Indicates the block size that is written with byte values of 0 by the DC ZVA (Data Cache Zero by
Address) System instruction.

If FEAT_MTE is implemented, this register also indicates the granularity at which the DC GVA and
DC GZVA instructions write.

Configurations

There are no configuration notes.

Attributes

DCZID_EL0 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

DZP, bit [4]

Data Zero Prohibited. This field indicates whether use of DC ZVA instructions is permitted or
prohibited.

If FEAT_MTE is implemented, this field also indicates whether use of the DC GVA and DC GZVA
instructions are permitted or prohibited.

0b0 Instructions are permitted.

0b1 Instructions are prohibited.

The value read from this field is governed by the access state and the values of the HCR_EL2.TDZ
and SCTLR_EL1.DZE bits.

BS, bits [3:0]

Log2 of the block size in words. The maximum size supported is 2KB, indicated by value 0b1001.

If FEAT_MTE2 is implemented, the minimum size supported is 16 bytes, indicated by value 0b0010.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing DCZID_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DCZID_EL0

RES0

63 32

RES0

31 5 4

BS

3 0

DZP

op0 op1 CRn CRm op2

0b11 0b011 0b0000 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7463
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
|| SCR_EL3.FGTEn == '1') && HFGRTR_EL2.DCZID_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = DCZID_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.DCZID_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = DCZID_EL0;
elsif PSTATE.EL == EL2 then
 X[t, 64] = DCZID_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DCZID_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7464
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.40 ESR_EL1, Exception Syndrome Register (EL1)

The ESR_EL1 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL1.

Configurations

AArch64 System register ESR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DFSR[31:0].

Attributes

ESR_EL1 is a 64-bit register.

Field descriptions

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of
ESR_EL1 is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:56]

Reserved, RES0.

ISS2, bits [55:32]

ISS2 encoding for an exception, the bit assignments are:

ISS2 encoding for an exception from a Data Abort

Bits [23:11]

Reserved, RES0.

TnD, bit [10]

When FEAT_MTE_CANONICAL_TAGS is implemented:

Tag not Data.

If a memory access generates a Data Abort for a stage 1 Permission fault, this field indicates whether
the fault is due to an Allocation Tag access.

0b0 Permission fault is not due to a write of an Allocation Tag to Canonically Tagged
memory.

RES0

63 56

ISS2

55 32

EC

31 26

IL

25

ISS

24 0

RES0

23 11 10 9 8 7 6 5

Xs

4 0

TnD
TagAccess

GCS

DirtyBit
Overlay

AssuredOnly
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7465
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Permission fault is due to a write of an Allocation Tag to Canonically Tagged memory.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TagAccess, bit [9]

When FEAT_MTE_PERM is implemented and FEAT_NV is implemented:

NoTagAccess fault.

When EL2 provides information to EL1 regarding a Stage 2 Data Abort, this field indicates whether
the fault is due to the NoTagAccess memory attribute.

0b0 Permission fault is not due to the NoTagAccess memory attribute.

0b1 Permission fault is due to the NoTagAccess memory attribute.

For all other Data Aborts this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

GCS, bit [8]

When FEAT_GCS is implemented:

Guarded Control Stack data access.

If a memory access generates a Data Abort, this field indicates whether the fault is due to a Guarded
Control Stack data access.

0b0 The Data Abort is not due to a Guarded control stack data access.

0b1 The Data Abort is due to a Guarded control stack data access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [7]

When FEAT_THE is implemented and FEAT_NV is implemented:

AssuredOnly flag.

If EL2 provides information regarding a stage 2 Data Abort to EL1, then this field holds information
about the fault.

0b0 The Data Abort is not due to AssuredOnly.

0b1 The Data Abort is due to AssuredOnly.

For all other Data Aborts this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7466
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Overlay, bit [6]

When FEAT_S1POE is implemented:

Overlay flag.

If a memory access generates a Data Abort for a Permission fault, then this field holds information
about the fault.

0b0 Data Abort is not due to Overlay Permissions.

0b1 Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DirtyBit, bit [5]

When FEAT_S1PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission,
then this field holds information about the fault.

0b0 Permission Fault is not due to dirty state.

0b1 Permission Fault is due to dirty state.

For any other fault or Access, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Xs, bits [4:0]

When FEAT_LS64 is implemented:

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort exception for a Translation fault, Access flag fault, or Permission fault, then
this field holds register specifier, Xs.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort exception for a Translation fault, Access flag fault, or Permission
fault, then this field holds register specifier, Xs.

Otherwise, this field is RES0.

Otherwise:

Reserved, RES0.

ISS2 encoding for an exception from an Instruction Abort

Bits [23:8]

Reserved, RES0.

RES0

23 8 7 6

RES0

5 0

AssuredOnly Overlay
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7467
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
AssuredOnly, bit [7]

When FEAT_THE is implemented and FEAT_NV is implemented:

AssuredOnly flag.

If EL2 provides information regarding a stage 2 Instruction Abort to EL1, then this field holds
information about the fault.

0b0 The Instruction Abort is not due to AssuredOnly.

0b1 The Instruction Abort is due to AssuredOnly.

For all other Instruction Aborts this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Overlay, bit [6]

When FEAT_S1POE is implemented:

Overlay flag.

If a memory access generates a Instruction Abort for a Permission fault, then this field holds
information about the fault.

0b0 Instruction Abort is not due to Overlay Permissions.

0b1 Instruction Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

ISS2 encoding for an exception from a Watchpoint exception

Bits [23:9]

Reserved, RES0.

GCS, bit [8]

When FEAT_GCS is implemented:

Guarded control stack data access.

Indicates that the Watchpoint exception is due to a Guarded control stack data access.

0b0 The Watchpoint exception is not due to a Guarded control stack data access.

0b1 The Watchpoint exception is due to a Guarded control stack data access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

23 9 8

RES0

7 0

GCS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7468
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

ISS2 encoding for all other exceptions

Bits [23:0]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.

• The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

See ISS2 encoding for all other exceptions.

EC == 0b000001

Trapped WF* instruction execution.

Conditional WF* instructions that fail their condition code check do not cause an
exception.

See ISS encoding for an exception from a WF* instruction.

See ISS2 encoding for all other exceptions.

EC == 0b000011

When AArch32 is supported:

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000100

When AArch32 is supported:

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCRR or MRRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000101

When AArch32 is supported:

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

RES0

23 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7469
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EC == 0b000110

When AArch32 is supported:

Trapped LDC or STC access.

The only architected uses of these instruction are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for an exception from an LDC or STC instruction.

See ISS2 encoding for all other exceptions.

EC == 0b000111

Access to SME, SVE, Advanced SIMD or floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.

Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is
1, or because SVE or Advanced SIMD and floating-point are not implemented. These
are reported with EC value 0b000000.

See ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps.

See ISS2 encoding for all other exceptions.

EC == 0b001010

When FEAT_LS64 is implemented:

Trapped execution of an LD64B or ST64B* instruction.

See ISS encoding for an exception from an LD64B or ST64B* instruction.

See ISS2 encoding for all other exceptions.

EC == 0b001100

When AArch32 is supported:

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCRR or MRRC access.

See ISS2 encoding for all other exceptions.

EC == 0b001101

When FEAT_BTI is implemented:

Branch Target Exception.

See ISS encoding for an exception from Branch Target Identification instruction.

See ISS2 encoding for all other exceptions.

EC == 0b001110

Illegal Execution state.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b010001

When AArch32 is supported:

SVC instruction execution in AArch32 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010100

When FEAT_SYSREG128 is implemented or FEAT_SYSINSTR128 is implemented:

Trapped MSRR, MRRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000.

See ISS encoding for an exception from MSRR, MRRS, or 128-bit System instruction
execution in AArch64 state.

See ISS2 encoding for all other exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7470
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EC == 0b010101

When AArch64 is supported:

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b011000

When AArch64 is supported:

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000, 0b000001, or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space
defined in System instruction class encoding overview, except for those exceptions
reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in
AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b011001

When FEAT_SVE is implemented:

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC
0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

See ISS2 encoding for all other exceptions.

EC == 0b011011

When FEAT_TME is implemented:

Exception from an access to a TSTART instruction at EL0 when SCTLR_EL1.TME0
== 0, EL0 when SCTLR_EL2.TME0 == 0, at EL1 when SCTLR_EL1.TME == 0, at
EL2 when SCTLR_EL2.TME == 0 or at EL3 when SCTLR_EL3.TME == 0.

See ISS encoding for an exception from a TSTART instruction.

See ISS2 encoding for all other exceptions.

EC == 0b011100

When FEAT_FPAC is implemented:

Exception from a PAC Fail

See ISS encoding for a PAC Fail exception.

See ISS2 encoding for all other exceptions.

EC == 0b011101

When FEAT_SME is implemented:

Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, CPTR_EL3.ESM, or an attempted execution of
an instruction that is illegal because of the value of PSTATE.SM or PSTATE.ZA, that is
not reported using EC 0b000000.

See ISS encoding for an exception due to SME functionality.

See ISS2 encoding for all other exceptions.

EC == 0b100000

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

See ISS2 encoding for an exception from an Instruction Abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7471
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EC == 0b100001

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

See ISS2 encoding for an exception from an Instruction Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b100100

Data Abort exception from a lower Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

See ISS2 encoding for an exception from a Data Abort.

EC == 0b100101

Data Abort exception taken without a change in Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

See ISS2 encoding for an exception from a Data Abort.

EC == 0b100110

SP alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b100111

When FEAT_MOPS is implemented:

Memory Operation Exception.

See ISS encoding for an exception from the Memory Copy and Memory Set
instructions.

See ISS2 encoding for all other exceptions.

EC == 0b101000

When AArch32 is supported:

Trapped floating-point exception taken from AArch32 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

See ISS2 encoding for all other exceptions.

EC == 0b101100

When AArch64 is supported:

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7472
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS encoding for an exception from a trapped floating-point exception.

See ISS2 encoding for all other exceptions.

EC == 0b101101

When FEAT_GCS is implemented:

GCS exception.

See ISS encoding for a GCS exception.

See ISS2 encoding for all other exceptions.

EC == 0b101111

SError exception.

See ISS encoding for an SError exception.

See ISS2 encoding for all other exceptions.

EC == 0b110000

Breakpoint exception from a lower Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

See ISS2 encoding for all other exceptions.

EC == 0b110001

Breakpoint exception taken without a change in Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

See ISS2 encoding for all other exceptions.

EC == 0b110010

Software Step exception from a lower Exception level.

See ISS encoding for an exception from a Software Step exception.

See ISS2 encoding for all other exceptions.

EC == 0b110011

Software Step exception taken without a change in Exception level.

See ISS encoding for an exception from a Software Step exception.

See ISS2 encoding for all other exceptions.

EC == 0b110100

Watchpoint exception from a lower Exception level.

See ISS encoding for an exception from a Watchpoint exception.

See ISS2 encoding for an exception from a Watchpoint exception.

EC == 0b110101

Watchpoint exception taken without a change in Exception level.

See ISS encoding for an exception from a Watchpoint exception.

See ISS2 encoding for an exception from a Watchpoint exception.

EC == 0b111000

When AArch32 is supported:

BKPT instruction execution in AArch32 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

See ISS2 encoding for all other exceptions.

EC == 0b111100

When AArch64 is supported:

BRK instruction execution in AArch64 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

See ISS2 encoding for all other exceptions.

EC == 0b111101

When FEAT_EBEP is implemented:

PMU exception

See ISS encoding for a PMU exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7473
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS2 encoding for all other exceptions.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception is one of the
following:

• An SError exception.

• An Instruction Abort exception.

• A PC alignment fault exception.

• An SP alignment fault exception.

• A Data Abort exception for which the value of the ISV bit is 0.

• An Illegal Execution state exception.

• Any debug exception except for Breakpoint instruction exceptions. For
Breakpoint instruction exceptions, this bit has its standard meaning:

— 0b0: 16-bit T32 BKPT instruction.

— 0b1: 32-bit A32 BKPT instruction or A64 BRK instruction.

• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number,
the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between
the Execution states.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the
value 0b11111.

• If the instruction that generated the exception was UNPREDICTABLE, the field takes an
UNKNOWN value that must be either:

— The AArch64 view of the register number of a register that might have been used at
the Exception level from which the exception was taken.

— The value 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7474
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC value, the IL field is set to 1.

This EC value is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

— A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

— A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions or System registers that are not implemented in the
implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution of an MSR or MRS instruction using a _EL12 register name when the Effective value
of HCR_EL2.E2H is not 1.

• Attempted execution, in Debug state, of:

— A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented
in the current Security state.

— A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current
Security state.

— A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.

RES0

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7475
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1. If the value of HCR_EL2.TGE
is 0, this exception is reported using an ESR_EL1.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

CV

24

COND

23 20

RES0

19 10

RN

9 5

RES0

4 3

RV

2

TI

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7476
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]

When FEAT_WFxT is implemented:

Register Number. Indicates the register number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

0b00 WFI trapped.

0b01 WFE trapped.

0b10 When FEAT_WFxT is implemented:

WFIT trapped.

0b11 When FEAT_WFxT is implemented:

WFET trapped.

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• HCR.{TWE, TWI}.

• SCTLR_EL1.{nTWE, nTWI}.

• SCTLR_EL2.{nTWE, nTWI}.

• HCR_EL2.{TWE, TWI}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7477
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7478
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MCR or MRC access using
coproc 0b1111, that are reported using EC value 0b000011:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, trapped to EL1.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, trapped to EL1 or EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7479
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, trapped
to EL1 or EL2.

• HCR.{TRVM, TVM} and HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from
EL1 using AArch32 state, trapped to EL2.

• HCR.TTLB and HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32
state, trapped to EL2.

• HCR.{TSW, TPC, TPU} and HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions
at EL0 and EL1 using AArch32 state, trapped to EL2.

• HCR.TAC and HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state,
trapped to EL2.

• HCR.TIDCP and HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1
using AArch32 state, trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, trapped to EL2.

• HCR.{TID1, TID2, TID3} and HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1
using AArch32 state, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to error record registers at EL1 using AArch32 state, trapped to EL2.

• HCPTR.TCPAC and CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state,
trapped to EL2.

• HSTR.T<n> and HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, trapped to EL2.

• CNTHCTL.PL1PCEN and CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from
EL0 and EL1 using AArch32 state, trapped to EL2.

• HDCR.TTRF, for Non-secure accesses to trace filter control registers from system registers using AArch32
state, trapped to EL2.

• HDCR.{TPM, TPMCR} and MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers
from EL0 and EL1 using AArch32 state, trapped to EL2.

• HCPTR.TAM and CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using
AArch32 state, trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
trapped to EL3.

• If FEAT_FGT is implemented, access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions from an MCR or MRC access using
coproc 0b1110, that are reported using EC value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, trapped to EL1 or EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7480
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• HCR.TID0 and HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using
AArch32, trapped to EL2.

• HCPTR.TTA and CPTR_EL2.TTA, for accesses to trace registers using AArch32, trapped to EL2.

• HDCR.TDRA and MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR
using AArch32, trapped to EL2.

• HDCR.TDOSA and MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state,
trapped to EL2.

• HDCR.TDA and MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, trapped to
EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, trapped to EL3.

The following fields describe configuration settings for generating exceptions from a VMSR or VMRS access, that
are reported using EC value 0b001000:

• HCR.TID0 and HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32
state, VMRS access trapped to EL2.

• HCR.TID3 and HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and
MVFR2, VMRS access trapped to EL2.

• HCPTR.{TCP10, TCP11}, for Non-secure accesses to FPSCR, FPSID, FPEXC, MVFR0, MVFR1, and
MVFR2, trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

ISS, bits [24:0]

0b0000000000000000000000000 When FEAT_LS64_V is implemented:

ST64BV instruction trapped.

0b0000000000000000000000001 When FEAT_LS64_ACCDATA is implemented:

ST64BV0 instruction trapped.

0b0000000000000000000000010 When FEAT_LS64 is implemented:

LD64B or ST64B instruction trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

ISS

24 0

CV

24

COND

23 20

Opc1

19 16 15

Rt2

14 10

Rt

9 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7481
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7482
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MCRR or MRRC access
using coproc 0b1111, that are reported using EC value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, trapped to EL1 or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, trapped to EL1 or EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7483
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• HCR.{TRVM, TVM} and HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from
EL1 using AArch32 state, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to error record registers at EL1 using AArch32 state, trapped to EL2.

• HSTR.T<n> and HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, trapped to EL2.

• CNTHCTL.{PL1PCEN, PL1PCTEN} and CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the
Generic Timer registers from EL0 and EL1 using AArch32 state, trapped to EL2.

• HDCR.TPM and MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0
and EL1 using AArch32 state, trapped to EL2.

• HCPTR.TAM and CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions from an MCRR or MRRC access
using coproc 0b1110, that are reported using EC value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, trapped to EL1 or EL2.

• HDCR.TDRA and MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR
using AArch32, trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, trapped to EL1 or EL2.

• HCPTR.TTA and CPTR_EL2.TTA, for accesses to trace registers using AArch32, trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace
registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7484
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7485
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC
instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and
memory-mapped registers and translation table entries.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings from an LDC or STC access for the traps that are reported
using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32 state, trapped to
EL1 or EL2.

• HDCR.TDA and MDCR_EL2.TDA, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32
state, trapped to EL2.

• MDCR_EL3.TDA, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32 state, trapped to
EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7486
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point
functionality, resulting from the FPEN and TFP traps

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

CV

24

COND

23 20

RES0

19 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7487
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• HCPTR.{TCP10, TCP11}, for Non-secure accesses to Advanced SIMD and floating-point registers and
instructions, trapped to EL2.

• HCPTR.TASE, for Non-secure accesses to Advanced SIMD functionality, trapped to EL2.

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.

• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.

• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1, trapped
to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception levels,
trapped to EL3.

ISS encoding for a PMU exception

RES0

24 0

RES0

24 1 0

SYNC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7488
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [24:1]

Reserved, RES0.

SYNC, bit [0]

Indicates whether the exception was taken synchronously or asynchronously.

0b0 The exception was taken asynchronously because an overflow status flag was set.

0b1 When FEAT_SEBEP is implemented:

The exception was taken synchronously because PSTATE.PPEND was set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about PC alignment fault exceptions, see PC alignment checking.

SP alignment checking describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and Memory Set instructions

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

0b0 CPYFE*, CPYFM*, CPYE*, and CPYM* instructions.

0b1 SETE*, SETM*, SETGE*, and SETGM* instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

0b0 Not a SETGM* or SETGE* instruction.

0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options: the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of
the instruction.

RES0

24 0

24 23

Options

22 19 18 17 16 15

destreg

14 10

srcreg

9 5

sizereg

4 0

MemInst
isSETG

FromEpilogue

RES0
OptionA

WrongOption
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7489
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For Memory Set instructions:

• Bits[22:21] are RES0.

• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

0b0 Not an epilogue instruction.

0b1 CPYE*, CPYFE*, SETE*, or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

0b0 WrongOption is false.

0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

0b0 OptionB indicated by PSTATE.C is 0.

0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered
or set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7490
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 16

imm16

15 0

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7491
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions for the encoding values returned by an
instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL1.

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7492
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0, for accesses to the Performance Monitor registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or
MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,
trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7493
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to
EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR
or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• If FEAT_SPE is implemented:

— MDCR_EL3.NSPB for accesses to Statistical Profiling and Profiling Buffer control registers, using
AArch64 state, MSR or MRS access at EL1 and EL2 trapped to EL3.

— MDCR_EL2.TPMS for accesses to SPE registers, using AArch64 state, MSR or MRS access at EL1
trapped to EL2.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls that use
this EC value:

— HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.

— HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:

— SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped
to EL3.

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or
MRS access at EL0 and EL1 trapped to EL2.

— HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.

— HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 state trapped to EL2.

— HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and
EL1 trapped to EL2.

• If FEAT_RNG_TRAP is implemented, SCR_EL3.TRNDR for reads of RNDR and RNDRRS using
AArch64 state, MRS access trapped to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7494
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If FEAT_SME is implemented:

— CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to EL3.

— CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to EL3.

— SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.

— SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.

— SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to EL3.

• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

• If FEAT_FGT2 is implemented:

— SCR_EL3.FGTEn2, for accesses to the fine-grained trap registers, MSR or MRS access at EL2
trapped to EL3.

— HFGRTR2_EL2 for reads and HFGWTR2_EL2 for writes of registers, using AArch64 state, using
MSR or MRS access at EL1 trapped to EL2.

— HDFGRTR2_EL2 for reads and HDFGWTR2_EL2 for writes of registers, using AArch64 state, using
MSR or MRS access at EL0 and EL1 trapped to EL2.

— HFGITR2_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.

• If FEAT_ITE is implemented, MDCR_EL3.EnITE, for accesses to Instrumentation trace registers, using
AArch64 state, MSR or MRS access, trapped to EL3.

• If FEAT_MEC is implemented, SCR_EL3.MECEn, for accesses to MECID registers at EL2, trapped to EL3.

• If FEAT_SPE_FDS is implemented, MDCR_EL3.EnPMS3 for accesses to SPE registers, using AArch64
state, MSR or MRS access at EL1 and EL2 trapped to EL3.

• If FEAT_RASv2 is implemented, SCR_EL3.TWERR, for accesses to Error Record registers, MSR or MRS
access at EL1 and EL2 trapped to EL3.

• If FEAT_Debugv8p9 is implemented, MDCR_EL3.EBWE for accesses of MDSELR_EL1, using AArch64
state, MRS or MSR access at EL2 and EL1 trapped to EL3.

• If FEAT_PMUv3p9, FEAT_SPMU, FEAT_EBEP, or FEAT_PMUv3_SS is implemented,
MDCR_EL3.EnPM2, for accesses to PMU registers, using AArch64 state, MSR or MRS access at EL2, EL1,
and EL0, trapped to EL3.

• If FEAT_PMUv3_SS is implemented, MDCR_EL3.EnPMSS, for accesses to PMU Snapshot registers, using
AArch64 state, MSR or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_THE is implemented, SCR_EL3.RCWMASKEn for accesses to RCWMASK_EL1 and
RCWSMASK_EL1, using AArch64 state, MSR or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_AIE is implemented, SCR_EL3.AIEn for accesses to Extended Memory Attribute registers, MSR
or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_S1PIEx, FEAT_S2PIEx, FEAT_S1POEx, or FEAT_S2POEx is implemented, SCR_EL3.PIEn for
accesses to Permission Indirection, Overlay registers, MSR or MRS access at EL2, EL1 and EL0 trapped to
EL3.

ISS encoding for an exception from MSRR, MRRS, or 128-bit System instruction execution in
AArch64 state

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 6 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7495
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:6]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

Note

This value represents register pair of X[Rt:0], X[Rt:1].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, MSRR instructions.

0b1 Read access, MRRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MSRR or MRRS access that
are reported using EC value 0b010100:

• If FEAT_FGT is implemented:

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, accesses at
EL1 trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7496
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If FEAT_FGT2 is implemented:

— HFGRTR2_EL2.nRCWSMASK_EL1 for reads and HFGWTR2_EL2.nRCWSMASK_EL1 for
writes of RCWSMASK_EL1, using AArch64 state, accesses at EL1 trapped to EL2.

• If FEAT_SYSREG128 is implemented:

— SCTLR2_EL1.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL0 trapped to EL1.

— SCTLR2_EL2.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL0 trapped to EL2.

— HCRX_EL2.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL1 and EL0 trapped to EL2.

— SCR_EL3.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses
at EL2, EL1, and EL0 trapped to EL3.

• If FEAT_D128 is implemented:

— HCR_EL2.{TRVM, TVM} for accesses to TTBR0_EL1 and TTBR1_EL1, accesses at EL1 and EL0
trapped to EL2.

— HCRX_EL2.D128En for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses at
EL1 trapped to EL2.

— SCR_EL3.D128En for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses at
EL2 and EL1 trapped to EL3.

• If FEAT_THE is implemented, SCR_EL3.RCWMASKEn for accesses to RCWMASK_EL1 and
RCWSMASK_EL1, using AArch64 state, accesses at EL2 and EL1 trapped to EL3.

ISS encoding for an exception from an Instruction Abort

When FEAT_S1POE is implemented, if a memory access generates a Instruction Abort due to a Permission fault,
the ISS2 encoding for an exception from an Instruction Abort includes further information about the exception.

Bits [24:15]

Reserved, RES0.

PFV, bit [14]

When FEAT_PFAR is implemented and (IFSC == 0b010000, or IFSC == 0b01001x or IFSC ==
0b0101xx):

FAR Valid. Describes whether the PFAR_EL1 is valid.

0b0 PFAR_EL1 is UNKNOWN.

0b1 PFAR_EL1 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [13]

Reserved, RES0.

RES0

24 15 14 13

SET

12 11 10

EA

9 8 7 6

IFSC

5 0

PFV
RES0

FnV

RES0
S1PTW

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7497
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SET, bits [12:11]

When FEAT_RAS is implemented and (IFSC == 0b010000, or IFSC == 0b01001x or IFSC ==
0b0101xx):

Synchronous Error Type. Describes the PE error state after taking the Instruction Abort exception.

0b00 Recoverable state (UER).

0b10 When FEAT_RASv2 is not implemented:

Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External abort exception might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7498
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7499
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7500
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception due to SME functionality

The accesses covered by this trap include:

• Execution of SME instructions.

• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.

• Direct accesses of SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3.

Bits [24:3]

Reserved, RES0.

SMTC, bits [2:0]

SME Trap Code. Identifies the reason for instruction trapping.

0b000 Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not reported using
EC 0b000000.

0b001 Advanced SIMD, SVE, or SVE2 instruction trapped because PSTATE.SM is 1.

0b010 SME instruction trapped because PSTATE.SM is 0.

0b011 SME instruction trapped because PSTATE.ZA is 0.

0b100 When FEAT_SME2 is implemented:

Access to the SME2 ZT0 register trapped as a result of SMCR_EL1.EZT0,
SMCR_EL2.EZT0, or SMCR_EL3.EZT0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value 0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR and SMCR_EL1 System registers at EL1 and EL0, trapped
to EL1 or EL2.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the PE
is in Streaming SVE mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2 at EL2,
EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

• If FEAT_SME2 is implemented:

— SMCR_EL1.EZT0, for accesses to ZT0 at EL1 and EL0, trapped to EL1 or EL2.

— SMCR_EL2.EZT0, for accesses to ZT0 at EL2, EL1, and EL0, trapped to EL2.

— SMCR_EL3.EZT0, for accesses to ZT0 at any Exception level, trapped to EL3.

RES0

24 3

SMTC

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7501
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from a Data Abort

The ISS2 encoding for an exception from a Data Abort includes further information about the exception when any
of the following features are implemented:

• FEAT_LS64_V.

• FEAT_LS64_ACCDATA.

• FEAT_S1POE.

• FEAT_S1PIE.

• FEAT_GCS.

• FEAT_MTE_CANONICAL_TAGS.

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL1, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an
LD64B or ST64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault.

In ESR_EL1, ISV is 1 when FEAT_LS64_V is implemented and a memory access generated by an
ST64BV instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

In ESR_EL1, ISV is 1 when FEAT_LS64_ACCDATA is implemented and a memory access
generated by an ST64BV0 instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

For other faults reported in ESR_EL1, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register
specified with 0b11111, including those with Acquire/Release semantics, but excluding Load
Exclusive or Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:

— Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB,
STLB, or STRBT instruction.

— Is not performing register writeback.

— Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a
memory access generated by an LD64B or ST64B instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

24

SAS

23 22 21 20 16 15 14 13 12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV
SSE

Bits [20:16]
Bit [15]

Bit [14]

WnR
S1PTW

FnV
Bits [12:11]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7502
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a
memory access generated by an ST64BV instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is
implemented and a memory access generated by an ST64BV0 instruction generates a Data Abort
for a Translation fault, Access flag fault, or Permission fault.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to EL1,
ESR_EL1.FnV is 0 and FAR_EL1 is valid.

When FEAT_MOPS is implemented, for a synchronous Data Abort on a Memory Copy and
Memory Set instruction, ISV is 0.

When FEAT_MTE is implemented, for a synchronous Data Abort on an instruction that directly
accesses Allocation Tags, ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0b11.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]

When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data
item must be sign extended.

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7503
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[20:16]

When ISV == 1:

SRT

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See Mapping of the general-purpose registers between the Execution states.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0, FEAT_RASv2 is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or
DFSC == 0b0101xx):

Bits[4:2] of bits [20:16]

Reserved, RES0.

WU, bits[1:0] of bits [20:16]

Write Update. Describes whether a store instruction that generated an External abort updated the
location.

0b00 Not a store instruction or translation table update, or the location might have been
updated.

0b10 Store instruction or translation table update that did not update the location.

0b11 Store instruction or translation table update that updated the location.

In the description of this field, a store instruction is any memory-writing instruction that explicitly
performs a store. This includes instructions that both read and write memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[15]

When ISV == 1:

SF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7504
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Sixty Four bit general-purpose register transfer. Width of the register accessed by the instruction is
64-bit.

0b0 Instruction loads/stores a 32-bit general-purpose register.

0b1 Instruction loads/stores a 64-bit general-purpose register.

Note
This field specifies the register width identified by the instruction, not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 1.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0:

FnP

FAR not Precise.

0b0 The FAR holds the faulting virtual address that generated the Data Abort.

0b1 When FEAT_SME is implemented or FEAT_SVE is implemented:

The FAR holds any virtual address within the naturally-aligned granule that contains the
faulting virtual address that generated a Data Abort due to an SVE contiguous vector
load/store instruction, or an SME load/store instruction.

For more information about the naturally-aligned fault granule, see FAR_ELx (for
example, FAR_EL1).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[14]

When ISV == 1:

AR

Acquire/Release.

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7505
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_PFAR is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or DFSC ==
0b0101xx):

PFV

FAR Valid. Describes whether the PFAR_EL1 is valid.

0b0 PFAR_EL1 is UNKNOWN.

0b1 PFAR_EL1 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [13]

Reserved, RES0.

Bits[12:11]

When (DFSC == 0b00xxxx || DFSC == 0b10101x) && DFSC != 0b0000xx:

LST

Load/Store Type. Used when a Translation fault, Access flag fault, or Permission fault generates a
Data Abort.

0b00 The instruction that generated the Data Abort is not specified.

0b01 When FEAT_LS64_V is implemented:

An ST64BV instruction generated the Data Abort.

0b10 When FEAT_LS64 is implemented:

An LD64B or ST64B instruction generated the Data Abort.

0b11 When FEAT_LS64_ACCDATA is implemented:

An ST64BV0 instruction generated the Data Abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_RAS is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or DFSC ==
0b0101xx):

SET

Synchronous Error Type. Used when a synchronous External abort, not on a Translation table walk
or hardware update of the Translation table, generated the Data Abort. Describes the PE error state
after taking the Data Abort exception.

0b00 Recoverable state (UER).

0b10 When FEAT_RASv2 is not implemented:

Uncontainable (UC).

0b11 Restartable state (UEO).

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External abort exception might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7506
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7507
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• If FEAT_RASv2 is implemented, an External abort on an Atomic access, reported with
ESR_EL1.WU set to 0b00.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 When FEAT_MTE2 is implemented:

Synchronous Tag Check Fault.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7508
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100001 Alignment fault.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7509
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped
floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while
executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate
trapped floating-point exceptions that occurred. For more information, see
Floating-point exceptions and exception traps.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more
than one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point
exception from an instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is
RES1.

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

RES0 TFV IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7510
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7511
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

ISS encoding for a GCS exception

Bit [24]

Reserved, RES0.

ExType, bits [23:20]

The first level classification of GCS exceptions.

0b0000 The exception reported is a Guarded Control Stack Data Check Exception.

0b0001 The exception reported is an EXLOCK Exception.

0b0010 The exception reported is a trap exception on GCSSTR or GCSSTTR instruction
execution.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:15]

Reserved, RES0.

Raddr, bits [14:10]

When ExType == 0b0010:

Indicates the data address register number supplied in the instruction that has been trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[9:5]

When ExType == 0b0000:

Rn

Indicates the register number supplied in the instruction that caused the Guarded Control Stack Data
Check Exception.

24

ExType

23 20

RES0

19 15

Raddr

14 10

Bits [9:5]

9 5

IT

4 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7512
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is UNKNOWN if ESR_EL1.ISS.IT is reported as 0b00101 or 0b01000

This field is 0b11111 if ESR_EL1.ISS.IT is reported as 0b01001

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ExType == 0b0010:

Rvalue

Indicates the data value register number supplied in the instruction that has been trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IT, bits [4:0]

When ExType == 0b0000:

Type of the instruction that caused the Guarded Control Stack Data Check Exception.

0b00000 Guarded Control Stack Data Check Exception is from a procedure return instruction
without Pointer authentication.

0b00001 Guarded Control Stack Data Check Exception is from a GCSPOPM instruction.

0b00010 Guarded Control Stack Data Check Exception is from a procedure return instruction
with Pointer authentication that uses key A.

0b00011 Guarded Control Stack Data Check Exception is from a procedure return instruction
with Pointer authentication that uses key B.

0b00100 Guarded Control Stack Data Check Exception is from a GCSSS1 instruction.

0b00101 Guarded Control Stack Data Check Exception is from a GCSSS2 instruction.

0b01000 Guarded Control Stack Data Check Exception is from a GCSPOPCX instruction.

0b01001 Guarded Control Stack Data Check Exception is from a GCSPOPX instruction.

All other values are reserved

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b101101 and
ExType value 0b0010:

• GCSCRE0_EL1.STREn

• GCSCR_EL1.STREn.

• GCSCR_EL2.STREn.

• GCSCR_EL3.STREn.

• HFGITR_EL2.nGCSSTR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7513
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an SError exception

Note

In earlier versions of the architecture, an SError exception is referred to as an SError interrupt or an asynchronous
External abort exception.

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

0b0 Bits [23:0] of the ISS field holds the fields described in this encoding.

Note
If FEAT_RAS is not implemented, bits [23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that
can be used to provide additional information about the SError exception.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:19]

Reserved, RES0.

ELS, bit [18]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Meaning of ELR_ELx.

0b0 Asynchronous. Does not indicate the trigger for the exception.

0b1 Synchronous. The exception was triggered by the instruction at ELR_ELx.

SError exceptions that report this field is 1 are not required to be precise.

The ESR_EL1.AET field describes whether the exception is precise or imprecise.

Corrected, Recoverable or Restartable exceptions are precise. Unrecoverable or Uncontainable
exceptions are imprecise.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

24

RES0

23 19 18

WU

17 16 15 14 13

AET

12 10

EA

9 8 7 6

DFSC

5 0

IDS ELS
VFV

PFV

WnR
WnRV

RES0
IESB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7514
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
WU, bits [17:16]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Write Update. Describes whether a store instruction that generated an External abort updated the
location.

0b00 Not a store instruction or translation table update, or the location might have been
updated.

0b10 Store instruction or translation table update that did not update the location.

0b11 Store instruction or translation table update that updated the location.

In the description of this field, a store instruction is any memory-writing instruction that explicitly
performs a store. This includes instructions that both read and write memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VFV, bit [15]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

FAR Valid. Indicates the FAR_EL1 register contains a valid virtual address.

0b0 FAR_EL1 is not valid, and holds an UNKNOWN value.

0b1 FAR_EL1 contains a valid virtual address associated with the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PFV, bit [14]

When FEAT_PFAR is implemented and DFSC == 0b010001:

FAR Valid. Describes whether the PFAR_EL1 is valid.

0b0 PFAR_EL1 is UNKNOWN.

0b1 PFAR_EL1 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented and DFSC == 0b010001:

Implicit error synchronization event.

0b0 The SError exception was either not synchronized by the implicit error synchronization
event or not taken immediately.

0b1 The SError exception was synchronized by the implicit error synchronization event and
taken immediately.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7515
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
AET, bits [12:10]

When FEAT_RAS is implemented and DFSC == 0b010001:

Asynchronous Error Type.

Describes the PE error state after taking the SError exception.

0b000 Uncontainable (UC).

0b001 Unrecoverable state (UEU).

0b010 Restartable state (UEO).

0b011 Recoverable state (UER).

0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError exception, the overall PE error state is reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When FEAT_RAS is implemented and DFSC == 0b010001:

External abort type. Provides an IMPLEMENTATION DEFINED classification of External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

WnRV, bit [7]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

ESR_EL1.WnR valid.

0b0 ESR_EL1.WnR is not valid and has been set to 0b0.

0b1 ESR_EL1.WnR is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WnR, bit [6]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Write-not-Read. When the WnRV field is 0b1, indicates whether an exception was caused by an
instruction writing to a memory location, or by an instruction reading from a memory location.

0b0 Exception was caused by an instruction reading from a memory location.

0b1 Exception was caused by an instruction writing to a memory location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7516
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing this bit has the following behavior:

• This bit is RES0 if ESR_EL1.WnRV==0b0.

• This bit is not valid and reads UNKNOWN if an External abort on a Atomic access, reported
with ESR_EL1.WU == 0b00.

• Otherwise RW.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

Data Fault Status Code.

0b000000 Uncategorized error.

0b010001 Asynchronous SError exception.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug exception

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see Breakpoint exceptions.

• For exceptions from AArch32, see Breakpoint exceptions and Vector Catch exceptions.

ISS encoding for an exception from a Software Step exception

RES0

24 6

IFSC

5 0

24

RES0

23 7

EX

6

IFSC

5 0

ISV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7517
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

0b0 An instruction other than a Load-Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Software Step exceptions.

ISS encoding for an exception from a Watchpoint exception

Bit [24]

Reserved, RES0.

WPT, bits [23:18]

When FEAT_Debugv8p2 is implemented:

Watchpoint number.

All other values are reserved.

Otherwise:

Reserved, RES0.

WPTV, bit [17]

When FEAT_Debugv8p2 is implemented:

Watchpoint number Valid.

0b0 The WPT field is invalid, and holds an UNKNOWN value.

24

WPT

23 18 17 16 15

RES0

14 11 10 9

CM

8 7 6

DFSC

5 0

RES0 WPTV FnP
WPF

FnV
RES0

WnR
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7518
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The WPT field is valid, and holds the number of a watchpoint that triggered a
Watchpoint exception.

If FEAT_Debugv8p9 is implemented, value 0b0 is not permitted.

When a Watchpoint exception is triggered by a watchpoint match:

• If FEAT_Debugv8p9 is implemented or the PE sets any of FnV, FnP, or WPF to 1, then the
PE sets WPTV to 1.

• Otherwise, the PE sets WPTV to an IMPLEMENTATION DEFINED value, 0 or 1.

Otherwise:

Reserved, RES0.

WPF, bit [16]

Watchpoint might be false-positive.

0b0 The watchpoint matched an address or address range that was accessed by the
instruction.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The watchpoint matched an address or address range that might not have been accessed
by the instruction.

Arm strongly recommends that this bit is set to 0, other than when one of the following instructions
might generate a watchpoint match for an address or address range that the instruction does not
access:

• An SVE contiguous vector load/store instruction, when the PE is in Streaming SVE mode.

• An SME load/store instruction.

FnP, bit [15]

FAR not Precise.

This field only has meaning if the FAR is valid; that is, when the FnV field is 0. If the FnV field is
1, the FnP field is 0.

0b0 If the FnV field is 0, the FAR holds the virtual address of an access or set of contiguous
accesses that triggered a Watchpoint exception.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The FAR holds any address within the smallest implemented translation granule that
contains the virtual address of an access or set of contiguous accesses that triggered a
Watchpoint exception.

Bits [14:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid.

0b0 The FAR is valid, and its value is as described by the FnP field.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The FAR is invalid, and holds an UNKNOWN value.

Bit [9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance
instruction:

0b0 The Watchpoint exception was not generated by the execution of one of the System
instructions identified in the description of value 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7519
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The Watchpoint exception was generated by the execution of a cache maintenance
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their execution does not cause this field
to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing
to a memory location, or by an instruction reading from a memory location.

0b0 Watchpoint exception caused by an instruction reading from a memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory location.

For Watchpoint exceptions on cache maintenance instructions, this bit always returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates
the Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions.

ISS encoding for an exception from execution of a Breakpoint instruction

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Breakpoint Instruction exceptions.

RES0

24 16

Comment

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7520
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from a TSTART instruction

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level
Programmers’ Model.

ISS encoding for a PAC Fail exception

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.

0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 10

Rd

9 5

RES0

4 0

RES0

24 2 1 0

BTYPE

RES0

24 2 1 0

Exception as a result of an Instruction key or a Data key Exception
as a
result of
an A key
or a B
key
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7521
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.

0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate a PAC Fail exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTDA, AUTDZA.

• AUTDB, AUTDZB.

• AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA.

• AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB.

If FEAT_FPACCOMBINE is implemented, the following instructions generate a PAC Fail exception when the
Pointer Authentication Code (PAC) is incorrect:

• RETAA, RETAB.

• BLRAA, BLRAAZ, BLRAB, BLRABZ.

• BRAA, BRAB, BRAAZ, BRABZ.

• ERETAA, ERETAB.

• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic ESR_EL1 or ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x138];
 else
 X[t, 64] = ESR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = ESR_EL2;
 else
 X[t, 64] = ESR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7522
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = ESR_EL1;

MSR ESR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x138] = X[t, 64];
 else
 ESR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 ESR_EL2 = X[t, 64];
 else
 ESR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ESR_EL1 = X[t, 64];

MRS <Xt>, ESR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x138];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = ESR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = ESR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7523
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR ESR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x138] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 ESR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 ESR_EL1 = X[t, 64];
 else
 UNDEFINED;

MRS <Xt>, ESR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = ESR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ESR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ESR_EL2;

MSR ESR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 ESR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7524
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ESR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ESR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7525
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.41 ESR_EL2, Exception Syndrome Register (EL2)

The ESR_EL2 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL2.

Configurations

AArch64 System register ESR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ESR_EL2 is a 64-bit register.

Field descriptions

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of
ESR_EL2 is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:56]

Reserved, RES0.

ISS2, bits [55:32]

ISS2 encoding for an exception, the bit assignments are:

ISS2 encoding for an exception from a Data Abort

Bits [23:11]

Reserved, RES0.

TnD, bit [10]

When FEAT_MTE_CANONICAL_TAGS is implemented:

Tag not Data.

RES0

63 56

ISS2

55 32

EC

31 26

IL

25

ISS

24 0

RES0

23 11 10 9 8 7 6 5

Xs

4 0

TnD
TagAccess

GCS

DirtyBit
Overlay

AssuredOnly
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7526
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If a memory access generates a Data Abort for a stage 1 Permission fault, this field indicates whether
the fault is due to an Allocation Tag access.

0b0 Permission fault is not due to a write of an Allocation Tag to Canonically Tagged
memory.

0b1 Permission fault is due to a write of an Allocation Tag to Canonically Tagged memory.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TagAccess, bit [9]

When FEAT_MTE_PERM is implemented:

NoTagAccess fault.

If a memory access generates a Data Abort for a Permission fault, this field indicates whether the
fault is due to the NoTagAccess memory attribute.

0b0 Permission fault is not due to the NoTagAccess memory attribute.

0b1 Permission fault is due to the NoTagAccess memory attribute.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

GCS, bit [8]

When FEAT_GCS is implemented:

Guarded Control Stack data access.

If a memory access generates a Data Abort, this field indicates whether the fault is due to a Guarded
Control Stack data access.

0b0 The Data Abort is not due to a Guarded control stack data access.

0b1 The Data Abort is due to a Guarded control stack data access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [7]

When FEAT_THE is implemented:

AssuredOnly flag.

If a memory access generates a stage 2 Data Abort for a Permission fault, this field holds
information about the fault.

0b0 The Data Abort is not due to AssuredOnly.

0b1 The Data Abort is due to AssuredOnly.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7527
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Overlay, bit [6]

When FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Overlay flag.

If a memory access generates a Data Abort for a Permission fault, this field holds information about
the fault.

0b0 The Data Abort is not due to Overlay Permissions.

0b1 The Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DirtyBit, bit [5]

When FEAT_S1PIE is implemented or FEAT_S2PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission,
this field holds information about the fault.

0b0 Permission Fault is not due to dirty state.

0b1 Permission Fault is due to dirty state.

For any other fault or Access, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Xs, bits [4:0]

When FEAT_LS64 is implemented:

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort exception for a Translation fault, Access flag fault, or Permission fault, then
this field holds register specifier, Xs.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort exception for a Translation fault, Access flag fault, or Permission
fault, then this field holds register specifier, Xs.

Otherwise, this field is RES0.

Otherwise:

Reserved, RES0.

ISS2 encoding for an exception from an Instruction Abort

RES0

23 8 7 6

RES0

5 0

AssuredOnly Overlay
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7528
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [23:8]

Reserved, RES0.

AssuredOnly, bit [7]

When FEAT_THE is implemented:

AssuredOnly flag.

If a memory access generates a Instruction Abort for a Permission fault, then this field holds
information about the fault.

0b0 Instruction Abort is not due to AssuredOnly.

0b1 Instruction Abort is due to stage 2 AssuredOnly attribute.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Overlay, bit [6]

When FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Overlay flag.

If a memory access generates a Instruction Abort for a Permission fault, then this field holds
information about the fault.

0b0 Instruction Abort is not due to Overlay Permissions.

0b1 Instruction Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

ISS2 encoding for an exception from a Watchpoint exception

Bits [23:9]

Reserved, RES0.

GCS, bit [8]

When FEAT_GCS is implemented:

Guarded control stack data access.

Indicates that the Watchpoint exception is due to a Guarded control stack data access.

0b0 The Watchpoint exception is not due to a Guarded control stack data access.

0b1 The Watchpoint exception is due to a Guarded control stack data access.

RES0

23 9 8

RES0

7 0

GCS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7529
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

ISS2 encoding for all other exceptions

Bits [23:0]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.

• The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

See ISS2 encoding for all other exceptions.

EC == 0b000001

Trapped WF* instruction execution.

Conditional WF* instructions that fail their condition code check do not cause an
exception.

See ISS encoding for an exception from a WF* instruction.

See ISS2 encoding for all other exceptions.

EC == 0b000011

When AArch32 is supported:

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000100

When AArch32 is supported:

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCRR or MRRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000101

When AArch32 is supported:

Trapped MCR or MRC access with (coproc==0b1110).

RES0

23 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7530
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000110

When AArch32 is supported:

Trapped LDC or STC access.

The only architected uses of these instruction are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for an exception from an LDC or STC instruction.

See ISS2 encoding for all other exceptions.

EC == 0b000111

Access to SME, SVE, Advanced SIMD or floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.

Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is
1, or because SVE or Advanced SIMD and floating-point are not implemented. These
are reported with EC value 0b000000.

See ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps.

See ISS2 encoding for all other exceptions.

EC == 0b001000

When AArch32 is supported:

Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

EC == 0b001001

When FEAT_PAuth is implemented:

Trapped use of a Pointer authentication instruction because HCR_EL2.API == 0 ||
SCR_EL3.API == 0.

See ISS encoding for an exception from a Pointer Authentication instruction when
HCR_EL2.API == 0 || SCR_EL3.API == 0.

See ISS2 encoding for all other exceptions.

EC == 0b001010

When FEAT_LS64 is implemented:

An exception from an LD64B or ST64B* instruction.

See ISS encoding for an exception from an LD64B or ST64B* instruction.

See ISS2 encoding for all other exceptions.

EC == 0b001100

When AArch32 is supported:

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCRR or MRRC access.

See ISS2 encoding for all other exceptions.

EC == 0b001101

When FEAT_BTI is implemented:

Branch Target Exception.

See ISS encoding for an exception from Branch Target Identification instruction.

See ISS2 encoding for all other exceptions.

EC == 0b001110

Illegal Execution state.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7531
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS2 encoding for all other exceptions.

EC == 0b010001

When AArch32 is supported:

SVC instruction execution in AArch32 state.

This is reported in ESR_EL2 only when the exception is generated because the value of
HCR_EL2.TGE is 1.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010010

When AArch32 is supported:

HVC instruction execution in AArch32 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010011

When AArch32 is supported:

SMC instruction execution in AArch32 state, when SMC is not disabled.

This is reported in ESR_EL2 only when the exception is generated because the value of
HCR_EL2.TSC is 1.

See ISS encoding for an exception from SMC instruction execution in AArch32 state.

See ISS2 encoding for all other exceptions.

EC == 0b010100

When FEAT_SYSREG128 is implemented or FEAT_SYSINSTR128 is implemented:

Trapped MSRR, MRRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000.

See ISS encoding for an exception from MSRR, MRRS, or 128-bit System instruction
execution in AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b010101

When AArch64 is supported:

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010110

When AArch64 is supported:

HVC instruction execution in AArch64 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010111

When AArch64 is supported:

SMC instruction execution in AArch64 state, when SMC is not disabled.

This is reported in ESR_EL2 only when the exception is generated because the value of
HCR_EL2.TSC is 1.

See ISS encoding for an exception from SMC instruction execution in AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b011000

When AArch64 is supported:

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000, 0b000001 or 0b000111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7532
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This includes all instructions that cause exceptions that are part of the encoding space
defined in System instruction class encoding overview, except for those exceptions
reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in
AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b011001

When FEAT_SVE is implemented:

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC
0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

See ISS2 encoding for all other exceptions.

EC == 0b011010

When FEAT_FGT is implemented or FEAT_NV is implemented:

Trapped ERET, ERETAA, or ERETAB instruction execution.

See ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction.

See ISS2 encoding for all other exceptions.

EC == 0b011011

When FEAT_TME is implemented:

Exception from an access to a TSTART instruction at EL0 when SCTLR_EL1.TME0
== 0, EL0 when SCTLR_EL2.TME0 == 0, at EL1 when SCTLR_EL1.TME == 0, at
EL2 when SCTLR_EL2.TME == 0 or at EL3 when SCTLR_EL3.TME == 0.

See ISS encoding for an exception from a TSTART instruction.

See ISS2 encoding for all other exceptions.

EC == 0b011100

When FEAT_FPAC is implemented:

Exception from a PAC Fail

See ISS encoding for a PAC Fail exception.

See ISS2 encoding for all other exceptions.

EC == 0b011101

When FEAT_SME is implemented:

Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, CPTR_EL3.ESM, or an attempted execution of
an instruction that is illegal because of the value of PSTATE.SM or PSTATE.ZA, that is
not reported using EC 0b000000.

See ISS encoding for an exception due to SME functionality.

See ISS2 encoding for all other exceptions.

EC == 0b100000

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

See ISS2 encoding for an exception from an Instruction Abort.

EC == 0b100001

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7533
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS2 encoding for an exception from an Instruction Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b100100

Data Abort exception from a lower Exception level, excluding Data Abort exceptions
taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of
nested virtualization support.

These Data Abort exceptions might be generated from Exception levels in any
Execution state.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

See ISS2 encoding for an exception from a Data Abort.

EC == 0b100101

Data Abort exception without a change in Exception level, or Data Abort exceptions
taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of
nested virtualization support.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

See ISS2 encoding for an exception from a Data Abort.

EC == 0b100110

SP alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b100111

When FEAT_MOPS is implemented:

Memory Operation Exception.

See ISS encoding for an exception from the Memory Copy and Memory Set
instructions.

See ISS2 encoding for all other exceptions.

EC == 0b101000

When AArch32 is supported:

Trapped floating-point exception taken from AArch32 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

See ISS2 encoding for all other exceptions.

EC == 0b101100

When AArch64 is supported:

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7534
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS2 encoding for all other exceptions.

EC == 0b101101

When FEAT_GCS is implemented:

GCS exception.

See ISS encoding for a GCS exception.

See ISS2 encoding for all other exceptions.

EC == 0b101111

SError exception.

See ISS encoding for an SError exception.

See ISS2 encoding for all other exceptions.

EC == 0b110000

Breakpoint exception from a lower Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

See ISS2 encoding for all other exceptions.

EC == 0b110001

Breakpoint exception taken without a change in Exception level.

See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

See ISS2 encoding for all other exceptions.

EC == 0b110010

Software Step exception from a lower Exception level.

See ISS encoding for an exception from a Software Step exception.

See ISS2 encoding for all other exceptions.

EC == 0b110011

Software Step exception taken without a change in Exception level.

See ISS encoding for an exception from a Software Step exception.

See ISS2 encoding for all other exceptions.

EC == 0b110100

Watchpoint from a lower Exception level, excluding Watchpoint Exceptions taken to
EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested
virtualization support.

These Watchpoint Exceptions might be generated from Exception levels using any
Execution state.

See ISS encoding for an exception from a Watchpoint exception.

See ISS2 encoding for an exception from a Watchpoint exception.

EC == 0b110101

Watchpoint exceptions without a change in Exception level, or Watchpoint exceptions
taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of
nested virtualization support.

See ISS encoding for an exception from a Watchpoint exception.

See ISS2 encoding for an exception from a Watchpoint exception.

EC == 0b111000

When AArch32 is supported:

BKPT instruction execution in AArch32 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

See ISS2 encoding for all other exceptions.

EC == 0b111010

When AArch32 is supported:

Vector Catch exception from AArch32 state.

The only case where a Vector Catch exception is taken to an Exception level that is using
AArch64 is when the exception is routed to EL2 and EL2 is using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7535
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

See ISS2 encoding for all other exceptions.

EC == 0b111100

When AArch64 is supported:

BRK instruction execution in AArch64 state.

See ISS encoding for an exception from execution of a Breakpoint instruction.

See ISS2 encoding for all other exceptions.

EC == 0b111101

When FEAT_EBEP is implemented:

PMU exception

See ISS encoding for a PMU exception.

See ISS2 encoding for all other exceptions.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception is one of the
following:

• An SError exception.

• An Instruction Abort exception.

• A PC alignment fault exception.

• An SP alignment fault exception.

• A Data Abort exception for which the value of the ISV bit is 0.

• An Illegal Execution state exception.

• Any debug exception except for Breakpoint instruction exceptions. For
Breakpoint instruction exceptions, this bit has its standard meaning:

— 0b0: 16-bit T32 BKPT instruction.

— 0b1: 32-bit A32 BKPT instruction or A64 BRK instruction.

• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number,
the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between
the Execution states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7536
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the
value 0b11111.

• If the instruction that generated the exception was UNPREDICTABLE, the field takes an
UNKNOWN value that must be either:

— The AArch64 view of the register number of a register that might have been used at
the Exception level from which the exception was taken.

— The value 0b11111.

ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC value, the IL field is set to 1.

This EC value is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

— A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

— A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions or System registers that are not implemented in the
implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution of an MSR or MRS instruction using a _EL12 register name when the Effective value
of HCR_EL2.E2H is not 1.

RES0

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7537
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• Attempted execution, in Debug state, of:

— A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented
in the current Security state.

— A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current
Security state.

— A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1. If the value of HCR_EL2.TGE
is 0, this exception is reported using an ESR_EL2.EC value of 0b000111.

• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

CV

24

COND

23 20

RES0

19 10

RN

9 5

RES0

4 3

RV

2

TI

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7538
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

RN, bits [9:5]

When FEAT_WFxT is implemented:

Register Number. Indicates the register number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

0b00 WFI trapped.

0b01 WFE trapped.

0b10 When FEAT_WFxT is implemented:

WFIT trapped.

0b11 When FEAT_WFxT is implemented:

WFET trapped.

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7539
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• HCR.{TWE, TWI}.

• SCTLR_EL1.{nTWE, nTWI}.

• SCTLR_EL2.{nTWE, nTWI}.

• HCR_EL2.{TWE, TWI}.

• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7540
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7541
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MCR or MRC access using
coproc 0b1111, that are reported using EC value 0b000011:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, trapped to EL1.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, trapped
to EL1 or EL2.

• HCR.{TRVM, TVM} and HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from
EL1 using AArch32 state, trapped to EL2.

• HCR.TTLB and HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32
state, trapped to EL2.

• HCR.{TSW, TPC, TPU} and HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions
at EL0 and EL1 using AArch32 state, trapped to EL2.

• HCR.TAC and HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state,
trapped to EL2.

• HCR.TIDCP and HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1
using AArch32 state, trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, trapped to EL2.

• HCR.{TID1, TID2, TID3} and HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1
using AArch32 state, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to error record registers at EL1 using AArch32 state, trapped to EL2.

• HCPTR.TCPAC and CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state,
trapped to EL2.

• HSTR.T<n> and HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, trapped to EL2.

• CNTHCTL.PL1PCEN and CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from
EL0 and EL1 using AArch32 state, trapped to EL2.

• HDCR.TTRF, for Non-secure accesses to trace filter control registers from system registers using AArch32
state, trapped to EL2.

• HDCR.{TPM, TPMCR} and MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers
from EL0 and EL1 using AArch32 state, trapped to EL2.

• HCPTR.TAM and CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using
AArch32 state, trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, trapped to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7542
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
trapped to EL3.

• If FEAT_FGT is implemented, access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions from an MCR or MRC access using
coproc 0b1110, that are reported using EC value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• HCR.TID0 and HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using
AArch32, trapped to EL2.

• HCPTR.TTA and CPTR_EL2.TTA, for accesses to trace registers using AArch32, trapped to EL2.

• HDCR.TDRA and MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR
using AArch32, trapped to EL2.

• HDCR.TDOSA and MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state,
trapped to EL2.

• HDCR.TDA and MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, trapped to
EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, trapped to EL3.

The following fields describe configuration settings for generating exceptions from a VMSR or VMRS access, that
are reported using EC value 0b001000:

• HCR.TID0 and HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32
state, VMRS access trapped to EL2.

• HCR.TID3 and HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and
MVFR2, VMRS access trapped to EL2.

• HCPTR.{TCP10, TCP11}, for Non-secure accesses to FPSCR, FPSID, FPEXC, MVFR0, MVFR1, and
MVFR2, trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

ISS, bits [24:0]

0b0000000000000000000000000 When FEAT_LS64_V is implemented:

ST64BV instruction trapped.

0b0000000000000000000000001 When FEAT_LS64_ACCDATA is implemented:

ST64BV0 instruction trapped.

0b0000000000000000000000010 When FEAT_LS64 is implemented:

ISS

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7543
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
LD64B or ST64B instruction trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

CV

24

COND

23 20

Opc1

19 16 15

Rt2

14 10

Rt

9 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7544
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7545
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The following fields describe configuration settings for generating exceptions from an MCRR or MRRC access
using coproc 0b1111, that are reported using EC value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, trapped to EL1 or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, trapped to EL1 or EL2.

• HCR.{TRVM, TVM} and HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from
EL1 using AArch32 state, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to error record registers at EL1 using AArch32 state, trapped to EL2.

• HSTR.T<n> and HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, trapped to EL2.

• CNTHCTL.{PL1PCEN, PL1PCTEN} and CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the
Generic Timer registers from EL0 and EL1 using AArch32 state, trapped to EL2.

• HDCR.TPM and MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0
and EL1 using AArch32 state, trapped to EL2.

• HCPTR.TAM and CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions from an MCRR or MRRC access
using coproc 0b1110, that are reported using EC value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, trapped to EL1 or EL2.

• HDCR.TDRA and MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR
using AArch32, trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, trapped to EL1 or EL2.

• HCPTR.TTA and CPTR_EL2.TTA, for accesses to trace registers using AArch32, trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace
registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7546
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from an LDC or STC instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7547
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC
instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and
memory-mapped registers and translation table entries.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7548
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings from an LDC or STC access for the traps that are reported
using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32 state, trapped to
EL1 or EL2.

• HDCR.TDA and MDCR_EL2.TDA, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32
state, trapped to EL2.

• MDCR_EL3.TDA, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32 state, trapped to
EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point
functionality, resulting from the FPEN and TFP traps

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

CV

24

COND

23 20

RES0

19 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7549
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• HCPTR.{TCP10, TCP11}, for Non-secure accesses to Advanced SIMD and floating-point registers and
instructions, trapped to EL2.

• HCPTR.TASE, for Non-secure accesses to Advanced SIMD functionality, trapped to EL2.

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.

• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.

• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

RES0

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7550
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The following fields describe the configuration settings for the traps that are reported using EC value 0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1, trapped
to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception levels,
trapped to EL3.

ISS encoding for a PMU exception

Bits [24:1]

Reserved, RES0.

SYNC, bit [0]

Indicates whether the exception was taken synchronously or asynchronously.

0b0 The exception was taken asynchronously because an overflow status flag was set.

0b1 When FEAT_SEBEP is implemented:

The exception was taken synchronously because PSTATE.PPEND was set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about PC alignment fault exceptions, see PC alignment checking.

SP alignment checking describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and Memory Set instructions

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

0b0 CPYFE*, CPYFM*, CPYE*, and CPYM* instructions.

RES0

24 1 0

SYNC

RES0

24 0

24 23

Options

22 19 18 17 16 15

destreg

14 10

srcreg

9 5

sizereg

4 0

MemInst
isSETG

FromEpilogue

RES0
OptionA

WrongOption
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7551
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 SETE*, SETM*, SETGE*, and SETGM* instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

0b0 Not a SETGM* or SETGE* instruction.

0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options: the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of
the instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.

• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

0b0 Not an epilogue instruction.

0b1 CPYE*, CPYFE*, SETE*, or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

0b0 WrongOption is false.

0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

0b0 OptionB indicated by PSTATE.C is 0.

0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7552
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered
or set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

RES0

24 16

imm16

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7553
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from SMC instruction execution in AArch32 state

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown
in the diagram.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7554
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code check is not trapped, this field
can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR.TSC describes the configuration settings for trapping SMC instructions to EL2.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

ISS encoding for an exception from SMC instruction execution in AArch64 state

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.

• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to
EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state

Bits [24:22]

Reserved, RES0.

RES0

24 16

imm16

15 0

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7555
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions for the encoding values returned by an
instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL1.

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7556
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0, for accesses to the Performance Monitor registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7557
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or
MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to
EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR
or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• If FEAT_SPE is implemented:

— MDCR_EL3.NSPB for accesses to Statistical Profiling and Profiling Buffer control registers, using
AArch64 state, MSR or MRS access at EL1 and EL2 trapped to EL3.

— MDCR_EL2.TPMS for accesses to SPE registers, using AArch64 state, MSR or MRS access at EL1
trapped to EL2.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls that use
this EC value:

— HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.

— HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:

— SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped
to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7558
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or
MRS access at EL0 and EL1 trapped to EL2.

— HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.

— HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 state trapped to EL2.

— HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and
EL1 trapped to EL2.

• If FEAT_RNG_TRAP is implemented, SCR_EL3.TRNDR for reads of RNDR and RNDRRS using
AArch64 state, MRS access trapped to EL3.

• If FEAT_SME is implemented:

— CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to EL3.

— CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to EL3.

— SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.

— SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.

— SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to EL3.

• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.

• If FEAT_FGT2 is implemented:

— SCR_EL3.FGTEn2, for accesses to the fine-grained trap registers, MSR or MRS access at EL2
trapped to EL3.

— HFGRTR2_EL2 for reads and HFGWTR2_EL2 for writes of registers, using AArch64 state, using
MSR or MRS access at EL1 trapped to EL2.

— HDFGRTR2_EL2 for reads and HDFGWTR2_EL2 for writes of registers, using AArch64 state, using
MSR or MRS access at EL0 and EL1 trapped to EL2.

— HFGITR2_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.

• If FEAT_ITE is implemented, MDCR_EL3.EnITE, for accesses to Instrumentation trace registers, using
AArch64 state, MSR or MRS access, trapped to EL3.

• If FEAT_MEC is implemented, SCR_EL3.MECEn, for accesses to MECID registers at EL2, trapped to EL3.

• If FEAT_SPE_FDS is implemented, MDCR_EL3.EnPMS3 for accesses to SPE registers, using AArch64
state, MSR or MRS access at EL1 and EL2 trapped to EL3.

• If FEAT_RASv2 is implemented, SCR_EL3.TWERR, for accesses to Error Record registers, MSR or MRS
access at EL1 and EL2 trapped to EL3.

• If FEAT_Debugv8p9 is implemented, MDCR_EL3.EBWE for accesses of MDSELR_EL1, using AArch64
state, MRS or MSR access at EL2 and EL1 trapped to EL3.

• If FEAT_PMUv3p9, FEAT_SPMU, FEAT_EBEP, or FEAT_PMUv3_SS is implemented,
MDCR_EL3.EnPM2, for accesses to PMU registers, using AArch64 state, MSR or MRS access at EL2, EL1,
and EL0, trapped to EL3.

• If FEAT_PMUv3_SS is implemented, MDCR_EL3.EnPMSS, for accesses to PMU Snapshot registers, using
AArch64 state, MSR or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_THE is implemented, SCR_EL3.RCWMASKEn for accesses to RCWMASK_EL1 and
RCWSMASK_EL1, using AArch64 state, MSR or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_AIE is implemented, SCR_EL3.AIEn for accesses to Extended Memory Attribute registers, MSR
or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_S1PIEx, FEAT_S2PIEx, FEAT_S1POEx, or FEAT_S2POEx is implemented, SCR_EL3.PIEn for
accesses to Permission Indirection, Overlay registers, MSR or MRS access at EL2, EL1 and EL0 trapped to
EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7559
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from MSRR, MRRS, or 128-bit System instruction execution in
AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:6]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

Note

This value represents register pair of X[Rt:0], X[Rt:1].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, MSRR instructions.

0b1 Read access, MRRS instructions.

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 6 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7560
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MSRR or MRRS access that
are reported using EC value 0b010100:

• If FEAT_FGT is implemented:

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, accesses at
EL1 trapped to EL2.

• If FEAT_FGT2 is implemented:

— HFGRTR2_EL2.nRCWSMASK_EL1 for reads and HFGWTR2_EL2.nRCWSMASK_EL1 for
writes of RCWSMASK_EL1, using AArch64 state, accesses at EL1 trapped to EL2.

• If FEAT_SYSREG128 is implemented:

— SCTLR2_EL1.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL0 trapped to EL1.

— SCTLR2_EL2.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL0 trapped to EL2.

— HCRX_EL2.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL1 and EL0 trapped to EL2.

— SCR_EL3.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses
at EL2, EL1, and EL0 trapped to EL3.

• If FEAT_D128 is implemented:

— HCR_EL2.{TRVM, TVM} for accesses to TTBR0_EL1 and TTBR1_EL1, accesses at EL1 and EL0
trapped to EL2.

— HCRX_EL2.D128En for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses at
EL1 trapped to EL2.

— SCR_EL3.D128En for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses at
EL2 and EL1 trapped to EL3.

• If FEAT_THE is implemented, SCR_EL3.RCWMASKEn for accesses to RCWMASK_EL1 and
RCWSMASK_EL1, using AArch64 state, accesses at EL2 and EL1 trapped to EL3.

ISS encoding for an exception from an Instruction Abort

When FEAT_THE is implemented, if a memory access generates an Instruction Abort for AssuredOnly, the ISS2
encoding for an exception from an Instruction Abort includes further information about the exception.

When FEAT_S1POE or FEAT_S2POE is implemented, if a memory access generates an Instruction Abort due to a
Permission fault, the ISS2 encoding for an exception from an Instruction Abort includes further information about
the exception.

Bits [24:22]

Reserved, RES0.

RES0

24 22 21

RES0

20 15 14 13

SET

12 11 10

EA

9 8 7 6

IFSC

5 0

TopLevel PFV
RES0

FnV

RES0
S1PTW

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7561
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TopLevel, bit [21]

When FEAT_THE is implemented:

Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [20:15]

Reserved, RES0.

PFV, bit [14]

When FEAT_PFAR is implemented:

FAR Valid. Describes whether the PFAR_EL2 is valid.

0b0 PFAR_EL2 is UNKNOWN.

0b1 PFAR_EL2 is valid.

This field is valid only if the IFSC code is 0b10000, 0b01001x, or 0b0101xx.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [13]

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented and IFSC == 0b010000:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the
Instruction Abort exception.

0b00 Recoverable state (UER).

0b10 When FEAT_RASv2 is not implemented:

Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External abort exception might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7562
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FnV, bit [10]

When IFSC == 0b010000:

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7563
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7564
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception due to SME functionality

The accesses covered by this trap include:

• Execution of SME instructions.

• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.

• Direct accesses of SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3.

Bits [24:3]

Reserved, RES0.

SMTC, bits [2:0]

SME Trap Code. Identifies the reason for instruction trapping.

0b000 Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not reported using
EC 0b000000.

0b001 Advanced SIMD, SVE, or SVE2 instruction trapped because PSTATE.SM is 1.

0b010 SME instruction trapped because PSTATE.SM is 0.

RES0

24 3

SMTC

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7565
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b011 SME instruction trapped because PSTATE.ZA is 0.

0b100 When FEAT_SME2 is implemented:

Access to the SME2 ZT0 register trapped as a result of SMCR_EL1.EZT0,
SMCR_EL2.EZT0, or SMCR_EL3.EZT0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value 0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR and SMCR_EL1 System registers at EL1 and EL0, trapped
to EL1 or EL2.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the PE
is in Streaming SVE mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2 at EL2,
EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

• If FEAT_SME2 is implemented:

— SMCR_EL1.EZT0, for accesses to ZT0 at EL1 and EL0, trapped to EL1 or EL2.

— SMCR_EL2.EZT0, for accesses to ZT0 at EL2, EL1, and EL0, trapped to EL2.

— SMCR_EL3.EZT0, for accesses to ZT0 at any Exception level, trapped to EL3.

ISS encoding for an exception from a Data Abort

The ISS2 encoding for an exception from a Data Abort includes further information about the exception when any
of the following features are implemented:

• FEAT_LS64_V.

• FEAT_LS64_ACCDATA.

• FEAT_THE.

• FEAT_S1POE or FEAT_S2POE.

• FEAT_S1PIE or FEAT_S2PIE.

• FEAT_GCS.

• FEAT_MTE_CANONICAL_TAGS.

• FEAT_MTE_PERM.

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

24

SAS

23 22 21 20 16 15 14 13 12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV
Bit [21]

Bits [20:16]
Bit [15]

Bit [14]

WnR
S1PTW

FnV
Bits [12:11]

VNCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7566
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an
LD64B or ST64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault.

In ESR_EL2, ISV is 1 when FEAT_LS64_V is implemented and a memory access generated by an
ST64BV instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

In ESR_EL2, ISV is 1 when FEAT_LS64_ACCDATA is implemented and a memory access
generated by an ST64BV0 instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register
specified with 0b11111, including those with Acquire/Release semantics, but excluding Load
Exclusive or Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:

— Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB,
STLB, or STRBT instruction.

— Is not performing register writeback.

— Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a
memory access generated by an LD64B or ST64B instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a
memory access generated by an ST64BV instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is
implemented and a memory access generated by an ST64BV0 instruction generates a Data Abort
for a Translation fault, Access flag fault, or Permission fault.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_MOPS is implemented, for a synchronous Data Abort on a Memory Copy and
Memory Set instruction, ISV is 0.

When FEAT_MTE is implemented, for a synchronous Data Abort on an instruction that directly
accesses Allocation Tags, ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7567
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0b11.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[21]

When ISV == 1:

SSE

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data
item must be sign extended.

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0 and FEAT_THE is implemented:

TopLevel

Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[20:16]

When ISV == 1:

SRT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7568
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See Mapping of the general-purpose registers between the Execution states.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0, FEAT_RASv2 is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or
DFSC == 0b0101xx):

Bits[4:2] of bits [20:16]

Reserved, RES0.

WU, bits[1:0] of bits [20:16]

Write Update. Describes whether a store instruction that generated an External abort updated the
location.

0b00 Not a store instruction or translation table update, or the location might have been
updated.

0b10 Store instruction or translation table update that did not update the location.

0b11 Store instruction or translation table update that updated the location.

In the description of this field, a store instruction is any memory-writing instruction that explicitly
performs a store. This includes instructions that both read and write memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[15]

When ISV == 1:

SF

Sixty Four bit general-purpose register transfer. Width of the register accessed by the instruction is
64-bit.

0b0 Instruction loads/stores a 32-bit general-purpose register.

0b1 Instruction loads/stores a 64-bit general-purpose register.

Note
This field specifies the register width identified by the instruction, not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 1.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7569
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When ISV == 0:

FnP

FAR not Precise.

0b0 The FAR holds the faulting virtual address that generated the Data Abort.

0b1 When FEAT_SME is implemented or FEAT_SVE is implemented:

The FAR holds any virtual address within the naturally-aligned granule that contains the
faulting virtual address that generated a Data Abort due to an SVE contiguous vector
load/store instruction, or an SME load/store instruction.

For more information about the naturally-aligned fault granule, see FAR_ELx (for
example, FAR_EL1).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[14]

When ISV == 1:

AR

Acquire/Release.

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_PFAR is implemented, ISV == 0 and (DFSC == 0b010000, or DFSC == 0b01001x or
DFSC == 0b0101xx):

PFV

FAR Valid. Describes whether the PFAR_EL2 is valid.

0b0 PFAR_EL2 is UNKNOWN.

0b1 PFAR_EL2 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0 The fault was not generated by the use of VNCR_EL2 by EL1 code.

0b1 When FEAT_NV2 is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7570
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The fault was generated by the use of VNCR_EL2 by EL1 code.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits[12:11]

When (DFSC == 0b00xxxx || DFSC == 0b10101x) && DFSC != 0b0000xx:

LST

Load/Store Type. Used when a Translation fault, Access flag fault, or Permission fault generates a
Data Abort.

0b00 The instruction that generated the Data Abort is not specified.

0b01 When FEAT_LS64_V is implemented:

An ST64BV instruction generated the Data Abort.

0b10 When FEAT_LS64 is implemented:

An LD64B or ST64B instruction generated the Data Abort.

0b11 When FEAT_LS64_ACCDATA is implemented:

An ST64BV0 instruction generated the Data Abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_RAS is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or DFSC ==
0b0101xx):

SET

Synchronous Error Type. Used when a synchronous External abort, not on a Translation table walk
or hardware update of the Translation table, generated the Data Abort. Describes the PE error state
after taking the Data Abort exception.

0b00 Recoverable state (UER).

0b10 When FEAT_RASv2 is implemented:

Uncontainable (UC).

If FEAT_RASv2 is implemented, this value is reserved.

0b11 Restartable state (UEO).

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External abort exception might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7571
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• If FEAT_RASv2 is implemented, an External abort on an Atomic access, reported with
ESR_EL2.WU set to 0b00.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7572
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DFSC, bits [5:0]

Data Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 When FEAT_MTE2 is implemented:

Synchronous Tag Check Fault.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7573
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100001 Alignment fault.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7574
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped
floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while
executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate
trapped floating-point exceptions that occurred. For more information, see
Floating-point exceptions and exception traps.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more
than one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point
exception from an instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is
RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported
instruction.

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

RES0 TFV IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7575
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7576
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

ISS encoding for a GCS exception

Bit [24]

Reserved, RES0.

ExType, bits [23:20]

The first level classification of GCS exceptions.

0b0000 The exception reported is a Guarded Control Stack Data Check Exception.

0b0001 The exception reported is an EXLOCK Exception.

0b0010 The exception reported is a trap exception on GCSSTR or GCSSTTR instruction
execution.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:15]

Reserved, RES0.

Raddr, bits [14:10]

When ExType == 0b0010:

Indicates the data address register number supplied in the instruction that has been trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[9:5]

When ExType == 0b0000:

Rn

Indicates the register number supplied in the instruction that caused the Guarded Control Stack Data
Check Exception.

This field is UNKNOWN if ESR_EL2.ISS.IT is reported as 0b00101 or 0b01000

This field is 0b11111 if ESR_EL2.ISS.IT is reported as 0b01001

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ExType == 0b0010:

Rvalue

Indicates the data value register number supplied in the instruction that has been trapped.

24

ExType

23 20

RES0

19 15

Raddr

14 10

Bits [9:5]

9 5

IT

4 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7577
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IT, bits [4:0]

When ExType == 0b0000:

Type of the instruction that caused the Guarded Control Stack Data Check Exception.

0b00000 Guarded Control Stack Data Check Exception is from a procedure return instruction
without Pointer authentication.

0b00001 Guarded Control Stack Data Check Exception is from a GCSPOPM instruction.

0b00010 Guarded Control Stack Data Check Exception is from a procedure return instruction
with Pointer authentication that uses key A.

0b00011 Guarded Control Stack Data Check Exception is from a procedure return instruction
with Pointer authentication that uses key B.

0b00100 Guarded Control Stack Data Check Exception is from a GCSSS1 instruction.

0b00101 Guarded Control Stack Data Check Exception is from a GCSSS2 instruction.

0b01000 Guarded Control Stack Data Check Exception is from a GCSPOPCX instruction.

0b01001 Guarded Control Stack Data Check Exception is from a GCSPOPX instruction.

All other values are reserved

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b101101 and
ExType value 0b0010:

• GCSCRE0_EL1.STREn

• GCSCR_EL1.STREn.

• GCSCR_EL2.STREn.

• GCSCR_EL3.STREn.

• HFGITR_EL2.nGCSSTR_EL1.

ISS encoding for an SError exception

24

RES0

23 19 18

WU

17 16 15 14 13

AET

12 10

EA

9 8 7 6

DFSC

5 0

IDS ELS
VFV

PFV

WnR
WnRV

RES0
IESB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7578
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

In earlier versions of the architecture, an SError exception is referred to as an SError interrupt or an asynchronous
External abort exception.

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

0b0 Bits [23:0] of the ISS field holds the fields described in this encoding.

Note
If FEAT_RAS is not implemented, bits [23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that
can be used to provide additional information about the SError exception.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:19]

Reserved, RES0.

ELS, bit [18]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Meaning of ELR_ELx.

0b0 Asynchronous. Does not indicate the trigger for the exception.

0b1 Synchronous. The exception was triggered by the instruction at ELR_ELx.

SError exceptions that report this field is 1 are not required to be precise.

The ESR_EL2.AET field describes whether the exception is precise or imprecise.

Corrected, Recoverable or Restartable exceptions are precise. Unrecoverable or Uncontainable
exceptions are imprecise.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WU, bits [17:16]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Write Update. Describes whether a store instruction that generated an External abort updated the
location.

0b00 Not a store instruction or translation table update, or the location might have been
updated.

0b10 Store instruction or translation table update that did not update the location.

0b11 Store instruction or translation table update that updated the location.

In the description of this field, a store instruction is any memory-writing instruction that explicitly
performs a store. This includes instructions that both read and write memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7579
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

VFV, bit [15]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

FAR Valid. Indicates the FAR_EL2 register contains a valid virtual address.

0b0 FAR_EL2 is not valid, and holds an UNKNOWN value.

0b1 FAR_EL2 contains a valid virtual address associated with the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PFV, bit [14]

When FEAT_PFAR is implemented and DFSC == 0b010001:

FAR Valid. Describes whether the PFAR_EL2 is valid.

0b0 PFAR_EL2 is UNKNOWN.

0b1 PFAR_EL2 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented and DFSC == 0b010001:

Implicit error synchronization event.

0b0 The SError exception was either not synchronized by the implicit error synchronization
event or not taken immediately.

0b1 The SError exception was synchronized by the implicit error synchronization event and
taken immediately.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When FEAT_RAS is implemented and DFSC == 0b010001:

Asynchronous Error Type.

Describes the PE error state after taking the SError exception.

0b000 Uncontainable (UC).

0b001 Unrecoverable state (UEU).

0b010 Restartable state (UEO).

0b011 Recoverable state (UER).

0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError exception, the overall PE error state is reported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7580
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When FEAT_RAS is implemented and DFSC == 0b010001:

External abort type. Provides an IMPLEMENTATION DEFINED classification of External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

WnRV, bit [7]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

ESR_EL2.WnR valid.

0b0 ESR_EL2.WnR is not valid and has been set to 0b0.

0b1 ESR_EL2.WnR is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WnR, bit [6]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Write-not-Read. When the WnRV field is 0b1, indicates whether an exception was caused by an
instruction writing to a memory location, or by an instruction reading from a memory location.

0b0 Exception was caused by an instruction reading from a memory location.

0b1 Exception was caused by an instruction writing to a memory location.

Accessing this bit has the following behavior:

• This bit is RES0 if ESR_EL2.WnRV==0b0.

• This bit is not valid and reads UNKNOWN if an External abort on a Atomic access, reported
with ESR_EL2.WU == 0b00.

• Otherwise RW.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7581
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DFSC, bits [5:0]

When FEAT_RAS is implemented:

Data Fault Status Code.

0b000000 Uncategorized error.

0b010001 Asynchronous SError exception.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug exception

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see Breakpoint exceptions.

• For exceptions from AArch32, see Breakpoint exceptions and Vector Catch exceptions.

ISS encoding for an exception from a Software Step exception

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

RES0

24 6

IFSC

5 0

24

RES0

23 7

EX

6

IFSC

5 0

ISV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7582
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction
was stepped.

0b0 An instruction other than a Load-Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Software Step exceptions.

ISS encoding for an exception from a Watchpoint exception

Bit [24]

Reserved, RES0.

WPT, bits [23:18]

When FEAT_Debugv8p2 is implemented:

Watchpoint number.

All other values are reserved.

Otherwise:

Reserved, RES0.

WPTV, bit [17]

When FEAT_Debugv8p2 is implemented:

Watchpoint number Valid.

0b0 The WPT field is invalid, and holds an UNKNOWN value.

0b1 The WPT field is valid, and holds the number of a watchpoint that triggered a
Watchpoint exception.

If FEAT_Debugv8p9 is implemented, value 0b0 is not permitted.

When a Watchpoint exception is triggered by a watchpoint match:

• If FEAT_Debugv8p9 is implemented or the PE sets any of FnV, FnP, or WPF to 1, then the
PE sets WPTV to 1.

• Otherwise, the PE sets WPTV to an IMPLEMENTATION DEFINED value, 0 or 1.

Otherwise:

Reserved, RES0.

24

WPT

23 18 17 16 15 14 13

RES0

12 11 10 9

CM

8 7 6

DFSC

5 0

RES0 WPTV
WPF

FnP
RES0

WnR
RES0

RES0
FnV

VNCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7583
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
WPF, bit [16]

Watchpoint might be false-positive.

0b0 The watchpoint matched an address or address range that was accessed by the
instruction.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The watchpoint matched an address or address range that might not have been accessed
by the instruction.

Arm strongly recommends that this bit is set to 0, other than when one of the following instructions
might generate a watchpoint match for an address or address range that the instruction does not
access:

• An SVE contiguous vector load/store instruction, when the PE is in Streaming SVE mode.

• An SME load/store instruction.

FnP, bit [15]

FAR not Precise.

This field only has meaning if the FAR is valid; that is, when the FnV field is 0. If the FnV field is
1, the FnP field is 0.

0b0 If the FnV field is 0, the FAR holds the virtual address of an access or set of contiguous
accesses that triggered a Watchpoint exception.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The FAR holds any address within the smallest implemented translation granule that
contains the virtual address of an access or set of contiguous accesses that triggered a
Watchpoint exception.

Bit [14]

Reserved, RES0.

VNCR, bit [13]

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.

0b1 When FEAT_NV2 is implemented:

The watchpoint was generated by the use of VNCR_EL2 by EL1 code.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [12:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid.

0b0 The FAR is valid, and its value is as described by the FnP field.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The FAR is invalid, and holds an UNKNOWN value.

Bit [9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance
instruction:

0b0 The Watchpoint exception was not generated by the execution of one of the System
instructions identified in the description of value 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7584
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The Watchpoint exception was generated by the execution of a cache maintenance
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as a
cache maintenance instructions, and therefore their execution does not cause this field
to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing
to a memory location, or by an instruction reading from a memory location.

0b0 Watchpoint exception caused by an instruction reading from a memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory location.

For Watchpoint exceptions on cache maintenance instructions, this bit always returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates
the Watchpoint exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b100010 Debug exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions.

ISS encoding for an exception from execution of a Breakpoint instruction

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Breakpoint Instruction exceptions.

RES0

24 16

Comment

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7585
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

This EC value applies when FEAT_FGT is implemented, or when the Effective value of HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

0b0 ERET instruction trapped to EL2.

0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

0b0 ERETAA instruction trapped to EL2.

0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from a TSTART instruction

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

RES0

24 2 1 0

ERET ERETA

RES0

24 10

Rd

9 5

RES0

4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7586
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level
Programmers’ Model.

ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0
|| SCR_EL3.API == 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

ISS encoding for a PAC Fail exception

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.

0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 2 1 0

BTYPE

RES0

24 0

RES0

24 2 1 0

Exception as a result of an Instruction key or a Data key Exception
as a
result of
an A key
or a B
key
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7587
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.

0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate a PAC Fail exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTDA, AUTDZA.

• AUTDB, AUTDZB.

• AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA.

• AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB.

If FEAT_FPACCOMBINE is implemented, the following instructions generate a PAC Fail exception when the
Pointer Authentication Code (PAC) is incorrect:

• RETAA, RETAB.

• BLRAA, BLRAAZ, BLRAB, BLRABZ.

• BRAA, BRAB, BRAAZ, BRABZ.

• ERETAA, ERETAB.

• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing ESR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic ESR_EL2 or ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = ESR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ESR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ESR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7588
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR ESR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 ESR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ESR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ESR_EL2 = X[t, 64];

MRS <Xt>, ESR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x138];
 else
 X[t, 64] = ESR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = ESR_EL2;
 else
 X[t, 64] = ESR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ESR_EL1;

MSR ESR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7589
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x138] = X[t, 64];
 else
 ESR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 ESR_EL2 = X[t, 64];
 else
 ESR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ESR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7590
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.42 ESR_EL3, Exception Syndrome Register (EL3)

The ESR_EL3 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are
UNDEFINED.

Attributes

ESR_EL3 is a 64-bit register.

Field descriptions

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of
ESR_EL3 is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:56]

Reserved, RES0.

ISS2, bits [55:32]

ISS2 encoding for an exception, the bit assignments are:

ISS2 encoding for an exception from a Data Abort

Bits [23:11]

Reserved, RES0.

TnD, bit [10]

When FEAT_MTE_CANONICAL_TAGS is implemented:

Tag not Data.

If a memory access generates a Data Abort for a stage 1 Permission fault, this field indicates whether
the fault is due to an Allocation Tag access.

0b0 Permission fault is not due to a write of an Allocation Tag to Canonically Tagged
memory.

RES0

63 56

ISS2

55 32

EC

31 26

IL

25

ISS

24 0

RES0

23 11 10 9 8 7 6 5

Xs

4 0

TnD
RES0

GCS

DirtyBit
Overlay

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7591
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Permission fault is due to a write of an Allocation Tag to Canonically Tagged memory.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

GCS, bit [8]

When FEAT_GCS is implemented:

Guarded Control Stack data access.

If a memory access generates a Data Abort, this field indicates whether the fault is due to a Guarded
Control Stack data access.

0b0 The Data Abort is not due to a Guarded control stack data access.

0b1 The Data Abort is due to a Guarded control stack data access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

Overlay, bit [6]

When FEAT_S1POE is implemented:

Overlay flag.

If a memory access generates a Data Abort for a Permission fault, then this field holds information
about the fault.

0b0 Data Abort is not due to Overlay Permissions.

0b1 Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DirtyBit, bit [5]

When FEAT_S1PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission,
then this field holds information about the fault.

0b0 Permission Fault is not due to dirty state.

0b1 Permission Fault is due to dirty state.

For any other fault or Access, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7592
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Xs, bits [4:0]

When FEAT_LS64 is implemented:

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort exception for a Translation fault, Access flag fault, or Permission fault, then
this field holds register specifier, Xs.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort exception for a Translation fault, Access flag fault, or Permission
fault, then this field holds register specifier, Xs.

Otherwise, this field is RES0.

Otherwise:

Reserved, RES0.

ISS2 encoding for an exception from an Instruction Abort

Bits [23:7]

Reserved, RES0.

Overlay, bit [6]

When FEAT_S1POE is implemented:

Overlay flag.

If a memory access generates a Instruction Abort for a Permission fault, then this field holds
information about the fault.

0b0 Instruction Abort is not due to Overlay Permissions.

0b1 Instruction Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

ISS2 encoding for a Granule Protection Check exception

Bits [23:9]

Reserved, RES0.

RES0

23 7 6

RES0

5 0

Overlay

RES0

23 9 8

RES0

7 0

GCS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7593
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
GCS, bit [8]

When FEAT_GCS is implemented:

Guarded control stack data access.

Indicates that the Granule Protection Check Exception is due to a Guarded control stack data access.

0b0 The Granule Protection Check Exception is not due to a Guarded control stack data
access.

0b1 The Granule Protection Check Exception is due to a Guarded control stack data access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

ISS2 encoding for all other exceptions

Bits [23:0]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.

• The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

See ISS2 encoding for all other exceptions.

EC == 0b000001

Trapped WF* instruction execution.

Conditional WF* instructions that fail their condition code check do not cause an
exception.

See ISS encoding for an exception from a WF* instruction.

See ISS2 encoding for all other exceptions.

EC == 0b000011

When AArch32 is supported:

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

RES0

23 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7594
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EC == 0b000100

When AArch32 is supported:

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for an exception from an MCRR or MRRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000101

When AArch32 is supported:

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCR or MRC access.

See ISS2 encoding for all other exceptions.

EC == 0b000110

When AArch32 is supported:

Trapped LDC or STC access.

The only architected uses of these instruction are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for an exception from an LDC or STC instruction.

See ISS2 encoding for all other exceptions.

EC == 0b000111

Access to SME, SVE, Advanced SIMD or floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.

Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is
1, or because SVE or Advanced SIMD and floating-point are not implemented. These
are reported with EC value 0b000000.

See ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps.

See ISS2 encoding for all other exceptions.

EC == 0b001001

When FEAT_PAuth is implemented:

Trapped use of a Pointer authentication instruction because HCR_EL2.API == 0 ||
SCR_EL3.API == 0.

See ISS encoding for an exception from a Pointer Authentication instruction when
HCR_EL2.API == 0 || SCR_EL3.API == 0.

See ISS2 encoding for all other exceptions.

EC == 0b001010

When FEAT_LS64 is implemented:

An exception from an LD64B or ST64B* instruction.

See ISS encoding for an exception from an LD64B or ST64B* instruction.

See ISS2 encoding for all other exceptions.

EC == 0b001100

When AArch32 is supported:

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for an exception from an MCRR or MRRC access.

See ISS2 encoding for all other exceptions.

EC == 0b001101

When FEAT_BTI is implemented:

Branch Target Exception.

See ISS encoding for an exception from Branch Target Identification instruction.

See ISS2 encoding for all other exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7595
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EC == 0b001110

Illegal Execution state.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b010011

When AArch32 is supported:

SMC instruction execution in AArch32 state, when SMC is not disabled.

See ISS encoding for an exception from SMC instruction execution in AArch32 state.

See ISS2 encoding for all other exceptions.

EC == 0b010100

When FEAT_SYSREG128 is implemented or FEAT_SYSINSTR128 is implemented:

Trapped MSRR, MRRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000.

See ISS encoding for an exception from MSRR, MRRS, or 128-bit System instruction
execution in AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b010101

When AArch64 is supported:

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010110

When AArch64 is supported:

HVC instruction execution in AArch64 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

See ISS2 encoding for all other exceptions.

EC == 0b010111

When AArch64 is supported:

SMC instruction execution in AArch64 state, when SMC is not disabled.

See ISS encoding for an exception from SMC instruction execution in AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b011000

When AArch64 is supported:

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not
reported using EC 0b000000, 0b000001 or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space
defined in System instruction class encoding overview, except for those exceptions
reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in
AArch64 state.

See ISS2 encoding for all other exceptions.

EC == 0b011001

When FEAT_SVE is implemented:

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC
0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

See ISS2 encoding for all other exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7596
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EC == 0b011011

When FEAT_TME is implemented:

Exception from an access to a TSTART instruction at EL0 when SCTLR_EL1.TME0
== 0, EL0 when SCTLR_EL2.TME0 == 0, at EL1 when SCTLR_EL1.TME == 0, at
EL2 when SCTLR_EL2.TME == 0 or at EL3 when SCTLR_EL3.TME == 0.

See ISS encoding for an exception from a TSTART instruction.

See ISS2 encoding for all other exceptions.

EC == 0b011100

When FEAT_FPAC is implemented:

Exception from a PAC Fail

See ISS encoding for a PAC Fail exception.

See ISS2 encoding for all other exceptions.

EC == 0b011101

When FEAT_SME is implemented:

Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, CPTR_EL3.ESM, or an attempted execution of
an instruction that is illegal because of the value of PSTATE.SM or PSTATE.ZA, that is
not reported using EC 0b000000.

See ISS encoding for an exception due to SME functionality.

See ISS2 encoding for all other exceptions.

EC == 0b011110

When FEAT_RME is implemented:

Granule Protection Check exception

See ISS encoding for a Granule Protection Check exception.

See ISS2 encoding for a Granule Protection Check exception.

EC == 0b011111

IMPLEMENTATION DEFINED exception to EL3.

See ISS encoding for an IMPLEMENTATION DEFINED exception to EL3.

See ISS2 encoding for all other exceptions.

EC == 0b100000

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

See ISS2 encoding for all other exceptions.

EC == 0b100001

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External
aborts, including synchronous parity or ECC errors. Not used for debug-related
exceptions.

See ISS encoding for an exception from an Instruction Abort.

See ISS2 encoding for all other exceptions.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b100100

Data Abort exception from a lower Exception level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7597
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

See ISS2 encoding for an exception from a Data Abort.

EC == 0b100101

Data Abort exception taken without a change in Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those
caused by Stack Pointer misalignment, and synchronous External aborts, including
synchronous parity or ECC errors. Not used for debug-related exceptions.

See ISS encoding for an exception from a Data Abort.

See ISS2 encoding for an exception from a Data Abort.

EC == 0b100110

SP alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault.

See ISS2 encoding for all other exceptions.

EC == 0b100111

When FEAT_MOPS is implemented:

Memory Operation Exception.

See ISS encoding for an exception from the Memory Copy and Memory Set
instructions.

See ISS2 encoding for all other exceptions.

EC == 0b101100

When AArch64 is supported:

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point
exceptions, otherwise it is reserved. Whether a floating-point implementation supports
trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

See ISS2 encoding for all other exceptions.

EC == 0b101101

When FEAT_GCS is implemented:

GCS exception.

See ISS encoding for a GCS exception.

See ISS2 encoding for all other exceptions.

EC == 0b101111

SError exception.

See ISS encoding for an SError exception.

See ISS2 encoding for all other exceptions.

EC == 0b111100

When AArch64 is supported:

BRK instruction execution in AArch64 state.

This is reported in ESR_EL3 only if a BRK instruction is executed in EL3. This is the
only debug exception that can be taken to EL3 when EL3 is using AArch64.

See ISS encoding for an exception from execution of a Breakpoint instruction.

See ISS2 encoding for all other exceptions.

EC == 0b111101

When FEAT_EBEP is implemented:

PMU exception

See ISS encoding for a PMU exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7598
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
See ISS2 encoding for all other exceptions.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception is one of the
following:

• An SError exception.

• An Instruction Abort exception.

• A PC alignment fault exception.

• An SP alignment fault exception.

• A Data Abort exception for which the value of the ISV bit is 0.

• An Illegal Execution state exception.

• Any debug exception except for Breakpoint instruction exceptions.

• An exception reported using EC value 0b000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number,
the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between
the Execution states.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the
value 0b11111.

• If the instruction that generated the exception was UNPREDICTABLE, the field takes an
UNKNOWN value that must be either:

— The AArch64 view of the register number of a register that might have been used at
the Exception level from which the exception was taken.

— The value 0b11111.

ISS encoding for exceptions with an unknown reason

RES0

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7599
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC value, the IL field is set to 1.

This EC value is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

— A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

— A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions or System registers that are not implemented in the
implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution of an MSR or MRS instruction using a _EL12 register name when the Effective value
of HCR_EL2.E2H is not 1.

• Attempted execution, in Debug state, of:

— A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented
in the current Security state.

— A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current
Security state.

— A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1. If the value of HCR_EL2.TGE
is 0, this exception is reported using an ESR_EL3.EC value of 0b000111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7600
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• In Non-transactional state, attempted execution of a TCOMMIT instruction.

ISS encoding for an exception from a WF* instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:10]

Reserved, RES0.

CV

24

COND

23 20

RES0

19 10

RN

9 5

RES0

4 3

RV

2

TI

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7601
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
RN, bits [9:5]

When FEAT_WFxT is implemented:

Register Number. Indicates the register number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

0b00 WFI trapped.

0b01 WFE trapped.

0b10 When FEAT_WFxT is implemented:

WFIT trapped.

0b11 When FEAT_WFxT is implemented:

WFET trapped.

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• HCR.{TWE, TWI}.

• SCTLR_EL1.{nTWE, nTWI}.

• SCTLR_EL2.{nTWE, nTWI}.

• HCR_EL2.{TWE, TWI}.

• SCR_EL3.{TWE, TWI}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7602
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from an MCR or MRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7603
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MCR or MRC access using
coproc 0b1111, that are reported using EC value 0b000011:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, trapped to EL1.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, trapped to EL1 or EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7604
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, trapped
to EL1 or EL2.

• HCR.{TRVM, TVM} and HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from
EL1 using AArch32 state, trapped to EL2.

• HCR.TTLB and HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32
state, trapped to EL2.

• HCR.{TSW, TPC, TPU} and HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions
at EL0 and EL1 using AArch32 state, trapped to EL2.

• HCR.TAC and HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state,
trapped to EL2.

• HCR.TIDCP and HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1
using AArch32 state, trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch32 state, trapped to EL2.

• HCR.{TID1, TID2, TID3} and HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1
using AArch32 state, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to error record registers at EL1 using AArch32 state, trapped to EL2.

• HCPTR.TCPAC and CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state,
trapped to EL2.

• HSTR.T<n> and HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, trapped to EL2.

• CNTHCTL.PL1PCEN and CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from
EL0 and EL1 using AArch32 state, trapped to EL2.

• HDCR.TTRF, for Non-secure accesses to trace filter control registers from system registers using AArch32
state, trapped to EL2.

• HDCR.{TPM, TPMCR} and MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers
from EL0 and EL1 using AArch32 state, trapped to EL2.

• HCPTR.TAM and CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using
AArch32 state, trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
trapped to EL3.

• If FEAT_FGT is implemented, access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions from an MCR or MRC access using
coproc 0b1110, that are reported using EC value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7605
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• HCR.TID0 and HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using
AArch32, trapped to EL2.

• HCPTR.TTA and CPTR_EL2.TTA, for accesses to trace registers using AArch32, trapped to EL2.

• HDCR.TDRA and MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR
using AArch32, trapped to EL2.

• HDCR.TDOSA and MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state,
trapped to EL2.

• HDCR.TDA and MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, trapped to
EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, trapped to EL3.

The following fields describe configuration settings for generating exceptions from a VMSR or VMRS access, that
are reported using EC value 0b001000:

• HCR.TID0 and HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32
state, VMRS access trapped to EL2.

• HCR.TID3 and HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and
MVFR2, VMRS access trapped to EL2.

• HCPTR.{TCP10, TCP11}, for Non-secure accesses to FPSCR, FPSID, FPEXC, MVFR0, MVFR1, and
MVFR2, trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

ISS, bits [24:0]

0b0000000000000000000000000 When FEAT_LS64_V is implemented:

ST64BV instruction trapped.

0b0000000000000000000000001 When FEAT_LS64_ACCDATA is implemented:

ST64BV0 instruction trapped.

0b0000000000000000000000010 When FEAT_LS64 is implemented:

LD64B or ST64B instruction trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

ISS

24 0

CV

24

COND

23 20

Opc1

19 16 15

Rt2

14 10

Rt

9 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7606
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

If the Rt2 value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt2 value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7607
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

If the Rt value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rt value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MCRR or MRRC access
using coproc 0b1111, that are reported using EC value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, trapped to EL1 or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, trapped to EL1 or EL2.

• HCR.{TRVM, TVM} and HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from
EL1 using AArch32 state, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to error record registers at EL1 using AArch32 state, trapped to EL2.

• HSTR.T<n> and HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7608
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• CNTHCTL.{PL1PCEN, PL1PCTEN} and CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the
Generic Timer registers from EL0 and EL1 using AArch32 state, trapped to EL2.

• HDCR.TPM and MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0
and EL1 using AArch32 state, trapped to EL2.

• HCPTR.TAM and CPTR_EL2.TAM, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions from an MCRR or MRRC access
using coproc 0b1110, that are reported using EC value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, trapped to EL1 or EL2.

• HDCR.TDRA and MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and DBGDSAR
using AArch32, trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, trapped to EL1 or EL2.

• HCPTR.TTA and CPTR_EL2.TTA, for accesses to trace registers using AArch32, trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace
registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7609
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer.

If the Rn value is not 0b1111, then the reported value gives the AArch64 view of the register.
Otherwise, if the Rn value is 0b1111:

• If the instruction that generated the exception is not UNPREDICTABLE, then the register
specifier takes the value 0b11111.

• If the instruction that generated the exception is UNPREDICTABLE, then the register specifier
takes an UNKNOWN value, which is restricted to either:

— The AArch64 view of one of the registers that could have been used in AArch32 state
at the Exception level that the instruction was executed at.

— The value 0b11111.

See Mapping of the general-purpose registers between the Execution states.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC
instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7610
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and
memory-mapped registers and translation table entries.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings from an LDC or STC access for the traps that are reported
using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32 state, trapped to
EL1 or EL2.

• HDCR.TDA and MDCR_EL2.TDA, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32
state, trapped to EL2.

• MDCR_EL3.TDA, for accesses to DBGDTRTXint and DBGDTRRXint, using AArch32 state, trapped to
EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7611
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point
functionality, resulting from the FPEN and TFP traps

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

• Execution of SME instructions.

For an implementation that does not include either SVE or support for Advanced SIMD and floating-point, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

CV

24

COND

23 20

RES0

19 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7612
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• HCPTR.{TCP10, TCP11}, for Non-secure accesses to Advanced SIMD and floating-point registers and
instructions, trapped to EL2.

• HCPTR.TASE, for Non-secure accesses to Advanced SIMD functionality, trapped to EL2.

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.

• CPTR_EL2.FPEN and CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.

• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality, resulting from
CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

• Execution of SVE instructions when the PE is not in Streaming SVE mode.

• Accesses to the SVE System registers, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b011001:

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1, trapped
to EL1.

• CPTR_EL2.ZEN and CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at
EL0, EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception levels,
trapped to EL3.

ISS encoding for a PMU exception

Bits [24:1]

Reserved, RES0.

RES0

24 0

RES0

24 1 0

SYNC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7613
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SYNC, bit [0]

Indicates whether the exception was taken synchronously or asynchronously.

0b0 The exception was taken asynchronously because an overflow status flag was set.

0b1 When FEAT_SEBEP is implemented:

The exception was taken synchronously because PSTATE.PPEND was set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about PC alignment fault exceptions, see PC alignment checking.

SP alignment checking describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from the Memory Copy and Memory Set instructions

MemInst, bit [24]

Indicates the memory instruction class causing the exception.

0b0 CPYFE*, CPYFM*, CPYE*, and CPYM* instructions.

0b1 SETE*, SETM*, SETGE*, and SETGM* instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

isSETG, bit [23]

Indicates whether the instruction belongs to SETGM* or SETGE* class of instruction.

0b0 Not a SETGM* or SETGE* instruction.

0b1 SETGM* or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Options, bits [22:19]

Options: the Options field of the instruction.

For Memory Copy instructions, bits[22:19] forms the Options field, which holds the bits[15:12] of
the instruction.

For Memory Set instructions:

• Bits[22:21] are RES0.

RES0

24 0

24 23

Options

22 19 18 17 16 15

destreg

14 10

srcreg

9 5

sizereg

4 0

MemInst
isSETG

FromEpilogue

RES0
OptionA

WrongOption
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7614
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• Bits[20:19] form the Options field, which holds the bits[13:12] of the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FromEpilogue, bit [18]

Indicates whether the instruction belongs to the epilogue class of Memory Copy or Memory Set
instructions.

0b0 Not an epilogue instruction.

0b1 CPYE*, CPYFE*, SETE*, or SETGE* instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WrongOption, bit [17]

Algorithm option.

0b0 WrongOption is false.

0b1 WrongOption is true.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OptionA, bit [16]

Algorithm type indicated by the PSTATE.C bit.

0b0 OptionB indicated by PSTATE.C is 0.

0b1 OptionA indicated by PSTATE.C is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

destreg, bits [14:10]

The destination register value from the issued instruction, containing the destination address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

srcreg, bits [9:5]

The source register value from the issued instruction, containing either the source address or the
source data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

sizereg, bits [4:0]

The size register value from the issued instruction, containing the number of bytes to be transfered
or set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7615
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the
issued instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require
conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32 state

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown
in the diagram.

CV, bit [24]

Condition code valid.

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.

RES0

24 16

imm16

15 0

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7616
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
set to 0. See the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

— If the instruction is conditional, COND is set to the condition code field value from the
instruction.

— If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented
either:

— With COND set to 0b1110, the value for unconditional.

— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

— CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
SPSR.IT field to determine the condition, if any, of the T32 instruction.

— CV is set to 1 and COND is set to the condition code for the condition that applied to
the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
trapped conditional instruction only if the instruction passes its condition code check, these
definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code check is not trapped, this field
can always return the value 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR.TSC describes the configuration settings for trapping SMC instructions to EL2.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7617
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception from SMC instruction execution in AArch64 state

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.

• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to
EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 16

imm16

15 0

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7618
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions for the encoding values returned by an
instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• If FEAT_TIDCP1 is implemented, SCTLR_EL1.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL1.

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to
EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0, for accesses to the Performance Monitor registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7619
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• If FEAT_TIDCP1 is implemented, SCTLR_EL2.TIDCP, for EL0 accesses to IMPLEMENTATION DEFINED
functionality using AArch64 state, MSR or MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or
MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to
EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR
or MRS access trapped to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7620
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• If FEAT_SPE is implemented:

— MDCR_EL3.NSPB for accesses to Statistical Profiling and Profiling Buffer control registers, using
AArch64 state, MSR or MRS access at EL1 and EL2 trapped to EL3.

— MDCR_EL2.TPMS for accesses to SPE registers, using AArch64 state, MSR or MRS access at EL1
trapped to EL2.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls that use
this EC value:

— HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.

— HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:

— SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped
to EL3.

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or
MRS access at EL0 and EL1 trapped to EL2.

— HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.

— HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR
or MRS access at EL0 and EL1 state trapped to EL2.

— HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and
EL1 trapped to EL2.

• If FEAT_RNG_TRAP is implemented, SCR_EL3.TRNDR for reads of RNDR and RNDRRS using
AArch64 state, MRS access trapped to EL3.

• If FEAT_SME is implemented:

— CPTR_EL3.ESM, for MSR or MRS accesses to SMPRI_EL1 at EL1, EL2, and EL3, trapped to EL3.

— CPTR_EL3.ESM, for MSR or MRS accesses to SMPRIMAP_EL2 at EL2 and EL3, trapped to EL3.

— SCTLR_EL1.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL1 or EL2.

— SCTLR_EL2.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, trapped to EL2.

— SCR_EL3.EnTP2, for MSR or MRS accesses to TPIDR2_EL0 at EL0, EL1, and EL2, trapped to EL3.

• If FEAT_NMI is implemented, HCRX_EL2.TALLINT, for MSR writes of ALLINT at EL1, trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7621
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If FEAT_FGT2 is implemented:

— SCR_EL3.FGTEn2, for accesses to the fine-grained trap registers, MSR or MRS access at EL2
trapped to EL3.

— HFGRTR2_EL2 for reads and HFGWTR2_EL2 for writes of registers, using AArch64 state, using
MSR or MRS access at EL1 trapped to EL2.

— HDFGRTR2_EL2 for reads and HDFGWTR2_EL2 for writes of registers, using AArch64 state, using
MSR or MRS access at EL0 and EL1 trapped to EL2.

— HFGITR2_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.

• If FEAT_ITE is implemented, MDCR_EL3.EnITE, for accesses to Instrumentation trace registers, using
AArch64 state, MSR or MRS access, trapped to EL3.

• If FEAT_MEC is implemented, SCR_EL3.MECEn, for accesses to MECID registers at EL2, trapped to EL3.

• If FEAT_SPE_FDS is implemented, MDCR_EL3.EnPMS3 for accesses to SPE registers, using AArch64
state, MSR or MRS access at EL1 and EL2 trapped to EL3.

• If FEAT_RASv2 is implemented, SCR_EL3.TWERR, for accesses to Error Record registers, MSR or MRS
access at EL1 and EL2 trapped to EL3.

• If FEAT_Debugv8p9 is implemented, MDCR_EL3.EBWE for accesses of MDSELR_EL1, using AArch64
state, MRS or MSR access at EL2 and EL1 trapped to EL3.

• If FEAT_PMUv3p9, FEAT_SPMU, FEAT_EBEP, or FEAT_PMUv3_SS is implemented,
MDCR_EL3.EnPM2, for accesses to PMU registers, using AArch64 state, MSR or MRS access at EL2, EL1,
and EL0, trapped to EL3.

• If FEAT_PMUv3_SS is implemented, MDCR_EL3.EnPMSS, for accesses to PMU Snapshot registers, using
AArch64 state, MSR or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_THE is implemented, SCR_EL3.RCWMASKEn for accesses to RCWMASK_EL1 and
RCWSMASK_EL1, using AArch64 state, MSR or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_AIE is implemented, SCR_EL3.AIEn for accesses to Extended Memory Attribute registers, MSR
or MRS access at EL2 and EL1 trapped to EL3.

• If FEAT_S1PIEx, FEAT_S2PIEx, FEAT_S1POEx, or FEAT_S2POEx is implemented, SCR_EL3.PIEn for
accesses to Permission Indirection, Overlay registers, MSR or MRS access at EL2, EL1 and EL0 trapped to
EL3.

ISS encoding for an exception from MSRR, MRRS, or 128-bit System instruction execution in
AArch64 state

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 6 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7622
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:6]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

Note

This value represents register pair of X[Rt:0], X[Rt:1].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write access, MSRR instructions.

0b1 Read access, MRRS instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions from an MSRR or MRRS access that
are reported using EC value 0b010100:

• If FEAT_FGT is implemented:

— HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, accesses at
EL1 trapped to EL2.

• If FEAT_FGT2 is implemented:

— HFGRTR2_EL2.nRCWSMASK_EL1 for reads and HFGWTR2_EL2.nRCWSMASK_EL1 for
writes of RCWSMASK_EL1, using AArch64 state, accesses at EL1 trapped to EL2.

• If FEAT_SYSREG128 is implemented:

— SCTLR2_EL1.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL0 trapped to EL1.

— SCTLR2_EL2.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL0 trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7623
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— HCRX_EL2.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers,
accesses at EL1 and EL0 trapped to EL2.

— SCR_EL3.EnIDCP128 for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses
at EL2, EL1, and EL0 trapped to EL3.

• If FEAT_D128 is implemented:

— HCR_EL2.{TRVM, TVM} for accesses to TTBR0_EL1 and TTBR1_EL1, accesses at EL1 and EL0
trapped to EL2.

— HCRX_EL2.D128En for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses at
EL1 trapped to EL2.

— SCR_EL3.D128En for accesses to 128-bit IMPLEMENTATION DEFINED System registers, accesses at
EL2 and EL1 trapped to EL3.

• If FEAT_THE is implemented, SCR_EL3.RCWMASKEn for accesses to RCWMASK_EL1 and
RCWSMASK_EL1, using AArch64 state, accesses at EL2 and EL1 trapped to EL3.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

When FEAT_S1POE is implemented, if a memory access generates a Instruction Abort due to a Permission fault,
the ISS2 encoding for an exception from an Instruction Abort includes further information about the exception.

Bits [24:15]

Reserved, RES0.

PFV, bit [14]

When FEAT_PFAR is implemented and (IFSC == 0b010000, or IFSC == 0b01001x or IFSC ==
0b0101xx):

FAR Valid. Describes whether the MFAR_EL3 is valid.

0b0 MFAR_EL3 is UNKNOWN.

0b1 MFAR_EL3 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMPLEMENTATION DEFINED

24 0

RES0

24 15 14 13

SET

12 11 10

EA

9 8 7 6

IFSC

5 0

PFV
RES0

FnV

RES0
S1PTW

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7624
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [13]

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented and (IFSC == 0b010000, or IFSC == 0b01001x or IFSC ==
0b0101xx):

Synchronous Error Type. Describes the PE error state after taking the Instruction Abort exception.

0b00 Recoverable state (UER).

0b10 When FEAT_RASv2 is not implemented:

Uncontainable (UC).

0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External abort exception might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7625
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7626
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7627
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for an exception due to SME functionality

The accesses covered by this trap include:

• Execution of SME instructions.

• Execution of SVE and Advanced SIMD instructions, when the PE is in Streaming SVE mode.

• Direct accesses of SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3.

Bits [24:3]

Reserved, RES0.

SMTC, bits [2:0]

SME Trap Code. Identifies the reason for instruction trapping.

0b000 Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not reported using
EC 0b000000.

0b001 Advanced SIMD, SVE, or SVE2 instruction trapped because PSTATE.SM is 1.

0b010 SME instruction trapped because PSTATE.SM is 0.

0b011 SME instruction trapped because PSTATE.ZA is 0.

0b100 When FEAT_SME2 is implemented:

Access to the SME2 ZT0 register trapped as a result of SMCR_EL1.EZT0,
SMCR_EL2.EZT0, or SMCR_EL3.EZT0.

All other values are reserved.

The following fields describe the configuration settings for the traps that are reported using the EC value 0b011101:

• CPACR_EL1.SMEN, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR and SMCR_EL1 System registers at EL1 and EL0, trapped
to EL1 or EL2.

• CPTR_EL2.SMEN and CPTR_EL2.TSM, for execution of SME instructions, SVE instructions when the PE
is in Streaming SVE mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2 at EL2,
EL1, or EL0, trapped to EL2.

• CPTR_EL3.ESM, for execution of SME instructions, SVE instructions when the PE is in Streaming SVE
mode, and instructions that directly access SVCR, SMCR_EL1, SMCR_EL2, SMCR_EL3 from all
Exception levels and any Security state, trapped to EL3.

• If FEAT_SME2 is implemented:

— SMCR_EL1.EZT0, for accesses to ZT0 at EL1 and EL0, trapped to EL1 or EL2.

— SMCR_EL2.EZT0, for accesses to ZT0 at EL2, EL1, and EL0, trapped to EL2.

— SMCR_EL3.EZT0, for accesses to ZT0 at any Exception level, trapped to EL3.

ISS encoding for a Granule Protection Check exception

RES0

24 3

SMTC

2 0

RES0

24 22 21 20

GPCSC

19 14 13

RES0

12 9

CM

8 7 6

xFSC

5 0

S2PTW InD VNCR S1PTW WnR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7628
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [24:22]

Reserved, RES0.

S2PTW, bit [21]

Indicates whether the Granule Protection Check exception was on an access made for a stage 2
translation table walk.

0b0 Fault not on a stage 2 translation table walk.

0b1 Fault on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [20]

Indicates whether the Granule Protection Check exception was on an instruction or data access.

0b0 Data access.

0b1 Instruction access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPCSC, bits [19:14]

Granule Protection Check Status Code.

0b000000 GPT address size fault at level 0.

0b000100 GPT walk fault at level 0.

0b000101 GPT walk fault at level 1.

0b001100 Granule protection fault at level 0.

0b001101 Granule protection fault at level 1.

0b010100 Synchronous External abort on GPT fetch at level 0.

0b010101 Synchronous External abort on GPT fetch at level 1.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VNCR, bit [13]

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0 The fault was not generated by the use of VNCR_EL2 by EL1 code.

0b1 When FEAT_NV2 is implemented:

The fault was generated by the use of VNCR_EL2 by EL1 code.

When InD is 1, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7629
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

Indicates whether the Granule Protection Check exception was on an access for stage 2 translation
for a stage 1 translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

When InD is 1, this field is RES0.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

xFSC, bits [5:0]

Instruction or Data Fault Status Code.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7630
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

The ISS2 encoding for an exception from a Data Abort includes further information about the exception when any
of the following features are implemented:

• FEAT_LS64_V.

• FEAT_LS64_ACCDATA.

• FEAT_S1POE.

• FEAT_S1PIE.

• FEAT_GCS.

• FEAT_MTE_CANONICAL_TAGS.

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an
LD64B or ST64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault.

In ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a memory access generated by an
ST64BV instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission
fault.

In ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is implemented and a memory access
generated by an ST64BV0 instruction generates a Data Abort for a Translation fault, Access flag
fault, or Permission fault.

24

SAS

23 22 21 20 16 15 14 13 12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV
SSE

Bits [20:16]
Bit [15]

Bit [14]

WnR
S1PTW

FnV
Bits [12:11]

VNCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7631
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For other faults reported in ESR_EL3, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register
specified with 0b11111, including those with Acquire/Release semantics, but excluding Load
Exclusive or Store Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:

— Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB,
LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB,
STLB, or STRBT instruction.

— Is not performing register writeback.

— Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory
access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a
memory access generated by an LD64B or ST64B instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_V is implemented and a
memory access generated by an ST64BV instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64_ACCDATA is
implemented and a memory access generated by an ST64BV0 instruction generates a Data Abort
for a Translation fault, Access flag fault, or Permission fault.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid
instruction syndrome, and therefore ISV is 0 for these aborts.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to EL3,
ESR_EL3.FnV is 0 and FAR_EL3 is valid.

When FEAT_MOPS is implemented, for a synchronous Data Abort on a Memory Copy and
Memory Set instruction, ISV is 0.

When FEAT_MTE is implemented, for a synchronous Data Abort on an instruction that directly
accesses Allocation Tags, ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == 1:

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0b11.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7632
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]

When ISV == 1:

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data
item must be sign extended.

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[20:16]

When ISV == 1:

SRT

Syndrome Register Transfer. The register number of the Wt/Xt/Rt operand of the faulting
instruction.

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64
view of the register. See Mapping of the general-purpose registers between the Execution states.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0, FEAT_RASv2 is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or
DFSC == 0b0101xx):

Bits[4:2] of bits [20:16]

Reserved, RES0.

WU, bits[1:0] of bits [20:16]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7633
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Write Update. Describes whether a store instruction that generated an External abort updated the
location.

0b00 Not a store instruction or translation table update, or the location might have been
updated.

0b10 Store instruction or translation table update that did not update the location.

0b11 Store instruction or translation table update that updated the location.

In the description of this field, a store instruction is any memory-writing instruction that explicitly
performs a store. This includes instructions that both read and write memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[15]

When ISV == 1:

SF

Sixty Four bit general-purpose register transfer. Width of the register accessed by the instruction is
64-bit.

0b0 Instruction loads/stores a 32-bit general-purpose register.

0b1 Instruction loads/stores a 64-bit general-purpose register.

Note

This field specifies the register width identified by the instruction, not the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 1.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ISV == 0:

FnP

FAR not Precise.

0b0 The FAR holds the faulting virtual address that generated the Data Abort.

0b1 When FEAT_SME is implemented or FEAT_SVE is implemented:

The FAR holds any virtual address within the naturally-aligned granule that contains the
faulting virtual address that generated a Data Abort due to an SVE contiguous vector
load/store instruction, or an SME load/store instruction.

For more information about the naturally-aligned fault granule, see FAR_ELx (for
example, FAR_EL1).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7634
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bit[14]

When ISV == 1:

AR

Acquire/Release.

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an LD64B or ST64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

When FEAT_LS64_V is implemented, if a memory access generated by an ST64BV instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

When FEAT_LS64_ACCDATA is implemented, if a memory access generated by an ST64BV0
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then
this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_PFAR is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or DFSC ==
0b0101xx):

PFV

FAR Valid. Describes whether the MFAR_EL3 is valid.

0b0 MFAR_EL3 is UNKNOWN.

0b1 MFAR_EL3 is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VNCR, bit [13]

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0 The fault was not generated by the use of VNCR_EL2 by EL1 code.

0b1 When FEAT_NV2 is implemented:

The fault was generated by the use of VNCR_EL2 by EL1 code.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits[12:11]

When (DFSC == 0b00xxxx || DFSC == 0b10101x) && DFSC != 0b0000xx:

LST

Load/Store Type. Used when a Translation fault, Access flag fault, or Permission fault generates a
Data Abort.

0b00 The instruction that generated the Data Abort is not specified.

0b01 When FEAT_LS64_V is implemented:

An ST64BV instruction generated the Data Abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7635
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b10 When FEAT_LS64 is implemented:

An LD64B or ST64B instruction generated the Data Abort.

0b11 When FEAT_LS64_ACCDATA is implemented:

An ST64BV0 instruction generated the Data Abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_RAS is implemented and (DFSC == 0b010000, or DFSC == 0b01001x or DFSC ==
0b0101xx):

SET

Synchronous Error Type. Used when a synchronous External abort, not on a Translation table walk
or hardware update of the Translation table, generated the Data Abort. Describes the PE error state
after taking the Data Abort exception.

0b00 Recoverable state (UER).

0b10 When FEAT_RASv2 is not implemented:

Uncontainable (UC).

0b11 Restartable state (UEO).

Note

Software can use this information to determine what recovery might be possible. Taking a
synchronous External abort exception might result in a PE state that is not recoverable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address
translation instruction:

0b0 The Data Abort was not generated by the execution of one of the System instructions
identified in the description of value 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7636
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The Data Abort was generated by either the execution of a cache maintenance
instruction or by a synchronous fault on the execution of an address translation
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their execution cannot cause this field to
be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is
set to 0 if a read of the address specified by the instruction would have generated the fault which is
being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation
of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic
instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• If FEAT_RASv2 is implemented, an External abort on an Atomic access, reported with
ESR_EL3.WU set to 0b00.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported
Exclusive or atomic access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7637
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 When FEAT_MTE2 is implemented:

Synchronous Tag Check Fault.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100001 Alignment fault.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7638
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The lookup level associated
with MMU faults.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

Bit [24]

Reserved, RES0.

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

RES0 TFV IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7639
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid
information about trapped floating-point exceptions.

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped
floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while
executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate
trapped floating-point exceptions that occurred. For more information, see
Floating-point exceptions and exception traps.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped
floating-point exception from an instruction that is performing floating-point operations on more
than one lane of a vector.

Note

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point
exception from an instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF}
fields.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is
RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7640
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN.
Otherwise, the possible values of this bit are:

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution of the reported
instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

ISS encoding for a GCS exception

24

ExType

23 20

RES0

19 15

Raddr

14 10

Bits [9:5]

9 5

IT

4 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7641
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [24]

Reserved, RES0.

ExType, bits [23:20]

The first level classification of GCS exceptions.

0b0000 The exception reported is a Guarded Control Stack Data Check Exception.

0b0001 The exception reported is an EXLOCK Exception.

0b0010 The exception reported is a trap exception on GCSSTR or GCSSTTR instruction
execution.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:15]

Reserved, RES0.

Raddr, bits [14:10]

When ExType == 0b0010:

Indicates the data address register number supplied in the instruction that has been trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits[9:5]

When ExType == 0b0000:

Rn

Indicates the register number supplied in the instruction that caused the Guarded Control Stack Data
Check Exception.

This field is UNKNOWN if ESR_EL3.ISS.IT is reported as 0b00101 or 0b01000

This field is 0b11111 if ESR_EL3.ISS.IT is reported as 0b01001

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ExType == 0b0010 :

Rvalue

Indicates the data value register number supplied in the instruction that has been trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IT, bits [4:0]

When ExType == 0b0000:

Type of the instruction that caused the Guarded Control Stack Data Check Exception.

0b00000 Guarded Control Stack Data Check Exception is from a procedure return instruction
without Pointer authentication.

0b00001 Guarded Control Stack Data Check Exception is from a GCSPOPM instruction.

0b00010 Guarded Control Stack Data Check Exception is from a procedure return instruction
with Pointer authentication that uses key A.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7642
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b00011 Guarded Control Stack Data Check Exception is from a procedure return instruction
with Pointer authentication that uses key B.

0b00100 Guarded Control Stack Data Check Exception is from a GCSSS1 instruction.

0b00101 Guarded Control Stack Data Check Exception is from a GCSSS2 instruction.

0b01000 Guarded Control Stack Data Check Exception is from a GCSPOPCX instruction.

0b01001 Guarded Control Stack Data Check Exception is from a GCSPOPX instruction.

All other values are reserved

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

The following fields describe the configuration settings for the traps that are reported using EC value 0b101101 and
ExType value 0b0010:

• GCSCRE0_EL1.STREn

• GCSCR_EL1.STREn.

• GCSCR_EL2.STREn.

• GCSCR_EL3.STREn.

• HFGITR_EL2.nGCSSTR_EL1.

ISS encoding for an SError exception

Note

In earlier versions of the architecture, an SError exception is referred to as an SError interrupt or an asynchronous
External abort exception.

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

0b0 Bits [23:0] of the ISS field holds the fields described in this encoding.

Note
If FEAT_RAS is not implemented, bits [23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that
can be used to provide additional information about the SError exception.

Note

This field was previously called ISV.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

24

RES0

23 19 18

WU

17 16 15 14 13

AET

12 10

EA

9 8 7 6

DFSC

5 0

IDS ELS
VFV

PFV

WnR
WnRV

RES0
IESB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7643
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [23:19]

Reserved, RES0.

ELS, bit [18]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Meaning of ELR_ELx.

0b0 Asynchronous. Does not indicate the trigger for the exception.

0b1 Synchronous. The exception was triggered by the instruction at ELR_ELx.

SError exceptions that report this field is 1 are not required to be precise.

The ESR_EL3.AET field describes whether the exception is precise or imprecise.

Corrected, Recoverable or Restartable exceptions are precise. Unrecoverable or Uncontainable
exceptions are imprecise.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WU, bits [17:16]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Write Update. Describes whether a store instruction that generated an External abort updated the
location.

0b00 Not a store instruction or translation table update, or the location might have been
updated.

0b10 Store instruction or translation table update that did not update the location.

0b11 Store instruction or translation table update that updated the location.

In the description of this field, a store instruction is any memory-writing instruction that explicitly
performs a store. This includes instructions that both read and write memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VFV, bit [15]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

FAR Valid. Indicates the FAR_EL3 register contains a valid virtual address.

0b0 FAR_EL3 is not valid, and holds an UNKNOWN value.

0b1 FAR_EL3 contains a valid virtual address associated with the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PFV, bit [14]

When FEAT_PFAR is implemented and DFSC == 0b010001:

FAR Valid. Describes whether the MFAR_EL3 is valid.

0b0 MFAR_EL3 is UNKNOWN.

0b1 MFAR_EL3 is valid.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7644
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented and DFSC == 0b010001:

Implicit error synchronization event.

0b0 The SError exception was either not synchronized by the implicit error synchronization
event or not taken immediately.

0b1 The SError exception was synchronized by the implicit error synchronization event and
taken immediately.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When FEAT_RAS is implemented and DFSC == 0b010001:

Asynchronous Error Type.

Describes the PE error state after taking the SError exception.

0b000 Uncontainable (UC).

0b001 Unrecoverable state (UEU).

0b010 Restartable state (UEO).

0b011 Recoverable state (UER).

0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError exception, the overall PE error state is reported.

Note
Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA, bit [9]

When FEAT_RAS is implemented and DFSC == 0b010001:

External abort type. Provides an IMPLEMENTATION DEFINED classification of External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7645
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
WnRV, bit [7]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

ESR_EL3.WnR valid.

0b0 ESR_EL3.WnR is not valid and has been set to 0b0.

0b1 ESR_EL3.WnR is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WnR, bit [6]

When FEAT_RASv2 is implemented and DFSC == 0b010001:

Write-not-Read. When the WnRV field is 0b1, indicates whether an exception was caused by an
instruction writing to a memory location, or by an instruction reading from a memory location.

0b0 Exception was caused by an instruction reading from a memory location.

0b1 Exception was caused by an instruction writing to a memory location.

Accessing this bit has the following behavior:

• This bit is RES0 if ESR_EL3.WnRV==0b0.

• This bit is not valid and reads UNKNOWN if an External abort on a Atomic access, reported
with ESR_EL3.WU == 0b00.

• Otherwise RW.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

Data Fault Status Code.

0b000000 Uncategorized error.

0b010001 Asynchronous SError exception.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from execution of a Breakpoint instruction

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

RES0

24 16

Comment

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7646
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For the AArch32 BKPT instructions, the comment field is described as the immediate field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Breakpoint Instruction exceptions.

ISS encoding for an exception from a TSTART instruction

Bits [24:10]

Reserved, RES0.

Rd, bits [9:5]

The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0]

Reserved, RES0.

ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level
Programmers’ Model.

ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0
|| SCR_EL3.API == 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

RES0

24 10

Rd

9 5

RES0

4 0

RES0

24 2 1 0

BTYPE

RES0

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7647
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ISS encoding for a PAC Fail exception

Bits [24:2]

Reserved, RES0.

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.

0b1 Data Key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.

0b1 B key.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate a PAC Fail exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTDA, AUTDZA.

• AUTDB, AUTDZB.

• AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA.

• AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB.

If FEAT_FPACCOMBINE is implemented, the following instructions generate a PAC Fail exception when the
Pointer Authentication Code (PAC) is incorrect:

• RETAA, RETAB.

• BLRAA, BLRAAZ, BLRAB, BLRABZ.

• BRAA, BRAB, BRAAZ, BRABZ.

• ERETAA, ERETAB.

• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

RES0

24 2 1 0

Exception as a result of an Instruction key or a Data key Exception
as a
result of
an A key
or a B
key
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7648
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ESR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ESR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ESR_EL3;

MSR ESR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 ESR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7649
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.43 FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction Abort exceptions, Data Abort
exceptions, PC alignment fault exceptions and Watchpoint exceptions that are taken to EL1.

Configurations

AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DFAR[31:0] (DFAR_NS).

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register IFAR[31:0] (IFAR_NS).

Attributes

FAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the
FAR_EL1 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment
faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL1.EC holds the EC value for the
exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for
which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated,
then the top eight bits of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table
walk, this field is valid only if ESR_EL1.FnV is 0, and FAR_EL1 is UNKNOWN if ESR_EL1.FnV is
1.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC
instruction, the address held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument of the instruction as generated by MMU faults
caused by DC ZVA.

If a memory fault that sets FAR_EL1 is generated from an STZGM instruction, the address held in
FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache
maintenance or other DC instruction, this field holds the address specified in the register argument
of the instruction.

Faulting Virtual Address for synchronous exceptions taken to EL1

63 32

Faulting Virtual Address for synchronous exceptions taken to EL1

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7650
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the exception that updates FAR_EL1 is taken from an Exception level using AArch32, the top 32
bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are
0x00000001:

• The faulting address was generated by a load or store instruction that sequentially
incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED
UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When the PE sets ESR_EL1.{ISV,FnP} to {0,1} on taking a Data Abort exception, the PE sets
FAR_EL1 to any address within the naturally-aligned fault granule that contains the virtual address
of the memory access that generated the Data Abort exception.

When the PE sets ESR_EL1.{FnV,FnP} to {0,1} on taking a Watchpoint exception, the PE sets
FAR_EL1 to any address within the naturally-aligned fault granule that contains the virtual address
of the memory access that generated the Watchpoint exception.

The naturally-aligned fault granule is one of:

• When ESR_EL1.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte
tag granule.

• When ESR_EL1.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an
IMPLEMENTATION DEFINED granule.

• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL1 on a synchronous exception from any
of the Memory Copy and Memory Set instructions represents the first element that has not been
copied or set, and is determined as follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevant
translation granule, aligned to the size of the relevant translation granule of the address that
generated the Data Abort. Bits[(n-1):0] of the value are UNKNOWN, where 2n is the relevant
translation granule size in bytes. For the purpose of calculating the relevant translation
granule, if the MMU is disabled for a stage of translation, then the current translation granule
size is equal to 264 for stage 1, and the PARange for stage 2. The relevant translation granule
is:

— For MMU faults generated at stage 1, the current stage 1 translation granule.

— For MMU faults generated at stage 2, the smaller of the current stage 1 translation
granule and the current stage 2 translation granule.

— If FEAT_RME is implemented, for a synchronous Data Abort generated as the result
of a GPF, the smallest of the current stage 1 translation granule, the current stage 2
translation granule and the configured granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed
the Tag Check within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the
DCZID_EL0.BS field. This address does not need to be the element with a watchpoint, but
can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception or Watchpoint exception, if address tagging is enabled for the address
accessed by the data access that caused the exception, then this field includes the tag. For more
information about address tagging, see Address tagging.

When FEAT_MTE_TAGGED_FAR is not implemented, on a synchronous Tag Check Fault abort,
bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7651
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that actually gave rise to the instruction or Data Abort. It is the lower address
that gave rise to the fault that is reported. Where different faults from different addresses arise from
the same instruction, such as for an instruction that loads or stores an unaligned address that crosses
a page boundary, the architecture does not prioritize which fault is reported.

For all other exceptions taken to EL1, FAR_EL1 is UNKNOWN.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic FAR_EL1 or FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x220];
 else
 X[t, 64] = FAR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = FAR_EL2;
 else
 X[t, 64] = FAR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7652
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x220] = X[t, 64];
 else
 FAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 FAR_EL2 = X[t, 64];
 else
 FAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 FAR_EL1 = X[t, 64];

MRS <Xt>, FAR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x220];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = FAR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = FAR_EL1;
 else
 UNDEFINED;

MSR FAR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x220] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 FAR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7653
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 FAR_EL1 = X[t, 64];
 else
 UNDEFINED;

 When FEAT_VHE is implemented : MRS <Xt>, FAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = FAR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = FAR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = FAR_EL2;

 When FEAT_VHE is implemented : MSR FAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 FAR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 FAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 FAR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7654
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.44 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction Abort exceptions, Data Abort
exceptions, PC alignment fault exceptions and Watchpoint exceptions that are taken to EL2.

Configurations

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HDFAR[31:0].

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HIFAR[31:0].

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register DFAR[31:0] (DFAR_S) when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register IFAR[31:0] (IFAR_S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

FAR_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the
FAR_EL2 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment
faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL2.EC holds the EC value for the
exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for
which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated,
then the top eight bits of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table
walk, this field is valid only if ESR_EL2.FnV is 0, and FAR_EL2 is UNKNOWN if ESR_EL2.FnV is
1.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC
instruction, the address held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument of the instruction as generated by MMU faults
caused by DC ZVA.

If a memory fault that sets FAR_EL2 is generated from an STZGM instruction, the address held in
FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument.

Faulting Virtual Address for synchronous exceptions taken to EL2

63 32

Faulting Virtual Address for synchronous exceptions taken to EL2

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7655
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache
maintenance or other DC instruction, this field holds the address specified in the register argument
of the instruction.

If the exception that updates FAR_EL2 is taken from an Exception level using AArch32, the top 32
bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are
0x00000001:

• The faulting address was generated by a load or store instruction that sequentially
incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED
UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When the PE sets ESR_EL2.{ISV,FnP} to {0,1} on taking a Data Abort exception, the PE sets
FAR_EL2 to any address within the naturally-aligned fault granule that contains the virtual address
of the memory access that generated the Data Abort exception.

When the PE sets ESR_EL2.{FnV,FnP} to {0,1} on taking a Watchpoint exception, the PE sets
FAR_EL2 to any address within the naturally-aligned fault granule that contains the virtual address
of the memory access that generated the Watchpoint exception.

The naturally-aligned fault granule is one of:

• When ESR_EL2.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte
tag granule.

• When ESR_EL2.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an
IMPLEMENTATION DEFINED granule.

• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL2 on a synchronous exception from any
of the Memory Copy and Memory Set instructions represents the first element that has not been
copied or set, and is determined as follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevant
translation granule, aligned to the size of the relevant translation granule of the address that
generated the Data Abort. Bits[(n-1):0] of the value are UNKNOWN, where 2n is the relevant
translation granule size in bytes. For the purpose of calculating the relevant translation
granule, if the MMU is disabled for a stage of translation, then the current translation granule
size is equal to 264 for stage 1, and the PARange for stage 2. The relevant translation granule
is:

— For MMU faults generated at stage 1, the current stage 1 translation granule.

— For MMU faults generated at stage 2, the smaller of the current stage 1 translation
granule and the current stage 2 translation granule.

— If FEAT_RME is implemented, for a synchronous Data Abort generated as the result
of a GPF, the smallest of the current stage 1 translation granule, the current stage 2
translation granule and the configured granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed
the Tag Check within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the
DCZID_EL0.BS field. This address does not need to be the element with a watchpoint, but
can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception or Watchpoint exception, if address tagging is enabled for the address
accessed by the data access that caused the exception, then this field includes the tag. For more
information about address tagging, see Address tagging.

When FEAT_MTE_TAGGED_FAR is not implemented, on a synchronous Tag Check Fault abort,
bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7656
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

The address held in this field is an address accessed by the instruction fetch or data access that
caused the exception that actually gave rise to the instruction or Data Abort. It is the lower address
that gave rise to the fault that is reported. Where different faults from different addresses arise from
the same instruction, such as for an instruction that loads or stores an unaligned address that crosses
a page boundary, the architecture does not prioritize which fault is reported.

For all other exceptions taken to EL2, FAR_EL2 is UNKNOWN.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic FAR_EL2 or FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = FAR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = FAR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = FAR_EL2;

MSR FAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 FAR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7657
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 FAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 FAR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, FAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x220];
 else
 X[t, 64] = FAR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = FAR_EL2;
 else
 X[t, 64] = FAR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = FAR_EL1;

 When FEAT_VHE is implemented : MSR FAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x220] = X[t, 64];
 else
 FAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 FAR_EL2 = X[t, 64];
 else
 FAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 FAR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7658
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.45 FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction Abort exceptions, Data Abort
exceptions and PC alignment fault exceptions that are taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are
UNDEFINED.

Attributes

FAR_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the
FAR_EL3 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC
alignment faults (EC 0x22). ESR_EL3.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for
which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated,
then the top eight bits of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table
walk, this field is valid only if ESR_EL3.FnV is 0, and FAR_EL3 is UNKNOWN if ESR_EL3.FnV is
1.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC
instruction, the address held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument of the instruction as generated by MMU faults
caused by DC ZVA.

If a memory fault that sets FAR_EL3 is generated from an STZGM instruction, the address held in
FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache
maintenance or other DC instruction, this field holds the address specified in the register argument
of the instruction.

If the exception that updates FAR_EL3 is taken from an Exception level using AArch32, the top 32
bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are
0x00000001:

• The faulting address was generated by a load or store instruction that sequentially
incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED
UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

Faulting Virtual Address for synchronous exceptions taken to EL3

63 32

Faulting Virtual Address for synchronous exceptions taken to EL3

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7659
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When the PE sets ESR_EL3.{ISV,FnP} to {0,1} on taking a Data Abort exception, the PE sets
FAR_EL3 to any address within the naturally-aligned fault granule that contains the virtual address
of the memory access that generated the Data Abort exception.

The naturally-aligned fault granule is one of:

• When ESR_EL3.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte
tag granule.

• When ESR_EL3.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an
IMPLEMENTATION DEFINED granule.

• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL3 on a synchronous exception from any
of the Memory Copy and Memory Set instructions represents the first element that has not been
copied or set, and is determined as follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevant
translation granule, aligned to the size of the relevant translation granule of the address that
generated the Data Abort. Bits[(n-1):0] of the value are UNKNOWN, where 2n is the relevant
translation granule size in bytes. For the purpose of calculating the relevant translation
granule, if the MMU is disabled for a stage of translation, then the current translation granule
size is equal to 264 for stage 1, and the PARange for stage 2. The relevant translation granule
is:

— For MMU faults generated at stage 1, the current stage 1 translation granule.

— For MMU faults generated at stage 2, the smaller of the current stage 1 translation
granule and the current stage 2 translation granule.

— If FEAT_RME is implemented, for a synchronous Data Abort generated as the result
of a GPF, the smallest of the current stage 1 translation granule, the current stage 2
translation granule and the configured granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed
the Tag Check within the block size of the load or store.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address
tagging, see Address tagging.

When FEAT_MTE_TAGGED_FAR is not implemented, on a synchronous Tag Check Fault abort,
bits[63:60] are UNKNOWN.

Execution at EL2, EL1, or EL0 makes FAR_EL3 become UNKNOWN.

Note

The address held in this register is an address accessed by the instruction fetch or data access that
caused the exception that actually gave rise to the instruction or Data Abort. It is the lowest address
that gave rise to the fault that is reported. Where different faults from different addresses arise from
the same instruction, such as for an instruction that loads or stores an unaligned address that crosses
a page boundary, the architecture does not prioritize which fault is reported.

For all other exceptions taken to EL3, FAR_EL3 is UNKNOWN.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7660
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing FAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = FAR_EL3;

MSR FAR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 FAR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7661
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.46 FPEXC32_EL2, Floating-Point Exception Control Register

The FPEXC32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register FPEXC32_EL2 bits [31:0] are architecturally mapped to AArch32
System register FPEXC[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
FPEXC32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPEXC32_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

EX, bit [31]

Exception bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels,
except that setting this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.

• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

0b0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

RES0

63 32

EX

31

EN

30 29 28

VV

27 26

RES0

25 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

DEX TFV
FP2V

IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7662
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or
trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.

• FPEXC.EN.

• If executing in Non-secure state:

— HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

— NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:

— CPACR.ASEDIS.

— If executing in Non-secure state, HCPTR.TASE and NSACR.NSASEDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1.

• If EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1,
and the Effective value of HCR_EL2.RW is 1, then the Effective value of FPEXC.EN is 1.
However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an
instruction was generated by an unallocated encoding. The instruction must be in the encoding space
that is identified by the pseudocode function ExecutingCP10or11Instr() returning TRUE. This field
also indicates whether the FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

0b0 The exception was generated by the attempted execution of an unallocated instruction
in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC32_EL2.TFV is RW then it is invalid and
UNKNOWN. If FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are
invalid and UNKNOWN.

0b1 The exception was generated during the execution of an allocated encoding.
FPEXC32_EL2.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and
implements the AArch32 FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction Valid bit. From Armv8.0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7663
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC32_EL2.DEX is 1. When valid, it
indicates the cause of the exception and therefore whether FPEXC32_EL2.{IDF, IXF, UFF, OFF,
DZF, IOF} are valid.

0b0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,
VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was nonzero. If FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF,
IOF} are RW then they are invalid and UNKNOWN.

0b1 FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped
floating-point exceptions that had occurred at the time of the exception. Bits are set for
all trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC32_EL2.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When an implementation does not implement trapping of floating-point exceptions, access
to this field is RAZ/WI.

• When an implementation implements FPSCR.LEN,STRIDE as RAZ, access to this field is
RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Input Denormal exception occurred while FPSCR.IDE was 1:

0b0 Input Denormal exception has not occurred.

0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value of FPSCR.FZ16 is 1
does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Input Denormal floating-point exceptions,
access to this field is RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7664
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Inexact exception occurred while FPSCR.IXE was 1:

0b0 Inexact exception has not occurred.

0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Inexact floating-point exceptions, access
to this field is RAZ/WI.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Underflow exception occurred while FPSCR.UFE was 1:

0b0 Underflow exception has not occurred.

0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.

• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Underflow floating-point exceptions,
access to this field is RAZ/WI.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Overflow exception occurred while FPSCR.OFE was 1:

0b0 Overflow exception has not occurred.

0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Overflow floating-point exceptions,
access to this field is RAZ/WI.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

0b0 Divide by Zero exception has not occurred.

0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7665
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Divide by Zero floating-point exceptions,
access to this field is RAZ/WI.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

0b0 Invalid Operation exception has not occurred.

0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Invalid Operation floating-point
exceptions, access to this field is RAZ/WI.

Accessing FPEXC32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPEXC32_EL2

if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPEXC32_EL2;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 X[t, 64] = FPEXC32_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7666
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR FPEXC32_EL2, <Xt>

if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TFP == '1' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TFP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x07);
 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPEXC32_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TFP == '1' then
 AArch64.SystemAccessTrap(EL3, 0x07);
 else
 FPEXC32_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7667
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.47 GCR_EL1, Tag Control Register.

The GCR_EL1 characteristics are:

Purpose

Tag Control Register.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
GCR_EL1 are UNDEFINED.

Attributes

GCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:17]

Reserved, RES0.

RRND, bit [16]

Controls generation of tag values by the IRG instruction.

0b0 IRG generates a tag value as defined by RandomTag().

0b1 IRG generates an implementation-specific tag value with a distribution of tag values no
worse than generated with GCR_EL1.RRND == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Exclude, bits [15:0]

Allocation Tag values excluded from selection by ChooseNonExcludedTag().

If all bits of GCR_EL1.Exclude are 1, then the Allocation Tag value 0 will be used.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing GCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 17 16

Exclude

15 0

RRND

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7668
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCR_EL1;

MSR GCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7669
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.48 GMID_EL1, Multiple tag transfer ID Register

The GMID_EL1 characteristics are:

Purpose

Indicates the block size that is accessed by the LDGM and STGM System instructions.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
GMID_EL1 are UNDEFINED.

Attributes

GMID_EL1 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

BS, bits [3:0]

Log2 of the block size in words. The minimum supported size is 16B (value == 2) and the maximum
is 256B (value == 6).

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing GMID_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GMID_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID5 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = GMID_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = GMID_EL1;

RES0

63 32

RES0

31 4

BS

3 0

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7670
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = GMID_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7671
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.49 GPCCR_EL3, Granule Protection Check Control Register (EL3)

The GPCCR_EL3 characteristics are:

Purpose

The control register for Granule Protection Checks.

Configurations

This register is present only when FEAT_RME is implemented. Otherwise, direct accesses to
GPCCR_EL3 are UNDEFINED.

Attributes

GPCCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

L0GPTSZ, bits [23:20]

Level 0 GPT entry size.

This field advertises the number of least-significant address bits protected by each entry in the level
0 GPT.

0b0000 30-bits. Each entry covers 1GB of address space.

0b0100 34-bits. Each entry covers 16GB of address space.

0b0110 36-bits. Each entry covers 64GB of address space.

0b1001 39-bits. Each entry covers 512GB of address space.

All other values are reserved.

Access to this field is RO.

Bit [19]

Reserved, RES0.

TBGPCD, bit [18]

When FEAT_TRBE_EXT is implemented:

Trace Buffer Granule Protection Check Disabled. Controls whether the Trace Buffer Unit accepts
or rejects trace when Granule Protection Checks are disabled.

0b0 The Trace Buffer Unit rejects trace when GPCCR_EL3.GPC is 0.

0b1 The Trace Buffer Unit accepts trace when GPCCR_EL3.GPC is 0.

When the Trace Buffer Unit rejects trace, the trace might remain buffered by the trace unit until the
Trace Buffer Unit is able to accept trace. When the Trace Buffer Unit accepts trace, the Trace Buffer
Unit writes the trace to memory.

RES0

63 32

RES0

31 24

L0GPTSZ

23 20 19 18 17 16

PGS

15 14

SH

13 12

ORGN

11 10

IRGN

9 8

RES0

7 3

PPS

2 0

RES0
TBGPCD

GPC
GPCP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7672
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

Setting GPCCR_EL3.{TBGPCD, GPC} to {1, 0} means that the Trace Buffer Unit might write to
memory without any Granule Protection Checks. The addresses that the Trace Buffer Unit writes to
can be programmed by an external agent. The physical address spaces the Trace Buffer Unit can
address are restricted by an IMPLEMENTATION DEFINED debug authentication interface.

Setting GPCCR_EL3.{TBGPCD, GPC} to {1, 1} means that GPCCR_EL3.{TBGPCD, GPC} will
become {1, 0} on a Warm reset.

This field is ignored by the PE and treated as one when any of the following are true:

• GPCCR_EL3.GPC == 1.

• ExternalRootInvasiveDebugEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

GPCP, bit [17]

Granule Protection Check Priority.

This control governs behavior of granule protection checks on fetches of stage 2 Table descriptors.

0b0 GPC faults are all reported with a priority that is consistent with the GPC being
performed on any access to physical address space.

0b1 A GPC fault for the fetch of a Table descriptor for a stage 2 translation table walk might
not be generated or reported.

All other GPC faults are reported with a priority consistent with the GPC being
performed on all accesses to physical address spaces.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GPC, bit [16]

Granule Protection Check Enable.

0b0 Granule protection checks are disabled. Accesses are not prevented by this mechanism.

0b1 All accesses to physical address spaces are subject to granule protection checks, except
for fetches of GPT information and accesses governed by the GPCCR_EL3.GPCP
control.

If any stage of translation is enabled, this bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PGS, bits [15:14]

Physical Granule size.

0b00 4KB.

0b01 64KB.

0b10 16KB.

All other values are reserved.

The value of this field is permitted to be cached in a TLB.

Granule sizes not supported for stage 1 and not supported for stage 2, as defined in
ID_AA64MMFR0_EL1, are reserved. For example, if ID_AA64MMFR0_EL1.TGran16 == 0b0000
and ID_AA64MMFR0_EL1.TGran16_2 == 0b0001, then the PGS encoding 0b10 is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7673
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [13:12]

GPT fetch Shareability attribute

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

Fetches of GPT information are made with the Shareability attribute that is configured in this field.

If both ORGN and IRGN are configured with Non-cacheable attributes, it is invalid to configure this
field to any value other than 0b10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN, bits [11:10]

GPT fetch Outer cacheability attribute.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

Fetches of GPT information are made with the Outer cacheability attributes configured in this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN, bits [9:8]

GPT fetch Inner cacheability attribute.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

Fetches of GPT information are made with the Inner cacheability attributes configured in this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

PPS, bits [2:0]

Protected Physical Address Size.

The size of the memory region protected by GPTBR_EL3, in terms of the number of
least-significant address bits.

0b000 32 bits, 4GB protected address space.

0b001 36 bits, 64GB protected address space.

0b010 40 bits, 1TB protected address space.

0b011 42 bits, 4TB protected address space.

0b100 44 bits, 16TB protected address space.

0b101 48 bits, 256TB protected address space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7674
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b110 52 bits, 4PB protected address space.

All other values are reserved.

Configuration of this field to a value exceeding the implemented physical address size is invalid.

The value of this field is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing GPCCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GPCCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GPCCR_EL3;

MSR GPCCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 GPCCR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0001 0b110

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7675
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.50 GPTBR_EL3, Granule Protection Table Base Register

The GPTBR_EL3 characteristics are:

Purpose

The control register for Granule Protection Table base address.

Configurations

This register is present only when FEAT_RME is implemented. Otherwise, direct accesses to
GPTBR_EL3 are UNDEFINED.

Attributes

GPTBR_EL3 is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

BADDR, bits [39:0]

Base address for the level 0 GPT.

This field represents bits [51:12] of the level 0 GPT base address.

The level 0 GPT is aligned in memory to the greater of:

• The size of the level 0 GPT in bytes.

• 4KB.

Bits [x:0] of the base address are treated as zero, where:

• x = Max(pps - l0gptsz + 2, 11)

RES0

63 40

BADDR

39 32

BADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7676
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• pps is derived from GPCCR_EL3.PPS as follows:

• l0gptsz is derived from GPCCR_EL3.L0GPTSZ as follows:

If x is greater than 11, then BADDR[x - 12:0] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing GPTBR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GPTBR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GPTBR_EL3;

GPCCR_EL3.PPS pps

0b000 32

0b001 36

0b010 40

0b011 42

0b100 44

0b101 48

0b110 52

GPCCR_EL3.L0GPTSZ l0gptsz

0b0000 30

0b0100 34

0b0110 36

0b1001 39

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7677
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR GPTBR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 GPTBR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7678
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.51 HACR_EL2, Hypervisor Auxiliary Control Register

The HACR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of IMPLEMENTATION DEFINED aspects of EL1 or EL0 operation.

Note
Arm recommends that the values in this register do not cause unnecessary traps to EL2 when the
Effective value of HCR_EL2.{E2H, TGE} == {1, 1}.

Configurations

AArch64 System register HACR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HACR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

HACR_EL2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HACR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = HACR_EL2;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7679
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = HACR_EL2;

MSR HACR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HACR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7680
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.52 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

The HAFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS reads of Activity Monitors System registers.

Configurations

This register is present only when FEAT_AMUv1 is implemented and FEAT_FGT is implemented.
Otherwise, direct accesses to HAFGRTR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAFGRTR_EL2 is a 64-bit register.

Field descriptions

Bits [63:50]

Reserved, RES0.

AMEVTYPER1<x>_EL0, bit [19+2x], for x = 15 to 0

When AMEVTYPER1<x> is implemented:

AMEVTYPER1<x>_EL0

RES0

63 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

AMEVTYPER1<x>_EL0[15]
AMEVCNTR1<x>_EL0[15]
AMEVTYPER1<x>_EL0[14]

AMEVCNTR1<x>_EL0[14]
AMEVTYPER1<x>_EL0[13]

AMEVCNTR1<x>_EL0[13]
AMEVTYPER1<x>_EL0[12]

AMEVCNTR1<x>_EL0[12]
AMEVTYPER1<x>_EL0[11]

AMEVCNTR1<x>_EL0[7]

AMEVTYPER1<x>_EL0[7]

AMEVCNTR1<x>_EL0[8]

AMEVTYPER1<x>_EL0[8]

AMEVCNTR1<x>_EL0[9]

AMEVTYPER1<x>_EL0[9]
AMEVCNTR1<x>_EL0[10]

AMEVTYPER1<x>_EL0[10]
AMEVCNTR1<x>_EL0[11]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

RES0

16 5 4 3 2 1 0

AMEVTYPER1<x>_EL0[6]

AMEVCNTR1<x>_EL0[6]

AMEVTYPER1<x>_EL0[5]

AMEVCNTR1<x>_EL0[5]

AMEVTYPER1<x>_EL0[4]

AMEVCNTR1<x>_EL0[4]
AMEVTYPER1<x>_EL0[3]

AMCNTEN1
AMEVCNTR1<x>_EL0[0]

AMEVTYPER1<x>_EL0[0]
AMEVCNTR1<x>_EL0[1]

AMEVTYPER1<x>_EL0[1]
AMEVCNTR1<x>_EL0[2]

AMEVTYPER1<x>_EL0[2]
AMEVCNTR1<x>_EL0[3]

AMEVCNTR03_EL0
AMEVCNTR02_EL0

AMCNTEN0
AMEVCNTR00_EL0

AMEVCNTR01_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7681
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Trap MRS reads of AMEVTYPER1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVTYPER1<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVTYPER1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVTYPER1<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVTYPER1<n>_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER1<n> at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMEVCNTR1<x>_EL0, bit [18+2x], for x = 15 to 0

When AMEVCNTR1<x> is implemented:

AMEVCNTR1<x>_EL0

Trap MRS reads of AMEVCNTR1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR1<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVCNTR1<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR1<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR1<n>_EL0 at EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR1<n> at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMCNTEN<x>, bit [17x], for x = 1 to 0

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR<x>_EL0 and
AMCNTENSET<x>_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR<x> and
AMCNTENSET<x>.

0b0 The operations listed above are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7682
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads at EL1 and EL0 using AArch64 of AMCNTENCLR<x>_EL0 and
AMCNTENSET<x>_EL0 are trapped to EL2 and reported with EC syndrome
value 0x18.

• MRC reads at EL0 using AArch32 of AMCNTENCLR<x> and
AMCNTENSET<x> are trapped to EL2 and reported with EC syndrome value
0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [16:5]

Reserved, RES0.

AMEVCNTR0<x>_EL0, bit [x+1], for x = 3 to 0

Trap MRS reads of AMEVCNTR0<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR0<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVCNTR0<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
AMEVCNTR0<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of AMEVCNTR0<n>_EL0 at EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR0<n> at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HAFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HAFGRTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1E8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7683
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HAFGRTR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HAFGRTR_EL2;

MSR HAFGRTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1E8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HAFGRTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HAFGRTR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7684
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.53 HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Configurations

AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HCR[31:0].

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HCR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

Unless otherwise stated, the bits in this register behave as if they are 0 for all purposes other than
direct reads of the register if EL2 is not enabled in the current Security state.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

TWEDEL, bits [63:60]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum
delay in taking a trap of WFE* caused by HCR_EL2.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEL

63 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45

AT

44 43

NV

42 41 40 39 38 37 36 35 34

ID

33

CD

32

TWEDEn
TID5

DCT
ATA
TTLBOS

TTLBIS
EnSCXT

TOCU
AMVOFFEN

TICAB
TID4

GPF

E2H
TLOR

TERR
TEA

MIOCNCE
TME

APK
API

NV1
NV2

FWB
FIEN

RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

DC

12

BSU

11 10

FB

9 8

VI

7

VF

6 5 4 3 2 1

VM

0

TRVM
HCD

TDZ
TGE

TVM
TTLB

TPU
Bit [23]

TSW

TWI
TWE

TID0
TID1

TID2
TID3

TSC
TIDCP

TACR

VSE
AMO

IMO

SWIO
PTW

FMO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7685
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TWEDEn, bit [59]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by
HCR_EL2.TWE.

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles defined in
HCR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID5, bit [58]

When FEAT_MTE2 is implemented:

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

AArch64:

• GMID_EL1.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 5 registers are trapped to EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of
0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCT, bit [57]

When FEAT_MTE2 is implemented:

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1
translations have the Tagged attribute.

0b0 Stage 1 translations do not have the Tagged attribute.

0b1 Stage 1 translations have the Tagged attribute.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [56]

When FEAT_MTE2 is implemented:

Allocation Tag Access. When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, controls
access to Allocation Tags, System registers for Memory tagging, and prevention of Tag checking,
at EL1 and EL0.

0b0 Access to Allocation Tags is prevented at EL1 and EL0.

Accesses at EL1 to GCR_EL1, RGSR_EL1, TFSR_EL1, or TFSRE0_EL1 that are not
UNDEFINED are trapped to EL2.

Accesses at EL1 using MRS or MSR with the register name TFSR_EL2 that are not
UNDEFINED are trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7686
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Memory accesses at EL1 and EL0 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL1 and EL0.

This control does not prevent Tag checking at EL1 and EL0.

If EL2 is not enabled in the current Security state, this field behaves as 1 for all purposes other than
direct reads of the field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBOS, bit [55]

When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of
those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state. This applies to the following instructions:

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLBI VAE1OS, TLBI VAE1OSNXS, TLBI
ASIDE1OS, TLBI ASIDE1OSNXS,TLBI VAAE1OS, TLBI VAAE1OSNXS, TLBI VALE1OS,
TLBI VALE1OSNXS, TLBI VAALE1OS, TLBI VAALE1OSNXS,TLBI RVAE1OS, TLBI
RVAE1OSNXS, TLBI RVAAE1OS, TLBI RVAAE1OSNXS,TLBI RVALE1OS, TLBI
RVALE1OSNXS, and TLBI RVAALE1OS, TLBI RVAALE1OSNXS.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions are trapped to EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBIS, bit [54]

When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of
those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state. This applies to the following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLBI VAE1IS,
TLBI VAE1ISNXS, TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLBI VAAE1IS, TLBI
VAAE1ISNXS, TLBI VALE1IS, TLBI VALE1ISNXS, TLBI VAALE1IS, TLBI
VAALE1ISNXS, TLBI RVAE1IS, TLBI RVAE1ISNXS, TLBI RVAAE1IS, TLBI
RVAAE1ISNXS, TLBI RVALE1IS, TLBI RVALE1ISNXS, and TLBI RVAALE1IS, TLBI
RVAALE1ISNXS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS,
TLBIMVALIS, and TLBIMVAALIS.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions are trapped to EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7687
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EnSCXT, bit [53]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

0b0 When EL2 is enabled in the current Security state, EL1 accesses to SCXTNUM_EL0
and SCXTNUM_EL1 are disabled, causing an exception to EL2, and the value of the
registers to be treated as 0.

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1} and EL2 is enabled
in the current Security state, EL0 access to SCXTNUM_EL0 is disabled, causing an
exception to EL2, and the value of the register to be treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or SCXTNUM_EL1 to be
trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, and the value of this field is 0b0,
accesses at EL0 are not trapped by this control.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TOCU, bit [52]

When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state. This
applies to the following instructions:

• When SCTLR_EL1.UCI is 1, the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1},
and EL0 is using AArch64, IC IVAU, DC CVAU.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.

• When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using
AArch32.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7688
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
AMVOFFEN, bit [51]

When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

0b0 Virtualization of the Activity Monitors is disabled. Indirect reads of the virtual offset
registers are zero.

0b1 Virtualization of the Activity Monitors is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TICAB, bit [50]

When FEAT_EVT is implemented:

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This
applies to the following instructions:

• When EL1 is using AArch64, IC IALLUIS.

• When EL1 is using AArch32, ICIALLUIS.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID4, bit [49]

When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

AArch64:

• EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.

• EL1 writes to CSSELR_EL1.

AArch32:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.

• EL1 writes to CSSELR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 4 registers are trapped to EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7689
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

GPF, bit [48]

When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0 and EL1.

0b0 This control does not cause exceptions to be routed from EL0 and EL1 to EL2.

0b1 Instruction Abort exceptions and Data Abort exceptions due to GPFs from EL0 and EL1
are routed to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FIEN, bit [47]

When FEAT_RASv1p1 is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1,
ERXPFGCTL_EL1, and ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

0b0 Accesses to the specified registers from EL1 are trapped to EL2, when EL2 is enabled
in the current Security state.

0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FWB, bit [46]

When FEAT_S2FWB is implemented:

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on memory type and
cacheability attributes are as described in the Armv8.0 architecture. For more
information, see Combining stage 1 and stage 2 memory type attributes.

• The encoding of the stage 2 memory type and cacheability attributes in bits[5:2]
of the stage 2 Page or Block descriptors are as described in the Armv8.0
architecture.

0b1 When this bit is 1, then:

• If the stage 1 translation specifies a cacheable memory type, then the stage 1
cache allocation hint is applied to the final cache allocation hint where the final
memory type is cacheable.

• If the stage 1 translation does not specify a cacheable memory type, then if the
final memory type is cacheable, it is treated as Read-Allocate, Write-Allocate.

The encoding of the stage 2 memory type and cacheability attributes in bits[5:2] of the
stage 2 Page or Block descriptors are as described in Stage 2 memory type and
Cacheability attributes when FWB is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7690
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2
translation.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV2, bit [45]

When FEAT_NV2 is implemented:

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV1, NV} to provide a mechanism for
hardware to transform reads and writes from System registers into reads and writes from memory.

0b0 This bit has no effect on the behavior of HCR_EL2.{NV1, NV}. The behavior of
HCR_EL2.{NV1, NV} is as defined for FEAT_NV.

0b1 Redefines behavior of HCR_EL2{NV1, NV} to enable:

• Transformation of read/writes to registers into read/writes to memory.

• Redirection of EL2 registers to EL1 registers.

Any exception taken from EL1 and taken to EL1 causes SPSR_EL1.M[3:2] to be set to
0b10 and not 0b01.

When the Effective value of HCR_EL2.NV is 0, the Effective value of this field is 0 and this field
is treated as 0 for all purposes other than direct reads and writes of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AT, bit [44]

When FEAT_NV is implemented:

Address Translation. EL1 execution of the following address translation instructions is trapped to
EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.

• If FEAT_ATS1A is implemented, AT S1E1A.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified instructions is trapped to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV1, bit [43]

When FEAT_NV2 is implemented:

Nested Virtualization.

0b0 If the Effective value of HCR_EL2.{NV2, NV} is {1, 1}, accesses executed from EL1
to implemented EL12, EL02, or EL2 registers are transformed to loads and stores.

If the Effective value of HCR_EL2.{NV2, NV} is not {1, 1}, this control does not cause
any instructions to be trapped.

0b1 If the Effective value of HCR_EL2.NV2 is 1, accesses executed from EL1 to
implemented EL2 registers are transformed to loads and stores.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7691
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the Effective value of HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1,
SPSR_EL1, and, when FEAT_CSV2_2 or FEAT_CSV2_1p2 is implemented,
SCXTNUM_EL1, are trapped to EL2, when EL2 is enabled in the current Security state,
and are reported using EC syndrome value 0x18.

If the Effective value of HCR_EL2.NV2 is 1, the Effective value of HCR_EL2.NV1 defines which
EL1 register accesses are transformed to loads and stores. These transformed accesses have priority
over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of
these accesses.

If a register is specified that is not implemented by an implementation, then access to that register
are UNDEFINED.

For the list of registers affected, see Enhanced support for nested virtualization.

If the Effective value of HCR_EL2.{NV1, NV} is {0, 1}, any exception taken from EL1, and taken
to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If the Effective value of HCR_EL2.{NV1, NV} is {1, 1}, then:

• The EL1 translation table Block and Page descriptors:

— Bit[54] holds the PXN instead of the UXN.

— The Effective value of UXN is 0.

— Bit[53] is RES0.

— Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as
follows:

— Bit[61] is treated as 0 regardless of the actual value.

— Bit[60] holds the PXNTable instead of the UXNTable.

— Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except
reading the value of the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR*
instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If the Effective value of HCR_EL2.{NV1, NV} are {1, 0}, then the behavior is a CONSTRAINED
UNPREDICTABLE choice of:

• Behaving as if the Effective value of HCR_EL2.{NV1, NV} is {1, 1} for all purposes other
than reading back the value of the HCR_EL2.NV bit.

• Behaving as if the Effective value of HCR_EL2.{NV1, NV} is {0, 0} for all purposes other
than reading back the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the Effective value of HCR_EL2.{NV1, NV} behavior as defined
in the rest of this description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in
the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, when FEAT_CSV2_2 or
FEAT_CSV2_1p2 is implemented, SCXTNUM_EL1, are trapped to EL2, when EL2 is
enabled in the current Security state, and are reported using EC syndrome value 0x18.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7692
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the Effective value of HCR_EL2.{NV1, NV} is {0, 1}, then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to
0b10, and not 0b01.

If the Effective value of HCR_EL2.{NV1, NV} is {1, 1}, then the following effects also apply:

• The EL1 translation table Block and Page descriptors:

— Bit[54] holds the PXN instead of the UXN.

— The Effective value of UXN is 0.

— Bit[53] is RES0.

— Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as
follows:

— Bit[61] is treated as 0 regardless of the actual value.

— Bit[60] holds the PXNTable instead of the UXNTable.

— Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except
reading the value of the bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR*
instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If the Effective value of HCR_EL2.{NV1, NV} is {1, 0}, then the behavior is a CONSTRAINED
UNPREDICTABLE choice of:

• Behaving as if the Effective value of HCR_EL2.{NV1, NV} is {1, 1} for all purposes other
than reading back the value of the HCR_EL2.NV bit.

• Behaving as if the Effective value of HCR_EL2.{NV1, NV} is {0, 0} for all purposes other
than reading back the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the Effective value of HCR_EL2.{NV1, NV} behavior as defined
in the rest of this description.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV, bit [42]

When FEAT_NV2 is implemented:

Nested Virtualization.

When the Effective value of HCR_EL2.NV2 is 1, redefines register accesses so that:

• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access
SPSR_EL1 and ELR_EL1 respectively.

• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access
ESR_EL1 and FAR_EL1.

When the Effective value of HCR_EL2.NV2 is 0, traps functionality that is permitted at EL2 and
would be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state.
This applies to the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.

• EL1 accesses to System registers that are not UNDEFINED at EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7693
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance
instructions for EL2 and above.

0b0 When this bit is set to 0, then the PE behaves as if the Effective value of HCR_EL2.NV2
is 0 for all purposes other than reading this register. This control does not cause any
instructions to be trapped.

When the Effective value of HCR_EL2.NV2 is 1, no FEAT_NV2 functionality is
implemented.

0b1 When the Effective value of HCR_EL2.NV2 is 0, EL1 accesses to the specified registers
or the execution of the specified instructions are trapped to EL2, when EL2 is enabled
in the current Security state. EL1 read accesses to the CurrentEL register return a value
of 0x2.

When the Effective value of HCR_EL2.NV2 is 1, this control redefines EL1 register
accesses so that instructions accessing SPSR_EL2, ELR_EL2, ESR_EL2, and
FAR_EL2 instead access SPSR_EL1, ELR_EL1, ESR_EL1, and FAR_EL1
respectively.

When the Effective value of HCR_EL2.NV2 is 0, then:

• The System or Special-purpose registers for which accesses are trapped and reported using
EC syndrome value 0x18 are as follows:

— Registers accessed using MRS or MSR with a name ending in _EL2, except the
following:

— SP_EL2.

— If FEAT_MEC is implemented, MECID_A0_EL2, MECID_A1_EL2,
MECID_P0_EL2, MECID_P1_EL2, MECIDR_EL2, VMECID_A_EL2,
VMECID_P_EL2.

— Registers accessed using MRS or MSR with a name ending in _EL12.

— Registers accessed using MRS or MSR with a name ending in _EL02.

— Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed
using MRS or MSR.

— Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR
instruction.

• The instructions for which the execution is trapped and reported using EC syndrome value
0x18 are as follows:

— EL2 translation regime Address Translation instructions and TLB maintenance
instructions.

— EL1 translation regime Address Translation instructions and TLB maintenance
instructions that are accessible only from EL2 and EL3.

• The instructions for which the execution is trapped as follows:

— SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1.
HCR_EL2.TSC bit is not RES0 in this case. This is reported using EC syndrome value
0x17.

— The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value
0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits
are set so that EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2, then the
syndrome reported is 0x1A.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7694
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1
if this field was 0, when EL2 is enabled in the current Security state. This applies to the following
operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.

• EL1 accesses to System registers that are not UNDEFINED at EL2.

• Execution of EL1 or EL2 translation regime address translation and TLB maintenance
instructions for EL2 and above.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers or the execution of the specified instructions are
trapped to EL2, when EL2 is enabled in the current Security state. EL1 read accesses to
the CurrentEL register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC
syndrome value 0x18 are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2, except the following:

— SP_EL2.

— If FEAT_MEC is implemented, MECID_A0_EL2, MECID_A1_EL2,
MECID_P0_EL2, MECID_P1_EL2, MECIDR_EL2, VMECID_A_EL2,
VMECID_P_EL2.

• Registers accessed using MRS or MSR with a name ending in _EL12.

• Registers accessed using MRS or MSR with a name ending in _EL02.

• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using
MRS or MSR.

• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are
as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions.

• EL1 translation regime Address Translation instructions and TLB maintenance instructions
that are accessible only from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC
syndrome value 0x1A.

Note
The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits
are set so that EL1 execution of an ERETAA or ERETAB instruction is trapped to EL2, then the
syndrome reported is 0x1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when
HCR_EL2.TSC is 1 are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is
not RES0 in this case.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7695
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
API, bit [41]

When FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• In EL0, when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and the associated
SCTLR_EL1.En<N><M>==1.

• In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped
are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ,
BLRABZ.

• ERETAA, ERETAB, LDRAA, and LDRAB.

0b0 The instructions related to Pointer Authentication are trapped to EL2, when EL2 is
enabled in the current Security state and the instructions are enabled for the EL1&0
translation regime, from:

• EL0 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• EL1.

If the Effective value of HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence
over the HCR_EL2.API trap for the ERETAA and ERETAB instructions.

If EL2 is implemented and enabled in the current Security state and
HFGITR_EL2.ERET == 1, execution at EL1 using AArch64 of ERETAA or ERETAB
instructions is reported with EC syndrome value 0x1A with its associated ISS field, as
the fine-grained trap has higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in the current Security
state, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]

When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following
registers from EL1 to EL2, when EL2 is enabled in the current Security state, reported using EC
syndrome value 0x18:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1,
APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1,
APGAKeyLo_EL1, and APGAKeyHi_EL1.

0b0 Access to the registers holding “key” values for pointer authentication from EL1 are
trapped to EL2, when EL2 is enabled in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in the current Security
state, the system behaves as if this bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7696
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [39]

When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST, and TCANCEL instructions at EL0 and EL1.

0b0 EL0 and EL1 accesses to TSTART, TCOMMIT, TTEST, and TCANCEL instructions
are UNDEFINED.

0b1 This control does not cause any instruction to be UNDEFINED.

If EL2 is not implemented or is disabled in the current Security state, the Effective value of this bit
is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

0b0 For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for those accesses differs from
the Outer Cacheability attribute.

0b1 For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there might be
a loss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information, see Mismatched memory attributes.

This field can be implemented as RAZ/WI.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field
for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TEA, bit [37]

When FEAT_RAS is implemented:

Route synchronous External abort exceptions to EL2.

0b0 Synchronous External abort exceptions are unaffected by this mechanism. That is,
synchronous External abort exceptions are not taken to EL2 unless routed to EL2 by
another control.

0b1 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state, synchronous External abort exceptions are taken to EL2, unless they are
routed to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7697
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TERR, bit [36]

When FEAT_RAS is implemented:

Trap accesses of Error Record registers. Enables a trap to EL2 on accesses of Error Record registers.

0b0 Accesses of the specified Error Record registers are not trapped by this mechanism.

0b1 Accesses of the specified Error Record registers at EL1 are trapped to EL2, unless the
instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

• MRS accesses to ERRIDR_EL1 and ERXFR_EL1.

• If FEAT_RASv1p1 is implemented, MRS and MSR accesses to ERXMISC2_EL1 and
ERXMISC3_EL1.

• If FEAT_RASv2 is implemented, MRS accesses to ERXGSR_EL1.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• MRC accesses to ERRIDR, ERXFR, and ERXFR2.

• If FEAT_RASv1p1 is implemented, MRC and MCR accesses to ERXMISC4, ERXMISC5,
ERXMISC6, and ERXMISC7.

Unless the instruction generates a higher priority exception, trapped instructions generate an
exception to EL2.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]

When FEAT_LOR is implemented:

Trap LOR registers. Traps Non-secure EL1 accesses to LORSA_EL1, LOREA_EL1, LORN_EL1,
LORC_EL1, and LORID_EL1 registers to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7698
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
E2H, bit [34]

When FEAT_VHE is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host
Operating System's applications are running in EL0.

0b0 The facilities to support a Host Operating System at EL2 are disabled.

0b1 The facilities to support a Host Operating System at EL2 are enabled.

For information on the behavior of this bit see Behavior of HCR_EL2.E2H.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is
enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2
translations for instruction accesses to Normal memory to be Non-cacheable.

0b0 This control has no effect on stage 2 of the EL1&0 translation regime.

0b1 Forces all stage 2 translations for instruction accesses to Normal memory to be
Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field
for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled
in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for
data accesses and translation table walks to Normal memory to be Non-cacheable.

0b0 This control has no effect on stage 2 of the EL1&0 translation regime for data accesses
and translation table walks.

0b1 Forces all stage 2 translations for data accesses and translation table walks to Normal
memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field
for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [31]

When EL1 is capable of using AArch32:

Execution state control for lower Exception levels:

0b0 Lower levels are all AArch32.

0b1 The Execution state for EL1 is AArch64. The Execution state for EL0 is determined by
the current value of PSTATE.nRW when executing at EL0.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves
as if this bit has the same value as the SCR_EL3.RW bit for all purposes other than a direct read or
write access of HCR_EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7699
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The RW bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps reads of the virtual memory control registers to EL2,
when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, EL1 accesses to the following registers are trapped to EL2 and
reported using EC syndrome value 0x18 for MRS and 0x14 for MRRS:

— SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1,
AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

— If FEAT_AIE is implemented, MAIR2_EL1, AMAIR2_EL1.

— If FEAT_S1PIE is implemented, PIRE0_EL1, PIR_EL1.

— If FEAT_S1POE is implemented, POR_EL0, POR_EL1.

— If FEAT_S2POE is implemented, S2POR_EL1.

— If FEAT_TCR2 is implemented, TCR2_EL1.

— If FEAT_SCTLR2 is implemented, SCTLR2_EL1.

• If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and EL0 is using AArch64
state, EL0 accesses to the following registers are trapped to EL2 and reported using EC
syndrome value 0x18 for MRS:

— If FEAT_S1POE is implemented, POR_EL0.

• If EL1 is using AArch32 state, EL1 accesses using MRC to the following registers are
trapped to EL2 and reported using EC syndrome value 0x03, accesses using MRRC are
trapped to EL2 and reported using EC syndrome value 0x04:

— SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR,
ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1,
CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 Read accesses to the specified Virtual Memory control registers are trapped to EL2,
when EL2 is enabled in the current Security state.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field
for all purposes other than a direct read of this field.

Note

EL2 provides a second stage of address translation, that a hypervisor can use to remap the address
map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to
the registers that control the memory system. A hypervisor might use this trap as part of its
virtualization of memory management.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

0b0 HVC instruction execution is enabled at EL2 and EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7700
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting exception is taken to
the Exception level at which the HVC instruction is executed.

Note
HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when
EL2 is enabled in the current Security state, from AArch64 state only, reported using EC syndrome
value 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 This control does not cause any instructions to be trapped.

0b1 In AArch64 state, any attempt to execute an instruction this trap applies to at EL1, or at
EL0 when the instruction is not UNDEFINED at EL0, is trapped to EL2 when EL2 is
enabled in the current Security state.

Reading the DCZID_EL0 returns a value that indicates that the instructions this trap
applies to are not supported.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

0b0 This control has no effect on execution at EL0.

0b1 When EL2 is not enabled in the current Security state, this control has no effect on
execution at EL0.

When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is treated as being 0 for all
purposes other than returning the result of a direct read of SCTLR_EL1.

• If EL1 is using AArch32, the SCTLR.M field is treated as being 0 for all purposes
other than returning the result of a direct read of SCTLR.

• All virtual interrupts and virtual exceptions are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

• An exception return to EL1 is treated as an illegal exception return.

• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are treated as being 1 for
all purposes other than returning the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:

• The Effective value of HCR_EL2.E2H is not 1, the Effective values of the
HCR_EL2.{FMO, IMO, AMO} fields are 1.

• The Effective value of HCR_EL2.E2H is 1, the Effective values of the
HCR_EL2.{FMO, IMO, AMO} fields are 0.

For further information on the behavior of this bit when the Effective value of E2H is 1,
see Behavior of HCR_EL2.E2H.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7701
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HCR_EL2.TGE must not be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps writes to the virtual memory control registers to EL2, when
EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18 for MSR and 0x14 for MSRR:

— SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1,
AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

— If FEAT_AIE is implemented, MAIR2_EL1, AMAIR2_EL1.

— If FEAT_S1PIE is implemented, PIRE0_EL1, PIR_EL1.

— If FEAT_S1POE is implemented, POR_EL0, POR_EL1.

— If FEAT_S2POE is implemented, S2POR_EL1.

— If FEAT_TCR2 is implemented, TCR2_EL1.

— If FEAT_SCTLR2 is implemented, SCTLR2_EL1.

• If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and EL0 is using AArch64
state, EL0 accesses to the following registers are trapped to EL2 and reported using EC
syndrome value 0x18 for MSR:

— If FEAT_S1POE is implemented, POR_EL0.

• If EL1 is using AArch32 state, EL1 accesses using MCR to the following registers are
trapped to EL2 and reported using EC syndrome value 0x03, accesses using MCRR are
trapped to EL2 and reported using EC syndrome value 0x04:

— SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR,
ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1,
CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 Write accesses to the specified Virtual Memory control registers are trapped to EL2,
when EL2 is enabled in the current Security state.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field
for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2,
when EL2 is enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— TLBI VMALLE1, TLBI VMALLE1NXS, TLBI VAE1, TLBI VAE1NXS, TLBI
ASIDE1, TLBI ASIDE1NXS, TLBI VAAE1, TLBI VAAE1NXS, TLBI VALE1,
TLBI VALE1NXS, TLBI VAALE1, TLBI VAALE1NXS.

— TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLBI VAE1IS, TLBI VAE1ISNXS,
TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLBI VAAE1IS, TLBI VAAE1ISNXS,
TLBI VALE1IS, TLBI VALE1ISNXS, TLBI VAALE1IS, TLBI VAALE1ISNXS.

— If FEAT_TLBIOS is implemented, this trap applies to TLBI VMALLE1OS, TLBI
VMALLE1OSNXS, TLBI VAE1OS, TLBI VAE1OSNXS, TLBI ASIDE1OS, TLBI
ASIDE1OSNXS, TLBI VAAE1OS, TLBI VAAE1OSNXS, TLBI VALE1OS, TLBI
VALE1OSNXS, TLBI VAALE1OS, TLBI VAALE1OSNXS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7702
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— If FEAT_TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI
RVAE1NXS, TLBI RVAAE1, TLBI RVAAE1NXS, TLBI RVALE1, TLBI
RVALE1NXS, TLBI RVAALE1, TLBI RVAALE1NXS, TLBI RVAE1IS, TLBI
RVAE1ISNXS, TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLBI RVALE1IS, TLBI
RVALE1ISNXS, TLBI RVAALE1IS, TLBI RVAALE1ISNXS.

— If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to
TLBI RVAE1OS, TLBI RVAE1OSNXS, TLBI RVAAE1OS, TLBI RVAAE1OSNXS,
TLBI RVALE1OS, TLBI RVALE1OSNXS, TLBI RVAALE1OS, TLBI
RVAALE1OSNXS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x03:

— TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS,
TLBIMVAALIS.

— TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

— ITLBIALL, ITLBIMVA, ITLBIASID.

— DTLBIALL, DTLBIMVA, DTLBIASID.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified TLB maintenance instructions are trapped to EL2, when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note

The TLB maintenance instructions are UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported with EC syndrome value 0x18:

— IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
with EC syndrome value 0x18:

— IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.

• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported
with EC syndrome value 0x18:

— ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using
AArch32.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7703
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit[23]

When FEAT_DPB is implemented:

TPCP

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or
Persistence. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled
in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported using EC syndrome value 0x18:

— DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than
this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— DC IVAC, DC CIVAC, DC CVAC, DC CVAP.

• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x03:

— DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC IGVAC,
DC IGDVAC, DC CGVAC, DC CGDVAC, DC CGVAP and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

Note

• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at EL0 using AArch64.

— DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using
AArch32.

• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7704
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes
other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TPC

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current
Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the
following registers are trapped and reported using EC syndrome value 0x18:

— DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than
this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and
reported using EC syndrome value 0x18.

• When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are
trapped and reported using EC syndrome value 0x03.

Note

• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at EL0 using AArch64.

— DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using
AArch32.

• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of
those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state as follows:

• If EL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2,
reported using EC syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2,
reported using EC syndrome value 0x03.

If FEAT_MTE2 is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC
CGDSW, DC CIGSW, and DC CIGDSW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7705
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2,
when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and
reported using EC syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are
trapped to EL2 and reported using EC syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note

ACTLR_EL1 is not accessible at EL0.

ACTLR and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement
global control bits for the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for
IMPLEMENTATION DEFINED functionality to EL2, when EL2 is enabled in the current Security state
as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces
are trapped and reported using EC syndrome 0x18:

— IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and
SYSL, with CRn == {11, 15}.

— IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR
with the S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, MCR and MRC access to instructions with the following encodings are
trapped and reported using EC syndrome 0x03:

— All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

— All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 ==
{0-7}.

— All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7706
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When this functionality is accessed from EL0:

• If FEAT_TIDCP1 is implemented and the Effective value of SCTLR_EL1.TIDCP is 1, any
accesses from EL0 are trapped to EL1.

• Otherwise, if FEAT_TIDCP1 is implemented and the Effective value of
SCTLR_EL2.TIDCP is 1, any accesses from EL0 are trapped to EL2.

• Otherwise:

— If HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any accesses from
EL0 are trapped to EL2.

— If HCR_EL2.TIDCP is 0, any accesses from EL0 are UNDEFINED and generate an
exception that is taken to EL1 or EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to or execution of the specified encodings reserved for IMPLEMENTATION
DEFINED functionality are trapped to EL2, when EL2 is enabled in the current Security
state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional
controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

The trapping of accesses to these registers from EL1 is higher priority than an exception resulting
from the register access being UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the
current Security state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note
HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC
exception. Trap exceptions and SMC exceptions have different preferred return addresses.

0b0 This control does not cause any instructions to be trapped.

0b1 If EL3 is implemented, then any attempt to execute an SMC instruction at EL1 is trapped
to EL2, when EL2 is enabled in the current Security state, regardless of the value of
SCR_EL3.SMD.

If EL3 is not implemented and the Effective value of HCR_EL2.NV is 1, then any
attempt to execute an SMC instruction at EL1 using AArch64 is trapped to EL2.

If EL3 is not implemented and the Effective value of HCR_EL2.NV is 0, then it is
IMPLEMENTATION DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2
is enabled in the current Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to
conditional SMC instructions that fail their condition code check, in the same way as with traps on
other conditional instructions.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented, and the Effective value of HCR_EL2.NV is 0, then it is
IMPLEMENTATION DEFINED whether this bit is:

• RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7707
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current
Security state, as follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

— ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1,
ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1,
ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1, MVFR2_EL1.

— ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1,
ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1,
ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64AFR0_EL1,
ID_AA64AFR1_EL1.

— If FEAT_FGT is implemented, reads of the following registers are trapped to EL2. If
FEAT_FGT is not implemented, reads of the following registers are trapped to EL2,
unless the registers are implemented as RAZ, when it is IMPLEMENTATION DEFINED
whether accesses are trapped to EL2.

— ID_PFR2_EL1, ID_MMFR4_EL1 and ID_MMFR5_EL1.

— ID_AA64MMFR3_EL1.

— ID_AA64MMFR4_EL1.

— ID_AA64PFR2_EL1.

— ID_AA64MMFR2_EL1 and ID_ISAR6_EL1.

— ID_DFR1_EL1.

— ID_AA64ZFR0_EL1.

— ID_AA64SMFR0_EL1.

— ID_AA64ISAR2_EL1.

— If FEAT_FGT is implemented, this field traps all MRS accesses to registers in the
following range that are not already mentioned in this field description: op0 == 3, op1
== 0, CRn == 0, CRm == {2-7}, op2 == {0-7}. If FEAT_FGT is not implemented, it
is IMPLEMENTATION DEFINED whether this field traps accesses to registers in the range.

In AArch32 state:

• VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC
syndrome value 0x08, unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are trapped to EL2, reported using EC syndrome value
0x03:

— ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1,
ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3,
ID_ISAR4, ID_ISAR5.

— If FEAT_FGT is implemented:

— ID_MMFR4 and ID_MMFR5.

— ID_ISAR6.

— ID_DFR1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7708
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— This field traps all MRC accesses to encodings in the following range that are
not already mentioned in this field description: coproc == p15, opc1 == 0, CRn
== c0, CRm == {c2-c7}, opc2 == {0-7}.

— If FEAT_FGT is not implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or
ID_MMFR5 are trapped.

— ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

— ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1 are trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps all MRC
accesses to registers in the following range not already mentioned in this field
description with coproc == p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2
== {0-7}.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 3 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state, as follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1,
and CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are
trapped to EL2, reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT
is 0, then EL0 reads of CTR_EL0 are trapped to EL1 and the resulting exception takes
precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC
syndrome value 0x18.

• If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are
trapped to EL2, reported using EC syndrome value 0x03.

• If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome
value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 2 registers are trapped to EL2, when
EL2 is enabled in the current Security state.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the
current Security state as follows:

• In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, SMIDR_EL1, reported using EC
syndrome value 0x18.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7709
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC
syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 1 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID0, bit [15]

When AArch32 is supported:

Trap ID group 0. Traps the following register accesses to EL2:

• EL1 reads of the JIDR, reported using EC syndrome value 0x05.

• If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value
0x05.

• EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

Note

• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is
UNDEFINED at EL0, then any resulting exception takes precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.

• Writes to the FPSID are ignored, and not trapped by this control.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 0 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWE or
SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is trapped only if the
instruction passes its condition code check.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7710
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state,
see Wait for Event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWI or
SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is trapped only if the
instruction passes its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
Wait for Interrupt mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

0b0 This control has no effect on the EL1&0 translation regime.

0b1 In any Security state:

• When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a
direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of the SCTLR.M
field is 0 for all purposes other than returning the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes
other than returning the value of a direct read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-Allocate Write-Allocate.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7711
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from EL1 or EL0:

0b00 No effect.

0b01 Inner Shareable.

0b10 Outer Shareable.

0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID,
ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VMALLE1NXS, TLBI VAE1, TLBI VAE1NXS, TLBI
ASIDE1, TLBI ASIDE1NXS, TLBI VAAE1, TLBI VAAE1NXS, TLBI VALE1, TLBI
VALE1NXS, TLBI VAALE1, TLBI VAALE1NXS, IC IALLU, TLBI RVAE1, TLBI RVAE1NXS,
TLBI RVAAE1, TLBI RVAAE1NXS, TLBI RVALE1, TLBI RVALE1NXS, TLBI RVAALE1,
TLBI RVAALE1NXS.

0b0 This field has no effect on the operation of the specified instructions.

0b1 When one of the specified instruction is executed at EL1, the instruction is broadcast
within the Inner Shareable shareability domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError exception.

0b0 This mechanism is not making a virtual SError exception pending.

0b1 A virtual SError exception is pending because of this mechanism.

The virtual SError exception is enabled only when HCR_EL2.TGE is 0 and either HCR_EL2.AMO
is 1 or FEAT_DoubleFault2 is implemented and the Effective value of HCRX_EL2.TMEA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7712
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
VI, bit [7]

Virtual IRQ Interrupt.

0b0 This mechanism is not making a virtual IRQ pending.

0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VF, bit [6]

Virtual FIQ Interrupt.

0b0 This mechanism is not making a virtual FIQ pending.

0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

Physical SError exception routing.

0b0 Physical SError exceptions are unaffected by this mechanism. That is, physical SError
exceptions are not taken to EL2 unless routed to EL2 by another control.

Virtual SError exceptions are not enabled by this mechanism.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state,
all of the following apply:

• Physical SError exceptions are taken to EL2, unless they are routed to EL3.

• If HCR_EL2.TGE is 0 then virtual SError exceptions are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of HCR_EL2.AMO, physical SError exceptions target EL2 unless
they are routed to EL3.

• When the Effective value of HCR_EL2.E2H is not 1, this field behaves as 1 for all purposes
other than a direct read of the value of this bit.

• When the Effective value of HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

For more information, see Establishing the target Exception level of an asynchronous exception.

Virtual SError exceptions are disabled when the Effective value of HCR_EL2.AMO is 0 and either
FEAT_DoubleFault2 is not implemented or the Effective value of HCRX_EL2.TMEA is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical IRQ interrupts are not taken to
EL2.

• When the value of HCR_EL2.TGE is 1, Physical IRQ interrupts are taken to EL2
unless they are routed to EL3.

• Virtual IRQ interrupts are disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7713
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical IRQ interrupts are taken to EL2, unless they are routed to EL3.

• When the value of HCR_EL2.TGE is 0, then Virtual IRQ interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are
routed to EL3.

• When the Effective value of HCR_EL2.E2H is not 1, this field behaves as 1 for all purposes
other than a direct read of the value of this bit.

• When the Effective value of HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

For more information, see Establishing the target Exception level of an asynchronous exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical FIQ interrupts are not taken to
EL2.

• When the value of HCR_EL2.TGE is 1, Physical FIQ interrupts are taken to EL2
unless they are routed to EL3.

• Virtual FIQ interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical FIQ interrupts are taken to EL2, unless they are routed to EL3.

• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are
routed to EL3.

• When the Effective value of HCR_EL2.E2H is not 1, this field behaves as 1 for all purposes
other than a direct read of the value of this bit.

• When the Effective value of HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other
than a direct read of the value of this bit.

For more information, see Establishing the target Exception level of an asynchronous exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a
stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type
attributes from the two stages of translation means the access might be made to a type of Device
memory. If this occurs, then the value of this bit determines the behavior:

0b0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

0b1 The memory access generates a stage 2 Permission fault.

This bit is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7714
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way
instructions to perform a data cache clean and invalidate by set/way:

0b0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

0b1 Data cache invalidate by set/way instructions perform a data cache clean and invalidate
by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when
EL2 is enabled in the current Security state.

0b0 EL1&0 stage 2 address translation disabled.

0b1 EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data
cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless
of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x078];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7715
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = HCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HCR_EL2;

MSR HCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x078] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7716
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.54 HCRX_EL2, Extended Hypervisor Configuration Register

The HCRX_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Configurations

This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to
HCRX_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register
if:

• EL2 is not enabled in the current Security state.

• SCR_EL3.HXEn is 0.

Attributes

HCRX_EL2 is a 64-bit register.

Field descriptions

Bits [63:23]

Reserved, RES0.

GCSEn, bit [22]

When FEAT_GCS is implemented:

Guarded Control Stack enable. Controls Guarded Control Stack behavior at EL1 and EL0.

0b0 The Guarded Control Stack is disabled at EL1 and EL0.

0b1 Guarded Control Stack behavior at EL1 and EL0 is not affected by mechanism.

This field is ignored by the PE and treated as 1 when EL2 is disabled in the current Security state or
the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

This field is ignored by the PE and treated as 0 when EL2 is enabled in the current Security state
and the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1} and SCR_EL3.HXEn == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

RES0

63 32

RES0

31 23 22 21 20 19 18 17 16 15 14

RES0

13 12 11 10 9 8 7 6 5 4 3 2 1 0

GCSEn
EnIDCP128

EnSDERR
TMEA
EnSNERR

D128En
PTTWI
SCTLR2En

TCR2En
MSCEn

EnAS0
EnALS

EnASR
FnXS

FGTnXS
SMPME

TALLINT
VINMI

VFNMI
CMOW

MCE2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7717
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIDCP128, bit [21]

When FEAT_SYSREG128 is implemented:

Enables access to IMPLEMENTATION DEFINED 128-bit System registers.

0b0 If EL2 is implemented and enabled in the current Security state, accesses at EL1, EL0
to IMPLEMENTATION DEFINED 128-bit System registers are trapped to EL2 using an
ESR_EL2.EC value of 0x14, unless the access generates a higher priority exception.

Disables the functionality of the 128-bit IMPLEMENTATION DEFINED System registers
that are accessible at EL2.

0b1 No accesses are trapped by this control.

This field is ignored by the PE and treated as 1 when EL2 is disabled in the current Security state or
the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

This field is ignored by the PE and treated as 0 when EL2 is enabled in the current Security state
and the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1} and SCR_EL3.HXEn == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSDERR, bit [20]

When FEAT_ADERR is implemented:

Enable Synchronous Device Read Error. Override SCTLR2_EL1.EnADERR.

0b0 This field has no effect on External aborts on Device memory reads in the EL1&0
translation regime.

0b1 External abort on Device memory reads generate synchronous Data Abort exceptions in
the EL1&0 translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SIMD&FP register loads.

• SVE register loads.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 1 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Device memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 1 might have a performance impact for Device memory reads.

This field is ignored by the PE and treated as 0 when any of the following are true:

• All of the following are true:

— FEAT_ANERR is implemented.

— ID_AA64MMFR3_EL1.ADERR reads as 0b0010.

— HCRX_EL2.EnSNERR is 1.

• SCR_EL3.HXEn == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7718
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMEA, bit [19]

When FEAT_DoubleFault2 is implemented:

Trap Masked External Aborts. Controls whether a masked error exception at a lower Exception
level is taken to EL2.

0b0 Synchronous External abort exceptions and physical SError exceptions at EL1 and EL0
are unaffected by this mechanism. That is, these exceptions are not taken to EL2 unless
routed to EL2 by another control.

Virtual SError exceptions are not enabled by this mechanism.

0b1 When executing at Exception levels below EL2, if EL2 is enabled in the current
Security state, then all of the following apply:

• When PSTATE.A is 1, synchronous External abort exceptions are taken to EL2,
unless they are routed to EL3.

• Masked physical SError exceptions are taken to EL2, unless they are routed to
EL3.

• If HCR_EL2.TGE is 0 then virtual SError exceptions are enabled.

This field is ignored by the PE and treated as 0 when any of the following are true:

• SCR_EL3.HXEn == 0.

• The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

• EL2 is disabled in the current Security state.

Virtual SError exceptions are disabled when the Effective value of HCR_EL2.AMO is 0 and the
Effective value of HCRX_EL2.TMEA is 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSNERR, bit [18]

When FEAT_ANERR is implemented:

Enable Synchronous Normal Read Error. Override SCTLR2_EL1.EnANERR.

0b0 This field has no effect on External aborts on Normal memory reads in the EL1&0
translation regime.

0b1 External abort on Normal memory reads generate synchronous Data Abort exceptions
in the EL1&0 translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SVE register loads, when FEAT_SME is implemented and the PE is in Streaming SVE mode.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7719
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 1 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Normal memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 1 might have a performance impact for Normal memory reads.

This field is ignored by the PE and treated as 0 when any of the following are true:

• All of the following are true:

— FEAT_ADERR is implemented.

— ID_AA64MMFR3_EL1.ANERR reads as 0b0010.

— HCRX_EL2.EnSDERR is 1.

• SCR_EL3.HXEn == 0.

• EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D128En, bit [17]

When FEAT_D128 is implemented:

128-bit System Register trap control. Enable access to 128-bit System Registers via MRRS, MSRR
instructions.

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2 and
reported using EC syndrome value 0x14:

— TTBR0_EL1.

— TTBR1_EL1.

— If FEAT_THE is implemented, RCWMASK_EL1, RCWSMASK_EL1.

— PAR_EL1.

0b0 EL1 accesses to the specified registers are disabled, and trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PTTWI, bit [16]

When FEAT_THE is implemented:

Permit Translation Table Walk Incoherence.

Permits RCWS instructions to generate writes that have the Reduced Coherence property.

0b0 If EL2 is implemented and enabled in the current Security state, write accesses
generated by RCWS at EL1&0 do not have the Reduced Coherence property.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7720
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Write accesses generated by RCWS at EL1&0 have the Reduced Coherence property,
if enabled by TCR2_EL1.PTTWI.

This bit is permitted to be cached in TLB.

This bit is permitted to be implemented as a read-only bit with a fixed value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR2En, bit [15]

When FEAT_SCTLR2 is implemented:

SCTLR2_EL1 Enable. In AArch64 state, accesses to SCTLR2_EL1 are trapped to EL2 and
reported using EC syndrome value 0x18.

0b0 Accesses to SCTLR2_EL1 at EL1 are trapped to EL2, unless the access generates a
higher priority exception. The value in SCTLR2_EL1 is treated as 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR2En, bit [14]

When FEAT_TCR2 is implemented:

TCR2_EL1 Enable. In AArch64 state, accesses to TCR2_EL1 are trapped to EL2 and reported
using EC syndrome value 0x18.

0b0 Accesses to TCR2_EL1 at EL1 are trapped to EL2, unless the access generates a higher
priority exception. The value in TCR2_EL1 is treated as 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [13:12]

Reserved, RES0.

MSCEn, bit [11]

When FEAT_MOPS is implemented:

Memory Set and Memory Copy instructions Enable. Enables execution of the CPY*, SETG*,
SETP*, SETM*, and SETE* instructions at EL1 or EL0.

0b0 Execution of the Memory Copy and Memory Set instructions is UNDEFINED at EL1 or
EL0.

0b1 This control does not cause any instructions to be UNDEFINED.

This bit behaves as if it is 1 if any of the following are true:

• EL2 is not implemented or enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7721
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MCE2, bit [10]

When FEAT_MOPS is implemented:

Controls Memory Copy and Memory Set exceptions generated as part of attempting to execute the
Memory Copy and Memory Set instructions from EL1.

0b0 Memory Copy and Memory Set exceptions generated from EL1 are taken to EL1.

0b1 Memory Copy and Memory Set exceptions generated from EL1 are taken to EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not affect any
exceptions due to the higher priority SCTLR_EL2.MSCEn control.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CMOW, bit [9]

When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL1
or EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

• ICIMVAU, DCCIMVAC.

0b0 These instructions executed at EL1 or EL0 with stage 2 read permission, but without
stage 2 write permission do not generate a stage 2 permission fault.

0b1 These instructions executed at EL1 or EL0, if enabled as a result of
SCTLR_EL1.UCI==1, with stage 2 read permission, but without stage 2 write
permission generate a stage 2 permission fault.

For this control, stage 2 has write permission if S2AP[1] is 1 or DBM is 1 in the stage 2 descriptor.
The instructions do not cause an update to the dirty state.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7722
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
VFNMI, bit [8]

When FEAT_NMI is implemented:

Virtual FIQ Interrupt with Superpriority. Enables signaling of virtual FIQ interrupts with
Superpriority.

0b0 When HCR_EL2.VF is 1, a signaled pending virtual FIQ interrupt does not have
Superpriority.

0b1 When HCR_EL2.VF is 1, a signaled pending virtual FIQ interrupt has Superpriority.

When HCR_EL2.VF is 0, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VINMI, bit [7]

When FEAT_NMI is implemented:

Virtual IRQ Interrupt with Superpriority. Enables signaling of virtual IRQ interrupts with
Superpriority.

0b0 When HCR_EL2.VI is 1, a signaled pending virtual IRQ interrupt does not have
Superpriority.

0b1 When HCR_EL2.VI is 1, a signaled pending virtual IRQ interrupt has Superpriority.

When HCR_EL2.VI is 0, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TALLINT, bit [6]

When FEAT_NMI is implemented:

Traps the following writes at EL1 using AArch64 to EL2, when EL2 is implemented and enabled:

• MSR (register) writes of ALLINT.

• MSR (immediate) writes of ALLINT with a value of 1.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified MSR accesses at EL1 using AArch64 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SMPME, bit [5]

When FEAT_SME is implemented:

Streaming Mode Priority Mapping Enable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7723
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Controls mapping of the value of SMPRI_EL1.Priority for streaming execution priority at EL0 or
EL1.

0b0 The effective priority value is taken from SMPRI_EL1.Priority.

0b1 The effective priority value is:

• When the current Exception level is EL2 or EL3, the value of
SMPRI_EL1.Priority.

• When the current Exception level is EL0 or EL1, the value of the
SMPRIMAP_EL2 field corresponding to the value of SMPRI_EL1.Priority.

When SMIDR_EL1.SMPS is '0', this field is RES0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FGTnXS, bit [4]

When FEAT_XS is implemented:

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance
instructions that are accessible at EL1 also apply to the corresponding TLBI maintenance
instructions with the nXS qualifier.

0b0 The fine-grained trap in the HFGITR_EL2 that applies to a TLBI maintenance
instruction at EL1 also applies to the corresponding TLBI instruction with the nXS
qualifier at EL1.

0b1 The fine-grained trap in the HFGITR_EL2 that applies to a TLBI maintenance
instruction at EL1 does not apply to the corresponding TLBI instruction with the nXS
qualifier at EL1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnXS, bit [3]

When FEAT_XS is implemented:

Determines the behavior of TLBI instructions affected by the XS attribute.

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction
with an nXS qualifier when executed at EL0 and EL1.

0b0 This control does not have any effect on the behavior of the TLBI maintenance
instructions.

0b1 A TLBI maintenance instruction without the nXS qualifier executed at EL1 behaves in
the same way as the corresponding TLBI maintenance instruction with the nXS
qualifier.

An AArch64 DSB instruction executed at EL1 or EL0 behaves in the same way as the
corresponding DSB instruction with the nXS qualifier executed at EL1 or EL0.

This bit is permitted to be cached in a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7724
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnASR, bit [2]

When FEAT_LS64_V is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps execution of an ST64BV
instruction at EL0 or EL1 to EL2.

0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2 if the execution is not
trapped by SCTLR_EL1.EnASR.

Execution of an ST64BV instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000000.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnALS, bit [1]

When FEAT_LS64 is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps execution of an LD64B or
ST64B instruction at EL0 or EL1 to EL2.

0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped to EL2 if the execution
is not trapped by SCTLR_EL1.EnALS.

Execution of an LD64B or ST64B instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an
ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [0]

When FEAT_LS64_ACCDATA is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps execution of an ST64BV0
instruction at EL0 or EL1 to EL2.

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL2 if the execution is not
trapped by SCTLR_EL1.EnAS0.

Execution of an ST64BV0 instruction at EL1 is trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7725
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HCRX_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCRX_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0xA0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.HXEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HCRX_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HCRX_EL2;

MSR HCRX_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0xA0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7726
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.HXEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HCRX_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HCRX_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7727
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.55 HDFGRTR2_EL2, Hypervisor Debug Fine-Grained Read Trap Register 2

The HDFGRTR2_EL2 characteristics are:

Purpose

Provides controls for traps of MRS and MRC reads of debug, trace, PMU, and Statistical Profiling
System registers.

Configurations

This register is present only when FEAT_FGT2 is implemented. Otherwise, direct accesses to
HDFGRTR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFGRTR2_EL2 is a 64-bit register.

Field descriptions

Bits [63:23]

Reserved, RES0.

nTRBMPAM_EL1, bit [22]

When FEAT_TRBE_MPAM is implemented:

Trap MRS reads of TRBMPAM_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
TRBMPAM_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of TRBMPAM_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nTRBMPAM_EL1
RES0

nTRCITECR_EL1
nPMSDSFR_EL1
nSPMDEVAFF_EL1

nSPMID
nSPMSCR_EL1

nSPMACCESSR_EL1
nSPMCR_EL0

nSPMOVS
nSPMINTEN

nPMECR_EL1

nPMIAR_EL1
nPMICNTR_EL0

nPMICFILTR_EL0
nPMUACR_EL1

nMDSELR_EL1
nPMSSDATA

nPMSSCR_EL1
nSPMEVCNTRn_EL0

nSPMEVTYPERn_EL0
nSPMSELR_EL0

nSPMCNTEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7728
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

nTRCITECR_EL1, bit [20]

When FEAT_ITE is implemented:

Trap MRS reads of TRCITECR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
TRCITECR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of TRCITECR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMSDSFR_EL1, bit [19]

When FEAT_SPE_FDS is implemented:

Trap MRS reads of PMSDSFR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
PMSDSFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of PMSDSFR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMDEVAFF_EL1, bit [18]

When FEAT_SPMU is implemented:

Trap MRS reads of SPMDEVAFF_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
SPMDEVAFF_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of SPMDEVAFF_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7729
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMID, bit [17]

When FEAT_SPMU is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• SPMCFGR_EL1.

• SPMCGCR<n>_EL1.

• SPMDEVARCH_EL1.

• SPMIIDR_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads at EL1
using AArch64 of any of the specified System registers are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMSCR_EL1, bit [16]

When FEAT_SPMU is implemented:

Trap MRS reads of SPMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
SPMSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of SPMSCR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7730
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

nSPMACCESSR_EL1, bit [15]

When FEAT_SPMU is implemented:

Trap MRS reads of SPMACCESSR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
SPMACCESSR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of SPMACCESSR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMCR_EL0, bit [14]

When FEAT_SPMU is implemented:

Trap MRS reads of SPMCR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads of SPMCR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

0b1 MRS reads of SPMCR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMOVS, bit [13]

When FEAT_SPMU is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• SPMOVSCLR_EL0.

• SPMOVSSET_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads at EL1 and EL0 using AArch64
of any of the specified System registers are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7731
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 MRS reads of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMINTEN, bit [12]

When FEAT_SPMU is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• SPMINTENCLR_EL1.

• SPMINTENSET_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads at EL1
using AArch64 of any of the specified System registers are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMCNTEN, bit [11]

When FEAT_SPMU is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• SPMCNTENCLR_EL0.

• SPMCNTENSET_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads at EL1 and EL0 using AArch64
of any of the specified System registers are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7732
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMSELR_EL0, bit [10]

When FEAT_SPMU is implemented:

Trap MRS reads of SPMSELR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads of SPMSELR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

0b1 MRS reads of SPMSELR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMEVTYPERn_EL0, bit [9]

When FEAT_SPMU is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• SPMEVTYPER<n>_EL0.

• SPMEVFILTR<n>_EL0.

• SPMEVFILT2R<n>_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads at EL1 and EL0 using AArch64
of any of the specified System registers are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7733
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nSPMEVCNTRn_EL0, bit [8]

When FEAT_SPMU is implemented:

Trap MRS reads of SPMEVCNTR<n>_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads of SPMEVCNTR<n>_EL0 at
EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

0b1 MRS reads of SPMEVCNTR<n>_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMSSCR_EL1, bit [7]

When FEAT_PMUv3_SS is implemented:

Trap MRS reads of PMSSCR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
PMSSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of PMSSCR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMSSDATA, bit [6]

When FEAT_PMUv3_SS is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• PMCCNTSVR_EL1.

• PMEVCNTSVR<n>_EL1.

• PMICNTSVR_EL1, if FEAT_PMUv3_ICNTR is implemented.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads at EL1
using AArch64 of any of the specified System registers are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7734
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nMDSELR_EL1, bit [5]

When FEAT_Debugv8p9 is implemented:

Trap MRS reads of MDSELR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
MDSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of MDSELR_EL1 are not trapped by this mechanism.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMUACR_EL1, bit [4]

When FEAT_PMUv3p9 is implemented:

Trap MRS reads of PMUACR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
PMUACR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of PMUACR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7735
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nPMICFILTR_EL0, bit [3]

When FEAT_PMUv3_ICNTR is implemented:

Trap MRS reads of PMICFILTR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then:

• MRS reads of PMICFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the read generates a
higher priority exception.

• PMCNTENCLR_EL0.F0, PMCNTENSET_EL0.F0, PMOVSCLR_EL0.F0, and
PMOVSSET_EL0.F0 read as zero at EL1 and EL0.

• PMINTENCLR_EL1.F0 and PMINTENSET_EL1.F0 read as zero at EL1.

0b1 MRS reads of PMICFILTR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMICNTR_EL0, bit [2]

When FEAT_PMUv3_ICNTR is implemented:

Trap MRS reads of PMICNTR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MRS reads of PMICNTR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

0b1 MRS reads of PMICNTR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMIAR_EL1, bit [1]

When FEAT_SEBEP is implemented:

Trap MRS reads of PMIAR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
PMIAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of PMIAR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7736
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMECR_EL1, bit [0]

When FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented:

Trap MRS reads of PMECR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
PMECR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of PMECR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HDFGRTR2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HDFGRTR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1A0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7737
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HDFGRTR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HDFGRTR2_EL2;

MSR HDFGRTR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1A0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HDFGRTR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HDFGRTR2_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7738
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.56 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

The HDFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS and MRC reads of debug, trace, PMU, and Statistical Profiling
System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HDFGRTR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFGRTR_EL2 is a 64-bit register.

Field descriptions

PMBIDR_EL1, bit [63]

When FEAT_SPE is implemented:

Trap MRS reads of PMBIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBIDR_EL1 are not trapped by this mechanism.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40

RES0

39 38 37 36 35 34 33 32

PMBIDR_EL1

nPMSNEVFR_EL1

nBRBDATA
nBRBCTL

nBRBIDR
PMCEIDn_EL0
PMUSERENR_EL0

TRBTRG_EL1
TRBSR_EL1
TRBPTR_EL1

TRBMAR_EL1
TRBLIMITR_EL1

TRBIDR_EL1
TRBBASER_EL1

RES0

PMSLATFR_EL1

TRC
TRCAUTHSTATUS

TRCAUXCTLR
TRCCLAIM

TRCCNTVRn
TRCID

TRCIMSPECn
RES0

TRCOSLSR
TRCPRGCTLR

TRCSEQSTR
TRCSSCSRn

TRCSTATR
TRCVICTLR

31 30 29 28 27 26 25 24 23 22

RES0

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMSIRR_EL1

PMSIDR_EL1
PMSICR_EL1

PMSFCR_EL1
PMSEVFR_EL1

PMSCR_EL1
PMBSR_EL1
PMBPTR_EL1
PMBLIMITR_EL1

PMMIR_EL1
PMSELR_EL0

PMOVS
PMINTEN

PMCNTEN
PMCCNTR_EL0

DBGBCRn_EL1

DBGBVRn_EL1
DBGWCRn_EL1

DBGWVRn_EL1
MDSCR_EL1

DBGCLAIM
DBGAUTHSTATUS_EL1

DBGPRCR_EL1
RES0

OSLSR_EL1
OSECCR_EL1

OSDLR_EL1
PMEVCNTRn_EL0

PMEVTYPERn_EL0
PMCCFILTR_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7739
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMSNEVFR_EL1, bit [62]

When FEAT_SPEv1p2 is implemented:

Trap MRS reads of PMSNEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSNEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

0b1 MRS reads of PMSNEVFR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nBRBDATA, bit [61]

When FEAT_BRBE is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• BRBINF<n>_EL1.

• BRBINFINJ_EL1.

• BRBSRC<n>_EL1.

• BRBSRCINJ_EL1.

• BRBTGT<n>_EL1.

• BRBTGTINJ_EL1.

• BRBTS_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the System registers listed above are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7740
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nBRBCTL, bit [60]

When FEAT_BRBE is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• BRBCR_EL1.

• BRBFCR_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the System registers listed above are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nBRBIDR, bit [59]

When FEAT_BRBE is implemented:

Trap MRS reads of BRBIDR0_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of BRBIDR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of BRBIDR0_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCEIDn_EL0, bit [58]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCEID<n>
at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMCEID<n> at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads of PMCEID<n> at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7741
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMUSERENR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMUSERENR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads of PMUSERENR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBTRG_EL1, bit [56]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBTRG_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBTRG_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBTRG_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBSR_EL1, bit [55]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBSR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7742
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBPTR_EL1, bit [54]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBPTR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBPTR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBMAR_EL1, bit [53]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBMAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBMAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBMAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBLIMITR_EL1, bit [52]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBLIMITR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBLIMITR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7743
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBIDR_EL1, bit [51]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBBASER_EL1, bit [50]

When FEAT_TRBE is implemented:

Trap MRS reads of TRBBASER_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TRBBASER_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRBBASER_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [49]

Reserved, RES0.

TRCVICTLR, bit [48]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCVICTLR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCVICTLR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCVICTLR are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7744
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCVICTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCSTATR, bit [47]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCSTATR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCSTATR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCSTATR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCSTATR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented, TRCSSCSR<n> are
implemented and System register access to the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCSSCSR<n> at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCSSCSR<n> at EL1 using AArch64 to
EL2.

0b0 MRS reads of TRCSSCSR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCSSCSR<n> at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

If Single-shot Comparator n is not implementented, a read of TRCSSCSR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7745
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TRCSEQSTR, bit [45]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented, TRCSEQSTR is implemented
and System register access to the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCSEQSTR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCSEQSTR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCSEQSTR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCSEQSTR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCPRGCTLR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCPRGCTLR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCPRGCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCPRGCTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCOSLSR, bit [43]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCOSLSR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCOSLSR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCOSLSR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCOSLSR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7746
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCIMSPEC<n> at EL1 using AArch64 to
EL2.

0b0 MRS reads of TRCIMSPEC<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCIMSPEC<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a read of
TRCIMSPEC<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCID, bit [40]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• In an Armv9 implementation:

— TRCDEVARCH.

— TRCDEVID.

— All of the TRCIDR<n> registers.

• In an Armv8 implementation:

— ETM TRCDEVARCH.

— ETM TRCDEVID.

— All of the ETM TRCIDR<n> registers.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7747
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented, TRCCNTVR<n> are
implemented and System register access to the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCCNTVR<n> at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCCNTVR<n> at EL1 using AArch64 to
EL2.

0b0 MRS reads of TRCCNTVR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCCNTVR<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If Counter n is not implemented, a read of TRCCNTVR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCCLAIMCLR and TRCCLAIMSET at EL1
using AArch64 to EL2.

In an Armv8 implementation, trap MRS reads of ETM TRCCLAIMCLR and ETM TRCCLAIMSET
at EL1 using AArch64 to EL2.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCAUXCTLR, bit [35]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCAUXCTLR at EL1 using AArch64 to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7748
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In an Armv8 implementation, trap MRS reads of ETM TRCAUXCTLR at EL1 using AArch64 to
EL2.

0b0 MRS reads of TRCAUXCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCAUXCTLR at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCAUTHSTATUS, bit [34]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of TRCAUTHSTATUS at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCAUTHSTATUS are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TRCAUTHSTATUS at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRC, bit [33]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MRS reads of the following registers at EL1 using AArch64 to
EL2:

• TRCACATR<n>.

• TRCACVR<n>.

• TRCBBCTLR.

• TRCCCCTLR.

• TRCCIDCCTLR0.

• TRCCIDCCTLR1.

• TRCCIDCVR<n>.

• TRCCNTCTLR<n>.

• TRCCNTRLDVR<n>.

• TRCCONFIGR.

• TRCEVENTCTL0R.

• TRCEVENTCTL1R.

• TRCEXTINSELR<n>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7749
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• TRCQCTLR.

• TRCRSCTLR<n>.

• TRCRSR.

• TRCSEQEVR<n>.

• TRCSEQRSTEVR.

• TRCSSCCR<n>.

• TRCSSPCICR<n>.

• TRCSTALLCTLR.

• TRCSYNCPR.

• TRCTRACEIDR.

• TRCTSCTLR.

• TRCVIIECTLR.

• TRCVIPCSSCTLR.

• TRCVISSCTLR.

• TRCVMIDCCTLR0.

• TRCVMIDCCTLR1.

• TRCVMIDCVR<n>.

In an Armv8 implementation, trap MRS reads of the following registers at EL1 using AArch64 to
EL2:

• ETM TRCACATR<n>.

• ETM TRCACVR<n>.

• ETM TRCBBCTLR.

• ETM TRCCCCTLR.

• ETM TRCCIDCCTLR0.

• ETM TRCCIDCCTLR1.

• ETM TRCCIDCVR<n>.

• ETM TRCCNTCTLR<n>.

• ETM TRCCNTRLDVR<n>.

• ETM TRCCONFIGR.

• ETM TRCEVENTCTL0R.

• ETM TRCEVENTCTL1R.

• ETM TRCEXTINSELR.

• ETM TRCQCTLR.

• ETM TRCRSCTLR<n>.

• ETM TRCSEQEVR<n>.

• ETM TRCSEQRSTEVR.

• ETM TRCSSCCR<n>.

• ETM TRCSSPCICR<n>.

• ETM TRCSTALLCTLR.

• ETM TRCSYNCPR.

• ETM TRCTRACEIDR.

• ETM TRCTSCTLR.

• ETM TRCVIIECTLR.

• ETM TRCVIPCSSCTLR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7750
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• ETM TRCVISSCTLR.

• ETM TRCVMIDCCTLR0.

• ETM TRCVMIDCCTLR1.

• ETM TRCVMIDCVR<n>.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

A read of an unimplemented register is UNDEFINED.

TRCEXTINSELR<n> and TRCRSR are implemented only if FEAT_ETE is implemented.

TRCEXTINSELR is implemented only if FEAT_ETE is not implemented and FEAT_ETMv4 is
implemented.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:

Trap MRS reads of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSLATFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSLATFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:

Trap MRS reads of PMSIRR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSIRR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSIRR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7751
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

PMSIDR_EL1, bit [30]

When FEAT_SPE is implemented:

Trap MRS reads of PMSIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:

Trap MRS reads of PMSICR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSICR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSICR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

Trap MRS reads of PMSFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSFCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSFCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7752
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

Trap MRS reads of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSEVFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

Trap MRS reads of PMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

Trap MRS reads of PMBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBSR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7753
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PMBPTR_EL1, bit [24]

When FEAT_SPE is implemented:

Trap MRS reads of PMBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBPTR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBPTR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

Trap MRS reads of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMBLIMITR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMBLIMITR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMMIR_EL1, bit [22]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMMIR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of PMMIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PMMIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7754
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PMSELR_EL0, bit [19]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR
at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of PMSELR at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMOVSCLR_EL0 and PMOVSSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMOVSR and
PMOVSSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMOVSCLR_EL0 and
PMOVSSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMOVSR and PMOVSSET are trapped to
EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7755
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• PMINTENCLR_EL1.

• PMINTENSET_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMCNTENCLR_EL0 and
PMCNTENSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMCNTENCLR and
PMCNTENSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMCNTENCLR_EL0 and
PMCNTENSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMCNTENCLR and PMCNTENSET are
trapped to EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads of
PMCCNTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads
of PMCCNTR at EL0 using AArch32 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7756
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC and MRRC reads of PMCCNTR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03 (for MRC) or 0x04 (for MRRC).

PMCCNTR_EL0 is indirectly accessed when PMCR_EL0.C is set to 0b1.

Setting this field to 1 has no effect on accesses to PMCCNTR_EL0 using PMCR_EL0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCCFILTR
at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMCCFILTR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads of PMCCFILTR at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == 31, and PMCCFILTR can also be accessed in AArch32 state using
PMXEVTYPER when PMSELR.SEL == 31.

Setting this field to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER,
regardless of the value of PMSELR_EL0.SEL or PMSELR.SEL.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7757
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMEVTYPER<n> and
PMXEVTYPER.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC syndrome value 0x03.

Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a read of PMEVTYPER<n>_EL0, or, if n is not 31, a read of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n.

— In AArch32 state, a read of PMEVTYPER<n>, or, if n is not 31, a read of
PMXEVTYPER when PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a read of PMEVTYPER<n>_EL0, or a read of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n, reported with EC syndrome
value 0x18.

— In AArch32 state, a read of PMEVTYPER<n>, or a read of PMXEVTYPER when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

See also HDFGRTR_EL2.PMCCFILTR_EL0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MRC reads of PMEVCNTR<n> and
PMXEVCNTR.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads at EL1 and EL0 using AArch64 of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7758
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• MRC reads at EL0 using AArch32 of PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC syndrome value 0x03.

Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0
when PMSELR_EL0.SEL == n.

— In AArch32 state, a read of PMEVCNTR<n>, or a read of PMXEVCNTR when
PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0
when PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

— In AArch32 state, a read of PMEVCNTR<n>, or a read of PMXEVCNTR when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

PMEVCNTR<n>_EL0 is indirectly accessed when PMCR_EL0.P is set to 0b1.

Setting this field to 1 has no effect on accesses to PMEVCNTR<n>_EL0 using PMCR_EL0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

Trap MRS reads of OSDLR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of OSDLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of OSDLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OSECCR_EL1, bit [10]

Trap MRS reads of OSECCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of OSECCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of OSECCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7759
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

OSLSR_EL1, bit [9]

Trap MRS reads of OSLSR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of OSLSR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of OSLSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

DBGPRCR_EL1, bit [7]

Trap MRS reads of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGPRCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGPRCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGAUTHSTATUS_EL1, bit [6]

Trap MRS reads of DBGAUTHSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGAUTHSTATUS_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGAUTHSTATUS_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGCLAIM, bit [5]

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.

• DBGCLAIMSET_EL1.

0b0 MRS reads of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7760
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

MDSCR_EL1, bit [4]

Trap MRS reads of MDSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MDSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MDSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGWVRn_EL1, bit [3]

Trap MRS reads of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGWVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGWVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGWCRn_EL1, bit [2]

Trap MRS reads of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGWCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGWCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGBVRn_EL1, bit [1]

Trap MRS reads of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGBVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGBVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7761
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If breakpoint n is not implemented, a read of DBGBVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGBCRn_EL1, bit [0]

Trap MRS reads of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGBCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of DBGBCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HDFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HDFGRTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1D0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HDFGRTR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HDFGRTR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7762
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR HDFGRTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1D0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HDFGRTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HDFGRTR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7763
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.57 HDFGWTR2_EL2, Hypervisor Debug Fine-Grained Write Trap Register 2

The HDFGWTR2_EL2 characteristics are:

Purpose

Provides controls for traps of MSR and MCR writes of debug, trace, PMU, and Statistical Profiling
System registers.

Configurations

This register is present only when FEAT_FGT2 is implemented. Otherwise, direct accesses to
HDFGWTR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFGWTR2_EL2 is a 64-bit register.

Field descriptions

Bits [63:23]

Reserved, RES0.

nTRBMPAM_EL1, bit [22]

When FEAT_TRBE_MPAM is implemented:

Trap MSR writes of TRBMPAM_EL1 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
TRBMPAM_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of TRBMPAM_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 23 22 21 20 19

RES0

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nTRBMPAM_EL1
nPMZR_EL0

nTRCITECR_EL1
nPMSDSFR_EL1

nSPMSCR_EL1
nSPMACCESSR_EL1

nSPMCR_EL0
nSPMOVS
nSPMINTEN

nSPMCNTEN

nPMECR_EL1

nPMIAR_EL1
nPMICNTR_EL0

nPMICFILTR_EL0
nPMUACR_EL1

nMDSELR_EL1
RES0

nPMSSCR_EL1
nSPMEVCNTRn_EL0

nSPMEVTYPERn_EL0
nSPMSELR_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7764
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

nPMZR_EL0, bit [21]

When FEAT_PMUv3p9 is implemented:

Trap MSR writes of PMZR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes of PMZR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

0b1 MSR writes of PMZR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nTRCITECR_EL1, bit [20]

When FEAT_ITE is implemented:

Trap MSR writes of TRCITECR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
TRCITECR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of TRCITECR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMSDSFR_EL1, bit [19]

When FEAT_SPE_FDS is implemented:

Trap MSR writes of PMSDSFR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
PMSDSFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of PMSDSFR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7765
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [18:17]

Reserved, RES0.

nSPMSCR_EL1, bit [16]

When FEAT_SPMU is implemented:

Trap MSR writes of SPMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
SPMSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of SPMSCR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMACCESSR_EL1, bit [15]

When FEAT_SPMU is implemented:

Trap MSR writes of SPMACCESSR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
SPMACCESSR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of SPMACCESSR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7766
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nSPMCR_EL0, bit [14]

When FEAT_SPMU is implemented:

Trap MSR writes of SPMCR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes of SPMCR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

0b1 MSR writes of SPMCR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMOVS, bit [13]

When FEAT_SPMU is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• SPMOVSCLR_EL0.

• SPMOVSSET_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes at EL1 and EL0 using AArch64
of any of the specified System registers are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMINTEN, bit [12]

When FEAT_SPMU is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• SPMINTENCLR_EL1.

• SPMINTENSET_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes at EL1
using AArch64 of any of the specified System registers are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7767
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 MSR writes of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMCNTEN, bit [11]

When FEAT_SPMU is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• SPMCNTENCLR_EL0.

• SPMCNTENSET_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes at EL1 and EL0 using AArch64
of any of the specified System registers are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMSELR_EL0, bit [10]

When FEAT_SPMU is implemented:

Trap MSR writes of SPMSELR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes of SPMSELR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

0b1 MSR writes of SPMSELR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7768
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

nSPMEVTYPERn_EL0, bit [9]

When FEAT_SPMU is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• SPMEVTYPER<n>_EL0.

• SPMEVFILTR<n>_EL0.

• SPMEVFILT2R<n>_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes at EL1 and EL0 using AArch64
of any of the specified System registers are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the specified System registers are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSPMEVCNTRn_EL0, bit [8]

When FEAT_SPMU is implemented:

Trap MSR writes of SPMEVCNTR<n>_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then MSR writes of SPMEVCNTR<n>_EL0 at
EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority exception.

0b1 MSR writes of SPMEVCNTR<n>_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7769
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nPMSSCR_EL1, bit [7]

When FEAT_PMUv3_SS is implemented:

Trap MSR writes of PMSSCR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
PMSSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of PMSSCR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [6]

Reserved, RES0.

nMDSELR_EL1, bit [5]

When FEAT_Debugv8p9 is implemented:

Trap MSR writes of MDSELR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
MDSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of MDSELR_EL1 are not trapped by this mechanism.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMUACR_EL1, bit [4]

When FEAT_PMUv3p9 is implemented:

Trap MSR writes of PMUACR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
PMUACR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of PMUACR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7770
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMICFILTR_EL0, bit [3]

When FEAT_PMUv3_ICNTR is implemented:

Trap MSR writes of PMICFILTR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then:

• MSR writes of PMICFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the write generates a
higher priority exception.

• PMCNTENCLR_EL0.F0, PMCNTENSET_EL0.F0, PMOVSCLR_EL0.F0, and
PMOVSSET_EL0.F0 ignore writes at EL1 and EL0.

• PMINTENCLR_EL1.F0 and PMINTENSET_EL1.F0 ignore writes at EL1.

0b1 MSR writes of PMICFILTR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMICNTR_EL0, bit [2]

When FEAT_PMUv3_ICNTR is implemented:

Trap MSR writes of PMICNTR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and the Effective value
of HCR_EL2.{E2H, TGE} is not {1, 1}, then:

• MSR writes of PMICNTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the write generates a higher
priority exception.

• PMZR_EL0.F0 ignores writes at EL1 and EL0.

0b1 MSR writes of PMICNTR_EL0 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7771
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMIAR_EL1, bit [1]

When FEAT_SEBEP is implemented:

Trap MSR writes of PMIAR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
PMIAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of PMIAR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPMECR_EL1, bit [0]

When FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented:

Trap MSR writes of PMECR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
PMECR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of PMECR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7772
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing HDFGWTR2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HDFGWTR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1B0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HDFGWTR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HDFGWTR2_EL2;

MSR HDFGWTR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1B0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HDFGWTR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HDFGWTR2_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7773
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.58 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

The HDFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSR and MCR writes of debug, trace, PMU, and Statistical Profiling
System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HDFGWTR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFGWTR_EL2 is a 64-bit register.

Field descriptions

Bit [63]

Reserved, RES0.

63 62 61 60

RES0

59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

RES0

40 38 37 36 35 34 33 32

RES0
nPMSNEVFR_EL1

nBRBDATA
nBRBCTL
PMUSERENR_EL0

TRBTRG_EL1
TRBSR_EL1
TRBPTR_EL1

TRBMAR_EL1
TRBLIMITR_EL1

RES0
TRBBASER_EL1

TRFCR_EL1

PMSLATFR_EL1

TRC
RES0

TRCAUXCTLR
TRCCLAIM

TRCCNTVRn
TRCIMSPECn

TRCOSLAR
RES0

TRCPRGCTLR
TRCSEQSTR

TRCSSCSRn
RES0

TRCVICTLR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMSIRR_EL1

RES0
PMSICR_EL1

PMSFCR_EL1
PMSEVFR_EL1

PMSCR_EL1
PMBSR_EL1
PMBPTR_EL1
PMBLIMITR_EL1

RES0
PMCR_EL0
PMSWINC_EL0

PMSELR_EL0
PMOVS
PMINTEN

PMCNTEN

DBGBCRn_EL1

DBGBVRn_EL1
DBGWCRn_EL1

DBGWVRn_EL1
MDSCR_EL1

DBGCLAIM
RES0

DBGPRCR_EL1
OSLAR_EL1

RES0
OSECCR_EL1

OSDLR_EL1
PMEVCNTRn_EL0

PMEVTYPERn_EL0
PMCCFILTR_EL0

PMCCNTR_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7774
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nPMSNEVFR_EL1, bit [62]

When FEAT_SPEv1p2 is implemented:

Trap MSR writes of PMSNEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSNEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

0b1 MSR writes of PMSNEVFR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nBRBDATA, bit [61]

When FEAT_BRBE is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• BRBINFINJ_EL1.

• BRBSRCINJ_EL1.

• BRBTGTINJ_EL1.

• BRBTS_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the System registers listed above are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nBRBCTL, bit [60]

When FEAT_BRBE is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• BRBCR_EL1.

• BRBFCR_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the System registers listed above are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7775
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMUSERENR_EL0 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMUSERENR_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMUSERENR_EL0 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBTRG_EL1, bit [56]

When FEAT_TRBE is implemented:

Trap MSR writes of TRBTRG_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRBTRG_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRBTRG_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBSR_EL1, bit [55]

When FEAT_TRBE is implemented:

Trap MSR writes of TRBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRBSR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRBSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7776
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBPTR_EL1, bit [54]

When FEAT_TRBE is implemented:

Trap MSR writes of TRBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRBPTR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRBPTR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBMAR_EL1, bit [53]

When FEAT_TRBE is implemented:

Trap MSR writes of TRBMAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRBMAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRBMAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRBLIMITR_EL1, bit [52]

When FEAT_TRBE is implemented:

Trap MSR writes of TRBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRBLIMITR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRBLIMITR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7777
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [51]

Reserved, RES0.

TRBBASER_EL1, bit [50]

When FEAT_TRBE is implemented:

Trap MSR writes of TRBBASER_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRBBASER_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRBBASER_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRFCR_EL1, bit [49]

When FEAT_TRF is implemented:

Trap MSR writes of TRFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRFCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRFCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCVICTLR, bit [48]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCVICTLR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCVICTLR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCVICTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCVICTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7778
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [47]

Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented, TRCSSCSR<n> are
implemented and System register access to the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCSSCSR<n> at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCSSCSR<n> at EL1 using AArch64 to
EL2.

0b0 MSR writes of TRCSSCSR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCSSCSR<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If Single-shot Comparator n is not implementented, a write of TRCSSCSR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented, TRCSEQSTR is implemented
and System register access to the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCSEQSTR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCSEQSTR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCSEQSTR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCSEQSTR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7779
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TRCPRGCTLR, bit [44]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCPRGCTLR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCPRGCTLR at EL1 using AArch64 to
EL2.

0b0 MSR writes of TRCPRGCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCPRGCTLR at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [43]

Reserved, RES0.

TRCOSLAR, bit [42]

When System register access to the trace unit registers is implemented and FEAT_ETMv4 is
implemented:

In an Armv8 implementation, trap MSR writes of ETM TRCOSLAR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCOSLAR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCOSLAR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCIMSPEC<n> at EL1 using AArch64 to
EL2.

0b0 MSR writes of TRCIMSPEC<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCIMSPEC<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a write of
TRCIMSPEC<n> is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7780
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [40:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented, TRCCNTVR<n> are
implemented and System register access to the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCCNTVR<n> at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCCNTVR<n> at EL1 using AArch64 to
EL2.

0b0 MSR writes of TRCCNTVR<n> are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCCNTVR<n> at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If Counter n is not implemented, a write of TRCCNTVR<n> is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCCLAIMCLR and TRCCLAIMSET at EL1
using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCCLAIMCLR and ETM TRCCLAIMSET
at EL1 using AArch64 to EL2.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7781
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TRCAUXCTLR, bit [35]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of TRCAUXCTLR at EL1 using AArch64 to EL2.

In an Armv8 implementation, trap MSR writes of ETM TRCAUXCTLR at EL1 using AArch64 to
EL2.

0b0 MSR writes of TRCAUXCTLR are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TRCAUXCTLR at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

TRC, bit [33]

When FEAT_ETE is implemented or (FEAT_ETMv4 is implemented and System register access to
the trace unit registers is implemented):

In an Armv9 implementation, trap MSR writes of the following registers at EL1 using AArch64 to
EL2:

• TRCACATR<n>.

• TRCACVR<n>.

• TRCBBCTLR.

• TRCCCCTLR.

• TRCCIDCCTLR0.

• TRCCIDCCTLR1.

• TRCCIDCVR<n>.

• TRCCNTCTLR<n>.

• TRCCNTRLDVR<n>.

• TRCCONFIGR.

• TRCEVENTCTL0R.

• TRCEVENTCTL1R.

• TRCEXTINSELR<n>.

• TRCQCTLR.

• TRCRSCTLR<n>.

• TRCRSR.

• TRCSEQEVR<n>.

• TRCSEQRSTEVR.

• TRCSSCCR<n>.

• TRCSSPCICR<n>.

• TRCSTALLCTLR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7782
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• TRCSYNCPR.

• TRCTRACEIDR.

• TRCTSCTLR.

• TRCVIIECTLR.

• TRCVIPCSSCTLR.

• TRCVISSCTLR.

• TRCVMIDCCTLR0.

• TRCVMIDCCTLR1.

• TRCVMIDCVR<n>.

In an Armv8 implementation, trap MSR writes of the following registers at EL1 using AArch64 to
EL2:

• ETM TRCACATR<n>.

• ETM TRCACVR<n>.

• ETM TRCBBCTLR.

• ETM TRCCCCTLR.

• ETM TRCCIDCCTLR0.

• ETM TRCCIDCCTLR1.

• ETM TRCCIDCVR<n>.

• ETM TRCCNTCTLR<n>.

• ETM TRCCNTRLDVR<n>.

• ETM TRCCONFIGR.

• ETM TRCEVENTCTL0R.

• ETM TRCEVENTCTL1R.

• ETM TRCEXTINSELR.

• ETM TRCQCTLR.

• ETM TRCRSCTLR<n>.

• ETM TRCSEQEVR<n>.

• ETM TRCSEQRSTEVR.

• ETM TRCSSCCR<n>.

• ETM TRCSSPCICR<n>.

• ETM TRCSTALLCTLR.

• ETM TRCSYNCPR.

• ETM TRCTRACEIDR.

• ETM TRCTSCTLR.

• ETM TRCVIIECTLR.

• ETM TRCVIPCSSCTLR.

• ETM TRCVISSCTLR.

• ETM TRCVMIDCCTLR0.

• ETM TRCVMIDCCTLR1.

• ETM TRCVMIDCVR<n>.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7783
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
A write of an unimplemented register is UNDEFINED.

TRCEXTINSELR<n> and TRCRSR are implemented only if FEAT_ETE is implemented.

TRCEXTINSELR is implemented only if FEAT_ETE is not implemented and FEAT_ETMv4 is
implemented.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:

Trap MSR writes of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSLATFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSLATFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:

Trap MSR writes of PMSIRR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSIRR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSIRR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [30]

Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:

Trap MSR writes of PMSICR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSICR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7784
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSICR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

Trap MSR writes of PMSFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSFCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSFCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

Trap MSR writes of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSEVFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSEVFR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

Trap MSR writes of PMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7785
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

Trap MSR writes of PMBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBSR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMBSR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMBPTR_EL1, bit [24]

When FEAT_SPE is implemented:

Trap MSR writes of PMBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBPTR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMBPTR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

Trap MSR writes of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBLIMITR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PMBLIMITR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7786
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

PMCR_EL0, bit [21]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at
EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes of PMCR at EL0 using AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSWINC_EL0, bit [20]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSWINC
at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMSWINC at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR writes of PMSWINC at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7787
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PMSELR_EL0, bit [19]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSELR at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMSELR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MCR writes of PMSELR at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMOVSCLR_EL0 and PMOVSSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMOVSR and
PMOVSSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMOVSCLR_EL0 and
PMOVSSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMOVSR and PMOVSSET are trapped to
EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7788
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• PMINTENCLR_EL1.

• PMINTENSET_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMCNTENCLR_EL0 and
PMCNTENSET_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMCNTENCLR and
PMCNTENSET.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMCNTENCLR_EL0 and
PMCNTENSET_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMCNTENCLR and PMCNTENSET are
trapped to EL2 and reported with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes of
PMCCNTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes
of PMCCNTR at EL0 using AArch32 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7789
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64 and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR and MCRR writes of PMCCNTR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03 (for MCR) or 0x04 (for MCRR).

PMCCNTR_EL0 can also be indirectly set to zero by a write of 1 to PMCR_EL0.C or
PMZR_EL0.C in AArch64 state, or a write of 1 to PMCR.C in AArch32 state. Setting this field to
1 has no effect on indirect writes to PMCCNTR_EL0 using PMCR_EL0, PMZR_EL0, or PMCR.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMCCFILTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
PMCCFILTR at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR writes of PMCCFILTR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == 31, and PMCCFILTR can also be accessed in AArch32 state using
PMXEVTYPER when PMSELR.SEL == 31.

Setting this field to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER,
regardless of the value of PMSELR_EL0.SEL or PMSELR.SEL.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7790
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMEVTYPER<n> and
PMXEVTYPER.

0b0 The operations listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC syndrome value 0x03.

Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a write of PMEVTYPER<n>_EL0, or, if n is not 31, a write of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n.

— In AArch32 state, a write of PMEVTYPER<n>, or, if n is not 31, a write of
PMXEVTYPER when PMSELR.SEL == n.

• If event counter n is implemented, n is greater-than-or-equal-to MDCR_EL2.HPMN, and
EL2 is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a write of PMEVTYPER<n>_EL0, or a write of
PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n, reported with EC syndrome
value 0x18.

— In AArch32 state, a write of PMEVTYPER<n>, or a write of PMXEVTYPER when
PMSELR.SEL == n, reported with EC syndrome value 0x03.

See also HDFGWTR_EL2.PMCCFILTR_EL0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0.

• At EL0 using AArch32 when EL1 is using AArch64: MCR writes of PMEVCNTR<n> and
PMXEVCNTR.

0b0 The specified operations are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64 and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes at EL1 and EL0 using AArch64 of the specified operations are trapped
to EL2 and reported with EC syndrome value 0x18.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7791
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• MCR writes at EL0 using AArch32 of the specified operations are trapped to EL2
and reported with EC syndrome value 0x03.

Regardless of the value of this field, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

— In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of
PMXEVCNTR_EL0 when PMSELR_EL0.SEL is n.

— In AArch32 state, a write of PMEVCNTR<n>, or a write of PMXEVCNTR when
PMSELR.SEL is n.

• If event counter n is implemented, n is greater than or equal to MDCR_EL2.HPMN, and EL2
is implemented and enabled in the current Security state, the following generate a Trap
exception to EL2 from EL0 or EL1:

— In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of
PMXEVCNTR_EL0 when PMSELR_EL0.SEL is n, reported with EC syndrome
value 0x18.

— In AArch32 state, a write of PMEVCNTR<n>, or a write of PMXEVCNTR when
PMSELR.SEL is n, reported with EC syndrome value 0x03.

For values of n less than MDCR_EL2.HPMN, PMEVCNTR<n>_EL0 can also be indirectly set to
zero by a write of 1 to PMCR_EL0.P or PMZR_EL0.P<n> in AArch64 state, or a write of 1 to
PMCR.P in AArch32 state. Setting this field to 1 has no effect on indirect writes to
PMEVCNTR<n>_EL0 using PMCR_EL0, PMZR_EL0, or PMCR.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

Trap MSR writes of OSDLR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSDLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of OSDLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OSECCR_EL1, bit [10]

Trap MSR writes of OSECCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSECCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of OSECCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7792
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

OSLAR_EL1, bit [8]

Trap MSR writes of OSLAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSLAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of OSLAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGPRCR_EL1, bit [7]

Trap MSR writes of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGPRCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGPRCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

DBGCLAIM, bit [5]

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.

• DBGCLAIMSET_EL1.

0b0 MSR writes of the System registers listed above are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the System registers listed above are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7793
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MDSCR_EL1, bit [4]

Trap MSR writes of MDSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of MDSCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of MDSCR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGWVRn_EL1, bit [3]

Trap MSR writes of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGWVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGWVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If watchpoint n is not implemented, a write of DBGWVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGWCRn_EL1, bit [2]

Trap MSR writes of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGWCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGWCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If watchpoint n is not implemented, a write of DBGWCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGBVRn_EL1, bit [1]

Trap MSR writes of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGBVR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGBVR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBVR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7794
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

DBGBCRn_EL1, bit [0]

Trap MSR writes of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGBCR<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of DBGBCR<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBCR<n>_EL1 is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HDFGWTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HDFGWTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1D8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HDFGWTR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HDFGWTR_EL2;

MSR HDFGWTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b101

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7795
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1D8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HDFGWTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HDFGWTR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7796
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.59 HFGITR2_EL2, Hypervisor Fine-Grained Instruction Trap Register 2

The HFGITR2_EL2 characteristics are:

Purpose

Provides instruction trap controls.

Configurations

This register is present only when FEAT_FGT2 is implemented. Otherwise, direct accesses to
HFGITR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HFGITR2_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Reserved, RES0.

Accessing HFGITR2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGITR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x310];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HFGITR2_EL2;

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7797
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = HFGITR2_EL2;

MSR HFGITR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x310] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGITR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HFGITR2_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7798
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.60 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

The HFGITR_EL2 characteristics are:

Purpose

Provides instruction trap controls.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGITR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HFGITR_EL2 is a 64-bit register.

Field descriptions

Bit [63]

Reserved, RES0.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
ATS1E1A

RES0
COSPRCTX

nGCSEPP
nGCSSTR_EL1
nGCSPUSHM_EL1

nBRBIALL
nBRBINJ

DCCVAC
SVC_EL1

SVC_EL0
ERET
CPPRCTX

DVPRCTX
CFPRCTX

TLBIVALE1IS

TLBIVAALE1IS

TLBIRVAE1IS
TLBIRVAAE1IS

TLBIRVALE1IS
TLBIRVAALE1IS

TLBIRVAE1
TLBIRVAAE1

TLBIRVALE1
TLBIRVAALE1

TLBIVMALLE1
TLBIVAE1

TLBIASIDE1
TLBIVAAE1

TLBIVALE1
TLBIVAALE1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBIVAAE1IS

TLBIASIDE1IS

TLBIVAE1IS
TLBIVMALLE1IS

TLBIRVAALE1OS
TLBIRVALE1OS

TLBIRVAAE1OS
TLBIRVAE1OS
TLBIVAALE1OS

TLBIVALE1OS
TLBIVAAE1OS
TLBIASIDE1OS

TLBIVAE1OS
TLBIVMALLE1OS

ATS1E1WP
ATS1E1RP

ICIALLUIS
ICIALLU

ICIVAU
DCIVAC

DCISW
DCCSW

DCCISW
DCCVAU

DCCVAP
DCCVADP

DCCIVAC
DCZVA

ATS1E1R
ATS1E1W

ATS1E0R
ATS1E0W
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7799
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ATS1E1A, bit [62]

When FEAT_ATS1A is implemented:

Trap execution of AT S1E1A at EL1 using AArch64 to EL2. The possible values of this bit are:

0b0 Execution of AT S1E1A is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1A at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [61]

Reserved, RES0.

COSPRCTX, bit [60]

When FEAT_SPECRES2 is implemented:

Trap execution of COSP RCTX at EL1 and EL0 using AArch64 and execution of COSPRCTX at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of COSP RCTX at EL1 and EL0 using AArch64 and execution of
COSPRCTX at EL0 using AArch32 is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher
priority exception:

• Execution of COSP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of COSPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nGCSEPP, bit [59]

When FEAT_GCS is implemented:

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• GCSPUSHX.

• GCSPOPCX.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the specified instructions is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

0b1 Execution of the specified instructions is not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7800
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nGCSSTR_EL1, bit [58]

When FEAT_GCS is implemented:

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• GCSSTR.

• GCSSTTR when PSTATE.UAO is 1.

• GCSSTTR when the Effective value of HCR_EL2.{NV, NV1} is {1, 1}.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the specified instructions causes a GCS exception that is reported to EL2 with EC
syndrome value 0x2D, unless the instruction generates a higher priority exception.

0b1 Execution of the specified instructions is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nGCSPUSHM_EL1, bit [57]

When FEAT_GCS is implemented:

Trap execution of GCSPUSHM at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of GCSPUSHM at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GCSPUSHM is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nBRBIALL, bit [56]

When FEAT_BRBE is implemented:

Trap execution of BRB IALL at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of BRB IALL at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of BRB IALL is not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7801
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nBRBINJ, bit [55]

When FEAT_BRBE is implemented:

Trap execution of BRB INJ at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of BRB INJ at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of BRB INJ is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCCVAC, bit [54]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CVAC.

• DC CGVAC, if FEAT_MTE is implemented.

• DC CGDVAC, if FEAT_MTE is implemented.

If the Point of Coherence is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

SVC_EL1, bit [53]

Trap execution of SVC at EL1 using AArch64 to EL2.

0b0 Execution of SVC is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of SVC at EL1 using AArch64
is trapped to EL2 and reported with EC syndrome value 0x15, unless the instruction
generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7802
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

SVC_EL0, bit [52]

Trap execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 when EL1
is using AArch64 to EL2.

0b0 Execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 is
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher
priority exception:

• Execution of SVC at EL0 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x15.

• Execution of SVC at EL0 using AArch32 is trapped to EL2 and reported with EC
syndrome value 0x11.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ERET, bit [51]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• ERET.

• ERETAA, if FEAT_PAuth is implemented.

• ERETAB, if FEAT_PAuth is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x1A, unless the instruction generates a higher priority exception.

If EL2 is implemented and enabled in the current Security state, HCR_EL2.API == 0, and this field
enables a fine-grained trap on the instruction, then execution at EL1 using AArch64 of ERETAA or
ERETAB instructions is trapped to EL2 and reported with EC syndrome value 0x1A with its associated
ISS field, as the fine-grained trap has higher priority than the trap enabled by HCR_EL2.API == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CPPRCTX, bit [50]

When FEAT_SPECRES is implemented:

Trap execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX
at EL0 using AArch32 is not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7803
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher
priority exception:

• Execution of CPP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of CPPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DVPRCTX, bit [49]

When FEAT_SPECRES is implemented:

Trap execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX
at EL0 using AArch32 is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher
priority exception:

• Execution of DVP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of DVPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CFPRCTX, bit [48]

When FEAT_SPECRES is implemented:

Trap execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX
at EL0 using AArch32 is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher
priority exception:

• Execution of CFP RCTX at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18.

• Execution of CFPRCTX at EL0 using AArch32 is trapped to EL2 and reported
with EC syndrome value 0x03.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7804
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVAALE1, bit [47]

Trap execution of TLBI VAALE1, TLBI VAALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAALE1NXS.

0b0 Execution of TLBI VAALE1, TLBI VAALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAALE1, TLBI
VAALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVALE1, bit [46]

Trap execution of TLBI VALE1, TLBI VALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VALE1NXS.

0b0 Execution of TLBI VALE1, TLBI VALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VALE1, TLBI
VALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVAAE1, bit [45]

Trap execution of TLBI VAAE1, TLBI VAAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAAE1NXS.

0b0 Execution of TLBI VAAE1, TLBI VAAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1, TLBI
VAAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7805
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TLBIASIDE1, bit [44]

Trap execution of TLBI ASIDE1, TLBI ASIDE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
ASIDE1NXS.

0b0 Execution of TLBI ASIDE1, TLBI ASIDE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI ASIDE1, TLBI
ASIDE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVAE1, bit [43]

Trap execution of TLBI VAE1, TLBI VAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAE1NXS.

0b0 Execution of TLBI VAE1, TLBI VAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAE1, TLBI
VAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVMALLE1, bit [42]

Trap execution of TLBI VMALLE1, TLBI VMALLE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VMALLE1NXS.

0b0 Execution of TLBI VMALLE1, TLBI VMALLE1NXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VMALLE1, TLBI
VMALLE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIRVAALE1, bit [41]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1, TLBI RVAALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAALE1NXS.

0b0 Execution of TLBI RVAALE1, TLBI RVAALE1NXS is not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7806
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAALE1, TLBI
RVAALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVALE1, bit [40]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1, TLBI RVALE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVALE1NXS.

0b0 Execution of TLBI RVALE1, TLBI RVALE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVALE1, TLBI
RVALE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVAAE1, bit [39]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1, TLBI RVAAE1NXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAAE1NXS.

0b0 Execution of TLBI RVAAE1, TLBI RVAAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAAE1, TLBI
RVAAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVAE1, bit [38]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1, TLBI RVAE1NXS at EL1 using AArch64 to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7807
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAE1NXS.

0b0 Execution of TLBI RVAE1, TLBI RVAE1NXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1, TLBI
RVAE1NXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVAALE1IS, bit [37]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1IS, TLBI RVAALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAALE1ISNXS.

0b0 Execution of TLBI RVAALE1IS, TLBI RVAALE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAALE1IS, TLBI
RVAALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVALE1IS, bit [36]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1IS, TLBI RVALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVALE1ISNXS.

0b0 Execution of TLBI RVALE1IS, TLBI RVALE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVALE1IS, TLBI
RVALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7808
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TLBIRVAAE1IS, bit [35]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1IS, TLBI RVAAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAAE1ISNXS.

0b0 Execution of TLBI RVAAE1IS, TLBI RVAAE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAAE1IS, TLBI
RVAAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVAE1IS, bit [34]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1IS, TLBI RVAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAE1ISNXS.

0b0 Execution of TLBI RVAE1IS, TLBI RVAE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1IS, TLBI
RVAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVAALE1IS, bit [33]

Trap execution of TLBI VAALE1IS, TLBI VAALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAALE1ISNXS.

0b0 Execution of TLBI VAALE1IS, TLBI VAALE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAALE1IS, TLBI
VAALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7809
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TLBIVALE1IS, bit [32]

Trap execution of TLBI VALE1IS, TLBI VALE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VALE1ISNXS.

0b0 Execution of TLBI VALE1IS, TLBI VALE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VALE1IS, TLBI
VALE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVAAE1IS, bit [31]

Trap execution of TLBI VAAE1IS, TLBI VAAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAAE1ISNXS.

0b0 Execution of TLBI VAAE1IS, TLBI VAAE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1IS, TLBI
VAAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIASIDE1IS, bit [30]

Trap execution of TLBI ASIDE1IS, TLBI ASIDE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
ASIDE1ISNXS.

0b0 Execution of TLBI ASIDE1IS, TLBI ASIDE1ISNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI ASIDE1IS, TLBI
ASIDE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVAE1IS, bit [29]

Trap execution of TLBI VAE1IS, TLBI VAE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAE1ISNXS.

0b0 Execution of TLBI VAE1IS, TLBI VAE1ISNXS is not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7810
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAE1IS, TLBI
VAE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIVMALLE1IS, bit [28]

Trap execution of TLBI VMALLE1IS, TLBI VMALLE1ISNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VMALLE1ISNXS.

0b0 Execution of TLBI VMALLE1IS, TLBI VMALLE1ISNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VMALLE1IS, TLBI
VMALLE1ISNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TLBIRVAALE1OS, bit [27]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAALE1OS, TLBI RVAALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAALE1OSNXS.

0b0 Execution of TLBI RVAALE1OS, TLBI RVAALE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAALE1OS, TLBI
RVAALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVALE1OS, bit [26]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVALE1OS, TLBI RVALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVALE1OSNXS.

0b0 Execution of TLBI RVALE1OS, TLBI RVALE1OSNXS is not trapped by this
mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7811
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVALE1OS, TLBI
RVALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVAAE1OS, bit [25]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAAE1OS, TLBI RVAAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAAE1OSNXS.

0b0 Execution of TLBI RVAAE1OS, TLBI RVAAE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAAE1OS, TLBI
RVAAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIRVAE1OS, bit [24]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAE1OS, TLBI RVAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
RVAE1OSNXS.

0b0 Execution of TLBI RVAE1OS, TLBI RVAE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI RVAE1OS, TLBI
RVAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVAALE1OS, bit [23]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAALE1OS, TLBI VAALE1OSNXS at EL1 using AArch64 to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7812
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAALE1OSNXS.

0b0 Execution of TLBI VAALE1OS, TLBI VAALE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAALE1OS, TLBI
VAALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVALE1OS, bit [22]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VALE1OS, TLBI VALE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VALE1OSNXS.

0b0 Execution of TLBI VALE1OS, TLBI VALE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VALE1OS, TLBI
VALE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVAAE1OS, bit [21]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAAE1OS, TLBI VAAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAAE1OSNXS.

0b0 Execution of TLBI VAAE1OS, TLBI VAAE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAAE1OS, TLBI
VAAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7813
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TLBIASIDE1OS, bit [20]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI ASIDE1OS, TLBI ASIDE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
ASIDE1OSNXS.

0b0 Execution of TLBI ASIDE1OS, TLBI ASIDE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI ASIDE1OS, TLBI
ASIDE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVAE1OS, bit [19]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAE1OS, TLBI VAE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VAE1OSNXS.

0b0 Execution of TLBI VAE1OS, TLBI VAE1OSNXS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VAE1OS, TLBI
VAE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLBIVMALLE1OS, bit [18]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VMALLE1OS, TLBI VMALLE1OSNXS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0, this field also traps execution of TLBI
VMALLE1OSNXS.

0b0 Execution of TLBI VMALLE1OS, TLBI VMALLE1OSNXS is not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of TLBI VMALLE1OS, TLBI
VMALLE1OSNXS at EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7814
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATS1E1WP, bit [17]

When FEAT_PAN2 is implemented:

Trap execution of AT S1E1WP at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1WP is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1WP at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATS1E1RP, bit [16]

When FEAT_PAN2 is implemented:

Trap execution of AT S1E1RP at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1RP is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1RP at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATS1E0W, bit [15]

Trap execution of AT S1E0W at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E0W is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E0W at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ATS1E0R, bit [14]

Trap execution of AT S1E0R at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E0R is not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7815
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E0R at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ATS1E1W, bit [13]

Trap execution of AT S1E1W at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1W is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1W at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ATS1E1R, bit [12]

Trap execution of AT S1E1R at EL1 using AArch64 to EL2.

0b0 Execution of AT S1E1R is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of AT S1E1R at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCZVA, bit [11]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC ZVA.

• DC GVA, if FEAT_MTE is implemented.

• DC GZVA, if FEAT_MTE is implemented.

Note

Unlike HCR_EL2.TDZ, this field has no effect on DCZID_EL0.DZP.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7816
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCCIVAC, bit [10]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CIVAC.

• DC CIGVAC, if FEAT_MTE is implemented.

• DC CIGDVAC, if FEAT_MTE is implemented.

If the Point of Coherence is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCCVADP, bit [9]

When FEAT_DPB2 is implemented:

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CVADP.

• DC CGVADP, if FEAT_MTE is implemented.

• DC CGDVADP, if FEAT_MTE is implemented.

If the Point of Deep Persistence is before any level of data cache, it is IMPLEMENTATION DEFINED
whether the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7817
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DCCVAP, bit [8]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64
of any of the following AArch64 instructions to EL2:

• DC CVAP.

• DC CGVAP, if FEAT_MTE is implemented.

• DC CGDVAP, if FEAT_MTE is implemented.

If the Point of Persistence is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCCVAU, bit [7]

Trap execution of DC CVAU at EL1 and EL0 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of DC CVAU is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of DC CVAU at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCCISW, bit [6]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC CISW.

• DC CIGSW, if FEAT_MTE2 is implemented.

• DC CIGDSW, if FEAT_MTE2 is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7818
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DCCSW, bit [5]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC CSW.

• DC CGSW, if FEAT_MTE2 is implemented.

• DC CGDSW, if FEAT_MTE2 is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCISW, bit [4]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC ISW.

• DC IGSW, if FEAT_MTE2 is implemented.

• DC IGDSW, if FEAT_MTE2 is implemented.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCIVAC, bit [3]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any
of the following AArch64 instructions to EL2:

• DC IVAC.

• DC IGVAC, if FEAT_MTE2 is implemented.

• DC IGDVAC, if FEAT_MTE2 is implemented.

If the Point of Coherence is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of the instructions listed above is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution at EL1 using AArch64 of any
of the instructions listed above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7819
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ICIVAU, bit [2]

Trap execution of IC IVAU at EL1 and EL0 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of IC IVAU is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then execution of IC IVAU at EL1 and EL0 using AArch64 is
trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ICIALLU, bit [1]

Trap execution of IC IALLU at EL1 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of IC IALLU is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of IC IALLU at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ICIALLUIS, bit [0]

Trap execution of IC IALLUIS at EL1 using AArch64 to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of the affected instruction is trapped when the value of this control is 1.

0b0 Execution of IC IALLUIS is not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then execution of IC IALLUIS at EL1 using
AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7820
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing HFGITR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGITR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1C8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HFGITR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HFGITR_EL2;

MSR HFGITR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1C8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGITR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HFGITR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b110

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7821
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.61 HFGRTR2_EL2, Hypervisor Fine-Grained Read Trap Register 2

The HFGRTR2_EL2 characteristics are:

Purpose

Provides controls for traps of MRRS, MRS and MRC reads of System registers.

Configurations

This register is present only when FEAT_FGT2 is implemented. Otherwise, direct accesses to
HFGRTR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HFGRTR2_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

nRCWSMASK_EL1, bit [2]

When FEAT_THE is implemented:

Trap MRS or MRRS reads of RCWSMASK_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS or MRRS reads
of RCWSMASK_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18 for 64-bit access and 0x14 for 128-bit access, unless the read
generates a higher priority exception.

0b1 MRS or MRRS reads of RCWSMASK_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 3 2 1 0

nRCWSMASK_EL1 nPFAR_EL1
nERXGSR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7822
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nERXGSR_EL1, bit [1]

When FEAT_RASv2 is implemented:

Trap MRS reads of ERXGSR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
ERXGSR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of ERXGSR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPFAR_EL1, bit [0]

When FEAT_PFAR is implemented:

Trap MRS reads of PFAR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MRS reads of
PFAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of PFAR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HFGRTR2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGRTR2_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7823
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x2C0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HFGRTR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HFGRTR2_EL2;

MSR HFGRTR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x2C0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGRTR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HFGRTR2_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7824
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.62 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

The HFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRRS, MRS and MRC reads of System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGRTR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HFGRTR_EL2 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nAMAIR2_EL1

nMAIR2_EL1
nS2POR_EL1

nPOR_EL1
nPOR_EL0

nPIR_EL1
nPIRE0_EL1
nRCWMASK_EL1

nTPIDR2_EL0
nSMPRI_EL1

nGCS_EL1
nGCS_EL0

RES0
nACCDATA_EL1

ERXADDR_EL1
ERXPFGCDN_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

ERRIDR_EL1
ERRSELR_EL1

ERXFR_EL1
ERXCTLR_EL1

ERXSTATUS_EL1
ERXMISCn_EL1

ERXPFGF_EL1
ERXPFGCTL_EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_EL0

SCXTNUM_EL1
SCTLR_EL1
REVIDR_EL1

PAR_EL1
MPIDR_EL1

MIDR_EL1
MAIR_EL1
LORSA_EL1

LORN_EL1
LORID_EL1

LOREA_EL1
LORC_EL1

ISR_EL1
FAR_EL1

ESR_EL1

AFSR0_EL1
AFSR1_EL1

AIDR_EL1
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CCSIDR_EL1

CLIDR_EL1
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

CTR_EL0
DCZID_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7825
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nAMAIR2_EL1, bit [63]

When FEAT_AIE is implemented:

Trap MRS reads of AMAIR2_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AMAIR2_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of AMAIR2_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nMAIR2_EL1, bit [62]

When FEAT_AIE is implemented:

Trap MRS reads of MAIR2_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MAIR2_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of MAIR2_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nS2POR_EL1, bit [61]

When FEAT_S2POE is implemented:

Trap MRS reads of S2POR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of S2POR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of S2POR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7826
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nPOR_EL1, bit [60]

When FEAT_S1POE is implemented:

Trap MRS reads of POR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of POR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of POR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPOR_EL0, bit [59]

When FEAT_S1POE is implemented:

Trap MRS reads of POR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of POR_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates
a higher priority exception.

0b1 MRS reads of POR_EL0 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPIR_EL1, bit [58]

When FEAT_S1PIE is implemented:

Trap MRS reads of PIR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of PIR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7827
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nPIRE0_EL1, bit [57]

When FEAT_S1PIE is implemented:

Trap MRS reads of PIRE0_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of PIRE0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of PIRE0_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nRCWMASK_EL1, bit [56]

When FEAT_THE is implemented:

Trap MRS or MRRS reads of RCWMASK_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of RCWMASK_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

0b1 MRS or MRRS reads of RCWMASK_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nTPIDR2_EL0, bit [55]

When FEAT_SME is implemented:

Trap MRS reads of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of TPIDR2_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of TPIDR2_EL0 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7828
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nSMPRI_EL1, bit [54]

When FEAT_SME is implemented:

Trap MRS reads of SMPRI_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of SMPRI_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of SMPRI_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nGCS_EL1, bit [53]

When FEAT_GCS is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• GCSCR_EL1.

• GCSPR_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nGCS_EL0, bit [52]

When FEAT_GCS is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 and EL0 using
AArch64 of any of the following AArch64 System registers to EL2:

• GCSCRE0_EL1, at EL1 only.

• GCSPR_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads at EL1 and EL0 using AArch64 of any of the
specified System registers are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

0b1 MRS reads of the specified System registers are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7829
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64_ACCDATA is implemented:

Trap MRS reads of ACCDATA_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ACCDATA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

0b1 MRS reads of ACCDATA_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXADDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXADDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXPFGCDN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGCDN_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7830
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXPFGCTL_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGCTL_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXPFGF_EL1, bit [46]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXPFGF_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGF_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7831
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• ERXMISC0_EL1.

• ERXMISC1_EL1.

• ERXMISC2_EL1.

• ERXMISC3_EL1.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXSTATUS_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXSTATUS_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7832
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXCTLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXCTLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXFR_EL1, bit [42]

When FEAT_RAS is implemented:

Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERXFR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERXFR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERRSELR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERRSELR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7833
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERRIDR_EL1, bit [40]

When FEAT_RAS is implemented:

Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ERRIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ERRIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ICC_IGRPEN<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ICC_IGRPEN<n>_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of VBAR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7834
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of VBAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TTBR1_EL1, bit [37]

Trap MRS or MRRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.

0b0 MRS or MRRS reads of TTBR1_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of TTBR1_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TTBR0_EL1, bit [36]

Trap MRS or MRRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.

0b0 MRS or MRRS reads of TTBR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of TTBR0_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TPIDR_EL0, bit [35]

Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0
using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW
at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of TPIDRURW at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7835
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TPIDRRO_EL0, bit [34]

Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of
TPIDRURO at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher
priority exception:

• MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18.

• MRC reads of TPIDRURO at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TPIDR_EL1, bit [33]

Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TPIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of TPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TCR_EL1, bit [32]

Trap MRS reads of any of the following registers at EL1 using AArch64 to EL2.

• TCR_EL1.

• TCR2_EL1, if FEAT_TCR2 is implemented.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of the specified System registers
at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of SCXTNUM_EL0 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7836
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of SCXTNUM_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of SCXTNUM_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of SCXTNUM_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MRS reads of any of the following registers at EL1 using AArch64 to EL2.

• SCTLR_EL1.

• SCTLR2_EL1, if FEAT_SCTLR2 is implemented.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of the specified System registers
at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

REVIDR_EL1, bit [28]

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of REVIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of REVIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7837
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

PAR_EL1, bit [27]

Trap MRS or MRRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS or MRRS reads of PAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS or MRRS reads of PAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

MPIDR_EL1, bit [26]

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MPIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

MIDR_EL1, bit [25]

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

MAIR_EL1, bit [24]

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of MAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7838
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORSA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORSA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LORID_EL1, bit [21]

When FEAT_LOR is implemented:

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORID_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORID_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7839
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LOREA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LOREA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORC_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of LORC_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ISR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ISR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of FAR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7840
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of FAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ESR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of ESR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of DCZID_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of CTR_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of CTR_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CSSELR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7841
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CSSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CPACR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CPACR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CONTEXTIDR_EL1, bit [11]

Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CONTEXTIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CONTEXTIDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CLIDR_EL1, bit [10]

Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CLIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CLIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CCSIDR_EL1, bit [9]

Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of CCSIDR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7842
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of CCSIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIBKeyHi_EL1.

• APIBKeyLo_EL1.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIAKeyHi_EL1.

• APIAKeyLo_EL1.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7843
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APGAKeyHi_EL1.

• APGAKeyLo_EL1.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDBKeyHi_EL1.

• APDBKeyLo_EL1.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDAKeyHi_EL1.

• APDAKeyLo_EL1.

0b0 MRS reads of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7844
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AMAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AMAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

AIDR_EL1, bit [2]

Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

AFSR1_EL1, bit [1]

Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AFSR1_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AFSR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

AFSR0_EL1, bit [0]

Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of AFSR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MRS reads of AFSR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7845
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGRTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1B8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HFGRTR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HFGRTR_EL2;

MSR HFGRTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1B8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7846
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGRTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HFGRTR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7847
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.63 HFGWTR2_EL2, Hypervisor Fine-Grained Write Trap Register 2

The HFGWTR2_EL2 characteristics are:

Purpose

Provides controls for traps of MSRR, MSR and MCR writes of System registers.

Configurations

This register is present only when FEAT_FGT2 is implemented. Otherwise, direct accesses to
HFGWTR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HFGWTR2_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

nRCWSMASK_EL1, bit [2]

When FEAT_THE is implemented:

Trap MSR or MSRR writes of RCWSMASK_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR or MSRR writes
of RCWSMASK_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18 for 64-bit access and 0x14 for 128-bit access, unless the write
generates a higher priority exception.

0b1 MSR or MSRR writes of RCWSMASK_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [1]

Reserved, RES0.

RES0

63 32

RES0

31 3 2 1 0

nRCWSMASK_EL1 nPFAR_EL1
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7848
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nPFAR_EL1, bit [0]

When FEAT_PFAR is implemented:

Trap MSR writes of PFAR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, then MSR writes of
PFAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of PFAR_EL1 are not trapped by this mechanism.

This field is ignored by the PE and treated as zero when all of the following are true:

• EL3 is implemented.

• SCR_EL3.FGTEn2 == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HFGWTR2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGWTR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x2C8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HFGWTR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HFGWTR2_EL2;

MSR HFGWTR2_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b0011 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7849
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x2C8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGWTR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HFGWTR2_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7850
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.64 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

The HFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSRR, MSR and MCR writes of System registers.

Configurations

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGWTR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HFGWTR_EL2 is a 64-bit register.

Field descriptions

nAMAIR2_EL1, bit [63]

When FEAT_AIE is implemented:

Trap MSR writes of AMAIR2_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AMAIR2_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nAMAIR2_EL1

nMAIR2_EL1
nS2POR_EL1

nPOR_EL1
nPOR_EL0

nPIR_EL1
nPIRE0_EL1
nRCWMASK_EL1

nTPIDR2_EL0
nSMPRI_EL1

nGCS_EL1
nGCS_EL0

RES0
nACCDATA_EL1

ERXADDR_EL1
ERXPFGCDN_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

RES0
ERRSELR_EL1

RES0
ERXCTLR_EL1

ERXSTATUS_EL1
ERXMISCn_EL1

RES0
ERXPFGCTL_EL1

31 30 29 28 27

RES0

26 25 24 23 22 21 20 19 18 17 16

RES0

15 14 13 12 11

RES0

10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_EL0

SCXTNUM_EL1
SCTLR_EL1

RES0
PAR_EL1

MAIR_EL1
LORSA_EL1

LORN_EL1
RES0

LOREA_EL1
LORC_EL1

RES0
FAR_EL1

AFSR0_EL1
AFSR1_EL1

RES0
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

ESR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7851
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 MSR writes of AMAIR2_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nMAIR2_EL1, bit [62]

When FEAT_AIE is implemented:

Trap MSR writes of MAIR2_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of MAIR2_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of MAIR2_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nS2POR_EL1, bit [61]

When FEAT_S2POE is implemented:

Trap MSR writes of S2POR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of S2POR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of S2POR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPOR_EL1, bit [60]

When FEAT_S1POE is implemented:

Trap MSR writes of POR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of POR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of POR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7852
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPOR_EL0, bit [59]

When FEAT_S1POE is implemented:

Trap MSR writes of POR_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of POR_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC syndrome value 0x18, unless the write
generates a higher priority exception.

0b1 MSR writes of POR_EL0 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPIR_EL1, bit [58]

When FEAT_S1PIE is implemented:

Trap MSR writes of PIR_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of PIR_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nPIRE0_EL1, bit [57]

When FEAT_S1PIE is implemented:

Trap MSR writes of PIRE0_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of PIRE0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of PIRE0_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7853
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nRCWMASK_EL1, bit [56]

When FEAT_THE is implemented:

Trap MSR or MSRR writes of RCWMASK_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of RCWMASK_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

0b1 MSR writes of RCWMASK_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nTPIDR2_EL0, bit [55]

When FEAT_SME is implemented:

Trap MSR writes of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of TPIDR2_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of TPIDR2_EL0 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nSMPRI_EL1, bit [54]

When FEAT_SME is implemented:

Trap MSR writes of SMPRI_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of SMPRI_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

0b1 MSR writes of SMPRI_EL1 are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7854
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nGCS_EL1, bit [53]

When FEAT_GCS is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• GCSCR_EL1.

• GCSPR_EL1.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the specified System registers are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

nGCS_EL0, bit [52]

When FEAT_GCS is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• GCSCRE0_EL1.

• GCSPR_EL0.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

0b1 MSR writes of the specified System registers are not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64_ACCDATA is implemented:

Trap MSR writes of ACCDATA_EL1 at EL1 using AArch64 to EL2.

0b0 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ACCDATA_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

0b1 MSR writes of ACCDATA_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7855
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXADDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXADDR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXPFGCDN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXPFGCDN_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7856
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXPFGCTL_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXPFGCTL_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• ERXMISC0_EL1.

• ERXMISC1_EL1.

• ERXMISC2_EL1.

• ERXMISC3_EL1.

0b0 MSR writes of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7857
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXSTATUS_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXSTATUS_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERXCTLR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERXCTLR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ERRSELR_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7858
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ERRSELR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ICC_IGRPEN<n>_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ICC_IGRPEN<n>_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MSR or MSRR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR or MSRR writes of VBAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR or MSRR writes of VBAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TTBR1_EL1, bit [37]

Trap MSR or MSRR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

0b0 MSR or MSRR writes of TTBR1_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7859
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR or MSRR writes of TTBR1_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TTBR0_EL1, bit [36]

Trap MSR or MSRR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

0b0 MSR or MSRR writes of TTBR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR or MSRR writes of TTBR0_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at
EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of
TPIDRURW at EL0 using AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher
priority exception:

• MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes of TPIDRURW at EL0 using AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

0b0 MSR writes of TPIDRRO_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TPIDRRO_EL0 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7860
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TPIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of TPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TCR_EL1, bit [32]

Trap MSR writes of any of the following registers at EL1 using AArch64 to EL2.

• TCR_EL1.

• TCR2_EL1, if FEAT_TCR2 is implemented.

0b0 MSR writes of the specified registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of the specified registers at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MSR writes of SCXTNUM_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of SCXTNUM_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of SCXTNUM_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7861
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of SCXTNUM_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MSR writes of any of the following registers at EL1 using AArch64 to EL2.

• SCTLR_EL1.

• SCTLR2_EL1, if FEAT_SCTLR2 is implemented.

0b0 MSR writes of the specified registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of the specified registers at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [28]

Reserved, RES0.

PAR_EL1, bit [27]

Trap MSR or MSRR writes of PAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR or MSRR writes of PAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR or MSRR writes of PAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bits [26:25]

Reserved, RES0.

MAIR_EL1, bit [24]

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of MAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of MAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7862
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LORSA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LORSA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LORN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LORN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LOREA_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LOREA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7863
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of LORC_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of LORC_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

FAR_EL1, bit [17]

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of FAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of FAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

ESR_EL1, bit [16]

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of ESR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of ESR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7864
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CSSELR_EL1, bit [13]

Trap MSR writes of CSSELR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of CSSELR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of CSSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CPACR_EL1, bit [12]

Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of CPACR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of CPACR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CONTEXTIDR_EL1, bit [11]

Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of CONTEXTIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of CONTEXTIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bits [10:9]

Reserved, RES0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIBKeyHi_EL1.

• APIBKeyLo_EL1.

0b0 MSR writes of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7865
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APIAKeyHi_EL1.

• APIAKeyLo_EL1.

0b0 MSR writes of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APGAKeyHi_EL1.

• APGAKeyLo_EL1.

0b0 MSR writes of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDBKeyHi_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7866
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• APDBKeyLo_EL1.

0b0 MSR writes of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of
any of the following AArch64 System registers to EL2:

• APDAKeyHi_EL1.

• APDAKeyLo_EL1.

0b0 MSR writes of the specified System registers are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes at EL1 using AArch64 of any
of the specified System registers are trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AMAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AMAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

AFSR1_EL1, bit [1]

Trap MSR writes of AFSR1_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AFSR1_EL1 are not trapped by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7867
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AFSR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

AFSR0_EL1, bit [0]

Trap MSR writes of AFSR0_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AFSR0_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then MSR writes of AFSR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HFGWTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGWTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1C0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = HFGWTR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HFGWTR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7868
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR HFGWTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1C0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGWTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HFGWTR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7869
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.65 HPFAR_EL2, Hypervisor IPA Fault Address Register

The HPFAR_EL2 characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configurations

AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HPFAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.

• An abort in the second stage of translation performed during the translation table walk of a
first stage translation, caused by a Translation fault, an Access flag fault, or a Permission
fault.

• A stage 2 Address size fault.

• If FEAT_RME is implemented, a Granule Protection Check fault in the second stage of
translation.

For all other exceptions taken to EL2, this register is UNKNOWN.

Note

The address held in this register is an address accessed by the instruction fetch or data access that
caused the exception that gave rise to the Instruction Abort exception or Data Abort exception. It is
the lower address that gave rise to the fault that is reported. Where different faults from different
addresses arise from the same instruction, such as for an instruction that loads or stores an unaligned
address that crosses a page boundary, the architecture does not prioritize which fault is reported.

Attributes

HPFAR_EL2 is a 64-bit register.

Field descriptions

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

NS, bit [63]

When FEAT_SEL2 is implemented:

Faulting IPA address space.

0b0 Faulting IPA is from the Secure IPA space.

0b1 Faulting IPA is from the Non-secure IPA space.

For Data Abort exceptions or Instruction Abort exceptions taken to Non-secure EL2:

• This field is RES0.

• The address is from the Non-secure IPA space.

NS

63

RES0

62 48

FIPA

47 32

FIPA

31 4

RES0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7870
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_RME is implemented, for Data Abort exceptions or Instruction Abort exceptions taken to
Realm EL2:

• This field is RES0.

• The address is from the Realm IPA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

FIPA, bits [47:4]

FIPA encoding when FEAT_D128 is implemented

FIPA, bits [43:0]

Bits [55:12] of the Faulting Intermediate Physical Address.

For implementations with fewer than 55 physical address bits, the corresponding upper
bits in this field are RES0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous
exception that set the HPFAR_EL2 from any of the Memory Copy and Memory Set
instructions is within the address range of the current stage 2 translation granule, aligned
to the size of the current stage 2 translation granule, of the address that generated the
Data abort.

Bits[(n-1):0] of the value are UNKNOWN, where 2n is the current stage 2 translation
granule size in bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIPA encoding when FEAT_LPA is implemented and FEAT_D128 is not implemented

Bits [43:40]

Reserved, RES0.

FIPA, bits [39:0]

Bits [51:12] of the Faulting Intermediate Physical Address.

For implementations with fewer than 52 physical address bits, the corresponding upper
bits in this field are RES0.

FIPA

43 32

FIPA

31 0

RES0

43 40

FIPA

39 32

FIPA

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7871
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous
exception that set the HPFAR_EL2 from any of the Memory Copy and Memory Set
instructions is within the address range of the current stage 2 translation granule, aligned
to the size of the current stage 2 translation granule, of the address that generated the
Data abort.

Bits[(n-1):0] of the value are UNKNOWN, where 2n is the current stage 2 translation
granule size in bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIPA encoding when FEAT_LPA is not implemented

Bits [43:36]

Reserved, RES0.

FIPA, bits [35:0]

Bits[47:12] Faulting Intermediate Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper
bits in this field are RES0.

When FEAT_MOPS is implemented, the value presented in FIPA on a synchronous
exception that set the HPFAR_EL2 from any of the Memory Copy and Memory Set
instructions is within the address range of the current stage 2 translation granule, aligned
to the size of the current stage 2 translation granule, of the address that generated the
Data abort.

Bits[(n-1):0] of the value are UNKNOWN, where 2n is the current stage 2 translation
granule size in bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing HPFAR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HPFAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

RES0

43 36

FIPA

35 32

FIPA

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7872
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = HPFAR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = HPFAR_EL2;

MSR HPFAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HPFAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HPFAR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7873
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.66 HSTR_EL2, Hypervisor System Trap Register

The HSTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of EL1 or lower AArch32 accesses to the System register in the coproc ==
0b1111 encoding space, by the CRn value used to access the register using MCR or MRC instruction.
When the register is accessible using an MCRR or MRRC instruction, this is the CRm value used
to access the register.

Configurations

AArch64 System register HSTR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HSTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

HSTR_EL2 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:16, 14, 4]

Reserved, RES0.

T<n>, bit [n], for n = 15, 13 to 5, 3 to 0

The remaining fields control whether EL0 and EL1 accesses, using MCR, MRC, MCRR, and
MRRC instructions, to the System registers in the coproc == 0b1111 encoding space, are trapped to
EL2 as follows:

• MCR or MRC accesses to these registers that are trapped to EL2 are reported using EC
syndrome value 0x03, unless the access is UNDEFINED.

• MCRR or MRRC accesses to these registers that are trapped to EL2 are reported using EC
syndrome value 0x04, unless the access is UNDEFINED.

0b0 This control has no effect on EL0 or EL1 accesses to System registers.

0b1 System registers in the coproc == 0b1111 encoding space and CRn == <n> or CRm == <n>
where T<n> is the name of this field, are trapped as follows:

• An EL1 MCR or MRC access is trapped to EL2.

• An EL0 MCR or MRC access is trapped to EL2, if the access is not UNDEFINED
when the value of this field is 0.

• An EL1 MCRR or MRRC access is trapped to EL2.

• An EL0 MCRR or MRRC access is trapped to EL2, if the access is not
UNDEFINED when the value of this field is 0.

RES0

63 32

RES0

31 16 15 14 13 12 11 10

T9

9

T8

8

T7

7

T6

6

T5

5 4

T3

3

T2

2

T1

1

T0

0

T15
RES0

T13

T10
T11

T12

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7874
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
It is IMPLEMENTATION DEFINED whether an EL0 access using AArch32 is trapped to
EL2, or is UNDEFINED.

If the access is UNDEFINED, and generates an exception that is taken to EL1 or EL2 using
AArch64, this is reported with EC syndrome value 0x00.

Note
Arm expects that trapping to EL2 of EL0 accesses to these registers is unusual and used
only when the hypervisor must virtualize EL0 operation. Arm recommends that,
whenever possible, EL0 accesses to these registers behave as they would if the
implementation did not include EL2. This means that, if the architecture does not
support the EL0 access, then the register access instruction is treated as UNDEFINED and
generates an exception that is taken to EL1.

For example, when HSTR_EL2.T7 is 1, for instructions executed at EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to EL2.

• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to
EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [63:0]

Reserved, RES0.

Accessing HSTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HSTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x080];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = HSTR_EL2;

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7875
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = HSTR_EL2;

MSR HSTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x080] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 HSTR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7876
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.67 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

The ID_AA64AFR0_EL1 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64AFR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:28]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [27:24]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [23:20]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [19:16]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

RES0

63 32

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7877
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ID_AA64AFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64AFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64AFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7878
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.68 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

The ID_AA64AFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about the IMPLEMENTATION DEFINED features of the
PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64AFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Reserved, RES0.

Accessing ID_AA64AFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64AFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64AFR1_EL1;

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7879
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.69 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

The external register EDDFR gives information from this register.

Attributes

ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions

HPMN0, bits [63:60]

Zero PMU event counters for a Guest operating system.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Setting MDCR_EL2.HPMN to zero has CONSTRAINED UNPREDICTABLE behavior.

0b0001 Setting MDCR_EL2.HPMN to zero has defined behavior.

All other values are reserved.

FEAT_HPMN0 implements the functionality identified by the value 0b0001.

From Armv8.8, in an implementation that includes FEAT_PMUv3, FEAT_FGT, and EL2, the value
0b0000 is not permitted.

Access to this field is RO.

ExtTrcBuff, bits [59:56]

Trace Buffer External Mode Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trace Buffer External Mode not implemented.

0b0001 Trace Buffer External Mode implemented.

All other values are reserved.

FEAT_TRBE_EXT implements the functionality identified by the value 0b0001.

Access to this field is RO.

BRBE, bits [55:52]

Branch Record Buffer Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Branch Record Buffer Extension not implemented.

0b0001 Branch Record Buffer Extension implemented.

HPMN0

63 60 59 56

BRBE

55 52

MTPMU

51 48 47 44 43 40 39 36

PMSVer

35 32

ExtTrcBuff TraceBuffer DoubleLock
TraceFilt

CTX_CMPs

31 28

SEBEP

27 24

WRPs

23 20

PMSS

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

DebugVer

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7880
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0010 As 0b0001, and adds support for branch recording at EL3.

All other values are reserved.

FEAT_BRBE implements the functionality identified by the value 0b0001.

FEAT_BRBEv1p1 implements the functionality identified by the value 0b0010.

From Armv9.3, if FEAT_BRBE is implemented, the value 0b0001 is not permitted.

Access to this field is RO.

MTPMU, bits [51:48]

Multi-threaded PMU extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>_EL0.MT and
PMEVTYPER<n>.MT are read/write or RES0.

0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented. PMEVTYPER<n>_EL0.MT and
PMEVTYPER<n>.MT are read/write. When FEAT_MTPMU is disabled, the Effective
values of PMEVTYPER<n>_EL0.MT and PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented,
PMEVTYPER<n>_EL0.MT and PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not
permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Access to this field is RO.

TraceBuffer, bits [47:44]

Trace Buffer Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trace Buffer Extension not implemented.

0b0001 Trace Buffer Extension implemented.

All other values are reserved.

FEAT_TRBE implements the functionality identified by the value 0b0001.

In any Armv9 implementation, if FEAT_ETE is implemented, the value 0b0000 is not permitted.

Access to this field is RO.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality identified by the value 0b0001.

From Armv8.4, if an Embedded Trace Macrocell Architecture trace unit is implemented, the value
0b0000 is not permitted.

Access to this field is RO.

DoubleLock, bits [39:36]

OS Double Lock implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7881
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 OS Double Lock implemented. OSDLR_EL1 is RW.

0b1111 OS Double Lock not implemented. OSDLR_EL1 is RAZ/WI.

All other values are reserved.

FEAT_DoubleLock implements the functionality identified by the value 0b0000.

In Armv8.0, the only permitted value is 0b0000.

If FEAT_Debugv8p2 is implemented and FEAT_DoPD is not implemented, the permitted values
are 0b0000 and 0b1111.

If FEAT_DoPD is implemented, the only permitted value is 0b1111.

Access to this field is RO.

PMSVer, bits [35:32]

Statistical Profiling Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Statistical Profiling Extension not implemented.

0b0001 Statistical Profiling Extension implemented.

0b0010 As 0b0001, and adds:

• Support for the Events packet Alignment flag.

• If FEAT_SVE is implemented, support for the Scalable Vector extensions to
Statistical Profiling.

0b0011 As 0b0010, and adds:

• Discard mode.

• Extended event filtering, including the PMSNEVFR_EL1 System register.

• Support for the OPTIONAL previous branch target Address packet.

• If FEAT_PMUv3 is implemented, controls to freeze the PMU event counters
after an SPE buffer management event occurs.

• If FEAT_PMUv3 is implemented, the SAMPLE_FEED_BR,
SAMPLE_FEED_EVENT, SAMPLE_FEED_LAT, SAMPLE_FEED_LD,
SAMPLE_FEED_OP, and SAMPLE_FEED_ST PMU events.

0b0100 As 0b0011, and adds:

• If FEAT_MOPS is implemented, Operation Type packet encodings for Memory
Copy and Set operations.

• If FEAT_MTE is implemented, Operation Type packet encodings for loads and
stores of Allocation Tags.

0b0101 As 0b0100, and adds:

• Support for the Events packet Level 2 Data cache access, Level 2 Data cache
miss, Cached data modified, Recently fetched cache line, and Cache snoop flags.

• Support for Data Source filtering.

All other values are reserved.

FEAT_SPE implements the functionality identified by the value 0b0001.

FEAT_SPEv1p1 implements the functionality identified by the value 0b0010.

FEAT_SPEv1p2 implements the functionality identified by the value 0b0011.

FEAT_SPEv1p3 implements the functionality identified by the value 0b0100.

FEAT_SPEv1p4 implements the functionality identified by the value 0b0101.

From Armv8.5, if FEAT_SPE is implemented, the value 0b0001 is not permitted.

From Armv8.7, if FEAT_SPE is implemented, the value 0b0010 is not permitted.

From Armv8.8, if FEAT_SPE is implemented, the value 0b0011 is not permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7882
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
From Armv8.9, if FEAT_SPE is implemented, the value 0b0100 is not permitted.

Access to this field is RO.

CTX_CMPs, bits [31:28]

Number of context-aware breakpoints, minus 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1111 The number of context-aware breakpoints, minus 1.

The value of this field is never greater than ID_AA64DFR0_EL1.BRPs.

If FEAT_Debugv8p9 is implemented and 16 or more context-aware breakpoints are implemented,
then this field reads as 0b1111 and ID_AA64DFR1_EL1.CTX_CMPs indicates the number of
context-aware breakpoints.

Note
If AArch32 is supported at EL1, then the PE does not implement more than 16 breakpoints.

Access to this field is RO.

SEBEP, bits [27:24]

Synchronous-exception-based event profiling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Synchronous-exception-based event profiling not implemented.

0b0001 Synchronous-exception-based event profiling implemented.

All other values are reserved.

FEAT_SEBEP implements the functionality identified by the value 0b0001.

Access to this field is RO.

WRPs, bits [23:20]

Number of watchpoints, minus 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001..0b1111 The number of watchpoints, minus 1.

If FEAT_Debugv8p9 is implemented and 16 or more watchpoints are implemented, then this field
reads as 0b1111 and ID_AA64DFR1_EL1.WRPs indicates the number of watchpoints.

Note

If AArch32 is supported at EL1, then the PE does not implement more than 16 watchpoints.

The value 0b0000 is reserved.

Access to this field is RO.

PMSS, bits [19:16]

PMU Snapshot extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PMU snapshot extension not implemented.

0b0001 PMU snapshot extension implemented.

All other values are reserved.

FEAT_PMUv3_SS implements the functionality identified by the value 0b0001.

Access to this field is RO.

BRPs, bits [15:12]

Number of breakpoints, minus 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7883
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001..0b1111 The number of breakpoints, minus 1.

If FEAT_Debugv8p9 is implemented and 16 or more breakpoints are implemented, then this field
reads as 0b1111 and ID_AA64DFR1_EL1.BRPs indicates the number of breakpoints.

Note
If AArch32 is supported at EL1, then the PE does not implement more than 16 breakpoints.

The value 0b0000 is reserved.

Access to this field is RO.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0001, and adds support for:

• Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.

• If EL2 is implemented, the MDCR_EL2.HPMD control.

0b0101 PMUv3 for Armv8.4. As 0b0100, and adds support for the PMMIR_EL1 register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and adds support for:

• 64-bit event counters.

• If EL2 is implemented, the MDCR_EL2.HCCD control.

• If EL3 is implemented, the MDCR_EL3.SCCD control.

0b0111 PMUv3 for Armv8.7. As 0b0110, and adds support for:

• The PMCR_EL0.FZO and, if EL2 is implemented, MDCR_EL2.HPMFZO
controls.

• If EL3 is implemented, the MDCR_EL3.{MPMX,MCCD} controls.

0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include 0x0040 to 0x00BF and 0x4040
to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if a reserved or
unimplemented PMU event number is selected.

0b1001 PMUv3 for Armv8.9. As 0b1000, and:

• Updates the definitions of existing PMU events.

• Adds support for the PMUSERENR_EL0.UEN control and the PMUACR_EL1
register.

• Adds support for the EDECR.PME control.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7884
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

FEAT_PMUv3p9 implements the functionality identified by the value 0b1001.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

From Armv8.9, if FEAT_PMUv3 is implemented, the value 0b1000 is not permitted.

Access to this field is RO.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace unit is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trace unit System registers not implemented.

0b0001 Trace unit System registers implemented.

All other values are reserved.

When trace unit System registers are implemented, see TRCIDR1 for tracing capabilities of the
trace unit.

Access to this field is RO.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0110 Armv8.0 debug architecture.

0b0111 Armv8.0 debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

0b1011 Armv8.9 debug architecture, FEAT_Debugv8p9.

All other values are reserved.

FEAT_VHE implements the functionality identified by the value 0b0111.

FEAT_Debugv8p2 implements the functionality identified by the value 0b1000.

FEAT_Debugv8p4 implements the functionality identified by the value 0b1001.

FEAT_Debugv8p8 implements the functionality identified by the value 0b1010.

FEAT_Debugv8p9 implements the functionality identified by the value 0b1011.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

From Armv8.9, the value 0b1010 is not permitted.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7885
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ID_AA64DFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64DFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64DFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7886
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.70 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

The ID_AA64DFR1_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64.

Configurations

There are no configuration notes.

Attributes

ID_AA64DFR1_EL1 is a 64-bit register.

Field descriptions

ABL_CMPs, bits [63:56]

When FEAT_ABLE is implemented:

Number of breakpoints that support address linking, minus 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00..0x3F Number of breakpoints that support address linking minus 1.

All other values are reserved.

The number of breakpoints that support address linking is never more than either the number of
breakpoints or the number of watchpoints.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DPFZS, bits [55:52]

Behavior of the cycle counter when event counting is frozen by a Statistical Profiling management
event.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The cycle counter PMCCNTR_EL0 is never affected by PMCR_EL0.FZS.

0b0001 The cycle counter PMCCNTR_EL0 does not count when PMCR_EL0.DP is 1 and
counting by event counters accessible to EL1 is frozen by the PMCR_EL0.FZS
mechanism.

FEAT_SPE_DPFZS implements the functionality identified by the value 0b0001.

Access to this field is RO.

EBEP, bits [51:48]

Exception-based event profiling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Exception-based event profiling not implemented.

0b0001 Exception-based event profiling implemented.

All other values are reserved.

ABL_CMPs

63 56

DPFZS

55 52

EBEP

51 48

ITE

47 44

ABLE

43 40

PMICNTR

39 36

SPMU

35 32

CTX_CMPs

31 24

WRPs

23 16

BRPs

15 8

SYSPMUID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7887
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_EBEP implements the functionality identified by the value 0b0001.

Access to this field is RO.

ITE, bits [47:44]

Instrumentation Trace Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Instrumentation Trace Extension not implemented.

0b0001 Instrumentation Trace Extension implemented.

All other values are reserved.

FEAT_ITE implements the functionality identified by the value 0b0001.

Access to this field is RO.

ABLE, bits [43:40]

Address Breakpoint Linking Extension. Defined values are:

0b0000 Address Breakpoint Linking Extension not implemented.

0b0001 Address Breakpoint Linking Extension implemented.

All other values are reserved.

FEAT_BWE implements the address range breakpoints and mismatch breakpoints part of the
functionality identified by the value 0b0001.

FEAT_ABLE implements the functionality identified by the value 0b0001.

PMICNTR, bits [39:36]

PMU fixed-function instruction counter.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PMU fixed-function instruction counter not implemented.

0b0001 PMU fixed-function instruction counter implemented.

All other values are reserved.

FEAT_PMUv3_ICNTR implements the functionality identified by the value 0b0001.

If FEAT_PMUv3 is not implemented, then the only permitted value is 0b0000.

Access to this field is RO.

SPMU, bits [35:32]

System PMU extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 System PMU extension not implemented.

0b0001 System PMU extension implemented.

All other values are reserved.

FEAT_SPMU implements the functionality identified by the value 0b0001.

Access to this field is RO.

CTX_CMPs, bits [31:24]

Context-aware breakpoints.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 ID_AA64DFR0_EL1.CTX_CMPs is the number of context-aware breakpoints, minus
1.

0x01..0x3F Number of context-aware breakpoints minus 1.

All other values are reserved.

The value of this field is never greater than ID_AA64DFR1_EL1.BRPs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7888
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

WRPs, bits [23:16]

Watchpoints.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 ID_AA64DFR0_EL1.WRPs is the number of watchpoints, minus 1.

0x01..0x3F Number of watchpoints minus 1.

All other values are reserved.

Access to this field is RO.

BRPs, bits [15:8]

Breakpoints.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 ID_AA64DFR0_EL1.BRPs is the number of breakpoints, minus 1.

0x01..0x3F Number of breakpoints minus 1.

All other values are reserved.

Access to this field is RO.

SYSPMUID, bits [7:0]

When FEAT_SPMU is implemented:

System PMU ID. Indicates the largest value that can be written to SPMSELR_EL0.SYSPMUSEL.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00..0x1F The largest supported value that can be written to SPMSELR_EL0.SYSPMUSEL.

All other values are reserved.

Since System PMUs might not be contiguously accessible, this field does not necessarily indicate
the total number of accessible System PMUs.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing ID_AA64DFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64DFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7889
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64DFR1_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7890
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.71 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions

RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state.

When FEAT_RNG_TRAP is implemented, the value returned by a direct read of
ID_AA64ISAR0_EL1.RNDR is further controlled by the value of SCR_EL3.TRNDR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Random Number instructions are implemented.

0b0001 RNDR and RNDRRS registers are implemented.

All other values are reserved.

FEAT_RNG implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

TLB, bits [59:56]

Indicates support for Outer Shareable and TLB range maintenance instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Outer Shareable and TLB range maintenance instructions are not implemented.

0b0001 Outer Shareable TLB maintenance instructions are implemented.

0b0010 Outer Shareable and TLB range maintenance instructions are implemented.

All other values are reserved.

FEAT_TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_TLBIRANGE implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

Access to this field is RO.

TS, bits [55:52]

Indicates support for flag manipulation instructions.

RNDR

63 60

TLB

59 56

TS

55 52

FHM

51 48

DP

47 44

SM4

43 40

SM3

39 36

SHA3

35 32

RDM

31 28

TME

27 24

Atomic

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

RES0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7891
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No flag manipulation instructions are implemented.

0b0001 CFINV, RMIF, SETF16, and SETF8 instructions are implemented.

0b0010 CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG instructions are
implemented.

All other values are reserved.

FEAT_FlagM implements the functionality identified by the value 0b0001.

FEAT_FlagM2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

In Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010.

Access to this field is RO.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FMLAL and FMLSL instructions are not implemented.

0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Dot Product instructions implemented.

0b0001 UDOT and SDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SM4 instructions implemented.

0b0001 SM4E and SM4EKEY instructions implemented.

All other values are reserved.

If FEAT_SM4 is not implemented, the value 0b0001 is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

Access to this field is RO.

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7892
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SM3 instructions implemented.

0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and
SM3PARTW2 instructions implemented.

All other values are reserved.

If FEAT_SM3 is not implemented, the value 0b0001 is reserved.

FEAT_SM3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

Access to this field is RO.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA3 instructions implemented.

0b0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If FEAT_SHA3 is not implemented, the value 0b0001 is reserved.

FEAT_SHA3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

Access to this field is RO.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No RDMA instructions implemented.

0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

TME, bits [27:24]

Indicates support for TME instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 TME instructions are not implemented.

0b0001 TCANCEL, TCOMMIT, TSTART, and TTEST instructions are implemented.

All other values are reserved.

Accessing this field has the following behavior:

• RAZ/WI if all of the following are true:

— FEAT_TME is implemented.

— PSTATE.EL IN {EL2, EL1}.

— SCR_EL3.TME == 0.

• RAZ/WI if all of the following are true:

— FEAT_TME is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7893
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— PSTATE.EL == EL1.

— EL2Enabled().

— HCR_EL2.TME == 0.

• Otherwise, access to this field is RO.

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Atomic instructions implemented.

0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN,
CAS, CASP, and SWP instructions implemented.

0b0011 As for 0b0010, plus 128-bit instructions LDCLRP, LDSETP and SWPP.

All other values are reserved.

FEAT_LSE implements the functionality identified by the value 0b0010.

FEAT_LSE128 implements the functionality identified by the value 0b0011.

From Armv8.1, the value 0b0000 is not permitted.

Access to this field is RO.

CRC32, bits [19:16]

Indicates support for CRC32 instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 CRC32 instructions are not implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and
CRC32CX instructions are implemented.

All other values are reserved.

FEAT_CRC32 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

SHA2, bits [15:12]

Indicates support for SHA2 instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA2 instructions implemented.

0b0001 Implements instructions: SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.

0b0010 Implements instructions:

• SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.

• SHA512H, SHA512H2, SHA512SU0, and SHA512SU1.

All other values are reserved.

FEAT_SHA256 implements the functionality identified by the value 0b0001.

FEAT_SHA512 implements the functionality identified by the value 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

Access to this field is RO.

SHA1, bits [11:8]

Indicates support for SHA1 instructions in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7894
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions
implemented.

All other values are reserved.

FEAT_SHA1 implements the functionality identified by the value 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

Access to this field is RO.

AES, bits [7:4]

Indicates support for AES instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC instructions implemented.

0b0010 As for 0b0001, plus PMULL and PMULL2 instructions operating on 64-bit source
elements.

FEAT_AES implements the functionality identified by the value 0b0001.

FEAT_PMULL implements the functionality identified by the value 0b0010.

All other values are reserved.

Access to this field is RO.

Bits [3:0]

Reserved, RES0.

Accessing ID_AA64ISAR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64ISAR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7895
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.72 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

LS64, bits [63:60]

Indicates support for LD64B and ST64B* instructions, and the ACCDATA_EL1 register.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The LD64B, ST64B, ST64BV, and ST64BV0 instructions, the ACCDATA_EL1
register, and associated traps are not supported.

0b0001 The LD64B and ST64B instructions are supported.

0b0010 The LD64B, ST64B, and ST64BV instructions, and their associated traps are supported.

0b0011 The LD64B, ST64B, ST64BV, and ST64BV0 instructions, the ACCDATA_EL1
register, and their associated traps are supported.

All other values are reserved.

FEAT_LS64 implements the functionality identified by 0b0001.

FEAT_LS64_V implements the functionality identified by 0b0010.

FEAT_LS64_ACCDATA implements the functionality identified by 0b0011.

From Armv8.7, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

Access to this field is RO.

XS, bits [59:56]

Indicates support for the XS attribute, the TLBI and DSB instructions with the nXS qualifier, and
the HCRX_EL2.{FGTnXS, FnXS} fields in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields are not supported.

0b0001 The XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields are supported.

All other values are reserved.

FEAT_XS implements the functionality identified by 0b0001.

From Armv8.7, the only permitted value is 0b0001.

LS64

63 60

XS

59 56

I8MM

55 52

DGH

51 48

BF16

47 44

SPECRES

43 40

SB

39 36

FRINTTS

35 32

GPI

31 28

GPA

27 24

LRCPC

23 20

FCMA

19 16

JSCVT

15 12

API

11 8

APA

7 4

DPB

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7896
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

I8MM, bits [55:52]

Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in
AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

Access to this field is RO.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Data Gathering Hint is not implemented.

0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this
field is 0b0000.

Access to this field is RO.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state.
Defined values are:

0b0000 BFloat16 instructions are not implemented.

0b0001 BFCVT, BFCVTN, BFCVTN2, BFDOT, BFMLALB, BFMLALT, and BFMMLA
instructions are implemented.

0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 adds the functionality identified by 0b0001.

FEAT_SME_F64F64 adds the functionality identified by 0b0010.

When FEAT_SVE or FEAT_SME is implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

From Armv8.6 and Armv9.1, the value 0b0000 is not permitted.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Prediction invalidation instructions are not implemented.

0b0001 CFP RCTX, DVP RCTX and CPP RCTX instructions are implemented.

0b0010 As 0b0001, and COSP RCTX instruction is implemented.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7897
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_SPECRES implements the functionality identified by 0b0001.

FEAT_SPECRES2 implements the functionality identified by 0b0010.

From Armv8.5, the value 0b0000 is not permitted.

From Armv8.9, the value 0b0001 is not permitted.

Access to this field is RO.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Access to this field is RO.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are
implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are not implemented.

0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.

All other values are reserved.

FEAT_FRINTTS implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Access to this field is RO.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic
code authentication in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is implemented.
This includes the PACGA instruction.

All other values are reserved.

FEAT_PACIMP implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is nonzero, or the value of ID_AA64ISAR2_EL1.GPA3
is nonzero, this field must have the value 0b0000.

Access to this field is RO.

GPA, bits [27:24]

Indicates whether the QARMA5 algorithm is implemented in the PE for generic code authentication
in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Generic Authentication using the QARMA5 algorithm is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7898
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 Generic Authentication using the QARMA5 algorithm is implemented. This includes
the PACGA instruction.

All other values are reserved.

FEAT_PACQARMA5 implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is nonzero, or the value of ID_AA64ISAR2_EL1.GPA3
is nonzero, this field must have the value 0b0000.

Access to this field is RO.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 RCpc instructions are not implemented.

0b0001 The no offset LDAPR, LDAPRB, and LDAPRH instructions are implemented.

0b0010 As 0b0001, and the LDAPR (unscaled immediate) and STLR (unscaled immediate)
instructions are implemented.

0b0011 As 0b0010, and the post-index LDAPR, LDIAPP, STILP, and pre-index STLR
instructions are implemented.

If Advanced SIMD and floating-point is implemented, then the LDAPUR (SIMD&FP),
LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP) instructions are
implemented in Advanced SIMD and floating-point.

All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

FEAT_LRCPC3 implements the functionality identified by the value 0b0011.

From Armv8.3, the value 0b0000 is not permitted.

From Armv8.4, the value 0b0001 is not permitted.

Access to this field is RO.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in
vectors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The FCMLA and FCADD instructions are not implemented.

0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

Access to this field is RO.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers
in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The FJCVTZS instruction is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7899
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

Access to this field is RO.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address
authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than
the PACGA instruction.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Address Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, and the HaveEnhancedPAC()
function returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is nonzero, FEAT_PACIMP is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is nonzero, or the value of ID_AA64ISAR2_EL1.APA3
is nonzero, this field must have the value 0b0000.

Access to this field is RO.

APA, bits [7:4]

Indicates whether the QARMA5 algorithm is implemented in the PE for address authentication, in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7900
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Address Authentication using the QARMA5 algorithm is not implemented.

0b0001 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
FALSE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is nonzero, FEAT_PACQARMA5 is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is nonzero, or the value of ID_AA64ISAR2_EL1.APA3
is nonzero, this field must have the value 0b0000.

Access to this field is RO.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in
AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 DC CVAP not supported.

0b0001 DC CVAP supported.

0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7901
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64ISAR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7902
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.73 ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

The ID_AA64ISAR2_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

Note
Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64ISAR2_EL1 is a 64-bit register.

Field descriptions

ATS1A, bits [63:60]

Indicates support for address translation instructions, which perform stage 1 address translation for
the given virtual address without checking for stage 1 permissions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Address Translate Stage 1 instructions without Permissions Checks are not
implemented

0b0001 Address Translate Stage 1 instructions without Permissions Checks are implemented.

All other values are reserved.

Access to this field is RO.

Bits [59:56]

Reserved, RES0.

CSSC, bits [55:52]

Indicates support for common short sequence compression instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Common short sequence compression instructions are not implemented.

0b0001 Common short sequence compression instructions are implemented.

All other values are reserved.

FEAT_CSSC implements the functionality identified by the value 0b0001.

From Armv9.4, the value 0b0000 is not permitted.

Access to this field is RO.

ATS1A

63 60

RES0

59 56

CSSC

55 52

RPRFM

51 48

RES0

47 44

PRFMSLC

43 40 39 36 35 32

SYSINSTR_128 SYSREG_128

CLRBHB

31 28

PAC_frac

27 24

BC

23 20

MOPS

19 16

APA3

15 12

GPA3

11 8

RPRES

7 4

WFxT

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7903
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
RPRFM, bits [51:48]

RPRFM hint instruction.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 RPRFM hint instruction is not implemented and is treated as a NOP.

0b0001 RPRFM hint instruction is implemented.

All other values are reserved.

FEAT_RPRFM implements the functionality identified by the value 0b0001.

Access to this field is RO.

Bits [47:44]

Reserved, RES0.

PRFMSLC, bits [43:40]

Indicates whether the PRFM instructions support a system level cache option.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The PRFM instructions do not support the SLC target.

0b0001 The PRFM instructions support the SLC target.

All other values are reserved.

FEAT_PRFMSLC implements the functionality identified by the value 0b0001.

Access to this field is RO.

SYSINSTR_128, bits [39:36]

SYSINSTR_128. Indicates support for System instructions that can take 128-bit inputs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 System instructions that can take 128-bit inputs are not supported.

0b0001 System instructions that can take 128-bit inputs are supported.

All other values are reserved.

FEAT_SYSINSTR128 implements the functionality identified by the value 0b0001.

Access to this field is RO.

SYSREG_128, bits [35:32]

SYSREG_128. Indicates support for instructions to access 128-bit System Registers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Instructions to access 128-bit System Registers are not supported.

0b0001 Instructions to access 128-bit System Registers are supported.

All other values are reserved.

FEAT_SYSREG128 implements the functionality identified by the value 0b0001.

Access to this field is RO.

CLRBHB, bits [31:28]

Indicates support for the CLRBHB instruction in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 CLRBHB instruction is not implemented.

0b0001 CLRBHB instruction is implemented.

All other values are reserved.

FEAT_CLRBHB implements the functionality identified by the value 0b0001.

From Armv8.9, the value 0b0000 is not permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7904
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

PAC_frac, bits [27:24]

Indicates whether the ConstPACField() function used as part of the PAC addition returns FALSE or
TRUE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 ConstPACField() returns FALSE.

0b0001 ConstPACField() returns TRUE.

All other values are reserved.

FEAT_CONSTPACFIELD implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

BC, bits [23:20]

Indicates support for the BC instruction in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 BC instruction is not implemented.

0b0001 BC instruction is implemented.

All other values are reserved.

FEAT_HBC implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

Access to this field is RO.

MOPS, bits [19:16]

Indicates support for the Memory Copy and Memory Set instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The Memory Copy and Memory Set instructions are not implemented in AArch64 state.

0b0001 The Memory Copy and Memory Set instructions are implemented in AArch64 state
with the following exception. If FEAT_MTE is implemented, then SETGP*, SETGM*
and SETGE* instructions are also supported.

All other values are reserved.

FEAT_MOPS implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

Access to this field is RO.

APA3, bits [15:12]

Indicates whether the QARMA3 algorithm is implemented in the PE for address authentication in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA
instruction.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Address Authentication using the QARMA3 algorithm is not implemented.

0b0001 Address Authentication using the QARMA3 algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA3 algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA3 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
FALSE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7905
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0100 Address Authentication using the QARMA3 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA3 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by the value 0b0001.

FEAT_EPAC implements the functionality identified by the value 0b0010.

FEAT_PAuth2 implements the functionality identified by the value 0b0011.

FEAT_FPAC implements the functionality identified by the value 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by the value 0b0101.

When this field is nonzero, FEAT_PACQARMA3 is implemented.

In Armv8.3, the permitted values are 0b0000, 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is nonzero, or the value of ID_AA64ISAR1_EL1.APA is
nonzero, this field must have the value 0b0000.

Access to this field is RO.

GPA3, bits [11:8]

Indicates whether the QARMA3 algorithm is implemented in the PE for generic code authentication
in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Generic Authentication using the QARMA3 algorithm is not implemented.

0b0001 Generic Authentication using the QARMA3 algorithm is implemented. This includes
the PACGA instruction.

All other values are reserved.

FEAT_PACQARMA3 implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is nonzero, or the value of ID_AA64ISAR1_EL1.GPA is
nonzero, this field must have the value 0b0000.

Access to this field is RO.

RPRES, bits [7:4]

Indicates support for 12 bits of mantissa in reciprocal and reciprocal square root instructions in
AArch64 state, when FPCR.AH is 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 When FPCR.AH == 1:

Reciprocal and reciprocal square root estimates give 8 bits of mantissa, when FPCR.AH
is 1.

0b0001 When FPCR.AH == 1:

Reciprocal and reciprocal square root estimates give 12 bits of mantissa, when
FPCR.AH is 1.

All other values are reserved.

FEAT_RPRES implements the functionality identified by the value 0b0001.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7906
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
WFxT, bits [3:0]

Indicates support for the WFET and WFIT instructions in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 WFET and WFIT are not supported.

0b0010 WFET and WFIT are supported, and the register number is reported in the ESR_ELx on
exceptions.

All other values are reserved.

FEAT_WFxT implements the functionality identified by the value 0b0010.

From Armv8.7, the only permitted value is 0b0010.

Access to this field is RO.

Accessing ID_AA64ISAR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64ISAR2_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64ISAR2_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64ISAR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64ISAR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64ISAR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7907
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.74 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

The ID_AA64MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR0_EL1 is a 64-bit register.

Field descriptions

ECV, bits [63:60]

Indicates presence of Enhanced Counter Virtualization.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Enhanced Counter Virtualization is not implemented.

0b0001 Enhanced Counter Virtualization is implemented. Supports
CNTHCTL_EL2.{EL1TVT, EL1TVCT, EL1NVPCT, EL1NVVCT, EVNTIS},
CNTKCTL_EL1.EVNTIS, CNTPCTSS_EL0 counter views, and CNTVCTSS_EL0
counter views. Extends the PMSCR_EL1.PCT, PMSCR_EL2.PCT, TRFCR_EL1.TS,
and TRFCR_EL2.TS fields.

0b0010 As 0b0001, and also includes support for CNTHCTL_EL2.ECV and CNTPOFF_EL2.

All other values are reserved.

FEAT_ECV implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.6, the only permitted values are 0b0001 and 0b0010.

Access to this field is RO.

FGT, bits [59:56]

Indicates presence of the Fine-Grained Trap controls.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Fine-grained trap controls are not implemented.

0b0001 Fine-grained trap controls are implemented. Supports:

• If EL2 is implemented, the HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2
registers, and their associated traps.

• If EL2 is implemented, MDCR_EL2.TDCC.

• If EL3 is implemented, MDCR_EL3.TDCC.

ECV

63 60

FGT

59 56

RES0

55 48

ExS

47 44

TGran4_2

43 40 39 36 35 32

TGran64_2 TGran16_2

TGran4

31 28

TGran64

27 24

TGran16

23 20 19 16

SNSMem

15 12

BigEnd

11 8

ASIDBits

7 4

PARange

3 0

BigEndEL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7908
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If both EL2 and EL3 are implemented, SCR_EL3.FGTEn.

0b0010 As 0b0001, and also includes support for:

• If EL2 is implemented, the HDFGRTR2_EL2, HDFGWTR2_EL2,
HFGITR2_EL2, HFGRTR2_EL2, and HFGWTR2_EL2 registers, and their
associated traps.

• If both EL2 and EL3 are implemented, SCR_EL3.FGTEn2.

All other values are reserved.

FEAT_FGT implements the functionality identified by the value 0b0001.

 FEAT_FGT2 implements the functionality identified by the value 0b0010.

From Armv8.6, the value 0b0000 is not permitted.

From Armv8.9, the value 0b0001 is not permitted.

Access to this field is RO.

Bits [55:48]

Reserved, RES0.

ExS, bits [47:44]

Indicates support for disabling context synchronizing exception entry and exit.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 All exception entries and exits are context synchronization events.

0b0001 Non-context synchronizing exception entry and exit are supported.

All other values are reserved.

FEAT_ExS implements the functionality identified by the value 0b0001.

Access to this field is RO.

TGran4_2, bits [43:40]

Indicates support for 4KB memory granule size at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Support for 4KB granule at stage 2 is identified in the ID_AA64MMFR0_EL1.TGran4
field.

0b0001 4KB granule not supported at stage 2.

0b0010 4KB granule supported at stage 2.

0b0011 When FEAT_LPA2 is implemented:

4KB granule at stage 2 supports 52-bit input addresses and can describe 52-bit output
addresses.

All other values are reserved.

The 0b0000 value is deprecated.

Note
This field does not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64MMFR0_EL1 stage 2 granule sizes for more information.

Access to this field is RO.

TGran64_2, bits [39:36]

Indicates support for 64KB memory granule size at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Support for 64KB granule at stage 2 is identified in the
ID_AA64MMFR0_EL1.TGran64 field.

0b0001 64KB granule not supported at stage 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7909
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0010 64KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64MMFR0_EL1 stage 2 granule sizes for more information.

Access to this field is RO.

TGran16_2, bits [35:32]

Indicates support for 16KB memory granule size at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Support for 16KB granule at stage 2 is identified in the
ID_AA64MMFR0_EL1.TGran16 field.

0b0001 16KB granule not supported at stage 2.

0b0010 16KB granule supported at stage 2.

0b0011 When FEAT_LPA2 is implemented:

16KB granule at stage 2 supports 52-bit input addresses and can describe 52-bit output
addresses.

All other values are reserved.

The 0b0000 value is deprecated.

Note

This field does not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64MMFR0_EL1 stage 2 granule sizes for more information.

Access to this field is RO.

TGran4, bits [31:28]

Indicates support for 4KB memory translation granule size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 4KB granule supported.

0b0001 When FEAT_LPA2 is implemented:

4KB granule supports 52-bit input addresses and can describe 52-bit output addresses.

0b1111 4KB granule not supported.

All other values are reserved.

Access to this field is RO.

TGran64, bits [27:24]

Indicates support for 64KB memory translation granule size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 64KB granule supported.

0b1111 64KB granule not supported.

All other values are reserved.

Access to this field is RO.

TGran16, bits [23:20]

Indicates support for 16KB memory translation granule size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7910
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 16KB granule not supported.

0b0001 16KB granule supported.

0b0010 When FEAT_LPA2 is implemented:

16KB granule supports 52-bit input addresses and can describe 52-bit output addresses.

All other values are reserved.

Access to this field is RO.

BigEndEL0, bits [19:16]

Indicates support for mixed-endian at EL0 only.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E bit has a fixed value.

0b0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit can be configured.

All other values are reserved.

This field is invalid and is RES0 if ID_AA64MMFR0_EL1.BigEnd is not 0b0000.

Access to this field is RO.

SNSMem, bits [15:12]

Indicates support for a distinction between Secure and Non-secure Memory.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Does not support a distinction between Secure and Non-secure Memory.

0b0001 Does support a distinction between Secure and Non-secure Memory.

Note

If EL3 is implemented, the value 0b0000 is not permitted.

All other values are reserved.

Access to this field is RO.

BigEnd, bits [11:8]

Indicates support for mixed-endian configuration.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No mixed-endian support. The SCTLR_ELx.EE bits have a fixed value. See the
BigEndEL0 field, bits[19:16], for whether EL0 supports mixed-endian.

0b0001 Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.E0E bits can be
configured.

All other values are reserved.

Access to this field is RO.

ASIDBits, bits [7:4]

Number of ASID bits.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 8 bits.

0b0010 16 bits.

All other values are reserved.

Access to this field is RO.

PARange, bits [3:0]

Physical Address range supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7911
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 32 bits, 4GB.

0b0001 36 bits, 64GB.

0b0010 40 bits, 1TB.

0b0011 42 bits, 4TB.

0b0100 44 bits, 16TB.

0b0101 48 bits, 256TB.

0b0110 When FEAT_LPA is implemented or FEAT_LPA2 is implemented:

52 bits, 4PB.

0b0111 When FEAT_D128 is implemented:

56 bits, 64PB.

All other values are reserved.

Access to this field is RO.

Accessing ID_AA64MMFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64MMFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7912
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.75 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions

ECBHB, bits [63:60]

Indicates support for restrictions on branch history speculation around exceptions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The implementation does not disclose whether the branch history information created
in a context before an exception to a higher Exception level using AArch64 can be used
by code before that exception to exploitatively control the execution of any indirect
branches in code in a different context after the exception.

0b0001 The branch history information created in a context before an exception to a higher
Exception level using AArch64 cannot be used by code before that exception to
exploitatively control the execution of any indirect branches in code in a different
context after the exception.

All other values are reserved.

FEAT_ECBHB implements the functionality identified by the value 0b0001.

From Armv8.9, the value 0b0000 is not permitted.

Access to this field is RO.

CMOW, bits [59:56]

Indicates support for cache maintenance instruction permission.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SCTLR_EL1.CMOW, SCTLR_EL2.CMOW, and HCRX_EL2.CMOW bits are not
implemented.

0b0001 SCTLR_EL1.CMOW is implemented. If EL2 is implemented, SCTLR_EL2.CMOW
and HCRX_EL2.CMOW bits are implemented.

All other values are reserved.

FEAT_CMOW implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

Access to this field is RO.

ECBHB

63 60

CMOW

59 56

TIDCP1

55 52

nTLBPA

51 48

AFP

47 44

HCX

43 40

ETS

39 36

TWED

35 32

XNX

31 28

SpecSEI

27 24

PAN

23 20

LO

19 16

HPDS

15 12

VH

11 8

VMIDBits

7 4

HAFDBS

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7913
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TIDCP1, bits [55:52]

Indicates whether SCTLR_EL1.TIDCP and SCTLR_EL2.TIDCP are implemented in AArch64
state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SCTLR_EL1.TIDCP and SCTLR_EL2.TIDCP bits are not implemented and are RES0.

0b0001 SCTLR_EL1.TIDCP bit is implemented. If EL2 is implemented, SCTLR_EL2.TIDCP
bit is implemented.

All other values are reserved.

FEAT_TIDCP1 implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

Access to this field is RO.

nTLBPA, bits [51:48]

Indicates support for intermediate caching of translation table walks.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The intermediate caching of translation table walks might include non-coherent
physical translation caches.

0b0001 The intermediate caching of translation table walks does not include non-coherent
physical translation caches.

Non-coherent physical translation caches are non-coherent caches of previous valid translation table
entries since the last completed relevant TLBI applicable to the PE, where either:

• The caching is indexed by the physical address of the location holding the translation table
entry.

• The caching is used for stage 1 translations and is indexed by the intermediate physical
address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

AFP, bits [47:44]

Indicates support for FPCR.{AH, FIZ, NEP}.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The FPCR.{AH, FIZ, NEP} fields are not supported.

0b0001 The FPCR.{AH, FIZ, NEP} fields are supported.

All other values are reserved.

FEAT_AFP implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is
0b0001.

Access to this field is RO.

HCX, bits [43:40]

Indicates support for HCRX_EL2 and its associated EL3 trap.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 HCRX_EL2 and its associated EL3 trap are not supported.

0b0001 HCRX_EL2 and its associated EL3 trap are supported.

All other values are reserved.

FEAT_HCX implements the functionality identified by the value 0b0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7914
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
From Armv8.7, if EL2 is implemented, the only permitted value is 0b0001.

Access to this field is RO.

ETS, bits [39:36]

Indicates support for Enhanced Translation Synchronization.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Enhanced Translation Synchronization is not supported.

0b0001 Enhanced Translation Synchronization is not supported.

0b0010 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS2 implements the functionality identified by the value 0b0010.

From Armv8.8, the values 0b0000 and 0b0001 are not permitted.

Access to this field is RO.

TWED, bits [35:32]

Indicates support for the configurable delayed trapping of WFE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Configurable delayed trapping of WFE is not supported.

0b0001 Configurable delayed trapping of WFE is supported.

All other values are reserved.

FEAT_TWED implements the functionality identified by the value 0b0001.

From Armv8.6, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Access to this field is RO.

SpecSEI, bits [27:24]

When FEAT_RAS is implemented:

Describes whether the PE can generate SError exceptions from speculative reads of memory,
including speculative instruction fetches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The PE never generates an SError exception due to an External abort on a speculative
read.

0b0001 The PE might generate an SError exception due to an External abort on a speculative
read.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7915
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2,
SPSR_EL3, and DSPSR_EL0.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and AT S1E1RP and AT S1E1WP instructions supported.

0b0011 PAN supported, AT S1E1RP and AT S1E1WP instructions supported, and
SCTLR_EL1.EPAN and SCTLR_EL2.EPAN bits supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

FEAT_PAN3 implements the functionality added by the value 0b0011.

In Armv8.1, the permitted values are 0b0001, 0b0010, and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

From Armv8.7, the only permitted value is 0b0011.

Access to this field is RO.

LO, bits [19:16]

LORegions. Indicates support for LORegions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 LORegions not supported.

0b0001 LORegions supported.

All other values are reserved.

FEAT_LOR implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation
tables.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPD0},
TCR_EL2.HPD or TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
Translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.

Access to this field is RO.

VH, bits [11:8]

Virtualization Host Extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Virtualization Host Extensions not supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7916
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 Virtualization Host Extensions supported.

All other values are reserved.

FEAT_VHE implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

VMIDBits, bits [7:4]

Number of VMID bits.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 8 bits

0b0010 16 bits

All other values are reserved.

FEAT_VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

Access to this field is RO.

HAFDBS, bits [3:0]

Hardware updates to Access flag and Dirty state in translation tables.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Hardware update of the Access flag and dirty state are not supported.

0b0001 Support for hardware update of the Access flag for Block and Page descriptors.

0b0010 As 0b0001, and adds support for hardware update of the Access flag for Block and Page
descriptors. Hardware update of dirty state is supported.

0b0011 As 0b0010, and adds support for hardware update of the Access flag for Table
descriptors.

All other values are reserved.

FEAT_HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_HAFT implements the functionality identified by the value 0b0011.

Access to this field is RO.

Accessing ID_AA64MMFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7917
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64MMFR1_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7918
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.76 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions

E0PD, bits [63:60]

Indicates support for the E0PD mechanism.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 E0PDx mechanism is not implemented.

0b0001 E0PDx mechanism is implemented.

All other values are reserved.

FEAT_E0PD implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Access to this field is RO.

EVT, bits [59:56]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the
HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are not supported.

0b0001 HCR_EL2.{TOCU, TICAB, TID4} traps are supported. HCR_EL2.{TTLBOS,
TTLBIS} traps are not supported.

0b0010 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

E0PD

63 60

EVT

59 56

BBM

55 52

TTL

51 48

RES0

47 44

FWB

43 40

IDS

39 36

AT

35 32

ST

31 28

NV

27 24

CCIDX

23 20

VARange

19 16

IESB

15 12

LSM

11 8

UAO

7 4

CnP

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7919
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented.

• 0b0010 when EL2 is implemented.

Access to this field is RO.

BBM, bits [55:52]

Allows identification of the requirements of the hardware to have break-before-make sequences
when changing block size for a translation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Level 0 support for changing block size is supported.

0b0001 Level 1 support for changing block size is supported.

0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT_BBM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

TTL, bits [51:48]

Indicates support for TTL field in address operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 TLB maintenance instructions by address have bits[47:44] as RES0.

0b0001 TLB maintenance instructions by address have bits[47:44] holding the TTL field.

All other values are reserved.

FEAT_TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1NXS, TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS,
TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLBI
IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLBI
VAAE1, TLBI VAAE1NXS, TLBI VAAE1IS, TLBI VAAE1ISNXS, TLBI VAAE1OS, TLBI
VAAE1OSNXS, TLBI VAALE1, TLBI VAALE1NXS, TLBI VAALE1IS, TLBI VAALE1ISNXS,
TLBI VAALE1OS, TLBI VAALE1OSNXS, TLBI VAE1, TLBI VAE1NXS, TLBI VAE1IS, TLBI
VAE1ISNXS, TLBI VAE1OS, TLBI VAE1OSNXS, TLBI VAE2, TLBI VAE2NXS, TLBI VAE2IS,
TLBI VAE2ISNXS, TLBI VAE2OS, TLBI VAE2OSNXS, TLBI VAE3, TLBI VAE3NXS, TLBI
VAE3IS, TLBI VAE3ISNXS, TLBI VAE3OS, TLBI VAE3OSNXS,TLBI VALE1, TLBI
VALE1NXS, TLBI VALE1IS, TLBI VALE1ISNXS, TLBI VALE1OS, TLBI VALE1OSNXS,
TLBI VALE2, TLBI VALE2NXS, TLBI VALE2IS, TLBI VALE2ISNXS, TLBI VALE2OS, TLBI
VALE2OSNXS, TLBI VALE3, TLBI VALE3NXS, TLBI VALE3IS, TLBI VALE3ISNXS, TLBI
VALE3OS, TLBI VALE3OSNXS.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

Bits [47:44]

Reserved, RES0.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 HCR_EL2.FWB bit is not supported.

0b0001 HCR_EL2.FWB is supported.

All other values reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7920
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the
feature ID space.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 An exception which is generated by a read access to the feature ID space, other than a
trap caused by HCR_EL2.TIDx, SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported
by ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the feature ID space are reported
by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0,
1, 3}, CRn==0, CRm=={0-7}, op2=={0-7}.

FEAT_IDST implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Unaligned single-copy atomicity and atomic functions are not supported.

0b0001 Unaligned single-copy atomicity and atomic functions with a 16-byte address range
aligned to 16-bytes are supported.

All other values are reserved.

FEAT_LSE2 implements the functionality identified by the value 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

ST, bits [31:28]

Identifies support for small translation tables.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is
39.

0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is 48
for 4KB and 16KB granules, and 47 for 64KB granules.

All other values are reserved.

FEAT_TTST implements the functionality identified by the value 0b0001.

When FEAT_SEL2 is implemented, the value 0b0000 is not permitted.

Access to this field is RO.

NV, bits [27:24]

Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Nested virtualization is not supported.

0b0001 The HCR_EL2.{AT, NV1, NV} bits are implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7921
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0010 The VNCR_EL2 register and the HCR_EL2.{NV2, AT, NV1, NV} bits are
implemented.

All other values are reserved.

If EL2 is not implemented, the only permitted value is 0b0000.

FEAT_NV implements the functionality identified by the value 0b0001.

FEAT_NV2 implements the functionality identified by the value 0b0010.

In Armv8.3, if EL2 is implemented, the permitted values are 0b0000 and 0b0001.

From Armv8.4, if EL2 is implemented, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.

0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

VARange, bits [19:16]

Indicates support for a larger virtual address.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 VMSAv8-64 supports 48-bit VAs.

0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB translation granule. The size for
other translation granules is not defined by this field.

0b0010 When FEAT_D128 is implemented:

VMSAv9-128 supports 56-bit VAs.

All other values are reserved.

FEAT_LVA implements the functionality identified by the value 0b0001.

FEAT_LVA3 implements the functionality identified by the value 0b0010.

Access to this field is RO.

IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 IESB bit in the SCTLR_ELx registers is not supported.

0b0001 IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

FEAT_IESB implements the functionality identified by the value 0b0001.

Access to this field is RO.

LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 LSMAOE and nTLSMD bits not supported.

0b0001 LSMAOE and nTLSMD bits supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7922
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

Access to this field is RO.

UAO, bits [7:4]

User Access Override.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 UAO not supported.

0b0001 UAO supported.

All other values are reserved.

FEAT_UAO implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Access to this field is RO.

CnP, bits [3:0]

Indicates support for Common not Private translations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Access to this field is RO.

Accessing ID_AA64MMFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64MMFR2_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR2_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64MMFR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7923
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.77 ID_AA64MMFR3_EL1, AArch64 Memory Model Feature Register 3

The ID_AA64MMFR3_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

Configurations

Note
Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64MMFR3_EL1 is a 64-bit register.

Field descriptions

Spec_FPACC, bits [63:60]

When FEAT_FPACCOMBINE is implemented:

Speculative behavior in the event of a PAC authentication failure in an implementation that includes
FEAT_FPACCOMBINE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The implementation does not disclose whether the speculative use of pointers processed
by a PAC Authentication is materially different in terms of the impact on cached
microarchitectural state between passing and failing of the PAC Authentication.

0b0001 The speculative use of pointers processed by a PAC Authentication is not materially
different in terms of the impact on cached microarchitectural state between passing and
failing of the PAC Authentication.

All other values are reserved.

For the purpose of this definition, cached microarchitecture state is the state of caching agents such
as instruction caches, data caches and TLBs which can be altered as a result of speculation caused
by a mispredicted execution, but is not restored to the state prior to the speculation when the
misprediction is corrected.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ADERR, bits [59:56]

Asynchronous Device error exceptions. With ID_AA64MMFR3_EL1.SDERR, describes the PE
behavior for error exceptions on Device memory loads.

63 60

ADERR

59 56

SDERR

55 52

RES0

51 48

ANERR

47 44

SNERR

43 40

D128_2

39 36

D128

35 32

Spec_FPACC

MEC

31 28

AIE

27 24

S2POE

23 20

S1POE

19 16

S2PIE

15 12

S1PIE

11 8

SCTLRX

7 4

TCRX

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7924
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If FEAT_RASv2 is not implemented and ID_AA64MMFR3_EL1.SDERR is 0b0000,
then the behavior is not described. Otherwise, the behavior is described by
ID_AA64MMFR3_EL1.SDERR.

0b0001 Some error exceptions for Device memory loads are taken asynchronously.

0b0010 FEAT_ADERR is implemented. SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR are implemented.

If FEAT_ANERR is also implemented, then all the following apply:

• SCTLR2_ELx.EnADERR should always be set to the same value as
SCTLR2_ELx.EnANERR.

• HCRX_EL2.EnSDERR should always be set to the same value as
HCRX_EL2.EnSNERR.

0b0011 FEAT_ADERR is implemented. SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR are implemented.

If FEAT_ANERR is also implemented, then SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR operate independently of SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR.

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.SDERR is 0b0000, the value of
this field is 0b0001.

When ID_AA64MMFR3_EL1.SDERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.SDERR is 0b0010, the value of this field is 0b0010.

When ID_AA64MMFR3_EL1.SDERR is 0b0011, the value of this field is 0b0011.

FEAT_ADERR implements the functionality described by the value 0b0010.

Access to this field is RO.

SDERR, bits [55:52]

Synchronous Device error exceptions. With ID_AA64MMFR3_EL1.ADERR, describes the PE
behavior for error exceptions on Device memory loads.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If FEAT_RASv2 is not implemented and ID_AA64MMFR3_EL1.ADERR is 0b0000,
then the behavior is not described. Otherwise, the behavior is described by
ID_AA64MMFR3_EL1.ADERR.

0b0001 All error exceptions for Device memory loads are taken synchronously.

0b0010 FEAT_ADERR is implemented. SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR are implemented.

If FEAT_ANERR is also implemented, then all the following apply:

• SCTLR2_ELx.EnADERR should always be set to the same value as
SCTLR2_ELx.EnANERR.

• HCRX_EL2.EnSDERR should always be set to the same value as
HCRX_EL2.EnSNERR.

0b0011 FEAT_ADERR is implemented. SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR are implemented.

If FEAT_ANERR is also implemented, then SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR operate independently of SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR.

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.ADERR is 0b0000, the value of
this field is 0b0001.

When ID_AA64MMFR3_EL1.ADERR is 0b0001, the value of this field is 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7925
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When ID_AA64MMFR3_EL1.ADERR is 0b0010, the value of this field is 0b0010.

When ID_AA64MMFR3_EL1.ADERR is 0b0011, the value of this field is 0b0011.

FEAT_ADERR implements the functionality described by the value 0b0010.

Access to this field is RO.

Bits [51:48]

Reserved, RES0.

ANERR, bits [47:44]

Asynchronous Normal error exceptions. With ID_AA64MMFR3_EL1.SNERR, describes the PE
behavior for error exceptions on Normal memory loads.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If FEAT_RASv2 is not implemented and ID_AA64MMFR3_EL1.SNERR is 0b0000,
then the behavior is not described. Otherwise, the behavior is described by
ID_AA64MMFR3_EL1.SNERR.

0b0001 Some error exceptions for Normal memory loads are taken asynchronously.

0b0010 FEAT_ANERR is implemented. SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR are implemented.

If FEAT_ADERR is also implemented, then all the following apply:

• SCTLR2_ELx.EnANERR should always be set to the same value as
SCTLR2_ELx.EnADERR.

• HCRX_EL2.EnSNERR should always be set to the same value as
HCRX_EL2.EnSDERR.

0b0011 FEAT_ANERR is implemented. SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR are implemented.

If FEAT_ADERR is also implemented, then SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR operate independently of SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR.

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.SNERR is 0b0000, the value of
this field is 0b0001.

When ID_AA64MMFR3_EL1.SNERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.SNERR is 0b0010, the value of this field is 0b0010.

When ID_AA64MMFR3_EL1.SNERR is 0b0011, the value of this field is 0b0011.

FEAT_ANERR implements the functionality described by the value 0b0010.

Access to this field is RO.

SNERR, bits [43:40]

Synchronous Normal error exceptions. With ID_AA64MMFR3_EL1.ANERR, describes the PE
behavior for error exceptions on Normal memory loads.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If FEAT_RASv2 is not implemented and ID_AA64MMFR3_EL1.ANERR is 0b0000,
then the behavior is not described. Otherwise, the behavior is described by
ID_AA64MMFR3_EL1.ANERR.

0b0001 All error exceptions for Normal memory loads are taken synchronously.

0b0010 FEAT_ANERR is implemented. SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR are implemented.

If FEAT_ADERR is also implemented, then all the following apply:

• SCTLR2_ELx.EnANERR should always be set to the same value as
SCTLR2_ELx.EnADERR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7926
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• HCRX_EL2.EnSNERR should always be set to the same value as
HCRX_EL2.EnSDERR.

0b0011 FEAT_ANERR is implemented. SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR are implemented.

If FEAT_ADERR is also implemented, then SCTLR2_ELx.EnANERR and
HCRX_EL2.EnSNERR operate independently of SCTLR2_ELx.EnADERR and
HCRX_EL2.EnSDERR.

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.ANERR is 0b0000, the value of
this field is 0b0001.

When ID_AA64MMFR3_EL1.ANERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.ANERR is 0b0010, the value of this field is 0b0010.

When ID_AA64MMFR3_EL1.ANERR is 0b0011, the value of this field is 0b0011.

FEAT_ANERR implements the functionality described by the value 0b0010.

Access to this field is RO.

D128_2, bits [39:36]

128-bit translation table descriptor at stage 2. Indicates support for 128-bit translation table
descriptor at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 128-bit translation table descriptor Extension at stage 2 is not supported.

0b0001 128-bit translation table descriptor Extension at stage 2 is supported.

All other values are reserved.

Access to this field is RO.

D128, bits [35:32]

128-bit translation table descriptor. Indicates support for 128-bit translation table descriptor.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 128-bit translation table descriptor Extension is not supported.

0b0001 128-bit translation table descriptor Extension is supported.

All other values are reserved.

Access to this field is RO.

MEC, bits [31:28]

Indicates support for Memory Encryption Contexts.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Memory Encryption Contexts is not supported.

0b0001 Memory Encryption Contexts is supported, with multiple contexts in the Realm
physical address space.

All other values are reserved.

FEAT_MEC implements the functionality identified by the value 0b0001.

Access to this field is RO.

AIE, bits [27:24]

Attribute Indexing. Indicates support for the Attribute Index Enhancement.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The Attribute Index Enhancement is not supported.

0b0001 The Attribute Index Enhancement at stage 1 is supported.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7927
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_AIE implements the functionality identified by the value 0b0001.

Access to this field is RO.

S2POE, bits [23:20]

Stage 2 Permission Overlay. Indicates support for Permission Overlay at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Permission Overlay at stage 2 is not supported.

0b0001 Permission Overlay at stage 2 is supported.

All other values are reserved.

FEAT_S2POE implements the functionality identified by the value 0b0001.

Access to this field is RO.

S1POE, bits [19:16]

Stage 1 Permission Overlay. Indicates support for Permission Overlay at stage 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Permission Overlay at stage 1 is not supported.

0b0001 Permission Overlay at stage 1 is supported.

All other values are reserved.

FEAT_S1POE implements the functionality identified by the value 0b0001.

Access to this field is RO.

S2PIE, bits [15:12]

Stage 2 Permission Indirection. Indicates support for Permission Indirection at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Permission Indirection at stage 2 is not supported.

0b0001 Permission Indirection at stage 2 is supported.

All other values are reserved.

FEAT_S2PIE implements the functionality identified by the value 0b0001.

Access to this field is RO.

S1PIE, bits [11:8]

Stage 1 Permission Indirection. Indicates support for Permission Indirection at stage 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Permission Indirection at stage 1 is not supported.

0b0001 Permission Indirection at stage 1 is supported.

All other values are reserved.

FEAT_S1PIE implements the functionality identified by the value 0b0001.

Access to this field is RO.

SCTLRX, bits [7:4]

SCTLR Extension. Indicates support for extension of SCTLR_ELx.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SCTLR2_EL1, SCTLR2_EL2, SCTLR2_EL3 registers, and their associated trap
controls are not implemented.

0b0001 SCTLR2_EL1, SCTLR2_EL2, SCTLR2_EL3 resisters, and their associated trap
controls are implemented.

All other values are reserved.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7928
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TCRX, bits [3:0]

TCR Extension. Indicates support for extension of TCR_ELx.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 TCR2_EL1, TCR2_EL2, and their associated trap controls are not implemented.

0b0001 TCR2_EL1, TCR2_EL2, and their associated trap controls are implemented.

All other values are reserved.

Access to this field is RO.

Accessing ID_AA64MMFR3_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR3_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64MMFR3_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR3_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64MMFR3_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64MMFR3_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64MMFR3_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7929
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.78 ID_AA64MMFR4_EL1, AArch64 Memory Model Feature Register 4

The ID_AA64MMFR4_EL1 characteristics are:

Purpose

Provides additional information about implemented memory model and memory management
support in AArch64.

Configurations

Note
Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64MMFR4_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

EIESB, bits [7:4]

When FEAT_IESB is implemented:

Early Implicit Error Synchronization event. Indicates whether the implicit Error synchronization
event inserted on taking an exception to ELx when SCTLR_ELx.IESB is 1 is inserted before or after
the exception is taken.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b1111 An implicit Error synchronization event is always inserted after an exception is taken.

0b0000 Behavior is not described.

0b0001 When SError exceptions are routed to EL3, and either FEAT_DoubleFault is not
implemented or the Effective value of SCR_EL3.NMEA is 1, an implicit Error
synchronization event is inserted before an exception taken to EL3.

0b0010 When SError exceptions are routed to ELx, and either FEAT_DoubleFault2 is not
implemented or the Effective value of the applicable one of SCR_EL3.NMEA or
SCTLR2_ELx.NMEA is 1, an implicit Error synchronization event is inserted before an
exception taken to ELx.

All other values are reserved.

This field describes the PE behavior on taking an exception to ELx when SCTLR_ELx.IESB is 1.
This field does not apply when SCTLR_ELx.IESB is 0.

Inserting the event before the exception is taken means that if the Error synchronization event causes
an SError exception to become pending, and SError exceptions are not masked and not disabled,
then the SError exception is taken in place of the original exception.

Access to this field is RO.

RES0

63 32

RES0

31 8

EIESB

7 4

RES0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7930
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bits [3:0]

Reserved, RES0.

Accessing ID_AA64MMFR4_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR4_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64MMFR4_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR4_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64MMFR4_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64MMFR4_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64MMFR4_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7931
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.79 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

The external register EDPFR gives information from this register.

Attributes

ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions

CSV3, bits [63:60]

Speculative use of faulting data.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address, generate condition codes, or generate SVE predicate values to be used by
other instructions in the speculative sequence. The execution timing of any other
instructions in the speculative sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Access to this field is RO.

CSV2, bits [59:56]

Speculative use of out of context branch targets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The implementation does not disclose whether FEAT_CSV2 is implemented.

0b0001 FEAT_CSV2 is implemented, but FEAT_CSV2_2 and FEAT_CSV2_3 are not
implemented.

ID_AA64PFR1_EL1.CSV2_frac determines whether either or both of
FEAT_CSV2_1p1 or FEAT_CSV2_1p2 are implemented.

0b0010 FEAT_CSV2_2 is implemented, but FEAT_CSV2_3 is not implemented.

0b0011 FEAT_CSV2_3 is implemented.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

CSV3

63 60

CSV2

59 56

RME

55 52

DIT

51 48

AMU

47 44

MPAM

43 40

SEL2

39 36

SVE

35 32

RAS

31 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7932
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_CSV2_2 implements the functionality identified by the value 0b0010.

FEAT_CSV2_3 implements the functionality identified by the feature 0b0011.

From Armv8.5, the value 0b0000 is not permitted.

Access to this field is RO.

RME, bits [55:52]

Realm Management Extension (RME).

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Realm Management Extension not implemented.

0b0001 RMEv1 is implemented.

All other values are reserved.

FEAT_RME implements the functionality identified by the value 0b0001.

Access to this field is RO.

DIT, bits [51:48]

Data Independent Timing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 AArch64 does not guarantee constant execution time of any instructions.

0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

MPAM, bits [43:40]

Indicates the major version number of support for the MPAM Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The major version number of the MPAM extension is 0.

0b0001 The major version number of the MPAM extension is 1.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7933
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When combined with the minor version number from ID_AA64PFR1_EL1.MPAM_frac, the
"major.minor" version is:

For more information, see FEAT_MPAM.

Access to this field is RO.

SEL2, bits [39:36]

Secure EL2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Secure EL2 is not implemented.

0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.

Access to this field is RO.

SVE, bits [35:32]

Scalable Vector Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE architectural state and programmers' model are not implemented.

0b0001 SVE architectural state and programmers' model are implemented.

All other values are reserved.

FEAT_SVE implements the functionality identified by the value 0b0001.

If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are
available.

Access to this field is RO.

RAS, bits [31:28]

RAS Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented and, if EL3 is implemented, FEAT_DoubleFault
implemented. As 0b0001, and adds support for:

• If EL3 is implemented, FEAT_DoubleFault.

• Additional ERXMISC<m>_EL1 System registers.

• Additional System registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

MPAM Extension version MPAM MPAM_frac

Not implemented. 0b0000 0b0000

v0.1 is implemented. 0b0000 0b0001

v1.0 is implemented. 0b0001 0b0000

v1.1 is implemented. 0b0001 0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7934
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0011 FEAT_RASv2 implemented. As 0b0010 and adds support for:

• ERXGSR_EL1, to support System RAS agents.

• Additional fine-grained EL2 traps for additional error record System registers.

• The SCR_EL3.TWERR write control for error record System registers.

Error records accessed through System registers conform to RAS System Architecture
v2.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value
0b0010.

FEAT_RASv2 implements the functionality identified by the value 0b0011.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the value 0b0000 is not permitted.

From Armv8.4, if FEAT_DoubleFault is implemented or ERRIDR_EL1.NUM is nonzero, the value
0b0001 is not permitted.

Note

When the value of this field is 0b0001, ID_AA64PFR1_EL1.RAS_frac indicates whether
FEAT_RASv1p1 is implemented.

From Armv8.9, the values 0b0001 and 0b0010 are not permitted.

Access to this field is RO.

GIC, bits [27:24]

System register GIC CPU interface.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

Access to this field is RO.

AdvSIMD, bits [23:20]

Advanced SIMD.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD
operations:

• Integer byte, halfword, word and doubleword element operations.

• Single-precision and double-precision floating-point arithmetic.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the
FEAT_FP16 extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7935
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• 0b0001 in an implementation with Advanced SIMD support that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without Advanced SIMD support.

Access to this field is RO.

FP, bits [19:16]

Floating-point.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with floating-point support that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without floating-point support.

Access to this field is RO.

EL3, bits [15:12]

EL3 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL3 is not implemented.

0b0001 EL3 can be executed in AArch64 state only.

0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Access to this field is RO.

EL2, bits [11:8]

EL2 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL2 is not implemented.

0b0001 EL2 can be executed in AArch64 state only.

0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Access to this field is RO.

EL1, bits [7:4]

EL1 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 EL1 can be executed in AArch64 state only.

0b0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7936
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

EL0, bits [3:0]

EL0 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 EL0 can be executed in AArch64 state only.

0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Access to this field is RO.

Accessing ID_AA64PFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64PFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7937
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.80 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

PFAR, bits [63:60]

Support for physical fault address registers, FEAT_PFAR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PFAR is not implemented.

0b0001 FEAT_PFAR is implemented. Includes support for the PFAR_ELx and, if EL3 is
implemented, MFAR_EL3 registers.

All other values are reserved.

FEAT_PFAR implements the functionality identified by the value 0b0001.

Access to this field is RO.

DF2, bits [59:56]

Support for error exception routing extensions, FEAT_DoubleFault2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_DoubleFault2 is not implemented.

Note
This does not mean that FEAT_DoubleFault, as identified by
ID_AA64PFR0_EL1.RAS >= 0b0010, is not implemented.

0b0001 FEAT_DoubleFault2 is implemented. As ID_AA64PFR0_EL1.RAS == 0b0010, and
also includes support for routing error exceptions:

• Traps for masked error exceptions, HCRX_EL2.TMEA and SCR_EL3.TMEA.

• Additional controls for masking SError exceptions, SCTLR2_EL1.NMEA, and
SCTLR2_EL2.NMEA.

• Additional controls for taking external aborts to the SError exception vector,
SCTLR2_EL1.EASE and SCTLR2_EL2.EASE.

All other values are reserved.

PFAR

63 60

DF2

59 56

MTEX

55 52

THE

51 48

GCS

47 44

MTE_frac

43 40

NMI

39 36 35 32

CSV2_frac
31 28

SME

27 24

RES0

23 20 19 16

RAS_frac

15 12

MTE

11 8

SSBS

7 4

BT

3 0

RNDR_trap MPAM_frac
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7938
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_DoubleFault2 implements the functionality identified by the value 0b0001.

Access to this field is RO.

MTEX, bits [55:52]

Support for additional MTE tag checking modes.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Canonical Tag checking and Memory tagging with Address tagging disabled are not
supported.

0b0001 The following additional tag checking modes for MTE are supported:

• Canonical Tag checking.

• Memory tagging with Address tagging disabled.

All other values are reserved.

This field is valid only if ID_AA64PFR1_EL1.MTE >= 0b0010.

FEAT_MTE_NO_ADDRESS_TAGS and FEAT_MTE_CANONICAL_TAGS implement the
functionality identified by the value 0b0001.

If FEAT_MTE2 is not implemented, the value 0b0001 is not permitted.

From Armv8.9, if FEAT_MTE2 is implemented, the value 0b0000 is not permitted.

Access to this field is RO.

THE, bits [51:48]

Support for Translation Hardening Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Translation Hardening Extension is not implemented.

0b0001 The RCW and RCWS instructions, their associated registers and traps are supported.

If EL2 is implemented, the AssuredOnly check, TopLevel check, and their associated
controls are implemented.

If EL2 and FEAT_GCS are implemented, VTCR_EL2.GCSH is implemented.

All other values are reserved.

FEAT_THE implements the functionality identified by the value 0b0001.

Access to this field is RO.

GCS, bits [47:44]

Support for Guarded Control Stack.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Guarded Control Stack is not implemented.

0b0001 Guarded Control Stack is implemented.

All other values are reserved.

FEAT_GCS implements the functionality identified by the value 0b0001.

Access to this field is RO.

MTE_frac, bits [43:40]

Support for Asynchronous reporting of a Tag Check Fault.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Asynchronous reporting of a Tag Check Fault is supported.

0b1111 Asynchronous reporting of a Tag Check Fault is not supported.

All other values are reserved.

This field is valid only if ID_AA64PFR1_EL1.MTE >= 0b0010.

FEAT_MTE_ASYNC implements the functionality identified by the value 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7939
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_MTE_ASYM_FAULT is implemented this field must be 0b0000.

Access to this field is RO.

NMI, bits [39:36]

Non-maskable Interrupt. Indicates support for Non-maskable interrupts.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT with its associated
instructions are not supported.

0b0001 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT with its associated
instructions are supported.

All other values are reserved.

FEAT_NMI implements the functionality identified by the value 0b0001.

From Armv8.8, the value 0b0000 is not permitted.

Access to this field is RO.

CSV2_frac, bits [35:32]

CSV2 fractional field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Either ID_AA64PFR0_EL1.CSV2 is not 0b0001, or the implementation does not
disclose whether FEAT_CSV2_1p1 is implemented.

FEAT_CSV2_1p2 is not implemented.

0b0001 FEAT_CSV2_1p1 is implemented, but FEAT_CSV2_1p2 is not implemented.

0b0010 FEAT_CSV2_1p2 is implemented.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

The values 0b0001 and 0b0010 are permitted only when ID_AA64PFR0_EL1.CSV2 is 0b0001.

Access to this field is RO.

RNDR_trap, bits [31:28]

Random Number trap to EL3 field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trapping of RNDR and RNDRRS to EL3 is not supported.

0b0001 Trapping of RNDR and RNDRRS to EL3 is supported.

SCR_EL3.TRNDR is present.

All other values are reserved.

FEAT_RNG_TRAP implements the functionality identified by the value 0b0001.

Access to this field is RO.

SME, bits [27:24]

Scalable Matrix Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SME architectural state and programmers' model are not implemented.

0b0001 SME architectural state and programmers' model are implemented.

0b0010 As 0b0001, plus the SME2 ZT0 register.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7940
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_SME2 implements the functionality identified by the value 0b0010.

From Armv9.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If implemented, refer to ID_AA64SMFR0_EL1 and ID_AA64ZFR0_EL1 for information about
which SME and SVE instructions are available.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

Indicates the minor version number of support for the MPAM Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The minor version number of the MPAM extension is 0.

0b0001 The minor version number of the MPAM extension is 1.

All other values are reserved.

When combined with the major version number from ID_AA64PFR0_EL1.MPAM, The combined
"major.minor" version is:

For more information, see FEAT_MPAM.

Access to this field is RO.

RAS_frac, bits [15:12]

RAS Extension fractional field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for:

• Additional ERXMISC<m>_EL1 System registers.

• Additional System registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS, and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

Access to this field is RO.

MTE, bits [11:8]

Support for the Memory Tagging Extension.

MPAM Extension version MPAM MPAM_frac

Not implemented. 0b0000 0b0000

v0.1 is implemented. 0b0000 0b0001

v1.0 is implemented. 0b0001 0b0000

v1.1 is implemented. 0b0001 0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7941
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Memory Tagging Extension is not implemented.

0b0001 Instruction-only Memory Tagging Extension is implemented.

0b0010 As 0b0001, and adds:

• Support for in-memory Allocation tags.

• Support for synchronous tag checking.

• Optional support for Asynchronous reporting of a Tag Check Fault, identified as
FEAT_MTE_ASYNC.

Support for FEAT_MTE_ASYNC is indicated by ID_AA64PFR1_EL1.MTE_frac.

0b0011 As 0b0010, except that support for FEAT_MTE_ASYNC is mandatory, and adds support
for Asymmetric Tag Check Fault handling, identified as FEAT_MTE_ASYM_FAULT.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

FEAT_MTE3 implements the functionality identified by the value 0b0011.

From Armv8.7, when the value of this field is >= 0b0010, ID_AA64PFR2_EL1.MTEPERM
indicates support for FEAT_MTE_PERM.

From Armv8.7, when the value of this field is >= 0b0010, the following fields indicate support for
FEAT_MTE4:

• ID_AA64PFR1_EL1.MTEX

• ID_AA64PFR2_EL1.MTEFAR

• ID_AA64PFR2_EL1.MTESTOREONLY

Access to this field is RO.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 AArch64 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

0b0010 As 0b0001, and adds the MSR and MRS instructions to directly read and write the
PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

Access to this field is RO.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The Branch Target Identification mechanism is not implemented.

0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the value 0b0000 is not permitted.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7942
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64PFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7943
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.81 ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2

The ID_AA64PFR2_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

Note
Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64PFR2_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

MTEFAR, bits [11:8]

Indicates whether FAR_ELx[63:60] are UNKNOWN on a synchronous exception due to a Tag Check
Fault.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 On a synchronous exception due to a Tag Check Fault, FAR_ELx[63:60] are UNKNOWN.

0b0001 On a synchronous exception due to a Tag Check Fault, FAR_ELx[63:60] are not
UNKNOWN.

All other values are reserved.

FEAT_MTE_TAGGED_FAR implements the functionality identified by the value 0b0001.

If FEAT_MTE2 is not implemented, the value 0b0001 is not permitted.

From Armv8.9, if FEAT_MTE2 is implemented, the value 0b0000 is not permitted.

Access to this field is RO.

MTESTOREONLY, bits [7:4]

Support for Store-only Tag checking.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Store-only Tag checking is not supported.

0b0001 Store-only Tag checking is supported.

All other values are reserved.

FEAT_MTE_STORE_ONLY implements the functionality identified by the value 0b0001.

RES0

63 32

RES0

31 12

MTEFAR

11 8 7 4

MTEPERM

3 0

MTESTOREONLY
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7944
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_MTE2 is not implemented, the value 0b0001 is not permitted.

From Armv8.9, if FEAT_MTE2 is implemented, the value 0b0000 is not permitted.

Access to this field is RO.

MTEPERM, bits [3:0]

Support for Allocation tag access permissions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Allocation tag access permissions are not supported.

0b0001 Allocation tag access permissions are supported.

Note
NoTagAccess is supported at stage 2 of translation only.

All other values are reserved.

FEAT_MTE_PERM implements the functionality identified by the value 0b0001

If FEAT_MTE2 is not implemented, the value 0b0001 is not permitted.

From Armv8.9, if FEAT_MTE2 is implemented, the value 0b0000 is not permitted.

Access to this field is RO.

Accessing ID_AA64PFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64PFR2_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64PFR2_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64PFR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64PFR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64PFR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7945
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.82 ID_AA64SMFR0_EL1, SME Feature ID Register 0

The ID_AA64SMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented features of the AArch64 Scalable Matrix Extension.

The fields in this register do not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64SMFR0_EL1.

Configurations

Note
Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64SMFR0_EL1 is a 64-bit register.

Field descriptions

FA64, bit [63]

Indicates support for execution of the full A64 instruction set when the PE is in Streaming SVE
mode.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Only those A64 instructions defined as being legal can be executed in Streaming SVE
mode.

0b1 All implemented A64 instructions are legal for execution in Streaming SVE mode,
when enabled by SMCR_EL1.FA64, SMCR_EL2.FA64, and SMCR_EL3.FA64.

FEAT_SME_FA64 implements the functionality identified by the value 0b1.

Access to this field is RO.

Bits [62:60]

Reserved, RES0.

SMEver, bits [59:56]

When ID_AA64PFR1_EL1.SME != 0b0000:

Indicates support for SME instructions when FEAT_SME is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The mandatory SME instructions are implemented.

0b0001 As 0b0000, and adds the mandatory SME2 instructions.

0b0010 As 0b0001, and adds the mandatory SME2.1 instructions.

All other values are reserved.

63

RES0

62 60

SMEver

59 56

I16I64

55 52

RES0

51 49 48

I16I32

47 44 43 42

RES0

41 40

I8I32

39 36 35 34 33 32

FA64 F64F64
B16B16

F16F16

F32F32
BI32I32

B16F32
F16F32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7946
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FEAT_SME implements the functionality identified by the value 0b0000.

FEAT_SME2 implements the functionality identified by the value 0b0001.

FEAT_SME2p1 implements the functionality identified by the value 0b0010.

From Armv9.4, the value 0b0001 is not permitted.

Access to this field is RO.

Otherwise:

Reserved, RES0.

I16I64, bits [55:52]

Indicates SME support for instructions that accumulate into 64-bit integer elements in the ZA array.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Instructions that accumulate into 64-bit integer elements in the ZA array are not
implemented.

0b1111 The variants of the ADDHA, ADDVA, SMOPA, SMOPS, SUMOPA, SUMOPS,
UMOPA, UMOPS, USMOPA, and USMOPS instructions that accumulate into 64-bit
integer tiles are implemented.

When FEAT_SME2 is implemented, the variants of the ADD, ADDA, SDOT,
SMLALL, SMLSLL, SUB, SUBA, SVDOT, UDOT, UMLALL, UMLSLL, and
UVDOT instructions that accumulate into 64-bit integer elements in ZA array vectors
are implemented.

All other values are reserved.

FEAT_SME_I16I64 implements the functionality identified by the value 0b1111.

Access to this field is RO.

Bits [51:49]

Reserved, RES0.

F64F64, bit [48]

Indicates SME support for instructions that accumulate into FP64 double-precision floating-point
elements in the ZA array.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instructions that accumulate into double-precision floating-point elements in the ZA
array are not implemented.

0b1 The variants of the FMOPA and FMOPS instructions that accumulate into
double-precision tiles are implemented.

When FEAT_SME2 is implemented, the variants of the FADD, FMLA, FMLS, and
FSUB instructions that accumulate into double-precision elements in ZA array vectors
are implemented.

FEAT_SME_F64F64 implements the functionality identified by the value 0b1.

Access to this field is RO.

I16I32, bits [47:44]

Indicates SME2 support for instructions that accumulate 16-bit outer products into 32-bit integer
tiles.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Instructions that accumulate 16-bit outer products into 32-bit integer tiles are not
implemented.

0b0101 The SMOPA (2-way), SMOPS (2-way), UMOPA (2-way), and UMOPS (2-way)
instructions that accumulate 16-bit outer products into 32-bit integer tiles are
implemented.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7947
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_SME2 is implemented, the only permitted value is 0b0101. Otherwise, the only permitted
value is 0b0000.

Access to this field is RO.

B16B16, bit [43]

Indicates support for SME2 non-widening BFloat16 instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 SME2 non-widening BFloat16 instructions are not implemented.

0b1 SME2 BFADD, BFCLAMP, BFMAX, BFMAXNM, BFMIN, BFMINNM, BFMLA,
BFMLS, BFMOPA, BFMOPS, and BFSUB instructions with BFloat16 operands and
results are implemented.

FEAT_SVE_B16B16 implements the functionality identified by the value 0b1.

This field must indicate the same level of support as ID_AA64ZFR0_EL1.B16B16.

Access to this field is RO.

F16F16, bit [42]

Indicates support for SME2 half-precision floating-point instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 SME2 half-precision floating-point instructions are not implemented.

0b1 The following SME2 half-precision floating-point instructions are implemented:

• FMOPA and FMOPS instructions that accumulate half-precision outer-products
into half-precision tiles.

• Multi-vector FADD, FMLA, FMLS, and FSUB instructions with half-precision
operands and results.

• Multi-vector FCVT and FCVTL instructions that convert half-precision inputs to
single-precision results.

FEAT_SME_F16F16 implements the functionality identified by the value 0b1.

Access to this field is RO.

Bits [41:40]

Reserved, RES0.

I8I32, bits [39:36]

Indicates SME support for instructions that accumulate 8-bit integer outer products into 32-bit
integer tiles.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Instructions that accumulate 8-bit outer products into 32-bit tiles are not implemented.

0b1111 The SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and
USMOPS instructions that accumulate 8-bit outer products into 32-bit tiles are
implemented.

All other values are reserved.

If FEAT_SME is implemented, the only permitted value is 0b1111.

Access to this field is RO.

F16F32, bit [35]

Indicates SME support for instructions that accumulate FP16 half-precision floating-point outer
products into FP32 single-precision floating-point tiles.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instructions that accumulate half-precision outer products into single-precision tiles are
not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7948
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The FMOPA and FMOPS instructions that accumulate half-precision outer products
into single-precision tiles are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Access to this field is RO.

B16F32, bit [34]

Indicates SME support for instructions that accumulate BFloat16 outer products into FP32
single-precision floating-point tiles.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instructions that accumulate BFloat16 outer products into single-precision tiles are not
implemented.

0b1 The BFMOPA and BFMOPS instructions that accumulate BFloat16 outer products into
single-precision tiles are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Access to this field is RO.

BI32I32, bit [33]

Indicates SME support for instructions that accumulate thirty-two 1-bit binary outer products into
32-bit integer tiles.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instructions that accumulate 1-bit binary outer products into 32-bit integer tiles are not
implemented.

0b1 The BMOPA and BMOPS instructions that accumulate 1-bit binary outer products into
32-bit integer tiles are implemented.

If FEAT_SME2 is implemented, the only permitted value is 0b1. Otherwise, the only permitted
value is 0b0.

Access to this field is RO.

F32F32, bit [32]

Indicates SME support for instructions that accumulate FP32 single-precision floating-point outer
products into single-precision floating-point tiles.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instructions that accumulate single-precision outer products into single-precision tiles
are not implemented.

0b1 The FMOPA and FMOPS instructions that accumulate single-precision outer products
into single-precision tiles are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Access to this field is RO.

Bits [31:0]

Reserved, RES0.

Accessing ID_AA64SMFR0_EL1

This register is read-only and can be accessed from EL1 and higher.

This register is only accessible from the AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7949
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64SMFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64SMFR0_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64SMFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64SMFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64SMFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64SMFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7950
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.83 ID_AA64ZFR0_EL1, SVE Feature ID Register 0

The ID_AA64ZFR0_EL1 characteristics are:

Purpose

Provides additional information about the implemented features of the AArch64 Scalable Vector
Extension instruction set, when FEAT_SVE or FEAT_SME is implemented.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

If FEAT_SME is implemented and FEAT_SVE is not implemented, then SVE instructions can only
be executed when the PE is in Streaming SVE mode and the instructions are legal to execute in
Streaming SVE mode.

Attributes

ID_AA64ZFR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Double-precision matrix multiplication and related SVE instructions are not
implemented.

0b0001 Double-precision variant of the FMMLA instruction, and the LD1RO* instructions are
implemented. The 128-bit element variants of the SVE TRN1, TRN2, UZP1, UZP2,
ZIP1, and ZIP2 instructions are also implemented.

All other values are reserved.

FEAT_F64MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the instructions described by
nonzero values of this field, irrespective of the value of this field.

Access to this field is RO.

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication
instruction.

RES0

63 60

F64MM

59 56

F32MM

55 52

RES0

51 48

I8MM

47 44

SM4

43 40

RES0

39 36

SHA3

35 32

RES0

31 28

B16B16

27 24

BF16

23 20

BitPerm

19 16

RES0

15 8

AES

7 4

SVEver

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7951
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Single-precision matrix multiplication instruction is not implemented.

0b0001 Single-precision variant of the FMMLA instruction is implemented.

All other values are reserved.

FEAT_F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the instructions described by
nonzero values of this field, irrespective of the value of this field.

Access to this field is RO.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE Int8 matrix multiplication instructions are not implemented.

0b0001 SVE SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are
implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the SVE instructions SMMLA,
UMMLA, and USMMLA, irrespective of the value of this field.

Access to this field is RO.

SM4, bits [43:40]

Indicates support for SVE SM4 instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE SM4 instructions are not implemented.

0b0001 SVE SM4E and SM4EKEY instructions are implemented.

All other values are reserved.

FEAT_SVE_SM4 implements the functionality identified by 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the instructions described by
nonzero values of this field, irrespective of the value of this field.

Access to this field is RO.

Bits [39:36]

Reserved, RES0.

SHA3, bits [35:32]

Indicates support for the SVE SHA3 instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE SHA3 instructions are not implemented.

0b0001 SVE RAX1 instruction is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7952
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

FEAT_SVE_SHA3 implements the functionality identified by 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the instructions described by
nonzero values of this field, irrespective of the value of this field.

However, if both FEAT_SME2p1 and FEAT_SVE_SHA3 are implemented, then the SVE RAX1
instruction can be executed when the PE is in Streaming SVE mode regardless of whether
FEAT_SME_FA64 is implemented and enabled.

Access to this field is RO.

Bits [31:28]

Reserved, RES0.

B16B16, bits [27:24]

Indicates support for SVE2 non-widening BFloat16 instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE2 non-widening BFloat16 instructions are not implemented.

0b0001 SVE2 BFADD, BFCLAMP, BFMAX, BFMAXNM, BFMIN, BFMINNM, BFMLA,
BFMLS, BFMUL, and BFSUB instructions with BFloat16 operands and results are
implemented.

FEAT_SVE_B16B16 implements the functionality identified by 0b0001.

This field must indicate the same level of support as ID_AA64SMFR0_EL1.B16B16.

Access to this field is RO.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

0b0000 SVE BFloat16 instructions are not implemented.

0b0001 SVE BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and BFMMLA
instructions are implemented.

0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 adds the functionality identified by 0b0001.

FEAT_SME_F64F64 adds the functionality identified by 0b0010.

This field must return the same value as ID_AA64ISAR1_EL1.BF16.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the SVE instruction BFMMLA,
irrespective of the value of this field.

From Armv8.6 and Armv9.1, the value 0b0000 is not permitted.

BitPerm, bits [19:16]

Indicates support for SVE bit permute instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE bit permute instructions are not implemented.

0b0001 SVE BDEP, BEXT, and BGRP instructions are implemented.

All other values are reserved.

FEAT_SVE_BitPerm implements the functionality identified by 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the instructions described by
nonzero values of this field, irrespective of the value of this field.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7953
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [15:8]

Reserved, RES0.

AES, bits [7:4]

Indicates support for SVE AES instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE AES* instructions are not implemented.

0b0001 SVE AESE, AESD, AESMC, and AESIMC instructions are implemented.

0b0010 As 0b0001, plus 64-bit source element variants of SVE PMULLB and PMULLT
instructions are implemented.

All other values are reserved.

FEAT_SVE_AES implements the functionality identified by the value 0b0001.

FEAT_SVE_PMULL128 implements the functionality identified by the value 0b0010.

The permitted values are 0b0000 and 0b0010.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is
implemented and enabled, software should not attempt to execute the instructions described by
nonzero values of this field, irrespective of the value of this field.

Access to this field is RO.

SVEver, bits [3:0]

Indicates support for SVE instructions when FEAT_SME or FEAT_SVE is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The SVE instructions are implemented.

0b0001 As 0b0000, and adds the mandatory SVE2 instructions.

0b0010 As 0b0001, and adds the mandatory SVE2.1 instructions.

All other values are reserved.

From Armv9, if this register is present, the value 0b0000 is not permitted.

FEAT_SVE2 implements the functionality identified by 0b0001 when the PE is not in Streaming
SVE mode.

FEAT_SME implements the functionality identified by 0b0001 when the PE is in Streaming SVE
mode.

FEAT_SME2p1 implements the functionality identified by 0b0010 when the PE is in Streaming SVE
mode.

FEAT_SVE2p1 implements the functionality identified by 0b0010 when the PE is not in Streaming
SVE mode.

From Armv9.4, the value 0b0001 is not permitted.

Access to this field is RO.

Accessing ID_AA64ZFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ZFR0_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7954
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64ZFR0_EL1) ||
boolean IMPLEMENTATION_DEFINED "ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3
== '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64ZFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AA64ZFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AA64ZFR0_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7955
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.84 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

The ID_AFR0_EL1 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_AFR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_AFR0[31:0].

Attributes

ID_AFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

Otherwise:

RES0

63 32

RES0

31 16 15 12 11 8 7 4 3 0

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7956
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_AFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_AFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_AFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7957
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.85 ID_DFR0_EL1, AArch32 Debug Feature Register 0

The ID_DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_DFR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_DFR0[31:0].

Attributes

ID_DFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv1 implemented.

0b0010 Performance Monitors Extension, PMUv2 implemented.

0b0011 Performance Monitors Extension, PMUv3 implemented.

RES0

63 32

31 28

PerfMon

27 24

MProfDbg

23 20

MMapTrc

19 16

CopTrc

15 12

MMapDbg

11 8

CopSDbg

7 4

CopDbg

3 0

TraceFilt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7958
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0100 PMUv3 for Armv8.1. As 0b0011, and adds support for:

• Extended 16-bit PMEVTYPER<n>.evtCount field.

• If EL2 is implemented, the HDCR.HPMD control.

0b0101 PMUv3 for Armv8.4. As 0b0100, and adds support for the PMMIR register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and adds support for:

• 64-bit event counters.

• If EL2 is implemented, the HDCR.HCCD control.

• If EL3 is implemented, the MDCR_EL3.SCCD control.

0b0111 PMUv3 for Armv8.7. As 0b0110, and adds support for:

• The PMCR.FZO and, if EL2 is implemented, HDCR.HPMFZO controls.

• If EL3 is implemented, the MDCR_EL3.{MPMX,MCCD} controls.

0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include 0x0040 to 0x00BF and 0x4040
to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if a reserved or
unimplemented PMU event number is selected.

0b1001 PMUv3 for Armv8.9. As 0b1000, and:

• Updates the definitions of existing PMU events.

• Adds support for the EDECR.PME control.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

FEAT_PMUv3p9 implements the functionality identified by the value 0b1001.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

From Armv8.9, if FEAT_PMUv3 is implemented, the value 0b1000 is not permitted.

Access to this field is RO.

MProfDbg, bits [23:20]

M-profile Debug. Support for memory-mapped debug model for M-profile processors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for M-profile Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7959
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

MMapTrc, bits [19:16]

Memory-mapped Trace. Support for memory-mapped trace model.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

Access to this field is RO.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding
space.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with System registers access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

Access to this field is RO.

MMapDbg, bits [11:8]

Memory-mapped Debug. Support for Armv7 memory-mapped debug model for A and R-profile
processors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0100 Support for Armv7, v7 Debug architecture, with memory-mapped access.

0b0101 Support for Armv7, v7.1 Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

The optional memory map defined by Armv8 is not compatible with Armv7.

Access to this field is RO.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110
encoding space, for an A-profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0.
Otherwise, this field reads the same as bits [3:0].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CopDbg, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7960
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0010 Armv6, v6 Debug architecture, with System registers access.

0b0011 Armv6, v6.1 Debug architecture, with System registers access.

0b0100 Armv7, v7 Debug architecture, with System registers access.

0b0101 Armv7, v7.1 Debug architecture, with System registers access.

0b0110 Armv8 debug architecture.

0b0111 Armv8 debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

0b1011 Armv8.9 debug architecture, FEAT_Debugv8p9.

All other values are reserved.

The values 0b0000, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted in Armv8.

FEAT_VHE implements the functionality identified by the value 0b0111.

FEAT_Debugv8p2 implements the functionality identified by the value 0b1000.

FEAT_Debugv8p4 implements the functionality identified by the value 0b1001.

FEAT_Debugv8p8 implements the functionality identified by the value 0b1010.

FEAT_Debugv8p9 implements the functionality identified by the value 0b1011.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

From Armv8.9, the value 0b1010 is not permitted.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_DFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_DFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7961
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_DFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_DFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_DFR0_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7962
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.86 ID_DFR1_EL1, Debug Feature Register 1

The ID_DFR1_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_DFR1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_DFR1[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_DFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:8]

Reserved, RES0.

HPMN0, bits [7:4]

Zero PMU event counters for a Guest operating system.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Setting HDCR.HPMN to zero has CONSTRAINED UNPREDICTABLE behavior.

0b0001 Setting HDCR.HPMN to zero has defined behavior.

All other values are reserved.

If FEAT_PMUv3 is not implemented, FEAT_FGT is not implemented, or EL2 is not implemented,
the only permitted value is 0b0000.

FEAT_HPMN0 implements the functionality identified by the value 0b0001.

From Armv8.8, in an implementation that includes FEAT_PMUv3, FEAT_FGT, and EL2, the value
0b0000 is not permitted.

Access to this field is RO.

MTPMU, bits [3:0]

Multi-threaded PMU extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>.MT are read/write or RES0.

RES0

63 32

RES0

31 8

HPMN0

7 4

MTPMU

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7963
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented. PMEVTYPER<n>.MT are
read/write. When FEAT_MTPMU is disabled, the Effective values of
PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented,
PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not
permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_DFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_DFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_DFR1_EL1) || boolean
IMPLEMENTATION_DEFINED "ID_DFR1_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_DFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_DFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_DFR1_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7964
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.87 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

The ID_ISAR0_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR0[31:0].

Attributes

ID_ISAR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds SDIV and UDIV in the T32 instruction set.

0b0010 As for 0b0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Debug, bits [23:20]

Indicates the implemented Debug instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds BKPT.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

RES0

63 32

RES0

31 28

Divide

27 24

Debug

23 20

Coproc

19 16 15 12

BitField

11 8

BitCount

7 4

Swap

3 0

CmpBranch
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7965
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Coproc, bits [19:16]

Indicates the implemented System register access instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented, except for instructions separately attributed by the architecture to
provide access to AArch32 System registers and System instructions.

0b0001 Adds generic CDP, LDC, MCR, MRC, and STC.

0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.

0b0011 As for 0b0010, and adds generic MCRR and MRRC.

0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds CBNZ and CBZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

BitField, bits [11:8]

Indicates the implemented BitField instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds CLZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds SWP and SWPB.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7966
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_ISAR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR0_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7967
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.88 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

The ID_ISAR1_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR1[31:0].

Attributes

ID_ISAR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No support for Jazelle.

0b0001 Adds the BXJ instruction and the J bit in the PSR. This setting might indicate a trivial
implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the BX instruction, and the T bit in the PSR.

0b0010 As for 0b0001, and adds the BLX instruction. PC loads have BX-like behavior.

0b0011 As for 0b0010, and guarantees that data-processing instructions in the A32 instruction
set with the PC as the destination and the S bit clear have BX-like behavior.

All other values are reserved.

RES0

63 32

Jazelle

31 28 27 24 23 20

IfThen

19 16

Extend

15 12 11 8

Except

7 4

Endian

3 0

Interwork Immediate Except_AR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7968
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In Armv8-A, the only permitted value is 0b0011.

Access to this field is RO.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds:

• The MOVT instruction.

• The MOV instruction encodings with zero-extended 16-bit immediates.

• The T32 ADD and SUB instruction encodings with zero-extended 12-bit
immediates, and the other ADD, ADR, and SUB encodings cross-referenced by
the pseudocode for those encodings.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Extend, bits [15:12]

Indicates the implemented Extend instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar
instructions means non-Advanced SIMD instructions.

0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.

0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB,
UXTAB16, and UXTAH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Except_AR, bits [11:8]

Indicates the implemented A and R-profile exception-handling instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SRS and RFE instructions, and the A and R-profile forms of the CPS
instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7969
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Except, bits [7:4]

Indicates the implemented exception-handling instructions in the A32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented. This indicates that the User bank and Exception return forms of the
LDM and STM instructions are not implemented.

0b0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers)
instruction versions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Endian, bits [3:0]

Indicates the implemented Endian instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7970
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = ID_ISAR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR1_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7971
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.89 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

The ID_ISAR2_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR2_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR2[31:0].

Attributes

ID_ISAR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

Reversal, bits [31:28]

Indicates the implemented Reversal instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the REV, REV16, and REVSH instructions.

0b0010 As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

PSR_AR, bits [27:24]

Indicates the implemented A and R-profile instructions to manipulate the PSR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the MRS and MSR instructions, and the exception return forms of data-processing
instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

RES0

63 32

Reversal

31 28

PSR_AR

27 24

MultU

23 20

MultS

19 16

Mult

15 12 11 8

MemHint

7 4 3 0

MultiAccessInt LoadStore
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7972
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The exception return forms of the data-processing instructions are:

• In the A32 instruction set, data-processing instructions with the PC as the destination and the
S bit set. These instructions might be affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

Access to this field is RO.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the UMULL and UMLAL instructions.

0b0010 As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SMULL and SMLAL instructions.

0b0010 As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT,
SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB,
SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the
Q bit in the PSRs.

0b0011 As for 0b0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Access to this field is RO.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No additional instructions implemented. This means only MUL is implemented.

0b0001 Adds the MLA instruction.

0b0010 As for 0b0001, and adds the MLS instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No support. This means the LDM and STM instructions are not interruptible.

0b0001 LDM and STM instructions are restartable.

0b0010 LDM and STM instructions are continuable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7973
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the PLD instruction.

0b0010 Adds the PLD instruction. (0b0001 and 0b0010 have identical effects.)

0b0011 As for 0b0001 (or 0b0010), and adds the PLI instruction.

0b0100 As for 0b0011, and adds the PLDW instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Access to this field is RO.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No additional load/store instructions implemented.

0b0001 Adds the LDRD and STRD instructions.

0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH,
LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLEXB, STLEXH,
STLEX, STLEXD) instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR2_EL1

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7974
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_ISAR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR2_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7975
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.90 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

The ID_ISAR3_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR4_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR3_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR3[31:0].

Attributes

ID_ISAR3_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

T32EE, bits [31:28]

Indicates the implemented T32EE instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to
include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. This means there are no NOP instructions that do not have any
register dependencies.

0b0001 Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits
additional NOP-compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

RES0

63 32

T32EE

31 28

TrueNOP

27 24

T32Copy

23 20 19 16 15 12

SVC

11 8

SIMD

7 4

Saturate

3 0

TabBranch SynchPrim
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7976
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported. This means that in the T32 instruction set, encoding T1 of the MOV
(register) instruction does not support a copy from a low register to a low register.

0b0001 Adds support for T32 instruction set encoding T1 of the MOV (register) instruction,
copying from a low register to a low register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization
Primitive instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If SynchPrim_frac == 0b0000, no Synchronization Primitives implemented.

0b0001 If SynchPrim_frac == 0b0000, adds the LDREX and STREX instructions.

If SynchPrim_frac == 0b0011, also adds the CLREX, LDREXB, STREXB, and
STREXH instructions.

0b0010 If SynchPrim_frac == 0b0000, as for [0b0001, 0b0011] and also adds the LDREXD and
STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

SVC, bits [11:8]

Indicates the implemented SVC instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented.

0b0001 Adds the SVC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7977
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 Adds the SSAT and USAT instructions, and the Q bit in the PSRs.

0b0011 As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16,
QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX,
SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16,
SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16,
UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX,
USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16
instructions. Also adds support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the
general-purpose registers. In an implementation that supports Advanced SIMD and floating-point
instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented Advanced
SIMD instructions.

Access to this field is RO.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. This means no non-Advanced SIMD saturate instructions are
implemented.

0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR3_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR3_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7978
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_ISAR3_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR3_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR3_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7979
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.91 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

The ID_ISAR4_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR4_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR4[31:0].

Attributes

ID_ISAR4_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SWP or SWPB instructions not implemented.

0b0001 SWP or SWPB implemented but only in a uniprocessor context. SWP and SWPB do not
guarantee whether memory accesses from other Requesters can come between the load
memory access and the store memory access of the SWP or SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

PSR_M, bits [27:24]

Indicates the implemented M-profile instructions to modify the PSRs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the M-profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

RES0

63 32

SWP_frac

31 28

PSR_M

27 24 23 20

Barrier

19 16

SMC

15 12 11 8 7 4

Unpriv

3 0

SynchPrim_frac WithShifts
Writeback
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7980
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization
Primitive instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim ==
0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds
the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD
instructions.

0b0011 If SynchPrim == 0b0001, adds the LDREX, STREX, CLREX, LDREXB, LDREXH,
STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. Barrier operations are provided only as System instructions in the
(coproc==0b1111) encoding space.

0b0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

SMC, bits [15:12]

Indicates the implemented SMC instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• If EL3 is implemented and EL1 can use AArch32, the only permitted value is 0b0001.

• If neither EL3 nor EL2 is implemented, the only permitted value is 0b0000.

If EL1 cannot use AArch32, this field has the value 0b0000.

Access to this field is RO.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support
writeback addressing modes. These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7981
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Nonzero shifts supported only in MOV and shift instructions.

0b0001 Adds support for shifts of loads and stores over the range LSL 0-3.

0b0011 As for 0b0001, and adds support for other constant shift options, both on load/store and
other instructions.

0b0100 As for 0b0011, and adds support for register-controlled shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Access to this field is RO.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. No T variant instructions are implemented.

0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.

0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR4_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR4_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7982
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_ISAR4_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR4_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR4_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7983
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.92 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

The ID_ISAR5_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and
ID_ISAR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR5_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR5[31:0].

Attributes

ID_ISAR5_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are
stored in vectors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The VCMLA and VCADD instructions are not implemented in AArch32.

0b0001 The VCMLA and VCADD instructions are implemented in AArch32.

All other values are reserved.

FEAT_FCMA implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, the only permitted value is 0b0001.

Access to this field is RO.

RDM, bits [27:24]

Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32
state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No VQRDMLAH and VQRDMLSH instructions implemented.

0b0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

RES0

63 32

VCMA

31 28

RDM

27 24

RES0

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

SEVL

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7984
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In Armv8.0, the only permitted value is 0b0000.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates whether the CRC32 instructions are implemented in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 CRC32 instructions are not implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions are
implemented.

All other values are reserved.

FEAT_CRC32 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

SHA2, bits [15:12]

Indicates whether the SHA2 instructions are implemented in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA2 instructions implemented.

0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

SHA1, bits [11:8]

Indicates whether the SHA1 instructions are implemented in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

AES, bits [7:4]

Indicates whether the AES instructions are implemented in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC implemented.

0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating on 64-bit data
quantities.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7985
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SEVL, bits [3:0]

Indicates whether the SEVL instruction is implemented in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SEVL is implemented as a NOP.

0b0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR5_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR5_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_ISAR5_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR5_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR5_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7986
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.93 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

The ID_ISAR6_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1,
ID_ISAR4_EL1 and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_ISAR6_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_ISAR6[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_ISAR6_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

CLRBHB, bits [31:28]

Indicates support for the CLRBHB instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 CLRBHB instruction is not implemented.

0b0001 CLRBHB instruction is implemented.

All other values are reserved.

FEAT_CLRBHB implements the functionality identified by 0b0001.

From Armv8.9, the value 0b0000 is not permitted.

Access to this field is RO.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in
AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Int8 matrix multiplication instructions are not implemented.

RES0

63 32

CLRBHB

31 28

I8MM

27 24

BF16

23 20

SPECRES

19 16

SB

15 12

FHM

11 8

DP

7 4

JSCVT

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7987
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are
implemented.

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by 0b0001.

Access to this field is RO.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 BFloat16 instructions are not implemented.

0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAB, VFMAT, and VMMLA instructions with
BF16 operand or result types are implemented.

All other values are reserved.

FEAT_AA32BF16 implements the functionality identified by 0b0001.

Access to this field is RO.

SPECRES, bits [19:16]

Indicates support for prediction invalidation instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Prediction invalidation instructions are not implemented.

0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.

0b0010 As 0b0001, and COSPRCTX instruction is implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

FEAT_SPECRES2 implements the functionality identified by 0b0010.

From Armv8.5, the value 0b0000 is not permitted.

From Armv8.9, the value 0b0001 is not permitted.

Access to this field is RO.

SB, bits [15:12]

Indicates support for the SB instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Access to this field is RO.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in
AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 VFMAL and VMFSL instructions are not implemented.

0b0001 VFMAL and VMFSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by 0b0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7988
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
From Armv8.2, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

DP, bits [7:4]

Indicates support for dot product instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Dot product instructions are not implemented.

0b0001 VUDOT and VSDOT instructions are implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

JSCVT, bits [3:0]

Indicates support for the VJCVT instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The VJCVT instruction is not implemented.

0b0001 The VJCVT instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_ISAR6_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_ISAR6_EL1

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7989
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_ISAR6_EL1) || boolean
IMPLEMENTATION_DEFINED "ID_ISAR6_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_ISAR6_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_ISAR6_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_ISAR6_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7990
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.94 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

The ID_MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_MMFR0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR0[31:0].

Attributes

ID_MMFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by
ID_MMFR0_EL1.ShareLvl having the value 0b0001.

When ID_MMFR0_EL1.ShareLvl is zero, this field is UNKNOWN.

Access to this field is RO.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for FCSE.

All other values are reserved.

From Armv8 the only permitted value is 0b0000.

Access to this field is RO.

RES0

63 32

InnerShr

31 28

FCSE

27 24

AuxReg

23 20

TCM

19 16

ShareLvl

15 12

OuterShr

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7991
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Support for Auxiliary Control Register only.

0b0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary
Control Register.

All other values are reserved.

From Armv8 the only permitted value is 0b0010.

Note
Accesses to unimplemented Auxiliary registers are UNDEFINED.

Access to this field is RO.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support is IMPLEMENTATION DEFINED.

0b0010 Support for TCM only, Armv6 implementation.

0b0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Access to this field is RO.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One level of shareability implemented.

0b0001 Two levels of shareability implemented.

All other values are reserved.

From Armv8 the only permitted value is 0b0001.

Access to this field is RO.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

Access to this field is RO.

PMSA, bits [7:4]

Indicates support for a PMSA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7992
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED PMSA.

0b0010 Support for PMSAv6, with a Cache Type Register implemented.

0b0011 Support for PMSAv7, with support for memory subsections. Armv7-R profile.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Access to this field is RO.

VMSA, bits [3:0]

Indicates support for a VMSA.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED VMSA.

0b0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.

0b0011 Support for VMSAv7, with support for remapping and the Access flag. Armv7-A
profile.

0b0100 As for 0b0011, and adds support for the PXN bit in the Short-descriptor translation table
format descriptors.

0b0101 As for 0b0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In Armv8-A the only permitted value is 0b0101.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7993
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_MMFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_MMFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_MMFR0_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7994
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.95 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

The ID_MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_MMFR1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR1[31:0].

Attributes

ID_MMFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.

0b0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Changes to the TTBR0, TTBR1, or TTBCR registers.

• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is supported.

0b0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Any change to the TTBR0, TTBR1, or TTBCR registers without a change to the
corresponding ContextID or ASID, or FCSE ProcessID if this is supported.

0b0011 Branch predictor requires flushing only on writing new data to instruction locations.

0b0100 For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

RES0

63 32

BPred

31 28

L1TstCln

27 24

L1Uni

23 20

L1Hvd

19 16

L1UniSW

15 12

L1HvdSW

11 8

L1UniVA

7 4

L1HvdVA

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7995
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In Armv8-A, the permitted values are 0b0010, 0b0011, and 0b0100. For values other than 0b0000 and
0b0100 the Arm Architecture Reference Manual, or the product documentation, might give more
information about the required maintenance.

Access to this field is RO.

L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations,
for Harvard or unified cache implementations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.

0b0010 As for 0b0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a
unified cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Clean cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a
Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Invalidate data cache.

• Invalidate data cache and instruction cache, including branch predictor if
appropriate.

0b0011 As for 0b0010, and adds:

• Clean data cache, using a recursive model that uses the cache dirty status bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7996
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• Clean and invalidate data cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a unified cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.

0b0010 As for 0b0001, and adds:

• Clean and invalidate cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way.

• Clean and invalidate data cache line by set/way.

0b0010 As for 0b0001, and adds:

• Invalidate data cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate instruction cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a unified cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by VA are:

• Clean cache line by VA.

• Invalidate cache line by VA.

• Clean and invalidate cache line by VA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7997
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by VA are:

• Clean data cache line by VA.

• Invalidate data cache line by VA.

• Clean and invalidate data cache line by VA.

• Clean instruction cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7998
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_MMFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_MMFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_MMFR1_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-7999
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.96 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

The ID_MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_MMFR2_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR2[31:0].

Attributes

ID_MMFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for
a Hardware Access flag, as part of the VMSAv7 implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

From Armv8.0, 0b0001 is not permitted.

Access to this field is RO.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for WFI stalling.

All other values are reserved.

Access to this field is RO.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the
(coproc==0b1111) encoding space:

RES0

63 32

HWAccFlg

31 28

WFIStall

27 24

MemBarr

23 20

UniTLB

19 16

HvdTLB

15 12

L1HvdRng

11 8

L1HvdBG

7 4

L1HvdFG

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8000
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).

0b0010 As for 0b0001, and adds:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

All other values are reserved.

From Armv8.0, the values 0b000 and 0b0001 are not permitted.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support
for the preferred barrier instructions.

Access to this field is RO.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB
implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.

• Invalidate TLB entry by VA.

0b0010 As for 0b0001, and adds:

• Invalidate TLB entries by ASID match.

0b0011 As for 0b0010, and adds:

• Invalidate instruction TLB and data TLB entries by VA All ASID. This is a
shared unified TLB operation.

0b0100 As for 0b0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.

• Invalidate entire Non-secure PL1&0 unified TLB.

• Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS,
TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.

0b0110 As for 0b0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0110.

Access to this field is RO.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is
IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations,
for a Harvard cache implementation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8001
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.

• Invalidate instruction cache range by VA.

• Clean data cache range by VA.

• Clean and invalidate data cache range by VA.

All other values are reserved.

From Armv8.0, the value 0b0001 is not permitted.

Access to this field is RO.

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch
operations, for a Harvard cache implementation. When supported, background fetch operations are
non-blocking operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

From Armv8.0, the value 0b0001 is not permitted.

Access to this field is RO.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch
operations, for a Harvard cache implementation. When supported, foreground fetch operations are
blocking operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

From Armv8.0, the value 0b0001 is not permitted.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8002
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ID_MMFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_MMFR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_MMFR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_MMFR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8003
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.97 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

The ID_MMFR3_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_MMFR3_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR3[31:0].

Attributes

ID_MMFR3_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Supersections supported.

0b1111 Supersections not supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b1111.

Access to this field is RO.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 4GB, corresponding to a 32-bit physical address range.

0b0001 64GB, corresponding to a 36-bit physical address range.

0b0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

RES0

63 32

Supersec

31 28

CMemSz

27 24

CohWalk

23 20

PAN

19 16 15 12

BPMaint

11 8

CMaintSW

7 4

CMaintVA

3 0

MaintBcst
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8004
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of
Unification.:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Updates to the translation tables require a clean to the Point of Unification to ensure
visibility by subsequent translation table walks.

0b0001 Updates to the translation tables do not require a clean to the Point of Unification to
ensure visibility by subsequent translation table walks.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32
state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

Access to this field is RO.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are
broadcast.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Cache, TLB, and branch predictor operations only affect local structures.

0b0001 Cache and branch predictor operations affect structures according to shareability and
defined behavior of instructions. TLB operations only affect local structures.

0b0010 Cache, TLB, and branch predictor operations affect structures according to shareability
and defined behavior of instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in
an implementation with hierarchical cache maintenance operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictors by VA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8005
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way,
in an implementation with hierarchical caches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.

• Clean data cache by set/way.

• Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified
caches.

Access to this field is RO.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by
VA, in an implementation with hierarchical caches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.

• Clean data cache by VA.

• Clean and invalidate data cache by VA.

• Invalidate instruction cache by VA.

• Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches,
and the instruction cache maintenance instructions are not implemented.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8006
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ID_MMFR3_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR3_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_MMFR3_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_MMFR3_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_MMFR3_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8007
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.98 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

The ID_MMFR4_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_MMFR4_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR4[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_MMFR4_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS,
TOCU, TICAB, TID4} traps.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.

0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported. HCR2.TTLBIS trap is not
supported.

0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented or does not support AArch32.

• 0b0010 when EL2 is implemented and supports AArch32.

Access to this field is RO.

RES0

63 32

EVT

31 28

CCIDX

27 24

LSM

23 20

HPDS

19 16

CnP

15 12

XNX

11 8

AC2

7 4

SpecSEI

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8008
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 32-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
not implemented.

0b0001 64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
implemented.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 LSMAOE and nTLSMD bits not supported.

0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0, TTBCR2.HPD1,
and HTCR.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
Translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

Note
The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

Access to this field is RO.

CnP, bits [15:12]

Common not Private translations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2 the only permitted value is 0b0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8009
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Access to this field is RO.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

When FEAT_XNX is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value
of ID_MMFR4_EL1.XNX is 0b0000 or 0b0001:

— ID_AA64MMFR1_EL1.XNX ==1.

— EL2 cannot use AArch32.

— EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.

Access to this field is RO.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 ACTLR2 and HACTLR2 are not implemented.

0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0 and Armv8.1 the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Access to this field is RO.

SpecSEI, bits [3:0]

When FEAT_RAS is implemented:

Describes whether the PE can generate SError exceptions from speculative reads of memory,
including speculative instruction fetches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The PE never generates an SError exception due to an External abort on a speculative
read.

0b0001 The PE might generate an SError exception due to an External abort on a speculative
read.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8010
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR4_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR4_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_MMFR4_EL1) || boolean
IMPLEMENTATION_DEFINED "ID_MMFR4_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_MMFR4_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_MMFR4_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_MMFR4_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8011
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.99 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

The ID_MMFR5_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_MMFR5_EL1 bits [31:0] are architecturally mapped to AArch32
System register ID_MMFR5[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_MMFR5_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:8]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The intermediate caching of translation table walks might include non-coherent
physical translation caches.

0b0001 The intermediate caching of translation table walks does not include non-coherent
physical translation caches.

Non-coherent physical translation caches are non-coherent caches of previous valid translation table
entries since the last completed relevant TLBI applicable to the PE, where either:

• The caching is indexed by the physical address of the location holding the translation table
entry.

• The caching is used for stage 1 translations and is indexed by the intermediate physical
address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

RES0

63 32

RES0

31 8

nTLBPA

7 4

ETS

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8012
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ETS, bits [3:0]

Indicates support for Enhanced Translation Synchronization.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Enhanced Translation Synchronization is not supported.

0b0001 Enhanced Translation Synchronization is not supported.

0b0010 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS2 implements the functionality identified by the value 0b0010.

From Armv8.8, the values 0b0000 and 0b0001 are not permitted.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_MMFR5_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_MMFR5_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_MMFR5_EL1) || boolean
IMPLEMENTATION_DEFINED "ID_MMFR5_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_MMFR5_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_MMFR5_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_MMFR5_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8013
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.100 ID_PFR0_EL1, AArch32 Processor Feature Register 0

The ID_PFR0_EL1 characteristics are:

Purpose

Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1_EL1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_PFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ID_PFR0[31:0].

Attributes

ID_PFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented. As 0b0001, and adds support for additional
ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

0b0011 FEAT_RASv2 implemented. As 0b0010, and requires that error records accessed
through System registers conform to RAS System Architecture v2.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

FEAT_RASv2 implements the functionality identified by the value 0b0011.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the value 0b0000 is not permitted.

From Armv8.4, if FEAT_DoubleFault is implemented or ERRIDR_EL1.NUM is nonzero, the value
0b0001 is not permitted.

RES0

63 32

RAS

31 28

DIT

27 24

AMU

23 20

CSV2

19 16

State3

15 12

State2

11 8

State1

7 4

State0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8014
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

When the value of this field is 0b0001, ID_PFR2_EL1.RAS_frac indicates whether FEAT_RASv1p1
is implemented.

From Armv8.9, the values 0b0001 and 0b0010 are not permitted.

Access to this field is RO.

DIT, bits [27:24]

Data Independent Timing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 AArch32 does not guarantee constant execution time of any instructions.

0b0001 AArch32 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

AMU, bits [23:20]

Indicates support for Activity Monitors Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

CSV2, bits [19:16]

Speculative use of out of context branch targets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The implementation does not disclose whether FEAT_CSV2 is implemented.

0b0001 FEAT_CSV2 is implemented, but FEAT_CSV2_1p1 is not implemented.

0b0010 FEAT_CSV2_1p1 is implemented.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

Access to this field is RO.

State3, bits [15:12]

T32EE instruction set support.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8015
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented.

0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

State2, bits [11:8]

Jazelle extension support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented.

0b0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.

0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

State1, bits [7:4]

T32 instruction set support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 T32 instruction set not implemented.

0b0001 T32 encodings before the introduction of Thumb-2 technology implemented:

• All instructions are 16-bit.

• A BL or BLX is a pair of 16-bit instructions.

• 32-bit instructions other than BL and BLX cannot be encoded.

0b0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all
16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Access to this field is RO.

State0, bits [3:0]

A32 instruction set support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 A32 instruction set not implemented.

0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Otherwise:

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8016
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_PFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_PFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_PFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_PFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8017
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.101 ID_PFR1_EL1, AArch32 Processor Feature Register 1

The ID_PFR1_EL1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_PFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ID_PFR1[31:0].

Attributes

ID_PFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

GIC, bits [31:28]

System register GIC CPU interface.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

Access to this field is RO.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for
Virtualization Extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Virtualization Extensions are implemented.

0b0001 The following Virtualization Extensions are implemented:

• The SCR.SIF bit, if EL3 is implemented.

• The modifications to the SCR.AW and SCR.FW bits described in the
Virtualization Extensions, if EL3 is implemented.

• The MSR (banked register) and MRS (banked register) instructions.

• The ERET instruction.

RES0

63 32

GIC

31 28 27 24

Sec_frac

23 20

GenTimer

19 16 15 12

MProgMod

11 8

Security

7 4

ProgMod

3 0

Virt_frac Virtualization
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8018
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is implemented.

• 0b0001 when EL2 is not implemented.

This field is valid only when the value of ID_PFR1_EL1.Virtualization is 0, otherwise it holds the
value 0b0000.

Note
The ID_ISAR registers do not identify whether the instructions added by the Virtualization
Extensions are implemented.

Access to this field is RO.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for Security
Extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Security Extensions are implemented.

0b0001 The following Security Extensions are implemented:

• The VBAR register.

• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-secure physical memory is
supported.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is implemented.

• 0b0001 or 0b0010 when EL3 is not implemented.

This field is valid only when the value of ID_PFR1_EL1.Security is 0, otherwise it holds the value
0b0000.

Access to this field is RO.

GenTimer, bits [19:16]

Generic Timer support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Generic Timer is not implemented.

0b0001 Generic Timer is implemented.

0b0010 Generic Timer is implemented, and also includes support for CNTHCTL.EVNTIS and
CNTKCTL.EVNTIS fields, and CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0001.

From Armv8.6, the only permitted value is 0b0010.

Access to this field is RO.

Virtualization, bits [15:12]

Virtualization support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL2, Hyp mode, and the HVC instruction not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8019
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 EL2, Hyp mode, the HVC instruction, and all the features described by Virt_frac ==
0b0001 implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is not implemented.

• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

Access to this field is RO.

MProgMod, bits [11:8]

M-profile programmers' model support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Access to this field is RO.

Security, bits [7:4]

Security support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL3, Monitor mode, and the SMC instruction not implemented.

0b0001 EL3, Monitor mode, the SMC instruction, and all the features described by Sec_frac ==
0b0001 implemented.

0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit. Not permitted in Armv8
as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is not implemented.

• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Access to this field is RO.

ProgMod, bits [3:0]

Support for the standard programmers' model for Armv4 and later. Model must support User, FIQ,
IRQ, Supervisor, Abort, Undefined, and System modes.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0001 and 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8020
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If EL1 cannot use AArch32 then this field has the value 0b0000.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_PFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_PFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_PFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_PFR1_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8021
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.102 ID_PFR2_EL1, AArch32 Processor Feature Register 2

The ID_PFR2_EL1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1 and ID_PFR1_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register ID_PFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ID_PFR2[31:0].

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_PFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If ID_PFR0_EL1.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for additional
ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0_EL1.RAS == 0b0001.

Access to this field is RO.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 AArch32 provides no mechanism to control the use of Speculative Store Bypassing.

RES0

63 32

RES0

31 12

RAS_frac

11 8

SSBS

7 4

CSV3

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8022
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

Access to this field is RO.

CSV3, bits [3:0]

Speculative use of faulting data.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address, generate condition codes, or generate SVE predicate values to be used by
other instructions in the speculative sequence. The execution timing of any other
instructions in the speculative sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Access to this field is RO.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing ID_PFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_PFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8023
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_PFR2_EL1) || boolean
IMPLEMENTATION_DEFINED "ID_PFR2_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_PFR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ID_PFR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ID_PFR2_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8024
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.103 IFSR32_EL2, Instruction Fault Status Register (EL2)

The IFSR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 IFSR register from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register IFSR32_EL2 bits [31:0] are architecturally mapped to AArch32 System
register IFSR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
IFSR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Attributes

IFSR32_EL2 is a 64-bit register.

Field descriptions

When TTBCR.EAE == 0:

Bits [63:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

RES0

63 32

RES0

31 17 16

RES0

15 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

FnV
ExT

LPAE
FS[4]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8025
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status bits. Bits [10] and [3:0] are interpreted together.

0b00001 PC alignment fault.

0b00010 Debug exception.

0b00011 Access flag fault, level 1.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01000 Synchronous External abort, not on translation table walk.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Short-descriptor translation table lookup.

The FS field is split as follows:

• FS[4] is IFSR32_EL2[10].

• FS[3:0] is IFSR32_EL2[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8026
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [8:4]

Reserved, RES0.

When TTBCR.EAE == 1:

Bits [63:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

RES0

63 32

RES0

31 17 16

RES0

15 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

FnV LPAE
ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8027
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 PC alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

All other values are reserved.

When FEAT_RAS is implemented, 0b011000, 0b011101, 0b011110, and 0b011111 are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing IFSR32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, IFSR32_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8028
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = IFSR32_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = IFSR32_EL2;

MSR IFSR32_EL2, <Xt>

if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 IFSR32_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 IFSR32_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8029
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.104 ISR_EL1, Interrupt Status Register

The ISR_EL1 characteristics are:

Purpose

Shows the pending status of IRQ and FIQ interrupts and SError exceptions.

When FEAT_NMI is implemented, also shows whether a pending IRQ or FIQ interrupt has
Superpriority.

Configurations

AArch64 System register ISR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ISR[31:0].

Attributes

ISR_EL1 is a 64-bit register.

Field descriptions

Bits [63:11]

Reserved, RES0.

IS, bit [10]

When FEAT_NMI is implemented:

IRQ with Superpriority pending bit. Indicates whether an IRQ interrupt with Superpriority is
pending.

0b0 No pending IRQ with Superpriority.

0b1 An IRQ interrupt with Superpriority is pending.

If all of the following apply then this field shows the pending status of virtual IRQ interrupts with
Superpriority:

• EL2 is implemented and enabled in the current Security state.

• HCR_EL2.IMO is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical IRQ interrupts with Superpriority.

Otherwise:

Reserved, RES0.

FS, bit [9]

When FEAT_NMI is implemented:

FIQ with Superpriority pending bit. Indicates whether an FIQ interrupt with Superpriority is
pending.

0b0 No pending FIQ with Superpriority.

0b1 An FIQ interrupt with Superpriority is pending.

If all of the following apply then this field shows the pending status of virtual FIQ interrupts with
Superpriority:

• EL2 is implemented and enabled in the current Security state.

RES0

63 32

RES0

31 11

IS

10

FS

9

A

8

I

7

F

6

RES0

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8030
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• HCR_EL2.FMO is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical FIQ interrupts with Superpriority.

Otherwise:

Reserved, RES0.

A, bit [8]

SError exception pending bit. Indicates whether an SError exception is pending.

0b0 No pending SError.

0b1 An SError exception is pending.

If all of the following apply then this field shows the pending status of virtual SError exceptions:

• EL2 is implemented and enabled in the current Security state.

• Any of the following apply:

— HCR_EL2.AMO is 1.

— FEAT_DoubleFault2 is implemented and the Effective value of HCRX_EL2.TMEA
is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical SError exceptions.

If the physical SError exception is edge-triggered, this field is cleared to zero when the physical
SError exception is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending.

0b0 No pending IRQ.

0b1 An IRQ interrupt is pending.

If all of the following apply then this field shows the pending status of virtual IRQ interrupts:

• EL2 is implemented and enabled in the current Security state.

• HCR_EL2.IMO is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical IRQ interrupts.

Note
This bit indicates the presence of a pending IRQ interrupt regardless of whether the interrupt has
Superpriority.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

0b0 No pending FIQ.

0b1 An FIQ interrupt is pending.

If all of the following apply then this field shows the pending status of virtual FIQ interrupts:

• EL2 is implemented and enabled in the current Security state.

• HCR_EL2.FMO is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical FIQ interrupts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8031
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

This bit indicates the presence of a pending FIQ interrupt regardless of whether the interrupt has
Superpriority.

Bits [5:0]

Reserved, RES0.

Accessing ISR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ISR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.ISR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ISR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = ISR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ISR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8032
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.105 LORC_EL1, LORegion Control (EL1)

The LORC_EL1 characteristics are:

Purpose

Enables and disables LORegions, and selects the current LORegion descriptor.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORC_EL1 are UNDEFINED.

If no LORegion descriptors are supported by the PE, then this register is RES0.

Attributes

LORC_EL1 is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1,
LOREA_EL1, and LORN_EL1.

If this field points to an LORegion descriptor that is not supported by an implementation, then the
registers LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of
LORegion descriptors supported is 256. If the number is less than 256, then bits[63:M+2] are RES0,
where M is Log2(Number of LORegion descriptors supported by the implementation).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [1]

Reserved, RES0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled.

0b0 Disabled. Memory accesses do not match any LORegions.

0b1 Enabled. Memory accesses may match a LORegion.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RES0

63 32

RES0

31 10

DS

9 2 1

EN

0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8033
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing LORC_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORC_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.LORC_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORC_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORC_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 X[t, 64] = LORC_EL1;

MSR LORC_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8034
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.LORC_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORC_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORC_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LORC_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8035
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.106 LOREA_EL1, LORegion End Address (EL1)

The LOREA_EL1 characteristics are:

Purpose

Holds the physical address of the end of the LORegion described in the current LORegion descriptor
selected by LORC_EL1.DS.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LOREA_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes

LOREA_EL1 is a 64-bit register.

Field descriptions

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:56]

Reserved, RES0.

EA[55:52], bits [55:52]

When FEAT_D128 is implemented:

Extension to EA[47:16]. For more information, see EA[47:16].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA[51:48], bits [51:48]

When FEAT_LPA is implemented:

Extension to EA[47:16]. For more information, see EA[47:16].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA[47:16], bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion
descriptor selected by LORC_EL1.DS. Bits[15:0] of this address are 0xFFFF. For implementations
with fewer than 48 bits, the upper bits of this field are RES0.

RES0

63 56 55 52 51 48

EA[47:16]

47 32

EA[55:52] EA[51:48]

EA[47:16]

31 16

RES0

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8036
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_LPA is implemented and 52-bit addresses are in use, EA[51:48] form bits [51:48] of
the end physical address of the LORegion. Otherwise, when 52-bit addresses are not in use,
EA[51:48] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing LOREA_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LOREA_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.LOREA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LOREA_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LOREA_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 X[t, 64] = LOREA_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8037
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR LOREA_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.LOREA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LOREA_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LOREA_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LOREA_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8038
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.107 LORID_EL1, LORegionID (EL1)

The LORID_EL1 characteristics are:

Purpose

Indicates the number of LORegions and LORegion descriptors supported by the PE.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORID_EL1 are UNDEFINED.

If no LORegion descriptors are implemented, then the registers LORC_EL1, LORN_EL1,
LOREA_EL1, and LORSA_EL1 are RES0.

Attributes

LORID_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

LD, bits [23:16]

Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [15:8]

Reserved, RES0.

LR, bits [7:0]

Number of LORegions supported by the PE. This is an 8-bit binary number.

Note

If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and
StoreLORelease will behave as LoadAcquire and StoreRelease.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing LORID_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORID_EL1

RES0

63 32

RES0

31 24

LD

23 16

RES0

15 8

LR

7 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8039
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.LORID_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORID_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORID_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = LORID_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8040
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.108 LORN_EL1, LORegion Number (EL1)

The LORN_EL1 characteristics are:

Purpose

Holds the number of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORN_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes

LORN_EL1 is a 64-bit register.

Field descriptions

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:8]

Reserved, RES0.

Num, bits [7:0]

Number of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

The maximum number of LORegions supported by the PE is 256. If the maximum number is less
than 256, then bits[8:N] are RES0, where N is (Log2(Number of LORegions supported by the PE)).

If this field points to a LORegion that is not supported by the PE, then the current LORegion
descriptor does not match any LORegion.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing LORN_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORN_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

RES0

63 32

RES0

31 8

Num

7 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8041
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.LORN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORN_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORN_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 X[t, 64] = LORN_EL1;

MSR LORN_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.LORN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORN_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8042
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORN_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LORN_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8043
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.109 LORSA_EL1, LORegion Start Address (EL1)

The LORSA_EL1 characteristics are:

Purpose

Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and
holds the physical address of the start of the LORegion.

Configurations

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to
LORSA_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.

• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes

LORSA_EL1 is a 64-bit register.

Field descriptions

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:56]

Reserved, RES0.

SA, bits [55:16]

SA encoding when FEAT_D128 is implemented

SA, bits [39:0]

Bits [55:16] of the start physical address of the LORegion described in the current
LORegion descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are 0x0000.

For implementations with fewer than 56 physical address bits, the corresponding upper
bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 56

SA

55 32

SA

31 16

RES0

15 1 0

Valid

SA

39 32

SA

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8044
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SA encoding when FEAT_LPA is implemented and FEAT_D128 is not implemented

Bits [39:36]

Reserved, RES0.

SA, bits [35:0]

Bits [51:16] of the start physical address of the LORegion described in the current
LORegion descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are 0x0000.

For implementations with fewer than 52 physical address bits, the corresponding upper
bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SA encoding when FEAT_LPA is not implemented

Bits [39:32]

Reserved, RES0.

SA, bits [31:0]

Bits [47:16] of the start physical address of the LORegion described in the current
LORegion descriptor selected by LORC_EL1.DS.

Bits[15:0] of this address are 0x0000.

For implementations with fewer than 48 physical address bits, the corresponding upper
bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion descriptor is enabled.

0b0 LORegion descriptor is disabled.

0b1 LORegion descriptor is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RES0

39 36

SA

35 32

SA

31 0

RES0

39 32

SA

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8045
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing LORSA_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORSA_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.LORSA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORSA_EL1;
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = LORSA_EL1;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 X[t, 64] = LORSA_EL1;

MSR LORSA_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TLOR == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8046
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.LORSA_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORSA_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TLOR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 LORSA_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.NS == '0' then
 UNDEFINED;
 else
 LORSA_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8047
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.110 MAIR2_EL1, Extended Memory Attribute Indirection Register (EL1)

The MAIR2_EL1 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
VMSAv8-64 or VMSAv9-128 translation table entry for stage 1 translations at EL1.

Configurations

This register is present only when FEAT_AIE is implemented. Otherwise, direct accesses to
MAIR2_EL1 are UNDEFINED.

Attributes

MAIR2_EL1 is a 64-bit register.

Field descriptions

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a VMSAv8-64 or
VMSAv9-128 translation table entry is 1, AttrIndx[2:0] gives the value of <n> in Attr<n>.

When stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a VMSAv8-64 or
VMSAv9-128 translation table entry is 0, see MAIR_ELx.Attr

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute
set to 0. See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of
Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8048
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through
Cacheable, Outer Write-through Cacheable, Read-Allocate,
No-Write Allocate, Non-transient memory with the XS attribute set to
0. Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back,
Outer Write-Back, Read-Allocate, Write-Allocate Non-transient
memory. Otherwise, UNPREDICTABLE.

0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx
!= 1010 and xxxx != 1111

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8049
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x280];
 else
 X[t, 64] = MAIR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = MAIR2_EL2;
 else
 X[t, 64] = MAIR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR2_EL1;

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8050
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MAIR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x280] = X[t, 64];
 else
 MAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 MAIR2_EL2 = X[t, 64];
 else
 MAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MAIR2_EL1 = X[t, 64];

MRS <Xt>, MAIR2_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x280];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8051
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MAIR2_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = MAIR2_EL1;
 else
 UNDEFINED;

MSR MAIR2_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x280] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MAIR2_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 MAIR2_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8052
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.111 MAIR2_EL2, Extended Memory Attribute Indirection Register (EL2)

The MAIR2_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
VMSAv8-64 or VMSAv9-128 translation table entry for stage 1 translations at EL1.

Configurations

This register is present only when FEAT_AIE is implemented. Otherwise, direct accesses to
MAIR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

MAIR2_EL2 is a 64-bit register.

Field descriptions

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a VMSAv8-64 or
VMSAv9-128 translation table entry is 1, AttrIndx[2:0] gives the value of <n> in Attr<n>.

When stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a VMSAv8-64 or
VMSAv9-128 translation table entry is 0, see MAIR_ELx.Attr

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute
set to 0. See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of
Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8053
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through
Cacheable, Outer Write-through Cacheable, Read-Allocate,
No-Write Allocate, Non-transient memory with the XS attribute set to
0. Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back,
Outer Write-Back, Read-Allocate, Write-Allocate Non-transient
memory. Otherwise, UNPREDICTABLE.

0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx
!= 1010 and xxxx != 1111

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8054
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR2_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name MAIR2_EL2 or MAIR2_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MAIR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR2_EL2;

MSR MAIR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8055
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MAIR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MAIR2_EL2 = X[t, 64];

MRS <Xt>, MAIR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x280];
 else
 X[t, 64] = MAIR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = MAIR2_EL2;
 else
 X[t, 64] = MAIR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR2_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8056
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MAIR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nMAIR2_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x280] = X[t, 64];
 else
 MAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 MAIR2_EL2 = X[t, 64];
 else
 MAIR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MAIR2_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8057
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.112 MAIR2_EL3, Extended Memory Attribute Indirection Register (EL3)

The MAIR2_EL3 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
VMSAv8-64 or VMSAv9-128 translation table entry for stage 1 translations at EL1.

Configurations

This register is present only when FEAT_AIE is implemented. Otherwise, direct accesses to
MAIR2_EL3 are UNDEFINED.

Attributes

MAIR2_EL3 is a 64-bit register.

Field descriptions

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a VMSAv8-64 or
VMSAv9-128 translation table entry is 1, AttrIndx[2:0] gives the value of <n> in Attr<n>.

When stage 1 Attributes Index Extension is enabled and AttrIndx[3] in a VMSAv8-64 or
VMSAv9-128 translation table entry is 0, see MAIR_ELx.Attr

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute
set to 0. See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of
Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8058
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through
Cacheable, Outer Write-through Cacheable, Read-Allocate,
No-Write Allocate, Non-transient memory with the XS attribute set to
0. Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back,
Outer Write-Back, Read-Allocate, Write-Allocate Non-transient
memory. Otherwise, UNPREDICTABLE.

0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx
!= 1010 and xxxx != 1111

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8059
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR2_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR2_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR2_EL3;

MSR MAIR2_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MAIR2_EL3 = X[t, 64];

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8060
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.113 MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_EL1 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL1.

Configurations

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PRRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MAIR0[31:0] when TTBCR.EAE == 1.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register NMRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register MAIR1[31:0] when TTBCR.EAE == 1.

Attributes

MAIR_EL1 is a 64-bit register.

Field descriptions

MAIR_EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3]
in a Long descriptor format translation table entry is 0, or when FEAT_AIE is not implemented,
AttrIndx[2:0] gives the value of <n> in Attr<n>.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3]
in a Long descriptor format translation table entry is 1, see MAIR2_ELx.Attr

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute
set to 0. See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of
Normal Memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8061
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through
Cacheable, Outer Write-through Cacheable, Read-Allocate,
No-Write Allocate, Non-transient memory with the XS attribute set to
0. Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back,
Outer Write-Back, Read-Allocate, Write-Allocate Non-transient
memory. Otherwise, UNPREDICTABLE.

0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx
!= 1010 and xxxx != 1111

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8062
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic MAIR_EL1 or MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x140];
 else
 X[t, 64] = MAIR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = MAIR_EL2;
 else
 X[t, 64] = MAIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR_EL1;

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

'iiii' Meaning
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8063
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x140] = X[t, 64];
 else
 MAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 MAIR_EL2 = X[t, 64];
 else
 MAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MAIR_EL1 = X[t, 64];

MRS <Xt>, MAIR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x140];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = MAIR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = MAIR_EL1;
 else
 UNDEFINED;

MSR MAIR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8064
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x140] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 MAIR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 MAIR_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8065
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.114 MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL2.

Configurations

AArch64 System register MAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HMAIR0[31:0].

AArch64 System register MAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System
register HMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MAIR_EL2 is a 64-bit register.

Field descriptions

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3]
in a Long descriptor format translation table entry is 0, or when FEAT_AIE is not implemented,
AttrIndx[2:0] gives the value of <n> in Attr<n>.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3]
in a Long descriptor format translation table entry is 1, see MAIR2_ELx.Attr

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute
set to 0. See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of
Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8066
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through
Cacheable, Outer Write-through Cacheable, Read-Allocate,
No-Write Allocate, Non-transient memory with the XS attribute set to
0. Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back,
Outer Write-Back, Read-Allocate, Write-Allocate Non-transient
memory. Otherwise, UNPREDICTABLE.

0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx
!= 1010 and xxxx != 1111

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8067
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic MAIR_EL2 or MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MAIR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR_EL2;

MSR MAIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 MAIR_EL2 = X[t, 64];

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8068
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 MAIR_EL2 = X[t, 64];

MRS <Xt>, MAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x140];
 else
 X[t, 64] = MAIR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = MAIR_EL2;
 else
 X[t, 64] = MAIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR_EL1;

MSR MAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x140] = X[t, 64];
 else
 MAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 MAIR_EL2 = X[t, 64];
 else
 MAIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MAIR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8069
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.115 MAIR_EL3, Memory Attribute Indirection Register (EL3)

The MAIR_EL3 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations at EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to MAIR_EL3
are UNDEFINED.

Attributes

MAIR_EL3 is a 64-bit register.

Field descriptions

MAIR_EL3 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

Memory Attribute encoding.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3]
in a Long descriptor format translation table entry is 0, or when FEAT_AIE is not implemented,
AttrIndx[2:0] gives the value of <n> in Attr<n>.

When FEAT_AIE is implemented and stage 1 Attributes Index Extension is enabled and AttrIndx[3]
in a Long descriptor format translation table entry is 1, see MAIR2_ELx.Attr

Attr is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000dd01 If FEAT_XS is implemented: Device memory with the XS attribute
set to 0. See encoding of 'dd' for the type of Device memory.
Otherwise, UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of
Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-cacheable, Outer
Non-cacheable memory with the XS attribute set to 0.
Otherwise, UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8070
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'dd' is encoded as follows:

'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

0b10100000 If FEAT_XS is implemented: Normal Inner Write-through
Cacheable, Outer Write-through Cacheable, Read-Allocate,
No-Write Allocate, Non-transient memory with the XS attribute set to
0. Otherwise, UNPREDICTABLE.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back,
Outer Write-Back, Read-Allocate, Write-Allocate Non-transient
memory. Otherwise, UNPREDICTABLE.

0bxxxx0000, where xxxx != 0000 and xxxx != 0100 and xxxx
!= 1010 and xxxx != 1111

UNPREDICTABLE.

Attr Meaning

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8071
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MAIR_EL3;

MSR MAIR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MAIR_EL3 = X[t, 64];

R or W Meaning

0b0 No Allocate

0b1 Allocate

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8072
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.116 MECIDR_EL2, MEC Identification Register

The MECIDR_EL2 characteristics are:

Purpose

MEC identification register. Describes the supported MECID width by this PE.

Configurations

This register is present only when FEAT_MEC is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to MECIDR_EL2 are UNDEFINED.

Attributes

MECIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

MECIDWidthm1, bits [3:0]

The number of bits of MECID supported by the PE, minus 1.

The maximum permitted value is 0xF which indicates a MECID width of 16 bits and 2ˆ16 MECIDs.

MECIDWidth is defined as MECIDWidthm1 + 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MECIDR_EL2

For accesses from EL2 and EL3, this register is RO.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MECIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MECIDR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MECIDR_EL2;

RES0

63 32

RES0

31 4 3 0

MECIDWidthm1

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8073
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.117 MECID_A0_EL2, Alternate MECID for EL2 and EL2&0 translation regimes

The MECID_A0_EL2 characteristics are:

Purpose

Alternate MECID for EL2 and EL2&0 accesses translated by TTBR0_EL2.

Configurations

This register is present only when FEAT_MEC is implemented. Otherwise, direct accesses to
MECID_A0_EL2 are UNDEFINED.

Attributes

MECID_A0_EL2 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MECID_A0_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MECID_A0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 X[t, 64] = MECID_A0_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MECID_A0_EL2;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8074
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MECID_A0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 MECID_A0_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MECID_A0_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8075
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.118 MECID_A1_EL2, Alternate MECID for EL2&0 translation regimes.

The MECID_A1_EL2 characteristics are:

Purpose

Alternate MECID for EL2&0 accesses translated by TTBR1_EL2.

Configurations

This register is present only when FEAT_MEC is implemented. Otherwise, direct accesses to
MECID_A1_EL2 are UNDEFINED.

Attributes

MECID_A1_EL2 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MECID_A1_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MECID_A1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 X[t, 64] = MECID_A1_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MECID_A1_EL2;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8076
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MECID_A1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 MECID_A1_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MECID_A1_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8077
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.119 MECID_P0_EL2, Primary MECID for EL2 and EL2&0 translation regimes

The MECID_P0_EL2 characteristics are:

Purpose

Primary MECID for EL2 and EL2&0 accesses translated by TTBR0_EL2.

Configurations

This register is present only when FEAT_MEC is implemented. Otherwise, direct accesses to
MECID_P0_EL2 are UNDEFINED.

Attributes

MECID_P0_EL2 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MECID_P0_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MECID_P0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 X[t, 64] = MECID_P0_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MECID_P0_EL2;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8078
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MECID_P0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 MECID_P0_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MECID_P0_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8079
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.120 MECID_P1_EL2, Primary MECID for EL2&0 translation regimes

The MECID_P1_EL2 characteristics are:

Purpose

Primary MECID for EL2&0 accesses translated by TTBR1_EL2.

Configurations

This register is present only when FEAT_MEC is implemented. Otherwise, direct accesses to
MECID_P1_EL2 are UNDEFINED.

Attributes

MECID_P1_EL2 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MECID_P1_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MECID_P1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 X[t, 64] = MECID_P1_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MECID_P1_EL2;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8080
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MECID_P1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 MECID_P1_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MECID_P1_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8081
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.121 MECID_RL_A_EL3, Realm PA space Alternate MECID for EL3 stage 1 translation regime

The MECID_RL_A_EL3 characteristics are:

Purpose

Realm PA space Alternate MECID for EL3 stage 1 translation regime.

Configurations

This register is present only when FEAT_MEC is implemented. Otherwise, direct accesses to
MECID_RL_A_EL3 are UNDEFINED.

Attributes

MECID_RL_A_EL3 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MECID_RL_A_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MECID_RL_A_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MECID_RL_A_EL3;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b1010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8082
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR MECID_RL_A_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MECID_RL_A_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b1010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8083
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.122 MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a
device ID number.

Configurations

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MIDR[31:0].

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to External register
MIDR_EL1[31:0].

Attributes

MIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

Access to this field is RO.

RES0

63 32

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8084
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or
major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Architecture, bits [19:16]

Architecture version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

Access to this field is RO.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the device.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing MIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8085
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
'1') && HFGRTR_EL2.MIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 X[t, 64] = VPIDR_EL2;
 else
 X[t, 64] = MIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MIDR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8086
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.123 MFAR_EL3, Physical Fault Address Register (EL3)

The MFAR_EL3 characteristics are:

Purpose

Records the faulting physical address for a Granule Protection Check, synchronous External abort,
or SError exception taken to EL3.

Configurations

This register is present only when FEAT_PFAR is implemented or FEAT_RME is implemented.
Otherwise, direct accesses to MFAR_EL3 are UNDEFINED.

Attributes

MFAR_EL3 is a 64-bit register.

Field descriptions

When FEAT_RME is implemented and the exception is a GPC exception:

NS, bit [63]

Together with MFAR_EL3.NSE, reports the physical address space of the access that triggered the
exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [62]

Together with MFAR_EL3.NS, reports the physical address space of the access that triggered the
exception.

For a description of the values derived by evaluating NS and NSE together, see MFAR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [61:56]

Reserved, RES0.

NS

63 62

RES0

61 56 55 52 51 48

FPA

47 32

NSE FPA[55:52] FPA[51:48]

FPA

31 12

RES0

11 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8087
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FPA[55:52], bits [55:52]

When FEAT_D128 is implemented:

When FEAT_D128 is implemented, extension to MFAR_EL3.FPA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FPA[51:48], bits [51:48]

When FEAT_LPA is implemented:

When FEAT_LPA is implemented, extension to MFAR_EL3.FPA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FPA, bits [47:12]

Bits [47:12] of the Faulting Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

When FEAT_PFAR is implemented and the exception is a synchronous External abort or SError
exception:

NS, bit [63]

When FEAT_RME is implemented:

Together with MFAR_EL3.NSE, reports the physical address space of the access that triggered the
exception.

NS

63 62

RES0

61 56 55 52 51 48

PA

47 32

NSE PA[55:52] PA[51:48]

PA

31 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8088
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure. Reports the physical address space of the access that triggered the exception.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [62]

When FEAT_RME is implemented:

Together with MFAR_EL3.NS, reports the physical address space of the access that triggered the
exception.

For a description of the values derived by evaluating NS and NSE together, see MFAR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [61:56]

Reserved, RES0.

PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

When FEAT_D128 is implemented, extension to MFAR_EL3.PA[47:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

When FEAT_LPA is implemented, extension to MFAR_EL3.PA[47:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA, bits [47:0]

Physical Address. Bits [47:0] of the aborting physical address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The recorded address can be any address within the same naturally-aligned fault granule as the
faulting physical address, where the size of the fault granule is IMPLEMENTATION DEFINED and no
larger than the larger than:

• The size of the range of values permitted to be recorded in FAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8089
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing MFAR_EL3

MFAR_EL3 is not valid and reads UNKNOWN if ESR_EL3.EC is recorded indicating an Abort or SError exception
and ESR_EL3.PFV is recorded as 0.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MFAR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MFAR_EL3;

MSR MFAR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MFAR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b101

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8090
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.124 MPIDR_EL1, Multiprocessor Affinity Register

The MPIDR_EL1 characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism.

Configurations

AArch64 System register MPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MPIDR[31:0].

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value
of 0.

Attributes

MPIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of Aff0 for more information.

Aff3 is not supported in AArch32 state.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

Access to this field is RO.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using an
interdependent approach, such as multithreading. See the description of Aff0 for more information
about affinity levels.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8091
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is largely independent.

0b1 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is very interdependent.

Note

This field does not indicate that multithreading is implemented and does not indicate that PEs with
different affinity level 0 values, and the same values for affinity level 1 and higher are implemented.

Access to this field is RO.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Aff0, bits [7:0]

Affinity level 0. The value of the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1,
Aff0} set of fields of each PE must be unique within the system as a whole.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing MPIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.MPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 X[t, 64] = VMPIDR_EL2;
 else
 X[t, 64] = MPIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MPIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8092
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPIDR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8093
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.125 MVFR0_EL1, AArch32 Media and VFP Feature Register 0

The MVFR0_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR1_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register MVFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MVFR0[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but
there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

MVFR0_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides
support for rounding modes. Defined values are:

0b0000 Not implemented, or only Round to Nearest mode supported, except that Round towards
Zero mode is supported for VCVT instructions that always use that rounding mode
regardless of the FPSCR setting.

0b0001 All rounding modes supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of
short vectors. Defined values are:

0b0000 Short vectors not supported.

0b0001 Short vector operation supported.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

RES0

63 32

FPRound

31 28

FPShVec

27 24

FPSqrt

23 20

FPDivide

19 16

FPTrap

15 12

FPDP

11 8

FPSP

7 4

SIMDReg

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8094
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6
VFP square root operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4],
and the VSQRT.F64 instruction also requires the double-precision floating-point attribute, bits
[11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations.
Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and
the VDIV.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides
support for exception trapping. Defined values are:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception
generates an exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for
double-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a
double-precision floating-point constant, and conversions between double-precision
and fixed-point values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.

• VDIV.F64 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
single-precision field is nonzero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8095
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for
single-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision
floating-point constant, and conversions between single-precision and fixed-point
values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0b0001.

• VDIV.F32 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point
implementation provides support for the Advanced SIMD and floating-point register bank. Defined
values are:

0b0000 The implementation has no Advanced SIMD and floating-point support.

0b0001 The implementation includes floating-point support with 16 x 64-bit registers.

0b0010 The implementation includes Advanced SIMD and floating-point support with 32 x
64-bit registers.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing MVFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MVFR0_EL1

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8096
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = MVFR0_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MVFR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MVFR0_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8097
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.126 MVFR1_EL1, AArch32 Media and VFP Feature Register 1

The MVFR1_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register MVFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MVFR1[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but
there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

MVFR1_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:32]

Reserved, RES0.

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD
implementation provides fused multiply accumulate instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support
for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined
values are:

0b0000 Not supported.

0b0001 Floating-point half-precision conversion instructions are supported for conversion
between single-precision and half-precision.

0b0010 As for 0b0001, and adds instructions for conversion between double-precision and
half-precision.

0b0011 As for 0b0010, and adds support for half-precision floating-point arithmetic.

RES0

63 32

SIMDFMAC

31 28

FPHP

27 24

SIMDHP

23 20

SIMDSP

19 16

SIMDInt

15 12

SIMDLS

11 8

FPDNaN

7 4

FPFtZ

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8098
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without floating-point support.

• 0b0010 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

• 0b0011 in an implementation with floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the SIMDHP field, meaning the permitted values are:

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support.
Defined values are:

0b0000 Not supported.

0b0001 SIMD half-precision conversion instructions are supported for conversion between
single-precision and half-precision.

0b0010 As for 0b0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.

• 0b0001 in an implementation with SIMD floating-point support that does not include the
FEAT_FP16 extension.

• 0b0010 in an implementation with SIMD floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the FPHP field, meaning the permitted values are:

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point
implementation provides single-precision floating-point instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented. This value is permitted only if the SIMDInt field is 0b0001.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8099
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation
provides integer instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point
implementation provides load/store instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for
the Default NaN mode. Defined values are:

0b0000 Not implemented, or hardware supports only the Default NaN mode.

0b0001 Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for
the Flush-to-Zero mode of operation. Defined values are:

0b0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.

0b0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

UNKNOWN

63 32

UNKNOWN

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8100
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing MVFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MVFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = MVFR1_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MVFR1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MVFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8101
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.127 MVFR2_EL1, AArch32 Media and VFP Feature Register 2

The MVFR2_EL1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0_EL1 and MVFR1_EL1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch64 System register MVFR2_EL1 bits [31:0] are architecturally mapped to AArch32 System
register MVFR2[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but
there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

MVFR2_EL1 is a 64-bit register.

Field descriptions

When AArch32 is supported:

Bits [63:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP
features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Support for Floating-point selection.

0b0010 As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes.

0b0011 As 0b0010, and Floating-point Round to Integer Floating-point.

0b0100 As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0100.

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous
Advanced SIMD features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Floating-point Conversion to Integer with Directed Rounding modes.

0b0010 As 0b0001, and Floating-point Round to Integer Floating-point.

0b0011 As 0b0010, and Floating-point MaxNum and MinNum.

RES0

63 32

RES0

31 8

FPMisc

7 4

SIMDMisc

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8102
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0011.

Otherwise:

Bits [63:0]

Reserved, UNKNOWN.

Accessing MVFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MVFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = MVFR2_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MVFR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MVFR2_EL1;

UNKNOWN

63 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8103
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.128 PAR_EL1, Physical Address Register

The PAR_EL1 characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully,
or fault information if the instruction did not execute successfully.

Configurations

AArch64 System register PAR_EL1 bits [63:0] are architecturally mapped to AArch32 System
register PAR[63:0].

AArch64 System register PAR_EL1 is a 128-bit register that can also be accessed as a 64-bit value.
If it is accessed as a 64-bit register, accesses read and write bits [63:0] and do not modify bits
[127:64].

Single stage AT Instructions (ATS1*) report their result using the 128-bit format of PAR_EL1 if the
translation system that they target uses VMSAv9-128.

ATS12* Instructions report their result using the 128-bit format PAR_EL1 if either of the following
is true:

• if stage 2 translations are enabled and the stage 2 translation system uses VMSAv9-128.

• if stage 2 translations are disabled and the stage 1 translation system uses VMSAv9-128.

Otherwise, 64-bit format of PAR_EL1 is used.

Attributes

PAR_EL1 is a:

• 128-bit register when FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and
GetPAR_EL1_F() == 0

• 128-bit register when FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and
GetPAR_EL1_F() == 1

• 128-bit register when FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and
GetPAR_EL1_F() == 0

• 128-bit register when FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and
GetPAR_EL1_F() == 1

• 64-bit register when FEAT_D128 is not implemented and GetPAR_EL1_F() == 0

• 64-bit register when FEAT_D128 is not implemented and GetPAR_EL1_F() == 1

Field descriptions

When FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and GetPAR_EL1_F() == 0:

RES0

127 120

PA

119 96

PA

95 76

RES0

75 65 64

D128

ATTR

63 56

RES0

55 32

RES0

31 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

NSE IMPLEMENTATION DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8104
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the Translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the Translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

Bits [127:120]

Reserved, RES0.

PA, bits [119:76]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[55:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [75:65]

Reserved, RES0.

D128, bit [64]

Indicates if the PAR_EL1 uses the 128-bit format.

0b1 PAR_EL1 uses the 128-bit format. PAR_EL1[127:0] holds valid data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

If FEAT_MTE_PERM is implemented and the instruction performed a stage 2 translation, the
following additional encoding is defined:

Note
This encoding in MAIR_ELx is Reserved.

The value returned in this field can be the resulting attribute that is actually implemented by the
implementation, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the Translation table descriptor.

Note
The attributes presented are consistent with the stages of translation applied in the address
translation instruction. If the instruction performed a stage 1 translation only, the attributes are from
the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes
are from the combined stage 1 and stage 2 translation.

ATTR Meaning

0b11100000 Tagged NoTagAccess Normal Inner Write-Back, Outer Write-Back, Read-Allocate,
Write-Allocate Non-transient memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8105
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:12]

Reserved, RES0.

NSE, bit [11]

When FEAT_RME is implemented:

Reports the NSE attribute for a translation table descriptor from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR_EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

When FEAT_RME is implemented:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime, a Realm
translation regime, and the EL3 translation regime.

For a result from an EL3 translation regime, NS and NSE are evaluated together to report the
physical address space:

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit distinguishes
between the Secure and Non-secure intermediate physical address space of the translation for the
instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is
UNKNOWN.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8106
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit distinguishes
between the Secure and Non-secure intermediate physical address space of the translation for the
instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.

• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8107
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and GetPAR_EL1_F() == 1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

Bits [127:65]

Reserved, RES0.

D128, bit [64]

Indicates if the PAR_EL1 uses the 128-bit format.

0b1 PAR_EL1 uses the 128-bit format. PAR_EL1[127:0] holds valid data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:16]

Reserved, RES0.

DirtyBit, bit [15]

When FEAT_S1PIE is implemented or FEAT_S2PIE is implemented:

DirtyBit flag.

RES0

127 96

RES0

95 65 64

D128
63 56 55 52 51 48

RES0

47 32

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

RES0

31 16 15 14 13 12 11 10

S

9 8 7

FST

6 1

F

0

DirtyBit
Overlay
TopLevel
AssuredOnly

RES0
PTW

RES0
RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8108
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If PAR_EL1.FST indicates a Permission fault for a stage of translation that is using Indirect
Permissions, and dirty state is managed by software, then this field holds information about the
fault.

0b0 The Permission Fault is not due to dirty state.

0b1 The Permission Fault is due to dirty state.

For any other fault or Access, this field is RES0.

Note

At stage 1, dirty state is indicated by the nDirty bit in Block and Page descriptors. At stage 2, dirty
state is indicated by the Dirty bit in Block and Page descriptors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Overlay, bit [14]

When FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Overlay flag.

If PAR_EL1.FST indicates a Permission fault for a stage of translation, then this field holds
information about the fault.

0b0 The Data Abort is not due to Overlay Permissions.

0b1 The Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TopLevel, bit [13]

When FEAT_THE is implemented:

Fault due to TopLevel. Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [12]

When FEAT_THE is implemented:

AssuredOnly flag.

If PAR_EL1.S indicates a stage 2 fault, then this field holds information about the fault.

0b0 The Data Abort is not due to AssuredOnly.

0b1 The Data Abort is due to AssuredOnly.

For any other fault, this field is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8109
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.

0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010010 When FEAT_D128 is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8110
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8111
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b111101 When EL1 is capable of using AArch32:

Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

0b111110 When EL1 is capable of using AArch32:

Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and GetPAR_EL1_F() == 0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the Translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the Translation table descriptors.

RES0

127 96

RES0

95 65 64

D128

ATTR

63 56

RES0

55 52 51 48

PA[47:12]

47 32

PA[51:48]

PA[47:12]

31 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

NSE IMPLEMENTATION DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8112
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• See the PAR_EL1.NS bit description for constraints on the value it returns.

Bits [127:65]

Reserved, RES0.

D128, bit [64]

Indicates if the PAR_EL1 uses the 128-bit format.

0b0 PAR_EL1 uses the 64-bit format. PAR_EL1[63:0] holds valid data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

If FEAT_MTE_PERM is implemented and the instruction performed a stage 2 translation, the
following additional encoding is defined:

Note

This encoding in MAIR_ELx is Reserved.

The value returned in this field can be the resulting attribute that is actually implemented by the
implementation, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the Translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied in the address
translation instruction. If the instruction performed a stage 1 translation only, the attributes are from
the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes
are from the combined stage 1 and stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

Extension to PA[47:12]. For more information, see PA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[47:12].

ATTR Meaning

0b11100000 Tagged NoTagAccess Normal Inner Write-Back, Outer Write-Back, Read-Allocate,
Write-Allocate Non-transient memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8113
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_LPA is implemented and 52-bit addresses are in use, PA[51:48] forms the upper part
of the address value. Otherwise, when 52-bit addresses are not in use, PA[51:48] is RES0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [11]

When FEAT_RME is implemented:

Reports the NSE attribute for a translation table entry from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR_EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

When FEAT_RME is implemented:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime, a Realm
translation regime, and the EL3 translation regime.

For a result from an EL3 translation regime, NS and NSE are evaluated together to report the
physical address space:

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit distinguishes
between the Secure and Non-secure intermediate physical address space of the translation for the
instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is
UNKNOWN.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8114
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit distinguishes
between the Secure and Non-secure intermediate physical address space of the translation for the
instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.

• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8115
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and GetPAR_EL1_F() == 1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

Bits [127:65]

Reserved, RES0.

D128, bit [64]

Indicates if the PAR_EL1 uses the 128-bit format.

0b0 PAR_EL1 uses the 64-bit format. PAR_EL1[63:0] holds valid data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:16]

Reserved, RES0.

DirtyBit, bit [15]

When FEAT_S1PIE is implemented or FEAT_S2PIE is implemented:

DirtyBit flag.

RES0

127 96

RES0

95 65 64

D128
63 56 55 52 51 48

RES0

47 32

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

RES0

31 16 15 14 13 12 11 10

S

9 8 7

FST

6 1

F

0

DirtyBit
Overlay
TopLevel
AssuredOnly

RES0
PTW

RES0
RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8116
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If PAR_EL1.FST indicates a Permission fault for a stage of translation that is using Indirect
Permissions, and dirty state is managed by software, then this field holds information about the
fault.

0b0 The Permission Fault is not due to nDirty State or Dirty State.

0b1 The Permission Fault is due to nDirty State or Dirty State.

For any other fault or Access, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Overlay, bit [14]

When FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Overlay flag.

If PAR_EL1.FST indicates a Permission fault for a stage of translation, then this field holds
information about the fault.

0b0 The Data Abort is not due to Overlay Permissions.

0b1 The Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TopLevel, bit [13]

When FEAT_THE is implemented:

Fault due to TopLevel. Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [12]

When FEAT_THE is implemented:

AssuredOnly flag.

If PAR_EL1.S indicates a stage 2 fault, then this field holds information about the fault.

0b0 The Data Abort is not due to AssuredOnly.

0b1 The Data Abort is due to AssuredOnly.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8117
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.

0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort exception ESR encoding.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8118
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8119
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b111101 When EL1 is capable of using AArch32:

Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

0b111110 When EL1 is capable of using AArch32:

Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_D128 is not implemented and GetPAR_EL1_F() == 0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the Translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the Translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

If FEAT_MTE_PERM is implemented and the instruction performed a stage 2 translation, the
following additional encoding is defined:

ATTR

63 56

RES0

55 52 51 48

PA[47:12]

47 32

PA[51:48]

PA[47:12]

31 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

NSE IMPLEMENTATION DEFINED

ATTR Meaning

0b11100000 Tagged NoTagAccess Normal Inner Write-Back, Outer Write-Back, Read-Allocate,
Write-Allocate Non-transient memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8120
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

This encoding in MAIR_ELx is Reserved.

The value returned in this field can be the resulting attribute that is actually implemented by the
implementation, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the Translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied in the address
translation instruction. If the instruction performed a stage 1 translation only, the attributes are from
the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes
are from the combined stage 1 and stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

Extension to PA[47:12]. For more information, see PA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[47:12].

When FEAT_LPA is implemented and 52-bit addresses are in use, PA[51:48] forms the upper part
of the address value. Otherwise, when 52-bit addresses are not in use, PA[51:48] is RES0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [11]

When FEAT_RME is implemented:

Reports the NSE attribute for a translation table entry from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR_EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8121
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
NS, bit [9]

When FEAT_RME is implemented:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime, a Realm
translation regime, and the EL3 translation regime.

For a result from an EL3 translation regime, NS and NSE are evaluated together to report the
physical address space:

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit distinguishes
between the Secure and Non-secure intermediate physical address space of the translation for the
instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is
UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit distinguishes
between the Secure and Non-secure intermediate physical address space of the translation for the
instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT
S1E0W.

• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and
ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This
means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those
NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

0b00 Non-shareable.

0b10 Outer Shareable.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8122
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.

• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_D128 is not implemented and GetPAR_EL1_F() == 1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

63 56 55 52 51 48

RES0

47 32

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

RES0

31 16 15 14 13 12 11 10

S

9 8 7

FST

6 1

F

0

DirtyBit
Overlay
TopLevel
AssuredOnly

RES0
PTW

RES0
RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8123
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:16]

Reserved, RES0.

DirtyBit, bit [15]

When FEAT_S1PIE is implemented or FEAT_S2PIE is implemented:

DirtyBit flag.

If PAR_EL1.FST indicates a Permission fault for a stage of translation that is using Indirect
Permissions, and dirty state is managed by software, then this field holds information about the
fault.

0b0 The Permission Fault is not due to nDirty State or Dirty State.

0b1 The Permission Fault is due to nDirty State or Dirty State.

For any other fault or Access, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Overlay, bit [14]

When FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Overlay flag.

If PAR_EL1.FST indicates a Permission fault for a stage of translation, then this field holds
information about the fault.

0b0 The Data Abort is not due to Overlay Permissions.

0b1 The Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TopLevel, bit [13]

When FEAT_THE is implemented:

Fault due to TopLevel. Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [12]

When FEAT_THE is implemented:

AssuredOnly flag.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8124
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If PAR_EL1.S indicates a stage 2 fault, then this field holds information about the fault.

0b0 The Data Abort is not due to AssuredOnly.

0b1 The Data Abort is due to AssuredOnly.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.

0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort exception ESR encoding.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8125
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b011100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 0.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level 3.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8126
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

0b111101 When EL1 is capable of using AArch32:

Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

0b111110 When EL1 is capable of using AArch32:

Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using
Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.PAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = PAR_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 X[t, 64] = PAR_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PAR_EL1<63:0>;

op0 op1 CRn CRm op2

0b11 0b000 0b0111 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8127
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR PAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGWTR_EL2.PAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PAR_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 PAR_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 PAR_EL1<63:0> = X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, PAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.PAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = (PAR_EL1<127:64>, PAR_EL1<63:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = (PAR_EL1<127:64>, PAR_EL1<63:0>);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = (PAR_EL1<127:64>, PAR_EL1<63:0>);

op0 op1 CRn CRm op2

0b11 0b000 0b0111 0b0100 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0111 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8128
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 When FEAT_D128 is implemented : MSRR PAR_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.PAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (PAR_EL1<127:64>, PAR_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (PAR_EL1<127:64>, PAR_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);
elsif PSTATE.EL == EL3 then
 (PAR_EL1<127:64>, PAR_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);

op0 op1 CRn CRm op2

0b11 0b000 0b0111 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8129
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.129 PFAR_EL1, Physical Fault Address Register (EL1)

The PFAR_EL1 characteristics are:

Purpose

Records the faulting physical address for a synchronous External abort, or SError exception taken
to EL1.

Configurations

This register is present only when FEAT_PFAR is implemented. Otherwise, direct accesses to
PFAR_EL1 are UNDEFINED.

Attributes

PFAR_EL1 is a 64-bit register.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

Together with PFAR_EL1.NSE, reports the physical address space of the access that triggered the
exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL3 is implemented:

Non-secure. Reports the physical address space of the access that triggered the exception.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NS

63 62

RES0

61 56 55 52 51 48

PA

47 32

NSE PA[55:52] PA[51:48]

PA

31 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Reserved.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8130
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
NSE, bit [62]

When FEAT_RME is implemented:

Together with PFAR_EL1.NS, reports the physical address space of the access that triggered the
exception.

For a description of the values derived by evaluating NS and NSE together, see MFAR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [61:56]

Reserved, RES0.

PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

When FEAT_D128 is implemented, extension to PFAR_EL1.PA[47:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

When FEAT_LPA is implemented, extension to PFAR_EL1.PA[47:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA, bits [47:0]

Physical Address. Bits [47:0] of the aborting physical address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The recorded address can be any address within the same naturally-aligned fault granule as the
faulting physical address, where the size of the fault granule is IMPLEMENTATION DEFINED and no
larger than the larger than:

• The size of the range of values permitted to be recorded in FAR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PFAR_EL1

PFAR_EL1 is not valid and reads UNKNOWN if ESR_EL1.PFV is recorded as 0.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PFAR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8131
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGRTR2_EL2.nPFAR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x2D0];
 else
 X[t, 64] = PFAR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PFAR_EL2;
 else
 X[t, 64] = PFAR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PFAR_EL1;

MSR PFAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGWTR2_EL2.nPFAR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x2D0] = X[t, 64];
 else
 PFAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8132
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif ELIsInHost(EL2) then
 PFAR_EL2 = X[t, 64];
 else
 PFAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PFAR_EL1 = X[t, 64];

MRS <Xt>, PFAR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x2D0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PFAR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = PFAR_EL1;
 else
 UNDEFINED;

MSR PFAR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x2D0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b101

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8133
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PFAR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 PFAR_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8134
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.130 PFAR_EL2, Physical Fault Address Register (EL2)

The PFAR_EL2 characteristics are:

Purpose

Records the faulting physical address for a synchronous External abort, or SError exception taken
to EL2.

Configurations

This register is present only when FEAT_PFAR is implemented. Otherwise, direct accesses to
PFAR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

PFAR_EL2 is a 64-bit register.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

Together with PFAR_EL2.NSE, reports the physical address space of the access that triggered the
exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL3 is implemented:

Non-secure. Reports the physical address space of the access that triggered the exception.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NS

63 62

RES0

61 56 55 52 51 48

PA

47 32

NSE PA[55:52] PA[51:48]

PA

31 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Reserved.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8135
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
NSE, bit [62]

When FEAT_RME is implemented:

Together with PFAR_EL2.NS, reports the physical address space of the access that triggered the
exception.

For a description of the values derived by evaluating NS and NSE together, see MFAR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [61:56]

Reserved, RES0.

PA[55:52], bits [55:52]

When FEAT_D128 is implemented:

When FEAT_D128 is implemented, extension to PFAR_EL2.PA[47:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

When FEAT_LPA is implemented, extension to PFAR_EL2.PA[47:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA, bits [47:0]

Physical Address. Bits [47:0] of the aborting physical address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this
field are RES0.

The recorded address can be any address within the same naturally-aligned fault granule as the
faulting physical address, where the size of the fault granule is IMPLEMENTATION DEFINED and no
larger than the larger than:

• The size of the range of values permitted to be recorded in FAR_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PFAR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name PFAR_EL2 or PFAR_EL1 are not guaranteed to be ordered with respect to accesses using the other register
name.

PFAR_EL2 is not valid and reads UNKNOWN if ESR_EL2.PFV is recorded as 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8136
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PFAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PFAR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PFAR_EL2;

MSR PFAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PFAREn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PFAREn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PFAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PFAR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b101

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8137
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.131 PIR_EL1, Permission Indirection Register 1 (EL1)

The PIR_EL1 characteristics are:

Purpose

Stage 1 Permission Indirection Register for privileged access of the EL1&0 translation regime.

Configurations

This register is present only when FEAT_S1PIE is implemented. Otherwise, direct accesses to
PIR_EL1 are UNDEFINED.

Attributes

PIR_EL1 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents stage 1 Base Permissions.

0b0000 No access, Overlay applied.

0b0001 Read, Overlay applied.

0b0010 Execute, Overlay applied.

0b0011 Read and Execute, Overlay applied.

0b0100 Reserved - treated as No access, Overlay applied.

0b0101 Read and Write, Overlay applied.

0b0110 Read, Write and Execute, Overlay applied.

0b0111 Read, Write and Execute, Overlay applied.

0b1000 Read, Overlay not applied.

0b1001 Read, GCS Read and GCS Write, Overlay not applied.

0b1010 Read and Execute, Overlay not applied.

0b1011 Reserved - treated as No access, Overlay not applied.

0b1100 Read and Write, Overlay not applied.

0b1101 Reserved - treated as No access, Overlay not applied.

0b1110 Read, Write and Execute, Overlay not applied.

0b1111 Reserved - treated as No access, Overlay not applied.

This field is permitted to be cached in a TLB.

When stage 1 Indirect Permission mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8138
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing PIR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPIR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x2A0];
 else
 X[t, 64] = PIR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PIR_EL2;
 else
 X[t, 64] = PIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIR_EL1;

MSR PIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPIR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8139
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x2A0] = X[t, 64];
 else
 PIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 PIR_EL2 = X[t, 64];
 else
 PIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PIR_EL1 = X[t, 64];

MRS <Xt>, PIR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x2A0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PIR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = PIR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8140
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR PIR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x2A0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PIR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 PIR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8141
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.132 PIR_EL2, Permission Indirection Register 2 (EL2)

The PIR_EL2 characteristics are:

Purpose

Stage 1 Permission Indirection Register for privileged access of the EL2 or EL2&0 translation
regime.

Configurations

This register is present only when FEAT_S1PIE is implemented. Otherwise, direct accesses to
PIR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

PIR_EL2 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents stage 1 Base Permissions.

0b0000 No access, Overlay applied.

0b0001 Read, Overlay applied.

0b0010 Execute, Overlay applied.

0b0011 Read and Execute, Overlay applied.

0b0100 Reserved - treated as No access, Overlay applied.

0b0101 Read and Write, Overlay applied.

0b0110 Read, Write and Execute, Overlay applied.

0b0111 Read, Write and Execute, Overlay applied.

0b1000 Read, Overlay not applied.

0b1001 Read, GCS Read and GCS Write, Overlay not applied.

0b1010 Read and Execute, Overlay not applied.

0b1011 Reserved - treated as No access, Overlay not applied.

0b1100 Read and Write, Overlay not applied.

0b1101 Reserved - treated as No access, Overlay not applied.

0b1110 Read, Write and Execute, Overlay not applied.

0b1111 Reserved - treated as No access, Overlay not applied.

This field is permitted to be cached in a TLB.

When stage 1 Indirect Permission mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8142
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing PIR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name PIR_EL2 or PIR_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PIR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIR_EL2;

MSR PIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PIR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PIR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8143
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MRS <Xt>, PIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPIR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x2A0];
 else
 X[t, 64] = PIR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PIR_EL2;
 else
 X[t, 64] = PIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIR_EL1;

MSR PIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPIR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8144
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x2A0] = X[t, 64];
 else
 PIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 PIR_EL2 = X[t, 64];
 else
 PIR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PIR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8145
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.133 PIR_EL3, Permission Indirection Register 3 (EL3)

The PIR_EL3 characteristics are:

Purpose

Stage 1 Permission Indirection Register for privileged access of the EL3 translation regime.

Configurations

This register is present only when FEAT_S1PIE is implemented. Otherwise, direct accesses to
PIR_EL3 are UNDEFINED.

Attributes

PIR_EL3 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents stage 1 Base Permissions.

0b0000 No access, Overlay applied.

0b0001 Read, Overlay applied.

0b0010 Execute, Overlay applied.

0b0011 Read and Execute, Overlay applied.

0b0100 Reserved - treated as No access, Overlay applied.

0b0101 Read and Write, Overlay applied.

0b0110 Read, Write and Execute, Overlay applied.

0b0111 Read, Write and Execute, Overlay applied.

0b1000 Read, Overlay not applied.

0b1001 Read, GCS Read and GCS Write, Overlay not applied.

0b1010 Read and Execute, Overlay not applied.

0b1011 Reserved - treated as No access, Overlay not applied.

0b1100 Read and Write, Overlay not applied.

0b1101 Reserved - treated as No access, Overlay not applied.

0b1110 Read, Write and Execute, Overlay not applied.

0b1111 Reserved - treated as No access, Overlay not applied.

This field is permitted to be cached in a TLB.

When stage 1 Indirect Permission mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8146
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing PIR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PIR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIR_EL3;

MSR PIR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 PIR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8147
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.134 PIRE0_EL1, Permission Indirection Register 0 (EL1)

The PIRE0_EL1 characteristics are:

Purpose

Stage 1 Permission Indirection Register for unprivileged access of the EL1&0 translation regime.

Configurations

This register is present only when FEAT_S1PIE is implemented. Otherwise, direct accesses to
PIRE0_EL1 are UNDEFINED.

Attributes

PIRE0_EL1 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents stage 1 Base Permissions.

0b0000 No access, Overlay applied.

0b0001 Read, Overlay applied.

0b0010 Execute, Overlay applied.

0b0011 Read and Execute, Overlay applied.

0b0100 Reserved - treated as No access, Overlay applied.

0b0101 Read and Write, Overlay applied.

0b0110 Read, Write and Execute, Overlay applied.

0b0111 Read, Write and Execute, Overlay applied.

0b1000 Read, Overlay not applied.

0b1001 Read, GCS Read and GCS Write, Overlay not applied.

0b1010 Read and Execute, Overlay not applied.

0b1011 Reserved - treated as No access, Overlay not applied.

0b1100 Read and Write, Overlay not applied.

0b1101 Reserved - treated as No access, Overlay not applied.

0b1110 Read, Write and Execute, Overlay not applied.

0b1111 Reserved - treated as No access, Overlay not applied.

This field is permitted to be cached in a TLB.

When stage 1 Indirect Permission mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8148
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing PIRE0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PIRE0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPIRE0_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x290];
 else
 X[t, 64] = PIRE0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PIRE0_EL2;
 else
 X[t, 64] = PIRE0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIRE0_EL1;

MSR PIRE0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPIRE0_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8149
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x290] = X[t, 64];
 else
 PIRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 PIRE0_EL2 = X[t, 64];
 else
 PIRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PIRE0_EL1 = X[t, 64];

MRS <Xt>, PIRE0_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x290];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PIRE0_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = PIRE0_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8150
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR PIRE0_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x290] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PIRE0_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 PIRE0_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8151
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.135 PIRE0_EL2, Permission Indirection Register 0 (EL2)

The PIRE0_EL2 characteristics are:

Purpose

Stage 1 Permission Indirection Register for unprivileged access of the EL2&0 translation regime.

Configurations

This register is present only when FEAT_S1PIE is implemented. Otherwise, direct accesses to
PIRE0_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

PIRE0_EL2 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents stage 1 Base Permissions.

0b0000 No access, Overlay applied.

0b0001 Read, Overlay applied.

0b0010 Execute, Overlay applied.

0b0011 Read and Execute, Overlay applied.

0b0100 Reserved - treated as No access, Overlay applied.

0b0101 Read and Write, Overlay applied.

0b0110 Read, Write and Execute, Overlay applied.

0b0111 Read, Write and Execute, Overlay applied.

0b1000 Read, Overlay not applied.

0b1001 Read, GCS Read and GCS Write, Overlay not applied.

0b1010 Read and Execute, Overlay not applied.

0b1011 Reserved - treated as No access, Overlay not applied.

0b1100 Read and Write, Overlay not applied.

0b1101 Reserved - treated as No access, Overlay not applied.

0b1110 Read, Write and Execute, Overlay not applied.

0b1111 Reserved - treated as No access, Overlay not applied.

This field is permitted to be cached in a TLB.

When stage 1 Indirect Permission mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8152
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing PIRE0_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name PIRE0_EL2 or PIRE0_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PIRE0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x298];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PIRE0_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIRE0_EL2;

MSR PIRE0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x298] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PIRE0_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8153
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 PIRE0_EL2 = X[t, 64];

MRS <Xt>, PIRE0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPIRE0_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x290];
 else
 X[t, 64] = PIRE0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PIRE0_EL2;
 else
 X[t, 64] = PIRE0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PIRE0_EL1;

MSR PIRE0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPIRE0_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8154
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x290] = X[t, 64];
 else
 PIRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 PIRE0_EL2 = X[t, 64];
 else
 PIRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PIRE0_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8155
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.136 POR_EL0, Permission Overlay Register 0 (EL0)

The POR_EL0 characteristics are:

Purpose

Stage 1 Permission Overlay Register for unprivileged access of EL1&0 or EL2&0 translation
regime.

Configurations

This register is present only when FEAT_S1POE is implemented. Otherwise, direct accesses to
POR_EL0 are UNDEFINED.

Attributes

POR_EL0 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Perm Represents stage 1 Overlay Permissions.

0b0000 No access.

0b0001 Read.

0b0010 Execute.

0b0011 Read, Execute.

0b0100 Write.

0b0101 Write, Read.

0b0110 Write, Execute.

0b0111 Read, Write, Execute.

0b1xxx Reserved - treated as No access

When VMSAv9-128 is not in use, fields Perm[8] to Perm[15] are RES0.

This field is not permitted to be cached in a TLB.

When the stage 1 Overlay mechanism is disabled, this field is IGNORED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing POR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, POR_EL0

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0

op0 op1 CRn CRm op2

0b11 0b011 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8156
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.E0POE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nPOR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CPTR_EL2.E0POE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = POR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPOR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = POR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = POR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = POR_EL0;

MSR POR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && CPACR_EL1.E0POE == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8157
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nPOR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CPTR_EL2.E0POE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 POR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPOR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 POR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 POR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 POR_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8158
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.137 POR_EL1, Permission Overlay Register 1 (EL1)

The POR_EL1 characteristics are:

Purpose

Stage 1 Permission Overlay Register for privileged access of the EL1&0 translation regime.

Configurations

This register is present only when FEAT_S1POE is implemented. Otherwise, direct accesses to
POR_EL1 are UNDEFINED.

Attributes

POR_EL1 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Perm Represents stage 1 Overlay Permissions.

0b0000 No access.

0b0001 Read.

0b0010 Execute.

0b0011 Read, Execute.

0b0100 Write.

0b0101 Write, Read.

0b0110 Write, Execute.

0b0111 Read, Write, Execute.

0b1xxx Reserved - treated as No access

When VMSAv9-128 is not in use, fields Perm[8] to Perm[15] are RES0.

This field is not permitted to be cached in a TLB.

When the stage 1 Overlay mechanism is disabled, this field is IGNORED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing POR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, POR_EL1

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8159
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPOR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x2A8];
 else
 X[t, 64] = POR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = POR_EL2;
 else
 X[t, 64] = POR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = POR_EL1;

MSR POR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPOR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x2A8] = X[t, 64];
 else
 POR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8160
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 POR_EL2 = X[t, 64];
 else
 POR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 POR_EL1 = X[t, 64];

MRS <Xt>, POR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x2A8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = POR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = POR_EL1;
 else
 UNDEFINED;

MSR POR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x2A8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b100

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8161
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 POR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 POR_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8162
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.138 POR_EL2, Permission Overlay Register 2 (EL2)

The POR_EL2 characteristics are:

Purpose

Stage 1 Permission Overlay Register for privileged access of the EL2 or EL2&0 translation regime.

Configurations

This register is present only when FEAT_S1POE is implemented. Otherwise, direct accesses to
POR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

POR_EL2 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Perm Represents stage 1 Overlay Permissions.

0b0000 No access.

0b0001 Read.

0b0010 Execute.

0b0011 Read, Execute.

0b0100 Write.

0b0101 Write, Read.

0b0110 Write, Execute.

0b0111 Read, Write, Execute.

0b1xxx Reserved - treated as No access

When VMSAv9-128 is not in use, fields Perm[8] to Perm[15] are RES0.

This field is not permitted to be cached in a TLB.

When the stage 1 Overlay mechanism is disabled, this field is IGNORED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing POR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name POR_EL2 or POR_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8163
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, POR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = POR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = POR_EL2;

MSR POR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 POR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 POR_EL2 = X[t, 64];

MRS <Xt>, POR_EL1

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b100

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8164
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nPOR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x2A8];
 else
 X[t, 64] = POR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = POR_EL2;
 else
 X[t, 64] = POR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = POR_EL1;

MSR POR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nPOR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x2A8] = X[t, 64];
 else
 POR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8165
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 POR_EL2 = X[t, 64];
 else
 POR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 POR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8166
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.139 POR_EL3, Permission Overlay Register 3 (EL3)

The POR_EL3 characteristics are:

Purpose

Stage 1 Permission Overlay Register for privileged access of the EL3 translation regime.

Configurations

This register is present only when FEAT_S1POE is implemented. Otherwise, direct accesses to
POR_EL3 are UNDEFINED.

Attributes

POR_EL3 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Perm Represents stage 1 Overlay Permissions.

0b0000 No access.

0b0001 Read.

0b0010 Execute.

0b0011 Read, Execute.

0b0100 Write.

0b0101 Write, Read.

0b0110 Write, Execute.

0b0111 Read, Write, Execute.

0b1xxx Reserved - treated as No access

When VMSAv9-128 is not in use, fields Perm[8] to Perm[15] are RES0.

This field is not permitted to be cached in a TLB.

When stage 1 Overlay mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing POR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, POR_EL3

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8167
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = POR_EL3;

MSR POR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 POR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8168
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.140 RCWMASK_EL1, Read Check Write Instruction Mask (EL1)

The RCWMASK_EL1 characteristics are:

Purpose

Contains the mask used by RCW instructions.

Configurations

This register is present only when FEAT_THE is implemented. Otherwise, direct accesses to
RCWMASK_EL1 are UNDEFINED.

RCWMASK_EL1 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed
as a 64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

RCWMASK_EL1 is a:

• 128-bit register when FEAT_D128 is implemented

• 64-bit register otherwise

Field descriptions

When FEAT_D128 is implemented:

RCWMASK, bits [127:0]

Mask used to decide which bit-fields are writable to the 128-bit Descriptor by RCW or RCWS
instructions.

If RCWMASK_EL1 is indirectly read by 128-bit variants of RCW or RCWS instructions:

• The Effective value of RCWMASK[n] is the same as RCWMASK_EL1[n], except as
follows:

— If n >= 17, and n <= 55, the Effective value of RCWMASK[n] is the same as
RCWMASK_EL1[16].

— If n is in {126:125, 120:119, 114, 107:101, 90:56, 1:0}, the Effective value of
RCWMASK[n] is 0.

— If n >= 121, n <= 124, and FEAT_S1POE is not implemented, the Effective value of
RCWMASK[n] is 0.

— If FEAT_MEC is not implemented, the Effective value of RCWMASK[108] is 0.

If RCWMASK_EL1 is indirectly read by 64-bit variants of RCW or RCWS instructions:

• The Effective value of RCWMASK[n] is the same as RCWMASK_EL1[n], except as
follows:

— If n >= 18, and n <= 49, the Effective value of RCWMASK[n] is the same as
RCWMASK_EL1[17].

RCWMASK

127 96

RCWMASK

95 64

RCWMASK

63 32

RCWMASK

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8169
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
RCWMASK_EL1 register bits {126:125, 120:119, 114, 107:101, 90:64, 52, 49:18, 0} are RES0.

If FEAT_S1POE is not implemented, RCWMASK_EL1 register bits {124:121} are RES0.

If FEAT_MEC is not implemented, RCWMASK_EL1[108] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RCWMASK, bits [63:0]

Mask used to decide which bit-fields are writable to the 64-bit Descriptor by RCW or RCWS
Instructions.

The Effective value of RCWMASK[n] is the same as RCWMASK_EL1[n], except as follows:

• If n >= 18, and n <= 49, the Effective value of RCWMASK[n] is the same as
RCWMASK_EL1[17].

RCWMASK_EL1 register bits {52, 49:18, 0} are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RCWMASK_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RCWMASK_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nRCWMASK_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = RCWMASK_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

RCWMASK

63 32

RCWMASK

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8170
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = RCWMASK_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = RCWMASK_EL1<63:0>;

MSR RCWMASK_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nRCWMASK_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RCWMASK_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RCWMASK_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 RCWMASK_EL1<63:0> = X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, RCWMASK_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nRCWMASK_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b110

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8171
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = (RCWMASK_EL1<127:64>, RCWMASK_EL1<63:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = (RCWMASK_EL1<127:64>, RCWMASK_EL1<63:0>);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = (RCWMASK_EL1<127:64>, RCWMASK_EL1<63:0>);

 When FEAT_D128 is implemented : MSRR RCWMASK_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nRCWMASK_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (RCWMASK_EL1<127:64>, RCWMASK_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8172
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (RCWMASK_EL1<127:64>, RCWMASK_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);
elsif PSTATE.EL == EL3 then
 (RCWMASK_EL1<127:64>, RCWMASK_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8173
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.141 RCWSMASK_EL1, Software Read Check Write Instruction Mask (EL1)

The RCWSMASK_EL1 characteristics are:

Purpose

Contains the software mask used by RCWS instructions.

Configurations

This register is present only when FEAT_THE is implemented. Otherwise, direct accesses to
RCWSMASK_EL1 are UNDEFINED.

RCWSMASK_EL1 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed
as a 64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

RCWSMASK_EL1 is a:

• 128-bit register when FEAT_D128 is implemented

• 64-bit register otherwise

Field descriptions

When FEAT_D128 is implemented:

RCWSMASK, bits [127:0]

Software Mask used to decide which bit-fields are writable to the 128-bit Descriptor by RCWS
instructions.

If RCWSMASK_EL1 is indirectly read by 128-bit variants of RCWS instructions:

• The Effective value of RCWSMASK[n] is the same as RCWSMASK_EL1[n], except as
follows:

— If n >= 17, and n <= 55, the Effective value of RCWSMASK[n] is the same as
RCWSMASK_EL1[16].

— If n is in {126:125, 120:119, 114, 107:101, 90:56, 1:0}, the Effective value of
RCWSMASK[n] is 0.

— If n >= 121, n <= 124, and FEAT_S1POE is not implemented, the Effective value of
RCWSMASK[n] is 0.

— If FEAT_MEC is not implemented, the Effective value of RCWSMASK bit
RCWSMASK_EL1[108] is 0.

If RCWSMASK_EL1 is indirectly read by 64-bit variants of RCWS instructions:

• The Effective value of RCWSMASK[n] is the same as RCWSMASK_EL1[n], except as
follows:

— If n >= 18, and n <= 49, the Effective value of RCWSMASK[n] is the same as
RCWSMASK_EL1[17].

RCWSMASK

127 96

RCWSMASK

95 64

RCWSMASK

63 32

RCWSMASK

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8174
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— If n == 52 and Protection is enabled, the Effective value of RCWSMASK[52] is 0.

RCWSMASK_EL1 register bits {126:125, 120:119, 114, 107:101, 90:64, 49:18, 0} are RES0.

If FEAT_S1POE is not implemented, RCWSMASK_EL1 register bits {124:121} are RES0.

If FEAT_MEC is not implemented, RCWSMASK_EL1[108] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RCWSMASK, bits [63:0]

Software Mask used to decide which bit-fields are writable to the 64-bit Descriptor by RCWS
Instruction.

The Effective value of RCWSMASK[n] is the same as RCWSMASK_EL1[n], except as follows

• If n >= 18, and n <= 49, the Effective value of RCWSMASK[n] is the same as
RCWSMASK_EL1[17].

• If n == 52 and Protection is enabled, the Effective value of RCWSMASK[52] is 0.

RCWSMASK_EL1 register bits {49:18, 0} are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RCWSMASK_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RCWSMASK_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGRTR2_EL2.nRCWSMASK_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = RCWSMASK_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then

RCWSMASK

63 32

RCWSMASK

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8175
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = RCWSMASK_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = RCWSMASK_EL1<63:0>;

MSR RCWSMASK_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGWTR2_EL2.nRCWSMASK_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RCWSMASK_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RCWSMASK_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 RCWSMASK_EL1<63:0> = X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, RCWSMASK_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGRTR2_EL2.nRCWSMASK_EL1 == '0') then

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8176
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = (RCWSMASK_EL1<127:64>, RCWSMASK_EL1<63:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = (RCWSMASK_EL1<127:64>, RCWSMASK_EL1<63:0>);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = (RCWSMASK_EL1<127:64>, RCWSMASK_EL1<63:0>);

 When FEAT_D128 is implemented : MSRR RCWSMASK_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGWTR2_EL2.nRCWSMASK_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8177
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 (RCWSMASK_EL1<127:64>, RCWSMASK_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.RCWMASKEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.RCWMASKEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (RCWSMASK_EL1<127:64>, RCWSMASK_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);
elsif PSTATE.EL == EL3 then
 (RCWSMASK_EL1<127:64>, RCWSMASK_EL1<63:0>) = (X[t + 1, 64], X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8178
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.142 REVIDR_EL1, Revision ID Register

The REVIDR_EL1 characteristics are:

Purpose

Provides implementation-specific minor revision information.

Configurations

AArch64 System register REVIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register REVIDR[31:0].

If REVIDR_EL1 has the same value as MIDR_EL1, then its contents have no significance.

Attributes

REVIDR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing REVIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, REVIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.REVIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = REVIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = REVIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = REVIDR_EL1;

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8179
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.143 RGSR_EL1, Random Allocation Tag Seed Register.

The RGSR_EL1 characteristics are:

Purpose

Random Allocation Tag Seed Register.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
RGSR_EL1 are UNDEFINED.

When GCR_EL1.RRND==0b1, updates to RGSR_EL1 are implementation-specific.

Direct and indirect reads and writes to the register appear to occur in program order relative to other
instructions, without the need for any explicit synchronization.

Attributes

RGSR_EL1 is a 64-bit register.

Field descriptions

When GCR_EL1.RRND == 0:

Bits [63:24]

Reserved, RES0.

SEED, bits [23:8]

Seed register used for generating values returned by RandomAllocationTag().

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

TAG, bits [3:0]

Tag generated by the most recent IRG instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

63 32

RES0

31 24

SEED

23 8

RES0

7 4

TAG

3 0

RES0

63 56

SEED

55 32

SEED

31 8

RES0

7 4

TAG

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8180
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [63:56]

Reserved, RES0.

SEED, bits [55:8]

IMPLEMENTATION DEFINED.

Note

Software is recommended to avoid writing SEED[15:0] with a value of zero, unless this has been
generated by the PE in response to an earlier value with SEED being nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

TAG, bits [3:0]

Tag generated by the most recent IRG instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RGSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RGSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = RGSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = RGSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = RGSR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8181
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR RGSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RGSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 RGSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 RGSR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8182
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.144 RMR_EL1, Reset Management Register (EL1)

The RMR_EL1 characteristics are:

Purpose

When this register is implemented:

• A write to the register at EL1 can request a Warm reset.

• If EL1 can use all Execution states, this register specifies the Execution state that the PE boots
into on a Warm reset.

Configurations

AArch64 System register RMR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register RMR[31:0] when the highest implemented Exception level is EL1.

This register is present only when the highest implemented Exception level is EL1. Otherwise,
direct accesses to RMR_EL1 are UNDEFINED.

When EL1 is the highest implemented Exception level:

• If EL1 can use all Execution states then this register must be implemented.

• If EL1 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Attributes

RMR_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL1 is capable of using AArch32:

When EL1 can use AArch32, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL1 can only use AArch64 state, this bit is RAO/WI.

The reset behavior of this field is:

• When implemented as a RW field, this field resets to 1 on a Cold reset.

RES0

63 32

RES0

31 2

RR

1 0

AA64
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8183
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RAO/WI.

Accessing RMR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RMR_EL1

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
 X[t, 64] = RMR_EL1;
else
 UNDEFINED;

MSR RMR_EL1, <Xt>

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
 RMR_EL1 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8184
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.145 RMR_EL2, Reset Management Register (EL2)

The RMR_EL2 characteristics are:

Purpose

When this register is implemented:

• A write to the register at EL2 can request a Warm reset.

• If EL2 can use all Execution states, this register specifies the Execution state that the PE boots
into on a Warm reset.

Configurations

AArch64 System register RMR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HRMR[31:0] when the highest implemented Exception level is EL2.

This register is present only when the highest implemented Exception level is EL2. Otherwise,
direct accesses to RMR_EL2 are UNDEFINED.

When EL2 is the highest implemented Exception level:

• If EL2 can use all Execution states then this register must be implemented.

• If EL2 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is
implemented.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

RMR_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL2 is capable of using AArch32:

When EL2 can use AArch32, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL2 can only use AArch64 state, this bit is RAO/WI.

RES0

63 32

RES0

31 2

RR

1 0

AA64
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8185
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing RMR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RMR_EL2

if PSTATE.EL == EL1 && IsHighestEL(EL2) && EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 X[t, 64] = RMR_EL2;
else
 UNDEFINED;

MSR RMR_EL2, <Xt>

if PSTATE.EL == EL1 && IsHighestEL(EL2) && EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 RMR_EL2 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8186
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.146 RMR_EL3, Reset Management Register (EL3)

The RMR_EL3 characteristics are:

Purpose

If EL3 is implemented and this register is implemented:

• A write to the register at EL3 can request a Warm reset.

• If EL3 can use all Execution states, this register specifies the Execution state that the PE boots
into on a Warm reset.

Configurations

AArch64 System register RMR_EL3 bits [31:0] are architecturally mapped to AArch32 System
register RMR[31:0] when EL3 is implemented.

This register is present only when EL3 is implemented. Otherwise, direct accesses to RMR_EL3 are
UNDEFINED.

When EL3 is implemented:

• If EL3 can use all Execution states then this register must be implemented.

• If EL3 cannot use AArch32, then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

Attributes

RMR_EL3 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL3 is capable of using AArch32:

When EL3 can use AArch32, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL3 can only use AArch64 state, this bit is RAO/WI.

RES0

63 32

RES0

31 2

RR

1 0

AA64
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8187
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• When implemented as a RW field, this field resets to 1 on a Cold reset.

Otherwise:

Reserved, RAO/WI.

Accessing RMR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RMR_EL3

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
 X[t, 64] = RMR_EL3;
else
 UNDEFINED;

MSR RMR_EL3, <Xt>

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
 RMR_EL3 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8188
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.147 RNDR, Random Number

The RNDR characteristics are:

Purpose

Random Number. Returns a 64-bit random number from an approved Random Bit Generator, where
the Deterministic Random Bit Generator within the Random Bit Generator is reseeded from an
approved entropy source at an IMPLEMENTATION DEFINED rate. See Properties of the generated
random number.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time,
PSTATE.NZCV is set to 0b0100 and the data value returned is 0.

Configurations

This register is present only when FEAT_RNG is implemented or FEAT_RNG_TRAP is
implemented. Otherwise, direct accesses to RNDR are UNDEFINED.

Attributes

RNDR is a 64-bit register.

Field descriptions

RNDR, bits [63:0]

Random Number. Returns a 64-bit Random Number from an approved Random Bit Generator,
where the Deterministic Random Bit Generator within the Random Bit Generator is reseeded from
an approved entropy source at an IMPLEMENTATION DEFINED rate. See Properties of the generated
random number.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RNDR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RNDR

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;

RNDR

63 32

RNDR

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b0010 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8189
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8190
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.148 RNDRRS, Random Number Full Entropy

The RNDRRS characteristics are:

Purpose

Random Number with fresh full entropy. Returns a 64-bit random number from an approved
Random Bit Generator, using either a Non-deterministic Random Bit Generator or one where the
Deterministic Random Bit Generator is reseeded, where possible, from an approved entropy source
before the return of the random number. See Properties of the generated random number.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time,
PSTATE.NZCV is set to 0b0100 and the data value returned is 0.

When FEAT_RNG_TRAP is implemented and SCR_EL3.TRNDR is 1, reads of this register are
trapped to EL3.

Configurations

This register is present only when FEAT_RNG is implemented or FEAT_RNG_TRAP is
implemented. Otherwise, direct accesses to RNDRRS are UNDEFINED.

Attributes

RNDRRS is a 64-bit register.

Field descriptions

RNDRRS, bits [63:0]

Random Number with fresh full entropy. Returns a 64-bit random number from an approved
Random Bit Generator, using either a Non-deterministic Random Bit Generator or one where the
Deterministic Random Bit Generator is reseeded, where possible, from an approved entropy source
before the return of the random number. See Properties of the generated random number.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing RNDRRS

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RNDRRS

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

RNDRRS

63 32

RNDRRS

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b0010 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8191
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDRRS;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDRRS;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDRRS;
elsif PSTATE.EL == EL3 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDRRS;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8192
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.149 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)

The RVBAR_EL1 characteristics are:

Purpose

If EL1 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address
that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when the highest implemented Exception level is EL1. Otherwise,
direct accesses to RVBAR_EL1 are UNDEFINED.

Attributes

RVBAR_EL1 is a 64-bit register.

Field descriptions

ResetAddress, bits [63:0]

The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in
64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must
be within the physical address size supported by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing RVBAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RVBAR_EL1

if PSTATE.EL == EL1 && IsHighestEL(EL1) then
 X[t, 64] = RVBAR_EL1;
else
 UNDEFINED;

ResetAddress

63 32

ResetAddress

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8193
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.150 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

The RVBAR_EL2 characteristics are:

Purpose

If EL2 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address
that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when the highest implemented Exception level is EL2. Otherwise,
direct accesses to RVBAR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

RVBAR_EL2 is a 64-bit register.

Field descriptions

ResetAddress, bits [63:0]

The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in
64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must
be within the physical address size supported by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing RVBAR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RVBAR_EL2

if PSTATE.EL == EL1 && IsHighestEL(EL2) && EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 X[t, 64] = RVBAR_EL2;
else
 UNDEFINED;

ResetAddress

63 32

ResetAddress

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8194
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.151 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

The RVBAR_EL3 characteristics are:

Purpose

If EL3 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address
that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to RVBAR_EL3
are UNDEFINED.

Only implemented if the highest Exception level implemented is EL3.

Attributes

RVBAR_EL3 is a 64-bit register.

Field descriptions

ResetAddress, bits [63:0]

The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in
64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must
be within the physical address size supported by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing RVBAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, RVBAR_EL3

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
 X[t, 64] = RVBAR_EL3;
else
 UNDEFINED;

ResetAddress

63 32

ResetAddress

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8195
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.152 S2PIR_EL2, Stage 2 Permission Indirection Register (EL2)

The S2PIR_EL2 characteristics are:

Purpose

Stage 2 Permission Indirection Register for EL1&0 translation regime.

Configurations

This register is present only when FEAT_S2PIE is implemented. Otherwise, direct accesses to
S2PIR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

S2PIR_EL2 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Represents stage 2 Base Permissions.

0b0000 No Access.

0b0001 Reserved - treated as No Access.

0b0010 MRO.

0b0011 MRO-TL1.

0b0100 WO.

0b0101 Reserved - treated as No Access.

0b0110 MRO-TL0.

0b0111 MRO-TL01.

0b1000 RO.

0b1001 RO+uX.

0b1010 RO+pX.

0b1011 RO+puX.

0b1100 RW.

0b1101 RW+uX.

0b1110 RW+pX.

0b1111 RW+puX.

This field is permitted to be cached in a TLB.

When stage 2 Indirect Permission mechanism is disabled, the contents of this register are ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8196
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing S2PIR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, S2PIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x2B0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = S2PIR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = S2PIR_EL2;

MSR S2PIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x2B0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 S2PIR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 S2PIR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b101

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8197
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.153 S2POR_EL1, Stage 2 Permission Overlay Register (EL1)

The S2POR_EL1 characteristics are:

Purpose

Stage 2 Permission Overlay Register for EL1&0 translation regime.

Configurations

This register is present only when FEAT_S2POE is implemented. Otherwise, direct accesses to
S2POR_EL1 are UNDEFINED.

Attributes

S2POR_EL1 is a 64-bit register.

Field descriptions

Perm<m>, bits [4m+3:4m], for m = 15 to 0

Configures stage 2 Overlay Permissions.

0b0000 No Access.

0b0001 Reserved - treated as No Access.

0b0010 MRO.

0b0011 MRO-TL1.

0b0100 WO.

0b0101 Reserved - treated as No Access.

0b0110 MRO-TL0.

0b0111 MRO-TL01.

0b1000 RO.

0b1001 RO+uX.

0b1010 RO+pX.

0b1011 RO+puX.

0b1100 RW.

0b1101 RW+uX.

0b1110 RW+pX.

0b1111 RW+puX.

This field is not permitted to be cached in a TLB.

When stage 2 Permission Overlay mechanism is disabled, this register is ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Perm15

63 60

Perm14

59 56

Perm13

55 52

Perm12

51 48

Perm11

47 44

Perm10

43 40

Perm9

39 36

Perm8

35 32

Perm7

31 28

Perm6

27 24

Perm5

23 20

Perm4

19 16

Perm3

15 12

Perm2

11 8

Perm1

7 4

Perm0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8198
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing S2POR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, S2POR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nS2POR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x2B8];
 else
 X[t, 64] = S2POR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = S2POR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = S2POR_EL1;

MSR S2POR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nS2POR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b101

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8199
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x2B8] = X[t, 64];
 else
 S2POR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.PIEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.PIEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 S2POR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 S2POR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8200
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.154 S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED Registers

The S3_<op1>_<Cn>_<Cm>_<op2> characteristics are:

Purpose

This area of the instruction set space is reserved for IMPLEMENTATION DEFINED registers.

Configurations

Each register in this space is a 128-bit register that can also be accessed as a 64-bit value. If it is
accessed as a 64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

S3_<op1>_<Cn>_<Cm>_<op2> is a:

• 128-bit register when FEAT_SYSREG128 is implemented

• 64-bit register otherwise

Field descriptions

When FEAT_SYSREG128 is implemented:

IMPLEMENTATION DEFINED, bits [127:0]

IMPLEMENTATION DEFINED.

Otherwise:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

127 96

IMPLEMENTATION DEFINED

95 64

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8201
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing S3_<op1>_<Cn>_<Cm>_<op2>

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, S3_<op1>_C<Cn>_C<Cm>_<op2>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.TIDCP == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.ImpDefSysRegRead(op0, op1, CRn, CRm, op2, t);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.ImpDefSysRegRead(op0, op1, CRn, CRm, op2, t);
elsif PSTATE.EL == EL2 then
 AArch64.ImpDefSysRegRead(op0, op1, CRn, CRm, op2, t);
elsif PSTATE.EL == EL3 then
 AArch64.ImpDefSysRegRead(op0, op1, CRn, CRm, op2, t);

MSR S3_<op1>_C<Cn>_C<Cm>_<op2>, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && SCTLR_EL1.TIDCP == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.ImpDefSysRegWrite(op0, op1, CRn, CRm, op2, t);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.ImpDefSysRegWrite(op0, op1, CRn, CRm, op2, t);
elsif PSTATE.EL == EL2 then
 AArch64.ImpDefSysRegWrite(op0, op1, CRn, CRm, op2, t);
elsif PSTATE.EL == EL3 then
 AArch64.ImpDefSysRegWrite(op0, op1, CRn, CRm, op2, t);

op0 op1 CRn CRm op2

0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]

op0 op1 CRn CRm op2

0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8202
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 When FEAT_SYSREG128 is implemented : MRRS <Xt+1>, <Xt>,
S3_<op1>_C<Cn>_C<Cm>_<op2>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnIDCP128 == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && SCTLR_EL1.TIDCP == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.SystemAccessTrap(EL1, 0x14);
 elsif ELIsInHost(EL0) && SCTLR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif !ELIsInHost(EL0) && (!IsSCTLR2EL1Enabled() || SCTLR2_EL1.EnIDCP128 == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.SystemAccessTrap(EL1, 0x14);
 elsif ELIsInHost(EL0) && (!IsSCTLR2EL2Enabled() || SCTLR2_EL2.EnIDCP128 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && !ELIsInHost(EL0) && (!IsHCRXEL2Enabled() || HCRX_EL2.EnIDCP128 ==
'0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.EnIDCP128 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 AArch64.ImpDefSysRegRead128(op0, op1, CRn, CRm, op2, t, t + 1);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnIDCP128 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.EnIDCP128 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.EnIDCP128 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 AArch64.ImpDefSysRegRead128(op0, op1, CRn, CRm, op2, t, t + 1);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnIDCP128 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnIDCP128 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 AArch64.ImpDefSysRegRead128(op0, op1, CRn, CRm, op2, t, t + 1);
elsif PSTATE.EL == EL3 then
 AArch64.ImpDefSysRegRead128(op0, op1, CRn, CRm, op2, t, t + 1);

op0 op1 CRn CRm op2

0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8203
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 When FEAT_SYSREG128 is implemented : MSRR S3_<op1>_C<Cn>_C<Cm>_<op2>, <Xt+1>,
<Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnIDCP128 == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && SCTLR_EL1.TIDCP == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.SystemAccessTrap(EL1, 0x14);
 elsif ELIsInHost(EL0) && SCTLR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif !ELIsInHost(EL0) && (!IsSCTLR2EL1Enabled() || SCTLR2_EL1.EnIDCP128 == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 AArch64.SystemAccessTrap(EL1, 0x14);
 elsif ELIsInHost(EL0) && (!IsSCTLR2EL2Enabled() || SCTLR2_EL2.EnIDCP128 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && !ELIsInHost(EL0) && (!IsHCRXEL2Enabled() || HCRX_EL2.EnIDCP128 ==
'0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.EnIDCP128 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 AArch64.ImpDefSysRegWrite128(op0, op1, CRn, CRm, op2, t, t + 1);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnIDCP128 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TIDCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.EnIDCP128 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.EnIDCP128 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 AArch64.ImpDefSysRegWrite128(op0, op1, CRn, CRm, op2, t, t + 1);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnIDCP128 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnIDCP128 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 AArch64.ImpDefSysRegWrite128(op0, op1, CRn, CRm, op2, t, t + 1);
elsif PSTATE.EL == EL3 then
 AArch64.ImpDefSysRegWrite128(op0, op1, CRn, CRm, op2, t, t + 1);

op0 op1 CRn CRm op2

0b11 op1[2:0] 0b1x11 Cm[3:0] op2[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8204
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.155 SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is Secure, Non-secure, or Realm.

• The Execution state at lower Exception levels.

• Whether IRQ, FIQ, SError exceptions, and External abort exceptions are taken to EL3.

• Whether various operations are trapped to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are
UNDEFINED.

Attributes

SCR_EL3 is a 64-bit register.

Field descriptions

Bit [63]

Reserved, RES0.

NSE, bit [62]

When FEAT_RME is implemented:

This field, evaluated with SCR_EL3.NS, selects the Security state of EL2 and lower Exception
levels.

For a description of the values derived by evaluating NS and NSE together, see SCR_EL3.NS.

63 62

RES0

61 60 59

RES0

58 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0
NSE

FGTEn2
EnIDCP128

RES0
PFAREn

TWERR
TMEA

RES0
MECEn

GPF
D128En

AIEn

TWEDEL
TME

AMVOFFEN
EnAS0

ADEn
HXEn

GCSEn
TRNDR

EnTP2
RCWMASKEn

TCR2En
SCTLR2En

PIEn
31 30 29 28 27 26 25

RES0

24 22 21 20 19 18 17 16 15 14 13 12

ST

11

RW

10 9 8 7 6

RES1

5 4

EA

3 2 1

NS

0

TWEDEL
TWEDEn

ECVEn
FGTEn

ATA
EnSCXT

FIEN
NMEA

EASE
EEL2

API

IRQ
FIQ

RES0
SMD

HCE
SIF

TWI
TWE

TLOR
TERR

APK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8205
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

Bits [61:60]

Reserved, RES0.

FGTEn2, bit [59]

When FEAT_FGT2 is implemented:

Fine-Grained Traps Enable 2.

When EL2 is implemented, enables the traps to EL2 controlled by HDFGRTR2_EL2,
HDFGWTR2_EL2, HFGITR2_EL2, HFGRTR2_EL2, and HFGWTR2_EL2, and controls access
to those registers.

0b0 EL2 accesses to the specified registers are trapped to EL3. The values in these registers
are treated as 0.

0b1 EL2 accesses to the specified registers are not trapped to EL3 by this mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value
of 0x18 and its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [58:56]

Reserved, RES0.

EnIDCP128, bit [55]

When FEAT_SYSREG128 is implemented:

Enables access to IMPLEMENTATION DEFINED 128-bit System registers.

0b0 Accesses at EL2, EL1, EL0 to IMPLEMENTATION DEFINED 128-bit System registers are
trapped to EL3 using an ESR_EL3.EC value of 0x14, unless the access generates a
higher priority exception.

Disables the functionality of the 128-bit IMPLEMENTATION DEFINED System registers
that are accessible at EL3.

0b1 No accesses are trapped by this control.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [54]

Reserved, RES0.

PFAREn, bit [53]

When FEAT_PFAR is implemented:

Enable access to Physical Fault Address Registers. When disabled, accesses to Physical Fault
Address Registers generate a trap to EL3.

0b0 Accesses of the specified Physical Fault Address Registers at EL2 and EL1 are trapped
to EL3, unless the instruction generates a higher priority exception.

0b1 This control does not cause any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8206
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to PFAR_EL1,
PFAR_EL2, and PFAR_EL12.

Unless the instruction generates a higher priority exception, trapped instructions generate an
exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWERR, bit [52]

When FEAT_RASv2 is implemented:

Trap writes of Error Record registers. Enables a trap to EL3 on writes of Error Record registers.

0b0 This control does not cause any instructions to be trapped.

0b1 Writes of the specified Error Record registers at EL2 and EL1 are trapped to EL3, unless
the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are: MSR accesses to ERRSELR_EL1,
ERXADDR_EL1, ERXCTLR_EL1, ERXMISC0_EL1, ERXMISC1_EL1, ERXMISC2_EL1,
ERXMISC3_EL1, and ERXSTATUS_EL1.

In AArch32 state, the instructions affected by this control are: MCR accesses to ERRSELR,
ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXMISC0, ERXMISC1, ERXMISC2,
ERXMISC3, ERXMISC4, ERXMISC5, ERXMISC6, ERXMISC7, and ERXSTATUS.

Unless the instruction generates a higher priority exception, trapped instructions generate an
exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMEA, bit [51]

When FEAT_DoubleFault2 is implemented:

Trap Masked External Aborts. Controls whether a masked error exception at a lower Exception
level is taken to EL3.

0b0 Synchronous External abort exceptions and SError exceptions at EL2, EL1, and EL0 are
unaffected by this mechanism. That is, these exceptions are not taken to EL3 unless
routed to EL3 by another control.

0b1 When executing at Exception levels below EL3, all of the following apply:

• When PSTATE.A is 1, synchronous External abort exceptions are taken to EL3,
unless they are taken from EL1 or EL0 and routed to EL2 by another control.

• Masked physical SError exceptions are taken to EL3, unless they are taken from
EL1 or EL0 and routed to EL2 by another control.

This field has no effect on the routing of virtual SError exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8207
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [50]

Reserved, RES0.

MECEn, bit [49]

When FEAT_MEC is implemented:

Enables access to the following EL2 MECID registers, from EL2:

• MECID_P0_EL2.

• MECID_A0_EL2

• MECID_P1_EL2

• MECID_A1_EL2

• VMECID_P_EL2

• VMECID_A_EL2

Accesses to these registers are trapped and reported using an ESR_EL3.EC value of 0x18.

0b0 EL2 accesses to any of the specified registers are trapped to EL3. The values of the
specified registers are treated as 0 for all purposes other than direct reads or writes to
the register from EL3.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

GPF, bit [48]

When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0, EL1 and EL2.

0b0 This control does not cause exceptions to be routed from EL0, EL1 or EL2 to EL3.

0b1 GPFs at EL0, EL1 and EL2 are routed to EL3 and reported as Granule Protection Check
exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D128En, bit [47]

When FEAT_D128 is implemented:

128-bit System Register trap control. Enables access to 128-bit System Registers via MRRS, MSRR
instructions.

• MRRS and MSRR accesses from EL1 and EL2 using AArch64 to the following registers are
trapped and reported using an ESR_ELx.EC value of 0x14:

— TTBR0_EL1.

— TTBR1_EL1.

— RCWMASK_EL1, RCWSMASK_EL1.

— PAR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8208
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• MRRS and MSRR accesses from EL2 using AArch64 to the following registers are trapped
and reported using an ESR_ELx.EC value of 0x14:

— TTBR1_EL2 and accesses using the register name TTBR1_EL12.

— TTBR0_EL2 and accesses using the register name TTBR0_EL12.

— VTTBR_EL2.

0b0 EL1 and EL2 accesses to the specified registers are disabled, and trapped to EL3.

0b1 This control does not cause any instructions to be trapped.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AIEn, bit [46]

When FEAT_AIE is implemented:

MAIR2_ELx, AMAIR2_ELx Register access trap control.

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and
reported using an ESR_ELx.EC value of 0x18:

— AMAIR2_EL1.

— MAIR2_EL1.

• Accesses from EL2 using AArch64 to the following registers are trapped and reported using
an ESR_ELx.EC value of 0x18:

— AMAIR2_EL2 and accesses using the register name AMAIR2_EL12.

— MAIR2_EL2 and accesses using the register name MAIR2_EL12.

0b0 EL1 and EL2 accesses to the specific registers are disabled, and trapped to EL3. The
values in these registers are treated as 0.

0b1 This control does not cause any instructions to be trapped.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PIEn, bit [45]

When FEAT_S1PIE is implemented, or FEAT_S2PIE is implemented, or FEAT_S1POE is
implemented or FEAT_S2POE is implemented:

Permission Indirection, Overlay Register access trap control. Enables access to Permission
Indirection and Overlay registers.

• Accesses from EL0, EL1 and EL2 using AArch64 to the following registers are trapped and
reported using an ESR_ELx.EC value of 0x18:

— POR_EL0.

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and
reported using an ESR_ELx.EC value of 0x18:

— PIRE0_EL1.

— PIR_EL1.

— POR_EL1.

— S2POR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8209
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• Accesses from EL2 using AArch64 to the following registers are trapped and reported using
an ESR_ELx.EC value of 0x18:

— PIRE0_EL2 and accesses using the register name PIRE0_EL12.

— PIR_EL2 and accesses using the register name PIR_EL12.

— POR_EL2 and accesses using the register name POR_EL12.

— S2PIR_EL2.

0b0 EL0, EL1 and EL2 accesses to the specific registers are disabled, and trapped to EL3.
The values in these registers are treated as 0.

0b1 This control does not cause any instructions to be trapped.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR2En, bit [44]

When FEAT_SCTLR2 is implemented:

SCTLR2_ELx register trap control. Enables access to SCTLR2_EL1 and SCTLR2_EL2 registers.

0b0 EL1 and EL2 accesses to SCTLR2_EL1 and SCTLR2_EL2 registers are disabled, and
trapped to EL3. The values in these registers are treated as 0.

0b1 This control does not cause any instructions to be trapped.

Traps are reported using an ESR_EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR2En, bit [43]

When FEAT_TCR2 is implemented:

TCR2_ELx register trap control. Enables access to TCR2_EL1 and TCR2_EL2 registers.

0b0 EL1 and EL2 accesses to TCR2_EL1 and TCR2_EL2 registers are disabled, and
trapped to EL3. The values in these registers are treated as 0.

0b1 This control does not cause any instructions to be trapped.

Traps are reported using an ESR_EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RCWMASKEn, bit [42]

When FEAT_THE is implemented:

RCW and RCWS Mask register trap control. Enables access to RCWMASK_EL1,
RCWSMASK_EL1.

0b0 EL1 and EL2 accesses to RCWMASK_EL1 and RCWSMASK_EL1 registers are
disabled, and trapped to EL3.

0b1 This control does not cause any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8210
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Traps for MRS, MSR access are reported using an ESR_EL3.EC value of 0x18.

Traps for MRRS, MSRR access are reported using an ESR_EL3.EC value of 0x14.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnTP2, bit [41]

When FEAT_SME is implemented:

Traps instructions executed at EL2, EL1, and EL0 that access TPIDR2_EL0 to EL3. The exception
is reported using ESR_ELx.EC value 0x18.

0b0 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRNDR, bit [40]

When FEAT_RNG_TRAP is implemented:

Controls trapping of reads of RNDR and RNDRRS. The exception is reported using ESR_ELx.EC
value 0x18.

0b0 This control does not cause RNDR and RNDRRS to be trapped.

When FEAT_RNG is implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.

When FEAT_RNG is not implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value 0b0000.

• MRS reads of RNDR and RNDRRS are UNDEFINED.

0b1 ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.

Any attempt to read RNDR or RNDRRS is trapped to EL3.

When FEAT_RNG is not implemented, Arm recommends that SCR_EL3.TRNDR is initialized
before entering Exception levels below EL3 and not subsequently changed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

GCSEn, bit [39]

When FEAT_GCS is implemented:

Guarded Control Stack enable. Controls access to the Guarded Control Stack registers from EL2,
EL1, and EL0, and controls whether the Guarded Control Stack is enabled.

The Guarded Control Stack registers trapped by this mechanism are:

• GCSCRE0_EL1.

• GCSCR_EL1.

• GCSCR_EL2.

• GCSCR_EL12.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8211
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• GCSPR_EL0.

• GCSPR_EL1.

• GCSPR_EL2.

• GCSPR_EL12.

0b0 Trap read and write accesses to all Guarded Control Stack registers to EL3. All Guarded
Control Stack behavior is disabled at EL2, EL1, and EL0.

0b1 This control does not cause any instructions to be trapped, and does not disable Guarded
Control Stack behavior at EL2, EL1, or EL0.

Traps are reported using an ESR_EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HXEn, bit [38]

When FEAT_HCX is implemented:

Enables access to the HCRX_EL2 register at EL2 from EL3.

0b0 Accesses at EL2 to HCRX_EL2 are trapped to EL3. Indirect reads of HCRX_EL2
return 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ADEn, bit [37]

When FEAT_LS64_ACCDATA is implemented:

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

0b0 Accesses to ACCDATA_EL1 at EL1 and EL2 are trapped to EL3, unless the accesses
are trapped to EL2 by the EL2 fine-grained trap.

0b1 This control does not cause accesses to ACCDATA_EL1 to be trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled,
they take priority over this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [36]

When FEAT_LS64_ACCDATA is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

0b0 EL0 execution of an ST64BV0 instruction is trapped to EL3, unless it is trapped to EL1
by SCTLR_EL1.EnAS0, or to EL2 by either HCRX_EL2.EnAS0 or
SCTLR_EL2.EnAS0.

EL1 execution of an ST64BV0 instruction is trapped to EL3, unless it is trapped to EL2
by HCRX_EL2.EnAS0.

EL2 execution of an ST64BV0 instruction is trapped to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8212
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [35]

When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and AMEVCNTVOFF1<n>_EL2 at EL2 are
trapped to EL3. Indirect reads of the virtual offset registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and AMEVCNTVOFF1<n>_EL2 are not
affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [34]

When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and
EL2.

0b0 EL0, EL1 and EL2 accesses to TSTART, TCOMMIT, TTEST and TCANCEL
instructions are UNDEFINED.

0b1 This control does not cause any instruction to be UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [33:30]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum
delay in taking a trap of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [29]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by
SCR_EL3.TWE.

Traps are reported using an ESR_ELx.EC value of 0x01.

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles defined in
SCR_EL3.TWEDEL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8213
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECVEn, bit [28]

When FEAT_ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the value of CNTPOFF_EL2
is treated as 0 for all purposes other than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FGTEn, bit [27]

When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by
HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and
HFGWTR_EL2, and controls access to those registers.

Note

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements the
MDCR_EL3.TDCC traps.

0b0 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers are trapped to EL3, and
the traps to EL2 controlled by those registers are disabled.

0b1 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers are not trapped to EL3 by
this mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value
of 0x18 and its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [26]

When FEAT_MTE2 is implemented:

Allocation Tag Access. Controls access to Allocation Tags, System registers for Memory tagging,
and prevention of Tag checking, at EL2, EL1 and EL0.

0b0 Access to Allocation Tags is prevented at EL2, EL1, and EL0.

Accesses at EL1 and EL2 to GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or trapped to a lower Exception level are trapped
to EL3.

Accesses at EL2 using MRS or MSR with the register name TFSR_EL12 that are not
UNDEFINED are trapped to EL3.

Memory accesses at EL2, EL1, and EL0 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL2, EL1, and EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8214
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This control does not prevent Tag checking at EL2, EL1, and EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnSCXT, bit [25]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enables access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers.

0b0 Accesses at EL0, EL1 and EL2 to SCXTNUM_EL0, SCXTNUM_EL1, or
SCXTNUM_EL2 registers are trapped to EL3 if they are not trapped by a higher priority
exception, and the values of these registers are treated as 0.

0b1 This control does not cause any accesses to be trapped, or register values to be treated
as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]

When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

0b0 Accesses to the specified registers from EL1 and EL2 generate a Trap exception to EL3.

0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [20]

When FEAT_DoubleFault is implemented:

Non-maskable External Aborts. Controls whether PSTATE.A masks SError exceptions at EL3.

0b0 SError exceptions are not taken at EL3 if PSTATE.A == 1.

0b1 SError exceptions are taken at EL3 regardless of the value of PSTATE.A.

This field is ignored by the PE and treated as zero when all of the following are true:

• FEAT_DoubleFault2 is not implemented.

• SCR_EL3.EA is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8215
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

EASE, bit [19]

When FEAT_DoubleFault is implemented:

External aborts to SError exception vector.

0b0 Synchronous External abort exceptions taken to EL3 are taken to the appropriate
synchronous exception vector offset from VBAR_EL3.

0b1 Synchronous External abort exceptions taken to EL3 are taken to the appropriate SError
exception vector offset from VBAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EEL2, bit [18]

When FEAT_SEL2 is implemented:

Secure EL2 Enable.

0b0 All behaviors associated with Secure EL2 are disabled. All registers, including timer
registers, defined by FEAT_SEL2 are UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than
reading or writing the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure
EL1, is trapped to Secure EL2, using the EC value of ESR_EL2.EC== 0x3:

— A read or write of the SCR.

— A read or write of the NSACR.

— A read or write of the MVBAR.

— A read or write of the SDCR.

— Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure
EL1, is trapped to Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

— Execution of an SRS instruction that uses R13_mon.

— Execution of an MRS (Banked register) or MSR (Banked register) instruction that
would access SPSR_mon, R13_mon, or R14_mon.

Note

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in Secure EL1 using
AArch32 are trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if
SCR_EL3.EEL2 == 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8216
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
API, bit [17]

When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:

Controls the use of the following instructions related to Pointer Authentication.

• PACGA, which is always enabled.

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB,
PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA,
BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and
LDRAB when:

— In EL0, when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and the
associated SCTLR_EL1.En<N><M> == 1.

— In EL0, when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, and the
associated SCTLR_EL2.En<N><M> == 1.

— In EL1, when the associated SCTLR_EL1.En<N><M> == 1.

— In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

0b0 The use of any instruction related to pointer authentication in any Exception level
except EL3 when the instructions are enabled are trapped to EL3 unless they are trapped
to EL2 as a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

Traps are reported using an ESR_ELx.EC value of 0x09.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more
information, see PAC generation and verification keys.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• PACGA.

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB,
PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB,
BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

— In Non-secure EL0, when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1},
and the associated SCTLR_EL1.En<N><M>== 1.

— In Non-secure EL0, when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, and
the associated SCTLR_EL2.En<N><M> == 1.

— In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.

— In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.

— In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

0b0 The use of any instruction related to pointer authentication in any Exception level
except EL3 when the instructions are enabled are trapped to EL3 unless they are trapped
to EL2 as a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8217
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [16]

When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following
registers, using an ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to
EL2 as a result of the HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

0b0 Access to the registers holding "key" values for pointer authentication from EL1 or EL2
are trapped to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit
or other traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see PAC generation and verification keys.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [15]

When FEAT_RAS is implemented:

Trap accesses of Error Record registers. Enables a trap to EL3 on accesses of Error Record registers.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses of the specified Error Record registers at EL2 and EL1 are trapped to EL3,
unless the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

• MRS accesses to ERRIDR_EL1 and ERXFR_EL1.

• If FEAT_RASv1p1 is implemented, MRS and MSR accesses to ERXMISC2_EL1 and
ERXMISC3_EL1.

• If FEAT_RASv2 is implemented, MRS accesses to ERXGSR_EL1.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• MRC accesses to ERRIDR, ERXFR, and ERXFR2.

• If FEAT_RASv1p1 is implemented, MRC and MCR accesses to ERXMISC4, ERXMISC5,
ERXMISC6, and ERXMISC7.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8218
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Unless the instruction generates a higher priority exception, trapped instructions generate an
exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

— ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.

— ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]

When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1,
and LORID_EL1 registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 and EL2 accesses to the LOR registers that are not UNDEFINED are trapped to EL3,
unless it is trapped HCR_EL2.TLOR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from any Security state and both
Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at any Exception level lower than EL3 is
trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state and it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state,
see Wait for Event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from any Security state and both
Execution states, reported using an ESR_ELx.EC value of 0x01.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8219
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at any Exception level lower than EL3 is
trapped to EL3, if the instruction would otherwise have caused the PE to enter a
low-power state and it is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
Wait for Interrupt mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from
AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

0b0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1, CNTPS_CTL_EL1,
and CNTPS_CVAL_EL1 are trapped to EL3 when Secure EL2 is disabled. If Secure
EL2 is enabled, the behavior is as if the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Note

Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3. These
registers are not accessible at EL0.

When FEAT_RME is implemented and Secure state is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [10]

When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

Execution state control for lower Exception levels.

0b0 Lower levels are all AArch32.

0b1 The next lower level is AArch64.

If EL2 is present:

• EL2 is AArch64.

• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:

• EL1 is AArch64.

• EL0 is determined by the Execution state described in the current process state
when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state
is not supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and
SCR_EL3.{EEL2, NS} == {1, 0}, the Effective value of this bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8220
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction execution from
memory marked in the first stage of translation as being Non-secure.

0b0 Secure state instruction execution from memory marked in the first stage of translation
as being Non-secure is permitted.

0b1 Secure state instruction execution from memory marked in the first stage of translation
as being Non-secure is not permitted.

When FEAT_RME is implemented and Secure state is not implemented, this bit is RES0.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also
used to determine instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the
current Security state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC
value of 0x00.

0b0 HVC instructions are UNDEFINED.

0b1 HVC instructions are enabled at EL3, EL2, and EL1.

Note

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled, at Secure EL1. Any
resulting exception is taken from the current Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from any Security state
and both Execution states, reported using an ESR_ELx.EC value of 0x00.

0b0 SMC instructions are enabled at EL3, EL2 and EL1.

0b1 SMC instructions are UNDEFINED.

Note
SMC instructions are always UNDEFINED at EL0. Any resulting exception is taken from the current
Exception level to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap
has priority over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8221
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError exception routing.

0b0 When executing at Exception levels below EL3, External aborts and SError exceptions
are not taken to EL3.

In addition, when executing at EL3:

• SError exceptions are not taken.

• External aborts are taken to EL3.

0b1 When executing at any Exception level, External aborts and SError exceptions are taken
to EL3.

This field has no effect on the routing of virtual SError exceptions.

For more information, see Establishing the target Exception level of an asynchronous exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

0b0 When executing at Exception levels below EL3, physical FIQ interrupts are not taken
to EL3.

When executing at EL3, physical FIQ interrupts are not taken.

0b1 When executing at any Exception level, physical FIQ interrupts are taken to EL3.

For more information, see Establishing the target Exception level of an asynchronous exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

0b0 When executing at Exception levels below EL3, physical IRQ interrupts are not taken
to EL3.

When executing at EL3, physical IRQ interrupts are not taken.

0b1 When executing at any Exception level, physical IRQ interrupts are taken to EL3.

For more information, see Establishing the target Exception level of an asynchronous exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [0]

When FEAT_RME is implemented:

Non-secure bit. This field is used in combination with SCR_EL3.NSE to select the Security state of
EL2 and lower Exception levels.

NSE NS Meaning

0b0 0b0 Secure.

0b0 0b1 Non-secure.

0b1 0b0 Reserved.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8222
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When Secure state is not implemented, SCR_EL3.NS is RES1 and its effective value is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure bit.

0b0 Indicates that EL0 and EL1 are in Secure state.

When FEAT_SEL2 is implemented and SCR_EL3.EEL2 == 1, then EL2 is using
AArch64 and in Secure state.

0b1 Indicates that Exception levels lower than EL3 are in Non-secure state, so memory
accesses from those Exception levels cannot access Secure memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCR_EL3;

MSR SCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8223
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.156 SCTLR2_EL1, System Control Register (EL1)

The SCTLR2_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configurations

This register is present only when FEAT_SCTLR2 is implemented. Otherwise, direct accesses to
SCTLR2_EL1 are UNDEFINED.

Attributes

SCTLR2_EL1 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

EnIDCP128, bit [6]

When FEAT_SYSREG128 is implemented:

Enables access to IMPLEMENTATION DEFINED 128-bit System registers.

0b0 Accesses at EL0 to IMPLEMENTATION DEFINED 128-bit System registers are trapped to
EL1 using an ESR_EL1.EC value of 0x14, unless the access generates a higher priority
exception.

Disables the functionality of the 128-bit IMPLEMENTATION DEFINED System registers
that are accessible at EL1.

0b1 No accesses are trapped by this control.

This field is ignored by the PE and treated as zero when any of the following are true:

• EL3 is implemented and SCR_EL3.SCTLR2En == 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.SCTLR2En is 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 7 6 5 4 3 2

RES0

1 0

EnIDCP128
EASE

NMEA
EnADERR

EnANERR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8224
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EASE, bit [5]

When FEAT_DoubleFault2 is implemented:

External Aborts to SError exception vector.

0b0 Synchronous External abort exceptions taken to EL1 are taken to the appropriate
synchronous exception vector offset from VBAR_EL1.

0b1 Synchronous External abort exceptions taken to EL1 are taken to the appropriate SError
exception vector offset from VBAR_EL1.

This field is ignored by the PE and treated as zero when any of the following are true:

• EL3 is implemented and SCR_EL3.SCTLR2En == 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.SCTLR2En is 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnANERR, bit [4]

When FEAT_ANERR is implemented:

Enable Asynchronous Normal Read Error.

0b0 External aborts on Normal memory reads generate synchronous Data Abort exceptions
in the EL1&0 translation regime.

0b1 External aborts on Normal memory reads generate synchronous Data Abort or
asynchronous SError exceptions in the EL1&0 translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SVE register loads, when FEAT_SME is implemented and the PE is in Streaming SVE mode.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Normal memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 0 might have a performance impact for Normal memory reads.

This field is ignored by the PE and treated as zero when any of the following are true:

• EL3 is implemented and SCR_EL3.SCTLR2En == 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.SCTLR2En is 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.EnSNERR is 1.

This field is ignored by the PE and treated as one when all of the following are true:

• FEAT_ADERR is implemented.

• ID_AA64MMFR3_EL1.ANERR reads as 0b0010.

• SCTLR2_EL1.EnADERR is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8225
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnADERR, bit [3]

When FEAT_ADERR is implemented:

Enable Asynchronous Device Read Error.

0b0 External aborts on Device memory reads generate synchronous Data Abort exceptions
in the EL1&0 translation regime.

0b1 External aborts on Device memory reads generate synchronous Data Abort or
asynchronous SError exceptions in the EL1&0 translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SIMD&FP register loads.

• SVE register loads.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Device memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 0 might have a performance impact for Device memory reads.

This field is ignored by the PE and treated as zero when any of the following are true:

• EL3 is implemented and SCR_EL3.SCTLR2En == 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.SCTLR2En is 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.EnSDERR is 1.

This field is ignored by the PE and treated as one when all of the following are true:

• FEAT_ANERR is implemented.

• ID_AA64MMFR3_EL1.ADERR reads as 0b0010.

• SCTLR2_EL1.EnANERR is 1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8226
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
NMEA, bit [2]

When FEAT_DoubleFault2 is implemented:

Non-maskable External Aborts. Controls whether PSTATE.A masks SError exceptions at EL1.

0b0 SError exceptions are not taken at EL1 if PSTATE.A == 1, unless routed to a higher
Exception level.

0b1 SError exceptions are taken at EL1 regardless of the value of PSTATE.A, unless routed
to a higher Exception level.

This field is ignored by the PE and treated as zero when any of the following are true:

• EL3 is implemented and SCR_EL3.SCTLR2En == 0.

• EL2 is implemented and enabled in the current Security state and the Effective value of
HCRX_EL2.SCTLR2En is 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [1:0]

Reserved, RES0.

Accessing SCTLR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.SCTLR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x278];
 else
 X[t, 64] = SCTLR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8227
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SCTLR2_EL2;
 else
 X[t, 64] = SCTLR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR2_EL1;

MSR SCTLR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.SCTLR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x278] = X[t, 64];
 else
 SCTLR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 SCTLR2_EL2 = X[t, 64];
 else
 SCTLR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCTLR2_EL1 = X[t, 64];

MRS <Xt>, SCTLR2_EL12

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8228
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x278];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCTLR2_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = SCTLR2_EL1;
 else
 UNDEFINED;

MSR SCTLR2_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x278] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCTLR2_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 SCTLR2_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8229
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.157 SCTLR2_EL2, System Control Register (EL2)

The SCTLR2_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls also apply to
execution at EL0.

Configurations

This register is present only when FEAT_SCTLR2 is implemented. Otherwise, direct accesses to
SCTLR2_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SCTLR2_EL2 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

EnIDCP128, bit [6]

When FEAT_SYSREG128 is implemented:

Enables access to IMPLEMENTATION DEFINED 128-bit System registers.

0b0 Accesses at EL0 to IMPLEMENTATION DEFINED 128-bit System registers are trapped to
EL2 using an ESR_EL2.EC value of 0x14, unless the access generates a higher priority
exception.

Disables the functionality of the 128-bit IMPLEMENTATION DEFINED System registers
that are accessible at EL2.

0b1 No accesses are trapped by this control.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.SCTLR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 7 6 5 4 3 2 1 0

EnIDCP128
EASE
EnANERR

RES0
EMEC

NMEA
EnADERR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8230
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EASE, bit [5]

When FEAT_DoubleFault2 is implemented:

External Aborts to SError exception vector.

0b0 Synchronous External abort exceptions taken to EL2 are taken to the appropriate
synchronous exception vector offset from VBAR_EL2.

0b1 Synchronous External abort exceptions taken to EL2 are taken to the appropriate SError
exception vector offset from VBAR_EL2.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.SCTLR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnANERR, bit [4]

When FEAT_ANERR is implemented:

Enable Asynchronous Normal Read Error.

0b0 External aborts on Normal memory reads generate synchronous Data Abort exceptions
in the EL2 and EL2&0 translation regimes.

0b1 External aborts on Normal memory reads generate synchronous Data Abort or
asynchronous SError exceptions in the EL2 and EL2&0 translation regimes.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SVE register loads, when FEAT_SME is implemented and the PE is in Streaming SVE mode.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Normal memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 0 might have a performance impact for Normal memory reads.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.SCTLR2En == 0.

Otherwise, this field is ignored by the PE and treated as one when all of the following are true:

• FEAT_ADERR is implemented.

• ID_AA64MMFR3_EL1.ANERR reads as 0b0010.

• SCTLR2_EL2.EnADERR is 1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8231
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

EnADERR, bit [3]

When FEAT_ADERR is implemented:

Enable Asynchronous Device Read Error.

0b0 External aborts on Device memory reads generate synchronous Data Abort exceptions
in the EL2 and EL2&0 translation regimes.

0b1 External aborts on Device memory reads generate synchronous Data Abort or
asynchronous SError exceptions in the EL2 and EL2&0 translation regimes.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SIMD&FP register loads.

• SVE register loads.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Device memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 0 might have a performance impact for Device memory reads.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.SCTLR2En == 0.

Otherwise, this field is ignored by the PE and treated as one when all of the following are true:

• FEAT_ANERR is implemented.

• ID_AA64MMFR3_EL1.ADERR reads as 0b0010.

• SCTLR2_EL2.EnANERR is 1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [2]

When FEAT_DoubleFault2 is implemented:

Non-maskable External Aborts. Controls whether PSTATE.A masks SError exceptions at EL2.

0b0 SError exceptions are not taken at EL2 if PSTATE.A == 1, unless routed to a higher
Exception level.

0b1 SError exceptions are taken at EL2 regardless of the value of PSTATE.A, unless routed
to a higher Exception level.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.SCTLR2En == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8232
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EMEC, bit [1]

When FEAT_MEC is implemented:

Enables MEC. When enabled, memory accesses to the Realm physical address space are associated
with a MECID.

0b0 MEC is not enabled for the Realm physical address space.

0b1 MEC is enabled for the Realm physical address space.

This bit is permitted to be cached in a TLB.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.SCTLR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [0]

Reserved, RES0.

Accessing SCTLR2_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name SCTLR2_EL2 or SCTLR2_EL1 are not guaranteed to be ordered with respect to accesses using the
other register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8233
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCTLR2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR2_EL2;

MSR SCTLR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCTLR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCTLR2_EL2 = X[t, 64];

MRS <Xt>, SCTLR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.SCTLR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x278];
 else
 X[t, 64] = SCTLR2_EL1;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8234
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SCTLR2_EL2;
 else
 X[t, 64] = SCTLR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR2_EL1;

MSR SCTLR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.SCTLR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x278] = X[t, 64];
 else
 SCTLR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.SCTLR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 SCTLR2_EL2 = X[t, 64];
 else
 SCTLR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCTLR2_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8235
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.158 SCTLR2_EL3, System Control Register (EL3)

The SCTLR2_EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

Configurations

This register is present only when FEAT_SCTLR2 is implemented. Otherwise, direct accesses to
SCTLR2_EL3 are UNDEFINED.

Attributes

SCTLR2_EL3 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

EnANERR, bit [4]

When FEAT_ANERR is implemented:

Enable Asynchronous Normal Read Error.

0b0 External aborts on Normal memory reads generate synchronous Data Abort exceptions
in the EL3 translation regime.

0b1 External aborts on Normal memory reads generate synchronous Data Abort or
asynchronous SError exceptions in the EL3 translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SVE register loads, when FEAT_SME is implemented and the PE is in Streaming SVE mode.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Normal memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 0 might have a performance impact for Normal memory reads.

This field is ignored by the PE and treated as one when all of the following are true:

• FEAT_ADERR is implemented.

• ID_AA64MMFR3_EL1.ANERR reads as 0b0010.

RES0

63 32

RES0

31 5 4 3 2 1 0

EnANERR
EnADERR

RES0
EMEC

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8236
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• SCTLR2_EL3.EnADERR is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EnADERR, bit [3]

When FEAT_ADERR is implemented:

Enable Asynchronous Device Read Error.

0b0 External aborts on Device memory reads generate synchronous Data Abort exceptions
in the EL3 translation regime.

0b1 External aborts on Device memory reads generate synchronous Data Abort or
asynchronous SError exceptions in the EL3 translation regime.

It is implementation-specific whether this field applies to memory reads generated by each of the
following:

• SIMD&FP register loads.

• SVE register loads.

• SME register loads.

• LD<op>, SWP and CAS{P} Atomic instructions that return a value to the PE.

• LD64B and ST64BV{0} instructions that return a value to the PE.

• RCW instructions that return a value to the PE.

Setting this field to 0 does not guarantee that the PE is able to take a synchronous Data Abort
exception for an External abort on a Device memory read in every case. There might be
implementation-specific circumstances when an error on a load cannot be taken synchronously.
These circumstances should be rare enough that treating such occurrences as fatal does not cause a
significant increase in failure rate.

Setting this field to 0 might have a performance impact for Device memory reads.

This field is ignored by the PE and treated as one when all of the following are true:

• FEAT_ANERR is implemented.

• ID_AA64MMFR3_EL1.ADERR reads as 0b0010.

• SCTLR2_EL3.EnANERR is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [2]

Reserved, RES0.

EMEC, bit [1]

When FEAT_MEC is implemented:

Enables MEC. When enabled, memory accesses to the Realm physical address space are associated
with MECID_RL_A_EL3.

0b0 MEC is not enabled for the Realm physical address space.

0b1 MEC is enabled for the Realm physical address space.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8237
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [0]

Reserved, RES0.

Accessing SCTLR2_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR2_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR2_EL3;

MSR SCTLR2_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCTLR2_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8238
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.159 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configurations

AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register SCTLR[31:0].

Attributes

SCTLR_EL1 is a 64-bit register.

Field descriptions

TIDCP, bit [63]

When FEAT_TIDCP1 is implemented:

Trap IMPLEMENTATION DEFINED functionality. When the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}, traps EL0 accesses to the encodings reserved for IMPLEMENTATION DEFINED
functionality to EL1.

0b0 No instructions accessing the System register or System instruction spaces are trapped
by this mechanism.

63 62 61 60 59 58 57 56 55 54 53 52 51 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37 36 35 34 33 32

TIDCP
SPINTMASK

NMI
EnTP2

TCSO
TCSO0

EPAN
EnALS

EnAS0
EnASR

TME
TME0

CMOW
MSCEn

RES0
BT0

BT1
ITFSB

ATA0
ATA

DSSBS
TWEDEn

TMT0
TMT

31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
UMA

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8239
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Instructions accessing the following System register or System instruction spaces are
trapped to EL1 by this mechanism:

• In AArch64 state, EL0 access to the encodings in the following reserved
encoding spaces are trapped and reported using EC syndrome 0x18:

— IMPLEMENTATION DEFINED System instructions, which are accessed using
SYS and SYSL, with CRn == {11, 15}.

— IMPLEMENTATION DEFINED System registers, which are accessed using
MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, EL0 MCR and MRC access to the following encodings are
trapped and reported using EC syndrome 0x03:

— All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8},
opc2 == {0-7}.

— All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8},
opc2 == {0-7}.

— All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2
== {0-7}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL1.NMI is 1, controls whether PSTATE.SP acts as an
interrupt mask, and controls the value of PSTATE.ALLINT on taking an exception to EL1.

0b0 Does not cause PSTATE.SP to mask interrupts.

PSTATE.ALLINT is set to 1 on taking an exception to EL1.

0b1 When PSTATE.SP is 1 and execution is at EL1, an IRQ or FIQ interrupt that is targeted
to EL1 is masked regardless of any denotion of Superpriority.

PSTATE.ALLINT is set to 0 on taking an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

0b0 This control does not affect interrupt masking behavior.

0b1 This control enables all of the following:

• The use of the PSTATE.ALLINT interrupt mask.

• IRQ and FIQ interrupts to have Superpriority as an additional attribute.

• PSTATE.SP to be used as an interrupt mask.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8240
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

EnTP2, bit [60]

When FEAT_SME is implemented:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL1, or to EL2 when EL2 is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The exception is
reported using ESR_ELx.EC value 0x18.

0b0 This control causes execution of these instructions at EL0 to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCSO, bit [59]

When FEAT_MTE_STORE_ONLY is implemented:

Tag Checking Store Only.

0b0 This field has no effect on Tag checking.

0b1 Load instructions executed in EL1 are Tag Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCSO0, bit [58]

When FEAT_MTE_STORE_ONLY is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, Tag Checking Store Only in EL0.

0b0 This field has no effect on Tag checking.

0b1 Load instructions executed in EL0 are Tag Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data
access to a page with stage 1 EL0 instruction access permission generates a Permission fault as a
result of the Privileged Access Never mechanism.

0b0 No additional Permission faults are generated by this mechanism.

0b1 An EL1 data access to a page with stage 1 EL0 data access permission or stage 1 EL0
instruction access permission generates a Permission fault.

Any speculative data accesses that would generate a Permission fault as a result of
PSTATE.PAN = 1 if the accesses were not speculative, will not cause an allocation into
a cache.

This bit is permitted to be cached in a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8241
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]

When FEAT_LS64 is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps execution of an LD64B or
ST64B instruction at EL0 to EL1.

0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an
ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]

When FEAT_LS64_ACCDATA is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps execution of an ST64BV0
instruction at EL0 to EL1.

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]

When FEAT_LS64_V is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps execution of an ST64BV
instruction at EL0 to EL1.

0b0 Execution of an ST64BV instruction at EL0 is trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8242
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL1.

0b0 Any attempt to execute a TSTART instruction at EL1 is trapped to EL1, unless
HCR_EL2.TME or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at
EL1.

0b1 This control does not cause any TSTART instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME0, bit [52]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL0.

0b0 Any attempt to execute a TSTART instruction at EL0 is trapped to EL1, unless
HCR_EL2.TME or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at
EL0.

0b1 This control does not cause any TSTART instruction to be trapped.

If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL1, the transaction fails with a TRIVIAL
failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT0, bit [50]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL0, the transaction fails with a TRIVIAL
failure cause.

If the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8243
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the
minimum delay in taking a trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by
SCTLR_EL1.nTWE.

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles defined in
SCTLR_EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL1.

0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL1.

When SCR_EL3.ATA == 1 and HCR_EL2.ATA == 1, controls access to Allocation Tags and Tag
Check operations in EL1.

0b0 Access to Allocation Tags is prevented at EL1.

Memory accesses at EL1 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL1.

Tag Checked memory accesses at EL1 are subject to a Tag Check operation.

The Tag Check operation depends on the type of tag at the memory being accessed:

• For Allocation Tagged memory, an Allocation Tag Check operation.

• If FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged
memory, a Canonical Tag Check operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8244
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0.

When SCR_EL3.ATA == 1, HCR_EL2.ATA == 1, and the Effective value of HCR_EL2.{E2H,
TGE} is not {1, 1}, controls access to Allocation Tags and Tag Check operations in EL0.

0b0 Access to Allocation Tags is prevented at EL0.

Memory accesses at EL0 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL0.

Tag Checked memory accesses at EL0 are subject to a Tag Check operation.

The Tag Check operation depends on the type of tag at the memory being accessed:

• For Allocation Tagged memory, an Allocation Tag Check operation.

• If FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged
memory, a Canonical Tag Check operation.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, controls
the effect of Tag Check Faults due to Loads and Stores in EL0.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8245
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls
whether on exception entry into EL1, all Tag Check Faults due to instructions executed before
exception entry, that are reported asynchronously, are synchronized into TFSRE0_EL1 and
TFSR_EL1 registers.

0b0 Tag Check Faults are not synchronized on entry to EL1.

0b1 Tag Check Faults are synchronized on entry to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT1, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

0b0 When the PE is executing at EL1, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL1, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

0b0 When the PE is executing at EL0, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

When the value of the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the value of
SCTLR_EL1.BT0 has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8246
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

MSCEn, bit [33]

When FEAT_MOPS is implemented and the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}:

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and
Memory Set instructions at EL0.

0b0 Execution of the Memory Copy and Memory Set instructions is UNDEFINED at EL0.

0b1 This control does not cause any instructions to be UNDEFINED.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CMOW, bit [32]

When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

0b0 These instructions executed at EL0 with stage 1 read permission, but without stage 1
write permission, do not generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL1.UCI==1, these instructions executed at EL0 with
stage 1 read permission, but without stage 1 write permission, generate a stage 1
permission fault.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.

• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APIAKey_EL1 key,
in the EL1&0 translation regime.

0b0 Pointer authentication of instruction addresses, using the APIAKey_EL1 key, is not
enabled.

0b1 Pointer authentication of instruction addresses, using the APIAKey_EL1 key, is
enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8247
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APIBKey_EL1 key,
in the EL1&0 translation regime.

0b0 Pointer authentication of instruction addresses, using the APIBKey_EL1 key, is not
enabled.

0b1 Pointer authentication of instruction addresses, using the APIBKey_EL1 key, is
enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store Multiple can
have an interrupt taken during the sequence memory accesses, and the memory accesses
are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8248
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nTLSMD, bit [28]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APDAKey_EL1 key,
in the EL1&0 translation regime.

0b0 Pointer authentication of data addresses, using the APDAKey_EL1 key, is not enabled.

0b1 Pointer authentication of data addresses, using the APDAKey_EL1 key, is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC,
DC CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

0b0 Execution of the specified instructions at EL0 using AArch64 is trapped.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8249
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, or clean and invalidate instruction that operates by
VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate by VA to the Point of Unification
instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation
regime.

0b0 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are little-endian.

0b1 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions
executed at EL1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8250
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

0b0 The taking of an exception to EL1 is not a context synchronizing event.

0b1 The taking of an exception to EL1 is a context synchronizing event.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on
exception entry to EL1, so that a direct read of the register after exception entry sees the
indirectly written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.

• Before the operational pseudocode of each ERET instruction executed at EL1.

If FEAT_DoubleFault2 is implemented, the PE is in Non-debug state, and the Effective value of
SCTLR2_EL1.NMEA is 1, then SCTLR_EL1.IESB is ignored and the PE behaves as if
SCTLR_EL1.IESB is 1 for all purposes other than direct read of the register.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL1
and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8251
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TSCXT, bit [20]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL1, or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE
is 1.

The value of SCXTNUM_EL0 is treated as 0.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL1&0 translation regime is forced to XN for accesses
from software executing at EL1 or EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8252
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped.

Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the instructions this trap
applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8253
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APDBKey_EL1 key,
in the EL1&0 translation regime.

0b0 Pointer authentication of data addresses, using the APDBKey_EL1 key, is not enabled.

0b1 Pointer authentication of data addresses, using the APDBKey_EL1 key, is enabled.

Note
This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

0b0 All instruction access to Stage 1 Normal memory from EL0 and EL1 are Stage 1
Non-cacheable.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of instruction access to Stage 1
Normal memory from EL0 and EL1.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0
and EL1 are Cacheable regardless of the value of the SCTLR_EL1.I bit.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

0b0 An exception return from EL1 is not a context synchronizing event

0b1 An exception return from EL1 is a context synchronizing event

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8254
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on
exception return is synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

Enable EL0 access to the following System instructions:

• CFPRCTX, DVPRCTX and CPPRCTX instructions.

• If FEAT_SPECRES2 is implemented, COSPRCTX.

• CFP RCTX, DVP RCTX and CPP RCTX instructions.

• If FEAT_SPECRES2 is implemented, COSP RCTX.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1,
or to EL2 when it is implemented and enabled for the current Security state and
HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D,
A, I, F} masks to EL1, or to EL2 when it is implemented and enabled for the current Security state
and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

0b0 Any attempt at EL0 using AArch64 to execute an MRS, MSR(register), or MSR(immediate)
instruction that accesses the DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SED, bit [8]

When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0b0 SETEND instruction execution is enabled at EL0 using AArch32.

0b1 SETEND instructions are UNDEFINED at EL0 using AArch32 and any attempt at EL0 to
access a SETEND instruction generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1,
reported using an ESR_ELx.EC value of 0x00.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8255
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

ITD, bit [7]

When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0b0 All IT instruction functionality is enabled at EL0 using AArch32.

0b1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED and
generates an exception, reported using an ESR_ELx.EC value of 0x00, to EL1 or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE
is 1:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 0b1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions.

— 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control
by an instruction in an IT block.

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the
SCTLR_EL2, HSCTLR, and SCTLR.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Otherwise:

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8256
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain
conditions.

The following instructions generate an Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for access:

• LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH,
LDLAR, LDLARH.

• STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH.

If FEAT_LRCPC3 is implemented, the following instructions generate an Alignment fault if all
bytes being accessed for a single register are not within a single 16-byte quantity, aligned to 16 bytes
for access:

• LDIAPP, STILP, the post index versions of LDAPR and the pre index versions of STLR.

• If Advanced SIMD and floating-point instructions are implemented, LDAPUR (SIMD&FP),
LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP).

0b0 Unaligned accesses by the specified instructions generate an Alignment fault.

0b1 This control does not generate Alignment faults.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from EL0:

0b0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED and generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The
exception is reported using an ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented
in the SCTLR_EL2, HSCTLR, and SCTLR.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0
uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment
fault exception is generated. For more information, see SP alignment checking.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8257
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see SP alignment checking.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

0b0 All data access to Stage 1 Normal memory from EL0 and EL1, and all Normal memory
accesses from unified cache to the EL1&0 Stage 1 translation tables, are treated as Stage
1 Non-cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:

• Data access to Normal memory from EL0 and EL1.

• Normal memory accesses to the EL1&0 Stage 1 translation tables.

When the Effective value of the HCR_EL2.DC bit in the current Security state is 1, the PE ignores
SCTLR_EL1.C. This means that EL0 and EL1 data accesses to Normal memory are Cacheable.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

0b0 Alignment fault checking is disabled when executing at EL1 or EL0.

Alignment checks on some instructions are not disabled by this control. For more
information, see Alignment of data accesses.

0b1 Alignment fault checking is enabled when executing at EL1 or EL0.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

0b0 EL1&0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the Effective value of HCR_EL2.{DC, TGE} in the current Security state is not {0, 0} then the
PE behaves as if the value of the SCTLR_EL1.M field is 0 for all purposes other than returning the
value of a direct read of the field.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8258
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing SCTLR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic SCTLR_EL1 or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x110];
 else
 X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = SCTLR_EL2;
 else
 X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x110] = X[t, 64];
 else
 SCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8259
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if ELIsInHost(EL2) then
 SCTLR_EL2 = X[t, 64];
 else
 SCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCTLR_EL1 = X[t, 64];

MRS <Xt>, SCTLR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x110];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = SCTLR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = SCTLR_EL1;
 else
 UNDEFINED;

MSR SCTLR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x110] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 SCTLR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 SCTLR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8260
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.160 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top-level control of the system, including its memory system, at EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to
execution at EL0.

Configurations

AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HSCTLR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

SCTLR_EL2 is a 64-bit register.

Field descriptions

TIDCP, bit [63]

When FEAT_TIDCP1 is implemented and the Effective value of HCR_EL2.E2H is 1:

Trap IMPLEMENTATION DEFINED functionality. Traps EL0 accesses to the encodings reserved for
IMPLEMENTATION DEFINED functionality to EL2.

0b0 No instructions accessing the System register or System instruction spaces are trapped
by this mechanism.

63 62 61 60 59 58 57 56 55 54 53 52 51 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37

BT

36 35 34 33 32

TIDCP
SPINTMASK

NMI
EnTP2

TCSO
TCSO0

EPAN
EnALS

EnAS0
EnASR

TME

CMOW
MSCEn

RES0
BT0

ITFSB
ATA0

ATA
DSSBS

TWEDEn
TMT0

TMT
TME0

31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
RES0

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8261
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 If HCR_EL2.TGE==0, no instructions accessing the System register or System
instruction spaces are trapped by this mechanism.

If HCR_EL2.TGE==1, instructions accessing the following System register or System
instruction spaces are trapped to EL2 by this mechanism:

• In AArch64 state, EL0 accesses to the encodings in the following reserved
encoding spaces are trapped and reported using EC syndrome 0x18:

— IMPLEMENTATION DEFINED System instructions, which are accessed using
SYS and SYSL, with CRn == {11, 15}.

— IMPLEMENTATION DEFINED System registers, which are accessed using
MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, EL0 MCR and MRC accesses to the following encodings are
trapped and reported using EC syndrome 0x03:

— All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8},
opc2 == {0-7}.

— All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8},
opc2 == {0-7}.

— All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2
== {0-7}.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL2.NMI is 1, controls whether PSTATE.SP acts as an
interrupt mask, and controls the value of PSTATE.ALLINT on taking an exception to EL2.

0b0 Does not cause PSTATE.SP to mask interrupts.

PSTATE.ALLINT is set to 1 on taking an exception to EL2.

0b1 When PSTATE.SP is 1 and execution is at EL2, an IRQ or FIQ interrupt that is targeted
to EL2 is masked regardless of any denotation of Superpriority.

PSTATE.ALLINT is set to 0 on taking an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

0b0 This control does not affect interrupt masking behavior.

0b1 This control enables all of the following:

• The use of the PSTATE.ALLINT interrupt mask.

• IRQ and FIQ interrupts to have Superpriority as an additional attribute.

• PSTATE.SP to be used as an interrupt mask.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8262
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

EnTP2, bit [60]

When FEAT_SME is implemented and the Effective value of HCR_EL2.E2H is 1:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL2 when EL2 is implemented and
enabled for the current Security state. The exception is reported using ESR_ELx.EC value 0x18.

0b0 This control causes execution of these instructions at EL0 to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCSO, bit [59]

When FEAT_MTE_STORE_ONLY is implemented:

Tag Checking Store Only.

0b0 This field has no effect on Tag checking.

0b1 Load instructions executed in EL2 are Tag Unchecked.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCSO0, bit [58]

When FEAT_MTE_STORE_ONLY is implemented and the Effective value of HCR_EL2.E2H is 1:

Tag Checking Store Only in EL0.

0b0 This field has no effect on Tag checking.

0b1 Load instructions executed in EL0 are Tag Unchecked.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented and the Effective value of HCR_EL2.E2H is 1:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data
access to a page with EL0 instruction access permission generates a Permission fault as a result of
the Privileged Access Never mechanism.

0b0 No additional Permission faults are generated by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8263
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 An EL2 data access to a page with stage 1 EL0 data access permission or stage 1 EL0
instruction access permission generates a Permission fault.

Any speculative data accesses that would generate a Permission fault as a result of
PSTATE.PAN = 1 if the accesses were not speculative, will not cause an allocation into
a cache.

Note

The value of HCR_EL2.TGE does not change the behavior of this field.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]

When FEAT_LS64 is implemented and the Effective value of HCR_EL2.E2H is 1:

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an
ISS code of 0x0000002.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]

When FEAT_LS64_ACCDATA is implemented and the Effective value of HCR_EL2.E2H is 1:

Traps execution of an ST64BV0 instruction at EL0 to EL2.

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]

When FEAT_LS64_V is implemented and the Effective value of HCR_EL2.E2H is 1:

Traps execution of an ST64BV instruction at EL0 to EL2.

0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8264
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code
of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL2.

0b0 Any attempt to execute a TSTART instruction at EL2 is trapped, unless HCR_EL2.TME
or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at EL2.

0b1 This control does not cause any TSTART instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TME0, bit [52]

When FEAT_TME is implemented and the Effective value of HCR_EL2.E2H is 1:

Enables the Transactional Memory Extension at EL0.

0b0 Any attempt to execute a TSTART instruction at EL0 is trapped to EL2, unless
HCR_EL2.TME or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at
EL0.

0b1 This control does not cause any TSTART instruction to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL2, the transaction fails with a TRIVIAL
failure cause.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8265
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TMT0, bit [50]

When FEAT_TME is implemented and the Effective value of HCR_EL2.E2H is 1:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL0, the transaction fails with a TRIVIAL
failure cause.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEL, bits [49:46]

When FEAT_TWED is implemented and the Effective value of HCR_EL2.E2H is 1:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the
minimum delay in taking a trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When FEAT_TWED is implemented and the Effective value of HCR_EL2.E2H is 1:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by
SCTLR_EL2.nTWE.

0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking a WFE trap is at least the number of cycles defined in
SCTLR_EL2.TWEDEL.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on exception entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL2.

0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8266
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL2.

When SCR_EL3.ATA is 1, controls access to Allocation Tags and Tag Check operations in EL2.

0b0 Access to Allocation Tags is prevented at EL2.

Memory accesses at EL2 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL2.

Tag Checked memory accesses at EL2 are subject to a Tag Check operation.

The Tag Check operation depends on the type of tag at the memory being accessed:

• For Allocation Tagged memory, an Allocation Tag Check operation.

• If FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged
memory, a Canonical Tag Check operation.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE2 is implemented and the Effective value of HCR_EL2.E2H is 1:

Allocation Tag Access in EL0.

When SCR_EL3.ATA is 1, controls access to Allocation Tags and Tag Check operations in EL0.

0b0 Access to Allocation Tags is prevented at EL0.

Memory accesses at EL0 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL0.

Tag Checked memory accesses at EL0 are subject to a Tag Check operation.

The Tag Check operation depends on the type of tag at the memory being accessed:

• For Allocation Tagged memory, an Allocation Tag Check operation.

• If FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged
memory, a Canonical Tag Check operation.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

0b00 Tag Check Faults have no effect on the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8267
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]

When FEAT_MTE2 is implemented and the Effective value of HCR_EL2.E2H is 1:

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls
whether on exception entry into EL2, all Tag Check Faults due to instructions executed before
exception entry, that are reported asynchronously, are synchronized into TFSRE0_EL1,
TFSR_EL1, and TFSR_EL2 registers.

0b0 Tag Check Faults are not synchronized on entry to EL2.

0b1 Tag Check Faults are synchronized on entry to EL2.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8268
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
BT, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit is named BT1.

0b0 When the PE is executing at EL2, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented and the Effective value of HCR_EL2.E2H is 1:

PAC Branch Type compatibility at EL0.

0b0 When the PE is executing at EL0, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

MSCEn, bit [33]

When FEAT_MOPS is implemented and the Effective value of HCR_EL2.E2H is 1:

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and
Memory Set instructions at EL0.

0b0 Execution of the Memory Copy and Memory Set instructions is UNDEFINED at EL0.

0b1 This control does not cause any instructions to be UNDEFINED.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

When FEAT_MOPS is implemented and the Effective value of HCR_EL2.{E2H, TGE} is not {1,
1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8269
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CMOW, bit [32]

When FEAT_CMOW is implemented and the Effective value of HCR_EL2.E2H is 1:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC, and DC CIGVAC.

0b0 These instructions executed at EL0 with stage 1 read permission, but without stage 1
write permission, do not generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL2.UCI==1, these instructions executed at EL0 with
stage 1 read permission, but without stage 1 write permission, generate a stage 1
permission fault.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.

• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APIAKey_EL1 key,
in the EL2 or EL2&0 translation regime.

0b0 Pointer authentication of instruction addresses, using the APIAKey_EL1 key, is not
enabled.

0b1 Pointer authentication of instruction addresses, using the APIAKey_EL1 key, is
enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APIBKey_EL1 key,
in the EL2 or EL2&0 translation regime.

0b0 Pointer authentication of instruction addresses, using the APIBKey_EL1 key, is not
enabled.

0b1 Pointer authentication of instruction addresses, using the APIBKey_EL1 key, is
enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8270
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented and the Effective value of HCR_EL2.E2H is 1:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL0, A32 and T32 Load Multiple and Store Multiple can
have an interrupt taken during the sequence memory accesses, and the memory accesses
are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL0 is as defined for Armv8.0.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented and the Effective value of HCR_EL2.E2H is 1:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8271
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APDAKey_EL1 key,
in the EL2 or EL2&0 translation regime.

0b0 Pointer authentication of data addresses, using the APDAKey_EL1 key, is not enabled.

0b1 Pointer authentication of data addresses, using the APDAKey_EL1 key, is enabled.

Note
This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

When the Effective value of HCR_EL2.E2H is 1:

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This
applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC,
DC CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC
CGDVADP.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, or clean and invalidate instruction that operates by
VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate by VA to the Point of Unification
instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8272
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation
regime, and stage 2 translation table walks in the EL1&0 translation regime.

0b0 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0
translation regime, and stage 2 translation table walks in the EL1&0 translation regime
are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

When the Effective value of HCR_EL2.E2H is 1:

Endianness of data accesses at EL0.

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions
executed at EL1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPAN, bit [23]

When the Effective value of HCR_EL2.E2H is 1:

Set Privileged Access Never, on taking an exception to EL2.

0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8273
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
EIS, bit [22]

When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

0b0 The taking of an exception to EL2 is not a context synchronization event.

0b1 The taking of an exception to EL2 is a context synchronization event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are
synchronized on exception entry to EL2, so that a direct read of the register after exception
entry sees the indirectly written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores, and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.

• Before the operational pseudocode of each ERET instruction executed at EL2.

If FEAT_DoubleFault2 is implemented, the PE is in Non-debug state, and the Effective value of
SCTLR2_EL2.NMEA is 1, then SCTLR_EL2.IESB is ignored and the PE behaves as if
SCTLR_EL2.IESB is 1 for all purposes other than direct read of the register.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL2
and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8274
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TSCXT, bit [20]

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented) and the Effective value
of HCR_EL2.E2H is 1:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL2, and the
SCXTNUM_EL0 value is treated as 0.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented and the Effective
value of HCR_EL2.{E2H, TGE} is {1, 1}:

Reserved, RES1.

Otherwise:

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit
can force all memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN for
accesses from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

nTWE, bit [18]

When the Effective value of HCR_EL2.E2H is 1:

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the instruction
would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the
instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8275
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

When the Effective value of HCR_EL2.E2H is 1:

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the
instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

UCT, bit [15]

When the Effective value of HCR_EL2.E2H is 1:

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DZE, bit [14]

When the Effective value of HCR_EL2.E2H is 1:

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8276
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped to EL2. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions that this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APDBKey_EL1 key,
in the EL2 or EL2&0 translation regime.

0b0 Pointer authentication of data addresses, using the APDBKey_EL1 key, is not enabled.

0b1 Pointer authentication of data addresses, using the APDBKey_EL1 key, is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when the Effective value of
HCR_EL2.{E2H, TGE} is {1, 1}, EL0.

0b0 All instruction accesses to Normal memory from EL2 are Non-cacheable for all levels
of instruction and unified cache.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, all instruction accesses
to Normal memory from EL0 are Non-cacheable for all levels of instruction and unified
cache.

If SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or EL2&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2 and, when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1},
instruction access to Normal memory from EL0.

If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or
EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}, this bit has no effect on the EL1&0 translation regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8277
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

0b0 An exception return from EL2 is not a context synchronization event.

0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on
exception return is synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores, and data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented and the Effective value of HCR_EL2.E2H is 1:

Enable EL0 access to the following System instructions:

• CFPRCTX, DVPRCTX and CPPRCTX instructions.

• If FEAT_SPECRES2 is implemented, COSPRCTX.

• CFP RCTX, DVP RCTX and CPP RCTX instructions.

• If FEAT_SPECRES2 is implemented, CPP RCTX.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1.

0b1 EL0 access to these instructions is enabled.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8278
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
SED, bit [8]

When EL0 is capable of using AArch32 and the Effective value of HCR_EL2.E2H is 1:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0b0 SETEND instruction execution is enabled at EL0 using AArch32.

0b1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When EL0 can only use AArch64 and the Effective value of HCR_EL2.E2H is 1:

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

Access to this field is RES1.

Otherwise:

Reserved, RES0.

ITD, bit [7]

When EL0 is capable of using AArch32 and the Effective value of HCR_EL2.E2H is 1:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0b0 All IT instruction functionality is enabled at EL0 using AArch32.

0b1 Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 0b1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions.

— 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically whether IT is treated as a 16-bit instruction
or the first half of a 32-bit instruction.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8279
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by
an instruction in an IT block.

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the
SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

When EL0 can only use AArch64 and the Effective value of HCR_EL2.E2H is not 1:

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

Otherwise:

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at
EL2, and, when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, EL0.

The following instructions generate an Alignment fault if all bytes being accessed are not within a
single 16-byte quantity, aligned to 16 bytes for access:

• LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH,
LDLAR, LDLARH.

• STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH

If FEAT_LRCPC3 is implemented,the following instructions generate an Alignment fault if all
bytes being accessed for a single register are not within a single 16-byte quantity, aligned to 16 bytes
for access:

• LDIAPP, STILP, the post index versions of LDAPR and the pre index versions of STLR.

• If Advanced SIMD and floating-point instructions are implemented, LDAPUR (SIMD&FP),
LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP).

0b0 Unaligned accesses by the specified instructions generate an Alignment fault.

0b1 Unaligned accesses by the specified instructions do not generate an Alignment fault.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32 and the Effective value of HCR_EL2.E2H is 1:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from EL0:

0b0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented
in the SCTLR_EL1, HSCTLR, and SCTLR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8280
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When EL0 can only use AArch64 and the Effective value of HCR_EL2.E2H is 1:

Access to this field is RES0.

Otherwise:

Reserved, RES1.

SA0, bit [4]

When the Effective value of HCR_EL2.E2H is 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0
uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment
fault exception is generated. For more information, see SP alignment checking.

If HCR_EL2.TGE == 0b0, the field is IGNORED for all purposes other than direct reads and writes
of the register.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see SP alignment checking.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when the Effective value of
HCR_EL2.{E2H, TGE} is {1, 1}, EL0

0b0 The following are Non-cacheable for all levels of data and unified cache:

• Data accesses to Normal memory from EL2.

• When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, Normal
memory accesses to the EL2 translation tables.

• When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}:

— Data accesses to Normal memory from EL0.

— Normal memory accesses to the EL2&0 translation tables.

0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2.

• When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, Normal
memory accesses to the EL2 translation tables.

• When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}:

— Data accesses to Normal memory from EL0.

— Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}, this bit has no effect on the EL1&0 translation regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8281
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when the
Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, EL0.

0b0 Alignment fault checking is disabled when executing at EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, alignment fault checking
disabled when executing at EL0.

Alignment checks on some instructions are not disabled by this control. For more
information, see Alignment of data accesses.

0b1 Alignment fault checking is enabled when executing at EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, alignment fault checking
enabled when executing at EL0.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

0b0 When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, EL2 stage 1 address
translation disabled.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, EL2&0 stage 1 address
translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.

0b1 When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, EL2 stage 1 address
translation enabled.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, EL2&0 stage 1 address
translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing SCTLR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic SCTLR_EL2 or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8282
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SCTLR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SCTLR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCTLR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, SCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x110];
 else
 X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = SCTLR_EL2;
 else
 X[t, 64] = SCTLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR_EL1;

 When FEAT_VHE is implemented : MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8283
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x110] = X[t, 64];
 else
 SCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 SCTLR_EL2 = X[t, 64];
 else
 SCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCTLR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8284
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.161 SCTLR_EL3, System Control Register (EL3)

The SCTLR_EL3 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR_EL3
are UNDEFINED.

Attributes

SCTLR_EL3 is a 64-bit register.

Field descriptions

Bit [63]

Reserved, RES0.

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL3.NMI is 1, controls whether PSTATE.SP acts as an
interrupt mask, and controls the value of PSTATE.ALLINT on taking an exception to EL3.

0b0 Does not cause PSTATE.SP to mask interrupts.

PSTATE.ALLINT is set to 1 on taking an exception to EL3.

0b1 When PSTATE.SP is 1 and execution is at EL3, an IRQ or FIQ interrupt that is targeted
to EL3 is masked regardless of any denotion of Superpriority.

PSTATE.ALLINT is set to 0 on taking an exception to EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

0b0 This control does not affect interrupt masking behavior.

63 62 61 60 59

RES0

58 54 53 52 51

RES0

50 45 44 43 42

TCF

41 40

RES0

39 38 37

BT

36

RES0

35 32

RES0
SPINTMASK

TCSO
RES0

NMI

TME TMT
RES0

DSSBS
ATA

ITFSB
RES0

31 30

RES1

29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16

RES0

15 14 13

I

12 11

RES0

10 7 6

RES1

5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB

EnDA
RES0

RES0
RES1

EIS

EOS
EnDB

RES1
RES0

RES1
WXN

RES0
IESB

nAA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8285
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 This control enables all of the following:

• The use of the PSTATE.ALLINT interrupt mask.

• IRQ and FIQ interrupts to have Superpriority as an additional attribute.

• PSTATE.SP to be used as an interrupt mask.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [60]

Reserved, RES0.

TCSO, bit [59]

When FEAT_MTE_STORE_ONLY is implemented:

Tag Checking Store Only.

0b0 This field has no effect on Tag checking.

0b1 Load instructions executed in EL3 are Tag Unchecked.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [58:54]

Reserved, RES0.

TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL3.

0b0 Any attempt to execute a TSTART instruction at EL3 is trapped, unless HCR_EL2.TME
or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at EL3.

0b1 This control does not cause any TSTART instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [52]

Reserved, RES0.

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL3.

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL3, the transaction fails with a TRIVIAL
failure cause.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8286
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [50:45]

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL3.

0b1 PSTATE.SSBS is set to 1 on an exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL3.

Controls access to Allocation Tags and Tag Check operations in EL3.

0b0 Access to Allocation Tags is prevented at EL3.

Memory accesses at EL3 are not subject to a Tag Check operation.

0b1 This control does not prevent access to Allocation Tags at EL3.

Tag Checked memory accesses at EL3 are subject to a Tag Check operation.

The Tag Check operation depends on the type of tag at the memory being accessed:

• For Allocation Tagged memory, an Allocation Tag Check operation.

• If FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged
memory, a Canonical Tag Check operation.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 When FEAT_MTE3 is implemented:

Tag Check Faults cause a synchronous exception on reads, and are asynchronously
accumulated on writes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8287
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls
whether on exception entry into EL3, all Tag Check Faults due to instructions executed before
exception entry, that are reported asynchronously, are synchronized into TFSRE0_EL1 and
TFSR_ELx registers.

0b0 Tag Check Faults are not synchronized on entry to EL3.

0b1 Tag Check Faults are synchronized on entry to EL3.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL3.

0b0 When the PE is executing at EL3, PACIASP and PACIBSP are compatible with
PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL3, PACIASP and PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APIAKey_EL1 key,
in the EL3 translation regime.

Possible values of this bit are:

0b0 Pointer authentication of instruction addresses, using the APIAKey_EL1 key, is not
enabled.

0b1 Pointer authentication of instruction addresses, using the APIAKey_EL1 key, is
enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8288
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APIBKey_EL1 key,
in the EL3 translation regime.

Possible values of this bit are:

0b0 Pointer authentication of instruction addresses, using the APIBKey_EL1 key, is not
enabled.

0b1 Pointer authentication of instruction addresses, using the APIBKey_EL1 key, is
enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APDAKey_EL1 key,
in the EL3 translation regime.

0b0 Pointer authentication of data addresses, using the APDAKey_EL1 key, is not enabled.

0b1 Pointer authentication of data addresses, using the APDAKey_EL1 key, is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8289
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation
regime.

0b0 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation
regime are little-endian.

0b1 Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation
regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

0b0 The taking of an exception to EL3 is not a context synchronizing event.

0b1 The taking of an exception to EL3 is a context synchronizing event.

If SCTLR_EL3.EIS is set to 0b0:

• Indirect writes to ESR_EL3, FAR_EL3, SPSR_EL3, ELR_EL3 are synchronized on
exception entry to EL3, so that a direct read of the register after exception entry sees the
indirectly written value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EIS:

• Changes to the PSTATE information on entry to EL3.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Debug state exit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8290
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL3.

• Before the operational pseudocode of each ERET instruction executed at EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field and, if implemented,
SCR_EL3.NMEA. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSx instruction taken to EL3 and before each DRPS instruction executed
at EL3, in addition to the other cases where it is added.

When FEAT_DoubleFault is implemented, the PE is in Non-debug state, and the Effective value of
SCR_EL3.NMEA is 1, this field is ignored and its Effective value is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all
memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL3 translation regime is forced to XN for accesses
from software executing at EL3.

This bit applies only when SCTLR_EL3.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication of instruction addresses, using the APDBKey_EL1 key,
in the EL3 translation regime.

0b0 Pointer authentication of data addresses, using the APDBKey_EL1 key, is not enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8291
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Pointer authentication of data addresses, using the APDBKey_EL1 key, is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

0b0 All instruction access to Normal memory from EL3 are Non-cacheable for all levels of
instruction and unified cache.

If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL3.

If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

0b0 An exception return from EL3 is not a context synchronizing event

0b1 An exception return from EL3 is a context synchronizing event

If SCTLR_EL3.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the
translation resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.

• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR_EL3 on
exception return is synchronized.

• If the PE enters Debug state before the first instruction after an Exception return from EL3
to Non-secure state, any pending Halting debug event completes execution.

• The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with
leaving the EL3 Exception level.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for
loads, stores and data processing instructions.

• Exit from Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8292
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain
conditions. The following instructions generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes for access:

• LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH,
LDLAR, LDLARH.

• STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH

If FEAT_LRCPC3 is implemented, the following instructions generate an Alignment fault if all
bytes being accessed for a single register are not within a single 16-byte quantity, aligned to 16 bytes
for access:

• LDIAPP, STILP, the post index versions of LDAPR and the pre index versions of STLR.

• If Advanced SIMD and floating-point instructions are implemented, LDAPUR (SIMD&FP),
LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP).

0b0 Unaligned accesses by the specified instructions generate an Alignment fault.

0b1 Unaligned accesses by the specified instructions do not generate an Alignment fault.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault
exception is generated. For more information, see SP alignment checking.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

0b0 All data access to Normal memory from EL3, and all Normal memory accesses to the
EL3 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL3.

• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8293
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

0b0 Alignment fault checking is disabled when executing at EL3.

Alignment checks on some instructions are not disabled by this control. For more
information, see Alignment of data accesses.

0b1 Alignment fault checking is enabled when executing at EL3.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

0b0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses to Normal memory.

0b1 EL3 stage 1 address translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing SCTLR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCTLR_EL3;

MSR SCTLR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8294
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCTLR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8295
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.162 SCXTNUM_EL0, EL0 Read/Write Software Context Number

The SCXTNUM_EL0 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL0 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_EL0 are UNDEFINED.

Attributes

SCXTNUM_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL0 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && SCTLR_EL1.TSCXT == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.TSCXT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8296
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCXTNUM_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCXTNUM_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCXTNUM_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCXTNUM_EL0;

MSR SCXTNUM_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && SCTLR_EL1.TSCXT == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.TSCXT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8297
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCXTNUM_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8298
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.163 SCXTNUM_EL1, EL1 Read/Write Software Context Number

The SCXTNUM_EL1 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL1 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_EL1 are UNDEFINED.

Attributes

SCXTNUM_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL1 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8299
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x188];
 else
 X[t, 64] = SCXTNUM_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SCXTNUM_EL2;
 else
 X[t, 64] = SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x188] = X[t, 64];
 else
 SCXTNUM_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 SCXTNUM_EL2 = X[t, 64];
 else
 SCXTNUM_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8300
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MRS <Xt>, SCXTNUM_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x188];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCXTNUM_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = SCXTNUM_EL1;
 else
 UNDEFINED;

MSR SCXTNUM_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x188] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL1 = X[t, 64];
 else

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b111

op0 op1 CRn CRm op2

0b11 0b101 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8301
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 SCXTNUM_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8302
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.164 SCXTNUM_EL2, EL2 Read/Write Software Context Number

The SCXTNUM_EL2 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL2 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is
implemented. Otherwise, direct accesses to SCXTNUM_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

SCXTNUM_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL2 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic SCXTNUM_EL2 or SCXTNUM_EL1 are not guaranteed to be ordered with respect to accesses using
the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8303
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SCXTNUM_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCXTNUM_EL2;

MSR SCXTNUM_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SCXTNUM_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL2 = X[t, 64];

MRS <Xt>, SCXTNUM_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x188];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b111

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8304
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 X[t, 64] = SCXTNUM_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SCXTNUM_EL2;
 else
 X[t, 64] = SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.SCXTNUM_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x188] = X[t, 64];
 else
 SCXTNUM_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 SCXTNUM_EL2 = X[t, 64];
 else
 SCXTNUM_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8305
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.165 SCXTNUM_EL3, EL3 Read/Write Software Context Number

The SCXTNUM_EL3 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL3 exception
level, for the purpose of protecting against side-channels using branch prediction and similar
resources.

Configurations

This register is present only when EL3 is implemented and (FEAT_CSV2_2 is implemented or
FEAT_CSV2_1p2 is implemented). Otherwise, direct accesses to SCXTNUM_EL3 are
UNDEFINED.

Attributes

SCXTNUM_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Software Context Number. A number to identify the context within the EL3 exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCXTNUM_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCXTNUM_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SCXTNUM_EL3;

Software Context Number

63 32

Software Context Number

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8306
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR SCXTNUM_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCXTNUM_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8307
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.166 SMCR_EL1, SME Control Register (EL1)

The SMCR_EL1 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL1 and EL0.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMCR_EL1 are UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this register has no effect on
execution at EL0 and EL1.

Attributes

SMCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming
SVE mode.

0b0 This control does not cause any instruction to be treated as legal in Streaming SVE
mode.

0b1 This control causes all implemented A64 instructions to be treated as legal in Streaming
SVE mode at EL1 and EL0, if they are treated as legal at more privileged Exception
levels in the current Security state.

Arm recommends that portable SME software should not rely on this optional feature, and that
operating systems should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EZT0, bit [30]

When FEAT_SME2 is implemented:

Traps execution at EL1 and EL0 of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO instructions
that access the ZT0 register to EL1, or to EL2 when EL2 is implemented and enabled in the current
Security state and HCR_EL2.TGE is 1.

RES0

63 32

31 30

RES0

29 9

RAZ/WI

8 4

LEN

3 0

FA64 EZT0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8308
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The exception is reported using ESR_EL1.EC or ESR_EL2.EC value 0x1D, with an ISS code of
0x0000004, at a lower priority than a trap due to PSTATE.SM or PSTATE.ZA.

0b0 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b1 This control does not cause execution of any instruction to be trapped.

Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect
the contents of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL1 of (LEN+1)*128 bits. This field
also defines the Effective Streaming SVE vector length at EL0 when EL2 is not implemented, or
EL2 is not enabled in the current Security state, or the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An
implementation can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the
Effective Non-streaming SVE vector length. See ZCR_EL1.

For all purposes other than returning the result of a direct read of SMCR_EL1, the PE selects the
Effective Streaming SVE vector length by performing checks in the following order:

1. If the requested length is less than the minimum implemented Streaming SVE vector length,
then the Effective length is the minimum implemented Streaming SVE vector length.

2. If EL2 is implemented and enabled in the current Security state, and the requested length is
greater than the Effective length at EL2, then the Effective length at EL2 is used.

3. If EL3 is implemented and the requested length is greater than the Effective length at EL3,
then the Effective length at EL3 is used.

4. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is
less than or equal to the requested length.

An indirect read of SMCR_EL1.LEN appears to occur in program order relative to a direct write of
the same register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic SMCR_EL1 or SMCR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8309
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPACR_EL1.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x1F0];
 else
 X[t, 64] = SMCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SMCR_EL2;
 else
 X[t, 64] = SMCR_EL1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8310
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif CPACR_EL1.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x1F0] = X[t, 64];
 else
 SMCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif ELIsInHost(EL2) then
 SMCR_EL2 = X[t, 64];
 else
 SMCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL1 = X[t, 64];

MRS <Xt>, SMCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x1F0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8311
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = SMCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = SMCR_EL1;
 else
 UNDEFINED;

MSR SMCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x1F0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8312
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.167 SMCR_EL2, SME Control Register (EL2)

The SMCR_EL2 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL2, EL1, and
EL0.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMCR_EL2 are UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode, or if EL2 is not enabled in the
current Security state.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

SMCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming
SVE mode.

0b0 This control does not cause any instruction to be treated as legal in Streaming SVE
mode.

0b1 This control causes all implemented A64 instructions to be treated as legal in Streaming
SVE mode at EL2, if they are treated as legal at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that
operating systems should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EZT0, bit [30]

When FEAT_SME2 is implemented:

Traps execution at EL2, EL1, and EL0 of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO
instructions that access the ZT0 register to EL2, when EL2 is enabled in the current Security state.

The exception is reported using ESR_EL2.EC value 0x1D, with an ISS code of 0x0000004, at a lower
priority than a trap due to PSTATE.SM or PSTATE.ZA.

0b0 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

RES0

63 32

31 30

RES0

29 9

RAZ/WI

8 4

LEN

3 0

FA64 EZT0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8313
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 This control does not cause execution of any instruction to be trapped.

Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect
the contents of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL2 of (LEN+1)*128 bits. This field
also defines the Effective Streaming SVE vector length at EL0 when the Effective value of
HCR_EL2.{E2H, TGE} is {1, 1}.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An
implementation can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the
Effective Non-streaming SVE vector length. See ZCR_EL2.

For all purposes other than returning the result of a direct read of SMCR_EL2, the PE selects the
Effective Streaming SVE vector length by performing checks in the following order:

1. If the requested length is less than the minimum implemented Streaming SVE vector length,
then the Effective length is the minimum implemented Streaming SVE vector length.

2. If EL3 is implemented and the requested length is greater than the Effective length at EL3,
then the Effective length at EL3 is used.

3. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is
less than or equal to the requested length.

An indirect read of SMCR_EL2.LEN appears to occur in program order relative to a direct write of
the same register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic SMCR_EL2 or SMCR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8314
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = SMCR_EL2;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = SMCR_EL2;

MSR SMCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8315
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MRS <Xt>, SMCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPACR_EL1.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x1D);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x1F0];
 else
 X[t, 64] = SMCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SMCR_EL2;
 else
 X[t, 64] = SMCR_EL1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif CPACR_EL1.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x1D);

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8316
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x1F0] = X[t, 64];
 else
 SMCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TSM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif ELIsInHost(EL2) && CPTR_EL2.SMEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x1D);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x1D);
 elsif ELIsInHost(EL2) then
 SMCR_EL2 = X[t, 64];
 else
 SMCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8317
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.168 SMCR_EL3, SME Control Register (EL3)

The SMCR_EL3 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at all Exception levels.

Configurations

This register is present only when FEAT_SME is implemented and EL3 is implemented. Otherwise,
direct accesses to SMCR_EL3 are UNDEFINED.

This register has no effect if the PE is not in Streaming SVE mode.

Attributes

SMCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming
SVE mode.

0b0 This control does not cause any instruction to be treated as legal in Streaming SVE
mode.

0b1 This control causes all implemented A64 instructions to be treated as legal in Streaming
SVE mode at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that
operating systems should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EZT0, bit [30]

When FEAT_SME2 is implemented:

Traps execution at all Exception levels of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO
instructions that access the ZT0 register to EL3.

The exception is reported using ESR_EL3.EC value 0x1D, with an ISS code of 0x0000004, at a lower
priority than a trap due to PSTATE.SM or PSTATE.ZA.

0b0 This control causes execution of these instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any instruction to be trapped.

RES0

63 32

31 30

RES0

29 9

RAZ/WI

8 4

LEN

3 0

FA64 EZT0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8318
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect
the contents of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL3 of (LEN+1)*128 bits.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An
implementation can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the
Effective Non-streaming SVE vector length. See ZCR_EL3.

For all purposes other than returning the result of a direct read of SMCR_EL3, the PE selects the
Effective Streaming SVE vector length by performing checks in the following order:

1. If the requested length is less than the minimum implemented Streaming SVE vector length,
then the Effective length is the minimum implemented Streaming SVE vector length.

2. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is
less than or equal to the requested length.

An indirect read of SMCR_EL3.LEN appears to occur in program order relative to a direct write of
the same register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 X[t, 64] = SMCR_EL3;

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8319
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR SMCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x1D);
 else
 SMCR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8320
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.169 SMIDR_EL1, Streaming Mode Identification Register

The SMIDR_EL1 characteristics are:

Purpose

Provides additional identification mechanisms for scheduling purposes, for a PE that supports
Streaming SVE mode.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMIDR_EL1 are UNDEFINED.

Attributes

SMIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

Affinity2, bits [51:32]

The most significant 20 bits of the SMCU affinity for this PE, to be used in conjunction with
SMIDR_EL1.Affinity.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

RES0

63 52

Affinity2

51 32

Implementer

31 24

Revision

23 16 15

SH

14 13 12

Affinity

11 0

SMPS RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8321
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

It is not required that this value is the same as the value of MIDR_EL1.Implementer.

Access to this field is RO.

Revision, bits [23:16]

Revision number for the Streaming Mode Compute Unit (SMCU).

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SMPS, bit [15]

Indicates support for Streaming SVE mode execution priority.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Priority control not supported.

0b1 Priority control supported.

Access to this field is RO.

SH, bits [14:13]

Indicates whether the implementation of Streaming SVE mode in this PE is shared with other PEs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Refer to SMIDR_EL1.Affinity.

0b01 Reserved.

0b10 The implementation of Streaming SVE mode is not shared with other PEs.

0b11 The implementation of Streaming SVE mode is shared with other PEs.

Access to this field is RO.

Bit [12]

Reserved, RES0.

Affinity, bits [11:0]

The least significant 12 bits of the SMCU affinity for this PE.

• If SMIDR_EL1.SH is 0b00 and this field is 0, then the implementation of Streaming SVE
mode is not shared with other PEs.

• If SMIDR_EL1.SH is 0b00 and this field is not 0, then the implementation of Streaming SVE
mode is shared with other PEs.

• Otherwise, SMIDR_EL1.SH indicates whether the implementation of Streaming SVE mode
is shared with other PEs.

If the implementation of Streaming SVE mode is shared, then the concatenated value
SMIDR_EL1.{Affinity2,Affinity} identifies which shared SMCU is associated with the PE. The
32-bit value associated with each SMCU is unique within the system as a whole.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8322
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing SMIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = SMIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = SMIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SMIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8323
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.170 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

The SMPRIMAP_EL2 characteristics are:

Purpose

Maps the value in SMPRI_EL1 to a streaming execution priority value for instructions executed at
EL1 and EL0 in the same Security states as EL2.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMPRIMAP_EL2 are UNDEFINED.

When SMIDR_EL1.SMPS is '0', this register is RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

SMPRIMAP_EL2 is a 64-bit register.

Field descriptions

When all of the following are true, the value in SMPRI_EL1 is mapped to a streaming execution priority using this
register:

• The current Exception level is EL1 or EL0.

• EL2 is implemented and enabled in the current Security state.

• HCRX_EL2.SMPME is '1'.

Otherwise, SMPRI_EL1 holds the streaming execution priority value.

P15, bits [63:60]

Priority Mapping Entry 15. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '15'.

This value is the highest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P14, bits [59:56]

Priority Mapping Entry 14. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '14'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P13, bits [55:52]

Priority Mapping Entry 13. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '13'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P15

63 60

P14

59 56

P13

55 52

P12

51 48

P11

47 44

P10

43 40

P9

39 36

P8

35 32

P7

31 28

P6

27 24

P5

23 20

P4

19 16

P3

15 12

P2

11 8

P1

7 4

P0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8324
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
P12, bits [51:48]

Priority Mapping Entry 12. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '12'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P11, bits [47:44]

Priority Mapping Entry 11. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '11'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P10, bits [43:40]

Priority Mapping Entry 10. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '10'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P9, bits [39:36]

Priority Mapping Entry 9. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '9'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P8, bits [35:32]

Priority Mapping Entry 8. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '8'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P7, bits [31:28]

Priority Mapping Entry 7. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '7'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P6, bits [27:24]

Priority Mapping Entry 6. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '6'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P5, bits [23:20]

Priority Mapping Entry 5. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '5'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P4, bits [19:16]

Priority Mapping Entry 4. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '4'.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8325
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P3, bits [15:12]

Priority Mapping Entry 3. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '3'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P2, bits [11:8]

Priority Mapping Entry 2. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '2'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P1, bits [7:4]

Priority Mapping Entry 1. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '1'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P0, bits [3:0]

Priority Mapping Entry 0. This entry is used when priority mapping is supported and enabled, and
the SMPRI_EL1.Priority value is '0'.

This value is the lowest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMPRIMAP_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRIMAP_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1F8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8326
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = SMPRIMAP_EL2;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SMPRIMAP_EL2;

MSR SMPRIMAP_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1F8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SMPRIMAP_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SMPRIMAP_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8327
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.171 SMPRI_EL1, Streaming Mode Priority Register

The SMPRI_EL1 characteristics are:

Purpose

Configures the streaming execution priority for instructions executed on a shared Streaming Mode
Compute Unit (SMCU) when the PE is in Streaming SVE mode at any Exception level.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMPRI_EL1 are UNDEFINED.

When SMIDR_EL1.SMPS is '0', this register is RES0.

Attributes

SMPRI_EL1 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

Priority, bits [3:0]

Streaming execution priority value.

Either this value is used directly, or it is mapped into an effective priority value using
SMPRIMAP_EL2.

This value is used directly when any of the following are true:

• The current Exception level is EL3 or EL2.

• The current Exception level is EL1 or EL0, if EL2 is implemented and enabled in the current
Security state and HCRX_EL2.SMPME is '0'.

• The current Exception level is EL1 or EL0, if EL2 is either not implemented or not enabled
in the current Security state.

The precise meaning and behavior of each streaming execution priority value is IMPLEMENTATION
DEFINED.

In an implementation that shares execution resources between PEs, higher priority values are
allocated more processing resource than other PEs configured with lower priority values in the same
Priority domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 4

Priority

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8328
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing SMPRI_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRI_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nSMPRI_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SMPRI_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SMPRI_EL1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SMPRI_EL1;

MSR SMPRI_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nSMPRI_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b100

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8329
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 SMPRI_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.ESM == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SMPRI_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.ESM == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SMPRI_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8330
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.172 TCR2_EL1, Extended Translation Control Register (EL1)

The TCR2_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

Configurations

This register is present only when FEAT_TCR2 is implemented. Otherwise, direct accesses to
TCR2_EL1 are UNDEFINED.

Attributes

TCR2_EL1 is a 64-bit register.

Field descriptions

Unless stated otherwise, all the bits in TCR2_EL1 are permitted to be cached in a TLB.

Bits [63:16]

Reserved, RES0.

DisCH1, bit [15]

When FEAT_D128 is implemented and TCR2_EL1.D128 == 1:

Disable the Contiguous bit for the Start Table for TTBR1_EL1.

0b0 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR1_EL1 is
not affected by this field.

0b1 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR1_EL1 is
treated as 0.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 16 15 14

RES0

13 12 11 10

RES0

9 6 5 4 3 2 1 0

DisCH1
DisCH0

HAFT
PTTWI

D128

PnCH
PIE

E0POE
POE

AIE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8331
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DisCH0, bit [14]

When FEAT_D128 is implemented and TCR2_EL1.D128 == 1:

Disable the Contiguous bit for the Start Table for TTBR0_EL1.

0b0 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR0_EL1 is
not affected by this field.

0b1 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR0_EL1 is
treated as 0.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [13:12]

Reserved, RES0.

HAFT, bit [11]

When FEAT_HAFT is implemented:

Hardware managed Access Flag for Table descriptors.

Enables the Hardware managed Access Flag for Table descriptors.

0b0 Hardware managed Access Flag for Table descriptors is disabled.

0b1 Hardware managed Access Flag for Table descriptors is enabled.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PTTWI, bit [10]

When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to generate writes that have the Reduced Coherence property.

0b0 Write accesses generated by RCWS at EL1&0 do not have the Reduced Coherence
property.

0b1 Write accesses generated by RCWS at EL1&0 have the Reduced Coherence property if
HCRX_EL2.PTTWI is 1.

This bit is permitted to be implemented as a read-only bit with a fixed value of 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8332
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [9:6]

Reserved, RES0.

D128, bit [5]

When FEAT_D128 is implemented:

Enables VMSAv9-128 translation system.

0b0 Translation system follows VMSA-64 translation process.

0b1 Translation system follows VMSAv9-128 translation process.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AIE, bit [4]

When FEAT_AIE is implemented:

Enable Attribute Indexing Extension.

0b0 Attribute Indexing Extension Disabled.

0b1 Attribute Indexing Extension Enabled.

This field is RES1 when TCR2_EL1.D128 is 1.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8333
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

POE, bit [3]

When FEAT_S1POE is implemented:

Enables Permission Overlays for privileged accesses from EL1&0 translation regime.

0b0 Permission overlay disabled for EL1 access in stage 1 of EL1&0 translation regime.

0b1 Permission overlay enabled for EL1 access in stage 1 of EL1&0 translation regime.

This bit is not permitted to be cached in a TLB.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0POE, bit [2]

When FEAT_S1POE is implemented:

Enables Permission Overlays for unprivileged accesses from EL1&0 translation regime.

0b0 Permission overlay disabled for EL0 access in stage 1 of EL1&0 translation regime.

0b1 Permission overlay enabled for EL0 access in stage 1 of EL1&0 translation regime.

This bit is not permitted to be cached in a TLB.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PIE, bit [1]

When FEAT_S1PIE is implemented:

Enables usage of Indirect Permission Scheme.

0b0 Direct permission model.

0b1 Indirect permission model.

This field is RES1 when TCR2_EL1.D128 is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8334
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PnCH, bit [0]

When FEAT_THE is implemented:

Protected attribute enable.Indicates use of bit[52] of the stage 1 translation table entry.

0b0 Bit[52] of each stage 1 translation table entry does not indicate protected attribute.

0b1 Bit[52] of each stage 1 translation table entry indicates protected attribute.

This field is RES0 when TCR2_EL1.D128 is 1.

This field is ignored by the PE and treated as zero when any of the following are true:

• All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— The Effective value of HCRX_EL2.TCR2En is 0.

• EL3 is implemented and SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TCR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8335
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.TCR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x270];
 else
 X[t, 64] = TCR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TCR2_EL2;
 else
 X[t, 64] = TCR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR2_EL1;

MSR TCR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.TCR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x270] = X[t, 64];
 else
 TCR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 TCR2_EL2 = X[t, 64];
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8336
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 TCR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TCR2_EL1 = X[t, 64];

MRS <Xt>, TCR2_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x270];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TCR2_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TCR2_EL1;
 else
 UNDEFINED;

MSR TCR2_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x270] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8337
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TCR2_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TCR2_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8338
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.173 TCR2_EL2, Extended Translation Control Register (EL2)

The TCR2_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2&0 translation regime.

Configurations

This register is present only when FEAT_TCR2 is implemented. Otherwise, direct accesses to
TCR2_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

TCR2_EL2 is a 64-bit register.

Field descriptions

When the Effective value of HCR_EL2.E2H is not 1:

Unless stated otherwise, all the bits in TCR2_EL2 are permitted to be cached in a TLB.

Bits [63:13]

Reserved, RES0.

AMEC0, bit [12]

When FEAT_MEC is implemented:

This field controls the enabling of the Alternate MECID translations for the EL2 translation regime.

TCR2_EL2.AMEC0 is provided to enable the safe update of MECID_A0_EL2, by disabling access
and speculation to AMEC==1 Block or Page descriptors during the update.

0b0 Use of a Block or Page descriptor containing AMEC == 1 generates a Translation fault.

0b1 Accesses translated by a Block or Page descriptor containing AMEC == 1 are associated
with the MECID configured in MECID_A0_EL2.

This bit is permitted to be cached in a TLB only if it is 1.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

When SCTLR2_EL2.EMEC is 0, this field is ignored by the PE and the bit position of AMEC is
RES0 in Block and Page descriptors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When IsCurrentSecurityState(SS_Secure), access to this field is RES0.

• When IsCurrentSecurityState(SS_NonSecure), access to this field is RES0.

RES0

63 32

RES0

31 13 12 11 10

RES0

9 5 4 3 2 1 0

AMEC0 PTTWI
HAFT

AIE
POE

PnCH
PIE

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8339
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

HAFT, bit [11]

When FEAT_HAFT is implemented:

Hardware managed Access Flag for Table descriptors.

Enables the Hardware managed Access Flag for Table descriptors.

0b0 Hardware managed Access Flag for Table descriptors is disabled.

0b1 Hardware managed Access Flag for Table descriptors is enabled.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PTTWI, bit [10]

When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to generate writes that have the Reduced Coherence property.

0b0 Write accesses generated by RCWS at EL2 or EL2&0 do not have the Reduced
Coherence property.

0b1 Write accesses generated by RCWS at EL2 or EL2&0 have the Reduced Coherence
property.

This bit is permitted to be implemented as a read-only bit with a fixed value of 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [9:5]

Reserved, RES0.

AIE, bit [4]

When FEAT_AIE is implemented:

Enable Attribute Indexing Extension.

0b0 Attribute Indexing Extension Disabled.

0b1 Attribute Indexing Extension Enabled.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8340
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

POE, bit [3]

When FEAT_S1POE is implemented:

Enables Permission Overlay for EL2 accesses.

0b0 Permission overlay disabled for EL2 access in stage 1 of EL2 translation regime.

0b1 Permission overlay enabled for EL2 access in stage 1 of EL2 translation regime.

This bit is not permitted to be cached in a TLB.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [2]

Reserved, RES0.

PIE, bit [1]

When FEAT_S1PIE is implemented:

Enables usage of Indirect Permission Scheme.

0b0 Direct permission model.

0b1 Indirect permission model.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PnCH, bit [0]

When FEAT_THE is implemented:

Protected attribute enable.Indicates use of bit[52] of the stage 1 translation table entry.

0b0 Bit[52] of each stage 1 translation table entry does not indicate protected attribute.

0b1 Bit[52] of each stage 1 translation table entry indicates protected attribute.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8341
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When the Effective value of HCR_EL2.E2H is 1:

Unless stated otherwise, all the bits in TCR2_EL2 are permitted to be cached in a TLB.

Bits [63:16]

Reserved, RES0.

DisCH1, bit [15]

When FEAT_D128 is implemented and TCR2_EL2.D128 == 1:

Disable the Contiguous bit for the Start Table for TTBR1_EL2.

0b0 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR1_EL2 is
not affected by this field.

0b1 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR1_EL2 is
treated as 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DisCH0, bit [14]

When FEAT_D128 is implemented and TCR2_EL2.D128 == 1:

Disable the Contiguous bit for the Start Table for TTBR0_EL2.

0b0 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR0_EL2 is
not affected by this field.

0b1 The Contiguous bit of Block or Page descriptors of the Start Table for TTBR0_EL2 is
treated as 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 16 15 14 13 12 11 10

SKL1

9 8

SKL0

7 6 5 4 3 2 1 0

DisCH1
DisCH0

AMEC1
AMEC0

HAFT
PTTWI

PnCH
PIE

E0POE
POE

AIE
D128
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8342
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Otherwise:

Reserved, RES0.

AMEC1, bit [13]

When FEAT_MEC is implemented:

This field controls the enabling of the Alternate MECID translations for accesses in the
TTBR1_EL2 half of the VA range, for the EL2&0 translation regime.

TCR2_EL2.AMEC1 is provided to enable the safe update of MECID_A1_EL2, by disabling access
and speculation to AMEC == 1 Block or Page descriptors during the update.

0b0 Use of a Block or Page descriptor containing AMEC == 1 generates a Translation fault.

0b1 Accesses translated by a Block or Page descriptor containing AMEC == 1 are associated
with the MECID configured in MECID_A1_EL2.

This bit is permitted to be cached in a TLB only if it is 1.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

When SCTLR2_EL2.EMEC is 0, this field is ignored by the PE and the bit position of AMEC is
RES0 in Block and Page descriptors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When IsCurrentSecurityState(SS_Secure), access to this field is RES0.

• When IsCurrentSecurityState(SS_NonSecure), access to this field is RES0.

Otherwise:

Reserved, RES0.

AMEC0, bit [12]

When FEAT_MEC is implemented:

This field controls the enabling of the Alternate MECID translations for accesses in the
TTBR0_EL2 half of the VA range, for the EL2&0 translation regime.

TCR2_EL2.AMEC0 is provided to enable the safe update of MECID_A0_EL2, by disabling access
and speculation to AMEC==1 Block or Page descriptors during the update.

0b0 Use of a Block or Page descriptor containing AMEC == 1 generates a Translation fault.

0b1 Accesses translated by a Block or Page descriptor containing AMEC == 1 are associated
with the MECID configured in MECID_A0_EL2.

This bit is permitted to be cached in a TLB only if it is 1.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

When SCTLR2_EL2.EMEC is 0, this field is ignored by the PE and the bit position of AMEC is
RES0 in Block and Page descriptors.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When IsCurrentSecurityState(SS_Secure), access to this field is RES0.

• When IsCurrentSecurityState(SS_NonSecure), access to this field is RES0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8343
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HAFT, bit [11]

When FEAT_HAFT is implemented:

Hardware managed Access Flag for Table descriptors.

Enables the Hardware managed Access Flag for Table descriptors.

0b0 Hardware managed Access Flag for Table descriptors is disabled.

0b1 Hardware managed Access Flag for Table descriptors is enabled.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PTTWI, bit [10]

When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to generate writes that have the Reduced Coherence property.

0b0 Write accesses generated by RCWS do not have the Reduced Coherence property.

0b1 Write accesses generated by RCWS have the Reduced Coherence property.

This bit is permitted to be implemented as a read-only bit with a fixed value of 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SKL1, bits [9:8]

When FEAT_D128 is implemented:

Skip Level associated with translation table walks using TTBR1_EL2.

This determines the number of levels to be skipped in the regular start level of the stage 1 EL2&0
translation table walks using TTBR1_EL2.

0b00 Skip 0 level in the regular start level.

0b01 Skip 1 level in the regular start level.

0b10 Skip 2 levels in the regular start level.

0b11 Skip 3 levels in the regular start level.

This field is IGNORED when TCR2_EL2.D128 is 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8344
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SKL0, bits [7:6]

When FEAT_D128 is implemented:

Skip Level associated with translation table walks using TTBR0_EL2.

This determines the number of levels to be skipped in the regular start level of the stage 1 EL2&0
translation table walks using TTBR0_EL2.

0b00 Skip 0 level in the regular start level.

0b01 Skip 1 level in the regular start level.

0b10 Skip 2 levels in the regular start level.

0b11 Skip 3 levels in the regular start level.

This field is IGNORED when TCR2_EL2.D128 is 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D128, bit [5]

When FEAT_D128 is implemented:

Enables VMSAv9-128 translation system.

0b0 Translation system follows VMSA-64 translation process.

0b1 Translation system follows VMSAv9-128 translation process.

This field is IGNORED when TCR2_EL2.D128 is 0.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AIE, bit [4]

When FEAT_AIE is implemented:

Enable Attribute Indexing Extension.

0b0 Attribute Indexing Extension Disabled.

0b1 Attribute Indexing Extension Enabled.

This field is RES1 when TCR2_EL2.D128 is 1.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8345
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

POE, bit [3]

When FEAT_S1POE is implemented:

Enables Permission Overlay for privileged accesses from EL2&0 translation regime.

0b0 Permission overlay disabled for EL2 access in stage 1 of EL2&0 translation regime.

0b1 Permission overlay enabled for EL2 access in stage 1 of EL2&0 translation regime.

This bit is not permitted to be cached in a TLB.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0POE, bit [2]

When FEAT_S1POE is implemented:

Enables Permission Overlay for unprivileged accesses from EL2&0 translation regime.

0b0 Permission overlay disabled for EL0 access in stage 1 of EL2&0 translation regime.

0b1 Permission overlay enabled for EL0 access in stage 1 of EL2&0 translation regime.

This bit is not permitted to be cached in a TLB.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PIE, bit [1]

When FEAT_S1PIE is implemented:

Enables usage of Indirect Permission Scheme.

0b0 Direct permission model.

0b1 Indirect permission model.

This field is RES1 when TCR2_EL2.D128 is 1.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8346
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PnCH, bit [0]

When FEAT_THE is implemented:

Protected attribute enable.Indicates use of bit[52] of the stage 1 translation table entry.

0b0 Bit[52] of each stage 1 translation table entry does not indicate protected attribute.

0b1 Bit[52] of each stage 1 translation table entry indicate protected attribute.

This field is RES1 when TCR2_EL2.D128 is 1.

This field is ignored by the PE and treated as zero when EL3 is implemented and
SCR_EL3.TCR2En == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TCR2_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name TCR2_EL2 or TCR2_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TCR2_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8347
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR2_EL2;

MSR TCR2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TCR2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TCR2_EL2 = X[t, 64];

MRS <Xt>, TCR2_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.TCR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x270];
 else
 X[t, 64] = TCR2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8348
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TCR2_EL2;
 else
 X[t, 64] = TCR2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR2_EL1;

MSR TCR2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.TCR2En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x270] = X[t, 64];
 else
 TCR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TCR2En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 TCR2_EL2 = X[t, 64];
 else
 TCR2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TCR2_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8349
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.174 TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

Configurations

AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register TTBCR[31:0].

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register TTBCR2[31:0].

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

Any of the bits in TCR_EL1, other than the EPDx bits when they have the value 1, and the A1 bit are permitted to
be cached in a TLB.

Bits [63:62]

Reserved, RES0.

MTX1, bit [61]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is
implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL0 and EL1 are using AArch64
where the data address would be translated by tables pointed to by TTBR1_EL1.

This control has an effect regardless of whether stage 1 of the EL1&0 translation regime is enabled
or not.

0b0 This control has no effect on the PE.

0b1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:

• Bits[59:56] are treated as 0b1111 when checking if the address is out of range.

• If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

RES0

63 62 61 60

DS

59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

HD

40

HA

39 38 37

AS

36 35

IPS

34 32

MTX1
MTX0

TCMA1
TCMA0

E0PD1
E0PD0

NFD1
NFD0
TBID1

TBID0
HWU162

RES0
TBI0

TBI1
HPD0

HPD1
HWU059

HWU060
HWU061

HWU062
HWU159

HWU160
HWU161

TG1

31 30

SH1

29 28 27 26 25 24 23

A1

22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

ORGN1 EPD1
IRGN1

ORGN0
IRGN0

RES0
EPD0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8350
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• A Canonical Tag Check operation is performed on Tag Checked memory
accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTX0, bit [60]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is
implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL0 and EL1 are using AArch64
where the data address would be translated by tables pointed to by TTBR0_EL1.

This control has an effect regardless of whether stage 1 of the EL1&0 translation regime is enabled
or not.

0b0 This control has no effect on the PE.

0b1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:

• Bits[59:56] are treated as 0b0000 when checking if the address is out of range.

• If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

• A Canonical Tag Check operation is performed on Tag Checked memory
accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DS, bit [59]

When FEAT_LPA2 is implemented and (FEAT_D128 is not implemented or TCR2_EL1.D128 == 0):

This field affects whether a 52-bit output address can be described by the translation tables of the
4KB or 16KB translation granules.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in Block and Page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in Table descriptors are ignored by hardware.

The minimum value of the TCR_EL1.{T0SZ, T1SZ} fields is 16. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of Translation table descriptors hold output address[51:50].

The shareability information of Block and Page descriptors for cacheable locations is
determined by:

• TCR_EL1.SH0 if the VA is translated using tables pointed to by TTBR0_EL1.

• TCR_EL1.SH1 if the VA is translated using tables pointed to by TTBR1_EL1.

The minimum value of the TCR_EL1.{T0SZ, T1SZ} fields is 12. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 8
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL1 or TTBR1_EL1 are used to hold bits[51:48] of the output
address in all cases.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8351
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note
As FEAT_LVA must be implemented if TCR_EL1.DS == 1, the minimum value of the
TCR_EL1.{T0SZ, T1SZ} fields is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

TCMA1, bit [58]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL1, and at EL0 if the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, when address[59:55] = 0b11111.

0b0 This control has no effect on the generation of Unchecked accesses at EL1 or EL0.

0b1 All accesses at EL1 and EL0 are Unchecked.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA0, bit [57]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL1, and at EL0 if the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}, when address[59:55] = 0b00000.

0b0 This control has no effect on the generation of Unchecked accesses at EL1 or EL0.

0b1 All accesses at EL1 and EL0 are Unchecked.

Note
Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8352
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
E0PD1, bit [56]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR1_EL1.

0b0 Unprivileged access to any address translated by TTBR1_EL1 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR1_EL1 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR0_EL1.

0b0 Unprivileged access to any address translated by TTBR0_EL1 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR0_EL1 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD1, bit [54]

When FEAT_SVE is implemented or FEAT_TME is implemented:

Non-Fault translation timing Disable when using TTBR1_EL1.

Controls how a TLB miss is reported in response to a non-fault unprivileged access for a virtual
address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

If FEAT_TME is implemented, the affected access types include all accesses generated by a load or
store instruction in Transactional state.

0b0 Does not affect the handling of a TLB miss on accesses translated using TTBR1_EL1.

0b1 A TLB miss on a virtual address that is translated using TTBR1_EL1 due to the
specified access types causes the access to fail without taking an exception. The amount
of time that the failure takes to be handled should not predictively leak whether it was
caused by a TLB miss or a Permission fault, to mitigate attacks that use fault timing.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8353
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When FEAT_SVE is implemented or FEAT_TME is implemented:

Non-Fault translation timing Disable when using TTBR0_EL1.

Controls how a TLB miss is reported in response to a non-fault unprivileged access for a virtual
address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

If FEAT_TME is implemented, the affected access types include all accesses generated by a load or
store instruction in Transactional state.

0b0 Does not affect the handling of a TLB miss on accesses translated using TTBR0_EL1.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the
specified access types causes the access to fail without taking an exception. The amount
of time that the failure takes to be handled should not predictively leak whether it was
caused by a TLB miss or a Permission fault, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see Address tagging.

0b0 TCR_EL1.TBI1 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8354
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For more information, see Address tagging.

0b0 TCR_EL1.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [48]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8355
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [47]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8356
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HWU060, bit [44]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [42]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8357
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL0 and EL1.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR1_EL1 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then
bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TBI0, bit [37]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL1 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8358
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then
bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size.

0b0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

0b111 When FEAT_D128 is implemented:

56 bits, 64PB.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

If the value of ID_AA64MMFR0_EL1.PARange is 0b0110, and the value of this field is not 0b110
or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of
translation controlled by TCR_EL1 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8359
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TG1, bits [31:30]

Granule size for the TTBR1_EL1.

0b01 16KB.

0b10 4KB.

0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL1. The encoding of this bit is:

0b0 Perform translation table walks using TTBR1_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8360
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 A TLB miss on an address that is translated using TTBR1_EL1 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

0b0 TTBR0_EL1.ASID defines the ASID.

0b1 TTBR1_EL1.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

0b00 4KB

0b01 64KB

0b10 16KB

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Non-shareable

0b10 Outer Shareable

0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8361
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL1. The encoding of this bit is:

0b0 Perform translation table walks using TTBR0_EL1.

0b1 A TLB miss on an address that is translated using TTBR0_EL1 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8362
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing TCR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic TCR_EL1 or TCR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x120];
 else
 X[t, 64] = TCR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TCR_EL2;
 else
 X[t, 64] = TCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR_EL1;

MSR TCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x120] = X[t, 64];
 else
 TCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TCR_EL2 = X[t, 64];
 else
 TCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8363
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MRS <Xt>, TCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x120];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TCR_EL1;
 else
 UNDEFINED;

MSR TCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x120] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TCR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8364
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.175 TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is not 1, this register controls stage 1 of the EL2
translation regime, that supports a single VA range, translated using TTBR0_EL2.

• When the Effective value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0
translation regime, that supports both:

— A lower VA range, translated using TTBR0_EL2.

— A higher VA range, translated using TTBR1_EL2.

Configurations

AArch64 System register TCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

When the Effective value of HCR_EL2.E2H is not 1:

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:34]

Reserved, RES0.

MTX, bit [33]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is
implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL2 is using AArch64 where the data
address would be translated by tables pointed to by TTBR0_EL2.

This control has an effect regardless of whether stage 1 of the EL2 translation regime is enabled or
not.

0b0 This control has no effect on the PE.

RES0

63 34 33

DS

32

MTX
31 30 29 28 27 26 25 24 23

HD

22

HA

21 20 19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

RES0

7 6

T0SZ

5 0

RES1
TCMA

TBID
HWU62

HWU61

RES0
TBI

RES1
HPD

HWU59
HWU60

ORGN0 IRGN0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8365
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:

• Bits[59:56] are treated as 0b0000 when checking if the address is out of range.

• If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

• A Canonical Tag Check operation is performed on Tag Checked memory
accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DS, bit [32]

When FEAT_LPA2 is implemented:

This field affects whether a 52-bit output address can be described by the translation tables of the
4KB or 16KB translation granules.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in Block and Page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of TCR_EL2.T0SZ is 16. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of Translation table descriptors hold output address[51:50].

The shareability information of Block and Page descriptors for cacheable locations is
determined by TCR_EL2.SH0.

The minimum value of TCR_EL2.T0SZ is 12. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 8
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL2 are used to hold bits[51:48] of the output address in all cases.

Note
As FEAT_LVA must be implemented if TCR_EL2.DS == 1, the minimum value of the
TCR_EL2.T0SZ field is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

Bit [31]

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8366
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TCMA, bit [30]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL2 when address [59:56] = 0b0000.

0b0 This control has no effect on the generation of Unchecked accesses.

0b1 All accesses are Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see Address tagging.

0b0 TCR_EL2.TBI applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry.

0b0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry.

0b0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8367
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry.

0b0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

Note
In this case, bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor
attributes are required to be ignored by the PE and are no longer reserved, allowing them
to be used by software.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8368
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bit [23]

Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL2.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL2 region, or ignored and used for tagged addresses.

For more information, see Address tagging.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by
tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime
is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data
accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is
stored in the PC, in the following cases:

• A branch or procedure return within EL2.

• An exception taken to EL2.

• An exception return to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8369
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

0b111 When FEAT_D128 is implemented:

56 bits, 64PB.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

If the value of ID_AA64MMFR0_EL1.PARange is 0b0110, and the value of this field is not 0b110
or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of
translation controlled by TCR_EL2 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8370
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note
For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the Effective value of HCR_EL2.E2H is 1:

RES0

63 62 61 60

DS

59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

HD

40

HA

39 38 37

AS

36 35

IPS

34 32

MTX1
MTX0

TCMA1
TCMA0

E0PD1
E0PD0

NFD1
NFD0
TBID1

TBID0
HWU162

RES0
TBI0

TBI1
HPD0

HPD1
HWU059

HWU060
HWU061

HWU062
HWU159

HWU160
HWU161

TG1

31 30

SH1

29 28 27 26 25 24 23

A1

22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

ORGN1 EPD1
IRGN1

ORGN0
IRGN0

RES0
EPD0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8371
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Any of the bits in TCR_EL2, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to
be cached in a TLB.

Bits [63:62]

Reserved, RES0.

MTX1, bit [61]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is
implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL0 and EL2 are using AArch64
where the data address would be translated by tables pointed to by TTBR1_EL2.

This control has an effect regardless of whether stage 1 of the EL2&0 translation regime is enabled
or not.

0b0 This control has no effect on the PE.

0b1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:

• Bits[59:56] are treated as 0b1111 when checking if the address is out of range.

• If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

• A Canonical Tag Check operation is performed on Tag Checked memory
accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTX0, bit [60]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is
implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL0 and EL2 are using AArch64
where the data address would be translated by tables pointed to by TTBR0_EL2.

This control has an effect regardless of whether stage 1 of the EL2&0 translation regime is enabled
or not.

0b0 This control has no effect on the PE.

0b1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:

• Bits[59:56] are treated as 0b0000 when checking if the address is out of range.

• If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

• A Canonical Tag Check operation is performed on Tag Checked memory
accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DS, bit [59]

When FEAT_LPA2 is implemented and (FEAT_D128 is not implemented or TCR2_EL2.D128 == 0):

This field affects whether a 52-bit output address can be described by the translation tables of the
4KB or 16KB translation granules.

0b0 Bits[49:48] of translation descriptors are RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8372
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits[9:8] in Block and Page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in table descriptors are ignored by hardware.

The minimum value of the TCR_EL2.{T0SZ, T1SZ} fields is 16. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of Translation table descriptors hold output address[51:50].

The shareability information of Block and Page descriptors for cacheable locations is
determined by:

• TCR_EL2.SH0 if the VA is an address that is translated using tables pointed to
by TTBR0_EL2.

• TCR_EL2.SH1 if the VA is an address that is translated using tables pointed to
by TTBR1_EL2.

The minimum value of the TCR_EL2.{T0SZ, T1SZ} fields is 12. Any memory access
using a smaller value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 16
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL2 or TTBR1_EL2 are used to hold bits[51:48] of the output
address in all cases.

Note
As FEAT_LVA must be implemented if TCR_EL2.DS == 1, the minimum value of the
TCR_EL2.{T0SZ, T1SZ} fields is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

TCMA1, bit [58]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when
address[59:55] = 0b11111.

0b0 This control has no effect on the generation of Unchecked accesses at EL2 or EL0.

0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8373
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TCMA0, bit [57]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when
address[59:55] = 0b00000.

0b0 This control has no effect on the generation of Unchecked accesses at EL2 or EL0.

0b1 All accesses are Unchecked.

Note
Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD1, bit [56]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR1_EL2.

0b0 Unprivileged access to any address translated by TTBR1_EL2 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR1_EL2 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR0_EL2.

0b0 Unprivileged access to any address translated by TTBR0_EL2 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR0_EL2 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD1, bit [54]

When FEAT_SVE is implemented or FEAT_TME is implemented:

Non-Fault translation timing Disable when using TTBR1_EL2.

Controls how a TLB miss is reported in response to a non-fault unprivileged access for a virtual
address that is translated using TTBR1_EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8374
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

If FEAT_TME is implemented, the affected access types include all accesses generated by a load or
store instruction in Transactional state.

0b0 Does not affect the handling of a TLB miss on accesses translated using TTBR1_EL2.

0b1 A TLB miss on a virtual address that is translated using TTBR1_EL2 due to the
specified access types causes the access to fail without taking an exception. The amount
of time that the failure takes to be handled should not predictively leak whether it was
caused by a TLB miss or a Permission fault, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When FEAT_SVE is implemented or FEAT_TME is implemented:

Non-Fault translation timing Disable when using TTBR0_EL2.

Controls how a TLB miss is reported in response to a non-fault unprivileged access for a virtual
address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load instruction that are not for the First active
element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally
visible.

If FEAT_TME is implemented, the affected access types include all accesses generated by a load or
store instruction in Transactional state.

0b0 Does not affect the handling of a TLB miss on accesses translated using TTBR0_EL2.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL2 due to the
specified access types causes the access to fail without taking an exception. The amount
of time that the failure takes to be handled should not predictively leak whether it was
caused by a TLB miss or a Permission fault, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see Address tagging.

0b0 TCR_EL2.TBI1 applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI1 applies to Data accesses only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8375
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For more information, see Address tagging.

0b0 TCR_EL2.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8376
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HWU160, bit [48]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [47]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL2.

0b0 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8377
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HWU061, bit [45]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU060, bit [44]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8378
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HPD1, bit [42]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL2.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL2.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR1_EL2 region, or ignored and used for tagged addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8379
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For more information, see Address tagging.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL2. It has an effect whether the EL2, or EL2&0,
translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data
accesses.

If the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56]
of that target address are also set to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TBI0, bit [37]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL2 region, or ignored and used for tagged addresses.

For more information, see Address tagging.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0,
translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data
accesses.

If the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56]
of that target address are also set to 0 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size.

0b0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8380
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
IPS, bits [34:32]

Intermediate Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 When FEAT_LPA is implemented:

52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

If the value of ID_AA64MMFR0_EL1.PARange is 0b0110, and the value of this field is not 0b110
or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of
translation controlled by TCR_EL2 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

0b01 16KB.

0b10 4KB.

0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8381
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL2. The encoding of this bit is:

0b0 Perform translation table walks using TTBR1_EL2.

0b1 A TLB miss on an address that is translated using TTBR1_EL2 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

0b0 TTBR0_EL2.ASID defines the ASID.

0b1 TTBR1_EL2.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8382
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TG0, bits [15:14]

Granule size for the TTBR0_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL2. The encoding of this bit is:

0b0 Perform translation table walks using TTBR0_EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8383
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 A TLB miss on an address that is translated using TTBR0_EL2 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TCR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic TCR_EL2 or TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR_EL2;

MSR TCR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8384
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TCR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, TCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x120];
 else
 X[t, 64] = TCR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TCR_EL2;
 else
 X[t, 64] = TCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR_EL1;

 When FEAT_VHE is implemented : MSR TCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x120] = X[t, 64];
 else
 TCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8385
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 TCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TCR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8386
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.176 TCR_EL3, Translation Control Register (EL3)

The TCR_EL3 characteristics are:

Purpose

The control register for stage 1 of the EL3 translation regime.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TCR_EL3 are
UNDEFINED.

Attributes

TCR_EL3 is a 64-bit register.

Field descriptions

Unless stated otherwise, any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bits [63:44]

Reserved, RES0.

DisCH0, bit [43]

When FEAT_D128 is implemented and TCR_EL3.D128 == 1:

Disable the Contiguous bit for the Start Table.

0b0 The Contiguous bit of Block or Page descriptors of the Start Table is not affected by this
field.

0b1 The Contiguous bit of Block or Page descriptors of the Start Table is treated as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HAFT, bit [42]

When FEAT_HAFT is implemented:

Hardware managed Access Flag for Table descriptors.

Enables the Hardware managed Access Flag for Table descriptors.

0b0 Hardware managed Access Flag for Table descriptors is disabled.

0b1 Hardware managed Access Flag for Table descriptors is enabled.

RES0

63 44 43 42 41

RES0

40 39 38 37 36 35 34 33

DS

32

DisCH0
HAFT
PTTWI

D128

MTX
PnCH

PIE
POE

AIE
31 30 29 28 27 26 25 24 23

HD

22

HA

21 20 19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

RES0

7 6

T0SZ

5 0

RES1
TCMA

TBID
HWU62

HWU61

RES0
TBI

RES1
HPD

HWU59
HWU60

ORGN0 IRGN0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8387
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PTTWI, bit [41]

When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to generate writes that have the Reduced Coherence property.

0b0 Write accesses generated by RCWS at EL3 do not have the Reduced Coherence
property.

0b1 Write accesses generated by RCWS at EL3 have the Reduced Coherence property.

This bit is permitted to be implemented as a read-only bit with a fixed value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [40:39]

Reserved, RES0.

D128, bit [38]

When FEAT_D128 is implemented:

Enables VMSAv9-128 translation system.

0b0 Translation system follows VMSA-64 translation process.

0b1 Translation system follows VMSAv9-128 translation process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AIE, bit [37]

When FEAT_AIE is implemented:

Enable Attribute Indexing Extension.

0b0 Attribute Indexing Extension Disabled.

0b1 Attribute Indexing Extension Enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

POE, bit [36]

When FEAT_S1POE is implemented:

Enables Permission Overlay for EL3 accesses.

0b0 Permission overlay disabled for EL3 access in stage 1 of EL3 translation regime.

0b1 Permission overlay enabled for EL3 access in stage 1 of EL3 translation regime.

This bit is not permitted to be cached in a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8388
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PIE, bit [35]

When FEAT_S1PIE is implemented:

Enables usage of Indirect Permission Scheme.

0b0 Direct permission model.

0b1 Indirect permission model.

This field is RES1 when TCR_EL3.D128 is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PnCH, bit [34]

When FEAT_THE is implemented:

Protected attribute enable. Indicates use of bit[52] of the stage 1 translation table entry for
translations using TTBR0_EL3.

0b0 For translations using TTBR0_EL3, bit[52] of each stage 1 translation table entry does
not indicate protected attribute.

0b1 For translations using TTBR0_EL3, bit[52] of each stage 1 translation table entry
indicates protected attribute.

This field is RES1 when TCR_EL3.D128 is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTX, bit [33]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is
implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL3 is using AArch64 where the data
address would be translated by tables pointed to by TTBR0_EL3.

This control has an effect regardless of whether stage 1 of the EL3 translation regime is enabled or
not.

0b0 This control has no effect on the PE.

0b1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:

• Bits[59:56] are treated as 0b0000 when checking if the address is out of range.

• If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

• A Canonical Tag Check operation is performed on Tag Checked memory
accesses to a Canonically Tagged memory location.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8389
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DS, bit [32]

When FEAT_LPA2 is implemented and (FEAT_D128 is not implemented or TCR_EL3.D128 == 0):

This field affects whether a 52-bit output address can be described by the translation tables of the
4KB or 16KB translation granules.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in Block and Page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in Table descriptors are ignored by hardware.

The minimum value of TCR_EL3.T0SZ is 16. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] of table translation descriptors hold output address[51:50].

The shareability information of Block and Page descriptors for cacheable locations is
determined by TCR_EL3.SH0.

The minimum value of TCR_EL3.T0SZ is 12. Any memory access using a smaller
value generates a stage 1 level 0 translation table fault.

All calculations of the stage 1 base address are modified for tables of fewer than 8
entries so that the table is aligned to 64 bytes.

Bits[5:2] of TTBR0_EL3 are used to hold bits[51:48] of the output address in all cases.

Note
As FEAT_LVA must be implemented if TCR_EL3.DS == 1, the minimum value of the
TCR_EL3.T0SZ field is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When FEAT_MTE2 is implemented:

Controls the generation of Unchecked accesses at EL3 when address [59:56] = 0b0000.

0b0 This control has no effect on the generation of Unchecked accesses.

0b1 All accesses are Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8390
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

0b0 TCR_EL3.TBI applies to Instruction and Data accesses.

0b1 TCR_EL3.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL3.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry.

0b0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry.

0b0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry.

0b0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8391
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL3.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

Note
In this case, bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor
attributes are required to be ignored by the PE, and are no longer reserved, allowing
them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL3.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8392
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL3.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL3 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by
tables pointed to by TTBR0_EL3. It has an effect whether the EL3 translation regime is enabled or
not.

If FEAT_PAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the
address is stored in the PC, in the following cases:

• A branch or procedure return within EL3.

• A exception taken to EL3.

• An exception return to EL3.

For more information, see Address tagging.

Note

This control determines the scope of address tagging. It never causes an exception to be generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

0b111 When FEAT_D128 is implemented:

56 bits, 64PB.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8393
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

If the value of ID_AA64MMFR0_EL1.PARange is 0b0110, and the value of this field is not 0b110
or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of
translation controlled by TCR_EL3 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL3.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8394
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TCR_EL3;

MSR TCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TCR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8395
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.177 TFSRE0_EL1, Tag Fault Status Register (EL0).

The TFSRE0_EL1 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL0 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSRE0_EL1 are UNDEFINED.

Attributes

TFSRE0_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b1 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSRE0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSRE0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then

RES0

63 32

RES0

31 2 1 0

TF1 TF0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8396
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSRE0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSRE0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TFSRE0_EL1;

MSR TFSRE0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TFSRE0_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8397
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.178 TFSR_EL1, Tag Fault Status Register (EL1)

The TFSR_EL1 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL1 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSR_EL1 are UNDEFINED.

Attributes

TFSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b1 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then

RES0

63 32

RES0

31 2 1 0

TF1 TF0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8398
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x190];
 else
 X[t, 64] = TFSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TFSR_EL2;
 else
 X[t, 64] = TFSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TFSR_EL1;

MSR TFSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x190] = X[t, 64];
 else
 TFSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 TFSR_EL2 = X[t, 64];
 else
 TFSR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8399
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 TFSR_EL1 = X[t, 64];

MRS <Xt>, TFSR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x190];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TFSR_EL1;
 else
 UNDEFINED;

MSR TFSR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x190] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8400
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TFSR_EL1 = X[t, 64];
 else
 UNDEFINED;

MRS <Xt>, TFSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TFSR_EL2;

MSR TFSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8401
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TFSR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8402
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.179 TFSR_EL2, Tag Fault Status Register (EL2)

The TFSR_EL2 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL2 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

TFSR_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b1 occurs.

When the Effective value of HCR_EL2.E2H is not 1, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic TFSR_EL2 or TFSR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSR_EL2

RES0

63 32

RES0

31 2 1 0

TF1 TF0

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8403
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSR_EL1;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TFSR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TFSR_EL2;

MSR TFSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL1 = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8404
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TFSR_EL2 = X[t, 64];

MRS <Xt>, TFSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x190];
 else
 X[t, 64] = TFSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TFSR_EL2;
 else
 X[t, 64] = TFSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TFSR_EL1;

MSR TFSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8405
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x190] = X[t, 64];
 else
 TFSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 TFSR_EL2 = X[t, 64];
 else
 TFSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TFSR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8406
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.180 TFSR_EL3, Tag Fault Status Register (EL3)

The TFSR_EL3 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL3 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to
TFSR_EL3 are UNDEFINED.

Attributes

TFSR_EL3 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with
bit[55] == 0b0 occurs.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TFSR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TFSR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TFSR_EL3;

RES0

63 32

RES0

31 1 0

TF0

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8407
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR TFSR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TFSR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8408
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.181 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2

The TPIDR2_EL0 characteristics are:

Purpose

Provides a location where SME-aware software executing at EL0 can store thread identifying
information, for context management purposes.

The PE makes no use of this register.

Configurations

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
TPIDR2_EL0 are UNDEFINED.

Attributes

TPIDR2_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR2_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR2_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnTP2 == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && SCTLR_EL1.EnTP2 == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnTP2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nTPIDR2_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8409
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TPIDR2_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnTP2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nTPIDR2_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TPIDR2_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnTP2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TPIDR2_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TPIDR2_EL0;

MSR TPIDR2_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnTP2 == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL0) && SCTLR_EL1.EnTP2 == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnTP2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nTPIDR2_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TPIDR2_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnTP2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nTPIDR2_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8410
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TPIDR2_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.EnTP2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TPIDR2_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TPIDR2_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8411
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.182 TPIDR_EL0, EL0 Read/Write Software Thread ID Register

The TPIDR_EL0 characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register TPIDRURW[31:0].

Attributes

TPIDR_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL0

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
|| SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = TPIDR_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = TPIDR_EL0;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TPIDR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TPIDR_EL0;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8412
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR TPIDR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
|| SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 TPIDR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TPIDR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8413
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.183 TPIDR_EL1, EL1 Software Thread ID Register

The TPIDR_EL1 characteristics are:

Purpose

Provides a location where software executing at EL1 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register TPIDRPRW[31:0].

Attributes

TPIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.TPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = TPIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TPIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TPIDR_EL1;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8414
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR TPIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGWTR_EL2.TPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 TPIDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TPIDR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8415
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.184 TPIDR_EL2, EL2 Software Thread ID Register

The TPIDR_EL2 characteristics are:

Purpose

Provides a location where software executing at EL2 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HTPIDR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TPIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x090];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TPIDR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TPIDR_EL2;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8416
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR TPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x090] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TPIDR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TPIDR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8417
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.185 TPIDR_EL3, EL3 Software Thread ID Register

The TPIDR_EL3 characteristics are:

Purpose

Provides a location where software executing at EL3 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TPIDR_EL3
are UNDEFINED.

Attributes

TPIDR_EL3 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TPIDR_EL3;

MSR TPIDR_EL3, <Xt>

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8418
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TPIDR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8419
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.186 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

The TPIDRRO_EL0 characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying
information that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDRRO_EL0 bits [31:0] are architecturally mapped to AArch32
System register TPIDRURO[31:0].

Attributes

TPIDRRO_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

Accessing TPIDRRO_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDRRO_EL0

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
|| SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = TPIDRRO_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = TPIDRRO_EL0;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TPIDRRO_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TPIDRRO_EL0;

Thread ID

63 32

Thread ID

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8420
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR TPIDRRO_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGWTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TPIDRRO_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 TPIDRRO_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TPIDRRO_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8421
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.187 TTBR0_EL1, Translation Table Base Register 0 (EL1)

The TTBR0_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the lower VA range in the EL1&0 translation regime, and other information for this
translation regime.

Configurations

AArch64 System register TTBR0_EL1 bits [63:0] are architecturally mapped to AArch32 System
register TTBR0[63:0].

TTBR0_EL1 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed as a
64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

TTBR0_EL1 is a:

• 128-bit register when FEAT_D128 is implemented and TCR2_EL1.D128 == 1

• 64-bit register when FEAT_D128 is not implemented or TCR2_EL1.D128 == 0

Field descriptions

When FEAT_D128 is implemented and TCR2_EL1.D128 == 1:

Bits [127:88]

Reserved, RES0.

BADDR, bits [87:80, 47:5]

Translation table base address:

• Bits A[55:x] of the stage 1 translation table base address bits are in register bits[87:80, 47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The BADDR field is split as follows:

• BADDR[50:43] is TTBR0_EL1[87:80].

• BADDR[42:0] is TTBR0_EL1[47:5].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

127 96

RES0

95 88

BADDR[50:43]

87 80

RES0

79 64

ASID

63 48

BADDR[42:0]

47 32

BADDR[42:0]

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8422
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [79:64]

Reserved, RES0.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level associated with translation table walks using TTBR0_EL1.

This determines the number of levels to be skipped from the regular start level of the stage 1 EL1&0
translation table walks using TTBR0_EL1.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR0_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR0_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This bit is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8423
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When FEAT_D128 is not implemented or TCR2_EL1.D128 == 0:

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated
based on the value of TCR_EL1.T0SZ, the translation stage, and the translation granule size.

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• The smallest permitted value of x is 6.

• When x>6, register bits[(x-1):6] are RES0.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8424
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

TCR_EL1.IPS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation supports a
56 bit PA size, bits A[55:52] of the stage 1 translation table base address are zero.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL1, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR0_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR0_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This bit is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8425
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic TTBR0_EL1 or TTBR0_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x200];
 else
 X[t, 64] = TTBR0_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR0_EL2<63:0>;
 else
 X[t, 64] = TTBR0_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR0_EL1<63:0>;

MSR TTBR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8426
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x200] = X[t, 64];
 else
 TTBR0_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TTBR0_EL2<63:0> = X[t, 64];
 else
 TTBR0_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR0_EL1<63:0> = X[t, 64];

MRS <Xt>, TTBR0_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x200];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR0_EL1<63:0>;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR0_EL1<63:0>;
 else
 UNDEFINED;

MSR TTBR0_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x200] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TTBR0_EL1<63:0> = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8427
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TTBR0_EL1<63:0> = X[t, 64];
 else
 UNDEFINED;

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x200, 128], 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL2, 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);

 When FEAT_D128 is implemented : MSRR TTBR0_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8428
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x200, 128] = X[t + 1, 64]:X[t, 64];
 else
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 TTBR0_EL2<127:0> = X[t + 1, 64]:X[t, 64];
 else
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR0_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x200, 128], 64);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8429
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;

 When FEAT_D128 is implemented : MSRR TTBR0_EL12, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x200, 128] = X[t + 1, 64]:X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8430
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.188 TTBR0_EL2, Translation Table Base Register 0 (EL2)

The TTBR0_EL2 characteristics are:

Purpose

When the Effective value of HCR_EL2.E2H is not 1, holds the base address of the translation table
for the initial lookup for stage 1 of an address translation in the EL2 translation regime, and other
information for this translation regime.

When the Effective value of HCR_EL2.E2H is 1, holds the base address of the translation table for
the initial lookup for stage 1 of the translation of an address from the lower VA range in the EL2&0
translation regime, and other information for this translation regime.

Configurations

AArch64 System register TTBR0_EL2 bits [47:1] are architecturally mapped to AArch32 System
register HTTBR[47:1].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

TTBR0_EL2 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed as a
64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

TTBR0_EL2 is a:

• 128-bit register when FEAT_D128 is implemented, TCR2_EL2.D128 == 1 and the Effective
value of HCR_EL2.E2H is 1

• 64-bit register when FEAT_D128 is not implemented or TCR2_EL2.D128 == 0

Field descriptions

When FEAT_D128 is implemented, TCR2_EL2.D128 == 1 and the Effective value of HCR_EL2.E2H
is 1:

Bits [127:88]

Reserved, RES0.

BADDR[55:5], bits [87:80, 47:5]

Translation table base address:

• Bits A[55:x] of the stage 1 translation table base address bits are in register bits[87:80, 47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

RES0

127 96

RES0

95 88 87 80

RES0

79 64

BADDR[55:5][50:43]

ASID

63 48

BADDR[55:5][42:0]

47 32

BADDR[55:5][42:0]

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8431
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The BADDR[55:5] field is split as follows:

• BADDR[55:5][50:43] is TTBR0_EL2[87:80].

• BADDR[55:5][42:0] is TTBR0_EL2[47:5].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [79:64]

Reserved, RES0.

ASID, bits [63:48]

When FEAT_VHE is implemented:

When the Effective value of HCR_EL2.E2H is 1, it holds an ASID for the translation table base
address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level associated with translation table walks using TTBR0_EL2.

This determines the number of levels to be skipped from the regular start level of the stage 1 EL2&0
translation table walks using TTBR0_EL2.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL2 for the current translation
regime, and ASID if applicable, are permitted to differ from corresponding entries for
TTBR0_EL2 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL2.CnP on those other PEs.

• When the current translation regime is the EL2&0 regime, the value of the
current ASID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8432
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 The translation table entries pointed to by TTBR0_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL2.

• The translation tables relate to the same translation regime.

• If that translation regime is the EL2&0 regime, the ASID is the same as the
current ASID.

This bit is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL2s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When FEAT_D128 is not implemented or TCR2_EL2.D128 == 0:

ASID, bits [63:48]

When FEAT_VHE is implemented:

When the Effective value of HCR_EL2.E2H is not 1, this field is RES0.

When the Effective value of HCR_EL2.E2H is 1, it holds an ASID for the translation table base
address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated
based on the value of TCR_EL2.T0SZ, the translation stage, and the translation granule size.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8433
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

If the value of TCR_EL2.{I}PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL2.{I}PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• The smallest permitted value of x is 6.

• When x>6, register bits[(x-1):6] are RES0.

Note

The OA size specified by TCR_EL2.{I}PS is determined as follows:

• The value of TCR_EL2.PS when the Effective value of HCR_EL2.E2H is not 1.

• The value of TCR_EL2.IPS when the Effective value of HCR_EL2.E2H is 1.

TCR_EL2.{I}PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL2.{I}PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation supports a
56 bit PA size, bits A[55:52] of the stage 1 translation table base address are zero.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL2, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL2 for the current translation
regime, and ASID if applicable, are permitted to differ from corresponding entries for
TTBR0_EL2 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL2.CnP on those other PEs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8434
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• When the current translation regime is the EL2&0 regime, the value of the
current ASID.

0b1 The translation table entries pointed to by TTBR0_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL2.

• The translation tables relate to the same translation regime.

• If that translation regime is the EL2&0 regime, the ASID is the same as the
current ASID.

This bit is permitted to be cached in a TLB.

Note
If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL2s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic TTBR0_EL2 or TTBR0_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TTBR0_EL2<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR0_EL2<63:0>;

MSR TTBR0_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8435
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TTBR0_EL2<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR0_EL2<63:0> = X[t, 64];

MRS <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x200];
 else
 X[t, 64] = TTBR0_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR0_EL2<63:0>;
 else
 X[t, 64] = TTBR0_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR0_EL1<63:0>;

MSR TTBR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x200] = X[t, 64];
 else
 TTBR0_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TTBR0_EL2<63:0> = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8436
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 TTBR0_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR0_EL1<63:0> = X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL2, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL2, 64);

 When FEAT_D128 is implemented : MSRR TTBR0_EL2, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 TTBR0_EL2<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR0_EL2<127:0> = X[t + 1, 64]:X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8437
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x200, 128], 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL2, 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR0_EL1, 64);

 When FEAT_D128 is implemented : MSRR TTBR0_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8438
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x200, 128] = X[t + 1, 64]:X[t, 64];
 else
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 TTBR0_EL2<127:0> = X[t + 1, 64]:X[t, 64];
 else
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR0_EL1<127:0> = X[t + 1, 64]:X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8439
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.189 TTBR0_EL3, Translation Table Base Register 0 (EL3)

The TTBR0_EL3 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address
translation in the EL3 translation regime, and other information for this translation regime.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TTBR0_EL3
are UNDEFINED.

Attributes

TTBR0_EL3 is a 64-bit register.

Field descriptions

When FEAT_D128 is implemented and TCR_EL3.D128 == 1:

Bits [63:56]

Reserved, RES0.

BADDR, bits [55:5]

• Bits A[55:x] of the stage 1 translation table base address bits are in register bits[55:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level associated with translation table walks using TTBR0_EL3.

This determines the number of levels to be skipped from the regular start level of the stage 1 EL3
translation table walks using TTBR0_EL3.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 56

BADDR

55 32

BADDR

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8440
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that
includes FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VSTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VSTTBR_EL2 are permitted to differ from
the entries for VSTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VSTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This bit is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VSTTBR_EL2s do not point to the same translation table entries when using the current
VMID, then the results of translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_D128 is not implemented or TCR_EL3.D128 == 0:

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated
based on the value of TCR_EL3.T0SZ, the translation stage, and the translation granule size.

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

If the value of TCR_EL3.PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

RES0

63 48

BADDR

47 32

BADDR

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8441
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_LPA is implemented and the value of TCR_EL3.PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• The smallest permitted value of x is 6.

• When x>6, register bits[(x-1):6] are RES0.

Note

TCR_EL3.PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL3.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation supports a
56 bit PA size, bits A[55:52] of the stage 1 translation table base address are zero.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL3, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL3 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL3.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL3, for the current translation
regime, are permitted to differ from corresponding entries for TTBR0_EL3 for other
PEs in the Inner Shareable domain. This is not affected by the value of
TTBR0_EL3.CnP on those other PEs.

0b1 The translation table entries pointed to by TTBR0_EL3 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL3.CnP is 1 and the translation table entries are pointed to by TTBR0_EL3.

This bit is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL3s do not point to the same translation table entries the results of translations
using TTBR0_EL3 are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8442
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing TTBR0_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR0_EL3;

MSR TTBR0_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TTBR0_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8443
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.190 TTBR1_EL1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the higher VA range in the EL1&0 stage 1 translation regime, and other information
for this translation regime.

Configurations

AArch64 System register TTBR1_EL1 bits [63:0] are architecturally mapped to AArch32 System
register TTBR1[63:0].

TTBR1_EL1 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed as a
64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

TTBR1_EL1 is a:

• 128-bit register when FEAT_D128 is implemented and TCR2_EL1.D128 == 1

• 64-bit register when FEAT_D128 is not implemented or TCR2_EL1.D128 == 0

Field descriptions

When FEAT_D128 is implemented and TCR2_EL1.D128 == 1:

Bits [127:88]

Reserved, RES0.

BADDR, bits [87:80, 47:5]

Translation table base address:

• Bits A[55:x] of the stage 1 translation table base address bits are in register bits[87:80, 47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The BADDR field is split as follows:

• BADDR[50:43] is TTBR1_EL1[87:80].

• BADDR[42:0] is TTBR1_EL1[47:5].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

127 96

RES0

95 88

BADDR[50:43]

87 80

RES0

79 64

ASID

63 48

BADDR[42:0]

47 32

BADDR[42:0]

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8444
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [79:64]

Reserved, RES0.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level associated with translation table walks using TTBR1_EL1.

This determines the number of levels to be skipped from the regular start level of the stage 1 EL1&0
translation table walks using TTBR1_EL1.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR1_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR1_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This bit is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8445
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR1_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When FEAT_D128 is not implemented or TCR2_EL1.D128 == 0:

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated
based on the value of TCR_EL1.T1SZ, the translation stage, and the translation granule size.

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• The smallest permitted value of x is 6.

• When x>6, register bits[(x-1):6] are RES0.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8446
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

TCR_EL1.IPS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation supports a
56 bit PA size, bits A[55:52] of the stage 1 translation table base address are zero.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR1_EL1, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR1_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR1_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This bit is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8447
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR1_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching
of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic TTBR1_EL1 or TTBR1_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x210];
 else
 X[t, 64] = TTBR1_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR1_EL2<63:0>;
 else
 X[t, 64] = TTBR1_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR1_EL1<63:0>;

MSR TTBR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8448
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x210] = X[t, 64];
 else
 TTBR1_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TTBR1_EL2<63:0> = X[t, 64];
 else
 TTBR1_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR1_EL1<63:0> = X[t, 64];

MRS <Xt>, TTBR1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x210];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR1_EL1<63:0>;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR1_EL1<63:0>;
 else
 UNDEFINED;

MSR TTBR1_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x210] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TTBR1_EL1<63:0> = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8449
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TTBR1_EL1<63:0> = X[t, 64];
 else
 UNDEFINED;

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x210, 128], 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL2, 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);

 When FEAT_D128 is implemented : MSRR TTBR1_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8450
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x210, 128] = X[t + 1, 64]:X[t, 64];
 else
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 TTBR1_EL2<127:0> = X[t + 1, 64]:X[t, 64];
 else
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x210, 128], 64);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8451
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;

 When FEAT_D128 is implemented : MSRR TTBR1_EL12, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x210, 128] = X[t + 1, 64]:X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8452
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.191 TTBR1_EL2, Translation Table Base Register 1 (EL2)

The TTBR1_EL2 characteristics are:

Purpose

When the Effective value of HCR_EL2.E2H is 1, holds the base address of the translation table for
the initial lookup for stage 1 of the translation of an address from the higher VA range in the EL2&0
translation regime, and other information for this translation regime.

Note

When the Effective value of HCR_EL2.E2H is not 1, the contents of this register are ignored by the
PE, except for a direct read or write of the register.

Configurations

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to
TTBR1_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

TTBR1_EL2 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed as a
64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

TTBR1_EL2 is a:

• 128-bit register when FEAT_D128 is implemented, TCR2_EL2.D128 == 1 and the Effective
value of HCR_EL2.E2H is 1

• 64-bit register when FEAT_D128 is not implemented or TCR2_EL2.D128 == 0

Field descriptions

When FEAT_D128 is implemented, TCR2_EL2.D128 == 1 and the Effective value of HCR_EL2.E2H
is 1:

Bits [127:88]

Reserved, RES0.

BADDR, bits [87:80, 47:5]

Translation table base address:

• Bits A[55:x] of the stage 1 translation table base address bits are in register bits[87:80, 47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

RES0

127 96

RES0

95 88

BADDR[50:43]

87 80

RES0

79 64

ASID

63 48

BADDR[42:0]

47 32

BADDR[42:0]

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8453
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The BADDR field is split as follows:

• BADDR[50:43] is TTBR1_EL2[87:80].

• BADDR[42:0] is TTBR1_EL2[47:5].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [79:64]

Reserved, RES0.

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either
TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level associated with translation table walks using TTBR1_EL2.

This determines the number of levels to be skipped from the regular start level of the stage 1 EL2&0
translation table walks using TTBR1_EL2.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL2 for the current ASID are
permitted to differ from corresponding entries for TTBR1_EL2 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.

• The value of the current ASID.

0b1 The translation table entries pointed to by TTBR1_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL2.

• The ASID is the same as the current ASID.

This bit is permitted to be cached in a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8454
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

• TTBR1_EL2 is accessible only when the Effective value of HCR_EL2.E2H is 1, meaning
the current translation regime is the EL2&0 regime.

• If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR1_EL2s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When FEAT_D128 is not implemented or TCR2_EL2.D128 == 0:

ASID, bits [63:48]

An ASID for the translation table base address. The TCR_EL2.A1 field selects either
TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR[47:1], bits [47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated
based on the value of TCR_EL2.T1SZ, the translation stage, and the translation granule size.

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

If the value of TCR_EL2.{I}PS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL2.{I}PS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8455
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• The smallest permitted value of x is 6.

• When x>6, register bits[(x-1):6] are RES0.

Note

The OA size specified by TCR_EL2.{I}PS is determined as follows:

• The value of TCR_EL2.PS when the Effective value of HCR_EL2.E2H is not 1.

• The value of TCR_EL2.IPS when the Effective value of HCR_EL2.E2H is 1.

TCR_EL2.{I}PS==0b110 is permitted when:

• FEAT_LPA is implemented and the 64KB translation granule is used.

• FEAT_LPA2 is implemented and the 4KB or 16KB translation granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL2.{I}PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation supports a
56 bit PA size, bits A[55:52] of the stage 1 translation table base address are zero.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR1_EL2, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL2 for the current ASID are
permitted to differ from corresponding entries for TTBR1_EL2 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.

• The value of the current ASID.

0b1 The translation table entries pointed to by TTBR1_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL2.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL2.

• The ASID is the same as the current ASID.

This bit is permitted to be cached in a TLB.

Note
• TTBR1_EL2 is accessible only when the Effective value of HCR_EL2.E2H is 1, meaning

the current translation regime is the EL2&0 regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8456
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable
domain and those TTBR1_EL2s do not point to the same translation table entries when the
other conditions specified for the case when the value of CnP is 1 apply, then the results of
translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE
behaviors due to caching of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic TTBR1_EL2 or TTBR1_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = TTBR1_EL2<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR1_EL2<63:0>;

MSR TTBR1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TTBR1_EL2<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR1_EL2<63:0> = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8457
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MRS <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x210];
 else
 X[t, 64] = TTBR1_EL1<63:0>;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = TTBR1_EL2<63:0>;
 else
 X[t, 64] = TTBR1_EL1<63:0>;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TTBR1_EL1<63:0>;

MSR TTBR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x210] = X[t, 64];
 else
 TTBR1_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 TTBR1_EL2<63:0> = X[t, 64];
 else
 TTBR1_EL1<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR1_EL1<63:0> = X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR1_EL2

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8458
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL2, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL2, 64);

 When FEAT_D128 is implemented : MSRR TTBR1_EL2, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 TTBR1_EL2<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR1_EL2<127:0> = X[t + 1, 64]:X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8459
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x210, 128], 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif ELIsInHost(EL2) then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL2, 64);
 else
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(TTBR1_EL1, 64);

 When FEAT_D128 is implemented : MSRR TTBR1_EL1, <Xt+1>, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.TTBR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.D128En == '0') then
 AArch64.SystemAccessTrap(EL2, 0x14);
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x210, 128] = X[t + 1, 64]:X[t, 64];
 else
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8460
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif ELIsInHost(EL2) then
 TTBR1_EL2<127:0> = X[t + 1, 64]:X[t, 64];
 else
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 TTBR1_EL1<127:0> = X[t + 1, 64]:X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8461
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.192 VBAR_EL1, Vector Base Address Register (EL1)

The VBAR_EL1 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL1.

Configurations

AArch64 System register VBAR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register VBAR[31:0].

Attributes

VBAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

Note
If the implementation supports FEAT_LVA3, then:

• If tagged addresses are not being used, bits [63:56] of VBAR_EL1 must be the same or else
the use of the vector address will result in a recursive exception.

Otherwise:

If the implementation supports FEAT_LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the
use of the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else
the use of the vector address will result in a recursive exception.

If the implementation does not support FEAT_LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the
use of the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else
the use of the vector address will result in a recursive exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing VBAR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic VBAR_EL1 or VBAR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8462
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VBAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x250];
 else
 X[t, 64] = VBAR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = VBAR_EL2;
 else
 X[t, 64] = VBAR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VBAR_EL1;

MSR VBAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x250] = X[t, 64];
 else
 VBAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 VBAR_EL2 = X[t, 64];
 else
 VBAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VBAR_EL1 = X[t, 64];

MRS <Xt>, VBAR_EL12

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8463
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x250];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = VBAR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = VBAR_EL1;
 else
 UNDEFINED;

MSR VBAR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x250] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 VBAR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 VBAR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8464
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.193 VBAR_EL2, Vector Base Address Register (EL2)

The VBAR_EL2 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL2.

Configurations

AArch64 System register VBAR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HVBAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VBAR_EL2 is a 64-bit register.

Field descriptions

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

Note
If FEAT_LVA3 is implemented:

• If the Effective value of HCR_EL2.E2H is 1:

— If tagged addresses are not being used, bits [63:56] of VBAR_EL2 must be the same
or else the use of the vector address will result in a recursive exception.

• If the Effective value of HCR_EL2.E2H is not 1:

— If tagged addresses are not being used, bits [63:56] of VBAR_EL2 must be 0 or else
the use of the vector address will result in a recursive exception.

Otherwise :

If FEAT_LVA is implemented:

• If the Effective value of HCR_EL2.E2H is 1:

— If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or
else the use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same
or else the use of the vector address will result in a recursive exception.

• If the Effective value of HCR_EL2.E2H is not 1:

— If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be 0 or else the
use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be 0 or else
the use of the vector address will result in a recursive exception.

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8465
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If FEAT_LVA is not implemented:

• If the Effective value of HCR_EL2.E2H is 1:

— If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be the same or
else the use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be the same
or else the use of the vector address will result in a recursive exception.

• If the Effective value of HCR_EL2.E2H is not 1:

— If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the
use of the vector address will result in a recursive exception.

— If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else
the use of the vector address will result in a recursive exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing VBAR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic VBAR_EL2 or VBAR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VBAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VBAR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VBAR_EL2;

MSR VBAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8466
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VBAR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VBAR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, VBAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x250];
 else
 X[t, 64] = VBAR_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = VBAR_EL2;
 else
 X[t, 64] = VBAR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VBAR_EL1;

 When FEAT_VHE is implemented : MSR VBAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '011' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.VBAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x250] = X[t, 64];
 else
 VBAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 VBAR_EL2 = X[t, 64];
 else
 VBAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VBAR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8467
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.194 VBAR_EL3, Vector Base Address Register (EL3)

The VBAR_EL3 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to VBAR_EL3
are UNDEFINED.

Attributes

VBAR_EL3 is a 64-bit register.

Field descriptions

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

Note
If the implementation supports FEAT_LVA3, then:

• If tagged addresses are not being used, bits [63:56] of VBAR_EL3 must be 0 or else the use
of the vector address will result in a recursive exception.

Otherwise:

If the implementation supports FEAT_LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be 0 or else the use of
the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be 0 or else the use
of the vector address will result in a recursive exception.

If the implementation does not support FEAT_LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be 0 or else the use of
the vector address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be 0 or else the use
of the vector address will result in a recursive exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8468
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing VBAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VBAR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VBAR_EL3;

MSR VBAR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 VBAR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8469
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.195 VMECID_A_EL2, Alternate MECID for EL1&0 stage 2 translation regime

The VMECID_A_EL2 characteristics are:

Purpose

Alternate MECID for EL1&0 stage 2 translation regime.

Configurations

This register is present only when FEAT_MEC is implemented, IsCurrentSecurityState(SS_Realm)
and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to VMECID_A_EL2
are UNDEFINED.

Attributes

VMECID_A_EL2 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VMECID_A_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VMECID_A_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 X[t, 64] = VMECID_A_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VMECID_A_EL2;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8470
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR VMECID_A_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 VMECID_A_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VMECID_A_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8471
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.196 VMECID_P_EL2, Primary MECID for EL1&0 stage 2 translation regime

The VMECID_P_EL2 characteristics are:

Purpose

Primary MECID for EL1&0 stage 2 translation regime.

Configurations

This register is present only when FEAT_MEC is implemented, IsCurrentSecurityState(SS_Realm)
and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to VMECID_P_EL2
are UNDEFINED.

Attributes

VMECID_P_EL2 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MECID, bits [15:0]

If MECIDWidth is less than 16, bits[15:MECIDWidth] are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VMECID_P_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VMECID_P_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 X[t, 64] = VMECID_P_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VMECID_P_EL2;

RES0

63 32

RES0

31 16

MECID

15 0

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8472
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR VMECID_P_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Realm) then
 UNDEFINED;
 else
 VMECID_P_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VMECID_P_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8473
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.197 VMPIDR_EL2, Virtualization Multiprocessor ID Register

The VMPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by EL1 reads of
MPIDR_EL1.

Configurations

AArch64 System register VMPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VMPIDR[31:0].

If EL2 is not implemented, reads of this register return the value of the MPIDR_EL1 and writes to
the register are ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VMPIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of VMPIDR_EL2.Aff0 for more information.

Aff3 is not supported in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [29:25]

Reserved, RES0.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8474
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a
multithreading type approach. See the description of VMPIDR_EL2.Aff0 for more information
about affinity levels.

0b0 Performance of PEs at the lowest affinity level is largely independent.

0b1 Performance of PEs at the lowest affinity level is very interdependent.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff2, bits [23:16]

Affinity level 2. See the description of VMPIDR_EL2.Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1. See the description of VMPIDR_EL2.Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher
affinity levels are increasingly less significant in determining PE behavior.

The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set
of fields of each PE must be unique within the system as a whole.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VMPIDR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VMPIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x050];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VMPIDR_EL2;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 X[t, 64] = MPIDR_EL1;
 else
 X[t, 64] = VMPIDR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8475
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR VMPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x050] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VMPIDR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return;
 else
 VMPIDR_EL2 = X[t, 64];

MRS <Xt>, MPIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.MPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 X[t, 64] = VMPIDR_EL2;
 else
 X[t, 64] = MPIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MPIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b101

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8476
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.198 VNCR_EL2, Virtual Nested Control Register

The VNCR_EL2 characteristics are:

Purpose

When FEAT_NV2 is implemented, holds the base address that is used to define the memory location
that is accessed by transformed reads and writes of System registers.

Configurations

This register is present only when FEAT_NV2 is implemented. Otherwise, direct accesses to
VNCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VNCR_EL2 is a 64-bit register.

Field descriptions

RESS, bits [63:57]

Reserved, Sign extended. If the bits marked as RESS do not all have the same value, then there is a
CONSTRAINED UNPREDICTABLE choice between:

• Generating an EL2 translation regime Translation abort on use of the VNCR_EL2 register. If
FEAT_D128 is implemented:

• If the virtual address space for EL2 supports 56 bits, bits[63:57] of VNCR_EL2 are treated
as the same value as bit[56] for all purposes other than reading back the register.

• If the virtual address space for EL2 supports 56 bits, bits[63:57] of VNCR_EL2 are treated
as the same value as bit[56].

• If the virtual address space for EL2 supports 52 bits, bits[63:53] of VNCR_EL2 are treated
as the same value as bit[52] for all purposes other than reading back the register.

• If the virtual address space for EL2 supports 52 bits, bits[63:53] of VNCR_EL2 are treated
as the same value as bit[52].

• Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes other than
reading back the register.

• Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes.

Where the EL2 translation regime has upper and lower address ranges, bit[56] is used to select
between those address ranges to determine the number of bits supported by the address space.

BADDR, bits [56:12]

Base Address. If the virtual address space for EL2 does not support more than 48 bits, then bits
[56:49] are RESS. If the virtual address space for EL2 does not support more than 52 bits, then bits
[56:53] are RESS

When a register read/write is transformed to be a Load or Store, the address of the load/store is to
SignOffset(VNCR_EL2.BADDR:Offset<11:0>, 64).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RESS

63 57

BADDR

56 32

BADDR

31 12

RES0

11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8477
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [11:0]

Reserved, RES0.

Accessing VNCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VNCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x0B0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VNCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VNCR_EL2;

MSR VNCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x0B0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VNCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VNCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8478
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.199 VPIDR_EL2, Virtualization Processor ID Register

The VPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by EL1 reads of
MIDR_EL1.

Configurations

AArch64 System register VPIDR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VPIDR[31:0].

If EL2 is not implemented, reads of this register return the value of the MIDR_EL1 and writes to
the register are ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VPIDR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8479
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between
different product variants, or major revisions of a product.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Architecture, bits [19:16]

Architecture version.

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VPIDR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VPIDR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x088];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8480
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 X[t, 64] = VPIDR_EL2;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 X[t, 64] = MIDR_EL1;
 else
 X[t, 64] = VPIDR_EL2;

MSR VPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x088] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VPIDR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return;
 else
 VPIDR_EL2 = X[t, 64];

MRS <Xt>, MIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HFGRTR_EL2.MIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() then
 X[t, 64] = VPIDR_EL2;
 else
 X[t, 64] = MIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = MIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8481
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.200 VSTCR_EL2, Virtualization Secure Translation Control Register

The VSTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the Secure EL1&0 translation regime.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
VSTCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTCR_EL2 is a 64-bit register.

Field descriptions

Any of the bits in VSTCR_EL2 are permitted to be cached in a TLB.

Bits [63:34]

Reserved, RES0.

SL2, bit [33]

When FEAT_LPA2 is implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128 == 0):

Starting level of the Secure stage 2 translation lookup controlled by VSTCR_EL2.

If VTCR_EL2.DS == 1, then VSTCR_EL2.SL2, in combination with VSTCR_EL2.SL0, gives
encodings for the Secure stage 2 translation table walk initial lookup level.

If VTCR_EL2.DS == 0, then VSTCR_EL2.SL2 is RES0.

If the translation granule size is not 4KB, then this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

SA, bit [30]

Secure stage 2 translation output address space.

0b0 All stage 2 translations for the Secure IPA space access the Secure PA space.

0b1 All stage 2 translations for the Secure IPA space access the Non-secure PA space.

RES0

63 34 33 32

SL2 RES0
31

SA

30

SW

29

RES0

28 16

TG0

15 14

RES0

13 8

SL0

7 6

T0SZ

5 0

RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8482
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
When the value of VSTCR_EL2.SW is 1, this bit behaves as 1 for all purposes other than reading
back the value of the bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SW, bit [29]

Secure stage 2 translation address space.

0b0 All stage 2 translation table walks for the Secure IPA space are to the Secure PA space.

0b1 All stage 2 translation table walks for the Secure IPA space are to the Non-secure PA
space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [28:16]

Reserved, RES0.

TG0, bits [15:14]

Secure stage 2 granule size for VSTTBR_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2}
indicate which granule sizes are supported for stage 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64}
indicate which granule sizes are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then
for all purposes other than read back from this register, the hardware will treat the field as if it has
been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:8]

Reserved, RES0.

SL0, bits [7:6]

When FEAT_TTST is implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128 == 0):

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of
this field depends on the value of VSTCR_EL2.TG0.

0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 2.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 2.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b1, start at level -1.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 1.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8483
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• If FEAT_LPA2 is implemented, the combination of VSTCR_EL2.SL0 == 01 and
VSTCR_EL2.SL2 == 1 is reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 0.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 0.

• If FEAT_LPA2 is implemented, the combination of VSTCR_EL2.SL0 == 10 and
VSTCR_EL2.SL2 == 1 is reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 1.

0b11 If VSTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 3.

• If FEAT_LPA2 is implemented and VSTCR_EL2.SL2 is 0b0, start at level 3.

• If FEAT_LPA2 is implemented, the combination of VSTCR_EL2.SL0 == 11 and
VSTCR_EL2.SL2 == 1 is reserved.

If VSTCR_EL2.TG0 is 0b10 (16KB granule) and FEAT_LPA2 is implemented, start at
level 0.

If this field is programmed to a value that is not consistent with the programming of
VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TTST is not implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128
== 0):

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of
this field depends on the value of VSTCR_EL2.TG0.

0b00 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VSTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VSTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VSTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is
generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VSTTBR_EL2. The region size is 2(64-T0SZ)
bytes.

The maximum and minimum possible values for this field depend on the level of translation table
and the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0, then a
stage 2 level 0 Translation fault is generated.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8484
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSTCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x048];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 X[t, 64] = VSTCR_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = VSTCR_EL2;

MSR VSTCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x048] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8485
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 VSTCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 VSTCR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8486
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.201 VSTTBR_EL2, Virtualization Secure Translation Table Base Register

The VSTTBR_EL2 characteristics are:

Purpose

The base register for stage 2 translation tables to translate Secure IPAs in the Secure EL1&0
translation regime. Holds the base address of the translation table for the initial lookup for stage 2
of an address translation for a Secure IPA in the Secure EL1&0 translation regime, and other
information for this translation stage.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
VSTTBR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTTBR_EL2 is a 64-bit register.

Field descriptions

When FEAT_D128 is implemented and VTCR_EL2.D128 == 1:

Bits [63:56]

Reserved, RES0.

BADDR, bits [55:5]

• Bits A[55:x] of the stage 2 translation table base address bits are in register bits[55:x].

• Bits A[(x-1):0] of the stage 2 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level. Skip Level determines the number of levels to be skipped from the regular start level of
the Secure stage 2 translation table walk.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

RES0

63 56

BADDR

55 32

BADDR

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8487
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that
includes FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VSTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VSTTBR_EL2 are permitted to differ from
the entries for VSTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VSTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This bit is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VSTTBR_EL2s do not point to the same translation table entries when using the current
VMID, then the results of translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_D128 is not implemented or VTCR_EL2.D128 == 0:

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

If the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 2 translation table base address, where z is
determined as follows:

— If x >= 6 then z=x.

— Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 2 translation table base address.

RES0

63 48

BADDR

47 32

BADDR

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8488
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base
address are zero.

• When x>6 register bits[(x-1):6] are RES0.

• Register bit[1] is RES0.

• Bits[5:2] of the stage 2 translation table base address are zero.

Note
When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52-bit PA size, if a translation table lookup uses this register with the 64KB translation
granule when the Effective value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is
nonzero, an Address size fault is generated. When the value of ID_AA64MMFR0_EL1.PARange
indicates that the implementation supports a 56 bit PA size, bits [55:52] of the stage 2 translation
table base address are zero.

If the Effective value of VTCR_EL2.PS is not 0b110, then:

• Register bits[47:x] hold bits[47:x] of the stage 2 translation table base address.

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table
base addresses used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk
is performed using VSTTBR_EL2, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or
zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that
includes FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VSTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VSTTBR_EL2 are permitted to differ from
the entries for VSTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VSTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This bit is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VSTTBR_EL2s do not point to the same translation table entries when using the current
VMID, then the results of translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8489
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSTTBR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTTBR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x030];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 X[t, 64] = VSTTBR_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x030] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 VSTTBR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8490
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 VSTTBR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8491
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.202 VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.

Configurations

AArch64 System register VTCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VTCR_EL2 is a 64-bit register.

Field descriptions

Unless stated otherwise, any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bits [63:45]

Reserved, RES0.

HAFT, bit [44]

When FEAT_HAFT is implemented:

Hardware managed Access Flag for Table descriptors.

Enables the Hardware managed Access Flag for Table descriptors.

0b0 Hardware managed Access Flag for Table descriptors is disabled.

0b1 Hardware managed Access Flag for Table descriptors is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [43:42]

Reserved, RES0.

RES0

63 45 44

RES0

43 42 41 40 39 38 37 36 35 34 33

DS

32

HAFT
TL0
GCSH

RES0
D128

SL2
AssuredOnly

TL1
S2PIE

S2POE
31 30 29 28 27 26 25

RES0

24 23

HD

22

HA

21 20

VS

19

PS

18 16

TG0

15 14

SH0

13 12 11 10 9 8

SL0

7 6

T0SZ

5 0

RES1
NSA

NSW
HWU62

RES0
HWU59

HWU60
HWU61

ORGN0 IRGN0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8492
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
TL0, bit [41]

When FEAT_THE is implemented:

Control bit to check for presence of MMU TopLevel0 permission attribute.

0b0 This bit does not have any effect on stage 2 translations.

0b1 Enables MMU TopLevel0 permission attribute check for TTBR0_EL1 and
TTBR1_EL1 translations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

GCSH, bit [40]

When FEAT_THE is implemented and FEAT_GCS is implemented:

Assured stage 1 translations for Guarded Control Stacks. Enforces use of the AssuredOnly attribute
in stage 2 for the memory accessed by privileged Guarded Control Stack data accesses.

0b0 For the memory accessed by privileged Guarded Control Stack data accesses, the
AssuredOnly attribute in stage 2 is not required to be set.

0b1 For the memory accessed by privileged Guarded Control Stack data accesses, the
AssuredOnly attribute in stage 2 is required to be set.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.

D128, bit [38]

When FEAT_D128 is implemented:

Enables VMSAv9-128 translation system for stage 2 translation.

0b0 Translation system follows VMSA-64 translation process.

0b1 Translation system follows VMSAv9-128 translation process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

S2POE, bit [37]

When FEAT_S2POE is implemented:

Enable Permission Overlay. Enables permission overlay in stage 2 Permission model.

0b0 Overlay disabled.

0b1 Overaly enabled.

This bit is not permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8493
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
S2PIE, bit [36]

When FEAT_S2PIE is implemented:

Select Permission Model. Enables usage of permission indirection in stage 2 Permission model.

0b0 Direct permission model.

0b1 Indirect permission model.

This field is RES1 when VTCR_EL2.D128 is set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TL1, bit [35]

When FEAT_THE is implemented:

Control bit to check for presence of MMU TopLevel1 permission attribute.

0b0 This bit does not have any effect on stage 2 translations.

0b1 Enables MMU TopLevel1 permission attribute check for TTBR0_EL1 and
TTBR1_EL1 translations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [34]

When FEAT_THE is implemented:

AssuredOnly attribute enable for VMSAv8-64. Configures use of bit[58] of the stage 2 translation
table Block or Page descriptor.

0b0 Bit[58] of each stage 2 translation Block or Page descriptor does not indicate
AssuredOnly attribute.

0b1 Bit[58] of each stage 2 translation Block or Page descriptor indicates AssuredOnly
attribute.

This field is RES0 when VTCR_EL2.D128 is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SL2, bit [33]

When FEAT_LPA2 is implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128 == 0):

Starting level of the stage 2 translation lookup controlled by VTCR_EL2.

If VTCR_EL2.DS == 1, then VTCR_EL2.SL2, in combination with VTCR_EL2.SL0, gives
encodings for the stage 2 translation table walk initial lookup level.

If VTCR_EL2.DS == 0, then VTCR_EL2.SL2 is RES0.

If the translation granule size is not 4KB, then this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8494
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
DS, bit [32]

When FEAT_LPA2 is implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128 == 0):

This field affects whether a 52-bit output address can be described by the translation tables of the
4KB or 16KB translation granules.

0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in Block and Page descriptors encode shareability information in the SH[1:0]
field. Bits[9:8] in Table descriptors are ignored by hardware.

The minimum value of VTCR_EL2.T0SZ is 16. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

The minimum value of VSTCR_EL2.T0SZ is 16. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

Output address[51:48] is 0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].

Bits[9:8] in translation descriptors hold output address[51:50].

The shareability information of Block and Page descriptors for cacheable locations is
determined by VTCR_EL2.SH0.

The minimum value of VTCR_EL2.T0SZ is 12. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

The minimum value of VSTCR_EL2.T0SZ is 12. Any memory access using a smaller
value generates a stage 2 level 0 translation table fault.

Note
As FEAT_LPA must be implemented if VTCR_EL2.DS == 1, the minimum values of
VTCR_EL2.T0SZ and VSTCR_EL2.T0SZ are 12, as determined by that extension.

For the TLBI range instructions affecting IPA, the format of the argument is changed so
that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of
BaseADDR are treated as 0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 00.

Note
This forces alignment of the ranges used by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

NSA, bit [30]

When FEAT_SEL2 is implemented:

Non-secure stage 2 translation output address space for the Secure EL1&0 translation regime.

0b0 All stage 2 translations for the Non-secure IPA space of the Secure EL1&0 translation
regime access the Secure PA space.

0b1 All stage 2 translations for the Non-secure IPA space of the Secure EL1&0 translation
regime access the Non-secure PA space.

This bit behaves as 1 for all purposes other than reading back the value of the bit when one of the
following is true:

• The value of VTCR_EL2.NSW is 1.

• The value of VSTCR_EL2.SA is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8495
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSW, bit [29]

When FEAT_SEL2 is implemented:

Non-secure stage 2 translation table address space for the Secure EL1&0 translation regime.

0b0 All stage 2 translation table walks for the Non-secure IPA space of the Secure EL1&0
translation regime are to the Secure PA space.

0b1 All stage 2 translation table walks for the Non-secure IPA space of the Secure EL1&0
translation regime are to the Non-secure PA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2
translation table Block or Page entry.

0b0 Bit[62] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2
translation table Block or Page entry.

0b0 Bit[61] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2
translation table Block or Page entry.

0b0 Bit[60] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8496
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b1 Bit[60] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2
translation table Block or Page entry.

0b0 Bit[59] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:23]

Reserved, RES0.

HD, bit [22]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 2 translations when EL2 is enabled in the current
Security state.

0b0 Stage 2 hardware management of dirty state disabled.

0b1 Stage 2 hardware management of dirty state enabled, only if the VTCR_EL2.HA bit is
also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 2 translations when EL2 is enabled in the current Security
state.

0b0 Stage 2 Access flag update disabled.

0b1 Stage 2 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8497
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
VS, bit [19]

When FEAT_VMID16 is implemented:

VMID Size.

0b0 8-bit VMID. The upper 8 bits of VTTBR_EL2 are ignored by the hardware, and treated
as if they are all zeros, for every purpose except when reading back the register.

0b1 16-bit VMID. The upper 8 bits of VTTBR_EL2 are used for allocation and matching in
the TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PS, bits [18:16]

Physical address Size for the second stage of translation.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

0b111 When FEAT_D128 is implemented:

56 bits, 64PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is
treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by VTCR_EL2 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

0b00 4KB.

0b01 64KB.

0b10 16KB.

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2}
indicate which granule sizes are supported for stage 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64}
indicate which granule sizes are supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8498
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2 or
VSTTBR_EL2.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2
or VSTTBR_EL2.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2
or VSTTBR_EL2.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

When FEAT_TTST is implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128 == 0):

Starting level of the stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field
depends on the value of VTCR_EL2.TG0.

0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 2.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 2.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b1, start at level -1.

If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8499
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 1.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 1.

• If FEAT_LPA2 is implemented, the combination of VTCR_EL2.SL0 == 01 and
VTCR_EL2.SL2 == 1 is reserved.

If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 0.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 0.

• If FEAT_LPA2 is implemented, the combination of VTCR_EL2.SL0 == 10 and
VTCR_EL2.SL2 == 1 is reserved.

If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 1.

0b11 If VTCR_EL2.TG0 is 0b00 (4KB granule):

• If FEAT_LPA2 is not implemented, start at level 3.

• If FEAT_LPA2 is implemented and VTCR_EL2.SL2 is 0b0, start at level 3.

• If FEAT_LPA2 is implemented, the combination of VTCR_EL2.SL0 == 11 and
VTCR_EL2.SL2 == 1 is reserved.

If VTCR_EL2.TG0 is 0b10 (16KB granule) and FEAT_LPA2 is implemented, start at
level 0.

If this field is programmed to a value that is not consistent with the programming of
VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TTST is not implemented and (FEAT_D128 is not implemented or VTCR_EL2.D128
== 0):

Starting level of the stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field
depends on the value of VTCR_EL2.TG0.

0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 3.

0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 2.

0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VTCR_EL2.TG0 is 0b10
(16KB granule) or 0b01 (64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is
generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in Chapter D8 The AArch64 Virtual Memory
System Architecture.

If this field is programmed to a value that is not consistent with the programming of SL0, then a
stage 2 level 0 Translation fault is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8500
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the
translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the
translation table walk begins with a level 0 initial lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VTCR_EL2

Unless stated otherwise, any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VTCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x040];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VTCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VTCR_EL2;

MSR VTCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x040] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VTCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8501
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.203 VTTBR_EL2, Virtualization Translation Table Base Register

The VTTBR_EL2 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address
translation in the EL1&0 translation regime, and other information for this translation regime.

Configurations

AArch64 System register VTTBR_EL2 bits [63:0] are architecturally mapped to AArch32 System
register VTTBR[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

VTTBR_EL2 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed as a
64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Attributes

VTTBR_EL2 is a:

• 128-bit register when FEAT_D128 is implemented and VTCR_EL2.D128 == 1

• 64-bit register when FEAT_D128 is not implemented or VTCR_EL2.D128 == 0

Field descriptions

When FEAT_D128 is implemented and VTCR_EL2.D128 == 1:

Bits [127:88]

Reserved, RES0.

BADDR, bits [87:80, 47:5]

Translation table base address:

• Bits A[55:x] of the stage 2 translation table base address bits are in register bits[87:80, 47:x].

• Bits A[(x-1):0] of the stage 2 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. x is calculated based on LOG2(StartTableSize), as described in VMSAv9-128. The smallest
permitted value of x is 5.

The BADDR field is split as follows:

• BADDR[50:43] is VTTBR_EL2[87:80].

• BADDR[42:0] is VTTBR_EL2[47:5].

RES0

127 96

RES0

95 88

BADDR[50:43]

87 80

RES0

79 64

VMID

63 48

BADDR[42:0]

47 32

BADDR[42:0]

31 5

RES0

4 3

SKL

2 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8502
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [79:64]

Reserved, RES0.

VMID, bits [63:48]

VMID encoding when FEAT_VMID16 is implemented and VTCR_EL2.VS == 1

VMID, bits [15:0]

The VMID for the translation table.

If the implementation has an 8-bit VMID, bits [15:8] of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VMID encoding when FEAT_VMID16 is not implemented or VTCR_EL2.VS == 0

Bits [15:8]

Reserved, RES0.

VMID, bits [7:0]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

SKL, bits [2:1]

Skip Level. Skip Level determines the number of levels to be skipped from the regular start level of
the Non-Secure stage 2 translation table walk.

0b00 Skip 0 level from the regular start level.

0b01 Skip 1 level from the regular start level.

0b10 Skip 2 levels from the regular start level.

0b11 Skip 3 levels from the regular start level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VMID

15 0

RES0

15 8

VMID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8503
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VTTBR_EL2 are permitted to differ from the
entries for VTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This bit is permitted to be cached in a TLB.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VTTBR_EL2s do not point to the same translation table entries when using the current VMID
then the results of translations using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When FEAT_D128 is not implemented or VTCR_EL2.D128 == 0:

VMID, bits [63:48]

VMID encoding when FEAT_VMID16 is implemented and VTCR_EL2.VS == 1

VMID, bits [15:0]

The VMID for the translation table.

If the implementation has an 8-bit VMID, bits [15:8] of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VMID encoding when FEAT_VMID16 is not implemented or VTCR_EL2.VS == 0

VMID

63 48

BADDR

47 32

BADDR

31 1 0

CnP

VMID

15 0

RES0

15 8

VMID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8504
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Bits [15:8]

Reserved, RES0.

VMID, bits [7:0]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note

If an OA size of more than 48 bits is in use, and the translation table has fewer than eight entries,
the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to the size of
the table.

In an implementation that includes FEAT_LPA, if the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 2 translation table base address, where z is
determined as follows:

— If x >= 6 then z=x.

— Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 2 translation table base address.

• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base
address are zero.

• When x>6 register bits[(x-1):6] are RES0.

• Register bit[1] is RES0.

• Bits[5:2] of the stage 2 translation table base address are zero.

• In an implementation that includes FEAT_TTCNP, bit[0] of the stage 2 translation table base
address is zero.

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated. When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation
supports a 56 bit PA size, bits [55:52] of the stage 2 translation table base address are zero.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 2 translation table base address.

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table
base addresses used in this stage of translation are 0b0000.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk
is performed using VTTBR_EL2, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
read back from the corresponding register bits is either the value written to the register or
zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8505
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of VTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VTTBR_EL2 are permitted to differ from the
entries for VTTBR_EL2 for other PEs in the Inner Shareable domain. This is not
affected by the value of the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
VTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This bit is permitted to be cached in a TLB.

Note
If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VTTBR_EL2s do not point to the same translation table entries when using the current VMID
then the results of translations using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VTTBR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VTTBR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x020];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VTTBR_EL2<63:0>;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8506
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = VTTBR_EL2<63:0>;

MSR VTTBR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x020] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTTBR_EL2<63:0> = X[t, 64];
elsif PSTATE.EL == EL3 then
 VTTBR_EL2<63:0> = X[t, 64];

 When FEAT_D128 is implemented : MRRS <Xt+1>, <Xt>, VTTBR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 (X[t + 1, 64], X[t, 64]) = Split(NVMem[0x020, 128], 64);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 (X[t + 1, 64], X[t, 64]) = Split(VTTBR_EL2, 64);
elsif PSTATE.EL == EL3 then
 (X[t + 1, 64], X[t, 64]) = Split(VTTBR_EL2, 64);

 When FEAT_D128 is implemented : MSRR VTTBR_EL2, <Xt+1>, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8507
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x020, 128] = X[t + 1, 64]:X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x14);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.D128En == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x14);
 else
 VTTBR_EL2<127:0> = X[t + 1, 64]:X[t, 64];
elsif PSTATE.EL == EL3 then
 VTTBR_EL2<127:0> = X[t + 1, 64]:X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8508
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.204 ZCR_EL1, SVE Control Register (EL1)

The ZCR_EL1 characteristics are:

Purpose

This register controls aspects of SVE visible at Exception levels EL1 and EL0.

Configurations

This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to
ZCR_EL1 are UNDEFINED.

This register has no effect when FEAT_SME is implemented and the PE is in Streaming SVE mode.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this register has no effect on
execution at EL0.

Attributes

ZCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Non-streaming SVE vector length at EL1 of (LEN+1)*128 bits. This field
also defines the Effective Non-streaming SVE vector length at EL0 when EL2 is not implemented,
or EL2 is not enabled in the current Security state, or the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}.

The Non-streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive.
An implementation can support a subset of the architecturally permitted lengths. An implementation
is required to support all lengths that are powers of two, from 128 bits up to its maximum
implemented Non-streaming SVE vector length.

When FEAT_SME is not implemented, or the PE is not in Streaming SVE mode, the Effective SVE
vector length (VL) is equal to the Effective Non-streaming SVE vector length.

When FEAT_SME is implemented and the PE is in Streaming SVE mode, VL is equal to the
Effective Streaming SVE vector length. See SMCR_EL1.

For all purposes other than returning the result of a direct read of ZCR_EL1, the PE selects the
Effective Non-streaming SVE vector length by performing checks in the following order:

1. If EL2 is implemented and enabled in the current Security state, and the requested length is
greater than the Effective length at EL2, then the Effective length at EL2 is used.

2. If EL3 is implemented and the requested length is greater than the Effective length at EL3,
then the Effective length at EL3 is used.

3. Otherwise, the Effective length is the highest supported Non-streaming SVE vector length
that is less than or equal to the requested length.

RES0

63 32

RES0

31 9

RAZ/WI

8 4

LEN

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8509
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
An indirect read of ZCR_EL1.LEN appears to occur in program order relative to a direct write of
the same register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ZCR_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic ZCR_EL1 or ZCR_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ZCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif CPACR_EL1.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x19);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x1E0];
 else
 X[t, 64] = ZCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif ELIsInHost(EL2) then
 X[t, 64] = ZCR_EL2;
 else
 X[t, 64] = ZCR_EL1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8510
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR ZCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif CPACR_EL1.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x19);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x1E0] = X[t, 64];
 else
 ZCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif ELIsInHost(EL2) then
 ZCR_EL2 = X[t, 64];
 else
 ZCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL1 = X[t, 64];

MRS <Xt>, ZCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x1E0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8511
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL1;
 else
 UNDEFINED;

MSR ZCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x1E0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8512
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8513
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.205 ZCR_EL2, SVE Control Register (EL2)

The ZCR_EL2 characteristics are:

Purpose

This register controls aspects of SVE visible at Exception levels EL2, EL1, and EL0.

Configurations

This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to
ZCR_EL2 are UNDEFINED.

This register has no effect when EL2 is not enabled in the current Security state, or when
FEAT_SME is implemented and the PE is in Streaming SVE mode.

Attributes

ZCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Non-streaming SVE vector length at EL2 of (LEN+1)*128 bits. This field
also defines the Effective Non-streaming SVE vector length at EL0 when the Effective value of
HCR_EL2.{E2H, TGE} is {1, 1}.

The Non-streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive.
An implementation can support a subset of the architecturally permitted lengths. An implementation
is required to support all lengths that are powers of two, from 128 bits up to its maximum
implemented Non-streaming SVE vector length.

When FEAT_SME is not implemented, or the PE is not in Streaming SVE mode, the Effective SVE
vector length (VL) is equal to the Effective Non-streaming SVE vector length.

When FEAT_SME is implemented and the PE is in Streaming SVE mode, VL is equal to the
Effective Streaming SVE vector length. See SMCR_EL2.

For all purposes other than returning the result of a direct read of ZCR_EL2, the PE selects the
Effective Non-streaming SVE vector length by performing checks in the following order:

1. If EL3 is implemented and the requested length is greater than the Effective length at EL3,
then the Effective length at EL3 is used.

2. Otherwise, the Effective length is the highest supported Non-streaming SVE vector length
that is less than or equal to the requested length.

An indirect read of ZCR_EL2.LEN appears to occur in program order relative to a direct write of
the same register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 9

RAZ/WI

8 4

LEN

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8514
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ZCR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic ZCR_EL2 or ZCR_EL1 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ZCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL2;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL2;

MSR ZCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8515
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL2 = X[t, 64];

MRS <Xt>, ZCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif CPACR_EL1.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x19);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x1E0];
 else
 X[t, 64] = ZCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif ELIsInHost(EL2) then
 X[t, 64] = ZCR_EL2;
 else
 X[t, 64] = ZCR_EL1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8516
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
MSR ZCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif CPACR_EL1.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL1, 0x19);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x1E0] = X[t, 64];
 else
 ZCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.EZ == '0' then
 UNDEFINED;
 elsif !ELIsInHost(EL2) && CPTR_EL2.TZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif ELIsInHost(EL2) && CPTR_EL2.ZEN == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x19);
 elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x19);
 elsif ELIsInHost(EL2) then
 ZCR_EL2 = X[t, 64];
 else
 ZCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8517
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
D23.2.206 ZCR_EL3, SVE Control Register (EL3)

The ZCR_EL3 characteristics are:

Purpose

This register controls aspects of SVE visible at all Exception levels.

Configurations

This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to
ZCR_EL3 are UNDEFINED.

This register has no effect when FEAT_SME is implemented and the PE is in Streaming SVE mode.

Attributes

ZCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Non-streaming SVE vector length at EL3 of (LEN+1)*128 bits.

The Non-streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive.
An implementation can support a subset of the architecturally permitted lengths. An implementation
is required to support all lengths that are powers of two, from 128 bits up to its maximum
implemented Non-streaming SVE vector length.

When FEAT_SME is not implemented, or the PE is not in Streaming SVE mode, the Effective SVE
vector length (VL) is equal to the Effective Non-streaming SVE vector length.

When FEAT_SME is implemented and the PE is in Streaming SVE mode, VL is equal to the
Effective Streaming SVE vector length. See SMCR_EL3.

For all purposes other than returning the result of a direct read of ZCR_EL3, the PE selects the
highest supported Non-streaming SVE vector length that is less than or equal to the requested
length.

An indirect read of ZCR_EL3.LEN appears to occur in program order relative to a direct write of
the same register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 9

RAZ/WI

8 4

LEN

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8518
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.2 General system control registers
Accessing ZCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ZCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 X[t, 64] = ZCR_EL3;

MSR ZCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.EZ == '0' then
 AArch64.SystemAccessTrap(EL3, 0x19);
 else
 ZCR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8519
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3 Debug registers

This section lists the Debug System registers in AArch64 state, in alphabetic order:

• The principal encoding space for debug registers is op0==0b10, op1=={0, 3, 4}. Instructions for accessing
debug System registers summarizes the registers in this encoding space and lists them in order of their
encodings.

• In addition, the following registers in the op0==0b11 encoding space are classified as Debug registers:

— DLR_EL0.

— DSPSR_EL0.

— MDCR_EL2.

— MDCR_EL3.

— SDER32_EL3.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8520
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.1 DBGAUTHSTATUS_EL1, Debug Authentication Status Register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

AArch64 System register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to
AArch32 System register DBGAUTHSTATUS[31:0].

AArch64 System register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to
External register DBGAUTHSTATUS_EL1[31:0].

Attributes

DBGAUTHSTATUS_EL1 is a 64-bit register.

Field descriptions

Bits [63:28]

Reserved, RES0.

RTNID, bits [27:26]

Root non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RTID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RTID, bits [25:24]

Root invasive debug.

0b00 Not implemented.

0b10 Implemented and disabled.

ExternalRootInvasiveDebugEnabled () == FALSE.

0b11 Implemented and enabled.

ExternalRootInvasiveDebugEnabled () == TRUE.

All other values are reserved.

If FEAT_RME is not implemented, the only permitted value is 0b00.

Bits [23:16]

Reserved, RES0.

RLNID, bits [15:14]

Realm non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RLID.

This field has an IMPLEMENTATION DEFINED value.

RES0

63 32

RES0

31 28 27 26

RTID

25 24

RES0

23 16 15 14

RLID

13 12

RES0

11 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

RTNID RLNID NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8521
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Access to this field is RO.

RLID, bits [13:12]

Realm invasive debug.

0b00 Not implemented.

0b10 Implemented and disabled.

ExternalRealmInvasiveDebugEnabled () == FALSE.

0b11 Implemented and enabled.

ExternalRealmInvasiveDebugEnabled () == TRUE.

All other values are reserved.

If FEAT_RME is not implemented, the only permitted value is 0b00.

Bits [11:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

Secure non-invasive debug.

0b00 Secure state is not implemented.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure invasive debug.

0b00 Secure state is not implemented.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

Non-secure non-invasive debug.

0b00 Non-secure state is not implemented.

0b11 Implemented and enabled. EL3 is implemented or the Effective value of SCR_EL3.NS
is 1.

All other values are reserved.

Otherwise:

Non-secure non-invasive debug.

0b00 Non-secure state is not implemented.

0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8522
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
NSID, bits [1:0]

Non-secure invasive debug.

0b00 Non-secure state is not implemented.

0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing DBGAUTHSTATUS_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGAUTHSTATUS_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGAUTHSTATUS_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGAUTHSTATUS_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGAUTHSTATUS_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DBGAUTHSTATUS_EL1;

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8523
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 63

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGBCR<n>[31:0].

AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to External
register DBGBCR<n>_EL1[31:0].

AArch64 System register DBGBCR<n>_EL1 bits [63:32] are architecturally mapped to External
register DBGBCR<n>_EL1[63:32] when FEAT_Debugv8p9 is implemented.

If breakpoint n is not implemented, accesses to this register are UNDEFINED.

Attributes

DBGBCR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

LBNX, bits [31:30]

When FEAT_Debugv8p9 is implemented:

Linked Breakpoint Number.

For Linked address matching breakpoints, with DBGBCR<n>_EL1.LBN, specifies the index of the
breakpoint linked to.

For all other breakpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

This field extends DBGBCR<n>_EL1.LBN to support up to 64 implemented breakpoints.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSCE, bit [29]

When FEAT_RME is implemented:

Security State Control Extended.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

RES0

63 32

LBNX

31 30 29

MASK

28 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5 4 3

PMC

2 1

E

0

SSCE HMC RES0 BT2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8524
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MASK, bits [28:24]

When FEAT_BWE is implemented:

Address Mask. Only address ranges up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00011..0b11111 Number of address bits masked.

All other values are reserved.

Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

If DBGBCR<n>_EL1.MASK is programmed with a reserved value, then the breakpoint behaves as
if either:

• DBGBCR<n>_EL1.MASK has been programmed with a defined value, which might be
0b00000 (no mask), other than for a direct read of DBGBCR<n>_EL1.

• The breakpoint is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type.

With DBGBCR<n>_EL1.BT2 when implemented, specifies breakpoint type.

0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an
instruction.

0b0001 Linked instruction address match. As 0b0000, but linked to a breakpoint that has linking
enabled.

0b0010 When breakpoint n is context-aware:

Unlinked Context ID match. If the Effective value of HCR_EL2.E2H is 1, and either the
PE is executing at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL2. Otherwise,
DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1.

0b0011 When breakpoint n is context-aware:

As 0b0010, with linking enabled.

0b0100 When FEAT_BWE is implemented:

Unlinked instruction address mismatch. DBGBVR<n>_EL1 is the address of an
instruction.

0b0101 When FEAT_BWE is implemented:

Linked instruction address mismatch. As 0b0100, but linked to a breakpoint that has
linking enabled.

0b0110 When FEAT_VHE is implemented and breakpoint n is context-aware:

Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

0b0111 When FEAT_VHE is implemented and breakpoint n is context-aware:

As 0b0110, with linking enabled.

0b1000 When EL2 is implemented and breakpoint n is context-aware:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8525
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against
VTTBR_EL2.VMID.

0b1001 When EL2 is implemented and breakpoint n is context-aware:

As 0b1000, with linking enabled.

0b1010 When EL2 is implemented and breakpoint n is context-aware:

Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VTTBR_EL2.VMID.

0b1011 When EL2 is implemented and breakpoint n is context-aware:

As 0b1010, with linking enabled.

0b1100 When FEAT_VHE is implemented and breakpoint n is context-aware:

Unlinked CONTEXTIDR_EL2 match. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 When FEAT_VHE is implemented and breakpoint n is context-aware:

As 0b1100, with linking enabled.

0b1110 When FEAT_VHE is implemented and breakpoint n is context-aware:

Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 When FEAT_VHE is implemented and breakpoint n is context-aware:

As 0b1110, with linking enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked Breakpoint Number.

For Linked address matching breakpoints, with DBGBCR<n>_EL1.LBNX when implemented,
specifies the index of the breakpoint linked to.

For all other breakpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions.

For more information on the effect of programming the fields to a reserved set of values, see
Reserved DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8526
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The fields that indicate when the breakpoint can be generated are: HMC, PMC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions.

For more information, see DBGBCR<n>_EL1.SSC.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

When AArch32 is supported:

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

All other values are reserved. For more information, see Reserved DBGBCR<n>_EL1.BAS values.

For more information on using the BAS field in address match breakpoints, see Using the BAS field
in Address Match breakpoints.

For Context matching breakpoints, this field is RES1 and ignored.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [4]

Reserved, RES0.

BT2, bit [3]

When FEAT_ABLE is implemented and breakpoint n supports address breakpoint linking:

Breakpoint Type 2. With DBGBCR<n>_EL1.BT, specifies breakpoint type.

0b0 As DBGBCR<n>_EL1.BT.

0b1 As DBGBCR<n>_EL1.BT, but with linking enabled.

This value is only defined for the following DBGBCR<n>_EL1.BT values:

0b0000, 0b0001, 0b0100, and 0b0101.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BAS Match instruction at Constraint for debuggers

0b0011 DBGBVR<n>_EL1 Use for T32 instructions.

0b1100 DBGBVR<n>_EL1 + 2 Use for T32 instructions.

0b1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8527
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

For more information on the operation of these fields, see Execution conditions for which a
breakpoint generates Breakpoint exceptions.

For more information, see DBGBCR<n>_EL1.SSC.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint n.

0b0 Breakpoint n disabled.

0b1 Breakpoint n enabled.

This field is ignored by the PE and treated as zero when all of the following are true:

• Any of the following are true:

— HaltOnBreakpointOrWatchpoint () is FALSE and the Effective value of
MDSCR_EL1.EMBWE is 0.

— HaltOnBreakpointOrWatchpoint () is TRUE and the Effective value of
EDSCR2.EHBWE is 0.

• FEAT_Debugv8p9 is implemented.

• n >= 16.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBCR<n>_EL1

When FEAT_Debugv8p9 is implemented, a PE is permitted to support up to 64 implemented breakpoints.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGBCR<m>_EL1; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_BREAKPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16) >=
NUM_BREAKPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8528
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGBCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGBCR_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGBCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGBCR_EL1[m];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGBCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGBCR_EL1[m];

MSR DBGBCR<m>_EL1, <Xt>; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_BREAKPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16) >=
NUM_BREAKPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8529
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGBCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGBCR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGBCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGBCR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGBCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGBCR_EL1[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8530
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 63

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms
breakpoint n together with control register DBGBCR<n>_EL1.

Configurations

AArch64 System register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGBVR<n>[31:0].

If the breakpoint is context-aware and EL2 is implemented, then AArch64 System register
DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System register DBGBXVR<n>.
Otherwise there is no System register access to DBGBVR<n>_EL1[63:32] from AArch32 state.

AArch64 System register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to External
register DBGBVR<n>_EL1[63:0].

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.

• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.

• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.

• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.

• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBVR<n>_EL1 is a 64-bit register.

Field descriptions

When DBGBCR<n>_EL1.BT == 0b000x:

RESS[14:8], bits [63:57]

Reserved, Sign extended. Software must set all bits in this field to the same value as the most
significant bit of the VA field. If all bits in this field are not the same value as the most significant
bit of the VA field, then all of the following apply:

• It is CONSTRAINED UNPREDICTABLE whether the PE ignores this field when comparing an
address.

• If the breakpoint is not context-aware, it is IMPLEMENTATION DEFINED whether the value read
back in each bit of this field is a copy of the most significant bit of the VA field or the value
written.

Bits[56:53]

When FEAT_LVA3 is implemented:

VA[56:53]

RESS[14:8]

63 57 56 53 52 49

VA[48:2]

48 32

Bits [56:53] Bits [52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8531
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[7:4]

Extension to RESS[14:8]. For more information, see RESS[14:8].

Bits[52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:8]. For more information, see RESS[14:8].

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA3 is implemented, (VA[56:53]:VA[52:49]) forms the upper part of the address
value. If FEAT_LVA3 is not implemented, bits VA[56:53] are part of the RESS field.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. If
FEAT_LVA is not implemented, bits [52:49] are part of the RESS field.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when the Effective value of HCR_EL2.E2H is
1, and either:

• The PE is executing at EL2.

• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security
state.

Otherwise, the value is compared against CONTEXTIDR_EL1.

RES0

63 32

ContextID

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8532
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b011x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented, VTCR_EL2.VS == 1 and EL2 is using AArch64:

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

RES0

63 32

ContextID

31 0

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8533
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented, VTCR_EL2.VS == 1 and EL2 is using AArch64:

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

ContextID

31 0

ContextID2

63 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8534
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBVR<n>_EL1

When FEAT_Debugv8p9 is implemented, a PE is permitted to support up to 64 implemented breakpoints.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGBVR<m>_EL1; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_BREAKPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16) >=
NUM_BREAKPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGBVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGBVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];

ContextID2

63 32

ContextID

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8535
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 X[t, 64] = DBGBVR_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGBVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGBVR_EL1[m];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGBVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGBVR_EL1[m];

MSR DBGBVR<m>_EL1, <Xt>; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_BREAKPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16) >=
NUM_BREAKPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGBVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGBVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGBVR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8536
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGBVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGBVR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGBVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGBVR_EL1[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8537
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear Register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configurations

AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to
AArch32 System register DBGCLAIMCLR[31:0].

AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to External
register DBGCLAIMCLR_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write
to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

RES0

63 32

RAZ/WI

31 8

CLAIM

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8538
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Accessing DBGCLAIMCLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGCLAIMCLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGCLAIMCLR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGCLAIMCLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DBGCLAIMCLR_EL1;

MSR DBGCLAIMCLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1001 0b110

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8539
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 DBGCLAIMCLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMCLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 DBGCLAIMCLR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8540
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set Register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configurations

AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGCLAIMSET[31:0].

AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to External
register DBGCLAIMSET_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write
to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

Accessing DBGCLAIMSET_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGCLAIMSET_EL1

RES0

63 32

RAZ/WI

31 8

CLAIM

7 0

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8541
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGCLAIMSET_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGCLAIMSET_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DBGCLAIMSET_EL1;

MSR DBGCLAIMSET_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMSET_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGCLAIMSET_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b000 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8542
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
elsif PSTATE.EL == EL3 then
 DBGCLAIMSET_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8543
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.6 DBGDTR_EL0, Debug Data Transfer Register, half-duplex

The DBGDTR_EL0 characteristics are:

Purpose

Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using
only a single register.

Configurations

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32
System register DBGDTRRXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External
register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64
System register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRTXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64
System register DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32
System register DBGDTRTXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External
register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64
System register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRRXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register
DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64
System register DBGDTRRX_EL0[31:0] when read.

Attributes

DBGDTR_EL0 is a 64-bit register.

Field descriptions

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRTX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

HighWord

63 32

LowWord

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8544
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

Accessing DBGDTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGDTR_EL0

if Halted() then
 X[t, 64] = Read_DBGDTR_EL0(64);
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = Read_DBGDTR_EL0(64);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = Read_DBGDTR_EL0(64);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = Read_DBGDTR_EL0(64);
elsif PSTATE.EL == EL3 then
 X[t, 64] = Read_DBGDTR_EL0(64);

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8545
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
MSR DBGDTR_EL0, <Xt>

if Halted() then
 Write_DBGDTR_EL0(X[t, 64]);
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 Write_DBGDTR_EL0(X[t, 64]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 Write_DBGDTR_EL0(X[t, 64]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 Write_DBGDTR_EL0(X[t, 64]);
elsif PSTATE.EL == EL3 then
 Write_DBGDTR_EL0(X[t, 64]);

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8546
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.7 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

AArch64 System register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRRXint[31:0].

AArch64 System register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to External
register DBGDTRRX_EL0[31:0].

Attributes

DBGDTRRX_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRRX_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGDTRRX_EL0

if Halted() then
 X[t, 32] = Read_DBGDTR_EL0(32);

RES0

63 32

Update DTRRX

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8547
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 32] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 32] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 32] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL3 then
 X[t, 32] = Read_DBGDTR_EL0(32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8548
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.8 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to
transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a
component of the Debug Communication Channel.

Configurations

AArch64 System register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRTXint[31:0].

AArch64 System register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to External
register DBGDTRTX_EL0[31:0].

Attributes

DBGDTRTX_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRRX and DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRTX_EL0

Accesses to this register use the following encodings in the System register encoding space:

MSR DBGDTRTX_EL0, <Xt>

if Halted() then
 Write_DBGDTR_EL0(X[t, 32]);

RES0

63 32

Return DTRTX

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8549
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 Write_DBGDTR_EL0(X[t, 32]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 Write_DBGDTR_EL0(X[t, 32]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 Write_DBGDTR_EL0(X[t, 32]);
elsif PSTATE.EL == EL3 then
 Write_DBGDTR_EL0(X[t, 32]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8550
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.9 DBGPRCR_EL1, Debug Power Control Register

The DBGPRCR_EL1 characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

Configurations

AArch64 System register DBGPRCR_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGPRCR[31:0].

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this
register.

The other bits in these registers are not mapped to each other.

Attributes

DBGPRCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When FEAT_DoPD is implemented:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to its Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states see Core power domain power states.

Note
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, if the powerup request is implemented and the powerup request has been
asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup
request is not asserted, this field is set to 0.

RES0

63 32

RES0

31 1 0

CORENPDRQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8551
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Otherwise:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on
exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information
about retention states see Core power domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

Accessing DBGPRCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGPRCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGPRCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGPRCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8552
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 X[t, 64] = DBGPRCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DBGPRCR_EL1;

MSR DBGPRCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGPRCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGPRCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGPRCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 DBGPRCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8553
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.10 DBGVCR32_EL2, Debug Vector Catch Register

The DBGVCR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register DBGVCR from AArch64 state only. Its value has no effect
on execution in AArch64 state.

Configurations

AArch64 System register DBGVCR32_EL2 bits [31:0] are architecturally mapped to AArch32
System register DBGVCR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGVCR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this
register is not RES0.

Attributes

DBGVCR32_EL2 is a 64-bit register.

Field descriptions

When EL3 is implemented:

Bits [63:32]

Reserved, RES0.

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort exception vector catch enable in Non-secure state.

The exception vector offset is 0x10.

RES0

63 32

31 30 29 28 27 26 25

RES0

24 8

SF

7

SI

6 5

SD

4

SP

3

SS

2

SU

1 0

NSF
NSI
RES0

NSU
NSS

NSP
NSD

RES0 RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8554
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort exception vector catch enable in Secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8555
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

When EL3 is not implemented:

Bits [63:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort exception vector catch enable.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]

Prefetch Abort vector catch enable.

RES0

63 32

RES0

31 8

F

7

I

6 5

D

4

P

3

S

2

U

1 0

RES0 RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8556
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The exception vector offset 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing DBGVCR32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGVCR32_EL2

if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = DBGVCR32_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DBGVCR32_EL2;

MSR DBGVCR32_EL2, <Xt>

op0 op1 CRn CRm op2

0b10 0b100 0b0000 0b0111 0b000

op0 op1 CRn CRm op2

0b10 0b100 0b0000 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8557
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
if !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGVCR32_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 DBGVCR32_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8558
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 63

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register
DBGWVR<n>_EL1.

Configurations

AArch64 System register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGWCR<n>[31:0].

AArch64 System register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to External
register DBGWCR<n>_EL1[31:0].

AArch64 System register DBGWCR<n>_EL1 bits [63:32] are architecturally mapped to External
register DBGWCR<n>_EL1[63:32] when FEAT_Debugv8p9 is implemented.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWCR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

LBNX, bits [31:30]

When FEAT_Debugv8p9 is implemented:

Linked Breakpoint Number.

For Linked data address watchpoints, with DBGWCR<n>_EL1.LBN, specifies the index of the
breakpoint linked to.

For all other watchpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

This field extends DBGWCR<n>_EL1.LBN to support up to 64 implemented breakpoints.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSCE, bit [29]

When FEAT_RME is implemented:

Security State Control Extended.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

RES0

63 32

LBNX

31 30 29

MASK

28 24

RES0

23 21

WT

20

LBN

19 16

SSC

15 14 13

BAS

12 5

LSC

4 3

PAC

2 1

E

0

SSCE HMC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8559
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MASK, bits [28:24]

Address Mask. Only objects up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00011..0b11111 Number of address bits masked.

All other values are reserved.

Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

If programmed with a reserved value, the watchpoint behaves as if either:

• DBGWCR<n>_EL1.MASK has been programmed with a defined value, which might be 0
(no mask), other than for a direct read of DBGWCR<n>_EL1.

• The watchpoint is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked watchpoint.

0b1 Linked watchpoint.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked Breakpoint Number.

For Linked data address watchpoints, with DBGWCR<n>_EL1.LBNX when implemented,
specifies the index of the breakpoint linked to.

For all other watchpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

For more information on the operation of these fields, see Execution conditions for which a
watchpoint generates Watchpoint exceptions.

For more information on the effect of programming the fields to a reserved value, see Reserved
DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8560
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

For more information on the operation of these fields, see Execution conditions for which a
watchpoint generates Watchpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n>_EL1 is being watched.

In cases where DBGWVR<n>_EL1 addresses a double-word:

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates
setting DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are nonzero binary numbers all of whose set bits are contiguous. All other
values are reserved and must not be used by software. See Reserved DBGWCR<n>_EL1.BAS
values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made.
Possible values of this field are:

0b01 Match instructions that load from a watchpointed address.

0b10 Match instructions that store to a watchpointed address.

0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not
rely on this property as the behavior of reserved values might change in a future revision of the
architecture.

BAS Description

xxxxxxx1 Match byte at DBGWVR<n>_EL1

xxxxxx1x Match byte at DBGWVR<n>_EL1 + 1

xxxxx1xx Match byte at DBGWVR<n>_EL1 + 2

xxxx1xxx Match byte at DBGWVR<n>_EL1 + 3

BAS Description, if DBGWVR<n>_EL1[2] == 0

xxx1xxxx Match byte at DBGWVR<n>_EL1 + 4

xx1xxxxx Match byte at DBGWVR<n>_EL1 + 5

x1xxxxxx Match byte at DBGWVR<n>_EL1 + 6

1xxxxxxx Match byte at DBGWVR<n>_EL1 + 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8561
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug
event for watchpoint n is generated.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

For more information on the operation of these fields, see Execution conditions for which a
watchpoint generates Watchpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n.

0b0 Watchpoint n disabled.

0b1 Watchpoint n enabled.

This field is ignored by the PE and treated as zero when all of the following are true:

• Any of the following are true:

— HaltOnBreakpointOrWatchpoint () is FALSE and the Effective value of
MDSCR_EL1.EMBWE is 0.

— HaltOnBreakpointOrWatchpoint () is TRUE and the Effective value of
EDSCR2.EHBWE is 0.

• FEAT_Debugv8p9 is implemented.

• n >= 16.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGWCR<n>_EL1

When FEAT_Debugv8p9 is implemented, a PE is permitted to support up to 64 implemented watchpoints.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGWCR<m>_EL1; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_WATCHPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(MDSELR_EL1.BANK) * 16) >=
NUM_WATCHPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGWCRn_EL1 == '1' then

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8562
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGWCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGWCR_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGWCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGWCR_EL1[m];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGWCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGWCR_EL1[m];

MSR DBGWCR<m>_EL1, <Xt>; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_WATCHPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(MDSELR_EL1.BANK) * 16) >=
NUM_WATCHPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGWCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8563
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGWCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGWCR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGWCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGWCR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGWCR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGWCR_EL1[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8564
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.12 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 63

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with
control register DBGWCR<n>_EL1.

Configurations

AArch64 System register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGWVR<n>[31:0].

AArch64 System register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to External
register DBGWVR<n>_EL1[63:0].

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

RESS[14:8], bits [63:57]

Reserved, Sign extended. Software must set all bits in this field to the same value as the most
significant bit of the VA field. If all bits in this field are not the same value as the most significant
bit of the VA field, then all of the following apply:

• It is CONSTRAINED UNPREDICTABLE whether the PE ignores this field when comparing an
address.

• It is IMPLEMENTATION DEFINED whether the value read back in each bit of this field is a copy
of the most significant bit of the VA field or the value written.

Bits[56:53]

When FEAT_LVA3 is implemented:

VA[56:53]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[7:4]

Extension to RESS[14:8]. For more information, see RESS[14:8].

Bits[52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

RESS[14:8]

63 57 56 53 52 49

VA[48:2]

48 32

Bits [56:53] Bits [52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8565
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:8]. For more information, see RESS[14:8].

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA3 is implemented, (VA[56:53]:VA[52:49]) forms the upper part of the address
value. If FEAT_LVA3 is not implemented, bits VA[56:53] are part of the RESS field.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. If
FEAT_LVA is not implemented, bits [52:49] are part of the RESS field.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGWVR<n>_EL1

When FEAT_Debugv8p9 is implemented, a PE is permitted to support up to 64 implemented watchpoints.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGWVR<m>_EL1; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_WATCHPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(MDSELR_EL1.BANK) * 16) >=
NUM_WATCHPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.DBGWVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGWVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8566
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 X[t, 64] = DBGWVR_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGWVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGWVR_EL1[m];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 X[t, 64] = DBGWVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)];
 else
 X[t, 64] = DBGWVR_EL1[m];

MSR DBGWVR<m>_EL1, <Xt>; Where m = 0-15

integer m = UInt(CRm<3:0>);

if (!IsFeatureImplemented(FEAT_Debugv8p9) && m >= NUM_WATCHPOINTS) ||
(IsFeatureImplemented(FEAT_Debugv8p9) && m + (UInt(MDSELR_EL1.BANK) * 16) >=
NUM_WATCHPOINTS) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.DBGWVRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGWVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGWVR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b10 0b000 0b0000 m[3:0] 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8567
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGWVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGWVR_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DBGWVR_EL1[m + (UInt(EffectiveMDSELR_EL1_BANK()) * 16)] = X[t, 64];
 else
 DBGWVR_EL1[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8568
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.13 DLR_EL0, Debug Link Register

The DLR_EL0 characteristics are:

Purpose

In Debug state, holds the address to restart from.

Configurations

AArch64 System register DLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DLR[31:0].

Attributes

DLR_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Restart address.

Accessing DLR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DLR_EL0

if !Halted() then
 UNDEFINED;
else
 X[t, 64] = DLR_EL0;

MSR DLR_EL0, <Xt>

if !Halted() then
 UNDEFINED;
else
 DLR_EL0 = X[t, 64];

Restart address

63 32

Restart address

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8569
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.14 DSPSR_EL0, Debug Saved Program Status Register

The DSPSR_EL0 characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is
written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch64 System register DSPSR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DSPSR[31:0].

AArch64 System register DSPSR_EL0 bits [63:32] are architecturally mapped to AArch32 System
register DSPSR2[31:0] when FEAT_Debugv8p9 is implemented.

Attributes

DSPSR_EL0 is a 64-bit register.

Field descriptions

When AArch32 is supported and exiting Debug state to AArch32 state:

Bits [63:34]

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Copied to PSTATE.PPEND on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Copied to PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Copied to PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 34 33 32

PPEND RES0

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0]
DIT

PAN
SSBS

M[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8570
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
C, bit [29]

Carry Condition flag. Copied to PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Copied to PSTATE.IT on exiting Debug state.

DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR_EL0[26:25].

• IT[7:2] is DSPSR_EL0[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Copied to PSTATE.DIT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8571
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the
implementation does not support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug
state, if the implementation does not support big-endian operation at the Exception level being
returned to, DSPSR_EL0.E is RES0, and if the implementation does not support little-endian
operation at the Exception level being returned to, DSPSR_EL0.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Copied to PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

0b1 AArch32 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8572
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, exiting Debug state is an illegal return event, as described in Illegal
exception returns from AArch64 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When AArch64 is supported and entering or exiting Debug state from or to AArch64 state:

Bits [63:35]

Reserved, RES0.

EXLOCK, bit [34]

When FEAT_GCS is implemented:

Exception return state lock. Set to the value of PSTATE.EXLOCK on entering Debug state, and
copied to PSTATE.EXLOCK on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PPEND, bit [33]

When FEAT_SEBEP is implemented:

PMU exception pending bit. Set to the value of PSTATE.PPEND on entering Debug state, and
conditionally copied to PSTATE.PPEND on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 35 34 33

PM

32

EXLOCK PPEND

N

31

Z

30

C

29

V

28

RES0

27 26 25 24 23 22

SS

21

IL

20

RES0

19 14 13 12 11 10

D

9

A

8

I

7

F

6 5 4

M[3:0]

3 0

TCO
DIT

PAN
UAO

ALLINT
SSBS

M[4]
RES0

BTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8573
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
PM, bit [32]

When FEAT_EBEP is implemented:

PMU exception mask bit. Set to the value of PSTATE.PM on entering Debug state, and copied to
PSTATE.PM on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to
PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to
PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to
PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to
PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on entering Debug state, and copied to
PSTATE.TCO on exiting Debug state.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE2 is implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to
PSTATE.DIT on exiting Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8574
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to
PSTATE.UAO on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to
PSTATE.PAN on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to
PSTATE.SS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to
PSTATE.IL on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

ALLINT, bit [13]

When FEAT_NMI is implemented:

All IRQ or FIQ interrupts mask. Set to the value of PSTATE.ALLINT on entering Debug state, and
copied to PSTATE.ALLINT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8575
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to
PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on entering Debug state, and copied to
PSTATE.BTYPE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to
PSTATE.D on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on entering Debug state, and copied to
PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state,
and copied to PSTATE.nRW on exiting Debug state.

0b0 AArch64 execution state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8576
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0.

0b0100 EL1 with SP_EL0 (ELt).

0b0101 EL1 with SP_EL1 (EL1h).

0b1000 EL2 with SP_EL0 (EL2t).

0b1001 EL2 with SP_EL2 (EL2h).

0b1100 EL3 with SP_EL0 (EL3t).

0b1101 EL3 with SP_EL3 (EL3h).

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, exiting Debug state is an illegal return event, as described in Illegal
exception returns from AArch64 state.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL
on exiting Debug state.

• M[1] is unused and is 0 for all non-reserved values.

• M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on
exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DSPSR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DSPSR_EL0

if !Halted() then
 UNDEFINED;
else
 X[t, 64] = DSPSR_EL0;

MSR DSPSR_EL0, <Xt>

if !Halted() then
 UNDEFINED;
else
 DSPSR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8577
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.15 MDCCINT_EL1, Monitor DCC Interrupt Enable Register

The MDCCINT_EL1 characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

Configurations

AArch64 System register MDCCINT_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGDCCINT[31:0].

Attributes

MDCCINT_EL1 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRRX.

0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRTX.

0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [28:0]

Reserved, RES0.

RES0

63 32

31

RX

30

TX

29

RES0

28 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8578
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Accessing MDCCINT_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCCINT_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 X[t, 64] = MDCCINT_EL1;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDCCINT_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDCCINT_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDCCINT_EL1;

MSR MDCCINT_EL1, <Xt>

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b000

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8579
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 MDCCINT_EL1 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCCINT_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCCINT_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MDCCINT_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8580
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.16 MDCCSR_EL0, Monitor DCC Status Register

The MDCCSR_EL0 characteristics are:

Purpose

Read-only register containing control status flags for the DCC.

Configurations

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to External
register EDSCR[30:29].

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to AArch32
System register DBGDSCRint[30:29].

Attributes

MDCCSR_EL0 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

Bits [18:15]

Reserved, RAZ.

Bits [14:13]

Reserved, RES0.

Bit [12]

Reserved, RAZ.

Bits [11:6]

Reserved, RES0.

Bits [5:2]

Reserved, RAZ.

Bits [1:0]

Reserved, RES0.

RES0

63 32

31 30 29

RES0

28 19

RAZ

18 15

RES0

14 13 12

RES0

11 6

RAZ

5 2

RES0

1 0

RES0 TXfull
RXfull

RAZ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8581
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Accessing MDCCSR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCCSR_EL0

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 X[t, 64] = MDCCSR_EL0;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDCCSR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDCCSR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8582
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDCCSR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDCCSR_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8583
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.17 MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

AArch64 System register MDCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HDCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MDCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:44]

Reserved, RES0.

EBWE, bit [43]

When FEAT_Debugv8p9 is implemented:

Extended Breakpoint and Watchpoint Enable. Enables use of additional breakpoints or watchpoints.

0b0 The Effective value of MDSCR_EL1.EMBWE is 0.

The Effective value of MDSELR_EL1.BANK is zero at EL2.

0b1 The Effective values of MDSCR_EL1.EMBWE and MDSELR_EL1.BANK are not
affected by this field.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

If EL2 is not implemented or EL2 is disabled in the current Security state, then the Effective value
of this field is 1, other than for a direct read of the register.

This field is ignored by the PE and treated as 0 when EL3 is implemented and MDCR_EL3.EBWE
is 0.

RES0

63 44 43 42

PMEE

41 40

RES0

39 37 36

RES0

35 32

EBWE HPMFZS
RES0

31 30 29 28 27 26

E2TB

25 24 23

RES0

22 20 19 18 17 16 15 14

E2PB

13 12 11 10 9 8 7 6 5

HPMN

4 0

PMSSE
HPMFZO

MTPME
TDCC

HLP
HCCD

TTRF
RES0

HPMD

TPMCR
TPM

HPME
TDE

TDA
TDOSA

TDRA
TPMS

EnSPM
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8584
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

PMEE, bits [41:40]

When FEAT_EBEP is implemented:

Performance Monitors Exception Enable. Controls the generation of PMUIRQ signal and PMU
exception at EL0, EL1, and EL2.

0b00 PMUIRQ signal is enabled, and PMU exception is disabled.

0b01 PMUIRQ signal and PMU exception are both controlled by PMECR_EL1.PMEE.

0b10 PMUIRQ signal is disabled, and PMU exception is disabled.

0b11 PMUIRQ signal is disabled, and PMU exception is enabled.

If EL2 is not implemented or EL2 is disabled in the current Security state, then the Effective value
of this field is 0b01, other than for a direct read of the register.

This field is ignored by the PE when all of the following are true:

• EL3 is implemented.

• MDCR_EL3.PMEE != 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:37]

Reserved, RES0.

HPMFZS, bit [36]

When FEAT_SPEv1p2 is implemented:

Hyp Performance Monitors Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,
E} == {1, 1} and PMBSR_EL1.S == 1.

0b0 Do not freeze on a Statistical Profiling Buffer Management event.

0b1 Affected counters do not count following a Statistical Profiling Buffer Management
event.

The counters affected by this field are event counters PMEVCNTR<n>_EL0 for values of n greater
than or equal to MDCR_EL2.HPMN and less than PMCR_EL0.N. This applies even when EL2 is
disabled in the current Security state.

Other event counters, PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMICNTR_EL0 are not affected by this field.

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, then this field has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8585
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Bits [35:32]

Reserved, RES0.

PMSSE, bits [31:30]

When FEAT_PMUv3_SS is implemented:

Performance Monitors Snapshot Enable. Controls the generation of Capture events.

0b00 Capture events are disabled.

0b01 Capture events are controlled by PMECR_EL1.SSE.

0b10 Capture events are enabled and prohibited.

0b11 Capture events are enabled and allowed.

If EL2 is not implemented, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Cold reset:

— When the highest implemented Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMFZO, bit [29]

When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Affected counters do not count when all the following are true for any value of m greater
than or equal to MDCR_EL2.HPMN:

• PMOVSCLR_EL0[m] is 1.

• Either FEAT_SEBEP is not implemented or PMEVTYPER<n>_EL0.SYNC is 0.

The counters affected by this field are event counters PMEVCNTR<n>_EL0 for values of n greater
than or equal to MDCR_EL2.HPMN and less than PMCR_EL0.N. This applies even when EL2 is
disabled in the current Security state.

Other event counters, PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMICNTR_EL0 are not affected by this field.

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, then this field has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>_EL0.MT is 0.

0b1 PMEVTYPER<n>_EL0.MT bits not affected by this field.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this field is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8586
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

0b0 This control does not cause any register accesses to be trapped.

0b1 If EL2 is implemented and enabled in the current Security state, accesses to the DCC
registers at EL1 and EL0 generate a Trap exception to EL2, unless the access also
generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the
PE is in Non-debug state, DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is
in Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.

• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL2.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When FEAT_PMUv3p5 is implemented:

Hypervisor Long Event Counter Enable. Determines which event counter bit generates an overflow
recorded by PMOVSR[n].

0b0 Affected counters overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[31:0].

0b1 Affected counters overflow on increment that causes unsigned overflow of
PMEVCNTR<n>_EL0[63:0].

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.

The counters affected by this field are event counters PMEVCNTR<n>_EL0 for values of n greater
than or equal to MDCR_EL2.HPMN and less than PMCR_EL0.N. This applies even when EL2 is
disabled in the current Security state.

Other event counters, PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMICNTR_EL0 are not affected by this field.

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, then this field has no effect.

For more information see the description of MDCR_EL2.HPMN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8587
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Otherwise:

Reserved, RES0.

E2TB, bits [25:24]

When FEAT_TRBE is implemented:

EL2 Trace Buffer.

If EL2 is implemented and enabled in the Trace Buffer owning Security state, controls the owning
translation regime.

If EL2 is implemented and enabled in the current Security state, controls access to Trace Buffer
control registers from EL1.

0b00 If EL2 is implemented and enabled in the Trace Buffer owning Security state, then the
Trace Buffer owning Exception level is EL2. Otherwise, the Trace Buffer owning
Exception level is EL1 and, if TraceBufferEnabled () == TRUE, tracing is prohibited at
EL2.

If EL2 is implemented and enabled in the current Security state, accesses to Trace
Buffer control registers at EL1 generate a Trap exception to EL2.

0b10 Trace Buffer owning Exception level is EL1. If TraceBufferEnabled () == TRUE, then
tracing is prohibited at EL2.

If EL2 is implemented and enabled in the current Security state, accesses to Trace
Buffer control registers at EL1 generate a Trap exception to EL2.

0b11 Trace Buffer owning Exception level is EL1. If TraceBufferEnabled () == TRUE, then
tracing is prohibited at EL2.

All other values are reserved.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

• If FEAT_TRBE_MPAM is implemented, MRS and MSR accesses to TRBMPAM_EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an
exception to EL2.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting at EL2.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8588
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
TTRF, bit [19]

When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:

• Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.

• Access to TRFCR is trapped to EL2, reported using EC syndrome value 0x03.

0b0 Accesses to the specified registers at EL1 are not affected by this control.

0b1 Accesses to the specified registers at EL1 generate a trap exception to EL2 when EL2
is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. Controls PMU operation at EL2.

0b0 Counters are not affected by this mechanism.

0b1 Affected counters are prohibited from counting at EL2.

If PMCR_EL0.DP is 1, then PMCCNTR_EL0 is disabled at EL2. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

The counters affected by this field are:

• Event counters PMEVCNTR<n>_EL0 for values of n less than MDCR_EL2.HPMN.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter PMCCNTR_EL0.

Other event counters are not affected by this field.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls PMU operation at EL2 when
ExternalSecureNoninvasiveDebugEnabled () is FALSE.

0b0 Counters are not affected by this mechanism.

0b1 If ExternalSecureNoninvasiveDebugEnabled () is FALSE then all the following apply:

• Affected event counters are prohibited from counting at EL2.

• If PMCR_EL0.DP is 1, then PMCCNTR_EL0 is disabled at EL2. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE then the event counters and
PMCCNTR_EL0 are not affected by this field.

Otherwise, the counters affected by this field are:

• Event counters PMEVCNTR<n>_EL0 for values of n less than MDCR_EL2.HPMN.

• If PMCR_EL0.DP is 1, the cycle counter, PMCCNTR_EL0.

Other event counters are not affected by this field. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is
not affected by this field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8589
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [16]

Reserved, RES0.

EnSPM, bit [15]

When FEAT_SPMU is implemented:

Enable access to System PMU registers. When disabled, accesses to System PMU registers generate
a trap to EL2.

0b0 Accesses of the specified System PMU registers at EL1 and EL0 are trapped to EL2,
unless the instruction generates a higher priority exception.

0b1 Accesses of the specified System PMU registers are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to
SPMACCESSR_EL1, SPMCFGR_EL1, SPMCGCR<n>_EL1, SPMCNTENCLR_EL0,
SPMCNTENSET_EL0, SPMCR_EL0, SPMDEVAFF_EL1, SPMDEVARCH_EL1,
SPMEVCNTR<n>_EL0, SPMEVFILT2R<n>_EL0, SPMEVFILTR<n>_EL0,
SPMEVTYPER<n>_EL0, SPMIIDR_EL1, SPMINTENCLR_EL1, SPMINTENSET_EL1,
SPMOVSCLR_EL0, SPMOVSSET_EL0, SPMSCR_EL1, and SPMSELR_EL0.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMS, bit [14]

When FEAT_SPE is implemented:

Trap Performance Monitor Sampling. Enables a trap to EL2 on accesses of SPE registers.

0b0 Accesses of the specified SPE registers are not trapped by this mechanism.

0b1 Accesses of the specified SPE registers at EL1 are trapped to EL2, unless the instruction
generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1,
PMSIRR_EL1, and PMSLATFR_EL1.

• MRS accesses to PMSIDR_EL1.

• If FEAT_SPEv1p2 is implemented, MRS and MSR accesses to PMSNEVFR_EL1.

• If FEAT_SPE_FDS is implemented, MRS and MSR accesses to PMSDSFR_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8590
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
E2PB, bits [13:12]

When FEAT_SPE is implemented:

EL2 Profiling Buffer. If EL2 is implemented and enabled in the Profiling Buffer owning Security
state, this field controls the owning translation regime. If EL2 is implemented and enabled in the
current Security state, this field controls access to Profiling Buffer control registers from EL1.

0b00 If EL2 is implemented and enabled in the Profiling Buffer owning Security state, the
Profiling Buffer uses the EL2 or EL2&0 stage 1 translation regime. Otherwise the
Profiling Buffer uses the EL1&0 stage 1 translation regime.

If EL2 is implemented and enabled in the current Security state, accesses to Profiling
Buffer control registers at EL1 generate a Trap exception to EL2.

0b10 Profiling Buffer uses the EL1&0 stage 1 translation regime. If EL2 is implemented and
enabled in the current Security state, accesses to Profiling Buffer control registers at
EL1 generate a Trap exception to EL2.

0b11 Profiling Buffer uses the EL1&0 stage 1 translation regime. Accesses to Profiling
Buffer control registers at EL1 are not trapped to EL2.

All other values are reserved.

The Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1,
PMBPTR_EL1, and PMBSR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM
registers to EL2 when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using
EC syndrome value 0x18.

• If EL0 or EL1 is using AArch32 state, MRC or MCR accesses to the following registers are
trapped to EL2, reported using EC syndrome value 0x05 and MRRC or MCRR accesses are
trapped to EL2, reported using EC syndrome value 0x0C:

— DBGDRAR, DBGDSAR.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 System register accesses to the Debug ROM registers are trapped to EL2
when EL2 is enabled in the current Security state, unless it is trapped by the following:

• DBGDSCRext.UDCCdis.

• MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8591
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x05:

— DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x05:

— DBGOSLSR, DBGOSLAR, and DBGPRCR.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8592
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap accesses of debug System registers. Enables a trap to EL2 on accesses of debug System
registers.

0b0 Accesses of the specified debug System registers are not trapped by this mechanism.

0b1 Accesses of the specified debug System registers at EL1 and EL0 are trapped to EL2,
unless the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to DBGAUTHSTATUS_EL1, DBGBCR<n>_EL1,
DBGBVR<n>_EL1, DBGCLAIMCLR_EL1, DBGCLAIMSET_EL1, DBGWCR<n>_EL1,
DBGWVR<n>_EL1, MDCCINT_EL1, MDCCSR_EL0, MDSCR_EL1, OSDTRRX_EL1,
OSDTRTX_EL1, and OSECCR_EL1.

• If FEAT_Debugv8p9 is implemented, MRS and MSR accesses to MDSELR_EL1.

• In Non-debug state, MRS accesses to DBGDTRRX_EL0 and DBGDTR_EL0 and MSR accesses
to DBGDTRTX_EL0 and DBGDTR_EL0.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to DBGAUTHSTATUS, DBGBCR<n>, DBGBVR<n>,
DBGBXVR<n>, DBGCLAIMCLR, DBGCLAIMSET, DBGDCCINT, DBGDEVID,
DBGDEVID1, DBGDEVID2, DBGDIDR, DBGDSCRext, DBGDSCRint,
DBGDTRRXext, DBGDTRTXext, DBGOSECCR, DBGVCR, DBGWCR<n>,
DBGWFAR, and DBGWVR<n>.

• STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint.

• In Non-debug state, MRC accesses to DBGDTRRXint and MCR accesses to DBGDTRTXint.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x05 for MRC and MCR accesses,
and 0x06 for LDC and STC accesses.

The following instructions are not trapped in Debug state:

• AArch64 MRS accesses to DBGDTRRX_EL0 and DBGDTR_EL0 and MSR accesses to
DBGDTRTX_EL0 and DBGDTR_EL0.

• AArch32 MRC accesses to DBGDTRRXint and MCR accesses to DBGDTRTXint.

If 16 or fewer breakpoints and 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI, then it is IMPLEMENTATION DEFINED whether AArch64 accesses to
MDSELR_EL1 are trapped to EL2 when MDCR_EL2.TDA is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8593
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
This field is ignored by the PE and treated as one when any of the following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target
Exception level, ELD.

0b0 The debug target Exception level is EL1.

0b1 If EL2 is enabled for the current Effective value of SCR_EL3.NS, the debug target
Exception level is EL2, otherwise the debug target Exception level is EL1.

The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes
other than returning the result of a direct read of the register.

For more information, see Routing debug exceptions.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

Hyp Enable.

0b0 Affected counters are disabled and do not count.

0b1 Affected counters are enabled by PMCNTENSET_EL0.

The counters affected by this field are event counters PMEVCNTR<n>_EL0 for values of n greater
than or equal to MDCR_EL2.HPMN and less than PMCR_EL0.N. This applies even when EL2 is
disabled in the current Security state.

Other event counters, PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMICNTR_EL0 are not affected by this field.

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, then this field has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap accesses of PMU registers. Enables a trap to EL2 on accesses of PMU registers.

0b0 Accesses of the specified PMU registers are not trapped by this mechanism.

0b1 Accesses of the specified PMU registers at EL1 and EL0 are trapped to EL2, unless the
instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMCCFILTR_EL0, PMCCNTR_EL0, PMCNTENCLR_EL0,
PMCNTENSET_EL0, PMCR_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0,
PMINTENCLR_EL1, PMINTENSET_EL1, PMOVSCLR_EL0, PMOVSSET_EL0,
PMSELR_EL0, PMSWINC_EL0, PMUSERENR_EL0, PMXEVCNTR_EL0, and
PMXEVTYPER_EL0.

• MRS accesses to PMCEID0_EL0 and PMCEID1_EL0.

• If FEAT_PMUv3p4 is implemented, MRS accesses to PMMIR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8594
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
• If FEAT_PMUv3p9 is implemented, MSR accesses to PMZR_EL0.

• If FEAT_PMUv3_ICNTR is implemented, MRS accesses to PMICFILTR_EL0 and
PMICNTR_EL0.

• If FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented, MRS and MSR accesses
to PMECR_EL1.

• If FEAT_SEBEP is implemented, MRS and MSR accesses to PMIAR_EL1.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to PMCCFILTR, PMCCNTR, PMCNTENCLR, PMCNTENSET,
PMCR, PMEVCNTR<n>, PMEVTYPER<n>, PMINTENCLR, PMINTENSET, PMOVSR,
PMOVSSET, PMSELR, PMSWINC, PMUSERENR, PMXEVCNTR, and PMXEVTYPER.

• MRC accesses to PMCEID0 and PMCEID1.

• MRRC and MCRR accesses to PMCCNTR.

• If FEAT_PMUv3p1 is implemented, MRC accesses to PMCEID2 and PMCEID3.

• If FEAT_PMUv3p4 is implemented, MRC accesses to PMMIR.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03 for MRC and MCR accesses,
and 0x04 for MRRC and MCRR accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in
the current Security state, as follows:

• In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome
value 0x18.

• In AArch32 state, accesses to PMCR are trapped to EL2, reported using EC syndrome value
0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2 when EL2 is enabled
in the current Security state, unless they are trapped by the following:

• PMUSERENR.EN.

• PMUSERENR_EL0.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

Defines the number of event counters PMEVCNTR<n>_EL0 and, if FEAT_PMUv3_SS is
implemented, snapshot registers PMEVCNTSVR<n>_EL1, that are accessible from EL1 and from
EL0 if permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8595
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
MDCR_EL2.HPMN divides the event counters into a first range and a second range.

If MDCR_EL2.HPMN is not 0 and is less than PMCR_EL0.N, then event counters
[0..(MDCR_EL2.HPMN-1)] are in the first range, and the remaining event counters
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are in the second range.

If FEAT_HPMN0 is implemented and MDCR_EL2.HPMN is 0, then all event counters are in the
second range and none are in the first range.

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, then all event counters are in the first range and
none are in the second range.

For an event counter PMEVCNTR<n>_EL0 in the first range:

• The counter is accessible from EL1, EL2, and EL3.

• The counter is accessible from EL0 if permitted by PMUSERENR_EL0 and
PMUACR_EL1, or by PMUSERENR.

• If FEAT_PMUv3p5 is implemented, PMCR_EL0.LP or PMCR.LP determines whether the
counter overflow flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or
PMEVCNTR<n>_EL0[63:0].

• PMCR_EL0.E and PMCNTENSET_EL0[n] enable the operation of the event counter.

For an event counter PMEVCNTR<n>_EL0 in the second range:

• The counter is accessible from EL2 and EL3.

• If EL2 is disabled in the current Security state, the event counter is also accessible from EL1,
and from EL0 if permitted by PMUSERENR_EL0 and PMUACR_EL1, or by
PMUSERENR.

• If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP determines whether the counter
overflow flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or
PMEVCNTR<n>_EL0[63:0].

• MDCR_EL2.HPME and PMCNTENSET_EL0[n] enable the operation of the event counter.

If FEAT_PMUv3_SS is implemented:

• For an event counter snapshot register PMEVCNTSVR<n>_EL1 in the first range, the
register is accessible from EL1, EL2, and EL3.

• For an event counter snapshot register PMEVCNTSVR<n>_EL1 in the second range, the
register is accessible from EL2 and EL3. If EL2 is disabled in the current Security state, the
event counter is also accessible from EL1.

Values greater than PMCR_EL0.N are reserved. If FEAT_HPMN0 is not implemented then the
value 0 is reserved.

If this field is set to a reserved value, then the following CONSTRAINED UNPREDICTABLE behaviors
apply:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE
behaves as if MDCR_EL2.HPMN is set to an UNKNOWN nonzero value less than or
equal to PMCR_EL0.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible
from EL1 and EL0 when EL2 is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to NUM_PMU_COUNTERS

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8596
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Accessing MDCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDCR_EL2;

MSR MDCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MDCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8597
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.18 MDCR_EL3, Monitor Debug Configuration Register (EL3)

The MDCR_EL3 characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR_EL3
are UNDEFINED.

Attributes

MDCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:50]

Reserved, RES0.

ETBAD, bits [49:48]

When FEAT_TRBE_EXT is implemented:

External Trace Buffer Access Disable. Controls access to the Trace Buffer registers from an external
debugger.

0b00 Non-secure accesses from an external debugger to Trace Buffer registers are prohibited.

If FEAT_RME is implemented, Secure and Realm accesses from an external debugger
to Trace Buffer registers are prohibited and Root accesses to Trace Buffer registers are
allowed.

If FEAT_RME is not implemented, Secure accesses to Trace Buffer registers are
allowed.

0b01 When FEAT_RME is implemented:

Secure and Non-secure accesses from an external debugger to Trace Buffer registers are
prohibited. Root and Realm accesses to Trace Buffer registers are allowed.

RES0

63 50 49 48 47 46 45 44 43 42

PMEE

41 40 39 38 37 36 35 34 33 32

ETBAD
EnITE
EPMSSAD

EnPMSS
EBWE
EnPMS3

SBRBE
MCCD

MPMX
EnPMSN

E3BREW
E3BREC

EnTB2
31 30 29 28 27 26

NSTB

25 24 23 22 21 20 19 18 17 16 15 14

NSPB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMSSE
RES0
MTPME

TDCC
NSTBE

SCCD
ETAD
EPMAD

EDAD
TTRF

STE
SPME

SDD

RLTE
RES0

EPMADE
ETADE

EDADE
RES0

TPM
EnPM2

RES0
TDA

TDOSA
NSPBE

SPD32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8598
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
0b10 When FEAT_RME is implemented:

Realm and Non-secure accesses from an external debugger to Trace Buffer registers are
prohibited. Root and Secure accesses to Trace Buffer registers are allowed.

0b11 All accesses from an external debugger to Trace Buffer registers are allowed.

If EL3 is not implemented, then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EnITE, bit [47]

When FEAT_ITE is implemented:

Enable access to Instrumentation trace registers. When disabled, accesses to Instrumentation trace
registers generate a trap to EL3.

0b0 Accesses of the specified Instrumentation trace registers at EL2 and EL1 are trapped to
EL3, unless the instruction generates a higher priority exception.

0b1 Accesses of the specified Instrumentation trace registers are not trapped by this
mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to
TRCITECR_EL1, TRCITECR_EL2, and TRCITECR_EL12.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EPMSSAD, bits [46:45]

When FEAT_PMUv3_SS is implemented:

External PMU Snapshot Access Disable. Controls access to the PMU Snapshot registers from an
external debugger.

0b00 Non-secure accesses from an external debugger to PMU Snapshot registers are
prohibited.

If FEAT_RME is implemented, Secure and Realm accesses from an external debugger
to PMU Snapshot registers are prohibited and Root accesses to PMU Snapshot registers
are allowed.

If FEAT_RME is not implemented, Secure accesses to PMU Snapshot registers are
allowed.

0b01 When FEAT_RME is implemented:

Secure and Non-secure accesses from an external debugger to PMU Snapshot registers
are prohibited. Root and Realm accesses to PMU Snapshot registers are allowed.

0b10 When FEAT_RME is implemented:

Realm and Non-secure accesses from an external debugger to PMU Snapshot registers
are prohibited. Root and Secure accesses to PMU Snapshot registers are allowed.

0b11 All accesses from an external debugger to PMU Snapshot registers are allowed.

If EL3 is not implemented, then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8599
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
EnPMSS, bit [44]

When FEAT_PMUv3_SS is implemented:

Enable access to PMU Snapshot registers. When disabled, accesses to PMU Snapshot registers
generate a trap to EL3.

0b0 Accesses of the specified PMU Snapshot registers at EL2 and EL1 are trapped to EL3,
unless the instruction generates a higher priority exception.

0b1 Accesses of the specified PMU Snapshot registers are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMCCNTSVR_EL1, PMEVCNTSVR<n>_EL1, and
PMSSCR_EL1.

• If FEAT_PMUv3_ICNTR is implemented, MRS and MSR accesses to PMICNTSVR_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EBWE, bit [43]

When FEAT_Debugv8p9 is implemented:

Extended Breakpoint and Watchpoint Enable. Enables use of additional breakpoints or watchpoints,
and enables a trap to EL3 on accesses to debug registers.

0b0 The Effective values of MDSCR_EL1.EMBWE and MDCR_EL2.EBWE are 0.

The Effective value of MDSELR_EL1.BANK is zero at EL3.

Accesses of MDSELR_EL1 at EL2 and EL1 are trapped to EL3, unless the instruction
generates a higher priority exception.

0b1 The Effective values of MDSCR_EL1.EMBWE, MDCR_EL2.EBWE, and
MDSELR_EL1.BANK are not affected by this field.

Accesses of MDSELR_EL1 are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to
MDSELR_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

If EL3 is not implemented, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EnPMS3, bit [42]

When FEAT_SPE_FDS is implemented:

Enable access to SPE registers. When disabled, accesses to SPE registers generate a trap to EL3.

0b0 Accesses of the specified SPE registers at EL2 and EL1 are trapped to EL3, unless the
instruction generates a higher priority exception.

0b1 Accesses of the specified SPE registers are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to
PMSDSFR_EL1.

Trapped instructions are reported using EC syndrome value 0x18.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8600
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEE, bits [41:40]

When FEAT_EBEP is implemented:

Performance Monitors Exception Enable. Controls the generation of PMUIRQ signal and PMU
exception at all Exception levels.

0b00 PMUIRQ signal is enabled, and PMU exception is disabled.

0b01 PMUIRQ signal and PMU exception are both controlled by MDCR_EL2.PMEE.

0b10 PMUIRQ signal is disabled, and PMU exception is disabled.

0b11 PMUIRQ signal is disabled, and PMU exception is enabled.

If EL3 is not implemented, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnTB2, bit [39]

When FEAT_TRBE_MPAM is implemented:

Enable access to Trace Buffer registers. When disabled, accesses to Trace Buffer registers generate
a trap to EL3.

0b0 Accesses of the specified Trace Buffer registers at EL2 and EL1 are trapped to EL3,
unless the instruction generates a higher priority exception.

0b1 Accesses of the specified Trace Buffer registers are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to
TRBMPAM_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3BREC, bit [38]

When FEAT_BRBEv1p1 is implemented:

Branch Record Buffer EL3 Cold Reset Enable. With MDCR_EL3.E3BREW, controls branch
recording at EL3.

0b0 When MDCR_EL3.E3BREW == 0: Branch recording at EL3 is disabled.

When MDCR_EL3.E3BREW == 1: Branch recording at EL3 is enabled.

0b1 When MDCR_EL3.E3BREW == 0: Branch recording at EL3 is enabled.

When MDCR_EL3.E3BREW == 1: Branch recording at EL3 is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8601
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
E3BREW, bit [37]

When FEAT_BRBEv1p1 is implemented:

Branch Record Buffer EL3 Warm Reset Enable. With MDCR_EL3.E3BREC, controls branch
recording at EL3.

For a description of the values derived by evaluating MDCR_EL3.E3BREC and
MDCR_EL3.E3BREW together, see MDCR_EL3.E3BREC.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EnPMSN, bit [36]

When FEAT_SPEv1p2 is implemented:

Trap accesses to PMSNEVFR_EL1. Controls access to Statistical Profiling PMSNEVFR_EL1
System register from EL2 and EL1.

0b0 Accesses to PMSNEVFR_EL1 at EL2 and EL1 generate a Trap exception to EL3.

0b1 Do not trap PMSNEVFR_EL1 to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MPMX, bit [35]

When FEAT_PMUv3p7 is implemented:

Monitor Performance Monitors Extended control. With MDCR_EL3.SPME, controls PMU
operation at EL3.

0b0 Counters are not affected by this mechanism.

0b1 Affected counters are prohibited from counting at EL3.

If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at EL3. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

The counters affected by this field are:

• If EL2 is implemented and MDCR_EL3.SPME is 1, event counters PMEVCNTR<n>_EL0
for values of n less than MDCR_EL2.HPMN.

• If EL2 is not implemented or MDCR_EL3.SPME is 0, all event counters.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter, PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter, PMCCNTR_EL0.

Other event counters are not affected by this field. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is
not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MCCD, bit [34]

When FEAT_PMUv3p7 is implemented:

Monitor Cycle Counter Disable. Prohibits the Cycle Counter, PMCCNTR_EL0, from counting at
EL3.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8602
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL3.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SBRBE, bits [33:32]

When FEAT_BRBE is implemented:

Secure Branch Record Buffer Enable. Controls branch recording by the BRBE, and access to BRBE
registers and instructions at EL2 and EL1.

0b00 Direct accesses to BRBE registers and instructions, except when in EL3, generate a Trap
exception to EL3. EL0, EL1, and EL2 are prohibited regions.

0b01 Direct accesses to BRBE registers and instructions in Secure state, except when in EL3,
generate a Trap exception to EL3. EL0, EL1, and EL2 in Secure state are prohibited
regions. This control does not cause any direct accesses to BRBE registers when not in
Secure state to be trapped, and does not cause any Exception levels when not in Secure
state to be a prohibited region.

0b10 Direct accesses to BRBE registers and instructions, except when in EL3, generate a Trap
exception to EL3. This control does not cause any Exception levels to be prohibited
regions.

0b11 This control does not cause any direct accesses to BRBE registers or instruction to be
trapped, and does not cause any Exception levels to be a prohibited region.

The Branch Record Buffer registers trapped by this control are: BRBCR_EL1, BRBCR_EL2,
BRBCR_EL12, BRBFCR_EL1, BRBIDR0_EL1, BRBINF<n>_EL1, BRBINFINJ_EL1,
BRBSRC<n>_EL1, BRBSRCINJ_EL1, BRBTGT<n>_EL1, BRBTGTINJ_EL1, and
BRBTS_EL1.

The Branch Record Buffer instructions trapped by this control are:

• BRB IALL.

• BRB INJ.

Note

If FEAT_BRBEv1p1 is not implemented, EL3 is a prohibited region.

If EL3 is not implemented then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMSSE, bits [31:30]

When FEAT_PMUv3_SS is implemented:

Performance Monitors Snapshot Enable. Controls the generation of Capture events.

0b00 Capture events are disabled.

0b01 Capture events are controlled by MDCR_EL2.PMSSE.

0b10 Capture events are enabled and prohibited.

0b11 Capture events are enabled and allowed.

If EL3 is not implemented, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8603
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Otherwise:

Reserved, RES0.

Bit [29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>_EL0.MT is 0.

0b1 PMEVTYPER<n>_EL0.MT bits not affected by this field.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this field is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.

0b0 This control does not cause any register accesses to be trapped.

0b1 Accesses to the DCC registers at EL2, EL1, and EL0 generate a Trap exception to EL3,
unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the
PE is in Non-debug state, DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is
in Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.

• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSTBE, bit [26]

When FEAT_TRBE is implemented and FEAT_RME is implemented:

Non-secure Trace Buffer Extended. Together with MDCR_EL3.NSTB, controls the owning
translation regime and accesses to Trace Buffer control registers from EL2 and EL1.

For a description of the values derived by evaluating NSTB and NSTBE together, see
MDCR_EL3.NSTB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8604
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSTB, bits [25:24]

When FEAT_TRBE is implemented and FEAT_RME is implemented:

Non-secure Trace Buffer. Together with MDCR_EL3.NSTBE, controls the owning translation
regime and accesses to Trace Buffer control registers from EL2 and EL1.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

• If FEAT_TRBE_MPAM is implemented, MRS and MSR accesses to TRBMPAM_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

If the Trace Buffer Unit is enabled and using Self-hosted mode, and MDCR_EL3.{NSTB, NSTBE}
selects a reserved value, then the behavior is CONSTRAINED UNPREDICTABLE, and the Trace Buffer
Unit does one of:

• Behaves as if the Trace Buffer Unit is disabled.

• Selects an implemented Security state as the owning Security state.

• When trace data is received from the trace unit, it is not written to memory and the Trace
Buffer Unit generates a Trace Buffer management event:

— TRBSR_EL1.IRQ is set to 1.

— If TRBSR_EL1.S is 0, then all of the following occur:

— TRBSR_EL1.S is set to 1, Collection is stopped.

— TRBSR_EL1.EC is set to 0x00, other buffer management event.

NSTBE NSTB Meaning

0b0 0b00 Secure state owns the Trace Buffer. When TraceBufferEnabled ()==TRUE, tracing is prohibited
in Realm and Non-secure states. Accesses to Trace Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3. When Secure state is not implemented, this encoding is reserved.

0b0 0b01 Secure state owns the Trace Buffer. When TraceBufferEnabled ()==TRUE, tracing is prohibited
in Realm and Non-secure states. Accesses to Trace Buffer control registers at Realm and
Non-secure EL2, and Realm and Non-secure EL1, generate Trap exceptions to EL3. When Secure
state is not implemented, this encoding is reserved.

0b0 0b10 Non-secure state owns the Trace Buffer. When TraceBufferEnabled ()==TRUE, tracing is
prohibited in Secure and Realm states. Accesses to Trace Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3.

0b0 0b11 Non-secure state owns the Trace Buffer. When TraceBufferEnabled ()==TRUE, tracing is
prohibited in Secure and Realm states. Accesses to Trace Buffer control registers at Secure and
Realm EL2, and Secure and Realm EL1, generate Trap exceptions to EL3.

0b1 0b0x Reserved

0b1 0b10 Realm state owns the Trace Buffer. When TraceBufferEnabled ()==TRUE, tracing is prohibited in
Secure and Non-secure states. Accesses to Trace Buffer control registers at EL2 and EL1 generate
Trap exceptions to EL3.

0b1 0b11 Realm state owns the Trace Buffer. When TraceBufferEnabled ()==TRUE, tracing is prohibited in
Secure and Non-secure states. Accesses to Trace Buffer control registers at Secure and Non-secure
EL2, and Secure and Non-secure EL1, generate Trap exceptions to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8605
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
— TRBSR_EL1.BSC is set to 0b000000, access not allowed.

— The other fields in TRBSR_EL1 are unchanged.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of
this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TRBE is implemented:

Non-secure Trace Buffer. Controls the owning translation regime and accesses to Trace Buffer
control registers from EL2 and EL1.

0b00 Secure state owns the Trace Buffer. If TraceBufferEnabled () == TRUE, tracing is
prohibited in Non-secure state. Accesses to Trace Buffer control registers at EL2 and
EL1 generate Trap exceptions to EL3.

0b01 Secure state owns the Trace Buffer. If TraceBufferEnabled () == TRUE, tracing is
prohibited in Non-secure state. Accesses to Trace Buffer control registers at EL2 and
EL1 in Non-secure state generate Trap exceptions to EL3.

0b10 Non-secure state owns the Trace Buffer. If TraceBufferEnabled () == TRUE, tracing is
prohibited in Secure state. Accesses to Trace Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3.

0b11 Non-secure state owns the Trace Buffer. If TraceBufferEnabled () == TRUE, tracing is
prohibited in Secure state. Accesses to Trace Buffer control registers at EL2 and EL1 in
Secure state generate Trap exceptions to EL3.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to TRBBASER_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBPTR_EL1, TRBSR_EL1, and TRBTRG_EL1.

• If FEAT_TRBE_MPAM is implemented, MRS and MSR accesses to TRBMPAM_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of
this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is prohibited in Secure state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8606
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
ETAD, bit [22]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is
implemented:

External Trace Access Disable. Together with MDCR_EL3.ETADE, controls access to trace unit
registers by an external debugger.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable. Controls Non-secure access to trace unit registers by an external
debugger.

0b0 Non-secure accesses from an external debugger to trace unit are allowed.

0b1 Non-secure accesses from an external debugger to some trace unit registers are
prohibited. See individual registers for the effect of this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EPMAD, bit [21]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable. Together with MDCR_EL3.EPMADE, controls
access to Performance Monitor registers by an external debugger.

ETADE ETAD Meaning

0b0 0b0 Access to trace unit registers by an external debugger is permitted.

0b0 0b1 Root and Secure access to trace unit registers by an external debugger is permitted. Realm and
Non-secure access to trace unit registers by an external debugger is not permitted.

0b1 0b0 Root and Realm access to trace unit registers by an external debugger is permitted. Secure and
Non-secure access to trace unit registers by an external debugger is not permitted.

0b1 0b1 Root access to trace unit registers by an external debugger is permitted. Secure, Non-secure, and
Realm access to trace unit registers by an external debugger is not permitted.

EPMADE EPMAD Meaning

0b0 0b0 Access to Performance Monitor registers by an external debugger is permitted.

0b0 0b1 Root and Secure access to Performance Monitor registers by an external debugger is permitted.
Realm and Non-secure access to Performance Monitor registers by an external debugger is not
permitted.

0b1 0b0 Root and Realm access to Performance Monitor registers by an external debugger is permitted.
Secure and Non-secure access to Performance Monitor registers by an external debugger is not
permitted.

0b1 0b1 Root access to Performance Monitor registers by an external debugger is permitted. Secure,
Non-secure, and Realm access to Performance Monitor registers by an external debugger is not
permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8607
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to
Performance Monitor registers by an external debugger.

0b0 Non-secure access to Performance Monitor registers from external debugger is
permitted.

0b1 Non-secure access to Performance Monitor registers from external debugger is not
permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable. Controls access to Performance Monitor registers
by an external debugger.

0b0 Access to Performance Monitor registers from external debugger is permitted.

0b1 Access to Performance Monitor registers from external debugger is not permitted,
unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When FEAT_RME is implemented:

External Debug Access Disable. Together with MDCR_EL3.EDADE, controls access to breakpoint
registers, watchpoint registers, and OSLAR_EL1 by an external debugger.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EDADE EDAD Meaning

0b0 0b0 Access to Debug registers by an external debugger is permitted.

0b0 0b1 Root and Secure access to Debug registers by an external debugger is permitted. Realm and
Non-secure access to Debug registers by an external debugger is not permitted.

0b1 0b0 Root and Realm access to Debug registers by an external debugger is permitted. Secure and
Non-secure access to Debug registers by an external debugger is not permitted.

0b1 0b1 Root access to Debug registers by an external debugger is permitted. Secure, Non-secure, and
Realm access to Debug registers by an external debugger is not permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8608
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
When FEAT_Debugv8p4 is implemented:

External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint,
and OSLAR_EL1 registers by an external debugger.

0b0 Non-secure access to debug registers from external debugger is permitted.

0b1 Non-secure access to breakpoint and watchpoint registers, and OSLAR_EL1 from
external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External Debug Access Disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

0b0 Access to debug registers, and to OSLAR_EL1 from external debugger is permitted.

0b1 Access to breakpoint and watchpoint registers, and to OSLAR_EL1 from external
debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally
OSLAR_EL1 registers by an external debugger.

0b0 Access to debug registers from external debugger is permitted.

0b1 Access to breakpoint and watchpoint registers from an external debugger is not
permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1 register from an
external debugger is permitted or not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.

The Trace Filter registers trapped by this control are:

• TRFCR_EL2, TRFCR_EL12, TRFCR_EL1, reported using EC syndrome value 0x18.

• HTRFCR and TRFCR, reported using EC syndrome value 0x03.

0b0 Accesses to Trace Filter registers at EL2 and EL1 are not affected by this bit.

0b1 Accesses to Trace Filter registers at EL2 and EL1 generate a Trap exception to EL3,
unless the access generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8609
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
STE, bit [18]

When FEAT_TRF is implemented and Secure state is implemented:

Secure Trace enable. Enables tracing in Secure state.

0b0 Trace prohibited in Secure state unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external
tracing. See Register controls to enable self-hosted trace.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, the Effective value of this
bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3 is implemented and FEAT_PMUv3p7 is implemented:

Secure Performance Monitors Enable. Controls PMU operation in Secure state and at EL3 when
MDCR_EL3.MPMX is 0.

0b0 Affected counters are prohibited from counting in Secure state and at EL3. If
PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure state and at EL3.
Otherwise, PMCCNTR_EL0 is not affected by this mechanism.

0b1 Counters are not affected by this mechanism.

When MDCR_EL3.MPMX is 0, the counters affected by this field are:

• All event counters.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter, PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter, PMCCNTR_EL0.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

When MDCR_EL3.MPMX is 1, this field controls which event counters are affected by
MDCR_EL3.MPMX at EL3. See MDCR_EL3.MPMX for more information.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls PMU operation in Secure state.

0b0 Event counting is prohibited in Secure state.

If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure state. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

0b1 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

The counters affected by this field are:

• All event counters.

• If PMCR_EL0.DP is 1, the cycle counter, PMCCNTR_EL0.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8610
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls PMU operation in Secure state.

0b0 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, then all the following apply:

• Event counting is prohibited in Secure state.

• If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure state. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

0b1 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE then the event counters and
PMCCNTR_EL0 are not affected by this field.

Otherwise, the counters affected by this field are:

• All event counters.

• If PMCR_EL0.DP is 1, the cycle counter, PMCCNTR_EL0.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SDD, bit [16]

When Secure state is implemented:

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure
state, other than Breakpoint Instruction exceptions.

0b0 Debug exceptions in Secure state are not affected by this bit.

0b1 Debug exceptions, other than Breakpoint Instruction exceptions, are disabled from all
Exception levels in Secure state.

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.

• The Effective value of SCR_EL3.RW is 0.

If Secure EL2 is implemented and enabled, and Secure EL1 is using AArch32, then:

• If debug exceptions from Secure EL1 are enabled, debug exceptions from Secure EL0 are
also enabled.

• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of
SDER32_EL3.SUIDEN is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPD32, bits [15:14]

When EL1 is capable of using AArch32:

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure
EL1 using AArch32, other than Breakpoint Instruction exceptions.

0b00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the IMPLEMENTATION
DEFINED authentication interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8611
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
0b10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are disabled.

0b11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must
have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved
values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored unless both of the following are true:

• The PE is in Secure state.

• The Effective value of SCR_EL3.RW is 0.

If Secure EL1 is using AArch32, then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0
are also enabled.

• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of
SDER32_EL3.SUIDEN is 1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPB, bits [13:12]

When FEAT_SPE is implemented and FEAT_RME is implemented:

Non-secure Profiling Buffer. Together with MDCR_EL3.NSPBE, controls the owning Security
state and accesses to Statistical Profiling and Profiling Buffer control registers from EL2 and EL1.

NSPBE NSPB Meaning

0b0 0b00 Secure state owns the Profiling Buffer. Statistical Profiling is disabled in Realm and Non-secure
states. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3. When Secure state is not implemented, this encoding is reserved.

0b0 0b01 Secure state owns the Profiling Buffer. Statistical Profiling is disabled in Realm and Non-secure
states. Accesses to Statistical Profiling and Profiling Buffer control registers at Realm and
Non-secure EL2, and Realm and Non-secure EL1, generate Trap exceptions to EL3. When Secure
state is not implemented, this encoding is reserved.

0b0 0b10 Non-secure state owns the Profiling Buffer. Statistical Profiling is disabled in Secure and Realm
states. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3.

0b0 0b11 Non-secure state owns the Profiling Buffer. Statistical Profiling is disabled in Secure and Realm
states. Accesses to Statistical Profiling and Profiling Buffer control registers at Secure and Realm
EL2, and Secure and Realm EL1, generate Trap exceptions to EL3.

0b1 0b0x Reserved

0b1 0b10 Realm state owns the Profiling Buffer. Statistical Profiling is disabled in Secure and Non-secure
states. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1
generate Trap exceptions to EL3.

0b1 0b11 Realm state owns the Profiling Buffer. Statistical Profiling is disabled in Secure and Non-secure
states. Accesses to Statistical Profiling and Profiling Buffer control registers at Secure and
Non-secure EL2, and Secure and Non-secure EL1, generate Trap exceptions to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8612
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1,
PMSCR_EL2, PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1,
PMSIRR_EL1, and PMSLATFR_EL1.

• MRS accesses to PMSIDR_EL1.

• If FEAT_SPEv1p2 is implemented, MRS and MSR accesses to PMSNEVFR_EL1.

• If FEAT_SPE_FDS is implemented, MRS and MSR accesses to PMSDSFR_EL1.

Trapped instructions are reported using EC syndrome value 0x18.

If profiling is enabled and MDCR_EL3.{NSPB, NSPBE} selects a reserved value, then the behavior
is CONSTRAINED UNPREDICTABLE, and the Statistical Profiling Unit does one of:

• Behaves as if profiling is disabled.

• Selects an implemented Security state as the owning Security state.

• When profiling data is generated, it is not written to memory and the Statistical Profiling Unit
generates a Profiling Buffer management event:

— If PMBSR_EL1.S is 0, then all of the following occur:

— PMBSR_EL1.S is set to 1.

— PMBSR_EL1.DL is set to 1.

— PMBSR_EL1.EC is set to 0b000000, other buffer management event.

— PMBSR_EL1.BSC is set to 0b000000, access not allowed.

— The other fields in PMBSR_EL1 are unchanged.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of
this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SPE is implemented:

Non-secure Profiling Buffer. Controls the owning Security state and accesses to Statistical Profiling
and Profiling Buffer control registers.

0b00 Secure state owns the Profiling Buffer. Statistical Profiling enabled in Secure state and
disabled in Non-secure state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 generate Trap exceptions to EL3.

0b01 Secure state owns the Profiling Buffer. Statistical Profiling enabled in Secure state and
disabled in Non-secure state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Non-secure state generate Trap exceptions to EL3.

0b10 Non-secure state owns the Profiling Buffer. Statistical Profiling enabled in Non-secure
state and disabled in Secure state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 generate Trap exceptions to EL3.

0b11 Non-secure state owns the Profiling Buffer. Statistical Profiling enabled in Non-secure
state and disabled in Secure state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Secure state generate Trap exceptions to EL3.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1,
PMSCR_EL2, PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1,
PMSIRR_EL1, and PMSLATFR_EL1.

• MRS accesses to PMSIDR_EL1.

• If FEAT_SPEv1p2 is implemented, MRS and MSR accesses to PMSNEVFR_EL1.

• If FEAT_SPE_FDS is implemented, MRS and MSR accesses to PMSDSFR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8613
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Trapped instructions are reported using EC syndrome value 0x18.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 1, then the Effective value of
this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of
this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPBE, bit [11]

When FEAT_SPE is implemented and FEAT_RME is implemented:

Non-secure Profiling Buffer Extended. Together with MDCR_EL3.NSPB, controls the owning
Security state and accesses to Statistical Profiling and Profiling Buffer control registers from EL2
and EL1.

For a description of the values derived by evaluating NSPB and NSPBE together, see
MDCR_EL3.NSPB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the
powerdown debug registers to EL3.

Accesses to the registers are trapped as follows:

• Accesses from AArch64 state, OSLAR_EL1, OSLSR_EL1, OSDLR_EL1,
DBGPRCR_EL1, and any IMPLEMENTATION DEFINED register with similar functionality that
the implementation specifies as trapped by this bit, are trapped to EL3 and reported using EC
syndrome value 0x18.

• Accesses using MCR or MRC to DBGOSLAR, DBGOSLSR, DBGOSDLR, and
DBGPRCR, are trapped to EL3 and reported using EC syndrome value 0x05.

• Accesses to any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 and EL1 System register accesses to the powerdown debug registers are trapped to
EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the
powerdown debug registers to EL3.

The following registers are affected by this trap:

• AArch64: OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

• AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8614
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
• AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality
that the implementation specifies as trapped by this bit.

• It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 and DBGOSDLR are
trapped.

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 and EL1 System register accesses to the powerdown debug registers are trapped to
EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap accesses of debug System registers. Enables a trap to EL3 on accesses of debug System
registers.

0b0 Accesses of the specified debug System registers are not trapped by this mechanism.

0b1 Accesses of the specified debug System registers at EL2, EL1, and EL0 are trapped to
EL3, unless the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to DBGAUTHSTATUS_EL1, DBGBCR<n>_EL1,
DBGBVR<n>_EL1, DBGCLAIMCLR_EL1, DBGCLAIMSET_EL1, DBGVCR32_EL2,
DBGWCR<n>_EL1, DBGWVR<n>_EL1, MDCCINT_EL1, MDCCSR_EL0,
MDCR_EL2, MDRAR_EL1, MDSCR_EL1, OSDTRRX_EL1, OSDTRTX_EL1, and
OSECCR_EL1.

• If FEAT_Debugv8p9 is implemented, MRS and MSR accesses to MDSELR_EL1.

• In Non-debug state, MRS accesses to DBGDTRRX_EL0 and DBGDTR_EL0 and MSR accesses
to DBGDTRTX_EL0 and DBGDTR_EL0.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to DBGAUTHSTATUS, DBGBCR<n>, DBGBVR<n>,
DBGBXVR<n>, DBGCLAIMCLR, DBGCLAIMSET, DBGDCCINT, DBGDEVID,
DBGDEVID1, DBGDEVID2, DBGDIDR, DBGDRAR, DBGDSAR, DBGDSCRext,
DBGDSCRint, DBGDTRRXext, DBGDTRTXext, DBGOSECCR, DBGVCR,
DBGWCR<n>, DBGWFAR, DBGWVR<n>, HDCR, and SDER.

• MRRC accesses to DBGDRAR and DBGDSAR.

• STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint.

• In Non-debug state, MRC accesses to DBGDTRRXint and MCR accesses to DBGDTRTXint.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03 for MRC and MCR accesses
with coproc == 0b1111, 0x05 for MCR and MCR accesses with coproc == 0b1110, 0x06 for LDC and STC
accesses, and 0x0C for MRRC accesses.

The following instructions are not trapped in Debug state:

• AArch64 MRS accesses to DBGDTRRX_EL0 and DBGDTR_EL0 and MSR accesses to
DBGDTRTX_EL0 and DBGDTR_EL0.

• AArch32 MRC accesses to DBGDTRRXint and MCR accesses to DBGDTRTXint.

If 16 or fewer breakpoints and 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI, then it is IMPLEMENTATION DEFINED whether AArch64 accesses to
MDSELR_EL1 are trapped to EL3 when MDCR_EL3.TDA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8615
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Bit [8]

Reserved, RES0.

EnPM2, bit [7]

When FEAT_PMUv3p9 is implemented, or FEAT_SPMU is implemented, or FEAT_EBEP is
implemented or FEAT_PMUv3_SS is implemented:

Enable access to PMU registers. When disabled, accesses to PMU registers generate a trap to EL3.

0b0 Accesses of the specified PMU registers at EL2, EL1, and EL0 are trapped to EL3,
unless the instruction generates a higher priority exception.

If FEAT_PMUv3_ICNTR is implemented, then:

• PMCNTENCLR_EL0.F, PMCNTENSET_EL0.F, PMOVSCLR_EL0.F,
PMOVSSET_EL0.F, and PMZR_EL0.F read-as-zero and ignore writes at EL2,
EL1, and EL0.

• PMINTENCLR_EL1.F and PMINTENSET_EL1.F read-as-zero and ignore
writes at EL2 and EL1.

0b1 Accesses of the specified PMU registers are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are:

• If FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented, MRS and MSR accesses
to PMECR_EL1.

• If FEAT_PMUv3_ICNTR is implemented, MRS and MSR accesses to PMICFILTR_EL0 and
PMICNTR_EL0.

• If FEAT_PMUv3p9 is implemented, MRS and MSR accesses to PMUACR_EL1.

• If FEAT_SEBEP is implemented, MRS and MSR accesses to PMIAR_EL1.

• If FEAT_SPMU is implemented, MRS and MSR accesses to SPMACCESSR_EL1,
SPMACCESSR_EL2, SPMACCESSR_EL12, SPMCFGR_EL1, SPMCGCR<n>_EL1,
SPMCNTENCLR_EL0, SPMCNTENSET_EL0, SPMCR_EL0, SPMDEVAFF_EL1,
SPMDEVARCH_EL1, SPMEVCNTR<n>_EL0, SPMEVFILT2R<n>_EL0,
SPMEVFILTR<n>_EL0, SPMEVTYPER<n>_EL0, SPMIIDR_EL1,
SPMINTENCLR_EL1, SPMINTENSET_EL1, SPMOVSCLR_EL0, SPMOVSSET_EL0,
SPMSCR_EL1, and SPMSELR_EL0.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap accesses of PMU registers. Enables a trap to EL3 on accesses of PMU registers.

0b0 Accesses of the specified PMU registers are not trapped by this mechanism.

0b1 Accesses of the specified PMU registers at EL2, EL1, and EL0 are trapped to EL3,
unless the instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMCCFILTR_EL0, PMCCNTR_EL0, PMCNTENCLR_EL0,
PMCNTENSET_EL0, PMCR_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0,
PMINTENCLR_EL1, PMINTENSET_EL1, PMOVSCLR_EL0, PMOVSSET_EL0,
PMSELR_EL0, PMSWINC_EL0, PMUSERENR_EL0, PMXEVCNTR_EL0, and
PMXEVTYPER_EL0.

• MRS accesses to PMCEID0_EL0 and PMCEID1_EL0.

• If FEAT_PMUv3p4 is implemented, MRS accesses to PMMIR_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8616
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
• If FEAT_PMUv3p9 is implemented, MSR accesses to PMZR_EL0.

• If FEAT_PMUv3_ICNTR is implemented, MRS and MSR accesses to PMICFILTR_EL0 and
PMICNTR_EL0.

• If FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented, MRS and MSR accesses
to PMECR_EL1.

• If FEAT_SEBEP is implemented, MRS and MSR accesses to PMIAR_EL1.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to PMCCFILTR, PMCCNTR, PMCEID0, PMCEID1, PMCNTENCLR,
PMCNTENSET, PMCR, PMEVCNTR<n>, PMEVTYPER<n>, PMINTENCLR,
PMINTENSET, PMOVSR, PMOVSSET, PMSELR, PMSWINC, PMUSERENR,
PMXEVCNTR, and PMXEVTYPER.

• MRRC and MCRR accesses to PMCCNTR.

• If FEAT_PMUv3p1 is implemented, MRC accesses to PMCEID2 and PMCEID3.

• If FEAT_PMUv3p4 is implemented, MRC accesses to PMMIR.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03 for MRC and MCR accesses,
and 0x04 for MRRC and MCRR accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

EDADE, bit [4]

When FEAT_RME is implemented:

External Debug Access Disable Extended. Together with MDCR_EL3.EDAD, controls access to
breakpoint registers, watchpoint registers, and OSLAR_EL1 by an external debugger.

For a description of the values derived by evaluating EDAD and EDADE together, see
MDCR_EL3.EDAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

ETADE, bit [3]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is
implemented:

External Trace Access Disable Extended. Together with MDCR_EL3.ETAD, controls access to
trace unit registers by an external debugger.

For a description of the values derived by evaluating ETAD and ETADE together, see
MDCR_EL3.ETAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8617
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
EPMADE, bit [2]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable Extended. Together with MDCR_EL3.EPMAD,
controls access to Performance Monitor registers by an external debugger.

For a description of the values derived by evaluating EPMAD and EPMADE together, see
MDCR_EL3.EPMAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [1]

Reserved, RES0.

RLTE, bit [0]

When FEAT_RME is implemented and FEAT_TRF is implemented:

Realm Trace enable. Enables tracing in Realm state.

0b0 Trace prohibited in Realm state, unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

0b1 Trace in Realm state is not affected by this bit.

This bit also controls the level of authentication that is required by an external debugger to enable
external tracing.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Accessing MDCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDCR_EL3;

MSR MDCR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8618
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MDCR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8619
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.19 MDRAR_EL1, Monitor Debug ROM Address Register

The MDRAR_EL1 characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a
ROM table that locates and describes the memory-mapped debug components in the system. Armv8
deprecates any use of this register.

Configurations

AArch64 System register MDRAR_EL1 bits [63:0] are architecturally mapped to AArch32 System
register DBGDRAR[63:0].

Attributes

MDRAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

ROMADDR, bits [55:12]

ROMADDR encoding when FEAT_D128 is implemented and MDRAR_EL1.Valid != 0b00

ROMADDR, bits [43:0]

Bits [55:12] of the ROM table physical address.

Bits [11:0] of the ROM table physical address are zero.

For implementations with fewer than 56 physical address bits, the corresponding upper
bits of this field are RES0

In an implementation that includes EL3, ROMADDR is an address in Non-secure PA
space. It is IMPLEMENTATION DEFINED whether the ROM table is also accessible in
Secure PA space. If FEAT_RME is implemented, it is IMPLEMENTATION DEFINED
whether the ROM table is also accessible in the Root or Realm PA spaces.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system
where the implementation only supports execution in AArch32 state.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

63 56

ROMADDR

55 32

ROMADDR

31 12

RES0

11 2 1 0

Valid

ROMADDR

43 32

ROMADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8620
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
ROMADDR encoding when FEAT_D128 is not implemented, FEAT_LPA is implemented and
MDRAR_EL1.Valid != 0b00

Bits [43:40]

Reserved, RES0.

ROMADDR, bits [39:0]

Bits [51:12] of the ROM table physical address.

Bits [11:0] of the ROM table physical address are zero.

For implementations with fewer than 52 physical address bits, the corresponding upper
bits of this field are RES0

In an implementation that includes EL3, ROMADDR is an address in Non-secure PA
space. It is IMPLEMENTATION DEFINED whether the ROM table is also accessible in
Secure PA space. If FEAT_RME is implemented, it is IMPLEMENTATION DEFINED
whether the ROM table is also accessible in the Root or Realm PA spaces.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system
where the implementation only supports execution in AArch32 state.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

ROMADDR encoding when FEAT_D128 is not implemented, FEAT_LPA is not implemented and
MDRAR_EL1.Valid != 0b00

Bits [43:36]

Reserved, RES0.

ROMADDR, bits [35:0]

Bits [39:12] of the ROM table physical address.

Bits [11:0] of the ROM table physical address are zero.

For implementations with fewer than 48 physical address bits, the corresponding upper
bits of this field are RES0

In an implementation that includes EL3, ROMADDR is an address in Non-secure PA
space. It is IMPLEMENTATION DEFINED whether the ROM table is also accessible in
Secure PA space. If FEAT_RME is implemented, it is IMPLEMENTATION DEFINED
whether the ROM table is also accessible in Root or Realm PA spaces.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system
where the implementation only supports execution in AArch32 state.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

43 40

ROMADDR

39 32

ROMADDR

31 0

RES0

43 36

ROMADDR

35 32

ROMADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8621
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
ROMADDR encoding when MDRAR_EL1.Valid == 0b00

Bits [43:0]

Reserved, UNKNOWN.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 ROM Table address is not valid. Software must ignore ROMADDR.

0b11 ROM Table address is valid.

Other values are reserved.

Arm recommends implementations set this field to zero.

Access to this field is RO.

Accessing MDRAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDRAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDRAR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDRAR_EL1;

UNKNOWN

43 32

UNKNOWN

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8622
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDRAR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8623
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.20 MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

AArch64 System register MDSCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGDSCRext[31:0].

AArch64 System register MDSCR_EL1 bit [15] is architecturally mapped to AArch32 System
register DBGDSCRint[15].

AArch64 System register MDSCR_EL1 bit [12] is architecturally mapped to AArch32 System
register DBGDSCRint[12].

AArch64 System register MDSCR_EL1 bits [5:2] are architecturally mapped to AArch32 System
register DBGDSCRint[5:2].

AArch64 System register MDSCR_EL1 bits [30:29] are architecturally mapped to External register
EDSCR[30:29].

AArch64 System register MDSCR_EL1 bits [63:32] are architecturally mapped to External register
EDSCR2[31:0].

Attributes

MDSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:36]

Reserved, RES0.

EHBWE, bit [35]

When FEAT_Debugv8p9 is implemented:

Extended Halting Breakpoint and Watchpoint Enable. Used for save/restore of EDSCR2.EHBWE.

When OSLSR_EL1.OSLK is 0, software must treat this field as UNK/SBZP.

When OSLSR_EL1.OSLK is 1, this field holds the value of EDSCR2.EHBWE. Reads and writes
of this field are indirect accesses to EDSCR2.EHBWE.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

RES0

63 36 35 34 33 32

EHBWE
EnSPM

EMBWE
TTA

31 30 29 28 27 26

RES0

25 24 23 22 21 20 19

RAZ/WI

18 16 15 14 13 12

RES0

11 7 6

RES0

5 1

SS

0

TFO
RXfull

TXfull
RES0

RXO
TXU

INTdis

TDCC
KDE

HDE
MDE

SC2
RES0

TDA

ERR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8624
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

EnSPM, bit [34]

When FEAT_SPMU is implemented:

Enable access to System PMU registers. When disabled, accesses to System PMU registers generate
a trap to EL1.

0b0 Accesses of the specified System PMU registers at EL0 are trapped to EL1, unless the
instruction generates a higher priority exception.

0b1 Accesses of the specified System PMU registers are not trapped by this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to
SPMCNTENCLR_EL0, SPMCNTENSET_EL0, SPMCR_EL0, SPMEVCNTR<n>_EL0,
SPMEVFILT2R<n>_EL0, SPMEVFILTR<n>_EL0, SPMEVTYPER<n>_EL0,
SPMOVSCLR_EL0, SPMOVSSET_EL0, and SPMSELR_EL0.

Unless the instruction generates a higher priority exception:

• If EL2 is implemented and enabled in the current Security state, and HCR_EL2.TGE is 1,
then trapped instructions generate an exception to EL2.

• Otherwise, trapped instructions generate an exception to EL1.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTA, bit [33]

When FEAT_TRBE_EXT is implemented or FEAT_ETEv1p3 is implemented:

Trap Trace Accesses. Used for save/restore of EDSCR2.TTA.

When OSLSR_EL1.OSLK is 0, software must treat this field as UNK/SBZP.

When OSLSR_EL1.OSLK is 1, this field holds the value of EDSCR2.TTA. Reads and writes of this
field are indirect accesses to EDSCR2.TTA.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

EMBWE, bit [32]

When FEAT_Debugv8p9 is implemented:

Extended Monitor Breakpoint and Watchpoint Enable. Enables use of additional breakpoints or
watchpoints.

0b0 Breakpoint and Watchpoint exceptions are disabled for each breakpoint <n> and
watchpoint <n>, where n is greater than or equal to 16.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8625
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The Effective value of MDSELR_EL1.BANK is zero at EL1.

0b1 Breakpoint and Watchpoint exceptions are not affected by this mechanism.

The Effective value of MDSELR_EL1.BANK is not affected by this field.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

This field is ignored by the PE and treated as zero when any of the following are true:

• EL3 is implemented and MDCR_EL3.EBWE is 0.

• EL2 is implemented and enabled in the current Security state, and MDCR_EL2.EBWE is 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this
bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this
bit are indirect accesses to EDSCR.RXfull.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this
bit are indirect accesses to EDSCR.TXfull.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8626
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO.

When OSLSR_EL1.OSLK == 1, if bits [27,6] of the value written to MDSCR_EL1 are {1,0}, that
is, the RXO bit is 1 and the ERR bit is 0, the PE sets EDSCR.{RXO,ERR} to UNKNOWN values.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this
bit are indirect accesses to EDSCR.TXU.

When OSLSR_EL1.OSLK == 1, if bits [26,6] of the value written to MDSCR_EL1 are {1,0}, that
is, the TXU bit is 1 and the ERR bit is 0, the PE sets EDSCR.{TXU,ERR} to UNKNOWN values.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of
this field are indirect accesses to EDSCR.INTdis.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this
bit are indirect accesses to EDSCR.TDA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8627
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not
implemented:

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this
bit are indirect accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this
bit are indirect accesses to EDSCR.HDE.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD.
Permitted values are:

0b0 Debug exceptions, other than Breakpoint Instruction exceptions, disabled within ELD.

0b1 All debug exceptions enabled within ELD.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8628
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
RES0 if ELD is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both
Execution states, as follows:

• In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped,
reported using EC syndrome value 0x18:

— MDCCSR_EL0.

— If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported
using EC syndrome value 0x05.

— DBGDSCRint, DBGDIDR, DBGDSAR, DBGDRAR.

— If not in Debug state, DBGDTRRXint, and DBGDTRTXint.

• In AArch32 state, LDC access to DBGDTRRXint and STC access to DBGDTRTXint are
trapped, reported using EC syndrome value 0x06.

• In AArch32 state, MRRC accesses to DBGDSAR and DBGDRAR are trapped, reported
using EC syndrome value 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 using AArch64: EL0 accesses to the AArch64 DCC registers are trapped.

EL0 using AArch32: EL0 accesses to the AArch32 DCC registers are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this
bit are indirect accesses to EDSCR.ERR.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

0b0 Software step disabled

0b1 Software step enabled.

RES0 if ELD is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8629
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Accessing MDSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.MDSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x158];
 else
 X[t, 64] = MDSCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDSCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDSCR_EL1;

MSR MDSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.MDSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8630
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x158] = X[t, 64];
 else
 MDSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MDSCR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8631
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.21 MDSELR_EL1, Breakpoint and Watchpoint Selection Register

The MDSELR_EL1 characteristics are:

Purpose

Selects the current breakpoints or watchpoints accessed by System register instructions.

Configurations

This register is present only when FEAT_Debugv8p9 is implemented. Otherwise, direct accesses to
MDSELR_EL1 are UNDEFINED.

Attributes

MDSELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:6]

Reserved, RES0.

BANK, bits [5:4]

Breakpoint and watchpoint bank select.

0b00 Select 0 to 15.

0b01 When NUM_BREAKPOINTS > 16 or NUM_WATCHPOINTS > 16:

Select 16 to 31.

0b10 When NUM_BREAKPOINTS > 32 or NUM_WATCHPOINTS > 32:

Select 32 to 47.

0b11 When NUM_BREAKPOINTS > 48 or NUM_WATCHPOINTS > 48:

Select 48 to 63.

Each of the following register names accesses a register for breakpoint or watchpoint <n>, where n
= UInt(MDSELR_EL1.BANK:m[3:0]):

• DBGBCR<n>_EL1.

• DBGBVR<n>_EL1.

• DBGWCR<n>_EL1.

• DBGWVR<n>_EL1.

This field is ignored by the PE and treated as zeros when any of the following are true:

• Executing at EL3 and MDCR_EL3.EBWE is 0.

• Executing at EL2 and the Effective value of MDCR_EL2.EBWE is 0.

• Executing at EL1 and the Effective value of MDSCR_EL1.EMBWE is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if all of the following are true:

— NUM_BREAKPOINTS <= 16.

— NUM_WATCHPOINTS <= 16.

RES0

63 32

RES0

31 6

BANK

5 4

RES0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8632
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
• Otherwise, access to this field is RW.

Bits [3:0]

Reserved, RES0.

Accessing MDSELR_EL1

When 16 or fewer breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI, it is IMPLEMENTATION DEFINED whether these trap controls have any effect on accesses
to MDSELR_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDSELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EBWE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nMDSELR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EBWE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDSELR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EBWE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EBWE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MDSELR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MDSELR_EL1;

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8633
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
MSR MDSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EBWE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nMDSELR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EBWE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDSELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EBWE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EBWE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDSELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MDSELR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8634
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.22 OSDLR_EL1, OS Double Lock Register

The OSDLR_EL1 characteristics are:

Purpose

Used to control the OS Double Lock.

Configurations

AArch64 System register OSDLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGOSDLR[31:0].

Attributes

OSDLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

DLK, bit [0]

When FEAT_DoubleLock is implemented:

OS Double Lock control bit.

0b0 OS Double Lock unlocked.

0b1 OS Double Lock locked, if DBGPRCR_EL1.CORENPDRQ (Core no powerdown
request) bit is set to 0 and the PE is in Non-debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing OSDLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSDLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

RES0

63 32

RES0

31 1 0

DLK

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8635
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_DoubleLock) && HDFGRTR_EL2.OSDLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) ||
boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSDLR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) ||
boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSDLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = OSDLR_EL1;

MSR OSDLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && IsFeatureImplemented(FEAT_DoubleLock) && HDFGWTR_EL2.OSDLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) ||
boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8636
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented(FEAT_DoubleLock) ||
boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 OSDLR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8637
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.23 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

The OSDTRRX_EL1 characteristics are:

Purpose

Used for save and restore of DBGDTRRX_EL0. It is a component of the Debug Communications
Channel.

Configurations

AArch64 System register OSDTRRX_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRRXext[31:0].

Attributes

OSDTRRX_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

Accessing OSDTRRX_EL1

Arm deprecates reads and writes of OSDTRRX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSDTRRX_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 X[t, 64] = OSDTRRX_EL1;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

RES0

63 32

Update DTRRX without side-effect

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8638
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSDTRRX_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSDTRRX_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = OSDTRRX_EL1;

MSR OSDTRRX_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 OSDTRRX_EL1 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8639
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 OSDTRRX_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDTRRX_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 OSDTRRX_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8640
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.24 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

The OSDTRTX_EL1 characteristics are:

Purpose

Used for save/restore of DBGDTRTX_EL0. It is a component of the Debug Communications
Channel.

Configurations

AArch64 System register OSDTRTX_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGDTRTXext[31:0].

Attributes

OSDTRTX_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

Accessing OSDTRTX_EL1

Arm deprecates reads and writes of OSDTRTX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSDTRTX_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 X[t, 64] = OSDTRTX_EL1;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

RES0

63 32

Return DTRTX without side-effect

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8641
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSDTRTX_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSDTRTX_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = OSDTRTX_EL1;

MSR OSDTRTX_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 OSDTRTX_EL1 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8642
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 OSDTRTX_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSDTRTX_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 OSDTRTX_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8643
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.25 OSECCR_EL1, OS Lock Exception Catch Control Register

The OSECCR_EL1 characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise
invisible to software, so it can save/restore the contents of EDECCR over powerdown on behalf of
the external debugger.

Configurations

AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGOSECCR[31:0].

AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to External register
EDECCR[31:0].

If OSLSR_EL1.OSLK == 0, then OSECCR_EL1 returns an UNKNOWN value on reads and ignores
writes.

Attributes

OSECCR_EL1 is a 64-bit register.

Field descriptions

When OSLSR_EL1.OSLK == 1:

Bits [63:32]

Reserved, RES0.

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing OSECCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSECCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.OSECCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

RES0

63 32

EDECCR

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8644
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = OSECCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = OSECCR_EL1;
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = OSECCR_EL1;

MSR OSECCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.OSECCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 return;
 else
 OSECCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' then
 return;

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8645
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 OSECCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' then
 return;
 else
 OSECCR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8646
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.26 OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS Lock.

Configurations

AArch64 System register OSLAR_EL1 bits [31:0] are architecturally mapped to External register
OSLAR_EL1[31:0].

The OS Lock can also be locked or unlocked using DBGOSLAR.

Attributes

OSLAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS Lock.

Use OSLSR_EL1.OSLK to check the current status of the lock.

Accessing OSLAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MSR OSLAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.OSLAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

RES0

63 32

RES0

31 1 0

OSLK

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8647
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 else
 OSLAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSLAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 OSLAR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8648
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.27 OSLSR_EL1, OS Lock Status Register

The OSLSR_EL1 characteristics are:

Purpose

Provides the status of the OS Lock.

Configurations

AArch64 System register OSLSR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGOSLSR[31:0].

Attributes

OSLSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:4]

Reserved, RES0.

OSLM, bits [3, 0]

OS Lock model implemented. Identifies the form of OS save and restore mechanism implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 OS Lock not implemented.

0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is OSLSR_EL1[3].

• OSLM[0] is OSLSR_EL1[0].

Access to this field is RO.

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key
to the OS Lock Access Register.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

OSLK, bit [1]

OS Lock Status.

0b0 OS Lock unlocked.

0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

RES0

63 32

RES0

31 4 3 2 1 0

OSLM[1]
nTT

OSLM[0]
OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8649
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
Accessing OSLSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSLSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.OSLSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSLSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = OSLSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = OSLSR_EL1;

op0 op1 CRn CRm op2

0b10 0b000 0b0001 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8650
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.28 SDER32_EL2, AArch32 Secure Debug Enable Register

The SDER32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register SDER from Secure EL2 and EL3 only.

Configurations

AArch64 System register SDER32_EL2 bits [63:0] are architecturally mapped to AArch64 System
register SDER32_EL3[63:0] when EL3 is implemented.

AArch64 System register SDER32_EL2 bits [31:0] are architecturally mapped to AArch32 System
register SDER[31:0].

This register is present only when EL2 is implemented, FEAT_SEL2 is implemented and EL1 is
capable of using AArch32. Otherwise, direct accesses to SDER32_EL2 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes

SDER32_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit has no effect on non-invasive debug.

0b1 Non-invasive debug is allowed in Secure EL0 using AArch32.

When Secure EL1 is using AArch32, the forms of non-invasive debug affected by this control are:

• The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling
Extension.

• When SelfHostedTraceEnabled() == FALSE, processor trace.

• When EL3 is implemented, Performance Monitors.

When Secure EL1 is using AArch64, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

When EL3 is implemented:

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.

RES0

63 32

RES0

31 2 1 0

SUNIDEN SUIDEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8651
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
0b1 If EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing SDER32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SDER32_EL2

if !HaveEL(EL2) || !IsFeatureImplemented(FEAT_SEL2) || !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SDER32_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = SDER32_EL2;

MSR SDER32_EL2, <Xt>

if !HaveEL(EL2) || !IsFeatureImplemented(FEAT_SEL2) || !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8652
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SDER32_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 SDER32_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8653
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.29 SDER32_EL3, AArch32 Secure Debug Enable Register

The SDER32_EL3 characteristics are:

Purpose

Allows access to the AArch32 register SDER from AArch64 state only. Its value has no effect on
execution in AArch64 state.

Configurations

AArch64 System register SDER32_EL3 bits [63:0] are architecturally mapped to AArch64 System
register SDER32_EL2[63:0] when EL2 is implemented and FEAT_SEL2 is implemented.

AArch64 System register SDER32_EL3 bits [31:0] are architecturally mapped to AArch32 System
register SDER[31:0].

This register is present only when EL3 is implemented and EL1 is capable of using AArch32.
Otherwise, direct accesses to SDER32_EL3 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes

SDER32_EL3 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit has no effect on non-invasive debug.

0b1 Non-invasive debug is allowed in Secure EL0 using AArch32.

When Secure EL1 is using AArch32, the forms of non-invasive debug affected by this control are:

• The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling
Extension.

• When SelfHostedTraceEnabled() == FALSE, processor trace.

• Performance Monitors.

When Secure EL1 is using AArch64, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.

0b1 If EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

RES0

63 32

RES0

31 2 1 0

SUNIDEN SUIDEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8654
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SDER32_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SDER32_EL3

if !HaveEL(EL3) || !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SDER32_EL3;

MSR SDER32_EL3, <Xt>

if !HaveEL(EL3) || !HaveAArch32EL(EL1) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SDER32_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8655
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.30 TRFCR_EL1, Trace Filter Control Register (EL1)

The TRFCR_EL1 characteristics are:

Purpose

Provides EL1 controls for Trace.

Configurations

AArch64 System register TRFCR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register TRFCR[31:0].

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to
TRFCR_EL1 are UNDEFINED.

Attributes

TRFCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF_EL2.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The traced timestamp is the physical counter value minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when any of the following are true:

• EL2 is implemented and TRFCR_EL2.TS != 0b00.

• SelfHostedTraceEnabled () == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.

RES0

63 32

RES0

31 7

TS

6 5

RES0

4 2 1 0

E1TRE E0TRE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8656
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
E1TRE, bit [1]

EL1 Trace Enable.

0b0 Trace is prohibited at EL1.

0b1 Trace is allowed at EL1.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.

0b0 Trace is prohibited at EL0.

0b1 Trace is allowed at EL0.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.

• EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x880];
 else
 X[t, 64] = TRFCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TRFCR_EL2;
 else
 X[t, 64] = TRFCR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8657
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = TRFCR_EL1;

MSR TRFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x880] = X[t, 64];
 else
 TRFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 TRFCR_EL2 = X[t, 64];
 else
 TRFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t, 64];

MRS <Xt>, TRFCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x880];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8658
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TRFCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TRFCR_EL1;
 else
 UNDEFINED;

MSR TRFCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x880] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRFCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TRFCR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8659
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
D23.3.31 TRFCR_EL2, Trace Filter Control Register (EL2)

The TRFCR_EL2 characteristics are:

Purpose

Provides EL2 controls for Trace.

Configurations

AArch64 System register TRFCR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register HTRFCR[31:0].

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to
TRFCR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

TRFCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b00 Timestamp controlled by TRFCR_EL1.TS or TRFCR.TS.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF_EL2.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The traced timestamp is the physical counter value minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

This field is ignored by the PE when SelfHostedTraceEnabled () == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [4]

Reserved, RES0.

CX, bit [3]

CONTEXTIDR_EL2 and VMID trace enable.

0b0 CONTEXTIDR_EL2 and VMID trace prohibited.

RES0

63 32

RES0

31 7

TS

6 5 4

CX

3 2 1 0

RES0
RES0

E0HTRE
E2TRE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8660
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
0b1 CONTEXTIDR_EL2 and VMID trace allowed.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [2]

Reserved, RES0.

E2TRE, bit [1]

EL2 Trace Enable.

0b0 Trace is prohibited at EL2.

0b1 Trace is allowed at EL2.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0HTRE, bit [0]

EL0 Trace Enable.

0b0 Trace is prohibited at EL0 when HCR_EL2.TGE == 1.

0b1 Trace is allowed at EL0 when HCR_EL2.TGE == 1.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.

• EL2 is disabled in the current security state.

• HCR_EL2.TGE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRFCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TRFCR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8661
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = TRFCR_EL2;

MSR TRFCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRFCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TRFCR_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, TRFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x880];
 else
 X[t, 64] = TRFCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8662
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.3 Debug registers
 X[t, 64] = TRFCR_EL2;
 else
 X[t, 64] = TRFCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TRFCR_EL1;

 When FEAT_VHE is implemented : MSR TRFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x880] = X[t, 64];
 else
 TRFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 TRFCR_EL2 = X[t, 64];
 else
 TRFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8663
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4 Trace registers

This section lists the Trace registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8664
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.1 TRBBASER_EL1, Trace Buffer Base Address Register

The TRBBASER_EL1 characteristics are:

Purpose

Defines the base address for the trace buffer.

Configurations

AArch64 System register TRBBASER_EL1 bits [63:0] are architecturally mapped to External
register TRBBASER_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBBASER_EL1 are UNDEFINED.

Attributes

TRBBASER_EL1 is a 64-bit register.

Field descriptions

BASE, bits [63:12]

Trace Buffer Base pointer address. (TRBBASER_EL1.BASE << 12) is the address of the first byte
in the trace buffer. Bits [11:0] of the Base pointer address are always zero. If the smallest
implemented translation granule is not 4KB, then TRBBASER_EL1[N-1:12] are RES0, where N is
the IMPLEMENTATION DEFINED value Log2(smallest implemented translation granule).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

Accessing TRBBASER_EL1

The PE might ignore a write to TRBBASER_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBBASER_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

BASE

63 32

BASE

31 12

RES0

11 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8665
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRBBASER_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBBASER_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBBASER_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBBASER_EL1;

MSR TRBBASER_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRBBASER_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8666
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBBASER_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBBASER_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBBASER_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8667
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.2 TRBIDR_EL1, Trace Buffer ID Register

The TRBIDR_EL1 characteristics are:

Purpose

Describes constraints on using the Trace Buffer Unit to software, including whether the Trace
Buffer Unit can be programmed at the current Exception level.

Configurations

AArch64 System register TRBIDR_EL1 bits [63:0] are architecturally mapped to External register
TRBIDR_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBIDR_EL1 are UNDEFINED.

Attributes

TRBIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

EA, bits [11:8]

From Armv9.3:

External Abort handling. Describes how the PE manages External aborts on writes made by the
Trace Buffer Unit to the trace buffer.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not described.

0b0001 The PE ignores External aborts on writes made by the Trace Buffer Unit.

0b0010 The External abort generates an SError exception at the PE.

All other values are reserved.

From Armv9.3, the value 0b0000 is not permitted.

TRBIDR_EL1.EA describes only External aborts generated by the write to memory. External aborts
on a translation table walk made by the Trace Buffer Unit generate trace buffer management events
reported as MMU faults using TRBSR_EL1.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [7:6]

Reserved, RES0.

F, bit [5]

Flag updates. Describes how address translations performed by the Trace Buffer Unit manage the
Access flag and dirty state.

RES0

63 32

RES0

31 12

EA

11 8

RES0

7 6

F

5

P

4

Align

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8668
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Hardware management of the Access flag and dirty state for accesses made by the Trace
Buffer Unit is always disabled for all translation stages.

0b1 Hardware management of the Access flag and dirty state for accesses made by the Trace
Buffer Unit is controlled in the same way as explicit memory accesses in the trace buffer
owning translation regime.

Note

If hardware management of the Access flag is disabled for a stage of translation, an access to a Page
or Block with the Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page
or Block will ignore the Dirty Bit Modifier in the descriptor and might generate a Permission fault,
depending on the values of the access permission bits in the descriptor.

From Armv9.3, the value 0 is not permitted.

Access to this field is RO.

P, bit [4]

Programming not allowed. When read at EL3, this field reads as zero. Otherwise, indicates that the
trace buffer is owned by a higher Exception level or another Security state. Defined values are:

0b0 Programming is allowed.

0b1 Programming not allowed.

The value read from this field depends on the current Exception level and the Effective values of
MDCR_EL3.NSTB, MDCR_EL3.NSTBE, and MDCR_EL2.E2TB:

• If EL3 is implemented, MDCR_EL3.NSTB is 0b0x, and either FEAT_RME is not
implemented, or Secure state is implemented and MDCR_EL3.NSTBE is 0, then this field
reads as one from:

— Non-secure EL1 and Non-secure EL2.

— If FEAT_RME is implemented, Realm EL1 and Realm EL2.

— If Secure EL2 is implemented and enabled, and MDCR_EL2.E2TB is 0b00, Secure
EL1.

• If EL3 is implemented, MDCR_EL3.NSTB is 0b1x and either FEAT_RME is not
implemented or MDCR_EL3.NSTBE is 0, then this field reads as one from:

— If Secure state is implemented, Secure EL1.

— If Secure EL2 is implemented, Secure EL2.

— If EL2 is implemented and MDCR_EL2.E2TB is 0b00, Non-secure EL1.

— If FEAT_RME is implemented, Realm EL1 and Realm EL2.

• If FEAT_RME is implemented, and MDCR_EL3.{NSTB, NSTBE} is {0b1x, 1}, then this
field reads as one from:

— Non-secure EL1 and Non-secure EL2.

— If Secure state is implemented, Secure EL1 and Secure EL2.

— If MDCR_EL2.E2TB is 0b00, Realm EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2TB is 0b00, then this
field reads as one from EL1.

Otherwise, this field reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for writes to TRBPTR_EL1 and TRBTRG_EL1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Byte.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8669
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0b0001 Halfword.

0b0010 Word.

0b0011 Doubleword.

0b0100 16 bytes.

0b0101 32 bytes.

0b0110 64 bytes.

0b0111 128 bytes.

0b1000 256 bytes.

0b1001 512 bytes.

0b1010 1KB.

0b1011 2KB.

All other values are reserved.

Access to this field is RO.

Accessing TRBIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HDFGRTR_EL2.TRBIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBIDR_EL1;
elsif PSTATE.EL == EL2 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBIDR_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8670
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.3 TRBLIMITR_EL1, Trace Buffer Limit Address Register

The TRBLIMITR_EL1 characteristics are:

Purpose

Defines the top address for the trace buffer, and controls the trace buffer modes and enable.

Configurations

AArch64 System register TRBLIMITR_EL1 bits [63:0] are architecturally mapped to External
register TRBLIMITR_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBLIMITR_EL1 are UNDEFINED.

Attributes

TRBLIMITR_EL1 is a 64-bit register.

Field descriptions

LIMIT, bits [63:12]

Trace Buffer Limit pointer address. (TRBLIMITR_EL1.LIMIT << 12) is the address of the last byte
in the trace buffer plus one. Bits [11:0] of the Limit pointer address are always zero. If the smallest
implemented translation granule is not 4KB, then TRBLIMITR_EL1[N-1:12] are RES0, where N is
the IMPLEMENTATION DEFINED value Log2(smallest implemented translation granule).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

XE, bit [6]

When FEAT_TRBE_EXT is implemented:

Trace Buffer Unit External mode enable. Used for save/restore of TRBLIMITR_EL1.XE.

0b0 Trace Buffer Unit is not enabled by this control.

0b1 If SelfHostedTraceEnabled() is FALSE, the Trace Buffer Unit is enabled.

Software must treat this field as UNK/SBZP when the OS Lock is unlocked.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• When !OSLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

LIMIT

63 32

LIMIT

31 12

RES0

11 7

XE

6 5

TM

4 3

FM

2 1

E

0

nVM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8671
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
nVM, bit [5]

Address mode.

0b0 The trace buffer pointers are virtual addresses.

0b1 The trace buffer pointers are:

• Physical address in the owning security state if the owning translation regime has
no stage 2 translation.

• Intermediate physical addresses in the owning security state if the owning
translation regime has stage 2 translations.

When FEAT_TRBE_EXT is implemented and SelfHostedTraceEnabled() == FALSE, the trace
buffer pointers are always physical addresses.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES1 if all of the following are true:

— FEAT_TRBE_EXT is implemented.

— !SelfHostedTraceEnabled().

• Otherwise, access to this field is RW.

TM, bits [4:3]

Trigger mode.

0b00 Stop on trigger. Flush then stop collection and raise maintenance interrupt on Trigger
Event.

0b01 IRQ on trigger. Continue collection and raise maintenance interrupt on Trigger Event.

0b11 Ignore trigger. Continue collection and do not raise maintenance interrupt on Trigger
Event.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

FM, bits [2:1]

Trace buffer mode.

0b00 Fill mode. Stop collection and raise maintenance interrupt on current write pointer wrap.

0b01 Wrap mode. Continue collection and raise maintenance interrupt on current write
pointer wrap.

0b11 Circular Buffer mode. Continue collection and do not raise maintenance interrupt on
current write pointer wrap.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Trace Buffer Unit enable. Controls whether the Trace Buffer Unit is enabled when
SelfHostedTraceEnabled() == TRUE.

0b0 Trace Buffer Unit is not enabled by this control.

0b1 If SelfHostedTraceEnabled() is TRUE, the Trace Buffer Unit is enabled.

If FEAT_TRBE_EXT is implemented and SelfHostedTraceEnabled() == FALSE, then
TRBLIMITR_EL1.XE controls whether the Trace Buffer Unit is enabled.

If FEAT_TRBE_EXT is not implemented, then the Trace Buffer Unit is disabled when
SelfHostedTraceEnabled() == FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8672
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
All output is discarded by the Trace Buffer Unit when the Trace Buffer Unit is disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRBLIMITR_EL1

The PE might ignore a write to TRBLIMITR_EL1 if all the following are true:

• TRBLIMITR_EL1.E == 0b1.

• Either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is using Self-hosted mode.

• The write does not set TRBLIMITR_EL1.E to 0.

If FEAT_TRBE_EXT is implemented, the PE might ignore a write to TRBLIMITR_EL1 if all the following are
true:

• TRBLIMITR_EL1.XE == 0b1.

• The Trace Buffer Unit is using External mode.

• The write does not set TRBLIMITR_EL1.XE to 0.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBLIMITR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRBLIMITR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBLIMITR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8673
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBLIMITR_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBLIMITR_EL1;

MSR TRBLIMITR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRBLIMITR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBLIMITR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBLIMITR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBLIMITR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8674
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.4 TRBMAR_EL1, Trace Buffer Memory Attribute Register

The TRBMAR_EL1 characteristics are:

Purpose

Controls Trace Buffer Unit accesses to memory.

If the trace buffer pointers specify virtual addresses, the address properties are defined by the
translation tables and this register is ignored.

Configurations

AArch64 System register TRBMAR_EL1 bits [63:0] are architecturally mapped to External register
TRBMAR_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBMAR_EL1 are UNDEFINED.

Attributes

TRBMAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

PAS, bits [11:10]

When FEAT_TRBE_EXT is implemented:

Physical address specifier. Defines the PAS attribute for memory addressed by the buffer in External
mode.

0b00 When Secure state is implemented:

Secure.

0b01 Non-secure.

0b10 When FEAT_RME is implemented:

Root.

0b11 When FEAT_RME is implemented:

Realm.

All other values are reserved.

If the Trace Buffer Unit is using external mode and either TRBMAR_EL1.PAS is set to a reserved
value, or the IMPLEMENTATION DEFINED authentication interface prohibits invasive debug of the
Security state corresponding to the physical address space selected by TRBMAR_EL1.PAS, then
when the Trace Buffer Unit receives trace data from the trace unit, it does not write the trace data to
memory and generates a trace buffer management event.

The interface prohibits invasive debug of the Security state if any of the following apply:

• ExternalInvasiveDebugEnabled () == FALSE.

• Secure state is implemented, ExternalSecureInvasiveDebugEnabled () == FALSE, and
TRBMAR_EL1.PAS is 0b00.

RES0

63 32

RES0

31 12

PAS

11 10

SH

9 8

Attr

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8675
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
• FEAT_RME is implemented, ExternalRootInvasiveDebugEnabled () == FALSE, and
TRBMAR_EL1.PAS is 0b10.

• FEAT_RME is implemented, ExternalRealmInvasiveDebugEnabled () == FALSE, and
TRBMAR_EL1.PAS is 0b11.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bits [9:8]

Trace buffer shareability domain. Defines the shareability domain for Normal memory used by the
trace buffer.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when TRBMAR_EL1.Attr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On a Cold reset, when FEAT_TRBE_EXT is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_TRBE_EXT is not implemented, this field resets to an
architecturally UNKNOWN value.

Attr, bits [7:0]

When TRBMAR_EL1.Attr == 0bxxxx0000:

Trace buffer memory type and attributes. Defines the memory type and, for Normal memory, the
cacheability attributes, for memory addressed by the trace buffer.

0x00 Device-nGnRnE memory.

0x40 When FEAT_XS is implemented:

Normal memory, Inner Non-cacheable, Outer Non-cacheable with the XS attribute set
to 0.

0xA0 When FEAT_XS is implemented:

Normal memory, Inner Write-through Cacheable, Outer Write-through Cacheable,
Non-transient, Read-Allocate with the XS attribute set to 0.

0xF0 When FEAT_MTE2 is implemented:

Tagged Normal memory, Outer Write-Back Non-transient, Read-allocate
Write-allocate.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, when FEAT_TRBE_EXT is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_TRBE_EXT is not implemented, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8676
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
When TRBMAR_EL1.Attr == 0b0000xxxx and TRBMAR_EL1.Attr != 0b00000000:

Trace buffer memory attributes. Defines the Device memory attributes for memory addressed by the
trace buffer.

0x04 Device-nGnRE memory.

0x08 Device-nGRE memory.

0x0C Device-GRE memory.

0x01 When FEAT_XS is implemented:

Device-nGnRnE memory with the XS attribute set to 0.

0x05 When FEAT_XS is implemented:

Device-nGnRE memory with the XS attribute set to 0.

0x09 When FEAT_XS is implemented:

Device-nGRE memory with the XS attribute set to 0.

0x0D When FEAT_XS is implemented:

Device-GRE memory with the XS attribute set to 0.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, when FEAT_TRBE_EXT is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_TRBE_EXT is not implemented, this field resets to an
architecturally UNKNOWN value.

When TRBMAR_EL1.Attr != 0bxxxx0000 and TRBMAR_EL1.Attr != 0b0000xxxx:

Trace buffer memory type and attributes. Defines the memory type and, for Normal memory, the
Outer and Inner cacheability attributes, for memory addressed by the trace buffer.

0b0001xxxx Normal memory, Outer Write-Through Transient, Write-allocate.

0b0010xxxx Normal memory, Outer Write-Through Transient, Read-allocate.

0b0011xxxx Normal memory, Outer Write-Through Transient, Read-allocate Write-allocate.

0b0100xxxx Normal memory, Outer Non-cacheable.

0b0101xxxx Normal memory, Outer Write-Back Transient, Write-allocate.

0b0110xxxx Normal memory, Outer Write-Back Transient, Read-allocate.

0b0111xxxx Normal memory, Outer Write-Back Transient, Read-allocate Write-allocate.

0b1000xxxx Normal memory, Outer Write-Through Non-transient, No allocate.

0b1001xxxx Normal memory, Outer Write-Through Non-transient, Write-allocate.

0b1010xxxx Normal memory, Outer Write-Through Non-transient, Read-allocate.

0b1011xxxx Normal memory, Outer Write-Through Non-transient, Read-allocate Write-allocate.

0b1100xxxx Normal memory, Outer Write-Back Non-transient, No allocate.

0b1101xxxx Normal memory, Outer Write-Back Non-transient, Write-allocate.

0b1110xxxx Normal memory, Outer Write-Back Non-transient, Read-allocate.

0b1111xxxx Normal memory, Outer Write-Back Non-transient, Read-allocate Write-allocate.

0bxxxx0001 Normal memory, Inner Write-Through Transient, Write-allocate.

0bxxxx0010 Normal memory, Inner Write-Through Transient, Read-allocate.

0bxxxx0011 Normal memory, Inner Write-Through Transient, Read-allocate Write-allocate.

0bxxxx0100 Normal memory, Inner Non-cacheable.

0bxxxx0101 Normal memory, Inner Write-Back Transient, Write-allocate.

0bxxxx0110 Normal memory, Inner Write-Back Transient, Read-allocate.

0bxxxx0111 Normal memory, Inner Write-Back Transient, Read-allocate Write-allocate.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8677
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0bxxxx1000 Normal memory, Inner Write-Through Non-transient, No allocate.

0bxxxx1001 Normal memory, Inner Write-Through Non-transient, Write-allocate.

0bxxxx1010 Normal memory, Inner Write-Through Non-transient, Read-allocate.

0bxxxx1011 Normal memory, Inner Write-Through Non-transient, Read-allocate Write-allocate.

0bxxxx1100 Normal memory, Inner Write-Back Non-transient, No allocate.

0bxxxx1101 Normal memory, Inner Write-Back Non-transient, Write-allocate.

0bxxxx1110 Normal memory, Inner Write-Back Non-transient, Read-allocate.

0bxxxx1111 Normal memory, Inner Write-Back Non-transient, Read-allocate Write-allocate.

The reset behavior of this field is:

• On a Cold reset, when FEAT_TRBE_EXT is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_TRBE_EXT is not implemented, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TRBMAR_EL1

The PE might ignore a write to TRBMAR_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBMAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRBMAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBMAR_EL1;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8678
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBMAR_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBMAR_EL1;

MSR TRBMAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRBMAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBMAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBMAR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8679
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBMAR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8680
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.5 TRBMPAM_EL1, Trace Buffer MPAM Configuration Register

The TRBMPAM_EL1 characteristics are:

Purpose

Defines the PARTID, PMG, and MPAM_SP values used by the trace buffer unit in external mode.

Configurations

AArch64 System register TRBMPAM_EL1 bits [63:0] are architecturally mapped to External
register TRBMPAM_EL1[63:0].

This register is present only when FEAT_TRBE_MPAM is implemented. Otherwise, direct accesses
to TRBMPAM_EL1 are UNDEFINED.

Attributes

TRBMPAM_EL1 is a 64-bit register.

Field descriptions

Bits [63:27]

Reserved, RES0.

EN, bit [26]

Enable. Enables use of non-default MPAM values.

0b0 Use default MPAM values.

0b1 Use TRBMPAM_EL1.{PARTID, PMG, MPAM_SP}.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

MPAM_SP, bits [25:24]

Partition Identifier space. Selects the PARTID space.

0b00 When Secure state is implemented:

PARTID is in the Secure PARTID space.

0b01 PARTID is in the Non-secure PARTID space.

0b10 When FEAT_RME is implemented:

PARTID is in the Root PARTID space.

0b11 When FEAT_RME is implemented:

PARTID is in the Realm PARTID space.

If the Trace Buffer Unit is using external mode and either TRBMPAM_EL1.MPAM_SP is set to
reserved value, or the IMPLEMENTATION DEFINED authentication interface prohibits invasive debug
of the Security state corresponding to the Partition Identifier space selected by
TRBMPAM_EL1.MPAM_SP, then when the Trace Buffer Unit receives trace data from the trace
unit, it does not write the trace data to memory and generates a trace buffer management event.

RES0

63 32

RES0

31 27

EN

26 25 24

PMG

23 16

PARTID

15 0

MPAM_SP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8681
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The interface prohibits invasive debug of the Security state if any of the following apply:

• ExternalInvasiveDebugEnabled () == FALSE.

• Secure state is implemented, ExternalSecureInvasiveDebugEnabled () == FALSE and
TRBMPAM_EL1.MPAM_SP is 0b00.

• FEAT_RME is implemented, ExternalRootInvasiveDebugEnabled () == FALSE, and
TRBMPAM_EL1.MPAM_SP is 0b10.

• FEAT_RME is implemented, ExternalRealmInvasiveDebugEnabled () == FALSE, and
TRBMPAM_EL1.MPAM_SP is 0b11.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PMG, bits [23:16]

Performance Monitoring Group. Selects the PMG.

Only sufficient low-order bits are required to represent the TRBDEVID1.PMG_MAX.
Higher-order bits are RES0.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition Identifier. Selects the PARTID.

Only sufficient low-order bits are required to represent the TRBDEVID1.PARTID_MAX.
Higher-order bits are RES0.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing TRBMPAM_EL1

The PE might ignore a write to TRBMPAM_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBMPAM_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnTB2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' ||
MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=
SCR_EL3.NSE)) then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8682
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nTRBMPAM_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnTB2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBMPAM_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnTB2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnTB2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBMPAM_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBMPAM_EL1;

MSR TRBMPAM_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnTB2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' ||
MDCR_EL3.NSTB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE !=

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8683
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nTRBMPAM_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnTB2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBMPAM_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnTB2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnTB2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBMPAM_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBMPAM_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8684
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.6 TRBPTR_EL1, Trace Buffer Write Pointer Register

The TRBPTR_EL1 characteristics are:

Purpose

Defines the current write pointer for the trace buffer.

Configurations

AArch64 System register TRBPTR_EL1 bits [63:0] are architecturally mapped to External register
TRBPTR_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBPTR_EL1 are UNDEFINED.

Attributes

TRBPTR_EL1 is a 64-bit register.

Field descriptions

PTR, bits [63:0]

Trace Buffer current write pointer address.

Defines the virtual address of the next entry to be written to the trace buffer.

If PMBIDR_EL1.Align is not zero, then it is IMPLEMENTATION DEFINED whether bits [M-1:0] are
RES0 or read/write, where M is an integer between 1 and PMBIDR_EL1.Align inclusive.

The architecture places restrictions on the values that software can write to the pointer. For more
information, see Restrictions on programming the Trace Buffer Unit.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing TRBPTR_EL1

The PE might ignore a write to TRBPTR_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBPTR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

PTR

63 32

PTR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8685
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRBPTR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBPTR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBPTR_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBPTR_EL1;

MSR TRBPTR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRBPTR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8686
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBPTR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBPTR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBPTR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8687
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.7 TRBSR_EL1, Trace Buffer Status/syndrome Register

The TRBSR_EL1 characteristics are:

Purpose

Provides syndrome information to software for a trace buffer management event.

Configurations

AArch64 System register TRBSR_EL1 bits [63:0] are architecturally mapped to External register
TRBSR_EL1[63:0].

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBSR_EL1 are UNDEFINED.

Attributes

TRBSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

MSS2, bits [55:32]

Management event Specific Syndrome 2. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EC, bits [31:26]

Event class. Top-level description of the cause of the trace buffer management event.

0b000000 Other trace buffer management event. All trace buffer management events other than
those described by the other defined Event class codes.

0b011110 When FEAT_RME is implemented:

Granule Protection Check fault on write to trace buffer, other than Granule Protection
Fault (GPF). That is, any of the following:

• Granule Protection Table (GPT) address size fault.

• GPT walk fault.

• Synchronous External abort on GPT fetch.

A GPF on translation table walk or update is reported as either a Stage 1 or Stage 2 Data
Abort, as appropriate. Other GPFs are reported as a Stage 1 Data Abort.

0b011111 Buffer management event for an IMPLEMENTATION DEFINED reason.

0b100100 Stage 1 Data Abort on write to trace buffer.

0b100101 Stage 2 Data Abort on write to trace buffer.

All other values are reserved.

RES0

63 56

MSS2

55 32

EC

31 26

RES0

25 24 23 22 21 20 19

EA

18

S

17 16

MSS

15 0

DAT
IRQ

TRG

RES0
RES0

WRAP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8688
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [25:24]

Reserved, RES0.

DAT, bit [23]

When FEAT_TRBE_EXT is implemented:

Data. Indicates when the Trace Buffer Unit has trace data that has not yet been written to memory.

0b0 Internal buffers are empty. All Trace operations Accepted by the Trace Buffer Unit will
Complete in finite time.

0b1 Internal buffers are not empty.

When TRBSR_EL1.{DAT, S} is {0, 1}, meaning Collection is stopped and the Trace Buffer Unit
internal buffers are empty, then all trace data has been written to memory. An additional Data
Synchronization Barrier may be required to ensure that the writes are Complete. When
TRBSR_EL1.DAT is 0 and Collection is not stopped, there may still be trace data held by the trace
unit that the Trace Buffer Unit has not Accepted.

That is, TRBSR_EL1.DAT reads as 1 when the Trace Buffer Unit has Accepted trace data from the
trace unit, but has not yet written it to memory.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IRQ, bit [22]

Maintenance interrupt status.

0b0 Maintenance interrupt is not asserted.

0b1 Maintenance interrupt is asserted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

TRG, bit [21]

Triggered.

0b0 No Detected Trigger has been observed since this field was last cleared to zero.

0b1 A Detected Trigger has been observed since this field was last cleared to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WRAP, bit [20]

Wrapped.

0b0 The current write pointer has not wrapped since this field was last cleared to zero.

0b1 The current write pointer has wrapped since this field was last cleared to zero.

For each byte of trace the Trace Buffer Unit Accepts and writes to the trace buffer at the address in
the current write pointer, if the current write pointer is equal to the Limit pointer minus one, the
current write pointer is wrapped by setting it to the Base pointer, and this field is set to 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8689
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EA, bit [18]

From Armv9.3:

Reserved, RES0.

When the PE sets this bit as the result of an External abort:

External Abort.

0b0 An External abort has not been asserted.

0b1 An External abort has been asserted and detected by the Trace Buffer Unit.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

S, bit [17]

Stopped.

0b0 Collection has not been stopped.

0b1 Collection is stopped.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [16]

Reserved, RES0.

MSS, bits [15:0]

Management Event Specific Syndrome. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MSS2 encoding for other trace buffer management events

Bits [23:0]

Reserved, RES0.

MSS2 encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [23:0]

IMPLEMENTATION DEFINED.

RES0

23 0

IMPLEMENTATION DEFINED

23 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8690
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSS2 encoding for stage 1 or stage 2 Data Aborts on write to trace buffer

Bits [23:9]

Reserved, RES0.

TopLevel, bit [8]

When FEAT_THE is implemented:

TopLevel. Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [7]

When FEAT_THE is implemented, TRBSR_EL1.EC == 0b100101 and GetTRBSR_EL1_FSC() ==
0b0011xx:

AssuredOnly flag. If a memory access generates a stage 2 Data Abort, then this field holds
information about the fault.

0b0 Data Abort is not due to AssuredOnly.

0b1 Data Abort is due to AssuredOnly.

Otherwise:

Reserved, RES0.

Overlay, bit [6]

When (FEAT_S1POE is implemented or FEAT_S2POE is implemented) and
GetTRBSR_EL1_FSC() == 0b0011xx:

Overlay flag. If a memory access generates a Data Abort for a Permission fault, then this field holds
information about the fault.

0b0 Data Abort is not due to Overlay Permissions.

0b1 Data Abort is due to Overlay Permissions.

Otherwise:

Reserved, RES0.

DirtyBit, bit [5]

When (FEAT_S1PIE is implemented or FEAT_S2PIE is implemented) and GetTRBSR_EL1_FSC()
== 0b0011xx:

DirtyBit flag. If a write access to memory generates a Data Abort for a Permission fault using
Indirect Permission, this field holds information about the fault.

0b0 Permission Fault is not due to dirty state.

0b1 Permission Fault is due to dirty state.

Otherwise:

Reserved, RES0.

RES0

23 9 8 7 6 5

RES0

4 0

TopLevel
AssuredOnly

DirtyBit
Overlay
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8691
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Bits [4:0]

Reserved, RES0.

MSS encoding for other trace buffer management events

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Trace buffer status code.

0b000000 Collection not stopped, or access not allowed.

0b000001 Trace buffer filled. Collection stopped because the current write pointer wrapped to the
base pointer and the trace buffer mode is Fill mode.

0b000010 Trigger Event. Collection stopped because of a Trigger Event. See TRBTRG_EL1 for
more information.

0b000011 When FEAT_TRBE_EXT is implemented:

Manual Stop. Collection stopped because of a Manual Stop event. See
TRBCR.ManStop for more information.

All other values are reserved.

MSS encoding for Buffer management event for IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

MSS encoding for Granule Protection Check fault

Bits [15:0]

Reserved, RES0.

MSS encoding for stage 1 or stage 2 Data Aborts on write to trace buffer

Bits [15:6]

Reserved, RES0.

RES0

15 6

BSC

5 0

IMPLEMENTATION DEFINED

15 0

RES0

15 0

RES0

15 6

FSC

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8692
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
FSC, bits [5:0]

Fault status code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 Asynchronous External abort.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b100001 Alignment fault.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8693
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

Accessing TRBSR_EL1

The PE might ignore a write to TRBSR_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRBSR_EL1 == '1' then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8694
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBSR_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBSR_EL1;

MSR TRBSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRBSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBSR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8695
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBSR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8696
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.8 TRBTRG_EL1, Trace Buffer Trigger Counter Register

The TRBTRG_EL1 characteristics are:

Purpose

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger
Event.

Configurations

AArch64 System register TRBTRG_EL1 bits [63:0] are architecturally mapped to External register
TRBTRG_EL1[63:0] when FEAT_TRBE_EXT is implemented.

This register is present only when FEAT_TRBE is implemented. Otherwise, direct accesses to
TRBTRG_EL1 are UNDEFINED.

Attributes

TRBTRG_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TRG, bits [31:0]

Trigger count.

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger
Event.

TRBTRG_EL1 decrements by 1 for every byte of trace written to the trace buffer when all of the
following are true:

• TRBTRG_EL1 is nonzero.

• TRBSR_EL1.TRG is 1.

The architecture places restrictions on the values that software can write to the counter.

Note

As a result of the restrictions an implementation might treat some of TRG[M:0] as RES0, where M
is defined by TRBIDR_EL1.Align.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing TRBTRG_EL1

The PE might ignore a write to TRBTRG_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

RES0

63 32

TRG

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8697
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRBTRG_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRBTRG_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBTRG_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBTRG_EL1;
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRBTRG_EL1;

MSR TRBTRG_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b110

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8698
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRBTRG_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2TB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBTRG_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSTB[0] == '0' || MDCR_EL3.NSTB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSTBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBTRG_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0'
&& HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRBTRG_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8699
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.9 TRCACATR<n>, Trace Address Comparator Access Type Register <n>, n = 0 - 15

The TRCACATR<n> characteristics are:

Purpose

Defines the type of access for the corresponding TRCACVR<n> Register. This register configures
the context type, Exception levels, alignment, masking that is applied by the Address Comparator,
and how the Address Comparator behaves when it is one half of an Address Range Comparator.

Configurations

AArch64 System register TRCACATR<n> bits [63:0] are architecturally mapped to External
register TRCACATR<n>[63:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMACPAIRS) * 2 > n. Otherwise, direct
accesses to TRCACATR<n> are UNDEFINED.

Attributes

TRCACATR<n> is a 64-bit register.

Field descriptions

Bits [63:19]

Reserved, RES0.

EXLEVEL_RL_EL2, bit [18]

When FEAT_RME is implemented:

Realm EL2 address comparison control. Controls whether a comparison can occur at EL2 in Realm
state.

0b0 When TRCACATR<n>.EXLEVEL_NS_EL2 is 0 the Address Comparator performs
comparisons in Realm EL2.

When TRCACATR<n>.EXLEVEL_NS_EL2 is 1 the Address Comparator does not
perform comparisons in Realm EL2.

0b1 When TRCACATR<n>.EXLEVEL_NS_EL2 is 0 the Address Comparator does not
perform comparisons in Realm EL2.

When TRCACATR<n>.EXLEVEL_NS_EL2 is 1 the Address Comparator performs
comparisons in Realm EL2.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 3 2

RES0

1 0

EXLEVEL_RL_EL2
EXLEVEL_RL_EL1

EXLEVEL_RL_EL0
RES0

EXLEVEL_NS_EL2
EXLEVEL_NS_EL1

EXLEVEL_NS_EL0

CONTEXTTYPE
CONTEXT

RES0
EXLEVEL_S_EL0

EXLEVEL_S_EL1
EXLEVEL_S_EL2

EXLEVEL_S_EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8700
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EXLEVEL_RL_EL1, bit [17]

When FEAT_RME is implemented:

Realm EL1 address comparison control. Controls whether a comparison can occur at EL1 in Realm
state.

0b0 When TRCACATR<n>.EXLEVEL_NS_EL1 is 0 the Address Comparator performs
comparisons in Realm EL1.

When TRCACATR<n>.EXLEVEL_NS_EL1 is 1 the Address Comparator does not
perform comparisons in Realm EL1.

0b1 When TRCACATR<n>.EXLEVEL_NS_EL1 is 0 the Address Comparator does not
perform comparisons in Realm EL1.

When TRCACATR<n>.EXLEVEL_NS_EL1 is 1 the Address Comparator performs
comparisons in Realm EL1.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_RL_EL0, bit [16]

When FEAT_RME is implemented:

Realm EL0 address comparison control. Controls whether a comparison can occur at EL0 in Realm
state.

0b0 When TRCACATR<n>.EXLEVEL_NS_EL0 is 0 the Address Comparator performs
comparisons in Realm EL0.

When TRCACATR<n>.EXLEVEL_NS_EL0 is 1 the Address Comparator does not
perform comparisons in Realm EL0.

0b1 When TRCACATR<n>.EXLEVEL_NS_EL0 is 0 the Address Comparator does not
perform comparisons in Realm EL0.

When TRCACATR<n>.EXLEVEL_NS_EL0 is 1 the Address Comparator performs
comparisons in Realm EL0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [15]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [14]

When Non-secure EL2 is implemented:

Non-secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in
Non-secure state.

0b0 The Address Comparator performs comparisons in Non-secure EL2.

0b1 The Address Comparator does not perform comparisons in Non-secure EL2.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8701
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EXLEVEL_NS_EL1, bit [13]

When Non-secure EL1 is implemented:

Non-secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in
Non-secure state.

0b0 The Address Comparator performs comparisons in Non-secure EL1.

0b1 The Address Comparator does not perform comparisons in Non-secure EL1.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [12]

When Non-secure EL0 is implemented:

Non-secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in
Non-secure state.

0b0 The Address Comparator performs comparisons in Non-secure EL0.

0b1 The Address Comparator does not perform comparisons in Non-secure EL0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [11]

When EL3 is implemented:

EL3 address comparison control. Controls whether a comparison can occur at EL3.

0b0 The Address Comparator performs comparisons at EL3.

0b1 The Address Comparator does not perform comparisons at EL3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [10]

When Secure EL2 is implemented:

Secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in Secure
state.

0b0 The Address Comparator performs comparisons in Secure EL2.

0b1 The Address Comparator does not perform comparisons in Secure EL2.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [9]

When Secure EL1 is implemented:

Secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in Secure
state.

0b0 The Address Comparator performs comparisons in Secure EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8702
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0b1 The Address Comparator does not perform comparisons in Secure EL1.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [8]

When Secure EL0 is implemented:

Secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in Secure
state.

0b0 The Address Comparator performs comparisons in Secure EL0.

0b1 The Address Comparator does not perform comparisons in Secure EL0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

CONTEXT, bits [6:4]

When TRCIDR4.NUMCIDC != 0b0000 or TRCIDR4.NUMVMIDC != 0b0000:

Selects a Context Identifier Comparator or Virtual Context Identifier Comparator:

0b000 Comparator 0.

0b001 When UInt(TRCIDR4.NUMCIDC) > 1 or UInt(TRCIDR4.NUMVMIDC) > 1:

Comparator 1.

0b010 When UInt(TRCIDR4.NUMCIDC) > 2 or UInt(TRCIDR4.NUMVMIDC) > 2:

Comparator 2.

0b011 When UInt(TRCIDR4.NUMCIDC) > 3 or UInt(TRCIDR4.NUMVMIDC) > 3:

Comparator 3.

0b100 When UInt(TRCIDR4.NUMCIDC) > 4 or UInt(TRCIDR4.NUMVMIDC) > 4:

Comparator 4.

0b101 When UInt(TRCIDR4.NUMCIDC) > 5 or UInt(TRCIDR4.NUMVMIDC) > 5:

Comparator 5.

0b110 When UInt(TRCIDR4.NUMCIDC) > 6 or UInt(TRCIDR4.NUMVMIDC) > 6:

Comparator 6.

0b111 When UInt(TRCIDR4.NUMCIDC) > 7 or UInt(TRCIDR4.NUMVMIDC) > 7:

Comparator 7.

The width of this field is dependent on the maximum number of Context Identifier Comparators or
Virtual Context Identifier Comparators implemented. Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8703
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
CONTEXTTYPE, bits [3:2]

When TRCIDR4.NUMCIDC != 0b0000 or TRCIDR4.NUMVMIDC != 0b0000:

Controls whether the Address Comparator is dependent on a Context Identifier Comparator, a
Virtual Context Identifier Comparator, or both comparisons.

0b00 The Address Comparator is not dependent on the Context Identifier Comparators or
Virtual Context Identifier Comparators.

0b01 When TRCIDR4.NUMCIDC != 0b0000:

The Address Comparator is dependent on the Context Identifier Comparator that
TRCACATR<n>.CONTEXT specifies. The Address Comparator signals a match only
if both the Context Identifier Comparator and the address comparison match.

0b10 When TRCIDR4.NUMVMIDC != 0b0000:

The Address Comparator is dependent on the Virtual Context Identifier Comparator that
TRCACATR<n>.CONTEXT specifies. The Address Comparator signals a match only
if both the Virtual Context Identifier Comparator and the address comparison match.

0b11 When TRCIDR4.NUMCIDC != 0b0000 and TRCIDR4.NUMVMIDC != 0b0000:

The Address Comparator is dependent on the Context Identifier Comparator and Virtual
Context Identifier Comparator that TRCACATR<n>.CONTEXT specifies. The
Address Comparator signals a match only if the Context Identifier Comparator, the
Virtual Context Identifier Comparator, and address comparison all match.

If TRCIDR4.NUMCIDC == 0b0000, then bit [2] is RES0.

If TRCIDR4.NUMVMIDC == 0b0000, then bit [3] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [1:0]

Reserved, RES0.

Accessing TRCACATR<n>

Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 1.

• TRCRSCTLR<n>.GROUP == 0b0100 and TRCRSCTLR<n>.SAC[n] == 1.

• TRCRSCTLR<n>.GROUP == 0b0101 and TRCRSCTLR<n>.ARC[n/2] == 1.

• TRCVIIECTLR.EXCLUDE[n/2] == 1.

• TRCVIIECTLR.INCLUDE[n/2] == 1.

• TRCVISSCTLR.START[n] == 1.

• TRCVISSCTLR.STOP[n] == 1.

• TRCSSCCR<>.ARC[n/2] == 1.

• TRCSSCCR<>.SAC[n] == 1.

• TRCQCTLR.RANGE[n/2] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8704
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCACATR<m>; Where m = 0-15

integer m = UInt(op2<0>:CRm<3:1>);

if m >= NUM_TRACE_ADDRESS_COMPARATOR_PAIRS * 2 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCACATR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCACATR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCACATR[m];

op0 op1 CRn CRm op2

0b10 0b001 0b0010 m[2:0]:0b0 0b01:m[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8705
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCACATR<m>, <Xt>; Where m = 0-15

integer m = UInt(op2<0>:CRm<3:1>);

if m >= NUM_TRACE_ADDRESS_COMPARATOR_PAIRS * 2 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCACATR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCACATR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCACATR[m] = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0010 m[2:0]:0b0 0b01:m[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8706
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.10 TRCACVR<n>, Trace Address Comparator Value Register <n>, n = 0 - 15

The TRCACVR<n> characteristics are:

Purpose

Contains the address value.

Configurations

AArch64 System register TRCACVR<n> bits [63:0] are architecturally mapped to External register
TRCACVR<n>[63:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMACPAIRS) * 2 > n. Otherwise, direct
accesses to TRCACVR<n> are UNDEFINED.

Attributes

TRCACVR<n> is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Address Value.

The Address Comparators can support implementations that use multiple address widths. When the
trace unit compares the ADDRESS field with an address that has a width less than this field, then
the address must be zero-extended to the ADDRESS field width. The trace unit then compares all
implemented bits. For example, in a system that supports both 32-bit and 64-bit addresses, when the
PE is in AArch32 state the comparator must zero-extend the 32-bit address and compare against the
full 64 bits that are stored in TRCACVR<n>.ADDRESS. This requires that the trace analyzer
always programs all implemented bits of TRCACVR<n>.ADDRESS.

The result of writing a value other than all zeros or all ones to ADDRESS at bits[63:P] is an
UNKNOWN value, where P is defined as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

The result of writing a value of all zeros or all ones to ADDRESS at bits[63:P] is the written value,
and a read of the register returns the written value.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCACVR<n>

Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 1.

• TRCRSCTLR<n>.GROUP == 0b0100 and TRCRSCTLR<n>.SAC[n] == 1.

• TRCRSCTLR<n>.GROUP == 0b0101 and TRCRSCTLR<n>.ARC[n/2] == 1.

ADDRESS

63 32

ADDRESS

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8707
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
• TRCVIIECTLR.EXCLUDE[n/2] == 1.

• TRCVIIECTLR.INCLUDE[n/2] == 1.

• TRCVISSCTLR.START[n] == 1.

• TRCVISSCTLR.STOP[n] == 1.

• TRCSSCCR<>.ARC[n/2] == 1.

• TRCSSCCR<>.SAC[n] == 1.

• TRCQCTLR.RANGE[n/2] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCACVR<m>; Where m = 0-15

integer m = UInt(op2<0>:CRm<3:1>);

if m >= NUM_TRACE_ADDRESS_COMPARATOR_PAIRS * 2 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCACVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCACVR[m];

op0 op1 CRn CRm op2

0b10 0b001 0b0010 m[2:0]:0b0 0b00:m[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8708
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCACVR[m];

MSR TRCACVR<m>, <Xt>; Where m = 0-15

integer m = UInt(op2<0>:CRm<3:1>);

if m >= NUM_TRACE_ADDRESS_COMPARATOR_PAIRS * 2 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCACVR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCACVR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0010 m[2:0]:0b0 0b00:m[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8709
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 TRCACVR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8710
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.11 TRCAUTHSTATUS, Trace Authentication Status Register

The TRCAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

For additional information, see the CoreSight Architecture Specification.

Configurations

AArch64 System register TRCAUTHSTATUS bits [31:0] are architecturally mapped to External
register TRCAUTHSTATUS[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCAUTHSTATUS are
UNDEFINED.

Attributes

TRCAUTHSTATUS is a 64-bit register.

Field descriptions

Bits [63:28]

Reserved, RES0.

RTNID, bits [27:26]

Root non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RTNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RTID, bits [25:24]

Root invasive debug.

0b00 Not implemented.

Bits [23:16]

Reserved, RES0.

RLNID, bits [15:14]

Realm non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RLNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RLID, bits [13:12]

Realm invasive debug.

0b00 Not implemented.

RES0

63 32

RES0

31 28 27 26

RTID

25 24

RES0

23 16 15 14

RLID

13 12

HNID

11 10

HID

9 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

RTNID RLNID NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8711
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
HNID, bits [11:10]

Hyp Non-invasive Debug. Indicates whether a separate enable control for EL2 non-invasive debug
features is implemented and enabled.

0b00 Separate Hyp non-invasive debug enable not implemented, or EL2 non-invasive debug
features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

HID, bits [9:8]

Hyp Invasive Debug. Indicates whether a separate enable control for EL2 invasive debug features
is implemented and enabled.

0b00 Separate Hyp invasive debug enable not implemented, or EL2 invasive debug features
not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

SNID, bits [7:6]

Secure Non-invasive Debug. Indicates whether Secure non-invasive debug features are
implemented and enabled.

0b00 Secure non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

When Secure state is implemented, this field reads as 0b10 or 0b11 depending whether Secure
non-invasive debug is enabled.

When Secure state is not implemented, this field reads as 0b00.

SID, bits [5:4]

Secure Invasive Debug. Indicates whether Secure invasive debug features are implemented and
enabled.

0b00 Secure invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

NSNID, bits [3:2]

Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug features are
implemented and enabled.

0b00 Non-secure non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

When Non-secure state is implemented, this field reads as 0b11.

When Non-secure state is not implemented, this field reads as 0b00.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8712
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
NSID, bits [1:0]

Non-secure Invasive Debug. Indicates whether Non-secure invasive debug features are
implemented and enabled.

0b00 Non-secure invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Accessing TRCAUTHSTATUS

For implementations that support multiple access mechanisms, different access mechanisms can return different
values for reads of TRCAUTHSTATUS if the authentication signals have changed and that change has not yet been
synchronized by a Context synchronization event. This scenario can happen if, for example, the external debugger
view is implemented separately from the system instruction view to allow for separate power domains, and so
observes changes on the signals differently.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCAUTHSTATUS

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCAUTHSTATUS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCAUTHSTATUS;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b1110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8713
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 X[t, 64] = TRCAUTHSTATUS;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCAUTHSTATUS;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8714
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.12 TRCAUXCTLR, Trace Auxiliary Control Register

The TRCAUXCTLR characteristics are:

Purpose

The function of this register is IMPLEMENTATION DEFINED.

Configurations

AArch64 System register TRCAUXCTLR bits [31:0] are architecturally mapped to External
register TRCAUXCTLR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCAUXCTLR are UNDEFINED.

Attributes

TRCAUXCTLR is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have
IMPLEMENTATION DEFINED behavior.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Accessing TRCAUXCTLR

If this register is nonzero then it might cause the behavior of a trace unit to contradict this architecture specification.
See the documentation of the specific implementation for information about the IMPLEMENTATION DEFINED support
for this register.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCAUXCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then

RES0

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8715
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCAUXCTLR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCAUXCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCAUXCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCAUXCTLR;

MSR TRCAUXCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCAUXCTLR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8716
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCAUXCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCAUXCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCAUXCTLR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8717
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.13 TRCBBCTLR, Trace Branch Broadcast Control Register

The TRCBBCTLR characteristics are:

Purpose

Controls the regions in the memory map where branch broadcasting is active.

Configurations

AArch64 System register TRCBBCTLR bits [31:0] are architecturally mapped to External register
TRCBBCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented, TRCIDR0.TRCBB == 1 and UInt(TRCIDR4.NUMACPAIRS) > 0.
Otherwise, direct accesses to TRCBBCTLR are UNDEFINED.

Attributes

TRCBBCTLR is a 64-bit register.

Field descriptions

Bits [63:9]

Reserved, RES0.

MODE, bit [8]

Mode.

0b0 Exclude Mode.

Branch broadcasting is not active for instructions in the address ranges defined by
TRCBBCTLR.RANGE.

If TRCBBCTLR.RANGE == 0x00 then branch broadcasting is active for all
instructions.

0b1 Include Mode.

Branch broadcasting is active for instructions in the address ranges defined by
TRCBBCTLR.RANGE.

If TRCBBCTLR.RANGE == 0x00 then the behavior of the trace unit is CONSTRAINED
UNPREDICTABLE. That is, the trace unit might or might not consider any instructions to
be in a branch broadcasting region.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE[<m>], bit [m], for m = 7 to 0

Selects whether Address Range Comparator <m> is used with branch broadcasting.

0b0 The address range that Address Range Comparator <m> defines, is not selected.

0b1 The address range that Address Range Comparator <m> defines, is selected.

RES0

63 32

RES0

31 9 8 7 6 5 4 3 2 1 0

MODE
RANGE[7]

RANGE[6]
RANGE[5]

RANGE[0]
RANGE[1]

RANGE[2]
RANGE[3]

RANGE[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8718
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCBBCTLR

Must be programmed if TRCCONFIGR.BB == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCBBCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCBBCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCBBCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8719
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 X[t, 64] = TRCBBCTLR;

MSR TRCBBCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCBBCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCBBCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCBBCTLR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8720
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.14 TRCCCCTLR, Trace Cycle Count Control Register

The TRCCCCTLR characteristics are:

Purpose

Set the threshold value for cycle counting.

Configurations

AArch64 System register TRCCCCTLR bits [31:0] are architecturally mapped to External register
TRCCCCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR0.TRCCCI == 1. Otherwise, direct accesses to
TRCCCCTLR are UNDEFINED.

Attributes

TRCCCCTLR is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

THRESHOLD, bits [11:0]

Sets the threshold value for instruction trace cycle counting.

The minimum threshold value that can be programmed into THRESHOLD is given in
TRCIDR3.CCITMIN. If the THRESHOLD value is smaller than the value in TRCIDR3.CCITMIN
then the behavior is CONSTRAINED UNPREDICTABLE. That is, cycle counts might or might not be
included in the trace and the cycle count threshold is not known.

Writing a value of zero when TRCCONFIGR.CCI enables instruction trace cycle counting results
in CONSTRAINED UNPREDICTABLE behavior. That is, cycle counts might or might not be included in
the trace and the cycle count threshold is not known.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCCCCTLR

Must be programmed if TRCCONFIGR.CCI == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCCCTLR

RES0

63 32

RES0

31 12

THRESHOLD

11 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8721
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCCCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCCCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCCCTLR;

MSR TRCCCCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8722
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCCCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCCCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCCCTLR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8723
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.15 TRCCIDCCTLR0, Trace Context Identifier Comparator Control Register 0

The TRCCIDCCTLR0 characteristics are:

Purpose

Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 0 to 3.

Configurations

AArch64 System register TRCCIDCCTLR0 bits [31:0] are architecturally mapped to External
register TRCCIDCCTLR0[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented, UInt(TRCIDR4.NUMCIDC) > 0x0 and UInt(TRCIDR2.CIDSIZE) >
0. Otherwise, direct accesses to TRCCIDCCTLR0 are UNDEFINED.

Attributes

TRCCIDCCTLR0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

COMP3[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 3:

TRCCIDCVR3 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR3.
Each bit in this field corresponds to a byte in TRCCIDCVR3.

0b0 The trace unit includes TRCCIDCVR3[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR3[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP2[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 2:

TRCCIDCVR2 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR2.
Each bit in this field corresponds to a byte in TRCCIDCVR2.

0b0 The trace unit includes TRCCIDCVR2[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR2[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

COMP3[<m>]

31 24

COMP2[<m>]

23 16

COMP1[<m>]

15 8

COMP0[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8724
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP1[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 1:

TRCCIDCVR1 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR1.
Each bit in this field corresponds to a byte in TRCCIDCVR1.

0b0 The trace unit includes TRCCIDCVR1[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR1[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP0[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 0:

TRCCIDCVR0 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR0.
Each bit in this field corresponds to a byte in TRCCIDCVR0.

0b0 The trace unit includes TRCCIDCVR0[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR0[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCCIDCCTLR0

If software uses the TRCCIDCVR<n> registers, for n = 0 to 3, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCIDCCTLR0

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8725
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCCTLR0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCCTLR0;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCCTLR0;

MSR TRCCIDCCTLR0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8726
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCCTLR0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCCTLR0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCCTLR0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8727
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.16 TRCCIDCCTLR1, Trace Context Identifier Comparator Control Register 1

The TRCCIDCCTLR1 characteristics are:

Purpose

Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 4 to 7.

Configurations

AArch64 System register TRCCIDCCTLR1 bits [31:0] are architecturally mapped to External
register TRCCIDCCTLR1[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented, UInt(TRCIDR4.NUMCIDC) > 0x4 and UInt(TRCIDR2.CIDSIZE) >
0. Otherwise, direct accesses to TRCCIDCCTLR1 are UNDEFINED.

Attributes

TRCCIDCCTLR1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

COMP7[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 7:

TRCCIDCVR7 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR7.
Each bit in this field corresponds to a byte in TRCCIDCVR7.

0b0 The trace unit includes TRCCIDCVR7[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR7[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP6[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 6:

TRCCIDCVR6 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR6.
Each bit in this field corresponds to a byte in TRCCIDCVR6.

0b0 The trace unit includes TRCCIDCVR6[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR6[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

COMP7[<m>]

31 24

COMP6[<m>]

23 16

COMP5[<m>]

15 8

COMP4[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8728
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP5[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 5:

TRCCIDCVR5 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR5.
Each bit in this field corresponds to a byte in TRCCIDCVR5.

0b0 The trace unit includes TRCCIDCVR5[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR5[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP4[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 4:

TRCCIDCVR4 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR4.
Each bit in this field corresponds to a byte in TRCCIDCVR4.

0b0 The trace unit includes TRCCIDCVR4[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR4[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCCIDCCTLR1

If software uses the TRCCIDCVR<n> registers, for n = 4 to 7, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCIDCCTLR1

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8729
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCCTLR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCCTLR1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCCTLR1;

MSR TRCCIDCCTLR1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8730
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCCTLR1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCCTLR1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCCTLR1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8731
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.17 TRCCIDCVR<n>, Trace Context Identifier Comparator Value Registers <n>, n = 0 - 7

The TRCCIDCVR<n> characteristics are:

Purpose

Contains a Context identifier value.

Configurations

AArch64 System register TRCCIDCVR<n> bits [63:0] are architecturally mapped to External
register TRCCIDCVR<n>[63:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMCIDC) > n. Otherwise, direct accesses to
TRCCIDCVR<n> are UNDEFINED.

Attributes

TRCCIDCVR<n> is a 64-bit register.

Field descriptions

VALUE, bits [63:0]

Context identifier value. The width of this field is indicated by TRCIDR2.CIDSIZE.
Unimplemented bits are RES0. After a PE Reset, the trace unit assumes that the Context identifier is
zero until the PE updates the Context identifier.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCCIDCVR<n>

Must be programmed if any of the following are true:

• TRCRSCTLR<n>.GROUP == 0b0110 and TRCRSCTLR<n>.CID[n] == 1.

• TRCACATR<n>.CONTEXTTYPE == 0b01 or 0b11 and TRCACATR<n>.CONTEXT == n.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCIDCVR<m>; Where m = 0-7

integer m = UInt(CRm<3:1>);

if m >= NUM_TRACE_CONTEXT_IDENTIFIER_COMPARATORS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

VALUE

63 32

VALUE

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0011 m[2:0]:0b0 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8732
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCVR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCIDCVR[m];

MSR TRCCIDCVR<m>, <Xt>; Where m = 0-7

integer m = UInt(CRm<3:1>);

if m >= NUM_TRACE_CONTEXT_IDENTIFIER_COMPARATORS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

op0 op1 CRn CRm op2

0b10 0b001 0b0011 m[2:0]:0b0 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8733
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCVR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCVR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCIDCVR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8734
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.18 TRCCLAIMCLR, Trace Claim Tag Clear Register

The TRCCLAIMCLR characteristics are:

Purpose

In conjunction with TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared
to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

AArch64 System register TRCCLAIMCLR bits [31:0] are architecturally mapped to External
register TRCCLAIMCLR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCCLAIMCLR are UNDEFINED.

Attributes

TRCCLAIMCLR is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

CLR[<m>], bit [m], for m = 31 to 0

Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag
bit <m> to 0.

0b0 On a read: Claim Tag bit <m> is not set.

On a write: Ignored.

0b1 On a read: Claim Tag bit <m> is set.

On a write: Clear Claim tag bit <m> to 0.

The number of Claim Tag bits implemented is indicated in TRCCLAIMSET.

This bit reads-as-zero and ignores writes if m > the number of Claim Tag bits.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR[31]
CLR[30]

CLR[29]
CLR[28]

CLR[27]
CLR[26]

CLR[25]
CLR[24]

CLR[23]
CLR[22]

CLR[21]
CLR[20]

CLR[19]
CLR[18]

CLR[17]
CLR[16]

CLR[0]
CLR[1]

CLR[2]
CLR[3]

CLR[4]
CLR[5]

CLR[6]
CLR[7]

CLR[8]
CLR[9]

CLR[10]
CLR[11]

CLR[12]
CLR[13]

CLR[14]
CLR[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8735
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Access to this field is W1C.

Accessing TRCCLAIMCLR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCLAIMCLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCLAIMCLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCLAIMCLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCLAIMCLR;

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8736
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCCLAIMCLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCLAIMCLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCLAIMCLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCLAIMCLR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8737
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.19 TRCCLAIMSET, Trace Claim Tag Set Register

The TRCCLAIMSET characteristics are:

Purpose

In conjunction with TRCCLAIMCLR, provides Claim Tag bits that can be separately set and
cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

AArch64 System register TRCCLAIMSET bits [31:0] are architecturally mapped to External
register TRCCLAIMSET[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCCLAIMSET are UNDEFINED.

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. Arm recommends that
implementations support a minimum of four claim tag bits, that is, SET[3:0] reads as 0b1111.

Attributes

TRCCLAIMSET is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

SET[<m>], bit [m], for m = 31 to 0

Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag
bit <m> to 1.

0b0 On a read: Claim Tag bit <m> is not implemented.

On a write: Ignored.

0b1 On a read: Claim Tag bit <m> is implemented.

On a write: Set Claim Tag bit <m> to 1.

This bit reads-as-zero and ignores writes if m > the number of Claim Tag bits.

Access to this field is RAO/W1S.

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET[31]
SET[30]

SET[29]
SET[28]

SET[27]
SET[26]

SET[25]
SET[24]

SET[23]
SET[22]

SET[21]
SET[20]

SET[19]
SET[18]

SET[17]
SET[16]

SET[0]
SET[1]

SET[2]
SET[3]

SET[4]
SET[5]

SET[6]
SET[7]

SET[8]
SET[9]

SET[10]
SET[11]

SET[12]
SET[13]

SET[14]
SET[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8738
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing TRCCLAIMSET

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCLAIMSET

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCLAIMSET;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCLAIMSET;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCLAIMSET;

MSR TRCCLAIMSET, <Xt>

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b1000 0b110

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8739
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCLAIMSET = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCLAIMSET = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCLAIMSET = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8740
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.20 TRCCNTCTLR<n>, Trace Counter Control Register <n>, n = 0 - 3

The TRCCNTCTLR<n> characteristics are:

Purpose

Controls the operation of Counter <n>.

Configurations

AArch64 System register TRCCNTCTLR<n> bits [31:0] are architecturally mapped to External
register TRCCNTCTLR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR5.NUMCNTR) > n. Otherwise, direct accesses to
TRCCNTCTLR<n> are UNDEFINED.

Attributes

TRCCNTCTLR<n> is a 64-bit register.

Field descriptions

Bits [63:18]

Reserved, RES0.

CNTCHAIN, bit [17]

When n is odd:

For TRCCNTCTLR3 and TRCCNTCTLR1, this field controls whether the Counter decrements
when a reload event occurs for Counter <n-1>.

0b0 The Counter does not decrement when a reload event for Counter <n-1> occurs.

0b1 Counter <n> decrements when a reload event for Counter <n-1> occurs. This
concatenates Counter <n> and Counter <n-1>, to provide a larger count value.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLDSELF, bit [16]

Controls whether a reload event occurs for the Counter, when the Counter reaches zero.

0b0 Normal mode.

The Counter is in Normal mode.

0b1 Self-reload mode.

The Counter is in Self-reload mode.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 18 17 16 15

RES0

14 13 12 8 7

RES0

6 5 4 0

CNTCHAIN
RLDSELF

RLDEVENT_TYPE

CNTEVENT_SEL
CNTEVENT_TYPE

RLDEVENT_SEL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8741
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
RLDEVENT_TYPE, bit [15]

Selects an event, that when it occurs causes a reload event for Counter <n>

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCCNTCTLR<n>.RLDEVENT.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCCNTCTLR<n>.RLDEVENT.SEL[3:0] selects the Resource Selector pair, from
0-15, that has a Boolean function that is applied to it whose output is used to activate
the resource event. TRCCNTCTLR<n>.RLDEVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

RLDEVENT_SEL, bits [12:8]

Selects an event, that when it occurs causes a reload event for Counter <n>

Defines the selected Resource Selector or pair of Resource Selectors.
TRCCNTCTLR<n>.RLDEVENT.TYPE controls whether TRCCNTCTLR<n>.RLDEVENT.SEL
is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

CNTEVENT_TYPE, bit [7]

Selects an event, that when it occurs causes Counter <n> to decrement.

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCCNTCTLR<n>.CNTEVENT.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCCNTCTLR<n>.CNTEVENT.SEL[3:0] selects the Resource Selector pair, from
0-15, that has a Boolean function that is applied to it whose output is used to activate
the resource event. TRCCNTCTLR<n>.CNTEVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

CNTEVENT_SEL, bits [4:0]

Selects an event, that when it occurs causes Counter <n> to decrement.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCCNTCTLR<n>.CNTEVENT.TYPE controls whether TRCCNTCTLR<n>.CNTEVENT.SEL
is the index of a single Resource Selector, or the index of a pair of Resource Selectors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8742
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCCNTCTLR<n>

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.COUNTERS[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCNTCTLR<m>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTCTLR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b01:m[1:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8743
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 X[t, 64] = TRCCNTCTLR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTCTLR[m];

MSR TRCCNTCTLR<m>, <Xt>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTCTLR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTCTLR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b01:m[1:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8744
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 TRCCNTCTLR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8745
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.21 TRCCNTRLDVR<n>, Trace Counter Reload Value Register <n>, n = 0 - 3

The TRCCNTRLDVR<n> characteristics are:

Purpose

This sets or returns the reload count value for Counter <n>.

Configurations

AArch64 System register TRCCNTRLDVR<n> bits [31:0] are architecturally mapped to External
register TRCCNTRLDVR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR5.NUMCNTR) > n. Otherwise, direct accesses to
TRCCNTRLDVR<n> are UNDEFINED.

Attributes

TRCCNTRLDVR<n> is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the reload value for Counter <n>. When a reload event occurs for Counter <n> then the
trace unit copies the VALUE<n> field into Counter <n>.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCCNTRLDVR<n>

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.COUNTERS[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCNTRLDVR<m>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 16

VALUE

15 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b00:m[1:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8746
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTRLDVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTRLDVR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTRLDVR[m];

MSR TRCCNTRLDVR<m>, <Xt>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b00:m[1:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8747
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTRLDVR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTRLDVR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTRLDVR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8748
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.22 TRCCNTVR<n>, Trace Counter Value Register <n>, n = 0 - 3

The TRCCNTVR<n> characteristics are:

Purpose

This sets or returns the value of Counter <n>.

Configurations

AArch64 System register TRCCNTVR<n> bits [31:0] are architecturally mapped to External
register TRCCNTVR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR5.NUMCNTR) > n. Otherwise, direct accesses to
TRCCNTVR<n> are UNDEFINED.

Attributes

TRCCNTVR<n> is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the count value of Counter.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCCNTVR<n>

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.COUNTERS[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCNTVR<m>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;

RES0

63 32

RES0

31 16

VALUE

15 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b10:m[1:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8749
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCCNTVRn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTVR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCNTVR[m];

MSR TRCCNTVR<m>, <Xt>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b10:m[1:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8750
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
== '1') && HDFGWTR_EL2.TRCCNTVRn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTVR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTVR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCNTVR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8751
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.23 TRCCONFIGR, Trace Configuration Register

The TRCCONFIGR characteristics are:

Purpose

Controls the tracing options.

Configurations

AArch64 System register TRCCONFIGR bits [31:0] are architecturally mapped to External register
TRCCONFIGR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCCONFIGR are UNDEFINED.

Attributes

TRCCONFIGR is a 64-bit register.

Field descriptions

Bits [63:19]

Reserved, RES0.

ITO, bit [18]

When TRCIDR0.ITE == 1:

Instrumentation Trace Override.

0b0 Instrumentation Trace Override disabled.

0b1 Instrumentation Trace Override enabled.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [17:16]

Reserved, RES0.

VMIDOPT, bit [15]

When TRCIDR2.VMIDOPT == 0b01:

Virtual context identifier selection control.

0b0 VTTBR_EL2.VMID is used as the Virtual context identifier.

0b1 CONTEXTIDR_EL2.PROCID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b00:

Reserved, RES0.

RES0

63 32

RES0

31 19 18

RES0

17 16 15

QE

14 13

RS

12

TS

11

RES0

10 8 7 6 5 4

BB

3

RES0

2 1 0

ITO VMIDOPT VMID
CID

RES1
CCI

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8752
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Virtual context identifier selection control.

VTTBR_EL2.VMID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b10:

Reserved, RES1.

Virtual context identifier selection control.

CONTEXTIDR_EL2.PROCID is used as the Virtual context identifier.

Otherwise:

Reserved, RES0.

QE, bits [14:13]

When TRCIDR0.QSUPP == 0b01:

Q element generation control.

0b00 Q elements are disabled.

0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b10:

Q element generation control.

0b00 Q elements are disabled.

0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b11:

Q element generation control.

0b00 Q elements are disabled.

0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.

0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

Otherwise:

Reserved, RES0.

RS, bit [12]

When TRCIDR0.RETSTACK == 1:

Return stack control.

0b0 Return stack is disabled.

0b1 Return stack is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8753
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
TS, bit [11]

When TRCIDR0.TSSIZE != 0b00000:

Global timestamp tracing control.

0b0 Global timestamp tracing is disabled.

0b1 Global timestamp tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [10:8]

Reserved, RES0.

VMID, bit [7]

When TRCIDR2.VMIDSIZE != 0b00000:

Virtual context identifier tracing control.

0b0 Virtual context identifier tracing is disabled.

0b1 Virtual context identifier tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CID, bit [6]

When TRCIDR2.CIDSIZE != 0b00000:

Context identifier tracing control.

0b0 Context identifier tracing is disabled.

0b1 Context identifier tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

CCI, bit [4]

When TRCIDR0.TRCCCI == 1:

Cycle counting instruction tracing control.

0b0 Cycle counting instruction tracing is disabled.

0b1 Cycle counting instruction tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8754
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
BB, bit [3]

When TRCIDR0.TRCBB == 1:

Branch broadcasting control.

0b0 Branch broadcasting is disabled.

0b1 Branch broadcasting is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [2:1]

Reserved, RES0.

Bit [0]

Reserved, RES1.

Accessing TRCCONFIGR

Must always be programmed.

TRCCONFIGR.QE must be set to 0b00 if TRCCONFIGR.BB is not 0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCONFIGR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCONFIGR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8755
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCONFIGR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCCONFIGR;

MSR TRCCONFIGR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCONFIGR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCONFIGR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8756
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCCONFIGR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8757
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.24 TRCDEVARCH, Trace Device Architecture Register

The TRCDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

AArch64 System register TRCDEVARCH bits [31:0] are architecturally mapped to External
register TRCDEVARCH[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCDEVARCH are UNDEFINED.

Attributes

TRCDEVARCH is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

0b01000111011 JEP106 continuation code 0x4, ID code 0x3B.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

Access to this field is RO.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Device Architecture information not present.

0b1 Device Architecture information present.

This field reads as 1.

Access to this field is RO.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 ETEv1.0, FEAT_ETE.

0b0001 ETEv1.1, FEAT_ETEv1p1.

RES0

63 32

0 1 0 0 0 1 1 1 0 1 1

31 21 20

REVISION

19 16

0 1 0 1

15 12

1 0 1 0 0 0 0 1 0 0 1 1

11 0

ARCHITECT
PRESENT

ARCHPART
ARCHVER
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8758
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0b0010 ETEv1.2, FEAT_ETEv1p2.

0b0011 ETEv1.3, FEAT_ETEv1p3.

All other values are reserved.

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

0b0101 ETEv1.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0x5.

Access to this field is RO.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

0xA13 Arm PE trace architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA13.

Access to this field is RO.

Accessing TRCDEVARCH

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCDEVARCH

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCDEVARCH;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b1111 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8759
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCDEVARCH;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCDEVARCH;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8760
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.25 TRCDEVID, Trace Device Configuration Register

The TRCDEVID characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

AArch64 System register TRCDEVID bits [31:0] are architecturally mapped to External register
TRCDEVID[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCDEVID are UNDEFINED.

Attributes

TRCDEVID is a 64-bit register.

Field descriptions

Bits [63:0]

Reserved, RES0.

Accessing TRCDEVID

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCDEVID

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0111 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8761
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCDEVID;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCDEVID;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCDEVID;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8762
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.26 TRCEVENTCTL0R, Trace Event Control 0 Register

The TRCEVENTCTL0R characteristics are:

Purpose

Controls the generation of ETEEvents.

Configurations

AArch64 System register TRCEVENTCTL0R bits [31:0] are architecturally mapped to External
register TRCEVENTCTL0R[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR4.NUMRSPAIR != 0b0000. Otherwise, direct accesses
to TRCEVENTCTL0R are UNDEFINED.

Attributes

TRCEVENTCTL0R is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

EVENT3_TYPE, bit [31]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 3:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT3.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT3.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT3.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [30:29]

Reserved, RES0.

EVENT3_SEL, bits [28:24]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 3:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[3] == 1, then
Event element 3 is generated in the instruction trace element stream.

RES0

63 32

31

RES0

30 29

EVENT3_SEL

28 24 23

RES0

22 21

EVENT2_SEL

20 16 15

RES0

14 13

EVENT1_SEL

12 8 7

RES0

6 5

EVENT0_SEL

4 0

EVENT3_TYPE

EVENT2_TYPE

EVENT0_TYPE
EVENT1_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8763
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT3.TYPE controls whether TRCEVENTCTL0R.EVENT3.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT2_TYPE, bit [23]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 2:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT2.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT2.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT2.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:21]

Reserved, RES0.

EVENT2_SEL, bits [20:16]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 2:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[2] == 1, then
Event element 2 is generated in the instruction trace element stream.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT2.TYPE controls whether TRCEVENTCTL0R.EVENT2.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8764
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EVENT1_TYPE, bit [15]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 1:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT1.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT1.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT1.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [14:13]

Reserved, RES0.

EVENT1_SEL, bits [12:8]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 1:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[1] == 1, then
Event element 1 is generated in the instruction trace element stream.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT1.TYPE controls whether TRCEVENTCTL0R.EVENT1.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT0_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT0.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT0.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT0.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8765
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Bits [6:5]

Reserved, RES0.

EVENT0_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[0] == 1, then
Event element 0 is generated in the instruction trace element stream.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT0.TYPE controls whether TRCEVENTCTL0R.EVENT0.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TRCEVENTCTL0R

Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCEVENTCTL0R

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEVENTCTL0R;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8766
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEVENTCTL0R;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEVENTCTL0R;

MSR TRCEVENTCTL0R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEVENTCTL0R = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8767
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 TRCEVENTCTL0R = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEVENTCTL0R = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8768
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.27 TRCEVENTCTL1R, Trace Event Control 1 Register

The TRCEVENTCTL1R characteristics are:

Purpose

Controls the behavior of the ETEEvents that TRCEVENTCTL0R selects.

Configurations

AArch64 System register TRCEVENTCTL1R bits [31:0] are architecturally mapped to External
register TRCEVENTCTL1R[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCEVENTCTL1R are
UNDEFINED.

Attributes

TRCEVENTCTL1R is a 64-bit register.

Field descriptions

Bits [63:14]

Reserved, RES0.

OE, bit [13]

When TRCIDR5.OE == 1:

ETE Trace Output Enable control.

0b0 Trace output to any IMPLEMENTATION DEFINED trace output interface is disabled.

0b1 Trace output to any IMPLEMENTATION DEFINED trace output interface is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LPOVERRIDE, bit [12]

When TRCIDR5.LPOVERRIDE == 1:

Low-power Override Mode select.

0b0 Trace unit Low-power Override Mode is not enabled. That is, the trace unit is permitted
to enter low-power state.

0b1 Trace unit Low-power Override Mode is enabled. That is, entry to a low-power state
does not affect the trace unit resources or trace generation.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 14

OE

13 12 11

RES0

10 4 3 2 1 0

LPOVERRIDE ATB INSTEN[3]
INSTEN[2]

INSTEN[0]
INSTEN[1]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8769
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
ATB, bit [11]

When TRCIDR5.ATBTRIG == 1:

AMBA Trace Bus (ATB) trigger enable.

If a CoreSight ATB interface is implemented then when ETEEvent 0 occurs the trace unit sets:

• ATID == 0x7D.

• ATDATA to the value of TRCTRACEIDR.

If the width of ATDATA is greater than the width of TRCTRACEIDR.TRACEID then the trace unit
zeros the upper ATDATA bits.

If ETEEvent 0 is programmed to occur based on program execution, such as an Address
Comparator, the ATB trigger might not be inserted into the ATB stream at the same time as any trace
generated by that program execution is output by the trace unit. Typically, the generated trace might
be buffered in a trace unit which means that the ATB trigger would be output before the associated
trace is output.

If ETEEvent 0 is asserted multiple times in close succession, the trace unit is required to generate
an ATB trigger for the first assertion, but might ignore one or more of the subsequent assertions.
Arm recommends that the window in which ETEEvent 0 is ignored is limited only by the time taken
to output an ATB trigger.

0b0 ATB trigger is disabled.

0b1 ATB trigger is enabled.

Otherwise:

Reserved, RES0.

Bits [10:4]

Reserved, RES0.

INSTEN[<m>], bit [m], for m = 3 to 0

Event element control.

0b0 The trace unit does not generate an Event element <m>.

0b1 The trace unit generates an Event element <m> when ETEEvent <m> occurs.

Accessing this field has the following behavior:

• When TRCIDR4.NUMRSPAIR == 0b0000, access to this field is RES0.

• RES0 if all of the following are true:

— TRCIDR4.NUMRSPAIR != 0b0000.

— m > UInt(TRCIDR0.NUMEVENT).

• Otherwise, access to this field is RW.

Accessing TRCEVENTCTL1R

Must be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCEVENTCTL1R

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8770
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEVENTCTL1R;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEVENTCTL1R;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEVENTCTL1R;

MSR TRCEVENTCTL1R, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8771
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEVENTCTL1R = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEVENTCTL1R = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEVENTCTL1R = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8772
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.28 TRCEXTINSELR<n>, Trace External Input Select Register <n>, n = 0 - 3

The TRCEXTINSELR<n> characteristics are:

Purpose

Use this to set, or read, which External Inputs are resources to the trace unit.

The name TRCEXTINSELR is an alias of TRCEXTINSELR0.

Configurations

AArch64 System register TRCEXTINSELR<n> bits [31:0] are architecturally mapped to External
register TRCEXTINSELR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR5.NUMEXTINSEL) > n. Otherwise, direct
accesses to TRCEXTINSELR<n> are UNDEFINED.

Attributes

TRCEXTINSELR<n> is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

PMU event to select.

The event number as defined by the Arm ARM.

Software must program this field with a PMU event that is supported by the PE being programmed.

There are three ranges of PMU event numbers:

• PMU event numbers in the range 0x0000 to 0x003F are common architectural and
microarchitectural events.

• PMU event numbers in the range 0x0040 to 0x00BF are Arm recommended common
architectural and microarchitectural PMU events.

• PMU event numbers in the range 0x00C0 to 0x03FF are IMPLEMENTATION DEFINED PMU
events.

If evtCount is programmed to a PMU event that is reserved or not supported by the PE, the behavior
depends on the PMU event type:

• For the range 0x0000 to 0x003F, then the PMU event is not active, and the value returned by a
direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED PMU events, it is UNPREDICTABLE what PMU event, if any,
is counted, and the value returned by a direct or external read of the evtCount field is
UNKNOWN.

UNPREDICTABLE means the PMU event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include a PMU event from a set of common IMPLEMENTATION
DEFINED PMU events, then no PMU event is counted and the value read back on evtCount is the
value written.

RES0

63 32

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8773
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCEXTINSELR<n>

Must be programmed if any of the following is true: TRCRSCTLR<n>.GROUP == 0b0000 and
TRCRSCTLR<n>.EXTIN[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCEXTINSELR<m>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_EXTERNAL_INPUT_SELECTOR_RESOURCES then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEXTINSELR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEXTINSELR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b10:m[1:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8774
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCEXTINSELR[m];

MSR TRCEXTINSELR<m>, <Xt>; Where m = 0-3

integer m = UInt(CRm<1:0>);

if m >= NUM_TRACE_EXTERNAL_INPUT_SELECTOR_RESOURCES then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEXTINSELR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEXTINSELR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCEXTINSELR[m] = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b10:m[1:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8775
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.29 TRCIDR0, Trace ID Register 0

The TRCIDR0 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR0 bits [31:0] are architecturally mapped to External register
TRCIDR0[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR0 are UNDEFINED.

Attributes

TRCIDR0 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

COMMTRANS, bit [30]

Transaction Start element behavior.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Transaction Start elements are P0 elements.

0b1 Transaction Start elements are not P0 elements.

Access to this field is RO.

COMMOPT, bit [29]

Indicates the contents and encodings of Cycle count packets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Commit mode 0.

0b1 Commit mode 1.

The Commit mode defines the contents and encodings of Cycle Count packets, in particular how
Commit elements are indicated by these packets. See the descriptions of these packets for more
details.

Accessing this field has the following behavior:

• RAO/WI if all of the following are true:

— TRCIDR0.TRCCCI == 1.

RES0

63 32

31 30 29

TSSIZE

28 24 23 22

RES0

21 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0
COMMTRANS

COMMOPT
TSMARK

ITE
TRCEXDATA

QSUPP
QFILT
CONDTYPE

RES1
INSTP0

TRCDATA
TRCBB

TRCCOND
TRCCCI

RES0
RETSTACK

NUMEVENT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8776
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
— UInt(TRCIDR8.MAXSPEC) == 0x0.

• When TRCIDR0.TRCCCI == 0, access to this field is RAZ/WI.

• Otherwise, access to this field is RO.

TSSIZE, bits [28:24]

Indicates that the trace unit implements Global timestamping and the size of the timestamp value.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Global timestamping not implemented.

0b01000 Global timestamping implemented with a 64-bit timestamp value.

All other values are reserved.

This field reads as 0b01000.

Access to this field is RO.

TSMARK, bit [23]

When FEAT_ETEv1p1 is implemented:

Indicates whether Timestamp Marker elements are generated.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Timestamp Marker elements are not generated.

0b1 Timestamp Marker elements are generated.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ITE, bit [22]

When FEAT_ETEv1p3 is implemented:

Indicates whether Instrumentation Trace is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instrumentation Trace not implemented.

0b1 Instrumentation Trace implemented.

This field has the value 1 if FEAT_ITE is implemented.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [21:18]

Reserved, RES0.

TRCEXDATA, bit [17]

When TRCIDR0.TRCDATA != 0b00:

Indicates if the trace unit implements tracing of data transfers for exceptions and exception returns.
Data tracing is not implemented in ETE and this field is reserved for other trace architectures.
Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Tracing of data transfers for exceptions and exception returns not implemented.

0b1 Tracing of data transfers for exceptions and exception returns implemented.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8777
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
QSUPP, bits [16:15]

Indicates that the trace unit implements Q element support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Q element support is not implemented.

0b01 Q element support is implemented, and only supports Q elements with instruction
counts.

0b10 Q element support is implemented, and only supports Q elements without instruction
counts.

0b11 Q element support is implemented, and supports:

• Q elements with instruction counts.

• Q elements without instruction counts.

Access to this field is RO.

QFILT, bit [14]

Indicates if the trace unit implements Q element filtering.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Q element filtering is not implemented.

0b1 Q element filtering is implemented.

If TRCIDR0.QSUPP == 0b00 then this field is 0.

Access to this field is RO.

CONDTYPE, bits [13:12]

When TRCIDR0.TRCCOND == 1:

Indicates how conditional instructions are traced. Conditional instruction tracing is not implemented
in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Conditional instructions are traced with an indication of whether they pass or fail their
condition code check.

0b01 Conditional instructions are traced with an indication of the APSR condition flags.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

NUMEVENT, bits [11:10]

When TRCIDR4.NUMRSPAIR == 0b0000:

Indicates the number of ETEEvents implemented.

0b00 The trace unit supports 0 ETEEvents.

All other values are reserved.

Access to this field is RO.

When TRCIDR4.NUMRSPAIR != 0b0000:

Indicates the number of ETEEvents implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 The trace unit supports 1 ETEEvent.

0b01 The trace unit supports 2 ETEEvents.

0b10 The trace unit supports 3 ETEEvents.

0b11 The trace unit supports 4 ETEEvents.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8778
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Access to this field is RO.

Otherwise:

Reserved, RES0.

RETSTACK, bit [9]

Indicates if the trace unit supports the return stack.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Return stack not implemented.

0b1 Return stack implemented.

Access to this field is RO.

Bit [8]

Reserved, RES0.

TRCCCI, bit [7]

Indicates if the trace unit implements cycle counting.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Cycle counting not implemented.

0b1 Cycle counting implemented.

This field reads as 1.

Access to this field is RO.

TRCCOND, bit [6]

Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing
is not implemented in ETE and this field is reserved for other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Conditional instruction tracing not implemented.

0b1 Conditional instruction tracing implemented.

This field reads as 0.

Access to this field is RO.

TRCBB, bit [5]

Indicates if the trace unit implements branch broadcasting.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Branch broadcasting not implemented.

0b1 Branch broadcasting implemented.

This field reads as 1.

Access to this field is RO.

TRCDATA, bits [4:3]

Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this
field is reserved for other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Data tracing not implemented.

0b11 Data tracing implemented.

All other values are reserved.

This field reads as 0b00.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8779
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
INSTP0, bits [2:1]

Indicates if load and store instructions are P0 instructions. Load and store instructions as P0
instructions is not implemented in ETE and this field is reserved for other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Load and store instructions are not P0 instructions.

0b11 Load and store instructions are P0 instructions.

All other values are reserved.

When FEAT_ETE is implemented, the only permitted value is 0b00.

Access to this field is RO.

Bit [0]

Reserved, RES1.

Accessing TRCIDR0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR0

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR0;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8780
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8781
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.30 TRCIDR1, Trace ID Register 1

The TRCIDR1 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR1 bits [31:0] are architecturally mapped to External register
TRCIDR1[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR1 are UNDEFINED.

Attributes

TRCIDR1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

DESIGNER, bits [31:24]

Indicates which company designed the trace unit. The permitted values of this field are the same as
MIDR_EL1.Implementer.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [23:16]

Reserved, RES0.

Bits [15:12]

Reserved, RES1.

TRCARCHMAJ, bits [11:8]

Major architecture version.

0b1111 If both TRCIDR1.TRCARCHMAJ and TRCIDR1.TRCARCHMIN == 0xF then refer to
TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

Access to this field is RO.

TRCARCHMIN, bits [7:4]

Minor architecture version.

0b1111 If both TRCIDR1.TRCARCHMAJ and TRCIDR1.TRCARCHMIN == 0xF then refer to
TRCDEVARCH.

All other values are reserved.

RES0

63 32

DESIGNER

31 24

RES0

23 16

RES1

15 12

1 1 1 1

11 8

1 1 1 1

7 4

REVISION

3 0

TRCARCHMAJ TRCARCHMIN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8782
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
This field reads as 0b1111.

Access to this field is RO.

REVISION, bits [3:0]

Implementation revision.

Returns an IMPLEMENTATION DEFINED value that identifies the revision of the trace unit.

Arm deprecates any use of this field and recommends that implementations set this field to zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing TRCIDR1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8783
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8784
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.31 TRCIDR10, Trace ID Register 10

The TRCIDR10 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR10 bits [31:0] are architecturally mapped to External register
TRCIDR10[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR10 are UNDEFINED.

Attributes

TRCIDR10 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NUMP1KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P1 right-hand keys. Data tracing is not implemented in ETE and this field
is reserved for other trace architectures. Allocated in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing TRCIDR10

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR10

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);

RES0

63 32

NUMP1KEY

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8785
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR10;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR10;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR10;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8786
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.32 TRCIDR11, Trace ID Register 11

The TRCIDR11 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR11 bits [31:0] are architecturally mapped to External register
TRCIDR11[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR11 are UNDEFINED.

Attributes

TRCIDR11 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NUMP1SPC, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of special P1 right-hand keys. Data tracing is not implemented in ETE and this
field is reserved for other trace architectures. Allocated in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing TRCIDR11

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR11

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);

RES0

63 32

NUMP1SPC

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8787
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR11;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR11;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR11;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8788
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.33 TRCIDR12, Trace ID Register 12

The TRCIDR12 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR12 bits [31:0] are architecturally mapped to External register
TRCIDR12[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR12 are UNDEFINED.

Attributes

TRCIDR12 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NUMCONDKEY, bits [31:0]

When TRCIDR0.TRCCOND == 1:

Indicates the number of conditional instruction right-hand keys. Conditional instruction tracing is
not implemented in ETE and this field is reserved for other trace architectures. Allocated in other
trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing TRCIDR12

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then

RES0

63 32

NUMCONDKEY

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8789
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR12;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR12;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR12;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8790
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.34 TRCIDR13, Trace ID Register 13

The TRCIDR13 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR13 bits [31:0] are architecturally mapped to External register
TRCIDR13[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR13 are UNDEFINED.

Attributes

TRCIDR13 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NUMCONDSPC, bits [31:0]

When TRCIDR0.TRCCOND == 1:

Indicates the number of special conditional instruction right-hand keys. Conditional instruction
tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated
in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing TRCIDR13

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR13

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then

RES0

63 32

NUMCONDSPC

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0101 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8791
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR13;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR13;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR13;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8792
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.35 TRCIDR2, Trace ID Register 2

The TRCIDR2 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR2 bits [31:0] are architecturally mapped to External register
TRCIDR2[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR2 are UNDEFINED.

Attributes

TRCIDR2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

WFXMODE, bit [31]

Indicates whether WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 WFI, WFIT, WFE, and WFET instructions are not classified as P0 instructions.

0b1 WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions.

Access to this field is RO.

VMIDOPT, bits [30:29]

Indicates the options for Virtual context identifier selection.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Virtual context identifier selection not supported. TRCCONFIGR.VMIDOPT is RES0.

0b01 Virtual context identifier selection supported. TRCCONFIGR.VMIDOPT is
implemented.

0b10 Virtual context identifier selection not supported. TRCCONFIGR.VMIDOPT is RES1.

All other values are reserved.

If TRCIDR2.VMIDSIZE == 0b00000 then this field is 0b00.

If TRCIDR2.VMIDSIZE != 0b00000 then this field is 0b10.

Access to this field is RO.

CCSIZE, bits [28:25]

When TRCIDR0.TRCCCI == 1:

Indicates the size of the cycle counter.

RES0

63 32

31 30 29

CCSIZE

28 25

DVSIZE

24 20

DASIZE

19 15

VMIDSIZE

14 10

CIDSIZE

9 5

IASIZE

4 0

WFXMODE VMIDOPT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8793
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The cycle counter is 12 bits in length.

0b0001 The cycle counter is 13 bits in length.

0b0010 The cycle counter is 14 bits in length.

0b0011 The cycle counter is 15 bits in length.

0b0100 The cycle counter is 16 bits in length.

0b0101 The cycle counter is 17 bits in length.

0b0110 The cycle counter is 18 bits in length.

0b0111 The cycle counter is 19 bits in length.

0b1000 The cycle counter is 20 bits in length.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DVSIZE, bits [24:20]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data value size in bytes. Data tracing is not implemented in ETE and this field is
reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Data value tracing not implemented.

0b00100 Data value tracing has a maximum of 32-bit data values.

0b01000 Data value tracing has a maximum of 64-bit data values.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DASIZE, bits [19:15]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data address size in bytes. Data tracing is not implemented in ETE and this field is
reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Data address tracing not implemented.

0b00100 Data address tracing has a maximum of 32-bit data addresses.

0b01000 Data address tracing has a maximum of 64-bit data addresses.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

VMIDSIZE, bits [14:10]

Indicates the trace unit Virtual context identifier size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Virtual context identifier tracing is not supported.

0b00001 8-bit Virtual context identifier size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8794
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0b00010 16-bit Virtual context identifier size.

0b00100 32-bit Virtual context identifier size.

All other values are reserved.

If the PE does not implement EL2 then this field is 0b00000.

If the PE implements EL2 then this field is 0b00100.

Access to this field is RO.

CIDSIZE, bits [9:5]

Indicates the Context identifier size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Context identifier tracing is not supported.

0b00100 32-bit Context identifier size.

All other values are reserved.

This field reads as 0b00100.

Access to this field is RO.

IASIZE, bits [4:0]

Virtual instruction address size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00100 Maximum of 32-bit instruction address size.

0b01000 Maximum of 64-bit instruction address size.

All other values are reserved.

This field reads as 0b01000.

Access to this field is RO.

Accessing TRCIDR2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8795
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR2;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8796
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.36 TRCIDR3, Trace ID Register 3

The TRCIDR3 characteristics are:

Purpose

Returns the base architecture of the trace unit.

Configurations

AArch64 System register TRCIDR3 bits [31:0] are architecturally mapped to External register
TRCIDR3[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR3 are UNDEFINED.

Attributes

TRCIDR3 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NOOVERFLOW, bit [31]

Indicates if overflow prevention is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Overflow prevention is not implemented.

0b1 Overflow prevention is implemented.

If TRCIDR3.STALLCTL == 0 then this field is 0.

Access to this field is RO.

NUMPROC, bits [13:12, 30:28]

Indicates the number of PEs available for tracing.

0b00000 The trace unit can trace one PE.

This field reads as 0b00000.

The NUMPROC field is split as follows:

• NUMPROC[2:0] is TRCIDR3[30:28].

• NUMPROC[4:3] is TRCIDR3[13:12].

Access to this field is RO.

RES0

63 32

31

0 0 0

30 28 27 26 25 24 23 22 21 20 19 18 17 16

RES0

15 14

0 0

13 12

CCITMIN

11 0

NOOVERFLOW

NUMPROC[2:0]
SYSSTALL

STALLCTL
SYNCPR

TRCERR
RES0

NUMPROC[4:3]
EXLEVEL_S_EL0

EXLEVEL_S_EL1
EXLEVEL_S_EL2

EXLEVEL_S_EL3
EXLEVEL_NS_EL0

EXLEVEL_NS_EL1
EXLEVEL_NS_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8797
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
SYSSTALL, bit [27]

Indicates if stalling of the PE is permitted.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Stalling of the PE is not permitted.

0b1 Stalling of the PE is permitted.

The value of this field might be dynamic and change based on system conditions.

If TRCIDR3.STALLCTL == 0 then this field is 0.

Access to this field is RO.

STALLCTL, bit [26]

Indicates if trace unit implements stalling of the PE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Stalling of the PE is not implemented.

0b1 Stalling of the PE is implemented.

Access to this field is RO.

SYNCPR, bit [25]

Indicates if an implementation has a fixed synchronization period.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 TRCSYNCPR is read/write so software can change the synchronization period.

0b1 TRCSYNCPR is read-only so the synchronization period is fixed.

This field reads as 0.

Access to this field is RO.

TRCERR, bit [24]

Indicates forced tracing of System Error exceptions is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Forced tracing of System Error exceptions is not implemented.

0b1 Forced tracing of System Error exceptions is implemented.

This field reads as 1.

Access to this field is RO.

Bit [23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

Indicates if Non-secure EL2 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Non-secure EL2 is not implemented.

0b1 Non-secure EL2 is implemented.

Access to this field is RO.

EXLEVEL_NS_EL1, bit [21]

Indicates if Non-secure EL1 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Non-secure EL1 is not implemented.

0b1 Non-secure EL1 is implemented.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8798
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EXLEVEL_NS_EL0, bit [20]

Indicates if Non-secure EL0 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Non-secure EL0 is not implemented.

0b1 Non-secure EL0 is implemented.

Access to this field is RO.

EXLEVEL_S_EL3, bit [19]

Indicates if EL3 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 EL3 is not implemented.

0b1 EL3 is implemented.

Access to this field is RO.

EXLEVEL_S_EL2, bit [18]

Indicates if Secure EL2 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Secure EL2 is not implemented.

0b1 Secure EL2 is implemented.

Access to this field is RO.

EXLEVEL_S_EL1, bit [17]

Indicates if Secure EL1 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Secure EL1 is not implemented.

0b1 Secure EL1 is implemented.

Access to this field is RO.

EXLEVEL_S_EL0, bit [16]

Indicates if Secure EL0 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Secure EL0 is not implemented.

0b1 Secure EL0 is implemented.

Access to this field is RO.

Bits [15:14]

Reserved, RES0.

CCITMIN, bits [11:0]

When TRCIDR0.TRCCCI == 0:

Indicates the minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

Reads as 0x000.

Access to this field is RO.

When TRCIDR0.TRCCCI == 1:

Indicates the minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x001..0xFFF The minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

The minimum value of this field is 0x001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8799
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing TRCIDR3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR3;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR3;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR3;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8800
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.37 TRCIDR4, Trace ID Register 4

The TRCIDR4 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR4 bits [31:0] are architecturally mapped to External register
TRCIDR4[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR4 are UNDEFINED.

Attributes

TRCIDR4 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NUMVMIDC, bits [31:28]

Indicates the number of Virtual Context Identifier Comparators that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Virtual Context Identifier Comparators in this implementation.

All other values are reserved.

Access to this field is RO.

NUMCIDC, bits [27:24]

Indicates the number of Context Identifier Comparators that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Context Identifier Comparators in this implementation.

All other values are reserved.

Access to this field is RO.

NUMSSCC, bits [23:20]

Indicates the number of Single-shot Comparator Controls that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Single-shot Comparator Controls in this implementation.

All other values are reserved.

Access to this field is RO.

NUMRSPAIR, bits [19:16]

Indicates the number of resource selector pairs that are available for tracing.

RES0

63 32

NUMVMIDC

31 28

NUMCIDC

27 24

NUMSSCC

23 20 19 16

NUMPC

15 12

RES0

11 9 8

NUMDVC

7 4 3 0

NUMRSPAIR SUPPDAC NUMACPAIRS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8801
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 This implementation has zero resource selector pairs.

0b0001..0b1111 The number of resource selector pairs in this implementation, minus one.

All other values are reserved.

Access to this field is RO.

NUMPC, bits [15:12]

Indicates the number of PE Comparator Inputs that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of PE Comparator Inputs in this implementation.

All other values are reserved.

Access to this field is RO.

Bits [11:9]

Reserved, RES0.

SUPPDAC, bit [8]

When TRCIDR4.NUMACPAIRS != 0b0000:

Indicates whether data address comparisons are implemented. Data address comparisons are not
implemented in ETE and are reserved for other trace architectures. Allocated in other trace
architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Data address comparisons not implemented.

0b1 Data address comparisons implemented.

This field reads as 0b0.

Access to this field is RO.

Otherwise:

Reserved, RES0.

NUMDVC, bits [7:4]

Indicates the number of data value comparators. Data value comparators are not implemented in
ETE and are reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of data value comparators in this implementation.

All other values are reserved.

This field reads as 0b0000.

Access to this field is RO.

NUMACPAIRS, bits [3:0]

Indicates the number of Address Comparator pairs that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Address Comparator pairs in this implementation.

All other values are reserved.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8802
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing TRCIDR4

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR4

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR4;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR4;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR4;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8803
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.38 TRCIDR5, Trace ID Register 5

The TRCIDR5 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR5 bits [31:0] are architecturally mapped to External register
TRCIDR5[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR5 are UNDEFINED.

Attributes

TRCIDR5 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

OE, bit [31]

Indicates support for the ETE Trace Output Enable.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 ETE Trace Output Enable is not implemented.

0b1 ETE Trace Output Enable is implemented.

When FEAT_ETEv1p3 is implemented and when any IMPLEMENTATION DEFINED trace output
interface is implemented, this field is 1.

Access to this field is RO.

NUMCNTR, bits [30:28]

Indicates the number of Counters that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000..0b100 The number of Counters implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

Access to this field is RO.

NUMSEQSTATE, bits [27:25]

Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000 The Sequencer is not implemented.

0b100 Four Sequencer states are implemented.

RES0

63 32

OE

31 30 28 27 25 24 23 22

TRACEIDSIZE

21 16

RES0

15 12 11 9

1 1 1 1 1 1 1 1 1

8 0

NUMCNTR
NUMSEQSTATE

ATBTRIG
LPOVERRIDE

RES0

NUMEXTINSEL NUMEXTIN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8804
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

Access to this field is RO.

Bit [24]

Reserved, RES0.

LPOVERRIDE, bit [23]

Indicates support for Low-power Override Mode.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The trace unit does not support Low-power Override Mode.

0b1 The trace unit supports Low-power Override Mode.

Access to this field is RO.

ATBTRIG, bit [22]

Indicates if the implementation can support ATB triggers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The implementation does not support ATB triggers.

0b1 The implementation supports ATB triggers.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0.

Access to this field is RO.

TRACEIDSIZE, bits [21:16]

Indicates the trace ID width.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000000 The external trace interface is not implemented.

0b000111 The implementation supports a 7-bit trace ID.

All other values are reserved.

Note

AMBA ATB requires a 7-bit trace ID width.

Access to this field is RO.

Bits [15:12]

Reserved, RES0.

NUMEXTINSEL, bits [11:9]

Indicates how many External Input Selector resources are implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000..0b100 The number of External Input Selector resources implemented.

All other values are reserved.

Access to this field is RO.

NUMEXTIN, bits [8:0]

Indicates how many External Inputs are implemented.

0b111111111 Unified PMU event selection.

All other values are reserved.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8805
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing TRCIDR5

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR5

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR5;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR5;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR5;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8806
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.39 TRCIDR6, Trace ID Register 6

The TRCIDR6 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR6 bits [31:0] are architecturally mapped to External register
TRCIDR6[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR6 are UNDEFINED.

Attributes

TRCIDR6 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

EXLEVEL_RL_EL2, bit [2]

Indicates if Realm EL2 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Realm EL2 is not implemented.

0b1 Realm EL2 is implemented.

Access to this field is RO.

EXLEVEL_RL_EL1, bit [1]

Indicates if Realm EL1 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Realm EL1 is not implemented.

0b1 Realm EL1 is implemented.

Access to this field is RO.

EXLEVEL_RL_EL0, bit [0]

Indicates if Realm EL0 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Realm EL0 is not implemented.

0b1 Realm EL0 is implemented.

Access to this field is RO.

RES0

63 32

RES0

31 3 2 1 0

EXLEVEL_RL_EL2 EXLEVEL_RL_EL0

EXLEVEL_RL_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8807
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing TRCIDR6

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR6

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR6;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR6;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR6;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8808
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.40 TRCIDR7, Trace ID Register 7

The TRCIDR7 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR7 bits [31:0] are architecturally mapped to External register
TRCIDR7[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR7 are UNDEFINED.

Attributes

TRCIDR7 is a 64-bit register.

Field descriptions

Bits [63:0]

Reserved, RES0.

Accessing TRCIDR7

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR7

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

RES0

63 32

RES0

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8809
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 X[t, 64] = TRCIDR7;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR7;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR7;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8810
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.41 TRCIDR8, Trace ID Register 8

The TRCIDR8 characteristics are:

Purpose

Returns the maximum speculation depth of the instruction trace element stream.

Configurations

AArch64 System register TRCIDR8 bits [31:0] are architecturally mapped to External register
TRCIDR8[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR8 are UNDEFINED.

Attributes

TRCIDR8 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

MAXSPEC, bits [31:0]

Indicates the maximum speculation depth of the instruction trace element stream. This is the
maximum number of P0 elements in the trace element stream that can be speculative at any time.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing TRCIDR8

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR8

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

RES0

63 32

MAXSPEC

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8811
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR8;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR8;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR8;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8812
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.42 TRCIDR9, Trace ID Register 9

The TRCIDR9 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

AArch64 System register TRCIDR9 bits [31:0] are architecturally mapped to External register
TRCIDR9[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIDR9 are UNDEFINED.

Attributes

TRCIDR9 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NUMP0KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P0 right-hand keys. Data tracing is not implemented in ETE and this field
is reserved for other trace architectures. Allocated in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing TRCIDR9

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR9

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);

RES0

63 32

NUMP0KEY

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8813
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCID == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR9;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR9;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIDR9;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8814
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.43 TRCIMSPEC0, Trace IMP DEF Register 0

The TRCIMSPEC0 characteristics are:

Purpose

TRCIMSPEC0 shows the presence of any IMPLEMENTATION DEFINED features, and provides an
interface to enable the features that are provided.

Configurations

AArch64 System register TRCIMSPEC0 bits [31:0] are architecturally mapped to External register
TRCIMSPEC0[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCIMSPEC0 are UNDEFINED.

Attributes

TRCIMSPEC0 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

EN, bits [7:4]

When TRCIMSPEC0.SUPPORT != 0b0000:

Enable. Controls whether the IMPLEMENTATION DEFINED features are enabled.

0b0000 The IMPLEMENTATION DEFINED features are not enabled. The trace unit must behave as
if the IMPLEMENTATION DEFINED features are not supported.

0b0001 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0010 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0011 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0100 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0101 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0110 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0111 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1000 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1001 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1010 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1011 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1100 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1101 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1110 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1111 The trace unit behavior is IMPLEMENTATION DEFINED.

RES0

63 32

RES0

31 8

EN

7 4

SUPPORT

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8815
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SUPPORT, bits [3:0]

Indicates whether the implementation supports IMPLEMENTATION DEFINED features.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No IMPLEMENTATION DEFINED features are supported.

0b0001 IMPLEMENTATION DEFINED features are supported.

0b0010 IMPLEMENTATION DEFINED features are supported.

0b0011 IMPLEMENTATION DEFINED features are supported.

0b0100 IMPLEMENTATION DEFINED features are supported.

0b0101 IMPLEMENTATION DEFINED features are supported.

0b0110 IMPLEMENTATION DEFINED features are supported.

0b0111 IMPLEMENTATION DEFINED features are supported.

0b1000 IMPLEMENTATION DEFINED features are supported.

0b1001 IMPLEMENTATION DEFINED features are supported.

0b1010 IMPLEMENTATION DEFINED features are supported.

0b1011 IMPLEMENTATION DEFINED features are supported.

0b1100 IMPLEMENTATION DEFINED features are supported.

0b1101 IMPLEMENTATION DEFINED features are supported.

0b1110 IMPLEMENTATION DEFINED features are supported.

0b1111 IMPLEMENTATION DEFINED features are supported.

Use of nonzero values requires written permission from Arm.

Access to this field is RO.

Accessing TRCIMSPEC0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIMSPEC0

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCIMSPECn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8816
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIMSPEC0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIMSPEC0;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIMSPEC0;

MSR TRCIMSPEC0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCIMSPECn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCIMSPEC0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8817
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCIMSPEC0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCIMSPEC0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8818
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.44 TRCIMSPEC<n>, Trace IMP DEF Register <n>, n = 1 - 7

The TRCIMSPEC<n> characteristics are:

Purpose

These registers might return information that is specific to an implementation, or enable features
specific to an implementation to be programmed. The product Technical Reference Manual
describes these registers.

Configurations

AArch64 System register TRCIMSPEC<n> bits [31:0] are architecturally mapped to External
register TRCIMSPEC<n>[31:0].

This register is present only when an implementation implements TRCIMSPEC<n>, FEAT_ETE is
implemented and System register access to the trace unit registers is implemented. Otherwise, direct
accesses to TRCIMSPEC<n> are UNDEFINED.

Attributes

TRCIMSPEC<n> is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have
IMPLEMENTATION DEFINED behavior.

Accessing TRCIMSPEC<n>

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIMSPEC<m>; Where m = 1-7

integer m = UInt(CRm<2:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then

RES0

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0:m[2:0] 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8819
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCIMSPECn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIMSPEC[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIMSPEC[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCIMSPEC[m];

MSR TRCIMSPEC<m>, <Xt>; Where m = 1-7

integer m = UInt(CRm<2:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCIMSPECn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0:m[2:0] 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8820
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCIMSPEC[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCIMSPEC[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCIMSPEC[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8821
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.45 TRCITECR_EL1, Instrumentation Trace Control Register (EL1)

The TRCITECR_EL1 characteristics are:

Purpose

Provides EL1 controls for Trace Instrumentation.

Configurations

This register is present only when FEAT_ITE is implemented and System register access to the trace
unit registers is implemented. Otherwise, direct accesses to TRCITECR_EL1 are UNDEFINED.

Attributes

TRCITECR_EL1 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

E1E, bit [1]

EL1 Instrumentation Trace Enable.

0b0 Instrumentation trace prohibited at EL1.

0b1 Instrumentation trace not prohibited at EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0E, bit [0]

EL0 Instrumentation Trace Enable.

0b0 Instrumentation trace prohibited at EL0.

0b1 Instrumentation trace not prohibited at EL0.

This field is ignored by the PE when EL2 is implemented and enabled in the current Security state
and HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRCITECR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCITECR_EL1

RES0

63 32

RES0

31 2 1 0

E1E E0E

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8822
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nTRCITECR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x888];
 else
 X[t, 64] = TRCITECR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TRCITECR_EL2;
 else
 X[t, 64] = TRCITECR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TRCITECR_EL1;

MSR TRCITECR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nTRCITECR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x888] = X[t, 64];
 else
 TRCITECR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8823
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif ELIsInHost(EL2) then
 TRCITECR_EL2 = X[t, 64];
 else
 TRCITECR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TRCITECR_EL1 = X[t, 64];

MRS <Xt>, TRCITECR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x888];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TRCITECR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = TRCITECR_EL1;
 else
 UNDEFINED;

MSR TRCITECR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x888] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8824
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRCITECR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 TRCITECR_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8825
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.46 TRCITECR_EL2, Instrumentation Trace Control Register (EL2)

The TRCITECR_EL2 characteristics are:

Purpose

Provides EL2 controls for Trace Instrumentation.

Configurations

This register is present only when FEAT_ITE is implemented and System register access to the trace
unit registers is implemented. Otherwise, direct accesses to TRCITECR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

TRCITECR_EL2 is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

E2E, bit [1]

EL2 Instrumentation Trace Enable.

0b0 Instrumentation trace prohibited at EL2.

0b1 Instrumentation trace not prohibited at EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0HE, bit [0]

EL0 Instrumentation Trace Enable.

0b0 Instrumentation trace prohibited at EL0 when HCR_EL2.TGE == 1.

0b1 Instrumentation trace not prohibited at EL0 when HCR_EL2.TGE == 1.

This field is ignored by the PE when any of the following are true:

• HCR_EL2.TGE == 0.

• EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRCITECR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name TRCITECR_EL2 or TRCITECR_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

RES0

63 32

RES0

31 2 1 0

E2E E0HE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8826
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCITECR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = TRCITECR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TRCITECR_EL2;

MSR TRCITECR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRCITECR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TRCITECR_EL2 = X[t, 64];

MRS <Xt>, TRCITECR_EL1

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8827
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nTRCITECR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x888];
 else
 X[t, 64] = TRCITECR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = TRCITECR_EL2;
 else
 X[t, 64] = TRCITECR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = TRCITECR_EL1;

MSR TRCITECR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nTRCITECR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x888] = X[t, 64];
 else
 TRCITECR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnITE == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnITE == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8828
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif ELIsInHost(EL2) then
 TRCITECR_EL2 = X[t, 64];
 else
 TRCITECR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 TRCITECR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8829
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.47 TRCITEEDCR, Instrumentation Trace Extension External Debug Control Register

The TRCITEEDCR characteristics are:

Purpose

Controls instrumentation trace filtering.

Configurations

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR0.ITE == 1. Otherwise, direct accesses to TRCITEEDCR
are UNDEFINED.

Attributes

TRCITEEDCR is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

RL, bit [6]

When FEAT_RME is implemented:

Instrumentation Trace in Realm state.

0b0 Instrumentation trace prohibited in Realm state.

0b1 Instrumentation trace permitted in Realm state.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

This field is used in conjunction with TRCCONFIGR.ITO and TRCITEEDCR.E<m> to control
whether Instrumentation trace is permitted or prohibited in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

S, bit [5]

When Secure state is implemented:

Instrumentation Trace in Secure state.

0b0 Instrumentation trace prohibited in Secure state.

0b1 Instrumentation trace permitted in Secure state.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

When FEAT_RME is not implemented, this field is used in conjunction with TRCCONFIGR.ITO,
TRCITEEDCR.E3, and TRCITEEDCR.E<m> to control whether Instrumentation trace is
permitted or prohibited in Secure state.

When FEAT_RME is implemented, this field is used in conjunction with TRCCONFIGR.ITO and
TRCITEEDCR.E<m> to control whether Instrumentation trace is permitted or prohibited in Secure
state.

RES0

63 32

RES0

31 7

RL

6

S

5

NS

4

E3

3

E2

2

E1

1

E0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8830
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NS, bit [4]

When Any of Non-secure EL2, EL1, or EL0 are implemented:

Instrumentation Trace in Non-secure state.

0b0 Instrumentation trace prohibited in Non-secure state.

0b1 Instrumentation trace permitted in Non-secure state.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

This field is used in conjunction with TRCCONFIGR.ITO and TRCITEEDCR.E<m> to control
whether Instrumentation trace is permitted or prohibited in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [3]

When EL3 is implemented:

Instrumentation Trace Enable at EL3.

0b0 Instrumentation trace prohibited at EL3.

0b1 Instrumentation trace permitted at EL3.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

When FEAT_RME is not implemented, TRCITEEDCR.E3 is used in conjunction with
TRCCONFIGR.ITO and TRCITEEDCR.S to control whether Instrumentation trace is permitted or
prohibited at EL3.

When FEAT_RME is implemented, TRCITEEDCR.E3 is used in conjunction with
TRCCONFIGR.ITO to control whether Instrumentation trace is permitted or prohibited at EL3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E<m>, bit [m], for m = 2 to 0

Instrumentation Trace Enable at EL<m>.

0b0 Instrumentation trace prohibited at EL<m>.

0b1 Instrumentation trace permitted at EL<m>.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

This bit is used in conjunction with TRCCONFIGR.ITO, TRCITEEDCR.NS, TRCITEEDCR.S,
and TRCITEEDCR.RL to control whether Instrumentation trace is permitted or prohibited at
EL<m> in the specified Security states.

TRCITEEDCR.E<2> is RES0 if EL2 is not implemented in any Security states.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8831
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing TRCITEEDCR

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCITEEDCR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCITEEDCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCITEEDCR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCITEEDCR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8832
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCITEEDCR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCITEEDCR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCITEEDCR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCITEEDCR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8833
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.48 TRCOSLSR, Trace OS Lock Status Register

The TRCOSLSR characteristics are:

Purpose

Returns the status of the Trace OS Lock.

Configurations

AArch64 System register TRCOSLSR bits [31:0] are architecturally mapped to External register
TRCOSLSR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCOSLSR are UNDEFINED.

Attributes

TRCOSLSR is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

OSLM, bits [4:3, 0]

OS Lock model.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000 Trace OS Lock is not implemented.

0b010 Trace OS Lock is implemented.

0b100 Trace OS Lock is not implemented, and the trace unit is controlled by the PE OS Lock.

All other values are reserved.

When FEAT_ETE is implemented, the values 0b000 and 0b010 are not permitted.

The OSLM field is split as follows:

• OSLM[2:1] is TRCOSLSR[4:3].

• OSLM[0] is TRCOSLSR[0].

Access to this field is RO.

Bit [2]

Reserved, RES0.

OSLK, bit [1]

OS Lock status.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The OS Lock is unlocked.

0b1 The OS Lock is locked.

RES0

63 32

RES0

31 5 4 3 2 1 0

OSLM[2:1]
RES0

OSLM[0]
OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8834
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Note

This field indicates the state of the PE OS Lock.

Access to this field is RO.

Accessing TRCOSLSR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCOSLSR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCOSLSR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCOSLSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCOSLSR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCOSLSR;

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8835
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.49 TRCPRGCTLR, Trace Programming Control Register

The TRCPRGCTLR characteristics are:

Purpose

Enables the trace unit.

Configurations

AArch64 System register TRCPRGCTLR bits [31:0] are architecturally mapped to External register
TRCPRGCTLR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCPRGCTLR are UNDEFINED.

Attributes

TRCPRGCTLR is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

EN, bit [0]

Trace unit enable.

0b0 The trace unit is disabled.

0b1 The trace unit is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Accessing TRCPRGCTLR

Must be programmed.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCPRGCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then

RES0

63 32

RES0

31 1

EN

0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8836
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCPRGCTLR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCPRGCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCPRGCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCPRGCTLR;

MSR TRCPRGCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCPRGCTLR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8837
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 TRCPRGCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCPRGCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCPRGCTLR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8838
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.50 TRCQCTLR, Trace Q Element Control Register

The TRCQCTLR characteristics are:

Purpose

Controls when Q elements are enabled.

Configurations

AArch64 System register TRCQCTLR bits [31:0] are architecturally mapped to External register
TRCQCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR0.QFILT == 1. Otherwise, direct accesses to
TRCQCTLR are UNDEFINED.

Attributes

TRCQCTLR is a 64-bit register.

Field descriptions

Bits [63:9]

Reserved, RES0.

MODE, bit [8]

Selects whether the Address Range Comparators selected by TRCQCTLR.RANGE indicate
address ranges where the trace unit is permitted to generate Q elements or address ranges where the
trace unit is not permitted to generate Q elements:

0b0 Exclude mode.

The Address Range Comparators selected by TRCQCTLR.RANGE indicate address
ranges where the trace unit must not generate Q elements. If no ranges are selected, Q
elements are permitted across the entire memory map.

0b1 Include Mode.

The Address Range Comparators selected by TRCQCTLR.RANGE indicate address
ranges where the trace unit can generate Q elements. If all the implemented bits in
RANGE are set to 0 then Q elements are disabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE[<m>], bit [m], for m = 7 to 0

Specifies whether Address Range Comparator <m> controls Q elements.

0b0 The address range that Address Range Comparator <m> defines is not selected.

0b1 The address range that Address Range Comparator <m> defines is selected.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 9 8 7 6 5 4 3 2 1 0

MODE
RANGE[7]

RANGE[6]
RANGE[5]

RANGE[0]
RANGE[1]

RANGE[2]
RANGE[3]

RANGE[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8839
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCQCTLR

Must be programmed if TRCCONFIGR.QE != 0b00.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCQCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCQCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCQCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCQCTLR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8840
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCQCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCQCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCQCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCQCTLR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8841
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.51 TRCRSCTLR<n>, Trace Resource Selection Control Register <n>, n = 2 - 31

The TRCRSCTLR<n> characteristics are:

Purpose

Controls the selection of the resources in the trace unit.

Configurations

AArch64 System register TRCRSCTLR<n> bits [31:0] are architecturally mapped to External
register TRCRSCTLR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and (UInt(TRCIDR4.NUMRSPAIR) + 1) * 2 > n. Otherwise, direct
accesses to TRCRSCTLR<n> are UNDEFINED.

Resource selector 0 always returns FALSE.

Resource selector 1 always returns TRUE.

Resource selectors are implemented in pairs. Each odd numbered resource selector is part of a pair
with the even numbered resource selector that is numbered as one less than it. For example, resource
selectors 2 and 3 form a pair.

Attributes

TRCRSCTLR<n> is a 64-bit register.

Field descriptions

Bits [63:22]

Reserved, RES0.

PAIRINV, bit [21]

When n is even:

Controls whether the combined result from a resource selector pair is inverted.

0b0 Do not invert the combined output of the 2 resource selectors.

0b1 Invert the combined output of the 2 resource selectors.

If:

• A is the register TRCRSCTLR<n>.

• B is the register TRCRSCTLR<n+1>.

Then the combined output of the 2 resource selectors A and B depends on the value of (A.PAIRINV,
A.INV, B.INV) as follows:

• 0b000 -> A and B.

• 0b001 -> Reserved.

• 0b010 -> not(A) and B.

• 0b011 -> not(A) and not(B).

• 0b100 -> not(A) or not(B).

• 0b101 -> not(A) or B.

RES0

63 32

RES0

31 22 21 20

GROUP

19 16

SELECT

15 0

PAIRINV INV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8842
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
• 0b110 -> Reserved.

• 0b111 -> A or B.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

INV, bit [20]

Controls whether the resource, that TRCRSCTLR<n>.GROUP and TRCRSCTLR<n>.SELECT
selects, is inverted.

0b0 Do not invert the output of this selector.

0b1 Invert the output of this selector.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

GROUP, bits [19:16]

Selects a group of resources.

0b0000 External Input Selectors.

0b0001 PE Comparator Inputs.

0b0010 Counters and Sequencer.

0b0011 Single-shot Comparator Controls.

0b0100 Single Address Comparators.

0b0101 Address Range Comparators.

0b0110 Context Identifier Comparators.

0b0111 Virtual Context Identifier Comparators.

All other values are reserved.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT, bits [15:0]

Resource Specific Controls. Contains the controls specific to the resource group selected by
GROUP, described in the following sections.

SELECT encoding for External Input Selectors

Bits [15:4]

Reserved, RES0.

EXTIN[<m>], bit [m], for m = 3 to 0

Selects one or more External Inputs.

0b0 Ignore EXTIN <m>.

0b1 Select EXTIN <m>.

This bit is RES0 if m >= TRCIDR5.NUMEXTINSEL.

RES0

15 4 3 2 1 0

EXTIN[3]
EXTIN[2]

EXTIN[0]
EXTIN[1]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8843
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for PE Comparator Inputs

Bits [15:8]

Reserved, RES0.

PECOMP[<m>], bit [m], for m = 7 to 0

Selects one or more PE Comparator Inputs.

0b0 Ignore PE Comparator Input <m>.

0b1 Select PE Comparator Input <m>.

This bit is RES0 if m >= TRCIDR4.NUMPC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Counters and Sequencer

Bits [15:8]

Reserved, RES0.

SEQUENCER[<m>], bit [m+4], for m = 3 to 0

Sequencer states.

0b0 Ignore Sequencer state <m>.

0b1 Select Sequencer state <m>.

This bit is RES0 if m >= TRCIDR5.NUMSEQSTATE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

COUNTERS[<m>], bit [m], for m = 3 to 0

Counters resources at zero.

0b0 Ignore Counter <m>.

0b1 Select Counter <m> is zero.

This bit is RES0 if m >= TRCIDR5.NUMCNTR.

RES0

15 8 7 6 5 4 3 2 1 0

PECOMP[7]
PECOMP[6]

PECOMP[5]
PECOMP[4]

PECOMP[0]
PECOMP[1]

PECOMP[2]
PECOMP[3]

RES0

15 8 7 6 5 4 3 2 1 0

SEQUENCER[3]
SEQUENCER[2]

SEQUENCER[1]
SEQUENCER[0]

COUNTERS[0]

COUNTERS[1]
COUNTERS[2]

COUNTERS[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8844
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single-shot Comparator Controls

Bits [15:8]

Reserved, RES0.

SINGLE_SHOT[<m>], bit [m], for m = 7 to 0

Selects one or more Single-shot Comparator Controls.

0b0 Ignore Single-shot Comparator Control <m>.

0b1 Select Single-shot Comparator Control <m>.

This bit is RES0 if m >= TRCIDR4.NUMSSCC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single Address Comparators

SAC[<m>], bit [m], for m = 15 to 0

Selects one or more Single Address Comparators.

0b0 Ignore Single Address Comparator <m>.

0b1 Select Single Address Comparator <m>.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

15 8 7 6 5 4 3 2 1 0

SINGLE_SHOT[7]
SINGLE_SHOT[6]

SINGLE_SHOT[5]
SINGLE_SHOT[4]

SINGLE_SHOT[0]

SINGLE_SHOT[1]

SINGLE_SHOT[2]

SINGLE_SHOT[3]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAC[15]
SAC[14]

SAC[13]
SAC[12]

SAC[11]
SAC[10]

SAC[9]
SAC[8]

SAC[0]
SAC[1]

SAC[2]
SAC[3]

SAC[4]
SAC[5]

SAC[6]
SAC[7]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8845
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
SELECT encoding for Address Range Comparators

Bits [15:8]

Reserved, RES0.

ARC[<m>], bit [m], for m = 7 to 0

Selects one or more Address Range Comparators.

0b0 Ignore Address Range Comparator <m>.

0b1 Select Address Range Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Context Identifier Comparators

Bits [15:8]

Reserved, RES0.

CID[<m>], bit [m], for m = 7 to 0

Selects one or more Context Identifier Comparators.

0b0 Ignore Context Identifier Comparator <m>.

0b1 Select Context Identifier Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMCIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Virtual Context Identifier Comparators

RES0

15 8 7 6 5 4 3 2 1 0

ARC[7]
ARC[6]

ARC[5]
ARC[4]

ARC[0]
ARC[1]

ARC[2]
ARC[3]

RES0

15 8 7 6 5 4 3 2 1 0

CID[7]
CID[6]

CID[5]
CID[4]

CID[0]
CID[1]

CID[2]
CID[3]

RES0

15 8 7 6 5 4 3 2 1 0

VMID[7]
VMID[6]

VMID[5]
VMID[4]

VMID[0]
VMID[1]

VMID[2]
VMID[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8846
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Bits [15:8]

Reserved, RES0.

VMID[<m>], bit [m], for m = 7 to 0

Selects one or more Virtual Context Identifier Comparators.

0b0 Ignore Virtual Context Identifier Comparator <m>.

0b1 Select Virtual Context Identifier Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMVMIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCRSCTLR<n>

Must be programmed if any of the following are true:

• TRCCNTCTLR<n>.RLDEVENT.TYPE == 0 and TRCCNTCTLR<n>.RLDEVENT.SEL == n.

• TRCCNTCTLR<n>.RLDEVENT.TYPE == 1 and TRCCNTCTLR<n>.RLDEVENT.SEL == n/2.

• TRCCNTCTLR<n>.CNTEVENT.TYPE == 0 and TRCCNTCTLR<n>.CNTEVENT.SEL == n.

• TRCCNTCTLR<n>.CNTEVENT.TYPE == 1 and TRCCNTCTLR<n>.CNTEVENT.SEL == n/2.

• TRCEVENTCTL0R.EVENT0.TYPE == 0 and TRCEVENTCTL0R.EVENT0.SEL == n.

• TRCEVENTCTL0R.EVENT0.TYPE == 1 and TRCEVENTCTL0R.EVENT0.SEL == n/2.

• TRCEVENTCTL0R.EVENT1.TYPE == 0 and TRCEVENTCTL0R.EVENT1.SEL == n.

• TRCEVENTCTL0R.EVENT1.TYPE == 1 and TRCEVENTCTL0R.EVENT1.SEL == n/2.

• TRCEVENTCTL0R.EVENT2.TYPE == 0 and TRCEVENTCTL0R.EVENT2.SEL == n.

• TRCEVENTCTL0R.EVENT2.TYPE == 1 and TRCEVENTCTL0R.EVENT2.SEL == n/2.

• TRCEVENTCTL0R.EVENT3.TYPE == 0 and TRCEVENTCTL0R.EVENT3.SEL == n.

• TRCEVENTCTL0R.EVENT3.TYPE == 1 and TRCEVENTCTL0R.EVENT3.SEL == n/2.

• TRCSEQEVR<n>.B.TYPE == 0 and TRCSEQEVR<n>.B.SEL = n.

• TRCSEQEVR<n>.B.TYPE == 1 and TRCSEQEVR<n>.B.SEL = n/2.

• TRCSEQEVR<n>.F.TYPE == 0 and TRCSEQEVR<n>.F.SEL = n.

• TRCSEQEVR<n>.F.TYPE == 1 and TRCSEQEVR<n>.F.SEL = n/2.

• TRCSEQRSTEVR.RST.TYPE == 0 and TRCSEQRSTEVR.RST.SEL == n.

• TRCSEQRSTEVR.RST.TYPE == 1 and TRCSEQRSTEVR.RST.SEL == n/2.

• TRCTSCTLR.EVENT.TYPE == 0 and TRCTSCTLR.EVENT.SEL == n.

• TRCTSCTLR.EVENT.TYPE == 1 and TRCTSCTLR.EVENT.SEL == n/2.

• TRCVICTLR.EVENT.TYPE == 0 and TRCVICTLR.EVENT.SEL == n.

• TRCVICTLR.EVENT.TYPE == 1 and TRCVICTLR.EVENT.SEL == n/2.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8847
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCRSCTLR<m>; Where m = 2-31

integer m = UInt(op2<0>:CRm<3:0>);

if m >= NUM_TRACE_RESOURCE_SELECTOR_PAIRS * 2 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCRSCTLR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCRSCTLR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCRSCTLR[m];

op0 op1 CRn CRm op2

0b10 0b001 0b0001 m[3:0] 0b00:m[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8848
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCRSCTLR<m>, <Xt>; Where m = 2-31

integer m = UInt(op2<0>:CRm<3:0>);

if m >= NUM_TRACE_RESOURCE_SELECTOR_PAIRS * 2 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCRSCTLR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCRSCTLR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCRSCTLR[m] = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0001 m[3:0] 0b00:m[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8849
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.52 TRCRSR, Trace Resources Status Register

The TRCRSR characteristics are:

Purpose

Use this to set, or read, the status of the resources.

Configurations

AArch64 System register TRCRSR bits [31:0] are architecturally mapped to External register
TRCRSR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCRSR are UNDEFINED.

Attributes

TRCRSR is a 64-bit register.

Field descriptions

Bits [63:13]

Reserved, RES0.

TA, bit [12]

Tracing active.

0b0 Tracing is not active.

0b1 Tracing is active.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

EVENT[<m>], bit [m+8], for m = 3 to 0

Untraced status of ETEEvents.

0b0 An ETEEvent <m> has not occurred.

0b1 An ETEEvent <m> has occurred while the resources were in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When TRCIDR4.NUMRSPAIR == 0b0000, access to this field is RES0.

• RES0 if all of the following are true:

— TRCIDR4.NUMRSPAIR != 0b0000.

— m > UInt(TRCIDR0.NUMEVENT).

• Otherwise, access to this field is RW.

RES0

63 32

RES0

31 13

TA

12 11 10 9 8

RES0

7 4 3 2 1 0

EVENT[3]
EVENT[2]

EVENT[1]
EVENT[0]

EXTIN[0]
EXTIN[1]

EXTIN[2]
EXTIN[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8850
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Bits [7:4]

Reserved, RES0.

EXTIN[<m>], bit [m], for m = 3 to 0

The sticky status of the External Input Selectors.

0b0 An event selected by External Input Selector <m> has not occurred.

0b1 At least one event selected by External Input Selector <m> has occurred while the
resources were in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR5.NUMEXTINSEL), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCRSR

Must always be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCRSR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCRSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8851
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCRSR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCRSR;

MSR TRCRSR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCRSR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCRSR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8852
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCRSR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8853
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.53 TRCSEQEVR<n>, Trace Sequencer State Transition Control Register <n>, n = 0 - 2

The TRCSEQEVR<n> characteristics are:

Purpose

Moves the Sequencer state:

• Backwards, from state n+1 to state n when a programmed resource event occurs.

• Forwards, from state n to state n+1 when a programmed resource event occurs.

Configurations

AArch64 System register TRCSEQEVR<n> bits [31:0] are architecturally mapped to External
register TRCSEQEVR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct accesses
to TRCSEQEVR<n> are UNDEFINED.

Attributes

TRCSEQEVR<n> is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

B_TYPE, bit [15]

Chooses the type of Resource Selector.

Backward field. Defines whether the backward resource event is a single Resource Selector or a
Resource Selector pair. When the resource event occurs then the Sequencer state moves from state
n+1 to state n. For example, if TRCSEQEVR2.B.SEL == 0x14 then when event 0x14 occurs, the
Sequencer moves from state 3 to state 2.

0b0 A single Resource Selector.

TRCSEQEVR<n>.B.SEL[4:0] selects the single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCSEQEVR<n>.B.SEL[3:0] selects the Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output is used to activate the resource event.
TRCSEQEVR<n>.B.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

RES0

63 32

RES0

31 16 15

RES0

14 13

B_SEL

12 8 7

RES0

6 5

F_SEL

4 0

B_TYPE F_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8854
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
B_SEL, bits [12:8]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.B.TYPE
controls whether TRCSEQEVR<n>.B.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

Backward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

F_TYPE, bit [7]

Chooses the type of Resource Selector.

Backward field. Defines whether the forward resource event is a single Resource Selector or a
Resource Selector pair. When the resource event occurs then the Sequencer state moves from state
n to state n+1. For example, if TRCSEQEVR1.F.SEL == 0x12 then when event 0x12 occurs, the
Sequencer moves from state 1 to state 2.

0b0 A single Resource Selector.

TRCSEQEVR<n>.F.SEL[4:0] selects the single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCSEQEVR<n>.F.SEL[3:0] selects the Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output is used to activate the resource event.
TRCSEQEVR<n>.F.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

F_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.F.TYPE
controls whether TRCSEQEVR<n>.F.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

Forward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCSEQEVR<n>

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8855
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSEQEVR<m>; Where m = 0-2

integer m = UInt(CRm<1:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQEVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQEVR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQEVR[m];

MSR TRCSEQEVR<m>, <Xt>; Where m = 0-2

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b00:m[1:0] 0b100

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b00:m[1:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8856
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
integer m = UInt(CRm<1:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQEVR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQEVR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQEVR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8857
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.54 TRCSEQRSTEVR, Trace Sequencer Reset Control Register

The TRCSEQRSTEVR characteristics are:

Purpose

Moves the Sequencer to state 0 when a programmed resource event occurs.

Configurations

AArch64 System register TRCSEQRSTEVR bits [31:0] are architecturally mapped to External
register TRCSEQRSTEVR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct accesses
to TRCSEQRSTEVR are UNDEFINED.

Attributes

TRCSEQRSTEVR is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

RST_TYPE, bit [7]

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCSEQRSTEVR.RST.SEL[4:0] selects the single Resource Selector, from 0-31, used
to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCSEQRSTEVR.RST.SEL[3:0] selects the Resource Selector pair, from 0-15, that
has a Boolean function that is applied to it whose output is used to activate the resource
event. TRCSEQRSTEVR.RST.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

RST_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors.
TRCSEQRSTEVR.RST.TYPE controls whether TRCSEQRSTEVR.RST.SEL is the index of a
single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

RES0

63 32

RES0

31 8 7

RES0

6 5

RST_SEL

4 0

RST_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8858
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCSEQRSTEVR

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSEQRSTEVR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQRSTEVR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQRSTEVR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQRSTEVR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8859
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCSEQRSTEVR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQRSTEVR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQRSTEVR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQRSTEVR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8860
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.55 TRCSEQSTR, Trace Sequencer State Register

The TRCSEQSTR characteristics are:

Purpose

Use this to set, or read, the Sequencer state.

Configurations

AArch64 System register TRCSEQSTR bits [31:0] are architecturally mapped to External register
TRCSEQSTR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct accesses
to TRCSEQSTR are UNDEFINED.

Attributes

TRCSEQSTR is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

STATE, bits [1:0]

Set or returns the state of the Sequencer.

0b00 State 0.

0b01 State 1.

0b10 State 2.

0b11 State 3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCSEQSTR

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSEQSTR

RES0

63 32

RES0

31 2 1 0

STATE

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8861
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCSEQSTR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQSTR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQSTR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSEQSTR;

MSR TRCSEQSTR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCSEQSTR == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8862
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQSTR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQSTR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSEQSTR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8863
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.56 TRCSSCCR<n>, Trace Single-shot Comparator Control Register <n>, n = 0 - 7

The TRCSSCCR<n> characteristics are:

Purpose

Controls the corresponding Single-shot Comparator Control resource.

Configurations

AArch64 System register TRCSSCCR<n> bits [31:0] are architecturally mapped to External
register TRCSSCCR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMSSCC) > n. Otherwise, direct accesses to
TRCSSCCR<n> are UNDEFINED.

Attributes

TRCSSCCR<n> is a 64-bit register.

Field descriptions

Bits [63:25]

Reserved, RES0.

RST, bit [24]

Selects the Single-shot Comparator Control mode.

0b0 The Single-shot Comparator Control is in single-shot mode.

0b1 The Single-shot Comparator Control is in multi-shot mode.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

ARC[<m>], bit [m+16], for m = 7 to 0

Selects one or more Address Range Comparators for Single-shot control.

0b0 The Address Range Comparator <m>, is not selected for Single-shot control.

0b1 The Address Range Comparator <m>, is selected for Single-shot control.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RST
ARC[7]

ARC[6]
ARC[5]

ARC[4]
ARC[3]

ARC[2]
ARC[1]

ARC[0]
SAC[15]

SAC[14]
SAC[13]

SAC[0]
SAC[1]

SAC[2]
SAC[3]

SAC[4]
SAC[5]

SAC[6]
SAC[7]

SAC[8]
SAC[9]

SAC[10]
SAC[11]

SAC[12]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8864
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

SAC[<m>], bit [m], for m = 15 to 0

Selects one or more Single Address Comparators for Single-shot control.

0b0 The Single Address Comparator <m>, is not selected for Single-shot control.

0b1 The Single Address Comparator <m>, is selected for Single-shot control.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS) * 2, access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCSSCCR<n>

Must be programmed if any TRCRSCTLR<n>.GROUP == 0b0011 and TRCRSCTLR<n>.SINGLE_SHOT[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSSCCR<m>; Where m = 0-7

integer m = UInt(CRm<2:0>);

if m >= NUM_TRACE_SINGLE_SHOT_COMPARATOR_CONTROLS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSCCR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b0:m[2:0] 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8865
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSCCR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSCCR[m];

MSR TRCSSCCR<m>, <Xt>; Where m = 0-7

integer m = UInt(CRm<2:0>);

if m >= NUM_TRACE_SINGLE_SHOT_COMPARATOR_CONTROLS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSCCR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b0:m[2:0] 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8866
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 TRCSSCCR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSCCR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8867
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.57 TRCSSCSR<n>, Trace Single-shot Comparator Control Status Register <n>, n = 0 - 7

The TRCSSCSR<n> characteristics are:

Purpose

Returns the status of the corresponding Single-shot Comparator Control.

Configurations

AArch64 System register TRCSSCSR<n> bits [31:0] are architecturally mapped to External
register TRCSSCSR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMSSCC) > n. Otherwise, direct accesses to
TRCSSCSR<n> are UNDEFINED.

Attributes

TRCSSCSR<n> is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

STATUS, bit [31]

Single-shot Comparator Control status. Indicates if any of the comparators selected by this
Single-shot Comparator control have matched. The selected comparators are defined by
TRCSSCCR<n>.ARC, TRCSSCCR<n>.SAC, and TRCSSPCICR<n>.PC.

0b0 No match has occurred. When the first match occurs, this field takes a value of 1. It
remains at 1 until explicitly modified by a write to this register.

0b1 One or more matches has occurred. If TRCSSCCR<n>.RST == 0 then:

• There is only one match and no more matches are possible.

• Software must reset this field to 0 to re-enable the Single-shot Comparator
Control.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

PENDING, bit [30]

Single-shot pending status. The Single-shot Comparator Control fired while the resources were in
the Paused state.

0b0 No match has occurred.

0b1 One or more matches has occurred.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [29:4]

Reserved, RES0.

RES0

63 32

31 30

RES0

29 4

PC

3

DV

2

DA

1 0

STATUS PENDING INST
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8868
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
PC, bit [3]

PE Comparator Input support. Indicates if the Single-shot Comparator Control supports PE
Comparator Inputs.

0b0 This Single-shot Comparator Control does not support PE Comparator Inputs. Selecting
any PE Comparator Inputs using the associated TRCSSPCICR<n> results in
CONSTRAINED UNPREDICTABLE behavior of the Single-shot Comparator Control
resource. The Single-shot Comparator Control might match unexpectedly or might not
match.

0b1 This Single-shot Comparator Control supports PE Comparator Inputs.

Access to this field is RO.

DV, bit [2]

Data value comparator support. Data value comparisons are not implemented in ETE and are
reserved for other trace architectures. Allocated in other trace architectures.

0b0 This Single-shot Comparator Control does not support data value comparisons.

0b1 This Single-shot Comparator Control supports data value comparisons.

This field reads as 0.

Access to this field is RO.

DA, bit [1]

Data Address Comparator support. Data address comparisons are not implemented in ETE and are
reserved for other trace architectures. Allocated in other trace architectures.

0b0 This Single-shot Comparator Control does not support data address comparisons.

0b1 This Single-shot Comparator Control supports data address comparisons.

This field reads as 0.

Access to this field is RO.

INST, bit [0]

Instruction Address Comparator support. Indicates if the Single-shot Comparator Control supports
instruction address comparisons.

0b0 This Single-shot Comparator Control does not support instruction address comparisons.

0b1 This Single-shot Comparator Control supports instruction address comparisons.

This field reads as 1.

Access to this field is RO.

Accessing TRCSSCSR<n>

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0011 and TRCRSCTLR<n>.SINGLE_SHOT[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSSCSR<m>; Where m = 0-7

integer m = UInt(CRm<2:0>);

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b1:m[2:0] 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8869
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if m >= NUM_TRACE_SINGLE_SHOT_COMPARATOR_CONTROLS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCSSCSRn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSCSR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSCSR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSCSR[m];

MSR TRCSSCSR<m>, <Xt>; Where m = 0-7

integer m = UInt(CRm<2:0>);

if m >= NUM_TRACE_SINGLE_SHOT_COMPARATOR_CONTROLS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b1:m[2:0] 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8870
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCSSCSRn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSCSR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSCSR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSCSR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8871
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.58 TRCSSPCICR<n>, Trace Single-shot Processing Element Comparator Input Control Register
<n>, n = 0 - 7

The TRCSSPCICR<n> characteristics are:

Purpose

Returns the status of the corresponding Single-shot Comparator Control.

Configurations

AArch64 System register TRCSSPCICR<n> bits [31:0] are architecturally mapped to External
register TRCSSPCICR<n>[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented, UInt(TRCIDR4.NUMSSCC) > n, UInt(TRCIDR4.NUMPC) > 0 and
TRCSSCSR<n>.PC == 1. Otherwise, direct accesses to TRCSSPCICR<n> are UNDEFINED.

Attributes

TRCSSPCICR<n> is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

PC[<m>], bit [m], for m = 7 to 0

Selects one or more PE Comparator Inputs for Single-shot control.

0b0 The single PE Comparator Input <m>, is not selected as for Single-shot control.

0b1 The single PE Comparator Input <m>, is selected as for Single-shot control.

This bit is RES0 if m >= TRCIDR4.NUMPC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCSSPCICR<n>

Must be programmed if implemented and any TRCRSCTLR<n>.GROUP == 0b0011 and
TRCRSCTLR<n>.SINGLE_SHOT[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

RES0

63 32

RES0

31 8 7 6 5 4 3 2 1 0

PC[7]
PC[6]

PC[5]
PC[4]

PC[0]
PC[1]

PC[2]
PC[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8872
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSSPCICR<m>; Where m = 0-7

integer m = UInt(CRm<2:0>);

if m >= NUM_TRACE_SINGLE_SHOT_COMPARATOR_CONTROLS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSPCICR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSPCICR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSSPCICR[m];

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b0:m[2:0] 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8873
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCSSPCICR<m>, <Xt>; Where m = 0-7

integer m = UInt(CRm<2:0>);

if m >= NUM_TRACE_SINGLE_SHOT_COMPARATOR_CONTROLS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSPCICR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSPCICR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSSPCICR[m] = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0001 0b0:m[2:0] 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8874
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.59 TRCSTALLCTLR, Trace Stall Control Register

The TRCSTALLCTLR characteristics are:

Purpose

Enables trace unit functionality that prevents trace unit buffer overflows.

Configurations

AArch64 System register TRCSTALLCTLR bits [31:0] are architecturally mapped to External
register TRCSTALLCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR3.STALLCTL == 1. Otherwise, direct accesses to
TRCSTALLCTLR are UNDEFINED.

Attributes

TRCSTALLCTLR is a 64-bit register.

Field descriptions

Bits [63:14]

Reserved, RES0.

NOOVERFLOW, bit [13]

When TRCIDR3.NOOVERFLOW == 1:

Trace overflow prevention.

0b0 Trace unit buffer overflow prevention is disabled.

0b1 Trace unit buffer overflow prevention is enabled.

Note

Enabling this feature might cause a significant performance impact.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

ISTALL, bit [8]

Instruction stall control. Controls if a trace unit can stall the PE when the trace buffer space is less
than LEVEL.

0b0 The trace unit must not stall the PE.

0b1 The trace unit can stall the PE.

RES0

63 32

RES0

31 14 13

RES0

12 9 8

RES0

7 4

LEVEL

3 0

NOOVERFLOW ISTALL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8875
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

LEVEL, bits [3:0]

Threshold level field. The field can support 16 monotonic levels from 0b0000 to 0b1111.

The value 0b0000 defines the Minimal invasion level. This setting has a greater risk of a trace unit
buffer overflow.

The value 0b1111 defines the Maximum invasion level. This setting has a reduced risk of a trace unit
buffer overflow.

Note

For some implementations, invasion might occur at the minimal invasion level.

One or more of the least significant bits of LEVEL are permitted to be RES0. Arm recommends that
LEVEL[3:2] are fully implemented. Arm strongly recommends that LEVEL[3] is always
implemented. If one or more bits are RES0 and are written with a nonzero value, the effective value
of LEVEL is rounded down to the nearest power of 2 value which has the RES0 bits as zero. For
example, if LEVEL[1:0] are RES0 and a value of 0b1110 is written to LEVEL, the effective value of
LEVEL is 0b1100.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCSTALLCTLR

Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSTALLCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8876
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 X[t, 64] = TRCSTALLCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSTALLCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSTALLCTLR;

MSR TRCSTALLCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSTALLCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8877
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSTALLCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSTALLCTLR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8878
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.60 TRCSTATR, Trace Status Register

The TRCSTATR characteristics are:

Purpose

Returns the trace unit status.

Configurations

AArch64 System register TRCSTATR bits [31:0] are architecturally mapped to External register
TRCSTATR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCSTATR are UNDEFINED.

Attributes

TRCSTATR is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

PMSTABLE, bit [1]

Programmers' model stable.

0b0 The programmers' model is not stable.

0b1 The programmers' model is stable.

Accessing this field has the following behavior:

• When the trace unit is enabled, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

IDLE, bit [0]

Idle status.

0b0 The trace unit is not idle.

0b1 The trace unit is idle.

Accessing TRCSTATR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSTATR

if PSTATE.EL == EL0 then
 UNDEFINED;

RES0

63 32

RES0

31 2 1 0

PMSTABLE IDLE

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8879
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCSTATR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSTATR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSTATR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSTATR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8880
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.61 TRCSYNCPR, Trace Synchronization Period Register

The TRCSYNCPR characteristics are:

Purpose

Controls how often trace protocol synchronization requests occur.

Configurations

AArch64 System register TRCSYNCPR bits [31:0] are architecturally mapped to External register
TRCSYNCPR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCSYNCPR are UNDEFINED.

Attributes

TRCSYNCPR is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

PERIOD, bits [4:0]

Defines the number of bytes of trace between each periodic trace protocol synchronization request.

0b00000 Trace protocol synchronization is disabled.

0b01000 Trace protocol synchronization request occurs after 28 bytes of trace.

0b01001 Trace protocol synchronization request occurs after 29 bytes of trace.

0b01010 Trace protocol synchronization request occurs after 210 bytes of trace.

0b01011 Trace protocol synchronization request occurs after 211 bytes of trace.

0b01100 Trace protocol synchronization request occurs after 212 bytes of trace.

0b01101 Trace protocol synchronization request occurs after 213 bytes of trace.

0b01110 Trace protocol synchronization request occurs after 214 bytes of trace.

0b01111 Trace protocol synchronization request occurs after 215 bytes of trace.

0b10000 Trace protocol synchronization request occurs after 216 bytes of trace.

0b10001 Trace protocol synchronization request occurs after 217 bytes of trace.

0b10010 Trace protocol synchronization request occurs after 218 bytes of trace.

0b10011 Trace protocol synchronization request occurs after 219 bytes of trace.

0b10100 Trace protocol synchronization request occurs after 220 bytes of trace.

Other values are reserved. If a reserved value is programmed into PERIOD, then the behavior of the
synchronization period counter is CONSTRAINED UNPREDICTABLE and one of the following
behaviors occurs:

• No trace protocol synchronization requests are generated by this counter.

• Trace protocol synchronization requests occur at the specified period.

• Trace protocol synchronization requests occur at some other UNKNOWN period which can
vary.

RES0

63 32

RES0

31 5

PERIOD

4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8881
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCSYNCPR

Must be programmed if TRCIDR3.SYNCPR == 0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCSYNCPR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSYNCPR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSYNCPR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCSYNCPR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8882
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCSYNCPR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSYNCPR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSYNCPR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCSYNCPR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8883
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.62 TRCTRACEIDR, Trace ID Register

The TRCTRACEIDR characteristics are:

Purpose

Sets the trace ID for instruction trace.

Configurations

AArch64 System register TRCTRACEIDR bits [31:0] are architecturally mapped to External
register TRCTRACEIDR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCTRACEIDR are UNDEFINED.

Attributes

TRCTRACEIDR is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

TRACEID, bits [6:0]

Trace ID field. Sets the trace ID value for instruction trace. The width of the field is indicated by the
value of TRCIDR5.TRACEIDSIZE. Unimplemented bits are RES0.

If an implementation supports AMBA ATB, then:

• The width of the field is 7 bits.

• Writing a reserved trace ID value does not affect behavior of the trace unit but it might cause
UNPREDICTABLE behavior of the trace capture infrastructure.

See the AMBA ATB Protocol Specification for information about which ATID values are reserved.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCTRACEIDR

Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCTRACEIDR

RES0

63 32

RES0

31 7

TRACEID

6 0

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8884
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCTRACEIDR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCTRACEIDR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCTRACEIDR;

MSR TRCTRACEIDR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8885
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCTRACEIDR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCTRACEIDR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCTRACEIDR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8886
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.63 TRCTSCTLR, Trace Timestamp Control Register

The TRCTSCTLR characteristics are:

Purpose

Controls the insertion of global timestamps in the trace stream.

Configurations

AArch64 System register TRCTSCTLR bits [31:0] are architecturally mapped to External register
TRCTSCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and TRCIDR0.TSSIZE != 0b00000. Otherwise, direct accesses to
TRCTSCTLR are UNDEFINED.

Attributes

TRCTSCTLR is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCTSCTLR.EVENT.SEL[4:0] selects the single Resource Selector, from 0-31, used
to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCTSCTLR.EVENT.SEL[3:0] selects the Resource Selector pair, from 0-15, that has
a Boolean function that is applied to it whose output is used to activate the resource
event. TRCTSCTLR.EVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

EVENT_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

Defines the selected Resource Selector or pair of Resource Selectors. TRCTSCTLR.EVENT.TYPE
controls whether TRCTSCTLR.EVENT.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

RES0

63 32

RES0

31 8 7

RES0

6 5

EVENT_SEL

4 0

EVENT_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8887
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TRCTSCTLR

Must be programmed if TRCCONFIGR.TS == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCTSCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCTSCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCTSCTLR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8888
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCTSCTLR;

MSR TRCTSCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCTSCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCTSCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCTSCTLR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8889
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.64 TRCVICTLR, Trace ViewInst Main Control Register

The TRCVICTLR characteristics are:

Purpose

Controls instruction trace filtering.

Configurations

AArch64 System register TRCVICTLR bits [31:0] are architecturally mapped to External register
TRCVICTLR[31:0].

This register is present only when FEAT_ETE is implemented and System register access to the
trace unit registers is implemented. Otherwise, direct accesses to TRCVICTLR are UNDEFINED.

Attributes

TRCVICTLR is a 64-bit register.

Field descriptions

Bits [63:27]

Reserved, RES0.

EXLEVEL_RL_EL2, bit [26]

When FEAT_RME is implemented:

Filter instruction trace for EL2 in Realm state.

0b0 When TRCVICTLR.EXLEVEL_NS_EL2 is 0 the trace unit generates instruction trace
for EL2 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL2 is 1 the trace unit does not generate
instruction trace for EL2 in Realm state.

0b1 When TRCVICTLR.EXLEVEL_NS_EL2 is 0 the trace unit does not generate
instruction trace for EL2 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL2 is 1 the trace unit generates instruction trace
for EL2 in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 27 26 25 24 23 22 21 20 19 18 17 16

RES0

15 12 11 10 9 8 7

RES0

6 5

Bits [4:0]

4 0

EXLEVEL_RL_EL2
EXLEVEL_RL_EL1

EXLEVEL_RL_EL0
RES0

EXLEVEL_NS_EL2
EXLEVEL_NS_EL1

EXLEVEL_NS_EL0
EXLEVEL_S_EL3

EVENT_TYPE
RES0

SSSTATUS
TRCRESET

TRCERR
EXLEVEL_S_EL0

EXLEVEL_S_EL1
EXLEVEL_S_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8890
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EXLEVEL_RL_EL1, bit [25]

When FEAT_RME is implemented:

Filter instruction trace for EL1 in Realm state.

0b0 When TRCVICTLR.EXLEVEL_NS_EL1 is 0 the trace unit generates instruction trace
for EL1 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL1 is 1 the trace unit does not generate
instruction trace for EL1 in Realm state.

0b1 When TRCVICTLR.EXLEVEL_NS_EL1 is 0 the trace unit does not generate
instruction trace for EL1 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL1 is 1 the trace unit generates instruction trace
for EL1 in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_RL_EL0, bit [24]

When FEAT_RME is implemented:

Filter instruction trace for EL0 in Realm state.

0b0 When TRCVICTLR.EXLEVEL_NS_EL0 is 0 the trace unit generates instruction trace
for EL0 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL0 is 1 the trace unit does not generate
instruction trace for EL0 in Realm state.

0b1 When TRCVICTLR.EXLEVEL_NS_EL0 is 0 the trace unit does not generate
instruction trace for EL0 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL0 is 1 the trace unit generates instruction trace
for EL0 in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

When Non-secure EL2 is implemented:

Filter instruction trace for EL2 in Non-secure state.

0b0 The trace unit generates instruction trace for EL2 in Non-secure state.

0b1 The trace unit does not generate instruction trace for EL2 in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL1, bit [21]

When Non-secure EL1 is implemented:

Filter instruction trace for EL1 in Non-secure state.

0b0 The trace unit generates instruction trace for EL1 in Non-secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8891
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
0b1 The trace unit does not generate instruction trace for EL1 in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [20]

When Non-secure EL0 is implemented:

Filter instruction trace for EL0 in Non-secure state.

0b0 The trace unit generates instruction trace for EL0 in Non-secure state.

0b1 The trace unit does not generate instruction trace for EL0 in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [19]

When EL3 is implemented:

Filter instruction trace for EL3.

0b0 The trace unit generates instruction trace for EL3.

0b1 The trace unit does not generate instruction trace for EL3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [18]

When Secure EL2 is implemented:

Filter instruction trace for EL2 in Secure state.

0b0 The trace unit generates instruction trace for EL2 in Secure state.

0b1 The trace unit does not generate instruction trace for EL2 in Secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [17]

When Secure EL1 is implemented:

Filter instruction trace for EL1 in Secure state.

0b0 The trace unit generates instruction trace for EL1 in Secure state.

0b1 The trace unit does not generate instruction trace for EL1 in Secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8892
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
EXLEVEL_S_EL0, bit [16]

When Secure EL0 is implemented:

Filter instruction trace for EL0 in Secure state.

0b0 The trace unit generates instruction trace for EL0 in Secure state.

0b1 The trace unit does not generate instruction trace for EL0 in Secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:12]

Reserved, RES0.

TRCERR, bit [11]

When TRCIDR3.TRCERR == 1:

Controls the forced tracing of System Error exceptions.

0b0 Forced tracing of System Error exceptions is disabled.

0b1 Forced tracing of System Error exceptions is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCRESET, bit [10]

Controls the forced tracing of PE Resets.

0b0 Forced tracing of PE Resets is disabled.

0b1 Forced tracing of PE Resets is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SSSTATUS, bit [9]

ViewInst start/stop function status.

0b0 Stopped State.

The ViewInst start/stop function is in the stopped state.

0b1 Started State.

The ViewInst start/stop function is in the started state.

Before software enables the trace unit, it must write to this field to set the initial state of the ViewInst
start/stop function. If the ViewInst start/stop function is not used then set this field to 1. Arm
recommends that the value of this field is set before each trace session begins.

If the trace unit becomes disabled while a start point or stop point is still speculative, then the value
of TRCVICTLR.SSSTATUS is UNKNOWN and might represent the result of a speculative start point
or stop point.

If software which is running on the PE being traced disables the trace unit, either by clearing
TRCPRGCTLR.EN or locking the OS Lock, Arm recommends that a DSB and an ISB instruction
are executed before disabling the trace unit to prevent any start points or stop points being
speculative at the point of disabling the trace unit. This procedure assumes that all start points or
stop points occur before the barrier instructions are executed. The procedure does not guarantee that
there are no speculative start points or stop points when disabling, although it helps minimize the
probability.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8893
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES1 if all of the following are true:

— TRCIDR4.NUMACPAIRS == 0b0000.

— TRCIDR4.NUMPC == 0b0000.

• Otherwise, access to this field is RW.

Bit [8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCVICTLR.EVENT.SEL[4:0] selects the single Resource Selector, from 0-31, used
to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCVICTLR.EVENT.SEL[3:0] selects the Resource Selector pair, from 0-15, that has
a Boolean function that is applied to it whose output is used to activate the resource
event. TRCVICTLR.EVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

Bits[4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

EVENT_SEL

Defines the selected Resource Selector or pair of Resource Selectors. TRCVICTLR.EVENT.TYPE
controls whether TRCVICTLR.EVENT.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

When TRCIDR4.NUMRSPAIR == 0b0000:

Reserved

This field is reserved:

• Bits [4:1] are RES0.

• Bit [0] is RES1.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8894
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing TRCVICTLR

Must be programmed.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVICTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRCVICTLR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVICTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVICTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVICTLR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8895
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCVICTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRCVICTLR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVICTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVICTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVICTLR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8896
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.65 TRCVIIECTLR, Trace ViewInst Include/Exclude Control Register

The TRCVIIECTLR characteristics are:

Purpose

Use this to select, or read, the Address Range Comparators for the ViewInst include/exclude
function.

Configurations

AArch64 System register TRCVIIECTLR bits [31:0] are architecturally mapped to External
register TRCVIIECTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMACPAIRS) > 0. Otherwise, direct accesses
to TRCVIIECTLR are UNDEFINED.

Attributes

TRCVIIECTLR is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

EXCLUDE[<m>], bit [m+16], for m = 7 to 0

Exclude Address Range Comparator <m>. Selects whether Address Range Comparator <m> is in
use with the ViewInst exclude function.

0b0 The address range that Address Range Comparator <m> defines, is not selected for the
ViewInst exclude function.

0b1 The address range that Address Range Comparator <m> defines, is selected for the
ViewInst exclude function.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Bits [15:8]

Reserved, RES0.

RES0

63 32

RES0

31 24 23 22 21 20 19 18 17 16

RES0

15 8 7 6 5 4 3 2 1 0

EXCLUDE[7]
EXCLUDE[6]

EXCLUDE[5]
EXCLUDE[4]

EXCLUDE[3]
EXCLUDE[2]

EXCLUDE[1]
EXCLUDE[0]

INCLUDE[0]

INCLUDE[1]
INCLUDE[2]

INCLUDE[3]
INCLUDE[4]

INCLUDE[5]
INCLUDE[6]

INCLUDE[7]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8897
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
INCLUDE[<m>], bit [m], for m = 7 to 0

Include Address Range Comparator <m>.

Selects whether Address Range Comparator <m> is in use with the ViewInst include function.

Selecting no comparators for the ViewInst include function indicates that all instructions are
included by default.

The ViewInst exclude function then indicates which ranges are excluded.

0b0 The address range that Address Range Comparator <m> defines, is not selected for the
ViewInst include function.

0b1 The address range that Address Range Comparator <m> defines, is selected for the
ViewInst include function.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCVIIECTLR

Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVIIECTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVIIECTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8898
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVIIECTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVIIECTLR;

MSR TRCVIIECTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVIIECTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVIIECTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8899
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVIIECTLR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8900
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.66 TRCVIPCSSCTLR, Trace ViewInst Start/Stop PE Comparator Control Register

The TRCVIPCSSCTLR characteristics are:

Purpose

Use this to select, or read, which PE Comparator Inputs can control the ViewInst start/stop function.

Configurations

AArch64 System register TRCVIPCSSCTLR bits [31:0] are architecturally mapped to External
register TRCVIPCSSCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMPC) > 0. Otherwise, direct accesses to
TRCVIPCSSCTLR are UNDEFINED.

Attributes

TRCVIPCSSCTLR is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

STOP[<m>], bit [m+16], for m = 7 to 0

Selects whether PE Comparator Input <m> is in use with the ViewInst start/stop function for the
purpose of stopping trace.

0b0 The PE Comparator Input <m> is not selected as a stop resource.

0b1 The PE Comparator Input <m> is selected as a stop resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMPC), access to this field is RES0.

• Otherwise, access to this field is RW.

Bits [15:8]

Reserved, RES0.

START[<m>], bit [m], for m = 7 to 0

Selects whether PE Comparator Input <m> is in use with the ViewInst start/stop function for the
purpose of starting trace.

0b0 The PE Comparator Input <m> is not selected as a start resource.

0b1 The PE Comparator Input <m> is selected as a start resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 24 23 22 21 20 19 18 17 16

RES0

15 8 7 6 5 4 3 2 1 0

STOP[7]
STOP[6]

STOP[5]
STOP[4]

STOP[0]
STOP[1]

STOP[2]
STOP[3]

START[7]
START[6]

START[5]
START[4]

START[0]
START[1]

START[2]
START[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8901
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMPC), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCVIPCSSCTLR

Must be programmed if TRCIDR4.NUMPC != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVIPCSSCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVIPCSSCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVIPCSSCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVIPCSSCTLR;

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8902
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
MSR TRCVIPCSSCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVIPCSSCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVIPCSSCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVIPCSSCTLR = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8903
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.67 TRCVISSCTLR, Trace ViewInst Start/Stop Control Register

The TRCVISSCTLR characteristics are:

Purpose

Use this to select, or read, the Single Address Comparators for the ViewInst start/stop function.

Configurations

AArch64 System register TRCVISSCTLR bits [31:0] are architecturally mapped to External
register TRCVISSCTLR[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMACPAIRS) > 0. Otherwise, direct accesses
to TRCVISSCTLR are UNDEFINED.

Attributes

TRCVISSCTLR is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

STOP[<m>], bit [m+16], for m = 15 to 0

Selects whether Single Address Comparator <m> is used with the ViewInst start/stop function for
the purpose of stopping trace.

0b0 The Single Address Comparator <m> is not selected as a stop resource.

0b1 The Single Address Comparator <m> is selected as a stop resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS) * 2, access to this field is RES0.

• Otherwise, access to this field is RW.

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STOP[15]
STOP[14]

STOP[13]
STOP[12]

STOP[11]
STOP[10]

STOP[9]
STOP[8]

STOP[7]
STOP[6]

STOP[5]
STOP[4]

STOP[3]
STOP[2]

STOP[1]
STOP[0]

START[0]
START[1]

START[2]
START[3]

START[4]
START[5]

START[6]
START[7]

START[8]
START[9]

START[10]
START[11]

START[12]
START[13]

START[14]
START[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8904
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
START[<m>], bit [m], for m = 15 to 0

Selects whether Single Address Comparator <m> is used with the ViewInst start/stop function for
the purpose of starting trace.

0b0 The Single Address Comparator <m> is not selected as a start resource.

0b1 The Single Address Comparator <m> is selected as a start resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS) * 2, access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCVISSCTLR

Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

For any 2 comparators selected for the ViewInst start/stop function, the comparator containing the lower address
must be a lower numbered comparator.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVISSCTLR

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVISSCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8905
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVISSCTLR;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVISSCTLR;

MSR TRCVISSCTLR, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVISSCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVISSCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);

op0 op1 CRn CRm op2

0b10 0b001 0b0000 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8906
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 else
 TRCVISSCTLR = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8907
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.68 TRCVMIDCCTLR0, Trace Virtual Context Identifier Comparator Control Register 0

The TRCVMIDCCTLR0 characteristics are:

Purpose

Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where
n=0-3.

Configurations

AArch64 System register TRCVMIDCCTLR0 bits [31:0] are architecturally mapped to External
register TRCVMIDCCTLR0[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented, UInt(TRCIDR4.NUMVMIDC) > 0x0 and
UInt(TRCIDR2.VMIDSIZE) > 0. Otherwise, direct accesses to TRCVMIDCCTLR0 are
UNDEFINED.

Attributes

TRCVMIDCCTLR0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

COMP3[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 3:

TRCVMIDCVR3 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR3. Each bit in this field corresponds to a byte in TRCVMIDCVR3.

0b0 The trace unit includes TRCVMIDCVR3[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR3[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP2[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 2:

TRCVMIDCVR2 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR2. Each bit in this field corresponds to a byte in TRCVMIDCVR2.

0b0 The trace unit includes TRCVMIDCVR2[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR2[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

RES0

63 32

COMP3[<m>]

31 24

COMP2[<m>]

23 16

COMP1[<m>]

15 8

COMP0[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8908
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP1[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 1:

TRCVMIDCVR1 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR1. Each bit in this field corresponds to a byte in TRCVMIDCVR1.

0b0 The trace unit includes TRCVMIDCVR1[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR1[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP0[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 0:

TRCVMIDCVR0 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR0. Each bit in this field corresponds to a byte in TRCVMIDCVR0.

0b0 The trace unit includes TRCVMIDCVR0[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR0[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCVMIDCCTLR0

If software uses the TRCVMIDCVR<n> registers, where n=0-3, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVMIDCCTLR0

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8909
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCCTLR0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCCTLR0;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCCTLR0;

MSR TRCVMIDCCTLR0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8910
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCCTLR0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCCTLR0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCCTLR0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8911
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.69 TRCVMIDCCTLR1, Trace Virtual Context Identifier Comparator Control Register 1

The TRCVMIDCCTLR1 characteristics are:

Purpose

Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where
n=4-7.

Configurations

AArch64 System register TRCVMIDCCTLR1 bits [31:0] are architecturally mapped to External
register TRCVMIDCCTLR1[31:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented, UInt(TRCIDR4.NUMVMIDC) > 0x4 and
UInt(TRCIDR2.VMIDSIZE) > 0. Otherwise, direct accesses to TRCVMIDCCTLR1 are
UNDEFINED.

Attributes

TRCVMIDCCTLR1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

COMP7[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 7:

TRCVMIDCVR7 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR7. Each bit in this field corresponds to a byte in TRCVMIDCVR7.

0b0 The trace unit includes TRCVMIDCVR7[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR7[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP6[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 6:

TRCVMIDCVR6 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR6. Each bit in this field corresponds to a byte in TRCVMIDCVR6.

0b0 The trace unit includes TRCVMIDCVR6[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR6[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

RES0

63 32

COMP7[<m>]

31 24

COMP6[<m>]

23 16

COMP5[<m>]

15 8

COMP4[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8912
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP5[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 5:

TRCVMIDCVR5 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR5. Each bit in this field corresponds to a byte in TRCVMIDCVR5.

0b0 The trace unit includes TRCVMIDCVR5[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR5[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP4[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 4:

TRCVMIDCVR4 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR4. Each bit in this field corresponds to a byte in TRCVMIDCVR4.

0b0 The trace unit includes TRCVMIDCVR4[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR4[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing TRCVMIDCCTLR1

If software uses the TRCVMIDCVR<n> registers, where n=4-7, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVMIDCCTLR1

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8913
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCCTLR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCCTLR1;
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCCTLR1;

MSR TRCVMIDCCTLR1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then

op0 op1 CRn CRm op2

0b10 0b001 0b0011 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8914
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCCTLR1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCCTLR1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCCTLR1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8915
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
D23.4.70 TRCVMIDCVR<n>, Trace Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

The TRCVMIDCVR<n> characteristics are:

Purpose

Contains the Virtual Context Identifier Comparator value.

Configurations

AArch64 System register TRCVMIDCVR<n> bits [63:0] are architecturally mapped to External
register TRCVMIDCVR<n>[63:0].

This register is present only when FEAT_ETE is implemented, System register access to the trace
unit registers is implemented and UInt(TRCIDR4.NUMVMIDC) > n. Otherwise, direct accesses to
TRCVMIDCVR<n> are UNDEFINED.

Attributes

TRCVMIDCVR<n> is a 64-bit register.

Field descriptions

VALUE, bits [63:0]

Virtual context identifier value. The width of this field is indicated by TRCIDR2.VMIDSIZE.
Unimplemented bits are RES0. After a PE Reset, the trace unit assumes that the Virtual context
identifier is zero until the PE updates the Virtual context identifier .

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing TRCVMIDCVR<n>

Must be programmed if any of the following are true:

• TRCRSCTLR<n>.GROUP == 0b0111 and TRCRSCTLR<n>.VMID[n] == 1.

• TRCACATR<n>.CONTEXTTYPE == 0b10 or 0b11 and TRCACATR<n>.CONTEXT == n.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCVMIDCVR<m>; Where m = 0-7

integer m = UInt(CRm<3:1>);

if m >= NUM_TRACE_VIRTUAL_CONTEXT_IDENTIFIER_COMPARATORS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then

VALUE

63 32

VALUE

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b0011 m[2:0]:0b0 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8916
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCVR[m];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 X[t, 64] = TRCVMIDCVR[m];

MSR TRCVMIDCVR<m>, <Xt>; Where m = 0-7

integer m = UInt(CRm<3:1>);

if m >= NUM_TRACE_VIRTUAL_CONTEXT_IDENTIFIER_COMPARATORS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPACR_EL1.TTA == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.TRC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b001 0b0011 m[2:0]:0b0 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8917
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.4 Trace registers
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK == '0' && HaltingAllowed()
&& EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCVR[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TTA == '1' then
 UNDEFINED;
 elsif CPTR_EL2.TTA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCVR[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 if CPTR_EL3.TTA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_TRBE_EXT) && OSLSR_EL1.OSLK ==
'0' && HaltingAllowed() && EDSCR2.TTA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 TRCVMIDCVR[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8918
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5 Performance Monitors registers

This section lists the Performance Monitoring registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8919
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCCFILTR[31:0].

AArch64 System register PMCCFILTR_EL0 bits [63:32] are architecturally mapped to External
register PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register[63:32] when
FEAT_PMUv3_TH is implemented, or FEAT_PMUv3p8 is implemented or
FEAT_PMUv3_EXT64 is implemented.

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to External
register PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCCFILTR_EL0 are UNDEFINED.

Attributes

PMCCFILTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

P, bit [31]

EL1 filtering. Controls counting cycles in EL1.

0b0 This mechanism has no effect on filtering of cycles.

0b1 The PE does not count cycles in EL1.

If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL1 is further
controlled by PMCCFILTR_EL0.NSK.

If FEAT_RME is implemented, then counting cycles in Realm EL1 is further controlled by
PMCCFILTR_EL0.RLK.

If EL3 is implemented, then counting cycles in EL3 is further controlled by PMCCFILTR_EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

EL0 filtering. Controls counting cycles in EL0.

0b0 This mechanism has no effect on filtering of cycles.

0b1 The PE does not count cycles in EL0.

RES0

63 32

P

31

U

30 29 28 27

M

26 25

SH

24

T

23 22 21 20

RES0

19 0

NSK
NSU

NSH

RLH
RLU

RLK
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8920
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL0 is further
controlled by PMCCFILTR_EL0.NSU.

If FEAT_RME is implemented, then counting cycles in Realm EL0 is further controlled by
PMCCFILTR_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting cycles in Non-secure EL1. If PMCCFILTR_EL0.NSK
is not equal to PMCCFILTR_EL0.P, then the PE does not count cycles in Non-secure EL1.
Otherwise, this mechanism has no effect on filtering of cycles in Non-secure EL1.

0b0 When PMCCFILTR_EL0.P == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.P == 1, the PE does not count cycles in Non-secure EL1.

0b1 When PMCCFILTR_EL0.P == 0, the PE does not count cycles in Non-secure EL1.

When PMCCFILTR_EL0.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting cycles in Non-secure EL0. If PMCCFILTR_EL0.NSU
is not equal to PMCCFILTR_EL0.U, then the PE does not count cycles in Non-secure EL0.
Otherwise, this mechanism has no effect on filtering of cycles in Non-secure EL0.

0b0 When PMCCFILTR_EL0.U == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.U == 1, the PE does not count cycles in Non-secure EL0.

0b1 When PMCCFILTR_EL0.U == 0, the PE does not count cycles in Non-secure EL0.

When PMCCFILTR_EL0.U == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting cycles in EL2.

0b0 The PE does not count cycles in EL2.

0b1 This mechanism has no effect on filtering of cycles.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting cycles in Secure EL2 is
further controlled by PMCCFILTR_EL0.SH.

If FEAT_RME is implemented, then counting cycles in Realm EL2 is further controlled by
PMCCFILTR_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8921
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
M, bit [26]

When EL3 is implemented:

EL3 filtering. Controls counting cycles in EL3. If PMCCFILTR_EL0.M is not equal to
PMCCFILTR_EL0.P, then the PE does not count cycles in EL3. Otherwise, this mechanism has no
effect on filtering of cycles in EL3.

0b0 When PMCCFILTR_EL0.P == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.P == 1, the PE does not count cycles in EL3.

0b1 When PMCCFILTR_EL0.P == 0, the PE does not count cycles in EL3.

When PMCCFILTR_EL0.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When EL3 is implemented and FEAT_SEL2 is implemented:

Secure EL2 filtering. Controls counting cycles in Secure EL2. If PMCCFILTR_EL0.SH is equal to
PMCCFILTR_EL0.NSH, then the PE does not count cycles in Secure EL2. Otherwise, this
mechanism has no effect on filtering of cycles in Secure EL2.

0b0 When PMCCFILTR_EL0.NSH == 0, the PE does not count cycles in Secure EL2.

When PMCCFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
cycles.

0b1 When PMCCFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
cycles.

When PMCCFILTR_EL0.NSH == 1, the PE does not count cycles in Secure EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When Secure EL2 is not implemented, access to this field is RES0.

Otherwise:

Reserved, RES0.

T, bit [23]

When FEAT_TME is implemented:

Non-Transactional state filtering bit. Controls counting of cycles in Non-transactional state.

0b0 This bit has no effect on the filtering of cycles.

0b1 Do not count Attributable cycles in Non-transactional state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8922
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
RLK, bit [22]

When FEAT_RME is implemented:

Realm EL1 filtering. Controls counting cycles in Realm EL1. If PMCCFILTR_EL0.RLK is not
equal to PMCCFILTR_EL0.P, then the PE does not count cycles in Realm EL1. Otherwise, this
mechanism has no effect on filtering of cycles in Realm EL1.

0b0 When PMCCFILTR_EL0.P == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.P == 1, the PE does not count cycles in Realm EL1.

0b1 When PMCCFILTR_EL0.P == 0, the PE does not count cycles in Realm EL1.

When PMCCFILTR_EL0.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting cycles in Realm EL0. If PMCCFILTR_EL0.RLU is not
equal to PMCCFILTR_EL0.U, then the PE does not count cycles in Realm EL0. Otherwise, this
mechanism has no effect on filtering of cycles in Realm EL0.

0b0 When PMCCFILTR_EL0.U == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.U == 1, the PE does not count cycles in Realm EL0.

0b1 When PMCCFILTR_EL0.U == 0, the PE does not count cycles in Realm EL0.

When PMCCFILTR_EL0.U == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLH, bit [20]

When FEAT_RME is implemented:

Realm EL2 filtering. Controls counting cycles in Realm EL2. If PMCCFILTR_EL0.RLH is equal
to PMCCFILTR_EL0.NSH, then the PE does not count cycles in Realm EL2. Otherwise, this
mechanism has no effect on filtering of cycles in Realm EL2.

0b0 When PMCCFILTR_EL0.NSH == 0, the PE does not count cycles in Realm EL2.

When PMCCFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
cycles.

0b1 When PMCCFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
cycles.

When PMCCFILTR_EL0.NSH == 1, the PE does not count cycles in Realm EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:0]

Reserved, RES0.

Accessing PMCCFILTR_EL0

PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8923
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Permitted reads and writes of PMCCFILTR_EL0 are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.C == 0.

Permitted writes of PMCCFILTR_EL0 are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.{UEN,CR} == {1,1}.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCCFILTR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCFILTR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCFILTR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b1111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8924
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCFILTR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCCFILTR_EL0;

MSR PMCCFILTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b1111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8925
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 PMCCFILTR_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8926
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.2 PMCCNTR_EL0, Performance Monitors Cycle Count Register

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See Time
as measured by the Performance Monitors cycle counter for more information.

PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configurations

AArch64 System register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch32
System register PMCCNTR[63:0].

AArch64 System register PMCCNTR_EL0 bits [63:0] are architecturally mapped to External
register PMCCNTR_EL0, Performance Monitors Cycle Counter[63:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCCNTR_EL0 are UNDEFINED.

All counters are subject to any changes in clock frequency, including clock stopping caused by the
WFI and WFE instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not
PMCCNTR_EL0 continues to increment when clocks are stopped by WFI and WFE instructions.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR_EL0.{LC,D}, this field increments in one of the
following ways:

• Every processor clock cycle.

• Every 64th processor clock cycle.

Writing 1 to PMCR_EL0.C sets this field to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTR_EL0

Permitted reads and writes of PMCCNTR_EL0 are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.C == 0.

Permitted writes of PMCCNTR_EL0 are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

CCNT

63 32

CCNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8927
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• PSTATE.EL == EL0.

• PMUSERENR_EL0.{UEN,CR} == {1,1}.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCCNTR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,CR,EN> == '000') ||
(!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<CR,EN> == '00') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCNTR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCNTR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCNTR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCCNTR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8928
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR PMCCNTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCNTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCNTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCNTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMCCNTR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8929
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.3 PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register

The PMCCNTSVR_EL1 characteristics are:

Purpose

Captures the PMU Cycle counter, PMCCNTR_EL0.

Configurations

AArch64 System register PMCCNTSVR_EL1 bits [63:0] are architecturally mapped to External
register PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register[63:0].

This register is present only when FEAT_PMUv3_SS is implemented. Otherwise, direct accesses to
PMCCNTSVR_EL1 are UNDEFINED.

Attributes

PMCCNTSVR_EL1 is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Sampled Cycle Count. The value of PMCCNTR_EL0 at the last successful Capture event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTSVR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCCNTSVR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMSSDATA == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCNTSVR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then

CCNT

63 32

CCNT

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b1110 0b1011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8930
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCCNTSVR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCCNTSVR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8931
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.4 PMCEID0_EL0, Performance Monitors Common Event Identification Register 0

The PMCEID0_EL0 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

For more information about the Common events and the use of the PMCEID<n>_EL0 registers see
The PMU event number space and common events.

Configurations

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCEID0[31:0].

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to AArch32
System register PMCEID2[31:0].

AArch64 System register PMCEID0_EL0 bits [31:0] are architecturally mapped to External
register PMCEID0, Performance Monitors Common Event Identification register 0[31:0].

AArch64 System register PMCEID0_EL0 bits [63:32] are architecturally mapped to External
register PMCEID2, Performance Monitors Common Event Identification register 2[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCEID0_EL0 are UNDEFINED.

Attributes

PMCEID0_EL0 is a 64-bit register.

Field descriptions

IDhi<n>, bit [n+32], for n = 31 to 0

When FEAT_PMUv3p1 is implemented:

IDhi[n] corresponds to Common event (0x4000 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

IDhi<n>

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8932
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note
Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Common event n.

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing PMCEID0_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCEID0_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.TID == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8933
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCEID0_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCEID0_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCEID0_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCEID0_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8934
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.5 PMCEID1_EL0, Performance Monitors Common Event Identification Register 1

The PMCEID1_EL0 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

For more information about the Common events and the use of the PMCEID<n>_EL0 registers see
The PMU event number space and common events.

Configurations

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCEID1[31:0].

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to AArch32
System register PMCEID3[31:0].

AArch64 System register PMCEID1_EL0 bits [31:0] are architecturally mapped to External
register PMCEID1, Performance Monitors Common Event Identification register 1[31:0].

AArch64 System register PMCEID1_EL0 bits [63:32] are architecturally mapped to External
register PMCEID3, Performance Monitors Common Event Identification register 3[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCEID1_EL0 are UNDEFINED.

Attributes

PMCEID1_EL0 is a 64-bit register.

Field descriptions

IDhi<n>, bit [n+32], for n = 31 to 0

When FEAT_PMUv3p1 is implemented:

IDhi[n] corresponds to Common event (0x4020 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

IDhi<n>

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8935
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note
Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Common event (0x0020 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing PMCEID1_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCEID1_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.TID == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8936
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCEID1_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCEID1_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCEID1_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCEID1_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8937
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.6 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Allows software to disable the following counters:

• The cycle counter PMCCNTR_EL0.

• The event counters PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Reading from this register shows which counters are enabled.

Configurations

AArch64 System register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCNTENCLR[31:0].

AArch64 System register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to External
register PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register[31:0].

AArch64 System register PMCNTENCLR_EL0 bits [63:32] are architecturally mapped to External
register PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register[63:32] when
FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCNTENCLR_EL0 are UNDEFINED.

Attributes

PMCNTENCLR_EL0 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

Fixed-function counter <m> disable. On writes, allows software to disable fixed-function counter
<m>. On reads, returns the fixed-function counter <m> enable status.

0b0 Fixed-function counter <m> disabled.

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8938
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0b1 Fixed-function counter <m> enabled.

PMCNTENCLR_EL0.F0 holds the enable status for PMICNTR_EL0.

Accessing this field has the following behavior:

• This field reads-as-zero if all of the following are true:

— Any of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0.

— HDFGRTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

— Accessed at EL2, EL1, or EL0.

— All of the following are true:

— PMUSERENR_EL0.UEN == 0 or PMUACR_EL1.F<m> == 0.

— Accessed at EL0.

• Permitted writes of this field are ignored if any of the following are true:

— All of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0, or
HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.IR == 1.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 disable. On writes, allows software to disable PMCCNTR_EL0. On reads, returns
the PMCCNTR_EL0 enable status.

0b0 PMCCNTR_EL0 disabled.

0b1 PMCCNTR_EL0 enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8939
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n>_EL0 disable. On writes, allows software to disable PMEVCNTR<n>_EL0. On
reads, returns the PMEVCNTR<n>_EL0 enable status.

0b0 PMEVCNTR<n>_EL0 disabled.

0b1 PMEVCNTR<n>_EL0 enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL0 or EL1.

— m >= UInt(PMCR_EL0.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCNTENCLR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCNTENCLR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8940
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCNTENCLR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCNTENCLR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCNTENCLR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCNTENCLR_EL0;

MSR PMCNTENCLR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8941
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENCLR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENCLR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENCLR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMCNTENCLR_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8942
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.7 PMCNTENSET_EL0, Performance Monitors Count Enable Set Register

The PMCNTENSET_EL0 characteristics are:

Purpose

Allows software to enable the following counters:

• The cycle counter PMCCNTR_EL0.

• The event counters PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Reading from this register shows which counters are enabled.

Configurations

AArch64 System register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMCNTENSET[31:0].

AArch64 System register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to External
register PMCNTENSET_EL0, Performance Monitors Count Enable Set Register[31:0].

AArch64 System register PMCNTENSET_EL0 bits [63:32] are architecturally mapped to External
register PMCNTENSET_EL0, Performance Monitors Count Enable Set Register[63:32] when
FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCNTENSET_EL0 are UNDEFINED.

Attributes

PMCNTENSET_EL0 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

Fixed-function counter <m> enable. On writes, allows software to enable fixed-function counter
<m>. On reads, returns the fixed-function counter <m> enable status.

0b0 Fixed-function counter <m> disabled.

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8943
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0b1 Fixed-function counter <m> enabled.

PMCNTENSET_EL0.F0 holds the enable status for PMICNTR_EL0.

Accessing this field has the following behavior:

• This field reads-as-zero if all of the following are true:

— Any of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0.

— HDFGRTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

— Accessed at EL2, EL1, or EL0.

— All of the following are true:

— PMUSERENR_EL0.UEN == 0 or PMUACR_EL1.F<m> == 0.

— Accessed at EL0.

• Permitted writes of this field are ignored if any of the following are true:

— All of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0, or
HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.IR == 1.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 enable. On writes, allows software to enable PMCCNTR_EL0. On reads, returns
the PMCCNTR_EL0 enable status.

0b0 PMCCNTR_EL0 disabled.

0b1 PMCCNTR_EL0 enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8944
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n>_EL0 enable. On writes, allows software to enable PMEVCNTR<n>_EL0. On
reads, returns the PMEVCNTR<n>_EL0 enable status.

0b0 PMEVCNTR<n>_EL0 disabled.

0b1 PMEVCNTR<n>_EL0 enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL0 or EL1.

— m >= UInt(PMCR_EL0.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCNTENSET_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCNTENSET_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8945
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCNTENSET_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCNTENSET_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCNTENSET_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCNTENSET_EL0;

MSR PMCNTENSET_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8946
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENSET_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENSET_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCNTENSET_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMCNTENSET_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8947
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.8 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCR[31:0].

AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to External register
PMCR_EL0, Performance Monitors Control Register[31:0].

AArch64 System register PMCR_EL0 bits [63:32] are architecturally mapped to External register
PMCR_EL0, Performance Monitors Control Register[63:32] when FEAT_PMUv3_EXT64 is
implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCR_EL0 are UNDEFINED.

Attributes

PMCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

FZS, bit [32]

When FEAT_SPEv1p2 is implemented and FEAT_SPE_DPFZS is implemented:

Freeze-on-SPE event.

Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and PMBSR_EL1.S == 1.

In the description of this field:

• If EL2 is implemented, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Do not freeze on a Statistical Profiling Buffer Management event.

0b1 Affected counters do not count following a Statistical Profiling Buffer Management
event.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n>_EL0 for values of n less than PMN.
This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

RES0

63 33 32

FZS

IMP

31 24

IDCODE

23 16

N

15 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8948
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• If PMCR_EL0.DP is 1, the cycle counter PMCCNTR_EL0.

Other event counters are not affected by this field.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

When FEAT_SPEv1p2 is implemented:

Freeze-on-SPE event.

Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and PMBSR_EL1.S == 1.

In the description of this field:

• If EL2 is implemented, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Do not freeze on a Statistical Profiling Buffer Management event.

0b1 Affected counters do not count following a Statistical Profiling Buffer Management
event.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n>_EL0 for values of n less than PMN.
This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Other event counters and PMCCNTR_EL0 are not affected by this field.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMP, bits [31:24]

When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to
identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A nonzero value has the same interpretation as
MIDR_EL1.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]

When PMCR_EL0.IMP != 0b00000000:

Identification code. Use of this field is deprecated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8949
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Each implementer must maintain a list of identification codes that are specific to the implementer.
A specific implementation is identified by the combination of the implementer code and the
identification code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111.
If the value is 0b00000, then only PMCCNTR_EL0 is implemented. If the value is 0b11111, then
PMCCNTR_EL0 and 31 event counters are implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1
and EL0 return the value of MDCR_EL2.HPMN.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow.

Stop event counters on overflow.

In the description of this field:

• If EL2 is implemented, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Do not freeze on overflow.

0b1 Affected counters do not count when any of the following applies:

• For any value of m less than PMN, PMOVSCLR_EL0[m] is 1, and either
FEAT_SEBEP is not implemented or PMEVTYPER<n>_EL0.SYNC is 0.

• FEAT_PMUv3_ICNTR is implemented, PMOVSCLR_EL0.F0 is 1, and either
FEAT_SEBEP is not implemented or PMICFILTR_EL0.SYNC is 0.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n>_EL0 for values of n less than PMN.
This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter PMCCNTR_EL0.

Other event counters are not affected by this field.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8950
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable.

Determines which event counter bit generates an overflow recorded by PMOVSR[n].

In the description of this field:

• If EL2 is implemented, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Affected counters overflow on unsigned overflow of PMEVCNTR<n>_EL0[31:0].

0b1 Affected counters overflow on unsigned overflow of PMEVCNTR<n>_EL0[63:0].

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n>_EL0 for values of n less than PMN.
This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>_EL0.

Other event counters, PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMICNTR_EL0 are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[63:0].

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.

Arm deprecates use of PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When (FEAT_PMUv3p1 is implemented and EL2 is implemented) or EL3 is implemented:

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is disabled in prohibited regions and when event
counting is frozen:

• If FEAT_PMUv3p1 is implemented, EL2 is implemented, and
MDCR_EL2.HPMD is 1, then cycle counting by PMCCNTR_EL0 is disabled at
EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8951
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• If FEAT_PMUv3p7 is implemented, EL3 is implemented and using AArch64,
and MDCR_EL3.MPMX is 1, then cycle counting by PMCCNTR_EL0 is
disabled at EL3.

• If FEAT_PMUv3p7 is implemented and event counting is frozen by
PMCR_EL0.FZO, then cycle counting by PMCCNTR_EL0 is disabled.

• If FEAT_SPE_DPFZS is implemented and event counting is frozen by
PMCR_EL0.FZS, then cycle counting by PMCCNTR_EL0 is disabled.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either FEAT_PMUv3p7 is
not implemented or MDCR_EL3.MPMX is 0, then cycle counting by
PMCCNTR_EL0 is disabled at EL3 and in Secure state.

The conditions when this field disables the cycle counter are the same as when event counting by
an event counter PMEVCNTR<n>_EL0 is prohibited or frozen, when either EL2 is not
implemented or n is less than MDCR_EL2.HPMN.

If FEAT_PMUv3p7 and FEAT_SPEv1p2 are implemented, meaning PMCR_EL0.FZS is
implemented, and FEAT_SPE_DPFZS is not implemented, then cycle counting by
PMCCNTR_EL0 is not affected by PMCR_EL0.FZS.

For more information, see Prohibiting counting.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported:

Clock divider.

0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.

0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8952
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is
implemented, the value of PMCR_EL0.LC is ignored, and bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 No action.

0b1 If n is in the range of affected event counters, resets each event counter
PMEVCNTR<n>_EL0 to zero.

The effects of writing to this bit are:

• If EL2 is implemented and enabled in the current Security state, in EL0 and EL1, and PMN
is not 0, then a write of 1 to this bit resets event counters in the range [0 .. (PMN-1)].

• If EL2 is disabled in the current Security state, then a write of 1 to this bit resets all the event
counters.

• In EL2 and EL3, a write of 1 to this bit resets all the event counters.

• This field does not affect the operation of other event counters and PMCCNTR_EL0.

Note

Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5
is implemented, the values of MDCR_EL2.HLP and PMCR_EL0.LP are ignored, and bits [63:0] of
all affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

In the description of this field:

• If EL2 is implemented, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Affected counters are disabled and do not count.

0b1 Affected counters are enabled by PMCNTENSET_EL0.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n>_EL0 for values of n less than PMN.
This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

• The cycle counter PMCCNTR_EL0.

Other event counters are not affected by this field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8953
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' || (IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.UEN == '1') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMCR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMCR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8954
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR PMCR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' || (IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.UEN == '1') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMCR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8955
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.9 PMECR_EL1, Performance Monitors Extended Control Register (EL1)

The PMECR_EL1 characteristics are:

Purpose

Provides EL1 configuration options for the Performance Monitors.

Configurations

This register is present only when FEAT_EBEP is implemented or FEAT_PMUv3_SS is
implemented. Otherwise, direct accesses to PMECR_EL1 are UNDEFINED.

Attributes

PMECR_EL1 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

SSE, bits [4:3]

When FEAT_PMUv3_SS is implemented:

Snapshot Enable. Controls the generation of Capture events.

0b00 Capture events are disabled.

0b10 Capture events are enabled and prohibited.

0b11 Capture events are enabled and allowed.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset:

— When the highest implemented Exception level is EL1, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

KPME, bit [2]

When FEAT_EBEP is implemented:

Local (Kernel) PMU Exception Enable. Enables PMU exceptions taken to the current Exception
level.

0b0 PMU exceptions taken to the current Exception level are disabled.

0b1 PMU exceptions taken to the current Exception level are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 5

SSE

4 3 2

PMEE

1 0

KPME
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8956
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
PMEE, bits [1:0]

When FEAT_EBEP is implemented:

Performance Monitors Exception Enable. Controls the generation of PMUIRQ signal and PMU
exception at EL0 and EL1.

0b00 PMUIRQ signal is enabled, and PMU exception is disabled.

0b10 PMUIRQ signal is disabled, and PMU exception is disabled.

0b11 PMUIRQ signal is disabled, and PMU exception is enabled.

All other values are reserved.

This field is ignored by the PE when any of the following are true:

• All of the following are true:

— EL3 is implemented.

— MDCR_EL3.PMEE != 0b01.

• All of the following are true:

— EL2 is implemented and enabled in the current Security State.

— MDCR_EL2.PMEE != 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing PMECR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMECR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMECR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMECR_EL1;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8957
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMECR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMECR_EL1;

MSR PMECR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMECR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMECR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8958
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 PMECR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMECR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8959
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.10 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configurations

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMEVCNTR<n>[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to External
register PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [63:32] are architecturally mapped to
External register PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 -
30[63:32] when FEAT_PMUv3p5 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMEVCNTR<n>_EL0 are UNDEFINED.

Attributes

PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions

When FEAT_PMUv3p5 is implemented:

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

Event counter n

63 32

Event counter n

31 0

RES0

63 32

Event counter n

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8960
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTR<n>_EL0

PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the
value of <n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest
accessible event counter.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMEVCNTR<n>_EL0 are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.P<n> == 0.

Permitted writes of PMEVCNTR<n>_EL0 are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.{UEN,ER} == {1,1}.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{UEN,ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVCNTR<m>_EL0; Where m = 0-30

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b10:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8961
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
integer m = UInt(CRm<1:0>:op2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,ER,EN> == '000') ||
(!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<ER,EN> == '00') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTR_EL0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTR_EL0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTR_EL0[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMEVCNTR_EL0[m];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8962
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR PMEVCNTR<m>_EL0, <Xt>; Where m = 0-30

integer m = UInt(CRm<1:0>:op2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[m] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b10:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8963
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMEVCNTR_EL0[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8964
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.11 PMEVCNTSVR<n>_EL1, Performance Monitors Event Count Saved Value Register <n>, n = 0
- 30

The PMEVCNTSVR<n>_EL1 characteristics are:

Purpose

Captures the PMU Event counter <n>, PMEVCNTR<n>_EL0.

Configurations

AArch64 System register PMEVCNTSVR<n>_EL1 bits [63:0] are architecturally mapped to
External register PMEVCNTSVR<n>_EL1[63:0].

This register is present only when FEAT_PMUv3_SS is implemented. Otherwise, direct accesses to
PMEVCNTSVR<n>_EL1 are UNDEFINED.

Attributes

PMEVCNTSVR<n>_EL1 is a 64-bit register.

Field descriptions

EVCNT, bits [63:0]

Sampled Event Count. The value of PMEVCNTR<n>_EL0 at the last successful Capture event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTSVR<n>_EL1

If <n> is greater-than-or-equal-to the number of implemented event counters, then direct reads of
PMEVCNTSVR<n>_EL1 are UNDEFINED.

Otherwise, direct reads of PMEVCNTSVR<n>_EL1 generate a Trap exception to EL2 when all of the following
are true:

• <n> is greater-than-or-equal-to the number of snapshot registers accessible at the current Exception level.

• EL2 is implemented and enabled in the current Security state.

• The access is from EL1.

Note

If EL2 is implemented and enabled in the current Security state, MDCR_EL2.HPMN identifies the number of
accessible snapshot registers at EL1. Otherwise, the number of accessible snapshot registers is the number of
implemented event counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVCNTSVR<m>_EL1; Where m = 0-30

op0 op1 CRn CRm op2

0b10 0b000 0b1110 0b10:m[4:3] m[2:0]

EVCNT

63 32

EVCNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8965
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
integer m = UInt(CRm<1:0>:op2<2:0>);

if m >= NUM_PMU_COUNTERS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMSSDATA == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTSVR_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTSVR_EL1[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMEVCNTSVR_EL1[m];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8966
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.12 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register PMEVTYPER<n>[31:0].

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to
External register PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 -
30[31:0].

AArch64 System register PMEVTYPER<n>_EL0 bits [63:32] are architecturally mapped to
External register PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 -
30[63:32] when FEAT_PMUv3_TH is implemented, or FEAT_PMUv3p8 is implemented or
FEAT_PMUv3_EXT64 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMEVTYPER<n>_EL0 are UNDEFINED.

Attributes

PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions

TC, bits [63:61]

When FEAT_PMUv3_TH is implemented and (FEAT_PMUv3_EDGE is not implemented or
PMEVTYPER<n>_EL0.TE == 0):

Threshold Control. Defines the threshold function. In the description of this field:

• VB[n] is the value the event specified by PMEVTYPER<n>_EL0 would increment event
counter n by on a processor cycle if the threshold function is disabled.

• TH[n] is the value of PMEVTYPER<n>_EL0.TH.

0b000 Not-equal. The counter increments by VB[n] on each processor cycle when VB[n] is not
equal to TH[n].

0b001 Not-equal, count. The counter increments by 1 on each processor cycle when VB[n] is
not equal to TH[n].

0b010 Equals. The counter increments by VB[n] on each processor cycle when VB[n] is equal
to TH[n].

0b011 Equals, count. The counter increments by 1 on each processor cycle when VB[n] is equal
to TH[n].

0b100 Greater-than-or-equal. The counter increments by VB[n] on each processor cycle when
VB[n] is greater than or equal to TH[n].

TC

63 61

TE

60 59 58

RES0

57 44

TH

43 32

RES0 SYNC

P

31

U

30 29 28 27

M

26

MT

25

SH

24

T

23 22 21 20

RES0

19 16 15 10

evtCount[9:0]

9 0

NSK NSH
NSU

RLK
RLU

evtCount[15:10]
RLH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8967
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0b101 Greater-than-or-equal, count. The counter increments by 1 on each processor cycle
when VB[n] is greater than or equal to TH[n].

0b110 Less-than. The counter increments by VB[n] on each processor cycle when VB[n] is less
than TH[n].

0b111 Less-than, count. The counter increments by 1 on each processor cycle when VB[n] is
less than TH[n].

Comparisons treat VB[n] and TH[n] as unsigned integer values.

On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC[2:1] is true:

• If PMEVTYPER<n>_EL0.TC[0] is 0, then the counter increments by VB[n].

• If PMEVTYPER<n>_EL0.TC[0] is 1, then the counter increments by 1.

On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC[2:1] is false,
the counter does not increment.

If PMEVTYPER<n>_EL0.{TC, TH} are zero then the threshold function is disabled.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

When FEAT_PMUv3_EDGE is implemented and PMEVTYPER<n>_EL0.TE == 1:

Threshold Control. Defines the threshold function. In the description of this field:

• VB[n] is the value the event specified by PMEVTYPER<n>_EL0 would increment event
counter n by on a processor cycle if the threshold function is disabled.

• TH[n] is the value of PMEVTYPER<n>_EL0.TH.

0b001 Equal to not-equal. The counter increments on each processor cycle when VB[n] is not
equal to TH[n] and VB[n] was equal to TH[n] on the previous processor cycle.

0b010 Equal to/from not-equal. The counter increments on each processor cycle when either:

• VB[n] is not equal to TH[n] and VB[n] was equal to TH[n] on the previous
processor cycle.

• VB[n] is equal to TH[n] and VB[n] was not equal to TH[n] on the previous
processor cycle.

0b011 Not-equal to equal. The counter increments on each processor cycle when VB[n] is
equal to TH[n] and VB[n] was not equal to TH[n] on the previous processor cycle.

0b101 Less-than to greater-than-or-equal. The counter increments on each processor cycle
when VB[n] is greater than or equal to TH[n] and VB[n] was less than TH[n] on the
previous processor cycle.

0b110 Less-than to/from greater-than-or-equal. The counter increments on each processor
cycle when either:

• VB[n] is greater than or equal to TH[n] and VB[n] was less than TH[n] on the
previous processor cycle.

• VB[n] is less than TH[n] and VB[n] was greater than or equal to TH[n] on the
previous processor cycle.

0b111 Greater-than-or-equal to less-than. The counter increments on each processor cycle
when VB[n] is less than TH[n] and VB[n] was greater than or equal to TH[n] on the
previous processor cycle.

All other values are reserved.

Comparisons treat VB[n] and TH[n] as unsigned integer values.

On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC is true, the
counter increments by 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8968
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC is false, the
counter does not increment.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TE, bit [60]

When FEAT_PMUv3_EDGE is implemented:

Threshold Edge. Enables the edge condition. When PMEVTYPER<n>_EL0.TE is 1, the event
counter increments on cycles when the result of the threshold condition changes. See
PMEVTYPER<n>_EL0.TC for more information.

0b0 Threshold edge condition disabled.

0b1 Threshold edge condition enabled.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [59]

Reserved, RES0.

SYNC, bit [58]

When FEAT_SEBEP is implemented:

Synchronous mode. Controls whether a PMU exception generated by the counter is synchronous or
asynchronous.

0b0 Asynchronous PMU exception is enabled.

0b1 Synchronous PMU exception is enabled.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [57:44]

Reserved, RES0.

TH, bits [43:32]

When FEAT_PMUv3_TH is implemented:

Threshold value. Provides the unsigned value for the threshold function defined by
PMEVTYPER<n>_EL0.TC.

If PMEVTYPER<n>_EL0.{TC, TH} are zero then the threshold function is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8969
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
If PMMIR_EL1.THWIDTH is less than 12, then bits
PMEVTYPER<n>_EL0.TH[11:UInt(PMMIR_EL1.THWIDTH)] are RES0. This accounts for the
behavior when writing a value greater-than-or-equal-to 2UInt(PMMIR_EL1.THWIDTH).

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

P, bit [31]

EL1 filtering. Controls counting events in EL1.

0b0 This mechanism has no effect on filtering of events.

0b1 The PE does not count events in EL1.

If Secure and Non-secure states are implemented, then counting events in Non-secure EL1 is further
controlled by PMEVTYPER<n>_EL0.NSK.

If FEAT_RME is implemented, then counting events in Realm EL1 is further controlled by
PMEVTYPER<n>_EL0.RLK.

If EL3 is implemented, then counting events in EL3 is further controlled by
PMEVTYPER<n>_EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

EL0 filtering. Controls counting events in EL0.

0b0 This mechanism has no effect on filtering of events.

0b1 The PE does not count events in EL0.

If Secure and Non-secure states are implemented, then counting events in Non-secure EL0 is further
controlled by PMEVTYPER<n>_EL0.NSU.

If FEAT_RME is implemented, then counting events in Realm EL0 is further controlled by
PMEVTYPER<n>_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting events in Non-secure EL1. If
PMEVTYPER<n>_EL0.NSK is not equal to PMEVTYPER<n>_EL0.P, then the PE does not count
events in Non-secure EL1. Otherwise, this mechanism has no effect on filtering of events in
Non-secure EL1.

0b0 When PMEVTYPER<n>_EL0.P == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.P == 1, the PE does not count events in Non-secure
EL1.

0b1 When PMEVTYPER<n>_EL0.P == 0, the PE does not count events in Non-secure
EL1.

When PMEVTYPER<n>_EL0.P == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8970
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting events in Non-secure EL0. If
PMEVTYPER<n>_EL0.NSU is not equal to PMEVTYPER<n>_EL0.U, then the PE does not
count events in Non-secure EL0. Otherwise, this mechanism has no effect on filtering of events in
Non-secure EL0.

0b0 When PMEVTYPER<n>_EL0.U == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.U == 1, the PE does not count events in Non-secure
EL0.

0b1 When PMEVTYPER<n>_EL0.U == 0, the PE does not count events in Non-secure
EL0.

When PMEVTYPER<n>_EL0.U == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting events in EL2.

0b0 The PE does not count events in EL2.

0b1 This mechanism has no effect on filtering of events.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting events in Secure EL2 is
further controlled by PMEVTYPER<n>_EL0.SH.

If FEAT_RME is implemented, then counting events in Realm EL2 is further controlled by
PMEVTYPER<n>_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

EL3 filtering. Controls counting events in EL3. If PMEVTYPER<n>_EL0.M is not equal to
PMEVTYPER<n>_EL0.P, then the PE does not count events in EL3. Otherwise, this mechanism
has no effect on filtering of events in EL3.

0b0 When PMEVTYPER<n>_EL0.P == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.P == 1, the PE does not count events in EL3.

0b1 When PMEVTYPER<n>_EL0.P == 0, the PE does not count events in EL3.

When PMEVTYPER<n>_EL0.P == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8971
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Otherwise:

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU
extension is implemented:

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted,
meaning if FEAT_MTPMU is not implemented, this field is RES0. See
ID_AA64DFR0_EL1.MTPMU.

This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and
disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When EL3 is implemented and FEAT_SEL2 is implemented:

Secure EL2 filtering. Controls counting events in Secure EL2. If PMEVTYPER<n>_EL0.SH is
equal to PMEVTYPER<n>_EL0.NSH, then the PE does not count events in Secure EL2.
Otherwise, this mechanism has no effect on filtering of events in Secure EL2.

0b0 When PMEVTYPER<n>_EL0.NSH == 0, the PE does not count events in Secure EL2.

When PMEVTYPER<n>_EL0.NSH == 1, this mechanism has no effect on filtering of
events.

0b1 When PMEVTYPER<n>_EL0.NSH == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.NSH == 1, the PE does not count events in Secure EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When Secure EL2 is not implemented, access to this field is RES0.

Otherwise:

Reserved, RES0.

T, bit [23]

When FEAT_TME is implemented:

Non-Transactional state filtering bit. Controls counting of events in Non-transactional state.

0b0 This bit has no effect on the filtering of events.

0b1 Do not count Attributable events in Non-transactional state.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8972
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
RLK, bit [22]

When FEAT_RME is implemented:

Realm EL1 filtering. Controls counting events in Realm EL1. If PMEVTYPER<n>_EL0.RLK is
not equal to PMEVTYPER<n>_EL0.P, then the PE does not count events in Realm EL1. Otherwise,
this mechanism has no effect on filtering of events in Realm EL1.

0b0 When PMEVTYPER<n>_EL0.P == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.P == 1, the PE does not count events in Realm EL1.

0b1 When PMEVTYPER<n>_EL0.P == 0, the PE does not count events in Realm EL1.

When PMEVTYPER<n>_EL0.P == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting events in Realm EL0. If PMEVTYPER<n>_EL0.RLU is
not equal to PMEVTYPER<n>_EL0.U, then the PE does not count events in Realm EL0.
Otherwise, this mechanism has no effect on filtering of events in Realm EL0.

0b0 When PMEVTYPER<n>_EL0.U == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.U == 1, the PE does not count events in Realm EL0.

0b1 When PMEVTYPER<n>_EL0.U == 0, the PE does not count events in Realm EL0.

When PMEVTYPER<n>_EL0.U == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLH, bit [20]

When FEAT_RME is implemented:

Realm EL2 filtering. Controls counting events in Realm EL2. If PMEVTYPER<n>_EL0.RLH is
equal to PMEVTYPER<n>_EL0.NSH, then the PE does not count events in Realm EL2. Otherwise,
this mechanism has no effect on filtering of events in Realm EL2.

0b0 When PMEVTYPER<n>_EL0.NSH == 0, the PE does not count events in Realm EL2.

When PMEVTYPER<n>_EL0.NSH == 1, this mechanism has no effect on filtering of
events.

0b1 When PMEVTYPER<n>_EL0.NSH == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.NSH == 1, the PE does not count events in Realm EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:16]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8973
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count.

The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

The ranges of event numbers allocated to each type of event are shown in Table D13-13.

If FEAT_PMUv3p8 is implemented and PMEVTYPER<n>_EL0.evtCount is programmed to an
event that is reserved or not supported by the PE, no events are counted and the value returned by a
direct or external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

Note

Arm recommends this behavior for all implementations of FEAT_PMUv3.

Otherwise, if PMEVTYPER<n>_EL0.evtCount is programmed to an event that is reserved or not
supported by the PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted and the value returned by a direct or
external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted and
the value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field
is the value written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted and the value returned
by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>_EL0

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8974
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest
accessible event counter.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMEVTYPER<n>_EL0 are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.P<n> == 0.

Permitted writes of PMEVTYPER<n>_EL0 are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.{UEN,ER} == {1,1}.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{UEN,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVTYPER<m>_EL0; Where m = 0-30

integer m = UInt(CRm<1:0>:op2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b11:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8975
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVTYPER_EL0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVTYPER_EL0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVTYPER_EL0[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMEVTYPER_EL0[m];

MSR PMEVTYPER<m>_EL0, <Xt>; Where m = 0-30

integer m = UInt(CRm<1:0>:op2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b11:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8976
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVTYPER_EL0[m] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVTYPER_EL0[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVTYPER_EL0[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMEVTYPER_EL0[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8977
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.13 PMIAR_EL1, Performance Monitors Instruction Address Register

The PMIAR_EL1 characteristics are:

Purpose

Captures the address of the instruction generating a PMU exception.

Configurations

This register is present only when FEAT_SEBEP is implemented. Otherwise, direct accesses to
PMIAR_EL1 are UNDEFINED.

Attributes

PMIAR_EL1 is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Instruction virtual address.

For writes to PMIAR_EL1, PMIAR_EL1.ADDRESS[63:P] is RESS. P is defined as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

PMIAR_EL1.ADDRESS[1:0] is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMIAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMIAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMIAR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

ADDRESS

63 32

ADDRESS

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8978
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMIAR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMIAR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMIAR_EL1;

MSR PMIAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMIAR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMIAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8979
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMIAR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMIAR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8980
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.14 PMICFILTR_EL0, Performance Monitors Instruction Counter Filter Register

The PMICFILTR_EL0 characteristics are:

Purpose

Configures the Instruction Counter.

Configurations

AArch64 System register PMICFILTR_EL0 bits [63:0] are architecturally mapped to External
register PMICFILTR_EL0[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented. Otherwise, direct
accesses to PMICFILTR_EL0 are UNDEFINED.

Attributes

PMICFILTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:59]

Reserved, RES0.

SYNC, bit [58]

When FEAT_SEBEP is implemented:

Synchronous mode. Controls whether a PMU exception generated by the counter is synchronous or
asynchronous.

0b0 Asynchronous PMU exception is enabled.

0b1 Synchronous PMU exception is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [57:32]

Reserved, RES0.

P, bit [31]

EL1 filtering. Controls counting instructions in EL1.

0b0 This mechanism has no effect on filtering of instructions.

0b1 The PE does not count instructions in EL1.

If Secure and Non-secure states are implemented, then counting instructions in Non-secure EL1 is
further controlled by PMICFILTR_EL0.NSK.

RES0

63 59 58

RES0

57 32

SYNC

P

31

U

30 29 28 27

M

26 25

SH

24

T

23 22 21 20

RES0

19 16

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 0

NSK
NSU

NSH

RLH
RLU

RLK
RES0

evtCount
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8981
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
If FEAT_RME is implemented, then counting instructions in Realm EL1 is further controlled by
PMICFILTR_EL0.RLK.

If EL3 is implemented, then counting instructions in EL3 is further controlled by
PMICFILTR_EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

EL0 filtering. Controls counting instructions in EL0.

0b0 This mechanism has no effect on filtering of instructions.

0b1 The PE does not count instructions in EL0.

If Secure and Non-secure states are implemented, then counting instructions in Non-secure EL0 is
further controlled by PMICFILTR_EL0.NSU.

If FEAT_RME is implemented, then counting instructions in Realm EL0 is further controlled by
PMICFILTR_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting instructions in Non-secure EL1. If
PMICFILTR_EL0.NSK is not equal to PMICFILTR_EL0.P, then the PE does not count instructions
in Non-secure EL1. Otherwise, this mechanism has no effect on filtering of instructions in
Non-secure EL1.

0b0 When PMICFILTR_EL0.P == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.P == 1, the PE does not count instructions in Non-secure EL1.

0b1 When PMICFILTR_EL0.P == 0, the PE does not count instructions in Non-secure EL1.

When PMICFILTR_EL0.P == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting instructions in Non-secure EL0. If
PMICFILTR_EL0.NSU is not equal to PMICFILTR_EL0.U, then the PE does not count
instructions in Non-secure EL0. Otherwise, this mechanism has no effect on filtering of instructions
in Non-secure EL0.

0b0 When PMICFILTR_EL0.U == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.U == 1, the PE does not count instructions in Non-secure EL0.

0b1 When PMICFILTR_EL0.U == 0, the PE does not count instructions in Non-secure EL0.

When PMICFILTR_EL0.U == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8982
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting instructions in EL2.

0b0 The PE does not count instructions in EL2.

0b1 This mechanism has no effect on filtering of instructions.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting instructions in Secure EL2
is further controlled by PMICFILTR_EL0.SH.

If FEAT_RME is implemented, then counting instructions in Realm EL2 is further controlled by
PMICFILTR_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

EL3 filtering. Controls counting instructions in EL3. If PMICFILTR_EL0.M is not equal to
PMICFILTR_EL0.P, then the PE does not count instructions in EL3. Otherwise, this mechanism
has no effect on filtering of instructions in EL3.

0b0 When PMICFILTR_EL0.P == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.P == 1, the PE does not count instructions in EL3.

0b1 When PMICFILTR_EL0.P == 0, the PE does not count instructions in EL3.

When PMICFILTR_EL0.P == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When EL3 is implemented and FEAT_SEL2 is implemented:

Secure EL2 filtering. Controls counting instructions in Secure EL2. If PMICFILTR_EL0.SH is
equal to PMICFILTR_EL0.NSH, then the PE does not count instructions in Secure EL2. Otherwise,
this mechanism has no effect on filtering of instructions in Secure EL2.

0b0 When PMICFILTR_EL0.NSH == 0, the PE does not count instructions in Secure EL2.

When PMICFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
instructions.

0b1 When PMICFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.NSH == 1, the PE does not count instructions in Secure EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When Secure EL2 is not implemented, access to this field is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8983
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Otherwise:

Reserved, RES0.

T, bit [23]

When FEAT_TME is implemented:

Non-Transactional state filtering bit. Controls counting of instructions in Non-transactional state.

0b0 This bit has no effect on the filtering of instructions.

0b1 Do not count Attributable instructions in Non-transactional state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLK, bit [22]

When FEAT_RME is implemented:

Realm EL1 filtering. Controls counting instructions in Realm EL1. If PMICFILTR_EL0.RLK is not
equal to PMICFILTR_EL0.P, then the PE does not count instructions in Realm EL1. Otherwise, this
mechanism has no effect on filtering of instructions in Realm EL1.

0b0 When PMICFILTR_EL0.P == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.P == 1, the PE does not count instructions in Realm EL1.

0b1 When PMICFILTR_EL0.P == 0, the PE does not count instructions in Realm EL1.

When PMICFILTR_EL0.P == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting instructions in Realm EL0. If PMICFILTR_EL0.RLU is not
equal to PMICFILTR_EL0.U, then the PE does not count instructions in Realm EL0. Otherwise, this
mechanism has no effect on filtering of instructions in Realm EL0.

0b0 When PMICFILTR_EL0.U == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.U == 1, the PE does not count instructions in Realm EL0.

0b1 When PMICFILTR_EL0.U == 0, the PE does not count instructions in Realm EL0.

When PMICFILTR_EL0.U == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8984
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
RLH, bit [20]

When FEAT_RME is implemented:

Realm EL2 filtering. Controls counting instructions in Realm EL2. If PMICFILTR_EL0.RLH is
equal to PMICFILTR_EL0.NSH, then the PE does not count instructions in Realm EL2. Otherwise,
this mechanism has no effect on filtering of instructions in Realm EL2.

0b0 When PMICFILTR_EL0.NSH == 0, the PE does not count instructions in Realm EL2.

When PMICFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
instructions.

0b1 When PMICFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.NSH == 1, the PE does not count instructions in Realm EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count.

Reads as 0x0008.

Access to this field is RO.

Accessing PMICFILTR_EL0

Permitted reads and writes of PMICFILTR_EL0 are RAZ/WI if all of the following are true:

• PSTATE.EL == EL0.

• PMUACR_EL1.F0 == 0.

Permitted writes of PMICFILTR_EL0 are ignored if all of the following are true:

• PSTATE.EL == EL0.

• PMUSERENR_EL0.IR == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMICFILTR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.UEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8985
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nPMICFILTR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICFILTR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMICFILTR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICFILTR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICFILTR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMICFILTR_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8986
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR PMICFILTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.UEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nPMICFILTR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMICFILTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMICFILTR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMICFILTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8987
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMICFILTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMICFILTR_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8988
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.15 PMICNTR_EL0, Performance Monitors Instruction Counter Register

The PMICNTR_EL0 characteristics are:

Purpose

If event counting is not prohibited and the instruction counter is enabled, the counter increments for
each architecturally-executed instruction, according to the configuration specified by
PMICFILTR_EL0.

Configurations

AArch64 System register PMICNTR_EL0 bits [63:0] are architecturally mapped to External
register PMICNTR_EL0[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented. Otherwise, direct
accesses to PMICNTR_EL0 are UNDEFINED.

Attributes

PMICNTR_EL0 is a 64-bit register.

Field descriptions

ICNT, bits [63:0]

Instruction Counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMICNTR_EL0

PMICNTR_EL0 treats permitted reads-as-zero and ignores permitted writes if all of the following are true:

• PSTATE.EL == EL0.

• PMUACR_EL1.F0 == 0.

PMICNTR_EL0 ignores permitted writes if all of the following are true:

• PSTATE.EL == EL0.

• PMUSERENR_EL0.IR == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMICNTR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;

ICNT

63 32

ICNT

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8989
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.UEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nPMICNTR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICNTR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMICNTR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICNTR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICNTR_EL0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8990
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMICNTR_EL0;

MSR PMICNTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.UEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nPMICNTR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMICNTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMICNTR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMICNTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8991
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMICNTR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMICNTR_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8992
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.16 PMICNTSVR_EL1, Performance Monitors Instruction Count Saved Value Register

The PMICNTSVR_EL1 characteristics are:

Purpose

Captures the PMU Instruction counter, PMICNTR_EL0.

Configurations

AArch64 System register PMICNTSVR_EL1 bits [63:0] are architecturally mapped to External
register PMICNTSVR_EL1[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented and FEAT_PMUv3_SS
is implemented. Otherwise, direct accesses to PMICNTSVR_EL1 are UNDEFINED.

Attributes

PMICNTSVR_EL1 is a 64-bit register.

Field descriptions

ICNT, bits [63:0]

Sampled Instruction Count. The value of PMICNTR_EL0 at the last successful Capture event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMICNTSVR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMICNTSVR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMSSDATA == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICNTSVR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then

ICNT

63 32

ICNT

31 0

op0 op1 CRn CRm op2

0b10 0b000 0b1110 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8993
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMICNTSVR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMICNTSVR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8994
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.17 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register

The PMINTENCLR_EL1 characteristics are:

Purpose

Allows software to disable the generation of interrupt requests or, when FEAT_EBEP is
implemented, PMU exceptions on overflows from the following counters:

• The cycle counter PMCCNTR_EL0.

• The event counters PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Reading from this register shows which overflow interrupt requests or PMU exceptions are enabled.

Configurations

AArch64 System register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32
System register PMINTENCLR[31:0].

AArch64 System register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to External
register PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register[31:0].

AArch64 System register PMINTENCLR_EL1 bits [63:32] are architecturally mapped to External
register PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register[63:32] when
FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMINTENCLR_EL1 are UNDEFINED.

Attributes

PMINTENCLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8995
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Interrupt request or PMU exception on unsigned overflow of fixed-function counter <m> disable.
On writes, allows software to disable the interrupt request or PMU exception on unsigned overflow
of fixed-function counter <m>. On reads, returns the interrupt request or PMU exception on
unsigned overflow of fixed-function counter <m> enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of fixed-function counter
<m> disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of fixed-function counter
<m> enabled.

PMINTENCLR_EL1.F0 holds the enable status for PMICNTR_EL0.

Accessing this field has the following behavior:

• This field reads-as-zero if all of the following are true:

— Any of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0.

— HDFGRTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1.

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

— Accessed at EL2 or EL1.

• This field ignores writes if any of the following are true:

— All of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0, or
HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMCCNTR_EL0 disable. On writes,
allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMCCNTR_EL0. On reads, returns the interrupt request or PMU exception on unsigned overflow
of PMCCNTR_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMCCNTR_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMCCNTR_EL0 enabled.

Access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8996
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0 disable. On
writes, allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMEVCNTR<n>_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
enabled.

Accessing this field has the following behavior:

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL1.

— m >= UInt(PMCR_EL0.N).

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENCLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMINTENCLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMINTENCLR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8997
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 X[t, 64] = PMINTENCLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMINTENCLR_EL1;

MSR PMINTENCLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENCLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENCLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMINTENCLR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8998
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.18 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register

The PMINTENSET_EL1 characteristics are:

Purpose

Allows software to enable the generation of interrupt requests or, when FEAT_EBEP is
implemented, PMU exceptions on overflows from the following counters:

• The cycle counter PMCCNTR_EL0.

• The event counters PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Reading from this register shows which overflow interrupt requests or PMU exceptions are enabled.

Configurations

AArch64 System register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32
System register PMINTENSET[31:0].

AArch64 System register PMINTENSET_EL1 bits [31:0] are architecturally mapped to External
register PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register[31:0].

AArch64 System register PMINTENSET_EL1 bits [63:32] are architecturally mapped to External
register PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register[63:32] when
FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMINTENSET_EL1 are UNDEFINED.

Attributes

PMINTENSET_EL1 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-8999
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Interrupt request or PMU exception on unsigned overflow of fixed-function counter <m> enable.
On writes, allows software to enable the interrupt request or PMU exception on unsigned overflow
of fixed-function counter <m>. On reads, returns the interrupt request or PMU exception on
unsigned overflow of fixed-function counter <m> enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of fixed-function counter
<m> disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of fixed-function counter
<m> enabled.

PMINTENSET_EL1.F0 holds the enable status for PMICNTR_EL0.

Accessing this field has the following behavior:

• This field reads-as-zero if all of the following are true:

— Any of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0.

— HDFGRTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1.

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

— Accessed at EL2 or EL1.

• This field ignores writes if any of the following are true:

— All of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0, or
HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMCCNTR_EL0 enable. On writes,
allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMCCNTR_EL0. On reads, returns the interrupt request or PMU exception on unsigned overflow
of PMCCNTR_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMCCNTR_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMCCNTR_EL0 enabled.

Access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9000
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0 enable. On
writes, allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMEVCNTR<n>_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
enabled.

Accessing this field has the following behavior:

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL1.

— m >= UInt(PMCR_EL0.N).

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENSET_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMINTENSET_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMINTENSET_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9001
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 X[t, 64] = PMINTENSET_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMINTENSET_EL1;

MSR PMINTENSET_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMINTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENSET_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMINTENSET_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMINTENSET_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9002
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.19 PMMIR_EL1, Performance Monitors Machine Identification Register

The PMMIR_EL1 characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to
PMMIR_EL1 are UNDEFINED.

Attributes

PMMIR_EL1 is a 64-bit register.

Field descriptions

Bits [63:28]

Reserved, RES0.

EDGE, bits [27:24]

PMU event edge detection. With PMMIR_EL1.THWIDTH, indicates implementation of event
counter thresholding features.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_EDGE is not implemented.

0b0001 FEAT_PMUv3_EDGE is implemented.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, the only permitted value is 0b0000.

FEAT_PMUv3_EDGE implements the functionality identified by the value 0b0001.

Access to this field is RO.

THWIDTH, bits [23:20]

PMEVTYPER<n>_EL0.TH width. Indicates implementation of the FEAT_PMUv3_TH feature,
and, if implemented, the size of the PMEVTYPER<n>_EL0.TH field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_TH is not implemented.

0b0001 1 bit. PMEVTYPER<n>_EL0.TH[11:1] are RES0.

0b0010 2 bits. PMEVTYPER<n>_EL0.TH[11:2] are RES0.

0b0011 3 bits. PMEVTYPER<n>_EL0.TH[11:3] are RES0.

0b0100 4 bits. PMEVTYPER<n>_EL0.TH[11:4] are RES0.

0b0101 5 bits. PMEVTYPER<n>_EL0.TH[11:5] are RES0.

0b0110 6 bits. PMEVTYPER<n>_EL0.TH[11:6] are RES0.

0b0111 7 bits. PMEVTYPER<n>_EL0.TH[11:7] are RES0.

0b1000 8 bits. PMEVTYPER<n>_EL0.TH[11:8] are RES0.

RES0

63 32

RES0

31 28

EDGE

27 24

THWIDTH

23 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9003
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0b1001 9 bits. PMEVTYPER<n>_EL0.TH[11:9] are RES0.

0b1010 10 bits. PMEVTYPER<n>_EL0.TH[11:10] are RES0.

0b1011 11 bits. PMEVTYPER<n>_EL0.TH[11] is RES0.

0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMEVTYPER<n>_EL0.TH is
2(PMMIR_EL1.THWIDTH) minus one.

Access to this field is RO.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

If the bus count information is not available, this field will read as zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment in a single
cycle. If the STALL_SLOT event is not implemented, this field might read as zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9004
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing PMMIR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMMIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMMIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMMIR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMMIR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMMIR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9005
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.20 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

The PMOVSCLR_EL0 characteristics are:

Purpose

Allows software to clear the unsigned overflow flags for the following counters to 0:

• The cycle counter PMCCNTR_EL0.

• The event counters PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Reading from this register shows the current unsigned overflow flag values.

Configurations

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMOVSR[31:0].

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMOVSSET[31:0].

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to External
register PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register[31:0].

AArch64 System register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to External
register PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register[31:0].

AArch64 System register PMOVSCLR_EL0 bits [63:32] are architecturally mapped to External
register PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register[63:32]
when FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

AArch64 System register PMOVSCLR_EL0 bits [63:32] are architecturally mapped to External
register PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register[63:32] when
FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

AArch64 System register PMOVSCLR_EL0 bits [63:0] are architecturally mapped to External
register PMOVS, Performance Monitors Overflow Flag Status register[63:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMOVSCLR_EL0 are UNDEFINED.

Attributes

PMOVSCLR_EL0 is a 64-bit register.

Field descriptions

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9006
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

Unsigned overflow flag for fixed-function counter <m> clear. On writes, allows software to clear
the unsigned overflow flag for fixed-function counter <m> to 0. On reads, returns the unsigned
overflow flag for fixed-function counter <m> overflow status.

0b0 Fixed-function counter <m> has not overflowed.

0b1 Fixed-function counter <m> has overflowed.

PMOVSCLR_EL0.F0 holds the overflow status for PMICNTR_EL0.

Accessing this field has the following behavior:

• This field reads-as-zero if all of the following are true:

— Any of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0.

— HDFGRTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

— Accessed at EL2, EL1, or EL0.

— All of the following are true:

— PMUSERENR_EL0.UEN == 0 or PMUACR_EL1.F<m> == 0.

— Accessed at EL0.

• Permitted writes of this field are ignored if any of the following are true:

— All of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0, or
HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.IR == 1.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9007
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
C, bit [31]

Unsigned overflow flag for PMCCNTR_EL0 clear. On writes, allows software to clear the unsigned
overflow flag for PMCCNTR_EL0 to 0. On reads, returns the unsigned overflow flag for
PMCCNTR_EL0 overflow status.

0b0 PMCCNTR_EL0 has not overflowed.

0b1 PMCCNTR_EL0 has overflowed.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n>_EL0 clear. On writes, allows software to clear the
unsigned overflow flag for PMEVCNTR<n>_EL0 to 0. On reads, returns the unsigned overflow
flag for PMEVCNTR<n>_EL0 overflow status.

0b0 PMEVCNTR<n>_EL0 has not overflowed.

0b1 PMEVCNTR<n>_EL0 has overflowed.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an
overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow
of PMEVCNTR<n>_EL0[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL0 or EL1.

— m >= UInt(PMCR_EL0.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9008
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVSCLR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMOVSCLR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMOVSCLR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMOVSCLR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMOVSCLR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9009
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMOVSCLR_EL0;

MSR PMOVSCLR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSCLR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSCLR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSCLR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMOVSCLR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9010
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.21 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register

The PMOVSSET_EL0 characteristics are:

Purpose

Allows software to set the unsigned overflow flags for the following counters to 1:

• The cycle counter PMCCNTR_EL0.

• The event counters PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter PMICNTR_EL0.

Reading from this register shows the current unsigned overflow flag values.

Configurations

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMOVSSET[31:0].

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMOVSR[31:0].

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to External
register PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register[31:0].

AArch64 System register PMOVSSET_EL0 bits [31:0] are architecturally mapped to External
register PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register[31:0].

AArch64 System register PMOVSSET_EL0 bits [63:32] are architecturally mapped to External
register PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register[63:32]
when FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

AArch64 System register PMOVSSET_EL0 bits [63:32] are architecturally mapped to External
register PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register[63:32] when
FEAT_PMUv3p9 is implemented or FEAT_PMUv3_EXT64 is implemented.

AArch64 System register PMOVSSET_EL0 bits [63:0] are architecturally mapped to External
register PMOVS, Performance Monitors Overflow Flag Status register[63:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMOVSSET_EL0 are UNDEFINED.

Attributes

PMOVSSET_EL0 is a 64-bit register.

Field descriptions

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9011
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

Unsigned overflow flag for fixed-function counter <m> set. On writes, allows software to set the
unsigned overflow flag for fixed-function counter <m> to 1. On reads, returns the unsigned
overflow flag for fixed-function counter <m> overflow status.

0b0 Fixed-function counter <m> has not overflowed.

0b1 Fixed-function counter <m> has overflowed.

PMOVSSET_EL0.F0 holds the overflow status for PMICNTR_EL0.

Accessing this field has the following behavior:

• This field reads-as-zero if all of the following are true:

— Any of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0.

— HDFGRTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

— Accessed at EL2, EL1, or EL0.

— All of the following are true:

— PMUSERENR_EL0.UEN == 0 or PMUACR_EL1.F<m> == 0.

— Accessed at EL0.

• Permitted writes of this field are ignored if any of the following are true:

— All of the following are true:

— EL3 is implemented and SCR_EL3.FGTEn2 == 0, or
HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— FEAT_FGT2 is implemented.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.IR == 1.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9012
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
C, bit [31]

Unsigned overflow flag for PMCCNTR_EL0 set. On writes, allows software to set the unsigned
overflow flag for PMCCNTR_EL0 to 1. On reads, returns the unsigned overflow flag for
PMCCNTR_EL0 overflow status.

0b0 PMCCNTR_EL0 has not overflowed.

0b1 PMCCNTR_EL0 has overflowed.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n>_EL0 set. On writes, allows software to set the
unsigned overflow flag for PMEVCNTR<n>_EL0 to 1. On reads, returns the unsigned overflow
flag for PMEVCNTR<n>_EL0 overflow status.

0b0 PMEVCNTR<n>_EL0 has not overflowed.

0b1 PMEVCNTR<n>_EL0 has overflowed.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an
overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow
of PMEVCNTR<n>_EL0[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL0 or EL1.

— m >= UInt(PMCR_EL0.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9013
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVSSET_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMOVSSET_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMOVSSET_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMOVSSET_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMOVSSET_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9014
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMOVSSET_EL0;

MSR PMOVSSET_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSSET_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMOVS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSSET_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMOVSSET_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMOVSSET_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9015
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.22 PMSELR_EL0, Performance Monitors Event Counter Selection Register

The PMSELR_EL0 characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n>_EL1 or the cycle counter PMCCNTR.

Used in conjunction with PMXEVTYPER_EL0 to determine the event that increments a selected
counter, and the modes and states in which the selected counter increments.

Used in conjunction with PMXEVCNTR_EL0 to determine the value of a selected counter.

Configurations

AArch64 System register PMSELR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMSELR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMSELR_EL0 are UNDEFINED.

Attributes

PMSELR_EL0 is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

SEL, bits [4:0]

Event counter select. Selects the counter accessed by subsequent accesses to PMXEVTYPER_EL0
and PMXEVCNTR_EL0.

0b00000..0b11110 Select event counter PMEVCNTR<n>_EL0, where n is the value of this field:

• MRS and MSR of PMXEVTYPER_EL0 access PMEVTYPER<n>_EL0.

• MRS and MSR of PMXEVCNTR_EL0 access PMEVCNTR<n>_EL0.

0b11111 Select the cycle counter, PMCCNTR_EL0:

• MRS and MSR of PMXEVTYPER_EL0 access PMCCFILTR_EL0.

• MRS and MSR of PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE. For
more information, see PMXEVCNTR_EL0.

If FEAT_FGT is not implemented and this field is set to a value greater than or equal to the number
of implemented counters, but not equal to 31, then direct reads of this field return an UNKNOWN
value.

For more information about the results of accesses to the event counters, including when
PMSELR_EL0.SEL is set to the index of an unimplemented or inaccessible event counter, see
PMXEVTYPER_EL0 and PMXEVCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 5

SEL

4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9016
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing PMSELR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSELR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,ER,EN> == '000') ||
(!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<ER,EN> == '00') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSELR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSELR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSELR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSELR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9017
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR PMSELR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,ER,EN> == '000') ||
(!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<ER,EN> == '00') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSELR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSELR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSELR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSELR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9018
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.23 PMSSCR_EL1, Performance Monitors Snapshot Status and Capture Register

The PMSSCR_EL1 characteristics are:

Purpose

Holds status information about the captured counters and provides a mechanism for software to
initiate a sample.

Configurations

AArch64 System register PMSSCR_EL1 bits [63:0] are architecturally mapped to External register
PMSSCR_EL1[63:0].

This register is present only when FEAT_PMUv3_SS is implemented. Otherwise, direct accesses to
PMSSCR_EL1 are UNDEFINED.

Attributes

PMSSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

NC, bit [32]

No Capture. Indicates whether the PMU counters have been captured.

0b0 PMU counters captured.

0b1 PMU counters not captured.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [31:1]

Reserved, RES0.

SS, bit [0]

Snapshot Capture and Status.

0b0 On a read, the Capture event has completed.

0b1 On a read, the Capture event has not completed.

On a write, request a Capture event.

A write of 0 to this field is ignored.

It is CONSTRAINED UNPREDICTABLE whether a Capture event has completed if this field is modified
when the Capture event is ongoing.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When Capture events are disabled, access to this field is RO.

• Otherwise, access to this field is RW.

RES0

63 33

NC

32

RES0

31 1

SS

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9019
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing PMSSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMSSCR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSSCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSSCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSSCR_EL1;

MSR PMSSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMSSCR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSS == '0' then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1101 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9020
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSSCR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9021
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.24 PMSWINC_EL0, Performance Monitors Software Increment Register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more
information, see SW_INCR.

Configurations

AArch64 System register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMSWINC[31:0].

AArch64 System register PMSWINC_EL0 bits [31:0] are architecturally mapped to External
register PMSWINC_EL0, Performance Monitors Software Increment Register[31:0] when
FEAT_PMUv3_EXT32 is implemented and FEAT_PMUv3p9 is not implemented.

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMSWINC_EL0 are UNDEFINED.

Attributes

PMSWINC_EL0 is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

P<m>, bit [m], for m = 30 to 0

Software increment.

0b0 Write is ignored.

0b1 Increment PMEVCNTR<n>_EL0, if PMEVCNTR<n>_EL0 is configured to count
software increment events.

Accessing this field has the following behavior:

• This field ignores writes if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,SW} == {1,0}.

— PMUACR_EL1.P<m> == 0.

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

RES0
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9022
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL0 or EL1.

— m >= UInt(PMCR_EL0.N).

• Otherwise access to this field is write-only.

Accessing PMSWINC_EL0

Accesses to this register use the following encodings in the System register encoding space:

MSR PMSWINC_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,SW,EN> == '000') ||
(!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<SW,EN> == '00') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSWINC_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSWINC_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9023
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 PMSWINC_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSWINC_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9024
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.25 PMUACR_EL1, Performance Monitors User Access Control Register

The PMUACR_EL1 characteristics are:

Purpose

Enables or disables EL0 access to specfic Performance Monitors.

Configurations

This register is present only when FEAT_PMUv3p9 is implemented. Otherwise, direct accesses to
PMUACR_EL1 are UNDEFINED.

Attributes

PMUACR_EL1 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

EL0 accesses to fixed-function counter <m> enable.

0b0 If the Effective value of PMUSERENR_EL0.UEN is 1 then EL0 accesses to
fixed-function counter <m> and associated controls are RAZ/WI.

0b1 If the Effective value of PMUSERENR_EL0.UEN is 1 then EL0 accesses to
fixed-function counter <m> and associated controls are read-only or read/write.

When the Effective value of PMUSERENR_EL0.UEN is 1 and PMUACR_EL1.F0 is 1:

• If PMUSERENR_EL0.IR == 0 then PMICNTR_EL0 and its associated controls are
read/write at EL0.

• If PMUSERENR_EL0.IR == 1 then PMICNTR_EL0 and its associated controls are
read-only at EL0.

This field is ignored by the PE when any of the following are true:

• EL1 is using AArch32.

• PMUSERENR_EL0.UEN is 0.

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9025
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [31]

EL0 accesses to PMCCNTR_EL0 enable.

0b0 If the Effective value of PMUSERENR_EL0.UEN is 1 then EL0 accesses to
PMCCNTR_EL0 and associated controls are RAZ/WI.

0b1 If the Effective value of PMUSERENR_EL0.UEN is 1 then EL0 accesses to
PMCCNTR_EL0 and associated controls are read-only or read/write.

When the Effective value of PMUSERENR_EL0.UEN is 1 and PMUACR_EL1.C is 1:

• If PMUSERENR_EL0.CR == 0 then PMCCNTR_EL0 and its associated controls are
read/write at EL0.

• If PMUSERENR_EL0.CR == 1 then PMCCNTR_EL0 and its associated controls are
read-only at EL0.

This field is ignored by the PE when any of the following are true:

• EL1 is using AArch32.

• PMUSERENR_EL0.UEN is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

EL0 accesses to PMEVCNTR<n>_EL0 enable.

0b0 If the Effective value of PMUSERENR_EL0.UEN is 1 then EL0 accesses to
PMEVCNTR<n>_EL0 and associated controls are RAZ/WI.

0b1 If the Effective value of PMUSERENR_EL0.UEN is 1 then EL0 accesses to
PMEVCNTR<n>_EL0 and associated controls are read-only or read/write.

When the Effective value of PMUSERENR_EL0.UEN is 1 and PMUACR_EL1.P<m> is 1:

• If PMUSERENR_EL0.ER == 0 then PMEVCNTR<n>_EL0 and its associated controls are
read/write at EL0.

• If PMUSERENR_EL0.ER == 1 then PMEVCNTR<n>_EL0 and its associated controls are
read-only at EL0.

This field is ignored by the PE when any of the following are true:

• EL1 is using AArch32.

• PMUSERENR_EL0.UEN is 0.

Accessing this field has the following behavior:

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— Accessed at EL1.

— m >= UInt(PMCR_EL0.N).

• Otherwise access to this field is read/write.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9026
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing PMUACR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMUACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMUACR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMUACR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMUACR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMUACR_EL1;

MSR PMUACR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b100

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9027
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMUACR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMUACR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMUACR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMUACR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9028
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.26 PMUSERENR_EL0, Performance Monitors User Enable Register

The PMUSERENR_EL0 characteristics are:

Purpose

Enables or disables EL0 access to the Performance Monitors.

Configurations

AArch64 System register PMUSERENR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMUSERENR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMUSERENR_EL0 are UNDEFINED.

Attributes

PMUSERENR_EL0 is a 64-bit register.

Field descriptions

Bits [63:7]

Reserved, RES0.

TID, bit [6]

When FEAT_PMUv3p9 is implemented:

Trap ID registers. Traps EL0 read access to common event identification registers.

0b0 Accesses to PMCEID<n>_EL0 and PMCEID<n> are not trapped by this mechanism.

0b1 EL0 read accesses to PMCEID<n>_EL0 and PMCEID<n> are trapped.

In AArch64 state, the register accesses affected by this control are:

• MRS reads of PMCEID0_EL0 and PMCEID1_EL0.

In AArch32 state, the register accesses affected by this control are:

• MRC reads of PMCEID0, PMCEID1, PMCEID2, and PMCEID3.

When trapped, reads generate an exception to EL1, or to EL2 when EL2 is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS reads are reported using EC syndrome value 0x18.

• AArch32 MRC reads are reported using EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IR, bit [5]

When FEAT_PMUv3_ICNTR is implemented:

Instruction counter Read-only.

RES0

63 32

RES0

31 7 6

IR

5 4

ER

3

CR

2

SW

1

EN

0

TID UEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9029
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
When PMUSERENR_EL0.UEN is 1, EL0 reads of the instruction counter and EL0 writes to
PMZR_EL0 are enabled by PMUSERENR_EL0.UEN, unless trapped by another control, and
PMUSERENR_EL0.IR controls the behavior of EL0 writes to the instruction counter and
PMZR_EL0.

0b0 Permitted EL0 writes are not affected by this mechanism.

0b1 Permitted EL0 writes to the instruction counter and PMZR_EL0.F0 are ignored.

In AArch64 state, when PMUSERENR_EL0.UEN is 1, MSR writes to PMZR_EL0 and
PMICNTR_EL0 are affected by this control.

Ignored writes are not trapped and do not generate an exception.

This field is ignored by the PE when PMUSERENR_EL0.UEN == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UEN, bit [4]

When FEAT_PMUv3p9 is implemented:

User Enable, with access controlled by PMUACR_EL1. Enables EL0 read/write access to PMU
registers, other than PMCR_EL0.

0b0 If FEAT_PMUv3_ICNTR is implemented, then EL0 accesses to PMICFILTR_EL0 and
PMICNTR_EL0 are trapped.

EL0 accesses to the other specified PMU registers, PMCR_EL0, and PMCR are
trapped, unless enabled by PMUSERENR_EL0.{ER,CR,SW,EN}.

0b1 EL0 accesses to the specified PMU registers are enabled, unless trapped by another
control. The behavior of permitted accesses is controlled by
PMUSERENR_EL0.{IR,ER,CR,SW} and PMUACR_EL1.

EL0 accesses to PMCR_EL0 and PMCR are trapped.

In AArch64 state, the register accesses affected by this control are:

• MRS or MSR accesses to the following registers:

— PMCCFILTR_EL0, PMCCNTR_EL0, PMCNTENCLR_EL0, PMCNTENSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMOVSCLR_EL0,
PMOVSSET_EL0, PMSELR_EL0, PMXEVCNTR_EL0, and PMXEVTYPER_EL0.

— If FEAT_PMUv3_ICNTR is implemented, PMICFILTR_EL0 and PMICNTR_EL0.

• MRS reads of PMCEID0_EL0 and PMCEID1_EL0.

• MSR writes to PMSWINC_EL0 and PMZR_EL0.

In AArch32 state, the register accesses affected by this control are:

• MRC or MCR accesses to PMCCFILTR, PMCCNTR, PMCNTENCLR, PMCNTENSET,
PMEVCNTR<n>, PMEVTYPER<n>, PMOVSR, PMOVSSET, PMSELR, PMXEVCNTR,
and PMXEVTYPER.

• MRC reads of PMCEID0, PMCEID1, PMCEID2, and PMCEID3.

• MCR writes to PMSWINC.

• MRRC or MCRR accesses to PMCCNTR.

When trapped, reads and writes generate an exception to EL1, or to EL2 when EL2 is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS and MSR accesses are reported using EC syndrome value 0x18.

• AArch32 MRC and MCR accesses are reported using EC syndrome value 0x03.

• AArch32 MRRC and MCRR accesses are reported using EC syndrome value 0x04.

This field is ignored by the PE and treated as zero when EL1 is using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9030
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ER, bit [3]

When FEAT_PMUv3p9 is implemented:

Event counters Read enable or Read-only.

When PMUSERENR_EL0.{UEN,EN} is {0,0}, PMUSERENR_EL0.ER enables EL0 reads of the
event counters and EL0 reads and writes of the select register.

When PMUSERENR_EL0.UEN is 1, EL0 reads of the event counters and EL0 writes to
PMZR_EL0 are enabled by PMUSERENR_EL0.UEN, unless trapped by another control, and
PMUSERENR_EL0.ER controls the behavior of EL0 writes to the event counters and PMZR_EL0.

0b0 When PMUSERENR_EL0.UEN == 0, EL0 reads of the event counters and EL0 reads
and writes of the select register are disabled, unless enabled by
PMUSERENR_EL0.EN.

When PMUSERENR_EL0.UEN == 1, permitted EL0 writes are not affected by this
mechanism.

0b1 When PMUSERENR_EL0.UEN == 0, EL0 reads of the event counters and EL0 reads
and writes of the select register are enabled, unless trapped by another control.

When PMUSERENR_EL0.UEN == 1, permitted EL0 writes to the event counters and
PMZR_EL0.P[30:0] are ignored.

In AArch64 state, the register accesses affected by this control are:

• When PMUSERENR_EL0.{UEN,EN} is {0,0}:

— MRS reads of PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0.

— MRS and MSR accesses to PMSELR_EL0.

• When PMUSERENR_EL0.UEN is 1, MSR writes to PMZR_EL0, PMEVCNTR<n>_EL0 and
PMXEVCNTR_EL0.

In AArch32 state, the register accesses affected by this control are:

• When PMUSERENR_EL0.{UEN,EN} is {0,0}:

— MRC reads of PMEVCNTR<n> and PMXEVCNTR.

— MRC and MCR accesses to PMSELR.

• When PMUSERENR_EL0.UEN is 1, MCR writes to PMEVCNTR<n> and PMXEVCNTR.

When disabled, reads and writes generate an exception to EL1, or to EL2 when EL2 is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS and MSR accesses are reported using EC syndrome value 0x18.

• AArch32 MRC and MCR accesses are reported using EC syndrome value 0x03.

Ignored writes are not trapped and do not generate an exception.

This field is ignored by the PE when PMUSERENR_EL0.{UEN,EN} == {0,1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Event counters Read enable.

When PMUSERENR_EL0.EN is 0, PMUSERENR_EL0.ER enables EL0 reads of the event
counters and EL0 reads and writes of the select register.

0b0 EL0 reads of the event counters and EL0 reads and writes of the select register are
disabled, unless enabled by PMUSERENR_EL0.EN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9031
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0b1 EL0 reads of the event counters and EL0 reads and writes of the select register are
enabled, unless trapped by another control.

In AArch64 state, the register accesses affected by this control are:

• MRS reads of PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0.

• MRS and MSR accesses to PMSELR_EL0.

In AArch32 state, the register accesses affected by this control are:

• MRC reads of PMEVCNTR<n> and PMXEVCNTR.

• MRC and MCR accesses to PMSELR.

When disabled, reads and writes generate an exception to EL1, or to EL2 when EL2 is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS and MSR accesses are reported using EC syndrome value 0x18.

• AArch32 MRC and MCR accesses are reported using EC syndrome value 0x03.

This field is ignored by the PE when PMUSERENR_EL0.EN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CR, bit [2]

When FEAT_PMUv3p9 is implemented:

Cycle counter Read enable or Read-only.

When PMUSERENR_EL0.{UEN,EN} is {0,0}, PMUSERENR_EL0.CR enables EL0 reads of the
cycle counter.

When PMUSERENR_EL0.UEN is 1, EL0 reads of the cycle counter and EL0 writes to PMZR_EL0
are enabled by PMUSERENR_EL0.UEN, unless trapped by another control, and
PMUSERENR_EL0.CR controls the behavior of EL0 writes to the cycle counter and PMZR_EL0.

0b0 When PMUSERENR_EL0.UEN == 0, EL0 reads of the cycle counter are disabled,
unless enabled by PMUSERENR_EL0.EN.

When PMUSERENR_EL0.UEN == 1, permitted EL0 writes are not affected by this
mechanism.

0b1 When PMUSERENR_EL0.UEN == 0, EL0 reads of the cycle counter are enabled,
unless trapped by another control.

When PMUSERENR_EL0.UEN == 1, permitted EL0 writes to the cycle counter and
PMZR_EL0.C are ignored.

In AArch64 state, the register accesses affected by this control are:

• When PMUSERENR_EL0.{UEN,EN} is {0,0}, MRS reads of PMCCNTR_EL0.

• When PMUSERENR_EL0.UEN is 1, MSR writes to PMZR_EL0 and PMCCNTR_EL0.

In AArch32 state, the register accesses affected by this control are:

• When PMUSERENR_EL0.{UEN,EN} is {0,0}:

— MRC reads of PMCCNTR.

— MRRC reads of PMCCNTR.

• When PMUSERENR_EL0.UEN is 1:

— MCR writes to PMCCNTR.

— MCRR writes to PMCCNTR.

When disabled, reads generate an exception to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS reads are reported using EC syndrome value 0x18.

• AArch32 MRC reads are reported using EC syndrome value 0x03.

• AArch32 MRRC reads are reported using EC syndrome value 0x04.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9032
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Ignored writes are not trapped and do not generate an exception.

This field is ignored by the PE when PMUSERENR_EL0.{UEN,EN} == {0,1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Cycle counter Read enable.

When PMUSERENR_EL0.EN is 0, PMUSERENR_EL0.CR enables EL0 reads of the cycle
counter.

0b0 EL0 reads of the cycle counter are disabled, unless enabled by PMUSERENR_EL0.EN.

0b1 EL0 reads of the cycle counter are enabled, unless trapped by another control.

In AArch64 state, the register accesses affected by this control are:

• MRS reads of PMCCNTR_EL0.

In AArch32 state, the register accesses affected by this control are:

• MRC reads of PMCCNTR.

• MRRC reads of PMCCNTR.

When disabled, reads generate an exception to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS reads are reported using EC syndrome value 0x18.

• AArch32 MRC reads are reported using EC syndrome value 0x03.

• AArch32 MRRC reads are reported using EC syndrome value 0x04.

This field is ignored by the PE when PMUSERENR_EL0.EN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SW, bit [1]

When FEAT_PMUv3p9 is implemented:

Software increment register Write enable.

When PMUSERENR_EL0.UEN is 0, PMUSERENR_EL0.SW enables EL0 writes to the Software
increment register.

When PMUSERENR_EL0.UEN is 1, EL0 writes to the Software increment register are enabled by
PMUSERENR_EL0.UEN, unless trapped by another control, and PMUSERENR_EL0.SW
controls the behavior of EL0 writes to the Software increment register.

0b0 When PMUSERENR_EL0.UEN == 0, EL0 writes to the Software increment register
are disabled, unless enabled by PMUSERENR_EL0.EN.

When PMUSERENR_EL0.UEN == 1, permitted EL0 writes are not affected by this
mechanism.

0b1 When PMUSERENR_EL0.UEN == 0, EL0 writes to the Software increment register
are enabled, unless trapped by another control.

When PMUSERENR_EL0.UEN == 1, permitted EL0 writes to the Software increment
register ignore the value of PMUACR_EL1.

In AArch64 state, the register accesses affected by this control are:

• MSR writes to PMSWINC_EL0.

In AArch32 state, the register accesses affected by this control are:

• MCR writes to PMSWINC.

When disabled, writes generate an exception to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MSR writes are reported using EC syndrome value 0x18.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9033
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• AArch32 MCR writes are reported using EC syndrome value 0x03.

This field is ignored by the PE when PMUSERENR_EL0.{UEN,EN} == {0,1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Software increment register Write enable.

When PMUSERENR_EL0.EN is 0, PMUSERENR_EL0.SW enables EL0 writes to the Software
increment register.

0b0 EL0 writes to the Software increment register are disabled, unless enabled by
PMUSERENR_EL0.EN.

0b1 EL0 writes to the Software increment register are enabled, unless trapped by another
control.

In AArch64 state, the register accesses affected by this control are:

• MSR writes to PMSWINC_EL0.

In AArch32 state, the register accesses affected by this control are:

• MCR writes to PMSWINC.

When disabled, writes generate an exception to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MSR writes are reported using EC syndrome value 0x18.

• AArch32 MCR writes are reported using EC syndrome value 0x03.

This field is ignored by the PE when PMUSERENR_EL0.EN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Enable.

Enables EL0 read/write access to PMU registers, other than the instruction counter.

0b0 EL0 accesses to the specified PMU System registers are trapped, unless enabled by
PMUSERENR_EL0.{UEN,ER,CR,SW}.

0b1 EL0 accesses to the specified PMU System registers are enabled, unless trapped by
another control.

In AArch64 state, the register accesses affected by this control are:

• MRS or MSR accesses to PMCCFILTR_EL0, PMCCNTR_EL0, PMCNTENCLR_EL0,
PMCNTENSET_EL0, PMCR_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0,
PMOVSCLR_EL0, PMOVSSET_EL0, PMSELR_EL0, PMXEVCNTR_EL0, and
PMXEVTYPER_EL0.

• MRS reads of PMCEID0_EL0 and PMCEID1_EL0.

• MSR writes to the following registers:

— PMSWINC_EL0.

— If FEAT_PMUv3p9 is implemented, PMZR_EL0.

Note

When FEAT_PMUv3_ICNTR is implemented, this field does not affect MRS and MSR accesses to
PMICNTR_EL0 and PMICFILTR_EL0.

In AArch32 state, the register accesses affected by this control are:

• MRC or MCR accesses to PMCCFILTR, PMCCNTR, PMCNTENCLR, PMCNTENSET,
PMCR, PMEVCNTR<n>, PMEVTYPER<n>, PMOVSR, PMOVSSET, PMSELR,
PMXEVCNTR, and PMXEVTYPER.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9034
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• MRC reads of the following registers:

— PMCEID0 and PMCEID1.

— If FEAT_PMUv3p1 is implemented, PMCEID2 and PMCEID3.

• MCR writes to PMSWINC.

• MRRC or MCRR accesses to PMCCNTR.

When trapped, reads and writes generate an exception to EL1, or to EL2 when EL2 is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS and MSR accesses are reported using EC syndrome value 0x18.

• AArch32 MRC and MCR accesses are reported using EC syndrome value 0x03.

• AArch32 MRRC and MCRR accesses are reported using EC syndrome value 0x04.

This field is ignored by the PE when FEAT_PMUv3p9 is implemented and
PMUSERENR_EL0.UEN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMUSERENR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMUSERENR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMUSERENR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMUSERENR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9035
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMUSERENR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMUSERENR_EL0;

MSR PMUSERENR_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMUSERENR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMUSERENR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMUSERENR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9036
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.27 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

The PMXEVCNTR_EL0 characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>_EL0.
PMSELR_EL0.SEL determines which event counter is selected.

Configurations

AArch64 System register PMXEVCNTR_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMXEVCNTR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMXEVCNTR_EL0 are UNDEFINED.

Attributes

PMXEVCNTR_EL0 is a 64-bit register.

Field descriptions

When FEAT_PMUv3p5 is implemented:

PMEVCNTR<n>, bits [63:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in
PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Bits [63:32]

Reserved, RES0.

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in
PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMEVCNTR<n>

63 32

PMEVCNTR<n>

31 0

RES0

63 32

PMEVCNTR<n>

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9037
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing PMXEVCNTR_EL0

If FEAT_FGT is implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible event
counters, then the behavior of permitted reads and writes of PMXEVCNTR_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible event
counters, then reads and writes of PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP

• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of
counters accessible at the current Exception level and Security state.

• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the
number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to
EL2.

Permitted reads and writes of PMXEVCNTR_EL0 are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.P<UInt(PMSELR_EL0.SEL)> == 0.

Permitted writes of PMXEVCNTR_EL0 are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.{UEN,ER} == {1,1}.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{UEN,ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMXEVCNTR_EL0

if UInt(PMSELR_EL0.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9038
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif (IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<UEN,ER,EN> == '000') ||
(!IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.<ER,EN> == '00') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)];

MSR PMXEVCNTR_EL0, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9039
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
if UInt(PMSELR_EL0.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMEVCNTR_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9040
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.28 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

The PMXEVTYPER_EL0 characteristics are:

Purpose

When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0
register. When PMSELR_EL0.SEL selects the cycle counter, this accesses PMCCFILTR_EL0.

Configurations

AArch64 System register PMXEVTYPER_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMXEVTYPER[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMXEVTYPER_EL0 are UNDEFINED.

Attributes

PMXEVTYPER_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

When PMSELR_EL0.SEL == 31, this register accesses PMCCFILTR_EL0.

Otherwise, this register accesses PMEVTYPER<n>_EL0 where n is the value in
PMSELR_EL0.SEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMXEVTYPER_EL0

If FEAT_FGT is implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then the behavior of permitted reads and writes of PMXEVTYPER_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then reads and writes of PMXEVTYPER_EL0 are CONSTRAINED UNPREDICTABLE, and
the following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of
event counters accessible at the current Exception level and Security state.

• Accesses to the register behave as if PMSELR_EL0.SEL is 31.

Event type register or PMCCFILTR_EL0

63 32

Event type register or PMCCFILTR_EL0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9041
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
• If EL2 is implemented and enabled in the current Security state, PMSELR_EL0 is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMXEVTYPER_EL0 are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• Any of the following are true:

— PMSELR_EL0.SEL != 31 and PMUACR_EL1.P<UInt(PMSELR_EL0.SEL)> == 0.

— PMSELR_EL0.SEL == 31 and PMUACR_EL1.C == 0.

Permitted writes of PMXEVTYPER_EL0 are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• PMUSERENR_EL0.UEN == 1.

• Any of the following are true:

— PMSELR_EL0.SEL != 31 and PMUACR_EL1.ER == 1.

— PMSELR_EL0.SEL == 31 and PMUACR_EL1.CR == 1.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{UEN,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMXEVTYPER_EL0

if UInt(PMSELR_EL0.SEL) != 31 && UInt(PMSELR_EL0.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9042
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) != 31 && UInt(PMSELR_EL0.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif UInt(PMSELR_EL0.SEL) == 31 then
 X[t, 64] = PMCCFILTR_EL0;
 else
 X[t, 64] = PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) != 31 && UInt(PMSELR_EL0.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif UInt(PMSELR_EL0.SEL) == 31 then
 X[t, 64] = PMCCFILTR_EL0;
 else
 X[t, 64] = PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif UInt(PMSELR_EL0.SEL) == 31 then
 X[t, 64] = PMCCFILTR_EL0;
 else
 X[t, 64] = PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)];
elsif PSTATE.EL == EL3 then
 if UInt(PMSELR_EL0.SEL) == 31 then
 X[t, 64] = PMCCFILTR_EL0;
 else
 X[t, 64] = PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)];

MSR PMXEVTYPER_EL0, <Xt>

if UInt(PMSELR_EL0.SEL) != 31 && UInt(PMSELR_EL0.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9043
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) != 31 && UInt(PMSELR_EL0.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif UInt(PMSELR_EL0.SEL) == 31 then
 PMCCFILTR_EL0 = X[t, 64];
 else
 PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && UInt(PMSELR_EL0.SEL) != 31 && UInt(PMSELR_EL0.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif UInt(PMSELR_EL0.SEL) == 31 then
 PMCCFILTR_EL0 = X[t, 64];
 else
 PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif UInt(PMSELR_EL0.SEL) == 31 then
 PMCCFILTR_EL0 = X[t, 64];
 else
 PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];
elsif PSTATE.EL == EL3 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9044
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 if UInt(PMSELR_EL0.SEL) == 31 then
 PMCCFILTR_EL0 = X[t, 64];
 else
 PMEVTYPER_EL0[UInt(PMSELR_EL0.SEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9045
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.29 PMZR_EL0, Performance Monitors Zero with Mask

The PMZR_EL0 characteristics are:

Purpose

Zero the set of counters specified by the mask written to PMZR_EL0.

Configurations

AArch64 System register PMZR_EL0 bits [63:0] are architecturally mapped to External register
PMZR_EL0, Performance Monitors Zero with Mask[63:0] when FEAT_PMUv3_EXT64 is
implemented and FEAT_PMUv3p9 is implemented.

This register is present only when FEAT_PMUv3p9 is implemented. Otherwise, direct accesses to
PMZR_EL0 are UNDEFINED.

Attributes

PMZR_EL0 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

Zero fixed-function counter <m>.

0b0 Write is ignored.

0b1 Set fixed-function counter <m> to zero.

Writing 1 to PMZR_EL0.F0 sets PMICNTR_EL0 to zero.

• This field ignores writes if any of the following are true:

— All of the following are true:

— PMUSERENR_EL0.UEN == 0 or PMUACR_EL1.F<m> == 0.

— Accessed at EL0.

— All of the following are true:

— EL3 is implemented.

— MDCR_EL3.EnPM2 == 0.

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9046
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— Accessed at EL2, EL1, or EL0.

— All of the following are true:

— FEAT_FGT2 is implemented.

— HDFGWTR2_EL2.nPMICFILTR_EL0 == 0.

— EL2 is implemented and enabled in the current Security state.

— Accessed at EL1 or EL0.

— The Effective value of HCR_EL2.{E2H,TGE} is not {1,1}.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.IR == 1.

• Otherwise access to this field is WO.

Otherwise:

Reserved, RES0.

C, bit [31]

Zero PMCCNTR_EL0.

0b0 Write is ignored.

0b1 Set PMCCNTR_EL0 to zero.

Accessing this field has the following behavior:

• This field ignores writes if any of the following are true:

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is WO.

P<m>, bit [m], for m = 30 to 0

Zero PMEVCNTR<n>_EL0.

0b0 Write is ignored.

0b1 Set PMEVCNTR<n>_EL0 to zero.

Accessing this field has the following behavior:

• This field ignores writes if any of the following are true:

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— Accessed at EL0.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9047
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— Accessed at EL0 or EL1.

— m >= UInt(PMCR_EL0.N).

• Otherwise access to this field is WO.

Accessing PMZR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MSR PMZR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' && (!IsFeatureImplemented(FEAT_PMUv3p9) ||
PMUSERENR_EL0.UEN == '0') then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nPMZR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ZeroPMUCounters(X[t, 64]);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMZR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ZeroPMUCounters(X[t, 64]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ZeroPMUCounters(X[t, 64]);

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1101 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9048
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 ZeroPMUCounters(X[t, 64]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9049
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.30 SPMACCESSR_EL1, System Performance Monitors Access Register (EL1)

The SPMACCESSR_EL1 characteristics are:

Purpose

Controls access to System PMUs from EL0.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMACCESSR_EL1 are UNDEFINED.

Attributes

SPMACCESSR_EL1 is a 64-bit register.

Field descriptions

P<m>, bits [2m+1:2m], for m = 31 to 0

System PMU <m> access. Controls access to System PMU <m>.

0b00 MRS read and MSR write System register accesses to System PMU <m> at EL0 are trapped
to EL1, unless the instruction generates a higher priority exception.

0b01 MSR write System register accesses to System PMU <m> at EL0 are trapped to EL1,
unless the instruction generates a higher priority exception.

0b11 This control does not cause any instructions to be trapped.

All other values are reserved.

The registers trapped by this control are:

AArch64: SPMCNTENCLR_EL0, SPMCNTENSET_EL0, SPMCR_EL0,
SPMEVCNTR<n>_EL0, SPMEVFILT2R<n>_EL0, SPMEVFILTR<n>_EL0,
SPMEVTYPER<n>_EL0, SPMOVSCLR_EL0, and SPMOVSSET_EL0.

This field is ignored by the PE when all of the following are true:

• EL2 is implemented and enabled in the current Security state.

• The Effective value of HCR_EL2.{E2H,TGE} is {1,1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m > UInt(ID_AA64DFR1_EL1.SYSPMUID), access to this field is RES0.

• Otherwise, access to this field is RW.

P31

63 62

P30

61 60

P29

59 58

P28

57 56

P27

55 54

P26

53 52

P25

51 50

P24

49 48

P23

47 46

P22

45 44

P21

43 42

P20

41 40

P19

39 38

P18

37 36

P17

35 34

P16

33 32

P15

31 30

P14

29 28

P13

27 26

P12

25 24

P11

23 22

P10

21 20

P9

19 18

P8

17 16

P7

15 14

P6

13 12

P5

11 10

P4

9 8

P3

7 6

P2

5 4

P1

3 2

P0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9050
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMACCESSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMACCESSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMACCESSR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8E8];
 else
 X[t, 64] = SPMACCESSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SPMACCESSR_EL2;
 else
 X[t, 64] = SPMACCESSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMACCESSR_EL1;

MSR SPMACCESSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMACCESSR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b011

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9051
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8E8] = X[t, 64];
 else
 SPMACCESSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 SPMACCESSR_EL2 = X[t, 64];
 else
 SPMACCESSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMACCESSR_EL1 = X[t, 64];

MRS <Xt>, SPMACCESSR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x8E8];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMACCESSR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = SPMACCESSR_EL1;
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b101 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9052
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR SPMACCESSR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x8E8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMACCESSR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 SPMACCESSR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b101 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9053
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.31 SPMACCESSR_EL2, System Performance Monitors Access Register (EL2)

The SPMACCESSR_EL2 characteristics are:

Purpose

Controls access to System PMUs from EL1 and EL0.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMACCESSR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

SPMACCESSR_EL2 is a 64-bit register.

Field descriptions

P<m>, bits [2m+1:2m], for m = 31 to 0

System PMU <m> access. Controls access to System PMU <m>.

0b00 MRS read and MSR write System register accesses to System PMU <m> at EL1 and EL0
are trapped to EL2, unless the instruction generates a higher priority exception.

0b01 MSR write System register accesses to System PMU <m> at EL1 and EL0 are trapped to
EL2, unless the instruction generates a higher priority exception.

0b11 This control does not cause any instructions to be trapped.

All other values are reserved.

The registers trapped by this control are:

AArch64: SPMCFGR_EL1, SPMCGCR<n>_EL1, SPMCNTENCLR_EL0,
SPMCNTENSET_EL0, SPMCR_EL0, SPMDEVAFF_EL1, SPMDEVARCH_EL1,
SPMEVCNTR<n>_EL0, SPMEVFILT2R<n>_EL0, SPMEVFILTR<n>_EL0,
SPMEVTYPER<n>_EL0, SPMIIDR_EL1, SPMINTENCLR_EL1, SPMINTENSET_EL1,
SPMOVSCLR_EL0, SPMOVSSET_EL0, and SPMSCR_EL1.

This field is ignored by the PE when EL2 is not implemented or disabled in the current Security
state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m > UInt(ID_AA64DFR1_EL1.SYSPMUID), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing SPMACCESSR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name SPMACCESSR_EL2 or SPMACCESSR_EL1 are not guaranteed to be ordered with respect to accesses using the
other register name.

P31

63 62

P30

61 60

P29

59 58

P28

57 56

P27

55 54

P26

53 52

P25

51 50

P24

49 48

P23

47 46

P22

45 44

P21

43 42

P20

41 40

P19

39 38

P18

37 36

P17

35 34

P16

33 32

P15

31 30

P14

29 28

P13

27 26

P12

25 24

P11

23 22

P10

21 20

P9

19 18

P8

17 16

P7

15 14

P6

13 12

P5

11 10

P4

9 8

P3

7 6

P2

5 4

P1

3 2

P0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9054
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMACCESSR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMACCESSR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMACCESSR_EL2;

MSR SPMACCESSR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMACCESSR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMACCESSR_EL2 = X[t, 64];

MRS <Xt>, SPMACCESSR_EL1

op0 op1 CRn CRm op2

0b10 0b100 0b1001 0b1101 0b011

op0 op1 CRn CRm op2

0b10 0b100 0b1001 0b1101 0b011

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9055
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMACCESSR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8E8];
 else
 X[t, 64] = SPMACCESSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = SPMACCESSR_EL2;
 else
 X[t, 64] = SPMACCESSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMACCESSR_EL1;

MSR SPMACCESSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMACCESSR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8E8] = X[t, 64];
 else
 SPMACCESSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9056
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 SPMACCESSR_EL2 = X[t, 64];
 else
 SPMACCESSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMACCESSR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9057
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.32 SPMACCESSR_EL3, System Performance Monitors Access Register (EL3)

The SPMACCESSR_EL3 characteristics are:

Purpose

Controls access to System PMUs from EL2, EL1 and EL0.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMACCESSR_EL3 are UNDEFINED.

Attributes

SPMACCESSR_EL3 is a 64-bit register.

Field descriptions

P<m>, bits [2m+1:2m], for m = 31 to 0

System PMU <m> access. Controls access to System PMU <m>.

0b00 MRS read and MSR write System register accesses to System PMU <m> at EL2, EL1, and
EL0 are trapped to EL3, unless the instruction generates a higher priority exception.

0b01 MSR write System register accesses to System PMU <m> at EL2, EL1, and EL0 are
trapped to EL3, unless the instruction generates a higher priority exception.

0b11 This control does not cause any instructions to be trapped.

All other values are reserved.

The registers trapped by this control are:

AArch64: SPMCFGR_EL1, SPMCGCR<n>_EL1, SPMCNTENCLR_EL0,
SPMCNTENSET_EL0, SPMCR_EL0, SPMDEVAFF_EL1, SPMDEVARCH_EL1,
SPMEVCNTR<n>_EL0, SPMEVFILT2R<n>_EL0, SPMEVFILTR<n>_EL0,
SPMEVTYPER<n>_EL0, SPMIIDR_EL1, SPMINTENCLR_EL1, SPMINTENSET_EL1,
SPMOVSCLR_EL0, SPMOVSSET_EL0, and SPMSCR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m > UInt(ID_AA64DFR1_EL1.SYSPMUID), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing SPMACCESSR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMACCESSR_EL3

P31

63 62

P30

61 60

P29

59 58

P28

57 56

P27

55 54

P26

53 52

P25

51 50

P24

49 48

P23

47 46

P22

45 44

P21

43 42

P20

41 40

P19

39 38

P18

37 36

P17

35 34

P16

33 32

P15

31 30

P14

29 28

P13

27 26

P12

25 24

P11

23 22

P10

21 20

P9

19 18

P8

17 16

P7

15 14

P6

13 12

P5

11 10

P4

9 8

P3

7 6

P2

5 4

P1

3 2

P0

1 0

op0 op1 CRn CRm op2

0b10 0b110 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9058
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMACCESSR_EL3;

MSR SPMACCESSR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SPMACCESSR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b110 0b1001 0b1101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9059
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.33 SPMCFGR_EL1, System Performance Monitors Configuration Register

The SPMCFGR_EL1 characteristics are:

Purpose

Describes the capabilities of System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMCFGR_EL1 are UNDEFINED.

Attributes

SPMCFGR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NCG, bits [31:28]

Counter Groups.

Defines the number of counter groups implemented by System PMU <s>, minus one.

If this field is zero, then one counter group is implemented and SPMCGCR<n>_EL1 read-as-zero.

Otherwise, for each counter group <m>, SPMCGCR<m DIV 8>_EL1.N<m MOD 8> defines the
number of counters in the group.

Locating the first counter in each group depends on the number of implemented groups. Each
counter group starts with counter:

• SPMEVTYPER<m×32>_EL0, meaning there are at most 32 counters per group, if there are
2 counter groups.

• SPMEVTYPER<m×16>_EL0, meaning there are at most 16 counters per group, if there are
3 or 4 counter groups.

• SPMEVTYPER<m×8>_EL0, meaning there are at most 8 counters per group, if there are
between 5 and 8 counter groups.

• SPMEVTYPER<m×4>_EL0, meaning there are at most 4 counters per group, if there are
more than 8 counter groups.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported. For more information on this field, see 'CoreSight PMU Architecture'.

This field has an IMPLEMENTATION DEFINED value.

RES0

63 32

NCG

31 28

RES0

27 25 24 23

SS

22 21 20 19 18

NA

17

EX

16

RAZ

15 14

SIZE

13 8

N

7 0

HDBG
TRO

FZO

RES0
RAO

MSI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9060
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Access to this field is RO.

TRO, bit [23]

Trace output supported. For more information on this field, see 'CoreSight PMU Architecture'.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SS, bit [22]

Snapshot supported. For more information on this field, see 'CoreSight PMU Architecture'.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

FZO, bit [21]

Freeze-on-overflow supported. For more information on this field, see 'CoreSight PMU
Architecture'.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

MSI, bit [20]

Message-signaled interrupts supported. For more information on this field, see 'CoreSight PMU
Architecture'.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [19]

Reserved, RAO.

Bit [18]

Reserved, RES0.

NA, bit [17]

No write access when running. For more information on this field, see 'CoreSight PMU
Architecture'.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

EX, bit [16]

Export supported. For more information on this field, see 'CoreSight PMU Architecture'.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [15:14]

Reserved, RAZ.

SIZE, bits [13:8]

Counter size. The size of the largest counter implemented by System PMU <s>. Defined values are:

0b000111 8-bit counters.

0b001001 10-bit counters.

0b001011 12-bit counters.

0b001111 16-bit counters.

0b010011 20-bit counters.

0b010111 24-bit counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9061
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0b011111 32-bit counters.

0b100011 36-bit counters.

0b100111 40-bit counters.

0b101011 44-bit counters.

0b101111 48-bit counters.

0b110011 52-bit counters.

0b110111 56-bit counters.

0b111111 64-bit counters.

All other values are reserved.

Not all counters must be this size. For example, a System PMU might include a mix of 32-bit and
64-bit counters.

N, bits [7:0]

Number of event counters implemented by System PMU <s>, minus 1. Defined values are:

0x00..0x3F Number of event counters implemented by System PMU <s>, minus 1.

All other values are reserved.

Accessing SPMCFGR_EL1

To access SPMCFGR_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMCFGR_EL1 reads-as-zero if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMCFGR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMID == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9062
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCFGR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCFGR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMCFGR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9063
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.34 SPMCGCR<n>_EL1, System PMU Counter Group Configuration Register <n>, n = 0 - 1

The SPMCGCR<n>_EL1 characteristics are:

Purpose

Describes the configuration of counter groups in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMCGCR<n>_EL1 are UNDEFINED.

Attributes

SPMCGCR<n>_EL1 is a 64-bit register.

Field descriptions

N<m>, bits [8m+7:8m], for m = 7 to 0

Number of counters in counter group 8n+m.

The maximum size of each counter group depends on the number of implemented groups and the
largest implemented counter size. For more information, see SPMCFGR_EL1.NCG.

Accessing SPMCGCR<n>_EL1

To access SPMCGCR<n>_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMCGCR<n>_EL1 reads-as-zero if any of the following are true:

• System PMU <s> implements one counter group (SPMCFGR_EL1.NCG is zero).

• System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMCGCR<m>_EL1; Where m = 0-1

integer m = UInt(op2<0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&

N7

63 56

N6

55 48

N5

47 40

N4

39 32

N3

31 24

N2

23 16

N1

15 8

N0

7 0

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b00:m[0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9064
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMID == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCGCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL), m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCGCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL), m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMCGCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL), m];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9065
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.35 SPMCNTENCLR_EL0, System Performance Monitors Count Enable Clear Register

The SPMCNTENCLR_EL0 characteristics are:

Purpose

Disable event counters in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMCNTENCLR_EL0 are UNDEFINED.

Attributes

SPMCNTENCLR_EL0 is a 64-bit register.

Field descriptions

P<m>, bit [m], for m = 63 to 0

Event counter <m> disable.

0b0 Event counter <m> in System PMU <s> is disabled.

0b1 Event counter <m> in System PMU <s> is enabled.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When event counter <m> is not implemented by System PMU <s>, access to this field is
RAZ/WI.

• Otherwise, access to this field is W1C.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P63
P62

P61
P60

P59
P58

P57
P56

P55
P54

P53
P52

P51
P50

P49
P48

P32
P33

P34
P35

P36
P37

P38
P39

P40
P41

P42
P43

P44
P45

P46
P47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9066
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMCNTENCLR_EL0

To access SPMCNTENCLR_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMCNTENCLR_EL0 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMCNTENCLR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMCNTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMCNTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9067
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMCNTENCLR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9068
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
HDFGWTR2_EL2.nSPMCNTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMCNTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9069
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 SPMCNTENCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9070
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.36 SPMCNTENSET_EL0, System Performance Monitors Count Enable Set Register

The SPMCNTENSET_EL0 characteristics are:

Purpose

Enables event counters in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMCNTENSET_EL0 are UNDEFINED.

Attributes

SPMCNTENSET_EL0 is a 64-bit register.

Field descriptions

P<m>, bit [m], for m = 63 to 0

Event counter <m> enable.

0b0 Event counter <m> in System PMU <s> is disabled.

0b1 Event counter <m> in System PMU <s> is enabled.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When event counter <m> is not implemented by System PMU <s>, access to this field is
RAZ/WI.

• Otherwise, access to this field is W1S.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P63
P62

P61
P60

P59
P58

P57
P56

P55
P54

P53
P52

P51
P50

P49
P48

P32
P33

P34
P35

P36
P37

P38
P39

P40
P41

P42
P43

P44
P45

P46
P47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9071
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMCNTENSET_EL0

To access SPMCNTENSET_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMCNTENSET_EL0 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMCNTENSET_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMCNTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMCNTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9072
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMCNTENSET_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9073
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
HDFGWTR2_EL2.nSPMCNTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMCNTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9074
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 SPMCNTENSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9075
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.37 SPMCR_EL0, System Performance Monitor Control Register

The SPMCR_EL0 characteristics are:

Purpose

Main control register for System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMCR_EL0 are UNDEFINED.

Attributes

SPMCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

TRO, bit [11]

When SPMCFGR_EL1.TRO == 1:

Trace enable. For more information on this field, see 'CoreSight PMU Architecture'.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When PSTATE.EL == EL0, access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

HDBG, bit [10]

When SPMCFGR_EL1.HDBG == 1:

Halt-on-debug. For more information on this field, see 'CoreSight PMU Architecture'.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When PSTATE.EL == EL0, access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 12 11 10 9

NA

8

RES0

7 5

EX

4

RES0

3 2

P

1

E

0

TRO FZO
HDBG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9076
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
FZO, bit [9]

When SPMCFGR_EL1.FZO == 1:

Freeze-on-overflow. For more information on this field, see 'CoreSight PMU Architecture'.

Note

If implemented by a System PMU, then freeze-on-overflow affects only the counters of System
PMU <s>, not other System PMUs nor the PE PMU.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NA, bit [8]

When SPMCFGR_EL1.NA == 1:

Not accessible. For more information on this field, see 'CoreSight PMU Architecture'.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [7:5]

Reserved, RES0.

EX, bit [4]

When SPMCFGR_EL1.EX == 1:

Export enable. For more information on this field, see 'CoreSight PMU Architecture'.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

P, bit [1]

Event counter reset.

0b0 Write is ignored.

0b1 Reset all event counters in System PMU <s> to zero.

Note
Resetting the event counters does not affect any overflow flags.

Access to this field is WO/RAZ.

E, bit [0]

Count enable. This field controls System PMU <s>.

0b0 Monitor is disabled.

0b1 Monitor is enabled.

Performance monitor overflow IRQs are only signaled by System PMU <s> when this field is 1.

The reset behavior of this field is:

• On a System PMU reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9077
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMCR_EL0

To access SPMCR_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMCR_EL0 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMCR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMCR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMCR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9078
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMCR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9079
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
HDFGWTR2_EL2.nSPMCR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMCR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9080
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 SPMCR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9081
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.38 SPMDEVAFF_EL1, System Performance Monitors Device Affinity Register

The SPMDEVAFF_EL1 characteristics are:

Purpose

For additional information, see the CoreSight Architecture Specification.

For a System PMU that has affinity with a single PE or a group of PEs, SPMDEVAFF_EL1 is a copy
of MPIDR_EL1 or part of MPIDR_EL1:

• If the System PMU has affinity with a single PE, then the affinity level is 0 and
SPMDEVAFF_EL1 reads the same value as MPIDR_EL1, and SPMDEVAFF_EL1.F0V
reads-as-one to indicate affinity level 0.

• If the System PMU has affinity with a group of PEs, then the affinity level is 1, 2, or 3, parts
of SPMDEVAFF_EL1 reads the same value as parts of MPIDR_EL1, and the rest of
SPMDEVAFF_EL1 indicates the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following
are true:

• All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values
are equal to SPMDEVAFF_EL1.{Aff3,Aff2}.

• SPMDEVAFF_EL1.Aff1 is nonzero and not 0x80, and SPMDEVAFF_EL1.{Aff0,F0V}
read-as-zero, to indicate at least affinity level 1. The subset of PEs at level 1 that the System
PMU has affinity with is indicated by the least-significant set bit in SPMDEVAFF_EL1.Aff1.
In this example, if SPMDEVAFF_EL1.Aff1[2:0] is 0b100, then the System PMU has affinity
with the up-to 8 PEs that have MPIDR_EL1.Aff1[7:3] == SPMDEVAFF_EL1.Aff1[7:3].

Depending on the IMPLEMENTATION DEFINED nature of the system, it might be possible that
SPMDEVAFF_EL1 is read before system firmware has configured the System PMU and/or the PE
or group of PEs that the System PMU has affinity with. When this is the case, SPMDEVAFF_EL1
reads-as-zero.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMDEVAFF_EL1 are UNDEFINED.

Attributes

SPMDEVAFF_EL1 is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the
associated PE or PEs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

F0V
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9082
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
F0V, bit [31]

Indicates that the SPMDEVAFF_EL1.Aff0 field is valid.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 SPMDEVAFF_EL1.Aff0 is not valid, and the PE affinity is above level 0 or a subset of
level 0.

0b1 SPMDEVAFF_EL1.Aff0 is valid, and the PE affinity is at level 0.

Access to this field is RO.

U, bit [30]

When SPMDEVAFF_EL1.F0V == 1:

Uniprocessor. The MPIDR_EL1.U field, viewed from the highest Exception level of the associated
PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, UNKNOWN.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

When SPMDEVAFF_EL1.F0V == 1:

Multithreaded. The MPIDR_EL1.MT field, viewed from the highest Exception level of the
associated PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, UNKNOWN.

Aff2, bits [23:16]

When affine with a PE or PEs at affinity level 2 or below:

PE affinity level 2. The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the
associated PE or PEs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

When affine with a sub-set of PEs at affinity level 2:

PE affinity level 2. Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception
level of the associated PEs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0bxxxxxxx1 SPMDEVAFF_EL1.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 SPMDEVAFF_EL1.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 SPMDEVAFF_EL1.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 SPMDEVAFF_EL1.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 SPMDEVAFF_EL1.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5], viewed from the
highest Exception level of the associated PEs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9083
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
0bxx100000 SPMDEVAFF_EL1.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 SPMDEVAFF_EL1.Aff2[7] is the value of MPIDR_EL1.Aff2[7], viewed from the
highest Exception level of the associated PEs.

Access to this field is RO.

Otherwise:

PE affinity level NOT DEFINED. Indicates whether the PE affinity is at level 3.

0x80 PE affinity is at level 3.

All other values are reserved.

Access to this field is RO.

Aff1, bits [15:8]

When affine with a PE or PEs at affinity level 1 or below:

PE affinity level 1. The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the
associated PE or PEs.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

When affine with a sub-set of PEs at affinity level 1:

PE affinity level 1. Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception
level of the associated PEs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0bxxxxxxx1 SPMDEVAFF_EL1.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 SPMDEVAFF_EL1.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 SPMDEVAFF_EL1.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 SPMDEVAFF_EL1.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 SPMDEVAFF_EL1.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 SPMDEVAFF_EL1.Aff1[7:6] is the value of MPIDR_EL1.Aff1[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 SPMDEVAFF_EL1.Aff1[7] is the value of MPIDR_EL1.Aff1[7], viewed from the
highest Exception level of the associated PEs.

Access to this field is RO.

Otherwise:

PE affinity level 1. Indicates whether the PE affinity is at level 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 PE affinity is above level 2 or a subset of level 2.

0x80 PE affinity is at level 2.

Access to this field is RO.

Aff0, bits [7:0]

When affine with a PE at affinity level 0:

PE affinity level 0. The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the
associated PE.

This field has an IMPLEMENTATION DEFINED value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9084
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Access to this field is RO.

When affine with a sub-set of PEs at affinity level 0:

PE affinity level 0. Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception
level of the associated PEs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0bxxxxxxx1 SPMDEVAFF_EL1.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1], viewed from the
highest Exception level of the associated PEs.

0bxxxxxx10 SPMDEVAFF_EL1.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2], viewed from the
highest Exception level of the associated PEs.

0bxxxxx100 SPMDEVAFF_EL1.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3], viewed from the
highest Exception level of the associated PEs.

0bxxxx1000 SPMDEVAFF_EL1.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4], viewed from the
highest Exception level of the associated PEs.

0bxxx10000 SPMDEVAFF_EL1.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5], viewed from the
highest Exception level of the associated PEs.

0bxx100000 SPMDEVAFF_EL1.Aff0[7:6] is the value of MPIDR_EL1.Aff0[7:6], viewed from the
highest Exception level of the associated PEs.

0bx1000000 SPMDEVAFF_EL1.Aff0[7] is the value of MPIDR_EL1.Aff0[7], viewed from the
highest Exception level of the associated PEs.

Access to this field is RO.

Otherwise:

PE affinity level 0. Indicates whether the PE affinity is at level 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 PE affinity is above level 1 or a subset of level 1.

0x80 PE affinity is at level 1.

Access to this field is RO.

Accessing SPMDEVAFF_EL1

Reads of SPMDEVAFF_EL1 are not affected by the value of VMPIDR_EL2 at any Exception level.

If System PMU <s> has affinity only with this PE, then it is IMPLEMENTATION DEFINED whether SPMDEVAFF_EL1
reads-as-zero or reads the same value as MPIDR_EL1.

To access SPMDEVAFF_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMDEVAFF_EL1 reads-as-zero if any of the following are true:

• System PMU <s> is not implemented.

• System PMU <s> has no affinity with the PE or cluster of PEs.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMDEVAFF_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9085
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMDEVAFF_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMDEVAFF_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMDEVAFF_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMDEVAFF_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9086
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.39 SPMDEVARCH_EL1, System Performance Monitors Device Architecture Register

The SPMDEVARCH_EL1 characteristics are:

Purpose

Provides discovery information for System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMDEVARCH_EL1 are UNDEFINED.

Attributes

SPMDEVARCH_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PRESENT, bit [20]

DEVARCH present. Defines that SPMDEVARCH_EL1 register is present.

0b0 Device Architecture information not present.

0b1 Device Architecture information present.

If SPMDEVARCH_EL1 is not present, the register is RES0.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

SPMDEVARCH_EL1.ARCHVER and SPMDEVARCH_EL1.ARCHPART are also defined as a
single field, SPMDEVARCH_EL1.ARCHID, so that SPMDEVARCH_EL1.ARCHVER is
SPMDEVARCH_EL1.ARCHID[15:12].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

RES0

63 32

ARCHITECT

31 21 20

REVISION

19 16

ARCHVER

15 12

ARCHPART

11 0

PRESENT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9087
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
SPMDEVARCH_EL1.ARCHVER and SPMDEVARCH_EL1.ARCHPART are also defined as a
single field, SPMDEVARCH_EL1.ARCHID, so that SPMDEVARCH_EL1.ARCHPART is
SPMDEVARCH_EL1.ARCHID[11:0].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing SPMDEVARCH_EL1

To access SPMDEVARCH_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMDEVARCH_EL1 reads-as-zero if any of the following are true:

• System PMU <s> is not implemented.

• System PMU <s> does not implement SPMDEVARCH_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMDEVARCH_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMID == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMDEVARCH_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9088
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMDEVARCH_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMDEVARCH_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9089
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.40 SPMEVCNTR<n>_EL0, System Performance Monitors Event Count Register, n = 0 - 63

The SPMEVCNTR<n>_EL0 characteristics are:

Purpose

Event counter <n> in System PMU <s>, where n is 0 to 63.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMEVCNTR<n>_EL0 are UNDEFINED.

Attributes

SPMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions

CNTR, bits [63:0]

Event counter n.

The number of implemented bits for SPMEVCNTR<n>_EL0 is IMPLEMENTATION DEFINED.
Unimplemented bits are RES0.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing SPMEVCNTR<n>_EL0

To access SPMEVCNTR<n>_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s and
SPMSELR_EL0.BANK to n[5:4].

SPMEVCNTR<n>_EL0 reads-as-zero and ignores writes if any of the following are true:

• Event counter <n> is not implemented by System PMU <s>.

• System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMEVCNTR<m>_EL0; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then

CNTR

63 32

CNTR

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b000:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9090
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMEVCNTRn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMEVCNTRn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9091
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
+ m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m];

MSR SPMEVCNTR<m>_EL0, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nSPMEVCNTRn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b000:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9092
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMEVCNTRn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9093
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 return;
 else
 SPMEVCNTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9094
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.41 SPMEVFILT2R<n>_EL0, System Performance Monitors Event Filter Control Register 2, n = 0
- 63

The SPMEVFILT2R<n>_EL0 characteristics are:

Purpose

With SPMEVTYPER<n>_EL0 and SPMEVFILTR<n>_EL0, configures when event counter
SPMEVCNTR<n>_EL0 in System PMU <s> increments.

The contents of this register are IMPLEMENTATION DEFINED. For more information, see
SPMEVTYPER<n>_EL0.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMEVFILT2R<n>_EL0 are UNDEFINED.

Attributes

SPMEVFILT2R<n>_EL0 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing SPMEVFILT2R<n>_EL0

To access SPMEVFILT2R<n>_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s and
SPMSELR_EL0.BANK to n[5:4].

SPMEVFILT2R<n>_EL0 reads-as-zero and ignores writes if any of the following are true:

• Event counter <n> is not implemented by System PMU <s>.

• System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMEVFILT2R<m>_EL0; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b011:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9095
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMEVTYPERn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMEVTYPERn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9096
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 X[t, 64] = SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];

MSR SPMEVFILT2R<m>_EL0, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nSPMEVTYPERn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b011:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9097
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMEVTYPERn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9098
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 return;
 else
 SPMEVFILT2R_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9099
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.42 SPMEVFILTR<n>_EL0, System Performance Monitors Event Filter Control Register, n = 0 - 63

The SPMEVFILTR<n>_EL0 characteristics are:

Purpose

With SPMEVTYPER<n>_EL0 and SPMEVFILT2R<n>_EL0, configures when event counter
SPMEVCNTR<n>_EL0 in System PMU <s> increments.

The contents of this register are IMPLEMENTATION DEFINED. For more information, see
SPMEVTYPER<n>_EL0.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMEVFILTR<n>_EL0 are UNDEFINED.

Attributes

SPMEVFILTR<n>_EL0 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing SPMEVFILTR<n>_EL0

To access SPMEVFILTR<n>_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s and
SPMSELR_EL0.BANK to n[5:4].

SPMEVFILTR<n>_EL0 reads-as-zero and ignores writes if any of the following are true:

• Event counter <n> is not implemented by System PMU <s>.

• System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMEVFILTR<m>_EL0; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b010:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9100
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMEVTYPERn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMEVTYPERn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9101
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 X[t, 64] = SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];

MSR SPMEVFILTR<m>_EL0, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nSPMEVTYPERn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b010:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9102
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMEVTYPERn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9103
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 return;
 else
 SPMEVFILTR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9104
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.43 SPMEVTYPER<n>_EL0, System Performance Monitors Event Type Register, n = 0 - 63

The SPMEVTYPER<n>_EL0 characteristics are:

Purpose

With SPMEVFILTR<n>_EL0 and SPMEVFILT2R<n>_EL0, configures when event counter
SPMEVCNTR<n>_EL0 in System PMU <s> increments.

The contents of this register are IMPLEMENTATION DEFINED. An Event Type Select Register
typically contains:

• A field defining the event that the counter is responsive to, in the least-significant bits.

• Controls for per-counter filtering, such as by mode or state.

• Additional controls, such as for a per-counter state machine.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMEVTYPER<n>_EL0 are UNDEFINED.

Attributes

SPMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing SPMEVTYPER<n>_EL0

To access SPMEVTYPER<n>_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s and
SPMSELR_EL0.BANK to n[5:4].

SPMEVTYPER<n>_EL0 reads-as-zero and ignores writes if any of the following are true:

• Event counter <n> is not implemented by System PMU <s>.

• System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMEVTYPER<m>_EL0; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b001:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9105
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMEVTYPERn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMEVTYPERn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9106
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m];

MSR SPMEVTYPER<m>_EL0, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then

op0 op1 CRn CRm op2

0b10 0b011 0b1110 0b001:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9107
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nSPMEVTYPERn_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMEVTYPERn_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9108
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) *
16) + m) then
 return;
 else
 SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];
elsif PSTATE.EL == EL3 then
 if !IsSPMUCounterImplemented(UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16)
+ m) then
 return;
 else
 SPMEVTYPER_EL0[UInt(SPMSELR_EL0.SYSPMUSEL), (UInt(SPMSELR_EL0.BANK) * 16) + m] =
X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9109
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.44 SPMIIDR_EL1, System PMU Implementation Identification Register

The SPMIIDR_EL1 characteristics are:

Purpose

Provides discovery information for System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMIIDR_EL1 are UNDEFINED.

Attributes

SPMIIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ProductID, bits [31:20]

Part number, bits [11:0]. The part number is selected by the designer of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

Component major revision.

Defines either a variant of the component defined by SPMIIDR_EL1.ProductID, or the major
revision of the component.

When defining a major revision, SPMIIDR_EL1.Variant and SPMIIDR_EL1.Revision together
form the revision number of the component, with SPMIIDR_EL1.Variant being the most significant
part and SPMIIDR_EL1.Revision the least significant part. When a component is changed,
SPMIIDR_EL1.Variant or SPMIIDR_EL1.Revision is increased to ensure that software can
differentiate the different revisions of the component. If SPMIIDR_EL1.Variant is increased then
SPMIIDR_EL1.Revision should be set to 0b0000.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Component minor revision.

When a component is changed:

• If SPMIIDR_EL1.Variant and SPMIIDR_EL1.Revision together form the revision number
of the component then:

— SPMIIDR_EL1.Variant or SPMIIDR_EL1.Revision is increased to ensure that
software can differentiate the different revisions of the component.

RES0

63 32

ProductID

31 20

Variant

19 16

Revision

15 12 11 8 7 6 0

Implementer[10:7] Implementer[6:0]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9110
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
— If Variant is increased then Revision should be set to 0b0000.

• Otherwise, SPMIIDR_EL1.Revision is increased to ensure that software can differentiate the
different revisions of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:8, 6:0]

JEDEC-assigned JEP106 identification code of the designer of the component.

SPMIIDR_EL1[11:8] is the JEP106 bank identifier minus 1 and SPMIIDR_EL1[6:0] is the JEP106
identification code for the designer of the component. The code identifies the designer of the
component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note

For example, for a component designed by Arm Limited, the JEP106 bank is 5, and the JEP106
identification code is 0x3B, meaning SPMIIDR_EL1[11:0] has the value 0x43B.

Zero is not a valid JEP106 identification code, meaning a value of zero for SPMIIDR_EL1 indicates
this register is not implemented.

This field has an IMPLEMENTATION DEFINED value.

The Implementer field is split as follows:

• Implementer[10:7] is SPMIIDR_EL1[11:8].

• Implementer[6:0] is SPMIIDR_EL1[6:0].

Access to this field is RO.

Bit [7]

Reserved, RES0.

Accessing SPMIIDR_EL1

To access SPMIIDR_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMIIDR_EL1 reads-as-zero if any of the following are true:

• System PMU <s> is not implemented.

• System PMU <s> does not implement SPMIIDR_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMIIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1101 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9111
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMID == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMIIDR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMIIDR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMIIDR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9112
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.45 SPMINTENCLR_EL1, System Performance Monitors Interrupt Enable Clear Register

The SPMINTENCLR_EL1 characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from event counters in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMINTENCLR_EL1 are UNDEFINED.

Attributes

SPMINTENCLR_EL1 is a 64-bit register.

Field descriptions

P<m>, bit [m], for m = 63 to 0

Event counter <m> overflow interrupt request disable.

0b0 Event counter <m> in System PMU <s> interrupt request is disabled.

0b1 Event counter <m> in System PMU <s> interrupt request is enabled.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When event counter <m> is not implemented by System PMU <s>, access to this field is
RAZ/WI.

• Otherwise, access to this field is W1C.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P63
P62

P61
P60

P59
P58

P57
P56

P55
P54

P53
P52

P51
P50

P49
P48

P32
P33

P34
P35

P36
P37

P38
P39

P40
P41

P42
P43

P44
P45

P46
P47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9113
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMINTENCLR_EL1

To access SPMINTENCLR_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMINTENCLR_EL1 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMINTENCLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMINTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMINTENCLR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMINTENCLR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9114
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMINTENCLR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMINTENCLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMINTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMINTENCLR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMINTENCLR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMINTENCLR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9115
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.46 SPMINTENSET_EL1, System Performance Monitors Interrupt Enable Set Register

The SPMINTENSET_EL1 characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from event counters in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMINTENSET_EL1 are UNDEFINED.

Attributes

SPMINTENSET_EL1 is a 64-bit register.

Field descriptions

P<m>, bit [m], for m = 63 to 0

Event counter <m> overflow interrupt request enable.

0b0 Event counter <m> in System PMU <s> interrupt request is disabled.

0b1 Event counter <m> in System PMU <s> interrupt request is enabled.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When event counter <m> is not implemented by System PMU <s>, access to this field is
RAZ/WI.

• Otherwise, access to this field is W1S.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P63
P62

P61
P60

P59
P58

P57
P56

P55
P54

P53
P52

P51
P50

P49
P48

P32
P33

P34
P35

P36
P37

P38
P39

P40
P41

P42
P43

P44
P45

P46
P47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9116
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMINTENSET_EL1

To access SPMINTENSET_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMINTENSET_EL1 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMINTENSET_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMINTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMINTENSET_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMINTENSET_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9117
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMINTENSET_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMINTENSET_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMINTEN == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMINTENSET_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMINTENSET_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMINTENSET_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b000 0b1001 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9118
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.47 SPMOVSCLR_EL0, System Performance Monitors Overflow Flag Status Clear Register

The SPMOVSCLR_EL0 characteristics are:

Purpose

Clears the state of overflow bits for event counters in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMOVSCLR_EL0 are UNDEFINED.

Attributes

SPMOVSCLR_EL0 is a 64-bit register.

Field descriptions

P<m>, bit [m], for m = 63 to 0

Event counter <m> unsigned overflow bit clear.

0b0 Event counter <m> in System PMU <s> has not overflowed.

0b1 Event counter <m> in System PMU <s> has overflowed.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When event counter <m> is not implemented by System PMU <s>, access to this field is
RAZ/WI.

• Otherwise, access to this field is W1C.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P63
P62

P61
P60

P59
P58

P57
P56

P55
P54

P53
P52

P51
P50

P49
P48

P32
P33

P34
P35

P36
P37

P38
P39

P40
P41

P42
P43

P44
P45

P46
P47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9119
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMOVSCLR_EL0

To access SPMOVSCLR_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMOVSCLR_EL0 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMOVSCLR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMOVS == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMOVS == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9120
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMOVSCLR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9121
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
HDFGWTR2_EL2.nSPMOVS == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMOVS == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9122
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 SPMOVSCLR_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9123
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.48 SPMOVSSET_EL0, System Performance Monitors Overflow Flag Status Set Register

The SPMOVSSET_EL0 characteristics are:

Purpose

Sets the state of overflow bits for event counters in System PMU <s>.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMOVSSET_EL0 are UNDEFINED.

Attributes

SPMOVSSET_EL0 is a 64-bit register.

Field descriptions

P<m>, bit [m], for m = 63 to 0

Event counter <m> unsigned overflow bit set.

0b0 Event counter <m> in System PMU <s> has not overflowed.

0b1 Event counter <m> in System PMU <s> has overflowed.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When event counter <m> is not implemented by System PMU <s>, access to this field is
RAZ/WI.

• Otherwise, access to this field is W1S.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P63
P62

P61
P60

P59
P58

P57
P56

P55
P54

P53
P52

P51
P50

P49
P48

P32
P33

P34
P35

P36
P37

P38
P39

P40
P41

P42
P43

P44
P45

P46
P47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9124
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMOVSSET_EL0

To access SPMOVSSET_EL0 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMOVSSET_EL0 reads-as-zero and ignores writes if System PMU <s> is not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMOVSSET_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMOVS == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMOVS == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9125
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMOVSSET_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif !ELIsInHost(EL0) && SPMACCESSR_EL1<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9126
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
HDFGWTR2_EL2.nSPMOVS == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMOVS == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9127
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 SPMOVSSET_EL0[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9128
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.49 SPMROOTCR_EL3, System Performance Monitors Root and Realm Control Register

The SPMROOTCR_EL3 characteristics are:

Purpose

Controls observability of Root and Realm events by System PMU <s>.

Configurations

This register is present only when FEAT_RME is implemented and FEAT_SPMU is implemented.
Otherwise, direct accesses to SPMROOTCR_EL3 are UNDEFINED.

Attributes

SPMROOTCR_EL3 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:32]

IMPLEMENTATION DEFINED observation controls. Additional IMPLEMENTATION DEFINED bits to
control certain types of filter or events by System PMU <s>.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [31]

Reserved, RAO.

Indicates SPMROOTCR_EL3 is implemented by System PMU <s>.

Bits [30:4]

Reserved, RES0.

NAO, bit [3]

When System PMU <s> can count or monitor non-attributable events:

Non-attributable Observation. Controls whether events or monitorable characteristics not
attributable with any source can be monitored by System PMU <s>.

0b0 Events not attributable with any event source are not counted by System PMU <s>.

0b1 Counting non-attributable events by System PMU <s> is not prevented by this
mechanism.

When both SPMROOTCR_EL3 and SPMSCR_EL1 are implemented, non-attributable events are
counted only if both SPMROOTCR_EL3.NAO is 1 and SPMSCR_EL1.{NAO, SO} is nonzero.

SPMROOTCR_EL3.NAO has the opposite reset polarity to SPMSCR_EL1.NAO.

The reset behavior of this field is:

• On a System PMU reset, this field resets to 1.

Otherwise:

Reserved, RES0.

IMPLEMENTATION DEFINED

63 32

31

RES0

30 4 3 2 1 0

RAO NAO
RES0

RTO
RLO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9129
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Bit [2]

Reserved, RES0.

RLO, bit [1]

Realm Observation. Controls whether events or monitorable characteristics attributable to a Realm
event source can be monitored by System PMU <s>.

0b0 Events attributable to a Realm event source are not counted by System PMU <s>.

0b1 Counting events by System PMU <s> that are attributable to a Realm event source is
not prevented by this mechanism.

The reset behavior of this field is:

• On a System PMU reset, this field resets to 0.

RTO, bit [0]

Root Observation. Controls whether events or monitorable characteristics attributable to a Root
event source can be monitored by System PMU <s>.

0b0 Events attributable to a Root event source are not counted by System PMU <s>.

0b1 Counting events by System PMU <s> that are attributable to a Root event source is not
prevented by this mechanism.

The reset behavior of this field is:

• On a System PMU reset, this field resets to 0.

Accessing SPMROOTCR_EL3

To access SPMROOTCR_EL3 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMROOTCR_EL3 reads-as-zero and ignores writes if any of the following are true:

• System PMU <s> is not implemented.

• System PMU <s> does not implement SPMROOTCR_EL3.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMROOTCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMROOTCR_EL3[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMROOTCR_EL3, <Xt>

op0 op1 CRn CRm op2

0b10 0b110 0b1001 0b1110 0b111

op0 op1 CRn CRm op2

0b10 0b110 0b1001 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9130
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SPMROOTCR_EL3[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9131
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.50 SPMSCR_EL1, System Performance Monitors Secure Control Register

The SPMSCR_EL1 characteristics are:

Purpose

Controls observability of Secure events by System PMU <s>, and optionally controls Secure
attributes for message signaled interrupts and Non-secure access to the performance monitor
registers.

Configurations

This register is present only when Secure EL1 is implemented and FEAT_SPMU is implemented.
Otherwise, direct accesses to SPMSCR_EL1 are UNDEFINED.

Attributes

SPMSCR_EL1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:32]

IMPLEMENTATION DEFINED observation controls. Additional IMPLEMENTATION DEFINED bits to
control certain types of filter or events by System PMU <s>.

The reset behavior of this field is:

• On a System PMU reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [31]

Reserved, RAO.

Indicates SPMSCR_EL1 is implemented by System PMU <s>.

This field reads-as-one.

Bits [30:5]

Reserved, RES0.

NAO, bit [4]

When System PMU <s> can count or monitor non-attributable events:

Non-attributable Observation. Controls whether events or monitorable characteristics not
attributable with any source can be monitored by System PMU <s>.

0b0 Events not attributable with any event source are not counted by System PMU <s>,
unless overridden by SPMSCR_EL1.SO.

0b1 Counting non-attributable events by System PMU <s> is not prevented by this
mechanism.

When both SPMROOTCR_EL3 and SPMSCR_EL1 are implemented, non-attributable events are
counted only if both SPMROOTCR_EL3.NAO is 1 and SPMSCR_EL1.{NAO, SO} is nonzero.

SPMSCR_EL1.NAO has the opposite reset polarity to SPMROOTCR_EL3.NAO.

IMPLEMENTATION DEFINED

63 32

31

RES0

30 5 4

RES0

3 1

SO

0

RAO NAO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9132
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
This field is optional if Root and Realm states are not implemented. When this field is not
implemented, System PMU <s> behaves as if SPMSCR_EL1.NAO is 0, and whether events or
monitorable characteristics not attributable with any source can be monitored is controlled by
SPMSCR_EL1.SO.

The reset behavior of this field is:

• On a System PMU reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [3:1]

Reserved, RES0.

SO, bit [0]

Secure Observation. Controls whether events or monitorable characteristics attributable to a Secure
event source can be monitored by System PMU <s>.

0b0 Events attributable to a Secure event source are not counted by System PMU <s>.

0b1 Counting events by System PMU <s> that are attributable to a Secure event source is
not prevented by this mechanism.

Also controls whether events or monitorable characteristics not attributable with any source can be
monitored by System PMU <s>. See SPMSCR_EL1.NAO.

The reset behavior of this field is:

• On a System PMU reset, this field resets to 0.

Accessing SPMSCR_EL1

To access SPMSCR_EL1 for System PMU <s>, set SPMSELR_EL0.SYSPMUSEL to s.

SPMSCR_EL1 reads-as-zero and ignores writes if any of the following are true:

• System PMU <s> is not implemented.

• System PMU <s> does not implement SPMSCR_EL1.

SPMSCR_EL1 is UNDEFINED if accessed in Non-secure or Realm state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMSCR_EL1

if IsCurrentSecurityState(SS_NonSecure) || (IsFeatureImplemented(FEAT_RME) &&
IsCurrentSecurityState(SS_Realm)) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMSCR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b111 0b1001 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9133
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMSCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> ==
'00' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> == '00' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMSCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMSCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)];

MSR SPMSCR_EL1, <Xt>

if IsCurrentSecurityState(SS_NonSecure) || (IsFeatureImplemented(FEAT_RME) &&
IsCurrentSecurityState(SS_Realm)) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMSCR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b111 0b1001 0b1110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9134
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
 elsif EL2Enabled() && SPMACCESSR_EL2<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMSCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() &&
SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) + 1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> !=
'11' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SPMACCESSR_EL3<(UInt(SPMSELR_EL0.SYSPMUSEL) * 2) +
1:UInt(SPMSELR_EL0.SYSPMUSEL) * 2> != '11' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMSCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMSCR_EL1[UInt(SPMSELR_EL0.SYSPMUSEL)] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9135
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
D23.5.51 SPMSELR_EL0, System Performance Monitors Select Register

The SPMSELR_EL0 characteristics are:

Purpose

Selects the System PMU and event counter registers to access.

Configurations

This register is present only when FEAT_SPMU is implemented. Otherwise, direct accesses to
SPMSELR_EL0 are UNDEFINED.

Attributes

SPMSELR_EL0 is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

SYSPMUSEL, bits [9:4]

System PMU Select. Selects a System PMU <s> to access.

Values 0x20 to 0x3F are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:2]

Reserved, RES0.

BANK, bits [1:0]

System PMU bank access control. Selects a bank of 16 System PMU event counters and related
controls to access.

0b00 Select event counters 0 to 15.

0b01 Select event counters 16 to 31.

0b10 Select event counters 32 to 47.

0b11 Select event counters 48 to 63.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 10

SYSPMUSEL

9 4

RES0

3 2

BANK

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9136
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
Accessing SPMSELR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SPMSELR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGRTR2_EL2.nSPMSELR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMSELR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nSPMSELR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMSELR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = SPMSELR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = SPMSELR_EL0;

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9137
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.5 Performance Monitors registers
MSR SPMSELR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif MDSCR_EL1.EnSPM == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HaveEL(EL3) && SCR_EL3.FGTEn2 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT2) &&
HDFGWTR2_EL2.nSPMSELR_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMSELR_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nSPMSELR_EL0 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.EnSPM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMSELR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPM2 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.EnPM2 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SPMSELR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 SPMSELR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b011 0b1001 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9138
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6 Activity Monitors registers

This section lists the Activity Monitors registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9139
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.1 AMCFGR_EL0, Activity Monitors Configuration Register

The AMCFGR_EL0 characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total
number of activity monitor event counters implemented, and the size of the counters.
AMCFGR_EL0 is applicable to both the architected and the auxiliary counter groups.

Configurations

AArch64 System register AMCFGR_EL0 bits [31:0] are architecturally mapped to AArch32
System register AMCFGR[31:0].

AArch64 System register AMCFGR_EL0 bits [31:0] are architecturally mapped to External register
AMCFGR, Activity Monitors Configuration Register[31:0] when FEAT_AMU_EXT32 is
implemented.

AArch64 System register AMCFGR_EL0 bits [63:0] are architecturally mapped to External register
AMCFGR, Activity Monitors Configuration Register[63:0] when FEAT_AMU_EXT64 is
implemented.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCFGR_EL0 are UNDEFINED.

Attributes

AMCFGR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

NCG, bits [31:28]

Defines the number of counter groups implemented, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One counter group implemented.

0b0001 Two counter groups implemented.

All other values are reserved.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

RES0

63 32

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9140
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 AMCR_EL0.HDBG is RES0.

0b1 AMCR_EL0.HDBG is read/write.

Access to this field is RO.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of the activity monitor event counters, minus one.

The counters are 64-bit, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. The
counters are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters implemented in all groups, minus one.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMCFGR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCFGR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCFGR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9141
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCFGR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCFGR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCFGR_EL0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9142
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.2 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register

The AMCG1IDR_EL0 characteristics are:

Purpose

Defines which auxiliary counters are implemented, and which of them have a corresponding virtual
offset register, AMEVCNTVOFF1<n>_EL2 implemented.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to
AMCG1IDR_EL0 are UNDEFINED.

Attributes

AMCG1IDR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

AMEVCNTOFF1<n>_EL2, bit [n+16], for n = 15 to 0

Indicates which implemented auxiliary counters have a corresponding virtual offset register,
AMEVCNTVOFF1<n>_EL2 implemented.

0b0 When read, mean that AMEVCNTR1<n>_EL0 does not have an offset, or is not
implemented.

0b1 When read, means the offset AMEVCNTVOFF1<n>_EL2 is implemented for
AMEVCNTR1<n>_EL0.

AMEVCNTR1<n>_EL0, bit [n], for n = 15 to 0

Indicates which auxiliary counters AMEVCNTR1<n>_EL0 are implemented.

0b0 When read, means that AMEVCNTR1<n>_EL0 is not implemented.

0b1 When read, means that AMEVCNTR1<n>_EL0 is implemented.

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMEVCNTOFF115_EL2

AMEVCNTOFF114_EL2

AMEVCNTOFF113_EL2

AMEVCNTOFF112_EL2

AMEVCNTOFF111_EL2
AMEVCNTOFF110_EL2

AMEVCNTOFF19_EL2
AMEVCNTOFF18_EL2

AMEVCNTOFF17_EL2
AMEVCNTOFF16_EL2

AMEVCNTOFF15_EL2
AMEVCNTOFF14_EL2

AMEVCNTOFF13_EL2
AMEVCNTOFF12_EL2

AMEVCNTOFF11_EL2
AMEVCNTOFF10_EL2

AMEVCNTR10_EL0

AMEVCNTR11_EL0

AMEVCNTR12_EL0

AMEVCNTR13_EL0
AMEVCNTR14_EL0

AMEVCNTR15_EL0
AMEVCNTR16_EL0

AMEVCNTR17_EL0
AMEVCNTR18_EL0

AMEVCNTR19_EL0
AMEVCNTR110_EL0

AMEVCNTR111_EL0
AMEVCNTR112_EL0

AMEVCNTR113_EL0
AMEVCNTR114_EL0

AMEVCNTR115_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9143
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accessing AMCG1IDR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCG1IDR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCG1IDR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCG1IDR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCG1IDR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCG1IDR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9144
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.3 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

The AMCGCR_EL0 characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each
counter group.

Configurations

AArch64 System register AMCGCR_EL0 bits [31:0] are architecturally mapped to AArch32
System register AMCGCR[31:0].

AArch64 System register AMCGCR_EL0 bits [31:0] are architecturally mapped to External
register AMCGCR, Activity Monitors Counter Group Configuration Register[31:0] when
FEAT_AMU_EXT32 is implemented.

AArch64 System register AMCGCR_EL0 bits [63:0] are architecturally mapped to External
register AMCGCR, Activity Monitors Counter Group Configuration Register[63:0] when
FEAT_AMU_EXT64 is implemented.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCGCR_EL0 are UNDEFINED.

Attributes

AMCGCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00..0x10 The number of counters.

All other values are reserved.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

RES0

63 32

RES0

31 16

CG1NC

15 8

0 0 0 0 0 1 0 0

7 0

CG0NC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9145
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accessing AMCGCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCGCR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCGCR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCGCR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCGCR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCGCR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9146
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.4 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0_EL0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configurations

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENCLR0[31:0].

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0[31:0].

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR, Activity Monitors Count Enable Clear Register[31:0].

AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET0, Activity Monitors Count Enable Set Register 0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR0_EL0 are UNDEFINED.

Attributes

AMCNTENCLR0_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>_EL0.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR0<n>_EL0 is enabled. When written, disables
AMEVCNTR0<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

63 32

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9147
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accessing AMCNTENCLR0_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCNTENCLR0_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENCLR0_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCNTENCLR0_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9148
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
MSR AMCNTENCLR0_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENCLR0_EL0 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9149
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.5 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1_EL0 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configurations

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENCLR1[31:0].

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1[31:0].

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET1, Activity Monitors Count Enable Set Register 1[31:0].

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR, Activity Monitors Count Enable Clear Register[63:32].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR1_EL0 are UNDEFINED.

Attributes

AMCNTENCLR1_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>_EL0.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When written, disables
AMEVCNTR1<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR1_EL0

If there are no auxiliary monitor event counters implemented, reads and writes of AMCNTENCLR1_EL0 are
UNDEFINED.

RES0

63 32

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9150
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Note

There are no implemented auxiliary activity monitor event counters when AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCNTENCLR1_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENCLR1_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCNTENCLR1_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9151
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
MSR AMCNTENCLR1_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENCLR1_EL0 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9152
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.6 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0_EL0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configurations

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENSET0[31:0].

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET0, Activity Monitors Count Enable Set Register 0[31:0].

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET, Activity Monitors Count Enable Set Register[31:0].

AArch64 System register AMCNTENSET0_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET0_EL0 are UNDEFINED.

Attributes

AMCNTENSET0_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>_EL0.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR0<n>_EL0 is enabled. When written, enables
AMEVCNTR0<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

63 32

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9153
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accessing AMCNTENSET0_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCNTENSET0_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENSET0_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENSET0_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENSET0_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCNTENSET0_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9154
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
MSR AMCNTENSET0_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENSET0_EL0 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9155
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.7 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1_EL0 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configurations

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMCNTENSET1[31:0].

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET1, Activity Monitors Count Enable Set Register 1[31:0].

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1[31:0].

AArch64 System register AMCNTENSET1_EL0 bits [31:0] are architecturally mapped to External
register AMCNTENSET, Activity Monitors Count Enable Set Register[63:32].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET1_EL0 are UNDEFINED.

Attributes

AMCNTENSET1_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>_EL0.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled. When written, has no
effect.

0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When written, enables
AMEVCNTR1<n>_EL0.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET1_EL0

If there are no auxiliary monitor event counters implemented, reads and writes of AMCNTENSET1_EL0 are
UNDEFINED.

RES0

63 32

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9156
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Note

There are no implemented auxiliary activity monitor event counters when AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCNTENSET1_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENSET1_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENSET1_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCNTENSET1_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCNTENSET1_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9157
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
MSR AMCNTENSET1_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCNTENSET1_EL0 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9158
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.8 AMCR_EL0, Activity Monitors Control Register

The AMCR_EL0 characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR_EL0 is applicable to both
the architected and the auxiliary counter groups.

Configurations

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register AMCR[31:0].

AArch64 System register AMCR_EL0 bits [31:0] are architecturally mapped to External register
AMCR, Activity Monitors Control Register[31:0] when FEAT_AMU_EXT32 is implemented.

AArch64 System register AMCR_EL0 bits [63:0] are architecturally mapped to External register
AMCR, Activity Monitors Control Register[63:0] when FEAT_AMU_EXT64 is implemented.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR_EL0 are UNDEFINED.

Attributes

AMCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:18]

Reserved, RES0.

CG1RZ, bit [17]

When FEAT_AMUv1p1 is implemented:

Counter Group 1 Read Zero.

0b0 System register reads of AMEVCNTR1<n>_EL0 return the event count at all
implemented and enabled Exception levels.

0b1 If the current Exception level is the highest implemented Exception level, system
register reads of AMEVCNTR1<n>_EL0 return the event count. Otherwise, reads of
AMEVCNTR1<n>_EL0 return a zero value.

Note
Reads from the memory-mapped view are unaffected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:11]

Reserved, RES0.

RES0

63 32

RES0

31 18 17

RES0

16 11 10

RES0

9 0

CG1RZ HDBG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9159
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing AMCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMCR_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9160
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMCR_EL0;

MSR AMCR_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCR_EL0 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9161
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.9 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 3

The AMEVCNTR0<n>_EL0 characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

AArch64 System register AMEVCNTR0<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMEVCNTR0<n>[31:0].

AArch64 System register AMEVCNTR0<n>_EL0 bits [63:0] are architecturally mapped to
External register AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR0<n>_EL0 are UNDEFINED.

Attributes

AMEVCNTR0<n>_EL0 is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is
a number from 0 to 3.

If all of the following are true, reads of the AMEVCNTR0<n>_EL0 registers from EL0 or EL1
return (PCount<63:0> - AMEVCNTVOFF0<n>_EL2<63:0>), where PCount is the physical count
returned when AMEVCNTR0<n>_EL0 is read from EL2 or EL3:

• FEAT_AMUv1p1 is implemented.

• HCR_EL2.AMVOFFEN and SCR_EL3.AMVOFFEN are 1.

• EL2 is implemented and enabled in the current Security state, and the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR0<n>_EL0

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

ACNT

63 32

ACNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9162
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTR0<m>_EL0; Where m = 0-3

integer m = UInt(CRm<0>:op2<2:0>);

if m >= 4 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR0<m>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVCNTR0_EL0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMEVCNTR0<m>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVCNTR0_EL0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVCNTR0_EL0[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMEVCNTR0_EL0[m];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b010:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9163
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
MSR AMEVCNTR0<m>_EL0, <Xt>; Where m = 0-3

integer m = UInt(CRm<0>:op2<2:0>);

if m >= 4 then
 UNDEFINED;
elsif IsHighestEL(PSTATE.EL) then
 AMEVCNTR0_EL0[m] = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b010:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9164
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.10 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n>_EL0 characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

AArch64 System register AMEVCNTR1<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMEVCNTR1<n>[31:0].

AArch64 System register AMEVCNTR1<n>_EL0 bits [63:0] are architecturally mapped to
External register AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR1<n>_EL0 are UNDEFINED.

Attributes

AMEVCNTR1<n>_EL0 is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a
number from 0 to 15.

If all of the following are true, reads of the AMEVCNTR1<n>_EL0 registers from EL0 or EL1
return (PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>), where PCount is the physical count
returned when AMEVCNTR1<n>_EL0 is read from EL2 or EL3:

• FEAT_AMUv1p1 is implemented.

• HCR_EL2.AMVOFFEN and SCR_EL3.AMVOFFEN are 1.

• AMCR_EL0.CG1RZ is 0.

• EL2 is implemented and enabled in the current Security state, and the Effective value of
HCR_EL2.{E2H, TGE} is not {1, 1}.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR1<n>_EL0

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

ACNT

63 32

ACNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9165
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTR1<m>_EL0; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<m>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif AMCR_EL0.CG1RZ == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = AMEVCNTR1_EL0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMEVCNTR1<m>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsHighestEL(PSTATE.EL) && AMCR_EL0.CG1RZ == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = AMEVCNTR1_EL0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsHighestEL(PSTATE.EL) && AMCR_EL0.CG1RZ == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = AMEVCNTR1_EL0[m];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b110:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9166
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMEVCNTR1_EL0[m];

MSR AMEVCNTR1<m>_EL0, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif IsHighestEL(PSTATE.EL) then
 AMEVCNTR1_EL0[m] = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b110:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9167
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.11 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 -
15

The AMEVCNTVOFF0<n>_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset for architected activity monitor events.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to
AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

AMEVCNTVOFF0<n>_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVCNTVOFF0<n>_EL2

If <n> is not 0, 2 or 3, reads and writes of AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTVOFF0<m>_EL2; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= 4 then
 UNDEFINED;
elsif !(m IN {0, 2, 3}) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0xA00 + (8 * m)];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;

Virtual offset

63 32

Virtual offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b100:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9168
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVCNTVOFF0_EL2[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMEVCNTVOFF0_EL2[m];

MSR AMEVCNTVOFF0<m>_EL2, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= 4 then
 UNDEFINED;
elsif !(m IN {0, 2, 3}) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0xA00 + (8 * m)] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMEVCNTVOFF0_EL2[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMEVCNTVOFF0_EL2[m] = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b100:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9169
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.12 AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 -
15

The AMEVCNTVOFF1<n>_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset for auxiliary activity monitor events.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to
AMEVCNTVOFF1<n>_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

AMEVCNTVOFF1<n>_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVCNTVOFF1<n>_EL2

Note

AMCG1IDR_EL0 identifies which auxiliary activity monitor event counters have a corresponding virtual offset
implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVCNTVOFF1<m>_EL2; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorOffsetImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0xA80 + (8 * m)];

Virtual offset

63 32

Virtual offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b101:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9170
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVCNTVOFF1_EL2[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMEVCNTVOFF1_EL2[m];

MSR AMEVCNTVOFF1<m>_EL2, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorOffsetImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0xA80 + (8 * m)] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMEVCNTVOFF1_EL2[m] = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b101:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9171
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
elsif PSTATE.EL == EL3 then
 AMEVCNTVOFF1_EL2[m] = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9172
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.13 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 3

The AMEVTYPER0<n>_EL0 characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter
AMEVCNTR0<n>_EL0 counts.

Configurations

AArch64 System register AMEVTYPER0<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMEVTYPER0<n>[31:0].

AArch64 System register AMEVTYPER0<n>_EL0 bits [31:0] are architecturally mapped to
External register AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER0<n>_EL0 are UNDEFINED.

Attributes

AMEVTYPER0<n>_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>_EL0. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

Memory stall cycles

Access to this field is RO.

Accessing AMEVTYPER0<n>_EL0

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n>_EL0 are UNDEFINED.

RES0

63 32

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9173
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVTYPER0<m>_EL0; Where m = 0-3

integer m = UInt(CRm<0>:op2<2:0>);

if m >= 4 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVTYPER0_EL0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVTYPER0_EL0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVTYPER0_EL0[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMEVTYPER0_EL0[m];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b011:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9174
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.14 AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n>_EL0 characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter
AMEVCNTR1<n>_EL0 counts.

Configurations

AArch64 System register AMEVTYPER1<n>_EL0 bits [31:0] are architecturally mapped to
AArch32 System register AMEVTYPER1<n>[31:0].

AArch64 System register AMEVTYPER1<n>_EL0 bits [31:0] are architecturally mapped to
External register AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER1<n>_EL0 are UNDEFINED.

Attributes

AMEVTYPER1<n>_EL0 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>_EL0.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter
AMEVCNTR1<n>_EL0, then:

• It is UNPREDICTABLE which event will be counted.

• The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n>_EL0 might be fixed at implementation. In this case, the
field is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n>_EL0 is enabled, writes to this register have
UNPREDICTABLE results.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVTYPER1<n>_EL0

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n>_EL0 are UNDEFINED.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

RES0

63 32

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9175
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMEVTYPER1<m>_EL0; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVTYPER1<m>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVTYPER1_EL0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HAFGRTR_EL2.AMEVTYPER1<m>_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVTYPER1_EL0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMEVTYPER1_EL0[m];
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMEVTYPER1_EL0[m];

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b111:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9176
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
MSR AMEVTYPER1<m>_EL0, <Xt>; Where m = 0-15

integer m = UInt(CRm<0>:op2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif IsHighestEL(PSTATE.EL) && !boolean IMPLEMENTATION_DEFINED "AMEVCNTR1_EL0[m] is fixed"
then
 AMEVTYPER1_EL0[m] = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b111:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9177
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
D23.6.15 AMUSERENR_EL0, Activity Monitors User Enable Register

The AMUSERENR_EL0 characteristics are:

Purpose

Global user enable register for the activity monitors. Enables or disables EL0 access to the activity
monitors. AMUSERENR_EL0 is applicable to both the architected and the auxiliary counter
groups.

Configurations

AArch64 System register AMUSERENR_EL0 bits [31:0] are architecturally mapped to AArch32
System register AMUSERENR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMUSERENR_EL0 are UNDEFINED.

Attributes

AMUSERENR_EL0 is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

EN, bit [0]

Traps EL0 accesses to the activity monitors registers to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped, reported using EC
syndrome value 0x18:

— AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVCNTR0<n>, AMEVCNTR1<n>,
AMEVTYPER0<n>, and AMEVTYPER1<n>.

0b0 EL0 accesses to the activity monitors registers are trapped.

0b1 This control does not cause any instructions to be trapped. Software can access all
activity monitor registers at EL0.

Note

• AMUSERENR_EL0 can always be read at EL0 and is not governed by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 1

EN

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9178
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
Accessing AMUSERENR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMUSERENR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMUSERENR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMUSERENR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = AMUSERENR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = AMUSERENR_EL0;

MSR AMUSERENR_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b011

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9179
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.6 Activity Monitors registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMUSERENR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMUSERENR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 AMUSERENR_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9180
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7 Statistical Profiling Extension registers

This section lists the Statistical Profiling Extension registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9181
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.1 PMBIDR_EL1, Profiling Buffer ID Register

The PMBIDR_EL1 characteristics are:

Purpose

Provides information to software as to whether the buffer can be programmed at the current
Exception level.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBIDR_EL1 are UNDEFINED.

Attributes

PMBIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

EA, bits [11:8]

External Abort handling. Describes how the PE manages External aborts on writes made by the
Statistical Profiling Unit to the Profiling Buffer.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not described.

0b0001 The PE ignores External aborts on writes made by the Statistical Profiling Unit.

0b0010 The External abort generates an SError exception at the PE.

All other values are reserved.

From Armv8.8, the value 0b0000 is not permitted.

PMBIDR_EL1.EA describes only External aborts generated by the write to memory. External
aborts on a translation table walk made by the Statistical Profiling Unit generate Profiling Buffer
management events reported as MMU faults using PMBSR_EL1.

Access to this field is RO.

Bits [7:6]

Reserved, RES0.

F, bit [5]

Flag updates. Describes how address translations performed by the Statistical Profiling Unit manage
the Access flag and dirty state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Hardware management of the Access flag and dirty state for accesses made by the
Statistical Profiling Unit is always disabled for all translation stages.

0b1 Hardware management of the Access flag and dirty state for accesses made by the
Statistical Profiling Unit is controlled in the same way as explicit memory accesses in
the Profiling Buffer owning translation regime.

RES0

63 32

RES0

31 12

EA

11 8

RES0

7 6

F

5

P

4

Align

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9182
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Note

If hardware management of the Access flag is disabled for a stage of translation, an access to a Page
or Block with the Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page
or Block will ignore the Dirty Bit Modifier in the descriptor and might generate a Permission fault,
depending on the values of the access permission bits in the descriptor.

From Armv8.8, the value 0 is not permitted.

Access to this field is RO.

P, bit [4]

Programming not allowed. When read at EL3, this field reads as zero. Otherwise, indicates that the
Profiling Buffer is owned by a higher Exception level or another Security state. Defined values are:

0b0 Programming is allowed.

0b1 Programming not allowed.

The value read from this field depends on the current Exception level and the Effective values of
MDCR_EL3.NSPB, MDCR_EL3.NSPBE, and MDCR_EL2.E2PB:

• If EL3 is implemented, MDCR_EL3.NSPB is 0b0x, and either FEAT_RME is not
implemented, or Secure state is implemented and MDCR_EL3.NSPBE is 0, then this field
reads as one from:

— Non-secure EL1 and Non-secure EL2.

— If FEAT_RME is implemented, Realm EL1 and Realm EL2.

— If Secure EL2 is implemented and enabled, and MDCR_EL2.E2PB is 0b00, Secure
EL1.

• If EL3 is implemented, MDCR_EL3.NSPB is 0b1x and either FEAT_RME is not
implemented or MDCR_EL3.NSPBE is 0, then this field reads as one from:

— If Secure state is implemented, Secure EL1.

— If Secure EL2 is implemented, Secure EL2.

— If EL2 is implemented and MDCR_EL2.E2PB is 0b00, Non-secure EL1.

— If FEAT_RME is implemented, Realm EL1 and Realm EL2.

• If FEAT_RME is implemented, and MDCR_EL3.{NSPB, NSPBE} is {0b1x, 1}, then this
field reads as one from:

— Non-secure EL1 and Non-secure EL2.

— If Secure state is implemented, Secure EL1 and Secure EL2.

— If MDCR_EL2.E2PB is 0b00, Realm EL1.

• If EL3 is not implemented, EL2 is implemented, and MDCR_EL2.E2PB is 0b00, then this
field reads as one from EL1.

Otherwise, this field reads as zero.

Align, bits [3:0]

Defines the minimum alignment constraint for writes to PMBPTR_EL1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Byte.

0b0001 Halfword.

0b0010 Word.

0b0011 Doubleword.

0b0100 16 bytes.

0b0101 32 bytes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9183
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
0b0110 64 bytes.

0b0111 128 bytes.

0b1000 256 bytes.

0b1001 512 bytes.

0b1010 1KB.

0b1011 2KB.

All other values are reserved.

For more information, see Restrictions on the current write pointer.

If this field is nonzero, then every record is a multiple of this size.

Access to this field is RO.

Accessing PMBIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn ==
'1') && HDFGRTR_EL2.PMBIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = PMBIDR_EL1;
elsif PSTATE.EL == EL2 then
 X[t, 64] = PMBIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMBIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9184
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.2 PMBLIMITR_EL1, Profiling Buffer Limit Address Register

The PMBLIMITR_EL1 characteristics are:

Purpose

Defines the upper limit for the profiling buffer, and enables the profiling buffer

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBLIMITR_EL1 are UNDEFINED.

Attributes

PMBLIMITR_EL1 is a 64-bit register.

Field descriptions

LIMIT, bits [63:12]

Limit address. PMBLIMITR_EL1.LIMIT:Zeros(12) is the address of the first byte in memory after
the last byte in the profiling buffer. If the smallest implemented translation granule is not 4KB, then
bits[N-1:12] are RES0, where N is the IMPLEMENTATION DEFINED value, Log2(smallest implemented
translation granule).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:6]

Reserved, RES0.

PMFZ, bit [5]

When FEAT_SPEv1p2 is implemented:

Freeze PMU on SPE event. Stop PMU event counters when PMBSR_EL1.S == 1.

0b0 Do not freeze PMU event counters on Statistical Profiling Buffer Management event.

0b1 Freeze PMU event counters on Statistical Profiling Buffer Management event.

The PMU event counters affected by this control is controlled by PMCR_EL0.FZS and, if EL2 is
implemented, MDCR_EL2.HPMFZS. See the descriptions of these control bits for more
information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [4:3]

Reserved, RES0.

LIMIT

63 32

LIMIT

31 12

RES0

11 6 5

RES0

4 3

FM

2 1

E

0

PMFZ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9185
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
FM, bits [2:1]

Fill mode.

0b00 Fill mode. Stop collection and raise maintenance interrupt on buffer fill.

0b10 When FEAT_SPEv1p2 is implemented:

Discard mode. All output is discarded.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Profiling Buffer enable

0b0 All output is discarded.

0b1 Profiling buffer enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMBLIMITR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBLIMITR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMBLIMITR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x800];
 else
 X[t, 64] = PMBLIMITR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9186
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 X[t, 64] = PMBLIMITR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMBLIMITR_EL1;

MSR PMBLIMITR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMBLIMITR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x800] = X[t, 64];
 else
 PMBLIMITR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMBLIMITR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMBLIMITR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9187
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.3 PMBPTR_EL1, Profiling Buffer Write Pointer Register

The PMBPTR_EL1 characteristics are:

Purpose

Defines the current write pointer for the profiling buffer.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBPTR_EL1 are UNDEFINED.

Attributes

PMBPTR_EL1 is a 64-bit register.

Field descriptions

PTR, bits [63:0]

Current write address. Defines the virtual address of the next entry to be written to the buffer.

If PMBIDR_EL1.Align is not zero, then it is IMPLEMENTATION DEFINED whether bits [M-1:0] are
RES0 or read/write, where M is an integer between 1 and PMBIDR_EL1.Align inclusive.

The architecture places restrictions on the values software can write to the pointer when the SPU is
not in Discard mode. For more information see Restrictions on the current write pointer.

On a management interrupt, PMBPTR_EL1 is frozen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMBPTR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBPTR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMBPTR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

PTR

63 32

PTR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9188
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x810];
 else
 X[t, 64] = PMBPTR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMBPTR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMBPTR_EL1;

MSR PMBPTR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMBPTR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x810] = X[t, 64];
 else
 PMBPTR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMBPTR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9189
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
elsif PSTATE.EL == EL3 then
 PMBPTR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9190
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.4 PMBSR_EL1, Profiling Buffer Status/syndrome Register

The PMBSR_EL1 characteristics are:

Purpose

Provides syndrome information to software when the buffer is disabled because the management
interrupt has been raised.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMBSR_EL1 are UNDEFINED.

Attributes

PMBSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:41]

Reserved, RES0.

TopLevel, bit [40]

When FEAT_THE is implemented and EC == 0b10010x:

TopLevel.

Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [39]

When FEAT_THE is implemented and EC == 0b10010x:

AssuredOnly flag.

If a memory access generates a Stage 2 Data Abort, this field holds information about the fault.

0b0 The Data Abort is not due to AssuredOnly.

0b1 The Data Abort is due to AssuredOnly.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 41 40 39 38 37

RES0

36 32

TopLevel
AssuredOnly

DirtyBit
Overlay

EC

31 26

RES0

25 20

DL

19

EA

18

S

17 16

MSS

15 0

COLL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9191
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RES0.

Overlay, bit [38]

When (FEAT_S1POE is implemented or FEAT_S2POE is implemented) and EC == 0b10010x:

Overlay flag.

If a memory access generates a Data Abort for a Permission fault, this field holds information about
the fault.

0b0 The Data Abort is not due to Overlay Permissions.

0b1 The Data Abort is due to Overlay Permissions.

For any other fault, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DirtyBit, bit [37]

When (FEAT_S1PIE is implemented or FEAT_S2PIE is implemented) and EC == 0b10010x:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission,
this field holds information about the fault.

0b0 The Permission Fault is not due to nDirty State or Dirty State.

0b1 The Permission Fault is due to nDirty State or Dirty State.

For any other fault or Access, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [36:32]

Reserved, RES0.

EC, bits [31:26]

Event class. Top-level description of the cause of the buffer management event.

EC == 0b000000

Other buffer management event. All buffer management events other than those
described by other defined Event class codes.

See MSS encoding for other buffer management events.

EC == 0b011110

When FEAT_RME is implemented:

Granule Protection Check fault, other than GPF, on write to Profiling Buffer.

See MSS encoding for Granule Protection Check fault.

EC == 0b011111

Buffer management event for an IMPLEMENTATION DEFINED reason.

See MSS encoding for a buffer management event for an IMPLEMENTATION
DEFINED reason.

EC == 0b100100

Stage 1 Data Abort on write to Profiling Buffer.

See MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9192
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
EC == 0b100101

Stage 2 Data Abort on write to Profiling Buffer.

See MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer.

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not
supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:20]

Reserved, RES0.

DL, bit [19]

Partial record lost.

Following a buffer management event other than an asynchronous External abort, indicates whether
the last record written to the Profiling Buffer is complete.

0b0 PMBPTR_EL1 points to the first byte after the last complete record written to the
Profiling Buffer.

0b1 Part of a record was lost because of a buffer management event or synchronous External
abort. PMBPTR_EL1 might not point to the first byte after the last complete record
written to the buffer, and so restarting collection might result in a data record stream that
software cannot parse. All records prior to the last record have been written to the buffer.

When the buffer management event was because of an asynchronous External abort, this bit is set
to 1 and software must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an
asynchronous External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

0b0 An External abort has not been asserted.

0b1 An External abort has been asserted and detected by the Statistical Profiling Unit.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

0b0 PMBIRQ is not asserted.

0b1 PMBIRQ is asserted. All profiling data has either been written to the buffer or
discarded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

0b0 No collision events detected.

0b1 At least one collision event was recorded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9193
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault status code

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 Asynchronous External abort.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

RES0

15 6

FSC

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9194
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b100001 Alignment fault.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort
and synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated
by the PE. For more information see Faults and watchpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9195
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for other buffer management events

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Buffer status code

0b000000 Buffer not filled

0b000001 Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the
architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not
supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS encoding for Granule Protection Check fault

Bits [15:0]

Reserved, RES0.

MSS encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

15 6

BSC

5 0

RES0

15 0

IMPLEMENTATION DEFINED

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9196
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Accessing PMBSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMBSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x820];
 else
 X[t, 64] = PMBSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMBSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMBSR_EL1;

MSR PMBSR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMBSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9197
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x820] = X[t, 64];
 else
 PMBSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMBSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMBSR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9198
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.5 PMSCR_EL1, Statistical Profiling Control Register (EL1)

The PMSCR_EL1 characteristics are:

Purpose

Provides EL1 controls for Statistical Profiling.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSCR_EL1 are UNDEFINED.

Attributes

PMSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

When EL2 is implemented:

Physical Timestamp. If timestamp sampling is enabled and the Profiling Buffer is owned by EL1,
requests which timestamp counter value is collected.

If FEAT_ECV is implemented, this is a two-bit field as shown. Otherwise, bit[7] is RES0.

0b00 Virtual timestamp. The collected timestamp is the physical counter minus the value of
CNTVOFF_EL2.

0b01 Physical timestamp. The collected timestamp is the physical counter.

0b11 When FEAT_ECV is implemented:

Guest physical timestamp. The collected timestamp is the physical counter minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

If EL2 is enabled in the current Security state, then the value of PMSCR_EL2.PCT might override
or modify the meaning of this field.

This field is ignored by the PE when the Profiling Buffer owning Exception level is EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Physical Timestamp. Reserved. This field reads as 0b01 and ignores writes. Software should treat
this field as UNK/SBZP.

When EL2 is not implemented, the Effective values of CNTVOFF_EL2 and CNTPOFF_EL2 are
zero, meaning the virtual counter and physical counter have the same value.

RES0

63 32

RES0

31 8

PCT

7 6

TS

5

PA

4

CX

3 2 1 0

RES0 E0SPE
E1SPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9199
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
TS, bit [5]

Timestamp enable.

0b0 Timestamp sampling disabled.

0b1 Timestamp sampling enabled.

This bit is ignored by the PE if EL2 is implemented and the Profiling Buffer is owned by EL2. For
more information, see Controlling the data that is collected.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address sample enable.

0b0 Physical addresses are not collected.

0b1 Physical addresses are collected.

If EL2 is implemented:

• If the Profiling Buffer is owned by EL1, this bit is combined with PMSCR_EL2.PA to
determine which address is collected. For more information, see Controlling the data that is
collected.

• If the Profiling Buffer is owned by EL2, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL1 sample enable.

0b0 CONTEXTIDR_EL1 is not collected.

0b1 CONTEXTIDR_EL1 is collected.

If EL2 is implemented and enabled in the current Security state when an operation is sampled:

• If the PE is at EL2, this bit is ignored by the PE.

• If HCR_EL2.TGE == 1, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E1SPE, bit [1]

EL1 Statistical Profiling Enable.

0b0 Sampling disabled at EL1.

0b1 Sampling enabled at EL1.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when
HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0SPE, bit [0]

EL0 Statistical Profiling Enable. Controls sampling at EL0 when HCR_EL2.TGE == 0 or if EL2 is
disabled or not implemented.

0b0 Sampling disabled at EL0.

0b1 Sampling enabled at EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9200
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when
HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x828];
 else
 X[t, 64] = PMSCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PMSCR_EL2;
 else
 X[t, 64] = PMSCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSCR_EL1;

MSR PMSCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9201
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x828] = X[t, 64];
 else
 PMSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 PMSCR_EL2 = X[t, 64];
 else
 PMSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSCR_EL1 = X[t, 64];

MRS <Xt>, PMSCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x828];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' ||
MDCR_EL3.NSPB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1001 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9202
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = PMSCR_EL1;
 else
 UNDEFINED;

MSR PMSCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x828] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' ||
MDCR_EL3.NSPB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 PMSCR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1001 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9203
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.6 PMSCR_EL2, Statistical Profiling Control Register (EL2)

The PMSCR_EL2 characteristics are:

Purpose

Provides EL2 controls for Statistical Profiling.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSCR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

PMSCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

Physical Timestamp. If timestamp sampling is enabled, determines which counter is collected. The
behavior depends on the Profiling Buffer owning Exception level.

If FEAT_ECV is implemented, this is a two-bit field as shown. Otherwise, bit[7] is RES0.

0b00 Virtual timestamp. The collected timestamp is the physical counter minus a virtual
offset. If any of the following are true, the virtual offset is zero, otherwise the virtual
offset is the value of CNTVOFF_EL2:

• The sampled operation executed at EL2 and the Effective value of
HCR_EL2.E2H is 1.

• The sampled operation executed at EL0 and the Effective value of
HCR_EL2.{E2H, TGE} is {1, 1}.

Note
If the Profiling Buffer owning Exception level is EL1, the virtual offset is always
CNTVOFF_EL2.

0b01 If the Profiling Buffer owning Exception level is EL1, then the timestamp value is
selected by PMSCR_EL1.PCT.

Otherwise, physical timestamp. The collected timestamp is the physical counter.

0b11 When FEAT_ECV is implemented:

If the Profiling Buffer owning Exception level is EL1 and PMSCR_EL1.PCT == 0b00,
then guest virtual timestamp. The collected timestamp is the physical counter minus the
value of CNTVOFF_EL2.

RES0

63 32

RES0

31 8

PCT

7 6

TS

5

PA

4

CX

3 2 1 0

RES0 E0HSPE
E2SPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9204
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise, guest physical timestamp. The collected timestamp is the physical counter
minus a physical offset. If any of the following are true, the physical offset is zero,
otherwise the physical offset is the value of CNTPOFF_EL2:

• SCR_EL3.ECVEn == 0.

• CNTHCTL_EL2.ECV == 0.

All other values are reserved.

If EL2 is not implemented or EL2 is disabled in the current Security state, then the Effective value
of this field is 0b01, other than for a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TS, bit [5]

Timestamp Enable.

0b0 Timestamp sampling disabled.

0b1 Timestamp sampling enabled.

This bit is ignored by the PE when any of the following are true:

• The Profiling Buffer owning Exception level is EL1.

• In Secure state, and either FEAT_SEL2 is not implemented or Secure EL2 is disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address Sample Enable.

0b0 Physical addresses are not collected.

0b1 Physical addresses are collected.

If the Profiling Buffer owning Exception level is EL1, and EL2 is enabled in the current Security
state, this bit is combined with PMSCR_EL1.PA to determine which address is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value
of this bit and behaves as if this bit is set to 1, other than for a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL2 Sample Enable.

0b0 CONTEXTIDR_EL2 is not collected.

0b1 CONTEXTIDR_EL2 is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value
of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E2SPE, bit [1]

EL2 Statistical Profiling Enable.

0b0 Sampling disabled at EL2.

0b1 Sampling enabled at EL2.

This bit is RES0 if MDCR_EL2.E2PB != 0b00.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9205
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
If EL2 is disabled in the current Security state, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0HSPE, bit [0]

EL0 Statistical Profiling Enable.

0b0 Sampling disabled at EL0.

0b1 Sampling enabled at EL0.

If MDCR_EL2.E2PB != 0b00, this bit is RES0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when
HCR_EL2.TGE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSCR_EL2;

MSR PMSCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b100 0b1001 0b1001 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1001 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9206
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSCR_EL2 = X[t, 64];

MRS <Xt>, PMSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x828];
 else
 X[t, 64] = PMSCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = PMSCR_EL2;
 else
 X[t, 64] = PMSCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSCR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9207
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
MSR PMSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x828] = X[t, 64];
 else
 PMSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 PMSCR_EL2 = X[t, 64];
 else
 PMSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9208
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.7 PMSDSFR_EL1, Sampling Data Source Filter Register

The PMSDSFR_EL1 characteristics are:

Purpose

Controls sample filtering by Data Source.

Configurations

This register is present only when FEAT_SPE_FDS is implemented. Otherwise, direct accesses to
PMSDSFR_EL1 are UNDEFINED.

Attributes

PMSDSFR_EL1 is a 64-bit register.

Field descriptions

S<m>, bit [m], for m = 63 to 0

When filtering on Data Source <m> is supported:

S[<m>] is the Data Source filter for IMPLEMENTATION DEFINED Data Source <m>.

0b0 If PMSFCR_EL1.FDS is 1, do not record load operations that have bits [5:0] of the Data
Source packet set to <m>.

0b1 Load operations with Data Source <m> are unaffected by PMSFCR_EL1.FDS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSDSFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSDSFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMS3 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' ||
MDCR_EL3.NSPB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGRTR2_EL2.nPMSDSFR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

S<m>

63 32

S<m>

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9209
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 elsif HaveEL(EL3) && MDCR_EL3.EnPMS3 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x858];
 else
 X[t, 64] = PMSDSFR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMS3 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMS3 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSDSFR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSDSFR_EL1;

MSR PMSDSFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMS3 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' ||
MDCR_EL3.NSPB[1] != SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HDFGWTR2_EL2.nPMSDSFR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMS3 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9210
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x858] = X[t, 64];
 else
 PMSDSFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMS3 == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMS3 == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSDSFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSDSFR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9211
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.8 PMSEVFR_EL1, Sampling Event Filter Register

The PMSEVFR_EL1 characteristics are:

Purpose

Controls sample filtering by events. The overall filter is the logical AND of these filters. For
example, if PMSEVFR_EL1.E[3] and PMSEVFR_EL1.E[5] are both set to 1, only samples that
have both event 3 (Level 1 unified or data cache refill) and event 5 (TLB walk) set to 1 are recorded.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSEVFR_EL1 are UNDEFINED.

Attributes

PMSEVFR_EL1 is a 64-bit register.

Field descriptions

E[63], bit [63]

When event 63 is implemented and filtering on event 63 is supported:

Filter on IMPLEMENTATION DEFINED event 63.

0b0 Event 63 is ignored.

0b1 Do not record samples that have event 63 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

RAZ/WI

47 32

E[63]
E[62]

E[61]
E[60]

E[59]
E[58]

E[57]
E[56]

E[48]
E[49]

E[50]
E[51]

E[52]
E[53]

E[54]
E[55]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E[31]
E[30]

E[29]
E[28]

E[27]
E[26]

E[25]
E[24]

E[23]
E[22]

E[21]
E[20]

E[19]
E[18]

E[17]
E[16]

RAZ/WI
E[1]

E[2]
E[3]

E[4]
E[5]

E[6]
E[7]

E[8]
E[9]

E[10]
E[11]

E[12]
E[13]

E[14]
E[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9212
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RAZ/WI.

E[62], bit [62]

When event 62 is implemented and filtering on event 62 is supported:

Filter on IMPLEMENTATION DEFINED event 62.

0b0 Event 62 is ignored.

0b1 Do not record samples that have event 62 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[61], bit [61]

When event 61 is implemented and filtering on event 61 is supported:

Filter on IMPLEMENTATION DEFINED event 61.

0b0 Event 61 is ignored.

0b1 Do not record samples that have event 61 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[60], bit [60]

When event 60 is implemented and filtering on event 60 is supported:

Filter on IMPLEMENTATION DEFINED event 60.

0b0 Event 60 is ignored.

0b1 Do not record samples that have event 60 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[59], bit [59]

When event 59 is implemented and filtering on event 59 is supported:

Filter on IMPLEMENTATION DEFINED event 59.

0b0 Event 59 is ignored.

0b1 Do not record samples that have event 59 == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9213
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[58], bit [58]

When event 58 is implemented and filtering on event 58 is supported:

Filter on IMPLEMENTATION DEFINED event 58.

0b0 Event 58 is ignored.

0b1 Do not record samples that have event 58 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[57], bit [57]

When event 57 is implemented and filtering on event 57 is supported:

Filter on IMPLEMENTATION DEFINED event 57.

0b0 Event 57 is ignored.

0b1 Do not record samples that have event 57 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[56], bit [56]

When event 56 is implemented and filtering on event 56 is supported:

Filter on IMPLEMENTATION DEFINED event 56.

0b0 Event 56 is ignored.

0b1 Do not record samples that have event 56 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9214
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[55], bit [55]

When event 55 is implemented and filtering on event 55 is supported:

Filter on IMPLEMENTATION DEFINED event 55.

0b0 Event 55 is ignored.

0b1 Do not record samples that have event 55 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[54], bit [54]

When event 54 is implemented and filtering on event 54 is supported:

Filter on IMPLEMENTATION DEFINED event 54.

0b0 Event 54 is ignored.

0b1 Do not record samples that have event 54 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[53], bit [53]

When event 53 is implemented and filtering on event 53 is supported:

Filter on IMPLEMENTATION DEFINED event 53.

0b0 Event 53 is ignored.

0b1 Do not record samples that have event 53 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[52], bit [52]

When event 52 is implemented and filtering on event 52 is supported:

Filter on IMPLEMENTATION DEFINED event 52.

0b0 Event 52 is ignored.

0b1 Do not record samples that have event 52 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9215
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[51], bit [51]

When event 51 is implemented and filtering on event 51 is supported:

Filter on IMPLEMENTATION DEFINED event 51.

0b0 Event 51 is ignored.

0b1 Do not record samples that have event 51 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[50], bit [50]

When event 50 is implemented and filtering on event 50 is supported:

Filter on IMPLEMENTATION DEFINED event 50.

0b0 Event 50 is ignored.

0b1 Do not record samples that have event 50 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[49], bit [49]

When event 49 is implemented and filtering on event 49 is supported:

Filter on IMPLEMENTATION DEFINED event 49.

0b0 Event 49 is ignored.

0b1 Do not record samples that have event 49 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9216
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[48], bit [48]

When event 48 is implemented and filtering on event 48 is supported:

Filter on IMPLEMENTATION DEFINED event 48.

0b0 Event 48 is ignored.

0b1 Do not record samples that have event 48 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bits [47:32]

Reserved, RAZ/WI.

E[31], bit [31]

When FEAT_SPEv1p4 is not implemented, event 31 is implemented and filtering on event 31 is
supported:

Filter on IMPLEMENTATION DEFINED event 31.

0b0 Event 31 is ignored.

0b1 Do not record samples that have event 31 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[30], bit [30]

When FEAT_SPEv1p4 is not implemented, event 30 is implemented and filtering on event 30 is
supported:

Filter on IMPLEMENTATION DEFINED event 30.

0b0 Event 30 is ignored.

0b1 Do not record samples that have event 30 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9217
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[29], bit [29]

When FEAT_SPEv1p4 is not implemented, event 29 is implemented and filtering on event 29 is
supported:

Filter on IMPLEMENTATION DEFINED event 29.

0b0 Event 29 is ignored.

0b1 Do not record samples that have event 29 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[28], bit [28]

When FEAT_SPEv1p4 is not implemented, event 28 is implemented and filtering on event 28 is
supported:

Filter on IMPLEMENTATION DEFINED event 28.

0b0 Event 28 is ignored.

0b1 Do not record samples that have event 28 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[27], bit [27]

When FEAT_SPEv1p4 is not implemented, event 27 is implemented and filtering on event 27 is
supported:

Filter on IMPLEMENTATION DEFINED event 27.

0b0 Event 27 is ignored.

0b1 Do not record samples that have event 27 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[26], bit [26]

When FEAT_SPEv1p4 is not implemented, event 26 is implemented and filtering on event 26 is
supported:

Filter on IMPLEMENTATION DEFINED event 26.

0b0 Event 26 is ignored.

0b1 Do not record samples that have event 26 == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9218
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[25], bit [25]

When FEAT_SPEv1p4 is not implemented, event 25 is implemented and filtering on event 25 is
supported:

Filter on IMPLEMENTATION DEFINED event 25.

0b0 Event 25 is ignored.

0b1 Do not record samples that have event 25 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[24], bit [24]

When FEAT_SPEv1p4 is not implemented, event 24 is implemented and filtering on event 24 is
supported:

Filter on IMPLEMENTATION DEFINED event 24.

0b0 Event 24 is ignored.

0b1 Do not record samples that have event 24 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[23], bit [23]

When FEAT_SPEv1p4 is implemented and event 23 is implemented:

Filter on Data snooped event.

0b0 Data snooped event is ignored.

0b1 Do not record samples that have the Data snooped event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9219
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[22], bit [22]

When FEAT_SPEv1p4 is implemented and event 22 is implemented:

Filter on Recently fetched event.

0b0 Recently fetched event is ignored.

0b1 Do not record samples that have the Recently fetched event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[21], bit [21]

When FEAT_SPEv1p4 is implemented and event 21 is implemented:

Filter on Cache data modified event.

0b0 Cache data modified event is ignored.

0b1 Do not record samples that have the Cache data modified event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[20], bit [20]

When FEAT_SPEv1p4 is implemented and event 20 is implemented:

Filter on Level 2 data cache miss event.

0b0 Level 2 data cache miss event is ignored.

0b1 Do not record samples that have the Level 2 data cache miss event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[19], bit [19]

When FEAT_SPEv1p4 is implemented and event 19 is implemented:

Filter on Level 2 data cache access event.

0b0 Level 2 data cache access event is ignored.

0b1 Do not record samples that have the Level 2 data cache access event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9220
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[18], bit [18]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

Filter on Empty predicate event.

0b0 Empty predicate event is ignored.

0b1 Do not record samples that have the Empty predicate event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

Filter on Partial or empty predicate event.

0b0 Partial or empty predicate event is ignored.

0b1 Do not record samples that have the Partial or empty predicate event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[16], bit [16]

When FEAT_TME is implemented:

Filter on Transactional event.

0b0 Transactional event is ignored.

0b1 Do not record samples that have the Transactional event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[15], bit [15]

When event 15 is implemented and filtering on event 15 is supported:

Filter on IMPLEMENTATION DEFINED event 15.

0b0 Event 15 is ignored.

0b1 Do not record samples that have event 15 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9221
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[14], bit [14]

When event 14 is implemented and filtering on event 14 is supported:

Filter on IMPLEMENTATION DEFINED event 14.

0b0 Event 14 is ignored.

0b1 Do not record samples that have event 14 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[13], bit [13]

When event 13 is implemented and filtering on event 13 is supported:

Filter on IMPLEMENTATION DEFINED event 13.

0b0 Event 13 is ignored.

0b1 Do not record samples that have event 13 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[12], bit [12]

When event 12 is implemented and filtering on event 12 is supported:

Filter on IMPLEMENTATION DEFINED event 12.

0b0 Event 12 is ignored.

0b1 Do not record samples that have event 12 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[11], bit [11]

When FEAT_SPEv1p1 is implemented:

Filter on Misalignment event.

0b0 Misalignment event is ignored.

0b1 Do not record samples that have the Misalignment event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9222
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RAZ/WI.

E[10], bit [10]

When (FEAT_SPEv1p4 is implemented or filtering on event 10 is optionally supported) and event 10
is implemented:

Filter on Remote access event.

0b0 Remote access event is ignored.

0b1 Do not record samples that have the Remote access event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[9], bit [9]

When (FEAT_SPEv1p4 is implemented or filtering on event 9 is optionally supported) and event 9 is
implemented:

Filter on Last Level cache miss event.

0b0 Last Level cache miss event is ignored.

0b1 Do not record samples that have the Last Level cache miss event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[8], bit [8]

When (FEAT_SPEv1p4 is implemented or filtering on event 8 is optionally supported) and event 8 is
implemented:

Filter on Last Level cache access event.

0b0 Last Level cache access event is ignored.

0b1 Do not record samples that have the Last Level cache access event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[7], bit [7]

Filter on Mispredicted event.

0b0 Mispredicted event is ignored.

0b1 Do not record samples that have the Mispredicted event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9223
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[6], bit [6]

When FEAT_SPEv1p2 is implemented:

Filter on Not taken event.

0b0 Not taken event is ignored.

0b1 Do not record samples that have the Not taken event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[5], bit [5]

Filter on TLB walk event.

0b0 TLB walk event is ignored.

0b1 Do not record samples that have the TLB walk event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[4], bit [4]

When FEAT_SPEv1p4 is implemented or filtering on event 4 is optionally supported:

Filter on TLB access event.

0b0 TLB access event is ignored.

0b1 Do not record samples that have the TLB access event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[3], bit [3]

Filter on Level 1 data cache refill or miss event.

0b0 Level 1 data cache refill or miss event is ignored.

0b1 Do not record samples that have the Level 1 data cache refill or miss event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[2], bit [2]

When FEAT_SPEv1p4 is implemented or filtering on event 2 is optionally supported:

Filter on Level 1 data cache access event.

0b0 Level 1 data cache access event is ignored.

0b1 Do not record samples that have the Level 1 data cache access event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9224
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Filter on Architecturally retired event.

0b0 Architecturally retired event is ignored.

0b1 Do not record samples that have the Architecturally retired event == 0.

This field is ignored by the PE when PMSFCR_EL1.FE == 0.

If the PE does not support the sampling of speculative instructions, or always discards the sample
record for speculative instructions, this bit reads as an UNKNOWN value and the PE ignores its value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, UNKNOWN.

Bit [0]

Reserved, RAZ/WI.

Accessing PMSEVFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSEVFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSEVFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x830];
 else
 X[t, 64] = PMSEVFR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9225
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSEVFR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSEVFR_EL1;

MSR PMSEVFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSEVFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x830] = X[t, 64];
 else
 PMSEVFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSEVFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSEVFR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9226
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.9 PMSFCR_EL1, Sampling Filter Control Register

The PMSFCR_EL1 characteristics are:

Purpose

Controls sample filtering. The filter is the logical AND of the FL, FT and FE bits. For example, if
FE == 1 and FT == 1 only samples including the selected operation types and the selected events
will be recorded

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSFCR_EL1 are UNDEFINED.

Attributes

PMSFCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:19]

Reserved, RES0.

ST, bit [18]

Store filter enable.

0b0 Do not record store operations.

0b1 Record all store operations

This field is ignored by the PE when PMSFCR_EL1.FT == 0.

For filtering purposes, store operations include vector stores and all atomic operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LD, bit [17]

Load filter enable.

0b0 Do not record load operations.

0b1 Record all load operations

This field is ignored by the PE when PMSFCR_EL1.FT == 0.

For filtering purposes, load operations include vector loads and atomic operations that return a value
to the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

B, bit [16]

Branch filter enable.

0b0 Do not record branch operations.

0b1 Record all branch operations

RES0

63 32

RES0

31 19

ST

18

LD

17

B

16

RES0

15 5 4 3

FL

2

FT

1

FE

0

FDS FnE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9227
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
This field is ignored by the PE when PMSFCR_EL1.FT == 0.

For filtering purposes, branch operations include exception returns.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:5]

Reserved, RES0.

FDS, bit [4]

When FEAT_SPE_FDS is implemented:

Filter by Data Source.

0b0 Data Source filtering disabled.

0b1 Data Source filtering enabled. Samples of load instructions reporting a Data Source not
selected by PMSDSFR_EL1 will not be recorded.

If PMSFCR_EL1.FDS == 1 and PMSDSFR_EL1 is zero, then no load operations with a Data
Source will be recorded.

Load operations without a Data Source and other sampled operations are unaffected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnE, bit [3]

When FEAT_SPEv1p2 is implemented:

Filter by event, inverted.

0b0 Inverted event filtering disabled.

0b1 Inverted event filtering enabled. Samples including the events selected by
PMSNEVFR_EL1 will not be recorded.

If any of the following are true, it is CONSTRAINED UNPREDICTABLE whether no samples are
recorded or the PE behaves as if PMSFCR_EL1.FnE == 0:

• PMSFCR_EL1.FnE == 1 and PMSNEVFR_EL1 is zero.

• PMSFCR_EL1.FnE == 1, PMSFCR_EL1.FE == 1, and there exists a value x such that
PMSEVFR_EL1.E[x] == 1 and PMSNEVFR_EL1.E[x] == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FL, bit [2]

Filter by latency

0b0 Latency filtering disabled

0b1 Latency filtering enabled. Samples with a total latency less than
PMSLATFR_EL1.MINLAT will not be recorded

If this field is set to 1 and PMSLATFR_EL1.MINLAT is set to zero, it is CONSTRAINED
UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FL is set
to 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9228
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
FT, bit [1]

Filter by operation type. The filter is the logical OR of the ST, LD and B bits. For example, if LD
and ST are both set, both load and store operations are recorded

0b0 Type filtering disabled

0b1 Type filtering enabled. Samples not one of the selected operation types will not be
recorded

If this field is set to 1 and the PMSFCR_EL1.{ST, LD, B} bits are all set to zero, it is CONSTRAINED
UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FT is set
to 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FE, bit [0]

Filter by event.

0b0 Event filtering disabled.

0b1 Event filtering enabled. Samples not including the events selected by PMSEVFR_EL1
will not be recorded.

If any of the following are true, it is CONSTRAINED UNPREDICTABLE whether no samples are
recorded or the PE behaves as if PMSFCR_EL1.FE == 0:

• PMSFCR_EL1.FE == 1 and PMSEVFR_EL1 is zero.

• FEAT_SPEv1p2 is implemented, PMSFCR_EL1.FnE == 1, PMSFCR_EL1.FE == 1, and
there exists a value x such that PMSEVFR_EL1.E[x] == 1 and PMSNEVFR_EL1.E[x] == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSFCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSFCR_EL1;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9229
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSFCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSFCR_EL1;

MSR PMSFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSFCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9230
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.10 PMSICR_EL1, Sampling Interval Counter Register

The PMSICR_EL1 characteristics are:

Purpose

Software must write zero to PMSICR_EL1 before enabling sample profiling for a sampling session.
Software must then treat PMSICR_EL1 as an opaque, 64-bit, read/write register used for context
switches only.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSICR_EL1 are UNDEFINED.

The value of PMSICR_EL1 does not change whilst profiling is disabled.

Attributes

PMSICR_EL1 is a 64-bit register.

Field descriptions

ECOUNT, bits [63:56]

When PMSIDR_EL1.ERnd == 1:

Secondary sample interval counter.

This field provides the secondary counter used after the primary counter reaches zero. Whilst the
secondary counter is nonzero and profiling is enabled, the secondary counter decrements by 1 for
each member of the sample population. The primary counter also continues to decrement since it is
also nonzero. When the secondary counter reaches zero, a member of the sampling population is
selected for sampling.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [55:32]

Reserved, RES0.

COUNT, bits [31:0]

Primary sample interval counter

Provides the primary counter used for sampling.

The primary counter is reloaded when the value of this register is zero and the PE moves from a state
or Exception level where profiling is disabled to a state or Exception level where profiling is enabled

Whilst the primary counter is nonzero and sampling is enabled, the primary counter decrements by
1 for each member of the sample population

When the counter reaches zero, the behavior depends on the values of PMSIDR_EL1.ERnd and
PMSIRR_EL1.RND

• If PMSIRR_EL1.RND == 0 or PMSIDR_EL1.ERnd == 0:

— A member of the sampling population is selected for sampling

ECOUNT

63 56

RES0

55 32

COUNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9231
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
— The primary counter is reloaded

• If PMSIRR_EL1.RND == 1 and PMSIDR_EL1.ERnd == 1:

— The secondary counter is set to a random or pseudorandom value in the range 0x00 to
0xFF

— The primary counter is reloaded

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSICR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSICR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSICR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x838];
 else
 X[t, 64] = PMSICR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSICR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSICR_EL1;

MSR PMSICR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9232
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSICR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x838] = X[t, 64];
 else
 PMSICR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSICR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSICR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9233
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.11 PMSIDR_EL1, Sampling Profiling ID Register

The PMSIDR_EL1 characteristics are:

Purpose

Describes the Statistical Profiling implementation to software

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSIDR_EL1 are UNDEFINED.

Attributes

PMSIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:26]

Reserved, RES0.

CRR, bit [25]

Call Return branch records.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Operation Type packets for branches do not contain Call Return information.

0b1 Operation Type packets for branches contain Call Return information.

FEAT_SPE_CRR implements the functionality identified by the value 1.

Access to this field is RO.

PBT, bit [24]

Previous branch target Address packet.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Previous branch target Address packet not supported.

0b1 Previous branch target Address packet support implemented.

FEAT_SPEv1p2 implements the OPTIONAL functionality identified by the value 1.

Access to this field is RO.

Format, bits [23:20]

Defines the format of the sample records.

0b0000 Format 0.

All other values are reserved.

Access to this field is RO.

RES0

63 32

RES0

31 26 25 24

0 0 0 0

23 20 19 16

MaxSize

15 12

Interval

11 8 7 6 5 4 3

1

2

1

1

1

0

CRR
PBT

CountSize
Format

FDS
FnE
ERnd

LDS

FE
FT

FL
ArchInst
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9234
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
CountSize, bits [19:16]

Defines the size of the counters.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0010 12-bit saturating counters.

0b0011 16-bit saturating counters.

All other values are reserved.

Access to this field is RO.

MaxSize, bits [15:12]

Defines the largest size for a single record, rounded up to a power-of-two. If this is the same as the
minimum alignment (PMBIDR_EL1.Align), then each record is exactly this size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0100 16 bytes.

0b0101 32 bytes.

0b0110 64 bytes.

0b0111 128 bytes.

0b1000 256 bytes.

0b1001 512 bytes.

0b1010 1KB.

0b1011 2KB.

All other values are reserved.

The values 0b0100 and 0b0101 are not permitted for an implementation.

Access to this field is RO.

Interval, bits [11:8]

Recommended minimum sampling interval. This provides guidance from the implementer to the
smallest minimum sampling interval, N.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 256.

0b0010 512.

0b0011 768.

0b0100 1,024.

0b0101 1,536.

0b0110 2,048.

0b0111 3,072.

0b1000 4,096.

All other values are reserved.

Access to this field is RO.

FDS, bit [7]

Filter by data source.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMSDSFR_EL1 is not implemented and PMSFCR_EL1.FDS is RES0.

0b1 PMSDSFR_EL1 and PMSFCR_EL1.FDS are implemented.

FEAT_SPE_FDS implements the functionality identified by the value 1.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9235
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
FnE, bit [6]

Filtering by events, inverted.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMSNEVFR_EL1 is not implemented and PMSFCR_EL1.FnE is RES0.

0b1 PMSNEVFR_EL1 and PMSFCR_EL1.FnE are implemented.

FEAT_SPEv1p2 implements the functionality identified by the value 1.

Access to this field is RO.

ERnd, bit [5]

Defines how the random number generator is used in determining the interval between samples,
when enabled by PMSIRR_EL1.RND.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The random number is added at the start of the interval, and the sample is taken and a
new interval started when the combined interval expires.

0b1 The random number is added and the new interval started after the interval programmed
in PMSIRR_EL1.INTERVAL expires, and the sample is taken when the random
interval expires.

Access to this field is RO.

LDS, bit [4]

Data source indicator for sampled load instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Loaded data source not implemented.

0b1 Loaded data source implemented.

Access to this field is RO.

ArchInst, bit [3]

Architectural instruction profiling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Micro-op sampling implemented.

0b1 Architecture instruction sampling implemented.

Access to this field is RO.

FL, bit [2]

Filtering by latency. This bit is RAO.

Reads as 0b1.

Access to this field is RO.

FT, bit [1]

Filtering by operation type. This bit is RAO.

Reads as 0b1.

Access to this field is RO.

FE, bit [0]

Filtering by events. This bit is RAO.

Reads as 0b1.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9236
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Accessing PMSIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSIDR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9237
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.12 PMSIRR_EL1, Sampling Interval Reload Register

The PMSIRR_EL1 characteristics are:

Purpose

Defines the interval between samples.

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSIRR_EL1 are UNDEFINED.

Attributes

PMSIRR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

INTERVAL, bits [31:8]

Bits [31:8] of the PMSICR_EL1 interval counter reload value. Software must set this to a nonzero
value. If software sets this to zero, an UNKNOWN sampling interval is used. Software should set this
to a value greater than the minimum indicated by PMSIDR_EL1.Interval.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:1]

Reserved, RES0.

RND, bit [0]

Controls randomization of the sampling interval.

0b0 Disable randomization of sampling interval.

0b1 Add (pseudo-)random jitter to sampling interval.

The random number generator is not architected.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSIRR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSIRR_EL1

RES0

63 32

INTERVAL

31 8

RES0

7 1 0

RND

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9238
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSIRR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x840];
 else
 X[t, 64] = PMSIRR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSIRR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSIRR_EL1;

MSR PMSIRR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSIRR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x840] = X[t, 64];
 else
 PMSIRR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9239
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSIRR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSIRR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9240
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.13 PMSLATFR_EL1, Sampling Latency Filter Register

The PMSLATFR_EL1 characteristics are:

Purpose

Controls sample filtering by latency

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to
PMSLATFR_EL1 are UNDEFINED.

Attributes

PMSLATFR_EL1 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

MINLAT, bits [15:0]

Minimum latency. When PMSFCR_EL1.FL is 1, defines the minimum total latency for filtered
operations. Samples with a total latency less than PMSLATFR_EL1.MINLAT are not recorded.

If PMSIDR_EL1.CountSize is 0b0010, PMSLATFR_EL1.MINLAT[15:12] is RES0.

This field is ignored by the PE when PMSFCR_EL1.FL == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMSLATFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSLATFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.PMSLATFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||

RES0

63 32

RES0

31 16

MINLAT

15 0

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9241
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x848];
 else
 X[t, 64] = PMSLATFR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSLATFR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSLATFR_EL1;

MSR PMSLATFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.PMSLATFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x848] = X[t, 64];
 else
 PMSLATFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSLATFR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9242
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
elsif PSTATE.EL == EL3 then
 PMSLATFR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9243
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
D23.7.14 PMSNEVFR_EL1, Sampling Inverted Event Filter Register

The PMSNEVFR_EL1 characteristics are:

Purpose

Controls sample filtering by events. The overall inverted filter is the logical OR of these filters. For
example, if PMSNEVFR_EL1.E[3] and PMSNEVFR_EL1.E[5] are both set to 1, samples that have
either event 3 (Level 1 unified or data cache refill) or event 5 (TLB walk) set to 1 are not recorded.

Configurations

This register is present only when FEAT_SPEv1p2 is implemented. Otherwise, direct accesses to
PMSNEVFR_EL1 are UNDEFINED.

Attributes

PMSNEVFR_EL1 is a 64-bit register.

Field descriptions

E[63], bit [63]

When event 63 is implemented and filtering on event 63 is supported:

Filter on IMPLEMENTATION DEFINED event 63.

0b0 Event 63 is ignored.

0b1 Do not record samples that have event 63 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

RAZ/WI

47 32

E[63]
E[62]

E[61]
E[60]

E[59]
E[58]

E[57]
E[56]

E[48]
E[49]

E[50]
E[51]

E[52]
E[53]

E[54]
E[55]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E[31]
E[30]

E[29]
E[28]

E[27]
E[26]

E[25]
E[24]

E[23]
E[22]

E[21]
E[20]

E[19]
E[18]

E[17]
E[16]

RAZ/WI
E[1]

E[2]
E[3]

E[4]
E[5]

E[6]
E[7]

E[8]
E[9]

E[10]
E[11]

E[12]
E[13]

E[14]
E[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9244
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RAZ/WI.

E[62], bit [62]

When event 62 is implemented and filtering on event 62 is supported:

Filter on IMPLEMENTATION DEFINED event 62.

0b0 Event 62 is ignored.

0b1 Do not record samples that have event 62 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[61], bit [61]

When event 61 is implemented and filtering on event 61 is supported:

Filter on IMPLEMENTATION DEFINED event 61.

0b0 Event 61 is ignored.

0b1 Do not record samples that have event 61 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[60], bit [60]

When event 60 is implemented and filtering on event 60 is supported:

Filter on IMPLEMENTATION DEFINED event 60.

0b0 Event 60 is ignored.

0b1 Do not record samples that have event 60 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[59], bit [59]

When event 59 is implemented and filtering on event 59 is supported:

Filter on IMPLEMENTATION DEFINED event 59.

0b0 Event 59 is ignored.

0b1 Do not record samples that have event 59 == 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9245
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[58], bit [58]

When event 58 is implemented and filtering on event 58 is supported:

Filter on IMPLEMENTATION DEFINED event 58.

0b0 Event 58 is ignored.

0b1 Do not record samples that have event 58 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[57], bit [57]

When event 57 is implemented and filtering on event 57 is supported:

Filter on IMPLEMENTATION DEFINED event 57.

0b0 Event 57 is ignored.

0b1 Do not record samples that have event 57 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[56], bit [56]

When event 56 is implemented and filtering on event 56 is supported:

Filter on IMPLEMENTATION DEFINED event 56.

0b0 Event 56 is ignored.

0b1 Do not record samples that have event 56 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9246
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[55], bit [55]

When event 55 is implemented and filtering on event 55 is supported:

Filter on IMPLEMENTATION DEFINED event 55.

0b0 Event 55 is ignored.

0b1 Do not record samples that have event 55 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[54], bit [54]

When event 54 is implemented and filtering on event 54 is supported:

Filter on IMPLEMENTATION DEFINED event 54.

0b0 Event 54 is ignored.

0b1 Do not record samples that have event 54 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[53], bit [53]

When event 53 is implemented and filtering on event 53 is supported:

Filter on IMPLEMENTATION DEFINED event 53.

0b0 Event 53 is ignored.

0b1 Do not record samples that have event 53 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[52], bit [52]

When event 52 is implemented and filtering on event 52 is supported:

Filter on IMPLEMENTATION DEFINED event 52.

0b0 Event 52 is ignored.

0b1 Do not record samples that have event 52 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9247
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[51], bit [51]

When event 51 is implemented and filtering on event 51 is supported:

Filter on IMPLEMENTATION DEFINED event 51.

0b0 Event 51 is ignored.

0b1 Do not record samples that have event 51 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[50], bit [50]

When event 50 is implemented and filtering on event 50 is supported:

Filter on IMPLEMENTATION DEFINED event 50.

0b0 Event 50 is ignored.

0b1 Do not record samples that have event 50 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[49], bit [49]

When event 49 is implemented and filtering on event 49 is supported:

Filter on IMPLEMENTATION DEFINED event 49.

0b0 Event 49 is ignored.

0b1 Do not record samples that have event 49 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9248
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[48], bit [48]

When event 48 is implemented and filtering on event 48 is supported:

Filter on IMPLEMENTATION DEFINED event 48.

0b0 Event 48 is ignored.

0b1 Do not record samples that have event 48 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bits [47:32]

Reserved, RAZ/WI.

E[31], bit [31]

When FEAT_SPEv1p4 is not implemented, event 31 is implemented and filtering on event 31 is
supported:

Filter on IMPLEMENTATION DEFINED event 31.

0b0 Event 31 is ignored.

0b1 Do not record samples that have event 31 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[30], bit [30]

When FEAT_SPEv1p4 is not implemented, event 30 is implemented and filtering on event 30 is
supported:

Filter on IMPLEMENTATION DEFINED event 30.

0b0 Event 30 is ignored.

0b1 Do not record samples that have event 30 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9249
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[29], bit [29]

When FEAT_SPEv1p4 is not implemented, event 29 is implemented and filtering on event 29 is
supported:

Filter on IMPLEMENTATION DEFINED event 29.

0b0 Event 29 is ignored.

0b1 Do not record samples that have event 29 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[28], bit [28]

When FEAT_SPEv1p4 is not implemented, event 28 is implemented and filtering on event 28 is
supported:

Filter on IMPLEMENTATION DEFINED event 28.

0b0 Event 28 is ignored.

0b1 Do not record samples that have event 28 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[27], bit [27]

When FEAT_SPEv1p4 is not implemented, event 27 is implemented and filtering on event 27 is
supported:

Filter on IMPLEMENTATION DEFINED event 27.

0b0 Event 27 is ignored.

0b1 Do not record samples that have event 27 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[26], bit [26]

When FEAT_SPEv1p4 is not implemented, event 26 is implemented and filtering on event 26 is
supported:

Filter on IMPLEMENTATION DEFINED event 26.

0b0 Event 26 is ignored.

0b1 Do not record samples that have event 26 == 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9250
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[25], bit [25]

When FEAT_SPEv1p4 is not implemented, event 25 is implemented and filtering on event 25 is
supported:

Filter on IMPLEMENTATION DEFINED event 25.

0b0 Event 25 is ignored.

0b1 Do not record samples that have event 25 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[24], bit [24]

When FEAT_SPEv1p4 is not implemented, event 24 is implemented and filtering on event 24 is
supported:

Filter on IMPLEMENTATION DEFINED event 24.

0b0 Event 24 is ignored.

0b1 Do not record samples that have event 24 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[23], bit [23]

When FEAT_SPEv1p4 is implemented and event 23 is implemented:

Filter on Data not snooped event.

0b0 Data snooped event is ignored.

0b1 Do not record samples that have the Data snooped event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9251
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[22], bit [22]

When FEAT_SPEv1p4 is implemented and event 22 is implemented:

Filter on Not recently fetched event.

0b0 Recently fetched event is ignored.

0b1 Do not record samples that have the Recently fetched event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[21], bit [21]

When FEAT_SPEv1p4 is implemented and event 21 is implemented:

Filter on Cache data not modified event.

0b0 Cache data modified event is ignored.

0b1 Do not record samples that have the Cache data modified event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[20], bit [20]

When FEAT_SPEv1p4 is implemented and event 20 is implemented:

Filter on Level 2 data cache hit event.

0b0 Level 2 data cache miss event is ignored.

0b1 Do not record samples that have the Level 2 data cache miss event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[19], bit [19]

When FEAT_SPEv1p4 is implemented and event 19 is implemented:

Filter on No level 2 data cache access event.

0b0 Level 2 data cache access event is ignored.

0b1 Do not record samples that have the Level 2 data cache access event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9252
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[18], bit [18]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

Filter on Not empty predicate event.

0b0 Empty predicate event is ignored.

0b1 Do not record samples that have the Empty predicate event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

Filter on Not partial predicate event.

0b0 Partial or empty predicate event is ignored.

0b1 Do not record samples that have the Partial or empty predicate event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[16], bit [16]

When FEAT_TME is implemented:

Filter on Not transactional event.

0b0 Transactional event is ignored.

0b1 Do not record samples that have the Transactional event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[15], bit [15]

When event 15 is implemented and filtering on event 15 is supported:

Filter on IMPLEMENTATION DEFINED event 15.

0b0 Event 15 is ignored.

0b1 Do not record samples that have event 15 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9253
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[14], bit [14]

When event 14 is implemented and filtering on event 14 is supported:

Filter on IMPLEMENTATION DEFINED event 14.

0b0 Event 14 is ignored.

0b1 Do not record samples that have event 14 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[13], bit [13]

When event 13 is implemented and filtering on event 13 is supported:

Filter on IMPLEMENTATION DEFINED event 13.

0b0 Event 13 is ignored.

0b1 Do not record samples that have event 13 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[12], bit [12]

When event 12 is implemented and filtering on event 12 is supported:

Filter on IMPLEMENTATION DEFINED event 12.

0b0 Event 12 is ignored.

0b1 Do not record samples that have event 12 == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the
corresponding bits of PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[11], bit [11]

When FEAT_SPEv1p1 is implemented:

Filter on Aligned event.

0b0 Misalignment event is ignored.

0b1 Do not record samples that have the Misalignment event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9254
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RAZ/WI.

E[10], bit [10]

When (FEAT_SPEv1p4 is implemented or filtering on event 10 is optionally supported) and event 10
is implemented:

Filter on No remote access event.

0b0 Remote access event is ignored.

0b1 Do not record samples that have the Remote access event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[9], bit [9]

When (FEAT_SPEv1p4 is implemented or filtering on event 9 is optionally supported) and event 9 is
implemented:

Filter on Last Level cache hit event.

0b0 Last Level cache miss event is ignored.

0b1 Do not record samples that have the Last Level cache miss event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[8], bit [8]

When (FEAT_SPEv1p4 is implemented or filtering on event 8 is optionally supported) and event 8 is
implemented:

Filter on No Last Level cache access event.

0b0 Last Level cache access event is ignored.

0b1 Do not record samples that have the Last Level cache access event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[7], bit [7]

Filter on Correctly predicted event.

0b0 Mispredicted event is ignored.

0b1 Do not record samples that have the Mispredicted event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9255
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
E[6], bit [6]

When FEAT_SPEv1p2 is implemented:

Filter on Taken event.

0b0 Not taken event is ignored.

0b1 Do not record samples that have the Not taken event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[5], bit [5]

Filter on TLB hit event.

0b0 TLB walk event is ignored.

0b1 Do not record samples that have the TLB walk event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[4], bit [4]

When FEAT_SPEv1p4 is implemented or filtering on event 4 is optionally supported:

Filter on No TLB access event.

0b0 TLB access event is ignored.

0b1 Do not record samples that have the TLB access event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[3], bit [3]

Filter on Level 1 data cache hit event.

0b0 Level 1 data cache refill or miss event is ignored.

0b1 Do not record samples that have the Level 1 data cache refill or miss event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[2], bit [2]

When FEAT_SPEv1p4 is implemented or filtering on event 2 is optionally supported:

Filter on No Level 1 data cache access event.

0b0 Level 1 data cache access event is ignored.

0b1 Do not record samples that have the Level 1 data cache access event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9256
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
Otherwise:

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Filter on Speculative event.

0b0 Architecturally retired event is ignored.

0b1 Do not record samples that have the Architecturally retired event == 1.

This field is ignored by the PE when PMSFCR_EL1.FnE == 0.

If the PE does not support the sampling of speculative instructions, or always discards the sample
record for speculative instructions, this bit reads as an UNKNOWN value and the PE ignores its value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [0]

Reserved, RAZ/WI.

Accessing PMSNEVFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSNEVFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nPMSNEVFR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 X[t, 64] = NVMem[0x850];
 else
 X[t, 64] = PMSNEVFR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9257
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = PMSNEVFR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = PMSNEVFR_EL1;

MSR PMSNEVFR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nPMSNEVFR_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '1x1' then
 NVMem[0x850] = X[t, 64];
 else
 PMSNEVFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1]
!= SCR_EL3.NS || (IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.EnPMSN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' || MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE != SCR_EL3.NSE)) then

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9258
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.7 Statistical Profiling Extension registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMSNEVFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 PMSNEVFR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9259
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8 Branch Record Buffer Extension registers

This section lists the Branch Record Buffer registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9260
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.1 BRBCR_EL1, Branch Record Buffer Control Register (EL1)

The BRBCR_EL1 characteristics are:

Purpose

Controls the Branch Record Buffer.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBCR_EL1 are UNDEFINED.

Attributes

BRBCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

EXCEPTION, bit [23]

Enable the recording of entry to EL1 via an exception.

0b0 Disable the recording of Branch records for exceptions when taken to EL1.

0b1 Enable the recording of Branch records for exceptions when taken to EL1.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

ERTN, bit [22]

Allow the recording Branch records for exception return instructions from EL1.

0b0 Disable the recording Branch records for exception return instructions from EL1.

0b1 Enable the recording Branch records for exception return instructions from EL1.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Bits [21:10]

Reserved, RES0.

RES0

63 32

RES0

31 24 23 22

RES0

21 10 9 8 7

TS

6 5 4

CC

3 2 1 0

EXCEPTION ERTN FZPSS
FZP
RES0

E0BRE
E1BRE

RES0
MPRED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9261
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
FZPSS, bit [9]

When FEAT_PMUv3_SS is implemented:

Freeze BRBE on PMU Snapshot.

0b0 Branch recording is not affected by this control.

0b1 If either EL2 is not implemented or BRBCR_EL2.FZPSS is 1, then a BRBE freeze
event occurs when a successful Capture event occurs.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FZP, bit [8]

When FEAT_PMUv3 is implemented:

Freeze BRBE on PMU overflow. In the description of this field:

• If EL2 is implemented, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Branch recording is not affected by this control.

0b1 A BRBE freeze event occurs when the PE is in a Non-prohibited region,
BRBFCR_EL1.PAUSED is 0, and any of the following applies:

• For any value of m less than PMN, PMOVSCLR_EL0[m] is 1, and either
FEAT_SEBEP is not implemented or PMEVTYPER<n>_EL0.SYNC is 0.

• FEAT_PMUv3_ICNTR is implemented, PMOVSCLR_EL0.F0 is 1, and either
FEAT_SEBEP is not implemented or PMICFILTR_EL0.SYNC is 0.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control.

0b01 Virtual timestamp. The BRBE recorded timestamp is the physical counter value, minus
the value of CNTVOFF_EL2.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The BRBE recorded timestamp is the physical counter value
minus a physical offset. If any of the following are true, the physical offset is zero,
otherwise the physical offset is the value of CNTPOFF_EL2:

• EL3 is implemented and SCR_EL3.ECVEn == 0.

• EL2 is implemented and CNTHCTL_EL2.ECV == 0.

0b11 Physical timestamp. The BRBE recorded timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when EL2 is implemented and BRBCR_EL2.TS != 0b00.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9262
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

MPRED, bit [4]

Mask the recording of mispredicts.

0b0 Disable the recording of mispredict information.

0b1 Allow the recording of mispredict information.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

CC, bit [3]

Enable the recording of cycle count information.

0b0 Disable the recording of cycle count information.

0b1 Allow the recording of cycle count information.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E1BRE, bit [1]

EL1 Branch recording enable.

0b0 Branch recording prohibited at EL1.

0b1 Branch recording enabled at EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0BRE, bit [0]

EL0 Branch recording enable.

0b0 Branch recording prohibited at EL0.

0b1 Branch recording enabled at EL0.

This field is ignored by the PE when all of the following are true:

• HCR_EL2.TGE == 1.

• EL2 is implemented and enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9263
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
Accessing BRBCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBCTL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8E0];
 else
 X[t, 64] = BRBCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = BRBCR_EL2;
 else
 X[t, 64] = BRBCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBCR_EL1;

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9264
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
MRS <Xt>, BRBCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x8E0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS ==
'0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS
== '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = BRBCR_EL1;
 else
 UNDEFINED;

MSR BRBCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBCTL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b10 0b101 0b1001 0b0000 0b000

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9265
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8E0] = X[t, 64];
 else
 BRBCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 BRBCR_EL2 = X[t, 64];
 else
 BRBCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBCR_EL1 = X[t, 64];

MSR BRBCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x8E0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS ==
'0' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS
== '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b101 0b1001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9266
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 BRBCR_EL1 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9267
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.2 BRBCR_EL2, Branch Record Buffer Control Register (EL2)

The BRBCR_EL2 characteristics are:

Purpose

Controls the Branch Record Buffer.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBCR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

BRBCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

EXCEPTION, bit [23]

Enable the recording of entry to EL2 via an exception.

0b0 Disable the recording of Branch records for exceptions when taken to EL2.

0b1 Enable the recording of Branch records for exceptions when taken to EL2.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

ERTN, bit [22]

Allow the recording Branch records for exception return instructions from EL2.

0b0 Disable the recording Branch records for exception return instructions from EL2.

0b1 Enable the recording Branch records for exception return instructions from EL2.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Bits [21:10]

Reserved, RES0.

RES0

63 32

RES0

31 24 23 22

RES0

21 10 9 8 7

TS

6 5 4

CC

3 2 1 0

EXCEPTION ERTN FZPSS
FZP
RES0

E0HBRE
E2BRE

RES0
MPRED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9268
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
FZPSS, bit [9]

When FEAT_PMUv3_SS is implemented:

Freeze BRBE on PMU Snapshot.

0b0 Branch recording is not affected by this control.

0b1 If BRBCR_EL1.FZPSS is 1, then a BRBE freeze event occurs when a PMU snapshot
occurs.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FZP, bit [8]

When FEAT_PMUv3 is implemented:

Freeze BRBE on PMU overflow.

0b0 Branch recording is not affected by this control.

0b1 A BRBE freeze event occurs when the PE is in a Non-prohibited region,
BRBFCR_EL1.PAUSED is 0, and all the following are true for any value of m greater
than or equal to MDCR_EL2.HPMN:

• PMOVSCLR_EL0[m] is 1.

• Either FEAT_SEBEP is not implemented or PMEVTYPER<n>_EL0.SYNC is 0.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control.

0b00 Timestamp controlled by BRBCR_EL1.TS.

0b01 Virtual timestamp. The BRBE recorded timestamp is the physical counter value, minus
the value of CNTVOFF_EL2.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The BRBE recorded timestamp is the physical counter value
minus a physical offset. If any of the following are true, the physical offset is zero,
otherwise the physical offset is the value of CNTPOFF_EL2:

• EL3 is implemented and SCR_EL3.ECVEn == 0.

• EL2 is implemented and CNTHCTL_EL2.ECV == 0.

0b11 Physical timestamp. The BRBE recorded timestamp is the physical counter value.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9269
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
MPRED, bit [4]

Mask the recording of mispredicts.

0b0 Disable the recording of mispredict information.

0b1 Allow the recording of mispredict information.

If EL2 is not implemented, then the Effective value of this field is 1, other than for a direct read of
the register.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

CC, bit [3]

Enable the recording of cycle count information.

0b0 Disable the recording of cycle count information.

0b1 Allow the recording of cycle count information.

If EL2 is not implemented, then the Effective value of this field is 1, other than for a direct read of
the register.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E2BRE, bit [1]

EL2 Branch recording enable.

0b0 Branch recording prohibited at EL2.

0b1 Branch recording enabled at EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0HBRE, bit [0]

EL0 Branch recording enable.

0b0 Branch recording prohibited at EL0 when HCR_EL2.TGE == 1.

0b1 Branch recording enabled at EL0 when HCR_EL2.TGE == 1.

This field is ignored by the PE when any of the following are true:

• HCR_EL2.TGE == 0.

• EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing BRBCR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name BRBCR_EL2 or BRBCR_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9270
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBCTL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8E0];
 else
 X[t, 64] = BRBCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = BRBCR_EL2;
 else
 X[t, 64] = BRBCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBCR_EL1;

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9271
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
MRS <Xt>, BRBCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBCR_EL2;

MSR BRBCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBCTL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b100 0b1001 0b0000 0b000

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9272
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8E0] = X[t, 64];
 else
 BRBCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 BRBCR_EL2 = X[t, 64];
 else
 BRBCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBCR_EL1 = X[t, 64];

MSR BRBCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b10 0b100 0b1001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9273
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
elsif PSTATE.EL == EL3 then
 BRBCR_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9274
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.3 BRBFCR_EL1, Branch Record Buffer Function Control Register

The BRBFCR_EL1 characteristics are:

Purpose

Functional controls for the Branch Record Buffer.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBFCR_EL1 are UNDEFINED.

Attributes

BRBFCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:30]

Reserved, RES0.

BANK, bits [29:28]

Branch record buffer bank access control.

0b00 Select branch records 0 to 31.

0b01 Select branch records 32 to 63.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:23]

Reserved, RES0.

CONDDIR, bit [22]

Match on conditional direct branch instructions.

0b0 Do not match on conditional direct branch instructions.

0b1 Match on conditional direct branch instructions.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

DIRCALL, bit [21]

Match on direct branch with link instructions.

0b0 Do not match on direct branch with link instructions.

RES0

63 32

RES0

31 30

BANK

29 28

RES0

27 23 22 21 20 19 18 17 16

RES0

15 8 7 6

RES0

5 0

CONDDIR
DIRCALL

INDCALL

EnI
DIRECT

INDIRECT
RTN

PAUSED LASTFAILED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9275
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
0b1 Match on direct branch with link instructions.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

INDCALL, bit [20]

Match on indirect branch with link instructions.

0b0 Do not match on indirect branch with link instructions.

0b1 Match on indirect branch with link instructions.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

RTN, bit [19]

Match on function return instructions.

0b0 Do not match on function return instructions.

0b1 Match on function return instructions.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

INDIRECT, bit [18]

Match on indirect branch instructions.

0b0 Do not match on indirect branch instructions.

0b1 Match on indirect branch instructions.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

DIRECT, bit [17]

Match on unconditional direct branch instructions.

0b0 Do not match on unconditional direct branch instructions.

0b1 Match on unconditional direct branch instructions.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

EnI, bit [16]

Include or exclude matches.

0b0 Include records for matches, and exclude records for non-matches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9276
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
0b1 Exclude records for matches, and include records for non-matches.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Bits [15:8]

Reserved, RES0.

PAUSED, bit [7]

Branch recording Paused status.

0b0 Branch recording is not Paused.

0b1 Branch recording is Paused.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

LASTFAILED, bit [6]

When FEAT_TME is implemented:

Indicates transaction failure or cancellation.

0b0 Indicates that no transactions in a non-prohibited region have failed or been canceled
since the last Branch record was generated.

0b1 Indicates that at least one transaction in a non-prohibited region has failed or been
canceled since the last Branch record was generated.

The reset behavior of this field is:

• On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an
architecturally UNKNOWN value.

• On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

Accessing BRBFCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBFCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9277
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBCTL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBFCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBFCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBFCR_EL1;

MSR BRBFCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBCTL == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9278
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBFCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBFCR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9279
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.4 BRBIDR0_EL1, Branch Record Buffer ID0 Register

The BRBIDR0_EL1 characteristics are:

Purpose

Indicates the features of the branch buffer unit.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBIDR0_EL1 are UNDEFINED.

Attributes

BRBIDR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

CC, bits [15:12]

Cycle counter support. Defined values are:

0b0101 20-bit cycle counter implemented.

All other values are reserved.

FORMAT, bits [11:8]

Data format of records of the Branch record buffer. Defined values are:

0b0000 Format 0.

All other values are reserved.

NUMREC, bits [7:0]

Number of records supported. Defined values are:

0x08 8 branch records implemented.

0x10 16 branch records implemented.

0x20 32 branch records implemented.

0x40 64 branch records implemented.

All other values are reserved.

Accessing BRBIDR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBIDR0_EL1

RES0

63 32

RES0

31 16

CC

15 12

FORMAT

11 8

NUMREC

7 0

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9280
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBIDR == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBIDR0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBIDR0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBIDR0_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9281
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.5 BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

The BRBINF<n>_EL1 characteristics are:

Purpose

The information for Branch record n + (BRBFCR_EL1.BANK × 32).

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBINF<n>_EL1 are UNDEFINED.

Attributes

BRBINF<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:47]

Reserved, RES0.

CCU, bit [46]

The number of PE clock cycles since the last Branch record entry is UNKNOWN.

0b0 Indicates that the number of PE clock cycles since the last Branch record is indicated by
BRBINF<n>_EL1.CC.

0b1 Indicates that the number of PE clock cycles since the last Branch record is UNKNOWN.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINF<n>_EL1.VALID == 0b00, access to this field is RES0.

• Otherwise, access to this field is RO.

CC, bits [45:32]

The number of PE clock cycles since the last Branch record entry.

The format of this field uses a mantissa and exponent to express the cycle count value, as follows:

• CC bits[7:0] indicate the mantissa M.

• CC bits[13:8] indicate the exponent E.

The cycle count is expressed using the following function:

 if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1))

If required, the cycle count is rounded to a multiple of 2(E-1) towards zero before being encoded.

A value of all ones in both the mantissa and exponent indicates the cycle count value exceeded the
size of the cycle counter.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

RES0

63 47 46

CC

45 32

CCU

RES0

31 18 17

T

16

RES0

15 14

TYPE

13 8

EL

7 6 5

RES0

4 2 1 0

LASTFAILED MPRED VALID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9282
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINF<n>_EL1.CCU == 1.

— BRBINF<n>_EL1.VALID == 0b00.

• Otherwise, access to this field is RO.

Bits [31:18]

Reserved, RES0.

LASTFAILED, bit [17]

When FEAT_TME is implemented:

Indicates transaction failure or cancellation.

0b0 Indicates that no transactions in a non-prohibited region have failed or been canceled
between the previous Branch record and this Branch record.

0b1 Indicates that at least one transaction in a non-prohibited region has failed or been
canceled between the previous Branch record and this Branch record.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINF<n>_EL1.VALID == 0b00, access to this field is RES0.

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

T, bit [16]

When FEAT_TME is implemented:

Transactional state.

0b0 The branch or exception was not executed in Transactional state.

0b1 The branch or exception was executed in Transactional state.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b10 or
BRBINF<n>_EL1.VALID == 0b11.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINF<n>_EL1.VALID == 0b00.

— BRBINF<n>_EL1.VALID == 0b01.

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [15:14]

Reserved, RES0.

TYPE, bits [13:8]

Branch type.

0b000000 Unconditional direct branch, excluding Branch with link.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9283
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
0b000001 Indirect branch, excluding Branch with link, Return from subroutine, and Exception
return.

0b000010 Direct Branch with link.

0b000011 Indirect Branch with link.

0b000101 Return from subroutine.

0b000111 Exception return.

0b001000 Conditional direct branch.

0b100001 Debug halt.

0b100010 Call.

0b100011 Trap.

0b100100 SError.

0b100110 Instruction debug.

0b100111 Data debug.

0b101010 Alignment.

0b101011 Inst Fault.

0b101100 Data Fault.

0b101110 IRQ.

0b101111 FIQ.

0b110000 IMPLEMENTATION DEFINED exception to EL3.

0b111001 Debug State Exit.

All other values are reserved.

The value in this field is only valid when BRBINF<n>_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINF<n>_EL1.VALID == 0b00, access to this field is RES0.

• Otherwise, access to this field is RO.

EL, bits [7:6]

The Exception level at the target address.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 When FEAT_BRBEv1p1 is implemented:

EL3.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b11 or
BRBINF<n>_EL1.VALID == 0b01.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINF<n>_EL1.VALID == 0b00.

— BRBINF<n>_EL1.VALID == 0b10.

• Otherwise, access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9284
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
MPRED, bit [5]

Branch mispredict.

0b0 Branch was correctly predicted or the result of the prediction was not captured.

0b1 Branch was incorrectly predicted.

The value in this field is only valid when BRBINF<n>_EL1.VALID == 0b11 or
BRBINF<n>_EL1.VALID == 0b10.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINF<n>_EL1.VALID == 0b00.

— BRBINF<n>_EL1.VALID == 0b01.

— BRBINF<n>_EL1.TYPE[5] == 1.

• Otherwise, access to this field is RO.

Bits [4:2]

Reserved, RES0.

VALID, bits [1:0]

The Branch record is valid.

0b00 This Branch record is not valid.

The values of following fields are not valid:

• BRBTGT<n>_EL1.ADDRESS.

• BRBSRC<n>_EL1.ADDRESS.

• BRBINF<n>_EL1.MPRED.

• BRBINF<n>_EL1.LASTFAILED.

• BRBINF<n>_EL1.T.

• BRBINF<n>_EL1.EL.

• BRBINF<n>_EL1.TYPE.

• BRBINF<n>_EL1.CC.

• BRBINF<n>_EL1.CCU.

0b01 This Branch record is valid.

The values of following fields are not valid:

• BRBSRC<n>_EL1.ADDRESS.

• BRBINF<n>_EL1.T.

• BRBINF<n>_EL1.MPRED.

0b10 This Branch record is valid.

The values of following fields are not valid:

• BRBTGT<n>_EL1.ADDRESS.

• BRBINF<n>_EL1.EL.

0b11 This Branch record is valid.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing BRBINF<n>_EL1

BRBINF<n>_EL1 reads-as-zero if n + (BRBFCR_EL1.BANK × 32) >= BRBIDR0_EL1.NUMREC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9285
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBINF<m>_EL1; Where m = 0-31

integer m = UInt(op2<2>:CRm<3:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBINF_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBINF_EL1[m];
elsif PSTATE.EL == EL3 then
 if m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBINF_EL1[m];

op0 op1 CRn CRm op2

0b10 0b001 0b1000 m[3:0] m[4]:0b00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9286
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.6 BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

The BRBINFINJ_EL1 characteristics are:

Purpose

The information of a Branch record for injection.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBINFINJ_EL1 are UNDEFINED.

Attributes

BRBINFINJ_EL1 is a 64-bit register.

Field descriptions

Bits [63:47]

Reserved, RES0.

CCU, bit [46]

The number of PE clock cycles since the last Branch record entry is UNKNOWN.

0b0 Indicates that the number of PE clock cycles since the last Branch record is indicated by
BRBINFINJ_EL1.CC.

0b1 Indicates that the number of PE clock cycles since the last Branch record is UNKNOWN.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINFINJ_EL1.VALID == 0b00, access to this field is RES0.

• Otherwise, access to this field is RW.

CC, bits [45:32]

The number of PE clock cycles since the last Branch record entry.

The format of this field uses a mantissa and exponent to express the cycle count value, as follows:

• CC bits[7:0] indicate the mantissa M.

• CC bits[13:8] indicate the exponent E.

The cycle count is expressed using the following function:

 if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1))

If required, the cycle count is rounded to a multiple of 2(E-1) towards zero before being encoded.

A value of all ones in both the mantissa and exponent indicates the cycle count value exceeded the
size of the cycle counter.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

RES0

63 47 46

CC

45 32

CCU

RES0

31 18 17

T

16

RES0

15 14

TYPE

13 8

EL

7 6 5

RES0

4 2 1 0

LASTFAILED MPRED VALID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9287
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINFINJ_EL1.CCU == 1.

— BRBINFINJ_EL1.VALID == 0b00.

• Otherwise, access to this field is RW.

Bits [31:18]

Reserved, RES0.

LASTFAILED, bit [17]

When FEAT_TME is implemented:

Indicates transaction failure or cancellation.

0b0 Indicates that no transactions in a non-prohibited region have failed or been canceled
between the previous Branch record and this Branch record.

0b1 Indicates that at least one transaction in a non-prohibited region has failed or been
canceled between the previous Branch record and this Branch record.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINFINJ_EL1.VALID == 0b00, access to this field is RES0.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

T, bit [16]

When FEAT_TME is implemented:

Transactional state.

0b0 The branch or exception was not executed in Transactional state.

0b1 The branch or exception was executed in Transactional state.

The value in this field is only valid when BRBINFINJ_EL1.VALID == 0b10 or
BRBINFINJ_EL1.VALID == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINFINJ_EL1.VALID == 0b00.

— BRBINFINJ_EL1.VALID == 0b01.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

Bits [15:14]

Reserved, RES0.

TYPE, bits [13:8]

Branch type.

0b000000 Unconditional direct branch, excluding Branch with link.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9288
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
0b000001 Indirect branch, excluding Branch with link, Return from subroutine, and Exception
return.

0b000010 Direct Branch with link.

0b000011 Indirect Branch with link.

0b000101 Return from subroutine.

0b000111 Exception return.

0b001000 Conditional direct branch.

0b100001 Debug halt.

0b100010 Call.

0b100011 Trap.

0b100100 SError.

0b100110 Instruction debug.

0b100111 Data debug.

0b101010 Alignment.

0b101011 Inst Fault.

0b101100 Data Fault.

0b101110 IRQ.

0b101111 FIQ.

0b110000 IMPLEMENTATION DEFINED exception to EL3.

0b111001 Debug State Exit.

All other values are reserved.

The value in this field is only valid when BRBINFINJ_EL1.VALID != 0b00.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When BRBINFINJ_EL1.VALID == 0b00, access to this field is RES0.

• Otherwise, access to this field is RW.

EL, bits [7:6]

The Exception level at the target address.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 When FEAT_BRBEv1p1 is implemented:

EL3.

The value in this field is only valid when BRBINFINJ_EL1.VALID == 0b11 or
BRBINFINJ_EL1.VALID == 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINFINJ_EL1.VALID == 0b00.

— BRBINFINJ_EL1.VALID == 0b10.

• Otherwise, access to this field is RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9289
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
MPRED, bit [5]

Branch mispredict.

0b0 Branch was correctly predicted or the result of the prediction was not captured.

0b1 Branch was incorrectly predicted.

The value in this field is only valid when BRBINFINJ_EL1.VALID == 0b11 or
BRBINFINJ_EL1.VALID == 0b10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINFINJ_EL1.VALID == 0b00.

— BRBINFINJ_EL1.VALID == 0b01.

— BRBINFINJ_EL1.TYPE[5] == 1.

• Otherwise, access to this field is RW.

Bits [4:2]

Reserved, RES0.

VALID, bits [1:0]

The Branch record is valid.

0b00 This Branch record is not valid.

The values of following fields are not valid:

• BRBTGTINJ_EL1.ADDRESS.

• BRBSRCINJ_EL1.ADDRESS.

• BRBINFINJ_EL1.MPRED.

• BRBINFINJ_EL1.LASTFAILED.

• BRBINFINJ_EL1.T.

• BRBINFINJ_EL1.EL.

• BRBINFINJ_EL1.TYPE.

• BRBINFINJ_EL1.CC.

• BRBINFINJ_EL1.CCU.

0b01 This Branch record is valid.

The values of following fields are not valid:

• BRBSRCINJ_EL1.ADDRESS.

• BRBINFINJ_EL1.T.

• BRBINFINJ_EL1.MPRED.

0b10 This Branch record is valid.

The values of following fields are not valid:

• BRBTGTINJ_EL1.ADDRESS.

• BRBINFINJ_EL1.EL.

0b11 This Branch record is valid.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9290
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
Accessing BRBINFINJ_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBINFINJ_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBINFINJ_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBINFINJ_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBINFINJ_EL1;

MSR BRBINFINJ_EL1, <Xt>

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0001 0b000

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9291
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBINFINJ_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBINFINJ_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBINFINJ_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9292
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.7 BRBSRC<n>_EL1, Branch Record Buffer Source Address Register <n>, n = 0 - 31

The BRBSRC<n>_EL1 characteristics are:

Purpose

The source address of Branch record n + (BRBFCR_EL1.BANK × 32).

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBSRC<n>_EL1 are UNDEFINED.

Attributes

BRBSRC<n>_EL1 is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Source virtual address of the Branch record.

When an indirect write occurs with a value with ADDRESS bits [63:P] being other than all zeroes
or all ones, an UNKNOWN value which is not all zeroes or all ones is written to bits [63:P]. P is
defined as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

The value in bits [P-1:0] is the value written.

When an indirect write occurs with a value with ADDRESS bits [63:P] being all zeroes or all ones,
the written value is written to bits [63:0], and a read of the register returns the written value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINF<n>_EL1.VALID == 0b00.

— BRBINF<n>_EL1.VALID == 0b01.

• Otherwise, access to this field is RO.

Accessing BRBSRC<n>_EL1

BRBSRC<n>_EL1 is RES0 if n + (BRBFCR_EL1.BANK × 32) >= BRBIDR0_EL1.NUMREC.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBSRC<m>_EL1; Where m = 0-31

ADDRESS

63 32

ADDRESS

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b1000 m[3:0] m[4]:0b01
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9293
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
integer m = UInt(op2<2>:CRm<3:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBSRC_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBSRC_EL1[m];
elsif PSTATE.EL == EL3 then
 if m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBSRC_EL1[m];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9294
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.8 BRBSRCINJ_EL1, Branch Record Buffer Source Address Injection Register

The BRBSRCINJ_EL1 characteristics are:

Purpose

The source address of a Branch record for injection.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBSRCINJ_EL1 are UNDEFINED.

Attributes

BRBSRCINJ_EL1 is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Source virtual address of the Branch record.

When a direct write occurs with a value with ADDRESS bits [63:P] being other than all zeroes or
all ones, an UNKNOWN value which is not all zeroes or all ones is written to bits [63:P]. P is defined
as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

The value in bits [P-1:0] is the value written.

When a direct write occurs with a value with ADDRESS bits [63:P] being all zeroes or all ones, the
written value is written to bits [63:0], and a read of the register returns the written value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINFINJ_EL1.VALID == 0b00.

— BRBINFINJ_EL1.VALID == 0b01.

• Otherwise, access to this field is RW.

Accessing BRBSRCINJ_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBSRCINJ_EL1

ADDRESS

63 32

ADDRESS

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9295
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBSRCINJ_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBSRCINJ_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBSRCINJ_EL1;

MSR BRBSRCINJ_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBDATA == '0' then

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9296
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBSRCINJ_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBSRCINJ_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBSRCINJ_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9297
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.9 BRBTGT<n>_EL1, Branch Record Buffer Target Address Register <n>, n = 0 - 31

The BRBTGT<n>_EL1 characteristics are:

Purpose

The target address of Branch record n + (BRBFCR_EL1.BANK × 32).

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBTGT<n>_EL1 are UNDEFINED.

Attributes

BRBTGT<n>_EL1 is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Target virtual address of the Branch record.

When an indirect write occurs with a value with ADDRESS bits [63:P] being other than all zeroes
or all ones, an UNKNOWN value which is not all zeroes or all ones is written to bits [63:P]. P is
defined as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

The value in bits [P-1:0] is the value written.

When an indirect write occurs with a value with ADDRESS bits [63:P] being all zeroes or all ones,
the written value is written to bits [63:0], and a read of the register returns the written value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINF<n>_EL1.VALID == 0b00.

— BRBINF<n>_EL1.VALID == 0b10.

• Otherwise, access to this field is RO.

Accessing BRBTGT<n>_EL1

BRBTGT<n>_EL1 is RES0 if n + (BRBFCR_EL1.BANK × 32) >= BRBIDR0_EL1.NUMREC.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBTGT<m>_EL1; Where m = 0-31

ADDRESS

63 32

ADDRESS

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b1000 m[3:0] m[4]:0b10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9298
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
integer m = UInt(op2<2>:CRm<3:0>);

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBTGT_EL1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBTGT_EL1[m];
elsif PSTATE.EL == EL3 then
 if m + (UInt(BRBFCR_EL1.BANK) * 32) >= NUM_BRBE_RECORDS then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = BRBTGT_EL1[m];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9299
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.10 BRBTGTINJ_EL1, Branch Record Buffer Target Address Injection Register

The BRBTGTINJ_EL1 characteristics are:

Purpose

The target address of a Branch record for injection.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBTGTINJ_EL1 are UNDEFINED.

Attributes

BRBTGTINJ_EL1 is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Target virtual address of the Branch record.

When a direct write occurs with a value with ADDRESS bits [63:P] being other than all zeroes or
all ones, an UNKNOWN value which is not all zeroes or all ones is written to bits [63:P]. P is defined
as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

The value in bits [P-1:0] is the value written.

When a direct write occurs with a value with ADDRESS bits [63:P] being all zeroes or all ones, the
written value is written to bits [63:0], and a read of the register returns the written value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if any of the following are true:

— BRBINFINJ_EL1.VALID == 0b00.

— BRBINFINJ_EL1.VALID == 0b10.

• Otherwise, access to this field is RW.

Accessing BRBTGTINJ_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBTGTINJ_EL1

ADDRESS

63 32

ADDRESS

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9300
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBTGTINJ_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBTGTINJ_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBTGTINJ_EL1;

MSR BRBTGTINJ_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBDATA == '0' then

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9301
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBTGTINJ_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBTGTINJ_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBTGTINJ_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9302
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
D23.8.11 BRBTS_EL1, Branch Record Buffer Timestamp Register

The BRBTS_EL1 characteristics are:

Purpose

Captures the Timestamp value on a BRBE freeze event.

Configurations

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to
BRBTS_EL1 are UNDEFINED.

Attributes

BRBTS_EL1 is a 64-bit register.

Field descriptions

TS, bits [63:0]

Timestamp value at the time of a BRBE freeze event.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing BRBTS_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBTS_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGRTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then

TS

63 32

TS

31 0

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9303
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBTS_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = BRBTS_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = BRBTS_EL1;

MSR BRBTS_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HDFGWTR_EL2.nBRBDATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBTS_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS ==
'1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b10 0b001 0b1001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9304
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.8 Branch Record Buffer Extension registers
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' && SCR_EL3.NS == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' && SCR_EL3.NS == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 BRBTS_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 BRBTS_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9305
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9 RAS registers

This section lists RAS registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9306
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.1 DISR_EL1, Deferred Interrupt Status Register

The DISR_EL1 characteristics are:

Purpose

Records that an SError exception has been consumed by an ESB instruction.

Configurations

AArch64 System register DISR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
DISR_EL1 are UNDEFINED.

Attributes

DISR_EL1 is a 64-bit register.

Field descriptions

When DISR_EL1.IDS == 0:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError exception. If the implementation
does not include any sources of SError exception that can be synchronized by an Error
Synchronization Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError exception type.

0b0 Deferred error uses architecturally-defined format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:18]

Reserved, RES0.

WU, bits [17:16]

When FEAT_RASv2 is implemented:

Write update. See the description of ESR_ELx.WU for an SError exception.

RES0

63 32

A

31

RES0

30 25 24

RES0

23 18

WU

17 16

RES0

15 13

AET

12 10

EA

9 8 7 6

DFSC

5 0

IDS RES0 WnR
WnRV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9307
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:13]

Reserved, RES0.

AET, bits [12:10]

Asynchronous Error Type. See the description of ESR_ELx.AET for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of ESR_ELx.EA for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

WnRV, bit [7]

When FEAT_RASv2 is implemented:

Write-not-Read Valid. See the description of ESR_ELx.WnRV for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WnR, bit [6]

When FEAT_RASv2 is implemented:

Write-not-Read. See the description of ESR_ELx.WnR for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of ESR_ELx.DFSC for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When DISR_EL1.IDS == 1:

RES0

63 32

A

31

RES0

30 25 24

ISS

23 0

IDS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9308
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError exception. If the implementation
does not include any sources of SError exception that can be synchronized by an Error
Synchronization Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError exception type.

0b1 Deferred error uses IMPLEMENTATION DEFINED format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

IMPLEMENTATION DEFINED syndrome. See the description of ESR_ELx[23:0] for an SError
exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DISR_EL1

An indirect write to DISR_EL1 made by an ESB instruction does not require an explicit synchronization operation
for the value that is written to be observed by a direct read of DISR_EL1 occurring in program order after the ESB
instruction.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DISR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (HCR_EL2.AMO == '1' || (IsFeatureImplemented(FEAT_DoubleFault2) &&
IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1')) then
 X[t, 64] = VDISR_EL2;
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = DISR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = DISR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DISR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9309
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
MSR DISR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (HCR_EL2.AMO == '1' || (IsFeatureImplemented(FEAT_DoubleFault2) &&
IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1')) then
 VDISR_EL2 = X[t, 64];
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 else
 DISR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 else
 DISR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 DISR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9310
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.2 ERRIDR_EL1, Error Record ID Register

The ERRIDR_EL1 characteristics are:

Purpose

Defines the highest numbered index of the error records that can be accessed through the Error
Record System registers.

Configurations

AArch64 System register ERRIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ERRIDR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRIDR_EL1 are UNDEFINED.

Attributes

ERRIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the records that can be accessed through the Error Record System
registers plus one. Zero indicates no records can be accessed through the Error Record System
registers.

Each implemented record is owned by a node. A node might own multiple records.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing ERRIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERRIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

RES0

63 32

RES0

31 16

NUM

15 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9311
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
== '1') && HFGRTR_EL2.ERRIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERRIDR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERRIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERRIDR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9312
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.3 ERRSELR_EL1, Error Record Select Register

The ERRSELR_EL1 characteristics are:

Purpose

Selects an error record to be accessed through the Error Record System registers.

Configurations

AArch64 System register ERRSELR_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERRSELR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRSELR_EL1 are UNDEFINED.

If ERRIDR_EL1 indicates that zero error records are implemented, then it is IMPLEMENTATION
DEFINED whether ERRSELR_EL1 is UNDEFINED or RES0.

Attributes

ERRSELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:16]

Reserved, RES0.

SEL, bits [15:0]

Selects the error record accessed through the ERX registers.

For example, if ERRSELR_EL1.SEL is 0x0004, then direct reads and writes of ERXSTATUS_EL1
access ERR4STATUS.

If ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then all of the following
apply:

• The value read back from ERRSELR_EL1.SEL is UNKNOWN.

• One of the following occurs:

— An UNKNOWN error record is selected.

— The ERX*_EL1 registers are RAZ/WI.

— ERX*_EL1 register reads and writes are NOPs.

— ERX*_EL1 register reads and writes are UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 16

SEL

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9313
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
Accessing ERRSELR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERRSELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERRSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERRSELR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERRSELR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERRSELR_EL1;

MSR ERRSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERRSELR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9314
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERRSELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERRSELR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERRSELR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9315
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.4 ERXADDR_EL1, Selected Error Record Address Register

The ERXADDR_EL1 characteristics are:

Purpose

Accesses ERR<n>ADDR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXADDR_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXADDR[31:0].

AArch64 System register ERXADDR_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXADDR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXADDR_EL1 are UNDEFINED.

Attributes

ERXADDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXADDR_EL1 accesses ERR<n>ADDR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXADDR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXADDR_EL1 is RAZ/WI.

• Direct reads and writes of ERXADDR_EL1 are NOPs.

• Direct reads and writes of ERXADDR_EL1 are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXADDR_EL1

ERR<n>ADDR

63 32

ERR<n>ADDR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9316
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXADDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXADDR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXADDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXADDR_EL1;

MSR ERXADDR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXADDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXADDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9317
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXADDR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXADDR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9318
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.5 ERXCTLR_EL1, Selected Error Record Control Register

The ERXCTLR_EL1 characteristics are:

Purpose

Accesses ERR<n>CTLR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXCTLR_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXCTLR[31:0].

AArch64 System register ERXCTLR_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXCTLR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXCTLR_EL1 are UNDEFINED.

Attributes

ERXCTLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXCTLR_EL1 accesses ERR<n>CTLR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXCTLR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXCTLR_EL1 is RAZ/WI.

• Direct reads and writes of ERXCTLR_EL1 are NOPs.

• Direct reads and writes of ERXCTLR_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR is not present,
meaning reads and writes of ERXCTLR_EL1 are RES0.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXCTLR_EL1

ERR<n>CTLR

63 32

ERR<n>CTLR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9319
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXCTLR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXCTLR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXCTLR_EL1;

MSR ERXCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXCTLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9320
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXCTLR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXCTLR_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9321
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.6 ERXFR_EL1, Selected Error Record Feature Register

The ERXFR_EL1 characteristics are:

Purpose

Accesses ERR<n>FR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXFR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register ERXFR[31:0].

AArch64 System register ERXFR_EL1 bits [63:32] are architecturally mapped to AArch32 System
register ERXFR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXFR_EL1 are UNDEFINED.

Attributes

ERXFR_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXFR_EL1 accesses ERR<n>FR, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXFR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXFR_EL1 is RAZ.

• Direct reads of ERXFR_EL1 are NOPs.

• Direct reads of ERXFR_EL1 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXFR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then

ERR<n>FR

63 32

ERR<n>FR

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9322
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXFR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXFR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXFR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9323
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.7 ERXGSR_EL1, Selected Error Record Group Status Register

The ERXGSR_EL1 characteristics are:

Purpose

Shows the status for the records in a group of error records.

Accesses ERRGSR for the group of error records <n> selected by ERRSELR_EL1.SEL[15:6].

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv2 is implemented. Otherwise, direct accesses to
ERXGSR_EL1 are UNDEFINED.

Attributes

ERXGSR_EL1 is a 64-bit register.

Field descriptions

S<q>, bit [q], for q = 63 to 0

When error record m is implemented and error record m supports this type of reporting:

The status for error record <m>, where m = q + (UInt(ERRSELR_EL1.SEL[15:6])×64). A
read-only copy of ERR<n>STATUS.V.

0b0 No error.

0b1 One or more errors.

Accessing ERXGSR_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL[15:6] is greater than or equal to ERRIDR_EL1.NUM,
then one of the following occurs:

• An UNKNOWN group of error records are selected.

• ERXGSR_EL1 is RAZ.

• Direct reads of ERXGSR_EL1 are NOPs.

• Direct reads of ERXGSR_EL1 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXGSR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

S<q>

63 32

S<q>

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9324
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT2) && ((HaveEL(EL3) &&
SCR_EL3.FGTEn2 == '0') || HFGRTR2_EL2.nERXGSR_EL1 == '0') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXGSR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXGSR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXGSR_EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9325
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.8 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0

The ERXMISC0_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC0 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC0_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC0[31:0].

AArch64 System register ERXMISC0_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC0_EL1 are UNDEFINED.

Attributes

ERXMISC0_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC0_EL1 accesses ERR<n>MISC0, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC0_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC0_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC0_EL1 are NOPs.

• Direct reads and writes of ERXMISC0_EL1 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC0_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXMISC0_EL1

ERR<n>MISC0

63 32

ERR<n>MISC0

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9326
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXMISC0_EL1;

MSR ERXMISC0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9327
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXMISC0_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9328
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.9 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

The ERXMISC1_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC1 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC1_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC2[31:0].

AArch64 System register ERXMISC1_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC3[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC1_EL1 are UNDEFINED.

Attributes

ERXMISC1_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC1_EL1 accesses ERR<n>MISC1, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC1_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC1_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC1_EL1 are NOPs.

• Direct reads and writes of ERXMISC1_EL1 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC1_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXMISC1_EL1

ERR<n>MISC1

63 32

ERR<n>MISC1

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9329
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC1_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXMISC1_EL1;

MSR ERXMISC1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC1_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9330
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC1_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXMISC1_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9331
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.10 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

The ERXMISC2_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC2 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC2_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC4[31:0].

AArch64 System register ERXMISC2_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC5[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC2_EL1 are UNDEFINED.

Attributes

ERXMISC2_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC2_EL1 accesses ERR<n>MISC2, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC2_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC2_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC2_EL1 are NOPs.

• Direct reads and writes of ERXMISC2_EL1 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC2_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXMISC2_EL1

ERR<n>MISC2

63 32

ERR<n>MISC2

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9332
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC2_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC2_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXMISC2_EL1;

MSR ERXMISC2_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC2_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9333
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC2_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXMISC2_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9334
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.11 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

The ERXMISC3_EL1 characteristics are:

Purpose

Accesses ERR<n>MISC3 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXMISC3_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXMISC6[31:0].

AArch64 System register ERXMISC3_EL1 bits [63:32] are architecturally mapped to AArch32
System register ERXMISC7[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC3_EL1 are UNDEFINED.

Attributes

ERXMISC3_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXMISC3_EL1 accesses ERR<n>MISC3, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXMISC3_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXMISC3_EL1 is RAZ/WI.

• Direct reads and writes of ERXMISC3_EL1 are NOPs.

• Direct reads and writes of ERXMISC3_EL1 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC3_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXMISC3_EL1

ERR<n>MISC3

63 32

ERR<n>MISC3

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9335
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC3_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXMISC3_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXMISC3_EL1;

MSR ERXMISC3_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC3_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9336
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXMISC3_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXMISC3_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9337
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.12 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown Register

The ERXPFGCDN_EL1 characteristics are:

Purpose

Accesses ERR<n>PFGCDN for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXPFGCDN_EL1 are UNDEFINED.

Attributes

ERXPFGCDN_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXPFGCDN_EL1 accesses ERR<n>PFGCDN, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXPFGCDN_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXPFGCDN_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCDN_EL1 are NOPs.

• Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGCDN_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCDN_EL1 are NOPs.

• Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

Note

A node does not implement the Common Fault Injection Model Extension if ERR<n>FR.INJ reads as 0b00. <q> is
the index of the first error record owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCDN is not
present, meaning reads and writes of ERXPFGCDN_EL1 are RES0.

ERR<n>PFGCDN

63 32

ERR<n>PFGCDN

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9338
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
ERR<n>PFGCDN describes additional constraints that also apply when ERR<n>PFGCDN is accessed through
ERXPFGCDN_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXPFGCDN_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXPFGCDN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXPFGCDN_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXPFGCDN_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXPFGCDN_EL1;

MSR ERXPFGCDN_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXPFGCDN_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b110

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9339
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCDN_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCDN_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXPFGCDN_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9340
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.13 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control Register

The ERXPFGCTL_EL1 characteristics are:

Purpose

Accesses ERR<n>PFGCTL for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXPFGCTL_EL1 are UNDEFINED.

Attributes

ERXPFGCTL_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXPFGCTL_EL1 accesses ERR<n>PFGCTL, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXPFGCTL_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXPFGCTL_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCTL_EL1 are NOPs.

• Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGCTL_EL1 is RAZ/WI.

• Direct reads and writes of ERXPFGCTL_EL1 are NOPs.

• Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

Note

A node does not implement the Common Fault Injection Model Extension if ERR<n>FR.INJ reads as 0b00. <q> is
the index of the first error record owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCTL is not
present, meaning reads and writes of ERXPFGCTL_EL1 are RES0.

ERR<n>PFGCTL

63 32

ERR<n>PFGCTL

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9341
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
ERR<n>PFGCTL describes additional constraints that also apply when ERR<n>PFGCTL is accessed through
ERXPFGCTL_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXPFGCTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXPFGCTL_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXPFGCTL_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXPFGCTL_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXPFGCTL_EL1;

MSR ERXPFGCTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXPFGCTL_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b101

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9342
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXPFGCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXPFGCTL_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9343
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.14 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature Register

The ERXPFGF_EL1 characteristics are:

Purpose

Accesses ERR<n>PFGF for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXPFGF_EL1 are UNDEFINED.

Attributes

ERXPFGF_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXPFGF_EL1 accesses ERR<n>PFGF, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXPFGF_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXPFGF_EL1 is RAZ.

• Direct reads of ERXPFGF_EL1 are NOPs.

• Direct reads of ERXPFGF_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the Common Fault
Injection Model Extension, then one of the following occurs:

• ERXPFGF_EL1 is RAZ.

• Direct reads of ERXPFGF_EL1 are NOPs.

• Direct reads of ERXPFGF_EL1 are UNDEFINED.

Note

A node does not implement the Common Fault Injection Model Extension if ERR<n>FR.INJ reads as 0b00. <q> is
the index of the first error record owned by the same node as error record <n>, where <n> is the value in
ERRSELR_EL1.SEL. If the node owns a single record then q = n.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGF is not present,
meaning reads of ERXPFGF_EL1 are RES0.

ERR<n>PFGF

63 32

ERR<n>PFGF

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9344
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
ERR<n>PFGF describes additional constraints that also apply when ERR<n>PFGF is accessed through
ERXPFGF_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXPFGF_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXPFGF_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXPFGF_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.FIEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXPFGF_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXPFGF_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9345
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.15 ERXSTATUS_EL1, Selected Error Record Primary Status Register

The ERXSTATUS_EL1 characteristics are:

Purpose

Accesses ERR<n>STATUS for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32
System register ERXSTATUS[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXSTATUS_EL1 are UNDEFINED.

Attributes

ERXSTATUS_EL1 is a 64-bit register.

Field descriptions

Bits [63:0]

ERXSTATUS_EL1 accesses ERR<n>STATUS, where <n> is the value in ERRSELR_EL1.SEL.

Accessing ERXSTATUS_EL1

If ERRIDR_EL1.NUM is 0x0000 or ERRSELR_EL1.SEL is greater than or equal to ERRIDR_EL1.NUM, then one
of the following occurs:

• An UNKNOWN error record is selected.

• ERXSTATUS_EL1 is RAZ/WI.

• Direct reads and writes of ERXSTATUS_EL1 are NOPs.

• Direct reads and writes of ERXSTATUS_EL1 are UNDEFINED.

ERR<n>STATUS describes additional constraints that also apply when ERR<n>STATUS is accessed through
ERXSTATUS_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ERXSTATUS_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

ERR<n>STATUS

63 32

ERR<n>STATUS

31 0

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9346
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.ERXSTATUS_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXSTATUS_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = ERXSTATUS_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = ERXSTATUS_EL1;

MSR ERXSTATUS_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TERR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.ERXSTATUS_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXSTATUS_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.TWERR == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9347
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 ERXSTATUS_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 ERXSTATUS_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9348
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.16 VDISR_EL2, Virtual Deferred Interrupt Status Register (EL2)

The VDISR_EL2 characteristics are:

Purpose

Records that a virtual SError exception has been consumed by an ESB instruction executed at EL1.

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit
synchronization operation for the value written to be observed by a direct read of one of the
following registers occurring in program order after the ESB instruction:

• DISR_EL1.

• DISR.

Configurations

AArch64 System register VDISR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VDISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VDISR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VDISR_EL2 is a 64-bit register.

Field descriptions

When EL1 is using AArch64:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

The value copied from VSESR_EL2.IDS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

The value copied from VSESR_EL2.ISS.

RES0

63 32

A

31

RES0

30 25 24

ISS

23 0

IDS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9349
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 0:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError exception.

0b10110 Asynchronous SError exception.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR_EL2[10].

• FS[3:0] is VDISR_EL2[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

A

31

RES0

30 16

AET

15 14 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

RES0
ExT

LPAE
FS[4]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9350
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError exception.

0b0 Using the Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 1:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError exception.

0b1 Using the Long-descriptor translation table format.

RES0

63 32

A

31

RES0

30 16

AET

15 14 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

RES0 LPAE
ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9351
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError exception.

0b010001 Asynchronous SError exception.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VDISR_EL2

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation
for the value that is written to be observed by a direct read of one of the following registers occurring in program
order after the ESB instruction:

• DISR_EL1.

• DISR.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VDISR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x500];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VDISR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VDISR_EL2;

MSR VDISR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x500] = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9352
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VDISR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VDISR_EL2 = X[t, 64];

MRS <Xt>, DISR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (HCR_EL2.AMO == '1' || (IsFeatureImplemented(FEAT_DoubleFault2) &&
IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1')) then
 X[t, 64] = VDISR_EL2;
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = DISR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 X[t, 64] = Zeros(64);
 else
 X[t, 64] = DISR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = DISR_EL1;

MSR DISR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (HCR_EL2.AMO == '1' || (IsFeatureImplemented(FEAT_DoubleFault2) &&
IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1')) then
 VDISR_EL2 = X[t, 64];
 elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 else
 DISR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 else
 DISR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 DISR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9353
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
D23.9.17 VSESR_EL2, Virtual SError Exception Syndrome Register

The VSESR_EL2 characteristics are:

Purpose

Provides the syndrome value reported to software on taking a virtual SError exception to EL1, or
on executing an ESB instruction at EL1.

When the virtual SError exception injected using HCR_EL2.VSE is taken to EL1 using AArch64,
then the syndrome value is reported in ESR_EL1.

When the virtual SError exception injected using HCR_EL2.VSE is taken to EL1 using AArch32,
then the syndrome value is reported in DFSR.{AET, ExT} and the remainder of DFSR is set as
defined by VMSAv8-32. For more information, see Chapter G5 The AArch32 Virtual Memory
System Architecture.

When the virtual SError exception injected using HCR_EL2.VSE is deferred by an ESB instruction,
then the syndrome value is written to VDISR_EL2.

Configurations

AArch64 System register VSESR_EL2 bits [31:0] are architecturally mapped to AArch32 System
register VDFSR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VSESR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSESR_EL2 is a 64-bit register.

Field descriptions

When EL1 is using AArch32:

Bits [63:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError exception is taken to EL1 using AArch32, DFSR[15:14] is set to
VSESR_EL2.AET.

When a virtual SError exception is deferred by an ESB instruction, VDISR_EL2[15:14] is set to
VSESR_EL2.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

RES0

63 32

RES0

31 16

AET

15 14 13 12

RES0

11 0

RES0 ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9354
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
ExT, bit [12]

When a virtual SError exception is taken to EL1 using AArch32, DFSR[12] is set to
VSESR_EL2.ExT.

When a virtual SError exception is deferred by an ESB instruction, VDISR_EL2[12] is set to
VSESR_EL2.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

When EL1 is using AArch64:

Bits [63:25]

Reserved, RES0.

IDS, bit [24]

When a virtual SError exception is taken to EL1 using AArch64, ESR_EL1[24] is set to
VSESR_EL2.IDS.

When a virtual SError exception is deferred by an ESB instruction, VDISR_EL2[24] is set to
VSESR_EL2.IDS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

When a virtual SError exception is taken to EL1 using AArch64, ESR_EL1[23:0] is set to
VSESR_EL2.ISS.

When a virtual SError exception is deferred by an ESB instruction, VDISR_EL2[23:0] is set to
VSESR_EL2.ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VSESR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSESR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

RES0

63 32

RES0

31 25 24

ISS

23 0

IDS

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9355
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.9 RAS registers
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x508];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = VSESR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = VSESR_EL2;

MSR VSESR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x508] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VSESR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 VSESR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9356
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10 Generic Timer registers

This section lists the Generic Timer registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9357
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.1 CNTFRQ_EL0, Counter-timer Frequency Register

The CNTFRQ_EL0 characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must
be programmed with this value as part of system initialization. The value of the register is not
interpreted by hardware.

Configurations

AArch64 System register CNTFRQ_EL0 bits [31:0] are architecturally mapped to AArch32 System
register CNTFRQ[31:0].

Attributes

CNTFRQ_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTFRQ_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTFRQ_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = CNTFRQ_EL0;
elsif PSTATE.EL == EL1 then
 X[t, 64] = CNTFRQ_EL0;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTFRQ_EL0;

RES0

63 32

Clock frequency

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9358
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTFRQ_EL0;

MSR CNTFRQ_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 CNTFRQ_EL0 = X[t, 64];
else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9359
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.2 CNTHCTL_EL2, Counter-timer Hypervisor Control Register

The CNTHCTL_EL2 characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from EL1 to the
physical counter and the EL1 physical timer.

Configurations

AArch64 System register CNTHCTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHCTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CNTHCTL_EL2 is a 64-bit register.

Field descriptions

When the Effective value of HCR_EL2.E2H is 1:

Bits [63:20]

Reserved, RES0.

CNTPMASK, bit [19]

When FEAT_RME is implemented:

0b0 This control has no effect on CNTP_CTL_EL0.IMASK.

0b1 CNTP_CTL_EL0.IMASK behaves as if set to 1 for all purposes other than a direct read
of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTVMASK, bit [18]

When FEAT_RME is implemented:

0b0 This control has no effect on CNTV_CTL_EL0.IMASK.

0b1 CNTV_CTL_EL0.IMASK behaves as if set to 1 for all purposes other than a direct read
of the field.

RES0

63 32

RES0

31 20 19 18 17 16 15 14 13 12 11 10 9 8

EVNTI

7 4 3 2 1 0

CNTPMASK
CNTVMASK

EVNTIS
EL1NVVCT

EL1NVPCT
EL1TVCT

EL1TVT
ECV

EL0PCTEN
EL0VCTEN

EVNTEN
EVNTDIR

EL0VTEN
EL0PTEN

EL1PCTEN
EL1PTEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9360
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[15:0].

0b1 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]

When FEAT_ECV is implemented:

When HCR_EL2.TGE is 0 and the Effective value of HCR_EL2.{NV2, NV1, NV} is {1, 0, 1},
traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2 as
follows:

Accesses to CNTV_CTL_EL02 and CNTV_CVAL_EL02 are trapped to EL2 and reported with EC
syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2.

If HCR_EL2.TGE is 1 or the Effective value of HCR_EL2.{NV2, NV1, NV} is not {1, 0, 1}, this
control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]

When FEAT_ECV is implemented:

When HCR_EL2.TGE is 0 and the Effective value of HCR_EL2.{NV2, NV1, NV} is {1, 0, 1},
traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2
as follows:

Accesses to CNTP_CTL_EL02 and CNTP_CVAL_EL02 are trapped to EL2 and reported with EC
syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2.

If HCR_EL2.TGE is 1 or the Effective value of HCR_EL2.{NV2, NV1, NV} is not {1, 0, 1}, this
control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9361
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]

When FEAT_ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2 when EL2 is enabled in the
current Security state, as follows:

• In AArch64 state, accesses to CNTVCT_EL0 and CNTVCTSS_EL0 are trapped to EL2 and
reported using EC syndrome value 0x18, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN.

• In AArch32 state, accesses to CNTVCT are trapped to EL2 and reported with EC syndrome
value 0x04, unless they are trapped by CNTKCTL_EL1.EL0VCTEN or
CNTKCTL.PL0VCTEN.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

If HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]

When FEAT_ECV is implemented:

When the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, traps EL0 and EL1 accesses to
the EL1 virtual timer registers to EL2, when EL2 is enabled for the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18, unless they are trapped by CNTKCTL_EL1.EL0VTEN:

— CNTV_CTL_EL0.

— CNTV_CVAL_EL0.

— CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, and MCRR and MRRC accesses are trapped to EL2
and reported using EC syndrome 0x04, unless they are trapped by
CNTKCTL_EL1.EL0VTEN or CNTKCTL.PL0VTEN:

— CNTV_CTL.

— CNTV_CVAL.

— CNTV_TVAL.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2.

If HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9362
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECV, bit [12]

When FEAT_ECV is implemented:

Enables the Enhanced Counter Virtualization functionality registers.

When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}, then Enhanced Counter Virtualization functionality is enabled when EL2 is enabled
for the current Security state, as follows:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return the value
(PCount<63:0> - CNTPOFF_EL2<63:0>).

• The EL1 physical timer interrupt is triggered when ((PCount<63:0> -
CNTPOFF_EL2<63:0>) - PCVal<63:0>) is greater than or equal to 0. PCount<63:0> is the
physical count returned when CNTPCT_EL0 is read from EL2 or EL3. PCVal<63:0> is the
EL1 physical timer compare value for this timer.

0b0 Enhanced Counter Virtualization functionality is disabled.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2.

When HCR_EL2.TGE is 1 or SCR_EL3.{NS, EEL2} is {0, 0}, then Enhanced Counter
Virtualization functionality is disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the EL1 physical timer registers to EL2
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18, unless they are trapped by CNTKCTL_EL1.EL0PTEN:

— CNTP_CTL_EL0.

— CNTP_CVAL_EL0.

— CNTP_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03 and MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04, unless they are trapped by
CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN:

— CNTP_CTL.

— CNTP_CVAL.

— CNTP_TVAL.

0b0 EL0 and EL1 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9363
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the EL1 physical counter registers to
EL2 when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 and CNTPCTSS_EL0 are trapped to EL2 and
reported with EC syndrome value 0x18, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.

• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2 and reported
with EC syndrome value 0x04, unless they are trapped by CNTKCTL_EL1.EL0PCTEN or
CNTKCTL.PL0PCTEN.

0b0 EL0 and EL1 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18:

— CNTP_CTL_EL0.

— CNTP_CVAL_EL0.

— CNTP_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03 and MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTP_CTL.

— CNTP_CVAL.

— CNTP_TVAL.

0b0 EL0 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2 as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18:

— CNTV_CTL_EL0.

— CNTV_CVAL_EL0.

— CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03 and MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTV_CTL.

— CNTV_CVAL.

— CNTV_TVAL.

0b0 EL0 accesses to the specified registers are trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9364
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
0b1 This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of CNTPCT_EL0, as seen from EL2, is the trigger for the event stream generated
from that counter when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in
the range 8 to 23 of CNTPCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of CNTPCT_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the CNTPCT_EL0 trigger bit, as seen from EL2 and defined by
EVNTI, generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from CNTPCT_EL0 as seen from EL2.

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter registers
to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18:

— CNTVCT_EL0.

— CNTVCTSS_EL0.

— CNTFRQ_EL0 if CNTHCTL_EL2.EL0PCTEN is 0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03 and MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTVCT and if CNTHCTL.EL0PCTEN is 0, CNTFRQ.

0b0 EL0 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE is 0, the field is ignored for all purposes other than direct reads and writes of the
register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9365
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
EL0PCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18:

— CNTPCT_EL0.

— CNTPCTSS_EL0.

— CNTFRQ_EL0 if CNTHCTL_EL2.EL0VCTEN is 0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03 and MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTPCT and if CNTHCTL_EL2.EL0VCTEN is 0, CNTFRQ.

0b0 From AArch64 state: EL0 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If HCR_EL2.TGE is 0, the control does not cause any instructions to be trapped for all purposes
other than direct reads and writes of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

The following field descriptions apply in all Armv8.0 implementations.

The descriptions also explain the behavior when EL3 is implemented and EL2 is not implemented.

Bits [63:20]

Reserved, RES0.

CNTPMASK, bit [19]

When FEAT_RME is implemented:

0b0 This control has no effect on CNTP_CTL_EL0.IMASK.

0b1 CNTP_CTL_EL0.IMASK behaves as if set to 1 for all purposes other than a direct read
of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CNTVMASK, bit [18]

When FEAT_RME is implemented:

0b0 This control has no effect on CNTV_CTL_EL0.IMASK.

RES0

63 32

RES0

31 20 19 18 17 16 15 14 13 12

RES0

11 8

EVNTI

7 4 3 2 1 0

CNTPMASK
CNTVMASK

EVNTIS
EL1NVVCT

ECV
EL1TVT

EL1TVCT
EL1NVPCT

EVNTDIR
EVNTEN

EL1PCTEN
EL1PCEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9366
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
0b1 CNTV_CTL_EL0.IMASK behaves as if set to 1 for all purposes other than a direct read
of the field.

This bit is RES0 in Non-secure and Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[15:0].

0b1 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVVCT, bit [16]

When FEAT_ECV is implemented:

When the Effective value of HCR_EL2.{NV2, NV1, NV} is {1, 0, 1}, traps EL1 accesses to the
specified EL1 virtual timer registers using the EL02 descriptors to EL2 as follows:

Accesses to CNTV_CTL_EL02 and CNTV_CVAL_EL02 are trapped to EL2 and reported with EC
syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2.

If the Effective value of HCR_EL2.{NV2, NV1, NV} is not {1, 0, 1}, this control does not cause
any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1NVPCT, bit [15]

When FEAT_ECV is implemented:

When the Effective value of HCR_EL2.{NV2, NV1, NV} is {1, 0, 1}, traps EL1 accesses to the
specified EL1 physical timer registers using the EL02 descriptors to EL2 as follows:

Accesses to CNTP_CTL_EL02 and CNTP_CVAL_EL02 are trapped to EL2 and reported with EC
syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2.

If the Effective value of HCR_EL2.{NV2, NV1, NV} is not {1, 0, 1}, this control does not cause
any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9367
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVCT, bit [14]

When FEAT_ECV is implemented:

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled in the
current Security state, as follows:

• In AArch64 state, accesses to CNTVCT_EL0 and CNTVCTSS_EL0 are trapped to EL2 and
reported using EC syndrome value 0x18, unless they are trapped by
CNTKCTL_EL1.EL0VCTEN.

• In AArch32 state, accesses to CNTVCT are trapped to EL2 and reported using EC syndrome
value 0x04, unless they are trapped by CNTKCTL_EL1.EL0VCTEN or
CNTKCTL.PL0VCTEN.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EL1TVT, bit [13]

When FEAT_ECV is implemented:

If the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, then traps EL0 and EL1 accesses to
the EL1 virtual timer registers to EL2, when EL2 is enabled for the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 and reported with
EC syndrome value 0x18, unless they are trapped by CNTKCTL_EL1.EL0VTEN:

— CNTV_CTL_EL0.

— CNTV_CVAL_EL0.

— CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03 and MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04, unless they are trapped by
CNTKCTL_EL1.EL0VTEN or CNTKCTL.PL0VTEN:

— CNTV_CTL.

— CNTV_CVAL.

— CNTV_TVAL.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9368
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECV, bit [12]

When FEAT_ECV is implemented:

Enables the Enhanced Counter Virtualization functionality registers.

When SCR_EL3.NS or SCR_EL3.EEL2 are 1 and the Effective value of HCR_EL2.{E2H, TGE}
is not {1, 1}, then Enhanced Counter Virtualization functionality is enabled when EL2 is enabled
for the current Security state, as follows:

• An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return the value
(PCount<63:0> - CNTPOFF_EL2<63:0>).

• The EL1 physical timer interrupt is triggered when ((PCount<63:0> -
CNTPOFF_EL2<63:0>) - PCVal<63:0>) is greater than or equal to 0. PCount is the physical
count returned when CNTPCT_EL0 is read from EL2 or EL3. PCVal<63:0> is the EL1
physical timer compare value for this timer.

0b0 Enhanced Counter Virtualization functionality is disabled.

0b1 EL0 and EL1 accesses to the specified registers are trapped to EL2.

When SCR_EL3.{NS, EEL2} is {0, 0}, then Enhanced Counter Virtualization functionality is
disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [11:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit of CNTPCT_EL0, as seen from EL2,is the trigger for the event stream generated
from that counter when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in
the range 8 to 23 of CNTPCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of CNTPCT_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the CNTPCT_EL0 trigger bit, as seen from EL2 and defined by
EVNTI, generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from CNTPCT_EL0 as seen from EL2.

0b0 Disables the event stream.

0b1 Enables the event stream.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9369
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCEN, bit [1]

Traps EL0 and EL1 accesses to the EL1 physical timer registers to EL2 when EL2 is enabled in the
current Security state, as follows:

• In AArch64 state, accesses to CNTP_CTL_EL0, CNTP_CVAL_EL0, CNTP_TVAL_EL0
are trapped to EL2, reported using EC syndrome value 0x18, unless they are trapped by
CNTKCTL_EL1.EL0PTEN.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, and MRRC and MCRR accesses are trapped to EL2,
reported using EC syndrome value 0x04, unless they are trapped by
CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN:

— CNTP_CTL, CNTP_CVAL, CNTP_TVAL.

0b0 EL0 and EL1 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [0]

Traps EL0 and EL1 accesses to the EL1 physical counter registers to EL2 when EL2 is enabled in
the current Security state, as follows:

• In AArch64 state, accesses to CNTPCT_EL0 and CNTPCTSS_EL0 are trapped to EL2 and
reported using EC syndrome value 0x18, unless they are trapped by
CNTKCTL_EL1.EL0PCTEN.

• In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2 and reported
using EC syndrome value 0x04, unless they are trapped by CNTKCTL_EL1.EL0PCTEN or
CNTKCTL.PL0PCTEN.

0b0 EL0 and EL1 accesses to the specified registers are trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHCTL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHCTL_EL2 or CNTKCTL_EL1 are not guaranteed to be ordered with respect to accesses using the
other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHCTL_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9370
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTHCTL_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTHCTL_EL2;

MSR CNTHCTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHCTL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTHCTL_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, CNTKCTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 X[t, 64] = CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTHCTL_EL2;
 else
 X[t, 64] = CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTKCTL_EL1;

 When FEAT_VHE is implemented : MSR CNTKCTL_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9371
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTHCTL_EL2 = X[t, 64];
 else
 CNTKCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTKCTL_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9372
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.3 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control Register

The CNTHP_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHP_CTL[31:0].

This register is present only when EL3 is implemented or (EL3 is not implemented, EL2 is
implemented and FEAT_SEL2 is not implemented). Otherwise, direct accesses to
CNTHP_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9373
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHP_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CTL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHP_CTL_EL2 or CNTP_CTL_EL0 are not guaranteed to be ordered with respect to accesses using
the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTHP_CTL_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTHP_CTL_EL2;

MSR CNTHP_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CTL_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9374
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTHP_CTL_EL2 = X[t, 64];

MRS <Xt>, CNTP_CTL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CTL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CTL_EL2;
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x180];
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CTL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CTL_EL2;
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9375
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x180] = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9376
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.4 CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue Register (EL2)

The CNTHP_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTHP_CVAL[63:0].

This register is present only when EL3 is implemented or (EL3 is not implemented, EL2 is
implemented and FEAT_SEL2 is not implemented). Otherwise, direct accesses to
CNTHP_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.

• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CVAL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHP_CVAL_EL2 or CNTP_CVAL_EL0 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9377
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTHP_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTHP_CVAL_EL2;

MSR CNTHP_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CVAL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTHP_CVAL_EL2 = X[t, 64];

MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9378
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 X[t, 64] = CNTHPS_CVAL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CVAL_EL2;
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x178];
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CVAL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CVAL_EL2;
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x178] = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9379
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9380
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.5 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue Register (EL2)

The CNTHP_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 physical timer.

Configurations

AArch64 System register CNTHP_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHP_TVAL[31:0].

This register is present only when EL3 is implemented or (EL3 is not implemented, EL2 is
implemented and FEAT_SEL2 is not implemented). Otherwise, direct accesses to
CNTHP_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 -
CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTHP_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTHP_CTL_EL2.ISTATUS is set to 1.

• If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_TVAL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHP_TVAL_EL2 or CNTP_TVAL_EL0 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9381
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHP_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();

MSR CNTHP_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9382
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9383
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTPOFF_EL2;
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTPOFF_EL2;
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9384
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.6 CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control Register (EL2)

The CNTHPS_CTL_EL2 characteristics are:

Purpose

Control register for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHPS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
CNTHPS_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHPS_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer
condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS
is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9385
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHPS_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CTL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 X[t, 64] = CNTHPS_CTL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = CNTHPS_CTL_EL2;

MSR CNTHPS_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9386
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 CNTHPS_CTL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_CTL_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, CNTP_CTL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CTL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CTL_EL2;
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x180];
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CTL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CTL_EL2;
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTP_CTL_EL0;

 When FEAT_VHE is implemented : MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9387
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x180] = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9388
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.7 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue Register (EL2)

The CNTHPS_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_CVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHPS_CVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHPS_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9389
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 X[t, 64] = CNTHPS_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = CNTHPS_CVAL_EL2;

MSR CNTHPS_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9390
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CVAL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CVAL_EL2;
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x178];
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CVAL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CVAL_EL2;
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTP_CVAL_EL0;

 When FEAT_VHE is implemented : MSR CNTP_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x178] = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9391
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 CNTHP_CVAL_EL2 = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9392
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.8 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue Register (EL2)

The CNTHPS_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHPS_TVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHPS_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 -
CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTHPS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a
32-bit downcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9393
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accessing CNTHPS_TVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHPS_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();

MSR CNTHPS_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9394
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

 When FEAT_VHE is implemented : MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9395
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

 When FEAT_VHE is implemented : MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTPOFF_EL2;
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTPOFF_EL2;
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9396
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9397
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.9 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control Register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHV_CTL[31:0].

This register is present only when FEAT_VHE is implemented and (EL3 is implemented or (EL3 is
not implemented and FEAT_SEL2 is not implemented)). Otherwise, direct accesses to
CNTHV_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9398
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHV_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CTL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHV_CTL_EL2 or CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using
the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTHV_CTL_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTHV_CTL_EL2;

MSR CNTHV_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_CTL_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9399
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTHV_CTL_EL2 = X[t, 64];

MRS <Xt>, CNTV_CTL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CTL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CTL_EL2;
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x170];
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CTL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CTL_EL2;
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9400
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x170] = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9401
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.10 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue Register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTHV_CVAL[63:0].

This register is present only when FEAT_VHE is implemented and (EL3 is implemented or (EL3 is
not implemented and FEAT_SEL2 is not implemented)). Otherwise, direct accesses to
CNTHV_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.

• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CVAL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHV_CVAL_EL2 or CNTV_CVAL_EL0 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9402
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTHV_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTHV_CVAL_EL2;

MSR CNTHV_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_CVAL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTHV_CVAL_EL2 = X[t, 64];

MRS <Xt>, CNTV_CVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CVAL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9403
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 X[t, 64] = CNTHV_CVAL_EL2;
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x168];
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CVAL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CVAL_EL2;
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x168] = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9404
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.11 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHV_TVAL[31:0].

This register is present only when FEAT_VHE is implemented and (EL3 is implemented or (EL3 is
not implemented and FEAT_SEL2 is not implemented)). Otherwise, direct accesses to
CNTHV_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 -
CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CNTHV_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTHV_CTL_EL2.ISTATUS is set to 1.

• If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_TVAL_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the
mnemonic CNTHV_TVAL_EL2 or CNTV_TVAL_EL0 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9405
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHV_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();

MSR CNTHV_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9406
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
 elsif HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
 elsif !ELIsInHost(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9407
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif !ELIsInHost(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9408
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.12 CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control Register (EL2)

The CNTHVS_CTL_EL2 characteristics are:

Purpose

Control register for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHVS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHVS_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the
timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of
ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9409
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHVS_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CTL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_CTL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 X[t, 64] = CNTHVS_CTL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = CNTHVS_CTL_EL2;

MSR CNTHVS_CTL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9410
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 CNTHVS_CTL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_CTL_EL2 = X[t, 64];

MRS <Xt>, CNTV_CTL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CTL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CTL_EL2;
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x170];
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CTL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CTL_EL2;
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9411
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x170] = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9412
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.13 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

The CNTHVS_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_CVAL_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTHVS_CVAL[63:0].

This register is present only when FEAT_SEL2 is implemented and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHVS_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHVS_CVAL_EL2 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the Secure EL2 virtual timer CompareValue.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.

• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_CVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9413
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 X[t, 64] = CNTHVS_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 X[t, 64] = CNTHVS_CVAL_EL2;

MSR CNTHVS_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 CNTHVS_CVAL_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_CVAL_EL2 = X[t, 64];

MRS <Xt>, CNTV_CVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b010

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9414
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CVAL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CVAL_EL2;
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x168];
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CVAL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CVAL_EL2;
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x168] = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9415
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.14 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

The CNTHVS_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_TVAL_EL2 bits [31:0] are architecturally mapped to AArch32
System register CNTHVS_TVAL[31:0].

This register is present only when FEAT_SEL2 is implemented and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHVS_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHVS_TVAL_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHVS_CTL_EL2.ENABLE is 1, the value returned is (CNTHVS_CVAL_EL2 -
CNTVCT_EL0).

On a write of this register, CNTHVS_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 -
CNTHVS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a
32-bit downcounter timer. When the timer condition is met:

• CNTHVS_CTL_EL2.ISTATUS is set to 1.

• If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9416
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accessing CNTHVS_TVAL_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTHVS_TVAL_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();

MSR CNTHVS_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 else
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9417
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
 elsif HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
 elsif !ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9418
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();

MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif !ELIsInHost(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9419
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9420
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.15 CNTKCTL_EL1, Counter-timer Kernel Control Register

The CNTKCTL_EL1 characteristics are:

Purpose

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this register does not cause any event
stream from the virtual counter to be generated, and does not control access to the counters and
timers. The access to counters and timers at EL0 is controlled by CNTHCTL_EL2.

When FEAT_VHE is not implemented, or when the Effective value of HCR_EL2.{E2H, TGE} is
not {1, 1}, this register controls the generation of an event stream from the virtual counter, and
access from EL0 to the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

Configurations

AArch64 System register CNTKCTL_EL1 bits [31:0] are architecturally mapped to AArch32
System register CNTKCTL[31:0].

Attributes

CNTKCTL_EL1 is a 64-bit register.

Field descriptions

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

0b0 The CNTKCTL_EL1.EVNTI field applies to CNTVCT_EL0[15:0].

0b1 The CNTKCTL_EL1.EVNTI field applies to CNTVCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:10]

Reserved, RES0.

EL0PTEN, bit [9]

Traps EL0 accesses to the physical timer registers to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped and reported using EC syndrome value
0x18:

— CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0.

RES0

63 32

RES0

31 18 17

RES0

16 10 9 8

EVNTI

7 4 3 2 1 0

EVNTIS EL0PTEN
EL0VTEN

EVNTDIR

EL0PCTEN
EL0VCTEN

EVNTEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9421
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTP_CTL, CNTP_CVAL, CNTP_TVAL.

0b0 EL0 accesses to the physical timer registers are trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Traps EL0 accesses to the virtual timer registers to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped and reported using EC
syndrome value 0x18:

— CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped using EC
syndrome value 0x04:

— CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.

0b0 EL0 accesses to the virtual timer registers are trapped.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of CNTVCT_EL0, as seen from EL1, is the trigger for the event stream generated
from that counter when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL_EL1.EVNTIS is 1, this field selects a trigger bit in
the range 8 to 23 of CNTVCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of CNTVCT_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the CNTVCT_EL0 trigger bit, as seen from EL1 and defined by
EVNTI, generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

When FEAT_VHE is not implemented, or the Effective value of HCR_EL2.{E2H, TGE} is not {1,
1}, enables the generation of an event stream from CNTVCT_EL0 as seen from EL1.

0b0 Disables the event stream.

0b1 Enables the event stream.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9422
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not enable the event
stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]

Traps EL0 accesses to the frequency register and virtual counter registers to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to the following registers are trapped and reported using EC
syndrome value 0x18:

— CNTVCT_EL0.

— CNTVCTSS_EL0.

— If CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ_EL0.

• In AArch32 state, MRC and MCR accesses to the following registers are trapped and
reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and
reported using EC syndrome value 0x04:

— CNTVCT and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ.

0b0 EL0 accesses to the frequency register and virtual counter registers are trapped.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter register to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, the following registers are trapped and reported using EC syndrome value
0x18:

— CNTPCT_EL0

— CNTPCTSS_EL0

— If CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ_EL0.

• In AArch32 state, MCR or MRC accesses the following registers are trapped and reported
using EC syndrome value 0x03, MCRR or MRRC accesses are trapped and reported using EC
syndrome value 0x04:

— CNTPCT and if CNTKCTL_EL1.EL0VCTEN is 0, CNTFRQ.

0b0 EL0 accesses to the frequency register and physical counter register are trapped.

0b1 This control does not cause any instructions to be trapped.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTKCTL_EL1

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTKCTL_EL1 or CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using
the other mnemonic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9423
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTKCTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 X[t, 64] = CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTHCTL_EL2_VHE(CNTHCTL_EL2);
 else
 X[t, 64] = CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTHCTL_EL2 = CNTHCTL_EL2_VHE(X[t, 64]);
 else
 CNTKCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTKCTL_EL1 = X[t, 64];

MRS <Xt>, CNTKCTL_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTKCTL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1110 0b0001 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9424
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 if ELIsInHost(EL2) then
 X[t, 64] = CNTKCTL_EL1;
 else
 UNDEFINED;

MSR CNTKCTL_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTKCTL_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CNTKCTL_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9425
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.16 CNTP_CTL_EL0, Counter-timer Physical Timer Control Register

The CNTP_CTL_EL0 characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CTL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTP_CTL[31:0].

Attributes

CNTP_CTL_EL0 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9426
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL_EL0 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_CTL_EL0

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTP_CTL_EL0 or CNTP_CTL_EL02 are not guaranteed to be ordered with respect to accesses using
the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTP_CTL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CTL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CTL_EL2;
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x180];
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CTL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CTL_EL2;
 else
 X[t, 64] = CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTP_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9427
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
MSR CNTP_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x180] = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t, 64];
 else
 CNTP_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t, 64];

MRS <Xt>, CNTP_CTL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = NVMem[0x180];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9428
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTP_CTL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTP_CTL_EL0;
 else
 UNDEFINED;

MSR CNTP_CTL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x180] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTP_CTL_EL0 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CNTP_CTL_EL0 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9429
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.17 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue Register

The CNTP_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CVAL_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTP_CVAL[63:0].

Attributes

CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.

• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues
to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_CVAL_EL0

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTP_CVAL_EL0 or CNTP_CVAL_EL02 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9430
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CVAL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CVAL_EL2;
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x178];
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHPS_CVAL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHP_CVAL_EL2;
 else
 X[t, 64] = CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9431
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x178] = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t, 64];
 else
 CNTP_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t, 64];

MRS <Xt>, CNTP_CVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = NVMem[0x178];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTP_CVAL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTP_CVAL_EL0;
 else
 UNDEFINED;

MSR CNTP_CVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x178] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9432
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTP_CVAL_EL0 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CNTP_CVAL_EL0 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9433
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.18 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue Register

The CNTP_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTP_TVAL[31:0].

Attributes

CNTP_TVAL_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.

• If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 -
CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTP_CVAL_EL0) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTP_CTL_EL0.ISTATUS is set to 1.

• If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues
to count, so the TimerValue view appears to continue to count down.

Note

The value of CNTPCT_EL0 used in these calculations is the value seen at the Exception level that
the CNTPCT_EL0 regsiter is being read or written from.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTP_TVAL_EL0

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTP_TVAL_EL0 or CNTP_TVAL_EL02 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9434
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - (PhysicalCountInt() - CNTPOFF_EL2);
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHPS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9435
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHP_CVAL_EL2 - PhysicalCountInt();
 else
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();

MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTPOFF_EL2;
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 CNTP_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTPOFF_EL2;
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 else
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9436
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
MRS <Xt>, CNTP_TVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 if CNTP_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTP_CVAL_EL0 - PhysicalCountInt();
 else
 UNDEFINED;

MSR CNTP_TVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CNTP_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9437
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.19 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count Register

The CNTPCTSS_EL0 characteristics are:

Purpose

Holds the self-synchronized view of the 64-bit physical count value.

Configurations

AArch64 System register CNTPCTSS_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTPCTSS[63:0].

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to
CNTPCTSS_EL0 are UNDEFINED.

All reads to the CNTPCTSS_EL0 occur in program order relative to reads to CNTPCT_EL0 or
CNTPCTSS_EL0.

This register is a self-synchronised view of the CNTPCT_EL0 counter, and cannot be read
speculatively.

Attributes

CNTPCTSS_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Self-synchronized physical count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCTSS_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPCTSS_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PCTEN == '0' then

Self-synchronized physical count value

63 32

Self-synchronized physical count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9438
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 X[t, 64] = PhysicalCountInt() - CNTPOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 X[t, 64] = PhysicalCountInt() - CNTPOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 X[t, 64] = PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9439
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.20 CNTPCT_EL0, Counter-timer Physical Count Register

The CNTPCT_EL0 characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch64 System register CNTPCT_EL0 bits [63:0] are architecturally mapped to AArch32 System
register CNTPCT[63:0].

All reads to the CNTPCT_EL0 occur in program order relative to reads to CNTPCTSS_EL0 or
CNTPCT_EL0.

Attributes

CNTPCT_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Physical count value.

Reads of CNTPCT_EL0 from EL0 or EL1 return (PhysicalCountInt<63:0> -
CNTPOFF_EL2<63:0>) if the access is not trapped, and all of the following are true:

• CNTHCTL_EL2.ECV is 1.

• The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

Where PhysicalCountInt<63:0> is the physical count returned when CNTPCT_EL0 is read from
EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCT_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPCT_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Physical count value

63 32

Physical count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9440
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 X[t, 64] = PhysicalCountInt() - CNTPOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && SCR_EL3.ECVEn == '1' &&
CNTHCTL_EL2.ECV == '1' then
 X[t, 64] = PhysicalCountInt() - CNTPOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 X[t, 64] = PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9441
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.21 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control Register

The CNTPS_CTL_EL1 characteristics are:

Purpose

Control register for the secure physical timer, usually accessible at EL3 but configurably accessible
at EL1 in Secure state.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to
CNTPS_CTL_EL1 are UNDEFINED.

Attributes

CNTPS_CTL_EL1 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9442
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTPS_TVAL_EL1 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPS_CTL_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPS_CTL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = CNTPS_CTL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTPS_CTL_EL1;

MSR CNTPS_CTL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_CTL_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b001

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9443
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
elsif PSTATE.EL == EL3 then
 CNTPS_CTL_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9444
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.22 CNTPOFF_EL2, Counter-timer Physical Offset Register

The CNTPOFF_EL2 characteristics are:

Purpose

Holds the 64-bit physical offset. This is the offset for the AArch64 physical timers and counters
when Enhanced Counter Virtualization is enabled.

Configurations

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to
CNTPOFF_EL2 are UNDEFINED.

The CNTPOFF_EL2 offset applies to:

• Direct reads of the physical counter from EL0 or EL1.

• Indirect reads of the physical counter by the EL1 physical timer.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a
fixed physical offset of zero if any of the following are true:

• CNTHCTL_EL2.ECV is 0.

• SCR_EL3.ECVEn is 0.

• The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTPOFF_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Physical offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPOFF_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPOFF_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x1A8];

Physical offset

63 32

Physical offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9445
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ECVEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = CNTPOFF_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTPOFF_EL2;

MSR CNTPOFF_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x1A8] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.ECVEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPOFF_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTPOFF_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9446
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.23 CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue Register

The CNTPS_CVAL_EL1 characteristics are:

Purpose

Holds the compare value for the secure physical timer, usually accessible at EL3 but configurably
accessible at EL1 in Secure state.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to
CNTPS_CVAL_EL1 are UNDEFINED.

Attributes

CNTPS_CVAL_EL1 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the secure physical timer CompareValue.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.

• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPS_CVAL_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPS_CVAL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9447
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = CNTPS_CVAL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTPS_CVAL_EL1;

MSR CNTPS_CVAL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_CVAL_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 CNTPS_CVAL_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9448
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.24 CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue Register

The CNTPS_TVAL_EL1 characteristics are:

Purpose

Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably
accessible at EL1 in Secure state.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to
CNTPS_TVAL_EL1 are UNDEFINED.

Attributes

CNTPS_TVAL_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the secure physical timer.

On a read of this register:

• If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.

• If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 -
CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTPS_CVAL_EL1) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTPS_CTL_EL1.ISTATUS is set to 1.

• If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9449
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accessing CNTPS_TVAL_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTPS_TVAL_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 if CNTPS_CTL_EL1.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTPS_CVAL_EL1 - PhysicalCountInt();
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CNTPS_CTL_EL1.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTPS_CVAL_EL1 - PhysicalCountInt();

MSR CNTPS_TVAL_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_CVAL_EL1 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 CNTPS_CVAL_EL1 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b111 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9450
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.25 CNTV_CTL_EL0, Counter-timer Virtual Timer Control Register

The CNTV_CTL_EL0 characteristics are:

Purpose

Control register for the virtual timer.

Configurations

AArch64 System register CNTV_CTL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTV_CTL[31:0].

Attributes

CNTV_CTL_EL0 is a 64-bit register.

Field descriptions

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

63 32

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9451
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL_EL0 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_CTL_EL0

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTV_CTL_EL0 or CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using
the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTV_CTL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CTL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CTL_EL2;
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x170];
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CTL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CTL_EL2;
 else
 X[t, 64] = CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTV_CTL_EL0;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9452
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
MSR CNTV_CTL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x170] = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t, 64];
 else
 CNTV_CTL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t, 64];

MRS <Xt>, CNTV_CTL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = NVMem[0x170];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTV_CTL_EL0;
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9453
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTV_CTL_EL0;
 else
 UNDEFINED;

MSR CNTV_CTL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x170] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTV_CTL_EL0 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CNTV_CTL_EL0 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9454
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.26 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue Register

The CNTV_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the virtual timer.

Configurations

AArch64 System register CNTV_CVAL_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTV_CVAL[63:0].

Attributes

CNTV_CVAL_EL0 is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.

• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_CVAL_EL0

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTV_CVAL_EL0 or CNTV_CVAL_EL02 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTV_CVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then

CompareValue

63 32

CompareValue

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9455
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CVAL_EL2;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CVAL_EL2;
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x168];
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 X[t, 64] = CNTHVS_CVAL_EL2;
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 X[t, 64] = CNTHV_CVAL_EL2;
 else
 X[t, 64] = CNTV_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x168] = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = X[t, 64];
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9456
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 CNTHV_CVAL_EL2 = X[t, 64];
 else
 CNTV_CVAL_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t, 64];

MRS <Xt>, CNTV_CVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = NVMem[0x168];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTV_CVAL_EL0;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = CNTV_CVAL_EL0;
 else
 UNDEFINED;

MSR CNTV_CVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 if EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x168] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTV_CVAL_EL0 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b010

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9457
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 CNTV_CVAL_EL0 = X[t, 64];
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9458
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.27 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue Register

The CNTV_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 virtual timer.

Configurations

AArch64 System register CNTV_TVAL_EL0 bits [31:0] are architecturally mapped to AArch32
System register CNTV_TVAL[31:0].

Attributes

CNTV_TVAL_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 virtual timer.

On a read of this register:

• If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.

• If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 -
CNTVCT_EL0).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTVCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 -
CNTV_CVAL_EL0) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTV_CTL_EL0.ISTATUS is set to 1.

• If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_TVAL_EL0

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the
mnemonic CNTV_TVAL_EL0 or CNTV_TVAL_EL02 are not guaranteed to be ordered with respect to accesses
using the other mnemonic.

RES0

63 32

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9459
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
 elsif HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHVS_CVAL_EL2 - PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTHV_CVAL_EL2 - PhysicalCountInt();
 elsif !ELIsInHost(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9460
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF);
 else
 X[t, 64] = CNTV_CVAL_EL0 - PhysicalCountInt();

MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif ELIsInHost(EL2) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
 elsif !ELIsInHost(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9461
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL_EL0 = SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt();

MRS <Xt>, CNTV_TVAL_EL02

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 if CNTV_CTL_EL0.ENABLE == '0' then
 X[t, 64] = bits(64) UNKNOWN;
 else
 X[t, 64] = CNTV_CVAL_EL0 - (PhysicalCountInt() - CNTVOFF_EL2);
 else
 UNDEFINED;

MSR CNTV_TVAL_EL02, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 CNTV_CVAL_EL0 = (SignExtend(X[t, 64]<31:0>, 64) + PhysicalCountInt()) -
CNTVOFF_EL2;

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9462
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 UNDEFINED;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9463
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.28 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count Register

The CNTVCTSS_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
visible in CNTPCT_EL0 minus the virtual offset visible in CNTVOFF_EL2.

Configurations

AArch64 System register CNTVCTSS_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTVCTSS[63:0].

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to
CNTVCTSS_EL0 are UNDEFINED.

All reads to the CNTVCTSS_EL0 occur in program order relative to reads to CNTVCT_EL0 or
CNTVCTSS_EL0.

This register is a self-synchronised view of the CNTVCT_EL0 counter, and cannot be read
speculatively.

Attributes

CNTVCTSS_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Self-synchronized virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCTSS_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTVCTSS_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Self-synchronized virtual count value

63 32

Self-synchronized virtual count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9464
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 else
 if HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if !ELIsInHost(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF;
 else
 X[t, 64] = PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9465
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.29 CNTVCT_EL0, Counter-timer Virtual Count Register

The CNTVCT_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
minus the virtual offset visible in CNTVOFF_EL2.

Configurations

AArch64 System register CNTVCT_EL0 bits [63:0] are architecturally mapped to AArch32
System register CNTVCT[63:0].

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

• When EL2 is not implemented.

• When the Effective value of HCR_EL2.E2H is 1 and this register is read from EL2.

• When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and this register is read from
EL0 or EL2.

All reads to the CNTVCT_EL0 occur in program order relative to reads to CNTVCTSS_EL0 or
CNTVCT_EL0.

Attributes

CNTVCT_EL0 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCT_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTVCT_EL0

if PSTATE.EL == EL0 then
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);

Virtual count value

63 32

Virtual count value

31 0

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9466
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
 elsif EL2Enabled() && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if HaveEL(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if !ELIsInHost(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 else
 X[t, 64] = PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 X[t, 64] = PhysicalCountInt() - CNTVOFF;
 else
 X[t, 64] = PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9467
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
D23.10.30 CNTVOFF_EL2, Counter-timer Virtual Offset Register

The CNTVOFF_EL2 characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in
CNTPCT_EL0 and the virtual count value visible in CNTVCT_EL0.

Configurations

AArch64 System register CNTVOFF_EL2 bits [63:0] are architecturally mapped to AArch32
System register CNTVOFF[63:0].

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual
offset of zero.

Note

When EL2 is implemented and enabled in the current Security state, and is using AArch64, the
virtual counter uses a fixed virtual offset of zero in the following situations:

• The Effective value of HCR_EL2.E2H is 1 and CNTVCT_EL0 is read from EL2.

• The Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and either:

— CNTVCT_EL0 is read from EL0 or EL2.

— CNTVCT is read from EL0.

Attributes

CNTVOFF_EL2 is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVOFF_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTVOFF_EL2

Virtual offset

63 32

Virtual offset

31 0

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9468
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.10 Generic Timer registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 X[t, 64] = NVMem[0x060];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 X[t, 64] = CNTVOFF_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = CNTVOFF_EL2;

MSR CNTVOFF_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'1x1'} then
 NVMem[0x060] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTVOFF_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 CNTVOFF_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1110 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9469
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11 Guarded Control Stack registers

This section lists the Guarded Control Stack registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9470
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.1 GCSCR_EL1, Guarded Control Stack Control Register (EL1)

The GCSCR_EL1 characteristics are:

Purpose

Controls the Guarded Control Stack at EL1.

Configurations

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSCR_EL1 are UNDEFINED.

Attributes

GCSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

STREn, bit [9]

Execution of the following instructions are trapped:

• GCSSTR.

• GCSSTTR if any of the following are true.

— PSTATE.UAO is 1.

— If EL2 is implemented and enabled in the current Security state and
HCR_EL2.{NV,NV1} is {1,1}.

0b0 Execution of any of the specified instructions at EL1 causes a GCS exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PUSHMEn, bit [8]

Trap GCSPUSHM instruction.

0b0 Execution of a GCSPUSHM instruction at EL1 causes a Trap exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [7]

Reserved, RES0.

EXLOCKEN, bit [6]

Exception state lock.

RES0

63 32

RES0

31 10 9 8 7 6 5

RES0

4 1 0

STREn
PUSHMEn

RES0

PCRSEL
RVCHKEN

EXLOCKEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9471
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
Prevents MSR instructions from writing to ELR_EL1 or SPSR_EL1.

0b0 EL1 exception state locking disabled.

0b1 EL1 exception state locking enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RVCHKEN, bit [5]

Return value check enable.

0b0 Return value checking disabled at EL1.

0b1 Return value checking enabled at EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:1]

Reserved, RES0.

PCRSEL, bit [0]

Guarded Control Stack procedure call return enable selection.

0b0 Guarded Control Stack at EL1 is not PCR Selected.

0b1 Guarded Control Stack at EL1 is PCR Selected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing GCSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8D0];
 else
 X[t, 64] = GCSCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9472
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = GCSCR_EL2;
 else
 X[t, 64] = GCSCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSCR_EL1;

MSR GCSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8D0] = X[t, 64];
 else
 GCSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 GCSCR_EL2 = X[t, 64];
 else
 GCSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSCR_EL1 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, GCSCR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x8D0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9473
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSCR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = GCSCR_EL1;
 else
 UNDEFINED;

 When FEAT_VHE is implemented : MSR GCSCR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x8D0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSCR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 GCSCR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9474
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.2 GCSCR_EL2, Guarded Control Stack Control Register (EL2)

The GCSCR_EL2 characteristics are:

Purpose

Controls the Guarded Control Stack at EL2.

Configurations

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSCR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

GCSCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

STREn, bit [9]

Execution of the following instructions are trapped:

• GCSSTR.

• GCSSTTR if any of the following are true.

— The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

— the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, and PSTATE.UAO is 1.

0b0 Execution of any of the specified instructions at EL2 cause a GCS exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PUSHMEn, bit [8]

Trap GCSPUSHM instruction.

0b0 Execution of a GCSPUSHM instruction at EL2 causes a Trap exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [7]

Reserved, RES0.

EXLOCKEN, bit [6]

Exception state lock.

RES0

63 32

RES0

31 10 9 8 7 6 5

RES0

4 1 0

STREn
PUSHMEn

RES0

PCRSEL
RVCHKEN

EXLOCKEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9475
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
Prevents MSR instructions from writing to ELR_EL2 or SPSR_EL2.

0b0 EL2 exception state locking disabled.

0b1 EL2 exception state locking enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RVCHKEN, bit [5]

Return value check enable.

0b0 Return value checking disabled at EL2.

0b1 Return value checking enabled at EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:1]

Reserved, RES0.

PCRSEL, bit [0]

Guarded Control Stack procedure call return enable selection.

0b0 Guarded Control Stack at EL2 is not PCR Selected.

0b1 Guarded Control Stack at EL2 is PCR Selected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing GCSCR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name GCSCR_EL2 or GCSCR_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSCR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9476
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSCR_EL2;

MSR GCSCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSCR_EL2 = X[t, 64];

MRS <Xt>, GCSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8D0];
 else
 X[t, 64] = GCSCR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9477
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 elsif ELIsInHost(EL2) then
 X[t, 64] = GCSCR_EL2;
 else
 X[t, 64] = GCSCR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSCR_EL1;

MSR GCSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8D0] = X[t, 64];
 else
 GCSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 GCSCR_EL2 = X[t, 64];
 else
 GCSCR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSCR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9478
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.3 GCSCR_EL3, Guarded Control Stack Control Register (EL3)

The GCSCR_EL3 characteristics are:

Purpose

Controls the Guarded Control Stack at EL3.

Configurations

This register is present only when FEAT_GCS is implemented and EL3 is implemented. Otherwise,
direct accesses to GCSCR_EL3 are UNDEFINED.

Attributes

GCSCR_EL3 is a 64-bit register.

Field descriptions

Bits [63:10]

Reserved, RES0.

STREn, bit [9]

Execution of the following instructions are trapped:

• GCSSTR.

• GCSSTTR.

0b0 Execution of any of the specified instructions at EL3 cause a GCS exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PUSHMEn, bit [8]

Trap GCSPUSHM instruction.

0b0 Execution of a GCSPUSHM instruction at EL3 causes a Trap exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [7]

Reserved, RES0.

EXLOCKEN, bit [6]

Exception state lock.

Prevents MSR instructions from writing to ELR_EL3 or SPSR_EL3.

0b0 EL3 exception state locking disabled.

0b1 EL3 exception state locking enabled.

RES0

63 32

RES0

31 10 9 8 7 6 5

RES0

4 1 0

STREn
PUSHMEn

RES0

PCRSEL
RVCHKEN

EXLOCKEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9479
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RVCHKEN, bit [5]

Return value check enable.

0b0 Return value checking disabled at EL3.

0b1 Return value checking enabled at EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:1]

Reserved, RES0.

PCRSEL, bit [0]

Guarded Control Stack procedure call return enable selection.

0b0 Guarded Control Stack at EL3 is not PCR Selected.

0b1 Guarded Control Stack at EL3 is PCR Selected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing GCSCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSCR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSCR_EL3;

MSR GCSCR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 GCSCR_EL3 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9480
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.4 GCSCRE0_EL1, Guarded Control Stack Control Register (EL0)

The GCSCRE0_EL1 characteristics are:

Purpose

Controls the Guarded Control Stack at EL0.

Configurations

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSCRE0_EL1 are UNDEFINED.

Attributes

GCSCRE0_EL1 is a 64-bit register.

Field descriptions

Bits [63:11]

Reserved, RES0.

nTR, bit [10]

Trap GCS register accesses from EL0.

0b0 Read accesses to GCSPR_EL0 at EL0 cause a Trap exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

STREn, bit [9]

Execution of the following instructions are trapped:

• GCSSTR.

• GCSSTTR.

0b0 Execution of any of the specified instructions at EL0 cause a GCS exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PUSHMEn, bit [8]

Trap GCSPUSHM instruction.

0b0 Execution of a GCSPUSHM instruction at EL0 causes a Trap exception.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RES0

63 32

RES0

31 11 10 9 8

RES0

7 6 5

RES0

4 1 0

nTR
STREn

PCRSEL
RVCHKEN

PUSHMEn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9481
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
Bits [7:6]

Reserved, RES0.

RVCHKEN, bit [5]

Return value check enable.

0b0 Return value checking disabled at EL0.

0b1 Return value checking enabled at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:1]

Reserved, RES0.

PCRSEL, bit [0]

Guarded Control Stack procedure call return enable selection.

0b0 Guarded Control Stack at EL0 is not PCR Selected.

0b1 Guarded Control Stack at EL0 is PCR Selected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing GCSCRE0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSCRE0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nGCS_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSCRE0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSCRE0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSCRE0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9482
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
MSR GCSCRE0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nGCS_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSCRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSCRE0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSCRE0_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9483
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.5 GCSPR_EL0, Guarded Control Stack Pointer Register (EL0)

The GCSPR_EL0 characteristics are:

Purpose

Contains the Guarded Control Stack Pointer at EL0.

Configurations

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPR_EL0 are UNDEFINED.

Attributes

GCSPR_EL0 is a 64-bit register.

Field descriptions

PTR[63:3], bits [63:3]

EL0 Guarded Control Stack Pointer bits [63:3].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing GCSPR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSPR_EL0

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif (!EL2Enabled() || HCR_EL2.TGE != '1') && GCSCRE0_EL1.nTR == '0' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.TGE == '1' && GCSCRE0_EL1.nTR == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && !ELIsInHost(EL0) && IsFeatureImplemented(FEAT_FGT) &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nGCS_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b0010 0b0101 0b001

PTR[63:3]

63 32

PTR[63:3]

31 3

RES0

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9484
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 X[t, 64] = GCSPR_EL0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nGCS_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSPR_EL0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSPR_EL0;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSPR_EL0;

MSR GCSPR_EL0, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nGCS_EL0 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSPR_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSPR_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSPR_EL0 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b011 0b0010 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9485
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.6 GCSPR_EL1, Guarded Control Stack Pointer Register (EL1)

The GCSPR_EL1 characteristics are:

Purpose

Contains the Guarded Control Stack Pointer at EL1.

Configurations

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPR_EL1 are UNDEFINED.

Attributes

GCSPR_EL1 is a 64-bit register.

Field descriptions

PTR[63:3], bits [63:3]

EL1 Guarded Control Stack Pointer bits [63:3].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing GCSPR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSPR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8C0];
 else

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b001

PTR[63:3]

63 32

PTR[63:3]

31 3

RES0

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9486
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 X[t, 64] = GCSPR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = GCSPR_EL2;
 else
 X[t, 64] = GCSPR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSPR_EL1;

MSR GCSPR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8C0] = X[t, 64];
 else
 GCSPR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 GCSPR_EL2 = X[t, 64];
 else
 GCSPR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSPR_EL1 = X[t, 64];

 When FEAT_VHE is implemented : MRS <Xt>, GCSPR_EL12

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9487
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 X[t, 64] = NVMem[0x8C0];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSPR_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 X[t, 64] = GCSPR_EL1;
 else
 UNDEFINED;

 When FEAT_VHE is implemented : MSR GCSPR_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() == '101' then
 NVMem[0x8C0] = X[t, 64];
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if ELIsInHost(EL2) then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSPR_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if ELIsInHost(EL2) then
 GCSPR_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b0010 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9488
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.7 GCSPR_EL2, Guarded Control Stack Pointer Register (EL2)

The GCSPR_EL2 characteristics are:

Purpose

Contains the Guarded Control Stack Pointer at EL2.

Configurations

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to
GCSPR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

GCSPR_EL2 is a 64-bit register.

Field descriptions

PTR[63:3], bits [63:3]

EL2 Guarded Control Stack Pointer bits [63:3].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing GCSPR_EL2

When the Effective value of HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL2 using the
register name GCSPR_EL2 or GCSPR_EL1 are not guaranteed to be ordered with respect to accesses using the other
register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSPR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0101 0b001

PTR[63:3]

63 32

PTR[63:3]

31 3

RES0

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9489
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = GCSPR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSPR_EL2;

MSR GCSPR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 GCSPR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSPR_EL2 = X[t, 64];

MRS <Xt>, GCSPR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGRTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 X[t, 64] = NVMem[0x8C0];
 else
 X[t, 64] = GCSPR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9490
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 X[t, 64] = GCSPR_EL2;
 else
 X[t, 64] = GCSPR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSPR_EL1;

MSR GCSPR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn
== '1') && HFGWTR_EL2.nGCS_EL1 == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EffectiveHCR_EL2_NVx() == '111' then
 NVMem[0x8C0] = X[t, 64];
 else
 GCSPR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && SCR_EL3.GCSEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif ELIsInHost(EL2) then
 GCSPR_EL2 = X[t, 64];
 else
 GCSPR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 GCSPR_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9491
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
D23.11.8 GCSPR_EL3, Guarded Control Stack Pointer Register (EL3)

The GCSPR_EL3 characteristics are:

Purpose

Contains the Guarded Control Stack Pointer at EL3.

Configurations

This register is present only when FEAT_GCS is implemented and EL3 is implemented. Otherwise,
direct accesses to GCSPR_EL3 are UNDEFINED.

Attributes

GCSPR_EL3 is a 64-bit register.

Field descriptions

PTR[63:3], bits [63:3]

EL3 Guarded Control Stack Pointer bits [63:3].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing GCSPR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSPR_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = GCSPR_EL3;

MSR GCSPR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b110 0b0010 0b0101 0b001

PTR[63:3]

63 32

PTR[63:3]

31 3

RES0

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9492
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.11 Guarded Control Stack registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 GCSPR_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9493
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12 MPAM registers

This section lists the MPAM registers in AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9494
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.1 MPAM0_EL1, MPAM0 Register (EL1)

The MPAM0_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL0. When
EL2 is implemented and enabled in the current Security state, the MPAM virtualization option is
present, MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1 is used
instead of MPAM0_EL1 to generate MPAM information to label memory requests.

If EL2 is implemented and enabled in the current Security state, and HCR_EL2.E2H == 0 or
HCR_EL2.TGE == 0, the MPAM virtualization option is present and
MPAMHCR_EL2.EL0_VPMEN == 1, then MPAM PARTIDs in MPAM0_EL1 are virtual and
mapped into physical PARTIDs for the current Security state.

Configurations

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM0_EL1 are UNDEFINED.

Attributes

MPAM0_EL1 is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group property for PARTID_I.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 48

PMG_D

47 40

PMG_I

39 32

PARTID_D

31 16

PARTID_I

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9495
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
Accessing MPAM0_EL1

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM0EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = MPAM0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAM0_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAM0_EL1;

MSR MPAM0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM0EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 MPAM0_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAM0_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9496
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
elsif PSTATE.EL == EL3 then
 MPAM0_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9497
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.2 MPAM1_EL1, MPAM1 Register (EL1)

The MPAM1_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL1.

When EL2 is implemented and enabled in the current Security state, the MPAM virtualization
option is present, MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1
is used instead of MPAM0_EL1 to generate MPAM labels for memory requests when executing at
EL0.

MPAM1_EL1 is an alias for MPAM2_EL2 when executing at EL2 with HCR_EL2.E2H == 1.

MPAM1_EL12 is an alias for MPAM1_EL1 when executing at EL2 or EL3 with HCR_EL2.E2H
== 1.

If EL2 is implemented and enabled in the current Security state, the MPAM virtualization option is
present and MPAMHCR_EL2.EL1_VPMEN == 1, MPAM PARTIDs in MPAM1_EL1 are virtual
and mapped into physical PARTIDs for the current Security state. This mapping of MPAM1_EL1
virtual PARTIDs to physical PARTIDs when EL1_VPMEN is 1 also applies when MPAM1_EL1 is
used at EL0 due to MPAMHCR_EL2.GSTAPP_PLK.

Configurations

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System
register MPAM3_EL3[63] when EL3 is implemented.

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System
register MPAM2_EL2[63] when EL3 is not implemented and EL2 is implemented.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM1_EL1 are UNDEFINED.

Attributes

MPAM1_EL1 is a 64-bit register.

Field descriptions

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs
are output as their default value in the corresponding ID space.

0b0 The default PARTID and default PMG are output in MPAM information.

0b1 MPAM information is output based on the MPAMn_ELx register for ELn according the
MPAM configuration.

If neither EL3 nor EL2 is implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write bit
MPAM3_EL3.MPAMEN.

If EL3 is not implemented and EL2 is implemented, this field is read-only and reads the current
value of the read/write bit MPAM2_EL2.MPAMEN.

63

RES0

62 61 60

RES0

59 55 54

RES0

53 48

PMG_D

47 40

PMG_I

39 32

MPAMEN ALTSP_FRCD
FORCED_NS

PARTID_D

31 16

PARTID_I

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9498
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• RW if all of the following are true:

— EL3 is not implemented

— EL2 is not implemented

• Otherwise, access to this field is RO

Bits [62:61]

Reserved, RES0.

FORCED_NS, bit [60]

When FEAT_MPAMv0p1 is implemented:

In the Secure state, FORCED_NS indicates the state of MPAM3_EL3.FORCE_NS.

0b0 In the Non-secure state, always reads as 0.

In the Secure state, indicates that MPAM3_EL3.FORCE_NS == 0.

0b1 In the Secure state, indicates that MPAM3_EL3.FORCE_NS == 1.

Always reads as 0 in the Non-secure state.

Writes are ignored.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [59:55]

Reserved, RES0.

ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

0b0 The PARTIDs in MPAM1_EL1 and MPAM0_EL1 are using the primary PARTID
space.

0b1 The PARTIDs in MPAM1_EL1 and MPAM0_EL1 are using the alternative PARTID
space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the
alternative PARTID space defined for the current Security state.

In MPAM1_EL1, it also indicates that MPAM0_EL1 is forced to use alternative PARTID space.

For more information, see Alternative PARTID spaces.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [53:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9499
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
PMG_I, bits [39:32]

Performance monitoring group property for PARTID_I.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL3 using the mnemonic MPAM1_EL1
or MPAM1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 X[t, 64] = NVMem[0x900];
 else
 X[t, 64] = MPAM1_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 X[t, 64] = MPAM2_EL2;
 else
 X[t, 64] = MPAM1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAM1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9500
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
MSR MPAM1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x900] = X[t, 64];
 else
 MPAM1_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 MPAM2_EL2 = X[t, 64];
 else
 MPAM1_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAM1_EL1 = X[t, 64];

MRS <Xt>, MPAM1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 X[t, 64] = NVMem[0x900];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAM1_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9501
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 X[t, 64] = MPAM1_EL1;
 else
 UNDEFINED;

MSR MPAM1_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x900] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAM1_EL1 = X[t, 64];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 MPAM1_EL1 = X[t, 64];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9502
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.3 MPAM2_EL2, MPAM2 Register (EL2)

The MPAM2_EL2 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL2.

Configurations

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System
register MPAM3_EL3[63] when EL3 is implemented.

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System
register MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM2_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAM2_EL2 is a 64-bit register.

Field descriptions

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs
are output as their default value in the corresponding ID space.

0b0 The default PARTID and default PMG are output in MPAM information from all
Exception levels.

0b1 MPAM information is output based on the MPAMn_ELx register for ELn according to
the MPAM configuration.

If EL3 is not implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write
MPAM3_EL3.MPAMEN bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When EL3 is not implemented, access to this field is RW.

• Otherwise, access to this field is RO

Bits [62:59]

Reserved, RES0.

63

RES0

62 59 58 57 56 55 54

RES0

53 51 50 49 48

PMG_D

47 40

PMG_I

39 32

MPAMEN
TIDR

RES0
ALTSP_HFC

TRAPMPAM1EL1
TRAPMPAM0EL1

EnMPAMSM
ALTSP_FRCD

ALTSP_EL2

PARTID_D

31 16

PARTID_I

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9503
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
TIDR, bit [58]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMIDR_EL1.HAS_TIDR == 1:

TIDR traps accesses to MPAMIDR_EL1 from EL1 to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Trap accesses to MPAMIDR_EL1 from EL1 to EL2.

MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 also traps MPAMIDR_EL1 accesses from EL1 to
EL2. If either TIDR or TRAP_MPAMIDR_EL1 are 1, accesses are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [57]

Reserved, RES0.

ALTSP_HFC, bit [56]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0,
ALTSP controls in MPAM2_EL2 have no effect. When MPAM3_EL3.ALTSP_HEN is 1, this bit
selects whether the PARTIDs in MPAM1_EL1 and MPAM0_EL1 are in the primary (0) or
alternative (1) PARTID space for the security state.

0b0 When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space of
MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D, MPAM0_EL1.PARTID_I, and
MPAM0_EL1.PARTID_D are in the primary PARTID space for the Security state.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space of
MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D, MPAM0_EL1.PARTID_I, and
MPAM0_EL1.PARTID_D are in the alternative PARTID space for the Security state.

This control has no effect when MPAM3_EL3.ALTSP_HEN is 0.

For more information, see Alternative PARTID spaces.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ALTSP_EL2, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM2_EL2 when MPAM3_EL3.ALTSP_HEN
is 1.

0b0 When MPAM3_EL3.ALTSP_HEN is 1, selects the primary PARTID space for
MPAM2_EL2.PARTID_I and MPAM2_EL2.PARTID_D.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, selects the alternative PARTID space for
MPAM2_EL2.PARTID_I and MPAM2_EL2.PARTID_D.

For more information, see Alternative PARTID spaces.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9504
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

0b0 The PARTIDs in this register are using the primary PARTID space.

0b1 The PARTIDs in this register are using the alternative PARTID space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the
alternative PARTID space defined for the current Security state. In EL2, it is also 1 when
MPAM2_EL2.ALTSP_EL2 is 1.

For more information, see Alternative PARTID spaces.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [53:51]

Reserved, RES0.

EnMPAMSM, bit [50]

When FEAT_SME is implemented:

Traps execution at EL1 of instructions that directly access the MPAMSM_EL1 register to EL2. The
exception is reported using ESR_ELx.EC value 0x18.

0b0 This control causes execution of these instructions at EL1 to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

This field has no effect on accesses to MPAMSM_EL1 from EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRAPMPAM0EL1, bit [49]

Trap accesses from EL1 to the MPAM0_EL1 register trap to EL2.

0b0 Accesses to MPAM0_EL1 from EL1 are not trapped.

0b1 Accesses to MPAM0_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When EL3 is not implemented, this field resets to 1.

— When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

TRAPMPAM1EL1, bit [48]

Trap accesses from EL1 to the MPAM1_EL1 register trap to EL2.

0b0 Accesses to MPAM1_EL1 from EL1 are not trapped.

0b1 Accesses to MPAM1_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When EL3 is not implemented, this field resets to 1.

— When EL3 is implemented, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9505
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
PMG_D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM2_EL2

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAM2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAM2_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9506
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
MSR MPAM2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAM2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAM2_EL2 = X[t, 64];

MRS <Xt>, MPAM1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 X[t, 64] = NVMem[0x900];
 else
 X[t, 64] = MPAM1_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 X[t, 64] = MPAM2_EL2;
 else
 X[t, 64] = MPAM1_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAM1_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9507
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
MSR MPAM1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x900] = X[t, 64];
 else
 MPAM1_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 MPAM2_EL2 = X[t, 64];
 else
 MPAM1_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAM1_EL1 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9508
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.4 MPAM3_EL3, MPAM3 Register (EL3)

The MPAM3_EL3 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL3.

Configurations

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System
register MPAM2_EL2[63] when EL2 is implemented.

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System
register MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM3_EL3 are UNDEFINED.

Attributes

MPAM3_EL3 is a 64-bit register.

Field descriptions

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs
are output as their default value in the corresponding ID space.

Values of this field are:

0b0 The default PARTID and default PMG are output in MPAM information when
executing at any ELn.

0b1 MPAM information is output based on the MPAMn_ELx register for ELn according the
MPAM configuration.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Access to this field is RW.

TRAPLOWER, bit [62]

Trap direct accesses to MPAM System registers that are not UNDEFINED from all ELn lower than
EL3.

0b0 Do not force trapping of direct accesses of MPAM System registers to EL3.

0b1 Force direct accesses of MPAM System registers to trap to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

63 62 61 60

RES0

59 58 57 56 55

RES0

54 53 52

RES0

51 48

PMG_D

47 40

PMG_I

39 32

MPAMEN
TRAPLOWER

SDEFLT
FORCE_NS

RT_ALTSP_NS
ALTSP_EL3

ALTSP_HFC
ALTSP_HEN

PARTID_D

31 16

PARTID_I

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9509
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
SDEFLT, bit [61]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMIDR_EL1.HAS_SDEFLT == 1:

SDEFLT overrides the PARTID and PMG with the default PARTID and default PMG when
executing in the Secure state.

0b0 The PARTID and PMG are determined normally in the Secure state.

0b1 When executing in the Secure state, the PARTID is always PARTID 0, and the PMG is
always PMG 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FORCE_NS, bit [60]

When FEAT_MPAMv0p1 is implemented and MPAMIDR_EL1.HAS_FORCE_NS == 1:

FORCE_NS forces MPAM_NS to always be 1 in the Secure state.

0b0 MPAM_NS is 0 when executing in the Secure state.

0b1 MPAM_NS is 1 when executing in the Secure state.

An implementation is permitted to have this field as RAO if the implementation does not support
generating MPAM_NS as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

ALTSP_HEN, bit [57]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical enable for alternative PARTID space controls. Alternative PARTID space controls in
MPAM2_EL2 have no effect when this field is zero.

0b0 Disable alternative PARTID space controls in MPAM2_EL2. The PARTID space for
PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1 is selected by
MPAM3_EL3.ALTSP_HFC.

0b1 Enable alternative PARTID space controls in MPAM2_EL2 to control the PARTID
space used for PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1.

For more information, see Alternative PARTID spaces.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9510
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
ALTSP_HFC, bit [56]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0,
the PARTID space for PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1 is selected by
the value of this bit.

0b0 When MPAM3_EL3.ALTSP_HEN is 0, the PARTID space of MPAM2_EL2.PARTID,
MPAM1_EL1.PARTID and MPAM0_EL1.PARTID are the primary PARTID space for
the security state.

0b1 When MPAM3_EL3.ALTSP_HEN is 0, the PARTID space of MPAM2_EL2.PARTID
and MPAM1_EL1.PARTID and MPAM0_EL1.PARTID are the alternative PARTID
space for the security state.

For more information, see Alternative PARTID spaces.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ALTSP_EL3, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM3_EL3.

0b0 Selects the primary PARTID space of MPAM3_EL3.PARTID_I and
MPAM3_EL3.PARTID_D.

0b1 Selects the alternative PARTID space of MPAM3_EL3.PARTID_I and
MPAM3_EL3.PARTID_D.

For more information, see Alternative PARTID spaces.

The reset behavior of this field is:

• On a Warm reset,this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Bits [54:53]

Reserved, RES0.

RT_ALTSP_NS, bit [52]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Selects whether the alternative PARTID space for the Root security state is the Secure PARTID
space or the Non-secure PARTID space. MPAM3_EL3.RT_ALTSP_NS selects the alternative
PARTID space for the Root Security state when MPAM3_EL3.ALTSP_EL3 == 1.

0b0 The alternative PARTID space in the Root security state is the Secure PARTID space.

0b1 The alternative PARTID space in the Root security state is the Non-secure PARTID
space.

This field has no effect except in the Root security state (EL3).

The reset behavior of this field is:

• On a Warm reset,this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Bits [51:48]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9511
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
PMG_D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM3_EL3

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM3_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAM3_EL3;

MSR MPAM3_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9512
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
elsif PSTATE.EL == EL3 then
 MPAM3_EL3 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9513
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.5 MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

The MPAMHCR_EL2 characteristics are:

Purpose

Controls the PARTID virtualization features of MPAM. It controls the mapping of virtual PARTIDs
into physical PARTIDs in MPAM0_EL1 when EL0_VPMEN == 1 and in MPAM1_EL1 when
EL1_VPMEN == 1.

Configurations

This register is present only when FEAT_MPAM is implemented and MPAMIDR_EL1.HAS_HCR
== 1. Otherwise, direct accesses to MPAMHCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMHCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TRAP_MPAMIDR_EL1, bit [31]

Trap accesses from EL1 to MPAMIDR_EL1 to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Direct accesses to MPAMIDR_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When EL3 is not implemented, this field resets to 1.

— When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

Bits [30:9]

Reserved, RES0.

GSTAPP_PLK, bit [8]

Make the PARTIDs at EL0 the same as the PARTIDs at EL1. When executing at EL0, EL2 is
enabled, HCR_EL2.TGE == 0 and GSTAPP_PLK = 1, MPAM1_EL1 is used instead of
MPAM0_EL1 to generate MPAM labels for memory requests.

0b0 MPAM0_EL1 is used to generate MPAM labels when executing at EL0.

0b1 MPAM1_EL1 is used to generate MPAM labels when executing at EL0 with EL2
enabled and HCR_EL2.TGE == 0. Otherwise MPAM0_EL1 is used.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

31

RES0

30 9 8

RES0

7 2 1 0

TRAP_MPAMIDR_EL1 GSTAPP_PLK EL0_VPMEN
EL1_VPMEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9514
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
Bits [7:2]

Reserved, RES0.

EL1_VPMEN, bit [1]

Enable the virtual PARTID mapping of the PARTID fields in MPAM1_EL1 when executing at EL1.
This bit also enables virtual PARTID mapping when MPAM1_EL1 is used to generate MPAM
labels for memory requests at EL0 due to GSTAPP_PLK == 1.

0b0 MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are physical PARTIDs that
are used to label memory system requests.

0b1 MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are virtual PARTIDs that are
used to index the PhyPARTID fields of MPAMVPM0_EL2 to MPAMVPM7_EL2
registers to map the virtual PARTID into a physical PARTID to label memory system
requests.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0_VPMEN, bit [0]

Enable the virtual PARTID mapping of the PARTID fields of MPAM0_EL1 unless HCR_EL2.E2H
== 1 and HCR_EL2.TGE == 1.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1, EL0_VPMEN is ignored and MPAM0_EL1
PARTID fields are not mapped.

When MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1 is used as
the source of PARTIDs and the virtual PARTID mapping of MPAM1_EL1 PARTIDs is controlled
by MPAMHCR_EL2.EL1_VPMEN.

0b0 MPAM0_EL1.PARTID_I and MPAM0_EL1.PARTID_D are physical PARTIDs that
are used to label memory system requests.

0b1 MPAM0_EL1.PARTID_I and MPAM0_EL1.PARTID_D are virtual PARTIDs that are
used to index the PhyPARTID fields of MPAMVPM0_EL2 to MPAMVPM7_EL2
registers to map the virtual PARTID into a physical PARTID to label memory system
requests.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMHCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMHCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x930];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9515
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMHCR_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMHCR_EL2;

MSR MPAMHCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x930] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMHCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMHCR_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9516
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.6 MPAMIDR_EL1, MPAM ID Register (EL1)

The MPAMIDR_EL1 characteristics are:

Purpose

Indicates the presence and maximum PARTID and PMG values supported in the implementation. It
also indicates whether the implementation supports MPAM virtualization.

Configurations

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMIDR_EL1 are UNDEFINED.

Attributes

MPAMIDR_EL1 is a 64-bit register.

Field descriptions

MPAMIDR_EL1 indicates the MPAM implementation parameters of the PE.

Bits [63:62]

Reserved, RES0.

HAS_SDEFLT, bit [61]

HAS_SDEFLT indicates support for MPAM3_EL3.SDEFLT bit. Defined values are:

0b0 The SDEFLT bit is not implemented in MPAM3_EL3.

0b1 The SDEFLT bit is implemented in MPAM3_EL3.

When MPAM3_EL3.SDEFLT == 1, accesses from the Secure Execution state use the default
PARTID, PARTID == 0.

HAS_FORCE_NS, bit [60]

HAS_FORCE_NS indicates support for MPAM3_EL3.FORCE_NS bit. Defined values are:

0b0 The FORCE_NS bit is not implemented in MPAM3_EL3.

0b1 The FORCE_NS bit is implemented in MPAM3_EL3.

When MPAM3_EL3.FORCE_NS == 1, accesses from the Secure Execution state have MPAM_NS
== 1.

SP4, bit [59]

Supports 4 MPAM PARTID spaces.

0b0 MPAM supports 2 PARTID spaces.

0b1 MPAM supports 4 PARTID spaces.

RES0

63 62 61 60 59 58 57

RES0

56 40

PMG_MAX

39 32

HAS_SDEFLT
HAS_FORCE_NS

HAS_ALTSP
HAS_TIDR

SP4

RES0

31 21 20 18 17 16

PARTID_MAX

15 0

VPMR_MAX RES0
HAS_HCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9517
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
HAS_TIDR, bit [58]

HAS_TIDR indicates support for MPAM2_EL2.TIDR bit. Defined values are:

0b0 The TIDR bit is not implemented in MPAM2_EL2.

0b1 The TIDR bit is implemented in MPAM2_EL2.

Note

Arm recommends that when the MPAM version is MPAM v0.1 or MPAM v1.1,
MPAMIDR_EL1.HAS_TIDR is 1 and that the MPAM2_EL2.TIDR field is implemented.

HAS_ALTSP, bit [57]

HAS_ALTSP indicates support for alternative PARTID spaces.

0b0 Alternative PARTID spaces are not implemented.

0b1 Alternative PARTID spaces are implemented with control bits in MPAM3_EL3 and
MPAM2_EL2.

Bits [56:40]

Reserved, RES0.

PMG_MAX, bits [39:32]

The largest value of PMG that the implementation can generate. The PMG_I and PMG_D fields of
every MPAMn_ELx must implement at least enough bits to represent PMG_MAX.

Bits [31:21]

Reserved, RES0.

VPMR_MAX, bits [20:18]

When MPAMIDR_EL1.HAS_HCR == 1:

Indicates the maximum register index n for the MPAMVPM<n>_EL2 registers.

Otherwise:

Reserved, RAZ.

HAS_HCR, bit [17]

HAS_HCR indicates that the PE implementation supports MPAM virtualization, including
MPAMHCR_EL2, MPAMVPMV_EL2, and MPAMVPM<n>_EL2 with n in the range 0 to
VPMR_MAX. Must be 0 if EL2 is not implemented in either Security state.

0b0 MPAM virtualization is not supported.

0b1 MPAM virtualization is supported.

Bit [16]

Reserved, RES0.

PARTID_MAX, bits [15:0]

The largest value of PARTID that the implementation can generate. The PARTID_I and PARTID_D
fields of every MPAMn_ELx must implement at least enough bits to represent PARTID_MAX.

Accessing MPAMIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9518
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
MRS <Xt>, MPAMIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAMIDR_EL1.HAS_HCR == '1' && MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MPAMIDR_EL1.HAS_TIDR == '1' && MPAM2_EL2.TIDR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = MPAMIDR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMIDR_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMIDR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9519
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.7 MPAMSM_EL1, MPAM Streaming Mode Register

The MPAMSM_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests that are:

• Issued due to the execution of SME load and store instructions.

• Issued when the PE is in Streaming SVE mode due to the execution of SVE and SIMD&FP
load and store instructions and SVE prefetch instructions.

If an implementation uses a shared SMCU, then the MPAM labels in this register have precedence
over the labels in MPAM0_EL1, MPAM1_EL1, MPAM2_EL2, and MPAM3_EL3.

If an implementation includes an SMCU that is not shared with other PEs, then it is
IMPLEMENTATION DEFINED whether the MPAM labels in this register have precedence over the
labels in MPAM0_EL1, MPAM1_EL1, MPAM2_EL2, and MPAM3_EL3.

The MPAM labels in this register are only used if MPAM1_EL1.MPAMEN is 1.

For memory requests issued from EL0, the MPAM PARTID in this register is virtual and mapped
into a physical PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H, TGE}
is not {1, 1}.

• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL0_VPMEN is 1.

For memory requests issued from EL1, the MPAM PARTID in this register is virtual and mapped
into a physical PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state.

• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL1_VPMEN is 1.

Configurations

This register is present only when FEAT_MPAM is implemented and FEAT_SME is implemented.
Otherwise, direct accesses to MPAMSM_EL1 are UNDEFINED.

Attributes

MPAMSM_EL1 is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [39:32]

Reserved, RES0.

RES0

63 48

PMG_D

47 40

RES0

39 32

PARTID_D

31 16

RES0

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9520
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
PARTID_D, bits [31:16]

Partition ID for requests issued due to the execution at any Exception level of SME load and store
instructions and, when the PE is in Streaming SVE mode, SVE and SIMD&FP load and store
instructions and SVE prefetch instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing MPAMSM_EL1

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMSM_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = MPAMSM_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMSM_EL1;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMSM_EL1;

MSR MPAMSM_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b011

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9521
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 MPAMSM_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMSM_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMSM_EL1 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9522
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.8 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

The MPAMVPM0_EL2 characteristics are:

Purpose

MPAMVPM0_EL2 provides mappings from virtual PARTIDs 0 - 3 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 register. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented and MPAMIDR_EL1.HAS_HCR
== 1. Otherwise, direct accesses to MPAMVPM0_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM0_EL2 is a 64-bit register.

Field descriptions

PhyPARTID3, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 3. PhyPARTID3 gives the mapping of virtual
PARTID 3 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID2, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 2. PhyPARTID2 gives the mapping of virtual
PARTID 2 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID1, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 1. PhyPARTID1 gives the mapping of virtual
PARTID 1 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID0, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 0. PhyPARTID0 gives the mapping of virtual
PARTID 0 to a physical PARTID.

PhyPARTID3

63 48

PhyPARTID2

47 32

PhyPARTID1

31 16

PhyPARTID0

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9523
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM0_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x940];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM0_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM0_EL2;

MSR MPAMVPM0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x940] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9524
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM0_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM0_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9525
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.9 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

The MPAMVPM1_EL2 characteristics are:

Purpose

MPAMVPM1_EL2 provides mappings from virtual PARTIDs 4 - 7 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM0_EL2 to MPAMVPM7_EL2 registers. VPMR_MAX can be as large as 7 (8 registers)
or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single
MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 0. Otherwise, direct accesses to MPAMVPM1_EL2
are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM1_EL2 is a 64-bit register.

Field descriptions

PhyPARTID7, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 7. PhyPARTID7 gives the mapping of virtual
PARTID 7 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID6, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 6. PhyPARTID6 gives the mapping of virtual
PARTID 6 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID5, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 5. PhyPARTID5 gives the mapping of virtual
PARTID 5 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID4, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 4. PhyPARTID4 gives the mapping of virtual
PARTID 4 to a physical PARTID.

PhyPARTID7

63 48

PhyPARTID6

47 32

PhyPARTID5

31 16

PhyPARTID4

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9526
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM1_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x948];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM1_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM1_EL2;

MSR MPAMVPM1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x948] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9527
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM1_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM1_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9528
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.10 MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2

The MPAMVPM2_EL2 characteristics are:

Purpose

MPAMVPM2_EL2 provides mappings from virtual PARTIDs 8 - 11 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM0_EL2 to MPAMVPM7_EL2 registers. VPMR_MAX can be as large as 7 (8 registers)
or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single
MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 1. Otherwise, direct accesses to MPAMVPM2_EL2
are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM2_EL2 is a 64-bit register.

Field descriptions

PhyPARTID11, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 11. PhyPARTID11 gives the mapping of virtual
PARTID 11 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID10, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 10. PhyPARTID10 gives the mapping of
virtual PARTID 10 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID9, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 9. PhyPARTID9 gives the mapping of virtual
PARTID 9 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID8, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 8. PhyPARTID8 gives the mapping of virtual
PARTID 8 to a physical PARTID.

PhyPARTID11

63 48

PhyPARTID10

47 32

PhyPARTID9

31 16

PhyPARTID8

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9529
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x950];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM2_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM2_EL2;

MSR MPAMVPM2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x950] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9530
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM2_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM2_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9531
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.11 MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

The MPAMVPM3_EL2 characteristics are:

Purpose

MPAMVPM3_EL2 provides mappings from virtual PARTIDs 12 - 15 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 2. Otherwise, direct accesses to MPAMVPM3_EL2
are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM3_EL2 is a 64-bit register.

Field descriptions

PhyPARTID15, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 15. PhyPARTID15 gives the mapping of
virtual PARTID 15 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID14, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 14. PhyPARTID14 gives the mapping of
virtual PARTID 14 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID13, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 13. PhyPARTID13 gives the mapping of
virtual PARTID 13 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID12, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 12. PhyPARTID12 gives the mapping of
virtual PARTID 12 to a physical PARTID.

PhyPARTID15

63 48

PhyPARTID14

47 32

PhyPARTID13

31 16

PhyPARTID12

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9532
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM3_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM3_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x958];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM3_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM3_EL2;

MSR MPAMVPM3_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x958] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9533
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM3_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM3_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9534
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.12 MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

The MPAMVPM4_EL2 characteristics are:

Purpose

MPAMVPM4_EL2 provides mappings from virtual PARTIDs 16 - 19 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 3. Otherwise, direct accesses to MPAMVPM4_EL2
are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM4_EL2 is a 64-bit register.

Field descriptions

PhyPARTID19, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 19. PhyPARTID19 gives the mapping of
virtual PARTID 19 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID18, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 18. PhyPARTID18 gives the mapping of
virtual PARTID 18 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID17, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 17. PhyPARTID17 gives the mapping of
virtual PARTID 17 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID16, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 16. PhyPARTID16 gives the mapping of
virtual PARTID 16 to a physical PARTID.

PhyPARTID19

63 48

PhyPARTID18

47 32

PhyPARTID17

31 16

PhyPARTID16

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9535
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM4_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM4_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x960];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM4_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM4_EL2;

MSR MPAMVPM4_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x960] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9536
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM4_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM4_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9537
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.13 MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

The MPAMVPM5_EL2 characteristics are:

Purpose

MPAMVPM5_EL2 provides mappings from virtual PARTIDs 20 - 23 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 4. Otherwise, direct accesses to MPAMVPM5_EL2
are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM5_EL2 is a 64-bit register.

Field descriptions

PhyPARTID23, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 23. PhyPARTID23 gives the mapping of
virtual PARTID 23 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID22, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 22. PhyPARTID22 gives the mapping of
virtual PARTID 22 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID21, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 21. PhyPARTID21 gives the mapping of
virtual PARTID 21 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID20, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 20. PhyPARTID20 gives the mapping of
virtual PARTID 20 to a physical PARTID.

PhyPARTID23

63 48

PhyPARTID22

47 32

PhyPARTID21

31 16

PhyPARTID20

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9538
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM5_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM5_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x968];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM5_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM5_EL2;

MSR MPAMVPM5_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x968] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b101

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9539
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM5_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM5_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9540
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.14 MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

The MPAMVPM6_EL2 characteristics are:

Purpose

MPAMVPM6_EL2 provides mappings from virtual PARTIDs 24 - 27 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 5. Otherwise, direct accesses to MPAMVPM6_EL2
are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM6_EL2 is a 64-bit register.

Field descriptions

PhyPARTID27, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 27. PhyPARTID27 gives the mapping of
virtual PARTID 27 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID26, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 26. PhyPARTID26 gives the mapping of
virtual PARTID 26 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID25, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 25. PhyPARTID25 gives the mapping of
virtual PARTID 25 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID24, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 24. PhyPARTID24 gives the mapping of
virtual PARTID 24 to a physical PARTID.

PhyPARTID27

63 48

PhyPARTID26

47 32

PhyPARTID25

31 16

PhyPARTID24

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9541
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM6_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM6_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x970];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM6_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM6_EL2;

MSR MPAMVPM6_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x970] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b110

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9542
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM6_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM6_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9543
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.15 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

The MPAMVPM7_EL2 characteristics are:

Purpose

MPAMVPM7_EL2 provides mappings from virtual PARTIDs 28 - 31 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and (UIntMPAMIDR_EL1.VPMR_MAX) == 7. Otherwise, direct accesses to
MPAMVPM7_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM7_EL2 is a 64-bit register.

Field descriptions

PhyPARTID31, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 31. PhyPARTID31 gives the mapping of
virtual PARTID 31 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID30, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 30. PhyPARTID30 gives the mapping of
virtual PARTID 30 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID29, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 29. PhyPARTID29 gives the mapping of
virtual PARTID 29 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID28, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 28. PhyPARTID28 gives the mapping of
virtual PARTID 28 to a physical PARTID.

PhyPARTID31

63 48

PhyPARTID30

47 32

PhyPARTID29

31 16

PhyPARTID28

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9544
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM7_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM7_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x978];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPM7_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPM7_EL2;

MSR MPAMVPM7_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x978] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b111

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9545
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM7_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
 MPAMVPM7_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9546
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
D23.12.16 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

The MPAMVPMV_EL2 characteristics are:

Purpose

Valid bits for virtual PARTID mapping entries. Each bit m corresponds to virtual PARTID mapping
entry m in the MPAMVPM<n>_EL2 registers where n = m >> 2.

Configurations

This register is present only when FEAT_MPAM is implemented and MPAMIDR_EL1.HAS_HCR
== 1. Otherwise, direct accesses to MPAMVPMV_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPMV_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

VPM_V<m>, bit [m], for m = 31 to 0

Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID<m>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPMV_EL2

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPM_V31
VPM_V30

VPM_V29
VPM_V28

VPM_V27
VPM_V26

VPM_V25
VPM_V24

VPM_V23
VPM_V22

VPM_V21
VPM_V20

VPM_V19
VPM_V18

VPM_V17
VPM_V16

VPM_V0
VPM_V1

VPM_V2
VPM_V3

VPM_V4
VPM_V5

VPM_V6
VPM_V7

VPM_V8
VPM_V9

VPM_V10
VPM_V11

VPM_V12
VPM_V13

VPM_V14
VPM_V15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9547
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
MRS <Xt>, MPAMVPMV_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 X[t, 64] = NVMem[0x938];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 X[t, 64] = MPAMVPMV_EL2;
elsif PSTATE.EL == EL3 then
 X[t, 64] = MPAMVPMV_EL2;

MSR MPAMVPMV_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x938] = X[t, 64];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPMV_EL2 = X[t, 64];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9548
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
elsif PSTATE.EL == EL3 then
 MPAMVPMV_EL2 = X[t, 64];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9549
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9550
ID032224 Non-Confidential

AArch64 System Register Descriptions
D23.12 MPAM registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. D23-9551
ID032224 Non-Confidential

Part E
The AArch32 Application Level Architecture

Chapter E1
The AArch32 Application Level Programmers’ Model

This chapter gives an Application level description of the programmers’ model for software executing in AArch32
state. This means it describes execution in EL0 when EL0 is using AArch32. It contains the following sections:

• About the Application level programmers’ model.

• The Application level programmers’ model in AArch32 state.

• Advanced SIMD and floating-point instructions.

• About the AArch32 System register interface.

• Exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9553
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.1 About the Application level programmers’ model
E1.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for the development of applications that
execute in AArch32 state.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of that system
information is needed to put the Application level programmers' model into context.

Depending on the implementation, the architecture supports multiple levels of execution privilege. These privilege
levels are indicated by different Exception levels that number upwards from EL0, where EL0 corresponds to the
lowest privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at EL0. For more information, see Arm architectural concepts.

System software determines the Exception level, and therefore the level of privilege, at which application software
runs. When an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged.
This has the following effects:

• It means that the operating system can allocate system resources to an application in a unique or shared
manner.

• It provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some System level understanding is helpful, and if appropriate it gives a reference to
the System level description.

Application level software is generally unaware of its Security state, and of any virtualization. For more
information, see The Armv8-A security model and The effect of implementing EL2 on the Exception model.

Note

• When an implementation includes EL3, application and operating system software normally executes in
Non-secure state.

• Older documentation, describing implementations or architecture versions that support only two privilege
levels, often refers to execution at EL1 as privileged execution.

• In this manual, the terms CONSTRAINED UNPREDICTABLE, IMPLEMENTATION DEFINED.
OPTIONAL, RES0, RES1, UNDEFINED, UNKNOWN, and UNPREDICTABLE have Arm-specific
meanings, as defined in the Glossary. In body text, these terms are shown in SMALL CAPS, for example
IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9554
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
E1.2 The Application level programmers’ model in AArch32 state

The following sections give more information about the application level programmers’ model in AArch32 state:

• Instruction sets, arithmetic operations, and register files.

• Core data types and arithmetic in AArch32 state.

• The general-purpose registers, and the PC, in AArch32 state.

• Process state, PSTATE.

• Jazelle support.

E1.2.1 Instruction sets, arithmetic operations, and register files

The A32 and T32 instruction sets both provide a wide range of integer arithmetic and logical operations, that operate
on a register file of sixteen 32-bit registers, that are comprised of the AArch32 general-purpose registers and the
PC. As described in The general-purpose registers, and the PC, in AArch32 state, these registers include the
registers SP (R13) and LR (R14), which have specialized uses. Core data types and arithmetic in AArch32 state
gives more information about these operations.

In addition, an implementation that implements the T32 and A32 instruction sets includes both:

• Scalar floating-point instructions.

• The Advanced SIMD vector instructions.

Floating-point and vector instructions operate on a separate common register file, described in The SIMD and
floating-point register file. Advanced SIMD and floating-point instructions gives more information about these
instructions.

E1.2.2 Core data types and arithmetic in AArch32 state

When executing in AArch32 state, a PE supports the following data types in memory:

Byte 8 bits.

Halfword 16 bits.

Word 32 bits.

Doubleword 64 bits.

PE registers are 32 bits in size. The instruction sets provide instructions that use the following data types for data
held in registers:

• 32-bit pointers.

• Unsigned or signed 32-bit integers.

• Unsigned 16-bit or 8-bit integers, held in zero-extended form.

• Signed 16-bit or 8-bit integers, held in sign-extended form.

• Two 16-bit integers packed into a register.

• Four 8-bit integers packed into a register.

• Unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or halfwords
zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory. Software
can load and store doublewords using these instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9555
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Note

For information about the atomicity of memory accesses, see Atomicity in the Arm architecture.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer in the
range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2(N-1) to
+2(N-1)-1, using two's complement format.

The instructions that operate on packed halfwords or bytes include some multiply instructions that use only one of
two halfwords, and SIMD instructions that perform parallel addition or subtraction on all of the halfwords or bytes.

Note

These SIMD instructions operate on values held in the general-purpose registers, and must not be confused with the
Advanced SIMD instructions that operate on a separate register file that provides registers of up to 128 bits.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two or more
instructions to synthesize them.

E1.2.2.1 Integer arithmetic

The instruction set provides a wide range of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and divisions. The pseudocode described in
Appendix K16 Arm Pseudocode Definition defines these operations, usually in one of three ways:

• By direct use of the pseudocode operators and built-in functions defined in Operators.

• By use of pseudocode helper functions defined in the main text.

• By a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to integers to
convert the bitstring contents of the instruction operands to the unbounded integers that they represent
as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded integers to
calculate other such integers.

3. Use of either the bitstring extraction operator defined in Bitstring concatenation and slicing or of the
saturation helper functions described in Pseudocode description of saturation to convert an
unbounded integer result into a bitstring result that can be written to a register.

E1.2.2.1.1 Shift and rotate operations

The following types of shift and rotate operations are used in instructions:

Logical Shift Left

The LSL() pseudocode function moves each bit of a bitstring left by a specified number of bits. Zeros
are shifted in at the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

The LSR() pseudocode function moves each bit of a bitstring right by a specified number of bits.
Zeros are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

The ASR() pseudocode function moves each bit of a bitstring right by a specified number of bits.
Copies of the leftmost bit are shifted in at the left end of the bitstring. Bits that are shifted off the
right end of the bitstring are discarded, except that the last such bit can be produced as a carry output.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9556
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Rotate Right The ROR() pseudocode function moves each bit of a bitstring right by a specified number of bits.
Each bit that is shifted off the right end of the bitstring is re-introduced at the left end. The last bit
shifted off the right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

The RRX() pseudocode function moves each bit of a bitstring right by one bit. A carry input is shifted
in at the left end of the bitstring. The bit shifted off the right end of the bitstring can be produced as
a carry output.

E1.2.2.1.2 Pseudocode description of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and bitstrings,
provided that if they are performed on two bitstrings, the bitstrings must be identical in length. The result is another
unbounded integer if both operands are unbounded integers, and a bitstring of the same length as the bitstring
operand or operands otherwise. For the definition of these operations, see Addition and subtraction.

The main addition and subtraction instructions can produce status information about both unsigned carry and signed
overflow conditions. When necessary, multi-word additions and subtractions can be synthesized from this status
information. In pseudocode, the AddWithCarry() function provides an addition with a carry input and a set of output
Condition flags including carry output and overflow:

An important property of the AddWithCarry() function is that if:

(result, nzcv) = AddWithCarry(x, NOT(y), carry_in)

Then:

• If carry_in == ‘1’, then result == x-y with:

— nzcv<0> == ‘1’ if signed overflow occurred during the subtraction.

— nzcv<1> == ‘1’ if unsigned borrow did not occur during the subtraction, that is, if xy.

• If carry_in == ‘0’, then result == x-y-1 with:

— nzcv<0> == ‘1’ if signed overflow occurred during the subtraction.

— nzcv<1> == ‘1’ if unsigned borrow did not occur during the subtraction, that is, if xy.

Taken together, this means that the carry_in and nzcv<1> output in AddWithCarry() calls can act as NOT borrow flags
for subtractions as well as carry flags for additions.

E1.2.2.1.3 Pseudocode description of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the destination
signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that range, rather than
wrapping around modulo 2N. This is supported in pseudocode by:

• The SignedSatQ() and UnsignedSatQ() functions when an operation requires, in addition to the saturated
result, a Boolean argument that indicates whether saturation occurred.

• The SignedSat() and UnsignedSat() functions when only the saturated result is required.

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its third
argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on the value of
its third argument.

E1.2.3 The general-purpose registers, and the PC, in AArch32 state

In the AArch32 Application level view, a PE has:

• Fifteen general-purpose 32-bit registers, R0 to R14, of which R13 and R14 have alternative names reflecting
how they are, or can be, used:

— R13 is usually identified as SP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9557
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
— R14 is usually identified as LR.

• The PC (Program Counter), which can be described as R15.

The specialized uses of the SP (R13), LR (R14), and PC (R15) are:

SP, the stack pointer

The PE uses SP as a pointer to the active stack.

In the T32 instruction set, some instructions cannot access SP. Instructions that can access SP can
use SP as a general-purpose register.

The A32 instruction set provides more general access to SP, and it can be used as a general-purpose
register.

Note

Using SP for any purpose other than as a stack pointer might break the requirements of operating
systems, debuggers, and other software systems, causing them to malfunction.

Software can refer to SP as R13.

LR, the link register

The link register can be used to hold return link information, and some cases described in this
manual require this use of the LR. When software does not require the LR for linking, it can use it
for other purposes. Software can refer to LR as R14.

PC, the Program Counter

• When executing an A32 instruction, PC reads as the address of the current instruction plus 8.

• When executing a T32 instruction, PC reads as the address of the current instruction plus 4.

• Writing an address to PC causes a branch to that address.

Most T32 instructions cannot access PC.

The A32 instruction set provides more general access to the PC, and many A32 instructions can use
the PC as a general-purpose register. However, Arm deprecates the use of PC for any purpose other
than as the Program Counter. See Writing to the PC for more information.

Software can refer to PC as R15.

See AArch32 general-purpose registers, the PC, and the Special-purpose registers for the system level view of these
registers.

Note

In general, Arm strongly recommends using the names SP, LR, and PC instead of R13, R14, and R15. However,
sometimes it is simpler to use the R13-R15 names when referring to a group of registers. For example, it is simpler
to refer to registers R8 to R15, rather than to registers R8 to R12, the SP, LR, and PC. These two descriptions of the
group of registers have the same meaning.

E1.2.3.1 Writing to the PC

In the A32 and T32 instruction sets, many data-processing instructions can write to the PC. Writes to the PC are
handled as follows:

• In T32 state, the following 16-bit T32 instruction encodings branch to the value written to the PC:

— Encoding T2 of ADD, ADDS (register).

— Encoding T1 of MOV, MOVS (register).

The value written to the PC is forced to be halfword-aligned by ignoring its least significant bit, treating that
bit as being 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9558
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
• The B, BL, CBNZ, CBZ, TBB, and TBH instructions remain in the same instruction set state and branch to the value
written to the PC.

The definition of each of these instructions ensures that the value written to the PC is correctly aligned for
the current instruction set state.

• The BLX (immediate) instruction switches between A32 and T32 states and branches to the value written to
the PC. Its definition ensures that the value written to the PC is correctly aligned for the new instruction set
state.

• The following instructions write a value to the PC, treating that value as an interworking address to branch
to, with low-order bits that determine the new instruction set state:

— BLX (register), BX, and BXJ.

— LDR instructions with <Rt> equal to the PC.

— POP and all forms of LDM except LDM (exception return), when the register list includes the PC.

— In A32 state only, ADC, ADD, ADR, AND, ASR (immediate), BIC, EOR, LSL (immediate), LSR (immediate), MOV,
MVN, ORR, ROR (immediate), RRX, RSB, RSC, SBC, and SUB instructions with <Rd> equal to the PC and without
flag-setting specified.

For details of how an interworking address specifies the new instruction set state and instruction address, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

Note

The register-shifted register instructions, which are available only in the A32 instruction set and are
summarized in Data-processing register (register shift), are CONSTRAINED UNPREDICTABLE if they attempt
to write to the PC, see Using R15 by instruction.

• Some instructions are treated as exception return instructions, and write both the PC and the CPSR. For more
information, including which instructions are exception return instructions, see Exception return to an
Exception level using AArch32.

• Some instructions cause an exception, and the exception handler address is written to the PC as part of the
exception entry.

E1.2.3.2 Pseudocode description of operations on the AArch32 general-purpose
registers and the PC

In pseudocode, the uses of the R[] function, with an index parameter n, are:

• Reading or writing R0-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.

• Reading the PC, using n = 15.

Pseudocode description of general-purpose register and PC operations describes accesses to these registers.

Descriptions of A32 store instructions that store the PC value use the PCStoreValue() pseudocode function to specify
the PC value stored by the instruction.

Writing an address to the PC causes either a simple branch to that address or an interworking branch that also selects
the instruction set to execute after the branch. A simple branch is performed by the BranchWritePC() function.

An interworking branch is performed by the BXWritePC() function.

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions.

E1.2.4 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9559
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Note

In this chapter, references to PSTATE link to the more appropriate of:

• The Application-level view of PSTATE given in this section.

• The System-level description in Process state, PSTATE.

The following PSTATE information is accessible at EL0:

The condition flags

Flag-setting instructions set these. They are:

N Negative Condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:

• 1 if the result is negative.

• 0 if the result is positive or zero.

Z Zero Condition flag. Set to:

• 1 if the result of the instruction is zero.

• 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C Carry Condition flag. Set to:

• 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.

• 0 otherwise.

V Overflow Condition flag. Set to:

• 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.

• 0 otherwise.

Conditional instructions test the N, Z, C, and V Condition flags, combining them with the Condition
code for the instruction, to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Conditional execution.

The overflow or saturation flag

Q Some instructions can set this. For those instructions that can, the PE:

• Sets it to 1 if the instruction indicates overflow or saturation.

• Leaves it unchanged otherwise.

For more information, see Pseudocode description of saturation.

The greater than or equal flags

GE[3:0] The instructions described in Parallel addition and subtraction instructions update
these to indicate the results from individual bytes or halfwords of the operation. These
flags can control a later SEL instruction. For more information, see SEL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9560
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
PSTATE also contains PE state controls. There is no direct access to these from application level instructions, but
they can be changed by side-effects of application level instructions. They are:

Instruction set state

J, T The current instruction set state, as shown in Table E1-1. The J bit is RES0, see the Note
in this section.

A32 The PE is executing the A32 instruction set, summarized in Chapter F4 A32
Instruction Set Encoding.

T32 The PE is executing the T32 instruction set, summarized in Chapter F3 T32
Instruction Set Encoding.

Note

Encoding with J==1 before Armv8, Jazelle, and T32EE states

In previous versions of the Arm architecture, the encoding {1, 0} selected
Jazelle state, and encoding {1, 1} selected T32EE state. From the
introduction of Armv8, the architecture does not support either of these
states, and these are encodings for unimplemented instruction set states, see
Unimplemented instruction sets.

AArch32 state requires a Trivial Jazelle implementation, see Trivial
implementation of the Jazelle extension.

The IT block state

IT[7:0] The If-Then controls for the T32 IT instruction, which applies to the IT block of
instructions that immediately follow the IT instruction. See IT for a description of the IT
instruction and its associated IT block.

For more information about the use of PSTATE.IT, see Use of PSTATE.IT.

Endianness mapping

E For data accesses, controls the endianness:

0 Little-endian.

1 Big-endian.

If an implementation does not provide:

• Big-endian support for data accesses, this bit is RES0.

• Little-endian support for data accesses, this bit is RES1.

Instruction fetches are always little-endian, and ignore PSTATE.E.

Timing control bits

DIT Data Independent Timing (DIT) bit. For more information, see About the DIT bit.

This bit is implemented only when FEAT_DIT is implemented.

On a reset to AArch32 state, this bit is set to 0.

Table E1-1 PSTATE.{J, T} encoding

J T Instruction set state

0 0 A32

0 1 T32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9561
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
E1.2.4.1 Accessing PSTATE fields at EL0

The following sections describe which PSTATE fields can be directly accessed at EL0, and how they can be
accessed:

• The Application Program Status Register, APSR.

• The SETEND instruction.

E1.2.4.1.1 The Application Program Status Register, APSR

At EL0, some PSTATE fields can be accessed using the Special-purpose Application Program Status Register
(APSR). The APSR can be directly read using the MRS instruction, and directly written using the MSR (register)
and MSR (immediate) instructions.

The APSR bit assignments are:

N, Z, C, V, bits [31:28]

The PSTATE Condition flags.

Q, bit [27] The PSTATE overflow or saturation flag.

Bits[26:24] Reserved, RES0. Software can use MSR instructions that write the top byte of the APSR without using
a read-modify-write sequence. If it does this, it must write zeros to bits[26:24].

Bits[23:20, 15:0]

Reserved bits that are allocated to system features, or are available for future expansion.
Unprivileged execution ignores writes to fields that are accessible only at EL1 or higher. However,
application level software that writes to the APSR must treat reserved bits as Do-Not-Modify
(DNM) bits. For more information about the reserved bits, see The Current Program Status Register,
CPSR.

These bits are UNKNOWN on a Read, and it is permitted that, on a read of APSR:

• Bit[22] returns the value of PSTATE.PAN.

• Bit[9] returns the value of PSTATE.E.

• Bits[8:6] return the value of PSTATE.{A,I,F}, the mask bits.

• Bits[4:0] return the value of PSTATE.M[4:0]. Bit[4] is RES1 indicating that the PE is in
AArch32 state.

Note

This is an exception to the general rule that an UNKNOWN field must not return information that
cannot be obtained, at the current Privilege level, by an architected mechanism.

GE[3:0], bits [19:16]

The PSTATE greater than or equal flags.

The other PSTATE fields cannot be accessed by using the APSR.

The system level alias for the APSR is the CPSR. The CPSR is a superset of the APSR. See The Current Program
Status Register, CPSR.

N

31 30 29 28 27 26 24 23 20 19 16 15 0

Z C V Q GE[3:0]RES0

Condition flags

4

RES1

RES0RES0 RES0

35
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9562
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
Writes to the PSTATE fields have side-effects on various aspects of PE operation. All of these side-effects, except
side-effects on memory accesses associated with fetching instructions, are synchronous to the APSR write. This
means they are guaranteed:

• Not to be visible to earlier instructions in the Execution stream.

• To be visible to later instructions in the Execution stream.

E1.2.4.1.2 The SETEND instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.E:

SETEND BE Sets PSTATE.E to 1, for big-endian operation.

SETEND LE Sets PSTATE.E to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND. Arm deprecates use of the SETEND
instruction.

E1.2.4.2 Use of PSTATE.IT

PSTATE.IT provides the If-Then controls for the T32 IT instruction, which applies to the IT block of instructions
that immediately follow the IT instruction.

PSTATE.IT divides into two subfields:

IT[7:5] Holds the base condition for the current IT block. The base condition is the top three bits of the
Condition code specified by the <firstcond> field of the IT instruction.

IT[4:0] Encodes:

• Implicitly, the size of the IT block. This is the number of instructions that are to be
conditionally executed. The size of the block is indicated by the position of the least
significant 1 in this field, as shown in Table E1-2.

• For each instruction in the IT block, the least significant bit of the Condition code. This is
encoded in the IT block entries that Table E1-2 shows as Nx.

Note

Changing the least significant bit of a Condition code from 0 to 1 has the effect of inverting
the Condition code.

Both subfields are all zeros when no IT block is active.

When an IT instruction is executed, PSTATE.IT is set according to the <firstcond> field of the instruction and the
Then and Else (T and E) parameters in the instruction, see IT. This means that, on executing an IT instruction, the
initial state of PSTATE.IT depends on the number of instructions in the IT block, as Table E1-2 shows:

Table E1-2 Initial state of PSTATE.IT on executing an IT instruction

Number of instructions in IT block
PSTATE.IT bitsa

Notes
[7:5] [4] [3] [2] [1] [0]

4 cond_base N1 N2 N3 N4 1 -

3 cond_base N1 N2 N3 1 0 -

2 cond_base N1 N2 1 0 0 -

1 cond_base N1 1 0 0 0 -

Not executing an IT instruction 000 0 0 0 0 0 No IT block is active
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9563
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
In Table E1-2, N1 refers to the first instruction in the IT block, and N2, N3, and N4 refer to the second, third, and
fourth instructions in the IT block if they are present,

When permitted, an instruction in an IT block is conditional, see Conditional instructions and Conditional
execution. The Condition code used is the current value of IT[7:4]. When an instruction in an IT block completes
its execution normally, PSTATE.IT[4:0] is left-shifted by one bit, so that PSTATE[4] always relates to the next
instruction to be executed.

Table E1-3 shows how PSTATE.IT during the execution of an IT instruction with four instructions in the IT block.

A few instructions, for example BKPT, cannot be conditional and therefore are always executed ignoring the current
value of PSTATE.IT.

For details of what happens if an instruction in an IT block takes an exception, see Overview of exception entry.

An instruction that might complete its normal execution by branching is only permitted in an IT block as the last
instruction in the block. This means that normal execution of the instruction always results in PSTATE.IT advancing
to execution where no IT block is active.

Implementations can provide a set of ITD control fields, SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD, to
disable use of IT for some instructions, making them UNDEFINED. When an implementation includes ITD control
fields, Changes to an ITD control by an instruction in an IT block describes the permitted CONSTRAINED
UNPREDICTABLE behaviors if an instruction in an IT block changes the value of an ITD control to disable the use of
the IT instruction.

On a branch or an exception return, if PSTATE.IT is set to a value that is not consistent with the instruction stream
being branched to or returned to, then instruction execution is CONSTRAINED UNPREDICTABLE.

PSTATE.IT affects instruction execution only in T32 state. In A32 state, PSTATE.IT must be 0b00000000, otherwise
the behavior is CONSTRAINED UNPREDICTABLE.

For more information, see CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and
PSTATE.IT.

E1.2.4.2.1 Changes to an ITD control by an instruction in an IT block

In an implementation that includes SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD controls, if an instruction in
an IT block changes an ITD control so that the IT instruction using the IT block would be disabled, then one of the
following behaviors applies:

• The change to the ITD field, once synchronized, has no effect on the execution of instructions in the current
IT block, but applies only to any subsequent execution of an IT instruction to which the control applies.

• Synchronizing the change to the ITD field guarantees that all bits of PSTATE.IT are cleared to 0.

a. Combinations of the IT bits not shown in this table are reserved.

Table E1-3 Updates to PSTATE.IT when executing an IT instruction with a four-instruction IT
block

IT block instruction being executed
PSTATE.IT bits

Notes
[7:5] [4] [3] [2] [1] [0]

First cond_base N1 N2 N3 N4 1 -

Second cond_base N2 N3 N4 1 0 -

Third cond_base N3 N4 1 0 0 -

Fourth cond_base N4 1 0 0 0 -

Not executing an IT instruction 000 0 0 0 0 0 No IT block is active
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9564
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.2 The Application level programmers’ model in AArch32 state
In addition, after the change to the ITD field has been synchronized, any remaining instructions in the IT block that
would be made UNDEFINED by the new value of ITD are either:

• Executed normally.

• Treated as UNDEFINED.

The choice between the options described in this section is determined by the implementation, and any choice can
vary between different changes to an ITD control by an instruction in an IT block.

E1.2.4.3 Pseudocode description of PSTATE PE state fields

The pseudocode function CurrentInstrSet() returns the current instruction set. The pseudocode function
SelectInstrSet() selects a new instruction set.

PSTATE.IT advances after normal execution of an IT block instruction. This is described by the
AArch32.ITAdvance() pseudocode function.

The pseudocode function InITBlock() tests whether the current instruction is in an IT block. The pseudocode
function LastInITBlock() tests whether the current instruction is the last instruction in an IT block.

The BigEndian() pseudocode function tests whether big-endian data memory accesses are currently selected.

E1.2.5 About the DIT bit

When the value of CPSR.DIT is 1:

• The instructions affected by CPSR are required to have;

— Timing which is independent of the values of the data supplied in any of its registers, and the values
of the NZCV flags.

— Responses to asynchronous exceptions which do not vary based on the values supplied in any of their
registers, or the values of the NZCV flags.

• All loads and stores have their timing insensitive to the value of the data being loaded or stored.

Note

When the value of CPSR.DIT is 0, the architecture makes no statement about the timing properties of any
instructions.

A corresponding DIT bit is added to PSTATE in AArch64 state, and to CPSR in AArch32 state.

When an exception is taken from AArch32 state to AArch32 state, CPSR.DIT is copied to SPSR.DIT.

When an exception is taken from AArch32 state to AArch64 state, CPSR.DIT is copied to SPSR_ELx.DIT.

When an exception returns to AArch32 state from AArch32 state, SPSR.DIT is copied to CPSR.DIT.

When an exception returns to AArch32 state from AArch64 state, SPSR_ELx.DIT is copied to CPSR.DIT.

CPSR.DIT bit can be written using an MSR instruction at any Exception Level in AArch32 state, and read using an
MRS instruction at any Exception Level.

E1.2.6 Jazelle support

The architecture requires AArch32 state to include a trivial implementation of the Jazelle Extension, as described
in Trivial implementation of the Jazelle extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9565
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3 Advanced SIMD and floating-point instructions

In general, the architecture requires implementation of Advanced SIMD and floating-point instructions in the T32
and A32 instruction sets, but see Implications of not including Advanced SIMD and floating-point support.

The Advanced SIMD instructions perform packed Single Instruction Multiple Data (SIMD) operations, either
integer or single-precision floating-point. The floating-point instructions perform single-precision or
double-precision scalar floating-point operations. When FEAT_FP16 is implemented, half-precision floating-point
can also be used for data processing.

These instructions permit floating-point exceptions, such as Overflow or Divide by Zero, to be handled without
trapping. When handled in this way, a floating-point exception causes a cumulative status register bit to be set to 1
and a default result to be produced by the operation. The architecture also optionally supports the trapping of
floating-point exceptions. For more information about floating-point exceptions, see Floating-point exceptions and
exception traps.

The Advanced SIMD and floating-point instructions also provide the following conversion functions:

• Between half-precision floating-point and single-precision floating point, in both directions.

• From double-precision, floating-point to single-precision floating point or integer.

• When FEAT_AA32BF16 is implemented, between single-precision floating-point and BFloat16
floating-point.

Some Advanced SIMD instructions support polynomial arithmetic over {0, 1}, as described in Polynomial
arithmetic over {0, 1}.

For system level information about the Advanced SIMD and floating-point implementation, see Advanced SIMD
and floating-point support.

The following sections give more information about the Advanced SIMD and floating-point instructions:

• Floating-point standards, and terminology.

• The SIMD and floating-point register file.

• Data types supported by the Advanced SIMD implementation.

• Advanced SIMD and floating-point System registers.

• Floating-point data types and arithmetic.

• Flushing denormalized numbers to zero.

• Floating-point exceptions and exception traps.

• Controls of Advanced SIMD operation that do not apply to floating-point operation.

• Implications of not including Advanced SIMD and floating-point support.

• Pseudocode description of floating-point operations.

E1.3.1 The SIMD and floating-point register file

The Advanced SIMD and floating-point instructions use the same register file, which comprises 32 registers. This
is distinct from the register file that holds the general-purpose registers and the PC.

The Advanced SIMD and floating-point views of the register file are different. The following sections describe these
different views. Figure E1-1 shows the views of the register file, and the way the word, doubleword, and quadword
registers overlap.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9566
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3.1.1 Advanced SIMD views of the register file

Advanced SIMD can view this register file as:

• Sixteen 128-bit quadword registers, Q0-Q15.

• Thirty-two 64-bit doubleword registers, D0-D31.

These views can be used simultaneously. For example, a program might hold 64-bit vectors in D0 and D1 and a
128-bit vector in Q1.

E1.3.1.2 Floating-point views of the register file

The Advanced SIMD and floating-point register file consists of thirty-two doubleword registers, which can be
viewed as:

• Thirty-two 64-bit doubleword registers, D0-D31. This view is also available to Advanced SIMD instructions.

• Thirty-two 32-bit single word registers, S0-S31. Only half of the set is accessible in this view.

Note

In AArch32 state, half-precision floating point values are always represented using the bottom 16 bits of a single
word register, S0-S31. When a half-precision value is written to a single word register, the top 16 bits of that register
are set to 0.

The two views can be used simultaneously.

E1.3.1.3 SIMD and Floating-point register file mapping onto registers

Figure E1-1 shows the different views of the SIMD and floating-point register file, and the relationship between
them.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9567
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Figure E1-1 SIMD and floating-point register file, AArch32 operation

The mapping between the registers is as follows:

• S<2n> maps to the least significant half of D<n>.

• S<2n+1> maps to the most significant half of D<n>.

• D<2n> maps to the least significant half of Q<n>.

• D<2n+1> maps to the most significant half of Q<n>.

For example, software can access the least significant half of the elements of a vector in Q6 by referring to D12, and
the most significant half of the elements by referring to D13.

E1.3.1.4 Pseudocode description of the SIMD and Floating-point register file

The functions _Dclone, S[], and D[] provide the S0-S31, D0-D31, and Q0-Q15 views of the Advanced SIMD and
floating-point registers:

The Din[] function returns a doubleword register from the _Dclone[] copy of the SIMD and Floating-point register
file, and the Qin[] function returns a quadword register from that register file.

Note

The CheckAdvSIMDEnabled() function copies the D[] register file to _Dclone[], see Pseudocode description of
enabling SIMD and floating-point functionality.

Floating-point or

Advanced SIMD

D0

D1

D2

D3

D14

D15

D30

D31

D17

D16

Advanced SIMD

only

Q0

Q1

Q7

Q8

Q15

D0-D31 Q0-Q15

S0

S1

S2

S3

S4

S5

S6

S7

S28

S29

S30

S31

Floating-point

only

S0-S31
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9568
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3.2 Data types supported by the Advanced SIMD implementation

Advanced SIMD instructions can operate on integer and floating-point data, and the implementation defines a set
of data types that support the required data formats. Advanced SIMD vector formats in AArch32 state describes these
formats.

E1.3.2.1 Advanced SIMD vectors

In an implementation that includes support for Advanced SIMD operation, a register can hold one or more packed
elements, all of the same size and type. The combination of a register and a data type describes a vector of elements.
The vector is considered to be an array of elements of the data type specified in the instruction. The number of
elements in the vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant end of the
vector. In Advanced SIMD vector formats in AArch32 state, Figure A1-3 shows the Advanced SIMD vector formats.

E1.3.2.1.1 Pseudocode description of Advanced SIMD vectors

The pseudocode function Elem[] accesses the element of a specified index and size in a vector.

E1.3.3 Advanced SIMD and floating-point System registers

The Advanced SIMD and floating-point instructions have a shared register space for System registers. The only
register in this space that is accessible at the Application level is the FPSCR.

Writes to the FPSCR can have side-effects on various aspects of PE operation. All of these side-effects are
synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier instructions in the
Execution stream, and they are guaranteed to be visible to later instructions in the Execution stream.

See Advanced SIMD and floating-point System registers for the system level view of the registers.

These registers can be described as the SIMD and floating-point System registers.

E1.3.4 Floating-point data types and arithmetic

The T32 and A32 floating-point instructions support single-precision (32-bit) and double-precision (64-bit) data
types and arithmetic as defined by the IEEE 754 floating-point standard. They also support the half-precision
(16-bit) floating-point data type for data storage, by supporting conversions between single-precision and
half-precision data types. When FEAT_FP16 is implemented, it also supports the half-precision floating-point data
type for data processing operations. When FEAT_AA32BF16 is implemented, it also supports the BFloat16
floating-point storage format.

Arm standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the restrictions described in
Floating-point support, including supporting only the input and output values described in Arm standard
floating-point input and output values.

The AArch32 Advanced SIMD instructions support single-precision and, when FEAT_FP16 is implemented,
half-precision Arm standard floating-point arithmetic.

The following sections describe the Advanced SIMD and floating-point formats:

• Half-precision floating-point formats.

• Single-precision floating-point format.

• Double-precision floating-point format.

• BFloat16 floating-point format.

The following sections describe features of Advanced SIMD and floating-point processing:

• Flushing denormalized numbers to zero.

• NaN handling and the Default NaN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9569
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3.5 Flushing denormalized numbers to zero

Calculations involving denormalized numbers and Underflow exceptions can reduce the performance of
floating-point processing. For many algorithms, replacing the denormalized operands and Intermediate results with
zeros can recover this performance, without significantly affecting the accuracy of the final result. Arm
floating-point implementations allow denormalized numbers to be flushed to zero to permit this optimization. If a
number satisfies the condition 0 < Abs(result) < MinNorm, it is treated as a denormalized number.

MinNorm is defined as follows:

• For half-precision numbers, MinNorm is 2-14.

• For single-precision and BFloat16 numbers, MinNorm is 2-126.

• For double-precision numbers, MinNorm is 2-1022.

Flushing denormals to zero is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Enabling flushing of denormals to zero must be done with care. Although it can
improve performance on some algorithms, there are significant limitations on its use. These are
application-dependent:

• On many algorithms, it has no noticeable effect, because the algorithm does not usually process denormalized
numbers.

• On other algorithms, it can cause exceptions to occur and can seriously reduce the accuracy of the results of
the algorithm.

E1.3.5.1 Flushing denormalized inputs to zero
If flushing denormalized inputs to zero is enabled for an instruction and a data type, and an input to that instruction
is a denormalized number of that data type, the input operand is flushed to zero, and its sign bit is not changed.
If a floating-point operation has an input denormalized number that is flushed to zero, for all purposes within the
instruction other than calculating Input Denormal floating-point exceptions, all inputs that are denormalized
numbers are treated as though they were zero with the same sign as the input.

For Advanced SIMD and floating-point instructions, other than FABS and FNEG, that process half-precision inputs,
flushing denormalized inputs to zero can be controlled as follows:

• If FPSCR.FZ16 is 0, denormalized half-precision inputs are not flushed to zero.

• If FPSCR.FZ16 is 1, flushing denormalized inputs to zero occurs as follows:

— If an instruction does not convert a half-precision input to a higher precision output, all input
denormalized numbers are flushed to zero.

— If an instruction converts a half-precision input to a higher precision output, input denormalized
numbers are not flushed to zero.

For Advanced SIMD and scalar floating-point instructions, other than FABS and FNEG, that process single-precision,
or double-precision inputs, flushing denormalized inputs to zero can be controlled as follows:

• If FPSCR.FZ is 0, flushing denormalized inputs to zero occurs as follows:

— For Advanced SIMD floating-point instructions, all single-precision and double-precision inputs that
are denormalized numbers are flushed to zero.

— For scalar floating-point instructions, single-precision and double-precision inputs that are
denormalized numbers are not flushed to zero.

• If FPSCR.FZ is 1, for all A32, and T32 instructions, single-precision, and double-precision inputs that are
denormalized numbers are flushed to zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9570
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
If FEAT_AA32BF16 is implemented, for Advanced SIMD and scalar floating-point instructions, other than FABS
and FNEG, that process BF16 inputs, flushing denormalized inputs to zero is treated as follows:

• Instructions that convert from single-precision floating-point values to BF16 format flush denormalized
inputs to zero.

• For any value of FPSCR.FZ, VDOT (vector), VDOT (by element), and VMMLA instructions flush all BF16
inputs that are denormalized numbers to zero.

Flushing to zero of denormalized numbers as Intermediate results of some BF16
instructions

BF16 arithmetic instructions VDOT (by element), VDOT (vector), and VMMLA, convert BF16 input values to
IEEE single-precision format, and calculate N-way dot-products, accumulating the products in single-precision
accumulators.

If FEAT_AA32BF16 is implemented, for Advanced SIMD and floating-point instructions, if a BF16 arithmetic
instruction processes an Intermediate result that is a single-precision denormalized number, the Intermediate result
is unconditionally flushed to zero.

E1.3.5.2 Flushing denormalized outputs to zero
If flushing denormalized outputs to zero is enabled for an instruction and a data type, and an output from that
instruction is a denormalized number of that data type, the output operand is flushed to zero, and its sign bit is not
changed.
If a floating-point operation has an output denormalized number that is flushed to zero, for all purposes within the
instruction other than calculating floating-point exceptions, all outputs that are denormalized numbers are treated
as though they were zero with the same sign as the output.

For Advanced SIMD and floating-point instructions, other than FABS and FNEG, that generate half-precision outputs,
flushing denormalized outputs to zero can be controlled as follows:

• If FPSCR.FZ16 is 0, denormalized half-precision outputs are not flushed to zero.

• If FPSCR.FZ16 is 1, flushing denormalized outputs to zero occurs as follows:

— If the instruction does not convert a half-precision input to a higher precision output, all output
denormalized numbers are flushed to zero.

— If the instruction converts a half-precision input to a higher precision output, output denormalized
numbers are not flushed to zero.

For Advanced SIMD and scalar floating-point instructions, other than FABS and FNEG, that process single-precision,
or double-precision inputs, flushing denormalized outputs to zero can be controlled as follows:

• If FPSCR.FZ is 0, flushing denormalized outputs to zero occurs as follows:

— For Advanced SIMD floating-point instructions, all single-precision and double-precision outputs that
are denormalized numbers are flushed to zero.

— For scalar floating-point instructions, single-precision and double-precision outputs that are
denormalized numbers are not flushed to zero.

• If FPSCR.FZ is 1, for all A32, and T32 instructions, single-precision, and double-precision outputs that are
denormalized numbers are flushed to zero.

If FEAT_AA32BF16 is implemented, for Advanced SIMD and scalar floating-point instructions, other than FABS
and FNEG, that generate BF16 outputs, flushing denormalized outputs to zero can be controlled as follows:

• BF16 arithmetic instructions flush denormalized outputs to zero.

• If FPSCR.FZ is 1, instructions that convert from single-precision floating-point values to BF16 format flush
denormalized outputs to zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9571
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• VDOT (vector), VDOT (by element), and VMMLA instructions flush all BF16 outputs that are denormalized
numbers to zero regardless of the value of FPSCR.FZ.

E1.3.6 NaN handling and the Default NaN

The IEEE 754 standard defines a NaN as a number with all exponent bits set to 1 and a nonzero number in the
mantissa, and specifies that the sign bit of a NaN has no significance.

The Arm architecture additionally defines:

• A BFloat16 NaN, that follows the encoding in BFloat16 floating-point format.

• A Default NaN, compliant with the IEEE 754 standard, that follows the encoding in Table E1-4.

For a Quiet NaN output derived from a signaling NaN operand, the most significant fraction bit is set to 1.

A PE is forbidden to generate a NaN whose value is strongly correlated to the values of non-NaN inputs as a
speculative result of a floating-point calculation not involving NaN inputs.

E1.3.6.1 The Default NaN

The Default NaN is encoded as described inTable E1-4.

If FPSCR.DN is 1, for Advanced SIMD and floating-point instructions other than FABS, FMAX*, FMIN* and FNEG, if any
input to a floating-point operation performed by the instruction is a NaN, the output of the floating-point operation
is the Default NaN.

For FABS, FNEG, FMAX*, and FMIN*, Default NaN behavior is explained in the instruction description.

If FPSCR.DN is 0, for floating-point processing the Default NaN is not used for NaN propagation.

If VDOT (vector), VDOT (by element), and VMMLA instructions generate a NaN, the NaN is the default NaN.
regardless of the setting of FPSCR.DN.

If a floating-point instruction performs a floating-point operation, and that instruction generates an untrapped
Invalid Operation floating-point exception for a reason other than one of the inputs being a signaling NaN, the
output is the Default NaN.

E1.3.6.2 NaN handling

The IEE 754 standard does not specify which input NaN is used as the output NaN. Therefore, where the Arm
architecture specifies which input NaN to use, this is an addition to the requirements in the IEEE 754 standard.

Depending on the operation, the exact value of a derived Quiet NaN output might have both a different sign and a
different number of fraction bits from its source. See instruction descriptions for details.

E1.3.6.3 NaN propagation

If an output NaN is derived from one of the operands, how the input NaN propagates to the output depends on the
instruction and the number of operands.

Table E1-4 Default NaN encoding

Half-precision,

 IEEE format
Single-precision Double-precision BFloat16

Sign bit 0 0 0 0

Exponent 0x1F 0xFF 0x7FF 0xFF

Fraction Bit[9] == 1,

bits[8:0] == 0

Bit[22] == 1,

bits[21:0] == 0

Bit[51] == 1,

bits[50:0] == 0

Bit[6] == 1,

bits[5:0] == 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9572
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
If an output NaN is derived from an input NaN and if the size of the output format is the same as the input format,
then all of the following apply:

• If the input NaN is a Quiet NaN, the output NaN is the same as the input NaN.

• If the input NaN is a signaling NaN, the output NaN is derived as follows:

— If the handling of a signaling NaN by the instruction generates an Invalid Operation exception, the
output NaN is the quieted version of the input NaN.

— If the handling of a signaling NaN by the instruction does not generate an Invalid Operation exception,
the output NaN is the same as the input NaN. This case applies for FABS, FNEG, and FTSSEL
instructions.

If an output NaN is derived from an input NaN and if the size of the output format is larger than the input format,
all of the following apply:

• If the input NaN is a Quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
zero-extended in the low-order bit to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN, except that the
mantissa is zero-extended in the low-order bits and the exponent field is set to all ones.

If an output NaN is derived from an input NaN and if the size of the output format is smaller than the input format,
all of the following apply:

• If the input NaN is a Quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

• If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN except that the
mantissa is truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

For the following descriptions, when an operand is described as first this relates to the left-to-right ordering of the
arguments of the pseudocode function that describes the operation.

If FPSCR.DN is 0, for Advanced SIMD, floating-point, or BF16 instructions that perform a floating-point operation,
other than FABS, FNEG, FMAX*, and FMIN*, NaN outputs that derive from NaN inputs are derived as follows:

• If all of the following apply, an instruction outputs a quiet NaN derived from the first signaling NaN operand:

— At least one operand is a signaling NaN.

— The instruction is not trapped.

• If all of the following apply, an instruction outputs a Quiet NaN derived from the first NaN operand:

— At least one operand is a NaN, but none of the operands is a signaling NaN.

— The instruction is not trapped.

If an output NaN is derived from an input NaN, the pseudocode functions FPAbs(), and FPNeg() can change the sign
of the NaN,

E1.3.7 Rounding

The rounding mode specifies how the exact result of a floating-point operation is rounded to a value in the
destination format.

The rounding mode is either determined by the rounding mode control field FPSCR.RMode or by the instruction.

The rounding mode control field FPSCR.RMode can select the following rounding modes:

• Round to Nearest (RN) mode.

• Round towards Plus Infinity (RP) mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9573
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• Round towards Minus Infinity (RM) mode.

• Round towards Zero (RZ) mode.

The following two additional rounding modes are not selected by FPSCR.RMode, but are used by some
instructions:

• Round to Odd mode.

• Round to Nearest with ties to away mode.

E1.3.7.1 Round to Nearest mode

Round to Nearest rounding mode rounds the exact result of a floating-point operation to a value that is representable
in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity. The sign of the rounded value is the same as the sign of the value before
rounding.

• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the number with an even least significant digit.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the value of the RMode bits.

E1.3.7.2 Round towards Plus Infinity mode

Round towards Plus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not less than the value before rounding. The result can be plus infinity.

E1.3.7.3 Round towards Minus Infinity mode

Round towards Minus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the number in the output format that is closest to and not greater
than the value before rounding. The result can be minus infinity.

E1.3.7.4 Round towards Zero mode

Round towards Zero rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not greater in absolute value than the value before rounding.

E1.3.7.5 Round to Nearest with Ties to Away

Round to Nearest with Ties to Away rounding mode is used by the VCVTA (Advanced SIMD), VCVTA
(floating-point), VRINTA (Advanced SIMD), and VRINTA (floating-point) instructions.

Round to Nearest with Ties to Away rounding mode rounds the exact result of a floating-point operation to a value
that is representable in the destination format as follows:

• If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity, the sign of the rounded value is the same as the sign of the value before rounding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9574
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the larger number.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

E1.3.7.6 Round to Odd mode

Round to Odd mode is not defined by IEEE 754.

For BF16 instructions, if an intermediate format has at least two more bits of precision than the result format, Round
to Odd mode is used and operates as follows:

• If the rounded value is inexact, the least significant bit of the fraction is set to 1.

• If the value is too large to represent in the single-precision format, the rounded value is a single-precision
Infinity, the sign of the rounded value is the same as the sign of the value before rounding.

E1.3.8 Floating-point exceptions and exception traps

Execution of a floating-point instruction, or execution of an Advanced SIMD instruction that performs
floating-point operations, can generate an exceptional condition, called a floating-point exception.

Note

An Advanced SIMD instruction that operates on floating-point values can perform multiple floating-point
operations. Therefore, this section describes the handling of a floating-point exception on an operation, rather than
on an instruction.

The architecture does not support asynchronous reporting of floating-point exceptions.

For each of the following floating-point exceptions, it is IMPLEMENTATION DEFINED whether an implementation
includes synchronous exception generation:

• Input Denormal.

• Inexact.

• Underflow.

• Overflow.

• Divide by Zero.

• Invalid Operation.

If an implementation does not support synchronous exception generation from a floating-point exception, then that
synchronous exception is never generated, and all statements about synchronous exception generation from that
floating-point exception do not apply to the implementation.

If an implementation supports synchronous exception generation for a floating-point exception, then the registers
that are presented to the exception handler are consistent with the state of the PE immediately before the instruction
that caused the exception.

On return from a synchronous floating-point exception, software might not restore the cumulative exception flags.

Trapped floating-point exceptions are taken to the following levels:

• If a trapped floating-point exception occurs at EL0, the exception level it is taken to is as follows:

— If EL2 is using AArch32 and HCR.TGE is 1, the exception is taken to EL2.

— If EL2 is using AArch64 and HCR_EL2.TGE is 1, the exception is taken to EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9575
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
— Otherwise, the exception is taken to EL1

• If a trapped floating-point exception occurs at EL1, it is taken to EL1.

• If a trapped floating-point exception occurs at EL2, it is taken to EL2.

• If a trapped floating-point exception occurs at EL3, it is taken to EL3.

If a trapped floating-point exception is taken to an Exception level that is using AArch64, then it is reported in the
ELR_ELx for the target Exception level, as described in Exception entry.

If the exception is taken to an Exception level that is using AArch32, then it is taken as an Undefined Instruction
exception, see Undefined Instruction exception. The FPEXC identifies the floating-point exceptions that occurred
since the corresponding status bits in that register were last set to 0.

E1.3.8.1 Input Denormal exceptions

The cumulative floating-point exception bit FPSCR.IDC, and the trap enable bit FPSCR.IDE both relate to Input
Denormal exceptions.

If a single-precision or double-precision floating-point input is flushed to zero, an Input Denormal exception is
generated.

If a half-precision floating-point value is flushed to zero, an Input Denormal exception is not generated.

E1.3.8.2 Inexact exceptions

The cumulative floating-point exception bit FPSCR.IXC, and the trap enable bit FPSCR.IXE both relate to Inexact
exceptions.

If a denormalized output is flushed to zero, an Inexact exception is not generated.

If a result is not flushed to zero, and the result does not equal the result computed with unbounded exponent range
and unbounded precision, then an Inexact exception is generated.

E1.3.8.3 Underflow exceptions

The cumulative floating-point exception bit FPSR.UFC, and the trap enable bit FPSCR.UFE both relate to
Underflow exceptions.

For the purpose of underflow floating-point exception generation, a denormalized number is detected before
rounding is applied.

If the result of a floating-point operation is a denormalized number that is not flushed to zero, then the underflow
exception is generated as follows:

• If FPSCR.UFE is 0, and the result is inexact, then the underflow floating-point exception is generated.

• If FPSCR.UFE is 1, for both exact and inexact results, the underflow floating-point exception is generated.

If the result of a floating-point operation is a denormalized number that is flushed to zero, then the Underflow
floating-point exception is generated. The Underflow exception is not trapped regardless of the value of
FPSCR.UFE.

E1.3.8.4 Overflow exceptions

The cumulative floating-point exception bit FPSCR.OFC, and the trap enable bit FPSCR.OFE both relate to
Overflow exceptions.

If the output of an instruction rounded with an unbounded exponent is greater than the maximum normalized
number for the output precision, an overflow exception is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9576
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
If an untrapped Overflow exception is generated, the result is determined by the rounding mode and the sign of the
result before rounding as follows:

• Round to Nearest carries all overflows to infinity with the sign of the result before rounding.

• Round towards Plus Infinity carries negative overflows to the most negative finite number of the output
precision, and carries positive overflows to plus infinity.

• Round towards Minus Infinity carries positive overflows to the largest finite number of the output precision,
and carries negative overflows to minus infinity.

• Round towards Zero carries all overflows to the output precision’s largest finite number with the sign of the
result before rounding.

E1.3.8.5 Divide by Zero exceptions

The cumulative floating-point exception bit FPSCR.DZC, and the trap enable bit FPSCR.DZE both relate to Divide
by Zero exceptions.

If a floating-point operation divides a finite nonzero number by zero, a Divide by Zero exception is generated.

For the purpose of Divide by Zero exception generation, testing for zero occurs after flushing of denormalized
numbers to zero.

A denormalized dividend that is flushed to zero is treated as zero and prevents Divide by Zero from occurring.

If the dividend is a finite nonzero, normalized number, and the divisor is a denormalized number, the divisor is
treated as zero and causes Divide by Zero to occur.

For the reciprocal and reciprocal square root estimate functions, the dividend is assumed to be +1.0. This means that
a zero or denormalized operand to these functions causes generation of a Divide by Zero floating-point exception.

If a floating-point operation divides a finite nonzero number by zero, and the Divide by Zero exception is untrapped,
the result is a correctly signed infinity.

E1.3.8.6 Invalid Operation exceptions

The cumulative floating-point exception bit FPSCR.IOC, and the trap enable bit FPSCR.IOE both relate to Invalid
Operation exceptions.

For any floating-point instruction that performs a floating-point operation, if any of the following apply, the
instruction generates an Invalid Operation exception:

• At least one operand is a signaling NaN, and the instruction is not FABS or FNEG.

• Magnitude subtraction of infinities.

• Multiplying a zero by an infinity.

• Dividing a zero by a zero.

• Dividing an infinity by an infinity.

• Square root of an operand that is less than zero.

For the purpose of Invalid Operation Exception generation, testing for zero occurs after flushing of denormalized
numbers to zero. So a denormalized input that is flushed to zero is treated as zero.

If the input is one of: a Quiet NaN, an infinity, or a number that overflows the values that can be represented in the
output format, and if another exception is not generated to signal the condition, then a conversion from
floating-point to either integer or fixed-point format, generates an Invalid Operation exception.

For the signaling compare instructions FCMPE and FCCMPE, if either of the source operands is any type of NaN,
the instruction generates an Invalid Operation floating-point exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9577
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3.8.7 Floating-point exception traps

For Advanced SIMD instructions, and for floating-point instructions when floating-point exception trapping is not
supported, these are non-trapping exceptions and the data-processing instructions do not generate any trapped
exceptions.

For floating-point instructions when floating-point exception trapping is supported:

• The floating-point exceptions can be trapped, by setting trap enable bits in the FPSCR, see Floating-point
exceptions and exception traps, and:

— When a trap is not enabled the corresponding floating-point exception updates the corresponding
FPSCR cumulative bit, but does not generate an exception.

— When a trap is enabled the corresponding floating-point exception does not update the FPSCR, but
generates an exception. In this case, bits in the FPEXC indicate which floating-point exceptions have
occurred.

• The definition of the Underflow floating-point exception is different in the trapped and cumulative exception
cases. In the trapped case, the definition is:

— The trapped Underflow floating-point exception occurs if the absolute value of the result of an
operation, produced before rounding, is less than the minimum positive normalized number for the
destination precision, regardless of whether the rounded result is inexact.

• As with cumulative exceptions, higher priority trapped exceptions can prevent lower priority exceptions from
occurring, as described in Combinations of floating-point exceptions.

• For Invalid Operation floating-point exceptions, for details of which Quiet NaN is produced as the default
result, see NaN handling and the Default NaN.

• For Overflow floating-point exceptions, the sign bit of the default result is determined normally for the
overflowing operation.

• For Divide by Zero floating-point exceptions, the sign bit of the default result is determined normally for a
division. This means it is the exclusive-OR of the sign bits of the two operands.

Table E1-5 shows the results of untrapped floating-point exceptions. That table uses the following abbreviations:

MaxNorm The maximum normalized number of the destination precision.

RM Round towards Minus Infinity mode, as defined in the IEEE 754 standard.

RN Round to Nearest mode, as defined in the IEEE 754 standard.

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard.

RZ Round towards Zero mode, as defined in the IEEE 754 standard.

For more information about the IEEE 754 descriptions of the rounding modes, see Floating-point standards, and
terminology.

Table E1-5 Results of untrapped floating-point exceptions

Exception type Default result for positive sign Default result for negative sign

IOC, Invalid Operation Quiet NaN Quiet NaN

DZC, Divide by Zero +infinity -infinity

OFC, Overflow RN, RP:

RM, RZ:

+infinity

+MaxNorm

RN, RM:

RP, RZ:

-infinity

-MaxNorm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9578
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
E1.3.8.8 Combinations of floating-point exceptions

Many pseudocode functions perform floating-point operations, including FixedToFP(), FPAdd(), FPCompare(),
FPCompareEQ(), FPCompareGE(), FPCompareGT(), FPDiv(), FPMax(), FPMin(), FPMul(), FPMulAdd(), FPRecipEstimate(),
FPRecipStep(), FPRSqrtEstimate(), FPRSqrtStep(), FPSqrt(), FPSub(), and FPToFixed(). All of these operations can
generate floating-point exceptions.

Note

FPAbs() and FPNeg() are not classified as floating-point operations because:

• They cannot generate floating-point exceptions.

• The floating-point operation behavior described in the following sections does not apply to them:

— Flushing denormalized numbers to zero.

— NaN handling and the Default NaN.

More than one exception can occur on the same operation. The only combinations of floating-point exceptions that
can occur are:

• Overflow with Inexact.

• Underflow with Inexact.

• Input Denormal with other floating-point exceptions.

The priority order of these floating-point exceptions is that the Inexact exception is treated as lowest priority, and
the Input Denormal exception is treated as highest priority.

When none of the floating-point exceptions caused by an operation is trapped, any floating-point exception that
occurs causes the associated cumulative bit in the FPSCR to be set.

When one or more floating-point exceptions caused by an operation is trapped, the behavior of the instruction
depends on the priority of the exceptions:

• If the higher priority floating-point exception is trapped, its trap handler is called. It is IMPLEMENTATION
DEFINED whether any information about the lower priority floating-point exception is provided.

Note

Information about the lower priority floating-point exception might be provided in:

— The FPEXC, if the exception generated by the trap is taken to an Exception level that is using
AArch32.

— The ESR_ELx.ISS field, if the exception generated by the trap is taken to an Exception level that is
using AArch64.

However, information might be provided in another IMPLEMENTATION DEFINED way, for example using an
IMPLEMENTATION DEFINED register.

Apart from this, the lower priority floating-point exception is ignored in this case.

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal Normal rounded result Normal rounded result

Table E1-5 Results of untrapped floating-point exceptions (continued)

Exception type Default result for positive sign Default result for negative sign
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9579
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• If the higher priority floating-point exception is untrapped, its cumulative bit is set to 1 and its default result
is evaluated. Then the lower priority floating-point exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the pseudocode
descriptions of the instruction. In such cases, a floating-point exception on one operation is treated as higher priority
than a floating-point exception on another operation if the occurrence of the second floating-point exception
depends on the result of the first operation. Otherwise, it is CONSTRAINED UNPREDICTABLE which floating-point
exception is treated as higher priority.

For example, a VMLA.F32 instruction specifies a floating-point multiplication followed by a floating-point addition.
The addition can generate Overflow, Underflow and Inexact floating-point exceptions, all of which depend on both
operands to the addition and so are treated as lower priority than any floating-point exception on the multiplication.
The same applies to Invalid Operation floating-point exceptions on the addition caused by adding opposite-signed
infinities. The addition can also generate an Input Denormal floating-point exception, caused by the addend being
a denormalized number while in Flush-to-zero mode. It is CONSTRAINED UNPREDICTABLE which of an Input
Denormal floating-point exception on the addition and a floating-point exception on the multiplication is treated as
higher priority, because the occurrence of the Input Denormal floating-point exception does not depend on the result
of the multiplication. The same applies to an Invalid Operation floating-point exception on the addition caused by
the addend being a signaling NaN.

Note

The VFMA instruction performs a vector addition and a vector multiplication as a single operation. The VFMS
instruction performs a vector subtraction and a vector multiplication as a single operation.

E1.3.9 Controls of Advanced SIMD operation that do not apply to floating-point operation

Earlier architectures permitted implementation of either, both, or neither of the Advanced SIMD and floating-point
additions to the base instruction set, and provided some controls that applied to the Advanced SIMD functionality
but not to the floating-point functionality. From the introduction of Armv8, Advanced SIMD functionality cannot
be separated from floating-point functionality, but in AArch32 state these controls function as they did in earlier
architectures. This means they apply only to the following instructions and instruction encodings:

• All instructions with encodings defined in:

— Advanced SIMD data-processing, for the T32 instruction set.

— Advanced SIMD data-processing, for the A32 instruction set.

• All instructions with encodings defined in:

— Advanced SIMD element or structure load/store, for the T32 instruction set.

— Advanced SIMD element or structure load/store, for the A32 instruction set.

• The form of the VDUP instruction described in VDUP (general-purpose register).

• The byte and halfword forms of the VMOV instructions described in each of:

— VMOV (general-purpose register to scalar).

— VMOV (scalar to general-purpose register).

The controls of this functionality are:

• The CPACR.ASEDIS field.

• The HCPTR.TASE field.

In an implementation that supports Advanced SIMD functionality, support for each of these controls is optional:

• If the CPACR.ASEDIS control is not supported then the CPACR.ASEDIS field is RAZ/WI. This is
equivalent to the control permitting the execution of Advanced SIMD instructions at EL1 and EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9580
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• If the HCPTR.TASE control is not supported then the HCPTR.TASE field is RAZ/WI. This means the
HCPTR does not provide a control that can trap Non-secure execution of Advanced SIMD instructions to
Hyp mode.

E1.3.10 Implications of not including Advanced SIMD and floating-point support

In general, the architecture requires the inclusion of the Advanced SIMD and floating-point instructions in all
instruction sets. Exceptionally, for implementation targeting specialized markets, Arm might produce or license an
Armv8-A implementation that does not provide any support for Advanced SIMD and floating-point instructions. In
such an implementation, in AArch32 state:

• Each of the CPACR.{cp10, cp11} fields is RES0.

• The CPACR.ASEDIS bit is RES0.

• Each of the HCPTR.{TASE, TCP10, TCP11} fields is RES1.

• Each of the NSACR.{NSASEDIS, cp10, cp11} fields is RES0.

• The FPEXC register is UNDEFINED.

E1.3.11 Pseudocode description of floating-point operations

The following subsections contain pseudocode definitions of the floating-point functionality supported by the
architecture:

• Generation of specific floating-point values.

• Floating-point negation and absolute value.

• Floating-point value unpacking.

• Floating-point exception and NaN handling.

• Floating-point rounding.

• Selection of Arm standard floating-point arithmetic.

• Floating-point comparisons.

• Floating-point maximum and minimum.

• Floating-point addition and subtraction.

• Floating-point multiplication and division.

• Floating-point fused multiply-add.

• Floating-point reciprocal estimate and step.

• Floating-point square root.

• Floating-point reciprocal square root estimate and step.

• Floating-point conversions.

E1.3.11.1 Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument is '0' for the
positive version and '1' for the negative version:

• FPInfinity().

• FPMaxNormal().
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9581
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
• FPZero().

• FPTwo().

• FPThree().

• FPDefaultNaN().

E1.3.11.2 Floating-point negation and absolute value

The floating-point negation and absolute value operations affect only the sign bit. They do not treat NaN operands
specially, nor denormalized number operands when flush-to-zero is selected.

The floating-point negation operation is described by the pseudocode function FPNeg(). The floating-point absolute
value operation is described by the pseudocode function FPAbs().

E1.3.11.3 Floating-point value unpacking

The FPUnpack() function determines the type of a floating-point number, defined by FPType{}, and its numerical
value. It also does flush-to-zero processing on input operands.

E1.3.11.4 Floating-point exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it
accordingly. The floating-point exception types are defined by FPExc{}.

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an Invalid
Operation floating-point exception if necessary. The FPProcessNaNs() function performs the standard NaN
processing for a two-operand operation. The FPProcessNaNs3() function performs the standard NaN processing for
a three-operand operation.

E1.3.11.5 Floating-point rounding

The FPRound() function rounds and encodes a floating-point result to a specified destination format. This includes
processing Overflow, Underflow and Inexact floating-point exceptions and performing flush-to-zero processing on
result values.

E1.3.11.6 Selection of Arm standard floating-point arithmetic

The StandardFPCR() function returns the FPSCR value that selects Arm standard floating-point arithmetic. Most of
the arithmetic functions have a Boolean fpscr_controlled argument that is TRUE for Floating-point operations and
FALSE for Advanced SIMD operations, and that selects between using the real FPSCR value and this value.

E1.3.11.7 Floating-point comparisons

The FPCompare() function compares two floating-point numbers, producing a {N, Z, C, V} Condition flags result as
shown in Table E1-6:

Table E1-6 Effect of a Floating-point comparison on the Condition flags

Comparison result N Z C V

Equal 0 1 1 0

Less than 1 0 0 0

Greater than 0 0 1 0

Unordered 0 0 1 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9582
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
This result defines the operation of the VCMP floating-point instruction. The VCMP instruction writes these flag values
in the FPSCR. After using a VMRS instruction to transfer them to the APSR, they can control conditional execution
as shown in Table F1-1.

The FPCompareEQ(), FPCompareGE(), and FPCompareGT() functions describe the operation of Advanced SIMD
instructions that perform floating-point comparisons.

E1.3.11.8 Floating-point maximum and minimum

The FPMax() function returns the maximum of two floating-point numbers. The FPMin() function returns the
minimum of two floating-point numbers.

E1.3.11.9 Floating-point addition and subtraction

The FPAdd() function adds two floating-point numbers. The FPSub() function subtracts one floating-point number
from another floating-point number.

E1.3.11.10 Floating-point multiplication and division

The FPMul() function multiplies two floating-point numbers. The FPDiv() function divides one floating-point
number by another floating-point number.

E1.3.11.11 Floating-point fused multiply-add

The FPMulAdd() function performs a floating-point fused multiply-add.

E1.3.11.12 Floating-point reciprocal estimate and step

The Advanced SIMD implementation includes instructions that support Newton-Raphson calculation of the
reciprocal of a number.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the pseudocode functions:

• FPRecipEstimate().

• UnsignedRecipEstimate().

Table E1-7 shows the results where input values are out of range.

The Newton-Raphson iteration:

xn+1 = xn(2-dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

Table E1-7 VRECPE results for out of range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= 0x7FFFFFFF 0xFFFFFFFF

Floating-point NaN Default NaN

Floating-point ±0 or denormalized number ±infinity a

a. FPSCR.DZC is set to 1

Floating-point ±infinity ±0

Floating-point Absolute value >= 2126 ±0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9583
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
The VRECPS instruction performs a (2 - op1×op2) calculation and can be used with a multiplication to perform a step
of this iteration. The functionality of this instruction is defined by the FPRecipStep() pseudocode function.

Table E1-8 shows the results where input values are out of range.

E1.3.11.13 Floating-point square root

The FPSqrt() function returns the square root of a floating-point number.

E1.3.11.14 Floating-point reciprocal square root estimate and step

The Advanced SIMD implementation includes instructions that support Newton-Raphson calculation of the
reciprocal of the square root of a number.

The VRSQRTE instruction produces the initial estimate of the reciprocal of the square root. It uses the pseudocode
functions:

• FPRSqrtEstimate().

• UnsignedRSqrtEstimate().

Table E1-9 shows the results where input values are out of range.

The Newton-Raphson iteration:

xn+1 = xn(3-dxn2)/2

converges to (1/√d) if x0 is the result of VRSQRTE applied to d.

The VRSQRTS instruction performs a (3 – op1×op2)/2 calculation and can be used with two multiplications to perform
a step of this iteration. The functionality of this instruction is defined by the FPRSqrtStep() pseudocode function.

Table E1-8 VRECPS results for out of range inputs

Input Vn[i] Input Vm[i] Result Vd[i]

Any NaN - Default NaN

- Any NaN Default NaN

±0.0 or denormalized number ±infinity 2.0

±infinity ±0.0 or denormalized number 2.0

Table E1-9 VRSQRTE results for out of range inputs

Number type Input Vm[i] Result Vd[i]

Integer <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN, –(normalized number), –infinity Default NaN

Floating-point –0 or –(denormalized number) – infinity a

a. FPSCR.DZC is set to 1.

Floating-point +0 or +(denormalized number) +infinity a

Floating-point +infinity +0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9584
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.3 Advanced SIMD and floating-point instructions
Table E1-10 shows the results where input values are out of range.

FPRSqrtStep() calls the FPHalvedSub() pseudocode function.

E1.3.11.15 Floating-point conversions

The FPConvert() pseudocode function performs conversions between half-precision, single-precision, and
double-precision floating-point numbers.

The FPToFixed() and FixedToFP() functions perform conversions between floating-point numbers and integers or
fixed-point numbers.

Table E1-10 VRSQRTS results for out of range inputs

Input Vn[i] Input Vm[i] Result Vd[i]

Any NaN - Default NaN

- Any NaN Default NaN

±0.0 or denormalized number ±infinity 1.5

±infinity ±0.0 or denormalized number 1.5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9585
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.4 About the AArch32 System register interface
E1.4 About the AArch32 System register interface

AArch32 state provides a System register encoding space, which is indexed by the parameter set {coproc, opc1, CRn,
CRm, opc2}, and a set of System register access instructions. This encoding space is used for:

• System registers.

• System instructions, for:

— Cache and branch predictor maintenance.

— Address translation.

— TLB maintenance.

This encoding space uses only the coproc values 0b111x.

Note

The encoding space with coproc values 0b101x is redefined to provide Advanced SIMD and floating-point
functionality.

The coproc encodings provide access to System register encoding space as follows:

• The (coproc==0b1111) encodings provide system control functionality, by providing access to System
registers and System instructions. This includes architecture and feature identification, as well as control,
status information and configuration support.

The following sections give a general description of these encodings:

— About the System registers for VMSAv8-32.

— Organization of registers in the (coproc==0b1111) encoding space.

— Functional grouping of VMSAv8-32 System registers.

These encodings also provide:

— The Performance Monitor registers. For more information, see Chapter D13 The Performance
Monitors Extension.

The Activity Monitor registers. For more information, see Chapter D15 The Activity Monitors
Extension.

• The (coproc==0b1110) encodings provide access to additional registers, which support:

— Debug, see Chapter G2 AArch32 Self-hosted Debug.

— The Jazelle identification registers, see Jazelle support.

UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System
register accesses gives information more information about permitted accesses to the System registers in AArch32
state.

Most functionality in the (coproc==0b111x) encoding space cannot be accessed by software executing at EL0. This
manual clearly identifies those functions that can be accessed at EL0.

For more information:

• About this encoding space, including the naming of the parameters that index the space, see The AArch32
System register interface.

• About the System interface access instructions, see System register access instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9586
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.5 Exceptions
E1.5 Exceptions

The Arm architecture uses the following terms to describe various types of exceptional condition:

Exceptions In the Arm architecture, an exception causes entry to EL1, EL2, or EL3. If the Exception level that
is entered is using AArch32, it also causes entry to the PE mode in which the exception must be
taken. A software handler for the exception is then executed.

Note
The term floating-point exception does not use this meaning of exception. This term is described
later in this list.

Exceptions include:

• Reset.

• Interrupts.

• Memory system aborts.

• Undefined instructions.

• Supervisor calls (SVCs), Secure Monitor calls (SMCs), and Hypervisor calls (HVCs).

• Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in
Handling exceptions that are taken to an Exception level using AArch32. In an implementation that
includes all the Exception levels, aspects that are visible to application level software are:

• The SVC instruction causes a Supervisor Call exception. This provides a mechanism for
unprivileged software to make a call to the operating system, or other system component that
is accessible only at EL1.

• The SMC instruction causes a Secure Monitor Call exception, but only if software execution is
at EL1 or higher. Unprivileged software can only cause a Secure Monitor Call exception by
methods defined by the operating system, or by another component of the software system
that executes at EL1 or higher.

• The HVC instruction causes a Hypervisor Call exception, but only if software execution is at
EL1 or higher. Unprivileged software can only cause a Hypervisor Call exception by methods
defined by the hypervisor, or by another component of the software system that executes at
EL1 or higher.

• The BKPT instruction causes a Breakpoint Instruction exception, which is taken as a Prefetch
Abort exception. This provides a mechanism for a debugger to insert breakpoints into
unprivileged software, or for unprivileged software to make a call into a debugger that is
accessible at EL1.

• The WFI (Wait for Interrupt) instruction provides a hint that nothing needs to be done until an
interrupt or another WFI wakeup event occurs, see Wait For Interrupt. This means the
hardware might enter a low-power state until the wakeup event occurs.

• The WFE (Wait for Event) instruction provides a hint that nothing needs to be done until either
an SEV instruction generates an event, or another WFE wakeup event occurs, see Wait For
Event and Send Event. This means the hardware might enter a low-power state until the
wakeup event occurs.

Floating-point exceptions

These relate to exceptional conditions encountered during floating-point arithmetic, such as Divide
by Zero or Overflow. For more information, see:

• Floating-point exceptions and exception traps.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9587
ID032224 Non-Confidential

The AArch32 Application Level Programmers’ Model
E1.5 Exceptions
• The FPEXC and FPSCR register descriptions.

• ANSI/IEEE Std. 754, IEEE Standard for Binary Floating-Point Arithmetic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E1-9588
ID032224 Non-Confidential

Chapter E2
The AArch32 Application Level Memory Model

This chapter gives an application level description of the memory model for software executing in AArch32 state.
This means it describes the memory model for execution in EL0 when EL0 is using AArch32 in the following
sections:

• About the Arm memory model.

• Atomicity in the Arm architecture.

• Definition of the memory model.

• Ordering of translation table walks.

• Caches and memory hierarchy.

• Alignment support.

• Endian support.

• Memory types and attributes.

• Mismatched memory attributes.

• Synchronization and semaphores

Note

In this chapter, System register names usually link to the description of the register in Chapter G8 AArch32 System
Register Descriptions, for example SCTLR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9589
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.1 About the Arm memory model
E2.1 About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of
memory accesses in a different order from the program order. The following sections of this chapter provide the
complete definition of the memory model, this introduction is not intended to contradict the definition found in those
sections. In general, the basic principles of the memory model are:

• To provide a memory model that has similar weaknesses to those found in the memory models used by
high-level programming languages such as C or Java. For example, by permitting independent memory
accesses to be reordered as seen by other observers.

• To avoid the requirement for multi-copy atomicity in the majority of memory types.

• The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the
cases where it would be needed.

• The use of address, data, and control dependencies in the creation of order so as to avoid having excessive
numbers of barriers or other explicit instructions in common situations where some order is required by the
programmer or the compiler.

This section contains:

• Address space.

• Memory type overview.

E2.1.1 Address space

Address calculations are performed using 32-bit registers. Supervisory software determines the valid address range.

Attempting to access an address that is not valid generates an MMU fault.

Address calculations are performed modulo 232.

The result of an address calculation is UNKNOWN if it overflows or underflows the 32-bit address range A[31:0].

Memory accesses use the MemA[], MemO[], MemU[], and MemU_unpriv[] pseudocode functions:

• The MemA[] function makes an aligned access of the required type.

• The MemO[] function makes an ordered access of the required type.

• The MemU[] function makes an unaligned access of the required type

• The MemU_unpriv[] function makes an unaligned, unprivileged access of the required type.

Each of these functions calls Mem_with_type[] function, which specifies the required access. This calls
AArch32.MemSingle[], which performs an atomic, little-endian read of size bytes.

The AccessDescriptor type defines the different access types and attributes.

Note

• Chapter G4 The AArch32 System Level Memory Model and Chapter G5 The AArch32 Virtual Memory System
Architecture include descriptions of memory system features that are transparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also reference pseudocode descriptions of these operations.

• For references to the pseudocode that relates to memory accesses, see Basic memory access, Unaligned
memory access, and Aligned memory access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9590
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.1 About the Arm memory model
E2.1.2 Memory type overview

The architecture provides the following mutually-exclusive memory types:

Normal This is generally used for bulk memory operations, both read/write and read-only operations.

Device The Arm architecture forbids speculative reads of any type of Device memory. This means Device
memory types are suitable attributes for read-sensitive locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

• They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering.

• They preserve the access order and synchronization requirements, both for accesses to a
single peripheral and where there is a synchronization requirement on the observability of
one or more memory write and read accesses. See Reordering

• They indicate whether a write can be acknowledged other than at the end point. See Early
Write Acknowledgement.

For more information on Normal memory and Device memory, see Memory types and attributes.

Note

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-ordered memory type.
A Note in Device memory describes how these memory types map onto the memory types used from the
introduction of Armv8.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9591
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
E2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to
two types of atomicity, single-copy atomicity and multi-copy atomicity. The atomicity requirements for memory
accesses depend on the memory type, and whether the access is explicit or implicit. For more information, see:

• Requirements for single-copy atomicity.

• Properties of single-copy atomic accesses.

• Multi-copy atomicity.

• Requirements for multi-copy atomicity.

• Concurrent modification and execution of instructions.

For more information about the memory types, see Memory type overview.

E2.2.1 Requirements for single-copy atomicity

In AArch32 state, the single-copy atomic PE accesses are:

• All byte accesses.

• All halfword accesses to halfword-aligned locations.

• All word accesses to word-aligned locations.

• Memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDRD, STM, STC, STRD, PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR instructions are executed as a sequence
of word-aligned word accesses. Each 32-bit word access is guaranteed to be single-copy atomic. The architecture
does not require subsequences of two or more word accesses from the sequence to be single-copy atomic.

LDRD and STRD accesses to 64-bit aligned locations are 64-bit single-copy atomic as seen by translation table walks
and accesses to translation tables.

Note

This requirement has been added to avoid the need for complex measures to avoid atomicity issues when changing
translation table entries, without creating a requirement that all locations in the memory system are 64-bit
single-copy atomic. This addition means:

• The system designer must ensure that all writable memory locations that might be used to hold translations,
such as bulk SDRAM, can be accessed with 64-bit single-copy atomicity.

• Software must ensure that translation tables are not held in memory locations that cannot meet this atomicity
requirement, such as peripherals that are typically accessed using a narrow bus.

This requirement places no burden on read-only memory locations for which reads have no side effects, since it is
impossible to detect the size of memory accesses to such locations.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the element or
structure size. The architecture requires the element accesses to be single-copy atomic if and only if both:

• The element size is 32 bits, or smaller.

• The elements are naturally-aligned.

Accesses to 64-bit elements or structures that are 32-bit aligned are executed as a sequence of 32-bit accesses, each
of which is single-copy atomic. The architecture does not require subsequences of two or more 32-bit accesses from
the sequence to be single-copy atomic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9592
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
When an access is not single-copy atomic by the rules described in this section, it is executed as a sequence of one
or more accesses that aggregate to the size of the original access. Each of the accesses in this sequence is single-copy
atomic, at least at the byte level.

Note

In this section, the terms before the write operation and after the write operation mean before or after the write
operation has had its effect on the coherence order of the bytes of the memory location accessed by the write
operation.

If, according to these rules, an instruction is executed as a sequence of accesses, a synchronous Data Abort exception
or Debug state entry can be taken during that sequence. This causes execution of the instruction to be abandoned.
See Data Abort exception and, when FEAT_LSMAOC is implemented, Taking an interrupt or other exception
during a multiple-register load or store.

If the synchronous Data Abort exception is returned from using the preferred return address, the instruction that
generated the sequence of accesses is re-executed and so any access that was performed before the exception was
taken is repeated. This also applies to an exit from Debug state.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes to
memory for the purpose of software synchronization.

For implicit accesses:

• Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or instruction
fetches.

• Instruction fetches are single-copy atomic:

— At 32-bit granularity in A32 state.

— At 16-bit granularity in T32 state.

Concurrent modification and execution of instructions describes additional constraints on the behavior of
instruction fetches.

• Translation table walks are performed using accesses that are single-copy atomic:

— At 32-bit granularity when using Short-descriptor format translation tables.

— At 64-bit granularity when using Long-descriptor format translation tables.

E2.2.2 Properties of single-copy atomic accesses

A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one
of the stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one
of the overlapping reads generated by L1 Reads-from-memory one of the overlapping writes generated by
S2, then none of the overlapping writes generated by S2 are Coherence-after the corresponding overlapping
reads generated by L1.

For more information, see Definition of the memory model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9593
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
E2.2.3 Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

• All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

• A read of a location does not return the value of a write until all observers observe that write.

Note

Writes that are not coherent are not multi-copy atomic.

E2.2.4 Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory, writes are not required to be multi-copy atomic.

The memory model is Other-multi-copy-atomic. For more information, see External ordering constraints.

E2.2.5 Concurrent modification and execution of instructions

The architecture limits the set of instructions that can be executed by one thread of execution as they are being
modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where the instruction before modification and the instruction after modification are:

• When executing the A32 instruction set, a B, BKPT, BL, HVC, ISB, NOP, SMC, or SVC instruction.

• When executing the T32 instruction set. a 16-bit B, BKPT, BLX, BX, NOP, or SVC instruction.

In addition, for the 32-bit T32 instructions, for which Instruction encodings describes the meaning of {hw1, hw2}:

• hw1 of a 32-bit BL (immediate) instruction can be concurrently modified to hw1 of another BL (immediate)
instruction:

— This means that some of the most significant bits of the immediate value can be modified.

• hw1 of a 32-bit BLX (immediate) instruction can be concurrently modified to hw1 of another BLX immediate
instruction:

— This means that some of the most significant bits of the immediate value can be modified.

• hw1 of a 32-bit BL (immediate) or BLX (immediate) instruction can be concurrently modified to a T32 16-bit B,
BX, BLX, BKPT, or SVC instruction. This modification also works in reverse.

• hw2 of a 32-bit BL (immediate) instruction can be concurrently modified to hw2 of another BL (immediate)
instruction with a different immediate:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit BLX (immediate) instruction can be concurrently modified to hw2 of another BLX (immediate)
instruction with a different immediate:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit B (immediate) instruction with a condition field can be concurrently modified to hw2 of another
32-bit B (immediate) instruction with a condition field with a different immediate:

— This means that some bits of the immediate value, including the least significant bits, can be modified.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9594
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
• hw2 of a 32-bit B (immediate) instruction without a condition field can be concurrently modified to hw2 of
another 32-bit B (immediate) instruction without a condition field:

— This means that some bits of the immediate value, including the least significant bits, can be modified.

Note

• In the T32 instruction set:

— The only encodings of BKPT and SVC are 16-bit.

— The only encoding of BL is 32-bit.

• The ISB instruction can be concurrently modified and executed in the A32 and A64 instruction sets, but not
in the T32 instruction set.

For the instructions explicitly identified in this section, the architecture guarantees that, after modification of the
instruction, behavior is consistent with execution of either:

• The instruction originally fetched.

• A fetch of the modified instruction.

The instructions to which this applies are the B, BL, NOP, BKPT, SVC, HVC, and SMC instructions.

For both instruction sets, if one thread of execution changes a conditional branch instruction to another conditional
branch instruction, and the change affects both the condition field and the branch target, execution of the changed
instruction by another thread of execution before the change is synchronized can lead to either:

• The old condition being associated with the new target address.

• The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, is the always condition.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction
modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the
following sequence of instructions and operations:

; Coherency example for self-modifying code
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first
; line instead of STR for a 16-bit instruction.
STR <Rt>, [Rn]
DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
DSB ; Ensure visibility of the data stored
ICIMVAU Rn ; Invalidate instruction cache by VA to PoU
BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
DSB

Note

• The DCCMVAU operation is not required if the area of memory is either Non-cacheable or Write-Through
Cacheable.

• If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs
can cause the instructions to be concurrently modified by one PE and executed by another PE. If the
modifications affect instructions other than those listed as being acceptable for modification,
synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9595
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.2 Atomicity in the Arm architecture
3. In a multiprocessor system, the ICIMVAU and BPIMVA are broadcast to all PEs within the Inner Shareable domain
of the PE running this sequence. However, once the modified instructions are observable, each PE that is
executing the modified instructions must issue the following instruction to ensure execution of the modified
instructions:

 ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses.

For information about memory accesses caused by instruction fetches, see External ordering constraints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9596
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
E2.3 Definition of the memory model

This section describes observation and ordering in the memory model. It contains the following subsections:

• Basic and dependency definitions.

• Ordering relations and constraints.

• Ordering of instruction fetches.

• Restrictions on the effects of speculation.

• Memory barriers.

For more information on endpoint ordering of memory accesses, see Reordering.

In the memory model, the Shareability memory attribute indicates the degree to which hardware must ensure
memory coherency between a set of observers, see Memory types and attributes.

The architecture defines additional memory attributes and associated behaviors, which are defined in the system
level section of this manual. See:

• Chapter G4 The AArch32 System Level Memory Model.

• Chapter G5 The AArch32 Virtual Memory System Architecture.

See also Mismatched memory attributes.

E2.3.1 Basic and dependency definitions

The memory model provides a set of definitions that are used to construct conditions on the permitted sequences of
accesses to memory. See Definition of the Arm memory model for more information.

E2.3.2 Ordering relations and constraints

 See Definition of the Arm memory model for more information.

E2.3.3 Ordering of instruction fetches

For two memory locations A and B, if A has been written to with an updated value and been made coherent with
the instruction fetches of the shareability domain before B has been written to with an updated value by an observer
in the same shareability domain, then where, for an observer in the shareability domain, an instruction read from B
appears in program order before an instruction fetched from A, if the instruction read from B contains the updated
value of B then the instruction read from A appearing later in program order will contain the updated value of A.

A write has been made coherent with an instruction fetch of a shareability domain when:

CTR.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9597
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
Note

Microarchitecturally, this means that these situations cannot both be true in an implementation:

• After delays in fetching from memory, the instruction queue can have entries written into it out of order.

• For an implementation:

— When CTR.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries in the
instruction queue are not impacted by the ICIMVAU instructions of a different core.

— When CTR.DIC == 1, if there is a write to the location that is held in the queue when there is an
outstanding entry in the instruction queue for an older entry, then the instruction queue does not have
entries invalidated from it.

E2.3.4 Restrictions on the effects of speculation

The Arm architecture places certain restrictions on the effects of speculation. These are:

• Each load from a location using a particular VA after an exception return that is a Context Synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception exit.

• Each load from a location using a particular VA after an exception entry that is a Context Synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception entry.

• Any load from a location using a particular VA before an exception entry that is a Context Synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
entry.

• Any load from a location using a particular VA before an exception return that is a Context Synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
exit.

• When data is loaded under speculation with a Translation fault, it cannot be used to form an address or
generate condition codes to be used by other instructions in the speculative sequence.

• When data is loaded under speculation from a location that does not have a valid translation for the translation
regime being speculated in, the data cannot be used to form an address or generate condition codes to be used
by other instructions in the speculative sequence.

• When data is loaded as a result of speculative accesses made after TLBI + DSB + ERET using a translation that
was invalidated by the TLBI, the data cannot be used to form an address, generate condition codes, or
generate SVE predicate values to be used by other instructions in the speculative sequence. The execution
timing of any other instructions in the speculative sequence is not a function of the data loaded.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the microarchitectural state.

• Changes to Special-purpose registers can occur speculatively.

• Execute-never controls apply to speculative instruction fetching. See Access permissions for instruction
execution.

• When writing new instructions to memory, there is no requirement for an SB instruction to prevent speculative
execution of the old code. See Instruction cache maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9598
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
Note

The prohibition of using data loaded under speculation with faults to form addresses, condition codes or SVE
predicate values does not prohibit the use of value predicted data from such locations for such purposes, so long as
the training of the data value prediction was from the hardware defined context that is using the prediction. A
consequence of this is that training of value prediction cannot be based on data loaded under speculation with a
translation or Permission fault.

E2.3.4.1 Speculative Store Bypass Safe (SSBS)

When FEAT_SSBS is implemented, CPSR.SSBS is a control that can be set by software to indicate whether
hardware is use, in a manner that is potentially speculatively exploitable, a speculative value in a register that has
been loaded from memory using a load instruction that speculatively read an entry for the location being loaded
from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by
the latest store to that location using the same virtual address as the load instruction.

A speculative value in a register is used in a potentially speculatively exploitable manner if it is used to form an
address, generate condition codes, or generate SVE predicate values to be used by other instructions in the
speculative sequence or if the execution timing of any other instructions in the speculative sequence is a function of
the data loaded under speculation.

When the value of CPSR.SSBS is 0, hardware is not permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of CPSR.SSBS is 1, hardware is permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

Note

• If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads
of address values that have been speculatively loaded from memory to a register.

• Software written for architectures from Armv8.0 to Armv8.4 will set SPSR.SSBS to 0. This means that
CPSR.SSBS will not set, so hardware will not be permitted to use speculative loads with outstanding memory
disambiguation issues for any subsequent speculative memory accesses if there is any possibility of those
subsequent memory accesses creating a cache timing side channel.

E2.3.4.2 Definition of exploitative control of speculative execution

The execution of some code (code1) can exploitatively control speculative execution of some other code (code2) if
and only if all of the following apply:

• The actions of code1 can influence, in a manner that is not hard-to-determine, the prediction of multi-bit
values that determine speculative execution of code2 to cause an irreversible change to the microarchitectural
state of the PE that is indicative of some architectural state accessible to the execution context of code2.

• code1 has control in determining the choice of the architectural state that the irreversible change to the
microarchitectural state is indicative of.

• The irreversible changes to the microarchitectural state of the PE can be measured by code executing in an
execution context other than that of code2 to allow the retrieval of the architectural state in a computationally
feasible manner that is not hard-to-determine.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9599
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
E2.3.4.3 Definition of exploitative predictive leakage

The execution of some code (code1) can predictively leak to some other code (code2) if and only if all of the
following apply:

• The execution of code1 influences, in a manner that is not hard-to-determine, the predictive
microarchitectural structures of the implementation that predict multi-bit values, not binary choices, to
behave in a way that is indicative of some architectural state accessible to the execution context of code1.

• The predictive microarchitectural structures of the implementation impact the timing of the speculative
execution of code2 in a way that enables code2 to recover the architectural state in a manner that is not
hard-to-determine.

• code1 and code2 are not collaborating to communicate using the mechanisms in the previous two bullets.

Note

Mechanisms to prevent the influence and the state recovery being “not hard-to-determine” are left open to
implementations. Examples could include the complete separation of prediction resources, or the isolation of the
predictions using a cryptographic or pseudo-random mechanism to separate each context.

E2.3.4.4 Further restrictions on the effects of speculation from Armv8.5

Further restrictions on speculation are introduced by some additional architectural features as described here.

FEAT_CSV3 introduces these restrictions:

• Data loaded under speculation with a Permission or Domain fault cannot be used to form an address or
generate condition codes to be used by other instructions in the speculative sequence.

• Any read under speculation from a register that is not architecturally accessible from the current Exception
level cannot be used to form an address or to generate condition codes to be used by other instructions in the
speculative sequence.

Note

As the effects of speculation are not architecturally visible, this restriction level requires that the effect of any
speculation cannot give rise to side channels that will leak the values of memory locations, System registers,
or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the microarchitectural state.

Note

Changes to Special-purpose registers can occur speculatively.

FEAT_CSV2 and FEAT_CSV2_1p1 introduce a range of additional restrictions:

If FEAT_CSV2 is implemented:

• Code running in one hardware-defined context (context1) cannot either exploitatively control, or predictively
leak to, the speculative execution of code in a different hardware-defined context (context2), as a result of
the behavior of any of the following resources:

— Branch target prediction based on the branch targets used in context1.

— This applies to both direct and indirect branches, including return instructions, but excludes the
prediction of the direction of a conditional branch.

— Data Value predictions based on data value from execution in context1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9600
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
Note

The prediction of the PSTATE.{N,Z,C,V} values is not considered a data value for this purpose.

— Virtual address-based cache prefetch predictions generated as a result of execution in context1.

— Any other prediction mechanisms, other than Branch, Data Value, or Cache Prefetch predictions.

In this definition, the hardware-defined context is determined by:

— The Exception level.

— The Security state.

— When executing at EL1, if EL2 is implemented and enabled in the current Security state, the
VMID.

— When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.

— When executing at EL0 and using the EL1&0 translation regime, the ASID and, if EL2 is
implemented and enabled in the current Security state, the VMID.

— When executing at EL0 and using the EL2&0 translation regime, the ASID.

If FEAT_CSV2_1p1 is implemented:

• Code running in one hardware-defined context (context1) cannot either exploitatively control, or predictively
leak to, the speculative execution of code in a different hardware-defined context (context2) as a result of the
behavior of branch target prediction based on the branch history used in context1.

• Branch or data values trained from one instruction address cannot exploitatively control, or predictively leak
to, the speculative execution of code from a different address.

E2.3.5 Memory barriers

The Arm architecture is a weakly ordered memory architecture that supports out of order completion. Memory
barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization events
by a PE with respect to retiring load/store instructions. The memory barriers defined by the architecture provide a
range of functionality, including:

• Ordering of load/store instructions.

• Completion of load/store instructions.

• Context synchronization.

The following subsections describe the memory barrier instructions:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

• Data Synchronization Barrier (DSB).

• Speculation Barrier (SB).

• Consumption of Speculative Data Barrier (CSDB).

• Speculative Store Bypass Barrier (SSBB).

• Physical Speculative Store Bypass Barrier (PSSBB).

• Trace Synchronization Barrier (TSB).

• Shareability and access limitations on the data barrier operations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9601
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
• Load-Acquire, Store-Release.

Note

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache maintenance and memory management instructions that in general are available only
when software execution is at EL1 or higher.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load/store instructions
and data or unified cache maintenance instructions being executed by the PE.

AArch32 state also supports the legacy barrier instructions CP15DMB, CP15DSB, and CP15ISB. These
instructions are executed as MCRs using the appropriate encoding, and are accessible from EL0. However, for
performance reasons Arm deprecates any use of these operations, and strongly recommends that software uses the
DMB, DSB, and ISB instructions described in this section instead. Optionally, an implementation can support a
CP15BEN control that supervisory software can use to disable use of these instructions, meaning the corresponding
MCR encodings are UNDEFINED. When the CP15BEN control is supported, setting one of the following CP15BEN
fields to 0 makes execution of CP15DMB, CP15DSB, and CP15ISB UNDEFINED:

• SCTLR_EL1.CP15BEN, for execution of these instructions at EL0 using AArch32 when EL1 is using
AArch64.

• SCTLR.CP15BEN, for execution of these instructions at EL0 or EL1 when EL1 is using AArch32.

• HSCTLR.CP15BEN, for execution of these instructions at EL2 when EL2 is using AArch32.

E2.3.5.1 Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from
the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of
context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction.
Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the
operation are visible to instructions fetched after the ISB instruction are:

• Completed cache and TLB maintenance instructions.

• Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction take effect only after the ISB
has been executed.

The pseudocode function for the operation of an ISB is InstructionSynchronizationBarrier().

See also Memory barriers.

E2.3.5.2 Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the
barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the
memory accesses for which it ensures relative order.

The full definition of the DMB instruction is covered formally in the Definition of the memory model and this
introduction to the DMB instruction is not intended to contradict that section.

The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be
affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all
affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB
instruction and those which originate from a different PE, to the extent required by the DMB options, which have
been Observed-by the PE before the DMB instruction is executed, are Observed-by each PE, to the extent required by
the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are
Observed-by that PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9602
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition
of Barrier-ordered-before.

The pseudocode function for the operation of a DMB instruction is DataMemoryBarrier().

E2.3.5.3 Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have
completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and
all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB at EL2 ensures that any memory accesses caused by speculative translation table walks from the
Non-secure PL1&0 translation regime have been observed.

For more information, see Use of out-of-context translation regimes.

A DSB executed by a PE, PEe, completes when all of the following apply:

• All explicit memory effects of the required access types appearing in program order before the DSB are
complete for the set of observers in the required shareability domain.

• If the required access types of the DSB is reads and writes, the following instructions issued by PEe before the
DSB are complete for the required shareability domain:

— All cache maintenance instructions.

— All AArch32 TLB maintenance instructions.

— All PSB instructions.

• If the required access types of the DSB is reads and writes, completion of a DSB instruction executed by PEe
ensures that:

— All previous TLB maintenance operations generated by AArch32 TLB maintenance instructions
executed at EL1 by PEe when HCRX_EL2.FnXS is 1 are finished for all PEs in the shareability
domain of the DSB instruction.

— All previous TLB maintenance operations generated by AArch32 TLB maintenance instructions are
finished for all PEs in the shareability domain of the DSB instruction.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system
or perform any part of its functionality until the DSB completes, other than:

• Being fetched from memory and decoded.

• Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers that are directly
or indirectly read without causing side-effects.

• If FEAT_ETS2 is not implemented, having any virtual addresses of loads and stores translated.

The pseudocode function for the operation of a DSB is DataSynchronizationBarrier().

See also Memory barrier instructions and Memory barriers.

E2.3.5.4 Speculation Barrier (SB)

An SB instruction is a memory barrier that prevents speculative execution of instructions until after the barrier has
completed.

Until the barrier completes, the speculative execution of any instruction appearing later in the program order than
the barrier cannot be performed to the extent that such speculation can be observed through side-channels as a result
of control flow speculation or data value speculation. An example is speculative allocation into any caching
structure where the allocation of that entry could indicate data value present in memory or in the registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9603
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
The speculative execution of an SB instruction cannot be as a result of any of the following:

• Control flow speculation.

• Data value speculation.

An SB instruction can complete when all of the following apply:

• It is known that it is not speculative, or it is speculative only as a result of either:

— Speculating that an instruction that could generate an exception does not generate an exception.

— Speculating past the point in the Execution stream where a precise asynchronous exception is taken.

• All the predicted data values generated by instructions appearing in program order before the SB instruction
are architecturally resolved, and so are not speculative.

Note

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being
fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs
of the speculative execution of instructions appearing in program order after an uncompleted SB instruction.

E2.3.5.5 Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution arising from data value
prediction.

Any instruction, other than a branch instruction, that appears in program order after the CSDB cannot be
speculatively executed using the results of any of the following predictions if those predictions come from
instructions that appear in program order before the CSDB and have not been architecturally resolved:

• Data value predictions of any instructions.

• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions or conditional
instructions that write to the PC.

•

Note

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} are not considered data values. This definition
permits:

• Control flow speculation before and after the CSDB instruction.

• Speculative execution of conditional data processing instructions after the CSDB instruction, unless they use
the results of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before
the CSDB instruction that have not been architecturally resolved.

E2.3.5.6 Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

— The store is to the same location as the load.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9604
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
— The store uses the same virtual address as the load.

— The store appears in program order before the SSBB instruction.

• When a load to a location appears in program order before the SSBB, then the load does not speculatively read
data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store uses the same virtual address as the load.

— The store appears in program order after the SSBB instruction.

E2.3.5.7 Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
physical address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order before the PSSBB instruction.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively read
data from any store satisfying all of the following conditions:

— The store is to the same location as the load.

— The store appears in program order after the PSSBB instruction.

Note

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual
addresses and from different Exception levels.

E2.3.5.8 Trace Synchronization Barrier (TSB)

The TSB instruction is a barrier instruction that preserves the relative order of accesses to System registers due to
trace operations and other accesses to the same registers.

A trace operation is an operation of the trace unit generating trace for an instruction when FEAT_TRF is
implemented and enabled.

A TSB is not required to execute in program order with respect to other instructions. This includes being reordered
with respect to other trace instructions. One or more Context synchronization events are required to ensure that TSB
is executed in the necessary order.

If trace is generated between a Context synchronization event and a TSB operation, these trace operations may be
reordered with respect to the TSB operation, and therefore may not be synchronized.

The following situations are synchronized using a TSB:

• A direct write B to a System register is ordered after an indirect read or indirect write of the same register by
a trace operation of a traced instruction A, if all of the following are true:

— A is executed in program order before a Context synchronization event C.

— C is in program order before a TSB operation T.

— B is executed in program order after T.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9605
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
• A direct read B of a System register is ordered after an indirect write to the same register by a trace operation
of a traced instruction A if all the following are true:

— A is executed in program order before a Context synchronization event C1.

— C1 is in program order before TSB operation T.

— T is executed in program order before a second Context synchronization event C2.

— B is executed in program order after C2.

A TSB is not needed when a direct write B to a System register is ordered before an indirect read or indirect write of
the same register by a trace operation of a traced instruction A, if all the following are true:

• A is executed in program order after a Context synchronization event C.

• B is executed in program order before C.

The pseudocode function for the operation of a TSB is TraceSynchronizationBarrier().

E2.3.5.9 Shareability and access limitations on the data barrier operations

The DMB and DSB instructions can each take an optional limitation argument that specifies:

• The shareability domain over which the instruction must operate. This is one of:

— Full system.

— Outer Shareable.

— Inner Shareable.

— Non-shareable.

Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable
domains of the processor.

Note
The distinction between Full system and Outer Shareable is applicable only for Normal Non-cacheable
memory accesses and Device memory accesses.

• The accesses for which the instruction operates. This is one of:

— Read and write accesses, both before and after the barrier instruction.

— Write accesses only, before and after the barrier instruction.

— Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

Note

This form of a DMB or DSB instruction can be described as a load-load/store barrier.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB)
or Data Synchronization Barrier (DSB).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9606
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
Table E2-1 shows how these options are encoded in the <option> field of the instruction.

If no <option> is specified then the instruction operates for read and write accesses, over the full system, meaning
the operation is the same as for the SY option. See the instruction descriptions for more information:

• DMB.

• DSB.

Note

ISB also supports an optional limitation argument that can contain only one value that corresponds to full system
operation, see ISB.

E2.3.5.10 Load-Acquire, Store-Release

The architecture provides a set of instructions with Acquire semantics for loads, and Release semantics for stores.

The full definition of the Load-Acquire instruction is covered formally in the Definition of the memory model and
this introduction to the Load-Acquire instruction is not intended to contradict that section.

The basic principle of a Load-Acquire instruction is to introduce order between the memory access generated by the
Load-Acquire instruction and the memory accesses appearing in program order after the Load-Acquire instruction,
such that the memory access generated by the Load-Acquire instruction is Observed-by each PE, to the extent that
PE is required to observe the access coherently, before any of the memory accesses appearing in program order after
the Load-Acquire instruction are Observed-by that PE, to the extent that the PE is required to observe the accesses
coherently.

The use of a Load-Acquire instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the memory model and
this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the memory accesses generated by
the PEe executing the Store-Release instruction, together with those which originate from a different PE, to the
extent that the PEe is required to observe them coherently, Observed-by the PEe before executing the Store-release.

The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

In addition, the use of a Load-Acquire or a Store-Release instruction on accesses to a Memory-mapped peripheral
introduces order between the Memory effects of the instructions that access that peripheral, as described in the
definition of Peripheral coherence order.

Load-Acquire and Store-Release, other than LDAEXD and STLEXD, access only a single data element. This access is
single-copy atomic. The address of the data object must be aligned to the size of the data element being accessed,
otherwise the access generates an Alignment fault.

LDAEXD and STLEXD access two data elements. The address supplied to the instructions must be doubleword-aligned,
otherwise the access generates an Alignment fault.

Table E2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

Before the barrier After the barrier Full system Outer Shareable Inner Shareable Non-shareable

Reads and writes Reads and writes SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9607
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.3 Definition of the memory model
A Store-Release Exclusive instruction has the release semantics only if the store is successful.

Note

• Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.

— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

• The Load-Acquire/Store-Release instructions can remove the requirement to use the explicit DMB memory
barrier instruction.

Table E2-2 summarizes the Load-Acquire/Store-release instructions.

Table E2-2 Load-Acquire/Store-Release instructions

Data type Load-Acquire Store-Release Load-Acquire Exclusive Store-Release Exclusive

32-bit word LDA STL LDAEX STLEX

16-bit halfword LDAH STLH LDAEXH STLEXH

8-bit byte LDAB STLB LDAEXB STLEXB

64-bit doubleword - - LDAEXD STLEXD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9608
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.4 Ordering of translation table walks
E2.4 Ordering of translation table walks

If FEAT_ETS2 is implemented, E1 is an Explicit Memory Effect, E2 is an Implicit Read of a TTD and all of the
following apply, then E1 is Ordered-before E2:

• E1 is program-order-before a Fault Effect E3.

• E2 is Translation-intrinsically-before E3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9609
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
E2.5 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. The architecture defines the application level interface to the
memory system, including a hierarchical memory system with multiple levels of cache. This section describes an
application level view of this system. It contains the subsections:

• Introduction to caches.

• Memory hierarchy.

• Implication of caches for the application programmer.

• Preloading caches.

E2.5.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

• Main memory address information, commonly known as a tag.

• The associated data.

Caches increase the average speed of a memory access and take account of two principles of locality:

Spatial locality

An access to one location is likely to be followed by accesses to adjacent locations. Examples of this
principle are:

• Sequential instruction execution.

• Accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a
cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the
cache line loaded from memory. The architecture permits different cache topologies and access policies, provided
they comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

• Memory accesses can occur at times other than when the programmer would expect them.

• A data item can be held in multiple physical locations.

E2.5.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overall performance, a memory system can include multiple levels of cache in a hierarchical memory system that
exploits this trade-off between size and latency. Figure E2-1 shows an example of such a system in a system that
supports virtual addressing.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9610
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
Figure E2-1 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the PE, as shown in
Figure E2-1.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches located at the levels closest to the
main memory. Memory coherency for cache topologies can be defined using the conceptual points Point of
Unification (PoU) and Point of Coherency (PoC). For more information, including the definitions of PoU and PoC,
see About cache maintenance in AArch32 state.

Note

FEAT_DPB adds architectural support for an additional conceptual point, Point of Persistence, but this support is
provided only in AArch64 state. For more information, see About cache maintenance in AArch64 state.

E2.5.2.1 The Cacheability and Shareability memory attributes

Cacheability and Shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This term defines whether memory locations are allowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer Cacheability locations.

Shareability This term defines whether memory locations are shareable between different agents in a system.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
the location is coherent for all agents in that domain. Shareability is defined independently for Inner
and Outer Shareability domains.

For more information about the Cacheability and Shareability attributes, see Memory types and attributes.

E2.5.3 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become
visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

• When memory locations are updated by other agents in the system that do not use hardware management of
coherency.

• When memory updates made from the application software must be made visible to other agents in the
system, without the use of hardware management of coherency.

Device

PE,

AArch32 state

Instruction

fetch

Data

Level 1

Cache

Level 2

Cache

Level 3

Cache

DRAM, SRAM,

Storage-class

memory

Level 4

for example,

memory card,

disk

Address

translation

System configuration

and control

R15

R0

Physical address

Virtual

address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9611
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
For example:

• In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

• In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

E2.5.3.1 Data coherency issues

Software can ensure the data coherency of caches in the following ways:

• By not using the caches in situations where coherency issues can arise. This can be achieved by:

— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.

— Not enabling caches in the system.

• By using system calls to functions using cache maintenance instructions that execute at a higher Exception
level.

• By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory and
Shareable, Inner Shareable, and Outer Shareable Normal memory.

Note

The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

E2.5.3.2 Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

• The PE might have fetched the instructions from memory at any time since the last Context Synchronization
event on that PE.

• Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being re-fetched from memory.

The Arm architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for locations of shared memory.

If software requires coherency between instruction execution and memory, it must manage this coherency using
Context Synchronization events and cache maintenance instructions. These can be accessed only from an Exception
level that is higher than EL0, and therefore require a system call, see Exception-generating and exception-handling
instructions. The following code sequence can be used for this purpose:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first line
; instead of STR for a 16-bit instruction.
 STR Rt, [Rn]
 DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
 DSB ; Ensure visibility of the data cleaned from cache
 ICIMVAU Rn ; Invalidate instruction cache by MVA to PoU
 BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
 DSB ; Ensure completion of the invalidations
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9612
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
 ISB ; Synchronize the fetched instruction stream

A write has been made coherent with an instruction fetch of a shareability domain when:

CTR.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

Note

• For accesses that are Non-cacheable or Write-Through, the clean data cache instruction is not required. For
accesses that are Non-cacheable, the invalidate instruction cache is not required, because in AArch32 state
these accesses are not permitted to be held in an instruction cache.

• This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The architecture limits the set of instructions that can be executed by one thread of
execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions.

E2.5.4 Preloading caches

The Arm architecture provides the memory system hints PLD (Preload Data), PLDW (Preload Data With Intent To
Write) and PLI (Preload Instruction) that software can use to communicate the expected use of memory locations to
the hardware. The memory system can respond by taking actions that are expected to speed up the memory accesses
if they occur. The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations
use this information to bring data or instruction locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operations might, under exceptional circumstances, generate an asynchronous External abort,
which is reported using an SError interrupt and taken using an asynchronous Data Abort exception. For more
information, see Data Abort exception.

A PLD, PLDW, or PLI instruction can only cause allocation to software-visible caching structures such caches or TLBs
for memory locations that can be accessed, according to the permissions defined by the current translation regime
or a translation regime for a higher Exception level in the current Security state, by any of:

• Reads.

• Writes.

• Instruction fetches.

A PLD, PLDW, or PLI instruction can access any memory location in Normal memory that can be accessed, according
to the permissions defined by the current translation regime or a translation regime for a higher Exception level in
the current Security state, by any of:

• Reads.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9613
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.5 Caches and memory hierarchy
• Writes.

• Instruction fetches.

Note

In each case, the entire list applies to each of PLD, PLDW, and PLI.

A PLD, PLDW, or PLI instruction is guaranteed not to access any type of Device memory.

A PLI instruction must not perform any access that cannot be performed by a speculative instruction fetch by the
processor. Therefore in a VMSA implementation, if all associated MMUs are disabled, a PLI instruction cannot
access any memory location that cannot be accessed by instruction fetches.

The pseudocode enumeration PrefetchHint defines the prefetch hint types.

The Hint_Prefetch() pseudocode function signals to the memory system that memory accesses of the type hint to
or from the specified address are likely to occur in the near future. The memory system might take some action to
speed up the memory accesses when they do occur, such as preloading the specified address into one or more caches
as indicated by the innermost cache level target and non-temporal hint stream.

For more information on PLD, PLI, and PLDW, see:

• PLD, PLDW (immediate).

• PLD (literal).

• PLD, PLDW (register).

• PLI (immediate, literal).

• PLI (register).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9614
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.6 Alignment support
E2.6 Alignment support

This section describes alignment support. It contains the following subsections:

• Instruction alignment.

• Unaligned data access.

• Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE.

• Unaligned data access restrictions.

• Generation of Alignment faults by load/store multiple accesses to Device memory.

For more information about Alignment faults, see Alignment faults.

E2.6.1 Instruction alignment

A32 instructions are word-aligned.

T32 instructions are halfword-aligned.

E2.6.2 Unaligned data access

An A-profile implementation must support unaligned data accesses to Normal memory by some load and store
instructions. As Table E2-3 shows, software can control whether a misaligned access to Normal memory by one of
these instructions causes an Alignment fault Data Abort exception:

• By setting SCTLR.A, for unaligned accesses from any mode other than Hyp mode.

• By setting HSCTLR.A, for unaligned accesses from Hyp mode.

Table E2-3 Alignment requirements of load/store instructions

Instructions
Alignment
check

Result if check fails when:

SCTLR.A or
HSCTLR.A is 0

SCTLR.A or
HSCTLR.A is 1

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, TBB None - -

LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBH Halfword Unaligned access Alignment fault

LDREXH, STREXH, LDAH, STLH, LDAEXH, STLEXH Halfword Alignment fault Alignment fault

LDR, LDRT, STR, STRT

PUSH, encodings T3 and A2 only

POP, encodings T3 and A2 only

Word Unaligned access Alignment fault

LDREX, STREX, LDA, STL, LDAEX, STLEX Word Alignment fault Alignment fault

LDREXD, STREXD, LDAEXD, STLEXD Doubleword Alignment fault Alignment fault

All forms of LDM and STM, LDRD, RFE, SRS, STRD Word Alignment fault Alignment fault

LDC, STC Word Alignment fault Alignment fault

VLDM, VPOP, VPUSH, VSTM Word Alignment fault Alignment fault

VLDR, VSTR - single-precision scalar and double-precision scalar Word Alignment fault Alignment fault
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9615
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.6 Alignment support
Note

Any unaligned access to any type of Device memory generates an Alignment fault, see Alignment faults.

E2.6.3 Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE

Any load instruction that is not faulted by the alignment restrictions shown in Table E2-3 and that loads the PC has
CONSTRAINED UNPREDICTABLE behavior if the address it loads from is not word-aligned, see Loads and Stores to
unaligned locations. This overrules any permitted load/store behavior shown in Table E2-3.

E2.6.4 Unaligned data access restrictions

The following points apply to unaligned data accesses:

• Accesses are not guaranteed to be single-copy atomic except at the byte access level, see Atomicity in the Arm
architecture.

• Unaligned accesses typically take a number of additional cycles to complete compared to a naturally-aligned
access.

• An operation that performs an unaligned access can abort on any memory access that it makes, and can abort
on more than one access. This means that an unaligned access that occurs across a page boundary can
generate an abort on either side of the boundary.

E2.6.5 Generation of Alignment faults by load/store multiple accesses to Device memory

When FEAT_LSMAOC is implemented and the value of the applicable nTLSMD field is 0, any memory access by
an AArch32 Load Multiple or Store Multiple instruction to an address that the stage 1 translation assigns as
Device-nGRE, Device-nGnRE, or Device-nGnRnE generates an Alignment fault.

The applicable nTLSMD field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that
applies to the Exception level and Security state at which the LDM or STM instruction is executed.

VLDR, VSTR - half-precision scalar Halfword Alignment fault Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with standard
alignment

Element size Unaligned access Alignment fault

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with :<align>
specifieda

As specified by :<align> Alignment fault Alignment fault

a. Previous versions of this manual used @<align> to specify alignment. Both forms are supported, see Chapter F6 T32 and A32 Advanced
SIMD and Floating-point Instruction Descriptionsfor more information.

Table E2-3 Alignment requirements of load/store instructions (continued)

Instructions
Alignment
check

Result if check fails when:

SCTLR.A or
HSCTLR.A is 0

SCTLR.A or
HSCTLR.A is 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9616
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.7 Endian support
E2.7 Endian support

General description of endianness in the Arm architecture describes the relationship between endianness and
memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:

• Instruction endianness.

• Data endianness.

• Endianness of memory-mapped peripherals.

E2.7.1 General description of endianness in the Arm architecture

This section only describes memory addressing and the effects of endianness for data elements up to doubleword
of 64 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure E2-2 shows, for big-endian and little-endian memory systems, the relationship between:

• The doubleword at address A.

• The words at addresses A and A+4.

• The halfwords at addresses A, A+2, A+4, and A+6.

• The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, and A+7.

The terms in Figure E2-2 have the following definitions:

MSByte Most significant byte.

LSByte Least significant byte.

Figure E2-2 Endianness relationships in AArch32 state

In this figure, Byte, A+1 is an abbreviation for Byte at address A+1

Byte, A+7 Byte, AByte, A+1Byte, A+2Byte, A+3Byte, A+4Byte, A+5Byte, A+6

Halfword at address AHalfword at address A+2Halfword at address A+4Halfword at address A+6

Word at address AWord at address A+4

Doubleword at address A

Byte, A Byte, A+1 Byte, A+2 Byte, A+3 Byte, A+4 Byte, A+5 Byte, A+6 Byte, A+7

Halfword at address A Halfword at address A+2 Halfword at address A+4 Halfword at address A+6

Word at address A Word at address A+4

Doubleword at address A

Big-endian memory system

Incrementing byte addressMSByte LSByte

Little-endian memory system

Incrementing byte addressMSByte LSByte
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9617
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.7 Endian support
E2.7.2 Instruction endianness

The mapping of instruction memory is always little-endian.

E2.7.3 Data endianness

The size of the data value that is loaded or stored is the size that is used for the purpose of endian conversion for
floating-point, Advanced SIMD, and general-purpose register loads and stores.

Table E2-4 shows the element sizes of all the load/store instructions, for all instruction sets.

CPSR.E determines the data endianness.

The data size used for endianness conversions:

• Is the size of the data value that is loaded or stored for Advanced SIMD and floating-point register and
general-purpose register loads and stores.

• Is the size of the data element that is loaded or stored for Advanced SIMD element and data structure loads
and stores. For more information, see Endianness in Advanced SIMD.

E2.7.3.1 Instructions to reverse bytes in registers

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table E2-5 shows the instructions that provide this functionality in the A32 and T32 instruction sets.

Table E2-4 Element size of load/store instructions

Instructions Element size

LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, TBB Byte

LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH Halfword

LDR, LDRT, LDREX, STR, STRT, STREX Word

LDRD, LDREXD, STRD, STREXD Word

All forms of LDM, PUSH, POP, RFE, SRS, all forms of STM, Word

LDC, STC Word

Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 32-bit Si registers Word

Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 64-bit Di registers Doubleword

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4 Element size of the Advanced SIMD access

Table E2-5 Byte reversal instructions

Function
T32/A32
instruction

Notes

Reverse bytes in whole register REV For use with general purpose registers

Reverse bytes in 16-bit halfwords REV16 For use with general purpose registers

Reverse bytes in halfword and sign-extend REVSH For use with general purpose registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9618
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.7 Endian support
E2.7.3.2 Endianness in Advanced SIMD

Advanced SIMD element load/store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. This information is used by the PE to load and store data correctly in both big-endian and
little-endian systems.

Consider, for example, the A32 or T32 instruction:

VLD1.16 {D0}, [R1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the
endianness configuration, as shown in Figure E2-3. Therefore, the order of the elements in the registers is the same
regardless of the endianness configuration.

Figure E2-3 Advanced SIMD byte order example for AArch32 state

For information about the alignment of Advanced SIMD instructions, see Alignment support.

The BigEndian() pseudocode function determines the current endianness of the data.

The BigEndianReverse() pseudocode function reverses the endianness of a bitstring.

The BigEndian() and BigEndianReverse() functions are defined in Chapter J1 Armv8 Pseudocode.

E2.7.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.

Peripherals to which this requirement applies include:

• Memory-mapped register interfaces to a debugger, or to a cross-trigger interface, see Chapter H8 About the
External Debug Registers.

Reverse elements in doublewords, vector VREV64 For use with registers in the SIMD and floating-point register file

Reverse elements in words, vector VREV32 For use with registers in the SIMD and floating-point register file

Reverse elements in halfwords, vector VREV16 For use with registers in the SIMD and floating-point register file

Table E2-5 Byte reversal instructions (continued)

Function
T32/A32
instruction

Notes

D[15:8] D[7:0] C[15:8] C[7:0] B[15:8] B[7:0] A[15:8] A[7:0]

64-bit register containing four 16-bit elements

0

1

2

3

4

5

6 D[7:0]

C[15:8]

C[7:0]

B[15:8]

B[7:0]

A[15:8]

A[7:0] 0

1

2

3

4

5

6

D[7:0]

D[15:8]

C[7:0]

C[15:8]

B[7:0]

B[15:8]

A[7:0]

A[15:8]

Memory system with

little-endian addressing (LE)

Memory system with

big-endian addressing (BE)

VLD1.16 {D0}, [R1] VLD1.16 {D0}, [R1]

77 D[15:8]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9619
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.7 Endian support
• The memory-mapped register interface to the system level implementation of the Generic Timer, see
Chapter I2 System Level Implementation of the Generic Timer.

• A memory-mapped register interface to the Performance Monitors, see Chapter I3 Recommended External
Interface to the Performance Monitors.

• A memory-mapped register interface to the Activity Monitors, see Chapter I4 Recommended External
Interface to the Activity Monitors.

• Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

• The memory-mapped register interface to an Arm trace component. See, for example, the Arm® Embedded
Trace Macrocell Architecture Specification, ETMv4.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9620
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
E2.8 Memory types and attributes

The ordering of accesses for addresses in memory, referred to as the memory order model, is defined by the memory
attributes. The following sections describe this model:

• Normal memory.

• Device memory.

• Memory access restrictions.

E2.8.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted
by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions
for these locations.

The Normal memory type has the following properties:

• A write to a memory location with the Normal attribute completes in finite time.

• Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-Through
cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory
system in finite time. Two writes to the same location, where at least one is using the Normal memory type,
might be merged before they reach the endpoint unless there is an ordered-before relationship between the
two writes. For the purposes of this requirement, the endpoint for a location in Conventional memory is the
PoC.

• Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

• There is no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register load/store instructions. See Multi-register loads and stores that access Normal memory.

Note

• The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side-effects.

— Repeated read accesses return the last value written to the resource being read.

— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.

— Accesses can be merged before accessing the target memory system.

• Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of
data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:

— Memory accesses return UNKNOWN values.

— UNPREDICTABLE effects on memory-mapped peripherals.

• An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture might
be abandoned as a result of an exception being taken during the sequence of accesses. On return from the
exception the instruction is restarted, and therefore one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the
write accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9621
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
The following sections describe the other attributes for Normal memory:

• Shareable Normal memory.

• Non-shareable Normal memory.

• Cacheability attributes for Normal memory.

See also:

• Multi-register loads and stores that access Normal memory.

• Atomicity in the Arm architecture.

• Memory barriers. For accesses to Normal memory, a DMB instruction is required to ensure the required
ordering.

• Concurrent modification and execution of instructions.

E2.8.1.1 Shareable Normal memory

A Normal memory location has a Shareability attribute that is defined as one of:

• Inner Shareable.

• Outer Shareable.

• Non-shareable.

The shareability attributes define the data coherency requirements of the location, which hardware must enforce.
They do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues
between data and instruction accesses.

Note

• System designers can use the Shareability attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software developers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEs in a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the Shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different PEs.

• This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner
Shareable shareability domain.

E2.8.1.1.1 Shareable, Inner Shareable, and Outer Shareable Normal memory

The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

• Each observer is only a member of a single Inner Shareability domain.

• Each observer is only a member of a single Outer Shareability domain.

• All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.
This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not
required to be a proper subset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9622
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Note

• Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

• The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.

The details of the use of the Shareability attributes are system-specific. Example E2-1 shows how they might be
used.

Example E2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

• In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses
to memory locations with the Inner Shareable attribute.

• However, between the two clusters, the caches:

— Are not required to be coherent for data accesses that have only the Inner Shareable attribute.

— Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different Shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same Shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable Shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable Shareability domain.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account
of the possibility of accesses by more than one observer in the same Shareability domain.

E2.8.1.2 Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

E2.8.1.3 Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned
a Cacheability attribute that is one of:

• Write-Through Cacheable.

• Write-Back Cacheable.

• Non-cacheable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9623
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:

• A region might be assigned cache allocation hints for read and write accesses.

• It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of
Transient or Non-transient.

For more information, see Cacheability, cache allocation hints, and cache transient hints.

A memory location can be marked as having different cacheability attributes, for example when using aliases in a
VA to PA mapping:

• If the attributes differ only in the cache allocation hint this does not affect the behavior of accesses to that
location.

• For other cases, see Mismatched memory attributes.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the
Shareability domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable
regions of memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties
for Non-cacheable or Write-Through Cacheable memory:

• A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

• A completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

Note

Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each
of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels
of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the
boundaries between the Inner and Outer Shareability domains. However:

• Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the
lowest level of cache.

• No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the
Outer cacheability attributes.

• An implementation might not have any outer cache.

Example E2-2, Example E2-3, and Example E2-4 describe the possible ways of implementing a system with three
levels of cache, level 1 (L1) to level 3 (L3).

Note

• L1 cache is the level closest to the PE, see Memory hierarchy.

• When managing coherency, system designs must consider both the inner and outer cacheability attributes, as
well as the Shareability attributes. This is because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9624
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Example E2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 and L2 cache.

• The Outer cacheability attribute applied to L3 cache.

Example E2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2,
and L3 cache. Do not use the Outer cacheability attribute.

Example E2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 cache.

• The Outer cacheability attribute applied to L2 and L3 cache.

E2.8.1.4 Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more registers from the SIMD and floating-point register file from an
Exception level there is no requirement for the memory system beyond the PE to be able to identify the size of the
element accessed by these load or store instructions.

E2.8.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects,
or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Device memory are:

Gathering Identified as G or nG, see Gathering.

Reordering Identified as R or nR, see Reordering.

Early Write Acknowledgement

Identified as E or nE, see Early Write Acknowledgement.

The Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early Write Acknowledgement.

Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9625
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

Armv8 added this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriers is required to order accesses to Device-nGRE memory.

The Device-nGRE memory type is introduced into the AArch32 translation table formats
when the PE is using the Long Descriptor Translation Table format.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

Armv8 added this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that speculative accesses to Device-GRE memory is
forbidden.

The Device-GRE memory type is introduced into the AArch32 translation table formats
when the PE is using the Long Descriptor Translation Table format.

Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

• As the list of types shows, these additional attributes are hierarchical. For example, a memory location that
permits Gathering must also permit Reordering and Early Write Acknowledgement.

• The architecture does not require an implementation to distinguish between each of these memory types and
Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

• Earlier versions of the Arm architecture defined the following memory types:

— Strongly-ordered memory. This is the equivalent of the Device-nGnRnE memory type.

— Device memory. This is the equivalent of the Device-nGnRE memory type.

All of these memory types have the following properties:

• Speculative data accesses are not permitted to any memory location with any Device memory attribute. This
means that each memory access to any Device memory type must be one that would be generated by a simple
sequential execution of the program.

An exception to this applies:

— Reads generated by the Advanced SIMD and floating-point instructions can access bytes that are not
explicitly accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to
16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

Note

— An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture
might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated accesses to a location where the program
defines only a single access. For this reason, Arm strongly recommends that no accesses to Device
memory are performed from a single instruction that spans the boundary of a translation granule or
which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observers is prohibited for all memory types.

• A write to a memory location with any Device memory type completes in finite time.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9626
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
• If a value that would be returned from a read of a memory location with the Device memory type changes
without an explicit memory write effect by an observer, this change must also be globally observed for all
observers in the system in finite time. Such a change might occur in a peripheral location that holds status
information.

• Data accesses to memory locations are coherent for all observers in the system, and correspondingly are
treated as being Outer Shareable.

• A memory location with any Device memory attribute cannot be allocated into a cache.

• Writes to a memory location with any Device memory attribute must reach the endpoint for that address in
the memory system in finite time. Two writes of Device memory type to the same location might be merged
before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an
ordered-before relationship between the two writes.

• If a memory location is not capable of supporting unaligned memory accesses, then an unaligned access to
that memory location generates an Alignment fault at the first stage of translation that defined the location as
being Device.

• If a memory location is capable of supporting unaligned memory accesses, and such a memory location is
marked as Device, then it is IMPLEMENTATION DEFINED whether an unaligned access to that memory location
generates an Alignment fault at the first stage of translation that defined the location as being Device.

• Hardware does not prevent speculative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as execute-never for all Exception levels.

Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must also be marked as execute-never for
all Exception levels. Failure to mark a memory location with any Device memory attribute as execute-never
for all Exception levels is a programming error.

Note

In the Non-secure PL1&0 translation regime in systems where HCR.TGE==1 and HCR.DC==0, any Alignment
fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This
causes the value of HSR.ISS.[24] to be 0.

See also Memory access restrictions.

The memory types for translation table walks cannot be defined as any Device memory type within the TCR. For
the Non-secure EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are
subject to a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage
translation table walk might be made to memory locations with any Device memory type. These accesses might be
made speculatively. When the value of the HCR.PTW bit is 1, a stage 2 Permission fault is generated if a first stage
translation table walk is made to any Device memory type.

For an instruction fetch from a memory location with the Device attribute that is not marked as execute-never for
the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.

• Take a Permission fault.

E2.8.2.1 Gathering

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9627
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
The Gathering attribute determines whether it is permissible for either:

• Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

• Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
a single memory transaction on an interconnect.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

• The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.

• All access occur at their programmed size, except that there is no requirement for the memory system beyond
the PE to be able to identify the elements accessed by multi-register load/store instructions. See
Multi-register loads and stores that access Device memory.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not
permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

• A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.

— The accesses are not separated by other ordering constructions that require that the accesses are in
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

• The Arm architecture defines only programmer visible behavior. Therefore, gathering can be performed if a
programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

E2.8.2.2 Reordering

In the Device memory attribute:

R Indicates that the location has the Reordering attribute.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple
sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all
accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of
Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9628
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Note

• The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee
provided by the DMB instruction.

• The Arm architecture defines only programmer visible behavior. Therefore, reordering can be performed if
a programmer cannot tell whether reordering has occurred.

An implementation is permitted to perform an access with the Reordering attribute in a manner consistent with the
requirements specified by the non-Reordering attribute.

An additional relaxation is that an implementation is not permitted to perform an access with the non-Reordering
attribute in a manner consistent with the relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal
memory, between:

• Accesses to one physical address with the non-Reordering attribute and accesses to a different physical
address with the Reordering attribute.

• Access to one physical address with the non-Reordering attribute and access to a different physical address
to Normal memory.

• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

E2.8.2.3 Early Write Acknowledgement

In the Device memory attribute:

E Indicates that the location has the Early Write Acknowledgement attribute.

nE Indicates that the location has the No Early Write Acknowledgement attribute.

If the No Early Write Acknowledgement attribute is assigned for a Device memory location:

• For memory system endpoints where the system architecture in which the PE is operating requires that
acknowledgement of a write comes from the endpoint, it is guaranteed that:

— Only the endpoint of the write access returns a write acknowledgement of the access.

— No earlier point in the memory system returns a write acknowledgement.

• For memory system endpoints where the system architecture in which the PE is operating does not require
that acknowledgement of a write comes from the endpoint, the acknowledgement of a write is not required
to come from the endpoint.

Note

A write with the No Early Write Acknowledgement attribute assigned for a Device memory location is not expected
to generate an abort in any situation where the equivalent write to the same location without the No Early Write
Acknowledgement attribute assigned does not generate an abort.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write
Acknowledgement Location, completes only after the write has reached its endpoint in the memory system if that
is required by the system architecture.

Peripherals are an example of system endpoints that require that the acknowledgment of a write comes from the
endpoint.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9629
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
Note

• The Early Write Acknowledgement attribute affects only where the endpoint acknowledgment is returned
from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by
either the Device Reordering attribute, or the use of barriers to create order.

• The areas of the physical memory map for which write acknowledgment from the endpoint is required is
outside the scope of the Arm Architecture definition and must be defined as part of the system architecture
in which the PE is operating. In particular, regions of memory handled as PCIe configuration writes are
expected to support write acknowledgment from the endpoint.

• Arm recognizes that not all areas of a physical memory map will be capable of supporting write
acknowledgment from the endpoint. In particular, Arm expects that regions of memory handled as posted
writes under PCIe will not support write acknowledgment from the endpoint.

• For maximum software compatibility, Arm strongly recommends that all peripherals for which standard
software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint
are placed in areas of the physical memory map that support write acknowledgment from the endpoint.

E2.8.2.4 Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register there is no requirement for the memory
system beyond the PE to be able to identify the size of the elements accessed by these load and store instructions.

For all instructions that load or store one or more registers from the SIMD and floating-point register file there is
no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load and store instructions.

The architecture permits that the non-speculative execution of an instruction that loads or stores more than one
general-purpose or SIMD and floating-point register might result in repeated accesses to the same address, even if
the resulting accesses are to any type of Device memory.

For an LDRD, STRD, or LDM instruction with a register list that includes the PC, or an STM instruction with a register list
that includes the PC, the order in which the registers are accessed is not defined by the architecture.

For a load or store of an Advanced SIMD element or structure, the order in which the registers are accessed is not
defined by the architecture.

For a VLDM and VSTM instruction with a register list that does not include the PC, all registers are accessed in ascending
address order for accesses to Device memory with the non-Reordering attribute.

For a LDM or STM instruction with a register list that does not include the PC:

• When FEAT_LSMAOC is not implemented, and when FEAT_LSMAOC is implemented and the value of
the applicable LSMAOE field is 1, all registers are accessed in ascending address order for accesses to Device
memory with the non-Reordering attribute.

• When FEAT_LSMAOC is implemented and the value of the applicable LSMAOE field is 0, no memory
accesses are required to be ordered.

• When FEAT_LSMAOC is implemented and the value of the applicable nTLSMD field is 0, any memory
access to an address that the stage 1 translation assigns as Device-nGRE, Device-nGnRE, or Device-nGnRnE
generates an Alignment fault.

The applicable LSMAOE or nTLSMD field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR
register that applies to the Exception level and Security state at which the LDM or STM instruction is executed.

Armv8.2 deprecates software relying on accesses to Device memory made by a single LDM or STM instruction not
being reordered.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9630
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.8 Memory types and attributes
E2.8.3 Memory access restrictions

The following restrictions apply to memory accesses:

• For two explicit memory read effects to any two adjacent bytes in memory, p and p+1, generated by the same
instruction, and for two explicit memory write effects to any two adjacent bytes in memory, p and p+1, that
are generated by the same instruction:

— The bytes p and p+1 must have the same memory type and Shareability attributes. otherwise the
results are CONSTRAINED UNPREDICTABLE. For example, an LDC, LDM, LDRD STC, STM or STRD instruction,
or an unaligned load or store that spans the boundary between Normal memory and Device memory
is CONSTRAINED UNPREDICTABLE.

— Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and p+1.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or Shareability attributes.

• If the accesses of an instruction that causes multiple accesses to any type of Device memory cross a 4KB
address boundary then behavior is CONSTRAINED UNPREDICTABLE and Crossing a 4KB boundary with a
Device access describes the permitted behaviors.

Note

— The boundary referred to is between two Device memory regions that are both of 4KB and aligned to
4KB.

— This restriction means it is important that an access to a volatile memory device is not made using a
single instruction that crosses a 4KB address boundary.

— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory
map, rather than expecting a compiler to be aware of the alignment of memory accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9631
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.9 Mismatched memory attributes
E2.9 Mismatched memory attributes

Mismatched memory attributes are controlled by privileged software. For more information, see Chapter G5 The
AArch32 Virtual Memory System Architecture.

Physical memory Locations are accessed with mismatched attributes if all accesses to the Location do not use a
common definition of all of the following attributes of that Location:

• Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.

• Shareability.

• Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

Note

In this document, the terms location and memory location refer to any byte within the current coherency granule
and are used interchangeably.

When a memory Location is accessed with mismatched attributes the only software visible effects are one or more
of the following:

• Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:

— A read of the memory Location by one agent might not return the value most recently written to that
memory Location by the same agent.

— Multiple writes to the memory Location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory Location.

• There might be a loss of properties derived from the memory type, as described in later bullets in this section.

• If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.

• Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of
Device memory that are additional to the properties of Normal memory:

• Prohibition of speculative read accesses.

• Prohibition on Gathering.

• Prohibition on Reordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more
restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type,
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that
common definition of the memory attributes, only if all the following conditions are met:

• All writes are performed to an alias of the memory Location that uses the same definition of the
Memory type, Shareability and Cacheability attributes.

• Either:

— In the Non-secure PL1&0 translation regime, HCR2.MIOCNCE has a value of 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9632
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.9 Mismatched memory attributes
— All aliases with write permission have the Inner Cacheability attribute the same as the Outer
Cacheability attribute.

• Either:

— All writes are performed to an alias of the memory Location that has Inner Cacheability and
Outer Cacheability attributes both as Non-cacheable.

— All aliases to a memory Location use a definition of the Shareability attributes that encompasses
all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined
more precisely if all of the mismatched attributes define the memory Location as one of:

• Any Device memory type.

• Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory Location.

• Possible reordering of memory transactions to the same memory Location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory Location all assign the same Shareability attribute to a Location
that has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a
Shareability domain can be avoided by use of software cache management. To do so, software must use the
techniques that are required for the software management of the ordering or coherency of cacheable
Locations between agents in different shareability domains. This means:

• Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate,
or clean, a Location from the caches if any agent might have written to the Location with the
Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.

• After writing to a cacheable Location with the Write-Back attribute, software must clean the Location
from the caches, to make the write visible to external memory.

• Before reading the Location with a cacheable attribute, software must invalidate, or clean and
invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last
value made visible in external memory.

• Executing a DMB barrier instruction, with scope that applies to the common Shareability of the accesses,
between any accesses to the same cacheable Location that use different attributes.

Note
In AArch32 state, cache maintenance instructions can be accessed only from an Exception level that is higher
than EL0, and therefore require a system call. For information on system calls, see Exception-generating and
exception-handling instructions. For information about the AArch32 cache maintenance instructions, see
AArch32 cache and branch predictor support.

In all cases:

• Location refers to any byte within the current coherency granule.

• A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9633
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.9 Mismatched memory attributes
• In the sequences outlined in this section, all cache maintenance instructions and memory transactions
must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address, see Ordering of cache and branch predictor maintenance instructions.

Note

With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.

2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be
made with different Shareability attributes, then ordering and coherency are guaranteed only if:

• Software running on a PE cleans and invalidates a Location from cache before and after each read or
write to that Location by that PE.

• A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses
to the same memory Location that use different attributes.

Note

The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location,
and the accesses from the different agents have different memory attributes associated with the Location, the
Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Note

As described in Non-cacheable accesses and instruction caches, a non-cacheable access is permitted to be cached
in an instruction cache, despite the fact that a non-cacheable access is not permitted to be cached in a unified cache.
Despite this, when cacheable and non-cacheable aliases exist for memory which is executable, these must be treated
as mismatched aliases to avoid coherency issues from the data or unified caches that might hold entries that will be
brought into the instruction caches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9634
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
E2.10 Synchronization and semaphores

The architecture provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives applies to accesses to both Normal
and Device memory.

Note

Use of the synchronization primitives scales for multiprocessing system designs.

Table E2-6 shows the synchronization primitives and the associated CLREX instruction.

Except for the row showing the CLREX instruction, the two instructions in a single row are a
Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive
instruction pair accessing a non-aborting memory address x is:

• The Load-Exclusive instruction reads a value from memory address x.

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block. A Store-Exclusive instruction
to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive
instruction.

The following sections give more information:

• Exclusive access instructions and Non-shareable memory locations.

• Exclusive access instructions and shareable memory locations.

• Marking and the size of the marked memory block.

• Context switch support.

Table E2-6 Synchronization primitives and associated instruction, T32 and A32 instruction sets

Transaction size Additional semantics Load-Exclusivea

a. Instruction in the T32 and A32 instruction sets.

Store-Exclusivea Othera

Byte - LDREXB STREXB -

Load-Acquire/Store-Release LDAEXB STLEXB -

Halfword - LDREXH STREXH -

Load-Acquire/Store-Release LDAEXH STLEXH -

Word - LDREX STREX -

Load-Acquire/Store-Release LDAEX STLEX -

Doubleword - LDREXD STREXD -

Load-Acquire/Store-Release LDAEXD STLEXD -

None Clear-Exclusive - - CLREX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9635
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
• Load-Exclusive and Store-Exclusive instruction usage restrictions.

• Use of WFE and SEV instructions by spin-locks.

E2.10.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the Shareability attribute is Non-shareable, the exclusive access instructions rely
on a local Exclusives monitor, or local monitor, that marks any address from which the PE executes a
Load-Exclusive instruction. Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify
any address is guaranteed to clear the marking.

A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the physical memory address for exclusive access.

• The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

• If the address of the Store-Exclusive instruction is the same as the address that has been
marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.

• A status value is returned to a register:

— If the store took place the status value is 0.

— Otherwise, the status value is 1.

• The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state the monitor is set.

If the local monitor is in the Open Access state

• No store takes place.

• A status value of 1 is returned to a register.

• The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Exclusive Access state the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in
the Exclusive Access state it is IMPLEMENTATION DEFINED whether the write affects the state of the local
monitor.

• If the write is to a PA that is marked as Exclusive Access by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if
that store is by an observer other than the one that caused the PA to be marked.

Figure E2-4 shows the state machine for the local monitor and the effect of each of the operations shown in the
figure.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9636
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
Figure E2-4 Local monitor state machine diagram

For more information about marking, see Marking and the size of the marked memory block.

Note

For the local monitor state machine, as shown in Figure E2-4:

• The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any PA, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

• A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.

• The architecture does not require a load instruction, by another PE, that is not a Load-Exclusive instruction,
to have any effect on the local monitor.

• It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExcl is from another observer.

E2.10.1.1 Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure E2-4.

An implementation must ensure that:

• The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Figure E2-4.

• Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure E2-4 must not indefinitely delay forward progress of execution.

E2.10.2 Exclusive access instructions and shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a
Shareability attribute of Inner Shareable or Outer Shareable.

Open

Access

Exclusive

Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address)*

Store(Marked_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction

Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9637
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
For shareable memory locations, exclusive access instructions rely on:

• A local monitor for each PE in the system, which marks any address from which the PE executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory locations, except that for shareable memory any Store-Exclusive is then subject to checking by the
global monitor if it is described in that section as doing at least one of the following:

— Updating memory.

— Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

• A global monitor that marks a PA as exclusive access for a particular PE. This marking is used later to
determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur.
Any successful write to the marked block by any other observer in the Shareability domain of the memory
location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold at least one marked block.

— Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for a single marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED
UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions.

Note

The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a
secondary monitor at the memory interfaces. The IMPLEMENTATION DEFINED aspects of the monitors mean that the
global monitor and local monitor can be combined into a single unit, provided that the unit performs the global
monitor and local monitor functions defined in this manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

• Any type of memory in the system implementation that does not support hardware cache coherency.

• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:

• Whether the global monitor is implemented.

• If the global monitor is implemented, which address ranges or memory types it monitors.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system
might define at least one location of memory, of at least the size of the translation granule, in the system memory
map to support the global monitor for all PEs within a common Inner Shareable domain. However, this is not an
architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not
rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as
Lamport’s Bakery algorithm to achieve mutual exclusion.

Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for
which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hint and not transient.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9638
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hints and not transient.

If the global monitor is not implemented for an address range or memory type, then performing a
Load-Exclusive/Store-Exclusive instruction to such a location has one or more of the following effects:

• The instruction generates an External abort.

• The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Fault status
code of:

— DFSR.STATUS = 0b110101 when using the Long-descriptor translation table format. The fault can also
be reported in the HSR.ISS[5:0] field for exceptions to Hyp mode.

— DFSR.FS = 0b10101 when using the Short-descriptor translation table format.

If the IMPLEMENTATION DEFINED MMU fault is generated for the Non-secure PL1&0 translation regime then:

— If the fault is generated because of the memory type defined in the first stage of translation, or if the
second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.

— Otherwise, the fault is a second stage fault and the exception is taken to EL2.

The priority of this fault is IMPLEMENTATION DEFINED.

• The instruction is treated as a NOP.

• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by an Arm PE is
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

• Some address ranges.

• Some memory types.

E2.10.2.1 Operation of the global Exclusives monitor

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the
access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark
to be removed from any other PA that has been marked by the requesting PE.

Note

The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting
PE and both the local monitor and the global monitor state machines for the requesting PE are in the
Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9639
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
— If the address accessed is marked for exclusive access in the global monitor state machine for any other
PE then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:

— A status value of 1 is returned to a register to indicate that the store failed.

— The global monitor is not affected and remains in Open Access state for the requesting PE.

• If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether
the store succeeds or not:

— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it. This means it responds to:

• Accesses generated by PE(n).

• Accesses generated by the other observers in the Shareability domain of the memory location. These accesses
are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:

• In the Exclusive Access state is set.

• In the Open Access state is clear.

E2.10.2.1.1 Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Wait For Event
and Send Event.

Figure E2-5 shows the state machine for PE(n) in a global monitor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9640
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
Figure E2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system

For more information about marking, see Marking and the size of the marked memory block.

Note

For the global monitor state machine, as shown in Figure E2-5:

• The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

• Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors are in the exclusive state. For this reason, Figure E2-5 shows only
how the operations by (!n) cause state transitions of the state machine for PE(n).

• A Load-Exclusive instruction can update only the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

• When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

• It is IMPLEMENTATION DEFINED:

— Whether a modification to a Non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state.

— Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor
to transition from Open Access to Exclusive Access state.

E2.10.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size 2a bytes is created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block. The size of the
marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is
IMPLEMENTATION DEFINED in the range 4 - 512 words.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Open

Access

Exclusive

Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡

Store(Marked_address,!n)

StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction

Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)

Store(x,n)

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

StoreExcl(Marked_address,!n)‡

StoreExcl(Marked_address,n)*

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

CLREX(n)*

StoreExcl(!Marked_address,!n)

Store(!Marked_address,!n)

CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9641
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
Note

This definition means that the Exclusives reservation granule is:

• 4 words in an implementation where a is 4.

• 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDREXB of address 0x341B4 defines a marked block
using bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR. Otherwise, software must
assume that the maximum Exclusives reservation granule, 512 words, is implemented.

E2.10.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.

E2.10.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair. To support different implementations of these functions, software must
follow the notes and restrictions given in this subsection.

The following notes describe use of a Load-Exclusive/ Store-Exclusive instruction pair, LoadExcl/StoreExcl, to
indicate the use of any of the Load-Exclusive/Store-Exclusive instruction pairs shown in Table E2-6. In this context,
a LoadExcl/StoreExcl pair comprises two instructions in the same thread of execution:

• The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target VA of a StoreExcl is different from the VA of the preceding LoadExcl instruction in the
same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the
states of the local and global monitors for that PE are UNKNOWN.

Note

This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
addresses, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched addresses.

— The data at the address accessed by the LoadExcl, and at the address accessed by the StoreExcl, is
UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl are executed with the same VA.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding
LoadExcl instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from
the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9642
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
Note

This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched
transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction
sizes.

— The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair
at the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl have the same transaction size.

• LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/StoreExcl loop
within a single thread of execution, the software meets all of the following conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, ISB barriers,
indirect branches, or Branch with Link instructions.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding
Load-Exclusive:

• There are no stores or PLDW instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

• There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

• There are no direct or indirect System register writes, other than changes to the flag fields
in the CPSR or FPSCR, caused by data processing or comparison instructions.

• There are no direct or indirect address translation instructions, cache or TLB maintenance
instructions, exception generating instructions, exception returns, indirect branches, or
Branch with Link instructions.

• All loads and stores are to a block of contiguous virtual memory of not more than 512
bytes in size.

The Exclusives monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExcl/StoreExcl
loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

— Performing stores to a PA covered by the Exclusives monitor.

— Prefetching with intent to write to a PA covered by the Exclusives monitor.

— Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a
PA covered by the Exclusives monitor.

— Executing instruction cache invalidate all instructions.

— Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

• Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single
thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the
LoadExcl instruction and the StoreExcl instruction. Therefore, for best performance, Arm strongly
recommends a limit of 128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

• The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked
as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses
are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a
functional requirement.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9643
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
• After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN.

• For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl
instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread
of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the
accessed address changes between the LoadExcl instruction and the StoreExcl instruction, the CONSTRAINED
UNPREDICTABLE behavior is as follows:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note

This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with changed
memory attributes, and fail for other instances of a LoadExcl/StoreExcl pair with changed memory
attributes.

— The data at the address accessed by the StoreExcl is UNKNOWN.

Note

Another bullet point in this list covers the case where the memory attributes of a LoadExcl/StoreExcl pair
differ as a result of using different VAs with different attributes that point to the same PA.

• The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction
might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance
instructions, this also applies to the monitors of other PEs in the same Shareability domain as the PE
executing the cache maintenance instruction, as determined by the Shareability domain of the address being
maintained.

Note

Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

• If the mapping of the VA to PA is changed between the LoadExcl instruction and the StoreExcl instruction,
and the change is performed using a break-before-make sequence as described in Using break-before-make
when updating translation table entries, if the StoreExcl is performed after another write to the same PA as
the StoreExcl, and that other write was performed after the old translation was properly invalidated and that
invalidation was properly synchronized, then the StoreExcl will not pass its monitor check.

Note
Arm expects that, in many implementations, either:

— The TLB invalidation will clear either the local or global monitor.

— The PA will be checked between the LoadExcl and StoreExcl.

• The Exclusive Access state for an address accessed by a PE can be lost as a result of a PLDW instruction to the
same PA executed by another PE. This means that a very high rate of repeated PLDW accesses to a memory
location might impede the forward progress of another PE.

Note

In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9644
ID032224 Non-Confidential

The AArch32 Application Level Memory Model
E2.10 Synchronization and semaphores
E2.10.6 Use of WFE and SEV instructions by spin-locks

The architecture provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, SEVL, that can
assist with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a
spin-lock. These instructions can be used at the application level, but a complete understanding of what they do
depends on a system level understanding of exceptions. They are described in Wait For Event and Send Event.
However, when the global monitor for a PE changes from Exclusive Access state to Open Access state, an event is
generated.

Note

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. E2-9645
ID032224 Non-Confidential

Part F
The AArch32 Instruction Sets

Chapter F1
About the T32 and A32 Instruction Descriptions

This chapter describes each instruction. It contains the following sections:

• Format of instruction descriptions.

• Standard assembler syntax fields.

• Conditional execution.

• Shifts applied to a register.

• Memory accesses.

• Encoding of lists of general-purpose registers and the PC.

• General information about the T32 and A32 instruction descriptions.

• Additional pseudocode support for instruction descriptions.

• Additional information about Advanced SIMD and floating-point instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9647
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
F1.1 Format of instruction descriptions

The instruction descriptions in Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions and
Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions normally use the following
format:

• Instruction section title.

• Introduction to the instruction.

• A description of each encoding of the instruction.

• Assembler syntax.

• Pseudocode describing how the instruction operates.

• Notes, if applicable.

Each of these items is described in more detail in the following subsections.

F1.1.1 Instruction section title

The instruction section title gives the base mnemonic for the instruction or instructions described in the section.
When one mnemonic has multiple forms described in separate instruction sections, this is followed by a short
description of the form in parentheses. The most common use of this is to distinguish between forms of an
instruction in which one of the operands is an immediate value and forms in which it is a register.

F1.1.2 Introduction to the instruction

The introduction to the instruction briefly describes the main features of the instruction. This description is not
necessarily complete and is not definitive. If there is any conflict between it and the more detailed information that
follows, the latter takes priority.

F1.1.3 Instruction encodings

This is a list of one or more instruction encodings. Each instruction encoding is labeled as:

• A1, A2, A3 … for the first, second, third, and any additional A32 encodings.

• T1, T2, T3 … for the first, second, third, and any additional T32 encodings.

Each instruction encoding description consists of:

• An assembly syntax that ensures that the assembler selects the encoding in preference to any other encoding.
Sometimes, multiple syntax variants are given. These are written in a typewriter font using the conventions
described in Assembler syntax prototype line conventions. The correct one to use can be indicated by:

— A subheading that identifies the encodings that correspond to the syntax. See, for example, the
subheading Flag setting, rotate right with extend variant in the description of the A1 encoding of the
ADC, ADCS (register) instructions in A1.

— An annotation to the syntax, such as Inside IT block or Outside IT block. See, for example, the syntax
descriptions of the T1 encoding of the ADC, ADCS (register) instructions in T1.

In other cases, the correct one to use can be determined by looking at the assembler syntax description and
using it to determine which syntax corresponds to the instruction being disassembled.

There is usually more than one syntax variant that ensures re-assembly to any particular encoding, and the
exact set of syntaxes that do so usually depends on the register numbers, immediate constants, and other
operands to the instruction. For example, when assembling to the T32 instruction set, the syntax AND R0, R0,
R8 ensures selection of a 32-bit encoding but AND R0, R0, R1 selects a 16-bit encoding.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9648
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
For each instruction encoding belonging to a target instruction set, an assembler can use this information to
determine whether it can use that encoding to encode the instruction requested by the UAL source. If multiple
encodings can encode the instruction, then:

— If both a 16-bit encoding and a 32-bit encoding can encode the instruction, the architecture prefers the
16-bit encoding. This means the assembler must use the 16-bit encoding rather than the 32-bit
encoding.

Software can use the .W and .N qualifiers to specify the required encoding width, see Standard
assembler syntax fields.

— If multiple encodings of the same length can encode the instruction, the Assembler syntax subsection
says which encoding is preferred, and how software can, instead, select the other encodings.

Each encoding also documents UAL syntax that selects it in preference to any other encoding.

If no encodings of the target instruction set can encode the instruction requested by the UAL source, normally
the assembler generates an error saying that the instruction is not available in that instruction set.

Note

In some cases, an instruction is available in one instruction set but not in another. The Assembler syntax
subsection identifies many of these cases. For example, the A32 instructions with bits<31:28> == 0b1111
described in Branch, branch with link, and block data transfer, System register access, Advanced SIMD,
floating-point, and Supervisor call, and Unconditional instructions cannot have a Condition code, but the
equivalent T32 instructions often can, and this usually appears in the Assembler syntax subsection as a
statement that the A32 instruction cannot be conditional.

However, some such cases are too complex to describe in the available space, so the definitive test of whether
an instruction is available in a given instruction set is whether there is an available encoding for it in that
instruction set.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to disassemble that
encoding to. However, disassemblers might use simpler syntaxes when they are suitable for the operand
combination, to produce more readable disassembled code.

• An encoding diagram, where:

— For a 32-bit A32 encoding diagram, the bits are numbered from 31-0.

— For a 16-bit T32 encoding diagram, the bits are numbered from 15-0.

This halfword can be described as hw1 of the instruction.

— For a 32-bit T32 encoding diagram, the bits are numbered from 15-0 for each halfword, as a reminder
that a 32-bit T32 instruction consists of two consecutive halfwords rather than a word.

In this case, the left-hand halfword in the diagram is identified as hw1, and the right-hand halfword is
identified as hw2.

Where instructions are stored using the standard little-endian instruction endianness:

— The encoding diagram for an A32 instruction at address A shows, from left to right, the bytes at
addresses A+3, A+2, A+1, A.

— The encoding diagram for a 32-bit T32 instruction shows bytes in the order A+1, A for hw1, followed
by bytes A+3, A+2 for hw2.

• Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction fields
into inputs to the encoding-independent pseudocode in the Operation subsection, and that picks out any
special cases in the encoding. For a detailed description of the pseudocode used and of the relationship
between the encoding diagram, the encoding-specific pseudocode and the encoding-independent
pseudocode, see Appendix K16 Arm Pseudocode Definition.

F1.1.4 Assembler symbols

The Assembly symbols describe the standard UAL syntax for the instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9649
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
Each syntax description consists of the following elements:

• Descriptions of all variable or optional fields of the syntax.

Some syntax fields are standardized across all or most instructions. Standard assembler syntax fields
describes these fields.

By default, syntax fields that specify registers, such as <Rd>, <Rn>, or <Rt>, can be any of R0-R12 or LR in
T32 instructions, and any of R0-R12, SP, or LR in A32 instructions. These require that the encoding-specific
pseudocode set the corresponding integer variable (such as d, n, or t) to the corresponding register number,
using 0-12 for R0-R12, 13 for SP, or 14 for LR:

— Normally, software can do this by setting the corresponding field in the instruction, typically named
Rd, Rn, Rt, to the binary encoding of that number.

— In the case of 16-bit T32 encodings, the field is normally of length 3, and so the encoding is available
only when the assembler syntax specifies one of R0-R7. Such encodings often use a register field name
like Rdn. This indicates that the encoding is available only if <Rd> and <Rn> specify the same register,
and that the register number of that register is encoded in the field if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted range
of registers or documents other differences from the default rules for such fields. Examples of extensions are
permitting the use of the SP in a T32 instruction, or permitting the use of the PC, identified using register
number 15.

• Where appropriate, text that briefly describes changes from the pre-UAL assembler syntax. Where present,
this usually consists of an alternative pre-UAL form of the assembler mnemonic. The pre-UAL assembler
syntax does not conflict with UAL. Arm recommends that it is supported, as an optional extension to UAL,
so that pre-UAL assembler source files can be assembled.

F1.1.4.1 Assembler syntax prototype line conventions

The following conventions are used in assembler syntax prototype lines and their subfields:

< > Any item bracketed by < and > is a short description of a type of value to be supplied by the user in
that position. A longer description of the item is normally supplied by subsequent text. Such items
often correspond to a similarly named field in an encoding diagram for an instruction. When the
correspondence requires only the binary encoding of an integer value or register number to be
substituted into the instruction encoding, it is not described explicitly. For example, if the assembler
syntax for an instruction contains an item <Rn> and the instruction encoding diagram contains a 4-bit
field named Rn, the number of the register specified in the assembler syntax is encoded in binary in
the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is more
complex than simple binary encoding of an integer or register number, the item description indicates
how it is encoded. This is often done by specifying a required output from the encoding-specific
pseudocode, such as add = TRUE. The assembler must use only encodings that produce that output.

{ } Any item bracketed by { and } is optional. A description of the item and of how its presence or
absence is encoded in the instruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register is omitted, it is the same as the immediately following source register in the
instruction syntax.

In the assembler syntax, numeric constants are normally preceded by a #. Some UAL instruction
syntax descriptions explicitly show this # as optional. Any UAL assembler:

• Must treat the # as optional where an instruction syntax description shows it as optional.

• Can treat the # either as mandatory or as optional where an instruction syntax description does
not show it as optional.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9650
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.1 Format of instruction descriptions
Note

Arm recommends that UAL assemblers treat all uses of # shown in this manual as optional.

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the assembler
syntax, two or more consecutive spaces are used.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and }, the
special characters described above do not appear in the basic forms of assembler instructions documented in this
manual. In a few places, the { and } characters must be encoded as part of a variable item. When this happens, the
long description of the variable item indicates how they must be used.

F1.1.5 Pseudocode describing how the instruction operates

The Operation for all classes subsection contains encoding-independent pseudocode that describes the main
operation of the instruction. For a detailed description of the pseudocode used and of the relationship between the
encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see
Appendix K16 Arm Pseudocode Definition.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9651
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.2 Standard assembler syntax fields
F1.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<c> Is an optional field. It specifies the condition under which the instruction is executed. See
Conditional execution for the range of available conditions and their encoding. If <c> is omitted, it
defaults to always (AL).

<q> Specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

.N Meaning narrow, specifies that the assembler must select a 16-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

.W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings. If both
are available, it must select a 16-bit encoding. In a few cases, more than one encoding of the same
length can be available for an instruction. The rules for selecting between such encodings are
instruction-specific and are part of the instruction description. The assembler syntax includes a
mandatory .W qualifier, along with a note describing the cases in which it applies, where this
qualifier is required to select a particular encoding for an instruction. Additional assembler syntax
will describe the syntax when the conditions are not met.

Note

When assembling to the A32 instruction set, the .N qualifier produces an assembler error and the .W
qualifier has no effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9652
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.3 Conditional execution
F1.3 Conditional execution

Most T32 and A32 instructions can be executed conditionally, based on the values of the APSR Condition flags.
Table F1-1 lists the available conditions.

In T32 instructions, the condition, if it is not AL, is normally encoded in a preceding IT instruction. For more
information, see Conditional instructions and IT. Some conditional branch instructions do not require a preceding
IT instruction, because they include a Condition code in their encoding.

Implementations can provide a set of ITD control fields, SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD, to
disable use of IT for some instructions, making them UNDEFINED.

In A32 instructions, bits[31:28] of the instruction contain either:

• The Condition code, see The Condition code field in A32 instruction encodings.

• 0b1111 for some A32 instructions that can only be executed unconditionally.

F1.3.1 The Condition code field in A32 instruction encodings

Every conditional A32 instruction contains a 4-bit Condition code field, the cond field, in bits 31-28:

Table F1-1 Condition codes

cond Mnemonic extension Meaning (integer) Meaning (floating-point) a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal, or unordered Z == 0

0010 CS b Carry set Greater than, equal, or unordered C == 1

0011 CC c Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Not unordered V == 0

1000 HI Unsigned higher Greater than, or unordered C == 1 and Z == 0

1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V

1100 GT Signed greater than Greater than Z == 0 and N == V

1101 LE Signed less than or equal Less than, equal, or unordered Z == 1 or N != V

1110 None (AL) d Always (unconditional) Always (unconditional) Any

a. Unordered means at least one NaN operand.

b. HS (unsigned higher or same) is a synonym for CS.

c. LO (unsigned lower) is a synonym for CC.

d. AL is an optional mnemonic extension for always, except in IT instructions. For details, see IT.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9653
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.3 Conditional execution
This field contains one of the values 0b0000-0b1110, as shown in Table F1-1. Most instruction mnemonics can be
extended with the letters defined in the Mnemonic extension column of that table.

If the always (AL) condition is specified, the instruction is executed irrespective of the value of the Condition flags.
The absence of a Condition code on an instruction mnemonic implies the AL Condition code.

F1.3.2 Pseudocode description of conditional execution

The AArch32.CurrentCond() function returns a 4-bit condition specifier as follows:

• For A32 instructions, it returns bits[31:28] of the instruction.

• For the T1 and T3 encodings of the Branch instruction (see B), it returns the 4-bit cond field of the encoding.

• For all other T32 instructions:

— If PSTATE.IT<3:0> != '0000' it returns PSTATE.IT<7:4>.

— If PSTATE.IT<7:0> == '00000000' it returns '1110'.

— Otherwise, execution of the instruction is CONSTRAINED UNPREDICTABLE.

For more information, see Process state, PSTATE.

The ConditionPassed() function uses this condition specifier and the Condition flags to determine whether the
instruction must be executed, by calling the ConditionHolds() function.

Chapter J1 Armv8 Pseudocode includes the definitions of these functions.

Undefined Instruction exception describes the handling of conditional instructions that are UNDEFINED,
UNPREDICTABLE, or CONSTRAINED UNPREDICTABLE. The pseudocode in the manual, as a sequential description of
the instructions, has limitations in this respect. For more information, see Limitations of the instruction pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9654
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.4 Shifts applied to a register
F1.4 Shifts applied to a register

A32 register offset load/store word and unsigned byte instructions can apply a wide range of different constant shifts
to the offset register. Both T32 and A32 data-processing instructions can apply the same range of different constant
shifts to the second operand register. For details, see Constant shifts.

A32 data-processing instructions can apply a register-controlled shift to the second operand register.

F1.4.1 Constant shifts

These are the same in T32 and A32 instructions, except that the input bits come from different positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:

(omitted) No shift.

LSL #<n> Logical shift left <n> bits. 1 <= <n> <= 31.

LSR #<n> Logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> Arithmetic shift right <n> bits. 1 <= <n> <= 32.

ROR #<n> Rotate right <n> bits. 1 <= <n> <= 31.

RRX Rotate right one bit, with extend. Bit[0] is written to shifter_carry_out, bits[31:1] are shifted right
one bit, and the Carry flag is shifted into bit[31].

Note

Assemblers can permit the use of some or all of ASR #0, LSL #0, LSR #0, and ROR #0 to specify that no shift is to be
performed. This is not standard UAL, and the encoding selected for T32 instructions might vary between UAL
assemblers if it is used. To ensure disassembled code assembles to the original instructions, disassemblers must omit
the shift specifier when the instruction specifies no shift.

Similarly, assemblers can permit the use of #0 in the immediate forms of ASR, LSL, LSR, and ROR instructions to specify
that no shift is to be performed, that is, that a MOV (register) instruction is wanted. Again, this is not standard UAL,
and the encoding selected for T32 instructions might vary between UAL assemblers if it is used. To ensure
disassembled code assembles to the original instructions, disassemblers must use the MOV (register) syntax when the
instruction specifies no shift.

F1.4.1.1 Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:

(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0b01.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ASR #<n> type = 0b10.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ROR #<n> type = 0b11, immediate = <n>.

RRX type = 0b11, immediate = 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9655
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.4 Shifts applied to a register
F1.4.2 Register controlled shifts

These are available only in A32 instructions.

<type> is the type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10.

LSL Logical shift left, encoded as type = 0b00.

LSR Logical shift right, encoded as type = 0b01.

ROR Rotate right, encoded as type = 0b11.

The bottom byte of <Rs> contains the shift amount.

F1.4.3 Pseudocode description of instruction-specified shifts and rotates

The pseudocode enumeration SRType{} defines the shift types. Shift and rotate instruction decode is described by
the pseudocode function:

• DecodeImmShift() for a constant shift.

• DecodeRegShift() for a register controlled shift.

Shift and rotate operations are made by the pseudocode function Shift().
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9656
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.5 Memory accesses
F1.5 Memory accesses

Commonly, the following addressing modes are permitted for memory access instructions:

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access. The value of the base register is unchanged.

The assembly language syntax for this mode is:

[<Rn>, <offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>, <offset>]!

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the memory
access. The offset value is applied to the address, and written back into the base register

The assembly language syntax for this mode is:

[<Rn>], <offset>

In each case, <Rn> is the base register. <offset> can be:

• An immediate constant, such as <imm8> or <imm12>.

• An index register, <Rm>.

• A shifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:

• Alignment support.

• Endian support.

• Synchronization and semaphores.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9657
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.6 Encoding of lists of general-purpose registers and the PC
F1.6 Encoding of lists of general-purpose registers and the PC

A number of instructions operate on lists of general-purpose registers. For some load instructions, the list of
registers to be loaded can include the PC. For these instructions, the assembler syntax includes a <registers> field,
which provides a list of the registers to be operated on, with list entries separated by commas.

The registers list is encoded in the instruction encoding. Most often, this is done using an 8-bit, 13-bit, or 16-bit
register_list field. This section gives more information about these and other possible register list encodings.

In a register_list field, each bit corresponds to a single register, and if the <registers> field of the assembler
instruction includes Rt then register_list<t> is set to 1, otherwise it is set to 0.

The full rules for the encoding of lists of general-purpose registers, and possibly the PC, are:

• Except for the cases listed here, 16-bit T32 encodings use an 8-bit register list, and can access only registers
R0-R7.

The exceptions to this rule are:

— The T1 encoding of POP uses an 8-bit register list, and an additional bit, P, that corresponds to the PC.
This means it can access any of R0-R7 and the PC.

— The T1 encoding of PUSH uses an 8-bit register list, and an additional bit, M, that corresponds to the LR.
This means it can access any of R0-R7 and the LR.

• 32-bit T32 encodings of load operations use a 13-bit register list, and two additional bits, M, corresponding to
the LR, and P, corresponding to the PC. This means these instructions can access any of R0-R12 and the LR
and PC.

• 32-bit T32 encodings of store operations use a 13-bit register list, and one additional bit, M, corresponding to
the LR. This means these instructions can access any of R0-R12 and the LR.

• Except for the case listed here, A32 encodings use a 16-bit register list. This means these instructions can
access any of R0-R12 and the SP, LR, and PC.

The exception to this rule is:

— The System instructions LDM (exception return) and LDM (User registers) use a 15-bit register list. This
means these instructions can access any of R0-R12 and the SP and LR.

• The T3 and A2 encodings of POP, and the T3 and A2 encodings of PUSH, access a single register from the set
of registers {R0-R12, LR, PC} and encode the register number in the Rt field.

Note

POP is a load operation, and PUSH is a store operation.

In every case, the encoding-specific pseudocode converts the register list into a 32-bit variable, registers, with a
bit corresponding to each of the registers R0-R12, SP, LR, and PC.

Note

Some Advanced SIMD and floating-point instructions operate on lists of SIMD and floating-point registers. The
assembler syntax of these instructions includes a <list> field that specifies the registers to be operated on, and the
description of the instruction in Alphabetical list of T32 and A32 base instruction set instructions defines the use
and encoding of this field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9658
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
F1.7 General information about the T32 and A32 instruction descriptions

Chapter F3 T32 Instruction Set Encoding describes the T32 instruction encodings, and Chapter F4 A32 Instruction
Set Encoding describes the A32 instruction encodings. The following subsections give more information about the
descriptions of these instructions and their encodings:

• Execution of instructions in debug state.

• Fixed values in AArch32 instruction and System register descriptions.

• UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space.

• T32 and A32 Advanced SIMD and floating-point instruction encodings.

• The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions.

• The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions.

• Modified immediate constants in T32 and A32 instructions.

F1.7.1 Execution of instructions in debug state

In general, except for the instructions described in Debug state, the T32 instruction descriptions do not indicate any
differences in the behavior of the instruction if it is executed in Debug state. For this information, see Executing
instructions in Debug state.

Note

• A32 instructions cannot be executed in Debug state.

• For many T32 instructions, execution is unchanged in Debug state. Executing instructions in Debug state
identifies these instructions.

F1.7.2 Fixed values in AArch32 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions.
The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the
corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RES0 and
RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:

RAZ Read-As-Zero. See Read-As-Zero (RAZ).

In diagrams, a RAZ bit can be shown as 0.

(0), RES0 Reserved, Should-Be-Zero (SBZ) or RES0.

In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ bit. If
the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 0.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0)(0) or as
(000).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9659
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES0. For more information, see the Glossary definition of RES0.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES0 fields,

The (0) and RES0 descriptions can be applied to bits or bit fields that are read-only, or are write-only.
The Glossary definitions cover these cases.

RAO Read-As-One. See Read-As-One (RAO).

In diagrams, a RAO bit can be shown as 1.

(1), RES1 Reserved, Should-Be-One (SBO) or RES1.

In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates an SBO bit. If
the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if the value of the bit was 1.

• Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as
(111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES1. For more information, see the Glossary definition of RES1.

Note

Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES1 fields.

The (1) and RES1 descriptions can be applied to bits or bit fields that are read-only, or are write-only.
The Glossary definitions cover these cases.

Note

In register diagrams, (0) is a synonym for RES0, and (1) is a synonym for RES1, where RES0 and RES1 are defined in
the Glossary. However, when used in an instruction encoding diagram, (0) and (1) have the narrower definition that
behavior is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE if either:

• A bit marked as (0) has the value 1.

• A bit marked as (1) has the value 0.

F1.7.3 UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

• Unpredictable behavior. The instruction is described as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE.

From the introduction of Armv8-A, the architecturally UNPREDICTABLE behavior in AArch32 state is greatly
reduced. Most cases that earlier versions of the architecture describe as UNPREDICTABLE become either:

— CONSTRAINED UNPREDICTABLE, meaning the architecture defines a limited range of permitted
behaviors.

— Fully predictable.

For more information, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9660
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
• An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in Chapter F3 T32
Instruction Set Encoding or Chapter F4 A32 Instruction Set Encoding.

An instruction is UNPREDICTABLE only if:

• It is declared as UNPREDICTABLE in an instruction description or in Chapter F3 or Chapter F4, and
Appendix K1 does not redefine the behavior as CONSTRAINED UNPREDICTABLE.

• The pseudocode for that encoding does not indicate that a different special case applies, and a bit marked (0)
or (1) in the encoding diagram of an instruction is not 0 or 1 respectively. In most cases, Armv8 makes these
cases CONSTRAINED UNPREDICTABLE, as described in SBZ or SBO fields T32 and A32 in instructions.

Unless otherwise specified, T32 and A32 instructions provided as part of an architectural extension, or by an
optional feature of the architecture, are UNDEFINED in an implementation that does not include that extension or
feature.

Note

Examples of where this rule applies are:

• The instructions provided by the Cryptographic Extension.

• The System instructions that provide access to the System registers of the OPTIONAL Performance Monitors
Extension.

• The Advanced SIMD and floating-point instructions.

For more information about UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction behavior,
see Undefined Instruction exception.

F1.7.4 T32 and A32 Advanced SIMD and floating-point instruction encodings

The T32 and A32 encodings of Advanced SIMD and floating-point instructions that are described in Chapter F3
T32 Instruction Set Encoding and in Chapter F4 A32 Instruction Set Encoding are common to the T32 and A32
instruction sets. This means:

• The instruction groups, and the set of instructions in each group, are identical for T32 and A32.

• For each instruction:

— Each T32 encoding is exactly equivalent to an A32 encoding.

— There is no T32 encoding without an equivalent A32 encoding, and no A32 encoding without an
equivalent T32 encoding.

Note

• In the T32 instruction sets, the Advanced SIMD and floating-point instructions have 32-bit encodings.

• In the base instruction sets, some instructions are common to the T32 and A32 instruction sets, whereas other
instructions have equivalent but not identical functionality in the two instruction sets.

32-bit T32 encodings are described as two contiguous halfwords, {hw1:hw2}, as described in Instruction encodings.
In general:

• hw1 of a T32 encoding maps onto bits[31:16] of an equivalent A32 encoding.

• hw2 of a T32 encoding maps onto bits[15:0] of an equivalent A32 encoding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9661
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
However, the different structures of the T32 instruction encoding space and the A32 instruction encoding space
mean that:

• For a given Advanced SIMD and floating-point instruction group:

— The positions of the fields that identify the instruction, or instruction encoding, within the instruction
group might differ between the T32 encodings and the A32 encodings.

— However, the field values that identify the instruction of instruction encoding are identical for the T32
encoding and the A32 encoding.

The remainder of this section describes the equivalence of the T32 and A32 encodings for each of the Advanced
SIMD and floating-point instruction groups.

F1.7.4.1 Advanced SIMD data-processing

The T32 encoding of the Advanced SIMD data-processing group is:

The A32 encoding of the Advanced SIMD data-processing group is:

The encodings in this group are identified by:

• hw1[15:13] of the T32 encoding is equivalent to bits[27:25] of the A32 encoding, and:

— Has the value 0b111 in the T32 encoding.

— Has the value 0b001 in the A32 encoding.

• hw1[11:8] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and has the value 0b111.

This table shows the equivalence of the fields that identify the instructions, or instruction encodings, within this
group:

F1.7.4.2 Advanced SIMD element or structure load/store

The T32 encoding of the Advanced SIMD element or structure load/store group is:

T32 encoding A32 encoding Field size

op0:op1 op0 2 bits

op2 op1 15 bits

op3 op2 1 bit

op4 op3 1 bit

111 1111

15 13 12 11 8 7 6 5 4 3 00 15

op0 op1

1111001

31 25 24 23 22 5 4 3 0

op0 op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9662
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
The A32 encoding of the Advanced SIMD element or structure load/store group is:

The encodings in this group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and has the value 0b1111.

• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and:

— Has the value 0b1001 in the T32 encoding.

— Has the value 0b0100 in the A32 encoding.

• hw1[4] of the T32 encoding is equivalent to bit[20] of the A32 encoding, and has the value 0b0.

op0, op1, and op2 are the fields that identify the instructions, or instruction encodings, within this group, and they are
in equivalent positions in the T32 and A32 encodings.

F1.7.4.3 Advanced SIMD and floating-point load/store and 64-bit register moves

The T32 encoding of the Advanced SIMD and floating-point load/store and 64-bit register moves group is:

The A32 encoding of the Advanced SIMD and floating-point load/store and 64-bit register moves group is:

The encodings in the group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:

— Has the value 0b1110 in the T32 encoding.

— Can have any value other than 0b1111 in the A32 encoding.

This range of values is required because A32 instructions in this group can be executed conditionally,
see Conditional execution.

• hw1[11:9] of the T32 encoding is equivalent to bits[27:25] of the A32 encoding, and has the value 0b110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

op0 is the field that identifies the instructions, or instruction encodings, within this group, and is in equivalent
positions in the T32 and A32 encodings.

11111001 0 op1

15 8 7 6 5 4 3 12 11 10 9 00 15

op0

11110100 0 op1

31 24 23 22 21 20 19 12 11 10 9 0

op0

1110110 op0 101

15 8 5 4 12 11 8 00 15

!=1111 110 op0 101

31 27 24 21 20 12 11 8 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9663
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
F1.7.4.4 Advanced SIMD and floating-point 32-bit register moves

The T32 encoding of the Advanced SIMD and floating-point 32-bit register moves group is:

The A32 encoding of the Advanced SIMD 32-bit register moves group is:

The encodings in this group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:

— Has the value 0b1110 in the T32 encoding.

— Can have any value other than 0b1111 in the A32 encoding.

This range of values is required because A32 instructions in this group can be executed conditionally,
see Conditional execution.

• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and has the value 0b1110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

• hw2[4] of the T32 encoding is equivalent to bit[4] of the A32 encoding, and has the value 0b1.

op0 is the field that identifies the instructions, or instruction encodings, within this group, and is in equivalent
positions in the T32 and A32 encodings.

F1.7.4.5 Floating-point data-processing

The T32 encoding of the Floating-point data-processing group is:

The A32 encoding of the Floating-point data-processing group is:

11101110 op0 101 1

15 7 5 4 12 11 8 7 5 4 00 15

op1

!=1111 1110 op0 101 1

31 27 23 21 20 12 11 8 7 5 4 0

op1

11101110 op0 10 0

15 8 7 4 3 12 11 10 9 7 6 5 4 3 00 15

op1

!=1111 1110 op0 10 0

31 28 27 24 23 20 19 12 11 10 9 7 6 5 4 3 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9664
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
The encodings in this group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:

— In the T32 encoding, hw1[15:13] has the value 0b111, and hw1[12] is the op0 parameter used in
identifying instruction encodings within this group.

— In the A32 encoding, is the cond field and also implies the value of bit[28] of some A32 instruction
encodings within this group, as the following table shows:

The range of cond values other than 0b1111 is required because A32 instructions in this group can be
executed conditionally, see Conditional execution.

• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and has the value 0b1110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

• hw2[4] of the T32 encoding is equivalent to bit[4] of the A32 encoding, and has the value 0b0.

This table shows the equivalence of the fields that identify the instructions, or instruction encodings, within this
group:

F1.7.5 The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions

Restrictions on the use of PC or 0b1111 as a register specifier differ between the T32 and the A32 instruction sets,
as described in:

• T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier.

• A32 restrictions on the use of PC or 0b1111 as a register specifier.

F1.7.5.1 T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier

The use of 0b1111 as a register specifier is not normally permitted in T32 instructions. When a value of 0b1111 is
permitted, various meanings are possible. For register reads, these meanings include:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This means branch tables can be placed in memory immediately after
the instruction.

Note
Arm deprecates use of the PC as the base register in the STC instruction.

cond Significance of bit[28] in A32 encodings

!= 0b1111 Part of the cond field.

0b1111 Has fixed value of 1.

T32 encoding A32 encoding

op0 Bit[28] of the instruction encoding is 1 when cond is 0b1111.

op1 op0

op2 op1

op3 op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9665
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits[1:0] forced to
zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and LDRSH instructions
can be the word-aligned PC. This provides PC-relative data addressing. In addition, some encodings of the
ADD and SUB instructions permit their source registers to be 0b1111 for the same purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page.

For register writes, these meanings include:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. Bit[0]
of the loaded value selects whether to execute A32 or T32 instructions after the branch.

• Some other instructions write the PC in similar ways. An instruction can specify that the PC is written:

— Implicitly, for example, branch instructions.

— Explicitly by a register specifier of 0b1111, for example 16-bit MOV (register) instructions.

— Explicitly by using a register mask, for example LDM instructions.

The address to branch to can be:

— A loaded value, for example, RFE.

— A register value, for example, BX.

— The result of a calculation, for example, TBB or TBH.

The method of choosing the instruction set used after the branch can be:

— Similar to the LDR case, for example, LDM or BX.

— A fixed instruction set other than the one currently being used, for example, the immediate form of BLX.

— Unchanged, for example, branch instructions or 16-bit MOV (register) instructions.

— Set from the SPSR.T bit, for RFE and SUBS PC, LR, #imm8.

• Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page.

• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is a
memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits[31:28] of the value transferred from
the System register are written to the N, Z, C, and V condition flags in the APSR, and bits[27:0] are discarded.

F1.7.5.2 A32 restrictions on the use of PC or 0b1111 as a register specifier

In A32 instructions, the use of 0b1111 as a register specifier specifies the PC.

Many instructions are CONSTRAINED UNPREDICTABLE if they use 0b1111 as a register specifier. This is specified by
pseudocode in the instruction description. Armv8-A constrains the resulting CONSTRAINED UNPREDICTABLE
behavior, see Using R15 by instruction.

Note

Arm deprecates use of the PC as the base register in any store instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9666
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
F1.7.6 The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions

In the T32 and A32 instruction sets, Arm recommends that the use of 0b1101 as a register specifier specifies the SP.

Note

• The recommendation that the register specifier 0b1101 is used only to specify the SP applies to both the T32
and the A32 instruction sets.

• Despite this recommendation, T32 instructions that can access R13, or the SP, behave predictably from the
introduction of Armv8.

F1.7.7 Modified immediate constants in T32 and A32 instructions

The following sections describe the encoding of modified immediate constants:

• Modified immediate constants in T32 instructions.

• Modified immediate constants in A32 instructions.

• Modified immediate constants in T32 and A32 Advanced SIMD instructions.

• Modified immediate constants in T32 and A32 floating-point instructions.

F1.7.7.1 Modified immediate constants in T32 instructions

The encoding of a modified immediate constant in a 32-bit T32 instruction is:

Table F1-2 shows the range of modified immediate constants available in T32 data-processing instructions, and
their encoding in the a, b, c, d, e, f, g, h, and i bits, and the imm3 field, in the instruction.

Table F1-2 Encoding of modified immediates in T32 data-processing instructions

i:imm3:a <const> a

0000x 00000000 00000000 00000000 abcdefgh

0001x 00000000 abcdefgh 00000000 abcdefgh b

0010x abcdefgh 00000000 abcdefgh 00000000 b

0011x abcdefgh abcdefgh abcdefgh abcdefgh b

01000 1bcdefgh 00000000 00000000 00000000

01001 01bcdefg h0000000 00000000 00000000 c

01010 001bcdef gh000000 00000000 00000000

01011 0001bcde fgh00000 00000000 00000000 c

.

.

.

.

.

.

8-bit values shifted to other positions

i imm3 a b c d e f g h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9667
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Note

As the footnotes to Table F1-2 show, the range of values available in T32 modified immediate constants is slightly
different from the range of values available in A32 instructions. See Modified immediate constants in A32
instructions for the A32 values.

F1.7.7.1.1 Carry out

A logical instruction with i:imm3:a == '00xxx' does not affect the Carry flag. Otherwise, a logical flag-setting
instruction sets the Carry flag to the value of bit[31] of the modified immediate constant.

F1.7.7.1.2 Operation of modified immediate constants, T32 instructions

For a T32 data-processing instruction, the T32ExpandImm() pseudocode function returns the value of the 32-bit
immediate constant, calling T32ExpandImm_C() to evaluate the constant.

F1.7.7.2 Modified immediate constants in A32 instructions

The encoding of a modified immediate constant in an A32 instruction is:

Table F1-3 shows the range of modified immediate constants available in A32 data-processing instructions, and
their encoding in the a, b, c, d, e, f, g, and h bits and the rotation field in the instruction.

11101 00000000 00000000 000001bc defgh000 c

11110 00000000 00000000 0000001b cdefgh00

11111 00000000 00000000 00000001 bcdefgh0 c

a. This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram. In
assembly syntax, the immediate value is specified in the usual way (a decimal number by default).

b. Arm deprecates using a modified immediate with abcdefgh == 00000000, and these cases are CONSTRAINED
UNPREDICTABLE, see UNPREDICTABLE cases in immediate constants in T32 data-processing instructions.

c. Not available in A32 instructions if h == 1.

Table F1-3 Encoding of modified immediates in A32 processing instructions

rotation <const> a

0000 00000000 00000000 00000000 abcdefgh

0001 gh000000 00000000 00000000 00abcdef

0010 efgh0000 00000000 00000000 0000abcd

0011 cdefgh00 00000000 00000000 000000ab

0100 abcdefgh 00000000 00000000 00000000

.

.

.

.

.

.

8-bit values shifted to other even-numbered positions

1001 00000000 00abcdef gh000000 00000000

Table F1-2 Encoding of modified immediates in T32 data-processing instructions (continued)

i:imm3:a <const> a

rotation a b c d e f g h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9668
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
Note

The range of values available in A32 modified immediate constants is slightly different from the range of values
available in 32-bit T32 instructions. See Modified immediate constants in T32 instructions.

F1.7.7.2.1 Carry out

A logical instruction with the rotation field set to 0b0000 does not affect APSR.C. Otherwise, a logical flag-setting
instruction sets APSR.C to the value of bit[31] of the modified immediate constant.

F1.7.7.2.2 Constants with multiple encodings

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the encoding
with the lowest unsigned value of the rotation field. This is the encoding that appears first in Table F1-3. For
example, the constant #3 must be encoded with (rotation, abcdefgh) == (0b0000, 0b00000011), not (0b0001,
0b00001100), (0b0010, 0b00110000), or (0b0011, 0b11000000).

In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and permitted
constants outside that range are encoded with rotation != 0b0000. A flag-setting logical instruction with a modified
immediate constant therefore leaves APSR.C unchanged if the constant is in the range 0-255 and sets it to the most
significant bit of the constant otherwise. This matches the behavior of T32 modified immediate constants for all
constants that are permitted in both the A32 and T32 instruction sets.

An alternative syntax is available for a modified immediate constant that permits the programmer to specify the
encoding directly. In this syntax, #<const> is instead written as #<byte>, #<rot>, where:

<byte> Is the numeric value of abcdefgh, in the range 0-255.

<rot> Is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all A32 data-processing instructions with modified immediate constants to be disassembled to
assembler syntax that assembles to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have different
effects on APSR.C to those obtained with the normal #<const> syntax. For example, ANDS R1, R2, #12, #2 has the
same behavior as ANDS R1, R2, #3 except that it sets APSR.C to 0 instead of leaving it unchanged. Such variants of
flag-setting logical instructions do not have equivalents in the T32 instruction set, and Arm deprecates their use.

F1.7.7.2.3 Operation of modified immediate constants, A32 instructions

For an A32 data-processing instruction, the A32ExpandImm() pseudocode function returns the value of the 32-bit
immediate constant, calling A32ExpandImm_C() to evaluate the constant.

.

.

.

.

.

.

8-bit values shifted to other even-numbered positions

1110 00000000 00000000 0000abcd efgh0000

1111 00000000 00000000 000000ab cdefgh00

a. This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram.
In assembly syntax, the immediate value is specified in the usual way (a decimal number by default).

Table F1-3 Encoding of modified immediates in A32 processing instructions (continued)

rotation <const> a
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9669
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
F1.7.7.3 Modified immediate constants in T32 and A32 Advanced SIMD instructions

Table F1-4 shows the modified immediate constants available with Advanced SIMD instructions, and how they are
encoded.

F1.7.7.3.1 Operation of modified immediate constants, Advanced SIMD instructions

For a T32 or A32 Advanced SIMD instruction that uses a modified immediate constant, the operation described by
the AdvSIMDExpandImm() pseudocode function returns the value of the 64-bit immediate constant.

Table F1-4 Modified immediate values for Advanced SIMD instructions

op cmode Constanta <dt>b Notes

- 000x 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh I32 c

001x 00000000 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 I32 c, d

010x 00000000 abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 I32 c, d

011x abcdefgh 00000000 00000000 00000000 abcdefgh 00000000 00000000 00000000 I32 c, d

100x 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh I16 c

101x abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 abcdefgh 00000000 I16 c, d

1100 00000000 00000000 abcdefgh 11111111 00000000 00000000 abcdefgh 11111111 I32 d, e

1101 00000000 abcdefgh 11111111 11111111 00000000 abcdefgh 11111111 11111111 I32 d, e

0 1110 abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh I8 f

1111 aBbbbbbc defgh000 00000000 00000000 aBbbbbbc defgh000 00000000 00000000 F32 f, g

1 1110 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh I64 f

1111 UNDEFINED - -

a. In this table, the immediate value is shown in binary form, to relate abcdefgh to the encoding diagram. In assembler
syntax, the constant is specified by a data type and a value of that type. That value is specified in the normal way (a
decimal number by default) and is replicated enough times to fill the 64-bit immediate. For example, a data type of I32
and a value of 10 specify the 64-bit constant 0x0000000A0000000A.

b. This specifies the data type used when the instruction is disassembled. On assembly, the data type must be matched in
the table if possible. Other data types are permitted as pseudo-instructions when a program is assembled, provided the
64-bit constant specified by the data type and value is available for the instruction. If a constant is available in more
than one way, the first entry in this table that can produce it is used. For example, VMOV.I64 D0, #0x8000000080000000
does not specify a 64-bit constant that is available from the I64 line of the table, but does specify one that is available
from the fourth I32 line or the F32 line. It is assembled to the first of these, and therefore is disassembled as
VMOV.I32 D0, #0x80000000.

c. This constant is available for the VBIC, VMOV, VMVN, and VORR instructions.

d. CONSTRAINED UNPREDICTABLE if abcdefgh == 0b00000000, see UNPREDICTABLE cases in immediate constants in
Advanced SIMD instructions. The required behavior is that these encodings produce an immediate constant of zero.

e. This constant is available for the VMOV and VMVN instructions only.

f. This constant is available for the VMOV instruction only.

g. In this entry, B = NOT(b). The bit pattern represents the floating-point number (–1)S × 2exp × mantissa, where
S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9670
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.7 General information about the T32 and A32 instruction descriptions
F1.7.7.4 Modified immediate constants in T32 and A32 floating-point instructions

Table F1-5 shows the immediate constants available in the VMOV (immediate) floating-point instruction, and
Table F1-6 shows the resulting floating-point values.

F1.7.7.4.1 Operation of modified immediate constants, floating-point instructions

For a T32 or A32 floating-point instruction that uses a modified immediate constant, the operation described by the
VFPExpandImm() pseudocode function returns the value of the immediate constant.

Table F1-5 Floating-point modified immediate constants

Data type imm4H imm4L Constant a

F16 abcd efgh aBbbcdef gh000000

F32 abcd efgh aBbbbbbc defgh000 00000000 00000000

F64 abcd efgh aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (–1)S × 2exp × mantissa, where
S = UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

Table F1-6 Floating-point constant values

efgh
bcd

000 001 010 011 100 101 110 111

0000 2.0 4.0 8.0 16.0 0.125 0.25 0.5 1.0

0001 2.125 4.25 8.5 17.0 0.1328125 0.265625 0.53125 1.0625

0010 2.25 4.5 9.0 18.0 0.140625 0.28125 0.5625 1.125

0011 2.375 4.75 9.5 19.0 0.1484375 0.296875 0.59375 1.1875

0100 2.5 5.0 10.0 20.0 0.15625 0.3125 0.625 1.25

0101 2.625 5.25 10.5 21.0 0.1640625 0.328125 0.65625 1.3125

0110 2.75 5.5 11.0 22.0 0.171875 0.34375 0.6875 1.375

0111 2.875 5.75 11.5 23.0 0.1796875 0.359375 0.71875 1.4375

1000 3.0 6.0 12.0 24.0 0.1875 0.375 0.75 1.5

1001 3.125 6.25 12.5 25.0 0.1953125 0.390625 0.78125 1.5625

1010 3.25 6.5 13.0 26.0 0.203125 0.40625 0.8125 1.625

1011 3.375 6.75 13.5 27.0 0.2109375 0.421875 0.84375 1.6875

1100 3.5 7.0 14.0 28.0 0.21875 0.4375 0.875 1.75

1101 3.625 7.25 14.5 29.0 0.2265625 0.453125 0.90625 1.8125

1110 3.75 7.5 15.0 30.0 0.234375 0.46875 0.9375 1.875

1111 3.875 7.75 15.5 31.0 0.2421875 0.484375 0.96875 1.9375
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9671
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.8 Additional pseudocode support for instruction descriptions
F1.8 Additional pseudocode support for instruction descriptions

Earlier sections of this chapter include pseudocode that describes features of the execution of A32 and T32
instructions, see:

• Pseudocode description of conditional execution.

• Pseudocode description of instruction-specified shifts and rotates

The following subsection gives additional pseudocode support functions for some of the instructions described in
Alphabetical list of T32 and A32 base instruction set instructions. See also Pseudocode support for the banked
register transfer instructions.

F1.8.1 Pseudocode description of operations for System register access instructions

The AArch32.SysRegRead() function obtains the word for an MRC instruction from the System register.

The AArch32.SysRegRead64() function obtains the two words for an MRRC instruction from the System register.

Note

The relative significance of the two words returned is IMPLEMENTATION DEFINED, but all uses within this manual
present the two words in the order (most significant, least significant).

The AArch32.SysRegWrite() procedure sends the word for an MCR instruction to the System register.

The AArch32.SysRegWrite64() procedure sends the two words for an MCRR instruction to the System register.

Note

The relative significance of word2 and word1 is IMPLEMENTATION DEFINED, but all uses within this manual treat word2
as more significant than word1.

F1.8.2 Pseudocode details of system calls

The AArch32.CallSupervisor() pseudocode function generates a Supervisor Call exception. Valid execution of the
SVC instruction calls this function.

The AArch32.CallHypervisor() pseudocode function generates an HVC exception. Valid execution of the HVC
instruction calls this function.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9672
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9 Additional information about Advanced SIMD and floating-point instructions

The following subsections give additional information about the Advanced SIMD and floating-point instructions:

• Advanced SIMD and floating-point instruction syntax.

• The Advanced SIMD addressing mode.

• Advanced SIMD instruction modifiers.

• Advanced SIMD operand shapes.

• Data type specifiers.

• Register specifiers.

• Register lists.

• Register encoding.

• Advanced SIMD scalars.

Note

The Advanced SIMD architecture, its associated implementations, and supporting software, are commonly referred
to as NEON™ technology.

F1.9.1 Advanced SIMD and floating-point instruction syntax

Advanced SIMD and floating-point instructions use the general conventions of the T32 and A32 instruction sets.

Advanced SIMD and floating-point data-processing instructions use the following general format:

V{<modifier>}<operation>{<shape>}{<c>}{<q>}{.<dt>} {<dest>,} <src1>, <src2>

All Advanced SIMD and floating-point instructions begin with a V. This distinguishes Advanced SIMD vector and
floating-point instructions from scalar instructions.

The main operation is specified in the <operation> field. It is usually a three letter mnemonic the same as or similar
to the corresponding scalar integer instruction.

The <c> and <q> fields are standard assembler syntax fields. For details, see Standard assembler syntax fields.

F1.9.2 The Advanced SIMD addressing mode

All the element and structure load/store instructions use this addressing mode. There is a choice of three formats:

[<Rn>{:<align>}] The address is contained in general-purpose register Rn.

Rn is not updated by this instruction.

Encoded as Rm = 0b1111.

If Rn is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

[<Rn>{:<align>}]! The address is contained in general-purpose register Rn.

Rn is updated by this instruction: Rn = Rn + transfer_size

Encoded as Rm = 0b1101.

transfer_size is the number of bytes transferred by the instruction. This means that, after
the instruction is executed, Rn points to the address in memory immediately following the
last address loaded from or stored to.

If Rn is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

This addressing mode can also be written as:

[<Rn>{:align}], #<transfer_size>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9673
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
However, disassembly produces the [<Rn>{:align}]! form.

[<Rn>{:<align>}], <Rm>

The address is contained in general-purpose register <Rn>.

Rn is updated by this instruction: Rn = Rn + Rm

Encoded as Rm = Rm. Rm must not be encoded as 0b1111 or 0b1101, the PC or the SP.

If Rn is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

The CONSTRAINED UNPREDICTABLE behavior of encodings where Rn is 0b1111 is described in the section: Using
R15 by instruction.

In all cases, <align> specifies an alignment, as specified by the individual instruction descriptions.

Previous versions of the manual used the @ character for alignment. So, for example, the first format in this section
was shown as [<Rn>{@<align>}]. Both @ and : are supported. However, to ensure portability of code to assemblers
that treat @ as a comment character, : is preferred.

F1.9.3 Advanced SIMD instruction modifiers

The <modifier> field provides additional variants of some instructions. Table F1-7 provides definitions of the
modifiers. Modifiers are not available for every instruction.

F1.9.4 Advanced SIMD operand shapes

The <shape> field provides additional variants of some instructions. Table F1-8 provides definitions of the shapes.
Operand shapes are not available for every instruction.

Note

• Some assemblers support a Q shape specifier, which requires all operands to be Q registers. An example of
using this specifier is VADDQ.S32 q0, q1, q2. This is not standard UAL, and Arm recommends that
programmers do not use a Q shape specifier.

• A disassembler must not generate any shape specifier not shown in Table F1-8.

Table F1-7 Advanced SIMD instruction modifiers

<modifier> Meaning

Q The operation uses saturating arithmetic.

R The operation performs rounding.

D The operation doubles the result (before accumulation, if any).

H The operation halves the result.

Table F1-8 Advanced SIMD operand shapes

<shape> Meaning Typical register shape

(none) The operands and result are all the same width. Dd, Dn, Dm Qd, Qn, Qm

L Long operation - result is twice the width of both operands Qd, Dn, Dm

N Narrow operation - result is half the width of both operands Dd, Qn, Qm

W Wide operation - result and first operand are twice the width of the second operand Qd, Qn, Dm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9674
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9.5 Data type specifiers

The <dt> field normally contains one data type specifier. Unless the assembler syntax description for the instruction
indicates otherwise, this indicates the data type contained in:

• The second operand, if any.

• The operand, if there is no second operand.

• The result, if there are no operand registers.

The data types of the other operand and result are implied by the <dt> field combined with the instruction shape. For
information about data type formats, see Data types supported by the Advanced SIMD implementation.

In the instruction syntax descriptions in Chapter F1 About the T32 and A32 Instruction Descriptions, the <dt> field
is usually specified as a single field. However, where more convenient, it is sometimes specified as a concatenation
of two fields, <type><size>.

F1.9.5.1 Syntax flexibility

There is some flexibility in the data type specifier syntax:

• Software can specify three data types, specifying the result and both operand data types. For example:

VSUBW.I16.I16.S8 Q3, Q5, D0 instead of VSUBW.S8 Q3, Q5, D0

• Software can specify two data types, specifying the data types of the two operands. The data type of the result
is implied by the instruction shape. For example:

VSUBW.I16.S8 Q3, Q5, D0 instead of VSUBW.S8 Q3, Q5, D0

• Software can specify two data types, specifying the data types of the single operand and the result. For
example:

VMOVN.I16.I32 D0, Q1 instead of VMOVN.I32 D0, Q1

• Where an instruction requires a less specific data type, software can instead specify a more specific type, as
shown in Table F1-9.

• Where an instruction does not require a data type, software can provide one.

• The F32 data type can be abbreviated to F.

• The F64 data type can be abbreviated to D.

In all cases, if software provides additional information, the additional information must match the instruction
shape. Disassembly does not regenerate this additional information.

Table F1-9 Data type specification flexibility

Specified data type Permitted more specific data types

None Any

.I<size> - .S<size> .U<size> - -

.8 .I8 .S8 .U8 .P8 -

.16 .I16 .S16 .U16 .P16 .F16

.32 .I32 .S32 .U32 - .F32 or .F

.64 .I64 .S64 .U64 - .F64 or .D
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9675
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9.6 Register specifiers

The <dest>, <src1>, and <src2> fields contain register specifiers, or in some cases scalar specifiers or register lists.
Table F1-10 shows the register and scalar specifier formats that appear in the instruction descriptions.

If <dest> is omitted, it is the same as <src1>.

Table F1-10 Advanced SIMD and floating-point register specifier formats

<specifier> Usual meaning a

a. In some instructions the roles of registers are different.

Used in

<Qd> A quadword destination register for the result vector. Advanced SIMD

<Qn> A quadword source register for the first operand vector. Advanced SIMD

<Qm> A quadword source register for the second operand vector. Advanced SIMD

<Dd> A doubleword destination register for the result vector. Both

<Dn> A doubleword source register for the first operand vector. Both

<Dm> A doubleword source register for the second operand vector. Both

<Sd> A singleword destination register for the result vector. Floating-point

<Sn> A singleword source register for the first operand vector. Floating-point

<Sm> A singleword source register for the second operand vector. Floating-point

<Dd[x]> A destination scalar for the result. Element x of vector <Dd>. Advanced SIMD

<Dn[x]> A source scalar for the first operand. Element x of vector <Dn>. Bothb

b. In the floating-point instructions, <Dn[x]> is used only in VMOV (scalar to general-purpose register), see VMOV
(scalar to general-purpose register).

<Dm[x]> A source scalar for the second operand. Element x of vector <Dm>. Advanced SIMD

<Rt> A general-purpose register, used for a source or destination address. Both

<Rt2> A general-purpose register, used for a source or destination address. Both

<Rn> A general-purpose register, used as a load or store base address. Both

<Rm> A general-purpose register, used as a post-indexed address source. Both
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9676
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
F1.9.7 Register lists

A register list is a list of register specifiers separated by commas and enclosed in brackets { and }. There are
restrictions on what registers can appear in a register list. These restrictions are described in the individual
instruction descriptions. Table F1-11 shows some register list formats, with examples of actual register lists
corresponding to those formats.

Note

Register lists must not wrap around the end of the register bank.

F1.9.7.1 Syntax flexibility

There is some flexibility in the register list syntax:

• Where a register list contains consecutive registers, they can be specified as a range, instead of listing every
register, for example {D0-D3} instead of {D0, D1, D2, D3}.

• Where a register list contains an even number of consecutive doubleword registers starting with an
even-numbered register, it can be written as a list of quadword registers instead, for example {Q1, Q2} instead
of {D2-D5}.

• Where a register list contains only one register, the enclosing braces can be omitted, for example
VLD1.8 D0, [R0] instead of VLD1.8 {D0}, [R0].

F1.9.8 Register encoding

An Advanced SIMD register is either:

• Quadword, meaning it is 128 bits wide.

• Doubleword, meaning it is 64 bits wide.

Some instructions have options for either doubleword or quadword registers. This is normally encoded in Q, bit[6],
as Q = 0 for doubleword operations, or Q = 1 for quadword operations.

A floating-point register is either:

• Double-precision, meaning it is 64 bits wide.

• Single-precision, meaning it is 32 bits wide.

This is encoded in the sz field, bit[8], as sz = 1 for double-precision operations, or sz = 0 for single-precision
operations.

The T32 instruction encoding of Advanced SIMD or floating-point registers is:

Table F1-11 Example register lists

Format Example Alternative

{<Dd>} {D3} D3

{<Dd>, <Dd+1>, <Dd+2>} {D3, D4, D5} {D3-D5}

{<Dd[x]>, <Dd+2[x]} {D0[3], D2[3]} -

{<Dd[]>} {D7[]} D7[]

D Vn Vd sz N Q M Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9677
ID032224 Non-Confidential

About the T32 and A32 Instruction Descriptions
F1.9 Additional information about Advanced SIMD and floating-point instructions
The A32 instruction encoding of Advanced SIMD or floating-point registers is:

Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.

Table F1-12 shows the encodings for the registers.

F1.9.9 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions can
access any element in the register set. The instruction syntax refers to the scalars using an index into a doubleword
vector. The descriptions of the individual instructions contain details of the encodings.

Table F1-13 shows the form of encoding for scalars used in multiply instructions. These instructions cannot access
scalars in some registers. The descriptions of the individual instructions contain cross references to this section
where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to
Floating-point single-precision registers. That is, Dm[x] in a 32-bit context (0 <= m <= 15, 0 <= x <=1) is equivalent
to S[2m + x].

Table F1-12 Encoding of register numbers

Register
mnemonic

Usual usage
Register number
encoded ina

a. Bit numbers given for the A32 instruction encoding. See the figures in this section for the equivalent bits in the T32
encoding.

Notesa Used in

<Qd> Destination (quadword) D, Vd (bits[22, 15:13]) bit[12] == 0b

b. If this bit is 1, the instruction is UNDEFINED.

Advanced SIMD

<Qn> First operand (quadword) N, Vn (bits[7, 19:17]) bit[16] == 0b Advanced SIMD

<Qm> Second operand (quadword) M, Vm (bits[5, 3:1]) bit[0] == 0b Advanced SIMD

<Dd> Destination (doubleword) D, Vd (bits[22, 15:12]) - Both

<Dn> First operand (doubleword) N, Vn (bits[7, 19:16]) - Both

<Dm> Second operand (doubleword) M, Vm (bits[5, 3:0]) - Both

<Sd> Destination (single-precision) Vd, D (bits[15:12, 22]) - Floating-point

<Sn> First operand (single-precision) Vn, N (bits[19:16, 7]) - Floating-point

<Sm> Second operand (single-precision) Vm, M (bits[3:0, 5]) - Floating-point

D Vn Vd sz N Q M Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table F1-13 Encoding of scalars in multiply instructions

Scalar mnemonic Usual usage Scalar size Register specifier Index specifier Accessible registers

<Dm[x]> Second operand 16-bit Vm[2:0] M, Vm[3] D0-D7

32-bit Vm[3:0] M D0-D15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F1-9678
ID032224 Non-Confidential

Chapter F2
The AArch32 Instruction Sets Overview

This chapter describes the T32 and A32 instruction sets. It contains the following sections:

• Support for instructions in different versions of the Arm architecture.

• Unified Assembler Language.

• Branch instructions.

• Data-processing instructions.

• PSTATE and banked register access instructions.

• Load/store instructions.

• Load/store multiple instructions.

• Miscellaneous instructions.

• Exception-generating and exception-handling instructions.

• System register access instructions.

• Advanced SIMD and floating-point load/store instructions.

• Advanced SIMD and floating-point register transfer instructions.

• Advanced SIMD data-processing instructions.

• Floating-point data-processing instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9679
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.1 Support for instructions in different versions of the Arm architecture
F2.1 Support for instructions in different versions of the Arm architecture

This manual describes the T32 and A32 instruction sets for the architecture. Therefore, it indicates how any options
or extensions in the architecture affect the available instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9680
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.2 Unified Assembler Language
F2.2 Unified Assembler Language

This manual uses the Arm Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all T32 and A32 instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes that
instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor what
assembler directives and options are available. See your assembler documentation for these details.

Most earlier Arm assembly language mnemonics are still supported as synonyms, as described in the instruction
details.

Note

Most earlier T32 assembly language mnemonics are not supported.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an ADD R0, R1, R2
instruction. The most common instruction selection rule is that when both a 16-bit encoding and a 32-bit encoding
are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code,
and in some other situations.

F2.2.1 Conditional instructions

For maximum portability of UAL assembly language between the T32 and A32 instruction sets, Arm recommends
that:

• IT instructions are written before conditional instructions in the correct way for the T32 instruction set.

• When assembling to the A32 instruction set, assemblers check that any IT instructions are correct, but do not
generate any code for them.

Although other T32 instructions are unconditional, all instructions that are made conditional by an IT instruction
must be written with a condition. These conditions must match the conditions imposed by the IT instruction. For
example, an ITTEE EQ instruction imposes the EQ condition on the first two following instructions, and the NE
condition on the next two. Those four instructions must be written with EQ, EQ, NE and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are
the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition code field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction,
it is assembled using a branch instruction encoding that does not include a condition code field.

F2.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset
from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC, 4) value of the instruction. The PC value of an instruction is its address plus 4
for a T32 instruction, or plus 8 for an A32 instruction. The Align(PC, 4) value of an instruction is its PC value
ANDed with 0xFFFFFFFC to force it to be word-aligned. There is no difference between the PC and
Align(PC, 4) values for an A32 instruction, but there can be for a T32 instruction.

2. Calculate the offset from the PC or Align(PC, 4) value of the instruction to the address of the labeled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC, 4) value and
adds the calculated offset to form the required address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9681
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.2 Unified Assembler Language
Note

For instructions that can encode a subtraction operation, if the instruction cannot encode the calculated offset
but can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the
calculated offset.

The syntax of the following instructions includes a label:

• B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of the
instruction that they branch to. Their encodings specify a sign-extended immediate offset that is added to the
PC value of the instruction to form the target address of the branch.

• CBNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a zero-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch. They do not support backward branches.

• LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR. The normal assembler syntax of these load
instructions can specify the label of a literal data item that is to be loaded. The encodings of these instructions
specify a zero-extended immediate offset that is either added to or subtracted from the Align(PC, 4) value of
the instruction to form the address of the data item. A few such encodings perform a fixed addition or a fixed
subtraction and must only be used when that operation is required, but most contain a bit that specifies
whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble an
encoding that adds 0 to the Align(PC, 4) value of the instruction. Encodings that subtract 0 from the Align(PC,
4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC, 4) value, or -
if it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC, 4)
value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal data item
whose address is to be calculated. Its encoding specifies a zero-extended immediate offset that is either added
to or subtracted from the Align(PC, 4) value of the instruction to form the address of the data item, and some
opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble the
encoding that adds 0 to the Align(PC, 4) value of the instruction. The encoding that subtracts 0 from the
Align(PC, 4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the immediate
value explicitly, by writing them as additions ADD <Rd>, PC, #<imm> or subtractions SUB <Rd>, PC, #<imm>.
This alternative syntax makes it possible to assemble the encoding that subtracts 0 from the Align(PC, 4)
value, and to disassemble it to a syntax that can be re-assembled correctly.

Note

Arm recommends that where possible, software avoids using:

• The alternative syntax for the ADR, LDC, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, PLDW, and VLDR instructions.

• The encodings of these instructions that subtract 0 from the Align(PC, 4) value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9682
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.3 Branch instructions
F2.3 Branch instructions

Table F2-1 summarizes the branch instructions in the T32 and A32 instruction sets. In addition to providing for
changes in the flow of execution, some branch instructions can change instruction set.

Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions. For
details, see Load/store instructions, Load/store multiple instructions, Standard data-processing instructions, and
Shift instructions.

In addition to the branch instructions shown in Table F2-1:

• In the A32 instruction set, a data-processing instruction that targets the PC behaves as a branch instruction.
For more information, see Data-processing instructions.

• In the T32 and A32 instruction sets, a load instruction that targets the PC behaves as a branch instruction. For
more information, see Load/store instructions.

Table F2-1 Branch instructions

Instruction See Range, T32 Range, A32

Branch to target address B ±16MB ±32MB

Compare and Branch on Nonzero
Compare and Branch on Zero

CBNZ, CBZ 0-126 bytes -a

Call a subroutine

Call a subroutine, change instruction setb
BL, BLX (immediate) ±16MB

±16MB

±32MB

±32MB

Call a subroutine, optionally change instruction set BLX (register) Any Any

Branch to target address, change instruction set BX Any Any

Change to Jazelle state BXJ - -

Table Branch (byte offsets)

Table Branch (halfword offsets)

TBB, TBH 0-510 bytes

0-131070 bytes
-a

a. These instructions do not exist in the A32 instruction set.

b. The range is determined by the instruction set of the BLX instruction, not of the instruction it branches to.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9683
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

• Standard data-processing instructions.

• Shift instructions.

• Multiply instructions.

• Saturating instructions.

• Saturating addition and subtraction instructions.

• Packing and unpacking instructions.

• Parallel addition and subtraction instructions.

• Divide instructions.

• Miscellaneous data-processing instructions.

For related Advanced SIMD and floating-point instructions see Advanced SIMD data-processing instructions and
Floating-point data-processing instructions.

F2.4.1 Standard data-processing instructions

These instructions perform basic data-processing operations, and share a common format with some variations.

These instructions generally have a destination register Rd, a first operand register Rn, and a second operand. The
second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:

• Encoded directly in the instruction.

• A modified immediate constant that uses 12 bits of the instruction to encode a range of constants. T32 and
A32 instructions have slightly different ranges of modified immediate constants. For more information, see
Modified immediate constants in T32 instructions and Modified immediate constants in A32 instructions.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. For details, see Shift and rotate operations.

In T32 code, the amount to shift by is always a constant encoded in the instruction. In A32 code, the amount to shift
by is either a constant encoded in the instruction, or the value of a register, Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the
destination register. In the A32 instruction set, the destination register can be the PC, causing the result to be treated
as a branch address. In the T32 instruction set, this is only permitted for some 16-bit forms of the ADD and MOV
instructions.

These instructions can optionally set the Condition flags, according to the result of the operation. If they do not set
the flags, existing flag settings from a previous instruction are preserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9684
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
Table F2-2 summarizes the main data-processing instructions in the T32 and A32 instruction sets. Generally, each
of these instructions is described in three sections in Chapter F1 About the T32 and A32 Instruction Descriptions,
one section for each of the following:

• INSTRUCTION (immediate) where the second operand is a modified immediate constant.

• INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.

• INSTRUCTION (register-shifted register) where the second operand is a register shifted by a value obtained from
another register. These are only available in the A32 instruction set.

Table F2-2 Standard data-processing instructions

Instruction Mnemonic Notes

Add with Carry ADC -

Add ADD T32 instruction set permits use of a modified immediate constant or a zero-extended
12-bit immediate constant.

Form PC-relative Address ADR First operand is the PC. Second operand is an immediate constant. T32 instruction set
uses a zero-extended 12-bit immediate constant. Operation is an addition or a
subtraction.

Bitwise AND AND -

Bitwise Bit Clear BIC -

Compare Negative CMN Sets flags. Like ADD but with no destination register.

Compare CMP Sets flags. Like SUB but with no destination register.

Bitwise Exclusive OR EOR -

Copy operand to destination MOV Has only one operand, with the same options as the second operand in most of these
instructions. If the operand is a shifted register, the instruction is an LSL, LSR, ASR, or
ROR instruction instead. For details, see Shift instructions.

The T32 and A32 instruction sets permit use of a modified immediate constant or a
zero-extended 16-bit immediate constant.

Bitwise NOT MVN Has only one operand, with the same options as the second operand in most of these
instructions.

Bitwise OR NOT ORN Not available in the A32 instruction set.

Bitwise OR ORR -

Reverse Subtract RSB Subtracts first operand from second operand. This permits subtraction from constants
and shifted registers.

Reverse Subtract with Carry RSC Not available in the T32 instruction set.

Subtract with Carry SBC -

Subtract SUB T32 instruction set permits use of a modified immediate constant or a zero-extended
12-bit immediate constant.

Test Equivalence TEQ Sets flags. Like EOR but with no destination register.

Test TST Sets flags. Like AND but with no destination register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9685
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.2 Shift instructions

Table F2-3 lists the shift instructions in the T32 and A32 instruction sets.

In the A32 instruction set only, the destination register of these instructions can be the PC, causing the result to be
treated as an address to branch to.

F2.4.3 Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are the same
whether the operands are signed or unsigned.

• Table F2-4 summarizes the multiply instructions where there is no distinction between signed and unsigned
quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

• Table F2-5 summarizes the signed multiply instructions.

• Table F2-6 summarizes the unsigned multiply instructions.

Table F2-3 Shift instructions

Instruction See

Arithmetic Shift Right ASR (immediate)

ASR (register)

ASRS (immediate)

ASRS (register)

Logical Shift Left LSL (immediate)

LSL (register)

LSLS (immediate)

LSLS (register)

Logical Shift Right LSR (immediate)

LSR (register)

LSRS (immediate)

LSRS (register)

Rotate Right ROR (immediate)

ROR (register)

RORS (immediate)

RORS (register)

Rotate Right with Extend RRX

RRXS

Table F2-4 General multiply instructions

Instruction See Operation (number of bits)

Multiply Accumulate MLA, MLAS 32 = 32 + 32 × 32

Multiply and Subtract MLS 32 = 32 – 32 × 32

Multiply MUL, MULS 32 = 32 × 32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9686
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
Table F2-5 Signed multiply instructions

Instruction See Operation (number of bits)

Signed Multiply Accumulate (halfwords) SMLABB, SMLABT, SMLATB, SMLATT 32 = 32 + 16 × 16

Signed Multiply Accumulate Dual SMLAD, SMLADX 32 = 32 + 16 × 16 + 16 × 16

Signed Multiply Accumulate Long SMLAL, SMLALS 64 = 64 + 32 × 32

Signed Multiply Accumulate Long (halfwords) SMLALBB, SMLALBT, SMLALTB,
SMLALTT

64 = 64 + 16 × 16

Signed Multiply Accumulate Long Dual SMLALD, SMLALDX 64 = 64 + 16 × 16 + 16 × 16

Signed Multiply Accumulate (word by halfword) SMLAWB, SMLAWT 32 = 32 + 32 × 16 a

Signed Multiply Subtract Dual SMLSD, SMLSDX 32 = 32 + 16 × 16 – 16 × 16

Signed Multiply Subtract Long Dual SMLSLD, SMLSLDX 64 = 64 + 16 × 16 – 16 × 16

Signed Most Significant Word Multiply Accumulate SMMLA, SMMLAR 32 = 32 + 32 × 32 b

Signed Most Significant Word Multiply Subtract SMMLS, SMMLSR 32 = 32 – 32 × 32 b

Signed Most Significant Word Multiply SMMUL, SMMULR 32 = 32 × 32 b

Signed Dual Multiply Add SMUAD, SMUADX 32 = 16 × 16 + 16 × 16

Signed Multiply (halfwords) SMULBB, SMULBT, SMULTB, SMULTT 32 = 16 × 16

Signed Multiply Long SMULL, SMULLS 64 = 32 × 32

Signed Multiply (word by halfword) SMULWB, SMULWT 32 = 32 × 16 a

Signed Dual Multiply Subtract SMUSD, SMUSDX 32 = 16 × 16 – 16 × 16

a. The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.

b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

Table F2-6 Unsigned multiply instructions

Instruction See Operation (number of bits)

Unsigned Multiply Accumulate Accumulate Long UMAAL 64 = 32 + 32 + 32 × 32

Unsigned Multiply Accumulate Long UMLAL, UMLALS 64 = 64 + 32 × 32

Unsigned Multiply Long UMULL, UMULLS 64 = 32 × 32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9687
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.4 Saturating instructions

Table F2-7 lists the saturating instructions in the T32 and A32 instruction sets. For more information, see
Pseudocode description of saturation.

F2.4.5 Saturating addition and subtraction instructions

Table F2-8 lists the saturating addition and subtraction instructions in the T32 and A32 instruction sets. For more
information, see Pseudocode description of saturation.

Table F2-7 Saturating instructions

Instruction See Operation

Signed Saturate SSAT Saturates optionally shifted 32-bit value to selected range

Signed Saturate 16 SSAT16 Saturates two 16-bit values to selected range

Unsigned Saturate USAT Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate 16 USAT16 Saturates two 16-bit values to selected range

Table F2-8 Saturating addition and subtraction instructions

Instruction See Operation

Saturating Add QADD Add, saturating result to the 32-bit signed integer range

Saturating Subtract QSUB Subtract, saturating result to the 32-bit signed integer range

Saturating Double and Add QADD Doubles one value and adds a second value, saturating the doubling
and the addition to the 32-bit signed integer range

Saturating Double and Subtract QDSUB Doubles one value and subtracts the result from a second value,
saturating the doubling and the subtraction to the 32-bit signed integer
range
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9688
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.6 Packing and unpacking instructions

Table F2-9 lists the packing and unpacking instructions in the T32 and A32 instruction sets.

Table F2-9 Packing and unpacking instructions

Instruction See Operation

Pack Halfword PKHBT, PKHTB Combine halfwords

Signed Extend and Add Byte SXTAB Extend 8 bits to 32 and add

Signed Extend and Add Byte 16 SXTAB16 Dual extend 8 bits to 16 and add

Signed Extend and Add Halfword SXTAH Extend 16 bits to 32 and add

Signed Extend Byte SXTB Extend 8 bits to 32

Signed Extend Byte 16 SXTB16 Dual extend 8 bits to 16

Signed Extend Halfword SXTH Extend 16 bits to 32

Unsigned Extend and Add Byte UXTAB Extend 8 bits to 32 and add

Unsigned Extend and Add Byte 16 UXTAB16 Dual extend 8 bits to 16 and add

Unsigned Extend and Add Halfword UXTAH Extend 16 bits to 32 and add

Unsigned Extend Byte UXTB Extend 8 bits to 32

Unsigned Extend Byte 16 UXTB16 Dual extend 8 bits to 16

Unsigned Extend Halfword UXTH Extend 16 bits to 32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9689
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to a
destination register, treating the register values as sets of two halfwords or four bytes. That is, they perform SIMD
additions or subtractions on the general-purpose registers.

These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:

S Signed arithmetic modulo 28 or 216.

Q Signed saturating arithmetic.

SH Signed arithmetic, halving the results.

U Unsigned arithmetic modulo 28 or 216.

UQ Unsigned saturating arithmetic.

UH Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the bottom
halfwords of the same two operands to form the bottom halfword of the result.

ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts bottom
halfwords.

SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds bottom
halfwords.

SUB16 Subtracts each halfword of the second operand from the corresponding halfword of the first operand
to form the corresponding halfword of the result.

ADD8 Adds each byte of the second operand to the corresponding byte of the first operand to form the
corresponding byte of the result.

SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand to form
the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand, as Table F2-10 shows.

See also Advanced SIMD parallel addition and subtraction.

Table F2-10 Parallel addition and subtraction instructions

Main instruction Signed Saturating
Signed
halving

Unsigned
Unsigned
saturating

Unsigned
halving

ADD16, add, two halfwords SADD16 QADD16 SHADD16 UADD16 UQADD16 UHADD16

ASX, add and subtract with exchange SASX QASX SHASX UASX UQASX UHASX

SAX, subtract and add with exchange SSAX QSAX SHSAX USAX UQSAX UHSAX

SUB16, subtract, two halfwords SSUB16 QSUB16 SHSUB16 USUB16 UQSUB16 UHSUB16

ADD8, add, four bytes SADD8 QADD8 SHADD8 UADD8 UQADD8 UHADD8

SUB8, subtract, four bytes SSUB8 QSUB8 SHSUB8 USUB8 UQSUB8 UHSUB8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9690
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.4 Data-processing instructions
F2.4.8 Divide instructions

Signed and unsigned integer divide instructions are included in both the T32 instruction set and the A32 instruction
set.

For descriptions of the instructions see:

• SDIV.

• UDIV.

For the SDIV and UDIV instructions, division by zero always returns a zero result.

The ID_ISAR0.Divide_instrs field indicates the level of support for these instructions. The field value of 0b0010
indicates they are implemented in both the T32 and A32 instruction sets.

F2.4.9 Miscellaneous data-processing instructions

Table F2-11 lists the miscellaneous data-processing instructions in the T32 and A32 instruction sets. Immediate
values in these instructions are simple binary numbers.

Table F2-11 Miscellaneous data-processing instructions

Instruction See Notes

BitField Clear BFC -

BitField Insert BFI -

Count Leading Zeros CLZ -

Move Top MOVT Moves 16-bit immediate value to top
halfword. Bottom halfword unchanged.

Reverse Bits RBIT -

Byte-Reverse Word REV -

Byte-Reverse Packed Halfword REV16 -

Byte-Reverse Signed Halfword REVSH -

Signed BitField Extract SBFX -

Select Bytes using GE flags SEL -

Unsigned BitField Extract UBFX -

Unsigned Sum of Absolute Differences USAD8 -

Unsigned Sum of Absolute Differences and Accumulate USADA8 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9691
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.5 PSTATE and banked register access instructions
F2.5 PSTATE and banked register access instructions

These instructions transfer PE state information to or from a general-purpose register.

F2.5.1 PSTATE access instructions

PSTATE holds process state information, see Process state, PSTATE. In AArch32 state:

• At EL1 or higher, PSTATE is accessible using the Current Program Status Register (CPSR).

• At EL0, a subset of the CPSR is accessible as the Application Program Status Register (APSR).

• On taking an exception, the contents of the CPSR are copied to the Saved Program Status Register (SPSR)
of the mode from which the exception is taken.

The MRS and MSR instructions move the contents of the CPSR, APSR, or the SPSR of the current mode to or from a
general-purpose register, see:

• MRS.

• MSR (immediate).

• MSR (register).

When executed at EL0, MRS and MSR instructions can only access the APSR.

The PSTATE Condition flags, PSTATE.{N, Z, C, V} are set by the execution of data-processing instructions, and
can control the execution of conditional instructions. However, software can set the Condition flags explicitly using
the MSR instruction, and can read the current state of the Condition flags explicitly using the MRS instruction.

In addition, at EL1 or higher, software can use the CPS instruction to change the PSTATE.M field and the
PSTATE.{A, I, F} interrupt mask bits, see CPS, CPSID, CPSIE.

F2.5.2 Banked register access instructions

At EL1 or higher, the MRS (banked register) and MSR (banked register) instructions move the contents of a banked
general-purpose register, the SPSR, or the ELR_hyp, to or from a general-purpose register. See:

• MRS (Banked register).

• MSR (Banked register).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9692
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.6 Load/store instructions
F2.6 Load/store instructions

Table F2-12 summarizes the general-purpose register load/store instructions in the T32 and A32 instruction sets.
Some of these instructions can also operate on the PC. See also:

• Load/store multiple instructions.

• Synchronization and semaphores, for more information about the Load-Exclusive and Store-Exclusive
instructions.

• Load-Acquire, Store-Release, for more information about the Load-Acquire/Store-Release and Load-Acquire
Exclusive/Store-Release Exclusive instructions.

• Advanced SIMD and floating-point load/store instructions.

Load/store instructions have several options for addressing memory. For more information, see Addressing modes.

F2.6.1 Loads to the PC

The LDR instruction can load a value into the PC. The value loaded is treated as an interworking address, as described
by the LoadWritePC() pseudocode function in Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

F2.6.2 Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of memory
respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a register.
Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to 32 bits.

Table F2-12 Load/store instructions

Data type Load Store

Unprivileged Exclusive
Load-
Acquire

Store-
Release

Exclusive

Load Store Load Store
Load-
Acquire

Store-
Release

32-bit word LDR STR LDRT STRT LDREX STREX LDA STL LDAEX STLEX

16-bit halfword - STRH - STRHT - STREXH LDAH STLH LDAEXH STLEXH

16-bit unsigned
halfword

LDRH - LDRHT - LDREXH - - - - -

16-bit signed
halfword

LDRSH - LDRSHT - - - - - - -

8-bit byte - STRB - STRBT - STREXB LDAB STLB LDAEXB STLEXB

8-bit unsigned
byte

LDRB - LDRBT - LDREXB - - - - -

8-bit signed
byte

LDRSB - LDRSBT - - - - - - -

Two 32-bit
words

LDRD STRD - - - - - - - -

64-bit
doubleword

- - - - LDREXD STREXD - - LDAEXD STLEXD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9693
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.6 Load/store instructions
F2.6.3 Load unprivileged and Store unprivileged

When executing at EL0, a Load unprivileged or Store unprivileged instruction operates in the same way as the
corresponding ordinary load or store instruction. For example, an LDRT instruction executes in exactly the same way
as the equivalent LDR instruction. When executed at PL1, Load unprivileged and Store unprivileged instructions
behave as they would if they were executed at EL0. For example, an LDRT instruction executes in exactly the way
that the equivalent LDR instruction would execute at EL0. In particular, the instructions make unprivileged memory
accesses.

Note

As described in Security state, Exception levels, and AArch32 execution privilege, execution at PL1 describes all of
the following:

• Execution at Non-secure EL1 using AArch32.

• Execution at Secure EL1 using AArch32 when EL3 is not implemented.

• Execution at Secure EL1 using AArch32 when EL3 is implemented and is using AArch64.

• Execution at Secure EL3 when EL3 is implemented and is using AArch32.

The Load unprivileged and Store unprivileged instructions are CONSTRAINED UNPREDICTABLE if executed at EL2.

For more information about execution privilege, see About access permissions.

F2.6.4 Load-Exclusive and Store-Exclusive

Load-Exclusive and Store-Exclusive instructions provide shared memory synchronization. For more information,
see Synchronization and semaphores.

F2.6.5 Load-Acquire and Store-Release

Load-Acquire and Store-Release instructions provide memory barriers. Load-Acquire Exclusive and Store-Release
Exclusive instructions provide memory barriers with shared memory synchronization. For more information, see
Load-Acquire, Store-Release.

F2.6.6 Addressing modes

The address for a load or store is formed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers R0-R12, SP, or LR.

For loads, the base register can be the PC. This provides PC-relative addressing for position-independent code.
Instructions marked (literal) in their title in Chapter F1 About the T32 and A32 Instruction Descriptions are
PC-relative loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base register
value. Immediate offset addressing is useful for accessing data elements that are a fixed
distance from the start of the data object, such as structure fields, stack offsets, and
input/output registers.

Register The offset is a value from a general-purpose register. The value can be added to, or
subtracted from, the base register value. Register offsets are useful for accessing arrays or
blocks of data.

Scaled register The offset is a general-purpose register, shifted by an immediate value, then added to or
subtracted from the base register. This means an array index can be scaled by the size of each
array element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9694
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.6 Load/store instructions
The offset and base register can be used in three different ways to form the memory address. The addressing modes
are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory address. The
base register is then updated with this new address, to permit automatic indexing through an
array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then added
to or subtracted from the base register. The result is stored back in the base register, to permit
automatic indexing through an array or memory block.

Note

Not every variant is available for every instruction, and the range of permitted immediate values and the options for
scaled registers vary from instruction to instruction. See Chapter F1 About the T32 and A32 Instruction Descriptions
for full details for each instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9695
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.7 Load/store multiple instructions
F2.7 Load/store multiple instructions

Load Multiple instructions load from memory a subset, or possibly all, of the general-purpose registers and the PC.

Store Multiple instructions store to memory a subset, or possibly all, of the general-purpose registers.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base register,
and can be either above or below the value in the base register. The base register can optionally be updated by the
total size of the data transferred.

Table F2-13 summarizes the load/store multiple instructions in the T32 and A32 instruction sets.

When executing at EL1, variants of the LDM and STM instructions load and store User mode registers. Another
system level variant of the LDM instruction performs an exception return.

F2.7.1 Loads to the PC

The LDM, LDMDA, LDMDB, LDMIB, and POP instructions can load a value into the PC. The value loaded is treated as an
interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode description of
operations on the AArch32 general-purpose registers and the PC.

Table F2-13 Load/store multiple instructions

Instruction See

Load Multiple, Increment After or Full Descending LDM, LDMIA, LDMFD

Load Multiple, Decrement After or Full Ascending a

a. Not available in the T32 instruction set.

LDMDA, LDMFA

Load Multiple, Decrement Before or Empty Ascending LDMDB, LDMEA

Load Multiple, Increment Before or Empty Descending a LDMIB, LDMED

Pop multiple registers off the stack b

b. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.

POP

Push multiple registers onto the stack c

c. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register
updating.

PUSH

Store Multiple, Increment After or Empty Ascending STM, STMIA, STMEA

Store Multiple, Decrement After or Empty Descending a STMDA, STMED

Store Multiple, Decrement Before or Full Descending STMDB, STMFD

Store Multiple, Increment Before or Full Ascending a STMIB, STMFA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9696
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.8 Miscellaneous instructions
F2.8 Miscellaneous instructions

Table F2-14 summarizes the miscellaneous instructions in the T32 and A32 instruction sets.

Note

Previous versions of the architecture defined the DBG instruction, that could provide a hint to the debug system, in
this group. From the introduction of Armv8, this instruction executes as a NOP. Arm deprecates any use of the DBG
instruction.

F2.8.1 The Yield instruction

In a Symmetric Multithreading (SMT) design, a thread can use the YIELD instruction to give a hint to the PE that it
is running on. The YIELD hint indicates that whatever the thread is currently doing is of low importance, and so could
yield. For example, the thread might be sitting in a spin-lock. A similar use might be in modifying the arbitration
priority of the snoop bus in a multiprocessor (MP) system. Defining such an instruction permits binary compatibility
between SMT and SMP systems.

Table F2-14 Miscellaneous instructions

Instruction See

Clear Branch History CLRBHB

Clear-Exclusive CLREX

Data Memory Barrier DMB

Data Synchronization Barrier DSB

Error Synchronization Barrier ESB

Instruction Synchronization Barrier ISB

If-Then IT

No Operation NOP

Preload Data PLD, PLDW (immediate)

PLD (literal)

PLD, PLDW (register)

Preload Instruction PLI (immediate, literal)

PLI (register)

Speculation Barrier SB

Set Endianness SETENDa

a. Arm deprecates any use of the SETEND instruction.

Set Privileged Access Never SETPAN

Send Event SEV

Send Event Local SEVL

Wait For Event WFE

Wait For Interrupt WFI

Yield YIELDb

b. See also The Yield instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9697
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.8 Miscellaneous instructions
AArch32 state defines a YIELD instruction as a specific NOP (No Operation) hint instruction.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use on migration to a multiprocessor or multithreading system. Operating systems
can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9698
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.9 Exception-generating and exception-handling instructions
F2.9 Exception-generating and exception-handling instructions

The following instructions are intended specifically to cause a synchronous exception to occur:

• The SVC instruction generates a Supervisor Call exception. For more information, see Supervisor Call (SVC)
exception.

• The Breakpoint instruction BKPT provides software breakpoints. For more information, see Breakpoint
Instruction exceptions.

• In an implementation that includes EL3 the SMC instruction generates a Secure Monitor Call exception. For
more information, see Secure Monitor Call (SMC) exception.

• In an implementation that includes EL2 the HVC instruction generates a Hypervisor Call exception. For more
information, see Hypervisor Call (HVC) exception.

Debug state summarizes the Debug state instructions.

For an exception taken to an EL1 mode:

• The system level variants of the SUBS and LDM instructions can perform a return from an exception.

Note

The variants of SUBS include MOVS. See the references to Subtract (exception return), Move (exception return),
and Load Multiple (exception return) in Table F2-15 for more information.

• The SRS instruction can be used near the start of the handler, to store return information. The RFE instruction
can then perform a return from the exception using the stored return information.

In an implementation that includes EL2, the ERET instruction performs a return from an exception taken to Hyp
mode.

For more information, see Exception return to an Exception level using AArch32.

Table F2-15 summarizes the instructions, in the T32 and A32 instruction sets, for generating or handling an
exception. Except for BKPT and SVC, these are system level instructions.

Table F2-15 Exception-generating and exception-handling instructions

Instruction See

Supervisor Call SVC

Breakpoint BKPT

Secure Monitor Call SMC

Return From Exception RFE, RFEDA, RFEDB, RFEIA, RFEIB

Subtract (exception return)a

a. The A32 instruction set includes other instruction forms that can be used for an exception
return, that have previously been described as variants of SUBS PC, LR. Arm deprecates any use
of these instruction forms.

SUB, SUBS (immediate)a

Move (exception return)a MOV, MOVS (register)a

Hypervisor Call HVC

Exception Return ERET

Load Multiple (exception return) LDM (exception return)

Store Return State SRS, SRSDA, SRSDB, SRSIA, SRSIB
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9699
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.9 Exception-generating and exception-handling instructions
F2.9.1 Debug state

Table F2-16 shows the Debug state instructions that are implemented in the T32 instruction set:

Table F2-16 T32 Debug state instructions

Mnemo
nic

Instruction See Note

DCPSn Debug switch to ELn DCPS1
DCPS2
DCPS3

-

ERET Debug restore PE state (DRPS) ERET When executed in Debug state, the T1 encoding
of ERET performs the DRPS operation
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9700
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.10 System register access instructions
F2.10 System register access instructions

The System register encoding space is indexed using the parameters {coproc, opc1, CRn, CRm, opc2}, see The AArch32
System register interface. This encoding space provides System registers and System instructions. The only
permitted values of coproc are 0b1110 and 0b1111, and the following instructions give access to this encoding space:

• Instructions that transfer data between general-purpose registers and System registers. See:

— MCR.

— MCRR.

— MRC.

— MRRC.

• Instructions that load or store from memory to a System register. See:

— LDC (immediate).

— LDC (literal).

— STC.

Note

The System register encoding space with coproc==0b101x is redefined to provide some of the Advanced SIMD and
floating-point functionality. That is, to:

• Initiate a floating-point data-processing operation, see Floating-point data-processing instructions.

• Transfer data between general-purpose registers and the Advanced SIMD and floating-point registers, see
Advanced SIMD and floating-point register transfer instructions.

• Load or store data to the Advanced SIMD and floating-point registers, see Advanced SIMD and floating-point
load/store instructions.

System register access instructions are part of the instruction stream executed by the PE, and therefore any System
register access instruction that cannot be executed by the implementation causes an Undefined Instruction
exception. In the A-profile and the R-profile architectures, the instruction encodings in the System register access
instruction encoding space are unallocated, and generate Undefined Instruction exceptions, except for:

• The instructions summarized in this section that access the coproc==0b111x encoding space.

• The instructions in the coproc==0b101x encoding space that are redefined to provide Advanced SIMD and
floating-point functionality, as summarized in the Note in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9701
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.11 Advanced SIMD and floating-point load/store instructions
F2.11 Advanced SIMD and floating-point load/store instructions

Table F2-17 summarizes the SIMD and floating-point register file load/store instructions in the Advanced SIMD
and floating-point instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of elements, see
Element and structure load/store instructions.

F2.11.1 Element and structure load/store instructions

Table F2-18 shows the element and structure load/store instructions available in the Advanced SIMD instruction
set. Loading and storing structures of more than one element automatically de-interleaves or interleaves the
elements, see Figure F2-1 for an example of de-interleaving. Interleaving is the inverse process.

Table F2-17 SIMD and floating-point register file load/store instructions

Instruction See Operation

Vector Load Multiple VLDM, VLDMDB, VLDMIA Load 1-16 consecutive 64-bit registers, Advanced SIMD
and floating-point.

Load 1-32 consecutive 32-bit registers, floating-point only.

Vector Load Register VLDR (immediate)

VLDR (literal)

Load one 64-bit register, Advanced SIMD and
floating-point.

Load one 32-bit register, floating-point only.

Vector Store Multiple VSTM, VSTMDB, VSTMIA Store 1-16 consecutive 64-bit registers, Advanced SIMD
and floating-point.

Store 1-32 consecutive 32-bit registers, floating-point only.

Vector Store Register VSTR Store one 64-bit register, Advanced SIMD and
floating-point.

Store one 32-bit register, floating-point only.

Table F2-18 Element and structure load/store instructions

Instruction See

Load single element

Multiple elements VLD1 (multiple single elements)

To one lane VLD1 (single element to one lane)

To all lanes VLD1 (single element to all lanes)

Load 2-element structure

Multiple structures VLD2 (multiple 2-element structures)

To one lane VLD2 (single 2-element structure to one lane)

To all lanes VLD2 (single 2-element structure to all lanes)

Load 3-element structure

Multiple structures VLD3 (multiple 3-element structures)

To one lane VLD3 (single 3-element structure to one lane)

To all lanes VLD3 (single 3-element structure to all lanes)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9702
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.11 Advanced SIMD and floating-point load/store instructions
Figure F2-1 shows the de-interleaving of a VLD3.16 (multiple 3-element structures) instruction:

Figure F2-1 De-interleaving an array of 3-element structures

Figure F2-1 shows the VLD3.16 instruction operating to three 64-bit registers that comprise four 16-bit elements:

• Different instructions in this group would produce similar figures, but operate on different numbers of
registers. For example, VLD4 and VST4 instructions operate on four registers.

• Different element sizes would produce similar figures but with 8-bit or 32-bit elements.

• These instructions operate only on doubleword (64-bit) registers.

Load 4-element structure

Multiple structures VLD4 (multiple 4-element structures)

To one lane VLD4 (single 4-element structure to one lane)

To all lanes VLD4 (single 4-element structure to all lanes)

Store single element

Multiple elements VST1 (multiple single elements)

From one lane VST1 (single element from one lane)

Store 2-element structure

Multiple structures VST2 (multiple 2-element structures)

From one lane VST2 (single 2-element structure from one lane)

Store 3-element structure

Multiple structures VST3 (multiple 3-element structures)

From one lane VST3 (single 3-element structure from one lane)

Store 4-element structure

Multiple structures VST4 (multiple 4-element structures)

From one lane VST4 (single 4-element structure from one lane)

Table F2-18 Element and structure load/store instructions (continued)

Instruction See

A[0].x

A[0].y

A[0].z

A[1].x

A[1].y

A[1].z

A[2].x

A[2].y

A[2].z

A[3].x

A[3].y

A[3].z

Memory

Z3 Z2 Z1 Z0 D2

Y3 Y1 D1

X3 X2 X1 D0

Y2 Y0

X0

Registers

A is a packed array of

3-element structures.

Each element is a 16-bit

halfword.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9703
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.12 Advanced SIMD and floating-point register transfer instructions
F2.12 Advanced SIMD and floating-point register transfer instructions

Table F2-19 summarizes the SIMD and floating-point register file transfer instructions in the Advanced SIMD and
floating-point instruction sets. These instructions transfer data between the general-purpose registers and the
registers in the SIMD and floating-point register file.

Advanced SIMD vectors, and single-precision and double-precision floating-point registers, are all views of the
same register file. For details, see The SIMD and floating-point register file.

Table F2-19 SIMD and floating-point register file transfer instructions

Instruction See

Copy element from general-purpose register to every element of
an Advanced SIMD vector

VDUP (general-purpose register)

Copy byte, halfword, or word from general-purpose register to a
register in the SIMD and floating-point register file

VMOV (general-purpose register to scalar)

Copy byte, halfword, or word from a register in the SIMD and
floating-point register file to a general-purpose register

VMOV (scalar to general-purpose register)

Copy from half-precision floating-point register to
general-purpose register, or from general-purpose register to
half-precision floating-point register

Only supported if FEAT_FP16 is implemented

VMOV (between general-purpose register and half-precision)

Copy from single-precision floating-point register to
general-purpose register, or from general-purpose register to
single-precision floating-point register

VMOV (between general-purpose register and single-precision)

Copy two words from general-purpose registers to consecutive
single-precision floating-point registers, or from consecutive
single-precision floating-point registers to general-purpose
registers

VMOV (between two general-purpose registers and two
single-precision registers)

Copy two words from general-purpose registers to a doubleword
register in the SIMD and floating-point register file, or from a
doubleword register in the SIMD and floating-point register file to
general-purpose registers

VMOV (between two general-purpose registers and a doubleword
floating-point register)

Copy from an Advanced SIMD and floating-point System
Register to a general-purpose register

VMRS

Copy from a general-purpose register to an Advanced SIMD and
floating-point System Register

VMSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9704
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13 Advanced SIMD data-processing instructions

Advanced SIMD data-processing instructions process registers containing vectors of elements of the same type
packed together, enabling the same operation to be performed on multiple items in parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure F2-2 shows an operation on two 64-bit
operand vectors, generating a 64-bit vector result.

Note

Figure F2-2 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and 128-bit vectors
that consist of four 32-bit elements. Other element sizes produce similar figures, but with 1, 2, 8, or 16 operations
performed in parallel instead of 4.

Figure F2-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the inputs. In
this case, the number of elements in the result vector is the same as the number of elements in the operand vectors,
but each element, and the whole vector, is double the size.

Figure F2-3 shows an example of an Advanced SIMD instruction operating on 64-bit registers, and generating a
128-bit result.

Figure F2-3 Advanced SIMD instruction producing wider result

There are also Advanced SIMD instructions that have variants that produce vectors containing elements half the
size of the inputs. Figure F2-4 shows an example of an Advanced SIMD instruction operating on one 128-bit
register, and generating a 64-bit result.

Op Op Op Op

Dd

Dm

Dn

Op Op Op Op

Qd

Dm

Dn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9705
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
Figure F2-4 Advanced SIMD instruction producing narrower result

Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are
described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the Arm standard floating-point arithmetic
defined in Floating-point support.

The following sections summarize the Advanced SIMD data-processing instructions:

• Advanced SIMD parallel addition and subtraction.

• Bitwise Advanced SIMD data-processing instructions.

• Advanced SIMD comparison instructions.

• Advanced SIMD shift instructions.

• Advanced SIMD multiply instructions.

• Advanced SIMD dot product instructions.

• Miscellaneous Advanced SIMD data-processing instructions.

• Advanced SIMD BFloat16 instructions.

• Advanced SIMD matrix multiply instructions.

• The Cryptographic Extension in AArch32 state.

F2.13.1 Advanced SIMD parallel addition and subtraction

Table F2-20 shows the Advanced SIMD parallel add and subtract instructions.

Op Op Op Op

Qn

Dd

Table F2-20 Advanced SIMD parallel add and subtract instructions

Instruction See

Vector Add VADD (integer)

VADD (floating-point)

Vector Add and Narrow, returning High Half VADDHN

Vector Add Long VADDL

Vector Add Wide VADDW

Vector Halving Add VHADD

Vector Halving Subtract VHSUB

Vector Pairwise Add and Accumulate Long VPADAL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9706
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.2 Bitwise Advanced SIMD data-processing instructions

Table F2-21 shows bitwise Advanced SIMD data-processing instructions. These operate on the doubleword (64-bit)
or quadword (128-bit) registers in the SIMD and floating-point register file, and there is no division into vector
elements.

Vector Pairwise Add VPADD (integer)

VPADD (floating-point)

Vector Pairwise Add Long VPADDL

Vector Rounding Add and Narrow, returning High Half VRADDHN

Vector Rounding Halving Add VRHADD

Vector Rounding Subtract and Narrow, returning High Half VRSUBHN

Vector Saturating Add VQADD

Vector Saturating Subtract VQSUB

Vector Subtract VSUB (integer)

VSUB (floating-point)

Vector Subtract and Narrow, returning High Half VSUBHN

Vector Subtract Long VSUBL

Vector Subtract Wide VSUBW

Table F2-20 Advanced SIMD parallel add and subtract instructions (continued)

Instruction See

Table F2-21 Bitwise Advanced SIMD data-processing instructions

Instruction See

Vector Bitwise AND VAND (register)

Vector Bitwise Bit Clear (AND complement) VBIC (immediate)

VBIC (register)

Vector Bitwise Exclusive OR VEOR

Vector Bitwise Insert if False VBIF

Vector Bitwise Insert if True VBIT

Vector Bitwise Move VMOV (immediate)

VMOV (register)

Vector Bitwise NOT VMVN (immediate)

VMVN (register)

Vector Bitwise OR VORR (immediate)

VORR (register)

Vector Bitwise OR NOT VORN (register)

Vector Bitwise Select VBSL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9707
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.3 Advanced SIMD comparison instructions

Table F2-22 shows Advanced SIMD comparison instructions.

Table F2-22 Advanced SIMD comparison instructions

Instruction See

Vector Absolute Compare Greater Than or Equal VACGE

Vector Absolute Compare Greater Than VACGT

Vector Compare Equal VCEQ (register)

Vector Compare Equal to Zero VCEQ (immediate #0)

Vector Compare Greater Than or Equal VCGE (register)

Vector Compare Greater Than or Equal to Zero VCGE (immediate #0)

Vector Compare Greater Than VCGT (register)

Vector Compare Greater Than Zero VCGT (immediate #0)

Vector Compare Less Than or Equal to Zero VCLE (immediate #0)

Vector Compare Less Than Zero VCLT (immediate #0)

Vector Test Bits VTST
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9708
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.4 Advanced SIMD shift instructions

Table F2-23 lists the shift instructions in the Advanced SIMD instruction set.

Table F2-23 Advanced SIMD shift instructions

Instruction See

Vector Saturating Rounding Shift Left VQRSHL

Vector Saturating Rounding Shift Right and Narrow VQRSHRN, VQRSHRUN

Vector Saturating Shift Left VQSHL (register)

VQSHL, VQSHLU (immediate)

Vector Saturating Shift Right and Narrow VQSHRN, VQSHRUN

Vector Rounding Shift Left VRSHL

Vector Rounding Shift Right VRSHR

Vector Rounding Shift Right and Accumulate VRSRA

Vector Rounding Shift Right and Narrow VRSHRN

Vector Shift Left VSHL (immediate)

VSHL (register)

Vector Shift Left Long VSHLL

Vector Shift Right VSHR

Vector Shift Right and Narrow VSHRN

Vector Shift Left and Insert VSLI

Vector Shift Right and Accumulate VSRA

Vector Shift Right and Insert VSRI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9709
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.5 Advanced SIMD multiply instructions

Table F2-24 shows the Advanced SIMD multiply instructions.

Advanced SIMD multiply instructions can operate on vectors of:

• 8-bit, 16-bit, or 32-bit unsigned integers.

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit polynomials over {0, 1}. VMUL and VMULL are the only instructions that operate on polynomials. VMULL
produces a 16-bit polynomial over {0, 1}.

Table F2-24 Advanced SIMD multiply instructions

Instruction See

Vector Multiply Accumulate VMLA (integer)

VMLA (floating-point)

VMLA (by scalar)

Vector Multiply Accumulate Long VMLAL (integer)

VMLAL (by scalar)

Vector Multiply Subtract VMLS (integer)

VMLS (floating-point)

VMLS (by scalar)

Vector Multiply Subtract Long VMLSL (integer)

VMLSL (by scalar)

Vector Multiply VMUL (integer and polynomial)

VMUL (floating-point)

VMUL (by scalar)

Vector Multiply Long VMULL (integer and polynomial)

VMULL (by scalar)

Vector Fused Multiply Accumulate VFMA

Vector Floating-Point Multiply-Add Long VFMAL (vector)

VFMAL (by scalar)

Vector Fused Multiply Subtract VFMS

Vector Floating-Point Multiply-Subtract Long VFMSL (vector)

VFMSL (by scalar)

Vector Saturating Doubling Multiply Accumulate Long VQDMLAL

Vector Saturating Doubling Multiply Subtract Long VQDMLSL

Vector Saturating Doubling Multiply Returning High Half VQDMULH

Vector Saturating Doubling Multiply Long VQDMULL

Vector Saturating Rounding Doubling Multiply Accumulate Returning High
Half

VQRDMLAH

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half VQRDMLSH

Vector Saturating Rounding Doubling Multiply Returning High Half VQRDMULH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9710
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
• Single-precision (32-bit) or half-precision (16-bit) floating-point numbers.

They can also act on one vector and one scalar.

Long instructions have doubleword (64-bit) operands, and produce quadword (128-bit) results. Other Advanced
SIMD multiply instructions can have either doubleword or quadword operands, and produce results of the same
size.

Floating-point multiply instructions can operate on:

• Half-precision (16-bit) floating-point numbers.

• Single-precision (32-bit) floating-point numbers.

• Double-precision (64-bit) floating-point numbers.

F2.13.6 Advanced SIMD dot product instructions

FEAT_DotProd provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit
elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions,
each with signed and unsigned versions:

Vector form The dot product is calculated for each element of the first vector with the corresponding element of
the second vector.

Indexed form The dot product is calculated for each element of the first vector with the element of the second
vector that is indicated by the index argument to the instruction.

Note

That is, a single element from the second vector is used, and the dot product is calculated between
each element of the first vector and this single element from the second vector.

Table F2-25 shows the Advanced SIMD dot product instructions.

F2.13.7 Advanced SIMD complex number arithmetic instructions

FEAT_FCMA provides AArch32 Advanced SIMD instructions that perform arithmetic on complex numbers held
in element pairs in vector registers, where the less significant element of the pair contains the real component and
the more significant element contains the imaginary component.

These instructions provide single-precision versions. If FEAT_FP16 is implemented they also provide
half-precision versions, otherwise the half-precision encodings are UNDEFINED.

Table F2-25 Advanced SIMD dot product instructions

Mnemonic Instruction See

VSDOT Signed dot product (vector form) VSDOT (vector)

VUDOT Unsigned dot product (vector form) VUDOT (vector)

VSDOT Signed dot product (indexed form) VSDOT (by element)

VSUDOT Mixed sign integer dot product by indexed quadrupleta

a. This instruction is only supported when FEAT_AA32I8MM is implemented.

VSUDOT (by element)

VUDOT Unsigned dot product (indexed form) VUDOT (by element)

VUSDOT Mixed sign integer dot product (vector format)a VUSDOT (vector)

Mixed sign integer dot product by indexed quadrupleta VUSDOT (by element)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9711
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
Table F2-26 shows the FEAT_FCMA AArch32 Advanced SIMD instructions.

A pair of VCMLA instructions can be used to perform a complex number multiplication. In Complex multiplication,
this is demonstrated for the similar AArch64 instruction FCMLA. The usage of VCMLA in this manner is identical.

F2.13.8 Advanced SIMD BFloat16 instructions

When FEAT_AA32BF16 is implemented, BFloat16 instructions are available in AArch32 state.

Table F2-27 shows the Advanced SIMD BFloat16 instructions.

F2.13.9 Advanced SIMD matrix multiply instructions

When FEAT_AA32I8MM is implemented, these instructions are available in AArch32 state. They include integer
and mixed sign dot product instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each
segment:

• The first source vector matrix is organized in row-by-row order.

• The second source vector matrix elements are organized in a column-by-column order.

• The destination vector matrix is organized in row-by-row order.

One matrix multiplication is performed per segment.

Table F2-28 shows the Advanced SIMD matrix multiply instructions.

Table F2-26 Advanced SIMD complex number arithmetic instructions

Mnemonic Instruction See

VCADD Floating-point complex add VCADD

VCMLA Floating-point complex multiply accumulate (vector form) VCMLA

VCMLA Floating-point complex multiply accumulate (indexed form) VCMLA (by element)

Table F2-27 BFloat16 Advanced SIMD instructions

Mnemonic Instruction See

VDOT BFloat16 floating-point vector dot product (vector and by
scalar formats)

VDOT (vector)
VDOT (by element)

VMMLA BFloat16 floating-point matrix multiply-accumulate VMMLA

VFMAB, VFMAT BFloat16 floating-point widening multiply-add long
(vector and by scalar formats)

VFMAB, VFMAT (BFloat16, vector)
VFMAB, VFMAT (BFloat16, by scalar)

VCVT BFloat16 convert from single-precision to BF16 format VCVT (from single-precision to BFloat16, Advanced
SIMD)

Table F2-28 Matrix multiply Advanced SIMD instructions

Mnemonic Instruction See

VSMMLA Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix VSMMLA

VUMMLA Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix VUMMLA

VUSMMLA Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix VUSMMLA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9712
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.10 Miscellaneous Advanced SIMD data-processing instructions

Table F2-29 shows miscellaneous Advanced SIMD data-processing instructions.

Table F2-29 Miscellaneous Advanced SIMD data-processing instructions

Instruction See

Vector Absolute Difference and Accumulate VABA

Vector Absolute Difference and Accumulate Long VABAL

Vector Absolute Difference VABD (integer)

VABD (floating-point)

Vector Absolute Difference Long VABDL (integer)

Vector Absolute VABS

Vector Convert between floating-point and
fixed-point

VCVT (between floating-point and fixed-point, Advanced SIMD)

Vector Convert between floating-point and integer VCVT (between floating-point and integer, Advanced SIMD)

Vector Convert between half-precision and
single-precision

VCVT (between half-precision and single-precision, Advanced SIMD)

Vector Count Leading Sign Bits VCLS

Vector Count Leading Zeros VCLZ

Vector Count Set Bits VCNT

Vector Duplicate scalar VDUP (scalar)

Vector Extract VEXT (byte elements)

Vector move Insertion VINS

Vector Move and Narrow VMOVN

Vector Move Long VMOVL

Vector Move extraction VMOVX

Vector Maximum VMAX (integer)

VMAX (floating-point)

Vector Minimum VMIN (integer)

VMIN (floating-point)

Vector Negate VNEG

Vector Pairwise Maximum VPMAX (integer)

VPMAX (floating-point)

Vector Pairwise Minimum VPMIN (integer)

VPMIN (floating-point)

Vector Reciprocal Estimate VRECPE

Vector Reciprocal Step VRECPS

Vector Reciprocal Square Root Estimate VRSQRTE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9713
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
F2.13.11 The Cryptographic Extension in AArch32 state

The instructions provided by the optional Cryptographic Extension use the Advanced SIMD and floating-point
register file. For more information about the functions they provide see:

• Announcing the Advanced Encryption Standard.

• The Galois/Counter Mode of Operation.

• Announcing the Secure Hash Standard.

Table F2-30 shows the AArch32 Cryptographic Extension instructions.

Vector Reciprocal Square Root Step VRSQRTS

Vector Reverse in halfwords VREV16

Vector Reverse in words VREV32

Vector Reverse in doublewords VREV64

Vector Saturating Absolute VQABS

Vector Saturating Move and Narrow VQMOVN, VQMOVUN

Vector Saturating Negate VQNEG

Vector Swap VSWP

Vector Table Lookup VTBL, VTBX

Vector Transpose VTRN

Vector Unzip VUZP

Vector Zip VZIP

Table F2-29 Miscellaneous Advanced SIMD data-processing instructions (continued)

Instruction See

Table F2-30 AArch32 Cryptographic Extension instructions

Mnemonic Instruction See

AESD AES single round decryption AESD

AESE AES single round encryption AESE

AESIMC AES inverse mix columns AESIMC

AESMC AES mix columns AESMC

VMULL Polynomial multiply long VMULL (integer and polynomial)a

SHA1C SHA1 hash update (choose) SHA1C

SHA1H SHA1 fixed rotate SHA1H

SHA1M SHA1 hash update (majority) SHA1M

SHA1P SHA1 hash update (parity) SHA1P

SHA1SU0 SHA1 schedule update 0 SHA1SU0

SHA1SU1 SHA1 schedule update 1 SHA1SU1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9714
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.13 Advanced SIMD data-processing instructions
SHA256H SHA256 hash update (part 1) SHA256H

SHA256H2 SHA256 hash update (part 2) SHA256H2

SHA256SU0 SHA256 schedule update 0 SHA256SU0

SHA256SU1 SHA256 schedule update 1 SHA256SU1

a. The Cryptographic Extension adds the variant of the instruction that operates on two 64-bit polynomials.

Table F2-30 AArch32 Cryptographic Extension instructions (continued)

Mnemonic Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9715
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.14 Floating-point data-processing instructions
F2.14 Floating-point data-processing instructions

Table F2-31 summarizes the data-processing instructions in the floating-point instruction set. In this table,
floating-point register means a register in the SIMD and floating-point register file. The BFloat16 floating-point
instructions are provided by FEAT_AA32BF16.

For details of the floating-point arithmetic used by floating-point instructions, see Floating-point support.

Table F2-31 Floating-point data-processing instructions

Instruction See

BFloat16 convert from single-precision to BF16 format writing to
bottom half of single-precision register

VCVTB (BFloat16)

BFloat16 convert from single-precision to BF16 format writing to top
half of single-precision register

VCVTT (BFloat16)

Convert between double-precision and single-precision VCVT (between double-precision and single-precision)

Convert between floating-point and fixed-point VCVT (between floating-point and fixed-point,
floating-point)

Convert between half-precision and single-precision, writing to bottom
half of single-precision register

VCVTB

Convert between half-precision and single-precision, writing to top half
of single-precision register

VCVTT

Convert from floating-point to integer VCVT (floating-point to integer, floating-point)

Convert from floating-point to integer using FPSCR rounding mode VCVTR

Convert from integer to floating-point VCVT (integer to floating-point, floating-point)

Floating-point Javascript convert to signed fixed-point, rounding toward
zero

VJCVT

Copy from one floating-point register to another VMOV (register)

Divide VDIV

Move immediate value to a floating-point register VMOV (immediate)

Square Root VSQRT

Vector Absolute value VABS

Vector Add VADD (floating-point)

Vector Compare with exceptions disabled VCMPE

Vector Compare with exceptions enabled VCMP

Vector Fused Multiply Accumulate VFMA

Vector Fused Multiply Subtract VFMS

Vector Fused Negate Multiply Accumulate VFNMA

Vector Fused Negate Multiply Subtract VFNMS

Vector Multiply VMUL (floating-point)

Vector Multiply Accumulate VMLA (floating-point)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9716
ID032224 Non-Confidential

The AArch32 Instruction Sets Overview
F2.14 Floating-point data-processing instructions
Vector Multiply Subtract VMLS (floating-point)

Vector Negate Multiply VNMUL

Vector Negate Multiply Accumulate VNMLA

Vector Negate Multiply Subtract VNMLS

Vector Negate, by inverting the sign bit VNEG

Vector Subtract VSUB (floating-point)

Table F2-31 Floating-point data-processing instructions (continued)

Instruction See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F2-9717
ID032224 Non-Confidential

Chapter F3
T32 Instruction Set Encoding

This chapter describes the encoding of the T32 instruction set. It contains the following sections:

• T32 instruction set encoding.

• About the T32 Advanced SIMD and floating-point instructions and their encoding.

In this chapter:

• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.

• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9718
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1 T32 instruction set encoding

The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single
16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:

• 0b11101.

• 0b11110.

• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

The T32 instruction encoding is:

F3.1.1 16-bit

This section describes the encoding of the 16-bit group. The encodings in this section are decoded from T32
instruction set encoding.

This decode also imposes the constraint:

• op0<5:3> != 111.

Table F3-1 Main encoding table for the T32 instruction set

Decode fields
Decode group or instruction page

op0 op1

 != 111 - 16-bit

 111 00 B - T2 variant

 111 != 00 32-bit

op0 op1

15 13 12 11 10 00 15

Table F3-2 Encoding table for the 16-bit group

Decode fields
Decode group or instruction page

op0

 00xxxx Shift (immediate), add, subtract, move, and compare

 010000 Data-processing (two low registers)

 010001 Special data instructions and branch and exchange

 01001x LDR (literal) - T1 variant

op0

15 10 9 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9719
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.1.1 Data-processing (two low registers)

This section describes the encoding of the Data-processing (two low registers) instruction class. The encodings in
this section are decoded from 16-bit.

 0101xx Load/store (register offset)

 011xxx Load/store word/byte (immediate offset)

 1000xx Load/store halfword (immediate offset)

 1001xx Load/store (SP-relative)

 1010xx Add PC/SP (immediate)

 1011xx Miscellaneous 16-bit instructions

 1100xx Load/store multiple

 1101xx Conditional branch, and Supervisor Call

Decode fields
Instruction page

op

0000 AND, ANDS (register)

0001 EOR, EORS (register)

0010 MOV, MOVS (register-shifted register) - Logical shift left variant

0011 MOV, MOVS (register-shifted register) - Logical shift right variant

0100 MOV, MOVS (register-shifted register) - Arithmetic shift right variant

0101 ADC, ADCS (register)

0110 SBC, SBCS (register)

0111 MOV, MOVS (register-shifted register) - Rotate right variant

1000 TST (register)

1001 RSB, RSBS (immediate)

1010 CMP (register)

1011 CMN (register)

1100 ORR, ORRS (register)

Table F3-2 Encoding table for the 16-bit group (continued)

Decode fields
Decode group or instruction page

op0

0 1 0 0 0 0 op Rs Rd

15 14 13 12 11 10 9 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9720
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.1.2 Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. The encodings in this section
are decoded from 16-bit.

F3.1.1.3 Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset) instruction class. The encodings
in this section are decoded from 16-bit.

1101 MUL, MULS

1110 BIC, BICS (register)

1111 MVN, MVNS (register)

Decode fields
Instruction page

L B H

0 0 0 STR (register)

0 0 1 STRH (register)

0 1 0 STRB (register)

0 1 1 LDRSB (register)

1 0 0 LDR (register)

1 0 1 LDRH (register)

1 1 0 LDRB (register)

1 1 1 LDRSH (register)

Decode fields
Instruction page

B L

0 0 STR (immediate)

Decode fields
Instruction page

op

0 1 0 1 L B H Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 1 B L imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9721
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.1.4 Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset) instruction class. The encodings
in this section are decoded from 16-bit.

F3.1.1.5 Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative) instruction class. The encodings in this section
are decoded from 16-bit.

F3.1.1.6 Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate) instruction class. The encodings in this section
are decoded from 16-bit.

0 1 LDR (immediate)

1 0 STRB (immediate)

1 1 LDRB (immediate)

Decode fields
Instruction page

L

0 STRH (immediate)

1 LDRH (immediate)

Decode fields
Instruction page

L

0 STR (immediate)

1 LDR (immediate)

Decode fields
Instruction page

B L

1 0 0 0 L imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0

1 0 0 1 L Rt imm8

15 14 13 12 11 10 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9722
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.1.7 Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. The encodings in this section are
decoded from 16-bit.

F3.1.2 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare group. The
encodings in this section are decoded from 16-bit.

Decode fields
Instruction page

SP

0 ADR

1 ADD, ADDS (SP plus immediate)

Decode fields
Instruction page

L

0 STM, STMIA, STMEA

1 LDM, LDMIA, LDMFD

1 0 1 0 SP Rd imm8

15 14 13 12 11 10 8 7 0

1 1 0 0 L Rn register_list

15 14 13 12 11 10 8 7 0

Table F3-3 Encoding table for the Shift (immediate), add, subtract, move, and compare group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 11 0 Add, subtract (three low registers)

 0 11 1 Add, subtract (two low registers and immediate)

 0 != 11 - MOV, MOVS (register) - T2 variant

 1 - - Add, subtract, compare, move (one low register and immediate)

00 op1

15 14 13 12 11 10 9 0

op0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9723
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.2.1 Add, subtract (three low registers)

This section describes the encoding of the Add, subtract (three low registers) instruction class. The encodings in this
section are decoded from Shift (immediate), add, subtract, move, and compare.

F3.1.2.2 Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate) instruction class. The
encodings in this section are decoded from Shift (immediate), add, subtract, move, and compare.

F3.1.2.3 Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate)
instruction class. The encodings in this section are decoded from Shift (immediate), add, subtract, move, and
compare.

Decode fields
Instruction page

S

0 ADD, ADDS (register)

1 SUB, SUBS (register)

Decode fields
Instruction page

S

0 ADD, ADDS (immediate)

1 SUB, SUBS (immediate)

Decode fields
Instruction page

op

00 MOV, MOVS (immediate)

0 0 0 1 1 0 S Rm Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 S imm3 Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 1 op Rd imm8

15 14 13 12 11 10 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9724
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange group. The encodings
in this section are decoded from 16-bit.

F3.1.3.1 Branch and exchange

This section describes the encoding of the Branch and exchange instruction class. The encodings in this section are
decoded from Special data instructions and branch and exchange.

F3.1.3.2 Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers) instruction class. The
encodings in this section are decoded from Special data instructions and branch and exchange.

01 CMP (immediate)

10 ADD, ADDS (immediate)

11 SUB, SUBS (immediate)

Decode fields
Instruction page

op

Table F3-4 Encoding table for the Special data instructions and branch and exchange group

Decode fields
Decode group or instruction page

op0

 11 Branch and exchange

 != 11 Add, subtract, compare, move (two high registers)

Decode fields
Instruction page

L

0 BX

1 BLX (register)

010001 op0

15 10 9 8 7 0

0 1 0 0 0 1 1 1 L Rm (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9725
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.4 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions group. The encodings in this section
are decoded from 16-bit.

Decode fields
Instruction page

op D:Rd Rs

00 != 1101 != 1101 ADD, ADDS (register)

00 - 1101 ADD, ADDS (SP plus register) - T1

00 1101 != 1101 ADD, ADDS (SP plus register) - T2

01 - - CMP (register)

10 - - MOV, MOVS (register)

0 1 0 0 0 1 !=11 D Rs Rd

15 14 13 12 11 10 9 8 7 6 3 2 0

op

Table F3-5 Encoding table for the Miscellaneous 16-bit instructions group

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

 0000 - - - Adjust SP (immediate) -

 0010 - - - Extend -

 0110 00 0 - SETPAN FEAT_PAN

 0110 00 1 - Unallocated. -

 0110 01 - - Change Processor State -

 0110 1x - - Unallocated. -

 0111 - - - Unallocated. -

 1000 - - - Unallocated. -

 1010 10 - - HLT -

 1010 != 10 - - Reverse bytes -

 1110 - - - BKPT -

 1111 - - 0000 Hints -

1011 op0 op1 op3

15 12 11 8 7 6 5 4 3 0

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9726
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.4.1 Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate) instruction class. The encodings in this section
are decoded from Miscellaneous 16-bit instructions.

F3.1.4.2 Extend

This section describes the encoding of the Extend instruction class. The encodings in this section are decoded from
Miscellaneous 16-bit instructions.

F3.1.4.3 Change Processor State

This section describes the encoding of the Change Processor State instruction class. The encodings in this section
are decoded from Miscellaneous 16-bit instructions.

 1111 - - != 0000 IT -

 x0x1 - - - CBNZ, CBZ -

 x10x - - - Push and Pop -

Decode fields
Instruction page

S

0 ADD, ADDS (SP plus immediate)

1 SUB, SUBS (SP minus immediate)

Decode fields
Instruction page

U B

0 0 SXTH

0 1 SXTB

1 0 UXTH

1 1 UXTB

Table F3-5 Encoding table for the Miscellaneous 16-bit instructions group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1 op2 op3

1 0 1 1 0 0 0 0 S imm7

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 1 0 U B Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9727
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.4.4 Reverse bytes

This section describes the encoding of the Reverse bytes instruction class. The encodings in this section are decoded
from Miscellaneous 16-bit instructions.

F3.1.4.5 Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from
Miscellaneous 16-bit instructions.

Decode fields
Instruction page

op flags

0 - SETEND

1 0xxxx CPS, CPSID, CPSIE - Interrupt enable variant

1 1xxxx CPS, CPSID, CPSIE - Interrupt disable variant

Decode fields
Instruction page

op

00 REV

01 REV16

11 REVSH

Decode fields
Instruction page

hint

0000 NOP

0001 YIELD

0010 WFE

0011 WFI

1 0 1 1 0 1 1 0 0 1 op flags

15 14 13 12 11 10 9 8 7 6 5 4 0

1 0 1 1 1 0 1 0 !=10 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

op

1 0 1 1 1 1 1 1 hint 0 0 0 0

15 14 13 12 11 10 9 8 7 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9728
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.4.6 Push and Pop

This section describes the encoding of the Push and Pop instruction class. The encodings in this section are decoded
from Miscellaneous 16-bit instructions.

F3.1.5 Conditional branch, and Supervisor Call

This section describes the encoding of the Conditional branch, and Supervisor Call group. The encodings in this
section are decoded from 16-bit.

F3.1.5.1 Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Conditional branch, and Supervisor Call.

0100 SEV

0101 SEVL

011x Reserved hint, behaves as NOP.

1xxx Reserved hint, behaves as NOP.

Decode fields
Instruction page

L

0 PUSH

1 POP

Decode fields
Instruction page

hint

1 0 1 1 L 1 0 P register_list

15 14 13 12 11 10 9 8 7 0

Table F3-6 Encoding table for the Conditional branch, and Supervisor Call group

Decode fields
Decode group or instruction page

op0

 111x Exception generation

 != 111x B - T1 variant

1101 op0

15 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9729
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.6 32-bit

This section describes the encoding of the 32-bit group. The encodings in this section are decoded from T32
instruction set encoding.

This decode also imposes the constraint:

• op0<3:2> != 00.

Decode fields
Instruction page

S

0 UDF

1 SVC

1 1 0 1 1 1 1 S imm8

15 14 13 12 11 10 9 8 7 0

111 op0 op1

15 13 12 9 8 4 3 0 15 14 0

op3

Table F3-7 Encoding table for the 32-bit group

Decode fields
Decode group or instruction page

op0 op1 op3

 x11x - - System register access, Advanced SIMD, and floating-point

 0100 xx0xx - Load/store multiple

 0100 xx1xx - Load/store dual, load/store exclusive, load-acquire/store-release, and table branch

 0101 - - Data-processing (shifted register)

 10xx - 1 Branches and miscellaneous control

 10x0 - 0 Data-processing (modified immediate)

 10x1 xxxx0 0 Data-processing (plain binary immediate)

 10x1 xxxx1 0 Unallocated.

 1100 1xxx0 - Advanced SIMD element or structure load/store

 1100 != 1xxx0 - Load/store single

 1101 0xxxx - Data-processing (register)

 1101 10xxx - Multiply, multiply accumulate, and absolute difference

 1101 11xxx - Long multiply and divide
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9730
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.6.1 Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. The encodings in this section are
decoded from 32-bit.

F3.1.6.2 Data-processing (shifted register)

This section describes the encoding of the Data-processing (shifted register) instruction class. The encodings in this
section are decoded from 32-bit.

Decode fields
Instruction page

opc L

00 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - T1

00 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - T1

01 0 STM, STMIA, STMEA

01 1 LDM, LDMIA, LDMFD

10 0 STMDB, STMFD

10 1 LDMDB, LDMEA

11 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - T2

11 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - T2

1 1 1 0 1 0 0 opc 0 W L Rn P M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

1 1 1 0 1 0 1 op1 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Decode fields
Instruction page

op1 S Rn imm3:imm2:stype Rd

0000 0 - != 0000011 - AND, ANDS (register) - AND, shift or rotate by value variant

0000 0 - 0000011 - AND, ANDS (register) - AND, rotate right with extend variant

0000 1 - != 0000011 != 1111 AND, ANDS (register) - ANDS, shift or rotate by value variant

0000 1 - != 0000011 1111 TST (register) - Shift or rotate by value variant

0000 1 - 0000011 != 1111 AND, ANDS (register) - ANDS, rotate right with extend variant

0000 1 - 0000011 1111 TST (register) - Rotate right with extend variant

0001 - - != 0000011 - BIC, BICS (register) - BICS, shift or rotate by value variant

0001 - - 0000011 - BIC, BICS (register) - BICS, rotate right with extend variant

0010 0 != 1111 != 0000011 - ORR, ORRS (register) - ORR, shift or rotate by value variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9731
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
0010 0 != 1111 0000011 - ORR, ORRS (register) - ORR, rotate right with extend variant

0010 0 1111 != 0000011 - MOV, MOVS (register) - MOV, shift or rotate by value variant

0010 0 1111 0000011 - MOV, MOVS (register) - MOV, rotate right with extend variant

0010 1 != 1111 != 0000011 - ORR, ORRS (register) - ORRS, shift or rotate by value variant

0010 1 != 1111 0000011 - ORR, ORRS (register) - ORRS, rotate right with extend variant

0010 1 1111 != 0000011 - MOV, MOVS (register) - MOVS, shift or rotate by value variant

0010 1 1111 0000011 - MOV, MOVS (register) - MOVS, rotate right with extend variant

0011 0 != 1111 != 0000011 - ORN, ORNS (register) - ORN, shift or rotate by value variant

0011 0 != 1111 0000011 - ORN, ORNS (register) - ORN, rotate right with extend variant

0011 0 1111 != 0000011 - MVN, MVNS (register) - MVN, shift or rotate by value variant

0011 0 1111 0000011 - MVN, MVNS (register) - MVN, rotate right with extend variant

0011 1 != 1111 != 0000011 - ORN, ORNS (register) - ORNS, shift or rotate by value variant

0011 1 != 1111 0000011 - ORN, ORNS (register) - ORNS, rotate right with extend variant

0011 1 1111 != 0000011 - MVN, MVNS (register) - MVNS, shift or rotate by value variant

0011 1 1111 0000011 - MVN, MVNS (register) - MVNS, rotate right with extend variant

0100 0 - != 0000011 - EOR, EORS (register) - EOR, shift or rotate by value variant

0100 0 - 0000011 - EOR, EORS (register) - EOR, rotate right with extend variant

0100 1 - != 0000011 != 1111 EOR, EORS (register) - EORS, shift or rotate by value variant

0100 1 - != 0000011 1111 TEQ (register) - Shift or rotate by value variant

0100 1 - 0000011 != 1111 EOR, EORS (register) - EORS, rotate right with extend variant

0100 1 - 0000011 1111 TEQ (register) - Rotate right with extend variant

0101 - - - - Unallocated.

0110 0 - xxxxx00 - PKHBT, PKHTB - PKHBT variant

0110 0 - xxxxx01 - Unallocated.

0110 0 - xxxxx10 - PKHBT, PKHTB - PKHTB variant

0110 0 - xxxxx11 - Unallocated.

0111 - - - - Unallocated.

1000 0 != 1101 != 0000011 - ADD, ADDS (register) - ADD, shift or rotate by value variant

1000 0 != 1101 0000011 - ADD, ADDS (register) - ADD, rotate right with extend variant

1000 0 1101 != 0000011 - ADD, ADDS (SP plus register) - ADD, shift or rotate by value variant

1000 0 1101 0000011 - ADD, ADDS (SP plus register) - ADD, rotate right with extend variant

1000 1 - != 0000011 1111 CMN (register) - Shift or rotate by value variant

Decode fields
Instruction page

op1 S Rn imm3:imm2:stype Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9732
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.6.3 Data-processing (modified immediate)

This section describes the encoding of the Data-processing (modified immediate) instruction class. The encodings
in this section are decoded from 32-bit.

1000 1 != 1101 != 0000011 != 1111 ADD, ADDS (register) - ADDS, shift or rotate by value variant

1000 1 != 1101 0000011 != 1111 ADD, ADDS (register) - ADDS, rotate right with extend variant

1000 1 - 0000011 1111 CMN (register) - Rotate right with extend variant

1000 1 1101 != 0000011 != 1111 ADD, ADDS (SP plus register) - ADDS, shift or rotate by value variant

1000 1 1101 0000011 != 1111 ADD, ADDS (SP plus register) - ADDS, rotate right with extend variant

1001 - - - - Unallocated.

1010 - - != 0000011 - ADC, ADCS (register) - ADCS, shift or rotate by value variant

1010 - - 0000011 - ADC, ADCS (register) - ADCS, rotate right with extend variant

1011 - - != 0000011 - SBC, SBCS (register) - SBCS, shift or rotate by value variant

1011 - - 0000011 - SBC, SBCS (register) - SBCS, rotate right with extend variant

1100 - - - - Unallocated.

1101 0 != 1101 != 0000011 - SUB, SUBS (register) - SUB, shift or rotate by value variant

1101 0 != 1101 0000011 - SUB, SUBS (register) - SUB, rotate right with extend variant

1101 0 1101 != 0000011 - SUB, SUBS (SP minus register) - SUB, shift or rotate by value variant

1101 0 1101 0000011 - SUB, SUBS (SP minus register) - SUB, rotate right with extend variant

1101 1 - != 0000011 1111 CMP (register) - Shift or rotate by value variant

1101 1 != 1101 != 0000011 != 1111 SUB, SUBS (register) - SUBS, shift or rotate by value variant

1101 1 != 1101 0000011 != 1111 SUB, SUBS (register) - SUBS, rotate right with extend variant

1101 1 - 0000011 1111 CMP (register) - Rotate right with extend variant

1101 1 1101 != 0000011 != 1111 SUB, SUBS (SP minus register) - SUBS, shift or rotate by value variant

1101 1 1101 0000011 != 1111 SUB, SUBS (SP minus register) - SUBS, rotate right with extend variant

1110 - - != 0000011 - RSB, RSBS (register) - RSBS, shift or rotate by value variant

1110 - - 0000011 - RSB, RSBS (register) - RSBS, rotate right with extend variant

1111 - - - - Unallocated.

Decode fields
Instruction page

op1 S Rn imm3:imm2:stype Rd
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9733
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Decode fields
Instruction page

op1 S Rn Rd

0000 0 - - AND, ANDS (immediate) - AND variant

0000 1 - != 1111 AND, ANDS (immediate) - ANDS variant

0000 1 - 1111 TST (immediate)

0001 - - - BIC, BICS (immediate)

0010 0 != 1111 - ORR, ORRS (immediate) - ORR variant

0010 0 1111 - MOV, MOVS (immediate) - MOV variant

0010 1 != 1111 - ORR, ORRS (immediate) - ORRS variant

0010 1 1111 - MOV, MOVS (immediate) - MOVS variant

0011 0 != 1111 - ORN, ORNS (immediate) - Not flag setting variant

0011 0 1111 - MVN, MVNS (immediate) - MVN variant

0011 1 != 1111 - ORN, ORNS (immediate) - Flag setting variant

0011 1 1111 - MVN, MVNS (immediate) - MVNS variant

0100 0 - - EOR, EORS (immediate) - EOR variant

0100 1 - != 1111 EOR, EORS (immediate) - EORS variant

0100 1 - 1111 TEQ (immediate)

0101 - - - Unallocated.

011x - - - Unallocated.

1000 0 != 1101 - ADD, ADDS (immediate) - ADD variant

1000 0 1101 - ADD, ADDS (SP plus immediate) - ADD variant

1000 1 != 1101 != 1111 ADD, ADDS (immediate) - ADDS variant

1000 1 1101 != 1111 ADD, ADDS (SP plus immediate) - ADDS variant

1000 1 - 1111 CMN (immediate)

1001 - - - Unallocated.

1010 - - - ADC, ADCS (immediate)

1011 - - - SBC, SBCS (immediate)

1100 - - - Unallocated.

1101 0 != 1101 - SUB, SUBS (immediate) - SUB variant

1101 0 1101 - SUB, SUBS (SP minus immediate) - SUB variant

1 1 1 1 0 i 0 op1 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9734
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.6.4 Long multiply and divide

This section describes the encoding of the Long multiply and divide instruction class. The encodings in this section
are decoded from 32-bit.

1101 1 != 1101 != 1111 SUB, SUBS (immediate) - SUBS variant

1101 1 1101 != 1111 SUB, SUBS (SP minus immediate) - SUBS variant

1101 1 - 1111 CMP (immediate)

1110 - - - RSB, RSBS (immediate)

1111 - - - Unallocated.

Decode fields
Instruction page

op1 op2

000 != 0000 Unallocated.

000 0000 SMULL, SMULLS

001 != 1111 Unallocated.

001 1111 SDIV

010 != 0000 Unallocated.

010 0000 UMULL, UMULLS

011 != 1111 Unallocated.

011 1111 UDIV

100 0000 SMLAL, SMLALS

100 0001 Unallocated.

100 001x Unallocated.

100 01xx Unallocated.

100 1000 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBB variant

100 1001 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBT variant

100 1010 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTB variant

100 1011 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTT variant

100 1100 SMLALD, SMLALDX - SMLALD variant

100 1101 SMLALD, SMLALDX - SMLALDX variant

Decode fields
Instruction page

op1 S Rn Rd

1 1 1 1 1 0 1 1 1 op1 Rn RdLo RdHi op2 Rm

15 14 13 12 11 10 9 8 7 6 4 3 0 15 12 11 8 7 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9735
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.7 System register access, Advanced SIMD, and floating-point

This section describes the encoding of the System register access, Advanced SIMD, and floating-point group. The
encodings in this section are decoded from 32-bit.

100 111x Unallocated.

101 0xxx Unallocated.

101 10xx Unallocated.

101 1100 SMLSLD, SMLSLDX - SMLSLD variant

101 1101 SMLSLD, SMLSLDX - SMLSLDX variant

101 111x Unallocated.

110 0000 UMLAL, UMLALS

110 0001 Unallocated.

110 001x Unallocated.

110 010x Unallocated.

110 0110 UMAAL

110 0111 Unallocated.

110 1xxx Unallocated.

111 - Unallocated.

Decode fields
Instruction page

op1 op2

111 11 op1 op2

15 13 12 11 10 9 8 7 12 11 10 9 5 4 3 00 15

op0 op3

Table F3-8 Encoding table for the System register access, Advanced SIMD, and floating-point group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 - 0x 0x - Unallocated.

 - 10 0x - Unallocated.

 - 11 - - Advanced SIMD data-processing

 0 0x 1x - Advanced SIMD and System register load/store and 64-bit move

 0 10 1x 1 Advanced SIMD and System register 32-bit move
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9736
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.8 Advanced SIMD data-processing

This section describes the encoding of the Advanced SIMD data-processing group. The encodings in this section
are decoded from System register access, Advanced SIMD, and floating-point.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding

F3.1.8.1 Advanced SIMD three registers of the same length

This section describes the encoding of the Advanced SIMD three registers of the same length instruction class. The
encodings in this section are decoded from Advanced SIMD data-processing.

 0 10 10 0 Floating-point data-processing

 0 10 11 0 Unallocated.

 1 != 11 1x - Additional Advanced SIMD and floating-point instructions

Table F3-8 Encoding table for the System register access, Advanced SIMD, and floating-point group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

Table F3-9 Encoding table for the Advanced SIMD data-processing group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD three registers of the same length

 1 0 Advanced SIMD two registers, or three registers of different lengths

 1 1 Advanced SIMD shifts and immediate generation

Decode fields
Instruction page Feature

U size opc Q o1

0 0x 1100 - 1 VFMA -

0 0x 1101 - 0 VADD (floating-point) -

0 0x 1101 - 1 VMLA (floating-point) -

0 0x 1110 - 0 VCEQ (register) - T2 -

111 1111

15 13 12 11 8 7 6 5 4 3 00 15

op0 op1

1 1 1 U 1 1 1 1 0 D size Vn Vd opc N Q M o1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9737
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
0 0x 1111 - 0 VMAX (floating-point) -

0 0x 1111 - 1 VRECPS -

- - 0000 - 0 VHADD -

0 00 0001 - 1 VAND (register) -

- - 0000 - 1 VQADD -

- - 0001 - 0 VRHADD -

0 00 1100 - 0 SHA1C FEAT_SHA1

- - 0010 - 0 VHSUB -

0 01 0001 - 1 VBIC (register) -

- - 0010 - 1 VQSUB -

- - 0011 - 0 VCGT (register) - T1 -

- - 0011 - 1 VCGE (register) - T1 -

0 01 1100 - 0 SHA1P FEAT_SHA1

0 1x 1100 - 1 VFMS -

0 1x 1101 - 0 VSUB (floating-point) -

0 1x 1101 - 1 VMLS (floating-point) -

0 1x 1110 - 0 Unallocated. -

0 1x 1111 - 0 VMIN (floating-point) -

0 1x 1111 - 1 VRSQRTS -

- - 0100 - 0 VSHL (register) -

0 - 1000 - 0 VADD (integer) -

0 10 0001 - 1 VORR (register) -

0 - 1000 - 1 VTST -

- - 0100 - 1 VQSHL (register) -

0 - 1001 - 0 VMLA (integer) -

- - 0101 - 0 VRSHL -

- - 0101 - 1 VQRSHL -

0 - 1011 - 0 VQDMULH -

0 10 1100 - 0 SHA1M FEAT_SHA1

0 - 1011 - 1 VPADD (integer) -

- - 0110 - 0 VMAX (integer) -

0 11 0001 - 1 VORN (register) -

Decode fields
Instruction page Feature

U size opc Q o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9738
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
- - 0110 - 1 VMIN (integer) -

- - 0111 - 0 VABD (integer) -

- - 0111 - 1 VABA -

0 11 1100 - 0 SHA1SU0 FEAT_SHA1

1 0x 1101 - 0 VPADD (floating-point) -

1 0x 1101 - 1 VMUL (floating-point) -

1 0x 1110 - 0 VCGE (register) - T2 -

1 0x 1110 - 1 VACGE -

1 0x 1111 0 0 VPMAX (floating-point) -

1 0x 1111 - 1 VMAXNM -

1 00 0001 - 1 VEOR -

- - 1001 - 1 VMUL (integer and polynomial) -

1 00 1100 - 0 SHA256H FEAT_SHA256

- - 1010 0 0 VPMAX (integer) -

1 01 0001 - 1 VBSL -

- - 1010 0 1 VPMIN (integer) -

- - 1010 1 - Unallocated. -

1 01 1100 - 0 SHA256H2 FEAT_SHA256

1 1x 1101 - 0 VABD (floating-point) -

1 1x 1110 - 0 VCGT (register) - T2 -

1 1x 1110 - 1 VACGT -

1 1x 1111 0 0 VPMIN (floating-point) -

1 1x 1111 - 1 VMINNM -

1 - 1000 - 0 VSUB (integer) -

1 10 0001 - 1 VBIT -

1 - 1000 - 1 VCEQ (register) - T1 -

1 - 1001 - 0 VMLS (integer) -

1 - 1011 - 0 VQRDMULH -

1 10 1100 - 0 SHA256SU1 FEAT_SHA256

1 - 1011 - 1 VQRDMLAH FEAT_RDM

Decode fields
Instruction page Feature

U size opc Q o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9739
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.9 Advanced SIMD two registers, or three registers of different lengths

This section describes the encoding of the Advanced SIMD two registers, or three registers of different lengths
group. The encodings in this section are decoded from Advanced SIMD data-processing.

F3.1.9.1 Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

1 11 0001 - 1 VBIF -

1 - 1100 - 1 VQRDMLSH FEAT_RDM

1 - 1111 1 0 Unallocated. -

Decode fields
Instruction page Feature

U size opc Q o1

Table F3-10 Encoding table for the Advanced SIMD two registers, or three registers of different
lengths group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 11 - - VEXT (byte elements)

 1 11 0x - Advanced SIMD two registers misc

 1 11 10 - VTBL, VTBX

 1 11 11 - Advanced SIMD duplicate (scalar)

 - != 11 - 0 Advanced SIMD three registers of different lengths

 - != 11 - 1 Advanced SIMD two registers and a scalar

111 11111 op1 op2 0

15 13 12 11 7 6 5 4 3 12 11 10 9 7 6 5 4 3 00 15

op0 op3

1 1 1 1 1 1 1 1 1 D 1 1 size opc1 Vd 0 opc2 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 7 6 5 4 3 0

Decode fields
Instruction page Feature

size opc1 opc2 Q

- 00 0000 - VREV64 -

- 00 0001 - VREV32 -

- 00 0010 - VREV16 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9740
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
- 00 0011 - Unallocated. -

- 00 010x - VPADDL -

- 00 0110 0 AESE FEAT_AES

- 00 0110 1 AESD FEAT_AES

- 00 0111 0 AESMC FEAT_AES

- 00 0111 1 AESIMC FEAT_AES

- 00 1000 - VCLS -

00 10 0000 - VSWP -

- 00 1001 - VCLZ -

- 00 1010 - VCNT -

- 00 1011 - VMVN (register) -

00 10 1100 1 Unallocated. -

- 00 110x - VPADAL -

- 00 1110 - VQABS -

- 00 1111 - VQNEG -

- 01 x000 - VCGT (immediate #0) -

- 01 x001 - VCGE (immediate #0) -

- 01 x010 - VCEQ (immediate #0) -

- 01 x011 - VCLE (immediate #0) -

- 01 x100 - VCLT (immediate #0) -

- 01 x110 - VABS -

- 01 x111 - VNEG -

- 01 0101 1 SHA1H FEAT_SHA1

01 10 1100 1 VCVT (from single-precision to BFloat16, Advanced SIMD) FEAT_AA32BF16

- 10 0001 - VTRN -

- 10 0010 - VUZP -

- 10 0011 - VZIP -

- 10 0100 0 VMOVN -

- 10 0100 1 VQMOVN, VQMOVUN - Unsigned result variant -

- 10 0101 - VQMOVN, VQMOVUN - Signed result variant -

- 10 0110 0 VSHLL -

- 10 0111 0 SHA1SU1 FEAT_SHA1

Decode fields
Instruction page Feature

size opc1 opc2 Q
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9741
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.9.2 Advanced SIMD duplicate (scalar)

This section describes the encoding of the Advanced SIMD duplicate (scalar) instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

- 10 0111 1 SHA256SU0 FEAT_SHA256

- 10 1000 - VRINTN (Advanced SIMD) -

- 10 1001 - VRINTX (Advanced SIMD) -

- 10 1010 - VRINTA (Advanced SIMD) -

- 10 1011 - VRINTZ (Advanced SIMD) -

10 10 1100 1 Unallocated. -

- 10 1100 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Single-precision to half-precision variant

-

- 10 1101 - VRINTM (Advanced SIMD) -

- 10 1110 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Half-precision to single-precision variant

-

- 10 1110 1 Unallocated. -

- 10 1111 - VRINTP (Advanced SIMD) -

- 11 000x - VCVTA (Advanced SIMD) -

- 11 001x - VCVTN (Advanced SIMD) -

- 11 010x - VCVTP (Advanced SIMD) -

- 11 011x - VCVTM (Advanced SIMD) -

- 11 10x0 - VRECPE -

- 11 10x1 - VRSQRTE -

11 10 1100 1 Unallocated. -

- 11 11xx - VCVT (between floating-point and integer, Advanced SIMD) -

Decode fields
Instruction page Feature

size opc1 opc2 Q
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9742
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.9.3 Advanced SIMD three registers of different lengths

This section describes the encoding of the Advanced SIMD three registers of different lengths instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

Decode fields
Instruction page

opc

000 VDUP (scalar)

001 Unallocated.

01x Unallocated.

1xx Unallocated.

Decode fields
Instruction page

U opc

- 0000 VADDL

- 0001 VADDW

- 0010 VSUBL

0 0100 VADDHN

- 0011 VSUBW

0 0110 VSUBHN

0 1001 VQDMLAL

- 0101 VABAL

0 1011 VQDMLSL

0 1101 VQDMULL

- 0111 VABDL (integer)

- 1000 VMLAL (integer)

- 1010 VMLSL (integer)

1 0100 VRADDHN

1 0110 VRSUBHN

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 opc Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd opc N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9743
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.9.4 Advanced SIMD two registers and a scalar

This section describes the encoding of the Advanced SIMD two registers and a scalar instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

- 11x0 VMULL (integer and polynomial)

1 1001 Unallocated.

1 1011 Unallocated.

1 1101 Unallocated.

- 1111 Unallocated.

Decode fields
Instruction page Feature

Q opc

- 000x VMLA (by scalar) -

0 0011 VQDMLAL -

- 0010 VMLAL (by scalar) -

0 0111 VQDMLSL -

- 010x VMLS (by scalar) -

0 1011 VQDMULL -

- 0110 VMLSL (by scalar) -

- 100x VMUL (by scalar) -

1 0011 Unallocated. -

- 1010 VMULL (by scalar) -

1 0111 Unallocated. -

- 1100 VQDMULH -

- 1101 VQRDMULH -

1 1011 Unallocated. -

- 1110 VQRDMLAH FEAT_RDM

- 1111 VQRDMLSH FEAT_RDM

Decode fields
Instruction page

U opc

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd opc N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9744
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.10 Advanced SIMD shifts and immediate generation

This section describes the encoding of the Advanced SIMD shifts and immediate generation group. The encodings
in this section are decoded from Advanced SIMD data-processing.

F3.1.10.1 Advanced SIMD one register and modified immediate

This section describes the encoding of the Advanced SIMD one register and modified immediate instruction class.
The encodings in this section are decoded from Advanced SIMD shifts and immediate generation.

Table F3-11 Encoding table for the Advanced SIMD shifts and immediate generation group

Decode fields
Decode group or instruction page

op0

 000xxxxxxxxxxx0 Advanced SIMD one register and modified immediate

 != 000xxxxxxxxxxx0 Advanced SIMD two registers and shift amount

Decode fields
Instruction page

cmode op

0xx0 0 VMOV (immediate) - T1

0xx0 1 VMVN (immediate) - T1

0xx1 0 VORR (immediate) - T1

0xx1 1 VBIC (immediate) - T1

10x0 0 VMOV (immediate) - T3

10x0 1 VMVN (immediate) - T2

10x1 0 VORR (immediate) - T2

10x1 1 VBIC (immediate) - T2

11xx 0 VMOV (immediate) - T4

110x 1 VMVN (immediate) - T3

1110 1 VMOV (immediate) - T5

1111 1 Unallocated.

111 11111 op0 1

15 13 12 11 7 6 5 7 6 5 4 3 00 15

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9745
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.10.2 Advanced SIMD two registers and shift amount

This section describes the encoding of the Advanced SIMD two registers and shift amount instruction class. The
encodings in this section are decoded from Advanced SIMD shifts and immediate generation.

F3.1.11 Advanced SIMD and System register load/store and 64-bit move

This section describes the encoding of the Advanced SIMD and System register load/store and 64-bit move group.
The encodings in this section are decoded from System register access, Advanced SIMD, and floating-point.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding

1 1 1 U 1 1 1 1 1 D imm3H imm3L Vd opc L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 3 2 0 15 12 11 8 7 6 5 4 3 0

Decode fields
Instruction page

U imm3H:L imm3L opc L Q

- != 0000 - 0000 - - VSHR

- != 0000 - 0001 - - VSRA

- != 0000 000 1010 0 0 VMOVL

- != 0000 - 0010 - - VRSHR

- != 0000 - 0011 - - VRSRA

- != 0000 - 0111 - - VQSHL, VQSHLU (immediate) - 128-bit SIMD vector, signed result variant

- != 0000 - 1001 0 0 VQSHRN, VQSHRUN - Signed result variant

- != 0000 - 1001 0 1 VQRSHRN, VQRSHRUN - Signed result variant

- != 0000 - 1010 0 0 VSHLL

- != 0000 - 11xx 0 - VCVT (between floating-point and fixed-point, Advanced SIMD)

0 != 0000 - 0101 - - VSHL (immediate)

0 != 0000 - 1000 0 0 VSHRN

0 != 0000 - 1000 0 1 VRSHRN

1 != 0000 - 0100 - - VSRI

1 != 0000 - 0101 - - VSLI

1 != 0000 - 0110 - - VQSHL, VQSHLU (immediate) - 128-bit SIMD vector, unsigned result variant

1 != 0000 - 1000 0 0 VQSHRN, VQSHRUN - Unsigned result variant

1 != 0000 - 1000 0 1 VQRSHRN, VQRSHRUN - Unsigned result variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9746
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.11.1 Advanced SIMD and floating-point 64-bit move

This section describes the encoding of the Advanced SIMD and floating-point 64-bit move instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move.

Table F3-12 Encoding table for the Advanced SIMD and System register load/store and 64-bit
move group

Decode fields
Decode group or instruction page

op0 op1

 00x0 0x Advanced SIMD and floating-point 64-bit move

 00x0 11 System register 64-bit move

 != 00x0 0x Advanced SIMD and floating-point load/store

 != 00x0 11 System register Load/Store

 - 10 Unallocated.

1110110 op0 1 op1

15 9 8 5 4 12 11 10 9 8 00 15

1 1 1 0 1 1 0 0 0 D 0 op Rt2 Rt 1 0 size opc2 M o3 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Decode fields
Instruction page

D op size opc2 o3

0 - - - - Unallocated.

1 - - - 0 Unallocated.

1 - 0x 00 1 Unallocated.

1 - - 01 - Unallocated.

1 0 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - From
general-purpose registers variant

1 0 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - From
general-purpose registers variant

1 - - 1x - Unallocated.

1 1 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - To
general-purpose registers variant

1 1 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - To
general-purpose registers variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9747
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.11.2 System register 64-bit move

This section describes the encoding of the System register 64-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register load/store and 64-bit move.

F3.1.11.3 Advanced SIMD and floating-point load/store

This section describes the encoding of the Advanced SIMD and floating-point load/store instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move.

Decode fields
Instruction page

D L

0 - Unallocated.

1 0 MCRR

1 1 MRRC

1 1 1 0 1 1 0 0 0 D 0 L Rt2 Rt 1 1 1 opc1 CRm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

cp15

1 1 1 0 1 1 0 P U D W L Rn Vd 1 0 size imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Decode fields
Instruction page Feature

P U W L Rn size imm8

0 0 1 - - - - Unallocated. -

0 1 - - - 0x - Unallocated. -

0 1 - 0 - 10 - VSTM, VSTMDB, VSTMIA - Increment After variant -

0 1 - 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Increment After variant -

0 1 - 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Increment After variant -

0 1 - 1 - 10 - VLDM, VLDMDB, VLDMIA - Increment After variant -

0 1 - 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Increment After variant -

0 1 - 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Increment After variant -

1 - 0 0 - 01 - VSTR - Half-precision scalar variant FEAT_FP16

1 - 0 0 - 10 - VSTR - Single-precision scalar variant -

1 - 0 0 - 11 - VSTR - Double-precision scalar variant -

1 - 0 1 != 1111 01 - VLDR (immediate) - Half-precision scalar variant FEAT_FP16

1 - 0 1 != 1111 10 - VLDR (immediate) - Single-precision scalar variant -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9748
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.11.4 System register Load/Store

This section describes the encoding of the System register Load/Store instruction class. The encodings in this
section are decoded from Advanced SIMD and System register load/store and 64-bit move.

1 - 0 1 != 1111 11 - VLDR (immediate) - Double-precision scalar variant -

1 0 1 - - 0x - Unallocated. -

1 0 1 0 - 10 - VSTM, VSTMDB, VSTMIA - Decrement Before variant -

1 0 1 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Decrement Before variant -

1 0 1 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Decrement Before variant -

1 0 1 1 - 10 - VLDM, VLDMDB, VLDMIA - Decrement Before variant -

1 0 1 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Decrement Before variant -

1 0 1 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Decrement Before variant -

1 - 0 1 1111 01 - VLDR (literal) - Half-precision scalar variant FEAT_FP16

1 - 0 1 1111 10 - VLDR (literal) - Single-precision scalar variant -

1 - 0 1 1111 11 - VLDR (literal) - Double-precision scalar variant -

1 1 1 - - - - Unallocated. -

Decode fields
Instruction page Feature

P U W L Rn size imm8

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

!= 000 - - - != 0101 0 Unallocated.

!= 000 0 1 1111 0101 0 LDC (literal)

!= 000 - - - - 1 Unallocated.

!= 000 1 - - 0101 0 Unallocated.

0x1 0 0 - 0101 0 STC - Post-indexed variant

0x1 0 1 != 1111 0101 0 LDC (immediate) - Post-indexed variant

010 0 0 - 0101 0 STC - Unindexed variant

010 0 1 != 1111 0101 0 LDC (immediate) - Unindexed variant

1x0 0 0 - 0101 0 STC - Offset variant

1 1 1 0 1 1 0 P U D W L Rn CRd 1 1 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

cp15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9749
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.12 Advanced SIMD and System register 32-bit move

This section describes the encoding of the Advanced SIMD and System register 32-bit move group. The encodings
in this section are decoded from System register access, Advanced SIMD, and floating-point.

F3.1.12.1 Floating-point move special register

This section describes the encoding of the Floating-point move special register instruction class. The encodings in
this section are decoded from Advanced SIMD and System register 32-bit move.

1x0 0 1 != 1111 0101 0 LDC (immediate) - Offset variant

1x1 0 0 - 0101 0 STC - Pre-indexed variant

1x1 0 1 != 1111 0101 0 LDC (immediate) - Pre-indexed variant

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

Table F3-13 Encoding table for the Advanced SIMD and System register 32-bit move group

Decode fields
Decode group or instruction page Feature

op0 op1

 000 000 Unallocated. -

 000 001 VMOV (between general-purpose register and half-precision) FEAT_FP16

 000 010 VMOV (between general-purpose register and single-precision) -

 001 010 Unallocated. -

 01x 010 Unallocated. -

 10x 010 Unallocated. -

 110 010 Unallocated. -

 111 010 Floating-point move special register -

 - 011 Advanced SIMD 8/16/32-bit element move/duplicate -

 - 10x Unallocated. -

 - 11x System register 32-bit move -

11101110 op0 1 op1 1

15 8 7 5 4 12 11 10 8 7 5 4 3 00 15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9750
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.12.2 Advanced SIMD 8/16/32-bit element move/duplicate

This section describes the encoding of the Advanced SIMD 8/16/32-bit element move/duplicate instruction class.
The encodings in this section are decoded from Advanced SIMD and System register 32-bit move.

F3.1.12.3 System register 32-bit move

This section describes the encoding of the System register 32-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register 32-bit move.

Decode fields
Instruction page

L

0 VMSR

1 VMRS

Decode fields
Instruction page

opc1 L opc2

0xx 0 - VMOV (general-purpose register to scalar)

- 1 - VMOV (scalar to general-purpose register)

1xx 0 0x VDUP (general-purpose register)

1xx 0 1x Unallocated.

Decode fields
Instruction page

L

0 MCR

1 MRC

1 1 1 0 1 1 1 0 1 1 1 L reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 L Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 L CRn Rt 1 1 1 opc2 1 CRm

15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 10 9 8 7 5 4 3 0

cp15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9751
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.13 Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. The encodings in this section are
decoded from System register access, Advanced SIMD, and floating-point.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding

F3.1.13.1 Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing.

Table F3-14 Encoding table for the Floating-point data-processing group

Decode fields
Decode group or instruction page

op0 op1

 1x11 1 Floating-point data-processing (two registers)

 1x11 0 Floating-point move immediate

 != 1x11 - Floating-point data-processing (three registers)

11101110 op0 10 0

15 8 7 4 3 12 11 10 9 7 6 5 4 3 00 15

op1

1 1 1 0 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 size o3 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

Decode fields
Instruction page Feature

o1 opc2 size o3

- - 00 - Unallocated. -

0 000 01 0 Unallocated. -

0 000 01 1 VABS - Half-precision scalar variant FEAT_FP16

0 000 10 0 VMOV (register) - Single-precision scalar variant -

0 000 10 1 VABS - Single-precision scalar variant -

0 000 11 0 VMOV (register) - Double-precision scalar variant -

0 000 11 1 VABS - Double-precision scalar variant -

0 001 01 0 VNEG - Half-precision scalar variant FEAT_FP16

0 001 01 1 VSQRT - Half-precision scalar variant FEAT_FP16

0 001 10 0 VNEG - Single-precision scalar variant -

0 001 10 1 VSQRT - Single-precision scalar variant -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9752
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
0 001 11 0 VNEG - Double-precision scalar variant -

0 001 11 1 VSQRT - Double-precision scalar variant -

0 010 01 - Unallocated. -

0 010 10 0 VCVTB - Half-precision to single-precision variant -

0 010 10 1 VCVTT - Half-precision to single-precision variant -

0 010 11 0 VCVTB - Half-precision to double-precision variant -

0 010 11 1 VCVTT - Half-precision to double-precision variant -

0 011 01 0 VCVTB (BFloat16) FEAT_AA32BF16

0 011 01 1 VCVTT (BFloat16) FEAT_AA32BF16

0 011 10 0 VCVTB - Single-precision to half-precision variant -

0 011 10 1 VCVTT - Single-precision to half-precision variant -

0 011 11 0 VCVTB - Double-precision to half-precision variant -

0 011 11 1 VCVTT - Double-precision to half-precision variant -

0 100 01 0 VCMP FEAT_FP16

0 100 01 1 VCMPE FEAT_FP16

0 100 10 0 VCMP -

0 100 10 1 VCMPE -

0 100 11 0 VCMP -

0 100 11 1 VCMPE -

0 101 01 0 VCMP FEAT_FP16

0 101 01 1 VCMPE FEAT_FP16

0 101 10 0 VCMP -

0 101 10 1 VCMPE -

0 101 11 0 VCMP -

0 101 11 1 VCMPE -

0 110 01 0 VRINTR - Half-precision scalar variant FEAT_FP16

0 110 01 1 VRINTZ (floating-point) - Half-precision scalar variant FEAT_FP16

0 110 10 0 VRINTR - Single-precision scalar variant -

0 110 10 1 VRINTZ (floating-point) - Single-precision scalar variant -

0 110 11 0 VRINTR - Double-precision scalar variant -

0 110 11 1 VRINTZ (floating-point) - Double-precision scalar variant -

0 111 01 0 VRINTX (floating-point) - Half-precision scalar variant FEAT_FP16

Decode fields
Instruction page Feature

o1 opc2 size o3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9753
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
0 111 01 1 Unallocated. -

0 111 10 0 VRINTX (floating-point) - Single-precision scalar variant -

0 111 10 1 VCVT (between double-precision and single-precision) - Single-precision to
double-precision variant

-

0 111 11 0 VRINTX (floating-point) - Double-precision scalar variant -

0 111 11 1 VCVT (between double-precision and single-precision) - Double-precision to
single-precision variant

-

1 000 01 - VCVT (integer to floating-point, floating-point) - Half-precision scalar variant FEAT_FP16

1 000 10 - VCVT (integer to floating-point, floating-point) - Single-precision scalar variant -

1 000 11 - VCVT (integer to floating-point, floating-point) - Double-precision scalar
variant

-

1 001 01 - Unallocated. -

1 001 10 - Unallocated. -

1 001 11 0 Unallocated. -

1 001 11 1 VJCVT FEAT_JSCVT

1 01x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

1 01x 10 - VCVT (between floating-point and fixed-point, floating-point) -

1 01x 11 - VCVT (between floating-point and fixed-point, floating-point) -

1 100 01 0 VCVTR FEAT_FP16

1 100 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

1 100 10 0 VCVTR -

1 100 10 1 VCVT (floating-point to integer, floating-point) -

1 100 11 0 VCVTR -

1 100 11 1 VCVT (floating-point to integer, floating-point) -

1 101 01 0 VCVTR FEAT_FP16

1 101 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

1 101 10 0 VCVTR -

1 101 10 1 VCVT (floating-point to integer, floating-point) -

1 101 11 0 VCVTR -

1 101 11 1 VCVT (floating-point to integer, floating-point) -

1 11x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

1 11x 10 - VCVT (between floating-point and fixed-point, floating-point) -

1 11x 11 - VCVT (between floating-point and fixed-point, floating-point) -

Decode fields
Instruction page Feature

o1 opc2 size o3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9754
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.13.2 Floating-point move immediate

This section describes the encoding of the Floating-point move immediate instruction class. The encodings in this
section are decoded from Floating-point data-processing.

F3.1.13.3 Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing.

Decode fields
Instruction page Feature

size

00 Unallocated. -

01 VMOV (immediate) - Half-precision scalar variant FEAT_FP16

10 VMOV (immediate) - Single-precision scalar variant -

11 VMOV (immediate) - Double-precision scalar variant -

Decode fields
Instruction page Feature

o0:o1 size o2

!= 111 00 - Unallocated. -

000 01 0 VMLA (floating-point) - Half-precision scalar variant FEAT_FP16

000 01 1 VMLS (floating-point) - Half-precision scalar variant FEAT_FP16

000 10 0 VMLA (floating-point) - Single-precision scalar variant -

000 10 1 VMLS (floating-point) - Single-precision scalar variant -

000 11 0 VMLA (floating-point) - Double-precision scalar variant -

000 11 1 VMLS (floating-point) - Double-precision scalar variant -

001 01 0 VNMLS - Half-precision scalar variant FEAT_FP16

001 01 1 VNMLA - Half-precision scalar variant FEAT_FP16

001 10 0 VNMLS - Single-precision scalar variant -

001 10 1 VNMLA - Single-precision scalar variant -

001 11 0 VNMLS - Double-precision scalar variant -

001 11 1 VNMLA - Double-precision scalar variant -

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 0 o0 D o1 Vn Vd 1 0 size N o2 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9755
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.14 Additional Advanced SIMD and floating-point instructions

This section describes the encoding of the Additional Advanced SIMD and floating-point instructions group. The
encodings in this section are decoded from System register access, Advanced SIMD, and floating-point.

010 01 0 VMUL (floating-point) - Half-precision scalar variant FEAT_FP16

010 01 1 VNMUL - Half-precision scalar variant FEAT_FP16

010 10 0 VMUL (floating-point) - Single-precision scalar variant -

010 10 1 VNMUL - Single-precision scalar variant -

010 11 0 VMUL (floating-point) - Double-precision scalar variant -

010 11 1 VNMUL - Double-precision scalar variant -

011 01 0 VADD (floating-point) - Half-precision scalar variant FEAT_FP16

011 01 1 VSUB (floating-point) - Half-precision scalar variant FEAT_FP16

011 10 0 VADD (floating-point) - Single-precision scalar variant -

011 10 1 VSUB (floating-point) - Single-precision scalar variant -

011 11 0 VADD (floating-point) - Double-precision scalar variant -

011 11 1 VSUB (floating-point) - Double-precision scalar variant -

100 01 0 VDIV - Half-precision scalar variant FEAT_FP16

100 10 0 VDIV - Single-precision scalar variant -

100 11 0 VDIV - Double-precision scalar variant -

101 01 0 VFNMS - Half-precision scalar variant FEAT_FP16

101 01 1 VFNMA - Half-precision scalar variant FEAT_FP16

101 10 0 VFNMS - Single-precision scalar variant -

101 10 1 VFNMA - Single-precision scalar variant -

101 11 0 VFNMS - Double-precision scalar variant -

101 11 1 VFNMA - Double-precision scalar variant -

110 01 0 VFMA - Half-precision scalar variant FEAT_FP16

110 01 1 VFMS - Half-precision scalar variant FEAT_FP16

110 10 0 VFMA - Single-precision scalar variant -

110 10 1 VFMS - Single-precision scalar variant -

110 11 0 VFMA - Double-precision scalar variant -

110 11 1 VFMS - Double-precision scalar variant -

Decode fields
Instruction page Feature

o0:o1 size o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9756
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
This decode also imposes the constraint:

• op0<2:1> != 11.

F3.1.14.1 Advanced SIMD three registers of the same length extension

This section describes the encoding of the Advanced SIMD three registers of the same length extension instruction
class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions.

111111 op0 op1 1 op3

15 10 9 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0

op5

op4

op2

Table F3-15 Encoding table for the Additional Advanced SIMD and floating-point instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0xx - - 0x - - Advanced SIMD three registers of the same length extension

 100 - 0 != 00 0 0 Floating-point conditional select

 101 00xxxx 0 != 00 - 0 Floating-point minNum/maxNum

 101 110000 0 != 00 1 0 Floating-point extraction and insertion

 101 111xxx 0 != 00 1 0 Floating-point directed convert to integer

 10x - 0 00 - - Advanced SIMD and floating-point multiply with accumulate

 10x - 1 0x - - Advanced SIMD and floating-point dot product

1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 0 N Q M U Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op4

op3

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

x1 0x 0 0 0 0 VCADD - 64-bit SIMD vector variant FEAT_FCMA

x1 0x 0 0 0 1 Unallocated. -

x1 0x 0 0 1 0 VCADD - 128-bit SIMD vector variant FEAT_FCMA

x1 0x 0 0 1 1 Unallocated. -

00 0x 0 0 - - Unallocated. -

00 0x 0 1 - - Unallocated. -

00 00 1 0 0 0 Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9757
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
00 00 1 0 0 1 Unallocated. -

00 00 1 0 1 0 VMMLA FEAT_AA32BF16

00 00 1 0 1 1 Unallocated. -

00 00 1 1 0 0 VDOT (vector) - 64-bit SIMD vector variant FEAT_AA32BF16

00 00 1 1 0 1 Unallocated. -

00 00 1 1 1 0 VDOT (vector) - 128-bit SIMD vector variant FEAT_AA32BF16

00 00 1 1 1 1 Unallocated. -

00 01 1 0 - - Unallocated. -

00 01 1 1 - - Unallocated. -

00 10 0 0 - 1 VFMAL (vector) FEAT_FHM

00 10 0 1 - - Unallocated. -

00 10 1 0 0 - Unallocated. -

00 10 1 0 1 0 VSMMLA FEAT_AA32I8MM

00 10 1 0 1 1 VUMMLA FEAT_AA32I8MM

00 10 1 1 0 0 VSDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

00 10 1 1 0 1 VUDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

00 10 1 1 1 0 VSDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

00 10 1 1 1 1 VUDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

00 11 0 0 - 1 VFMAB, VFMAT (BFloat16, vector) FEAT_AA32BF16

00 11 0 1 - - Unallocated. -

00 11 1 0 - - Unallocated. -

00 11 1 1 - - Unallocated. -

01 10 0 0 - 1 VFMSL (vector) FEAT_FHM

01 10 0 1 - - Unallocated. -

01 10 1 0 0 - Unallocated. -

01 10 1 0 1 0 VUSMMLA FEAT_AA32I8MM

01 10 1 0 1 1 Unallocated. -

01 10 1 1 0 0 VUSDOT (vector) - 64-bit SIMD vector variant FEAT_AA32I8MM

01 10 1 1 - 1 Unallocated. -

01 10 1 1 1 0 VUSDOT (vector) - 128-bit SIMD vector variant FEAT_AA32I8MM

01 11 0 1 - - Unallocated. -

01 11 1 0 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9758
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.14.2 Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Additional Advanced SIMD and floating-point instructions.

F3.1.14.3 Floating-point minNum/maxNum

This section describes the encoding of the Floating-point minNum/maxNum instruction class. The encodings in this
section are decoded from Additional Advanced SIMD and floating-point instructions.

01 11 1 1 - - Unallocated. -

- 1x 0 0 - 0 VCMLA FEAT_FCMA

10 11 0 1 - - Unallocated. -

10 11 1 0 - - Unallocated. -

10 11 1 1 - - Unallocated. -

11 11 0 1 - - Unallocated. -

11 11 1 0 - - Unallocated. -

11 11 1 1 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size

Decode fields
Instruction page Feature

size

01 VSELEQ, VSELGE, VSELGT, VSELVS - Greater than, half-precision scalar variant FEAT_FP16

10 VSELEQ, VSELGE, VSELGT, VSELVS - Greater than, single-precision scalar variant -

11 VSELEQ, VSELGE, VSELGT, VSELVS - Greater than, double-precision scalar variant -

Decode fields
Instruction page Feature

size op

01 0 VMAXNM - Half-precision scalar variant FEAT_FP16

01 1 VMINNM - Half-precision scalar variant FEAT_FP16

10 0 VMAXNM - Single-precision scalar variant -

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N op M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9759
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.14.4 Floating-point extraction and insertion

This section describes the encoding of the Floating-point extraction and insertion instruction class. The encodings
in this section are decoded from Additional Advanced SIMD and floating-point instructions.

F3.1.14.5 Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. The encodings
in this section are decoded from Additional Advanced SIMD and floating-point instructions.

10 1 VMINNM - Single-precision scalar variant -

11 0 VMAXNM - Double-precision scalar variant -

11 1 VMINNM - Double-precision scalar variant -

Decode fields
Instruction page Feature

size op

01 - Unallocated. -

10 0 VMOVX FEAT_FP16

10 1 VINS FEAT_FP16

11 - Unallocated. -

Decode fields
Instruction page Feature

o1 RM size op

0 - != 00 1 Unallocated. -

0 00 01 0 VRINTA (floating-point) - Half-precision scalar variant FEAT_FP16

0 00 10 0 VRINTA (floating-point) - Single-precision scalar variant -

0 00 11 0 VRINTA (floating-point) - Double-precision scalar variant -

0 01 01 0 VRINTN (floating-point) - Half-precision scalar variant FEAT_FP16

0 01 10 0 VRINTN (floating-point) - Single-precision scalar variant -

0 01 11 0 VRINTN (floating-point) - Double-precision scalar variant -

Decode fields
Instruction page Feature

size op

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 !=00 op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 0 1 D 1 1 1 o1 RM Vd 1 0 !=00 op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9760
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.14.6 Advanced SIMD and floating-point multiply with accumulate

This section describes the encoding of the Advanced SIMD and floating-point multiply with accumulate instruction
class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions.

0 10 01 0 VRINTP (floating-point) - Half-precision scalar variant FEAT_FP16

0 10 10 0 VRINTP (floating-point) - Single-precision scalar variant -

0 10 11 0 VRINTP (floating-point) - Double-precision scalar variant -

0 11 01 0 VRINTM (floating-point) - Half-precision scalar variant FEAT_FP16

0 11 10 0 VRINTM (floating-point) - Single-precision scalar variant -

0 11 11 0 VRINTM (floating-point) - Double-precision scalar variant -

1 00 01 - VCVTA (floating-point) - Half-precision scalar variant FEAT_FP16

1 00 10 - VCVTA (floating-point) - Single-precision scalar variant -

1 00 11 - VCVTA (floating-point) - Double-precision scalar variant -

1 01 01 - VCVTN (floating-point) - Half-precision scalar variant FEAT_FP16

1 01 10 - VCVTN (floating-point) - Single-precision scalar variant -

1 01 11 - VCVTN (floating-point) - Double-precision scalar variant -

1 10 01 - VCVTP (floating-point) - Half-precision scalar variant FEAT_FP16

1 10 10 - VCVTP (floating-point) - Single-precision scalar variant -

1 10 11 - VCVTP (floating-point) - Double-precision scalar variant -

1 11 01 - VCVTM (floating-point) - Half-precision scalar variant FEAT_FP16

1 11 10 - VCVTM (floating-point) - Single-precision scalar variant -

1 11 11 - VCVTM (floating-point) - Double-precision scalar variant -

Decode fields
Instruction page Feature

o1 RM size op

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 0 0 0 N Q M U Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op1

Decode fields
Instruction page Feature

op1 op2 Q U

0 - - 0 VCMLA (by element) - 128-bit SIMD vector of half-precision floating-point variant FEAT_FCMA

0 00 - 1 VFMAL (by scalar) FEAT_FHM

0 01 - 1 VFMSL (by scalar) FEAT_FHM

0 10 - 1 Unallocated. -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9761
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.14.7 Advanced SIMD and floating-point dot product

This section describes the encoding of the Advanced SIMD and floating-point dot product instruction class. The
encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions.

0 11 - 1 VFMAB, VFMAT (BFloat16, by scalar) FEAT_AA32BF1
6

1 - 0 0 VCMLA (by element) - 64-bit SIMD vector of single-precision floating-point variant FEAT_FCMA

1 - - 1 Unallocated. -

1 - 1 0 VCMLA (by element) - 128-bit SIMD vector of single-precision floating-point
variant

FEAT_FCMA

Decode fields
Instruction page Feature

op1 op2 Q U

Decode fields
Instruction page Feature

op1 op2 op4 Q U

0 00 0 - - Unallocated. -

0 00 1 0 0 VDOT (by element) - 64-bit SIMD vector variant FEAT_AA32BF16

0 00 1 - 1 Unallocated. -

0 00 1 1 0 VDOT (by element) - 128-bit SIMD vector variant FEAT_AA32BF16

0 01 0 - - Unallocated. -

0 10 0 - - Unallocated. -

0 10 1 0 0 VSDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

0 10 1 0 1 VUDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

0 10 1 1 0 VSDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

0 10 1 1 1 VUDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

0 11 - - - Unallocated. -

1 - 0 - - Unallocated. -

1 00 1 0 0 VUSDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

1 00 1 0 1 VSUDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

1 00 1 1 0 VUSDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 1 0 N Q M U Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op1 op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9762
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.15 Load/store dual, load/store exclusive, load-acquire/store-release, and table branch

This section describes the encoding of the Load/store dual, load/store exclusive, load-acquire/store-release, and
table branch group. The encodings in this section are decoded from 32-bit.

This decode also imposes the constraint:

• op0<1> == 1.

F3.1.15.1 Load/store exclusive

This section describes the encoding of the Load/store exclusive instruction class. The encodings in this section are
decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

1 00 1 1 1 VSUDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

1 01 1 - - Unallocated. -

1 1x 1 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op4 Q U

Table F3-16 Encoding table for the Load/store dual, load/store exclusive,
load-acquire/store-release, and table branch group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0010 - - - Load/store exclusive

 0110 0 - 000 Unallocated.

 0110 1 - 000 TBB, TBH

 0110 - - 01x Load/store exclusive byte/half/dual

 0110 - - 1xx Load-acquire / Store-release

 0x11 - != 1111 - Load/store dual (immediate, post-indexed)

 1x10 - != 1111 - Load/store dual (immediate)

 1x11 - != 1111 - Load/store dual (immediate, pre-indexed)

 != 0xx0 - 1111 - LDRD (literal)

1110100 op0 op2 op3

15 9 8 5 4 3 0 15 8 7 5 4 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9763
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.15.2 Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual instruction class. The encodings in
this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

F3.1.15.3 Load-acquire / Store-release

This section describes the encoding of the Load-acquire / Store-release instruction class. The encodings in this
section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

Decode fields
Instruction page

L

0 STREX

1 LDREX

Decode fields
Instruction page

L sz

0 00 STREXB

0 01 STREXH

0 10 Unallocated.

0 11 STREXD

1 00 LDREXB

1 01 LDREXH

1 10 Unallocated.

1 11 LDREXD

1 1 1 0 1 0 0 0 0 1 0 L Rn Rt Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 0 1 sz Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9764
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.15.4 Load/store dual (immediate, post-indexed)

This section describes the encoding of the Load/store dual (immediate, post-indexed) instruction class. The
encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and
table branch.

Decode fields
Instruction page

L op sz

0 0 00 STLB

0 0 01 STLH

0 0 10 STL

0 0 11 Unallocated.

0 1 00 STLEXB

0 1 01 STLEXH

0 1 10 STLEX

0 1 11 STLEXD

1 0 00 LDAB

1 0 01 LDAH

1 0 10 LDA

1 0 11 Unallocated.

1 1 00 LDAEXB

1 1 01 LDAEXH

1 1 10 LDAEX

1 1 11 LDAEXD

Decode fields
Instruction page

L

0 STRD (immediate)

1 LDRD (immediate)

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 1 op sz Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 0 0 0 U 1 1 L !=1111 Rt Rt2 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9765
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.15.5 Load/store dual (immediate)

This section describes the encoding of the Load/store dual (immediate) instruction class. The encodings in this
section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

F3.1.15.6 Load/store dual (immediate, pre-indexed)

This section describes the encoding of the Load/store dual (immediate, pre-indexed) instruction class. The
encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and
table branch.

F3.1.16 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control group. The encodings in this section
are decoded from 32-bit.

Decode fields
Instruction page

L

0 STRD (immediate)

1 LDRD (immediate)

Decode fields
Instruction page

L

0 STRD (immediate)

1 LDRD (immediate)

1 1 1 0 1 0 0 1 U 1 0 L !=1111 Rt Rt2 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn

1 1 1 0 1 0 0 1 U 1 1 L !=1111 Rt Rt2 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9766
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.16.1 Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from
Branches and miscellaneous control.

Table F3-17 Encoding table for the Branches and miscellaneous control group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0 1110 0x 0x0 - 0 MSR (register)

 0 1110 0x 0x0 - 1 MSR (Banked register)

 0 1110 10 0x0 000 - Hints

 0 1110 10 0x0 != 000 - Change processor state

 0 1110 11 0x0 - - Miscellaneous system

 0 1111 00 0x0 - - BXJ

 0 1111 01 0x0 - - Exception return

 0 1111 1x 0x0 - 0 MRS

 0 1111 1x 0x0 - 1 MRS (Banked register)

 1 1110 00 000 - - DCPS

 1 1110 00 010 - - Unallocated.

 1 1110 01 0x0 - - Unallocated.

 1 1110 1x 0x0 - - Unallocated.

 1 1111 0x 0x0 - - Unallocated.

 1 1111 1x 0x0 - - Exception generation

 - != 111x - 0x0 - - B - T3 variant

 - - - 0x1 - - B - T4 variant

 - - - 1x0 - - BL, BLX (immediate) - T2 variant

 - - - 1x1 - - BL, BLX (immediate) - T1 variant

11110 op1 op2 1 op3 op4

15 11 10 9 6 5 4 3 0 15 14 12 11 10 8 7 6 5 4 0

op0 op5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9767
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.16.2 Change processor state

This section describes the encoding of the Change processor state instruction class. The encodings in this section
are decoded from Branches and miscellaneous control.

Decode fields
Instruction page Feature

hint option

0000 0000 NOP -

0000 0001 YIELD -

0000 0010 WFE -

0000 0011 WFI -

0000 0100 SEV -

0000 0101 SEVL -

0000 011x Reserved hint, behaves as NOP. -

0000 1xxx Reserved hint, behaves as NOP. -

0001 0000 ESB FEAT_RAS

0001 0001 Reserved hint, behaves as NOP. -

0001 0010 TSB FEAT_TRF

0001 0011 Reserved hint, behaves as NOP. -

0001 0100 CSDB -

0001 0101 Reserved hint, behaves as NOP. -

0001 0110 CLRBHB FEAT_CLRBHB

0001 0111 Reserved hint, behaves as NOP. -

0001 1xxx Reserved hint, behaves as NOP. -

001x - Reserved hint, behaves as NOP. -

01xx - Reserved hint, behaves as NOP. -

10xx - Reserved hint, behaves as NOP. -

110x - Reserved hint, behaves as NOP. -

1110 - Reserved hint, behaves as NOP. -

1111 - DBG -

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 hint option

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9768
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.16.3 Miscellaneous system

This section describes the encoding of the Miscellaneous system instruction class. The encodings in this section are
decoded from Branches and miscellaneous control.

F3.1.16.4 Exception return

This section describes the encoding of the Exception return instruction class. The encodings in this section are
decoded from Branches and miscellaneous control.

Decode fields
Instruction page

imod M

00 1 CPS, CPSID, CPSIE - Change mode variant

01 - Unallocated.

10 - CPS, CPSID, CPSIE - Interrupt enable and change mode variant

11 - CPS, CPSID, CPSIE - Interrupt disable and change mode variant

Decode fields
Instruction page Feature

opc option

000x - Unallocated. -

0010 - CLREX -

0011 - Unallocated. -

0100 != 0x00 DSB -

0100 0000 SSBB -

0100 0100 PSSBB -

0101 - DMB -

0110 - ISB -

0111 - SB FEAT_SB

1xxx - Unallocated. -

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) opc option

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9769
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.16.5 DCPS

This section describes the encoding of the DCPS instruction class. The encodings in this section are decoded from
Branches and miscellaneous control.

F3.1.16.6 Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Branches and miscellaneous control.

Decode fields
Instruction page

Rn:imm8

!= 111000000000 SUB, SUBS (immediate)

111000000000 ERET

Decode fields
Instruction page

imm4 imm10 opt

!= 1111 - - Unallocated.

1111 != 0000000000 - Unallocated.

1111 0000000000 00 Unallocated.

1111 0000000000 01 DCPS1

1111 0000000000 10 DCPS2

1111 0000000000 11 DCPS3

1 1 1 1 0 0 1 1 1 1 0 1 Rn 1 0 (0) 0 (1) (1) (1) (1) imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

1 1 1 1 0 1 1 1 1 0 0 0 imm4 1 0 0 0 imm10 opt

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9770
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.17 Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate) group. The encodings in this
section are decoded from 32-bit.

F3.1.17.1 Data-processing (simple immediate)

This section describes the encoding of the Data-processing (simple immediate) instruction class. The encodings in
this section are decoded from Data-processing (plain binary immediate).

Decode fields
Instruction page

o1 o2

0 0 HVC

0 1 Unallocated.

1 0 SMC

1 1 UDF

1 1 1 1 0 1 1 1 1 1 1 o1 imm4 1 0 o2 0 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Table F3-18 Encoding table for the Data-processing (plain binary immediate) group

Decode fields
Decode group or instruction page

op0 op1

 0 0x Data-processing (simple immediate)

 0 10 Move Wide (16-bit immediate)

 0 11 Unallocated.

 1 - Saturate, Bitfield

11110 1 op1 0 0

15 11 10 9 8 7 6 5 4 3 0 15 14 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9771
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.17.2 Move Wide (16-bit immediate)

This section describes the encoding of the Move Wide (16-bit immediate) instruction class. The encodings in this
section are decoded from Data-processing (plain binary immediate).

F3.1.17.3 Saturate, Bitfield

This section describes the encoding of the Saturate, Bitfield instruction class. The encodings in this section are
decoded from Data-processing (plain binary immediate).

Decode fields
Instruction page

o1 o2 Rn

0 0 != 11x1 ADD, ADDS (immediate)

0 0 1101 ADD, ADDS (SP plus immediate)

0 0 1111 ADR - T3

0 1 - Unallocated.

1 0 - Unallocated.

1 1 != 11x1 SUB, SUBS (immediate)

1 1 1101 SUB, SUBS (SP minus immediate)

1 1 1111 ADR - T2

Decode fields
Instruction page

o1

0 MOV, MOVS (immediate)

1 MOVT

1 1 1 1 0 i 1 0 o1 0 o2 0 Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 o1 1 0 0 imm4 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9772
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.18 Advanced SIMD element or structure load/store

This section describes the encoding of the Advanced SIMD element or structure load/store group. The encodings in
this section are decoded from 32-bit.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding

F3.1.18.1 Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store.

Decode fields
Instruction page

op1 Rn imm3:imm2

000 - - SSAT - Logical shift left variant

001 - != 00000 SSAT - Arithmetic shift right variant

001 - 00000 SSAT16

010 - - SBFX

011 != 1111 - BFI

011 1111 - BFC

100 - - USAT - Logical shift left variant

101 - != 00000 USAT - Arithmetic shift right variant

101 - 00000 USAT16

110 - - UBFX

111 - - Unallocated.

1 1 1 1 0 (0) 1 1 op1 0 Rn 0 imm3 Rd imm2 (0) widthm1

15 14 13 12 11 10 9 8 7 5 4 3 0 15 14 12 11 8 7 6 5 4 0

Table F3-19 Encoding table for the Advanced SIMD element or structure load/store group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD load/store multiple structures

 1 11 Advanced SIMD load single structure to all lanes

 1 != 11 Advanced SIMD load/store single structure to one lane

11111001 0 op1

15 8 7 6 5 4 3 12 11 10 9 00 15

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9773
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Decode fields
Instruction page

L itype Rm

0 000x != 11x1 VST4 (multiple 4-element structures)

0 000x 1101 VST4 (multiple 4-element structures)

0 000x 1111 VST4 (multiple 4-element structures)

0 0010 != 11x1 VST1 (multiple single elements)

0 0010 1101 VST1 (multiple single elements)

0 0010 1111 VST1 (multiple single elements)

0 0011 != 11x1 VST2 (multiple 2-element structures)

0 0011 1101 VST2 (multiple 2-element structures)

0 0011 1111 VST2 (multiple 2-element structures)

0 010x != 11x1 VST3 (multiple 3-element structures)

0 010x 1101 VST3 (multiple 3-element structures)

0 010x 1111 VST3 (multiple 3-element structures)

0 0110 != 11x1 VST1 (multiple single elements)

0 0110 1101 VST1 (multiple single elements)

0 0110 1111 VST1 (multiple single elements)

0 0111 != 11x1 VST1 (multiple single elements)

0 0111 1101 VST1 (multiple single elements)

0 0111 1111 VST1 (multiple single elements)

0 100x != 11x1 VST2 (multiple 2-element structures)

0 100x 1101 VST2 (multiple 2-element structures)

0 100x 1111 VST2 (multiple 2-element structures)

0 1010 != 11x1 VST1 (multiple single elements)

0 1010 1101 VST1 (multiple single elements)

0 1010 1111 VST1 (multiple single elements)

1 000x != 11x1 VLD4 (multiple 4-element structures)

1 000x 1101 VLD4 (multiple 4-element structures)

1 000x 1111 VLD4 (multiple 4-element structures)

1 0010 != 11x1 VLD1 (multiple single elements)

1 1 1 1 1 0 0 1 0 D L 0 Rn Vd itype size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9774
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.18.2 Advanced SIMD load single structure to all lanes

This section describes the encoding of the Advanced SIMD load single structure to all lanes instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store.

1 0010 1101 VLD1 (multiple single elements)

1 0010 1111 VLD1 (multiple single elements)

1 0011 != 11x1 VLD2 (multiple 2-element structures)

1 0011 1101 VLD2 (multiple 2-element structures)

1 0011 1111 VLD2 (multiple 2-element structures)

1 010x != 11x1 VLD3 (multiple 3-element structures)

1 010x 1101 VLD3 (multiple 3-element structures)

1 010x 1111 VLD3 (multiple 3-element structures)

- 1011 - Unallocated.

1 0110 != 11x1 VLD1 (multiple single elements)

1 0110 1101 VLD1 (multiple single elements)

1 0110 1111 VLD1 (multiple single elements)

1 0111 != 11x1 VLD1 (multiple single elements)

1 0111 1101 VLD1 (multiple single elements)

1 0111 1111 VLD1 (multiple single elements)

- 11xx - Unallocated.

1 100x != 11x1 VLD2 (multiple 2-element structures)

1 100x 1101 VLD2 (multiple 2-element structures)

1 100x 1111 VLD2 (multiple 2-element structures)

1 1010 != 11x1 VLD1 (multiple single elements)

1 1010 1101 VLD1 (multiple single elements)

1 1010 1111 VLD1 (multiple single elements)

Decode fields
Instruction page

L itype Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9775
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.18.3 Advanced SIMD load/store single structure to one lane

This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class.
The encodings in this section are decoded from Advanced SIMD element or structure load/store.

Decode fields
Instruction page

L N a Rm

0 - - - Unallocated.

1 00 - != 11x1 VLD1 (single element to all lanes)

1 00 - 1101 VLD1 (single element to all lanes)

1 00 - 1111 VLD1 (single element to all lanes)

1 01 - != 11x1 VLD2 (single 2-element structure to all lanes)

1 01 - 1101 VLD2 (single 2-element structure to all lanes)

1 01 - 1111 VLD2 (single 2-element structure to all lanes)

1 10 0 != 11x1 VLD3 (single 3-element structure to all lanes)

1 10 0 1101 VLD3 (single 3-element structure to all lanes)

1 10 0 1111 VLD3 (single 3-element structure to all lanes)

1 10 1 - Unallocated.

1 11 - != 11x1 VLD4 (single 4-element structure to all lanes)

1 11 - 1101 VLD4 (single 4-element structure to all lanes)

1 11 - 1111 VLD4 (single 4-element structure to all lanes)

Decode fields
Instruction page

L size N Rm

0 00 00 != 11x1 VST1 (single element from one lane)

0 00 00 1101 VST1 (single element from one lane)

0 00 00 1111 VST1 (single element from one lane)

0 00 01 != 11x1 VST2 (single 2-element structure from one lane)

0 00 01 1101 VST2 (single 2-element structure from one lane)

1 1 1 1 1 0 0 1 1 D L 0 Rn Vd 1 1 N size T a Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 1 D L 0 Rn Vd !=11 N index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9776
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
0 00 01 1111 VST2 (single 2-element structure from one lane)

0 00 10 != 11x1 VST3 (single 3-element structure from one lane)

0 00 10 1101 VST3 (single 3-element structure from one lane)

0 00 10 1111 VST3 (single 3-element structure from one lane)

0 00 11 != 11x1 VST4 (single 4-element structure from one lane)

0 00 11 1101 VST4 (single 4-element structure from one lane)

0 00 11 1111 VST4 (single 4-element structure from one lane)

0 01 00 != 11x1 VST1 (single element from one lane)

0 01 00 1101 VST1 (single element from one lane)

0 01 00 1111 VST1 (single element from one lane)

0 01 01 != 11x1 VST2 (single 2-element structure from one lane)

0 01 01 1101 VST2 (single 2-element structure from one lane)

0 01 01 1111 VST2 (single 2-element structure from one lane)

0 01 10 != 11x1 VST3 (single 3-element structure from one lane)

0 01 10 1101 VST3 (single 3-element structure from one lane)

0 01 10 1111 VST3 (single 3-element structure from one lane)

0 01 11 != 11x1 VST4 (single 4-element structure from one lane)

0 01 11 1101 VST4 (single 4-element structure from one lane)

0 01 11 1111 VST4 (single 4-element structure from one lane)

0 10 00 != 11x1 VST1 (single element from one lane)

0 10 00 1101 VST1 (single element from one lane)

0 10 00 1111 VST1 (single element from one lane)

0 10 01 != 11x1 VST2 (single 2-element structure from one lane)

0 10 01 1101 VST2 (single 2-element structure from one lane)

0 10 01 1111 VST2 (single 2-element structure from one lane)

0 10 10 != 11x1 VST3 (single 3-element structure from one lane)

0 10 10 1101 VST3 (single 3-element structure from one lane)

0 10 10 1111 VST3 (single 3-element structure from one lane)

0 10 11 != 11x1 VST4 (single 4-element structure from one lane)

0 10 11 1101 VST4 (single 4-element structure from one lane)

0 10 11 1111 VST4 (single 4-element structure from one lane)

1 00 00 != 11x1 VLD1 (single element to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9777
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
1 00 00 1101 VLD1 (single element to one lane)

1 00 00 1111 VLD1 (single element to one lane)

1 00 01 != 11x1 VLD2 (single 2-element structure to one lane)

1 00 01 1101 VLD2 (single 2-element structure to one lane)

1 00 01 1111 VLD2 (single 2-element structure to one lane)

1 00 10 != 11x1 VLD3 (single 3-element structure to one lane)

1 00 10 1101 VLD3 (single 3-element structure to one lane)

1 00 10 1111 VLD3 (single 3-element structure to one lane)

1 00 11 != 11x1 VLD4 (single 4-element structure to one lane)

1 00 11 1101 VLD4 (single 4-element structure to one lane)

1 00 11 1111 VLD4 (single 4-element structure to one lane)

1 01 00 != 11x1 VLD1 (single element to one lane)

1 01 00 1101 VLD1 (single element to one lane)

1 01 00 1111 VLD1 (single element to one lane)

1 01 01 != 11x1 VLD2 (single 2-element structure to one lane)

1 01 01 1101 VLD2 (single 2-element structure to one lane)

1 01 01 1111 VLD2 (single 2-element structure to one lane)

1 01 10 != 11x1 VLD3 (single 3-element structure to one lane)

1 01 10 1101 VLD3 (single 3-element structure to one lane)

1 01 10 1111 VLD3 (single 3-element structure to one lane)

1 01 11 != 11x1 VLD4 (single 4-element structure to one lane)

1 01 11 1101 VLD4 (single 4-element structure to one lane)

1 01 11 1111 VLD4 (single 4-element structure to one lane)

1 10 00 != 11x1 VLD1 (single element to one lane)

1 10 00 1101 VLD1 (single element to one lane)

1 10 00 1111 VLD1 (single element to one lane)

1 10 01 != 11x1 VLD2 (single 2-element structure to one lane)

1 10 01 1101 VLD2 (single 2-element structure to one lane)

1 10 01 1111 VLD2 (single 2-element structure to one lane)

1 10 10 != 11x1 VLD3 (single 3-element structure to one lane)

1 10 10 1101 VLD3 (single 3-element structure to one lane)

1 10 10 1111 VLD3 (single 3-element structure to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9778
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19 Load/store single

This section describes the encoding of the Load/store single group. The encodings in this section are decoded from
32-bit.

This decode also imposes the constraint:

• op0<1>:op1 != 10.

1 10 11 != 11x1 VLD4 (single 4-element structure to one lane)

1 10 11 1101 VLD4 (single 4-element structure to one lane)

1 10 11 1111 VLD4 (single 4-element structure to one lane)

Decode fields
Instruction page

L size N Rm

Table F3-20 Encoding table for the Load/store single group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 00 - != 1111 000000 Load/store, unsigned (register offset)

 00 - != 1111 000001 Unallocated.

 00 - != 1111 00001x Unallocated.

 00 - != 1111 0001xx Unallocated.

 00 - != 1111 001xxx Unallocated.

 00 - != 1111 01xxxx Unallocated.

 00 - != 1111 10x0xx Unallocated.

 00 - != 1111 10x1xx Load/store, unsigned (immediate, post-indexed)

 00 - != 1111 1100xx Load/store, unsigned (negative immediate)

 00 - != 1111 1110xx Load/store, unsigned (unprivileged)

 00 - != 1111 11x1xx Load/store, unsigned (immediate, pre-indexed)

 01 - != 1111 - Load/store, unsigned (positive immediate)

 0x - 1111 - Load, unsigned (literal)

 10 1 != 1111 000000 Load/store, signed (register offset)

 10 1 != 1111 000001 Unallocated.

 10 1 != 1111 00001x Unallocated.

1111100 op0 op2 op3

15 9 8 7 6 5 4 3 0 15 12 11 6 5 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9779
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.1 Load/store, unsigned (register offset)

This section describes the encoding of the Load/store, unsigned (register offset) instruction class. The encodings in
this section are decoded from Load/store single.

F3.1.19.2 Load/store, unsigned (immediate, post-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, post-indexed) instruction class. The
encodings in this section are decoded from Load/store single.

 10 1 != 1111 0001xx Unallocated.

 10 1 != 1111 001xxx Unallocated.

 10 1 != 1111 01xxxx Unallocated.

 10 1 != 1111 10x0xx Unallocated.

 10 1 != 1111 10x1xx Load/store, signed (immediate, post-indexed)

 10 1 != 1111 1100xx Load/store, signed (negative immediate)

 10 1 != 1111 1110xx Load/store, signed (unprivileged)

 10 1 != 1111 11x1xx Load/store, signed (immediate, pre-indexed)

 11 1 != 1111 - Load/store, signed (positive immediate)

 1x 1 1111 - Load, signed (literal)

Decode fields
Instruction page

size L Rt

00 0 - STRB (register)

00 1 != 1111 LDRB (register)

00 1 1111 PLD, PLDW (register) - Preload read variant

01 0 - STRH (register)

01 1 != 1111 LDRH (register)

01 1 1111 PLD, PLDW (register) - Preload write variant

10 0 - STR (register)

10 1 - LDR (register)

11 - - Unallocated.

Table F3-20 Encoding table for the Load/store single group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9780
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.3 Load/store, unsigned (negative immediate)

This section describes the encoding of the Load/store, unsigned (negative immediate) instruction class. The
encodings in this section are decoded from Load/store single.

F3.1.19.4 Load/store, unsigned (unprivileged)

This section describes the encoding of the Load/store, unsigned (unprivileged) instruction class. The encodings in
this section are decoded from Load/store single.

Decode fields
Instruction page

size L

00 0 STRB (immediate)

00 1 LDRB (immediate)

01 0 STRH (immediate)

01 1 LDRH (immediate)

10 0 STR (immediate)

10 1 LDR (immediate)

11 - Unallocated.

Decode fields
Instruction page

size L Rt

00 0 - STRB (immediate)

00 1 != 1111 LDRB (immediate)

00 1 1111 PLD, PLDW (immediate) - Preload read variant

01 0 - STRH (immediate)

01 1 != 1111 LDRH (immediate)

01 1 1111 PLD, PLDW (immediate) - Preload write variant

10 0 - STR (immediate)

10 1 - LDR (immediate)

11 - - Unallocated.

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 0 U 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 1 0 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9781
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.5 Load/store, unsigned (immediate, pre-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, pre-indexed) instruction class. The
encodings in this section are decoded from Load/store single.

F3.1.19.6 Load/store, unsigned (positive immediate)

This section describes the encoding of the Load/store, unsigned (positive immediate) instruction class. The
encodings in this section are decoded from Load/store single.

Decode fields
Instruction page

size L

00 0 STRBT

00 1 LDRBT

01 0 STRHT

01 1 LDRHT

10 0 STRT

10 1 LDRT

11 - Unallocated.

Decode fields
Instruction page

size L

00 0 STRB (immediate)

00 1 LDRB (immediate)

01 0 STRH (immediate)

01 1 LDRH (immediate)

10 0 STR (immediate)

10 1 LDR (immediate)

11 - Unallocated.

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 0 0 size L !=1111 Rt 1 1 U 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9782
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.7 Load, unsigned (literal)

This section describes the encoding of the Load, unsigned (literal) instruction class. The encodings in this section
are decoded from Load/store single.

F3.1.19.8 Load/store, signed (register offset)

This section describes the encoding of the Load/store, signed (register offset) instruction class. The encodings in
this section are decoded from Load/store single.

Decode fields
Instruction page

size L Rt

00 0 - STRB (immediate)

00 1 != 1111 LDRB (immediate)

00 1 1111 PLD, PLDW (immediate) - Preload read variant

01 0 - STRH (immediate)

01 1 != 1111 LDRH (immediate)

01 1 1111 PLD, PLDW (immediate) - Preload write variant

10 0 - STR (immediate)

10 1 - LDR (immediate)

Decode fields
Instruction page

size L Rt

0x 1 1111 PLD (literal)

00 1 != 1111 LDRB (literal)

01 1 != 1111 LDRH (literal)

10 1 - LDR (literal)

11 - - Unallocated.

1 1 1 1 1 0 0 0 1 size L !=1111 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 U size L 1 1 1 1 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9783
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.9 Load/store, signed (immediate, post-indexed)

This section describes the encoding of the Load/store, signed (immediate, post-indexed) instruction class. The
encodings in this section are decoded from Load/store single.

F3.1.19.10 Load/store, signed (negative immediate)

This section describes the encoding of the Load/store, signed (negative immediate) instruction class. The encodings
in this section are decoded from Load/store single.

Decode fields
Instruction page

size Rt

00 != 1111 LDRSB (register)

00 1111 PLI (register)

01 != 1111 LDRSH (register)

01 1111 Reserved hint, behaves as NOP.

1x - Unallocated.

Decode fields
Instruction page

size

00 LDRSB (immediate)

01 LDRSH (immediate)

1x Unallocated.

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 0 U 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9784
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.11 Load/store, signed (unprivileged)

This section describes the encoding of the Load/store, signed (unprivileged) instruction class. The encodings in this
section are decoded from Load/store single.

F3.1.19.12 Load/store, signed (immediate, pre-indexed)

This section describes the encoding of the Load/store, signed (immediate, pre-indexed) instruction class. The
encodings in this section are decoded from Load/store single.

Decode fields
Instruction page

size Rt

00 != 1111 LDRSB (immediate)

00 1111 PLI (immediate, literal)

01 != 1111 LDRSH (immediate)

01 1111 Reserved hint, behaves as NOP.

1x - Unallocated.

Decode fields
Instruction page

size

00 LDRSBT

01 LDRSHT

1x Unallocated.

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 1 0 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9785
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.19.13 Load/store, signed (positive immediate)

This section describes the encoding of the Load/store, signed (positive immediate) instruction class. The encodings
in this section are decoded from Load/store single.

F3.1.19.14 Load, signed (literal)

This section describes the encoding of the Load, signed (literal) instruction class. The encodings in this section are
decoded from Load/store single.

Decode fields
Instruction page

size

00 LDRSB (immediate)

01 LDRSH (immediate)

1x Unallocated.

Decode fields
Instruction page

size Rt

00 != 1111 LDRSB (immediate)

00 1111 PLI (immediate, literal)

01 != 1111 LDRSH (immediate)

01 1111 Reserved hint, behaves as NOP.

Decode fields
Instruction page

size Rt

00 != 1111 LDRSB (literal)

00 1111 PLI (immediate, literal)

1 1 1 1 1 0 0 1 0 size 1 !=1111 Rt 1 1 U 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 1 1 size 1 !=1111 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 1 U size 1 1 1 1 1 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9786
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.20 Data-processing (register)

This section describes the encoding of the Data-processing (register) group. The encodings in this section are
decoded from 32-bit.

F3.1.20.1 Register extends

This section describes the encoding of the Register extends instruction class. The encodings in this section are
decoded from Data-processing (register).

01 != 1111 LDRSH (literal)

01 1111 Reserved hint, behaves as NOP.

1x - Unallocated.

Decode fields
Instruction page

size Rt

Table F3-21 Encoding table for the Data-processing (register) group

Decode fields
Decode group or instruction page

op0 op1 op2

 0 1111 0000 MOV, MOVS (register-shifted register) - Flag setting variant

 0 1111 0001 Unallocated.

 0 1111 001x Unallocated.

 0 1111 01xx Unallocated.

 0 1111 1xxx Register extends

 1 1111 0xxx Parallel add-subtract

 1 1111 10xx Data-processing (two source registers)

 1 1111 11xx Unallocated.

 - != 1111 - Unallocated.

11111010 op1 op2

15 8 7 6 0 15 12 11 8 7 4 3 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9787
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.20.2 Parallel add-subtract

This section describes the encoding of the Parallel add-subtract instruction class. The encodings in this section are
decoded from Data-processing (register).

Decode fields
Instruction page

op1 U Rn

00 0 != 1111 SXTAH

00 0 1111 SXTH

00 1 != 1111 UXTAH

00 1 1111 UXTH

01 0 != 1111 SXTAB16

01 0 1111 SXTB16

01 1 != 1111 UXTAB16

01 1 1111 UXTB16

10 0 != 1111 SXTAB

10 0 1111 SXTB

10 1 != 1111 UXTAB

10 1 1111 UXTB

11 - - Unallocated.

Decode fields
Instruction page

op1 U H S

000 0 0 0 SADD8

000 0 0 1 QADD8

000 0 1 0 SHADD8

000 0 1 1 Unallocated.

000 1 0 0 UADD8

000 1 0 1 UQADD8

1 1 1 1 1 0 1 0 0 op1 U Rn 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 0 U H S Rm

15 14 13 12 11 10 9 8 7 6 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9788
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
000 1 1 0 UHADD8

000 1 1 1 Unallocated.

001 0 0 0 SADD16

001 0 0 1 QADD16

001 0 1 0 SHADD16

001 0 1 1 Unallocated.

001 1 0 0 UADD16

001 1 0 1 UQADD16

001 1 1 0 UHADD16

001 1 1 1 Unallocated.

010 0 0 0 SASX

010 0 0 1 QASX

010 0 1 0 SHASX

010 0 1 1 Unallocated.

010 1 0 0 UASX

010 1 0 1 UQASX

010 1 1 0 UHASX

010 1 1 1 Unallocated.

100 0 0 0 SSUB8

100 0 0 1 QSUB8

100 0 1 0 SHSUB8

100 0 1 1 Unallocated.

100 1 0 0 USUB8

100 1 0 1 UQSUB8

100 1 1 0 UHSUB8

100 1 1 1 Unallocated.

101 0 0 0 SSUB16

101 0 0 1 QSUB16

101 0 1 0 SHSUB16

101 0 1 1 Unallocated.

101 1 0 0 USUB16

101 1 0 1 UQSUB16

Decode fields
Instruction page

op1 U H S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9789
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
F3.1.20.3 Data-processing (two source registers)

This section describes the encoding of the Data-processing (two source registers) instruction class. The encodings
in this section are decoded from Data-processing (register).

101 1 1 0 UHSUB16

101 1 1 1 Unallocated.

110 0 0 0 SSAX

110 0 0 1 QSAX

110 0 1 0 SHSAX

110 0 1 1 Unallocated.

110 1 0 0 USAX

110 1 0 1 UQSAX

110 1 1 0 UHSAX

110 1 1 1 Unallocated.

111 - - - Unallocated.

Decode fields
Instruction page Feature

op1 op2

000 00 QADD -

000 01 QDADD -

000 10 QSUB -

000 11 QDSUB -

001 00 REV -

001 01 REV16 -

001 10 RBIT -

001 11 REVSH -

010 00 SEL -

010 01 Unallocated. -

010 1x Unallocated. -

011 00 CLZ -

Decode fields
Instruction page

op1 U H S

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 1 0 op2 Rm

15 14 13 12 11 10 9 8 7 6 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9790
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings.

F3.1.21 Multiply, multiply accumulate, and absolute difference

This section describes the encoding of the Multiply, multiply accumulate, and absolute difference group. The
encodings in this section are decoded from 32-bit.

F3.1.21.1 Multiply and absolute difference

This section describes the encoding of the Multiply and absolute difference instruction class. The encodings in this
section are decoded from Multiply, multiply accumulate, and absolute difference.

011 01 Unallocated. -

011 1x Unallocated. -

100 00 CRC32 - CRC32B variant FEAT_CRC32

100 01 CRC32 - CRC32H variant FEAT_CRC32

100 10 CRC32 - CRC32W variant FEAT_CRC32

100 11 CONSTRAINED UNPREDICTABLE -

101 00 CRC32C - CRC32CB variant FEAT_CRC32

101 01 CRC32C - CRC32CH variant FEAT_CRC32

101 10 CRC32C - CRC32CW variant FEAT_CRC32

101 11 CONSTRAINED UNPREDICTABLE -

11x - Unallocated. -

Decode fields
Instruction page Feature

op1 op2

Table F3-22 Encoding table for the Multiply, multiply accumulate, and absolute difference group

Decode fields
Decode group or instruction page

op0

 00 Multiply and absolute difference

 01 Unallocated.

 1x Unallocated.

111110110 op0

15 7 6 8 7 6 5 00 15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9791
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
Decode fields
Instruction page

op1 Ra op2

000 != 1111 00 MLA, MLAS

000 - 01 MLS

000 - 1x Unallocated.

000 1111 00 MUL, MULS

001 != 1111 00 SMLABB, SMLABT, SMLATB, SMLATT - SMLABB variant

001 != 1111 01 SMLABB, SMLABT, SMLATB, SMLATT - SMLABT variant

001 != 1111 10 SMLABB, SMLABT, SMLATB, SMLATT - SMLATB variant

001 != 1111 11 SMLABB, SMLABT, SMLATB, SMLATT - SMLATT variant

001 1111 00 SMULBB, SMULBT, SMULTB, SMULTT - SMULBB variant

001 1111 01 SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant

001 1111 10 SMULBB, SMULBT, SMULTB, SMULTT - SMULTB variant

001 1111 11 SMULBB, SMULBT, SMULTB, SMULTT - SMULTT variant

010 != 1111 00 SMLAD, SMLADX - SMLAD variant

010 != 1111 01 SMLAD, SMLADX - SMLADX variant

010 - 1x Unallocated.

010 1111 00 SMUAD, SMUADX - SMUAD variant

010 1111 01 SMUAD, SMUADX - SMUADX variant

011 != 1111 00 SMLAWB, SMLAWT - SMLAWB variant

011 != 1111 01 SMLAWB, SMLAWT - SMLAWT variant

011 - 1x Unallocated.

011 1111 00 SMULWB, SMULWT - SMULWB variant

011 1111 01 SMULWB, SMULWT - SMULWT variant

100 != 1111 00 SMLSD, SMLSDX - SMLSD variant

100 != 1111 01 SMLSD, SMLSDX - SMLSDX variant

100 - 1x Unallocated.

100 1111 00 SMUSD, SMUSDX - SMUSD variant

100 1111 01 SMUSD, SMUSDX - SMUSDX variant

101 != 1111 00 SMMLA, SMMLAR - SMMLA variant

1 1 1 1 1 0 1 1 0 op1 Rn Ra Rd 0 0 op2 Rm

15 14 13 12 11 10 9 8 7 6 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9792
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.1 T32 instruction set encoding
101 != 1111 01 SMMLA, SMMLAR - SMMLAR variant

101 - 1x Unallocated.

101 1111 00 SMMUL, SMMULR - SMMUL variant

101 1111 01 SMMUL, SMMULR - SMMULR variant

110 - 00 SMMLS, SMMLSR - SMMLS variant

110 - 01 SMMLS, SMMLSR - SMMLSR variant

110 - 1x Unallocated.

111 != 1111 00 USADA8

111 - 01 Unallocated.

111 - 1x Unallocated.

111 1111 00 USAD8

Decode fields
Instruction page

op1 Ra op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9793
ID032224 Non-Confidential

T32 Instruction Set Encoding
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding
F3.2 About the T32 Advanced SIMD and floating-point instructions and their
encoding

The Advanced SIMD and floating-point instructions are common to the T32 and A32 instruction sets. These
instructions perform Advanced SIMD and floating-point operations on a common register file, the SIMD&FP
register file. This means:

• In general, the instructions that load or store registers in this file, or move data between general-purpose
registers and this register file, are common to the Advanced SIMD and floating-point instructions.

• There are distinct Advanced SIMD data-processing instructions and floating-point data-processing
instructions.

All T32 Advanced SIMD and floating-point instructions have 32-bit encodings. Different groups of these
instructions are decoded from different points in the 32-bit T32 instruction decode structure. Table F3-23 shows
these instruction groups, and where each group is decoded from the overall T32 decode structure:

Table F3-23 Advanced SIMD and floating-point instructions in the T32 decode structure

Advanced SIMD and floating-point instruction group T32 decode is from

Advanced SIMD and System register load/store and 64-bit move System register access, Advanced SIMD, and floating-point

Floating-point data-processing System register access, Advanced SIMD, and floating-point

Advanced SIMD and System register 32-bit move System register access, Advanced SIMD, and floating-point

Advanced SIMD data-processing System register access, Advanced SIMD, and floating-point

Advanced SIMD element or structure load/store 32-bit
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F3-9794
ID032224 Non-Confidential

Chapter F4
A32 Instruction Set Encoding

This chapter describes the encoding of the A32 instruction set. It contains the following sections:

• A32 instruction set encoding.

• About the A32 Advanced SIMD and floating-point instructions and their encoding.

In this chapter:

• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.

• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9795
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1 A32 instruction set encoding

The A32 instruction stream is a sequence of word-aligned words. Each A32 instruction is either a single 32-bit word
in that stream.

Most A32 instructions can be conditional, with a condition determined by bits[31:28] of the instruction, the cond
field. For more information see The Condition code field in A32 instruction encodings. This applies to all
instructions except those with the cond field equal to 0b111.

The behavior of an attempt to execute an unallocated instruction is described in UNDEFINED, UNPREDICTABLE,
and CONSTRAINED UNPREDICTABLE instruction set space.

For more information on A32 instruction encodings see Chapter F1 About the T32 and A32 Instruction
Descriptions.

The A32 instruction encoding is:

F4.1.1 Data-processing and miscellaneous instructions

This section describes the encoding of the Data-processing and miscellaneous instructions group. The encodings in
this section are decoded from A32 instruction set encoding.

cond op0

31 28 27 25 24 5 4 3 0

op1

Table F4-1 Main encoding table for the A32 instruction set

Decode fields
Decode group or instruction page

cond op0 op1

 != 1111 00x - Data-processing and miscellaneous instructions

 != 1111 010 - Load/Store Word, Unsigned Byte (immediate, literal)

 != 1111 011 0 Load/Store Word, Unsigned Byte (register)

 != 1111 011 1 Media instructions

 - 10x - Branch, branch with link, and block data transfer

 - 11x - System register access, Advanced SIMD, floating-point, and Supervisor call

 1111 0xx - Unconditional instructions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9796
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.1.1 Multiply and Accumulate

This section describes the encoding of the Multiply and Accumulate instruction class. The encodings in this section
are decoded from Data-processing and miscellaneous instructions.

!=1111 00 op1 op3

31 28 27 26 25 24 20 19 8 7 6 5 4 3 0

op0 op4

op2

Table F4-2 Encoding table for the Data-processing and miscellaneous instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4

 0 - 1 != 00 1 Extra load/store

 0 0xxxx 1 00 1 Multiply and Accumulate

 0 1xxxx 1 00 1 Synchronization primitives and Load-Acquire/Store-Release

 0 10xx0 0 - - Miscellaneous

 0 10xx0 1 - 0 Halfword Multiply and Accumulate

 0 != 10xx0 - - 0 Data-processing register (immediate shift)

 0 != 10xx0 0 - 1 Data-processing register (register shift)

 1 - - - - Data-processing immediate

Decode fields
Instruction page

opc S

000 - MUL, MULS

001 - MLA, MLAS

010 0 UMAAL

010 1 Unallocated.

011 0 MLS

011 1 Unallocated.

100 - UMULL, UMULLS

!=1111 0 0 0 0 opc S RdHi RdLo Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9797
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.1.2 Halfword Multiply and Accumulate

This section describes the encoding of the Halfword Multiply and Accumulate instruction class. The encodings in
this section are decoded from Data-processing and miscellaneous instructions.

F4.1.2 Extra load/store

This section describes the encoding of the Extra load/store group. The encodings in this section are decoded from
Data-processing and miscellaneous instructions.

101 - UMLAL, UMLALS

110 - SMULL, SMULLS

111 - SMLAL, SMLALS

Decode fields
Instruction page

opc M N

00 - - SMLABB, SMLABT, SMLATB, SMLATT

01 0 0 SMLAWB, SMLAWT - SMLAWB variant

01 0 1 SMULWB, SMULWT - SMULWB variant

01 1 0 SMLAWB, SMLAWT - SMLAWT variant

01 1 1 SMULWB, SMULWT - SMULWT variant

10 - - SMLALBB, SMLALBT, SMLALTB, SMLALTT

11 - - SMULBB, SMULBT, SMULTB, SMULTT

Decode fields
Instruction page

opc S

!=1111 0 0 0 1 0 opc 0 Rd Ra Rm 1 M N 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

Table F4-3 Encoding table for the Extra load/store group

Decode fields
Decode group or instruction page

op0

 0 Load/Store Dual, Half, Signed Byte (register)

 1 Load/Store Dual, Half, Signed Byte (immediate, literal)

!=1111 000 1 !=00 1

31 28 27 25 24 23 22 21 8 7 6 5 4 3 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9798
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.2.1 Load/Store Dual, Half, Signed Byte (register)

This section describes the encoding of the Load/Store Dual, Half, Signed Byte (register) instruction class. The
encodings in this section are decoded from Extra load/store.

F4.1.2.2 Load/Store Dual, Half, Signed Byte (immediate, literal)

This section describes the encoding of the Load/Store Dual, Half, Signed Byte (immediate, literal) instruction class.
The encodings in this section are decoded from Extra load/store.

Decode fields
Instruction page

P W o1 op2

0 0 0 01 STRH (register) - Post-indexed variant

0 0 0 10 LDRD (register) - Post-indexed variant

0 0 0 11 STRD (register) - Post-indexed variant

0 0 1 01 LDRH (register) - Post-indexed variant

0 0 1 10 LDRSB (register) - Post-indexed variant

0 0 1 11 LDRSH (register) - Post-indexed variant

0 1 0 01 STRHT

0 1 0 10 Unallocated.

0 1 0 11 Unallocated.

0 1 1 01 LDRHT

0 1 1 10 LDRSBT

0 1 1 11 LDRSHT

1 - 0 01 STRH (register) - Pre-indexed variant

1 - 0 10 LDRD (register) - Pre-indexed variant

1 - 0 11 STRD (register) - Pre-indexed variant

1 - 1 01 LDRH (register) - Pre-indexed variant

1 - 1 10 LDRSB (register) - Pre-indexed variant

1 - 1 11 LDRSH (register) - Pre-indexed variant

!=1111 0 0 0 P U 0 W o1 Rn Rt (0) (0) (0) (0) 1 !=00 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9799
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Decode fields
Instruction page

P:W o1 Rn op2

- 0 1111 10 LDRD (literal)

!= 01 1 1111 01 LDRH (literal)

!= 01 1 1111 10 LDRSB (literal)

!= 01 1 1111 11 LDRSH (literal)

00 0 != 1111 10 LDRD (immediate) - Post-indexed variant

00 0 - 01 STRH (immediate) - Post-indexed variant

00 0 - 11 STRD (immediate) - Post-indexed variant

00 1 != 1111 01 LDRH (immediate) - Post-indexed variant

00 1 != 1111 10 LDRSB (immediate) - Post-indexed variant

00 1 != 1111 11 LDRSH (immediate) - Post-indexed variant

01 0 != 1111 10 Unallocated.

01 0 - 01 STRHT

01 0 - 11 Unallocated.

01 1 - 01 LDRHT

01 1 - 10 LDRSBT

01 1 - 11 LDRSHT

10 0 != 1111 10 LDRD (immediate) - Offset variant

10 0 - 01 STRH (immediate) - Offset variant

10 0 - 11 STRD (immediate) - Offset variant

10 1 != 1111 01 LDRH (immediate) - Offset variant

10 1 != 1111 10 LDRSB (immediate) - Offset variant

10 1 != 1111 11 LDRSH (immediate) - Offset variant

11 0 != 1111 10 LDRD (immediate) - Pre-indexed variant

11 0 - 01 STRH (immediate) - Pre-indexed variant

11 0 - 11 STRD (immediate) - Pre-indexed variant

11 1 != 1111 01 LDRH (immediate) - Pre-indexed variant

11 1 != 1111 10 LDRSB (immediate) - Pre-indexed variant

11 1 != 1111 11 LDRSH (immediate) - Pre-indexed variant

!=1111 0 0 0 P U 1 W o1 Rn Rt imm4H 1 !=00 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9800
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.3 Synchronization primitives and Load-Acquire/Store-Release

This section describes the encoding of the Synchronization primitives and Load-Acquire/Store-Release group. The
encodings in this section are decoded from Data-processing and miscellaneous instructions.

F4.1.3.1 Load/Store Exclusive and Load-Acquire/Store-Release

This section describes the encoding of the Load/Store Exclusive and Load-Acquire/Store-Release instruction class.
The encodings in this section are decoded from Synchronization primitives and Load-Acquire/Store-Release.

Table F4-4 Encoding table for the Synchronization primitives and Load-Acquire/Store-Release
group

Decode fields
Decode group or instruction page

op0

 0 Unallocated.

 1 Load/Store Exclusive and Load-Acquire/Store-Release

Decode fields
Instruction page

size L ex ord

00 0 0 0 STL

00 0 0 1 Unallocated.

00 0 1 0 STLEX

00 0 1 1 STREX

00 1 0 0 LDA

00 1 0 1 Unallocated.

00 1 1 0 LDAEX

00 1 1 1 LDREX

01 0 0 - Unallocated.

01 0 1 0 STLEXD

01 0 1 1 STREXD

01 1 0 - Unallocated.

01 1 1 0 LDAEXD

!=1111 0001 11 1001

31 28 27 24 23 22 12 11 10 9 8 7 4 3 0

op0

!=1111 0 0 0 1 1 size L Rn xRd (1) (1) ex ord 1 0 0 1 xRt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9801
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.4 Miscellaneous

This section describes the encoding of the Miscellaneous group. The encodings in this section are decoded from
Data-processing and miscellaneous instructions.

01 1 1 1 LDREXD

10 0 0 0 STLB

10 0 0 1 Unallocated.

10 0 1 0 STLEXB

10 0 1 1 STREXB

10 1 0 0 LDAB

10 1 0 1 Unallocated.

10 1 1 0 LDAEXB

10 1 1 1 LDREXB

11 0 0 0 STLH

11 0 0 1 Unallocated.

11 0 1 0 STLEXH

11 0 1 1 STREXH

11 1 0 0 LDAH

11 1 0 1 Unallocated.

11 1 1 0 LDAEXH

11 1 1 1 LDREXH

Decode fields
Instruction page

size L ex ord

Table F4-5 Encoding table for the Miscellaneous group

Decode fields
Decode group or instruction page

op0 op1

 00 001 Unallocated.

 00 010 Unallocated.

 00 011 Unallocated.

 00 110 Unallocated.

 01 001 BX

!=1111 00010 op0 0 0 op1

31 28 27 23 22 21 20 19 8 7 6 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9802
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.4.1 Exception Generation

This section describes the encoding of the Exception Generation instruction class. The encodings in this section are
decoded from Miscellaneous.

F4.1.4.2 Move special register (register)

This section describes the encoding of the Move special register (register) instruction class. The encodings in this
section are decoded from Miscellaneous.

 01 010 BXJ

 01 011 BLX (register)

 01 110 Unallocated.

 10 001 Unallocated.

 10 010 Unallocated.

 10 011 Unallocated.

 10 110 Unallocated.

 11 001 CLZ

 11 010 Unallocated.

 11 011 Unallocated.

 11 110 ERET

 - 111 Exception Generation

 - 000 Move special register (register)

 - 100 Cyclic Redundancy Check

 - 101 Integer Saturating Arithmetic

Decode fields
Instruction page

opc

00 HLT

01 BKPT

10 HVC

11 SMC

Table F4-5 Encoding table for the Miscellaneous group (continued)

Decode fields
Decode group or instruction page

op0 op1

!=1111 0 0 0 1 0 opc 0 imm12 0 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9803
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.4.3 Cyclic Redundancy Check

This section describes the encoding of the Cyclic Redundancy Check instruction class. The encodings in this section
are decoded from Miscellaneous.

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings.

F4.1.4.4 Integer Saturating Arithmetic

This section describes the encoding of the Integer Saturating Arithmetic instruction class. The encodings in this
section are decoded from Miscellaneous.

Decode fields
Instruction page

opc B

x0 0 MRS

x0 1 MRS (Banked register)

x1 0 MSR (register)

x1 1 MSR (Banked register)

Decode fields
Instruction page Feature

sz C

00 0 CRC32 - CRC32B variant FEAT_CRC32

00 1 CRC32C - CRC32CB variant FEAT_CRC32

01 0 CRC32 - CRC32H variant FEAT_CRC32

01 1 CRC32C - CRC32CH variant FEAT_CRC32

10 0 CRC32 - CRC32W variant FEAT_CRC32

10 1 CRC32C - CRC32CW variant FEAT_CRC32

11 - CONSTRAINED UNPREDICTABLE -

!=1111 0 0 0 1 0 opc 0 mask Rd (0) (0) B m 0 0 0 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) C (0) 0 1 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9804
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.5 Data-processing register (immediate shift)

This section describes the encoding of the Data-processing register (immediate shift) group. The encodings in this
section are decoded from Data-processing and miscellaneous instructions.

This decode also imposes the constraint:

• op0:op1 != 100.

F4.1.5.1 Integer Data Processing (three register, immediate shift)

This section describes the encoding of the Integer Data Processing (three register, immediate shift) instruction class.
The encodings in this section are decoded from Data-processing register (immediate shift).

Decode fields
Instruction page

opc

00 QADD

01 QSUB

10 QDADD

11 QDSUB

!=1111 0 0 0 1 0 opc 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

Table F4-6 Encoding table for the Data-processing register (immediate shift) group

Decode fields
Decode group or instruction page

op0 op1

 0x - Integer Data Processing (three register, immediate shift)

 10 1 Integer Test and Compare (two register, immediate shift)

 11 - Logical Arithmetic (three register, immediate shift)

!=1111 000 op0 0

31 28 27 25 24 23 22 21 20 19 5 4 3 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9805
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Decode fields
Instruction page

opc S Rn imm5:stype

000 - - != 0000011 AND, ANDS (register) - ANDS, shift or rotate by value variant

000 - - 0000011 AND, ANDS (register) - ANDS, rotate right with extend variant

001 - - != 0000011 EOR, EORS (register) - EORS, shift or rotate by value variant

001 - - 0000011 EOR, EORS (register) - EORS, rotate right with extend variant

010 0 != 1101 != 0000011 SUB, SUBS (register) - SUB, shift or rotate by value variant

010 0 != 1101 0000011 SUB, SUBS (register) - SUB, rotate right with extend variant

010 0 1101 != 0000011 SUB, SUBS (SP minus register) - SUB, shift or rotate by value variant

010 0 1101 0000011 SUB, SUBS (SP minus register) - SUB, rotate right with extend variant

010 1 != 1101 != 0000011 SUB, SUBS (register) - SUBS, shift or rotate by value variant

010 1 != 1101 0000011 SUB, SUBS (register) - SUBS, rotate right with extend variant

010 1 1101 != 0000011 SUB, SUBS (SP minus register) - SUBS, shift or rotate by value variant

010 1 1101 0000011 SUB, SUBS (SP minus register) - SUBS, rotate right with extend variant

011 - - != 0000011 RSB, RSBS (register) - RSBS, shift or rotate by value variant

011 - - 0000011 RSB, RSBS (register) - RSBS, rotate right with extend variant

100 0 != 1101 != 0000011 ADD, ADDS (register) - ADD, shift or rotate by value variant

100 0 != 1101 0000011 ADD, ADDS (register) - ADD, rotate right with extend variant

100 0 1101 != 0000011 ADD, ADDS (SP plus register) - ADD, shift or rotate by value variant

100 0 1101 0000011 ADD, ADDS (SP plus register) - ADD, rotate right with extend variant

100 1 != 1101 != 0000011 ADD, ADDS (register) - ADDS, shift or rotate by value variant

100 1 != 1101 0000011 ADD, ADDS (register) - ADDS, rotate right with extend variant

100 1 1101 != 0000011 ADD, ADDS (SP plus register) - ADDS, shift or rotate by value variant

100 1 1101 0000011 ADD, ADDS (SP plus register) - ADDS, rotate right with extend variant

101 - - != 0000011 ADC, ADCS (register) - ADCS, shift or rotate by value variant

101 - - 0000011 ADC, ADCS (register) - ADCS, rotate right with extend variant

110 - - != 0000011 SBC, SBCS (register) - SBCS, shift or rotate by value variant

110 - - 0000011 SBC, SBCS (register) - SBCS, rotate right with extend variant

111 - - != 0000011 RSC, RSCS (register) - RSCS, shift or rotate by value variant

111 - - 0000011 RSC, RSCS (register) - RSCS, rotate right with extend variant

!=1111 0 0 0 0 opc S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9806
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.5.2 Integer Test and Compare (two register, immediate shift)

This section describes the encoding of the Integer Test and Compare (two register, immediate shift) instruction class.
The encodings in this section are decoded from Data-processing register (immediate shift).

F4.1.5.3 Logical Arithmetic (three register, immediate shift)

This section describes the encoding of the Logical Arithmetic (three register, immediate shift) instruction class. The
encodings in this section are decoded from Data-processing register (immediate shift).

Decode fields
Instruction page

opc imm5:stype

00 != 0000011 TST (register) - Shift or rotate by value variant

00 0000011 TST (register) - Rotate right with extend variant

01 != 0000011 TEQ (register) - Shift or rotate by value variant

01 0000011 TEQ (register) - Rotate right with extend variant

10 != 0000011 CMP (register) - Shift or rotate by value variant

10 0000011 CMP (register) - Rotate right with extend variant

11 != 0000011 CMN (register) - Shift or rotate by value variant

11 0000011 CMN (register) - Rotate right with extend variant

Decode fields
Instruction page

opc imm5:stype

00 != 0000011 ORR, ORRS (register) - ORRS, shift or rotate by value variant

00 0000011 ORR, ORRS (register) - ORRS, rotate right with extend variant

01 != 0000011 MOV, MOVS (register) - MOVS, shift or rotate by value variant

01 0000011 MOV, MOVS (register) - MOVS, rotate right with extend variant

10 != 0000011 BIC, BICS (register) - BICS, shift or rotate by value variant

10 0000011 BIC, BICS (register) - BICS, rotate right with extend variant

11 != 0000011 MVN, MVNS (register) - MVNS, shift or rotate by value variant

11 0000011 MVN, MVNS (register) - MVNS, rotate right with extend variant

!=1111 0 0 0 1 0 opc 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

!=1111 0 0 0 1 1 opc S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9807
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.6 Data-processing register (register shift)

This section describes the encoding of the Data-processing register (register shift) group. The encodings in this
section are decoded from Data-processing and miscellaneous instructions.

This decode also imposes the constraint:

• op0:op1 != 100.

F4.1.6.1 Integer Data Processing (three register, register shift)

This section describes the encoding of the Integer Data Processing (three register, register shift) instruction class.
The encodings in this section are decoded from Data-processing register (register shift).

F4.1.6.2 Integer Test and Compare (two register, register shift)

This section describes the encoding of the Integer Test and Compare (two register, register shift) instruction class.
The encodings in this section are decoded from Data-processing register (register shift).

Table F4-7 Encoding table for the Data-processing register (register shift) group

Decode fields
Decode group or instruction page

op0 op1

 0x - Integer Data Processing (three register, register shift)

 10 1 Integer Test and Compare (two register, register shift)

 11 - Logical Arithmetic (three register, register shift)

Decode fields
Instruction page

opc

000 AND, ANDS (register-shifted register)

001 EOR, EORS (register-shifted register)

010 SUB, SUBS (register-shifted register)

011 RSB, RSBS (register-shifted register)

100 ADD, ADDS (register-shifted register)

101 ADC, ADCS (register-shifted register)

110 SBC, SBCS (register-shifted register)

111 RSC, RSCS (register-shifted register)

!=1111 000 op0 0 1

31 28 27 25 24 23 22 21 20 19 8 7 6 5 4 3 0

op1

!=1111 0 0 0 0 opc S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9808
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.6.3 Logical Arithmetic (three register, register shift)

This section describes the encoding of the Logical Arithmetic (three register, register shift) instruction class. The
encodings in this section are decoded from Data-processing register (register shift).

F4.1.7 Data-processing immediate

This section describes the encoding of the Data-processing immediate group. The encodings in this section are
decoded from Data-processing and miscellaneous instructions.

Decode fields
Instruction page

opc

00 TST (register-shifted register)

01 TEQ (register-shifted register)

10 CMP (register-shifted register)

11 CMN (register-shifted register)

Decode fields
Instruction page

opc

00 ORR, ORRS (register-shifted register)

01 MOV, MOVS (register-shifted register)

10 BIC, BICS (register-shifted register)

11 MVN, MVNS (register-shifted register)

!=1111 0 0 0 1 0 opc 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

!=1111 0 0 0 1 1 opc S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9809
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.7.1 Integer Data Processing (two register and immediate)

This section describes the encoding of the Integer Data Processing (two register and immediate) instruction class.
The encodings in this section are decoded from Data-processing immediate.

Table F4-8 Encoding table for the Data-processing immediate group

Decode fields
Decode group or instruction page

op0 op1

 0x - Integer Data Processing (two register and immediate)

 10 00 Move Halfword (immediate)

 10 10 Move Special Register and Hints (immediate)

 10 x1 Integer Test and Compare (one register and immediate)

 11 - Logical Arithmetic (two register and immediate)

Decode fields
Instruction page

opc S Rn

000 - - AND, ANDS (immediate)

001 - - EOR, EORS (immediate)

010 0 != 11x1 SUB, SUBS (immediate) - SUB variant

010 0 1101 SUB, SUBS (SP minus immediate) - SUB variant

010 0 1111 ADR - A2

010 1 != 1101 SUB, SUBS (immediate) - SUBS variant

010 1 1101 SUB, SUBS (SP minus immediate) - SUBS variant

011 - - RSB, RSBS (immediate)

100 0 != 11x1 ADD, ADDS (immediate) - ADD variant

100 0 1101 ADD, ADDS (SP plus immediate) - ADD variant

100 0 1111 ADR - A1

100 1 != 1101 ADD, ADDS (immediate) - ADDS variant

100 1 1101 ADD, ADDS (SP plus immediate) - ADDS variant

!=1111 001 op0 op1

31 28 27 25 24 23 22 21 20 19 0

!=1111 0 0 1 0 opc S Rn Rd imm12

31 28 27 26 25 24 23 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9810
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.7.2 Move Halfword (immediate)

This section describes the encoding of the Move Halfword (immediate) instruction class. The encodings in this
section are decoded from Data-processing immediate.

F4.1.7.3 Move Special Register and Hints (immediate)

This section describes the encoding of the Move Special Register and Hints (immediate) instruction class. The
encodings in this section are decoded from Data-processing immediate.

101 - - ADC, ADCS (immediate)

110 - - SBC, SBCS (immediate)

111 - - RSC, RSCS (immediate)

Decode fields
Instruction page

H

0 MOV, MOVS (immediate)

1 MOVT

Decode fields
Instruction page Feature

R:imm4 imm12

!= 00000 - MSR (immediate) -

00000 xxxx00000000 NOP -

00000 xxxx00000001 YIELD -

00000 xxxx00000010 WFE -

00000 xxxx00000011 WFI -

00000 xxxx00000100 SEV -

00000 xxxx00000101 SEVL -

00000 xxxx0000011x Reserved hint, behaves as NOP. -

00000 xxxx00001xxx Reserved hint, behaves as NOP. -

Decode fields
Instruction page

opc S Rn

!=1111 0 0 1 1 0 H 0 0 imm4 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

!=1111 0 0 1 1 0 R 1 0 imm4 (1) (1) (1) (1) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9811
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.7.4 Integer Test and Compare (one register and immediate)

This section describes the encoding of the Integer Test and Compare (one register and immediate) instruction class.
The encodings in this section are decoded from Data-processing immediate.

F4.1.7.5 Logical Arithmetic (two register and immediate)

This section describes the encoding of the Logical Arithmetic (two register and immediate) instruction class. The
encodings in this section are decoded from Data-processing immediate.

00000 xxxx00010000 ESB FEAT_RAS

00000 xxxx00010001 Reserved hint, behaves as NOP. -

00000 xxxx00010010 TSB FEAT_TRF

00000 xxxx00010011 Reserved hint, behaves as NOP. -

00000 xxxx00010100 CSDB -

00000 xxxx00010101 Reserved hint, behaves as NOP. -

00000 xxxx00010110 CLRBHB FEAT_CLRBHB

00000 xxxx00010111 Reserved hint, behaves as NOP. -

00000 xxxx00011xxx Reserved hint, behaves as NOP. -

00000 xxxx001xxxxx Reserved hint, behaves as NOP. -

00000 xxxx01xxxxxx Reserved hint, behaves as NOP. -

00000 xxxx10xxxxxx Reserved hint, behaves as NOP. -

00000 xxxx110xxxxx Reserved hint, behaves as NOP. -

00000 xxxx1110xxxx Reserved hint, behaves as NOP. -

00000 xxxx1111xxxx DBG -

Decode fields
Instruction page

opc

00 TST (immediate)

01 TEQ (immediate)

10 CMP (immediate)

11 CMN (immediate)

Decode fields
Instruction page Feature

R:imm4 imm12

!=1111 0 0 1 1 0 opc 1 Rn (0) (0) (0) (0) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9812
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.8 Load/Store Word, Unsigned Byte (immediate, literal)

This section describes the encoding of the Load/Store Word, Unsigned Byte (immediate, literal) instruction class.
The encodings in this section are decoded from A32 instruction set encoding.

Decode fields
Instruction page

opc

00 ORR, ORRS (immediate)

01 MOV, MOVS (immediate)

10 BIC, BICS (immediate)

11 MVN, MVNS (immediate)

!=1111 0 0 1 1 1 opc S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

Decode fields
Instruction page

P:W o2 o1 Rn

!= 01 0 1 1111 LDR (literal)

!= 01 1 1 1111 LDRB (literal)

00 0 0 - STR (immediate) - Post-indexed variant

00 0 1 != 1111 LDR (immediate) - Post-indexed variant

00 1 0 - STRB (immediate) - Post-indexed variant

00 1 1 != 1111 LDRB (immediate) - Post-indexed variant

01 0 0 - STRT

01 0 1 - LDRT

01 1 0 - STRBT

01 1 1 - LDRBT

10 0 0 - STR (immediate) - Offset variant

10 0 1 != 1111 LDR (immediate) - Offset variant

10 1 0 - STRB (immediate) - Offset variant

10 1 1 != 1111 LDRB (immediate) - Offset variant

11 0 0 - STR (immediate) - Pre-indexed variant

!=1111 0 1 0 P U o2 W o1 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9813
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.9 Load/Store Word, Unsigned Byte (register)

This section describes the encoding of the Load/Store Word, Unsigned Byte (register) instruction class. The
encodings in this section are decoded from A32 instruction set encoding.

F4.1.10 Media instructions

This section describes the encoding of the Media instructions group. The encodings in this section are decoded from
A32 instruction set encoding.

11 0 1 != 1111 LDR (immediate) - Pre-indexed variant

11 1 0 - STRB (immediate) - Pre-indexed variant

11 1 1 != 1111 LDRB (immediate) - Pre-indexed variant

Decode fields
Instruction page

P:W o2 o1 Rn

Decode fields
Instruction page

P o2 W o1

0 0 0 0 STR (register) - Post-indexed variant

0 0 0 1 LDR (register) - Post-indexed variant

0 0 1 0 STRT

0 0 1 1 LDRT

0 1 0 0 STRB (register) - Post-indexed variant

0 1 0 1 LDRB (register) - Post-indexed variant

0 1 1 0 STRBT

0 1 1 1 LDRBT

1 0 - 0 STR (register) - Pre-indexed variant

1 0 - 1 LDR (register) - Pre-indexed variant

1 1 - 0 STRB (register) - Pre-indexed variant

1 1 - 1 LDRB (register) - Pre-indexed variant

!=1111 0 1 1 P U o2 W o1 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9814
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Table F4-9 Encoding table for the Media instructions group

Decode fields
Decode group or instruction page

op0 op1

 00xxx - Parallel Arithmetic

 01000 101 SEL

 01000 001 Unallocated.

 01000 xx0 PKHBT, PKHTB

 01001 x01 Unallocated.

 01001 xx0 Unallocated.

 0110x x01 Unallocated.

 0110x xx0 Unallocated.

 01x10 001 Saturate 16-bit

 01x10 101 Unallocated.

 01x11 x01 Reverse Bit/Byte

 01x1x xx0 Saturate 32-bit

 01xxx 111 Unallocated.

 01xxx 011 Extend and Add

 10xxx - Signed multiply, Divide

 11000 000 Unsigned Sum of Absolute Differences

 11000 100 Unallocated.

 11001 x00 Unallocated.

 1101x x00 Unallocated.

 110xx 111 Unallocated.

 1110x 111 Unallocated.

 1110x x00 Bitfield Insert

 11110 111 Unallocated.

 11111 111 Permanently UNDEFINED

 1111x x00 Unallocated.

 11x0x x10 Unallocated.

!=1111 011 op0 op1 1

31 28 27 25 24 20 19 8 7 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9815
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10.1 Parallel Arithmetic

This section describes the encoding of the Parallel Arithmetic instruction class. The encodings in this section are
decoded from Media instructions.

 11x1x x10 Bitfield Extract

 11xxx 011 Unallocated.

 11xxx x01 Unallocated.

Decode fields
Instruction page

op1 B op2

000 - - Unallocated.

001 0 00 SADD16

001 0 01 SASX

001 0 10 SSAX

001 0 11 SSUB16

001 1 00 SADD8

001 1 01 Unallocated.

001 1 10 Unallocated.

001 1 11 SSUB8

010 0 00 QADD16

010 0 01 QASX

010 0 10 QSAX

010 0 11 QSUB16

010 1 00 QADD8

010 1 01 Unallocated.

010 1 10 Unallocated.

010 1 11 QSUB8

011 0 00 SHADD16

011 0 01 SHASX

Table F4-9 Encoding table for the Media instructions group (continued)

Decode fields
Decode group or instruction page

op0 op1

!=1111 0 1 1 0 0 op1 Rn Rd (1) (1) (1) (1) B op2 1 Rm

31 28 27 26 25 24 23 22 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9816
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
011 0 10 SHSAX

011 0 11 SHSUB16

011 1 00 SHADD8

011 1 01 Unallocated.

011 1 10 Unallocated.

011 1 11 SHSUB8

100 - - Unallocated.

101 0 00 UADD16

101 0 01 UASX

101 0 10 USAX

101 0 11 USUB16

101 1 00 UADD8

101 1 01 Unallocated.

101 1 10 Unallocated.

101 1 11 USUB8

110 0 00 UQADD16

110 0 01 UQASX

110 0 10 UQSAX

110 0 11 UQSUB16

110 1 00 UQADD8

110 1 01 Unallocated.

110 1 10 Unallocated.

110 1 11 UQSUB8

111 0 00 UHADD16

111 0 01 UHASX

111 0 10 UHSAX

111 0 11 UHSUB16

111 1 00 UHADD8

111 1 01 Unallocated.

111 1 10 Unallocated.

111 1 11 UHSUB8

Decode fields
Instruction page

op1 B op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9817
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10.2 Saturate 16-bit

This section describes the encoding of the Saturate 16-bit instruction class. The encodings in this section are
decoded from Media instructions.

F4.1.10.3 Reverse Bit/Byte

This section describes the encoding of the Reverse Bit/Byte instruction class. The encodings in this section are
decoded from Media instructions.

F4.1.10.4 Saturate 32-bit

This section describes the encoding of the Saturate 32-bit instruction class. The encodings in this section are
decoded from Media instructions.

Decode fields
Instruction page

U

0 SSAT16

1 USAT16

Decode fields
Instruction page

o1 o2

0 0 REV

0 1 REV16

1 0 RBIT

1 1 REVSH

Decode fields
Instruction page

U

0 SSAT

1 USAT

!=1111 0 1 1 0 1 U 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 1 1 0 1 o1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) o2 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 1 1 0 1 U 1 sat_imm Rd imm5 sh 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9818
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10.5 Extend and Add

This section describes the encoding of the Extend and Add instruction class. The encodings in this section are
decoded from Media instructions.

F4.1.10.6 Signed multiply, Divide

This section describes the encoding of the Signed multiply, Divide instruction class. The encodings in this section
are decoded from Media instructions.

Decode fields
Instruction page

U op Rn

0 00 != 1111 SXTAB16

0 00 1111 SXTB16

0 10 != 1111 SXTAB

0 10 1111 SXTB

0 11 != 1111 SXTAH

0 11 1111 SXTH

1 00 != 1111 UXTAB16

1 00 1111 UXTB16

1 10 != 1111 UXTAB

1 10 1111 UXTB

1 11 != 1111 UXTAH

1 11 1111 UXTH

Decode fields
Instruction page

op1 Ra op2

000 != 1111 000 SMLAD, SMLADX - SMLAD variant

000 != 1111 001 SMLAD, SMLADX - SMLADX variant

000 != 1111 010 SMLSD, SMLSDX - SMLSD variant

000 != 1111 011 SMLSD, SMLSDX - SMLSDX variant

000 - 1xx Unallocated.

!=1111 0 1 1 0 1 U op Rn Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 0 1 1 1 0 op1 Rd Ra Rm op2 1 Rn

31 28 27 26 25 24 23 22 20 19 16 15 12 11 8 7 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9819
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10.7 Unsigned Sum of Absolute Differences

This section describes the encoding of the Unsigned Sum of Absolute Differences instruction class. The encodings
in this section are decoded from Media instructions.

000 1111 000 SMUAD, SMUADX - SMUAD variant

000 1111 001 SMUAD, SMUADX - SMUADX variant

000 1111 010 SMUSD, SMUSDX - SMUSD variant

000 1111 011 SMUSD, SMUSDX - SMUSDX variant

001 - 000 SDIV

001 - != 000 Unallocated.

010 - - Unallocated.

011 - 000 UDIV

011 - != 000 Unallocated.

100 - 000 SMLALD, SMLALDX - SMLALD variant

100 - 001 SMLALD, SMLALDX - SMLALDX variant

100 - 010 SMLSLD, SMLSLDX - SMLSLD variant

100 - 011 SMLSLD, SMLSLDX - SMLSLDX variant

100 - 1xx Unallocated.

101 != 1111 000 SMMLA, SMMLAR - SMMLA variant

101 != 1111 001 SMMLA, SMMLAR - SMMLAR variant

101 - 01x Unallocated.

101 - 10x Unallocated.

101 - 110 SMMLS, SMMLSR - SMMLS variant

101 - 111 SMMLS, SMMLSR - SMMLSR variant

101 1111 000 SMMUL, SMMULR - SMMUL variant

101 1111 001 SMMUL, SMMULR - SMMULR variant

11x - - Unallocated.

Decode fields
Instruction page

op1 Ra op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9820
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10.8 Bitfield Insert

This section describes the encoding of the Bitfield Insert instruction class. The encodings in this section are decoded
from Media instructions.

F4.1.10.9 Permanently UNDEFINED

This section describes the encoding of the Permanently UNDEFINED instruction class. The encodings in this
section are decoded from Media instructions.

Decode fields
Instruction page

Ra

!= 1111 USADA8

1111 USAD8

Decode fields
Instruction page

Rn

!= 1111 BFI

1111 BFC

Decode fields
Instruction page

cond

0xxx Unallocated.

10xx Unallocated.

110x Unallocated.

1110 UDF

!=1111 0 1 1 1 1 0 0 0 Rd Ra Rm 0 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

!=1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

!=1111 0 1 1 1 1 1 1 1 imm12 1 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9821
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.10.10 Bitfield Extract

This section describes the encoding of the Bitfield Extract instruction class. The encodings in this section are
decoded from Media instructions.

F4.1.11 Branch, branch with link, and block data transfer

This section describes the encoding of the Branch, branch with link, and block data transfer group. The encodings
in this section are decoded from A32 instruction set encoding.

F4.1.11.1 Exception Save/Restore

This section describes the encoding of the Exception Save/Restore instruction class. The encodings in this section
are decoded from Branch, branch with link, and block data transfer.

Decode fields
Instruction page

U

0 SBFX

1 UBFX

!=1111 0 1 1 1 1 U 1 widthm1 Rd lsb 1 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

Table F4-10 Encoding table for the Branch, branch with link, and block data transfer group

Decode fields
Decode group or instruction page

cond op0

 1111 0 Exception Save/Restore

 != 1111 0 Load/Store Multiple

 - 1 Branch (immediate)

cond 10

31 28 27 26 25 24 0

op0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9822
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.11.2 Load/Store Multiple

This section describes the encoding of the Load/Store Multiple instruction class. The encodings in this section are
decoded from Branch, branch with link, and block data transfer.

Decode fields
Instruction page

P U S L

- - 0 0 Unallocated.

0 0 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Decrement After variant

0 0 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Decrement After variant

0 1 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Increment After variant

0 1 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Increment After variant

1 0 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Decrement Before variant

1 0 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Decrement Before variant

- - 1 1 Unallocated.

1 1 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB - Increment Before variant

1 1 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB - Increment Before variant

Decode fields
Instruction page

P U op L register_list

0 0 0 0 - STMDA, STMED

0 0 0 1 - LDMDA, LDMFA

0 1 0 0 - STM, STMIA, STMEA

0 1 0 1 - LDM, LDMIA, LDMFD

- - 1 0 - STM (User registers)

1 0 0 0 - STMDB, STMFD

1 0 0 1 - LDMDB, LDMEA

- - 1 1 0xxxxxxxxxxxxxxx LDM (User registers)

1 1 1 1 1 0 0 P U S W L Rn op mode

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 5 4 0

!=1111 1 0 0 P U op W L Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9823
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.11.3 Branch (immediate)

This section describes the encoding of the Branch (immediate) instruction class. The encodings in this section are
decoded from Branch, branch with link, and block data transfer.

F4.1.12 System register access, Advanced SIMD, floating-point, and Supervisor call

This section describes the encoding of the System register access, Advanced SIMD, floating-point, and Supervisor
call group. The encodings in this section are decoded from A32 instruction set encoding.

1 1 0 0 - STMIB, STMFA

1 1 0 1 - LDMIB, LDMED

- - 1 1 1xxxxxxxxxxxxxxx LDM (exception return)

Decode fields
Instruction page

cond H

!= 1111 0 B

!= 1111 1 BL, BLX (immediate) - A1

1111 - BL, BLX (immediate) - A2

Decode fields
Instruction page

P U op L register_list

cond 1 0 1 H imm24

31 28 27 26 25 24 23 0

cond 11 op0 op1

31 28 27 26 25 24 23 12 11 10 9 5 4 3 0

op2

Table F4-11 Encoding table for the System register access, Advanced SIMD, floating-point, and Supervisor call
group

Decode fields
Decode group or instruction page

cond op0 op1 op2

 - 0x 0x - Unallocated.

 - 10 0x - Unallocated.

 - 11 - - Supervisor call

 1111 != 11 1x - Unconditional Advanced SIMD and floating-point instructions

 != 1111 0x 1x - Advanced SIMD and System register load/store and 64-bit move
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9824
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.13 Supervisor call

This section describes the encoding of the Supervisor call group. The encodings in this section are decoded from
System register access, Advanced SIMD, floating-point, and Supervisor call.

F4.1.14 Unconditional Advanced SIMD and floating-point instructions

This section describes the encoding of the Unconditional Advanced SIMD and floating-point instructions group.
The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and
Supervisor call.

 != 1111 10 1x 1 Advanced SIMD and System register 32-bit move

 != 1111 10 10 0 Floating-point data-processing

 != 1111 10 11 0 Unallocated.

Table F4-11 Encoding table for the System register access, Advanced SIMD, floating-point, and Supervisor call group
(continued)

Decode fields
Decode group or instruction page

cond op0 op1 op2

Table F4-12 Encoding table for the Supervisor call group

Decode fields
Decode group or instruction page

cond

 1111 Unallocated.

 != 1111 SVC

cond 1111

31 28 27 24 23 0

111111 op0 op1 1 op3

31 26 25 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

op5

op4

op2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9825
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
This decode also imposes the constraint:

• op0<2:1> != 11.

F4.1.14.1 Advanced SIMD three registers of the same length extension

This section describes the encoding of the Advanced SIMD three registers of the same length extension instruction
class. The encodings in this section are decoded from Unconditional Advanced SIMD and floating-point
instructions.

Table F4-13 Encoding table for the Unconditional Advanced SIMD and floating-point instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

 0xx - - 0x - - Advanced SIMD three registers of the same length extension

 100 - 0 != 00 0 0 Floating-point conditional select

 101 00xxxx 0 != 00 - 0 Floating-point minNum/maxNum

 101 110000 0 != 00 1 0 Floating-point extraction and insertion

 101 111xxx 0 != 00 1 0 Floating-point directed convert to integer

 10x - 0 00 - - Advanced SIMD and floating-point multiply with accumulate

 10x - 1 0x - - Advanced SIMD and floating-point dot product

1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 0 N Q M U Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op4

op3

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

x1 0x 0 0 0 0 VCADD - 64-bit SIMD vector variant FEAT_FCMA

x1 0x 0 0 0 1 Unallocated. -

x1 0x 0 0 1 0 VCADD - 128-bit SIMD vector variant FEAT_FCMA

x1 0x 0 0 1 1 Unallocated. -

00 0x 0 0 - - Unallocated. -

00 0x 0 1 - - Unallocated. -

00 00 1 0 0 0 Unallocated. -

00 00 1 0 0 1 Unallocated. -

00 00 1 0 1 0 VMMLA FEAT_AA32BF16

00 00 1 0 1 1 Unallocated. -

00 00 1 1 0 0 VDOT (vector) - 64-bit SIMD vector variant FEAT_AA32BF16
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9826
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
00 00 1 1 0 1 Unallocated. -

00 00 1 1 1 0 VDOT (vector) - 128-bit SIMD vector variant FEAT_AA32BF16

00 00 1 1 1 1 Unallocated. -

00 01 1 0 - - Unallocated. -

00 01 1 1 - - Unallocated. -

00 10 0 0 - 1 VFMAL (vector) FEAT_FHM

00 10 0 1 - - Unallocated. -

00 10 1 0 0 - Unallocated. -

00 10 1 0 1 0 VSMMLA FEAT_AA32I8MM

00 10 1 0 1 1 VUMMLA FEAT_AA32I8MM

00 10 1 1 0 0 VSDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

00 10 1 1 0 1 VUDOT (vector) - 64-bit SIMD vector variant FEAT_DotProd

00 10 1 1 1 0 VSDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

00 10 1 1 1 1 VUDOT (vector) - 128-bit SIMD vector variant FEAT_DotProd

00 11 0 0 - 1 VFMAB, VFMAT (BFloat16, vector) FEAT_AA32BF16

00 11 0 1 - - Unallocated. -

00 11 1 0 - - Unallocated. -

00 11 1 1 - - Unallocated. -

01 10 0 0 - 1 VFMSL (vector) FEAT_FHM

01 10 0 1 - - Unallocated. -

01 10 1 0 0 - Unallocated. -

01 10 1 0 1 0 VUSMMLA FEAT_AA32I8MM

01 10 1 0 1 1 Unallocated. -

01 10 1 1 0 0 VUSDOT (vector) - 64-bit SIMD vector variant FEAT_AA32I8MM

01 10 1 1 - 1 Unallocated. -

01 10 1 1 1 0 VUSDOT (vector) - 128-bit SIMD vector variant FEAT_AA32I8MM

01 11 0 1 - - Unallocated. -

01 11 1 0 - - Unallocated. -

01 11 1 1 - - Unallocated. -

- 1x 0 0 - 0 VCMLA FEAT_FCMA

10 11 0 1 - - Unallocated. -

10 11 1 0 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9827
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.14.2 Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Unconditional Advanced SIMD and floating-point instructions.

F4.1.14.3 Floating-point minNum/maxNum

This section describes the encoding of the Floating-point minNum/maxNum instruction class. The encodings in this
section are decoded from Unconditional Advanced SIMD and floating-point instructions.

10 11 1 1 - - Unallocated. -

11 11 0 1 - - Unallocated. -

11 11 1 0 - - Unallocated. -

11 11 1 1 - - Unallocated. -

Decode fields
Instruction page Feature

op1 op2 op3 op4 Q U

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

Decode fields
Instruction page Feature

size

01 VSELEQ, VSELGE, VSELGT, VSELVS - Greater than, half-precision scalar variant FEAT_FP16

10 VSELEQ, VSELGE, VSELGT, VSELVS - Greater than, single-precision scalar variant -

11 VSELEQ, VSELGE, VSELGT, VSELVS - Greater than, double-precision scalar variant -

Decode fields
Instruction page Feature

size op

01 0 VMAXNM - Half-precision scalar variant FEAT_FP16

01 1 VMINNM - Half-precision scalar variant FEAT_FP16

10 0 VMAXNM - Single-precision scalar variant -

10 1 VMINNM - Single-precision scalar variant -

11 0 VMAXNM - Double-precision scalar variant -

11 1 VMINNM - Double-precision scalar variant -

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9828
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.14.4 Floating-point extraction and insertion

This section describes the encoding of the Floating-point extraction and insertion instruction class. The encodings
in this section are decoded from Unconditional Advanced SIMD and floating-point instructions.

F4.1.14.5 Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. The encodings
in this section are decoded from Unconditional Advanced SIMD and floating-point instructions.

Decode fields
Instruction page Feature

size op

01 - Unallocated. -

10 0 VMOVX FEAT_FP16

10 1 VINS FEAT_FP16

11 - Unallocated. -

Decode fields
Instruction page Feature

o1 RM size op

0 - != 00 1 Unallocated. -

0 00 01 0 VRINTA (floating-point) - Half-precision scalar variant FEAT_FP16

0 00 10 0 VRINTA (floating-point) - Single-precision scalar variant -

0 00 11 0 VRINTA (floating-point) - Double-precision scalar variant -

0 01 01 0 VRINTN (floating-point) - Half-precision scalar variant FEAT_FP16

0 01 10 0 VRINTN (floating-point) - Single-precision scalar variant -

0 01 11 0 VRINTN (floating-point) - Double-precision scalar variant -

0 10 01 0 VRINTP (floating-point) - Half-precision scalar variant FEAT_FP16

0 10 10 0 VRINTP (floating-point) - Single-precision scalar variant -

0 10 11 0 VRINTP (floating-point) - Double-precision scalar variant -

0 11 01 0 VRINTM (floating-point) - Half-precision scalar variant FEAT_FP16

0 11 10 0 VRINTM (floating-point) - Single-precision scalar variant -

0 11 11 0 VRINTM (floating-point) - Double-precision scalar variant -

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 !=00 op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 0 1 D 1 1 1 o1 RM Vd 1 0 !=00 op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9829
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.14.6 Advanced SIMD and floating-point multiply with accumulate

This section describes the encoding of the Advanced SIMD and floating-point multiply with accumulate instruction
class. The encodings in this section are decoded from Unconditional Advanced SIMD and floating-point
instructions.

1 00 01 - VCVTA (floating-point) - Half-precision scalar variant FEAT_FP16

1 00 10 - VCVTA (floating-point) - Single-precision scalar variant -

1 00 11 - VCVTA (floating-point) - Double-precision scalar variant -

1 01 01 - VCVTN (floating-point) - Half-precision scalar variant FEAT_FP16

1 01 10 - VCVTN (floating-point) - Single-precision scalar variant -

1 01 11 - VCVTN (floating-point) - Double-precision scalar variant -

1 10 01 - VCVTP (floating-point) - Half-precision scalar variant FEAT_FP16

1 10 10 - VCVTP (floating-point) - Single-precision scalar variant -

1 10 11 - VCVTP (floating-point) - Double-precision scalar variant -

1 11 01 - VCVTM (floating-point) - Half-precision scalar variant FEAT_FP16

1 11 10 - VCVTM (floating-point) - Single-precision scalar variant -

1 11 11 - VCVTM (floating-point) - Double-precision scalar variant -

Decode fields
Instruction page Feature

o1 RM size op

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 0 0 0 N Q M U Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op1

Decode fields
Instruction page Feature

op1 op2 Q U

0 - - 0 VCMLA (by element) - 128-bit SIMD vector of half-precision floating-point variant FEAT_FCMA

0 00 - 1 VFMAL (by scalar) FEAT_FHM

0 01 - 1 VFMSL (by scalar) FEAT_FHM

0 10 - 1 Unallocated. -

0 11 - 1 VFMAB, VFMAT (BFloat16, by scalar) FEAT_AA32BF16

1 - 0 0 VCMLA (by element) - 64-bit SIMD vector of single-precision floating-point variant FEAT_FCMA

1 - - 1 Unallocated. -

1 - 1 0 VCMLA (by element) - 128-bit SIMD vector of single-precision floating-point variant FEAT_FCMA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9830
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.14.7 Advanced SIMD and floating-point dot product

This section describes the encoding of the Advanced SIMD and floating-point dot product instruction class. The
encodings in this section are decoded from Unconditional Advanced SIMD and floating-point instructions.

F4.1.15 Advanced SIMD and System register load/store and 64-bit move

This section describes the encoding of the Advanced SIMD and System register load/store and 64-bit move group.
The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and
Supervisor call.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding

Decode fields
Instruction page Feature

op1 op2 op4 Q U

0 00 0 - - Unallocated. -

0 00 1 0 0 VDOT (by element) - 64-bit SIMD vector variant FEAT_AA32BF16

0 00 1 - 1 Unallocated. -

0 00 1 1 0 VDOT (by element) - 128-bit SIMD vector variant FEAT_AA32BF16

0 01 0 - - Unallocated. -

0 10 0 - - Unallocated. -

0 10 1 0 0 VSDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

0 10 1 0 1 VUDOT (by element) - 64-bit SIMD vector variant FEAT_DotProd

0 10 1 1 0 VSDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

0 10 1 1 1 VUDOT (by element) - 128-bit SIMD vector variant FEAT_DotProd

0 11 - - - Unallocated. -

1 - 0 - - Unallocated. -

1 00 1 0 0 VUSDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

1 00 1 0 1 VSUDOT (by element) - 64-bit SIMD vector variant FEAT_AA32I8MM

1 00 1 1 0 VUSDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

1 00 1 1 1 VSUDOT (by element) - 128-bit SIMD vector variant FEAT_AA32I8MM

1 01 1 - - Unallocated. -

1 1x 1 - - Unallocated. -

1 1 1 1 1 1 1 0 D op2 Vn Vd 1 1 0 N Q M U Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op1 op4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9831
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.15.1 Advanced SIMD and floating-point 64-bit move

This section describes the encoding of the Advanced SIMD and floating-point 64-bit move instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move.

Table F4-14 Encoding table for the Advanced SIMD and System register load/store and 64-bit
move group

Decode fields
Decode group or instruction page

op0 op1

 00x0 0x Advanced SIMD and floating-point 64-bit move

 00x0 11 System register 64-bit move

 != 00x0 0x Advanced SIMD and floating-point load/store

 != 00x0 11 System register load/store

 - 10 Unallocated.

!=1111 110 op0 1 op1

31 28 27 25 24 21 20 12 11 10 9 8 0

!=1111 1 1 0 0 0 D 0 op Rt2 Rt 1 0 size opc2 M o3 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

Decode fields
Instruction page

D op size opc2 o3

0 - - - - Unallocated.

1 - - - 0 Unallocated.

1 - 0x 00 1 Unallocated.

1 - - 01 - Unallocated.

1 0 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - From
general-purpose registers variant

1 0 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - From
general-purpose registers variant

1 - - 1x - Unallocated.

1 1 10 00 1 VMOV (between two general-purpose registers and two single-precision registers) - To
general-purpose registers variant

1 1 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-point register) - To
general-purpose registers variant
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9832
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.15.2 System register 64-bit move

This section describes the encoding of the System register 64-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register load/store and 64-bit move.

F4.1.15.3 Advanced SIMD and floating-point load/store

This section describes the encoding of the Advanced SIMD and floating-point load/store instruction class. The
encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move.

Decode fields
Instruction page

D L

0 - Unallocated.

1 0 MCRR

1 1 MRRC

!=1111 1 1 0 0 0 D 0 L Rt2 Rt 1 1 1 opc1 CRm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

cond

cp15

!=1111 1 1 0 P U D W L Rn Vd 1 0 size imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

Decode fields
Instruction page Feature

P U W L Rn size imm8

0 0 1 - - - - Unallocated. -

0 1 - - - 0x - Unallocated. -

0 1 - 0 - 10 - VSTM, VSTMDB, VSTMIA - Increment After variant -

0 1 - 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Increment After variant -

0 1 - 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Increment After variant -

0 1 - 1 - 10 - VLDM, VLDMDB, VLDMIA - Increment After variant -

0 1 - 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Increment After variant -

0 1 - 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Increment After variant -

1 - 0 0 - 01 - VSTR - Half-precision scalar variant FEAT_FP16

1 - 0 0 - 10 - VSTR - Single-precision scalar variant -

1 - 0 0 - 11 - VSTR - Double-precision scalar variant -

1 - 0 1 != 1111 01 - VLDR (immediate) - Half-precision scalar variant FEAT_FP16

1 - 0 1 != 1111 10 - VLDR (immediate) - Single-precision scalar variant -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9833
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.15.4 System register load/store

This section describes the encoding of the System register load/store instruction class. The encodings in this section
are decoded from Advanced SIMD and System register load/store and 64-bit move.

1 - 0 1 != 1111 11 - VLDR (immediate) - Double-precision scalar variant -

1 0 1 - - 0x - Unallocated. -

1 0 1 0 - 10 - VSTM, VSTMDB, VSTMIA - Decrement Before variant -

1 0 1 0 - 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA - Decrement Before variant -

1 0 1 0 - 11 xxxxxxx1 FSTMDBX, FSTMIAX - Decrement Before variant -

1 0 1 1 - 10 - VLDM, VLDMDB, VLDMIA - Decrement Before variant -

1 0 1 1 - 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA - Decrement Before variant -

1 0 1 1 - 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) - Decrement Before variant -

1 - 0 1 1111 01 - VLDR (literal) - Half-precision scalar variant FEAT_FP16

1 - 0 1 1111 10 - VLDR (literal) - Single-precision scalar variant -

1 - 0 1 1111 11 - VLDR (literal) - Double-precision scalar variant -

1 1 1 - - - - Unallocated. -

Decode fields
Instruction page Feature

P U W L Rn size imm8

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

!= 000 0 - - != 0101 0 Unallocated.

!= 000 0 1 1111 0101 0 LDC (literal)

!= 000 - - - - 1 Unallocated.

!= 000 1 - - 0101 0 Unallocated.

0x1 0 0 - 0101 0 STC - Post-indexed variant

0x1 0 1 != 1111 0101 0 LDC (immediate) - Post-indexed variant

010 0 0 - 0101 0 STC - Unindexed variant

010 0 1 != 1111 0101 0 LDC (immediate) - Unindexed variant

1x0 0 0 - 0101 0 STC - Offset variant

!=1111 1 1 0 P U D W L Rn CRd 1 1 1 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

cp15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9834
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.16 Advanced SIMD and System register 32-bit move

This section describes the encoding of the Advanced SIMD and System register 32-bit move group. The encodings
in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call.

F4.1.16.1 Floating-point move special register

This section describes the encoding of the Floating-point move special register instruction class. The encodings in
this section are decoded from Advanced SIMD and System register 32-bit move.

1x0 0 1 != 1111 0101 0 LDC (immediate) - Offset variant

1x1 0 0 - 0101 0 STC - Pre-indexed variant

1x1 0 1 != 1111 0101 0 LDC (immediate) - Pre-indexed variant

Decode fields
Instruction page

P:U:W D L Rn CRd cp15

Table F4-15 Encoding table for the Advanced SIMD and System register 32-bit move group

Decode fields
Decode group or instruction page Feature

op0 op1

 000 000 Unallocated. -

 000 001 VMOV (between general-purpose register and half-precision) FEAT_FP16

 000 010 VMOV (between general-purpose register and single-precision) -

 001 010 Unallocated. -

 01x 010 Unallocated. -

 10x 010 Unallocated. -

 110 010 Unallocated. -

 111 010 Floating-point move special register -

 - 011 Advanced SIMD 8/16/32-bit element move/duplicate -

 - 10x Unallocated. -

 - 11x System register 32-bit move -

!=1111 1110 op0 1 op1 1

31 28 27 24 23 21 20 12 11 10 8 7 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9835
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.16.2 Advanced SIMD 8/16/32-bit element move/duplicate

This section describes the encoding of the Advanced SIMD 8/16/32-bit element move/duplicate instruction class.
The encodings in this section are decoded from Advanced SIMD and System register 32-bit move.

F4.1.16.3 System register 32-bit move

This section describes the encoding of the System register 32-bit move instruction class. The encodings in this
section are decoded from Advanced SIMD and System register 32-bit move.

Decode fields
Instruction page

L

0 VMSR

1 VMRS

Decode fields
Instruction page

opc1 L opc2

0xx 0 - VMOV (general-purpose register to scalar)

- 1 - VMOV (scalar to general-purpose register)

1xx 0 0x VDUP (general-purpose register)

1xx 0 1x Unallocated.

Decode fields
Instruction page

L

0 MCR

1 MRC

!=1111 1 1 1 0 1 1 1 L reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

!=1111 1 1 1 0 opc1 L Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

!=1111 1 1 1 0 opc1 L CRn Rt 1 1 1 opc2 1 CRm

31 28 27 26 25 24 23 21 20 19 16 15 12 11 10 9 8 7 5 4 3 0

cond

cp15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9836
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding

D

o

-

0

0

0

0

0

0

0

0

0

0

F4.1.17 Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. The encodings in this section are
decoded from System register access, Advanced SIMD, floating-point, and Supervisor call.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding

F4.1.17.1 Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing.

Table F4-16 Encoding table for the Floating-point data-processing group

Decode fields
Decode group or instruction page

op0 op1

 1x11 1 Floating-point data-processing (two registers)

 1x11 0 Floating-point move immediate

 != 1x11 - Floating-point data-processing (three registers)

!=1111 1110 op0 10 0

31 28 27 24 23 20 19 12 11 10 9 7 6 5 4 3 0

op1

!=1111 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 size o3 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

ecode fields
Instruction page Feature

1 opc2 size o3

- 00 - Unallocated. -

000 01 0 Unallocated. -

000 01 1 VABS - Half-precision scalar variant FEAT_FP16

000 10 0 VMOV (register) - Single-precision scalar variant -

000 10 1 VABS - Single-precision scalar variant -

000 11 0 VMOV (register) - Double-precision scalar variant -

000 11 1 VABS - Double-precision scalar variant -

001 01 0 VNEG - Half-precision scalar variant FEAT_FP16

001 01 1 VSQRT - Half-precision scalar variant FEAT_FP16

001 10 0 VNEG - Single-precision scalar variant -

001 10 1 VSQRT - Single-precision scalar variant -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9837
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

o

001 11 0 VNEG - Double-precision scalar variant -

001 11 1 VSQRT - Double-precision scalar variant -

010 01 - Unallocated. -

010 10 0 VCVTB - Half-precision to single-precision variant -

010 10 1 VCVTT - Half-precision to single-precision variant -

010 11 0 VCVTB - Half-precision to double-precision variant -

010 11 1 VCVTT - Half-precision to double-precision variant -

011 01 0 VCVTB (BFloat16) FEAT_AA32BF16

011 01 1 VCVTT (BFloat16) FEAT_AA32BF16

011 10 0 VCVTB - Single-precision to half-precision variant -

011 10 1 VCVTT - Single-precision to half-precision variant -

011 11 0 VCVTB - Double-precision to half-precision variant -

011 11 1 VCVTT - Double-precision to half-precision variant -

100 01 0 VCMP FEAT_FP16

100 01 1 VCMPE FEAT_FP16

100 10 0 VCMP -

100 10 1 VCMPE -

100 11 0 VCMP -

100 11 1 VCMPE -

101 01 0 VCMP FEAT_FP16

101 01 1 VCMPE FEAT_FP16

101 10 0 VCMP -

101 10 1 VCMPE -

101 11 0 VCMP -

101 11 1 VCMPE -

110 01 0 VRINTR - Half-precision scalar variant FEAT_FP16

110 01 1 VRINTZ (floating-point) - Half-precision scalar variant FEAT_FP16

110 10 0 VRINTR - Single-precision scalar variant -

110 10 1 VRINTZ (floating-point) - Single-precision scalar variant -

110 11 0 VRINTR - Double-precision scalar variant -

110 11 1 VRINTZ (floating-point) - Double-precision scalar variant -

111 01 0 VRINTX (floating-point) - Half-precision scalar variant FEAT_FP16

ecode fields
Instruction page Feature

1 opc2 size o3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9838
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

D

o

111 01 1 Unallocated. -

111 10 0 VRINTX (floating-point) - Single-precision scalar variant -

111 10 1 VCVT (between double-precision and single-precision) - Single-precision to
double-precision variant

-

111 11 0 VRINTX (floating-point) - Double-precision scalar variant -

111 11 1 VCVT (between double-precision and single-precision) - Double-precision to
single-precision variant

-

000 01 - VCVT (integer to floating-point, floating-point) - Half-precision scalar variant FEAT_FP16

000 10 - VCVT (integer to floating-point, floating-point) - Single-precision scalar variant -

000 11 - VCVT (integer to floating-point, floating-point) - Double-precision scalar variant -

001 01 - Unallocated. -

001 10 - Unallocated. -

001 11 0 Unallocated. -

001 11 1 VJCVT FEAT_JSCVT

01x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

01x 10 - VCVT (between floating-point and fixed-point, floating-point) -

01x 11 - VCVT (between floating-point and fixed-point, floating-point) -

100 01 0 VCVTR FEAT_FP16

100 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

100 10 0 VCVTR -

100 10 1 VCVT (floating-point to integer, floating-point) -

100 11 0 VCVTR -

100 11 1 VCVT (floating-point to integer, floating-point) -

101 01 0 VCVTR FEAT_FP16

101 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

101 10 0 VCVTR -

101 10 1 VCVT (floating-point to integer, floating-point) -

101 11 0 VCVTR -

101 11 1 VCVT (floating-point to integer, floating-point) -

11x 01 - VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16

11x 10 - VCVT (between floating-point and fixed-point, floating-point) -

11x 11 - VCVT (between floating-point and fixed-point, floating-point) -

ecode fields
Instruction page Feature

1 opc2 size o3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9839
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.17.2 Floating-point move immediate

This section describes the encoding of the Floating-point move immediate instruction class. The encodings in this
section are decoded from Floating-point data-processing.

F4.1.17.3 Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. The
encodings in this section are decoded from Floating-point data-processing.

Decode fields
Instruction page Feature

size

00 Unallocated. -

01 VMOV (immediate) - Half-precision scalar variant FEAT_FP16

10 VMOV (immediate) - Single-precision scalar variant -

11 VMOV (immediate) - Double-precision scalar variant -

Decode fields
Instruction page Feature

o0:o1 size o2

!= 111 00 - Unallocated. -

000 01 0 VMLA (floating-point) - Half-precision scalar variant FEAT_FP16

000 01 1 VMLS (floating-point) - Half-precision scalar variant FEAT_FP16

000 10 0 VMLA (floating-point) - Single-precision scalar variant -

000 10 1 VMLS (floating-point) - Single-precision scalar variant -

000 11 0 VMLA (floating-point) - Double-precision scalar variant -

000 11 1 VMLS (floating-point) - Double-precision scalar variant -

001 01 0 VNMLS - Half-precision scalar variant FEAT_FP16

001 01 1 VNMLA - Half-precision scalar variant FEAT_FP16

001 10 0 VNMLS - Single-precision scalar variant -

001 10 1 VNMLA - Single-precision scalar variant -

001 11 0 VNMLS - Double-precision scalar variant -

001 11 1 VNMLA - Double-precision scalar variant -

!=1111 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

!=1111 1 1 1 0 o0 D o1 Vn Vd 1 0 size N o2 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9840
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.18 Unconditional instructions

This section describes the encoding of the Unconditional instructions group. The encodings in this section are
decoded from A32 instruction set encoding.

010 01 0 VMUL (floating-point) - Half-precision scalar variant FEAT_FP16

010 01 1 VNMUL - Half-precision scalar variant FEAT_FP16

010 10 0 VMUL (floating-point) - Single-precision scalar variant -

010 10 1 VNMUL - Single-precision scalar variant -

010 11 0 VMUL (floating-point) - Double-precision scalar variant -

010 11 1 VNMUL - Double-precision scalar variant -

011 01 0 VADD (floating-point) - Half-precision scalar variant FEAT_FP16

011 01 1 VSUB (floating-point) - Half-precision scalar variant FEAT_FP16

011 10 0 VADD (floating-point) - Single-precision scalar variant -

011 10 1 VSUB (floating-point) - Single-precision scalar variant -

011 11 0 VADD (floating-point) - Double-precision scalar variant -

011 11 1 VSUB (floating-point) - Double-precision scalar variant -

100 01 0 VDIV - Half-precision scalar variant FEAT_FP16

100 10 0 VDIV - Single-precision scalar variant -

100 11 0 VDIV - Double-precision scalar variant -

101 01 0 VFNMS - Half-precision scalar variant FEAT_FP16

101 01 1 VFNMA - Half-precision scalar variant FEAT_FP16

101 10 0 VFNMS - Single-precision scalar variant -

101 10 1 VFNMA - Single-precision scalar variant -

101 11 0 VFNMS - Double-precision scalar variant -

101 11 1 VFNMA - Double-precision scalar variant -

110 01 0 VFMA - Half-precision scalar variant FEAT_FP16

110 01 1 VFMS - Half-precision scalar variant FEAT_FP16

110 10 0 VFMA - Single-precision scalar variant -

110 10 1 VFMS - Single-precision scalar variant -

110 11 0 VFMA - Double-precision scalar variant -

110 11 1 VFMS - Double-precision scalar variant -

Decode fields
Instruction page Feature

o0:o1 size o2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9841
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.19 Miscellaneous

This section describes the encoding of the Miscellaneous group. The encodings in this section are decoded from
Unconditional instructions.

Table F4-17 Encoding table for the Unconditional instructions group

Decode fields
Decode group or instruction page

op0 op1

 00x - Miscellaneous

 01x - Advanced SIMD data-processing

 1xx 1 Memory hints and barriers

 100 0 Advanced SIMD element or structure load/store

 101 0 Unallocated.

 11x 0 Unallocated.

11110 op0

31 27 26 24 23 21 20 19 0

op1

Table F4-18 Encoding table for the Miscellaneous group

Decode fields
Decode group or instruction page Feature

op0 op1

 0xxxx - Unallocated. -

 10000 xx0x Change Process State -

 10001 1000 Unallocated. -

 10001 x100 Unallocated. -

 10001 xx01 Unallocated. -

 10001 0000 SETPAN FEAT_PAN

 1000x 0111 Unallocated. -

 10010 0111 CONSTRAINED UNPREDICTABLE -

 10011 0111 Unallocated. -

 1001x xx0x Unallocated. -

 100xx 0011 Unallocated. -

1111000 op0 op1

31 25 24 20 19 8 7 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9842
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings.

F4.1.19.1 Change Process State

This section describes the encoding of the Change Process State instruction class. The encodings in this section are
decoded from Miscellaneous.

F4.1.20 Advanced SIMD data-processing

This section describes the encoding of the Advanced SIMD data-processing group. The encodings in this section
are decoded from Unconditional instructions.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding

 100xx 0x10 Unallocated. -

 100xx 1x1x Unallocated. -

 101xx - Unallocated. -

 11xxx - Unallocated. -

Decode fields
Instruction page

imod M op I F mode

- - 1 0 0 0xxxx SETEND

00 1 0 - - - CPS, CPSID, CPSIE - Change mode variant

10 - 0 - - - CPS, CPSID, CPSIE - Interrupt enable and change mode variant

- - 1 0 0 1xxxx Unallocated.

- - 1 0 1 - Unallocated.

- - 1 1 - - Unallocated.

11 - 0 - - - CPS, CPSID, CPSIE - Interrupt disable and change mode variant

Table F4-18 Encoding table for the Miscellaneous group (continued)

Decode fields
Decode group or instruction page Feature

op0 op1

1 1 1 1 0 0 0 1 0 0 0 0 imod M op (0) (0) (0) (0) (0) (0) E A I F 0 mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9843
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.20.1 Advanced SIMD three registers of the same length

This section describes the encoding of the Advanced SIMD three registers of the same length instruction class. The
encodings in this section are decoded from Advanced SIMD data-processing.

Table F4-19 Encoding table for the Advanced SIMD data-processing group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD three registers of the same length

 1 0 Advanced SIMD two registers, or three registers of different lengths

 1 1 Advanced SIMD shifts and immediate generation

Decode fields
Instruction page Feature

U size opc Q o1

0 0x 1100 - 1 VFMA -

0 0x 1101 - 0 VADD (floating-point) -

0 0x 1101 - 1 VMLA (floating-point) -

0 0x 1110 - 0 VCEQ (register) - A2 -

0 0x 1111 - 0 VMAX (floating-point) -

0 0x 1111 - 1 VRECPS -

- - 0000 - 0 VHADD -

0 00 0001 - 1 VAND (register) -

- - 0000 - 1 VQADD -

- - 0001 - 0 VRHADD -

0 00 1100 - 0 SHA1C FEAT_SHA1

- - 0010 - 0 VHSUB -

0 01 0001 - 1 VBIC (register) -

- - 0010 - 1 VQSUB -

- - 0011 - 0 VCGT (register) - A1 -

1111001

31 25 24 23 22 5 4 3 0

op0 op1

1 1 1 1 0 0 1 U 0 D size Vn Vd opc N Q M o1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9844
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
- - 0011 - 1 VCGE (register) - A1 -

0 01 1100 - 0 SHA1P FEAT_SHA1

0 1x 1100 - 1 VFMS -

0 1x 1101 - 0 VSUB (floating-point) -

0 1x 1101 - 1 VMLS (floating-point) -

0 1x 1110 - 0 Unallocated. -

0 1x 1111 - 0 VMIN (floating-point) -

0 1x 1111 - 1 VRSQRTS -

- - 0100 - 0 VSHL (register) -

0 - 1000 - 0 VADD (integer) -

0 10 0001 - 1 VORR (register) -

0 - 1000 - 1 VTST -

- - 0100 - 1 VQSHL (register) -

0 - 1001 - 0 VMLA (integer) -

- - 0101 - 0 VRSHL -

- - 0101 - 1 VQRSHL -

0 - 1011 - 0 VQDMULH -

0 10 1100 - 0 SHA1M FEAT_SHA1

0 - 1011 - 1 VPADD (integer) -

- - 0110 - 0 VMAX (integer) -

0 11 0001 - 1 VORN (register) -

- - 0110 - 1 VMIN (integer) -

- - 0111 - 0 VABD (integer) -

- - 0111 - 1 VABA -

0 11 1100 - 0 SHA1SU0 FEAT_SHA1

1 0x 1101 - 0 VPADD (floating-point) -

1 0x 1101 - 1 VMUL (floating-point) -

1 0x 1110 - 0 VCGE (register) - A2 -

1 0x 1110 - 1 VACGE -

1 0x 1111 0 0 VPMAX (floating-point) -

1 0x 1111 - 1 VMAXNM -

1 00 0001 - 1 VEOR -

Decode fields
Instruction page Feature

U size opc Q o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9845
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.21 Advanced SIMD two registers, or three registers of different lengths

This section describes the encoding of the Advanced SIMD two registers, or three registers of different lengths
group. The encodings in this section are decoded from Advanced SIMD data-processing.

- - 1001 - 1 VMUL (integer and polynomial) -

1 00 1100 - 0 SHA256H FEAT_SHA256

- - 1010 0 0 VPMAX (integer) -

1 01 0001 - 1 VBSL -

- - 1010 0 1 VPMIN (integer) -

- - 1010 1 - Unallocated. -

1 01 1100 - 0 SHA256H2 FEAT_SHA256

1 1x 1101 - 0 VABD (floating-point) -

1 1x 1110 - 0 VCGT (register) - A2 -

1 1x 1110 - 1 VACGT -

1 1x 1111 0 0 VPMIN (floating-point) -

1 1x 1111 - 1 VMINNM -

1 - 1000 - 0 VSUB (integer) -

1 10 0001 - 1 VBIT -

1 - 1000 - 1 VCEQ (register) - A1 -

1 - 1001 - 0 VMLS (integer) -

1 - 1011 - 0 VQRDMULH -

1 10 1100 - 0 SHA256SU1 FEAT_SHA256

1 - 1011 - 1 VQRDMLAH FEAT_RDM

1 11 0001 - 1 VBIF -

1 - 1100 - 1 VQRDMLSH FEAT_RDM

1 - 1111 1 0 Unallocated. -

Decode fields
Instruction page Feature

U size opc Q o1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9846
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.21.1 Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

Table F4-20 Encoding table for the Advanced SIMD two registers, or three registers of different
lengths group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

 0 11 - - VEXT (byte elements)

 1 11 0x - Advanced SIMD two registers misc

 1 11 10 - VTBL, VTBX

 1 11 11 - Advanced SIMD duplicate (scalar)

 - != 11 - 0 Advanced SIMD three registers of different lengths

 - != 11 - 1 Advanced SIMD two registers and a scalar

1111001 1 op1 op2 0

31 25 24 23 22 21 20 19 12 11 10 9 7 6 5 4 3 0

op0 op3

1 1 1 1 0 0 1 1 1 D 1 1 size opc1 Vd 0 opc2 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 7 6 5 4 3 0

Decode fields
Instruction page Feature

size opc1 opc2 Q

- 00 0000 - VREV64 -

- 00 0001 - VREV32 -

- 00 0010 - VREV16 -

- 00 0011 - Unallocated. -

- 00 010x - VPADDL -

- 00 0110 0 AESE FEAT_AES

- 00 0110 1 AESD FEAT_AES

- 00 0111 0 AESMC FEAT_AES

- 00 0111 1 AESIMC FEAT_AES

- 00 1000 - VCLS -

00 10 0000 - VSWP -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9847
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
- 00 1001 - VCLZ -

- 00 1010 - VCNT -

- 00 1011 - VMVN (register) -

00 10 1100 1 Unallocated. -

- 00 110x - VPADAL -

- 00 1110 - VQABS -

- 00 1111 - VQNEG -

- 01 x000 - VCGT (immediate #0) -

- 01 x001 - VCGE (immediate #0) -

- 01 x010 - VCEQ (immediate #0) -

- 01 x011 - VCLE (immediate #0) -

- 01 x100 - VCLT (immediate #0) -

- 01 x110 - VABS -

- 01 x111 - VNEG -

- 01 0101 1 SHA1H FEAT_SHA1

01 10 1100 1 VCVT (from single-precision to BFloat16, Advanced SIMD) FEAT_AA32BF16

- 10 0001 - VTRN -

- 10 0010 - VUZP -

- 10 0011 - VZIP -

- 10 0100 0 VMOVN -

- 10 0100 1 VQMOVN, VQMOVUN - Unsigned result variant -

- 10 0101 - VQMOVN, VQMOVUN - Signed result variant -

- 10 0110 0 VSHLL -

- 10 0111 0 SHA1SU1 FEAT_SHA1

- 10 0111 1 SHA256SU0 FEAT_SHA256

- 10 1000 - VRINTN (Advanced SIMD) -

- 10 1001 - VRINTX (Advanced SIMD) -

- 10 1010 - VRINTA (Advanced SIMD) -

- 10 1011 - VRINTZ (Advanced SIMD) -

10 10 1100 1 Unallocated. -

- 10 1100 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Single-precision to half-precision variant

-

Decode fields
Instruction page Feature

size opc1 opc2 Q
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9848
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.21.2 Advanced SIMD duplicate (scalar)

This section describes the encoding of the Advanced SIMD duplicate (scalar) instruction class. The encodings in
this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

F4.1.21.3 Advanced SIMD three registers of different lengths

This section describes the encoding of the Advanced SIMD three registers of different lengths instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

- 10 1101 - VRINTM (Advanced SIMD) -

- 10 1110 0 VCVT (between half-precision and single-precision, Advanced SIMD) -
Half-precision to single-precision variant

-

- 10 1110 1 Unallocated. -

- 10 1111 - VRINTP (Advanced SIMD) -

- 11 000x - VCVTA (Advanced SIMD) -

- 11 001x - VCVTN (Advanced SIMD) -

- 11 010x - VCVTP (Advanced SIMD) -

- 11 011x - VCVTM (Advanced SIMD) -

- 11 10x0 - VRECPE -

- 11 10x1 - VRSQRTE -

11 10 1100 1 Unallocated. -

- 11 11xx - VCVT (between floating-point and integer, Advanced SIMD) -

Decode fields
Instruction page Feature

size opc1 opc2 Q

Decode fields
Instruction page

opc

000 VDUP (scalar)

001 Unallocated.

01x Unallocated.

1xx Unallocated.

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 opc Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9849
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.21.4 Advanced SIMD two registers and a scalar

This section describes the encoding of the Advanced SIMD two registers and a scalar instruction class. The
encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths.

Decode fields
Instruction page

U opc

- 0000 VADDL

- 0001 VADDW

- 0010 VSUBL

0 0100 VADDHN

- 0011 VSUBW

0 0110 VSUBHN

0 1001 VQDMLAL

- 0101 VABAL

0 1011 VQDMLSL

0 1101 VQDMULL

- 0111 VABDL (integer)

- 1000 VMLAL (integer)

- 1010 VMLSL (integer)

1 0100 VRADDHN

1 0110 VRSUBHN

- 11x0 VMULL (integer and polynomial)

1 1001 Unallocated.

1 1011 Unallocated.

1 1101 Unallocated.

- 1111 Unallocated.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd opc N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9850
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.22 Advanced SIMD shifts and immediate generation

This section describes the encoding of the Advanced SIMD shifts and immediate generation group. The encodings
in this section are decoded from Advanced SIMD data-processing.

Decode fields
Instruction page Feature

Q opc

- 000x VMLA (by scalar) -

0 0011 VQDMLAL -

- 0010 VMLAL (by scalar) -

0 0111 VQDMLSL -

- 010x VMLS (by scalar) -

0 1011 VQDMULL -

- 0110 VMLSL (by scalar) -

- 100x VMUL (by scalar) -

1 0011 Unallocated. -

- 1010 VMULL (by scalar) -

1 0111 Unallocated. -

- 1100 VQDMULH -

- 1101 VQRDMULH -

1 1011 Unallocated. -

- 1110 VQRDMLAH FEAT_RDM

- 1111 VQRDMLSH FEAT_RDM

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd opc N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

size

Table F4-21 Encoding table for the Advanced SIMD shifts and immediate generation group

Decode fields
Decode group or instruction page

op0

 000xxxxxxxxxxx0 Advanced SIMD one register and modified immediate

 != 000xxxxxxxxxxx0 Advanced SIMD two registers and shift amount

1111001 1 op0 1

31 25 24 23 22 21 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9851
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.22.1 Advanced SIMD one register and modified immediate

This section describes the encoding of the Advanced SIMD one register and modified immediate instruction class.
The encodings in this section are decoded from Advanced SIMD shifts and immediate generation.

F4.1.22.2 Advanced SIMD two registers and shift amount

This section describes the encoding of the Advanced SIMD two registers and shift amount instruction class. The
encodings in this section are decoded from Advanced SIMD shifts and immediate generation.

Decode fields
Instruction page

cmode op

0xx0 0 VMOV (immediate) - A1

0xx0 1 VMVN (immediate) - A1

0xx1 0 VORR (immediate) - A1

0xx1 1 VBIC (immediate) - A1

10x0 0 VMOV (immediate) - A3

10x0 1 VMVN (immediate) - A2

10x1 0 VORR (immediate) - A2

10x1 1 VBIC (immediate) - A2

11xx 0 VMOV (immediate) - A4

110x 1 VMVN (immediate) - A3

1110 1 VMOV (immediate) - A5

1111 1 Unallocated.

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

1 1 1 1 0 0 1 U 1 D imm3H imm3L Vd opc L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 19 18 16 15 12 11 8 7 6 5 4 3 0

Decode fields
Instruction page

U imm3H:L imm3L opc L Q

- != 0000 - 0000 - - VSHR

- != 0000 - 0001 - - VSRA

- != 0000 000 1010 - 0 VMOVL

- != 0000 - 0010 - - VRSHR

- != 0000 - 0011 - - VRSRA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9852
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.23 Memory hints and barriers

This section describes the encoding of the Memory hints and barriers group. The encodings in this section are
decoded from Unconditional instructions.

- != 0000 - 0111 - - VQSHL, VQSHLU (immediate) - 128-bit SIMD vector, signed result variant

- != 0000 - 1001 0 0 VQSHRN, VQSHRUN - Signed result variant

- != 0000 - 1001 0 1 VQRSHRN, VQRSHRUN - Signed result variant

- != 0000 - 1010 0 0 VSHLL

- != 0000 - 11xx 0 - VCVT (between floating-point and fixed-point, Advanced SIMD)

0 != 0000 - 0101 - - VSHL (immediate)

0 != 0000 - 1000 0 0 VSHRN

0 != 0000 - 1000 0 1 VRSHRN

1 != 0000 - 0100 - - VSRI

1 != 0000 - 0101 - - VSLI

1 != 0000 - 0110 - - VQSHL, VQSHLU (immediate) - 128-bit SIMD vector, unsigned result variant

1 != 0000 - 1000 0 0 VQSHRN, VQSHRUN - Unsigned result variant

1 != 0000 - 1000 0 1 VQRSHRN, VQRSHRUN - Unsigned result variant

Decode fields
Instruction page

U imm3H:L imm3L opc L Q

Table F4-22 Encoding table for the Memory hints and barriers group

Decode fields
Decode group or instruction page

op0 op1

 00xx1 - CONSTRAINED UNPREDICTABLE

 01001 - CONSTRAINED UNPREDICTABLE

 01011 - Barriers

 011x1 - CONSTRAINED UNPREDICTABLE

 0xxx0 - Preload (immediate)

 1xxx0 0 Preload (register)

 1xxx1 0 CONSTRAINED UNPREDICTABLE

 1xxxx 1 Unallocated.

111101 op0 1

31 26 25 21 20 19 5 4 3 0

op1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9853
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings.

F4.1.23.1 Barriers

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from
Memory hints and barriers.

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings.

F4.1.23.2 Preload (immediate)

This section describes the encoding of the Preload (immediate) instruction class. The encodings in this section are
decoded from Memory hints and barriers.

Decode fields
Instruction page Feature

opcode option

0000 - CONSTRAINED UNPREDICTABLE -

0001 - CLREX -

001x - CONSTRAINED UNPREDICTABLE -

0100 != 0x00 DSB -

0100 0000 SSBB -

0100 0100 PSSBB -

0101 - DMB -

0110 - ISB -

0111 - SB FEAT_SB

1xxx - CONSTRAINED UNPREDICTABLE -

Decode fields
Instruction page

D R Rn

0 0 - Reserved hint, behaves as NOP.

0 1 - PLI (immediate, literal)

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) opcode option

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4 3 0

1 1 1 1 0 1 0 D U R 0 1 Rn (1) (1) (1) (1) imm12

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9854
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.23.3 Preload (register)

This section describes the encoding of the Preload (register) instruction class. The encodings in this section are
decoded from Memory hints and barriers.

F4.1.24 Advanced SIMD element or structure load/store

This section describes the encoding of the Advanced SIMD element or structure load/store group. The encodings in
this section are decoded from Unconditional instructions.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the
encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding

1 - 1111 PLD (literal)

1 0 != 1111 PLD, PLDW (immediate) - Preload write variant

1 1 != 1111 PLD, PLDW (immediate) - Preload read variant

Decode fields
Instruction page

D o2 imm5:stype

0 0 - Reserved hint, behaves as NOP.

0 1 != 0000011 PLI (register) - Shift or rotate by value variant

0 1 0000011 PLI (register) - Rotate right with extend variant

1 0 != 0000011 PLD, PLDW (register) - Preload write, optional shift or rotate variant

1 0 0000011 PLD, PLDW (register) - Preload write, rotate right with extend variant

1 1 != 0000011 PLD, PLDW (register) - Preload read, optional shift or rotate variant

1 1 0000011 PLD, PLDW (register) - Preload read, rotate right with extend variant

Decode fields
Instruction page

D R Rn

1 1 1 1 0 1 1 D U o2 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9855
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.24.1 Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store.

Table F4-23 Encoding table for the Advanced SIMD element or structure load/store group

Decode fields
Decode group or instruction page

op0 op1

 0 - Advanced SIMD load/store multiple structures

 1 11 Advanced SIMD load single structure to all lanes

 1 != 11 Advanced SIMD load/store single structure to one lane

Decode fields
Instruction page

L itype Rm

0 000x != 11x1 VST4 (multiple 4-element structures)

0 000x 1101 VST4 (multiple 4-element structures)

0 000x 1111 VST4 (multiple 4-element structures)

0 0010 != 11x1 VST1 (multiple single elements)

0 0010 1101 VST1 (multiple single elements)

0 0010 1111 VST1 (multiple single elements)

0 0011 != 11x1 VST2 (multiple 2-element structures)

0 0011 1101 VST2 (multiple 2-element structures)

0 0011 1111 VST2 (multiple 2-element structures)

0 010x != 11x1 VST3 (multiple 3-element structures)

0 010x 1101 VST3 (multiple 3-element structures)

0 010x 1111 VST3 (multiple 3-element structures)

0 0110 != 11x1 VST1 (multiple single elements)

0 0110 1101 VST1 (multiple single elements)

0 0110 1111 VST1 (multiple single elements)

11110100 0 op1

31 24 23 22 21 20 19 12 11 10 9 0

op0

1 1 1 1 0 1 0 0 0 D L 0 Rn Vd itype size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9856
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
0 0111 != 11x1 VST1 (multiple single elements)

0 0111 1101 VST1 (multiple single elements)

0 0111 1111 VST1 (multiple single elements)

0 100x != 11x1 VST2 (multiple 2-element structures)

0 100x 1101 VST2 (multiple 2-element structures)

0 100x 1111 VST2 (multiple 2-element structures)

0 1010 != 11x1 VST1 (multiple single elements)

0 1010 1101 VST1 (multiple single elements)

0 1010 1111 VST1 (multiple single elements)

1 000x != 11x1 VLD4 (multiple 4-element structures)

1 000x 1101 VLD4 (multiple 4-element structures)

1 000x 1111 VLD4 (multiple 4-element structures)

1 0010 != 11x1 VLD1 (multiple single elements)

1 0010 1101 VLD1 (multiple single elements)

1 0010 1111 VLD1 (multiple single elements)

1 0011 != 11x1 VLD2 (multiple 2-element structures)

1 0011 1101 VLD2 (multiple 2-element structures)

1 0011 1111 VLD2 (multiple 2-element structures)

1 010x != 11x1 VLD3 (multiple 3-element structures)

1 010x 1101 VLD3 (multiple 3-element structures)

1 010x 1111 VLD3 (multiple 3-element structures)

- 1011 - Unallocated.

1 0110 != 11x1 VLD1 (multiple single elements)

1 0110 1101 VLD1 (multiple single elements)

1 0110 1111 VLD1 (multiple single elements)

1 0111 != 11x1 VLD1 (multiple single elements)

1 0111 1101 VLD1 (multiple single elements)

1 0111 1111 VLD1 (multiple single elements)

- 11xx - Unallocated.

1 100x != 11x1 VLD2 (multiple 2-element structures)

1 100x 1101 VLD2 (multiple 2-element structures)

1 100x 1111 VLD2 (multiple 2-element structures)

Decode fields
Instruction page

L itype Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9857
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
F4.1.24.2 Advanced SIMD load single structure to all lanes

This section describes the encoding of the Advanced SIMD load single structure to all lanes instruction class. The
encodings in this section are decoded from Advanced SIMD element or structure load/store.

F4.1.24.3 Advanced SIMD load/store single structure to one lane

This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class.
The encodings in this section are decoded from Advanced SIMD element or structure load/store.

1 1010 != 11x1 VLD1 (multiple single elements)

1 1010 1101 VLD1 (multiple single elements)

1 1010 1111 VLD1 (multiple single elements)

Decode fields
Instruction page

L N a Rm

0 - - - Unallocated.

1 00 - != 11x1 VLD1 (single element to all lanes)

1 00 - 1101 VLD1 (single element to all lanes)

1 00 - 1111 VLD1 (single element to all lanes)

1 01 - != 11x1 VLD2 (single 2-element structure to all lanes)

1 01 - 1101 VLD2 (single 2-element structure to all lanes)

1 01 - 1111 VLD2 (single 2-element structure to all lanes)

1 10 0 != 11x1 VLD3 (single 3-element structure to all lanes)

1 10 0 1101 VLD3 (single 3-element structure to all lanes)

1 10 0 1111 VLD3 (single 3-element structure to all lanes)

1 10 1 - Unallocated.

1 11 - != 11x1 VLD4 (single 4-element structure to all lanes)

1 11 - 1101 VLD4 (single 4-element structure to all lanes)

1 11 - 1111 VLD4 (single 4-element structure to all lanes)

Decode fields
Instruction page

L itype Rm

1 1 1 1 0 1 0 0 1 D L 0 Rn Vd 1 1 N size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9858
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
Decode fields
Instruction page

L size N Rm

0 00 00 != 11x1 VST1 (single element from one lane)

0 00 00 1101 VST1 (single element from one lane)

0 00 00 1111 VST1 (single element from one lane)

0 00 01 != 11x1 VST2 (single 2-element structure from one lane)

0 00 01 1101 VST2 (single 2-element structure from one lane)

0 00 01 1111 VST2 (single 2-element structure from one lane)

0 00 10 != 11x1 VST3 (single 3-element structure from one lane)

0 00 10 1101 VST3 (single 3-element structure from one lane)

0 00 10 1111 VST3 (single 3-element structure from one lane)

0 00 11 != 11x1 VST4 (single 4-element structure from one lane)

0 00 11 1101 VST4 (single 4-element structure from one lane)

0 00 11 1111 VST4 (single 4-element structure from one lane)

0 01 00 != 11x1 VST1 (single element from one lane)

0 01 00 1101 VST1 (single element from one lane)

0 01 00 1111 VST1 (single element from one lane)

0 01 01 != 11x1 VST2 (single 2-element structure from one lane)

0 01 01 1101 VST2 (single 2-element structure from one lane)

0 01 01 1111 VST2 (single 2-element structure from one lane)

0 01 10 != 11x1 VST3 (single 3-element structure from one lane)

0 01 10 1101 VST3 (single 3-element structure from one lane)

0 01 10 1111 VST3 (single 3-element structure from one lane)

0 01 11 != 11x1 VST4 (single 4-element structure from one lane)

0 01 11 1101 VST4 (single 4-element structure from one lane)

0 01 11 1111 VST4 (single 4-element structure from one lane)

0 10 00 != 11x1 VST1 (single element from one lane)

0 10 00 1101 VST1 (single element from one lane)

0 10 00 1111 VST1 (single element from one lane)

0 10 01 != 11x1 VST2 (single 2-element structure from one lane)

1 1 1 1 0 1 0 0 1 D L 0 Rn Vd !=11 N index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9859
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
0 10 01 1101 VST2 (single 2-element structure from one lane)

0 10 01 1111 VST2 (single 2-element structure from one lane)

0 10 10 != 11x1 VST3 (single 3-element structure from one lane)

0 10 10 1101 VST3 (single 3-element structure from one lane)

0 10 10 1111 VST3 (single 3-element structure from one lane)

0 10 11 != 11x1 VST4 (single 4-element structure from one lane)

0 10 11 1101 VST4 (single 4-element structure from one lane)

0 10 11 1111 VST4 (single 4-element structure from one lane)

1 00 00 != 11x1 VLD1 (single element to one lane)

1 00 00 1101 VLD1 (single element to one lane)

1 00 00 1111 VLD1 (single element to one lane)

1 00 01 != 11x1 VLD2 (single 2-element structure to one lane)

1 00 01 1101 VLD2 (single 2-element structure to one lane)

1 00 01 1111 VLD2 (single 2-element structure to one lane)

1 00 10 != 11x1 VLD3 (single 3-element structure to one lane)

1 00 10 1101 VLD3 (single 3-element structure to one lane)

1 00 10 1111 VLD3 (single 3-element structure to one lane)

1 00 11 != 11x1 VLD4 (single 4-element structure to one lane)

1 00 11 1101 VLD4 (single 4-element structure to one lane)

1 00 11 1111 VLD4 (single 4-element structure to one lane)

1 01 00 != 11x1 VLD1 (single element to one lane)

1 01 00 1101 VLD1 (single element to one lane)

1 01 00 1111 VLD1 (single element to one lane)

1 01 01 != 11x1 VLD2 (single 2-element structure to one lane)

1 01 01 1101 VLD2 (single 2-element structure to one lane)

1 01 01 1111 VLD2 (single 2-element structure to one lane)

1 01 10 != 11x1 VLD3 (single 3-element structure to one lane)

1 01 10 1101 VLD3 (single 3-element structure to one lane)

1 01 10 1111 VLD3 (single 3-element structure to one lane)

1 01 11 != 11x1 VLD4 (single 4-element structure to one lane)

1 01 11 1101 VLD4 (single 4-element structure to one lane)

1 01 11 1111 VLD4 (single 4-element structure to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9860
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.1 A32 instruction set encoding
1 10 00 != 11x1 VLD1 (single element to one lane)

1 10 00 1101 VLD1 (single element to one lane)

1 10 00 1111 VLD1 (single element to one lane)

1 10 01 != 11x1 VLD2 (single 2-element structure to one lane)

1 10 01 1101 VLD2 (single 2-element structure to one lane)

1 10 01 1111 VLD2 (single 2-element structure to one lane)

1 10 10 != 11x1 VLD3 (single 3-element structure to one lane)

1 10 10 1101 VLD3 (single 3-element structure to one lane)

1 10 10 1111 VLD3 (single 3-element structure to one lane)

1 10 11 != 11x1 VLD4 (single 4-element structure to one lane)

1 10 11 1101 VLD4 (single 4-element structure to one lane)

1 10 11 1111 VLD4 (single 4-element structure to one lane)

Decode fields
Instruction page

L size N Rm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9861
ID032224 Non-Confidential

A32 Instruction Set Encoding
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding
F4.2 About the A32 Advanced SIMD and floating-point instructions and their
encoding

The Advanced SIMD and floating-point instructions are common to the T32 and A32 instruction sets. These
instructions perform Advanced SIMD and floating-point operations on a common register file, the SIMD&FP
register file. This means:

• In general, the instructions that load or store registers in this file, or move data between general-purpose
registers and this register file, are common to the Advanced SIMD and floating-point instructions.

• There are distinct Advanced SIMD data-processing instructions and floating-point data-processing
instructions.

All A32 Advanced SIMD and floating-point instructions have 32-bit encodings. Different groups of these
instructions are decoded from different points in the 32-bit A32 instruction decode structure. Table F4-24 shows
these instruction groups, and where each group is decoded from the overall A32 decode structure:

Table F4-24 Advanced SIMD and floating-point instructions in the A32 decode structure

Advanced SIMD and floating-point instruction
group

A32 decode is from

Advanced SIMD and System register load/store and 64-bit
move

System register access, Advanced SIMD, floating-point, and
Supervisor call

Floating-point data-processing System register access, Advanced SIMD, floating-point, and
Supervisor call

Advanced SIMD and System register 32-bit move System register access, Advanced SIMD, floating-point, and
Supervisor call

Advanced SIMD data-processing Unconditional instructions

Advanced SIMD element or structure load/store Unconditional instructions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F4-9862
ID032224 Non-Confidential

Chapter F5
T32 and A32 Base Instruction Set Instruction
Descriptions

This chapter describes each instruction. It contains the following sections:

• Alphabetical list of T32 and A32 base instruction set instructions.

• Encoding and use of banked register transfer instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9863
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions

This section lists every instruction in the T32 and A32 base instruction sets. For details of the format used see
Format of instruction descriptions.

This section is formatted so that each instruction description starts on a new page.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9864
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.1 ADC, ADCS (immediate)

Add with Carry (immediate) adds an immediate value and the Carry flag value to a register value, and writes the
result to the destination register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

!=1111 0 0 1 0 1 0 1 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9865
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9866
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9867
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.2 ADC, ADCS (register)

Add with Carry (register) adds a register value, the Carry flag value, and an optionally-shifted register value, and
writes the result to the destination register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 0 1 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9868
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ADC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ADCS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

ADC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 1 0 1 Rm Rdn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9869
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ADCS <Rd>, <Rn> had been written.

• Inside an IT block, if ADC<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9870
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9871
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.3 ADC, ADCS (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the Carry flag value, and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 0 1 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9872
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9873
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.4 ADD, ADDS (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD variant

Applies when S == 0 && Rn != 11x1.

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS variant

Applies when S == 1 && Rn != 1101.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' && S == '0' then SEE "ADR";
 if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
ADDS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block

!=1111 0 0 1 0 1 0 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0 0 0 1 1 1 0 imm3 Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9874
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

T2 variant

ADD<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
ADDS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

ADD variant

Applies when S == 0.

ADD<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or
T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
 if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T4

0 0 1 1 0 Rdn imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 0 0 0 S !=1101 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn

1 1 1 1 0 i 1 0 0 0 0 0 !=11x1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9875
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T4 variant

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 if Rn == '1111' then SEE "ADR";
 if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. If the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field.
If omitted, this register is the same as <Rn>.

<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP
is used, see ADD, ADDS (SP plus immediate). If the PC is used, see ADR.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see ADD, ADDS (SP plus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to encoding
T4 (if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if <Rd> is specified
and encoding T2 is preferred to encoding T1 if <Rd> is omitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9876
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, '0');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, '0');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9877
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.5 ADD, ADDS (register)

Add (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1101' then SEE "ADD (SP plus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 0 0 S !=1101 Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9878
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
ADDS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

Applies when !(DN == 1 && Rdn == 101).

ADD<c>{<q>} <Rdn>, <Rm> // Preferred syntax, Inside IT block
ADD{<c>}{<q>} {<Rdn>,} <Rdn>, <Rm>

Decode for this encoding

 if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
 d = UInt(DN:Rdn); n = d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
 if n == 15 && m == 15 then UNPREDICTABLE;
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADD{<c>}.W {<Rd>,} <Rn>, <Rm> // <Rd> == <Rn>, and <Rd>, <Rn>, <Rm> can be represented in T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 0 0 1 1 0 0 Rm Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 0 0 1 0 0 !=1101 Rdn

15 14 13 12 11 10 9 8 7 6 3 2 0

Rm

DN

1 1 1 0 1 0 1 1 0 0 0 S !=1101 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9879
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (register)";
 if Rn == '1101' then SEE "ADD (SP plus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is a simple branch,
see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When
used inside an IT block, and <Rdn> and <Rm> are in the range R0 to R7, <Rdn> must be specified once
so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in behavior
when <Rdn> is specified once or twice.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. If the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

When used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is
optional, and:

• If omitted, this register is the same as <Rn>.

• If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used. If the SP is used, see ADD, ADDS (SP plus register).

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9880
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD, ADDS (SP plus register).

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Inside an IT block, if ADD<c> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using
encoding T2 as though ADD<c> <Rd>, <Rn> had been written. To prevent this happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9881
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.6 ADD, ADDS (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result to the
destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 0 0 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9882
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9883
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.7 ADD, ADDS (SP plus immediate)

Add to SP (immediate) adds an immediate value to the SP value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,
when the destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD variant

Applies when S == 0.

ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

ADD{<c>}{<q>} <Rd>, SP, #<imm8>

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);

!=1111 0 0 1 0 1 0 0 S 1 1 0 1 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 0 1 Rd imm8

15 14 13 12 11 10 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9884
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

ADD{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding

 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T3

ADD variant

Applies when S == 0.

ADD{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 && !setflags then UNPREDICTABLE;

T4

T4 variant

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE;

1 0 1 1 0 0 0 0 0 imm7

15 14 13 12 11 10 9 8 7 6 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9885
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<imm7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[13], imm32, '0');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9886
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.8 ADD, ADDS (SP plus register)

Add to SP (register) adds an optionally-shifted register value to the SP value, and writes the result to the destination
register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ADD, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 0 0 S 1 1 0 1 Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9887
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ADD{<c>}{<q>} {<Rdm>,} SP, <Rdm>

Decode for this encoding

 d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

T2 variant

ADD{<c>}{<q>} {SP,} SP, <Rm>

Decode for this encoding

 if Rm == '1101' then SEE "encoding T1";
 d = 13; m = UInt(Rm); setflags = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T3

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ADD{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

0 1 0 0 0 1 0 0 1 1 0 1 Rdm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

DM

0 1 0 0 0 1 0 0 1 !=1101 1 0 1

15 14 13 12 11 10 9 8 7 6 3 2 1 0

Rm

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9888
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMN (register)";
 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If
omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if the PC
is used, the instruction is a branch to the address calculated by the operation. This is a simple branch,
see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP.

<Rm> For encoding A1 and T2: is the second general-purpose source register, encoded in the "Rm" field.
The PC can be used, but this is deprecated.

For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9889
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[13], shifted, '0');
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9890
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.9 ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result
to the destination register. Arm recommends that, where possible, software avoids using this alias.

This instruction is a pseudo-instruction of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of ADR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

A1

A1 variant

ADD{<c>}{<q>} <Rd>, PC, #<const>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T1

T1 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm8>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3

T3 variant

ADDW{<c>}{<q>} <Rd>, PC, #<imm12> // <Rd>, <imm12> can be represented in T1

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

!=1111 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 0 0 Rd imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9891
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is never the preferred disassembly.

ADD{<c>}{<q>} <Rd>, PC, #<imm12>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

For encoding T1 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T3: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9892
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.10 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC). The
pseudo-instruction is never the preferred disassembly.

A1

A1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = A32ExpandImm(imm12); add = TRUE;

A2

A2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = A32ExpandImm(imm12); add = FALSE;

T1

T1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

!=1111 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

!=1111 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 0 0 Rd imm8

15 14 13 12 11 10 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9893
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

T3 variant

ADR{<c>}.W <Rd>, <label> // <Rd>, <label> can be presented in T1
ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1 and A2: is the general-purpose destination register, encoded in the "Rd" field. If
the PC is used, the instruction is a branch to the address calculated by the operation. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

Alias or pseudo-instruction of variant is preferred when

ADD (immediate, to PC) - Never

SUB (immediate, from PC) T2 i:imm3:imm8 == '000000000000'

SUB (immediate, from PC) A2 imm12 == '000000000000'

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9894
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1 and A2: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

The instruction aliases permit the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
 if d == 15 then // Can only occur for A32 encodings
 ALUWritePC(result);
 else
 R[d] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9895
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.11 AND, ANDS (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS variant

Applies when S == 1.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 0 0 0 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9896
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ANDS variant

Applies when S == 1 && Rd != 1111.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TST (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9897
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9898
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.12 AND, ANDS (register)

Bitwise AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

AND, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 0 0 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9899
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

AND<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ANDS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

AND, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

AND<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

ANDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TST (register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 0 0 0 Rm Rdn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9900
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if ANDS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though ANDS <Rd>, <Rn> had been written.

• Inside an IT block, if AND<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though AND<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9901
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9902
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.13 AND, ANDS (register-shifted register)

Bitwise AND (register-shifted register) performs a bitwise AND of a register value and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 0 0 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9903
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9904
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.14 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of its sign bit, and writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOV, shift or rotate by value variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

T2 variant

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3

MOV, shift or rotate by value variant

ASR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd imm5 1 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 1 0 imm5 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9905
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9906
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.15 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The variable number of bits is read from the bottom byte of
a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Not flag setting variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

Arithmetic shift right variant

ASR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

ASR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 0 0 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9907
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9908
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.16 ASRS (immediate)

Arithmetic Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits,
shifting in copies of its sign bit, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOVS, shift or rotate by value variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

T2 variant

ASRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

 is equivalent to

MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd imm5 1 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 1 0 imm5 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9909
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

MOVS, shift or rotate by value variant

ASRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9910
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.17 ASRS (register)

Arithmetic Shift Right, setting flags (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result.
The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Flag setting variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

Arithmetic shift right variant

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

ASRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 0 0 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9911
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9912
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.18 B

Branch causes a branch to a target address.

A1

A1 variant

B{<c>}{<q>} <label>

Decode for this encoding

 imm32 = SignExtend(imm24:'00', 32);

T1

T1 variant

B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

 if cond == '1110' then SEE "UDF";
 if cond == '1111' then SEE "SVC";
 imm32 = SignExtend(imm8:'0', 32);
 if InITBlock() then UNPREDICTABLE;

T2

T2 variant

B{<c>}{<q>} <label> // Outside or last in IT block

Decode for this encoding

 imm32 = SignExtend(imm11:'0', 32);
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

!=1111 1 0 1 0 imm24

31 28 27 26 25 24 23 0

cond

1 1 0 1 !=111x imm8

15 14 13 12 11 8 7 0

cond

1 1 1 0 0 imm11

15 14 13 12 11 10 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9913
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

T3 variant

B<c>.W <label> // Not permitted in IT block, and <label> can be represented in T1
B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

 if cond<3:1> == '111' then SEE "Related encodings";
 imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
 if InITBlock() then UNPREDICTABLE;

T4

T4 variant

B{<c>}.W <label> // <label> can be represented in T2
B{<c>}{<q>} <label>

Decode for this encoding

 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Related encodings: Branches and miscellaneous control.

Assembler symbols

<c> For encoding A1, T2 and T4: see Standard assembler syntax fields.

For encoding T1: see Standard assembler syntax fields. Must not be AL or omitted.

For encoding T3: see Standard assembler syntax fields. <c> must not be AL or omitted.

<q> See Standard assembler syntax fields.

<label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range –33554432 to 33554428.

For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –256 to 254.

1 1 1 1 0 S !=111x imm6 1 0 J1 0 J2 imm11

15 14 13 12 11 10 9 6 5 0 15 14 13 12 11 10 0

cond

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11

15 14 13 12 11 10 9 0 15 14 13 12 11 10 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9914
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –2048 to
2046.

For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are even numbers in the range –1048576 to 1048574.

For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are even numbers in the range –16777216 to 16777214.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 BranchWritePC(PC32 + imm32, BranchType_DIR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9915
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.19 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.

A1

A1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd);
 constant integer msbit = UInt(msb);
 constant integer lsbit = UInt(lsb);
 if d == 15 then UNPREDICTABLE;
 if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd);
 constant integer msbit = UInt(msb);
 constant integer lsbit = UInt(imm3:imm2);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 1 1 1 1

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9916
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<lsb> For encoding A1: is the least significant bit to be cleared, in the range 0 to 31, encoded in the "lsb"
field.

For encoding T1: is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<msbit:lsbit> = Replicate('0', (msbit-lsbit)+1);
 // Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9917
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.20 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.

A1

A1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 if Rn == '1111' then SEE "BFC";
 d = UInt(Rd); n = UInt(Rn);
 constant integer msbit = UInt(msb);
 constant integer lsbit = UInt(lsb);
 if d == 15 then UNPREDICTABLE;
 if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 if Rn == '1111' then SEE "BFC";
 d = UInt(Rd); n = UInt(Rn);
 constant integer msbit = UInt(msb);
 constant integer lsbit = UInt(imm3:imm2);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 !=1111

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond Rn

1 1 1 1 0 (0) 1 1 0 1 1 0 !=1111 0 imm3 Rd imm2 (0) msb

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9918
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the least significant destination bit, in the range 0 to 31, encoded in the "lsb"
field.

For encoding T1: is the least significant destination bit, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
 // Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9919
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.21 BIC, BICS (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate
value, and writes the result to the destination register.

If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The BICS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 1 1 1 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9920
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the BIC variant, the instruction is a branch to the address calculated by the operation. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND NOT(imm32);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9921
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9922
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.22 BIC, BICS (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register.

If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The BICS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

BIC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 1 0 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9923
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
BICS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

BIC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

BIC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

BICS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 1 1 1 0 Rm Rdn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9924
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the BIC variant, the instruction is a branch to the address calculated by the operation. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND NOT(shifted);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9925
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9926
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.23 BIC, BICS (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement of a
register-shifted register value. It writes the result to the destination register, and can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

!=1111 0 0 0 1 1 1 0 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9927
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND NOT(shifted);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9928
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.24 BKPT

Breakpoint causes a Breakpoint Instruction exception.

Breakpoint is always unconditional, even when inside an IT block.

A1

A1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding

 imm16 = imm12:imm4;
 if cond != '1110' then UNPREDICTABLE; // BKPT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding

 imm16 = ZeroExtend(imm8, 16);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields. A BKPT instruction must be unconditional.

!=1111 0 0 0 1 0 0 1 0 imm12 0 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 0 1 1 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9929
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value:

• Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.

• Is ignored otherwise.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
This value:

• Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.

• Is ignored otherwise.

Operation for all encodings

 EncodingSpecificOperations();
 AArch32.SoftwareBreakpoint(imm16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9930
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.25 BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address, and setting LR to the return address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address, setting LR
to the return address, and changes the instruction set from A32 to T32, or from T32 to A32.

A1

A1 variant

BL{<c>}{<q>} <label>

Decode for this encoding

 imm32 = SignExtend(imm24:'00', 32); targetInstrSet = InstrSet_A32;

A2

A2 variant

BLX{<c>}{<q>} <label>

Decode for this encoding

 imm32 = SignExtend(imm24:H:'0', 32); targetInstrSet = InstrSet_T32;

T1

T1 variant

BL{<c>}{<q>} <label>

Decode for this encoding

 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
 targetInstrSet = InstrSet_T32;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

!=1111 1 0 1 1 imm24

31 28 27 26 25 24 23 0

cond

1 1 1 1 1 0 1 H imm24

31 28 27 26 25 24 23 0

cond

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11

15 14 13 12 11 10 9 0 15 14 13 12 11 10 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9931
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

BLX{<c>}{<q>} <label>

Decode for this encoding

 if H == '1' then UNDEFINED;
 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10H:imm10L:'00', 32);
 targetInstrSet = InstrSet_A32;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1, T1 and T2: see Standard assembler syntax fields.

For encoding A2: see Standard assembler syntax fields. <c> must be AL or omitted.

<q> See Standard assembler syntax fields.

<label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BL instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range –33554432 to 33554428.

For encoding A2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BLX instruction to this label, then selects an
encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range –33554432 to 33554430.

For encoding T1: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the PC value of the BL instruction to
this label, then selects an encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range –16777216 to 16777214.

For encoding T2: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the Align(PC, 4) value of the BLX
instruction to this label, then selects an encoding with imm32 set to that offset.

Permitted offsets are multiples of 4 in the range –16777216 to 16777212.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if CurrentInstrSet() == InstrSet_A32 then
 LR = PC32 - 4;
 else
 LR = PC32<31:1> : '1';
 bits(32) targetAddress;
 if targetInstrSet == InstrSet_A32 then

1 1 1 1 0 S imm10H 1 1 J1 0 J2 imm10L H

15 14 13 12 11 10 9 0 15 14 13 12 11 10 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9932
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 targetAddress = Align(PC32,4) + imm32;
 else
 targetAddress = PC32 + imm32;
 SelectInstrSet(targetInstrSet);
 BranchWritePC(targetAddress, BranchType_DIRCALL);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9933
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.26 BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address specified in the register, and if necessary
changes to the instruction set indicated by bit[0] of the register value. If the value in bit[0] is 0, the instruction set
after the branch will be A32. If the value in bit[0] is 1, the instruction set after the branch will be T32.

A1

A1 variant

BLX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE;

T1

T1 variant

BLX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 target = R[m];
 bits(32) next_instr_addr;
 if CurrentInstrSet() == InstrSet_A32 then

!=1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 0 0 1 1 1 1 Rm (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9934
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 next_instr_addr = PC32 - 4;
 LR = next_instr_addr;
 else
 next_instr_addr = PC32 - 2;
 LR = next_instr_addr<31:1> : '1';
 BXWritePC(target, BranchType_INDCALL);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9935
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.27 BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.

A1

A1 variant

BX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);

T1

T1 variant

BX{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> For encoding A1: is the general-purpose register holding the address to be branched to, encoded in
the "Rm" field. The PC can be used.

For encoding T1: is the general-purpose register holding the address to be branched to, encoded in
the "Rm" field. The PC can be used.

Note
If <Rm> is the PC at a non word-aligned address, it results in UNPREDICTABLE behavior because the
address passed to the BXWritePC() pseudocode function has bits<1:0> = '10'.

!=1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 0 0 1 1 1 0 Rm (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9936
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 BXWritePC(R[m], BranchType_INDIR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9937
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.28 BXJ

Branch and Exchange, previously Branch and Exchange Jazelle.

BXJ behaves as a BX instruction, see BX. This means it causes a branch to an address and instruction set specified by
a register.

A1

A1 variant

BXJ{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE;

T1

T1 variant

BXJ{<c>}{<q>} <Rm>

Decode for this encoding

 m = UInt(Rm);
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 BXWritePC(R[m], BranchType_INDIR);

!=1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 1 0 0 Rm 1 0 (0) 0 (1) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9938
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.29 CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and
conditionally branch forward a constant value. They do not affect the condition flags.

T1

CBNZ variant

Applies when op == 1.

CBNZ{<q>} <Rn>, <label>

CBZ variant

Applies when op == 0.

CBZ{<q>} <Rn>, <label>

Decode for all variants of this encoding

 n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.

<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 and in
the range 0 to 126, is encoded as "i:imm5" times 2.

Operation

 EncodingSpecificOperations();
 if nonzero != IsZero(R[n]) then
 CBWritePC(PC32 + imm32);

1 0 1 1 op 0 i 1 imm5 Rn

15 14 13 12 11 10 9 8 7 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9939
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.30 CLRBHB

Clear Branch History clears the branch history for the current context to the extent that branch history information
created before the CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control
the execution of any indirect branches in code in the current context that appear in program order after the
instruction.

A1

(FEAT_CLRBHB)

A1 variant

CLRBHB{<c>}{<q>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_CLRBHB) then EndOfInstruction(); // Instruction executes as NOP

T1

(FEAT_CLRBHB)

T1 variant

CLRBHB{<c>}{<q>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_CLRBHB) then EndOfInstruction(); // Instruction executes as NOP

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_CLRBHB();

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 1 1 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9940
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.31 CLREX

Clear-Exclusive clears the local monitor of the executing PE.

A1

A1 variant

CLREX{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

CLREX{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 ClearExclusiveLocal(ProcessorID());

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 (1) (1) (1) (1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9941
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.32 CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

A1

A1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 1 0 1 1 0 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 1 Rn 1 1 1 1 Rd 1 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9942
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = CountLeadingZeroBits(R[m]);
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9943
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.33 CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based
on the result, and discards the result.

A1

A1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = A32ExpandImm(imm12);

T1

T1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

!=1111 0 0 1 1 0 1 1 1 Rn (0) (0) (0) (0) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9944
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], imm32, '0');
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9945
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.34 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

T1 variant

CMN{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

!=1111 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 0 1 1 Rm Rn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9946
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

CMN{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9947
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9948
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.35 CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It updates the
condition flags based on the result, and discards the result.

A1

A1 variant

CMN{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], shifted, '0');
 PSTATE.<N,Z,C,V> = nzcv;

!=1111 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9949
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9950
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.36 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on
the result, and discards the result.

A1

A1 variant

CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = A32ExpandImm(imm12);

T1

T1 variant

CMP{<c>}{<q>} <Rn>, #<imm8>

Decode for this encoding

 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

T2

T2 variant

CMP{<c>}.W <Rn>, #<const> // <Rd>, <const> can be represented in T1
CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 1 0 1 Rn (0) (0) (0) (0) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

0 0 1 0 1 Rn imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9951
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9952
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.37 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

CMP{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

T1 variant

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> both from R0-R7

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> not both from R0-R7

!=1111 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 0 1 0 Rm Rn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 1 N Rm Rn

15 14 13 12 11 10 9 8 7 6 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9953
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 n = UInt(N:Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);
 if n < 8 && m < 8 then UNPREDICTABLE;
 if n == 15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n < 8 && m < 8, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The condition flags become UNKNOWN.

T3

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

CMP{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1 or T2
CMP{<c>}{<q>} <Rn>, <Rm>, <shift> #<amount>

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9954
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1, T2 and T3: is the second general-purpose source register, encoded in the "Rm"
field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9955
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.38 CMP (register-shifted register)

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

A1

A1 variant

CMP{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 PSTATE.<N,Z,C,V> = nzcv;

!=1111 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9956
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9957
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.39 CPS, CPSID, CPSIE

Change PE State changes one or more of the PSTATE.{A, I, F} interrupt mask bits and, optionally, the PSTATE.M
mode field, without changing any other PSTATE bits.

CPS is treated as NOP if executed in User mode unless it is defined as being CONSTRAINED UNPREDICTABLE elsewhere
in this section.

The PE checks whether the value being written to PSTATE.M is legal. See Illegal changes to PSTATE.M.

A1

Change mode variant

Applies when imod == 00 && M == 1.

CPS{<q>} #<mode> // Cannot be conditional

Interrupt disable variant

Applies when imod == 11 && M == 0.

CPSID{<q>} <iflags> // Cannot be conditional

Interrupt disable and change mode variant

Applies when imod == 11 && M == 1.

CPSID{<q>} <iflags> , #<mode> // Cannot be conditional

Interrupt enable variant

Applies when imod == 10 && M == 0.

CPSIE{<q>} <iflags> // Cannot be conditional

Interrupt enable and change mode variant

Applies when imod == 10 && M == 1.

CPSIE{<q>} <iflags> , #<mode> // Cannot be conditional

Decode for all variants of this encoding

 if mode != '00000' && M == '0' then UNPREDICTABLE;
 if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
 enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1'); pemode = mode;
 affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
 if (imod == '00' && M == '0') || imod == '01' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 0 0 0 1 0 0 0 0 imod M 0 (0) (0) (0) (0) (0) (0) (0) A I F 0 mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9958
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If imod == '00' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: changemode = TRUE.

• The instruction executes as described, and the value specified by mode is ignored. There are no additional
side-effects.

If imod<1> == '1' && A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '0'.

• The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '1'.

• The instruction behaves as if A:I:F == '000'.

T1

Interrupt disable variant

Applies when im == 1.

CPSID{<q>} <iflags> // Not permitted in IT block

Interrupt enable variant

Applies when im == 0.

CPSIE{<q>} <iflags> // Not permitted in IT block

Decode for all variants of this encoding

 if A:I:F == '000' then UNPREDICTABLE;
 enable = (im == '0'); disable = (im == '1'); changemode = FALSE;
 affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
 bits(5) pemode = bits(5) UNKNOWN;
 if InITBlock() then UNPREDICTABLE;

1 0 1 1 0 1 1 0 0 1 1 im (0) A I F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9959
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

T2

Change mode variant

Applies when imod == 00 && M == 1.

CPS{<q>} #<mode> // Not permitted in IT block

Interrupt disable variant

Applies when imod == 11 && M == 0.

CPSID.W <iflags> // Not permitted in IT block

Interrupt disable and change mode variant

Applies when imod == 11 && M == 1.

CPSID{<q>} <iflags>, #<mode> // Not permitted in IT block

Interrupt enable variant

Applies when imod == 10 && M == 0.

CPSIE.W <iflags> // Not permitted in IT block

Interrupt enable and change mode variant

Applies when imod == 10 && M == 1.

CPSIE{<q>} <iflags>, #<mode> // Not permitted in IT block

Decode for all variants of this encoding

 if imod == '00' && M == '0' then SEE "Hint instructions";
 if mode != '00000' && M == '0' then UNPREDICTABLE;
 if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
 enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1'); pemode = mode;
 affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
 if imod == '01' || InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9960
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: changemode = TRUE.

• The instruction executes as described, and the value specified by mode is ignored. There are no additional
side-effects.

If imod<1> == '1' && A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '0'.

• The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction behaves as if imod<1> == '1'.

• The instruction behaves as if A:I:F == '000'.

Notes for all encodings

Hint instructions: In encoding T2, if the imod field is 00 and the M bit is 0, a hint instruction is encoded. To determine
which hint instruction, see Branches and miscellaneous control.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:

a Sets the A bit in the instruction, causing the specified effect on PSTATE.A, the SError
interrupt mask bit.

i Sets the I bit in the instruction, causing the specified effect on PSTATE.I, the IRQ
interrupt mask bit.

f Sets the F bit in the instruction, causing the specified effect on PSTATE.F, the FIQ
interrupt mask bit.

<mode> Is the number of the mode to change to, in the range 0 to 31, encoded in the "mode" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 if enable then
 if affectA then PSTATE.A = '0';
 if affectI then PSTATE.I = '0';
 if affectF then PSTATE.F = '0';
 if disable then
 if affectA then PSTATE.A = '1';
 if affectI then PSTATE.I = '1';
 if affectF then PSTATE.F = '1';
 if changemode then
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9961
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 AArch32.WriteModeByInstr(pemode);
 else
 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 if enable then
 if affectA then PSTATE.A = '0';
 if affectI then PSTATE.I = '0';
 if affectF then PSTATE.F = '0';
 if disable then
 if affectA then PSTATE.A = '1';
 if affectI then PSTATE.I = '1';
 if affectF then PSTATE.F = '1';
 if changemode then
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
 AArch32.WriteModeByInstr(pemode);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9962
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.40 CRC32

CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes
an input CRC value in the first source operand, performs a CRC on the input value in the second source operand,
and returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage,
the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is used for the CRC
calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all
implementations to implement this instruction.

Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

(FEAT_CRC32)

CRC32B variant

Applies when sz == 00.

CRC32B{<q>} <Rd>, <Rn>, <Rm>

CRC32H variant

Applies when sz == 01.

CRC32H{<q>} <Rd>, <Rn>, <Rm>

CRC32W variant

Applies when sz == 10.

CRC32W{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 constant integer size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;
 if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

!=1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) 0 (0) 0 1 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9963
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

(FEAT_CRC32)

CRC32B variant

Applies when sz == 00.

CRC32B{<q>} <Rd>, <Rn>, <Rm>

CRC32H variant

Applies when sz == 01.

CRC32H{<q>} <Rd>, <Rn>, <Rm>

CRC32W variant

Applies when sz == 10.

CRC32W{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 constant integer size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 1 0 sz Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

C

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9964
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<q> See Standard assembler syntax fields. A CRC32 instruction must be unconditional.

<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.

<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.

<Rm> Is the general-purpose data source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 acc = R[n]; // accumulator
 val = R[m]<size-1:0>; // input value
 poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
 tempacc = BitReverse(acc):Zeros(size);
 tempval = BitReverse(val):Zeros(32);
 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9965
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.41 CRC32C

CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes
an input CRC value in the first source operand, performs a CRC on the input value in the second source operand,
and returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage,
the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41 is used for the CRC
calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all
implementations to implement this instruction.

Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

(FEAT_CRC32)

CRC32CB variant

Applies when sz == 00.

CRC32CB{<q>} <Rd>, <Rn>, <Rm>

CRC32CH variant

Applies when sz == 01.

CRC32CH{<q>} <Rd>, <Rn>, <Rm>

CRC32CW variant

Applies when sz == 10.

CRC32CW{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 constant integer size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;
 if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

!=1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) 1 (0) 0 1 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9966
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

(FEAT_CRC32)

CRC32CB variant

Applies when sz == 00.

CRC32CB{<q>} <Rd>, <Rn>, <Rm>

CRC32CH variant

Applies when sz == 01.

CRC32CH{<q>} <Rd>, <Rn>, <Rm>

CRC32CW variant

Applies when sz == 10.

CRC32CW{<q>} <Rd>, <Rn>, <Rm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_CRC32) then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 constant integer size = 8 << UInt(sz);
 crc32c = (C == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: size = 32;.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 1 0 sz Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

C

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9967
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<q> See Standard assembler syntax fields. A CRC32C instruction must be unconditional.

<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.

<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.

<Rm> Is the general-purpose data source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 acc = R[n]; // accumulator
 val = R[m]<size-1:0>; // input value
 poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
 tempacc = BitReverse(acc):Zeros(size);
 tempval = BitReverse(val):Zeros(32);
 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
 R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9968
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.42 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution arising from data
value prediction. For more information and details of the semantics, see Consumption of Speculative Data Barrier
(CSDB).

A1

A1 variant

CSDB{<c>}{<q>}

Decode for this encoding

 if cond != '1110' then UNPREDICTABLE; // CSDB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

CSDB{<c>}{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 1 0 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9969
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 ConsumptionOfSpeculativeDataBarrier();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9970
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.43 DBG

DBG executes as a NOP. Arm deprecates any use of the DBG instruction.

A1

A1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

 // DBG executes as a NOP. The 'option' field is ignored

T1

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

 // DBG executes as a NOP. The 'option' field is ignored

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 1 1 1 1 option

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9971
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.44 DCPS1

Debug Change PE State to EL1 allows the debugger to move the PE into EL1 from EL0 or to a specific mode at the
current Exception level.

DCPS1 is UNDEFINED if any of:

• The PE is in Non-debug state.

• EL2 is implemented, EL2 is implemented and enabled in the current Security state, and any of:

— EL2 is using AArch32 and HCR.TGE is set to 1.

— EL2 is using AArch64 and HCR_EL2.TGE is set to 1.

When the PE executes DCPS1 at EL0, EL1 or EL3:

• If EL3 or EL1 is using AArch32, the PE enters SVC mode and LR_svc, SPSR_svc, DLR, and DSPSR
become UNKNOWN. If DCPS1 is executed in Monitor mode, SCR.NS is cleared to 0.

• If EL1 is using AArch64, the PE enters EL1 using AArch64, selects SP_EL1, and ELR_EL1, ESR_EL1,
SPSR_EL1, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

When the PE executes DCPS1 at EL2 the PE does not change mode, and ELR_hyp, HSR, SPSR_hyp, DLR and
DSPSR become UNKNOWN.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

T1

T1 variant

DCPS1

Decode for this encoding

 // No additional decoding required.

Operation

 if !Halted() then UNDEFINED;

 if EL2Enabled() && PSTATE.EL == EL0 then
 tge = if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE;
 if tge == '1' then UNDEFINED;

 if PSTATE.EL != EL0 || ELUsingAArch32(EL1) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 if PSTATE.EL != EL2 then
 AArch32.WriteMode(M32_Svc);
 PSTATE.E = SCTLR.EE;
 if IsFeatureImplemented(FEAT_PAN) && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 LR_svc = bits(32) UNKNOWN;
 SPSR_svc = bits(32) UNKNOWN;
 else
 PSTATE.E = HSCTLR.EE;
 ELR_hyp = bits(32) UNKNOWN;
 HSR = bits(32) UNKNOWN;
 SPSR_hyp = bits(32) UNKNOWN;

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9972
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 else // Targeting EL1 using AArch64
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(EL1);
 PSTATE.nRW = '0';
 PSTATE.SP = '1';
 PSTATE.EL = EL1;
 if IsFeatureImplemented(FEAT_PAN) && SCTLR_EL1.SPAN == '0' then PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = '0';

 ELR_EL1 = bits(64) UNKNOWN;
 ESR_EL1 = bits(64) UNKNOWN;
 SPSR_EL1 = bits(64) UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 // SCTLR_EL1.IESB might be ignored in Debug state.
 if (IsFeatureImplemented(FEAT_IESB) && SCTLR_EL1.IESB == '1' &&
 !ConstrainUnpredictableBool(Unpredictable_IESBinDebug)) then
 SynchronizeErrors();

 UpdateEDSCRFields(); // Update EDSCR PE state flags
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9973
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.45 DCPS2

Debug Change PE State to EL2 allows the debugger to move the PE into EL2 from a lower Exception level.

DCPS2 is UNDEFINED if any of:

• The PE is in Non-debug state.

• EL2 is not implemented.

• The PE is in Secure state and any of:

— Secure EL2 is not implemented.

— Secure EL2 is implemented and Secure EL2 is disabled.

When the PE executes DCPS2:

• If EL2 is using AArch32, the PE enters Hyp mode and ELR_hyp, HSR, SPSR_hyp, DLR and DSPSR
become UNKNOWN.

• If EL2 is using AArch64, the PE enters EL2 using AArch64, selects SP_EL2, and ELR_EL2, ESR_EL2,
SPSR_EL2, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

T1

T1 variant

DCPS2

Decode for this encoding

 if !HaveEL(EL2) then UNDEFINED;

Operation

 if !Halted() || !EL2Enabled() then UNDEFINED;

 if ELUsingAArch32(EL2) then
 AArch32.WriteMode(M32_Hyp);
 PSTATE.E = HSCTLR.EE;

 ELR_hyp = bits(32) UNKNOWN;
 HSR = bits(32) UNKNOWN;
 SPSR_hyp = bits(32) UNKNOWN;

 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 else // Targeting EL2 using AArch64
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(EL2);
 PSTATE.nRW = '0';
 PSTATE.SP = '1';
 PSTATE.EL = EL2;
 if IsFeatureImplemented(FEAT_PAN) && SCTLR_EL2.SPAN == '0' && ELIsInHost(EL0) then
 PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = '0';

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9974
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 ELR_EL2 = bits(64) UNKNOWN;
 ESR_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(64) UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 // SCTLR_EL2.IESB might be ignored in Debug state.
 if (IsFeatureImplemented(FEAT_IESB) && SCTLR_EL2.IESB == '1' &&
 !ConstrainUnpredictableBool(Unpredictable_IESBinDebug)) then
 SynchronizeErrors();

 UpdateEDSCRFields(); // Update EDSCR PE state flags
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9975
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.46 DCPS3

Debug Change PE State to EL3 allows the debugger to move the PE into EL3 from a lower Exception level or to a
specific mode at the current Exception level.

DCPS3 is UNDEFINED if any of:

• The PE is in Non-debug state.

• EL3 is not implemented.

• EDSCR.SDD is set to 1.

When the PE executes DCPS3:

• If EL3 is using AArch32, the PE enters Monitor mode and LR_mon, SPSR_mon, DLR and DSPSR become
UNKNOWN. If DCPS3 is executed in Monitor mode, SCR.NS is cleared to 0.

• If EL3 is using AArch64, the PE enters EL3 using AArch64, selects SP_EL3, and ELR_EL3, ESR_EL3,
SPSR_EL3, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

For more information on the operation of the DCPS<n> instructions, see DCPS<n>.

T1

T1 variant

DCPS3

Decode for this encoding

 if !HaveEL(EL3) then UNDEFINED;

Operation

 if !Halted() || EDSCR.SDD == '1' then UNDEFINED;

 if ELUsingAArch32(EL3) then
 from_secure = CurrentSecurityState() == SS_Secure;
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 if IsFeatureImplemented(FEAT_PAN) then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 PSTATE.E = SCTLR.EE;

 LR_mon = bits(32) UNKNOWN;
 SPSR_mon = bits(32) UNKNOWN;

 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 else // Targeting EL3 using AArch64
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(EL3);
 PSTATE.nRW = '0';
 PSTATE.SP = '1';
 PSTATE.EL = EL3;

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9976
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = '0';

 ELR_EL3 = bits(64) UNKNOWN;
 ESR_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(64) UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 sync_errors = IsFeatureImplemented(FEAT_IESB) && SCTLR_EL3.IESB == '1';
 if IsFeatureImplemented(FEAT_DoubleFault) && EffectiveEA() == '1' && SCR_EL3.NMEA == '1' then
 sync_errors = TRUE;
 // SCTLR_EL3.IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
 sync_errors = FALSE;
 if sync_errors then SynchronizeErrors();

 UpdateEDSCRFields(); // Update EDSCR PE state flags
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9977
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.47 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB).

A1

A1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Can be omitted. This option is
referred to as the full system barrier. Encoded as option = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. SYST is a synonym for ST. Encoded as option =
0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 1 option

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9978
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type
both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Memory
Barrier (DMB). All other encodings of option are reserved. All unsupported and reserved options
must execute as a full system DMB operation, but software must not rely on this behavior.

Note

The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

• SH as an alias for ISH.

• SHST as an alias for ISHST.

• UN as an alias for NSH.

• UNST as an alias for NSHST.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 MBReqDomain domain;
 MBReqTypes types;
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9979
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
 domain = MBReqDomain_OuterShareable;
 if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
 domain = MBReqDomain_InnerShareable;

 DataMemoryBarrier(domain, types);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9980
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.48 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB).

An AArch32 DSB instruction does not require the completion of any AArch64 TLB maintenance instructions,
regardless of the nXS qualifier, appearing in program order before the AArch32 DSB.

A1

A1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Can be omitted. This option is
referred to as the full system barrier. Encoded as option = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. SYST is a synonym for ST. Encoded as option =
0b1110.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 !=0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

option

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 !=0x00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

option
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9981
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type
both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data
Synchronization Barrier (DSB). All other encodings of option are reserved, other than the values
0b0000 and 0b0100. All unsupported and reserved options must execute as a full system DSB
operation, but software must not rely on this behavior.

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

• SH as an alias for ISH.

• SHST as an alias for ISHST.

• UN as an alias for NSH.

• UNST as an alias for NSHST.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 boolean nXS;
 if IsFeatureImplemented(FEAT_XS) then
 nXS = (PSTATE.EL IN {EL0, EL1} && !ELUsingAArch32(EL2) &&
 IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1');
 else
 nXS = FALSE;
 MBReqDomain domain;
 MBReqTypes types;
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9982
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise
 assert !(option IN {'0x00'});
 domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
 if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
 domain = MBReqDomain_OuterShareable;
 if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
 domain = MBReqDomain_InnerShareable;

 DataSynchronizationBarrier(domain, types, nXS);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9983
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.49 EOR, EORS (immediate)

Bitwise Exclusive-OR (immediate) performs a bitwise exclusive-OR of a register value and an immediate value,
and writes the result to the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS variant

Applies when S == 1.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 0 0 0 1 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9984
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
EORS variant

Applies when S == 1 && Rd != 1111.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9985
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9986
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.50 EOR, EORS (register)

Bitwise Exclusive-OR (register) performs a bitwise exclusive-OR of a register value and an optionally-shifted
register value, and writes the result to the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

EOR, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 0 1 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9987
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

EOR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
EORS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

EOR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

EOR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

EORS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "TEQ (register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 0 0 1 Rm Rdn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9988
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though EORS <Rd>, <Rn> had been written

• Inside an IT block, if EOR<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled
using encoding T1 as though EOR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9989
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9990
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.51 EOR, EORS (register-shifted register)

Bitwise Exclusive-OR (register-shifted register) performs a bitwise exclusive-OR of a register value and a
register-shifted register value. It writes the result to the destination register, and can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 0 1 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9991
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9992
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.52 ERET

Exception Return.

The PE branches to the address held in the register holding the preferred return address, and restores PSTATE from
SPSR_<current_mode>.

The register holding the preferred return address is:

• ELR_hyp, when executing in Hyp mode.

• LR, when executing in a mode other than Hyp mode, User mode, or System mode.

The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state.

Exception Return is CONSTRAINED UNPREDICTABLE in User mode and System mode.

In Debug state, the T1 encoding of ERET executes the DRPS operation.

A1

A1 variant

ERET{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

ERET{<c>}{<q>}

Decode for this encoding

 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 0 (1) (1) (1) (0)

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 (0) 0 (1) (1) (1) (1) 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9993
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if !Halted() then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 new_pc_value = if PSTATE.EL == EL2 then ELR_hyp else R[14];
 AArch32.ExceptionReturn(new_pc_value, SPSR_curr[]);
 else // Perform DRPS operation in Debug state
 if PSTATE.M == M32_User then
 UNDEFINED;
 elsif PSTATE.M == M32_System then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 SynchronizeContext();
 DebugRestorePSR();

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9994
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.53 ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR and VDISR. This
instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8,
for Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

A1

(FEAT_RAS)

A1 variant

ESB{<c>}{<q>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RAS) then EndOfInstruction(); // Instruction executes as NOP
 if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL
 // condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

(FEAT_RAS)

T1 variant

ESB{<c>}{<q>}

Decode for this encoding

 if !IsFeatureImplemented(FEAT_RAS) then EndOfInstruction(); // Instruction executes as NOP
 if InITBlock() then UNPREDICTABLE;

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 0 0 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9995
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 SynchronizeErrors();
 AArch32.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch32.vESBOperation();
 TakeUnmaskedSErrorInterrupts();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9996
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.54 HLT

Halting breakpoint causes a software breakpoint to occur.

Halting breakpoint is always unconditional, even inside an IT block.

A1

A1 variant

HLT{<q>} {#}<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
 if cond != '1110' then UNPREDICTABLE; // HLT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

HLT{<q>} {#}<imm>

Decode for this encoding

 if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields. An HLT instruction must be unconditional.

!=1111 0 0 0 1 0 0 0 0 imm12 0 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 1 0 imm6

15 14 13 12 11 10 9 8 7 6 5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9997
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is ignored by the PE, but
can be used by a debugger to store more information about the halting breakpoint.

For encoding T1: is a 6-bit unsigned immediate, in the range 0 to 63, encoded in the "imm6" field.
This value is for assembly and disassembly only. It is ignored by the PE, but can be used by a
debugger to store more information about the halting breakpoint.

Operation for all encodings

 EncodingSpecificOperations();
 boolean is_async = FALSE;
 FaultRecord fault = NoFault();
 Halt(DebugHalt_HaltInstruction, is_async, fault);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9998
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.55 HVC

Hypervisor Call causes a Hypervisor Call exception. For more information, see Hypervisor Call (HVC) exception.
Software executing at EL1 can use this instruction to call the hypervisor to request a service.

The HVC instruction is UNDEFINED:

• When EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0.

• In Non-secure EL1 modes when EL3 is implemented and using AArch32, and SCR.HCE is set to 0.

• When EL3 is not implemented and either HCR_EL2.HCD is set to 1 or HCR.HCD is set to 1.

• When EL2 is not implemented.

• In Secure state, if EL2 is not enabled in the current Security state.

• In User mode.

The HVC instruction is CONSTRAINED UNPREDICTABLE in Hyp mode when EL3 is implemented and using AArch32,
and SCR.HCE is set to 0.

On executing an HVC instruction, the HSR reports the exception as a Hypervisor Call exception, using the EC value
0x12, and captures the value of the immediate argument, see Use of the HSR.

A1

A1 variant

HVC{<q>} {#}<imm16>

Decode for this encoding

 if cond != '1110' then UNPREDICTABLE;
 imm16 = imm12:imm4;

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

T1 variant

HVC{<q>} {#}<imm16>

!=1111 0 0 0 1 0 1 0 0 imm12 0 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 1 1 1 0 1 1 1 1 1 1 0 imm4 1 0 0 0 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-9999
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 imm16 = imm4:imm12;
 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields. An HVC instruction must be unconditional.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is reported in the HSR but
otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to
determine the required service.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. This value is for assembly and disassembly only. It is reported in the HSR but
otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to
determine the required service.

Operation for all encodings

 EncodingSpecificOperations();
 if PSTATE.EL IN {EL0, EL3} || !EL2Enabled() then
 UNDEFINED;

 bit hvc_enable;
 if HaveEL(EL3) then
 if ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2 then
 UNPREDICTABLE;
 else
 hvc_enable = SCR_curr[].HCE;
 else
 hvc_enable = if ELUsingAArch32(EL2) then NOT(HCR.HCD) else NOT(HCR_EL2.HCD);

 if hvc_enable == '0' then
 UNDEFINED;
 else
 AArch32.CallHypervisor(imm16);

CONSTRAINED UNPREDICTABLE behavior

If ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10000
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.56 ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).

A1

A1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 0 option

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10001
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 InstructionSynchronizationBarrier();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10002
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.57 IT

If-Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the
IT block are the same as, or the inverse of, the condition the IT instruction specifies for the first instruction in the
block.

The IT instruction itself does not affect the condition flags, but the execution of the instructions in the IT block can
change the condition flags.

16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition flags. An IT instruction with
the AL condition can change the behavior without conditional execution.

The architecture permits exception return to an instruction in the IT block only if the restoration of the CPSR
restores PSTATE.IT to a state consistent with the conditions specified by the IT instruction. Any other exception
return to an instruction in an IT block is UNPREDICTABLE. Any branch to a target instruction in an IT block is not
permitted, and if such a branch is made it is UNPREDICTABLE what condition is used when executing that target
instruction and any subsequent instruction in the IT block.

Many uses of the IT instruction are deprecated for performance reasons, and an implementation might include ITD
controls that can disable those uses of IT, making them UNDEFINED.

For more information see Conditional execution and Conditional instructions. The first of these sections includes
more information about the ITD controls.

T1

T1 variant

IT{<x>{<y>{<z>}}}{<q>} <cond>

Decode for this encoding

 if mask == '0000' then SEE "Related encodings";
 if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1), then one of the following behaviors must
occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The '1111' condition is treated as being the same as the '1110' condition, meaning always, and the ITSTATE
state machine is progressed in the same way as for any other cond_base value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Miscellaneous 16-bit instructions.

1 0 1 1 1 1 1 1 firstcond !=0000

15 14 13 12 11 10 9 8 7 4 3 0

mask
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10003
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000.
If present it is encoded in the "mask[3]" field:

T firstcond[0]

E NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]"
field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:

T firstcond[0]

E NOT firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]"
field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]"
field:

T firstcond[0]

E NOT firstcond[0]

<q> See Standard assembler syntax fields.

<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See
Table F1-1 for the range of conditions available, and the encodings.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in its IT
block. When assembling to A32 code, assemblers check IT instruction syntax for validity but do not generate
assembled instructions for them. See Conditional instructions.

Operation

 EncodingSpecificOperations();
 AArch32.CheckITEnabled(mask);
 PSTATE.IT<7:0> = firstcond:mask;
 ShouldAdvanceIT = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10004
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.58 LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10005
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10006
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.59 LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10007
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10008
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.60 LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 1 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10009
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 4);
 R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10010
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.61 LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register
and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10011
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 1);
 R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10012
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.62 LDAEXD

Load-Acquire Exclusive Doubleword loads a doubleword from memory, writes it to two registers and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also acts as a barrier instruction with the ordering requirements described in Load-Acquire,
Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
 if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

!=1111 0 0 0 1 1 0 1 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 1 1 1 1 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10013
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 8);
 value = MemO[address, 8];
 // Extract words from 64-bit loaded value such that R[t] is
 // loaded from address and R[t2] from address+4.
 R[t] = if BigEndian(AccessType_GPR) then value<63:32> else value<31:0>;
 R[t2] = if BigEndian(AccessType_GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10014
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.63 LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it
to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

!=1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 1 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10015
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address, 2);
 R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10016
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.64 LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a
register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10017
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10018
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.65 LDC (immediate)

Load data to System register (immediate) calculates an address from a base register value and an immediate offset,
loads a word from memory, and writes it to the DBGDTRTXint System register. It can use offset, post-indexed,
pre-indexed, or unindexed addressing. For information about memory accesses see Memory accesses.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
HDCR.TDA.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

A1

Offset variant

Applies when P == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDC (literal)";
 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');

T1

Offset variant

Applies when P == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

!=1111 1 1 0 P U 0 W 1 !=1111 0 1 0 1 1 1 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

cond Rn

1 1 1 0 1 1 0 P U 0 W 1 !=1111 0 1 0 1 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10019
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Post-indexed variant

Applies when P == 0 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDC (literal)";
 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC (literal).

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value
of this field is ignored when executing this instruction.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // System register write to DBGDTRTXint.
 AArch32.SysRegWriteM(cp, ThisInstr(), address);

 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10020
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.66 LDC (literal)

Load data to System register (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to the DBGDTRTXint System register. For information about memory accesses see
Memory accesses.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
HDCR.TDA.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

A1

A1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{<c>}{<q>} p14, c5, <label>
LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]
LDC{<c>}{<q>} p14, c5, [PC], <option>

Decode for this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 index = (P == '1'); add = (U == '1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
 if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{<c>}{<q>} p14, c5, <label>
LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]

!=1111 1 1 0 P U 0 W 1 1 1 1 1 0 1 0 1 1 1 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 P U 0 W 1 1 1 1 1 0 1 0 1 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10021
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 index = (P == '1'); add = (U == '1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
 if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If W == '1' || P == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes as LDC (immediate) with writeback to the PC. The instruction is handled as described
in Using R15 by instruction.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value
of this field is ignored when executing this instruction.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1).

If the offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
 address = if index then offset_addr else Align(PC32,4);

 // System register write to DBGDTRTXint.
 AArch32.SysRegWriteM(cp, ThisInstr(), address);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10022
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.67 LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations start at this address, and the address just
above the highest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC. Related system instructions are LDM (User registers) and LDM (exception return).

This instruction is used by the alias POP (multiple registers). See Alias conditions for details of when each alias is
preferred.

A1

A1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 1 0 0 0 1 0 W 1 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10023
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T2

T2 variant

LDM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
LDMFD{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Full Descending stack, if <Rn>, '!' and
<registers> can be represented in T1
LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 0 0 1 Rn register_list

15 14 13 12 11 10 8 7 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10024
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Alias of variant is preferred when

POP (multiple registers) T2 W == '1' && Rn == '1101' && BitCount(P:M:register_list) > 1

POP (multiple registers) A1 W == '1' && Rn == '1101' && BitCount(register_list) > 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10025
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
! For encoding A1 and T2: the address adjusted by the size of the data loaded is written back to the
base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

For encoding T1: the address adjusted by the size of the data loaded is written back to the base
register. It is omitted if <Rn> is included in <registers>, otherwise it must be present.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10026
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.68 LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an address from
a base register. The SPSR of the current mode is copied to the CPSR. An address adjusted by the size of the data
loaded can optionally be written back to the base register.

The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs to that
address.

The PE checks the encoding that is copied to the CPSR for an illegal return event. See Illegal return events from
AArch32 state.

Load Multiple (exception return) is:

• UNDEFINED in Hyp mode.

• UNPREDICTABLE in debug state, and in User mode and System mode.

A1

A1 variant

LDM{<amode>}{<c>}{<q>} <Rn>{!}, <registers_with_pc>^

Decode for this encoding

 n = UInt(Rn); registers = register_list;
 wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);
 if n == 15 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all the loads using the specified addressing mode and the content of the register
being written back is UNKNOWN. In addition, if an exception occurs during the execution of this instruction,
the base address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
register. Encoded as P = 0, U = 0.

FA Full Ascending. For this instruction, a synonym for DA.

DB Decrement Before. The consecutive memory addresses end one word below the address
in the base register. Encoded as P = 1, U = 0.

!=1111 1 0 0 P U 1 W 1 Rn 1 register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 14 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10027
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
EA Empty Ascending. For this instruction, a synonym for DB.

IA Increment After. The consecutive memory addresses start at the address in the base
register. This is the default. Encoded as P = 0, U = 1.

FD Full Descending. For this instruction, a synonym for IA.

IB Increment Before. The consecutive memory addresses start one word above the address
in the base register. Encoded as P = 1, U = 1.

ED Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers_with_pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be loaded. The registers are loaded with the lowest-numbered register from the
lowest memory address, through to the highest-numbered register from the highest memory address.
The PC must be specified in the register list, and the instruction causes a branch to the address (data)
loaded into the PC. See also Encoding of lists of general-purpose registers and the PC.

Instructions with similar syntax but without the PC included in the registers list are described in LDM (User
registers).

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 length = 4*BitCount(registers) + 4;
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;

 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 new_pc_value = MemS[address,4];

 if wback && registers<n> == '0' then R[n] = if increment then R[n]+length else R[n]-length;
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

 AArch32.ExceptionReturn(new_pc_value, SPSR_curr[]);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10028
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.69 LDM (User registers)

In an EL1 mode other than System mode, Load Multiple (User registers) loads multiple User mode registers from
consecutive memory locations using an address from a base register. The registers loaded cannot include the PC.
The PE reads the base register value normally, using the current mode to determine the correct Banked version of
the register. This instruction cannot writeback to the base register.

Load Multiple (User registers) is UNDEFINED in Hyp mode, and UNPREDICTABLE in User and System modes.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC.

A1

A1 variant

LDM{<amode>}{<c>}{<q>} <Rn>, <registers_without_pc>^

Decode for this encoding

 n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
register. Encoded as P = 0, U = 0.

FA Full Ascending. For this instruction, a synonym for DA.

DB Decrement Before. The consecutive memory addresses end one word below the address
in the base register. Encoded as P = 1, U = 0.

EA Empty Ascending. For this instruction, a synonym for DB.

IA Increment After. The consecutive memory addresses start at the address in the base
register. This is the default. Encoded as P = 0, U = 1.

FD Full Descending. For this instruction, a synonym for IA.

IB Increment Before. The consecutive memory addresses start one word above the address
in the base register. Encoded as P = 1, U = 1.

!=1111 1 0 0 P U 1 (0) 1 Rn 0 register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 14 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10029
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ED Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers_without_pc>

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be loaded by the LDM instruction. The registers are loaded with the
lowest-numbered register from the lowest memory address, through to the highest-numbered
register from the highest memory address. The PC must not be in the register list. See also Encoding
of lists of general-purpose registers and the PC.

Instructions with similar syntax but with the PC included in <registers_without_pc> are described in LDM
(exception return).

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then UNPREDICTABLE;
 else
 length = 4*BitCount(registers);
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == '1' then // Load User mode register
 Rmode[i, M32_User] = MemS[address,4]; address = address + 4;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10030
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.70 LDMDA, LDMFA

Load Multiple Decrement After (Full Ascending) loads multiple registers from consecutive memory locations using
an address from a base register. The consecutive memory locations end at this address, and the address just below
the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMDA{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

!=1111 1 0 0 0 0 0 W 1 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10031
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10032
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.71 LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations end just below this address, and the
address of the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T1

!=1111 1 0 0 1 0 0 W 1 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10033
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10034
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10035
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.72 LDMIB, LDMED

Load Multiple Increment Before (Empty Descending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations start just above this address, and the
address of the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMIB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMED{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

!=1111 1 0 0 1 1 0 W 1 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10036
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemS[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemS[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10037
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.73 LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses.

This instruction is used by the alias POP (single register). See Alias conditions for details of when each alias is
preferred.

A1

Offset variant

Applies when P == 1 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 if P == '0' && W == '1' then SEE "LDRT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if wback && n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

!=1111 0 1 0 P U 0 W 1 !=1111 Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond Rn

0 1 1 0 1 imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10038
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T3

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); index = TRUE; add = TRUE;
 wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

1 0 0 1 1 Rt imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 1 1 0 1 !=1111 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10039
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn);
 imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, provided the instruction is either outside an IT block or the last instruction of
an IT block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

Alias of variant is preferred when

POP (single register) A1 (post-indexed) P == '0' && U == '1' && W == '0' && Rn == '1101' && imm12 == '000000000100'

POP (single register) T4 (post-indexed) Rn == '1101' && P == '0' && U == '1' && W == '1' && imm8 == '00000100'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10040
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> For encoding A1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC
use see LDR (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10041
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.74 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses see Memory accesses.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDR{<c>}{<q>} <Rt>, <label> // Normal form
LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRT";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDR (immediate). The instruction uses post-indexed addressing when P == '0' and uses
pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDR{<c>}{<q>} <Rt>, <label> // Normal form

Decode for this encoding

 t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

!=1111 0 1 0 P U 0 W 1 1 1 1 1 Rt imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

0 1 0 0 1 Rt imm8

15 14 13 12 11 10 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10042
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

T2 variant

LDR{<c>}.W <Rt>, <label> // Preferred syntax, and <Rt>, <label> can be represented in T1
LDR{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

<label> For encoding A1 and T2: the label of the literal data item that is to be loaded into <Rt>. The
assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction
to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are Multiples of four in the range 0 to 1020.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10043
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T2: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC32,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10044
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.75 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted. For information about
memory accesses, see Memory accesses.

The T32 form of LDR (register) does not support register writeback.

A1

Offset variant

Applies when P == 1 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

!=1111 0 1 1 P U 0 W 1 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

0 1 0 1 1 0 0 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10045
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
branch is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10046
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = (R[n] + offset);
 address = offset_addr;
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10047
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.76 LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
or pre-indexed addressing. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRB (literal)";
 if P == '0' && W == '1' then SEE "LDRBT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 1 0 P U 1 W 1 !=1111 Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond Rn

0 1 1 1 1 imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10048
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLD";
 if Rn == '1111' then SEE "LDRB (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T3

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD, PLDW (immediate)";
 if Rn == '1111' then SEE "LDRB (literal)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRBT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

1 1 1 1 1 0 0 0 1 0 0 1 !=1111 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10049
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC
use see LDRB (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10050
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10051
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.77 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses
see Memory accesses.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRB{<c>}{<q>} <Rt>, <label> // Normal form
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRBT";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDRB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "PLD";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 0 P U 1 W 1 1 1 1 1 Rt imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10052
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC32,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = ZeroExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10053
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.78 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
optionally be shifted. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRBT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

!=1111 0 1 1 P U 1 W 1 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

0 1 0 1 1 1 0 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10054
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLD";
 if Rn == '1111' then SEE "LDRB (literal)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10055
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1],32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10056
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.79 LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to
a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction uses immediate offset addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 1 0 0 U 1 1 1 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10057
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRB (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 1 1 0 U 1 1 1 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10058
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = ZeroExtend(MemU_unpriv[address,1],32);
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10059
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.80 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.
For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRD (literal)";
 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if wback && (n == t || n == t2) then UNPREDICTABLE;
 if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 0 0 P U 1 W 0 !=1111 Rt imm4H 1 1 0 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10060
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

T1

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '0' then SEE "Related encodings";
 if Rn == '1111' then SEE "LDRD (literal)";
 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if wback && (n == t || n == t2) then UNPREDICTABLE;
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

1 1 1 0 1 0 0 P U 1 W 1 !=1111 Rt Rt2 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10061
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 if IsAligned(address, 8) then
 data = MemA[address,8];
 if BigEndian(AccessType_GPR) then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10062
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.81 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers. For information about memory accesses see Memory accesses.

A1

A1 variant

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
 if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0';.

• The instruction executes with the additional decode: t2 = t;.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

If P == '0' || W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as if P == 1 and W == 0.'

T1

T1 variant

Applies when !(P == 0 && W == 0).

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

!=1111 0 0 0 (1) U 1 (0) 0 1 1 1 1 Rt imm4H 1 1 0 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 P U 1 W 1 1 1 1 1 Rt Rt2 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10063
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if P == '0' && W == '0' then SEE "Related encodings";
 t = UInt(Rt); t2 = UInt(Rt2);
 imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

If W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The
instruction is handled as described in Using R15 by instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10064
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
 if IsAligned(address, 8) then
 data = MemA[address,8];
 if BigEndian(AccessType_GPR) then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10065
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.82 LDRD (register)

Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words
from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
 if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If m == t || m == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10066
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction loads register Rm with an UNKNOWN value.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must
be even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset
variant.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
 address = if index then offset_addr else R[n];
 if IsAligned(address, 8) then
 data = MemA[address,8];
 if BigEndian(AccessType_GPR) then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

 if wback then R[n] = offset_addr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10067
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10068
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.83 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, {#}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10069
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
only be 0 or omitted.

For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 AArch32.SetExclusiveMonitors(address,4);
 R[t] = MemA[address,4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10070
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.84 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends
it to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10071
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address,1);
 R[t] = ZeroExtend(MemA[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10072
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.85 LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit doubleword from
memory, writes it to two registers and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDREXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
 if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDREXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

!=1111 0 0 0 1 1 0 1 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 0 1 1 1 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10073
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address,8);
 value = MemA[address,8];

 // Extract words from 64-bit loaded value such that R[t] is
 // loaded from address and R[t2] from address+4.
 R[t] = if BigEndian(AccessType_GPR) then value<63:32> else value<31:0>;
 R[t2] = if BigEndian(AccessType_GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10074
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.86 LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10075
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 AArch32.SetExclusiveMonitors(address,2);
 R[t] = ZeroExtend(MemA[address,2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10076
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.87 LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 if P == '0' && W == '1' then SEE "LDRHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 P U 1 W 1 !=1111 Rt imm4H 1 0 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn

1 0 0 0 1 imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10077
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLD (immediate)";
 if Rn == '1111' then SEE "LDRH (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T3

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLDW (immediate)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRHT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

1 1 1 1 1 0 0 0 1 0 1 1 !=1111 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10078
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC
use see LDRH (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the
range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10079
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10080
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.88 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRH{<c>}{<q>} <Rt>, <label> // Normal form
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRHT";
 t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDRH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "PLD (literal)";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 0 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10081
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC32,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10082
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.89 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRHT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

!=1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 1 1 0 1 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10083
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 if Rt == '1111' then SEE "PLDW (register)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10084
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10085
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.90 LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 integer m = integer UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 0 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10086
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRH (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10087
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,2];
 if postindex then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10088
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.91 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRSB (literal)";
 if P == '0' && W == '1' then SEE "LDRSBT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 P U 1 W 1 !=1111 Rt imm4H 1 1 0 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 0 1 1 0 0 1 !=1111 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10089
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rt == '1111' then SEE "PLI";
 if Rn == '1111' then SEE "LDRSB (literal)";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T2

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLI";
 if Rn == '1111' then SEE "LDRSB (literal)";
 if P == '1' && U == '1' && W == '0' then SEE "LDRSBT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10090
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10091
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.92 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRSB{<c>}{<q>} <Rt>, <label> // Normal form
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRSBT";
 t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRSB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDRSB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "PLI";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 1 0 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10092
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC32,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = SignExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10093
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.93 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRSBT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

!=1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 1 0 1 1 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10094
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rt == '1111' then SEE "PLI";
 if Rn == '1111' then SEE "LDRSB (literal)";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10095
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10096
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.94 LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRSBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 integer m = integer UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 0 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10097
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRSB (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10098
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = SignExtend(MemU_unpriv[address,1], 32);
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRSB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10099
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.95 LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use
offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 P U 1 W 1 !=1111 Rt imm4H 1 1 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 0 1 1 0 1 1 !=1111 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10100
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if Rt == '1111' then SEE "Related instructions";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 // Armv8-A removes UNPREDICTABLE for R13

T2

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related instructions";
 if P == '1' && U == '1' && W == '0' then SEE "LDRSHT";
 if P == '0' && W == '0' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load/store single.

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10101
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10102
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.96 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about
memory accesses see Memory accesses.

A1

A1 variant

Applies when !(P == 0 && W == 1).

LDRSH{<c>}{<q>} <Rt>, <label> // Normal form
LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
 add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: wback = FALSE;.

• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRSH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 by instruction.

T1

T1 variant

LDRSH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 if Rt == '1111' then SEE "Related instructions";
 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 1 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 !=1111 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10103
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load, signed (literal).

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC32,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10104
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.97 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is <arm-defined-word>unknown</arm-defined-word>. In addition, if an exception
occurs during such as instruction, the base address might be corrupted so that the instruction cannot be
repeated.

T1

!=1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

0 1 0 1 1 1 1 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10105
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 if Rt == '1111' then SEE "Related instructions";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load/store, signed (register offset).

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10106
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10107
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.98 LDRSHT

Load Register Signed Halfword Unprivileged loads a halfword from memory, sign-extends it to form a 32-bit word,
and writes it to a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRSHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 integer m = integer UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10108
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDRSH (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10109
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,2];
 if postindex then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDRSH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10110
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.99 LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about memory
accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

LDRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

!=1111 0 1 0 0 U 0 1 1 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10111
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

LDRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "LDR (literal)";
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 1 1 0 U 0 1 1 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10112
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,4];
 if postindex then R[n] = offset_addr;
 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10113
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.100 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOV, shift or rotate by value variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSL<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3

MOV, shift or rotate by value variant

LSL<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd !=00000 0 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

0 0 0 0 0 !=00000 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op imm5

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10114
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount>
modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10115
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.101 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Not flag setting variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

Logical shift left variant

LSL<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

LSL<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 0 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10116
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10117
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.102 LSLS (immediate)

Logical Shift Left, setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOVS, shift or rotate by value variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSLS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

 is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd !=00000 0 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

0 0 0 0 0 !=00000 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op imm5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10118
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

MOVS, shift or rotate by value variant

LSLS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount>
modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10119
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.103 LSLS (register)

Logical Shift Left, setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros,
writes the result to the destination register, and updates the condition flags based on the result. The variable number
of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Flag setting variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

Logical shift left variant

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

LSLS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 0 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10120
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10121
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.104 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOV, shift or rotate by value variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSR<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3

MOV, shift or rotate by value variant

LSR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd imm5 0 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 0 1 imm5 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10122
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10123
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.105 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Not flag setting variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

Logical shift right variant

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

LSR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 1 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10124
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10125
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.106 LSRS (immediate)

Logical Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting
in zeros, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOVS, shift or rotate by value variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

T2 variant

LSRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

 is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd imm5 0 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S stype

0 0 0 0 1 imm5 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10126
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

MOVS, shift or rotate by value variant

LSRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10127
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.107 LSRS (register)

Logical Shift Right, setting flags (register) shifts a register value right by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable
number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Flag setting variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

Logical shift right variant

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

LSRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 0 1 1 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10128
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10129
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.108 MCR

Move to System register from general-purpose register or execute a System instruction. This instruction copies the
value of a general-purpose register to a System register, or executes a System instruction.

The System register and System instruction descriptions identify valid encodings for this instruction. Other
encodings are UNDEFINED. For more information see About the AArch32 System register interface and General
behavior of System registers.

In an implementation that includes EL2, MCR accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MCR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
controls.

Because of the range of possible traps to Hyp mode, the MCR pseudocode does not show these possible traps.

A1

A1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 1 1 1 0 opc1 0 CRn Rt 1 1 1 opc2 1 CRm

31 28 27 26 25 24 23 21 20 19 16 15 12 11 9 8 7 5 4 3 0

cond

coproc<0>

coproc<3:1>

1 1 1 0 1 1 1 0 opc1 0 CRn Rt 1 1 1 opc2 1 CRm

15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 9 8 7 5 4 3 0

coproc<0>

coproc<3:1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10130
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc1" field.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and System
instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.SysRegWrite(cp, ThisInstr(), t);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10131
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.109 MCRR

Move to System register from two general-purpose registers. This instruction copies the values of two
general-purpose registers to a System register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.

In an implementation that includes EL2, MCRR accesses to System registers can be trapped to Hyp mode, meaning
that an attempt to execute an MCRR instruction in a Non-secure mode other than Hyp mode, that would be permitted
in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls.

Because of the range of possible traps to Hyp mode, the MCRR pseudocode does not show these possible traps.

A1

A1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 1 1 0 0 0 1 0 0 Rt2 Rt 1 1 1 opc1 CRm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 9 8 7 4 3 0

cond

coproc<0>

coproc<3:1>

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt 1 1 1 opc1 CRm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 9 8 7 4 3 0

coproc<0>

coproc<3:1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10132
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in
the "opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opc1>, <CRm> } encode the entire System register encoding space. Not all of this
space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.SysRegWrite64(cp, ThisInstr(), t, t2);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10133
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.110 MLA, MLAS

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of
the result are written to the destination register. These 32 bits do not depend on whether the source register values
are considered to be signed values or unsigned values.

In an A32 instruction, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

MLAS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Not flag setting variant

Applies when S == 0.

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = (S == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

T1 variant

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 if Ra == '1111' then SEE "MUL";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 0 0 0 1 S Rd Ra Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 0 Rn !=1111 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10134
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = operand1 * operand2 + addend;
 R[d] = result<31:0>;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result<31:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10135
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.111 MLS

Multiply and Subtract multiplies two register values, and subtracts the product from a third register value. The least
significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the
source register values are considered to be signed values or unsigned values.

A1

A1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

T1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.

!=1111 0 0 0 0 0 1 1 0 Rd Ra Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10136
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = addend - operand1 * operand2;
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10137
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.112 MOV, MOVS (immediate)

Move (immediate) writes an immediate value to the destination register.

If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The MOV variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MOV variant

Applies when S == 0.

MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

A2

A2 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> can not be represented in A1
MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in A1

!=1111 0 0 1 1 1 0 1 S (0) (0) (0) (0) Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

!=1111 0 0 1 1 0 0 0 0 imm4 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10138
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
 bit carry = bit UNKNOWN;
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

MOV<c>{<q>} <Rd>, #<imm8> // Inside IT block
MOVS{<q>} <Rd>, #<imm8> // Outside IT block

Decode for this encoding

 d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = PSTATE.C;

T2

MOV variant

Applies when S == 0.

MOV<c>.W <Rd>, #<const> // Inside IT block, and <Rd>, <const> can be represented in T1
MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS.W <Rd>, #<const> // Outside IT block, and <Rd>, <const> can be represented in T1
MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

T3 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> cannot be represented in T1 or T2
MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in T1 or T2

0 0 1 0 0 Rd imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10139
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
 bit carry = bit UNKNOWN;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used:

• For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding A2, T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd"
field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16> For encoding A2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

For encoding T3: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = imm32;
 if d == 15 then // Can only occur for encoding A1
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10140
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10141
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.113 MOV, MOVS (register)

Move (register) copies a value from a register to the destination register.

If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The MOV variant of the instruction is a branch. In the T32 instruction set (encoding T1) this is a simple
branch, and in the A32 instruction set it is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

• The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate),
LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX. See Alias
conditions for details of when each alias is preferred.

A1

MOV, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10142
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

MOV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

T2 variant

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block
MOVS{<q>} <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = DecodeImmShift(op, imm5);
 if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If op == '00' && imm5 == '00000' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passed its condition code check.

• The instruction executes as NOP, as if it failed its condition code check.

• The instruction executes as MOV Rd, Rm.

T3

MOV, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

0 1 0 0 0 1 1 0 D Rm Rd

15 14 13 12 11 10 9 8 7 6 3 2 0

0 0 0 !=11 imm5 Rm Rd

15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10143
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
MOV, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MOV{<c>}.W <Rd>, <Rm> {, LSL #0} // <Rd>, <Rm> can be represented in T1
MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T2
MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T1 or T2
MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

Alias of variant is preferred when

ASRS
(immediate)

T3 (MOVS, shift or rotate by value), A1 (MOVS, shift or
rotate by value)

S == '1' && stype == '10'

ASRS
(immediate)

T2 op == '10' && !InITBlock()

ASR
(immediate)

T3 (MOV, shift or rotate by value), A1 (MOV, shift or rotate
by value)

S == '0' && stype == '10'

ASR
(immediate)

T2 op == '10' && InITBlock()

LSLS
(immediate)

T3 (MOVS, shift or rotate by value) S == '1' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '00'

LSLS
(immediate)

A1 (MOVS, shift or rotate by value) S == '1' && imm5 != '00000' && stype == '00'

LSLS
(immediate)

T2 op == '00' && imm5 != '00000' && !InITBlock()

LSL
(immediate)

T3 (MOV, shift or rotate by value) S == '0' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '00'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10144
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used:

• For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC. Arm deprecates use of the instruction if <Rn> is the PC.

• For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of the instruction if <Rn> is not the LR,
or if the optional shift or RRX argument is specified.

For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC
is used:

• The instruction causes a branch to the address moved to the PC. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

• The instruction must either be outside an IT block or the last instruction of an IT block.

LSL
(immediate)

A1 (MOV, shift or rotate by value) S == '0' && imm5 != '00000' && stype == '00'

LSL
(immediate)

T2 op == '00' && imm5 != '00000' && InITBlock()

LSRS
(immediate)

T3 (MOVS, shift or rotate by value), A1 (MOVS, shift or
rotate by value)

S == '1' && stype == '01'

LSRS
(immediate)

T2 op == '01' && !InITBlock()

LSR
(immediate)

T3 (MOV, shift or rotate by value), A1 (MOV, shift or rotate
by value)

S == '0' && stype == '01'

LSR
(immediate)

T2 op == '01' && InITBlock()

RORS
(immediate)

T3 (MOVS, shift or rotate by value) S == '1' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '11'

RORS
(immediate)

A1 (MOVS, shift or rotate by value) S == '1' && imm5 != '00000' && stype == '11'

ROR
(immediate)

T3 (MOV, shift or rotate by value) S == '0' && imm3:Rd:imm2 != '000xxxx00' &&
stype == '11'

ROR
(immediate)

A1 (MOV, shift or rotate by value) S == '0' && imm5 != '00000' && stype == '11'

RRXS T3 (MOVS, rotate right with extend) S == '1' && imm3 == '000' && imm2 == '00' &&
stype == '11'

RRXS A1 (MOVS, rotate right with extend) S == '1' && imm5 == '00000' && stype == '11'

RRX T3 (MOV, rotate right with extend) S == '0' && imm3 == '000' && imm2 == '00' &&
stype == '11'

RRX A1 (MOV, rotate right with extend) S == '0' && imm5 == '00000' && stype == '11'

Alias of variant is preferred when
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10145
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field. The PC
can be used. Arm deprecates use of the instruction if <Rd> is the PC.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding A1 and T3: is the type of shift to be applied to the source register, encoded in the
"stype" field. It can have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

For encoding T2: is the type of shift to be applied to the source register, encoded in the "op" field.
It can have the following values:

LSL when op = 00

LSR when op = 01

ASR when op = 10

<amount> For encoding A1: is the shift amount, in the range 0 to 31 (when <shift> = LSL), or 1 to 31 (when
<shift> = ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31 (when <shift> = LSL) or 1 to 31 (when
<shift> = ROR), or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as
<amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = shifted;
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10146
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10147
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.114 MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally
update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS
(register), LSR (register), RORS (register), and ROR (register). See Alias conditions for details of when each alias
is preferred.

A1

Flag setting variant

Applies when S == 1.

MOVS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

MOV{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

T1

Arithmetic shift right variant

Applies when op == 0100.

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs> // Outside IT block

Logical shift left variant

Applies when op == 0010.

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs> // Outside IT block

Logical shift right variant

Applies when op == 0011.

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs> // Outside IT block

!=1111 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond

0 1 0 0 0 0 0 x x x Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10148
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Rotate right variant

Applies when op == 0111.

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs> // Outside IT block

Decode for all variants of this encoding

 if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
 d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);
 setflags = !InITBlock(); shift_t = DecodeRegShift(op<2>:op<0>);

T2

Flag setting variant

Applies when S == 1.

MOVS.W <Rd>, <Rm>, <shift> <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in
T1
MOVS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

MOV<c>.W <Rd>, <Rm>, <shift> <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in
T1
MOV{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || m == 15 || s == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

Related encodings: In encoding T1, for an op field value that is not described above, see Data-processing (two low
registers).

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 1 0 0 stype S Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10149
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Alias of variant is preferred when

ASRS (register) A1 (flag setting) S == '1' && stype == '10'

ASRS (register) T1 (arithmetic shift right) op == '0100' && !InITBlock()

ASRS (register) T2 (flag setting) stype == '10' && S == '1'

ASR (register) A1 (not flag setting) S == '0' && stype == '10'

ASR (register) T1 (arithmetic shift right) op == '0100' && InITBlock()

ASR (register) T2 (not flag setting) stype == '10' && S == '0'

LSLS (register) A1 (flag setting) S == '1' && stype == '00'

LSLS (register) T1 (logical shift left) op == '0010' && !InITBlock()

LSLS (register) T2 (flag setting) stype == '00' && S == '1'

LSL (register) A1 (not flag setting) S == '0' && stype == '00'

LSL (register) T1 (logical shift left) op == '0010' && InITBlock()

LSL (register) T2 (not flag setting) stype == '00' && S == '0'

LSRS (register) A1 (flag setting) S == '1' && stype == '01'

LSRS (register) T1 (logical shift right) op == '0011' && !InITBlock()

LSRS (register) T2 (flag setting) stype == '01' && S == '1'

LSR (register) A1 (not flag setting) S == '0' && stype == '01'

LSR (register) T1 (logical shift right) op == '0011' && InITBlock()

LSR (register) T2 (not flag setting) stype == '01' && S == '0'

RORS (register) A1 (flag setting) S == '1' && stype == '11'

RORS (register) T1 (rotate right) op == '0111' && !InITBlock()

RORS (register) T2 (flag setting) stype == '11' && S == '1'

ROR (register) A1 (not flag setting) S == '0' && stype == '11'

ROR (register) T1 (rotate right) op == '0111' && InITBlock()

ROR (register) T2 (not flag setting) stype == '11' && S == '0'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10150
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (result, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10151
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.115 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents
of the bottom halfword.

A1

A1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

 d = UInt(Rd); imm16 = imm4:imm12;
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

 d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

!=1111 0 0 1 1 0 1 0 0 imm4 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10152
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<31:16> = imm16;
 // R[d]<15:0> unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10153
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.116 MRC

Move to general-purpose register from System register. This instruction copies the value of a System register to a
general-purpose register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.

In an implementation that includes EL2, MRC accesses to system control registers can be trapped to Hyp mode,
meaning that an attempt to execute an MRC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls.

Because of the range of possible traps to Hyp mode, the MRC pseudocode does not show these possible traps.

A1

A1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

 t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
 // Armv8-A removes UNPREDICTABLE for R13

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 1 1 1 0 opc1 1 CRn Rt 1 1 1 opc2 1 CRm

31 28 27 26 25 24 23 21 20 19 16 15 12 11 9 8 7 5 4 3 0

cond

coproc<0>

coproc<3:1>

1 1 1 0 1 1 1 0 opc1 1 CRn Rt 1 1 1 opc2 1 CRm

15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 9 8 7 5 4 3 0

coproc<0>

coproc<3:1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10154
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc1" field.

<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111), encoded in the
"Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are written to the PSTATE
condition flags.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and System
instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 if t != 15 || AArch32.SysRegReadCanWriteAPSR(cp, ThisInstr()) then
 AArch32.SysRegRead(cp, ThisInstr(), t);
 else
 UNPREDICTABLE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10155
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.117 MRRC

Move to two general-purpose registers from System register. This instruction copies the value of a System register
to two general-purpose registers.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.

In an implementation that includes EL2, MRRC accesses to System registers can be trapped to Hyp mode, meaning
that an attempt to execute an MRRC instruction in a Non-secure mode other than Hyp mode, that would be permitted
in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls.

Because of the range of possible traps to Hyp mode, the MRRC pseudocode does not show these possible traps.

A1

A1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

 t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 0 0 0 1 0 1 Rt2 Rt 1 1 1 opc1 CRm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 9 8 7 4 3 0

cond

coproc<0>

coproc<3:1>

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt 1 1 1 opc1 CRm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 9 8 7 4 3 0

coproc<0>

coproc<3:1>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10156
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following
values:

p14 when coproc<0> = 0

p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in
the "opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opc1>, <CRm> } encode the entire System register encoding space. Not all of this
space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.SysRegRead64(cp, ThisInstr(), t, t2);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10157
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.118 MRS

Move Special register to general-purpose register moves the value of the The Application Program Status Register,
APSR, CPSR, or SPSR_<current_mode> into a general-purpose register.

Arm recommends the APSR form when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more
information, see The Application Program Status Register, APSR.

An MRS that accesses the SPSR is UNPREDICTABLE if executed in User mode or System mode.

An MRS that is executed in User mode and accesses the CPSR returns an UNKNOWN value for the CPSR.{E, A, I, F,
M} fields.

A1

A1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE;

T1

T1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

!=1111 0 0 0 1 0 R 0 0 (1) (1) (1) (1) Rd (0) (0) 0 (0) 0 0 0 0 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 1 1 R (1) (1) (1) (1) 1 0 (0) 0 Rd (0) (0) 0 (0) (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10158
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<spec_reg> Is the special register to be accessed, encoded in the "R" field. It can have the following values:

CPSR|APSR when R = 0

SPSR when R = 1

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if read_spsr then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 R[d] = SPSR_curr[];
 else
 // CPSR has same bit assignments as SPSR, but with the IT, J, SS, IL, and T bits masked out.
 bits(32) mask = '11111000 11101111 00000011 11011111';
 psr_val = GetPSRFromPSTATE(AArch32_NonDebugState, 32) AND mask;
 if PSTATE.EL == EL0 then
 // If accessed from User mode return UNKNOWN values for E, A, I, F bits, bits<9:6>,
 // and for the M field, bits<4:0>
 psr_val<22> = bits(1) UNKNOWN;
 psr_val<9:6> = bits(4) UNKNOWN;
 psr_val<4:0> = bits(5) UNKNOWN;
 R[d] = psr_val;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User, M32_System} && read_spsr, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10159
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.119 MRS (Banked register)

Move to Register from Banked or Special register moves the value from the Banked general-purpose register or
SPSR of the specified mode, or the value of ELR_hyp, to a general-purpose register.

MRS (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MRS (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.

The effect of using an MRS (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the banked register transfer instructions.

A1

A1 variant

MRS{<c>}{<q>} <Rd>, <banked_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE;
 SYSm = M:M1;

T1

T1 variant

MRS{<c>}{<q>} <Rd>, <banked_reg>

Decode for this encoding

 d = UInt(Rd); read_spsr = (R == '1');
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 SYSm = M:M1;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

!=1111 0 0 0 1 0 R 0 0 M1 Rd (0) (0) 1 M 0 0 0 0 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 1 1 R M1 1 0 (0) 0 Rd (0) (0) 1 M (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10160
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<banked_reg> Is the name of the banked register to be transferred to or from, encoded in the "R:M:M1" field. It
can have the following values:

R8_usr when R = 0, M = 0, M1 = 0000

R9_usr when R = 0, M = 0, M1 = 0001

R10_usr when R = 0, M = 0, M1 = 0010

R11_usr when R = 0, M = 0, M1 = 0011

R12_usr when R = 0, M = 0, M1 = 0100

SP_usr when R = 0, M = 0, M1 = 0101

LR_usr when R = 0, M = 0, M1 = 0110

R8_fiq when R = 0, M = 0, M1 = 1000

R9_fiq when R = 0, M = 0, M1 = 1001

R10_fiq when R = 0, M = 0, M1 = 1010

R11_fiq when R = 0, M = 0, M1 = 1011

R12_fiq when R = 0, M = 0, M1 = 1100

SP_fiq when R = 0, M = 0, M1 = 1101

LR_fiq when R = 0, M = 0, M1 = 1110

LR_irq when R = 0, M = 1, M1 = 0000

SP_irq when R = 0, M = 1, M1 = 0001

LR_svc when R = 0, M = 1, M1 = 0010

SP_svc when R = 0, M = 1, M1 = 0011

LR_abt when R = 0, M = 1, M1 = 0100

SP_abt when R = 0, M = 1, M1 = 0101

LR_und when R = 0, M = 1, M1 = 0110

SP_und when R = 0, M = 1, M1 = 0111

LR_mon when R = 0, M = 1, M1 = 1100

SP_mon when R = 0, M = 1, M1 = 1101

ELR_hyp when R = 0, M = 1, M1 = 1110

SP_hyp when R = 0, M = 1, M1 = 1111

SPSR_fiq when R = 1, M = 0, M1 = 1110

SPSR_irq when R = 1, M = 1, M1 = 0000

SPSR_svc when R = 1, M = 1, M1 = 0010

SPSR_abt when R = 1, M = 1, M1 = 0100

SPSR_und when R = 1, M = 1, M1 = 0110

SPSR_mon when R = 1, M = 1, M1 = 1100

SPSR_hyp when R = 1, M = 1, M1 = 1110

The following encodings are UNPREDICTABLE:

• R = 0, M = 0, M1 = 0111.

• R = 0, M = 0, M1 = 1111.

• R = 0, M = 1, M1 = 10xx.

• R = 1, M = 0, M1 = 0xxx.

• R = 1, M = 0, M1 = 10xx.

• R = 1, M = 0, M1 = 110x.

• R = 1, M = 0, M1 = 1111.

• R = 1, M = 1, M1 = 0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10161
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• R = 1, M = 1, M1 = 0011.

• R = 1, M = 1, M1 = 0101.

• R = 1, M = 1, M1 = 0111.

• R = 1, M = 1, M1 = 10xx.

• R = 1, M = 1, M1 = 1101.

• R = 1, M = 1, M1 = 1111.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL0 then
 UNPREDICTABLE;
 else
 mode = PSTATE.M;
 if read_spsr then
 SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '01110' R[d] = SPSR_fiq<31:0>;
 when '10000' R[d] = SPSR_irq<31:0>;
 when '10010' R[d] = SPSR_svc<31:0>;
 when '10100' R[d] = SPSR_abt<31:0>;
 when '10110' R[d] = SPSR_und<31:0>;
 when '11100'
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 R[d] = SPSR_mon;
 when '11110' R[d] = SPSR_hyp<31:0>;
 else
 integer m;
 BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '00xxx' // Access the User mode registers
 m = UInt(SYSm<2:0>) + 8;
 R[d] = Rmode[m,M32_User];
 when '01xxx' // Access the FIQ mode registers
 m = UInt(SYSm<2:0>) + 8;
 R[d] = Rmode[m,M32_FIQ];
 when '1000x' // Access the IRQ mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_IRQ];
 when '1001x' // Access the Supervisor mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Svc];
 when '1010x' // Access the Abort mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Abort];
 when '1011x' // Access the Undefined mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Undef];
 when '1110x' // Access Monitor registers
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 R[d] = Rmode[m,M32_Monitor];
 when '11110' // Access ELR_hyp register
 R[d] = ELR_hyp;
 when '11111' // Access SP_hyp register
 R[d] = Rmode[13,M32_Hyp];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10162
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10163
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.120 MSR (Banked register)

Move to Banked or Special register from general-purpose register moves the value of a general-purpose register to
the Banked general-purpose register or SPSR of the specified mode, or to ELR_hyp.

MSR (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MSR (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.

The effect of using an MSR (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the banked register transfer instructions.

A1

A1 variant

MSR{<c>}{<q>} <banked_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if n == 15 then UNPREDICTABLE;
 SYSm = M:M1;

T1

T1 variant

MSR{<c>}{<q>} <banked_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 SYSm = M:M1;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 0 0 1 0 R 1 0 M1 (1) (1) (1) (1) (0) (0) 1 M 0 0 0 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 M1 (0) (0) 1 M (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10164
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<banked_reg> Is the name of the banked register to be transferred to or from, encoded in the "R:M:M1" field. It
can have the following values:

R8_usr when R = 0, M = 0, M1 = 0000

R9_usr when R = 0, M = 0, M1 = 0001

R10_usr when R = 0, M = 0, M1 = 0010

R11_usr when R = 0, M = 0, M1 = 0011

R12_usr when R = 0, M = 0, M1 = 0100

SP_usr when R = 0, M = 0, M1 = 0101

LR_usr when R = 0, M = 0, M1 = 0110

R8_fiq when R = 0, M = 0, M1 = 1000

R9_fiq when R = 0, M = 0, M1 = 1001

R10_fiq when R = 0, M = 0, M1 = 1010

R11_fiq when R = 0, M = 0, M1 = 1011

R12_fiq when R = 0, M = 0, M1 = 1100

SP_fiq when R = 0, M = 0, M1 = 1101

LR_fiq when R = 0, M = 0, M1 = 1110

LR_irq when R = 0, M = 1, M1 = 0000

SP_irq when R = 0, M = 1, M1 = 0001

LR_svc when R = 0, M = 1, M1 = 0010

SP_svc when R = 0, M = 1, M1 = 0011

LR_abt when R = 0, M = 1, M1 = 0100

SP_abt when R = 0, M = 1, M1 = 0101

LR_und when R = 0, M = 1, M1 = 0110

SP_und when R = 0, M = 1, M1 = 0111

LR_mon when R = 0, M = 1, M1 = 1100

SP_mon when R = 0, M = 1, M1 = 1101

ELR_hyp when R = 0, M = 1, M1 = 1110

SP_hyp when R = 0, M = 1, M1 = 1111

SPSR_fiq when R = 1, M = 0, M1 = 1110

SPSR_irq when R = 1, M = 1, M1 = 0000

SPSR_svc when R = 1, M = 1, M1 = 0010

SPSR_abt when R = 1, M = 1, M1 = 0100

SPSR_und when R = 1, M = 1, M1 = 0110

SPSR_mon when R = 1, M = 1, M1 = 1100

SPSR_hyp when R = 1, M = 1, M1 = 1110

The following encodings are UNPREDICTABLE:

• R = 0, M = 0, M1 = 0111.

• R = 0, M = 0, M1 = 1111.

• R = 0, M = 1, M1 = 10xx.

• R = 1, M = 0, M1 = 0xxx.

• R = 1, M = 0, M1 = 10xx.

• R = 1, M = 0, M1 = 110x.

• R = 1, M = 0, M1 = 1111.

• R = 1, M = 1, M1 = 0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10165
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• R = 1, M = 1, M1 = 0011.

• R = 1, M = 1, M1 = 0101.

• R = 1, M = 1, M1 = 0111.

• R = 1, M = 1, M1 = 10xx.

• R = 1, M = 1, M1 = 1101.

• R = 1, M = 1, M1 = 1111.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL0 then
 UNPREDICTABLE;
 else
 mode = PSTATE.M;
 if write_spsr then
 SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '01110' SPSR_fiq<31:0> = R[n];
 when '10000' SPSR_irq<31:0> = R[n];
 when '10010' SPSR_svc<31:0> = R[n];
 when '10100' SPSR_abt<31:0> = R[n];
 when '10110' SPSR_und<31:0> = R[n];
 when '11100'
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 SPSR_mon<31:0> = R[n];
 when '11110' SPSR_hyp<31:0> = R[n];
 else
 integer m;
 BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
 case SYSm of
 when '00xxx' // Access the User mode registers
 m = UInt(SYSm<2:0>) + 8;
 Rmode[m,M32_User] = R[n];
 when '01xxx' // Access the FIQ mode registers
 m = UInt(SYSm<2:0>) + 8;
 Rmode[m,M32_FIQ] = R[n];
 when '1000x' // Access the IRQ mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_IRQ] = R[n];
 when '1001x' // Access the Supervisor mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Svc] = R[n];
 when '1010x' // Access the Abort mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Abort] = R[n];
 when '1011x' // Access the Undefined mode registers
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Undef] = R[n];
 when '1110x' // Access Monitor registers
 if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
 m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
 Rmode[m,M32_Monitor] = R[n];
 when '11110' // Access ELR_hyp register
 ELR_hyp = R[n];
 when '11111' // Access SP_hyp register
 Rmode[13,M32_Hyp] = R[n];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10166
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10167
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.121 MSR (immediate)

Move immediate value to Special register moves selected bits of an immediate value to the corresponding bits in
the The Application Program Status Register, APSR, CPSR, or SPSR_<current_mode>.

Because of the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the
Application level for writing to APSR_nzcvq (CPSR_f).

If an MSR (immediate) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE.M is legal. See Illegal changes to PSTATE.M.

An MSR (immediate) executed in User mode:

• Is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.

• Otherwise, does not update any CPSR field that is accessible only at EL1 or higher,

An MSR (immediate) executed in System mode is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.

The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

A1 variant

Applies when !(R == 0 && mask == 0000).

MSR{<c>}{<q>} <spec_reg>, #<imm>

Decode for this encoding

 if mask == '0000' && R == '0' then SEE "Related encodings";
 imm32 = A32ExpandImm(imm12); write_spsr = (R == '1');
 if mask == '0000' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000' && R == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Move Special Register and Hints (immediate).

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<spec_reg> Is one of:

• APSR_<bits>.

!=1111 0 0 1 1 0 R 1 0 mask (1) (1) (1) (1) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10168
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• CPSR_<fields>.

• SPSR_<fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:

c mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.

x mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.

s mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.

f mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR_<fields> values:

• APSR_nzcvq is the same as CPSR_f (mask== '1000').

• APSR_g is the same as CPSR_s (mask == '0100').

• APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR.

<imm> Is an immediate value. See Modified immediate constants in A32 instructions for the range of
values.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if write_spsr then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 SPSRWriteByInstr(imm32, mask);
 else
 // Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
 CPSRWriteByInstr(imm32, mask);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System} && write_spsr, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10169
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.122 MSR (register)

Move general-purpose register to Special register moves selected bits of a general-purpose register to the The
Application Program Status Register, APSR, CPSR or SPSR_<current_mode>.

Because of the Do-Not-Modify nature of its reserved bits, a read-modify-write sequence is normally required when
the MSR instruction is being used at Application level and its destination is not APSR_nzcvq (CPSR_f).

If an MSR (register) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE.M is legal. See Illegal changes to PSTATE.M.

An MSR (register) executed in User mode:

• Is UNPREDICTABLE if it attempts to update the SPSR.

• Otherwise, does not update any CPSR field that is accessible only at EL1 or higher.

An MSR (register) executed in System mode is UNPREDICTABLE if it attempts to update the SPSR.

The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

A1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if mask == '0000' then UNPREDICTABLE;
 if n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

T1

T1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

 n = UInt(Rn); write_spsr = (R == '1');
 if mask == '0000' then UNPREDICTABLE;
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 1 0 R 1 0 mask (1) (1) (1) (1) (0) (0) 0 (0) 0 0 0 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 mask (0) (0) 0 (0) (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10170
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<spec_reg> Is one of:

• APSR_<bits>.

• CPSR_<fields>.

• SPSR_<fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:

c mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.

x mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.

s mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.

f mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR_<fields> values:

• APSR_nzcvq is the same as CPSR_f (mask== '1000').

• APSR_g is the same as CPSR_s (mask == '0100').

• APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if write_spsr then
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 SPSRWriteByInstr(R[n], mask);
 else
 // Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
 CPSRWriteByInstr(R[n], mask);

CONSTRAINED UNPREDICTABLE behavior

If write_spsr && PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10171
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10172
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.123 MUL, MULS

Multiply multiplies two register values. The least significant 32 bits of the result are written to the destination
register. These 32 bits do not depend on whether the source register values are considered to be signed values or
unsigned values.

Optionally, it can update the condition flags based on the result. In the T32 instruction set, this option is limited to
only a few forms of the instruction. Use of this option adversely affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

MULS{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Not flag setting variant

Applies when S == 0.

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

MUL<c>{<q>} <Rdm>, <Rn>{, <Rdm>} // Inside IT block
MULS{<q>} <Rdm>, <Rn>{, <Rdm>} // Outside IT block

Decode for this encoding

 d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

T2

T2 variant

MUL<c>.W <Rd>, <Rn>{, <Rm>} // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

!=1111 0 0 0 0 0 0 0 S Rd (0) (0) (0) (0) Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 1 0 1 Rn Rdm

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10173
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,
encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field. If
omitted, <Rd> is used.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 result = operand1 * operand2;
 R[d] = result<31:0>;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result<31:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10174
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.124 MVN, MVNS (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.

If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

!=1111 0 0 1 1 1 1 1 S (0) (0) (0) (0) Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10175
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
MVNS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used:

• For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = NOT(imm32);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10176
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.125 MVN, MVNS (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.

If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on
the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MVN, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10177
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

MVN<c>{<q>} <Rd>, <Rm> // Inside IT block
MVNS{<q>} <Rd>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

MVN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MVN<c>.W <Rd>, <Rm> // Inside IT block, and <Rd>, <Rm> can be represented in T1
MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

MVNS.W <Rd>, <Rm> // Outside IT block, and <Rd>, <Rm> can be represented in T1
MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 1 1 1 1 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10178
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used:

• For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T1 and T2: is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the source register, encoded in the "stype" field. It can have the
following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = NOT(shifted);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10179
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.126 MVN, MVNS (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of a register-shifted register value to the
destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);

!=1111 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10180
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = NOT(shifted);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10181
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.127 NOP

No Operation does nothing. This instruction can be used for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

A1

A1 variant

NOP{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

NOP{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

NOP{<c>}.W

Decode for this encoding

 // No additional decoding required

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10182
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 // Do nothing

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10183
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.128 ORN, ORNS (immediate)

Bitwise OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1

Flag setting variant

Applies when S == 1.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Not flag setting variant

Applies when S == 0.

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "MVN (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR NOT(imm32);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

1 1 1 1 0 i 0 0 0 1 1 S !=1111 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10184
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10185
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.129 ORN, ORNS (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1

ORN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1111' then SEE "MVN (register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

1 1 1 0 1 0 1 0 0 1 1 S !=1111 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10186
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] OR NOT(shifted);
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10187
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.130 ORR, ORRS (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes
the result to the destination register.

If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

!=1111 0 0 1 1 1 0 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 0 0 1 0 S !=1111 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10188
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' then SEE "MOV (immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10189
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10190
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.131 ORR, ORRS (register)

Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value,
and writes the result to the destination register.

If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

ORR, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 1 1 0 0 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10191
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

ORR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ORRS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

ORR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORRS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1111' then SEE "Related encodings";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 1 1 0 0 Rm Rdn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 S !=1111 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10192
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Related encodings: Data-processing (shifted register)

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

• Outside an IT block, if ORRS <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ORRS <Rd>, <Rn> had been written.

• Inside an IT block, if ORR<c> <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ORR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] OR shifted;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10193
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10194
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.132 ORR, ORRS (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of a register value and a register-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

A1

Flag setting variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

!=1111 0 0 0 1 1 0 0 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10195
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] OR shifted;
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10196
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.133 PKHBT, PKHTB

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second operand.

A1

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>}

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
 (shift_t, shift_n) = DecodeImmShift(tb:'0', imm5);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} // tbform == FALSE

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} // tbform == TRUE

Decode for all variants of this encoding

 if S == '1' || T == '1' then UNDEFINED;
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
 (shift_t, shift_n) = DecodeImmShift(tb:'0', imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 0 0 0 Rn Rd imm5 tb 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 0 1 0 1 0 1 1 0 0 Rn (0) imm3 Rd imm2 tb 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

S T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10197
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: the shift to apply to the value read from <Rm>, encoded in the "imm5" field.

For PKHBT, it is one of:

omitted No shift, encoded as 0b00000.

1-31 Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>,
<Rm>, <Rn> had been written.

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as
0b00000. Other shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

For encoding T1: the shift to apply to the value read from <Rm>, encoded in the "imm3:imm2" field.

For PKHBT, it is one of:

omitted No shift, encoded as 0b00000.

1-31 Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>,
<Rm>, <Rn> had been written.

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as
0b00000. Other shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = Shift(R[m], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
 R[d]<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10198
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10199
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.134 PLD, PLDW (immediate)

Preload Data (immediate) signals the memory system that data memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.

The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

A1

Preload read variant

Applies when R == 1.

PLD{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

Preload write variant

Applies when R == 0.

PLDW{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == '1'); is_pldw = (R == '0');

T1

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == '1');

1 1 1 1 0 1 0 1 U R 0 1 !=1111 (1) (1) (1) (1) imm12

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

Rn

1 1 1 1 1 0 0 0 1 0 W 1 !=1111 1 1 1 1 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10200
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == '1');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see PLD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 if is_pldw then
 Hint_PreloadDataForWrite(address);

1 1 1 1 1 0 0 0 0 0 W 1 !=1111 1 1 1 1 1 1 0 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10201
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 Hint_PreloadData(address);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10202
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.135 PLD (literal)

Preload Data (literal) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The effect of a PLD instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

A1

A1 variant

PLD{<c>}{<q>} <label> // Normal form
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 imm32 = ZeroExtend(imm12, 32); add = (U == '1');

T1

T1 variant

PLD{<c>}{<q>} <label> // Preferred syntax
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<label> The label of the literal data item that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
The offset must be in the range –4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

1 1 1 1 0 1 0 1 U (1) 0 1 1 1 1 1 (1) (1) (1) (1) imm12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 0

1 1 1 1 1 0 0 0 U 0 (0) 1 1 1 1 1 1 1 1 1 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10203
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in
the "imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
 Hint_PreloadData(address);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10204
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.136 PLD, PLDW (register)

Preload Data (register) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.

The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

A1

Preload read, optional shift or rotate variant

Applies when R == 1 && !(imm5 == 00000 && stype == 11).

PLD{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Preload read, rotate right with extend variant

Applies when R == 1 && imm5 == 00000 && stype == 11.

PLD{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Preload write, optional shift or rotate variant

Applies when R == 0 && !(imm5 == 00000 && stype == 11).

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Preload write, rotate right with extend variant

Applies when R == 0 && imm5 == 00000 && stype == 11.

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm); add = (U == '1'); is_pldw = (R == '0');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 || (n == 15 && is_pldw) then UNPREDICTABLE;

T1

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Preload write variant

Applies when W == 1.

1 1 1 1 0 1 1 1 U R 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

1 1 1 1 1 0 0 0 0 0 W 1 !=1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10205
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
PLDW{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for all variants of this encoding

 if Rn == '1111' then SEE "PLD (literal)";
 n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == '1');
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be
used.

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in the "stype" field. It can have the
following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 if is_pldw then
 Hint_PreloadDataForWrite(address);
 else
 Hint_PreloadData(address);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10206
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.137 PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

A1

A1 variant

PLI{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]
PLI{<c>}{<q>} <label> // Normal form
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == '1');

T1

T1 variant

PLI{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "encoding T3";
 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2

T2 variant

PLI{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding

 if Rn == '1111' then SEE "encoding T3";
 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

1 1 1 1 0 1 0 0 U 1 0 1 Rn (1) (1) (1) (1) imm12

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

1 1 1 1 1 0 0 1 1 0 0 1 !=1111 1 1 1 1 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Rn

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 1 1 1 1 1 1 0 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10207
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T3

T3 variant

PLI{<c>}{<q>} <label> // Preferred syntax
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

 n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<label> The label of the instruction that is likely to be accessed in the near future. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset
must be in the range –4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

For the literal forms of the instruction, encoding T3 is used, or Rn is encoded as 0b1111 in encoding A1, to indicate
that the PC is the base register.

The alternative literal syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10208
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 base = if n == 15 then Align(PC32,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 Hint_PreloadInstr(address);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10209
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.138 PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

PLI{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

PLI{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm); add = (U == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 then UNPREDICTABLE;

T1

T1 variant

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding

 if Rn == '1111' then SEE "PLI (immediate, literal)";
 n = UInt(Rn); m = UInt(Rm); add = TRUE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.

1 1 1 1 0 1 1 0 U 1 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10210
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in the "stype" field. It can have the
following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadInstr(address);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10211
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.139 POP

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from
consecutive memory locations starting at the address in SP, and updates SP to point just above the loaded data.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

T1

T1 variant

POP{<c>}{<q>} <registers> // Preferred syntax
LDM{<c>}{<q>} SP!, <registers> // Alternate syntax

Decode for this encoding

 registers = P:'0000000':register_list; UnalignedAllowed = FALSE;
 if BitCount(registers) < 1 then UNPREDICTABLE;
 if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can
optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field defaults
to 0.

If the PC is in the list, the instruction must be either outside any IT block, or the last instruction in
an IT block.

1 0 1 1 1 1 0 P register_list

15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10212
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[13];
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4];
 address = address + 4;
 if registers<15> == '1' then
 if UnalignedAllowed then
 if address<1:0> == '00' then
 LoadWritePC(MemU[address,4]);
 else
 UNPREDICTABLE;
 else
 LoadWritePC(MemA[address,4]);
 if registers<13> == '0' then R[13] = R[13] + 4*BitCount(registers);
 if registers<13> == '1' then R[13] = bits(32) UNKNOWN;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10213
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.140 POP (multiple registers)

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from
consecutive memory locations starting at the address in SP, and updates SP to point just above the loaded data.

This instruction is an alias of the LDM, LDMIA, LDMFD instruction. This means that:

• The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.

• The description of LDM, LDMIA, LDMFD gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

A1 variant

POP{<c>}{<q>} <registers>

 is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2

T2 variant

POP{<c>}.W <registers> // All registers in R0-R7, PC

 is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

POP{<c>}{<q>} <registers>

 is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> For encoding A1: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address,
through to the highest-numbered register from the highest memory address. See also Encoding of
lists of general-purpose registers and the PC.

!=1111 1 0 0 0 1 0 1 1 1 1 0 1 register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond W Rn

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 P M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

W Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10214
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If the SP is in the list, the value of the SP after such an instruction is UNKNOWN.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

Arm deprecates the use of this instruction with both the LR and the PC in the list.

For encoding T2: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address,
through to the highest-numbered register from the highest memory address. See also Encoding of
lists of general-purpose registers and the PC.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise
it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC. If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10215
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.141 POP (single register)

Pop Single Register from Stack loads a single general-purpose register from the stack, loading from the address in
SP, and updates SP to point just above the loaded data.

This instruction is an alias of the LDR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of LDR (immediate).

• The description of LDR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

Post-indexed variant

POP{<c>}{<q>} <single_register_list>

 is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

T4

Post-indexed variant

POP{<c>}{<q>} <single_register_list>

 is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<single_register_list>

Is the general-purpose register <Rt> to be loaded surrounded by { and }.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

!=1111 0 1 0 0 1 0 0 1 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond P U W Rn imm12

1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 Rt 1 0 1 1 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn P U W imm8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10216
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

Operation for all encodings

The description of LDR (immediate) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10217
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.142 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing
earlier stores to the same physical address under certain conditions. For more information and details of the
semantics, see Physical Speculative Store Bypass Barrier (PSSBB).

A1

A1 variant

PSSBB{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

PSSBB{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

Assembler symbols

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculativeStoreBypassBarrierToPA();

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 0 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10218
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.143 PUSH

Push Multiple Registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive
memory locations ending just below the address in SP, and updates SP to point to the start of the stored data.

The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to
the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

T1

T1 variant

PUSH{<c>}{<q>} <registers> // Preferred syntax
STMDB{<c>}{<q>} SP!, <registers> // Alternate syntax

Decode for this encoding

 registers = '0':M:'000000':register_list; UnalignedAllowed = FALSE;
 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can
optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this field defaults
to 0.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[13] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == '1' then
 if i == 13 && i != LowestSetBit(registers) then // Only possible for encoding A1

1 0 1 1 0 1 0 M register_list

15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10219
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 MemA[address,4] = bits(32) UNKNOWN;
 else
 if UnalignedAllowed then
 MemU[address,4] = R[i];
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1 or A2
 if UnalignedAllowed then
 MemU[address,4] = PCStoreValue();
 else
 MemA[address,4] = PCStoreValue();
 R[13] = R[13] - 4*BitCount(registers);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10220
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.144 PUSH (multiple registers)

Push multiple registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive
memory locations ending just below the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STMDB, STMFD instruction. This means that:

• The encodings in this description are named to match the encodings of STMDB, STMFD.

• The description of STMDB, STMFD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

A1 variant

PUSH{<c>}{<q>} <registers>

 is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T1

T1 variant

PUSH{<c>}.W <registers> // All registers in R0-R7, LR

 is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

PUSH{<c>}{<q>} <registers>

 is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> For encoding A1: is a list of two or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. See also Encoding of lists of
general-purpose registers and the PC.

!=1111 1 0 0 1 0 0 1 0 1 1 0 1 register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond W Rn

1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 (0) M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

W Rn P
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10221
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
The SP and PC can be in the list. However:

• Arm deprecates the use of instructions that include the PC in the list.

• If the SP is in the list, and it is not the lowest-numbered register in the list, the instruction
stores an UNKNOWN value for the SP.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. See also Encoding of lists of
general-purpose registers and the PC.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

The description of STMDB, STMFD gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10222
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.145 PUSH (single register)

Push Single Register to Stack stores a single general-purpose register to the stack, storing to the 32-bit word below
the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of STR (immediate).

• The description of STR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

Pre-indexed variant

PUSH{<c>}{<q>} <single_register_list>

 is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

T4

Pre-indexed variant

PUSH{<c>}{<q>} <single_register_list> // Standard syntax

 is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<single_register_list>

Is the general-purpose register <Rt> to be stored surrounded by { and }.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation for all encodings

The description of STR (immediate) gives the operational pseudocode for this instruction.

!=1111 0 1 0 1 0 0 1 0 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond P U W Rn imm12

1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 Rt 1 1 0 1 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn P U W imm8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10223
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.146 QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range -231 to (231 - 1), and
writes the result to the destination register. If saturation occurs, it sets PSTATE.Q to 1.

A1

A1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 boolean sat;

!=1111 0 0 0 1 0 0 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10224
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10225
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.147 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range -215
<= x <= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10226
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = SignedSat(sum1, 16);
 R[d]<31:16> = SignedSat(sum2, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10227
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.148 QADD8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range -27 <=
x <= 27 - 1, and writes the results to the destination register.

A1

A1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10228
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(sum1, 8);
 R[d]<15:8> = SignedSat(sum2, 8);
 R[d]<23:16> = SignedSat(sum3, 8);
 R[d]<31:24> = SignedSat(sum4, 8);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10229
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.149 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range -215 <= x
<= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10230
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(diff, 16);
 R[d]<31:16> = SignedSat(sum, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10231
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.150 QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to the
destination register. Both the doubling and the addition have their results saturated to the 32-bit signed integer range
-231 <= x <= 231 - 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.

A1

A1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

!=1111 0 0 0 1 0 1 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10232
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 boolean sat2;
 (R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10233
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.151 QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes the result
to the destination register. Both the doubling and the subtraction have their results saturated to the 32-bit signed
integer range -231 <= x <= 231 - 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.

A1

A1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

!=1111 0 0 0 1 0 1 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10234
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 boolean sat2;
 (R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10235
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.152 QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range -215 <= x
<= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10236
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = SignedSat(sum, 16);
 R[d]<31:16> = SignedSat(diff, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10237
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.153 QSUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit signed
integer range -231 <= x <= 231 - 1, and writes the result to the destination register. If saturation occurs, it sets
PSTATE.Q to 1.

A1

A1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

!=1111 0 0 0 1 0 0 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10238
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 boolean sat;
 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10239
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.154 QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed integer
range -215 <= x <= 215 - 1, and writes the results to the destination register.

A1

A1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10240
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = SignedSat(diff1, 16);
 R[d]<31:16> = SignedSat(diff2, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10241
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.155 QSUB8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer range
-27 <= x <= 27 - 1, and writes the results to the destination register.

A1

A1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10242
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(diff1, 8);
 R[d]<15:8> = SignedSat(diff2, 8);
 R[d]<23:16> = SignedSat(diff3, 8);
 R[d]<31:24> = SignedSat(diff4, 8);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10243
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.156 RBIT

Reverse Bits reverses the bit order in a 32-bit register.

A1

A1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

!=1111 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10244
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 for i = 0 to 31
 result<31-i> = R[m]<i>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10245
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.157 REV

Byte-Reverse Word reverses the byte order in a 32-bit register.

A1

A1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);

T2

T2 variant

REV{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 0 0 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10246
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<7:0>;
 result<23:16> = R[m]<15:8>;
 result<15:8> = R[m]<23:16>;
 result<7:0> = R[m]<31:24>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10247
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.158 REV16

Byte-Reverse Packed Halfword reverses the byte order in each16-bit halfword of a 32-bit register.

A1

A1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);

T2

T2 variant

REV16{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 0 1 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10248
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<23:16>;
 result<23:16> = R[m]<31:24>;
 result<15:8> = R[m]<7:0>;
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10249
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.159 REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and
sign-extends the result to 32 bits.

A1

A1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm);

T2

T2 variant

REVSH{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
 if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 1 0 1 0 1 1 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10250
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes with the additional decode: m = UInt(Rn);.

• The instruction executes with the additional decode: m = UInt(Rm);.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be
encoded with an identical value in the "Rn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:8> = SignExtend(R[m]<7:0>, 24);
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10251
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.160 RFE, RFEDA, RFEDB, RFEIA, RFEIB

Return From Exception loads two consecutive memory locations using an address in a base register:

• The word loaded from the lower address is treated as an instruction address. The PE branches to it.

• The word loaded from the higher address is used to restore PSTATE. This word must be in the format of an
SPSR.

An address adjusted by the size of the data loaded can optionally be written back to the base register.

The PE checks the value of the word loaded from the higher address for an illegal return event. See Illegal return
events from AArch32 state.

RFE is UNDEFINED in Hyp mode and CONSTRAINED UNPREDICTABLE in User mode.

A1

Decrement After variant

Applies when P == 0 && U == 0.

RFEDA{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEFA{<c>}{<q>} <Rn>{!} // Alternate syntax, Full Ascending stack

Decrement Before variant

Applies when P == 1 && U == 0.

RFEDB{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEEA{<c>}{<q>} <Rn>{!} // Alternate syntax, Empty Ascending stack

Increment After variant

Applies when P == 0 && U == 1.

RFE{IA}{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEFD{<c>}{<q>} <Rn>{!} // Alternate syntax, Full Descending stack

Increment Before variant

Applies when P == 1 && U == 1.

RFEIB{<c>}{<q>} <Rn>{!} // Preferred syntax
RFEED{<c>}{<q>} <Rn>{!} // Alternate syntax, Empty Descending stack

Decode for all variants of this encoding

 n = UInt(Rn);
 wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);
 if n == 15 then UNPREDICTABLE;

T1

1 1 1 1 1 0 0 P U 0 W 1 Rn (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10252
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

RFEDB{<c>}{<q>} <Rn>{!} // Outside or last in IT block, preferred syntax
RFEFA{<c>}{<q>} <Rn>{!} // Outside or last in IT block, alternate syntax, Full Ascending stack

Decode for this encoding

 n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher = FALSE;
 if n == 15 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

T2 variant

RFE{IA}{<c>}{<q>} <Rn>{!} // Outside or last in IT block, preferred syntax
RFEFD{<c>}{<q>} <Rn>{!} // Outside or last in IT block, alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); wback = (W == '1'); increment = TRUE; wordhigher = FALSE;
 if n == 15 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.

For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

RFEFA, RFEEA, RFEFD, and RFEED are pseudo-instructions for RFEDA, RFEDB, RFEIA, and RFEIB respectively, referring to
their use for popping data from Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL0 then
 UNPREDICTABLE; // UNDEFINED or NOP

1 1 1 0 1 0 0 1 1 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10253
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 address = if increment then R[n] else R[n]-8;
 if wordhigher then address = address+4;
 new_pc_value = MemA[address,4];
 spsr = MemA[address+4,4];
 if wback then R[n] = if increment then R[n]+8 else R[n]-8;
 AArch32.ExceptionReturn(new_pc_value, spsr);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10254
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.161 ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The bits that
are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOV, shift or rotate by value variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

MOV, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd !=00000 1 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10255
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10256
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.162 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The variable number of bits is
read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Not flag setting variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

Rotate right variant

ROR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

 is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

ROR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 1 1 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10257
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded
in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10258
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.163 RORS (immediate)

Rotate Right, setting flags (immediate) provides the value of the contents of a register rotated by a constant value.
The bits that are rotated off the right end are inserted into the vacated bit positions on the left.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOVS, shift or rotate by value variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

MOVS, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd !=00000 1 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10259
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10260
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.164 RORS (register)

Rotate Right, setting flags (register) provides the value of the contents of a register rotated by a variable number of
bits, and updates the condition flags based on the result. The bits that are rotated off the right end are inserted into
the vacated bit positions on the left. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any
CONSTRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Flag setting variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

Rotate right variant

RORS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

 is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2

Flag setting variant

RORS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 0

cond S stype

0 1 0 0 0 0 0 1 1 1 Rs Rdm

15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

stype S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10261
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
and is always the preferred disassembly.

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded
in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10262
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.165 RRX

Rotate Right with Extend provides the value of the contents of a register shifted right by one place, with the Carry
flag shifted into bit[31].

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode
description of operations on the AArch32 general-purpose registers and the PC.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

!=1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S imm3 imm2 stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10263
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10264
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.166 RRXS

Rotate Right with Extend, setting flags provides the value of the contents of a register shifted right by one place,
with the Carry flag shifted into bit[31].

If the destination register is not the PC, this instruction updates the condition flags based on the result, and bit[0] is
shifted into the Carry flag.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32
state.

• The instruction is UNDEFINED in Hyp mode.

• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).

• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

!=1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond S imm5 stype

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S imm3 imm2 stype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10265
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction performs an
exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10266
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.167 RSB, RSBS (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to the
destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSB variant

Applies when S == 0.

RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

RSB<c>{<q>} {<Rd>, }<Rn>, #0 // Inside IT block
RSBS{<q>} {<Rd>, }<Rn>, #0 // Outside IT block

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

!=1111 0 0 1 0 0 1 1 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0 1 0 0 0 0 1 0 0 1 Rn Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10267
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

RSB variant

Applies when S == 0.

RSB<c>.W {<Rd>,} <Rn>, #0 // Inside IT block
RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS.W {<Rd>,} <Rn>, #0 // Outside IT block
RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1 and T2: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10268
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(NOT(R[n]), imm32, '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10269
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.168 RSB, RSBS (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the result
to the destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 1 1 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10270
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

RSB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10271
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10272
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.169 RSB, RSBS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value from a register-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 1 1 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10273
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10274
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.170 RSC, RSCS (immediate)

Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from an
immediate value, and writes the result to the destination register.

If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSC variant

Applies when S == 0.

RSC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSCS variant

Applies when S == 1.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

!=1111 0 0 1 0 1 1 1 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10275
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(NOT(R[n]), imm32, PSTATE.C);
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10276
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.171 RSC, RSCS (register)

Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an
optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

RSC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

Assembler symbols

<c> See Standard assembler syntax fields.

!=1111 0 0 0 0 1 1 1 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10277
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this
is deprecated.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but
this is deprecated.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10278
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.172 RSC, RSCS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value and the value of NOT (Carry flag) from a
register-shifted register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 1 1 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10279
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10280
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.173 SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.

A1

A1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10281
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 PSTATE.GE<1:0> = if sum1 >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if sum2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10282
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.174 SADD8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.

A1

A1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10283
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 PSTATE.GE<0> = if sum1 >= 0 then '1' else '0';
 PSTATE.GE<1> = if sum2 >= 0 then '1' else '0';
 PSTATE.GE<2> = if sum3 >= 0 then '1' else '0';
 PSTATE.GE<3> = if sum4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10284
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.175 SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets PSTATE.GE
according to the results.

A1

A1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10285
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if sum >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10286
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.176 SB

Speculation Barrier is a barrier that controls speculation. For more information and details of the semantics, see
Speculation Barrier (SB).

A1

(FEAT_SB)

A1 variant

SB{<q>}

Decode for this encoding

 // No additional decoding required

T1

(FEAT_SB)

T1 variant

SB{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculationBarrier();

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 1 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10287
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.177 SBC, SBCS (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT (Carry flag) from a register
value, and writes the result to the destination register.

If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

!=1111 0 0 1 0 1 1 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10288
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10289
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10290
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.178 SBC, SBCS (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT (Carry flag) from
a register value, and writes the result to the destination register.

If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SBC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 1 1 0 S Rn Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10291
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

SBC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
SBCS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

SBC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SBC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SBCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

0 1 0 0 0 0 0 1 1 0 Rm Rdn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10292
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10293
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10294
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.179 SBC, SBCS (register-shifted register)

Subtract with Carry (register-shifted register) subtracts a register-shifted register value and the value of NOT (Carry
flag) from a register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

A1

Flag setting variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 1 1 0 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10295
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10296
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.180 SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from a register, sign-extends them to
32 bits, and writes the result to the destination register.

A1

A1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 constant integer lsbit = UInt(lsb);
 constant integer widthminus1 = UInt(widthm1);
 constant integer msbit = lsbit + widthminus1;
 if d == 15 || n == 15 then UNPREDICTABLE;
 if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 constant integer lsbit = UInt(imm3:imm2);
 constant integer widthminus1 = UInt(widthm1);
 constant integer msbit = lsbit + widthminus1;
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 1 1 0 1 widthm1 Rd lsb 1 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10297
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "lsb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "imm3:imm2" field.

<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d] = SignExtend(R[n]<msbit:lsbit>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10298
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.181 SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and writes the
result to the destination register. The condition flags are not affected.

A1

A1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

T1

T1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 // Armv8-A removes UNPREDICTABLE for R13
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

!=1111 0 1 1 1 0 0 0 1 Rd (1) (1) (1) (1) Rm 0 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10299
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Overflow

If the signed integer division 0x80000000 / 0xFFFFFFFF is performed, the pseudocode produces the intermediate
integer result +231, that overflows the 32-bit signed integer range. No indication of this overflow case is produced,
and the 32-bit result written to <Rd> must be the bottom 32 bits of the binary representation of +231. So the result of
the division is 0x80000000.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 integer result;
 if SInt(R[m]) == 0 then
 result = 0;
 else
 result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));
 R[d] = result<31:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10300
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.182 SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to the values
of the PSTATE.GE flags.

A1

A1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<7:0> = if PSTATE.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;

!=1111 0 1 1 0 1 0 0 0 Rn Rd (1) (1) (1) (1) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10301
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 R[d]<15:8> = if PSTATE.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>;
 R[d]<23:16> = if PSTATE.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
 R[d]<31:24> = if PSTATE.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10302
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.183 SETEND

Set Endianness writes a new value to PSTATE.E.

A1

A1 variant

SETEND{<q>} <endian_specifier> // Cannot be conditional

Decode for this encoding

 set_bigend = (E == '1');

T1

T1 variant

SETEND{<q>} <endian_specifier> // Not permitted in IT block

Decode for this encoding

 set_bigend = (E == '1');
 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<endian_specifier> Is the endianness to be selected, and the value to be set in PSTATE.E, encoded in the "E" field.
It can have the following values:

LE when E = 0

BE when E = 1

Operation for all encodings

 EncodingSpecificOperations();
 AArch32.CheckSETENDEnabled();
 PSTATE.E = if set_bigend then '1' else '0';

1 1 1 1 0 0 0 1 0 0 0 0 (0) (0) (0) 1 (0) (0) (0) (0) (0) (0) E (0) 0 0 0 0 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 0 (1) E (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10303
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.184 SETPAN

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.

A1

(FEAT_PAN)

A1 variant

SETPAN{<q>} #<imm> // Cannot be conditional

Decode for this encoding

 if !IsFeatureImplemented(FEAT_PAN) then UNDEFINED;
 value = imm1;

T1

(FEAT_PAN)

T1 variant

SETPAN{<q>} #<imm> // Not permitted in IT block

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_PAN) then UNDEFINED;
 value = imm1;

Assembler symbols

<q> See Standard assembler syntax fields.

<imm> Is the unsigned immediate 0 or 1, encoded in the "imm1" field.

Operation for all encodings

 EncodingSpecificOperations();
 if PSTATE.EL != EL0 then
 PSTATE.PAN = value;

1 1 1 1 0 0 0 1 0 0 0 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 0 0 0 (0) (0) (0) (0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm1

1 0 1 1 0 1 1 0 0 0 0 (1) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10304
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.185 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait For Event and Send Event.

A1

A1 variant

SEV{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SEV{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

SEV{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10305
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SendEvent();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10306
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.186 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

A1

A1 variant

SEVL{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SEVL{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

SEVL{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 1

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10307
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SendEventLocal();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10308
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.187 SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10309
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<16:1>;
 R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10310
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.188 SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10311
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<8:1>;
 R[d]<15:8> = sum2<8:1>;
 R[d]<23:16> = sum3<8:1>;
 R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10312
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.189 SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10313
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<16:1>;
 R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10314
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.190 SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes the results to the
destination register.

A1

A1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10315
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<16:1>;
 R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10316
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.191 SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes the results
to the destination register.

A1

A1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10317
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<16:1>;
 R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10318
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.192 SHSUB8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the results
to the destination register.

A1

A1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10319
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<8:1>;
 R[d]<15:8> = diff2<8:1>;
 R[d]<23:16> = diff3<8:1>;
 R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10320
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.193 SMC

Secure Monitor Call causes a Secure Monitor Call exception. For more information see Secure Monitor Call (SMC)
exception.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in User mode.

If the values of HCR.TSC and SCR.SCD are both 0, execution of an SMC instruction at EL1 or higher generates a
Secure Monitor Call exception that is taken to EL3. When EL3 is using AArch32 this exception is taken to Monitor
mode. When EL3 is using AArch64, it is the SCR_EL3.SMD bit, rather than the SCR.SCD bit, that can change the
effect of executing an SMC instruction.

If the value of HCR.TSC is 1, execution of an SMC instruction in a Non-secure EL1 mode generates an exception that
is taken to EL2, regardless of the value of SCR.SCD. When EL2 is using AArch32, this is a Hyp Trap exception
that is taken to Hyp mode. For more information see HCR.TSC.

If the value of HCR.TSC is 0 and the value of SCR.SCD is 1, the SMC instruction is:

• UNDEFINED in Non-secure state.

• CONSTRAINED UNPREDICTABLE if executed in Secure state at EL1 or higher.

A1

A1 variant

SMC{<c>}{<q>} {#}<imm4>

Decode for this encoding

 // imm4 is for assembly/disassembly only and is ignored by hardware

T1

T1 variant

SMC{<c>}{<q>} {#}<imm4>

Decode for this encoding

 // imm4 is for assembly/disassembly only and is ignored by hardware
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10321
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<imm4> Is a 4-bit unsigned immediate value, in the range 0 to 15, encoded in the "imm4" field. This is
ignored by the PE. The Secure Monitor Call exception handler (Secure Monitor code) can use this
value to determine what service is being requested, but Arm does not recommend this.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();

 AArch32.CheckForSMCUndefOrTrap();

 if !ELUsingAArch32(EL3) then
 if SCR_EL3.SMD == '1' then
 // SMC disabled.
 UNDEFINED;
 else
 if SCR.SCD == '1' then
 // SMC disabled
 if CurrentSecurityState() == SS_Secure then
 // Executes either as a NOP or UNALLOCATED.
 c = ConstrainUnpredictable(Unpredictable_SMD);
 assert c IN {Constraint_NOP, Constraint_UNDEF};
 if c == Constraint_NOP then EndOfInstruction();
 UNDEFINED;

 if !ELUsingAArch32(EL3) then
 AArch64.CallSecureMonitor(Zeros(16));
 else
 AArch32.TakeSMCException();

CONSTRAINED UNPREDICTABLE behavior

If SCR.SCD == '1' && CurrentSecurityState() == SS_Secure, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10322
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.194 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on
two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The
other halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the
result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. It is not possible
for overflow to occur during the multiplication.

A1

SMLABB variant

Applies when M == 0 && N == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when M == 1 && N == 0.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when M == 0 && N == 1.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when M == 1 && N == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMLABB variant

Applies when N == 0 && M == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

!=1111 0 0 0 1 0 0 0 0 Rd Ra Rm 1 M N 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 1 Rn !=1111 Rd 0 0 N M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10323
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMLABT variant

Applies when N == 0 && M == 1.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when N == 1 && M == 0.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when N == 1 && M == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10324
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.195 SMLAD, SMLADX

Signed Multiply Accumulate Dual performs two signed 16 x 16-bit multiplications. It adds the products to a 32-bit
accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

A1

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUAD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUAD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd !=1111 Rm 0 0 M 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 0 1 0 Rn !=1111 Rd 0 0 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10325
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10326
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.196 SMLAL, SMLALS

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and accumulates
this with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

SMLALS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 1 1 S RdHi RdLo Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10327
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10328
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.197 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and
accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom
or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit
product is sign-extended and accumulated with a 64-bit accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

A1

SMLALBB variant

Applies when M == 0 && N == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when M == 1 && N == 0.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when M == 0 && N == 1.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when M == 1 && N == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

!=1111 0 0 0 1 0 1 0 0 RdHi RdLo Rm 1 M N 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10329
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

SMLALBB variant

Applies when N == 0 && M == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when N == 0 && M == 1.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when N == 1 && M == 0.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when N == 1 && M == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10330
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> For encoding A1: is the first general-purpose source register holding the multiplicand in the bottom
or top half (selected by <x>), encoded in the "Rn" field.

For encoding T1: is the first general-purpose source register holding the multiplicand in the bottom
or top half (selected by <x>), encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register holding the multiplier in the bottom
or top half (selected by <y>), encoded in the "Rm" field.

For encoding T1: is the second general-purpose source register holding the multiplier in the bottom
or top half (selected by <x>), encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10331
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.198 SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual performs two signed 16 x 16-bit multiplications. It adds the products to a
64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

A1

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

!=1111 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 0 M 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10332
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10333
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10334
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.199 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply accumulate operation. The multiply
acts on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the
bottom or the top half of its source register. The other half of the second source register is ignored. The top 32 bits
of the 48-bit product are added to a 32-bit accumulate value and the result is written to the destination register. The
bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. No overflow
can occur during the multiplication.

A1

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMULWB, SMULWT";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 0 0 1 0 0 1 0 Rd Ra Rm 1 M 0 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 1 1 Rn !=1111 Rd 0 0 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10335
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
 R[d] = result<47:16>;
 if (result >> 16) != SInt(R[d]) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10336
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.200 SMLSD, SMLSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the
products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

A1

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUSD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMUSD";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd !=1111 Rm 0 1 M 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 1 0 0 Rn !=1111 Rd 0 0 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10337
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = (product1 - product2) + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10338
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.201 SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the
products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

A1

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

!=1111 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 1 M 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10339
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = (product1 - product2) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10340
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.202 SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most
significant 32 bits of the result, and adds an accumulate value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

A1

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMMUL";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 if Ra == '1111' then SEE "SMMUL";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 1 0 1 Rd !=1111 Rm 0 0 R 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 1 0 1 Rn !=1111 Rd 0 0 0 R Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10341
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10342
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.203 SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, subtracts the result from a
32-bit accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that
subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In this
case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

A1

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
 if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 1 0 1 Rd Ra Rm 1 1 R 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10343
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10344
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.204 SMMUL, SMMULR

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant 32 bits of
the result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

A1

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 1 0 1 0 1 Rd 1 1 1 1 Rm 0 0 R 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10345
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10346
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.205 SMUAD, SMUADX

Signed Dual Multiply Add performs two signed 16 x 16-bit multiplications. It adds the products together, and writes
the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the addition overflows. The multiplications cannot overflow.

A1

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 0 M 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10347
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2;
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10348
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.206 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product is written
to the destination register. No overflow is possible during this instruction.

A1

SMULBB variant

Applies when M == 0 && N == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when M == 1 && N == 0.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB variant

Applies when M == 0 && N == 1.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when M == 1 && N == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMULBB variant

Applies when N == 0 && M == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when N == 0 && M == 1.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

!=1111 0 0 0 1 0 1 1 0 Rd (0) (0) (0) (0) Rm 1 M N 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10349
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
SMULTB variant

Applies when N == 1 && M == 0.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when N == 1 && M == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 n_high = (N == '1'); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2);
 R[d] = result<31:0>;
 // Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10350
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.207 SMULL, SMULLS

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

SMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 1 0 S RdHi RdLo Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10351
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10352
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.208 SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The signed
16-bit quantity is taken from either the bottom or the top half of its source register. The other half of the second
source register is ignored. The top 32 bits of the 48-bit product are written to the destination register. The bottom
16 bits of the 48-bit product are ignored. No overflow is possible during this instruction.

A1

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 0 1 0 0 1 0 Rd (0) (0) (0) (0) Rm 1 M 1 0 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10353
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 product = SInt(R[n]) * SInt(operand2);
 R[d] = product<47:16>;
 // Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10354
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.209 SMUSD, SMUSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It subtracts one of the products from
the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow cannot occur.

A1

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 1 M 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10355
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2;
 R[d] = result<31:0>;
 // Signed overflow cannot occur
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10356
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.210 SRS, SRSDA, SRSDB, SRSIA, SRSIB

Store Return State stores the LR_<current_mode> and SPSR_<current_mode> to the stack of a specified mode. For
information about memory accesses see Memory accesses.

SRS is UNDEFINED in Hyp mode.

SRS is CONSTRAINED UNPREDICTABLE if it is executed in User or System mode, or if the specified mode is any of the
following:

• Not implemented.

• A mode that Table G1-5 does not show.

• Hyp mode.

• Monitor mode, if the SRS instruction is executed in Non-secure state.

If EL3 is using AArch64 and an SRS instruction that is executed in a Secure EL1 mode specifies Monitor mode, it
is trapped to EL3.

A1

Decrement After variant

Applies when P == 0 && U == 0.

SRSDA{<c>}{<q>} SP{!}, #<mode>

Decrement Before variant

Applies when P == 1 && U == 0.

SRSDB{<c>}{<q>} SP{!}, #<mode>

Increment After variant

Applies when P == 0 && U == 1.

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Increment Before variant

Applies when P == 1 && U == 1.

SRSIB{<c>}{<q>} SP{!}, #<mode>

Decode for all variants of this encoding

 wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);

T1

1 1 1 1 1 0 0 P U 1 W 0 (1) (1) (0) (1) (0) (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

1 1 1 0 1 0 0 0 0 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10357
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1 variant

SRSDB{<c>}{<q>} SP{!}, #<mode>

Decode for this encoding

 wback = (W == '1'); increment = FALSE; wordhigher = FALSE;

T2

T2 variant

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Decode for this encoding

 wback = (W == '1'); increment = TRUE; wordhigher = FALSE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly SRS (T32) and SRS (A32).

Assembler symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.

For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<mode> Is the number of the mode whose Banked SP is used as the base register, encoded in the "mode"
field. For details of PE modes and their numbers see AArch32 state PE modes.

SRSFA, SRSEA, SRSFD, and SRSED are pseudo-instructions for SRSIB, SRSIA, SRSDB, and SRSDA respectively, referring to
their use for pushing data onto Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then // UNDEFINED at EL2
 UNDEFINED;

 // Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
 // to be security holes
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP

1 1 1 0 1 0 0 1 1 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10358
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 UNPREDICTABLE;
 elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP
 if !HaveEL(EL3) || CurrentSecurityState() != SS_Secure then
 UNPREDICTABLE;
 elsif !ELUsingAArch32(EL3) then
 AArch64.MonitorModeTrap();
 elsif BadMode(mode) then
 UNPREDICTABLE;

 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR_curr[];
 if wback then Rmode[13,mode] = if increment then base+8 else base-8;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then // UNDEFINED at EL2
 UNDEFINED;

 // Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
 // to be security holes
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP
 UNPREDICTABLE;
 elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP
 if !HaveEL(EL3) || CurrentSecurityState() != SS_Secure then
 UNPREDICTABLE;
 elsif !ELUsingAArch32(EL3) then
 AArch64.MonitorModeTrap();
 elsif BadMode(mode) then
 UNPREDICTABLE;

 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR_curr[];
 if wback then Rmode[13,mode] = if increment then base+8 else base-8;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode == M32_Hyp, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If mode == M32_Monitor && (!HaveEL(EL3) || CurrentSecurityState() != SS_Secure), then one of the following
behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

If BadMode(mode), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10359
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction stores to the stack of the mode in which it is executed.

• The instruction stores to an UNKNOWN address, and if the instruction specifies writeback then any
general-purpose register that can be accessed from the current Exception level without a privilege violation
becomes UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10360
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.211 SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

Arithmetic shift right variant

Applies when sh == 1.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 if sh == '1' && (imm3:imm2) == '00000' then SEE "SSAT16";
 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 0 1 sat_imm Rd imm5 sh 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10361
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm5" field.

For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount>
modulo 32.

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm3:imm2" field.

For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as
<amount>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
 R[d] = SignExtend(result, 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10362
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.212 SSAT16

Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

A1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

!=1111 0 1 1 0 1 0 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10363
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = SignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = SignedSatQ(SInt(R[n]<31:16>), saturate_to);
 R[d]<15:0> = SignExtend(result1, 16);
 R[d]<31:16> = SignExtend(result2, 16);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10364
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.213 SSAX

Signed Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer subtraction and one 16-bit addition, and writes the results to the destination register. It sets PSTATE.GE
according to the results.

A1

A1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10365
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 PSTATE.GE<1:0> = if sum >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10366
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.214 SSBB

Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions. For more information and details of the semantics, see
Speculative Store Bypass Barrier (SSBB).

A1

A1 variant

SSBB{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

SSBB{<q>}

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculativeStoreBypassBarrierToVA();

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10367
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.215 SSUB16

Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10368
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10369
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.216 SSUB8

Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

!=1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10370
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
 PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
 PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
 PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10371
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.217 STC

Store data to System register calculates an address from a base register value and an immediate offset, and stores a
word from the DBGDTRRXint System register to memory. It can use offset, post-indexed, pre-indexed, or
unindexed addressing. For information about memory accesses, see Memory accesses.

In an implementation that includes EL2, the permitted STC access to DBGDTRRXint can be trapped to Hyp mode,
meaning that an attempt to execute an STC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
HDCR.TDA.

For simplicity, the STC pseudocode does not show this possible trap to Hyp mode.

A1

Offset variant

Applies when P == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction.

!=1111 1 1 0 P U 0 W 0 Rn 0 1 0 1 1 1 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10372
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

Offset variant

Applies when P == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{<c>}{<q>} p14, c5, [<Rn>], <option>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then UNDEFINED;
 n = UInt(Rn); cp = 14;
 imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For the offset or unindexed variant: is the general-purpose base register, encoded in the "Rn" field.
The PC can be used, but this is deprecated.

1 1 1 0 1 1 0 P U 0 W 0 Rn 0 1 0 1 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10373
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
For the offset, post-indexed or pre-indexed variant: is the general-purpose base register, encoded in
the "Rn" field.

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value
of this field is ignored when executing this instruction.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // System register read from DBGDTRRXint.
 AArch32.SysRegRead(cp, ThisInstr(), address<31:0>);
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10374
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.218 STL

Store-Release Word stores a word from a register to memory. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 0 0 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10375
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 4] = R[t];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10376
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.219 STLB

Store-Release Byte stores a byte from a register to memory. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 0 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10377
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 1] = R[t]<7:0>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10378
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.220 STLEX

Store-Release Exclusive Word stores a word from a register to memory if the executing PE has exclusive access to
the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 0 0 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 1 0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10379
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,4) then
 MemO[address, 4] = R[t];
 R[d] = ZeroExtend('0', 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10380
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10381
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.221 STLEXB

Store-Release Exclusive Byte stores a byte from a register to memory if the executing PE has exclusive access to
the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 0 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10382
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,1) then
 MemO[address, 1] = R[t]<7:0>;
 R[d] = ZeroExtend('0', 32);
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10383
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.222 STLEXD

Store-Release Exclusive Doubleword stores a doubleword from two registers to memory if the executing PE has
exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if
no store was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
 if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: Rt<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction.

!=1111 0 0 0 1 1 0 1 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10384
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 1 1 1 1 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10385
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
 value = if BigEndian(AccessType_GPR) then R[t]:R[t2] else R[t2]:R[t];
 if AArch32.ExclusiveMonitorsPass(address, 8) then
 MemO[address, 8] = value;
 R[d] = ZeroExtend('0', 32);
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10386
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.223 STLEXH

Store-Release Exclusive Halfword stores a halfword from a register to memory if the executing PE has exclusive
access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 1 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 1 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10387
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,2) then
 MemO[address, 2] = R[t]<15:0>;
 R[d] = ZeroExtend('0', 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10388
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10389
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.224 STLH

Store-Release Halfword stores a halfword from a register to memory. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn);
 if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 0 0 0 1 1 1 1 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10390
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 2] = R[t]<15:0>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10391
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.225 STM, STMIA, STMEA

Store Multiple (Increment After, Empty Ascending) stores multiple registers to consecutive memory locations using
an address from a base register. The consecutive memory locations start at this address, and the address just above
the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

A1 variant

STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction.

T1

T1 variant

STM{IA}{<c>}{<q>} <Rn>!, <registers> // Preferred syntax

!=1111 1 0 0 0 1 0 W 0 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1 1 0 0 0 Rn register_list

15 14 13 12 11 10 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10392
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
STMEA{<c>}{<q>} <Rn>!, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction.

T2

T2 variant

STM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
STMEA{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack, if <Rn>, '!' and
<registers> can be represented in T1
STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

P

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10393
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs all of the stores using the specified addressing mode but the value of R13 is
UNKNOWN.

If registers<15> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs all of the stores using the specified addressing mode but the value of R15 is
UNKNOWN.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 by
instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10394
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.
If the base register is not the lowest-numbered register in the list, such an instruction stores an
UNKNOWN value for the base register.

For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10395
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.226 STM (User registers)

In an EL1 mode other than System mode, Store Multiple (User registers) stores multiple User mode registers to
consecutive memory locations using an address from a base register. The PE reads the base register value normally,
using the current mode to determine the correct Banked version of the register. This instruction cannot writeback to
the base register.

Store Multiple (User registers) is UNDEFINED in Hyp mode, and CONSTRAINED UNPREDICTABLE in User or System
modes.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC.

A1

A1 variant

STM{<amode>}{<c>}{<q>} <Rn>, <registers>^

Decode for this encoding

 n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<amode> is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
register. Encoded as P = 0, U = 0.

ED Empty Descending. For this instruction, a synonym for DA.

DB Decrement Before. The consecutive memory addresses end one word below the address
in the base register. Encoded as P = 1, U = 0.

FD Full Descending. For this instruction, a synonym for DB.

IA Increment After. The consecutive memory addresses start at the address in the base
register. This is the default. Encoded as P = 0, U = 1.

EA Empty Ascending. For this instruction, a synonym for IA.

!=1111 1 0 0 P U 1 (0) 0 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10396
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
IB Increment Before. The consecutive memory addresses start one word above the address
in the base register. Encoded as P = 1, U = 1.

FA Full Ascending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be stored by the STM instruction. The registers are stored with the lowest-numbered
register to the lowest memory address, through to the highest-numbered register to the highest
memory address. See also Encoding of lists of general-purpose registers and the PC.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 else
 length = 4*BitCount(registers);
 address = if increment then R[n] else R[n]-length;
 if wordhigher then address = address+4;
 for i = 0 to 14
 if registers<i> == '1' then // Store User mode register
 MemS[address,4] = Rmode[i, M32_User];
 address = address + 4;
 if registers<15> == '1' then
 MemS[address,4] = PCStoreValue();

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10397
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.227 STMDA, STMED

Store Multiple Decrement After (Empty Descending) stores multiple registers to consecutive memory locations
using an address from a base register. The consecutive memory locations end at this address, and the address just
below the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

A1 variant

STMDA{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMED{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 1 0 0 0 0 0 W 0 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10398
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN;
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10399
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.228 STMDB, STMFD

Store Multiple Decrement Before (Full Descending) stores multiple registers to consecutive memory locations
using an address from a base register. The consecutive memory locations end just below this address, and the
address of the first of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

This instruction is used by the alias PUSH (multiple registers). See Alias conditions for details of when each alias
is preferred.

A1

A1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

T1

T1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

 n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
 if wback && registers<n> == '1' then UNPREDICTABLE;

!=1111 1 0 0 1 0 0 W 0 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M register_list

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 0

P

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10400
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if registers<13> == '1' then UNPREDICTABLE;
 if registers<15> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The store instruction performs all of the stores using the specified addressing mode but the value of R13 is
UNKNOWN.

If registers<15> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs all of the stores using the specified addressing mode but the value of R15 is
UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10401
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Alias of variant is preferred when

PUSH (multiple registers) T1 W == '1' && Rn == '1101' && BitCount(M:register_list) > 1

PUSH (multiple registers) A1 W == '1' && Rn == '1101' && BitCount(register_list) > 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10402
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.229 STMIB, STMFA

Store Multiple Increment Before (Full Ascending) stores multiple registers to consecutive memory locations using
an address from a base register. The consecutive memory locations start just above this address, and the address of
the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

A1 variant

STMIB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Ascending stack

Decode for this encoding

 n = UInt(Rn); registers = register_list; wback = (W == '1');
 if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

!=1111 1 0 0 1 1 0 W 0 Rn register_list

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10403
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in
the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in
the list, such an instruction stores an UNKNOWN value for the base register.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemS[address,4] = bits(32) UNKNOWN;
 else
 MemS[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then
 MemS[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10404
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.230 STR (immediate)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and stores a
word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses.

This instruction is used by the alias PUSH (single register). See Alias conditions for details of when each alias is
preferred.

A1

Offset variant

Applies when P == 1 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

!=1111 0 1 0 P U 0 W 0 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10405
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

STR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T3

T3 variant

STR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 if t == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

0 1 1 0 0 imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0

1 0 0 1 0 Rt imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 1 1 0 0 !=1111 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10406
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

T4

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '1' && U == '1' && W == '0' then SEE "STRT";
 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10407
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T1, T2, T3 and T4: is the general-purpose register to be transferred, encoded in the
"Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = R[t];
 if wback then R[n] = offset_addr;

Alias of variant is preferred when

PUSH (single register) A1 (pre-indexed) P == '1' && U == '0' && W == '1' && Rn == '1101' && imm12 == '000000000100'

PUSH (single register) T4 (pre-indexed) Rn == '1101' && P == '1' && U == '0' && W == '1' && imm8 == '00000100'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10408
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10409
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.231 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores a word
from a register to memory. The offset register value can optionally be shifted. For information about memory
accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

!=1111 0 1 1 P U 0 W 0 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10410
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

0 1 0 1 0 0 0 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10411
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 bits(32) data;
 if t == 15 then // Only possible for encoding A1
 data = PCStoreValue();
 else
 data = R[t];
 MemU[address,4] = data;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10412
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.232 STRB (immediate)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset, and stores
a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRBT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

!=1111 0 1 0 P U 1 W 0 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10413
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

STRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

T3

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

0 1 1 1 0 imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 0 0 !=1111 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10414
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '1' && U == '1' && W == '0' then SEE "STRBT";
 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10415
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10416
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.233 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a register to memory. The offset register value can optionally be shifted. For information about memory
accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRBT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 1 1 P U 1 W 0 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10417
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

STRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

0 1 0 1 0 1 0 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10418
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10419
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.234 STRBT

Store Register Byte Unprivileged stores a byte from a register to memory. For information about memory accesses
see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

STRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

!=1111 0 1 0 0 U 1 1 0 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10420
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

STRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

T1

T1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 1 1 0 U 1 1 0 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10421
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10422
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 MemU_unpriv[address,1] = R[t]<7:0>;
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as STRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10423
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.235 STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and stores
two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
 if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 1 W 0 Rn Rt imm4H 1 1 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10424
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

T1

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '0' then SEE "Related encodings";
 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if wback && (n == t || n == t2) then UNPREDICTABLE;
 if n == 15 || t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 0 1 0 0 P U 1 W 0 !=1111 Rt Rt2 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10425
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm>/4.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10426
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if IsAligned(address, 8) then
 bits(64) data;
 if BigEndian(AccessType_GPR) then
 data<63:32> = R[t];
 data<31:0> = R[t2];
 else
 data<31:0> = R[t];
 data<63:32> = R[t2];
 MemA[address,8] = data;
 else
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10427
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.236 STRD (register)

Store Register Dual (register) calculates an address from a base register value and a register offset, and stores two
words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if Rt<0> == '1' then UNPREDICTABLE;
 t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if P == '0' && W == '1' then UNPREDICTABLE;
 if t2 == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10428
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: t<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == '1111'.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: P = '1'; W = '0'.

• The instruction executes with the additional decode: P = '1'; W = '1'.

• The instruction executes with the additional decode: P = '0'; W = '0'.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must
be even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset
variant, but this is deprecated.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
 address = if index then offset_addr else R[n];
 if IsAligned(address, 8) then
 bits(64) data;
 if BigEndian(AccessType_GPR) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10429
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 data<63:32> = R[t];
 data<31:0> = R[t2];
 else
 data<31:0> = R[t];
 data<63:32> = R[t2];
 MemA[address,8] = data;
 else
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10430
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.237 STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, stores a word
from a register to the calculated address if the PE has exclusive access to the memory at that address, and returns a
status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, {#}<imm>}]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 0 0 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10431
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
only be 0 or omitted.

For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10432
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 if AArch32.ExclusiveMonitorsPass(address,4) then
 MemA[address,4] = R[t];
 R[d] = ZeroExtend('0', 32);
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10433
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.238 STREXB

Store Register Exclusive Byte derives an address from a base register value, stores a byte from a register to the
derived address if the executing PE has exclusive access to the memory at that address, and returns a status value
of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 0 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10434
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,1) then
 MemA[address,1] = R[t]<7:0>;
 R[d] = ZeroExtend('0', 32);
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10435
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.239 STREXD

Store Register Exclusive Doubleword derives an address from a base register value, stores a 64-bit doubleword from
two registers to the derived address if the executing PE has exclusive access to the memory at that address, and
returns a status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
 if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes with the additional decode: Rt<0> = '0'.

• The instruction executes with the additional decode: t2 = t.

• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction is handled as described in Using R15 by instruction.

!=1111 0 0 0 1 1 0 1 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10436
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
 if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rd> must not be the same as <Rn>, <Rt>, or <Rt2>.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 0 1 1 1 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10437
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non doubleword-aligned memory address causes an Alignment fault Data Abort exception to be generated,
subject to the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];

 // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
 value = if BigEndian(AccessType_GPR) then R[t]:R[t2] else R[t2]:R[t];

 if AArch32.ExclusiveMonitorsPass(address,8) then
 MemA[address,8] = value;
 R[d] = ZeroExtend('0', 32);
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10438
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.240 STREXH

Store Register Exclusive Halfword derives an address from a base register value, stores a halfword from a register
to the derived address if the executing PE has exclusive access to the memory at that address, and returns a status
value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

A1

A1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

T1

T1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
 if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if d == n || d == t then UNPREDICTABLE;

!=1111 0 0 0 1 1 1 1 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10439
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Rd> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address,2) then
 MemA[address,2] = R[t]<15:0>;
 R[d] = ZeroExtend('0', 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10440
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 else
 R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10441
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.241 STRH (immediate)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate offset, and
stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 if t == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

!=1111 0 0 0 P U 1 W 0 Rn Rt imm4H 1 0 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10442
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
 index = TRUE; add = TRUE; wback = FALSE;

T2

T2 variant

STRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
 index = TRUE; add = TRUE; wback = FALSE;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

T3

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

1 0 0 0 0 imm5 Rn Rt

15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 1 0 !=1111 Rt imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 1 P U W imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10443
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

 if P == '1' && U == '1' && W == '0' then SEE "STRHT";
 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
 index = (P == '1'); add = (U == '1'); wback = (W == '1');
 if t == 15 || (wback && n == t) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding A1, T1, T2, T3: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10444
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the
range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm8" field.

Operation for all encodings

 if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10445
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.242 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For
information about memory accesses see Memory accesses.

A1

Offset variant

Applies when P == 1 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant

Applies when P == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

Decode for all variants of this encoding

 if P == '0' && W == '1' then SEE "STRHT";
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
 (shift_t, shift_n) = (SRType_LSL, 0);
 if t == 15 || m == 15 then UNPREDICTABLE;
 if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

!=1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10446
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

T2 variant

STRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
 index = TRUE; add = TRUE; wback = FALSE;
 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
 if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

0 1 0 1 0 0 1 Rm Rn Rt

15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10447
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used
in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10448
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.243 STRHT

Store Register Halfword Unprivileged stores a halfword from a register to memory. For information about memory
accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

STRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

A1

A1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
 integer m = integer UNKNOWN;
 if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

!=1111 0 0 0 0 U 1 1 0 Rn Rt imm4H 1 0 1 1 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10449
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2

A2 variant

STRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE;
 bits(32) imm32 = bits(32) UNKNOWN;
 if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

T1

T1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

!=1111 0 0 0 0 U 0 1 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10450
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0
if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10451
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 MemU_unpriv[address,2] = R[t]<15:0>;
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as STRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10452
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.244 STRT

Store Register Unprivileged stores a word from a register to memory. For information about memory accesses see
Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is
actually running in User mode.

STRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

A1

A1 variant

STRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
 register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

A2

!=1111 0 1 0 0 U 0 1 0 Rn Rt imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

!=1111 0 1 1 0 U 0 1 0 Rn Rt imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10453
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
A2 variant

STRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
 register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
 bits(32) imm32 = bits(32) UNKNOWN;
 if n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15 by instruction.

• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing
with the base register as PC, without writeback.

T1

T1 variant

STRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

 if Rn == '1111' then UNDEFINED;
 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
 integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to
R15 is UNKNOWN.

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10454
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1 and A2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to
+ if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to
0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 bits(32) data;
 if t == 15 then // Only possible for encodings A1 and A2
 data = PCStoreValue();
 else
 data = R[t];
 MemU_unpriv[address,4] = data;
 if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10455
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes as STR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10456
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.245 SUB (immediate, from PC)

Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative address, and
writes the result to the destination register. Arm recommends that, where possible, software avoids using this alias.

This instruction is an alias of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The description of ADR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and
any operational information for this instruction.

A2

A2 variant

SUB{<c>}{<q>} <Rd>, PC, #<const>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when imm12 == '000000000000'.

T2

T2 variant

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

 is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == '000000000000'.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A2: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

!=1111 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10457
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.

For encoding T2: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the
use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10458
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.246 SUB, SUBS (immediate)

Subtract (immediate) subtracts an immediate value from a register value, and writes the result to the destination
register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. In this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode, except for encoding T5 with <imm8> set to zero, which is
the encoding for the ERET instruction, see ERET.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB variant

Applies when S == 0 && Rn != 11x1.

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS variant

Applies when S == 1 && Rn != 1101.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rn == '1111' && S == '0' then SEE "ADR";
 if Rn == '1101' then SEE "SUB (SP minus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
SUBS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block

!=1111 0 0 1 0 0 1 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0 0 0 1 1 1 1 imm3 Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10459
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

T2 variant

SUB<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
SUB<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
SUBS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
SUBS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

SUB variant

Applies when S == 0.

SUB<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or
T2
SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
 if Rn == '1101' then SEE "SUB (SP minus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T4

0 0 1 1 1 Rdn imm8

15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 1 0 1 S !=1101 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn

1 1 1 1 0 i 1 0 1 0 1 0 !=11x1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10460
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T4 variant

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 if Rn == '1111' then SEE "ADR";
 if Rn == '1101' then SEE "SUB (SP minus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T5

T5 variant

Applies when !(Rn == 1110 && imm8 == 00000000).

SUBS{<c>}{<q>} PC, LR, #<imm8>

Decode for this encoding

 if Rn == '1110' && IsZero(imm8) then SEE "ERET";
 d = 15; n = UInt(Rn); setflags = TRUE; imm32 = ZeroExtend(imm8, 32);
 if n != 14 then UNPREDICTABLE;
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly SUBS PC. LR and related instructions
(A32) and SUBS PC, LR and related instructions (T32).

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> For encoding T2: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

For encoding T5: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
If <Rn> is the LR, and zero is used, see ERET.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. If the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field.
If omitted, this register is the same as <Rn>.

1 1 1 1 0 0 1 1 1 1 0 1 Rn 1 0 (0) 0 (1) (1) (1) (1) imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10461
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP
is used, see SUB, SUBS (SP minus immediate). If the PC is used, see ADR.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see SUB, SUBS (SP minus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

In the T32 instruction set, MOVS{<c>}{<q>} PC, LR is a pseudo-instruction for SUBS{<c>}{<q>} PC, LR, #0.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10462
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.247 SUB, SUBS (register)

Subtract (register) subtracts an optionally-shifted register value from a register value, and writes the result to the
destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,
when the destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rn == '1101' then SEE "SUB (SP minus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 1 0 S !=1101 Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10463
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
SUBS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SUB<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (register)";
 if Rn == '1101' then SEE "SUB (SP minus register)";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13

0 0 0 1 1 0 1 Rm Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 0 1 0 1 1 1 0 1 S !=1101 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10464
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the
PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated. If the SP is used, see SUB, SUBS (SP minus register).

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see SUB, SUBS (SP minus register).

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10465
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10466
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.248 SUB, SUBS (register-shifted register)

Subtract (register-shifted register) subtracts a register-shifted register value from a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when S == 1.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 setflags = (S == '1'); shift_t = DecodeRegShift(stype);
 if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

!=1111 0 0 0 0 0 1 0 S Rn Rd Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10467
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10468
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.249 SUB, SUBS (SP minus immediate)

Subtract from SP (immediate) subtracts an immediate value from the SP value, and writes the result to the
destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB variant

Applies when S == 0.

SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

T1 variant

SUB{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding

 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

!=1111 0 0 1 0 0 1 0 S 1 1 0 1 Rd imm12

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 0

cond

1 0 1 1 0 0 0 0 1 imm7

15 14 13 12 11 10 9 8 7 6 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10469
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T2

SUB variant

Applies when S == 0.

SUB{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1
SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
 if d == 15 && !setflags then UNPREDICTABLE;

T3

T3 variant

SUB{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
 if d == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<imm7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10470
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. If the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[13], NOT(imm32), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10471
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.250 SUB, SUBS (SP minus register)

Subtract from SP (register) subtracts an optionally-shifted register value from the SP value, and writes the result to
the destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

— The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.

— The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

— The instruction is UNDEFINED in Hyp mode.

— The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

SUB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

!=1111 0 0 0 0 0 1 0 S 1 1 0 1 Rd imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10472
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
T1

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

SUB{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in T1 or T2
SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 if Rd == '1111' && S == '1' then SEE "CMP (register)";
 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the SP.

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10473
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[13], NOT(shifted), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10474
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.251 SVC

Supervisor Call causes a Supervisor Call exception. For more information, see Supervisor Call (SVC) exception.

Note

SVC was previously called SWI, Software Interrupt, and this name is still found in some documentation.

Software can use this instruction as a call to an operating system to provide a service.

In the following cases, the Supervisor Call exception generated by the SVC instruction is taken to Hyp mode:

• If the SVC is executed in Hyp mode.

• If HCR.TGE is set to 1, and the SVC is executed in Non-secure User mode. For more information, see
Supervisor Call exception, when the value of HCR.TGE is 1

In these cases, the HSR identifies that the exception entry was caused by a Supervisor Call exception, EC value 0x11,
see Use of the HSR. The immediate field in the HSR:

• If the SVC is unconditional:

— For the T32 instruction, is the zero-extended value of the imm8 field.

— For the A32 instruction, is the least-significant 16 bits the imm24 field.

• If the SVC is conditional, is UNKNOWN.

A1

A1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm24, 32);

T1

T1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm8, 32);

Assembler symbols

<c> See Standard assembler syntax fields.

!=1111 1 1 1 1 imm24

31 28 27 26 25 24 23 0

cond

1 1 0 1 1 1 1 1 imm8

15 14 13 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10475
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
<q> See Standard assembler syntax fields.

<imm> For encoding A1: is a 24-bit unsigned immediate, in the range 0 to 16777215, encoded in the
"imm24" field. This value is for assembly and disassembly only. SVC handlers in some systems
interpret imm24 in software, for example to determine the required service.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
This value is for assembly and disassembly only. SVC handlers in some systems interpret imm8 in
software, for example to determine the required service.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.CheckForSVCTrap(imm32<15:0>);
 AArch32.CallSupervisor(imm32<15:0>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10476
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.252 SXTAB

Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, adds the result to the
value in another register, and writes the final result to the destination register. The instruction can specify a rotation
by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 0 1 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 1 0 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10477
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10478
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.253 SXTAB16

Signed Extend and Add Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

A1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 0 0 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 1 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10479
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10480
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.254 SXTAH

Signed Extend and Add Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, adds the result
to a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

A1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "SXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 0 1 1 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 0 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10481
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10482
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.255 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

SXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 0 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 0 1 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10483
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10484
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.256 SXTB16

Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, and writes the
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

A1

A1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

!=1111 0 1 1 0 1 0 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10485
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10486
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.257 SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

A1

A1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

SXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 0 1 0 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 0 0 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10487
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10488
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.258 TBB, TBH

Table Branch Byte or Halfword causes a PC-relative forward branch using a table of single byte or halfword offsets.
A base register provides a pointer to the table, and a second register supplies an index into the table. The branch
length is twice the value returned from the table.

T1

Byte variant

Applies when H == 0.

TBB{<c>}{<q>} [<Rn>, <Rm>] // Outside or last in IT block

Halfword variant

Applies when H == 1.

TBH{<c>}{<q>} [<Rn>, <Rm>, LSL #1] // Outside or last in IT block

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
 if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register holding the address of the table of branch lengths, encoded in
the "Rn" field. The PC can be used. If it is, the table immediately follows this instruction.

<Rm> For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This register
contains an integer pointing to a single byte in the table. The offset in the table is the value of the
index.

For the halfword variant: is the general-purpose index register, encoded in the "Rm" field. This
register contains an integer pointing to a halfword in the table. The offset in the table is twice the
value of the index.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 integer halfwords;
 if is_tbh then
 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
 else

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10489
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 halfwords = UInt(MemU[R[n]+R[m], 1]);
 BranchWritePC(PC32 + 2*halfwords, BranchType_INDIR);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10490
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.259 TEQ (immediate)

Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an immediate
value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

T1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

!=1111 0 0 1 1 0 0 1 1 Rn (0) (0) (0) (0) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10491
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10492
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.260 TEQ (register)

Test Equivalence (register) performs a bitwise exclusive-OR operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10493
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10494
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.261 TEQ (register-shifted register)

Test Equivalence (register-shifted register) performs a bitwise exclusive-OR operation on a register value and a
register-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TEQ{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

!=1111 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10495
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10496
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.262 TSB

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions, see
Trace Synchronization Barrier (TSB).

If FEAT_TRF is not implemented, this instruction executes as a NOP.

A1

(FEAT_TRF)

A1 variant

TSB{<c>}{<q>} CSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TRF) then EndOfInstruction(); // Instruction executes as NOP
 if cond != '1110' then UNPREDICTABLE; // TSB must be encoded with AL
 // condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

T1

(FEAT_TRF)

T1 variant

TSB{<c>}{<q>} CSYNC

Decode for this encoding

 if !IsFeatureImplemented(FEAT_TRF) then EndOfInstruction(); // Instruction executes as NOP
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 0 1 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10497
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 TraceSynchronizationBarrier();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10498
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.263 TST (immediate)

Test (immediate) performs a bitwise AND operation on a register value and an immediate value. It updates the
condition flags based on the result, and discards the result.

A1

A1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

T1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

 n = UInt(Rn);
 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
 if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

!=1111 0 0 1 1 0 0 0 1 Rn (0) (0) (0) (0) imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0

cond

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10499
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10500
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.264 TST (register)

Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It
updates the condition flags based on the result, and discards the result.

A1

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

T1 variant

TST{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = (SRType_LSL, 0);

T2

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

!=1111 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 5 4 3 0

cond

0 1 0 0 0 0 1 0 0 0 Rm Rn

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10501
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).

TST{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

 n = UInt(Rn); m = UInt(Rm);
 (shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
 if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10502
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10503
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.265 TST (register-shifted register)

Test (register-shifted register) performs a bitwise AND operation on a register value and a register-shifted register
value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TST{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

 n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
 shift_t = DecodeRegShift(stype);
 if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:

LSL when stype = 00

LSR when stype = 01

ASR when stype = 10

ROR when stype = 11

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

 if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

!=1111 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10504
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10505
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.266 UADD16

Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the additions.

A1

A1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10506
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 PSTATE.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
 PSTATE.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10507
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.267 UADD8

Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the destination register. It
sets PSTATE.GE according to the results of the additions.

A1

A1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10508
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 PSTATE.GE<0> = if sum1 >= 0x100 then '1' else '0';
 PSTATE.GE<1> = if sum2 >= 0x100 then '1' else '0';
 PSTATE.GE<2> = if sum3 >= 0x100 then '1' else '0';
 PSTATE.GE<3> = if sum4 >= 0x100 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10509
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.268 UASX

Unsigned Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer addition and one unsigned 16-bit subtraction, and writes the results to the destination
register. It sets PSTATE.GE according to the results.

A1

A1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10510
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if sum >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10511
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.269 UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from a register, zero-extends them
to 32 bits, and writes the result to the destination register.

A1

A1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 constant integer lsbit = UInt(lsb);
 constant integer widthminus1 = UInt(widthm1);
 constant integer msbit = lsbit + widthminus1;
 if d == 15 || n == 15 then UNPREDICTABLE;
 if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn);
 constant integer lsbit = UInt(imm3:imm2);
 constant integer widthminus1 = UInt(widthm1);
 constant integer msbit = lsbit + widthminus1;
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

!=1111 0 1 1 1 1 1 1 widthm1 Rd lsb 1 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10512
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "lsb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31,
encoded in the "imm3:imm2" field.

<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10513
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.270 UDF

Permanently Undefined generates an Undefined Instruction exception.

The encodings for UDF used in this section are defined as permanently UNDEFINED. However:

• With the T32 instruction set, Arm deprecates using the UDF instruction in an IT block.

• In the A32 instruction set, UDF is not conditional.

A1

A1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm12:imm4, 32);
 // imm32 is for assembly and disassembly only, and is ignored by hardware.

T1

T1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm8, 32);
 // imm32 is for assembly and disassembly only, and is ignored by hardware.

T2

T2 variant

UDF{<c>}.W {#}<imm> // <imm> can be represented in T1
UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

 imm32 = ZeroExtend(imm4:imm12, 32);
 // imm32 is for assembly and disassembly only, and is ignored by hardware.

1 1 1 0 0 1 1 1 1 1 1 1 imm12 1 1 1 1 imm4

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 0

cond

1 1 0 1 1 1 1 0 imm8

15 14 13 12 11 10 9 8 7 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 1 0 imm12

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10514
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields. Arm deprecates using any <c> value
other than AL.

<q> See Standard assembler syntax fields.

<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. The PE ignores the value of this constant.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
The PE ignores the value of this constant.

For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. The PE ignores the value of this constant.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10515
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.271 UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value, and
writes the result to the destination register. The condition flags are not affected.

See Divide instructions for more information about this instruction.

A1

A1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

T1

T1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 // Armv8-A removes UNPREDICTABLE for R13
 if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

!=1111 0 1 1 1 0 0 1 1 Rd (1) (1) (1) (1) Rm 0 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10516
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
• The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 integer result;
 if UInt(R[m]) == 0 then
 result = 0;
 else
 result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));
 R[d] = result<31:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10517
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.272 UHADD16

Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the results, and writes the results
to the destination register.

A1

A1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10518
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<16:1>;
 R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10519
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.273 UHADD8

Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.

A1

A1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10520
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<8:1>;
 R[d]<15:8> = sum2<8:1>;
 R[d]<23:16> = sum3<8:1>;
 R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10521
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.274 UHASX

Unsigned Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, halves the results, and writes the results
to the destination register.

A1

A1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10522
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<16:1>;
 R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10523
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.275 UHSAX

Unsigned Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, halves the results, and writes the results
to the destination register.

A1

A1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10524
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<16:1>;
 R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10525
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.276 UHSUB16

Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions, halves the results, and writes the
results to the destination register.

A1

A1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10526
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<16:1>;
 R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10527
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.277 UHSUB8

Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions, halves the results, and writes the
results to the destination register.

A1

A1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10528
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<8:1>;
 R[d]<15:8> = diff2<8:1>;
 R[d]<23:16> = diff3<8:1>;
 R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10529
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.278 UMAAL

Unsigned Multiply Accumulate Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value,
adds two unsigned 32-bit values, and writes the 64-bit result to two registers.

A1

A1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

!=1111 0 0 0 0 0 1 0 0 RdHi RdLo Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10530
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the first addend and the destination register for the
lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the second addend and the destination register for the
upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10531
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.279 UMLAL, UMLALS

Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

UMLALS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 0 1 S RdHi RdLo Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10532
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10533
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.280 UMULL, UMULLS

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

UMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

T1 variant

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
 if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
 // Armv8-A removes UNPREDICTABLE for R13
 if dHi == dLo then UNPREDICTABLE;

!=1111 0 0 0 0 1 0 0 S RdHi RdLo Rm 1 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10534
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10535
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.281 UQADD16

Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10536
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = UnsignedSat(sum1, 16);
 R[d]<31:16> = UnsignedSat(sum2, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10537
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.282 UQADD8

Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates the results to the 8-bit unsigned
integer range 0 <= x <= 28 - 1, and writes the results to the destination register.

A1

A1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10538
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = UnsignedSat(sum1, 8);
 R[d]<15:8> = UnsignedSat(sum2, 8);
 R[d]<23:16> = UnsignedSat(sum3, 8);
 R[d]<31:24> = UnsignedSat(sum4, 8);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10539
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.283 UQASX

Unsigned Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10540
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = UnsignedSat(diff, 16);
 R[d]<31:16> = UnsignedSat(sum, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10541
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.284 UQSAX

Unsigned Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10542
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = UnsignedSat(sum, 16);
 R[d]<31:16> = UnsignedSat(diff, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10543
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.285 UQSUB16

Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtractions, saturates the results to the
16-bit unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.

A1

A1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10544
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = UnsignedSat(diff1, 16);
 R[d]<31:16> = UnsignedSat(diff2, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10545
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.286 UQSUB8

Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions, saturates the results to the 8-bit
unsigned integer range 0 <= x <= 28 - 1, and writes the results to the destination register.

A1

A1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10546
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = UnsignedSat(diff1, 8);
 R[d]<15:8> = UnsignedSat(diff2, 8);
 R[d]<23:16> = UnsignedSat(diff3, 8);
 R[d]<31:24> = UnsignedSat(diff4, 8);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10547
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.287 USAD8

Unsigned Sum of Absolute Differences performs four unsigned 8-bit subtractions, and adds the absolute values of
the differences together.

A1

A1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));

!=1111 0 1 1 1 1 0 0 0 Rd 1 1 1 1 Rm 0 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10548
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10549
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.288 USADA8

Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and adds the
absolute values of the differences to a 32-bit accumulate operand.

A1

A1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 if Ra == '1111' then SEE "USAD8";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

 if Ra == '1111' then SEE "USAD8";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

!=1111 0 1 1 1 1 0 0 0 Rd !=1111 Rm 0 0 0 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond Ra

1 1 1 1 1 0 1 1 0 1 1 1 Rn !=1111 Rd 0 0 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10550
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10551
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.289 USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

Arithmetic shift right variant

Applies when sh == 1.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

 if sh == '1' && (imm3:imm2) == '00000' then SEE "USAT16";
 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 1 1 sat_imm Rd imm5 sh 0 1 Rn

31 28 27 26 25 24 23 22 21 20 16 15 12 11 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10552
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm5" field.

For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount>
modulo 32.

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in
the "imm3:imm2" field.

For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as
<amount>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
 R[d] = ZeroExtend(result, 32);
 if sat then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10553
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.290 USAT16

Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

A1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 if d == 15 || n == 15 then UNPREDICTABLE;

T1

T1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
 if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

!=1111 0 1 1 0 1 1 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10554
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = UnsignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = UnsignedSatQ(SInt(R[n]<31:16>), saturate_to);
 R[d]<15:0> = ZeroExtend(result1, 16);
 R[d]<31:16> = ZeroExtend(result2, 16);
 if sat1 || sat2 then
 PSTATE.Q = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10555
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.291 USAX

Unsigned Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer subtraction and one unsigned 16-bit addition, and writes the results to the destination
register. It sets PSTATE.GE according to the results.

A1

A1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10556
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 PSTATE.GE<1:0> = if sum >= 0x10000 then '11' else '00';
 PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10557
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.292 USUB16

Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the results to the destination
register. It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10558
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
 PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10559
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.293 USUB8

Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results to the destination
register. It sets PSTATE.GE according to the results of the subtractions.

A1

A1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
 if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);

!=1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10560
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
 PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
 PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
 PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10561
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.294 UXTAB

Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, adds the result to
the value in another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 1 1 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 1 0 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10562
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10563
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.295 UXTAB16

Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

A1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTB16";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 1 0 0 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 1 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10564
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10565
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.296 UXTAH

Unsigned Extend and Add Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, adds the result
to a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

A1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

 if Rn == '1111' then SEE "UXTH";
 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

!=1111 0 1 1 0 1 1 1 1 !=1111 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond Rn

1 1 1 1 1 0 1 0 0 0 0 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10566
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10567
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.297 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

UXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 1 1 0 1 1 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 1 1 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10568
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10569
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.298 UXTB16

Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, and writes
the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting
the 8-bit values.

A1

A1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

!=1111 0 1 1 0 1 1 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10570
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10571
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.299 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

A1

A1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

T2 variant

UXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
 if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 0 1 1 0 1 1 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 0 1 1 0 0 1 0 1 0 Rm Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10572
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source
or destination:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10573
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.300 WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any
PE in the multiprocessor system. For more information, see Wait For Event and Send Event.

As described in Wait For Event and Send Event, the execution of a WFE instruction that would otherwise cause entry
to a low-power state can be trapped to a higher Exception level, see HCR.TWE, SCR.TWE, SCTLR.nTWE.

A1

A1 variant

WFE{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

WFE{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

WFE{<c>}.W

Decode for this encoding

 // No additional decoding required

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 0

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10574
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if IsEventRegisterSet() then
 ClearEventRegister();
 else
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch32.CheckForWFxTrap(EL1, WFxType_WFE);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch32.CheckForWFxTrap(EL2, WFxType_WFE);
 if HaveEL(EL3) && PSTATE.M != M32_Monitor then
 // Check for traps described by the Secure Monitor.
 AArch32.CheckForWFxTrap(EL3, WFxType_WFE);
 integer localtimeout = 1 << 64; // No local timeout event is generated
 WaitForEvent(localtimeout);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10575
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.301 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until
a wakeup event occurs. For more information, see Wait For Interrupt.

As described in Wait For Interrupt, the execution of a WFI instruction that would otherwise cause entry to a
low-power state can be trapped to a higher Exception level, see HCR.TWI, SCR.TWI, SCTLR.nTWI.

A1

A1 variant

WFI{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

WFI{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

WFI{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 1

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10576
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if !InterruptPending() then
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch32.CheckForWFxTrap(EL1, WFxType_WFI);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch32.CheckForWFxTrap(EL2, WFxType_WFI);
 if HaveEL(EL3) && PSTATE.M != M32_Monitor then
 // Check for traps described by the Secure Monitor.
 AArch32.CheckForWFxTrap(EL3, WFxType_WFI);
 integer localtimeout = 1 << 64; // No local timeout event is generated
 WaitForInterrupt(localtimeout);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10577
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
F5.1.302 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the
PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system
performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction see The Yield instruction.

A1

A1 variant

YIELD{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

YIELD{<c>}{<q>}

Decode for this encoding

 // No additional decoding required

T2

T2 variant

YIELD{<c>}.W

Decode for this encoding

 // No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 1

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10578
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions
Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Yield();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10579
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
F5.2 Encoding and use of banked register transfer instructions

Software executing at EL1 or higher can use the MRS (banked register) and MSR (banked register) instructions to
transfer values between the general-purpose registers and Special-purpose registers. One particular use of these
instructions is for a hypervisor to save or restore the register values of a Guest OS. The following sections give more
information about these instructions:

• Register arguments in the banked register transfer instructions.

• Usage restrictions on the banked register transfer instructions.

• Encoding the register argument in the banked register transfer instructions.

• Pseudocode support for the banked register transfer instructions.

For descriptions of the instructions see MRS (Banked register)and MSR (Banked register).

F5.2.1 Register arguments in the banked register transfer instructions

Figure F5-1shows the banked general-purpose registers and Special-purpose registers:

Figure F5-1 Banking of general-purpose and Special-purpose registers

Figure F5-1is based on Figure G1-2, that shows the complete set of general-purpose registers and Special-purpose
registers accessible in each mode.

Note

• System mode uses the same set of registers as User mode. Neither of these modes can access an SPSR, except
that System mode can use the MRS (banked register) and MSR (banked register) instructions to access some
SPSRs, as described in Usage restrictions on the banked register transfer instructions.

• General-purpose registers R0-R7, that are not banked, cannot be accessed using the MRS (banked register) and
MSR (banked register) instructions.

• In addition to the registers shown in Figure F5-1, the DLRand DSPSRare AArch32 System registers that map
onto the AArch64 Special-purpose registers DLR_EL0and DSPSR_EL0. However, DLRand DSPSRare not
accessible using the MRS (banked register) and MSR (banked register) instructions.

Software using an MRS (banked register) or MSR (banked register) instruction specifies one of these registers using a
name shown in Figure F5-1, or an alternative name for SP or LR. These registers can be grouped as follows:

R8-R12 Each of these registers has two banked copies, _usr and _fiq, for example R8_usr and R8_fiq.

SP There is a banked copy of SP for every mode except System mode. For example, SP_svc is the SP
for Supervisor mode.

For the general-purpose registers, if no other register is shown, the current mode register is the _usr register.

So, for example, the full set of current mode registers, including the registers that are not banked:

 • For Hyp mode, is {R0_usr - R12_usr, SP_hyp, LR_usr, SPSR_hyp, ELR_hyp}.

 • For Abort mode, is {R0_usr - R12_usr, SP_abt, LR_abt, SPSR_abt}.

General-purpose

registers

Special-purpose

registers

User or

System
Supervisor Abort Undefined IRQ FIQ

R8_usr

R9_usr

R10_usr

R11_usr

R12_usr

SP_usr

LR_usr

SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq

SP_svc SP_abt SP_irq SP_fiq

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

LR_und

SP_und

SPSR_und

Monitor

SPSR_mon

LR_mon

SP_mon

Associated PE mode

Hyp

SP_hyp

SPSR_hyp

ELR_hyp
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10580
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
LR There is a banked copy of LR for every mode except System mode and Hyp mode. For example,
LR_svc is the LR for Supervisor mode.

SPSR There is a banked copy of SPSRfor every mode except System mode and User mode.

ELR_hyp Except for the operations provided by MRS (banked register) and MSR (banked register), ELR_hypis
accessible only from Hyp mode. It is not banked.

F5.2.2 Usage restrictions on the banked register transfer instructions

MRS (banked register) and MSR (banked register) instructions are CONSTRAINED UNPREDICTABLE if any of the
following applies:

• The instruction is executed in User mode.

• The instruction accesses a banked register that is not implemented, or that either:

— Is not accessible from the current Privilege level and Security state.

— Can be accessed from the current mode by using a different instruction.

MSR (banked register) and MRS (banked register)describes the permitted CONSTRAINED UNPREDICTABLE behavior.

An MRS (banked register) instruction or an MSR (banked register) instruction executed:

• At Non-secure EL1 cannot access any Hyp mode banked registers.

• At Non-secure EL1 or EL2 cannot access any Monitor mode banked registers.

• In a Secure mode other than Monitor mode cannot access any Hyp banked registers.

This means that the banked registers that MRS (banked register) and MSR (banked register) instructions cannot access
are:

From Monitor mode

• The current mode registers R8_usr-R12_usr, SP_mon, LR_mon, and SPSR_mon.

From Hyp mode

• The Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The current mode registers R8_usr-R12_usr, SP_hyp, LR_usr, and SPSR_hyp.

Note

MRS (banked register) and MSR (banked register) instructions can access the current mode register
ELR_hyp.

From FIQ mode

• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.

• The current mode registers R8_fiq-R12_fiq, SP_fiq, LR_fiq, and SPSR_fiq.

From System mode

• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.

• The current mode registers R8_usr-R12_usr, SP_usr, and LR_usr.

From Supervisor mode, Abort mode, Undefined mode, and IRQ mode

• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.

• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.

• The current mode registers R8_usr-R12_usr, SP_<current_mode>, LR_<current_mode>,
and SPSR_<current_mode>.

If EL3 is using AArch64, all MRS (banked register) and MSR (banked register) accesses to the Monitor mode registers
from Secure EL1 modes are trapped to EL3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10581
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
For more information, see:

• Encoding the register argument in the banked register transfer instructions.

• Pseudocode support for the banked register transfer instructions.

• MRS (Banked register).

• MSR (Banked register).

Note

CONSTRAINED UNPREDICTABLE behavior must not give access to registers that are not accessible from the current
Privilege level and Security state.

F5.2.3 Encoding the register argument in the banked register transfer instructions

The MRS (banked register) and MSR (banked register) instructions include a 5-bit field, SYSm, and an R bit, that
together encode the register argument for the instruction.

When the R bit is set to 0, the argument is a register other than a banked copy of the SPSR, and Table F5-1shows
how the SYSm field defines the required register argument. In this table, CONST. UNPREDICTABLE indicates that
behavior is CONSTRAINED UNPREDICTABLE.

When the R bit is set to 1, the argument is a banked copy of the SPSR, and Table F5-2shows how the SYSm field
defines the required register argument. In this table, CONST. UNPREDICTABLE indicates that behavior is
CONSTRAINED UNPREDICTABLE.

Table F5-1 Banked register encodings when R==0

SYSm<2:0>
SYSm<4:3>

0b00 0b01 0b10 0b11

0b000 R8_usr R8_fiq LR_irq CONSTRAINED UNPREDICTABLE

0b001 R9_usr R9_fiq SP_irq CONSTRAINED UNPREDICTABLE

0b010 R10_usr R10_fiq LR_svc CONSTRAINED UNPREDICTABLE

0b011 R11_usr R11_fiq SP_svc CONSTRAINED UNPREDICTABLE

0b100 R12_usr R12_fiq LR_abt LR_mon

0b101 SP_usr SP_fiq SP_abt SP_mon

0b110 LR_usr LR_fiq LR_und ELR_hyp

0b111 CONSTRAINED UNPREDICTABLE CONSTRAINED UNPREDICTABLE SP_und SP_hyp

Table F5-2 Banked register encodings when R==1

SYSm<2:
0>

SYSm<4:3>

0b00 0b01 0b10 0b11

0b000 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

SPSR_irq CONSTRAINED
UNPREDICTABLE

0b001 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

0b010 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

SPSR_svc CONSTRAINED
UNPREDICTABLE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10582
ID032224 Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions
F5.2 Encoding and use of banked register transfer instructions
F5.2.4 Pseudocode support for the banked register transfer instructions

The pseudocode functions BankedRegisterAccessValid() and SPSRaccessValid() check the validity of MRS (banked
register) and MSR (banked register) accesses. That is, they filter the accesses that are CONSTRAINED UNPREDICTABLE
either because:

• They attempt to access a register that Usage restrictions on the banked register transfer instructionsshows is
not accessible.

• They use an SYSm<4:0> encoding that Encoding the register argument in the banked register transfer
instructionsshows as CONSTRAINED UNPREDICTABLE.

BankedRegisterAccessValid() applies to accesses to the banked general-purpose registers, or to ELR_hyp, and
SPSRaccessValid() applies to accesses to the SPSRs.

0b011 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

0b100 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

SPSR_abt SPSR_mon

0b101 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

0b110 CONSTRAINED
UNPREDICTABLE

SPSR_fiq SPSR_und SPSR_hyp

0b111 CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

CONSTRAINED
UNPREDICTABLE

Table F5-2 Banked register encodings when R==1 (continued)

SYSm<2:
0>

SYSm<4:3>

0b00 0b01 0b10 0b11
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F5-10583
ID032224 Non-Confidential

Chapter F6
T32 and A32 Advanced SIMD and Floating-point
Instruction Descriptions

This chapter describes each instruction. It contains the following sections:

• Alphabetical list of Advanced SIMD and floating-point instructions.

Note

Some headings in this chapter use the term floating-point register. This is an abbreviated description, and means a
register in the Advanced SIMD and floating-point register file.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10584
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

This section lists every Advanced SIMD and floating-point instruction in the T32 and A32 instruction sets. For
details of the format used see Format of instruction descriptions.

This section is formatted so that each instruction description starts on a new page.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10585
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.1 AESD

AES single round decryption.

A1

(FEAT_AES)

A1 variant

AESD.<dt> <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_AES)

T1 variant

AESD.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10586
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1];
 Q[d>>1] = AESInvSubBytes(AESInvShiftRows(op1 EOR op2));

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10587
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.2 AESE

AES single round encryption.

A1

(FEAT_AES)

A1 variant

AESE.<dt> <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_AES)

T1 variant

AESE.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10588
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1];
 Q[d>>1] = AESSubBytes(AESShiftRows(op1 EOR op2));

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10589
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.3 AESIMC

AES inverse mix columns.

A1

(FEAT_AES)

A1 variant

AESIMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_AES)

T1 variant

AESIMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10590
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d>>1] = AESInvMixColumns(Q[m>>1]);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10591
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.4 AESMC

AES mix columns.

A1

(FEAT_AES)

A1 variant

AESMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_AES)

T1 variant

AESMC.<dt> <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AES) then UNDEFINED;
 if size != '00' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10592
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d>>1] = AESMixColumns(Q[m>>1]);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10593
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.5 FLDM*X (FLDMDBX, FLDMIAX)

FLDMDBX is the Decrement Before variant of this instruction, and FLDMIAX is the Increment After variant.
FLDM*X loads multiple SIMD&FP registers from consecutive locations in the Advanced SIMD and floating-point
register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

!=1111 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10594
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced
SIMD and floating-point 64-bit move for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields.

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10595
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus
one. The list must contain at least one register, all registers must be in the range D0-D15, and must
not contain more than 16 registers.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;

 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4];
 address = address+4;
 else
 word1 = MemA[address,4];
 word2 = MemA[address+4,4];
 address = address+8;

 // Combine the word-aligned words in the correct order for current endianness.
 D[d+r] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10596
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.6 FSTMDBX, FSTMIAX

FSTMX stores multiple SIMD&FP registers from the Advanced SIMD and floating-point register file to
consecutive locations in using an address from a general-purpose register.

Arm deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information, see Enabling Advanced SIMD and floating-point support.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

!=1111 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10597
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced
SIMD and floating-point 64-bit move for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields.

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10598
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus
one. The list must contain at least one register, all registers must be in the range D0-D15, and must
not contain more than 16 registers.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r];
 address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 if BigEndian(AccessType_ASIMD) then
 MemA[address,4] = D[d+r]<63:32>;
 MemA[address+4,4] = D[d+r]<31:0>;
 else
 MemA[address,4] = D[d+r]<31:0>;
 MemA[address+4,4] = D[d+r]<63:32>;

 address = address+8;

 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10599
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.7 SHA1C

SHA1 hash update (choose).

A1

(FEAT_SHA1)

A1 variant

SHA1C.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA1)

T1 variant

SHA1C.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10600
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 x = Q[d>>1];
 y = Q[n>>1]<31:0>; // Note: 32 bits wide
 w = Q[m>>1];
 for e = 0 to 3
 t = SHAchoose(x<63:32>, x<95:64>, x<127:96>);
 y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
 x<63:32> = ROL(x<63:32>, 30);
 <y, x> = ROL(y:x, 32);
 Q[d>>1] = x;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10601
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.8 SHA1H

SHA1 fixed rotate.

A1

(FEAT_SHA1)

A1 variant

SHA1H.32 <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_SHA1)

T1 variant

SHA1H.32 <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 0 1 0 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 0 1 0 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10602
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d>>1] = ZeroExtend(ROL(Q[m>>1]<31:0>, 30), 128);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10603
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.9 SHA1M

SHA1 hash update (majority).

A1

(FEAT_SHA1)

A1 variant

SHA1M.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA1)

T1 variant

SHA1M.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10604
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 x = Q[d>>1];
 y = Q[n>>1]<31:0>; // Note: 32 bits wide
 w = Q[m>>1];
 for e = 0 to 3
 t = SHAmajority(x<63:32>, x<95:64>, x<127:96>);
 y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
 x<63:32> = ROL(x<63:32>, 30);
 <y, x> = ROL(y:x, 32);
 Q[d>>1] = x;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10605
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.10 SHA1P

SHA1 hash update (parity).

A1

(FEAT_SHA1)

A1 variant

SHA1P.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA1)

T1 variant

SHA1P.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10606
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 x = Q[d>>1];
 y = Q[n>>1]<31:0>; // Note: 32 bits wide
 w = Q[m>>1];
 for e = 0 to 3
 t = SHAparity(x<63:32>, x<95:64>, x<127:96>);
 y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
 x<63:32> = ROL(x<63:32>, 30);
 <y, x> = ROL(y:x, 32);
 Q[d>>1] = x;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10607
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.11 SHA1SU0

SHA1 schedule update 0.

A1

(FEAT_SHA1)

A1 variant

SHA1SU0.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA1)

T1 variant

SHA1SU0.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10608
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[n>>1]; op3 = Q[m>>1];
 op2 = op2<63:0> : op1<127:64>;
 Q[d>>1] = op1 EOR op2 EOR op3;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10609
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.12 SHA1SU1

SHA1 schedule update 1.

A1

(FEAT_SHA1)

A1 variant

SHA1SU1.32 <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_SHA1)

T1 variant

SHA1SU1.32 <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA1) then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10610
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[m>>1];
 T = X EOR LSR(Y, 32);
 W0 = ROL(T<31:0>, 1);
 W1 = ROL(T<63:32>, 1);
 W2 = ROL(T<95:64>, 1);
 W3 = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
 Q[d>>1] = W3:W2:W1:W0;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10611
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.13 SHA256H

SHA256 hash update part 1.

A1

(FEAT_SHA256)

A1 variant

SHA256H.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA256)

T1 variant

SHA256H.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10612
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[n>>1]; W = Q[m>>1]; part1 = TRUE;
 Q[d>>1] = SHA256hash(X, Y, W, part1);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10613
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.14 SHA256H2

SHA256 hash update part 2.

A1

(FEAT_SHA256)

A1 variant

SHA256H2.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA256)

T1 variant

SHA256H2.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10614
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[n>>1]; Y = Q[d>>1]; W = Q[m>>1]; part1 = FALSE;
 Q[d>>1] = SHA256hash(X, Y, W, part1);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10615
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.15 SHA256SU0

SHA256 schedule update 0.

A1

(FEAT_SHA256)

A1 variant

SHA256SU0.32 <Qd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

(FEAT_SHA256)

T1 variant

SHA256SU0.32 <Qd>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if size != '10' then UNDEFINED;
 if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10616
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 bits(128) result;
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 x = Q[d>>1]; y = Q[m>>1];
 t = y<31:0> : x<127:32>;
 for e = 0 to 3
 elt = Elem[t, e, 32];
 elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
 Elem[result, e, 32] = elt + Elem[x, e, 32];
 Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10617
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.16 SHA256SU1

SHA256 schedule update 1.

A1

(FEAT_SHA256)

A1 variant

SHA256SU1.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

(FEAT_SHA256)

T1 variant

SHA256SU1.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_SHA256) then UNDEFINED;
 if Q != '1' then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

1 1 1 1 0 0 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10618
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 bits(32) elt;
 bits(128) result;
 x = Q[d>>1]; y = Q[n>>1]; z = Q[m>>1];
 T0 = z<31:0> : y<127:32>;

 T1 = z<127:64>;
 for e = 0 to 1
 elt = Elem[T1, e, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[x, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 T1 = result<63:0>;
 for e = 2 to 3
 elt = Elem[T1, e - 2, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[x, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

 Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10619
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.17 VABA

Vector Absolute Difference and Accumulate subtracts the elements of one vector from the corresponding elements
of another vector, and accumulates the absolute values of the results into the elements of the destination vector.

Operand and result elements are all integers of the same length.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10620
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10621
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10622
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.18 VABAL

Vector Absolute Difference and Accumulate Long subtracts the elements of one vector from the corresponding
elements of another vector, and accumulates the absolute values of the results into the elements of the destination
vector.

Operand elements are all integers of the same length, and the result elements are double the length of the operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = 1;

T1

T1 variant

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 1 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 1 0 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10623
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10624
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.19 VABD (floating-point)

Vector Absolute Difference (floating-point) subtracts the elements of one vector from the corresponding elements
of another vector, and places the absolute values of the results in the elements of the destination vector.

Operand and result elements are floating-point numbers of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 constant integer esize = 32 >> UInt(sz);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 constant integer esize = 32 >> UInt(sz);

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10625
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 Elem[D[d+r],e,esize] = FPAbs(FPSub(op1,op2, fpcr), fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10626
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.20 VABD (integer)

Vector Absolute Difference (integer) subtracts the elements of one vector from the corresponding elements of
another vector, and places the absolute values of the results in the elements of the destination vector.

Operand and result elements are all integers of the same length.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); long_destination = FALSE;

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10627
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10628
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10629
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.21 VABDL (integer)

Vector Absolute Difference Long (integer) subtracts the elements of one vector from the corresponding elements of
another vector, and places the absolute values of the results in the elements of the destination vector.

Operand elements are all integers of the same length, and the result elements are double the length of the operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = 1;

T1

T1 variant

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 1 1 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 1 1 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10630
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10631
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.22 VABS

Vector Absolute takes the absolute value of each element in a vector, and places the results in a second vector. The
floating-point version only clears the sign bit.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10632
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 constant integer esize = 8 << UInt(size);
 integer d;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10633
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE;
 constant integer esize = 8 << UInt(size);
 integer d;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10634
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPAbs(Elem[D[m+r],e,esize], fpcr);
 else
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16 S[d] = Zeros(16) : FPAbs(S[m]<15:0>, fpcr);
 when 32 S[d] = FPAbs(S[m], fpcr);
 when 64 D[d] = FPAbs(D[m], fpcr);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10635
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.23 VACGE

Vector Absolute Compare Greater Than or Equal takes the absolute value of each element in a vector, and compares
it with the absolute value of the corresponding element of a second vector. If the first is greater than or equal to the
second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand
vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VACLE. The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 or_equal = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10636
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 or_equal = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D[n+r],e,esize], fpcr); op2 = FPAbs(Elem[D[m+r],e,esize], fpcr);
 boolean test_passed;
 if or_equal then
 test_passed = FPCompareGE(op1, op2, fpcr);
 else
 test_passed = FPCompareGT(op1, op2, fpcr);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10637
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.24 VACLE

Vector Absolute Compare Less Than or Equal takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the first is less than or equal to the second,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VACGE instruction. This means that:

• The encodings in this description are named to match the encodings of VACGE.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VACGE gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10638
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VACGE gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10639
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.25 VACGT

Vector Absolute Compare Greater Than takes the absolute value of each element in a vector, and compares it with
the absolute value of the corresponding element of a second vector. If the first is greater than the second, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand
vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VACLT. The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 or_equal = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10640
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 or_equal = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D[n+r],e,esize], fpcr); op2 = FPAbs(Elem[D[m+r],e,esize], fpcr);
 boolean test_passed;
 if or_equal then
 test_passed = FPCompareGE(op1, op2, fpcr);
 else
 test_passed = FPCompareGT(op1, op2, fpcr);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10641
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.26 VACLT

Vector Absolute Compare Less Than takes the absolute value of each element in a vector, and compares it with the
absolute value of the corresponding element of a second vector. If the first is less than the second, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VACGT instruction. This means that:

• The encodings in this description are named to match the encodings of VACGT.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VACGT gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10642
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VACGT gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10643
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.27 VADD (floating-point)

Vector Add (floating-point) adds corresponding elements in two vectors, and places the results in the destination
vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10644
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10645
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10646
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPAdd(S[n]<15:0>, S[m]<15:0>, fpcr);
 when 32
 S[d] = FPAdd(S[n], S[m], fpcr);
 when 64
 D[d] = FPAdd(D[n], D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10647
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.28 VADD (integer)

Vector Add (integer) adds corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10648
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

I64 when size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] + Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10649
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.29 VADDHN

Vector Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and places the
most significant half of each result in a doubleword vector. The results are truncated. For rounded results, see
VRADDHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

T1

T1 variant

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10650
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10651
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.30 VADDL

Vector Add Long adds corresponding elements in two doubleword vectors, and places the results in a quadword
vector. Before adding, it sign-extends or zero-extends the elements of both operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vaddw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

T1

T1 variant

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vaddw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 0 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 0 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10652
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 integer op1;
 if is_vaddw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 + Int(Elem[Din[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10653
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.31 VADDW

Vector Add Wide adds corresponding elements in one quadword and one doubleword vector, and places the results
in a quadword vector. Before adding, it sign-extends or zero-extends the elements of the doubleword operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vaddw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

T1

T1 variant

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vaddw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 0 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10654
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 integer op1;
 if is_vaddw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 + Int(Elem[Din[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10655
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.32 VAND (immediate)

Vector Bitwise AND (immediate) performs a bitwise AND between a register value and an immediate value, and
returns the result into the destination vector.

This instruction is a pseudo-instruction of the VBIC (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of VBIC (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VBIC (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10656
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10657
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VAND{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions.

Operation for all encodings

The description of VBIC (immediate) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10658
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.33 VAND (register)

Vector Bitwise AND (register) performs a bitwise AND operation between two registers, and places the result in
the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10659
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] AND D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10660
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.34 VBIC (immediate)

Vector Bitwise Bit Clear (immediate) performs a bitwise AND between a register value and the complement of an
immediate value, and returns the result into the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VAND (immediate). The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10661
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10662
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this
instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] AND NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10663
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.35 VBIC (register)

Vector Bitwise Bit Clear (register) performs a bitwise AND between a register value and the complement of a
register value, and places the result in the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10664
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] AND NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10665
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.36 VBIF

Vector Bitwise Insert if False inserts each bit from the first source register into the destination register if the
corresponding bit of the second source register is 0, otherwise leaves the bit in the destination register unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIF{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIF{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIF{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIF{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;

1 1 1 1 0 0 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10666
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10667
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.37 VBIT

Vector Bitwise Insert if True inserts each bit from the first source register into the destination register if the
corresponding bit of the second source register is 1, otherwise leaves the bit in the destination register unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIT{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIT{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBIT{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIT{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;

1 1 1 1 0 0 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10668
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10669
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.38 VBSL

Vector Bitwise Select sets each bit in the destination to the corresponding bit from the first source operand when the
original destination bit was 1, otherwise from the second source operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if op == '00' then SEE "VEOR";
 if op == '01' then operation = VBitOps_VBSL;
 if op == '10' then operation = VBitOps_VBIT;

1 1 1 1 0 0 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10670
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if op == '11' then operation = VBitOps_VBIF;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10671
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.39 VCADD

Vector Complex Add.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 90 or 270 degrees.

• The rotated complex number is added to the complex number from the first source register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_FCMA)

64-bit SIMD vector variant

Applies when Q == 0.

VCADD{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCADD{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if S == '0' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 16 << UInt(S);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

(FEAT_FCMA)

64-bit SIMD vector variant

Applies when Q == 0.

VCADD{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

1 1 1 1 1 1 0 rot 1 D 0 S Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 rot 1 D 0 S Vn Vd 1 0 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10672
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VCADD{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if S == '0' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 constant integer esize = 16 << UInt(S);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "S" field. It can have the following
values:

F16 when S = 0

F32 when S = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the
"rot" field. It can have the following values:

90 when rot = 0

270 when rot = 1

Operation for all encodings

 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 constant FPCR_Type fpcr = StandardFPCR();
 for e = 0 to (elements DIV 2)-1
 bits(esize) element1;
 bits(esize) element3;
 case rot of
 when '0'
 element1 = FPNeg(Elem[operand2,e*2+1,esize], fpcr);
 element3 = Elem[operand2,e*2,esize];
 when '1'
 element1 = Elem[operand2,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,e*2,esize], fpcr);
 result1 = FPAdd(Elem[operand1,e*2,esize],element1,fpcr);
 result2 = FPAdd(Elem[operand1,e*2+1,esize],element3,fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10673
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10674
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.40 VCEQ (immediate #0)

Vector Compare Equal to Zero takes each element in a vector, and compares it with zero. If it is equal to zero, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10675
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

I8 when F = 0, size = 00

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 boolean test_passed;
 if floating_point then
 bits(esize) zero = FPZero('0', esize);
 test_passed = FPCompareEQ(Elem[D[m+r],e,esize], zero, StandardFPCR());
 else
 test_passed = (Elem[D[m+r],e,esize] == Zeros(esize));
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10676
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.41 VCEQ (register)

Vector Compare Equal takes each element in a vector, and compares it with the corresponding element of a second
vector. If they are equal, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to
all zeros.

The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 int_operation = TRUE; constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10677
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 int_operation = FALSE;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 int_operation = TRUE; constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 int_operation = FALSE;
 constant integer esize = 32 >> UInt(sz);

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10678
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the vectors, encoded in the "size" field.
It can have the following values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 boolean test_passed;
 if int_operation then
 test_passed = (op1 == op2);
 else
 test_passed = FPCompareEQ(op1, op2, StandardFPCR());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10679
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.42 VCGE (immediate #0)

Vector Compare Greater Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is
greater than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is
set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10680
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 boolean test_passed;
 if floating_point then
 bits(esize) zero = FPZero('0', esize);
 test_passed = FPCompareGE(Elem[D[m+r],e,esize], zero, StandardFPCR());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) >= 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10681
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10682
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.43 VCGE (register)

Vector Compare Greater Than or Equal takes each element in a vector, and compares it with the corresponding
element of a second vector. If the first is greater than or equal to the second, the corresponding element in the
destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point
numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VCLE (register). The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGEType_unsigned else VCGEType_signed;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10683
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 vtype = VCGEType_fp;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGEType_unsigned else VCGEType_signed;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 vtype = VCGEType_fp;
 constant integer esize = 32 >> UInt(sz);

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10684
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 boolean test_passed;
 case vtype of
 when VCGEType_signed test_passed = (SInt(op1) >= SInt(op2));
 when VCGEType_unsigned test_passed = (UInt(op1) >= UInt(op2));
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10685
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when VCGEType_fp test_passed = FPCompareGE(op1, op2, StandardFPCR());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10686
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.44 VCGT (immediate #0)

Vector Compare Greater Than Zero takes each element in a vector, and compares it with zero. If it is greater than
zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10687
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 boolean test_passed;
 if floating_point then
 bits(esize) zero = FPZero('0', esize);
 test_passed = FPCompareGT(Elem[D[m+r],e,esize], zero, StandardFPCR());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) > 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10688
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10689
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.45 VCGT (register)

Vector Compare Greater Than takes each element in a vector, and compares it with the corresponding element of a
second vector. If the first is greater than the second, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point
numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VCLT (register). The pseudo-instruction is never the preferred
disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGTtype_unsigned else VCGTtype_signed;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10690
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 vtype = VCGTtype_fp;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 vtype = if U == '1' then VCGTtype_unsigned else VCGTtype_signed;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 vtype = VCGTtype_fp;
 constant integer esize = 32 >> UInt(sz);

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10691
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 boolean test_passed;
 case vtype of
 when VCGTtype_signed test_passed = (SInt(op1) > SInt(op2));
 when VCGTtype_unsigned test_passed = (UInt(op1) > UInt(op2));
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10692
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when VCGTtype_fp test_passed = FPCompareGT(op1, op2, StandardFPCR());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10693
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.46 VCLE (immediate #0)

Vector Compare Less Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is less
than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all
zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10694
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 boolean test_passed;
 if floating_point then
 bits(esize) zero = FPZero('0', esize);
 test_passed = FPCompareGE(zero, Elem[D[m+r],e,esize], StandardFPCR());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) <= 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10695
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10696
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.47 VCLE (register)

Vector Compare Less Than or Equal takes each element in a vector, and compares it with the corresponding element
of a second vector. If the first is less than or equal to the second, the corresponding element in the destination vector
is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VCGE (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VCGE (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VCGE (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10697
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10698
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VCGE (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10699
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.48 VCLS

Vector Count Leading Sign Bits counts the number of consecutive bits following the topmost bit, that are the same
as the topmost bit, in each element in a vector, and places the results in a second vector. The count does not include
the topmost bit itself.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit signed integers.

The result vector elements are the same data type as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10700
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S8 when size = 00

S16 when size = 01

S32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = CountLeadingSignBits(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10701
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.49 VCLT (immediate #0)

Vector Compare Less Than Zero takes each element in a vector, and compares it with zero. If it is less than zero,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10702
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 boolean test_passed;
 if floating_point then
 bits(esize) zero = FPZero('0', esize);
 test_passed = FPCompareGT(zero, Elem[D[m+r],e,esize], StandardFPCR());
 else
 test_passed = (SInt(Elem[D[m+r],e,esize]) < 0);
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10703
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10704
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.50 VCLT (register)

Vector Compare Less Than takes each element in a vector, and compares it with the corresponding element of a
second vector. If the first is less than the second, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VCGT (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VCGT (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VCGT (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10705
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10706
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

 is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size"
field. It can have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
It can have the following values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VCGT (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10707
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.51 VCLZ

Vector Count Leading Zeros counts the number of consecutive zeros, starting from the most significant bit, in each
element in a vector, and places the results in a second vector.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit integers. There is no distinction between
signed and unsigned integers.

The result vector elements are the same data type as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10708
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = CountLeadingZeroBits(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10709
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.52 VCMLA

Vector Complex Multiply Accumulate.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_FCMA)

64-bit SIMD vector variant

Applies when Q == 0.

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 16 << UInt(S);
 if !IsFeatureImplemented(FEAT_FP16) && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;

T1

(FEAT_FCMA)

1 1 1 1 1 1 0 rot D 1 S Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10710
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 16 << UInt(S);
 if !IsFeatureImplemented(FEAT_FP16) && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "S" field. It can have the following
values:

F16 when S = 0

F32 when S = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the
"rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

1 1 1 1 1 1 0 rot D 1 S Vn Vd 1 0 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10711
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 operand3 = D[d+r];
 for e = 0 to (elements DIV 2)-1
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) element3;
 bits(esize) element4;
 case rot of
 when '00'
 element1 = Elem[operand2,e*2,esize];
 element2 = Elem[operand1,e*2,esize];
 element3 = Elem[operand2,e*2+1,esize];
 element4 = Elem[operand1,e*2,esize];
 when '01'
 element1 = FPNeg(Elem[operand2,e*2+1,esize], fpcr);
 element2 = Elem[operand1,e*2+1,esize];
 element3 = Elem[operand2,e*2,esize];
 element4 = Elem[operand1,e*2+1,esize];
 when '10'
 element1 = FPNeg(Elem[operand2,e*2,esize], fpcr);
 element2 = Elem[operand1,e*2,esize];
 element3 = FPNeg(Elem[operand2,e*2+1,esize], fpcr);
 element4 = Elem[operand1,e*2,esize];
 when '11'
 element1 = Elem[operand2,e*2+1,esize];
 element2 = Elem[operand1,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,e*2,esize], fpcr);
 element4 = Elem[operand1,e*2+1,esize];
 result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, fpcr);
 result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3, fpcr);
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10712
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.53 VCMLA (by element)

Vector Complex Multiply Accumulate (by element).

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on
complex numbers from the first source register and the destination register with the specified complex number from
the second source register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:

— The real element of the complex number from the first source register, if the transformation was a
rotation by 0 or 180 degrees.

— The imaginary element of the complex number from the first source register, if the transformation was
a rotation by 90 or 270 degrees.

• The complex number resulting from that multiplication is added to the complex number from the destination
register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_FCMA)

64-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 0.

VCMLA{<q>}.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 0.

VCMLA{<q>}.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 1.

VCMLA{<q>}.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 1.

VCMLA{<q>}.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

1 1 1 1 1 1 1 0 S D rot Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10713
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn);
 m = if S=='1' then UInt(M:Vm) else UInt(Vm);
 constant integer esize = 16 << UInt(S);
 if !IsFeatureImplemented(FEAT_FP16) && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;
 index = if S=='1' then 0 else UInt(M);

T1

(FEAT_FCMA)

64-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 0.

VCMLA{<q>}.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 0.

VCMLA{<q>}.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point variant

Applies when S == 0 && Q == 1.

VCMLA{<q>}.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point variant

Applies when S == 1 && Q == 1.

VCMLA{<q>}.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FCMA) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn);
 m = if S=='1' then UInt(M:Vm) else UInt(Vm);
 constant integer esize = 16 << UInt(S);
 if !IsFeatureImplemented(FEAT_FP16) && esize == 16 then UNDEFINED;
 elements = 64 DIV esize;
 regs = if Q == '0' then 1 else 2;
 index = if S=='1' then 0 else UInt(M);

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

1 1 1 1 1 1 1 0 S D rot Vn Vd 1 0 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10714
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For the half-precision scalar variant: is the 64-bit name of the second SIMD&FP source register,
encoded in the "Vm" field.

For the single-precision scalar variant: is the 64-bit name of the second SIMD&FP source register,
encoded in the "M:Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the
"rot" field. It can have the following values:

0 when rot = 00

90 when rot = 01

180 when rot = 10

270 when rot = 11

Operation for all encodings

 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = Din[m];
 operand3 = D[d+r];
 for e = 0 to (elements DIV 2)-1
 bits(esize) element1;
 bits(esize) element2;
 bits(esize) element3;
 bits(esize) element4;
 case rot of
 when '00'
 element1 = Elem[operand2,index*2,esize];
 element2 = Elem[operand1,e*2,esize];
 element3 = Elem[operand2,index*2+1,esize];
 element4 = Elem[operand1,e*2,esize];
 when '01'
 element1 = FPNeg(Elem[operand2,index*2+1,esize], fpcr);
 element2 = Elem[operand1,e*2+1,esize];
 element3 = Elem[operand2,index*2,esize];
 element4 = Elem[operand1,e*2+1,esize];
 when '10'
 element1 = FPNeg(Elem[operand2,index*2,esize], fpcr);
 element2 = Elem[operand1,e*2,esize];
 element3 = FPNeg(Elem[operand2,index*2+1,esize], fpcr);
 element4 = Elem[operand1,e*2,esize];
 when '11'
 element1 = Elem[operand2,index*2+1,esize];
 element2 = Elem[operand1,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,index*2,esize], fpcr);
 element4 = Elem[operand1,e*2+1,esize];
 result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, fpcr);
 result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3,fpcr);
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10715
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.54 VCMP

Vector Compare compares two floating-point registers, or one floating-point register and zero. It writes the result to
the FPSCR flags. These are normally transferred to the PSTATE.{N, Z, C, V} Condition flags by a subsequent VMRS
instruction.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond E
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10716
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 integer esize;
 integer d;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);
 integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

!=1111 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 0 1 (0) 0 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond E

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

E

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10717
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 integer esize;
 integer d;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 0 1 (0) 0 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

E

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10718
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);
 integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 bits(4) nzcv;
 case esize of
 when 16
 bits(16) op16 = if with_zero then FPZero('0', 16) else S[m]<15:0>;
 nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, fpcr);
 when 32
 bits(32) op32 = if with_zero then FPZero('0', 32) else S[m];
 nzcv = FPCompare(S[d], op32, quiet_nan_exc, fpcr);
 when 64
 bits(64) op64 = if with_zero then FPZero('0', 64) else D[m];
 nzcv = FPCompare(D[d], op64, quiet_nan_exc, fpcr);

 FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the FPSCR condition flags to N=0,
Z=0, C=1, and V=1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10719
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.55 VCMPE

Vector Compare, raising Invalid Operation on NaN compares two floating-point registers, or one floating-point
register and zero. It writes the result to the FPSCR flags. These are normally transferred to the PSTATE.{N, Z, C,
V} Condition flags by a subsequent VMRS instruction.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond E
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10720
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 integer esize;
 integer d;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);
 integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

!=1111 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 1 1 (0) 0 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond E

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

E

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10721
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 quiet_nan_exc = (E == '1'); with_zero = TRUE;
 integer esize;
 integer d;
 case size of
 when '01' esize = 16; d = UInt(Vd:D);

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 1 1 (0) 0 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

E

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10722
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);
 integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 bits(4) nzcv;
 case esize of
 when 16
 bits(16) op16 = if with_zero then FPZero('0', 16) else S[m]<15:0>;
 nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, fpcr);
 when 32
 bits(32) op32 = if with_zero then FPZero('0', 32) else S[m];
 nzcv = FPCompare(S[d], op32, quiet_nan_exc, fpcr);
 when 64
 bits(64) op64 = if with_zero then FPZero('0', 64) else D[m];
 nzcv = FPCompare(D[d], op64, quiet_nan_exc, fpcr);

 FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the FPSCR condition flags to N=0,
Z=0, C=1, and V=1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10723
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.56 VCNT

Vector Count Set Bits counts the number of bits that are one in each element in a vector, and places the results in a
second vector.

The operand vector elements must be 8-bit fields.

The result vector elements are 8-bit integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCNT{<c>}{<q>}.8 <Dd>, <Dm> // Encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VCNT{<c>}{<q>}.8 <Qd>, <Qm> // Encoded as Q = 1

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8; elements = 8;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCNT{<c>}{<q>}.8 <Dd>, <Dm> // Encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VCNT{<c>}{<q>}.8 <Qd>, <Qm> // Encoded as Q = 1

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10724
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8; elements = 8;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = BitCount(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10725
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.57 VCVT (from single-precision to BFloat16, Advanced SIMD)

Vector Convert from single-precision to BFloat16 converts each 32-bit element in a vector from single-precision
floating-point to BFloat16 format, and writes the result into a second vector. The result vector elements are half the
width of the source vector elements.

Unlike the BFloat16 multiplication instructions, this instruction uses the Round to Nearest rounding mode, and can
generate a floating-point exception that causes cumulative exception bits in the FPSCR to be set.

A1

(FEAT_AA32BF16)

A1 variant

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32BF16)

T1 variant

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

1 1 1 1 0 0 1 1 1 D 1 1 0 1 1 0 Vd 0 1 1 0 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 0 1 1 0 Vd 0 1 1 0 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10726
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 bits(128) operand;
 bits(64) result;

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 operand = Q[m>>1];
 for e = 0 to 3
 bits(32) op = Elem[operand, e, 32];
 Elem[result, e, 16] = FPConvertBF(op, fpcr);
 D[d] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10727
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.58 VCVT (between double-precision and single-precision)

Convert between double-precision and single-precision does one of the following:

• Converts the value in a double-precision register to single-precision and writes the result to a single-precision
register.

• Converts the value in a single-precision register to double-precision and writes the result to a
double-precision register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Single-precision to double-precision variant

Applies when size == 10.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when size == 11.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 double_to_single = (size == '11');
 d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
 m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

T1

Single-precision to double-precision variant

Applies when size == 10.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when size == 11.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 x 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond size

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 x 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10728
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 double_to_single = (size == '11');
 d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
 m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if double_to_single then
 S[d] = FPConvert(D[m], EffectiveFPCR(), 32);
 else
 D[d] = FPConvert(S[m], EffectiveFPCR(), 64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10729
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.59 VCVT (between half-precision and single-precision, Advanced SIMD)

Vector Convert between half-precision and single-precision converts each element in a vector from single-precision
to half-precision floating-point, or from half-precision to single-precision, and places the results in a second vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision to single-precision variant

Applies when op == 1.

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // Encoded as op = 1

Single-precision to half-precision variant

Applies when op == 0.

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // Encoded as op = 0

Decode for all variants of this encoding

 if size != '01' then UNDEFINED;
 half_to_single = (op == '1');
 if half_to_single && Vd<0> == '1' then UNDEFINED;
 if !half_to_single && Vm<0> == '1' then UNDEFINED;
 esize = 16; elements = 4;
 m = UInt(M:Vm); d = UInt(D:Vd);

T1

Half-precision to single-precision variant

Applies when op == 1.

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // Encoded as op = 1

Single-precision to half-precision variant

Applies when op == 0.

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // Encoded as op = 0

Decode for all variants of this encoding

 if size != '01' then UNDEFINED;
 half_to_single = (op == '1');
 if half_to_single && Vd<0> == '1' then UNDEFINED;
 if !half_to_single && Vm<0> == '1' then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10730
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 16; elements = 4;
 m = UInt(M:Vm); d = UInt(D:Vd);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for e = 0 to elements-1
 if half_to_single then
 Elem[Q[d>>1],e,32] = FPConvert(Elem[Din[m],e,16], fpcr, 32);
 else
 Elem[D[d],e,16] = FPConvert(Elem[Qin[m>>1],e,32], fpcr, 16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10731
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.60 VCVT (between floating-point and integer, Advanced SIMD)

Vector Convert between floating-point and integer converts each element in a vector from floating-point to integer,
or from integer to floating-point, and places the results in a second vector.

The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are
distinct.

The floating-point to integer operation uses the Round towards Zero rounding mode. The integer to floating-point
operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 to_integer = (op<1> == '1'); unsigned = (op<0> == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10732
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 to_integer = (op<1> == '1'); unsigned = (op<0> == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt1> Is the data type for the elements of the destination vector, encoded in the "size:op" field. It can have
the following values:

F16 when size = 01, op = 0x

S16 when size = 01, op = 10

U16 when size = 01, op = 11

F32 when size = 10, op = 0x

S32 when size = 10, op = 10

U32 when size = 10, op = 11

<dt2> Is the data type for the elements of the source vector, encoded in the "size:op" field. It can have the
following values:

S16 when size = 01, op = 00

U16 when size = 01, op = 01

F16 when size = 01, op = 1x

S32 when size = 10, op = 00

U32 when size = 10, op = 01

F32 when size = 10, op = 1x

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10733
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 bits(esize) result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 if to_integer then
 result = FPToFixed(op1, 0, unsigned, fpcr, FPRounding_ZERO, esize);
 else
 result = FixedToFP(op1, 0, unsigned, fpcr, FPRounding_TIEEVEN, esize);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10734
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.61 VCVT (floating-point to integer, floating-point)

Convert floating-point to integer with Round towards Zero converts a value in a register from floating-point to a
32-bit integer, using the Round towards Zero rounding mode, and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and
16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 integer d;
 integer esize;
 integer m;
 boolean unsigned;
 FPRounding rounding;
 to_integer = (opc2<2> == '1');

!=1111 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond opc2 op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10735
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 boolean zero_rounding;
 if to_integer then
 unsigned = (opc2<0> == '0');
 zero_rounding = (op == '1');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 zero_rounding = FALSE;
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2 op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10736
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 integer esize;
 integer m;
 integer d;
 boolean unsigned;
 FPRounding rounding;
 boolean zero_rounding;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 zero_rounding = (op == '1');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 zero_rounding = FALSE;
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing for the T32 instruction set, or Floating-point
data-processing for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10737
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 rounding = if zero_rounding then FPRounding_ZERO else FPRoundingMode(fpcr);
 if to_integer then
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
 else
 case esize of
 when 16
 bits(16) fp16 = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 16);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 D[d] = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10738
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.62 VCVT (integer to floating-point, floating-point)

Convert integer to floating-point converts a 32-bit integer to floating-point using the rounding mode specified by
the FPSCR, and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and
16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for all variants of this encoding

 if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 integer d;
 integer esize;
 integer m;
 boolean unsigned;
 FPRounding rounding;
 to_integer = (opc2<2> == '1');
 boolean zero_rounding;
 if to_integer then
 unsigned = (opc2<0> == '0');
 zero_rounding = (op == '1');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 zero_rounding = FALSE;
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

!=1111 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10739
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for all variants of this encoding

 if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 integer esize;
 integer m;
 integer d;
 boolean unsigned;
 FPRounding rounding;
 boolean zero_rounding;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 zero_rounding = (op == '1');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 zero_rounding = FALSE;
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10740
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing for the T32 instruction set, or Floating-point
data-processing for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the operand, encoded in the "op" field. It can have the following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 rounding = if zero_rounding then FPRounding_ZERO else FPRoundingMode(fpcr);
 if to_integer then
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
 else
 case esize of
 when 16
 bits(16) fp16 = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 16);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 D[d] = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10741
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.63 VCVT (between floating-point and fixed-point, Advanced SIMD)

Vector Convert between floating-point and fixed-point converts each element in a vector from floating-point to
fixed-point, or from fixed-point to floating-point, and places the results in a second vector.

The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are
distinct.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

Decode for all variants of this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if op<1> == '0' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if op<1> == '0' && imm6 IN {'10xxxx'} then UNDEFINED;
 if imm6 IN {'0xxxxx'} then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 to_fixed = (op<0> == '1'); frac_bits = 64 - UInt(imm6);
 unsigned = (U == '1');
 constant integer esize = 16 << UInt(op<1>);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector variant

Applies when imm6 != 000xxx && Q == 1.

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 1 op 0 Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 1 op 0 Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10742
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

Decode for all variants of this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if op<1> == '0' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if op<1> == '0' && imm6 IN {'10xxxx'} then UNDEFINED;
 if imm6 IN {'0xxxxx'} then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 to_fixed = (op<0> == '1'); frac_bits = 64 - UInt(imm6);
 unsigned = (U == '1');
 constant integer esize = 16 << UInt(op<1>);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt1> Is the data type for the elements of the destination vector, encoded in the "op:U" field. It can have
the following values:

F16 when op = 00, U = x

S16 when op = 01, U = 0

U16 when op = 01, U = 1

F32 when op = 10, U = x

S32 when op = 11, U = 0

U32 when op = 11, U = 1

<dt2> Is the data type for the elements of the source vector, encoded in the "op:U" field. It can have the
following values:

S16 when op = 00, U = 0

U16 when op = 00, U = 1

F16 when op = 01, U = x

S32 when op = 10, U = 0

U32 when op = 10, U = 1

F32 when op = 11, U = x

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<fbits> The number of fraction bits in the fixed point number, in the range 1 to 32 for 32-bit elements, or in
the range 1 to 16 for 16-bit elements:

• (64 - <fbits>) is encoded in imm6.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10743
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
An assembler can permit an <fbits> value of 0. This is encoded as floating-point to integer or integer
to floating-point instruction, see VCVT (between floating-point and integer, Advanced SIMD).

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 if to_fixed then
 result = FPToFixed(op1, frac_bits, unsigned, fpcr,
 FPRounding_ZERO, esize);
 else
 result = FixedToFP(op1, frac_bits, unsigned, fpcr,
 FPRounding_TIEEVEN, esize);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10744
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.64 VCVT (between floating-point and fixed-point, floating-point)

Convert between floating-point and fixed-point converts a value in a register from floating-point to fixed-point, or
from fixed-point to floating-point. Software can specify the fixed-point value as either signed or unsigned.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the
low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values
sign-extend the result value to the destination register width. Unsigned conversions to fixed-point values
zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar variant

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar variant

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

Decode for all variants of this encoding

 if sf == '00' || (sf == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if sf == '01' && cond != '1110' then UNPREDICTABLE;
 to_fixed = (op == '1'); unsigned = (U == '1');

!=1111 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10745
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant integer size = if sx == '0' then 16 else 32;
 frac_bits = size - UInt(imm4:i);
 integer fp_size;
 integer d;
 case sf of
 when '01' fp_size = 16; d = UInt(Vd:D);
 when '10' fp_size = 32; d = UInt(Vd:D);
 when '11' fp_size = 64; d = UInt(D:Vd);

 if frac_bits < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

Half-precision scalar variant

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar variant

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar variant

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10746
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if sf == '00' || (sf == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if sf == '01' && InITBlock() then UNPREDICTABLE;
 to_fixed = (op == '1'); unsigned = (U == '1');
 constant integer size = if sx == '0' then 16 else 32;
 frac_bits = size - UInt(imm4:i);
 integer fp_size;
 integer d;
 case sf of
 when '01' fp_size = 16; d = UInt(Vd:D);
 when '10' fp_size = 32; d = UInt(Vd:D);
 when '11' fp_size = 64; d = UInt(D:Vd);

 if frac_bits < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VCVT (between floating-point and
fixed-point).

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the fixed-point number, encoded in the "U:sx" field. It can have the following
values:

S16 when U = 0, sx = 0

S32 when U = 0, sx = 1

U16 when U = 1, sx = 0

U32 when U = 1, sx = 1

<Sdm> Is the 32-bit name of the SIMD&FP destination and source register, encoded in the "Vd:D" field.

<Ddm> Is the 64-bit name of the SIMD&FP destination and source register, encoded in the "D:Vd" field.

<fbits> The number of fraction bits in the fixed-point number:

• If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded in [imm4, i]

• If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded in [imm4, i].

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 if to_fixed then
 bits(size) result;
 case fp_size of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10747
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when 16
 result = FPToFixed(S[d]<15:0>, frac_bits, unsigned, fpcr,
 FPRounding_ZERO, size);
 S[d] = Extend(result, 32, unsigned);
 when 32
 result = FPToFixed(S[d], frac_bits, unsigned, fpcr, FPRounding_ZERO, size);
 S[d] = Extend(result, 32, unsigned);
 when 64
 result = FPToFixed(D[d], frac_bits, unsigned, fpcr, FPRounding_ZERO, size);
 D[d] = Extend(result, 64, unsigned);
 else
 case fp_size of
 when 16
 bits(16) fp16 = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, fpcr,
 FPRounding_TIEEVEN, 16);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, fpcr, FPRounding_TIEEVEN, 32);
 when 64
 D[d] = FixedToFP(D[d]<size-1:0>, frac_bits, unsigned, fpcr, FPRounding_TIEEVEN, 64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10748
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.65 VCVTA (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest with Ties to Away converts each element in a vector
from floating-point to integer using the Round to Nearest with Ties to Away rounding mode, and places the results
in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 0 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 0 0 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10749
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 fpcr, rounding, esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10750
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.66 VCVTA (floating-point)

Convert floating-point to integer with Round to Nearest with Ties to Away converts a value in a register from
floating-point to a 32-bit integer using the Round to Nearest with Ties to Away rounding mode, and places the result
in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 !=00 op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 !=00 op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10751
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Single-precision scalar variant

Applies when size == 10.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10752
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.67 VCVTB

Convert to or from a half-precision value in the bottom half of a single-precision register does one of the following:

• Converts the half-precision value in the bottom half of a single-precision register to single-precision and
writes the result to a single-precision register.

• Converts the half-precision value in the bottom half of a single-precision register to double-precision and
writes the result to a double-precision register.

• Converts the single-precision value in a single-precision register to half-precision and writes the result into
the bottom half of a single-precision register, preserving the other half of the destination register.

• Converts the double-precision value in a double-precision register to half-precision and writes the result into
the bottom half of a single-precision register, preserving the other half of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 constant integer lowbit = (if T == '1' then 16 else 0);
 integer d;
 integer m;
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

!=1111 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10753
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 constant integer lowbit = (if T == '1' then 16 else 0);
 integer d;
 integer m;
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(16) hp;

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

T

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10754
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant FPCR_Type fpcr = EffectiveFPCR();
 if convert_from_half then
 hp = S[m]<lowbit+15:lowbit>;
 if uses_double then
 D[d] = FPConvert(hp, fpcr, 64);
 else
 S[d] = FPConvert(hp, fpcr, 32);
 else
 if uses_double then
 hp = FPConvert(D[m], fpcr, 16);
 else
 hp = FPConvert(S[m], fpcr, 16);
 S[d]<lowbit+15:lowbit> = hp;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10755
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.68 VCVTB (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result into the
bottom half of a single precision register, preserving the top 16 bits of the destination register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply
to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending
on the enable bits in the FPSCR.

A1

(FEAT_AA32BF16)

A1 variant

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

T1

(FEAT_AA32BF16)

T1 variant

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

!=1111 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10756
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);

 S[d]<15:0> = FPConvertBF(S[m], EffectiveFPCR());
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10757
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.69 VCVTM (Advanced SIMD)

Vector Convert floating-point to integer with Round towards -Infinity converts each element in a vector from
floating-point to integer using the Round towards -Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 1 1 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 1 1 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10758
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 fpcr, rounding, esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10759
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.70 VCVTM (floating-point)

Convert floating-point to integer with Round towards -Infinity converts a value in a register from floating-point to
a 32-bit integer using the Round towards -Infinity rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 !=00 op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 !=00 op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10760
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10761
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.71 VCVTN (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest converts each element in a vector from floating-point
to integer using the Round to Nearest rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 0 1 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 0 1 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10762
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 fpcr, rounding, esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10763
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.72 VCVTN (floating-point)

Convert floating-point to integer with Round to Nearest converts a value in a register from floating-point to a 32-bit
integer using the Round to Nearest rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 !=00 op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 !=00 op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10764
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10765
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.73 VCVTP (Advanced SIMD)

Vector Convert floating-point to integer with Round towards +Infinity converts each element in a vector from
floating-point to integer using the Round towards +Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 1 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 1 0 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10766
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the
following values:

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U16 when op = 1, size = 01

U32 when op = 1, size = 10

<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the
following values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
 fpcr, rounding, esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10767
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.74 VCVTP (floating-point)

Convert floating-point to integer with Round towards +Infinity converts a value in a register from floating-point to
a 32-bit integer using the Round towards +Infinity rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 !=00 op 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 !=00 op 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10768
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); unsigned = (op == '0');
 d = UInt(Vd:D);
 integer esize;
 integer m;
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10769
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.75 VCVTR

Convert floating-point to integer converts a value in a register from floating-point to a 32-bit integer, using the
rounding mode specified by the FPSCR and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and
16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 integer d;
 integer esize;
 integer m;
 boolean unsigned;
 FPRounding rounding;
 to_integer = (opc2<2> == '1');

!=1111 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 10 9 8 7 6 5 4 3 0

cond opc2 op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10770
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 boolean zero_rounding;
 if to_integer then
 unsigned = (opc2<0> == '0');
 zero_rounding = (op == '1');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 zero_rounding = FALSE;
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2 op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10771
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 integer esize;
 integer m;
 integer d;
 boolean unsigned;
 FPRounding rounding;
 boolean zero_rounding;
 to_integer = (opc2<2> == '1');
 if to_integer then
 unsigned = (opc2<0> == '0');
 zero_rounding = (op == '1');
 d = UInt(Vd:D);
 case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 zero_rounding = FALSE;
 m = UInt(Vm:M);
 case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing for the T32 instruction set, or Floating-point
data-processing for the A32 instruction set.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10772
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 rounding = if zero_rounding then FPRounding_ZERO else FPRoundingMode(fpcr);
 if to_integer then
 case esize of
 when 16
 S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, fpcr, rounding, 32);
 when 32
 S[d] = FPToFixed(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 S[d] = FPToFixed(D[m], 0, unsigned, fpcr, rounding, 32);
 else
 case esize of
 when 16
 bits(16) fp16 = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 16);
 S[d] = Zeros(16):fp16;
 when 32
 S[d] = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 32);
 when 64
 D[d] = FixedToFP(S[m], 0, unsigned, fpcr, rounding, 64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10773
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.76 VCVTT

Convert to or from a half-precision value in the top half of a single-precision register does one of the following:

• Converts the half-precision value in the top half of a single-precision register to single-precision and writes
the result to a single-precision register.

• Converts the half-precision value in the top half of a single-precision register to double-precision and writes
the result to a double-precision register.

• Converts the single-precision value in a single-precision register to half-precision and writes the result into
the top half of a single-precision register, preserving the other half of the destination register.

• Converts the double-precision value in a double-precision register to half-precision and writes the result into
the top half of a single-precision register, preserving the other half of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 constant integer lowbit = (if T == '1' then 16 else 0);
 integer d;
 integer m;
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

!=1111 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond T
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10774
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

 uses_double = (sz == '1'); convert_from_half = (op == '0');
 constant integer lowbit = (if T == '1' then 16 else 0);
 integer d;
 integer m;
 if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
 else
 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(16) hp;

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

T

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10775
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant FPCR_Type fpcr = EffectiveFPCR();
 if convert_from_half then
 hp = S[m]<lowbit+15:lowbit>;
 if uses_double then
 D[d] = FPConvert(hp, fpcr, 64);
 else
 S[d] = FPConvert(hp, fpcr, 32);
 else
 if uses_double then
 hp = FPConvert(D[m], fpcr, 16);
 else
 hp = FPConvert(S[m], fpcr, 16);
 S[d]<lowbit+15:lowbit> = hp;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10776
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.77 VCVTT (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result in the top
half of a single-precision register, preserving the bottom 16 bits of the register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply
to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending
on the enable bits in the FPSCR.

A1

(FEAT_AA32BF16)

A1 variant

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

T1

(FEAT_AA32BF16)

T1 variant

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 integer d = UInt(Vd:D);
 integer m = UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

!=1111 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10777
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);

 S[d]<31:16> = FPConvertBF(S[m], EffectiveFPCR());
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10778
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.78 VDIV

Divide divides one floating-point value by another floating-point value and writes the result to a third floating-point
register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10779
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10780
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPDiv(S[n]<15:0>, S[m]<15:0>, fpcr);
 when 32
 S[d] = FPDiv(S[n], S[m], fpcr);
 when 64
 D[d] = FPDiv(D[n], D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10781
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.79 VDOT (vector)

BFloat16 floating-point (BF16) dot product (vector). This instruction delimits the source vectors into pairs of 16-bit
BF16 elements. Within each pair, the elements in the first source vector are multiplied by the corresponding
elements in the second source vector. The resulting single-precision products are then summed and added
destructively to the single-precision element in the destination vector which aligns with the pair of BF16 values in
the first source vector. The instruction does not update the FPSCR exception status.

A1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Qm>

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10782
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 for r = 0 to regs-1
 operand1 = Din[n+r];
 operand2 = Din[m+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
 bits(32) sum = FPAdd_BF16(BFMulH(elt1_a, elt2_a, fpcr), BFMulH(elt1_b, elt2_b, fpcr), fpcr);
 Elem[result, e, 32] = FPAdd_BF16(Elem[result, e, 32], sum, fpcr);
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10783
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.80 VDOT (by element)

BFloat16 floating-point indexed dot product (vector, by element). This instruction delimits the source vectors into
pairs of 16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the indexed pair of
elements in the second source vector. The resulting single-precision products are then summed and added
destructively to the single-precision element in the destination vector which aligns with the pair of BFloat16 values
in the first source vector. The instruction does not update the FPSCR exception status.

A1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32BF16)

64-bit SIMD vector variant

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10784
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 operand2 = Din[m];
 for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
 bits(16) elt2_a = Elem[operand2, 2 * i + 0, 16];
 bits(16) elt2_b = Elem[operand2, 2 * i + 1, 16];
 bits(32) sum = FPAdd_BF16(BFMulH(elt1_a, elt2_a, fpcr), BFMulH(elt1_b, elt2_b, fpcr), fpcr);
 Elem[result, e, 32] = FPAdd_BF16(Elem[result, e, 32], sum, fpcr);
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10785
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.81 VDUP (general-purpose register)

Duplicate general-purpose register to vector duplicates an element from a general-purpose register into every
element of the destination vector.

The destination vector elements can be 8-bit, 16-bit, or 32-bit fields. The source element is the least significant 8,
16, or 32 bits of the general-purpose register. There is no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VDUP{<c>}{<q>}.<size> <Qd>, <Rt> // Encoded as Q = 1
VDUP{<c>}{<q>}.<size> <Dd>, <Rt> // Encoded as Q = 0

Decode for this encoding

 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
 if B:E == '11' then UNDEFINED;
 constant integer esize = 32 >> UInt(B:E);
 integer elements = 64 DIV esize;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VDUP{<c>}{<q>}.<size> <Qd>, <Rt> // Encoded as Q = 1
VDUP{<c>}{<q>}.<size> <Dd>, <Rt> // Encoded as Q = 0

Decode for this encoding

 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
 if B:E == '11' then UNDEFINED;
 constant integer esize = 32 >> UInt(B:E);
 integer elements = 64 DIV esize;
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

!=1111 1 1 1 0 1 B Q 0 Vd Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 1 B Q 0 Vd Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10786
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> See Standard assembler syntax fields. Arm strongly recommends that any VDUP instruction is
unconditional, see Conditional execution.

<q> See Standard assembler syntax fields.

<size> The data size for the elements of the destination vector. It must be one of:

8 Encoded as [b, e] = 0b10.

16 Encoded as [b, e] = 0b01.

32 Encoded as [b, e] = 0b00.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<Rt> The Arm source register.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 scalar = R[t]<esize-1:0>;
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10787
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.82 VDUP (scalar)

Duplicate vector element to vector duplicates a single element of a vector into every element of the destination
vector.

The scalar, and the destination vector elements, can be any one of 8-bit, 16-bit, or 32-bit fields. There is no
distinction between data types.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

Encoding

Applies when Q == 0.

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

Encoding

Applies when Q == 1.

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

Decode for all variants of this encoding

 if imm4 IN {'x000'} then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 << LowestSetBit(imm4);
 integer index;
 case imm4 of
 when 'xxx1' index = UInt(imm4<3:1>);
 when 'xx10' index = UInt(imm4<3:2>);
 when 'x100' index = UInt(imm4<3>);
 d = UInt(D:Vd); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

T1

Encoding

Applies when Q == 0.

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

Encoding

Applies when Q == 1.

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10788
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

Decode for all variants of this encoding

 if imm4 IN {'x000'} then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 << LowestSetBit(imm4);
 integer index;
 case imm4 of
 when 'xxx1' index = UInt(imm4<3:1>);
 when 'xx10' index = UInt(imm4<3:2>);
 when 'x100' index = UInt(imm4<3>);
 d = UInt(D:Vd); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> The data size. It must be one of:

8 Encoded as imm4<0> = '1'. imm4<3:1> encodes the index[x] of the scalar.

16 Encoded as imm4<1:0> = '10'. imm4<3:2> encodes the index [x] of the scalar.

32 Encoded as imm4<2:0> = '100'. imm4<3> encodes the index [x] of the scalar.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm[x]> The scalar. For details of how [x] is encoded, see the description of <size>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 scalar = Elem[D[m],index,esize];
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10789
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.83 VEOR

Vector Bitwise Exclusive-OR performs a bitwise exclusive-OR operation between two registers, and places the
result in the destination register. The operand and result registers can be quadword or doubleword. They must all be
the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VEOR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VEOR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VEOR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VEOR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10790
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] EOR D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10791
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.84 VEXT (byte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first,
concatenates them and places the result in the destination vector.

The elements of the vectors are treated as being 8-bit fields. There is no distinction between data types.

The following figure shows the operation of VEXT doubleword operation for imm = 3.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VEXT (multibyte elements). The pseudo-instruction is never the
preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if Q == '0' && imm4<3> == '1' then UNDEFINED;
 quadword_operation = (Q == '1');
 constant integer position = 8 * UInt(imm4);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Vm Vn

Vd

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10792
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if Q == '0' && imm4<3> == '1' then UNDEFINED;
 quadword_operation = (Q == '1');
 constant integer position = 8 * UInt(imm4);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to 7, encoded in the
"imm4" field.

For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of
the operands, as a number of bytes from the least significant end, in the range 0 to 15, encoded in
the "imm4" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 Q[d>>1] = (Q[m>>1]:Q[n>>1])<position+127:position>;
 else
 D[d] = (D[m]:D[n])<position+63:position>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10793
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10794
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.85 VEXT (multibyte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first,
concatenates them and places the result in the destination vector.

This instruction is a pseudo-instruction of the VEXT (byte elements) instruction. This means that:

• The encodings in this description are named to match the encodings of VEXT (byte elements).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VEXT (byte elements) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.<size> {<Dd>,} <Dn>, <Dm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm*(size/8)>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.<size> {<Qd>,} <Qn>, <Qm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm*(size/8)>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.<size> {<Dd>,} <Dn>, <Dm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm*(size/8)>

and is never the preferred disassembly.

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10795
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.<size> {<Qd>,} <Qn>, <Qm>, #<imm>

 is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm*(size/8)>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> For the 64-bit SIMD vector variant: is the size of the operation, and can be one of 16 or 32.

For the 128-bit SIMD vector variant: is the size of the operation, and can be one of 16, 32 or 64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to (128/<size>)-1.

For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of
the operands, as a number of bytes from the least significant end, in the range 0 to (64/<size>)-1.

Operation for all encodings

The description of VEXT (byte elements) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10796
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.86 VFMA

Vector Fused Multiply Accumulate multiplies corresponding elements of two vectors, and accumulates the results
into the elements of the destination vector. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE; op1_neg = (op == '1');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10797
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; op1_neg = (op == '1');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10798
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10799
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(esize) op1 = Elem[D[n+r],e,esize];
 if op1_neg then op1 = FPNeg(op1, fpcr);
 Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],
 op1, Elem[D[m+r],e,esize], fpcr);

 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>, fpcr) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, fpcr);
 when 32
 op32 = if op1_neg then FPNeg(S[n], fpcr) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], fpcr);
 when 64
 op64 = if op1_neg then FPNeg(D[n], fpcr) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10800
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.87 VFMAB, VFMAT (BFloat16, vector)

The Bfloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or
odd-numbered (top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format.
The instruction then multiplies and adds these values to the overlapping single-precision elements of the destination
vector.

Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate
rounding that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes
cumulative exception bits in the FPSCR to be set.

A1

(FEAT_AA32BF16)

A1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

T1

(FEAT_AA32BF16)

T1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

1 1 1 1 1 1 0 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10801
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) operand3 = Q[d>>1];
 bits(128) result;

 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
 bits(32) element2 = Elem[operand2, 2 * e + sel, 16] : Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = FPMulAdd(addend, element1, element2, fpcr);

 Q[d>>1] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10802
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.88 VFMAB, VFMAT (BFloat16, by scalar)

The BFloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or
odd-numbered (top) 16-bit elements in the first source vector, and an indexed element in the second source vector
from Bfloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping
single-precision elements of the destination vector.

Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate
rounding that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes
cumulative exception bits in the FPSCR to be set.

A1

(FEAT_AA32BF16)

A1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<2:0>);
 integer i = UInt(M:Vm<3>);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

T1

(FEAT_AA32BF16)

T1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<2:0>);
 integer i = UInt(M:Vm<3>);
 integer elements = 128 DIV 32;
 integer sel = UInt(Q);

1 1 1 1 1 1 1 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10803
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:

B when Q = 0

T when Q = 1

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 bits(128) operand1 = Q[n>>1];
 bits(64) operand2 = D[m];
 bits(128) operand3 = Q[d>>1];
 bits(128) result;

 bits(32) element2 = Elem[operand2, i, 16] : Zeros(16);

 for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = FPMulAdd(addend, element1, element2, fpcr);

 Q[d>>1] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10804
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.89 VFMAL (vector)

Vector Floating-point Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding values
in the vectors in the two source SIMD&FP registers, and accumulates the product to the corresponding vector
element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 constant integer esize = 32;
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';
 integer regs = if Q == '0' then 1 else 2;

T1

(FEAT_FHM)

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10805
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 constant integer esize = 32;
 integer regs = 1 << UInt(Q);
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 bits(datasize) operand1;
 bits(datasize) operand2;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;

 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10806
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 element2 = Elem[operand2, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, fpcr);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, fpcr);
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10807
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.90 VFMAL (by scalar)

Vector Floating-point Multiply-Add Long to accumulator (by scalar). This instruction multiplies the vector
elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and
accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction
does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 constant integer esize = 32;
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';
 integer regs = if Q == '0' then 1 else 2;

T1

(FEAT_FHM)

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10808
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 constant integer esize = 32;
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';
 integer regs = if Q == '0' then 1 else 2;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

<index> For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>"
field.

For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the
"M:Vm<3>" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(datasize) operand1 ;
 bits(datasize) operand2 ;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;
 constant FPCR_Type fpcr = StandardFPCR();

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10809
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 operand2 = D[m]<datasize-1:0>;
 element2 = Elem[operand2, index, esize DIV 2];
 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, fpcr);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, fpcr);
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10810
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.91 VFMS

Vector Fused Multiply Subtract negates the elements of one vector and multiplies them with the corresponding
elements of another vector, adds the products to the corresponding elements of the destination vector, and places the
results in the destination vector. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE; op1_neg = (op == '1');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10811
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; op1_neg = (op == '1');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10812
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE; op1_neg = (op == '1');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10813
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(esize) op1 = Elem[D[n+r],e,esize];
 if op1_neg then op1 = FPNeg(op1, fpcr);
 Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],
 op1, Elem[D[m+r],e,esize], fpcr);

 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>, fpcr) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, fpcr);
 when 32
 op32 = if op1_neg then FPNeg(S[n], fpcr) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], fpcr);
 when 64
 op64 = if op1_neg then FPNeg(D[n], fpcr) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10814
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.92 VFMSL (vector)

Vector Floating-point Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the
vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates
the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not
round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 constant integer esize = 32;
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';
 integer regs = if Q == '0' then 1 else 2;

T1

(FEAT_FHM)

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10815
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
 constant integer esize = 32;
 integer regs = 1 << UInt(Q);
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();

 bits(datasize) operand1;
 bits(datasize) operand2;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;

 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10816
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 element2 = Elem[operand2, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, fpcr);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, fpcr);
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10817
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.93 VFMSL (by scalar)

Vector Floating-point Multiply-Subtract Long from accumulator (by scalar). This instruction multiplies the negated
vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP
register, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The
instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

(FEAT_FHM)

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 constant integer esize = 32;
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';
 integer regs = if Q == '0' then 1 else 2;

T1

(FEAT_FHM)

1 1 1 1 1 1 1 0 0 D 0 1 Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

S

1 1 1 1 1 1 1 0 0 D 0 1 Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

S

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10818
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FHM) then UNDEFINED;
 if Q == '1' && Vd<0> == '1' then UNDEFINED;

 integer d = UInt(D:Vd);
 integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
 integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

 integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
 constant integer esize = 32;
 constant integer datasize = 32 << UInt(Q);
 boolean sub_op = S == '1';
 integer regs = if Q == '0' then 1 else 2;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

<index> For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>"
field.

For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the
"M:Vm<3>" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(datasize) operand1 ;
 bits(datasize) operand2 ;
 bits(64) operand3;
 bits(64) result;
 bits(esize DIV 2) element1;
 bits(esize DIV 2) element2;
 constant FPCR_Type fpcr = StandardFPCR();

 if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
 else
 operand1 = D[n]<datasize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10819
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 operand2 = D[m]<datasize-1:0>;
 element2 = Elem[operand2, index, esize DIV 2];
 for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1, fpcr);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, fpcr);
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10820
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.94 VFNMA

Vector Fused Negate Multiply Accumulate negates one floating-point register value and multiplies it by another
floating-point register value, adds the negation of the floating-point value in the destination register to the product,
and writes the result back to the destination register. The instruction does not round the result of the multiply before
the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 op1_neg = (op == '1');
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10821
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 op1_neg = (op == '1');
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10822
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>, fpcr) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>, fpcr), op16, S[m]<15:0>, fpcr);
 when 32
 op32 = if op1_neg then FPNeg(S[n], fpcr) else S[n];
 S[d] = FPMulAdd(FPNeg(S[d], fpcr), op32, S[m], fpcr);
 when 64
 op64 = if op1_neg then FPNeg(D[n], fpcr) else D[n];
 D[d] = FPMulAdd(FPNeg(D[d], fpcr), op64, D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10823
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.95 VFNMS

Vector Fused Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of
the floating-point value in the destination register to the product, and writes the result back to the destination
register. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 op1_neg = (op == '1');
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10824
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 op1_neg = (op == '1');
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10825
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>, fpcr) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>, fpcr), op16, S[m]<15:0>, fpcr);
 when 32
 op32 = if op1_neg then FPNeg(S[n], fpcr) else S[n];
 S[d] = FPMulAdd(FPNeg(S[d], fpcr), op32, S[m], fpcr);
 when 64
 op64 = if op1_neg then FPNeg(D[n], fpcr) else D[n];
 D[d] = FPMulAdd(FPNeg(D[d], fpcr), op64, D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10826
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.96 VHADD

Vector Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit, and
places the final results in the destination vector. The results of the halving operations are truncated. For rounded
results, see VRHADD).

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10827
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = (if add then op1+op2 else op1-op2) >> 1;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10828
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10829
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.97 VHSUB

Vector Halving Subtract subtracts the elements of the second operand from the corresponding elements of the first
operand, shifts each result right one bit, and places the final results in the destination vector. The results of the
halving operations are truncated. There is no rounding version.

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10830
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 add = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = (if add then op1+op2 else op1-op2) >> 1;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10831
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10832
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.98 VINS

Vector move Insertion. This instruction copies the lower 16 bits of the 32-bit source SIMD&FP register into the
upper 16 bits of the 32-bit destination SIMD&FP register, while preserving the values in the remaining bits.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_FP16)

A1 variant

VINS{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

T1

(FEAT_FP16)

T1 variant

VINS{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10833
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 S[d] = S[m]<15:0> : S[d]<15:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10834
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.99 VJCVT

Javascript Convert to signed fixed-point, rounding toward Zero. This instruction converts the double-precision
floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero
rounding mode, and writes the result to the SIMD&FP destination register. If the result is too large to be
accommodated as a signed 32-bit integer, then the result is the integer modulo 232, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPSCR, the exception results
in either a flag being set or a synchronous exception being generated. For more information, see Floating-point
exceptions and exception traps.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_JSCVT)

A1 variant

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_JSCVT) then UNDEFINED;
 if cond != '1110' then UNPREDICTABLE;
 d = UInt(Vd:D); m = UInt(M:Vm);

T1

(FEAT_JSCVT)

T1 variant

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_JSCVT) then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 d = UInt(Vd:D); m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

!=1111 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 1 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 1 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10835
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);
 bits(64) fltval = D[m];
 bits(32) intval;
 bit Z;
 (intval, Z) = FPToFixedJS(fltval, EffectiveFPCR(), FALSE, 32);
 FPSCR<31:28> = '0':Z:'00';
 S[d] = intval;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10836
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.100 VLD1 (single element to one lane)

Load single 1-element structure to one lane of one register loads one element from memory into one element of a
register. Elements of the register that are not loaded are unchanged. For details of the addressing mode, see The
Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10837
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T1

Offset variant

Applies when Rm == 1111.

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 0 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10838
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 0 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10839
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD1 (single element to all lanes)";
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the single 64-bit name of the SIMD&FP register holding the element.

The list must be { <Dd>[<index>] }.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 0 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10840
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<1:0>" field as 0b00.

<size> == 32Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

<size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as
0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 Elem[D[d],index,8*ebytes] = MemU[address,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10841
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.101 VLD1 (single element to all lanes)

Load single 1-element structure and replicate to all lanes of one register loads one element from memory into every
element of one or two vectors. For details of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

Decode for all variants of this encoding

 if size == '11' || (size == '00' && a == '1') then UNDEFINED;
 ebytes = 1 << UInt(size); regs = if T == '0' then 1 else 2;
 alignment = if a == '0' then 1 else ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10842
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' || (size == '00' && a == '1') then UNDEFINED;
 ebytes = 1 << UInt(size); regs = if T == '0' then 1 else 2;
 alignment = if a == '0' then 1 else ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD1 (single element to all lanes).

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>[] } Encoded in the "T" field as 0.

{ <Dd>[], <Dd+1>[] }Encoded in the "T" field as 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10843
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "a" field as 0.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.

<size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 constant integer esize = 8 * ebytes;
 bits(esize) element = MemU[address,ebytes];
 bits(64) replicated_element = Replicate(element, 64 DIV esize);
 for r = 0 to regs-1
 D[d+r] = replicated_element;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10844
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.102 VLD1 (multiple single elements)

Load multiple single 1-element structures to one, two, three, or four registers loads elements from memory into one,
two, three, or four registers, without de-interleaving. Every element of each register is loaded. For details of the
addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size);
 elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 1 1 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 1 0 1 0 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10845
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 1 0 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10846
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A4

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 1 0 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 1 1 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10847
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size);
 elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 1 0 1 0 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10848
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T4

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 1 0 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 1 0 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10849
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 constant integer ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD1 (multiple single elements).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

Assembler symbols

<c> For encoding A1, A2, A3 and A4: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2, T3 and T4: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

64 when size = 11

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10850
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The list must be one of:

{ <Dd> } Single register. Selects the A1 and T1 encodings of the instruction.

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2> }Three single-spaced registers. Selects the A3 and T3 encodings of the
instruction.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Four single-spaced registers. Selects the A4 and T4 encodings of
the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains
two or four registers.

256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(ebytes*8) data;
 if ebytes != 8 then
 data = MemU[address,ebytes];
 else
 if !IsAligned(address, ebytes) && AlignmentEnforced() then
 AArch32.Abort(address, AlignmentFault(accdesc));

 if BigEndian(AccessType_ASIMD) then
 data<31:0> = MemU[address+4,4];
 data<63:32> = MemU[address,4];
 else
 data<31:0> = MemU[address,4];
 data<63:32> = MemU[address+4,4];

 Elem[D[d+r],e,8*ebytes] = data;
 address = address + ebytes;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10851
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 8*regs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10852
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.103 VLD2 (single 2-element structure to one lane)

Load single 2-element structure to one lane of two registers loads one 2-element structure from memory into
corresponding elements of two registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10853
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10854
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 0 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10855
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 0 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 0 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10856
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (single 2-element structure to
one lane).

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>] }Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>] }Double-spaced registers, encoded as "spacing" = 1. Not
permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10857
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 Elem[D[d], index,8*ebytes] = MemU[address,ebytes];
 Elem[D[d2],index,8*ebytes] = MemU[address+ebytes,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10858
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.104 VLD2 (single 2-element structure to all lanes)

Load single 2-element structure and replicate to all lanes of two registers loads one 2-element structure from
memory into all lanes of two registers. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1 << UInt(size);
 alignment = if a == '0' then 1 else 2*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10859
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1 << UInt(size);
 alignment = if a == '0' then 1 else 2*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (single 2-element structure to
all lanes).

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of two SIMD&FP registers.

The list must be one of:

{ <Dd>[], <Dd+1>[] }Single-spaced registers, encoded in the "T" field as 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10860
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[], <Dd+2>[] }Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "a" field as 0.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.

<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 constant integer esize = 8 * ebytes;
 bits(esize) element1 = MemU[address, ebytes];
 bits(esize) element2 = MemU[address+ebytes, ebytes];
 D[d] = Replicate(element1, 64 DIV esize);
 D[d2] = Replicate(element2, 64 DIV esize);

 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10861
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.105 VLD2 (multiple 2-element structures)

Load multiple 2-element structures to two or four registers loads multiple 2-element structures from memory into
two or four registers, with de-interleaving. For more information, see Element and structure load/store instructions.
Every element of each register is loaded. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 1 0 0 x size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10862
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 1 1 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 1 0 0 x size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10863
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 1 1 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10864
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (multiple 2-element structures).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1000.

{ <Dd>, <Dd+2> }Two double-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1001.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Three single-spaced registers. Selects the A2 and T2 encodings
of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.

256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10865
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for r = 0 to pairs-1
 for e = 0 to elements-1
 Elem[D[d+r], e,8*ebytes] = MemU[address,ebytes];
 Elem[D[d2+r],e,8*ebytes] = MemU[address+ebytes,ebytes];
 address = address + 2*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 16*pairs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10866
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.106 VLD3 (single 3-element structure to one lane)

Load single 3-element structure to one lane of three registers loads one 3-element structure from memory into
corresponding elements of three registers. Elements of the registers that are not loaded are unchanged. For details
of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10867
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10868
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 1 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10869
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 1 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 1 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10870
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (single 3-element structure to
one lane).

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }Single-spaced registers, encoded as
"spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }Double-spaced registers, encoded as
"spacing" = 1. Not permitted when <size> == 8.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10871
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The encoding of "spacing" depends on <size>:

<size> == 8"spacing" is encoded in the "index_align<0>" field.

<size> == 16"spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.

<size> == 32"spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to
0b00.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Alignment

Standard alignment rules apply, see Alignment support.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 Elem[D[d], index,8*ebytes] = MemU[address,ebytes];
 Elem[D[d2],index,8*ebytes] = MemU[address+ebytes,ebytes];
 Elem[D[d3],index,8*ebytes] = MemU[address+2*ebytes,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10872
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.107 VLD3 (single 3-element structure to all lanes)

Load single 3-element structure and replicate to all lanes of three registers loads one 3-element structure from
memory into all lanes of three registers. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' || a == '1' then UNDEFINED;
 ebytes = 1 << UInt(size);
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 0 size T 0 Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

a

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 0 size T 0 Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

a

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10873
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' || a == '1' then UNDEFINED;
 ebytes = 1 << UInt(size);
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (single 3-element structure to
all lanes).

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of three SIMD&FP registers.

The list must be one of:

{ <Dd>[], <Dd+1>[], <Dd+2>[] }Single-spaced registers, encoded in the "T" field as 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10874
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[], <Dd+2>[], <Dd+4>[] }Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Alignment

Standard alignment rules apply, see Alignment support.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 constant integer esize = ebytes * 8;
 bits(esize) element1 = MemU[address, ebytes];
 bits(esize) element2 = MemU[address+ebytes,ebytes];
 bits(esize) element3 = MemU[address+2*ebytes,ebytes];

 D[d] = Replicate(element1, 64 DIV esize);
 D[d2] = Replicate(element2, 64 DIV esize);
 D[d3] = Replicate(element3, 64 DIV esize);
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10875
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.108 VLD3 (multiple 3-element structures)

Load multiple 3-element structures to three registers loads multiple 3-element structures from memory into three
registers, with de-interleaving. For more information, see Element and structure load/store instructions. Every
element of each register is loaded. For details of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 integer inc;
 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' || align<1> == '1' then UNDEFINED;
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 0 x size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10876
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 integer inc;
 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' || align<1> == '1' then UNDEFINED;
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (multiple 3-element structures).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 0 x size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10877
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2> }Single-spaced registers, encoded in the "itype" field as 0b0100.

{ <Dd>, <Dd+2>, <Dd+4> }Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in
the "align" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about <Rn>, !, and <Rm>, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for e = 0 to elements-1
 Elem[D[d], e,8*ebytes] = MemU[address,ebytes];
 Elem[D[d2],e,8*ebytes] = MemU[address+ebytes,ebytes];
 Elem[D[d3],e,8*ebytes] = MemU[address+2*ebytes,ebytes];
 address = address + 3*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 24;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10878
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.109 VLD4 (single 4-element structure to one lane)

Load single 4-element structure to one lane of four registers loads one 4-element structure from memory into
corresponding elements of four registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10879
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10880
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 1 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10881
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 1 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 1 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10882
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (single 4-element structure to
one lane).

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>], <Dd+3>[<index>] }Single-spaced registers,
encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] }Double-spaced registers,
encoded as "spacing" = 1. Not permitted when <size> == 8.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10883
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.

<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field
as 0b01, and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 Elem[D[d], index,8*ebytes] = MemU[address,ebytes];
 Elem[D[d2],index,8*ebytes] = MemU[address+ebytes,ebytes];
 Elem[D[d3],index,8*ebytes] = MemU[address+2*ebytes,ebytes];
 Elem[D[d4],index,8*ebytes] = MemU[address+3*ebytes,ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 4*ebytes;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10884
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10885
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.110 VLD4 (single 4-element structure to all lanes)

Load single 4-element structure and replicate to all lanes of four registers loads one 4-element structure from
memory into all lanes of four registers. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

Decode for all variants of this encoding

 if size == '11' && a == '0' then UNDEFINED;
 integer ebytes;
 integer alignment;
 if size == '11' then
 ebytes = 4; alignment = 16;
 else
 ebytes = 1 << UInt(size);
 if size == '10' then
 alignment = if a == '0' then 1 else 8;
 else
 alignment = if a == '0' then 1 else 4*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10886
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' && a == '0' then UNDEFINED;
 integer ebytes;
 integer alignment;
 if size == '11' then
 ebytes = 4; alignment = 16;
 else
 ebytes = 1 << UInt(size);
 if size == '10' then
 alignment = if a == '0' then 1 else 8;
 else
 alignment = if a == '0' then 1 else 4*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (single 4-element structure to
all lanes).

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10887
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 1x

<list> Is a list containing the 64-bit names of four SIMD&FP registers.

The list must be one of:

{ <Dd>[], <Dd+1>[], <Dd+2>[], <Dd+3>[] }Single-spaced registers, encoded in the "T" field as 0.

{ <Dd>[], <Dd+2>[], <Dd+4>[], <Dd+6>[] }Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "a" field as 0.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

<size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.

<size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "a:size<0>" field as 0b10,
and 128-bit alignment is encoded in the "a:size<0>" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 constant integer esize = ebytes * 8;
 bits(esize) element1 = MemU[address, ebytes];
 bits(esize) element2 = MemU[address+ebytes,ebytes];
 bits(esize) element3 = MemU[address+2*ebytes,ebytes];
 bits(esize) element4 = MemU[address+3*ebytes,ebytes];
 D[d] = Replicate(element1, 64 DIV esize);
 D[d2] = Replicate(element2, 64 DIV esize);
 D[d3] = Replicate(element3, 64 DIV esize);
 D[d4] = Replicate(element4, 64 DIV esize);
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10888
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 else
 R[n] = R[n] + 4*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10889
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.111 VLD4 (multiple 4-element structures)

Load multiple 4-element structures to four registers loads multiple 4-element structures from memory into four
registers, with de-interleaving. For more information, see Element and structure load/store instructions. Every
element of each register is loaded. For details of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 integer inc;
 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 0 x size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10890
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 integer inc;
 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (multiple 4-element structures).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 0 x size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10891
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Single-spaced registers, encoded in the "itype" field as 0b0000.

{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> }Double-spaced registers, encoded in the "itype" field as 0b0001.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.

256 256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for e = 0 to elements-1
 Elem[D[d], e,8*ebytes] = MemU[address,ebytes];
 Elem[D[d2],e,8*ebytes] = MemU[address+ebytes,ebytes];
 Elem[D[d3],e,8*ebytes] = MemU[address+2*ebytes,ebytes];
 Elem[D[d4],e,8*ebytes] = MemU[address+3*ebytes,ebytes];
 address = address + 4*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 32;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10892
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10893
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.112 VLDM, VLDMDB, VLDMIA

Load Multiple SIMD&FP registers loads multiple registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

This instruction is used by the alias VPOP. See Alias conditions for details of when each alias is preferred.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

!=1111 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10894
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

!=1111 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10895
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VLDR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10896
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLDM.

Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced
SIMD and floating-point 64-bit move for the A32 instruction set.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Alias is preferred when

VPOP P == '0' && U == '1' && W == '1' && Rn == '1101'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10897
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;

 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4];
 address = address+4;
 else
 word1 = MemA[address,4];
 word2 = MemA[address+4,4];
 address = address+8;

 // Combine the word-aligned words in the correct order for current endianness.
 D[d+r] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10898
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.113 VLDR (immediate)

Load SIMD&FP register (immediate) loads a single register from the Advanced SIMD and floating-point register
file, using an address from a general-purpose register, with an optional offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information, see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 integer d;
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 0 1 U D 0 1 !=1111 Vd 1 0 size imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond Rn

1 1 1 0 1 1 0 1 U D 0 1 !=1111 Vd 1 0 size imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10899
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 integer d;
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10900
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned
immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the
"imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2,
in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);
 base = if n == 15 then Align(PC32,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 case esize of
 when 16
 S[d] = Zeros(16) : MemA[address,2];
 when 32
 S[d] = MemA[address,4];
 when 64
 word1 = MemA[address,4];
 word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10901
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.114 VLDR (literal)

Load SIMD&FP register (literal) loads a single register from the Advanced SIMD and floating-point register file,
using an address from the PC value and an immediate offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information, see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 integer d;
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 0 1 U D 0 1 1 1 1 1 Vd 1 0 size imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10902
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 integer d;
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

1 1 1 0 1 1 0 1 U D 0 1 1 1 1 1 Vd 1 0 size imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10903
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<label> The label of the literal data item to be loaded.

For the single-precision scalar or double-precision scalar variants: the assembler calculates the
required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted
values are multiples of 4 in the range -1020 to 1020.

For the half-precision scalar variant: the assembler calculates the required value of the offset from
the Align(PC, 4) value of the instruction to this label. Permitted values are multiples of 2 in the range
-510 to 510.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned
immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the
"imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2,
in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckVFPEnabled(TRUE);
 base = if n == 15 then Align(PC32,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 case esize of
 when 16
 S[d] = Zeros(16) : MemA[address,2];
 when 32
 S[d] = MemA[address,4];
 when 64
 word1 = MemA[address,4];
 word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10904
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.115 VMAX (floating-point)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

The operand vector elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10905
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Floating-point maximum and minimum

• max(+0.0, -0.0) = +0.0

• If any input is a NaN, the corresponding result element is the default NaN.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if maximum then
 Elem[D[d+r],e,esize] = FPMax(op1, op2, fpcr);
 else
 Elem[D[d+r],e,esize] = FPMin(op1, op2, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10906
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.116 VMAX (integer)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10907
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10908
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10909
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.117 VMAXNM

This instruction determines the floating-point maximum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one
operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMAX.

This instruction is not conditional.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Single-precision scalar variant

Applies when size == 10.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Double-precision scalar variant

Applies when size == 11.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10910
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10911
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Single-precision scalar variant

Applies when size == 10.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Double-precision scalar variant

Applies when size == 11.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10912
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
 if maximum then
 Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, fpcr);
 else
 Elem[D[d+r], e, esize] = FPMinNum(op1, op2, fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 if maximum then
 S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, fpcr);
 else
 S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, fpcr);
 when 32
 if maximum then
 S[d] = FPMaxNum(S[n], S[m], fpcr);
 else
 S[d] = FPMinNum(S[n], S[m], fpcr);
 when 64
 if maximum then
 D[d] = FPMaxNum(D[n], D[m], fpcr);
 else
 D[d] = FPMinNum(D[n], D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10913
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.118 VMIN (floating-point)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

The operand vector elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10914
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Floating-point minimum

• min(+0.0, -0.0) = -0.0

• If any input is a NaN, the corresponding result element is the default NaN.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if maximum then
 Elem[D[d+r],e,esize] = FPMax(op1, op2, fpcr);
 else
 Elem[D[d+r],e,esize] = FPMin(op1, op2, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10915
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.119 VMIN (integer)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10916
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10917
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10918
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.120 VMINNM

This instruction determines the floating point minimum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one
operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMIN.

This instruction is not conditional.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Single-precision scalar variant

Applies when size == 10.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Double-precision scalar variant

Applies when size == 11.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10919
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 advsimd = TRUE;
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 !=00 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10920
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Single-precision scalar variant

Applies when size == 10.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Double-precision scalar variant

Applies when size == 11.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 advsimd = FALSE;
 maximum = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10921
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
 if maximum then
 Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, fpcr);
 else
 Elem[D[d+r], e, esize] = FPMinNum(op1, op2, fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 if maximum then
 S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, fpcr);
 else
 S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, fpcr);
 when 32
 if maximum then
 S[d] = FPMaxNum(S[n], S[m], fpcr);
 else
 S[d] = FPMinNum(S[n], S[m], fpcr);
 when 64
 if maximum then
 D[d] = FPMaxNum(D[n], D[m], fpcr);
 else
 D[d] = FPMinNum(D[n], D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10922
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.121 VMLA (floating-point)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and accumulates the results into the
elements of the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE; add = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10923
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; add = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10924
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10925
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], fpcr);
 addend = if add then product else FPNeg(product, fpcr);
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 addend16 = (if add then FPMul(S[n]<15:0>, S[m]<15:0>, fpcr)
 else FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, fpcr), fpcr));

 S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, fpcr);
 when 32
 addend32 = (if add then FPMul(S[n], S[m], fpcr)
 else FPNeg(FPMul(S[n], S[m], fpcr), fpcr));
 S[d] = FPAdd(S[d], addend32, fpcr);
 when 64
 addend64 = (if add then FPMul(D[n], D[m], fpcr)
 else FPNeg(FPMul(D[n], D[m], fpcr), fpcr));
 D[d] = FPAdd(D[d], addend64, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10926
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.122 VMLA (integer)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and adds the products to the
corresponding elements of the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10927
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10928
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.123 VMLA (by scalar)

Vector Multiply Accumulate multiplies elements of a vector by a scalar, and adds the products to corresponding
elements of the destination vector.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 0 0 0 F N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 0 0 0 F N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10929
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field.
It can have the following values:

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
I32 or F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10930
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = (if add then FPMul(op1,op2,fpcr)
 else FPNeg(FPMul(op1,op2,fpcr), fpcr));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, fpcr);
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10931
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.124 VMLAL (integer)

Vector Multiply Accumulate Long multiplies corresponding elements in two vectors, and add the products to the
corresponding element of the destination vector. The destination vector element is twice as long as the elements that
are multiplied.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 0 0 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 0 0 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10932
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10933
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.125 VMLAL (by scalar)

Vector Multiply Accumulate Long multiplies elements of a vector by a scalar, and adds the products to
corresponding elements of the destination vector. The destination vector elements are twice as long as the elements
that are multiplied.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

T1

T1 variant

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 1 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 1 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10934
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field.
It can have the following values:

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = (if add then FPMul(op1,op2,fpcr)
 else FPNeg(FPMul(op1,op2,fpcr), fpcr));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, fpcr);
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10935
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.126 VMLS (floating-point)

Vector Multiply Subtract multiplies corresponding elements in two vectors, subtracts the products from
corresponding elements of the destination vector, and places the results in the destination vector.

Note

Arm recommends that software does not use the VMLS instruction in the Round towards Plus Infinity and Round
towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result
of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE; add = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

!=1111 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10936
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE; add = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10937
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE; add = (op == '0');
 constant integer esize = 8 << UInt(size);
 integer d;
 integer n;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10938
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], fpcr);
 addend = if add then product else FPNeg(product, fpcr);
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 addend16 = (if add then FPMul(S[n]<15:0>, S[m]<15:0>, fpcr)
 else FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, fpcr), fpcr));

 S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, fpcr);
 when 32
 addend32 = (if add then FPMul(S[n], S[m], fpcr)
 else FPNeg(FPMul(S[n], S[m], fpcr), fpcr));
 S[d] = FPAdd(S[d], addend32, fpcr);
 when 64
 addend64 = (if add then FPMul(D[n], D[m], fpcr)
 else FPNeg(FPMul(D[n], D[m], fpcr), fpcr));
 D[d] = FPAdd(D[d], addend64, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10939
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.127 VMLS (integer)

Vector Multiply Subtract multiplies corresponding elements in two vectors, and subtracts the products from the
corresponding elements of the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 add = (op == '0'); long_destination = FALSE;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10940
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10941
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.128 VMLS (by scalar)

Vector Multiply Subtract multiplies elements of a vector by a scalar, and either subtracts the products from
corresponding elements of the destination vector.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 0 1 0 F N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 0 1 0 F N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10942
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field.
It can have the following values:

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
I32 or F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10943
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = (if add then FPMul(op1,op2,fpcr)
 else FPNeg(FPMul(op1,op2,fpcr), fpcr));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, fpcr);
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10944
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.129 VMLSL (integer)

Vector Multiply Subtract Long multiplies corresponding elements in two vectors, and subtract the products from the
corresponding elements of the destination vector. The destination vector element is twice as long as the elements
that are multiplied.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

T1 variant

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 0 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 0 1 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10945
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10946
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.130 VMLSL (by scalar)

Vector Multiply Subtract Long multiplies elements of a vector by a scalar, and subtracts the products from
corresponding elements of the destination vector. The destination vector elements are twice as long as the elements
that are multiplied.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

T1

T1 variant

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 1 1 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 1 1 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10947
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field.
It can have the following values:

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = (if add then FPMul(op1,op2,fpcr)
 else FPNeg(FPMul(op1,op2,fpcr), fpcr));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, fpcr);
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10948
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.131 VMMLA

BFloat16 floating-point matrix multiply-accumulate. This instruction multiplies the 2x4 matrix of BF16 values in
the first 128-bit source vector by the 4x2 BF16 matrix in the second 128-bit source vector. The resulting 2x2
single-precision matrix product is then added destructively to the 2x2 single-precision matrix in the 128-bit
destination vector. This is equivalent to performing a 4-way dot product per destination element. The instruction
does not update the FPSCR exception status.

Note

Arm expects that the VMMLA instruction will deliver a peak BF16 multiply throughput that is at least as high as
can be achieved using two VDOT instructions, with a goal that it should have significantly higher throughput.

A1

(FEAT_AA32BF16)

A1 variant

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = 2;

T1

(FEAT_AA32BF16)

T1 variant

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32BF16) then UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = 2;

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10949
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();

 bits(128) op1 = Q[n>>1];
 bits(128) op2 = Q[m>>1];
 bits(128) acc = Q[d>>1];
 FPCR_Type fpcr = EffectiveFPCR();

 Q[d>>1] = BFMatMulAdd(acc, op1, op2, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10950
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.132 VMOV (between two general-purpose registers and a doubleword floating-point register)

Copy two general-purpose registers to or from a SIMD&FP register copies two words from two general-purpose
registers into a doubleword register in the Advanced SIMD and floating-point register file, or from a doubleword
register in the Advanced SIMD and floating-point register file to two general-purpose registers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
 if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

!=1111 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10951
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
 if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VMOV (between two general-purpose
registers and a doubleword floating-point register).

Assembler symbols

<Dm> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "M:Vm" field.

<Rt2> Is the second general-purpose register that <Dm>[63:32] will be transferred to or from, encoded in the
"Rt2" field.

<Rt> Is the first general-purpose register that <Dm>[31:0] will be transferred to or from, encoded in the "Rt"
field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = D[m]<31:0>;
 R[t2] = D[m]<63:32>;
 else
 D[m]<31:0> = R[t];
 D[m]<63:32> = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10952
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.133 VMOV (between general-purpose register and half-precision)

Copy 16 bits of a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the
value held in the bottom 16 bits of a 32-bit SIMD&FP register to the bottom 16 bits of a general-purpose register,
or the value held in the bottom 16 bits of a general-purpose register to the bottom 16 bits of a 32-bit SIMD&FP
register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_FP16)

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if cond != '1110' then UNPREDICTABLE;
 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

(FEAT_FP16)

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

!=1111 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10953
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_register then
 R[t] = Zeros(16) : S[n]<15:0>;
 else
 S[n] = Zeros(16) : R[t]<15:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10954
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.134 VMOV (immediate)

Copy immediate value to a SIMD&FP register places an immediate constant into every element of the destination
register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

A2

Half-precision scalar variant

Applies when size == 01.

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op

!=1111 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10955
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 single_register = (size != '11'); advsimd = FALSE;
 bits(16) imm16;
 bits(32) imm32;
 bits(64) imm64;
 integer d;
 integer regs;
 case size of
 when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L, 16); imm32 = Zeros(16) : imm16;
 when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L, 32);
 when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L, 64); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A3

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

A4

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 x x 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10956
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.<dt> <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

A5

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I64 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 1 0 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10957
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

T2

Half-precision scalar variant

Applies when size == 01.

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 single_register = (size != '11'); advsimd = FALSE;
 bits(16) imm16;
 bits(32) imm32;
 bits(64) imm64;
 integer d;
 integer regs;
 case size of
 when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L, 16); imm32 = Zeros(16) : imm16;
 when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L, 32);
 when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L, 64); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10958
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T3

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

T4

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.<dt> <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 x x 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10959
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T5

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}.I64 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

Decode for all variants of this encoding

 if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
 if op == '1' && cmode != '1110' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
 bits(32) imm32 = bits(32) UNKNOWN;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1, A3, A4 and A5: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding A2, T1, T2, T3, T4 and T5: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> The data type, encoded in the "cmode" field. It can have the following values:

I32 when cmode = 110x

I8 when cmode = 1110

F32 when cmode = 1111

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<imm> For encoding A1, A3, A4, A5, T1, T3, T4 and T5: is a constant of the specified type that is replicated
to fill the destination register. For details of the range of constants available and the encoding of
<imm>, see Modified immediate constants in T32 and A32 Advanced SIMD instructions.

For encoding A2 and T2: is a signed floating-point constant with 3-bit exponent and normalized 4
bits of precision, encoded in "imm4H:imm4L". For details of the range of constants available and
the encoding of <imm>, see Modified immediate constants in T32 and A32 floating-point instructions.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 1 0 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10960
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = imm32;
 else
 for r = 0 to regs-1
 D[d+r] = imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10961
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.135 VMOV (register)

Copy between FP registers copies the contents of one FP register to another.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A2

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 single_register = (size == '10'); advsimd = FALSE;
 integer d;
 integer m;
 integer regs;
 if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);
 else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

T2

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 single_register = (size == '10'); advsimd = FALSE;
 integer d;

!=1111 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 x 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond size

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 x 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10962
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer m;
 integer regs;
 if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);
 else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = S[m];
 else
 for r = 0 to regs-1
 D[d+r] = D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10963
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.136 VMOV (register, SIMD)

Copy between SIMD registers copies the contents of one SIMD register to another.

This instruction is an alias of the VORR (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (register).

• The description of VORR (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}{.<dt>} <Dd>, <Dm>

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is the preferred disassembly when N:Vn == M:Vm.

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}{.<dt>} <Qd>, <Qm>

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is the preferred disassembly when N:Vn == M:Vm.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMOV{<c>}{<q>}{.<dt>} <Dd>, <Dm>

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is the preferred disassembly when N:Vn == M:Vm.

128-bit SIMD vector variant

Applies when Q == 1.

VMOV{<c>}{<q>}{.<dt>} <Qd>, <Qm>

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10964
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is the preferred disassembly when N:Vn == M:Vm.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. <dt> must not be F64, but it is otherwise ignored.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10965
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.137 VMOV (general-purpose register to scalar)

Copy a general-purpose register to a vector element copies a byte, halfword, or word from a general-purpose register
into an Advanced SIMD scalar.

On a Floating-point-only system, this instruction transfers one word to the upper or lower half of a double-precision
floating-point register from a general-purpose register. This is an identical operation to the Advanced SIMD single
word transfer.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

Decode for this encoding

 boolean advsimd;
 integer index;
 case opc1:opc2 of
 when '1xxx' advsimd = TRUE; index = UInt(opc1<0>:opc2);
 when '0xx1' advsimd = TRUE; index = UInt(opc1<0>:opc2<1>);
 when '0x00' advsimd = FALSE; index = UInt(opc1<0>);
 when '0x10' UNDEFINED;

 constant integer esize = if opc1<1> == '1' then 8 else 32 >> UInt(opc2<0>);
 d = UInt(D:Vd); t = UInt(Rt);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

Decode for this encoding

 boolean advsimd;
 integer index;
 case opc1:opc2 of
 when '1xxx' advsimd = TRUE; index = UInt(opc1<0>:opc2);
 when '0xx1' advsimd = TRUE; index = UInt(opc1<0>:opc2<1>);
 when '0x00' advsimd = FALSE; index = UInt(opc1<0>);
 when '0x10' UNDEFINED;

 constant integer esize = if opc1<1> == '1' then 8 else 32 >> UInt(opc2<0>);

!=1111 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10966
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); t = UInt(Rt);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> The data size. It must be one of:

8 Encoded as opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

16 Encoded as opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

32 Encoded as opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.

omitted Equivalent to 32.

<Dd[x]> The scalar. The register <Dd> is encoded in D:Vd. For details of how [x] is encoded, see the
description of <size>.

<Rt> The source general-purpose register.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 Elem[D[d],index,esize] = R[t]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10967
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.138 VMOV (between general-purpose register and single-precision)

Copy a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the value held in
a 32-bit SIMD&FP register to a general-purpose register, or the value held in a general-purpose register to a 32-bit
SIMD&FP register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

!=1111 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10968
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_register then
 R[t] = S[n];
 else
 S[n] = R[t];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10969
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.139 VMOV (scalar to general-purpose register)

Copy a vector element to a general-purpose register with sign or zero extension copies a byte, halfword, or word
from an Advanced SIMD scalar to a general-purpose register. Bytes and halfwords can be either zero-extended or
sign-extended.

On a Floating-point-only system, this instruction transfers one word from the upper or lower half of a
double-precision floating-point register to a general-purpose register. This is an identical operation to the Advanced
SIMD single word transfer.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

 boolean advsimd;
 integer esize;
 integer index;
 case U:opc1:opc2 of
 when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '10x00' UNDEFINED;
 when 'x0x10' UNDEFINED;
 t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

 boolean advsimd;
 integer esize;
 integer index;
 case U:opc1:opc2 of
 when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '10x00' UNDEFINED;

!=1111 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10970
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 when 'x0x10' UNDEFINED;
 t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> The data type. It must be one of:

S8 Encoded as U = 0, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

S16 Encoded as U = 0, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

U8 Encoded as U = 1, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

U16 Encoded as U = 1, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

32 Encoded as U = 0, opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.

omitted Equivalent to 32.

<Rt> The destination general-purpose register.

<Dn[x]> The scalar. For details of how [x] is encoded see the description of <dt>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if unsigned then
 R[t] = ZeroExtend(Elem[D[n],index,esize], 32);
 else
 R[t] = SignExtend(Elem[D[n],index,esize], 32);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10971
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.140 VMOV (between two general-purpose registers and two single-precision registers)

Copy two general-purpose registers to a pair of 32-bit SIMD&FP registers transfers the contents of two
consecutively numbered single-precision Floating-point registers to two general-purpose registers, or the contents
of two general-purpose registers to a pair of single-precision Floating-point registers. The general-purpose registers
do not have to be contiguous.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
 if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.
The general-purpose registers listed in the instruction become UNKNOWN for a move from the
single-precision registers. This behavior does not affect any other general-purpose registers.

T1

!=1111 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10972
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
From general-purpose registers variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

To general-purpose registers variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
 if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.
The general-purpose registers listed in the instruction become UNKNOWN for a move from the
single-precision registers. This behavior does not affect any other general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VMOV (between two general-purpose
registers and two single-precision registers).

Assembler symbols

<Rt2> Is the second general-purpose register that <Sm1> will be transferred to or from, encoded in the "Rt2"
field.

<Rt> Is the first general-purpose register that <Sm> will be transferred to or from, encoded in the "Rt" field.

<Sm1> Is the 32-bit name of the second SIMD&FP register to be transferred. This is the next SIMD&FP
register after <Sm>.

<Sm> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Vm:M" field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10973
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = S[m];
 R[t2] = S[m+1];
 else
 S[m] = R[t];
 S[m+1] = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10974
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.141 VMOVL

Vector Move Long takes each element in a doubleword vector, sign or zero-extends them to twice their original
length, and places the results in a quadword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

Decode for this encoding

 if imm3H == '000' then SEE "Related encodings";
 if imm3H != '001' && imm3H != '010' && imm3H != '100' then SEE "VSHLL";
 if Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 * UInt(imm3H);
 unsigned = (U == '1'); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

Decode for this encoding

 if imm3H == '000' then SEE "Related encodings";
 if imm3H != '001' && imm3H != '010' && imm3H != '100' then SEE "VSHLL";
 if Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 * UInt(imm3H);
 unsigned = (U == '1'); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=000 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

imm3H

1 1 1 U 1 1 1 1 1 D !=000 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

imm3H
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10975
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "U:imm3H" field. It can have the
following values:

S8 when U = 0, imm3H = 001

S16 when U = 0, imm3H = 010

S32 when U = 0, imm3H = 100

U8 when U = 1, imm3H = 001

U16 when U = 1, imm3H = 010

U32 when U = 1, imm3H = 100

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10976
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.142 VMOVN

Vector Move and Narrow copies the least significant half of each element of a quadword vector into the
corresponding elements of a doubleword vector.

The operand vector elements can be any one of 16-bit, 32-bit, or 64-bit integers. There is no distinction between
signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instructions VRSHRN (zero) and VSHRN (zero). The pseudo-instruction is
never the preferred disassembly.

A1

A1 variant

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 if Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10977
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

The encoding size = 11 is reserved.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 Elem[D[d],e,esize] = Elem[Qin[m>>1],e,2*esize]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10978
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.143 VMOVX

Vector Move extraction. This instruction copies the upper 16 bits of the 32-bit source SIMD&FP register into the
lower 16 bits of the 32-bit destination SIMD&FP register, while clearing the remaining bits to zero.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_FP16)

A1 variant

VMOVX{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

T1

(FEAT_FP16)

T1 variant

VMOVX{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields.

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10979
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 S[d] = Zeros(16) : S[m]<31:16>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10980
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.144 VMRS

Move SIMD&FP Special register to general-purpose register moves the value of an Advanced SIMD and
floating-point System register to a general-purpose register. When the specified System register is the FPSCR, a
form of the instruction transfers the FPSCR.{N, Z, C, V} condition flags to the APSR.{N, Z, C, V} condition flags.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

When these settings permit the execution of Advanced SIMD and floating-point instructions, if the specified
floating-point System register is not the FPSCR, the instruction is UNDEFINED if executed in User mode.

In an implementation that includes EL2, when HCR.TID0 is set to 1, any VMRS access to FPSID from a Non-secure
EL1 mode that would be permitted if HCR.TID0 was set to 0 generates a Hyp Trap exception.

For simplicity, the VMRS pseudocode does not show the possible trap to Hyp mode.

A1

A1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

Decode for this encoding

 t = UInt(Rt);
 if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
 if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value
0b1111, the specified target register is the APSR.{N, Z, C, V} bits, and these bits become UNKNOWN.
Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

T1

T1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

!=1111 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10981
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for this encoding

 t = UInt(Rt);
 if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
 if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value
0b1111, the specified target register is the APSR.{N, Z, C, V} bits, and these bits become UNKNOWN.
Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose destination register, encoded in the "Rt" field. Is one of:

R0-R14 General-purpose register.

APSR_nzcv Permitted only when <spec_reg> is FPSCR. Encoded as 0b1111. The instruction transfers
the FPSCR.{N, Z, C, V} condition flags to the APSR.{N, Z, C, V} condition flags.

<spec_reg> Is the source Advanced SIMD and floating-point System register, encoded in the "reg" field. It can
have the following values:

FPSID when reg = 0000

FPSCR when reg = 0001

MVFR2 when reg = 0101

MVFR1 when reg = 0110

MVFR0 when reg = 0111

FPEXC when reg = 1000

The following encodings are UNPREDICTABLE:

• reg = 001x.

• reg = 0100.

• reg = 1001.

• reg = 101x.

• reg = 11xx.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == '0001' then // FPSCR
 CheckVFPEnabled(TRUE);
 if t == 15 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10982
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 PSTATE.<N,Z,C,V> = FPSR.<N,Z,C,V>;
 else
 R[t] = FPSCR;
 elsif PSTATE.EL == EL0 then
 UNDEFINED; // Non-FPSCR registers accessible only at PL1 or above
 else
 CheckVFPEnabled(FALSE); // Non-FPSCR registers are not affected by FPEXC.EN
 AArch32.CheckAdvSIMDOrFPRegisterTraps(reg);
 case reg of
 when '0000' R[t] = FPSID;
 when '0101' R[t] = MVFR2;
 when '0110' R[t] = MVFR1;
 when '0111' R[t] = MVFR0;
 when '1000' R[t] = FPEXC;
 otherwise Unreachable(); // Dealt with above or in encoding-specific pseudocode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10983
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.145 VMSR

Move general-purpose register to SIMD&FP Special register moves the value of a general-purpose register to a
floating-point System register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

When these settings permit the execution of Advanced SIMD and floating-point instructions:

• If the specified floating-point System register is FPSID or FPEXC, the instruction is UNDEFINED if executed
in User mode.

• If the specified floating-point System register is the FPSID and the instruction is executed in a mode other
than User mode, the instruction is ignored.

A1

A1 variant

VMSR{<c>}{<q>} <spec_reg>, <Rt>

Decode for this encoding

 t = UInt(Rt);
 if !(reg IN {'000x'}) && reg != '1000' then
 Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible
using VMSR at the same Exception level.

T1

T1 variant

VMSR{<c>}{<q>} <spec_reg>, <Rt>

!=1111 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

1 1 1 0 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10984
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for this encoding

 t = UInt(Rt);
 if !(reg IN {'000x'}) && reg != '1000' then
 Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible
using VMSR at the same Exception level.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<spec_reg> Is the destination Advanced SIMD and floating-point System register, encoded in the "reg" field. It
can have the following values:

FPSID when reg = 0000

FPSCR when reg = 0001

FPEXC when reg = 1000

The following encodings are UNPREDICTABLE:

• reg = 001x.

• reg = 01xx.

• reg = 1001.

• reg = 101x.

• reg = 11xx.

<Rt> Is the general-purpose source register, encoded in the "Rt" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == '0001' then // FPSCR
 CheckVFPEnabled(TRUE);
 FPSCR = R[t];
 elsif PSTATE.EL == EL0 then
 UNDEFINED; // Non-FPSCR registers accessible only at PL1 or above
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10985
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 CheckVFPEnabled(FALSE); // Non-FPSCR registers are not affected by FPEXC.EN
 case reg of
 when '0000' // VMSR access to FPSID is ignored
 when '1000'
 FPEXC = R[t];
 otherwise
 Unreachable(); // Dealt with above or in encoding-specific pseudocode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10986
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.146 VMUL (floating-point)

Vector Multiply multiplies corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10987
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if sz == '1' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10988
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 advsimd = FALSE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10989
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPMul(S[n]<15:0>, S[m]<15:0>, fpcr);
 when 32
 S[d] = FPMul(S[n], S[m], fpcr);
 when 64
 D[d] = FPMul(D[n], D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10990
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.147 VMUL (integer and polynomial)

Vector Multiply multiplies corresponding elements in two vectors.

For information about multiplying polynomials, see Polynomial arithmetic over {0, 1}.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (op == '1' && size != '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 polynomial = (op == '1'); long_destination = FALSE;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (op == '1' && size != '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 polynomial = (op == '1'); long_destination = FALSE;

1 1 1 1 0 0 1 op 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 op 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10991
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "op:size" field. It can have the
following values:

I8 when op = 0, size = 00

I16 when op = 0, size = 01

I32 when op = 0, size = 10

P8 when op = 1, size = 00

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
 bits(2 * esize) product;
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = product;
 else
 Elem[D[d+r],e,esize] = product<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10992
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.148 VMUL (by scalar)

Vector Multiply multiplies each element in a vector by a scalar, and places the results in a second vector.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || (F == '1' && size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 0 0 F N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 0 0 F N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10993
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if size == '00' || (F == '1' && size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field.
It can have the following values:

I16 when F = 0, size = 01

I32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register. When <dt> is I16 or F16, this is encoded
in the "Vm<2:0>" field. Otherwise it is encoded in the "Vm" field.

<index> Is the element index. When <dt> is I16 or F16, this is in the range 0 to 3 and is encoded in the
"M:Vm<3>" field. Otherwise it is in the range 0 to 1 and is encoded in the "M" field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10994
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, fpcr);
 else
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10995
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.149 VMULL (integer and polynomial)

Vector Multiply Long multiplies corresponding elements in two vectors. The destination vector elements are twice
as long as the elements that are multiplied.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if op == '1' && (U == '1' || size == '01') then UNDEFINED;
 if op == '1' && size =='10' && !IsFeatureImplemented(FEAT_PMULL) then UNDEFINED;
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
 constant integer esize = if polynomial && size == '10' then 64 else 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = 1;

T1

T1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if op == '1' && (U == '1' || size == '01') then UNDEFINED;
 if op == '1' && size == '10' && InITBlock() then UNPREDICTABLE;
 if op == '1' && size == '10' && !IsFeatureImplemented(FEAT_PMULL) then UNPREDICTABLE;
 if Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
 constant integer esize = if polynomial && size == '10' then 64 else 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize; regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If op == '1' && size == '10' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 1 op 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 1 op 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10996
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "op:U:size" field. It can have the
following values:

S8 when op = 0, U = 0, size = 00

S16 when op = 0, U = 0, size = 01

S32 when op = 0, U = 0, size = 10

U8 when op = 0, U = 1, size = 00

U16 when op = 0, U = 1, size = 01

U32 when op = 0, U = 1, size = 10

P8 when op = 1, U = 0, size = 00

P64 when op = 1, U = 0, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
 bits(2 * esize) product;
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = product;
 else
 Elem[D[d+r],e,esize] = product<esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10997
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10998
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.150 VMULL (by scalar)

Vector Multiply Long multiplies each element in a vector by a scalar, and places the results in a second vector. The
destination vector elements are twice as long as the elements that are multiplied.

For more information about scalars see Advanced SIMD scalars.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer index;
 integer m;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

T1

T1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer index;
 integer m;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 1 0 1 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 1 0 1 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-10999
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field.
It can have the following values:

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field when
<dt> is S16 or U16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16 or U16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, fpcr);
 else
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11000
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.151 VMVN (immediate)

Vector Bitwise NOT (immediate) places the bitwise inverse of an immediate integer constant into every element of
the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11001
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A3

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 0 x 0 Q 1 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11002
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T3

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

 if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 0 x 0 Q 1 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11003
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11004
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.152 VMVN (register)

Vector Bitwise NOT (register) takes a value from a register, inverts the value of each bit, and places the result in the
destination register. The registers can be either doubleword or quadword.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11005
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11006
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.153 VNEG

Vector Negate negates each element in a vector, and places the results in a second vector. The floating-point version
only inverts the sign bit.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11007
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE;
 constant integer esize = 8 << UInt(size);
 integer d;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if F == '1' && ((size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size == '00') then UNDEFINED;
 if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 advsimd = TRUE; floating_point = (F == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11008
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

Half-precision scalar variant

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 advsimd = FALSE;
 constant integer esize = 8 << UInt(size);
 integer d;
 integer m;
 case size of
 when '01' d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' d = UInt(D:Vd); m = UInt(M:Vm);
 boolean floating_point = boolean UNKNOWN;
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

S8 when F = 0, size = 00

S16 when F = 0, size = 01

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11009
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
S32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPNeg(Elem[D[m+r],e,esize], fpcr);
 else
 result = -SInt(Elem[D[m+r],e,esize]);
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16 S[d] = Zeros(16) : FPNeg(S[m]<15:0>, fpcr);
 when 32 S[d] = FPNeg(S[m], fpcr);
 when 64 D[d] = FPNeg(D[m], fpcr);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11010
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.154 VNMLA

Vector Negate Multiply Accumulate multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the negation of the product, and writes the result back to the
destination register.

Note

Arm recommends that software does not use the VNMLA instruction in the Round towards Plus Infinity and Round
towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result
of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

!=1111 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11011
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

Half-precision scalar variant

Applies when size == 01.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11012
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 product16 = FPMul(S[n]<15:0>, S[m]<15:0>, fpcr);
 case vtype of
 when VFPNegMul_VNMLA S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>, fpcr),
 FPNeg(product16, fpcr), fpcr);
 when VFPNegMul_VNMLS S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>, fpcr),
 product16, fpcr);
 when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16, fpcr);
 when 32
 product32 = FPMul(S[n], S[m], fpcr);
 case vtype of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d], fpcr), FPNeg(product32, fpcr), fpcr);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d], fpcr), product32, fpcr);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32, fpcr);
 when 64
 product64 = FPMul(D[n], D[m], fpcr);
 case vtype of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d], fpcr), FPNeg(product64, fpcr), fpcr);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d], fpcr), product64, fpcr);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11013
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.155 VNMLS

Vector Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11014
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11015
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 product16 = FPMul(S[n]<15:0>, S[m]<15:0>, fpcr);
 case vtype of
 when VFPNegMul_VNMLA S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>, fpcr),
 FPNeg(product16, fpcr), fpcr);
 when VFPNegMul_VNMLS S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>, fpcr),
 product16, fpcr);
 when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16, fpcr);
 when 32
 product32 = FPMul(S[n], S[m], fpcr);
 case vtype of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d], fpcr), FPNeg(product32, fpcr), fpcr);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d], fpcr), product32, fpcr);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32, fpcr);
 when 64
 product64 = FPMul(D[n], D[m], fpcr);
 case vtype of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d], fpcr), FPNeg(product64, fpcr), fpcr);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d], fpcr), product64, fpcr);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11016
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.156 VNMUL

Vector Negate Multiply multiplies together two floating-point register values, and writes the negation of the result
to the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '01' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 vtype = VFPNegMul_VNMUL;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11017
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '01' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 vtype = VFPNegMul_VNMUL;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11018
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 product16 = FPMul(S[n]<15:0>, S[m]<15:0>, fpcr);
 case vtype of
 when VFPNegMul_VNMLA S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>, fpcr),
 FPNeg(product16, fpcr), fpcr);
 when VFPNegMul_VNMLS S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>, fpcr),
 product16, fpcr);
 when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16, fpcr);
 when 32
 product32 = FPMul(S[n], S[m], fpcr);
 case vtype of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d], fpcr), FPNeg(product32, fpcr), fpcr);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d], fpcr), product32, fpcr);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32, fpcr);
 when 64
 product64 = FPMul(D[n], D[m], fpcr);
 case vtype of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d], fpcr), FPNeg(product64, fpcr), fpcr);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d], fpcr), product64, fpcr);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11019
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.157 VORN (immediate)

Vector Bitwise OR NOT (immediate) performs a bitwise OR between a register value and the complement of an
immediate value, and returns the result into the destination vector.

This instruction is a pseudo-instruction of the VORR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (immediate).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VORR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

A2

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11020
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

T2

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11021
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

 is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions.

Operation for all encodings

The description of VORR (immediate) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11022
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.158 VORN (register)

Vector bitwise OR NOT (register) performs a bitwise OR NOT operation between two registers, and places the
result in the destination register. The operand and result registers can be quadword or doubleword. They must all
be the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11023
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11024
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.159 VORR (immediate)

Vector Bitwise OR (immediate) performs a bitwise OR between a register value and an immediate value, and returns
the result into the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instruction VORN (immediate). The pseudo-instruction is never the
preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11025
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

 if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
 if Q == '1' && Vd<0> == '1' then UNDEFINED;
 imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
 d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0

cmode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11026
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32
and A32 Advanced SIMD instructions.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this
instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] OR imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11027
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.160 VORR (register)

Vector bitwise OR (register) performs a bitwise OR operation between two registers, and places the result in the
destination register. The operand and result registers can be quadword or doubleword. They must all be the same
size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instructions VMOV (register, SIMD), VRSHR (zero), and VSHR (zero). The
pseudo-instruction is never the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11028
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Alias conditions

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

Alias or pseudo-instruction is preferred when

VMOV (register, SIMD) N:Vn == M:Vm

VRSHR (zero) Never

VSHR (zero) Never
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11029
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.161 VPADAL

Vector Pairwise Add and Accumulate Long adds adjacent pairs of elements of a vector, and accumulates the results
into the elements of the destination vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The
result elements are twice the length of the operand elements.

The following figure shows the operation of VPADAL doubleword operation for data type S16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VPADAL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADAL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

Dm

Dd

+ +

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11030
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VPADAL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADAL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "op:size" field. It can have the
following values:

S8 when op = 0, size = 00

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U8 when op = 1, size = 00

U16 when op = 1, size = 01

U32 when op = 1, size = 10

The following encodings are reserved:

• op = 0, size = 11.

• op = 1, size = 11.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;

 for r = 0 to regs-1
 for e = 0 to h-1
 op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
 result = Int(op1, unsigned) + Int(op2, unsigned);
 Elem[D[d+r],e,2*esize] = Elem[D[d+r],e,2*esize] + result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11031
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11032
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.162 VPADD (floating-point)

Vector Pairwise Add (floating-point) adds adjacent pairs of elements of two vectors, and places the results in the
destination vector.

The operands and result are doubleword vectors.

The operand and result elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if Q == '1' then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if Q == '1' then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11033
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 Elem[dest,e,esize] = FPAdd(Elem[D[n],2*e,esize], Elem[D[n],2*e+1,esize], fpcr);
 Elem[dest,e+h,esize] = FPAdd(Elem[D[m],2*e,esize], Elem[D[m],2*e+1,esize], fpcr);

 D[d] = dest;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11034
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.163 VPADD (integer)

Vector Pairwise Add (integer) adds adjacent pairs of elements of two vectors, and places the results in the destination
vector.

The operands and result are doubleword vectors.

The operand and result elements must all be the same type, and can be 8-bit, 16-bit, or 32-bit integers. There is no
distinction between signed and unsigned integers.

The following figure shows the operation of VPADD doubleword operation for data type I16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' || Q == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' || Q == '1' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Dm

Dd

+ +

Dn

+ +

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11035
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 Elem[dest,e,esize] = Elem[D[n],2*e,esize] + Elem[D[n],2*e+1,esize];
 Elem[dest,e+h,esize] = Elem[D[m],2*e,esize] + Elem[D[m],2*e+1,esize];

 D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11036
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.164 VPADDL

Vector Pairwise Add Long adds adjacent pairs of elements of two vectors, and places the results in the destination
vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The
result elements are twice the length of the operand elements.

The following figure shows the operation of VPADDL doubleword operation for data type S16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

Dm

Dd

+ +

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11037
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (op == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "op:size" field. It can have the
following values:

S8 when op = 0, size = 00

S16 when op = 0, size = 01

S32 when op = 0, size = 10

U8 when op = 1, size = 00

U16 when op = 1, size = 01

U32 when op = 1, size = 10

The following encodings are reserved:

• op = 0, size = 11.

• op = 1, size = 11.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;

 for r = 0 to regs-1
 for e = 0 to h-1
 op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
 result = Int(op1, unsigned) + Int(op2, unsigned);
 Elem[D[d+r],e,2*esize] = result<2*esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11038
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11039
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.165 VPMAX (floating-point)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger
of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11040
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 constant FPCR_Type fpcr = StandardFPCR();
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
 Elem[dest,e,esize] = (if maximum then FPMax(op1,op2,fpcr)
 else FPMin(op1,op2,fpcr));
 op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
 Elem[dest,e+h,esize] = (if maximum then FPMax(op1,op2,fpcr)
 else FPMin(op1,op2,fpcr));

 D[d] = dest;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11041
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.166 VPMAX (integer)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger
of each pair into the corresponding element in the destination doubleword vector.

The following figure shows the operation of VPMAX doubleword operation for data type S16 or U16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

Dm

Dd

max max

Dn

max max

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11042
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;

 D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11043
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.167 VPMIN (floating-point)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller
of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 maximum = (op == '0');
 constant integer esize = 32 >> UInt(sz);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11044
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 constant FPCR_Type fpcr = StandardFPCR();
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
 Elem[dest,e,esize] = (if maximum then FPMax(op1,op2,fpcr)
 else FPMin(op1,op2,fpcr));
 op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
 Elem[dest,e+h,esize] = (if maximum then FPMax(op1,op2,fpcr)
 else FPMin(op1,op2,fpcr));

 D[d] = dest;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11045
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.168 VPMIN (integer)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller
of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

 if size == '11' then UNDEFINED;
 maximum = (op == '0'); unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11046
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;

 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;

 D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11047
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.169 VPOP

Pop SIMD&FP registers from stack loads multiple consecutive Advanced SIMD and floating-point register file
registers from the stack.

This instruction is an alias of the VLDM, VLDMDB, VLDMIA instruction. This means that:

• The encodings in this description are named to match the encodings of VLDM, VLDMDB, VLDMIA.

• The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

!=1111 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond P U W Rn

imm8<0>

!=1111 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond P U W Rn

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

P U W Rn

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11048
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
and is always the preferred disassembly.

T2

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode for this instruction.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

P U W Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11049
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.170 VPUSH

Push SIMD&FP registers to stack stores multiple consecutive registers from the Advanced SIMD and floating-point
register file to the stack.

This instruction is an alias of the VSTM, VSTMDB, VSTMIA instruction. This means that:

• The encodings in this description are named to match the encodings of VSTM, VSTMDB, VSTMIA.

• The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

!=1111 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond P U W Rn

imm8<0>

!=1111 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond P U W Rn

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

P U W Rn

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11050
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
and is always the preferred disassembly.

T2

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

 is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode for this instruction.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

P U W Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11051
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.171 VQABS

Vector Saturating Absolute takes the absolute value of each element in a vector, and places the results in the
destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11052
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

S8 when size = 00

S16 when size = 01

S32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 boolean sat;
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11053
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.172 VQADD

Vector Saturating Add adds the values of corresponding elements of two vectors, and places the results in the
destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11054
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 sum = Int(Elem[D[n+r],e,esize], unsigned) + Int(Elem[D[m+r],e,esize], unsigned);
 boolean sat;
 (Elem[D[d+r],e,esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11055
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.173 VQDMLAL

Vector Saturating Doubling Multiply Accumulate Long multiplies corresponding elements in two doubleword
vectors, doubles the products, and accumulates the results into the elements of a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 integer index = integer UNKNOWN;

A2

A2 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 0 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 0 1 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11056
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 integer index = integer UNKNOWN;

T2

T2 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 0 0 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 0 1 1 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11057
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in
the "M:Vm" field.

For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in
the "Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 integer result;
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 boolean sat2;
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11058
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.174 VQDMLSL

Vector Saturating Doubling Multiply Subtract Long multiplies corresponding elements in two doubleword vectors,
subtracts double the products from corresponding elements of a quadword vector, and places the results in the same
quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 integer index = integer UNKNOWN;

A2

A2 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 0 1 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 1 1 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11059
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 integer index = integer UNKNOWN;

T2

T2 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 add = (op == '0');
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 integer m;
 integer index;
 if size == '01' then m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 0 1 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 1 1 1 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11060
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in
the "M:Vm" field.

For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in
the "Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 integer result;
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 boolean sat2;
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11061
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.175 VQDMULH

Vector Saturating Doubling Multiply Returning High Half multiplies corresponding elements in two vectors,
doubles the results, and places the most significant half of the final results in the destination vector. The results are
truncated, for rounded results see VQRDMULH.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 0 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11062
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 0 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11063
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 op1 = SInt(Elem[D[n+r],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (result, sat) = SignedSatQ((2*op1*op2) >> esize, esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11064
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11065
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.176 VQDMULL

Vector Saturating Doubling Multiply Long multiplies corresponding elements in two doubleword vectors, doubles
the products, and places the results in a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;
 integer index = integer UNKNOWN;

A2

A2 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 1 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 0 1 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11066
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 esize = 8 << UInt(size); elements = 64 DIV esize;
 integer index = integer UNKNOWN;

T2

T2 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' || Vd<0> == '1' then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 1 0 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 1 0 1 1 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11067
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat) = SignedSatQ(2*op1*op2, 2*esize);
 Elem[Q[d>>1],e,2*esize] = product;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11068
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.177 VQMOVN, VQMOVUN

Vector Saturating Move and Narrow copies each element of the operand vector to the corresponding element of the
destination vector.

The operand is a quadword vector. The elements can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result is a doubleword vector. The elements are half the length of the operand vector elements. If the operand
is unsigned, the results are unsigned. If the operand is signed, the results can be signed or unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instructions VQRSHRN (zero), VQRSHRUN (zero), VQSHRN (zero), and
VQSHRUN (zero). The pseudo-instruction is never the preferred disassembly.

A1

Signed result variant

Applies when op == 1x.

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Unsigned result variant

Applies when op == 01.

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for all variants of this encoding

 if op == '00' then SEE "VMOVN";
 if size == '11' || Vm<0> == '1' then UNDEFINED;
 src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

Signed result variant

Applies when op == 1x.

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11069
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Unsigned result variant

Applies when op == 01.

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for all variants of this encoding

 if op == '00' then SEE "VMOVN";
 if size == '11' || Vm<0> == '1' then UNDEFINED;
 src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For the signed result variant: is the data type for the elements of the operand, encoded in the
"op<0>:size" field. It can have the following values:

S16 when op<0> = 0, size = 00

S32 when op<0> = 0, size = 01

S64 when op<0> = 0, size = 10

U16 when op<0> = 1, size = 00

U32 when op<0> = 1, size = 01

U64 when op<0> = 1, size = 10

The following encodings are reserved:

• op<0> = 0, size = 11.

• op<0> = 1, size = 11.

For the unsigned result variant: is the data type for the elements of the operand, encoded in the "size"
field. It can have the following values:

S16 when size = 00

S32 when size = 01

S64 when size = 10

The encoding size = 11 is reserved.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 boolean sat;
 (Elem[D[d],e,esize], sat) = SatQ(operand, esize, dest_unsigned);
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11070
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.178 VQNEG

Vector Saturating Negate negates each element in a vector, and places the results in the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11071
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

S8 when size = 00

S16 when size = 01

S32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = -SInt(Elem[D[m+r],e,esize]);
 boolean sat;
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11072
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.179 VQRDMLAH

Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half. This instruction multiplies the
vector elements of the first source SIMD&FP register with either the corresponding vector elements of the second
source SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without
saturating the multiply results, doubles the results, and accumulates the most significant half of the final results with
the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

A2

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 1 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11073
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = TRUE; scalar_form = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn);
 regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11074
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = TRUE; scalar_form = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn);
 regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 1 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11075
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 boolean round = TRUE;
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 integer rdmlah = RShr(op3 + 2*(op1*op2), esize, round);
 (result, sat) = SignedSatQ(rdmlah, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11076
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.180 VQRDMLSH

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half. This instruction multiplies the vector
elements of the first source SIMD&FP register with either the corresponding vector elements of the second source
SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the
multiply results, doubles the results, and subtracts the most significant half of the final results from the vector
elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

A2

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 1 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11077
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = FALSE; scalar_form = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn);
 regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11078
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T2

(FEAT_RDM)

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_RDM) then UNDEFINED;
 if InITBlock() then UNPREDICTABLE;
 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 add = FALSE; scalar_form = TRUE;
 d = UInt(D:Vd); n = UInt(N:Vn);
 regs = if Q == '0' then 1 else 2;
 integer esize;
 integer m;
 integer index;
 integer elements;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 1 1 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11079
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 boolean round = TRUE;
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 integer rdmlsh = RShr(op3 - 2*(op1*op2), esize, round);
 (result, sat) = SignedSatQ(rdmlsh, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11080
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.181 VQRDMULH

Vector Saturating Rounding Doubling Multiply Returning High Half multiplies corresponding elements in two
vectors, doubles the results, and places the most significant half of the final results in the destination vector. The
results are rounded. For truncated results see VQDMULH.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 Q 1 D !=11 Vn Vd 1 1 0 1 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11081
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '00' || size == '11' then UNDEFINED;
 scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 integer index = integer UNKNOWN;

T2

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 Q 1 1 1 1 1 D !=11 Vn Vd 1 1 0 1 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11082
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then SEE "Related encodings";
 if size == '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
 integer esize;
 integer elements;
 integer m;
 integer index;
 if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
 if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

S16 when size = 01

S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32,
Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer op2;
 boolean round = TRUE;
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 integer rdmulh = RShr(2*op1*op2, esize, round);
 (result, sat) = SignedSatQ(rdmulh, esize);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11083
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11084
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.182 VQRSHL

Vector Saturating Rounding Shift Left takes each element in a vector, shifts them by a value from the least
significant byte of the corresponding element of a second vector, and places the results in the destination vector. If
the shift value is positive, the operation is a left shift. Otherwise, it is a right shift.

For truncated results see VQSHL (register).

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11085
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(esize) result;
 boolean sat;
 for r = 0 to regs-1
 for e = 0 to elements-1
 integer element = Int(Elem[D[m+r], e, esize], unsigned);
 integer shift = SInt(Elem[D[n+r], e, esize]<7:0>);
 if shift >= 0 then // left shift
 element = element << shift;
 else // rounding right shift
 shift = -shift;
 element = (element + (1 << (shift - 1))) >> shift;
 (result, sat) = SatQ(element, esize, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11086
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d+r], e, esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11087
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.183 VQRSHRN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts
them by an immediate value, and places the signed rounded results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Signed result variant

VQRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Signed result variant

VQRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the
following values:

S16 when op<0> = 0, size = 00

S32 when op<0> = 0, size = 01

S64 when op<0> = 0, size = 10

U16 when op<0> = 1, size = 00

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11088
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
U32 when op<0> = 1, size = 01

U64 when op<0> = 1, size = 10

The following encodings are reserved:

• op<0> = 0, size = 11.

• op<0> = 1, size = 11.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11089
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.184 VQRSHRN, VQRSHRUN

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts
them by an immediate value, and places the rounded results in a doubleword vector.

For truncated results, see VQSHL (register).

The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can
be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VRSHRN";
 if Vm<0> == '1' then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11090
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VRSHRN";
 if Vm<0> == '1' then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> For the signed result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 0

U when U = 1

For the unsigned result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11091
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 boolean round = TRUE;
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 integer rshrn = RShr(operand, shift_amount, round);
 (result, sat) = SatQ(rshrn, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11092
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.185 VQRSHRUN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts
them by an immediate value, and places the unsigned rounded results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Unsigned result variant

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Unsigned result variant

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

S16 when size = 00

S32 when size = 01

S64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11093
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11094
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.186 VQSHL, VQSHLU (immediate)

Vector Saturating Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate
value, and places the results in a second vector.

The operand elements must all be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are the same size as the operand elements. If the operand elements are signed, the results can
be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector, signed result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 0.

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

64-bit SIMD vector, unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0.

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector, signed result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 1.

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

128-bit SIMD vector, unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1.

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if U == '0' && op == '0' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 1 1 op L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11095
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector, signed result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 0.

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

64-bit SIMD vector, unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0.

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector, signed result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 1.

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

128-bit SIMD vector, unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1.

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if U == '0' && op == '0' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 1 1 op L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11096
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 operand = Int(Elem[D[m+r],e,esize], src_unsigned);
 (result, sat) = SatQ(operand << shift_amount, esize, dest_unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11097
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.187 VQSHL (register)

Vector Saturating Shift Left (register) takes each element in a vector, shifts them by a value from the least significant
byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a right shift.

The results are truncated. For rounded results, see VQRSHL.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11098
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 operand = Int(Elem[D[m+r],e,esize], unsigned);
 boolean sat;
 bits(esize) result;
 if shift >= 0 then
 (result,sat) = SatQ(operand << shift, esize, unsigned);
 else
 (result,sat) = SatQ(operand >> -shift, esize, unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11099
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11100
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.188 VQSHRN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the signed truncated results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Signed result variant

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Signed result variant

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the
following values:

S16 when op<0> = 0, size = 00

S32 when op<0> = 0, size = 01

S64 when op<0> = 0, size = 10

U16 when op<0> = 1, size = 00

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11101
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
U32 when op<0> = 1, size = 01

U64 when op<0> = 1, size = 10

The following encodings are reserved:

• op<0> = 0, size = 11.

• op<0> = 1, size = 11.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11102
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.189 VQSHRN, VQSHRUN

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the truncated results in a doubleword vector.

For rounded results, see VQRSHRN, VQRSHRUN.

The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.

• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can
be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VSHRN";
 if Vm<0> == '1' then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11103
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if U == '0' && op == '0' then SEE "VSHRN";
 if Vm<0> == '1' then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> For the signed result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 0

U when U = 1

For the unsigned result variant: is the data type for the elements of the vectors, encoded in the "U"
field. It can have the following values:

S when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11104
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
 (result, sat) = SatQ(operand >> shift_amount, esize, dest_unsigned);
 Elem[D[d],e,esize] = result;
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11105
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.190 VQSHRUN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the unsigned truncated results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

A1

Unsigned result variant

VQSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

Unsigned result variant

VQSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

S16 when size = 00

S32 when size = 01

S64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11106
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11107
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.191 VQSUB

Vector Saturating Subtract subtracts the elements of the second operand vector from the corresponding elements of
the first operand vector, and places the results in the destination vector. Signed and unsigned operations are distinct.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation
occurs. For details see Pseudocode description of saturation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11108
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 diff = Int(Elem[D[n+r],e,esize], unsigned) - Int(Elem[D[m+r],e,esize], unsigned);
 boolean sat;
 (Elem[D[d+r],e,esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSCR.QC = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11109
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.192 VRADDHN

Vector Rounding Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and
places the most significant half of each result in a doubleword vector. The results are rounded. For truncated results,
see VADDHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 1 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 1 1 D !=11 Vn Vd 0 1 0 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11110
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 boolean round = TRUE;
 for e = 0 to elements-1
 result = RShr(UInt(Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize]), esize, round);
 Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11111
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.193 VRECPE

Vector Reciprocal Estimate finds an approximate reciprocal of each element in the operand vector, and places the
results in the destination vector.

The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.

For details of the operation performed by this instruction see Floating-point reciprocal square root estimate and
step.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPE{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!IsFeatureImplemented(FEAT_FP16) || F == '0')) || size IN {'00', '11'} then
 UNDEFINED;
 floating_point = (F == '1');
 integer esize;
 integer elements;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11112
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VRECPE{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!IsFeatureImplemented(FEAT_FP16) || F == '0')) || size IN {'00', '11'} then
 UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 floating_point = (F == '1');
 integer esize;
 integer elements;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

U32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of a number, see Floating-point reciprocal estimate and step.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRecipEstimate(Elem[D[m+r],e,esize], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11113
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 else
 Elem[D[d+r],e,esize] = UnsignedRecipEstimate(Elem[D[m+r],e,esize]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11114
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.194 VRECPS

Vector Reciprocal Step multiplies the elements of one vector by the corresponding elements of another vector,
subtracts each of the products from 2.0, and places the results into the elements of the destination vector.

The operand and result elements are floating-point numbers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11115
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of a number, see Floating-point reciprocal estimate and step.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRecipStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11116
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.195 VREV16

Vector Reverse in halfwords reverses the order of 8-bit elements in each halfword of the vector, and places the result
in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV16 doubleword operation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Dm

Dd

VREV16.8, doubleword

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11117
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

64-bit SIMD vector variant

Applies when Q == 0.

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11118
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = (element + elements_per_container) - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11119
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.196 VREV32

Vector Reverse in words reverses the order of 8-bit or 16-bit elements in each word of the vector, and places the
result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV32 doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Dm Dm

Dd Dd

VREV32.8, doubleword VREV32.16, doubleword

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11120
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

64-bit SIMD vector variant

Applies when Q == 0.

VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

8 when size = 00

16 when size = 01

The encoding size = 1x is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11121
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = (element + elements_per_container) - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11122
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.197 VREV64

Vector Reverse in doublewords reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword of the
vector, and places the result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV64 doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Dm Qm

Dd Qm

VREV64.8, doubleword VREV64.32, quadword

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11123
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

64-bit SIMD vector variant

Applies when Q == 0.

VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if UInt(op)+UInt(size) >= 3 then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

 esize = 8 << UInt(size);
 integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;

 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11124
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = (element + elements_per_container) - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11125
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.198 VRHADD

Vector Rounding Halving Add adds corresponding elements in two vectors of integers, shifts each result right one
bit, and places the final results in the destination vector.

The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

The results of the halving operations are rounded. For truncated results, see VHADD.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11126
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = (op1 + op2 + 1) >> 1;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11127
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11128
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.199 VRINTA (Advanced SIMD)

Vector Round floating-point to integer towards Nearest with Ties to Away rounds a vector of floating-point values
to integral floating-point values of the same size using the Round to Nearest with Ties to Away rounding mode. A
zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTA{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTA{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTA{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTA{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11129
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, fpcr, rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11130
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.200 VRINTA (floating-point)

Round floating-point to integer to Nearest with Ties to Away rounds a floating-point value to an integral
floating-point value of the same size using the Round to Nearest with Ties to Away rounding mode. A zero input
gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is
propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTA{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTA{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTA{<q>}.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 !=00 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 !=00 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11131
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTA{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11132
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.201 VRINTM (Advanced SIMD)

Vector Round floating-point to integer towards -Infinity rounds a vector of floating-point values to integral
floating-point values of the same size, using the Round towards -Infinity rounding mode. A zero input gives a zero
result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as
for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTM{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTM{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTM{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTM{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 0 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11133
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, fpcr, rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11134
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.202 VRINTM (floating-point)

Round floating-point to integer towards -Infinity rounds a floating-point value to an integral floating-point value of
the same size using the Round towards -Infinity rounding mode. A zero input gives a zero result with the same sign,
an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTM{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTM{<q>}.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 !=00 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 !=00 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11135
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTM{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11136
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.203 VRINTN (Advanced SIMD)

Vector Round floating-point to integer to Nearest rounds a vector of floating-point values to integral floating-point
values of the same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTN{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTN{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11137
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, fpcr, rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11138
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.204 VRINTN (floating-point)

Round floating-point to integer to Nearest rounds a floating-point value to an integral floating-point value of the
same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same sign, an infinite
input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTN{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTN{<q>}.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 !=00 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 !=00 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11139
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTN{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11140
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.205 VRINTP (Advanced SIMD)

Vector Round floating-point to integer towards +Infinity rounds a vector of floating-point values to integral
floating-point values of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero
result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as
for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTP{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTP{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTP{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTP{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if op<2> != op<0> then SEE "Related encodings";
 if InITBlock() then UNPREDICTABLE;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 7 6 5 4 3 0

op

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11141
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 // Rounding encoded differently from other VCVT and VRINT instructions
 rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, fpcr, rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11142
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.206 VRINTP (floating-point)

Round floating-point to integer towards +Infinity rounds a floating-point value to an integral floating-point value
of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTP{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTP{<q>}.F32 <Sd>, <Sm>

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 !=00 0 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

RM size

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 !=00 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11143
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTP{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 rounding = FPDecodeRM(RM); exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11144
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.207 VRINTR

Round floating-point to integer rounds a floating-point value to an integral floating-point value of the same size
using the rounding mode specified in the FPSCR. A zero input gives a zero result with the same sign, an infinite
input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 boolean zero_rounding = op == '1';
 exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11145
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 boolean zero_rounding = op == '1';
 exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 rounding = if zero_rounding then FPRounding_ZERO else FPRoundingMode(fpcr);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11146
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.208 VRINTX (Advanced SIMD)

Vector round floating-point to integer inexact rounds a vector of floating-point values to integral floating-point
values of the same size, using the Round to Nearest rounding mode, and raises the Inexact exception when the result
value is not numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input
gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTX{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_TIEEVEN; exact = TRUE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTX{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_TIEEVEN; exact = TRUE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11147
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, fpcr, rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11148
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.209 VRINTX (floating-point)

Round floating-point to integer inexact rounds a floating-point value to an integral floating-point value of the same
size, using the rounding mode specified in the FPSCR, and raises an Inexact exception when the result value is not
numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 exact = TRUE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11149
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 exact = TRUE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 rounding = FPRoundingMode(fpcr);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11150
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.210 VRINTZ (Advanced SIMD)

Vector round floating-point to integer towards Zero rounds a vector of floating-point values to integral
floating-point values of the same size, using the Round towards Zero rounding mode. A zero input gives a zero result
with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTZ{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_ZERO; exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTZ{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && !IsFeatureImplemented(FEAT_FP16)) || size IN {'00', '11'} then UNDEFINED;
 rounding = FPRounding_ZERO; exact = FALSE;
 constant integer esize = 8 << UInt(size);
 integer elements = 64 DIV esize;

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11151
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

F16 when size = 01

F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, fpcr, rounding, exact);
 Elem[D[d+r],e,esize] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11152
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.211 VRINTZ (floating-point)

Round floating-point to integer towards Zero rounds a floating-point value to an integral floating-point value of the
same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same sign, an
infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

Half-precision scalar variant

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 boolean zero_rounding = op == '1';
 exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

Half-precision scalar variant

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

!=1111 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond op

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11153
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Double-precision scalar variant

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 boolean zero_rounding = op == '1';
 exact = FALSE;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 rounding = if zero_rounding then FPRounding_ZERO else FPRoundingMode(fpcr);
 case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, fpcr, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], fpcr, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], fpcr, rounding, exact);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11154
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.212 VRSHL

Vector Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant byte of
the corresponding element of a second vector, and places the results in the destination vector. If the shift value is
positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a truncating shift,
see VSHL.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11155
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 integer result;
 for r = 0 to regs-1
 for e = 0 to elements-1
 integer element = Int(Elem[D[m+r], e, esize], unsigned);
 integer shift = SInt(Elem[D[n+r], e, esize]<7:0>);
 if shift >= 0 then // left shift
 result = element << shift;
 else // rounding right shift
 shift = -shift;
 result = (element + (1 << (shift - 1))) >> shift;
 Elem[D[d+r], e, esize] = result<esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11156
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11157
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.213 VRSHR

Vector Rounding Shift Right takes each element in a vector, right shifts them by an immediate value, and places the
rounded results in the destination vector. For truncated results, see VSHR.

The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = 16 - UInt(imm6);
 when '001xxxx' shift_amount = 32 - UInt(imm6);
 when '01xxxxx' shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11158
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = 16 - UInt(imm6);
 when '001xxxx' shift_amount = 32 - UInt(imm6);
 when '01xxxxx' shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 boolean round = TRUE;
 for r = 0 to regs-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11159
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 result = RShr(Int(Elem[D[m+r],e,esize], unsigned), shift_amount, round);
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11160
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.214 VRSHR (zero)

Vector Rounding Shift Right copies the contents of one SIMD register to another.

This instruction is a pseudo-instruction of the VORR (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VORR (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11161
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16,
U32 or U64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11162
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.215 VRSHRN

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value,
and places the rounded results in the destination vector. For truncated results, see VSHRN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers. The destination elements are half the size of the source elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

Applies when imm6 != 000xxx.

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(imm6<5:3>);
 integer elements = 64 DIV esize;
 integer shift_amount = (esize << 1) - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

Applies when imm6 != 000xxx.

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(imm6<5:3>);
 integer elements = 64 DIV esize;
 integer shift_amount = (esize << 1) - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11163
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 boolean round = TRUE;
 for e = 0 to elements-1
 result = RShr(UInt(Elem[Qin[m>>1],e,2*esize]), shift_amount, round);
 Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11164
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.216 VRSHRN (zero)

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value,
and places the rounded results in the destination vector.

This instruction is a pseudo-instruction of the VMOVN instruction. This means that:

• The encodings in this description are named to match the encodings of VMOVN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VMOVN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

A1

A1 variant

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

T1 variant

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11165
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VMOVN gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11166
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.217 VRSQRTE

Vector Reciprocal Square Root Estimate finds an approximate reciprocal square root of each element in a vector,
and places the results in a second vector.

The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTE{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!IsFeatureImplemented(FEAT_FP16) || F == '0')) || size IN {'00', '11'} then
 UNDEFINED;
 floating_point = (F == '1');
 integer esize;
 integer elements;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTE{<c>}{<q>}.<dt> <Qd>, <Qm>

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11167
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if (size == '01' && (!IsFeatureImplemented(FEAT_FP16) || F == '0')) || size IN {'00', '11'} then
 UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 floating_point = (F == '1');
 integer esize;
 integer elements;
 case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the
following values:

U32 when F = 0, size = 10

F16 when F = 1, size = 01

F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of the square root of a number, see Floating-point reciprocal estimate and step.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 constant FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRSqrtEstimate(Elem[D[m+r],e,esize], fpcr);
 else
 Elem[D[d+r],e,esize] = UnsignedRSqrtEstimate(Elem[D[m+r],e,esize]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11168
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.218 VRSQRTS

Vector Reciprocal Square Root Step multiplies the elements of one vector by the corresponding elements of another
vector, subtracts each of the products from 3.0, divides these results by 2.0, and places the results into the elements
of the destination vector.

The operand and result elements are floating-point numbers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11169
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of the square root of a number, see Floating-point reciprocal estimate and step.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRSqrtStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11170
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.219 VRSRA

Vector Rounding Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate
value, and accumulates the rounded results into the destination vector. For truncated results, see VSRA.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11171
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 boolean round = TRUE;
 for r = 0 to regs-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11172
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 for e = 0 to elements-1
 result = RShr(Int(Elem[D[m+r],e,esize], unsigned), shift_amount, round);
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11173
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.220 VRSUBHN

Vector Rounding Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector, takes the most significant half of each result, and places the
final results in a doubleword vector. The results are rounded. For truncated results, see VSUBHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 1 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 1 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11174
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 boolean round = TRUE;
 for e = 0 to elements-1
 result = RShr(UInt(Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize]), esize, round);
 Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11175
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.221 VSDOT (by element)

Dot Product index form with signed integers. This instruction performs the dot product of the four 8-bit elements in
each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the
second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11176
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2 = D[m];
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11177
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.222 VSDOT (vector)

Dot Product vector form with signed integers. This instruction performs the dot product of the four 8-bit elements
in each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11178
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11179
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.223 VSELEQ, VSELGE, VSELGT, VSELVS

Floating-point conditional select allows the destination register to take the value in either one or the other source
register according to the condition codes in the The Application Program Status Register, APSR.

A1

Equal, half-precision scalar variant

Applies when cc == 00 && size == 01.

VSELEQ.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Equal, single-precision scalar variant

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Equal, double-precision scalar variant

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

Greater than or Equal, half-precision scalar variant

Applies when cc == 10 && size == 01.

VSELGE.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Greater than or Equal, single-precision scalar variant

Applies when cc == 10 && size == 10.

VSELGE.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Greater than or Equal, double-precision scalar variant

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

Greater than, half-precision scalar variant

Applies when cc == 11 && size == 01.

VSELGT.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Greater than, single-precision scalar variant

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Greater than, double-precision scalar variant

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11180
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Unordered, half-precision scalar variant

Applies when cc == 01 && size == 01.

VSELVS.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Unordered, single-precision scalar variant

Applies when cc == 01 && size == 10.

VSELVS.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Unordered, double-precision scalar variant

Applies when cc == 01 && size == 11.

VSELVS.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 cond = cc:(cc<1> EOR cc<0>):'0';

T1

Equal, half-precision scalar variant

Applies when cc == 00 && size == 01.

VSELEQ.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Equal, single-precision scalar variant

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Equal, double-precision scalar variant

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Greater than or Equal, half-precision scalar variant

Applies when cc == 10 && size == 01.

VSELGE.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Greater than or Equal, single-precision scalar variant

Applies when cc == 10 && size == 10.

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 !=00 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11181
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSELGE.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Greater than or Equal, double-precision scalar variant

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Greater than, half-precision scalar variant

Applies when cc == 11 && size == 01.

VSELGT.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Greater than, single-precision scalar variant

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Greater than, double-precision scalar variant

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Unordered, half-precision scalar variant

Applies when cc == 01 && size == 01.

VSELVS.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Unordered, single-precision scalar variant

Applies when cc == 01 && size == 10.

VSELVS.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Unordered, double-precision scalar variant

Applies when cc == 01 && size == 11.

VSELVS.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 cond = cc:(cc<1> EOR cc<0>):'0';

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11182
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 case esize of
 when 16
 S[d] = Zeros(16) : (if ConditionHolds(cond) then S[n] else S[m])<15:0>;
 when 32
 S[d] = if ConditionHolds(cond) then S[n] else S[m];
 when 64
 D[d] = if ConditionHolds(cond) then D[n] else D[m];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11183
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.224 VSHL (immediate)

Vector Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate value, and
places the results in the destination vector.

Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit integers. There is no distinction
between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHL{<c>}{<q>}.I<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHL{<c>}{<q>}.I<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHL{<c>}{<q>}.I<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

1 1 1 1 0 0 1 0 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11184
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSHL{<c>}{<q>}.I<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = LSL(Elem[D[m+r],e,esize], shift_amount);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11185
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11186
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.225 VSHL (register)

Vector Shift Left (register) takes each element in a vector, shifts them by a value from the least significant byte of
the corresponding element of a second vector, and places the results in the destination vector. If the shift value is
positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift.

For a rounding shift, see VRSHL.

The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11187
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1');
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the
following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

S64 when U = 0, size = 11

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 integer result;
 if shift >= 0 then
 result = Int(Elem[D[m+r],e,esize], unsigned) << shift;
 else
 result = Int(Elem[D[m+r],e,esize], unsigned) >> -shift;
 Elem[D[d+r],e,esize] = result<esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11188
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11189
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.226 VSHLL

Vector Shift Left Long takes each element in a doubleword vector, left shifts them by an immediate value, and places
the results in a quadword vector.

The operand elements can be:

• 8-bit, 16-bit, or 32-bit signed integers.

• 8-bit, 16-bit, or 32-bit unsigned integers.

• 8-bit, 16-bit, or 32-bit untyped integers, maximum shift only.

The result elements are twice the length of the operand elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

Applies when imm6 != 000xxx.

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(imm6<5:3>);
 integer elements = 64 DIV esize;
 integer shift_amount = UInt(imm6) - esize;
 if shift_amount == 0 then SEE "VMOVL";
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

A2

A2 variant

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if size == '11' || Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
 unsigned = FALSE; // Or TRUE without change of functionality
 d = UInt(D:Vd); m = UInt(M:Vm);

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11190
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

T1 variant

Applies when imm6 != 000xxx.

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(imm6<5:3>);
 integer elements = 64 DIV esize;
 integer shift_amount = UInt(imm6) - esize;
 if shift_amount == 0 then SEE "VMOVL";
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

T2

T2 variant

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

 if size == '11' || Vd<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
 unsigned = FALSE; // Or TRUE without change of functionality
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> The data type for the elements of the operand. It must be one of:

S Signed. In encoding T1/A1, encoded as U = 0.

U Unsigned. In encoding T1/A1, encoded as U = 1.

I Untyped integer, Available only in encoding T2/A2.

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11191
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> The data size for the elements of the operand. The following table shows the permitted values and
their encodings:

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> The immediate value. <imm> must lie in the range 1 to <size>, and:

• If <size> == <imm>, the encoding is T2/A2.

• Otherwise, the encoding is T1/A1, and:

— If <size> == 8, <imm> is encoded in imm6<2:0>.

— If <size> == 16, <imm> is encoded in imm6<3:0>.

— If <size> == 32, <imm> is encoded in imm6<4:0>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned) << shift_amount;
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

<size> Encoding T1/A1 Encoding T2/A2

8 Encoded as imm6<5:3> = 0b001 Encoded as size = 0b00

16 Encoded as imm6<5:4> = 0b01 Encoded as size = 0b01

32 Encoded as imm6<5> = 1 Encoded as size = 0b10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11192
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.227 VSHR

Vector Shift Right takes each element in a vector, right shifts them by an immediate value, and places the truncated
results in the destination vector. For rounded results, see VRSHR.

The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = 16 - UInt(imm6);
 when '001xxxx' shift_amount = 32 - UInt(imm6);
 when '01xxxxx' shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11193
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = 16 - UInt(imm6);
 when '001xxxx' shift_amount = 32 - UInt(imm6);
 when '01xxxxx' shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11194
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11195
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.228 VSHR (zero)

Vector Shift Right copies the contents of one SIMD register to another.

This instruction is a pseudo-instruction of the VORR (register) instruction. This means that:

• The encodings in this description are named to match the encodings of VORR (register).

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VORR (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11196
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

 is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16,
U32 or U64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11197
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.229 VSHRN

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector. For rounded results, see VRSHRN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers. The destination elements are half the size of the source elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

Applies when imm6 != 000xxx.

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(imm6<5:3>);
 integer elements = 64 DIV esize;
 integer shift_amount = (2 * esize) - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

T1 variant

Applies when imm6 != 000xxx.

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

 if imm6 IN {'000xxx'} then SEE "Related encodings";
 if Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << HighestSetBit(imm6<5:3>);
 integer elements = 64 DIV esize;
 integer shift_amount = (2 * esize) - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11198
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the
following values:

16 when imm6<5:3> = 001

32 when imm6<5:3> = 01x

64 when imm6<5:3> = 1xx

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize], shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11199
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.230 VSHRN (zero)

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector.

This instruction is a pseudo-instruction of the VMOVN instruction. This means that:

• The encodings in this description are named to match the encodings of VMOVN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VMOVN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

A1

A1 variant

VSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

T1 variant

VSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

 is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following
values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

The encoding size = 11 is reserved.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11200
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VMOVN gives the operational pseudocode for this instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11201
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.231 VSLI

Vector Shift Left and Insert takes each element in the operand vector, left shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between
data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSLI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSLI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = UInt(imm6) - 8;
 when '001xxxx' shift_amount = UInt(imm6) - 16;
 when '01xxxxx' shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSLI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSLI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11202
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = UInt(imm6) - 8;
 when '001xxxx' shift_amount = UInt(imm6) - 16;
 when '01xxxxx' shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSL(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSL(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11203
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11204
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.232 VSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of signed 8-bit integer
values held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector.
The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

A1 variant

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 boolean op1_unsigned;
 boolean op2_unsigned;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32I8MM)

T1 variant

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 boolean op1_unsigned;
 boolean op2_unsigned;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

B U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

B U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11205
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) addend = Q[d>>1];

 Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11206
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.233 VSQRT

Square Root calculates the square root of the value in a floating-point register and writes the result to another
floating-point register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

!=1111 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

cond

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11207
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Half-precision scalar variant

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 integer esize;
 integer d;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16 S[d] = Zeros(16) : FPSqrt(S[m]<15:0>, fpcr);
 when 32 S[d] = FPSqrt(S[m], fpcr);
 when 64 D[d] = FPSqrt(D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11208
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.234 VSRA

Vector Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value, and
accumulates the truncated results into the destination vector. For rounded results, see VRSRA.

The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.

• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11209
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer esize;
 integer elements;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:

S when U = 0

U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11210
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11211
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.235 VSRI

Vector Shift Right and Insert takes each element in the operand vector, right shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the right of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between
data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = 16 - UInt(imm6);
 when '001xxxx' shift_amount = 32 - UInt(imm6);
 when '01xxxxx' shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11212
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 constant integer esize = 8 << HighestSetBit((L:imm6)<6:3>);
 integer elements = 64 DIV esize;
 integer shift_amount;
 case L:imm6 of
 when '0001xxx' shift_amount = 16 - UInt(imm6);
 when '001xxxx' shift_amount = 32 - UInt(imm6);
 when '01xxxxx' shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or
Advanced SIMD one register and modified immediate for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the
following values:

8 when L = 0, imm6<5:3> = 001

16 when L = 0, imm6<5:3> = 01x

32 when L = 0, imm6<5:3> = 1xx

64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSR(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSR(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11213
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11214
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.236 VST1 (single element from one lane)

Store single element from one lane of one register stores one element to memory from one element of a register. For
details of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11215
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T1

Offset variant

Applies when Rm == 1111.

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 0 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 0 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11216
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 0 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11217
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<2> != '0' then UNDEFINED;
 if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 alignment = if index_align<1:0> == '00' then 1 else 4;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the single 64-bit name of the SIMD&FP register holding the element.

The list must be { <Dd>[<index>] }.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 0 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11218
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<1:0>" field as 0b00.

<size> == 32Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

<size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as
0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 MemU[address,ebytes] = Elem[D[d],index,8*ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11219
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.237 VST1 (multiple single elements)

Store multiple single elements from one, two, three, or four registers stores elements to memory from one, two,
three, or four registers, without interleaving. Every element of each register is stored. For details of the addressing
mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

A2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 1 1 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 1 0 1 0 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11220
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 1 0 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11221
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A4

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 1 0 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11222
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 1; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 then UNPREDICTABLE;

T2

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 2; if align == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 1 1 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 1 0 1 0 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11223
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 3; if align<1> == '1' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 1 0 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11224
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T4

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 regs = 4;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST1 (multiple single elements).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

Assembler symbols

<c> For encoding A1, A2, A3 and A4: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2, T3 and T4: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 1 0 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11225
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

64 when size = 11

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd> } Single register. Selects the A1 and T1 encodings of the instruction.

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2> }Three single-spaced registers. Selects the A3 and T3 encodings of the
instruction.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Four single-spaced registers. Selects the A4 and T4 encodings of
the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains
two or four registers.

256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about <Rn>, !, and <Rm>, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for r = 0 to regs-1
 for e = 0 to elements-1
 if ebytes != 8 then
 MemU[address,ebytes] = Elem[D[d+r],e,8*ebytes];
 else
 if !IsAligned(address, ebytes) && AlignmentEnforced() then
 AArch32.Abort(address, AlignmentFault(accdesc));

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11226
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 bits(64) data = Elem[D[d+r],e,64];
 if BigEndian(AccessType_ASIMD) then
 MemU[address,4] = data<63:32>;
 MemU[address+4,4] = data<31:0>;
 else
 MemU[address,4] = data<31:0>;
 MemU[address+4,4] = data<63:32>;

 address = address + ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 8*regs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11227
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.238 VST2 (single 2-element structure from one lane)

Store single 2-element structure from one lane of two registers stores one 2-element structure to memory from
corresponding elements of two registers. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A2

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11228
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 0 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11229
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 0 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11230
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 0 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 0 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11231
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1> != '0' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST2 (single 2-element structure from
one lane).

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>] }Single-spaced registers, encoded as "spacing" = 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11232
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[<index>], <Dd+2>[<index>] }Double-spaced registers, encoded as "spacing" = 1. Not
permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.

<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as
0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 MemU[address, ebytes] = Elem[D[d], index,8*ebytes];
 MemU[address+ebytes,ebytes] = Elem[D[d2],index,8*ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11233
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11234
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.239 VST2 (multiple 2-element structures)

Store multiple 2-element structures from two or four registers stores multiple 2-element structures from two or four
registers to memory, with interleaving. For more information, see Element and structure load/store instructions.
Every element of each register is saved. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 1 0 0 x size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11235
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 1 1 size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 1 0 0 x size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11236
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 1; if align == '11' then UNDEFINED;
 if size == '11' then UNDEFINED;
 inc = if itype == '1001' then 2 else 1;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 pairs = 2; inc = 2;
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 1 1 size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11237
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST2 (multiple 2-element structures).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1> }Two single-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1000.

{ <Dd>, <Dd+2> }Two double-spaced registers. Selects the A1 and T1 encodings of the instruction,
and encoded in the "itype" field as 0b1001.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Three single-spaced registers. Selects the A2 and T2 encodings
of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11238
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains
four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for r = 0 to pairs-1
 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d+r], e,8*ebytes];
 MemU[address+ebytes,ebytes] = Elem[D[d2+r],e,8*ebytes];
 address = address + 2*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 16*pairs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11239
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.240 VST3 (single 3-element structure from one lane)

Store single 3-element structure from one lane of three registers stores one 3-element structure to memory from
corresponding elements of three registers. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A2

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11240
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 1 0 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11241
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 1 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11242
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<0> != '0' then UNDEFINED;
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 1 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 1 0 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11243
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST3 (single 3-element structure from
one lane).

Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }Single-spaced registers, encoded as
"spacing" = 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11244
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }Double-spaced registers, encoded as
"spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 8"spacing" is encoded in the "index_align<0>" field.

<size> == 16"spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.

<size> == 32"spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to
0b00.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Alignment

Standard alignment rules apply, see Alignment support.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 MemU[address, ebytes] = Elem[D[d], index,8*ebytes];
 MemU[address+ebytes, ebytes] = Elem[D[d2],index,8*ebytes];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],index,8*ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11245
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.241 VST3 (multiple 3-element structures)

Store multiple 3-element structures from three registers stores multiple 3-element structures to memory from three
registers, with interleaving. For more information, see Element and structure load/store instructions. Every element
of each register is saved. For details of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' || align<1> == '1' then UNDEFINED;
 integer inc;
 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 0 x size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11246
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' || align<1> == '1' then UNDEFINED;
 integer inc;
 case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST3 (multiple 3-element structures).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 0 x size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11247
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2> }Single-spaced registers, encoded in the "itype" field as 0b0100.

{ <Dd>, <Dd+2>, <Dd+4> }Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in
the "align" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d], e,8*ebytes];
 MemU[address+ebytes, ebytes] = Elem[D[d2],e,8*ebytes];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],e,8*ebytes];
 address = address + 3*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 24;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11248
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11249
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.242 VST4 (single 4-element structure from one lane)

Store single 4-element structure from one lane of four registers stores one 4-element structure to memory from
corresponding elements of four registers. For details of the addressing mode, see The Advanced SIMD addressing
mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '00' then SEE "Related encodings";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11250
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '01' then SEE "Related encodings";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

A3

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 1 1 index_align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11251
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '10' then SEE "Related encodings";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 1 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11252
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '00' then SEE "Related encodings";
 ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
 alignment = if index_align<0> == '0' then 1 else 4;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '01' then SEE "Related encodings";
 ebytes = 2; index = UInt(index_align<3:2>);
 inc = if index_align<1> == '0' then 1 else 2;
 alignment = if index_align<0> == '0' then 1 else 8;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 1 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11253
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T3

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if size != '10' then SEE "Related encodings";
 if index_align<1:0> == '11' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST4 (single 4-element structure from
one lane).

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 1 1 index_align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11254
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

<list> Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.

The list must be one of:

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>], <Dd+3>[<index>] }Single-spaced registers,
encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] }Double-spaced registers,
encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:

<size> == 16"spacing" is encoded in the "index_align<1>" field.

<size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:

<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:

<size> == 8Encoded in the "index_align<0>" field as 0.

<size> == 16Encoded in the "index_align<0>" field as 0.

<size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:

<size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field
as 0b01, and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11255
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 MemU[address, ebytes] = Elem[D[d], index,8*ebytes];
 MemU[address+ebytes, ebytes] = Elem[D[d2],index,8*ebytes];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],index,8*ebytes];
 MemU[address+3*ebytes,ebytes] = Elem[D[d4],index,8*ebytes];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 4*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11256
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.243 VST4 (multiple 4-element structures)

Store multiple 4-element structures from four registers stores multiple 4-element structures to memory from four
registers, with interleaving. For more information, see Element and structure load/store instructions. Every element
of each register is saved. For details of the addressing mode, see The Advanced SIMD addressing mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information, see Enabling Advanced SIMD and floating-point support.

A1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 integer inc;
 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 0 x size align Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11257
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 integer inc;
 case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST4 (multiple 4-element structures).

Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced
SIMD element or structure load/store for the A32 instruction set.

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 0 x size align Rm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

itype
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11258
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<list> Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }Single-spaced registers, encoded in the "itype" field as 0b0000.

{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> }Double-spaced registers, encoded in the "itype" field as 0b0001.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.

Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.

128 128-bit alignment, encoded in the "align" field as 0b10.

256 256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see The Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the
"Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 CheckAdvSIMDEnabled();

 address = R[n];

 boolean nontemporal = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
 if !IsAligned(address, alignment) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d], e,8*ebytes];
 MemU[address+ebytes, ebytes] = Elem[D[d2],e,8*ebytes];
 MemU[address+2*ebytes,ebytes] = Elem[D[d3],e,8*ebytes];
 MemU[address+3*ebytes,ebytes] = Elem[D[d4],e,8*ebytes];
 address = address + 4*ebytes;
 if wback then
 if register_index then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11259
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11260
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.244 VSTM, VSTMDB, VSTMIA

Store multiple SIMD&FP registers stores multiple registers from the Advanced SIMD and floating-point register
file to consecutive memory locations using an address from a general-purpose register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information, see Enabling Advanced SIMD and floating-point support.

This instruction is used by the alias VPUSH. See Alias conditions for details of when each alias is preferred.

A1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

!=1111 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 1 0

cond

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11261
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
A2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

!=1111 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11262
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = FALSE; add = (U == '1'); wback = (W == '1');
 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
 regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
 if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

T2

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11263
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
 if P == '1' && W == '0' then SEE "VSTR";
 if P == U && W == '1' then UNDEFINED;
 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
 if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VSTM.

Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced
SIMD and floating-point 64-bit move for the A32 instruction set.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC
can be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

Alias is preferred when

VPUSH P == '1' && U == '0' && W == '1' && Rn == '1101'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11264
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register
in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The
list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r];
 address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 if BigEndian(AccessType_ASIMD) then
 MemA[address,4] = D[d+r]<63:32>;
 MemA[address+4,4] = D[d+r]<31:0>;
 else
 MemA[address,4] = D[d+r]<31:0>;
 MemA[address+4,4] = D[d+r]<63:32>;

 address = address+8;

 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11265
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.245 VSTR

Store SIMD&FP register stores a single register from the Advanced SIMD and floating-point register file to
memory, using an address from a general-purpose register, with an optional offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information, see Enabling Advanced SIMD and floating-point support.

A1

Half-precision scalar variant

Applies when size == 01.

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 integer d;
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);
 if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

!=1111 1 1 0 1 U D 0 0 Rn Vd 1 0 size imm8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11266
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
T1

Half-precision scalar variant

Applies when size == 01.

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Double-precision scalar variant

Applies when size == 11.

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for all variants of this encoding

 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 esize = 8 << UInt(size); add = (U == '1');
 imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
 integer d;
 case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);
 if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP source register, encoded in the "D:Vd" field.

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 size imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11267
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vd:D" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned
immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the
"imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2,
in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 case esize of
 when 16
 MemA[address,2] = S[d]<15:0>;
 when 32
 MemA[address,4] = S[d];
 when 64
 // Store as two word-aligned words in the correct order for current endianness.
 if BigEndian(AccessType_ASIMD) then
 MemA[address,4] = D[d]<63:32>;
 MemA[address+4,4] = D[d]<31:0>;
 else
 MemA[address,4] = D[d]<31:0>;
 MemA[address+4,4] = D[d]<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11268
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.246 VSUB (floating-point)

Vector Subtract (floating-point) subtracts the elements of one vector from the corresponding elements of another
vector, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode
in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp
mode. For more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 advsimd = TRUE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

!=1111 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11269
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && cond != '1110' then UNPREDICTABLE;
 advsimd = FALSE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if sz == '1' && !IsFeatureImplemented(FEAT_FP16) then UNDEFINED;
 if sz == '1' && InITBlock() then UNPREDICTABLE;
 advsimd = TRUE;
 integer esize;
 integer elements;
 case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11270
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

Half-precision scalar variant

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

 if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
 if size == '00' || (size == '01' && !IsFeatureImplemented(FEAT_FP16)) then UNDEFINED;
 if size == '01' && InITBlock() then UNPREDICTABLE;
 advsimd = FALSE;
 integer esize;
 integer d;
 integer n;
 integer m;
 case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11271
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following
values:

F32 when sz = 0

F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 FPCR_Type fpcr = StandardFPCR();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPSub(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], fpcr);
 else // VFP instruction
 constant FPCR_Type fpcr = EffectiveFPCR();
 case esize of
 when 16
 S[d] = Zeros(16) : FPSub(S[n]<15:0>, S[m]<15:0>, fpcr);
 when 32
 S[d] = FPSub(S[n], S[m], fpcr);
 when 64
 D[d] = FPSub(D[n], D[m], fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11272
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.247 VSUB (integer)

Vector Subtract (integer) subtracts the elements of one vector from the corresponding elements of another vector,
and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11273
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

I8 when size = 00

I16 when size = 01

I32 when size = 10

I64 when size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] - Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11274
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.248 VSUBHN

Vector Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector, takes the most significant half of each result, and places the
final results in a doubleword vector. The results are truncated. For rounded results, see VRSUBHN.

There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

T1 variant

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 constant integer esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 0 1 1 1 1 1 D !=11 Vn Vd 0 1 1 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11275
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

I16 when size = 00

I32 when size = 01

I64 when size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11276
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.249 VSUBL

Vector Subtract Long subtracts the elements of one doubleword vector from the corresponding elements of another
doubleword vector, and places the results in a quadword vector. Before subtracting, it sign-extends or zero-extends
the elements of both operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vsubw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

T1

T1 variant

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vsubw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 1 0 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 1 0 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11277
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 integer op1;
 if is_vsubw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 - Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11278
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.250 VSUBW

Vector Subtract Wide subtracts the elements of a doubleword vector from the corresponding elements of a quadword
vector, and places the results in another quadword vector. Before subtracting, it sign-extends or zero-extends the
elements of the doubleword operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

A1 variant

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vsubw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

T1

T1 variant

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

 if size == '11' then SEE "Related encodings";
 if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
 unsigned = (U == '1'); is_vsubw = (op == '1');
 constant integer esize = 8 << UInt(size);
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 elements = 64 DIV esize;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD
data-processing for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

1 1 1 1 0 0 1 U 1 D !=11 Vn Vd 0 0 1 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size op

1 1 1 U 1 1 1 1 1 D !=11 Vn Vd 0 0 1 1 N 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

size op
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11279
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can
have the following values:

S8 when U = 0, size = 00

S16 when U = 0, size = 01

S32 when U = 0, size = 10

U8 when U = 1, size = 00

U16 when U = 1, size = 01

U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 integer op1;
 if is_vsubw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 - Int(Elem[Din[m],e,esize], unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11280
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.251 VSUDOT (by element)

Dot Product index form with signed and unsigned integers. This instruction performs the dot product of the four
signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11281
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 operand2 = Din[m];
 for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
 element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11282
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.252 VSWP

Vector Swap exchanges the contents of two vectors. The vectors can be either doubleword or quadword. There is
no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

 if size != '00' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

1 1 1 1 0 0 1 1 1 D 1 1 0 0 1 0 Vd 0 0 0 0 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

size

1 1 1 1 1 1 1 1 1 D 1 1 0 0 1 0 Vd 0 0 0 0 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

size
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11283
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 D[d+r] = Din[m+r];
 D[m+r] = Din[d+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11284
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.253 VTBL, VTBX

Vector Table Lookup uses byte indexes in a control vector to look up byte values in a table and generate a new
vector. Indexes out of range return 0.

Vector Table Extension works in the same way, except that indexes out of range leave the destination element
unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

VTBL variant

Applies when op == 0.

VTBL{<c>}{<q>}.8 <Dd>, <list>, <Dm>

VTBX variant

Applies when op == 1.

VTBX{<c>}{<q>}.8 <Dd>, <list>, <Dm>

Decode for all variants of this encoding

 is_vtbl = (op == '0'); length = UInt(len)+1;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 if n+length > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n + length > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any
general-purpose registers.

T1

VTBL variant

Applies when op == 0.

VTBL{<c>}{<q>}.8 <Dd>, <list>, <Dm>

1 1 1 1 0 0 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11285
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
VTBX variant

Applies when op == 1.

VTBX{<c>}{<q>}.8 <Dd>, <list>, <Dm>

Decode for all variants of this encoding

 is_vtbl = (op == '0'); length = UInt(len)+1;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 if n+length > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n + length > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any
general-purpose registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<list> The vectors containing the table. It must be one of:

{<Dn>} Encoded as len = 0b00.

{<Dn>, <Dn+1>}Encoded as len = 0b01.

{<Dn>, <Dn+1>, <Dn+2>}Encoded as len = 0b10.

{<Dn>, <Dn+1>, <Dn+2>, <Dn+3>}Encoded as len = 0b11.

<Dm> Is the 64-bit name of the SIMD&FP source register holding the indices, encoded in the "M:Vm"
field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 // Create 256-bit = 32-byte table variable, with zeros in entries that will not be used.
 table3 = if length == 4 then D[n+3] else Zeros(64);
 table2 = if length >= 3 then D[n+2] else Zeros(64);
 table1 = if length >= 2 then D[n+1] else Zeros(64);
 table = table3 : table2 : table1 : D[n];

 for i = 0 to 7
 index = UInt(Elem[D[m],i,8]);
 if index < 8*length then
 Elem[D[d],i,8] = Elem[table,index,8];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11286
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 else
 if is_vtbl then
 Elem[D[d],i,8] = Zeros(8);
 // else Elem[D[d],i,8] unchanged

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11287
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.254 VTRN

Vector Transpose treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the
matrices.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VTRN doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

This instruction is used by the pseudo-instructions VUZP (alias) and VZIP (alias). The pseudo-instruction is never
the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

Dd

Dm

VTRN.16

0123

Dd

Dm

VTRN.32

01

Dd

Dm

VTRN.8

01234567

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11288
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
64-bit SIMD vector variant

Applies when Q == 0.

VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following
values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;

 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 for e = 0 to h-1
 Elem[D[d+r],2*e+1,esize] = Elem[Din[m+r],2*e,esize];
 Elem[D[m+r],2*e,esize] = Elem[Din[d+r],2*e+1,esize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11289
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11290
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.255 VTST

Vector Test Bits takes each element in a vector, and bitwise ANDs it with the corresponding element of a second
vector. If the result is not zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is
set to all zeros.

The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit fields.

The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VTST{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTST{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VTST{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTST{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11291
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 if size == '11' then UNDEFINED;
 esize = 8 << UInt(size); elements = 64 DIV esize;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the
following values:

8 when size = 00

16 when size = 01

32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !IsZero(Elem[D[n+r],e,esize] AND Elem[D[m+r],e,esize]) then
 Elem[D[d+r],e,esize] = Ones(esize);
 else
 Elem[D[d+r],e,esize] = Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11292
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.256 VUDOT (by element)

Dot Product index form with unsigned integers. This instruction performs the dot product of the four 8-bit elements
in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the
second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11293
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean signed = (U=='0');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm<3:0>);
 integer index = UInt(M);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2 = D[m];
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11294
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.257 VUDOT (vector)

Dot Product vector form with unsigned integers. This instruction performs the dot product of the four 8-bit elements
in each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations
to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_DotProd)

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11295
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_DotProd) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 boolean signed = U=='0';
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer esize = 32;
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;
 CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11296
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.258 VUMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer
values held in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source vector.
The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

A1 variant

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 boolean op1_unsigned;
 boolean op2_unsigned;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32I8MM)

T1 variant

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 boolean op1_unsigned;
 boolean op2_unsigned;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

B U

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 1 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

B U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11297
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) addend = Q[d>>1];

 Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11298
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.259 VUSDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

U

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

U

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11299
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 boolean op1_unsigned = (U == '0');
 boolean op2_unsigned = (U == '1');
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(Vm);
 integer i = UInt(M);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 operand2 = Din[m];
 for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
 element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11300
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.260 VUSDOT (vector)

Dot Product vector form with mixed-sign integers. This instruction performs the dot product of the four unsigned
8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in the
corresponding 32-bit element of the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

T1

(FEAT_AA32I8MM)

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11301
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);
 integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(64) operand1;
 bits(64) operand2;
 bits(64) result;

 for r = 0 to regs-1
 operand1 = Din[n+r];
 operand2 = Din[m+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = UInt(Elem[operand1, 4 * e + b, 8]);
 element2 = SInt(Elem[operand2, 4 * e + b, 8]);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11302
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.261 VUSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer
values held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector.
The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in
the T32 and A32 instruction sets.

A1

(FEAT_AA32I8MM)

A1 variant

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 boolean op1_unsigned;
 boolean op2_unsigned;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

T1

(FEAT_AA32I8MM)

T1 variant

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

 if InITBlock() then UNPREDICTABLE;
 if !IsFeatureImplemented(FEAT_AA32I8MM) then UNDEFINED;
 boolean op1_unsigned;
 boolean op2_unsigned;
 case B:U of
 when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
 when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
 when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
 when '11' UNDEFINED;

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

B U

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

B U
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11303
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
 integer d = UInt(D:Vd);
 integer n = UInt(N:Vn);
 integer m = UInt(M:Vm);

Assembler symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd"
field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
<Qm>*2.

Operation for all encodings

 CheckAdvSIMDEnabled();
 bits(128) operand1 = Q[n>>1];
 bits(128) operand2 = Q[m>>1];
 bits(128) addend = Q[d>>1];

 Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11304
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.262 VUZP

Vector Unzip de-interleaves the elements of two vectors.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VUZP doubleword operation for data type 8.

The following figure shows the operation of VUZP quadword operation for data type 32.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0A7

B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1B7

Dd

Dm

Register state before operation Register state after operation

VUZP.8, doubleword

A2 A1 A0 B2 B0 A2 A0A3

B2 B1 B0 B3 B1 A3 A1B3

Qd

Qm

Register state before operation Register state after operation

VUZP.32, quadword

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11305
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

The encoding size = 1x is reserved.

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN;
 else
 zipped_q = Q[m>>1]:Q[d>>1];
 for e = 0 to (128 DIV esize) - 1
 Elem[Q[d>>1],e,esize] = Elem[zipped_q,2*e,esize];
 Elem[Q[m>>1],e,esize] = Elem[zipped_q,2*e+1,esize];
 else
 if d == m then
 D[d] = bits(64) UNKNOWN;
 else
 zipped_d = D[m]:D[d];
 for e = 0 to (64 DIV esize) - 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11306
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[D[d],e,esize] = Elem[zipped_d,2*e,esize];
 Elem[D[m],e,esize] = Elem[zipped_d,2*e+1,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11307
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.263 VUZP (alias)

Vector Unzip de-interleaves the elements of two vectors.

This instruction is a pseudo-instruction of the VTRN instruction. This means that:

• The encodings in this description are named to match the encodings of VTRN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VTRN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

A1

64-bit SIMD vector variant

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

The description of VTRN gives the operational pseudocode for this instruction.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

Q

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

Q

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11308
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.264 VZIP

Vector Zip interleaves the elements of two vectors.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VZIP doubleword operation for data type 8.

The following figure shows the operation of VZIP quadword operation for data type 32.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VZIP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VZIP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

64-bit SIMD vector variant

Applies when Q == 0.

VZIP{<c>}{<q>}.<dt> <Dd>, <Dm>

A6 A5 A4 A3 A2 A1 A0

B6 B4

B2 B0

A6 A4

A2 A0A7

B6 B5 B4 B3 B2 B1 B0 B7 B5

B3 B1

A7 A5

A3 A1

B7

Dd

Dm

Register state before operation Register state after operation

VZIP.8, doubleword

A2 A1 A0

B2

B0

A2

A0A3

B2 B1 B0 B3

B1

A3

A1

B3

Qd

Qm

Register state before operation Register state after operation

VZIP.32, quadword

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11309
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
128-bit SIMD vector variant

Applies when Q == 1.

VZIP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

 if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
 if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 quadword_operation = (Q == '1'); esize = 8 << UInt(size);
 d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

The encoding size = 1x is reserved.

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the
"size" field. It can have the following values:

8 when size = 00

16 when size = 01

32 when size = 10

The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN;
 else
 bits(256) zipped_q;
 for e = 0 to (128 DIV esize) - 1
 Elem[zipped_q,2*e,esize] = Elem[Q[d>>1],e,esize];
 Elem[zipped_q,2*e+1,esize] = Elem[Q[m>>1],e,esize];
 Q[d>>1] = zipped_q<127:0>; Q[m>>1] = zipped_q<255:128>;
 else
 if d == m then
 D[d] = bits(64) UNKNOWN;
 else
 bits(128) zipped_d;
 for e = 0 to (64 DIV esize) - 1
 Elem[zipped_d,2*e,esize] = Elem[D[d],e,esize];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11310
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
 Elem[zipped_d,2*e+1,esize] = Elem[D[m],e,esize];
 D[d] = zipped_d<63:0>; D[m] = zipped_d<127:64>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11311
ID032224 Non-Confidential

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
F6.1.265 VZIP (alias)

Vector Zip interleaves the elements of two vectors.

This instruction is a pseudo-instruction of the VTRN instruction. This means that:

• The encodings in this description are named to match the encodings of VTRN.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of VTRN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

A1

64-bit SIMD vector variant

VZIP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

T1

64-bit SIMD vector variant

VZIP{<c>}{<q>}.32 <Dd>, <Dm>

 is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

The description of VTRN gives the operational pseudocode for this instruction.

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0

Q

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

Q

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. F6-11312
ID032224 Non-Confidential

Part G
The AArch32 System Level Architecture

Chapter G1
The AArch32 System Level Programmers’ Model

This chapter gives a system level description of the programmers’ model for execution in AArch32 state. It contains
the following sections:

• About the AArch32 System level programmers’ model.

• Exception levels.

• Exception terminology.

• Execution state.

• Instruction Set state.

• Security state.

• Security state, Exception levels, and AArch32 execution privilege.

• Virtualization.

• AArch32 state PE modes.

• AArch32 general-purpose registers, the PC, and the Special-purpose registers.

• Process state, PSTATE.

• Instruction set states.

• Handling exceptions that are taken to an Exception level using AArch32.

• Routing of aborts taken to AArch32 state.

• Exception return to an Exception level using AArch32.

• Asynchronous exception behavior for exceptions taken from AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11314
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model

• AArch32 state exception descriptions.

• Reset into AArch32 state.

• Mechanisms for entering a low-power state.

• The AArch32 System register interface.

• Advanced SIMD and floating-point support.

• Configurable instruction controls.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11315
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.1 About the AArch32 System level programmers’ model
G1.1 About the AArch32 System level programmers’ model

An application programmer has only a restricted view of the system. The System level programmers’ model
supports this application level view of the system, and includes features that are required for one or both of an
operating system (OS) and a hypervisor to provide the programming environment seen by an application. This
chapter describes the System level programmers’ model when executing at EL1 or higher in an Exception level that
is using AArch32.

The system level programmers’ model includes all of the system features required to support operating systems and
to handle hardware events.

The following sections give a system level introduction to the basic concepts of the Arm architecture AArch32 state,
and the terminology that is used for describing the architecture when executing in this state:

• Exception levels.

• Exception terminology.

• Execution state.

• Instruction Set state.

• Security state.

• Virtualization.

The rest of this chapter describes the system level programmers’ model when executing in AArch32 state.

The other chapters in this part describe:

• The memory system architecture, as seen when executing in an Exception level that is using AArch32:

— Chapter G4 The AArch32 System Level Memory Model describes the general features of the Armv8
memory model, when executing in AArch32 state, that are not visible at the application level.

Note

Chapter E2 The AArch32 Application Level Memory Model describes the application level view of the
memory model.

— Chapter G5 The AArch32 Virtual Memory System Architecture describes the Virtual Memory System
Architecture (VMSA) used in AArch32 state.

• The AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

Note

The T32 and A32 instruction sets include instructions that provide system level functionality, such as returning from
an exception. See, for example, ERET.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11316
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.2 Exception levels
G1.2 Exception levels

The architecture defines a set of Exception levels, EL0 to EL3, where:

• If ELn is the Exception level, increased values of n indicate increased software execution privilege.

• Execution at EL0 is called unprivileged execution.

• EL2 provides support for virtualization.

• EL3 provides support for switching between two Security states, Secure state and Non-secure state.

An implementation might not include all of the Exception levels. All implementations must include EL0 and EL1.
EL2 and EL3 are optional.

Note

A PE is not required to implement a contiguous set of Exception levels. For example, it is permissible for an
implementation to include only EL0, EL1, and EL3.

Effect of not implementing an Exception level provides information on implementations.

When executing in AArch32 state, execution can move between Exception levels only on taking an exception or on
returning from an exception:

• On taking an exception, the Exception level can only increase or remain the same.

• On returning from an exception, the Exception level can only decrease or remain the same.

The Exception level that execution changes to or remains in on taking an exception is called the target Exception
level of the exception.

Each exception type has a target Exception level that is either:

• Implicit in the nature of the exception.

• Defined by configuration bits in the System registers.

An exception cannot target EL0.

Exception levels exist within Security states. The Armv8-A security model describes this. When executing at an
Exception level, the PE can access both of the following:

• The resources that are available for the combination of the current Exception level and the current Security
state.

• The resources that are available at all lower Exception levels, provided that those resources are available to
the current Security state.

This means that if the implementation includes EL3, then because EL3 is only implemented in Secure state,
execution at EL3 can access all resources available at all Exception levels, for both Security states.

Each Exception level other than EL0 has its own translation regime and associated control registers. For information
on the translation regimes, see Chapter G5 The AArch32 Virtual Memory System Architecture.

G1.2.1 Typical Exception level usage model

The architecture does not specify what software uses which Exception level. Such choices are outside the scope of
the architecture. However, the following is a common usage model for the Exception levels:

EL0 Applications.

EL1 OS kernel and associated functions that are typically described as privileged.

EL2 Hypervisor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11317
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.2 Exception levels
EL3 Secure monitor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11318
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.3 Exception terminology
G1.3 Exception terminology

The following subsections define the terms that are used when describing exceptions:

• Terminology for taking an exception.

• Terminology for returning from an exception.

• Exception levels.

• Definition of a precise exception.

• Definitions of synchronous and asynchronous exceptions.

G1.3.1 Terminology for taking an exception

An exception is generated when the PE first responds to an exceptional condition. The PE state at this time is the
state that the exception is taken from. The PE state immediately after taking the exception is the state that the
exception is taken to.

G1.3.2 Terminology for returning from an exception

To return from an exception, the PE must execute an exception return instruction. The PE state when an exception
return instruction is committed for execution is the state the exception returns from. The PE state immediately after
the execution of that instruction is the state that the exception returns to.

G1.3.3 Exception levels

An Exception level, ELn, with a larger value of n than another Exception level, is described as being a higher
Exception level than the other Exception level. For example, EL3 is a higher Exception level than EL1.

An Exception level with a smaller value of n than another Exception level is described as being a lower Exception
level than the other Exception level. For example, EL0 is a lower Exception level than EL1.

An Exception level is described as:

• Using AArch64 when execution in that Exception level is in the AArch64 Execution state.

• Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

G1.3.4 Definition of a precise exception

An exception is described as precise when the exception handler receives the PE state and memory system state that
is consistent with the PE having executed all of the instructions up to but not including the point in the instruction
stream where the exception was taken, and none afterwards.

An exception is described as imprecise if it is not precise.

Other than the SError interrupt all exceptions that are taken to AArch32 state are required to be precise. For each
occurrence of an SError interrupt, whether the interrupt is precise or imprecise is IMPLEMENTATION DEFINED.

The terms precise and imprecise can also apply to Debug entry state. See Imprecise entry to Debug state.

Where a synchronous exception that is taken to AArch32 state is generated as part of an instruction that performs
more than one single-copy atomic memory access, the definition of precise permits that the values in registers or
memory affected by those instructions can be UNKNOWN, provided that:

• The accesses affecting those registers or memory locations do not, themselves, generate exceptions.

• The registers are not involved in the calculation of the memory address that is used by the instruction.

In AArch32 state, examples of instructions that perform more than one single-copy atomic memory access are the
LDM and STM instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11319
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.3 Exception terminology
Note

For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses.

G1.3.5 Definitions of synchronous and asynchronous exceptions

An exception is described as synchronous if all of the following apply:

• The exception is generated as a result of direct execution or attempted execution of an instruction.

• The return address presented to the exception handler is guaranteed to indicate the instruction that caused the
exception.

• The exception is precise.

An exception is described as asynchronous if any of the following apply:

• The exception is not generated as a result of direct execution or attempted execution of the instruction stream.

• The return address presented to the exception handler is not guaranteed to indicate the instruction that caused
the exception.

• The exception is imprecise.

For more information about exceptions, see Handling exceptions that are taken to an Exception level using
AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11320
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.4 Execution state
G1.4 Execution state

The Execution states are:

AArch64 The 64-bit Execution state.

AArch32 The 32-bit Execution state.

Execution state gives more information about them.

Exception levels use Execution states. For example, EL0, EL1 and EL2 might all be using AArch32, under EL3
using AArch64.

This means that:

• Different software layers, such as an application, an operating system kernel, and a hypervisor, executing at
different Exception levels, can execute in different Execution states.

• The PE can change Execution states only either:

— At reset.

— On a change of Exception level.

Note

• Typical Exception level usage model shows which Exception levels different software layers might typically
use.

• Effect of not implementing an Exception level gives information on supported configurations of Exception
levels and Execution states.

The interaction between the AArch64 and AArch32 Execution states is called interprocessing. Interprocessing
describes this.

G1.4.1 About the AArch32 PE modes

AArch32 state provides a set of PE modes that support normal software execution and handle exceptions. The
current mode determines the set of registers that are available, as described in AArch32 general-purpose registers,
the PC, and the Special-purpose registers.

The AArch32 modes are:

• Monitor mode. This mode always executes at Secure EL3.

• Hyp mode. This mode always executes at Non-secure EL2.

• System, Supervisor, Abort, Undefined, IRQ, and FIQ modes. The Exception level these modes execute at
depends on the Security state, as described in Security state.

• User mode. This mode always executes at EL0.

Note

AArch64 state does not support modes. Modes are a concept that is specific to AArch32 state. Modes that execute
at a particular Exception level are only implemented if that Exception level supports using AArch32 state.

For more information on modes, see AArch32 state PE modes.

The mode in use immediately before an exception is taken is described as the mode the exception is taken from. The
mode that is used on taking the exception is described as the mode the exception is taken to.

All of the following define the mode that an exception is taken to:

• The type of exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11321
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.4 Execution state
• The mode the exception is taken from.

• Configuration settings defined at EL2 and EL3.

Monitor mode and Hyp mode can create system traps that cause exceptions to EL3 or EL2 respectively. There is an
architected hierarchy where EL2 and EL3 configuration settings affect a common condition, for example interrupt
routing. When no traps are enabled for a particular condition, the AArch32 mode an exception is taken to is called
the default mode for that exception.

In AArch32 state, a number of different modes can exist at the same Exception level. All modes at a particular
Exception level have the same execution privilege, meaning they have the same access rights for accesses to
memory and to System registers. However, the mapping of PE modes to Exception levels depends on the Security
state, as described in Security state. Security state, Exception levels, and AArch32 execution privilege gives more
information about the PE modes, their associated execution privilege, and how this maps onto the Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11322
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.5 Instruction Set state
G1.5 Instruction Set state

In AArch32 state, the Instruction Set state determines the instruction set that the PE is executing. In an
implementation that follows the Arm recommendations, the available Instruction Set states are:

T32 state The PE is executing T32 instructions.

A32 state The PE is executing A32 instructions.

Note

In previous versions of the Arm architecture:

• The T32 instruction set was called the Thumb instruction set.

• The A32 instruction set was called the ARM instruction set.

For more information, see Process state, PSTATE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11323
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.6 Security state
G1.6 Security state

The architecture provides two Security states, each with an associated physical memory address space, as follows:

Secure state When in this state, the PE can access both the Secure physical address space and the
Non-secure physical address space.

Non-secure state When in this state, the PE:

• Can access only the Non-secure physical address space.

• Cannot access the Secure system control resources.

For information on how virtual addresses translate onto Secure physical and Non-secure addresses, see About
VMSAv8-32.

G1.6.1 The Armv8-A security model

The principles of the Armv8-A security model are defined in Security states.

G1.6.1.1 The AArch32 security model, and execution privilege

The Exception level hierarchy of four Exception levels, EL0, EL1, EL2, and EL3, applies to execution in both
Execution states. This section describes the mapping between Exception levels, AArch32 modes, and execution
privilege.

The AArch32 modes Monitor, System, Supervisor, Abort, Undefined, IRQ, and FIQ all have the same execution
privilege.

In Secure state:

• Monitor mode executes only at EL3, and is accessible only when EL3 is using AArch32.

• System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode all:

— Execute at EL1 when EL3 is using AArch64.

— Execute at EL3 when EL3 is using AArch32.

This means that there is a difference in the Secure state hierarchy that the PE is using, depending on which Execution
state EL3 is using:

• If EL3 is using AArch64:

— There is no support for Monitor mode.

— If EL1 is using AArch32, System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode,
and FIQ mode execute at Secure EL1.

• If EL3 is using AArch32:

— Monitor mode is supported, and executes at Secure EL3.

— System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode execute at
Secure EL3.

— There is no support for a Secure EL1 Exception level.

See Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64 for more information
about operation in a Secure EL1 mode when EL3 is using AArch64.

In Non-secure state, the PL1 modes System, Supervisor, Abort, Undefined, IRQ, and FIQ always execute at EL1.

User mode always executes at EL0 and has the lowest possible execution privilege.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11324
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.6 Security state
Hyp mode always executes in Non-secure state at EL2 and has higher execution privilege than all of:

• User mode.

• System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode.

Limited use of Privilege level in AArch32 state describes how, in some contexts, the concept of Privilege levels can
be used to represent the execution privilege hierarchy.

For more information about the modes, see About the AArch32 PE modes.

Figure G1-1 shows the security model when EL3 is using AArch32, and shows the expected use of the different
Exception levels, and which modes execute at which Exception levels.

Figure G1-1 Armv8-A Security model when EL3 is using AArch32

Note

For an overview of the Security models when EL3 is using AArch64 and EL2, EL1, and EL0 are all using AArch32,
see Figure G1-2.

Figure G1-1 shows that when EL3 is using AArch32, the Exception levels and modes available in each Security
state are as follows:

Secure state

EL0 User mode.

EL3 Any mode that is available in Secure state, other than User mode.

Non-secure state

EL0 User mode.

Secure App2Secure App1App2App1App2App1

Guest OS1 Guest OS2

Hypervisor

AArch32

EL0

EL1

EL2

EL3

Non-secure state Secure state

Monitor

Modes:

Secure monitor Secure OS

Hyp
Modes:

AArch32

System, FIQ, IRQ,

Supervisor, Abort,

Undefined

Modes:

AArch32AArch32

System, FIQ, IRQ,

Supervisor, Abort,

Undefined

Modes:

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

System, FIQ, IRQ,

Supervisor, Abort,

Undefined

Modes:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11325
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.6 Security state
EL1 Any mode that is available in Non-secure state, other than Hyp mode and User mode.

EL2 Hyp mode.

Execution at EL0 is described as unprivileged execution.

A mode associated with a particular Exception level, ELn, is described as an ELn mode.

Note

The Exception level defines the ability to access resources in the current Security state, and does not imply anything
about the ability to access resources in the other Security state.

When EL3 is using AArch32, many AArch32 System registers accessible at PL1 are banked between the Secure
and Non-secure states.

When EL3 is using AArch64 and Secure EL1 is using AArch32, System registers accessible at PL1 are not banked
between the Non-secure and Secure states. Software running at EL3 is expected to switch the content of the
PL1-accessible System registers between the Secure and Non-secure context, in a similar manner to switching the
contents of general purpose registers. For information on the relationship between AArch64 and AArch32 System
registers in an interprocessing environment, see Mapping of the System registers between the Execution states.

For more information on the System registers, see The AArch32 System register interface.

The Secure Monitor Call (SMC) instruction provides software with a system call to EL3. When executing at a
privileged Exception level, SMC instructions generates exceptions. For more information, see Secure Monitor Call
(SMC) exception and SMC.

Note

For more information about the Privilege level terminology, see Security state, Exception levels, and AArch32
execution privilege.

G1.6.1.2 Changing from Secure state to Non-secure state

Monitor mode is provided to support switching between Secure and Non-secure states. When executing in an
Exception level that is using AArch32, except in Monitor mode and Hyp mode, the Security state is controlled:

• By the SCR.NS bit, when EL3 is using AArch32.

• By the SCR_EL3.NS bit, when EL3 is using AArch64.

The mapping of AArch32 privileged modes to the exception hierarchy means that it is possible when EL3 is using
AArch32 to change from EL3 to Non-secure EL1 without an exception return. This can occur in one of the
following ways:

• Using an MSR or CPS instruction to switch from Monitor mode to another privileged mode while SCR.NS is 1.

• Using an MCR instruction that writes SCR.NS to change from Secure to Non-secure state when in a privileged
mode other than Monitor mode.

Arm strongly recommends that software executing at EL3 using AArch32 does not use either of these mechanisms
to change from EL3 to Non-secure EL1 without an exception return. The use of both of these mechanisms is
deprecated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11326
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.7 Security state, Exception levels, and AArch32 execution privilege
G1.7 Security state, Exception levels, and AArch32 execution privilege

The hierarchy of software execution privilege, within a particular Security state, is defined by the Exception levels,
with higher Exception level numbers indicating higher privilege. Table G1-1 shows this hierarchy for each Security
state.

When executing in AArch32 state, within a given Security state, the current PE state, including the execution
privilege, is primarily indicated by the current PE mode. In Secure state, how the PE modes map onto the Exception
levels depends on whether EL3 is using AArch32 or is using AArch64, and:

• Figure G1-1 shows this mapping when EL3 is using AArch32.

• Figure G1-2 shows this mapping when EL3 is using AArch64.

Table G1-2 shows this mapping. In interpreting this table:

• Monitor mode is implemented only in Secure state, and only if EL3 is using AArch32.

• Hyp mode is implemented only in Non-secure state, and only if EL2 is using AArch32.

• System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are implemented:

In Secure state If either:

• EL3 is using AArch32.

• EL3 is using AArch64 and EL1 is using AArch32.

In Non-secure state If EL1 is using AArch32.

• User mode is implemented if EL0 is using AArch32.

Table G1-1 Execution privilege and Exception levels, by Security state

Execution privilege Secure state Non-secure state Typical use

Highest EL3 -a

a. EL3 is never implemented in Non-secure state.

Secure monitor

- EL2b

b. If FEAT_SEL2 is implemented in AArch64 state, EL2 can be enabled in Secure state.

EL2 Hypervisor

- EL1 EL1 Secure or Non-secure OS

Lowest, Unprivileged EL0 EL0 Secure or Non-secure application

Table G1-2 Mapping of AArch32 PE modes to Exception levels

Exception
level

PE modes in the given Security state, and EL3 Execution state

Secure state, EL3 using AArch32
Secure state, EL3 using
AArch64a Non-secure state

EL3 Monitor, System, FIQ, IRQ, Supervisor,
Abort, Undefined

- -

EL2 - - Hyp

EL1 - System, FIQ, IRQ, Supervisor,
Abort, Undefined

System, FIQ, IRQ, Supervisor,
Abort, Undefined

EL0 User User User
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11327
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.7 Security state, Exception levels, and AArch32 execution privilege
Because AArch32 behavior is described in terms of the PE modes, and transitions between PE modes, the Exception
levels are implicit in most of the description of operation in AArch32 state.

G1.7.1 Limited use of Privilege level in AArch32 state

As described in The VMSAv8-32 translation regimes, a translation regime maps a virtual address (VA) to the
corresponding physical address (PA). The VMSAv8-64 translation regimes are defined by the Exception levels that
use them. However, because the mapping between PE modes and Exception levels in Secure state depends on
whether EL3 is using AArch32 or is using AArch64, as shown in Table G1-2, the VMSAv8-32 translation regimes
cannot be described simply in terms of either the Exception levels or the PE modes that use them.

To provide a consistent description of address translation as seen from AArch32 state, the VMSAv8-32 translation
regimes are described in terms of the Privilege levels originally defined in the Armv7 descriptions of AArch32 state.
Table G1-3 shows how the PE modes map to these Privilege levels:

Comparing Table G1-3 with Table G1-2 shows that:

In Non-secure state

Each privilege level maps to the corresponding Exception level. For example, PL1 maps to EL1.

In Secure state

PL0 maps to EL0.

The mapping of PL1 depends on the Execution state being used by EL3, as follows:

EL3 using AArch64 Secure PL1 maps to Secure EL1. Monitor mode is not implemented.

EL3 using AArch32 Secure PL1 maps to Secure EL3. Monitor mode is implemented as one of
the Secure PL1 modes.

a. If FEAT_SEL2 is implemented and enabled in AArch64 State, this column can be applied to EL2.

Table G1-3 Mapping of PE modes to AArch32 Privilege levels

Privilege level Secure state Non-secure state

PL2 - Hypa

PL1 Monitorb, System, FIQ, IRQ, Supervisor, Abort, Undefined System, FIQ, IRQ, Supervisor, Abort, Undefined

PL0 User User

a. Implemented only in Non-secure state, and only if EL2 is using AArch32 state.

b. Implemented only in Secure state, and only if EL3 is using AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11328
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.8 Virtualization
G1.8 Virtualization

The support for virtualization described in this section applies only to an implementation that includes EL2. A PE
is in Hyp mode when it is executing at EL2 in the AArch32 state. An exception return from Hyp mode to software
running at EL1 or EL0 is performed using the ERET instruction.

EL2 provides a set of features that support virtualizing the Non-secure state of an A-profile implementation. The
basic model of a virtualized system involves:

• A hypervisor, running in EL2, that is responsible for switching between virtual machines. A virtual machine
is comprised of Non-secure EL1 and Non-secure EL0.

• A number of Guest operating systems, that each run in Non-secure EL1, on a virtual machine.

• For each Guest operating system, applications, that usually run in Non-secure EL0, on a virtual machine.

Note

In some systems, a Guest OS is unaware that it is running on a virtual machine, and is unaware of any other Guest
OS. In other systems, a hypervisor makes the Guest OS aware of these facts. The architecture supports both of these
models.

The hypervisor assigns a VMID to each virtual machine.

In AArch32 state, EL2 is implemented only in Non-secure state, to support Guest OS management. EL2 provides
controls to:

• Provide virtual values for the contents of a small number of identification registers. A read of one of these
registers by a Guest OS or the applications for a Guest OS returns the virtual value.

• Trap various operations, including memory management operations and accesses to many other registers. A
trapped operation generates an exception that is taken to EL2.

• Route interrupts to the appropriate one of:

— The current Guest OS.

— A Guest OS that is not currently running.

— The hypervisor.

In Non-secure state:

• The implementation provides an independent translation regime for memory accesses from EL2.

• For the PL1&0 translation regime, address translation occurs in two stages:

— Stage 1 maps the virtual address (VA) to an intermediate physical address (IPA). This is managed at
EL1, usually by a Guest OS. The Guest OS believes that the IPA is the physical address (PA).

— Stage 2 maps the IPA to the PA. This is managed at EL2. The Guest OS might be unaware of this stage.

For more information on the translation regimes, see Chapter G5 The AArch32 Virtual Memory System Architecture.

G1.8.1 The effect of implementing EL2 on the Exception model

An implementation that includes EL2 implements the following exceptions:

• Hypervisor Call (HVC) exception.

• Traps to EL2. EL2 configurable controls, describes these.

• All of the virtual interrupts:

— Virtual SError.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11329
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.8 Virtualization
— Virtual IRQ.

— Virtual FIQ.

HVC exceptions are always taken to EL2. All virtual interrupts are always taken to EL1, and can only be taken from
Non-secure EL1 or EL0.

Each of the virtual interrupts can be independently enabled using controls at EL2.

Each of the virtual interrupts has a corresponding physical interrupt. See Virtual interrupts.

When a virtual interrupt is enabled, its corresponding physical exception is taken to EL2, unless EL3 has configured
that physical exception to be taken to EL3. For more information, see Asynchronous exception behavior for
exceptions taken from AArch32 state.

An implementation that includes EL2 also:

• Provides controls that can be used to route some synchronous exceptions, taken from Non-secure state, to
EL2. For more information, see:

— Routing exceptions from Non-secure EL0 to EL2.

— Routing debug exceptions to EL2 using AArch32.

— Routing of aborts taken to AArch32 state

• Provides mechanisms to trap PE operations to EL2. See EL2 configurable controls.

When an operation is trapped to EL2, the hypervisor typically either:

— Emulates the required operation. The application running in the Guest OS is unaware of the trap.

— Returns an error to the Guest OS.

G1.8.1.1 Virtual interrupts

The virtual interrupts have names that correspond to the physical interrupts, as shown in Table G1-4.

Software executing at EL2 can use virtual interrupts to signal physical interrupts to Non-secure EL1 and Non-secure
EL0. Example G1-1 shows a usage model for virtual interrupts.

Example G1-1 Virtual interrupt usage model

A usage model is as follows:

1. Software executing at EL2 routes a physical interrupt to EL2.

2. When a physical interrupt of that type occurs, the exception handler executing in EL2 determines whether
the interrupt can be handled in EL2 or requires routing to a Guest OS in EL1. If the interrupt requires routing
to a Guest OS:

• If the Guest OS is currently running, the hypervisor uses the appropriate virtual interrupt type to signal
the physical interrupt to the Guest OS.

Table G1-4 The virtual interrupts

Physical interrupt Corresponding virtual interrupt

External SError Virtual SError

IRQ Virtual IRQ

FIQ Virtual FIQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11330
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.8 Virtualization
• If the Guest OS is not currently running, the physical interrupt is marked as pending for the guest OS.
When the hypervisor next switches to the virtual machine that is running that Guest OS, the hypervisor
uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.

Non-secure EL1 and Non-secure EL0 modes cannot distinguish a virtual interrupt from the corresponding physical
interrupt.

For more information, see Virtual exceptions when an implementation includes EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11331
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes
G1.9 AArch32 state PE modes

Table G1-5 shows the PE modes defined by the Arm architecture, for execution in AArch32 state. In this table:

• The PE mode column gives the name of each mode and the abbreviation used, for example, in the
general-purpose register name suffixes used in AArch32 general-purpose registers, the PC, and the
Special-purpose registers.

• The Encoding column gives the corresponding PSTATE.M field.

• The Exception level column gives the Exception level at which the mode is implemented, including
dependencies on the current Security state and on whether EL3 is using AArch32, see Exception levels.

Note

FEAT_SEL2 is not supported if EL2 is using AArch32.

Mode changes can be made under software control, or can be caused by an external or internal exception.

G1.9.1 Notes on the AArch32 PE modes

PE modes are defined only in AArch32 state. Because each mode is implemented as part of a particular Exception
level that is using AArch32, the set of available modes depends on which Exception levels are implemented and
using AArch32, as described in Effect of the EL3 Execution state on the PE modes and Exception levels.

Table G1-5 AArch32 PE modes

PE mode Encoding Security state Exception level Implemented

User usr 10000 Both EL0 Always

FIQ fiq 10001 Non-secure

Secure

EL1

EL1 or EL3a

Always

IRQ irq 10010 Non-secure

Secure

EL1

EL1 or EL3a

Always

Supervisor svc 10011 Non-secure

Secure

EL1

EL1 or EL3a

Always

Monitor mon 10110 Secure EL3 If EL3 implemented and using AArch32

Abort abt 10111 Non-secure

Secure

EL1

EL1 or EL3a

Always

Hyp hyp 11010 Non-secure EL2 If EL2 implemented and using AArch32

Undefined und 11011 Non-secure

Secure

EL1

EL1 or EL3a

Always

System sys 11111 Non-secure

Secure

EL1

EL1 or EL3a

Always

a. EL3 if EL3 is using AArch32. EL1 if EL3 is using AArch64 and EL1 is using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11332
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes
This section gives more information about each of the modes, when it is implemented.

User mode Software executing in User mode executes at EL0. Execution in User mode is sometimes described
as unprivileged execution. Application programs normally execute in User mode, and any program
executed in User mode:

• Makes only unprivileged accesses to system resources, meaning it cannot access protected
system resources.

• Makes only unprivileged access to memory.

• Cannot change mode except by causing an exception, see Handling exceptions that are taken
to an Exception level using AArch32.

System mode System mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels.

System mode has the same registers available as User mode, and is not entered by any exception.

Supervisor mode

Supervisor mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE
modes and Exception levels.

Supervisor mode is the default mode to which a Supervisor Call exception is taken. Executing an
SVC (Supervisor Call) instruction generates a Supervisor Call exception.

In an implementation where the highest implemented Exception level is using AArch32, if that
Exception level is EL3 or EL1, a PE enters Supervisor mode on reset.

Abort mode Abort mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels.

Abort mode is the default mode to which a Data Abort exception or Prefetch Abort exception is
taken.

Undefined mode

Undefined mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE
modes and Exception levels.

Undefined mode is the default mode to which an instruction-related exception, including any
attempt to execute an UNDEFINED instruction, is taken.

FIQ mode FIQ mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels.

FIQ mode is the default mode to which an FIQ interrupt is taken.

IRQ mode IRQ mode is implemented at EL1 or EL3, see Effect of the EL3 Execution state on the PE modes
and Exception levels.

IRQ mode is the default mode to which an IRQ interrupt is taken.

Hyp mode Hyp mode is the Non-secure EL2 mode.

Hyp mode is entered on taking an exception from Non-secure state that must be taken to EL2.

In an implementation where the highest implemented Exception level is EL2 and EL2 uses
AArch32 on reset, a PE enters Hyp mode on reset.

The Hypervisor Call exception and Hyp Trap exception are implemented as part of EL2 and are
always taken to Hyp mode when EL2 is using AArch32.

Executing an HVC (Hypervisor Call) instruction generates a Hypervisor Call exception. See
Hypervisor Call (HVC) exception.

For more information, see Hyp mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11333
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes
Monitor mode

Monitor mode is the Secure EL3 mode. This means it is always in the Secure state, regardless of the
value of the SCR.NS bit.

Monitor mode is the mode to which a Secure Monitor Call exception is taken. In a Non-secure EL1
mode, or a Secure EL3 mode, executing an SMC (Secure Monitor Call) instruction generates a Secure
Monitor Call exception.

When EL3 is using AArch32, some exceptions that are taken to a different mode by default can be
configured to be taken to EL3, see PE mode for taking exceptions.

When EL3 is using AArch32, software executing in Monitor mode:

• Has access to both the Secure and Non-secure copies of System registers.

• Can perform an exception return to Secure state, or to Non-secure state.

This means that, when EL3 is using AArch32, Monitor mode provides the only recommended
method of changing between the Secure and Non-secure Security states.

Secure and Non-secure modes

In an implementation that includes EL3, the names of most implemented modes can be qualified as
Secure or Non-secure, to indicate whether the PE is also in Secure state or Non-secure state. For
example:

• If a PE is in Supervisor mode and Secure state, it is in Secure Supervisor mode.

• If a PE is in User mode and Non-secure state, it is in Non-secure User mode.

Note

As indicated in the appropriate Mode descriptions:

• Monitor mode is a Secure mode, meaning it is always in the Secure state.

• Hyp mode is a Non-secure mode, meaning it is accessible only in Non-secure state.

G1.9.1.1 Effect of the EL3 Execution state on the PE modes and Exception levels

Figure G1-1 shows the PE modes, Exception levels, and Security states, for an implementation that includes all of
the Exception levels, when EL3 is using AArch32. Figure G1-2 shows how the implemented modes change when
EL3 is using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11334
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes
Figure G1-2 Exception levels, and PE modes, when EL3 is using AArch64

Comparing Figure G1-1 and Figure G1-2 shows how, in Secure state only, the implementation of System, FIQ, IRQ,
Supervisor, Abort, and Undefined mode depends on the Execution state that EL3 is using. That is, these modes are
implemented as follows:

Non-secure state

If Non-secure EL1 is using AArch32, then System, FIQ, IRQ, Supervisor, Abort, and Undefined
modes are implemented as part of EL1. Otherwise, these modes are not implemented in Non-secure
state.

Secure state The implementation of these modes depends on the Execution state that EL3 is using, as follows:

EL3 using AArch64 If Secure EL1 is using AArch32, then System, FIQ, IRQ, Supervisor, Abort,
and Undefined modes are implemented as part of EL1. Otherwise, these
modes are not implemented in Secure state.

EL3 using AArch32 In Secure state, System, FIQ, IRQ, Supervisor, Abort, and Undefined modes
are implemented as part of EL3, see Figure G1-1.

G1.9.2 Hyp mode

Hyp mode is the Non-secure EL2 mode. When EL2 is using AArch32, it provides the usual method of controlling
the virtualization of Non-secure execution at EL1 and EL0.

Note

The alternative method of controlling this functionality is by accessing the EL2 controls from EL3 with the
SCR_EL3.NS or SCR.NS bit set to 1.

Secure App2Secure App1App2App1App2App1

Guest OS1 Guest OS2

Hypervisor

AArch32
‡

EL0

EL1

EL2

EL3

Non-secure state Secure state

Secure monitor

Hyp
Modes:

AArch64

System, FIQ, IRQ,

Supervisor, Abort,

Undefined

Modes:

AArch32
†

AArch32
†

System, FIQ, IRQ,

Supervisor, Abort,

Undefined

Modes:

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

User

Modes:

AArch32

† When EL1 is using AArch64, System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are not implemented

‡ When EL2 is using AArch64, Hyp mode is not implemented

Secure OS

System, FIQ, IRQ,

Supervisor, Abort,

Undefined

Modes:

AArch32
†

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11335
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes
This section summarizes how Hyp mode differs from the other modes, and references where this part of the manual
describes the features of Hyp mode in more detail:

• Software executing in Hyp mode executes at EL2, see Figure G1-1.

• Hyp mode is accessible only in Non-secure state. In Secure state, an attempt by a CPS or an MSR instruction to
change PSTATE.M to Hyp mode is an illegal change to PSTATE.M, as described in Illegal changes to
PSTATE.M.

• In Non-debug state, the only mechanisms for changing to Hyp mode are:

— An exception taken from a Non-secure EL1 or EL0 mode.

— When EL3 is using AArch32, an exception return from Secure Monitor mode.

— When EL3 is using AArch64, an exception return from EL3.

• In Hyp mode, the only exception return is execution of an ERET instruction, see ERET.

• In Hyp mode, the CPACR has no effect on the execution of;

— System register access instructions.

— Advanced SIMD and floating-point instructions.

The HCPTR controls execution of these instructions in Hyp mode.

• If software running in Hyp mode executes an SVC instruction, the Supervisor Call exception generated by the
instruction is taken to Hyp mode, see SVC.

• An exception return with restored PSTATE specifying Hyp mode is an illegal return event, as described in
Illegal return events from AArch32 state, if any of the following applies:

— EL3 is using AArch64 and the value of SCR_EL3.NS is 0.

— EL3 is using AArch32 and the value of SCR.NS is 0.

— The return is from a Non-secure EL1 mode.

• The instructions described in the following sections are UNDEFINED if executed in Hyp mode:

— SRS. See SRS, SRSDA, SRSDB, SRSIA, SRSIB.

— RFE. See RFE, RFEDA, RFEDB, RFEIA, RFEIB.

— LDM (exception return).

— LDM (User registers).

— STM (User registers).

— The SUBS PC, LR forms of the instructions described in SUB, SUBS (immediate).

Note

In T32 state, ERET is encoded as SUBS PC, LR, #0, and therefore this is a valid instruction.

— The exception return form of the instructions described in MOV, MOVS (register).

In addition, deprecated forms of the A32 ADCS, ADDS, ANDS, BICS, EORS, MOVS, MVNS, ORRS, RSBS, RSCS, SBCS, and
SUBS instructions with the PC as the destination register are UNDEFINED if executed in Hyp mode. The
instruction descriptions identify these UNDEFINED cases.

• The Load unprivileged and Store unprivileged instructions LDRT, LDRSHT, LDRHT, LDRBT, STRT, STRHT, and STRBT,
are CONSTRAINED UNPREDICTABLE if executed in Hyp mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11336
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.9 AArch32 state PE modes
To permit entry to Hyp mode using the Hypervisor Call exception, Secure software must enable use of the HVC
instruction:

• By setting the SCR_EL3.HCE bit to 1, if EL3 is using AArch64.

• By setting the SCR.HCE bit to 1, if EL3 is using AArch32.

If EL3 is implemented and using AArch32, and SCR.HCE is set to 0, the HVC instruction is UNPREDICTABLE in Hyp
mode. The instruction is either UNDEFINED or executes as a NOP.

If EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0, the HVC instruction is UNDEFINED in Hyp
mode.

If EL3 is not implemented and HCR.HCD is set to 1, the HVC instruction is UNDEFINED in Hyp mode.

G1.9.3 Pseudocode description of mode operations

The BadMode() function tests whether a 5-bit mode number corresponds to one of the permitted modes.

The BadMode() function is defined in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11337
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.10 AArch32 general-purpose registers, the PC, and the Special-purpose registers
G1.10 AArch32 general-purpose registers, the PC, and the Special-purpose registers

The general-purpose registers, and the PC, in AArch32 state describes the application level view of the
general-purpose registers, and the PC. This view provides:

• The general-purpose registers R0-R14, of which:

— The preferred name for R13 is SP (stack pointer).

— The preferred name for R14 is LR (link register).

• The PC, which can be described as R15.

These registers are selected from a larger set of registers that includes banked copies of some registers, with the
current register selected by the execution mode. The implementation and banking of the general-purpose registers
depends on whether or not the implementation includes EL2 and EL3, and whether those Exception levels are using
AArch32. Figure G1-3 shows the full set of banked general-purpose registers, and the Special-purpose registers:

• The Program Status Registers CPSR and SPSR.

• ELR_hyp.

Note

The architecture uses system level register names, such as R0_usr, R8_usr, and R8_fiq, when it must identify a
specific register. The application level names refer to the registers for the current mode, and usually are sufficient
to identify a register.

Figure G1-3 AArch32 general-purpose registers, PC, and Special-purpose registers, showing banking

APSR

R12

SP

LR

PC

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

‡ Part of EL3. Exists only in Secure state, and only when EL3 is using AArch32.

User System Supervisor Abort Undefined IRQ FIQ

R0_usr

R1_usr

R2_usr

R3_usr

R4_usr

R5_usr

R6_usr

R7_usr

R8_usr

R9_usr

R10_usr

R11_usr

R12_usr

SP_usr

LR_usr

PC

CPSR

SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq

SP_svc SP_abt SP_irq SP_fiq

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

LR_und

SP_und

SPSR_und

Monitor
‡

SPSR_mon

LR_mon

SP_mon

Application

level view System level view

Hyp
†

SP_hyp

SPSR_hyp

† Part of EL2. Exists only in Non-secure state, and only when EL2 is using AArch32.

ELR_hyp

Cells with no entry indicate that the User mode register is used.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11338
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.10 AArch32 general-purpose registers, the PC, and the Special-purpose registers
As described in PE mode for taking exceptions, on taking an exception the PE changes mode, unless it is already in
the mode to which it must take the exception. Each mode that the PE might enter in this way has:

• A banked copy of the stack pointer, for example SP_irq and SP_hyp.

• A register that holds a preferred return address for the exception. This is:

— For the EL2 mode, Hyp mode, the Special-purpose register ELR_hyp.

— For the other privileged modes to which exceptions can be taken, a banked copy of the link register,
for example LR_und and LR_mon.

• A saved copy of PSTATE, made on exception entry, for example SPSR_irq and SPSR_hyp.

In addition, FIQ mode has banked copies of the general-purpose registers R8 to R12.

User mode and System mode share the same general-purpose registers.

User mode, System mode, and Hyp mode share the same LR.

For more information about the application level view of the SP, LR, and PC, and the alternative descriptions of
them as R13, R14 and R15, see The general-purpose registers, and the PC, in AArch32 state.

In AArch32 state, the Special-purpose registers are:

• The CPSR and its view as the APSR.

• The SPSR, including the banked copies SPSR_abt, SPSR_fiq, SPSR_hyp, SPSR_irq, SPSR_mon,
SPSR_svc, and SPSR_und.

• The ELR_hyp.

G1.10.1 Pseudocode description of general-purpose register and PC operations

The following pseudocode gives access to the general-purpose registers and the PC. These registers are an array, _R,
indexed by parameter n. This array is common to AArch32 and AArch64 operation and therefore contains 31 64-bit
registers. _PC is the Program Counter, and its definition is common to AArch32 and AArch64 operation and
therefore its size is 64-bit.

LookUpRIndex() looks up the index value, n, for the specified register number and PE mode, using RBankSelect() to
evaluates the result.

_R accesses the specified general-purpose register in the current PE mode, using Rmode[] to access the register,
accessing _R if necessary. SP accesses the stack pointer, LR accesses the link register, and PC32 accesses the Program
Counter. Each function has a non-assignment form for register reads and an assignment form for register writes,
other than PC32, which has only a non-assignment form.

BranchTo() performs a branch to the specified address.

The _R _PC, LR, PC32, SP, LookUpRIndex(), RBankSelect(), Rmode[], and BranchTo() functions are defined in Chapter J1
Armv8 Pseudocode.

G1.10.2 Saved Program Status Registers (SPSRs)

The Saved Program Status Registers (SPSRs) are used to save PE state on taking exceptions. In AArch32 state, there
is an SPSR for every mode that an exception can be taken to, as shown in Figure G1-3. For example, the SPSR for
Monitor mode is called SPSR_mon.

Note

Exceptions cannot be taken to EL0.

When the PE takes an exception, PE state is saved from PSTATE in the SPSR for the mode the exception is taken
to. For example, if the PE takes an exception to Monitor mode, PE state is saved in SPSR_mon. For more
information on PSTATE, see Process state, PSTATE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11339
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.10 AArch32 general-purpose registers, the PC, and the Special-purpose registers
Note

All PSTATE fields are saved, including those which have no direct read and write access.

Saving the PSTATE fields means the exception handler can:

• On return from the exception, restore the PE state to the values it had immediately before the exception was
taken. When the PE returns from an exception, PE state is restored to the state stored in the SPSR of the mode
the exception is returning from, if the exception return is made using one of:

— ERET.

— LDM.

— The Exception return form of the instruction described in MOV, MOVS (register).

— The Exception return form of the instruction described in SUB, SUBS (immediate).

For example, on returning from Monitor mode, PE state is restored to the state stored in SPSR_mon. If the
exception return is made using the RFE instruction, the PE restores the PE state from an SPSR valued read
from memory.

• Examine the value that PSTATE had when the exception was taken, for example to determine the instruction
set state and privilege level in which the instruction that caused an Undefined Instruction exception was
executed.

The SPSRs are UNKNOWN on a Warm reset. Any operation in a Non-secure EL1 or EL0 mode makes SPSR_hyp
unknown.

SPSR bits that are defined as RES0 on an exception taken from AArch32 state are ignored on any exception return
to AArch32 state.

For more information on SPSR, see SPSR, Saved Program Status Register.

G1.10.2.1 Pseudocode description of SPSR operations

The following pseudocode gives access to the SPSRs.

The SPSR_ELx[] function accesses the current SPSR and is common to AArch32 and AArch64 operation.

The SPSRWriteByInstr() function is used by the MSR (register) and MSR (immediate) instructions to update the
current SPSR.

The SPSR_ELx[] and SPSRWriteByInstr() functions are defined in Chapter J1 Armv8 Pseudocode.

G1.10.3 ELR_hyp

Hyp mode does not provide its own banked copy of LR. Instead, on taking an exception to Hyp mode, the preferred
return address is stored in ELR_hyp, a 32-bit Special-purpose register implemented for this purpose.

ELR_hyp can be accessed explicitly only by executing:

• An MRS or MSR instruction that targets ELR_hyp, see:

— MRS (Banked register).

— MSR (Banked register).

The ERET instruction uses the value in ELR_hyp as the return address for the exception. For more information, see
ERET.

Software execution in any Non-secure EL1 or EL0 mode makes ELR_hyp UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11340
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Process state, PSTATE
G1.11 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

PSTATE includes all of the following:

• Fields that are meaningful only in AArch32 state.

• Fields that are meaningful only in AArch64 state.

• Fields that are meaningful in both Execution states.

PSTATE is defined in pseudocode as the PSTATE structure, of type ProcState. ProcState is defined in Chapter J1
Armv8 Pseudocode.

The PSTATE fields that are meaningful in AArch32 state are:

The Condition flags

N Negative Condition flag.

Z Zero Condition flag.

C Carry Condition flag.

V Overflow Condition flag.

Process state, PSTATE gives more information about these.

The overflow or saturation flag

Q See Process state, PSTATE.

The greater than or equal flags

GE[3:0] See Process state, PSTATE.

The PE state controls

J, T Instruction set state. See Process state, PSTATE. J is RES0. On a Warm reset to AArch32
state, T is set to an IMPLEMENTATION DEFINED value. On taking an exception to:

• A PL1 mode using AArch32, T is set to SCTLR.TE.

• EL2 using AArch32, T is set to HSCTLR.TE.

IT[7:0] IT block state bits. See Process state, PSTATE. On a Warm reset or taking an exception
to AArch32 state, these bits are set to 0.

E Endianness of data accesses. See Process state, PSTATE. If an implementation provides
both Big-endian and Little-endian support, then:

• On a Warm reset to AArch32 state this bit is set to the IMPLEMENTATION DEFINED
reset value of:

— SCTLR.EE if the highest implemented Exception level is not EL2.

— HSCTLR.EE if the highest implemented Exception level is EL2.

• On taking an exception to:

— A PL1 mode using AArch32, this bit is set to SCTLR.EE.

— EL2 using AArch32, this bit is set to HSCTLR.EE

IL Illegal Execution state bit. See The Illegal Execution state exception. On a Warm reset
or taking an exception to AArch32 state, this bit is set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11341
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Process state, PSTATE
For information on how the J, T, IT[7:0], E, and IL fields can be accessed, see Accessing the PE
state controls and the Execution state bit.

The asynchronous exception mask bits

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.

For each bit, the values are:

0 Exception not masked.

1 Exception masked.

On a Warm reset to AArch32 state, these bits are set to 1.

On taking an exception to AArch32 state, one or more of these bits are set to 1.

For more information, see both:

• Asynchronous exception masking controls.

• PE state on exception entry.

The mode bits

M[4:0] Current mode of the PE. Table G1-5 lists the permitted values of this field. All other
values are reserved. Illegal changes to PSTATE.M describes the effect of setting M[4:0]
to a reserved value.

M[4] is:

M[4], Execution state

The current Execution state:

0 AArch64 state.

1 AArch32 state.

Note

This is consistent with the use of M[4:0] in previous versions of the
architecture.

On a Warm reset to AArch32 state, M[4:0] is set to:

• 0b10011, meaning Supervisor mode, if the highest implemented Exception level
is not EL2.

• 0b11010, meaning Hyp mode, if the highest implemented Exception level is EL2.

On taking an exception to AArch32 state, M[4:0] is set to the target mode for the
exception type.

For more information about the PE modes, see:

• AArch32 state PE modes.

• PE state on exception entry.

Access control bits, from Armv8.1

PAN Privileged Access Never (PAN) state bit, see About the PAN bit.

Timing control bits

DIT Data Independent Timing (DIT) bit. For more information, see About the DIT bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11342
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Process state, PSTATE
This bit is implemented only when FEAT_DIT is implemented.

On a Warm reset to AArch32 state, this bit is set to 0.

Speculation control bits

SSBS Speculative Store Bypass Safe (SSBS) bit. For more information, see Speculative Store
Bypass Safe (SSBS).

This bit is implemented only when FEAT_SSBS is implemented.

On a Warm reset to AArch32 state, this bit is set to an IMPLEMENTATION DEFINED value.

G1.11.1 Accessing PSTATE fields

The PSTATE fields can be accessed as described in the following subsections:

• The Current Program Status Register, CPSR.

• Accessing the PE state controls and the Execution state bit.

• The CPS instruction.

• The SETEND instruction.

• The SETPAN instruction.

G1.11.1.1 The Current Program Status Register, CPSR

Some PSTATE fields can be accessed using the Special-purpose Current Program Status Register (CPSR). The
CPSR can be directly read using the MRS instruction, and directly written using the MSR (register) and MSR
(immediate) instructions.

The CPSR bit assignments are:

N, Z, C, V, bits [31:28]

The PSTATE Condition flags.

Q, bit [27] The PSTATE overflow or saturation flag.

Bits[26:23, 20, 15:10, 5]

Reserved, RES0.

SSBS, bit [23] Speculative Store Bypass Safe (SSBS) bit, see Access permissions for instruction execution.

Bit[22] In Armv8.0, Reserved, RES0.

In Armv8.1, Privileged Access Never (PAN) state bit, see About the PAN bit.

DIT, bit [21] Shows the value of CPSR.DIT immediately before the exception was taken.

GE[3:0], bits [19:16]

The PSTATE greater than or equal flags.

E, bit [9] The PSTATE endianness bit.

RES0 FN

31 30 29 28 27 26 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Z C V Q RES0 GE[3:0] E A I M[4:0]

Condition flags Mask bits

22 21

RES0

PAN, from Armv8.1

DIT, from Armv8.4

25

RES0

SSBS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11343
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Process state, PSTATE
A, I, F, bits [8:6]

The PSTATE asynchronous exception mask bits.

M[4:0], bits [4:0]

The PSTATE mode bits.

The other PSTATE fields cannot be accessed by using the CPSR. For information on how to access them, see
Accessing the PE state controls and the Execution state bit.

The application level alias for the CPSR is the APSR. The APSR is a subset of the CPSR. See The Application
Program Status Register, APSR.

Writes to the CPSR have side-effects on various aspects of PE operation. All of these side-effects, except
side-effects on memory accesses associated with fetching instructions, are synchronous to the CPSR write. This
means that they are guaranteed:

• Not to be visible to earlier instructions in the execution stream.

• To be visible to later instructions in the execution stream.

The privilege level and address space of memory accesses associated with fetching instructions depend on the
current Exception level and Security state. Writes to PSTATE.M can change one or both of the Exception level and
Security state. The effect, on memory accesses associated with fetching instructions, of a change of Exception level
or Security state is:

• Synchronous to the change of Exception level or Security state, if that change is caused by an exception entry
or exception return.

• Guaranteed not to be visible to any memory access caused by fetching an earlier instruction in the execution
stream.

• Guaranteed to be visible to any memory access caused by fetching any instruction after the next Context
Synchronization event in the execution stream.

• Might or might not affect memory accesses caused by fetching instructions between the mode change
instruction and the point where the mode change is guaranteed to be visible.

See Exception return to an Exception level using AArch32 for the definition of exception return instructions.

G1.11.1.2 Accessing the PE state controls and the Execution state bit

The PE state controls are the PSTATE.{IL, IT[7:0], J, E, T} fields. Software can read or write these in an SPSR.

In the CPSR:

• The PE state controls, other than PSTATE.E, are RAZ when read by an MRS instruction.

• Writes to the PE state controls, other than PSTATE.E, by MSR (register) or MSR (immediate), are ignored
in all modes.

Instructions other than MRS, MSR (register), or MSR (immediate) that access the PE state controls can read and
write them in any mode.

Unlike the other PSTATE PE state controls, PSTATE.E can be read by an MRS instruction and might be written by
MSR (register) or MSR (immediate). However, Arm deprecates PSTATE.E having a different value from the
equivalent System register EE bit, see Mixed-endian support in AArch32.

Note

To determine the current endianness, software can use an LDR instruction to load a word from memory with a known
value that differs if the endianness is reversed. For example, using an LDR instruction to load a word whose four bytes
are 0x01, 0x00, 0x00, and 0x00 in ascending order of memory address loads the destination register with:

• 0x00000001 if the current endianness is little-endian.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11344
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Process state, PSTATE
• 0x01000000 if the current endianness is big-endian.

The PSTATE.M[4] bit is the Execution state bit. When read by an MRS instruction in AArch32 state, this bit always
reads as 1. When written by an MSR (register) instruction or MSR (immediate) instruction, writing a value other
than 1 is an illegal change to the PSTATE.M field. See Illegal changes to PSTATE.M.

G1.11.1.3 The CPS instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.{A, I, F} and PSTATE.M:

CPSIE <iflags> {, #<mode>}

Sets the specified PSTATE. {A, I, F} exception masks to 0, enabling the exception, and optionally
changes to the specified mode.

CPSID <iflags> {, #<mode>}

Sets the specified PSTATE.{A, I, F} exception masks to 1, disabling the exception, and optionally
changes to the specified mode.

CPS #<mode> Changes to the specified mode without affecting the PSTATE.{A, I, F} exception masks.

The CPS instruction is unconditional. For more information, see CPS, CPSID, CPSIE.

G1.11.1.4 The SETEND instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.E:

SETEND BE Sets PSTATE.E to 1, for big-endian operation.

SETEND LE Sets PSTATE.E to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND. Arm deprecates use of the SETEND
instruction.

G1.11.1.5 The SETPAN instruction

FEAT_PAN adds the SETPAN instruction to the A32 and T32 instruction sets, to manipulate PSTATE.PAN:

SETPAN #0 Sets PSTATE.PAN to 0, disabling Privileged access-never operation.

SETPAN #1 Sets PSTATE.PAN to 1, enabling Privileged access-never operation.

The SETPAN instruction is unconditional.

• SETPAN.

• About the PAN bit.

G1.11.2 The Saved Program Status Registers (SPSRs)

On taking an exception, PSTATE is preserved in the SPSR of the mode to which the exception is taken. The SPSRs
are described in Saved Program Status Registers (SPSRs).

G1.11.3 Illegal changes to PSTATE.M

In AArch32 PE modes other than User mode, MSR and CPS instructions can explicitly change PSTATE.M. The
following changes to PSTATE.M by MSR or CPS instructions are illegal:

• A change to an encoding that Table G1-5 does not show.

• A change to a mode that is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11345
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.11 Process state, PSTATE
• A change to a mode that is not accessible from the context the MRS or CPS instruction is executed in, as follows:

— A change to a mode that would cause entry to a higher Exception level.

— When executing in Non-secure state, a change to Monitor mode.

— When executing in Secure EL1, a change to Monitor mode when EL3 is using AArch64.

— A change to Hyp mode from any other mode.

— A change from Hyp mode to any other mode.

— When the value of HCR.TGE is 1, attempting to change from Monitor mode to a Non-secure PL1
mode, see Trapping of general exceptions to Hyp mode.

On executing an instruction that attempts an illegal change to PSTATE.M:

• PSTATE.M is unchanged, and the current mode remains unchanged.

• PSTATE.IL is set to 1.

• All other PSTATE fields are written to as normal.

Note

For the PSTATE fields that MSR and CPS instructions update, see the instruction descriptions:

• MSR (register).

• MSR (immediate).

• CPS, CPSID, CPSIE.

When the value of PSTATE.IL is 1, any attempt to execute any instruction results in an Illegal Execution state
exception. See The Illegal Execution state exception.

Note

The PE ignores writes to PSTATE.M when executing at PL0.

G1.11.4 Pseudocode description of PSTATE operations

The CPSRWriteByInstr() function is used by the MSR (register) and MSR (immediate) instructions to update
PSTATE.

The SetPSTATEFromPSR() function updates PSTATE from a CPSR or SPSR.

Chapter J1 Armv8 Pseudocode defines these functions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11346
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Instruction set states
G1.12 Instruction set states

The instruction set states are described in Chapter E2 The AArch32 Application Level Memory Model and
application level operations on them are described there. This section supplies more information about how they
interact with system level functionality, in the sections:

• Exceptions and instruction set state.

• Unimplemented instruction sets.

G1.12.1 Exceptions and instruction set state

If an exception is taken to an EL1 mode, the SCTLR.TE bit for the Security state the exception is taken to determines
the instruction set state that handles the exception, and if necessary, the PE changes to this instruction set state on
exception entry.

If the exception is taken to Hyp mode, the HSCTLR.TE bit determines the instruction set state that handles the
exception, and if necessary, the PE changes to this instruction set state on exception entry.

On coming out of reset, if the highest implemented Exception level is using AArch32:

• If the highest implemented Exception level is EL2, the PE starts execution in Hyp mode, in the instruction
set state determined by the reset value of HSCTLR.TE.

• Otherwise, the PE starts execution in Supervisor mode, in the instruction set state determined by the reset
value of SCTLR.TE. If the implementation includes EL3, this execution is in Secure Supervisor mode.

For more information about exception entry, see Overview of exception entry.

G1.12.2 Unimplemented instruction sets

The PSTATE.T bit defines the current instruction set state, see Process state, PSTATE.

From the introduction of the Armv8 architecture, there is no support for the hardware acceleration of Java
bytecodes, and the Jazelle Instruction set state is obsolete. Every AArch32 implementation must support the Trivial
Jazelle implementation described in Trivial implementation of the Jazelle extension.

Note

In previous versions of the Arm architecture, the PSTATE.{J, T} bits determined the Instruction set state. From the
introduction of Armv8, PSTATE.J is RES0.

G1.12.2.1 Trivial implementation of the Jazelle extension

The implementation of AArch32 state is required to include the trivial Jazelle implementation.

In a trivial implementation of the Jazelle extension:

• At EL1, EL2, or EL3, if the Exception level is using AArch32:

— The JMCR and JOSCR are RAZ/WI.

— The JIDR is a RAZ read-only register.

• At EL0 when EL0 is using AArch32:

— It is IMPLEMENTATION DEFINED whether the JMCR and JOSCR are RAZ/WI or UNDEFINED.

— It is IMPLEMENTATION DEFINED whether JIDR is RAZ or UNDEFINED.

• The BXJ instruction behaves identically to the BX instruction in all circumstances.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11347
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.12 Instruction set states
Note

This is consistent with the JMCR.JE bit being RAZ, and means that the A32 and T32 instruction sets do not
provide any mechanism for attempting to enter Jazelle state.

• Jazelle state, as defined in previous versions of the Arm architecture, is an unimplemented instruction set
state.

These requirements ensure that operating systems that support an EJVM execute correctly.

A trivial implementation is not required to extend the PC to 32 bits, that is, it can implement PC[0] as RAZ/WI.

Note

This is because the only way that PC[0] is visible in A32 or T32 state is as a result of an exception occurring during
Jazelle state execution, and Jazelle state execution cannot occur on a trivial implementation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11348
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13 Handling exceptions that are taken to an Exception level using AArch32

An exception causes the PE to suspend program execution to handle an event, such as an externally generated
interrupt or an attempt to execute an undefined instruction. Exceptions can be generated by internal and external
sources.

Normally, when an exception is taken the PE state is preserved immediately, before handling the exception. This
means that, when the event has been handled, the original state can be restored and program execution resumed from
the point where the exception was taken.

More than one exception might be generated at the same time, and a new exception can be generated while the PE
is handling an exception.

The following sections describe exception handling:

• Exception vectors and the exception base address.

• Exception prioritization for exceptions taken to AArch32 state.

• Overview of exception entry.

• PE mode for taking exceptions.

• PE state on exception entry.

• Routing exceptions from Non-secure EL0 to EL2.

• Routing debug exceptions to EL2 using AArch32.

See also:

• Routing of aborts taken to AArch32 state.

• Exception return to an Exception level using AArch32.

• Asynchronous exception behavior for exceptions taken from AArch32 state.

• AArch32 state exception descriptions.

G1.13.1 Exception vectors and the exception base address

When an exception is taken, PE execution is forced to an address that corresponds to the type of exception. This
address is called the exception vector for that exception. The vectors for the different types of exception form a
vector table.

Note

There are significant differences in the sets of exception vectors for exceptions taken to an Exception level that is
using AArch32 and for exceptions taken to an Exception level that is using AArch64. This part of this manual
describes only how exceptions are taken to an Exception level that is using AArch32.

When an exception is taken to an Exception level that is using AArch64, then the exception is taken as described in
Chapter D1 The AArch64 System Level Programmers’ Model using the exception vectors described in Exception
vectors.

AArch32 state defines exception vector tables for exceptions taken to EL2 and EL3 when those Exception levels
are using AArch32. Those vector tables are not used when the corresponding Exception levels are using AArch64.

A set of exception vectors for an Exception level that is using AArch32 comprises eight consecutive word-aligned
memory addresses, starting at an exception base address. These eight vectors form an AArch32 vector table.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11349
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
The number of possible exception base addresses, and therefore the number of vector tables, depends on the
implemented Exception levels, as follows:

Implementation that does not include EL3

Any implementation that does not include EL3 must include the following AArch32 vector table if
EL1 can use AArch32:

• An exception table for exceptions taken to EL1 modes other than System mode. This is the
EL1 vector table, and is in the address space of the PL1&0 translation regime.

Note
Exceptions cannot be taken to System mode.

For this vector table:

— When SCTLR.V == 0, the VBAR holds the exception base address.

— When SCTLR.V == 1, the exception base address is 0xFFFF0000.

Implementation that includes EL2

Any implementation that includes EL2 must include the following additional AArch32 vector table
if EL2 can use AArch32:

• An exception table for exceptions taken to Hyp mode. This is the Hyp vector table, and is in
the address space of the Non-secure PL2 translation regime.

For this vector table, HVBAR holds the exception base address.

Implementation that includes EL3

Any implementation that includes EL3 must include the following AArch32 vector tables:

• If EL3 can use AArch32, a vector table for exceptions taken to Secure Monitor mode. This
is the Monitor vector table, and is in the address space of the Secure PL1&0 translation
regime.

For this vector table, MVBAR holds the exception base address.

• If Secure EL1 can use AArch32, a vector table for exceptions taken to Secure privileged
modes other than Monitor mode and System mode. This is the Secure vector table, and is in
the address space of the Secure PL1&0 translation regime.

— When the Secure instance of SCTLR.V == 0, the Secure instance of VBAR holds the
exception base address.

— When the Secure instance of SCTLR.V == 1, the exception base address is 0xFFFF0000.

• If Non-secure EL1 can use AArch32, a vector table for exceptions taken to Non-secure PL1
modes. This is the Non-secure vector table, and is in the address space of the Non-secure
PL1&0 translation regime.

— When the Non-secure instance of SCTLR.V == 0, the Non-secure instance of VBAR
holds the exception base address.

— When the Non-secure instance of SCTLR.V == 1, the exception base address is
0xFFFF0000.

The following subsections give more information:

• The vector tables and exception offsets.

• Pseudocode determination of the exception base address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11350
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13.1.1 The vector tables and exception offsets

Table G1-6 defines the AArch32 vector table entries. In this table:

• The Hyp column defines the vector table entries for exceptions taken to Hyp mode.

• The Monitor column defines the vector table entries for exceptions taken to Monitor mode.

• The Secure and Non-secure columns define the Secure and Non-secure vector table entries, that are used for
exceptions taken to modes other than Monitor mode, Hyp mode, System mode, and User mode. Table G1-7
shows the mode to which each of these exceptions is taken. Each of these modes is described as the default
mode for taking the corresponding exception.

Note

Exceptions cannot be taken to System mode or User mode.

For more information about determining the mode to which an exception is taken, see PE mode for taking
exceptions.

When EL2 is using AArch32, it provides a number of additional exceptions, some of which are not shown explicitly
in the vector tables. For more information, see Offsets of AArch32 exceptions provided by EL2.

Table G1-6 The AArch32 vector tables

Offset
Vector tables

Hypa Monitorb Securec Non-securec

0x00 Not used Not used Not usedd Not used

0x04 Undefined Instruction, from Hyp mode Monitor Trap Undefined Instruction Undefined Instruction

0x08 Hypervisor Call, from Hyp mode Secure Monitor Call Supervisor Call Supervisor Call

0x0C Prefetch Abort, from Hyp mode Prefetch Abort Prefetch Abort Prefetch Abort

0x10 Data Abort, from Hyp mode Data Abort Data Abort Data Abort

0x14 Hyp Trap, or Hyp mode entrye Not used Not used Not used

0x18 IRQ interrupt IRQ interrupt IRQ interrupt IRQ interrupt

0x1C FIQ interrupt FIQ interrupt FIQ interrupt FIQ interrupt

a. Non-secure state only. Implemented only if the implementation includes EL2 and EL2 can use AArch32.

b. Secure state only. Implemented only if the implementation includes EL3 and EL3 can use AArch32.

c. If the implementation does not include EL3 then there is a single vector table for exceptions taken to EL1 when EL1 is using
AArch32. That table holds the vectors shown in the Secure column of this table

d. In previous versions of the architecture, this entry has been used for the Reset vector, meaning the address at which execution starts
on coming out of reset. From the introduction of Armv8, the AArch32 Reset vector is IMPLEMENTATION DEFINED. An
implementation might use this vector table entry to hold the Reset vector.

e. See Use of offset 0x14 in the Hyp vector table.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11351
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
For more information about use of the vector tables, see Overview of exception entry.

G1.13.1.1.1 Offsets of AArch32 exceptions provided by EL2

EL2 provides the following exceptions. When EL2 is using AArch32, these exceptions are taken to Hyp mode, and
the PE enters the handlers for these exceptions using the following vector table entries shown in Table G1-6:

Hypervisor Call

If taken from Hyp mode, shown explicitly in the Hyp mode vector table. Otherwise, see Use of offset
0x14 in the Hyp vector table.

Hyp Trap Shown explicitly in the Hyp mode vector table.

Virtual Abort Entered through the Data Abort vector in the Non-secure vector table.

Virtual IRQ Entered through the IRQ vector in the Non-secure vector table.

Virtual FIQ Entered through the FIQ vector in the Non-secure vector table.

Note

Virtual exceptions when an implementation includes EL2 gives more information about the virtual exceptions.

G1.13.1.1.2 Use of offset 0x14 in the Hyp vector table

The vector at offset 0x14 in the Hyp vector table is used for all exceptions that cause entry to Hyp mode from
Non-secure EL0 and EL1, except for IRQ and FIQ exceptions.

Note

Virtual exceptions are never taken to Hyp mode.

G1.13.1.1.3 Pseudocode determination of the exception base address

For an exception taken to a PL1 mode, the ExcVectorBase() function determines the exception base address.

The ExcVectorBase() function is defined in Chapter J1 Armv8 Pseudocode.

Note

The PL1 modes to which exceptions can be taken are Supervisor mode, Undefined mode, Abort mode, IRQ mode,
and FIQ mode. In Non-secure state, and in Secure state when EL3 is using AArch64, these are EL1 modes.
However, in Secure state when EL3 is using AArch32, these are EL3 modes. For more information, see Security
state, Exception levels, and AArch32 execution privilege.

Table G1-7 Modes for taking the exceptions shown in the Secure or Non-secure vector table

Exception Mode taken to

Undefined Instruction Undefined

Supervisor Call Supervisor

Prefetch Abort Abort

Data Abort Abort

IRQ interrupt IRQ

FIQ interrupt FIQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11352
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13.2 Exception prioritization for exceptions taken to AArch32 state

The following sections describe the requirements for the prioritization of synchronous exceptions, and the limits on
when asynchronous exceptions can be taken:

• Synchronous exception prioritization for exceptions taken to AArch32 state.

• Architectural requirements for taking asynchronous exceptions.

See also:

• AArch32 state prioritization of synchronous aborts from a single stage of address translation, for information
about:

— The prioritization of aborts on a single memory access in a VMSA implementation.

— The prioritization of exceptions generated during address translation.

• Debug state entry and debug event prioritization for information about the relative prioritization of
exceptions and the debug events that cause entry to Debug state.

G1.13.2.1 Synchronous exception prioritization for exceptions taken to AArch32 state

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching
of the instruction, its decode, and eventual execution. This section describes the prioritization of such exceptions
when they are taken to an Exception level that is using AArch32.

Note

• An exception that is taken to an Exception level that is using AArch32 must have been taken from an
Exception level that is using AArch32.

• The priority numbering in this list correlates with the equivalent AArch64 list in Prioritization of
Synchronous exceptions taken to AArch64 state.

For an exception that is taken to an Exception level that is using AArch32, exceptions are prioritized as follows,
where 1 is the highest priority.

1-6 These priority numbers are used by AArch64 exceptions or debug events.

7 PC alignment fault exceptions. A PC alignment fault exception can only be taken to an Exception
level that is using AArch32 as a result of:

• The CONSTRAINED UNPREDICTABLE handling of a branch to an unaligned address, see
Branching to an unaligned PC.

• Exiting from Debug state to AArch32 specifying an unaligned PC value, see Exiting Debug
state.

A PC alignment fault exception that is taken to an Exception level that is using AArch32 is reported
as a Prefetch Abort exception, see Prefetch Abort exception reporting a PC alignment fault
exception.

8 Prefetch Abort exceptions. See Prefetch Abort exception and AArch32 state prioritization of
synchronous aborts from a single stage of address translation.

9 Breakpoint exceptions or Address Matching Vector Catch exceptions. See:

• Breakpoint exceptions.

• Vector Catch exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11353
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Note

An Exception Trapping Vector Catch exception is generated on exception entry for an exception that
has been prioritized as described in this section. This means that it does not have its own entry in
this list.

10 Illegal Execution state exceptions. See The Illegal Execution state exception.

11 Software Breakpoint Exceptions caused by the execution of a BKPT Exception generating instruction.

12-13 These priority numbers are used by AArch64 exceptions.

14 Exceptions taken from EL1 to EL2 because of one of the following configuration settings:

• HSTR.Tn.

• HCR.TIDCP.

15 Undefined Instruction exceptions that occur as a result of one or more of the following:

• An attempt to execute an unallocated instruction encoding, including an encoding for an
instruction that is not implemented in the PE implementation.

• An attempt to execute an instruction that is defined never to be accessible at the current
Exception level regardless of any enables or traps.

• Debug state execution of an instruction encoding that is not accessible in Debug state.

• Non-debug state execution of an instruction encoding that is not accessible in Non-debug
state.

• Execution of an HVC instruction when HVC instructions are disabled by SCR.HCE or
HCR.HCD.

• Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE or when
halting is prohibited.

• When FEAT_FGT and FEAT_PMUv3 are implemented, executing an MSR or MRS instruction
in AArch64 state, or an MCR or MRC instruction in AArch32 state, that accesses a register
associated with an unimplemented event counter.

• In Debug state:

— Execution of a DCPS1 instruction in Non-secure EL0 when HCR.TGE is 1.

— Execution of a DCPS2 instruction in EL1 or EL0 when SCR.NS is 0 or when EL2 is
disabled or not implemented in the current Security state.

— Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not
implemented.

— When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction
that is trapped to EL3.

• Execution of an instruction that is UNDEFINED as a result of any of:

— Being in an IT block when SCTLR.ITD is 1, or when HSCTLR.ITD is 1.

— Executing a SETEND instruction when SCTLR.SED is 1, or when HSCTLR.SED is 1.

— Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when
SCTLR.CP15BEN is 0, or when HSCTLR.CP15BEN is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11354
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
• Execution of an instruction that is UNDEFINED because at least one of FPSCR.{Stride, Len}
is nonzero, when programming these bits to nonzero values is supported. See Floating-point
exceptions and exception traps.

16 This priority number is used by AArch64 exceptions.

17 Exceptions taken to EL1, or taken to EL2 because the value of HCR.TGE is 1, that are generated
because of configurable access to instructions, and that are not covered by any of priorities 6-15.

18 Exceptions taken from EL0 to EL2 because of one of the following configuration settings:

• HSTR.Tn.

• HCR.TIDCP.

19 This priority number is used by AArch64 exceptions.

20 Exceptions taken to EL2 because of configuration settings in the HCPTR.

21 Exceptions taken to EL2 because of one of the following configuration settings:

• Any setting in HCR, other than the TIDCP bit.

• Any setting in CNTHCTL.

• Any setting in HDCR.

• If EL1 is using AArch64 state, any of the fine-grained traps in HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2, HFGRTR_EL2, HFGWTR_EL2.

22 Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by
any of priorities 6-21.

23 Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR.SCD is 1.

24 Exceptions caused by the execution of an Exception generating instruction, SVC, HVC, or SMC.

25-27 These priority numbers are used by AArch64 exceptions.

28 Exceptions taken to EL3 from EL0, EL1, or EL2 because of configuration settings in SDCR.

29 Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by
any of priorities 6-29.

30-34 These priority number are used by AArch64 exceptions.

35 Trapped floating-point exceptions, if supported. See Floating-point exceptions and exception traps.

36-39 These priority numbers are used by AArch64 exceptions and debug events.

40 In descending priority order:

a) Data Abort exceptions on translation table walks and translation table entry updates.

b) Data Abort exceptions due to synchronous External aborts on translation table walks and
translation table entry updates.

c) Data Abort exceptions arising from an MMU fault not on a translation table walk, that are not
covered by priorities 41 or 43.

See Data Abort exception and AArch32 state prioritization of synchronous aborts from a single
stage of address translation.

41 Data Abort exceptions due to synchronous External aborts on the final physical address of the
address translation process.

Whether these are prioritized here or as priority 43 is IMPLEMENTATION DEFINED.

See External aborts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11355
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
42 Watchpoint exceptions. See Watchpoint exceptions.

43 The exceptions listed for priority 41 if they are prioritized as 43.

44 This priority number is used by AArch64 exceptions.

For priorities 40-43, if an instruction results in more than one single-copy atomic memory access, the prioritization
between synchronous exceptions generated on each of those different memory accesses is not defined by the
architecture.

Note

Exceptions generated by a translation table walk are reported and prioritized as either a Prefetch Abort exception,
priority 8 in this list, or a Data Abort exception, priority 37 in this list. See also AArch32 state prioritization of
synchronous aborts from a single stage of address translation.

G1.13.2.2 Architectural requirements for taking asynchronous exceptions

The Arm architecture does not define when asynchronous exceptions are taken. The prioritization of asynchronous
exceptions, including virtual asynchronous exceptions, is IMPLEMENTATION DEFINED.

An asynchronous exception that is pending before a Context Synchronization event in the following list, is taken
before the first instruction after the context synchronizing event, provided that the pending asynchronous event is
not masked:

• Execution of an ISB instruction that does not fail its Condition code check.

• Exception entry.

• Exception return.

• Exit from Debug state.

Note

• If the first instruction after the context synchronizing event generates a synchronous exception, then the
architecture does not define the order in which that synchronous exception and the asynchronous exception
are taken.

• The ISR identifies any pending asynchronous exceptions.

• Interrupts are masked when the PE is in Debug state, and therefore this list of context synchronizing events
does not include the DCPS and DRPS instructions.

In the absence of a specific requirement to take an asynchronous exception, the only requirement of the architecture
is that an unmasked asynchronous exception is taken in finite time.

Note

The taking of an unmasked asynchronous exception in finite time must occur with all code sequences, including
with a sequence that consists of unconditional loops.

If an unmasked interrupt was pending but is changed to not pending before it is taken, then the architecture permits
the interrupt to be taken, but does not require this to happen. If the interrupt is taken, then it must be taken before
the first Context Synchronization event after the interrupt was changed to not pending.

PSTATE includes a mask bit for each type of asynchronous exception. Setting one of these bits to 1 can prevent the
corresponding asynchronous exception from being taken, although when the PE is in Non-secure state other controls
can modify the effect of these bits. For more information, see Asynchronous exception behavior for exceptions taken
from AArch32 state.

Taking an exception sets an exception-dependent subset of these mask bits.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11356
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Note

In some contexts, the PSTATE.{A, I, F} bits mask the taking of asynchronous exceptions. The way these are set on
exception entry, described in PSTATE.{A, I, F, M} values on exception entry, can prevent an exception handler being
interrupted by an asynchronous exception.

G1.13.3 Overview of exception entry

There are some significant differences between the handling of exceptions taken to Hyp mode and exceptions taken
to other modes. Because Hyp mode is the EL2 mode, this means that the following descriptions sometimes
distinguish between the EL2 mode and the non-EL2 modes.

On taking an exception to an Exception level that is using AArch32:

1. The hardware determines the mode to which the exception must be taken, see PE mode for taking exceptions.

2. A link value, indicating the preferred return address for the exception, is saved. This is a possible return
address for the exception handler, and depends on:

• The exception type.

• Whether the exception is taken to the EL2 mode or to a non-EL2 mode.

• For some exceptions taken to non-EL2 modes, the instruction set state when the exception was taken.

Where the link value is saved depends on whether the exception is taken to the EL2 mode.

For more information, see Link values saved on exception entry.

3. The value of PSTATE is saved in the SPSR for the mode to which the exception must be taken. The value
saved in SPSR.IT[7:0] is always correct for the preferred return address.

4. In an implementation that includes EL3, when EL3 is using AArch32:

• If the exception is taken from Monitor mode, SCR.NS is cleared to 0.

• Otherwise, taking the exception leaves SCR.NS unchanged.

When EL3 is using AArch64, Monitor mode is not available.

5. PSTATE is updated with new context information for the exception handler. This includes:

• Setting PSTATE.M to the PE mode to which the exception is taken.

• Setting the appropriate PSTATE mask bits. This can disable the corresponding exceptions, preventing
uncontrolled nesting of exception handlers.

• Setting the instruction set state to the state required for exception entry.

• Setting the endianness to the required value for exception entry.

• Clearing the PSTATE.IT[7:0] bits to 0.

For more information, see PE state on exception entry.

6. The appropriate exception vector is loaded into the PC, see Exception vectors and the exception base address.

7. Execution continues from the address held in the PC.

For an exception taken to a non-EL2 mode, on exception entry, the exception handler can use the SRS instruction to
store the return state onto the stack of any mode at the same Exception level and in the same Security state, and can
use the CPS instruction to change mode. For more information about the instructions, see SRS, SRSDA, SRSDB,
SRSIA, SRSIB and CPS, CPSID, CPSIE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11357
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Later sections of this chapter describe each of the possible exceptions, and each of these descriptions includes a
pseudocode description of the PE state changes on taking that exception. Table G1-8 gives an index to these
descriptions:

The following sections give more information about the PE state changes, for different architecture
implementations. However, you must refer to the pseudocode for a full description of the state changes:

• PE mode for taking exceptions.

• PE state on exception entry.

G1.13.3.1 Link values saved on exception entry

On exception entry, a link value for use on return from the exception, is saved. This link value is based on the
preferred return address for the exception, as shown in Table G1-9:

Table G1-8 Pseudocode descriptions of exception entry for exceptions taken to AArch32 state

Exception Description of exception entry

Reset Pseudocode descriptions of reset

Undefined Instruction Pseudocode description of taking the Undefined Instruction exception

Hyp Trap Pseudocode description of taking the Hyp Trap exception

Monitor Trap Pseudocode description of taking the Monitor Trap exception

Supervisor Call Pseudocode description of taking the Supervisor Call exception

Secure Monitor Call Pseudocode description of taking the Secure Monitor Call exception

Hypervisor Call Pseudocode description of taking the Hypervisor Call exception

Prefetch Abort Pseudocode description of taking the Prefetch Abort exception

Data Abort Pseudocode description of taking the Data Abort exception

Virtual Abort Pseudocode description of taking the Virtual SError interrupt exception

IRQ Pseudocode description of taking the physical IRQ exception

Virtual IRQ Pseudocode description of taking the Virtual IRQ exception

FIQ Pseudocode description of taking the FIQ exception

Virtual FIQ Pseudocode description of taking the Virtual FIQ exception

Table G1-9 Exception return addresses for exceptions taken to AArch32 state

Exception Preferred return address Taken to a mode at

Undefined Instruction Address of the UNDEFINED instruction Non-EL2a, or EL2c

Hyp Trap Address of the trapped instruction EL2 onlyc

Monitor Trap Address of the trapped instruction EL3 only

Supervisor Call Address of the instruction after the SVC instruction Non-EL2a or EL2c

Secure Monitor Call Address of the instruction after the SMC instruction EL3b, and only in Secure state

Hypervisor Call Address of the instruction after the HVC instruction EL2 onlyc
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11358
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Note

• Although Reset is described as an exception, it differs significantly from other exceptions. The architecture
has no concept of a return from a Reset and therefore it is not listed in this section.

• For each exception, the preferred return address is not affected by the Exception level from which the
exception was taken.

The link value saved, and where it is saved, depend on whether the exception is taken to a non-EL2 mode, or to an
EL2 mode, as follows:

Exception taken to a non-EL2 mode

The link value is saved in the LR for the mode to which the exception is taken.

The saved link value is the preferred return address for the exception, plus an offset that depends on
the instruction set state when the exception was taken, as Table G1-10 shows:

Prefetch Abort Address of aborted instruction fetch Non-EL2a or EL2c

Data Abort Address of instruction that generated the abort Non-EL2a or EL2c

Virtual Abort Address of next instruction to execute EL1, and only in Non-secure state

IRQ or FIQ Address of next instruction to execute Non-EL2a or EL2c

Virtual IRQ or Virtual FIQ Address of next instruction to execute EL1, and only in Non-secure state

a. EL1 if the exception is taken to a Non-secure mode, or is taken to a Secure mode when EL3 is using AArch64. EL3 if the
exception is taken to a Secure mode when EL3 is using AArch64.

b. A Secure Monitor Call exception is taken to EL3, and therefore is taken to AArch32 state only if EL3 is using AArch32,
in which case it is taken to Monitor mode.

c. EL2 is implemented only in Non-secure state when using AArch32 state. Therefore, an exception can be taken to EL2
mode only if it is taken from Non-secure state when using AArch32 state.

Table G1-9 Exception return addresses for exceptions taken to AArch32 state (continued)

Exception Preferred return address Taken to a mode at

Table G1-10 Offsets applied to Link value for exceptions taken to non-EL2 modes

Exception
Offset, for PE state of:

A32 T32

Undefined Instruction +4 +2

Monitor Trap +4 +2

Supervisor Call None None

Secure Monitor Call None None

Prefetch Abort +4 +4

Data Abort +8 +8

Virtual Abort +8 +8

IRQ or FIQ +4 +4

Virtual IRQ or Virtual FIQ +4 +4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11359
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Exception taken to an EL2 mode

The link value is saved in the ELR_hyp Special-purpose register.

The saved link value is the preferred return address for the exception, as shown in Table G1-9, with
no offset.

G1.13.4 PE mode for taking exceptions

The following principles determine the Exception level to which an exception is taken, and if that Exception level
is using AArch32, the PE mode to which the exception is taken:

• An exception cannot be taken to the EL0 mode.

• An exception is taken either:

— To the Exception level at which the PE was executing when it took the exception.

— To a higher Exception level.

This means that, in Secure state:

— When EL3 is using AArch32, an exception is always taken to an EL3 mode.

— When EL3 is using AArch64, an exception that is taken to AArch32 state is taken to an EL1 mode.

• Configuration options and other features provided by EL2 and EL3 can determine the mode to which some
exceptions are taken, as follows:

In an implementation that does not include EL2 or EL3

An exception is always taken to the default mode for that exception.

In an implementation that includes EL3

A Secure Monitor Call exception is always taken to EL3. This means:

• If EL3 is using AArch32 the exception is taken to Secure Monitor mode.

• If EL3 is using AArch64, then executing the instruction generates an exception that is
taken to EL3, see Execution of an SMC instruction from a privileged Exception level that
is using AArch32.

IRQ, FIQ, and External abort exceptions can be configured to be taken to EL3. Therefore, if EL3
is using AArch32 the exceptions are taken to Secure Monitor mode.

When EL3 is using AArch32, a Monitor Trap exception is taken to Secure Monitor mode.

Any exception taken from Secure state that is not taken to Secure Monitor mode is taken to
Secure state in the default mode for that exception. As described in Security state, Exception
levels, and AArch32 execution privilege, this means it is taken to:

• An EL3 mode other than Monitor mode if EL3 is using AArch32.

• An EL1 mode if EL3 is using AArch64.

If the implementation does not include EL2, any exception taken from Non-secure state that is
not taken to Secure Monitor mode is taken to Non-secure state to the default mode for that
exception. The default mode will be an EL1 mode.

In an implementation that includes EL2

An exception taken from Non-secure state that is not taken to Secure Monitor mode is taken to
Non-secure state and:

• If the exception is taken from Hyp mode, then it is taken to Hyp mode.

• Otherwise, the exception is either taken to Hyp mode, as described in Exceptions taken to
Hyp mode, or taken to the default mode for the exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11360
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Note

• Hyp mode is the EL2 mode. The other modes to which an exception can be taken in
Non-secure state are EL1 modes.

• Hyp mode has no effect on the handling of exceptions taken from Secure state.

Table G1-7 shows the default mode to which each exception is taken.

Asynchronous exception routing controls describes the exception routing controls provided by EL2 and EL3.

Routing of aborts taken to AArch32 state gives more information about the modes to which memory aborts are
taken.

The possible modes for taking each exception shows all modes to which each exception might be taken, in any
implementation. That is, it applies to implementations:

• That include neither EL2 nor EL3.

• That include EL2 but not EL3.

• That do not include EL2 but include EL3.

• That include both EL2 and EL3.

G1.13.4.1 Exceptions taken to Hyp mode

In an implementation that includes EL2 and EL3, when EL2 is using AArch32:

• Any exception taken from Hyp mode that is not routed to EL3 by the controls described in Asynchronous
exception routing controls is taken to Hyp mode.

• The following exceptions, if taken from Non-secure state, are taken to Hyp mode:

— An abort that Routing of aborts taken to AArch32 state identifies as taken to Hyp mode.

— A Hyp Trap exception, see EL2 configurable controls.

— A Hypervisor Call exception. This is generated by executing an HVC instruction in a Non-secure mode.

— An SError interrupt exception, IRQ exception or FIQ exception that is not routed to EL3 but is
explicitly routed to Hyp mode, as described in Asynchronous exception routing controls.

— A synchronous External abort, Alignment fault, Undefined Instruction exception, or Supervisor Call
exception taken from the Non-secure EL0 mode and explicitly routed to Hyp mode, as described in
Routing exceptions from Non-secure EL0 to EL2.

Note
A synchronous External abort can be routed to Hyp mode only if it is not routed to EL3.

— A debug exception that is explicitly routed to Hyp mode, as described in Routing debug exceptions to
EL2 using AArch32.

Note

The virtual exceptions cannot be taken to Hyp mode. They are always taken to a Non-secure EL1 mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11361
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13.4.2 Security behavior in Exception levels using AArch32 when EL2 or EL3 are
using AArch64

As described in The Armv8-A security model, when EL3 is using AArch64, lower Exception levels, in either
Security state, can be using AArch32. This means software executing in those Exception levels might try to access
AArch32 security features that are not available. The following subsections describe the associated behaviors:

• Execution of an SMC instruction from a privileged Exception level that is using AArch32

• Non-secure reads of the NSACR

• Secure EL1 operations when Secure EL1 is using AArch32 state

G1.13.4.2.1 Execution of an SMC instruction from a privileged Exception level that is using
AArch32

When EL3 is using AArch64, an SMC instruction executed from Secure or Non-secure EL1 using AArch32, or from
Non-secure EL2 using AArch32 when the value of HCR.TSC is 0, generates an exception that is taken to EL3. The
exception syndrome is reported with an EC value of 0x13, SMC instruction executed in AArch32 state.

G1.13.4.2.2 Non-secure reads of the NSACR

The NSACR is defined as being RO from Non-secure PE modes other than User mode. When EL3 is using
AArch64, a read of the NSACR returns a fixed value of 0x00000C00 in the following cases:

• If the read is from a Non-secure EL1 mode when EL1 is using AArch32.

• If the read is from Hyp mode when EL2 is using AArch32.

G1.13.4.2.3 Secure EL1 operations when Secure EL1 is using AArch32 state

When Secure EL1 is using AArch32 and if FEAT_SEL2 is implemented and enabled or EL3 is using AArch64:

• Any of the following operations performed in a Secure EL1 mode is trapped to Secure EL3:

— A read or write of any of the SCR, NSACR, MVBAR, and SDCR.

— Executing any of the ATS12NSO** instructions.

— Executing an SRS instruction that would use SP_mon, see SRS, SRSDA, SRSDB, SRSIA, SRSIB.

— Executing an MRS (banked register) or MSR (banked register) instruction that would access SPSR_mon,
SP_mon, or LR_mon, see MRS (Banked register) and MSR (Banked register).

• Any attempt to move into Hypervisor mode, either by an exception return or by executing a CPS or MSR
instruction, is treated as an illegal operation and is handled as described in Illegal return events from AArch32
state.

• Any attempt to move into Monitor mode, either by an exception return or by executing a CPS or MSR
instruction, is treated as an illegal operation and is handled as described in Illegal return events from AArch32
state.

Note

This functionality supports a usage model where:

• EL3 uses AArch64.

• Secure software executed in Secure EL1 using AArch32 and Secure EL0 using AArch32.

• The Non-secure state uses AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11362
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13.4.3 The possible modes for taking each exception

Each of the exception descriptions in AArch32 state exception descriptions includes a subsection that describes the
modes to which each exception can be taken. Those subsections are:

• The PE mode to which the Undefined Instruction exception is taken.

• The PE mode to which the Hyp Trap exception is taken.

• The PE mode to which the Monitor Trap exception is taken.

• The PE mode to which the Supervisor Call exception is taken.

• The PE mode to which the Secure Monitor Call exception is taken.

• The PE mode to which the Hypervisor Call exception is taken.

• The PE mode to which the Prefetch Abort exception is taken.

• The PE mode to which the Data Abort exception is taken.

• The PE mode to which the Virtual SError interrupt exception is taken.

• The PE mode to which the physical IRQ exception is taken.

• The PE mode to which the Virtual IRQ exception is taken.

• The PE mode to which the physical FIQ exception is taken.

• The PE mode to which the Virtual FIQ exception is taken.

These descriptions also show the vector offset for the exception entry for each mode. These descriptions assume
that all Exception levels are using AArch32, meaning:

• HCR, rather than HCR_EL2, controls the routing of exceptions to EL2.

• SCR, rather than SCR_EL3, controls the routing of exceptions to EL3.

For more information about:

• Vector offsets, see Exception vectors and the exception base address.

• The routing of synchronous External aborts or SError, IRQ, and FIQ interrupt exceptions, and the virtual
exceptions, see Asynchronous exception routing controls.

G1.13.4.3.1 UNPREDICTABLE cases when the value of HCR.TGE is 1

When the value of HCR.TGE is 1, exceptions that would otherwise be taken to EL1 are, instead, routed to EL2, see
Routing exceptions from Non-secure EL0 to EL2. Related to this, when the value of HCR.TGE is 1, execution in a
Non-secure EL1 mode is UNPREDICTABLE. The architecture does not constrain this UNPREDICTABLE behavior, but
software that follows the Arm recommendations cannot get to this state. When following the Arm
recommendations, any attempt to move to a Non-secure EL1 mode when the value of HCR.TGE is 1 is either:

• An illegal exception return, see Illegal return events from AArch32 state.

• An illegal PE mode change, see Illegal changes to PSTATE.M.

G1.13.5 PE state on exception entry

The description of each exception includes a pseudocode description of entry to that exception, as Table G1-8
shows. The following sections describe the PE state changes on entering an exception, for different implementations
and operating states. However, you must always see the exception entry pseudocode for a full description of the
state changes on exception entry:

• Instruction set state on exception entry.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11363
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
• PSTATE.E value on exception entry.

• PSTATE.{A, I, F, M} values on exception entry.

Note

The descriptions in these sections assume that EL2 and EL3, which control some aspects of the routing of exceptions
taken from EL1 or EL0, are both using AArch32. If this is not the case:

• If EL2 is using AArch64:

— Controls shown as provided by the HSCTLR are provided by the SCTLR_EL2.

— Controls shown as provided by the HCR are provided by the HCR_EL2.

• If EL3 is using AArch64, controls shown as provided by the SCR are provided by the SCR_EL3.

G1.13.5.1 Instruction set state on exception entry

Exception handlers can execute in either T32 state or A32 state. On exception entry, PSTATE.T is set to the required
value, as determined by SCTLR.TE or HSCTLR.TE, depending on the mode the exception is taken to. Table G1-11
shows this:

When an implementation includes EL3 and EL3 is using AArch32, SCTLR is banked for Secure and Non-secure
states, and therefore the TE bit value might be different for Secure and Non-secure states. For an exception taken to
a PE mode other than Hyp mode, the SCTLR.TE bit for the Security state to which the exception is taken determines
the instruction set state for the exception handler. This means the instruction set state in which an exception handler
might execute depends on the Security state to which the exception is taken.

G1.13.5.2 PSTATE.E value on exception entry

PSTATE.E controls the load and store endianness for data handling. Table G1-12 show the value to which this bit
is set on exception entry:

For more information, see the bit description in Saved Program Status Registers (SPSRs).

Table G1-11 PSTATE.T bit value on exception entry

Mode to which exception is taken HSCTLR.TE SCTLR.TE PSTATE.T Exception handler state

Not Hyp mode x 0 0 A32

1 1 T32

Hyp mode 0 x 0 A32

1 x 1 T32

Table G1-12 PSTATE.E value on exception entry

Exception mode HSCTLR.EE SCTLR.EE Endianness for data loads and stores PSTATE.E

Secure or Non-secure EL1 x 0 Little-endian 0

1 Big-endian 1

Hyp 0 x Little-endian 0

1 x Big-endian 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11364
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13.5.3 PSTATE.{A, I, F, M} values on exception entry

On exception entry, PSTATE.M is set to the value for the mode to which the exception is taken, as described in PE
mode for taking exceptions.

Table G1-13 shows the cases where PSTATE.{A, I, F} bits are set to 1 on an exception entry, and how this depends
on the mode and Security state to which an exception is taken. If the table entry for a particular mode and Security
state does not define a value for a PSTATE.{A, I, F} bit then that bit is unchanged by the exception entry. In this
table:

• The PE mode exception is taken to column is the mode to which the exception is taken.

• The Non-secure column applies to exceptions taken to Non-secure state in an implementation that includes
EL3 but does not include EL2.

• The Secure column applies to:

— Exceptions taken to Secure state.

— Implementations that do not include the EL3.

— Exceptions taken to Non-secure state in an implementation that includes EL2.

Asynchronous exception behavior for exceptions taken from AArch32 state describes how, in some situations, the
PSTATE.{A, I, F} bits mask the taking of SError interrupts, IRQ interrupts, and FIQ interrupts.

G1.13.6 Routing exceptions from Non-secure EL0 to EL2

Note

The routing control described in this section permits a Non-secure state usage model where applications execute in
User mode under a hypervisor, which executes in Hyp mode, without a Guest OS running at Non-secure EL1. This
control applies when the PE is executing in Non-secure EL0 using AArch32 and EL2 is using AArch32 and the
value of HCR.TGE is 1.

Table G1-13 PSTATE.{A, I, F} values on exception entry

PE mode exception is taken to
Security state

Non-secure Secure

Hyp If SCR.EA==0 then PSTATE.A is set to 1

If SCR.IRQ==0 then PSTATE.I is set to 1

If SCR.FIQ==0 then PSTATE.F is set to 1

-

Monitor - PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.F is set to 1

FIQ PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.F is set to 1

PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.F is set to 1

IRQ, Abort PSTATE.A is set to 1

PSTATE.I is set to 1

PSTATE.A is set to 1

PSTATE.I is set to 1

Undefined, Supervisor PSTATE.I is set to 1 PSTATE.I is set to 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11365
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
If the PE is in Non-secure User mode, any exception that would otherwise be taken to Non-secure EL1 is taken to
EL2 if either:

• EL2 is using AArch32 and the value of HCR.TGE is 1.

In this case the exception is taken to Hyp mode, instead of to the default Non-secure mode for handling the
exception. For more information, see Exception reporting when HCR.TGE routes an exception to EL2 using
AArch32.

• EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

In this case the exception is taken to EL2 using AArch64, see Exception entry.

Any exception that is routed to Secure Monitor mode or to EL3 using AArch64 is unaffected by the value of
HCR.TGE or HCR_EL2.TGE.

When the value of HCR.TGE is 1, meaning TGE routing from Non-secure EL0 using AArch32 to EL2 using
AArch32 applies:

• The SCTLR.M bit is treated as 0 for all purposes other than a direct read of the SCTLR register.

• Each of the HCR.{FMO, IMO, AMO} bits is treated as 1 for all purposes other than a direct read of the HCR
register

• Each of the HDCR.{TDE, TDA, TDRA, TDOSA} bits is treated as 1 for all purposes other than a direct read
of the HDCR register.

• An exception return to Non-secure EL1 is treated as an illegal exception return, see Illegal return events from
AArch32 state.

• All virtual interrupts, including any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts,
are disabled.

G1.13.6.1 Exception reporting when HCR.TGE routes an exception to EL2 using
AArch32

The following sections give more information about the behavior of synchronous exceptions that are routed to Hyp
mode because the value of HCR.TGE is 1:

• Undefined Instruction exception, when the value of HCR.TGE is 1.

• Supervisor Call exception, when the value of HCR.TGE is 1.

• Abort exceptions, when the value of HCR.TGE is 1.

• Reporting of exceptions routed to EL2 using AArch32 because the value of HCR.TGE is 1.

G1.13.6.1.1 Undefined Instruction exception, when the value of HCR.TGE is 1

When HCR.TGE is set to 1, if the PE is executing in Non-secure User mode and attempts to execute an UNDEFINED
instruction, it takes the Hyp Trap exception, instead of an Undefined Instruction exception. On taking the Hyp Trap
exception, the HSR reports an unknown reason for the exception, using the EC value 0x00. For more information,
see Use of the HSR.

G1.13.6.1.2 Supervisor Call exception, when the value of HCR.TGE is 1

When HCR.TGE is set to 1, if the PE executes an SVC instruction in Non-secure User mode, the Supervisor Call
exception generated by the instruction is taken to Hyp mode.

The HSR reports that entry to Hyp mode was because of a Supervisor Call exception, and:

• If the SVC is unconditional, takes for the imm16 value in the HSR:

— A zero-extended 8-bit immediate value for the T32 SVC instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11366
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
Note

The only T32 encoding for SVC is a 16-bit instruction encoding.

— The bottom16 bits of the immediate value for the A32 SVC instruction.

• If the SVC is conditional, the imm16 value in the HSR is UNKNOWN.

If the SVC is conditional, the PE takes the exception only if the instruction passes its Condition code check.

The HSR reports the exception as a Supervisor Call exception taken to Hyp mode, using the EC value 0x11. For
more information, see Use of the HSR.

Note

The effect of setting HCR.TGE to 1 is to route the Supervisor Call exception to Hyp mode, not to trap the execution
of the SVC instruction. This means that the preferred return address for the exception, when routed to Hyp mode in
this way, is the instruction after the SVC instruction.

G1.13.6.1.3 Abort exceptions, when the value of HCR.TGE is 1

When the value of HCR.TGE is 1, if the PE is executing in Non-secure User mode then any abort exception that is
not routed to Secure Monitor mode or to EL3 using AArch64 generates an exception that is taken as a Hyp Trap
exception. Where an attempt to execute an instruction causes an abort, on taking the Hyp Trap exception, the HSR
indicates whether a Data Abort exception or a Prefetch Abort exception caused the Hyp Trap exception entry, and
presents a valid syndrome in the HSR.

When SCR.EA is set to 1, External aborts and SError interrupts are routed to EL3, and this routing takes priority
over the HCR.TGE routing. For more information, see Routing of aborts taken to AArch32 state.

An SError interrupt that is routed to Hyp mode because the value of HCR.TGE is 1 is reported as a Data Abort
exception routed to Hyp mode.

The HSR reports the exception either:

• As a Prefetch Abort exception routed to Hyp mode, using the EC value 0x20.

• As a Data Abort exception routed to Hyp mode, using the EC value 0x24.

For more information about the exception reporting, see Use of the HSR.

G1.13.6.1.4 Reporting of exceptions routed to EL2 using AArch32 because the value of HCR.TGE
is 1

PL1 configurable controls describes controls that, when the value of HCR.TGE is 0, can generate exceptions that
are taken from Non-secure EL0 to EL1. When EL2 is using AArch32 and the value of HCR.TGE is 1, the exceptions
generated by these controls are routed to Hyp mode. Table G1-14 shows how these exceptions are then reported in
the HSR.

Table G1-14 Syndrome reporting in HSR from HCR.TGE routing of traps, disables, and enables

Control provided by PL1
Control
typea Syndrome reporting in HSR

SCTLR.{nTWE, nTWI} T Uses EC value 0x00, Exception for an unknown reason

SCTLR.{SED, ITD} D Uses EC value 0x00, Exception for an unknown reason

SCTLR.CP15BEN E Uses EC value 0x00, Exception for an unknown reason

CPACR.TRCDIS T Uses EC value 0x00, Exception for an unknown reason

CPACR.{cp11, cp10} E Uses EC value 0x00, Exception for an unknown reason
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11367
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.13 Handling exceptions that are taken to an Exception level using AArch32
G1.13.7 Routing debug exceptions to EL2 using AArch32

When the value of HDCR.TDE is 1, if the PE is executing in a Non-secure mode other than Hyp mode, any Debug
exception is routed to Hyp mode. This means it generates a Hyp Trap exception. This applies to:

• Debug exceptions associated with an instruction fetch, that would otherwise generate a Prefetch Abort
exception. These are the Breakpoint, Breakpoint Instruction, and Vector Catch exception, see Chapter G2
AArch32 Self-hosted Debug.

• Watchpoint exceptions associated with data accesses, that would otherwise generate a Data Abort exception.
See Watchpoint exceptions.

When the value of HDCR.TDE is 1, each of the HDCR.{TDRA, TDOSA, TDA} bits is treated as 1 for all purposes
other than reading the HDCR register.

Note

• A Breakpoint or Watchpoint debug event that generates entry to Debug state cannot be trapped to Hyp mode.
See Breakpoint and Watchpoint debug events.

• When HDCR.TDE is set to 1, the Hyp Trap exception is generated instead of the Prefetch Abort exception
or Data Abort exception that is otherwise generated by the Debug exception.

• Debug exceptions, other than Breakpoint Instruction exceptions, are never generated in Hyp mode.

When a Hyp Trap exception is generated because the value of HDCR.TDE is 1, The HSR reports the exception
either:

• As a Prefetch Abort exception routed to Hyp mode, using the EC value 0x20.

• As a Data Abort exception routed to Hyp mode, using the EC value 0x24.

For more information, see Use of the HSR.

FPEXC.EN E Uses EC value 0x00, Exception for an unknown reason

CPACR.ASEDIS D Uses EC value 0x00, Exception for an unknown reason

DBGDSCRext.UDCCdis T Uses EC value 0x00, Exception for an unknown reason

CNTKCTL.{PL0PTEN, PL0VTEN,
PL0PCTEN, PL0VCTEN}

T Uses EC value 0x00, Exception for an unknown reason

PMUSERENR.{ER, CR, SW, EN} T Uses EC value 0x00, Exception for an unknown reason

a. T indicates a trap control, E indicates an instruction enable, and D indicates an instruction disable. For the
definition of these terms, see the list that begins with Instruction enables and instruction disables.

Table G1-14 Syndrome reporting in HSR from HCR.TGE routing of traps, disables, and enables

Control provided by PL1
Control
typea Syndrome reporting in HSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11368
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.14 Routing of aborts taken to AArch32 state
G1.14 Routing of aborts taken to AArch32 state

A memory abort is either a Data Abort exception or a Prefetch Abort exception. When executing in AArch32 state,
depending on the cause of the abort, and possibly on configuration settings, an abort is taken either:

• To the Exception level of the PE mode from which the abort is taken. In this case the abort is taken to
AArch32 state.

• To a higher Exception level. In this case the Exception level to which the abort is taken is either:

— Using AArch32. In this case, this chapter describes how the abort is handled.

— Using AArch64. In this case, Chapter D8 The AArch64 Virtual Memory System Architecture describes
how the abort is handled.

For an abort taken to an Exception level that is using AArch32, the mode to which a memory abort is taken depends
on the reason for the exception, the mode the PE is in when it takes the exception, and configuration settings, as
follows:

Memory aborts taken to Monitor mode

If an implementation includes EL3, when the value of SCR.EA is 1, all External aborts are taken to
EL3, and if EL3 is using AArch32 they are taken to Monitor mode. This applies to aborts taken from
Secure modes and from Non-secure modes.

Memory aborts taken to Secure Abort mode

If an implementation includes EL3, when the PE is executing in Secure state, all memory aborts that
are not routed to EL3 are taken to Secure Abort mode.

Note

The only memory aborts that can be routed to Monitor mode are External aborts.

Memory aborts taken to Hyp mode

If an implementation includes EL2, when the PE is executing in Non-secure state, the following
aborts are taken to EL2. If EL2 is using AArch32 this means they are taken to Hyp mode:

• Alignment faults taken:

— When the PE is in Hyp mode.

— When the PE is in a Non-secure PL1 or EL0 mode and the exception is generated
because the Non-secure PL1&0 stage 2 translation identifies the target of an unaligned
access as any type of Device memory.

— When the PE is in Non-secure User mode and HCR.TGE is set to 1. For more
information, see Abort exceptions, when the value of HCR.TGE is 1.

• When the PE is using the Non-secure PL1&0 translation regime:

— MMU faults from stage 2 translations, for which the stage 1 translation did not cause
an MMU fault.

— Any abort taken during the stage 2 translation of an address accessed in a stage 1
translation table walk that is not routed to Secure Monitor mode, see Stage 2 fault on
a stage 1 translation table walk.

• When the PE is using the Non-secure EL2 translation regime, MMU faults from stage 1
translations.

Note

The Non-secure EL2 translation regime has only one stage of translation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11369
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.14 Routing of aborts taken to AArch32 state
• External aborts, if SCR.EA is set to 0 and any of the following applies:

— The PE was executing in Hyp mode when it took the exception.

— The PE was executing in a Non-secure PL1 or EL0 mode when it took the exception,
the abort is asynchronous, and HCR.AMO is set to 1. For more information, see
Asynchronous exception routing controls.

— The PE was executing in the Non-secure User mode when it took the exception, the
abort is synchronous, and HCR.TGE is set to 1. For more information, see Abort
exceptions, when the value of HCR.TGE is 1.

— FEAT_RAS is implemented, the PE was executing in a Non-secure PL1 or EL0 mode
when it took the exception, the abort is synchronous, and the value of HCR2.TEA is 1.

— The abort occurred on a stage 2 translation table walk.

• Debug exceptions, if HDCR.TDE is set to 1. For more information, see Routing debug
exceptions to EL2 using AArch32.

Memory aborts taken to Non-secure Abort mode

In an implementation that does not include EL3, all memory aborts that are taken to an Exception
level that is using AArch32 are taken to Abort mode.

Otherwise, when the PE is executing in Non-secure state, the following aborts are taken to
Non-secure Abort mode:

• When the PE is in a Non-secure PL1 or EL0 mode, Alignment faults taken for any of the
following reasons:

— SCTLR.A is set to 1.

— An instruction that does not support unaligned accesses is committed for execution,
and the instruction accesses an unaligned address.

— The PL1&0 stage 1 translation identifies the target of an unaligned access as any type
of Device memory.

Note
In an implementation that does not include EL2, this case results in a CONSTRAINED
UNPREDICTABLE memory access, see Cases where unaligned accesses are
CONSTRAINED UNPREDICTABLE and Loads and Stores to unaligned locations.

If an implementation includes EL2 and the PE is in Non-secure User mode, these exceptions
are taken to Abort mode only if the value of HCR.TGE is 0.

• When the PE is using the Non-secure PL1&0 translation regime, an MMU fault from a stage
1 translation.

• External aborts, if the PE was executing in a Non-secure PL1 or EL0 mode when it took the
exception and both:

— The value of SCR.EA is 0, meaning the abort is not taken to EL3.

— The abort is not taken to EL2 for one of the reasons defined in Memory aborts taken
to Hyp mode.

• Virtual Aborts, see Virtual exceptions when an implementation includes EL2.

• When the value of HDCR.TDE is 0, Debug exceptions. For more information, see Routing
debug exceptions to EL2 using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11370
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.14 Routing of aborts taken to AArch32 state
Note

If EL0 is using AArch32 and EL1 is using AArch64, then any of these memory aborts taken from
User mode are taken to EL1, as described in Chapter D8 The AArch64 Virtual Memory System
Architecture.

Memory aborts with IMPLEMENTATION DEFINED behavior

In addition, a PE can generate an abort for an IMPLEMENTATION DEFINED reason associated with
lockdown. In an implementation that includes EL2, whether such an abort is taken to Non-secure
Abort mode or is taken to EL2 is IMPLEMENTATION DEFINED, and an implementation might include
a mechanism to select whether the abort is routed to Non-secure Abort mode or to EL2.

When the PE is in a Non-secure mode other than Hyp mode, if multiple factors cause an Alignment fault, the abort
is taken to Non-secure Abort mode if any of the factors require the abort to be taken to Abort mode. For example,
if the SCTLR.A bit is set to 1, and the access is an unaligned access to an address that the stage 2 translation tables
mark as Device-nGnRnE, then the abort is taken to Non-secure Abort mode.

For more information, see Handling exceptions that are taken to an Exception level using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11371
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Exception return to an Exception level using AArch32
G1.15 Exception return to an Exception level using AArch32

In the Arm architecture, exception return to an Exception level that is using AArch32 requires the simultaneous
restoration of the PC and PSTATE to values that are consistent with the desired state of execution on returning from
the exception. Typically, exception return involves returning to one of:

• The instruction after the instruction boundary at which an asynchronous exception was taken.

• The instruction following an SVC, SMC, or HMC instruction, for an exception generated by one of those
instructions.

• The instruction that caused the exception, after the reason for the exception has been removed.

• The subsequent instruction, if the instruction that caused the exception has been emulated in the exception
handler.

The Arm architecture defines a preferred return address for each exception other than Reset, see Link values saved
on exception entry. The values of the SPSR.IT[7:0] bits generated on exception entry are always correct for this
preferred return address, but might require adjustment by the exception handler if returning elsewhere.

In some cases, to calculate the appropriate preferred return address for a return to an Exception level that is using
AArch32, a subtraction must be performed on the link value saved on taking the exception. The description of each
exception includes any value that must be subtracted from the link value, and other information about the required
exception return.

On an exception return, the PSTATE takes either:

• The value loaded by the RFE instruction.

• If the exception return is not performed by executing an RFE instruction, the value of the current SPSR at the
time of the exception return.

If FEAT_MTE is implemented PSTATE.TCO is not updated on Exception return to AArch32 state.

Illegal return events from AArch32 state describes the behavior if the restored PE state would not be valid for the
Exception level, PE mode, and Security state targeted by the exception return.

G1.15.1 Exception return instructions

The instructions that an exception handler can use to return from an exception depend on whether the exception was
taken to an EL1 mode, or in an EL2 mode, see:

• Return from an exception taken to a PE mode other than Hyp mode.

• Return from an exception taken to Hyp mode.

G1.15.1.1 Return from an exception taken to a PE mode other than Hyp mode

For an exception taken to a PE mode other than Hyp mode, the Arm AArch32 architecture provides the following
exception return instructions:

• From privileged modes other than System mode, the ERET instruction. After the exception return, execution
resumes from the address held in the LR (R14) for the mode in which ERET is executed. See ERET.

• Data-processing instructions with the S bit set and the PC as a destination, see MOV, MOVS (register) and
SUB, SUBS (immediate).

Note
The A32 instruction set includes other instructions that can be used for an exception return, but Arm
deprecates any use of those instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11372
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Exception return to an Exception level using AArch32
Typically:

— A return where no subtraction is required uses SUBS with an operand of 0, or the equivalent MOVS
instruction.

— A return requiring subtraction uses SUBS with a nonzero operand.

• The RFE instruction, see RFE, RFEDA, RFEDB, RFEIA, RFEIB. If a subtraction is required, typically it is
performed before saving the LR value to memory. After the exception return, execution resumes from the
address held in the memory location indicated by the base register specified by the RFE instruction.

• In A32 state, a form of the LDM instruction in which the PC is one of the registers loaded, see LDM (exception
return). If a subtraction is required, typically it is performed before saving the LR value to memory.

G1.15.1.2 Return from an exception taken to Hyp mode

For an exception taken to Hyp mode, the Arm architecture provides the ERET instruction, see ERET. An exception
handler executing in Hyp mode must return using the ERET instruction.

Hyp mode is implemented only as part of EL2.

G1.15.2 Alignment of exception returns

The T bit of the value transferred to the PSTATE by an exception return controls the target instruction set of that
return. The behavior of the hardware for exception returns for different values of the T bit is as follows:

T == 0 The target instruction set state is A32 state. Bits[1:0] of the address transferred to the PC are ignored
by the hardware.

T == 1 The target instruction set state is T32 state:

• Bit[0] of the address transferred to the PC is ignored by the hardware.

• Bit[1] of the address transferred to the PC is part of the instruction address.

Note

In previous versions of the Arm architecture, the PSTATE.{J, T} bits determined the Instruction set state. From the
introduction of Armv8, PSTATE.J is RES0.

Arm deprecates any dependence on the requirements that the hardware ignores bits of the address. Arm
recommends that the address transferred to the PC for an exception return is correctly aligned for the target
instruction set.

After an exception entry other than Reset, the LR value has the correct alignment for the instruction set indicated
by the SPSR.T bit. This means that if exception return instructions are used with the LR and SPSR values produced
by such an exception entry, the only precaution software needs to take to ensure correct alignment is that any
subtraction is of a multiple of four if returning to A32 state, or a multiple of two if returning to T32 state.

G1.15.3 Illegal return events from AArch32 state

Throughout this section:

Return In AArch32 state, refers to any of:

• Execution of any exception return instruction.

• Execution of a DRPS instruction in Debug state.

• Exit from Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11373
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Exception return to an Exception level using AArch32
If an exception or debug return from an Exception level using AArch32 triggers an illegal exception
return, then bit[1] of the PC is either:

• Zero.

• The value of bit[1] of the return address for the exception or debug return.

The choice between these two alternatives is made by the implementation, and might differ from
instance to instance of an illegal exception return.

Note

This means software must support both alternatives.

Saved process state value
In AArch32 state, refers to any of:

• The value held in the SPSR for any exception return other than an exception return made by
executing an RFE instruction.

• The value read from memory that is to be restored to PSTATE by the execution of an RFE
instruction.

• The value held in the SPSR for the execution of a DRPS instruction in Debug state.

• The value held in the DSPSR for a Debug state exit.

Link address In AArch32 state, refers to any of:

• The address held in the link register for any exception return other than an exception return
made by executing an ERET, LDM, or RFE instruction.

• The address held in ELR_hyp for any exception return made by executing an ERET instruction.

• The address read from memory that is to be restored to the PC by the execution of an LDM or
RFE instruction.

• The address held in the DLR for Debug state exit.

Configured from reset
Indicates the state determined on powerup or reset by a configuration input signal, or by another
IMPLEMENTATION DEFINED mechanism.

The architecture has a generic mechanism for handling exception or debug returns to a mode or state that is illegal.
In AArch32 state, this can occur as a result of any of the following situations:

• A return where the Exception level being returned to is higher than the current Exception level.

• A return where the mode being returned to is not implemented. For example:

— A return to Hyp mode when EL2 is not implemented.

— A return to Monitor mode, when EL3 is either not implemented or using AArch64 state.

• A return to EL2 when:

— EL3 is implemented and using AArch64, and the values of SCR_EL3.{NS, EEL2} 0.

— EL3 is implemented and using AArch32, and the value of the SCR.NS bit is 0.

• A return to Non-secure EL1 when:

— EL2 is implemented and using AArch64, and the value of the HCR_EL2.TGE bit is 1.

— EL2 is implemented and using AArch32, and the value of the HCR.TGE bit is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11374
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Exception return to an Exception level using AArch32
• A return where the value of the saved process state M[4:0] field is not a valid AArch32 PE mode for the
implementation. Table G1-5 shows the valid M[4:0] values for AArch32 PE modes.

In these cases:

• PSTATE.IL is set to 1, to indicate an illegal return.

• PSTATE.M is unchanged. This means the PE mode does not change.

• The SS bit is handled in the same way as any other exception or debug return, see Software Step exceptions.

• The following PSTATE bits are restored from the saved process state value:

— The N, Z, C, V Condition flags.

— The Q Overflow or saturation flag.

— The GE Greater than or Equal flags.

— The E Endianness mapping bit.

— The A, I, F exception mask bits.

— The DIT Data Independent Timing bit.

• The PSTATE.{IT, T} bits are each either:

— Set to 0.

— Copied from the saved process state in the SPSR for the PE mode in which the exception is handled.

The choice between these two options is determined by an implementation, and might vary dynamically
within an implementation. Correspondingly software must regard the value as being an UNKNOWN choice
between the two values.

• The PC is restored from the link address, unless the illegal return is the execution of a DRPS instruction in
Debug state.

When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state
exception. See The Illegal Execution state exception.

All aspects of the illegal return, other than the effects described in this section, are the same as for a legal return.

G1.15.4 Legal returns that set PSTATE.IL to 1

In this section, return, saved process state value, and link address have the meaning that is defined in Illegal return
events from AArch32 state.

If the IL bit in the saved process state value is 1, then it is copied to PSTATE meaning that PSTATE.IL is set to 1.
In this case, the PSTATE.{IT, T} bits are each either:

• Set to 0.

• Copied from the SPSR, or loaded from memory if the exception return was performed by executing an RFE
instruction.

The choice between these two options is determined by an implementation, and might vary dynamically within the
implementation. This means software must regard each value as being an UNKNOWN choice between the two
permitted values.

Because the return sets the PSTATE.IL bit to 1, any attempt to execute any instruction results in an Illegal Execution
state exception. See The Illegal Execution state exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11375
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.15 Exception return to an Exception level using AArch32
G1.15.5 The Illegal Execution state exception

When the value of the PSTATE.IL bit is 1, any attempt to execute an instruction generates an Illegal Execution state
exception. In AArch32 state, the PSTATE.IL bit can be set to 1 by one of the following:

• An illegal return, as described in Illegal return events from AArch32 state.

• An illegal change to PSTATE.M, as described in Illegal changes to PSTATE.M.

• A legal return that sets PSTATE.IL to 1, as described in Legal returns that set PSTATE.IL to 1.

An Illegal Execution state exception is taken in the same way as an Undefined Instruction exception in the current
Exception level. If the current Exception level is EL2 using AArch32 state, the HSR provides additional syndrome
information for the exception, see Use of the HSR.

An Illegal Execution state exception has priority over any other Undefined Instruction exception that might arise
from instruction execution.

Note

This section only describes the handling of an Illegal Execution state exception that is taken to an Exception level
that is using AArch32 state.

On taking any exception to an Exception level that is using AArch32 state:

1. The value of the PSTATE.IL bit is 1 and this is copied to the SPSR.IL bit for the PE mode to which the
exception is taken.

2. The PSTATE.IL bit is cleared to 0.

Note

This means that it is not possible for software to observe the value of PSTATE.IL.

G1.15.5.1 Pseudocode description of exception return

The AArch32.ExceptionReturn() function transfers the return address to the PC and restores PSTATE to its saved
value.

This function uses the function SetPSTATEFromPSR().

The IllegalExceptionReturn() function checks for an Illegal Execution state exception.

Chapter J1 Armv8 Pseudocode includes the definitions of these functions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11376
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state

In an implementation that does not include EL2 or EL3, the asynchronous exceptions behave as follows when EL1
and EL0 are both using AArch32:

• An SError interrupt is taken to Abort mode.

• An IRQ exception is taken to IRQ mode.

• An FIQ exception is taken to FIQ mode.

These are the default PE modes for taking these exceptions.

However, the PSTATE.{A, I, F} bits mask the asynchronous exceptions, meaning that when the value of one of these
PSTATE bits is 1, the corresponding exception is not taken.

If a masked asynchronous exception remains signaled, then the exception remains pending unless the value of the
PSTATE bit is changed to 0.

EL2 and EL3 provide controls that affect:

• The routing of these exceptions, see Asynchronous exception routing controls.

• Masking of these exceptions in Non-secure state, see Asynchronous exception masking controls.

Similar register control bits are provided regardless of whether EL2 and EL3 are using AArch32 or AArch64:

• The EL2 controls are provided by the HCR when EL2 is using AArch32, and by the HCR_EL2 when EL2 is
using AArch64.

• The EL3 controls are provided by the SCR when EL3 is using AArch32, and by the SCR_EL3 when EL3 is
using AArch64.

Therefore, most references to the HCR or SCR in this section are to entries in Table K17-1, which disambiguates
between AArch32 registers and AArch64 registers. However, the Execution states used by EL2 and EL3 do affect
some aspects of the routing and masking of the asynchronous exceptions, see Asynchronous exception routing and
masking with higher Exception levels using AArch64.

G1.16.1 Virtual exceptions when an implementation includes EL2

When implemented, EL2 provides the following virtual exceptions, which correspond to the physical asynchronous
exceptions:

• Virtual SError, which corresponds to a physical external SError interrupt.

• Virtual IRQ, which corresponds to a physical IRQ.

• Virtual FIQ, which corresponds to a physical FIQ.

When the value of HCR.TGE is 0 and the value of an HCR.{AMO, IMO, FMO} routing control bit is 1, the
corresponding virtual interrupt is enabled and a virtual exception is generated either:

• By setting the corresponding virtual interrupt pending bit, HCR.{VA, VI, VF}, to 1.

• For a Virtual IRQ or Virtual FIQ, by an IMPLEMENTATION DEFINED mechanism. This might be a signal from
an interrupt controller. See, for example, the ARM Generic Interrupt Controller Architecture Specification.

When the value of HCR_EL2.TGE is 1 all virtual interrupts are disabled.

When a virtual interrupt is disabled:

• It cannot be taken.

• It cannot be seen in the ISR.

In AArch32 state, a virtual exception is taken only from a Non-secure EL1 or EL0 mode. In any other mode, if the
exception is generated it is not taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11377
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
A virtual exception is taken in Non-secure state to the default mode for the corresponding physical exception. This
means:

• A Virtual SError is taken to Non-secure Abort mode.

• A Virtual IRQ is taken to Non-secure IRQ mode.

• A Virtual FIQ is taken to Non-secure FIQ mode.

Table G1-15 summarizes the HCR bits that route asynchronous exceptions to EL2, and the bits that generate the
virtual exceptions.

The HCR.{VA, VI, VF} bits generate a virtual exception only if set to 1 when the value of the corresponding
HCR.{AMO, IMO, FMO} is 1.

Similarly, if the implementation also includes EL3, the HCR.{AMO, IMO, FMO} bits route the corresponding
physical exception to Hyp mode only if the physical exception is not routed to Monitor mode by the SCR.{EA, IRQ,
FIQ} bit. For more information, see Asynchronous exception routing controls.

When the value of an HCR.{AMO, IMO, FMO} control bit is 1, the corresponding mask bit in PSTATE:

• Does not mask the physical exception.

• Masks the virtual exception when the PE is executing in a Non-secure EL1 or EL0 mode.

Taking a Virtual Abort exception clears HCR.VA to zero. Taking a Virtual IRQ exception or a Virtual FIQ exception
does not affect the value of HCR.VI or HCR.VF.

Note

This means that the exception handler for a Virtual IRQ exception or a Virtual FIQ exception must cause software
that is executing at EL2 or EL3 to update the HCR to clear the appropriate virtual exception bit to 0.

See WFE wakeup events and Wait For Interrupt for information about how virtual exceptions affect wake up from
power-saving states.

Note

A hypervisor can use virtual exceptions to signal exceptions to the current Guest OS. The Guest OS takes a virtual
exception exactly as it would take the corresponding physical exception, and is unaware of any distinction between
virtual exception and the corresponding physical exception.

G1.16.1.1 Effects of the HCR.{AMO, IMO, FMO} bits

As described in this section, the HCR.{AMO, IMO, FMO} bits are part of the mechanism for enabling the virtual
exceptions. In addition, for exceptions generated in Non-secure state:

• As mentioned in this section, affect the routing of the exceptions. See Asynchronous exception routing
controls.

• Affect the masking of the exceptions. See Asynchronous exception masking controls.

Table G1-15 HCR bits controlling asynchronous exceptions

Exception Routing the physical exception to EL2 Generating the virtual exception

SError HCR.AMO HCR.VA

IRQ HCR.IMO HCR.VI

FIQ HCR.FMO HCR.VF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11378
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
G1.16.2 Asynchronous exception routing controls

Note

This section describes the behavior when all Exception levels are using AArch32. For the differences when this is
not the case see Asynchronous exception routing and masking with higher Exception levels using AArch64.

In an implementation that includes EL3 the following bits in the SCR control the routing of asynchronous
exceptions:

SCR.EA When the value of this bit is 1, any SError interrupt is taken to EL3.

Note

Although this section describes the asynchronous exception routing controls, SCR.EA also controls
the routing of synchronous External aborts, see Routing of aborts taken to AArch32 state.

SCR.FIQ When the value of this bit is 1, any FIQ exception is taken to EL3.

SCR.IRQ When the value of this bit is 1, any IRQ exception is taken to EL3.

When EL3 is using AArch32 and the value of one of the SCR.{EA, FIQ, IRQ} bits is 1, the exception is taken to
Monitor mode.

Only Secure software can change the values of these bits.

In an implementation that includes EL2, the following bits in the HCR route asynchronous exceptions to EL2, for
exceptions that are both:

• Taken from a Non-secure EL1 or EL0 mode.

• If the implementation also includes EL3, not configured, by the SCR.{EA, FIQ, IRQ} controls, to be taken
to EL3.

HCR.AMO When the value of this bit is 1, an SError interrupt exception taken from a Non-secure EL1 or EL0
mode is taken to EL2, instead of to Non-secure Abort mode. If the implementation also includes
EL3, this control applies only if the value of SCR.EA is 0. When the value of SCR.EA is 1, the value
of the AMO bit is ignored.

HCR.FMO When the value of this bit is 1, an FIQ exception taken from a Non-secure EL1 or EL0 mode is taken
to EL2, instead of to Non-secure FIQ mode. If the implementation also includes EL3, this control
applies only if the value of SCR.FIQ is 0. When the value of SCR.FIQ is 1, the value of the FMO
bit is ignored.

HCR.IMO When the value of this bit is 1, an IRQ exception taken from a Non-secure EL1 or EL0 mode is taken
to EL2, instead of to Non-secure IRQ mode. If the implementation also includes EL3, this control
applies only if the value of SCR.IRQ is 0. When the value of SCR.IRQ is 1, the value of the IMO
bit is ignored.

When EL2 is using AArch32 and the value of one of the HCR.{AMO, FMO, IMO} bits is 1, the exception is taken
to Hyp mode.

Only software executing in Hyp mode, or Secure software executing at EL3 with SCR.NS set to 1, can change the
values of these bits. If EL3 is using AArch32, this requires the Secure software to be executing in Monitor mode.

The HCR.{AMO, FMO, IMO} bits also affect the masking of asynchronous exceptions in Non-secure state, as
described in Asynchronous exception masking controls.

The SCR.{EA, FIQ, IRQ} and HCR.{AMO, FMO, IMO} bits have no effect on the routing of Virtual Abort, Virtual
FIQ, and Virtual IRQ exceptions.

Note

When the PE is in Hyp mode:

• Physical asynchronous exceptions that are not routed to Monitor mode are taken to Hyp mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11379
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
• Virtual exceptions are not signaled to the PE.

See also Asynchronous exception behavior for exceptions taken from AArch32 state.

G1.16.3 Asynchronous exception masking controls

Note

This section describes the behavior when all Exception levels are using AArch32. For the differences when this is
not the case see Asynchronous exception routing and masking with higher Exception levels using AArch64.

The PSTATE.{A, I, F} bits can mask the taking of the corresponding exceptions from AArch32 state, as follows:

• PSTATE.A can mask SError interrupt exceptions.

• PSTATE.I can mask IRQ exceptions.

• PSTATE.F can mask FIQ exceptions.

In an implementation that does not include either of EL2 and EL3, setting one of these bits to 1 masks the
corresponding exception, meaning the exception cannot be taken.

In an implementation that includes EL2, the HCR.{AMO, IMO, FMO} bits modify the masking of exceptions taken
from Non-secure state.

Similarly, in an implementation that includes EL3, the SCR.{AW, FW} bits modify the masking of exceptions taken
from Non-secure state by the PSTATE.{A, F} bits.

An implementation that includes only EL1 and EL0 does not provide any masking of the PSTATE.{A, I, F} bits.
The following subsections describe the masking of these bits in other implementations:

• Asynchronous exception masking in an implementation that includes EL2 but not EL3.

• Asynchronous exception masking in an implementation that includes EL3 but not EL2.

• Asynchronous exception masking in an implementation that includes both EL2 and EL3.

• Summary of the asynchronous exception masking controls.

G1.16.3.1 Asynchronous exception masking in an implementation that includes EL2 but
not EL3

The HCR.{AMO, IMO, FMO} bits modify the effect of the PSTATE.{A, I, F} bits. When the value of an
HCR.{AMO, IMO, FMO} mask override bit is 1, the value of the corresponding PSTATE.{A, I, F} bit is ignored
when the exception is taken from a Non-secure mode other than Hyp mode.

G1.16.3.2 Asynchronous exception masking in an implementation that includes EL3 but
not EL2

The SCR.{AW, FW} bits modify the effect of the PSTATE.{A, F} bits. When the value of one of the
SCR.{AW, FW} bits is 0, the corresponding PSTATE bit is ignored when both of the follow apply:

• The corresponding exception is taken from Non-secure state.

• The value of the corresponding SCR.{EA, FIQ} bit is 1, routing the exception to EL3. This means the
exception is routed to Monitor mode if EL3 is using AArch32.

Note

Whenever the value of PSTATE.I is 1, IRQ exceptions are masked and cannot be taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11380
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
G1.16.3.3 Asynchronous exception masking in an implementation that includes both
EL2 and EL3

When the value of an HCR.{AMO, IMO, FMO} mask override bit is 1, the value of the corresponding PSTATE.{A,
I, F} bit is ignored when both of the following apply:

• The exception is taken from Non-secure state.

• Either:

— The corresponding SCR.{EA, IRQ, FIQ} bit routes the exception to Monitor mode.

— The exception is taken from a Non-secure mode other than Hyp mode.

In addition, when the value of an SCR.{AW, FW} bit is 0, the value of the corresponding PSTATE.{A, F} bit is
ignored when all of the following apply:

• The exception is taken from Non-secure state.

• The corresponding SCR.{EA, FIQ} bit routes the exception to Monitor mode.

• The corresponding HCR.{AMO, FMO} mask override bit is set to 0.

G1.16.3.4 Summary of the asynchronous exception masking controls

The tables in this section show the masking controls for each of the PSTATE.{A, I, F} bits. For an implementation
that does not include all of the Exception levels:

If the implementation includes only EL1 and EL0

The PSTATE bits cannot be masked. The behavior is as shown in the Secure row of the tables.

If the implementation includes EL2 but not EL3

The behavior is as shown in the Non-secure table rows when the control bits in the SCR are both 0.

If the implementation includes EL3 but not EL2

The behavior is as shown in the table rows where the control bit in the HCR is 0.

Table G1-16 shows the controls of the masking of SError interrupt exceptions by PSTATE.A.

Table G1-16 Control of masking by PSTATE.A

Security state HCR.AMO SCR.EA SCR.AW Mode PSTATE.A

Secure x x x x Masks SError interrupt, when set to 1

Non-secure 0 0 x x Masks SError interrupt, when set to 1

1 0 x Ignored

1 x Masks SError interrupt, when set to 1

1 x x Not Hyp Ignored

0 x Hyp Masks SError interrupt, when set to 1

1 x x Ignored
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11381
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
Table G1-17 shows the controls of the masking of IRQ exceptions by PSTATE.I:

Table G1-18 shows the controls of the masking of FIQ exceptions by PSTATE.F:

G1.16.4 Asynchronous exception routing and masking with higher Exception levels using AArch64

Asynchronous exception routing controls and Asynchronous exception masking controls give full descriptions of the
routing and masking of the asynchronous exceptions when all Exception levels are using AArch32. However, when
EL0 and EL1 are using AArch32:

• As already described, the SCR and HCR controls might be from Exception levels that are using AArch64.

• If EL3 is using AArch64, or EL2 is using AArch64, there are some changes to the asynchronous exception
behaviors.

Therefore, the following sections summarize the asynchronous exception behaviors, taking account of the
Execution state being used at EL2 and EL3:

• Summary of physical interrupt routing.

• Summary of physical interrupt masking.

G1.16.4.1 Summary of physical interrupt routing

The Table G1-19 shows the routing of physical FIQ, IRQ and SError interrupts when the highest Exception level is
using AArch32.

In this table:

SCR This is the Effective value of a field in SCR.

HCR This is the Effective value of a field in HCR.

Table G1-17 Control of masking by PSTATE.I

Security state HCR.IMO SCR.IRQ Mode PSTATE.I

Secure x x x Masks IRQs, when set to 1

Non-secure 0 x x Masks IRQs, when set to 1

1 x Not Hyp Ignored

0 Hyp Masks IRQs, when set to 1

1 x Ignored

Table G1-18 Control of masking by PSTATE.F

Security state HCR.FMO SCR.FIQ SCR.FW Mode PSTATE.F

Secure x x x x Masks FIQs, when set to 1

Non-secure 0 0 x x Masks FIQs, when set to 1

1 0 x Ignored

1 x Masks FIQs, when set to 1

1 x x Not Hyp Ignored

0 x Hyp Masks FIQs, when set to 1

1 x x Ignored
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11382
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR, if
EL2 is using AArch32 or HCR_EL2 if EL2 is using AArch64.

FIQ IRQ Abt The exception is taken to the FIQ mode, the IRQ mode or the Abort mode according to the type of
asynchronous exception.

Hyp The exception is taken to AArch32 Hyp mode.

Mon The exception is taken to AArch32 Monitor mode.

n/a This field does not exist, or the Exception level is not accessible in this configuration.

G1.16.4.2 Summary of physical interrupt masking

Table G1-20 shows the masking of physical FIQ, IRQ and SError interrupts when the highest Exception level is
using AArch32.

In this table:

SCR This is the Effective value of a field in SCR.

HCR This is the Effective value of a field in HCR.

FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR.

FW AW For FIQ interrupts, the SCR.FW field, and for SError interrupts, the SCR.AW field. For IRQ
interrupts, there is no equivalent field, so the Effective value is 0 and rows where this cell is 1 should
be ignored.

A When the interrupt is asserted, it is taken regardless of the value of the PSTATE mask bit.

B When the interrupt is asserted, it is subject to the corresponding PSTATE mask bit. If the value of
the mask is 1, the interrupt is not taken. If the value of the mask is 0, the interrupt is taken.

Table G1-19 Routing of physical asynchronous exceptions

Control bits
Target
when
taken from

EL0

Target
when
taken from
EL1

Target
when
taken from
EL2

Target
when
taken from
EL3

SCR HCR

NS FIQ IRQ EA TGE
FMO IMO
AMO

0 x x x FIQ IRQ Abt n/a n/a FIQ IRQ Abt

1 0 0 0 FIQ IRQ Abt FIQ IRQ Abt Hyp FIQ IRQ Abt

1 Hyp Hyp Hyp FIQ IRQ Abt

1 x Hyp n/a Hyp FIQ IRQ Abt

1 0 x Mon Mon Mon Mon

1 x Mon n/a Mon Mon
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11383
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
n/a This field does not exist, or the Exception level is not accessible in this configuration.

G1.16.5 Taking an interrupt or other exception during a multiple-register load or store

In AArch32 state, an interrupt cannot be taken during a sequence of memory accesses caused by a single load or
store instruction, except that when FEAT_LSMAOC is implemented and the value of the applicable LSMAOE field
is 0, an interrupt can be taken between two memory accesses made by a single AArch32 Load Multiple (LDM) or
Store Multiple (STM) instruction.

The applicable LSMAOE field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that
applies to the Exception level and Security state at which the LDM or STM instruction is executed.

When the value of the LSMAOE bit is 0 and an interrupt is taken between two memory accesses made by a single
AArch32 LDM or STM instruction, then:

• For a load, any register being loaded by the instruction other than a register used in the generation of the
address by the instruction or the PC, can contain an UNKNOWN value. Any register used in the generation of
the address is restored to its initial value and the LR is set on the interrupt to a value consistent with returning
to the instruction.

• For a store, any data location being stored to by the instruction can contain an UNKNOWN value.

• For either a load or store, if the instruction specifies writeback of the base address, then that register is
restored to its initial value.

Armv8.2 deprecates software relying on interrupts not being taken during the sequence of memory accesses caused
by a single load or store instruction.

Table G1-20 Masking of physical asynchronous exceptions

Control bits Effect of the interrupt mask when executing at:

SCR HCR

NS FW AW FIQ IRQ EA TGE FMO IMO AMO EL0 EL1 EL2 EL3

0 x x x x B n/a n/a B

1 x 0 0 0 B B B B

1 A A B B

1 x A n/a B B

0 1 0 x A A A B

1 x A n/a A B

1 1 0 0 B B B B

1 A A A B

1 x A n/a A B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11384
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
G1.17 AArch32 state exception descriptions

Handling exceptions that are taken to an Exception level using AArch32 gives general information about exception
handling. This section describes each of the exceptions, in the following subsections:

• Undefined Instruction exception.

• Monitor Trap exception.

• Hyp Trap exception.

• Supervisor Call (SVC) exception.

• Secure Monitor Call (SMC) exception.

• Hypervisor Call (HVC) exception.

• Prefetch Abort exception.

• Data Abort exception.

• Virtual SError interrupt exception.

• IRQ exception.

• Virtual IRQ exception.

• FIQ exception.

• Virtual FIQ exception.

Additional pseudocode functions for exception handling gives additional pseudocode that is used in the pseudocode
descriptions of a number of the exceptions.

G1.17.1 Undefined Instruction exception

An Undefined Instruction exception might be caused by:

• A System register access, floating-point, or Advanced SIMD instruction that is not accessible because of the
settings in one or more of the CPACR, NSACR, HCPTR, and DBGDSCRext.

• A System register access, floating-point, or Advanced SIMD instruction that is not implemented.

• A System register access, floating-point, or Advanced SIMD instruction that causes an exception during
execution. This includes:

— Trapped floating-point exceptions that are taken to AArch32, if an implementation supports these
traps. See Floating-point exceptions and exception traps.

— Execution of certain floating-point instructions when one or both of the FPSCR.{Stride, Len} fields
in nonzero, in an implementation in which those fields are RW. The description of FPEXC specifies
the instructions to which this applies.

• An instruction that is UNDEFINED.

Note

The Undefined Instruction exception is taken using offset 0x04 in the Hyp, Secure, or Non-secure vector table. In
the Monitor vector table this offset is used for the Monitor Trap exception. See Monitor Trap exception and The
vector tables and exception offsets.

By default, an Undefined Instruction exception is taken to Undefined mode, but an Undefined Instruction exception
can be taken to EL2, meaning it is taken to Hyp mode if EL2 is using AArch32, see The PE mode to which the
Undefined Instruction exception is taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11385
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
The Undefined Instruction exception can provide:

• Signaling of an illegal instruction execution.

• Lazy context switching of System registers.

The preferred return address for an Undefined Instruction exception is the address of the instruction that generated
the exception. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from Secure or Non-secure Undefined mode, the exception return uses the SPSR and LR_und
values generated by the exception entry, as follows:

— If SPSR.T is 0, indicating that the exception occurred in A32 state, the return uses an exception return
instruction with a subtraction of 4.

— If SPSR.T is 1, indicating that the exception occurred in T32 state, the return uses an exception return
instruction with a subtraction of 2.

• If returning from Hyp mode, the exception return is performed by an ERET instruction, using the SPSR and
ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32.

Note

If handling the Undefined Instruction exception requires instruction emulation, followed by return to the next
instruction after the instruction that caused the exception, the instruction emulator must use the instruction length
to calculate the correct return address, and to calculate the updated values of the IT bits if necessary.

G1.17.1.1 The PE mode to which the Undefined Instruction exception is taken

Figure G1-4 shows how the implementation, state, and configuration options determine the PE mode to which an
Undefined Instruction exception is taken, when the exception is taken to an Exception level that is using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11386
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
Figure G1-4 The PE mode an Undefined Instruction exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1.

G1.17.1.2 Pseudocode description of taking the Undefined Instruction exception

The AArch32.Undefined() pseudocode procedure determines whether the Undefined Instruction exception is taken
to AArch32 state. If it is taken to AArch32 state, the AArch32.TakeUndefInstrException() pseudocode procedure
describes how the PE takes the exception.

An Undefined Instruction exception is taken to an Exception level using AArch64 if either:

• It is generated in User mode when EL1 is using AArch64.

• It is generated in User mode when EL2 is enabled in the current Security state and is using AArch64 and the
value of HCR_EL2.TGE is 1.

G1.17.1.3 Conditional execution of undefined instructions

The conditional execution rules described in Conditional execution apply to all instructions. This includes
undefined instructions and other instructions that would cause entry to the Undefined Instruction exception.

If such an instruction fails its condition check, the behavior depends on the potential cause of entry to the Undefined
Instruction exception, as follows:

• If the potential cause is the execution of the instruction itself and depends on data values used by the
instruction, the instruction executes as a NOP and does not cause an Undefined Instruction exception.

Undefined Instruction exception

Taken from

Hyp mode

?

HCR.TGE

== 1

?

Non-secure Undefined mode,

vector offset 0x04

Hyp mode,

vector offset 0x04

Hyp mode,

vector offset 0x14

EL1

and EL0

only?

Undefined mode,

vector offset 0x04
Yes

Have

EL2?
YesYes

No

Yes

No

No

From User mode

only, see text.

No

Have

EL3?

No

Yes

No

State is

Secure

?

Yes
Secure Undefined mode,

vector offset 0x04
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11387
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
• In the following cases, it is IMPLEMENTATION DEFINED whether the instruction executes as a NOP or causes an
Undefined Instruction exception:

— The potential cause is the execution of an earlier System register access instruction, floating-point
instruction, or Advanced SIMD instruction.

— The potential cause is the execution of the instruction itself without dependence on the data values
used by the instruction.

An implementation must handle all such cases in the same way.

G1.17.1.4 Interaction of UNDEFINED instruction behavior with UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE instruction behavior

If this manual describes an instruction as both:

• UNPREDICTABLE and UNDEFINED then the instruction is UNPREDICTABLE.

• CONSTRAINED UNPREDICTABLE and UNDEFINED then the instruction is CONSTRAINED UNPREDICTABLE.

Note

An example of this is where both:

• An instruction, or instruction class, is made UNDEFINED by some general principle, or by a configuration
field.

• A particular encoding of that instruction or instruction class is specified as CONSTRAINED UNPREDICTABLE.

G1.17.2 Monitor Trap exception

The Monitor Trap exception is implemented only as part of EL3, and can be generated only if EL3 is using
AArch32.

Note

The Monitor Trap exception is taken using offset 0x04 in the Monitor vector table. In the other vector tables, this
offset is used for the Undefined Instruction exception. See Undefined Instruction exception and The vector tables
and exception offsets.

A Monitor Trap exception is generated if the PE is running in a mode other than Monitor mode, and commits for
execution a WFI or WFE instruction that would otherwise cause suspension of execution when:

• In the case of the WFI instruction, the value of the SCR.TWI bit is 1.

• In the case of the WFE instruction, the value of the SCR.TWE bit is 1.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed
to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the
instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The preferred return address for a Monitor Trap exception is the address of the instruction that generated the
exception. The exception return uses the SPSR and LR_mon values generated by the exception entry, as follows:

• If SPSR.T is 0, indicating that the exception occurred in A32 state, the return uses an exception return
instruction with a subtraction of 4.

• If SPSR.T is 1, indicating that the exception occurred in T32 state, the return uses an exception return
instruction with a subtraction of 2.

For more information, see Exception return to an Exception level using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11388
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
G1.17.2.1 The PE mode to which the Monitor Trap exception is taken

When EL3 is using AArch32, a Monitor Trap exception is taken to Monitor mode, using a vector offset of 0x04 from
the Monitor exception base address.

G1.17.2.2 Pseudocode description of taking the Monitor Trap exception

The AArch32.TakeMonitorTrapException() pseudocode procedure describes how the PE takes the exception.

G1.17.3 Hyp Trap exception

The Hyp Trap exception provides the standard mechanism for trapping Guest OS functions to the hypervisor.

The Hyp Trap exception is implemented only as part of EL2 and can be generated only if EL2 is using AArch32.

A Hyp Trap exception is generated if the PE is running in a Non-secure mode other than Hyp mode, and commits
for execution an instruction that is trapped to Hyp mode. Instruction traps are enabled by setting bits to 1 in the HCR,
HCPTR, HDCR, or HSTR. For more information, see EL2 configurable controls.

Traps to Hyp mode never apply in Secure state, regardless of the value of the SCR.NS bit.

The preferred return address for a Hyp Trap exception is the address of the trapped instruction. The exception return
is performed by an ERET instruction, using the SPSR and ELR_hyp values generated by the exception entry.

Note

The SPSR and ELR_hyp values generated on exception entry can be used, without modification, for an exception
return to re-execute the trapped instruction. If the exception handler emulates the trapped instruction, and must
return to the following instruction, the emulation of the instruction must include modifying ELR_hyp, and possibly
updating SPSR_hyp.

When the PE enters the handler for a Hyp Trap exception, the HSR holds syndrome information for the exception.
For more information, see Use of the HSR.

G1.17.3.1 The PE mode to which the Hyp Trap exception is taken

 A Hyp Trap exception is taken to Hyp mode, using a vector offset of 0x14 from the Hyp exception base address.

G1.17.3.2 Pseudocode description of taking the Hyp Trap exception

The AArch32.TakeHypTrapException() pseudocode procedure describes how the PE takes the exception.

G1.17.4 Supervisor Call (SVC) exception

The Supervisor Call instruction, SVC, requests a supervisor function, typically to request an operating system
function. When EL1 is using AArch32, executing an SVC instruction causes the PE to enter Supervisor mode. For
more information, see SVC.

Note

In an implementation that includes EL2, when EL2 is using AArch32:

• When an SVC instruction is executed in Hyp mode, the Supervisor Call exception is taken to Hyp mode. For
more information, see SVC.

• When the HCR.TGE bit is set to 1, the Supervisor Call exception generated by execution of an SVC instruction
in Non-secure User mode is routed to Hyp mode. For more information, see Supervisor Call exception, when
the value of HCR.TGE is 1.

By default, a Supervisor Call exception that is taken to AArch32 state is taken to Supervisor mode, but a Supervisor
Call exception can be taken to EL2, meaning it is taken to Hyp mode if EL2 is using AArch32, see The PE mode to
which the Supervisor Call exception is taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11389
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
The preferred return address for a Supervisor Call exception is the address of the next instruction after the SVC
instruction. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from Secure or Non-secure Supervisor mode, the exception return uses the SPSR and LR_svc
values generated by the exception entry, in an exception return instruction without subtraction.

• If returning from Hyp mode, the exception return is performed by an ERET instruction, using the SPSR and
ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32.

G1.17.4.1 The PE mode to which the Supervisor Call exception is taken

Figure G1-5 shows how the implementation, state, and configuration options determine the PE mode to which a
Supervisor Call exception is taken, when the exception is taken to an Exception level that is using AArch32.

Figure G1-5 The PE mode the Supervisor Call exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1.

G1.17.4.2 Pseudocode description of taking the Supervisor Call exception

The AArch32.CallSupervisor() pseudocode procedure determines whether the Supervisor Call exception is taken to
AArch32 state. If it is taken to AArch32 state, the AArch32.TakeSVCException() pseudocode procedure describes how
the PE takes the exception.

An Supervisor Call exception is taken to an Exception level using AArch64 if either:

• It is generated by executing an SVC instruction in User mode when EL1 is using AArch64.

• It is generated by executing an SVC instruction in Non-secure User mode when EL2 is using AArch64 and the
value of HCR_EL2.TGE is 1.

Supervisor Call exception

State is

Secure

?

Taken from

Hyp mode

?

Yes

HCR.TGE

== 1

?

Non-secure Supervisor mode,

vector offset 0x08

Hyp mode,

vector offset 0x08

Hyp mode,

vector offset 0x14

Supervisor mode,

vector offset 0x08
Yes

Have

EL2?
Yes

No

Secure Supervisor mode,

vector offset 0x08

No

Yes

Yes

No

No

EL1

and EL0

only?

No

Have

EL3?
Yes

No

From User mode

only, see text.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11390
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
G1.17.5 Secure Monitor Call (SMC) exception

The Secure Monitor Call exception is implemented only as part of EL3. When EL3 is using AArch32, the exception
is taken to Monitor mode.

The Secure Monitor Call instruction, SMC, requests a Secure Monitor function. When EL3 is using AArch32,
executing an SMC instruction causes the PE to enter Monitor mode. For more information, see SMC.

Note

• In an implementation that includes EL2, execution of an SMC instruction in a Non-secure EL1 mode can be
trapped to EL2. When EL2 is using AArch32, this means that when HCR.TSC 1, execution of an SMC
instruction in a Non-secure EL1 mode generates a Hyp Trap Exception that is taken to Hyp mode.

• The Operation pseudocode in the description of the AArch32 SMC instruction, in SMC, identifies cases where
execution of the instruction generates an exception that is taken to EL3 using AArch64.

The preferred return address for a Secure Monitor Call exception is the address of the next instruction after the SMC
instruction. For an exception taken to AArch32 state, this return is performed using the SPSR and LR_mon values
generated by the exception entry, using an exception return instruction without a subtraction.

For more information, see Exception return to an Exception level using AArch32.

Note

For an exception taken to AArch32 state, the exception handler can return to the SMC instruction itself by returning
using a subtraction of 4, without any adjustment to the SPSR.IT[7:0] bits. If it does this, the return occurs, then
asynchronous exceptions might occur and be handled, then the SMC instruction is re-executed and another Secure
Monitor Call exception occurs.

This relies on:

• The SMC instruction being used correctly, either outside an IT block or as the last instruction in an IT block,
so that the SPSR.IT[7:0] bits indicate unconditional execution.

• The Secure Monitor Call handler not changing the result of the original conditional execution test for the SMC
instruction.

G1.17.5.1 The PE mode to which the Secure Monitor Call exception is taken

The Secure Monitor Call exception is supported only as part of EL3. When EL3 is using AArch32, a Secure Monitor
Call exception is taken to Monitor mode, using vector offset 0x08 from the Monitor exception base address.

Note

• An SMC instruction that is trapped to Hyp mode because HCR.TSC is set to 1 generates a Hyp Trap exception,
see The PE mode to which the Hyp Trap exception is taken.

• If EL3 is using AArch64 then Security behavior in Exception levels using AArch32 when EL2 or EL3 are
using AArch64 describes the effect of executing an SMC instruction at an Exception level that is using EL1.

G1.17.5.2 Pseudocode description of taking the Secure Monitor Call exception

The AArch32.TakeSMCException() pseudocode procedure describes how the PE takes the exception when the
exception is taken to an Exception level that is using AArch32.

G1.17.6 Hypervisor Call (HVC) exception

The Hypervisor Call exception is implemented only as part of EL2.

The Hypervisor Call instruction, HVC, requests a hypervisor function. When EL2 is using AArch32, executing an HVC
instruction generates a Hypervisor Call exception that is taken to Hyp mode. For more information, see HVC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11391
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
Note

• Execution of HVC instructions is disabled when the value of SCR.HCE is 0. Descriptions of HVC instruction
execution elsewhere in this section assume the Effective value of SCR.HCE is 1.

• When EL2 is using AArch64 an HVC instruction executed in a Non-secure EL1 mode generates an exception
that is taken to EL2 using AArch64.

The preferred return address for a Hypervisor Call exception is the address of the next instruction after the HVC
instruction. The exception return is performed by an ERET instruction, using the SPSR and ELR_hyp values
generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32.

When EL2 is using AArch32, executing an HVC instruction transfers the immediate argument of the instruction to
the HSR. The exception handler retrieves the argument from the HSR, and therefore does not have to access the
original HVC instruction. For more information, see Use of the HSR.

G1.17.6.1 The PE mode to which the Hypervisor Call exception is taken

The Hypervisor Call exception is supported only as part of EL2. When EL2 is using AArch32, a Hypervisor Call
exception is taken to Hyp mode, using a vector offset that depends on the mode from which the exception is taken,
as Figure G1-6 shows. This offset is from the Hyp exception base address.

Figure G1-6 The PE mode the Hypervisor Call exception is taken to in AArch32 state

G1.17.6.2 Pseudocode description of taking the Hypervisor Call exception

The AArch32.CallHypervisor() pseudocode procedure determines whether the valid execution of an HVC instruction
in AArch32 state generates an exception that is taken to EL2 using AArch64, or generates a Hypervisor Call
exception taken to Hyp mode. The AArch32.TakeHVCException() pseudocode procedure describes how the PE takes
a Hypervisor Call exception.

G1.17.7 Prefetch Abort exception

A Prefetch Abort exception can be generated by:

• A synchronous memory abort on an instruction fetch.

Note

Asynchronous External aborts on instruction fetches are reported as SError interrupts using the Data Abort
exception, see Data Abort exception.

A Prefetch Abort exception entry is synchronous to the instruction whose fetch aborted.

For more information about memory aborts see VMSAv8-32 memory aborts.

• A Breakpoint, Vector Catch or Breakpoint Instruction exception, see Chapter G2 AArch32 Self-hosted
Debug.

Hypervisor Call exception

Hyp mode,

vector offset 0x14

Taken from

Hyp mode

?

Hyp mode,

vector offset 0x08
Yes

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11392
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
Note

If an implementation fetches instructions speculatively, it must handle a synchronous abort on such an instruction
fetch by:

• Generating a Prefetch Abort exception only if the instruction would be executed in a simple sequential
execution of the program.

• Ignoring the abort if the instruction would not be executed in a simple sequential execution of the program.

By default, when EL1 is using AArch32, a Prefetch Abort exception is taken to Abort mode, but a Prefetch Abort
exception can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the Prefetch Abort exception is taken to an Exception level that is using AArch32, see
The PE mode to which the Prefetch Abort exception is taken.

• About cases where the Prefetch Abort generates an exception that is taken to an Exception level that is using
AArch64, see Pseudocode description of taking the Prefetch Abort exception.

The preferred return address for a Prefetch Abort exception is the address of the aborted instruction. For an
exception taken to AArch32 state this return is performed as follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 4. This means using:

— SPSR_abt and LR_abt if returning from Abort mode.

— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information about the handling of Prefetch Abort exceptions in AArch32 state see Exception return to an
Exception level using AArch32.

G1.17.7.1 Prefetch Abort exception reporting a PC alignment fault exception

A PC alignment fault exception that is taken to an Exception level that is using AArch32 is reported as a Prefetch
Abort exception, and:

If the exception is taken to EL1 using AArch32 or EL3 using AArch32

• The IFSR indicates the cause of the exception:

— If the value of TTBCR.EAE is 0, IFSR.FS takes the value 0b00001.

— If the value of TTBCR.EAE is 1, IFSR.STATUS takes the value 0b100001.

• IFAR holds the value of the address that faulted, including the misaligned low order bit or
bits.

• R14_abt holds the address that faulted, including the misaligned low order bit or bits, with
the standard offset for a Prefetch Abort exception.

If the exception is taken to EL2 using AArch32

• HSR.EC takes the value 0b100010.

• HSR.IL is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11393
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
• HSR.ISS is RES0.

• HIFAR and ELR_hyp each hold the value of the address that faulted, including the
misaligned low order bit or bits.

For a PC alignment fault exception taken to an Exception level that is using AArch32:

• If the exception occurred because of the CONSTRAINED UNPREDICTABLE behavior of a branch to an unaligned
PC value, as described in Branching to an unaligned PC, then bit[0] of the faulting address is forced to zero,
and therefore the misalignment is because the value of bit[1] of this address is 1.

• If the exception occurred on an exit from Debug state, as described in Exiting Debug state, then it is
CONSTRAINED UNPREDICTABLE whether bit[0] of the faulting address is forced to zero.

G1.17.7.2 The PE mode to which the Prefetch Abort exception is taken

Figure G1-7 shows how the implementation, state, and configuration options determine the PE mode to which a
Prefetch Abort exception is taken, when the exception is taken to an Exception level that is using AArch32.

Note

In this figure, the Effective value of HCR2.TEA is 0 if FEAT_RAS is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11394
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
Figure G1-7 The PE mode the Prefetch Abort exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1.

External

abort

?

Yes

Hyp mode, vector

offset 0x0C

Monitor mode,

vector offset 0x0C
SCR.EA

== 1

?

Yes

Yes
Abort mode,

vector offset 0x0C

State is

Secure

?

Secure Abort mode,

vector offset 0x0C

Taken

from Hyp

mode ?

No

Have

EL2?
Yes

NoNo

YesHCR.TGE

== 1

?

EL1

and EL0

only?

No

Have

EL3?
Yes Yes

Yes

NoNo

No

From User mode

only, see text.

Prefetch Abort

exception

Stage 2

abort

?

On address

translation

No

Yes
Hyp mode, vector

offset 0x14
Yes

Yes

Non-secure Abort mode,

vector offset 0x0C

1No

No

Yes

No No

1

Debug

exception

?

HDCR.TDE

== 1

?

External

abort

?

HCR2.TEA

== 1

?

Synchronous

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11395
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
G1.17.7.3 Pseudocode description of taking the Prefetch Abort exception

The AArch32.Abort() pseudocode function determines whether the Prefetch Abort condition generates an exception
that is taken to an Exception level that is using AArch64, or generates a Prefetch Abort exception that is taken in
AArch32 state. When the exception is taken in AArch32 state, the AArch32.TakePrefetchAbortException()
pseudocode procedure describes how the PE takes the exception.

The exception is taken to an Exception level using AArch64 if one of the following applies:

• The exception is generated in User mode when EL1 is using AArch64.

• The implementation includes EL2, EL2 is using AArch64, and one of the following applies:

— The value of HCR_EL2.TGE is 1 and the exception is generated in Non-secure User mode.

— The value of MDCR_EL2.TDE is 1 and the exception is generated by a Debug exception in a
Non-secure EL1 or Non-secure EL0 mode.

— The exception is generated by a stage 2 fault during a stage 1 translation table walk using the AArch32
Non-secure EL1&0 translation regime.

• The implementation includes EL3, EL3 is using AArch64, the value of SCR_EL3.EA is 1. and the exception
is generated by an External abort in AArch32 state.

G1.17.8 Data Abort exception

In AArch32 state, a Data Abort exception can be generated by:

• A synchronous abort on a data read or write memory access. Exception entry is synchronous to the instruction
that generated the memory access.

• An SError interrupt. The SError interrupt might be caused by an External abort on a memory access, which
can be any of:

— A data read or write access.

— An instruction fetch.

— In a VMSA memory system, a translation table access.

Exception entry occurs asynchronously.

As described in Asynchronous exception masking controls, SError interrupts can be masked. When this
happens, a generated SError interrupt is not taken until it is not masked.

• A watchpoint, see Watchpoint exceptions.

By default, when EL1 is using AArch32 a Data Abort exception is taken to Abort mode, but a Data Abort exception
can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the Data Abort exception is taken to an Exception level that is using AArch32 see The PE
mode to which the Data Abort exception is taken.

• About memory aborts in AArch32 state see VMSAv8-32 memory aborts.

• About cases where the Data Abort generates an exception that is taken to an Exception level that is using
AArch64 see Pseudocode description of taking the Data Abort exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11396
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
The preferred return address for a Data Abort exception is the address of the instruction that generated the aborting
memory access, or the address of the instruction following the instruction boundary at which an SError interrupt
exception was taken. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 8. This means using:

— SPSR_abt and LR_abt if returning from Abort mode.

— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information about the handling of Data Abort exceptions in AArch32 state see Exception return to an
Exception level using AArch32.

G1.17.8.1 The PE mode to which the Data Abort exception is taken

Figure G1-8 shows the determination of the mode to which a Data Abort exception is taken when the exception is
taken to an Exception level that is using AArch32.

Note

In this figure, the Effective value of HCR2.TEA is 0 if FEAT_RAS is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11397
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
Figure G1-8 The PE mode the Data Abort exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1.

Data Abort

exception

External

abort

?

Yes

Hyp mode, vector

offset 0x10

Monitor mode,

vector offset 0x10
SCR.EA

== 1

?

Yes

Stage 2

abort

?

On address

translation

Yes
Abort mode,

vector offset 0x10

State is

Secure

?

Secure Abort mode,

vector offset 0x10

Have

EL2?
Yes

Yes

Yes

Non-secure Abort mode,

vector offset 0x10

Yes

No

No

Hyp mode, vector

offset 0x14

Yes

No

Yes

1

1

Yes

1

HCR.TGE

== 1

?

No

EL1

and EL0

only?

No

Have

EL3?
Yes

No

Yes

Taken

from Hyp

mode ?

No

No

From User mode

only, see text.

No

No

No

Yes

No

No

Yes

No

Yes

External

abort

?

Synchronous

HCR2.TEA

== 1

?

Debug

exception

?

HDCR.TDE

== 1

?

SError

interrupt

?

HCR.AMO

== 1

?

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11398
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
G1.17.8.2 Pseudocode description of taking the Data Abort exception

The AArch32.Abort() pseudocode function determines whether the Data Abort condition generates an exception that
is taken to an Exception level that is using AArch64, or generates a Data Abort exception that is taken in AArch32
state. When the exception is taken in AArch32 state, the AArch32.TakeDataAbortException() pseudocode procedure
describes how the PE takes the exception.

The exception is taken to an Exception level using AArch64 if one of the following applies:

• The exception is generated in User mode when EL1 is using AArch64.

• The implementation includes EL2, EL2 is using AArch64, and one of the following applies:

— The value of HCR_EL2.TGE is 1 and the exception is generated in Non-secure User mode.

— The value of MDCR_EL2.TDE is 1 and the exception is generated by a Debug exception in a
Non-secure EL1 or Non-secure EL0 mode.

— The exception is generated by a stage 2 fault during a stage 1 translation table walk using the AArch32
Non-secure EL1&0 translation regime.

• The implementation includes EL3, EL3 is using AArch64, the value of SCR_EL3.EA is 1. and the exception
is generated by an External abort in AArch32 state.

G1.17.8.3 Effects of data-aborted instructions

An instruction that accesses data memory can modify memory by storing one or more values. If the execution of
such an instruction generates a Data Abort exception, or causes Debug state entry because of a watchpoint set on
the location, the value of each memory location that the instruction stores to is:

• Unchanged for any location for which one of the following applies:

— An Alignment fault is generated.

— An MMU fault is generated.

— A Watchpoint is generated.

— An External abort is generated, if that External abort is taken synchronously.

• UNKNOWN for any location for which no exception and no debug event is generated.

If the access to a memory location generates an External abort that is taken asynchronously, it is outside the scope
of the architecture to define the effect of the store on that memory location, because this depends on the
system-specific nature of the External abort. However, in general, Arm recommends that such locations are
unchanged.

For External aborts and Watchpoints, where in principle faulting could be identified at byte or halfword granularity,
the size of a location in this definition is the size for which a memory access is single-copy atomic.

In AArch32 state, instructions that access data memory can modify registers in the following ways:

• By loading values into one or more of the general-purpose registers. The registers loaded can include the PC.

• By loading values into one or more of the registers in the Advanced SIMD and floating-point register file.

• By specifying base register writeback, in which the base register used in the address calculation has a
modified value written to it. All instructions that support base register writeback have CONSTRAINED
UNPREDICTABLE results if base register writeback is specified with the PC as the base register. Only
general-purpose registers can be modified reliably in this way.

• By a direct transfer to or from the Debug Communication Channel (DCC) register, using the LDC and STC
instructions. For more information, see Chapter H4 The Debug Communication Channel and Instruction
Transfer Register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11399
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
If the instruction that accesses the DCC registers is an LDC or STC instruction, UNKNOWN values are left in
the Data Transfer Register and DCC flow-control flags.

• By modifying PSTATE.

If the execution of such an instruction generates a synchronous Data Abort exception, the following rules determine
the values left in these registers:

• On entry to the Data Abort exception handler:

— The PC value is the Data Abort vector address, see Exception vectors and the exception base address.

— The LR_abt value is determined from the address of the aborted instruction.

Neither value is affected by the results of any load specified by the instruction.

• The base register is restored to its original value if either:

— The aborted instruction is a load and the list of registers to be loaded includes the base register.

— The base register is being written back.

• If the instruction only loads one general-purpose register the value in that register is unchanged.

• If the instruction loads more than one general-purpose register, UNKNOWN values are left in destination
registers other than the PC and the base register of the instruction.

• If the instruction affects any registers in the Advanced SIMD and floating-point register file, UNKNOWN
values are left in the registers that are affected.

• PSTATE bits that are not defined as updated on exception entry retain their current value.

• If the instruction is a STREX, STREXB, STREXH, or STREXD, <Rd> is not updated.

After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN. Therefore, Arm strongly
recommends that the abort handler performs a CLREX instruction, or a dummy STREX instruction, to clear the
Exclusives monitor state.

An External abort might signal a data corruption to the PE. For example, a memory location might have been
corrupted. The error that caused the External abort might have been propagated. The RAS Extension provides
mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more
information, see Chapter D19 RAS PE Architecture.

G1.17.8.4 The Arm abort model

The abort model used by an Arm PE is described as a Base Restored Abort Model. This means that if a synchronous
Data Abort exception is generated by executing an instruction that specifies base register writeback, the value in the
base register is unchanged.

The abort model applies uniformly across all instructions.

G1.17.9 Virtual SError interrupt exception

The Virtual SError interrupt exception is implemented only as part of EL2 is enabled in the current Security state.

A Virtual SError interrupt exception is generated in AArch32 state if all of the following apply:

• The PE is in a mode other than Hyp mode.

• The value of PSTATE.A is 0.

• Either:

— EL2 is using AArch32 and the values of the HCR.{TGE, AMO, VA} bits are {0, 1, 1}.

— EL2 is using AArch64 and the values of the HCR_EL2.{TGE, AMO, VA} bits are {0, 1, 1}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11400
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
The preferred return address for a Virtual SError interrupt exception is the address of the instruction immediately
after the instruction boundary where the exception was taken. For an exception taken to AArch32 state, this return
is performed using the SPSR and LR_abt values generated by the exception entry, using an exception return
instruction without subtraction.

G1.17.9.1 The PE mode to which the Virtual SError interrupt exception is taken

The Virtual SError interrupt exception is taken using a vector offset of 0x10 from the Non-secure exception base
address.

The conditions for generating a Virtual SError interrupt exception in AArch32 state mean the exception is:

• Taken from a EL1 or EL0 mode.

• Taken to Abort mode if EL1 is using AArch32.

• Taken to EL1, when EL0 is using AArch32 and EL1 is using AArch64.

For more information, see Virtual exceptions when an implementation includes EL2.

Note

Because a Virtual SError interrupt exception taken to AArch32 state is always taken to Abort mode, on exception
entry the preferred return address is always saved to LR_abt.

G1.17.9.2 Pseudocode description of taking the Virtual SError interrupt exception

The AArch32.TakeVirtualSErrorException() pseudocode procedure describes how the PE takes the exception.

G1.17.10 IRQ exception

The IRQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an IRQ interrupt
request input to the PE.

When an IRQ exception is taken, exception entry is precise to an instruction boundary.

As described in Asynchronous exception masking controls, IRQ exceptions can be masked. When this happens, a
generated IRQ exception is not taken until it is not masked.

By default, when EL1 is using AArch32, an IRQ exception is taken to IRQ mode, but an IRQ exception can be taken
to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the exception is taken to an Exception level using AArch32 see The PE mode to which
the physical IRQ exception is taken.

• About cases where the exception is taken to an Exception level using AArch64 see Pseudocode description
of taking the physical IRQ exception.

The preferred return address for an IRQ exception is the address of the instruction following the instruction
boundary at which the exception was taken. For an exception taken to AArch32 state this return is performed as
follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 4. This means using:

— SPSR_irq and LR_irq if returning from IRQ mode.

— SPSR_mon and LR_mon if returning from Monitor mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11401
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information, see Exception return to an Exception level using AArch32.

G1.17.10.1 The PE mode to which the physical IRQ exception is taken

Figure G1-9 shows how the implementation, state, and configuration options determine the mode to which an IRQ
exception is taken when the exception is taken to an Exception level that is using AArch32.

Figure G1-9 The PE mode the IRQ exception is taken to in AArch32 state

G1.17.10.2 Pseudocode description of taking the physical IRQ exception

The AArch32.TakePhysicalIRQException() pseudocode procedure describes how the PE takes the exception. This
procedure includes the case where the exception is taken to an Exception level that is using AArch64. This happens
if one of the following applies:

• The exception is taken from User mode and EL1 is using AArch64. The Exception is taken to EL1 using
AArch64.

• The exception is taken from User mode, EL2 is implemented in the current Security state and using AArch64,
and the value of HCR_EL2.TGE is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from EL0 or EL1 mode, EL2 is implemented in the current Security state and using
AArch64, and the value of HCR_EL2.IMO is 1. The Exception is taken to EL2 using AArch64.

State is

Secure

?

IRQ exception

Yes
IRQ mode,

vector offset 0x18

Secure IRQ mode,

vector offset 0x18

No

SCR.IRQ

== 1

?

Monitor mode,

vector offset 0x18
Yes

No

Yes

Have

EL2?
Yes

HCR.IMO

== 1

?

No

Hyp mode,

vector offset 0x18

Yes

Non-secure IRQ mode,

vector offset 0x18

No

No

No

EL1

and EL0

only?

Have

EL3?

Taken

from Hyp

mode ?

Yes

No

Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11402
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
• The exception is taken from a PE mode other than Monitor mode, EL3 is implemented and using AArch64,
and the value of SCR_EL3.IRQ is 1. The Exception is taken to EL3 using AArch64.

G1.17.11 Virtual IRQ exception

The Virtual IRQ exception is implemented only as part of EL2, if EL2 is enabled in the current Security state.

A Virtual IRQ exception is generated in AArch32 state if all of the following apply:

• The PE is in a mode other than Hyp mode.

• The value of PSTATE.I is 0.

• Either:

— EL2 is using AArch32 and the value of HCR.{TGE, IMO} is {0, 1}.

— EL2 is using AArch64 and the value of HCR_EL2.{TGE, IMO} is {0, 1}.

• One of the following applies:

— EL2 is using AArch32 and the value of HCR.VI is 1.

— EL2 is using AArch64 and the value of HCR_EL2.VI is 1.

— A Virtual IRQ exception is generated by an IMPLEMENTATION DEFINED mechanism.

The preferred return address for a Virtual IRQ exception is the address of the instruction immediately after the
instruction boundary where the exception was taken. For an exception taken to AArch32 state this return is
performed using the SPSR and LR_irq values generated by the exception entry, using an exception return instruction
with a subtraction of 4.

G1.17.11.1 The PE mode to which the Virtual IRQ exception is taken

The Virtual IRQ exception uses a vector offset of 0x18.

The conditions for generating a Virtual IRQ exception in AArch32 state mean the exception is:

• Taken from an EL1 or EL0 mode.

• Taken to IRQ mode if EL1 is using AArch32.

• Taken to EL1 if EL0 is using AArch32 and EL1 is using AArch64.

For more information, see Virtual exceptions when an implementation includes EL2.

G1.17.11.2 Pseudocode description of taking the Virtual IRQ exception

The AArch32.TakeVirtualIRQException() pseudocode procedure describes how the PE takes the exception.

G1.17.12 FIQ exception

The FIQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an FIQ interrupt
request input to the PE.

When an FIQ exception is taken, exception entry is precise to an instruction boundary.

As described in Asynchronous exception masking controls, FIQ exceptions can be masked. When this happens, a
generated FIQ exception is not taken until it is not masked.

By default, an FIQ exception is taken to FIQ mode, but an FIQ exception can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.

• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11403
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
For more information:

• About cases where the exception is taken to an Exception level using AArch32 see The PE mode to which
the physical FIQ exception is taken.

• About cases where the exception is taken to an Exception level using AArch64 see Pseudocode description
of taking the FIQ exception.

The preferred return address for an FIQ exception is the address of the instruction following the instruction
boundary at which the exception was taken. For an exception taken to AArch32 state this return is performed as
follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception
entry, using an exception return instruction with a subtraction of 4. This means using:

— SPSR_fiq and LR_fiq if returning from FIQ mode.

— SPSR_mon and LR_mon if returning from Monitor mode.

• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry,
using an ERET instruction.

For more information, see Exception return to an Exception level using AArch32.

G1.17.12.1 The PE mode to which the physical FIQ exception is taken

Figure G1-9 shows how the implementation, state, and configuration options determine the PE mode to which an
FIQ exception is taken when the exception is taken to an Exception level that is using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11404
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
Figure G1-10 The PE mode the FIQ exception is taken to in AArch32 state

G1.17.12.2 Pseudocode description of taking the FIQ exception

The AArch32.TakePhysicalFIQException() pseudocode procedure describes how the PE takes the exception. This
procedure includes the case where the exception is taken to an Exception level that is using AArch64. This happens
if one of the following applies:

• The exception is taken from User mode and EL1 is using AArch64. The Exception is taken to EL1 using
AArch64.

• The exception is taken from User mode, EL2 is implemented in the current Security state and using AArch64,
and the value of HCR_EL2.TGE is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from an EL0 or EL1 mode, EL2 is implemented in the current Security state and using
AArch64, and the value of HCR_EL2.FMO is 1. The Exception is taken to EL2 using AArch64.

• The exception is taken from a PE mode other than Monitor mode, EL3 is implemented and using AArch64,
and the value of SCR_EL3.FIQ is 1. The Exception is taken to EL3 using AArch64.

G1.17.13 Virtual FIQ exception

The Virtual FIQ exception is implemented only as part of EL2, if EL2 is enabled in the current Security state.

FIQ exception

FIQ mode,

vector offset 0x1C

Secure FIQ mode,

vector offset 0x1C

Hyp mode,

vector offset 0x1C

Non-secure FIQ mode,

vector offset 0x1C

Monitor mode,

vector offset 0x1C

State is

Secure

?

Yes

No

SCR.FIQ

== 1

?

Yes

No

Yes

Have

EL2?
Yes

HCR.FMO

== 1

?

No

Yes

No

No

No

EL1

and EL0

only?

Have

EL3?

Taken

from Hyp

mode ?

Yes

No

Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11405
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.17 AArch32 state exception descriptions
A Virtual FIQ exception is generated in AArch32 state if all of the following apply:

• The PE is in a mode other than Hyp mode.

• The value of PSTATE.F is 0.

• Either:

— EL2 is using AArch32 and the value of HCR.{TGE, FMO} is {0, 1}.

— EL2 is using AArch64 and the value of HCR_EL2.{TGE, FMO} is {0, 1}.

• One of the following applies:

— EL2 is using AArch32 and the value of HCR.VF is 1.

— EL2 is using AArch64 and the value of HCR_EL2.VF is 1.

— A Virtual FIQ exception is generated by an IMPLEMENTATION DEFINED mechanism.

The preferred return address for a Virtual FIQ exception is the address of the instruction immediately after the
instruction boundary where the exception was taken. For an exception taken to AArch32 state this return is
performed using the SPSR and LR_irq values generated by the exception entry, using an exception return instruction
with a subtraction of 4.

G1.17.13.1 The PE mode to which the Virtual FIQ exception is taken

The Virtual FIQ exception is taken using a vector offset of 0x1C.

The conditions for generating a Virtual FIQ exception in AArch32 state mean the exception is:

• Taken from EL1 or EL0.

• Taken to FIQ mode if EL1 is using AArch32.

• Taken to EL1 if EL0 is using AArch32 and EL1 is using AArch64.

For more information, see Virtual exceptions when an implementation includes EL2.

G1.17.13.2 Pseudocode description of taking the Virtual FIQ exception

The AArch32.TakeVirtualFIQException() pseudocode procedure describes how the PE takes the exception.

G1.17.14 Additional pseudocode functions for exception handling

The AArch32.EnterMonitorMode() pseudocode function changes the PE mode to Monitor mode, with the required
state changes.

The AArch32.EnterHypMode() pseudocode function changes the PE mode to Hyp mode, with the required state
changes.

The AArch32.EnterMode() pseudocode function changes the PE mode to a PL1 mode, with the required state changes.
It is used for all exceptions that are not routed to Hyp mode or Monitor mode.

The AArch32.EnterMonitorMode(), AArch32.EnterHypMode(), and AArch32.EnterMode() functions are described in
Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11406
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.18 Reset into AArch32 state
G1.18 Reset into AArch32 state

Resets and power domains describes the Armv8 reset model, including the defined levels of reset. When reset is
deasserted, the PE starts executing instructions in the highest implemented Exception level. If that Exception level
is using AArch32, then it starts execution:

• In Secure state, if the implementation includes EL3.

• With interrupts disabled:

— In Hyp mode, if the highest implemented Exception level is EL2.

— In Supervisor mode, otherwise.

Note

• This section describes the architectural requirements for a reset into AArch32 state. It takes no account of
whether Arm licenses any particular combination of Exception levels and Execution state. For more
information about the licensed combinations, see Exception levels.

• The Execution state in which the highest implemented Execution level starts executing instructions on
coming out of reset might be determined by a configuration input signal.

Reset returns some PE state to architecturally-defined or IMPLEMENTATION DEFINED values, and makes other state
UNKNOWN, as described in PE state on reset into AArch32 state. For more information about behavior when
resetting into an Exception level using AArch32, see:

• Behavior of caches at reset.

• Enabling stages of address translation.

• TLB behavior at reset.

• Reset and debug.

When reset is deasserted, if the PE resets into an Exception level that is using AArch32, it is IMPLEMENTATION
DEFINED whether execution starts:

• From an IMPLEMENTATION DEFINED address.

• If reset is into EL3 or EL1, from the low or high reset vector address, as determined by the reset value of the
SCTLR.V bit. This reset value can be determined by an IMPLEMENTATION DEFINED configuration input
signal.

Note
This option might be implemented for compatibility with earlier versions of the architecture.

Software might be able to identify the reset address:

• If reset is into EL3, by reading the reset value of MVBAR. That is, after coming out of reset, by reading
MVBAR before the boot software has updated it. It is IMPLEMENTATION DEFINED whether this discovery
mechanism is supported.

• If reset is into EL2 or EL1, by reading RVBAR. RVBAR can only be implemented at the highest implemented
Exception level, and only if that Exception level is not EL3.

If RVBAR is not implemented, and at all Exception levels other than the highest implemented Exception level, the
encoding for RVBAR is UNDEFINED.

The Arm architecture does not define any way of returning to a previous Execution state from a reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11407
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.18 Reset into AArch32 state
G1.18.1 PE state on reset into AArch32 state

Immediately after a reset, much of the PE state is architecturally UNKNOWN. However, some of the PE state is
defined, see the individual register descriptions for more information. The state that is reset to known values is
sufficient to permit predictable initial execution at the highest Exception level, such that this execution is then
capable of initializing the remaining state of the system where necessary before use.

If the PE resets to AArch32 state using either a Cold or a Warm reset, the PE state that is defined is as follows:

• The global exclusive monitor and local exclusive monitor for the PE are UNKNOWN.

• If reset is into EL2 using AArch32, then reset is into Hyp mode and PSTATE.M resets to 0b1010, otherwise
reset is into Supervisor mode and PSTATE.M resets to 0b0011.

• PSTATE.IL resets to 0.

G1.18.2 Pseudocode descriptions of reset

The AArch32.TakeReset() pseudocode procedure describes how the PE behaves when reset is deasserted.

The AArch32.ResetGeneralRegisters() pseudocode function resets the general-purpose registers.

The AArch32.ResetSIMDFPRegisters() pseudocode function resets the SIMD and floating-point registers.

The AArch32.ResetSpecialRegisters() pseudocode function resets the Special-purpose registers, and the debug
System registers DLR and DSPSR, which are used for handling Debug exceptions.

The AArch32.ResetSystemRegisters() pseudocode function resets all System registers in the (coproc==0b111x)
encoding space to their reset state as defined in the register descriptions in Chapter G8 AArch32 System Register
Descriptions.

Note

The AArch32.ResetSystemRegisters() function only resets the System registers. It has no effect on memory-mapped
registers.

The ResetExternalDebugRegisters() pseudocode function resets all external debug registers to their reset state as
defined in the register descriptions in Chapter H9 External Debug Register Descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11408
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 Mechanisms for entering a low-power state
G1.19 Mechanisms for entering a low-power state

The following sections describe the architectural mechanisms that a PE can use to request entry to a low-power
state:

• Wait For Event and Send Event.

• Wait For Interrupt.

G1.19.1 Wait For Event and Send Event

The Wait For Event (WFE) mechanism permits a PE to request entry to a low-power state, and, if the request
succeeds, to remain in that state until an event is generated by a Send Event operation, or another WFE wakeup
event occurs. Example G1-2 describes how a spinlock implementation might use this mechanism to save energy.

Example G1-2 Spinlock as an example of using Wait For Event and Send Event

A multiprocessor operating system requires locking mechanisms to protect data structures from being accessed
simultaneously by multiple PEs. These mechanisms prevent the data structures becoming inconsistent or corrupted
if different PEs try to make conflicting changes. If a lock is busy, because a data structure is being used by one PE,
it might not be practical for another PE to do anything except wait for the lock to be released. For example, if a PE
is handling an interrupt from a device it might need to add data received from the device to a queue. If another PE
is removing data from the queue, it will have locked the memory area that holds the queue. The first PE cannot add
the new data until the queue is in a consistent state and the lock has been released. It cannot return from the interrupt
handler until the data has been added to the queue, so it must wait.

Typically, a spin-lock mechanism is used in these circumstances:

• A PE requiring access to the protected data attempts to obtain the lock using single-copy atomic
synchronization primitives such as the Load-Exclusive and Store-Exclusive operations described in
Synchronization and semaphores.

• If the PE obtains the lock, it performs its memory operation and releases the lock.

• If the PE cannot obtain the lock, it reads the lock value repeatedly in a tight loop until the lock becomes
available. At this point, it again attempts to obtain the lock.

A spin-lock mechanism is not ideal for all situations:

• In a low-power system, the tight read loop is undesirable because it uses energy to no effect.

• In a multithreaded implementation, the execution of spin-locks by waiting threads can significantly degrade
overall performance.

Using the Wait For Event and Send Event mechanism can improve the energy efficiency of a spinlock. In this
situation, a PE that fails to obtain a lock can execute a Wait For Event instruction, WFE, to request entry to a
low-power state. When a PE releases a lock, it must execute a Send Event instruction, SEV, causing any waiting PEs
to wake up. Then, these PEs can attempt to gain the lock again.

The execution of a WFE instruction can cause suspension of execution only if all of the following are true:

• The instruction does not cause any other exception.

• When the instruction is executed:

— The Event Register is not set.

— There is not a pending WFE wakeup event.

For more information about the trap to EL2, see HCR.{WFI, WFE}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11409
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 Mechanisms for entering a low-power state
The architecture does not define the exact nature of the low power state entered as a result of executing a WFE
instruction, but the execution of a WFE instruction must not cause a loss of memory coherency or architectural state.

Note

Although a complex operating system can contain thousands of distinct locks, the event sent by this mechanism does
not indicate which lock has been released. If the event relates to a different lock, or if another PE acquires the lock
more quickly, the PE fails to acquire the lock and can reenter the low-power state waiting for the next event.

The Wait For Event system relies on hardware and software working together to achieve energy saving:

• The hardware provides the mechanism to enter the Wait For Event low-power state.

• The operating system software is responsible for issuing:

— A Wait For Event instruction, to request entry to the low-power state, used in the example when
waiting for a spin-lock.

— A Send Event instruction, required in the example when releasing a spin-lock.

The mechanism depends on the interaction of:

• WFE wakeup events, see WFE wakeup events.

• The Event Register, see The Event Register.

• The Send Event instructions, see The Send Event instructions.

• The Wait For Event instruction, see The Wait For Event instruction.

G1.19.1.1 The Event Register

The Event Register is a single bit register for each PE. When set, an event register indicates that an event has
occurred, since the register was last cleared, that might require some action by the PE. Therefore, the PE must not
suspend operation on issuing a WFE instruction.

The reset value of the Event Register is UNKNOWN.

The Event Register for a PE is set by:

• The execution of an SEV instruction on any PE in the multiprocessor system.

• The execution of an SEVL instruction by the PE.

• An exception return.

• An event from a Generic Timer event stream, see Event streams.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

As shown in this list, the Event Register might be set by IMPLEMENTATION DEFINED mechanisms.

The Event Register is cleared only by a Wait For Event instruction.

Software cannot read or write the value of the Event Register directly.

G1.19.1.2 The Wait For Event instruction

The action of the Wait For Event instruction depends on the state of the Event Register:

• If the Event Register is set, the instruction clears the register and completes immediately. Normally, if this
happens the software makes another attempt to claim the lock.

• If the Event Register is clear the PE can suspend execution, and hardware might enter a low-power state. The
PE can remain suspended until a WFE wakeup event or a reset occurs. When a WFE wakeup event occurs,
or earlier if the implementation chooses, the WFE instruction completes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11410
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 Mechanisms for entering a low-power state
The execution in AArch32 state of a WFE instruction that would otherwise cause suspension of execution might be
trapped, see:

• SCTLR.{nTWE, nTWI}.

• HCR.{TWE, TWI}.

• SCR.{TWE, TWI}.

The Wait For Event instruction, WFE, is available at all privilege levels, see WFE.

Software using the Wait For Event mechanism must tolerate spurious wakeup events, including multiple wake ups.

G1.19.1.3 WFE wakeup events

The following events are WFE wakeup events:

• The execution of an SEV instruction on any PE in the system.

• The execution of an SEVL instruction on the PE.

• A physical IRQ interrupt, unless masked by the PSTATE.I bit.

• A physical FIQ interrupt, unless masked by the PSTATE.F bit.

• A physical SError interrupt, unless masked by the PSTATE.A bit.

• In Non-secure state in any mode other than Hyp mode:

— When HCR.IMO is set to 1, a virtual IRQ interrupt, unless masked by the PSTATE.I bit.

— When HCR.FMO is set to 1, a virtual FIQ interrupt, unless masked by the PSTATE.F bit.

— When HCR.AMO is set to 1, a virtual SError interrupt, unless masked by the PSTATE.A bit.

• An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is
allowed, see Halting allowed and halting prohibited.

See also External Debug Request debug event.

• An event sent by the timer event stream, see Event streams.

• An event sent by some IMPLEMENTATION DEFINED mechanism.

• An event caused by the clearing of the global monitor associated with the PE.

In addition to the possible masking of WFE wakeup events shown in this list, when invasive debug is enabled and
EDSCR.HDE is set to 1, EDSCR.INTdis can mask interrupts, including masking them acting as WFE wakeup
events. See the register description for more information.

As shown in the list of wakeup events, an implementation can include IMPLEMENTATION DEFINED hardware
mechanisms to generate wakeup events.

Note

For more information about PSTATE masking, see Asynchronous exception masking controls. If the configuration
of the masking controls provided by EL2 and EL3 mean that a PSTATE mask bit cannot mask the corresponding
exception, then the physical exception is a WFE wakeup event, regardless of the value of the PSTATE mask bit.

G1.19.1.4 The Send Event instructions

The Send Event instructions are:

SEV, Send Event This causes an event to be signaled to all PEs in the multiprocessor system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11411
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 Mechanisms for entering a low-power state
SEVL, Send Event Local

This must set the local Event Register. It might signal an event to other PEs, but is not
required to do so.

The mechanism that signals an event to other PEs is IMPLEMENTATION DEFINED. The PE is not required to guarantee
the ordering of this event with respect to the completion of memory accesses by instructions before the SEV
instruction. Therefore, Arm recommends that software includes a DSB instruction before any SEV instruction.

Note

A DSB instruction ensures that no instruction, including any SEV instruction, that appears in program order after the
DSB instruction, can execute until the DSB instruction has completed. For more information, see Data Synchronization
Barrier (DSB).

The SEVL instruction appears to execute in program order relative to any subsequent WFE instruction executed on the
same PE, without the need for any explicit insertion of barrier instructions.

Execution of the Send Event instruction sets the Event Register.

The Send Event instructions are available at all privilege levels.

G1.19.1.5 Pseudocode description of the Wait For Event mechanism

This section defines pseudocode functions that describe the operation of the Wait For Event mechanism.

The ClearEventRegister() pseudocode procedure clears the Event Register of the current PE.

The IsEventRegisterSet() pseudocode function returns TRUE if the Event Register of the current PE is set and
FALSE if it is clear.

The WaitForEvent() pseudocode procedure optionally suspends execution until a WFE wakeup event or reset
occurs, or until some earlier time if the implementation chooses. It is IMPLEMENTATION DEFINED whether restarting
execution after the period of suspension causes a ClearEventRegister() to occur.

The SendEvent() pseudocode procedure sets the Event Register of every PE in the system.

G1.19.2 Wait For Interrupt

AArch32 state supports Wait For Interrupt through an instruction, WFI, which is provided in the A32 and T32
instruction sets. For more information, see WFI.

When a PE issues a WFI instruction, its execution can be suspended, and a low-power state can be entered.

The execution in AArch32 state of a WFI instruction that would otherwise cause suspension of execution might be
trapped, see:

• SCTLR.nTWI.

• HCR.WFI.

• SCR.WFI.

The execution of a WFI instruction can cause suspension of execution only if both:

• The instruction does not cause any other exception.

• When the instruction is executed, there is not a pending WFI wakeup event.

G1.19.2.1 WFI wakeup events

The PE can remain suspended in its WFI state until it is reset, or one of the following WFI wakeup events occurs:

• A physical IRQ interrupt, regardless of the value of the PSTATE.I bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11412
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 Mechanisms for entering a low-power state
• A physical FIQ interrupt, regardless of the value of the PSTATE.F bit.

• A physical SError interrupt, regardless of the value of the PSTATE.A bit.

• In Non-secure state in any mode other than Hyp mode:

— When HCR.IMO is set to 1, a virtual IRQ interrupt, regardless of the value of the PSTATE.I bit.

— When HCR.FMO is set to 1, a virtual FIQ interrupt, regardless of the value of the PSTATE.F bit.

— When HCR.AMO is set to 1, a virtual SError interrupt, regardless of the value of the PSTATE.A bit.

• An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is
allowed, see Halting allowed and halting prohibited.

See also External Debug Request debug event.

An implementation can include other IMPLEMENTATION DEFINED hardware mechanisms to generate WFI wakeup
events.

When a WFI wakeup event is detected, or earlier if the implementation chooses, the WFI instruction completes.

WFI wakeup events cannot be masked by the mask bits in the PSTATE.

The architecture does not define the exact nature of the low power state, except that:

• The execution of a WFI instruction must not cause a loss of memory coherency.

• If the system is configured such that the WFI instruction can be completed, then the WFI instruction must not
cause a loss of architectural state.

Note

In some implementations, based on the configuration of system specific registers, WFI can be used as part of a
powerdown sequence where no interrupts will cause WFI wakeup events, and restoration of power involves
resetting of the PE. In those cases, the WFI is permitted to cause a loss of architectural state, as it is assumed that
this state will have been saved by software as part of the powerdown sequence before the WFI.

Note

• Because debug events are WFI wakeup events, Arm strongly recommends that Wait For Interrupt is used as
part of an idle loop rather than waiting for a single specific interrupt event to occur and then moving forward.
This ensures the intervention of debug while waiting does not significantly change the function of the
program being debugged.

• In some previous implementations of Wait For Interrupt, the idle loop is followed by exit functions that must
be executed before taking the interrupt. The operation of Wait For Interrupt remains consistent with this
model, and therefore differs from the operation of Wait For Event.

• Some implementations of Wait For Interrupt drain down any pending memory activity before suspending
execution. The Arm architecture does not require this operation, and software must not rely on Wait For
Interrupt operating in this way.

G1.19.2.2 Using WFI to indicate an idle state on bus interfaces

A common implementation practice is to complete any entry into powerdown routines with a WFI instruction.
Typically, the WFI instruction:

1. Forces the completion of execution of any instructions that are in progress, and of all associated bus activity.

2. Suspends the execution of instructions by the PE.

The control logic required to do this tracks the activity of the bus interfaces used by the PE. This means it can signal
to an external power controller when there is no ongoing bus activity.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11413
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.19 Mechanisms for entering a low-power state
However, memory-mapped and external debug interface accesses to debug registers must continue to be processed
while the PE is in the WFI state. The indication of idle state to the system normally only applies to the non-debug
functional interfaces used by the PE, not the debug interfaces.

If FEAT_DoubleLock is implemented and the value of DBGOSDLR.DLK, the OS Double Lock status bit, is set to
1, this idle state must not be signaled to the PE unless the system can guarantee, also, that the debug interface is idle.

Note

When separate Core and Debug power domains are implemented, the debug interface referred to in this section is
the interface between the Core and Debug power domains, since the signal to the power controller indicates that the
Core power domain is idle. For more information about the power domains, see Power domains and debug.

The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only
architecturally-defined mechanism that completely suspends execution makes it very suitable as the preferred
powerdown entry mechanism.

G1.19.2.3 Pseudocode description of Wait For Interrupt

The WaitForInterrupt() pseudocode function optionally suspends execution until a WFI wakeup event or reset
occurs, or until some earlier time if the implementation chooses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11414
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.20 The AArch32 System register interface
G1.20 The AArch32 System register interface

Most System registers are accessed using the instructions described in System register access instructions. The
System register interface provides access to those instructions, and:

• These registers are encoded using the parameters {coproc, opc1, CRn, CRm, opc2}, with permitted coproc values
of 0b1110 and 0b1111.

• Some of these encodings provide the AArch32 System instructions.

• To maintain compatibility with previous versions of the Arm architecture, the access controls for the
AArch32 System registers include the access controls for AArch32 Advanced SIMD and floating-point
functionality.

Note
See Background to the System register interface for more information.

The following sections give more information about the AArch32 System register interface:

• System registers in the coproc == 0b111x encoding space.

• Access to System registers.

• Access controls for Advanced SIMD and floating-point functionality.

• Background to the System register interface.

G1.20.1 System registers in the coproc == 0b111x encoding space

In AArch32 state:

• The coproc == 0b1110 encoding space is reserved for the configuration and control of:

— Debug features, see Debug registers.

— Trace features, see the Embedded Trace Macrocell Architecture Specification.

— Identification registers for the Trivial Jazelle implementation, see Trivial implementation of the Jazelle
extension.

• The coproc == 0b1111 encoding space is reserved for the control and configuration of the PE, including
architecture and feature identification. This means these encodings provide access to the System registers that
control and return status information for PE operation.

For more information, see Chapter G8 AArch32 System Register Descriptions.

G1.20.2 Access to System registers

Most System registers are accessible only from EL1 or higher. For possible accesses from EL0 the register
descriptions in Chapter G8 AArch32 System Register Descriptions indicate whether a register is accessible from
EL0.

G1.20.3 Access controls for Advanced SIMD and floating-point functionality

The CPACR controls access to Advanced SIMD and floating-point functionality from software executing at PL1 or
EL0 in AArch32 state:

• The {cp10, cp11} fields control access to all Advanced SIMD and floating-point functionality, and can:

— Disable EL0 and PL1 access to this functionality.

— Enable access to this functionality at PL1 only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11415
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.20 The AArch32 System register interface
— Enable access to this functionality at EL0 and PL1.

• The ASEDIS field controls access to Advanced SIMD instructions that are not also floating-point
instructions.

Initially on powerup or reset into AArch32 state, all access to all Advanced SIMD and floating-point functionality
from PL1 and EL0 is disabled.

Note

The CPACR has no effect on accesses from Hyp mode.

If an implementation includes EL3, the NSACR determines whether Advanced SIMD and floating-point
functionality can be accessed from Non-secure state:

• The {cp10, cp11} fields control Non-secure access to all Advanced SIMD and floating-point functionality.

• The NSASEDIS field controls Non-secure access to Advanced SIMD instructions that are not also
floating-point instructions.

If an implementation includes EL2, the HCPTR provides additional controls on Non-secure accesses to Advanced
SIMD and floating-point functionality. For accesses that are otherwise permitted by the CPACR and NSACR
settings, setting HCPTR bits to 1:

• Traps otherwise-permitted accesses from EL1 or EL0 to EL2. When EL2 is using AArch32, these accesses
are trapped to Hyp mode.

• Makes accesses from EL2 mode UNDEFINED. When EL2 is using AArch32, this makes accesses from Hyp
mode UNDEFINED.

In the HCPTR:

• The {TCP10, TCP11} fields control access to all Advanced SIMD and floating-point functionality.

• The TASE field controls access to Advanced SIMD instructions that are not also floating-point instructions.

• The TCPAC field traps Non-secure EL1 accesses to the CPACR to Hyp mode.

Note

Whenever a pair of fields control the access to the Advanced SIMD and floating-point functionality, the values of
each field of the pair must be identical. If these settings are not identical the behavior of the Advanced SIMD and
floating-point functionality is CONSTRAINED UNPREDICTABLE, see Handling of System register control fields for
Advanced SIMD and floating-point operation.

For more information about Advanced SIMD and floating-point support, see Advanced SIMD and floating-point
support.

G1.20.4 Background to the System register interface

Note

This section is not part of the Architecture specification. It is included only to present the rationale of some aspects
of the System register interface.

The interface to the System registers was originally defined as part of a generic coprocessor interface that gave
access to 15 coprocessors, CP0 - CP15. Of these, CP8 - CP15 were reserved for use by Arm, while CP0 - CP7 were
available for IMPLEMENTATION DEFINED coprocessors.

The coprocessors were accessed using coprocessor instructions. These instructions remain part of the T32 and A32
instruction sets, see System register access instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11416
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.20 The AArch32 System register interface
In the Arm coprocessor model, a coprocessor included both:

• Primary and secondary coprocessor registers, which form part of the coprocessor interface.

• A number of internal registers.

When accessing a 32-bit internal coprocessor register, using an MCR or MRC instruction, the instruction specified:

• The target coprocessor, specified by the coproc parameter and taking a value between p0 for CP0 and p15 for
CP15.

• The primary coprocessor register, specified by the CRn parameter and taking a value between c0 and c15.

• The secondary coprocessor register, specified by the CRm parameter and taking a value between c0 and c15.

• Up to two additional parameters, opc1 and opc2, taking values between 0 and 7.

Other instructions in the group described in System register access instructions take a subset of these parameters:

• In the Armv7 definitions, LDC and STC instructions take parameters {coproc, CRd}, where CRd is the primary
coprocessor register.

• MCRR and MRRC instructions take parameters {coproc, opc1, CRm}, where CRm is the primary coprocessor register.

To maintain backwards compatibility, the arguments to an MCR or MRC instruction remain {coproc, opc1, CRn, CRm,
opc2}. Correspondingly, the encoding of the AArch64 System registers is described using the parameters {op0, op1,
CRn, CRm, op2}. However:

• The naming of these parameters no longer has any particular significance.

• While the coproc field is a 4-bit field, op0 is a 2-bit field.

Of the coprocessors reserved for use by Arm, in earlier versions of the architecture:

• CP15 provided access to the System registers relating to non-debug operation, and was originally called the
System control coprocessor. From the introduction of Armv8, these registers are described as being in the
coproc == 0b1111 encoding space.

• CP14 provided access to additional System registers, including those relating to debug and trace. From the
introduction of Armv8, these registers are described as being in the coproc == 0b1110 encoding space.

• CP10 and CP11 were used for Advanced SIMD and floating-point control, and many coprocessor instruction
encodings targeting CP10 and CP11 were used as floating-point instruction encodings:

— Generally from the introduction of Armv8 the architecture does not relate these instructions to the
coprocessor encoding space, but the naming of registers and register fields for Advanced SIMD and
floating-point control reflects the historic coprocessor model.

— Because the Advanced SIMD and floating-point functionality used both CP10 and CP11, some System
register controls of this functionality have a pair of fields, for example NSACR.{cp10, cp11}. In these
cases, both fields must be set to the same value. For more information, see Access controls for
Advanced SIMD and floating-point functionality.

From the introduction of Armv8:

• The AArch32 System registers include registers that were described as Special registers in Armv7 and earlier
versions of the architecture. This means that the System registers include registers that are outside the earlier
coprocessor model.

• The Armv7 AArch32 instruction encodings for LDC, STC, MCR, MRC, MCRR, and MRRC instructions with coproc field
values other than {1010, 1011, 1110, 1111} are available for reuse. Armv8.2 re-uses some encodings in this
way.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11417
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Advanced SIMD and floating-point support
G1.21 Advanced SIMD and floating-point support

Advanced SIMD and floating-point instructions introduces:

• The scalar floating-point instructions in the A32 and T32 instruction sets.

• The Advanced SIMD integer and floating-point vector instructions in the A32 and T32 instruction sets.

• The SIMD and floating-point register file, which can be viewed as:

— Singleword registers S0 - S31.

— Doubleword registers D0 - D31.

— Quadword registers Q0 - Q15.

• The Floating-Point Status and Control Register (FPSCR).

• Floating-point exceptions and exception traps

For more information about the System registers for the Advanced SIMD and floating-point operation, see
Advanced SIMD and floating-point System registers. Software can interrogate these registers to discover the
implemented Advanced SIMD and floating-point support.

AArch32 implications of not including support for Advanced SIMD and floating-point summarizes the effects of not
supporting these instructions, and the following subsections give more information about the Advanced SIMD and
Floating-point support:

• Enabling Advanced SIMD and floating-point support.

• Advanced SIMD and floating-point System registers.

• Context switching when using Advanced SIMD and floating-point functionality.

G1.21.1 AArch32 implications of not including support for Advanced SIMD and floating-point

The architecture generally requires the inclusion of the Advanced SIMD and floating-point instructions in all
instruction sets. However, for implementations targeting specialized markets, Arm might produce or license
implementations that do not provide any support for Advanced SIMD and floating-point instructions. In such an
implementation, in AArch32 state:

• The CPACR.{ASEDIS, cp11, cp10} fields are RES0.

• The NSACR.{NSASEDIS, cp11, cp10} fields are RES0.

• The HCPTR.{TASE, TCP11, TCP10} fields are RES1.

• The FPEXC, FPSCR, FPSID, MVFR0, MVFR1, and MVFR2 registers are not implemented and their
encodings are UNDEFINED.

• Attempted accesses to Advanced SIMD and floating-point functionality are UNDEFINED. This means:

— All Advanced SIMD and floating-point instructions are UNDEFINED.

— Attempts to access the Advanced SIMD and floating-point System registers are UNDEFINED.

G1.21.2 Enabling Advanced SIMD and floating-point support

Software must ensure that the required access to the Advanced SIMD and floating-point features is enabled. Most
of those controls are described in Configurable instruction controls, and this section:

• Summarizes those controls.

• Provides additional information in the following subsections:

— FPEXC control of access to Advanced SIMD and floating-point functionality.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11418
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Advanced SIMD and floating-point support
— EL0 access to Advanced SIMD and floating-point functionality.

Note

This section shows the controls when the controlling Exception levels are using AArch32. Similar controls are
provided when the Exception levels are using AArch64, and then apply to lower Exception levels that are using
AArch32.

The controls of access to Advanced SIMD and floating-point functionality are:

General {cp10, cp11} or {TCP10, TCP11} controls

This relates to the CPACR.{cp10, cp11}, NSACR.{cp10, cp11}, and HCPTR.{TCP10, TCP11}
controls.

Note
Background to the System register interface explains the naming of these controls.

The {cp10, cp11} controls provide general control of the use of Advanced SIMD and floating-point
functionality, as follows:

• CPACR.{cp10, cp11} control access from PE modes other than Hyp mode.

These fields have no effect on accesses to Advanced SIMD and floating-point functionality
from Hyp mode.

• In an implementation that includes EL3, NSACR.{cp10, cp11} control access from
Non-secure state.

• In an implementation that includes EL2, if NSACR.{cp10, cp11} permit Non-secure
accesses, or if EL3 is not implemented, HCPTR.{TCP10, TCP11} provide an additional
control on those accesses.

In each case, the {cp10, cp11} controls must be programmed to the same value, otherwise operation
is CONSTRAINED UNPREDICTABLE. The CONSTRAINED UNPREDICTABLE behavior is that, for all
purposes other than reading the value of the register field, behavior is as if the cp11 field has the
same value as the cp10 field. For more information, see Handling of System register control fields
for Advanced SIMD and floating-point operation.

For more information about these controls, see:

• FPEXC.

• CPACR.

• HCPTR.

• NSACR.

Control of accesses to the CPACR from Non-secure PL1 modes

As stated in General {cp10, cp11} or {TCP10, TCP11} controls, the CPACR controls access to
Advanced SIMD and floating-point functionality from PE modes other than Hyp mode. Accesses
to the CPACR from Non-secure PL1 modes can be trapped to EL2.

Additional controls of Advanced SIMD functionality

• If implemented as an RW field, CPACR.ASEDIS can make all Advanced SIMD instructions
UNDEFINED in all modes other than Hyp mode.

• In an implementation that includes EL3, when CPACR.ASEDIS permits use of the Advanced
SIMD instructions or if the CPACR.ASEDIS control is not implemented,
NSACR.NSASEDIS can make all Advanced SIMD instructions UNDEFINED in Non-secure
state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11419
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Advanced SIMD and floating-point support
• In an implementation that includes EL2, when the CPACR and NSACR settings permit
Non-secure use of the Advanced SIMD instructions, if HCPTR.TASE is implemented as an
RW field it can make these instructions UNDEFINED in Hyp mode, and trap to Hyp mode any
use of these instructions in a Non-secure PL0 or PL1 mode.

Pseudocode description of enabling SIMD and floating-point functionality provides links to the pseudocode
descriptions of all of these controls.

G1.21.2.1 FPEXC control of access to Advanced SIMD and floating-point functionality

In addition, FPEXC.EN is an enable bit for most Advanced SIMD and floating-point operations. When FPEXC.EN
is 0, all Advanced SIMD and floating-point instructions are treated as UNDEFINED except for:

• A VMSR to the FPEXC or FPSID register.

• A VMRS from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2 register.

These instructions can be executed only at EL1 or higher.

Note

• When the FPSID is accessible, any write access to the FPSID is ignored.

• When FPEXC.EN is 0, these operations are treated as UNDEFINED:

— A VMSR to the FPSCR.

— A VMRS from the FPSCR.

When executing at EL0, the PE behaves as if the value of FPEXC.EN is 1 if either:

• EL1 is using AArch64.

• EL2 is enabled in the current Security state and is using AArch64. and the value of HCR_EL2.TGE is 1.

Note

In Non-secure state, if the value of HCR_EL2.RW is 0 then it is permitted for the value of
FPEXC32_EL2.EN to control whether Advanced SIMD and floating-point functionality is enabled.
However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

G1.21.2.2 EL0 access to Advanced SIMD and floating-point functionality

When the access controls summarized in this section permit EL0 access to the Advanced SIMD and floating-point
functionality, this applies only to the subset of functionality that is available at EL0. In particular:

• Only Advanced SIMD and Floating-point System register that is accessible is the FPSCR.

• The Advanced SIMD and floating-point instructions are available.

Execution at EL0 corresponds to the application level view of the Advanced SIMD and floating-point functionality,
as described in Advanced SIMD and floating-point System registers.

G1.21.3 Advanced SIMD and floating-point System registers

AArch32 state provides a common set of System registers for the Advanced SIMD and floating-point functionality.
This section gives general information about this set of registers, and indicates where each register is described in
detail. It contains the following subsections:

• Register map of the Advanced SIMD and floating-point System registers.

• Accessing the Advanced SIMD and floating-point System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11420
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Advanced SIMD and floating-point support
G1.21.3.1 Register map of the Advanced SIMD and floating-point System registers

Table G1-21 shows the register map of the Advanced SIMD and Floating-point registers. Each register is 32 bits
wide.

In an implementation that includes EL3, the Advanced SIMD and Floating-point registers are common registers,
see Common System registers.

G1.21.3.2 Accessing the Advanced SIMD and floating-point System registers

Software accesses the Advanced SIMD and floating-point System registers using the VMRS and VMSR instructions, see:

• VMRS.

• VMSR.

For example:

VMRS <Rt>, FPSID ; Read Floating-Point System ID Register
VMRS <Rt>, MVFR1 ; Read Media and VFP Feature Register 1
VMSR FPSCR, <Rt> ; Write Floating-Point System Control Register

Software can access the Advanced SIMD and floating-point System registers only if the access controls permit the
access, see Enabling Advanced SIMD and floating-point support.

Note

All hardware ID information can be accessed only from EL1 or higher. This means:

The FPSID is accessible only from EL1 or higher.

This is a change introduced from VFPv3. Previously, the FPSID register can be accessed in all
modes.

The MVFR registers are accessible only from EL1 or higher.

Unprivileged software must issue a system call to determine what features are supported.

G1.21.4 Context switching when using Advanced SIMD and floating-point functionality

When the Advanced SIMD and floating-point functionality is used by only a subset of processes, the operating
system might implement lazy context switching of the Advanced SIMD and floating-point register file and System
registers.

Table G1-21 Floating-point registers

Name Permitted access

FPEXC RW

FPSCR RW

FPSID RWa

a. When FPSID is
accessible, VMSR accesses
to FPSID are ignored.

MVFR0 RO

MVFR1 RO

MVFR2 RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11421
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.21 Advanced SIMD and floating-point support
In the simplest lazy context switch implementation, the primary context switch software uses the
CPACR.{cp10, cp11} controls to disable access to the Advanced SIMD and floating-point functionality, see
Enabling Advanced SIMD and floating-point support. Subsequently, when a process or thread attempts to use an
Advanced SIMD or floating-point instruction, it triggers an Undefined Instruction exception. The operating system
responds by saving and restoring the Advanced SIMD and floating-point register file and System registers.
Typically, it then re-executes the Advanced SIMD or floating-point instruction that generated the Undefined
Instruction exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11422
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.22 Configurable instruction controls
G1.22 Configurable instruction controls

This section describes the Configurable instruction controls provided by the AArch32 state. For information about
the configurable instruction controls provided by the AArch64 state, see Configurable instruction controls.

Each control is categorized as an instruction enable, an instruction disable, or a trap control. The definitions of each
type overlap, and in some cases are historical. Each configurable instruction control defines how an exception that
is generated as a consequence of the configurable instruction control is handled or reported.

Instruction enables and instruction disables

Enable or disable the use of one or more particular instructions at a particular Privilege level and
Security state.

When an instruction is disabled as a result of an instruction enable or disable, it is UNDEFINED.

The exception generated by attempting to execute an UNDEFINED instruction is:

• Taken to EL1 if the UNDEFINED instruction was executed at EL0, unless the instruction was
executed at Non-secure EL0 and is routed to EL2 by the control described in Routing
exceptions from Non-secure EL0 to EL2.

When the exception is taken to EL1, it is taken to Undefined mode.

• Otherwise, taken to the Exception level at which the UNDEFINED instruction was executed:

— If the instruction was executed in Hyp mode the exception is taken to Hyp mode.

— Otherwise, the exception is taken to Undefined mode.

Trap controls

Control whether one or more instructions, when executed at a particular Privilege level, are trapped.

Note

AArch32 trap controls are described in terms of Privilege levels, rather than Exception levels,
because the PL1 traps apply at and are controlled from:

EL1 In Non-secure state, and in Secure state when EL3 is using AArch64.

EL3 In Secure state when EL3 is using AArch32.

For more information, see Security state, Exception levels, and AArch32 execution privilege.

Trap controls are grouped as:

PL1, excluding Monitor mode

Trapped instructions generate Undefined Instruction exceptions that are taken to
Undefined mode, unless the instruction was executed at Non-secure EL0 and is routed
to EL2 by the control described in Routing exceptions from Non-secure EL0 to EL2.

For more information about these traps, see PL1 configurable controls.

Hyp mode (PL2)

These traps apply only to execution in Non-secure state. This section only describes the
traps that apply when EL2 is using AArch32.

Trapped instructions generate:

• Hyp Trap exceptions, taken to Hyp mode, if trapped from a mode other than Hyp
mode.

• Undefined Instruction exceptions taken to Hyp mode, if trapped from Hyp mode.

For more information about these traps, see EL2 configurable controls.

See also Routing exceptions from Non-secure EL0 to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11423
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.22 Configurable instruction controls
Monitor mode (Secure PL1)

This section describes only the traps that apply when EL3 is using AArch32.

Trapped instructions generate Monitor Trap exceptions, which are taken to Monitor
mode.

For more information about these traps, see EL3 configurable controls.

An exception generated as a result of an instruction enable or disable, or a trap control, is only taken if the instruction
does not also generate a higher priority exception. Exception prioritization for exceptions taken to AArch32 state
defines the prioritization of different exceptions on the same instruction.

Exceptions generated as a result of these controls are synchronous exceptions.

For exceptions taken to an Exception level that is using AArch32, only exceptions that are taken to Hyp mode are
reported in a syndrome register, the HSR.

An implementation might provide additional controls, in IMPLEMENTATION DEFINED registers, to provide control of
trapping of IMPLEMENTATION DEFINED features.

When a configurable instruction control causes an exception, the exception is taken and the instruction is not
executed, and therefore all the following are true:

• The preferred exception return address of the exception is the instruction that generates the exception.

• There are no changes to the registers accessed by the instruction, including as a result of side-effects of a
register access.

This section is organized as follows:

• Instructions that fail their Condition code check

• Instructions that are UNPREDICTABLE

• Register access instructions

• PL1 configurable controls

• EL2 configurable controls

• EL3 configurable controls

• Pseudocode description of configurable instruction enables, disables, and traps

G1.22.1 Instructions that fail their Condition code check

When a configurable instruction control causes a conditional instruction to generate an exception in AArch32 state,
it is IMPLEMENTATION DEFINED whether the exception applies to conditional AArch32 instructions that fail their
condition code check.

For instructions that fail their Condition code check, see Conditional execution of undefined instructions.

For an instruction that has a Hyp trap or Monitor trap set that fails its Condition code check:

• Unless the trap description states otherwise, it is IMPLEMENTATION DEFINED whether the instruction:

— Generates a Hyp Trap or Monitor Trap exception.

— Executes as a NOP.

Any implementation must be consistent in its handling of instructions that fail their Condition code check. This
means that:

• Whenever a Hyp trap or Monitor trap is set on an instruction it must either:

— Always generate a Hyp Trap or Monitor Trap exception.

— Always treat the instruction as a NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11424
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.22 Configurable instruction controls
• The IMPLEMENTATION DEFINED part of the requirements of Conditional execution of undefined instructions
must be consistent with the handling of Hyp traps or Monitor traps on instructions that fail their Condition
code check. Table G1-22 shows this:

G1.22.2 Instructions that are UNPREDICTABLE

It is UNPREDICTABLE / CONSTRAINED UNPREDICTABLE whether configurable instruction controls generate an
exception when the instruction is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in the PE state in which the
instruction is executed, except in the following cases:

• If the instruction description explicitly states that the configurable instruction control is applied with higher
priority than the CONSTRAINED UNPREDICTABLE behavior, then the configurable instruction control generates
an exception.

• For an instruction where one of the CONSTRAINED UNPREDICTABLE behaviors is that a register value becomes
UNKNOWN, then either:

— The configurable instruction controls generate an exception.

— The instruction executes with one of the CONSTRAINED UNPREDICTABLE behaviors that does not cause
a register value to become UNKNOWN.

UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions can generate exceptions as a result of configurable
instruction controls, but the architecture does not require them to do so.

Note

UNPREDICTABLE and CONSTRAINED UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or lower Exception level using instructions that are not UNPREDICTABLE and are not
CONSTRAINED UNPREDICTABLE. This means that disabling or trapping an instruction changes the set of instructions
that might be executed in:

• Non-secure state at EL1 or EL0.

• Modes other than Monitor Mode.

This indirectly affects the permitted behavior of UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions.

Many CONSTRAINED UNPREDICTABLE behaviors for instructions include an allowance that the CONSTRAINED
UNPREDICTABLE instruction behaves the same way as a closely related instruction that is not CONSTRAINED
UNPREDICTABLE. In those cases, the instruction enable, disable, or trap control that causes an exception on the
closely related instruction will cause the same exception on the CONSTRAINED UNPREDICTABLE instruction.

If no instructions are trapped, the attempted execution of an UNPREDICTABLE instruction in a Non-secure EL1 or
EL0 mode must not generate a Hyp Trap exception or Monitor Trap exception.

Table G1-22 Consistent handling of instructions that fail their Condition code check

Behavior of conditional UNDEFINED instructiona
Hyp trap or Monitor trap on instruction that fails its
Condition code checkb

Executes as a NOP Executes as a NOP

Generates an Undefined Instruction exception Generates a Hyp Trap or Monitor Trap exception

a. As defined in Conditional execution of undefined instructions. In Non-secure EL0 and EL1 modes, this applies only if no Hyp trap or
Monitor trap is set for the instruction, otherwise see the behavior in the other column of the table.

b. For a trapped instruction executed in a Non-secure EL1 or EL0 mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11425
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.22 Configurable instruction controls
G1.22.3 Register access instructions

When an instruction is disabled or trapped, the exception is taken before execution of the instruction. This means
that if the instruction is a register access instruction:

• No access is made before the exception is taken.

• Side-effects that are normally associated with the access do not occur before the exception is taken.

G1.22.4 PL1 configurable controls

In AArch32 state, each control is associated with a particular System register field that is accessible:

• When EL3 is using AArch64, or when an implementation does not include EL3, from EL1.

• When EL3 is using AArch32:

— In Non-secure state, from EL1.

— In Secure state, from EL3.

This means that the controls are described as PL1 controls, because PL1 is defined as being the Privilege level of
software that is executing:

• At EL3, if the PE is executing in EL3 and EL3 is using AArch32.

• At EL1 under all other conditions.

Where there is an AArch64 control that is equivalent to an AArch32 PL1 control, the AArch64 control is an EL1
control.

Any exception that is generated because of an AArch32 PL1 control is taken to a PL1 mode.

Note

Any exception generated because of an AArch32 PL1 control is taken to AArch32 state.

Table G1-23 shows the AArch32 System registers that contain these controls.

When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as
described in Routing exceptions from Non-secure EL0 to EL2.

G1.22.5 EL2 configurable controls

These controls are ignored in Secure state when using AArch32.

Table G1-23 PL1 System registers that contain configurable instruction controls

Register name Register description

SCTLR System Control Register

FPEXC Floating-point Exception Control Register

CPACR Architectural Feature Access Control Register

DBGDSCRext Monitor System Debug Control Register

PMUSERENR Performance Monitors User Enable Register

AMUSERENR Activity Monitors User Enable Register

CNTKCTL Counter-timer Kernel Control Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11426
ID032224 Non-Confidential

The AArch32 System Level Programmers’ Model
G1.22 Configurable instruction controls
Table G1-24 shows the System registers that contain these controls.

G1.22.6 EL3 configurable controls

Table G1-25 shows the System registers that contain these controls.

G1.22.7 Pseudocode description of configurable instruction enables, disables, and traps

The pseudocode function AArch32.CheckITEnabled() checks whether the T32 IT instruction is enabled.

The pseudocode function AArch32.CheckSETENDEnabled() checks whether the SETEND instruction is disabled.

The pseudocode function for AArch32.CheckForSMCUndefOrTrap() checks for traps on an SMC instruction.

The AArch32.CheckForWFxTrap() pseudocode function checks for traps on WFE and WFI instructions:

G1.22.7.1 Pseudocode description of enabling SIMD and floating-point functionality

The AArch32.CheckAdvSIMDOrFPEnabled() and AArch32.CheckFPAdvSIMDTrap() pseudocode functions take appropriate
action if an SIMD or floating-point instruction is used when the SIMD and floating-point functionality is not
enabled or is trapped.

The CheckAdvSIMDOrVFPEnabled(), CheckAdvSIMDEnabled(), and CheckVFPEnabled() wrapper functions support the
AArch32.CheckAdvSIMDOrFPEnabled() and AArch32.CheckFPAdvSIMDTrap() functions.

The AArch32.CheckAdvSIMDOrFPEnabled(), AArch32.CheckFPAdvSIMDTrap(), CheckAdvSIMDOrVFPEnabled(),
CheckAdvSIMDEnabled(), and CheckVFPEnabled() functions are described in Chapter J1 Armv8 Pseudocode

Table G1-24 EL2 System registers that contain configurable instruction controls

Register name Register description

FPEXC Floating-point Exception Control Register

HCR Hypervisor Configuration Register

HSTR Hypervisor System Trap Register

HCPTR Hyp Architectural Feature Trap Register

HDCR Hyp Debug Control Register

HSCTLR Hyp System Control Register

HCR2 Hypervisor Configuration Register 2

CNTHCTL Counter-timer Hyp Control Register

Table G1-25 EL3 System registers that contain configurable instruction controls

Register name Register description

SCR Secure Configuration Register

NSACR Non-secure Access Control Register

SDCR Secure Debug Control Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G1-11427
ID032224 Non-Confidential

Chapter G2
AArch32 Self-hosted Debug

When the PE is using self-hosted debug, it generates debug exceptions. This chapter describes the AArch32
self-hosted debug Exception model. It is organized as follows:

Introductory information

• About self-hosted debug.

• The debug exception enable controls.

The debug Exception model

• Routing debug exceptions.

• Enabling debug exceptions.

• The effect of powerdown on debug exceptions.

• Summary of permitted routing and enabling of debug exceptions.

• Pseudocode description of debug exceptions.

The debug exceptions

• Breakpoint Instruction exceptions.

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11428
ID032224 Non-Confidential

AArch32 Self-hosted Debug

Synchronization requirements

The behavior of self-hosted debug after changes to System registers, or after changes to the
authentication interface, but before a Context Synchronization event guarantees the effects of the
changes:

• Synchronization and debug exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11429
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
G2.1 About self-hosted debug

Self-hosted debug supports debugging through the generation and handling of debug exceptions, that are taken using
the Exception model described in:

• Chapter D1 The AArch64 System Level Programmers’ Model, if the exception is taken to AArch64 state.

• Chapter G1 The AArch32 System Level Programmers’ Model, if the exception is taken to AArch32 state.

This section introduces some terms used in describing self-hosted debug, and then introduces the debug exceptions.
See:

• Definition of a debugger in the context of self-hosted debug.

• Context ID and Process ID.

G2.1.1 Definition of a debugger in the context of self-hosted debug

Within this chapter, debugger means that part of an operating system, or higher level of system software, that
handles debug exceptions and programs the debug System registers. An operating system with rich application
environments might provide debug services that support a debugger user interface executing at EL0. From the
architectural perspective, the debug services are the debugger.

G2.1.2 Context ID and Process ID

In AArch32 state, the CONTEXTIDR identifies the current Context ID, that is used by:

• The debug logic, for breakpoint and watchpoint matching.

• Implemented trace logic, to identify the current process.

When using the Long-descriptor translation table format, the CONTEXTIDR has a single field, PROCID, that is
defined as the Process Identifier (Process ID). Therefore, in AArch64 state, the Context ID and Process ID are
identical when using this translation table format.

When using the Short-descriptor translation table format:

• CONTEXTIDR[31:0] defines the Context ID, that is used for breakpoint and watchpoint matching.

• CONTEXTIDR[31:8] defines the Process ID.

• CONTEXTIDR[7:0] define the ASID. See Global and process-specific translation table entries. This means
that, when using the Short-descriptor translation table format, the ASID is always bits[7:0] of the Context ID.

G2.1.3 About debug exceptions

Debug exceptions occur during normal program flow if a debugger has programmed the PE to generate them. For
example, a software developer might use a debugger contained in an operating system to debug an application. To
do this, the debugger might enable one or more debug exceptions. The debug exceptions that can be generated in
an AArch32 stage 1 translation regime are:

• Breakpoint Instruction exceptions.

• Breakpoint exceptions, generated by hardware breakpoints.

• Watchpoint exceptions, generated by hardware watchpoints.

• Vector Catch exceptions.

Note

In addition, Software Step exceptions can be generated in stage 1 of an AArch32 translation regime. However, these
are always taken to AArch64 state. Software Step exceptions describes this.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11430
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
Other than Breakpoint Instruction exceptions, the PE can generate a particular debug exception only if all of the
following are true:

• The OS Lock is unlocked.

• DoubleLockStatus() == FALSE.

• Debug exceptions are not disabled from the current Exception level and Security state.

See Enabling debug exceptions. Breakpoint Instruction exceptions are always enabled from the current
Exception level and Security state.

• A debugger has not disabled that particular debug exception.

All of the debug exceptions except for Breakpoint Instruction exceptions have an enable control contained in
the DBGDSCRext. See The debug exception enable controls.

Breakpoint Instruction exceptions are always enabled.

Note

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause entry to Debug state
instead of causing debug exceptions. In Debug state, the PE is halted.

For the definition of halting is allowed, see Halting allowed and halting prohibited.

When a debug exception is taken to an Exception level that is using AArch32:

• If the debug exception is a Watchpoint exception, it is taken as a Data Abort exception.

• Otherwise, it is taken as a Prefetch Abort exception.

The following list summarizes each of the debug exceptions:

Breakpoint Instruction exceptions

Breakpoint instructions generate these. Breakpoint instructions are instructions that software
developers can use to cause exceptions at particular points in the program flow.

The breakpoint instruction in the A32 and T32 instruction sets is BKPT #<immediate>. Whenever one
of these is committed for execution, the PE takes a Breakpoint Instruction exception.

PE behavior

Breakpoint Instruction exceptions cannot be masked. The PE takes Breakpoint
Instruction exceptions regardless of both of the following:

• The current Privilege level and AArch32 mode.

• The current Security state.

For more information, see Breakpoint Instruction exceptions.

Breakpoint exceptions

The architecture provides 2-16 hardware breakpoints. These can be programmed to generate
Breakpoint exceptions based on one or more of instruction addresses, accesses to any address in an
instruction address range, or particular PE contexts.

For example, a software developer might program a hardware breakpoint to generate a Breakpoint
exception whenever the instruction with address 0x1000 is committed for execution.

The architecture supports the following types of hardware breakpoint for use in stage 1 of an
AArch32 translation regime:

• Address:

— Address Match.

— Address Mismatch.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11431
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
Comparisons are made with the virtual address of each instruction in the program flow.

• Context:

— Context ID Match. Matches with the Context ID value held in the CONTEXTIDR.

— VMID Match. Matches with the VMID value held in the VTTBR.

— Context ID and VMID Match. Matches with both the Context ID and the VMID value.

An Address breakpoint can link to a Context breakpoint, so that the Address breakpoint only
generates a Breakpoint exception if the PE is in a particular context when the address match or
mismatch occurs.

A breakpoint generates a Breakpoint exception whenever an instruction that causes a match is
committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints cause entry to Debug
state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware breakpoints cause Breakpoint
exceptions.

• If debug exceptions are disabled, hardware breakpoints are ignored.

For more information, see Breakpoint exceptions.

Watchpoint exceptions

The architecture provides 2-16 hardware watchpoints. These can be programmed to generate
Watchpoint exceptions based on accesses to particular data addresses, or based on accesses to any
address in a data address range.

For example, a software developer might program a hardware watchpoint to generate a Watchpoint
exception on an access to any address in the data address range 0x1000 - 0x101F.

A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is a Context
matching breakpoint with linking enabled, or it can link to an address breakpoint. In this case, the
watchpoint only generates a Watchpoint exception if the PE is in a particular context when the data
address match occurs.

The smallest data address size that a watchpoint can be programmed to match on is a byte. A single
watchpoint can be programmed to match on one or more bytes.

A watchpoint generates a Watchpoint exception whenever an instruction that initiates an access that
causes a match is committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware watchpoints cause entry to Debug
state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

• If debug exceptions are enabled, hardware watchpoints cause Watchpoint
exceptions.

• If debug exceptions are disabled, hardware watchpoints are ignored.

For more information, see Watchpoint exceptions.

Vector Catch exceptions

These are used to trap exceptions. The architecture provides two forms of vector catch,
address-matching and exception-trapping. Only one form can be implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11432
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.1 About self-hosted debug
Whichever form is implemented, a debugger must enable Vector Catch exceptions for one or more
exception vectors by programming the DBGVCR. Generation of Vector Catch exceptions is then as
follows:

• For the address-matching form, a Vector Catch exception is generated whenever the virtual
address of an instruction matches a vector that Vector Catch exceptions are enabled for.

• For the Exception-trapping form, a Vector Catch exception is generated as part of exception
entry for exception types that correspond to vectors that Vector Catch exceptions are enabled
for.

PE behavior

If debug exceptions are:

• Enabled, Vector Catch exceptions can be generated.

• Disabled, vector catch is ignored.

For more information, see Vector Catch exceptions.

Table G2-1 summarizes PE behavior and shows the location of the pseudocode for each of the debug exceptions.

Table G2-1 PE behavior and pseudocode for each of the debug exceptions

Debug
exception

PE behavior if debug
exceptions are:

Pseudocode, see

Enabled Disabled

Breakpoint
Instruction
exception

Takes
Prefetch Abort
exception

Takes
Prefetch Abort
exception

AArch32.SoftwareBreakpoint()

Breakpoint
exception

Takes
Prefetch Abort
exceptiona

Ignored Pseudocode description of Breakpoint exceptions taken from AArch32 state

Watchpoint
exception

Takes
Data Abort
exceptiona

Ignored Pseudocode description of Watchpoint exceptions taken from AArch32 state

Vector Catch
exception

Takes
Prefetch Abort
exception

Ignored Pseudocode description of Vector Catch exceptions

a. If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause the PE to enter Debug state instead of causing
debug exceptions. See Chapter H2 Debug State.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11433
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.2 Routing debug exceptions
G2.2 Routing debug exceptions

Debug exceptions are usually routed to Abort mode. However, if EL2 is implemented, the routing of debug
exceptions depends on the Effective values of HDCR.TDE and HCR.TGE:

If the Effective value of {HDCR.TDE, HCR.TGE} is not {0, 0}

Debug exceptions taken from Non-secure state are routed to Hyp mode.

If EL2 is using AArch64 and FEAT_SEL2 is implemented, debug exceptions taken from Secure
EL0 and Secure EL1 may be routed to Secure EL2. For more information, see Routing debug
exceptions.

Otherwise

In Non-secure state debug exceptions behave as follows:

• Debug exceptions taken from Non-secure EL1 and Non-secure EL0 are routed to Non-secure
Abort mode.

• Breakpoint Instruction exceptions taken from Hyp mode are routed to Hyp mode.

• All other debug exceptions are disabled from Hyp mode.

Note

If EL2 is not implemented, the Effective value of HCR.TGE is 0 and the Effective value of HDCR.TDE is 0.

Table G2-2, Table G2-3, and Table G2-4 show the routing of debug exceptions taken from an Exception level that
is using AArch32 to an Exception level that is using AArch32. In these tables:

TDE Means the logical OR of HDCR.TDE and HCR.TGE.

(Hyp mode) Means:

• All debug exceptions other than Breakpoint Instruction exceptions are disabled from this
Privilege level.

• Breakpoint Instruction exceptions taken from this Privilege level are taken to Hyp mode.

Table G2-2 Routing when both EL3 and EL2 are implemented

TDE

Target AArch32 mode when executing in:

Non-secure:
Secure state

PL0 PL1 PL2

0 Non-secure Abort mode Non-secure Abort mode (Hyp mode) Secure Abort mode

1 Hyp mode Hyp mode (Hyp mode) Secure Abort mode

Table G2-3 Routing when EL3 is implemented and EL2 is not implemented

Target AArch32 mode when executing in:

Non-secure state Secure state

Non-secure Abort mode Secure Abort mode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11434
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.2 Routing debug exceptions
G2.2.1 Pseudocode description of routing debug exceptions

DebugTarget() returns the current debug target Exception level. DebugTargetFrom() returns the debug target
Exception level for the specified Security state.

Table G2-4 Routing when EL3 is not implemented and EL2 is implemented

TDE Target AArch32 mode when executing in Non-secure:

PL0 PL1 PL2

0 Non-secure Abort mode Non-secure Abort mode (Hyp mode)

1 Hyp mode Hyp mode (Hyp mode)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11435
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.3 The debug exception enable controls
G2.3 The debug exception enable controls

The enable controls for each debug exception are as follows:

Breakpoint Instruction exceptions

None. Breakpoint Instruction exceptions are always enabled.

Breakpoint exceptions

DBGDSCRext.MDBGen, plus an enable control for each breakpoint, DBGBCR<n>.E.

Watchpoint exceptions

DBGDSCRext.MDBGen, plus an enable control for each watchpoint, DBGWCR<n>.E.

Vector Catch exceptions

DBGDSCRext.MDBGen.

In addition, for all debug exceptions other than Breakpoint Instruction exceptions, software must configure the
controls that enable debug exceptions from the current Exception level and Security state. See Enabling debug
exceptions.

The PE cannot take a debug exception if debug exceptions are disabled from either the current Exception level or
the current Security state.

Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.

There is no mechanism to access the extended breakpoints and watchpoints in AArch32 state.

G2.3.1 Enabling debug exceptions

A debug exception can only be taken if all of the following are true:

• The OS Lock is unlocked.

• DoubleLockStatus() == FALSE.

• The debug exception is enabled from the current Privilege level.

• The debug exception is enabled from the current Security state.

Table G2-5 shows when debug exceptions are enabled from the current Privilege level.

Table G2-5 Whether debug exceptions are enabled from the current Privilege level

Current
Privilege level

Breakpoint Instruction
exceptions

All other
debug exceptions

PL2 Enabled Disabled

PL1 Enabled Enabled

PL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11436
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.3 The debug exception enable controls
Table G2-6 shows when debug exceptions are enabled from the current Security state.

G2.3.2 Disabling debug exceptions from Secure state

If EL3 is implemented, software executing at EL3 can enable or disable all debug exceptions taken from Secure PL1
other than Breakpoint Instruction exceptions, by using one of:

• The Secure Privileged Debug field, SDCR.SPD, if EL3 is using AArch32.

• The AArch32 Secure Privileged Debug field, MDCR_EL3.SPD32, if EL3 is using AArch64.

If debug exceptions are disabled from Secure PL1, software executing at Secure PL1 can set the Secure User
Invasive Debug Enable bit, SDER.SUIDEN, to 1 to enable all debug exceptions taken from Secure PL0 other than
Breakpoint Instruction exceptions.

Note

Breakpoint Instruction exceptions are always enabled.

The architecture does not support disabling debug in Non-secure state.

Note

If the boot software that is executed when reset is deasserted programs SUIDEN and SPD so that all debug
exceptions are disabled from Secure state, software operating at EL3 never has to switch any of the debug registers
between the Security states.

G2.3.3 Pseudocode description of enabling debug exceptions

AArch64.GenerateDebugExceptions() determines whether debug exceptions are enabled from the current Exception
level and Security state. AArch64.GenerateDebugExceptionsFrom() determines whether debug exceptions are enabled
from the specified Exception level and Security state.

Table G2-6 Whether debug exceptions are enabled from the current Security state

Current
Security state

Breakpoint Instruction
exceptions

All other
debug exceptions

Non-secure Enabled Enabled from PL1 and PL0 only.

Secure Enabled Depends on SDCR.SPD and SDER.SUIDEN.

See Disabling debug exceptions from Secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11437
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.4 The effect of powerdown on debug exceptions
G2.4 The effect of powerdown on debug exceptions

Debug OS Save and Restore sequences describes the powerdown save routine and the restore routine.

When executing either routine, software must use the OS Lock to disable generation of all of the following:

• Breakpoint exceptions.

• Watchpoint exceptions.

• Vector Catch exceptions.

This is because the generation of these exceptions depends on the state of the debug registers, and the state of the
debug registers might be lost over these routines.

Debug exceptions other than Breakpoint Instruction exceptions are enabled only if both the OS Lock is unlocked
and DoubleLockStatus() == FALSE.

Breakpoint Instruction exceptions are enabled regardless of the state of the OS Lock and the OS Double Lock.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11438
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.5 Summary of permitted routing and enabling of debug exceptions
G2.5 Summary of permitted routing and enabling of debug exceptions

Behavior is as follows:

Breakpoint Instruction exceptions

These are always enabled, regardless of the current Privilege level and Security state. Table G2-7
shows the routing of these. In the table, n/a means not applicable.

All other debug exceptions

The enabling and permitted routing is controlled by all of the following:

• SDCR.SPD.

• SDER.SUIDEN.

• HDCR.TDE.

• The IMPLEMENTATION DEFINED authentication interface.

Table G2-8 shows the valid combinations of the values of SDCR.SPD, SDER.SUIDEN,
HDCR.TDE, and, in the Auth column, the input from the IMPLEMENTATION DEFINED authentication
interface described by the pseudocode function
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled(). For each combination, the table
shows where debug exceptions are enabled from and where they are taken to.

In the table, n/a means not applicable and a dash, -, means that debug exceptions are disabled from
that Exception level.

Table G2-7 Routing of Breakpoint Instruction exceptions

Current
Security state

HDCR.TDEa:

a. If EL2 is not implemented, behavior is as if the value of this bit is 0. Otherwise, if the value of HCR.TGE
is 1, HDCR.TDE is treated as being 1 other than for a direct read of HDCR.

Target when enabled from:

PL0 PL1 PL2

Secure X Secure Abort modeb

b. If EL3 is implemented and is using AArch32, Secure Abort mode is at EL3. Otherwise, Secure Abort mode
is at EL1.

Secure Abort modeb n/a

Non-secure 0 Non-secure Abort mode Non-secure Abort mode Hyp mode

1 Hyp mode Hyp mode Hyp mode

Table G2-8 Breakpoint, Watchpoint, and Vector Catch exceptions

Debug state Locka Current
Security state

SPDb Authc SUIDENb TDEd

Target AArch32 mode
when enabled from:

PL0 PL1 PL2

Yes X X 0bXX X X X - - -

No TRUE X 0bXX X X X - - -

No FALSE Secure 0b00 FALSE 0 X - - n/a

No FALSE Secure 0b00 FALSE 1 X Secure
Abort modee

- n/a

No FALSE Secure 0b00 TRUE X X Secure
Abort modee

Secure
Abort modee

n/a
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11439
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.5 Summary of permitted routing and enabling of debug exceptions
No FALSE Secure 0b10 X 0 X - - n/a

No FALSE Secure 0b10 X 1 X Secure
Abort modee

- n/a

No FALSE Secure 0b11 X X X Secure
Abort modee

Secure
Abort modee

n/a

No FALSE Non-secure 0bXX X X 0 Non-secure
Abort mode

Non-secure
Abort mode

-

No FALSE Non-secure 0bXX X X 1 Hyp mode Hyp mode -

a. The value of (OSLSR_EL1.OSLK == 1 || DoubleLockStatus()).

b. If EL3 is not implemented, behavior is as if SPD is 0b11 and SUIDEN is 0b0.

c. See the text that introduces this table for an explanation of the Auth column. An entry of TRUE indicates that the authentication
mechanism permits the debug exceptions to be taken to their default target PE mode.

d. If HCR.TGE is 1, this bit is treated as being 1 other than for a direct read of HDCR. If EL2 is not implemented, behavior is as if TDE is 0.

e. If EL3 is implemented and is using AArch32, Secure Abort mode is at EL3. Otherwise, Secure Abort mode is at EL1

Table G2-8 Breakpoint, Watchpoint, and Vector Catch exceptions (continued)

Debug state Locka Current
Security state

SPDb Authc SUIDENb TDEd

Target AArch32 mode
when enabled from:

PL0 PL1 PL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11440
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.6 Pseudocode description of debug exceptions
G2.6 Pseudocode description of debug exceptions

The AArch32.Abort() function processes FaultRecord(), as described in Abort exceptions, and generates:

• Data Abort exceptions for watchpoints.

• Prefetch Abort exceptions for all other debug exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11441
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.7 Breakpoint Instruction exceptions
G2.7 Breakpoint Instruction exceptions

This section describes Breakpoint Instruction exceptions in an AArch32 translation regime.

Note

When the PE is executing in EL0 using AArch32 and EL1 is using AArch64, it is using the AArch64 EL1&0
translation regime. A T32 or A32 BKPT instruction executed at EL0 can generate a Breakpoint Instruction exception
that is taken to an Exception level that is using AArch64. For more information about the handling of these
exceptions, see Breakpoint Instruction exceptions.

It contains the following subsections:

• About Breakpoint Instruction exceptions.

• Breakpoint instruction in the A32 and T32 instruction sets.

• BKPT instructions as the first instruction in an IT block.

• Exception syndrome information and preferred return address for a BKPT instruction.

• Pseudocode description of Breakpoint Instruction exceptions.

G2.7.1 About Breakpoint Instruction exceptions

A breakpoint is an event that results from the execution of an instruction, based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint Instruction exceptions, that this section describes, are software breakpoints. Breakpoint exceptions
describes hardware breakpoints.

There is no enable control for Breakpoint Instruction exceptions. They are always enabled, and cannot be masked.

A Breakpoint Instruction exception is generated whenever a breakpoint instruction is committed for execution,
regardless of all of the following:

• The current Exception level.

• The current Security state.

• Whether the debug target Exception level, ELD, is using AArch64 or AArch32.

Note

• ELD is the Exception level that debug exceptions are targeting. See Enabling debug exceptions.

• Debuggers using breakpoint instructions must be aware of the rules for concurrent modification and
execution of instructions. See Concurrent modification and execution of instructions.

G2.7.2 Breakpoint instruction in the A32 and T32 instruction sets

The breakpoint instruction, in both instruction sets, is:

• BKPT #<immediate>

For details of the instruction encoding, see BKPT.

G2.7.2.1 About whether the BKPT instruction is conditional

In the T32 instruction set, BKPT instructions are always unconditional.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11442
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.7 Breakpoint Instruction exceptions
In the A32 instruction set:

• If the Condition code field is AL, the BKPT instruction is unconditional.

• If the Condition code field is anything other than AL, behavior is CONSTRAINED UNPREDICTABLE, and is one
of the following:

— The instruction is UNDEFINED.

— The instruction is treated as a NOP instruction.

— The instruction is executed unconditionally.

— The instruction is executed conditionally.

G2.7.3 BKPT instructions as the first instruction in an IT block

If the first instruction in an IT block is a T32 BKPT instruction, then in an implementation that supports the ITD
control, if ITD field that applies to the current Exception level is:

0 The BKPT instruction generates a Breakpoint Instruction exception.

1 The combination of IT instruction and BKPT instruction is UNDEFINED. Either the IT instruction or the
BKPT instruction generates an Undefined Instruction exception.

In such an implementation, to ensure consistent behavior when making the first instruction in one or more IT blocks
a BKPT instruction, the debugger must replace the IT instruction.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

The ITD control fields are:

HSCTLR.ITD Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

Note

T32 BKPT instructions are always unconditional.

G2.7.4 Exception syndrome information and preferred return address for a BKPT instruction

See the following:

• Exception syndrome information for a Breakpoint Instruction exception.

• Preferred return address for a Breakpoint Instruction exception.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced section uses the term more generally, to include exception information reported in the IFSR.

G2.7.4.1 Exception syndrome information for a Breakpoint Instruction exception

The PE takes a Breakpoint Instruction exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp Trap exception, if it is taken to PL2 because either HCR.TGE or HDCR.TDE is 1. In this case, it is
taken to Hyp mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11443
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.7 Breakpoint Instruction exceptions
If the exception is taken to:

PL1 Abort mode

The PE sets all of the following:

• DBGDSCRext.MOE to 0b0011, to indicate a Breakpoint Instruction exception.

• IFSR.FS to the code for a debug, 0b00010.

• The IFAR with an UNKNOWN value.

PL2 Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-9.

• Sets DBGDSCRext.MOE to 0b0011, to indicate a Breakpoint Instruction exception.

• Sets the HIFAR to an unknown value.

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions.

G2.7.4.2 Preferred return address for a Breakpoint Instruction exception

The preferred return address is the address of the breakpoint instruction, not the next instruction. This is different
to the behavior of other exception-generating instructions, like SVC.

G2.7.5 Pseudocode description of Breakpoint Instruction exceptions

AArch32.SoftwareBreakpoint() generates a Prefetch Abort exception that is taken from AArch32 state.

Table G2-9 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.

Instruction Length, IL The PE sets this to:

• 0 for a T32 BKPT instruction.

• 1 for an A32 BKPT instruction.

Instruction Specific Syndrome, ISS ISS[24:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8:6] RES0.

ISS[5:0] Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug
exception, 0b100010.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11444
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
G2.8 Breakpoint exceptions

This section describes Breakpoint exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:

• At EL1 or higher in an Exception level that is using AArch32.

• At EL0 using AArch32 when EL1 is using AArch32.

This section contains the following subsections:

• About Breakpoint exceptions.

• Breakpoint types and linking of breakpoints.

• Execution conditions for which a breakpoint generates Breakpoint exceptions.

• Breakpoint instruction address comparisons.

• Breakpoint context comparisons.

• Using breakpoints.

• Exception syndrome information and preferred return address for a Breakpoint exception.

• Pseudocode description of Breakpoint exceptions taken from AArch32 state.

G2.8.1 About Breakpoint exceptions

A breakpoint is an event that results from the execution of an instruction, based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.

• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the
program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint exceptions are generated by Breakpoint debug events. Breakpoint debug events are generated by
hardware breakpoints. Software breakpoints are described in Breakpoint Instruction exceptions.

An implementation can include between 2-16 hardware breakpoints. DBGDIDR.BRPs shows how many are
implemented.

To use an implemented hardware breakpoint, a debugger programs the following registers for the breakpoint:

• The Breakpoint Control Register, DBGBCR<n>. This contains controls for the breakpoint, for example an
enable control.

• The Breakpoint Value Register, DBGBVR<n>. This holds a value used for breakpoint matching, that is one
of:

— An instruction virtual address.

— A Context ID.

• If EL2 is implemented, the Breakpoint Extended Value Register, DBGBXVR<n>, that holds a VMID value
used for breakpoint matching.

These registers are numbered, so that:

• DBGBCR1, DBGBVR1, and DBGBXVR1 are for breakpoint number one.

• DBGBCR2, DBGBVR2, and DBGBXVR2 are for breakpoint number two.

• …

• …
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11445
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
• DBGBCR<n>, DBGBVR<n>, and DBGBXVR<n> are for breakpoint number <n>.

A debugger can link a breakpoint that is programmed with an address and a breakpoint that is programmed with
anything other than an address together, so that a Breakpoint debug event is only generated if both breakpoints
match.

For each instruction in the program flow, all of the breakpoints are tested. When a breakpoint is tested, it generates
a Breakpoint debug event if all of the following are true:

• The breakpoint is enabled. That is, the breakpoint enable control for it, DBGBCR<n>.E, is 1.

• The conditions specified in the DBGBCR<n> are met.

• The comparisons with the values held in one or both of the DBGBVR<n> and DBGBXVR<n>, as applicable,
are successful.

• If the breakpoint is linked to another breakpoint, the comparisons made by that other breakpoint are also
successful.

• The instruction is committed for execution.

If all of these conditions are met, the breakpoint generates the Breakpoint debug event regardless of the following:

• Whether the instruction passes its Condition code check.

• The instruction type.

If halting is allowed and EDSCR.HDE is 1, Breakpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are

• Enabled, Breakpoint debug events generate Breakpoint exceptions

• Disabled, Breakpoint debug events are ignored.

Note

The remainder of this Breakpoint exceptions section, including all subsections, describes breakpoints as generating
Breakpoint exceptions. However, the behavior described also applies if breakpoints are causing entry to Debug
state.

The debug exception enable controls describes the enable controls for Breakpoint debug events.

G2.8.2 Breakpoint types and linking of breakpoints

Each implemented breakpoint is one of the following:

• A context-aware breakpoint. This is a breakpoint that can be programmed to generate a Breakpoint exception
on any one of the following:

— An instruction address match.

— An instruction address mismatch.

— A Context ID match, with the value held in the CONTEXTIDR.

— A VMID match, with the value held in the VTTBR.

— Both a Context ID match and a VMID match.

• A breakpoint that is not context-aware. These can only be programmed to generate a Breakpoint exception
on an instruction address match or an instruction address mismatch.

DBGDIDR.CTX_CMPs shows how many of the implemented breakpoints are context-aware breakpoints. At least
one implemented breakpoint must be context-aware. The context-aware breakpoints are the highest numbered
breakpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11446
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
Any breakpoint that is programmed to generate a Breakpoint exception on an instruction address match or mismatch
is categorized as an Address breakpoint. Breakpoints that are programmed to match on anything else are categorized
as Context breakpoints.

When a debugger programs a breakpoint to be an Address or a Context breakpoint, it must also program that
breakpoint so that it is either:

• Used in isolation. In this case, the breakpoint is called an Unlinked breakpoint.

• Enabled for linking to another breakpoint. In this case, the breakpoint is called a Linked breakpoint.

By linking an Address breakpoint and a Context breakpoint together, the debugger can create a breakpoint pair that
only generates a Breakpoint exception if the PE is in a particular context when an instruction address match or
mismatch occurs. For example, a debugger might:

1. Program breakpoint number one to be a Linked Address Match breakpoint.

2. Program breakpoint number five to be a Linked Context ID Match breakpoint.

3. Link these two breakpoints together. A Breakpoint exception is only generated if both the instruction address
matches and the Context ID matches.

The Breakpoint Type field for a breakpoint, DBGBCR<n>.BT, controls the breakpoint type and whether the
breakpoint is enabled for linking. If BT[0] is 1, the breakpoint is enabled for linking.

Address breakpoints can be programmed to generate Breakpoint exceptions on addresses that are halfword-aligned
but not word-aligned. This makes it possible to breakpoint on T32 instructions. See Specifying the halfword-aligned
address that an Address breakpoint matches on.

G2.8.2.1 Rules for linking breakpoints

The rules for breakpoint linking are as follows:

• Only Linked breakpoint types can be linked.

• Any type of Linked Address breakpoint can link to any type of Linked Context breakpoint. The Linked
Breakpoint Number field, DBGBCR<n>.LBN, for the Linked Address breakpoint specifies the particular
Linked Context breakpoint that the Linked Address breakpoint links to, and:

— DBGBCR<n>.{SSC, HMC, PMC} for the Linked Address breakpoint define the execution conditions
that the breakpoint pair generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

— DBGBCR<n>.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• Linked Context breakpoint types can only be linked to. The LBN field for Context breakpoints is therefore
ignored.

• Linked Address breakpoints cannot link to watchpoints. The LBN field can therefore only specify another
breakpoint.

• If a Linked Address breakpoint links to a breakpoint that is not context-aware, the behavior of the Linked
Address breakpoint is CONSTRAINED UNPREDICTABLE. See Other usage constraints for Address breakpoints.

• If a Linked Address breakpoint links to an Unlinked Context breakpoint, the Linked Address breakpoint
never generates any Breakpoint exceptions.

• Multiple Linked Address breakpoints can link to a single Linked Context breakpoint.

Note

Multiple Linked watchpoints can also link to a single Linked Context breakpoint. Watchpoint exceptions
describes watchpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11447
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
These rules mean that a single Linked Context breakpoint might be linked to by all, or any combination of, the
following:

• Multiple Linked Address Match breakpoints.

• Multiple Linked Address Mismatch breakpoints.

• Multiple Linked watchpoints.

It is also possible that a Linked Context breakpoint might have no breakpoints or watchpoints linked to it.

Figure G2-1 shows an example of permitted breakpoint and watchpoint linking.

Figure G2-1 The role of linking in Breakpoint and Watchpoint exception generation

In Figure G2-1, each Linked Address breakpoint can only generate a Breakpoint exception if the comparisons made
by both it, and the Linked Context breakpoint that it links to, are successful. Similarly, each Linked watchpoint can
only generate a Watchpoint exception if the comparisons made by both it, and the Linked Context breakpoint that
it links to, are successful.

•
•
•

Linked watchpoint

Linked watchpoint

Unlinked watchpoint

Linked watchpoint

Links

Breakpoints WatchpointsBreakpoint or

watchpoint number

0

2

1

Linked watchpoint

Linked watchpoint

3

4

5

6

n

Unlinked Address type

Linked Address type

Linked Address type

Unlinked Address type

Context matching with

linking enabled

Context matching with

linking enabled

Unlinked Context type
Address breakpoint

with Linking enabled

Unlinked watchpoint

Linked watchpoint

•
•
•

•
•
•

If FEAT_ABLE

is implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11448
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
G2.8.2.2 Breakpoint types defined by DBGBCRn.BT

The following list provides more detail about each breakpoint type:

0b0000, Unlinked Address Match breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful address match, as described in Breakpoint instruction address comparisons.

DBGBCR<n>.{LBNX, LBN} for this breakpoint is ignored.

0b0001, Linked Address Match breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR<n>.{SSC, HMC, PMC} for this breakpoint. These define the execution
conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions
for which a breakpoint generates Breakpoint exceptions.

• A successful address match defined by this breakpoint, as described in Breakpoint instruction
address comparisons.

• A successful context match defined by the Context breakpoint with linking enabled that this
breakpoint links to.

DBGBCR<n>.{LBNX, LBN} for this breakpoint selects the Context breakpoint with linking
enabled that this breakpoint links to.

0b0010, Context ID Match breakpoint

BT == 0b0010 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons.

The value of DBGBVR<n>.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and the value of HCR_EL2.E2H is 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR holds the current Context ID.

DBGBCR<n>.{LBNX, LBN, BAS} for this breakpoint are ignored

0b0011, Context ID Match breakpoint with linking enabled

BT == 0b0011 is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, either:

• This breakpoint does not generate any debug exceptions, if no Linked breakpoints or Linked
watchpoints link to it.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11449
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

The value of DBGBVR<n>.ContextID is compared with the current Context ID.

CONTEXTIDR_EL2 holds the current Context ID when all of:

• The implementation includes FEAT_VHE.

• EL2 is implemented and enabled in the current Security state.

• EL2 using AArch64 and the value of HCR_EL2.E2H is 1.

• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.

Otherwise, CONTEXTIDR holds the current Context ID.

DBGBCR<n>.{LBNX, LBN, SSC, HMC, BAS PMC} for this breakpoint are ignored.

0b0100, Unlinked Address Mismatch breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful address mismatch, as described in Breakpoint instruction address comparisons.

DBGBCR<n>.{LBNX, LBN} for this breakpoint is ignored.

0b0101, Linked Address Mismatch breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful address mismatch defined by this breakpoint, as described in Breakpoint
instruction address comparisons.

• A successful context match defined by the Linked Context breakpoint that this breakpoint
links to.

DBGBCR<n>.{LBNX, LBN} for this breakpoint selects the Linked Context breakpoint that this
breakpoint links to.

0b0110, CONTEXTIDR_EL1 Match breakpoint

BT == 0b0110 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11450
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the
breakpoint generates Breakpoint exceptions.

• A successful Context ID match defined by this breakpoint, as described in Breakpoint context
comparisons.

The Context ID check is made against the value in CONTEXTIDR, or CONTEXTIDR_EL1. The
value of DBGBVR<n>.ContextID is compared with the Context ID value held in CONTEXTIDR
or CONTEXTIDR_EL1.

DBGBCR<n>.{LBNX, LBN, BAS} for this breakpoint are ignored.

0b0111, CONTEXTIDR_EL1 Match breakpoint with linking enabled

BT == 0b0111 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

The Context ID check is made against the value in CONTEXTIDR, or CONTEXTIDR_EL1. The
value of DBGBVR<n>.ContextID is compared with the Context ID value held in CONTEXTIDR
or CONTEXTIDR_EL1.

DBGBCR<n>.{LBNX, LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1000, VMID Match breakpoint

BT == 0b1000 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful VMID match, as described in Breakpoint context comparisons.

DBGBCR<n>.{LBNX, LBN, BAS} for this breakpoint are ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11451
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
0b1001, VMID Match breakpoint with linking enabled

BT == 0b1000 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-aware breakpoints, either:

• This breakpoint does not generate any debug exceptions, if no Linked breakpoints or Linked
watchpoints link to it.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address Match
breakpoint that links to this breakpoint. See Breakpoint instruction address
comparisons.

— A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful VMID match defined by this breakpoint, as described in Breakpoint
context comparisons.

DBGBCR<n>.{LBNX, LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1010, Context ID and VMID Match breakpoint

BT == 0b1010 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-matching breakpoints, generation of a Breakpoint exception depends on all of the
following:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the
breakpoint generates Breakpoint exceptions for. See Execution conditions for which a
breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons.

• A successful VMID match.

The value of DBGBVR<n>.ContextID is compared with CONTEXTIDR.

Breakpoint context comparisons describes the requirements for a successful Context ID match and
a successful VMID match.

DBGBCR<n>.{LBNX, LBN, BAS} for this breakpoint are ignored.

0b1011, Context ID and VMID Match breakpoint with linking enabled

BT == 0b1011 is a reserved value if either:

• The breakpoint is not a context-matching breakpoint.

• EL2 is not implemented.

For context-matching breakpoints, either:

• This breakpoint does not generate any debug exceptions, if no Linked breakpoints or Linked
watchpoints link to it.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11452
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
• Generation of a Breakpoint exception depends on all of the following:

— A successful instruction address match, defined by a Linked Address breakpoint that
links to this breakpoint, see Breakpoint instruction address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

— A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on all of the following:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match defined by this breakpoint, as described in Breakpoint
context comparisons.

— A successful VMID match defined by this breakpoint.

The value of DBGBVR<n>.ContextID is compared with CONTEXTIDR.

Breakpoint context comparisons describes the requirements for a successful Context ID match and
a successful VMID match by this breakpoint.

DBGBCR<n>.{LBNX, LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1100, CONTEXTIDR_EL2 Match breakpoint

BT == 0b1100 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the
breakpoint generates Breakpoint exceptions.

• A successful CONTEXTIDR_EL2 match.The value of DBGBVR<n>.ContextID2 is
compared with the Context ID value held in CONTEXTIDR_EL2, as described in
Breakpoint context comparisons.

The check against CONTEXTIDR_EL2 means this breakpoint can be generated only if EL2 is
implemented and enabled in the current Security state and EL2 is using AArch64.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBNX, LBN, BAS} for this breakpoint are ignored.

0b1101, CONTEXTIDR_EL2 Match with linking enabled

BT == 0b1101 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11453
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
For context-aware breakpoints, either:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons.

— A successful CONTEXTIDR_EL2 match, as described in Breakpoint context
comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful CONTEXTIDR_EL2 match. The value of DBGBVR<n>.ContextID2 is
compared with the Context ID value held in CONTEXTIDR_EL2, as described in
Breakpoint context comparisons.

The check against the CONTEXTIDR_EL2 means the breakpoint or watchpoint can be generated
only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBNX, LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1110, Full Context ID Match breakpoint

BT == 0b1110 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the
breakpoint generates Breakpoint exceptions.

• A successful Context ID match, as described in Breakpoint context comparisons.

The Context ID check is made by checking both:

• The value of DBGBVR<n>.ContextID against the value in CONTEXTIDR, or
CONTEXTIDR_EL1.

• The value of DBGBXVR<n>.ContextID2 against the value in CONTEXTIDR_EL2.

Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means this breakpoint can be generated only if EL2 is
implemented and enabled in the current Security state and EL2 is using AArch64.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBNX, LBN, BAS} for this breakpoint are ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11454
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
0b1111, Full Context ID Match breakpoint with linking enabled

BT == 0b1111 is a reserved value if:

• The breakpoint is not a context-aware breakpoint.

• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means
the implementation does not include CONTEXTIDR_EL2.

• EL2 is not implemented.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint
does not generate any debug exceptions.

• Generation of a Breakpoint exception depends on both:

— A successful instruction address match, defined by a Linked Address match
breakpoint that links to this breakpoint, see Breakpoint instruction address
comparisons.

— A successful Context ID match, as described in Breakpoint context comparisons.

• Generation of a Watchpoint exception depends on both:

— A successful data address match, defined by a Linked watchpoint that links to this
breakpoint, see Watchpoint data address comparisons.

— A successful Context ID match, as described in Breakpoint context comparisons.

The Context ID check is made by checking both:

• The value of DBGBVR<n>.ContextID against the value in CONTEXTIDR, or
CONTEXTIDR_EL1.

• The value of DBGBXVR<n>.ContextID2 against the value in CONTEXTIDR_EL2.

Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means the breakpoint or watchpoint can be generated
only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBNX, LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

Note

See Reserved DBGBCR<n>.BT values for the behavior of breakpoints programmed with reserved BT values.

G2.8.3 Execution conditions for which a breakpoint generates Breakpoint exceptions

Each breakpoint can be programmed so that it only generates Breakpoint exceptions for certain execution
conditions. For example, a breakpoint might be programmed to generate Breakpoint exceptions only when the PE
is executing at PL0 in Secure state.

DBGBCR<n>.{SSC, HMC, PMC} define the execution conditions the breakpoint generates Breakpoint exceptions
for, as follows:

Security State Control, SSC

Controls whether the breakpoint generates Breakpoint exceptions only in Secure state, only in
Non-secure state, or in both Security states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11455
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
Note

This is determined by the Security state of the PE, not from the NS attribute returned by the
translation of the virtual address on which the breakpoint is set.

Higher Mode Control, HMC, and Privileged Mode Control, PMC

HMC and PMC together control which AArch32 modes the breakpoint generates Breakpoint
exceptions in.

Table G2-10 shows the valid combinations of the values of HMC, SSC, and PMC, and for each combination shows
which Privilege levels breakpoints generate Breakpoint exceptions in.

In the table:

Y Means that a breakpoint programmed with the values of HMC, SSC and PMC shown in that row
can generate Breakpoint exceptions in AArch32 modes at that Privilege level.

- Means that a breakpoint programmed with the values of HMC, SSC and PMC shown in that row
cannot generate Breakpoint exceptions in AArch32 modes at that Privilege level.

A combination in Table G2-10 might be reserved if an Exception level or Security state is not implemented. For
information about which combinations of HMC, SSC and PMC are reserved if an Exception level or Security state
are not implemented, see Reserved DBGBCR<n>.{SSC, HMC, PMC} values.

Table G2-10 Summary of breakpoint HMC, SSC, and PMC encodings

HMC SSC PMC

Security state
the breakpoint
is programmed to
match in

PL2a PL1 PL0

0 00 00 Both - Yb Y

0 00 01 - Y -

0 00 10 - - Y

0 00 11 - Y Y

0 01 00 Non-secure - Yb Y

0 01 01 - Y -

0 01 10 - - Y

0 01 11 - Y Y

0 10 00 Secure - Yb Y

0 10 01 - Y -

0 10 10 - - Y

0 10 11 - Y Y

0 11 01 Secure Y Y -

0 11 11 Y Y Y

1 00 01 Both Y Y -

1 00 11 Y Y Y

1 01 00 Non-secure Y -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11456
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
All combinations of HMC, SSC, and PMC that this table does not show are reserved. See Reserved HMC, SSC, and
PMC combinations.

1 01 01 Y Y -

1 01 11 Y Y Y

1 10 01 Secure Y Y -

1 10 11 Y Y Y

1 11 00 Both Y - -

1 11 01 Y Y -

1 11 11 Y Y Y

a. Debug exceptions are not generated at PL2 using AArch32. This means
that these combinations of HMC, SSC, and PMC are only relevant if
breakpoints cause entry to Debug state. Self-hosted debuggers must
avoid combinations of HMC, SSC, and PMC that generate Breakpoint
exceptions at PL2 using AArch32.

b. Only in User, System and Supervisor modes.

Table G2-10 Summary of breakpoint HMC, SSC, and PMC encodings (continued)

HMC SSC PMC

Security state
the breakpoint
is programmed to
match in

PL2a PL1 PL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11457
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
G2.8.4 Breakpoint instruction address comparisons

Address comparisons are made for each instruction in the program flow. The following subsections describe the
criteria for a successful address comparison, for:

• Address Match breakpoints.

• Address Mismatch breakpoints.

G2.8.4.1 Address Match breakpoints

An address match comparison is successful if both:

• Bits [31:2] of the current instruction virtual address are equal to DBGBVR<n>[31:2].

• The word or halfword selected by DBGBCR<n>.BAS matches. That is, either:

— DBGBCR<n>.BAS is programmed with 0b0011 or 0b1111, and the instruction is at a word-aligned
address.

— DBGBCR<n>.BAS is programmed with 0b1100, and the instruction is not at a word-aligned address.

See Specifying the halfword-aligned address that an Address breakpoint matches on.

Note

DBGBVR<n>[1:0] are RES0 and are ignored.

G2.8.4.2 Address Mismatch breakpoints

An address mismatch comparison is successful if either:

• Bits [31:2] of the current instruction virtual address are not equal to DBGBVR<n>[31:2].

• The word or halfword selected by DBGBCR<n>.BAS does not match. That is, either:

— DBGBCR<n>.BAS is programmed with 0b0011 or 0b1111, and the instruction is not at a word-aligned
address.

— DBGBCR<n>.BAS is programmed with 0b1100, and the instruction is at a word-aligned address.

See Specifying the halfword-aligned address that an Address breakpoint matches on.

Note

• DBGBVR<n>[1:0] are RES0 and are ignored.

• Address Mismatch breakpoints can be used to single-step through code. See Using an Address Mismatch
breakpoint to single-step an instruction.

G2.8.4.3 Specifying the halfword-aligned address that an Address breakpoint matches
on

For an Address breakpoint, a debugger can use the Byte Address Selection field, DBGBCR<n>.BAS, so that the
address comparison is successful on one of:

• The whole word starting at address DBGBVR<n>[31:2]:00.

• The halfword starting at address DBGBVR<n>[31:2]:00.

• The halfword starting at address ((DBGBVR<n>[31:2]:00) + 2).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11458
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
Note

The address programmed into the DBGBVR<n> must be word-aligned.

DBGBCR<n>.BAS can be used in both Address Match breakpoints and Address Mismatch breakpoints, as follows:

• For an Address Match breakpoint, DBGBCR<n>.BAS selects which halfword-aligned address the
breakpoint must generate a Breakpoint exception for. This means that an address comparison is successful
only if both of the following match:

— The instruction address held in bits [31:2] of the DBGBVR<n>.

— The halfword defined by the BAS field.

That is, a successful address comparison = DBGBVR<n>[31:2] match AND BAS match.

• For an Address Mismatch breakpoint, DBGBCR<n>.BAS selects which halfword-aligned address the
breakpoint must not generate a Breakpoint exception for. This means that an address comparison is successful
if either or both of the following do not match:

— The instruction address held in bits [31:2] of the DBGBVR<n>.

— The halfword defined by the BAS field.

That is, a successful address comparison = NOT (DBGBVR<n>[31:2] match AND BAS match).

The following subsections show the supported BAS values:

• Using the BAS field in Address Match breakpoints.

• Using the BAS field in Address Mismatch breakpoints.

For Context breakpoints, DBGBCR<n>.BAS is RES1 and is ignored.

G2.8.4.3.1 Using the BAS field in Address Match breakpoints

The supported BAS values are:

0b0000 This value is reserved. Behavior is a CONSTRAINED UNPREDICTABLE choice of:

• The breakpoint is disabled.

• The breakpoint behaves as if BAS is 0b0011, 0b1100, or 0b1111.

0b0011 The breakpoint generates a Breakpoint exception if an instruction with an address described as
follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for
all of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for T32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11459
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
0b1100 The breakpoint generates a Breakpoint exception if an instruction with an address described as
follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b10.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for
both of the following:

• 32-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

• 16-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on the second halfword of a 32-bit T32 or A32 instruction starting
at a word-aligned address.

0b1111 The breakpoint generates a Breakpoint exception if an instruction with an address described as
follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for
all of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for A32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value
generates a Breakpoint exception on a 32-bit T32 instruction or a 16-bit T32 instruction at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) + 2).

All other BAS values are reserved. For these reserved other values, DBGBCR<n>.BAS[3,1] ignore writes and read
the same values as DBGBCR<n>[2,0] respectively. This means that the smallest instruction size a debugger can
program breakpoints to match on is a halfword.

Figure G2-2 shows a summary of when breakpoints programmed with particular BAS values generate Breakpoint
exceptions.

The figure contains four parts:

• A column showing the row number, on the left.

• An instruction set and instruction size table.

• A location of instruction figure.

• A BAS field values table, on the right.

To use the figure, read across the rows. For example:

• Row 2 shows that a breakpoint with a BAS value of 0b1100 generates Breakpoint exceptions for 16-bit T32
instructions starting at the halfword-aligned address ((DBGBVR<n>[31:2]:00) + 2).

• Row 6 shows that a breakpoint with a BAS value of either 0b0011 or 0b1111 generates Breakpoint exceptions
for A32 instructions. A32 instructions are always at word-aligned addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11460
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
In the figure:

Yes Means that the breakpoint generates a Breakpoint exception.

No Means that the breakpoint does not generate a Breakpoint exception.

UNP Means that it is CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint
exception. See Other usage constraints for Address breakpoints.

Figure G2-2 Summary of BAS field meanings for Address Match breakpoints

G2.8.4.3.2 Using the BAS field in Address Mismatch breakpoints

An Address Mismatch breakpoint generates Breakpoint exceptions for all instructions committed for execution,
except the instruction whose address the breakpoint is programmed to match.

The supported BAS values are:

0b0000 The breakpoint ignores the address held in the DBGBVR<n> and generates Breakpoint exceptions
for all instruction addresses.

0b0011 The breakpoint does not generate a Breakpoint exception if an instruction with an address described
as follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value do not generate Breakpoint
exceptions for any of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for T32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at
the halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

-2 -1 +2+10 +3 +4Size

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

+5Instruction set

T32

T32

A32

Yes

UNP

UNP

Yes

UNP

Yes

0b0011

Yes

UNP

Yes

BAS[3:0]

0b1100 0b1111

No

Yes

No

No

No

UNP

Yes

UNP

Yes

Location of instruction
a

a. 0 means the word-aligned address held in the DBGBVRn. The other locations

are as follows:

• -2 means ((DBGBVRn[31:2]:00) - 2).

• -1 means ((DBGBVRn[31:2]:00) - 1).

• ...

• ...

• +5 means ((DBGBVRn[31:2]:00) + 5).

The solid areas show the location of the instruction.

Row 1

ROW 2

ROW 3

Row 4

ROW 5

Row 6
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11461
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
0b1100 The breakpoint does not generate a Breakpoint exception if an instruction with an address described
as follows is committed for execution:

• Bits [31:2] equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b10.

This means that breakpoints programmed with this BAS value do not generate Breakpoint
exceptions for either of the following:

• 32-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

• 16-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on the second halfword of a 32-bit T32 or A32 instruction at a
word-aligned address.

0b1111 The breakpoint does not generate a Breakpoint exception if an instruction with an address described
as follows is committed for execution:

• Bits [31:2] of the address equals DBGBVR<n>[31:2].

• Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value do not generate Breakpoint
exceptions for any of the following:

• 32-bit T32 instructions at word-aligned addresses.

• 16-bit T32 instructions at word-aligned addresses.

• A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for A32 instructions.

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at
the halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does
not generate a Breakpoint exception on a 32-bit T32 instruction or a 16-bit T32 instruction at the
halfword-aligned address ((DBGBVR<n>[31:2]:00) + 2).

All other BAS values are reserved. For these reserved other values, DBGBCR<n>.BAS[3,1] ignore writes and read
the same values as DBGBCR<n>[2,0] respectively. This means that the smallest instruction size that a breakpoint
can never generate a Breakpoint exception for is a halfword.

Figure G2-3 shows a summary of when breakpoints programmed with particular BAS values generate Breakpoint
exceptions.

The figure contains four parts:

• A column showing the row number, on the left.

• An instruction set and instruction size table.

• A location of instruction figure.

• A BAS field values table, on the right.

To use the figure, read across the rows. For example:

• Row 1 shows that a breakpoint with a BAS value of 0b1100 generates Breakpoint exceptions for 16-bit T32
instructions starting at the word-aligned address held in the DBGBVR<n>.

• Row 5 shows that a breakpoint with a BAS value of 0b0011 generates Breakpoint exceptions for 32-bit T32
instructions starting at the halfword-aligned address immediately after the word aligned address held in the
DBGBVR<n>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11462
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
In the figure:

Yes Means that the breakpoint does generate a Breakpoint exception.

No Means that the breakpoint does not generate a Breakpoint exception.

UNP Means that is it CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint
exception. See Other usage constraints for Address breakpoints.

Figure G2-3 Summary of BAS field meanings for Address Mismatch breakpoints

G2.8.5 Breakpoint context comparisons

The breakpoint type defined by DBGBCR<n>.BT determines what context comparison is required, if any.
Table G2-11 shows the BT values that require a comparison, and the match required for the comparison to be
successful.

No context comparison is required for other valid DBGBCR<n>.BT values.

-2 -1 +2+10 +3 +4Size

16-bit

16-bit

32-bit

32-bit

32-bit

32-bit

+5Instruction set

T32

T32

A32

No

UNP

UNP

No

UNP

No

0b0011

No

UNP

No

BAS[3:0]

0b1100 0b1111

Yes

No

Yes

Yes

Yes

UNP

No

UNP

No

Location of instruction
a

a. 0 means the word-aligned address held in the DBGBVRn. The other locations are as follows:

• -2 means ((DBGBVRn[31:2]:00) - 2).

• -1 means ((DBGBVRn[31:2]:00) - 1).

• ...

• ...

• +5 means ((DBGBVRn[31:2]:00) + 5).

The solid areas show the location of the instruction.

Row 1

ROW 2

ROW 3

Row 4

ROW 5

Row 6

0b0000

Yes

Yes

Yes

Yes

Yes

Yes

Table G2-11 Breakpoint Context ID and VMID comparison tests

DBGBCR<n>.BT Test required for successful context comparison

0b001x • When FEAT_VHE is implemented, EL2 is using AArch64, the Effective value of HCR_EL2.E2H is 1,
and either the PE is executing at EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2,
CONTEXTIDR_EL2 must match the DBGBVR<n>. ContextID value.

• Otherwise, CONTEXTIDR must match the DBGBVR<n>.ContextID value.

0b011x CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGBVR<n>.ContextID value.

0b100x VTTBR.VMID must match the DBGBXVR<n>.VMID value.

0b101x CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGBVR<n>.ContextID value, and VTTBR.VMID
must match the DBGBXVR<n>.VMID value.

0b110x CONTEXTIDR_EL2 must match the DBGBXVR<n>.ContextID2 value.

0b111x Both:

• CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGBVR<n>.ContextID value.

• CONTEXTIDR_EL2 must match the DBGBXVR<n>.ContextID2 value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11463
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
Context breakpoints do not generate Breakpoint exceptions when any of:

• The comparison uses the value of CONTEXTIDR, or CONTEXTIDR_EL1, and any of:

— The PE is executing at EL3 using AArch64.

— The PE is executing at EL2.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H, TGE} == {1, 1}.

• The comparison uses the value of CONTEXTIDR_EL2 and any of:

— Neither FEAT_VHE is implemented, nor FEAT_Debugv8p2 is implemented.

— EL2 is either not implemented or not enabled in the current Security state.

— EL2 is using AArch32.

• The comparison uses the current VMID value and any of:

— EL2 is not implemented.

— EL2 is either not implemented or not enabled in the current Security state.

— The PE is executing at EL2.

— FEAT_VHE is implemented, EL2 is using AArch64, EL2 is implemented and enabled in the current
Security state, and HCR_EL2.{E2H, TGE} == {1, 1}.

Note

• For all Context breakpoints, DBGBCR<n>.BAS is RES1 and is ignored.

• For Linked Context breakpoints, DBGBCR<n>.{LBN, SSC, HMC, PMC} are RES0 and are ignored.

G2.8.6 Using breakpoints

This section contains the following:

• Using an Address Mismatch breakpoint to single-step an instruction.

• ITD control effects on address breakpoints on the first instruction in an IT block.

• Breakpoint usage constraints.

G2.8.6.1 Using an Address Mismatch breakpoint to single-step an instruction

In execution conditions that an Address Mismatch breakpoint matches, defined by DBGBCR<n>.{LBN, SSC,
PMC}, the breakpoint generates Breakpoint exceptions for all instructions committed for execution, except the
instruction whose address the breakpoint is programmed with. Figure G2-4 shows an example of Address Mismatch
breakpoint operation, for an Address Mismatch breakpoint programmed with address 0x1014.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11464
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
Figure G2-4 Operation of an Address Mismatch breakpoint

This means that an Address Mismatch breakpoint can be used to single-step an instruction.

In the example shown in Figure G2-4:

• If the target of a branch is an instruction other than the instruction at address 0x1014, the breakpoint generates
a Breakpoint exception when the instruction is committed for execution.

• If the target of a branch is the instruction at address 0x1014, the PE executes the instruction at 0x1014 and the
breakpoint does not generate a Breakpoint exception until the instruction at address 0x1018 is committed for
execution. The instruction at address 0x1014 is therefore single-stepped.

However, if the instruction at 0x1014 generates a synchronous exception, or if the PE takes an asynchronous
exception while the instruction is being stepped, the breakpoint is evaluated again after taking the exception.
This means that behavior is as follows:

— If the exception handler executes in execution conditions that the breakpoint matches, the breakpoint
generates a Breakpoint exception for the exception vector, because the exception vector is not address
0x1014. This means that software execution steps into the exception.

— If the exception handler executes in execution conditions that the breakpoint does not match, the
breakpoint does not generate any Breakpoint exceptions after the PE has taken the exception, until the
exception handler completes and executes an exception return instruction. The effect is to step over
the exception. Whether the instruction is stepped again depends on whether the target of the exception
return instruction is the instruction at 0x1014 or the instruction at 0x1018.

If the instruction at 0x1014 is single-stepped and branches to itself, it is CONSTRAINED UNPREDICTABLE
whether the breakpoint generates a Breakpoint exception after the PE has executed the branch.

This means that an instruction is only single-stepped if it is the target of a branch instruction and its address matches
the address the breakpoint is programmed for. In the example shown in Figure G2-4, this is 0x1014.

Usually this branch instruction is an exception return instruction that changes PE mode, branching from a PE mode
in which the breakpoint does not generate a Breakpoint exception. A branch instruction that does not change PE
mode would itself generate a Breakpoint exception. However, it might be a branch-to-self instruction as described
above.

Because Address Mismatch breakpoints can single-step instructions, the behavior of an address mismatch
Breakpoint exception is similar to the behavior of an AArch64 Software Step exception.

Note

• The example shown in Figure G2-4 assumes an A32 instruction. The same behavior applies for both 32-bit
and 16-bit T32 instructions.

• Software Step exceptions are the highest priority synchronous exception. Breakpoint exceptions are lower
priority. See Prioritization of Synchronous exceptions taken to AArch64 state.

0x1000
0x1004
0x1008
0x100C
0x1010
0x1014
0x1018
0x101C
0x1020

The breakpoint does not generate a Breakpoint exception

Instruction

addresses

Program

flow

The breakpoint generates a Breakpoint exception for all of these instructions

The breakpoint generates a Breakpoint exception for all of these instructions

All executed in execution conditions that the breakpoint matches
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11465
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
G2.8.6.2 ITD control effects on address breakpoints on the first instruction in an IT
block

In an implementation that supports the ITD control, if the value of the ITD field that applies to the current Exception
level is 1, all of the following are true:

• An IT instruction can only be used to apply to one 16-bit T32 instruction.

• Only certain combinations of an IT instruction and second single 16-bit T32 instruction are permitted.

• For a permitted combination, it is IMPLEMENTATION DEFINED whether the implementation treats the
combination as:

— A pair of 16-bit instructions.

— One 32-bit instruction.

If the implementation treats the combination as one 32-bit instruction, then as described in Other usage constraints
for Address breakpoints, an Address breakpoint might not generate a Breakpoint exception for an address match
only on the second halfword of the instruction.

For this reason, if the ITD bit associated with the current Exception level is 1, Arm recommends that a debugger
that wants to program a breakpoint to match on the second T32 instruction programs it to match on the IT instruction
instead.

However, if returning from an exception whose preferred return address is the address of the second T32 instruction,
then because the debugger is aware that the implementation has treated the combination as a pair of 16-bit
instructions, the debugger is permitted to program the breakpoint to match on the second T32 instruction.

The ITD control fields are:

HSCTLR.ITD Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0, and therefore
the information in this section does not apply to such an implementation.

Note

Programming the breakpoint to match on the second T32 instruction might be necessary when using an Address
Mismatch breakpoint for single stepping.

G2.8.6.3 Breakpoint usage constraints

See the following sections:

• Reserved DBGBCR<n>.BT values.

• Reserved DBGBCR<n>.{SSC, HMC, PMC} values.

• Reserved DBGBCR<n>.BAS values.

• Reserved DBGBCR<n>.LBN values.

• Other usage constraints for Address breakpoints.

• Other usage constraints for Context breakpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11466
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
G2.8.6.3.1 Reserved DBGBCR<n>.BT values

Table G2-12 shows when particular DBGBCR<n>.BT values are reserved.

If a breakpoint is programmed with one of these reserved BT values:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BT value that is not reserved, other than for a direct or external read of
DBGBCR<n>.

• For a direct or external read of DBGBCR<n>, if the reserved BT value:

— Has no function for any execution conditions, the value read back is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the BT value so that the breakpoint
functions for the other execution conditions.

The behavior of breakpoints with reserved BT values might change in future revisions of the architecture. For this
reason, software must not rely on the behavior described here.

G2.8.6.3.2 Reserved DBGBCR<n>.{SSC, HMC, PMC} values

Table G2-13 shows when particular combinations of DBGBCR<n>.{SSC, HMC, PMC} are reserved.

Table G2-12 Reserved BT values

BT value Breakpoint type Reserved

0b001x Context ID Match If the breakpoint is not context-aware

0b010x Address Mismatch If EDSCR.HDE is 1 and halting is allowed

0b011x CONTEXTIDR_EL1 Match If FEAT_VHE is not implemented, or the breakpoint is not context-aware

0b100x VMID Match If EL2 is not implemented, or the breakpoint is not context-aware

0b101x Context ID and VMID Match

0b110x CONTEXTIDR_EL2 Match If FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, or if the
breakpoint is not context-aware

Note
For these BT values, breakpoints are not generated if EL2 is using AArch32.

0b111x Full Context ID Match

Table G2-13 Reserved HMC, SSC, and PMC combinations

HMC, SSC, and PMC combination Reserved

All combinations with SSC set to 0b01 or 0b10. When EL3 is not implemented and EL2 is
implemented and EL2 is implemented.

Any combination where HMC or SSC is nonzero. When both of EL2 and EL3 are not
implemented.

The combinations with SSC set to 0b11 and the combination with HMC set to 1,
SSC set to 0b01 and PMC set to 0b00.

When EL2 is not implemented and EL3 is
implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11467
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
For all breakpoints except Linked Context breakpoints, if a breakpoint is programmed with one of these reserved
combinations:

• If the reserved combination has a function for other execution conditions:

— The breakpoint must behave as if it is disabled.

— A direct or external read of DBGBCR<n>.{SSC, HMC, PMC} returns the values written. This means
that software can save and restore the combination so that the breakpoint can function for the other
execution conditions.

• If the reserved combination does not have a function for other execution conditions:

— It must behave either as if it is programmed with a combination that is not reserved or as if it is
disabled.

— A direct or external read of DBGBCR<n>.{SSC, HMC, PMC} returns UNKNOWN values.

If the breakpoint is a Linked Context breakpoint, then:

• The values of HMC, SSC, and PMC are ignored.

• A direct or external read of DBGBCR<n>.{SSC, HMC, PMC} returns UNKNOWN values

The behavior of breakpoints with reserved combinations of HMC, SSC, and PMC might change in future revisions
of the architecture. For this reason, software must not rely on the behavior described here.

G2.8.6.3.3 Reserved DBGBCR<n>.BAS values

For all Context breakpoints

DBGBCR<n>.BAS is RES1 and is ignored.

For all Address breakpoints

The supported values of the BAS field for the Address Match and Address Mismatch breakpoints
are shown in Specifying the halfword-aligned address that an Address breakpoint matches on.

If a breakpoint is programmed with a reserved BAS value:

• The breakpoint must behave as if it is either:

— Disabled.

— Programmed with a BAS value that is not reserved, other than for a direct or external read of
DBGBCR<n>.

• A direct or external read of DBGBCR<n>.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

Any combination where HMC or SSC is nonzero. When RME is not implemented.

The combination with HMC set to 1, SSC set to 0b01 and PMC set to 0b00, and the
combinations with SSC set to 1, SSC set to 0b11 and PMC set to 0b00.

When both of EL2 and EL3 are implemented,
but Secure EL2 is not implemented.

Combinations not included in Table G2-10. Always.

Table G2-13 Reserved HMC, SSC, and PMC combinations (continued)

HMC, SSC, and PMC combination Reserved
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11468
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
G2.8.6.3.4 Reserved DBGBCR<n>.LBN values

For all Context breakpoints

DBGBCR<n>.LBN reads UNKNOWN and its value is ignored.

For Linked Address breakpoints

A Linked Address breakpoint must link to a context-aware breakpoint. For a Linked Address
breakpoint, any DBGBCR<n>.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked Address breakpoint links to a breakpoint that is not implemented, or that is not
context-aware, then reads of DBGBCR<n>.LBN return an unknown value and the behavior is
CONSTRAINED UNPREDICTABLE. The Linked Address breakpoint behaves as if it is either:

• Disabled.

• Linked to an UNKNOWN context-aware breakpoint.

If a Linked Address breakpoint that links to a breakpoint that is implemented and that is
context-aware, but that is either not enabled or not programmed as a Linked Context breakpoint, it
behaves as if it is disabled.

For Unlinked Address breakpoints

DBGBCR<n>.LBN reads UNKNOWN and its value is ignored.

G2.8.6.3.5 Other usage constraints for Address breakpoints

For all Address breakpoints

• DBGBVR<n>[1:0] are RES0 and are ignored.

• The DBGBXVR<n> is ignored.

For Address Match breakpoints

• For 32-bit instructions, if a breakpoint matches on the address of the second halfword but not
the address of the first halfword, it is CONSTRAINED UNPREDICTABLE whether the breakpoint
generates a Breakpoint exception.

• If DBGBCR<n>.BAS is 0b1111, it is CONSTRAINED UNPREDICTABLE whether the breakpoint
generates a Breakpoint exception for a T32 instruction starting at address
((DBGBVR<n>[31:2]:00) + 2). For T32 instructions, Arm recommends that the debugger
programs the BAS field with either 0b0011 or 0b1100.

For Address Mismatch breakpoints

The constraints are the same as those described in For Address Match breakpoints, except that if
two Address Mismatch breakpoints are programmed to match in the same Exception level and
Security state, it is CONSTRAINED UNPREDICTABLE whether or not the instruction is stepped or a
Breakpoint debug even is generated.

G2.8.6.3.6 Other usage constraints for Context breakpoints

For all Context breakpoints

Any bits of DBGBVR<n> and DBGBXVR<n> that are not used to specify Context ID or VMID
are RES0 and are ignored.

Note

This means that for Context ID Match breakpoints, the DBGBXVR<n> is RES0 and is ignored, and
for VMID Match breakpoints, the DBGBVR<n> is RES0 and is ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11469
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
For Linked Context breakpoints

If no Linked Address breakpoints or Linked Watchpoints link to a Linked Context breakpoint, the
Linked Context breakpoint does not generate any Breakpoint exceptions.

G2.8.7 Exception syndrome information and preferred return address for a Breakpoint exception

See the following:

• Exception syndrome information for a Breakpoint exception.

• Preferred return address for a Breakpoint exception.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced section uses the term more generally, to include exception information reported in the IFSR.

G2.8.7.1 Exception syndrome information for a Breakpoint exception

The PE takes a Breakpoint exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to
Hyp mode.

If the exception is taken to:

Abort mode

The PE sets all of the following:

• DBGDSCRext.MOE to 0b0001, to indicate a Breakpoint exception.

• IFSR.FS to the code for a debug exception, 0b00010.

• The IFAR with an UNKNOWN value.

Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-14.

• Sets DBGDSCRext.MOE to 0b0001, to indicate a Breakpoint exception.

• Sets the HIFAR to an unknown value.

Table G2-14 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.

Instruction Length, IL The PE sets this to 1.

Instruction Specific Syndrome, ISS ISS[24:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8:6] RES0.

ISS[5:0] Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug
exception, 0b100010.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11470
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.8 Breakpoint exceptions
Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions.

G2.8.7.2 Preferred return address for a Breakpoint exception

The preferred return address of a Breakpoint exception is the address of the instruction that was not executed
because the PE took the Breakpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

G2.8.8 Pseudocode description of Breakpoint exceptions taken from AArch32 state

AArch32.BreakpointValueMatch() returns a pair of results:

• A result for Address Match and Context breakpoints.

• A result for Address Mismatch breakpoints.

AArch32.StateMatch() tests the values in DBGBCR<n>.{SSC, HMC, PMC} and, if the breakpoint links to a Linked
Context breakpoint, also tests the Linked Context breakpoint.

AArch32.BreakpointMatch() tests a committed instruction against all breakpoints.

AArch32.CheckBreakpoint() generates a FaultRecord. A Breakpoint exception is taken if all of the following are true:

• DBGDSCRext.MDBGen is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions.

• All of the conditions required for Breakpoint exception generation are met. See About Breakpoint exceptions.

Note

AArch32.CheckBreakpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckBreakpoint(), as
described in Abort exceptions. When a Breakpoint exception is taken to AArch32 state, the AArch32.Abort()
function generates a Prefetch Abort exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11471
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
G2.9 Watchpoint exceptions

This section describes Watchpoint exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:

• At EL1 or higher in an Exception level that is using AArch32.

• At EL0 using AArch32 when EL1 is using AArch32.

This section contains the following subsections:

• About Watchpoint exceptions.

• Watchpoint types and linking of watchpoints.

• Execution conditions for which a watchpoint generates Watchpoint exceptions.

• Watchpoint data address comparisons.

• Determining the memory location that caused a Watchpoint exception.

• Watchpoint behavior on other instructions.

• Usage constraints.

• Exception syndrome information and preferred return address.

• Pseudocode description of Watchpoint exceptions taken from AArch32 state.

G2.9.1 About Watchpoint exceptions

A watchpoint is an event that results from the execution of an instruction, based on a data address. Watchpoints are
also known as data breakpoints.

A watchpoint operates as follows:

1. A debugger programs the watchpoint with a data address, or a data address range.

2. The watchpoint generates a Watchpoint debug event on an access to the address, or any address in the address
range.

A watchpoint never generates a Watchpoint debug event on an instruction fetch.

An implementation can include between 2-16 watchpoints. In an implementation, DBGDIDR.WRPs shows how
many are implemented.

To use an implemented watchpoint, a debugger programs the following registers for the watchpoint:

• The Watchpoint Control Register, DBGWCR<n>. This holds control information for the watchpoint, for
example an enable control.

• The Watchpoint Value Register, DBGWVR<n>. This holds the data virtual address used for watchpoint
matching.

The registers are numbered, so that:

• DBGWCR1 and DBGWVR1 are for watchpoint number one.

• DBGWCR2 and DBGWVR2 are for watchpoint number two.

• …

• …

• DBGWCRn and DBGWVRn are for watchpoint number n.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11472
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
A watchpoint can:

• Be programmed to generate Watchpoint debug events on read accesses only, on write accesses only, or on
both types of access.

• Link to a Linked Context breakpoint, so that a Watchpoint debug event is only generated if the PE is in a
particular context when the address match occurs.

A single watchpoint can be programmed to match on one or more address bytes. A watchpoint generates a
Watchpoint debug event on an access to any byte that it is watching. The number of bytes a watchpoint is watching
is either:

• One to eight bytes, provided that these bytes are contiguous and that they are all in the same naturally-aligned
doubleword. A debugger uses the Byte Address Select field, DBGWCR<n>.BAS, to select the bytes. See
Programming a watchpoint with eight bytes or fewer.

• Eight bytes to 2GB, provided that both of the following are true:

— The number of bytes is a power-of-two.

— The range starts at an address that is aligned to the range size.

A debugger uses the MASK field, DBGWCR<n>.MASK, to program a watchpoint with eight bytes to 2GB.
See Programming a watchpoint with eight or more bytes.

A debugger must use either the BAS field or the MASK field. If it uses both, whether the watchpoint generates
Watchpoint exceptions is CONSTRAINED UNPREDICTABLE. See Programming dependencies of the BAS and MASK
fields.

For each memory access, all of the watchpoints are tested. When a watchpoint is tested, it generates a Watchpoint
debug event if all of the following are true:

• The watchpoint is enabled. That is, the watchpoint enable control for it, DBGWCR<n>.E, is 1.

• The conditions specified in the DBGWCR<n> are met.

• The comparison with the address held in the DBGWVR<n> is successful.

• If the watchpoint links to a Linked Context breakpoint, the comparison or comparisons made by the Linked
Context breakpoint are successful. See Figure G2-1. See also Breakpoint context comparisons.

• The instruction that initiates the memory access is committed for execution.

• The instruction that initiates the memory access passes its Condition code check.

If halting is allowed and EDSCR.HDE is 1, Watchpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are:

• Enabled, Watchpoint debug events generate Watchpoint exceptions.

• Disabled, Watchpoint debug events are ignored.

Note

The remainder of this Watchpoint Exceptions section, including all subsections, describes watchpoints as generating
Watchpoint exceptions. However, the behavior described also applies if watchpoints are causing entry to Debug
state.

The debug exception enable controls describes the enable controls for Watchpoint debug events.

G2.9.2 Watchpoint types and linking of watchpoints

When a debugger programs a watchpoint, it must program that watchpoint so that it is either:

• Used in isolation. In this case, the watchpoint is called an Unlinked watchpoint.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11473
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
• Enabled for linking to a Linked Context breakpoint. In this case, the watchpoint is called a Linked watchpoint.

When a Linked watchpoint links to a Linked Context breakpoint, the Linked watchpoint only generates a
Watchpoint exception if the PE is in a particular context when the data address match occurs. For example, a
debugger might:

1. Program watchpoint number one with a data address.

2. Program breakpoint number five to be a Linked VMID Match breakpoint.

3. Link the watchpoint and the breakpoint together. A Watchpoint exception is only generated if both the data
address matches and the VMID matches.

The Watchpoint Type field for a watchpoint, DBGWCR<n>.WT, controls whether the watchpoint is enabled for
linking. If DBGWCR<n>.WT is 1, the watchpoint is enabled for linking.

G2.9.2.1 Rules for linking watchpoints

The rules for watchpoint linking are as follows:

• Only Linked watchpoints can be linked.

• A Linked watchpoint can link to any type of Linked Context breakpoint. The Linked Breakpoint Number
field, DBGWCR<n>.LBN, for the Linked watchpoint specifies the particular Linked Context breakpoint that
the Linked watchpoint links to, and:

— DBGWCR<n>.WT.{SSC, HMC, PAC} for the Linked watchpoint define the execution conditions that
the watchpoint generates Watchpoint exceptions for. See Execution conditions for which a watchpoint
generates Watchpoint exceptions.

— DBGBCR<n>.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• A Linked watchpoint cannot link to another watchpoint. The LBN field can therefore only specify a
breakpoint.

• If a Linked watchpoint links to a breakpoint that is not context-aware, the behavior of the Linked watchpoint
is CONSTRAINED UNPREDICTABLE. See Usage constraints.

• If a Linked watchpoint links to an Unlinked Context breakpoint, the Linked watchpoint never generates any
Watchpoint exceptions.

• Multiple Linked watchpoints can link to a single Linked Context breakpoint.

Note

Multiple Address breakpoints can also link to a single Linked Context breakpoint. Breakpoint exceptions
describes breakpoints.

Figure G2-1 shows an example of permitted watchpoint linking.

G2.9.3 Execution conditions for which a watchpoint generates Watchpoint exceptions

Each watchpoint can be programmed so that it only generates Watchpoint exceptions for certain execution
conditions. For example, a watchpoint might be programmed to generate Watchpoint exceptions only when the PE
is executing at EL2.

DBGWCR<n>.{SSC, HMC, PAC} define the execution conditions a watchpoint generates Watchpoint exceptions
for, as follows:

Security State Control, SSC

Controls whether the watchpoint generates Watchpoint exceptions only in Secure state, only in
Non-secure state, or in both Security states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11474
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
Note

This is determined by the Security state of the PE, not from the NS attribute returned by the
translation of the virtual address on which the watchpoint is set.

Higher Mode Control, HMC, and Privileged Access Control, PAC

HMC and PAC together control which Exception levels and Privilege levels the watchpoint
generates Watchpoint exceptions in.

The PAC control relates to the privilege of the memory access, not to the Exception level or
Privilege level at which the access was made.

Example G2-1 PAC condition for generating a Watchpoint exception

This means that, if the PE executes a Load unprivileged or Store unprivileged instruction at PL1, the resulting data
access triggers a watchpoint only if both:

• PAC is programmed to a value that generates watchpoints on PL0 accesses.

• All other conditions for generating the watchpoint are met.

Example A32/T32 Load unprivileged and Store unprivileged instructions are LDRT and STRT.

Table G2-15 shows the valid combinations of HMC, SSC, and PAC, and for each combination shows which
Privilege levels watchpoints generate Watchpoint exceptions in.

In the table:

Y or - Means that a watchpoint programmed with the values of HMC, SSC, and PAC shown in that row:

Y Can generate Watchpoint exceptions at that Privilege level.

- Cannot generate Watchpoint exceptions at that Privilege level.

Res Means that the combination of HMC, SSC, and PAC is reserved. See Reserved
DBGWCR<n>.{SSC, HMC, PAC} values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11475
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
All combinations of HMC, SSC, and PAC that this table does not show are reserved. See Reserved
DBGWCR<n>.{SSC, HMC, PAC} values.

Table G2-15 Summary of watchpoint HMC, SSC, and PAC encodings

HMC SSC PAC

Security state
the watchpoint
is programmed to
match in

PL2a

a. Debug exceptions are not generated at PL2 using AArch32. This means that these combinations of HMC,
SSC, and PAC are only relevant if watchpoints cause entry to Debug state. Self-hosted debuggers must
avoid combinations of HMC, SSC, and PAC that generate Watchpoint exceptions at PL2 using AArch32.

PL1 PL0

Implementation

No EL3
No EL2
and
no EL3

0 00 01 Both - Y - - -

0 00 10 - - Y - -

0 00 11 - Y Y - -

0 01 01 Non-secure - Y - Res Res

0 01 10 - - Y Res Res

0 01 11 - Y Y Res Res

0 10 01 Secure - Y - Res Res

0 10 10 - - Y Res Res

0 10 11 - Y Y Res Res

0 11 01 Secure Y Y - - Res

0 11 11 Y Y Y - Res

1 00 01 Both Y Y - - Res

1 00 11 Y Y Y - Res

1 01 00 Non-secure Y - -

1 01 01 Y Y - Res Res

1 01 11 Y Y Y Res Res

1 10 01 Secure - Y - Res Res

1 10 11 - Y Y Res Res

1 11 00 Both Y - - - Res if no EL2b

b. This encoding is only reserved when EL2 is not implemented, regardless of whether EL3 is implemented.

1 11 01 Y Y -

1 11 11 Y Y Y
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11476
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
G2.9.4 Watchpoint data address comparisons

An address comparison is successful if bits [31:2] of the current data virtual address are equal to
DBGWVR<n>[31:2], taking into account all of the following:

• The size of the access. See Size of the data access.

• The bytes selected by DBGWVR<n>.BAS. See Programming a watchpoint with eight bytes or fewer.

• Any address ranges indicated by DBGWVR<n>.MASK. See Programming a watchpoint with eight or more
bytes.

Note

DBGWVR<n>[1:0] are RES0 and are ignored.

G2.9.4.1 Size of the data access

Because watchpoints can be programmed to generate Watchpoint exceptions on individual bytes, the size of each
access must be taken into account. See Example G2-2.

Example G2-2

1. A debugger programs a watchpoint to generate Watchpoint exceptions only when the byte at address 0x1009
is accessed.

2. The PE accesses the unaligned doubleword starting at address 0x1003.

In this scenario, the watchpoint must generate a Watchpoint exception.

The size of data accesses initiated by DCIMVAC instructions is an IMPLEMENTATION DEFINED size that is both:

• From the inclusive range between:

— The size that CTR.DminLine defines.

— 2KB.

• A power-of-two.

The lowest address accessed by a DCIMVAC instruction is the address supplied to the instruction, rounded down to the
nearest multiple of the access size initiated by that instruction.

The highest address accessed is (size - 1) bytes above the lowest address accessed.

See also, Watchpoint behavior on accesses by DCIMVAC instructions.

G2.9.4.2 Programming a watchpoint with eight bytes or fewer

The Byte Address Select field, DBGWCR<n>.BAS, selects which bytes in the doubleword starting at the address
contained in the DBGWVR<n> the watchpoint generates Watchpoint exceptions for.

If the address programmed into the DBGWVR<n> is:

• Doubleword-aligned:

— All eight bits of DBGWCR<n>.BAS are used, and the descriptions given in Table G2-16 apply.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11477
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
• Word-aligned but not doubleword-aligned:

— Only DBGWCR<n>.BAS[3:0] are used, and the descriptions given in Table G2-17 apply. In this case,
DBGWCR<n>.BAS[7:4] are RES0.

If the BAS field is programmed with more than one byte, the bytes that it is programmed with must be contiguous.
For watchpoint behavior when its BAS field is programmed with non-contiguous bytes, see Other usage
constraints.

When programming the BAS field with anything other than 0b11111111, a debugger must also program
DBGWCR<n>.MASK to be 0b00000. See Programming dependencies of the BAS and MASK fields.

A watchpoint generates a Watchpoint exception whenever a watched byte is accessed, even if:

• The access size is smaller or larger than the address region being watched.

• The access is misaligned, and the base address of the access is not in the doubleword or word of memory
addressed by the DBGWVR<n>[31:3]. See Example G2-2.

The following are some example configurations of the BAS field:

• To program a watchpoint to generate a Watchpoint exception on the byte at address 0x1003, program:

— DBGWVR<n> with 0x1000.

Table G2-16 Supported BAS values when the DBGWVRn address alignment is doubleword

BAS value Description

0b00000000 Watchpoint never generates a Watchpoint exception

BAS[0] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:000 is accessed

BAS[1] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:001 is accessed

BAS[2] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:010 is accessed

BAS[3] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:011 is accessed

BAS[4] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:100 is accessed

BAS[5] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:101 is accessed

BAS[6] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:110 is accessed

BAS[7] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:3]:111 is accessed

Table G2-17 Supported BAS values when the DBGWVRn address alignment is word

BAS valuea

a. DBGWCR<n>.BAS[7:4] are RES0.

Description

0b00000000 Watchpoint never generates a Watchpoint exception

BAS[0] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:00 is accessed

BAS[1] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:01 is accessed

BAS[2] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:10 is accessed

BAS[3] == 1 Generates a Watchpoint exception if byte at address DBGWVR<n>[31:2]:11 is accessed
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11478
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
— DBGWCR<n>_EL1.BAS to be 0b00001000.

• To program a watchpoint to generate a Watchpoint exception on the bytes at addresses 0x2003, 0x2004 and
0x2005, program:

— DBGWVR<n> with 0x2000.

— DBGWCR<n>_EL1.BAS to be 0b00111000.

• If the address programmed into the DBGWVR<n> is doubleword-aligned:

— To generate a Watchpoint exception when any byte in the word starting at the doubleword-aligned
address is accessed, program DBGWCR<n>.BAS to be 0b00001111.

— To generate a Watchpoint exception when any byte in the word starting at address
DBGWVR<n>[31:3]:100 is accessed, program DBGWCR<n>.BAS to be 0b11110000.

Note

Arm deprecates programming a DBGWVR<n> with an address that is not doubleword-aligned.

G2.9.4.3 Programming a watchpoint with eight or more bytes

A debugger can use the MASK field, DBGWCR<n>.MASK, to program a single watchpoint with a data address
range. The data address range must meet all of the following criteria:

• It is a size that is both:

— A power-of-two.

— A minimum of eight bytes.

— A maximum of 2GB.

• It starts at an address that is aligned to the size.

The MASK field specifies the number of least significant data address bits that must be masked. Up to 31 least
significant bits can be masked:

MASK 0b00000 No bits are masked.

0b00001 Reserved.

0b00010 Reserved.

0b00011 Three least significant bits are masked.

0b00100 Four least significant bits are masked.

0b00101 Five least significant bits are masked.

… …

0b11111 31 least significant bits are masked.

If n least significant address bits are masked, the watchpoint generates a Watchpoint exception on all of the
following:

• Address DBGWVR<n>[31:n]:000…

• Address DBGWVR<n>[31:n]:111…

• Any address between these two addresses.

For example, if the four least significant address bits are masked, Watchpoint exceptions are generated for all
addresses between DBGWVR<n>[31:4]:0000 and DBGWVR<n>[31:4]:1111, including these addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11479
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
Note

• The most significant bit cannot be masked. This means that the full address cannot be masked.

• For watchpoint behavior when its MASK field is programmed with a reserved value, see Reserved
DBGWCR<n>.MASK values.

When masking address bits, a debugger must both:

• Program DBGWCR<n>.BAS to be 0b11111111. See Programming dependencies of the BAS and MASK fields.

• In the DBGWVR<n>, set the masked address bits to 0. For watchpoint behavior when any of the masked
address bits are not 0, see Other usage constraints.

G2.9.5 Determining the memory location that caused a Watchpoint exception

On a Watchpoint exception, the PE records an address in a Fault Address Register that the debugger can use to
determine the memory location that triggered the watchpoint.

The Fault Address Register (FAR) used is either:

• DFAR, if the exception is taken to PL1.

• HDFAR, if the exception is taken to PL2.

In cases where one instruction triggers multiple watchpoints, only one address is recorded.

On entering Debug state on a Watchpoint debug event, the PE records the address in the EDWAR.

Note

If Debug state was entered from AArch32 state, then EDWAR[63:32] is UNKNOWN and must be ignored by the
debugger.

For more information, see the subsections that follow. These are:

• Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance
instructions.

• Address recorded for Watchpoint exceptions generated by data cache maintenance instructions.

G2.9.5.1 Address recorded for Watchpoint exceptions generated by instructions other
than data cache maintenance instructions

The address recorded must be both:

• From the inclusive range between:

— The lowest address accessed by the memory access or set of contiguous memory accesses that
triggered the watchpoint.

— The highest watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint. A watchpointed address is an address that the watchpoint is
watching.

• Within a naturally-aligned block of memory that is all of the following:

— A power-of-two size.

— No larger than the DC ZVA block size.

— Contains a watchpointed address accessed by the memory access or set of contiguous memory
accesses that triggered the watchpoint.

The size of the block is IMPLEMENTATION DEFINED. There is no architectural means of discovering the size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11480
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
Example G2-3 Address recorded for a watchpoint programmed on 0x8019

A debugger programs a watchpoint to generate a Watchpoint exception on any access to the byte 0x8019.

An A32 load multiple instruction then loads nine registers starting from address 0x8004 upwards. This triggers the
watchpoint.

If the DC ZVA block size is:

• 32 bytes, the address that the PE records must be between 0x8004 and 0x8019 inclusive.

• 16 bytes, the address that the PE records must be between 0x8010 and 0x8019 inclusive.

G2.9.5.2 Address recorded for Watchpoint exceptions generated by data cache
maintenance instructions

The address recorded is the address passed to the instruction. This means that the address recorded might be higher
than the address of the location that triggered the watchpoint.

G2.9.6 Watchpoint behavior on other instructions

Under normal operating conditions, the following do not generate Watchpoint exceptions:

• Instruction cache maintenance instructions.

• Address translation instructions.

• TLB maintenance instructions.

• Preload instructions.

• All data cache maintenance instructions except DCIMVAC.

However, the debug architecture allows for IMPLEMENTATION DEFINED controls, such as those in ACTLR registers,
to enable watchpoints on an implementation defined subset of these instructions. Whether a watchpoint treats the
instruction as a load or a store, and the access size of instruction cache maintenance, address translation, and TLB
maintenance instructions are implementation defined.

The access size of the IMPLEMENTATION DEFINED instruction cache maintenance, address translation, and TLB
maintenance instructions that generate Watchpoint exceptions are IMPLEMENTATION DEFINED.

See also:

• Watchpoint behavior on accesses by Store-Exclusive instructions.

• Watchpoint behavior on accesses by DCIMVAC instructions.

G2.9.6.1 Watchpoint behavior on accesses by Store-Exclusive instructions

If a watchpoint matches on a data access caused by a Store-Exclusive instruction, then:

• If the store fails because an Exclusives monitor does not permit it, it is IMPLEMENTATION DEFINED whether
the watchpoint generates a Watchpoint exception.

• Otherwise, the watchpoint generates a Watchpoint exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11481
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
G2.9.6.2 Watchpoint behavior on accesses by DCIMVAC instructions

It is IMPLEMENTATION DEFINED whether DCIMVAC operations can generate Watchpoint exceptions. If they can, they
are treated as data stores. This means that for a watchpoint to match on an access caused by a DCIMVAC instruction,
the debugger must program DBGWCR<n>.LSC to be one of the following:

10 Match on data stores only.

11 Match on data stores and data loads.

Note

For the size of data accesses performed by DCIMVAC instructions, see Watchpoint data address comparisons. The size
of all data accesses must be considered because watchpoints can be programmed to match on individual bytes.

G2.9.7 Usage constraints

See the following:

• Reserved DBGWCR<n>.{SSC, HMC, PAC} values.

• Reserved DBGWCR<n>.LBN values.

• Programming dependencies of the BAS and MASK fields.

• Reserved DBGWCR<n>.BAS values.

• Reserved DBGWCR<n>.MASK values.

• Other usage constraints.

G2.9.7.1 Reserved DBGWCR<n>.{SSC, HMC, PAC} values

Table G2-18 shows when particular combinations of DBGWCR<n>.{SSC, HMC, PAC} are reserved.

If a watchpoint is programmed with one of these reserved combinations:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with a combination that is not reserved, other than for a direct or external read of
DBGWCR<n>.

Table G2-18 Reserved SSC, HMC, and PAC combinations

HMC, SSC, and PAC combination Reserved

All combinations with SSC set to 0b01 or 0b10. When EL3 is not implemented and EL2 is
implemented.

Any combination where HMC or SSC is nonzero When both of EL2 and EL3 are not implemented

The combination with HMC set to 1, SSC set to 0b11, and PAC set to 0b00 When EL2 is not implemented

The combinations with SSC set to 0b11 and PAC set to 0b01 or 0b11 When Secure EL2 is not implemented

The combination with HMC set to 1, SSC set to 0b01 and PAC set to 0b00 When Secure EL2 is not implemented

Combinations not included in Table G2-15. Always
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11482
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
• For a direct or external read of DBGWCR<n>, if the reserved combination:

— Has no function for any execution conditions, the value read back for each of SSC, HMC, and PMC
is UNKNOWN.

— Has a function for execution conditions other than the current execution conditions, the value read
back is the value written. This permits software to save and restore the combination so that the
watchpoint functions for the other execution conditions.

The behavior of watchpoints with reserved combinations of SSC, HMC, and PAC might change in future revisions
of the architecture. For this reason, software must not rely on the behavior described here.

G2.9.7.2 Reserved DBGWCR<n>.LBN values

For Linked watchpoints

A Linked watchpoint must link to a context-aware breakpoint. For a Linked watchpoint, any
DBGWCR<n>.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked watchpoint links to a breakpoint that is not implemented, or that is not context-aware,
then reads of DBGWCR<n>.LBN return an UNKNOWN value and the behavior is CONSTRAINED
UNPREDICTABLE. The Linked watchpoint behaves as if it is either:

• Disabled.

• Linked to an UNKNOWN context-aware breakpoint.

If a Linked watchpoint links to a breakpoint that is implemented and is context-aware, but that is
either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked watchpoints

For Unlinked watchpoints, DBGWCR<n>.LBN reads UNKNOWN and its value is ignored.

G2.9.7.3 Programming dependencies of the BAS and MASK fields

When programming a watchpoint, a debugger must use either:

• The MASK field, to program the watchpoint with an address range that can be eight bytes to 2GB.

• The BAS field, to select which bytes in the doubleword or word starting at the address contained in the
DBGWVR<n> the watchpoint must generate Watchpoint exceptions for.

If the debugger uses the:

• MASK field, it must program BAS to be 0b11111111, so that all bytes in the doubleword or word are selected.

• BAS field, it must program MASK to be 0b00000, so that the MASK field does not indicate any address
ranges.

If an enabled watchpoint has a MASK field that is nonzero and a BAS field that is not set to 0b11111111, then for
each byte in the address range, it is CONSTRAINED UNPREDICTABLE whether or not a Watchpoint exception
is generated.

G2.9.7.4 Reserved DBGWCR<n>.BAS values

The BAS field must be programmed with a value Zeros(8-n-m):Ones(n):Zeros(m), where:

• n is a nonzero positive integer less-than-or-equal-to 8.

• m is a positive integer less-than 8.

• n+m is less-than-or-equal-to 8.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11483
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
Note

If x is zero, then Zeros(x) is an empty bitstring.

If DBGWVR<n>[2] is 1, DBGWCR<n>.BAS[7:4] are RES0 and are ignored.

If a watchpoint is programmed with a reserved BAS value:

• It is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint exception for each byte
in the doubleword or word of memory addressed by the DBGWVR<n>.

• A direct or external read of DBGWCR<n>.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of
the architecture.

G2.9.7.5 Reserved DBGWCR<n>.MASK values

If a watchpoint is programmed with a reserved MASK value:

• The watchpoint must behave as if it is either:

— Disabled.

— Programmed with an UNKNOWN value that is not reserved, that might be 0b00000, other than for a direct
or external read of DBGWCR<n>.

• A direct or external read of DBGWCR<n>.MASK returns an UNKNOWN value.

G2.9.7.6 Other usage constraints

For all watchpoints:

• DBGWVR<n>[1:0] are RES0 and are ignored.

• If DBGWCR<n>.MASK is nonzero, and any masked bits of DBGWVR<n> are not 0, it is CONSTRAINED
UNPREDICTABLE whether the watchpoint generates a Watchpoint exception when the unmasked bits match.

• A watchpoint never generates any Watchpoint exceptions if DBGWCR<n>.LSC is 0b00.

G2.9.8 Exception syndrome information and preferred return address

See the following:

• Exception syndrome information.

• Preferred return address.

G2.9.8.1 Exception syndrome information

The PE takes a Watchpoint exception as either:

• A Data Abort exception, if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to
Hyp mode.

If the exception is taken to:

Abort mode

The PE sets all of the following:

• DBGDSCRext.MOE to 0b1010, to indicate a Watchpoint exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11484
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
• DFSR.CM to indicate whether a cache maintenance instruction caused the exception.

• DFSR.WnR to indicate whether the exception was generated on a read instruction or a write
instruction.

• DFAR to an address that the debugger can use to determine the memory location that
triggered the watchpoint. See Determining the memory location that caused a Watchpoint
exception.

In addition, if using the:

• Short-descriptor format, the PE sets DFSR.FS to the code for a debug exception, 0b00010, and
DFSR.Domain to an UNKNOWN value.

• Long-descriptor format, the PE sets DFSR.STATUS to the code for a debug exception,
0b100010.

Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-19.

• Sets DBGDSCRext.MOE to 0b1001, to indicate a Watchpoint exception.

• Sets the HDFAR to an address that the debugger can use to determine the memory location
that triggered the watchpoint. See Determining the memory location that caused a
Watchpoint exception.

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions.

G2.9.8.2 Preferred return address

The preferred return address of a Watchpoint exception is the address of the instruction that was not executed
because the PE took the Watchpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

Table G2-19 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Data Abort exception routed to Hyp mode, 0x24.

Instruction Length, IL The PE sets this to 1.

Instruction Specific Syndrome, ISS ISV[24] Instruction Syndrome Valid (ISV). The PE sets this to 0.

ISS[23:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8] Cache Maintenance (CM). The PE sets this to indicate whether a cache maintenance
instruction caused the exception.

ISS[7] RES0.

ISS[6] Write not Read (WnR). The PE sets this to indicate whether the exception was
generated on a read instruction or a write instruction.

ISS[5:0] Data Fault Status Code (DFSC). The PE sets this to the code for a debug exception,
0b100010.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11485
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.9 Watchpoint exceptions
G2.9.9 Pseudocode description of Watchpoint exceptions taken from AArch32 state

AArch32.WatchpointByteMatch() tests an individual byte accessed by an operation.

AArch32.StateMatch() tests the values in DBGWCR<n>.{HMC, SSC, PAC}, and if the watchpoint is Linked, also
tests the Linked Context breakpoint that the watchpoint links to.

AArch32.WatchpointMatch() tests the value in DBGWVR<n>.

AArch32.CheckWatchpoint() generates a FaultRecord. A Watchpoint exception is taken if all of the following are true:

• DBGDSCRext.MDBGen is 1.

• Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug
exceptions.

• All of the conditions required for Watchpoint exception generation are met. See About Watchpoint
exceptions.

Note

AArch32.CheckWatchpoint might halt the PE and cause it to enter Debug state. External debug uses Debug state.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckWatchpoint(), as
described in Abort exceptions. If a Watchpoint exception is taken to AArch32 state, the AArch32.Abort() function
generates a Data Abort exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11486
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
G2.10 Vector Catch exceptions

Arm deprecates the use of vector catch.

This section describes Vector Catch exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:

• At EL1 or higher in an Exception level that is using AArch32.

• At EL0 using AArch32 when EL1 is using AArch32.

Note

Vector Catch exceptions cannot be generated when the PE is using an AArch64 translation regime.

This section contains the following subsections:

• About Vector Catch exceptions.

• Exception vectors that Vector Catch exceptions can be enabled for.

• Generation of Vector Catch exceptions.

• Usage constraints.

• Exception syndrome information and preferred return address for a Vector Catch exception.

• Pseudocode description of Vector Catch exceptions.

G2.10.1 About Vector Catch exceptions

Whenever the PE takes an exception, execution is forced to an address that is the exception vector for that exception.
Vector catch permits a debugger to trap exceptions based on the exception vector, or based on the exception type
associated with the exception vector, as follows:

• If the address-matching form of vector catch is implemented, the debugger can trap exceptions based on the
exception vector.

• If the exception-trapping form of vector catch is implemented, the debugger can trap exceptions based on the
exception type associated with the exception vector.

The architecture supports only these two forms of vector catch. Only one form can be implemented, and which is
implemented is IMPLEMENTATION DEFINED. The DBGDEVID indicates which form is implemented.

Regardless of the form of vector catch implemented, a debugger enables Vector Catch exceptions for exception
vectors or types by programming the DBGVCR. This register contains vector catch enable bits. Each of these bits
corresponds to a different vector. When a debugger sets a vector catch enable bit to 1, Vector Catch exceptions are
enabled for the corresponding exception vector or type.

Note

EL2 using AArch64 or EL3 using AArch64 can enable Vector Catch exceptions for vectors by programming the
DBGVCR32_EL2. The DBGVCR32_EL2 is architecturally mapped to the DBGVCR.

When Vector Catch exceptions are enabled for an exception vector, this is called an enabled vector catch. The set
of exception vectors that Vector Catch exceptions are enabled for is called the enabled vector catch set.

If the form of vector catch implemented is the:

Address-matching form:

The PE compares the virtual address of each instruction in the program flow with a subset of the
enabled vector catch set.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11487
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
If an address match occurs, a Vector Catch exception is generated when the instruction that caused
the match is committed for execution.

Exception-trapping form

Whenever the PE takes an exception, if the vector the exception is taken to is included in a subset
of the enabled vector catch set, a Vector Catch exception is generated.

The Vector Catch exception is generated as part of entry to the exception, and must be taken before
the PE either executes any instructions or takes any further exceptions.

The addresses that comprise the subset depend on whether EL3 is implemented and, for the:

• Address-matching form, the current Security state.

• Exception-trapping form, the Security state that the exception is handled in.

See Generation of Vector Catch exceptions.

Table G2-20 summarizes the differences between the address-matching and exception-trapping forms.

Depending on the implementation, some vector catch enable bits in the DBGVCR might be RES0. For example, if
EL3 is not implemented or is implemented but is using AArch64, Monitor mode is not implemented, and so the
enable bits for exception vectors for exceptions taken to Monitor mode are RES0. See Exception vectors that Vector
Catch exceptions can be enabled for for the vector catch enable bits that exist for different implementations.

The debug exception enable controls describes the enable controls for Vector Catch exceptions.

Table G2-20 Differences in behavior of the address-matching and exception-trapping forms of vector catch

Address-matching Exception-trapping

An enabled vector catch generates a Vector Catch exception when
an instruction that is fetched from the vector is committed for
execution.

This means that spurious Vector Catch exceptions might occur,
where the Vector Catch exception does not result from an
exception entry, but is instead caused by a branch to the vector.

A branch to the vector might occur, for example, on a return from
a nested exception or when simulating an exception entry.

An enabled vector catch generates a Vector Catch exception
immediately after the PE takes the exception that is associated
with the vector.

This means that Vector Catch exceptions always result from
exception entry, and not from branches to exception vectors.

A Vector Catch exception is generated as a result of an instruction
fetch. This means that the Vector Catch exception has a priority
relative to the other synchronous exceptions that result from an
instruction fetch.

Prioritization of Synchronous exceptions taken to AArch64 state
describes this prioritization.

A Vector Catch exception is generated as a result of an exception
entry. This means that the Vector Catch exception is part of the
exception that caused the Vector Catch exception. Therefore, the
Vector Catch exception has no priority associated with it.

For this reason, Vector Catch exceptions are outside the scope of
the prioritization that Prioritization of Synchronous exceptions
taken to AArch64 state describes.

A Vector Catch exception can be preempted by another exception.

If this happens, the Vector Catch exception is generated again
when the exception handler branches back to the vector.

Vector Catch exceptions must be taken before other exceptions.

A Vector Catch exception can be generated as a result of an
instruction fetch executed in any AArch32 mode except Hyp
mode, including User mode.

Because a Vector Catch exception is generated as the result of an
exception entry, the Vector Catch exception is only generated
when the PE is in the AArch32 exception handling mode.

If HCR.TGE is 1, Vector Catch exceptions can be generated for
User mode instruction fetches from Non-secure PL1 vectors.

If HCR.TGE is 1, Vector Catch exceptions are never generated in
Non-secure state, because:

• Exceptions are routed away from Non-secure PL1 vectors,
to PL2.

• The architecture does not provide vector catch enable bits
for the Hyp exception vectors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11488
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
G2.10.2 Exception vectors that Vector Catch exceptions can be enabled for

When the PE takes an exception, the exception vector is contained in a vector table at the Privilege level the
exception is taken to.

Depending on the Security state and AArch32 mode the exception is taken to, when the exception is taken, the
vector table used is the table that contains one of:

• Local exception vectors.

• Non-secure Local exception vectors.

• Secure Local exception vectors.

• Hyp exception vectors.

• Monitor exception vectors.

Table G2-21 shows which vector tables are implemented for different implementations. In the table:

• A dash, -, means that the Exception level is not implemented.

• 64 means that the Exception level is using AArch64.

• 32 means that the Exception level is using AArch32.

For example, in an AArch32-only implementation that includes EL0, EL1, and EL3, when the PE takes an exception
to Monitor mode, it uses the vector table containing Monitor exception vectors.

Table G2-21 Vector tables implemented for different implementations

Implementation
Vector table or tables implemented

EL0 EL1 EL2 EL3

32 32 - - Local exception vectors.

64 - Non-secure Local exception vectors.

32 - Non-secure Local exception vectors.

Hyp exception vectors.

- 64 Secure Local exception vectors.

Non-secure Local exception vectors.

- 32 Secure Local exception vectors.

Non-secure Local exception vectors.

Monitor exception vectors.

64 64 Secure Local exception vectors.

Non-secure Local exception vectors.

32 64 Secure Local exception vectors.

Non-secure Local exception vectors.

Hyp exception vectors.

32 32 Secure Local exception vectors.

Non-secure Local exception vectors.

Hyp exception vectors.

Monitor exception vectors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11489
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
The tables that follow show the vectors that Vector Catch exceptions can be enabled for, and their corresponding
vector catch enable bits in the DBGVCR:

• Table G2-22 shows the Local exception vectors, Secure Local exception vectors, and Non-secure Local
exception vectors that Vector Catch exceptions can be enabled for.

• Table G2-23 shows the Monitor exception vectors that Vector Catch exceptions can be enabled for.

The architecture does not provide vector catch enable bits for the Hyp exception vectors.

Note

There is no vector catch enable bit for Monitor trap exceptions.

G2.10.3 Generation of Vector Catch exceptions

How Vector Catch exceptions are generated depends on which form is implemented:

• Address-matching form.

• Exception-trapping form.

Table G2-22 Local exception vectors, Secure Local exception vectors, and Non-secure Local exception vectors that
Vector Catch exceptions can be enabled for

Vector catch enable bit
Exception
type

Local exception vectors

Local or Secure
Local exception vectors

Non-secure
Local exception vectors

Normal.
SCTLR.V is 0.a

High.
SCTLR.V is 1.

SF NSF FIQ interrupt VBAR + 0x0000001C 0xFFFF001C

SI NSI IRQ interrupt VBAR + 0x00000018 0xFFFF0018

SD NSD Data Abort VBAR + 0x00000010 0xFFFF0010

SP NSP Prefetch Abort VBAR + 0x0000000C 0xFFFF000C

SS NSS Supervisor Call VBAR + 0x00000008 0xFFFF0008

SU NSU Undefined Instruction VBAR + 0x00000004 0xFFFF0004

a. If EL3 is implemented and is using AArch32, VBAR is banked. The Secure Local exception vectors use VBARS and the Non-secure
Local Exception vectors use VBARNS.

Table G2-23 Monitor exception vectors that Vector Catch exceptions can be enabled for

Vector catch enable bit Exception type Monitor exception vectors

MF FIQ interrupt MVBAR + 0x0000001C

MI IRQ interrupt MVBAR + 0x00000018

MD Data Abort MVBAR + 0x00000010

MP Prefetch Abort MVBAR + 0x0000000C

MS Secure Monitor Call MVBAR + 0x00000008
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11490
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
G2.10.3.1 Address-matching form

The PE compares the virtual address of each instruction in the program flow is with some or all of the addresses in
the enabled vector catch set, as follows:

• If EL3 is not implemented, the enabled vector catch set contains only Local exception vectors. The PE
compares the virtual address of each instruction in the program flow, including those executed at EL0, with
all addresses in the enabled vector catch set.

• If EL3 is implemented, the enabled vector catch set might contain one or more of the following:

— Monitor exception vectors, if EL3 is using AArch32.

— Secure Local exception vectors.

— Non-secure Local exception vectors.

In this case, Table G2-24 shows which addresses, in the enabled vector catch set, the virtual address of each
instruction in the program flow is compared with.

For example, for exceptions taken to a Secure PL1 mode when EL3 is using AArch64, the virtual address of each
instruction in the program flow is compared with each Secure Local exception vector in the enabled vector catch set.

For each instruction in the program flow, the PE tests for any possible Vector Catch exceptions before executing the
instruction. If a match occurs, a Vector Catch exception is generated when the instruction is committed for
execution, regardless of all of the following:

• Whether the instruction passes its Condition code check.

• Whether the instruction is executed as part of exception entry.

• If EL2 is implemented, what HCR.{IMO, FMO, AMO} are set to.

• If EL3 is implemented, what SCR.{IRQ, FIQ, EA} are set to.

G2.10.3.2 Exception-trapping form

When the PE takes an exception, it tests whether the exception is by branching to an exception vector in a subset of
the enabled vector catch set, as follows:

• If EL3 is not implemented, the enabled vector catch set contains only Local exception vectors. The PE tests
whether the exception is by branching to any address in the enabled vector catch set.

• If EL3 is implemented, the enabled vector catch set might contain one or more of the following:

— Monitor exception vectors, if EL3 is using AArch32.

— Secure Local exception vectors.

— Non-secure Local exception vectors.

Table G2-24 Comparisons made if the implementation includes EL3

EL3 is using
For exceptions taken to:

Secure PL1 modes Non-secure PL1 modes

AArch64 Secure Local exception vectors Non-secure Local exception vectors

AArch32 Secure Local exception vectors and Monitor exception vectors
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11491
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
In this case, the PE tests whether the exception is by branching to a vector in one of the subsets that
Table G2-25 shows. In the table, n/a means not applicable.

For example, for an exception taken to a Secure PL1 mode when EL3 is using AArch64, the PE tests whether the
exception is by branching to any of the Secure Local exception vectors in the enabled vector address set.

If the exception is by branching to a vector in the subset, a Vector Catch exception is generated as part of exception
entry. That is, a Vector Catch exception is generated instead of the exception handler executing its first instruction.

G2.10.4 Usage constraints

See the following subsections:

• Usage constraints that apply to both forms of vector catch.

• Usage constraints that apply only to the address-matching form.

G2.10.4.1 Usage constraints that apply to both forms of vector catch

For Vector Catch exceptions enabled for either the Prefetch Abort exception vector or the Data Abort exception
vector, if one of these exception types is taken to the Exception level that debug exceptions are targeting, behavior
is CONSTRAINED UNPREDICTABLE. Either:

• Vector catch is ignored, therefore a Vector Catch exception is not generated.

• Vector catch generates a Prefetch Abort debug exception. For Vector Catch exceptions enabled for the
Prefetch Abort exception vector, the PE might enter a recursive loop of Prefetch Abort exceptions causing
Vector Catch exceptions and Vector Catch exceptions causing Prefetch Abort exceptions.

Note

The Exception level that debug exceptions are targeting is called the debug target Exception level, ELD. Routing
debug exceptions describes how ELD is derived.

G2.10.4.2 Usage constraints that apply only to the address-matching form

Exception vectors are at word-aligned addresses, and:

• It is CONSTRAINED UNPREDICTABLE whether an enabled vector catch generates a Vector Catch exception for
a 32-bit T32 instruction starting at the halfword-aligned address immediately prior to the vector address.

• T32 instructions that start at the halfword-aligned address immediately after the exception vector do not
generate Vector Catch exceptions.

For the address-matching form, Vector Catch exceptions have the same priority as Breakpoint exceptions. If a single
instruction causes both a Vector Catch exception and a Breakpoint exception, it is CONSTRAINED UNPREDICTABLE
which of these debug exceptions the PE takes.

Table G2-25 Subsets that the PE tests within if EL3 is implemented

EL3 is using
For exceptions taken to:

Monitor mode Other Secure PL1 modes Non-secure PL1 modes

AArch64 n/a Secure Local exception vectors Non-secure Local exception vectors

AArch32 Monitor exception vectors
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11492
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
G2.10.5 Exception syndrome information and preferred return address for a Vector Catch exception

See the following:

• Exception syndrome information for a Vector Catch exception.

• Preferred return address for a Vector Catch exception.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced section uses the term more generally, to include exception information reported in the IFSR.

G2.10.5.1 Exception syndrome information for a Vector Catch exception

The PE takes a Vector Catch exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to
Hyp mode.

If the exception is taken to:

PL1 Abort mode

The PE sets all of the following:

• IFSR.FS to the code for a debug exception, 0b00010.

• DBGDSCRext.MOE to 0b0101, to indicate a Vector Catch exception.

• The IFAR with an UNKNOWN value.

PL2 Hyp mode

The PE does all of the following:

• Records information about the exception in the Hypervisor Syndrome Register, HSR. See
Table G2-26.

• Sets DBGDSCRext.MOE to 0b0101, to indicate a Vector Catch exception.

• Sets the HIFAR to an unknown value.

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions.

Table G2-26 Information recorded in the HSR

HSR field Information recorded

Exception Class, EC The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.

Instruction Length, IL The PE sets this to 1.

Instruction Specific Syndrome, ISS ISS[24:10] RES0.

ISS[9] External Abort type (EA). The PE sets this to 0.

ISS[8:6] RES0.

ISS[5:0] Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug
exception, 0b100010.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11493
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.10 Vector Catch exceptions
G2.10.5.2 Preferred return address for a Vector Catch exception

The preferred return address of a Vector Catch exceptions is the address of the instruction that was not executed
because the PE took the Vector Catch exception instead.

This means that the preferred return address is the exception vector. This is true regardless of whether the
address-matching form or the exception trapping form is implemented.

G2.10.6 Pseudocode description of Vector Catch exceptions

The AArch32.VCRMatch() pseudocode function checks whether the instruction at address generates a Vector Catch
exception. It therefore shows the address-matching form of vector catch.

The AArch32.CheckVectorCatch() pseudocode function uses AArch32.VCRMatch() to test whether the instruction
generates a Vector Catch exception, and if AArch32.VCRMatch() returns TRUE it generates that event.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckVectorCatch(), as
described in Abort exceptions. If there is a Vector Catch exception, the AArch32.Abort() function generates a
Prefetch Abort exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11494
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.11 Synchronization and debug exceptions
G2.11 Synchronization and debug exceptions

The behavior of debug depends on all of the following:

• The state of the external debug authentication interface.

• Indirect reads of:

— External debug registers.

— System registers, including system debug registers.

— Special-purpose registers.

If a change is made to any of these, the effect of that change on debug exception generation cannot be relied on until
after a Context Synchronization event has occurred.

For any instructions executed between the time when the change is made and the time when the next Context
Synchronization event occurs, it is CONSTRAINED UNPREDICTABLE whether debug uses the state of the PE before the
change, or the state of the PE after the change.

Example G2-4 Example of synchronization and Breakpoint exception generation

1. Software changes DBGDSCRext.MDBGen from 0 to 1.

2. An instruction is executed, that would cause a Breakpoint exception if self-hosted debug uses the state of the
PE after the change.

3. A Context Synchronization event occurs.

In this case, it is CONSTRAINED UNPREDICTABLE whether the instruction generates a Breakpoint exception.

Example G2-5 Example of synchronization and debug exceptions generation

1. Software unlocks the OS Lock.

2. The PE executes some instructions.

3. A Context Synchronization event occurs.

During the time when the PE is executing some instructions, step 2, it is CONSTRAINED UNPREDICTABLE whether
debug exceptions other than Breakpoint Instruction exceptions can be generated.

Note

Some register updates are self-synchronizing. Others require an explicit Context Synchronization event. For more
information, see:

• Synchronization of changes to AArch32 System registers.

• Accessing PSTATE fields.

• Synchronization of changes to the external debug registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11495
ID032224 Non-Confidential

AArch32 Self-hosted Debug
G2.11 Synchronization and debug exceptions
G2.11.1 State and mode changes without explicit context synchronization events

Most changes to the Exception level, and most changes to the Security state if EL3 is implemented, happen as a
result of operations that are an explicit Context Synchronization event. This is because taking an exception and
returning from an exception are both explicit Context Synchronization events, and the Privilege level and Security
state can only change as a result of taking or returning from an exception.

However, some Security state and AArch32 mode changes can happen because of operations that are not an explicit
Context Synchronization event. These are:

• AArch32 mode changes caused by MSR and CPS instructions. A mode change might be to a mode at a lower
Privilege level.

• If EL3 is using AArch32, a Security state change caused by a direct write to the SCR in a privileged mode
other than Monitor mode, to set SCR.NS to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G2-11496
ID032224 Non-Confidential

Chapter G3
AArch32 Self-hosted Trace

This chapter describes the AArch32 self-hosted trace:

Introductory information:

• About self-hosted trace.

• Trace Sinks.

• Register controls to enable self-hosted trace.

Prohibited regions in trace:

• Controls to prohibit trace at Exception levels.

• Self-hosted trace and address translation.

Timestamps and Synchronization:

• Self-hosted trace timestamps.

• Synchronization in self-hosted trace.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G3-11497
ID032224 Non-Confidential

AArch32 Self-hosted Trace
G3.1 About self-hosted trace
G3.1 About self-hosted trace

A trace unit generates trace data to describe the program flow of the PE.

The trace unit can be an implementation of any of the following:

• In Armv8, a standard Arm Embedded Trace Macrocell (ETM). See Arm® Embedded Trace Macrocell
Architecture Specification, ETMv4.

• In Armv9, the Embedded Trace Extension (ETE). See Chapter D4 The Embedded Trace Extension.

• An IMPLEMENTATION DEFINED trace function.

If an Armv8.4-compliant PE implements an ETM Architecture trace unit that includes the ETM System register
interface, FEAT_TRF must be implemented.

If an Armv8.4-compliant PE implements a Trace Unit that is either not an ETM Architecture trace unit or does not
implement the ETM System register interface, Arm recommends that FEAT_TRF is implemented, but this is not
mandatory. This is not applicable in Armv9.

If an Armv9-compliant PE implements FEAT_ETE, FEAT_TRF must be implemented.

Self-hosted trace happens when the agent controlling the trace collection is part of the same software stack as the
software being traced. The agent controls prohibited regions. The information collected by the agent is sent to a trace
sink.

The trace unit and the PE must have the same view of the debug authentication interface. If FEAT_TRF is
implemented, ExternalNoninvasiveDebugEnabled() is always TRUE.

G3.1.1 Trace Sinks

The trace unit sends the trace data to a trace sink. A system might include multiple trace sinks, and allow software
to configure which trace sink or sinks are used.

An example of an internal trace sink is an Embedded Trace Router (ETR), which allows software to define a buffer
in memory. Trace data is written to this buffer.

If FEAT_TRBE is implemented, the PE includes a Trace Buffer Unit. Trace data is written directly to memory by
the Trace Buffer Unit. See Chapter D6 The Trace Buffer Extension.

In Armv8, Arm recommends that a system that includes FEAT_TRF incorporates an ETR, and follows the system
architecture described by the CoreSight Base System Architecture (CS-BSA).

G3.1.2 Register controls to enable self-hosted trace

For EL1 using AArch64, see Chapter D3 AArch64 Self-hosted Trace.

If FEAT_TRF is implemented, self-hosted trace is enabled if one of the following is true:

• EDSCR.TFO == 0.

• EDSCR.TFO == 1, EL3 is implemented, SDCR.STE == 1, and ExternalSecureNoninvasiveDebugEnabled() ==
FALSE.

• EDSCR.TFO ==1, EL3 is not implemented, the PE executes in Secure state, and
ExternalSecureNoninvasiveDebugEnabled() = FALSE.

• EDSCR.TFO ==1, FEAT_RME is implemented, MDCR_EL3.RLTE == 1, and
ExternalRealmNoninvasiveDebugEnabled() = FALSE.

The pseudocode function SelfHostedTraceEnabled() shows these rules.

If FEAT_TRF is not implemented, SelfHostedTraceEnabled() returns FALSE.

While SelfHostedTraceEnabled() is FALSE, ExternalNoninvasiveDebugAllowed() controls whether tracing is
prohibited or allowed in each Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G3-11498
ID032224 Non-Confidential

AArch32 Self-hosted Trace
G3.1 About self-hosted trace
The self-hosted trace extensions do not provide any mechanism to control software access to the trace unit external
debug interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G3-11499
ID032224 Non-Confidential

AArch32 Self-hosted Trace
G3.2 Prohibited regions in self-hosted trace
G3.2 Prohibited regions in self-hosted trace

Trace is not generated in prohibited regions. The pseudocode function TraceAllowed() indicates whether tracing is
allowed in the current Security state and Exception level.

The IMPLEMENTATION DEFINED debug authentication interface can allow an external agent to disable the self-hosted
trace extension.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited in Secure state when SDCR.STE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited in Realm state when MDCR_EL3.RLTE == 0.

G3.2.1 Controls to prohibit trace at Exception levels

If SelfHostedTraceEnabled() == TRUE, TRFCR, TRFCR_EL1, TRFCR_EL2 and HTRFCR control whether trace
is prohibited at an Exception level. While SelfHostedTraceEnabled() == FALSE, these registers are ignored.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL0 if one of the following is true:

• The Effective value of HCR_EL2.TGE == 0 and TRFCR_EL1.E0TRE == 0.

• The Effective value of HCR.TGE == 0 and TRFCR.E0TRE == 0.

• The Effective value of HCR_EL2.TGE == 1 and TRFCR_EL2.E0HTRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL1 if TRFCR.E1TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL2 if HTRFCR.E2TRE == 0.

If SelfHostedTraceEnabled() == TRUE, tracing is prohibited at EL3 if one of the following is true:

• EL3 is in AArch64 state.

• EL3 is in AArch32 state and TRFCR.E1TRE == 0.

The pseudocode TraceAllowed() shows the preceding rules.

If SelfHostedTraceEnabled() == TRUE, no events are exported to the trace unit when tracing is prohibited.

If SelfHostedTraceEnabled() == FALSE, no events are exported to the trace unit when the PE is in Secure state and
counting in Secure state is prohibited.

If FEAT_ETE is not implemented, when PMCR_EL0.X==0 or PMCR.X==0, no PMU events are exported to the
trace unit.

Otherwise, PMU events are exported to the trace unit.

G3.2.2 Self-hosted trace and address translation

A hypervisor can use HTRFCR.CX to control visibility of VTTBR.VMID.

If SelfHostedTraceEnabled() == TRUE, and HTRFCR.CX == 0, or if EL2 is not implemented:

• The value of VTTBR.VMID is not traced.

• Comparisons with VTTBR.VMID do not match and results of comparison are not exposed through the
comparators.

The trace unit may either prohibit trace for these values, or may record a VTTBR.VMID value of zero in the trace.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G3-11500
ID032224 Non-Confidential

AArch32 Self-hosted Trace
G3.3 Self-hosted trace timestamps
G3.3 Self-hosted trace timestamps

For EL1 using AArch64, see Chapter D3 AArch64 Self-hosted Trace.

The trace timestamp is a value that represents the passage of time in real-time. It is calculated from a counter which
increments all the time, when the PE is generating trace and when the PE is in a prohibited region.

While SelfHostedTraceEnabled() == FALSE, the external trace provides the trace timestamp. If the external trace is
a standard CoreSight system, the relationship between CoreSight time and the Generic Timer counter is
IMPLEMENTATION DEFINED.

When SelfHostedTraceEnabled() == TRUE, the trace time stamp is one of the following:

• Physical time, which is defined by the physical count value returned by PhysicalCountInt().

• If FEAT_ECV is implemented and EL2 is executing at AArch64, offset physical time, which is defined as
the value of (PhysicalCountInt() - CNTPOFF_EL2). However, the physical offset is treated as zero if
FEAT_ECV is disabled.

• Virtual time, which is defined as the value of (PhysicalCountInt() - CNTVOFF). The virtual offset is always
CNTVOFF, including when a read of CNTVCT at the current Exception level would treat the virtual offset
as zero.

The fields TRFCR_EL2.TS, TRFCR.TS and HTRFCR.TS control which counter is used for self-hosted trace.

The timestamp used for trace is shown in Table G3-1.

Note

The value of HCR_EL2.E2H does not affect the counter used for the trace timestamp.

Table G3-1 Timestamp used for trace.

SelfHostedTraceEnabled() TRFCR_EL2.TS or HTRFCR.TS TRFCR_EL1.TS Timestamp traced

FALSE xx xx CoreSight time

TRUE 0b00 0b01 PhysicalCountInt() - CNTVOFF

0b00 0b11 PhysicalCountInt()

0b01 xx PhysicalCountInt() - CNTVOFF or
PhysicalCountInt() - CNTVOFF_EL2

0b11 xx PhysicalCountInt()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G3-11501
ID032224 Non-Confidential

AArch32 Self-hosted Trace
G3.4 Synchronization in self-hosted trace
G3.4 Synchronization in self-hosted trace

The trace unit is an indirect observer of the trace control registers.

While SelfHostedTraceEnabled() == TRUE, indirect reads of the trace filter control fields, TRFCR.{E1TRE,
E0TRE} and HTRFCR.{E2TRE, E0HTRE} are treated as indirect reads made by the instruction being traced, and
are subject to the standard requirements for synchronization of System register accesses.

The TSB CSYNC operation is used to ensure that a trace operation, due to a trace unit generating trace for an instruction
has completed. The TSB CSYNC operation may be reordered with respect to other instructions, so must be combined
with at least one Context synchronization event to ensure the operations are executed in the required order. This
means that a direct write to TRFCR or HTRFCR is guaranteed to be observed by the trace unit only after a
subsequent Context synchronization event. For more information, see Trace Synchronization Barrier (TSB).

While SelfHostedTraceEnabled() == FALSE, the trace unit might impose stronger synchronization requirements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G3-11502
ID032224 Non-Confidential

Chapter G4
The AArch32 System Level Memory Model

This chapter provides a system level view of the general features of the memory system. It contains the following
sections:

• About the memory system architecture.

• Address space.

• Mixed-endian support in AArch32.

• AArch32 cache and branch predictor support.

• System register support for IMPLEMENTATION DEFINED memory features.

• External aborts.

• Memory barrier instructions.

• Pseudocode description of general memory System instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11503
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.1 About the memory system architecture
G4.1 About the memory system architecture

The Arm architecture supports different implementation choices for the memory system microarchitecture and
memory hierarchy, depending on the requirements of the system being implemented. In this respect, the memory
system architecture describes a design space in which an implementation is made. The architecture does not
prescribe a particular form for the memory systems. Key concepts are abstracted in a way that permits
implementation choices to be made while enabling the development of common software routines that do not have
to be specific to a particular microarchitectural form of the memory system. For more information about the concept
of a hierarchical memory system, see Memory hierarchy.

G4.1.1 Form of the memory system architecture

The A-profile architecture includes a Virtual Memory System Architecture (VMSA). Chapter G5 The AArch32
Virtual Memory System Architecture describes the AArch32 view of the VMSA.

G4.1.2 Memory attributes

Memory types and attributes describes the memory attributes, including how different memory types have different
attributes. Each location in memory has a set of memory attributes, and the translation tables define the virtual
memory locations, and the attributes for each location.

Table G4-1 shows the memory attributes that are visible at the system level.

For more information on Cacheability and Shareability, see The Cacheability and Shareability memory attributes,
Non-shareable Normal memory, and Caches and memory hierarchy.

Table G4-1 Memory attribute summary

Memory type Shareability Cacheability

Devicea

a. Takes additional attributes, see Device memory.

Outer Shareable Non-cacheable.

Normal One of:

• Non-shareable.

• Inner Shareable.

• Outer Shareable.

One ofb:

• Non-cacheable.

• Write-Through Cacheable.

• Write-Back Cacheable.

b. See also Cacheability, cache allocation hints, and cache transient hints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11504
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.2 Address space
G4.2 Address space

The architecture is designed to support a wide range of applications with different memory requirements. It supports
a range of Physical Address (PA) sizes, and provides associated control and identification mechanisms. For more
information, see About VMSAv8-32.

G4.2.1 Address space overflow or underflow

This subsection describes address space overflow or underflow:

G4.2.1.1 Instruction address space overflow

When a PE performs a normal, sequential execution of instructions, it calculates:

(address_of_current_instruction) + (size_of_executed_instruction)

This calculation is performed after each instruction to determine which instruction to execute next.

If the address calculation performed after executing an A32 or T32 instruction overflows 0xFFFF FFFF, the Program
Counter becomes UNKNOWN.

If the PE executes an instruction for which the instruction address, size, and alignment mean that it contains the
bytes 0xFFFFFFFF and 0x00000000, the bytes that apparently from 0x00000000 onwards come from an UNKNOWN
address.

G4.2.1.2 Data address space overflow and underflow

If the PE executes a load or store instruction for which the computed address, total access size, and alignment mean
that it accesses bytes 0xFFFFFFFF and 0x00000000, then the bytes that apparently come from 0x00000000 onwards come
from UNKNOWN addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11505
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.3 Mixed-endian support in AArch32
G4.3 Mixed-endian support in AArch32

 Table G4-2 shows the endianness of explicit data accesses and translation table walks.

AArch32 state provides the following options for endianness support:

• All Exception levels support mixed-endianness:

— SCTLR(S/NS).EE, HSCTLR.EE, and PSTATE.E are RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:

— SCTLR(S/NS).EE and HSCTLR.EE are RES0. PSTATE.E is RW when in EL0 and RES0 when in EL1,
EL2, or EL3. SPSR.E is also RES0 when not returning to EL0.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:

— SCTLR(S/NS).EE and HSCTLR.EE are RES1. PSTATE.E is RW when in EL0 and RES1 when in EL1,
EL2, or EL3. SPSR.E is also RES1 when not returning to EL0.

• All Exception levels support only little-endianness:

— Each of SCTLR(S/NS).EE, HSCTLR.EE, PSTATE.E, and SPSR.E is RES0.

• All Exception levels support only big-endianness:

— Each of SCTLR(S/NS).EE, HSCTLR.EE, PSTATE.E, and SPSR.E is RES1.

If mixed endian support is implemented for an Exception level using AArch32, endianness is controlled by
PSTATE.E. For exception returns to AArch32 state, PSTATE.E is copied from SPSR_ELx.E. If the target Exception
level supports only little-endian accesses, SPSR_ELx.E is RES0. If the target Exception level supports only
big-endian accesses, SPSR_ELx.E is RES1.

Note

• When using AArch32, Arm deprecates PSTATE.E having a different value from the equivalent System
register EE bit when in EL1, EL2 or EL3. The use of the SETEND instruction is also deprecated.

• If the higher Exception levels are using AArch64, the corresponding registers are:

— SCTLR_EL1 for SCTLR(NS).

— SCTLR_EL2 for HSCTLR.

— SCTLR_EL3 for SCTLR(S).

The BigEndian() function determines whether the current Exception level and Execution state is using big-endian
data.

For more information about endianness in the Arm architecture, see Endian support.

Table G4-2 Endianness support

Exception level Explicit data accesses Stage 1 translation table walks Stage 2 translation table walks

EL0 PSTATE.E SCTLR(S/NS).EE HSCTLR.EE

EL1 PSTATE.E SCTLR(S/NS).EE HSCTLR.EE

EL2 PSTATE.E HSCTLR.EE n/a

EL3 PSTATE.E SCTLR(S).EE n/a
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11506
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4 AArch32 cache and branch predictor support

The following sections describe the support for caches and branch predictors in AArch32 state:

• General behavior of the caches.

• Cache identification.

• Cacheability, cache allocation hints, and cache transient hints.

• Enabling and disabling the caching of memory accesses in AArch32 state.

• Behavior of caches at reset.

• About cache maintenance in AArch32 state.

• AArch32 cache and branch predictor maintenance instructions.

• Execution and data prediction restriction System instructions.

• Cache lockdown.

• System level caches.

See also Chapter G5 The AArch32 Virtual Memory System Architecture, and in particular Caches in VMSAv8-32.

Note

• Branch predictors typically use a form of cache to hold branch target data. Therefore, they are included in
this section.

• In the instruction mnemonics, MVA is a synonym for VA.

G4.4.1 General behavior of the caches

When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of the
memory location is held in a cache still depends on many aspects of the implementation. The following
non-exhaustive list of factors might be involved:

• The size, line length, and associativity of the cache.

• The cache allocation algorithm.

• Activity by other elements of the system that can access the memory.

• Speculative instruction fetching algorithms.

• Speculative data fetching algorithms.

• Interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the architecture
cannot guarantee whether:

• A memory location present in the cache remains in the cache.

• A memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

• The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is
IMPLEMENTATION DEFINED, and lockdown might not be supported by:

— A particular implementation.

— Some memory attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11507
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an
unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not
assume that an unlocked item that remains in the cache remains dirty.

• A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a
locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

Note

For more information, see The interaction of cache lockdown with cache maintenance instructions.

• Any memory location that has a Normal Cacheable attribute at either the current Exception level or at a
higher Exception level can be allocated to a cache at any time.

• It is guaranteed that no memory location that does not have a Normal Cacheable attribute is allocated into the
cache.

• It is guaranteed that no memory location is allocated to the cache if it has a Normal Non-cacheable attribute
or any type of Device memory attribute in both:

— The translation regime at the current Exception level.

— The translation regime at any higher Exception level.

• For data accesses, any memory location with a Normal Inner Shareable or Normal Outer Shareable attribute
is guaranteed to be coherent with all Requesters in its Shareability domain.

• Any memory location is not guaranteed to remain incoherent with the rest of memory.

• The eviction of a cache entry from a cache level can overwrite memory that has been written by another
observer only if the entry contains a memory location that has been written to by an observer in the
Shareability domain of that memory location. The maximum size of the memory that can be overwritten is
called the Cache Write-back Granule. In some implementations the CTR identifies the Cache Write-back
Granule.

• The allocation of a memory location into a cache cannot cause the most recent value of that memory location
to become invisible to an observer, if it was previously visible to that observer.

Note

The Cacheability attribute of an address is determined by the applicable translation table entry for that address, as
modified by any applicable System register Cacheability controls, such as the SCTLR.{I, C} controls.

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of contiguous
address space, aligned to the size of the cache entry.

G4.4.2 Cache identification

The cache identification consists of a set of registers that describe the implemented caches that are affected by cache
maintenance instructions executed on the PE. This includes cache maintenance instructions that:

• Affect the entire cache, for example ICIALLUIS.

• Operate by VA, for example ICIMVAU.

• Operate by set/way, for example DCISW.

The cache identification registers are:

• A single Cache Type Register, CTR, that defines:

— The minimum line length of any of the instruction caches affected by the instruction cache
maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11508
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
— The minimum line length of any of the data or unified caches, affected by the data cache maintenance
instructions.

— The cache indexing and tagging policy of the Level 1 instruction cache.

Note

It is IMPLEMENTATION DEFINED whether caches beyond the PoC will be reported by this mechanism, and
because of the possible existence of system caches some caches before the PoC might not be reported. For
more information about system caches, see System level caches.

• A single Cache Level ID Register, CLIDR, that defines:

— The type of cache that is implemented and can be maintained using the architected cache maintenance
instructions that operate by set/way or operate on the entire cache at each cache level, up to the
maximum of seven levels.

— The Level of Unification Inner Shareable (LoUIS), Level of Coherence (LoC) and the Level of
Unification (LoU) for the caches. See Terms used in describing the cache maintenance instructions for
a definition of these terms.

— An optional ICB field to indicate the boundary between the caches use for caching Inner Cacheable
memory regions and those used only for caching Outer Cacheable regions.

• A single Cache Size Selection Register, CSSELR, that selects the cache level and sort of cache (Instruction,
Data/Unified/Tag) of the current Cache Size Identification Register.

• For each implemented cache that is identifiable by this mechanism, across all the levels of caching, a Cache
Size Identification Register, that defines:

— Whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate.

— The number of sets, associativity, and line length of the cache. See Terms used in describing the cache
maintenance instructions for a definition of these terms.

Note

From Armv8.3, it is possible to have multiple Cache Size Identification Registers. For more details, see
Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2.

To determine the cache topology associated with a PE:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction cache.
This register also provides the size of the smallest cache lines used for the instruction caches, and for the data
and unified caches. These values are used in cache maintenance instructions.

2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven Cache
type fields, for cache levels 1 to 7. Scanning these fields, starting from Level 1, identifies the instruction, data
or unified caches implemented at each level. This scan ends when it reaches a level at which no caches are
defined. The Cache Level ID Register also specifies the Level of Unification (LoU) and the Level of
Coherence (LoC) for the cache implementation.

3. For each cache identified at stage 2:

• Write to the Cache Size Selection Register to select the required cache. A cache is identified by its
level, and whether it is:

— An instruction cache.

— A data or unified cache.

• Read the Cache Size Identification Register to find details of the cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11509
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4.2.1 Possible formats of the Cache Size Identification Registers, CCSIDR and
CCSIDR2

From Armv8.3, two different formats are available for defining the number of sets and associativity of the currently
selected cache. For a definition of these terms, see Terms used in describing the cache maintenance instructions.

When FEAT_CCIDX is implemented:

• There are two Cache Size Identification Registers, CCSIDR and CCSIDR2.

• The length of the CCSIDR.Assoc field is 21 bits. This limits the associativity of the currently selected cache
to 221.

• The length of the CCSIDR2.NumSets field is 24 bits. This limits the number of sets in the currently selected
cache to 224.

This is the 64-bit format of the Cache Size Identification Register.

When FEAT_CCIDX is not implemented:

• There is a single Cache Size Identification Register, CCSIDR.

• The length of the CCSIDR.Assoc field is 10 bits. This limits the associativity of the currently selected cache
to 210.

• The length of the CCSIDR.NumSets field is 15 bits. This limits the number of sets in the currently selected
cache to 215.

This is the 32-bit format of the Cache Size Identification Register.

When one of these formats is implemented, it is implemented across all the levels of caching.

G4.4.3 Cacheability, cache allocation hints, and cache transient hints

Cacheability applies only to Normal memory, and is defined independently for Inner and Outer cache locations. All
types of Device memory are always treated as Non-cacheable.

As described in Memory types and attributes, the memory attributes include a Cacheability attribute that is one of:

• Non-cacheable.

• Write-Through cacheable.

• Write-Back cacheable.

Cacheability attributes other than Non-cacheable can be complemented by a cache allocation hint. This is an
indication to the memory system of whether allocating a value to a cache is likely to improve performance. In
addition, it is IMPLEMENTATION DEFINED whether a cache transient hint is supported, see Transient Cacheability
hint.

The cache allocation hints are assigned independently for read and write accesses, and therefore when the Transient
hint is supported the following cache allocation hints can be used:

For read accesses: Read-Allocate, Transient Read-Allocate, or No Read-Allocate.

For write accesses: Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Note

• A Cacheable location with both No Read-Allocate and No Write-Allocate hints is not the same as a
Non-cacheable location. A Non-cacheable location has coherency guarantees for all observers within the
system that do not apply for a location that is Cacheable, No Read-Allocate, No Write-Allocate.

• Implementations can use the cache allocation hints to limit cache pollution to a part of a cache, such as to a
subset of ways.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11510
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• For VMSAv8-32 translation table walks using the Long-descriptor translation table format, the appropriate
TCR.{IRGNn, ORGNn} fields define the memory attributes of the translation tables, including the
Cacheability. However, this assignment supports only a subset of the Cacheability attributes described in this
section.

The architecture does not require an implementation to make any use of cache allocation hints. This means an
implementation might not make any distinction between memory locations with attributes that differ only in their
cache allocation hint.

G4.4.3.1 Transient Cacheability hint

It is IMPLEMENTATION DEFINED whether a Transient hint is supported for the VMSAv8-32 translation scheme when
using the Long-descriptor translation table format. In an implementation that supports the Transient hint, the
Transient hint is a qualifier of the cache allocation hints, and indicates that the benefit of caching is for a relatively
short period. It indicates that it might be better to restrict allocation of transient entries, to avoid possibly casting-out
other, less transient, entries.

Note

The architecture does not specify what is meant by a relatively short period.

When using the Short-descriptor translation table format, VMSAv8-32 cannot support the Transient hint.

The description of the MAIR0, MAIR1, HMAIR0, and HMAIR1 registers includes the assignment of the Transient
attribute in an implementation that supports this option. In this assignment:

• The Transient hint is defined independently for Inner Cacheable and Outer Cacheable memory regions.

• A single Transient hint applies to both read and write accesses to a memory region.

G4.4.4 Enabling and disabling the caching of memory accesses in AArch32 state

Cacheability control fields can force all memory locations with the Normal memory type to be treated as
Non-cacheable, regardless of their assigned Cacheability attribute. Independent controls are provided for each stage
of address translation, with separate controls for:

• Data accesses. These controls also apply to accesses to the translation tables.

• Instruction accesses.

Note

These Cacheability controls replace the cache enable controls provided in previous versions of the Arm architecture.

In AArch32 state, the Cacheability control fields and their effects are as follows:

For the Non-secure PL1&0 translation regime

The Non-secure instance of SCTLR holds the EL1 controls that affect Cacheability:

• When the value of SCTLR.C is 0:

— All stage 1 translations for data accesses to Normal memory are Non-cacheable.

— All accesses to the PL1&0 stage 1 translation tables are Non-cacheable.

• When the value of SCTLR.I is 0:

— All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR2.CD is 1:

— All stage 2 translations for data accesses to Normal memory are Non-cacheable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11511
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
— All accesses to the PL1&0 stage 2 translation tables are Non-cacheable.

• When the value of HCR2.ID is 1:

— All stage 2 translations for instruction accesses to Normal memory are Non-cacheable.

• When the value of HCR.DC is 1, all Non-secure stage 1 translations and all accesses to the
Non-secure EL1&0 stage 1 translation tables, are treated as accesses to Normal
Non-shareable Inner Write-Back Cacheable Read-Allocate Write-Allocate, Outer
Write-Back Cacheable Read-Allocate Write-Allocate memory, regardless of the value of
SCTLR.C. This applies to translations for both data and instruction accesses.

In addition, when the value of SCTLR.M is 0, indicating that the stage 1 translations are disabled
for the translation regime, then if EL2 is using AArch32 and the value of HCR.DC is 0 or if EL2 is
using AArch64 and the value of HCR_EL2.DC is 0, then:

• If the value of SCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

• If the value of SCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer
Write-Through cacheable.

Note

• In Non-secure state, the stage 1 and stage 2 Cacheability attributes are combined as described
in Combining the Cacheability attribute.

• The Non-secure SCTLR.{C, I} and HCR.DC fields have no effect on the Secure PL1&0 and
EL2 translation regimes.

• The HCR2.{ID, CD} fields affect only stage 2 of the Non-secure PL1&0 translation regime.

• In Non-secure state, the PL1&0 translation regime can be described as the Non-secure
EL1&0 translation regime. This is consistent with the equivalent AArch64 descriptions.

• When FEAT_XS is implemented SCTLR.{C, I} and HCR2.{ID, CD} fields have no effect
on the value of the XS attribute.

For the Secure PL1&0 translation regime

The Secure instance of SCTLR holds the controls that determine Cacheability:

• When the value of SCTLR.C is 0:

— All data accesses to Normal memory using the Secure PL1&0 translation regime are
Non-cacheable.

— All accesses to the Secure PL1&0 translation tables are Non-cacheable.

• When the value of SCTLR.I is 0:

— All instruction accesses to Normal memory using the Secure PL1&0 translation
regime are Non-cacheable.

In addition, when the value of SCTLR.M is 0, indicating that stage 1 translations are disabled, then:

• If the value of SCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

• If the value of SCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer
Write-Through cacheable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11512
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

• The Secure SCTLR.{I, C, M} fields have no effect on the Non-secure PL1&0 and EL2
translation regimes.

• When FEAT_XS is implemented, the SCTLR.{I, C} fields have no effect on the value of the
XS attribute.

For the EL2 translation regime

• When the value of HSCTLR.C is 0:

— All data accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

— All accesses to the EL2 translation tables are Non-cacheable.

• When the value of HSCTLR.I is 0:

— All instruction accesses to Normal memory using the EL2 translation regime are
Non-cacheable.

In addition, when the value of HSCTLR.M is 0, indicating that stage 1 translations are disabled,
then:

• If the value of HSCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.

• If the value of HSCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the
translation regime are Outer Shareable, Inner Write-Through cacheable, Outer
Write-Through cacheable.

Note

• The HSCTLR.{I, C, M} fields have no effect on the PL1&0 and EL3 translation regimes.

• When FEAT_XS is implemented, the HSCTLR.{I, C} fields have no effect on the value of
the XS attribute.

The effect of the SCTLR.C or HSCTLR.C and HCR2.CD bits is reflected in the result of the address translation
instructions in the PAR.

Note

• The requirements in this section mean the architecturally required effects of SCTLR.I and HSCTLR.I are
limited to their effects on caching instruction accesses in unified caches.

• This specification can give rise to different Cacheability attributes between instruction and data accesses to
the same location. Where this occurs, the measures for mismatch memory attributes described in Mismatched
memory attributes must be followed to manage the corresponding loss of coherency.

G4.4.5 Behavior of caches at reset

The following rules apply to caches at reset:

• All caches reset to IMPLEMENTATION DEFINED states that might be UNKNOWN.

• The Cacheability control fields described in Enabling and disabling the caching of memory accesses in
AArch32 state reset to values that force all memory locations to be treated as Non-cacheable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11513
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

This applies only to the controls that apply to the Translation regime that is used by the Exception level, PE
mode, and Security state entered on reset.

• An implementation can require the use of a specific cache initialization routine to invalidate its storage array
before caching is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED,
and the routine must be documented clearly as part of the documentation of the device.

• If an implementation permits cache hits when the Cacheability control fields force all memory locations to
be treated as Non-cacheable then the cache initialization routine must:

— Provide a mechanism to ensure the correct initialization of the caches.

— Be documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory
locations to be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization
routine must avoid any possibility of running from an uninitialized cache. It is acceptable for an initialization
routine to require a fixed instruction sequence to be placed in a restricted range of memory.

• Arm recommends that whenever an invalidation routine is required, it is based on the cache maintenance
instructions.

Similar rules apply to:

• Branch predictor behavior, see Behavior of the branch predictors at reset.

• TLB behavior, see TLB behavior at reset.

G4.4.6 About cache maintenance in AArch32 state

The following sections give general information about cache maintenance:

• Terms used in describing the cache maintenance instructions.

• Abstraction of the cache hierarchy.

The following sections describe the AArch32 state cache maintenance instructions:

• AArch32 instruction cache maintenance instructions (IC*).

• AArch32 data cache maintenance instructions (DC*).

Note

Some descriptions of the cache maintenance instructions refer to the Cacheability of the address on which the
instruction operates. The Cacheability of an address is determined by the applicable translation table entry for that
address, as modified by any applicable System register Cacheability controls, such as the SCTLR.{I, C} controls.

G4.4.6.1 Terms used in describing the cache maintenance instructions

Cache maintenance instructions are defined to act on particular memory locations. Instructions can be defined:

• By the virtual address of the memory location to be maintained, referred to as operating by VA.

• By a mechanism that describes the location in the hardware of the cache, referred to as operating by set/way.

In addition, for instruction caches and branch predictors, there are instructions that invalidate all entries.

The following subsections define the terms used in the descriptions of the cache maintenance instructions:

• Terminology for cache maintenance instructions operating by set/way.

• Terminology for Clean, Invalidate, and Clean and Invalidate instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11514
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

There is no terminology specific to cache maintenance instructions that operate by VA. When all applicable stages
of translation are disabled, the VA used is identical to the PA. For more information about memory system behavior
when address translation is disabled, see The effects of disabling address translation stages on VMSAv8-32
behavior.

G4.4.6.1.1 Terminology for cache maintenance instructions operating by set/way

Cache maintenance instruction that operate by set/way refer to the particular structures in a cache. Three parameters
describe the location in a cache hierarchy that an instruction works on. These parameters are:

Level The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION DEFINED. The
cache levels that can be managed using the architected cache maintenance instructions that operate
by set/way can be determined from the CLIDR.

In the Arm architecture, the lower numbered cache levels are those closest to the PE. See Memory
hierarchy.

Set Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache level
to which an address can be assigned. Usually, the set number is an IMPLEMENTATION DEFINED
function of an address.

In the Arm architecture, sets are numbered from 0.

Way The associativity of a cache is the number of locations in a set to which a specific address can be
assigned. The way number specifies one of these locations.

In the Arm architecture, ways are numbered from 0.

Note

Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, Arm expects
that most portable software will use only the cache maintenance instructions by set/way as single steps in a routine
to perform maintenance on the entire cache.

G4.4.6.1.2 Terminology for Clean, Invalidate, and Clean and Invalidate instructions

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a PE that accesses a cache might not be visible to other observers that
can access memory. This can occur because new updates are still in the cache and are not visible yet to the
other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a PE that
accesses a cache. This can occur when the cache contains an old, or stale, copy of the memory location that
has been updated.

The Clean and Invalidate instructions address these two issues. The definitions of these instructions are:

Clean A cache clean instruction ensures that updates made by an observer that controls the cache are made
visible to other observers that can access memory at the point to which the instruction is performed.
Once the Clean has completed, the new memory values are guaranteed to be visible to the point to
which the instruction is performed, for example to the Point of Unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another
observer only if the entry contains a location that has been written to by an observer in the
Shareability domain of that memory location.

Invalidate A cache invalidate instruction ensures that updates made visible by observers that access memory
at the point to which the invalidate is defined, are made visible to an observer that controls the cache.
This might result in the loss of updates to the locations affected by the invalidate instruction that
have been written by observers that access the cache, if those updates have not been cleaned from
the cache since they were made.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11515
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
If the address of an entry on which the invalidate instruction operates is Normal, Non-cacheable or
any type of Device memory then an invalidate instruction also ensures that this address is not
present in the cache.

Note

Entries for addresses that are Normal Cacheable can be allocated to the cache at any time, and so
the cache invalidate instruction cannot ensure that the address is not present in a cache.

Clean and Invalidate

A cache clean and invalidate instruction behaves as the execution of a clean instruction followed
immediately by an invalidate instruction. Both instructions are performed to the same location.

The points to which a cache maintenance instruction can be defined differ depending on whether the instruction
operates by VA or by set/way:

• For instructions operating by set/way, the point is defined to be to the next level of caching. For the All
operations, the point is defined as the Point of Unification for each location held in the cache.

• For instruction operating by VA, two conceptual points are defined:

Point of Coherency (PoC)

The point at which all agents that can access memory are guaranteed to see the same copy of a
memory location for accesses of any memory type or Cacheability attribute. In many cases this
is effectively the main system memory, although the architecture does not prohibit the
implementation of caches beyond the PoC that have no effect on the coherency between memory
system agents.

Note

The presence of system caches can affect the determination of the point of coherency as described
in System level caches.

Point of Unification (PoU)

The PoU for a PE is the point by which the instruction and data caches and the translation table
walks of that PE are guaranteed to see the same copy of a memory location. In many cases, the
Point of Unification is the point in a uniprocessor memory system by which the instruction and
data caches and the translation table walks have merged.

The PoU for an Inner Shareable Shareability domain is the point by which the instruction and
data caches and the translation table walks of all the PEs in that Inner Shareable Shareability
domain are guaranteed to see the same copy of a memory location. Defining this point permits
self-modifying software to ensure future instruction fetches are associated with the modified
version of the software by using the standard correctness policy of:

1. Clean data cache entry by address.

2. Invalidate instruction cache entry by address.

The following fields in the CLIDR relate to these conceptual points:

LoC, Level of Coherence

This field defines the last level of cache that must be cleaned or invalidated when cleaning or
invalidating to the Point of Coherency. The LoC value is a cache level, so, for example, if LoC
contains the value 3:

• A clean to the Point of Coherency operation requires the level 1, level 2 and level 3 caches
to be cleaned.

• Level 4 cache is the first level that does not have to be maintained.

If the LoC field value is 0x0, this means that no levels of cache need to cleaned or invalidated
when cleaning or invalidating to the Point of Coherency.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11516
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
If the LoC field value is a nonzero value that corresponds to a level that is not implemented, this
indicates that all implemented caches are before the Point of Coherency.

LoUU, Level of Unification, uniprocessor

This field defines the last level of cache that must be cleaned or invalidated when cleaning or
invalidating to the Point of Unification for the PE. As with LoC, the LoUU value is a cache level.

If the LoUU field value is 0x0, this means that no levels of cache need to cleaned or invalidated
when cleaning or invalidating to the Point of Unification.

If the LoUU field value is a nonzero value that corresponds to a level that is not implemented,
this indicates that all implemented caches are before the Point of Unification.

LoUIS, Level of Unification, Inner Shareable

In any implementation:

• This field defines the last level of cache that must be cleaned or invalidated when cleaning
or invalidating to the Point of Unification for the Inner Shareable Shareability domain. As
with LoC, the LoUIS value is a cache level.

• If the LoUIS field value is 0x0, this means that no levels of cache need to cleaned or
invalidated when cleaning or invalidating to the Point of Unification for the Inner
Shareable Shareability domain.

• If the LoUIS field value is a nonzero value that corresponds to a level that is not
implemented, this indicates that all implemented caches are before the Point of
Unification.

For more information, see the CLIDR description.

G4.4.6.2 Abstraction of the cache hierarchy

The following subsections describe the abstraction of the cache hierarchy:

• Cache maintenance instructions that operate by VA.

• Cache maintenance instructions that operate by set/way.

G4.4.6.2.1 Cache maintenance instructions that operate by VA

The VA-based cache maintenance instructions are described as operating by VA. Each of these instructions is always
qualified as being either:

• Performed to the Point of Coherency.

• Performed to the Point of Unification.

See Terms used in describing the cache maintenance instructions for definitions of Point of Coherency and Point of
Unification, and more information about possible meanings of VA.

AArch32 cache and branch predictor maintenance instructions lists the VA-based maintenance instructions.

The CTR holds minimum line length values for:

• The instruction caches.

• The data and unified caches.

These values support efficient invalidation of a range of addresses, because this value is the most efficient address
stride to use to apply a sequence of VA-based maintenance instructions to a range of VAs.

For the Invalidate data or unified cache line by VA instruction, the Cache Write-back Granule field of the CTR
defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache
Write-back Granule is in addition to its defining the maximum size that can be written back.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11517
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4.6.2.2 Cache maintenance instructions that operate by set/way

AArch32 cache and branch predictor maintenance instructions lists the set/way-based maintenance instructions.
Some encodings of these instructions include a required field that specifies the cache level for the instruction:

• A clean instruction cleans from the level of cache specified through to at least the next level of cache, moving
further from the PE.

• An invalidate instruction invalidates only at the level specified.

G4.4.7 AArch32 cache and branch predictor maintenance instructions

The instruction and data cache maintenance instructions have the same functionality in AArch32 state and in
AArch64 state. Table G4-3 shows the AArch32 System instructions. Instructions that take an argument include Rt
in the instruction description.

If FEAT_CLRBHB is not implemented, then the architecture does not define any branch predictor maintenance
instructions for AArch32 state.

When FEAT_CLRBHB is implemented, the CLRBHB instruction is available. When the CLRBHB instruction is executed,
the branch history is cleared for the current context to the extent that branch history information created before the
CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control the execution of
any code in the current context appearing in program order after the instruction.

Note

• In Table G4-3 the Point of Unification is the Point of Unification of the PE executing the cache maintenance
instruction.

• In AArch32 state, all of the maintenance instructions are available from EL1 or higher.

• In AArch64 state, branch predictors are always invisible to software, and therefore AArch64 state does not
provide any branch predictor maintenance instructions.

Table G4-3 AArch32 System instructions for cache maintenance

Register Instruction

Instruction cache maintenance instructions

ICIALLUIS Invalidate all to Point of Unification, Inner Shareable

ICIALLU Invalidate all to Point of Unification

ICIMVAU, Rt Invalidate by virtual address to Point of Unification

Data cache maintenance instructions

DCIMVAC, Rt Invalidate by virtual address to Point of Coherency

DCISW, Rt Invalidate by set/way

DCCMVAC, Rt Clean by virtual address to Point of Coherency

DCCSW, Rt Clean by set/way

DCCMVAU, Rt Clean by virtual address to Point of Unification

DCCIMVAC, Rt Clean and invalidate by virtual address to Point of Coherency

DCCISW, Rt Clean and invalidate by set/way
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11518
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
A DSB instruction intended to ensure the completion of cache or branch predictor maintenance instructions must have
an access type of both loads and stores.

In an implementation where the branch predictors are architecturally invisible, the BPIMVA, BPIALLIS, and
BPIALL instructions can execute as NOPs.

The following subsections give more information about these instructions:

• AArch32 instruction cache maintenance instructions (IC*).

• AArch32 data cache maintenance instructions (DC*).

• Branch predictors.

• General requirements for the scope of cache and branch predictor maintenance instructions.

• Effects of instructions that operate by VA to the Point of Coherency.

• Effects of instructions that operate by VA but not to the Point of Coherency.

• Effects of All and set/way maintenance instructions.

• Effects of virtualization and security on the AArch32 cache maintenance instructions.

• Boundary conditions for cache maintenance instructions.

• Ordering of cache and branch predictor maintenance instructions.

• Performing cache maintenance instructions.

G4.4.7.1 AArch32 instruction cache maintenance instructions (IC*)

Where an address argument for these instructions is required, it takes the form of a 32-bit register that holds the
virtual address argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, the current system ASID.

• The current Security state.

• Whether the instruction was performed from Hyp mode, or at EL1.

• For an instruction executed at EL1, the VMID.

That VA to PA translation might fault. However for an instruction cache maintenance instruction that operates by
VA:

• It is IMPLEMENTATION DEFINED whether the operation can generate a Data Abort exception for a Translation
fault or an Access flag fault.

Branch prediction maintenance instructions

BPIMVA, Rt Invalidate the virtual address from the branch predictors

BPIALLIS, Rt Invalidate all entries from branch predictors, Inner Shareable

BPIALL, Rt Invalidate all entries from branch predictors

CLRBHB Clear branch history

Table G4-3 AArch32 System instructions for cache maintenance (continued)

Register Instruction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11519
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• The operation cannot generate a Data Abort exception for a Domain fault or a Permission fault, except for
the Permission fault case on a Stage 2 fault on a stage 1 translation table walk.

For more information about the possible faults on an instruction that operates by VA, see Types of MMU faults.

An instruction cache maintenance instruction can complete at any time after it is executed, but is only guaranteed
to be complete, and its effects visible to other observers, following a DSB instruction executed by the PE that executed
the cache maintenance instruction. See also the completion requirements for cache and branch predictor
maintenance instructions in Completion and endpoint ordering.

See also Ordering of cache and branch predictor maintenance instructions.

G4.4.7.2 AArch32 data cache maintenance instructions (DC*)

Data cache maintenance instructions that take a set/way/level argument take a 32-bit register.

If a data cache maintenance by set/way instruction specifies a set, way, or level argument that is larger than the value
supported by the implementation then the instruction is CONSTRAINED UNPREDICTABLE, see Out of range values of
the Set/Way/Index fields in cache maintenance instructions or the instruction description.

DCISW instructions executed at EL1 perform a clean and invalidate, meaning it performs the same maintenance as
a DCCISW instruction, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• Either:

— EL2 is using AArch32 and the value of HCR.SWIO is 1.

— EL2 is using AArch64 and the value of HCR_EL2.SWIO is 1.

Where an address argument for these instructions is required, it takes the form of a 32-bit register that holds the
virtual address argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

• For an instruction executed at EL1, the current system ASID.

• The current Security state.

• Whether the instruction was performed from Hyp mode, or from EL1.

• For an instruction executed from EL1, the VMID.

That VA to PA translation might fault. However a data or unified cache maintenance instruction that operates by VA
cannot generate a Data Abort exception for a Domain fault, and cannot generate a Data Abort exception for a
Permission fault, except for the Permission fault case on a Stage 2 fault on a stage 1 translation table walk.

For more information about the possible faults on an instruction that operates by VA, see Types of MMU faults.

DCIMVAC and DCISW instructions executed at EL1 perform a clean and invalidate, meaning they perform the
same maintenance as a DCCIMVAC or DCCISW instruction respectively, if all of the following apply:

• EL2 is implemented and enabled in the current Security state.

• PL1&0 stage two address translation is enabled, meaning either:

— EL2 is using AArch32 and the value of HCR.VM is 1.

— EL2 is using AArch64 and the value of HCR_EL2.VM is 1.

If a memory fault that sets FAR for the translation regime applicable for the cache maintenance instruction is
generated from a data cache maintenance instruction, the FAR holds the address specified in the register argument
of the instruction.

See also Ordering of cache and branch predictor maintenance instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11520
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4.7.3 Branch predictors

In AArch32 state it is IMPLEMENTATION DEFINED whether branch prediction is architecturally visible. This means
that under some circumstances software must perform branch predictor maintenance to avoid incorrect execution
caused by out-of-date entries in the branch predictor. For example, to ensure correct operation it might be necessary
to invalidate branch predictor entries on a change to instruction memory, or a change of instruction address mapping.
For more information, see Specific requirements for branch predictor maintenance instructions.

In an implementation where the branch predictors are architecturally invisible, the branch predictor maintenance
instructions can execute as NOPs.

An invalidate all operation on the branch predictor ensures that any location held in the branch predictor has no
functional effect on execution. An invalidate branch predictor by VA instruction operates on the address of the
branch instruction, but can affect other branch predictor entries.

Note

The architecture does not make visible the range of addresses in a branch predictor to which the invalidate operation
applies. This means the address used in the invalidate by VA operation must be the address of the branch to be
invalidated.

If branch prediction is architecturally visible, an instruction cache invalidate all operation also invalidates all branch
predictors.

See also Ordering of cache and branch predictor maintenance instructions.

G4.4.7.3.1 Specific requirements for branch predictor maintenance instructions

If, for a given translation regime and a given ASID and VMID as appropriate, the instructions at any virtual address
change, then branch predictor maintenance instructions must be performed to invalidate entries in the branch
predictor, to ensure that the change is visible to subsequent execution. This maintenance is required when writing
new values to instruction locations. It can also be required as a result of any of the following situations that change
the translation of a virtual address to a physical address, if, as a result of the change to the translation, the instructions
at the virtual addresses change:

• For any translation regime other than the Non-secure PL1&0 translation regime, enabling or disabling stage 1
translations.

• For the Non-secure PL1&0 translation regime:

— When stage 2 translations are enabled, enabling or disabling stage 1 translations unless accompanied
by a change of VMID.

— When stage 2 translations are disabled, enabling or disabling stage 1 translations.

— Enabling or disabling stage 2 translations.

• Writing new mappings to the translation tables.

• Any change to the TTBR0, TTBR1, or TTBCR registers, unless:

— For a change to the Secure PL1&0 translation regime, the change is accompanied by a change to the
ASID.

— For a change to the stage 1 translations of the Non-secure PL1&0 translation regime, the change is
accompanied by a change to the ASID or a change to the VMID.

• Any change to the VTTBR or VTCR registers, unless accompanied by a change to the VMID.

Note

Invalidation is not required if the changes to the translations are such that the instructions associated with the
non-faulting translations of a virtual address, for a given translation regime and a given ASID and VMID, as
appropriate, remain unchanged throughout the sequence of changes to the translations. Examples of translation
changes to which this applies are:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11521
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• Changing a valid translation to a translation that generates an MMU fault.

• Changing a translation that generates an MMU fault to a valid translation.

Failure to invalidate entries might give CONSTRAINED UNPREDICTABLE results, caused by the execution of old
branches. For more information, see Ordering of cache and branch predictor maintenance instructions.

Note

• There is no requirement to use the branch predictor maintenance operations to invalidate the branch predictor
after:

— Changing the ContextID or VMID.

— A cache maintenance instruction that is identified as also flushing the branch predictors, see AArch32
cache and branch predictor maintenance instructions.

Cache maintenance system instructions shows the branch predictor maintenance operations in a VMSA
implementation.

G4.4.7.3.2 Behavior of the branch predictors at reset

In AArch32 state:

• If branch predictors are not architecturally invisible:

— The branch predictors reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.

— The branch predictors are disabled at reset.

• An implementation can require the use of a specific branch predictor initialization routine to invalidate the
branch predictor storage array before it is enabled. The exact form of any required initialization routine is
IMPLEMENTATION DEFINED, but the routine must be documented clearly as part of the documentation of the
device.

• Arm recommends that whenever an invalidation routine is required, it is based on the AArch32 branch
predictor maintenance operations.

Similar rules apply:

• To cache behavior, see Behavior of caches at reset.

• To TLB behavior, see TLB behavior at reset.

G4.4.7.4 General requirements for the scope of cache and branch predictor
maintenance instructions

The specification of the cache maintenance and branch predictor instructions describes what each instruction is
guaranteed to do in a system. It does not limit other behaviors that might occur, provided they are consistent with
the requirements described in General behavior of the caches, Behavior of caches at reset, and Preloading caches.

This means that as a side-effect of a cache maintenance instruction:

• Any location in the cache might be cleaned.

• Any unlocked location in the cache might be cleaned and invalidated.

As a side-effect of a branch predictor maintenance instruction, any entry in the branch predictor might be
invalidated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11522
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Note

Arm recommends that, for best performance, such side-effects are kept to a minimum. Arm strongly recommends
that the side-effects of operations performed in Non-secure state do not have a significant performance impact on
execution in Secure state.

G4.4.7.5 Effects of instructions that operate by VA to the Point of Coherency

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, these instructions must affect the caches
of other PEs in the Shareability domain described by the Shareability attributes of the VA supplied with the
instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must
affect the caches of all PEs in the Outer Shareable Shareability domain of the PE on which the instruction is
operating.

In all cases, for any affected PE, these instructions affect all data and unified caches to the Point of Coherency.

G4.4.7.6 Effects of instructions that operate by VA but not to the Point of Coherency

The following instruction operate by VA but not to the Point of Coherency:

• Clean data or unified cache line by MVA to the Point of Unification, DCCMVAU.

• Invalidate instruction cache line by MVA to Point of Unification, ICIMVAU.

• Invalidate by MVA from branch predictors, BPIMVA.

For these instructions, Table G4-5 shows how, for a VA in a Normal or Device memory location, the Shareability
attribute of the VA determines the minimum set of PEs affected, and the point to which the instruction must be
effective.

Note

The set of PEs guaranteed to be affected is never greater than the PEs in the Inner Shareable Shareability domain
containing the PE executing the instruction.

Table G4-4 PEs affected by cache maintenance instructions to the Point of Coherency

Shareability PEs affected Effective to

Non-shareable The PE performing the operation The Point of Coherency of the entire system

Inner Shareable All PEs in the same Inner Shareable Shareability domain as the
PE performing the operation

The Point of Coherency of the entire system

Outer Shareable All PEs in the same Outer Shareable Shareability domain as the
PE performing the operation

The Point of Coherency of the entire system

Table G4-5 PEs affected by cache maintenance instructions to the Point of Unification

Shareability PEs affected Effective to

Non-shareable The PE executing the instruction The Point of Unification of instruction cache fills, data cache fills and
write-backs, and translation table walks, on the PE executing the instruction

Inner Shareable or
Outer Shareable

All PEs in the same Inner
Shareable Shareability domain as
the PE executing the instruction

The Point of Unification of instruction cache fills, data cache fills and
write-backs, and translation table walks, of all PEs in the same Inner
Shareable Shareability domain as the PE executing the instruction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11523
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4.7.7 Effects of All and set/way maintenance instructions

The ICIALLU, BPIALL and DC* set/way instructions apply only to the caches and branch predictors of the PE that
performs the instruction. If the branch predictors are architecturally-visible, ICIALLU also performs a BPIALL
operation.

The ICIALLUIS and BPIALLIS instructions can affect the caches and branch predictors of all PEs in the same Inner
Shareable Shareability domain as the PE that performs the instruction. If the branch predictors are
architecturally-visible, ICIALLUIS also performs a BPIALLIS operation. These instructions have an effect to the
Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, of all
PEs in the same Inner Shareable Shareability domain.

Note

The possible presence of system caches, as described in System level caches, means architecture does not guarantee
that all levels of cache can be maintained using set/way instructions.

G4.4.7.8 Effects of virtualization and security on the AArch32 cache maintenance
instructions

Each Security state has its own physical address space, and therefore cache entries are associated with physical
address space. In addition, cache maintenance and branch predictor instructions performed in Non-secure state have
to take account of:

• Whether the instruction was performed at EL1 or at EL2.

• For instructions that operate by VA, the current VMID.

Table G4-6 shows the effects of virtualization and security on these maintenance instructions.

Table G4-6 Effects of virtualization and security on the AArch32 cache maintenance instructions

Cache maintenance instructions Specified entry

Data or unified cache maintenance instructions

Invalidate, Clean, or Clean and Invalidate
by VA: DCIMVAC, DCCMVAC,
DCCMVAU, DCCIMVAC

All lines that hold the PA that, in the current translation regime, are mapped to by the
combination of all of:

• The specified VA.

• For an instruction executed at EL1, the current ASID if the location is mapped to
by a non-global page.

• For a Non-secure instruction executed at EL1, the current VMIDa.

• For a Non-secure instruction executed at EL0, when EL2 is using AArch32 or
when EL2 is using AArch64 and HCR_EL2.{E2H, TGE} is not {1,1}, the
current VMIDa.

• For a Secure instruction executed at EL1, when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, the current VMIDa.

• For a Secure instruction executed at EL0, when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, and HCR_EL2.{E2H, TGE} is not {1,1}, the current
VMIDa.

Invalidate, Clean, or Clean and Invalidate
by set/way: DCISW, DCCSW, DCCISW

For a Non-secure instruction, the line specified by set/way provided that the entry comes
from the Non-secure PA space.
For a Secure instruction, the line specified by set/way regardless of the PA space that the
entry has come from.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11524
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Instruction cache maintenance instructions

Invalidate by VA: ICIMVAU All lines corresponding to the specified VAb in the current translation regime and:

• For an instruction executed at EL1 or EL0, the current ASID.

• For a Non-secure instruction executed at EL1 or EL0, the current VMIDa.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, the current VMIDa.

• For a Secure instruction executed at EL0 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, and HCR_EL2.{E2H, TGE} is not {1,1}, the current

Invalidate All: ICIALLU, ICIALLUIS Can invalidate any unlocked entry in the instruction cache, and are required to
invalidate:

• For a Non-secure instruction executed at EL1, all instruction cache lines
containing Non-secure entries associated with the current VMID.

• For a Non-secure instruction executed at EL2, all instruction lines containing
Non-secure entries.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, all instruction cache lines containing entries associated
with the current VMID.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and the
Effective value of SCR_EL3.EEL2 is 0, all instruction cache lines.

• For a Secure instruction executed at EL3 all instruction cache lines.

Branch predictor instructionsc

Invalidate by VA: BPIMVA All lines that, in the current translation regime, are mapped to by the combination of all
of:

• The specified VA.

• For an instruction executed at EL1 or EL0, the current ASID.

• For a Non-secure instruction executed at EL1 or EL0, the current VMIDa.

• For a Secure instruction executed at EL1, when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, the current VMIDa.

• For a Secure instruction executed at EL0, when EL3 is using AArch64,
SCR_EL3.EEL2 is 1, and HCR_EL2.{E2H, TGE} is not {1,1}, the current
VMIDa.

Invalidate all: BPIALL, BPIALLIS Can invalidate any unlocked entry in the branch predictor, and are required to invalidate:

• For a Non-secure instruction executed at EL1, all lines containing Non-secure
entries associated with the current VMID.

• For a Non-secure instruction executed at EL2, all lines containing Non-secure
entries.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and
SCR_EL3.EEL2 is 1, all lines containing entries associated with the current
VMID.

• For a Secure instruction executed at EL1 when EL3 is using AArch64 and the
Effective value of SCR_EL3.EEL2 is 0, all lines.

• For a Secure instruction executed at EL3, all lines.

a. Dependencies on the VMID apply even when either EL2 is using AArch32 and the value of HCR.VM is 0 or EL2 is using AArch64 when
enabled for the current Security state, and the value of HCR_EL2.VM is 0. If the PE resets into an Exception level that is using AArch32,
VTTBR.VMID resets to zero, meaning there is a valid VMID from reset. However, if the PE resets into an Exception level that is using
AArch64, VTTBR_EL2.VMID resets to a value that is architecturally UNKNOWN, and the VTTBR_EL2.VMID field must be set to a
known value, that might be zero, as part of the PE initialization sequence.

Table G4-6 Effects of virtualization and security on the AArch32 cache maintenance instructions (continued)

Cache maintenance instructions Specified entry
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11525
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
For locked entries and entries that might be locked, the behavior of cache maintenance instructions described in The
interaction of cache lockdown with cache maintenance instructions applies.

With an implementation that generates aborts if entries are locked or might be locked in the cache, when the use of
lockdown aborts is enabled, these aborts can occur on any cache maintenance instructions.

In an implementation that includes EL2:

• The architecture does not require cache cleaning when switching between virtual machines. Cache
invalidation by set/way must not present an opportunity for one virtual machine to corrupt state associated
with a second virtual machine. To ensure this requirement is met, EL1 invalidate by set/way instructions
executed in at EL1 when HCR_EL2.VM or HCR.VM is 1 and EL2 is enabled can, instead, perform a clean
and invalidate by set/way.

• The AArch32 Data cache invalidate instructions DCIMVAC and DCISW perform a cache clean as well as a
cache invalidate, meaning DCIMVAC performs the same invalidation as a DCCIMVAC instruction, and
DCISW performs the same invalidation as a DCCISW instruction, if both of the following apply:

— EL2 is using AArch32, the value of HCR.VM is 1, and the instruction is executed at Non-secure EL1.

— EL2 is using AArch64, the value of HCR_EL2.VM is 1, EL2 is enabled, and the instruction is
executed at EL1.

• The AArch32 Data cache invalidate by set/way instruction DCISW performs a cache clean as well as a cache
invalidate, meaning it performs the same invalidation as a DCCISW instruction, if either of the following
apply:

— EL2 is using AArch32, the value of HCR.SWIO is 1, and the instruction is executed at Non-secure
EL1.

— EL2 is using AArch64, the value of HCR_EL2.SWIO is 1, EL2 is enabled, and the instruction is
executed at EL1.

• TLB and instruction cache invalidate instructions are broadcast across the Inner Shareable domain when
either:

— EL2 is using AArch32, the value of HCR.FB is 1, and execution is at Non-secure EL1.

— EL2 is using AArch64, the value of HCR_EL2.FWB is 1, EL2 is enabled, and the instruction is
executed at EL1.

When EL1 is using AArch32, this applies to the TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL,
TLBIMVAAL, and ICIALLU instructions. This means the instruction performs the invalidation that would
be performed by the corresponding Inner Shareable instruction, for example ICIALLU performs the
invalidation that would be performed by ICIALLUIS, and BPIALL performs the invalidation that would be
performed by BPIALLIS.

For more information about the cache maintenance instructions, see About cache maintenance in AArch32 state,
AArch32 cache and branch predictor maintenance instructions, and Chapter G5 The AArch32 Virtual Memory
System Architecture.

b. The type of instruction cache used affects the interpretation of the specified entries in this table such that:
� For a PIPT instruction cache, the cache maintenance applies to all entries whose physical address corresponds to the specified address.
� For a VIPT instruction cache, the cache maintenance applies to entries whose virtual index and physical tag corresponds to the specified
address.

For information of types of instruction cache, see Instruction caches.

c. In an implementation where the branch predictors are architecturally invisible, these instructions can execute as NOPs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11526
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4.7.9 Boundary conditions for cache maintenance instructions

Cache maintenance instructions operate on the caches regardless of whether the System register Cacheability
controls force all memory accesses to be Non-cacheable.

For VA-based cache maintenance instructions, the instructions operate on the caches regardless of the memory type
and Cacheability attributes marked for the memory address in the VMSA translation table entries. This means that
the effects of the cache maintenance instructions can apply regardless of:

• Whether the address accessed:

— Is Normal memory or Device memory.

— Has the Cacheable attribute or the Non-cacheable attribute.

• Any applicable domain control of the address accessed.

• The access permissions for the address accessed, other than the effect of the stage two write permission on
data or unified cache invalidation instructions.

G4.4.7.10 Ordering of cache and branch predictor maintenance instructions

The following rules describe the effect of the memory order model on the cache and branch predictor maintenance
instructions:

• All cache and branch predictor maintenance instructions that do not specify an address execute, relative to
each other, in program order.

All cache and branch predictor instructions that specify an address:

— Execute in program order relative to all cache and branch predictor operations that do not specify an
address.

— Execute in program order relative to all cache and branch predictor operations that specify the same
address.

— Can execute in any order relative to cache and branch predictor operations that specify a different
address.

• Where a cache maintenance or branch predictor instruction appears in program order before a change to the
translation tables, the architecture guarantees that the cache or branch predictor maintenance instruction uses
the translations that were visible before the change to the translation tables.

• Where a change of the translation tables appears in program order before a cache maintenance or branch
predictor instruction, software must execute the sequence outlined in Ordering and completion of TLB
maintenance instructions before performing the cache or branch predictor maintenance instruction, to ensure
that the maintenance operation uses the new translations.

• A DMB instruction causes the effect of all data or unified cache maintenance instructions appearing in program
order before the DMB to be visible to all explicit memory read and write effects appearing in program order
after the DMB.

Also, a DMB instruction ensures that the effects of any data or unified cache maintenance instruction appearing
in program order before the DMB are observable by any observer in the same required Shareability domain
before any data or unified cache maintenance or explicit memory operations appearing in program order after
the DMB are observed by the same observer. Completion of the DMB does not guarantee the visibility of all data
to other observers. For example, all data might not be visible to a translation table walk, or to instruction
fetches.

• A DSB is required to guarantee the completion of all cache maintenance instruction that appear in program
order before the DSB instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11527
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• A Context Synchronization event is required to guarantee the effects of any branch predictor maintenance
operation. This means a Context Synchronization event causes the effect of all completed branch predictor
maintenance operations appearing in program order before the Context Synchronization event to be visible to
all instructions after the Context Synchronization event.

This means that, if a branch instruction appears after an invalidate branch predictor operation and before any
Context Synchronization event, it is CONSTRAINED UNPREDICTABLE whether the branch instruction is affected
by the invalidate. Software must avoid this ordering of instructions, because it might cause CONSTRAINED
UNPREDICTABLE behavior.

• Any data or unified cache maintenance instruction by VA must be executed in program order relative to any
explicit memory read or write effect on the same PE to an address covered by the VA of the cache instruction
if that load or store is to Normal Cacheable memory. The order of memory accesses that result from the cache
maintenance instruction, relative to any other memory accesses to Normal Cacheable memory, are subject to
the memory ordering rules. For more information, see Definition of the memory model.

Any data or unified cache maintenance instruction by VA can be executed in any order relative to any explicit
memory read or write effect on the same PE to an address covered by the VA of the cache maintenance
instruction if that load or store is not to Normal Cacheable memory.

• There is no restriction on the ordering of data or unified cache maintenance instruction by VA relative to any
explicit memory read or write effect on the same PE where the address of the explicit memory read or write
effect is not covered by the VA of the cache instruction. Where the ordering must be restricted, a DMB
instruction must be inserted to enforce ordering.

• There is no restriction on the ordering of a data or unified cache maintenance instruction by set/way relative
to any explicit memory read or write effect on the same PE. Where the ordering must be restricted, a DMB
instruction must be inserted to enforce ordering.

• Software must execute a Context Synchronization event after the completion of an instruction cache
maintenance instruction, to guarantee that the effect of the maintenance instruction is visible to any
instruction fetch.

A DSB instruction intended to ensure the completion of cache maintenance instructions or branch predictor
instructions must have an access type of both loads and stores.

See also the completion requirements for cache and branch predictor maintenance instructions in Completion and
endpoint ordering.

The scope of instruction cache maintenance depends on the type of the instruction cache. For more information, see
Instruction caches.

Example G4-1 Cache cleaning operations for self-modifying code

The sequence of cache cleaning operations for a line of self-modifying code on a uniprocessor system is:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first line
; instead of STR for a 16-bit instruction.
 STR Rt, [Rn]
 DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
 DSB ; Ensure visibility of the data cleaned from cache
 ICIMVAU Rn ; Invalidate instruction cache by MVA to PoU
 BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
 DSB ; Ensure completion of the invalidations
 ISB ; Synchronize the fetched instruction stream
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11528
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
G4.4.7.11 Performing cache maintenance instructions

To ensure all cache lines in a block of address space are maintained through all levels of cache Arm strongly
recommends that software:

• For data or unified cache maintenance, uses the CTR.DMinLine value to determine the loop increment size
for a loop of data cache maintenance by VA instructions.

• For instruction cache maintenance, uses the CTR.IMinLine value to determine the loop increment size for a
loop of instruction cache maintenance by VA instructions.

G4.4.7.11.1 Example code for cache maintenance instructions

The cache maintenance instructions by set/way can be used to clean or invalidate, or both, the entirety of one or
more levels of cache attached to a PE. However, unless all PEs attached to the caches regard all memory locations
as Non-cacheable, it is not possible to prevent locations being allocated into the cache during such a sequence of
the cache maintenance instructions.

Note

Because the set/way instructions operate only locally, there is no guarantee of the atomicity of cache maintenance
between different PEs, even if those different PEs are each executing the same cache maintenance instructions at
the same time. Because any cacheable line can be allocated into the cache at any time, it is possible for a cache line
to migrate from an entry in the cache of one PE to the cache of a different PE in a way that means the cache line is
not affected by set/way based cache maintenance. Therefore, Arm strongly discourages the use of set/way
instructions to manage coherency in coherent systems. The expected use of the cache maintenance instructions that
operate by set/way is limited to the cache maintenance associated with the powerdown and powerup of caches, if
this is required by the implementation.

The limitations of cache maintenance by set/way mean maintenance by set/way does not happen on multiple PEs,
and cannot be made to happen atomically for each address on each PE. Therefore in multiprocessor or multithreaded
systems, the use of cache maintenance by set/way to clean, or clean and invalidate, the entire cache for coherency
management with very large buffers or with buffers with unknown address can fail to provide the expected
coherency results because of speculation by other PEs, or possibly by other threads. The only way that these
instructions can be used in this way is to first ensure that all PEs that might cause speculative accesses to caches that
need to be maintained are not capable of generating speculative accesses. This can be achieved by ensuring that
those PEs have no memory locations with a Normal Cacheable attribute. Such an approach can have very large
system performance effects, and Arm advises implementers to use hardware coherency mechanisms in systems
where this will be an issue.

System level caches refers to other limitations of cache maintenance by set/way.

The following example code for cleaning a data or unified cache to the Point of Coherency illustrates a generic
mechanism for cleaning the entire data or unified cache to the Point of Coherency. It assumes the current Cache Size
Identification Register is in 32-bit format. For more information, see Possible formats of the Cache Size
Identification Registers, CCSIDR and CCSIDR2.

 MRC p15, 1, R0, c0, c0, 1 ; Read CLIDR into R0
 ANDS R3, R0, #0x07000000
 MOV R3, R3, LSR #23 ; Cache level value (naturally aligned)
 BEQ Finished
 MOV R10, #0
Loop1
 ADD R2, R10, R10, LSR #1 ; Work out 3 x cache level
 MOV R1, R0, LSR R2 ; bottom 3 bits are the Cache type for this level
 AND R1, R1, #7 ; get those 3 bits alone
 CMP R1, #2
 BLT Skip ; no cache or only instruction cache at this level
 MCR p15, 2, R10, c0, c0, 0 ; write CSSELR from R10
 ISB ; ISB to sync the change to the CCSIDR
 MRC p15, 1, R1, c0, c0, 0 ; read current CCSIDR to R1
 AND R2, R1, #7 ; extract the line length field
 ADD R2, R2, #4 ; add 4 for the line length offset (log2 16 bytes)
 MOV R4, #0x3FF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11529
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
 ANDS R4, R4, R1, LSR #3 ; R4 is the max number on the way size (right aligned)
 CLZ R5, R4 ; R5 is the bit position of the way size increment
 MOV R9, R4 ; R9 working copy of the max way size (right aligned)
Loop2
 MOV R7, #0x00007FFF
 ANDS R7, R7, R1, LSR #13 ; R7 is the max number of the index size (right aligned)
Loop3
 ORR R11, R10, R9, LSL R5 ; factor in the way number and cache number into R11
 ORR R11, R11, R7, LSL R2 ; factor in the index number
 MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
 SUBS R7, R7, #1 ; decrement the index
 BGE Loop3
 SUBS R9, R9, #1 ; decrement the way number
 BGE Loop2
Skip
 ADD R10, R10, #2 ; increment the cache number
 CMP R3, R10
 DSB ; ensure completion of previous cache maintenance instruction
 BGT Loop1
Finished

Similar approaches can be used for all cache maintenance instructions.

G4.4.8 Execution and data prediction restriction System instructions

When FEAT_SPECRES is implemented, either alone or alongside FEAT_SPECRES2, the System instructions for
prediction restriction listed in Table G4-7 prevent predictions based on information gathered from earlier execution
within a particular execution context (CTX), from affecting the later speculative execution within that CTX, to the
extent that the speculation execution is observable through side-channels.

The prediction restriction System instructions being used by a particular CTX apply to:

• All control flow prediction resources that predict execution addresses.

• Data value prediction.

• Cache allocation prediction.

For these System instructions, the CTX is defined by:

• The Security state.

• The Exception level.

• When executing at EL1, the VMID.

• When executing at EL0 when using the PL1&0 translation regime, the ASID and VMID.

Note

• The data value prediction applies to all prediction resources that use some form of training to speculate data
values as part of an execution.

Table G4-7 Prediction restriction System instructions

Register Instruction

FEAT_SPECRES CFPRCTX Control Flow Prediction Restriction by Context

CPPRCTX Cache Prefetch Prediction Restriction by Context

DVPRCTX Data Value Prediction Restriction by Context

FEAT_SPECRES2 COSPRCTX Clear Other Speculative Prediction Restriction by
Context
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11530
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
• The cache allocation applies to all instruction and data caches, and TLB prefetching hardware used by the
executing PE that applies to the supplied context.

The context information is passed as a register argument, and is restricted so that:

• Execution of the System instruction at EL0 applies only to the current hardware defined context.

• Execution of the System instruction at EL1 applies only to the current VMID and Security state, and does not
apply to EL2 or EL3.

• Execution of the System instruction at EL2 can apply only to the current Security state, and does not apply
to EL3.

If the System instruction is specified to apply to a combination of Security state and Exception level that is not
implemented, or an Exception level which is higher than the Exception level that the System instruction is executed
at, then the System instruction is treated as a NOP.

When the System instruction is complete and synchronized, no predictions of the restricted type for the affected
context are influenced by the execution of the program before the System instruction in a manner that can be
observed by the use of any side channels.

Note

• Prediction restriction System instructions do not require the invalidation of prediction structures so long as
the behavior described for completion is met by an implementation.

• Prediction restriction System instructions are permitted to invalidate more prediction information than is
defined by the supplied CTX.

These System instructions are guaranteed to be complete following a DSB that covers both read and write behavior
on the same PE that executed the original instruction. A subsequent Context synchronization event is required to
ensure that the effect of the completion of the instructions is synchronized to the current execution.

In AArch32 state, EL0 access to the System instructions is controlled by SCTLR.EnRCTX.

G4.4.9 Cache lockdown

The concept of an entry locked in a cache is allowed, but not architecturally defined. How lockdown is achieved is
IMPLEMENTATION DEFINED and might not be supported by:

• An implementation.

• Some memory attributes.

An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked
cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an
unlocked item that remains in the cache remains dirty.

A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked
cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

G4.4.9.1 The interaction of cache lockdown with cache maintenance instructions

The interaction of cache lockdown and cache maintenance instructions is IMPLEMENTATION DEFINED. However, an
architecturally-defined cache maintenance instruction on a locked cache line must comply with the following
general rules:

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:

— Cache clean by set/way, DCCSW.

— Cache invalidate by set/way, DCISW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11531
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
— Cache clean and invalidate by set/way, DCISW.

— Instruction cache invalidate all, ICIALLU and ICIALLUIS.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is not invalidated from the cache.

2. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort
exception is generated, using the Fault status code defined for this purpose. See Data Abort exception.

This permits a usage model for cache invalidate routines to operate on a large range of addresses by
performing the required operation on the entire cache, without having to consider whether any cache entries
are locked.

The effect of the following instructions is IMPLEMENTATION DEFINED:

• Cache clean by virtual address, DCCMVAC and DCCMVAU.

• Cache invalidate by virtual address, DCIMVAC.

• Cache clean and invalidate by virtual address, DCCIMVAC.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is invalidated from the cache. For the clean and
invalidate instructions, the entry must be cleaned before it is invalidated.

2. If the instruction specified an invalidation, a locked entry is not invalidated from the cache. If the instruction
specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.

3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is
generated, using the Fault status code defined for this purpose. See DFSR or HSR.

In an implementation that includes EL2, if HCR.TIDCP is set to 1, any exception relating to lockdown of an entry
associated with Non-secure memory is routed to EL2.

Note

An implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on
entries that are not locked down.

• Implement one of the other permitted alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use
architecturally-defined instructions. This minimizes the number of customized instructions required.

In addition, an implementation that uses an abort to handle cache maintenance instructions for entries that might be
locked must provide a mechanism that ensures that no entries are locked in the cache.

The reset setting of the cache must be that no cache entries are locked.

G4.4.9.1.1 Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the
IMPLEMENTATION DEFINED space.

G4.4.10 System level caches

The Arm Architecture defines a system cache as a cache that is not described in the PE Cache Identification
registers, CCSIDR, CCSIDR2, and CLIDR, and for which the set/way cache maintenance instructions do not apply.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11532
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support
Conceptually, three classes of system cache can be envisaged:

1. System caches which lie before the point of coherency and cannot be managed by cache maintenance
instructions. Such systems fundamentally undermine the concept of cache maintenance instructions
operating to the point of coherency, as they imply the use of non-architecture mechanisms to manage
coherency. The use of such systems in the Arm architecture is explicitly prohibited.

2. System caches which lie before the point of coherency and can be managed by cache maintenance by address
instructions that apply to the point of coherency, but cannot be managed by cache maintenance by set/way
instructions. Where maintenance of the entire system cache must be performed, as is the case for power
management, it must be performed using non-architectural mechanisms.

3. System caches which lie beyond the point of coherency and so are invisible to software. The management of
such caches is outside the scope of architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11533
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.5 System register support for IMPLEMENTATION DEFINED memory features
G4.5 System register support for IMPLEMENTATION DEFINED memory features

The VMSAv8-32 defines the following registers for describing IMPLEMENTATION DEFINED features of the memory
system:

• The TCM Type Register,TCMTR must be implemented on any implementation where EL1 or above supports
AArch32. The format of this register is IMPLEMENTATION DEFINED.

• The System register encoding space with {coproc==0b1111, CRn==c9, CRm=={c0-c2, c5-c7}} is
IMPLEMENTATION DEFINED for all values of opc2 and opc1. This space is reserved for branch predictor, cache
and TCM functionality, for example maintenance, override behaviors and lockdown.

• In a VMSAv8-32 implementation, part of the System register encoding space with {coproc==0b1111,
CRn==c10} is IMPLEMENTATION DEFINED and reserved for TLB functionality, see TLB lockdown.

• The System register encoding space with {coproc==0b1111, CRn==c11, CRm=={c0-c8, c15}} is
IMPLEMENTATION DEFINED for all values of opc2 and opc1. This space is reserved for DMA operations to and
from the TCMs.

In addition, the System register encoding space with {coproc==0b1111, CRn==c15}is reserved for
IMPLEMENTATION DEFINED registers, and can provide additional registers for the memory system. For more
information, see Organization of registers in the (coproc==0b1111) encoding space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11534
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.6 External aborts
G4.6 External aborts

The Arm architecture defines External aborts as errors that occur in the memory system, other than those that are
detected by the MMU or Debug hardware. An External abort might signal a data corruption to the PE. For example,
a memory location might have been corrupted, and this corruption is detected by hardware using a parity or error
correction code (ECC). The error might have been propagated. The RAS Extension provides mechanisms for
software to determine the extent of the corruption and contain propagation of the error. For more information, see
Chapter D19 RAS PE Architecture.

An External abort is one of:

• Synchronous.

• Precise asynchronous.

• Imprecise asynchronous.

For more information, see Exception terminology.

The RAS Extension provides an expanded taxonomy for describing aborts. When the RAS Extension is not
implemented, the Arm architecture does not provide any method to distinguish between precise asynchronous and
imprecise asynchronous External aborts.

VMSAv8-32 permits External aborts on data accesses, translation table walks, and instruction fetches to be either
synchronous or asynchronous. The reported fault code identifies whether the External abort is synchronous or
asynchronous.

It is IMPLEMENTATION DEFINED which External aborts, if any, are supported. Asynchronous External aborts generate
SError interrupt exceptions.

In AArch32 state:

• SError interrupts are taken as asynchronous Data Abort exceptions.

• Synchronous External aborts:

— On data accesses are taken as synchronous Data Abort exceptions.

— On instruction fetches, or prefetches, are taken as synchronous Prefetch Abort exceptions.

See also:

• External abort on a translation table walk.

• Handling exceptions that are taken to an Exception level using AArch32.

Normally, External aborts are rare. An imprecise asynchronous External abort is likely to be fatal to the process that
is running. Arm recommends that implementations make External aborts precise wherever possible.

The following subsections give more information about possible External aborts:

• Provision for classification of External aborts.

• Parity or ECC error reporting, FEAT_RAS not implemented.

The section Exception reporting in a VMSAv8-32 implementation describes the reporting of External aborts.

G4.6.1 Provision for classification of External aborts

For an External abort taken to a privileged mode other than Hyp mode, an implementation can use the DFSR.ExT
or IFSR.ExT bits to provide more information about the External abort:

• DFSR.ExT provides an IMPLEMENTATION DEFINED classification of External aborts on data accesses.

• IFSR.ExT provides an IMPLEMENTATION DEFINED classification of External aborts on instruction accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11535
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.6 External aborts
For an External abort taken to Hyp mode, the HSR.EA bit, provides an IMPLEMENTATION DEFINED classification of
External aborts.

For all aborts other than External aborts these bits return a value of 0.

If the FEAT_RAS is implemented:

• The HSR.AET field provides information about the state of the PE following an SError interrupt exception
taken to Hyp mode.

• The DFSR.AET field provides information about the state of the PE following an asynchronous Data Abort
exception.

• The implementation might define error record registers.

For more information on the RAS Extension, see Chapter D19 RAS PE Architecture.

G4.6.2 Parity or ECC error reporting, FEAT_RAS not implemented

The Arm architecture supports the reporting of both synchronous and asynchronous parity or ECC errors from the
cache systems. It is IMPLEMENTATION DEFINED what parity or ECC errors in the cache systems, if any, result in
synchronous or asynchronous parity or ECC errors.

A fault code is defined for reporting parity or ECC errors, see Exception reporting in a VMSAv8-32 implementation.
However when parity or ECC error reporting is implemented it is IMPLEMENTATION DEFINED whether a parity or
ECC error is reported using the assigned fault code, or using another appropriate encoding.

For all purposes other than the Fault status encoding, parity or ECC errors are treated as External aborts.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11536
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.7 Memory barrier instructions
G4.7 Memory barrier instructions

Memory barriers describes the memory barrier instructions. This section describes the system level controls of those
instructions.

G4.7.1 EL2 control of the Shareability of data barrier instructions executed at EL0 or EL1

In an implementation that includes EL2 and supports Shareability limitations on the data barrier instructions, the
HCR.BSU field can modify the required Shareability of an instruction that is executed at EL0 or EL1 in Non-secure
state. Table G4-8 shows the encoding of this field:

For an instruction executed at EL0 or EL1 in Non-secure state, Table G4-9 shows how the HCR.BSU is combined
with the Shareability specified by the argument of the DMB or DSB instruction to give the scope of the instruction:

Table G4-8 EL2 control of Shareability of barrier instructions executed at EL0 or EL1

HCR.BSU Minimum Shareability of barrier instructions

00 No effect, Shareability is as specified by the instruction

01 Inner Shareable

10 Outer Shareable

11 Full system

Table G4-9 Effect of the HCR_EL2.BSU on barrier instructions executed at Non-secure EL1 or EL1

Shareability specified by the DMB or DSB argument HCR.BSU Resultant Shareability

Full system Any Full system

Outer Shareable 00, 01, or 10 Outer Shareable

11, Full system Full system

Inner Shareable 00 or 01 Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system

Non-shareable 00, No effect Non-shareable

01, Inner Shareable Inner Shareable

10, Outer Shareable Outer Shareable

11, Full system Full system
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11537
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
G4.8 Pseudocode description of general memory System instructions

This section lists the pseudocode describing general memory operations:

• Memory data type definitions.

• Basic memory access.

• Aligned memory access.

• Unaligned memory access.

• Exclusives monitors operations.

• Access permission checking.

• Abort exceptions.

• Memory barriers.

G4.8.1 Memory data type definitions

This section lists the memory data types.

The memory data types are:

• Address descriptor, defined by the AddressDescriptor type.

• Full address, defined by the FullAddress type.

• Memory attributes, defined by the MemoryAttributes type.

• Memory type, defined by the MemType enumeration.

• Device memory type, defined by the DeviceType enumeration.

• Normal memory attributes, defined by the MemAttrHints type.

• Cacheability attributes, defined by the MemAttr_NC, MemAttr_WT, and MemAttr_WB constants.

• Allocation hints, defined by the MemHint_No, MemHint_WA, MemHint_RA, and MemHint_RWA constants.

• Access permissions, defined by the Permissions type.

G4.8.2 Basic memory access

The PhysMemRead() and PhysMemWrite() functions perform single-copy atomic, aligned, little-endian memory
accesses of size bytes to or from the underlying physical memory array of bytes.

The attributes in memaddrdesc.memattrs are used by the memory system to determine caching and ordering behaviors
as described in Memory types and attributes, Definition of the memory model, and Atomicity in the Arm architecture.

G4.8.3 Aligned memory access

The AArch32.MemSingle[] functions make atomic, little-endian accesses of size bytes.

G4.8.4 Unaligned memory access

See Unaligned data access for details of the SCTLR.A and HSCTLR.A controls on the generation of alignment
faults. The HSCTLR control applies to Normal memory accesses from Hyp mode, and the SCTLR control applies
to Normal memory accesses from all other modes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11538
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
The Mem_with_type[] functions make an access of the required type. If that access is naturally aligned, each form of
the function performs an atomic access by making a single call to AArch32.MemSingle[]. If that access is not aligned
but passes the IsAligned() checks, each form of the function synthesizes the required access from multiple calls to
AArch32.MemSingle[]. It also reverses the byte order if the access is big-endian.

G4.8.5 Exclusives monitors operations

The AArch32.SetExclusiveMonitors() function sets the Exclusives monitors for a Load-Exclusive instruction, for a
block of bytes. The size of the blocks is determined by size, at the VA address. The ExclusiveMonitorsPass()
function checks whether a Store-Exclusive instruction still has possession of the Exclusives monitors and therefore
completes successfully.

The AArch32.ExclusiveMonitorsPass() function checks whether a Store-Exclusive instruction still has possession of
the Exclusives monitors, by checking whether the Exclusives monitors are set to include the location of the memory
block specified by size, at the virtual address defined by address. The atomic write that follows after the Exclusives
monitors have been set must be to the same physical address. It is permitted, but not required, for this function to
return FALSE if the virtual address is not the same as that used in the previous call to
AArch32.SetExclusiveMonitors().

The ExclusiveMonitorsStatus() function returns 0 if the previous atomic write was to the same physical memory
locations selected by ExclusiveMonitorsPass() and therefore succeeded. Otherwise the function returns 1, indicating
that the address translation delivered a different physical address.

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress.paddress, the PE identifier processorid and
the size of the transfer. The procedure records that the PE processorid has requested exclusive access covering at
least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED,
up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It
is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address
by the same PE to be cleared.

The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and
the size of the transfer. The procedure records in a local record that PE processorid has requested exclusive access
to an address covering at least size bytes from address paddress. The size of the location marked as exclusive is
IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and
is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure
also performs a MarkExclusiveGlobal() using the same parameters.

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked in a global record an address range
as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED
whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested.
If no address is marked in a global record as exclusive access, IsExclusiveGlobal() returns FALSE.

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the
size of the transfer. The function returns TRUE if the PE processorid has marked an address range as exclusive
access requested that covers at least the size bytes from address paddress. It is IMPLEMENTATION DEFINED whether
this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of size
bytes from address paddress. If no address is marked as exclusive access requested, then this function returns
FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of IsExclusiveGlobal() with
the same parameters.

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the PE identifier processorid
and the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an
address region including any of size bytes starting from paddress has had a request for an exclusive access. It is
IMPLEMENTATION DEFINED whether the equivalent global record of the PE processorid is also cleared if any of size
bytes starting from paddress has had a request for an exclusive access, or if any other address has had a request for
an exclusive access.

The ClearExclusiveLocal() procedure takes as arguments the PE identifier processorid. The procedure clears the
local record of PE processorid for which an address has had a request for an exclusive access. It is IMPLEMENTATION
DEFINED whether this operation also clears the global record of PE processorid that an address has had a request for
an exclusive access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11539
ID032224 Non-Confidential

The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
G4.8.6 Access permission checking

The AArch32.S1LDHasPermissionsFault(), AArch32.S1SDHasPermissionsFault(), and
AArch32.S2HasPermissionsFault() functions are used by the architecture to perform access permission checking
based on attributes derived from the Translation Table descriptors.

The interpretation of access permission is shown in Memory access control.

G4.8.7 Abort exceptions

The function AArch32.Abort() generates a Data Abort exception or a Prefetch Abort exception by calling the
AArch32.TakeDataAbortException() or AArch32.TakePrefetchAbortException() function.

The FaultRecord type describes a fault. Functions that check for faults return a record of this type appropriate to the
type of fault. Pseudocode description of VMSAv8-32 memory system operations provides a number of wrappers to
generate a FaultRecord.

The function NoFault() returns a null record that indicates no fault. The IsFault() function tests whether a
FaultRecord contains a fault.

G4.8.8 Memory barriers

The definition for the memory barrier functions is given by the enumerations MBReqDomain and MBReqTypes.

These enumerations define the required Shareability domains and required access types used as arguments for DMB
and DSB instructions.

The procedures DataMemoryBarrier(), DataSynchronizationBarrier(), and InstructionSynchronizationBarrier()
perform the memory barriers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G4-11540
ID032224 Non-Confidential

Chapter G5
The AArch32 Virtual Memory System Architecture

This chapter describes the A-profile AArch32 Virtual Memory System Architecture (VMSA). It includes the
following sections:

• About VMSAv8-32.

• The effects of disabling address translation stages on VMSAv8-32 behavior.

• Translation tables.

• The VMSAv8-32 Short-descriptor translation table format.

• The VMSAv8-32 Long-descriptor translation table format.

• Memory access control.

• Memory region attributes.

• Translation Lookaside Buffers.

• TLB maintenance requirements.

• Caches in VMSAv8-32.

• VMSAv8-32 memory aborts.

• Exception reporting in a VMSAv8-32 implementation.

• Address translation instructions.

• Pseudocode description of VMSAv8-32 memory system operations.

• About the System registers for VMSAv8-32.

• Functional grouping of VMSAv8-32 System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11541
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture

Note

This chapter must be read with Chapter G4 The AArch32 System Level Memory Model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11542
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
G5.1 About VMSAv8-32

This chapter describes the A-profile VMSA for AArch32 state, VMSAv8-32.

This chapter describes the control of the VMSA by Exception levels that are using AArch32. Security state,
Exception levels, and AArch32 execution privilege summarizes how the AArch32 PE modes map onto the
Exception levels.

FEAT_SEL2, if implemented, is not available in AArch32 state and EL2 only executes in Non-secure state.

FEAT_S2FWB, if implemented, is not available in AArch32 state. If EL2 is executing in AArch64 state 2 stage
translations might be affected. For more information, see Chapter D8 The AArch64 Virtual Memory System
Architecture.

Chapter D8 The AArch64 Virtual Memory System Architecture describes the control of the VMSA by Exception
levels that are using AArch64.

The main function of the VMSA is to perform address translation, and access permissions and memory attribute
determination and checking, for memory accesses made by the PE. Address translation, and permissions and
attribute determination and checking, is performed by a stage of address translation.

In VMSAv8-32, the Memory Management Unit (MMU) provides a number of stages of address translation. This
chapter describes only the stages that are visible from Exception levels that are using AArch32, which are as
follows:

For operation in Secure state

A single stage of address translation, for use when executing at PL1 or EL0. This is the Secure
PL1&0 stage 1 address translation stage.

For operation in Non-secure state

• A single stage of address translation for use when executing at EL2. This is the Non-secure
EL2 stage 1 address translation stage.

• Two stages of address translation for use when executing at PL1 or EL0. These are:

— The Non-secure PL1&0 stage 1 address translation stage.

— The Non-secure PL1&0 stage 2 address translation stage.

The System registers provide independent control of each supported stage of address translation, including a control
to disable that stage of translation.

However, if the PE is executing at EL0 using AArch32 when EL1 is using AArch64 then it is using the VMSAv8-64
EL1&0 translation regime, described in Chapter D8 The AArch64 Virtual Memory System Architecture.

These features mean the VMSAv8-32 can support a hierarchy of software supervision, for example an Operating
System and a hypervisor.

Each stage of address translation uses address translations and associated memory properties held in memory
mapped tables called translation tables.

For information about how the MMU features differ if an implementation does not include all of the Exception
levels, see About address translation for VMSAv8-32.

The translation tables define the following properties:

Access to the Secure or Non-secure address map

The translation table entries determine whether an access from Secure state accesses the Secure or
the Non-secure address map. Any access from Non-secure state accesses the Non-secure address
map.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11543
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
Memory access permission control

This controls whether a program is permitted to access a memory region. For instruction and data
access, the possible settings are:

• No access.

• Read-only.

• Write-only. This is possible only in a translation regime with two stages of translation.

• Read/write.

For instruction accesses, additional controls determine whether instructions can be fetched and
executed from the memory region.

If a PE attempts an access that is not permitted, a memory fault is signaled to the PE.

Memory region attributes

These describe the properties of a memory region. The top-level attribute, the Memory type, is one
of Normal, or a type of Device memory, as follows:

• Both translation table formats support the following Device memory types:

— Device-nGnRnE

— Device-nGnRE

• The Long-descriptor translation table format supports, in addition, the following Device
memory types:

— Device-nGRE

— Device-GRE

Note

Armv8 added the Device-nGRE and Device-GRE memory types. Also, in versions of the Arm
architecture before Armv8:

• Device-nGnRnE memory is described as Strongly-ordered memory.

• Device-nGnRE memory is described as Device memory.

Normal memory regions can have additional attributes.

For more information, see Memory types and attributes.

Address translation mappings

An address translation maps an input address to an output address.

A stage 1 translation takes the address of an explicit data access or instruction fetch, a virtual
address (VA), as the input address, and translates it to a different output address:

• If only one stage of translation is provided, this output address is the physical address (PA).

• If two stages of address translation are provided, the output address of the stage 1 translation
is an intermediate physical address (IPA).

Note

In the Armv8-32 architecture, a software agent, such as an Operating System, that uses or defines
stage 1 memory translations, might be unaware of the distinction between IPA and PA.

A stage 2 translation translates the IPA to a PA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11544
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
The possible Security states and privilege levels of memory accesses define a set of translation
regimes, where a translation regime maps an input VA to the corresponding PA, using one or two
stages of translation. See The VMSAv8-32 translation regimes.

System registers control VMSAv8-32, including defining the location of the translation tables, and enabling and
configuring the MMU, including enabling and disabling the different address translation stages. Also, they report
any faults that occur on a memory access. For more information, see Functional grouping of VMSAv8-32 System
registers.

The following sections give an overview of VMSAv8-32, and of the implementation options for VMSAv8-32:

• The VMSAv8-32 translation regimes.

• Address types used in a VMSAv8-32 description.

• Address spaces in VMSAv8-32.

• About address translation for VMSAv8-32.

The remainder of the chapter fully describes the VMSA, including the different implementation options, as
summarized in Organization of the remainder of this chapter.

G5.1.1 The VMSAv8-32 translation regimes

As introduced in Address translation mappings, a translation regime maps an input VA to the corresponding PA,
using one or two stages of translation. Figure G5-1 shows the VMSAv8-32 translation regimes, and their associated
translation stages and the Exception levels from which they are controlled.

Figure G5-1 VMSAv8-32 translation regimes, and associated control

Note

Conceptually, a translation regime that has only a stage 1 address translation is equivalent to a regime with a fixed,
flat stage 2 mapping from IPA to PA.

Limited use of Privilege level in AArch32 state describes the mapping between the PE modes and the Privilege levels
(PLs).

G5.1.1.1 Alternative descriptions of the PL1&0 translation regime

The PL1&0 is described in terms of Privilege level because of the way the AArch32 PE modes map onto the
Exception levels, as described in Limited use of Privilege level in AArch32 state. The description of this translation
regime in terms of the Exception levels using depends on the current state of the PE, as follows:

• In Non-secure state, PL1 always maps to EL1, and therefore the Non-secure PL1&0 translation regime could
be described as the Non-secure EL1&0 translation regime.

• In Secure state:

— When EL3 is using AArch32, PL1 maps to EL3, and therefore under these conditions the Secure
PL1&0 translation regime could be described as the Secure EL3&0 translation regime,

Translation regimes, for Exception levels that are using AArch32

Secure PL1&0 VA PA, Secure or Non-secure

VANon-secure PL1&0 IPA

PA, Non-secure onlyNon-secure EL2 VA

Secure PL1&0 stage 1

Non-secure EL2 stage 1

PA, Non-secure only

† Typical control when controlled from an Exception level using AArch32.

Controlled from Non-secure PL1 modes
†

Non-secure PL1&0 stage 1 Non-secure PL1&0 stage 2

Controlled from Hyp mode
†

Controlled from Hyp mode
†

Controlled from Secure PL1 modes
†

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11545
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
— When EL3 is using AArch64, Secure PL1 maps to Secure EL1, and therefore under these conditions
the Secure PL1&0 translation regime could be described as the Secure EL1&0 translation regime,

However, these descriptions all refer to the same translation regime, with the same System registers associated with
its stage 1 translations. Therefore, the regime is generally referred to as the PL1&0 translation regime.

Note

As Figure G5-1 shows, stage 2 translation is supported only in Non-secure state.

G5.1.2 Address types used in a VMSAv8-32 description

A description of VMSAv8-32 refers to the following address types.

Note

These descriptions relate to a VMSAv8-32 description and therefore sometimes differ from the generic definitions
given in the Glossary.

Virtual address (VA)

An address used in an instruction, as a data or instruction address, is a Virtual Address (VA).

An address held in the PC, LR, or SP, is a VA.

The VA map runs from zero to the size of the VA space. For AArch32 state, the maximum VA space
is 4GB, giving a maximum VA range of 0x00000000-0xFFFFFFFF.

Intermediate physical address (IPA)

In a translation regime that provides two stages of address translation, the IPA is the address after
the stage 1 translation, and is the input address for the stage 2 translation.

In a translation regime that provides only one stage of address translation, the IPA is identical to the
PA.

A VMSAv8-32 implementation provides only one stage of address translation:

• If the implementation does not include EL2.

• When executing in Secure state.

• When executing in Hyp mode.

Physical address (PA)

The address of a location in the Secure or Non-secure memory map. That is, an output address from
the PE to the memory system.

G5.1.3 Address spaces in VMSAv8-32

For execution in AArch32 state, the architecture supports:

• A VA space of up to 32 bits. The actual width is IMPLEMENTATION DEFINED.

• An IPA space of up to 40 bits. The translation tables and associated System registers define the width of the
implemented address space.

Note

AArch32 defines two translation table formats. The Long-descriptor format gives access to the full 40-bit IPA or
PA space at a granularity of 4KB. The Short-descriptor format:

• Gives access to a 32-bit PA space at 4KB granularity.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11546
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
• Gives access to a 40-bit PA space, but only at 16MB granularity, by the use of Supersections.

If an implementation includes EL3, the address maps are defined independently for Secure and Non-secure
operation, providing two independent 40-bit address spaces, where:

• A VA accessed from Non-secure state can only be translated to the Non-secure address map.

• A VA accessed from Secure state can be translated to either the Secure or the Non-secure address map.

G5.1.4 About address translation for VMSAv8-32

Address translation is the process of mapping one address type to another, for example, mapping VAs to IPAs, or
mapping VAs to PAs. A translation table defines the mapping from one address type to another, and a Translation
table base register (TTBR) indicates the start of a translation table. Each implemented stage of address translation
shown in Figure G5-1 requires its own translation tables.

For PL1&0 stage 1 translations, the mapping can be split between two tables, one controlling the lower part of the
VA space, and the other controlling the upper part of the VA space. This can be used, for example, so that:

• One table defines the mapping for operating system and I/O addresses, that do not change on a context switch.

• A second table defines the mapping for application-specific addresses, and therefore might require updating
on a context switch.

The VMSAv8-32 implementation options determine the supported address translation stages. The following
descriptions apply when all implemented Exception levels are using AArch32:

VMSAv8-32 without EL2 or EL3

Supports only a single PL1&0 stage 1 address translation. Translation of this stage of address
translation can be split between two sets of translation tables, with base addresses defined by
TTBR0 and TTBR1, and controlled by TTBCR.

VMSAv8-32 with EL3 but without EL2

Supports only the Secure PL1&0 stage 1 address translation and the Non-secure PL1&0 stage 1
address translation. In each Security state, this stage of translation can be split between two sets of
translation tables, with base addresses defined by the Secure and Non-secure copies of TTBR0 and
TTBR1, and controlled by the Secure and Non-secure copies of TTBCR.

VMSAv8-32 with EL2 but without EL3

The implementation supports the following stages of address translation:

Non-secure EL2 stage 1 address translation

The HTTBR defines the base address of the translation table for this stage of address
translation, controlled by HTCR.

Non-secure PL1&0 stage 1 address translation

Translation of this stage of address translation can be split between two sets of
translation tables, with base addresses defined by the Non-secure copies of TTBR0 and
TTBR1 and controlled by the Non-secure instance of TTBCR.

Non-secure PL1&0 stage 2 address translation

The VTTBR defines the base address of the translation table for this stage of address
translation, controlled by VTCR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11547
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
VMSAv8-32 with EL2 and EL3

The implementation supports all of the stages of address translation, as follows:

Secure PL1&0 stage 1 address translation

Translation of this stage of address translation can be split between two sets of
translation tables, with base addresses defined by the Secure copies of TTBR0 and
TTBR1, and controlled by the Secure instance of TTBCR.

Non-secure EL2 stage 1 address translation

The HTTBR defines the base address of the translation table for this stage of address
translation, controlled by HTCR.

Non-secure PL1&0 stage 1 address translation

Translation of this stage of address translation can be split between two sets of
translation tables, with base addresses defined by the Non-secure copies of TTBR0 and
TTBR1 and controlled by the Non-secure instance of TTBCR.

Non-secure PL1&0 stage 2 address translation

The VTTBR defines the base address of the translation table for this stage of address
translation, controlled by VTCR.

Figure G5-2 shows the translation regimes and stages in a VMSAv8-32 implementation that includes all of the
Exception levels, and indicates the PE mode that, typically, defines each set of translation tables, if that stage of
address translation is controlled by a Privilege level that is using AArch32:

Figure G5-2 VMSAv8-32 address translation summary

Note

The term Typically configured is used in Figure G5-2 to indicate the expected software usage. However, stages of
address translation used in AArch32 state can also be configured:

• From an Exception level higher than the Exception level of the configuring PE mode shown in Figure G5-2,
regardless of whether that Exception level is using AArch32 or is using AArch64, except that a Non-secure
Exception level can never configure a stage of address translation that is used in Secure state.

• From an Exception level that is using AArch64 and is higher than the level at which the translation stage is
being used. For example, if Non-secure EL0 is the only Non-secure Exception level that is using AArch32,
then the Non-secure PL1&0 stage of address translation is configured from Non-secure EL1, that is using
AArch64.

In general:

• The translation from VA to PA can require multiple stages of address translation, as Figure G5-2 shows.

• A single stage of address translation takes an input address and translates it to an output address.

† Typically configured from a Non-secure PL1 mode

§ Typically configured from Hyp mode
Translation table base address and control registers.

See the Note that follows this figure for other configuration options.

‡ Typically configured from a Secure PL1 mode

VA

Non-secure TTBR0
†
, TTBR1

†
, and TTBCR

†
IPA

VTTBR
§
 and VTCR

§

HTTBR
§
 and HTCR

§VA

Secure PL1&0 stage 1

Secure TTBR0
‡
, TTBR1

‡
, and TTBCR

‡

Non-secure PL1&0 stage 1

Non-secure PL2 stage 1

VA

PA,

Secure or Non-secure

PA,

Non-secure only

PA,

Non-secure only

Non-secure PL1&0 stage 2

Translation regime

Secure PL1&0

Non-secure PL1&0

Non-secure EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11548
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
A full translation table lookup is called a translation table walk. It is performed automatically by hardware, and can
have a significant cost in execution time. To support fine granularity of the VA to PA mapping, a single input address
to output address translation can require multiple accesses to the translation tables, with each access giving finer
granularity. Each access is described as a level of address lookup. The final level of the lookup defines:

• The required output address.

• The attributes and access permissions of the addressed memory.

Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the results of
translation table walks. TLBs behave as caches of the translation table information, and VMSAv8-32 provides TLB
maintenance instructions for the management of TLB contents.

Note

The Arm architecture permits TLBs to hold any translation table entry that does not directly cause a Translation
fault, an Address size fault, or an Access flag fault.

To reduce the software overhead of TLB maintenance, for the PL1&0 translation regimes VMSAv8-32
distinguishes between Global pages and Process-specific pages. The ASID identifies pages associated with a
specific process and provides a mechanism for changing process-specific tables without having to maintain the TLB
structures.

If an implementation includes EL2, the VMID identifies the current virtual machine, with its own independent
ASID space. The TLB entries include this VMID information, meaning TLBs do not require explicit invalidation
when changing from one virtual machine to another, if the virtual machines have different VMIDs. For stage 2
translations, all translations are associated with the current VMID. There is no mechanism to associate a particular
stage 2 translation with multiple virtual machines.

G5.1.4.1 Atomicity of register changes on changing virtual machine

From the viewpoint of software executing at Non-secure PL1 or EL0, when there is a switch from one virtual
machine to another, the registers that control or affect address translation must be changed atomically. This applies
to the registers for the Non-secure PL1&0 translation regime. This means that all of the following registers must
change atomically:

• The registers associated with the stage 1 translations:

— MAIR0, MAIR1, AMAIR0, and AMAIR1.

— TTBR0, TTBR1, TTBCR, TTBCR2, and CONTEXTIDR.

— SCTLR.

• The registers associated with the stage 2 translations:

— VTTBR and VTCR.

— HSCTLR.

Note

Only some fields of SCTLR affect the stage 1 translation, and only some fields of HSCTLR affect the stage 2
translation. However, in each case, changing these fields requires a write to the register, and that write must be
atomic with the other register updates.

These registers apply to execution using the Non-secure PL1&0 translation regime. However, when updated as part
of a switch of virtual machines they are updated by software executing at EL2. This means the registers are out of
context when they are updated, and no synchronization precautions are required.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11549
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
G5.1.4.2 Use of out-of-context translation regimes

The architecture requires that:

• When executing at EL3 or EL2, the PE must not use the registers associated with the Non-secure PL1&0
translation regime for speculative memory accesses.

• When executing at EL3 the PE must not use the registers associated with the EL2 translation regime for
speculative memory accesses.

• When executing at EL3, EL2, or Non-secure EL1, the PE must not use the registers associated with the
Secure PL1&0 translation regime for speculative memory accesses.

If the Statistical Profiling Unit (SPU) is not in use for a lower Exception level when entering an Exception level on
completion of a DSB instruction, then no new memory accesses using any translation table entries from a translation
regime of an Exception level lower than the Exception level that has been entered will be observed by any observers
to the extent that those accesses are required to be observed, as determined by the Shareability and Cacheability of
those translation table entries.

If the SPU is in use for a lower Exception level when entering an Exception level on completion of a PSB CSYNC and
a subsequent DSB instruction, then no new memory accesses using any translation table entries from a translation
regime of an Exception level lower than the Exception level that has been entered will be observed by any observers,
to the extent that those accesses are required to be observed, as determined by the Shareability and Cacheability of
those translation table entries.

Note

• This does not require that speculative memory accesses cannot be performed using those entries if it is
impossible to tell that those memory accesses have been observed by the observers.

• This requirement does not imply that, on taking an exception to a higher Exception level, any translation table
walks started before the exception was taken will be completed by the time the higher Exception level is
entered, and therefore memory accesses required for such a translation table walk might, in effect, be
performed speculatively. However, the execution of a DSB on entry to the higher Exception level ensures that
these accesses are complete.

G5.1.5 Organization of the remainder of this chapter

The remainder of this chapter is organized as follows.

The next part of the chapter describes address translation and the associated memory properties held in the
translation table entries, in the following sections:

• The effects of disabling address translation stages on VMSAv8-32 behavior.

• Translation tables.

• Secure and Non-secure address spaces.

• The VMSAv8-32 Short-descriptor translation table format.

• The VMSAv8-32 Long-descriptor translation table format.

• Memory access control.

• Memory region attributes.

• Translation Lookaside Buffers.

• TLB maintenance requirements.

Caches in VMSAv8-32 describes VMSAv8-32-specific cache requirements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11550
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.1 About VMSAv8-32
The following sections then describe aborts on VMSAv8-32 memory accesses, and how these and other faults are
reported:

• VMSAv8-32 memory aborts.

• Exception reporting in a VMSAv8-32 implementation.

Address translation instructions then describes these operations, and how they relate to address translation.

A number of sections then describe the System registers for VMSAv8-32. The following sections give general
information about the System registers, and the organization of the registers in the primary encoding spaces,
(coproc==0b1110) and (coproc==0b1111) for these registers:

• About the System registers for VMSAv8-32.

• Functional grouping of VMSAv8-32 System registers.

Note

The System registers in the (coproc==0b1110) encoding space provide the following functionality:

• Self-hosted debug. These registers are described in Debug registers.

• The System register interface to a trace unit These registers are not described in this manual.

• Jazelle registers. These registers are summarized in Legacy feature registers and system instructions.

Therefore, there is no summary of these registers by functional groups.

Pseudocode description of VMSAv8-32 memory system operations then summarizes the pseudocode functions that
describe many features of VMSAv8-32 operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11551
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior

About VMSAv8-32 defines the translation regimes and the associated stages of address translation, each of which
has its own System registers for control and configuration. VMSAv8-32 includes an enable bit for each stage of
address translation, as follows:

• SCTLR.M, in the Secure instance of the register, controls Secure PL1&0 stage 1 address translation.

• SCTLR.M, in the Non-secure instance of the register, controls Non-secure PL1&0 stage 1 address
translation.

• HCR.VM controls Non-secure PL1&0 stage 2 address translation.

• HSCTLR.M controls Non-secure EL2 stage 1 address translation.

Note

• The descriptions throughout this chapter describe address translation as seen by Exception levels that are
using AArch32. However, for the Non-secure PL1&0 translation regime, the stage 2 translation:

— Is controlled by the HCR if EL2 is using AArch32.

— Is controlled by the HCR_EL2 if EL2 is using AArch64.

For this reason, links to the HCR link to a table that disambiguates between the AArch32 HCR and the
AArch64 HCR_EL2.

• If EL2 is using AArch64, then the equivalent of the Non-secure EL2 translation regime is described in
Chapter D8 The AArch64 Virtual Memory System Architecture, not in this chapter.

The following sections describe the effect on VMSAv8-32 behavior of disabling each stage of translation:

• VMSAv8-32 behavior when stage 1 address translation is disabled.

• VMSAv8-32 behavior when stage 2 address translation is disabled.

• Behavior of instruction fetches when all associated address translations are disabled.

Enabling stages of address translation gives more information about each stage of address translation, in particular
after a reset on an implementation that includes EL3.

G5.2.1 VMSAv8-32 behavior when stage 1 address translation is disabled

When stage 1 address translation is disabled, memory accesses that would otherwise be translated by that stage of
address translation are treated as follows:

Non-secure PL1 and EL0 accesses when EL2 is implemented and HCR.DC is set to 1

In an implementation that includes EL2, for an access from a Non-secure PL1 or EL0 mode when
HCR.DC is set to 1, the stage 1 translation assigns the Normal Non-shareable, Inner Write-Back
Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate memory attributes.

When FEAT_XS is implemented and HCR.DC is 1, the XS attribute is set to 0 at stage 1 of the
translation. Otherwise, the XS attribute is set to 1 at stage 1 of the translation.

See also Effect of the HCR.DC field.

All other accesses

For all other accesses, when a stage 1 address translation is disabled, the assigned attributes depend
on whether the access is a data access or an instruction access, as follows:

Data access

The stage 1 translation assigns the Device-nGnRnE memory type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11552
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
Instruction access

The stage 1 translation assigns Normal memory attribute, with the Cacheability and
Shareability attributes determined by the value of:

• The Secure instance of SCTLR.I for the Secure PL1&0 translation regime.

• The Non-secure instance of SCTLR.I for the Non-secure PL1&0 translation
regime.

• HSCTLR.I for the Non-secure EL2 translation regime.

In these cases, the meaning of the I field is as follows:

When I is set to 0

The stage 1 translation assigns the attributes Outer Shareable,
Non-cacheable.

When I is set to 1

The stage 1 translation assigns the attributes Inner Write-Through
Read-Allocate No Write-Allocate, Outer Write-Through Read-Allocate
No Write-Allocate Cacheable.

Note

On some implementations, if the SCTLR.TRE field is set to 0 then this behavior can be
changed by the remap settings in the memory remap registers. The details of TEX remap
when SCTLR.TRE is set to 0 are IMPLEMENTATION DEFINED, see SCTLR.TRE,
SCTLR.M, and the effect of the TEX remap registers.

For this stage of translation, no memory access permission checks are performed, and therefore no MMU
Permission faults relating to this stage of translation can be generated.

Note

Alignment checking is performed, and therefore Alignment faults can occur.

For every access, when stage 1 translation is disabled, the output address of the stage 1 translation is equal to the
input address. This is called a flat address mapping. If the implementation supports output addresses of more than
32 bits then the output address bits above bit[31] are zero. For example, for a VA to PA translation on an
implementation that supports 40-bit PAs, PA[39:32] is 0x00.

For a Non-secure PL1 or EL0 access, if the PL1&0 stage 2 address translation is enabled, the stage 1 memory
attribute assignments and output address can be modified by the stage 2 translation.

See also Behavior of instruction fetches when all associated address translations are disabled.

G5.2.1.1 Effect of the HCR.DC field

The HCR.DC field determines the default memory attributes assigned for the first stage of the Non-secure PL1&0
translation regime when that stage of translation is disabled.

When executing in a Non-secure PL1 or EL0 mode with HCR.DC set to 1:

• For all purposes other than reading the value of the SCTLR, the PE behaves as if the value of the SCTLR.M
field is 0. This means Non-secure PL1&0 stage 1 address translation is disabled.

• For all purposes other than reading the value of the HCR, the PE behaves as if the value of the HCR.VM field
is 1. This means Non-secure PL1&0 stage 2 address translation is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11553
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
The effect of HCR.DC might be held in TLB entries associated with a particular VMID. Therefore, if software
executing at EL2 changes the HCR.DC value without also changing the current VMID, it must also invalidate all
TLB entries associated with the current VMID. Otherwise, the behavior of Non-secure software executing at EL1
or EL0 is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of
System register control or data values.

G5.2.1.2 Effect of disabling translation on maintenance and address translation
instructions

Cache maintenance instructions act on the target cache whether address translation is enabled or not, and regardless
of the values of the memory attributes. However, if a stage of translation is disabled, they use the flat address
mapping for that stage, and all mappings are considered global.

TLB invalidate operations act on the target TLB whether address translation is enabled or not.

When the Non-secure PL1&0 stage 1 address translation is disabled, any ATS1C** or ATS12NSO** address
translation instruction that accesses the Non-secure state translation reflects the effect of the HCR.DC field.

G5.2.2 VMSAv8-32 behavior when stage 2 address translation is disabled

When stage 2 address translation is disabled:

• The IPA output from the stage 1 translation maps flat to the PA

• The memory attributes and permissions from the stage 1 translation apply to the PA.

If the stage 1 address translation and the stage 2 address translation are both disabled, see Behavior of instruction
fetches when all associated address translations are disabled.

G5.2.3 Behavior of instruction fetches when all associated address translations are disabled

The information in this section applies to memory accesses:

• From Secure PL1 and EL0 modes, when the Secure PL1&0 stage 1 address translation is disabled

• From Hyp mode, when the Non-secure EL2 stage 1 address translation is disabled

• From Non-secure PL1 and EL0 modes, when all of the following apply:

— The Non-secure PL1&0 stage 1 address translation is disabled.

— The Non-secure PL1&0 stage 2 address translation is disabled.

— HCR.DC is set to 0.

In these cases, when execution is in AArch32 state a memory location might be accessed as a result of an instruction
fetch if either:

• The memory location is in the same 4KB block of memory, aligned to 4KB, as an instruction which a simple
sequential execution of the program either requires to be fetched now or has required to be fetched since the
last reset, or is in the 4KB block immediately following such a block.

• The memory location is the target of a direct branch that a simple sequential execution of the program would
have taken since the most recent of:

— The last reset.

— If the branch predictor is architecturally invisible, the last synchronization of instruction cache
maintenance targeting the address of the branch instruction.

— If the branch predictor is not architecturally invisible, the last synchronization of branch predictor
maintenance targeting the address of the branch instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11554
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
These accesses can be caused by speculative instruction fetches, regardless of whether the prefetched instruction is
committed for execution.

Note

To ensure architectural compliance, software must ensure that both of the following apply:

• Instructions that will be executed when address translation is disabled are located in 4KB blocks of the
address space that contain only memory that is tolerant to speculative accesses.

• Each 4KB block of the address space that immediately follows a 4KB block that holds instructions that will
be executed when address translation is disabled also contains only memory that is tolerant to speculative
accesses.

G5.2.4 Enabling stages of address translation

On powerup or Warm reset, only the SCTLR.M field for the Exception level and Security state entered on reset is
reset to 0, disabling address translation for the initial state of the PE. All other SCTLR.M and HSCTLR.M fields
that are implemented are UNKNOWN after the reset.

This means, on powerup or reset:

• On an implementation that includes EL3, where EL3 is using AArch32:

— The PL1&0 stage 1 address translation enable bit, SCTLR.M, is banked, meaning there are separate
enables for operation in Secure and Non-secure state.

— If EL3 is using AArch32, only the Secure instance of the SCTLR.M field resets to 0, disabling the
Secure state PL1&0 stage 1 address translation. The reset value of the Non-secure instance of
SCTLR.M is UNKNOWN.

• On an implementation that includes EL2, where EL2 is using AArch32, the HSCTLR.M field, that controls
the Non-secure EL2 stage 1 address translation:

— If the implementation does not include EL3, resets to 0.

— Otherwise, is UNKNOWN.

• On an implementation that does not include either EL2 or EL3, there is a single stage of translation. This is
controlled by SCTLR.M, that resets to 0.

Note

If, for the software that enables or disables a stage of address translation, the input address of a stage 1 translation
differs from the output address of that stage 1 translation, and the software is running in translation regime that is
affected by that stage of translation, then the requirement to synchronize changes to the System registers means it
is uncertain where in the instruction stream the change of the translation takes place. For this reason, Arm strongly
recommends that the input address and the output address are identical in this situation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11555
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
G5.3 Translation tables

VMSAv8-32 defines two alternative translation table formats:

Short-descriptor format

It uses 32-bit descriptor entries in the translation tables, and provides:

• Up to two levels of address lookup.

• 32-bit input addresses.

• Output addresses of up to 40 bits.

• Support for PAs of more than 32 bits by use of supersections, with 16MB granularity.

• Support for No access, Client, and Manager domains.

Long-descriptor format

It uses 64-bit descriptor entries in the translation tables, and provides:

• Up to three levels of address lookup.

• Input addresses of up to 40 bits, when used for stage 2 translations.

• Output addresses of up to 40 bits.

• 4KB assignment granularity across the entire PA range.

• No support for domains, all memory regions are treated as in a Client domain.

• Fixed 4KB table size, unless truncated by the size of the input address space.

Note

— Translation with a 40-bit input address range requires two concatenated 4KB top-level
tables, aligned to 8KB.

— The VMSAv8-64 Long-descriptor translation table format is generally similar to this
format, but supports input and output addresses of up to 48 bits, and has an assignment
granularity and table size defined by its translation granule. This can be 4KB, 16KB,
or 64KB. See Translation table descriptor formats.

In all implementations, of the possible address translations shown in Figure G5-2, for stages of address translation
that are using AArch32:

• In a particular Security state, the translation tables for the PL1&0 stage 1 translations can use either
translation table format, and the TTBCR.EAE field indicates the current translation table format.

• The translation tables for the Non-secure EL2 stage 1 translations, and for the Non-secure PL1&0 stage 2
translations, must use the Long-descriptor translation table format.

Many aspects of performing a translation table walk depend on the current translation table format. Therefore, the
following sections describe the two formats, including how the MMU performs a translation table walk for each
format:

• The VMSAv8-32 Short-descriptor translation table format.

• The VMSAv8-32 Long-descriptor translation table format.

The following subsections describe aspects of the translation tables and translation table walks, for memory
accesses from AArch32 state, that are independent of the translation table format:

• Translation table walks for memory accesses using VMSAv8-32 translation regimes.

• Information returned by a translation table lookup.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11556
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
• Determining the translation table base address in the VMSAv8-32 translation regimes.

• Control of translation table walks on a TLB miss.

• Access to the Secure or Non-secure PA map.

See also TLB maintenance requirements.

G5.3.1 Translation table walks for memory accesses using VMSAv8-32 translation regimes

A translation table walk occurs as the result of a TLB miss, and starts with a read of the appropriate starting-level
translation table. The result of that read determines whether additional translation table reads are required, for this
stage of translation, as described in either:

• Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format.

• Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format.

Note

When using the Short-descriptor translation table format, the starting level for a translation table walk is always a
level 1 lookup. However, with the Long-descriptor translation table format, the starting-level can be either a
level 1or a level 2 lookup.

For the PL1&0 stage 1 translations, SCTLR.EE determines the endianness of the translation table lookups. SCTLR
is banked, and therefore the endianness is determined independently for each Security state.

 HSCTLR.EE defines the endianness for the Non-secure EL2 stage 1 and Non-secure PL1&0 stage 2 translations.

Note

Dynamically changing translation table endianness

Because any change to SCTLR.EE or HSCTLR.EE requires synchronization before it is visible to
subsequent operations, Arm strongly recommends that:

• SCTLR.EE is changed only when either:

— Executing in a mode that does not use the translation tables affected by SCTLR.EE.

— Executing with SCTLR.M set to 0.

• HSCTLR.EE is changed only when either:

— Executing in a mode that does not use the translation tables affected by HSCTLR.EE.

— Executing with HSCTLR.M set to 0.

The PA of the base of the starting-level translation table is determined from the appropriate TTBR, see Determining
the translation table base address in the VMSAv8-32 translation regimes.

For more information, see Ordering and completion of TLB maintenance instructions.

Translation table walks must access data or unified caches, or data and unified caches, of other agents participating
in the coherency protocol, according to the Shareability attributes described in the TTBR. These Shareability
attributes must be consistent with the Shareability attributes for the translation tables themselves.

G5.3.2 Information returned by a translation table lookup

When an associated stage of address translation is enabled, a memory access requires one or more translation table
lookups. If the required Translation Table descriptor is not held in a TLB, a translation table walk is performed to
obtain the descriptor. A lookup, whether from the TLB or as the result of a translation table walk, returns both:

• An output address that corresponds to the input address for the lookup.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11557
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
• A set of properties that correspond to that output address.

The returned properties are classified as providing address map control, access controls, or region attributes. This
classification determines how the descriptions of the properties are grouped. The classification is based on the
following model:

Address map control

Memory accesses from Secure state can access either the Secure or the Non-secure address map, as
summarized in Access to the Secure or Non-secure PA map.

Memory accesses from Non-secure state can only access the Non-secure address map.

Access controls

Determine whether the PE, in its current state, can access the output address that corresponds to the
given input address. If not, an MMU fault is generated and there is no memory access.

Memory access control describes the properties in this group.

Attributes Are valid only for an output address that the PE, in its current state, can access. The attributes define
aspects of the required behavior of accesses to the target memory region.

Memory region attributes describes the properties in this group.

G5.3.3 Determining the translation table base address in the VMSAv8-32 translation regimes

On a TLB miss, the VMSA must perform a translation table walk, and therefore must find the base address of the
translation table to use for its lookup. A TTBR holds this address. As Figure G5-2 shows:

• For a Non-secure EL2 stage 1 translation, the HTTBR holds the required base address. The HTCR is the
control register for these translations.

• For a Non-secure PL1&0 stage 2 translation, the VTTBR holds the required base address. The VTCR is the
control register for these translations.

• For a PL1&0 stage 1 translation, either TTBR0 or TTBR1 holds the required base address. The TTBCR is
the control register for these translations.

The Non-secure copies of TTBR0, TTBR1, and TTBCR, relate to the Non-secure PL1&0 stage 1 translation.
The Secure copies of TTBR0, TTBR1, and TTBCR, relate to the Secure PL1&0 stage 1 translation.

For the PL1&0 translation table walks:

• TTBR0 can be configured to describe the translation of VAs in the entire address map, or to describe only the
translation of VAs in the lower part of the address map.

• If TTBR0 is configured to describe the translation of VAs in the lower part of the address map, TTBR1 is
configured to describe the translation of VAs in the upper part of the address map.

The contents of the appropriate instance of the TTBCR determine whether the address map is separated into two
parts, and where the separation occurs. The details of the separation depend on the current translation table format,
see:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format.

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format.

Example G5-1 shows a typical use of the two sets of translation tables:

Example G5-1 Example use of TTBR0 and TTBR1

An example of using the two TTBRs for PL1&0 stage 1 address translations is:

TTBR0 Used for process-specific addresses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11558
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
Each process maintains a separate level 1 translation table. On a context switch:

• TTBR0 is updated to point to the level 1 translation table for the new context.

• TTBCR is updated if this change changes the size of the translation table.

• The CONTEXTIDR is updated.

TTBCR can be programmed so that all translations use TTBR0 in a manner compatible with
architecture versions before Armv6.

TTBR1 Used for operating system and I/O addresses, that do not change on a context switch.

G5.3.4 Control of translation table walks on a TLB miss

Two fields in the TCR for the translation stage required by a memory access control whether a translation table walk
is performed on a TLB miss. These two fields are the:

• PD0 and PD1 fields, on a PE using the Short-descriptor translation table format.

• EPD0 and EPD1 fields, on a PE using the Long-descriptor translation table format.

Note

For the VMSAv8-32 translation regimes, the different field names are because the fields are in different positions
in TTBCR, depending on the translation table format.

The effect of these fields is:

{E}PDx == 0 If a TLB miss occurs based on TTBRx, a translation table walk is performed. The current Security
state determines whether the memory access is Secure or Non-secure.

{E}PDx == 1 If a TLB miss occurs based on TTBRx, a level 1 Translation fault is returned, and no translation
table walk is performed.

G5.3.5 Access to the Secure or Non-secure PA map

As stated in Address spaces in VMSAv8-32, a PE can access independent Secure and Non-secure address maps.
When the PL1 Exception level is using AArch32, these are defined by the translation tables identified by the Secure
TTBR0 and TTBR1. In both translation table formats in the Secure translation tables, the NS field in a descriptor
indicates whether the descriptor refers to the Secure or the Non-secure address map:

NS == 0 Access the Secure PA space.

NS == 1 Access the Non-secure PA space.

Note

In the Non-secure translation tables, the corresponding field is SBZ. Non-secure accesses always access the
Non-secure PA space, regardless of the value of this field.

The Long-descriptor translation table format extends this control, adding an NSTable field to the Secure translation
tables, as described in Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format. In
the Non-secure translation tables, the corresponding field is SBZ, and Non-secure accesses ignore the value of this
field.

The following sections describe the address map controls in the two implementations:

• Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format.

• Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format.

The following subsection gives more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11559
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.3 Translation tables
G5.3.5.1 Secure and Non-secure address spaces

EL3 provides two PA spaces, a Secure PA space and a Non-secure PA space.

As described in Access to the Secure or Non-secure PA map, for the PL1&0 stage 1 translations when controlled
from an Exception level using AArch32, the registers that control the stage of translation, TTBR0, TTBR1, TTBCR,
and TTBCR2 are banked to provide independent Secure and Non-secure instances of the registers, and the Security
state of the PE when it performs a memory access whether the Secure or Non-secure instances are used. This means
that for stage 1 of the PL1&0 translation regime there are independent Secure and Non-secure translation tables,
and translation table walks are made to the PA space corresponding to the Security state of the translation tables
used.

For a translation table walk caused by a memory access from Non-secure state, all memory accesses are to the
Non-secure address space.

For a translation table walk caused by a memory access from Secure state:

• When address translation is using the Long-descriptor translation table format:

— The initial lookup performed must access the Secure address space.

— If a Table descriptor read from the Secure address space has the NSTable field set to 0, then the next
level of lookup is from the Secure address space.

— If a Table descriptor read from the Secure address space has the NSTable field set to 1, then the next
level of lookup, and any subsequent level of lookup, is from the Non-secure address space.

For more information, see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor
format.

• Otherwise, all memory accesses are to the Secure address space.

Note

• When executing in Non-secure state, additional translations are supported. For memory accesses from
AArch32 state, these are:

— Non-secure EL2 stage 1 translation.

— Non-secure PL1&0 stage 2 translation.

These translations can access only the Non-secure address space.

• A system implementation can alias parts of the Secure PA space to the Non-secure PA space in an
implementation-specific way. As with any other aliasing of physical memory, the use of aliases in this way
can require the use of cache maintenance instructions to ensure that changes to memory made using one alias
of the physical memory are visible to accesses to the other alias of the physical memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11560
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
G5.4 The VMSAv8-32 Short-descriptor translation table format

The Short-descriptor translation table format supports a memory map based on memory sections or pages:

Supersections Consist of 16MB blocks of memory. Support for Supersections is optional, except that an
implementation that supports more than 32 bits of PA must also support Supersections to provide
access to the entire PA space.

Sections Consist of 1MB blocks of memory.

Large pages Consist of 64KB blocks of memory.

Small pages Consist of 4KB blocks of memory.

Supersections, Sections, and Large pages map large regions of memory using only a single TLB entry.

Note

• Whether a VMSAv8-32 implementation of the Short-descriptor format translation tables supports
supersections is IMPLEMENTATION DEFINED.

• The EL2 translation regime cannot use the Short-descriptor translation table format.

When using the Short-descriptor translation table format, two levels of translation tables are held in memory:

Level 1 table

Holds level 1 descriptors that contain the base address and

• Translation properties for a Section and Supersection.

• Translation properties and pointers to a level 2 table for a Large page or a Small page.

Level 2 tables

Hold level 2 descriptors that contain the base address and translation properties for a Small page or
a Large page. With the Short-descriptor format, level 2 tables can be referred to as translation tables.

A level 2 table requires 1KB of memory.

In the translation tables, in general, a descriptor is one of:

• An invalid or fault entry.

• A translation table entry, that points to a next-level translation table.

• A page or section entry, that defines the memory properties for the access.

• A reserved format.

Bits[1:0] of the descriptor give the primary indication of the descriptor type.

Figure G5-3 gives a general view of address translation when using the Short-descriptor translation table format.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11561
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Figure G5-3 General view of address translation using VMSAv8-32 Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables describes why, when using the
Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in Figure G5-3.

VMSAv8-32 Short-descriptor Translation Table format descriptors, Memory attributes in the VMSAv8-32
Short-descriptor Translation Table format descriptors, and Control of Secure or Non-secure memory access,
VMSAv8-32 Short-descriptor format describe the format of the descriptors in the Short-descriptor format translation
tables.

The following sections then describe the use of this translation table format:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format.

• Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format.

G5.4.1 VMSAv8-32 Short-descriptor Translation Table format descriptors

The following sections describe the formats of the entries in the Short-descriptor Translation Tables:

• Short-descriptor Translation Table level 1 descriptor formats.

• Short-descriptor Translation Table level 2 descriptor formats.

For more information about level 2 translation tables, see Additional requirements for Short-descriptor format
translation tables.

Note

Previous versions of the Arm Architecture Reference Manual, and some other documentation, describes the AP[2]
bit in the translation table entries as the APX bit.

Information returned by a translation table lookup describes the classification of the non-address fields in the
descriptors as address map control, access control, or attribute fields.

TTBR0 or TTBR1
Level 1 table

Indexed by

VA[19:12]

Section

1MB

memory

region

Translation table

Supersection

16MB

memory

region

Level 2 table

Indexed by

VA[31-N:20]
‡

Large page

64KB

memory

page

Small page

4KB

memory

page

† Repeated entries required because of descriptor field overlaps.

Supersection

Repeated

16 times
†

Repeated

16 times
†

Large page

See text for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11562
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
G5.4.1.1 Short-descriptor Translation Table level 1 descriptor formats

Each entry in the level 1 table describes the mapping of the associated 1MB VA range.

Figure G5-4 shows the possible level 1 descriptor formats.

Figure G5-4 VMSAv8-32 Short-descriptor level 1 descriptor formats

Descriptor bits[1:0] identify the descriptor type. The encoding of these bits is:

0b00, Invalid entry

The associated VA is unmapped, and any attempt to access it generates a Translation fault.

Bits[31:2] of the descriptor are IGNORED, see IGNORED. This means software can use these bits for
its own purposes.

0b01, Translation table

The descriptor gives the address of a level 2 translation table, that specifies the mapping of the
associated 1MByte VA range.

0b10, Section or Supersection

The descriptor gives the base address of the Section or Supersection. Bit[18] determines whether
the entry describes a Section or a Supersection.

This encoding also defines the PXN field as 0.

0b11, Section or Supersection, if the implementation supports the PXN attribute

This encoding is identical to 0b10, except that it defines the PXN field as 1.

0 0

31 2 1 0

IGNOREDInvalid

Translation table Domain 0 1

31 10 9 8 5 4 3 2 1 0

Translation table base address, bits[31:10]

RES0

NS

PXN

0 S Domain C B 1

31 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Section base address, PA[31:20]Section

NS nG

AP[2]

TEX[2:0]

AP[1:0]

XN

1 S C B 1

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Supersection base address, PA[31:24]

Supersection

Extended base address, PA[35:32]

NS nG

AP[2]

IMPLEMENTATION DEFINED

XN

Extended base address, PA[39:36]

TEX[2:0]

AP[1:0]

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

PXN

PXN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11563
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Note

A VMSAv8-32 implementation can use the Short-descriptor translation table format for the PL1&0 stage 1
translations, by setting TTBCR.EAE to 0.

The address information in the level 1 descriptors is:

Translation table Bits[31:10] of the descriptor are bits[31:10] of the address of a translation table.

Section Bits[31:20] of the descriptor are bits[31:20] of the address of the Section.

Supersection Bits[31:24] of the descriptor are bits[31:24] of the address of the Supersection.

Optionally, bits[8:5, 23:20] of the descriptor are bits[39:32] of the extended Supersection address.

For the Non-secure PL1&0 translation tables, the address in the descriptor is the IPA of the translation table, Section,
or Supersection. Otherwise, the address is the PA of the translation table, Section, or Supersection.

For descriptions of the other fields in the descriptors, see Memory attributes in the VMSAv8-32 Short-descriptor
Translation Table format descriptors.

G5.4.1.2 Short-descriptor Translation Table level 2 descriptor formats

Figure G5-5 shows the possible formats of a level 2 descriptor.

Figure G5-5 Short-descriptor level 2 descriptor formats

Descriptor bits[1:0] identify the descriptor type. The encoding of these bits is:

0b00, Invalid entry

The associated VA is unmapped, and attempting to access it generates a Translation fault.

Bits[31:2] of the descriptor are IGNORED, see IGNORED. This means software can use these bits for
its own purposes.

0b01, Large page

The descriptor gives the base address and properties of the Large page.

0b1x, Small page

The descriptor gives the base address and properties of the Small page.

In this descriptor format, bit[0] of the descriptor is the XN field.

The address information in the level 2 descriptors is:

Large page Bits[31:16] of the descriptor are bits[31:16] of the address of the Large page.

Small page Bits[31:12] of the descriptor are bits[31:12] of the address of the Small page.

Large page Large page base address, PA[31:16]

XN

TEX[2:0]

nG

S

AP[2]

RES0 C B 0 1

0 0

31 2 1 0

IGNOREDInvalid

1631 15

AP[1:0]

14 12 11 10 9 8 6 5 4 3 2 1 0

Small page base address, PA[31:12]

31 12 11 10 9 8 6 5 4 3 2 1 0

S TEX[2:0] C B 1

nG

AP[2]
AP[1:0] XN

Small page
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11564
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
For the Non-secure PL1&0 translation tables, the address in the descriptor is the IPA of the translation table, Section,
or Supersection. Otherwise, the address is the PA of the translation table, Section, or Supersection.

For descriptions of the other fields in the descriptors, see Memory attributes in the VMSAv8-32 Short-descriptor
Translation Table format descriptors.

G5.4.1.3 Additional requirements for Short-descriptor format translation tables

When using Supersection or Large Page descriptors in the Short-descriptor translation table format, the input
address field that defines the Supersection or Large Page descriptor address overlaps the table address field. In each
case, the size of the overlap is 4 bits. The following diagrams show these overlaps:

• Figure K10-14 for the level 1 translation table entry for a Supersection.

• Figure K10-16 for the level 2 translation table entry for a Large page.

Considering the case of using Large Page descriptors in a level 2 translation table, this overlap means that for any
specific Large page, the bottom four bits of the level 2 translation table entry might take any value from 0b0000 to
0b1111. Therefore, each of these 16 index values must point to a separate copy of the same descriptor.

This means that each Large page or Supersection descriptor must:

• Occur first on a sixteen-word boundary.

• Be repeated in 16 consecutive memory locations.

G5.4.2 Memory attributes in the VMSAv8-32 Short-descriptor Translation Table format descriptors

This section describes the descriptor fields other than the descriptor type field and the address field:

TEX[2:0], C, B

Memory region attribute fields, see Memory region attributes.

These fields are not present in a descriptor for a translation table.

XN bit The Execute-never field, see Access permissions for instruction execution.

This bit is not present in a descriptor for a translation table.

PXN bit The Privileged execute-never field, see Access permissions for instruction execution.

When this field is set to 1 in the descriptor for a translation table, it indicates that all memory pages
described in the corresponding translation table are Privileged execute-never.

NS bit Non-secure bit. Specifies whether the translated PA is in the Secure or Non-secure address map, see
Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format.

This bit is not present in level 2 descriptors. The value of the NS bit in a level 1 descriptor for a
translation table applies to all entries in the corresponding level 2 translation table.

Domain Domain field, see Domains, Short-descriptor format only.

This field is not present in a Supersection entry. Memory described by Supersections is in domain 0.

This bit is not present in level 2 descriptors. The value of the Domain field in the level 1 descriptor
for a translation table applies to all entries in the corresponding level 2 translation table.

An IMPLEMENTATION DEFINED bit

This bit is not present in level 2 descriptors.

AP[2], AP[1:0]

Access Permissions bits, see Memory access control.

AP[0] can be configured as the Access flag, see The Access flag.

These bits are not present in a descriptor for a translation table.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11565
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
S bit Shareable bit. Used in determining the Shareability of the addressed region, see Memory region
attributes.

Note
The naming of this bit as the Shareable bit is carried forward from early versions of the Arm
architecture. This name is no longer an adequate description of the interpretation of the bit.

This bit is not present in a descriptor for a translation table.

nG bit The not global bit. If a lookup using this descriptor is cached in a TLB, determines whether the TLB
entry applies to all ASID values, or only to the current ASID value. See Global and process-specific
translation table entries.

This bit is not present in a descriptor for a translation table.

Bit[18], when bits[1:0] indicate a Section or Supersection descriptor

0 Descriptor is for a Section.

1 Descriptor is for a Supersection.

G5.4.3 Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format

Access to the Secure or Non-secure PA map describes how the NS bit in the translation table entries:

• For accesses from Secure state, determines whether the access is to Secure or Non-secure memory.

• Is ignored by accesses from Non-secure state.

In the Short-descriptor translation table format, the NS bit is defined only in the level 1 translation tables. This
means that, in a level 1 descriptor for a translation table, the NS bit defines the PA map, Secure or Non-secure, for
all of the Large pages and Small pages of memory described by that table.

The NS bit of a level 1 descriptor for a translation table has no effect on the PA map in which that translation table
is held. As stated in Secure and Non-secure address spaces, the PA of that translation table is in:

• The Secure address map if the translation table walk is in Secure state.

• The Non-secure address map if the translation table walk is in Non-secure state.

This means the granularity of the Secure and Non-secure memory maps is 1MB. However, in these memory maps,
table entries can define physical memory regions with a granularity of 4KB.

G5.4.4 Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format

As described in Determining the translation table base address in the VMSAv8-32 translation regimes, two sets of
translation tables can be defined for each of the PL1&0 stage 1 translations, and TTBR0 and TTBR1 hold the base
addresses for the two sets of tables. When using the Short-descriptor translation table format, the value of TTBCR.N
indicates the number of most significant bits of the input VA that determine whether TTBR0 or TTBR1 holds the
required translation table base address, as follows:

• If N == 0 then use TTBR0. Setting TTBCR.N to zero disables use of a second set of translation tables.

• If N > 0 then:

— If bits[31:32-N] of the input VA are all zero, then use TTBR0.

— Otherwise use TTBR1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11566
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
Table G5-1 shows how the value of N determines the lowest address translated using TTBR1, and the size of the
level 1 translation table addressed by TTBR0.

Whenever TTBCR.N is nonzero, the size of the translation table addressed by TTBR1 is 16KB.

Figure G5-6 shows how the value of TTBCR.N controls the boundary between VAs that are translated using
TTBR0, and VAs that are translated using TTBR1.

Figure G5-6 How TTBCR.N controls the boundary between the TTBRs, Short-descriptor format

In the selected TTBR, bits RGN, S, and IRGN[1:0] define the memory region attributes for the translation table
walk.

Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format describes the
translation.

G5.4.5 Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format

When using the Short-descriptor translation table format, and a memory access requires a translation table walk:

• A section-mapped access only requires a read of the level 1 translation table.

Table G5-1 Effect of TTBCR.N on address translation, Short-descriptor format

TTBCR.N First address translated with TTBR1
TTBR0 table

Size Index range

0b000 TTBR1 not used 16KB VA[31:20]

0b001 0x80000000 8KB VA[30:20]

0b010 0x40000000 4KB VA[29:20]

0b011 0x20000000 2KB VA[28:20]

0b100 0x10000000 1KB VA[27:20]

0b101 0x08000000 512 bytes VA[26:20]

0b110 0x04000000 256 bytes VA[25:20]

0b111 0x02000000 128 bytes VA[24:20]

0x00000000

0xFFFFFFFF

0x02000000

TTBR0 region

Boundary, when

TTBCR.N==0b111

Effect of decreasing N

TTBR1 region

TTBR0 region

TTBCR.N==0b000
Use of TTBR1 disabled
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11567
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
• A page-mapped access also requires a read of the level 2 translation table.

Reading a level 1 translation table describes how either TTBR1 or TTBR0 is used, with the accessed VA, to
determine the address of the level 1 descriptor.

Reading a level 1 translation table shows the output address as A[39:0]:

• For a Non-secure PL1&0 stage 1 translation, this is the IPA of the required descriptor. A Non-secure PL1&0
stage 2 translation of this address is performed to obtain the PA of the descriptor.

• Otherwise, this address is the PA of the required descriptor.

The full translation flow for Sections, Supersections, Small pages and Large pages then shows the complete
translation flow for each valid memory access.

G5.4.5.1 Reading a level 1 translation table

When performing a fetch based on TTBR0:

• The address bits taken from TTBR0 vary between bits[31:14] and bits[31:7].

• The address bits taken from the VA, that is the input address for the translation, vary between bits[31:20] and
bits[24:20].

The width of the TTBR0 and VA fields depend on the value of TTBCR.N, as Figure G5-7 shows.

When performing a fetch based on TTBR1, Bits TTBR1[31:14] are concatenated with bits[31:20] of the VA. This
makes the fetch equivalent to that shown in Figure G5-7, with N==0.

Note

See The address and Properties fields shown in the translation flows for more information about the Properties label
used in this and other figures.

Figure G5-7 Accessing level 1 translation table based on TTBR0, Short-descriptor format

Regardless of which register is used as the base for the fetch, the resulting output address selects a four-byte
translation table entry that is one of:

• A level 1 descriptor for a Section or Supersection.

• A descriptor for a translation table, that points to a level 2 translation table. In this case:

— A second fetch is performed to retrieve a level 2 descriptor.

TTBR0

A[31:0] of level 1 descriptor

A[39:32] = 0x00

‡ This field is absent if N is 0

 N is the value of TTBCR.N

Input addressTable index

31 20 19 0

32-N
31-N

‡

0 0Translation base

31 0

Table index

2 1

14-N
13-N

Descriptor address

For details of the Properties field, see the register description

PropertiesRES0Translation base

31

14-N
13-N

07 6
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11568
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.4 The VMSAv8-32 Short-descriptor translation table format
— The descriptor also contains some attributes for the access, see Figure G5-4.

• A faulting entry.

G5.4.5.2 The full translation flow for Sections, Supersections, Small pages and Large
pages

In a translation table walk, only the initial lookup uses the translation table base address from the appropriate TTBR.
Subsequent lookups use a combination of address information from:

• The Table descriptor read in the previous lookup.

• The input address.

Address translation examples using the VMSAv8-32 Short descriptor translation table format shows the full
translation flow for each of the memory section and page options. As described in VMSAv8-32 Short-descriptor
Translation Table format descriptors, these options are:

Supersection A 16MB memory region, see Translation flow for a Supersection.

Section A 1MB memory region, see Translation flow for a Section.

Large page A 64KB memory region, described by the combination of:

• A level 1 translation table entry that indicates the address of a level 2 translation table.

• A level 2 descriptor that indicates a Large page.

See Translation flow for a Large page.

Small page A 4KB memory region, described by the combination of:

• A level 1 translation table entry that indicates the address of a level 2 translation table.

• A level 2 descriptor that indicates a Small page.

See Translation flow for a Small page.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11569
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
G5.5 The VMSAv8-32 Long-descriptor translation table format

The VMSAv8-32 Long-descriptor translation table format supports the assignment of memory attributes to memory
Pages, at a granularity of 4KB, across the complete input address range. It also supports the assignment of memory
attributes to blocks of memory, where a block can be 2MB or 1GB.

Note

• Although the VMSAv8-32 Long-descriptor format is limited to three levels of address lookup, its design and
naming conventions support extension to additional levels, to support a larger input address range.

• Similarly, while the VMSAv8-32 implementation limits the output address range to 40 bits, its design
supports extension to a larger output address range.

Figure G5-2 shows the different address translation stages. The Long-descriptor translation table format:

• Is used for:

— The Non-secure EL2 stage 1 translation.

— The Non-secure PL1&0 stage 2 translation.

• Can be used for the Secure and Non-secure PL1&0 translations.

When used for a stage 1 translation, the translation tables support an input address of up to 32 bits, corresponding
to the VA address range of the PE.

When used for a stage 2 translation, the translation tables support an input address range of up to 40 bits, to support
the translation from IPA to PA. If the input address for the stage 2 translation is a 32-bit address, then this address
is zero-extended to 40 bits.

Note

When the Short-descriptor translation table format is used for the Non-secure stage 1 translations, this generates
32-bit IPAs. These are zero-extended to 40 bits to provide the input address for the stage 2 translation.

Overview of VMSAv8-32 address translation using Long-descriptor translation tables summarizes address
translation from AArch32 state when using the Long-descriptor format translation tables.

The following sections then describe the format of the descriptors in the Long-descriptor format translation tables:

• VMSAv8-32 Long-descriptor Translation Table format descriptors.

• Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors.

• Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format.

The following sections then describe this translation table format:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format.

• VMSAv8-32 Long-descriptor translation table format address lookup levels.

• Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format.

• The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format.

G5.5.1 Overview of VMSAv8-32 address translation using Long-descriptor translation tables

Figure G5-8 gives a general view of VMSAv8-32 stage 1 address translation when using the Long-descriptor
translation table format.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11570
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Figure G5-8 General view of VMSAv8-32 stage 1 address translation using Long-descriptor format

Figure G5-9 gives a general view of VMSAv8-32 stage 2 address translation. Stage 2 translation always uses the
Long-descriptor translation table format.

Figure G5-9 General view of VMSAv8-32 stage 2 address translation, Long-descriptor translation table format

Use of concatenated translation tables for the initial stage 2 lookup describes how using concatenated level 2 tables
means lookup can start at level 2, as referred to in Figure G5-9.

G5.5.2 VMSAv8-32 Long-descriptor Translation Table format descriptors

As described in VMSAv8-32 Long-descriptor translation table format address lookup levels, the Long-descriptor
translation table format provides up to three levels of address lookup. A translation table walk starts either at level
1 or level 2 of the address lookup.

In general, a descriptor is one of:

• An invalid or fault entry.

• A table entry, that points to the next-level translation table.

• A block entry, that defines the memory properties for the access.

• A reserved format.

Bit[1] of the descriptor indicates the descriptor type, and bit[0] indicates whether the descriptor is valid.

The following sections describe the Long-descriptor Translation Table descriptor formats:

• VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats.

TTBR0,

TTBR1, or

HTTBR

Level 1 table

Indexed by

VA[29:21]

Block

1GB

memory

region

Table

Level 2 table

Indexed by

VA[31:30]

4KB

memory

page

If a level 1 table would contain only one entry, it is skipped, and the TTBR points to

the level 2 table. This happens if the VA address range is 30 bits or less.

Block

2MB

memory

region

Table

Level 3 table

Page
Indexed by

VA[20:12]

VTTBR
Level 1 tables

Block

1GB

memory

region

Table

Indexed by

IPA[38:30]

4KB

memory

page

If a level 1 table would contain 16 entries or fewer, level 1 lookup can be omited. If so, VTTBR

points to the start of a block of concatenated level 2 tables. See text for more information.

Level 3 table

Page

Block

Table

Indexed by

IPA[20:12]

Up to two concatenated

Level 1 tables, so that

IPA[39] indexes the table.

Indexed by

IPA[29:21]

Level 2 tables

Block

2MB

memory

region

Table

Block

Table
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11571
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
• VMSAv8-32 Long-descriptor translation table level 3 descriptor formats.

Information returned by a translation table lookup describes the classification of the non-address fields in the
descriptors between address map control, access controls, and region attributes.

G5.5.2.1 VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats

In the Long-descriptor translation tables, the formats of the level 1 and level 2 descriptors differ only in the size of
the block of memory addressed by the Block descriptor. A block entry:

• In a level 1 table describes the mapping of the associated 1GB input address range.

• In a level 2 table describes the mapping of the associated 2MB input address range.

Figure G5-10 shows the Long-descriptor level 1 and level 2 descriptor formats:

Figure G5-10 VMSAv8-32 Long-descriptor level 1and level 2 descriptor formats

G5.5.2.1.1 Descriptor encodings, Long-descriptor level 1 and level 2 formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an
invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation
fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Block The descriptor gives the base address of a block of memory, and the attributes for that memory
region.

1, Table The descriptor gives the address of the next level of translation table, and for a stage 1 translation,
some attributes for that translation.

The other fields in the valid descriptors are:

Block descriptor

Gives the base address and attributes of a block of memory:

• For a level 1 Block descriptor, bits[39:30] are bits[39:30] of the output address that specifies
a 1GB block of memory.

0IGNORED

63 1 0

Invalid

1Upper block attributes

63 52 51 3940 n n-1 12 11 2 1 0

SBZ
‡

Output address[39:n] RES0 Lower block attributes 0Block

For the level 1 descriptor, n is 30. For the level 2 descriptor, n is 21.

The level 1 descriptor returns the address of the level 2 table.

The level 2 descriptor returns the address of the level 3 table.

1

63 62 61 60 59 58 52 51 40 39 12 11 2 1 0

IGNORED SBZ
‡

Next-level table address[39:12] IGNORED 1Table

PXNTable

XNTable

APTable

NSTable

Stage 1 only,

SBZ at stage 2

‡ See the descriptions of the address fields for more information about bits[47:40] of the Block and Table descriptors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11572
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
• For a level 2 Block descriptor, bits[39:21] are bits[39:21] of the output address that specifies
a 2MB block of memory.

In both cases, if bits[47:40] of the descriptor are not zero then a translation that uses the descriptor
will generate an Address size fault, see Address size fault.

Bits[63:52, 11:2] provide attributes for the target memory block, see Attribute fields in VMSAv8-32
Long-descriptor translation table format descriptors. The position and contents of these bits is
identical in the level 2 Block descriptor and in the level 3 Page descriptor.

Table descriptor

Bits[39:m] are bits[39:m] of the address of the required next-level table. Bits[m-1:0] of the table
address are zero:

• For a level 1 Table descriptor, this is the address of a level 2 table.

• For a level 2 Table descriptor, this is the address of a level 3 table.

In both cases, if bits[47:40] of the descriptor are not zero then a translation that uses the descriptor
will generate an Address size fault, see Address size fault.

For a stage 1 translation only, bits[63:59] provide attributes for the next-level lookup, see Attribute
fields in VMSAv8-32 Long-descriptor translation table format descriptors.

If the translation table defines the Non-secure PL1&0 stage 1 translations, then the output address in the descriptor
is the IPA of the target block or table. Otherwise, it is the PA of the target block or table.

G5.5.2.2 VMSAv8-32 Long-descriptor translation table level 3 descriptor formats

Each entry in a level 3 table describes the mapping of the associated 4KB input address range.

Figure G5-11 shows the Long-descriptor level 3 descriptor formats.

Figure G5-11 VMSAv8-32 Long-descriptor level 3 descriptor formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an
invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation
fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Reserved, invalid

Behaves identically to encodings with bit[0] set to 0.

This encoding must not be used in level 3 translation tables.

1, Page Gives the address and attributes of a 4KB page of memory.

0IGNORED

63 1 0

Invalid

Reserved,

invalid
1RES0

63 2 1 0

0

Page 1Upper page attributes

63 52 51 3940 12 11 2 1 0

SBZ
‡

Output address[39:12] Lower page attributes 1

‡ See the description of the address field for more information about bits[47:40] of the Page descriptor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11573
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
At this level, the only valid format is the Page descriptor. The other fields in the Page descriptor are:

Page descriptor

Bits[39:12] are bits[39:12] of the output address for a page of memory.

If bits[47:40] of the descriptor are not zero, then a translation that uses the descriptor will generate
an Address size fault, see Address size fault.

Bits[63:52, 11:2] provide attributes for the target memory page, see Attribute fields in VMSAv8-32
Long-descriptor translation table format descriptors. The position and contents of these bits are
identical in the level 1 Block descriptor and in the level 2 Block descriptor.

If the translation table defines the Non-secure PL1&0 stage 1 translations, then the output address in the descriptor
is the IPA of the target page. Otherwise, it is the PA of the target page.

G5.5.3 Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors

The memory attributes in the VMSAv8-32 Long-descriptor translation tables are based on those in the
Short-descriptor translation table format, with some extensions. Memory region attributes describes these attributes.
In the Long-descriptor translation table format:

• Table entries for stage 1 translations define attributes for the next level of lookup, see Next-level attributes in
VMSAv8-32 Long-descriptor stage 1 Table descriptors

The hierarchical attributes in the translation tables, APTable, XNTable, and PXNTable, permit subtrees of the
translation tables to be used by different agents. Not all operating systems use this functionality, and so
FEAT_AA32HPD adds a facility to disable these bits.

This ability to disable hierarchical attribute bits has no effect on the NSTable bit.

• Block and Page entries define memory attributes for the target block or page of memory. Stage 1 and stage 2
translations have some differences in these attributes, see:

— Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors.

— Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors.

G5.5.3.1 Next-level attributes in VMSAv8-32 Long-descriptor stage 1 Table descriptors

In a Table descriptor for a stage 1 translation, bits[63:59] of the descriptor define the following attributes for the
next-level translation table access:

NSTable, bit[63] For memory accesses from Secure state, specifies the Security state for subsequent levels of
lookup, see Hierarchical control of Secure or Non-secure memory accesses,
Long-descriptor format.

For memory accesses from Non-secure state, this bit is ignored.

APTable, bits[62:61] Access permissions limit for subsequent levels of lookup, see Hierarchical control of access
permissions, Long-descriptor format.

APTable[0] is reserved, SBZ, in the Non-secure EL2 stage 1 translation tables.

From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1, and the value of TTBCR.T2E
is also 1:

• The value of the corresponding APTable field is IGNORED by hardware, allowing the
field to be used by software.

• The behavior of the system is as if the value of the corresponding APTable field is 0,
that is to say, the APTable field has an Effective value of 0.

XNTable, bit[60] XN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching,
Long-descriptor format.

From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11574
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1, and the value of TTBCR.T2E
is also 1:

• The value of the corresponding XNTable field is IGNORED by hardware, allowing the
field to be used by software.

• The behavior of the system is as if the value of the corresponding XNTable field is 0,
that is to say, the XNTable field has an Effective value of 0.

PXNTable, bit[59] PXN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching,
Long-descriptor format.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1 and the value of TTBCR.T2E is
also 1:

• The value of the corresponding PXNTable field is ignored by hardware, allowing the
field to be used by software.

• The behavior of the system is as if the value of the corresponding PXNTable field is
0, that is to say, the PXNTable field has an Effective value of 0.

G5.5.3.2 Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page
descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block as shown for
a stage 1 translation:

For a stage 1 descriptor, the attributes are:

PBHA, bits[62:59]

Page-based hardware attributes bits.

These bits are IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, the HTCR and the TTBCR2 registers both contain a control
bit for each PBHA bit in the translation tables that they control. When the value of that control bit
is 1, and the value of the corresponding Hierarchical permission disables bit is 1, hardware can use
that PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for
IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that
gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

The control bits for this feature are:

For a Non-secure EL2 translation regime:

HTCR.HWUnn

Controls whether Block or Page descriptor bit[nn] can be used by hardware.

Upper attributes Lower attributes

63 59 58 55 54 53 52

IGNORED

11 10 9 8 7 6 5 4 2

nG

AF

SH[1:0]

AP[2:1]

NS

AttrIndx[2:0]

PBHA
 †

62

‡ RES0 for a translation regime that cannot apply to execution at EL0.

IGNORED

† IGNORED if FEAT_HPDS2 is not implemented.

XN

PXN
 ‡

Contiguous

Reserved for software use
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11575
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
These controls apply only when the value of HTCR.HPD is 1.

For a PL1&0 translation regime:

TTBCR2.HWU1nn

For the translation tables indicated by TTBR1, controls whether Block or
Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TTBCR2.HPD1 is 1 and the
value of TTBCR.T2E is 1.

TTBCR2.HWU0nn

For the translation tables indicated by TTBR0, controls whether Block or
Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TTBCR2.HPD0 is 1 and the
value of TTBCR.T2E is 1.

Implementation of FEAT_HPDS2 requires the implementation of FEAT_AA32HPD, which
provides the Hierarchical permission disables bits. If FEAT_AA32HPD is implemented but
FEAT_HPDS2 is not implemented, then the control bits are RAZ/WI but other aspects of
FEAT_AA32HPD functionality are implemented. If neither feature is implemented, then:

• The control bits are RAZ/WI.

• The FEAT_AA32HPD identification registers indicate that the functionality is not supported,
see FEAT_AA32HPD.

• The TTBCR2 register encoding is treated as unallocated.

XN, bit[54] The Execute-never field, see Access permissions for instruction execution.

PXN, bit[53] The Privileged execute-never field, see Access permissions for instruction execution.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

Contiguous, bit[52]

Indicates that 16 adjacent translation table entries point to contiguous memory regions, see
Contiguous bit.

nG, bit[11] The not global bit. Determines how the translation is marked in the TLB, see Global and
process-specific translation table entries.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

AF, bit[10] The Access flag, see The Access flag.

SH, bits[9:8] Shareability field, see Memory region attributes.

AP[2:1], bits[7:6]

Access Permissions bits, see Memory access control.

Note
For consistency with the Short-descriptor translation table formats, the Long-descriptor format
defines AP[2:1] as the Access Permissions bits, and does not define an AP[0] bit.

AP[1] is RES1 in the Non-secure EL2 stage 1 translation tables.

NS, bit[5] Non-secure bit. For memory accesses from Secure state, specifies whether the output address is in
Secure or Non-secure memory, see Control of Secure or Non-secure memory access, VMSAv8-32
Long-descriptor format.

For memory accesses from Non-secure state, this bit is RES0 and is ignored by the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11576
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
AttrIndx[2:0], bits[4:2]

Stage 1 memory attributes index field, for the indicated Memory Attribute Indirection Register, see
VMSAv8-32 Long-descriptor format memory region attributes.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED.
For more information about these fields, see Other fields in the Long-descriptor translation table format
descriptors.

G5.5.3.3 Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page
descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block as shown for
a stage 2 translation:

For a stage 2 descriptor, the attributes are:

PBHA[3:1], bits[62:60]

Page-based hardware attributes bits.

These bits are IGNORED and reserved for System MMU use when FEAT_HPDS2 is not
implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for each PBHA bit in the
EL1&0 stage 2 translation tables:

• When the value of that control bit is 1, hardware can use the corresponding PBHA bit for
IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION
DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same
behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

• When the value of that control bit is 0, the corresponding PBHA bit is IGNORED and reserved
for System MMU use.

PBHA[0], bit[59]

Page-based hardware attributes bit.

This bit is IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for this bit in the EL1&0 stage
2 translation tables:

• When the value of that control bit is 1, hardware can use this bit for IMPLEMENTATION
DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the
value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the
PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

• When the value of that control bit is 0, this bit is IGNORED.

XN[1:0], bits[54:53]

The stage 2 Execute-never field, see Access permissions for instruction execution.

Lower attributes

11 10 9 8 7 6 5 2

(0)

Upper attributes

PBHA
†

63 59 58 55 54 53 52

IGNORED

XN[1:0]
‡

Contiguous

Reserved for software use

Reserved for use by System MMU

60

MemAttr[3:0]

AF

SH[1:0]

S2AP[1:0]

‡ Bit[53] is RES0 if FEAT_XNX is not implemented.

62

† Bits [62:60] are IGNORED and reserved for use by System MMU if FEAT_HPDS2 is not implemented.

Bits [59] is IGNORED if FEAT_HPDS2 is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11577
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
If FEAT_XNX is not implemented, bit[53] is RES0.

Contiguous, bit[52]

Indicates that 16 adjacent translation table entries point to contiguous memory regions, see
Contiguous bit.

AF, bit[10] The Access flag, see The Access flag.

SH, bits[9:8] Shareability field, see EL2 control of Non-secure memory region attributes.

S2AP, bits[7:6]

Stage 2 Access Permissions bits, see Hyp mode control of Non-secure access permissions.

Note

In the original VMSAv7-32 Long-descriptor attribute definition, this field was called HAP[2:1], for
consistency with the AP[2:1] field in the stage 1 descriptors and despite there being no HAP[0] bit.
VMSAv8-32 renames the field for greater clarity.

MemAttr, bits[5:2]

Stage 2 memory attributes, see EL2 control of Non-secure memory region attributes.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED.
For more information about these fields, see Other fields in the Long-descriptor translation table format
descriptors.

G5.5.4 Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format

Access to the Secure or Non-secure PA map describes how the NS bit in the translation table entries:

• For accesses from Secure state, determines whether the access is to Secure or Non-secure memory.

• Is ignored by accesses from Non-secure state.

In the Long-descriptor format:

• The NS bit relates only to the memory block or page at the output address defined by the descriptor.

• The descriptors also include an NSTable bit, see Hierarchical control of Secure or Non-secure memory
accesses, Long-descriptor format.

The NS and NSTable bits are valid only for memory accesses from Secure state. Memory accesses from Non-secure
state ignore the values of these bits.

G5.5.4.1 Hierarchical control of Secure or Non-secure memory accesses,
Long-descriptor format

For Long-descriptor Format Table descriptors for stage 1 translations, the descriptor includes an NSTable bit, which
indicates whether the table identified in the descriptor is in Secure or Non-secure memory. For accesses from Secure
state, the meaning of the NSTable bit is:

NSTable == 0 The defined table address is in the Secure PA map. In the descriptors in that translation table, NS
bits and NSTable bits have their defined meanings.

NSTable == 1 The defined table address is in the Non-secure PA map. Because this table is fetched from the
Non-secure address map, the NS and NSTable bits in the descriptors in this table must be ignored.
This means that, for this table:

• The value of the NS bit in any Block or Page descriptor is ignored. The block or page address
refers to Non-secure memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11578
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
• The value of the NSTable bit in any Table descriptor is ignored, and the table address refers
to Non-secure memory. When this table is accessed, the NS bit in any Block or Page
descriptor is ignored, and all descriptors in the table refer to Non-secure memory.

In addition, an entry fetched in Secure state is treated as non-global if it is read from Non-secure memory. That is,
these entries must be treated as if nG==1, regardless of the value of the nG bit. For more information about the nG
bit, see Global and process-specific translation table entries.

The effect of NSTable applies to later entries in the translation table walk, and so its effects can be held in one or
more TLB entries. Therefore, a change to NSTable requires coarse-grained invalidation of the TLB to ensure that
the effect of the change is visible to subsequent memory transactions.

Note

• When using the Long-descriptor Format, Table descriptors are defined only for the level 1 and level 2 of
lookup.

• Stage 2 translations are performed only for operations in Non-secure state, that can access only the
Non-secure address map. Therefore, the stage 2 descriptors do not include NS or NSTable bits.

G5.5.5 Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format

As described in Determining the translation table base address in the VMSAv8-32 translation regimes, two sets of
translation tables can be defined for each of the PL1&0 stage 1 translations, and TTBR0 and TTBR1 hold the base
addresses for the two sets of tables. The Long-descriptor translation table format provides more flexibility in
defining the boundary between using TTBR0 and using TTBR1. When a PL1&0 stage 1 address translation is
enabled, TTBR0 is always used. If TTBR1 is also used then:

• TTBR1 is used for the top part of the input address range.

• TTBR0 is used for the bottom part of the input address range.

The TTBCR.T0SZ and TTBCR.T1SZ size fields control the use of TTBR0 and TTBR1, as Table G5-2 shows.

For stage 1 translations, the input address is always a VA, and the maximum possible VA is (232-1).

When address translation is using the Long-descriptor translation table format:

• Figure G5-12 shows how, when TTBCR.T1SZ is zero, the value of TTBCR.T0SZ controls the boundary
between VAs that are translated using TTBR0, and VAs that are translated using TTBR1.

Table G5-2 Use of TTBR0 and TTBR1, Long-descriptor format

TTBCR Input address range using:

T0SZ T1SZ TTBR0 TTBR1

0b000 0b000 All addresses Not used

Ma

a. M, N must be greater than 0.The maximum possible value for each of T0SZ and
T1SZ is 7.

0b000 Zero to (2(32-M)-1) 232-M to maximum input address

0b000 Na Zero to (232-2(32-N)-1) 232-2(32-N) to maximum input address

Ma Na Zero to (2(32-M)-1) 232-2(32-N) to maximum input address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11579
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
Figure G5-12 Control of TTBR boundary, when TTBCR.T1SZ is zero

• Figure G5-13 shows how, when TTBCR.T1SZ is nonzero, the values of TTBCR.T0SZ and TTBCR.T1SZ
control the boundaries between VAs that are translated using TTBR0, and VAs that are translated using
TTBR1.

Figure G5-13 Control of TTBR boundaries, when TTBCR.T1SZ is nonzero

When T0SZ and T1SZ are both nonzero:

— If both fields are set to 0b001, the boundary between the two regions is 0x80000000. This is identical to
having T0SZ set to 0b000 and T1SZ set to 0b001.

— Otherwise, the TTBR0 and TTBR1 regions are non-contiguous. In this case, any attempt to access an
address that is in that gap between the TTBR0 and TTBR1 regions generates a Translation fault.

Note

The handling of the Contiguous bit can mean that the boundary between the translation regions defined
by the TCR_EL1.TnSZ values and the region for which an access generates a Translation fault is wider
than shown in Figure G5-13. That is, if the descriptor for an access to the region shown as generating
a fault has the Contiguous bit set to 1, the access might not generate a fault. Possible errors in
programming the translation table registers describes this possibility.

When using the Long-descriptor translation table format:

• The TTBCR contains fields that define memory region attributes for the translation table walk, for each
TTBR. These are the SH0, ORGN0, IRGN0, SH1, ORGN1, and IRGN1 bits.

• TTBR0 and TTBR1 each contain an ASID field, and the TTBCR.A1 field selects which ASID to use.

0x00000000

0xFFFFFFFF

0x02000000

TTBR0 region Effect of increasing TTBCR.T0SZ

TTBCR.T0SZ==0b000
Use of TTBR1 disabled

TTBR0 region

TTBR1 region

Boundary, when TTBCR.T0SZ==0b111

0x80000000 Boundary, when TTBCR.T0SZ==0b001

TTBCR.T1SZ==0b000

0x00000000

0xFFFFFFFF

TTBR0 region

Effect of increasing TTBCR.T1SZTTBR1 region

TTBCR.T0SZ==0b000

0x80000000
Boundary,

TTBCR.T1SZ==0b001

0x40000000

TTBR1 region

TTBR0 region

Boundary, when TTBCR.T0SZ==0b010

Effect of increasing TTBCR.T0SZ

Access generates a

Translation fault,

see text

Effect of

increasing

TTBCR.T1SZ

Boundary, when TTBCR.T1SZ==0b001

TTBCR.T0SZ>0b000

Effect of decreasing TTBCR.T0SZ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11580
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
For this translation table format, VMSAv8-32 Long-descriptor translation table format address lookup levels
summarizes the lookup levels, and Translation table walks, when using the VMSAv8-32 Long-descriptor translation
table format describes the possible translations.

G5.5.5.1 Possible errors in programming the translation table registers

In all the descriptions in this subsection, the size of the input address supported for a PL1&0 stage 1 translation
refers to the size specified by a TTBCR.TxSZ field.

Note

For a PL1&0 stage 1 translation, the input address range can be split so that the lower addresses are translated by
TTBR0 and the higher addresses are translated by TTBR1. In this case, each of input address sizes specified by
TTBCR.{T0SZ, T1SZ} is smaller than the total address size supported by the stage of translation.

The following are possible errors in the programming of TTBR0, TTBR1, and TTBCR. For the translation of a
particular address at a particular stage of translation, either:

• The block size being used to translate the address is larger than the size of the input address supported at a
stage of translation used in performing the required translation. This can occur only for the PL1&0 stage 1
translations, and only when either TTBCR.T0SZ or TTBCR.T1SZ is zero, meaning there is no gap between
the address range translated by TTBR0 and the range translated by TTBR1. In this case, this programming
error occurs if a block translated from the region that has TxSZ set to zero straddles the boundary between
the two address ranges. Example G5-2 shows an example of this mis-programming.

• The address range translated by a set of blocks marked as contiguous, by use of the contiguous bit, is larger
than the size of the input address supported at a stage of translation used in performing the required
translation.

Example G5-2 Error in programming the translation table registers

If TTBCR.T0SZ is programmed to 0 and TTBCR.T1SZ is programmed to 7, this means:

• TTBR0 translates addresses in the range 0x00000000-0xFDFFFFFF.

• TTBR1 translates addresses in the range 0xFE000000-0xFFFFFFFF.

The translation table indicated by TTBR0 might be programmed with a block entry for a 1GB region starting at
0xC0000000. This covers the address range 0xC0000000-0xFFFFFFFF, that overlaps the TTBR1 address range. This
means this block size is larger than the input address size supported for translations using TTBR0, and therefore this
is a programming error.

To understand why this must be a programming error, consider a memory access to address 0xFFFF0000. According
to the TTBCR.{T0SZ, T1SZ} values, this must be translated using TTBR1. However, the access matches a TLB
entry for the translation, using TTBR0, of the block at 0xC0000000. Hardware is not required to detect that the access
to 0xFFFF0000 is being translated incorrectly.

In these cases, an implementation might use one of the following approaches:

• Treat such a block as causing a Translation fault, even though the block is valid, and the address accessed
within that block is within the size of the input address supported at a stage of translation.

The block might be a block within a contiguous set of blocks.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11581
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
• Treat such a block as not causing a Translation fault, even though the address accessed within that block is
outside the size of the input address supported at a stage of translation, provided that both of the following
apply:

— The block is valid.

— At least one address within the block, or contiguous set of blocks, is within the size of the input address
supported at a stage of translation.

The block might be a block within a contiguous set of blocks.

Additional constraints apply to programming the VTCR, see Determining the required initial lookup level for stage
2 translations.

G5.5.6 VMSAv8-32 Long-descriptor translation table format address lookup levels

As stated at the start of this section, because the Long-descriptor translation table format is used for the Non-secure
PL1&0 stage 2 translations, the format must support input addresses of up to 40 bits.

Table G5-3 summarizes the properties of the different levels of address lookup when using this format.

For level 1 and level 2 tables, reducing the input address range reduces the number of addresses in the table and
therefore reduces the table size. The appropriate Translation Table Control Register specifies the input address
range.

Stage 1 translations require an input address range of up to 32 bits, corresponding to VA[31:0]. For these
translations:

• For a memory access from a mode other than Hyp mode, the Secure or Non-secure TTBR0 or TTBR1 holds
the translation table base address, and the Secure or Non-secure TTBCR is the control register.

• For a memory access from Hyp mode, HTTBR holds the translation table base address, and HTCR is the
control register.

Note

For translations controlled by TTBR0 and TTBR1, if neither TTBR has an input address range larger than 1GB,
then translation starts at level 2. Together, TTBR0 and TTBR1 can still cover the 32-bit VA input address range.

Stage 2 translations require an input address range of up to 40 bits, corresponding to IPA[39:0], and the supported
input address size is configurable in the range 25-40 bits. Table G5-3 indicates a requirement for the translation
mechanism to support a 39-bit input address range, Address[38:0]. Use of concatenated translation tables for the
initial stage 2 lookup describes how a 40-bit IPA address range is supported. For stage 2 translations:

• VTTBR holds the translation table base address, and VTCR is the control register.

Table G5-3 Properties of the three levels of address lookup with VMSAv8-32 Long-descriptor translation tables

Level
Input address Output addressa

Number of entries
Size Address rangeb Size Address range

First Up to 512GB Up to Address[38:0] 1GB Address[39:30] Up to 512

Second Up to 1GB Up to Address[29:0] 2MB Address[39:21] Up to 512

Third 2MB Address[20:0] 4KB Address[39:12] 512

a. Output address when an entry addresses a block of memory or a memory page. If an entry addresses the next level of address lookup it
specifies Address[39:12] for the next-level translation table.

b. Input address range for the translation table. See Use of concatenated level 1 translation tables for details of support for additional bits of
address at a given level, including possible support of a 40-bit input address range for stage 2 translations at level 1. For stage 1 translations
at level 1 the input address range is limited to the VA size of [31:0].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11582
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
• If a supplied input address is larger than the configured input address size, a Translation fault is generated.

G5.5.6.1 Use of concatenated translation tables for the initial stage 2 lookup

If a stage 2 translation would require 16 entries or fewer in its top-level translation table, that stage of translation
can, instead, be configured so that:

• It requires the corresponding number of concatenated translation tables at the next translation level, aligned
to the size of the block of concatenated translation tables.

• The stage 2 translation starts at that next translation level.

Note

Stage 2 translations always use the Long-descriptor translation table format.

This use of concatenated translation tables is:

• Required when the stage 2 translation supports a 40-bit input address range, see Use of concatenated level 1
translation tables.

• Supported for a stage 2 translation with an input address range of 31-34 bits, see Use of concatenated level 2
translation tables.

The use of concatenated translation tables requires the software that is defining the translation to:

• Define the concatenated translation tables with the required overall alignment.

• Program VTTBR to hold the address of the first of the concatenated translation tables.

• Program VTCR to indicate the required input address range and initial lookup level.

Note

The use of concatenated translation tables avoids the overhead of an additional level of translation.

G5.5.6.1.1 Use of concatenated level 1 translation tables

The Long-descriptor format translation tables provide 9 bits of address resolution at each level of lookup. However,
a 40-bit input address range with a translation granularity of 4KB requires a total of 28 bits of address resolution.
Therefore, a stage 2 translation that supports a 40-bit input address range requires two concatenated level 1
translation tables, together aligned to 8KB, where:

• The table at the address with PA[12:0]==0b0_0000_0000_0000 defines the translations for input addresses with
bit[39]==0.

• The table at the address with PA[12:0]==0b1_0000_0000_0000 defines the translations for input addresses with
bit[39]==1.

• The 8KB alignment requirement means that both tables have the same value for PA[39:13].

G5.5.6.1.2 Use of concatenated level 2 translation tables

A stage 2 translation with an input address range of 31-34 bits can start the translation either:

• With a level 1 lookup, accessing a level 1 translation table with 2-16 entries.

• With a level 2 lookup, accessing a set of concatenated level 2 translation tables.

Table G5-4 shows these options, for each of the input address ranges that can use this scheme.

Note

Because these are stage 2 translations, the input address range is an IPA range.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11583
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
See also Determining the required initial lookup level for stage 2 translations.

Table G5-4 Possible uses of concatenated translation tables for level 2 lookup

Input address range Lookup starts at level 1 Lookup starts at level 2

IPA range Size Required level 1 entries Number of concatenated tables Required alignmenta

IPA[30:0] 231 bytes 2 2 8KB

IPA[31:0] 232 bytes 4 4 16KB

IPA[32:0] 233 bytes 8 8 32KB

IPA[33:0] 234 bytes 16 16 64KB

a. Required alignment of the set of concatenated level 2 tables.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11584
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
G5.5.7 Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format

Figure G5-2 shows the possible address translations. If a stage of translation is controlled from an Exception level
that is using AArch32, the input and output address constraints and the registers that control the translation are as
follows:

Stage 1 translations

For all stage 1 translations:

• The input address range is up to 32 bits, as determined by either:

— TTBCR.T0SZ or TTBCR.T1SZ, for a PL1&0 stage 1 translation.

— HTCR.T0SZ, for an EL2 stage 1 translation.

• The output address range is 40 bits.

The stage 1 translations are:

Non-secure PL1&0 stage 1 translation

The stage 1 translation for memory accesses from Non-secure modes other than Hyp
mode. This translates a VA to an IPA. For this translation, when Non-secure EL1 is
using AArch32:

• Non-secure TTBR0 or TTBR1 holds the translation table base address.

• Non-secure TTBCR determines which TTBR is used.

Non-secure EL2 stage 1 translation

The stage 1 translation for memory accesses from Hyp mode, translates a VA to a PA.
For this translation, when EL2 is using AArch32, HTTBR holds the translation table
base address.

Secure PL1&0 stage 1 translation

The stage 1 translation for memory accesses from Secure modes, translates a VA to a
PA. For this translation, when the Secure PL1 modes are using AArch32:

• Secure TTBR0 or TTBR1 holds the translation table base address.

• Secure TTBCR determines which TTBR is used.

Stage 2 translation

Non-secure PL1&0 stage 2 translation

The stage 2 translation for memory accesses from Non-secure modes other than Hyp
mode, and translates an IPA to a PA. For this translation, when EL2 is using AArch32:

• The input address range is 40 bits, and VTCR.T0SZ determines the input address
size.

• The output address range depends on the implemented memory system, and is up
to 40 bits.

• VTTBR holds the translation table base address.

• VTCR specifies the required input address range, and whether the initial lookup
is at level 1 or at level 2.

The descriptions of the VMSAv8-32 translation stages state that the maximum output address size is 40 bits.
However, the register and Long-descriptor Format descriptor fields that hold these addresses are 48 bits wide. If
bits[47:40] of an output address are not all zero, then the address generates an Address size fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11585
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
The Long-descriptor translation table format provides up to three levels of address lookup, as described in
VMSAv8-32 Long-descriptor translation table format address lookup levels, and the initial lookup, in which the
MMU reads the translation table base address, is at either level 1 or level 2. The following determines the level of
the initial lookup:

• For a stage 1 translation, the required input address range. For more information, see Determining the
required initial lookup level for stage 1 translations.

• For a stage 2 translation, the level specified by the VTCR.SL0 field. For more information, see Determining
the required initial lookup level for stage 2 translations.

Note

For a stage 2 translation, the size of the required input address range constrains the VTCR.SL0 value.

Figure G5-14 shows how the descriptor address for the initial lookup for a translation using the Long-descriptor
translation table format is determined from the input address and the TTBR value. This figure shows the lookup for
a translation that starts with a level 1 lookup, that translates bits[39:30] of the input address, zero extended if
necessary.

Figure G5-14 VMSAv8-32 Long-descriptor initial lookup, starting at level 1

If bits[47:40] of the TTBR are not zero then the initial lookup will generate an Address size fault, see Address size
fault.

For a translation that starts with a level 1 lookup, as shown in Figure G5-14:

For a stage 1 translation

n is in the range 4-5 and:

• For a memory access from Hyp mode:

— HTTBR is the TTBR.

— n=5-(HTCR.T0SZ).

• For other accesses:

— The Secure or Non-secure instance of TTBR0 or TTBR1 is the TTBR.

— n=(5-TTBCR.TxSZ), where x is 0 when using TTBR0, and 1 when using TTBR1.

SBZ
§

Input address‡

39

n+27

n+26

30 29 0

39 n
n-1

3 2 0

0 0 0 Descriptor address
†

See text for more information about the translation table base register used, and the value of n.

† For a Non-secure PL1&0 stage 1 translation, the IPA of the descriptor. Otherwise, the PA of the descriptor.

‡ This field is absent if n is 13.

Translation table base address[39:n]RES0

63 56 55 48 47 n n-1 0

Register-defined RES0 TTBR

40 39

§ See the lookup description for more information about bits[40:47] of the TTBR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11586
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
For a stage 2 translation

n is in the range 4-13 and:

• VTTBR is the TTBR.

• n=5-(VTCR.T0SZ).

For a translation that starts with a level 2 lookup, the descriptor address is obtained in the same way, except that
bits[(n+17):21] of the input address provide bits[(n-1):3] of the descriptor address, where:

For a stage 1 translation

n is in the range 7-12. As Determining the required initial lookup level for stage 1 translations
shows, for a stage 1 translation to start with a level 2 lookup, the corresponding T0SZ or T1SZ field
must be 2 or more. This means:

• For a memory access from Hyp mode, n=14-HTCR.T0SZ.

• For other memory accesses, n=14-(TTBCR.TxSZ), where x is 0 when using TTBR0, and 1
when using TTBR1.

For a stage 2 translation

n is in the range 7-16. For a stage 2 translation to start with a level 2 lookup, VTCR.SL0 is 0b00, and
n=14-(VTCR.T0SZ).

The following sections describe how the level of the initial lookup is determined:

• Determining the required initial lookup level for stage 1 translations.

• Determining the required initial lookup level for stage 2 translations.

Address translation examples using the VMSAv8-32 Long descriptor translation table format shows examples of
full translation flows, to an entry for a 4KB memory page, for lookups starting at level 1 and lookups starting at
level 2.

G5.5.7.1 Determining the required initial lookup level for stage 1 translations

For a stage 1 translation, the required input address range, indicated by a T0SZ or T1SZ field in a translation table
control register, determines the initial lookup level. The size of this input address region is 2(32-TxSZ) bytes, and if
this size is:

• Less than or equal to 230 bytes, the required start is at level 2, and translation requires two levels of table to
map to 4KB pages. This corresponds to a TxSZ value of 2 or more.

• More than 230 bytes, the required start is at level 1, and translation requires three levels of table to map to
4KB pages. This corresponds to a TxSZ value that is less than 2.

For the PL1&0 stage 1 translations, the TTBCR:

• Splits the 32-bit VA input address range between TTBR0 and TTBR1, see Selecting between TTBR0 and
TTBR1, VMSAv8-32 Long-descriptor translation table format.

• Holds the input address range sizes for TTBR0 and TTBR1, in the TTBCR.T0SZ and TTBCR.T1SZ fields.

For the EL2 stage 1 translations, HTCR.T0SZ indicates the size of the required input address range. For example,
if this field is 0b000, it indicates a 32-bit VA input address range, and translation lookup must start at level 1.

G5.5.7.2 Determining the required initial lookup level for stage 2 translations

For a PL1&0 stage 2 translation, the output address range from the PL1&0 stage 1 translations determines the
required input address range for the stage 2 translation.

VTCR.SL0 indicates the starting level for the lookup. The permitted SL0 values are:

0b00 Stage 2 translation lookup must start at level 2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11587
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
0b01 Stage 2 translation lookup must start at level 1.

In addition, VTCR.T0SZ must indicate the required input address range. The size of the input address region is
2(32-T0SZ) bytes.

Note

VTCR.T0SZ holds a four-bit signed integer value, meaning it supports values from -8 to 7. This is different from
the other translation control registers, where TnSZ holds a three-bit unsigned integer, supporting values from 0 to 7.

The programming of VTCR must follow the constraints shown in Table G5-5, otherwise any attempt to perform a
translation table walk that uses the stage 2 address translation generates a stage 2 level 1 Translation Fault. The table
also shows how the VTCR.SL0 and VTCR.T0SZ values determine the VTTBR.BADDR field width.

Note

If VTCR.SL0 is programmed to a reserved value then the constraints shown in Table G5-5 are not met, and a
translation table walk that uses stage 2 translation generates a stage 2 level 1 Translation fault.

In addition, VTCR.S must be programmed to the value of T0SZ[3], otherwise behavior is CONSTRAINED
UNPREDICTABLE with the resulting behavior being that VTCR.T0SZ is treated as an UNKNOWN value.

Note

VTCR.T0SZ being treated as an UNKNOWN value results in a stage 2 level 1 Translation Fault if that UNKNOWN
value is not consistent with the programmed value of VTCR.SL0.

CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR describes these CONSTRAINED
UNPREDICTABLE behaviors.

Where necessary, the initial lookup level provides multiple concatenated translation tables, as described in Use of
concatenated level 2 translation tables. This section also gives more information about the alternatives, shown in
Table G5-5, when R is in the range 231-234.

G5.5.8 The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format

This section gives the algorithm for finding the translation table entry that corresponds to a given IA, for each
required level of lookup. The algorithm encodes the descriptions of address translation given earlier in this section.
The VMSAv8-32 Long-descriptor format uses a 4KB translation granule.

The description uses the following terms:

BaseAddr The base address for the level of lookup, as defined by:

• For the initial lookup level, the TTBR.BADDR base address field in the appropriate TTBR,
see the description of TnSZ.

Table G5-5 Input address range constraints on programming VTCR

VTCR.SL0 VTCR.T0SZ Input address range, R Initial lookup level BADDR[39:x] widtha

a. The first range corresponds to the first T0SZ value, the second range to the second T0SZ value.

0b00 2 to 7 R≤230bytes Level 2 [39:12] to [39:7]

0b00 -2 to 1 230<R≤234bytes Level 2 [39:16] to [39:13]

0b01 -2 to 1 Level 1 [39:7] to [39:4]

0b01 -8 to -3 234<R Level 1 [39:13] to [39:8]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11588
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.5 The VMSAv8-32 Long-descriptor translation table format
• Otherwise, the translation table address returned by the previous level of lookup.

IA The supplied IA for this stage of translation.

TnSZ The translation table size for this stage of translation:

For PL1&0 stage 1 Either:

• TTBCR.T0SZ if the translation is using TTBR0.

• TTBCR.T1SZ if the translation is using TTBR1.

For PL1&0 stage 2 VTCR.T0SZ. The translation uses VTTBR.

For EL2 stage 1 HTCR.T0SZ. The translation uses HTTBR.

SL0 VTCR.SL0. Applies to the Non-secure PL1&0 stage 2 translation only.

Table G5-6 shows the Translation Table descriptor address, for each level of lookup. The table shows only
architecturally-valid programming of the TCR. See also Possible errors in programming the translation table
registers.

Table G5-6 Translation table entry addresses, VMSAv8-32 using Long-descriptor format

Lookup
level

Entry address and conditions
General
conditions

Stage 1 translation Stage 2 translation

One BaseAddr[39:x]:IA[y:30]:0b000

ifa 0 TnSZ 1 then x = (5 - TnSZ)

BaseAddr[39:x]:IA[y:30]:0b000

if SL0b == 1 then

ifa -8 T0SZ 1 then x = (5 - T0SZ)

y = (x + 26)

Two BaseAddr[39:x]:IA[y:21]:0b000

if a 2 TnSZ 7 then x = (14 - TnSZ)

elsec x =12

BaseAddr[39:x]:IA[y:21]:0b000

if SL0 == 0 then

ifa -2 T0SZ 7 then x = (14 - T0SZ)

elsifc SL0b == 1 then x = 12

y = (x + 17)

Three BaseAddr[39:12]:IA[20:12]:0b000 BaseAddr[39:12]:IA[20:12]:0b000 -

a. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Use of concatenated translation tables
for the initial stage 2 lookup.

b. SL0 == 0 if the initial lookup is level 2, SL0 == 1 if the initial lookup is level 1.

c. This is the case where this level of lookup is not the initial level of lookup.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11589
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
G5.6 Memory access control

In addition to an output address, a translation table entry that refers to page or region of memory includes fields that
define properties of the target memory region. Information returned by a translation table lookup describes the
classification of those fields as address map control, access control, and memory attribute fields. The access control
fields, described in this section, determine whether the PE, in its current state, is permitted to perform the required
access to the output address given in the Translation Table descriptor. If a translation stage does not permit the
access, then an MMU fault is generated for that translation stage, and no memory access is performed.

The following sections describe the memory access controls:

• About access permissions.

• About the PAN bit.

• Access permissions for instruction execution.

• Domains, Short-descriptor format only.

• The Access flag.

• Hyp mode control of Non-secure access permissions.

G5.6.1 About access permissions

The Translation Table descriptors include fields that define access permissions for data accesses and for instruction
fetches. This section introduces those fields. In addition:

• System register controls can prevent execution from writable locations, see Preventing execution from
writable locations.

• In Armv8.1, the PSTATE.PAN can affect the access permissions for privileged data accesses, see About the
PAN bit.

Note

This section gives a general description of memory access permissions. Software executing at PL1 in Non-secure
state can see only the access permissions defined by the Non-secure PL1&0 stage 1 translations. However, software
executing at EL2 can modify these permissions, as described in Hyp mode control of Non-secure access
permissions. This modification is invisible to Non-secure software executing at EL1 or EL0.

Access permission bits in a Translation Table descriptor control access to the corresponding memory region. The
details of this control depend on the translation table format, as follows:

Short-descriptor format

This format supports two options for defining the access permissions:

• Three bits, AP[2:0], define the access permissions.

• Two bits, AP[2:1], define the access permissions, and AP[0] can be used as an Access flag.

SCTLR.AFE selects the access permissions option. Setting this bit to 1, to enable the Access flag,
also selects use of AP[2:1] to define access permissions.

Arm deprecates any use of the AP[2:0] scheme for defining access permissions.

Long-descriptor format

AP[2:1] to control the access permissions, and the descriptors provide an AF bit for use as an Access
flag. This means VMSAv8-32 behaves as if the value of SCTLR.AFE is 1, regardless of the value
that software has written to this bit.

Note

When use of the Long-descriptor format is enabled, SCTLR.AFE is UNK/SBOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11590
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
The Access flag describes the Access flag, for both translation table formats.

The XN and PXN bits provide additional access controls for instruction fetches, see Access permissions for
instruction execution.

An attempt to perform a memory access that the translation table access permission bits do not permit generates a
Permission fault, for the corresponding stage of translation. However, when using the Short-descriptor translation
table format, it generates the fault only if the access is to memory in the Client domain, see Domains,
Short-descriptor format only.

Note

For the Non-secure PL1&0 translation regime, memory accesses are subject to two stages of translation. Each stage
of translation has its own, independent, fault checking. Fault handling is different for the two stages, see Exception
reporting in a VMSAv8-32 implementation.

The following sections describe the two access permissions models:

• AP[2:1] access permissions model.

• AP[2:0] access permissions control, Short-descriptor format only. This section includes some information
on access permission control in earlier versions of the Arm VMSA.

G5.6.1.1 AP[2:1] access permissions model

Note

Arm recommends that this model is always used, even where the AP[2:0] model is permitted. Some documentation
describes the AP[2:1] model as the simplified access permissions model.

This access permissions model is used if the translation is either:

• Using the Long-descriptor translation table format.

• Using Short-descriptor translation table format, and the SCTLR.AFE bit is set to 1.

In this model:

• One bit, AP[2], selects between read-only and read/write access.

• A second bit, AP[1], selects between Application level (EL0) and System level (PL1) control.

For the Non-secure EL2 stage 1 translations, AP[1] is SBO.

This provides four access combinations:

• Read-only at all privilege levels.

• Read/write at all privilege levels.

• Read-only at PL1, no access by software executing at EL0.

• Read/write at PL1, no access by software executing at EL0.

Table G5-7 shows this access control model.

Table G5-7 VMSAv8-32 AP[2:1] access permissions model

AP[2], disable write access AP[1], enable unprivileged access Access

0 0a Read/write, only at PL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11591
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
G5.6.1.1.1 Hierarchical control of access permissions, Long-descriptor format

The Long-descriptor translation table format introduces a mechanism that entries at one level of translation table
lookup can use to set limits on the permitted entries at subsequent levels of lookup. This applies to the access
permissions, and also to the restrictions on instruction fetching described in Hierarchical control of instruction
fetching, Long-descriptor format.

The restrictions apply only to subsequent levels of lookup at the same stage of translation. The APTable[1:0] field
restricts the access permissions, as Table G5-8 shows.

However, in an implementation that includes FEAT_AA32HPD, when hierarchical control of data access
permissions is disabled for a translation regime, the information in this subsection does not apply. See Attribute
fields in VMSAv8-32 Long-descriptor translation table format descriptors.

As stated in the table footnote, for the Non-secure EL2 stage 1 translation tables, APTable[0] is reserved, SBZ.

Note

The APTable[1:0] settings are combined with the translation table access permissions in the Translation Tables
descriptors accessed in subsequent levels of lookup. They do not restrict or change the values entered in those
descriptors.

The Long-descriptor format provides APTable[1:0] control only for the stage 1 translations. The corresponding bits
are SBZ in the stage 2 Translation Table descriptors.

The effect of APTable applies to later entries in the translation table walk, and so its effects can be held in one or
more TLB entries. Therefore, a change to APTable requires coarse-grained invalidation of the TLB to ensure that
the effect of the change is visible to subsequent memory transactions.

G5.6.1.2 AP[2:0] access permissions control, Short-descriptor format only

This access permissions model applies when using the Short-descriptor translation tables format, and the
SCTLR.AFE bit is set to 0. Arm deprecates any use of this access permissions model.

0 1 Read/write, at any privilege level

1 0a Read-only, only at PL1

1 1 Read-only, at any privilege level

a. Not valid for Non-secure EL2 stage 1 translation tables. AP[1] is SBO in these tables.

Table G5-7 VMSAv8-32 AP[2:1] access permissions model (continued)

AP[2], disable write access AP[1], enable unprivileged access Access

Table G5-8 Effect of APTable[1:0] on subsequent levels of lookup

APTable[1:0] Effect

00 No effect on permissions in subsequent levels of lookup.

01a Access at EL0 not permitted, regardless of permissions in subsequent levels of lookup.

10 Write access not permitted, at any Exception level, regardless of permissions in subsequent levels
of lookup.

11a Regardless of permissions in subsequent levels of lookup:

• Write access not permitted, at any Exception level.

• Read access not permitted at EL0.

a. Not valid for the Non-secure EL2 stage 1 translation tables. In those tables, APTable[0] is SBZ.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11592
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
When SCTLR.AFE is set to 0, ensuring that the AP[0] bit is always set to 1 effectively changes the access model to
the simpler model described in AP[2:1] access permissions model.

Table G5-9 shows the full AP[2:0] access permissions model:

Note

• VMSAv8-32 supports the full set of access permissions shown in Table G5-9 only when SCTLR.AFE is set
to 0. When SCTLR.AFE is set to 1, the only supported access permissions are those described in AP[2:1]
access permissions model.

• Some old documentation describes the AP[2] bit in the translation table entries as the APX bit.

G5.6.2 About the PAN bit

When the value of PSTATE.PAN is 1, any privileged data access from PL1 or EL2 to a virtual memory address that
is accessible at EL0 generates a Permission fault.

When the value of PSTATE.PAN is 0, the translation system is the same as in Armv8.0.

A corresponding PAN bit is added to CPSR and SPSR for exception returns, and DSPSR for entry to and exit from
Debug state.

A new SPAN bit is added to SCTLR that controls whether the PAN state bit is set on taking an exception to EL1
from either Secure or Non-secure state, or to EL3 from Secure state when EL3 is using AArch32.

CPSR.PAN bit can be written using an MSR instruction at PL1 or higher. Data writes to CPSR.PAN using an MSR
instruction at EL0 are ignored. The value that is returned for an MRS instruction of CPSR from EL0 is UNKNOWN. In
keeping with all other writes to the CPSR, other than for instruction fetches, the effect of the PAN state bit does not
need to be explicitly synchronized.

The PAN state bit has no effect on:

• Data Cache instructions.

• Address translation instructions, other than ATS1CPRP and ATS1CPWP when FEAT_PAN2 is implemented.

• Unprivileged instructions, LDRBT, LDRHT, LDRT, LDRSBT, LDRSHT, STRBT, STRHT, STRT, STRSBT, and STRSHT, unless
HCR_EL2.{E2H, TGE} == {1, 0}.

• Instruction accesses.

Table G5-9 VMSAv8-32 MMU access permissions

AP[2] AP[1:0] PL1 access Unprivileged access Description

0 00 No access No access All accesses generate Permission faults

01 Read/write No access Access only at PL1

10 Read/write Read-only Writes at EL0 generate Permission faults

11 Read/write Read/write Full access

1 00 - - Reserved

01 Read-only No access Read-only, only at PL1

10 Read-only Read-only Read-only at any Exception level, deprecateda

a. From VMSAv7, Arm strongly recommends use of the 0b11 encoding for Read-only at any Exception level.

11 Read-only Read-only Read-only at any Exception levelb

b. This mapping was introduced in VMSAv7, and is reserved in earlier versions of the VMSA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11593
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
• Manager domains.

The PAN bit has no effect when the first stage of translation is disabled for the current translation regime or when
the first stage of translation for the current translation regime does not describe the permissions for access at EL0.

If access is disabled, then the access will give rise to a stage 1 Permission fault.

On an exception taken from AArch32:

• CPSR.PAN is copied to SPSR_ELx.PAN, when the target Exception level is AArch64.

• CPSR.PAN is copied to SPSR.PAN, when the target Exception level is AArch32.

On an exception return from AArch32 to AArch32, SPSR.PAN is copied to CPSR.PAN.

On entry to Debug state, CPSR.PAN is copied to DSPSR.PAN.

On exit from Debug state, DSPSR.PAN is copied to CPSR.PAN.

The CPSR.PAN bit is not an Execution state bit.

Note

• In Non-debug state, in AArch32 state, software can use the SETPAN #imm instruction to modify PSTATE.PAN.

• In Debug state, in AArch32 state, a debugger can use the ERET instruction to perform a DRPS operation to
modify PSTATE.PAN.

G5.6.3 Access permissions for instruction execution

Execute-never controls provide an additional level of control on memory accesses permitted by the access
permissions settings. These controls are:

XN, Execute-never

Descriptor bit[54], defined as XN for:

• Stage 1 of any translation regime.

• Stage 2 translations when FEAT_XNX is not implemented.

Note
XN[1:0], Execute-never, stage 2 only describes the stage 2 control when FEAT_XNX is
implemented.

This field applies to execution at any Exception level to which the stage of translation applies. A
value of 0 indicates that this control permits execution.

PXN, Privileged execute-never, stage 1 only

Descriptor bit[53], used only for stage 1 of any translation regime for which the stage 1 translation
can support two VA ranges:

• For stage 1 of a translation regime for which the stage 1 translation supports only a single VA
range the stage 1 descriptors define a PXN field that is RES0, meaning it is ignored by
hardware.

This field applies only to execution at an Exception level higher than EL0. A value of 0 indicates
that this control permits execution.

XN[1:0], Execute-never, stage 2 only

Descriptor bits[54:53], defined as XN[1:0] for:

• Stage 2 translations when FEAT_XNX is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11594
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
Table G5-10 shows the operation of this control.

Note

For stage 2 translations when FEAT_XNX is not implemented, descriptor bit[53] is RES0, meaning
it is ignored by hardware, and bit[54] is the XN control, see XN, Execute-never.

Executing an instruction at ELx in a particular Security state generates a Permission fault unless all of the following
are true for the instruction address:

• Any stage 1 execute-never control that applies to execution at ELx in the current Security state permits
execution.

• If the translation regime that applies to ELx in the current Security state has two stages of translations, the
stage 2 execute-never control that applies to execution at ELx permits execution.

• Read access is permitted.

However, if a stage 1 translation is using the Short-descriptor translation table format and the address is in a
Managers domain the stage 1 access permissions are not checked, and therefore the access cannot cause a stage 1
Permission fault, see Domains, Short-descriptor format only.

See also Hyp mode control of Non-secure access permissions.

In addition, System register controls can enforce execute-never restrictions, regardless of the settings in the
translation table XN and PXN fields, see:

• Restriction on Secure instruction fetch.

• Preventing execution from writable locations.

The execute-never controls apply also to speculative instruction fetching. This means a speculative instruction fetch
from a memory region that is execute-never at the current level of privilege is prohibited.

The execute-never controls means that, when the stage of address translation is enabled, the PE can fetch, or
speculatively fetch, an instruction from a memory location only if all of the following apply:

• If using the Short-descriptor translation table format, the Translation Table descriptor for the location does
not indicate that it is in a No access domain.

• If using the Long-descriptor translation table format, or using the Short descriptor format and the descriptor
indicates that the location is in a Client domain, in the descriptor for the location the following apply:

— The stage 1 execute-never control for the Exception level at which the instruction is executed permits
execution.

— For a translation regime with two stages of address translation, the stage 2 execute-never control that
applies to the Exception level at which the instruction is executed permits execution.

— The access permissions permit a read access from the current PE mode.

Table G5-10 XN[1:0] stage 2 access permissions model

XN[1] XN[0] Access

0 0 The stage 2 control permits execution at EL1 and EL0 if read access is permitted

0 1 The stage 2 control does not permit execution at EL1, but permits execution at EL0 if read access
is permitted

1 0 The stage 2 control does not permit execution at EL1 or at EL0

1 1 The stage 2 control permits execution at EL1 if read access is permitted, but does not permit
execution at EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11595
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
• No other Prefetch Abort condition exists.

Note

• The PXN control applies to the PE privilege when it attempts to execute the instruction. In an implementation
that fetches instructions speculatively, this might not be the privilege when the instruction was prefetched.
Therefore, the architecture does not require the PXN control to prevent instruction fetching.

• Although the XN control applies to speculative fetching, on a speculative instruction fetch from an XN
location, no Permission fault is generated unless the PE attempts to execute the instruction that would have
been fetched from that location. This means that, if a speculative fetch from an XN location is attempted, but
there is no attempt to execute the corresponding instruction, a Permission fault is not generated.

• The software that defines a translation table must mark any region of memory that is read-sensitive as XN,
to avoid the possibility of a speculative fetch accessing the memory region. This means it must mark any
memory region that corresponds to a read-sensitive peripheral as XN. Hardware does not prevent speculative
accesses to a region of any Device memory type unless that region is also marked as execute-never for all
Exception levels from which it can be accessed.

• When using the Short-descriptor translation table format, the XN attribute is not checked for domains marked
as Manager. Therefore, the system must not include read-sensitive memory in domains marked as Manager,
because the XN field does not prevent speculative fetches from a Manager domain.

When no stage of address translation for the translation regime is enabled, memory regions cannot have XN or PXN
attributes assigned. Behavior of instruction fetches when all associated address translations are disabled describes
how disabling all MMUs affects instruction fetching.

G5.6.3.1 Hierarchical control of instruction fetching, Long-descriptor format

The Long-descriptor translation table format introduces a mechanism that means entries at one level of translation
tables lookup can set limits on the permitted entries at subsequent levels of lookup. This applies to the restrictions
on instruction fetching, and also to the access permissions described in Hierarchical control of access permissions,
Long-descriptor format.

Note

Similar hierarchical controls apply to data accesses, see Hierarchical control of access permissions,
Long-descriptor format.

However, in an implementation that includes FEAT_AA32HPD, when hierarchical control of instruction fetching
is disabled for a translation regime, the information in this subsection does not apply. See Attribute fields in
VMSAv8-32 Long-descriptor translation table format descriptors.

The restrictions apply only to subsequent levels of lookup at the same stage of translation, and:

• XNTable restricts the XN control:

— When XNTable is set to 1, the XN field is treated as 1 in all subsequent levels of lookup, regardless of
the actual value of the field.

— When XNTable is set to 0 it has no effect.

• PXNTable restricts the PXN control:

— When PXNTable is set to 1, the PXN field is treated as 1 in all subsequent levels of lookup, regardless
of the actual value of the field.

— When PXNTable is set to 0 it has no effect.

Note

The XNTable and PXNTable settings are combined with the XN and PXN fields in the Translation Table descriptors
accessed at subsequent levels of lookup. They do not restrict or change the values entered in those descriptors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11596
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
The XNTable and PXNTable controls are provided only in the Long-descriptor translation table format, and only
for stage 1 translations. The corresponding bits are SBZ in the stage 2 Translation Table descriptors.

The effect of XNTable or PXNTable applies to later entries in the translation table walk, and so its effects can be
held in one or more TLB entries. Therefore, a change to XNTable or PXNTable requires coarse-grained invalidation
of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.

G5.6.3.2 Preventing execution from writable locations

The architecture provides control bits that, when the corresponding stage 1 address translation is enabled, force
writable memory to be treated as XN or PXN, regardless of the value of the XN or PXN field. When the translation
stages are controlled by an Exception level that is using AArch32:

• For PL1&0 stage 1 translations, when SCTLR.WXN is set to 1, all regions that are writable at stage 1 of the
address translation are treated as XN.

• For PL1&0 stage 1 translations, when SCTLR.UWXN is set to 1, an instruction fetch is treated as accessing
a PXN region if it accesses a region that software executing at EL0 can write to.

• For Non-secure EL2 stage 1 translations, when HSCTLR.WXN is set to 1, all regions that are writable at
stage 1 of the address translation are treated as XN.

Note

• The SCTLR.WXN controls are intended to be used in systems with very high security requirements.

• Setting a WXN or UWXN bit to 1 changes the interpretation of the translation table entry, overriding a zero
value of an XN or PXN field. It does not cause any change to the translation table entry.

For any given virtual machine, Arm expects WXN and UWXN to remain static in normal operation. In particular,
it is IMPLEMENTATION DEFINED whether TLB entries associated with a particular VMID reflect the effect of the
values of these fields. A generic sequence to ensure synchronization of a change to these fields, when that change
is made without a corresponding change of VMID, is:

 Change the WXN or UWXN bit
 ISB ; This ensures synchronization of the change
 Invalidate entire TLB of associated entries
 DSB ; This completes the TLB Invalidation
 ISB ; This ensures instruction synchronization

As with all Permission fault checking, if the stage 1 translation is using the Short-descriptor translation table format,
the permission checks are performed only for Client domains. For more information, see About access permissions.

For more information about address translation, see About address translation for VMSAv8-32.

G5.6.3.3 Restriction on Secure instruction fetch

EL3 provides a Secure instruction fetch bit, SCR.SIF. When this bit is 1, any attempt in Secure state to execute an
instruction fetched from Non-secure physical memory causes a Permission fault. As with all Permission fault
checking, when using the Short-descriptor format translation tables the check applies only to Client domains, see
About access permissions.

Arm expects SCR.SIF to be static during normal operation. In particular, whether the TLB holds the effect of the
SIF bit is IMPLEMENTATION DEFINED. The generic sequence to ensure visibility of a change to the SIF bit is:

 Change the SCR.SIF bit
 ISB ; This ensures synchronization of the change
 Invalidate entire TLB
 DSB ; This completes the TLB Invalidation
 ISB ; This ensures instruction synchronization
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11597
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
G5.6.4 Domains, Short-descriptor format only

A domain is a collection of memory regions. The Short-descriptor translation table format supports 16 domains, and
requires the software that defines a translation table to assign each VMSAv8-32 memory region to a domain. When
using the Short-descriptor format:

• Level 1 translation table entries for translation tables and Sections include a domain field.

• Translation table entries for Supersections do not include a domain field. The Short-descriptor format defines
Supersections as being in domain 0.

• Level 2 translation table entries inherit a domain setting from the parent level 1 Translation Table descriptor.

• Each TLB entry includes a domain field.

The domain field specifies which of the 16 domains the entry is in, and a two-bit field in the DACR defines the
permitted access for each domain. The possible settings for each domain are:

No access Any access using the Translation Table descriptor generates a Domain fault.

Clients On an access using the Translation Table descriptor, the access permission attributes are checked.
Therefore, the access might generate a Permission fault.

Managers On an access using the Translation Table descriptor, the access permission attributes are not
checked. Therefore, the access cannot generate a Permission fault.

See The MMU fault-checking sequence for more information about how, when using the Short-descriptor translation
table format, the Domain attribute affects the checking of the other attributes in the Translation Table descriptor.

Note

A single program might:

• Be a Client of some domains.

• Be a Manager of some other domains.

• Have no access to the remaining domains.

The Long-descriptor translation table format does not support domains. When a stage of translation is using this
format, all memory is treated as being in a Client domain, and the settings in the DACR are ignored.

G5.6.5 The Access flag

The Access flag indicates when a page or section of memory is accessed for the first time since the Access flag in
the corresponding Translation Table descriptor was set to 0:

• If address translation is using the Short-descriptor translation table format, it must set SCTLR.AFE to 1 to
enable use of the Access flag. Setting this bit to 1 redefines the AP[0] bit in the Translation Table descriptors
as an Access flag, and limits the access permissions information in the Translation Table descriptors to
AP[2:1], as described in AP[2:1] access permissions model.

• The Long-descriptor format always supports an Access flag bit in the Translation Table descriptors, and
address translation using this format behaves as if SCTLR.AFE is set to 1, regardless of the value of that bit.

In Armv8.0, the Access flag is managed by software as described in Software management of the Access flag.

Note

Previous versions of the Arm architecture optionally supported hardware management of the Access flag. Armv8.0
obsolete this option. However, FEAT_HAFDBS provides a new mechanism for hardware management of the
Access flag, that is supported only for the VMSAv8-64 translation regimes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11598
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
G5.6.5.1 Software management of the Access flag

Armv8.0 requires that software manages the Access flag. This means an Access flag fault is generated whenever an
attempt is made to read into the TLB a Translation Table descriptor entry for which the value of the Access flag is 0.

Note

When using the Short-descriptor translation table format, Access flag faults are generated only if SCTLR.AFE is
set to 1, to enable use of a Translation Table descriptor bit as an Access flag.

The Access flag mechanism expects that, when an Access flag fault occurs, software resets the Access flag to 1 in
the translation table entry that caused the fault. This prevents the fault occurring the next time that memory location
is accessed. Entries with the Access flag set to 0 are never held in the TLB, meaning software does not have to flush
the entry from the TLB after setting the flag.

Note

If a system incorporates components that can autonomously update translation table entries that are shared with the
Arm PE, then the software must be aware of the possibility that such components can update the access flag
autonomously.

In such a system, system software should perform any changes of translation table entries with an Access flag of 0,
other than changes to the Access flag value, by using an Load-Exclusive/Store-Exclusive loop, to allow for the
possibility of simultaneous updates.

G5.6.6 Hyp mode control of Non-secure access permissions

When EL2 is using AArch32, Non-secure software executing in Hyp mode controls two sets of translation tables,
both of which use the Long-descriptor translation table format:

• The translation tables that control the Non-secure EL2 stage 1 translations. These map VAs to PAs, for
memory accesses made when executing in Non-secure state in Hyp mode, and are indicated and controlled
by the HTTBR and HTCR.

These translations have similar access controls to other Non-secure stage 1 translations using the
Long-descriptor translation table format, as described in:

— AP[2:1] access permissions model.

— Access permissions for instruction execution.

The differences from the Non-secure stage 1 translations are that:

— The APTable[0], PXNTable, and PXN bits are reserved, SBZ.

— AP[1] is reserved, SBO.

• The translation tables that control the Non-secure PL1&0 stage 2 translations. These map the IPAs from the
stage 1 translation onto PAs, for memory accesses made when executing in Non-secure state at PL1 or EL0,
and are indicated and controlled by the VTTBR and VTCR.

The descriptors in the virtualization translation tables define stage 2 access permissions, that are combined
with the permissions defined in the stage 1 translation. This section describes this combining of access
permissions.

Note

The level 2 access permissions mean a hypervisor can define additional access restrictions to those defined by a
Guest OS in the stage 1 translation tables. For a particular access, the actual access permission is the more restrictive
of the permissions defined by:

• The Guest OS, in the stage 1 translation tables.

• The hypervisor, in the stage 2 translation tables.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11599
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.6 Memory access control
The stage 2 access controls defined from Hyp mode:

• Affect only the Non-secure stage 1 access permissions settings.

• Take no account of whether the accesses are from a Non-secure PL1 mode or a Non-secure EL0 mode.

• Permit software executing in Hyp mode to assign a write-only attribute to a memory region.

The S2AP field in the stage 2 descriptors define the stage 2 access permissions, as Table G5-11 shows:

For more information about the S2AP field, see Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and
Page descriptors.

If the stage 2 permissions cause a Permission fault, this is a stage 2 MMU fault. Stage 2 MMU faults are taken to
Hyp mode, and reported in the HSR using an EC code of 0x20 or 0x24. For more information, see Use of the HSR.

Note

In the HSR, the combination of the EC code and the DFSC or IFSC value in the ISS indicate that the fault is a stage 2
MMU fault.

The stage 2 permissions include an XN attribute. If this identifies the region as execute-never, execution from the
region is not permitted, regardless of the value of the XN or UXN attribute in the stage 1 translation. If a Permission
fault is generated because the stage 2 XN field identifies the region as execute-never, this is reported as a stage 2
MMU fault.

Note

The stage 2 XN attribute:

• Is a single bit if FEAT_XNX is not implemented, see XN, Execute-never.

• Is a 2-bit field if FEAT_XNX is implemented, see XN[1:0], Execute-never, stage 2 only.

AArch32 state prioritization of synchronous aborts from a single stage of address translation describes the abort
prioritization if both stages of a translation generate a fault.

Table G5-11 Stage 2 control of access permissions

S2AP Access permission

00 No access permitted

01 Read-only. Writes to the region are not permitted, regardless of the stage 1 permissions.

10 Write-only. Reads from the region are not permitted, regardless of the stage 1 permissions.

11 Read/write. The stage 1 permissions determine the access permissions for the region.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11600
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7 Memory region attributes

In addition to an output address, a translation table entry that refers to a page or region of memory includes fields
that define properties of that target memory region. Information returned by a translation table lookup describes the
classification of those fields as address map control, access control, and memory attribute fields. The memory
region attribute fields control the memory type, Cacheability, and Shareability of the region.

The following sections describe the assignment of memory region attributes for stage 1 translations:

• Overview of memory region attributes for stage 1 translations.

• Short-descriptor format memory region attributes, without TEX remap.

• Short-descriptor format memory region attributes, with TEX remap.

• VMSAv8-32 Long-descriptor format memory region attributes.

For an implementation that is operating in Secure state, or in Hyp mode, these assignments define the memory
attributes of the accessed region.

For an implementation that is operating in a Non-secure PL1 or EL0 mode, the Non-secure PL1&0 stage 2
translation can modify the memory attributes assigned by the stage 1 translation. EL2 control of Non-secure memory
region attributes describes these stage 2 assignments.

G5.7.1 Overview of memory region attributes for stage 1 translations

The description of the memory region attributes in a Translation descriptor divides into:

Memory type and attributes

These are described either:

• Directly, by bits in the Translation Table descriptor.

• Indirectly, by registers referenced by bits in the Table descriptor. This is described as
remapping the memory type and attribute description.

The Short-descriptor translation table format can use either of these approaches, selected by the
SCTLR.TRE bit:

TRE == 0 Remap disabled. The TEX[2:0], C, and B bits in the Translation Table descriptor define
the memory region attributes. Short-descriptor format memory region attributes,
without TEX remap describes this encoding.

Note

With the Short-descriptor format, remapping is called TEX remap, and the SCTLR.TRE
bit is the TEX remap enabled bit.

The description of the TRE == 0 encoding includes information about the encoding in
previous versions of the architecture.

TRE == 1 Remap enabled. The TEX[0], C, and B bits in the Translation Table descriptor are index
bits to the remap registers, that define the memory region attributes:

• The Primary Region Remap Register, PRRR.

• The Normal Memory Remap Register, NMRR.

Short-descriptor format memory region attributes, with TEX remap describes this
encoding scheme.

This scheme reassigns Translation Table descriptor bits TEX[2:1] for use as bits
managed by the operating system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11601
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
The Long-descriptor translation table format always uses remapping. This means that when the
value of TTBCR.EAE is 1, enabling use of the Long-descriptor translation table format,
SCTLR.TRE is RES1.

VMSAv8-32 Long-descriptor format memory region attributes describes this encoding.

Shareability In the Short-descriptor translation table format, the S bit in the Translation Table descriptor is used
in determining the Shareability of the region. How the S bit is interpreted depends on whether TEX
remap is enabled, see:

• Shareability and the S bit, without TEX remap.

• Determining the Shareability, with TEX remap.

In the Long-descriptor translation table format, the SH[1:0] field in the Translation Table descriptor
encodes the Shareability of the region, see Shareability, Long-descriptor format.

Note

Shareability is one of Non-shareable, Inner Shareable, and Outer Shareable. However, when using
the Short-descriptor translation table format without TEX remap, VMSAv8-32 does not support any
distinction between Inner Shareable and Outer Shareable memory, and a memory region is either
Non-shareable or Outer Shareable.

G5.7.1.1 Stage 1 definition of the XS attribute

When FEAT_XS is implemented, all stage 1 memory types defined in the MAIR0, MAIR1, HMAIR0, HMAIR1,
PRRR, and NMRR registers, or the TTBCR or HTCR registers, or in the translation tables, have the XS attribute
set to 1, unless they are Inner Write-Back Cacheable, Outer Write-back Cacheable, which have the XS attribute set
to 0. This includes any memory types that are treated as Write-Back Cacheable as a result of IMPLEMENTATION
DEFINED choices in the architecture.

G5.7.2 Short-descriptor format memory region attributes, without TEX remap

When using the Short-descriptor translation table formats, TEX remap is disabled when the value of SCTLR.TRE
is 0.

Note

• The Short-descriptor format scheme without TEX remap is the scheme used in VMSAv6.

• The B (Bufferable), C (Cacheable), and TEX (Type extension) bit names are inherited from earlier versions
of the architecture. These names no longer adequately describe the function of the B, C, and TEX bits.

Table G5-12 shows the C, B, and TEX[2:0] encodings when TEX remap is disabled. In the Page Shareability
column, an entry of S bit indicates that the S bit in the Translation Table descriptor determines the Shareability, see
Shareability and the S bit, without TEX remap.

Table G5-12 TEX, C, and B encodings when TRE == 0

TEX[2:0] C B Description Memory type Page Shareability

000 0 0 Device-nGnRnE Device-nGnRnE Outer Shareable

1 Device-nGnREa Device-nGnRE Outer Shareablea

1 0 Outer and Inner Write-Through, Read-Allocate
No Write-Allocate

Normal S bit

1 Outer and Inner Write-Back, Read-Allocate
No Write-Allocate

Normal S bit
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11602
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
001 0 0 Outer and Inner Non-cacheable Normal Outer Shareableb

1 Reserved - -

1 0 IMPLEMENTATION DEFINED IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

1 Outer and Inner Write-Back, Read-Allocate
Write-Allocate

Normal S bit

010 0 0 Device-nGnREa Device-nGnRE Outer Shareablea

1 Reserved - -

1 x Reserved - -

Table G5-12 TEX, C, and B encodings when TRE == 0 (continued)

TEX[2:0] C B Description Memory type Page Shareability
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11603
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
See Memory types and attributes for an explanation of Normal memory, and the types of Device memory, and of
the Shareability attribute.

G5.7.2.1 Cacheability attributes, without TEX remap

When the value of TEX[2] is 0, the same Cacheability attribute applies to Inner Cacheable and Outer Cacheable
memory regions, and the {TEX[1:0], C, B} values identify this attribute, as Table G5-12 shows.

When the value of TEX[2] is 1, the memory described by the translation table entry is cacheable, and the rest of the
encoding defines the Inner Cacheability and Outer Cacheability attributes:

TEX[1:0] Define the Outer Cacheability attribute.

C, B Define the Inner Cacheability attribute.

The translation table entries use the same encoding for the Outer and Inner Cacheability attributes, as Table G5-13
shows.

G5.7.2.2 Shareability and the S bit, without TEX remap

The Short-descriptor format translation table entries include an S bit. This bit:

• Is ignored if the entry refers to any type of Device memory, or to Normal memory that is Inner
Non-cacheable, Outer Non-cacheable.

• For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, determines whether the memory
region is Outer Shareable or Non-shareable:

S == 0 Normal memory region is Non-shareable.

S == 1 Normal memory region is Outer Shareable.

Without TEX remapping there is no distinction between Inner Shareable and Outer Shareable memory, meaning the
S bit determines whether the region is Non-shareable or Outer Shareable.

011 x x Reserved - -

1BB A A Cacheable memory: AA = Inner attributec

BB = Outer attribute

Normal S bit

a. In Armv8, all Device memory types are Outer Shareable. For the Device-nGnRE memory type this is a change from previous versions of
the architecture. This is why Device-nGnRE memory has two entries in this table. For compatibility with Armv7 software should use the
{TEX, C, B} values {000, 0, 1}.

b. In Armv8, Normal Inner Non-cacheable, Outer Non-cacheable memory is always Outer Shareable. This is a change from previous versions
of the architecture, where the S bit determined the Shareability. For compatibility with Armv7 software should set S to 1.

c. For more information, see Cacheability attributes, without TEX remap.

Table G5-12 TEX, C, and B encodings when TRE == 0 (continued)

TEX[2:0] C B Description Memory type Page Shareability

Table G5-13 Inner and Outer Cacheability attribute encoding

Encoding Cacheability attribute

00 Non-cacheable

01 Write-Back, Read-Allocate Write-Allocate

10 Write-Through, Read Allocate No Write-Allocate

11 Write-Back, Read Allocate No Write-Allocate
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11604
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7.3 Short-descriptor format memory region attributes, with TEX remap

When using the Short-descriptor translation table formats, TEX remap is enabled when the value of SCTLR.TRE
is 1. In this configuration:

• The software that defines the translation tables must program the PRRR and NMRR to define seven possible
memory region attributes.

• The TEX[0], C, and B bits of the Translation Table descriptors define the memory region attributes, by
indexing PRRR and NMRR.

• Hardware makes no use of TEX[2:1], see The OS managed translation table bits.

When TEX remap is enabled:

• For seven of the eight possible combinations of the TEX[0], C and B bits, fields in the PRRR and NMRR
define the region attributes, as described in this section.

• The meaning of the eighth combination for the TEX[0], C and B bits is IMPLEMENTATION DEFINED.

• If the TEX[0], C and B bits determine that the region is a Device memory type, or is Normal Inner
Non-cacheable, Outer Non-cacheable, then the region is Outer Shareable. Otherwise, the Shareability is
determined by the combination of:

— The S bit from the Translation Table descriptor.

— The value of the PRRR.NS0 or PRRR.NS1 bit.

— The value of the appropriate PRRR.NOSn bit, as shown in Table G5-14.

For more information, see Determining the Shareability, with TEX remap.

For each of the possible encodings of the TEX[0], C, and B bits in a translation table entry, Table G5-14 shows
which fields of the PRRR and NMRR registers describe the memory region attributes.

Table G5-14 TEX, C, and B encodings when TRE == 1

Encoding
Memory typea

Cache attributesa, b:
Outer Shareable attributea, c

TEX[0] C B Inner cacheability Outer cacheability

0 0 0 PRRR.TR0 NMRR.IR0 NMRR.OR0 NOT(PRRR.NOS0)

1 PRRR.TR1 NMRR.IR1 NMRR.OR1 NOT(PRRR.NOS1)

1 0 PRRR.TR2 NMRR.IR2 NMRR.OR2 NOT(PRRR.NOS2)

1 PRRR.TR3 NMRR.IR3 NMRR.OR3 NOT(PRRR.NOS3)

1 0 0 PRRR.TR4 NMRR.IR4 NMRR.OR4 NOT(PRRR.NOS4)

1 PRRR.TR5 NMRR.IR5 NMRR.OR5 NOT(PRRR.NOS5)

1 0 IMPLEMENTATION DEFINED

1 PRRR.TR7 NMRR.IR7 NMRR.OR7 NOT(PRRR.NOS7)

a. For details of the Memory type and Outer Shareable encodings see the description of the PRRR. For details of the Cache attributes
encodings the description of the NMRR.

b. Applies only if the memory type for the region is mapped as Normal memory.

c. Applies only if both of the following apply:

The memory type for the region is mapped as Normal memory that is not Inner Non-cacheable and Outer Non-cacheable.

The region is not Non-shareable.

See Determining the Shareability, with TEX remap.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11605
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
As Table G5-14 shows, when TEX remap is enabled, for a given set of {TEX[0], C, B} bits from a Translation Table
descriptor:

1. The primary mapping, to memory type, is given by the PRRR.TRn field as shown in the Memory type
column.

2. For any region that the PRRR.TRn maps as Normal memory, NMRR.IRn determines the Inner cacheability
attribute, and NMRR.ORn determines the Outer cacheability attribute.

3. For a region that PRRR.TRn maps as Normal memory, if NMRR.{IRn, ORn} do not map the region as Inner
Non-cacheable, Outer Non-cacheable, PRRR.{NS0, NS1} and PRRR.NOSn are used to determine the
Shareability of the region, see Determining the Shareability, with TEX remap.

The TEX remap registers and the SCTLR.TRE bit are banked between the Secure and Non-secure Security states.
For more information, see The effect of EL3 on TEX remap.

The TEX remap registers must be static during normal operation. In particular, when the remap registers are
changed:

• It is IMPLEMENTATION DEFINED when the changes take effect.

• It is CONSTRAINED UNPREDICTABLE whether the TLB caches the effect of the TEX remap on translation
tables, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data
values.

The software sequence to ensure the synchronization of changes to the TEX remap registers is:

1. Execute a DSB instruction. This ensures any memory accesses using the old mapping have completed.

2. Write the TEX remap registers or SCTLR.TRE bit.

3. Execute an ISB instruction. This ensures synchronization of the register updates.

4. Invalidate the entire TLB.

5. Execute a DSB instruction. This ensures completion of the entire TLB operation.

6. Clean and invalidate all caches. This removes any cached information associated with the old mapping.

7. Execute a DSB instruction. This ensures completion of the cache maintenance.

8. Execute an ISB instruction. This ensures instruction synchronization.

This extends the standard rules for the synchronization of changes to System registers described in Synchronization
of changes to AArch32 System registers, and provides implementation freedom as to whether or not the effect of the
TEX remap is cached.

G5.7.3.1 Determining the Shareability, with TEX remap

The memory type of a region, as indicated in the Memory type column of Table G5-14, provides the first level of
control of the Shareability of the region:

• If the memory is any type of Device memory, then the region is Outer Shareable, and any Shareability
attributes in the Translation Table descriptor and PRRR for that region are ignored.

This applies also to a Normal memory region that the NMRR attributes identify as Inner Non-cacheable and
Outer Non-cacheable,

• If using the Short descriptor translation table format then the Shareability of the region is determined using
the value of the S bit in the Translation Table descriptor to index one of the PRRR.{NS1. NS0} bits, as
described in this section.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11606
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
Table G5-15 shows how the translation table S bit indexes into the PRRR:

For a Normal memory region that is not Inner Non-cacheable, Outer Non-cacheable, the appropriate bit of the
PRRR indicates whether the region is Non-shareable, as follows:

PRRR.NSn==0 Non-shareable.

PRRR.{NOS7:NOS0} are ignored.

PRRR.NSn==1 The appropriate PRRR.NOSm field, as shown in Table G5-14, indicates whether the region
is Inner Shareable or Outer Shareable:

PRRR.NOSm==0 Region is Outer Shareable.

PRRR.NOSm==1 Region is Inner Shareable.

Note

This means that TEX remapping can map a translation table entry with S == 0 as shareable memory.

G5.7.3.2 SCTLR.TRE, SCTLR.M, and the effect of the TEX remap registers

When TEX remap is disabled, because the value of the SCTLR.TRE bit is 0:

• The effect of the PRRR and NMRR registers can be IMPLEMENTATION DEFINED.

• The interpretation of the fields of the PRRR and NMRR registers can differ from the description given earlier
in this section. One implication of this is that the implementation can provide an IMPLEMENTATION DEFINED
mechanism to interpret the PRRR.{NOS7:NOS0} fields.

VMSAv8-32 requires that the effect of these registers is limited to remapping the attributes of memory locations.
These registers must not change whether any cache hardware or stages of address translation are enabled. The
mechanism by which the TEX remap registers have an effect when the value of the SCTLR.TRE bit is 0 is
IMPLEMENTATION DEFINED. The AArch32 architecture requires that from reset, if the IMPLEMENTATION DEFINED
mechanism has not been invoked:

• If the PL1&0 stage 1 address translation is enabled and is using the Short-descriptor format translation tables,
the architecturally-defined behavior of the TEX[2:0], C, and B bits must apply, without reference to the TEX
remap functionality. In other words, memory attribute assignment must comply with the scheme described
in Short-descriptor format memory region attributes, without TEX remap.

• If the PL1&0 stage 1 address translation is disabled, then the architecturally-defined behavior of VMSAv8-32
with address translation disabled must apply, without reference to the TEX remap functionality. See The
effects of disabling address translation stages on VMSAv8-32 behavior.

Possible mechanisms for enabling the IMPLEMENTATION DEFINED effect of the TEX remap registers when the value
of SCTLR.TRE is 0 include:

• A control bit in the ACTLR, or in an IMPLEMENTATION DEFINED System register.

• Changing the behavior when the PRRR and NMRR registers are changed from their IMPLEMENTATION
DEFINED reset values.

In addition, if the stage of address translation is disabled and the value of the SCTLR.TRE bit is 1, the
architecturally-defined behavior of the VMSAv8-32 with the stage of address translation disabled must apply
without reference to the TEX remap functionality.

Table G5-15 Determining the Shareability attribute, with TEX remap

Memory type Remapping when S == 0 Remapping when S == 1

Device or Normal Inner Non-cacheable, Outer Non-cacheable Outer Shareable Outer Shareable

Normal, not Inner Non-cacheable, Outer Non-cacheable PRRR.NS0 PRRR.NS1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11607
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
In an implementation that includes EL3, the IMPLEMENTATION DEFINED effect of these registers must only take
effect in the Security state of the registers. See also The effect of EL3 on TEX remap.

G5.7.3.3 The OS managed translation table bits

When TEX remap is enabled, the TEX[2:1] bits in the Translation Table descriptors are available as two bits that
can be managed by the operating system. In VMSAv8-32, as long as the SCTLR.TRE bit is set to 1, the values of
the TEX[2:1] bits are IGNORED by the PE. Software can write any value to these bits in the translation tables.

G5.7.3.4 The effect of EL3 on TEX remap

In an implementation that includes EL3, when EL3 is using AArch32, the TEX remap registers are banked between
the Secure and Non-secure Security states. When EL3 is using AArch32, write accesses to the Secure register for
the current security state apply to all PL1&0 stage 1 translation table lookups in that state. The SCTLR.TRE bit is
banked in the Secure and Non-secure copies of the register, and the appropriate version of this bit determines
whether TEX remap is applied to translation table lookups in the current security state.

Write accesses to the Secure copies of the TEX remap registers are disabled when the CP15SDISABLE input is
asserted HIGH, meaning the MCR operations to access these registers are UNDEFINED. For more information, see The
CP15SDISABLE and CP15SDISABLE2 input signals.

G5.7.4 VMSAv8-32 Long-descriptor format memory region attributes

When a PE is using the VMSAv8-32 Long-descriptor translation table format, the AttrIndx[2:0] field in a block or
page Translation Table descriptor for a stage 1 translation indicates the 8-bit field, in the appropriate MAIR register,
that specifies the attributes for the corresponding memory region, as follows:

• AttrIndx[2] indicates the MAIR register to be used:

AttrIndx[2] == 0 Use MAIR0.

AttrIndx[2] == 1 Use MAIR1.

• AttrIndx[2:0] indicates the required Attr field, Attrn, where n = AttrIndx[2:0].

Each AttrIndx field defines, for the corresponding memory region:

• The memory type, Normal or a type of Device memory.

• For Normal memory:

— The Inner cacheability and Outer cacheability attributes, each of which is one of Non-cacheable,
Write-Through Cacheable, or Write-Back Cacheable.

— For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate and
Write-Allocate policy hints, each of which is Allocate or No allocate.

For more information about the AttrIndx[2:0] descriptor field, see Attribute fields in VMSAv8-32 Long-descriptor
stage 1 Block and Page descriptors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11608
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7.4.1 Shareability, Long-descriptor format

When a PE is using the Long-descriptor translation table format, the SH[1:0] field in a Block or Page Translation
Table descriptor specifies the Shareability attributes of the corresponding memory region, if the MAIR entry for that
region identifies it as Normal memory that is not both Inner Non-cacheable and Outer Non-cacheable. Table G5-16
shows the encoding of this field.

See Combining the Shareability attribute for constraints on the Shareability attributes of a Normal memory region
that is Inner Non-cacheable, Outer Non-cacheable.

For any type of Device memory, and for Normal Inner Non-cacheable, Outer Non-cacheable memory, the value of
the SH[1:0] field of the Translation Table descriptor is ignored.

G5.7.4.2 Other fields in the Long-descriptor translation table format descriptors

The following subsections describe the other fields in the Translation Table Block and Page descriptors when a PE
is using the Long-descriptor translation table format:

• Contiguous bit

• IGNORED fields.

• Field reserved for software use

G5.7.4.2.1 Contiguous bit

The Long-descriptor Translation Table Format descriptors contain a Contiguous bit. Setting this bit to 1 indicates
that 16 adjacent translation table entries point to a contiguous output address range. These 16 entries must be
aligned in the translation table so that the top five bits of their input addresses, that index their position in the
translation table, are the same. For example, to use this bit for a block of 16 entries in the level 3 translation table,
bits[20:16] of the input addresses for the 16 entries must be the same.

The contiguous output address range must be aligned to size of 16 translation table entries at the same translation
table level.

Use of this bit means that the TLB can cache a single entry to cover the 16 translation table entries.

This bit acts as a hint. The architecture does not require a PE to cache TLB entries in this way. To avoid TLB
coherency issues, any TLB maintenance by address must not assume any optimization of the TLB tables that might
result from use of this bit.

Note

The use of the contiguous bit is similar to the approach used, in the Short-descriptor translation table format, for
optimized caching of Large Pages and Supersections in the TLB. However, an important difference in the
contiguous bit capability is that TLB maintenance must be performed based on the size of the underlying translation
table entries, to avoid TLB coherency issues. That is, any use of the contiguous bit has no effect on the minimum
size of entry that must be invalidated from the TLB.

Table G5-16 SH[1:0] field encoding for Normal memory, Long-descriptor format

SH[1:0] Normal memory

00 Non-shareable

01 Reserved, CONSTRAINED UNPREDICTABLE, see Reserved values in System and memory-mapped
registers and translation table entries for the permitted behavior.

10 Outer Shareable

11 Inner Shareable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11609
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7.4.2.2 IGNORED fields

In the VMSAv8-32 translation table long-descriptor format, the following fields are defined as IGNORED, meaning
the architecture guarantees that a PE makes no use of these fields:

• In the stage 1 and stage 2 Table descriptors, bits[58:52] and bits[11:2].

• In the stage 1 and stage 2 Block and Page descriptors, bit[63] and bits[58:55].

• In the stage 1 and stage 2 Block and Page descriptors in an implementation that does not include
FEAT_HPDS2, bits[62:59].

Of these fields:

• In the stage 1 and stage 2 Block and Page descriptors, bits[58:55] are reserved for software use, see Field
reserved for software use.

• In the stage 2 Block and Page descriptors:

— Bit[63] is reserved for use by a System MMU.

— In an implementation that does not include FEAT_HPDS2, bits[62:59] are reserved for use by a
System MMU.

G5.7.4.2.3 Field reserved for software use

The architecture reserves a 4-bit IGNORED field in the Block and Translation Table descriptors, bits[58:55], for
software use. In considering migration from using the Short-descriptor format to the Long-descriptor format, this
field is an extension of the Short-descriptor field described in The OS managed translation table bits.

Note

The definition of IGNORED means there is no need to invalidate the TLB if these bits are changed.

G5.7.5 EL2 control of Non-secure memory region attributes

Software executing at EL2 controls two sets of translation tables, both of which use the Long-descriptor translation
table format. These are:

• The translation tables that control Non-secure EL2 stage 1 translations. These map VAs to PAs, and when
EL2 is using AArch32 they are indicated and controlled by the HTTBR and HTCR.

These translations have exactly the same memory region attribute controls as any other stage 1 translations,
as described in VMSAv8-32 Long-descriptor format memory region attributes.

• The translation tables that control Non-secure PL1&0 stage 2 translations. These map the IPAs from the stage
1 translation onto PAs, and are indicated and when EL2 is using AArch32 they are controlled by the VTTBR
and VTCR.

The descriptors in the virtualization translation tables define level 2 memory region attributes, that are
combined with the attributes defined in the stage 1 translation. This section describes this combining of
attributes.

VMSAv8-32 Long-descriptor Translation Table format descriptors describes the format of the entries in these tables.

Note

In a virtualization implementation, a hypervisor might usefully:

• Reduce the permitted Cacheability of a region.

• Increase the required Shareability of a region.

The combining of attributes from stage 1 and stage 2 translations supports both of these options.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11610
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
In the stage 2 Translation Table descriptors for memory regions and pages, the MemAttr[3:0] and SH[1:0] fields
describe the stage 2 memory region attributes:

• The definition of the stage 2 SH[1:0] field is identical to the same field for a stage 1 translation, see
Shareability, Long-descriptor format.

• MemAttr[3:2] give a top-level definition of the memory type, and of the cacheability of a Normal memory
region, as Table G5-17 shows:

The encoding of MemAttr[1:0] depends on the Memory type indicated by MemAttr[3:2]:

— When MemAttr[3:2]==0b00, indicating a type of Device memory, Table G5-18 shows the encoding of
MemAttr[1:0]:

— When MemAttr[3:2]!=0b00, indicating Normal memory, Table G5-19 shows the encoding of
MemAttr[1:0]:

Note

The stage 2 translation does not assign any allocation hints.

The following sections describe how the memory type attributes assigned at stage 2 of the translation are combined
with those assigned at stage 1:

• Combining the memory type attribute.

Table G5-17 Long-descriptor MemAttr[3:2] encoding, stage 2 translation

MemAttr[3:2] Memory type Cacheability

00 Device, of type determined by MemAttr[1:0] Not applicable

01 Normal, Inner cacheability determined by MemAttr[1:0] Outer Non-cacheable

10 Outer Write-Through Cacheable

11 Outer Write-Back Cacheable

Table G5-18 MemAttr[1:0] encoding for the types of Device memory

MemAttr[1:0] Meaning when MemAttr[3:2] == 0b00

00 Region is Device-nGnRnE memory

01 Region is Device-nGnRE memory

10 Region is Device-nGRE memory

11 Region is Device-GRE memory

Table G5-19 MemAttr[1:0] encoding for Normal memory

MemAttr[1:0] Meaning when MemAttr[3:2] != 0b00

00 Reserved, CONSTRAINED UNPREDICTABLE, See Reserved values in System and memory-mapped
registers and translation table entries for the permitted behavior.

01 Inner Non-cacheable

10 Inner Write-Through Cacheable

11 Inner Write-Back Cacheable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11611
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
• Combining the Cacheability attribute.

• Combining the Shareability attribute.

Note

• The following stage 2 translation table attribute settings leave the stage 1 settings unchanged:

— MemAttr[3:2] == 0b11, Normal memory, Outer Write-Back Cacheable.

— MemAttr[1:0] == 0b11, Inner Write-Back Cacheable.

• In addition to the attribute combinations described in this section, Access permissions for instruction
execution describes how the stage 1 and stage 2 execute-never permission fields are combined, so that a
region is execute-never if it is defined as execute-never in at least one stage of translation.

G5.7.5.1 Combining the memory type attribute

Table G5-20 shows how the stage 1 and stage 2 memory type assignments are combined:

See Combining the Shareability attribute for information about the Shareability of:

• A region for which the resultant type is any Device type.

• A region with a resultant type of Normal for which the resultant cacheability, described in Combining the
Cacheability attribute, is Inner Non-cacheable, Outer Non-cacheable.

The combining of the memory type attribute means a translation table walk for a stage 1 translation can be made to
a type of Device memory. If this occurs, then:

• If the value of HCR.PTW is 0, then the translation table walk occurs as if it is to Normal Non-cacheable
memory. This means it can be done speculatively.

• If the value of HCR.PTW is 1, then the memory access generates a stage 2 Permission fault.

Table G5-20 Combining the stage 1 and stage 2 memory type assignments

Assignment in stage 1 Assignment in stage 2 Resultant type

Device-nGnRnE Any Device-nGnRnE

Device-nGnRE Device-nGnRnE Device-nGnRnE

Not Device-nGnRnE Device-nGnRE

Device-nGRE Device-nGnRnE Device-nGnRnE

Device-nGnRE Device-nGnRE

Not (Device-nGnRnE or Device-nGnRE) Device-nGRE

Device-GRE Device-nGnRnE Device-nGnRnE

Device-nGnRE Device-nGnRE

Device-nGRE Device-nGRE

Device-GRE or Normal Device-GRE

Normal Any type of Device Device type assigned at stage 2

Normal Normal
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11612
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.7 Memory region attributes
G5.7.5.2 Combining the Cacheability attribute

For a Normal memory region, Table G5-21 shows how the stage 1 and stage 2 Cacheability assignments are
combined. This combination applies, independently, for the Inner Cacheability and Outer Cacheability attributes:

Note

Only Normal memory has a Cacheability attribute.

G5.7.5.3 Combining the Shareability attribute

In the following cases, a memory region is treated as Outer Shareable, regardless of any shareability assignments at
either stage of translation:

• The resultant memory type attribute, described in Combining the memory type attribute, is any type of Device
memory.

• The resultant memory type attribute is Normal memory, and the resultant Cacheability, described in
Combining the Cacheability attribute, is Inner Non-cacheable Outer Non-cacheable.

For a memory region with a resultant memory type attribute of Normal that is not Inner Non-cacheable Outer
Non-cacheable, Table G5-22 shows how the stage 1 and stage 2 shareability assignments are combined:

Table G5-21 Combining the stage 1 and stage 2 cacheability assignments

Assignment in stage 1 Assignment in stage 2 Resultant cacheability

Non-cacheable Any Non-cacheable

Any Non-cacheable Non-cacheable

Write-Through Cacheable Write-Through or Write-Back Cacheable Write-Through Cacheable

Write-Through or Write-Back Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Back Cacheable Write-Back Cacheable

Table G5-22 Combining the stage 1 and stage 2 Shareability assignments

Assignment in stage 1 Assignment in stage 2 Resultant Shareability

Outer Shareable Any Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable Inner Shareable

Inner Shareable Non-shareable Inner Shareable

Non-shareable Outer Shareable Outer Shareable

Non-shareable Inner Shareable Inner Shareable

Non-shareable Non-shareable Non-shareable
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11613
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers
G5.8 Translation Lookaside Buffers

Translation Lookaside Buffers (TLBs) are an implementation technique that caches translations or translation table
entries. TLBs avoid the requirement to perform a translation table walk in memory for every memory access. The
Arm architecture does not specify the exact form of the TLB structures for any design. In a similar way to the
requirements for caches, the architecture only defines certain principles for TLBs:

• The architecture has a concept of an entry locked down in the TLB. The method by which lockdown is
achieved is IMPLEMENTATION DEFINED, and an implementation might not support lockdown.

• The architecture does not guarantee that an unlocked TLB entry remains in the TLB.

• The architecture guarantees that a locked TLB entry remains in the TLB. However, a locked TLB entry might
be updated by subsequent updates to the translation tables. Therefore, when a change is made to the
translation tables, the architecture does not guarantee that a locked TLB entry remains incoherent with an
entry in the translation table.

• The architecture guarantees that a translation table entry that generates a Translation fault, an Address size
fault, or an Access flag fault is not held in the TLB. However a translation table entry that generates a Domain
fault or a Permission fault might be held in the TLB.

• When address translation is enabled, any translation table entry that does not generate a Translation fault, an
Address size fault, or an Access flag fault and is not from a translation regime for an Exception level that is
lower than the current Exception level can be allocated to a TLB at any time. The only translation table entries
guaranteed not to be held in the TLB are those that generate a Translation fault, an Address size fault, or an
Access flag fault.

Note

A TLB can hold translation table entries that do not generate a Translation fault but point to subsequent tables
in the translation table walk. This can be referred to as intermediate caching of TLB entries.

• Software can rely on the fact that between disabling and re-enabling a stage of address translation, entries in
the TLB relating to that stage of translation have not been corrupted to give incorrect translations.

The following sections give more information about TLB implementation:

• Global and process-specific translation table entries.

• TLB matching.

• TLB behavior at reset.

• TLB lockdown.

• TLB conflict aborts.

See also TLB maintenance requirements.

Note

In addition to the functions described in this section, the TLB might cache information from control registers that
are described as being “permitted to be cached in a TLB”, even when any or all of the stages of translation are
disabled. This caching of information gives rise to the maintenance requirements described in General TLB
maintenance requirements

G5.8.1 Global and process-specific translation table entries

For VMSAv8-32, system software can divide a virtual memory map used by memory accesses at PL1 and EL0 into
global and non-global regions, indicated by the nG bit in the Translation Table descriptors:

nG == 0 The translation is global, meaning the region is available for all processes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11614
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers
nG == 1 The translation is non-global, or process-specific, meaning it relates to the current ASID, as defined
by:

• TTBR0.ASID or TTBR1.ASID, if using the Long-descriptor translation table format. In this
case, TTBCR.A1 selects which ASID is current.

• CONTEXTIDR.ASID, if using the Short-descriptor translation table format.

Each non-global region has an associated ASID. These identifiers mean different translation table mappings can
co-exist in a caching structure such as a TLB. This means that software can create a new mapping of a non-global
memory region without removing previous mappings.

For a symmetric multiprocessor cluster where a single operating system is running on the set of PEs, the architecture
requires all ASID values to be assigned uniquely within any single Inner Shareable domain. In other words, each
ASID value must have the same meaning to all PEs in the system.

In AArch32 state, the translation regime used for accesses made at EL2 never supports ASIDs, and all pages are
treated as global.

When a PE is using the Long-descriptor translation table format, and is in Secure state, a translation must be treated
as non-global, regardless of the value of the nG bit, if NSTable is set to 1 at any level of the translation table walk.

For more information, see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format.

G5.8.2 TLB matching

A TLB is a hardware caching structure for translation table information. Like other hardware caching structures, it
is mostly invisible to software. However, there are some situations where it can become visible. These are associated
with coherency problems caused by an update to the translation table that has not been reflected in the TLB. Use of
the TLB maintenance instructions described in TLB maintenance requirements can prevent any TLB incoherency
becoming a problem.

A particular case where the presence of the TLB can become visible is if the translation table entries that are in use
under a particular ASID and VMID are changed without suitable invalidation of the TLB. This can occur only if the
architecturally-required break-before-make sequence described in Using break-before-make when updating
translation table entries is not used. If the break-before make sequence is not used, the TLB can hold two mappings
for the same address, and this:

• Might generate an exception that is reported using the TLB Conflict fault code, see TLB conflict aborts.

• Might lead to CONSTRAINED UNPREDICTABLE behavior. In this case, behavior will be consistent with one of
the mappings held in the TLB, or with some amalgamation of the values held in the TLB, but cannot give
access to regions of memory with permissions or attributes that could not be assigned by valid translation
table entries in the translation regime being used for the access. See CONSTRAINED UNPREDICTABLE
behaviors due to caching of System register control or data values.

G5.8.3 TLB behavior at reset

The Arm architecture does not require a reset to invalidate the TLBs, and recognizes that an implementation might
require caches, including TLBs, to maintain context over a system reset. Possible reasons for doing so include power
management and debug requirements.

Therefore:

• All TLBs reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.

• All TLBs are disabled from reset. All stages of address translation that are used from the PE state entered on
coming out of reset are disabled from reset, and the contents of the TLBs have no effect on address
translation. For more information, see Enabling stages of address translation.

• An implementation can require the use of a specific TLB invalidation routine, to invalidate the TLB arrays
before they are enabled after a reset. The exact form of this routine is IMPLEMENTATION DEFINED, but if an
invalidation routine is required it must be documented clearly as part of the documentation of the device.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11615
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers
Arm recommends that if an invalidation routine is required for this purpose, and the PE resets into AArch32
state, the routine is based on the AArch32 TLB maintenance instructions described in The scope of TLB
maintenance instructions.

Similar rules apply:

• To cache behavior, see Behavior of caches at reset.

• To branch predictor behavior, see Behavior of the branch predictors at reset.

G5.8.4 TLB lockdown

The Arm architecture recognizes that any TLB lockdown scheme is heavily dependent on the microarchitecture,
making it inappropriate to define a common mechanism across all implementations. This means that:

• The architecture does not require TLB lockdown support.

• If TLB lockdown support is implemented, the lockdown mechanism is IMPLEMENTATION DEFINED. However,
key properties of the interaction of lockdown with the architecture must be documented as part of the
implementation documentation.

This means that:

• The TLB Type Register, TLBTR, does not define the lockdown scheme in use.

• In AArch32 state, a region of the {coproc==0b1111, CRn==c10} encodings is reserved for IMPLEMENTATION
DEFINED TLB functions, such as TLB lockdown functions. The reserved encodings are those with:

— <CRm> == {c0, c1, c4, c8}.

— All values of <opc2> and <opc1>.

An implementation might use some of the {coproc==0b1111, CRn==c10} encodings that are reserved for
IMPLEMENTATION DEFINED TLB functions to implement additional TLB control functions. These functions might
include:

• Unlock all locked TLB entries.

• Preload into a specific level of TLB. This is beyond the scope of the PLI and PLD hint instructions.

The inclusion of EL2 in an implementation does not affect the TLB lockdown requirements. However, in an
implementation that includes EL2, exceptions generated as a result of TLB lockdown when executing in a
Non-secure PL1 mode or in Non-secure User mode can be routed to either:

• Non-secure Abort mode, using the Non-secure Data Abort exception vector.

• Hyp mode, using the Hyp Trap exception vector.

For more information, see HCR, Hyp Configuration Register.

G5.8.5 TLB conflict aborts

If an address matches multiple entries in the TLB, it is IMPLEMENTATION DEFINED whether a TLB conflict abort is
generated.

An implementation can generate TLB conflict aborts on either or both instruction fetches and data accesses. A TLB
conflict abort is classified as an MMU fault, see Types of MMU faults. This means:

• A TLB conflict abort on an instruction fetch is reported as a Prefetch Abort exception,

• A TLB conflict abort on a data access is reported as a Data Abort exception,

Fault status codes for TLB conflict aborts are defined for both the Short-descriptor and Long-descriptor translation
table formats, see:

• PL1 fault reporting with the Short-descriptor translation table format
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11616
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.8 Translation Lookaside Buffers
• PL1 fault reporting with the Long-descriptor translation table format.

On a TLB conflict abort, the fault address register returns the address that generated the fault. That is, it returns the
address that was being looked up in the TLB.

It is IMPLEMENTATION DEFINED whether a TLB conflict abort is a stage 1 abort or a stage 2 abort.

Note

• An address can hit multiple entries in the TLB if the TLB has been invalidated inappropriately, for example
if TLB invalidation required by this manual has not been performed.

• A stage 2 abort cannot be generated if the Non-secure PL1&0 stage 2 address translation is disabled.

The priority of the TLB conflict abort is IMPLEMENTATION DEFINED, because it depends on the form of any TLB
that can generate the abort. However, the TLB conflict abort must have higher priority than any abort that depends
on a value held in the TLB.

If an address matches multiple entries in the TLB and no TLB conflict abort not generated, the resulting behavior
is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values. The CONSTRAINED UNPREDICTABLE behavior must not permit access to regions of
memory with permissions or attributes that mean they cannot be accessed in the current Security state at the current
Privilege level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11617
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
G5.9 TLB maintenance requirements

Translation Lookaside Buffers describes the Arm architectural provision for TLBs. Although the Arm architecture
does not specify the form of any TLB structures, it does define the mechanisms by which TLBs can be maintained.
The following sections describe the VMSAv8-32 TLB maintenance instructions:

• General TLB maintenance requirements.

• Maintenance requirements on changing System register values.

• Atomicity of register changes on changing virtual machine.

• Synchronization of changes of ASID and TTBR.

• The scope of TLB maintenance instructions.

G5.9.1 General TLB maintenance requirements

TLB maintenance instructions provide a mechanism to invalidate entries from a TLB. As Translation Lookaside
Buffers describes, when address translation is enabled translation table entries can be allocated to a TLB at any time.
This means that software must perform TLB maintenance between updating translation table entries that apply in a
particular context and accessing memory locations whose translation is determined by those entries in that context.

Note

This requirement applies to any translation table entry at any level of the translation tables, including an entry that
points to further levels of the tables, provided that the entry in that level of the tables does not cause a Translation
fault, an Address size fault, or an Access flag fault.

The effects of certain System register control fields are permitted to be cached in a TLB. For more information, see
TLB maintenance.

Note

For AArch32, use of a single DTLBI or ITBLI instruction when invalidating TLB entries is insufficient, as both
data and instruction TLBs must be invalidated. Arm provides a set of TBLI instructions that are intended for this
purpose.

In addition to any TLB maintenance requirement, when changing the cacheability attributes of an area of memory,
software must ensure that any cached copies of affected locations are removed from the caches. For more
information, see Cache maintenance requirement created by changing translation table attributes.

Because a TLB never holds any translation table entry that generates a Translation fault, an Address size fault, or
an Access flag fault, a change from a translation table entry that causes a Translation, Address size, or Access flag
fault to one that does not fault, does not require any TLB or branch predictor invalidation. However, a Context
Synchronization event is required to ensure that instruction fetches are affected by a completed change to translation
table entries that, before the change, generated a Translation, Address size, or Access flag fault.

Special considerations apply to translation table updates that change the memory type, cacheability, or output
address of an entry, see Using break-before-make when updating translation table entries.

In addition, software must perform TLB maintenance after updating the System registers if the update means that
the TLB might hold information that applies to a current translation context, but is no longer valid for that context.
Maintenance requirements on changing System register values gives more information about this maintenance
requirement.

Each of the translation regimes defined in Figure G5-1 is a different context, and:

• For the Non-secure PL1&0 regime, a change in the VMID or ASID value changes the context.

• For the Secure PL1&0 regime, a change in the ASID value changes the context.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11618
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
For operation in Non-secure PL1 or EL0 modes, a change of HCR.VM, unless made at the same time as a change
of VMID, requires the invalidation of all TLB entries for the Non-secure PL1&0 translation regime that apply to
the current VMID. Otherwise, there is no guarantee that the effect of the change of HCR.VM is visible to software
executing in the Non-secure PL1 and EL0 modes.

Any TLB maintenance instruction can affect any other TLB entries that are not locked down.

AArch32 state defines {coproc==0b1111, CRn==c8} System instructions for TLB maintenance instructions, and
supports the following operations:

• Invalidate all unlocked entries in the TLB.

• Invalidate a single TLB entry, by VA, or VA and ASID for a non-global entry.

• Invalidate all TLB entries that match a specified ASID.

• Invalidate all TLB entries that match a specified VA, regardless of the ASID.

• Operations that apply across multiprocessors in the same Inner Shareable domain.

Note

An address-based TLB maintenance instruction that applies to the Inner Shareable domain does so regardless
of the Shareability attributes of the address supplied as an argument to the instruction.

A TLB maintenance instruction that specifies a VA that would generate any MMU fault, including a VA that is not
in the range of VAs that can be translated, does not generate an abort.

EL2 provides additional TLB maintenance instructions for use in AArch32 state at EL2, and has some implications
for the effect of the other TLB maintenance instructions, see The scope of TLB maintenance instructions.

In an implementation that includes EL3, the TLB maintenance instructions take account of the current Security
state, as part of the address translation required for the TLB maintenance instruction.

Some TLB maintenance instructions are defined as operating only on instruction TLBs, or only on data TLBs.
AArch32 state includes these instructions for backwards compatibility. However, more recent TLB maintenance
instructions do not support this distinction. Arm deprecates any use of Instruction TLB maintenance instructions,
or of Data TLB maintenance instructions, and developers must not rely on this distinction being maintained in future
revisions of the Arm architecture.

The Arm architecture does not dictate the form in which the TLB stores translation table entries. However, for TLB
invalidate instructions, the minimum size of the table entry that is invalidated from the TLB must be at least the size
that appears in the translation table entry.

The scope of TLB maintenance instructions describes the TLB maintenance instructions. The following subsections
give more information about the general requirements for TLB maintenance:

• Using break-before-make when updating translation table entries.

• The interaction of TLB lockdown with TLB maintenance instructions.

• Ordering and completion of TLB maintenance instructions.

• Use of ASIDs and VMIDs to reduce TLB maintenance requirements.

G5.9.1.1 Using break-before-make when updating translation table entries

To avoid possibly creating multiple TLB entries for the same address, and to avoid the effects of TLB caching
possibly breaking coherency, single-copy atomicity properties, ordering guarantees or uniprocessor semantics, or
possibly failing to clear the Exclusives monitors, the architecture requires the use of a break-before-make sequence
when changing translation table entries whenever multiple threads of execution can use the same translation tables
and the change to the translation table entries involves any of:

• A change of the memory type, including shareability.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11619
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
• A change of the cacheability attributes.

• A change of the output address (OA), if the OA of at least one of the old translation table entries and the new
translation table entry is writable.

• A change to the size of block used by the translation system. This applies both:

— When changing from a smaller size to a larger size, for example by replacing a table mapping with a
block mapping in a stage 2 translation table.

— When changing from a larger size to a smaller size, for example by replacing a block mapping with a
table mapping in a stage 2 translation table.

• A change of the output address (OA), if the contents of memory at the new OA do not match the contents of
memory at the previous OA.

• Creating a global entry when there might be non-global entries in a TLB that overlap with that global entry.

Note

Changes to the output address (OA) include changing between Secure and Non-secure output addresses.

A break-before-make sequence on changing from an old translation table entry to a new translation table entry
requires the following steps:

1. Replace the old translation table entry with an invalid entry, and execute a DSB instruction.

2. Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute a DSB
instruction to ensure the completion of that invalidation.

3. Write the new translation table entry, and execute a DSB instruction to ensure that the new entry is visible.

This sequence ensures that at no time are both the old and new entries simultaneously visible to different threads of
execution, and therefore the problems described at the start of this subsection cannot arise.

G5.9.1.2 The interaction of TLB lockdown with TLB maintenance instructions

The precise interaction of TLB lockdown with the TLB maintenance instructions is IMPLEMENTATION DEFINED.
However, the architecturally-defined TLB maintenance instructions must comply with these rules:

• The effect on locked entry of a TLB invalidate all unlocked entries instruction or a TLB invalidate by VA all
ASID instruction that would invalidate that entry if the entry was not locked must be one of the following,
and it is IMPLEMENTATION DEFINED which behavior applies:

— The instructions have no effect on entries that are locked down.

— The instructions generate an IMPLEMENTATION DEFINED Data Abort exception if an entry is locked
down, or might be locked down. For an invalidate instruction performed in AArch32 state, the
{coproc==0b1111, CRn==c5} fault status register definitions include a Fault status code for cache and
TLB lockdown faults, see Table G5-26 for the codes used with the Short-descriptor translation table
formats, or Table G5-27 for the codes used with the Long-descriptor translation table formats.

In an implementation that includes EL2, if EL2 is using AArch32 and the value of HCR.TIDCP is 1,
any such exceptions taken from a Non-secure PL1 mode are routed to Hyp mode, see HCR, Hyp
Configuration Register.

This permits a usage model for TLB invalidate routines, where the routine invalidates a large range of
addresses, without considering whether any entries are locked in the TLB.

• The effect on a locked TLB entry of a TLB invalidate by VA instruction or a TLB invalidate by ASID match
instruction that would invalidate that entry if the entry was not locked must be one of the following, and it is
IMPLEMENTATION DEFINED which behavior applies:

— A locked entry is invalidated in the TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11620
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
— The instruction has no effect on a locked entry in the TLB. In the case of the Invalidate single entry by
VA, this means the PE treats the instruction as a NOP.

— The instruction generates an IMPLEMENTATION DEFINED Data Abort exception if it operates on an entry
that is locked down, or might be locked down. For an invalidate instruction performed in AArch32
state, the {coproc==0b1111, CRn==c5} fault status register definitions include a Fault status code for
cache and TLB lockdown faults, see Table G5-26 and Table G5-27.

Note

Any implementation that uses an abort mechanism for entries that can be locked down but are not actually locked
down must:

• Document the IMPLEMENTATION DEFINED instruction sequences that perform the required invalidation on
entries that are not locked down.

• Implement one of the other specified alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use the
architecturally-defined maintenance instructions. This minimizes the number of customized maintenance
operations required.

In addition, an implementation that uses an abort mechanism for handling TLB maintenance instructions on entries
that can be locked down but are not actually locked down must also must provide a mechanism that ensures that no
TLB entries are locked.

Similar rules apply to cache lockdown, see The interaction of cache lockdown with cache maintenance instructions.

The architecture does not guarantee that any unlocked entry in the TLB remains in the TLB. This means that, as a
side-effect of a TLB maintenance instruction, any unlocked entry in the TLB might be invalidated.

G5.9.1.3 Ordering and completion of TLB maintenance instructions

The following rules describe the relations between the memory order model and the TLB maintenance instructions:

• A TLB maintenance instruction executed by a PE, PEe, causes a TLB maintenance operation to be generated
on each PE within the shareability domain of PEe that is specified by the instruction.

— At EL2 or EL3, or at EL1 when the Effective value of HCRX_EL2.FnXS is 0, the associated TLB
maintenance operations do not have the nXS qualifier.

— At EL1, when the Effective value of HCRX_EL2.FnXS is 1, the behavior of the associated TLB
maintenance operations is the same as described for the AArch64 TLB maintenance instructions with
the nXS qualifier. See Ordering and completion of TLB maintenance instructions.

Note

When FEAT_XS is not implemented, all TLB maintenance instructions do not have the nXS qualifier and
the Effective value of HCRX_EL2 is 0.

• A TLB maintenance operation generated by a TLB maintenance instruction is finished for a PE when:

— All memory accesses generated by that PE using in-scope old translation information are complete.

— All memory accesses RWx generated by that PE are complete.

RWx is the set of all memory accesses generated by instructions for that PE that appear in program order
before an instruction I1 executed by that PE where all of the following apply:

— I1 uses the in-scope old translation information.

— The use of the in-scope old translation information generates a synchronous Data Abort.

— If I1 did not generate an abort from use of the in-scope old translation information, I1 would generate
a memory access that RWx would be locally-ordered-before.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11621
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
In-scope old translation information is any translation information, for addresses that are in the scope of the
TLB maintenance instruction, that is not consistent with either:

— The architectural translation information held in the translation tables at the time that the TLB
maintenance instruction is executed by PEe.

— Any architecture translation information that is Coherence-after the information held in the translation
tables at the time that the TLB maintenance instruction is executed by PEe.

Note
•

Old translation information of this type might be held in TLBs or other non-coherent caching structures.

A TLB maintenance instruction is complete when the TLB maintenance operations specified by the TLB
maintenance instruction are finished for all PEs.

After the TLB maintenance instruction is complete, no new memory accesses using the in-scope old
translation information will be architecturally performed by any observer that is affected by the TLB
maintenance instruction.

Note

Speculative memory accesses can be performed using those entries if it is impossible for software running
on any observer to tell that those memory accesses have been performed.

• A TLB maintenance instruction is only guaranteed to be complete after the execution of a DSB instruction.

• An ISB instruction, or a return from an exception, causes the effect of all completed TLB maintenance
instructions that appear in program order before the ISB or return from exception to be visible to all
subsequent instructions, including the instruction fetches for those instructions.

• An exception causes all completed TLB maintenance instructions, that appear in the instruction stream before
the point where the exception is taken, to be visible to all subsequent instructions, including the instruction
fetches for those instructions.

• All TLB maintenance instructions are executed in program order relative to each other.

• The execution of a Data or Unified TLB maintenance instruction is only guaranteed to be visible to a
subsequent explicit memory read or write effect instruction after both:

— The execution of a DSB instruction to ensure the completion of the TLB maintenance instruction.

— Execution of a subsequent Context Synchronization event.

• The execution of an Instruction or Unified TLB maintenance instruction is only guaranteed to be visible to a
subsequent instruction fetch after both:

— The execution of a DSB instruction to ensure the completion of the TLB maintenance instruction.

— Execution of a subsequent Context Synchronization event.

In all cases in this section where a DMB or DSB is referred to, it refers to a DMB or DSB whose required access type is
both loads and stores. A DSB NSH is sufficient to ensure completion of TLB maintenance instructions that apply to a
single PE. A DSB ISH is sufficient to ensure completion of TLB maintenance instructions that apply to PEs in the
same Inner Shareable domain.

The following rules apply when writing translation table entries. They ensure that the updated entries are visible to
subsequent accesses and cache maintenance instructions.

For TLB maintenance, the translation table walk is treated as a separate observer. This means:

• A write to the translation tables is only guaranteed to be seen by a translation table walk caused by an explicit
memory read or write effect after the execution of both a DSB and an ISB.

However, the architecture guarantees that any writes to the translation tables are not seen by any explicit
memory effect that occurs in program order before the write to the translation tables.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11622
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
• A write to the translation tables is only guaranteed to be seen by a translation table walk caused by the
instruction fetch of an instruction that follows the write to the translation tables after both a DSB and an ISB.

Therefore, in a uniprocessor system, an example instruction sequence for writing a translation table entry, covering
changes to the instruction or data mappings is:

 STR rx, [Translation table entry] ; write new entry to the translation table
 DSB ; ensures visibility of the new entry
 Invalidate TLB entry by VA (and ASID if non-global) [page address]
 Invalidate BTC
 DSB ; ensure completion of the Invalidate TLB instruction
 ISB ; ensure table changes visible to instruction fetch

G5.9.1.4 Use of ASIDs and VMIDs to reduce TLB maintenance requirements

To reduce the need for TLB maintenance on context switches, the lookups from some translation regimes can be
associated with an ASID, or with an ASID and a VMID.

Note

The use of ASIDs and VMIDs in VMSAv8-32 is generally similar to their use in VMSAv8-64, see Use of ASIDs
and VMIDs to reduce TLB maintenance requirements.

For more information about the use of ASIDs in VMSAv8-32 see Global and process-specific translation table
entries.

G5.9.1.4.1 Common not private translations in VMSAv8-32

In an implementation that includes FEAT_TTCNP, multiple PEs in the same Inner Shareable domain can use the
same translation table entries for a given stage of address translation in a particular translation regime. This sharing
is enabled by the TTBR.CnP field for the stage of address translation.

When the value of a TTBR.CnP field is 1, translation table entries pointed to by that TTBR are shared with all other
PEs in the Inner Shareable domain for which the following conditions are met:

• The corresponding TTBR.CnP field has the value 1.

• That TTBR is using the Long-descriptor translation table format.

• If an ASID applies to the stage of translation corresponding to that TTBR then the current ASID value must
be the same for all of the PEs that are sharing entries for any translation table entry that is not global or not
leaf level.

• If a VMID applies to the stage of translation corresponding to that TTBR then the current VMID value must
be the same for all of the PEs that are sharing entries.

Note

In an implementation that includes EL3, the Secure instances of TTBR0 and TTBR1 relate to the Secure PL1&0
translation regime, and the Non-secure instances of TTBR0 and TTBR1 relate to the Non-secure PL1&0 translation
regime.

For a translation regime with both stage 1 and stage 2 translations, where a TLB combines information from stage
1 and stage 2 translation table entries into a single entry, this entry can be shared between different PEs only if the
value of the TTBR.CnP bit is 1 for both stage 1 and stage 2 of the translation table walk.

The TTBR.CnP bit can be cached in a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11623
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
For a given TTBR, if the value of TTBR.CnP is 1 on multiple PEs in the same Inner Shareable domain, and those
PEs meet the other conditions for sharing translation table entries as defined in this section, but those TTBRs do not
point to the same translation table entries, then the system is misconfigured, and performing an address translation
using that TTBR:

• Might generate multiple hits in the TLB, and as a result generate an exception that is reported using the TLB
conflict fault code, see TLB conflict aborts.

• Otherwise, has a CONSTRAINED UNPREDICTABLE result, as described in CONSTRAINED UNPREDICTABLE
behaviors due to caching of System register control or data values.

G5.9.2 Maintenance requirements on changing System register values

The TLB contents can be influenced by control bits in a number of System registers. This means the TLB entries
associated with a translation regime affected by these control bits must be invalidated after any changes to these
bits, unless the changes are accompanied by a change to the VMID or ASID, if appropriate depending on the
translation regime, that defines the context to which the bits apply. The general form of the required invalidation
sequence is as follows:

; Change control bits in System registers
ISB ; Synchronize changes to the control bits
; Perform TLB invalidation of all entries that might be affected by the changed control bits

The System register changes that this applies to are:

• Any change to the NMRR, PRRR, MAIR0,MAIR1, HMAIR0 or HMAIR1 registers.

• Any change to the SCTLR.AFE bit, see Changing the Access flag enable.

• Any change to any of the SCTLR.{TRE, WXN, UWXN} bits.

• Any change to the Translation table base 0 address in TTBR0.

• Any change to the Translation table base 1 address in TTBR1.

• Any change to HTTBR.BADDR.

• Any change to VTTBR.BADDR.

• Changing TTBCR.EAE, see Changing the current Translation table format.

• In an implementation that includes EL3, any change to the SCR.SIF bit.

• In an implementation that includes EL2:

— Any change to the HCR.VM bit.

— Any change to HCR.PTW bit, see Changing HCR.PTW.

• When using the Short-descriptor translation table format:

— Any change to the RGN, IRGN, S, or NOS fields in TTBR0 or TTBR1.

— Any change to the N, EAE, PD0 or PD1 fields in TTBCR

• When using the Long-descriptor translation table format:

— Any change to the EAE, TnSZ, ORGNn, IRGNn, SHn, or EPDn fields in the TTBCR, where n is 0
or 1.

— Any change to the TTBCR2.

— Any change to the T0SZ, ORGN0, IRGN0, or SH0 fields in the HTCR.

— Any change to the T0SZ, ORGN0, IRGN0, or SH0 fields in the VTCR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11624
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
G5.9.2.1 Changing the Access flag enable

In a PE that is using the Short-descriptor translation table format, it is CONSTRAINED UNPREDICTABLE whether the
TLB caches the effect of the SCTLR.AFE bit on translation tables. This means that, after changing the SCTLR.AFE
bit software must invalidate the TLB before it relies on the effect of the new value of the SCTLR.AFE bit, otherwise
behavior is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of
System register control or data values.

Note

There is no enable bit for use of the Access flag when using the Long-descriptor translation table format.

G5.9.2.2 Changing HCR.PTW

When EL2 is using AArch32 and the value of the Protected table walk bit, HCR.PTW, is 1, a stage 1 translation
table access in the Non-secure PL1&0 translation regime, to an address that is mapped to any type of Device
memory by its stage 2 translation, generates a stage 2 Permission fault. A TLB associated with a particular VMID
might hold entries that depend on the effect of HCR.PTW. Therefore, if the value of HCR.PTW is changed without
a change to the VMID value, all TLB entries associated with the current VMID must be invalidated before executing
software in a Non-secure PL1 or EL0 mode. If this is not done, behavior is CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values.

G5.9.2.3 Changing the current Translation table format

The effect of changing TTBCR.EAE when executing in the translation regime affected by TTBCR.EAE with any
stage of address translation for that translation regime enabled is CONSTRAINED UNPREDICTABLE. This means that,
when TTBCR.EAE is changed for a given context, the TLB must be invalidated before resuming execution in that
context, otherwise the effect is CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors
due to caching of System register control or data values.

G5.9.3 Atomicity of register changes on changing virtual machine

From the viewpoint of software executing in a Non-secure PL1 or EL0 mode, when there is a switch from one virtual
machine to another, the registers that control or affect address translation must be changed atomically. This applies
to the registers for:

• Non-secure PL1&0 stage 1 address translations. This means that all of the following registers must change
atomically:

— PRRR and NMRR, if using the Short-descriptor translation table format.

— MAIR0 and MAIR1, if using the Long-descriptor translation table format.

— TTBR0, TTBR1, TTBCR, TTBCR2, DACR, and CONTEXTIDR.

— The SCTLR.

• Non-secure PL1&0 stage 2 address translations. When EL2 is using AArch32, this means that all of the
following registers and register fields must change atomically:

— VTTBR and VTCR.

— HMAIR0 and HMAIR1.

— The HSCTLR.

Note

Only some bits of SCTLR affect the stage 1 translation, and only some bits of HSCTLR affect the stage 2 translation.
However, in each case, changing these bits requires a write to the register, and that write must be atomic with the
other register updates.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11625
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
These registers apply to execution in Non-secure PL1&0 modes. However, when updated as part of a switch of
virtual machines they are updated by software executing in Hyp mode. This means the registers are out of context
when they are updated, and no synchronization precautions are required.

Note

By contrast, a translation table change associated with a change of ASID, made by software executing at PL1, can
require changes to registers that are in context. Synchronization of changes of ASID and TTBR describes appropriate
precautions for such a change.

Software executing in Hyp mode, or in Secure state, must not use the registers associated with the Non-secure
PL1&0 translation regime for speculative memory accesses.

G5.9.4 Synchronization of changes of ASID and TTBR

A common virtual memory management requirement is to change the ASID and TTBR together to associate the
new ASID with different translation tables, without any change to the current translation regime. When using the
Short-descriptor translation table format, different registers hold the ASID and the translation table base address,
meaning these two values cannot be updated atomically. Since a PE can perform a speculative memory access at
any time, this lack of atomicity is a problem that software must address. Such a change is complicated by:

• The depth of speculative fetch being IMPLEMENTATION DEFINED.

• The use of branch prediction.

When using the Short-descriptor translation table format, the virtual memory management operations must ensure
the synchronization of changes of the ContextID and the translation table registers. For example, some or all of the
TLBs, branch predictors, and other caching of ASID and translation information might become corrupt with invalid
translations. Synchronization is required to avoid either:

• The old ASID being associated with translation table walks from the new translation tables.

• The new ASID being associated with translation table walks from the old translation tables.

There are a number of possible solutions to this problem, and the most appropriate approach depends on the system.
Example G5-3, Example G5-4, and Example G5-5 describe three possible approaches.

Note

Another instance of the synchronization problem occurs if a branch is encountered between changing the ASID and
performing the synchronization. In this case the value in the branch predictor might be associated with the incorrect
ASID. Software can address this possibility using any of these approaches, but instead software might be written in
a way that avoids such branches.

Example G5-3 Using a reserved ASID to synchronize ASID and TTBR changes

In this approach, a particular ASID value is reserved for use by the operating system, and is used only for the
synchronization of the ASID and TTBR. This example uses the value of 0 for this purpose, but any value could be
used.

This approach can be used only when the size of the mapping for any given VA is the same in the old and new
translation tables.

The maintenance software uses the following sequence, which must be executed from memory marked as global:

Change ASID to 0
ISB
Change TTBR
ISB
Change ASID to new value
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11626
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
This approach ensures that any non-global pages fetched at a time when it is uncertain whether the old or new
translation tables are being accessed are associated with the unused ASID value of 0. Since the ASID value of 0 is
not used for any normal operations these entries cannot cause corruption of execution.

Example G5-4 Using translation tables containing only global mappings when changing the ASID

A second approach involves switching the translation tables to a set of translation tables that only contain global
mappings while switching the ASID.

The maintenance software uses the following sequence, which must be executed from memory marked as global:

Change TTBR to the global-only mappings
ISB
Change ASID to new value
ISB

This approach ensures that no non-global pages can be fetched at a time when it is uncertain whether the old or new
ASID value will be used.

This approach works without the need for TLB invalidations in systems that have caching of intermediate levels of
translation tables, as described in General TLB maintenance requirements, provided that the translation tables
containing only global mappings have only level 1 translation table entries of the following kinds:

• Entries that are global.

• Pointers to level 2 tables that hold only global entries, and that are the same level 2 tables that are used for
accessing global entries by both:

— The set of translation tables that were used under the old ASID value.

— The set of translation tables that will be used with the new ASID value.

• Invalid level 1 entries.

In addition, all sets of translation tables in this example should have the same Shareability and Cacheability
attributes, as held in the TTBR0.{ORGN, IRGN} or TTBR1.{ORGN, IRGN} fields.

If these rules are not followed, then the implementation might cache level 1 translation table entries that require
explicit invalidation.

Example G5-5 Disabling non-global mappings when changing the ASID

In systems where only the translation tables indexed by TTBR0 hold non-global mappings, maintenance software
can use the TTBCR.PD0 field to disable use of TTBR0 during the change of ASID. This means the system does not
require a set of global-only mappings.

The maintenance software uses the following sequence, which must be executed from a memory region with a
translation that is accessed using the base address in the TTBR1 register, and is marked as global:

Set TTBCR.PD0 = 1
ISB
Change ASID to new value
Change TTBR to new value
ISB
Set TTBCR.PD0 = 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11627
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
This approach ensures that no non-global pages can be fetched at a time when it is uncertain whether the old or new
ASID value will be used.

When using the Long-descriptor translation table format, TTBCR.A1 holds the number, 0 or 1, of the TTBR that
holds the current ASID. This means the current TTBR can also hold the current ASID, and the current translation
table base address and ASID can be updated atomically when:

• TTBR0 is the only TTBR being used. TTBCR.A1 must be set to 0.

• TTBR0 points to the only translation tables that hold non-global entries, and TTBCR.A1 is set to 0.

• TTBR1 points to the only translation tables that hold non-global entries, and TTBCR.A1 is set to 1.

In these cases, software can update the current translation table base address and ASID atomically, by updating the
appropriate TTBR, and does not require a specific routine to ensure synchronization of the change of ASID and base
address.

However, in all other cases using the Long-descriptor format, the synchronization requirements are identical to
those when using the Short-descriptor formats, and the examples in this section indicate how synchronization might
be achieved.

Note

When using the Long-descriptor translation table format, CONTEXTIDR.ASID has no significance for address
translation, and is only an extension of the Context ID value.

G5.9.5 The scope of TLB maintenance instructions

TLB maintenance instructions provide a mechanism for invalidating entries from TLB caching structures, to ensure
that changes to the translation tables are reflected correctly in the TLB caching structures. To support TLB
maintenance in multiprocessor systems, there are maintenance operations that apply to the TLBs of all PEs in the
same Inner Shareable domain.

The architecture permits the caching of any translation table entry that has been returned from memory without a
fault and that does not, itself, cause a Translation Fault, an Address size fault, or an Access Flag fault. This means
the TLB:

• Cannot hold an entry that, when used for a translation table lookup, causes a Translation fault, an Address
size fault, or an Access Flag fault.

• Can hold an entry for a translation table lookup for a translation that causes a Translation Fault, an Address
size fault, or an Access Flag fault at a subsequent level of translation table lookup. For example, it can hold
an entry for the level 1 lookup of a translation that causes a Translation fault, an Address size fault, or an
Access Flag fault at level 2 or level 3 of lookup.

This means that entries cached in the TLB can include:

• Translation table entries that point to a subsequent table to be used in the current stage of translation.

• In an implementation that includes EL2:

— Stage 2 translation table entries that are used as part of a stage 1 translation table walk.

— Stage 2 translation table entries for translating the output address of a stage 1 translation.

Such entries might be held in intermediate TLB caching structures that are used during a translation table walk and
that are distinct from the data caches in that they are not required to be invalidated as the result of writes of the data.
The architecture makes no restriction on the form of these intermediate TLB caching structures when these caches
are indexed by their input address. The architecture does not restrict having either:

• Translation table entry caching that is indexed by the physical address of the location holding the translation
table entry.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11628
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
• Translation table entry caching that is used for stage 1 translations and is indexed by the intermediate physical
address of the location holding the translation table entry. However, FEAT_nTLBPA allows software
discoverability of whether such caches exist, such that if FEAT_nTLBPA is implemented, such caching is not
implemented.

If all of the following are true, a TLB maintenance instruction will ensure that any physical address or intermediate
physical address indexed cached copies of translation table entries are invalidated for a PE:

• The TLB maintenance instruction applies to that PE with the context information that is relevant to
translation table entry caching that is either:

— Indexed by the physical address of the location holding the translation table entry.

— Stage 1 translation information that is indexed by the intermediate physical address of the location
holding the translation table entry.

• FEAT_nTLBPA is not implemented.

Note

Any TLB caching based on the physical address or intermediate physical address obeys the other rules regarding
the caching to TLB entries described in this manner, including restrictions on types of entries that cannot be held in
a TLB, and a requirement that entries held in a TLB are distinguished by context information such as translation
regime, VMID, and ASID.

The architecture does not intend to restrict the form of TLB caching structures used for holding translation table
entries. In particular for translation regimes that involve two stages of translation, it recognizes that such caching
structures might contain:

• At any level of the translation table walk, entries containing information from stage 1 translation table entries.

• In an implementation that includes EL2:

— At any level of the translation table walk, entries containing information from stage 2 translation table
entries.

— At any level of the translation table walk, entries combining information from both stage 1 and stage
2 translation table entries.

Note

For the purpose of TLB maintenance, the term TLB entry denotes any structure, including temporary working
registers in translation table walk hardware, that holds a translation table entry.

For the TLB maintenance instructions:

• If a TLB maintenance instruction is required to apply to stage 1 entries then it must apply to any cached entry
in the caching structures that includes any stage 1 information that would be used to translate the address
being invalidated, including any entry that combines information from both stage 1 and stage 2 translation
table entries.

Note

— Where stage 1 information has been cached in multiple TLB entries, as could occur from splintering
a page when caching in the TLB, then the invalidation must apply to each cached entry containing
stage 1 information from the page that is used to translate the address being invalidated, regardless of
whether or not that cached entry would be used to translate the address being invalidated.

— As stated in Global and process-specific translation table entries, translation table entries from levels
of translation other than the final level are treated as being non-global. Arm expects that, in at least
some implementations, cached copies of levels of the translation table walk other than the last level
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11629
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
are tagged with their ASID, regardless of whether the final level is global. This means that TLB
invalidations that involve the ASID require the ASID to match such entries to perform the required
invalidation.

• If a TLB maintenance instruction is required to apply to stage 2 entries only, then:

— It is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

— It must apply to caching structures that contain information only from stage 2 translation table entries.

• If a TLB maintenance instruction is required to apply to both stage 1 and stage 2 entries, then it must apply
to any entry in the caching structures that includes information from either a stage 1 translation table entry or
a stage 2 translation table entry, including any entry that combines information from both stage 1 and stage
2 translation table entries.

Table G5-23 summarizes the required effect of the AArch32 TLB maintenance instructions, that operate only on
TLBs on the PE that executes the instruction. Additional TLB maintenance instructions that:

• Apply across all PEs in the same Inner Shareable domain. Each instruction shown in the table has an Inner
Shareable equivalent, identified by an IS suffix. For example, the Inner Shareable equivalent of TLBIALL is
TLBIALLIS. See also EL2 forced broadcasting of TLB maintenance instructions.

• Can apply to separate Instruction or Data TLBs. These instructions are indicated by a footnote to the table.
Arm deprecates any use of these instructions.

Note

• The architecture permits a TLB invalidation instruction to affect any unlocked entry in the TLB. Table G5-23
defines only the entries that each instruction must invalidate.

• All TLB instructions, including those that operate on a VA match, operate as described regardless of the value
of SCTLR.M.

When interpreting the table:

Related operations Each instruction description applies also to any equivalent instruction that either:

• Applies to all PEs in the same Inner Shareable domain.

• Applies only to a data TLB, or only to an instruction TLB.

So, for example, the TLBIALL instruction description applies also to TLBIALLIS,
ITLBIALL, and DTLBIALL.

TLB maintenance system instructions lists all of the TLB maintenance instructions.

Matches the VA Means the VA argument for the instruction must match the VA value in the TLB entry.

Matches the ASID Means the ASID argument for the instruction must match the ASID in use when the TLB
entry was assigned.

Matches the current VMID

Means the current VMID must match the VMID in use when the TLB entry was assigned.

The dependency on the VMID applies even when the value of HCR.VM is 0, including
situations where there is no use of virtualization. However, VTTBR.VMID resets to zero,
meaning there is a valid VMID from reset.

Execution at EL2 Descriptions of operations at EL2 apply only to implementations that include EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11630
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
For the definitions of the translation regimes referred to in the table see About VMSAv8-32.

Table G5-23 Effect of the TLB maintenance instructions

Instruction
Executed from

Effect, must invalidate any entry that matches all stated conditionsa

State Mode

TLBIALLb Secure PL1 All entries for the Secure PL1&0 translation regime. That is, all entries that were
allocated in Secure state.

Non-secure PL1 All entries for stage 1 of the Non-secure PL1&0 translation regime that match the
current VMID.

Hyp All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime that
match the current VMID.

TLBIMVAb Secure PL1 Any entry for the Secure PL1&0 translation regime that both:

• Matches the VA argument.

• Matches the ASID argument, or is global.

Non-secure PL1 or Hyp Any entry for stage 1 of the Non-secure PL1&0 translation regime to which all of
the following apply. The entry:

• Matches the VA argument.

• Matches the ASID argument, or is global.

• Matches the current VMID.

TLBIASIDb Secure PL1 Any entry for the Secure PL1&0 translation regime that matches the specified
ASID and either:

• Is from a level of lookup above the final level.

• Is a non-global entry from the final level of lookup.

Non-secure PL1 or Hyp Any entry for stage 1 of the Non-secure PL1&0 translation regime that both:

• Matches the specified ASID and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• Matches the current VMID.

TLBIMVAA Secure PL1 Any entry for the Secure PL1&0 translation regime that matches the VA argument.

Non-secure PL1 or Hyp Any entry for stage 1 of the Non-secure PL1&0 translation regime that both:

• Matches the VA argument.

• Matches the current VMID.

TLBIALLNSNHc Secure Monitor All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime,
regardless of the associated VMID.

Non-secure Hyp

TLBIALLHc Secure Monitor All entries for the Non-secure EL2 translation regime. That is, any entry that was
allocated in Non-secure state from Hyp mode.

Non-secure Hyp
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11631
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
G5.9.5.1 EL2 forced broadcasting of TLB maintenance instructions

In an implementation that includes EL2, when the value of HCR.FB is 1, the TLB maintenance instructions that are
not broadcast across the Inner Shareable domain are forced to operate across the Inner Shareable domain when
executed in a Non-secure PL1 mode. For example, when the value of HCR.FB is 1, a TLBIMVA instruction
executed in a Non-secure PL1 mode performs the same invalidation as the invalidation performed by a TLBIMVAIS
instruction.

TLBIMVAL Secure PL1 Any entry for stage 1 of the Secure PL1&0 translation regime that is from the last
level of the translation table walk and both:

• Matches the VA argument.

• Matches the ASID argument, or is global.

Non-secure PL1 or Hyp Any entry for stage 1 of the Non-secure PL1&0 translation regime that is from the
last level of the translation table walk and to which all of the following apply. The
entry:

• Matches the VA argument.

• Matches the ASID argument, or is global.

• Matches the current VMID.

TLBIMVAAL Secure PL1 Any entry for stage 1 of the Secure PL1&0 translation regime that is from the last
level of the translation table walk and matches the VA argument.

Non-secure PL1 or Hyp Any entry for stage 1 of the Non-secure PL1&0 translation regime that is from the
last level of the translation table walk and both:

• Matches the VA argument.

• Matches the current VMID.

TLBIMVAHc Secure Monitor Any entry for the Non-secure EL2 translation regime that matches the VA
argument.

Non-secure Hyp

TLBIMVALHc Secure Monitor Any entry for the Non-secure EL2 translation regime that is from the last level of
the translation table walk and matches the VA argument.

Non-secure Hyp

TLBIIPAS2c, d Secure Monitore Any entry for stage 2 of the PL1&0 translation regime that both:

• Matches the IPA argument.

• Matches the current VMID.
Non-secure Hyp

TLBIIPAS2Lc, d Secure Monitore Any entry for stage 2 of the PL1&0 translation regime that is from the last level of
translation and both:

• Matches the IPA argument.

• Matches the current VMID.

Non-secure Hyp

a. When a TLB maintenance instruction is executed at Secure EL1 in AArch32 state when EL3 is using AArch64, it only affects TLB entries
related to the Secure EL1 translation regime.

b. The architecture defines variants of these instructions that apply only to instruction TLBs, and only to data TLBs. Arm deprecates any use
of these variants. For more information, see the referenced description of the operation.

c. Available only in an implementation that includes EL2. See also EL2 forced broadcasting of TLB maintenance instructions.

d. This instruction is CONSTRAINED UNPREDICTABLE if executed in any AArch32 Secure privileged mode.

e. This instruction executes as a NOP when SCR.NS == 0.

Table G5-23 Effect of the TLB maintenance instructions (continued)

Instruction
Executed from

Effect, must invalidate any entry that matches all stated conditionsa

State Mode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11632
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.9 TLB maintenance requirements
G5.9.5.2 TLB maintenance with different translation granule sizes

If a TLB maintenance instruction specifying a VA affecting the EL2 translation regime is broadcast from a PE using
AArch32 to a PE using AArch64 using a translation granule size that is different from the AArch32 translation
granule size for that same translation regime, the TLB maintenance instruction is not required to perform any
invalidation on the recipient PE.

If a TLB maintenance instruction specifying a VA affecting the PL1 translation regime is broadcast from a PE using
AArch32 using one translation granule size for that translation regime for a particular ASID, VMID (if applicable),
and Security state, to a PE using AArch64 where EL1 for the same ASID, VMID (if applicable), and Security state,
is using a translation granule size that is different from the AArch32 translation granule size, the TLB maintenance
instruction is not required to perform any invalidation on the recipient PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11633
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.10 Caches in VMSAv8-32
G5.10 Caches in VMSAv8-32

The Arm architecture describes the required behavior of an implementation of the architecture. As far as possible it
does not restrict the implemented microarchitecture, or the implementation techniques that might achieve the
required behavior.

Maintaining this level of abstraction is difficult when describing the relationship between memory address
translation and caches, especially regarding the indexing and tagging policy of caches. This section:

• Summarizes the architectural requirements for the interaction between caches and memory translation.

• Gives some information about the likely implementation impact of the required behavior.

The following sections give this information:

• Data and unified caches.

• Instruction caches.

In addition Cache maintenance requirement created by changing translation table attributes describes the cache
maintenance required after updating the translation tables to change the attributes of an area of memory.

For more information about cache maintenance see:

• AArch32 cache and branch predictor support. This section describes the Arm cache maintenance
instructions.

• Cache maintenance system instructions. This section summarizes the System register encodings used for
these operations when executing in AArch32 state.

G5.10.1 Data and unified caches

For data and unified caches, the use of memory address translation is entirely transparent to any data access other
than as described in Mismatched memory attributes.

This means that the behavior of accesses from the same observer to different VAs, that are translated to the same PA
with the same memory attributes, is fully coherent. This means these accesses behave as follows, regardless of
which VA is accessed:

• Two writes to the same PA occur in program order.

• A read of a PA returns the value of the last successful write to that PA.

• A write to a PA that occurs, in program order, after a read of that PA, has no effect on the value returned by
that read.

The memory system behaves in this way without any requirement to use barrier or cache maintenance instructions.

In addition, if cache maintenance is performed on a memory location, the effect of that cache maintenance is visible
to all aliases of that physical memory location.

These properties are consistent with implementing all caches that can handle data accesses as Physically-indexed,
physically-tagged (PIPT) caches.

G5.10.2 Instruction caches

In the Arm architecture, an instruction cache is a cache that is accessed only as a result of an instruction fetch.
Therefore, an instruction cache is never written to by any load or store instruction executed by the PE.

The Arm architecture permits different behaviors for instruction caches. These are identified by descriptions of the
associated expected implementation. The following subsections describe the behavior associated with these cache
types, including any occasions where explicit cache maintenance is required to make the use of memory address
translation transparent to the instruction cache:

• Physically-indexed, physically-tagged instruction caches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11634
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.10 Caches in VMSAv8-32
• Virtually-indexed, physically-tagged instruction caches.

• The IVIPT architecture Extension.

In AArch32 state, the CTR.L1Ip field identifies the form of the instruction caches.

Note

For software to be portable between implementations that might use any of PIPT instruction caches or VIPT
instruction caches, software must invalidate the instruction cache whenever any condition occurs that would require
instruction cache maintenance for at least one of the instruction cache types.

G5.10.2.1 Physically-indexed, physically-tagged instruction caches

For a Physically-indexed, physically-tagged (PIPT) instruction cache:

• The use of memory address translation is entirely transparent to all instruction fetches other than as described
in Mismatched memory attributes.

• If cache maintenance is performed on a memory location, the effect of that cache maintenance is visible to
all aliases of that physical memory location.

An implementation that provides PIPT instruction caches implements the IVIPT Extension, see The IVIPT
architecture Extension.

G5.10.2.2 Virtually-indexed, physically-tagged instruction caches

For a Virtually-indexed, physically-tagged (VIPT) instruction cache:

• The use of memory address translation is transparent to all instruction fetches other than for the effect of
memory address translation on instruction cache invalidate by address operations or as described in
Mismatched memory attributes.

Note

Cache invalidation is the only cache maintenance instruction that can be performed on an instruction cache.

• If instruction cache invalidation by address is performed on a memory location, the effect of that invalidation
is visible only to the VA supplied with the operation. The effect of the invalidation might not be visible to
any other VA aliases of that physical memory location.

The only architecturally-guaranteed way to invalidate all aliases of a PA from a VIPT instruction cache is to
invalidate the entire instruction cache.

An implementation that provides VIPT instruction caches implements the IVIPT Extension, see The IVIPT
architecture Extension.

G5.10.2.3 The IVIPT architecture Extension

Any permitted instruction cache implementation can be described as implementing the IVIPT Extension to the Arm
architecture.

The formal definition of the Arm IVIPT Extension is that it reduces the instruction cache maintenance requirement
to the following condition:

• Instruction cache maintenance is required only after writing new data to a PA that holds an instruction.

Note

Previous versions of the Arm architecture have permitted an instruction cache option that does not implement the
Arm IVIPT Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11635
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.10 Caches in VMSAv8-32
G5.10.3 Cache maintenance requirement created by changing translation table attributes

Any change to the translation tables to change the attributes of an area of memory can require maintenance of the
translation tables, as described in General TLB maintenance requirements. If the change affects the cacheability
attributes of the area of memory, including any change between Write-Through and Write-Back attributes, software
must ensure that any cached copies of affected locations are removed from the caches, typically by cleaning and
invalidating the locations from the levels of cache that might hold copies of the locations affected by the attribute
change. Any of the following changes to the inner cacheability or outer cacheability attribute creates this
maintenance requirement:

• Write-Back to Write-Through.

• Write-Back to Non-cacheable.

• Write-Through to Non-cacheable.

• Write-Through to Write-Back.

The cache clean and invalidate avoids any possible coherency errors caused by mismatched memory attributes.

Similarly, to avoid possible coherency errors caused by mismatched memory attributes, the following sequence
must be followed when changing the Shareability attributes of a cacheable memory location:

1. Make the memory location Non-cacheable, Outer Shareable.

2. Clean and invalidate the location from them cache.

3. Change the Shareability attributes to the required new values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11636
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
G5.11 VMSAv8-32 memory aborts

In a VMSAv8-32 implementation, the following mechanisms cause a PE to take an exception on a failed memory
access:

Debug exception An exception caused by the debug configuration, see Chapter G2 AArch32 Self-hosted
Debug.

Alignment fault An Alignment fault is generated if the address used for a memory access does not have the
required alignment for the operation. For more information, see Unaligned data access and
Alignment faults.

MMU fault An MMU fault is a fault generated by the fault checking sequence for the current translation
regime. See Types of MMU faults.

External abort Any memory system fault other than a Debug exception, an Alignment fault, or an MMU
fault.

Collectively, these mechanisms are called aborts. Chapter G2 AArch32 Self-hosted Debug and Chapter H3 Halting
Debug Events describe Debug exceptions, and the remainder of this section describes Alignment faults, MMU
faults, and External aborts.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Fault Status
Registers (FSRs) or Exception Syndrome Registers (ESRs) to record context information.

The exception generated on a synchronous memory abort:

• On an instruction fetch is called the Prefetch Abort exception.

• On a data access is called the Data Abort exception.

Note

The Prefetch Abort exception applies to any synchronous memory abort on an instruction fetch. It is not restricted
to speculative instruction fetches.

The Exception level and PE mode that a VMSAv8-32 memory abort is taken to depends on the translation regime
and stage that generate the abort. The fault context is dependent on whether:

• The abort is reported as a Prefetch Abort or as a Data Abort.

• The exception is taken from the same or a lower Exception level.

Note

A memory access from AArch32 state may be subject to one or more VMSAv8-64 translation stages. For example,
a Non-secure EL0 access when EL1 is using AArch64 is subject to both stages of the VMSAv8-64 Non-secure
EL1&0 translation regime. A memory abort generated on a VMSAv8-64 translation stage is handled as described
in Memory aborts.

For more information, see Routing of aborts taken to AArch32 state.

External aborts can be reported synchronously or asynchronously. Asynchronous External aborts are reported using
the SError interrupt. For more information, see External aborts.

In AArch32 state, asynchronous memory aborts are a type of External abort, and are treated as a type of Data Abort
exception.

The following sections describe the abort mechanisms:

• Types of MMU faults.

• VMSAv8-32 MMU fault terminology.

• The MMU fault-checking sequence.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11637
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
• Alignment faults.

• External abort on a translation table walk.

• AArch32 state prioritization of synchronous aborts from a single stage of address translation.

An access that causes an abort is said to be aborted. On an abort, System registers are used to record context
information. For more information, see Exception reporting in a VMSAv8-32 implementation.

G5.11.1 Types of MMU faults

This section describes the faults that might be detected during one of the fault-checking sequences described in The
MMU fault-checking sequence. Unless indicated otherwise, information in this section applies to the fault checking
sequences for both the Short-descriptor translation table format and the Long-descriptor translation table format.

MMU faults are always synchronous.

When an MMU fault generates an abort for a region of memory, no memory access is made if that region is or could
be marked as any type of Device memory.

The MMU faults that might be detected during a fault checking sequence are:

• Permission fault.

• Translation fault.

• Address size fault.

• Access flag fault.

• Domain fault, Short-descriptor translation tables only.

• TLB conflict abort.

See also External abort on a translation table walk.

Note

• Although the TLB conflict abort is classified as an MMU fault, it is described in the section Translation
Lookaside Buffers.

• In VMSAv8-64 an External abort on a translation table walk is classified as an MMU fault. However, in
VMSAv8-32, for consistency with earlier versions of the architecture these aborts are not classified as MMU
faults.

G5.11.1.1 Permission fault

A Permission fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
See About access permissions for information about conditions that cause a Permission fault.

Note

When using the Short-descriptor translation table format, the Translation Table descriptors are checked for
Permission faults only for accesses to memory regions in Client domains.

A TLB might hold a translation table entry that cause a Permission fault. Therefore, if the handling of a Permission
fault results in an update to the associated translation tables, the software that updates the translation tables must
invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent
memory access. For more information, see the translation table entry update examples in Ordering and completion
of TLB maintenance instructions.

In an implementation that includes EL2, this maintenance requirement applies to Permission faults in both stage 1
and stage 2 translations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11638
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Cache or branch predictor maintenance operations cannot cause a Permission fault, except that:

• A stage 1 translation table walk performed as part of a cache or branch predictor maintenance operation can
generate a stage 2 Permission fault as described in Stage 2 fault on a stage 1 translation table walk.

• When FEAT_CMOW is implemented and the Effective value of HCRX_EL2.CMOW is 1, the DCCIMVAC
and ICIMVAU cache maintenance instructions can generate a stage 2 Permission fault if they do not have
read and write permission at EL1 or EL0. See Permission fault.

G5.11.1.2 Translation fault

A Translation fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
A Translation fault is generated if bits[1:0] of a Translation Table descriptor identify the descriptor as either a Fault
encoding or a reserved encoding. For more information, see:

• VMSAv8-32 Short-descriptor Translation Table format descriptors.

• VMSAv8-32 Long-descriptor Translation Table format descriptors.

In addition, a Translation fault is generated if the input address for a translation either does not map onto an address
range of a TTBR, or the TTBR range that it maps onto is disabled. In these cases the fault is reported as a level 1
Translation fault on the translation stage at which the mapping to a region described by a TTBR failed.

The architecture guarantees that any translation table entry that causes a Translation fault is not cached, meaning
the TLB never holds such an entry. Therefore, when a Translation fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

A data or unified cache maintenance by VA instruction can generate a Translation fault. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or
unified cache maintenance by VA to the Point of Coherency instruction can generate a Translation fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Translation fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate a Translation
fault.

It is IMPLEMENTATION DEFINED whether a branch predictor maintenance operation can generate a Translation fault.

G5.11.1.3 Address size fault

An Address size fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.

An Address size fault is generated if the translation table entries or the TTBR for the stage of translation have
nonzero address bits above the most significant bit of the maximum output address size. Because VMSAv8-32
supports a maximum PA and IPA size of 40 bits, this means any case where a translation table entry or the TTBR
holds an address for which A[47:40] is nonzero generates an Address size fault.

A data or unified cache maintenance by VA instruction can generate an Address size fault. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or
unified cache maintenance by VA instruction can generate an Address size fault.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate an Address size fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate an Address
size fault.

It is IMPLEMENTATION DEFINED whether a branch predictor maintenance operation can generate an Address size
fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11639
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
The architecture guarantees that any translation table entry that causes an Address size fault is not cached, meaning
the TLB never holds such an entry. Therefore, when an Address size fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

G5.11.1.4 Access flag fault

An Access flag fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.
An Access flag fault is generated only if all of the following apply:

• The translation tables support an Access flag bit:

— The Short-descriptor format supports an Access flag only when SCTLR.AFE is set to 1.

— The Long-descriptor format always supports an Access flag.

• A Translation Table descriptor with the Access flag bit set to 0 is loaded.

For more information about the Access flag bit see:

• VMSAv8-32 Short-descriptor Translation Table format descriptors

• VMSAv8-32 Long-descriptor Translation Table format descriptors.

The architecture guarantees that any translation table entry that causes an Access flag fault is not cached, meaning
the TLB never holds such an entry. Therefore, when an Access flag fault occurs, the fault handler does not have to
perform any TLB maintenance instructions to remove the faulting entry.

Whether any cache maintenance instruction by VA can generate Access flag faults is IMPLEMENTATION DEFINED.

Whether branch predictor invalidate by VA operations can generate Access flag faults is IMPLEMENTATION DEFINED.

For more information, see The Access flag.

G5.11.1.5 Domain fault, Short-descriptor format translation tables only

When using the Short-descriptor translation table format, a Domain fault can be generated at level 1or level 2 of
lookup. The reported fault code identifies the lookup level. The conditions for generating a Domain fault are:

Level 1 When a level 1 descriptor fetch returns a valid Section level 1 descriptor, the domain field of that
descriptor is checked against the DACR. A level 1 Domain fault is generated if this check fails.

Level 2 When a level 2 descriptor fetch returns a valid level 2 descriptor, the domain field of the level 1
descriptor that required the level 2 fetch is checked against the DACR, and a level 2 Domain fault
is generated if this check fails.

For more information, see Domains, Short-descriptor format only.

Domain faults cannot occur on cache or branch predictor maintenance operations.

A TLB might hold a translation table entry that cause a Domain fault. Therefore, if the handling of a Domain fault
results in an update to the associated translation tables, the software that updates the translation tables must
invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent
memory access. For more information, see the translation table entry update examples in Ordering and completion
of TLB maintenance instructions.

Any change to the DACR must be synchronized by a Context Synchronization event. For more information, see
Synchronization of changes to AArch32 System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11640
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
G5.11.2 VMSAv8-32 MMU fault terminology

The Armv7 Large Physical Address Extension introduced new terminology for faults on a stage of address
translation, to provide consistent terminology across all implementations. Table G5-24 shows the terminology used
in this manual for an MMU faults, compared with older Arm documentation. The current terms are the same for
faults that occur with the Short-descriptor translation table format and with the Long-descriptor format, and also
apply to faults in a level 3 lookup when using the Long-descriptor translation table format.

In an implementation that includes EL2, MMU faults are also classified by the translation stage at which the fault
is generated. This means that a memory access from a Non-secure PL1 or EL0 mode can generate:

• A stage 1 MMU fault, for example, a stage 1 Translation fault.

• A stage 2 MMU fault, for example, a stage 2 Translation fault.

G5.11.3 The MMU fault-checking sequence

This section describes the MMU checks made for the memory accesses required for instruction fetches and for
explicit memory effects:

• If an instruction fetch faults it generates a Prefetch Abort exception.

• If an data memory access faults it generates a Data Abort exception.

For more information about Prefetch Abort exceptions and Data Abort exceptions see Handling exceptions that are
taken to an Exception level using AArch32.

In VMSAv8-32, all memory accesses require VA to PA translation. Therefore, when a corresponding stage of
address translation is enabled, each access requires a lookup of the Translation Table descriptor for the accessed VA.
For more information, see Translation tables and subsequent sections of this chapter. MMU fault checking is
performed for each level of translation table lookup. If an implementation includes EL2 and is operating in
Non-secure state, MMU fault checking is performed for each stage of address translation.

Table G5-24 MMU fault terminology

Current term Old term Note

Level 1 Translation fault Section Translation fault -

Level 2 Translation fault Page Translation fault -

Level 3 Translation fault - Long-descriptor translation table format only.

Level 1 Access flag fault Section Access flag fault -

Level 2 Access flag fault Page Access flag fault -

Level 3 Access flag fault - Long-descriptor translation table format only.

Level 1 Domain fault Section Domain fault Short-descriptor translation table format only, except for reporting faults on
address translation instructions in the 64-bit PAR, see Determining the PAR
format.

Cannot occur at level 3.

Level 2 Domain fault Page Domain fault

Level 1 Permission fault Section Permission fault -

Level 2 Permission fault Page Permission fault -

Level 3 Permission fault - Long-descriptor translation table format only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11641
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Note

In an implementation that includes EL2, if a PE is executing in Non-secure state, the operating system or similar
Non-secure system software defines the stage 1 translation tables in the IPA address map, and typically is unaware
of the stage 2 translation from IPA to PA. However, each Non-secure stage 1 translation table access is subject to
stage 2 address translation, and might be faulted at that stage.

The MMU fault checking sequence is largely independent of the translation table format, as the figures in this
section show. The differences are:

When using the Short-descriptor format

• There are one or two levels of lookup.

• Lookup always starts at level 1.

• The final level of lookup checks the Domain field of the descriptor and:

— Faults if there is no access to the Domain.

— Checks the access permissions only for Client domains.

When using the Long-descriptor format

• There are one, two, or three levels of lookup.

• Lookup starts at either level 1 or level 2.

• Domains are not supported. All accesses are treated as Client domain accesses.

The fault-checking sequence shows a translation from an Input address to an Output address. For more information
about this terminology, see About address translation for VMSAv8-32.

Note

The descriptions in this section do not include the possibility that the attempted address translation generates a TLB
conflict abort, as described in TLB conflict aborts.

Types of MMU faults describes the faults that an MMU fault-checking sequence can report.

Figure G5-15 shows the process of fetching a descriptor from the translation table. For the top-level fetch for any
translation, the descriptor is fetched only if the input address passes any required alignment check. As the figure
shows, in an implementation that includes EL2, if the translation is stage 1 of the Non-secure PL1&0 translation
regime, then the descriptor address is in the IPA address map, and is subject to a stage 2 translation to obtain the
required PA. This stage 2 translation requires a recursive entry to the fault checking sequence.

Note

Figure G5-15 and Figure G5-16 give an overview of the fault checking performed by the MMU. See AArch32 state
prioritization of synchronous aborts from a single stage of address translation for the complete set of possible faults
and their prioritization.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11642
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Figure G5-15 Fetching the descriptor in a VMSAv8-32 translation table walk

Figure G5-16 shows the full VMSAv8-32 fault checking sequence, including the alignment check on the initial
access.

Descriptor address

Translation

required?
Yes

Translate address.

Descriptor address is input

address for stage 2

translation
A1

Fault checking sequence,

for stage 2 translation

A2

Returns descriptor PA

Fetch descriptor

No

Yes
Synchronous

External

abort?

Synchronous

External abort on

translation table

walk

Is this address an IPA for a

Non-secure PL0 or PL1 access?

Return descriptor

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11643
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
Figure G5-16 VMSAv8-32 fault checking sequence

Input address

Alignment

check?
Yes

Is the access subject to an alignment check?

Fetch descriptor ‡

No

Table

entry

?

Check address alignment

Misaligned

?
Yes

Alignment

fault

Check access permissions

Violation

?

Output address

Table not possible at lowest level

Yes

Address

size fault

?

Descriptor

valid?

Yes

No

Translation

fault
No

Address

size fault
Yes

No

Yes
Permission

fault

‡ See Fetching the descriptor
flowchart

† Links to and from Fetching the
descriptor flowchart

A1†

A2†

No

Alignment

fault
Alignment

valid

?

No

No
Access

flag fault

?

No

Access flag

fault
Yes

Domain

fault

Short

descriptors

?

No access

domain

?

Yes

Client

domain

?

Yes No

Manager

domain

Yes

No

Fault unaligned access to any

Device memory type

Yes

No
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11644
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
G5.11.3.1 Stage 2 fault on a stage 1 translation table walk

When an implementation that includes EL2 is operating in a Non-secure PL1 or EL0 mode, any memory access
goes through two stages of translation:

• Stage 1, from VA to IPA.

• Stage 2, from IPA to PA.

Note

In a virtualized system that is using AArch32, typically, a Guest OS operating in a Non-secure PL1 mode defines
the translation tables and translation table register entries controlling the Non-secure PL1&0 stage 1 translations. A
Guest OS has no awareness of the stage 2 address translation, and therefore believes it is specifying translation table
addresses in the PA map. However, it actually specifies these addresses in its IPA map. Therefore, to support
virtualization, translation table addresses for the Non-secure PL1&0 stage 1 translations are always defined in the
IPA address map.

On performing a translation table walk for the stage 1 translations, the descriptor addresses must be translated from
IPA to PA, using a stage 2 translation. This means that a memory access made as part of a stage 1 translation table
lookup might generate, on a stage 2 translation:

• A Translation fault, Access flag fault, or Permission fault.

• A synchronous External abort on the memory access.

If SCR.EA is set to 1, a synchronous External abort is taken to EL3, and if EL3 is using AArch32 it is taken to Secure
Monitor mode. Otherwise, these faults are reported as stage 2 memory aborts. When EL2 is using AArch32,
HSR.ISS[7] is set to 1, to indicate a stage 2 fault during a stage 1 translation table walk, and the part of the ISS field
that might contain details of the instruction is invalid. For more information, see Use of the HSR.

Alternatively, a memory access made as part of a stage 1 translation table lookup might target an area of memory
with the Device memory attribute assigned on the stage 2 translation of the address accessed. When the value of the
HCR.PTW bit is 1, such an access generates a stage 2 Permission fault.

Note

• On most systems, such a mapping to a Device memory type on the stage 2 translation is likely to indicate a
Guest OS error, where the stage 1 translation table is corrupted. Therefore, it is appropriate to trap this access
to the hypervisor.

A TLB might hold entries that depend on the effect of HCR.PTW. Therefore, if HCR.PTW is changed without
changing the current VMID, the TLBs must be invalidated before executing in a Non-secure PL1 or EL0 mode. For
more information, see Changing HCR.PTW.

A cache maintenance instruction executed at Non-secure PL1 can cause a stage 1 translation table walk that might
generate a stage 2 Permission fault, as described in this section. However:

• If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache
maintenance by VA instruction can generate a Permission fault in this way.

• If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data
or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault in this
way.

Note

This is an exception to the general rule that a cache maintenance instruction cannot generate a Permission fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11645
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
G5.11.3.1.1 The level associated with MMU faults

When an MMU fault is from a stage of translation that is using Long-descriptor translation table format,
Table G5-25 shows how the LL bits in the STATUS field of DFSR, IFSR, and HSR encode the lookup level
associated with the fault.

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, the fault is reported as a level 1 fault.

• For an Access flag fault, the lookup level of the translation table that gave the fault.

• For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of
the final level of translation table accessed for the translation. That is, the lookup level of the translation table
that returned a Block or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures.

G5.11.4 Alignment faults

The Arm memory architecture requires support for strict alignment checking. This checking is controlled by:

• SCTLR.A, for accesses made from any PE mode other than Hyp mode.

• HSCTLR.A, for accesses made from Hyp mode.

In addition, some instructions do not support unaligned accesses, regardless of the value of SCTLR.A or
HSCTLR.A.

Unaligned data access:

• Defines when Alignment faults are generated, for both values of SCTLR.A or HSCTLR.A.

• Describes the possible generation of Alignment faults on accesses to Device memory by AArch32 Load
Multiple or Store Multiple instructions when FEAT_LSMAOC is implemented.

An Alignment fault can occur on an access for which the stage of address translation is disabled.

Any unaligned access to memory region with any Device memory type attribute generates an Alignment fault.

Routing of aborts taken to AArch32 state defines the mode to which an Alignment fault is taken.

The prioritization of Alignment faults depends on whether the fault was generated because of an access to a Device
memory type, or for another reason. For more information, see AArch32 state prioritization of synchronous aborts
from a single stage of address translation.

Table G5-25 Use of LL bits to encode the lookup level at which the fault occurred

LL bits Meaning

00 Level 0 of translation or translation table base register.

01 Level 1.

10 Level 2.

11 Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11646
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
G5.11.5 External abort on a translation table walk

An External abort on a translation table walk can be either synchronous or asynchronous. For more information on
External aborts, see External aborts.

An External abort on a translation table walk is reported:

• If the External abort is synchronous, using:

— A synchronous Prefetch Abort exception if the translation table walk is for an instruction fetch.

— A synchronous Data Abort exception if the translation table walk is for a data access.

• If the External abort is asynchronous, using an SError interrupt, which is taken as an asynchronous Data
Abort exception.

If an implementation reports the error in the translation table walk asynchronously from executing the instruction
whose instruction fetch or memory access caused the translation table walk, these aborts behave essentially as
interrupts. The aborts are masked when PSTATE.A is set to 1, otherwise they are reported using the Data Abort
exception.

G5.11.5.1 Behavior of External aborts on a translation table walk caused by address
translation instructions

The address translation instructions summarized in Address translation system instructions require translation table
walks. An External abort can occur in the translation table walk. The abort generates a Data Abort exception, and
can be synchronous or asynchronous. For more information, see Handling of faults and aborts during an address
translation instruction.

G5.11.6 AArch32 state prioritization of synchronous aborts from a single stage of address translation

Exception prioritization for exceptions taken to AArch32 state describes the prioritization of exceptions taken from
an Exception level that is using AArch32. This section gives additional information about the prioritization of MMU
faults from VMSAv8-32 translation regimes.

If a single instruction generates aborts on more than one memory access, the architecture does not define any
prioritization between those aborts.

In general, the Arm architecture does not define when asynchronous events are taken, and therefore the
prioritization of asynchronous events is IMPLEMENTATION DEFINED.

Note

The priority numbering in this list only shows the relative priorities of aborts from a single stage of address
translation in a VMSAv8-32 translation regime. This numbering has no global significance and, for example, does
not correlate with the equivalent AArch64 list in MMU fault prioritization from a single address translation stage.

For a single stage of translation in a VMSAv8-32 translation regime, the following numbered list shows the priority
of the possible memory management faults on a memory access. In this list:

• For memory accesses that undergo two stages of translation, the italic entries show where the faults from the
stage 2 translation can occur. A stage 2 fault within a stage 1 translation table walk follows the same
prioritization of faults.

• For synchronous External aborts from translation table walks see also Synchronous External abort errors
from address translation caching structures.

The priority order, from highest priority to lowest priority, is:

1. Alignment fault not caused by memory type. This is possible for a stage 1 translation only.

2. Translation fault due to the input address being out of the address range to be translated or requiring an
AArch32 TTBR that is disabled. This includes VTCR.SL0 being inconsistent with VTCR.T0SZ or
programmed to a reserved value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11647
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
3. Address size fault on an AArch32 TTBR caused by the PA being out of the range implemented.

4. Second stage abort on a level 1 lookup of a a stage 1 table walk. When stage 2 address translation is enabled
this includes an Address size fault caused by the PA being out of the range implemented. This is second stage
abort during a first stage translation table walk.

5. Synchronous parity or ECC error on a level 1 lookup of a translation table walk.

6. Synchronous External abort on a level 1 lookup level of a translation table walk.

7. Translation fault on a level 1 translation table entry.

8. Address size fault on a level 1 lookup translation table entry caused by the output address being out of the
range implemented.

9. Second stage abort on a level 2 lookup of a a stage 1 table walk. When stage 2 address translation is enabled
this includes an Address size fault caused by the PA being out of the range implemented. This is second stage
abort during a first stage translation table walk.

10. Synchronous parity or ECC error on a level 2 lookup of a translation table walk.

11. Synchronous External abort on a level 2 lookup level of a translation table walk.

12. Translation fault on a level 2 translation table entry.

13. Address size fault on a level 2 lookup translation table entry caused by the output address being out of the
range implemented.

14. Second stage abort on a level 3 lookup of a a stage 1 table walk. When stage 2 address translation is enabled
this includes an Address size fault caused by the PA being out of the range implemented. This is second stage
abort during a first stage translation table walk.

15. Synchronous parity or ECC error on a level 3 lookup of a translation table walk.

16. Synchronous External abort on a level 3 lookup level of a translation table walk.

17. Translation fault on a level 3 translation table entry.

18. Address size fault on a level 3 lookup translation table entry caused by the output address being out of the
range implemented.

19. Access Flag fault.

20. Alignment fault caused by the memory type.

21. Domain fault.

Note
Domain faults are possible only when using the VMSAv8-32 Short-descriptor translation table format, see
Domain fault, Short-descriptor format translation tables only.

22. Permission fault.

23. A fault from the stage 2 translation of the memory access. When stage 2 address translation is enabled this
includes an Address size fault caused by the PA being out of the range implemented.

24. Synchronous parity or ECC error on the memory access.

25. Synchronous External abort on the memory access.

Note

• The prioritization of TLB Conflict aborts is IMPLEMENTATION DEFINED, as the exact cause of these aborts
depends on the form of TLBs implemented. However, the TLB conflict abort must have higher priority than
any abort that depends on a value held in the TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11648
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.11 VMSAv8-32 memory aborts
• The prioritization of IMPLEMENTATION DEFINED MMU faults for a Load-Exclusive or Store-Exclusive to an
unsupported memory type is IMPLEMENTATION DEFINED.

See also The MMU fault-checking sequence.

G5.11.6.1 Synchronous External abort errors from address translation caching
structures

A caching structure used for caching translation table walks might support:

• An arbitrary number of levels of translation table lookup.

• One or more stages of translation, which might not correspond to the stages of an address translation lookup.

This might mean that, on a synchronous External abort arising from the caching structure, such as from a parity or
ECC error, the PE cannot precisely determine one or both of the translation stage and level of lookup at which the
error occurred. In this case:

• If the PE cannot determine precisely the translation stage at which the error occurred, it is reported and
prioritized as a stage 1 error.

• If the PE cannot determine precisely the lookup level at which the error occurred, the level is reported and
prioritized as either:

— The lowest-numbered level that could have given rise to the error.

— Level 1 if it the PE cannot determine any information about the level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11649
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
G5.12 Exception reporting in a VMSAv8-32 implementation

This section describes exception reporting, in AArch32 state, in a VMSAv8-32 implementation. That is, it describes
only the reporting of exceptions that are taken to an Exception level that is using AArch32. EL2 provides an
enhanced reporting mechanism for exceptions taken to the Non-secure EL2 mode, Hyp mode. This means that, for
VMSAv8-32, the exception reporting depends on the mode to which the exception is taken.

Note

The enhanced reporting mechanism for exceptions that are taken to Hyp mode is generally similar to the reporting
of exceptions that are taken to an Exception level that is using AArch64.

About exception reporting introduces the general approach to exception reporting, and the following sections then
describe exception reporting at different privilege levels:

• Reporting exceptions taken to PL1 modes.

• Fault reporting in PL1 modes.

• Summary of register updates on faults taken to PL1 modes.

• Reporting exceptions taken to Hyp mode.

• Use of the HSR.

• Summary of register updates on exceptions taken to Hyp mode.

Note

The registers used for exception reporting also report information about debug exceptions. For more information,
see:

• Data Abort exceptions, taken to a PL1 mode.

• Prefetch Abort exceptions, taken to a PL1 mode.

• Reporting exceptions taken to Hyp mode.

G5.12.1 About exception reporting

In an implementation that includes EL2 and EL3, exceptions can be taken to:

• Monitor mode, if EL3 is using AArch32.

• Hyp mode, if EL2 is using AArch32.

• A Secure or Non-secure PL1 mode.

Monitor mode is a PL1 mode, but:

• It is accessible only when EL3 is using AArch32.

• It is present only in Secure state.

• When EL3 is using AArch32, System register controls route some exceptions from Non-secure state to
Monitor mode. These are the only cases where taking an exception to an Exception level that is using
AArch32 changes the Security state of the PE.

Exception reporting in Hyp mode differs significantly from that in the other modes, but in general, exception
reporting returns:

• Information about the exception:

— On taking an exception to Hyp mode, the Hyp Syndrome Register, HSR, returns syndrome
information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11650
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
— On taking an exception to any other mode, a Fault Status Register (FSR) returns status information.

• For synchronous exceptions, one or more addresses associated with the exceptions, returned in Fault Address
Registers (FARs). For a permitted exception to this requirement see Fault address reporting on synchronous
External aborts.

In all modes, additional IMPLEMENTATION DEFINED registers can provide additional information about exceptions.

Note

• PE mode for taking exceptions describes how the mode to which an exception is taken is determined.

• EL2 provides:

— Specific exception types, that can only be taken from Non-secure PL1 and EL0 modes, and are always
taken to Hyp mode.

— Routing controls that can route some exceptions from Non-secure PL1 and EL0 modes to Hyp mode.

These exceptions are reported using the same mechanism as the Hyp mode reporting of VMSAv8-32 memory
aborts, as described in this section.

Memory system faults generate either a Data Abort exception or a Prefetch Abort exception, as summarized in:

• Reporting exceptions taken to PL1 modes.

• Memory fault reporting in Hyp mode.

On an access that might have multiple aborts, the MMU fault checking sequence and the prioritization of aborts
determine which abort occurs. For more information, see The MMU fault-checking sequence and AArch32 state
prioritization of synchronous aborts from a single stage of address translation.

G5.12.1.1 Fault address reporting on synchronous External aborts

The general architectural requirement is that, on a synchronous abort, the faulting address is recorded in a Fault
Address Register (FAR). This requirement is relaxed for the case of a synchronous External abort that is not a
synchronous External abort on a translation table walk. In this case only:

• It is IMPLEMENTATION DEFINED whether the faulting address is recorded in a FAR.

• A bit in a fault reporting register, the FnV bit, indicates whether a valid address is recorded.

For exceptions taken to an Exception level that is using AArch32, the details of this reporting depend on whether
the exception is taken to:

• A PL1 mode, as described in Reporting exceptions taken to PL1 modes.

• Hyp mode, as described in Reporting exceptions taken to Hyp mode.

G5.12.2 Reporting exceptions taken to PL1 modes

The following sections give general information about the reporting of exceptions when they are taken to a Secure
or Non-secure PL1 mode:

• Registers used for reporting exceptions taken to PL1 modes.

• Data Abort exceptions, taken to a PL1 mode.

• Prefetch Abort exceptions, taken to a PL1 mode.

Fault reporting in PL1 modes then describes the fault reporting in these modes, including the encodings used for
reporting the faults.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11651
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

Security state, Exception levels, and AArch32 execution privilege describes how the Secure and Non-secure PL1
modes map onto the Exception levels.

G5.12.2.1 Registers used for reporting exceptions taken to PL1 modes

AArch32 state defines the following registers, and register encodings, for exceptions taken to PL1 modes:

• The DFSR holds information about a Data Abort exception.

• The DFAR holds the faulting address for some synchronous Data Abort exceptions.

• The IFSR holds information about a Prefetch Abort exception.

• The IFAR holds the faulting address for some synchronous Prefetch Abort exceptions.

In addition, if implemented, the optional ADFSR and AIFSR can provide additional fault information, see Auxiliary
Fault Status Registers.

G5.12.2.1.1 Auxiliary Fault Status Registers

AArch32 state defines the following Auxiliary Fault Status Registers:

• The Auxiliary Data Fault Status Register, ADFSR.

• The Auxiliary Instruction Fault Status Register, AIFSR.

The position of these registers is architecturally-defined, but the content and use of the registers is IMPLEMENTATION
DEFINED. An implementation can use these registers to return additional fault status information. An example use
of these registers is to return more information for diagnosing parity or ECC errors.

An implementation that does not need to report additional fault information must implement these registers as RES0.
This ensures that an attempt to access these registers from software executing at PL1 does not cause an Undefined
Instruction exception.

G5.12.2.2 Data Abort exceptions, taken to a PL1 mode

On taking a Data Abort exception to a PL1 mode:

• If the exception is on an instruction cache or branch predictor maintenance operation by VA, its reporting
depends on the value of TTBCR.EAE. For more information about the registers used when reporting the
exception, see Data Abort on an instruction cache or branch predictor maintenance instruction by VA.

• Otherwise, the DFSR is updated with details of the fault, including the appropriate Fault status code. If the
Data Abort exception is synchronous, DFSR.WnR is updated to indicate whether the faulted instruction was
a read or a write. However, if the fault is on a cache maintenance instruction, or on an address translation
instruction, WnR is set to 1, to indicate a fault on a write instruction, and the CM bit is set to 1.

If the Data Abort is external, then DFSR provides fields for additional classification of the abort, see
Provision for classification of External aborts.

If the FEAT_RAS is implemented, and the exception is a virtual SError interrupt exception, the classification
reported in DFSR is taken from VDFSR or VSESR_EL2. For more information, see Taking error exceptions.

See the register description for more information about the returned fault information. See also Data Abort
on a Watchpoint exception.

If the Data Abort exception is

— Synchronous, the DFAR is updated with the VA that caused the exception, but see Fault address
reporting on synchronous External aborts for a permitted exception to this requirement.

— Asynchronous, the DFAR becomes UNKNOWN.

DFSR.WnR and DFSR.CM are UNKNOWN on an asynchronous Data Abort exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11652
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
For all Data Abort exceptions, if the implementation includes EL3, the Security state of the PE in the mode to which
the Data Abort exception is taken determines whether the Secure or Non-secure DFSR and DFAR are updated.

G5.12.2.2.1 Data Abort on an instruction cache or branch predictor maintenance instruction by
VA

If an instruction cache invalidation by VA or branch predictor invalidation by VA operation generates a Data Abort
exception that is taken to a PL1 mode, the DFAR is updated to hold the faulting VA. However, the reporting of the
fault depends on the value of TTBCR.EAE:

TTBCR.EAE == 0

When the value of TTBCR.EAE is 0, it is IMPLEMENTATION DEFINED which of the following is used
when reporting the fault:

• The DFSR indicates an Instruction cache maintenance instruction fault, and the IFSR is valid
and indicates the cause of the fault, a Translation fault or Access flag fault.

• The DFSR indicates the cause of the fault, a Translation fault or Access flag fault. The IFSR
is UNKNOWN.

In either case:

• DFSR.WnR is set to 1.

• DFSR.CM is set to 1, to indicate a fault on a cache maintenance instruction.

TTBCR.EAE == 1

When the value of TTBCR.EAE is 1:

• DFSR.CM is set to 1, to indicate a fault on a cache maintenance instruction.

• DFSR.STATUS indicates the cause of the fault, a Translation or Access flag fault.

• DFSR.WnR is set to 1.

• The IFSR is UNKNOWN.

G5.12.2.2.2 Data Abort on a Watchpoint exception

On taking a Data Abort exception caused by a watchpoint:

• DFSR.FS is updated to indicate a debug exception.

• DFSR.{WnR, Domain} are UNKNOWN.

• DFAR is set to the address that generated the watchpoint.

Note

• lr_ABT indicates the address of the instruction that triggered the watchpoint.

A watchpointed address can be any byte-aligned address. The address reported in DFAR might not be the
watchpointed address, and:

• For a watchpoint due to an operation other than a Data Cache maintenance instruction, can be any address
between and including:

— The lowest address accessed by the instruction that triggered the watchpoint.

— The highest watchpointed address accessed by that instruction.

If multiple watchpoints are set in this range, there is no guarantee of which watchpoint is generated.

The address must also be within a naturally-aligned block of memory of an IMPLEMENTATION DEFINED
power-of-two size, containing a watchpoint address accessed by that location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11653
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

— In particular, there is no guarantee of generating the watchpoint with the lowest address in the range.

— The IMPLEMENTATION DEFINED power-of-two size must be no larger than the block size of the
AArch64 DC ZVA operation.

• For a watchpoint due to a Data Cache operation, the address is the address passed to the instruction. This
might be an address that is above the watchpointed location.

G5.12.2.3 Prefetch Abort exceptions, taken to a PL1 mode

For a Prefetch Abort exception generated by an instruction fetch, the Prefetch Abort exception is taken
synchronously with the instruction that the abort is reported on. This means:

• If the PE attempts to execute the instruction a Prefetch Abort exception is generated.

• If an instruction fetch is issued but the PE does not attempt to execute the prefetched instruction, no Prefetch
Abort exception is generated for that instruction. For example, if the execution flow branches round a
prefetched instruction, no Prefetch Abort exception is generated.

In addition, Breakpoint Instruction, Breakpoint, and Vector Catch exceptions, generate a Prefetch Abort exception,
see the following for more information:

• Exception syndrome information and preferred return address for a BKPT instruction.

• Exception syndrome information and preferred return address for a Breakpoint exception.

• Exception syndrome information and preferred return address for a Vector Catch exception.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The
referenced sections use the term more generally, to include exception information reported in the IFSR.

On taking a Prefetch Abort exception to a PL1 mode:

• The IFSR is updated with details of the fault, including the appropriate fault code. If appropriate, the fault
code indicates that the exception was generated by a debug exception.

See the register description for more information about the returned fault information.

• For a Prefetch Abort exception generated by an instruction fetch, the IFAR is updated with the VA that caused
the exception, but see Fault address reporting on synchronous External aborts for a permitted exception to
this requirement.

• For a Prefetch Abort exception generated by a debug exception, the IFAR is UNKNOWN.

If the implementation includes EL3, the security state of the PE in the mode to which it takes the Prefetch Abort
exception determines whether the exception updates the Secure or Non-secure IFSR and IFAR.

G5.12.3 Fault reporting in PL1 modes

The FSRs provide fault information, including an indication of the fault that occurred. The following subsections
describe fault reporting in PL1 modes for each of the translation table formats:

• PL1 fault reporting with the Short-descriptor translation table format.

• PL1 fault reporting with the Long-descriptor translation table format.

Reserved encoding in the IFSR and DFSR encodings tables gives some additional information about the encodings
for both formats.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11654
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Summary of register updates on faults taken to PL1 modes shows which registers are updated on each of the reported
faults.

Reporting of External aborts taken from Non-secure state to Monitor mode describes how the fault status register
format is determined for those aborts. For all other aborts, the current translation table format determines the format
of the fault status registers.

G5.12.3.1 Reporting of External aborts taken from Non-secure state to Monitor mode

When an External abort is taken from Non-secure state to Monitor mode:

• For a Data Abort exception, the Secure DFSR and DFAR hold information about the abort.

• For a Prefetch Abort exception, the Secure IFSR and IFAR hold information about the abort.

• The abort does not affect the contents of the Non-secure copies of the fault reporting registers.

Normally, the current translation table format determines the format of the DFSR and IFSR. However, when
SCR.EA is set to 1, to route External aborts to Monitor mode, and an External abort is taken from Non-secure state,
this section defines the DFSR and IFSR format.

For an External abort taken from Non-secure state to Monitor mode, the DFSR or IFSR uses the format associated
with the Long-descriptor translation table format, as described in PL1 fault reporting with the Long-descriptor
translation table format, if any of the following applies:

• The value of the Secure TTBCR.EAE field is 1.

• The External abort is synchronous and is taken from either:

— Hyp mode.

— A Non-secure PL1 or EL0 mode, and the value of the Non-secure TTBCR.EAE field is 1.

Otherwise:

• For a synchronous External abort from a stage 2 translation routed to Monitor mode when the value of the
Secure TTBCR.EAE field is 0 it is IMPLEMENTATION DEFINED whether:

— The format associated with the Long-descriptor translation table format is used, as described in PL1
fault reporting with the Long-descriptor translation table format.

— The format associated with the Short-descriptor translation table format is used, as described in PL1
fault reporting with the Short-descriptor translation table format. Arm deprecates using this format.

When this format is used, the value of DFSR.FS[1] or IFSR.FS[1] is UNKNOWN when reporting a
synchronous External abort, or a synchronous parity or ECC error, on the stage 2 translation.

• In all other cases the DFSR or IFSR uses the format associated with the Short-descriptor translation table
format, as described in PL1 fault reporting with the Short-descriptor translation table format.

G5.12.3.2 PL1 fault reporting with the Short-descriptor translation table format

This subsection describes the fault reporting for a fault taken to a PL1 when address translation is using the
Short-descriptor translation table format.

On taking an exception, bit[9] of the FSR is RAZ, or set to 0, if the PE is using this FSR format.

An FSR encodes the fault in a 5-bit FS field, that comprises FSR[10, 3:0]. Table G5-26 shows the encoding of that
field. Summary of register updates on faults taken to PL1 modes shows:

• Whether the corresponding FAR is updated on the fault. That is:

— For a fault reported in the IFSR, whether the IFAR holds a valid address.

— For a fault reported in the DFSR, whether the DFAR holds a valid address.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11655
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
• For faults that update DFSR, whether DFSR.Domain is valid

When reading Table G5-26:

• FS values not shown in the table are reserved.

• FS values shown as DFSR only are reserved for the IFSR.

G5.12.3.2.1 The level associated with MMU faults on a Short-descriptor translation table lookup

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

Table G5-26 FSR encodings when using the Short-description translation table format

FS Source Notes

00001 Alignment fault DFSR only. Fault on initial lookup

00100 Fault on instruction cache maintenance DFSR only

01100

01110
Synchronous External abort on translation table walka, b Level 1

Level 2
-

11100

11110
Synchronous parity or ECC error on translation table walka, b Level 1

Level 2
-

00101

00111
Translation faulta Level 1

Level 2

MMU fault

00011c

00110

Access flag faulta Level 1

Level 2

MMU fault

01001

01011
Domain faulta Level 1

Level 2

MMU fault

01101

01111
Permission faulta Level 1

Level 2

MMU fault

00010 Debug exception See Chapter G2 AArch32 Self-hosted Debug

01000 Synchronous External abort -

10000 TLB conflict abort See TLB conflict aborts

10100 IMPLEMENTATION DEFINED Lockdown

10101 IMPLEMENTATION DEFINED Unsupported Exclusive access

11001 Synchronous parity or ECC error on memory access -

10110 SError interruptd DFSR only

11000 SError interruptd from a parity or ECC error on memory access DFSR only

a. See The level associated with MMU faults on a Short-descriptor translation table lookup.

b. FS[1] is UNKNOWN if the reported error is from a stage 2 translation.

c. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model in VMSAv8-32
mean there should be no possibility of confusing the new use of this encoding with its previous use

d. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11656
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, the fault is reported as a level 1 fault.

• For an Access flag fault, Permission fault, or Domain fault, the lookup level of the final level of translation
table accessed for the translation. That is, the lookup level of the translation table that returned a
Supersection, Section, or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures.

G5.12.3.2.2 The Domain field in the DFSR

The DFSR includes a Domain field. This is inherited from previous versions of the VMSA. The IFSR does not
include a Domain field. Summary of register updates on faults taken to PL1 modes describes when DFSR.Domain
is valid.

Arm deprecates any use of the Domain field in the DFSR. The Long-descriptor translation table format does not
support a Domain field, and future versions of the Arm architecture might not support a Domain field in the
Short-descriptor translation table format. Arm strongly recommends that new software does not use this field.

For both Data Abort exceptions and Prefetch Abort exceptions, software can find the domain information by
performing a translation table read for the faulting address and extracting the Domain field from the translation table
entry.

G5.12.3.3 PL1 fault reporting with the Long-descriptor translation table format

This subsection describes the fault reporting for a fault taken to a PL1mode when address translation is using the
Long-descriptor translation table format.

When the PE takes an exception, bit[9] of the FSR is set to 1 if the PE is using this FSR format.

The FSRs encode the fault in a 6-bit STATUS field, that comprises FSR[5:0]. Table G5-27 shows the encoding of
that field. In addition:

• For a fault taken to a PL1 mode, Summary of register updates on faults taken to PL1 modes shows whether
the corresponding FAR is updated on the fault. That is:

— For a fault reported in the IFSR, whether the IFAR holds a valid address.

— For a fault reported in the DFSR, whether the DFAR holds a valid address.

• For a fault taken to the Hyp mode, Summary of register updates on exceptions taken to Hyp mode shows what
registers are updated on the fault.

Table G5-27 FSR encodings when using the Long-descriptor translation table format

STATUSa Source Notes

0000LL Address size fault. LL bits indicate levelb. MMU fault

0001LL Translation fault. LL bits indicate levelb. MMU fault

0010LL Access flag fault. LL bits indicate levelb. MMU fault

0011LL Permission fault. LL bits indicate levelb. MMU fault

010000 Synchronous External abort. -

011000 Synchronous parity or ECC error on memory access. -

010001 SError interruptc. DFSR only

011001 SError interruptc from a parity or ECC error on memory access. DFSR only
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11657
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
G5.12.3.3.1 The level associated with MMU faults on a Long-descriptor translation table lookup

For MMU faults, Table G5-28 shows how the LL bits in the xFSR.STATUS field encode the lookup level associated
with the fault.

The lookup level associated with a fault is:

• For a fault generated on a translation table walk, the lookup level of the walk being performed.

• For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because
a stage of address translation is disabled, or because the input address is outside the range specified by the
appropriate base address register or registers, the fault is reported as a level 1 fault.

• For an Access flag fault, the lookup level of the translation table that gave the fault.

• For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of
the final level of translation table accessed for the translation. That is, the lookup level of the translation table
that returned a Block or Page descriptor.

0101LL Synchronous External abort on translation table walk.

LL bits indicate levelb.

-

0111LL Synchronous parity or ECC error on memory access on translation table
walk.

LL bits indicate levelb.

-

100001 Alignment fault. Fault on initial lookup

100010 Debug exception. See Chapter G2 AArch32 Self-hosted Debug

110000 TLB conflict abort. See TLB conflict aborts

110100 IMPLEMENTATION DEFINED. Lockdown, DFSR only

110101 IMPLEMENTATION DEFINED. Unsupported Exclusive access

1111LL Domain fault.

LL bits indicate levelb.

MMU fault. 64-bit PAR only, level 1 or level
2 only. Never used in DFSR, IFSR, or HSRd

a. STATUS values not shown in this table are reserved. STATUS values not supported in the IFSR or DFSR are reserved for the register or
registers in which they are not supported.

b. See The level associated with MMU faults on a Long-descriptor translation table lookup.

c. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.

d. A Domain fault can be reported using the Long-descriptor STATUS encodings only as a result of a fault on an address translation instruction.
For more information, see MMU fault on an address translation instruction.

Table G5-27 FSR encodings when using the Long-descriptor translation table format (continued)

STATUSa Source Notes

Table G5-28 Use of LL bits to encode the lookup level at which the fault occurred

LL bits Meaning

00 Address size fault Address size fault in TTBR0 or TTBR1.

All other faults Reserved.

01 Level 1.

10 Level 2.

11 Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11658
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Also see Synchronous External abort errors from address translation caching structures.

G5.12.3.4 Reserved encoding in the IFSR and DFSR encodings tables

With both the Short-descriptor and the Long-descriptor FSR format, the fault encodings reserve a single encoding
for Cache and TLB lockdown faults. The details of these faults and any associated subsidiary registers are
IMPLEMENTATION DEFINED.

G5.12.4 Summary of register updates on faults taken to PL1 modes

For faults that generate exceptions that are taken to a PL1 mode, Table G5-29 shows the registers affected by each
fault. In this table:

• Yes indicates that the register is updated.

• UNK indicates that the fault makes the register value UNKNOWN.

• A null entry, -, indicates that the fault does not affect the register.

For faults that update the DFSR using the Short-descriptor format FSR encodings, Table G5-30 shows whether
DFSR.Domain is valid.

Table G5-29 Effect of a fault taken to a PL1 mode on the reporting registers

Fault IFSR IFAR DFSR DFAR

Faults reported as Prefetch Abort exceptions:

MMU fault, always synchronous Yes Yes - -

Synchronous External abort on translation table walk Yes Yes - -

Synchronous parity or ECC error on translation table walk Yes Yes - -

Synchronous External abort Yes IMP DEFa - -

Synchronous parity or ECC error on memory access Yes Yes - -

TLB conflict abort Yes Yes - -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11659
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
For those faults for which Table G5-29 shows that the DFSR is updated, if the fault is reported using the
Short-descriptor FSR encodings, Table G5-30 shows whether DFSR.Domain is valid. In this table, UNK indicates
that the fault makes DFSR.Domain UNKNOWN.

Fault reported as Data Abort exception:

Alignment fault, always synchronous - - Yes Yes

MMU fault, always synchronous - - Yes Yes

Fault on instruction cache maintenance, when using Long-descriptor translation table
formatb

UNK - Yes Yes

Fault on instruction cache maintenance, when using Short descriptor
translation table formatc

either Yes - Yes Yes

or UNK - Yes Yes

Synchronous External abort on translation table walk - - Yes Yes

Synchronous parity or ECC error on translation table walk - - Yes Yes

Synchronous External abort - - Yes IMP DEFa

Synchronous parity or ECC error on memory access - - Yes Yes

SError interrupt - - Yes UNK

SError interrupt from a parity or ECC error on memory access - - Yes UNK

TLB conflict abort - - Yes Yes

Debug exceptions:

Breakpoint, Breakpoint Instruction, or Vector Catchd Yes UNK - -

Watchpointe - - Yes Yes

a. IMPLEMENTATION DEFINED. The IFSR.FnV or DFSR.FnV bit indicates whether the register holds a valid address. See Fault address
reporting on synchronous External aborts.

b. When using the Long-descriptor translation table format, there is not a specific fault code for a fault on an instruction cache maintenance
instruction. For more information, see Data Abort on an instruction cache or branch predictor maintenance instruction by VA.

c. The two lines of this entry show the alternative ways of reporting the fault when using the Short-descriptor translation table format. It is
IMPLEMENTATION DEFINED which methods is used, see Data Abort on an instruction cache or branch predictor maintenance instruction
by VA.

d. Generates a Prefetch Abort exception.

e. Generates a Data Abort exception.

Table G5-29 Effect of a fault taken to a PL1 mode on the reporting registers (continued)

Fault IFSR IFAR DFSR DFAR

Table G5-30 Validity of Domain field on faults that update the DFSR when using the Short-descriptor encodings

DFSR.FS Source DFSR.Domain Notes

00001 Alignment fault UNK -

00100 Fault on instruction cache maintenance instruction UNK -

01100

01110

Synchronous External abort on translation table walk Level 1

Level 2

UNK

Valid
-

11100

11110

Synchronous parity or ECC error on translation table walk Level 1

Level 2

UNK

Valid
-

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11660
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
G5.12.5 Reporting exceptions taken to Hyp mode

Hyp mode is the Non-secure EL2 mode. It is entered by taking an exception to Hyp mode.

Note

Software executing in Monitor mode, or at EL3 when EL3 is using AArch64, can perform an exception return to
Hyp mode. This means Hyp mode can be entered either by taking an exception, or by a permitted exception return.

When EL2 is using AArch32, the following exceptions are taken to Hyp mode:

• SError interrupt exceptions, IRQ exceptions, and FIQ exceptions, from Non-secure PL1 and EL0 modes, if
not routed to Secure Monitor mode, and if configured by the AMO, FMO or IMO bits. For more information,
see Asynchronous exception routing controls.

• When HCR.TGE is set to 1, all exceptions that would be routed to Non-secure PL1 modes.

For more information, see Routing exceptions from Non-secure EL0 to EL2.

• When HDCR.TDE is set to 1, any debug exception that would otherwise be taken to a Non-secure PL1 mode,
see Routing debug exceptions to EL2 using AArch32.

• The privilege rules for taking exceptions mean that any exception taken from Hyp mode, if not routed to EL3,
must be taken to Hyp mode.

• An abort that Routing of aborts taken to AArch32 state identifies as taken to Hyp mode.

• Hypervisor Call exceptions, and Hyp Trap exceptions, are always taken to Hyp mode. These exceptions are
supported only as part of EL2.

When EL2 is implemented, various operations from Non-secure PL1 and EL0 modes can be trapped to Hyp
mode, using the Hyp Trap exception. For more information, see EL2 configurable controls.

00101

00111

Translation fault Level 1

Level 2

UNK

Valid

MMU fault

00011a

00110

Access flag fault Level 1

Level 2

UNK

Valid

MMU fault

01001

01011

Domain fault Level 1

Level 2

Valid

Valid

MMU fault

01101

01111

Permission fault Level 1

Level 2

UNK

UNK

MMU fault

01000 Synchronous External abort UNK -

10000 TLB conflict abort UNK -

11001 Synchronous parity or ECC error on memory access UNK -

10110 SError interruptb UNK -

11000 SError interruptb from a parity or ECC error on memory access UNK -

00010 Watchpoint UNK

a. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model in
VMSAv8-32 mean there should be no possibility of confusing the new use of this encoding with its previous use

b. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.

Table G5-30 Validity of Domain field on faults that update the DFSR when using the Short-descriptor encodings

DFSR.FS Source DFSR.Domain Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11661
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Synchronous exceptions taken to Hyp mode provide syndrome information in the HSR.

On an abort exception taken to Hyp mode, the syndrome information in the HSR includes the Fault status code
otherwise provided by the fault status register, and extends the fault reporting compared to that available for an
exception taken to a PL1 mode.

In addition, for a Debug exception taken to Hyp mode, DBGDSCRint.MOE or DBGDSCRext.MOE shows what
caused the Debug exception. This field is valid regardless of whether the Debug exception was taken from Hyp
mode or from another Non-secure mode.

For more information, see the following subsections:

• Registers used for reporting exceptions taken to Hyp mode.

• Memory fault reporting in Hyp mode.

• Use of the HSR

G5.12.5.1 Registers used for reporting exceptions taken to Hyp mode

The following registers are used for reporting exceptions taken to Hyp mode:

• The HSR holds syndrome information for the exception.

• The HDFAR holds the VA associated with a Data Abort exception.

• The HIFAR holds the VA associated with a Prefetch Abort exception.

• The HPFAR holds bits[39:12] of the IPA associated with some aborts on stage 2 address translations.

In addition, if implemented, the optional HADFSR and HAIFSR can provide additional fault information, see Hyp
Auxiliary Fault Syndrome Registers.

G5.12.5.1.1 Hyp Auxiliary Fault Syndrome Registers

EL2 also defines encodings for the following Hyp Auxiliary Fault Syndrome Registers:

• The Hyp Auxiliary Data Fault Syndrome Register, HADFSR.

• The Hyp Auxiliary Instruction Fault Syndrome Register, HAIFSR.

An implementation can use these registers to return additional fault status information for aborts taken to Hyp mode.
They are the Hyp mode equivalents of the registers described in Auxiliary Fault Status Registers. An example use
of these registers is to return more information for diagnosing parity or ECC errors.

The architectural requirements for the HADFSR and HAIFSR are:

• The position of these registers is architecturally-defined, but the content and use of the registers is
IMPLEMENTATION DEFINED.

• An implementation with no requirement for additional fault reporting can implement these registers as RES0,
but the architecture does not require it to do so.

G5.12.5.2 Memory fault reporting in Hyp mode

Prefetch Abort and Data Abort exceptions taken to Hyp mode report memory faults. For these aborts, the HSR
contains the following fault status information:

• The HSR.EC field indicates the type of abort, as Table G5-31 shows.

• The HSR.ISS field holds more information about the abort. In particular:

— Bits[5:0] of this field hold the STATUS field for the abort, using the encodings defined in PL1 fault
reporting with the Long-descriptor translation table format.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11662
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
— Other subfields of the ISS give more information about the exception, equivalent to the information
returned in the FSR for a memory fault reported at PL1.

See the descriptions of the ISS fields for the memory faults, referenced from the Syndrome description
column of Table G5-31, for information about the returned fault information.

For more information, see Use of the HSR.

A Prefetch Abort exception is taken synchronously with the instruction that the abort is reported on. This means:

• If the PE attempts to execute the instruction a Prefetch Abort exception is generated.

• If an instruction fetch is issued but the PE does not attempt to execute the prefetched instruction, no Prefetch
Abort exception is generated for that instruction. For example, if the execution flow branches round a
prefetched instruction that would abort if the PE attempted to execute it, no Prefetch Abort exception is
generated.

G5.12.5.2.1 Register updates on exception reporting in Hyp mode

The use of the HSR, and of the other registers listed in Registers used for reporting exceptions taken to Hyp mode,
depends on the cause of the Abort. In reporting these faults, in general:

• If the fault generates a synchronous Data Abort exception, the HDFAR holds the associated VA, but see Fault
address reporting on synchronous External aborts for a permitted exception to this requirement.

• If the fault generates a Prefetch Abort exception, the HIFAR holds the associated VA, but see Fault address
reporting on synchronous External aborts for a permitted exception to this requirement.

• In the following cases, the HPFAR holds the faulting IPA:

— A Translation or Access flag fault on a stage 2 translation.

— A Translation, Access flag, or Permission fault on the stage 2 translation of an address accessed in a
stage 1 translation table walk.

— A stage 2 Address size fault.

In all other cases, the HPFAR is UNKNOWN.

• On a Data Abort exception that is taken to Hyp mode, the HIFAR is UNKNOWN.

• On a Prefetch Abort exception that is taken to Hyp mode, the HDFAR is UNKNOWN.

In addition, the reporting of particular aborts is as follows:

Abort on the stage 1 translation for a memory access from Hyp mode

The HDFAR or HIFAR holds the VA that caused the fault. The STATUS subfield of HSR.ISS
indicates the type of fault, Translation, Address size, Access flag, or Permission. The HPFAR is
UNKNOWN.

Table G5-31 HSR.EC encodings for aborts taken to Hyp mode

HSR.EC Abort Syndrome description

0x20 Prefetch Abort taken from Non-secure PL1 or EL0 mode ISS encoding for exception from a Prefetch Abort

0x21 Prefetch Abort taken from Hyp mode

0x24 Data Abort taken from Non-secure PL1 or EL0 mode ISS encoding for exception from a Data Abort

0x25 Data Abort taken from Hyp mode
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11663
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Abort on the stage 2 translation for a memory access from a Non-secure PL1 or EL0 mode

This includes aborts on the stage 2 translation of a memory access made as part of a translation table
walk for a stage 1 translation. The HDFAR or HIFAR holds the VA that caused the fault. The
STATUS subfield of HSR.ISS indicates the type of fault, Translation, Address size, Access flag, or
Permission.

For any Access flag fault or Translation fault, and also for any Permission fault on the stage 2
translation of a memory access made as part of a translation table walk for a stage 1 translation, the
HPFAR holds the IPA that caused the fault. Otherwise, the HPFAR is UNKNOWN.

Abort caused by a synchronous External abort, or synchronous parity or ECC error, and taken to Hyp mode

The HDFAR or HIFAR holds the VA that caused the fault, but see Fault address reporting on
synchronous External aborts for a permitted exception to this requirement. The HPFAR is
UNKNOWN.

Data Abort caused by a Watchpoint exception and routed to Hyp mode because HDCR.TDE is set to 1

When HDCR.TDE is set to 1, a Watchpoint exception generated in a Non-secure PL1 or EL0 mode,
that would otherwise generate a Data Abort exception, is routed to Hyp mode and generates a Hyp
Trap exception.

HDFAR is set to the address that generated the watchpoint.

Note

ELR_hyp indicates the address of the instruction that triggered the watchpoint.

A watchpointed address can be any byte-aligned address. The address reported in HDFAR might
not be the watchpointed address, and, for a watchpoint due to an operation other than a Data Cache
maintenance instruction, can be any address between and including:

• The lowest address accessed by the instruction that triggered the watchpoint.

• The highest watchpointed address accessed by that instruction.

If multiple watchpoints are set in this range, there is no guarantee of which watchpoint is generated.

Note

In particular, there is no guarantee of generating the watchpoint with the lowest address in the range.

The address must also be within a naturally-aligned block of memory of an IMPLEMENTATION
DEFINED power-of-two size, containing a watchpoint address accessed by that location.

Note

The IMPLEMENTATION DEFINED power-of-two size must be no larger than the block size of the
AArch64 DC ZVA operation.

See also Watchpoint exceptions.

In all cases, HPFAR is UNKNOWN.

Prefetch Abort caused by a Breakpoint Instruction exception and taken to Hyp mode

This abort is generated if a BKPT instruction is executed in Hyp mode. The abort leaves the HIFAR
and HPFAR UNKNOWN.

See also Breakpoint Instruction exceptions.

Prefetch Abort caused by a Breakpoint Instruction, Breakpoint, or Vector Catch exception, and routed to
Hyp mode because HDCR.TDE is set to 1

When HDCR.TDE is set to 1, a debug exception, generated in a Non-secure PL1 or EL0 mode, that
would otherwise generate a Prefetch Abort exception, is routed to Hyp mode and generates a Hyp
Trap exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11664
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
The abort leaves the HIFAR and HPFAR UNKNOWN. This is identical to the reporting of a Prefetch
Abort exception caused by a Debug exception on a BKPT instruction that is executed in Hyp mode.

Note
The difference between these two cases is:

• The Debug exception on a BKPT instruction executed in Hyp mode generates a Prefetch Abort
exception, taken to Hyp mode, and reported in the HSR using EC value 0x21.

• Aborts generated because HDCR.TDE is set to 1 generate a Hyp Trap exception, and are
reported in the HSR using EC value 0x20.

G5.12.5.3 Use of the HSR

The HSR holds syndrome information for any synchronous exception taken to Hyp mode. Compared with the
reporting of exceptions taken to PL1 modes, the HSR:

• Always provides details of the fault. The DFSR and IFSR are not used.

• Provides more extensive information, for a wider range of exceptions.

Note

IRQ and FIQ exceptions taken to Hyp mode do not report any syndrome information in the HSR.

This section summarizes the general form of the HSR register, to show how it encodes exception syndrome
information, see the register description for more information. The register comprises:

• A 6-bit Exception class field, EC, that indicates the cause of the exception.

• An instruction length bit, IL. When an exception is caused by trapping an instruction to Hyp mode, this bit
indicates the length of the trapped instruction, as follows:

0 16-bit instruction trapped.

1 32-bit instruction trapped.

In other cases the IL field is not valid and is RES1.

• An instruction specific syndrome field, ISS. Architecturally, this field could be defined independently for
each defined Exception class (EC), but in practice several ISS formats are common to more than one EC.

The format of the HSR depends on the value of the EC field, as follows:

0b000000<EC0b001100

The ISS part of the returned value includes the CV and COND fields described in Encoding
of ISS[24:20] when 0b000000<EC0b001100. Figure G5-17 shows the HSR format in this
case.

Figure G5-17 HSR format when the ISS includes CV and COND fields

EC==0b000000 or EC0b001110 There are no generic fields within the ISS. Figure G5-18 shows the HSR format
in this case.

ISSEC IL

CV

0

31 30 29 26 25 24 23 20 19 0

0 COND
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11665
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Figure G5-18 HSR format when the ISS does not include a COND field

G5.12.5.3.1 Encoding of ISS[24:20] when 0b000000<EC0b001100

For EC values that are nonzero and less than or equal to 0b001100, ISS[24:20] provides the Condition code field for
the trapped instruction, together with a valid flag for this field. The encoding of this part of the ISS field is:

CV, ISS[24] Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

COND, ISS[23:20]

The Condition code for the trapped instruction. This field is valid only when CV is set to 1.

If CV is set to 0, this field is RES0.

The full descriptions of the HSR.ISS formats give more information about the CV field.

Note

In some circumstances, it is IMPLEMENTATION DEFINED whether a conditional instruction that fails its Condition
code check generates an Undefined Instruction exception, see Conditional execution of undefined instructions.

G5.12.5.3.2 HSR exception classes

Table G5-32 shows the encoding of the HSR exception class field, EC. Values of EC not shown in the table are
reserved. For each EC value, the table references a subsection of the description of the HSR that describes the
associated ISS format and gives information about the cause of the exception, for example the configuration
required to enable the associated trap.

ISSEC IL

31 26 25 24 0

Table G5-32 HSR.EC field encoding

EC Exception class ISS description, or notes

0b00

0000

Unknown reason ISS encoding for exceptions with an unknown reason.

0b00

0001

Trapped WFI or WFE instruction ISS encoding for exception from a WFI or WFE instruction.

0b00

0011

Trapped MCR or MRC access with (coproc==0b1111) ISS encoding for exception from an MCR or MRC access.

0b00

0100

Trapped MCRR or MRRC access with (coproc==0b1111) ISS encoding for exception from an MCRR or MRRC access.

0b00

0101

Trapped MCR or MRC access with (coproc==0b1110) ISS encoding for exception from an MCR or MRC access.

0b00

0110

Trapped LDC or STC access ISS encoding for exception from an LDC or STC instruction.

0b00

0111

Advanced SIMD or floating-point functionality trapped by a
HCPTR.{TASE, TCP10} control

ISS encoding for exception from an access to SIMD or
floating-point functionality, resulting from HCPTR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11666
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
All EC encodings not shown in Table G5-31 are reserved by Arm.

G5.12.6 Summary of register updates on exceptions taken to Hyp mode

For memory system faults that generate exceptions that are taken to Hyp mode, Table G5-33 shows the registers
affected by each fault. In this table:

• Yes indicates that the register is updated.

• UNK indicates that the fault makes the register value UNKNOWN.

• A null entry, -, indicates that the fault does not affect the register.

Note

For a list of the MMU faults see Types of MMU faults.

0b00

1000

Trapped VMRS access, from ID group traps, that is not reported
using EC 0b000111

ISS encoding for exception from an MCR or MRC access.

This trap is not taken if the HCPTR settings trap the access.

0b00

1100

Trapped MRRC access with (coproc==0b1110) ISS encoding for exception from an MCRR or MRRC access.

0b00

1110

Illegal exception return to AArch32 state ISS encoding for exception from an Illegal state or PC
alignment fault.

0b01

0001

Exception on SVC execution in AArch32 state routed to EL2 ISS encoding for exception from HVC or SVC instruction
execution.

0b01

0010

HVC instruction execution in AArch32 state, when HVC is not
disabled

0b01

0011

Trapped execution of SMC instruction in AArch32 state ISS encoding for exception from SMC instruction execution.

0b10

0000

Prefetch Abort from a lower Exception level ISS encoding for exception from a Prefetch Abort.

0b10

0001

Prefetch Abort taken without a change in Exception level

0b10

0010

PC alignment exception. ISS encoding for exception from an Illegal state or PC
alignment fault.

0b10

0100

Data Abort from a lower Exception level ISS encoding for exception from a Data Abort.

0b10

0101

Data Abort taken without a change in Exception level

Table G5-32 HSR.EC field encoding (continued)

EC Exception class ISS description, or notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11667
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Table G5-33 Effect of an exception taken to Hyp mode on the reporting registers

Fault HSR HIFAR HDFAR HPFAR

Faults reported as Prefetch Abort exceptions:

MMU faulta at stage 1.

a. For more information, see Classification of MMU faults taken to Hyp mode

Yes Yes UNK UNK

Translation or Access flag MMU faulta at stage 2. Yes Yes UNK Yes

Otherb MMU faulta at stage 2.

b. MMU fault other than a Translation fault or an Access flag fault.

Yes Yes UNK UNK

Stage 2 MMU faulta on a stage 1 translation. Yes Yes UNK Yes

Synchronous External abort on translation table walk. Yes Yes UNK UNK

Synchronous parity or ECC error on translation table walk. Yes Yes UNK UNK

Synchronous External abort. Yes IMP DEFc

c. IMPLEMENTATION DEFINED. The FnV bit in the HSR.ISS field indicates whether the register holds a valid address.
See Fault address reporting on synchronous External aborts.

UNK UNK

Synchronous parity or ECC error on memory access. Yes Yes UNK UNK

Fault reported as Data Abort exception:

MMU faulta at stage 1. Yes UNK Yes UNK

Translation or Access flag MMU faulta at stage 2. Yes UNK Yes Yes

Otherb MMU faulta at stage 2. Yes UNK Yes UNK

Stage 2 MMU faulta on a stage 1 translation. Yes UNK Yes Yes

Synchronous External abort on translation table walk. Yes UNK Yes UNK

Synchronous parity or ECC error on translation table walk. Yes UNK Yes UNK

Synchronous External abort. Yes UNK IMP DEFc UNK

Synchronous parity or ECC error on memory access. Yes UNK Yes UNK

SError interrupt Yes UNK UNK UNK

SError interrupt from a parity or ECC error on memory access. Yes UNK UNK UNK

Debug exception:

Breakpoint Instructiond, generates a Prefetch Abort exception.

d. All other debug exceptions are not permitted in Hyp mode.

Yes UNK - UNK

Debug exception routed to Hyp mode because HDCR.TDE is set to 1. Generates a Hyp Trap exception.

Breakpoint Instruction or Vector Catch Yes UNK - UNK

Watchpoint Yes - Yes UNK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11668
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation
Note

Unlike Table G5-29, the Hyp mode fault reporting table does not include an entry for a fault on an instruction cache
maintenance instruction. That is because, when the fault is taken to Hyp mode, the reporting indicates the cause of
the fault, for example a Translation fault, and ISS.CM is set to 1 to indicate that the fault was on a cache maintenance
instruction, see ISS encoding for exception from a Data Abort.

G5.12.6.1 Classification of MMU faults taken to Hyp mode

This subsection gives more information about the MMU faults shown in Table G5-33.

Note

All MMU faults are synchronous.

The table uses the following descriptions for MMU faults taken to Hyp mode:

MMU fault at stage 1

This is an MMU fault generated on a stage 1 translation performed in the Non-secure EL2
translation regime.

MMU fault at stage 2

This is an MMU fault generated on a stage 2 translation performed in the Non-secure PL1&0
translation regime.

As the table shows, for the faults in this group:

• Translation and Access flag faults update the HPFAR

• Permission faults leave the HPFAR UNKNOWN.

MMU stage 2 fault on a stage 1 translation

This is an MMU fault generated on the stage 2 translation of an address accessed in a stage 1
translation table walk performed in the Non-secure PL1&0 translation regime. For more
information about these faults see Stage 2 fault on a stage 1 translation table walk.

Figure G5-1 shows the different translation regimes and associated stages of translation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11669
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
G5.13 Address translation instructions

The System register encoding space includes encodings for instructions that either:

• Translate a virtual address (VA) to a physical address (PA).

• Translate a virtual address (VA) to an intermediate physical address (IPA).

Address translation system instructions summarizes these instructions.

When using the Short-descriptor translation table format, all translations performed by these instructions take
account of TEX remap when this is enabled, see Short-descriptor format memory region attributes, with TEX remap.

An address translation instruction that executes successfully returns the output address, a PA or an IPA, in the PAR.
This is a 64-bit register that can hold addresses of up to 40 bits.

It is IMPLEMENTATION DEFINED whether the address translation instructions return the values held in a TLB or the
result of a translation table walk. Therefore, Arm recommends that these instructions are not used at a time when
the TLB entries might be different from the underlying translation tables held in memory.

The following sections give more information about these instructions:

• Address translation instruction naming and operation summary.

• Encoding and availability of the address translation instructions.

• Determining the PAR format.

• Handling of faults and aborts during an address translation instruction.

G5.13.1 Address translation instruction naming and operation summary

Some older documentation uses the original names for the address translation instructions that were included in the
original Armv7 documentation. Table G5-34 summarizes the instructions that are available in AArch32 state, and
relates the old instruction names to the current names.

In an implementation that does not include EL2, there is no distinction between stage 1 translations and stage 1 and
2 combined translations.

For the stage 1 current state and stages 1 and 2 Non-secure state only instructions, the meanings of the final letters
of the names are:

PR PL1 mode, read operation.

PRP PL1 mode, read operation, taking account of PSTATE.PAN.

PW PL1 mode, write operation.

PWP PL1 mode, write operation, taking account of PSTATE.PAN.

Table G5-34 Naming of address translation instructions

Name Old name Description

ATS1CPR, ATS1CPW, ATS1CUR,
ATS1CUW

ATS1CPRP, ATS1CPWP

V2PCWPR, V2PCWPW,
V2PCWUR, V2PCWUW

Not applicablea

See ATS1C**, Address translation stage 1, current
security state

ATS12NSOPR, ATS12NSOPW,
ATS12NSOUR, ATS12NSOUW

V2POWPR, V2POWPW,
V2POWUR, V2POWUW

See ATS12NSO**, Address translation stages 1 and 2,
Non-secure state only

ATS1HR, ATS1HW Not applicableb See ATS1H*, Address translation stage 1, Hyp mode

a. Instructions are added by FEAT_PAN2 and do not have a previous name.

b. Instructions are part of EL2 and have no equivalent in the older descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11670
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
UR User mode, read operation.

UW User mode, write operation.

Note

User mode can be described as the unprivileged mode. It is the only EL0 mode.

For the stage 1 Hyp mode instructions, the last letter of the instruction name is R for the read operation and W for
the write operation.

See also Encoding and availability of the address translation instructions.

G5.13.1.1 ATS1C**, Address translation stage 1, current security state

Any VMSAv8-32 implementation supports the ATS1C** instructions. They can be executed by any software
executing at PL1 or higher, in either Security state.

The ATS1C** instructions are ATS1CPR, ATS1CPW, ATS1CUR, and ATS1CUW and, when FEAT_PAN2 is
implemented, ATS1CPRP and ATS1CPWP. These instructions perform the address translations of the PL1&0
translation regime.

In an implementation that includes EL2, when executed in Non-secure state, these instructions return the IPA that
is the output address of the stage 1 translation. Figure G5-1 shows the different translation regimes.

Note

The Non-secure PL1 and EL0 modes have no visibility of the stage 2 address translations, that can be defined only
at EL2, and translate IPAs to be PAs.

See Determining the PAR format for the format used when returning the result of these instructions.

G5.13.1.2 ATS12NSO**, Address translation stages 1 and 2, Non-secure state only

A VMSAv8-32 implementation supports the ATS12NSO** instructions only if it includes EL2. In an
implementation that includes EL2, in AArch32 state, they can be executed:

• By software executing in Non-secure state at EL2. This means by software executing in Hyp mode.

• If the implementation includes EL3, when EL3 is using AArch32, by software executing in Secure state at
PL1.

The ATS12NSO** instructions are ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, and ATS12NSOUW.

In an implementation that includes EL3, when EL3 is using AArch64 and EL1 is using AArch32, any execution of
an ATS12NSO** instruction at Secure EL1 is trapped as an exception that is taken to EL3.

In an implementation that does not include EL2, but includes EL3, when EL3 is using AArch32 these instructions
are not UNDEFINED but each instruction behaves in the same way as the equivalent ATS1C** instruction.

If an implementation does not include EL2 and does not include EL3 then these instructions are CONSTRAINED
UNPREDICTABLE, with the permitted behavior that the instructions are UNDEFINED, see Unallocated System register
access instructions.

Arm deprecates use of these instructions from any Secure PL1 mode other than Monitor mode.

In Secure state and in Non-secure Hyp mode these instructions perform the translations made by the Non-secure
PL1&0 translation regime.

These instructions always return the PA and final attributes generated by the translation. That is, for an
implementation that includes EL2, they return:

• The result of the two stages of address translation for the specified Non-secure input address.

• The memory attributes obtained by the combination of the stage 1 and stage 2 attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11671
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
Note

From Hyp mode, the ATS1C** and ATS12NSO** instructions both return the results of address translations that
would be performed in the Non-secure modes other than Hyp mode. The difference is:

• The ATS1C** instructions return the Non-secure PL1 view of the associated address translation. That is, they
return the IPA output address corresponding to the VA input address.

• The ATS12NSO** instructions return the EL2, or Hyp mode, view of the associated address translation. That
is, they return the PA output address corresponding to the VA input address, generated by two stages of
translation.

See Determining the PAR format for the format used when returning the result of these instructions.

G5.13.1.3 ATS1H*, Address translation stage 1, Hyp mode

A VMSAv8-32 implementation supports the ATS1H* instructions only if it includes EL2. They can be executed by:

• Software executing in Non-secure state at EL2. This means by software executing in Hyp mode.

• Software executing in Secure state in Monitor mode.

The ATS1H* instructions are ATS1HR and ATS1HW. In an implementation that includes EL3, these instructions
are CONSTRAINED UNPREDICTABLE if executed in a Secure PL1 mode other than Monitor mode.

If an implementation does not include EL2 then these instructions are CONSTRAINED UNPREDICTABLE, with the
permitted behavior that the instructions are UNDEFINED, see Unallocated System register access instructions.

These instructions perform the translations made by the Non-secure EL2 translation regime. The instruction takes
a VA input address and returns a PA output address.

These instructions always return a result in a 64-bit format PAR.

G5.13.2 Encoding and availability of the address translation instructions

Software executing at EL0 never has any visibility of the address translation instructions, but software executing at
PL1 or higher can use the unprivileged address translation instructions to find the address translations used for
memory accesses by software executing at PL1 and EL0.

Note

For information about translations when the stage of address translation is disabled see The effects of disabling
address translation stages on VMSAv8-32 behavior.

Table G5-35 shows the encodings for the address translation instructions, and their availability in different
implementations in different PE modes and states.

Table G5-35 Address translation instructions in AArch32 state

opc1 CRm opc2 Name Type Description

All VMSAv8-32 implementations, in all modes, at PL1 or higher, see ATS1C**, Address translation stage 1, current security state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11672
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
The result of an instruction is always returned in the PAR. The PAR is a RW register and:

• In all implementations, the 32-bit format PAR is accessed using an MCR or MRC instruction with CRn set to c7,
CRm set to c4, and opc1 and opc2 both set to 0.

• The 64-bit format PAR is accessed using an MCRR or MRRC instruction with CRm set to c7, and opc1 set to 0.

Address translation instructions that are not available in a particular implementation are reserved and CONSTRAINED
UNPREDICTABLE. For example:

• In an implementation that does not include EL2, the encodings with an opc1 value of 4 are reserved and
CONSTRAINED UNPREDICTABLE. These are the ATS1H* instructions.

• In an implementation that does not include either EL2 or EL3, the encodings with opc2 values of 4-7 are
reserved and CONSTRAINED UNPREDICTABLE. These are the ATS12NSO** instructions.

The CONSTRAINED UNPREDICTABLE behavior of these encodings is that they are UNDEFINED, see Unallocated
System register access instructions.

0

c8 0 ATS1CPR WO PL1 stage 1 read translation, current state

1 ATS1CPW WO PL1 stage 1 write translation, current state

2 ATS1CUR WO Unprivileged stage 1 read translation, current state

3 ATS1CUW WO Unprivileged stage 1 write translation, current state

c9 0 ATS1CPRPa WO PL1 stage 1 read translation, current state, PSTATE.PANa

1 ATS1CPWPa WO PL1 stage 1 write translation, current state, PSTATE.PANa

Implementation includes EL2, in Non-secure Hyp mode and Secure PL1 modes, see ATS12NSO**, Address translation stages 1 and
2, Non-secure state only

0 c8 4 ATS12NSOPR WO Non-secure PL1 stage 1 and 2 read translation

5 ATS12NSOPW WO Non-secure PL1 stage 1 and 2 write translation

6 ATS12NSOUR WO Non-secure unprivileged stage 1 and 2 read translation

7 ATS12NSOUW WO Non-secure unprivileged stage 1 and 2 write translation

Implementation includes EL2, in Non-secure Hyp mode and Secure Monitor mode, see ATS1H*, Address translation stage 1, Hyp mode

4 c8 0 ATS1HR WO Hyp mode stage 1 read translation

1 ATS1HW WO Hyp mode stage 1 write translation

a. Instruction only supported when FEAT_PAN2 is implemented.

Table G5-35 Address translation instructions in AArch32 state (continued)

opc1 CRm opc2 Name Type Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11673
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
G5.13.3 Determining the PAR format

The PAR is a 64-bit register that supports both 32-bit and 64-bit PAR formats. This section describes how the PAR
format is determined, for returning a result from each of the groups of address translation instructions. The returned
result might be the translated address, or might indicate a fault on the translation, see Handling of faults and aborts
during an address translation instruction.

ATS1C** instructions

Address translations for the current state. From modes other than Hyp mode:

• TTBCR.EAE determines whether the result is returned using the 32-bit or the 64-bit PAR
format.

• If the implementation includes EL3, the translation performed is for the current security state
and, depending on that state:

— The Secure or Non-secure TTBCR.EAE determines the PAR format.

— The result is returned to the Secure or Non-secure instance of the PAR

Instructions executed in Hyp mode always return a result to the Non-secure PAR, using the 64-bit
format.

ATS12NSO** instructions

Address translations for the Non-secure PL1 and EL0 modes. These instructions return a result
using the 64-bit PAR format if at least one of the following is true:

• The Non-secure TTBCR.EAE bit is set to 1.

• The implementation includes EL2, and the value of HCR.VM is 1.

Otherwise, the instruction returns a result using the 32-bit PAR format.

Instructions executed in a Secure PL1 mode return a result to the Secure PAR. Instructions executed
in Hyp mode return a result to the Non-secure PAR.

ATS1H* instructions

Address translations from Hyp mode. These instructions always return a result using the 64-bit PAR
format.

Instructions executed in Secure Monitor mode return a result to the Secure PAR. Instructions
executed in Non-secure Hyp mode return a result to the Non-secure PAR.

G5.13.4 Handling of faults and aborts during an address translation instruction

When a stage of address translation is enabled, any corresponding address translation instruction requires a
translation table lookup, and this might require a translation table walk. However, the input address for the
translation might be a faulting address, either because:

• The translation table entries used for the translation indicate a fault.

• A stage 2 fault or an External abort occurs on the required translation table walk.

VMSAv8-32 memory aborts describes the faults that might occur on a translation table walk in AArch32 state.

How the fault is handled, and whether it generates an exception, depends on the cause of the fault, as described in:

• MMU fault on an address translation instruction.

• External abort during an address translation instruction.

• Stage 2 fault on a current state address translation instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11674
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
G5.13.4.1 MMU fault on an address translation instruction

In the following cases, an MMU fault on an address translation is reported in the PAR, and no abort is taken. This
applies:

• For a faulting address translation instruction executed in Hyp mode, or in a Secure PL1 mode.

• For a faulting address translation instruction executed in a Non-secure PL1 mode, for cases where the fault
would generate a stage 1 abort if it occurred on the equivalent load or store operation.

Using the PAR to report a fault on an address translation instruction gives more information about how these faults
are reported.

Note

• The Domain fault encodings shown in Table G5-27 are used only for reporting a fault on an address
translation instruction that uses the 64-bit PAR format. That is, they are used only in an implementation that
includes EL2, and are used for reporting a Domain fault on either:

— An ATS1C** instruction executed in Hyp mode.

— An ATS12NSO** instruction executed when the value of HCR.VM is 1.

These encodings are never used for fault reporting in the DFSR, IFSR, or HSR.

• For an address translation instruction executed in a Non-secure PL1 mode, for a fault that would generate a
stage 2 abort if it occurred on the equivalent load or store operation, the stage 2 abort is generated as described
in Stage 2 fault on a current state address translation instruction.

G5.13.4.1.1 Using the PAR to report a fault on an address translation instruction

For a fault on an address translation instruction for which no abort is taken, the PAR is updated with the following
information, to indicate the fault:

• The fault code, that would normally be written to the Fault status register. The code used depends on the
current translation table format, as described in either:

— PL1 fault reporting with the Short-descriptor translation table format.

— PL1 fault reporting with the Long-descriptor translation table format.

See also the Note at the start of Determining the PAR format about the Domain fault encodings shown in
Table G5-27.

• A status bit, that indicates that the translation operation failed.

The fault does not update any Fault Address Register.

G5.13.4.2 External abort during an address translation instruction

As stated in External abort on a translation table walk, an External abort on a translation table walk generates a
Data Abort exception. The abort can be synchronous or asynchronous, and behaves as follows:

Synchronous External abort on a translation table walk

The fault status and fault address registers of the Security state to which the abort is taken are
updated. The fault status register indicates the appropriate External abort on a Translation fault, and
the fault address register indicates the input address for the translation.

The PAR is UNKNOWN.

Asynchronous External abort on a translation table walk

The fault status register of the Security state to which the abort is taken is updated, to indicate the
asynchronous External abort. No fault address registers are updated.

The PAR is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11675
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.13 Address translation instructions
G5.13.4.3 Stage 2 fault on a current state address translation instruction

If the PE is in a Non-secure PL1 mode and executes one of the ATS1C** instructions, then a fault in the stage 2
translation of an address accessed in a stage 1 translation table lookup generates an exception. This is equivalent to
the case described in Stage 2 fault on a stage 1 translation table walk. When this fault occurs on an ATS1C**
address translation instruction:

• A Hyp Trap exception is taken to Hyp mode.

• The PAR is UNKNOWN.

• The HSR indicates that:

— The fault occurred on a translation table walk.

— The operation that faulted was a cache maintenance instruction.

• The HPFAR holds the IPA that faulted.

• The HDFAR holds the VA that the executing software supplied to the address translation instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11676
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.14 Pseudocode description of VMSAv8-32 memory system operations
G5.14 Pseudocode description of VMSAv8-32 memory system operations

This section contains a list of pseudocode functions describing VMSAv8-32 memory operations. The following
subsections describe the pseudocode functions:

• Full Physical Address.

• Translation regime.

• Address translation.

• Long-descriptor Translation table walk.

• Short-descriptor Translation table walk.

• Memory attribute decoding.

• Fault detection.

See also the descriptions of pseudocode for general memory system operations in Pseudocode description of
general memory System instructions.

G5.14.1 Full Physical Address

A complete physical address necessary to identify a location in physical memory is captured by the type
FullAddress. This is composed of:

• A bitstring address, which identifies the physical address.

• An enumeration paspace, which identifies the physical address space.

G5.14.2 Translation regime

The architecture specifies translation regimes in terms of Privilege Level (PL). An alternative approach is used in
pseudocode where regimes are expressed in terms of ELs instead, mirroring regimes in AArch64. The pseudocode
and ARM use a differently named but equivalent set of regimes:

G5.14.3 Address translation

AArch32.TranslateAddress() acts as the entry point to VMSAv8-32 and performs the required address translation
based on the provided parameters and system register configurations. The function returns an AddressDescriptor
structure holding valid data for either of the following:

• Target memory address and attributes for a non-faulting translation.

• Fault details holding data to be populated in syndrome registers.

AArch32.FullTranslate() selects the translation regime and performs first and potentially second stage of translation
returning the physical address (PA) and attributes of target memory. AArch32.S1TranslateSD() carries out the first
stage of translation when stage 1 is not disabled and Long-descriptor format is used, mapping the virtual address
(VA) to the intermediate physical address (IPA) and carrying out permission checks. Alternatively
AArch32.S1TranslateSD() carries out the first stage of translation using the Short-descriptor format along with
Domain checks and TEX memory attribute mapping. Otherwise, AArch32.S1DisabledOutput() assigns the
appropriate memory attributes and flat maps the input address to the output address. AArch32.S2Translate() carries
out stage 2 translation for Regime_EL10 when enabled, mapping the IPA to the PA. Otherwise, the IPA is the PA.

Table G5-36 Pseudocode and equivalent ARM regimes

Pseudocode Regime Equivalent ARM regime

Regime_EL10 Secure PL1&0 when EL3 is AArch64 or Non-Secure PL1&0

Regime_EL30 Secure PL1&0 when EL3 is AArch32

Regime_EL2 Non-Secure PL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11677
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.14 Pseudocode description of VMSAv8-32 memory system operations
G5.14.4 Long-descriptor Translation table walk

A separate walk function is dedicated for Stage 1 Long-descriptor format, AArch32.S1WalkLD(), and Stage 2,
AArch32.S2Walk(), which supports only Long-descriptor format. Each use walk parameters extracted from related
system registers and held in S1TTWParams for stage 1 and S2TTWParams for stage 2. Parameters are collected
based on the active translation regime. For instance, stage 1 EL2 translation regime parameters are obtained and
returned by the function AArch32.S1TTWParamsEL2(). Given these parameters, a walk initializes a walk state of the
type TTWState, holding the base address of the first translation table.

The walk progressively fetches and decodes Translation Table descriptors, updating the walk state to the next base
address as it descends through the levels of tables until a Block or Page descriptor is discovered or an invalid
descriptor is fetched. Decoding the descriptor for both stage 1 and stage 2 walks is carried out by the function
AArch32.DecodeDescriptorTypeLD().

For a non-faulting walk, a valid final walk state is returned, otherwise a faulting walk could report one of the
following at a specified level:

• Translation Fault.

• Address Size Fault.

• Access Flag Fault.

G5.14.5 Short-descriptor Translation table walk

Short-Descriptor format is only supported for Regime_EL10 and Regime_EL30 (PL1&0) Stage 1 and a separate
walk function is dedicated for that, AArch32.S1WalkSD(). The limited number of parameters are collected in the walk
function and would otherwise follow a similar flow to Long-descriptor formats of iteratively updating the walk
state. The walk notably collects the domain and Short-descriptor format type which are unique to Short-descriptor
formats. The descriptor type is decoded using AArch32.DecodeDescriptorTypeSD().

For a non-faulting walk, a valid final walk state is returned, otherwise a faulting walk could report one of the
following at a specified level:

• Translation Fault.

• Address Size Fault.

• Access Flag Fault (when SCTLR.AFE is configured to support Access flags).

G5.14.6 Memory attribute decoding

If a stage of translation is enabled, Fetched Leaf descriptors encode memory attributes assigned to the output of
translation. Stage 1 Long-descriptor format memory attributes are decoded by the function S1DecodeMemAttrs().
Likewise, stage 2 memory attributes are decoded by the function S2DecodeMemAttrs() followed by combining stage
1 and stage 2 attributes by the function S2CombineS1MemAttrs(). A separate set of functions are used to assign
memory attributes to the output of Short-descriptor format. AArch32.DefaultTEXDecode() is used when TEX
remapping is disabled, otherwise AArch32.RemappedTEXDecode() defines output memory attributes.

G5.14.7 Fault detection

As soon as translation is invoked, a reserve FaultRecord accompanies the process, capturing the stage and level of
translation as it proceeds. When a fault is detected, it is reflected in the FaultRecord and reported back as the result
of translation with the most recent state to be reported already captured within. The following functions detect a
certain type of fault, their outputs are all boolean with a TRUE value on detection:

• AArch32.S1LDHasPermissionsFault() and AArch32.S2HasPermissionsFault() detect a permissions fault for
stage 1 and stage 2 respectively for Long-descriptor format. AArch32.S1SDHasPermissionsFault() detects a
permissions fault for a translation in Short-descriptor format. Note that for atomic instructions introduced by
FEAT_LSE, these functions are called twice, once to check for read permissions and another for write
allowing the correct failure to be reported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11678
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.14 Pseudocode description of VMSAv8-32 memory system operations
• AArch32.S1HasAlignmentFault() and AArch32.S2HasAlignmentFault() detect an alignment fault for stage 1 and
stage 2 respectively.

• AArch32.S2InconsistentSL() detects a stage 2 translation fault caused by erroneous configuration of the
VTCR.SL0 field.

• AArch32.VAIsOutOfRange() detects a stage 1 translation fault caused by virtual addresses larger than the
address input size configured. Similarly, AArch64.IPAIsOutOfRange() detects a stage 2 translation fault caused
by the output of stage 1 being larger than the configured input size for stage 2. Both are solely part of
Long-descriptor format translation.

Note

Domain faults are detected inline as part of AArch32.S1TranslateSD() since they are a simple equality check.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11679
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
G5.15 About the System registers for VMSAv8-32

The System registers and System instructions that are accessible in AArch32 state are almost all in the encoding
space described in The AArch32 System register interface. This section gives general information about these
registers, which comprise:

• Registers in the (coproc==0b1111) encoding space, that provide control and status information for the PE in
Non-debug state.

• Registers in the (coproc==0b1110) encoding space, including:

— Debug registers.

— Trace registers.

— Legacy execution environment registers.

Organization of registers in the (coproc==0b1110) encoding space summarizes the registers in the
(coproc==0b1110) encoding space, and indicates where these registers are described, either in this manual or in other
architecture specifications.

Organization of registers in the (coproc==0b1111) encoding space summarizes the registers in the
(coproc==0b1111) encoding space, and indicates where in this manual these registers are described.

Note

Many implementations include other interfaces to some System registers, for example a memory-mapped interface
to some debug System registers. These are described in the appropriate sections of this manual.

G5.15.1 Classification of System registers

Features provided by EL3 and EL2 integrate with many features of the architecture. Therefore, the descriptions of
the individual System registers include information about how these Exception levels affect the register. This
section:

• Summarizes how EL3 and EL2 affect the implementation of the System registers, and the classification of
those registers.

• Summarizes how EL3 controls access to the System registers.

• Describes an EL3 signal that can control access to some registers in the (coproc==0b1111) encoding space.

It contains the following subsections:

• Banked System registers.

• Restricted access System registers.

• Configurable access System registers.

• EL2-mode System registers.

• Common System registers.

• Access to registers from Monitor mode.

• The CP15SDISABLE and CP15SDISABLE2 input signals.

Note

EL3 defines the register classifications of Banked, Restricted access, Configurable, and Common. EL2 defines the
EL2-mode classification.

It is IMPLEMENTATION DEFINED whether each IMPLEMENTATION DEFINED register is Banked, Restricted access,
Configurable, EL2-mode, or Common.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11680
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
G5.15.1.1 Banked System registers

In an implementation that includes EL3 using AArch32, some System registers are banked. Banked System
registers have two copies, one Secure and one Non-secure. The SCR.NS bit selects the Secure or Non-secure
instance of the register.

A Banked System register can contain a mixture of:

• Fields that are banked.

• Fields that are read-only in Non-secure PL1 or EL2 modes but read/write in the Secure state.

The System Control Register SCTLR is an example of a register of that contains this mixture of fields.

The Secure copies of the Banked System registers are sometimes referred to as the Secure Banked System registers.
The Non-secure copies of the Banked System registers are sometimes referred to as the Non-secure Banked System
registers.

G5.15.1.2 Restricted access System registers

In an implementation that includes EL3, some System registers are present only in Secure state. These are called
Restricted access registers, and their read/write access permissions are:

• In Non-secure state, software cannot modify Restricted access registers.

• For the NSACR, in Non-secure state:

— Software running at PL1 or higher can read the register.

— Unprivileged software, meaning software running at EL0, cannot read the register.

This means that Non-secure software running at PL1 or higher can read the access permissions for System
registers that have Configurable access.

If EL3 is using AArch64, then any read of the NSACR from Non-secure EL2 using AArch32, or Non-secure
EL1 using AArch32, returns the value 0x00000C00.

• For all other Restricted access registers, Non-secure software cannot read the register.

In an implementation that does not include EL3:

• SDER is implemented only in Secure state.

• Any read of the NSACR returns the value 0x00000C00.

• All other accesses to Restricted access System registers are UNDEFINED.

G5.15.1.3 Configurable access System registers

Secure software can configure the access to some System registers. These registers are called Configurable access
registers, and the control can be:

• A bit in the control register determines whether the register is:

— Accessible from Secure state only.

— Accessible from both Secure and Non-secure states.

• A bit in the control register changes the accessibility of a register bit or field. For example, setting a bit in the
control register might mean that an RW field behaves as RAZ/WI when accessed from Non-secure state.

Bits in the NSACR control access.

In an AArch32 implementation that includes EL3:

• There are no Configurable access System registers in the (coproc==0b1110) encoding space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11681
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
• The only required Configurable access register in the (coproc==0b1111) encoding space is the CPACR.

— Floating-point Status and Control Register, FPSCR

— Floating-point Exception register, FPEXC.

— Floating-point System ID register, FPSID.

— Media and VFP Feature Register 0, MVFR0.

— Media and VFP Feature Register 1, MVFR1.

— Media and VFP Feature Register 2, MVFR2.

G5.15.1.4 EL2-mode System registers

In an implementation that includes EL2, if EL2 can use AArch32, the implementation provides a number of
registers for use in the EL2 mode, Hyp mode. As with other System register encodings, some of these register
encodings provide write-only operations. When the implementation includes EL3 and EL3 is using AArch32, these
registers are also accessible from Monitor mode when the value of SCR.NS is 1.

The following subsections describe the EL2-mode registers:

• Hyp mode read/write registers in the (coproc==0b1111) encoding space.

• Hyp mode encodings for shared (coproc==0b1111) System registers.

• Hyp mode (coproc==0b1111) write-only System instructions.

There are no EL2-mode registers in the (coproc==0b1110) encoding space.

G5.15.1.4.1 Hyp mode read/write registers in the (coproc==0b1111) encoding space

These registers are implemented only in Non-secure state, and in Non-secure state they are accessible only from
Hyp mode.

Except for accesses to CNTVOFF in an implementation that includes EL3 but not EL2, the behavior of accesses to
these registers is as follows:

• In Secure state, the registers can be accessed from EL3 when SCR.NS is set to 1, see Access to registers from
Monitor mode.

• The following accesses are UNDEFINED:

— Accesses from Non-secure PL1 modes.

— Accesses in Secure state when SCR.NS is set to 0.

In an implementation that includes EL3 but not EL2, the behavior of accesses to CNTVOFF is as follows:

• Any access from Secure Monitor mode is CONSTRAINED UNPREDICTABLE, regardless of the value of SCR.NS.
The CONSTRAINED UNPREDICTABLE behavior is that the access is UNDEFINED, see Unallocated System
register access instructions.

• All other accesses are UNDEFINED.

Note

Except for CNTVOFF, the Hyp mode registers are part of EL2, meaning they are implemented only if the
implementation includes EL2. However, conceptually, CNTVOFF is part of any implementation of the Generic
Timer, see The virtual offset register. This means the behavior of CNTVOFF in an implementation that does not
include EL2 is not covered by the general definition of the behavior of the Hyp mode (coproc==0b1111) read/write
registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11682
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
G5.15.1.4.2 Hyp mode encodings for shared (coproc==0b1111) System registers

Some Hyp mode registers share the Secure instance of an existing banked register. In this case, the implementation
includes an encoding for the register that is accessible only in Hyp mode, or in Monitor mode when SCR.NS is
set to 1.

For these registers, the following accesses are UNDEFINED:

• Accesses from Non-secure PL1 modes.

• Accesses in Secure state when SCR.NS is set to 0.

In Monitor mode, the Secure copies of these registers can be accessed either:

• Using the DFAR or IFAR encoding with SCR.NS set to 0.

• Using the HDFAR or HIFAR encoding with SCR.NS set to 1.

However, between accessing a register using one alias and accessing the register using the other alias, a Context
Synchronization event is required to ensure the ordering of the accesses.

G5.15.1.4.3 Hyp mode (coproc==0b1111) write-only System instructions

Architecturally, these encodings are an extension of the banked register encodings described in Banked System
registers, where:

• The implementation does not implement the operation in Secure state.

• In Non-secure state, the operation is accessible only at EL2, that is, only from Hyp mode.

In Secure state:

• These instructions can be accessed from Monitor mode regardless of the value of SCR.NS, see Access to
registers from Monitor mode.

• Accesses to these instructions are CONSTRAINED UNPREDICTABLE if executed in a Secure mode other than
Monitor mode.

Accesses to these instructions are UNDEFINED if accessed from a Non-secure PL1 mode.

G5.15.1.5 Common System registers

Some System registers and operations are common to the Secure and Non-secure Security states. These are
described as the Common access registers, or simply as the Common registers. These registers include:

• Read-only registers that hold configuration information.

• Register encodings used for various memory system operations, rather than to access registers.

• The ISR.

• All System registers in the (coproc==0b1110) encoding space.

G5.15.1.6 Secure System registers for the (coproc==0b1111) encoding space

The Secure System registers in the (coproc==0b1111) encoding space comprise:

• The Secure copies of the Banked System registers in the (coproc==0b1111) encoding space.

• The Restricted access System registers in the (coproc==0b1111) encoding space.

• The Configurable access System registers in the (coproc==0b1111) encoding space that are configured to be
accessible only from Secure state.

In an implementation that includes EL3, the Non-secure System registers are the System registers other than the
Secure System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11683
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
G5.15.1.7 Access to registers from Monitor mode

When the PE is in Monitor mode, the PE is in Secure state regardless of the value of the SCR.NS bit. In Monitor
mode, the SCR.NS bit determines whether, for System registers in the (coproc==0b1111) encoding space, valid uses
of the MRC, MCR, MRRC, and MCRR instructions access the Secure Banked System registers or the Non-secure Banked
System registers. That is, when:

NS == 0 Common, Restricted access, and Secure Banked System registers are accessed by MRC, MCR, MRRC, and
MCRR instructions that target the (coproc==0b1111) encoding space.

If the implementation includes EL2, the registers listed in Hyp mode read/write registers in the
(coproc==0b1111) encoding space and Hyp mode encodings for shared (coproc==0b1111) System
registers are not accessible, and any attempt to access them generates an Undefined Instruction
exception.

Note

The operations listed in Hyp mode (coproc==0b1111) write-only System instructions are accessible
in Monitor mode regardless of the value of SCR.NS.

System instructions in the (coproc==0b1111) encoding space use the Security state to determine all
resources used, that is, all operations performed by these instructions are performed in Secure state.

NS == 1 Common, Restricted access and Non-secure Banked System registers are accessed by MRC, MCR, MRRC,
and MCRR instructions that target the (coproc==0b1111) encoding space.

If the implementation includes EL2, all the registers and operations listed in the subsections of
EL2-mode System registers are accessible, using the MRC, MCR, MRRC, or MCRR instructions required to
access them from Hyp mode.

System instructions in the (coproc==0b1111) encoding space use the Security state to determine all
resources used, that is, all operations by these instructions are performed in Secure state.

The Security state determines whether the Secure or Non-secure banked registers determine the control state.

Note

Where the contents of a register select the value accessed by an MRC or MCR access to a different register, then the
register that is used for selection is being used as control state. For example, CSSELR selects the current Cache Size
Identification Register, and therefore CSSELR is used as control state. Therefore, in Monitor mode:

• SCR.NS determines whether the Secure or Non-secure CSSELR is accessible.

• Because the PE is in Secure state, the Secure CSSELR selects the current Cache Size Identification Register.

From Armv8.3, it is possible to have multiple Cache Size Identification Registers. For more details, see Possible
formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2.

G5.15.1.8 The CP15SDISABLE and CP15SDISABLE2 input signals

When EL3 is using AArch32, it provides an input signal, CP15SDISABLE, that disables write access to some of
the Secure registers when asserted HIGH. The CP15SDISABLE signal has no effect on:

• Register accesses from AArch64 state.

• Register accesses from Secure EL1 when EL3 is using AArch64 and EL1 is using AArch32.

Note

When EL3 is using AArch32, the interaction between CP15SDISABLE and any IMPLEMENTATION DEFINED
register is IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11684
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.15 About the System registers for VMSAv8-32
On a Warm reset by the external system that resets the PE into EL3 using AArch32, the CP15SDISABLE input
signal must be taken LOW. This permits the Reset code to set up the configuration of EL3 features. When the input
is asserted HIGH, any attempt to write to the Secure registers that are affected by CP15SDISABLE results in an
Undefined Instruction exception.

The CP15SDISABLE input does not affect reading Secure registers, or reading or writing Non-secure registers. It
is IMPLEMENTATION DEFINED how the input is changed and when changes to this input are reflected in the PE, and
an implementation might not provide any mechanism for driving the CP15SDISABLE input HIGH. However, in
an implementation in which the CP15SDISABLE input can be driven HIGH, changes in the state of
CP15SDISABLE must be reflected as quickly as possible. Any change must occur before completion of an
Instruction Synchronization Barrier operation, issued after the change, is visible to the PE with respect to instruction
execution boundaries. Software must perform an Instruction Synchronization Barrier operation meeting the above
conditions to ensure all subsequent instructions are affected by the change to CP15SDISABLE.

When EL3 is using AArch32, use of CP15SDISABLE means key Secure features that are accessible only at PL1
can be locked in a known state. This provides an additional level of overall system security. Arm expects control of
CP15SDISABLE to reside in the system, in a block dedicated to security.

When FEAT_CP15SDISABLE2 is implemented and EL3 is using AArch32, EL3 provides a second input signal,
CP15SDISABLE2. CP15SDISABLE2 has all of the properties of CP15SDISABLE described above. The
difference between CP15SDISABLE and CP15SDISABLE2 is only in the set of registers each signal affects.

Information on whether a given register is affected by CP15SDISABLE, or CP15SDISABLE2 when it is
implemented, can be found in the access pseudocode for that register, as described in Chapter G8 AArch32 System
Register Descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11685
ID032224 Non-Confidential

The AArch32 Virtual Memory System Architecture
G5.16 Functional grouping of VMSAv8-32 System registers
G5.16 Functional grouping of VMSAv8-32 System registers

This section describes how the System registers in an VMSAv8-32 implementation divide into functional groups.
The functional groups of AArch32 registers are:

• Special-purpose registers.

• VMSA-specific registers.

• ID registers.

• Performance monitors registers.

• Activity monitors registers.

• Debug registers.

• RAS registers.

• Generic timer registers.

• Cache maintenance System instructions.

• Address translation System instructions.

• TLB maintenance System instructions.

• Base system registers.

• Legacy feature registers and System instructions.

For a list of these functional groups and the registers in each group, see Functional index of AArch32 registers and
System instructions.

Chapter G8 AArch32 System Register Descriptions describes each of these registers.

Note

• The functional groups defined in this section mainly consist of the VMSAv8-32 System registers, but include
some additional System registers.

• Some registers belong to more than one functional group.

For other related information, see:

• The AArch32 System register interface for general information about the access to the AArch32 System
registers, including the main register access instructions MRC and MCR.

• About the System registers for VMSAv8-32.

• Organization of registers in the (coproc==0b1110) encoding space.

• Organization of registers in the (coproc==0b1111) encoding space.

• About the AArch32 System registers.

The register descriptions in Chapter G8 AArch32 System Register Descriptions, assume you are familiar with these
functional groups, and use conventions and other information from them without any explanation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G5-11686
ID032224 Non-Confidential

Chapter G6
The Generic Timer in AArch32 state

This chapter describes the implementation of the Arm Generic Timer as an extension to an Armv8 AArch32
implementation. It includes an overview of the AArch32 System register interface to an Arm Generic Timer.

It contains the following sections:

• About the Generic Timer in AArch32 state.

• The AArch32 view of the Generic Timer.

Chapter D12 The Generic Timer in AArch64 state describes the AArch64 view of the Generic Timer, including
additional timers that can be implemented in AArch64 state, and Chapter I2 System Level Implementation of the
Generic Timer describes the system level implementation of the Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11687
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state

Figure G6-1 shows an example system-on-chip that uses the Generic Timer as a system timer. In this figure:

• This manual defines the architecture of the individual PEs in the multiprocessor blocks.

• The ARM Generic Interrupt Controller Architecture Specification defines a possible architecture for the
interrupt controllers.

• Generic Timer functionality is distributed across multiple components.

Figure G6-1 Generic Timer example

The Generic Timer:

• Provides a system counter, that measures the passing of time in real-time.

Note

The Generic Timer can also provide other components at a system level, but Figure G6-1 does not show any
such components.

• Supports virtual counters that measure the passing of virtual-time. That is, a virtual counter can measure the
passing of time on a particular virtual machine.

• Timers, that can trigger events after a period of time has passed. The timers:

— Can be used as count-up or as count-down timers.

— Can operate in real-time or in virtual-time.

This chapter describes an instance of the Generic Timer component that Figure G6-1 shows as Timer_0 or Timer_1
within the Multiprocessor A or Multiprocessor B block. This component can be accessed from AArch64 state or
AArch32 state, and this chapter describes access from AArch32 state. Chapter D12 The Generic Timer in AArch64
state describes access to this component from AArch64 state.

System

counter

Always-powered

domain

Power

controller

System Timer Bus

APB

Counter interface

Interrupt

Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

Memory interconnect and memory controller

Counter interface

Interrupt

Controller

Timer_0

PE_0

Timer_1

PE_1

Shared cache

System

eventsnFIQ,

nIRQ
nFIQ,

nIRQ

Cache Cache Cache Cache

Multiprocessor A Multiprocessor B
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11688
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
Note

The reset requirements of Generic Timer registers are more strict when they are accessed from AArch32 state than
when they are accessed from AArch64 state.

A Generic Timer implementation must also include a memory-mapped system component. This component:

• Must provide the System counter shown in Figure G6-1.

• Optionally, can provide timer components for use at a system level.

Chapter I2 System Level Implementation of the Generic Timer describes this memory-mapped component.

G6.1.1 The full set of Generic Timer components

Within a system that might include multiple PEs, a full set of Generic Timer components is as follows:

The system counter

This provides a uniform view of system time, see The system counter. Because this must be
implemented at the system level, it is accessed through The system level memory-mapped
implementation of the Generic Timer. However, during initialization, a status register in each
implemented timer in the system must be programmed with the frequency of the system counter, so
that software can read this frequency.

PE implementations of the Generic Timer

Each PE implementation of the Generic Timer provides the following components:

• A physical counter, that gives access to the count value of the system counter. When
FEAT_ECV is implemented, EL2 is using AArch64, and EL2 is implemented and enabled in
the current Security state, the CNTPOFF_EL2 register allows offsetting of AArch32 physical
timers and counters.

• A virtual counter, that gives access to virtual time. In AArch32 state, the CNTVOFF register
defines the offset between physical time, as defined by the value of the system counter, and
virtual time.

• A number of timers. In an implementation where all Exception levels are implemented and
can use AArch32 state, the timers that are accessible from AArch32 state are:

— A Secure PL1 physical timer.

— A Non-secure EL1 physical timer.

— A Non-secure EL2 physical timer.

— An EL1 virtual timer.

— A Non-secure EL2 virtual timer.

— A Secure EL2 virtual timer.

— A Secure EL2 physical timer.

The Non-secure EL2 virtual timer is available when FEAT_VHE is implemented.

The Secure EL2 timers are available when FEAT_SEL2 is implemented, but are only
accessible in AArch32 state if using EL0, when EL0 is using AArch32, Secure EL2 is using
AArch64, and HCR_EL2.{E2H,TGE} == {1, 1}.

Note
The Secure PL1 physical timer uses the Secure banked instances of the CNTP_CTL,
CNTP_CVAL, and CNTP_TVAL registers, and the Non-secure EL1 physical timer uses the
Non-secure instances of the same registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11689
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
The AArch32 view of the Generic Timer describes these components.

The system level memory-mapped implementation of the Generic Timer

The memory-mapped registers that control the components of the system level implementation of
the Generic Timer are grouped into frames. The Generic Timer architecture defines the offset of
each register within its frame, but the base address of each frame is IMPLEMENTATION DEFINED, and
defined by the system.

Each system level component has one or two register frames. The possible system level components
are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:

• A control frame, CNTControlBase.

• A status frame, CNTReadBase.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers,
and the memory-mapped timer control module identifies:

• Which timers are implemented.

• The features of each implemented timer.

This module has a single frame, CNTCTLBase.

Memory-mapped timers, optional

An implemented memory-mapped timer:

• Must provide a privileged view of the timer, in the CNTBaseN frame.

• Optionally. provides an unprivileged view of the timer in the CNTEL0BaseN
frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

Chapter I2 System Level Implementation of the Generic Timer describes these components.

G6.1.2 The system counter

The Generic Timer provides a system counter with the following specification:

Width From Armv8.0 to Armv8.5 inclusive, at least 56 bits wide. The value returned by any 64-bit read of
the counter is zero-extended to 64 bits.

From Armv8.6, must be 64 bits wide.

Frequency From Armv8.0 to Armv8.5 inclusive, increments at a fixed frequency, typically in the range
1-50MHz. It can support one or more alternative operating modes in which it increments by larger
amounts at a lower frequency, typically for power-saving.

From Armv8.6, increments at a fixed frequency of 1GHz.

Roll-over Roll-over time of not less than 40 years.

Accuracy Arm does not specify a required accuracy, but recommends that the counter does not gain or lose
more than ten seconds in a 24-hour period.

Use of lower-frequency modes must not affect the implemented accuracy.

Start-up Starts operating from zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11690
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
The system counter, once configured and running, must provide a uniform view of system time. More precisely, it
must be impossible for the following sequence of events to show system time going backwards:

1. Device A reads the time from the system counter.

2. Device A communicates with another agent in the system, Device B.

3. After recognizing the communication from Device A, Device B reads the time from the system counter.

The system counter must be implemented in an always-on power domain.

To support lower-power operating modes in architectures from Armv8.0 to Armv8.5, the counter can increment by
larger amounts at a lower frequency. For example, a 10MHz system counter might either increment:

• By 1 at 10MHz.

• By 500 at 20kHz, when the system lowers the clock frequency, to reduce power consumption.

In this case, the counter must support transitions between high-frequency, high-precision operation, and
lower-frequency, lower-precision operation, without any impact on the required accuracy of the counter.

From Armv8.6 the counter operates at a higher fixed frequency of 1GHz.

Note

Though each unit of the counter is set to 1ns, this does not require that the counter is incremented every 1ns. A step
in the counter might be more than a single bit increment. Arm recommends that the count is not incremented at a
rate that is less than 50MHz in normal running operation.

The CNTFRQ register is intended to hold a copy of the current clock frequency to allow fast reference to this
frequency by software running on the PE. For more information see Initializing and reading the system counter
frequency.

The mechanism by which the count from the system counter is distributed to system components is
IMPLEMENTATION DEFINED, but each PE with a System register interface to the system counter must have a counter
input that can capture each increment of the counter.

Note

So that the system counter can be clocked independently from the PE hardware, the count value might be distributed
using a Gray code sequence. Gray count scheme for timer distribution scheme gives more information about this
possibility.

G6.1.2.1 Initializing and reading the system counter frequency

The CNTFRQ register must be programmed to the clock frequency of the system counter. Typically, this is done
only during the system boot process, by using the System register interface to write the system counter frequency
to the CNTFRQ register. Only software executing at the highest implemented Exception level can write to
CNTFRQ.

Note

The CNTFRQ register is UNKNOWN at reset, and therefore the counter frequency must be set as part of the system
boot process.

Software can read the CNTFRQ register, to determine the current system counter frequency, in the following states
and modes:

• Hyp mode.

• Secure PL1 modes and Non-secure EL1 modes.

• When CNTKCTL.{PL0PCTEN, PL0VCTEN} is not {0,0}, Secure and Non-secure EL0 modes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11691
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 state
G6.1.2.2 Memory-mapped controls of the system counter

Some system counter controls are accessible only through the memory-mapped interface to the system counter.
These controls are:

• Enabling and disabling the counter.

• Setting the counter value.

• Changing the operating mode, to change the update frequency and increment value.

• Enabling Halt-on-debug, that a debugger can then use to suspend counting.

For descriptions of these controls, see Chapter I2 System Level Implementation of the Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11692
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
G6.2 The AArch32 view of the Generic Timer

The following sections describe the components and features of a PE implementation of the Generic Timer, as seen
from AArch32 state:

• The physical counter.

• The virtual counter.

• Event streams.

• Timers.

G6.2.1 The physical counter

The PE includes a physical counter that contains the count value of the system counter. The CNTPCT register holds
the current physical counter value. When FEAT_ECV is implemented and EL2 is executing in AArch64 state, the
CNTPOFF_EL2 register holds the optional physical offset that can be applied to EL0 and EL1 whether EL0 and
EL1 are using AArch64 state or AArch32 state. For more information, see The physical offset register.

Reads of CNTPCT can occur speculatively and out of order relative to other instructions executed on the same PE.

G6.2.1.1 The self-synchronized view of the physical counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The CNTPCTSS
register is a non-speculative view of the physical counter, as seen from the Exception level that CNTPCTSS is read
from.

Access to the CNTPCTSS are subject to the same traps as accesses to the CNTPCT.

Reads of CNTPCT occur in program order relative to reads of CNTPCT or CNTPCTSS.

Reads of CNTPCTSS occur in program order relative to reads of CNTPCT or CNTPCTSS.

Example G6-1 Ensuring reads of the physical counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTPCT must be read, an
ISB is used to ensure that the read of CNTPCT occurs after the signal has been read from memory, as shown in the
following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR R1, [R2]
 CMP R1, #1 ; has had the value 1 written to it
 BNE loop
 ISB ; without this the CNTPCT could be read before the memory location in [R2]
 MRC R1, CNTPCT

When FEAT_ECV is implemented, an access to CNTPCTSS can be used in place of the CNTPCT which, because
it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can
be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR R1, [R2]
CMP R1, #1 ; has had the value 1 written to it
BNE loop
MRC R1, CNTPCTSS

Similarly where a read of the physical counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following code sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this the CNTPCT could be read before the completion of the earlier loads
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11693
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
; and stores
MRC R1, CNTPCT

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRC R1, CNTPCTSS

Neither view of the physical counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Where there is a Dependency through registers and memory dependency from the read of the physical counter to a
Register effect generated by a read or write, the read or write will be executed after the read of the counter.

Example G6-2 Ensuring reads of the physical counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, one of the following sequences should be used:

DSB
ISB
MRC Rn, CNTPCT{SS} ; either view of the physical counter has the same effect in this example

or

DSB
ISB
CBZ Ra, next

next
ISB ; this ISB is not needed if the MRC is accessing CNTPCT{SS}
MRC Rn, CNTPCT{SS}

To ensure that a memory access occurs only after a read of the counter, then either of the following sequences should
be used:

MRC Rn, CNTPCT{SS} ; either view of the physical counter has the same effect in this example
ISB
LDR Ra, [Rb] ; this load will be executed after the timer has been read

or

MRC Rn, CNTPCT{SS} ; either view of the physical counter has the same effect in this example
EOR Rm, Rn, Rn
LDR Ra, [Rb] ; this load will be executed after the counter has been read

G6.2.2 The virtual counter

An implementation of the Generic Timer always includes a virtual counter, that indicates virtual time.

The virtual counter contains the value of the physical counter minus a 64-bit virtual offset. When executing in a
Non-secure EL1 or EL0 mode, the virtual offset value relates to the current virtual machine.

The CNTVOFF register contains the virtual offset, see The virtual offset register.

The CNTVCT register holds the current virtual counter value.

Reads of CNTVCT can occur speculatively and out of order relative to other instructions executed on the same PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11694
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
G6.2.2.1 The self-synchronized view of the virtual counter

When FEAT_ECV is implemented, an alternative way to read the virtual counter is supported. The CNTVCTSS
register is a non-speculative view of the virtual counter, as seen from the Exception level that CNTVCTSS is read
from.

Accesses to the CNTVCTSS are subject to the same traps as accesses to the CNTVCT.

Reads of CNTVCT occur in program order relative to reads of CNTVCT or CNTVCTSS.

Reads of CNTVCTSS occur in program order relative to reads of CNTVCT or CNTVCTSS.

Example G6-3 Ensuring reads of virtual counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTVCT must be read, an
ISB is used to ensure that the read of CNTVCT occurs after the signal has been read from memory, as shown in the
following code sequence:

loop ; polling for some communication to indicate a requirement to read the timer
 LDR R1, [R2]
 CMP R1, #1 ; has had the value 1 written to it
 BNE loop
 ISB ; without this the CNTVCT could be read before the memory location in [R2]
 MRC R1, CNTVCT

When FEAT_ECV is implemented, an access to CNTVCTSS can be used in place of the CNTVCT, which, because
it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can
be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR R1, [R2]
CMP R1, #1 ; has had the value 1 written to it
BNE loop
MRC R1, CNTVCTSS

Similarly where a read of the virtual counter is required to take place after the completion of all loads and stores
appearing in program order before the read of the counter, then the following two sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this the CNTVCT could be read before the completion of the earlier loads

; and stores
MRC R1, CNTVCT

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRC R1, CNTVCTSS

Neither view of the virtual counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.

• Accesses to memory appearing in program order after the read of the counter are executed before the counter
has been read.

Where there is a Dependency through registers and memory dependency from the read of the virtual counter to a
Register effect generated by a read or write, the read or write will be executed after the read of the counter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11695
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
Example G6-4 Ensuring reads of virtual counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been
synchronized before the read of the counter, one of the following sequences should be used:

DSB
ISB
MRC Rn, CNTVCT{SS} ; either view of the virtual counter has the same effect in this example

or

DSB
ISB
CBZ Ra, next

next
ISB ; this ISB is not needed if the MRS is accessing CNTVCT{SS}
MRC Rn, CNTVCT{SS}

To ensure that a memory access occurs only after a read of the counter, then either of the following sequences should
be used:

MRC Rn, CNTVCT{SS} ; either view of the virtual counter has the same effect in this example
ISB
LDR Ra, [Rb] ; this load will be executed after the timer has been read

or

MRC Rn, CNTVCT{SS} ; either view of the virtual counter has the same effect in this example
EOR Rm, Rn, Rn
LDR Ra, [Rb] ; this load will be executed after the counter has been read

G6.2.2.2 The virtual offset register

The virtual counter is a counter that has a virtual offset relative to the physical counter as viewed from EL2 and EL3.
This virtual offset is held in the register CNTVOFF. The virtual counter value is the count compared by the EL1
virtual timer.

If EL2 is not implemented and enabled, then the virtual counter uses a fixed virtual offset of zero.

G6.2.3 Event streams

Any implementation of the Generic Timer can use the system counter to generate one or more event streams, to
generate periodic wakeup events as part of the mechanism described in Wait for Event.

Note

An event stream might be used:

• To impose a time-out on a Wait For Event polling loop.

• To safeguard against any programming error that means an expected event is not generated.

The CNTKCTL.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated from the
virtual counter.

In all implementations the CNTHCTL.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that
is generated from the physical counter.

The event stream is configured as follows:

• EVNTI selects the counter bit that triggers the event.

• If FEAT_ECV is not implemented, EVNTI selects between bits[0:15].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11696
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
• If FEAT_ECV is implemented, EVNTIS selects whether ENVTI selects between bits[0:15] or bits[8:23].

• EVNTDIR selects whether the event is generated on each 0 to 1 transition, or each 1 to 0 transition, of the
selected counter bit.

Note

If the event stream is configured to produce events from the low order bits of the counter when the counter frequency
is very high (for example 1GHz), then the practical update rate of the counter might mean that the event stream is
not generated as the low order bit might not change. Software can rely on an event stream rate of at least 1MHz in
normal operation.

The pseudocode descriptions of the operation of an event stream are SetEventRegister, TestEventCNTV, and
TestEventCNTP.

G6.2.4 Timers

In an implementation of the Generic Timer that includes EL3 the following timers are accessible from AArch32
state, provided the appropriate Exception level can use AArch32:

• A Non-secure EL1 physical timer. A Non-secure EL1 control determines whether this register is accessible
from Non-secure EL0.

• A Secure PL1 physical timer. This timer is accessible from EL3 when EL3 is using AArch32.

Note

When EL3 is using AArch64, the AArch32 EL1 timers are not banked between Secure and Non-secure state.

A Secure PL1 control determines whether this register is accessible from Secure EL0.

• A Non-secure EL2 physical timer, accessible from Non-secure EL2, or EL3 when SCR.NS is set to 1.

• An EL1 virtual timer.

• When FEAT_VHE is implemented, a Non-secure EL2 virtual timer.

• When FEAT_SEL2 is implemented, a Secure EL2 physical timer.

• When FEAT_SEL2 is implemented, a Secure EL2 virtual timer.

Note

The Secure EL2 timers are accessible in AArch32 state if using EL0, when EL0 is using AArch32 state, Secure EL2
is using AArch64, and HCR_EL2.{E2H,TGE} == {1, 1}.

The output of each implemented timer:

• Provides an output signal to the system.

• If the PE interfaces to a Generic Interrupt Controller (GIC), signals a Private Peripheral Interrupt (PPI) to
that GIC. In a multiprocessor implementation, each PE must use the same interrupt number for each timer.

Each timer:

• Is based around a 64-bit CompareValue that provides a 64-bit unsigned upcounter.

• Provides an alternative view of the CompareValue, called the TimerValue, that appears to operate as a 32-bit
downcounter.

• Has, in addition, a 32-bit Control register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11697
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
In all implementations, the AArch32 System registers for the EL1 (or PL1) physical timer are banked, to provide
the Secure and Non-secure implementations of the timer. Table G6-1 shows the physical timer registers and
Table G6-2 show the virtual timer registers.

G6.2.4.1 Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate
counter reaches the value programmed into its CompareValue register. When the timer condition is met an interrupt
is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL, CNTHP_CTL,
CNTHPS_CTL, CNTV_CTL, CNTHV_CTL, or CNTHVS_CTL. For CNTP_CTL, the interrupt is the same as the
interrupt asserted by the Non-secure instance of the AArch64 register CNTP_CTL_EL0.

The operation of this view of a timer is:

TimerConditionMet = (((Counter[63:0] – Offset[63:0])[63:0] - CompareValue[63:0]) >= 0)

Where:

TimerConditionMet Is TRUE if the timer condition for this counter is met, and FALSE otherwise.

Counter The physical counter value, that can be read from the CNTPCT register.

Offset For the EL1 physical timer, if ID_AA64MMFR0_EL1.ECV is 0b10, EL2 is using AArch64
and is implemented and enabled in the current Security state, and CNTHCTL_EL2.ECV is
0b1, then the offset value is held in the CNTPOFF_EL2. Otherwise the offset value for the
EL1 physical timer is zero.

For the EL1 virtual timer, the offset value is held in the CNTVOFF register.

For the EL2 physical and virtual timers, the offset value is zero.

CompareValue The value of the appropriate CompareValue register, CNTP_CVAL, CNTHP_CVAL,
CNTHPS_CVAL, CNTV_CVAL, CNTHV_CVAL, or CNTHVS_CVAL.

Table G6-1 Physical timer registers summary for the Generic Timer

Timer registera
Secure PL1 or
Non-secure EL1
physical timer

Non-secure EL2 physical timer Secure EL2 physical timerb

CV CNTP_CVALc CNTHP_CVAL CNTHPS_CVAL

TV CNTP_TVALc CNTHP_TVAL CNTHPS_TVAL

Control CNTP_CTLc CNTHP_CTL CNTHPS_CTL

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

b. Only present when the implementation implements FEAT_SEL2.

c. In AArch32 state, these registers are banked to provide the Non-secure EL1 physical timer and the Secure PL1 physical
timer.

Table G6-2 Virtual timer register summary for the Generic Timer

Timer registera EL1 virtual timer Non-secure EL2 virtual timerb Secure EL2 virtual timerc

CV CNTV_CVAL CNTHV_CVAL CNTHVS_CVAL

TV CNTV_TVAL CNTHV_TVAL CNTHVS_TVAL

Control CNTV_CTL CNTHV_CTL CNTHVS_CTL

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.

b. Only when the implementation includes FEAT_VHE.

c. Only present when the implementation includes FEAT_SEL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11698
ID032224 Non-Confidential

The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer
In this view of a timer, Counter, Offset, and CompareValue are all 64-bit unsigned values.

Note

This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF_FFFF might never meet its timer
condition. However, there is no practical requirement to use values close to the counter wrap value.

Software can observe the counter value by the offset in some situations by reading CNTVCT.

G6.2.4.2 Operation of the TimerValue views of the timers

The TimerValue view of a timer appears to operate as a signed 32-bit downcounter. A TimerValue register is
programmed with a count value. This value decrements on each increment of the appropriate counter, and the timer
condition is met when the value reaches zero. When the timer condition is met, an interrupt is generated if the
interrupt is not masked in the corresponding timer control register, CNTP_CTL, CNTHP_CTL, CNTHPS_CTL,
CNTV_CTL, CNTHV_CTL, or CNTHVS_CTL.

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads TimerValue = (CompareValue – (Counter - Offset))[31:0]

Writes CompareValue = ((Counter - Offset)[63:0] + SignExtend(TimerValue))[63:0]

Where the arguments other than TimerValue have the definitions used in Operation of the CompareValue views of
the timers, and in addition:

TimerValue The value of a TimerValue register, CNTP_TVAL, CNTHP_TVAL, CNTHPS_TVAL,
CNTV_TVAL, CNTHV_TVAL, or CNTHVS_TVAL.

In this view of a timer, values are signed, in standard two’s complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition
was met.

Note

• Operation of the CompareValue views of the timers gives a strict definition of TimerConditionMet. However,
provided that the TimerValue is not expected to wrap as a 32-bit signed value when decremented from
0x80000000, the TimerValue view can be used as giving an effect equivalent to:

TimerConditionMet = (TimerValue 0)

• Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to
an arithmetic overflow that causes the CompareValue to be an extremely large positive value. This potentially
delays meeting the timer condition for an extremely long period of time.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G6-11699
ID032224 Non-Confidential

Chapter G7
AArch32 System Register Encoding

This chapter describes the AArch32 System register encoding space. It contains the following sections:

• The AArch32 System register encoding space.

• Organization of registers in the (coproc==0b1110) encoding space.

• Organization of registers in the (coproc==0b1111) encoding space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11700
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.1 The AArch32 System register encoding space
G7.1 The AArch32 System register encoding space

The T32 and A32 instruction sets includes instructions that access the System register encoding space. These
instructions provide:

• Access to System registers, including the debug registers, that provide system control, and system status
information.

• The cache, branch predictor, and TLB maintenance instructions, and address translation instructions.

The AArch32 System register interface describes the instructions that provide access to these registers and
instructions. Chapter G8 AArch32 System Register Descriptions describes these registers and encodings.

When accessing 32-bit registers, or executing these instructions, entries in the encoding space are characterized by
the parameter set {coproc, CRn, opc1, CRm, opc2}. This encoding space is defined only for the coproc values 0b1110
and 0b1111.

Note

• When accessing 64-bit registers entries in the encoding space are characterized by the parameter set
{coproc, CRm, opc1}, for the coproc values 0b1110 and 0b1111. A CRm value in this parameter set is equivalent
to a CRn value in the parameter set for accessing 32-bit registers.

• Background to the System register interface gives more information about this encoding model.

The following describe this encoding space:

• Organization of registers in the (coproc==0b1110) encoding space.

• Organization of registers in the (coproc==0b1111) encoding space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11701
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.2 Organization of registers in the (coproc==0b1110) encoding space
G7.2 Organization of registers in the (coproc==0b1110) encoding space

The System registers in the (coproc==0b1110) encoding space provide a number of distinct control functions,
covering:

• Debug.

• Trace.

• Execution environment control, for identification of the trivial Jazelle implementation.

Because these functions are distinct, the descriptions of these registers are distributed, as follows:

• In this manual, Debug registers describes the Debug registers.

• The Embedded Trace Macrocell Architecture Specification describes the Trace registers.

This section summarizes the allocation of the System registers in the (coproc==0b1110) encoding space between
these different functions, and the register encodings in this space that are reserved.

The 32-bit System register encodings are classified by the {opc1, CRn, opc2, CRm} values required to access them using
an MCR or an MRC instruction. The 64-bit System register encodings are classified by the {opc1, CRm} values required
to access them using an MCRR or an MRRC instruction. For the registers in the (coproc==0b1110) encoding space, the
opc1 value determines the primary allocation of these registers, as follows:

opc1==0 Debug registers.

opc1==1 Trace registers.

opc1==7 Jazelle registers. Jazelle registers are implemented as required for a trivial Jazelle implementation.

Other opc1 values

Reserved.

Note

Primary allocation of (coproc==0b1110) register function by opc1 value differs from the allocation of
(coproc==0b1111) registers, where primary allocation is by CRn value for 32-bit register accesses, or CRm value for
64-bit register accesses.

For the Debug and Jazelle registers, Table G7-1 defines:

• The {opc1, CRn, opc2, CRm} values used for accessing the 32-bit registers using the MRC and MCR instructions.

• The {opc1, CRm} values used for accessing the 64-bit register using the MRRC instruction.

Some Debug registers can also be accessed using the LDC and STC instructions. Table G7-1 defines the CRn values
used for accessing the registers using these instructions.

Note

The only permitted uses of the LDC and STC instructions are:

• An LDC access to load data from memory to DBGDTRTXint.

• An STC access to store data to memory from DBGDTRRXint.

In the LDC and STC syntax descriptions in this Manual, the required coproc value of p14 and CRn value of c5 are given
explicitly.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11702
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.2 Organization of registers in the (coproc==0b1110) encoding space
G7.2.1 Register access instruction arguments, (coproc==0b1110) registers

Table G7-1 shows the MCR, MRC, and MRRC instruction arguments required for accesses to each register that can be
visible in the System register interface in the (coproc==0b1110) encoding.

Table G7-1

coproc opc1 CRn CRm opc2 Access Mnemonic Register

1110 000 0000 0000 000 RO DBGDIDR DBGDIDR

1110 000 0000 0000 010 RW DBGDTRRXext DBGDTRRXext

1110 000 0000 0001 000 RO DBGDSCRint DBGDSCRint

1110 000 0000 0010 000 RW DBGDCCINT DBGDCCINT

1110 000 0000 0010 010 RW DBGDSCRext DBGDSCRext

1110 000 0000 0011 010 RW DBGDTRTXext DBGDTRTXext

1110 000 0000 0101 000 - DBGDTRRXint -

1110 000 0000 0101 000 - DBGDTRTXint -

1110 000 0000 0110 000 RW DBGWFAR DBGWFAR

1110 000 0000 0110 010 RW DBGOSECCR DBGOSECCR

1110 000 0000 0111 000 RW DBGVCR DBGVCR

1110 000 0000 m[3:0] 100 RW DBGBVR<n> DBGBVR[]

1110 000 0000 m[3:0] 101 RW DBGBCR<n> DBGBCR[]

1110 000 0000 m[3:0] 110 RW DBGWVR<n> DBGWVR[]

1110 000 0000 m[3:0] 111 RW DBGWCR<n> DBGWCR[]

1110 000 0001 0000 000 RO DBGDRAR DBGDRAR

1110 000 0001 0000 100 WO DBGOSLAR DBGOSLAR

1110 000 0001 0001 100 RO DBGOSLSR DBGOSLSR

1110 000 0001 0011 100 RW DBGOSDLR DBGOSDLR

1110 000 0001 0100 100 RW DBGPRCR DBGPRCR

1110 000 0001 m[3:0] 001 RW DBGBXVR<n> DBGBXVR[]

1110 000 0010 0000 000 RO DBGDSAR DBGDSAR

1110 000 0111 0000 111 RO DBGDEVID2 DBGDEVID2

1110 000 0111 0001 111 RO DBGDEVID1 DBGDEVID1

1110 000 0111 0010 111 RO DBGDEVID DBGDEVID

1110 000 0111 1000 110 RW DBGCLAIMSET DBGCLAIMSET

1110 000 0111 1001 110 RW DBGCLAIMCLR DBGCLAIMCLR

1110 000 0111 1110 110 RO DBGAUTHSTATUS DBGAUTHSTATUS

1110 111 0000 0000 000 RO JIDR JIDR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11703
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.2 Organization of registers in the (coproc==0b1110) encoding space
Table G7-2 shows the LDC and STC instruction arguments required for accesses to the Debug registers that can be
accessed using these instructions.

Note

In the instruction syntax descriptions for the LDC and STC instructions, the required coproc and CRn values are given
explicitly as coproc==p14, CRn==c5.

1110 111 0001 0000 000 RO JOSCR JOSCR

1110 111 0010 0000 000 RO JMCR JMCR

1110 0000 0001 - DBGDRAR -

1110 0000 0010 - DBGDSAR -

Table G7-2 Mapping of LDC and STC instruction arguments to System registers

Name CRn Instruction Description

DBGDTRTXint c5 LDC Debug Data Transfer Register, Transmit, Internal View

DBGDTRRXint c5 STC Debug Data Transfer Register, Receive, Internal View

Table G7-1 (continued)

coproc opc1 CRn CRm opc2 Access Mnemonic Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11704
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
G7.3 Organization of registers in the (coproc==0b1111) encoding space

For 32-bit accesses to the System registers in the (coproc==0b1111) encoding space, the ordered set of parameters
{CRn, opc1, CRm, opc2} determine the register order. Within this ordering, the CRn value originally provided a
functional grouping of these registers. As the number of System registers has increased this ordering has become
less appropriate.

This document now:

• Groups the System registers in the (coproc==0b1111) encoding space by functional group, see Functional
index of AArch32 registers and System instructions.

• Describes all of the System registers for the AArch32 VMSA, in Chapter G8 AArch32 System Register
Descriptions.

• Gives additional information about the organization of the AArch32 VMSA System registers in the
(coproc==0b1111) encoding space, in the remainder of this section.

Note

Not all System registers introduced by architectural extensions are described in Chapter G8 AArch32 System
Register Descriptions. For information about the System registers introduced by architectural extensions, see
Chapter A2 A-profile Architecture Extensions.

This section presents information about the register ordering by {CRn, opc1, CRm, opc2}. It contains the following
subsections:

• System register summary for (coproc==0b1111) encodings by CRn value.

• Full list of AArch32 VMSA System registers in the (coproc==0b1111) encoding space.

Note

The ordered listing of (coproc==0b1111) registers by the {CRn, opc1, CRm, opc2} encoding of the 32-bit registers is
most likely to be useful to those implementing AArch32 state, and to those validating such implementations.
However, otherwise, the grouping of registers by function is more logical.

In addition, the indexes in Appendix K17 Registers Index include all of the System registers.

G7.3.1 System register summary for (coproc==0b1111) encodings by CRn value

Figure G7-1 summarizes the grouping of the System registers in the (coproc==0b1111) encoding space, for an
AArch32 VMSA implementation, by the value of CRn used for a 32-bit access to the register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11705
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
Figure G7-1 AArch32 System register groupings for (coproc==0b1111), for 32-bit registers

Note

For the System registers in the (coproc==0b1111) encoding space, Figure G7-1 gives only an overview of the
assigned encodings for 32-bit registers for each of the CRn values c0-c15. For more information, see:

• The full list of registers in the (coproc==0b1111) encoding space, in Full list of AArch32 VMSA System
registers in the (coproc==0b1111) encoding space, for the definition of the assigned and unassigned
encodings for that register.

• The register definitions in Chapter G8 AArch32 System Register Descriptions for any dependencies on the
implemented Exception levels.

In general, System register accesses using an unallocated set of {CRn, opc1, CRm, opc2} values are UNDEFINED.
Behavior of AArch32 VMSA System registers with (coproc==0b1111, CRn==c0) described the only exceptions to
this rule.

The 32-bit System registers with (coproc==0b1111, CRn==c15), and the corresponding 64-bit System registers, are
reserved for IMPLEMENTATION DEFINED registers. For more information, see Reserved encodings in the AArch32
VMSA System register (coproc==0b1111) space.

G7.3.1.1 The HSTR.Tn trap on (coproc==0b1111) System registers

When the value of HSTR.Tn is 1, Non-secure PL1 accesses to System registers in the (coproc==0b1111) encoding
space using a CRn or CRm value that corresponds to the value of Tn are trapped to EL2, even if the encoding is
UNDEFINED when the value of HSTR.Tn is 0. This applies:

• For 32 bit register accesses when the value of Rn in the MCR or MRC instruction corresponds to Tn.

• For 64 bit register accesses when the value of Rm in the MCRR or MRRC instruction corresponds to Tn.

If there are matching System register encodings that are accessible from Non-secure EL0 then those accesses are
also trapped to EL2 when the value of HSTR.Tn is 1.

G7.3.1.2 Behavior of AArch32 VMSA System registers with (coproc==0b1111, CRn==c0)

In the (coproc==0b1111) encoding space, the 32-bit System registers with (CRn==c0) provide device and feature
identification.

ID registers

System control registers

Cache maintenance, address translations, legacy operations

TLB maintenance operations

opc2CRm

{0-7}

{0-2}

0

{0,1}

Various

{c0-c2}

{c0, c1}

{c0, c1}

c0

{c0,c1}

c0

{0-7}

Memory system control registers

{0, 2, 4}
Memory system fault registers

Various

VariousVarious

0c6 GIC System register *, Debug exception registers

Performance monitors

Reserved for DMA operations for TCM access

System control registers, GIC System registers *

IMPLEMENTATION DEFINED registers

{0-7}

{0-7}

{0,1}

Various

{0-7}

Various

{c0-c8,c15}

Various

{c0-c15}

Various

Memory mapping registers and TLB operations{0-7}Various

Process, Context, Thread ID registers, Activity Monitors registers *

Generic Timer registers *, Performance Monitors registers *{0-7}{c0-c15}

CRn opc1

{0-2, 4}

{0, 4}

{0, 4}

0

{0, 4}

c0

c1

c2

c3

c5

c6

c7

c8

{0, 4}

{0, 4}

{0, 4}

0c4

{0-7}

{0-7}

{0-7}

c9

c10

c11

c12

c13

c15

{0-7}

{0-2, 4, 6}

{0, 4}

{0-7}c14

* If implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11706
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
Table G7-3 shows all of the architecturally required System registers with {coproc==0b1111, CRn==c0}. The
behavior of 32-bit System register encodings in this group that are not shown in the table, and encodings that are
part of an unimplemented Exception level, depends on the value of opc1, and possibly on the value of CRm and opc2,
as follows:

opc1 == 0 All write accesses to the encodings are UNDEFINED.

For read accesses:

• The following encodings return an UNKNOWN value:

— CRm==3, opc2=={0, 1, 2}.

— CRm=={4, 6, 7}, opc2=={0, 1}.

— CRm==5, opc2=={0, 1, 4, 5}.

• All other encodings are RES0.

opc1 > 0 All accesses to the encodings are UNDEFINED.

See also Accesses to unallocated encodings in the (coproc==0b111x) encoding space.

Note

Some of these registers were previously described as being part of the CPUID identification scheme, see The
CPUID identification scheme.

G7.3.1.3 Reserved encodings in the AArch32 VMSA System register (coproc==0b1111)
space

AArch32 state reserves a number of regions in the (coproc==0b1111) encoding space for IMPLEMENTATION
DEFINED System registers. These reservations are defined in terms of the encoding of 32-bit accesses to the System
register encoding space. That is, they are defined by the reserved 32-bit {CRn, opc1, CRm, opc2} encodings.

Reserved encodings that do not have an IMPLEMENTATION DEFINED function are UNDEFINED.

The following subsections give more information about these reserved encodings:

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c9}.

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c10}.

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c11}.

• Reserved 32-bit encodings with {coproc==0b1111, CRn==c15}.

G7.3.1.3.1 Reserved 32-bit encodings with {coproc==0b1111, CRn==c9}

In the AArch32 encoding space, for 32-bit encodings with {coproc==0b1111, CRn==c9}, the following encodings
are reserved for IMPLEMENTATION DEFINED purposes:

• Encodings with {coproc==0b1111, CRn==c9, opc1=={0-7}, opc2=={0-7}, CRm=={c0-c2, c5-c8}} are
reserved for IMPLEMENTATION DEFINED branch predictor, cache, and TCM operations.

• Encodings with {coproc==0b1111, CRn==c9, opc1=={0-7}, opc2=={0-7}, CRm==c15} are reserved for
IMPLEMENTATION DEFINED performance monitors.

Note

These are distinct from the OPTIONAL Arm Performance Monitors Extension, the registers for which use the
encoding space {coproc==0b1111, CRn==c9, opc1=={0-7}, opc2=={0-7}, CRm=={c12-c14}}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11707
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
G7.3.1.3.2 Reserved 32-bit encodings with {coproc==0b1111, CRn==c10}

In the AArch32 encoding space, for 32-bit encodings with {coproc==0b1111, CRn==c10}, the following encodings
are reserved for IMPLEMENTATION DEFINED purposes:

• Encodings with {coproc==0b1111, CRn==c10, opc=={0-7}, CRm=={c0, c1, c4, c8}} are reserved for
IMPLEMENTATION DEFINED TLB lockdown operations.

G7.3.1.3.3 Reserved 32-bit encodings with {coproc==0b1111, CRn==c11}

In the AArch32 encoding space, for 32-bit encodings with {coproc==0b1111, CRn==c11}, the following encodings
are reserved for IMPLEMENTATION DEFINED purposes:

• Encodings with {coproc==0b1111, CRn==c11, opc=={0-7}, CRm=={c0-c8, c15}} are reserved for
IMPLEMENTATION DEFINED DMA operations for TCM access.

The remainder of the AArch32 {coproc==0b1111, CRn==c11} encoding space is UNDEFINED.

G7.3.1.3.4 Reserved 32-bit encodings with {coproc==0b1111, CRn==c15}

The AArch32 System register encodings are reserved with (coproc==0b1111, CRn==c15) for IMPLEMENTATION
DEFINED purposes, and there are no restrictions on the use of these encodings. The documentation of the Arm
implementation must describe fully any registers implemented in the {coproc==0b1111, CRn==c15} encoding space.
Normally, for processor implementations by Arm, this information is included in the Technical Reference Manual
for the processor.

Typically, an implementation uses the {coproc==0b1111, CRn==c15} encodings to provide test features, and any
required configuration options that are not covered by this Manual.

This reservation means that the AArch32 64-bit encodings with {coproc==0b1111, CRm==c15} are also reserved for
IMPLEMENTATION DEFINED purposes, without any restrictions on the use of these encodings.

G7.3.2 Full list of AArch32 VMSA System registers in the (coproc==0b1111) encoding space

Table G7-3 shows the System registers in the (coproc==0b1111) encoding space in the AArch32 VMSA, in the order
of the {CRn, opc1, CRm, opc2} parameter values used in MCR or MRC accesses to the 32-bit registers:

• For MCR or MRC accesses to the 32-bit registers, CRn is the primary identifier of the target System register for
the access. This applies, also, to MCR or MRC instructions that provide 32-bit accesses to a single word of a 64-bit
System register.

• For MCRR or MRRC accesses to the 64-bit registers, CRm is the primary identifier of the target System register for
the access. Table G7-3 orders the 64-bit registers with the 32-bit registers accessed using the same primary
register identifier. For example, the 64-bit encoding of TTBR0, that is accessed with (CRm==c2), is listed with
the 32-bit registers that are accessed with (CRn==c2).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11708
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source

MIDR c0 0 c0 0 v8.0

CTR 1 v8.0

TCMTR 2 v8.0

TLBTR 3 v8.0

MIDR 4, 6a, 7 v8.0

MPIDR 5 v8.0

REVIDR 6a v8.0

ID_PFR0 c1 0 v8.0

ID_PFR1 1 v8.0

ID_DFR0 2 v8.0

ID_AFR0 3 v8.0

ID_MMFR0 4 v8.0

ID_MMFR1 5 v8.0

ID_MMFR2 6 v8.0

ID_MMFR3 7 v8.0

ID_ISAR0 c2 0 v8.0

ID_ISAR1 1 v8.0

ID_ISAR2 2 v8.0

ID_ISAR3 3 v8.0

ID_ISAR4 4 v8.0

ID_ISAR5 5 v8.0

ID_MMFR4 6 v8.0

ID_ISAR6 7 v8.0

ID_PFR2 c3 4 v8.0

ID_DFR1 5 v8.6

ID_MMFR5 6 v8.6

CCSIDR 1 c0 0 v8.0

CLIDR 1 v8.0

CCSIDR2 2 v8.3b

AIDR 7 v8.0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11709
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
CSSELR c0 2 c0 0 v8.0

VPIDRc 4 c0 0 v8.0

VMPIDRc 5 v8.0

SCTLR c1 0 c0 0 v8.0

ACTLR 1 v8.0

CPACR 2 v8.0

ACTLR2 3 v8.0

SCRd c1 0 v8.0

SDERd 1 v8.0

NSACRd 2 v8.0

TRFCR c2 1 v8.4

SDCR c3 1 v8.0

HSCTLRc 4 c0 0 v8.0

HACTLRc 1 v8.0

HACTLR2c 3 v8.0

HCRc c1 0 v8.0

HDCRc 1 v8.0

HCPTRc 2 v8.0

HSTRc 3 v8.0

HCR2c 4 v8.0

HACRc 7 v8.0

HTRFCR c2 1 v8.4

TTBR0, 32 bits wide c2 0 c0 0 v8.0

TTBR0, 64 bits wide - 0 c2 - v8.0

TTBR1, 32 bits wide c2 0 c0 1 v8.0

TTBR1, 64 bits wide - 1 c2 - v8.0

TTBCR c2 0 c0 2 v8.0

TTBCR2 3 v8.2

HTCRc 4 c0 2 v8.0

VTCRc c1 2 v8.0

HTTBRc, 64 bits wide - 4 c2 - v8.0

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11710
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
VTTBRc. 64 bits wide - 6 c2 - v8.0

DACR c3 0 c0 0 v8.0

ICC_PMR

ICV_PMR

c4 0 c6 0 GICe

DSPSRf c4 3 c5 0 v8.0

DLR 1 v8.0

DFSR c5 0 c0 0 v8.0

IFSR 1 v8.0

ADFSR c1 0 v8.0

AIFSR 1 v8.0

ERRIDR c3 0 RASg

ERRSELR 1 RASg

ERXFR c4 0 RASg

ERXCTLR 1 RASg

ERXSTATUS 2 RASg

ERXADDR 3 RASg

ERXFR2 4 RASg

ERXCTLR2 5 RASg

ERXADDR2 7 RASg

ERXMISC0 c5 0 RASg

ERXMISC1 1 RASg

ERXMISC4 2 RASg

ERXMISC5 3 RASg

ERXMISC2 4 RASg

ERXMISC3 5 RASg

ERXMISC6 6 RASg

ERXMISC7 7 RASg

HADFSRc 4 c1 0 v8.0

HAIFSR 1 v8.0

HSRc c2 0 v8.0

VDFSR 3 RASg

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11711
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
DFAR c6 0 c0 0 v8.0

IFAR 2 v8.0

HDFARc 4 c0 0 v8.0

HIFARc 2 v8.0

HPFARc c6 4 c0 4 v8.0

ICIALLUIS c7 0 c1 0 v8.0

BPIALLIS 6 v8.0

CFPRCTX c3 4 v8.0h

DVPRCTX 5 v8.0h

COSPRCTX 6 v8.9

CPPRCTX 7 v8.0h

PAR, 32 bits wide c4 0 v8.0

PAR, 64 bits wide - 0 c7 - v8.0

ICIALLU c7 0 c5 0 v8.0

ICIMVAU 1 v8.0

CP15ISBi 4 v8.0

BPIALL 6 v8.0

BPIMVA 7 v8.0

DCIMVAC c6 1 v8.0

DCISW 2 v8.0

ATS1CPR c8 0 v8.0

ATS1CPW 1 v8.0

ATS1CUR 2 v8.0

ATS1CUW 3 v8.0

ATS12NSOPRd 4 v8.0

ATS12NSOPWd 5 v8.0

ATS12NSOURd 6 v8.0

ATS12NSOUWd 7 v8.0

DCCMVAC c10 1 v8.0

DCCSW 2 v8.0

CP15DSBi 4 v8.0

CP15DMBi 5 v8.0

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11712
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
DCCMVAU c7 0 c11 1 v8.0

DCCIMVAC c14 1 v8.0

DCCISW 2 v8.0

ATS1HRc 4 c8 0 v8.0

ATS1HWc 1 v8.0

TLBIALLIS c8 0 c3 0 v8.0

TLBIMVAIS 1 v8.0

TLBIASIDIS 2 v8.0

TLBIMVAAIS 3 v8.0

TLBIMVALIS 5 v8.0

TLBIMVAALIS 7 v8.0

ITLBIALL c5 0 v8.0

ITLBIMVA 1 v8.0

ITLBIASID 2 v8.0

DTLBIALL c6 0 v8.0

DTLBIMVA 1 v8.0

DTLBIASID 2 v8.0

TLBIALL c7 0 v8.0

TLBIMVA 1 v8.0

TLBIASID 2 v8.0

TLBIMVAA 3 v8.0

TLBIMVAL 5 v8.0

TLBIMVAAL 7 v8.0

TLBIIPAS2IS 4 c0 1 v8.0

TLBIIPAS2LIS 5 v8.0

TLBIALLHISc c3 0 v8.0

TLBIMVAHISc 1 v8.0

TLBIALLNSNHISc 4 v8.0

TLBIMVALHIS 5 v8.0

TLBIIPAS2 c4 1 v8.0

TLBIIPAS2L 5 v8.0

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11713
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
TLBIALLHc c8 4 c7 0 v8.0

TLBIMVAHc 1 v8.0

TLBIALLNSNHc 4 v8.0

TLBIMVALH 5 v8.0

Reservedj c9 0-7 c0- c2 0-7 -

Reservedj c5- c8 0-7 -

PMCRk 0 c12 0 v8.0

PMCNTENSETk 1 v8.0

PMCNTENCLRk 2 v8.0

PMOVSRk 3 v8.0

PMSWINCk 4 v8.0

PMSELRk 5 v8.0

PMCEID0 k 6 v8.0

PMCEID1k 7 v8.0

PMCCNTRk, 32 bits wide c13 0 v8.0

PMCCNTR_EL0k, 64 bits wide - 0 c9 - v8.0

PMXEVTYPERk c9 0 c13 1 v8.0

PMXEVCNTRk 2 v8.0

PMUSERENRk c14 0 v8.0

PMINTENSETk 1 v8.0

PMINTENCLRk 2 v8.0

PMOVSSETc, k 3 v8.0

PMCEID2k 4 v8.1

PMCEID3k 5 v8.1

PMMIR 6 v8.4

Reservedl 0-7 c15 0-7 -

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11714
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
Reservedm c10 0 c0- c1 0-7 -

PRRRn c2 0 v8.0

MAIR0n v8.0

NMRRn 1 v8.0

MAIR1n v8.0

AMAIR0 c3 0 v8.0

AMAIR1 1 v8.0

Reservedm c4, c8 0-7 -

Reservedm 1-3 c0, c1, c4, c8 0-7 -

Reservedm 4 c0, c1 0-7 -

HMAIR0c c2 0 v8.0

HMAIR1c 1 v8.0

HAMAIR0c c3 0 v8.0

HAMAIR1c 1 v8.0

Reservedm c4, c8 0-7 -

Reservedm 5-7 c0, c1, c4, c8 0-7 -

Reservedo c11 0-7 c0-c8 0-7 -

Reservedo c15 0-7 -

ICC_SGI1R, 64 bits wide - 0 c12 - GICe

VBAR c12 0 c0 0 v8.0

MVBARd 1 v8.0

RVBAR v8.0

RMRp 2 v8.0

ISRd c1 0 v8.0

DISR 1 RASg

VDISR 4 c1 1 RASg

ICC_IAR0

ICV_IAR0

0 c8 0 GICe

ICC_EOIR0

ICV_EOIR0

1 GICe

ICC_HPPIR0

ICV_HPPIR0

2 GICe

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11715
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
ICC_BPR0

ICV_BPR0

c12 0 c8 3 GICe

ICC_AP0R0

ICV_AP0R0

4 GICe

ICC_AP0R1

ICV_AP0R1

5 GICe

ICC_AP0R2

ICV_AP0R2

6 GICe

ICC_AP0R3

ICV_AP0R3

7 GICe

ICC_AP1R0

ICV_AP1R0

c9 0 GICe

ICC_AP1R1

ICV_AP1R1

1 GICe

ICC_AP1R2

ICV_AP1R2

2 GICe

ICC_AP1R3

ICV_AP1R3

3 GICe

ICC_DIR

ICV_DIR

c11 1 GICe

ICC_RPR

ICV_RPR

3 GICe

ICC_IAR1

ICV_IAR1

c12 0 GICe

ICC_EOIR1

ICV_EOIR1

1 GICe

ICC_HPPIR1

ICV_HPPIR1

2 GICe

ICC_BPR1

ICV_BPR1

3 GICe

ICC_CTLR

ICV_CTLR

4 GICe

ICC_SRE 5 GICe

ICC_IGRPEN0

ICV_IGRPEN0

6 GICe

ICC_IGRPEN1

ICV_IGRPEN1

7 GICe

ICC_ASGI1R, 64 bits wide - 1 c12 - GICe

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11716
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
ICC_SGI0R, 64 bits wide - 2 c12 - GICe

HVBARc c12 4 c0 0 v8.0e

HRMRp 2 v8.0e

ICH_AP0R0 c8 0 GICe

ICH_AP0R1 1 GICe

ICH_AP0R2 2 GICe

ICH_AP0R3 c12 4 c8 3 GICe

ICH_AP1R0 c9 0 GICe

ICH_AP1R1 1 GICe

ICH_AP1R2 2 GICe

ICH_AP1R3 3 GICe

ICC_HSRE 5 GICe

ICH_HCR c11 0 GICe

ICH_VTR 1 GICe

ICH_MISR 2 GICe

ICH_EISR 3 GICe

ICH_ELRSR 5 GICe

ICH_VMCR 7 GICe

ICH_LR<n>, for n==0 to 7 c12 0-7 GICe

ICH_LR<n>, for n==8 to 15 c13 0-7 GICe

ICH_LRC<n>, for n==0 to 7 c14 0-7 GICe

ICH_LRC<n>, for n==8 to 15 c15 0-7 GICe

ICC_MCTLR 6 c12 4 GICe

ICC_MSRE 5 GICe

ICC_MGRPEN1 7 GICe

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11717
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
FCSEIDR c13 0 c0 0 v8.0

CONTEXTIDR 1 v8.0

TPIDRURW 2 v8.0

TPIDRURO 3 v8.0

TPIDRPRW 4 v8.0

AMCR c2 0 AMUq

AMCFGR c2 1 AMUq

AMCGCR c2 2 AMUq

AMUSERENR c2 3 AMUq

AMCNTENCLR0 c2 4 AMUq

AMCNTENSET0 c2 5 AMUq

AMCNTENCLR1 c3 0 AMUq

AMCNTENSET1 c3 1 AMUq

AMEVTYPER0<n>, for n==0 to 7 c6 0-7 AMUq

AMEVTYPER0<n>, for n==8 to 15 c7 AMUq

AMEVTYPER1<n>, for n==0 to 7 c14 AMUq

AMEVTYPER1<n>, for n==8 to 15 c15 AMUq

AMEVCNTR0<n>, for n==0 to 7, 64 bits wide - 0-7 c0 - AMUq

AMEVCNTR0<n>, for n==8 to 15, 64 bits wide - c1 AMUq

AMEVCNTR1<n> for n==0 to 7, 64 bits wide - c4 AMUq

AMEVCNTR1<n>, for n==8 to 15, 64 bits wide - c5 AMUq

HTPIDRc c13 4 c0 2 v8.0

CNTPCTr, 64 bits wide - 0 c14 - v8.0

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11718
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
CNTFRQr c14 0 c0 0 v8.0

CNTKCTLr c1 0 v8.0

CNTP_TVALr c2 0 v8.0

CNTP_CTLr 1 v8.0

CNTV_TVALr c3 0 v8.0

CNTV_CTLr 1 v8.0

PMEVCNTR<n>, for n==0 to 7k c8 0-7 v8.0

PMEVCNTR<n>, for n==8 to 15 k c9 0-7 v8.0

PMEVCNTR<n>, for n==16 to 23k c10 0-7 v8.0

PMEVCNTR<n>, for n==24 to 30k c11 0-6 v8.0

PMEVTYPER<n>, for n==0 to 7k c12 0-7 v8.0

PMEVTYPER<n>, for n==8 to 15k c13 0-7 v8.0

PMEVTYPER<n>, for n==16 to 23k c14 0-7 v8.0

PMEVTYPER<n>, for n==17 to 30k c15 0-6 v8.0

PMCCFILTRk c15 7 v8.0

CNTVCTr, 64 bits wide - 1 c14 - v8.0

CNTP_CVALr, 64 bits wide - 2 c14 - v8.0

CNTV_CVALr, 64 bits wide - 3 c14 - v8.0

CNTVOFFs, 64 bits wide - 4 c14 - v8.0

CNTHCTLr c14 4 c1 0 v8.0

CNTHP_TVALr c14 4 c2 0 v8.0

CNTHP_CTLr 1 v8.0

CNTHP_CVALr, 64 bits wide - 6 c14 - v8.0

CNTPCTSSr, 64 bits wide - 8 c14 - v8.6

CNTVCTSSr, 64 bits wide - 9 c14 - v8.6

Reservedt c15 0-7 c0-c15 0-7 -

a. REVIDR is an optional register. If it is not implemented, the encoding with opc2 set to 2 is an alias of MIDR.

b. When FEAT_CCIDX is implemented, CCSIDR2 is implemented.

c. Implemented only as part of EL2 when EL2 is using AArch32. Otherwise, encoding is unallocated and
UNDEFINED.

d. Implemented only as part of EL3 when EL3 is using AArch32. Otherwise, encoding is unallocated and
UNDEFINED.

e. GIC System register, see About the GIC System registers. As that subsection describes, each ICV_* register
uses the same encoding as the corresponding ICC_* register.

Table G7-3 AArch32 VMSA (coproc==0b1111) register summary, in MCR/MRC parameter order

Name CRn opc1 CRm opc2 Source
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11719
ID032224 Non-Confidential

AArch32 System Register Encoding
G7.3 Organization of registers in the (coproc==0b1111) encoding space
G7.3.2.1 About the GIC System registers

From version 3.0 of the GIC architecture specification, the specification defines three groups of System registers,
identified by the prefix of the register name:

ICC_ GIC physical CPU interface System registers.

ICH_ GIC virtual interface control System registers.

ICV_ GIC Virtual CPU interface System registers.

Note

These registers are in addition to the GIC memory-mapped register groups GICC_, GICD_, GICH_, GICR_,
GICV_, and GITS_.

In AArch32, the GIC System registers are all in the (coproc==0b1111) encoding space with (CRn==c12). The ICV_*
registers have the same {CRn, opc1, CRm, op2} encodings as the corresponding ICC_* registers. For these encodings,
GIC register configuration fields determine which register is accessed.

When implemented, the GIC System registers form part of an Arm processor implementation, and therefore these
registers are included in the register summaries. However, the registers are defined only in the GIC Architecture
Specification.

For more information, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 (ARM IHI 0069).

f. This register is accessible only in Debug state.

g. RAS Extension System registers, see RAS registers.

h. When FEAT_SPECRES is implemented, the execution and data prediction restriction instructions are
implemented, see Execution and data prediction restriction System instructions.

i. For performance reasons, Arm deprecates any use of these memory barrier operations.

j. Reserved for IMPLEMENTATION DEFINED branch predictor, cache, and TCM operations, see Reserved 32-bit
encodings with {coproc==0b1111, CRn==c9}.

k. Performance Monitors Extension System register, see Performance Monitors registers.

l. Reserved for IMPLEMENTATION DEFINED performance monitors, see Reserved 32-bit encodings with
{coproc==0b1111, CRn==c9}.

m. Reserved for IMPLEMENTATION DEFINED TLB lockdown operations, see Reserved 32-bit encodings with
{coproc==0b1111, CRn==c10}.

n. When an implementation is using the Long descriptor translation table format, these encodings access the
MAIR0 and MAIR1 registers. Otherwise, they use PRRR and NMRR.

o. Reserved for IMPLEMENTATION DEFINED DMA operations for TCM access, see Reserved 32-bit encodings
with {coproc==0b1111, CRn==c11}.

p. Only one of RMR and HRMR is implemented, corresponding to the highest implemented Exception level,
and the register is implemented only if that Exception level is using AArch32.

q. Activity Monitors System register, see Activity Monitors registers.

r. Generic Timer System register, see Generic Timer registers.

s. Implemented as RW as part of the Generic Timer on an implementation that includes EL2 and when EL2 is
using AArch32. For more information, see The virtual offset register.

t. Reserved for IMPLEMENTATION DEFINED purposes, see Reserved 32-bit encodings with {coproc==0b1111,
CRn==c15}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G7-11720
ID032224 Non-Confidential

Chapter G8
AArch32 System Register Descriptions

This chapter describes each of the AArch32 System registers.

It contains the following sections:

• About the AArch32 System registers.

• General system control registers.

• Debug registers.

• Performance Monitors registers.

• Activity Monitors registers.

• RAS registers.

• Generic Timer registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11721
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
G8.1 About the AArch32 System registers

For general information about the AArch32 System registers, see:

In Chapter G5 The AArch32 Virtual Memory System Architecture:

• About the System registers for VMSAv8-32.

• Functional grouping of VMSAv8-32 System registers.

In Chapter G7 AArch32 System Register Encoding:

• Organization of registers in the (coproc==0b1110) encoding space.

• Organization of registers in the (coproc==0b1111) encoding space.

In this chapter:

• Fixed values in the System register descriptions.

• General behavior of System registers.

• Principles of the ID scheme for fields in ID registers.

• About AArch32 System register accesses.

The remainder of this chapter describes the AArch32 System registers, in the following sections:

• General system control registers.

• Debug registers.

• Performance Monitors registers.

• Generic Timer registers.

G8.1.1 Fixed values in the System register descriptions

See Fixed values in AArch32 instruction and System register descriptions. This section defines how the glossary
terms RAZ, RES0, RAO, and RES1 can be represented in the System register descriptions.

G8.1.2 General behavior of System registers

Except where indicated, System registers are 32-bits wide. As stated in About the System registers for VMSAv8-32,
there are some 64-bit registers, and these include cases where software can access either a 32-bit view or a 64-bit
view of a register. The register summaries, and the individual register descriptions, identify the 64-bit registers and
how they can be accessed.

The following sections give information about the general behavior of these registers:

• Register names.

• Read-only bits in read/write registers.

• The CPUID identification scheme.

• IMPLEMENTATION DEFINED performance monitors.

• UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System
register accesses.

• Read-only and write-only register encodings.

• Reset behavior of AArch32 System registers.

• Synchronization of changes to AArch32 System registers.

Unless otherwise indicated, information in the listed sections applies to all AArch32 System registers

See also About AArch32 System register accesses.

Register names

The Arm architecture guarantees not to define any register name prefixed with IMP_ as part of the standard Arm
architecture.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11722
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Note

Arm strongly recommends that any register names created in the IMPLEMENTATION DEFINED register spaces be
prefixed with IMP_, where appropriate.

Read-only bits in read/write registers

Some read/write registers include bits that are read-only. These bits ignore writes.

The CPUID identification scheme

The ID_* registers were originally called the CPUID identification scheme registers. However, functionally, there
is no value in separating these registers from the slightly larger Identification registers functional group. See
Table K17-30 for a list of the ID_ * registers.

IMPLEMENTATION DEFINED performance monitors

VMSAv8-32 reserves some additional System register encodings in the (coproc==0b1111) encoding space for
optional additional IMPLEMENTATION DEFINED performance monitors. Table G8-1 shows the allocation of these
encodings:

UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for
AArch32 System register accesses

This section defines UNPREDICTABLE and UNDEFINED behaviors for accesses to System registers, including those
cases where the Armv8 behavior is CONSTRAINED UNPREDICTABLE.

In AArch32 state, the following operations are UNDEFINED:

• All LDC and STC accesses, except for the LDC access to DBGDTRTXint and the STC access to DBGDTRRXint
specified in Table G7-2.

• All MCRR and MRRC operations to the (coproc==0b111x) encoding space, except for those explicitly defined as
accessing 64-bit System registers specified in Table G7-1 and Table G7-3.

Unless otherwise indicated in the individual register descriptions:

• Reserved fields in registers are RES0.

• Assigning a reserved value to a field has a CONSTRAINED UNPREDICTABLE effect, see Reserved values in
System and memory-mapped registers and translation table entries.

The following subsections give more information about UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and
UNDEFINED behavior for accesses to the (coproc==0b111x) encoding space:

• Accesses to unallocated encodings in the (coproc==0b111x) encoding space.

• Additional rules for MCR and MRC accesses to System registers.

• Effects of EL3 and EL2 on System register accesses.

Table G8-1 Performance Monitors System register encoding allocations

CR
n

opc
1

CRm
opc
2

Name Type

c9 0-7 c12-c1
4

0-7 Performance Monitors Extension registers, see Performance monitors registers RW or
ROa

c15 0-7 IMPLEMENTATION DEFINED b

a. The table referenced in the Name entry shows the type of each of the OPTIONAL Performance Monitors Extension registers.

b. Access depends on the register or operation, and is IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11723
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Accesses to unallocated encodings in the (coproc==0b111x) encoding space

In Armv8-A, accesses to unallocated register encodings in the (coproc==0b111x) encoding space are UNDEFINED.

Note

In Armv7, except for 32-bit registers encoded with a CRn value of c12, accesses to unallocated 32-bit registers were
UNPREDICTABLE. The Armv8 CONSTRAINED UNPREDICTABLE behavior of these accesses is that they are UNDEFINED,
see Unallocated System register access instructions.

Additional rules for MCR and MRC accesses to System registers

The following operations are CONSTRAINED UNPREDICTABLE for all encodings in the (coproc==0b111x) encoding
space:

• All MCR operations from the PC.

• All MRC operations to APSR_nzcv, except for the (coproc==0b1110) MRC operation to APSR_nzcv from
DBGDSCRint.

The CONSTRAINED UNPREDICTABLE behavior of these operations is described in Using R15 by instruction.

For registers and operations that are accessible from a particular Privilege level, any attempt to access those registers
from a lower Privilege level is UNDEFINED.

Some individual registers can be made inaccessible by setting configuration bits, possibly including
IMPLEMENTATION DEFINED configuration bits, to disable access to the register. The effects of the
architecturally-defined configuration bits are defined individually in this manual. Unless explicitly stated otherwise
in this manual, setting a configuration bit to disable access to a register results in the register becoming UNDEFINED
for MRC and MCR accesses.

See also Read-only and write-only register encodings.

Effects of EL3 and EL2 on System register accesses

EL2 and EL3 introduce classes of System registers, described in Classification of System registers. Some of these
classes of register are either:

• Accessible only from certain modes or states.

• Accessible from certain modes or states only when configuration settings permit the access.

Accesses to these registers that are not permitted are UNDEFINED, meaning execution of the register access
instruction generates an Undefined Instruction exception.

Note

This section applies only to registers that are accessible from some modes and states. That is, it applies only to
register access instructions using an encoding that, under some circumstances, would perform a valid register
access.

The following register classes restrict access in this way:

Restricted access System registers

This register class is defined in any implementation that includes EL3.

Restricted access registers other than the NSACR are accessible only from Secure EL3 modes. All
other accesses to these registers are UNDEFINED.

The NSACR is a special case of a Restricted access register and:

• The NSACR is:

— Read/write accessible from Secure PL1 modes.

— Is Read-only accessible from Non-secure PL2 and PL1 modes.

• All other accesses to the NSACR are UNDEFINED.

For more information, including behavior when EL3 is using AArch64 or is not implemented, see
Restricted access System registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11724
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Configurable access System registers

This register class is defined in any implementation that includes EL3.

Most Configurable access registers are accessible from Non-secure state only if control bits in the
NSACR permit Non-secure access to the register. Otherwise, a Non-secure access to the register is
UNDEFINED.

For other Configurable access registers, control bits in the NSACR control the behavior of bits or
fields in the register when it is accessed from Non-secure state. That is, Non-secure accesses to the
register are permitted, but the NSACR controls how they behave. The only architecturally-defined
register of this type is the CPACR.

For more information, see Configurable access System registers.

EL2-mode System registers

This register class is defined only in an implementation that includes EL2.

EL2-mode registers are accessible only from:

• The Non-secure EL2 mode, Hyp mode.

• Secure Monitor mode when SCR.NS is set to 1.

All other accesses to these registers are UNDEFINED.

For more information, see Hyp mode read/write registers in the (coproc==0b1111) encoding space
and Hyp mode encodings for shared (coproc==0b1111) System registers.

EL2-mode write-only operations

This register class is defined only in an implementation that includes EL2.

EL2-mode write-only operations are accessible only from:

• The Non-secure EL2 mode, Hyp mode.

• Secure Monitor mode, regardless of the value of SCR.NS.

Write accesses to these operations are:

• CONSTRAINED UNPREDICTABLE in Secure EL3 modes other than Monitor mode.

• UNDEFINED in Non-secure modes other than Hyp mode.

For more information, see Hyp mode (coproc==0b1111) write-only System instructions.

In addition, in any implementation that includes EL3, when EL3 is using AArch32, if write access to a register is
disabled by the CP15SDISABLE signal then any MCR access to that register is UNDEFINED.

Read-only and write-only register encodings

Some System registers are read-only (RO) or write-only (WO). For example:

• Most identification registers are read-only.

• Most encodings that perform an operation, such as a cache maintenance instruction, are write-only.

If a particular Privilege level defines a register to be:

• RO, then any attempt to write to that register, at that Privilege level, is UNDEFINED. This means that any access
to that register with L == 0 is UNDEFINED.

• WO, then any attempt to read from that register, at that Privilege level, is UNDEFINED. This means that any
access to that register with L== 1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED.

Note

This section applies only to registers that this manual defines as RO or WO. It does not apply to registers for which
other access permissions are explicitly defined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11725
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Reset behavior of AArch32 System registers

Reset values apply only to RW registers and fields, however:

• Some RO registers or fields, including feature ID registers and some status registers or register fields, always
return a known value.

• Some RW and RO registers or register fields return status information about the PE. Unless the register
description indicates that the value is UNKNOWN on reset, a read of the register immediately after a reset
returns valid information.

• Some RW and RO registers and fields are aliases of other registers or fields. In these cases, the reset behavior
of the aliased register or field determines the value returned by a read of the register immediately after a reset.

• WO registers that only have an effect on writes do not have meaningful reset values. However, an access to
a WO register might affect underlying state, and that state might have a defined reset value.

• IMPLEMENTATION DEFINED registers have IMPLEMENTATION DEFINED reset behavior.

After a reset, only a limited subset of the PE state is guaranteed to be set to defined values. Also, for debug and trace
System registers, reset requirements must take account of different levels of reset. For more information about the
reset behavior of System registers when the PE resets into an Exception level that is using AArch32, see:

• PE state on reset into AArch32 state.

• The appropriate Trace architecture specification, for the Trace System registers.

When the PE resets into an Exception level that is using AArch64, PE state that relates to execution in AArch32
state, including the System register values, is UNKNOWN. The only exception to this is state that applies to execution
in both AArch64 state and AArch32 state and that has a defined reset value on the reset into AArch64 state. An
example of such PE state is the EDPRSR.SR bit.

For a PE reset into an Exception level that is using AArch32, the architecture defines which AArch32 System
registers have a defined reset value, and when that defined reset value applies. The register descriptions include this
information, and PE state on reset into AArch32 state summarizes these architectural requirements. Otherwise, RW
registers reset to an architecturally unknown value.

Note

In an implementation that includes EL3, unless this manual explicitly states otherwise, only the Secure instance of
a banked register is reset to the defined value. This means that software must program the Non-secure instance of
the register with the required values. Typically, this programming is part of the PE boot sequence.

Pseudocode description of resetting System registers

The AArch32.ResetControlRegisters() pseudocode function resets all System registers, and register fields, that have
defined reset values, as described in this section and PE state on reset into AArch32 state.

Note

For debug and trace System registers, this function resets registers as defined for the appropriate level of reset.

Synchronization of changes to AArch32 System registers

In this section, this PE means the PE on which accesses are being synchronized.

Note

See Definitions of direct and indirect reads and writes and their side-effects for definitions of the terms direct write,
direct read, indirect write, and indirect read.

A direct write to a System register might become visible at any point after the change to the register, but without a
Context Synchronization event there is no guarantee that the change becomes visible.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11726
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Any direct write to a System register is guaranteed not to affect any instruction that appears, in program order, before
the instruction that performed the direct write, and any direct write to a System register must be synchronized before
any instruction that appears after the direct write, in program order, can rely on the effect of that write. The only
exceptions to this are:

• All direct writes to the same register, using the same encoding, are guaranteed to occur in program order.

• All direct writes to a register are guaranteed to occur in program order relative to all direct reads of the same
register using the same encoding.

• Any System register access that an Arm Architecture Specification or equivalent specification defines as not
requiring synchronization.

• If an instruction that appears in program order before the direct write performs a memory access, such as a
memory-mapped register access, that causes an indirect read or write to a register, that memory access is
subject to the memory order model. In this case, if permitted by the memory order model, the instruction that
appears in program order before the direct write can be affected by the direct write. For information about
the memory order model, see Definition of the memory model.

These rules mean that an instruction that writes to one of the address translation instructions described in Address
translation instructions must be explicitly synchronized to guarantee that the result of the address translation
instruction is visible in the PAR.

Note

In this case, the direct write to the encoding of the address translation instruction causes an indirect write to the PAR.
Without a Context Synchronization event after the direct write, there is no guarantee that the indirect write to the
PAR is visible.

Conceptually, the explicit synchronization occurs as the first step of any Context Synchronization event. This means
that if the operation uses the state that had been changed but not synchronized before the operation occurred, the
operation is guaranteed to use the state as if it had been synchronized.

Note

• This explicit synchronization is applied as the first step of the execution of any instruction that causes the
synchronization operation. This means it does not synchronize any effect of changes to the System registers
that might affect the fetch and decode of the instructions that cause the operation, such as breakpoints or
changes to translation tables.

• For a synchronous exception, the control state in use at the time the exception is generated determines the
exception syndrome information, and this syndrome information is not changed by this synchronization at
the start of taking the exception.

Except for the register reads listed in Registers with some architectural guarantee of ordering or observability, if
no Context Synchronization event is performed, direct reads of System registers can occur in any order.

Table G8-2 shows the synchronization requirement between two reads or writes that access the same System
register. In the column headings, First and Second refer to:

• Program order, for any read or write caused by the execution of an instruction by this PE, other than a read
or write caused by a memory access made by that instruction.

• The order of arrival of asynchronous reads or writes made by this PE relative to the execution of instructions
by this PE.

In addition:

• For indirect reads or writes caused by an external agent, such as a debugger, the mechanism that determines
the order of the reads or writes is defined by that external agent. The external agent can provide mechanisms
that ensure that any read or write it makes arrives at the PE. These indirect reads and writes are asynchronous
to software execution on the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11727
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
• For indirect reads or writes caused by memory-mapped reads or writes made by this PE, the ordering of the
memory accesses is subject to the memory order model, including the effect of the memory type of the
accessed memory address. This applies, for example, if this PE reads or writes one of its registers in a
memory-mapped register interface.

The mechanism for ensuring completion of these memory accesses, including ensuring the arrival of the
asynchronous read or write at the PE, is defined by the system.

Note
Such accesses are likely to be given a Device memory attribute, but requiring this is outside the scope of the
architecture.

• For indirect reads or writes caused by autonomous asynchronous events that are counted, for example events
caused by the passage of time, the events are ordered so that:

— Counts progress monotonically.

— The events arrive at the PE in finite time and without undue delay.

If the indirect write is to a register that Registers with some architectural guarantee of ordering or observability
shows as having some guarantee of the visibility of an indirect write, synchronization might not be required.

Table G8-2 Synchronization requirements for updates to System registers

First read or write Second read or write Context Synchronization event required

Direct read Direct read No

Direct write No

Indirect read Noa

Indirect write Noa, but see text in this section for exceptions

a. Although no synchronization is required between a Direct write and a Direct read, or between a Direct
read and an Indirect write, this does not imply that a Direct read causes synchronization of a previous
Direct write. This means that the sequence Direct write followed by Direct read followed by Indirect
read, with no intervening context synchronization, does not guarantee that the Indirect read observes
the result of the Direct write.

Direct write Direct read No

Direct write No

Indirect read Yesa

Indirect write No, but see text in this section for exceptions

Indirect read Direct read No

Direct write No

Indirect read No

Indirect write No

Indirect write Direct read Yes, but see text in this section for exceptions

Direct write No, but see text in this section for exceptions

Indirect read Yes, but see text in this section for exceptions

Indirect write No, but see text in this section for exceptions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11728
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
If a direct read or a direct write to a register is followed by an indirect write to that register that is caused by an
external agent, or by an autonomous asynchronous event, or as a result of a memory-mapped write, then
synchronization is required to guarantee the ordering of the indirect write relative to the direct read or direct write.

If an indirect write caused by a direct write is followed by an indirect write caused by an external agent, or by an
autonomous asynchronous event, or as a result of a memory-mapped write, then synchronization is required to
guarantee the ordering of the two indirect writes.

Where an indirect write occurs as a side-effect of an access, this happens atomically with the access, meaning no
other accesses are allowed between the register access and its side-effect. For other information about indirect writes
after a direct read or a direct write, see Definitions of direct and indirect reads and writes and their side-effects

Note

Where a register has more that one encoding, a direct write to the register using a particular encoding is not an
indirect write to the same register with a different encoding.

Where an indirect write is caused by the action of an external agent, such as a debugger, or by a memory-mapped
read or write by the PE, then an indirect write by that agent to a register using a particular access mechanism,
followed by an indirect read by that agent to the same register using the same access mechanism and address does
not need synchronization.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two
or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a
result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order.
This applies even if the accesses occur simultaneously.

For information about the additional synchronization requirements for memory-mapped registers, see
Synchronization requirements for AArch64 System registers.

To guarantee the visibility of changes to some registers, additional operations might be required before the Context
Synchronization event. For such a register, the definition of the register identifies these additional requirements.

In this manual, unless the context indicates otherwise:

• Accessing a System register refers to a direct read or write of the register.

• Using a System register refers to an indirect read or write of the register.

Registers with some architectural guarantee of ordering or observability

For the registers for which Table G8-3 shows that the ordering of direct reads is guaranteed, multiple direct reads
of a single register, using the same encoding, occur in program order without any explicit ordering.

For the registers for which Table G8-3 shows that some observability of indirect writes is guaranteed, an indirect
write to the register caused by an external agent, an autonomous asynchronous event, or as a result of a
memory-mapped write, is both:

• Observable to direct reads of the register, in finite time, without explicit synchronization.

• Observable to subsequent indirect reads of the register without explicit synchronization.

These two sets of registers are similar, as Table G8-3 shows:

Table G8-3 Registers with a guarantee of ordering or observability, VMSAv8-32

Register
Ordering of
direct reads

Observability of
indirect writes

Notes

ISR Guaranteed Guaranteed Interrupt Status Register

DBGCLAIMCLR Guaranteed Guaranteed Debug CLAIM registers

DBGCLAIMSET - Guaranteed
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11729
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
In addition to the requirements shown in Table G8-3:

• Indirect writes to the following registers as a result of memory-mapped writes, including accesses by external
agents, are required to be observable to the indirect read made in determining the response to a subsequent
memory-mapped access without explicit synchronization:

— OSLAR_EL1. OSLAR_EL1 is indirectly read to determine whether the subsequent access is
permitted.

Note
OSLAR_EL1 maps to the AArch32 System register DBGOSLAR.

— EDLAR, if implemented. EDLAR is indirectly read to determine whether a subsequent write or
side-effect of an access is ignored.

Note

This requirement is stricter than the general requirement for the observability of indirect writes.

• The requirement that an indirect write to the registers in Table G8-3 is observable to direct reads in finite time
does not imply that all observers will observe the indirect write at the same time.

For example, an increment of the system counter is an autonomous asynchronous event that performs an
indirect write to the counter. This asynchronous event might generate a timer interrupt request, resulting in a
Context Synchronization event. When a GIC is used, the timer interrupt might arrive at the GIC after the PE
has taken an interrupt request from another source, but before software reads the current interrupt ID from
the GIC. This means that the GIC might identify the timer interrupt as the current interrupt. Software must
not assume that a subsequent direct read of the counter register is guaranteed to observe the updated value of
that register.

DBGDTRRXint Guaranteed Guaranteed Debug Communication Channel registers

DBGDTRTXint - Guaranteed

The DCC flags in
DBGDSCRint

Guaranteed Guaranteed

CNTPCT Guaranteed Guaranteed Generic Timer registers

CNTP_TVAL Guaranteed Guaranteed

CNTVCT Guaranteed Guaranteed

CNTV_TVAL Guaranteed Guaranteed

CNTHP_TVAL Guaranteed Guaranteed

PMCCNTR Guaranteed Guaranteed Performance Monitors Extension registers, if the
implementation includes the extension

PMEVCNTR<n> Guaranteed Guaranteed

PMXEVCNTR Guaranteed Guaranteed

PMOVSSET Guaranteed Guaranteed

PMOVSR Guaranteed Guaranteed

EDSCR.PipeAdv and the
DCC flags in EDSCR

- Guaranteed Fields of the External Debug Status and Control
Register

Table G8-3 Registers with a guarantee of ordering or observability, VMSAv8-32 (continued)

Register
Ordering of
direct reads

Observability of
indirect writes

Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11730
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Although this example uses the counter-timer registers, it applies equally to other registers that might be
linked to interrupt requests, including the PMU and Statistical Profiling status registers.

• When the PE is in Debug state, there are synchronization requirements for the Debug Communication
Channel and Instruction Transfer registers. See DCC and ITR access in Debug state.

The possibility that direct reads can occur early, in the absence of context synchronization, described in Ordering
of reads of System registers, still applies to the registers listed in Table G8-3.

Definitions of direct and indirect reads and writes and their side-effects

Direct and indirect reads and writes are defined as follows:

Direct read Is a read of a register, using an MRC, MRRC, or STC instruction, that the architecture permits for the
current PE state.

If a direct read of a register has a side-effect of changing the value of a register, the effect of a direct
read on that register is defined to be an indirect write, and has the synchronization requirements of
an indirect write. This means the indirect write is guaranteed to have occurred, and to be visible to
subsequent direct or indirect reads and writes only if synchronization is performed after the direct
read.

Note

The indirect write described here can affect either the register written to by the direct write, or some
other register. The synchronization requirement is the same in both cases.

Direct write Is a write to a register, using an MCR, MCRR, or LDC instruction, that the architecture permits for the
current PE state.

In the following cases, the side-effect of the direct write is defined to be an indirect write of the
affected register, and has the synchronization requirements of an indirect write:

• If the direct write has a side-effect of changing the value of a register other than the register
accessed by the direct write.

• If the direct write has a side-effect of changing the value of the register accessed by the direct
write, so that the value in that register might not be the value that the direct write wrote to the
register.

In both cases, this means that the indirect write is not guaranteed to be visible to subsequent direct
or indirect reads and writes unless synchronization is performed after the direct write.

Note
• As an example of a direct write to a register having an effect that is an indirect write of that

register, writing 1 to a PMCNTENCLR.Px bit is also an indirect write, because if the Px bit
had the value 1 before the direct write, the side-effect of the write changes the value of that
bit to 0.

• The indirect write described here can affect either the register written to by the direct write,
or some other register. The synchronization requirement is the same in both cases.

For example, writing 1 to a PMCNTENCLR.Px bit that is set to 1 also changes the
corresponding PMCNTENSET.Px bit from 1 to 0. This means that the direct write to the
PMCNTENCLR defines indirect writes to both itself and to the PMCNTENSET.

Indirect read Is a use of the register by an instruction to establish the operating conditions for the instruction.
Examples of operating conditions that might be determined by an indirect read are the translation
table base address, or whether memory accesses are forced to be Non-cacheable.

Indirect reads include situations where the value of one register determines what value is returned
by a second register. This means that any read of the second register is an indirect read of the register
that determines what value is returned.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11731
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Indirect reads also include:

• Reads of the System registers by external agents, such as debuggers, as described in Debug
registers.

• Memory-mapped reads of the System registers made by the PE on which the System registers
are implemented.

Where an indirect read of a register has a side-effect of changing the value of a register, that change
is defined to be an indirect write, and has the synchronization requirements of an indirect write.

Indirect write Is an update to the value of a register as a consequence of either:

• An exception, operation, or execution of an instruction that is not a direct write to that
register.

• The asynchronous operation of an external agent.

This can include:

• The passage of time, as seen in counters or timers, including performance counters.

• The assertion of an interrupt.

• A write from an external agent, such as a debugger.

However, for some registers, the architecture gives some guarantee of visibility without any explicit
synchronization, see Registers with some architectural guarantee of ordering or observability.

Note

Taking an exception is a Context Synchronization event. Any indirect write performed as part of an
exception entry does not require additional synchronization. This includes the indirect writes to the
registers that report the exception, as described in Exception reporting in a VMSAv8-32
implementation.

G8.1.3 Principles of the ID scheme for fields in ID registers

The Arm architecture specifies a number of ID registers that are characterized as comprising a set of 4-bit ID fields,
Each ID field identifies the presence, and possibly the level of support for, a particular feature in an implementation
of the architecture. These fields follow an architectural model that aids their use by software and provides future
compatibility. This section describes that model. AArch32 ID registers to which this scheme applies identifies the
set of ID registers that are accessible from AArch32 state.

A small number of ID fields do not follow the scheme described in this section. In these cases, the field description
states that it does not follow this scheme.

Note

• The ID fields described here are unlike the ones that enumerate the number of resources, such as the number
of breakpoints, watchpoints, or performance monitors.

• ID fields that do not follow this scheme include the ID_AA64DFR0_EL1.PMUVer,
ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, see Alternative ID scheme used
for the Performance Monitors Extension version.

• The presence of an ID field for a feature does not imply that the feature is optional.

To provide forward compatibility, software can rely on the features of these fields that are described in this section.

The ID fields, which are either signed or unsigned, use increasing numerical values to indicate increases in
functionality. Therefore, if a value of 0x1 indicates the presence of some instructions, then the value 0x2 will indicate
the presence of those instructions plus some additional instructions or functionality. This means software can be
written in the form:

if (value >= number) {
// do something that relies on the value of the feature

}

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11732
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
For ID fields where the value 0x0 defines that a feature is not present, the field holds an unsigned value. This covers
the vast majority of such fields.

In a few cases, the architecture has been changed to permit implementations to exclude a feature that has previously
been required and for which no ID field has been defined. In these cases, a new ID field is defined and:

• The field holds a signed value.

• The field value 0xF indicates that the feature is not implemented.

• The field value 0x0 indicates that the feature is implemented.

• Software that depends on the feature can use the test:
if value >= 0 {

// Software features that depend on the presence of the hardware feature
}

In some cases, it has been decided retrospectively that the increase in functionality between two consecutive
numerical values is too great, and it is desirable to permit an intermediate degree of functionality, and the means to
discover this. This is done by the introduction of a fractional field that both:

• Is referred to in the definition of the original field.

• Applies only when the original field is at the lower value of the step.

In principle, a fractional field can be used for two different fractional steps, with different meanings associated with
each of these steps. For this reason, a fractional field must be interpreted in the context of the field to which it relates
and the value of that field. Example G8-1 shows the use of such a field.

Example G8-1 Example of the use of a fractional field

For a field describing some class of functionality:

• The value 0x1 was defined as indicating that item A is present.

• The value 0x2 was defined as indicating that items B and C are present, in addition to item A.

Subsequently, it might be necessary to introduce a second ID field to indicate that A and B only are present. This
new field is a fractional field, and might be defined as having the value 0x1 when A and B only are present. This
fractional field is valid only when the original ID field has the value 0x1.

This approach means that:

• Software that depends on the test if (value >= 0x2) can rely on features A, B, and C being present,

• Software that depends on the test if (value >= 0x1) can rely on feature A being present.

• If new software needs to check only that features A and B are present, then it can test:
if (value >= 0x2 || (value == 0x1 && fractional_value >= 0x1)) {

// Software features that depend on A and B only
}

A fractional field uses the same approach of increasing numerical values indicating increasing functionality, and the
fractional approach can also be applied recursively to fractional fields.

Unused ID fields, and fractional fields that are not applicable, are RES0 to allow their future use when features, or
fractional implementation options, are added.

AArch32 ID registers to which this scheme applies
• The Auxiliary Feature register ID_AFR0.

• The Processor Feature registers ID_PFR0 and ID_PFR1.

• The Debug Feature register ID_DFR0.

• The Memory Model Feature registers ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, and
ID_MMFR4.

• The Instruction Set Attribute registers ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and
ID_ISAR5.

• The Media and VFP Feature registers MVFR0, MVFR1, and MVFR2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11733
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Note

Principles of the ID scheme for fields in ID registers includes information about the AArch64 System registers and
the memory-mapped registers to which this scheme applies.

Alternative ID scheme used for the Performance Monitors Extension version

The ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon, and EDDFR.PMUVer fields,
which identify the version of the Performance Monitors Extension, do not follow the standard ID scheme. Software
must treat these fields as follows:

• The value 0xF indicates that the Arm-architected Performance Monitors Extension is not implemented.

• If the field value is not 0xF the field is treated as an unsigned value, as described for the standard ID scheme.

This means that software that depends on the implementation of a particular version of the Arm Performance
Monitors Extension must be written in the form:

if (value != 0xF and value >= number) {
// do something that relies on version 'number' of the feature

}

For these fields, Arm deprecates use of the value 0xF in new implementations.

G8.1.4 About AArch32 System register accesses

The following subsections give more information about accesses to the AArch32 System registers:

• Ordering of reads of System registers.

• Accessing 32-bit System registers.

• Accessing 64-bit System registers.

Ordering of reads of System registers

Reads of the System registers can occur out of order with respect to earlier instructions executed on the same PE,
provided that both:

• Any data dependencies between the instructions, as specified in Synchronization of changes to AArch32
System registers, including read-after-read dependencies, are respected.

• The reads to the register do not occur earlier than the most recent Context Synchronization event to its
architectural position in the instruction stream.

Note

In particular, the values read from System registers that hold self-incrementing counts, such as the Performance
Monitors counters or the Generic Timer counter or timers, could be accessed from any time after the previous
Context Synchronization event. For example, where a memory access is used to communicate a read of such a
counter, an ISB must be inserted between the read of the memory location that is known to have returned its data,
either as a result of a condition on that data or of the read having completed, and the read of the counter, if it is
necessary that the counter returns a count value after the memory communication.

Accessing 32-bit System registers

Software accesses most 32-bit System registers using the generic MCR and MRC System register access instructions,
specifying some or all of the parameters {coproc, CRn, opc1, CRm, opc2}, where:

coproc Identifies the primary region of the System register encoding space. Takes one of the values:

p14 Encoded as 0b1110.

p15 Encoded as 0b1111.

CRn Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11734
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and CRn is the most significant identifier for the required register within that group.

In the (coproc==0b1111) encoding space, CRn is the most significant identifier for the required
register.

opc1 Takes a value in the range 0-7, encoded as its 3-bit binary value.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and can take the following values:

0 Debug System registers.

1 Trace System registers.

7 Legacy Jazelle System registers.

In the (coproc==0b1111) encoding space, opc1 can take any value in the range 0-7.

CRm Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.

opc2 Takes a value in the range 0-7, encoded as its 3-bit binary value.

opc2 is optional in the MCR and MRC instruction syntax, and if no value is specified the encoding
defaults to 0b000.

Rt A general-purpose register to hold a 32-bit value to transfer to or from the System register. Takes a
value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

This means an MCR or MRC access to a specific 32-bit System register uses:

• A unique combination of coproc, CRn, opc1, CRm, and opc2, to specify the required System register.

• A general-purpose register, Rt, for the transferred 32-bit value.

See also:

• MCR.

• MRC.

A small number of AArch32 debug System registers are accessed using LDC or STC instructions. In these cases, the
register to be accessed is identified in the instruction syntax by the use of p14, c5 where:

p14 Identifies that the access is to the (coproc==0b1110) encoding space.

c5 Identifies the target debug System register.

See the instruction descriptions:

• LDC (immediate).

• LDC (literal).

• STC.

The only uses of LDC and STC permitted in Armv8-A are:

• An LDC access to load data from memory to DBGDTRTXint, see LDC (immediate) and LDC (literal).

• An STC access to store data to memory from DBGDTRRXint, see STC.

A small number of AArch32 System registers are accessed using MRS, MSR, VMRS, or VMSR instructions, see the
appropriate register and instruction description for more information, see:

• MRS.

• MSR (immediate),

• MSR (register).

• VMRS.

• VMSR.

Note

• For example:

— The APSR, CPSR, and SPSR are accessed using MRS or MSR instructions.

— The MVFR0, MVFR1, and MVFR2 are accessed using VMRS or VMSR instructions.

• In addition, the banked register forms of the MRS and MSR instructions can be used to access some System
registers associated with PE modes other than the mode in which the PE is currently executing, see MRS
(Banked register) and MSR (Banked register).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11735
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.1 About the AArch32 System registers
Accessing 64-bit System registers

Software accesses a 64-bit System register using the generic MCRR and MRRC System register access instructions,
specifying the parameters {coproc, CRm, opc1}, where:

coproc Identifies the primary region of the System register encoding space. Takes one of the values:

p14 Encoded as 0b1110.

p15 Encoded as 0b1111.

CRm Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and CRm is the most significant identifier for the required register within that group.

In the (coproc==0b1111) encoding space, CRm is the most significant identifier for the required
register.

opc1 Takes a value in the range 0-15, encoded as its 3-bit binary value.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional
group, and can take the following values:

0 Debug System registers.

1 Trace System registers.

In the (coproc==0b1111) encoding space, opc1 can take any value in the range 0-15.

Rt A general-purpose register to hold bits[31:0] of the value to transfer to or from the System register.
Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

Rt2 A general-purpose register to hold bits[63:32] of the value to transfer to or from the System register.
Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

This means an MCRR or MRRC access to a specific 64-bit System register uses:

• A unique combination of coproc, CRm and opc1, to specify the required 64-bit System register.

• Two general-purpose registers, each holding 32 bits of the value to transfer.

This means a PE can access a 64-bit System register using:

• An MCRR instruction to write to a System register, see MCRR.

• An MRRC instruction to read a System register, see MRRC.

When using an MCRR or MRRC instruction the System register access is 64-bit atomic.

Some 64-bit registers also have an MCR and MRC encoding. The MCR and MRC encodings for these registers access the
least significant 32 bits of the register. For example, to access the PAR, software can:

• Use the following instructions to access all 64 bits of the register:
MRRC p15, 0, <Rt>, <Rt2>, c7 ; Read 64-bit PAR into Rt (low word) and Rt2 (high word)
MCRR p15, 0, <Rt>, <Rt2>, c7 ; Write Rt (low word) and Rt2 (high word) to 64-bit PAR

• Use the following instructions to access the least-significant 32 bits of the register:
MRC p15, 0, <Rt>, c7, c4, 0 ; Read PAR[31:0] into Rt
MCR p15, 0, <Rt>, c7, c4, 0 ; Write Rt to PAR[31:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11736
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2 General system control registers

This section lists the System registers in AArch32 state that are not part of one of the other listed groups.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11737
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.1 ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and
EL0.

Configurations

This register is banked between ACTLR and ACTLR_S and ACTLR_NS.

AArch32 System register ACTLR bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ACTLR are UNDEFINED.

Some bits might define global configuration settings, and be common to the Secure and Non-secure
instances of the register.

Attributes

ACTLR is a 32-bit register.

This register has the following instances:

• ACTLR, when EL3 is not implemented.

• ACTLR_S, when EL3 is implemented.

• ACTLR_NS, when EL3 is implemented.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11738
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = ACTLR_NS;
 else
 R[t] = ACTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = ACTLR_NS;
 else
 R[t] = ACTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = ACTLR_S;
 else
 R[t] = ACTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR_NS = R[t];
 else
 ACTLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR_NS = R[t];
 else
 ACTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ACTLR_S = R[t];
 else
 ACTLR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11739
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.2 ACTLR2, Auxiliary Control Register 2

The ACTLR2 characteristics are:

Purpose

Provides additional space to the ACTLR register to hold IMPLEMENTATION DEFINED trap
functionality for execution at EL1 and EL0.

Configurations

This register is banked between ACTLR2 and ACTLR2_S and ACTLR2_NS.

AArch32 System register ACTLR2 bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL1[63:32].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ACTLR2 are UNDEFINED.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or
whether it causes UNDEFINED exceptions when accessed. The implementation of this register can be
detected by examining ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes

ACTLR2 is a 32-bit register.

This register has the following instances:

• ACTLR2, when EL3 is not implemented.

• ACTLR2_S, when EL3 is implemented.

• ACTLR2_NS, when EL3 is implemented.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ACTLR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11740
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = ACTLR2_NS;
 else
 R[t] = ACTLR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = ACTLR2_NS;
 else
 R[t] = ACTLR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = ACTLR2_S;
 else
 R[t] = ACTLR2_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR2_NS = R[t];
 else
 ACTLR2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR2_NS = R[t];
 else
 ACTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ACTLR2_S = R[t];
 else
 ACTLR2_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11741
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.3 ADFSR, Auxiliary Data Fault Status Register

The ADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Data Abort exceptions
taken to EL1 modes, and EL3 modes when EL3 is implemented and is using AArch32.

Configurations

This register is banked between ADFSR and ADFSR_S and ADFSR_NS.

AArch32 System register ADFSR bits [31:0] are architecturally mapped to AArch64 System
register AFSR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ADFSR are UNDEFINED.

Attributes

ADFSR is a 32-bit register.

This register has the following instances:

• ADFSR, when EL3 is not implemented.

• ADFSR_S, when EL3 is implemented.

• ADFSR_NS, when EL3 is implemented.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ADFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11742
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = ADFSR_NS;
 else
 R[t] = ADFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = ADFSR_NS;
 else
 R[t] = ADFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = ADFSR_S;
 else
 R[t] = ADFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ADFSR_NS = R[t];
 else
 ADFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ADFSR_NS = R[t];
 else
 ADFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ADFSR_S = R[t];
 else
 ADFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11743
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.4 AIDR, Auxiliary ID Register

The AIDR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be used in conjunction with the value of MIDR.

Configurations

AArch32 System register AIDR bits [31:0] are architecturally mapped to AArch64 System register
AIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
AIDR are UNDEFINED.

Attributes

AIDR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing AIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = AIDR;
elsif PSTATE.EL == EL2 then
 R[t] = AIDR;
elsif PSTATE.EL == EL3 then
 R[t] = AIDR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11744
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.5 AIFSR, Auxiliary Instruction Fault Status Register

The AIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for Prefetch Abort
exceptions taken to EL1 modes, and EL3 modes when EL3 is implemented and is using AArch32.

Configurations

This register is banked between AIFSR and AIFSR_S and AIFSR_NS.

AArch32 System register AIFSR bits [31:0] are architecturally mapped to AArch64 System register
AFSR1_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
AIFSR are UNDEFINED.

Attributes

AIFSR is a 32-bit register.

This register has the following instances:

• AIFSR, when EL3 is not implemented.

• AIFSR_S, when EL3 is implemented.

• AIFSR_NS, when EL3 is implemented.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AIFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11745
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = AIFSR_NS;
 else
 R[t] = AIFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = AIFSR_NS;
 else
 R[t] = AIFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = AIFSR_S;
 else
 R[t] = AIFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AIFSR_NS = R[t];
 else
 AIFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AIFSR_NS = R[t];
 else
 AIFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AIFSR_S = R[t];
 else
 AIFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11746
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.6 AMAIR0, Auxiliary Memory Attribute Indirection Register 0

The AMAIR0 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides
IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR0.

Configurations

This register is banked between AMAIR0 and AMAIR0_S and AMAIR0_NS.

AArch32 System register AMAIR0 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
AMAIR0 are UNDEFINED.

Attributes

AMAIR0 is a 32-bit register.

This register has the following instances:

• AMAIR0, when EL3 is not implemented.

• AMAIR0_S, when EL3 is implemented.

• AMAIR0_NS, when EL3 is implemented.

Field descriptions

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.

• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR0(S) gives the value for memory accesses from Secure state.

• AMAIR0(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not
change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the
MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11747
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing AMAIR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = AMAIR0_NS;
 else
 R[t] = AMAIR0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = AMAIR0_NS;
 else
 R[t] = AMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = AMAIR0_S;
 else
 R[t] = AMAIR0_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11748
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 AMAIR0_S = R[t];
 else
 AMAIR0_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11749
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.7 AMAIR1, Auxiliary Memory Attribute Indirection Register 1

The AMAIR1 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides
IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR1.

Configurations

This register is banked between AMAIR1 and AMAIR1_S and AMAIR1_NS.

AArch32 System register AMAIR1 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL1[63:32].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
AMAIR1 are UNDEFINED.

When EL3 is using AArch32, write access to AMAIR1(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Attributes

AMAIR1 is a 32-bit register.

This register has the following instances:

• AMAIR1, when EL3 is not implemented.

• AMAIR1_S, when EL3 is implemented.

• AMAIR1_NS, when EL3 is implemented.

Field descriptions

This register is RES0 in the following cases:

• When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.

• When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

• AMAIR1(S) gives the value for memory accesses from Secure state.

• AMAIR1(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not
change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the
MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11750
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing AMAIR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = AMAIR1_NS;
 else
 R[t] = AMAIR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = AMAIR1_NS;
 else
 R[t] = AMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = AMAIR1_S;
 else
 R[t] = AMAIR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR1_NS = R[t];
 else
 AMAIR1 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR1_NS = R[t];
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11751
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 AMAIR1_S = R[t];
 else
 AMAIR1_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11752
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.8 APSR, Application Program Status Register

The APSR characteristics are:

Purpose

Hold program status and control information.

Note
Some of the fields in this register are permitted to return the value of the PSTATE field on a read.
This is an exception to the general rule that an UNKNOWN field must not return information that
cannot be obtained, at the current Privilege level, by an architected mechanism.

For more information see The Application Program Status Register, APSR.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to APSR are
UNDEFINED.

Attributes

APSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is
regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N
is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

Bits [26:23]

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. This field is UNKNOWN, but is permitted to return the value of
PSTATE.PAN field. On writes, this field is treated as Do-Not-Modify.

N

31

Z

30

C

29

V

28

Q

27

RES0

26 23 22

RES0

21 20

GE

19 16

RES0

15 10

E

9

A

8

I

7

F

6 5

M[4:0]

4 0

PAN RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11753
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]

Reserved, RES0.

E, bit [9]

Endianness. This field is UNKNOWN, but is permitted to return the value of PSTATE.E field. On
writes, this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. This field is UNKNOWN, but is permitted to return the value of PSTATE.A
field. On writes, this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. This field is UNKNOWN, but is permitted to return the value of PSTATE.I field.
On writes, this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. This field is UNKNOWN, but is permitted to return the value of PSTATE.F field.
On writes, this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4:0], bits [4:0]

Mode. This field is UNKNOWN, but is permitted to return the value of PSTATE.M[4:0] field. On
writes, this field is treated as Do-Not-Modify.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11754
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.9 ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

The ATS12NSOPR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to ATS12NSOPR are UNDEFINED.

Attributes

ATS12NSOPR is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOPR

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_12, EL1, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_12, EL1, ATAccess_Read);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11755
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.10 ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

The ATS12NSOPW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to ATS12NSOPW are UNDEFINED.

Attributes

ATS12NSOPW is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOPW

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_12, EL1, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_12, EL1, ATAccess_Write);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11756
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.11 ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

The ATS12NSOUR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to ATS12NSOUR are UNDEFINED.

Attributes

ATS12NSOUR is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOUR

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_12, EL0, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_12, EL0, ATAccess_Read);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11757
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.12 ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

The ATS12NSOUW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to ATS12NSOUW are UNDEFINED.

Attributes

ATS12NSOUW is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the stage 2 translation.

Executing ATS12NSOUW

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_12, EL0, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_12, EL0, ATAccess_Write);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11758
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.13 ATS1CPR, Address Translate Stage 1 Current state PL1 Read

The ATS1CPR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL1 and the current Security state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ATS1CPR are UNDEFINED.

Attributes

ATS1CPR is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPR

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Read);
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AArch32.AT(R[t], TranslationStage_1, EL3, ATAccess_Read);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Read);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11759
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.14 ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

The ATS1CPRP characteristics are:

Purpose

Performs a stage 1 address translation at PL1 and in the current Security state, where the value of
PSTATE.PAN determines if a read from a location will generate a Permission fault for a privileged
access.

Configurations

This instruction is present only when EL1 is capable of using AArch32 and FEAT_PAN2 is
implemented. Otherwise, direct accesses to ATS1CPRP are UNDEFINED.

Attributes

ATS1CPRP is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPRP

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_ReadPAN);
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_ReadPAN);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AArch32.AT(R[t], TranslationStage_1, EL3, ATAccess_ReadPAN);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_ReadPAN);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11760
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.15 ATS1CPW, Address Translate Stage 1 Current state PL1 Write

The ATS1CPW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL1 and the current Security state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ATS1CPW are UNDEFINED.

Attributes

ATS1CPW is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPW

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Write);
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AArch32.AT(R[t], TranslationStage_1, EL3, ATAccess_Write);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_Write);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11761
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.16 ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

The ATS1CPWP characteristics are:

Purpose

Performs a stage 1 address translation at PL1 and in the current Security state, where the value of
PSTATE.PAN determines if a write to the location will generate a Permission fault for a privileged
access.

Configurations

This instruction is present only when EL1 is capable of using AArch32 and FEAT_PAN2 is
implemented. Otherwise, direct accesses to ATS1CPWP are UNDEFINED.

Attributes

ATS1CPWP is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CPWP

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_WritePAN);
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_WritePAN);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AArch32.AT(R[t], TranslationStage_1, EL3, ATAccess_WritePAN);
 else
 AArch32.AT(R[t], TranslationStage_1, EL1, ATAccess_WritePAN);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11762
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.17 ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

The ATS1CUR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL0 and the current Security state, with
permissions as if reading from the given virtual address.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ATS1CUR are UNDEFINED.

Attributes

ATS1CUR is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CUR

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.AT(R[t], TranslationStage_1, EL0, ATAccess_Read);
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL0, ATAccess_Read);
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_1, EL0, ATAccess_Read);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11763
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.18 ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write

The ATS1CUW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL0 and the current Security state, with
permissions as if writing to the given virtual address.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ATS1CUW are UNDEFINED.

Attributes

ATS1CUW is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current
Security state, the resulting address is the IPA that is the output address of the stage 1 translation.
Otherwise, the resulting address is a PA.

Executing ATS1CUW

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.AT(R[t], TranslationStage_1, EL0, ATAccess_Write);
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL0, ATAccess_Write);
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_1, EL0, ATAccess_Write);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11764
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.19 ATS1HR, Address Translate Stage 1 Hyp mode Read

The ATS1HR characteristics are:

Purpose

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions
as if reading from the given virtual address.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to ATS1HR are UNDEFINED.

Attributes

ATS1HR is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the translation.

Executing ATS1HR

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL2, ATAccess_Read);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0111 0b1000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11765
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_1, EL2, ATAccess_Read);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11766
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.20 ATS1HW, Address Translate Stage 1 Hyp mode Write

The ATS1HW characteristics are:

Purpose

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions
as if writing to the given virtual address.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to ATS1HW are UNDEFINED.

Attributes

ATS1HW is a 32-bit System instruction.

Field descriptions

IA, bits [31:0]

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. The resulting address is the PA that is the output address
of the translation.

Executing ATS1HW

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.AT(R[t], TranslationStage_1, EL2, ATAccess_Write);

Input address for translation

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0111 0b1000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11767
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.AT(R[t], TranslationStage_1, EL2, ATAccess_Write);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11768
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.21 BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

Purpose

Invalidate all entries from branch predictors.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to BPIALL are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can
execute as a NOP.

Attributes

BPIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing BPIALL

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a BPIALLIS.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 BPIALLIS();
 else
 BPIALL();
elsif PSTATE.EL == EL2 then
 BPIALL();
elsif PSTATE.EL == EL3 then
 BPIALL();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11769
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.22 BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

The BPIALLIS characteristics are:

Purpose

Invalidate all entries from branch predictors Inner Shareable.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to BPIALLIS are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can
execute as a NOP.

Attributes

BPIALLIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing BPIALLIS

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 BPIALLIS();
elsif PSTATE.EL == EL2 then
 BPIALLIS();
elsif PSTATE.EL == EL3 then
 BPIALLIS();

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11770
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.23 BPIMVA, Branch Predictor Invalidate by VA

The BPIMVA characteristics are:

Purpose

Invalidate virtual address from branch predictors.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to BPIMVA are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can
execute as a NOP.

Attributes

BPIMVA is a 32-bit System instruction.

Field descriptions

Bits [31:0]

Virtual address to use.

Executing BPIMVA

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 BPIMVA(R[t]);
elsif PSTATE.EL == EL2 then
 BPIMVA(R[t]);
elsif PSTATE.EL == EL3 then
 BPIMVA(R[t]);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11771
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.24 CCSIDR, Current Cache Size ID Register

The CCSIDR characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

When FEAT_CCIDX is implemented, this register is used in conjunction with CCSIDR2.

Configurations

AArch32 System register CCSIDR bits [31:0] are architecturally mapped to AArch64 System
register CCSIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CCSIDR are UNDEFINED.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the
Security state select which Cache Size ID Register is accessible.

Attributes

CCSIDR is a 32-bit register.

Field descriptions

When FEAT_CCIDX is implemented:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [31:24]

Reserved, RES0.

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note
The C++ 17 specification has two defined parameters relating to the granularity of memory that
does not interfere. For generic software and tools, Arm will set the
hardware_destructive_interference_size parameter to 256 bytes and the
hardware_constructive_interference_size parameter to 64 bytes.

RES0

31 24

Associativity

23 3 2 0

LineSize
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11772
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Note

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters
that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity
does not have to be a power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Note

The C++ 17 specification has two defined parameters relating to the granularity of memory that
does not interfere. For generic software and tools, Arm will set the
hardware_destructive_interference_size parameter to 256 bytes and the
hardware_constructive_interference_size parameter to 64 bytes.

Accessing CCSIDR

If CSSELR.{Level, InD} is programmed to a cache level that is not implemented, then on a read of the CCSIDR
the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR read is treated as NOP.

• The CCSIDR read is UNDEFINED.

• The CCSIDR read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

UNKNOWN

31 28

NumSets

27 13

Associativity

12 3 2 0

LineSize

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11773
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = CCSIDR;
elsif PSTATE.EL == EL2 then
 R[t] = CCSIDR;
elsif PSTATE.EL == EL3 then
 R[t] = CCSIDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11774
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.25 CCSIDR2, Current Cache Size ID Register 2

The CCSIDR2 characteristics are:

Purpose

Provides information about the architecture of the currently selected cache.

Configurations

AArch32 System register CCSIDR2 bits [31:0] are architecturally mapped to AArch64 System
register CCSIDR2_EL1[31:0].

This register is present only when EL1 is capable of using AArch32 and FEAT_CCIDX is
implemented. Otherwise, direct accesses to CCSIDR2 are UNDEFINED.

The implementation includes one CCSIDR2 for each cache that it can access. CSSELR and the
Security state select which Cache Size ID Register is accessible.

Attributes

CCSIDR2 is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

NumSets, bits [23:0]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets
does not have to be a power of 2.

Accessing CCSIDR2

If CSSELR.{Level, InD} is programmed to a cache level that is not implemented, then on a read of the CCSIDR2
the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR2 read is treated as NOP.

• The CCSIDR2 read is UNDEFINED.

• The CCSIDR2 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);

RES0

31 24

NumSets

23 0

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11775
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = CCSIDR2;
elsif PSTATE.EL == EL2 then
 R[t] = CCSIDR2;
elsif PSTATE.EL == EL3 then
 R[t] = CCSIDR2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11776
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.26 CFPRCTX, Control Flow Prediction Restriction by Context

The CFPRCTX characteristics are:

Purpose

Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources
that predict execution based on information gathered within the target execution context or contexts.

Control flow predictions determined by the actions of code in the target execution context or
contexts appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented.
Otherwise, direct accesses to CFPRCTX are UNDEFINED.

Attributes

CFPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11777
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when EL2 is using AArch32 state or the Effective value of HCR_EL2.{E2H, TGE} is
not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0, this field is treated as the current VMID if any of the
following are true:

• EL2 is using AArch32 state.

• The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field is treated as 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

Executing CFPRCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11778
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CFPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_ControlFlow);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_ControlFlow);
elsif PSTATE.EL == EL2 then
 AArch32.RestrictPrediction(R[t], RestrictType_ControlFlow);
elsif PSTATE.EL == EL3 then
 AArch32.RestrictPrediction(R[t], RestrictType_ControlFlow);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11779
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.27 CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose

Identifies the type of cache, or caches, that are implemented at each level and can be managed using
the architected cache maintenance instructions that operate by set/way, up to a maximum of seven
levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache
hierarchy.

Configurations

AArch32 System register CLIDR bits [31:0] are architecturally mapped to AArch64 System register
CLIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CLIDR are UNDEFINED.

Attributes

CLIDR is a 32-bit register.

Field descriptions

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory
regions.

0b00 Not disclosed by this mechanism.

0b01 L1 cache is the highest Inner Cacheable level.

0b10 L2 cache is the highest Inner Cacheable level.

0b11 L3 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and
Invalidate instructions.

Note

This field does not describe the requirements for instruction cache invalidation. See CTR.DIC.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and
Invalidate instructions.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

ICB

31 30

LoUU

29 27

LoC

26 24

LoUIS

23 21

Ctype7

20 18

Ctype6

17 15

Ctype5

14 12

Ctype4

11 9

Ctype3

8 6

Ctype2

5 3

Ctype1

2 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11780
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
For a description of the values of this field, see Terminology for Clean, Invalidate, and Clean and
Invalidate instructions.

Note
This field does not describe the requirements for instruction cache invalidation. See CTR.DIC.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy.

0b000 No cache.

0b001 Instruction cache only.

0b010 Data cache only.

0b011 Separate instruction and data caches.

0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no
caches that can be managed using the architected cache maintenance instructions that operate by
set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type
field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing CLIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = CLIDR;
elsif PSTATE.EL == EL2 then
 R[t] = CLIDR;

coproc opc1 CRn CRm opc2

0b1111 0b001 0b0000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11781
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 R[t] = CLIDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11782
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.28 CONTEXTIDR, Context ID Register

The CONTEXTIDR characteristics are:

Purpose

Identifies the current Process Identifier and, when using the Short-descriptor translation table
format, the Address Space Identifier.

The value of the whole of this register is called the Context ID and is used by:

• The debug logic, for Linked and Unlinked Context ID matching.

• The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

This register is banked between CONTEXTIDR and CONTEXTIDR_S and CONTEXTIDR_NS.

AArch32 System register CONTEXTIDR bits [31:0] are architecturally mapped to AArch64
System register CONTEXTIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CONTEXTIDR are UNDEFINED.

The register format depends on whether address translation is using the Long-descriptor or the
Short-descriptor translation table format.

Attributes

CONTEXTIDR is a 32-bit register.

This register has the following instances:

• CONTEXTIDR, when EL3 is not implemented.

• CONTEXTIDR_S, when EL3 is implemented.

• CONTEXTIDR_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PROCID

31 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11783
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When TTBCR.EAE == 1:

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current
process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CONTEXTIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CONTEXTIDR_NS;
 else
 R[t] = CONTEXTIDR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CONTEXTIDR_NS;
 else
 R[t] = CONTEXTIDR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = CONTEXTIDR_S;
 else
 R[t] = CONTEXTIDR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

PROCID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11784
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CONTEXTIDR_NS = R[t];
 else
 CONTEXTIDR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CONTEXTIDR_NS = R[t];
 else
 CONTEXTIDR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CONTEXTIDR_S = R[t];
 else
 CONTEXTIDR_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11785
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.29 COSPRCTX, Clear Other Speculative Prediction Restriction by Context

The COSPRCTX characteristics are:

Purpose

Clear Other Speculative Prediction Restriction by Context applies to prediction resources not
managed by other speculation restriction System instructions.

The actions of code in the target execution context or contexts appearing in program order before
the instruction cannot exploitatively control any predictions occurring after the instruction is
complete and synchronized.

This instruction applies to all speculative access except:

• Cache Prefetch predictions.

• Control Flow predictions.

• Data Value predictions.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the PE that executed the original restriction instruction, and a subsequent Context
Synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation Resources so long as the
behavior described for completion of this instruction is met by the implementation.

On some implementations, the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used rarely, such as on the roll-over of an ASID or VMID, but
should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported and FEAT_SPECRES2 is implemented.
Otherwise, direct accesses to COSPRCTX are UNDEFINED.

Attributes

COSPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11786
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field is treated as 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when EL2 is using AArch32 state or the Effective value of HCR_EL2.{E2H, TGE} is
not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0, this field is treated as the current VMID if any of the
following are true:

• EL2 is using AArch32 state.

• The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs, or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies to an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11787
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing COSPRCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.COSPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_Other);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_Other);
elsif PSTATE.EL == EL2 then
 AArch32.RestrictPrediction(R[t], RestrictType_Other);
elsif PSTATE.EL == EL3 then
 AArch32.RestrictPrediction(R[t], RestrictType_Other);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11788
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.30 CP15DMB, Data Memory Barrier System instruction

The CP15DMB characteristics are:

Purpose

Performs a Data Memory Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the
DMB instruction instead.

Configurations

This instruction is present only when AArch32 is supported. Otherwise, direct accesses to
CP15DMB are UNDEFINED.

Attributes

CP15DMB is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing CP15DMB

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.CP15BEN == '0' then
 UNDEFINED;
 elsif ELIsInHost(EL0) && SCTLR_EL2.CP15BEN == '0' then
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 CP15DMB();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DMB();
elsif PSTATE.EL == EL2 then
 if HSCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DMB();
elsif PSTATE.EL == EL3 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11789
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DMB();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11790
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.31 CP15DSB, Data Synchronization Barrier System instruction

The CP15DSB characteristics are:

Purpose

Performs a Data Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the
DSB instruction instead.

Configurations

This instruction is present only when AArch32 is supported. Otherwise, direct accesses to
CP15DSB are UNDEFINED.

Attributes

CP15DSB is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing CP15DSB

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.CP15BEN == '0' then
 UNDEFINED;
 elsif ELIsInHost(EL0) && SCTLR_EL2.CP15BEN == '0' then
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 CP15DSB();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DSB();
elsif PSTATE.EL == EL2 then
 if HSCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DSB();
elsif PSTATE.EL == EL3 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11791
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15DSB();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11792
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.32 CP15ISB, Instruction Synchronization Barrier System instruction

The CP15ISB characteristics are:

Purpose

Performs an Instruction Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the
ISB instruction instead.

Configurations

This instruction is present only when AArch32 is supported. Otherwise, direct accesses to CP15ISB
are UNDEFINED.

Attributes

CP15ISB is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing CP15ISB

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.CP15BEN == '0' then
 UNDEFINED;
 elsif ELIsInHost(EL0) && SCTLR_EL2.CP15BEN == '0' then
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && SCTLR.CP15BEN == '0' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 CP15ISB();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15ISB();
elsif PSTATE.EL == EL2 then
 if HSCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15ISB();
elsif PSTATE.EL == EL3 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11793
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if SCTLR.CP15BEN == '0' then
 UNDEFINED;
 else
 CP15ISB();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11794
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.33 CPACR, Architectural Feature Access Control Register

The CPACR characteristics are:

Purpose

Controls access to trace, and to Advanced SIMD and floating-point functionality from EL0, EL1,
and EL3.

In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

Configurations

AArch32 System register CPACR bits [31:0] are architecturally mapped to AArch64 System
register CPACR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CPACR are UNDEFINED.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for
more information.

Note

In the register field descriptions, controls are described as applying at specified Privilege levels.
This is because, in Secure state, a PL1 control:

• Applies to execution in a Secure EL3 mode when EL3 is using AArch32.

• Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See Security state, Exception levels, and AArch32 execution privilege.

Attributes

CPACR is a 32-bit register.

Field descriptions

ASEDIS, bit [31]

Disables PL0 and PL1 execution of Advanced SIMD instructions.

0b0 This control permits execution of Advanced SIMD instructions at PL0 and PL1.

0b1 All instruction encodings that are Advanced SIMD instruction encodings, but are not
also floating-point instruction encodings, are UNDEFINED at PL0 and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field.
If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field
behaves as RAO/WI in Non-secure state, regardless of its actual value. This applies even if the field
is implemented as RAZ/WI.

For the list of instructions affected by this field, see Controls of Advanced SIMD operation that do
not apply to floating-point operation.

See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of
Advanced SIMD instructions in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

31

RES0

30 29 28

RES0

27 24

cp11

23 22

cp10

21 20

RES0

19 0

ASEDIS TRCDIS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11795
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [30:29]

Reserved, RES0.

TRCDIS, bit [28]

Traps PL0 and PL1 System register accesses to all implemented trace registers to Undefined mode.

0b0 This control has no effect on PL0 and PL1 System register accesses to trace registers.

0b1 PL0 and PL1 System register accesses to all implemented trace registers are trapped to
Undefined mode.

If the implementation does not include a trace unit, or does not include a System register interface
to the trace unit registers, this field is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this
field is implemented as a RW field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field
behaves as RAO/WI in Non-secure state, regardless of its actual value. This applies even if the field
is implemented as RAZ/WI.

Note

• The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace
unit implements FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are
UNDEFINED.

• The Arm architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:24]

Reserved, RES0.

cp11, bits [23:22]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field
then this field is UNKNOWN on a direct read of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10
is 0, this field behaves as RAZ/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• Access is RAZ/WI if EL3 is implemented and EL3 is using AArch32 and
!IsCurrentSecurityState(SS_Secure) and NSACR.cp10 == 0.

cp10, bits [21:20]

Defines the access rights for the Advanced SIMD and floating-point functionality. Possible values
of the field are:

0b00 PL0 and PL1 accesses to Advanced SIMD and floating-point registers or instructions
are UNDEFINED.

0b01 PL0 accesses to Advanced SIMD and floating-point registers or instructions are
UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11796
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10 Reserved. The effect of programming this field to this value is CONSTRAINED
UNPREDICTABLE. See Handling of System register control fields for Advanced SIMD
and floating-point operation.

0b11 This control permits full access to the Advanced SIMD and floating-point functionality
from PL0 and PL1.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.

• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

Note
The CPACR has no effect on Advanced SIMD and floating-point accesses from PL2. These can be
disabled by the HCPTR.TCP10 field.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10
is 0, this field behaves as RAZ/WI, regardless of its actual value.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or
trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.

• FPEXC.EN.

• If executing in Non-secure state:

— HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

— NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:

— CPACR.ASEDIS.

— If executing in Non-secure state, HCPTR.TASE and NSACR.NSASEDIS.

See the descriptions of the controls for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• Access is RAZ/WI if EL3 is implemented and EL3 is using AArch32 and
!IsCurrentSecurityState(SS_Secure) and NSACR.cp10 == 0.

Bits [19:0]

Reserved, RES0.

Accessing CPACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11797
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = CPACR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = CPACR;
elsif PSTATE.EL == EL3 then
 R[t] = CPACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 CPACR = R[t];
elsif PSTATE.EL == EL2 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11798
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 CPACR = R[t];
elsif PSTATE.EL == EL3 then
 CPACR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11799
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.34 CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose

Holds PE status and control information.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to CPSR are
UNDEFINED.

Attributes

CPSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is
regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N
is set to 0 if the result was positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0
otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some
instructions.

Bits [26:24]

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass Safe.

Prohibits speculative loads or stores that might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived
from a register that is being loaded from memory using a load instruction speculatively read from a
memory location. If PSTATE.SSBS is enabled, the address derived from the load instruction might
be from earlier in the coherence order than the latest store to that memory location with the same
virtual address.

0b0 Hardware is not permitted to load or store speculatively in the manner described.

N

31

Z

30

C

29

V

28

Q

27

RES0

26 24 23 22 21 20

GE

19 16

RES0

15 10

E

9

A

8

I

7

F

6 5 4

M

3 0

SSBS
PAN

RES0
DIT

RES0 RES1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11800
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Hardware is permitted to load or store speculatively in the manner described.

The value of this bit is usually set to the value described by the SCTLR.DSSBS bit on exceptions
to any mode except Hyp mode, and the value described by HSCTLR.DSSBS on exceptions to Hyp
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never.

0b0 The translation system is the same as Armv8.0.

0b1 Disables privileged read and write accesses to addresses accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current
Security state is 0, this bit is set to 1.

• When the target of the exception is EL3, from Secure state, and the value of the Secure
SCTLR.SPAN is 0, this bit is set to 1.

• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless
of the value of the Secure SCTLR.SPAN bit.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing.

0b0 The architecture makes no statement about the timing properties of any instructions.

0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive to the value of the
data being loaded or stored.

• For certain data processing instructions, the instruction takes a time that is
independent of:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

• For certain data processing instructions, the response of the instruction to
asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.

— The values of the NZCV flags.

The Operational Information section of a data processing instruction description indicates if that
instruction is affected by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11801
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]

Reserved, RES0.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0b0 Little-endian operation

0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.

The reset behavior of this field is:

• When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that
value also applies to the CPSR.E bit on reset, and therefore applies to software execution
from reset.

A, bit [8]

SError exception mask bit.

0b0 Exception not masked.

0b1 Exception masked.

I, bit [7]

IRQ mask bit.

0b0 Exception not masked.

0b1 Exception masked.

F, bit [6]

FIQ mask bit.

0b0 Exception not masked.

0b1 Exception masked.

Bit [5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

M, bits [3:0]

Current PE mode.

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11802
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1010 Hyp.

0b1011 Undefined.

0b1111 System.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11803
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.35 CPPRCTX, Cache Prefetch Prediction Restriction by Context

The CPPRCTX characteristics are:

Purpose

Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that
predict cache allocations based on information gathered within the target execution context or
contexts.

The actions of code in the target execution context or contexts appearing in program order before
the instruction cannot exploitatively control cache prefetch predictions occurring after the
instruction is complete and synchronized.

This instruction applies to all:

• Instruction caches.

• Data caches.

• TLB prefetching hardware used by the executing PE that applies to the supplied context or
contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of Cache Allocation Resources so long as the
behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented.
Otherwise, direct accesses to CPPRCTX are UNDEFINED.

Attributes

CPPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11804
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field is treated as 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when EL2 is using AArch32 state or the Effective value of HCR_EL2.{E2H, TGE} is
not {1, 1}.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0, this field is treated as the current VMID if any of the
following are true:

• EL2 is using AArch32 state.

• The Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11805
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing CPPRCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.CPPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL2 then
 AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);
elsif PSTATE.EL == EL3 then
 AArch32.RestrictPrediction(R[t], RestrictType_CachePrefetch);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11806
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.36 CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose

Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the
cache type, which is either instruction cache or data cache.

If FEAT_CCIDX is implemented, CSSELR also selects the current CCSIDR2.

Configurations

This register is banked between CSSELR and CSSELR_S and CSSELR_NS.

AArch32 System register CSSELR bits [31:0] are architecturally mapped to AArch64 System
register CSSELR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CSSELR are UNDEFINED.

Attributes

CSSELR is a 32-bit register.

This register has the following instances:

• CSSELR, when EL3 is not implemented.

• CSSELR_S, when EL3 is implemented.

• CSSELR_NS, when EL3 is implemented.

Field descriptions

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache. Permitted values are:

0b000 Level 1 cache.

0b001 Level 2 cache.

0b010 Level 3 cache.

0b011 Level 4 cache.

0b100 Level 5 cache.

0b101 Level 6 cache.

0b110 Level 7 cache.

All other values are reserved.

If CSSELR.{Level, InD} is programmed to a cache level that is not implemented, then the value for
this field on a read of CSSELR is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 4

Level

3 1 0

InD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11807
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
InD, bit [0]

Instruction not Data bit. Permitted values are:

0b0 Data or unified cache.

0b1 Instruction cache.

If CSSELR.{Level, InD} is programmed to a cache level that is not implemented, then the value for
this field on a read of CSSELR is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CSSELR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CSSELR_NS;
 else
 R[t] = CSSELR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CSSELR_NS;
 else
 R[t] = CSSELR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = CSSELR_S;
 else
 R[t] = CSSELR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b010 0b0000 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b010 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11808
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CSSELR_NS = R[t];
 else
 CSSELR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CSSELR_NS = R[t];
 else
 CSSELR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CSSELR_S = R[t];
 else
 CSSELR_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11809
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.37 CTR, Cache Type Register

The CTR characteristics are:

Purpose

Provides information about the architecture of the caches.

Configurations

AArch32 System register CTR bits [31:0] are architecturally mapped to AArch64 System register
CTR_EL0[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CTR are UNDEFINED.

Attributes

CTR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instruction cache invalidation to the Point of Unification is required for data to
instruction coherence.

0b1 Instruction cache invalidation to the Point of Unification is not required for data to
instruction coherence.

All PEs in the same Inner Shareable shareability domain must have a common value of this field.

Access to this field is RO.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Data cache clean to the Point of Unification is required for instruction to data coherence,
unless CLIDR.LoC == 0b000 or (CLIDR.LoUIS == 0b000 and CLIDR.LoUU == 0b000).

0b1 Data cache clean to the Point of Unification is not required for instruction to data
coherence.

If CTR.DIC is 1, then the value reported in this field must be 1.

The Effective value of IDC is 1 if any of the following are true:

• CTR.IDC == 1.

• CLIDR.LoC == 0b000.

• CLIDR.LoUIS == 0b000 and CLIDR.LoUU == 0b000.

31 30 29 28

CWG

27 24

ERG

23 20

DminLine

19 16

L1Ip

15 14

RES0

13 4

IminLine

3 0

RES1
RES0

IDC
DIC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11810
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
All PEs in the same Inner Shareable shareability domain must have a common Effective value of
IDC.

Access to this field is RO.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be
overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information
and either:

• The architectural maximum of 512 words (2KB) must be assumed.

• The Cache writeback granule can be determined from maximum cache line size encoded in
the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this
field as 0b0001. This applies, for example, to an implementation that supports only write-through
caches.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation
granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that
are controlled by the PE.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction
cache.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Reserved.

0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT).

0b10 Virtual Index, Physical Tag (VIPT).

0b11 Physical Index, Physical Tag (PIPT).

From Armv8.0, the value 0b01 is not permitted.

Access to this field is RO.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are
controlled by the PE.

This field has an IMPLEMENTATION DEFINED value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11811
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Access to this field is RO.

Accessing CTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = CTR;
elsif PSTATE.EL == EL2 then
 R[t] = CTR;
elsif PSTATE.EL == EL3 then
 R[t] = CTR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11812
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.38 DACR, Domain Access Control Register

The DACR characteristics are:

Purpose

Defines the access permission for each of the sixteen memory domains.

Configurations

This register is banked between DACR and DACR_S and DACR_NS.

AArch32 System register DACR bits [31:0] are architecturally mapped to AArch64 System register
DACR32_EL2[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DACR are UNDEFINED.

This register has no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation
table format.

Attributes

DACR is a 32-bit register.

This register has the following instances:

• DACR, when EL3 is not implemented.

• DACR_S, when EL3 is implemented.

• DACR_NS, when EL3 is implemented.

Field descriptions

D<n>, bits [2n+1:2n], for n = 15 to 0

Domain n access permission, where n = 0 to 15. Permitted values are:

0b00 No access. Any access to the domain generates a Domain fault.

0b01 Client. Accesses are checked against the permission bits in the translation tables.

0b11 Manager. Accesses are not checked against the permission bits in the translation tables.

The value 0b10 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

D15

31 30

D14

29 28

D13

27 26

D12

25 24

D11

23 22

D10

21 20

D9

19 18

D8

17 16

D7

15 14

D6

13 12

D5

11 10

D4

9 8

D3

7 6

D2

5 4

D1

3 2

D0

1 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0011 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11813
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = DACR_NS;
 else
 R[t] = DACR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = DACR_NS;
 else
 R[t] = DACR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = DACR_S;
 else
 R[t] = DACR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 DACR_NS = R[t];
 else
 DACR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 DACR_NS = R[t];
 else
 DACR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 DACR_S = R[t];
 else
 DACR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0011 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11814
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.39 DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

The DCCIMVAC characteristics are:

Purpose

Clean and Invalidate data or unified cache line by virtual address to PoC.

Configurations

AArch32 System register DCCIMVAC performs the same function as AArch64 System register DC
CIVAC.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCCIMVAC are UNDEFINED.

Attributes

DCCIMVAC is a 32-bit System instruction.

Field descriptions

VA, bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCCIMVAC

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.

For more information about faults, see Permission fault.

For more information about data cache maintenance instructions, see AArch32 data cache maintenance instructions
(DC*).

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11815
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11816
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.40 DCCISW, Data Cache line Clean and Invalidate by Set/Way

The DCCISW characteristics are:

Purpose

Clean and Invalidate data or unified cache line by set/way.

Configurations

AArch32 System register DCCISW performs the same function as AArch64 System register DC
CISW.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCCISW are UNDEFINED.

Attributes

DCCISW is a 32-bit System instruction.

Field descriptions

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DCCISW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11817
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_CleanInvalidate, CacheOpScope_SetWay);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11818
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.41 DCCMVAC, Data Cache line Clean by VA to PoC

The DCCMVAC characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoC.

Configurations

AArch32 System register DCCMVAC performs the same function as AArch64 System register DC
CVAC.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCCMVAC are UNDEFINED.

Attributes

DCCMVAC is a 32-bit System instruction.

Field descriptions

VA, bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCCMVAC

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*).

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoC);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoC);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11819
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.42 DCCMVAU, Data Cache line Clean by VA to PoU

The DCCMVAU characteristics are:

Purpose

Clean data or unified cache line by virtual address to PoU.

Configurations

AArch32 System register DCCMVAU performs the same function as AArch64 System register DC
CVAU.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCCMVAU are UNDEFINED.

Attributes

DCCMVAU is a 32-bit System instruction.

Field descriptions

VA, bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCCMVAU

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*).

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoU);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11820
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_PoU);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11821
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.43 DCCSW, Data Cache line Clean by Set/Way

The DCCSW characteristics are:

Purpose

Clean data or unified cache line by set/way.

Configurations

AArch32 System register DCCSW performs the same function as AArch64 System register DC
CSW.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCCSW are UNDEFINED.

Attributes

DCCSW is a 32-bit System instruction.

Field descriptions

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DCCSW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11822
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Clean, CacheOpScope_SetWay);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b1010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11823
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.44 DCIMVAC, Data Cache line Invalidate by VA to PoC

The DCIMVAC characteristics are:

Purpose

Invalidate data or unified cache line by virtual address to PoC.

Configurations

AArch32 System register DCIMVAC performs the same function as AArch64 System register DC
IVAC.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCIMVAC are UNDEFINED.

Attributes

DCIMVAC is a 32-bit System instruction.

Field descriptions

VA, bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing DCIMVAC

It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this
instruction can generate a watchpoint this is prioritized in the same way as other watchpoints.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.
For more information, see AArch32 data cache maintenance instructions (DC*).

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_PoC);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_PoC);

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11824
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_PoC);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11825
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.45 DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

Purpose

Invalidate data or unified cache line by set/way.

Configurations

AArch32 System register DCISW performs the same function as AArch64 System register DC
ISW.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DCISW are UNDEFINED.

Attributes

DCISW is a 32-bit System instruction.

Field descriptions

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.

• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing DCISW

If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

SetWay

31 4

Level

3 1 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11826
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL2 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_SetWay);
elsif PSTATE.EL == EL3 then
 AArch32.DC(R[t], CacheOp_Invalidate, CacheOpScope_SetWay);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11827
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.46 DFAR, Data Fault Address Register

The DFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

Configurations

This register is banked between DFAR and DFAR_S and DFAR_NS.

AArch32 System register DFAR bits [31:0] are architecturally mapped to AArch64 System register
FAR_EL1[31:0].

AArch32 System register DFAR bits [31:0] (DFAR_S) are architecturally mapped to AArch32
System register HDFAR[31:0] when EL2 is implemented, EL3 is implemented and the
implementation only supports execution in AArch32 state.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DFAR are UNDEFINED.

Attributes

DFAR is a 32-bit register.

This register has the following instances:

• DFAR, when EL3 is not implemented.

• DFAR_S, when EL3 is implemented.

• DFAR_NS, when EL3 is implemented.

Field descriptions

Bits [31:0]

VA of faulting address of synchronous Data Abort exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

VA of faulting address of synchronous Data Abort exception

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11828
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = DFAR_NS;
 else
 R[t] = DFAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = DFAR_NS;
 else
 R[t] = DFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = DFAR_S;
 else
 R[t] = DFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFAR_NS = R[t];
 else
 DFAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFAR_NS = R[t];
 else
 DFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 DFAR_S = R[t];
 else
 DFAR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11829
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.47 DFSR, Data Fault Status Register

The DFSR characteristics are:

Purpose

Holds status information about the last data fault.

Configurations

This register is banked between DFSR and DFSR_S and DFSR_NS.

AArch32 System register DFSR bits [31:0] are architecturally mapped to AArch64 System register
ESR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DFSR are UNDEFINED.

The current translation table format determines which format of the register is used.

Attributes

DFSR is a 32-bit register.

This register has the following instances:

• DFSR, when EL3 is not implemented.

• DFSR_S, when EL3 is implemented.

• DFSR_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 DFAR is valid.

0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Data Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

When FEAT_RAS is implemented:

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError exception. Possible values are:

0b00 Uncontainable (UC).

0b01 Unrecoverable state (UEU).

RES0

31 17 16

AET

15 14

CM

13 12 11 10 9 8

Domain

7 4

FS[3:0]

3 0

FnV
ExT

WnR

RES0
LPAE

FS[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11830
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b10 Restartable state (UEO).

0b11 Recoverable state (UER).

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other aborts.

In the event of multiple errors taken as a single SError exception, the overall PE error state is
reported.

Note
Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance
instruction generated the fault.

0b0 Abort not caused by execution of a cache maintenance instruction.

0b1 Abort caused by execution of a cache maintenance instruction, or on an address
translation.

On a synchronous Data Abort exception on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction.

0b0 Abort caused by a read instruction.

0b1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the
(coproc==0b1111) encoding space this bit always returns a value of 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FS, bits [10, 3:0]

Fault status bits. Possible values of FS[4:0] are:

0b00001 Alignment fault.

0b00010 Debug exception.

0b00011 Access flag fault, level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11831
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b00100 Fault on instruction cache maintenance.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01000 Synchronous External abort, not on translation table walk.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).

0b10101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault).

0b10110 SError exception.

0b11000 When FEAT_RAS is not implemented:

SError exception, from a parity or ECC error on memory access.

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Short-descriptor translation table lookup.

The FS field is split as follows:

• FS[4] is DFSR[10].

• FS[3:0] is DFSR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

Domain, bits [7:4]

The domain of the fault address.

Arm deprecates any use of this field, see The Domain field in the DFSR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11832
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This field is UNKNOWN for certain faults where the DFSR is updated and reported using the
Short-descriptor FSR encodings, see Table G5-30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 DFAR is valid.

0b1 DFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Data Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

When FEAT_RAS is implemented:

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError exception. Possible values are:

0b00 Uncontainable (UC).

0b01 Unrecoverable state (UEU).

0b10 Restartable state (UEO).

0b11 Recoverable state (UER).

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other aborts.

In the event of multiple errors taken as a single SError exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

31 17 16

AET

15 14

CM

13 12 11 10 9

RES0

8 6

STATUS

5 0

FnV
ExT

LPAE
RES0

WnR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11833
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance
instruction generated the fault.

0b0 Abort not caused by execution of a cache maintenance instruction.

0b1 Abort caused by execution of a cache maintenance instruction.

On a synchronous Data Abort exception on a translation table walk, this bit is UNKNOWN.

On an asynchronous fault, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ExT, bit [12]

External abort type.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction.

0b0 Abort caused by a read instruction.

0b1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the
(coproc==0b1111) encoding space this bit always returns a value of 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11834
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Asynchronous SError exception.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011001 When FEAT_RAS is not implemented:

Asynchronous SError exception, from a parity or ECC error on memory access.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 Alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11835
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = DFSR_NS;
 else
 R[t] = DFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = DFSR_NS;
 else
 R[t] = DFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = DFSR_S;
 else
 R[t] = DFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFSR_NS = R[t];
 else
 DFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 DFSR_NS = R[t];
 else
 DFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 DFSR_S = R[t];
 else
 DFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11836
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.48 DTLBIALL, Data TLB Invalidate All

The DTLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that are from any level of
the translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the Non-secure PL1&0 translation regime
and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DTLBIALL are UNDEFINED.

Attributes

DTLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing DTLBIALL

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11837
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.DTLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_NSH, TLBI_AllAttr);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11838
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.49 DTLBIASID, Data TLB Invalidate by ASID match

The DTLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DTLBIASID are UNDEFINED.

Attributes

DTLBIASID is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

RES0

31 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11839
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing DTLBIASID

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS, R[t]);
 else
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.DTLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11840
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.50 DTLBIMVA, Data TLB Invalidate by VA

The DTLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from data TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to DTLBIMVA are UNDEFINED.

Attributes

DTLBIMVA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11841
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing DTLBIMVA

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.DTLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.DTLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.DTLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.DTLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11842
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.51 DVPRCTX, Data Value Prediction Restriction by Context

The DVPRCTX characteristics are:

Purpose

Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that
predict execution based on information gathered within the target execution context or contexts.

Note

The prediction of the PSTATE.{N,Z,C,V} values is not considered a data value for this purpose.

Data value predictions determined by the actions of code in the target execution context or contexts
appearing in program order before the instruction cannot exploitatively control speculative
execution occurring after the instruction is complete and synchronized.

This instruction is guaranteed to be complete following a DSB that covers both read and write
behavior on the same PE as executed the original restriction instruction, and a subsequent context
synchronization event is required to ensure that the effect of the completion of the instructions is
synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior
described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID,
but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported and FEAT_SPECRES is implemented.
Otherwise, direct accesses to DVPRCTX are UNDEFINED.

Attributes

DVPRCTX is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

RES0

31 28 27

NS

26

EL

25 24

VMID

23 16

RES0

15 9 8

ASID

7 0

GVMID GASID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11843
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
NS, bit [26]

Security State.

0b0 Secure state.

0b1 Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, or is specified to
apply to a combination of Exception level and Security state that is not implemented, this instruction
is treated as a NOP.

VMID, bits [23:16]

Only applies when bit[27] is 0 and the target execution context is either:

• EL1.

• EL0 when the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1} or EL2 is using
AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (the Effective value of HCR_EL2.{E2H, TGE} is not
{1, 1} or ELUsingAArch32(EL2)), this field is treated as the current VMID.

When the instruction is executed at EL0 and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}, this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [15:9]

Reserved, RES0.

GASID, bit [8]

Execution of this instruction applies to all ASIDs or a specified ASID.

0b0 Applies to specified ASID for an EL0 target execution context.

0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [7:0]

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11844
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing DVPRCTX

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T7 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DVPRCTX == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCTLR_EL2.EnRCTX == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_DataValue);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EffectiveHCR_EL2_NVx() IN {'xx1'} then
 AArch64.SystemAccessTrap(EL2, 0x03);
 else
 AArch32.RestrictPrediction(R[t], RestrictType_DataValue);
elsif PSTATE.EL == EL2 then
 AArch32.RestrictPrediction(R[t], RestrictType_DataValue);
elsif PSTATE.EL == EL3 then
 AArch32.RestrictPrediction(R[t], RestrictType_DataValue);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11845
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.52 ELR_hyp, Exception Link Register (Hyp mode)

The ELR_hyp characteristics are:

Purpose

When taking an exception to Hyp mode, holds the address to return to.

Configurations

AArch32 System register ELR_hyp bits [31:0] are architecturally mapped to AArch64 System
register ELR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to ELR_hyp
are UNDEFINED.

Attributes

ELR_hyp is a 32-bit register.

Field descriptions

Bits [31:0]

Return address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_hyp

ELR_hyp is accessible only at Hyp mode and Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, ELR_hyp

MSR{<c>}{<q>} ELR_hyp, <Rn>

Return address

31 0

R M M1

0b0 0b1 0b1110

R M M1

0b0 0b1 0b1110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11846
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.53 FCSEIDR, FCSE Process ID register

The FCSEIDR characteristics are:

Purpose

Identifies whether the Fast Context Switch Extension (FCSE) is implemented.

From Armv8.0, the FCSE is not implemented, so this register is RAZ/WI. Software can access this
register to determine that the implementation does not include the FCSE.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
FCSEIDR are UNDEFINED.

Attributes

FCSEIDR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ/WI.

Accessing FCSEIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = FCSEIDR;
elsif PSTATE.EL == EL2 then
 R[t] = FCSEIDR;
elsif PSTATE.EL == EL3 then
 R[t] = FCSEIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RAZ/WI

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11847
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 FCSEIDR = R[t];
elsif PSTATE.EL == EL2 then
 FCSEIDR = R[t];
elsif PSTATE.EL == EL3 then
 FCSEIDR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11848
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.54 FPEXC, Floating-Point Exception Control register

The FPEXC characteristics are:

Purpose

Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and
reports floating-point status information.

Configurations

AArch32 System register FPEXC bits [31:0] are architecturally mapped to AArch64 System
register FPEXC32_EL2[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
FPEXC are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPEXC is a 32-bit register.

Field descriptions

EX, bit [31]

Exception bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RAZ/WI.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels,
except that setting this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.

• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

0b0 Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all
Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-point functionality at
all Exception levels.

Execution of Advanced SIMD and floating-point instructions in AArch32 state can be disabled or
trapped by the following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.

• FPEXC.EN.

• If executing in Non-secure state:

— HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

— NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

EX

31

EN

30 29 28

VV

27 26

RES0

25 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

DEX TFV
FP2V

IDF
IXF

UFF

IOF
DZF

OFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11849
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• For Advanced SIMD instructions only:

— CPACR.ASEDIS.

— If executing in Non-secure state, HCPTR.TASE and NSACR.NSASEDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64, then the Effective value of FPEXC.EN is 1. This includes when
EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1, and
the Effective value of HCR_EL2.RW is 1.

• If EL2 is using AArch64 and is enabled in the current Security state, HCR_EL2.TGE is 1,
and the Effective value of HCR_EL2.RW is 0, then it is IMPLEMENTATION DEFINED whether
the Effective value of FPEXC.EN is 1 or the value written to FPEXC.EN. However, Arm
deprecates using the value of FPEXC.EN to determine behavior.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an
instruction was generated by an unallocated encoding. The instruction must be in the encoding space
that is identified by the pseudocode function ExecutingCP10or11Instr() returning TRUE. This field
also indicates whether the FPEXC.TFV field is valid.

The meaning of this bit is:

0b0 The exception was generated by the attempted execution of an unallocated instruction
in the encoding space that is identified by the pseudocode function
ExecutingCP10or11Instr(). If FPEXC.TFV is RW then it is invalid and UNKNOWN. If
FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and UNKNOWN.

0b1 The exception was generated during the execution of an allocated encoding.
FPEXC.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and
implements the FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction Valid bit. From Armv8.0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.

VV, bit [27]

VECITR Valid bit. From Armv8.0, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11850
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the
cause of the exception and therefore whether FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are valid.

0b0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV,
VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG,
VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of
FPSCR.{Stride, Len} was nonzero. If FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} are RW
then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped
floating-point exceptions that had occurred at the time of the exception. Bits are set for
all trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When an implementation does not implement trapping of floating-point exceptions, access
to this field is RAZ/WI.

• When an implementation implements FPSCR.LEN,STRIDE as RAZ, access to this field is
RAO/WI.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector Iteration count. From Armv8.0, this field is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RES1.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Input Denormal exception occurred while FPSCR.IDE was 1:

0b0 Input Denormal exception has not occurred.

0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value of FPSCR.FZ16 is 1
does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Input Denormal floating-point exceptions,
access to this field is RAZ/WI.

Bits [6:5]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11851
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Inexact exception occurred while FPSCR.IXE was 1:

0b0 Inexact exception has not occurred.

0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Inexact floating-point exceptions, access
to this field is RAZ/WI.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Underflow exception occurred while FPSCR.UFE was 1:

0b0 Underflow exception has not occurred.

0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.

• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Underflow floating-point exceptions,
access to this field is RAZ/WI.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it
indicates whether an Overflow exception occurred while FPSCR.OFE was 1:

0b0 Overflow exception has not occurred.

0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Overflow floating-point exceptions,
access to this field is RAZ/WI.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

0b0 Divide by Zero exception has not occurred.

0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11852
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When an implementation does not implement trapping of Divide by Zero floating-point exceptions,
access to this field is RAZ/WI.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid,
it indicates whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

0b0 Invalid Operation exception has not occurred.

0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Invalid Operation floating-point
exceptions, access to this field is RAZ/WI.

Accessing FPEXC

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPEXC;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then

reg

0b1000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11853
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPEXC;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 R[t] = FPEXC;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPEXC = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPEXC = R[t];
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 FPEXC = R[t];

reg

0b1000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11854
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.55 FPSCR, Floating-Point Status and Control Register

The FPSCR characteristics are:

Purpose

Provides floating-point system status information and control.

Configurations

AArch32 System register FPSCR bits [31:27] are architecturally mapped to AArch64 System
register FPSR[31:27].

AArch32 System register FPSCR bit [7] is architecturally mapped to AArch64 System register
FPSR[7].

AArch32 System register FPSCR bits [4:0] are architecturally mapped to AArch64 System register
FPSR[4:0].

AArch32 System register FPSCR bits [26:15] are architecturally mapped to AArch64 System
register FPCR[26:15].

AArch32 System register FPSCR bits [12:8] are architecturally mapped to AArch64 System register
FPCR[12:8].

This register is present only when AArch32 is supported. Otherwise, direct accesses to FPSCR are
UNDEFINED.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to nonzero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPSCR is a 32-bit register.

Field descriptions

N, bit [31]

Negative condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

QC

27 26

DN

25

FZ

24 23 22 21 20 19

Len

18 16 15

RES0

14 13 12 11 10 9 8 7

RES0

6 5 4 3 2 1 0

AHP
RMode

Stride
FZ16

IDE
IXE

UFE
OFE

IOC
DZC

OFC
UFC

IXC
IDC

IOE
DZE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11855
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
C, bit [29]

Carry condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow condition flag. This is updated by floating-point comparison operations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced
SIMD integer operation has saturated since 0 was last written to this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AHP, bit [26]

Alternative half-precision control bit:

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point
formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE
half-precision format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN mode control bit:

0b0 NaN operands propagate through to the output of a floating-point operation.

0b1 Any operation involving one or more NaNs returns the Default NaN.

The value of this bit controls only scalar floating-point arithmetic. Advanced SIMD arithmetic
always uses the Default NaN setting, regardless of the value of the DN bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flush-to-zero mode control bit:

0b0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant
with the IEEE 754 standard.

0b1 Flush-to-zero mode enabled.

The value of this bit controls only scalar floating-point arithmetic. Advanced SIMD arithmetic
always uses the Flush-to-zero setting, regardless of the value of the FZ bit.

This bit has no effect on half-precision calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11856
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced
SIMD arithmetic always uses the Round to Nearest setting, regardless of the value of the RMode
bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

If this field is RW and is set to a value other than zero, some floating-point instruction encodings
are UNDEFINED. The instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation implements FPSCR.LEN,STRIDE as RAZ, access to this field is
RAZ/WI.

FZ16, bit [19]

When FEAT_FP16 is implemented:

Flush-to-zero mode control bit on half-precision data-processing instructions:

0b0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant
with the IEEE 754 standard.

0b1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision
calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

If this field is RW and is set to a value other than zero, some floating-point instruction encodings
are UNDEFINED. The instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation implements FPSCR.LEN,STRIDE as RAZ, access to this field is
RAZ/WI.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the IDC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the IDC bit.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11857
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Input Denormal floating-point exceptions,
access to this field is RAZ/WI.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the IXC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the IXC bit.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Inexact floating-point exceptions, access
to this field is RAZ/WI.

UFE, bit [11]

Underflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the UFC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs and
Flush-to-zero is not enabled, the PE does not update the UFC bit.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Underflow floating-point exceptions,
access to this field is RAZ/WI.

OFE, bit [10]

Overflow floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the OFC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the OFC bit.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Overflow floating-point exceptions,
access to this field is RAZ/WI.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the DZC
bit is set to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11858
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the DZC bit.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Divide by Zero floating-point exceptions,
access to this field is RAZ/WI.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

0b0 Untrapped exception handling selected. If the floating-point exception occurs, the IOC
bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does
not update the IOC bit.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always
use untrapped floating-point exception handling in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement trapping of Invalid Operation floating-point
exceptions, access to this field is RAZ/WI.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input
Denormal floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in
one or more of the floating-point calculations performed by the instruction, regardless of the value
of the IDE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or
more of the floating-point calculations performed by the instruction, regardless of the value of the
IXE bit.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode.
For more information, see Flushing denormalized numbers to zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11859
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or
more of the floating-point calculations performed by the instruction, if FPSCR.UFE is 0 or if
Flush-to-zero is enabled.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode.
For more information, see Flushing denormalized numbers to zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or
more of the floating-point calculations performed by the instruction, regardless of the value of the
OFE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide
by Zero floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the DZE bit.

Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one
or more of the floating-point calculations performed by the instruction, regardless of the value of
the DZE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the
Invalid Operation floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in
one or more of the floating-point calculations performed by the instruction, regardless of the value
of the IOE bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FPSCR

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then

reg

0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11860
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x00);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || CPACR.cp10 == '0x') then
 UNDEFINED;
 elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPSCR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPSCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPSCR;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11861
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 R[t] = FPSCR;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CPACR_EL1.FPEN != '11' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x00);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 ==
'0') || CPACR.cp10 == '0x') then
 UNDEFINED;
 elsif ELIsInHost(EL0) && CPTR_EL2.FPEN != '11' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPSCR = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif CPACR_EL1.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPSCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'

reg

0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11862
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 FPSCR = R[t];
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 FPSCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11863
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.56 FPSID, Floating-Point System ID register

The FPSID characteristics are:

Purpose

Provides top-level information about the floating-point implementation.

This register largely duplicates information held in the MIDR. Arm deprecates use of it.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
FPSID are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point
functionality.

Attributes

FPSID is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

Implementer codes are the same as those used for the MIDR.

For an implementation by Arm this field is 0x41, the ASCII code for A.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SW, bit [23]

Software bit.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The implementation provides a hardware implementation of the floating-point
instructions.

0b1 The implementation supports only software emulation of the floating-point instructions.

In Armv8-A, the only permitted value is 0b0.

Access to this field is RO.

Subarchitecture, bits [22:16]

Subarchitecture version number.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000000 VFPv1 architecture with an IMPLEMENTATION DEFINED subarchitecture.

0b0000001 VFPv2 architecture with Common VFP subarchitecture v1.

0b0000010 VFPv3 architecture, or later, with Common VFP subarchitecture v2. The VFP
architecture version is indicated by the MVFR0 and MVFR1 registers.

0b0000011 VFPv3 architecture, or later, with Null subarchitecture. The entire floating-point
implementation is in hardware, and no software support code is required. The VFP
architecture version is indicated by the MVFR0 and MVFR1 registers. This value can
be used only by an implementation that does not support the trap enable bits in the
FPSCR.

Implementer

31 24

SW

23

Subarchitecture

22 16

PartNum

15 8

Variant

7 4

Revision

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11864
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0000100 VFPv3 architecture, or later, with Common VFP subarchitecture v3, and support for
trap enable bits in FPSCR. The VFP architecture version is indicated by the MVFR0 and
MVFR1 registers.

For a subarchitecture designed by Arm the most significant bit of this field, register bit[22], is 0.
Values with a most significant bit of 0 that are not listed here are reserved.

When the subarchitecture designer is not Arm, the most significant bit of this field, register bit[22],
must be 1. Each implementer must maintain its own list of subarchitectures it has designed, starting
at subarchitecture version number 0x40.

In Armv8-A, the permitted values are 0b0000011 and 0b0000100.

Access to this field is RO.

PartNum, bits [15:8]

Part Number for the floating-point implementation, assigned by the implementer.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [7:4]

Variant number. Typically, this field distinguishes between different production variants of a single
product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the floating-point implementation.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing FPSID

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);

reg

0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11865
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPSID;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = FPSID;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 R[t] = FPSID;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else

reg

0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11866
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 return;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11867
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.57 HACR, Hyp Auxiliary Configuration Register

The HACR characteristics are:

Purpose

Controls trapping to Hyp mode of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0
operation.

Configurations

AArch32 System register HACR bits [31:0] are architecturally mapped to AArch64 System register
HACR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HACR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HACR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HACR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HACR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11868
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11869
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.58 HACTLR, Hyp Auxiliary Control Register

The HACTLR characteristics are:

Purpose

Controls IMPLEMENTATION DEFINED features of Hyp mode operation.

Configurations

AArch32 System register HACTLR bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HACTLR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HACTLR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HACTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HACTLR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11870
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACTLR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11871
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.59 HACTLR2, Hyp Auxiliary Control Register 2

The HACTLR2 characteristics are:

Purpose

Provides additional space to the HACTLR register to hold IMPLEMENTATION DEFINED trap
functionality.

Configurations

AArch32 System register HACTLR2 bits [31:0] are architecturally mapped to AArch64 System
register ACTLR_EL2[63:32].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HACTLR2 are UNDEFINED.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or
whether it causes UNDEFINED exceptions when accessed. The implementation of this register can be
detected by examining ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes

HACTLR2 is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HACTLR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HACTLR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11872
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 R[t] = HACTLR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACTLR2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11873
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.60 HADFSR, Hyp Auxiliary Data Fault Status Register

The HADFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Data Abort exceptions
taken to Hyp mode.

Configurations

AArch32 System register HADFSR bits [31:0] are architecturally mapped to AArch64 System
register AFSR0_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HADFSR are UNDEFINED.

This is an optional register. An implementation that does not require this register can implement it
as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HADFSR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HADFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HADFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11874
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 R[t] = HADFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HADFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HADFSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11875
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.61 HAIFSR, Hyp Auxiliary Instruction Fault Status Register

The HAIFSR characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED syndrome information for Prefetch Abort
exceptions taken to Hyp mode.

Configurations

AArch32 System register HAIFSR bits [31:0] are architecturally mapped to AArch64 System
register AFSR1_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HAIFSR are UNDEFINED.

This is an optional register. An implementation that does not require this register can implement it
as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAIFSR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HAIFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HAIFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11876
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 R[t] = HAIFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAIFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAIFSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11877
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.62 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

The HAMAIR0 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined
by HMAIR0. These IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for
the memory attribute encodings, and cannot change the memory attributes defined in HMAIR0.

Configurations

AArch32 System register HAMAIR0 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HAMAIR0 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAMAIR0 is a 32-bit register.

Field descriptions

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HAMAIR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HAMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11878
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 R[t] = HAMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAMAIR0 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11879
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.63 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

The HAMAIR1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined
by HMAIR1. These IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for
the memory attribute encodings, and cannot change the memory attributes defined in HMAIR1.

Configurations

AArch32 System register HAMAIR1 bits [31:0] are architecturally mapped to AArch64 System
register AMAIR_EL2[63:32].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HAMAIR1 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAMAIR1 is a 32-bit register.

Field descriptions

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HAMAIR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HAMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11880
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 R[t] = HAMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAMAIR1 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11881
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.64 HCPTR, Hyp Architectural Feature Trap Register

The HCPTR characteristics are:

Purpose

Controls:

• Trapping to Hyp mode of Non-secure access, at EL1 or EL0, to trace, and to Advanced SIMD
and floating-point functionality.

• Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

Note

Accesses to this functionality:

• From Non-secure modes other than Hyp mode are also affected by settings in the CPACR and
NSACR.

• From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority than those generated
by the HCPTR controls.

Configurations

AArch32 System register HCPTR bits [31:0] are architecturally mapped to AArch64 System
register CPTR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HCPTR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCPTR is a 32-bit register.

Field descriptions

TCPAC, bit [31]

Traps Non-secure EL1 MRC and MCR accesses to the CPACR to Hyp mode, reported using EC
syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.

Note

The CPACR is not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

31 30

RES0

29 21 20

RES0

19 16 15 14

RES1

13 12 11 10

RES1

9 0

TCPAC TAM TTA TASE
RES0

TCP10
TCP11
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11882
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps Non-secure EL1 and EL0 MRC, MCR, MRRC, and MCRR
accesses to all Activity Monitor registers to EL2, reported using EC syndrome values 0x03 and 0x04.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses from Non-secure EL1 and EL0 to Activity Monitor registers are trapped to
Hyp mode.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register MRC, MCR, MRRC, and MCRR accesses to all implemented
trace registers to Hyp mode, reported using EC syndrome values 0x05 and 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 Any Non-secure System register access to an implemented trace register is trapped to
Hyp mode, unless the access is trapped to EL1 by a CPACR or NSACR control, or the
access is from Non-secure EL0 and the definition of the register in the appropriate trace
architecture specification indicates that the register is not accessible from EL0. A
trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

If the implementation does not include a trace unit, or does not include a System register interface
to the trace unit registers, it is IMPLEMENTATION DEFINED whether this bit:

• Is RES0.

• Is RES1.

• Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in
Non-secure state this field behaves as RAO/WI, regardless of its actual value.

Note
• The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace

unit implements FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are
UNDEFINED, and a resulting Undefined Instruction exception is higher priority than a
HCPTR.TTA Hyp Trap exception.

• The Arm architecture does not provide traps on trace register accesses through the optional
memory-mapped debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11883
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bits [19:16]

Reserved, RES0.

TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode, reported using EC
syndrome value 0x07, when the value of HCPTR.TCP10 is 0.

0b0 This control does not cause any instructions to be trapped.

0b1 When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD
instruction in Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a
CPACR or NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field.
If it is not implemented as a RW field, then it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in
Non-secure state this field behaves as RAO/WI, regardless of its actual value. This applies even if
the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see Controls of Advanced SIMD operation that do
not apply to floating-point operation.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

TCP11, bit [11]

When FEAT_FP is implemented and FEAT_AdvSIMD is implemented:

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit
then this field is UNKNOWN on a direct read of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure
state this field behaves as RAO/WI, regardless of its actual value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11884
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• Access is RAO/WI if EL3 is implemented and EL3 is using AArch32 and
!IsCurrentSecurityState(SS_Secure) and NSACR.cp10 == 0.

Otherwise:

Reserved, RES1.

TCP10, bit [10]

When FEAT_FP is implemented and FEAT_AdvSIMD is implemented:

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode,
reported using EC syndrome value 0x07:

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempted access to Advanced SIMD and floating-point functionality from
Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR or
NSACR control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.

• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure
state this field behaves as RAO/WI, regardless of its actual value.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• Access is RAZ/WI if EL3 is implemented and EL3 is using AArch32 and
!IsCurrentSecurityState(SS_Secure) and NSACR.cp10 == 0.

Otherwise:

Reserved, RES1.

Bits [9:0]

Reserved, RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11885
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing HCPTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = HCPTR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HCPTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11886
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 HCPTR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCPTR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11887
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.65 HCR, Hyp Configuration Register

The HCR characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure
operations are trapped to Hyp mode.

Configurations

AArch32 System register HCR bits [31:0] are architecturally mapped to AArch64 System register
HCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control
registers to EL2, when EL2 is enabled in the current Security state.

MRC reads of the following registers are trapped and reported using EC syndrome value 0x03 and
MRRC reads are trapped and reported using EC syndrome value 0x04:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR,
AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 read accesses to the specified Virtual Memory controls are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

DC

12

BSU

11 10

FB

9

VA

8

VI

7

VF

6 5 4 3 2 1

VM

0

RES0
TRVM

HCD
RES0

TGE
TVM
TTLB

TPU
TPC

TWI
TWE

TID0
TID1

TID2
TID3

TSC
TIDCP

TAC
TSW

AMO
IMO

SWIO
PTW

FMO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11888
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables Non-secure EL1 and EL2 execution of HVC instructions, when
EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

0b0 HVC instruction execution is enabled at EL2 and EL1.

0b1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1.

The Undefined Instruction exception is taken to the Exception level at which the HVC
instruction is executed.

Note
HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

0b0 This control has no effect on execution at EL0.

0b1 When EL2 is not enabled in the current Security state, this control has no effect on
execution at EL0.

When EL2 is enabled in the current Security state, then:

• All exceptions that would be routed to EL1 are routed to EL2.

• The SCTLR.M bit is treated as being 0 for all purposes other than returning the
result of a direct read of SCTLR.

• The HCR.{FMO, IMO, AMO} bits are treated as being 1 for all purposes other
than returning the result of a direct read of HCR.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

• An exception return to EL1 is treated as an illegal exception return.

• Monitor mode execution of an MSR or CPS instruction that changes PSTATE.M
to a Non-secure EL1 mode is an illegal change to PSTATE.M. For more
information see Illegal changes to PSTATE.M.

Also, when HCR.TGE is 1:

• If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1
mode by changing SCR.NS from 0 to 1 results in SCR.NS remaining as 0.

• The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than
for the purpose of a direct read of HDCR.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11889
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
— Otherwise, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers
to EL2, when EL2 is enabled in the current Security state.

MCR writes of the following registers are trapped and reported using EC syndrome value 0x03 and
MCRR writes are trapped and reported using EC syndrome value 0x04:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR,
AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 write accesses to the specified virtual memory control registers are
trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to EL2,
when EL2 is enabled in the current Security state.

MCR and MRC accesses to the following system instructions are trapped and reported using EC
syndrome value 0x03:

TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS,
ITLBIALL, ITLBIMVA, ITLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, TLBIALL,
TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the specified TLB maintenance instructions are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current
Security state.

MRC and MCR accesses of the following system instructions are trapped and reported using EC
syndrome value 0x03:

• ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and
these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11890
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
Non-secure EL1 execution of those cache maintenance instructions to EL2, when EL2 is enabled in
the current Security state.

MRC and MCR accesses of the following system instructions are trapped and reported using EC
syndrome value 0x03:

• DCIMVAC, DCCIMVAC, DCCMVAC.

Note

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and
these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1
execution of those cache maintenance instructions by set/way to EL2, when EL2 is enabled in the
current Security state.

MRC and MCR accesses of the following system instructions are trapped and reported using EC
syndrome value 0x03:

• DCISW, DCCSW, DCCISW.

Note
An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and
these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11891
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control
Registers to EL2, when EL2 is enabled in the current Security state, from both Execution states.

MRC and MCR accesses of the following registers are trapped and reported using EC syndrome
value 0x03:

ACTLR and, if implemented, ACTLR2.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for
IMPLEMENTATION DEFINED System Registers to EL2, when EL2 is enabled in the current Security
state.

MRC and MCR accesses of the following encodings are trapped and reported using EC syndrome
value 0x03:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.

• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 ==
{0-7}.

• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the specified System register encodings for
IMPLEMENTATION DEFINED functionality are trapped to EL2.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality
accessed from Non-secure EL0 is trapped to EL2. Otherwise, it is UNDEFINED and the PE takes an
Undefined Instruction exception to Non-secure Undefined mode.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp mode,
regardless of the value of SCR.SCD.

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC
instructions that fail their condition code check, in the same way as with traps on other conditional
instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11892
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Note

• This trap is implemented only if the implementation includes EL3.

• SMC instructions are always UNDEFINED at PL0.

• This bit traps execution of the SMC instruction, reported using EC syndrome value 0x13. It
is not a routing control for the SMC exception. Hyp Trap exceptions and SMC exceptions
have different preferred return addresses.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is
enabled in the current Security state as follows:

• VMRS access to MVFR0, MVFR1, and MVFR2, reported using EC syndrome value 0x08,
unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are reported using EC syndrome value 0x03:

— ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1,
ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3,
ID_ISAR4, and ID_ISAR5.

— If FEAT_FGT is implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2.

— ID_ISAR6 is trapped to EL2.

— ID_DFR1 is trapped to EL2.

— This field traps all MRC accesses to registers in the following range that are not
already mentioned in this field description: coproc == p15, opc1 == 0, CRn ==
c0, CRm == {c2-c7}, opc2 == {0-7}.

— If FEAT_FGT is not implemented:

— ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or
ID_MMFR5 are trapped.

— ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

— ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_DFR1 are trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRC accesses
to registers not already mentioned, with coproc == p15, opc1 == 0, CRn == c0,
CRm == {c2-c7}, opc2 == {0-7}.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11893
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TID2, bit [17]

Trap ID group 2. Traps the following register MRC and MCR accesses to EL2, reported using EC
syndrome value 0x03, when EL2 is enabled in the current Security state:

• Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.

• Non-secure EL1 and EL0 writes to the CSSELR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 MRC reads of the following registers to EL2, reported
using EC syndrome value 0x03, when EL2 is enabled in the current Security state:

TCMTR, TLBTR, REVIDR, AIDR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state:

• Non-secure EL1 VMRS reads of FPSID reported using EC syndrome value 0x08.

• Non-secure EL0 and EL1 MCR and MRC accesses of JIDR reported using EC syndrome
value 0x05.

Note

• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is
UNDEFINED at EL0 then the Undefined Instruction exception takes precedence over this trap.

• The FPSID is not accessible at EL0.

• Writes to the FPSID are ignored, and not trapped by this control.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11894
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, reported using EC syndrome
value 0x01, when EL2 is enabled in the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to EL2,
if the instruction would otherwise have caused the PE to enter a low-power state and it
is not trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note
Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, reported using EC syndrome
value 0x01, when EL2 is enabled in the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to EL2,
if the instruction would otherwise have caused the PE to enter a low-power state and it
is not trapped by SCTLR.nTWI.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note
Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

0b0 This control has no effect on the Non-secure EL1&0 translation regime.

0b1 In Non-secure state:

• The SCTLR.M field behaves as 0 for all purposes other than a direct read of the
value of the field.

• The HCR.VM field behaves as 1 for all purposes other than a direct read of the
value of the field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11895
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• The memory type produced by the first stage of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2 and EL3 translation regimes.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from Non-secure EL1 or Non-secure EL0:

0b00 No effect.

0b01 Inner Shareable.

0b10 Outer Shareable.

0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from Non-secure EL1:

BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID,
ITLBIALL, ITLBIMVA, ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

0b0 This field has no effect on the operation of the specified instructions.

0b1 When one of the specified instruction is executed at Non-secure EL1, the instruction is
broadcast within the Inner Shareable shareability domain.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

VA, bit [8]

Virtual SError exception.

0b0 This mechanism is not making a virtual SError exception pending.

0b1 A virtual SError exception is pending because of this mechanism.

The virtual SError exception is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11896
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

VI, bit [7]

Virtual IRQ exception.

0b0 This mechanism is not making a virtual IRQ pending.

0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

VF, bit [6]

Virtual FIQ exception.

0b0 This mechanism is not making a virtual FIQ pending.

0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

SError exception Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.A, and
enables virtual exception signaling by the VA bit.

If the value of HCR.TGE is 0, then virtual SError exceptions are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all
purposes other than a direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.I, and enables virtual
exception signaling by the VI bit.

If the value of HCR.TGE is 0, then Virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all
purposes other than a direct read of the value of the bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11897
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of PSTATE.F, and enables virtual
exception signaling by the VF bit.

If the value of HCR.TGE is 0, then Virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all
purposes other than a direct read of the value of the bit.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made
as part of a stage 1 translation table walk is subject to a stage 2 translation. The combining of the
memory type attributes from the two stages of translation means the access might be made to a type
of Device memory. If this occurs then the value of this bit determines the behavior:

0b0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

0b1 The memory access generates a stage 2 Permission fault.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by
set/way instructions to perform a data cache clean and invalidate by set/way.

0b0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

0b1 Data cache invalidate by set/way instructions perform a data cache clean and invalidate
by set/way.

When this bit is set to 1, DCISW performs the same invalidation as a DCCISW instruction.

As a result of changes to the behavior of DCISW, this bit is redundant in Armv8. This bit can be
implemented as RES1.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11898
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation
regime.

0b0 Non-secure EL1&0 stage 2 address translation disabled.

0b1 Non-secure EL1&0 stage 2 address translation enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode
other than Hyp mode is consistent with HCR.VM being 1, regardless of the actual value of
HCR.VM, other than the value returned by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1
perform a data cache clean and invalidate. For the invalidate by set/way instruction this behavior
applies regardless of the value of the HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b000

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11899
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11900
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.66 HCR2, Hyp Configuration Register 2

The HCR2 characteristics are:

Purpose

Provides additional configuration controls for virtualization.

Configurations

AArch32 System register HCR2 bits [31:0] are architecturally mapped to AArch64 System register
HCR_EL2[63:32].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HCR2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCR2 is a 32-bit register.

Field descriptions

Bits [31:23]

Reserved, RES0.

TTLBIS, bit [22]

When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of
the following TLB maintenance instructions at EL1 to EL2:

TLBIALLIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVAALIS, TLBIMVAIS, and TLBIMVALIS

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified TLB maintenance instructions is trapped to
EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

RES0

31 23 22 21 20 19 18 17

RES0

16 7 6 5 4

RES0

3 2

ID

1

CD

0

TTLBIS
RES0

TOCU

TID4
TICAB

RES0

MIOCNCE TERR
TEA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11901
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TOCU, bit [20]

When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
DCCMVAU, ICIALLU, and ICIMVAU at EL1 to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure execution of the specified cache maintenance instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

TICAB, bit [18]

When FEAT_EVT is implemented:

Trap ICIALLUIS cache maintenance instructions. Traps execution of those cache maintenance
instructions at EL1 to EL2.

This applies to the following instructions:

ICIALLUIS.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to
EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11902
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TID4, bit [17]

When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.

• EL1 writes to CSSELR.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 and EL0 accesses to ID group 4 registers are trapped to
EL2.

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:7]

Reserved, RES0.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation
regime.

0b0 For the Non-secure PL1&0 translation regime, for permitted accesses to a memory
location that use a common definition of the Shareability and Cacheability of the
location, there must be no loss of coherency if the Inner Cacheability attribute for those
accesses differs from the Outer Cacheability attribute.

0b1 For the Non-secure PL1&0 translation regime, for permitted accesses to a memory
location that use a common definition of the Shareability and Cacheability of the
location, there might be a loss of coherency if the Inner Cacheability attribute for those
accesses differs from the Outer Cacheability attribute.

For more information, see Mismatched memory attributes.

This field can be implemented as RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

TEA, bit [5]

When FEAT_RAS is implemented:

Route synchronous External abort exceptions from EL0 and EL1 to EL2.

0b0 Does not route synchronous External abort exceptions from Non-secure EL0 and EL1
to EL2.

0b1 Route synchronous External abort exceptions from Non-secure EL0 and EL1 to EL2, if
not routed to EL3.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11903
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Reserved, RES0.

TERR, bit [4]

When FEAT_RAS is implemented:

Trap Error record accesses from EL1 to EL2. Traps MRC or MCR accesses, reported using EC
syndrome value 0x03, and MRRC or MCRR accesses, reported using EC syndrome value 0x04, to
the following registers from EL1 to EL2:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 generate a Trap exception to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when
HCR.VM==1, this control forces all stage 2 translations for instruction accesses to Normal memory
to be Non-cacheable.

0b0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime.

0b1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for
instruction accesses to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for
data accesses and translation table walks to Normal memory to be Non-cacheable for the
Non-secure PL1&0 translation regime.

0b0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime for
data accesses and translation table walks.

0b1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for data
accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11904
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HCR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HCR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HCR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCR2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b100

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11905
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.67 HDFAR, Hyp Data Fault Address Register

The HDFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception
that is taken to Hyp mode.

Configurations

AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch64 System
register FAR_EL2[31:0].

AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch32 System
register DFAR[31:0] (DFAR_S) when EL2 is implemented, EL3 is implemented and the
implementation only supports execution in AArch32 state.

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HDFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFAR is a 32-bit register.

Field descriptions

VA, bits [31:0]

VA of faulting address of synchronous Data Abort exception taken to Hyp mode.

On a Prefetch Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HDFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

31 0

VA of faulting address of synchronous Data
Abort exception taken to Hyp mode

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11906
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HDFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HDFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HDFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HDFAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11907
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.68 HIFAR, Hyp Instruction Fault Address Register

The HIFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception
that is taken to Hyp mode.

Configurations

AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch64 System register
FAR_EL2[63:32].

AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch32 System register
IFAR[31:0] (IFAR_S) when EL2 is implemented, EL3 is implemented and the implementation only
supports execution in AArch32 state.

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HIFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HIFAR is a 32-bit register.

Field descriptions

VA, bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HIFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

31 0

VA of faulting address of synchronous
Prefetch Abort exception taken to Hyp mode

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11908
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HIFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HIFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HIFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HIFAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11909
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.69 HMAIR0, Hyp Memory Attribute Indirection Register 0

The HMAIR0 characteristics are:

Purpose

Along with HMAIR1, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations for
memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.

• When AttrIndx[2] is 1, HMAIR1 is used.

Configurations

AArch32 System register HMAIR0 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HMAIR0 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HMAIR0 is a 32-bit register.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8n+7:8n], for n = 3 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11910
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HMAIR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

Attr<n>[3:0]
Meaning when Attr<n>[7:4]
is 0b0000

Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11911
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HMAIR0 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11912
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.70 HMAIR1, Hyp Memory Attribute Indirection Register 1

The HMAIR1 characteristics are:

Purpose

Along with HMAIR0, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations for
memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.

• When AttrIndx[2] is 1, HMAIR1 is used.

Configurations

AArch32 System register HMAIR1 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL2[63:32].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HMAIR1 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HMAIR1 is a 32-bit register.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 7 to 4

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

Attr7

31 24

Attr6

23 16

Attr5

15 8

Attr4

7 0

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11913
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HMAIR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

Attr<n>[3:0]
Meaning when Attr<n>[7:4]
is 0b0000

Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11914
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HMAIR1 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11915
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.71 HPFAR, Hyp IPA Fault Address Register

The HPFAR characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to Hyp mode.

Configurations

AArch32 System register HPFAR bits [31:0] are architecturally mapped to AArch64 System
register HPFAR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HPFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HPFAR is a 32-bit register.

Field descriptions

Execution in any Non-secure mode other than Hyp mode makes this register UNKNOWN.

FIPA[39:12], bits [31:4]

Bits [39:12] of the faulting intermediate physical address.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing HPFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HPFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

FIPA[39:12]

31 4

RES0

3 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11916
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 R[t] = HPFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HPFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HPFAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0110 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11917
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.72 HRMR, Hyp Reset Management Register

The HRMR characteristics are:

Purpose

If EL2 is the highest implemented Exception level and this register is implemented:

• A write to the register at EL2 can request a Warm reset.

• If EL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE
boots into on a Warm reset.

Configurations

AArch32 System register HRMR bits [31:0] are architecturally mapped to AArch64 System register
RMR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to HRMR are
UNDEFINED.

Only implemented if EL2 is the highest implemented Exception level. In this case:

• If EL2 can use AArch32 and AArch64 then this register must be implemented.

• If EL2 cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is
implemented.

Attributes

HRMR is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When EL2 can use AArch64, determines which Execution state the PE boots into after a Warm
reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If EL2 cannot use AArch64 this bit is RAZ/WI.

The reset behavior of this field is:

• When implemented as a RW field, this field resets to 0 on a Cold reset.

RES0

31 2

RR

1 0

AA64
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11918
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing HRMR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) &&
HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) &&
HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 R[t] = HRMR;
else
 UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) &&
HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) &&
HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 HRMR = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11919
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.73 HSCTLR, Hyp System Control Register

The HSCTLR characteristics are:

Purpose

Provides top level control of the system operation in Hyp mode.

Configurations

AArch32 System register HSCTLR bits [31:0] are architecturally mapped to AArch64 System
register SCTLR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HSCTLR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSCTLR is a 32-bit register.

Field descriptions

DSSBS, bit [31]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

0b0 PSTATE.SSBS is set to 0 on an exception to Hyp mode.

0b1 PSTATE.SSBS is set to 1 on an exception to Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

0b0 Exceptions, including reset, taken to A32 state.

0b1 Exceptions, including reset, taken to T32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

31

TE

30

RES1

29 28

RES0

27 26

EE

25 24

RES1

23 22

RES0

21 20 19 18 17 16

RES0

15 13

I

12 11

RES0

10 9 8 7 6 5 4 3

C

2

A

1

M

0

DSSBS RES0 WXN
RES1

RES0
RES1

RES1

nTLSMD
LSMAOE

CP15BEN
RES0

ITD
SED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11920
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table
walks in the EL2 translation regime, and the endianness of stage 2 translation table walks in the
PL1&0 translation regime.

0b0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode. Stage 1 translation table
walks in the EL2 translation regime, and stage 2 translation table walks in the PL1&0
translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1 translation table walks
in the EL2 translation regime, and stage 2 translation table walks in the PL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all
memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 translation regime is forced to XN for accesses
from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

0b0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of
instruction and unified cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11921
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable
memory.

0b1 All instruction access to Normal memory from EL2 can be cached at all levels of
instruction and unified cache.

If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the PL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

0b0 SETEND instruction execution is enabled at EL2.

0b1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

0b0 All IT instruction functionality is enabled at EL2.

0b1 Any attempt at EL2 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions.

— 10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11922
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control
by an instruction in an IT block.

ITD is optional, but if it is implemented in the HSCTLR then it must also be implemented in the
SCTLR_EL1, SCTLR_EL2, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from EL2:

0b0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED.

0b1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the HSCTLR then it must also be implemented in
the SCTLR_EL1, SCTLR_EL2, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL2, A32 and T32 Load Multiple and Store Multiple can
have an interrupt taken during the sequence memory accesses, and the memory accesses
are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL2 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2 that are
marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11923
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

0b0 All data access to Normal memory from EL2, and all accesses to the EL2 translation
tables, are Non-cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from EL2, and all accesses to the EL2 translation
tables, can be cached at all levels of data and unified cache.

This bit has no effect on the PL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element or data elements being accessed.

0b1 Alignment fault checking enabled when executing at EL2.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element or data elements being
accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

0b0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to Normal memory.

0b1 EL2 stage 1 address translation enabled.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing HSCTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11924
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HSCTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HSCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSCTLR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11925
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.74 HSR, Hyp Syndrome Register

The HSR characteristics are:

Purpose

Holds syndrome information for an exception taken to Hyp mode.

Configurations

AArch32 System register HSR bits [31:0] are architecturally mapped to AArch64 System register
ESR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HSR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSR is a 32-bit register.

Field descriptions

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR
is UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.
Possible values of this field are:

EC == 0b000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

EC == 0b000001

Trapped WFI or WFE instruction execution.

Conditional WFE and WFI instructions that fail their condition code check do not cause
an exception.

See ISS encoding for exception from a WFI or WFE instruction.

EC == 0b000011

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for exception from an MCR or MRC access.

EC == 0b000100

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC
0b000000.

See ISS encoding for exception from an MCRR or MRRC access.

EC == 0b000101

Trapped MCR or MRC access with (coproc==0b1110).

See ISS encoding for exception from an MCR or MRC access.

EC

31 26

IL

25

ISS

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11926
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
EC == 0b000110

Trapped LDC or STC access.

The only architected uses of these instructions are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.

See ISS encoding for exception from an LDC or STC instruction.

EC == 0b000111

Access to Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE,
TCP10} control.

Excludes exceptions generated because Advanced SIMD and floating-point are not
implemented. These are reported with EC value 0b000000.

See ISS encoding for exception from an access to SIMD or floating-point functionality,
resulting from HCPTR.

EC == 0b001000

Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

See ISS encoding for exception from an MCR or MRC access.

EC == 0b001100

Trapped MRRC access with (coproc==0b1110).

See ISS encoding for exception from an MCRR or MRRC access.

EC == 0b001110

Illegal exception return to AArch32 state.

See ISS encoding for exception from an Illegal state or PC alignment fault.

EC == 0b010001

Exception on SVC instruction execution in AArch32 state routed to EL2.

See ISS encoding for exception from HVC or SVC instruction execution.

EC == 0b010010

HVC instruction execution in AArch32 state, when HVC is not disabled.

See ISS encoding for exception from HVC or SVC instruction execution.

EC == 0b010011

Trapped execution of SMC instruction in AArch32 state.

See ISS encoding for exception from SMC instruction execution.

EC == 0b100000

Prefetch Abort from a lower Exception level.

See ISS encoding for exception from a Prefetch Abort.

EC == 0b100001

Prefetch Abort taken without a change in Exception level.

See ISS encoding for exception from a Prefetch Abort.

EC == 0b100010

PC alignment fault exception.

See ISS encoding for exception from an Illegal state or PC alignment fault.

EC == 0b100100

Data Abort exception from a lower Exception level.

See ISS encoding for exception from a Data Abort.

EC == 0b100101

Data Abort exception taken without a change in Exception level.

See ISS encoding for exception from a Data Abort.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11927
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When
this bit is valid, possible values of this bit are:

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.

• Prefetch Aborts.

• Data Abort exceptions for which the HSR.ISS.ISV field is 0.

• When the EC value is 0b001110, indicating an Illegal state exception.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

ISS encoding for exceptions with an unknown reason

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or is not accessible in
the current PE mode in the current Security state, including:

— A read access using a System register encoding pattern that is not allocated for reads or that does not
permit reads in the current PE mode and Security state.

— A write access using a System register encoding pattern that is not allocated for writes or that does not
permit writes in the current PE mode and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• The attempted execution of a short vector floating-point instruction.

RES0

24 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11928
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.

— An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.

— An HLT instruction when disabled by EDSCR.HDE.

• An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.An SMC instruction when
disabled by SCR.SCD or SCR_EL3.SMD.An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (Banked register) or MRS (Banked
register) instruction that would access a Banked register that is not accessible from the Security state and PE
mode at which the instruction was executed.

Note

An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the instruction is that it is
UNDEFINED, see MSR (banked register) and MRS (banked register).

• Attempted execution, in Debug state, of:

— A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value of
HCR.TGE is 1.

— A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using AArch32
and the value of SCR.NS is 0, or when EL3 is using AArch64 and the value of SCR_EL3.NS is 0.

— A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

Undefined Instruction exception, when the value of HCR.TGE is 1 describes the configuration settings for a trap that
returns an HSR.EC value of 0b000000.

ISS encoding for exception from a WFI or WFE instruction

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

CV

24

COND

23 20

RES0

19 1

TI

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11929
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

0b0 WFI trapped.

0b1 WFE trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR.{TWE, TWI} describe the configuration settings for this trap.

ISS encoding for exception from an MCR or MRC access

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10 9

Rt

8 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11930
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11931
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for traps from an MCR or MCR access using coproc 0b1111 that
are reported using EC value 0b000011:

• HCR.{TID1, TID2, TID3}, for Non-secure accesses to the ID registers at EL0 and EL1, trapped to EL2.

• HCR.TIDCP, for Non-secure accesses to lockdown, DMA, and TCM operations at EL0 and EL1, trapped to
EL2.

• HCR.{TSW, TPC, TPU}, for Non-secure execution of cache maintenance instructions at EL1, trapped to
EL2.

• HCR.TTLB, for Non-secure execution of TLB maintenance instructions at EL1, trapped to EL2.

• HCR.TAC, for Non-secure accesses to the Auxiliary Control Register at EL1, trapped to EL2.

• HDCR.{TPM, TPMCR}, for Non-secure accesses to Performance Monitors registers at EL0 and EL1,
trapped to EL2.

• HCPTR.TAM, for Non-secure accesses to Activity Monitor registers at EL0 and EL1, trapped to EL2.

• HCPTR.TCPAC, for Non-secure accesses to the CPACR at EL1, trapped to EL2.

• HCR.{TRVM, TVM}, for Non-secure accesses to virtual memory control registers at EL1, trapped to EL2.

• HSTR.T<n>, for Non-secure accesses to System registers in the (coproc == 1111) encoding space at EL0 and
EL1, trapped to EL2.

• HDCR.TTRF, for Non-secure accesses to trace filter control registers from System register, trapped to EL2.

• CNTHCTL.PL1PCEN, for Non-secure accesses to the Generic Timer registers at EL0 and EL1, trapped to
EL2.

• HCR2.TERR, for Non-secure accesses to the RAS error record registers at EL1, trapped to EL2.

The following fields describe configuration settings for traps from an MCR or MRC access using coproc 0b1110 that
are reported using EC value 0b000101:

• HCR.TID0, for Non-secure accesses to the Primary device identification registers at EL0 and EL1, trapped
to EL2.

• HCPTR.TTA, for Non-secure accesses to trace registers from System register, trapped to EL2.

• HDCR.TDRA, for Non-secure accesses to Debug ROM registers from System register, trapped to EL2.

• HDCR.TDOSA, for Non-secure accesses to powerdown debug registers from System register, trapped to
EL2.

• HDCR.TDA, for Non-secure accesses to debug registers from System register, trapped to EL2.

The following fields describes configuration settings for traps from a VMSR or VMRS access that are reported
using EC value 0b001000:

• HCR.TID0, for Non-secure accesses to the Primary device identification registers at EL1, for ID group traps
trapped to EL2.

• HCR.TID3, for Non-secure accesses to the Detailed feature identification registers at EL0 and EL1, for ID
group traps trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11932
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• HCPTR.{TCP10, TCP11}, for Non-secure accesses to FPSCR, FPSID, FPEXC, MVFR0, MVFR1, and
MVFR2, trapped to EL2.

ISS encoding for exception from an MCRR or MRRC access

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.

CV

24

COND

23 20

Opc1

19 16

RES0

15 14

Rt2

13 10 9

Rt

8 5

CRm

4 1 0

RES0 Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11933
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for traps from an MCRR or MRRC access using coproc 0b1111
that are reported using EC value 0b000100:

• HCR.{TRVM, TVM}, for Non-secure accesses to virtual memory control registers at EL1, trapped to EL2.

• HDCR.TPM, for Non-secure accesses to Performance Monitors registers at EL0 and EL1, trapped to EL2.

• HCPTR.TAM, for Non-secure accesses to Activity Monitor registers at EL0 and EL1, trapped to EL2.

• CNTHCTL.{PL1PCEN, PL1PCTEN}, for Non-secure accesses to the Generic Timer registers at EL0 and
EL1, trapped to EL2.

• HSTR.T<n>, for Non-secure accesses to System registers in the (coproc == 1111) encoding space at EL0 and
EL1, trapped to EL2.

• HCR2.TERR, for Non-secure accesses to the RAS error record registers at EL1, trapped to EL2.

The following fields describe configuration settings for traps from an MCRR or MRRC access using coproc 0b1110
that are reported using EC value 0b001100:

• HCPTR.TTA, for Non-secure accesses to trace registers from System register, trapped to EL2.

• HDCR.TDRA, for Non-secure accesses to Debug ROM registers from System register, trapped to EL2.

ISS encoding for exception from an LDC or STC instruction

CV

24

COND

23 20

imm8

19 12

RES0

11 9

Rn

8 5 4

AM

3 1 0

Offset Direction
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11934
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate
form of the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0b0 Subtract offset.

0b1 Add offset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11935
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This bit corresponds to the U bit in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 Literal unindexed.

LDC instruction in A32 instruction set only.

For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

0b110 Literal offset.

LDC instruction only.

For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDCR.TDA describes the configuration settings for the trap that is reported using EC value 0b000110.

ISS encoding for exception from an access to SIMD or floating-point functionality, resulting from
HCPTR

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not implemented, or
because the value of HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

CV

24

COND

23 20

RES0

19 6

TA

5 4

coproc

3 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11936
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality.

0b0 Exception was not caused by trapped use of Advanced SIMD functionality.

0b1 Exception was caused by trapped use of Advanced SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped
to Hyp mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see Controls of Advanced SIMD operation that do not apply to
floating-point operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the HSR.TA field returns the value 1, this field returns the value 0b1010. Otherwise, this field
is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000111:

• HCPTR.{TCP11, TCP10}, for Non-secure accesses to the SIMD and floating-point registers, trapped to EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11937
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• HCPTR.TASE, for Non-secure accesses to Advanced SIMD functionality, trapped to EL2.

ISS encoding for exception from HVC or SVC instruction execution

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

• For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.For
the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its
condition code check. Therefore, the syndrome information for these exceptions does not require conditionality
information.

Supervisor Call exception, when the value of HCR.TGE is 1 describes the configuration settings for the trap reported
with EC value 0b010001.

ISS encoding for exception from SMC instruction execution

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.

0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

24 16

imm16

15 0

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11938
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

0b0 The instruction was unconditional, or was conditional and passed its condition code
check.

0b1 The instruction was conditional, and might have failed its condition code check.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR.TSC describes the configuration settings for this trap for instructions executed in Non-secure EL1.

ISS encoding for exception from a Prefetch Abort

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 HIFAR is valid.

0b1 HIFAR is not valid, and holds an UNKNOWN value.

RES0

24 11 10

EA

9 8 7 6

IFSC

5 0

FnV
RES0

RES0
S1PTW
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11939
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011101 When FEAT_RAS is not implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11940
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100010 Debug exception.

0b110000 TLB conflict abort.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode, generating
exceptions that are reported in the HSR with EC value 0b100000:

• Abort exceptions, when the value of HCR.TGE is 1.

• Routing debug exceptions to EL2 using AArch32.

ISS encoding for exception from an Illegal state or PC alignment fault

Bits [24:0]

Reserved, RES0.

For more information about the Illegal state exception, see:

• Illegal changes to PSTATE.M.

• Illegal return events from AArch32 state.

• Legal returns that set PSTATE.IL to 1.

• The Illegal Execution state exception.

For more information about the PC alignment fault exception, see Branching to an unaligned PC.

ISS encoding for exception from a Data Abort

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

RES0

24 0

24

SAS

23 22 21 20

SRT

19 16 15

AR

14

RES0

13 12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV
SSE
RES0

WnR
S1PTW

Bits [11:10]
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11941
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Abort exceptions generated by stage 2 address translations for
which all the following apply to the instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT,
LDRSB, LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT,
STRB, STLB, or STRBT instruction.

• The instruction is not performing register writeback.

• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, as described in Data Aborts in Memory access mode, and otherwise indicates whether
ISS[23:14] hold a valid syndrome.

Note

In the A32 instruction set, LDR*T and STR*T instructions always perform register writeback and
therefore never return a valid instruction syndrome.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0
on a synchronous External abort on a stage 2 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting
operation.

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates
whether the data item must be sign extended. For these cases, the possible values of this bit are:

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [20]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11942
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
SRT, bits [19:16]

Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting
instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [13:12]

Reserved, RES0.

Bits[11:10]

When FEAT_RAS is implemented:

AET

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the
SError exception.

0b00 Uncontainable (UC).

0b01 Unrecoverable state (UEU).

0b10 Restartable state (UEO).

0b11 Recoverable state (UER).

On a synchronous Data Abort exception, this field is RES0.

In the event of multiple errors taken as a single SError exception, the overall PE error state is
reported.

Note

Software can use this information to determine what recovery might be possible. The recovery
software must also examine any implemented fault records to determine the location and extent of
the error.

When FEAT_RAS is not implemented, or when DFSC is not 0b010001:

• Bit[11] is RES0.

• Bit[10] forms the FnV field.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11943
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Bit[1] of bits [11:10]

Reserved, RES0.

FnV, bit[0] of bits [11:10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 HDFAR is valid.

0b1 HDFAR is not valid, and holds an UNKNOWN value.

When FEAT_RAS is not implemented, this field is valid only if DFSC is 0b010000. It is RES0 for all
other aborts.

When FEAT_RAS is implemented:

• If DFSC is 0b010000, this field is valid.

• If DFSC is 0b010001, this bit forms part of the AET field, becoming AET[0].

• This field is RES0 for all other aborts.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External Abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache Maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance
or address translation instruction. For synchronous faults, the possible values of this bit are:

0b0 Fault not generated by a cache maintenance or address translation instruction.

0b1 Fault generated by a cache maintenance or address translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11944
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read
instruction.

0b0 Abort caused by a read instruction.

0b1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

On an asynchronous Data Abort exception:

• When FEAT_RAS is not implemented, this bit is UNKNOWN.

• When FEAT_RAS is implemented, this bit is RES0.

Note

Armv8.2 requires the implementation of FEAT_RAS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Asynchronous SError exception.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011001 When FEAT_RAS is not implemented:

Asynchronous SError exception, from a parity or ECC error on memory access.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11945
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b100001 Alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions that
are reported in the HSR with EC value 0b100100:

• Abort exceptions, when the value of HCR.TGE is 1.

• Routing debug exceptions to EL2 using AArch32.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported in the
HSR with EC value of 0b100000 or 0b100100:

• Hyp mode control of Non-secure access permissions.

• Memory fault reporting in Hyp mode.

Accessing HSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HSR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11946
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11947
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.75 HSTR, Hyp System Trap Register

The HSTR characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to System registers in the
coproc == 0b1111 encoding space:

• By the CRn value used to access the register using MCR or MRC instruction.

• By the CRm value used to access the register using MCRR or MRRC instruction.

Configurations

AArch32 System register HSTR bits [31:0] are architecturally mapped to AArch64 System register
HSTR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HSTR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSTR is a 32-bit register.

Field descriptions

Bits [31:16, 14, 4]

Reserved, RES0.

T<n>, bit [n], for n = 15, 13 to 5, 3 to 0

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR or MRC
instructions, reported using EC syndrome value 0x03, and MCRR or MRRC instructions, reported
using EC syndrome value 0x04, to the System registers in the coproc == 0b1111 encoding space are
trapped to Hyp mode:

0b0 This control has no effect on Non-secure EL0 or EL1 accesses to System registers.

0b1 Any Non-secure EL1 MCR or MRC access with coproc == 0b1111 and CRn == <n> is
trapped to Hyp mode. A Non-secure EL0 MCR or MRC access with these values is
trapped to Hyp mode only if the access is not UNDEFINED when the value of this field is
0.

Any Non-secure EL1 MCRR or MRRC access with coproc == 0b1111 and CRm == <n>
is trapped to Hyp mode. A Non-secure EL0 MCRR or MRRC access with these values
is trapped to Hyp mode only if the access is not UNDEFINED when the value of this field
is 0.

For example, when HSTR.T7 is 1, for instructions executed at Non-secure EL1:

• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to Hyp
mode.

• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to
Hyp mode.

RES0

31 16 15 14 13 12 11 10

T9

9

T8

8

T7

7

T6

6

T5

5 4

T3

3

T2

2

T1

1

T0

0

T15
RES0

T13

T10
T11

T12

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11948
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HSTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HSTR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HSTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSTR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSTR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b011

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11949
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.76 HTCR, Hyp Translation Control Register

The HTCR characteristics are:

Purpose

The control register for stage 1 of the EL2 translation regime.

Note
This stage of translation always uses the Long-descriptor translation table format.

Configurations

AArch32 System register HTCR bits [31:0] are architecturally mapped to AArch64 System register
TCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HTCR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry.

0b0 Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

31 30 29 28 27 26 25 24 23

RES0

22 14

SH0

13 12 11 10 9 8

RES0

7 3

T0SZ

2 0

RES1
IMPLEMENTATION DEFINED

RES0
HWU62

RES1
HPD

HWU59
HWU60

HWU61

ORGN0 IRGN0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11950
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry.

0b0 Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry.

0b0 Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11951
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HPD, bit [24]

When FEAT_AA32HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and
PXNTable, in the PL2 translation regime.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11952
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is 2(32-T0SZ) bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HTCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HTCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HTCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0000 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11953
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.77 HTPIDR, Hyp Software Thread ID Register

The HTPIDR characteristics are:

Purpose

Provides a location where software running in Hyp mode can store thread identifying information
that is not visible to Non-secure software executing at EL0 or EL1, for hypervisor management
purposes.

The PE makes no use of this register.

Configurations

AArch32 System register HTPIDR bits [31:0] are architecturally mapped to AArch64 System
register TPIDR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HTPIDR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Note

The PE never updates this register.

Attributes

HTPIDR is a 32-bit register.

Field descriptions

TID, bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HTPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11954
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 R[t] = HTPIDR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HTPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HTPIDR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTPIDR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11955
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.78 HTTBR, Hyp Translation Table Base Register

The HTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address
translation in the EL2 translation regime, and other information for this translation regime.

Configurations

AArch32 System register HTTBR bits [47:1] are architecturally mapped to AArch64 System
register TTBR0_EL2[47:1].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HTTBR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HTTBR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of HTCR.T0SZ as follows:

• If HTCR.T0SZ is 0 or 1, x = 5 - HTCR.T0SZ.

• If HTCR.T0SZ is greater than 1, x = 14 - HTCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 48

BADDR

47 32

BADDR

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11956
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by HTTBR is a member
of a common set that can be used by every PE in the Inner Shareable domain for which the value of
HTTBR.CnP is 1.

0b0 The translation table entries pointed to by HTTBR are permitted to differ from
corresponding entries for HTTBR for other PEs in the Inner Shareable domain. This is
not affected by the value of HTTBR.CnP on those other PEs.

0b1 The translation table entries pointed to by HTTBR are the same as the translation table
entries pointed to by HTTBR on every other PE in the Inner Shareable domain for which
the value of HTTBR.CnP is 1.

Note

If the value of the HTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those HTTBRs do not point to the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HTTBR

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (HTTBR<63:32>, HTTBR<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 (R[t2], R[t]) = (HTTBR<63:32>, HTTBR<31:0>);

coproc CRm opc1

0b1111 0b0010 0b0100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11957
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HTTBR = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11958
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.79 HVBAR, Hyp Vector Base Address Register

The HVBAR characteristics are:

Purpose

Holds the vector base address for any exception that is taken to Hyp mode.

Configurations

AArch32 System register HVBAR bits [31:0] are architecturally mapped to AArch64 System
register VBAR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HVBAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HVBAR is a 32-bit register.

Field descriptions

VBA, bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to
this Exception level. Bits[4:0] of an exception vector are the exception offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:0]

Reserved, RES0.

Accessing HVBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = HVBAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

Vector Base Address

31 5

RES0

4 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11959
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 R[t] = HVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HVBAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HVBAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11960
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.80 ICIALLU, Instruction Cache Invalidate All to PoU

The ICIALLU characteristics are:

Purpose

Invalidate all instruction caches of the PE executing the instruction to the Point of Unification. If
branch predictors are architecturally visible, also flush branch predictors.

Configurations

AArch32 System register ICIALLU performs the same function as AArch64 System register IC
IALLU.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ICIALLU are UNDEFINED.

Attributes

ICIALLU is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing ICIALLU

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a ICIALLUIS.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.IC(CacheOpScope_ALLUIS);
 else
 AArch32.IC(CacheOpScope_ALLU);
elsif PSTATE.EL == EL2 then
 AArch32.IC(CacheOpScope_ALLU);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11961
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL3 then
 AArch32.IC(CacheOpScope_ALLU);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11962
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.81 ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

The ICIALLUIS characteristics are:

Purpose

Invalidate all instruction caches in the Inner Shareable domain of the PE executing the instruction
to the Point of Unification. If branch predictors are architecturally visible, also flush branch
predictors.

Configurations

AArch32 System register ICIALLUIS performs the same function as AArch64 System register IC
IALLUIS.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ICIALLUIS are UNDEFINED.

Attributes

ICIALLUIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing ICIALLUIS

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this
instruction.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TICAB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TICAB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch32.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL2 then
 AArch32.IC(CacheOpScope_ALLUIS);
elsif PSTATE.EL == EL3 then
 AArch32.IC(CacheOpScope_ALLUIS);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11963
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.82 ICIMVAU, Instruction Cache line Invalidate by VA to PoU

The ICIMVAU characteristics are:

Purpose

Invalidate instruction cache line by virtual address to PoU.

Configurations

AArch32 System register ICIMVAU performs the same function as AArch64 System register IC
IVAU.

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ICIMVAU are UNDEFINED.

Attributes

ICIMVAU is a 32-bit System instruction.

Field descriptions

VA, bits [31:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing ICIMVAU

Execution of this instruction might require an address translation from VA to PA, and that translation might fault.

For more information about faults, see Permission fault.

For more information about data cache maintenance instructions, see AArch32 instruction cache maintenance
instructions (IC*).

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

Virtual address to use

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11964
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.IC(R[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL2 then
 AArch32.IC(R[t], CacheOpScope_PoU);
elsif PSTATE.EL == EL3 then
 AArch32.IC(R[t], CacheOpScope_PoU);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11965
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.83 ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_AFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_AFR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_AFR0 are UNDEFINED.

Attributes

ID_AFR0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [15:12]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [11:8]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [7:4]

IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED, bits [3:0]

IMPLEMENTATION DEFINED.

Accessing ID_AFR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RES0

31 16 15 12 11 8 7 4 3 0

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11966
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_AFR0;
elsif PSTATE.EL == EL2 then
 R[t] = ID_AFR0;
elsif PSTATE.EL == EL3 then
 R[t] = ID_AFR0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11967
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.84 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_DFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_DFR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_DFR0 are UNDEFINED.

Attributes

ID_DFR0 is a 32-bit register.

Field descriptions

TraceFilt, bits [31:28]

Armv8.4 Self-hosted Trace Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

PerfMon, bits [27:24]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv1 implemented.

0b0010 Performance Monitors Extension, PMUv2 implemented.

0b0011 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0011, and adds support for:

• Extended 16-bit PMEVTYPER<n>.evtCount field.

• If EL2 is implemented, the HDCR.HPMD control.

0b0101 PMUv3 for Armv8.4. As 0b0100, and adds support for the PMMIR register.

31 28

PerfMon

27 24

MProfDbg

23 20

MMapTrc

19 16

CopTrc

15 12

MMapDbg

11 8

CopSDbg

7 4

CopDbg

3 0

TraceFilt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11968
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0110 PMUv3 for Armv8.5. As 0b0101, and adds support for:

• 64-bit event counters.

• If EL2 is implemented, the HDCR.HCCD control.

• If EL3 is implemented, the SDCR.SCCD control.

0b0111 PMUv3 for Armv8.7. As 0b0110, and adds support for:

• The PMCR.FZO and, if EL2 is implemented, HDCR.HPMFZO controls.

• If EL3 is implemented and using AArch64, the MDCR_EL3.{MPMX,MCCD}
controls.

0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include 0x0040 to 0x00BF and 0x4040
to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if a reserved or
unimplemented PMU event number is selected.

0b1001 PMUv3 for Armv8.9. As 0b1000, and:

• Updates the definitions of existing PMU events.

• Adds support for the EDECR.PME control.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

FEAT_PMUv3p9 implements the functionality identified by the value 0b1001.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

From Armv8.9, if FEAT_PMUv3 is implemented, the value 0b1000 is not permitted.

Note

In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 and PMUv2 are not
permitted in an Armv8 implementation.

Access to this field is RO.

MProfDbg, bits [23:20]

M-profile Debug. Support for memory-mapped debug model for M-profile processors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for M-profile Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11969
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Access to this field is RO.

MMapTrc, bits [19:16]

Memory-mapped Trace. Support for memory-mapped trace model.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

Access to this field is RO.

CopTrc, bits [15:12]

Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding
space.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for Arm trace architecture, with System registers access.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

For more information, see the Arm® Embedded Trace Macrocell Architecture Specification,
ETMv4 (ARM IHI 0064).

Access to this field is RO.

MMapDbg, bits [11:8]

Memory-mapped Debug. Support for Armv7 memory-mapped debug model for A and R-profile
processors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0100 Support for Armv7, v7 Debug architecture, with memory-mapped access.

0b0101 Support for Armv7, v7.1 Debug architecture, with memory-mapped access.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

The optional memory map defined by Armv8 is not compatible with Armv7.

Access to this field is RO.

CopSDbg, bits [7:4]

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110
encoding space, for an A-profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0.
Otherwise, this field reads the same as bits [3:0].

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CopDbg, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11970
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0010 Armv6, v6 Debug architecture, with System registers access.

0b0011 Armv6, v6.1 Debug architecture, with System registers access.

0b0100 Armv7, v7 Debug architecture, with System registers access.

0b0101 Armv7, v7.1 Debug architecture, with System registers access.

0b0110 Armv8 debug architecture.

0b0111 Armv8 debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

0b1011 Armv8.9 debug architecture, FEAT_Debugv8p9.

All other values are reserved.

The values 0b0000, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted in Armv8.

FEAT_VHE implements the functionality identified by the value 0b0111.

FEAT_Debugv8p2 implements the functionality identified by the value 0b1000.

FEAT_Debugv8p4 implements the functionality identified by the value 0b1001.

FEAT_Debugv8p8 implements the functionality identified by the value 0b1010.

FEAT_Debugv8p9 implements the functionality identified by the value 0b1011.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

From Armv8.9, the value 0b1010 is not permitted.

Access to this field is RO.

Accessing ID_DFR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_DFR0;
elsif PSTATE.EL == EL2 then
 R[t] = ID_DFR0;
elsif PSTATE.EL == EL3 then
 R[t] = ID_DFR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11971
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.85 ID_DFR1, Debug Feature Register 1

The ID_DFR1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_DFR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_DFR1_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_DFR1 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_DFR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

HPMN0, bits [7:4]

Zero PMU event counters for a Guest operating system.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Setting HDCR.HPMN to zero has CONSTRAINED UNPREDICTABLE behavior.

0b0001 Setting HDCR.HPMN to zero has defined behavior.

All other values are reserved.

If FEAT_PMUv3 is not implemented, FEAT_FGT is not implemented, or EL2 is not implemented,
the only permitted value is 0b0000.

FEAT_HPMN0 implements the functionality identified by the value 0b0001.

From Armv8.8, in an implementation that includes FEAT_PMUv3, FEAT_FGT, and EL2, the value
0b0000 is not permitted.

Access to this field is RO.

MTPMU, bits [3:0]

Multi-threaded PMU extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented, it is
IMPLEMENTATION DEFINED whether PMEVTYPER<n>.MT are read/write or RES0.

RES0

31 8

HPMN0

7 4

MTPMU

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11972
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 FEAT_MTPMU and FEAT_PMUv3 implemented. PMEVTYPER<n>.MT are
read/write. When FEAT_MTPMU is disabled, the Effective values of
PMEVTYPER<n>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If FEAT_PMUv3 is implemented,
PMEVTYPER<n>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

From Armv8.6, in an implementation that includes FEAT_PMUv3, the value 0b0000 is not
permitted.

In an implementation that does not include FEAT_PMUv3, the value 0b0001 is not permitted.

Access to this field is RO.

Accessing ID_DFR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_DFR1) || boolean IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR_EL2.TID3") &&
HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_DFR1) || boolean IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR.TID3") &&
HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_DFR1;
elsif PSTATE.EL == EL2 then
 R[t] = ID_DFR1;
elsif PSTATE.EL == EL3 then
 R[t] = ID_DFR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11973
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.86 ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR0 are UNDEFINED.

Attributes

ID_ISAR0 is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

Divide, bits [27:24]

Indicates the implemented Divide instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds SDIV and UDIV in the T32 instruction set.

0b0010 As for 0b0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Debug, bits [23:20]

Indicates the implemented Debug instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds BKPT.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Coproc, bits [19:16]

Indicates the implemented System register access instructions.

RES0

31 28

Divide

27 24

Debug

23 20

Coproc

19 16 15 12

BitField

11 8

BitCount

7 4

Swap

3 0

CmpBranch
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11974
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented, except for instructions separately attributed by the architecture to
provide access to AArch32 System registers and System instructions.

0b0001 Adds generic CDP, LDC, MCR, MRC, and STC.

0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.

0b0011 As for 0b0010, and adds generic MCRR and MRRC.

0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

CmpBranch, bits [15:12]

Indicates the implemented combined Compare and Branch instructions in the T32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds CBNZ and CBZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

BitField, bits [11:8]

Indicates the implemented BitField instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds BFC, BFI, SBFX, and UBFX.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

BitCount, bits [7:4]

Indicates the implemented Bit Counting instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds CLZ.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Swap, bits [3:0]

Indicates the implemented Swap instructions in the A32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds SWP and SWPB.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11975
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing ID_ISAR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR0;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR0;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11976
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.87 ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR1_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR1 are UNDEFINED.

Attributes

ID_ISAR1 is a 32-bit register.

Field descriptions

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No support for Jazelle.

0b0001 Adds the BXJ instruction, and the J bit in the PSR. This setting might indicate a trivial
implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the BX instruction, and the T bit in the PSR.

0b0010 As for 0b0001, and adds the BLX instruction. PC loads have BX-like behavior.

0b0011 As for 0b0010, and guarantees that data-processing instructions in the A32 instruction
set with the PC as the destination and the S bit clear have BX-like behavior.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Access to this field is RO.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates.

Jazelle

31 28 27 24 23 20

IfThen

19 16

Extend

15 12 11 8

Except

7 4

Endian

3 0

Interwork Immediate Except_AR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11977
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds:

• The MOVT instruction

• The MOV instruction encodings with zero-extended 16-bit immediates.

• The T32 ADD and SUB instruction encodings with zero-extended 12-bit
immediates, and the other ADD, ADR, and SUB encodings cross-referenced by
the pseudocode for those encodings.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

IfThen, bits [19:16]

Indicates the implemented If-Then instructions in the T32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the IT instructions, and the IT bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Extend, bits [15:12]

Indicates the implemented Extend instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar
instructions means non-Advanced SIMD instructions.

0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.

0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB,
UXTAB16, and UXTAH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Except_AR, bits [11:8]

Indicates the implemented A and R-profile exception-handling instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SRS and RFE instructions, and the A and R-profile forms of the CPS
instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Except, bits [7:4]

Indicates the implemented exception-handling instructions in the A32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented. This indicates that the User bank and Exception return forms of the
LDM and STM instructions are not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11978
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers)
instruction versions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Endian, bits [3:0]

Indicates the implemented Endian instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SETEND instruction, and the E bit in the PSRs.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

Accessing ID_ISAR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR1;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR1;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11979
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.88 ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR2 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR2_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR2 are UNDEFINED.

Attributes

ID_ISAR2 is a 32-bit register.

Field descriptions

Reversal, bits [31:28]

Indicates the implemented Reversal instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the REV, REV16, and REVSH instructions.

0b0010 As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

PSR_AR, bits [27:24]

Indicates the implemented A and R-profile instructions to manipulate the PSR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the MRS and MSR instructions, and the exception return forms of data-processing
instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

The exception return forms of the data-processing instructions are:

• In the A32 instruction set, data-processing instructions with the PC as the destination and the
S bit set. These instructions might be affected by the WithShifts attribute.

• In the T32 instruction set, the SUBS PC,LR,#N instruction.

Access to this field is RO.

Reversal

31 28

PSR_AR

27 24

MultU

23 20

MultS

19 16

Mult

15 12 11 8

MemHint

7 4 3 0

MultiAccessInt LoadStore
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11980
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the UMULL and UMLAL instructions.

0b0010 As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SMULL and SMLAL instructions.

0b0010 As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT,
SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB,
SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the
Q bit in the PSRs.

0b0011 As for 0b0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD,
SMLSDX, SMLSLD, SMLSLDX, SMMLA, SMMLAR, SMMLS, SMMLSR,
SMMUL, SMMULR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Access to this field is RO.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No additional instructions implemented. This means only MUL is implemented.

0b0001 Adds the MLA instruction.

0b0010 As for 0b0001, and adds the MLS instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No support. This means the LDM and STM instructions are not interruptible.

0b0001 LDM and STM instructions are restartable.

0b0010 LDM and STM instructions are continuable.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11981
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the PLD instruction.

0b0010 Adds the PLD instruction. (0b0001 and 0b0010 have identical effects.)

0b0011 As for 0b0001 (or 0b0010), and adds the PLI instruction.

0b0100 As for 0b0011, and adds the PLDW instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Access to this field is RO.

LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No additional load/store instructions implemented.

0b0001 Adds the LDRD and STRD instructions.

0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH,
LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLEXB, STLEXH,
STLEX, STLEXD) instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Accessing ID_ISAR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR2;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR2;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR2;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11982
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.89 ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR3 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR3_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR3 are UNDEFINED.

Attributes

ID_ISAR3 is a 32-bit register.

Field descriptions

T32EE, bits [31:28]

Indicates the implemented T32EE instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to
include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. This means there are no NOP instructions that do not have any
register dependencies.

0b0001 Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits
additional NOP-compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions.

T32EE

31 28

TrueNOP

27 24

T32Copy

23 20 19 16 15 12

SVC

11 8

SIMD

7 4

Saturate

3 0

TabBranch SynchPrim
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11983
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported. This means that in the T32 instruction set, encoding T1 of the MOV
(register) instruction does not support a copy from a low register to a low register.

0b0001 Adds support for T32 instruction set encoding T1 of the MOV (register) instruction,
copying from a low register to a low register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization
Primitive instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If SynchPrim_frac == 0b000, no Synchronization Primitives implemented.

0b0001 If SynchPrim_frac == 0b000, adds the LDREX and STREX instructions.

If SynchPrim_frac == 0b011, also adds the CLREX, LDREXB, STREXB, and STREXH
instructions.

0b0010 If SynchPrim_frac == 0b000, as for [0b001, 0b011] and also adds the LDREXD and
STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

SVC, bits [11:8]

Indicates the implemented SVC instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented.

0b0001 Adds the SVC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SSAT and USAT instructions, and the Q bit in the PSRs.

0b0011 As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16,
QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX,
SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11984
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16,
UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX,
USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16
instructions. Also adds support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the
general-purpose registers. In an implementation that supports Advanced SIMD and floating-point
instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented Advanced
SIMD instructions.

Access to this field is RO.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. This means no non-Advanced SIMD saturate instructions are
implemented.

0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Accessing ID_ISAR3

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR3;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR3;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR3;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11985
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.90 ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR5.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR4 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR4_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR4 are UNDEFINED.

Attributes

ID_ISAR4 is a 32-bit register.

Field descriptions

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SWP or SWPB instructions not implemented.

0b0001 SWP or SWPB implemented but only in a uniprocessor context. SWP and SWPB do not
guarantee whether memory accesses from other Requesters can come between the load
memory access and the store memory access of the SWP or SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

PSR_M, bits [27:24]

Indicates the implemented M-profile instructions to modify the PSRs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the M-profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

SynchPrim_frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization
Primitive instructions.

SWP_frac

31 28

PSR_M

27 24 23 20

Barrier

19 16

SMC

15 12 11 8 7 4

Unpriv

3 0

SynchPrim_frac WithShifts
Writeback
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11986
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim ==
0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds
the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD
instructions.

0b0011 If SynchPrim == 0b0001, adds the LDREX, STREX, CLREX, LDREXB, LDREXH,
STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. Barrier operations are provided only as System instructions in the
(coproc==0b1111) encoding space.

0b0001 Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

SMC, bits [15:12]

Indicates the implemented SMC instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented.

0b0001 Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• If EL3 is implemented, the only permitted value is 0b0001.

• If neither EL3 nor EL2 is implemented, the only permitted value is 0b0000.

Access to this field is RO.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support
writeback addressing modes. These instructions support all of their writeback
addressing modes.

0b0001 Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Nonzero shifts supported only in MOV and shift instructions.

0b0001 Adds support for shifts of loads and stores over the range LSL 0-3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11987
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0011 As for 0b0001, and adds support for other constant shift options, both on load/store and
other instructions.

0b0100 As for 0b0011, and adds support for register-controlled shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Access to this field is RO.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None implemented. No T variant instructions are implemented.

0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.

0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

Accessing ID_ISAR4

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR4;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR4;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR4;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11988
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.91 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR4.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR5 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR5_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR5 are UNDEFINED.

Attributes

ID_ISAR5 is a 32-bit register.

Field descriptions

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are
stored in vectors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The VCMLA and VCADD instructions are not implemented in AArch32.

0b0001 The VCMLA and VCADD instructions are implemented in AArch32.

All other values are reserved.

FEAT_FCMA implements the functionality identified by 0b0001.

From Armv8.3, the only permitted value is 0b0001.

Access to this field is RO.

RDM, bits [27:24]

Indicates support for the VQRDMLAH and VQRDMLSH instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No VQRDMLAH and VQRDMLSH instructions implemented.

0b0001 VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates support for the CRC32 instructions in AArch32 state.

VCMA

31 28

RDM

27 24

RES0

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

SEVL

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11989
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 CRC32 instructions are not implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions are
implemented.

All other values are reserved.

FEAT_CRC32 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Access to this field is RO.

SHA2, bits [15:12]

Indicates support for the SHA2 instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA2 instructions implemented.

0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

SHA1, bits [11:8]

Indicates support for the SHA1 instructions are implemented in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

AES, bits [7:4]

Indicates support for the AES instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC implemented.

0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating on 64-bit data
quantities.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

Access to this field is RO.

SEVL, bits [3:0]

Indicates support for the SEVL instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SEVL is implemented as a NOP.

0b0001 SEVL is implemented as Send Event Local.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11990
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing ID_ISAR5

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR5;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR5;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR5;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11991
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.92 ID_ISAR6, Instruction Set Attribute Register 6

The ID_ISAR6 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and
ID_ISAR5.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_ISAR6 bits [31:0] are architecturally mapped to AArch64 System
register ID_ISAR6_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_ISAR6 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_ISAR6 is a 32-bit register.

Field descriptions

CLRBHB, bits [31:28]

Indicates support for the CLRBHB instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 CLRBHB instruction is not implemented.

0b0001 CLRBHB instruction is implemented.

All other values are reserved.

FEAT_CLRBHB implements the functionality identified by 0b0001.

From Armv8.9, the value 0b0000 is not permitted.

Access to this field is RO.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in
AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are
implemented.

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

CLRBHB

31 28

I8MM

27 24

BF16

23 20

SPECRES

19 16

SB

15 12

FHM

11 8

DP

7 4

JSCVT

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11992
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Access to this field is RO.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 BFloat16 instructions are not implemented.

0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAB, VFMAT, and VMMLA instructions with
BF16 operand or result types are implemented.

All other values are reserved.

FEAT_AA32BF16 implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

SPECRES, bits [19:16]

Indicates support for prediction invalidation instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Prediction invalidation instructions are not implemented.

0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.

0b0010 As 0b0001, and the COSPRCTX instruction is implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

FEAT_SPECRES2 implements the functionality identified by 0b0010.

From Armv8.5, the value 0b0000 is not permitted.

From Armv8.9, the value 0b0001 is not permitted.

Access to this field is RO.

SB, bits [15:12]

Indicates support for SB instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

From Armv8.5, the only permitted value is 0b0001.

Access to this field is RO.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in
AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 VFMAL and VMFSL instructions not implemented.

0b0001 VFMAL and VMFSL instructions implemented.

FEAT_FHM implements the functionality identified by the value 0b0001.

Access to this field is RO.

DP, bits [7:4]

Indicates support for dot product instructions in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No dot product instructions implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11993
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 VUDOT and VSDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

Access to this field is RO.

JSCVT, bits [3:0]

Indicates support for the Javascript conversion instruction in AArch32 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The VJCVT instruction is not implemented.

0b0001 The VJCVT instruction is implemented.

All other values are reserved.

In Armv8.0, the only permitted value is 0b0000.

FEAT_JSCVT implements the functionality identified by 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

Access to this field is RO.

Accessing ID_ISAR6

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_ISAR6) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6 trapped by HCR_EL2.TID3") &&
HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_ISAR6) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6 trapped by HCR.TID3") &&
HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_ISAR6;
elsif PSTATE.EL == EL2 then
 R[t] = ID_ISAR6;
elsif PSTATE.EL == EL3 then
 R[t] = ID_ISAR6;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11994
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.93 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_MMFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_MMFR0 are UNDEFINED.

Attributes

ID_MMFR0 is a 32-bit register.

Field descriptions

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by
ID_MMFR0.ShareLvl having the value 0b0001.

When ID_MMFR0.ShareLvl is zero, this field is UNKNOWN.

Access to this field is RO.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for FCSE.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers.

InnerShr

31 28

FCSE

27 24

AuxReg

23 20

TCM

19 16

ShareLvl

15 12

OuterShr

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11995
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Support for Auxiliary Control Register only.

0b0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary
Control Register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Note
Accesses to unimplemented Auxiliary registers are UNDEFINED.

Access to this field is RO.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support is IMPLEMENTATION DEFINED.

0b0010 Support for TCM only, Armv6 implementation.

0b0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One level of shareability implemented.

0b0001 Two levels of shareability implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b1111.

Access to this field is RO.

PMSA, bits [7:4]

Indicates support for a PMSA.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED PMSA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11996
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0010 Support for PMSAv6, with a Cache Type Register implemented.

0b0011 Support for PMSAv7, with support for memory subsections. Armv7-R profile.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

VMSA, bits [3:0]

Indicates support for a VMSA.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for IMPLEMENTATION DEFINED VMSA.

0b0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.

0b0011 Support for VMSAv7, with support for remapping and the Access flag. ARMv7-A
profile.

0b0100 As for 0b0011, and adds support for the PXN bit in the Short-descriptor translation table
format descriptors.

0b0101 As for 0b0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0101.

Access to this field is RO.

Accessing ID_MMFR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_MMFR0;
elsif PSTATE.EL == EL2 then
 R[t] = ID_MMFR0;
elsif PSTATE.EL == EL3 then
 R[t] = ID_MMFR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11997
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.94 ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_MMFR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR1_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_MMFR1 are UNDEFINED.

Attributes

ID_MMFR1 is a 32-bit register.

Field descriptions

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No branch predictor, or no MMU present. Implies a fixed MPU configuration.

0b0001 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Changes to the TTBR0, TTBR1, or TTBCR registers.

• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is supported.

0b0010 Branch predictor requires flushing on:

• Enabling or disabling a stage of address translation.

• Writing new data to instruction locations.

• Writing new mappings to the translation tables.

• Any change to the TTBR0, TTBR1, or TTBCR registers without a change to the
corresponding ContextID or ASID, or FCSE ProcessID if this is supported.

0b0011 Branch predictor requires flushing only on writing new data to instruction locations.

0b0100 For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

In Armv8-A, the permitted values are 0b0010, 0b0011, or 0b0100. For values other than 0b0000 and
0b0100, the Arm Architecture Reference Manual, or the product documentation, might give more
information about the required maintenance.

Access to this field is RO.

BPred

31 28

L1TstCln

27 24

L1Uni

23 20

L1Hvd

19 16

L1UniSW

15 12

L1HvdSW

11 8

L1UniVA

7 4

L1HvdVA

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11998
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
L1TstCln, bits [27:24]

Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations,
for Harvard or unified cache implementations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 data cache test and clean operations are:

• Test and clean data cache.

0b0010 As for 0b0001, and adds:

• Test, clean, and invalidate data cache.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1Uni, bits [23:20]

Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a
unified cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Clean cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1Hvd, bits [19:16]

Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a
Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported entire Level 1 cache operations are:

• Invalidate instruction cache, including branch predictor if appropriate.

• Invalidate branch predictor, if appropriate.

0b0010 As for 0b0001, and adds:

• Invalidate data cache.

• Invalidate data cache and instruction cache, including branch predictor if
appropriate.

0b0011 As for 0b0010, and adds:

• Clean data cache, using a recursive model that uses the cache dirty status bit.

• Clean and invalidate data cache, using a recursive model that uses the cache dirty
status bit.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-11999
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Access to this field is RO.

L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a unified cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by set/way are:

• Clean cache line by set/way.

0b0010 As for 0b0001, and adds:

• Clean and invalidate cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance
operations by set/way, for a Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:

• Clean data cache line by set/way.

• Clean and invalidate data cache line by set/way.

0b0010 As for 0b0001, and adds:

• Invalidate data cache line by set/way.

0b0011 As for 0b0010, and adds:

• Invalidate instruction cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a unified cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 unified cache line maintenance operations by VA are:

• Clean cache line by VA.

• Invalidate cache line by VA.

• Clean and invalidate cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12000
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance
operations by VA, for a Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported Level 1 Harvard cache line maintenance operations by VA are:

• Clean data cache line by VA.

• Invalidate data cache line by VA.

• Clean and invalidate data cache line by VA.

• Clean instruction cache line by VA.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Accessing ID_MMFR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_MMFR1;
elsif PSTATE.EL == EL2 then
 R[t] = ID_MMFR1;
elsif PSTATE.EL == EL3 then
 R[t] = ID_MMFR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12001
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.95 ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_MMFR2 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR2_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_MMFR2 are UNDEFINED.

Attributes

ID_MMFR2 is a 32-bit register.

Field descriptions

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for
a Hardware Access flag, as part of the VMSAv7 implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Support for WFI stalling.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc ==
1111) encoding space.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).

HWAccFlg

31 28

WFIStall

27 24

MemBarr

23 20

UniTLB

19 16

HvdTLB

15 12

L1HvdRng

11 8

L1HvdBG

7 4

L1HvdFG

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12002
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0010 As for 0b0001, and adds:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support
for the preferred barrier instructions.

Access to this field is RO.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB
implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.

• Invalidate TLB entry by VA.

0b0010 As for 0b0001, and adds:

• Invalidate TLB entries by ASID match.

0b0011 As for 0b0010, and adds:

• Invalidate instruction TLB and data TLB entries by VA All ASID. This is a
shared unified TLB operation

0b0100 As for 0b0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.

• Invalidate entire Non-secure PL1&0 unified TLB.

• Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS,
TLBIMVALHIS, TLBIMVAL, TLBIMVAAL,TLBIMVALH.

0b0110 As for 0b0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0110.

Access to this field is RO.

HvdTLB, bits [15:12]

If the value of ID_MMFR2.UniTLB is not 0b0000, then the meaning of this field is
IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations,
for a Harvard cache implementation.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.

• Invalidate instruction cache range by VA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12003
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• Clean data cache range by VA.

• Clean and invalidate data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch
operations, for a Harvard cache implementation. When supported, background fetch operations are
non-blocking operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch
operations, for a Harvard cache implementation. When supported, foreground fetch operations are
blocking operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Accessing ID_MMFR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12004
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_MMFR2;
elsif PSTATE.EL == EL2 then
 R[t] = ID_MMFR2;
elsif PSTATE.EL == EL3 then
 R[t] = ID_MMFR2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12005
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.96 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_MMFR3 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR3_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_MMFR3 are UNDEFINED.

Attributes

ID_MMFR3 is a 32-bit register.

Field descriptions

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Supersections supported.

0b1111 Supersections not supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b1111.

Access to this field is RO.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 4GB, corresponding to a 32-bit physical address range.

0b0001 64GB, corresponding to a 36-bit physical address range.

0b0010 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of
Unification.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Updates to the translation tables require a clean to the Point of Unification to ensure
visibility by subsequent translation table walks.

Supersec

31 28

CMemSz

27 24

CohWalk

23 20

PAN

19 16 15 12

BPMaint

11 8

CMaintSW

7 4

CMaintVA

3 0

MaintBcst
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12006
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0001 Updates to the translation tables do not require a clean to the Point of Unification to
ensure visibility by subsequent translation table walks.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32
state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

Access to this field is RO.

MaintBcst, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are
broadcast.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Cache, TLB, and branch predictor operations only affect local structures.

0b0001 Cache and branch predictor operations affect structures according to shareability and
defined behavior of instructions. TLB operations only affect local structures.

0b0010 Cache, TLB, and branch predictor operations affect structures according to shareability
and defined behavior of instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in
an implementation with hierarchical cache maintenance operations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported branch predictor maintenance operations are:

• Invalidate all branch predictors.

0b0010 As for 0b0001, and adds:

• Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Access to this field is RO.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way,
in an implementation with hierarchical caches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12007
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance instructions by set/way are:

• Invalidate data cache by set/way.

• Clean data cache by set/way.

• Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified
caches.

Access to this field is RO.

CMaintVA, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by
VA, in an implementation with hierarchical caches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Supported hierarchical cache maintenance operations by VA are:

• Invalidate data cache by VA.

• Clean data cache by VA.

• Clean and invalidate data cache by VA.

• Invalidate instruction cache by VA.

• Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches,
and the instruction cache maintenance instructions are not implemented.

Access to this field is RO.

Accessing ID_MMFR3

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_MMFR3;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12008
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL2 then
 R[t] = ID_MMFR3;
elsif PSTATE.EL == EL3 then
 R[t] = ID_MMFR3;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12009
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.97 ID_MMFR4, Memory Model Feature Register 4

The ID_MMFR4 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_MMFR4 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR4_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_MMFR4 are UNDEFINED.

Attributes

ID_MMFR4 is a 32-bit register.

Field descriptions

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS,
TOCU, TICAB, TID4} traps.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.

0b0001 HCR2.{TOCU, TICAB, TID4} traps are supported. HCR2.TTLBIS trap is not
supported.

0b0010 HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented or does not support AArch32.

• 0b0010 when EL2 is implemented and supports AArch32.

Access to this field is RO.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 32-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
not implemented.

0b0001 64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is
implemented.

All other values are reserved.

EVT

31 28

CCIDX

27 24

LSM

23 20

HPDS

19 16

CnP

15 12

XNX

11 8

AC2

7 4

SpecSEI

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12010
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

LSM, bits [23:20]

Indicates support for LSMAOE and nTLSMD bits in HSCTLR and SCTLR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 LSMAOE and nTLSMD bits not supported.

0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

HPDS, bits [19:16]

Hierarchical permission disables bits in translation tables.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0, TTBCR2.HPD1,
and HTCR.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
Translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

Note

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

Access to this field is RO.

CnP, bits [15:12]

Common not Private translations.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Access to this field is RO.

XNX, bits [11:8]

Support for execute-never control distinction by Exception level at stage 2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12011
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When FEAT_XNX is implemented:

• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value
of ID_MMFR4.XNX is 0b0000 or 0b0001:

— ID_AA64MMFR1_EL1.XNX ==1.

— EL2 cannot use AArch32.

— EL1 can use AArch32.

• If EL2 can use AArch32 then the only permitted value is 0b0001.

Access to this field is RO.

AC2, bits [7:4]

Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 ACTLR2 and HACTLR2 are not implemented.

0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Access to this field is RO.

SpecSEI, bits [3:0]

When FEAT_RAS is implemented:

Describes whether the PE can generate SError exceptions from speculative reads of memory,
including speculative instruction fetches.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The PE never generates an SError exception due to an External abort on a speculative
read.

0b0001 The PE might generate an SError exception due to an External abort on a speculative
read.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing ID_MMFR4

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0010 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12012
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR_EL2.TID3") &&
HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR.TID3") &&
HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_MMFR4;
elsif PSTATE.EL == EL2 then
 R[t] = ID_MMFR4;
elsif PSTATE.EL == EL3 then
 R[t] = ID_MMFR4;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12013
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.98 ID_MMFR5, Memory Model Feature Register 5

The ID_MMFR5 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_MMFR5 bits [31:0] are architecturally mapped to AArch64 System
register ID_MMFR5_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_MMFR5 are UNDEFINED.

Attributes

ID_MMFR5 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The intermediate caching of translation table walks might include non-coherent
physical translation caches.

0b0001 The intermediate caching of translation table walks does not include non-coherent
physical translation caches.

Non-coherent physical translation caches are non-coherent caches of previous valid translation table
entries since the last completed relevant TLBI applicable to the PE, where either:

• The caching is indexed by the physical address of the location holding the translation table
entry.

• The caching is used for stage 1 translations and is indexed by the intermediate physical
address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

ETS, bits [3:0]

Indicates support for Enhanced Translation Synchronization.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Enhanced Translation Synchronization is not supported.

0b0001 Enhanced Translation Synchronization is not supported.

RES0

31 8

nTLBPA

7 4

ETS

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12014
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b0010 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS2 implements the functionality identified by the value 0b0010.

From Armv8.8, the values 0b0000 and 0b0001 are not permitted.

Access to this field is RO.

Accessing ID_MMFR5

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR_EL2.TID3") &&
HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsFeatureImplemented(FEAT_FGT) ||
!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR.TID3") &&
HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_MMFR5;
elsif PSTATE.EL == EL2 then
 R[t] = ID_MMFR5;
elsif PSTATE.EL == EL3 then
 R[t] = ID_MMFR5;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0011 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12015
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.99 ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose

Gives top-level information about the instruction sets and other features supported by the PE in
AArch32 state.

Must be interpreted with ID_PFR1.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_PFR0 bits [31:0] are architecturally mapped to AArch64 System
register ID_PFR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_PFR0 are UNDEFINED.

Attributes

ID_PFR0 is a 32-bit register.

Field descriptions

RAS, bits [31:28]

RAS Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented. As 0b0001, and adds support for additional
ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

0b0011 FEAT_RASv2 implemented. As 0b0010, and requires that error records accessed
through System registers conform to RAS System Architecture v2.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

FEAT_RASv2 implements the functionality identified by the value 0b0011.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the value 0b0000 is not permitted.

From Armv8.4, if FEAT_DoubleFault is implemented or ERRIDR.NUM is nonzero, the value
0b0001 is not permitted.

Note

When the value of this field is 0b0001, ID_PFR2.RAS_frac indicates whether FEAT_RASv1p1 is
implemented.

RAS

31 28

DIT

27 24

AMU

23 20

CSV2

19 16

State3

15 12

State2

11 8

State1

7 4

State0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12016
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
From Armv8.9, the values 0b0001 and 0b0010 are not permitted.

Access to this field is RO.

DIT, bits [27:24]

Data Independent Timing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 AArch32 does not guarantee constant execution time of any instructions.

0b0001 AArch32 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Access to this field is RO.

AMU, bits [23:20]

Indicates support for Activity Monitors Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

CSV2, bits [19:16]

Speculative use of out of context branch targets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The implementation does not disclose whether FEAT_CSV2 is implemented.

0b0001 FEAT_CSV2 is implemented, but FEAT_CSV2_1p1 is not implemented.

0b0010 FEAT_CSV2_1p1 is implemented.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

Access to this field is RO.

State3, bits [15:12]

T32EE instruction set support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented.

0b0001 T32EE instruction set implemented.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12017
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

State2, bits [11:8]

Jazelle extension support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not implemented.

0b0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.

0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

State1, bits [7:4]

T32 instruction set support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 T32 instruction set not implemented.

0b0001 T32 encodings before the introduction of Thumb-2 technology implemented:

• All instructions are 16-bit.

• A BL or BLX is a pair of 16-bit instructions.

• 32-bit instructions other than BL and BLX cannot be encoded.

0b0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all
16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Access to this field is RO.

State0, bits [3:0]

A32 instruction set support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 A32 instruction set not implemented.

0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.

Accessing ID_PFR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12018
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_PFR0;
elsif PSTATE.EL == EL2 then
 R[t] = ID_PFR0;
elsif PSTATE.EL == EL3 then
 R[t] = ID_PFR0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12019
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.100 ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_PFR1 bits [31:0] are architecturally mapped to AArch64 System
register ID_PFR1_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_PFR1 are UNDEFINED.

Attributes

ID_PFR1 is a 32-bit register.

Field descriptions

GIC, bits [31:28]

System register GIC CPU interface.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

Access to this field is RO.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for
Virtualization Extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Virtualization Extensions are implemented.

0b0001 The following Virtualization Extensions are implemented:

• The SCR.SIF bit, if EL3 is implemented.

• The modifications to the SCR.AW and SCR.FW bits described in the
Virtualization Extensions, if EL3 is implemented.

• The MSR (banked register) and MRS (banked register) instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is implemented.

• 0b0001 when EL2 is not implemented.

GIC

31 28 27 24

Sec_frac

23 20

GenTimer

19 16 15 12

MProgMod

11 8

Security

7 4

ProgMod

3 0

Virt_frac Virtualization
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12020
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This field is valid only when the value of ID_PFR1.Virtualization is 0, otherwise it holds the value
0b0000.

Note
The ID_ISAR registers do not identify whether the instructions added by the Virtualization
Extensions are implemented.

Access to this field is RO.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for Security
Extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No Security Extensions are implemented.

0b0001 The following Security Extensions are implemented:

• The VBAR register.

• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-secure physical memory is
supported.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is implemented.

• 0b0001 or 0b0010 when EL3 is not implemented.

This field is valid only when the value of ID_PFR1.Security is 0, otherwise it holds the value 0b0000.

Access to this field is RO.

GenTimer, bits [19:16]

Generic Timer support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Generic Timer is not implemented.

0b0001 Generic Timer is implemented.

0b0010 Generic Timer is implemented, and also includes support for CNTHCTL.EVNTIS and
CNTKCTL.EVNTIS fields, and CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0001.

From Armv8.6, the only permitted value is 0b0010.

Access to this field is RO.

Virtualization, bits [15:12]

Virtualization support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL2, Hyp mode, and the HVC instruction not implemented.

0b0001 EL2, Hyp mode, the HVC instruction, and all the features described by Virt_frac ==
0b0001 implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is not implemented.

• 0b0001 when EL2 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12021
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

Note
The ID_ISARs do not identify whether the HVC instruction is implemented.

Access to this field is RO.

MProgMod, bits [11:8]

M-profile programmers' model support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Security, bits [7:4]

Security support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL3, Monitor mode, and the SMC instruction not implemented.

0b0001 EL3, Monitor mode, the SMC instruction, and all the features described by Sec_frac ==
0b0001 implemented.

0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit. Not permitted in Armv8
as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is not implemented.

• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

Access to this field is RO.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ,
IRQ, Supervisor, Abort, Undefined, and System modes.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12022
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing ID_PFR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_PFR1;
elsif PSTATE.EL == EL2 then
 R[t] = ID_PFR1;
elsif PSTATE.EL == EL3 then
 R[t] = ID_PFR1;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12023
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.101 ID_PFR2, Processor Feature Register 2

The ID_PFR2 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0 and ID_PFR1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register ID_PFR2 bits [31:0] are architecturally mapped to AArch64 System
register ID_PFR2_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ID_PFR2 are UNDEFINED.

Attributes

ID_PFR2 is a 32-bit register.

Field descriptions

Bits [31:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 If ID_PFR0.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_PFR0.RAS == 0b0001, as 0b0000 and adds support for additional ERXMISC<m>
System registers.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0.RAS == 0b0001.

Access to this field is RO.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 AArch32 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.

Access to this field is RO.

RES0

31 12

RAS_frac

11 8

SSBS

7 4

CSV3

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12024
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
CSV3, bits [3:0]

Speculative use of faulting data.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address, generate condition codes, or generate SVE predicate values to be used by
other instructions in the speculative sequence. The execution timing of any other
instructions in the speculative sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Access to this field is RO.

Accessing ID_PFR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ID_PFR2;
elsif PSTATE.EL == EL2 then
 R[t] = ID_PFR2;
elsif PSTATE.EL == EL3 then
 R[t] = ID_PFR2;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12025
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.102 IFAR, Instruction Fault Address Register

The IFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort
exception.

Configurations

This register is banked between IFAR and IFAR_S and IFAR_NS.

AArch32 System register IFAR bits [31:0] are architecturally mapped to AArch64 System register
FAR_EL1[63:32].

AArch32 System register IFAR bits [31:0] (IFAR_S) are architecturally mapped to AArch32
System register HIFAR[31:0] when EL2 is implemented, EL3 is implemented and the
implementation only supports execution in AArch32 state.

AArch32 System register IFAR bits [31:0] (IFAR_S) are architecturally mapped to AArch64
System register FAR_EL2[63:32] when EL2 is implemented.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
IFAR are UNDEFINED.

Attributes

IFAR is a 32-bit register.

This register has the following instances:

• IFAR, when EL3 is not implemented.

• IFAR_S, when EL3 is implemented.

• IFAR_NS, when EL3 is implemented.

Field descriptions

VA, bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing IFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

VA of faulting address of synchronous Prefetch Abort exception

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12026
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = IFAR_NS;
 else
 R[t] = IFAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = IFAR_NS;
 else
 R[t] = IFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = IFAR_S;
 else
 R[t] = IFAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFAR_NS = R[t];
 else
 IFAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFAR_NS = R[t];
 else
 IFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 IFAR_S = R[t];
 else
 IFAR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0110 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12027
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.103 IFSR, Instruction Fault Status Register

The IFSR characteristics are:

Purpose

Holds status information about the last instruction fault.

Configurations

This register is banked between IFSR and IFSR_S and IFSR_NS.

AArch32 System register IFSR bits [31:0] are architecturally mapped to AArch64 System register
IFSR32_EL2[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
IFSR are UNDEFINED.

The current translation table format determines which format of the register is used.

Attributes

IFSR is a 32-bit register.

This register has the following instances:

• IFSR, when EL3 is not implemented.

• IFSR_S, when EL3 is implemented.

• IFSR_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

RES0

31 17 16

RES0

15 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

FnV
ExT

LPAE
FS[4]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12028
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status bits. Bits [10] and [3:0] are interpreted together.

0b00001 PC alignment fault.

0b00010 Debug exception.

0b00011 Access flag fault, level 1.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01000 Synchronous External abort, not on translation table walk.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Short-descriptor translation table lookup.

The FS field is split as follows:

• FS[4] is IFSR[10].

• FS[3:0] is IFSR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12029
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [8:4]

Reserved, RES0.

When TTBCR.EAE == 1:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a
translation table walk.

0b0 IFAR is valid.

0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is valid only for a synchronous External abort other than a synchronous External abort on
a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.

0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore
software can set this bit to 0 or 1 without affecting operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

RES0

31 17 16

RES0

15 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

FnV LPAE
ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12030
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011000 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b100001 PC alignment fault.

0b100010 Debug exception.

0b110000 TLB conflict abort.

All other values are reserved.

When FEAT_RAS is implemented, 0b011000, 0b011101, 0b011110, and 0b011111 are reserved.

For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing IFSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12031
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = IFSR_NS;
 else
 R[t] = IFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = IFSR_NS;
 else
 R[t] = IFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = IFSR_S;
 else
 R[t] = IFSR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFSR_NS = R[t];
 else
 IFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFSR_NS = R[t];
 else
 IFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 IFSR_S = R[t];
 else
 IFSR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12032
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.104 ISR, Interrupt Status Register

The ISR characteristics are:

Purpose

Shows the pending status of the IRQ and FIQ interrupts and the SError exceptions.

Configurations

AArch32 System register ISR bits [31:0] are architecturally mapped to AArch64 System register
ISR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
ISR are UNDEFINED.

Attributes

ISR is a 32-bit register.

Field descriptions

Bits [31:9]

Reserved, RES0.

A, bit [8]

SError exception pending bit:

0b0 No pending SError exception.

0b1 An SError exception is pending.

If all of the following apply then this field shows the pending status of virtual SError exceptions:

• EL2 is implemented and enabled in the current Security state.

• Any of the following apply:

— EL2 is using AArch64 and HCR_EL2.AMO is 1.

— EL2 is using AArch64, FEAT_DoubleFault2 is implemented, and the Effective value
of HCRX_EL2.TMEA is 1.

— EL2 is using AArch32 and HCR.AMO is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical SError exceptions.

If the SError exception is edge-triggered, this field is cleared to zero when the physical SError
exception is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

0b0 No pending IRQ.

0b1 An IRQ interrupt is pending.

If all of the following apply then this field shows the pending status of virtual IRQ interrupts:

• EL2 is implemented and enabled in the current Security state.

• Any of the following apply:

— EL2 is using AArch64 and HCR_EL2.IMO is 1.

— EL2 is using AArch32 and HCR.IMO is 1.

RES0

31 9

A

8

I

7

F

6

RES0

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12033
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical IRQ interrupts.

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

0b0 No pending FIQ.

0b1 An FIQ interrupt is pending.

If all of the following apply then this field shows the pending status of virtual FIQ interrupts:

• EL2 is implemented and enabled in the current Security state.

• Any of the following apply:

— EL2 is using AArch64 and HCR_EL2.FMO is 1.

— EL2 is using AArch32 and HCR.FMO is 1.

• The PE is executing at EL1.

Otherwise, this field shows the pending status of physical FIQ interrupts.

Bits [5:0]

Reserved, RES0.

Accessing ISR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = ISR;
elsif PSTATE.EL == EL2 then
 R[t] = ISR;
elsif PSTATE.EL == EL3 then
 R[t] = ISR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12034
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.105 ITLBIALL, Instruction TLB Invalidate All

The ITLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that are from any level
of the translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the Non-secure PL1&0 translation regime
and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ITLBIALL are UNDEFINED.

Attributes

ITLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing ITLBIALL

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12035
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_ExcludeXS);
 else
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.ITLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_NSH, TLBI_AllAttr);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12036
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.106 ITLBIASID, Instruction TLB Invalidate by ASID match

The ITLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the
following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ITLBIASID are UNDEFINED.

Attributes

ITLBIASID is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

RES0

31 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12037
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing ITLBIASID

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS, R[t]);
 else
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.ITLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12038
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.107 ITLBIMVA, Instruction TLB Invalidate by VA

The ITLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the
following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility
with earlier versions of the Arm architecture.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to ITLBIMVA are UNDEFINED.

Attributes

ITLBIMVA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this operation, regardless of the
value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12039
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing ITLBIMVA

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.ITLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.ITLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.ITLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.ITLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12040
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.108 JIDR, Jazelle ID Register

The JIDR characteristics are:

Purpose

A Jazelle register, which identified the Jazelle architecture version.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to JIDR are
UNDEFINED.

Attributes

JIDR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ.

Accessing JIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JIDR UNDEFINED at EL0" then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HCR_EL2.TID0 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x05);
 else
 R[t] = JIDR;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x05);
 else
 R[t] = JIDR;
elsif PSTATE.EL == EL2 then
 R[t] = JIDR;
elsif PSTATE.EL == EL3 then
 R[t] = JIDR;

RAZ

31 0

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12041
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.109 JMCR, Jazelle Main Configuration Register

The JMCR characteristics are:

Purpose

A Jazelle register, which provides control of the Jazelle extension.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to JMCR are
UNDEFINED.

Attributes

JMCR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ/WI.

Accessing JMCR

For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RW or UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 R[t] = JMCR;
elsif PSTATE.EL == EL1 then
 R[t] = JMCR;
elsif PSTATE.EL == EL2 then
 R[t] = JMCR;
elsif PSTATE.EL == EL3 then
 R[t] = JMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then

RAZ/WI

31 0

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0010 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12042
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 return;
elsif PSTATE.EL == EL1 then
 return;
elsif PSTATE.EL == EL2 then
 return;
elsif PSTATE.EL == EL3 then
 return;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12043
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.110 JOSCR, Jazelle OS Control Register

The JOSCR characteristics are:

Purpose

A Jazelle register, which provides operating system control of the Jazelle Extension.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to JOSCR are
UNDEFINED.

Attributes

JOSCR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RAZ/WI.

Accessing JOSCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 R[t] = JOSCR;
elsif PSTATE.EL == EL1 then
 R[t] = JOSCR;
elsif PSTATE.EL == EL2 then
 R[t] = JOSCR;
elsif PSTATE.EL == EL3 then
 R[t] = JOSCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then
 UNDEFINED;
 else

RAZ/WI

31 0

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0001 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1110 0b111 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12044
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 return;
elsif PSTATE.EL == EL1 then
 return;
elsif PSTATE.EL == EL2 then
 return;
elsif PSTATE.EL == EL3 then
 return;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12045
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.111 MAIR0, Memory Attribute Indirection Register 0

The MAIR0 characteristics are:

Purpose

Along with MAIR1, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.

• When AttrIndx[2] is 1, MAIR1 is used.

Configurations

This register is banked between MAIR0 and MAIR0_S and MAIR0_NS.

AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch32 System
register PRRR[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0 bits [31:0] (MAIR0_NS) are architecturally mapped to AArch32
System register PRRR[31:0] (PRRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR0 bits [31:0] (MAIR0_S) are architecturally mapped to AArch32
System register PRRR[31:0] (PRRR_S) when EL3 is using AArch32.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MAIR0 are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.

• When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to MAIR0(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Attributes

MAIR0 is a 32-bit register.

This register has the following instances:

• MAIR0, when EL3 is not implemented.

• MAIR0_S, when EL3 is implemented.

• MAIR0_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8n+7:8n], for n = 3 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12046
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.

Attr<n>[3:0]
Meaning when Attr<n>[7:4]
is 0b0000

Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12047
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing MAIR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR0_NS;
 else
 R[t] = PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR0;
 else
 R[t] = PRRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR0_NS;
 else
 R[t] = PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR0;
 else
 R[t] = PRRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 R[t] = MAIR0_S;
 else
 R[t] = MAIR0_NS;
 else
 if SCR.NS == '0' then
 R[t] = PRRR_S;
 else
 R[t] = PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12048
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 else
 if SCR.NS == '0' then
 PRRR_S = R[t];
 else
 PRRR_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12049
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.112 MAIR1, Memory Attribute Indirection Register 1

The MAIR1 characteristics are:

Purpose

Along with MAIR0, provides the memory attribute encodings corresponding to the possible
AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.

• When AttrIndx[2] is 1, MAIR1 is used.

Configurations

This register is banked between MAIR1 and MAIR1_S and MAIR1_NS.

AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch64 System
register MAIR_EL1[63:32] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch32 System
register NMRR[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1 bits [31:0] (MAIR1_NS) are architecturally mapped to AArch32
System register NMRR[31:0] (NMRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR1 bits [31:0] (MAIR1_S) are architecturally mapped to AArch32
System register NMRR[31:0] (NMRR_S) when EL3 is using AArch32.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MAIR1 are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.

• When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to MAIR1(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Attributes

MAIR1 is a 32-bit register.

This register has the following instances:

• MAIR1, when EL3 is not implemented.

• MAIR1_S, when EL3 is implemented.

• MAIR1_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 1:

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 7 to 4

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation
table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.

• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0
are in MAIR0.

Attr7

31 24

Attr6

23 16

Attr5

15 8

Attr4

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12050
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Bits [7:4] are encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Attr<n>[7:4] Meaning

0b0000 Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.

0b11RW Normal memory, Outer Write-Back Non-transient.

Attr<n>[3:0]
Meaning when Attr<n>[7:4]
is 0b0000

Meaning when Attr<n>[7:4] is not 0b0000

0b0000 Device-nGnRnE memory UNPREDICTABLE

0b00RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Transient

0b1000 Device-nGRE memory Normal memory, Inner Write-Through Non-transient
(RW=0b00)

0b10RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-Back Non-transient (RW=0b00)

0b11RW, RW
not 0b00

UNPREDICTABLE Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12051
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing MAIR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR1_NS;
 else
 R[t] = NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR1;
 else
 R[t] = NMRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR1_NS;
 else
 R[t] = NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR1;
 else
 R[t] = NMRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 R[t] = MAIR1_S;
 else
 R[t] = MAIR1_NS;
 else
 if SCR.NS == '0' then
 R[t] = NMRR_S;
 else
 R[t] = NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12052
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR1_S = R[t];
 else
 MAIR1_NS = R[t];
 else
 if SCR.NS == '0' then
 NMRR_S = R[t];
 else
 NMRR_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12053
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.113 MIDR, Main ID Register

The MIDR characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a
device ID number.

Configurations

AArch32 System register MIDR bits [31:0] are architecturally mapped to AArch64 System register
MIDR_EL1[31:0].

AArch32 System register MIDR bits [31:0] are architecturally mapped to External register
MIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MIDR are UNDEFINED.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For more information about the values of
these fields for a particular Armv8 implementation, and any implementation-specific significance
of these values, see the product documentation.

Attributes

MIDR is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

Access to this field is RO.

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12054
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or
major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Architecture, bits [19:16]

Architecture version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

Access to this field is RO.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the device.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing MIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 R[t] = VPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12055
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 R[t] = VPIDR;
 else
 R[t] = MIDR;
elsif PSTATE.EL == EL2 then
 R[t] = MIDR;
elsif PSTATE.EL == EL3 then
 R[t] = MIDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12056
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.114 MPIDR, Multiprocessor Affinity Register

The MPIDR characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism.

Configurations

AArch32 System register MPIDR bits [31:0] are architecturally mapped to AArch64 System
register MPIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MPIDR are UNDEFINED.

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value
of 0.

Attributes

MPIDR is a 32-bit register.

Field descriptions

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the Armv7
Multiprocessing Extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 This implementation does not include the Armv7 Multiprocessing Extensions
functionality.

0b1 This implementation includes the Armv7 Multiprocessing Extensions functionality.

Access to this field is RAO/WI.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

Access to this field is RO.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using an
interdependent approach, such as multithreading. See the description of Aff0 for more information
about affinity levels.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is largely independent.

0b1 Performance of PEs with different affinity level 0 values, and the same values for
affinity level 1 and higher, is very interdependent.

M

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12057
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Note

This field does not indicate that multithreading is implemented and does not indicate that PEs with
different affinity level 0 values, and the same values for affinity level 1 and higher are implemented.

Access to this field is RO.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Aff0, bits [7:0]

Affinity level 0. The value of the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1,
Aff0} set of fields of each PE must be unique within the system as a whole.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing MPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 R[t] = VMPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 R[t] = VMPIDR;
 else
 R[t] = MPIDR;
elsif PSTATE.EL == EL2 then
 R[t] = MPIDR;
elsif PSTATE.EL == EL3 then
 R[t] = MPIDR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12058
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.115 MVBAR, Monitor Vector Base Address Register

The MVBAR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, holds the vector base address for any exception
that is taken to Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot
sequence.

Configurations

This register is present only when EL3 is capable of using AArch32. Otherwise, direct accesses to
MVBAR are UNDEFINED.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes
the last value written to it.

On a Warm reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION
DEFINED choice between the following:

• MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN,
MVBAR[4:1] = RES0, and MVBAR[0] = 0.

• MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset
address, and MVBAR[0] = 1.

Attributes

MVBAR is a 32-bit register.

Field descriptions

When programmed with a vector base address:

VBA, bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to
this Exception level. Bits[4:0] of an exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

Accessing MVBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then

Vector Base Address

31 5

Reserved

4 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12059
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 R[t] = RVBAR;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 R[t] = RVBAR;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 R[t] = MVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 MVBAR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12060
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.116 MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR1 and MVFR2.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register MVFR0 bits [31:0] are architecturally mapped to AArch64 System
register MVFR0_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MVFR0 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR0 is a 32-bit register.

Field descriptions

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides
support for rounding modes. Defined values are:

0b0000 Not implemented, or only Round to Nearest mode supported, except that Round towards
Zero mode is supported for VCVT instructions that always use that rounding mode
regardless of the FPSCR setting.

0b0001 All rounding modes supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of
short vectors. Defined values are:

0b0000 Short vectors not supported.

0b0001 Short vector operation supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6
VFP square root operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

FPRound

31 28

FPShVec

27 24

FPSqrt

23 20

FPDivide

19 16

FPTrap

15 12

FPDP

11 8

FPSP

7 4

SIMDReg

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12061
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the permitted values are 0b0000 and 0b0001.

The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4],
and the VSQRT.F64 instruction also requires the double-precision floating-point attribute, bits
[11:8].

FPDivide, bits [19:16]

Indicates whether the floating-point implementation provides support for VFP divide operations.
Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and
the VDIV.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]

Floating Point Exception Trapping. Indicates whether the floating-point implementation provides
support for exception trapping. Defined values are:

0b0000 Not supported.

0b0001 Supported.

All other values are reserved.

A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception
generates an exception.

FPDP, bits [11:8]

Double Precision. Indicates whether the floating-point implementation provides support for
double-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a
double-precision floating-point constant, and conversions between double-precision
and fixed-point values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.

• VDIV.F64 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
single-precision field is nonzero.

FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for
single-precision operations. Defined values are:

0b0000 Not supported in hardware.

0b0001 Supported, VFPv2.

0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision
floating-point constant, and conversions between single-precision and fixed-point
values.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12062
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the
supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F32 is only available if the Square root field is 0b0001.

• VDIV.F32 is only available if the Divide field is 0b0001.

• Conversion between double-precision and single-precision is only available if the
double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point
implementation provides support for the Advanced SIMD and floating-point register bank. Defined
values are:

0b0000 The implementation has no Advanced SIMD and floating-point support.

0b0001 The implementation includes floating-point support with 16 x 64-bit registers.

0b0010 The implementation includes Advanced SIMD and floating-point support with 32 x
64-bit registers.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

Accessing MVFR0

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = MVFR0;
elsif PSTATE.EL == EL2 then

reg

0b0111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12063
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = MVFR0;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 R[t] = MVFR0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12064
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.117 MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0 and MVFR2.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register MVFR1 bits [31:0] are architecturally mapped to AArch64 System
register MVFR1_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MVFR1 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR1 is a 32-bit register.

Field descriptions

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD
implementation provides fused multiply accumulate instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support
for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined
values are:

0b0000 Not supported.

0b0001 Floating-point half-precision conversion instructions are supported for conversion
between single-precision and half-precision.

0b0010 As for 0b0001, and adds instructions for conversion between double-precision and
half-precision.

0b0011 As for 0b0010, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without floating-point support.

• 0b0010 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

SIMDFMAC

31 28

FPHP

27 24

SIMDHP

23 20

SIMDSP

19 16

SIMDInt

15 12

SIMDLS

11 8

FPDNaN

7 4

FPFtZ

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12065
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• 0b0011 in an implementation with floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the SIMDHP field, meaning the permitted values are:

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support.
Defined values are:

0b0000 Not supported.

0b0001 SIMD half-precision conversion instructions are supported for conversion between
single-precision and half-precision.

0b0010 As for 0b0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 in an implementation without SIMD floating-point support.

• 0b0001 in an implementation with SIMD floating-point support that does not include the
FEAT_FP16 extension.

• 0b0010 in an implementation with SIMD floating-point support that includes the FEAT_FP16
extension.

The level of support indicated by this field must be equivalent to the level of support indicated by
the FPHP field, meaning the permitted values are:

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point
implementation provides single-precision floating-point instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented. This value is permitted only if the SIMDInt field is 0b0001.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation
provides integer instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010

Half Precision instructions supported FPHP SIMDHP

No support 0b0000 0b0000

Conversions only 0b0010 0b0001

Conversions and arithmetic 0b0011 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12066
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
In Armv8-A, the permitted values are 0b0000 and 0b0001.

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point
implementation provides load/store instructions. Defined values are:

0b0000 Not implemented.

0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for
the Default NaN mode. Defined values are:

0b0000 Not implemented, or hardware supports only the Default NaN mode.

0b0001 Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

FPFtZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for
the Flush-to-Zero mode of operation. Defined values are:

0b0000 Not implemented, or hardware supports only the Flush-to-Zero mode of operation.

0b0001 Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

Accessing MVFR1

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);

reg

0b0110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12067
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = MVFR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = MVFR1;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 R[t] = MVFR1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12068
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.118 MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point
implementation.

Must be interpreted with MVFR0 and MVFR1.

For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers.

Configurations

AArch32 System register MVFR2 bits [31:0] are architecturally mapped to AArch64 System
register MVFR2_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
MVFR2 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP
features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Support for Floating-point selection.

0b0010 As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes.

0b0011 As 0b0010, and Floating-point Round to Integer Floating-point.

0b0100 As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0100.

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous
Advanced SIMD features.

0b0000 Not implemented, or no support for miscellaneous features.

0b0001 Floating-point Conversion to Integer with Directed Rounding modes.

0b0010 As 0b0001, and Floating-point Round to Integer Floating-point.

0b0011 As 0b0010, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0011.

RES0

31 8

FPMisc

7 4

SIMDMisc

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12069
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing MVFR2

Accesses to this register use the following encodings in the System register encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CPTR_EL2.TFP == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&
NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = MVFR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1'
then
 UNDEFINED;
 elsif ELIsInHost(EL2) && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 R[t] = MVFR2;
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 R[t] = MVFR2;

reg

0b0101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12070
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.119 NMRR, Normal Memory Remap Register

The NMRR characteristics are:

Purpose

Provides additional mapping controls for memory regions that are mapped as Normal memory by
their entry in the PRRR.

Used in conjunction with the PRRR.

Configurations

This register is banked between NMRR and NMRR_S and NMRR_NS.

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch64 System register
MAIR_EL1[63:32] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch32 System register
MAIR1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] (NMRR_S) are architecturally mapped to AArch32
System register MAIR1[31:0] (MAIR1_S) when EL3 is using AArch32.

AArch32 System register NMRR bits [31:0] (NMRR_NS) are architecturally mapped to AArch32
System register MAIR1[31:0] (MAIR1_NS) when EL3 is using AArch32.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
NMRR are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.

• When it is set to 1, the register is as described in MAIR1.

Attributes

NMRR is a 32-bit register.

This register has the following instances:

• NMRR, when EL3 is not implemented.

• NMRR_S, when EL3 is implemented.

• NMRR_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

OR<n>, bits [2n+17:2n+16], for n = 7 to 0

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal
memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated.

0b00 Region is Non-cacheable.

0b01 Region is Write-Back, Write-Allocate.

0b10 Region is Write-Through, no Write-Allocate.

0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning
given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is
IMPLEMENTATION DEFINED.

OR7

31 30

OR6

29 28

OR5

27 26

OR4

25 24

OR3

23 22

OR2

21 20

OR1

19 18

OR0

17 16

IR7

15 14

IR6

13 12

IR5

11 10

IR4

9 8

IR3

7 6

IR2

5 4

IR1

3 2

IR0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12071
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
When FEAT_XS is implemented, stage 1 Outer Write-Back Cacheable memory types have the XS
attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IR<n>, bits [2n+1:2n], for n = 7 to 0

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal
memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated.

0b00 Region is Non-cacheable.

0b01 Region is Write-Back, Write-Allocate.

0b10 Region is Write-Through, no Write-Allocate.

0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning
given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is
IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable memory types have the XS
attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing NMRR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR1_NS;
 else
 R[t] = NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR1;
 else
 R[t] = NMRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR1_NS;
 else
 R[t] = NMRR_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12072
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR1;
 else
 R[t] = NMRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 R[t] = MAIR1_S;
 else
 R[t] = MAIR1_NS;
 else
 if SCR.NS == '0' then
 R[t] = NMRR_S;
 else
 R[t] = NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR1_S = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12073
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 MAIR1_NS = R[t];
 else
 if SCR.NS == '0' then
 NMRR_S = R[t];
 else
 NMRR_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12074
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.120 NSACR, Non-Secure Access Control Register

The NSACR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the Non-secure access permissions to
Trace, Advanced SIMD and floating-point functionality. Also includes IMPLEMENTATION DEFINED
bits that can define Non-secure access permissions for IMPLEMENTATION DEFINED functionality.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
NSACR are UNDEFINED.

Note

In AArch64 state, the NSACR controls are replaced by controls in CPTR_EL3.

Attributes

NSACR is a 32-bit register.

Field descriptions

If EL3 is implemented and is using AArch64 then:

• Any read of the NSACR from Non-secure EL2 or Non-secure EL1 returns a value of 0x00000C00.

• Any read or write to NSACR from Secure EL1 is trapped as an exception to EL3.

If EL3 is not implemented, then any read of the NSACR from EL2 or EL1 returns a value of 0x00000C00.

Bits [31:21]

Reserved, RES0.

NSTRCDIS, bit [20]

Disables Non-secure System register accesses to all implemented trace registers.

0b0 This control has no effect on:

• System register access to implemented trace registers.

• The behavior of CPACR.TRCDIS and HCPTR.TTA.

0b1 Non-secure System register accesses to all implemented trace registers are disabled,
meaning:

• CPACR.TRCDIS behaves as RAO/WI in Non-secure state, regardless of its
actual value.

• HCPTR.TTA behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.TRCDIS
field:

• If CPACR.TRCDIS is RAZ/WI, this field is RAZ/WI.

• If CPACR.TRCDIS is RW, this field is RW.

RES0

31 21 20 19 18 16 15

RES0

14 12 11 10

RES0

9 0

NSTRCDIS
RES0

IMPLEMENTATION DEFINED

cp10
cp11

NSASEDIS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12075
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Note

• The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace
unit implements FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are
UNDEFINED.

• The Arm architecture does not provide Non-secure access controls on trace register accesses
through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bit [19]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [18:16]

IMPLEMENTATION DEFINED.

NSASEDIS, bit [15]

Disables Non-secure access to the Advanced SIMD functionality.

0b0 This control has no effect on:

• Non-secure access to Advanced SIMD functionality.

• The behavior of CPACR.ASEDIS and HCPTR.TASE.

0b1 Non-secure access to the Advanced SIMD functionality is disabled, meaning:

• CPACR.ASEDIS behaves as RAO/WI in Non-secure state, regardless of its
actual value.

• HCPTR.TASE behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.ASEDIS
field:

• If CPACR.ASEDIS is RES0, this field is RES0. If the implementation does not include
Advanced SIMD and floating-point functionality, this field is RES0.

• If CPACR.ASEDIS is RAZ/WI, this field is RAZ/WI.

• If CPACR.ASEDIS is RW, this field is RW.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [14:12]

Reserved, RES0.

cp11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field
then this field is UNKNOWN on a direct read of the NSACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12076
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
cp10, bit [10]

Enable Non-secure access to the Advanced SIMD and floating-point features. Possible values of the
fields are:

0b0 Advanced SIMD and floating-point features can be accessed only from Secure state.
Any attempt to access this functionality from Non-secure state is UNDEFINED.

When the PE is in Non-secure state:

• The CPACR.{cp11, cp10} fields ignore writes and read as 0b00, access denied.

• The HCPTR.{TCP11, TCP10} fields behave as RAO/WI, regardless of their
actual values.

0b1 Advanced SIMD and floating-point features can be accessed from both Security states.

If Non-secure access to the Advanced SIMD and floating-point functionality is enabled, the CPACR
must be checked to determine the level of access that is permitted.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.

• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing NSACR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then
 R[t] = Zeros(20):'1100':Zeros(8);
 else
 R[t] = NSACR;
elsif PSTATE.EL == EL2 then
 if !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3.NS == '1') then
 R[t] = Zeros(20):'1100':Zeros(8);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12077
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 R[t] = NSACR;
elsif PSTATE.EL == EL3 then
 R[t] = NSACR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 NSACR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12078
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.121 PAR, Physical Address Register

The PAR characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully,
or fault information if the instruction did not execute successfully.

Configurations

This register is banked between PAR and PAR_S and PAR_NS.

AArch32 System register PAR bits [63:0] are architecturally mapped to AArch64 System register
PAR_EL1[63:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
PAR are UNDEFINED.

PAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits[31:0] and do not modify bits[63:32].

The Configurations section specifies the cases where each PAR format is used.

PAR is accessed as a 32-bit value:

• When the PE is not in Hyp mode and is using the Short-descriptor translation table format.

• When the PE is in Hyp mode and executes an ATS12NSOPR, ATS12NSOPW,
ATS12NSOUR, or ATS12NSOUW instruction and the value of HCR.VM is 0 and the value
of TTBCR.EAE is 0.

In these cases, PAR[63:32] is RES0.

Otherwise, the PAR is accessed as a 64-bit value, if any of the following is true:

• When using the Long-descriptor translation table format.

• If the stage 1 address translation is disabled and TTBCR.EAE is set to 1.

• In an implementation that includes EL2, for the result of an ATS1Cxx instruction performed
from Hyp mode.

For PL1&0 stage 1 translations, TTBCR.EAE selects the translation table format.

Attributes

PAR is a 64-bit register.

This register has the following instances:

• PAR, when EL3 is not implemented.

• PAR_S, when EL3 is implemented.

• PAR_NS, when EL3 is implemented.

Field descriptions

When the instruction returned a 32-bit value to the PAR, PAR.F==0:

RES0

63 32

PA

31 12 11 10

NS

9 8

SH

7 6 4 3 2

SS

1

F

0

LPAE
NOS

Outer[1:0]
Inner[2:0]

IMPLEMENTATION DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12079
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the Translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the Translation table descriptors. This applies to the NOS, SH, Inner, and Outer fields.

• See the NS bit description for constraints on the value it returns.

Bits [63:32]

Reserved, RES0.

PA, bits [31:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[31:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b0 Short-descriptor translation table format used. This means the PAR returned a 32-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [10]

Not Outer Shareable. When the returned value of PAR.SH is 1, indicates the Shareability attribute
for the physical memory region:

0b0 Memory region is Outer Shareable.

0b1 Memory region is Inner Shareable.

When the returned value of PAR.SH is 0 the value returned to this field is UNKNOWN.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical
address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels
of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [8]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12080
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
SH, bit [7]

Shareability. Indicates whether the physical memory region is Non-shareable:

0b0 Memory is Non-shareable.

0b1 Memory is shareable, and PAR.NOS indicates whether the region is Outer Shareable or
Inner Shareable.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Inner[2:0], bits [6:4]

Inner cacheability attribute for the region. Permitted values are:

0b000 Non-cacheable.

0b001 Device-nGnRnE.

0b011 Device-nGnRE.

0b101 Write-Back, Write-Allocate.

0b110 Write-Through.

0b111 Write-Back, no Write-Allocate.

The values 0b010 and 0b100 are reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Outer[1:0], bits [3:2]

Outer cacheability attribute for the region. Permitted values are:

0b00 Non-cacheable.

0b01 Write-Back, Write-Allocate.

0b10 Write-Through, no Write-Allocate.

0b11 Write-Back, no Write-Allocate.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [1]

Supersection. Used to indicate if the result is a Supersection:

0b0 Result is not a Supersection. PAR[31:12] contains OA[31:12].

0b1 Result is a Supersection, and:

• PAR[31:24] contains OA[31:24].

• PAR[23:16] contains OA[39:32].

• PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical address, the bits in the PAR
field that correspond to physical address bits that are not implemented are UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12081
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 32-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:16]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b0 Short-descriptor translation table format used. This means the PAR returned a 32-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:7]

Reserved, RES0.

FS[5], bit [6]

Fault status bits, External abort type. Provides an IMPLEMENTATION DEFINED classification of an
External abort. Values are as in the DFSR.ExT field when using the Short-descriptor translation
table format.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

IMPLEMENTATION DEFINED

31 16

RES0

15 12 11

RES0

10 7 6

FS[4:0]

5 1

F

0

LPAE FS[5]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12082
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
FS[4:0], bits [5:1]

Fault status bits. Values are as in the DFSR.FS field when using the Short-descriptor translation
table format.

0b00001 Alignment fault.

0b00011 Access flag fault, level 1.

0b00100 Fault on instruction cache maintenance.

0b00101 Translation fault, level 1.

0b00110 Access flag fault, level 2.

0b00111 Translation fault, level 2.

0b01001 Domain fault, level 1.

0b01011 Domain fault, level 2.

0b01100 Synchronous External abort, on translation table walk, level 1.

0b01101 Permission fault, level 1.

0b01110 Synchronous External abort, on translation table walk, level 2.

0b01111 Permission fault, level 2.

0b10000 TLB conflict abort.

0b11001 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access, not on translation table walk.

0b11100 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 1.

0b11110 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on translation table walk, level 2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the Translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits, instead of reporting the values that appear in
the Translation table descriptors. This applies to the ATTR and SH fields.

ATTR

63 56

RES0

55 40

PA

39 32

PA

31 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

LPAE IMPLEMENTATION DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12083
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR0 and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:40]

Reserved, RES0.

PA, bits [39:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[39:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b1 Long-descriptor translation table format used. This means the PAR returned a 64-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical
address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels
of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

The value 0b01 is reserved.

Note
This field returns the value 0b10 for:

• Any type of Device memory.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12084
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b0 Address translation completed successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

63 56 55 52 51 48

RES0

47 32

IMPLEMENTATION
DEFINED

IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

RES0

31 12 11 10 9 8 7

FST

6 1

F

0

LPAE
RES0

RES0
S2WLK

FSTAGE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12085
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b1 Long-descriptor translation table format used. This means the PAR returned a 64-bit
value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.

0b1 Translation aborted because of a fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields when using the
Long-descriptor translation table format.

0b000000 Address size fault in translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010101 Synchronous External abort on translation table walk, level 1.

0b010110 Synchronous External abort on translation table walk, level 2.

0b010111 Synchronous External abort on translation table walk, level 3.

0b011101 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 1.

0b011110 When FEAT_RAS is not implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12086
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Synchronous parity or ECC error on memory access on translation table walk, level 2.

0b011111 When FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk, level 3.

0b110000 TLB conflict abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = PAR_NS<31:0>;
 else
 R[t] = PAR<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = PAR_NS<31:0>;
 else
 R[t] = PAR<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = PAR_S<31:0>;
 else
 R[t] = PAR_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0100 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0111 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12087
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS<31:0> = R[t];
 else
 PAR<31:0> = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS<31:0> = R[t];
 else
 PAR<31:0> = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S<31:0> = R[t];
 else
 PAR_NS<31:0> = R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (PAR_NS<63:32>, PAR_NS<31:0>);
 else
 (R[t2], R[t]) = (PAR<63:32>, PAR<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (PAR_NS<63:32>, PAR_NS<31:0>);
 else
 (R[t2], R[t]) = (PAR<63:32>, PAR<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 (R[t2], R[t]) = (PAR_S<63:32>, PAR_S<31:0>);
 else
 (R[t2], R[t]) = (PAR_NS<63:32>, PAR_NS<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0111 0b0000

coproc CRm opc1

0b1111 0b0111 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12088
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 PAR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = R[t2]:R[t];
 else
 PAR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S = R[t2]:R[t];
 else
 PAR_NS = R[t2]:R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12089
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.122 PRRR, Primary Region Remap Register

The PRRR characteristics are:

Purpose

Controls the top level mapping of the TEX[0], C, and B memory region attributes.

Configurations

This register is banked between PRRR and PRRR_S and PRRR_NS.

AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch64 System register
MAIR_EL1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch32 System register
MAIR0[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] (PRRR_S) are architecturally mapped to AArch32
System register MAIR0[31:0] (MAIR0_S) when EL3 is using AArch32.

AArch32 System register PRRR bits [31:0] (PRRR_NS) are architecturally mapped to AArch32
System register MAIR0[31:0] (MAIR0_NS) when EL3 is using AArch32.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
PRRR are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of
TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.

• When it is set to 1, the register is as described in MAIR0.

Attributes

PRRR is a 32-bit register.

This register has the following instances:

• PRRR, when EL3 is not implemented.

• PRRR_S, when EL3 is implemented.

• PRRR_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

NOS<n>, bit [n+24], for n = 7 to 0

Not Outer Shareable. NOS<n> is the Outer Shareable property for memory attributes n, if the region
is mapped as Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, and the
appropriate PRRR.{NS0, NS1} field identifies the region as shareable. n is the value of the
concatenation of the {TEX[0], C, B} bits from the Translation table descriptor. The possible values
of each NOS<n> field other than NOS6 are:

0b0 Memory region is Outer Shareable.

0b1 Memory region is Inner Shareable.

31 30 29 28 27 26 25 24

RES0

23 20 19 18 17 16

TR7

15 14

TR6

13 12

TR5

11 10

TR4

9 8

TR3

7 6

TR2

5 4

TR1

3 2

TR0

1 0

NOS7
NOS6

NOS5
NOS4

NOS0
NOS1

NOS2
NOS3

NS1
NS0

DS0
DS1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12090
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The value of this bit is ignored if the region is:

• Device memory

• Normal memory that is at least one of:

— Inner Non-cacheable, Outer Non-cacheable.

— Identified by the appropriate PRRR.{NS0, NS1} field as Non-shareable.

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:20]

Reserved, RES0.

NS1, bit [19]

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the
Shareability of a memory region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.

• Has the S bit in the Translation table descriptor set to 1.

0b0 Region is Non-shareable.

0b1 Region is shareable. The value of the appropriate PRRR.NOS<n> field determines
whether the region is Inner Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS0, bit [18]

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the
Shareability of a memory region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.

• Has the S bit in the Translation table descriptor set to 0.

0b0 Region is Non-shareable.

0b1 Region is shareable. The value of the appropriate PRRR.NOS<n> field determines
whether the region is Inner Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS1, bit [17]

Mapping of S = 1 attribute for Device memory. From Armv8.0, all types of Device memory are
Outer Shareable, and therefore this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS0, bit [16]

Mapping of S = 0 attribute for Device memory. From Armv8.0, all types of Device memory are
Outer Shareable, and therefore this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12091
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TR<n>, bits [2n+1:2n], for n = 7 to 0

TR<n> is the primary TEX mapping for memory attributes n, and defines the mapped memory type
for a region with attributes n. n is the value of the concatenation of the {TEX[0], C, B} bits from the
Translation table descriptor. The possible values for each field other than TR6 are:

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Normal memory

The value 0b11 is reserved. The effect of programming a field to 0b11 is CONSTRAINED
UNPREDICTABLE.

The meaning of the TR6 field is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back
Cacheable memory types have the XS attribute set to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRRR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR0_NS;
 else
 R[t] = PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR0;
 else
 R[t] = PRRR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 R[t] = MAIR0_NS;
 else
 R[t] = PRRR_NS;
 else
 if TTBCR.EAE == '1' then
 R[t] = MAIR0;
 else
 R[t] = PRRR;
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12092
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if SCR.NS == '0' then
 R[t] = MAIR0_S;
 else
 R[t] = MAIR0_NS;
 else
 if SCR.NS == '0' then
 R[t] = PRRR_S;
 else
 R[t] = PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 else
 if SCR.NS == '0' then
 PRRR_S = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1010 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12093
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 PRRR_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12094
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.123 REVIDR, Revision ID Register

The REVIDR characteristics are:

Purpose

Provides implementation-specific minor revision information.

Configurations

AArch32 System register REVIDR bits [31:0] are architecturally mapped to AArch64 System
register REVIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
REVIDR are UNDEFINED.

If REVIDR has the same value as MIDR, then its contents have no significance.

Attributes

REVIDR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing REVIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = REVIDR;
elsif PSTATE.EL == EL2 then
 R[t] = REVIDR;
elsif PSTATE.EL == EL3 then
 R[t] = REVIDR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12095
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.124 RMR, Reset Management Register

The RMR characteristics are:

Purpose

If EL1 or EL3 is the highest implemented Exception level and this register is implemented:

• A write to the register at the highest implemented Exception level can request a Warm reset.

• If the highest implemented Exception level can use AArch32 and AArch64, this register
specifies the Execution state that the PE boots into on a Warm reset.

Configurations

AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register
RMR_EL1[31:0] when the highest implemented Exception level is EL1.

AArch32 System register RMR bits [31:0] are architecturally mapped to AArch64 System register
RMR_EL3[31:0] when EL3 is implemented.

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
RMR are UNDEFINED.

Only implemented if EL1 or EL3 is the highest implemented Exception level. In this case:

• If the highest implemented Exception level can use AArch32 and AArch64 then this register
must be implemented.

• If the highest implemented Exception level cannot use AArch64 then it is IMPLEMENTATION
DEFINED whether the register is implemented.

Attributes

RMR is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

AA64, bit [0]

When the highest implemented Exception level can use AArch64, determines which Execution state
the PE boots into after a Warm reset:

0b0 AArch32.

0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector
address of the specified Execution state.

If the highest implemented Exception level cannot use AArch64 this bit is RAZ/WI.

The reset behavior of this field is:

• When implemented as a RW field, this field resets to 0 on a Cold reset.

RES0

31 2

RR

1 0

AA64
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12096
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing RMR

When EL3 is implemented, Arm deprecates accessing this register from any PE mode other than Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL IN {EL1, EL3} && IsHighestEL(PSTATE.EL) then
 R[t] = RMR;
else
 UNDEFINED;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then
 RMR = R[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 RMR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b010

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12097
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.125 RVBAR, Reset Vector Base Address Register

The RVBAR characteristics are:

Purpose

If EL3 is not implemented, contains the IMPLEMENTATION DEFINED address that execution starts
from after reset when executing in AArch32 state.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
RVBAR are UNDEFINED.

This register is implemented only if the highest Exception level implemented is capable of using
AArch32, and is not EL3.

Attributes

RVBAR is a 32-bit register.

Field descriptions

ResetAddress, bits [31:1]

Bits [31:1] of the IMPLEMENTATION DEFINED address that execution starts from after reset when
executing in 32-bit state.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [0]

Reserved, RES1.

Accessing RVBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then
 R[t] = RVBAR;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);

ResetAddress

31 1 0

RES1

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12098
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 R[t] = RVBAR;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 R[t] = MVBAR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12099
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.126 SCR, Secure Configuration Register

The SCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the configuration of the current Security
state. It specifies:

• The Security state, either Secure or Non-secure.

• What mode the PE branches to if an IRQ, FIQ, or External abort occurs.

• Whether the PSTATE.F or PSTATE.A bits can be modified when SCR.NS==1.

Configurations

This register is present only when EL3 is capable of using AArch32. Otherwise, direct accesses to
SCR are UNDEFINED.

Attributes

SCR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

When FEAT_RAS is implemented:

Trap Error record accesses. Generate a Monitor Trap exception on MRC, MCR, MRRC, or MCRR
accesses to the following registers from modes other than Monitor mode, reported using EC
syndrome values 0x03 and 0x04:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS. When FEAT_RASv1p1
is implemented, ERXMISC4, ERXMISC5, ERXMISC6, ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from modes other than Monitor mode generate a
Monitor Trap exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [14]

Reserved, RES0.

RES0

31 16 15 14 13 12

RES0

11 10 9 8 7 6

AW

5

FW

4

EA

3 2 1

NS

0

TERR
RES0

TWE
TWI

SIF

IRQ
FIQ

nET
SCD

HCE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12100
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TWE, bit [13]

Traps WFE instructions to Monitor mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction in any mode other than Monitor mode is
trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter
a low-power state and the attempted execution does not generate an exception that is
taken to EL1 or EL2 by SCTLR.nTWE or HCR.TWE.

Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction in any mode other than Monitor mode is
trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter
a low-power state and the attempted execution does not generate an exception that is
taken to EL1 or EL2 by SCTLR.nTWI or HCR.TWI.

Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [11:10]

Reserved, RES0.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction execution from
Non-secure memory.

0b0 Secure state instruction execution from Non-secure memory is permitted.

0b1 Secure state instruction execution from Non-secure memory is not permitted.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12101
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HCE, bit [8]

Hypervisor Call instruction enable. If EL2 is implemented, enables execution of HVC instructions
at Non-secure EL1 and EL2.

0b0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction exception is taken
from PL1 to PL1.

• UNPREDICTABLE at EL2. Behavior is one of the following:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

0b1 HVC instructions are enabled at Non-secure EL1 and EL2.

Note

HVC instructions are always UNDEFINED at EL0 and in Secure state.

If EL2 is not implemented, this bit is RES0 and HVC is UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SCD, bit [7]

Secure Monitor Call disable. Disables SMC instructions.

0b0 SMC instructions are enabled.

0b1 In Non-secure state, SMC instructions are UNDEFINED. The Undefined Instruction
exception is taken from the current Exception level to the current Exception level.

In Secure state, behavior is one of the following:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

Note

SMC instructions are always UNDEFINED at PL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

nET, bit [6]

Not Early Termination. This bit disables early termination.

0b0 Early termination permitted. Execution time of data operations can depend on the data
values.

0b1 Disable early termination. The number of cycles required for data operations is forced
to be independent of the data values.

This IMPLEMENTATION DEFINED mechanism can disable data dependent timing optimizations from
multiplies and data operations. It can provide system support against information leakage that might
be exploited by timing correlation types of attack.

On implementations that do not support early termination or do not support disabling early
termination, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12102
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
AW, bit [5]

When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether
PSTATE.A masks an External abort taken from Non-secure state.

0b0 External aborts taken from Non-secure state are not masked by PSTATE.A, and are
taken to EL3.

External aborts taken from Secure state are masked by PSTATE.A.

0b1 External aborts taken from either Security state are masked by PSTATE.A. When
PSTATE.A is 0, the abort is taken to EL3.

When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

FW, bit [4]

When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether
PSTATE.F masks an FIQ interrupt taken from Non-secure state.

0b0 An FIQ taken from Non-secure state is not masked by PSTATE.F, and is taken to EL3.

An FIQ taken from Secure state is masked by PSTATE.F.

0b1 An FIQ taken from either Security state is masked by PSTATE.F. When PSTATE.F is 0,
the FIQ is taken to EL3.

When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EA, bit [3]

External Abort handler. This bit controls which mode takes External aborts and SError exceptions.

0b0 External aborts taken to Abort mode.

0b1 External aborts taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

FIQ, bit [2]

FIQ handler. This bit controls which mode takes FIQ exceptions.

0b0 FIQs taken to FIQ mode.

0b1 FIQs taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

IRQ, bit [1]

IRQ handler. This bit controls which mode takes IRQ exceptions.

0b0 IRQs taken to IRQ mode.

0b1 IRQs taken to Monitor mode.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

NS, bit [0]

Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the
PE:

0b0 PE is in Secure state.

0b1 PE is in Non-secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12103
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode
by changing the SCR.NS bit from 0 to 1 results in the SCR.NS bit remaining as 0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing SCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 R[t] = SCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12104
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.127 SCTLR, System Control Register

The SCTLR characteristics are:

Purpose

Provides the top level control of the system, including its memory system.

Configurations

This register is banked between SCTLR and SCTLR_S and SCTLR_NS.

AArch32 System register SCTLR bits [31:0] are architecturally mapped to AArch64 System
register SCTLR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
SCTLR are UNDEFINED.

Some bits in the register are read-only. These bits relate to non-configurable features of an
implementation, and are provided for compatibility with previous versions of the architecture.

Attributes

SCTLR is a 32-bit register.

This register has the following instances:

• SCTLR, when EL3 is not implemented.

• SCTLR_S, when EL3 is implemented.

• SCTLR_NS, when EL3 is implemented.

Field descriptions

DSSBS, bit [31]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

0b0 PSTATE.SSBS is set to 0 on an exception to any mode in this security state except Hyp
mode

0b1 PSTATE.SSBS is set to 1 on an exception to any mode in this security state except Hyp
mode

Note
When EL3 is implemented and is using AArch32, this bit is banked between the two Security states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

31

TE

30 29 28

RES0

27 26

EE

25 24 23 22 21 20 19 18 17 16

RES0

15 14

V

13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

DSSBS
AFE

TRE
RES0

SPAN
RES1

RES0
UWXN

WXN
nTWE

nTLSMD
LSMAOE

CP15BEN
UNK

ITD
SED

RES0
EnRCTX

RES1
nTWI

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12105
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception level that is executing
at PL1 are taken to A32 or T32 state:

0b0 Exceptions, including reset, taken to A32 state.

0b1 Exceptions, including reset, taken to T32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0
translation regime, this bit enables use of the AP[0] bit in the translation descriptors as the Access
flag, and restricts access permissions in the translation descriptors to the simplified model.

0b0 In the Translation table descriptors, AP[0] is an access permissions bit. The full range
of access permissions is supported. No Access flag is implemented.

0b1 In the Translation table descriptors, AP[0] is the Access flag. Only the simplified model
for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to
1, regardless of the value of this bit.

The AFE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation
regime for use as two translation table bits that can be managed by the operating system. Enabling
this remapping also changes the scheme used to describe the memory region attributes in the
VMSA.

0b0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to describe the memory
region attributes.

0b1 TEX remap enabled. TEX[2:1] are reassigned for use as bits managed by the operating
system. The TEX[0], C, and B bits are used to describe the memory region attributes,
with the MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the
endianness of stage 1 translation table walks in the PL1&0 translation regime.

0b0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.
Stage 1 translation table walks in the PL1&0 translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on taking an exception or coming out of reset. Stage
1 translation table walks in the PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception levels
higher than EL0, this bit is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12106
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If an implementation does not provide Little-endian support for data accesses at Exception levels
higher than EL0, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state,
or to EL3 from Secure state when EL3 is using AArch32.

0b0 PSTATE.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.

• In Secure state, when EL3 is using AArch64, on taking an exception to EL1.

• In Secure state, when EL3 is using AArch32, on taking an exception to EL3.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory
regions that are writable at PL0 to be treated as XN for accesses from software executing at PL1.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable at PL0 forced to XN for accesses from software executing
at PL1.

The UWXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the PL1&0 translation regime is forced to XN for accesses
from software executing at PL1 or PL0.

This bit applies only when SCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12107
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE
mode other than Monitor mode or Hyp mode:

0b0 Normal exception vectors. Base address is held in VBAR.

0b1 High exception vectors (Hivecs), base address 0xFFFF0000. This base address cannot be
remapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

0b0 All instruction access to Normal memory from PL1 and PL0 are Non-cacheable for all
levels of instruction and unified cache.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12108
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 All instruction access to Normal memory from PL1 and PL0 can be cached at all levels
of instruction and unified cache.

If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of
the SCTLR.I bit if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.

• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

Enable EL0 access to the following System instructions:

• CFPRCTX.

• DVPRCTX.

• CPPRCTX.

• If FEAT_SPECRES2 is implemented, COSPRCTX.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1.

0b1 EL0 access to these instructions is enabled.

Note
When EL3 is implemented and is using AArch32, this bit is banked between the two Security states.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

0b0 SETEND instruction execution is enabled at PL0 and PL1.

0b1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

0b0 All IT instruction functionality is enabled at PL1 and PL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12109
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b1 Any attempt at PL1 or PL0 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

— 11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B,
UDF, SVC, LDM, and STM.

— 1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions.

— 10100xxxxxxxxxxx: ADD Rd, PC, #imm

— 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]

— 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC;
BLX PC.

— 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This
pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by
an instruction in an IT block.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
SCTLR_EL1, SCTLR_EL2, and HSCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When an implementation does not implement ITD, access to this field is RAZ/WI.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==0b1111) encoding space from PL1 and PL0:

0b0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
UNDEFINED.

0b1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in
the SCTLR_EL1, SCTLR_EL2, and HSCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12110
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL1 or EL0, A32 and T32 Load Multiple and Store Multiple
can have an interrupt taken during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple
at EL1 or EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE
memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1 or EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory
are trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1 or EL0
that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory
are not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

0b0 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0
stage 1 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0
stage 1 translation tables, can be cached at all levels of data and unified cache.

The PE ignores SCTLR.C, and data accesses to Normal memory from EL1 and EL0 are Cacheable,
if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.

• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

0b0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at PL1 or PL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12111
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

0b0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to Normal memory.

0b1 EL1 and EL0 stage 1 address translation enabled.

The PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning the
value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.

• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing SCTLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = SCTLR_NS;
 else
 R[t] = SCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = SCTLR_NS;
 else
 R[t] = SCTLR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = SCTLR_S;
 else
 R[t] = SCTLR_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12112
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 SCTLR_NS = R[t];
 else
 SCTLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 SCTLR_NS = R[t];
 else
 SCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 SCTLR_S = R[t];
 else
 SCTLR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12113
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.128 SPSR, Saved Program Status Register

The SPSR characteristics are:

Purpose

Holds the saved process state for the current mode.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR are
UNDEFINED.

Attributes

SPSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to the current mode,
and copied to PSTATE.N on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to the current mode, and
copied to PSTATE.Z on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to the current mode, and
copied to PSTATE.C on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to the current mode,
and copied to PSTATE.V on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to the current
mode, and copied to PSTATE.Q on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12114
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to the current mode, and copied to
PSTATE.IT on executing an exception return operation in the current mode.

SPSR.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR[26:25].

• IT[7:2] is SPSR[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to the current
mode, and copied to PSTATE.SSBS on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to the current
mode, and copied to PSTATE.PAN on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to the current
mode, and copied to PSTATE.DIT on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to the current mode,
and copied to PSTATE.IL on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12115
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to the current
mode, and copied to PSTATE.GE on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to the current mode, and copied
to PSTATE.E on executing an exception return operation in the current mode.

If the implementation does not support big-endian operation, SPSR.E is RES0. If the implementation
does not support little-endian operation, SPSR.E is RES1. On executing an exception return
operation in the current mode, if the implementation does not support big-endian operation at the
Exception level being returned to, SPSR.E is RES0, and if the implementation does not support
little-endian operation at the Exception level being returned to, SPSR.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to the current mode,
and copied to PSTATE.A on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to the current mode, and
copied to PSTATE.I on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to the current mode, and
copied to PSTATE.F on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to the current mode,
and copied to PSTATE.T on executing an exception return operation in the current mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to the current mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in the current mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10110 Monitor.

0b10111 Abort.

0b11010 Hyp.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12116
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR.M[4:0] has a Reserved value, or a value for an unimplemented
Exception level, executing an exception return operation in the current mode is an illegal return
event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12117
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.129 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

AArch32 System register SPSR_abt bits [31:0] are architecturally mapped to AArch64 System
register SPSR_abt[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_abt
are UNDEFINED.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and
copied to PSTATE.N on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and
copied to PSTATE.Z on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and
copied to PSTATE.C on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and
copied to PSTATE.V on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode,
and copied to PSTATE.Q on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12118
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Abort mode, and copied to
PSTATE.IT on executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].

• IT[7:2] is SPSR_abt[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode,
and copied to PSTATE.SSBS on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode,
and copied to PSTATE.PAN on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode,
and copied to PSTATE.DIT on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and
copied to PSTATE.IL on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12119
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode,
and copied to PSTATE.GE on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to
PSTATE.E on executing an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the
implementation does not support little-endian operation, SPSR_abt.E is RES1. On executing an
exception return operation in Abort mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_abt.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_abt.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and
copied to PSTATE.A on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied
to PSTATE.I on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied
to PSTATE.F on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and
copied to PSTATE.T on executing an exception return operation in Abort mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Abort mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12120
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Abort mode is an illegal
return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_abt

SPSR_abt is accessible in all modes other than User mode and Abort mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_abt

MSR{<c>}{<q>} SPSR_abt, <Rn>

R M M1

0b1 0b1 0b0100

R M M1

0b1 0b1 0b0100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12121
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.130 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

AArch32 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch64 System
register SPSR_fiq[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_fiq
are UNDEFINED.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and
copied to PSTATE.N on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied
to PSTATE.Z on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and
copied to PSTATE.C on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and
copied to PSTATE.V on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and
copied to PSTATE.Q on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12122
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to FIQ mode, and copied to
PSTATE.IT on executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].

• IT[7:2] is SPSR_fiq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and
copied to PSTATE.PAN on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode,
and copied to PSTATE.DIT on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and
copied to PSTATE.IL on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12123
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode,
and copied to PSTATE.GE on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to
PSTATE.E on executing an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the
implementation does not support little-endian operation, SPSR_fiq.E is RES1. On executing an
exception return operation in FIQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_fiq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and
copied to PSTATE.A on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied
to PSTATE.I on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied
to PSTATE.F on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and
copied to PSTATE.T on executing an exception return operation in FIQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in FIQ mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12124
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in FIQ mode is an illegal
return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_fiq

SPSR_fiq is accessible in all modes other than User mode and FIQ mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_fiq

MSR{<c>}{<q>} SPSR_fiq, <Rn>

R M M1

0b1 0b0 0b1110

R M M1

0b1 0b0 0b1110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12125
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.131 SPSR_hyp, Saved Program Status Register (Hyp mode)

The SPSR_hyp characteristics are:

Purpose

Holds the saved process state when an exception is taken to Hyp mode.

Configurations

AArch32 System register SPSR_hyp bits [31:0] are architecturally mapped to AArch64 System
register SPSR_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_hyp
are UNDEFINED.

Attributes

SPSR_hyp is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Hyp mode, and
copied to PSTATE.N on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Hyp mode, and copied
to PSTATE.Z on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Hyp mode, and
copied to PSTATE.C on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Hyp mode, and
copied to PSTATE.V on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Hyp mode, and
copied to PSTATE.Q on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12126
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Hyp mode, and copied to
PSTATE.IT on executing an exception return operation in Hyp mode.

SPSR_hyp.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_hyp[26:25].

• IT[7:2] is SPSR_hyp[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Hyp mode,
and copied to PSTATE.SSBS on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Hyp mode, and
copied to PSTATE.PAN on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Hyp mode,
and copied to PSTATE.DIT on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Hyp mode, and
copied to PSTATE.IL on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12127
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Hyp mode,
and copied to PSTATE.GE on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Hyp mode, and copied to
PSTATE.E on executing an exception return operation in Hyp mode.

If the implementation does not support big-endian operation, SPSR_hyp.E is RES0. If the
implementation does not support little-endian operation, SPSR_hyp.E is RES1. On executing an
exception return operation in Hyp mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_hyp.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_hyp.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Hyp mode, and
copied to PSTATE.A on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Hyp mode, and copied
to PSTATE.I on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Hyp mode, and copied
to PSTATE.F on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Hyp mode, and
copied to PSTATE.T on executing an exception return operation in Hyp mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Hyp mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Hyp mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11010 Hyp.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12128
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_hyp.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Hyp mode is an illegal
return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_hyp

SPSR_hyp is accessible only in Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_hyp

MSR{<c>}{<q>} SPSR_hyp, <Rn>

R M M1

0b1 0b1 0b1110

R M M1

0b1 0b1 0b1110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12129
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.132 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

AArch32 System register SPSR_irq bits [31:0] are architecturally mapped to AArch64 System
register SPSR_irq[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_irq
are UNDEFINED.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and
copied to PSTATE.N on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied
to PSTATE.Z on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and
copied to PSTATE.C on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and
copied to PSTATE.V on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and
copied to PSTATE.Q on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12130
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to IRQ mode, and copied to
PSTATE.IT on executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].

• IT[7:2] is SPSR_irq[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and
copied to PSTATE.PAN on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode,
and copied to PSTATE.DIT on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and
copied to PSTATE.IL on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12131
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode,
and copied to PSTATE.GE on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to
PSTATE.E on executing an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the
implementation does not support little-endian operation, SPSR_irq.E is RES1. On executing an
exception return operation in IRQ mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_irq.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_irq.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and
copied to PSTATE.A on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied
to PSTATE.I on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied
to PSTATE.F on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and
copied to PSTATE.T on executing an exception return operation in IRQ mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in IRQ mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12132
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in IRQ mode is an illegal
return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_irq

SPSR_irq is accessible in all modes other than User mode and IRQ mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_irq

MSR{<c>}{<q>} SPSR_irq, <Rn>

R M M1

0b1 0b1 0b0000

R M M1

0b1 0b1 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12133
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.133 SPSR_mon, Saved Program Status Register (Monitor mode)

The SPSR_mon characteristics are:

Purpose

Holds the saved process state when an exception is taken to Monitor mode.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_mon
are UNDEFINED.

Attributes

SPSR_mon is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Monitor mode,
and copied to PSTATE.N on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Monitor mode, and
copied to PSTATE.Z on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Monitor mode, and
copied to PSTATE.C on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Monitor mode,
and copied to PSTATE.V on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Monitor mode,
and copied to PSTATE.Q on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12134
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Monitor mode, and copied to
PSTATE.IT on executing an exception return operation in Monitor mode.

SPSR_mon.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_mon[26:25].

• IT[7:2] is SPSR_mon[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Monitor
mode, and copied to PSTATE.SSBS on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Monitor mode,
and copied to PSTATE.PAN on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Monitor mode,
and copied to PSTATE.DIT on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Monitor mode, and
copied to PSTATE.IL on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12135
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Monitor
mode, and copied to PSTATE.GE on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Monitor mode, and copied to
PSTATE.E on executing an exception return operation in Monitor mode.

If the implementation does not support big-endian operation, SPSR_mon.E is RES0. If the
implementation does not support little-endian operation, SPSR_mon.E is RES1. On executing an
exception return operation in Monitor mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_mon.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_mon.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Monitor mode, and
copied to PSTATE.A on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Monitor mode, and
copied to PSTATE.I on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Monitor mode, and
copied to PSTATE.F on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Monitor mode,
and copied to PSTATE.T on executing an exception return operation in Monitor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Monitor mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Monitor mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10110 Monitor.

0b10111 Abort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12136
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11010 Hyp.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If SPSR_mon.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Monitor mode is an
illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_mon

SPSR_mon is only accessible in EL3 modes other than Monitor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_mon

MSR{<c>}{<q>} SPSR_mon, <Rn>

R M M1

0b1 0b1 0b1100

R M M1

0b1 0b1 0b1100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12137
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.134 SPSR_svc, Saved Program Status Register (Supervisor mode)

The SPSR_svc characteristics are:

Purpose

Holds the saved process state when an exception is taken to Supervisor mode.

Configurations

AArch32 System register SPSR_svc bits [31:0] are architecturally mapped to AArch64 System
register SPSR_EL1[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_svc
are UNDEFINED.

Attributes

SPSR_svc is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Supervisor mode,
and copied to PSTATE.N on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Supervisor mode, and
copied to PSTATE.Z on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Supervisor mode, and
copied to PSTATE.C on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Supervisor mode,
and copied to PSTATE.V on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Supervisor
mode, and copied to PSTATE.Q on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12138
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Supervisor mode, and copied to
PSTATE.IT on executing an exception return operation in Supervisor mode.

SPSR_svc.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_svc[26:25].

• IT[7:2] is SPSR_svc[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Supervisor
mode, and copied to PSTATE.SSBS on executing an exception return operation in Supervisor
mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Supervisor
mode, and copied to PSTATE.PAN on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Supervisor
mode, and copied to PSTATE.DIT on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Supervisor mode,
and copied to PSTATE.IL on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12139
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Supervisor
mode, and copied to PSTATE.GE on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Supervisor mode, and copied
to PSTATE.E on executing an exception return operation in Supervisor mode.

If the implementation does not support big-endian operation, SPSR_svc.E is RES0. If the
implementation does not support little-endian operation, SPSR_svc.E is RES1. On executing an
exception return operation in Supervisor mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_svc.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_svc.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Supervisor mode,
and copied to PSTATE.A on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Supervisor mode, and
copied to PSTATE.I on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Supervisor mode, and
copied to PSTATE.F on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Supervisor mode,
and copied to PSTATE.T on executing an exception return operation in Supervisor mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Supervisor mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in Supervisor mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12140
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11111 System.

Other values are reserved. If SPSR_svc.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Supervisor mode is an
illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_svc

SPSR_svc is accessible in all modes other than User mode and Supervisor mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_svc

MSR{<c>}{<q>} SPSR_svc, <Rn>

R M M1

0b1 0b1 0b0010

R M M1

0b1 0b1 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12141
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.135 SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

AArch32 System register SPSR_und bits [31:0] are architecturally mapped to AArch64 System
register SPSR_und[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to SPSR_und
are UNDEFINED.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode,
and copied to PSTATE.N on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and
copied to PSTATE.Z on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and
copied to PSTATE.C on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode,
and copied to PSTATE.V on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined
mode, and copied to PSTATE.Q on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

N

31

Z

30

C

29

V

28

Q

27 26 25

J

24 23 22 21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
SSBS

DIT
PAN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12142
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on taking an exception to Undefined mode, and copied to
PSTATE.IT on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].

• IT[7:2] is SPSR_und[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined
mode, and copied to PSTATE.SSBS on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined
mode, and copied to PSTATE.PAN on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined
mode, and copied to PSTATE.DIT on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode,
and copied to PSTATE.IL on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12143
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined
mode, and copied to PSTATE.GE on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied
to PSTATE.E on executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the
implementation does not support little-endian operation, SPSR_und.E is RES1. On executing an
exception return operation in Undefined mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_und.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_und.E is
RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on taking an exception to Undefined mode,
and copied to PSTATE.A on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and
copied to PSTATE.I on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and
copied to PSTATE.F on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode,
and copied to PSTATE.T on executing an exception return operation in Undefined mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied
to PSTATE.M[4:0] on executing an exception return operation in Undefined mode.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10111 Abort.

0b11011 Undefined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12144
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Undefined mode is an
illegal return event, as described in Illegal return events from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SPSR_und

SPSR_und is accessible in all modes other than User mode and Undefined mode.

Accesses to this register use the following encodings in the System register encoding space:

MRS{<c>}{<q>} <Rd>, SPSR_und

MSR{<c>}{<q>} SPSR_und, <Rn>

R M M1

0b1 0b1 0b0110

R M M1

0b1 0b1 0b0110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12145
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.136 TCMTR, TCM Type Register

The TCMTR characteristics are:

Purpose

Provides information about the implementation of the TCM.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
TCMTR are UNDEFINED.

If EL1 or above can use AArch32 then this register must be implemented.

Attributes

TCMTR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing TCMTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = TCMTR;
elsif PSTATE.EL == EL2 then
 R[t] = TCMTR;
elsif PSTATE.EL == EL3 then
 R[t] = TCMTR;

IMPLEMENTATION DEFINED

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12146
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.137 TLBIALL, TLB Invalidate All

The TLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the PL1&0 translation regime and matches
the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIALL are UNDEFINED.

Attributes

TLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALL

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12147
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS);
 else
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_NSH,
TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12148
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.138 TLBIALLH, TLB Invalidate All, Hyp mode

The TLBIALLH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIALLH are UNDEFINED.

Attributes

TLBIALLH is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLH

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL2, Shareability_NSH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12149
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.139 TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

The TLBIALLHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIALLHIS are UNDEFINED.

Attributes

TLBIALLHIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLHIS

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL2, Shareability_ISH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12150
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.140 TLBIALLIS, TLB Invalidate All, Inner Shareable

The TLBIALLIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the
translation table walk. The entries that are invalidated are as follows:

• If executed at EL1, all entries that:

— Would be required for the EL1&0 translation regime.

— Match the current VMID, if EL2 is implemented and enabled in the current Security
state.

• If executed in Secure state when EL3 is using AArch32, all entries that would be required for
the Secure PL1&0 translation regime.

• If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2
translation table entries that would be required for the PL1&0 translation regime and matches
the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIALLIS are UNDEFINED.

Attributes

TLBIALLIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLIS

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12151
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS);
 else
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL30, Shareability_ISH,
TLBI_ExcludeXS);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12152
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.141 TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

The TLBIALLNSNH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for stage 1 or stage 2 of the
Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIALLNSNH are UNDEFINED.

Attributes

TLBIALLNSNH is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLNSNH

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL10, Shareability_NSH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12153
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.142 TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

The TLBIALLNSNHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for stage 1 or stage 2 of the
Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIALLNSNHIS are UNDEFINED.

Attributes

TLBIALLNSNHIS is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing TLBIALLNSNHIS

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISH, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_ALL(SS_NonSecure, Regime_EL10, Shareability_ISH, TLBI_AllAttr);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12154
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.143 TLBIASID, TLB Invalidate by ASID match

The TLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIASID are UNDEFINED.

Attributes

TLBIASID is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

Executing TLBIASID

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RES0

31 8

ASID

7 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12155
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSH, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12156
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.144 TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

The TLBIASIDIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

— Is from a level of lookup above the final level.

— Is a non-global entry from the final level of lookup.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIASIDIS are UNDEFINED.

Attributes

TLBIASIDIS is a 32-bit System instruction.

Field descriptions

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be
affected by this System instruction.

Executing TLBIASIDIS

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RES0

31 8

ASID

7 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12157
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISH, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_ASID(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH,
TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12158
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.145 TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

The TLBIIPAS2 characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIIPAS2 are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2 is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

RES0

31 28

IPA[39:12]

27 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12159
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 return;
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12160
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.146 TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

The TLBIIPAS2IS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIIPAS2IS are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2IS is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2IS

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

RES0

31 28

IPA[39:12]

27 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12161
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 return;
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12162
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.147 TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

The TLBIIPAS2L characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIIPAS2L are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2L is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2L

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

RES0

31 28

IPA[39:12]

27 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12163
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 return;
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12164
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.148 TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner
Shareable

The TLBIIPAS2LIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

• SCR.NS is 1.

• The entry would be used for the specified IPA.

• The entry would be used with the current VMID.

• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIIPAS2LIS are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2LIS is a 32-bit System instruction.

Field descriptions

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing TLBIIPAS2LIS

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

RES0

31 28

IPA[39:12]

27 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12165
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif SCR.NS == '0' then
 return;
 else
 AArch32.TLBI_IPAS2(SS_NonSecure, Regime_EL10, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12166
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.149 TLBIMVA, TLB Invalidate by VA

The TLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVA are UNDEFINED.

Attributes

TLBIMVA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12167
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVA

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12168
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.150 TLBIMVAA, TLB Invalidate by VA, All ASID

The TLBIMVAA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAA are UNDEFINED.

Attributes

TLBIMVAA is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAA

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12169
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12170
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.151 TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

The TLBIMVAAIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAAIS are UNDEFINED.

Attributes

TLBIMVAAIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAAIS

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12171
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12172
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.152 TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

The TLBIMVAAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAAL are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAAL is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAAL

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12173
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12174
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.153 TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

The TLBIMVAALIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified address.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAALIS are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAALIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAALIS

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12175
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VAA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12176
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.154 TLBIMVAH, TLB Invalidate by VA, Hyp mode

The TLBIMVAH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAH are UNDEFINED.

Attributes

TLBIMVAH is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAH

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12177
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12178
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.155 TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

The TLBIMVAHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from any level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAHIS are UNDEFINED.

Attributes

TLBIMVAHIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVAHIS

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12179
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Any,
TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12180
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.156 TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

The TLBIMVAIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is from a level of lookup above the final level and matches the specified
ASID.

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAIS are UNDEFINED.

Attributes

TLBIMVAIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12181
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVAIS

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH,
TLBILevel_Any, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12182
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.157 TLBIMVAL, TLB Invalidate by VA, Last level

The TLBIMVAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVAL are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAL is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12183
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVAL

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12184
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.158 TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

The TLBIMVALH characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from the final level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVALH are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVALH is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVALH

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0111 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12185
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_NSH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_NSH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12186
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.159 TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

The TLBIMVALHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are
from the final level of the translation table walk that would be required for the Non-secure EL2
translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL2 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVALHIS are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVALHIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing TLBIMVALHIS

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction is treated as a NOP.

• The instruction executes as if it had been executed in Monitor mode.

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then

VA

31 12

RES0

11 0

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12187
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 AArch32.TLBI_VA(SS_NonSecure, Regime_EL2, VMID[], Shareability_ISH, TLBILevel_Last,
TLBI_AllAttr, R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12188
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.160 TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

The TLBIMVALIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following
requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified address, and one of the following applies:

— The entry is a global entry from the final level of lookup.

— The entry is a non-global entry from the final level of lookup that matches the
specified ASID.

• If EL2 is implemented and enabled in the current Security state, the entry would be used with
the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the
following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation
regime.

• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation
regime.

• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that
executes this System instruction.

Configurations

This instruction is present only when EL1 is capable of using AArch32. Otherwise, direct accesses
to TLBIMVALIS are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVALIS is a 32-bit System instruction.

Field descriptions

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected
by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by
this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless
of the value of the ASID field.

VA

31 12

RES0

11 8

ASID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12189
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Executing TLBIMVALIS

Accesses to this instruction use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if IsFeatureImplemented(FEAT_XS) && !ELUsingAArch32(EL2) &&
IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_ExcludeXS, R[t]);
 else
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL2 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);
elsif PSTATE.EL == EL3 then
 AArch32.TLBI_VA(SecurityStateAtEL(EL3), Regime_EL30, VMID_NONE, Shareability_ISH,
TLBILevel_Last, TLBI_AllAttr, R[t]);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1000 0b0011 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12190
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.161 TLBTR, TLB Type Register

The TLBTR characteristics are:

Purpose

Provides information about the TLB implementation. The register must define whether the
implementation provides separate instruction and data TLBs, or a unified TLB. Normally, the
IMPLEMENTATION DEFINED information in this register includes the number of lockable entries in
the TLB.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
TLBTR are UNDEFINED.

Attributes

TLBTR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:1]

IMPLEMENTATION DEFINED.

nU, bit [0]

Not Unified TLB. Indicates whether the implementation has a unified TLB.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Unified TLB.

0b1 Separate Instruction and Data TLBs.

Access to this field is RO.

Accessing TLBTR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 R[t] = TLBTR;

IMPLEMENTATION DEFINED

31 1

nU

0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12191
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
elsif PSTATE.EL == EL2 then
 R[t] = TLBTR;
elsif PSTATE.EL == EL3 then
 R[t] = TLBTR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12192
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.162 TPIDRPRW, PL1 Software Thread ID Register

The TPIDRPRW characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying
information that is not visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configurations

This register is banked between TPIDRPRW and TPIDRPRW_S and TPIDRPRW_NS.

AArch32 System register TPIDRPRW bits [31:0] are architecturally mapped to AArch64 System
register TPIDR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
TPIDRPRW are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRPRW is a 32-bit register.

This register has the following instances:

• TPIDRPRW, when EL3 is not implemented.

• TPIDRPRW_S, when EL3 is implemented.

• TPIDRPRW_NS, when EL3 is implemented.

Field descriptions

TID, bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDRPRW

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12193
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TPIDRPRW_NS;
 else
 R[t] = TPIDRPRW;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TPIDRPRW_NS;
 else
 R[t] = TPIDRPRW;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TPIDRPRW_S;
 else
 R[t] = TPIDRPRW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRPRW_NS = R[t];
 else
 TPIDRPRW = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRPRW_NS = R[t];
 else
 TPIDRPRW = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 TPIDRPRW_S = R[t];
 else
 TPIDRPRW_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12194
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.163 TPIDRURO, PL0 Read-Only Software Thread ID Register

The TPIDRURO characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying
information that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Configurations

This register is banked between TPIDRURO and TPIDRURO_S and TPIDRURO_NS.

AArch32 System register TPIDRURO bits [31:0] are architecturally mapped to AArch64 System
register TPIDRRO_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to TPIDRURO
are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRURO is a 32-bit register.

This register has the following instances:

• TPIDRURO, when EL3 is not implemented.

• TPIDRURO_S, when EL3 is implemented.

• TPIDRURO_NS, when EL3 is implemented.

Field descriptions

TID, bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDRURO

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12195
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 R[t] = TPIDRURO;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TPIDRURO_NS;
 else
 R[t] = TPIDRURO;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TPIDRURO_NS;
 else
 R[t] = TPIDRURO;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TPIDRURO_S;
 else
 R[t] = TPIDRURO_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURO_NS = R[t];
 else
 TPIDRURO = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURO_NS = R[t];
 else
 TPIDRURO = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 TPIDRURO_S = R[t];
 else
 TPIDRURO_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12196
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.164 TPIDRURW, PL0 Read/Write Software Thread ID Register

The TPIDRURW characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for
OS management purposes.

The PE makes no use of this register.

Configurations

This register is banked between TPIDRURW and TPIDRURW_S and TPIDRURW_NS.

AArch32 System register TPIDRURW bits [31:0] are architecturally mapped to AArch64 System
register TPIDR_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to TPIDRURW
are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRURW is a 32-bit register.

This register has the following instances:

• TPIDRURW, when EL3 is not implemented.

• TPIDRURW_S, when EL3 is implemented.

• TPIDRURW_NS, when EL3 is implemented.

Field descriptions

TID, bits [31:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDRURW

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);

Thread ID

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12197
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.TPIDR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 R[t] = TPIDRURW;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TPIDRURW_NS;
 else
 R[t] = TPIDRURW;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TPIDRURW_NS;
 else
 R[t] = TPIDRURW;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TPIDRURW_S;
 else
 R[t] = TPIDRURW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGWTR_EL2.TPIDR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 TPIDRURW = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURW_NS = R[t];
 else
 TPIDRURW = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TPIDRURW_NS = R[t];
 else
 TPIDRURW = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 TPIDRURW_S = R[t];
 else
 TPIDRURW_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12198
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.165 TTBCR, Translation Table Base Control Register

The TTBCR characteristics are:

Purpose

The control register for stage 1 of the PL1&0 translation regime. Its controls include:

• Where the VA range is split between addresses translated using TTBR0 and addresses
translated using TTBR1.

• The translation table format used by this stage of translation.

From Armv8.2, when the value of TTBCR.{EAE, T2E} is {1, 1}, TTBCR is used with TTBCR2.

Configurations

This register is banked between TTBCR and TTBCR_S and TTBCR_NS.

AArch32 System register TTBCR bits [31:0] are architecturally mapped to AArch64 System
register TCR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
TTBCR are UNDEFINED.

The current translation table format determines which format of the register is used.

Some RW fields of this register have defined reset values. These apply only if the PE resets into an
Exception level that is using AArch32. If the PE resets into EL3 using AArch32 then:

• The EAE bit resets to 0 in both the Secure and the Non-secure instances of the register.

• Other reset values apply only to the Secure instance of the register.

Attributes

TTBCR is a 32-bit register.

This register has the following instances:

• TTBCR, when EL3 is not implemented.

• TTBCR_S, when EL3 is implemented.

• TTBCR_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

EAE, bit [31]

Extended Address Enable.

0b0 Use the VMSAv8-32 translation system with the Short-descriptor translation table
format.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [30:6]

Reserved, RES0.

31

RES0

30 6 5 4 3

N

2 0

EAE PD1 RES0
PD0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12199
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
PD1, bit [5]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1.

0b0 Perform translation table walks using TTBR1.

0b1 A TLB miss on an address that is translated using TTBR1 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PD0, bit [4]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss for an address that is translated using TTBR0.

0b0 Perform translation table walks using TTBR0.

0b1 A TLB miss on an address that is translated using TTBR0 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [3]

Reserved, RES0.

N, bits [2:0]

Indicate the width of the base address held in TTBR0. In TTBR0, the base address field is
bits[31:14-N]. The value of N also determines:

• Whether TTBR0 or TTBR1 is used as the base address for translation table walks.

• The size of the translation table pointed to by TTBR0.

N can take any value from 0 to 7, that is, from 0b000 to 0b111.

When N has its reset value of 0, the translation table base is compatible with Armv5 and Armv6.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When TTBCR.EAE == 1:

EAE, bit [31]

Extended Address Enable.

0b1 Use the VMSAv8-32 translation system with the Long-descriptor translation table
format.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IMPLEMENTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

31 30

SH1

29 28 27 26 25 24 23

A1

22

RES0

21 19

T1SZ

18 16

RES0

15 14

SH0

13 12 11 10 9 8 7 6

RES0

5 3

T0SZ

2 0

EAE
IMPLEMENTATION DEFINED

EPD1
IRGN1

ORGN1

ORGN0
IRGN0

T2E
EPD0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12200
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1.

0b0 Perform translation table walks using TTBR1.

0b1 A TLB miss on an address that is translated using TTBR1 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

A1, bit [22]

Selects whether TTBR0 or TTBR1 defines the ASID.

0b0 TTBR0.ASID defines the ASID.

0b1 TTBR1.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [21:19]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12201
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
T1SZ, bits [18:16]

See Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format for
how TTBCR.{T1SZ, T0SZ} determine the input address ranges and memory region sizes translated
using TTBR0 and TTBR1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [15:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0.

0b00 Non-shareable

0b10 Outer Shareable

0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR0.

0b0 Perform translation table walks using TTBR0.

0b1 A TLB miss on an address that is translated using TTBR0 generates a Translation fault.
No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12202
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
T2E, bit [6]

When FEAT_AA32HPD is implemented:

TTBCR2 Enable.

0b0 TTBCR2 is disabled. The contents of TTBCR2 are treated as 0 for all purposes other
than reading or writing the register.

0b1 TTBCR2 is enabled.

If TTBCR.EAE==0, then the behavior is as if the bit is 0.

Otherwise:

Reserved, RES0.

Bits [5:3]

Reserved, RES0.

T0SZ, bits [2:0]

See Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format for
how TTBCR.{T1SZ, T0SZ} determine the input address ranges and memory region sizes translated
using TTBR0 and TTBR1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TTBCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBCR_NS;
 else
 R[t] = TTBCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBCR_NS;
 else
 R[t] = TTBCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TTBCR_S;
 else
 R[t] = TTBCR_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12203
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR_NS = R[t];
 else
 TTBCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR_NS = R[t];
 else
 TTBCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBCR_S = R[t];
 else
 TTBCR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12204
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.166 TTBCR2, Translation Table Base Control Register 2

The TTBCR2 characteristics are:

Purpose

The second control register for stage 1 of the PL1&0 translation regime.

If FEAT_AA32HPD is not implemented then this register is not implemented and its encoding is
UNDEFINED. Otherwise:

• When the value of TTBCR.{EAE, T2E} is not {1, 1} the contents of TTBCR2 are treated as
zero for all purposes other than reading or writing the register.

• When the value of TTBCR.{EAE, T2E} is {1, 1} TTBCR2 is used with TTBCR.

Configurations

This register is banked between TTBCR2 and TTBCR2_S and TTBCR2_NS.

AArch32 System register TTBCR2 bits [31:0] are architecturally mapped to AArch64 System
register TCR_EL1[63:32].

This register is present only when EL1 is capable of using AArch32 and FEAT_AA32HPD is
implemented. Otherwise, direct accesses to TTBCR2 are UNDEFINED.

Attributes

TTBCR2 is a 32-bit register.

This register has the following instances:

• TTBCR2, when EL3 is not implemented.

• TTBCR2_S, when EL3 is implemented.

• TTBCR2_NS, when EL3 is implemented.

Field descriptions

Bits [31:19]

Reserved, RES0.

HWU162, bit [18]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[62] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[62] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 19 18 17 16 15 14 13 12 11 10 9

RES0

8 0

HWU162
HWU161

HWU160
HWU159

HWU062

HPD0
HPD1

HWU059
HWU060

HWU061
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12205
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Otherwise:

Reserved, RES0.

HWU161, bit [17]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[61] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[61] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [16]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[60] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[60] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [15]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[59] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[59] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12206
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HWU062, bit [14]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[62] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[62] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [13]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[61] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[61] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU060, bit [12]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[60] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[60] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12207
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HWU059, bit [11]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[59] of each stage 1 translation table Block or Page
entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[59] of each stage 1 translation table Block or Page
entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of
TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E
is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [10]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and
PXNTable, in the translation tables pointed to by TTBR1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled if TTBCR.T2E == 1.

When disabled, the permissions are treated as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPD0, bit [9]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and
PXNTable, in the translation tables pointed to by TTBR0.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled if TTBCR.T2E ==1.

When disabled, the permissions are treated is as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:0]

Reserved, RES0.

Accessing TTBCR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12208
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBCR2_NS;
 else
 R[t] = TTBCR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBCR2_NS;
 else
 R[t] = TTBCR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TTBCR2_S;
 else
 R[t] = TTBCR2_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR2_NS = R[t];
 else
 TTBCR2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBCR2_NS = R[t];
 else
 TTBCR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBCR2_S = R[t];
 else
 TTBCR2_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12209
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.167 TTBR0, Translation Table Base Register 0

The TTBR0 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the lower VA range in the PL1&0 translation regime, and other information for this
translation regime.

Configurations

This register is banked between TTBR0 and TTBR0_S and TTBR0_NS.

AArch32 System register TTBR0 bits [63:0] are architecturally mapped to AArch64 System
register TTBR0_EL1[63:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
TTBR0 are UNDEFINED.

TTBR0 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits [31:0] and do not modify bits [63:32].

TTBCR.EAE determines which TTBR0 format is used:

• TTBCR.EAE == 0b0: 32-bit format is used. TTBR0[63:32] are ignored.

• TTBCR.EAE == 0b1: 64-bit format is used.

When EL3 is using AArch32, write access to TTBR0(S) is disabled when the CP15SDISABLE
signal is asserted HIGH.

Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability and
shareability information is held in the TTBCR, not in TTBR0.

Attributes

TTBR0 is a 64-bit register.

This register has the following instances:

• TTBR0, when EL3 is not implemented.

• TTBR0_S, when EL3 is implemented.

• TTBR0_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

Bits [63:32]

Reserved, RES0.

RES0

63 32

TTB0

31 7 6 5

RGN

4 3 2

S

1 0

IRGN[0]
NOS

IRGN[1]
IMP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12210
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
TTB0, bits [31:7]

Translation table base address, bits[31:x], where x is 14-(TTBCR.N). Register bits [x-1:7] are RES0,
with the additional requirement that if these bits are not all zero, this is a misaligned translation table
base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:7] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN, bits [0, 6]

Inner region bits. Bits [0,6] of this register together indicate the Inner Cacheability attributes for the
memory associated with the translation table walks. The possible values of IRGN[1:0] are:

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Cacheable.

0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and register
bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory region
types and to ensure that software written for ARMv7 without the Multiprocessing Extensions can
run unmodified on an implementation that includes the functionality introduced by the ARMv7
Multiprocessing Extensions.

The IRGN field is split as follows:

• IRGN[0] is TTBR0[6].

• IRGN[1] is TTBR0[0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR0.S is 1, indicates whether the memory associated
with a translation table walk is Inner Shareable or Outer Shareable:

0b0 Memory is Outer Shareable.

0b1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR0.S is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the
translation table walks:

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Cacheable.

0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12211
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not
include any IMPLEMENTATION DEFINED features this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Shareable:

0b0 Memory is Non-shareable.

0b1 Memory is Shareable. The TTBR0.NOS field indicates whether the memory is Inner
Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID
or TTBR1.ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T0SZ as follows:

• If TTBCR.T0SZ is 0 or 1, x = 5 - TTBCR.T0SZ.

• If TTBCR.T0SZ is greater than 1, x = 14 - TTBCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 56

ASID

55 48

BADDR

47 32

BADDR

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12212
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. When TTBCR.EAE ==1, this bit indicates whether each entry that is pointed
to by TTBR0 is a member of a common set that can be used by every PE in the Inner Shareable
domain for which the value of TTBR0.CnP is 1.

0b0 The translation table entries pointed to by this instance of TTBR0, for the current ASID,
are permitted to differ from corresponding entries for this instance of TTBR0 for other
PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0.CnP on those other PEs.

• The value of TTBCR.EAE on those other PEs.

• The value of the current ASID or, for the Non-secure instance of TTBR0, the
value of the current VMID.

0b1 The translation table entries pointed to by this instance of TTBR0 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which the
value of TTBR0.CnP is 1 for this instance of TTBR0 and all of the following apply:

• The translation table entries are pointed to by this instance of TTBR0.

• The value of the applicable TTBCR.EAE field is 1.

• The ASID is the same as the current ASID.

• For the Non-secure instance of TTBR0, the VMID is the same as the current
VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR0.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those TTBR0s do not point to the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12213
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBR0_NS<31:0>;
 else
 R[t] = TTBR0<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBR0_NS<31:0>;
 else
 R[t] = TTBR0<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TTBR0_S<31:0>;
 else
 R[t] = TTBR0_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS<31:0> = R[t];
 else
 TTBR0<31:0> = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS<31:0> = R[t];
 else
 TTBR0<31:0> = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR0_S<31:0> = R[t];
 else
 TTBR0_NS<31:0> = R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b000

coproc CRm opc1

0b1111 0b0010 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12214
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (TTBR0_NS<63:32>, TTBR0_NS<31:0>);
 else
 (R[t2], R[t]) = (TTBR0<63:32>, TTBR0<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (TTBR0_NS<63:32>, TTBR0_NS<31:0>);
 else
 (R[t2], R[t]) = (TTBR0<63:32>, TTBR0<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 (R[t2], R[t]) = (TTBR0_S<63:32>, TTBR0_S<31:0>);
 else
 (R[t2], R[t]) = (TTBR0_NS<63:32>, TTBR0_NS<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS = R[t2]:R[t];
 else
 TTBR0 = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR0_NS = R[t2]:R[t];
 else
 TTBR0 = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR0_S = R[t2]:R[t];
 else
 TTBR0_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12215
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.168 TTBR1, Translation Table Base Register 1

The TTBR1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the higher VA range in the PL1&0 translation regime, and other information for this
translation regime.

Configurations

This register is banked between TTBR1 and TTBR1_S and TTBR1_NS.

AArch32 System register TTBR1 bits [63:0] are architecturally mapped to AArch64 System
register TTBR1_EL1[63:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
TTBR1 are UNDEFINED.

TTBR1 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits [31:0] and do not modify bits [63:32].

TTBCR.EAE determines which TTBR1 format is used:

• TTBCR.EAE == 0b0: 32-bit format is used. TTBR1[63:32] are ignored.

• TTBCR.EAE == 0b1: 64-bit format is used.

Used in conjunction with the TTBCR. When the 64-bit TTBR1 format is used, cacheability and
shareability information is held in the TTBCR, not in TTBR1.

Attributes

TTBR1 is a 64-bit register.

This register has the following instances:

• TTBR1, when EL3 is not implemented.

• TTBR1_S, when EL3 is implemented.

• TTBR1_NS, when EL3 is implemented.

Field descriptions

When TTBCR.EAE == 0:

Bits [63:32]

Reserved, RES0.

TTB1, bits [31:7]

Translation table base address, bits[31:14]. Register bits [13:7] are RES0, with the additional
requirement that if these bits are not all zero, this is a misaligned translation table base address, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [13:7] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

RES0

63 32

TTB1

31 7 6 5

RGN

4 3 2

S

1 0

IRGN[1]
NOS

IRGN[0]
IMP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12216
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN, bits [6, 0]

Inner region bits. IRGN[1:0] indicate the Inner Cacheability attributes for the memory associated
with the translation table walks. The possible values of IRGN[1:0] are:

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Cacheable.

0b11 Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and register
bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory region
types and to ensure that software written for Armv7 without the Multiprocessing Extensions can run
unmodified on an implementation that includes the functionality introduced by the ARMv7
Multiprocessing Extensions.

The IRGN field is split as follows:

• IRGN[1] is TTBR1[6].

• IRGN[0] is TTBR1[0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR1.S is 1, indicates whether the memory associated
with a translation table walk is Inner Shareable or Outer Shareable:

0b0 Memory is Outer Shareable.

0b1 Memory is Inner Shareable.

This bit is ignored when the value of TTBR1.S is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the
translation table walks:

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Cacheable.

0b11 Normal memory, Outer Write-Back no Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not
include any IMPLEMENTATION DEFINED features this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12217
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Shareable:

0b0 Memory is Non-shareable.

0b1 Memory is Shareable. The TTBR1.NOS field indicates whether the memory is Inner
Shareable or Outer Shareable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

Bits [63:56]

Reserved, RES0.

ASID, bits [55:48]

An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID
or TTBR1.ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T1SZ as follows:

• If TTBCR.T1SZ is 0 or 1, x = 5 - TTBCR.T1SZ.

• If TTBCR.T1SZ is greater than 1, x = 14 - TTBCR.T1SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. When TTBCR.EAE ==1, this bit indicates whether each entry that is pointed
to by TTBR1 is a member of a common set that can be used by every PE in the Inner Shareable
domain for which the value of TTBR1.CnP is 1.

0b0 The translation table entries pointed to by this instance of TTBR1, for the current ASID,
are permitted to differ from corresponding entries for this instance of TTBR1 for other
PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1.CnP on those other PEs.

RES0

63 56

ASID

55 48

BADDR

47 32

BADDR

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12218
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
• The value of TTBCR.EAE on those other PEs.

• The value of the current ASID or, for the Non-secure instance of TTBR1, the
value of the current VMID.

0b1 The translation table entries pointed to by this instance of TTBR1 are the same as the
translation table entries for every other PE in the Inner Shareable domain for which the
value of TTBR1.CnP is 1 for this instance of TTBR1 and all of the following apply:

• The translation table entries are pointed to by this instance of TTBR1.

• The value of the applicable TTBCR.EAE field is 1.

• The ASID is the same as the current ASID.

• For the Non-secure instance of TTBR1, the VMID is the same as the current
VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those TTBR1s do not point to the same translation table entries when the other conditions specified
for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED
UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of System
register control or data values.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TTBR1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBR1_NS<31:0>;
 else
 R[t] = TTBR1<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = TTBR1_NS<31:0>;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12219
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 R[t] = TTBR1<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = TTBR1_S<31:0>;
 else
 R[t] = TTBR1_NS<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS<31:0> = R[t];
 else
 TTBR1<31:0> = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS<31:0> = R[t];
 else
 TTBR1<31:0> = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S<31:0> = R[t];
 else
 TTBR1_NS<31:0> = R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0010 0b0000 0b001

coproc CRm opc1

0b1111 0b0010 0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12220
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 (R[t2], R[t]) = (TTBR1_NS<63:32>, TTBR1_NS<31:0>);
 else
 (R[t2], R[t]) = (TTBR1<63:32>, TTBR1<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (TTBR1_NS<63:32>, TTBR1_NS<31:0>);
 else
 (R[t2], R[t]) = (TTBR1<63:32>, TTBR1<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 (R[t2], R[t]) = (TTBR1_S<63:32>, TTBR1_S<31:0>);
 else
 (R[t2], R[t]) = (TTBR1_NS<63:32>, TTBR1_NS<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS = R[t2]:R[t];
 else
 TTBR1 = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 TTBR1_NS = R[t2]:R[t];
 else
 TTBR1 = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 TTBR1_S = R[t2]:R[t];
 else
 TTBR1_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12221
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.169 VBAR, Vector Base Address Register

The VBAR characteristics are:

Purpose

When high exception vectors are not selected, holds the vector base address for exceptions that are
not taken to Monitor mode or to Hyp mode.

Software must program VBAR(NS) with the required initial value as part of the PE boot sequence.

Configurations

This register is banked between VBAR and VBAR_S and VBAR_NS.

AArch32 System register VBAR bits [31:0] are architecturally mapped to AArch64 System register
VBAR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
VBAR are UNDEFINED.

Attributes

VBAR is a 32-bit register.

This register has the following instances:

• VBAR, when EL3 is not implemented.

• VBAR_S, when EL3 is implemented.

• VBAR_NS, when EL3 is implemented.

Field descriptions

VBA, bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to
this Exception level. Bits[4:0] of an exception vector are the exception offset.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [4:0]

Reserved, RES0.

Accessing VBAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

Vector Base Address

31 5

RES0

4 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12222
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = VBAR_NS;
 else
 R[t] = VBAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = VBAR_NS;
 else
 R[t] = VBAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = VBAR_S;
 else
 R[t] = VBAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 VBAR_NS = R[t];
 else
 VBAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 VBAR_NS = R[t];
 else
 VBAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == Signal_High then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 if SCR.NS == '0' then
 VBAR_S = R[t];
 else
 VBAR_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12223
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.170 VMPIDR, Virtualization Multiprocessor ID Register

The VMPIDR characteristics are:

Purpose

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure
EL1 reads of MPIDR.

Configurations

AArch32 System register VMPIDR bits [31:0] are architecturally mapped to AArch64 System
register VMPIDR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
VMPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

Attributes

VMPIDR is a 32-bit register.

Field descriptions

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the Armv7
Multiprocessing Extensions.

0b0 This implementation does not include the Armv7 Multiprocessing Extensions
functionality.

0b1 This implementation includes the Armv7 Multiprocessing Extensions functionality.

Access to this field is RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

0b0 Processor is part of a multiprocessor system.

0b1 Processor is part of a uniprocessor system.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.U.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a
multithreading type approach. See the description of Aff0 for more information about affinity
levels.

0b0 Performance of PEs at the lowest affinity level is largely independent.

0b1 Performance of PEs at the lowest affinity level is very interdependent.

M

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12224
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.MT.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff2.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff1.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher
affinity levels are increasingly less significant in determining PE behavior. The assigned value of
the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE
must be unique within the system as a whole.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing VMPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = VMPIDR;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 R[t] = MPIDR;
 elsif SCR.NS == '0' then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12225
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 UNDEFINED;
 else
 R[t] = VMPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VMPIDR = R[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return;
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 VMPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 R[t] = VMPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 R[t] = VMPIDR;
 else
 R[t] = MPIDR;
elsif PSTATE.EL == EL2 then
 R[t] = MPIDR;
elsif PSTATE.EL == EL3 then
 R[t] = MPIDR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b101

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12226
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.171 VPIDR, Virtualization Processor ID Register

The VPIDR characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1
reads of MIDR.

Configurations

AArch32 System register VPIDR bits [31:0] are architecturally mapped to AArch64 System register
VPIDR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
VPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

Attributes

VPIDR is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in
MIDR.Implementer.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12227
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between
different product variants, or major revisions of a product.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MIDR.Variant.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Architecture, bits [19:16]

Architecture version.

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in
MIDR.Architecture.

— Otherwise, this field resets to an architecturally UNKNOWN value.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MIDR.PartNum.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

The reset behavior of this field is:

• On a Warm reset:

— When the PE resets into EL2 or EL3, this field resets to the value in MIDR.Revision.

— Otherwise, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12228
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
Accessing VPIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = VPIDR;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 R[t] = MIDR;
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = VPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VPIDR = R[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return;
 elsif SCR.NS == '0' then
 UNDEFINED;
 else
 VPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0000 0b0000 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12229
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 R[t] = VPIDR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) then
 R[t] = VPIDR;
 else
 R[t] = MIDR;
elsif PSTATE.EL == EL2 then
 R[t] = MIDR;
elsif PSTATE.EL == EL3 then
 R[t] = MIDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12230
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.172 VTCR, Virtualization Translation Control Register

The VTCR characteristics are:

Purpose

The control register for stage 2 of the Non-secure PL1&0 translation regime.

Note
This stage of translation always uses the Long-descriptor translation table format.

Configurations

AArch32 System register VTCR bits [31:0] are architecturally mapped to AArch64 System register
VTCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
VTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

VTCR is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2
translation table Block or Page entry.

0b0 Bit[62] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[62] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

31

RES0

30 29 28 27 26 25

RES0

24 14

SH0

13 12 11 10 9 8

SL0

7 6 5

S

4

T0SZ

3 0

RES1
HWU62

HWU59
HWU60

HWU61

ORGN0 RES0
IRGN0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12231
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2
translation table Block or Page entry.

0b0 Bit[61] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[61] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2
translation table Block or Page entry.

0b0 Bit[60] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[60] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2
translation table Block or Page entry.

0b0 Bit[59] of each stage 2 translation table Block or Page entry cannot be used by hardware
for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 2 translation table Block or Page entry can be used by hardware
for an IMPLEMENTATION DEFINED purpose.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12232
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

Starting level for translation table walks using VTTBR.

0b00 Start at level 2

0b01 Start at level 1

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not
consistent with the programming of T0SZ, then a stage 2 level 1 Translation fault is generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

S, bit [4]

Sign extension bit. This bit must be programmed to the value of T0SZ[3]. If it is not, then the stage
2 T0SZ value is treated as an UNKNOWN value

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T0SZ, bits [3:0]

The size offset of the memory region addressed by VTTBR. The region size is 2(32-T0SZ) bytes.

This field holds a four-bit signed integer value, meaning it supports values from -8 to 7.

Note

This is different from the other translation control registers, where TnSZ holds a three-bit unsigned
integer, supporting values from 0 to 7.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage
2 level 1 Translation fault is generated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12233
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VTCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = VTCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = VTCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VTCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0001 0b010

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0010 0b0001 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12234
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
G8.2.173 VTTBR, Virtualization Translation Table Base Register

The VTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address
translation in the Non-secure PL1&0 translation regime, and other information for this translation
regime.

Configurations

AArch32 System register VTTBR bits [63:0] are architecturally mapped to AArch64 System
register VTTBR_EL2[63:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
VTTBR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

VTTBR is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

VMID, bits [55:48]

The VMID for the translation table.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits
is either the value written or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

x is determined from the value of VTCR.SL0 and VTCR.T0SZ as follows:

• If VTCR.SL0 is 0b00, meaning that lookup starts at level 2, then x is 14 - VTCR.T0SZ.

• If VTCR.SL0 is 0b01, meaning that lookup starts at level 1, then x is 5 - VTCR.T0SZ.

• If VTCR.SL0 is either 0b10 or 0b11 then a stage 2 level 1 Translation fault is generated.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

RES0

63 56

VMID

55 48

BADDR

47 32

BADDR

31 1 0

CnP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12235
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR is a member
of a common set that can be used by every PE in the Inner Shareable domain for which the value of
VTTBR.CnP is 1.

0b0 The translation table entries pointed to by VTTBR are permitted to differ from the
entries for VTTBR for other PEs in the Inner Shareable domain. This is not affected by
the value of the current VMID.

0b1 The translation table entries pointed to by VTTBR are the same as the translation table
entries for every other PE in the Inner Shareable domain for which the value of
VTTBR.CnP is 1 and the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the VTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
those VTTBRs do not point to the same translation table entries when the VMID value is the same
as the current VMID, then the results of translations are CONSTRAINED UNPREDICTABLE, see
CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data
values.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VTTBR

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (VTTBR<63:32>, VTTBR<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

coproc CRm opc1

0b1111 0b0010 0b0110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12236
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.2 General system control registers
 else
 (R[t2], R[t]) = (VTTBR<63:32>, VTTBR<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VTTBR = R[t2]:R[t];

coproc CRm opc1

0b1111 0b0010 0b0110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12237
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3 Debug registers

This section lists the Debug System registers in AArch32 state, in alphabetic order.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12238
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.1 DBGAUTHSTATUS, Debug Authentication Status register

The DBGAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

AArch32 System register DBGAUTHSTATUS bits [31:0] are architecturally mapped to AArch64
System register DBGAUTHSTATUS_EL1[31:0].

AArch32 System register DBGAUTHSTATUS bits [31:0] are architecturally mapped to External
register DBGAUTHSTATUS_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGAUTHSTATUS are UNDEFINED.

This register is required in all implementations.

Attributes

DBGAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

Secure Non-Invasive Debug.

This field has the same value as DBGAUTHSTATUS.SID.

Otherwise:

Secure Non-Invasive Debug.

0b00 Secure state is not implemented.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure Invasive Debug.

0b00 Secure state is not implemented.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

RES0

31 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12239
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

Non-secure Non-invasive debug.

0b00 Non-secure state is not implemented.

0b11 Implemented and enabled. EL3 is implemented or the Effective value of SCR.NS is 1.

All other values are reserved.

Otherwise:

Non-secure Non-Invasive Debug.

0b00 Non-secure state is not implemented.

0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure Invasive Debug.

0b00 Non-secure state is not implemented.

0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing DBGAUTHSTATUS

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGAUTHSTATUS;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12240
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGAUTHSTATUS;
elsif PSTATE.EL == EL3 then
 R[t] = DBGAUTHSTATUS;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12241
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.2 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>. If EL2 is implemented and this breakpoint supports Context matching,
DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for
VMID matching.

Configurations

AArch32 System register DBGBCR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGBCR<n>_EL1[31:0].

AArch32 System register DBGBCR<n> bits [31:0] are architecturally mapped to External register
DBGBCR<n>_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGBCR<n> are UNDEFINED.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n> is the address of an instruction.

0b0001 As 0b0000, but linked to a Context matching breakpoint.

0b0010 Unlinked Context ID match. If the Effective value of HCR_EL2.E2H is 1, and either the
PE is executing at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>.ContextID is compared against CONTEXTIDR_EL2. Otherwise,
DBGBVR<n>.ContextID is compared against CONTEXTIDR.

0b0011 As 0b0010 with linking enabled.

0b0100 Unlinked instruction address mismatch. DBGBVR<n> is the address of an instruction
to be stepped.

0b0101 As 0b0100, but linked to a Context matching breakpoint.

0b0110 Unlinked CONTEXTIDR match. DBGBVR<n>.ContextID is a Context ID compared
against CONTEXTIDR.

0b0111 As 0b0110 with linking enabled.

0b1000 Unlinked VMID match. DBGBXVR<n>.VMID is a VMID compared against
VTTBR.VMID.

0b1001 As 0b1000 with linking enabled.

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5

RES0

4 3

PMC

2 1

E

0

HMC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12242
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b1010 Unlinked VMID and Context ID match. DBGBVR<n>.ContextID is a Context ID
compared against CONTEXTIDR, and DBGBXVR<n>.VMID is a VMID compared
against VTTBR.VMID.

0b1011 As 0b1010 with linking enabled.

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBXVR<n>.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 As 0b1100 with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n>.ContextID is compared against
CONTEXTIDR, and DBGBXVR<n>.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110 with linking enabled.

For more information on Breakpoints and their constraints, see Breakpoint exceptions and Reserved
DBGBCR<n>.BT values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked Breakpoint Number. For Linked address matching breakpoints, this specifies the index of
the Context-matching breakpoint linked to.

For all other breakpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>.E is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields.

For more information, see Execution conditions for which a breakpoint generates Breakpoint
exceptions and Reserved DBGBCR<n>.{SSC, HMC, PMC} values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12243
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
For Address match breakpoints, the permitted values are:

All other values are reserved. For more information, see Reserved DBGBCR<n>.BAS values.

For more information on using the BAS field in Address Match breakpoints, see Using the BAS field
in Address Match breakpoints.

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values
are:

All other values are reserved. For more information, see Reserved DBGBCR<n>.BAS values.

For more information on using the BAS field in address mismatch breakpoints, see Using the BAS
field in Address Match breakpoints.

For Context matching breakpoints, this field is RES1 and ignored.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

0b0 Breakpoint disabled.

0b1 Breakpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS Match instruction at Constraint for debuggers

0b0011 DBGBVR<n> Use for T32 instructions

0b1100 DBGBVR<n>+2 Use for T32 instructions

0b1111 DBGBVR<n> Use for A32 instructions

BAS Step instruction at Constraint for debuggers

0b0000 - Use for a match anywhere breakpoint

0b0011 DBGBVR<n> Use for T32 instructions

0b1100 DBGBVR<n>+2 Use for T32 instructions

0b1111 DBGBVR<n> Use for A32 instructions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12244
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing DBGBCR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_BREAKPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBCR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBCR[m];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBCR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_BREAKPOINTS then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b101

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12245
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR[m] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12246
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.3 DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context
ID. Forms breakpoint n together with control register DBGBCR<n>. If EL2 is implemented and this
breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint
Extended Value Register DBGBXVR<n> for VMID matching.

Configurations

AArch32 System register DBGBVR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGBVR<n>_EL1[31:0].

AArch32 System register DBGBVR<n> bits [31:0] are architecturally mapped to External register
DBGBVR<n>_EL1[31:0].

Note

Writes to DBGBVR<n> do not modify DBGBVR<n>_EL1[63:32].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGBVR<n> are UNDEFINED.

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.

• When DBGBCR<n>.BT is 0bxx1x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the
description of the DBGDIDR.CTX_CMPs field.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBVR<n> is a 32-bit register.

Field descriptions

When DBGBCR<n>.BT == 0b0x0x:

VA[31:2], bits [31:2]

Bits[31:2] of the address value for comparison.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

VA[31:2]

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12247
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
When DBGBCR<n>.BT == 0b001x:

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when all of the following are true:

• The Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

• The PE is executing at EL0.

Otherwise, the value is compared against CONTEXTIDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0b101x and EL2 is implemented:

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0bx11x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBVR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

ContextID

31 0

ContextID

31 0

ContextID

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12248
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
integer m = UInt(CRm<3:0>);

if m >= NUM_BREAKPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBVR[m];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBVR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_BREAKPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12249
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR[m] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBVR[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12250
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.4 DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

The DBGBXVR<n> characteristics are:

Purpose

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with
a control register DBGBCR<n> and a value register DBGBVR<n>, where EL2 is implemented and
breakpoint n supports Context matching.

Configurations

AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to AArch64
System register DBGBVR<n>_EL1[63:32].

AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to External
register DBGBVR<n>_EL1[63:32].

Note

Writes to DBGBXVR<n> do not modify DBGBVR<n>_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGBXVR<n> are UNDEFINED.

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.

• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Accesses to this register are UNDEFINED in any of the following cases:

• Breakpoint n is not implemented.

• Breakpoint n does not support Context matching.

• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

Attributes

DBGBXVR<n> is a 32-bit register.

Field descriptions

When DBGBCR<n>.BT == 0b10xx and EL2 is implemented:

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

31 16

VMID[15:8]

15 8

VMID[7:0]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12251
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
VMID[7:0], bits [7:0]

VMID value for comparison. The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0b11xx and EL2 is implemented:

ContextID2, bits [31:0]

When FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented:

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing DBGBXVR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_BREAKPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBXVR[m];

ContextID2

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 m[3:0] 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12252
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBXVR[m];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGBXVR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_BREAKPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBXVR[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBXVR[m] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 m[3:0] 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12253
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 DBGBXVR[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12254
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.5 DBGCLAIMCLR, Debug CLAIM Tag Clear register

The DBGCLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET register.

Configurations

AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to AArch64
System register DBGCLAIMCLR_EL1[31:0].

AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to External
register DBGCLAIMCLR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGCLAIMCLR are UNDEFINED.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write
to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing DBGCLAIMCLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RAZ/WI

31 8

CLAIM

7 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12255
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGCLAIMCLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGCLAIMCLR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGCLAIMCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGCLAIMCLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1001 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12256
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 DBGCLAIMCLR = R[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMCLR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12257
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.6 DBGCLAIMSET, Debug CLAIM Tag Set register

The DBGCLAIMSET characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR register.

Configurations

AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to AArch64
System register DBGCLAIMSET_EL1[31:0].

AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to External
register DBGCLAIMSET_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGCLAIMSET are UNDEFINED.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write
to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing DBGCLAIMSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RAZ/WI

31 8

CLAIM

7 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12258
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGCLAIMSET;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGCLAIMSET;
elsif PSTATE.EL == EL3 then
 R[t] = DBGCLAIMSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGCLAIMSET = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b1000 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12259
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 DBGCLAIMSET = R[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMSET = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12260
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.7 DBGDCCINT, DCC Interrupt Enable Register

The DBGDCCINT characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

Configurations

AArch32 System register DBGDCCINT bits [31:0] are architecturally mapped to AArch64 System
register MDCCINT_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDCCINT are UNDEFINED.

Attributes

DBGDCCINT is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRRX.

0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt
request to be signaled based on the DCC status flags.

0b0 No interrupt request generated by DTRTX.

0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the
value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [28:0]

Reserved, RES0.

31

RX

30

TX

29

RES0

28 0

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12261
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing DBGDCCINT

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 R[t] = DBGDCCINT;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDCCINT;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12262
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDCCINT;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = DBGDCCINT;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 DBGDCCINT = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDCCINT = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12263
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDCCINT = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDCCINT = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12264
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.8 DBGDEVID, Debug Device ID register 0

The DBGDEVID characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug
implementation.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDEVID are UNDEFINED.

This register is required in all implementations.

Attributes

DBGDEVID is a 32-bit register.

Field descriptions

CIDMask, bits [31:28]

Indicates the level of support for the Context ID matching breakpoint masking capability. Defined
values are:

0b0000 Context ID masking is not implemented.

0b0001 Context ID masking is implemented.

All other values are reserved. The value of this for Armv8 is 0b0000.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Permitted values for this field are:

0b0000 None supported.

0b0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

DoubleLock, bits [23:20]

OS Double Lock implemented. Defined values are:

0b0000 OS Double Lock is not implemented. DBGOSDLR is RAZ/WI.

0b0001 OS Double Lock is implemented. DBGOSDLR is RW.

FEAT_DoubleLock implements the functionality identified by the value 0b0001.

All other values are reserved.

VirtExtns, bits [19:16]

Indicates whether EL2 is implemented. Defined values are:

0b0000 EL2 is not implemented.

0b0001 EL2 is implemented.

All other values are reserved.

CIDMask

31 28

AuxRegs

27 24 23 20 19 16 15 12 11 8 7 4

PCSample

3 0

DoubleLock
VirtExtns

WPAddrMask
BPAddrMask

VectorCatch
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12265
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
VectorCatch, bits [15:12]

Defines the form of Vector Catch exception implemented. Defined values are:

0b0000 Address matching Vector Catch exception implemented.

0b0001 Exception matching Vector Catch exception implemented.

All other values are reserved.

BPAddrMask, bits [11:8]

Indicates the level of support for the instruction address matching breakpoint masking capability.
Defined values are:

0b0000 Breakpoint address masking might be implemented. If not implemented,
DBGBCR<n>[28:24] is RAZ/WI.

0b0001 Breakpoint address masking is implemented.

0b1111 Breakpoint address masking is not implemented. DBGBCR<n>[28:24] is RES0.

All other values are reserved. The value of this for Armv8 is 0b1111.

WPAddrMask, bits [7:4]

Indicates the level of support for the data address matching watchpoint masking capability. Defined
values are:

0b0000 Watchpoint address masking might be implemented. If not implemented,
DBGWCR<n>.MASK (Address mask) is RAZ/WI.

0b0001 Watchpoint address masking is implemented.

0b1111 Watchpoint address masking is not implemented. DBGWCR<n>.MASK (Address
mask) is RES0.

All other values are reserved. The value of this for Armv8 is 0b0001.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Defined
values are:

0b0000 PC Sample-based Profiling Extension is not implemented in the external debug registers
space.

0b0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted if EL3
and EL2 are not implemented.

0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMU.PMDEVID.PCSample.

Accessing DBGDEVID

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b0010 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12266
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDEVID;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDEVID;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDEVID;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12267
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.9 DBGDEVID1, Debug Device ID register 1

The DBGDEVID1 characteristics are:

Purpose

Adds to the information given by the DBGDIDR by describing other features of the debug
implementation.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDEVID1 are UNDEFINED.

This register is required in all implementations.

Attributes

DBGDEVID1 is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values
of this field in Armv8 are:

0b0000 EDPCSR is not implemented.

0b0010 EDPCSR implemented. Samples have no offset applied and do not sample the
instruction set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMU.PMDEVID.PCSample.

Accessing DBGDEVID1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;

RES0

31 4 3 0

PCSROffset

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b0001 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12268
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDEVID1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDEVID1;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDEVID1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12269
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.10 DBGDEVID2, Debug Device ID register 2

The DBGDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDEVID2 are UNDEFINED.

Attributes

DBGDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing DBGDEVID2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDEVID2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);

RES0

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0111 0b0000 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12270
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 R[t] = DBGDEVID2;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDEVID2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12271
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.11 DBGDIDR, Debug ID Register

The DBGDIDR characteristics are:

Purpose

Specifies which version of the Debug architecture is implemented, and some features of the debug
implementation.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to DBGDIDR
are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDIDR is a 32-bit register.

Field descriptions

WRPs, bits [31:28]

Number of watchpoints, minus 1.

0b0001..0b1111 The number of watchpoints, minus 1.

If FEAT_Debugv8p9 is implemented and 16 or more watchpoints are implemented, this field reads
as 0b1111.

Note
If AArch32 is supported at EL1, then the PE does not implement more than 16 watchpoints.

The value 0b0000 is reserved.

BRPs, bits [27:24]

Number of breakpoints, minus 1.

0b0001..0b1111 The number of breakpoints, minus 1.

If FEAT_Debugv8p9 is implemented and 16 or more breakpoints are implemented, this field reads
as 0b1111.

Note

If AArch32 is supported at EL1, then the PE does not implement more than 16 breakpoints.

The value 0b0000 is reserved.

CTX_CMPs, bits [23:20]

Number of context-aware breakpoints, minus 1.

0b0000..0b1111 The number of context-aware breakpoints, minus 1.

The value of this field is never greater than DBGDIDR.BRPs.

If FEAT_Debugv8p9 is implemented and 16 or more context-aware breakpoints are implemented,
this field reads as 0b1111.

WRPs

31 28

BRPs

27 24

CTX_CMPs

23 20

Version

19 16 15 14 13 12

RES0

11 0

RES1
nSUHD_imp

SE_imp
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12272
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Note

If AArch32 is supported at EL1, then the PE does not implement more than 16 breakpoints.

Version, bits [19:16]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

0b0000 Not supported.

0b0001 Armv6, v6 Debug architecture, with System registers access.

0b0010 Armv6, v6.1 Debug architecture, with System registers access.

0b0011 Armv7, v7 Debug architecture, with only baseline System registers.

0b0100 Armv7, v7 Debug architecture, with all System registers implemented.

0b0101 Armv7, v7.1 Debug architecture, with System registers access.

0b0110 Armv8.0 debug architecture.

0b0111 Armv8.0 debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

0b1011 Armv8.9 debug architecture, FEAT_Debugv8p9.

All other values are reserved.

From Armv8.0, the values 0b0000, 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted.

FEAT_VHE implements the functionality identified by the value 0b0111.

FEAT_Debugv8p2 implements the functionality identified by the value 0b1000.

FEAT_Debugv8p4 implements the functionality identified by the value 0b1001.

FEAT_Debugv8p8 implements the functionality identified by the value 0b1010.

FEAT_Debugv8p9 implements the functionality identified by the value 0b1011.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

From Armv8.9, the value 0b1010 is not permitted.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

Previously indicated that Secure User Halting Debug is not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

0b0 EL3 not implemented.

0b1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12273
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [11:0]

Reserved, RES0.

Accessing DBGDIDR

Arm deprecates any access to this register from EL0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 R[t] = DBGDIDR;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA>
!= '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00')
then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDIDR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDIDR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12274
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDIDR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDIDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12275
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.12 DBGDRAR, Debug ROM Address Register

The DBGDRAR characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a
ROM table that locates and describes the memory-mapped debug components in the system. Armv8
deprecates any use of this register.

Configurations

AArch32 System register DBGDRAR bits [63:0] are architecturally mapped to AArch64 System
register MDRAR_EL1[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to DBGDRAR
are UNDEFINED.

DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, bits [31:0] are read.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDRAR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to
ROMADDR [47:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system where the
implementation only supports execution in AArch32 state.

If DBGDRAR.Valid == 0b00, then this field is UNKNOWN.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is
IMPLEMENTATION DEFINED whether the ROM table is also accessible in Secure memory.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

0b00 ROM Table address is not valid. Software must ignore ROMADDR.

0b11 ROM Table address is valid.

Other values are reserved.

RES0

63 48

ROMADDR[47:12]

47 32

ROMADDR[47:12]

31 12

RES0

11 2 1 0

Valid
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12276
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Arm recommends implementations set this field to zero.

Accessing DBGDRAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 R[t] = DBGDRAR<31:0>;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' ||
MDCR_EL2.<TDE,TDRA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> !=
'00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDRAR<31:0>;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDRAR<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12277
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDRAR<31:0>;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDRAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 (R[t2], R[t]) = (DBGDRAR<63:32>, DBGDRAR<31:0>);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' ||
MDCR_EL2.<TDE,TDRA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> !=
'00') then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 (R[t2], R[t]) = (DBGDRAR<63:32>, DBGDRAR<31:0>);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 (R[t2], R[t]) = (DBGDRAR<63:32>, DBGDRAR<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;

coproc CRm opc1

0b1110 0b0001 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12278
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 (R[t2], R[t]) = (DBGDRAR<63:32>, DBGDRAR<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (DBGDRAR<63:32>, DBGDRAR<31:0>);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12279
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.13 DBGDSAR, Debug Self Address Register

The DBGDSAR characteristics are:

Purpose

In earlier versions of the Arm Architecture, this register defines the offset from the base address
defined in DBGDRAR of the physical base address of the debug registers for the PE. Armv8
deprecates any use of this register.

Configurations

This register is present only when AArch32 is supported. Otherwise, direct accesses to DBGDSAR
are UNDEFINED.

DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, bits [31:0] are read.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDSAR is a 64-bit register.

Field descriptions

Bits [63:2]

Reserved, RES0.

Bits [1:0]

Reserved, RAZ.

This field indicates whether the debug self address offset is valid. For ARMv8, this field is always
0b00, the offset is not valid.

Accessing DBGDSAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 R[t] = DBGDSAR<31:0>;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else

RES0

63 32

RES0

31 2

RAZ

1 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0010 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12280
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' ||
MDCR_EL2.<TDE,TDRA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> !=
'00') then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDSAR<31:0>;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDSAR<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDSAR<31:0>;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDSAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 (R[t2], R[t]) = (DBGDSAR<63:32>, DBGDSAR<31:0>);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

coproc CRm opc1

0b1110 0b0010 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12281
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' ||
MDCR_EL2.<TDE,TDRA> != '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> !=
'00') then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 (R[t2], R[t]) = (DBGDSAR<63:32>, DBGDSAR<31:0>);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
 AArch32.TakeHypTrapException(0x0C);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 (R[t2], R[t]) = (DBGDSAR<63:32>, DBGDSAR<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
 else
 (R[t2], R[t]) = (DBGDSAR<63:32>, DBGDSAR<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (DBGDSAR<63:32>, DBGDSAR<31:0>);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12282
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.14 DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

AArch32 System register DBGDSCRext bits [31:0] are architecturally mapped to AArch64 System
register MDSCR_EL1[31:0].

AArch32 System register DBGDSCRext bit [15] is architecturally mapped to AArch32 System
register DBGDSCRint[15].

AArch32 System register DBGDSCRext bit [12] is architecturally mapped to AArch32 System
register DBGDSCRint[12].

AArch32 System register DBGDSCRext bits [5:2] are architecturally mapped to AArch32 System
register DBGDSCRint[5:2].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDSCRext are UNDEFINED.

This register is required in all implementations.

Attributes

DBGDSCRext is a 32-bit register.

Field descriptions

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When the OS Lock is unlocked, DBGOSLSR.OSLK == 0, software must treat this bit as
UNK/SBZP.

When the OS Lock is locked, DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TFO.
Reads and writes of this bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

31 30 29 28 27 26

RES0

25 24 23 22 21 20 19

NS

18 17 16 15 14 13 12

RES0

11 7 6

MOE

5 2

RES0

1 0

TFO
RXfull

TXfull
RES0

RXO
TXU

INTdis
TDA

ERR
UDCCdis

RES0
HDE

MDBGen
SPIDdis

SPNIDdis
SC2

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12283
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this
bit are indirect accesses to EDSCR.RXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX
full status.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this
bit are indirect accesses to EDSCR.TXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX
full status.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO.

When DBGOSLSR.OSLK == 1, if bits [27,6] of the value written to DBGDSCRext are {1,0}, that
is, the RXO bit is 1 and the ERR bit is 0, the PE sets EDSCR.{RXO,ERR} to UNKNOWN values.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this
bit are indirect accesses to EDSCR.TXU.

When DBGOSLSR.OSLK == 1, if bits [26,6] of the value written to DBGDSCRext are {1,0}, that
is, the TXU bit is 1 and the ERR bit is 0, the PE sets EDSCR.{TXU,ERR} to UNKNOWN values.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12284
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0, this field is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this field is RW and holds the value of EDSCR.INTdis. Reads and
writes of this field are indirect accesses to EDSCR.INTdis.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this
bit are indirect accesses to EDSCR.TDA.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not
implemented:

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this
bit are indirect accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status.

Arm deprecates use of this field.

0b0 Secure state.

0b1 Non-secure state.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12285
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
SPNIDdis, bit [17]

When EL3 is implemented:

Secure privileged profiling disabled status bit.

0b0 Profiling allowed in Secure privileged modes.

0b1 Profiling prohibited in Secure privileged modes.

This field reads as 0 if any of the following applies, and reads as 1 otherwise:

• FEAT_Debugv8p2 is not implemented and ExternalSecureNoninvasiveDebugEnabled()
returns TRUE.

• EL3 is using AArch32 and the value of SDCR.SPME is 1.

• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

SPIDdis, bit [16]

When EL3 is implemented:

Secure privileged AArch32 invasive self-hosted debug disabled status bit. The value of this bit
depends on the value of SDCR.SPD and the pseudocode function
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled().

0b0 Self-hosted debug enabled in Secure privileged AArch32 modes.

0b1 Self-hosted debug disabled in Secure privileged AArch32 modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• EL3 is using AArch32 and SDCR.SPD has the value 0b10.

• EL3 is using AArch64 and MDCR_EL3.SPD32 has the value 0b10.

• EL3 is using AArch32, SDCR.SPD has the value 0b00, and
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

• EL3 is using AArch64, MDCR_EL3.SPD32 has the value 0b00, and
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this
bit are indirect accesses to EDSCR.HDE.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12286
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 accesses to the DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIDR,
DBGDSAR, and DBGDRAR are trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint and
DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this
bit are indirect accesses to EDSCR.ERR.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.

• When DBGOSLSR.OSLK == 0, access to this field is RO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using
AArch32, this field is set to indicate the event that caused the exception:

0b0001 Breakpoint.

0b0011 Software breakpoint (BKPT) instruction.

0b0101 Vector catch.

0b1010 Watchpoint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGDSCRext

Individual fields within this register might have restricted accessibility when the OS Lock is unlocked,
DBGOSLSR.OSLK == 0. See the field descriptions for more detail.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12287
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDSCRext;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDSCRext;
elsif PSTATE.EL == EL3 then
 R[t] = DBGDSCRext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b010

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12288
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 DBGDSCRext = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDSCRext = R[t];
elsif PSTATE.EL == EL3 then
 DBGDSCRext = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12289
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.15 DBGDSCRint, Debug Status and Control Register, Internal View

The DBGDSCRint characteristics are:

Purpose

Main control register for the debug implementation. This is an internal, read-only view.

Configurations

AArch32 System register DBGDSCRint bits [30:29] are architecturally mapped to AArch64
System register MDCCSR_EL0[30:29].

AArch32 System register DBGDSCRint bit [15] is architecturally mapped to AArch64 System
register MDSCR_EL1[15].

AArch32 System register DBGDSCRint bit [12] is architecturally mapped to AArch64 System
register MDSCR_EL1[12].

AArch32 System register DBGDSCRint bits [5:2] are architecturally mapped to AArch64 System
register MDSCR_EL1[5:2].

AArch32 System register DBGDSCRint bit [15] is architecturally mapped to AArch32 System
register DBGDSCRext[15].

AArch32 System register DBGDSCRint bit [12] is architecturally mapped to AArch32 System
register DBGDSCRext[12].

AArch32 System register DBGDSCRint bits [5:2] are architecturally mapped to AArch32 System
register DBGDSCRext[5:2].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
DBGDSCRint are UNDEFINED.

This register is required in all implementations.

DBGDSCRint.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the
register is accessed at EL0. However, although these values are not accessible at EL0 by instructions
that are neither UNPREDICTABLE nor return UNKNOWN values, it is permissible for an
implementation to return the values of DBGDSCRext.{NS, SPNIDdis, SPIDdis, MDBGen,
UDCCdis, MOE} for these fields at EL0.

It is also permissible for an implementation to return the same values as defined for a read of
DBGDSCRint at EL1 or above. (This is the case even if the implementation does not support
AArch32 at EL1 or above.)

Attributes

DBGDSCRint is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

31 30 29

RES0

28 19

NS

18 17 16 15

RES0

14 13 12

RES0

11 6

MOE

5 2

RES0

1 0

RES0 TXfull
RXfull

SPNIDdis
SPIDdis

UDCCdis
MDBGen
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12290
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [28:19]

Reserved, RES0.

NS, bit [18]

Non-secure status.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged non-invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPIDdis, bit [16]

Secure privileged invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable.

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]

Reserved, RES0.

UDCCdis, bit [12]

User mode access to Debug Communications Channel disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

Bits [11:6]

Reserved, RES0.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using
AArch32, this field is set to indicate the event that caused the exception:

0b0001 Breakpoint

0b0011 Software breakpoint (BKPT) instruction

0b0101 Vector catch

0b1010 Watchpoint

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [1:0]

Reserved, RES0.

Accessing DBGDSCRint

When <Rt> is APSR_nzcv, encoded as R15, then instead of reading the entire register, the access copies
DBGDSCRint[31:28] into the PSTATE NZCV flags.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12291
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 if t == 15 then
 ConstrainUnpredictableProcedure(Unpredictable_MRC_APSR_TARGET);
 else
 R[t] = DBGDSCRint;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA>
!= '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00')
then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 if t == 15 then
 if Halted() then
 ConstrainUnpredictableProcedure(Unpredictable_MRC_APSR_TARGET);
 else
 PSTATE.<N,Z,C,V> = DBGDSCRint<31:28>;
 else
 R[t] = DBGDSCRint;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12292
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 if t == 15 then
 if Halted() then
 ConstrainUnpredictableProcedure(Unpredictable_MRC_APSR_TARGET);
 else
 PSTATE.<N,Z,C,V> = DBGDSCRint<31:28>;
 else
 R[t] = DBGDSCRint;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 if t == 15 then
 if Halted() then
 ConstrainUnpredictableProcedure(Unpredictable_MRC_APSR_TARGET);
 else
 PSTATE.<N,Z,C,V> = DBGDSCRint<31:28>;
 else
 R[t] = DBGDSCRint;
elsif PSTATE.EL == EL3 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12293
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 if t == 15 then
 if Halted() then
 ConstrainUnpredictableProcedure(Unpredictable_MRC_APSR_TARGET);
 else
 PSTATE.<N,Z,C,V> = DBGDSCRint<31:28>;
 else
 R[t] = DBGDSCRint;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12294
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.16 DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

The DBGDTRRXext characteristics are:

Purpose

Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

Configurations

AArch32 System register DBGDTRRXext bits [31:0] are architecturally mapped to AArch64
System register OSDTRRX_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDTRRXext are UNDEFINED.

Attributes

DBGDTRRXext is a 32-bit register.

Field descriptions

DTRRX, bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRRXext

Arm deprecates reads and writes of DBGDTRRXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 R[t] = DBGDTRRXext;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;

Update DTRRX without side-effect

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12295
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDTRRXext;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDTRRXext;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = DBGDTRRXext;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12296
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 DBGDTRRXext = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRRXext = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0000 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12297
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRRXext = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDTRRXext = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12298
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.17 DBGDTRRXint, Debug Data Transfer Register, Receive

The DBGDTRRXint characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64
System register DBGDTRRX_EL0[31:0].

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to External
register DBGDTRRX_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
DBGDTRRXint are UNDEFINED.

Attributes

DBGDTRRXint is a 32-bit register.

Field descriptions

DTRRX, bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRRXint

Data can be stored to memory from this register using STC.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() then
 R[t] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

Update DTRRX

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12299
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA>
!= '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00')
then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = Read_DBGDTR_EL0(32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12300
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
STC{<c>}{<q>} <coproc>, <CRd>, <addressing_mode>

if Halted() then
 MemA[address, 4] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x06);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x06);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA>
!= '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00')
then
 AArch32.TakeHypTrapException(0x06);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 else
 MemA[address, 4] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x06);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x06);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 else
 MemA[address, 4] = Read_DBGDTR_EL0(32);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 else
 MemA[address, 4] = Read_DBGDTR_EL0(32);

coproc CRd

0b1110 0b0101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12301
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 MemA[address, 4] = Read_DBGDTR_EL0(32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12302
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.18 DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

The DBGDTRTXext characteristics are:

Purpose

Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

Configurations

AArch32 System register DBGDTRTXext bits [31:0] are architecturally mapped to AArch64
System register OSDTRTX_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGDTRTXext are UNDEFINED.

Attributes

DBGDTRTXext is a 32-bit register.

Field descriptions

DTRTX, bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRTXext

Arm deprecates reads and writes of DBGDTRTXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 R[t] = DBGDTRTXext;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;

Return DTRTX without side-effect

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12303
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDTRTXext;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGDTRTXext;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = DBGDTRTXext;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12304
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
 DBGDTRTXext = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXext = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TDCC == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0011 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12305
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGDTRTXext = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 DBGDTRTXext = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12306
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.19 DBGDTRTXint, Debug Data Transfer Register, Transmit

The DBGDTRTXint characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to
transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a
component of the Debug Communication Channel.

Configurations

AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to AArch64
System register DBGDTRTX_EL0[31:0].

AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
DBGDTRTXint are UNDEFINED.

Attributes

DBGDTRTXint is a 32-bit register.

Field descriptions

DTRTX, bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGDTRTXint

Data can be loaded from memory into this register using LDC (immediate) and LDC (literal).

Accesses to this register use the following encodings in the System register encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if Halted() then
 Write_DBGDTR_EL0(R[t]);
elsif PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

Return DTRTX

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12307
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x05);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA>
!= '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00')
then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 Write_DBGDTR_EL0(R[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x05);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 Write_DBGDTR_EL0(R[t]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 Write_DBGDTR_EL0(R[t]);
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 Write_DBGDTR_EL0(R[t]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12308
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
LDC{<c>}{<q>} <coproc>, <CRd>, <addressing_mode>

if Halted() then
 Write_DBGDTR_EL0(MemA[address, 4]);
elsif PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x06);
 elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x06);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA>
!= '00') then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00')
then
 AArch32.TakeHypTrapException(0x06);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 else
 Write_DBGDTR_EL0(MemA[address, 4]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
 AArch32.TakeHypTrapException(0x06);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x06);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x06);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 else
 Write_DBGDTR_EL0(MemA[address, 4]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x06);
 else
 Write_DBGDTR_EL0(MemA[address, 4]);

coproc CRd

0b1110 0b0101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12309
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
 AArch32.TakeMonitorTrapException();
 else
 Write_DBGDTR_EL0(MemA[address, 4]);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12310
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.20 DBGOSDLR, Debug OS Double Lock Register

The DBGOSDLR characteristics are:

Purpose

Locks out the external debug interface.

Configurations

AArch32 System register DBGOSDLR bits [31:0] are architecturally mapped to AArch64 System
register OSDLR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGOSDLR are UNDEFINED.

Attributes

DBGOSDLR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

DLK, bit [0]

When FEAT_DoubleLock is implemented:

OS Double Lock control bit.

0b0 OS Double Lock unlocked.

0b1 OS Double Lock locked, if DBGPRCR.CORENPDRQ (Core no powerdown request)
bit is set to 0 and the PE is in Non-debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing DBGOSDLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 UNDEFINED;

RES0

31 1 0

DLK

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12311
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
HDCR.TDOSA") then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGOSDLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGOSDLR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGOSDLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL2.TDOSA") then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
HDCR.TDOSA") then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSDLR = R[t];

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0011 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12312
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' && (IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented(FEAT_DoubleLock) || boolean IMPLEMENTATION_DEFINED "Trapped by
MDCR_EL3.TDOSA") then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSDLR = R[t];
elsif PSTATE.EL == EL3 then
 DBGOSDLR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12313
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.21 DBGOSECCR, Debug OS Lock Exception Catch Control Register

The DBGOSECCR characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise
invisible to software, so it can save/restore the contents of EDECCR over powerdown on behalf of
the external debugger.

Configurations

AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to AArch64 System
register OSECCR_EL1[31:0].

AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to External register
EDECCR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGOSECCR are UNDEFINED.

If DBGOSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores
writes.

Attributes

DBGOSECCR is a 32-bit register.

Field descriptions

When DBGOSLSR.OSLK == 1:

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing DBGOSECCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then

EDECCR

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12314
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = DBGOSECCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = DBGOSECCR;
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = DBGOSECCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 return;
 else
 DBGOSECCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' then
 return;
 else
 DBGOSECCR = R[t];

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12315
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' then
 return;
 else
 DBGOSECCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12316
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.22 DBGOSLAR, Debug OS Lock Access Register

The DBGOSLAR characteristics are:

Purpose

Provides a lock for the debug registers. The OS Lock also disables some debug exceptions and
debug events.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGOSLAR are UNDEFINED.

The OS Lock can also be locked or unlocked using the AArch64 System register OSLAR_EL1 and
External register OSLAR_EL1.

Attributes

DBGOSLAR is a 32-bit register.

Field descriptions

OSLA, bits [31:0]

OS Lock Access. Writing the value 0xC5ACCE55 to the DBGOSLAR sets the OS Lock to 1. Writing
any other value sets the OS Lock to 0.

Use DBGOSLSR.OSLK to check the current status of the lock.

Accessing DBGOSLAR

Accesses to this register use the following encodings in the System register encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSLAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==

OSLA

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0000 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12317
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGOSLAR = R[t];
elsif PSTATE.EL == EL3 then
 DBGOSLAR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12318
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.23 DBGOSLSR, Debug OS Lock Status Register

The DBGOSLSR characteristics are:

Purpose

Provides status information for the OS Lock.

Configurations

AArch32 System register DBGOSLSR bits [31:0] are architecturally mapped to AArch64 System
register OSLSR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGOSLSR are UNDEFINED.

The OS Lock status is also visible in the external debug interface through EDPRSR.

Attributes

DBGOSLSR is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

OSLM, bits [3, 0]

OS Lock model implemented. Identifies the form of OS save and restore mechanism implemented.

0b00 OS Lock not implemented.

0b10 OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

• OSLM[1] is DBGOSLSR[3].

• OSLM[0] is DBGOSLSR[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key
to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status.

0b0 OS Lock unlocked.

0b1 OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

RES0

31 4 3 2 1 0

OSLM[1]
nTT

OSLM[0]
OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12319
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing DBGOSLSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGOSLSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGOSLSR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGOSLSR;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0001 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12320
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.24 DBGPRCR, Debug Power Control Register

The DBGPRCR characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

Configurations

AArch32 System register DBGPRCR bits [31:0] are architecturally mapped to AArch64 System
register DBGPRCR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGPRCR are UNDEFINED.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this
register.

The other bits in these registers are not mapped to each other.

Attributes

DBGPRCR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When FEAT_DoPD is implemented:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states see Core power domain power states.

Note
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, if the powerup request is implemented and the powerup request has been
asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup
request is not asserted, this field is set to 0.

RES0

31 1 0

CORENPDRQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12321
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Otherwise:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on
exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information
about retention states see Core power domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

Accessing DBGPRCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGPRCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12322
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 R[t] = DBGPRCR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGPRCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGPRCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGPRCR = R[t];
elsif PSTATE.EL == EL3 then
 DBGPRCR = R[t];

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0001 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12323
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.25 DBGVCR, Debug Vector Catch Register

The DBGVCR characteristics are:

Purpose

Controls Vector Catch debug events.

Configurations

AArch32 System register DBGVCR bits [31:0] are architecturally mapped to AArch64 System
register DBGVCR32_EL2[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGVCR are UNDEFINED.

This register is required in all implementations.

Attributes

DBGVCR is a 32-bit register.

Field descriptions

When EL3 is implemented and EL3 is using AArch32:

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort exception vector catch enable in Non-secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

31 30 29 28 27 26 25

RES0

24 16

MF

15

MI

14 13

MD

12

MP

11

MS

10

RES0

9 8

SF

7

SI

6 5

SD

4

SP

3

SS

2

SU

1 0

NSF
NSI
RES0

NSU
NSS

NSP
NSD

RES0 RES0 RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12324
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:16]

Reserved, RES0.

MF, bit [15]

FIQ vector catch enable in Monitor mode.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MI, bit [14]

IRQ vector catch enable in Monitor mode.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

MD, bit [12]

Data Abort exception vector catch enable in Monitor mode.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MP, bit [11]

Prefetch Abort vector catch enable in Monitor mode.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

MS, bit [10]

Secure Monitor Call (SMC) vector catch enable in Monitor mode.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12325
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [9:8]

Reserved, RES0.

SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort exception vector catch enable in Secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12326
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
When EL3 is implemented and EL3 is using AArch64:

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort exception vector catch enable in Non-secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]

Prefetch Abort vector catch enable in Non-secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]

Supervisor Call (SVC) vector catch enable in Non-secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]

Undefined Instruction vector catch enable in Non-secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]

Reserved, RES0.

31 30 29 28 27 26 25

RES0

24 8

SF

7

SI

6 5

SD

4

SP

3

SS

2

SU

1 0

NSF
NSI
RES0

NSU
NSS

NSP
NSD

RES0 RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12327
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
SF, bit [7]

FIQ vector catch enable in Secure state.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]

IRQ vector catch enable in Secure state.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

SD, bit [4]

Data Abort exception vector catch enable in Secure state.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]

Prefetch Abort vector catch enable in Secure state.

The exception vector offset is 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]

Supervisor Call (SVC) vector catch enable in Secure state.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]

Undefined Instruction vector catch enable in Secure state.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

When EL3 is not implemented:

RES0

31 8

F

7

I

6 5

D

4

P

3

S

2

U

1 0

RES0 RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12328
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Bits [31:8]

Reserved, RES0.

F, bit [7]

FIQ vector catch enable.

The exception vector offset is 0x1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]

IRQ vector catch enable.

The exception vector offset is 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

D, bit [4]

Data Abort exception vector catch enable.

The exception vector offset is 0x10.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]

Prefetch Abort vector catch enable.

The exception vector offset 0x0C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]

Supervisor Call (SVC) vector catch enable.

The exception vector offset is 0x08.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.

The exception vector offset is 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12329
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Accessing DBGVCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGVCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGVCR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGVCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0111 0b000

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0111 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12330
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGVCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGVCR = R[t];
elsif PSTATE.EL == EL3 then
 DBGVCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12331
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.26 DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n> characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register
DBGWVR<n>.

Configurations

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGWCR<n>_EL1[31:0].

AArch32 System register DBGWCR<n> bits [31:0] are architecturally mapped to External register
DBGWCR<n>_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGWCR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWCR<n> is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address Mask. Only objects up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00011..0b11111 Number of address bits masked.

All other values are reserved.

Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

If programmed with a reserved value, the watchpoint behaves as if either:

• DBGWCR<n>.MASK has been programmed with a defined value, which might be 0 (no
mask), other than for a direct read of DBGWCR<n>.

• The watchpoint is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked data address match.

RES0

31 29

MASK

28 24

RES0

23 21

WT

20

LBN

19 16

SSC

15 14 13

BAS

12 5

LSC

4 3

PAC

2 1

E

0

HMC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12332
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b1 Linked data address match.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked Breakpoint Number. For Linked data address watchpoints, this specifies the index of the
Context-matching breakpoint linked to.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.

For more information, see Execution conditions for which a watchpoint generates Watchpoint
exceptions, and Reserved DBGWCR<n>.{SSC, HMC, PAC} values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n> is being watched.

In cases where DBGWVR<n> addresses a double-word:

If DBGWVR<n>[2] == 1, only BAS[3:0] are used and BAS[7:4] are ignored. Arm deprecates
setting DBGWVR<n>[2] == 1.

BAS Description

0bxxxxxxx1 Match byte at DBGWVR<n>

0bxxxxxx1x Match byte at DBGWVR<n>+1

0bxxxxx1xx Match byte at DBGWVR<n>+2

0bxxxx1xxx Match byte at DBGWVR<n>+3

BAS Description, if DBGWVR<n>[2] == 0

0bxxx1xxxx Match byte at DBGWVR<n>+4

0bxx1xxxxx Match byte at DBGWVR<n>+5

0bx1xxxxxx Match byte at DBGWVR<n>+6

0b1xxxxxxx Match byte at DBGWVR<n>+7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12333
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The valid values for BAS are nonzero binary numbers all of whose set bits are contiguous. All other
values are reserved and must not be used by software. See Reserved DBGWCR<n>.BAS values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made.
Possible values of this field are:

0b01 Match instructions that load from a watchpointed address.

0b10 Match instructions that store to a watchpointed address.

0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not
rely on this property as the behavior of reserved values might change in a future revision of the
architecture.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n. Possible values are:

0b0 Watchpoint disabled.

0b1 Watchpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGWCR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_WATCHPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12334
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGWCR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGWCR[m];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGWCR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_WATCHPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12335
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR[m] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWCR[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12336
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.27 DBGWFAR, Debug Watchpoint Fault Address Register

The DBGWFAR characteristics are:

Purpose

Previously returned information about the address of the instruction that accessed a watchpointed
address. Is now deprecated and RES0.

Configurations

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGWFAR are UNDEFINED.

Attributes

DBGWFAR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing DBGWFAR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGWFAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

RES0

31 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12337
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 R[t] = DBGWFAR;
elsif PSTATE.EL == EL3 then
 R[t] = DBGWFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGWFAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 else
 DBGWFAR = R[t];
elsif PSTATE.EL == EL3 then
 DBGWFAR = R[t];

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 0b0110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12338
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.28 DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n> characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with
control register DBGWCR<n>.

Configurations

AArch32 System register DBGWVR<n> bits [31:0] are architecturally mapped to AArch64 System
register DBGWVR<n>_EL1[31:0].

AArch32 System register DBGWVR<n> bits [31:0] are architecturally mapped to External register
DBGWVR<n>_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
DBGWVR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWVR<n> is a 32-bit register.

Field descriptions

VA, bits [31:2]

Bits[31:2] of the address value for comparison.

Arm deprecates setting DBGWVR<n>[2] == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing DBGWVR<n>

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_WATCHPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then

VA

31 2

RES0

1 0

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12339
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGWVR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGWVR[m];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 R[t] = DBGWVR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<3:0>);

if m >= NUM_WATCHPOINTS then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
 AArch32.TakeHypTrapException(0x05);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'

coproc opc1 CRn CRm opc2

0b1110 0b000 0b0000 m[3:0] 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12340
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x05);
 elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR[m] = R[t];
elsif PSTATE.EL == EL3 then
 if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGWVR[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12341
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.29 DLR, Debug Link Register

The DLR characteristics are:

Purpose

In Debug state, holds the address to restart from.

Configurations

AArch32 System register DLR bits [31:0] are architecturally mapped to AArch64 System register
DLR_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to DLR are
UNDEFINED.

Attributes

DLR is a 32-bit register.

Field descriptions

Bits [31:0]

Restart address.

Accessing DLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 R[t] = DLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 DLR = R[t];

Restart address

31 0

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b001

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12342
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.30 DSPSR, Debug Saved Program Status Register

The DSPSR characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is
written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch32 System register DSPSR bits [31:0] are architecturally mapped to AArch64 System
register DSPSR_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to DSPSR are
UNDEFINED.

Attributes

DSPSR is a 32-bit register.

Field descriptions

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to
PSTATE.N on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to
PSTATE.Z on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to
PSTATE.C on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to
PSTATE.V on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on entering Debug state, and copied to
PSTATE.Q on exiting Debug state.

N

31

Z

30

C

29

V

28

Q

27 26 25 24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5

M[4:0]

4 0

IT[1:0]
DIT

PAN
SSBS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12343
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT, bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT on entering Debug state, and copied to PSTATE.IT on
exiting Debug state.

DSPSR.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR[26:25].

• IT[7:2] is DSPSR[15:10].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to
PSTATE.DIT on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied
to PSTATE.SSBS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to
PSTATE.PAN on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to
PSTATE.SS on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to
PSTATE.IL on exiting Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12344
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on entering Debug state, and copied to
PSTATE.GE on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on entering Debug state, and copied to PSTATE.E on
exiting Debug state.

If the implementation does not support big-endian operation, DSPSR.E is RES0. If the
implementation does not support little-endian operation, DSPSR.E is RES1. On exiting Debug state,
if the implementation does not support big-endian operation at the Exception level being returned
to, DSPSR.E is RES0, and if the implementation does not support little-endian operation at the
Exception level being returned to, DSPSR.E is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError exception mask. Set to the value of PSTATE.A on entering Debug state, and copied to
PSTATE.A on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F
on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on entering Debug state, and copied to
PSTATE.T on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on entering Debug state, and copied to PSTATE.M[4:0]
on exiting Debug state.

0b10000 User.

0b10001 FIQ.

0b10010 IRQ.

0b10011 Supervisor.

0b10110 Monitor.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12345
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b10111 Abort.

0b11010 Hyp.

0b11011 Undefined.

0b11111 System.

Other values are reserved. If DSPSR.M[4:0] has a Reserved value, or a value for an unimplemented
Exception level, exiting Debug state is an illegal return event, as described in Illegal return events
from AArch32 state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DSPSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 R[t] = DSPSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 DSPSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b000

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12346
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.31 DSPSR2, Debug Saved Process State Register 2

The DSPSR2 characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is
written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch32 System register DSPSR2 bits [31:0] are architecturally mapped to AArch64 System
register DSPSR_EL0[63:32].

This register is present only when FEAT_Debugv8p9 is implemented. Otherwise, direct accesses to
DSPSR2 are UNDEFINED.

Attributes

DSPSR2 is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

PPEND, bit [1]

When FEAT_SEBEP is implemented:

PMU exception pending. Set to the value of PSTATE.PPEND on entering Debug state, and copied
to PSTATE.PPEND on exiting Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [0]

Reserved, RES0.

Accessing DSPSR2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 R[t] = DSPSR2;

RES0

31 2 1 0

PPEND RES0

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12347
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if !Halted() then
 UNDEFINED;
else
 DSPSR2 = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b011 0b0100 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12348
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.32 HDCR, Hyp Debug Control Register

The HDCR characteristics are:

Purpose

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided
by the debug and trace architectures and the Performance Monitors Extension.

Configurations

AArch32 System register HDCR bits [31:0] are architecturally mapped to AArch64 System register
MDCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
HDCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the
register, the PE behaves as if HDCR.HPMN == PMCR.N.

Attributes

HDCR is a 32-bit register.

Field descriptions

Bits [31:30]

Reserved, RES0.

HPMFZO, bit [29]

When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

0b0 Do not freeze on overflow.

0b1 Event counters do not count when PMOVSR[(PMCR.N-1):HDCR.HPMN] is nonzero.

If HDCR.HPMN is less than PMCR.N, this field affects the operation of event counters in the range
[HDCR.HPMN .. (PMCR.N-1)].

This field does not affect the operation of other event counters and PMCCNTR.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>.MT is zero.

0b1 PMEVTYPER<n>.MT bits not affected by this bit.

RES0

31 30 29 28 27 26

RES0

25 24 23

RES0

22 20 19 18 17

RES0

16 12 11 10 9 8 7 6 5

HPMN

4 0

HPMFZO
MTPME

TDCC
HLP

HPMD
RES0

TTRF
HCCD

TDRA
TDOSA

TDA

TPMCR
TPM

HPME
TDE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12349
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

The reset behavior of this field is:

• On a Cold reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 1.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

0b0 This control does not cause any register accesses to be trapped.

0b1 If EL2 is implemented and enabled in the current Security state, accesses to the DCC
registers at EL1 and EL0 generate a Hyp Trap exception, unless the access also
generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in
Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped MRC and MCR accesses with coproc == 0b1110.

• 0x06 for trapped LDC to DBGDTRTXint and STC from DBGDTRRXint.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When FEAT_PMUv3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an event
counter overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED
whether this bit is read/write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12350
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Note

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR from counting at EL2.

0b0 Cycle counting by PMCCNTR is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR is prohibited at EL2.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2 for MRC or MCR accesses, reported
using EC syndrome value 0x03.

0b0 Accesses to TRFCR at EL1 are not affected by this control bit.

0b1 Accesses to TRFCR at EL1 generate a Hyp Trap exception.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12351
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. Controls PMU operation in Hyp mode.

0b0 Counters are not affected by this mechanism.

0b1 Affected counters are prohibited from counting in Hyp mode.

If PMCR.DP is 1, then PMCCNTR is disabled in Hyp mode. Otherwise, PMCCNTR is
not affected by this mechanism.

The counters affected by this field are:

• Event counters PMEVCNTR<n> for values of n less than HDCR.HPMN.

• If PMCR.DP is 1, the cycle counter PMCCNTR.

Other event counters are not affected by this field.

When PMCR.DP is 0, PMCCNTR is not affected by this field.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls PMU operation in Hyp mode when
ExternalSecureNoninvasiveDebugEnabled () is FALSE.

0b0 Counters are not affected by this mechanism.

0b1 If ExternalSecureNoninvasiveDebugEnabled () is FALSE then all the following apply:

• Affected event counters are prohibited from counting in Hyp mode.

• If PMCR.DP is 1, then PMCCNTR is disabled in Hyp mode. Otherwise,
PMCCNTR is not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE then the event counters and PMCCNTR are
not affected by this field.

Otherwise, the counters affected by this field are:

• Event counters PMEVCNTR<n> for values of n less than HDCR.HPMN.

• If PMCR.DP is 1, the cycle counter, PMCCNTR.

Other event counters are not affected by this field. When PMCR.DP is 0, PMCCNTR is not affected
by this field.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register MRC
or MCR accesses, reported using EC syndrome value 0x05, and MRRC accesses, reported using EC
syndrome value 0x0C, to the Debug ROM registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12352
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b1 Non-secure EL0 and EL1 System register accesses to the DBGDRAR or DBGDSAR
are trapped to Hyp mode, unless it is trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps Non-secure EL1 System register MRC or MCR
accesses, reported using EC syndrome value 0x05, to the powerdown debug registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped
to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.

• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps Non-secure EL1 System register MRC or MCR
accesses, reported using EC syndrome value 0x05, to the powerdown debug registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 System register accesses to the powerdown debug registers are trapped
to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, and DBGPRCR.

• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12353
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register MRC or MCR accesses,
reported using EC syndrome value 0x05, to those debug System registers in the (coproc==0b1110)
encoding space that are not trapped by either of the following:

• HDCR.TDRA.

• HDCR.TDOSA.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL0 or EL1 System register accesses to the debug registers, other than the
registers trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp mode,
unless it is trapped by DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug exceptions. Controls routing of Debug exceptions, and defines the debug target
Exception level, ELD.

0b0 The debug target Exception level is EL1.

0b1 If EL2 is enabled for the current Effective value of SCR.NS, the debug target Exception
level is EL2, otherwise the debug target Exception level is EL1.

The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes other
than returning the result of a direct read of the register.

For more information, see Routing debug exceptions.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than
returning the value of a direct read of the register.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

Hyp Enable.

0b0 Affected counters are disabled and do not count.

0b1 Affected counters are enabled by PMCNTENSET.

The counters affected by this field are event counters PMEVCNTR<n> for values of n greater than
or equal to HDCR.HPMN and less than PMCR.N. This applies even when EL2 is disabled in the
current Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12354
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Other event counters and PMCCNTR are not affected by this field.

If HDCR.HPMN is equal to PMCR.N, then this field has no effect.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap accesses of PMU registers. Enables a trap to EL2 on accesses of PMU registers.

0b0 Accesses of the specified PMU registers are not trapped by this mechanism.

0b1 Accesses of the specified PMU registers at EL1 and EL0 are trapped to EL2, unless the
instruction generates a higher priority exception.

The instructions affected by this control are:

• MRC and MCR accesses to PMCCFILTR, PMCCNTR, PMCNTENCLR, PMCNTENSET,
PMCR, PMEVCNTR<n>, PMEVTYPER<n>, PMINTENCLR, PMINTENSET, PMOVSR,
PMOVSSET, PMSELR, PMSWINC, PMUSERENR, PMXEVCNTR, and PMXEVTYPER.

• MRC accesses to PMCEID0 and PMCEID1.

• MRRC and MCRR accesses to PMCCNTR.

• If FEAT_PMUv3p1 is implemented, MRC accesses to PMCEID2 and PMCEID3.

• If FEAT_PMUv3p4 is implemented, MRC accesses to PMMIR.

Unless the instruction generates a higher priority exception, trapped instructions generate a Hyp
Trap exception.

Trapped instructions are reported using EC syndrome value 0x03 for MRC and MCR accesses, and 0x04
for MRRC and MCRR accesses.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

Trap PMCR accesses. Traps Non-secure EL0 and EL1 MCR or MRC accesses to the PMCR to Hyp
mode, reported using EC syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL0 and EL1 accesses to the PMCR are trapped to Hyp mode, unless it is
trapped by PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12355
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

Defines the number of event counters PMEVCNTR<n> that are accessible from EL1 and from EL0
if permitted.

HDCR.HPMN divides the event counters into a first range and a second range.

If HDCR.HPMN is not 0 and is less than PMCR.N, then event counters [0..(HDCR.HPMN-1)] are
in the first range, and the remaining event counters [HDCR.HPMN..(PMCR.N-1)] are in the second
range.

If FEAT_HPMN0 is implemented and HDCR.HPMN is 0, then all event counters are in the second
range and none are in the first range.

If HDCR.HPMN is equal to PMCR.N, then all event counters are in the first range and none are in
the second range.

For an event counter PMEVCNTR<n> in the first range:

• The counter is accessible from EL1, EL2, and EL3.

• The counter is accessible from EL0 if permitted by PMUSERENR.

• If FEAT_PMUv3p5 is implemented, PMCR.LP determines whether the counter overflow
flag is set on unsigned overflow of PMEVCNTR<n>[31:0] or PMEVCNTR<n>.
PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

• PMCR.E and PMCNTENSET[n] enable the operation of the event counter.

For an event counter PMEVCNTR<n> in the second range:

• The counter is accessible from EL2 and EL3.

• If EL2 is disabled in the current Security state, the event counter is also accessible from EL1,
and from EL0 if permitted by PMUSERENR.

• If FEAT_PMUv3p5 is implemented, HDCR.HLP determines whether the counter overflow
flag is set on unsigned overflow of PMEVCNTR<n>[31:0] or PMEVCNTR<n>.
PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

• HDCR.HPME and PMCNTENSET[n] enable the operation of the event counter.

Values greater than PMCR.N are reserved. If FEAT_HPMN0 is not implemented then the value 0
is reserved.

If this field is set to a reserved value, then the following CONSTRAINED UNPREDICTABLE behaviors
apply:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE
behaves as if HDCR.HPMN is set to an UNKNOWN nonzero value less than or equal to
PMCR.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible
from EL1 and EL0 when EL2 is enabled in the current Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12356
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to UInt(AArch32-PMCR.N)

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing HDCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = HDCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12357
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 HDCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HDCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12358
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.33 HTRFCR, Hyp Trace Filter Control Register

The HTRFCR characteristics are:

Purpose

Provides EL2 controls for Trace.

Configurations

AArch32 System register HTRFCR bits [31:0] are architecturally mapped to AArch64 System
register TRFCR_EL2[31:0].

This register is present only when EL2 is capable of using AArch32 and FEAT_TRF is
implemented. Otherwise, direct accesses to HTRFCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from Monitor mode when SCR.NS == 1.

Attributes

HTRFCR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b00 The timestamp is controlled by TRFCR.TS.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

CX, bit [3]

VMID Trace Enable.

0b0 VMID tracing is not allowed.

0b1 VMID tracing is allowed.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

RES0

31 7

TS

6 5 4

CX

3 2 1 0

RES0
RES0

E0HTRE
E2TRE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12359
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E2TRE, bit [1]

EL2 Trace Enable.

0b0 Tracing is prohibited at EL2.

0b1 Tracing is allowed at EL2.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

E0HTRE, bit [0]

EL0 Trace Enable.

0b0 Tracing is prohibited at EL0 when HCR.TGE == 1.

0b1 Tracing is allowed at EL0 when HCR.TGE == 1.

This field is ignored if any of the following are true:

• The PE is in Secure state.

• SelfHostedTraceEnabled() == FALSE.

• HCR.TGE == 0.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing HTRFCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12360
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = HTRFCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = HTRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 HTRFCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12361
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 else
 HTRFCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12362
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.34 PMMIR, Performance Monitors Machine Identification Register

The PMMIR characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is present only when EL1 is capable of using AArch32 and FEAT_PMUv3p4 is
implemented. Otherwise, direct accesses to PMMIR are UNDEFINED.

Attributes

PMMIR is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

EDGE, bits [27:24]

PMU event edge detection. With PMMIR.THWIDTH, indicates implementation of event counter
thresholding features.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_EDGE is not implemented.

0b0001 FEAT_PMUv3_EDGE is implemented.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, the only permitted value is 0b0000.

FEAT_PMUv3_EDGE implements the functionality identified by the value 0b0001.

Note

PMEVTYPER<n>_EL0.TE cannot be accessed through PMEVTYPER<n>.

Access to this field is RO.

THWIDTH, bits [23:20]

PMEVTYPER<n>_EL0.TH width. Indicates implementation of the FEAT_PMUv3_TH feature,
and, if implemented, the size of the PMEVTYPER<n>_EL0.TH field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_TH is not implemented.

0b0001 1 bit. PMEVTYPER<n>_EL0.TH[11:1] are RES0.

0b0010 2 bits. PMEVTYPER<n>_EL0.TH[11:2] are RES0.

0b0011 3 bits. PMEVTYPER<n>_EL0.TH[11:3] are RES0.

0b0100 4 bits. PMEVTYPER<n>_EL0.TH[11:4] are RES0.

0b0101 5 bits. PMEVTYPER<n>_EL0.TH[11:5] are RES0.

0b0110 6 bits. PMEVTYPER<n>_EL0.TH[11:6] are RES0.

0b0111 7 bits. PMEVTYPER<n>_EL0.TH[11:7] are RES0.

RES0

31 28

EDGE

27 24

THWIDTH

23 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12363
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b1000 8 bits. PMEVTYPER<n>_EL0.TH[11:8] are RES0.

0b1001 9 bits. PMEVTYPER<n>_EL0.TH[11:9] are RES0.

0b1010 10 bits. PMEVTYPER<n>_EL0.TH[11:10] are RES0.

0b1011 11 bits. PMEVTYPER<n>_EL0.TH[11] is RES0.

0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMEVTYPER<n>_EL0.TH is 2(PMMIR.THWIDTH)
minus one.

Note

PMEVTYPER<n>_EL0.TH cannot be accessed through PMEVTYPER<n>.

Access to this field is RO.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

If the bus count information is not available, this field will read as zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a
single cycle. If the STALL_SLOT event is not implemented, this field might read as zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12364
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMMIR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMMIR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMMIR;
elsif PSTATE.EL == EL3 then
 R[t] = PMMIR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12365
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.35 SDCR, Secure Debug Control Register

The SDCR characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug, trace, and the Performance Monitors
Extension.

Configurations

This register is present only when EL3 is capable of using AArch32. Otherwise, direct accesses to
SDCR are UNDEFINED.

Attributes

SDCR is a 32-bit register.

Field descriptions

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>.MT is 0.

0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as
the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

The reset behavior of this field is:

• On a Cold reset, in a system where the PE resets into EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel in modes other than Monitor mode to Monitor
mode.

0b0 This control does not cause any register accesses to be trapped.

0b1 Accesses to the DCC registers in modes other than Monitor mode generate a Monitor
Trap exception, unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in
Non-debug state, DBGDTRRXint and DBGDTRTXint.

RES0

31 29 28 27

RES0

26 24 23 22 21 20 19 18 17 16

SPD

15 14

RES0

13 0

MTPME
TDCC

SCCD
RES0
EPMAD

RES0
SPME

STE
TTRF

EDAD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12366
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
When the PE is in Debug state, SDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR from counting in Secure state.

0b0 Cycle counting by PMCCNTR is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR is prohibited in Secure state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

External Performance Monitors Non-secure access disable. Controls Non-secure access to
Performance Monitors registers by an external debugger.

0b0 Non-secure access to the Performance Monitors registers from an external debugger is
permitted.

0b1 Non-secure access to the Performance Monitors registers from an external debugger is
not permitted.

If the Performance Monitors Extension does not support external debug interface accesses, this bit
is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective
value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

External Performance Monitors access disable. Controls access to Performance Monitors registers
by an external debugger.

0b0 Access to Performance Monitors registers from an external debugger is permitted.

0b1 Access to Performance Monitors registers from an external debugger is not permitted,
unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses, this bit
is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective
value of this field is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12367
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:

External debug Non-secure access disable. Controls Non-secure access to breakpoint, watchpoint,
and OSLAR_EL1 registers by an external debugger.

0b0 Non-secure access to debug registers from an external debugger is permitted.

0b1 Non-secure access to breakpoint registers, watchpoint registers, and OSLAR_EL1 from
an external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External debug access disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

0b0 Access to debug registers from an external debugger is permitted.

0b1 Access to breakpoint registers, watchpoint registers, and OSLAR_EL1 from an external
debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

External debug access disable. Controls access to breakpoint, watchpoint, and optionally
OSLAR_EL1 registers by an external debugger.

0b0 Access to debug registers from an external debugger is permitted.

0b1 Access to breakpoint registers and watchpoint registers from an external debugger is not
permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1 register from an
external debugger is permitted or not permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Trap Trace Filter controls. Controls whether accesses in modes other than Monitor mode to the trace
filter control registers generate a Monitor Trap exception.

0b0 Accesses to HTRFCR and TRFCR are not affected by this control bit.

0b1 When not in Monitor mode, accesses to HTRFCR and TRFCR generate a Monitor Trap
exception, unless the access generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12368
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Otherwise:

Reserved, RES0.

STE, bit [18]

When FEAT_TRF is implemented:

Secure Trace Enable. This bit enables tracing in Secure state and controls the level of authentication
required by an external debugger to enable external tracing.

0b0 Trace is prohibited in Secure state unless overridden by the IMPLEMENTATION DEFINED
authentication interface.

0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external
tracing. See Register controls to enable self-hosted trace.

If EL3 is not implemented and the Effective value of SCR.NS is 0, the PE behaves as if this bit is
set to 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

0b0 Event counting is prohibited in Secure state. If PMCR.DP is 1, PMCCNTR is disabled
in Secure state. Otherwise, PMCCNTR is not affected by this mechanism.

0b1 Event counting and PMCCNTR are not affected by this mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR.DP is 1, the
operation of PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by this
field.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

0b0 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, event counting is prohibited in
Secure state, and if PMCR.DP is 1, PMCCNTR is disabled in Secure state.

0b1 Event counting and PMCCNTR are not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE, the event counters and PMCCNTR are not
affected by this field.

Otherwise, this field affects the operation of all event counters in Secure state, and if PMCR.DP is
1, the operation of PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by
this field.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12369
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure self-hosted Privileged Debug. Enables or disables debug exceptions from EL3,
other than Breakpoint Instruction exceptions.

0b00 Legacy mode. Debug exceptions from EL3 are enabled by the authentication interface.

0b10 Secure privileged debug disabled. Debug exceptions from EL3 are disabled.

0b11 Secure privileged debug enabled. Debug exceptions from EL3 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must
have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved
values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored in Non-secure state.

If debug exceptions from EL3 are enabled, then debug exceptions from Secure EL0 are also
enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this
field is 0b11.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [13:0]

Reserved, RES0.

Accessing SDCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 R[t] = SDCR;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12370
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 SDCR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12371
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.36 SDER, Secure Debug Enable Register

The SDER characteristics are:

Purpose

Controls invasive and non-invasive debug in the Secure EL0 mode.

Configurations

AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register
SDER32_EL2[31:0] when EL2 is implemented and FEAT_SEL2 is implemented.

AArch32 System register SDER bits [31:0] are architecturally mapped to AArch64 System register
SDER32_EL3[31:0] when EL3 is implemented.

This register is present only when (EL3 is implemented and EL3 is capable of using AArch32) or
(EL1 is capable of using AArch32 and Secure EL1 is implemented). Otherwise, direct accesses to
SDER are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.

• EL1 is using AArch64.

Attributes

SDER is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit has no effect on non-invasive debug.

0b1 Non-invasive debug is allowed in Secure EL0 using AArch32.

When EL3 or Secure EL1 is using AArch32, the forms of non-invasive debug affected by this
control are:

• The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling
Extension.

• When SelfHostedTraceEnabled() == FALSE, processor trace.

• When EL3 is implemented, Performance Monitors.

When Secure EL1 is using AArch64, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

SUIDEN, bit [0]

When EL3 is implemented:

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.

0b1 If EL3 or EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

RES0

31 2 1 0

SUNIDEN SUIDEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12372
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Accessing SDER

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = SDER;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 R[t] = SDER;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !IsCurrentSecurityState(SS_Secure) then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 SDER = R[t];
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12373
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 if CP15SDISABLE2 == Signal_High then
 UNDEFINED;
 else
 SDER = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12374
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
G8.3.37 TRFCR, Trace Filter Control Register

The TRFCR characteristics are:

Purpose

Provides EL1 controls for Trace.

Configurations

AArch32 System register TRFCR bits [31:0] are architecturally mapped to AArch64 System
register TRFCR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32 and FEAT_TRF is
implemented. Otherwise, direct accesses to TRFCR are UNDEFINED.

Attributes

TRFCR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b01 Virtual timestamp. The traced timestamp is the physical counter value minus the value
of CNTVOFF.

0b10 When FEAT_ECV is implemented:

Guest physical timestamp. The traced timestamp is the physical counter value minus a
physical offset. If any of the following are true, the physical offset is zero, otherwise the
physical offset is the value of CNTPOFF_EL2:

• EL3 is implemented and is using AArch32.

• EL3 is implemented, using AArch64, and SCR_EL3.ECVEn == 0b0.

• EL2 is using AArch32.

• EL2 is using AArch64 and CNTHCTL_EL2.ECV == 0b0.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved.

This field is ignored by the PE when any of the following are true:

• EL2 is implemented and HTRFCR.TS != 0b00.

• SelfHostedTraceEnabled () == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.

E1TRE, bit [1]

EL1 Trace Enable.

0b0 Tracing is prohibited in PL1 modes.

RES0

31 7

TS

6 5

RES0

4 2 1 0

E1TRE E0TRE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12375
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
0b1 Tracing is allowed in PL1 modes.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.

0b0 Tracing is prohibited at EL0.

0b1 Tracing is allowed at EL0.

This field is ignored if any of the following are true:

• SelfHostedTraceEnabled() == FALSE.

• EL2 is implemented and enabled in the current security state and HCR.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing TRFCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && PSTATE.M !=
M32_Monitor && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = TRFCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1'
then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12376
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = TRFCR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = TRFCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && PSTATE.M !=
M32_Monitor && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SDCR.TTRF == '1'
then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0001 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12377
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.3 Debug registers
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12378
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4 Performance Monitors registers

This section lists the Performance Monitors registers in AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12379
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.1 PMCCFILTR, Performance Monitors Cycle Count Filter Register

The PMCCFILTR characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR, increments.

Configurations

AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to AArch64 System
register PMCCFILTR_EL0[31:0].

AArch32 System register PMCCFILTR bits [31:0] are architecturally mapped to External register
PMCCFILTR_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCCFILTR are UNDEFINED.

Attributes

PMCCFILTR is a 32-bit register.

Field descriptions

P, bit [31]

Privileged filtering. Controls counting cycles in EL1 and, if EL3 is using AArch32, EL3.

0b0 This mechanism has no effect on filtering of cycles.

0b1 The PE does not count cycles in EL1 and, if EL3 is using AArch32, EL3.

If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL1 is further
controlled by PMCCFILTR.NSK.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

U, bit [30]

User filtering. Controls counting cycles in EL0.

0b0 This mechanism has no effect on filtering of cycles.

0b1 The PE does not count cycles in EL0.

If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL0 is further
controlled by PMCCFILTR.NSU.

If FEAT_RME is implemented, then counting cycles in Realm EL0 is further controlled by
PMCCFILTR.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting cycles in Non-secure EL1. If PMCCFILTR.NSK is not
equal to PMCCFILTR.P, then the PE does not count cycles in Non-secure EL1. Otherwise, this
mechanism has no effect on filtering of cycles in Non-secure EL1.

0b0 When PMCCFILTR.P == 0, this mechanism has no effect on filtering of cycles.

P

31

U

30 29 28 27

RES0

26 22 21

RES0

20 0

NSK NSH
NSU

RLU
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12380
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
When PMCCFILTR.P == 1, the PE does not count cycles in Non-secure EL1.

0b1 When PMCCFILTR.P == 0, the PE does not count cycles in Non-secure EL1.

When PMCCFILTR.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting cycles in Non-secure EL0. If PMCCFILTR.NSU is not
equal to PMCCFILTR.U, then the PE does not count cycles in Non-secure EL0. Otherwise, this
mechanism has no effect on filtering of cycles in Non-secure EL0.

0b0 When PMCCFILTR.U == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR.U == 1, the PE does not count cycles in Non-secure EL0.

0b1 When PMCCFILTR.U == 0, the PE does not count cycles in Non-secure EL0.

When PMCCFILTR.U == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting cycles in EL2.

0b0 The PE does not count cycles in EL2.

0b1 This mechanism has no effect on filtering of cycles.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting cycles in Secure EL2 is
further controlled by PMCCFILTR.SH.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [26:22]

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting cycles in Realm EL0. If PMCCFILTR.RLU is not equal to
PMCCFILTR.U, then the PE does not count cycles in Realm EL0. Otherwise, this mechanism has
no effect on filtering of cycles in Realm EL0.

0b0 When PMCCFILTR.U == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR.U == 1, the PE does not count cycles in Realm EL0.

0b1 When PMCCFILTR.U == 0, the PE does not count cycles in Realm EL0.

When PMCCFILTR.U == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12381
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Otherwise:

Reserved, RES0.

Bits [20:0]

Reserved, RES0.

Accessing PMCCFILTR

PMCCFILTR can also be accessed by using PMXEVTYPER with PMSELR.SEL set to 0b11111.

Permitted reads and writes of PMCCFILTR are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.C == 0.

Permitted writes of PMCCFILTR are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.{UEN,CR} == {1,1}.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b1111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12382
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCCFILTR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCCFILTR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCCFILTR;
elsif PSTATE.EL == EL3 then
 R[t] = PMCCFILTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b1111 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12383
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL3 then
 PMCCFILTR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12384
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.2 PMCCNTR, Performance Monitors Cycle Count Register

The PMCCNTR characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See Time
as measured by the Performance Monitors cycle counter for more information.

PMCCFILTR determines the modes and states in which the PMCCNTR can increment.

Configurations

AArch32 System register PMCCNTR bits [63:0] are architecturally mapped to AArch64 System
register PMCCNTR_EL0[63:0].

AArch32 System register PMCCNTR bits [63:0] are architecturally mapped to External register
PMCCNTR_EL0[63:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCCNTR are UNDEFINED.

PMCCNTR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit
register, accesses read and write bits [31:0] and do not modify bits [63:32].

All counters are subject to any changes in clock frequency, including clock stopping caused by the
WFI and WFE instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not
PMCCNTR continues to increment when clocks are stopped by WFI and WFE instructions.

Attributes

PMCCNTR is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the
following ways:

• Every processor clock cycle.

• Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTR

Permitted reads and writes of PMCCNTR are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

CCNT

63 32

CCNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12385
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• PMUACR_EL1.C == 0.

Permitted writes of PMCCNTR are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.{UEN,CR} == {1,1}.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<UEN,CR,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<CR,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCCNTR<31:0>;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12386
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCCNTR<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCCNTR<31:0>;
elsif PSTATE.EL == EL3 then
 R[t] = PMCCNTR<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12387
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCNTR<31:0> = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCNTR<31:0> = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCNTR<31:0> = R[t];
elsif PSTATE.EL == EL3 then
 PMCCNTR<31:0> = R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<UEN,CR,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<CR,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then

coproc CRm opc1

0b1111 0b1001 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12388
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 (R[t2], R[t]) = (PMCCNTR<63:32>, PMCCNTR<31:0>);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 (R[t2], R[t]) = (PMCCNTR<63:32>, PMCCNTR<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 (R[t2], R[t]) = (PMCCNTR<63:32>, PMCCNTR<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (PMCCNTR<63:32>, PMCCNTR<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

coproc CRm opc1

0b1111 0b1001 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12389
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 PMCCNTR = R[t2]:R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12390
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.3 PMCEID0, Performance Monitors Common Event Identification register 0

The PMCEID0 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x0000 to 0x001F.

For more information about the Common events and the use of the PMCEIDn registers, see The
PMU event number space and common events.

Configurations

AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID0_EL0[31:0].

AArch32 System register PMCEID0 bits [31:0] are architecturally mapped to External register
PMCEID0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCEID0 are UNDEFINED.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Common event n.

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12391
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.TID
== '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR.TID == '1'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12392
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID0;
elsif PSTATE.EL == EL3 then
 R[t] = PMCEID0;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12393
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.4 PMCEID1, Performance Monitors Common Event Identification register 1

The PMCEID1 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x0020 to 0x003F.

For more information about the Common events and the use of the PMCEIDn registers see The
PMU event number space and common events.

Configurations

AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID1_EL0[31:0].

AArch32 System register PMCEID1 bits [31:0] are architecturally mapped to External register
PMCEID1[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCEID1 are UNDEFINED.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Common event (0x0020 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12394
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID1

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.TID
== '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR.TID == '1'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12395
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID1;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID1;
elsif PSTATE.EL == EL3 then
 R[t] = PMCEID1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12396
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.5 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the Common events and the use of the PMCEIDn registers see The
PMU event number space and common events.

Configurations

AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID0_EL0[63:32].

AArch32 System register PMCEID2 bits [31:0] are architecturally mapped to External register
PMCEID2[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3p1 is implemented.
Otherwise, direct accesses to PMCEID2 are UNDEFINED.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Common event (0x4000 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12397
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID2

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.TID
== '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR.TID == '1'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12398
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID2;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID2;
elsif PSTATE.EL == EL3 then
 R[t] = PMCEID2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12399
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.6 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the Common events and the use of the PMCEIDn registers see The
PMU event number space and common events.

Configurations

AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System
register PMCEID1_EL0[63:32].

AArch32 System register PMCEID3 bits [31:0] are architecturally mapped to External register
PMCEID3[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3p1 is implemented.
Otherwise, direct accesses to PMCEID3 are UNDEFINED.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Common event (0x4020 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12400
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID3

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif !ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.TID
== '1' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELUsingAArch32(EL1) && IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR.TID == '1'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCEIDn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12401
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID3;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID3;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCEID3;
elsif PSTATE.EL == EL3 then
 R[t] = PMCEID3;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12402
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.7 PMCNTENCLR, Performance Monitors Count Enable Clear register

The PMCNTENCLR characteristics are:

Purpose

Allows software to disable the following counters:

• The cycle counter PMCCNTR.

• The event counters PMEVCNTR<n>.

Reading from this register shows which counters are enabled.

Configurations

AArch32 System register PMCNTENCLR bits [31:0] are architecturally mapped to AArch64
System register PMCNTENCLR_EL0[31:0].

AArch32 System register PMCNTENCLR bits [31:0] are architecturally mapped to External
register PMCNTENCLR_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCNTENCLR are UNDEFINED.

Attributes

PMCNTENCLR is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR disable. On writes, allows software to disable PMCCNTR. On reads, returns the
PMCCNTR enable status.

0b0 PMCCNTR disabled.

0b1 PMCCNTR enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12403
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n> disable. On writes, allows software to disable PMEVCNTR<n>. On reads,
returns the PMEVCNTR<n> enable status.

0b0 PMEVCNTR<n> disabled.

0b1 PMEVCNTR<n> enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL0 or EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL0 or EL1.

— m >= UInt(PMCR.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12404
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMCNTENCLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCNTENCLR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12405
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 R[t] = PMCNTENCLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCNTENCLR;
elsif PSTATE.EL == EL3 then
 R[t] = PMCNTENCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENCLR = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12406
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENCLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENCLR = R[t];
elsif PSTATE.EL == EL3 then
 PMCNTENCLR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12407
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.8 PMCNTENSET, Performance Monitors Count Enable Set register

The PMCNTENSET characteristics are:

Purpose

Allows software to enable the following counters:

• The cycle counter PMCCNTR.

• The event counters PMEVCNTR<n>.

Reading from this register shows which counters are enabled.

Configurations

AArch32 System register PMCNTENSET bits [31:0] are architecturally mapped to AArch64
System register PMCNTENSET_EL0[31:0].

AArch32 System register PMCNTENSET bits [31:0] are architecturally mapped to External
register PMCNTENSET_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCNTENSET are UNDEFINED.

Attributes

PMCNTENSET is a 32-bit register.

Field descriptions

C, bit [31]

PMCCNTR enable. On writes, allows software to enable PMCCNTR. On reads, returns the
PMCCNTR enable status.

0b0 PMCCNTR disabled.

0b1 PMCCNTR enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12408
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n> enable. On writes, allows software to enable PMEVCNTR<n>. On reads, returns
the PMEVCNTR<n> enable status.

0b0 PMEVCNTR<n> disabled.

0b1 PMEVCNTR<n> enabled.

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL0 or EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL0 or EL1.

— m >= UInt(PMCR.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12409
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMCNTENSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCNTENSET;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12410
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 R[t] = PMCNTENSET;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCNTENSET;
elsif PSTATE.EL == EL3 then
 R[t] = PMCNTENSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENSET = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12411
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENSET = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCNTENSET = R[t];
elsif PSTATE.EL == EL3 then
 PMCNTENSET = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12412
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.9 PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

AArch32 System register PMCR bits [31:0] are architecturally mapped to AArch64 System register
PMCR_EL0[31:0].

AArch32 System register PMCR bits [10:0] are architecturally mapped to External register
PMCR_EL0[10:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCR are UNDEFINED.

Attributes

PMCR is a 32-bit register.

Field descriptions

IMP, bits [31:24]

When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A nonzero value has the same interpretation as
MIDR.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]

When PMCR.IMP != 0b00000000:

Identification code. Use of this field is deprecated.

Each implementer must maintain a list of identification codes that are specific to the implementer.
A specific implementation is identified by the combination of the implementer code and the
identification code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

IMP

31 24

IDCODE

23 16

N

15 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12413
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111.
If the value is 0b00000, then only PMCCNTR is implemented. If the value is 0b11111, then
PMCCNTR and 31 event counters are implemented.

In an implementation that includes EL2:

• If EL2 is using AArch32, reads of this field from Non-secure EL1 and Non-secure EL0 return
the value of HDCR.HPMN.

• If EL2 is using AArch64 and is enabled in the current Security state, reads of this field from
EL1 and EL0 return the value of MDCR_EL2.HPMN.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow.

Stop event counters on overflow.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR.N.

0b0 Do not freeze on overflow.

0b1 Affected event counters do not count when PMOVSR[(PMN-1):0] is nonzero.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n> for values of n less than PMN. This
applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>.

• If PMCR.DP is 1, the cycle counter PMCCNTR.

Other event counters are not affected by this field.

When PMCR.DP is 0, PMCCNTR is not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable.

Determines which event counter bit generates an overflow recorded by PMOVSR[n].

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12414
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• If EL2 is not implemented, then PMN is PMCR.N.

0b0 Affected counters overflow on unsigned overflow of PMEVCNTR<n>[31:0].

0b1 Affected counters overflow on unsigned overflow of PMEVCNTR<n>[63:0].

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n> for values of n less than PMN. This
applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>.

Other event counters and PMCCNTR are not affected by this field.

PMEVCNTR<n>[63:32] is not accessible in AArch32 state.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED
whether this field is read/write or RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]

When (FEAT_PMUv3p1 is implemented and EL2 is implemented) or EL3 is implemented:

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMCCNTR is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR is disabled in prohibited regions and when event
counting is frozen:

• If FEAT_PMUv3p1 is implemented, EL2 is implemented, and HDCR.HPMD is
1, then cycle counting by PMCCNTR is disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented and using AArch64,
and MDCR_EL3.MPMX is 1, then cycle counting by PMCCNTR is disabled at
EL3.

• If FEAT_PMUv3p7 is implemented and event counting is frozen by PMCR.FZO,
then cycle counting by PMCCNTR is disabled.

• If EL3 is implemented, MDCR_EL3.SPME or SDCR.SPME is 0, and either
FEAT_PMUv3p7 is not implemented, EL3 is using AArch32, or
MDCR_EL3.MPMX is 0, then cycle counting by PMCCNTR is disabled at EL3
and in Secure state.

The conditions when this field disables the cycle counter are the same as when event counting by
an event counter PMEVCNTR<n> is prohibited or frozen, when either EL2 is not implemented or
n is less than HDCR.HPMN.

For more information, see Prohibiting counting.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12415
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

Clock divider.

0b0 When enabled, PMCCNTR counts every clock cycle.

0b1 When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMCCNTR to zero.

Note

Resetting PMCCNTR does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is
implemented, the value of PMCR.LC is ignored, and bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR.N.

0b0 No action.

0b1 If n is in the range of affected event counters, resets each event counter
PMEVCNTR<n> to zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12416
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
The effects of writing to this bit are:

• If EL2 is implemented and enabled in the current Security state, in EL0 and EL1, and PMN
is not 0, then a write of 1 to this bit resets event counters in the range [0 .. (PMN-1)].

• If EL2 is disabled in the current Security state, then a write of 1 to this bit resets all the event
counters.

• In EL2 and EL3, a write of 1 to this bit resets all the event counters.

• This field does not affect the operation of other event counters and PMCCNTR.

Note

Resetting the event counters does not change the event counter overflow bits.

If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and PMCR.LP are ignored and bits
[63:0] of all affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR.N.

0b0 Affected counters are disabled and do not count.

0b1 Affected counters are enabled by PMCNTENSET.

The counters affected by this field are:

• If EL2 is implemented, event counters PMEVCNTR<n> for values of n less than PMN. This
applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMEVCNTR<n>.

• The cycle counter PMCCNTR.

Other event counters are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' ||
(IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.UEN == '1')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12417
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMCR;
elsif PSTATE.EL == EL3 then
 R[t] = PMCR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12418
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' ||
(IsFeatureImplemented(FEAT_PMUv3p9) && PMUSERENR_EL0.UEN == '1')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMCR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCR = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12419
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCR = R[t];
elsif PSTATE.EL == EL3 then
 PMCR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12420
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.10 PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n> characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configurations

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to AArch64
System register PMEVCNTR<n>_EL0[31:0].

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to External
register PMEVCNTR<n>_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMEVCNTR<n> are UNDEFINED.

Attributes

PMEVCNTR<n> is a 32-bit register.

Field descriptions

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part
of the event counter is accessible in AArch32 state:

• Reads from PMEVCNTR<n> return bits [31:0] of the counter.

• Writes to PMEVCNTR<n> update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64, bits [63:32] are not required to be
implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTR<n>

PMEVCNTR<n> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

Event counter n

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12421
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest
accessible event counter.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMEVCNTR<n> are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.P<n> == 0.

Permitted writes of PMEVCNTR<n> are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.{UEN,ER} == {1,1}.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or PMUSERENR_EL0.{UEN,ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-30

integer m = UInt(CRm<1:0>:opc2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b10:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12422
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
PMUSERENR_EL0.<UEN,ER,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<ER,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVCNTR[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVCNTR[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVCNTR[m];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12423
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL3 then
 R[t] = PMEVCNTR[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-30

integer m = UInt(CRm<1:0>:opc2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[m] = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b10:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12424
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[m] = R[t];
elsif PSTATE.EL == EL3 then
 PMEVCNTR[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12425
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.11 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64
System register PMEVTYPER<n>_EL0[31:0].

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External
register PMEVTYPER<n>_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMEVTYPER<n> are UNDEFINED.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

P, bit [31]

Privileged filtering. Controls counting events in EL1 and, if EL3 is using AArch32, EL3.

0b0 This mechanism has no effect on filtering of events.

0b1 The PE does not count events in EL1 and, if EL3 is using AArch32, EL3.

If Secure and Non-secure states are implemented, then counting events in Non-secure EL1 is further
controlled by PMEVTYPER<n>.NSK.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering. Controls counting events in EL0.

0b0 This mechanism has no effect on filtering of events.

0b1 The PE does not count events in EL0.

If Secure and Non-secure states are implemented, then counting events in Non-secure EL0 is further
controlled by PMEVTYPER<n>.NSU.

If FEAT_RME is implemented, then counting events in Realm EL0 is further controlled by
PMEVTYPER<n>.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting events in Non-secure EL1. If PMEVTYPER<n>.NSK
is not equal to PMEVTYPER<n>.P, then the PE does not count events in Non-secure EL1.
Otherwise, this mechanism has no effect on filtering of events in Non-secure EL1.

0b0 When PMEVTYPER<n>.P == 0, this mechanism has no effect on filtering of events.

P

31

U

30 29 28 27 26

MT

25

RES0

24 22 21

RES0

20 16 15 10

evtCount[9:0]

9 0

NSK
NSU

RES0
NSH

RLU evtCount[15:10]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12426
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
When PMEVTYPER<n>.P == 1, the PE does not count events in Non-secure EL1.

0b1 When PMEVTYPER<n>.P == 0, the PE does not count events in Non-secure EL1.

When PMEVTYPER<n>.P == 1, this mechanism has no effect on filtering of events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting events in Non-secure EL0. If PMEVTYPER<n>.NSU
is not equal to PMEVTYPER<n>.U, then the PE does not count events in Non-secure EL0.
Otherwise, this mechanism has no effect on filtering of events in Non-secure EL0.

0b0 When PMEVTYPER<n>.U == 0, this mechanism has no effect on filtering of events.

When PMEVTYPER<n>.U == 1, the PE does not count events in Non-secure EL0.

0b1 When PMEVTYPER<n>.U == 0, the PE does not count events in Non-secure EL0.

When PMEVTYPER<n>.U == 1, this mechanism has no effect on filtering of events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting events in EL2.

0b0 The PE does not count events in EL2.

0b1 This mechanism has no effect on filtering of events.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting events in Secure EL2 is
further controlled by PMEVTYPER<n>.SH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU
extension is implemented:

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted,
meaning if FEAT_MTPMU is not implemented, this field is RES0. See ID_DFR1.MTPMU.

This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and
disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12427
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting events in Realm EL0. If PMEVTYPER<n>.RLU is not
equal to PMEVTYPER<n>.U, then the PE does not count events in Realm EL0. Otherwise, this
mechanism has no effect on filtering of events in Realm EL0.

0b0 When PMEVTYPER<n>.U == 0, this mechanism has no effect on filtering of events.

When PMEVTYPER<n>.U == 1, the PE does not count events in Realm EL0.

0b1 When PMEVTYPER<n>.U == 0, the PE does not count events in Realm EL0.

When PMEVTYPER<n>.U == 1, this mechanism has no effect on filtering of events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [20:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count.

The event number of the event that is counted by event counter PMEVCNTR<n>.

The ranges of event numbers allocated to each type of event are shown in Table D13-13.

If FEAT_PMUv3p8 is implemented and PMEVTYPER<n>.evtCount is programmed to an event
that is reserved or not supported by the PE, no events are counted and the value returned by a direct
or external read of the PMEVTYPER<n>.evtCount field is the value written to the field.

Note
Arm recommends this behavior for all implementations of FEAT_PMUv3.

Otherwise, if PMEVTYPER<n>.evtCount is programmed to an event that is reserved or not
supported by the PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted and the value returned by a direct or
external read of the PMEVTYPER<n>.evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted and
the value returned by a direct or external read of the PMEVTYPER<n>.evtCount field is the
value written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted and the value returned
by a direct or external read of the PMEVTYPER<n>.evtCount field is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12428
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Note

UNPREDICTABLE means the event must not expose privileged information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>

PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest
accessible event counter.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMEVTYPER<n> are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.P<n> == 0.

Permitted writes of PMEVTYPER<n> are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.{UEN,ER} == {1,1}.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.{UEN,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12429
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-30

integer m = UInt(CRm<1:0>:opc2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVTYPER[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b11:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12430
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVTYPER[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVTYPER[m];
elsif PSTATE.EL == EL3 then
 R[t] = PMEVTYPER[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-30

integer m = UInt(CRm<1:0>:opc2<2:0>);

if m >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b11:m[4:3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12431
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVTYPER[m] = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && m >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVTYPER[m] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVTYPER[m] = R[t];
elsif PSTATE.EL == EL3 then
 PMEVTYPER[m] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12432
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.12 PMINTENCLR, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR characteristics are:

Purpose

Allows software to disable the generation of interrupt requests on overflows from the following
counters:

• The cycle counter PMCCNTR.

• The event counters PMEVCNTR<n>.

Reading from this register shows which overflow interrupt requests are enabled.

Configurations

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to AArch64
System register PMINTENCLR_EL1[31:0].

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to External register
PMINTENCLR_EL1[31:0].

This register is present only when EL1 is capable of using AArch32 and FEAT_PMUv3 is
implemented. Otherwise, direct accesses to PMINTENCLR are UNDEFINED.

Attributes

PMINTENCLR is a 32-bit register.

Field descriptions

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMCCNTR disable. On writes, allows
software to disable the interrupt request or PMU exception on unsigned overflow of PMCCNTR.
On reads, returns the interrupt request or PMU exception on unsigned overflow of PMCCNTR
enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMCCNTR disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMCCNTR enabled.

Access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12433
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n> disable. On writes,
allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>. On reads, returns the interrupt request or PMU exception on unsigned overflow
of PMEVCNTR<n> enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n> enabled.

Accessing this field has the following behavior:

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL1.

— m >= UInt(PMCR.N).

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENCLR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12434
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMINTENCLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMINTENCLR;
elsif PSTATE.EL == EL3 then
 R[t] = PMINTENCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENCLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENCLR = R[t];
elsif PSTATE.EL == EL3 then
 PMINTENCLR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12435
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.13 PMINTENSET, Performance Monitors Interrupt Enable Set register

The PMINTENSET characteristics are:

Purpose

Allows software to enable the generation of interrupt requests on overflows from the following
counters:

• The cycle counter PMCCNTR.

• The event counters PMEVCNTR<n>.

Reading from this register shows which overflow interrupt requests are enabled.

Configurations

AArch32 System register PMINTENSET bits [31:0] are architecturally mapped to AArch64
System register PMINTENSET_EL1[31:0].

AArch32 System register PMINTENSET bits [31:0] are architecturally mapped to External register
PMINTENSET_EL1[31:0].

This register is present only when EL1 is capable of using AArch32 and FEAT_PMUv3 is
implemented. Otherwise, direct accesses to PMINTENSET are UNDEFINED.

Attributes

PMINTENSET is a 32-bit register.

Field descriptions

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMCCNTR enable. On writes, allows
software to enable the interrupt request or PMU exception on unsigned overflow of PMCCNTR. On
reads, returns the interrupt request or PMU exception on unsigned overflow of PMCCNTR enable
status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMCCNTR disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMCCNTR enabled.

Access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12436
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n> enable. On writes,
allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>. On reads, returns the interrupt request or PMU exception on unsigned overflow
of PMEVCNTR<n> enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n> enabled.

Accessing this field has the following behavior:

• This field reads-as-zero and ignores writes if any of the following are true:

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL1.

— m >= UInt(PMCR.N).

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTENSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12437
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMINTENSET;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMINTENSET;
elsif PSTATE.EL == EL3 then
 R[t] = PMINTENSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENSET = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMINTENSET = R[t];
elsif PSTATE.EL == EL3 then
 PMINTENSET = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12438
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.14 PMOVSR, Performance Monitors Overflow Flag Status Register

The PMOVSR characteristics are:

Purpose

Allows software to clear the unsigned overflow flags for the following counters to 0:

• The cycle counter PMCCNTR.

• The event counters PMEVCNTR<n>.

Reading from this register shows the current unsigned overflow flag values.

Configurations

AArch32 System register PMOVSR bits [31:0] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[31:0].

AArch32 System register PMOVSR bits [31:0] are architecturally mapped to External register
PMOVSCLR_EL0[31:0].

AArch32 System register PMOVSR bits [31:0] are architecturally mapped to External register
PMOVS[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMOVSR are UNDEFINED.

Attributes

PMOVSR is a 32-bit register.

Field descriptions

C, bit [31]

Unsigned overflow flag for PMCCNTR clear. On writes, allows software to clear the unsigned
overflow flag for PMCCNTR to 0. On reads, returns the unsigned overflow flag for PMCCNTR
overflow status.

0b0 PMCCNTR has not overflowed.

0b1 PMCCNTR has overflowed.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0]
or unsigned overflow of PMCCNTR[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12439
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n> clear. On writes, allows software to clear the unsigned
overflow flag for PMEVCNTR<n> to 0. On reads, returns the unsigned overflow flag for
PMEVCNTR<n> overflow status.

0b0 PMEVCNTR<n> has not overflowed.

0b1 PMEVCNTR<n> has overflowed.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control
whether an overflow is detected from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned
overflow of PMEVCNTR<n>[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL0 or EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL0 or EL1.

— m >= UInt(PMCR.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1C.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12440
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMOVSR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMOVSR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12441
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 R[t] = PMOVSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMOVSR;
elsif PSTATE.EL == EL3 then
 R[t] = PMOVSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12442
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];
elsif PSTATE.EL == EL3 then
 PMOVSR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12443
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.15 PMOVSSET, Performance Monitors Overflow Flag Status Set register

The PMOVSSET characteristics are:

Purpose

Allows software to set the unsigned overflow flags for the following counters to 1:

• The cycle counter PMCCNTR.

• The event counters PMEVCNTR<n>.

Reading from this register shows the current unsigned overflow flag values.

Configurations

AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[31:0].

AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to External register
PMOVSSET_EL0[31:0].

AArch32 System register PMOVSSET bits [31:0] are architecturally mapped to External register
PMOVS[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMOVSSET are UNDEFINED.

Attributes

PMOVSSET is a 32-bit register.

Field descriptions

C, bit [31]

Unsigned overflow flag for PMCCNTR set. On writes, allows software to set the unsigned overflow
flag for PMCCNTR to 1. On reads, returns the unsigned overflow flag for PMCCNTR overflow
status.

0b0 PMCCNTR has not overflowed.

0b1 PMCCNTR has overflowed.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0]
or unsigned overflow of PMCCNTR[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12444
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
— PMUACR_EL1.C == 0.

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,CR} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n> set. On writes, allows software to set the unsigned
overflow flag for PMEVCNTR<n> to 1. On reads, returns the unsigned overflow flag for
PMEVCNTR<n> overflow status.

0b0 PMEVCNTR<n> has not overflowed.

0b1 PMEVCNTR<n> has overflowed.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control
whether an overflow is detected from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned
overflow of PMEVCNTR<n>[63:0].

Accessing this field has the following behavior:

• Permitted reads and writes of this field are RAZ/WI if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.UEN == 1.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL0 or EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL0 or EL1.

— m >= UInt(PMCR.N).

• Permitted writes of this field are ignored if all of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,ER} == {1,1}.

• Otherwise access to this field is W1S.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12445
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMOVSSET

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMOVSSET;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12446
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 R[t] = PMOVSSET;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMOVSSET;
elsif PSTATE.EL == EL3 then
 R[t] = PMOVSSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSSET = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12447
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSSET = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSSET = R[t];
elsif PSTATE.EL == EL3 then
 PMOVSSET = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12448
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.16 PMSELR, Performance Monitors Event Counter Selection Register

The PMSELR characteristics are:

Purpose

Selects the current event counter PMEVCNTR<n> or the cycle counter PMCCNTR.

Used in conjunction with PMXEVTYPER to determine the event that increments a selected counter,
and the modes and states in which the selected counter increments.

Used in conjunction with PMXEVCNTR to determine the value of a selected counter.

Configurations

AArch32 System register PMSELR bits [31:0] are architecturally mapped to AArch64 System
register PMSELR_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMSELR are UNDEFINED.

Attributes

PMSELR is a 32-bit register.

Field descriptions

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Event counter select. Selects the counter accessed by subsequent accesses to PMXEVTYPER and
PMXEVCNTR.

0b00000..0b11110 Select event counter PMEVCNTR<n>, where n is the value of this field:

• MRC and MCR of PMXEVTYPER access PMEVTYPER<n>.

• MRC and MCR of PMXEVCNTR access PMEVCNTR<n>.

0b11111 Select the cycle counter, PMCCNTR:

• MRC and MCR of PMXEVTYPER access PMCCFILTR.

• MRC and MCR of PMXEVCNTR are CONSTRAINED UNPREDICTABLE. For more
information, see PMXEVCNTR.

For more information about the results of accesses to the event counters, including when
PMSELR.SEL is set to the index of an unimplemented or inaccessible event counter, see
PMXEVTYPER and PMXEVCNTR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 5

SEL

4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12449
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
Accessing PMSELR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<UEN,ER,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<ER,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMSELR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMSELR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12450
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 R[t] = PMSELR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMSELR;
elsif PSTATE.EL == EL3 then
 R[t] = PMSELR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<UEN,ER,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<ER,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMSELR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSELR = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12451
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSELR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSELR = R[t];
elsif PSTATE.EL == EL3 then
 PMSELR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12452
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.17 PMSWINC, Performance Monitors Software Increment register

The PMSWINC characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more
information, see SW_INCR.

Configurations

AArch32 System register PMSWINC bits [31:0] are architecturally mapped to AArch64 System
register PMSWINC_EL0[31:0].

AArch32 System register PMSWINC bits [31:0] are architecturally mapped to External register
PMSWINC_EL0[31:0] when FEAT_PMUv3p9 is not implemented.

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMSWINC are UNDEFINED.

Attributes

PMSWINC is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

P<m>, bit [m], for m = 30 to 0

Software increment.

0b0 Write is ignored.

0b1 Increment PMEVCNTR<n>, if PMEVCNTR<n> is configured to count software
increment events.

Accessing this field has the following behavior:

• This field ignores writes if any of the following are true:

— All of the following are true:

— FEAT_PMUv3p9 is implemented.

— Accessed at EL0.

— EL1 is using AArch64.

— PMUSERENR_EL0.{UEN,SW} == {1,0}.

— PMUACR_EL1.P<m> == 0.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

RES0
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12453
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
— m >= UInt(MDCR_EL2.HPMN).

— EL2 using AArch64.

— Accessed at EL0 or EL1.

— All of the following are true:

— EL2 is implemented and enabled in the current Security state.

— m >= UInt(HDCR.HPMN).

— EL2 using AArch32.

— Accessed at EL0 or EL1.

— m >= UInt(PMCR.N).

• Otherwise access to this field is write-only.

Accessing PMSWINC

Accesses to this register use the following encodings in the System register encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<UEN,SW,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<SW,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.<SW,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSWINC = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12454
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSWINC = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMSWINC = R[t];
elsif PSTATE.EL == EL3 then
 PMSWINC = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12455
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.18 PMUSERENR, Performance Monitors User Enable Register

The PMUSERENR characteristics are:

Purpose

Enables or disables EL0 access to the Performance Monitors.

Configurations

AArch32 System register PMUSERENR bits [31:0] are architecturally mapped to AArch64 System
register PMUSERENR_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMUSERENR are UNDEFINED.

Attributes

PMUSERENR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TID, bit [6]

When FEAT_PMUv3p9 is implemented:

Trap ID registers. Traps EL0 read access to common event identification registers.

0b0 Accesses to PMCEID<n> are not trapped by this mechanism.

0b1 EL0 read accesses to PMCEID<n> are trapped.

The register accesses affected by this control are:

• MRC reads of PMCEID0, PMCEID1, PMCEID2, and PMCEID3.

When trapped, reads are UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES0.

ER, bit [3]

Event counters Read enable.

When PMUSERENR.EN is 0, PMUSERENR.ER enables EL0 reads of the event counters and EL0
reads and writes of the select register.

0b0 EL0 reads of the event counters and EL0 reads and writes of the select register are
disabled, unless enabled by PMUSERENR.EN.

0b1 EL0 reads of the event counters and EL0 reads and writes of the select register are
enabled, unless trapped by another control.

RES0

31 7 6

RES0

5 4

ER

3

CR

2

SW

1

EN

0

TID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12456
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
The register accesses affected by this control are:

• MRC reads of PMEVCNTR<n> and PMXEVCNTR.

• MRC and MCR accesses to PMSELR.

When disabled, reads and writes are UNDEFINED.

This field is ignored by the PE when PMUSERENR.EN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CR, bit [2]

Cycle counter Read enable.

When PMUSERENR.EN is 0, PMUSERENR.CR enables EL0 reads of the cycle counter.

0b0 EL0 reads of the cycle counter are disabled, unless enabled by PMUSERENR.EN.

0b1 EL0 reads of the cycle counter are enabled, unless trapped by another control.

The register accesses affected by this control are:

• MRC reads of PMCCNTR.

• MRRC reads of PMCCNTR.

When disabled, reads are UNDEFINED.

This field is ignored by the PE when PMUSERENR.EN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SW, bit [1]

Software increment register Write enable.

When PMUSERENR.EN is 0, PMUSERENR.SW enables EL0 writes to the Software increment
register.

0b0 EL0 writes to the Software increment register are disabled, unless enabled by
PMUSERENR.EN.

0b1 EL0 writes to the Software increment register are enabled, unless trapped by another
control.

The register accesses affected by this control are:

• MCR writes to PMSWINC.

When disabled, writes are UNDEFINED.

This field is ignored by the PE when PMUSERENR.EN == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Enable. Enables EL0 read/write access to PMU registers.

0b0 EL0 accesses to the specified PMU System registers are trapped, unless enabled by
PMUSERENR.{ER,CR,SW}.

0b1 EL0 accesses to the specified PMU System registers are enabled, unless trapped by
another control.

The register accesses affected by this control are:

• MRC or MCR accesses to PMCCFILTR, PMCCNTR, PMCNTENCLR, PMCNTENSET,
PMCR, PMEVCNTR<n>, PMEVTYPER<n>, PMOVSR, PMOVSSET, PMSELR,
PMXEVCNTR, and PMXEVTYPER.

• MRC reads of the following registers:

— PMCEID0 and PMCEID1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12457
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
— If FEAT_PMUv3p1 is implemented, PMCEID2 and PMCEID3.

• MCR writes to PMSWINC.

• MRRC or MCRR accesses to PMCCNTR.

When trapped, reads and writes are UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMUSERENR

When FEAT_PMUv3p9 is implemented and EL1 is using AArch64, PMUSERENR_EL0 contains additional
controls that affect the behavior of this register.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMUSERENR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12458
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 R[t] = PMUSERENR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMUSERENR;
elsif PSTATE.EL == EL3 then
 R[t] = PMUSERENR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMUSERENR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMUSERENR = R[t];
elsif PSTATE.EL == EL3 then
 PMUSERENR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1110 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12459
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.19 PMXEVCNTR, Performance Monitors Selected Event Count Register

The PMXEVCNTR characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<n>. PMSELR.SEL
determines which event counter is selected.

Configurations

AArch32 System register PMXEVCNTR bits [31:0] are architecturally mapped to AArch64 System
register PMXEVCNTR_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMXEVCNTR are UNDEFINED.

Attributes

PMXEVCNTR is a 32-bit register.

Field descriptions

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>, where n is the value stored in PMSELR.SEL.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part
of the event counter is accessible in AArch32 state:

• Reads from PMXEVCNTR return bits [31:0] of the counter.

• Writes to PMXEVCNTR update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64, bits [63:32] are not required to be
implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMXEVCNTR

If FEAT_FGT is implemented and PMSELR.SEL is greater than or equal to the number of accessible event
counters, then the behavior of permitted reads and writes of PMXEVCNTR is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR.SEL is greater than or equal to the number of accessible event
counters, then reads and writes of PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and the following behaviors
are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP

PMEVCNTR<n>

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12460
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of event
counters accessible at the current Exception level and Security state.

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number
of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMXEVCNTR are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

• PMUACR_EL1.P<UInt(PMSELR.SEL)> == 0.

Permitted writes of PMXEVCNTR are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.{UEN,ER} == {1,1}.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or PMUSERENR_EL0.{UEN,ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if UInt(PMSELR.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && ((IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<UEN,ER,EN> == '000') || (!IsFeatureImplemented(FEAT_PMUv3p9) &&
PMUSERENR_EL0.<ER,EN> == '00')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12461
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVCNTR[UInt(PMSELR.SEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVCNTR[UInt(PMSELR.SEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12462
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = PMEVCNTR[UInt(PMSELR.SEL)];
elsif PSTATE.EL == EL3 then
 R[t] = PMEVCNTR[UInt(PMSELR.SEL)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if UInt(PMSELR.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[UInt(PMSELR.SEL)] = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12463
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) >= GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[UInt(PMSELR.SEL)] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMEVCNTR[UInt(PMSELR.SEL)] = R[t];
elsif PSTATE.EL == EL3 then
 PMEVCNTR[UInt(PMSELR.SEL)] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12464
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
G8.4.20 PMXEVTYPER, Performance Monitors Selected Event Type Register

The PMXEVTYPER characteristics are:

Purpose

When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When
PMSELR.SEL selects the cycle counter, this accesses PMCCFILTR.

Configurations

AArch32 System register PMXEVTYPER bits [31:0] are architecturally mapped to AArch64
System register PMXEVTYPER_EL0[31:0].

This register is present only when AArch32 is supported and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMXEVTYPER are UNDEFINED.

Attributes

PMXEVTYPER is a 32-bit register.

Field descriptions

ETR, bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing PMXEVTYPER

If FEAT_FGT is implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible
event counters, then the behavior of permitted reads and writes of PMXEVTYPER is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.

• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then reads and writes of PMXEVTYPER are CONSTRAINED UNPREDICTABLE, and the
following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP

• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of event
counters accessible at the current Exception level and Security state.

• Accesses to the register behave as if PMSELR.SEL is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number
of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Permitted reads and writes of PMXEVTYPER are RAZ/WI if all of the following are true:

• FEAT_PMUv3p9 is implemented.

Event type register or PMCCFILTR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12465
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

• Any of the following are true:

— PMSELR.SEL != 31 and PMUACR_EL1.P<UInt(PMSELR.SEL)> == 0.

— PMSELR.SEL == 31 and PMUACR_EL1.C == 0.

Permitted writes of PMXEVTYPER are ignored if all of the following are true:

• FEAT_PMUv3p9 is implemented.

• PSTATE.EL == EL0.

• EL1 is using AArch64.

• PMUSERENR_EL0.UEN == 1.

• Any of the following are true:

— PMSELR.SEL != 31 and PMUACR_EL1.ER == 1.

— PMSELR.SEL == 31 and PMUACR_EL1.CR == 1.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.{UEN,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented event counters. For more
information, see HDCR.HPMN and MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if UInt(PMSELR.SEL) != 31 && UInt(PMSELR.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12466
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) != 31 && UInt(PMSELR.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 if UInt(PMSELR.SEL) == 31 then
 R[t] = PMCCFILTR;
 else
 R[t] = PMEVTYPER[UInt(AArch32-PMSELR.SEL)];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) != 31 && UInt(PMSELR.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 if UInt(PMSELR.SEL) == 31 then
 R[t] = PMCCFILTR;
 else
 R[t] = PMEVTYPER[UInt(AArch32-PMSELR.SEL)];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12467
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 if UInt(PMSELR.SEL) == 31 then
 R[t] = PMCCFILTR;
 else
 R[t] = PMEVTYPER[UInt(AArch32-PMSELR.SEL)];
elsif PSTATE.EL == EL3 then
 if UInt(PMSELR.SEL) == 31 then
 R[t] = PMCCFILTR;
 else
 R[t] = PMEVTYPER[UInt(AArch32-PMSELR.SEL)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if UInt(PMSELR.SEL) != 31 && UInt(PMSELR.SEL) >= NUM_PMU_COUNTERS then
 if IsFeatureImplemented(FEAT_FGT) then
 UNDEFINED;
 else
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && (PMUSERENR_EL0.EN == '0' &&
(!IsFeatureImplemented(FEAT_PMUv3p9) || PMUSERENR_EL0.UEN == '0')) then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T9 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) != 31 && UInt(PMSELR.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL1) then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1001 0b1101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12468
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.4 Performance Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 if UInt(PMSELR.SEL) == 31 then
 PMCCFILTR = R[t];
 else
 PMEVTYPER[UInt(AArch32-PMSELR.SEL)] = R[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && UInt(PMSELR.SEL) != 31 && UInt(PMSELR.SEL) >=
GetNumEventCountersAccessible() then
 if !IsFeatureImplemented(FEAT_FGT) then
 ConstrainUnpredictableProcedure(Unpredictable_PMUEVENTCOUNTER);
 elsif ELUsingAArch32(EL2) then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 if UInt(PMSELR.SEL) == 31 then
 PMCCFILTR = R[t];
 else
 PMEVTYPER[UInt(AArch32-PMSELR.SEL)] = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 if UInt(PMSELR.SEL) == 31 then
 PMCCFILTR = R[t];
 else
 PMEVTYPER[UInt(AArch32-PMSELR.SEL)] = R[t];
elsif PSTATE.EL == EL3 then
 if UInt(PMSELR.SEL) == 31 then
 PMCCFILTR = R[t];
 else
 PMEVTYPER[UInt(AArch32-PMSELR.SEL)] = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12469
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5 Activity Monitors registers

This section lists the Activity Monitoring registers in AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12470
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.1 AMCFGR, Activity Monitors Configuration Register

The AMCFGR characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total
number of activity monitor event counters implemented, and the size of the counters. AMCFGR is
applicable to both the architected and the auxiliary counter groups.

Configurations

AArch32 System register AMCFGR bits [31:0] are architecturally mapped to AArch64 System
register AMCFGR_EL0[31:0].

AArch32 System register AMCFGR bits [31:0] are architecturally mapped to External register
AMCFGR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCFGR are UNDEFINED.

Attributes

AMCFGR is a 32-bit register.

Field descriptions

NCG, bits [31:28]

Defines the number of counter groups implemented, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One counter group implemented.

0b0001 Two counter groups implemented.

All other values are reserved.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 AMCR.HDBG is RES0.

0b1 AMCR.HDBG is read/write.

Access to this field is RO.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of the activity monitor event counters, minus one.

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12471
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
The counters are 64-bit, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. The
counters are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters implemented in all groups, minus one.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMCFGR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCFGR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12472
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCFGR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCFGR;
elsif PSTATE.EL == EL3 then
 R[t] = AMCFGR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12473
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register

The AMCGCR characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each
counter group.

Configurations

AArch32 System register AMCGCR bits [31:0] are architecturally mapped to AArch64 System
register AMCGCR_EL0[31:0].

AArch32 System register AMCGCR bits [31:0] are architecturally mapped to External register
AMCGCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCGCR are UNDEFINED.

Attributes

AMCGCR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

Accessing AMCGCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then

RES0

31 16

CG1NC

15 8

0 0 0 0 0 1 0 0

7 0

CG0NC

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12474
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCGCR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCGCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCGCR;
elsif PSTATE.EL == EL3 then
 R[t] = AMCGCR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12475
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.3 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENCLR0_EL0[31:0].

AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR0[31:0].

AArch32 System register AMCNTENCLR0 bits [31:0] are architecturally mapped to External
register AMCNTENSET0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR0 are UNDEFINED.

Attributes

AMCNTENCLR0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR0<n> is enabled. When written, disables
AMEVCNTR0<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12476
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accessing AMCNTENCLR0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENCLR0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENCLR0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12477
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENCLR0;
elsif PSTATE.EL == EL3 then
 R[t] = AMCNTENCLR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENCLR0 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12478
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.4 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENCLR1_EL0[31:0].

AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to External
register AMCNTENCLR1[31:0].

AArch32 System register AMCNTENCLR1 bits [31:0] are architecturally mapped to External
register AMCNTENSET1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR1 are UNDEFINED.

Attributes

AMCNTENCLR1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR1<n> is enabled. When written, disables
AMEVCNTR1<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR1

If there are no auxiliary monitor event counters implemented, reads and writes of AMCNTENCLR1 are UNDEFINED.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12479
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENCLR1;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENCLR1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12480
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENCLR1;
elsif PSTATE.EL == EL3 then
 R[t] = AMCNTENCLR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENCLR1 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12481
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.5 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENSET0_EL0[31:0].

AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to External
register AMCNTENSET0[31:0].

AArch32 System register AMCNTENSET0 bits [31:0] are architecturally mapped to External
register AMCNTENCLR0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET0 are UNDEFINED.

Attributes

AMCNTENSET0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR0<n> is enabled. When written, enables
AMEVCNTR0<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12482
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accessing AMCNTENSET0

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENSET0;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENSET0;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12483
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENSET0;
elsif PSTATE.EL == EL3 then
 R[t] = AMCNTENSET0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENSET0 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12484
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.6 AMCNTENSET1, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64
System register AMCNTENSET1_EL0[31:0].

AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to External
register AMCNTENSET1[31:0].

AArch32 System register AMCNTENSET1 bits [31:0] are architecturally mapped to External
register AMCNTENCLR1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENSET1 are UNDEFINED.

Attributes

AMCNTENSET1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled. When written, has no effect.

0b1 When read, means that AMEVCNTR1<n> is enabled. When written, enables
AMEVCNTR1<n>.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET1

If there are no auxiliary monitor event counters implemented, reads and writes of AMCNTENSET1 are UNDEFINED.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12485
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENSET1;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENSET1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12486
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCNTENSET1;
elsif PSTATE.EL == EL3 then
 R[t] = AMCNTENSET1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCNTENSET1 = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12487
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.7 AMCR, Activity Monitors Control Register

The AMCR characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR is applicable to both the
architected and the auxiliary counter groups.

Configurations

AArch32 System register AMCR bits [31:0] are architecturally mapped to AArch64 System register
AMCR_EL0[31:0].

AArch32 System register AMCR bits [31:0] are architecturally mapped to External register
AMCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR are UNDEFINED.

Attributes

AMCR is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

CG1RZ, bit [17]

When FEAT_AMUv1p1 is implemented:

Counter Group 1 Read Zero.

0b0 System register reads of AMEVCNTR1<n> return the event count at all implemented
and enabled Exception levels.

0b1 If the current Exception level is the highest implemented Exception level, system
register reads of AMEVCNTR1<n> return the event count. Otherwise, reads of
AMEVCNTR1<n> return a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

RES0

31 18 17

RES0

16 11 10

RES0

9 0

CG1RZ HDBG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12488
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing AMCR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12489
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMCR;
elsif PSTATE.EL == EL3 then
 R[t] = AMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
 AMCR = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12490
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.8 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3

The AMEVCNTR0<n> characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

AArch32 System register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch64
System register AMEVCNTR0<n>_EL0[63:0].

AArch32 System register AMEVCNTR0<n> bits [63:0] are architecturally mapped to External
register AMEVCNTR0<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR0<n> are UNDEFINED.

Attributes

AMEVCNTR0<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is
a number from 0 to 3.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1,
the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, and EL2 is using AArch64 and is
implemented in the current Security state, access to these registers at EL0 or EL1 return
(PCount<63:0> - AMEVCNTVOFF0<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR0<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR0<n>

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n> are UNDEFINED.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

ACNT

63 32

ACNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12491
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>; Where m = 0-3

integer m = UInt(CRm<0>:opc1<2:0>);

if m >= 4 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && m < 8 && HSTR_EL2.T0
== '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && m < 8 && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVCNTR0<m>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 (R[t2], R[t]) = (AMEVCNTR0[m]<63:32>, AMEVCNTR0[m]<31:0>);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && m < 8 && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && m < 8 && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);

coproc CRm opc1

0b1111 0b000:m[3] 0b0:m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12492
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 else
 (R[t2], R[t]) = (AMEVCNTR0[m]<63:32>, AMEVCNTR0[m]<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 (R[t2], R[t]) = (AMEVCNTR0[m]<63:32>, AMEVCNTR0[m]<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (AMEVCNTR0[m]<63:32>, AMEVCNTR0[m]<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>; Where m = 0-3

integer m = UInt(CRm<0>:opc1<2:0>);

if m >= 4 then
 UNDEFINED;
elsif PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && m < 8 && HSTR_EL2.T0 ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && m < 8 && HSTR.T0 == '1'
then
 AArch32.TakeHypTrapException(0x04);
elsif IsHighestEL(PSTATE.EL) then
 AMEVCNTR0[m] = R[t2]:R[t];
else
 UNDEFINED;

coproc CRm opc1

0b1111 0b000:m[3] 0b0:m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12493
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.9 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64
System register AMEVCNTR1<n>_EL0[63:0].

AArch32 System register AMEVCNTR1<n> bits [63:0] are architecturally mapped to External
register AMEVCNTR1<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR1<n> are UNDEFINED.

Attributes

AMEVCNTR1<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a
number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1,
the Effective value of HCR_EL2.{E2H, TGE} is not {1, 1}, EL2 is using AArch64 and is
implemented in the current Security state, and AMCR_EL0.CG1RZ is 0, reads to these registers at
EL0 or EL1 return (PCount<63:0> - AMEVCNTVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n> are UNDEFINED.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

ACNT

63 32

ACNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12494
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>; Where m = 0-15

integer m = UInt(CRm<0>:opc1<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && m >= 8 && HSTR_EL2.T5
== '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && m >= 8 && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVCNTR1<m>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 (R[t2], R[t]) = (Zeros(32), Zeros(32));
 elsif !HaveAArch64() && AMCR.CG1RZ == '1' then
 (R[t2], R[t]) = (Zeros(32), Zeros(32));
 else
 (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>);
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && m >= 8 && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && m >= 8 && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then

coproc CRm opc1

0b1111 0b010:m[3] 0b0:m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12495
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 (R[t2], R[t]) = (Zeros(32), Zeros(32));
 elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then
 (R[t2], R[t]) = (Zeros(32), Zeros(32));
 else
 (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 elsif !IsHighestEL(PSTATE.EL) && HaveAArch64() && AMCR_EL0.CG1RZ == '1' then
 (R[t2], R[t]) = (Zeros(32), Zeros(32));
 elsif !IsHighestEL(PSTATE.EL) && !HaveAArch64() && AMCR.CG1RZ == '1' then
 (R[t2], R[t]) = (Zeros(32), Zeros(32));
 else
 (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (AMEVCNTR1[m]<63:32>, AMEVCNTR1[m]<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>; Where m = 0-15

integer m = UInt(CRm<0>:opc1<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && m >= 8 && HSTR_EL2.T5 ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && m >= 8 && HSTR.T5 == '1'
then
 AArch32.TakeHypTrapException(0x04);
elsif IsHighestEL(PSTATE.EL) then
 AMEVCNTR1[m] = R[t2]:R[t];
else
 UNDEFINED;

coproc CRm opc1

0b1111 0b010:m[3] 0b0:m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12496
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.10 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3

The AMEVTYPER0<n> characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter
AMEVCNTR0<n> counts.

Configurations

AArch32 System register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch64
System register AMEVTYPER0<n>_EL0[31:0].

AArch32 System register AMEVTYPER0<n> bits [31:0] are architecturally mapped to External
register AMEVTYPER0<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER0<n> are UNDEFINED.

Attributes

AMEVTYPER0<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

Memory stall cycles

Access to this field is RO.

Accessing AMEVTYPER0<n>

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of
AMEVTYPER0<n> are UNDEFINED.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12497
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-3

integer m = UInt(CRm<0>:opc2<2:0>);

if m >= 4 then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMEVTYPER0[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMEVTYPER0[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b011:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12498
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMEVTYPER0[m];
elsif PSTATE.EL == EL3 then
 R[t] = AMEVTYPER0[m];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12499
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.11 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter
AMEVCNTR1<n> counts.

Configurations

AArch32 System register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch64
System register AMEVTYPER1<n>_EL0[31:0].

AArch32 System register AMEVTYPER1<n> bits [31:0] are architecturally mapped to External
register AMEVTYPER1<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER1<n> are UNDEFINED.

Attributes

AMEVTYPER1<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter
AMEVCNTR1<n>, then:

• It is UNPREDICTABLE which event will be counted.

• The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n> might be fixed at implementation. In this case, the field
is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have
UNPREDICTABLE results.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVTYPER1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of
AMEVTYPER1<n> are UNDEFINED.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12500
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<0>:opc2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && !ELIsInHost(EL0) &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HAFGRTR_EL2.AMEVTYPER1<m>_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMEVTYPER1[m];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b111:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12501
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMEVTYPER1[m];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMEVTYPER1[m];
elsif PSTATE.EL == EL3 then
 R[t] = AMEVTYPER1[m];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}; Where m = 0-15

integer m = UInt(CRm<0>:opc2<2:0>);

if m >= NUM_AMU_CG1_MONITORS then
 UNDEFINED;
elsif !IsG1ActivityMonitorImplemented(m) then
 UNDEFINED;
elsif PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) && !boolean IMPLEMENTATION_DEFINED "AMEVCNTR1[m] is fixed"
then
 AMEVTYPER1[m] = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b111:m[3] m[2:0]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12502
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
G8.5.12 AMUSERENR, Activity Monitors User Enable Register

The AMUSERENR characteristics are:

Purpose

Global user enable register for the activity monitors. Enables or disables EL0 access to the activity
monitors. AMUSERENR is applicable to both the architected and the auxiliary counter groups.

Configurations

AArch32 System register AMUSERENR bits [31:0] are architecturally mapped to AArch64 System
register AMUSERENR_EL0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMUSERENR are UNDEFINED.

Attributes

AMUSERENR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Traps EL0 accesses to the activity monitors registers to EL1.

0b0 EL0 accesses to the activity monitors registers are trapped to EL1.

0b1 This control does not cause any instructions to be trapped. Software can access all
activity monitor registers at EL0.

Note

• AMUSERENR can always be read at EL0 and is not governed by this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMUSERENR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && HSTR_EL2.T13 == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

RES0

31 1

EN

0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12503
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMUSERENR;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMUSERENR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 R[t] = AMUSERENR;
elsif PSTATE.EL == EL3 then
 R[t] = AMUSERENR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1101 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12504
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.5 Activity Monitors registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 AMUSERENR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 AMUSERENR = R[t];
elsif PSTATE.EL == EL3 then
 AMUSERENR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12505
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6 RAS registers

This section lists RAS Extension registers in AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12506
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.1 DISR, Deferred Interrupt Status Register

The DISR characteristics are:

Purpose

Records that an SError exception has been consumed by an ESB instruction.

Configurations

AArch32 System register DISR bits [31:0] are architecturally mapped to AArch64 System register
DISR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to DISR
are UNDEFINED.

Attributes

DISR is a 32-bit register.

Field descriptions

When the ESB instruction is executed at EL2:

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError exception. If the implementation
does not include any sources of SError exception that can be synchronized by an Error
Synchronization Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:12]

Reserved, RES0.

AET, bits [11:10]

Asynchronous Error Type. See the description of HSR.AET for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of HSR.EA for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of HSR.DFSC for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

A

31

RES0

30 12

AET

11 10

EA

9

RES0

8 6

DFSC

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12507
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 0:

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError exception. If the implementation
does not include any sources of SError exception that can be synchronized by an Error
Synchronization Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status Code. See the description of DFSR.FS for an SError exception.

The FS field is split as follows:

• FS[4] is DISR[10].

• FS[3:0] is DISR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

0b0 Using the Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

A

31

RES0

30 16

AET

15 14 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

RES0
ExT

LPAE
FS[4]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12508
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 1:

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError exception. If the implementation
does not include any sources of SError exception that can be synchronized by an Error
Synchronization Barrier, then this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

0b1 Using the Long-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault Status Code. See the description of DFSR.FS for an SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing DISR

An indirect write to DISR made by an ESB instruction does not require an explicit synchronization operation for the
value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

A

31

RES0

30 16

AET

15 14 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

RES0 LPAE
ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12509
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.AMO == '1' ||
(IsFeatureImplemented(FEAT_DoubleFault2) && IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1'))
then
 R[t] = VDISR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 R[t] = VDISR;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 R[t] = Zeros(32);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 R[t] = Zeros(32);
 else
 R[t] = DISR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 R[t] = Zeros(32);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 R[t] = Zeros(32);
 else
 R[t] = DISR;
elsif PSTATE.EL == EL3 then
 R[t] = DISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.AMO == '1' ||
(IsFeatureImplemented(FEAT_DoubleFault2) && IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1'))
then
 VDISR_EL2 = R[t];
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 VDISR = R[t];
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return;
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12510
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 DISR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return;
 else
 DISR = R[t];
elsif PSTATE.EL == EL3 then
 DISR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12511
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.2 ERRIDR, Error Record ID Register

The ERRIDR characteristics are:

Purpose

Defines the highest numbered index of the error records that can be accessed through the Error
Record System registers.

Configurations

AArch32 System register ERRIDR bits [31:0] are architecturally mapped to AArch64 System
register ERRIDR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRIDR are UNDEFINED.

Attributes

ERRIDR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the records that can be accessed through the Error Record System
registers plus one. Zero indicates that no records can be accessed through the Error Record System
registers.

Each implemented record is owned by a node. A node might own multiple records.

Accessing ERRIDR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

RES0

31 16

NUM

15 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12512
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERRIDR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERRIDR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERRIDR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12513
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.3 ERRSELR, Error Record Select Register

The ERRSELR characteristics are:

Purpose

Selects an error record to be accessed through the Error Record System registers.

Configurations

AArch32 System register ERRSELR bits [31:0] are architecturally mapped to AArch64 System
register ERRSELR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERRSELR are UNDEFINED.

If ERRIDR indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED
whether ERRSELR is UNDEFINED or RES0.

Attributes

ERRSELR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

SEL, bits [15:0]

Selects the error record accessed through the ERX registers.

For example, if ERRSELR.SEL is 0x0004, then direct reads and writes of ERXSTATUS access
ERR4STATUS.

If ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then all of the following apply:

• The value read back from ERRSELR.SEL is UNKNOWN.

• One of the following occurs:

— An UNKNOWN error record is selected.

— The ERX* registers are RAZ/WI.

— ERX* register reads and writes are NOPs.

— ERX* register reads and writes are UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ERRSELR

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

RES0

31 16

SEL

15 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12514
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERRSELR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERRSELR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERRSELR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12515
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERRSELR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERRSELR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12516
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 else
 ERRSELR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12517
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.4 ERXADDR, Selected Error Record Address Register

The ERXADDR characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>ADDR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXADDR bits [31:0] are architecturally mapped to AArch64 System
register ERXADDR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXADDR are UNDEFINED.

Attributes

ERXADDR is a 32-bit register.

Field descriptions

Bits [31:0]

ERXADDR accesses bits [31:0] of ERR<n>ADDR, where <n> is the value in ERRSELR.SEL.

Accessing ERXADDR

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXADDR is RAZ/WI.

• Direct reads and writes of ERXADDR are NOPs.

• Direct reads and writes of ERXADDR are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>ADDR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12518
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXADDR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXADDR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXADDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12519
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12520
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.5 ERXADDR2, Selected Error Record Address Register 2

The ERXADDR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>ADDR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXADDR2 bits [31:0] are architecturally mapped to AArch64 System
register ERXADDR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXADDR2 are UNDEFINED.

Attributes

ERXADDR2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXADDR2 accesses bits [63:32] of ERR<n>ADDR, where <n> is the value in ERRSELR.SEL.

Accessing ERXADDR2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXADDR2 is RAZ/WI.

• Direct reads and writes of ERXADDR2 are NOPs.

• Direct reads and writes of ERXADDR2 are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through
ERXADDR2.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>ADDR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12521
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXADDR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXADDR2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXADDR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12522
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR2 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXADDR2 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12523
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.6 ERXCTLR, Selected Error Record Control Register

The ERXCTLR characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>CTLR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXCTLR bits [31:0] are architecturally mapped to AArch64 System
register ERXCTLR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXCTLR are UNDEFINED.

Attributes

ERXCTLR is a 32-bit register.

Field descriptions

Bits [31:0]

ERXCTLR accesses bits [31:0] of ERR<n>CTLR, where <n> is the value in ERRSELR.SEL.

Accessing ERXCTLR

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXCTLR is RAZ/WI.

• Direct reads and writes of ERXCTLR are NOPs.

• Direct reads and writes of ERXCTLR are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR[31:0] is not
present, meaning reads and writes of ERXCTLR are RES0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>CTLR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12524
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXCTLR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12525
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12526
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.7 ERXCTLR2, Selected Error Record Control Register 2

The ERXCTLR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>CTLR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXCTLR2 bits [31:0] are architecturally mapped to AArch64 System
register ERXCTLR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXCTLR2 are UNDEFINED.

Attributes

ERXCTLR2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXCTLR2 accesses bits [63:32] of ERR<n>CTLR, where <n> is the value in ERRSELR.SEL.

Accessing ERXCTLR2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXCTLR2 is RAZ/WI.

• Direct reads and writes of ERXCTLR2 are NOPs.

• Direct reads and writes of ERXCTLR2 are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR[63:32] is not
present, meaning reads and writes of ERXCTLR2 are RES0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>CTLR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12527
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXCTLR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXCTLR2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXCTLR2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12528
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXCTLR2 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12529
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.8 ERXFR, Selected Error Record Feature Register

The ERXFR characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXFR bits [31:0] are architecturally mapped to AArch64 System
register ERXFR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXFR are UNDEFINED.

Attributes

ERXFR is a 32-bit register.

Field descriptions

Bits [31:0]

ERXFR accesses bits [31:0] of ERR<n>FR, where <n> is the value in ERRSELR.SEL.

Accessing ERXFR

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXFR is RAZ.

• Direct reads of ERXFR are NOPs.

• Direct reads of ERXFR are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>FR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12530
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXFR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXFR;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXFR;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12531
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.9 ERXFR2, Selected Error Record Feature Register 2

The ERXFR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXFR2 bits [31:0] are architecturally mapped to AArch64 System
register ERXFR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXFR2 are UNDEFINED.

Attributes

ERXFR2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXFR2 accesses bits [63:32] of ERR<n>FR, where <n> is the value in ERRSELR.SEL.

Accessing ERXFR2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXFR2 is RAZ.

• Direct reads of ERXFR2 are NOPs.

• Direct reads of ERXFR2 are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>FR

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12532
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXFR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXFR2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXFR2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12533
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.10 ERXMISC0, Selected Error Record Miscellaneous Register 0

The ERXMISC0 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC0 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC0_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC0 are UNDEFINED.

Attributes

ERXMISC0 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC0 accesses bits [31:0] of ERR<n>MISC0, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC0

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC0 is RAZ/WI.

• Direct reads and writes of ERXMISC0 are NOPs.

• Direct reads and writes of ERXMISC0 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC0.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC0

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12534
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC0;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC0;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12535
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC0 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC0 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC0 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12536
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.11 ERXMISC1, Selected Error Record Miscellaneous Register 1

The ERXMISC1 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC1 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC0_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC1 are UNDEFINED.

Attributes

ERXMISC1 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC1 accesses bits [63:32] of ERR<n>MISC0, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC1

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC1 is RAZ/WI.

• Direct reads and writes of ERXMISC1 are NOPs.

• Direct reads and writes of ERXMISC1 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through
ERXMISC1.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC0

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12537
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC1;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12538
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC1 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC1 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC1 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12539
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.12 ERXMISC2, Selected Error Record Miscellaneous Register 2

The ERXMISC2 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC1 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC2 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC1_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC2 are UNDEFINED.

Attributes

ERXMISC2 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC2 accesses bits [31:0] of ERR<n>MISC1, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC2

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC2 is RAZ/WI.

• Direct reads and writes of ERXMISC2 are NOPs.

• Direct reads and writes of ERXMISC2 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC2.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC1

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12540
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC2;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC2;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12541
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC2 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC2 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC2 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12542
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.13 ERXMISC3, Selected Error Record Miscellaneous Register 3

The ERXMISC3 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC1 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC3 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC1_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXMISC3 are UNDEFINED.

Attributes

ERXMISC3 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC3 accesses bits [63:32] of ERR<n>MISC1, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC3

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC3 is RAZ/WI.

• Direct reads and writes of ERXMISC3 are NOPs.

• Direct reads and writes of ERXMISC3 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through
ERXMISC3.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC1

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12543
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC3;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC3;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC3;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b101
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12544
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC3 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC3 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC3 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12545
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.14 ERXMISC4, Selected Error Record Miscellaneous Register 4

The ERXMISC4 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC2 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC4 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC2_EL1[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC4 are UNDEFINED.

Attributes

ERXMISC4 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC4 accesses bits [31:0] of ERR<n>MISC2, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC4

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC4 is RAZ/WI.

• Direct reads and writes of ERXMISC4 are NOPs.

• Direct reads and writes of ERXMISC4 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC4.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC2

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12546
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC4;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC4;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC4;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12547
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC4 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC4 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC4 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12548
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.15 ERXMISC5, Selected Error Record Miscellaneous Register 5

The ERXMISC5 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC2 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC5 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC2_EL1[63:32].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC5 are UNDEFINED.

Attributes

ERXMISC5 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC5 accesses bits [63:32] of ERR<n>MISC2, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC5

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC5 is RAZ/WI.

• Direct reads and writes of ERXMISC5 are NOPs.

• Direct reads and writes of ERXMISC5 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through
ERXMISC5.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC2

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12549
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC5;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC5;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC5;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12550
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC5 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC5 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC5 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12551
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.16 ERXMISC6, Selected Error Record Miscellaneous Register 6

The ERXMISC6 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC3 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC6 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC3_EL1[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC6 are UNDEFINED.

Attributes

ERXMISC6 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC6 accesses bits [31:0] of ERR<n>MISC3, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC6

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC6 is RAZ/WI.

• Direct reads and writes of ERXMISC6 are NOPs.

• Direct reads and writes of ERXMISC6 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC6.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>MISC3

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12552
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC6;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC6;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC6;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b110
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12553
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC6 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC6 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC6 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12554
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.17 ERXMISC7, Selected Error Record Miscellaneous Register 7

The ERXMISC7 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>MISC3 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC7 bits [31:0] are architecturally mapped to AArch64 System
register ERXMISC3_EL1[63:32].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to
ERXMISC7 are UNDEFINED.

Attributes

ERXMISC7 is a 32-bit register.

Field descriptions

Bits [31:0]

ERXMISC7 accesses bits [63:32] of ERR<n>MISC3, where <n> is the value in ERRSELR.SEL.

Accessing ERXMISC7

If ERRIDR.NUM is 0x0000 or ERRSELR.SEL is greater than or equal to ERRIDR.NUM, then one of the following
occurs:

• An UNKNOWN error record is selected.

• ERXMISC7 is RAZ/WI.

• Direct reads and writes of ERXMISC7 are NOPs.

• Direct reads and writes of ERXMISC7 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through
ERXMISC7.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;

Bits [63:32] of ERR<n>MISC3

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12555
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC7;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC7;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXMISC7;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0101 0b111
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12556
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12557
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.18 ERXSTATUS, Selected Error Record Primary Status Register

The ERXSTATUS characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>STATUS for the error record selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXSTATUS bits [31:0] are architecturally mapped to AArch64 System
register ERXSTATUS_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
ERXSTATUS are UNDEFINED.

Attributes

ERXSTATUS is a 32-bit register.

Field descriptions

Bits [31:0]

ERXSTATUS accesses bits [31:0] of ERR<n>STATUS, where n is the value in ERRSELR.SEL.

Accessing ERXSTATUS

If ERRIDR.NUM == 0 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the
following occurs:

• An UNKNOWN record is selected.

• ERXSTATUS is RAZ/WI.

• Direct reads and writes of ERXSTATUS are NOPs.

• Direct reads and writes of ERXSTATUS are UNDEFINED.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;

Bits [31:0] of ERR<n>STATUS

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12558
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXSTATUS;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXSTATUS;
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 R[t] = ERXSTATUS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b0101 0b0100 0b010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12559
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1'
then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXSTATUS = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && !ELUsingAArch32(EL3) && SCR_EL3.TWERR ==
'1' then
 UNDEFINED;
 elsif HaveEL(EL3) && EL3SDDUndefPriority() && ELUsingAArch32(EL3) && SCR.TERR == '1'
then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TWERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 else
 ERXSTATUS = R[t];
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXSTATUS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12560
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.19 VDFSR, Virtual SError Exception Syndrome Register

The VDFSR characteristics are:

Purpose

Provides the syndrome value reported to software on taking a virtual SError exception exception to
EL1, or on executing an ESB instruction at EL1.

When the virtual SError exception injected using HCR.VA is taken to EL1 using AArch32, then the
syndrome value is reported in DFSR.{AET, ExT} and the remainder of DFSR is set as defined by
VMSAv8-32. For more information, see Chapter G5 The AArch32 Virtual Memory System
Architecture.

If the virtual SError exception injected using HCR.VA is deferred by an ESB instruction, then the
syndrome value is written to VDISR.

Configurations

AArch32 System register VDFSR bits [31:0] are architecturally mapped to AArch64 System
register VSESR_EL2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to
VDFSR are UNDEFINED.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Attributes

VDFSR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError exception is taken to EL1 using AArch32, DFSR[15:14] is set to
VDFSR.AET.

When a virtual SError exception is deferred by an ESB instruction, VDISR[15:14] is set to
VDFSR.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

When a virtual SError exception is taken to EL1 using AArch32, DFSR[12] is set to VDFSR.ExT.

When a virtual SError exception is deferred by an ESB instruction, VDISR[12] is set to VDFSR.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

RES0

31 16

AET

15 14 13 12

RES0

11 0

RES0 ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12561
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
Accessing VDFSR

Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure
privileged modes other than Monitor mode.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = VDFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = VDFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VDFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VDFSR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b011

coproc opc1 CRn CRm opc2

0b1111 0b100 0b0101 0b0010 0b011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12562
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
G8.6.20 VDISR, Virtual Deferred Interrupt Status Register

The VDISR characteristics are:

Purpose

Records that an SError exception has been consumed by an ESB instruction.

Configurations

AArch32 System register VDISR bits [31:0] are architecturally mapped to AArch64 System register
VDISR_EL2[31:0].

This register is present only when EL1 is capable of using AArch32 and FEAT_RAS is
implemented. Otherwise, direct accesses to VDISR are UNDEFINED.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Attributes

VDISR is a 32-bit register.

Field descriptions

When TTBCR.EAE == 0:

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

A

31

RES0

30 16

AET

15 14 13 12 11 10 9

RES0

8 4

FS[3:0]

3 0

RES0
ExT

LPAE
FS[4]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12563
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
FS, bits [10, 3:0]

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError exception.

0b10110 Asynchronous SError exception.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR[10].

• FS[3:0] is VDISR[3:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError exception.

0b0 Using the Short-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

When TTBCR.EAE == 1:

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

A

31

RES0

30 16

AET

15 14 13 12

RES0

11 10 9

RES0

8 6

STATUS

5 0

RES0 LPAE
ExT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12564
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError exception.

0b1 Using the Long-descriptor translation table format.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError exception.

0b010001 Asynchronous SError exception.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing VDISR

Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure
privileged modes other than Monitor mode.

An indirect write to VDISR made by an ESB instruction does not require an explicit synchronization operation for
the value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = VDISR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = VDISR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12565
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VDISR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VDISR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.AMO == '1' ||
(IsFeatureImplemented(FEAT_DoubleFault2) && IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1'))
then
 R[t] = VDISR_EL2<31:0>;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 R[t] = VDISR;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 R[t] = Zeros(32);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 R[t] = Zeros(32);
 else
 R[t] = DISR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 R[t] = Zeros(32);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 R[t] = Zeros(32);
 else
 R[t] = DISR;
elsif PSTATE.EL == EL3 then
 R[t] = DISR;

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1100 0b0001 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12566
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.6 RAS registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.AMO == '1' ||
(IsFeatureImplemented(FEAT_DoubleFault2) && IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1'))
then
 VDISR_EL2 = R[t];
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
 VDISR = R[t];
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return;
 else
 DISR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
 return;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
 return;
 else
 DISR = R[t];
elsif PSTATE.EL == EL3 then
 DISR = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1100 0b0001 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12567
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7 Generic Timer registers

This section lists the Generic Timer registers in AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12568
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.1 CNTFRQ, Counter-timer Frequency register

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. It must
be programmed with this value as part of system initialization. The value of the register is not
interpreted by hardware.

Configurations

AArch32 System register CNTFRQ bits [31:0] are architecturally mapped to AArch64 System
register CNTFRQ_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTFRQ
are UNDEFINED.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTFRQ

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' && CNTKCTL.PL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 R[t] = CNTFRQ;

Clock frequency

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12569
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
elsif PSTATE.EL == EL1 then
 R[t] = CNTFRQ;
elsif PSTATE.EL == EL2 then
 R[t] = CNTFRQ;
elsif PSTATE.EL == EL3 then
 R[t] = CNTFRQ;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if IsHighestEL(PSTATE.EL) then
 CNTFRQ = R[t];
else
 UNDEFINED;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0000 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12570
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.2 CNTHCTL, Counter-timer Hyp Control register

The CNTHCTL characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure
EL1 modes to the physical counter and the Non-secure EL1 physical timer.

Configurations

AArch32 System register CNTHCTL bits [31:0] are architecturally mapped to AArch64 System
register CNTHCTL_EL2[31:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
CNTHCTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHCTL is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL.EVNTI field applies to CNTPCT[15:0].

0b1 The CNTHCTL.EVNTI field applies to CNTPCT[23:8].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit of CNTPCT, as seen from EL2, is the trigger for the event stream generated from
that counter when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL.EVNTIS is 1, this field selects a trigger bit in the
range 8 to 23 of CNTPCT.

Otherwise, this field selects a trigger bit in the range 0 to 15 of CNTPCT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 18 17

RES0

16 8

EVNTI

7 4 3 2 1 0

EVNTIS EVNTDIR
EVNTEN

PL1PCTEN
PL1PCEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12571
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
EVNTDIR, bit [3]

Controls which transition of the CNTPCT trigger bit, as seen from EL2 and defined by EVNTI,
generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from CNTPCT as seen from EL2.

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 MRC or MCR accesses, reported using EC syndrome value 0x03,
and MRRC or MCRR accesses, reported using EC syndrome value 0x04, to the physical timer
registers to Hyp mode.

0b0 Non-secure EL0 and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and
CNTP_TVAL are trapped to Hyp mode, unless trapped by CNTKCTL.PL0PTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 MRRC or MCRR accesses, reported using EC syndrome value
0x04, to the physical counter register to Hyp mode.

0b0 Non-secure EL0 and EL1 accesses to the CNTPCT are trapped to Hyp mode, unless it
is trapped by CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the
purpose of a direct read.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHCTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12572
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = CNTHCTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = CNTHCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHCTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 CNTHCTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12573
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.3 CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

The CNTHP_CTL characteristics are:

Purpose

Control register for the Hyp mode physical timer.

Configurations

This register is banked between CNTHP_CTL and CNTHP_CTL_S and CNTHP_CTL_NS.

AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CTL is a 32-bit register.

This register has the following instances:

• CNTHP_CTL, when EL3 is not implemented.

• CNTHP_CTL_S, when EL3 is implemented.

• CNTHP_CTL_NS, when EL3 is implemented.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12574
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHP_TVAL continues to count down.

Note

Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset:

— When the highest implemented Exception level is EL3 or the highest implemented
Exception level is EL2, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing CNTHP_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 R[t] = CNTHP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 R[t] = CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b001

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12575
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
 else
 CNTHP_CTL = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 R[t] = CNTHPS_CTL_EL2<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 R[t] = CNTHP_CTL_EL2<31:0>;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CNTP_CTL_NS;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CNTP_CTL_NS;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = CNTP_CTL_S;
 else
 R[t] = CNTP_CTL_NS;

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12576
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
 else
 CNTP_CTL_NS = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12577
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.4 CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

The CNTHP_CVAL characteristics are:

Purpose

Holds the compare value for the Hyp mode physical timer.

Configurations

This register is banked between CNTHP_CVAL and CNTHP_CVAL_S and CNTHP_CVAL_NS.

AArch32 System register CNTHP_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHP_CVAL_EL2[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTHP_CVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CVAL is a 64-bit register.

This register has the following instances:

• CNTHP_CVAL, when EL3 is not implemented.

• CNTHP_CVAL_S, when EL3 is implemented.

• CNTHP_CVAL_NS, when EL3 is implemented.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.

• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12578
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accessing CNTHP_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (CNTHP_CVAL<63:32>, CNTHP_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 (R[t2], R[t]) = (CNTHP_CVAL<63:32>, CNTHP_CVAL<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 CNTHP_CVAL = R[t2]:R[t];

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);

coproc CRm opc1

0b1111 0b1110 0b0110

coproc CRm opc1

0b1111 0b1110 0b0110

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12579
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 (R[t2], R[t]) = (CNTHPS_CVAL_EL2<63:32>, CNTHPS_CVAL_EL2<31:0>);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 (R[t2], R[t]) = (CNTHP_CVAL_EL2<63:32>, CNTHP_CVAL_EL2<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 (R[t2], R[t]) = (CNTP_CVAL_S<63:32>, CNTP_CVAL_S<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12580
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12581
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.5 CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.

Configurations

This register is banked between CNTHP_TVAL and CNTHP_TVAL_S and CNTHP_TVAL_NS.

AArch32 System register CNTHP_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHP_TVAL_EL2[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTHP_TVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_TVAL is a 32-bit register.

This register has the following instances:

• CNTHP_TVAL, when EL3 is not implemented.

• CNTHP_TVAL_S, when EL3 is implemented.

• CNTHP_TVAL_NS, when EL3 is implemented.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL)
is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTHP_CTL.ISTATUS is set to 1.

• If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12582
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accessing CNTHP_TVAL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if CNTHP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 if CNTHP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHP_CVAL - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 CNTHP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b000

coproc opc1 CRn CRm opc2

0b1111 0b100 0b1110 0b0010 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12583
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if SCR.NS == '1' then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL_S.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12584
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 if CNTP_CTL_S.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12585
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if SCR.NS == '1' then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12586
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.6 CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

The CNTHPS_CTL characteristics are:

Purpose

Provides AArch32 access from EL0 to the Secure EL2 physical timer.

Configurations

This register is banked between CNTHPS_CTL and CNTHPS_CTL_S and CNTHPS_CTL_NS.

AArch32 System register CNTHPS_CTL bits [31:0] are architecturally mapped to AArch64
System register CNTHPS_CTL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CTL are UNDEFINED.

Attributes

CNTHPS_CTL is a 32-bit register.

This register has the following instances:

• CNTHPS_CTL, when EL3 is not implemented.

• CNTHPS_CTL_S, when EL3 is implemented.

• CNTHPS_CTL_NS, when EL3 is implemented.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the CNTHPS_CTL.ENABLE bit is 1, ISTATUS indicates whether the timer
condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS
is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the CNTHPS_CTL.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12587
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHPS_TVAL_EL2 continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CTL

This register is accessed using the encoding for CNTP_CTL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 R[t] = CNTHPS_CTL_EL2<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 R[t] = CNTHP_CTL_EL2<31:0>;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12588
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CNTP_CTL_NS;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CNTP_CTL_NS;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = CNTP_CTL_S;
 else
 R[t] = CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12589
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
 else
 CNTP_CTL_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12590
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.7 CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

The CNTHPS_CVAL characteristics are:

Purpose

Provides AArch32 access from EL0 to the compare value for the Secure EL2 physical timer.

Configurations

This register is banked between CNTHPS_CVAL and CNTHPS_CVAL_S and
CNTHPS_CVAL_NS.

AArch32 System register CNTHPS_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHPS_CVAL_EL2[63:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CVAL are UNDEFINED.

Attributes

CNTHPS_CVAL is a 64-bit register.

This register has the following instances:

• CNTHPS_CVAL, when EL3 is not implemented.

• CNTHPS_CVAL_S, when EL3 is implemented.

• CNTHPS_CVAL_NS, when EL3 is implemented.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit
upcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_CVAL

This register is accessed using the encoding for CNTP_CVAL.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12591
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 (R[t2], R[t]) = (CNTHPS_CVAL_EL2<63:32>, CNTHPS_CVAL_EL2<31:0>);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 (R[t2], R[t]) = (CNTHP_CVAL_EL2<63:32>, CNTHP_CVAL_EL2<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 (R[t2], R[t]) = (CNTP_CVAL_S<63:32>, CNTP_CVAL_S<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12592
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12593
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.8 CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

The CNTHPS_TVAL characteristics are:

Purpose

Provides AArch32 access from EL0 to the timer value for the Secure EL2 physical timer.

Configurations

This register is banked between CNTHPS_TVAL and CNTHPS_TVAL_S and
CNTHPS_TVAL_NS.

AArch32 System register CNTHPS_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHPS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_TVAL are UNDEFINED.

Attributes

CNTHPS_TVAL is a 32-bit register.

This register has the following instances:

• CNTHPS_TVAL, when EL3 is not implemented.

• CNTHPS_TVAL_S, when EL3 is implemented.

• CNTHPS_TVAL_NS, when EL3 is implemented.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

• If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 -
CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where
TimerValue is treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 -
CNTHPS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a
32-bit downcounter timer. When the timer condition is met:

• CNTHPS_CTL_EL2.ISTATUS is set to 1.

• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0
continues to count, so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHPS_TVAL

This register is accessed using the encoding for CNTP_TVAL.

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12594
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if SCR.NS == '1' then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL_S.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12595
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 if CNTP_CTL_S.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12596
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if SCR.NS == '1' then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12597
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.9 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL characteristics are:

Purpose

Provides AArch32 access to the control register for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTHV_CTL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHV_CTL are UNDEFINED.

Attributes

CNTHV_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12598
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHV_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHV_CTL

This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 R[t] = CNTHVS_CTL_EL2<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 R[t] = CNTHV_CTL_EL2<31:0>;
 else
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL2 then
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL3 then
 R[t] = CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12599
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12600
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.10 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHV_CVAL_EL2[63:0].

This register is present only when AArch32 is supported and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHV_CVAL are UNDEFINED.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue)
is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.

• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing CNTHV_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12601
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 (R[t2], R[t]) = (CNTHVS_CVAL_EL2<63:32>, CNTHVS_CVAL_EL2<31:0>);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 (R[t2], R[t]) = (CNTHV_CVAL_EL2<63:32>, CNTHV_CVAL_EL2<31:0>);
 else
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12602
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12603
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.11 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

The CNTHV_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHV_TVAL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHV_TVAL are UNDEFINED.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHV_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue
is treated as a signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL)
is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTHV_CTL.ISTATUS is set to 1.

• If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count, so the TimerValue view appears to continue to count down.

Accessing CNTHV_TVAL

This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12604
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHVS_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHV_CVAL_EL2 - PhysicalCountInt())<31:0>;
 else
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
elsif PSTATE.EL == EL3 then
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12605
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12606
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.12 CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

The CNTHVS_CTL characteristics are:

Purpose

Provides AArch32 access from EL0 to the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_CTL bits [31:0] are architecturally mapped to AArch64
System register CNTHVS_CTL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CTL are UNDEFINED.

Attributes

CNTHVS_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12607
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTHVS_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTHVS_CTL

This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 R[t] = CNTHVS_CTL_EL2<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 R[t] = CNTHV_CTL_EL2<31:0>;
 else
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL2 then
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL3 then
 R[t] = CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12608
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12609
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.13 CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

The CNTHVS_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_CVAL bits [63:0] are architecturally mapped to AArch64
System register CNTHVS_CVAL_EL2[63:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CVAL are UNDEFINED.

Attributes

CNTHVS_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue)
is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.

• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing CNTHVS_CVAL

This register is accessed using the encoding for CNTV_CVAL.

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12610
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 (R[t2], R[t]) = (CNTHVS_CVAL_EL2<63:32>, CNTHVS_CVAL_EL2<31:0>);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 (R[t2], R[t]) = (CNTHV_CVAL_EL2<63:32>, CNTHV_CVAL_EL2<31:0>);
 else
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12611
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12612
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.14 CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

The CNTHVS_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_TVAL bits [31:0] are architecturally mapped to AArch64
System register CNTHVS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_TVAL are UNDEFINED.

Attributes

CNTHVS_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

• If CNTHVS_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTHVS_CTL.ENABLE is 1, the value returned is (CNTHVS_CVAL - CNTVCT).

On a write of this register, CNTHVS_CVAL is set to (CNTVCT + TimerValue), where TimerValue
is treated as a signed 32-bit integer.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT -
CNTHVS_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit
downcounter timer. When the timer condition is met:

• CNTHVS_CTL.ISTATUS is set to 1.

• If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to
count, so the TimerValue view appears to continue to count down.

Accessing CNTHVS_TVAL

This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12613
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHVS_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHV_CVAL_EL2 - PhysicalCountInt())<31:0>;
 else
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
elsif PSTATE.EL == EL3 then
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12614
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12615
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.15 CNTKCTL, Counter-timer Kernel Control register

The CNTKCTL characteristics are:

Purpose

Controls the generation of an event stream from the virtual counter, and access from EL0 modes to
the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

Configurations

AArch32 System register CNTKCTL bits [31:0] are architecturally mapped to AArch64 System
register CNTKCTL_EL1[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to
CNTKCTL are UNDEFINED.

Attributes

CNTKCTL is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

EVNTIS, bit [17]

When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

0b0 The CNTKCTL.EVNTI field applies to CNTVCT[15:0].

0b1 The CNTKCTL.EVNTI field applies to CNTVCT[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:10]

Reserved, RES0.

PL0PTEN, bit [9]

Traps PL0 accesses to the physical timer registers to Undefined mode.

0b0 PL0 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers are trapped
to Undefined mode.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 18 17

RES0

16 10 9 8

EVNTI

7 4 3 2 1 0

EVNTIS PL0PTEN
PL0VTEN

EVNTDIR

PL0PCTEN
PL0VCTEN

EVNTEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12616
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
PL0VTEN, bit [8]

Traps PL0 accesses to the virtual timer registers to Undefined mode.

0b0 PL0 accesses to the CNTV_CTL, CNTV_CVAL, and CNTV_TVAL registers are
trapped to Undefined mode.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTI, bits [7:4]

Selects which bit of CNTVCT, as seen from EL1, is the trigger for the event stream generated from
that counter when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL.EVNTIS is 1, this field selects a trigger bit in the
range 8 to 23 of CNTVCT.

Otherwise, this field selects a trigger bit in the range 0 to 15 of CNTVCT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the CNTVCT trigger bit, as seen from EL1 and defined by EVNTI,
generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.

0b1 A 1 to 0 transition of the trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from CNTVCT as seen from EL1.

0b0 Disables the event stream.

0b1 Enables the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL0VCTEN, bit [1]

Traps PL0 accesses to the frequency register and virtual counter register to Undefined mode.

0b0 PL0 accesses to the CNTVCT are trapped to Undefined mode.

PL0 accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PL0PCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PL0PCTEN, bit [0]

Traps PL0 accesses to the frequency register and physical counter register to Undefined mode.

0b0 PL0 accesses to the CNTPCT are trapped to Undefined mode.

PL0 accesses to the CNTFRQ register are trapped to Undefined mode, if
CNTKCTL.PL0VCTEN is also 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12617
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accessing CNTKCTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 R[t] = CNTKCTL;
elsif PSTATE.EL == EL2 then
 R[t] = CNTKCTL;
elsif PSTATE.EL == EL3 then
 R[t] = CNTKCTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTKCTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL = R[t];

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0001 0b000

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0001 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12618
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.16 CNTP_CTL, Counter-timer Physical Timer Control register

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

This register is banked between CNTP_CTL and CNTP_CTL_S and CNTP_CTL_NS.

AArch32 System register CNTP_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTP_CTL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTP_CTL
are UNDEFINED.

Attributes

CNTP_CTL is a 32-bit register.

This register has the following instances:

• CNTP_CTL, when EL3 is not implemented.

• CNTP_CTL_S, when EL3 is implemented.

• CNTP_CTL_NS, when EL3 is implemented.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12619
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing CNTP_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 R[t] = CNTHPS_CTL_EL2<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 R[t] = CNTHP_CTL_EL2<31:0>;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12620
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 R[t] = CNTP_CTL_NS;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 R[t] = CNTP_CTL_NS;
 else
 R[t] = CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 R[t] = CNTP_CTL_S;
 else
 R[t] = CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CTL_EL2 = R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12621
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
 else
 CNTP_CTL_NS = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12622
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.17 CNTP_CVAL, Counter-timer Physical Timer CompareValue register

The CNTP_CVAL characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

This register is banked between CNTP_CVAL and CNTP_CVAL_S and CNTP_CVAL_NS.

AArch32 System register CNTP_CVAL bits [63:0] are architecturally mapped to AArch64 System
register CNTP_CVAL_EL0[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTP_CVAL are UNDEFINED.

Attributes

CNTP_CVAL is a 64-bit register.

This register has the following instances:

• CNTP_CVAL, when EL3 is not implemented.

• CNTP_CVAL_S, when EL3 is implemented.

• CNTP_CVAL_NS, when EL3 is implemented.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12623
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accessing CNTP_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 (R[t2], R[t]) = (CNTHPS_CVAL_EL2<63:32>, CNTHPS_CVAL_EL2<31:0>);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 (R[t2], R[t]) = (CNTHP_CVAL_EL2<63:32>, CNTHP_CVAL_EL2<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL<63:32>, CNTP_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 (R[t2], R[t]) = (CNTP_CVAL_S<63:32>, CNTP_CVAL_S<31:0>);
 else
 (R[t2], R[t]) = (CNTP_CVAL_NS<63:32>, CNTP_CVAL_NS<31:0>);

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12624
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0010
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12625
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.18 CNTP_TVAL, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

This register is banked between CNTP_TVAL and CNTP_TVAL_S and CNTP_TVAL_NS.

AArch32 System register CNTP_TVAL bits [31:0] are architecturally mapped to AArch64 System
register CNTP_TVAL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTP_TVAL are UNDEFINED.

Attributes

CNTP_TVAL is a 32-bit register.

This register has the following instances:

• CNTP_TVAL, when EL3 is not implemented.

• CNTP_TVAL_S, when EL3 is implemented.

• CNTP_TVAL_NS, when EL3 is implemented.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12626
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Accessing CNTP_TVAL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHPS_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHPS_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHP_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHP_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if SCR.NS == '1' then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL_S.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12627
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - (PhysicalCountInt() - CNTPOFF_EL2))<31:0>;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 if CNTP_CTL_S.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_S - PhysicalCountInt())<31:0>;
 else
 if CNTP_CTL_NS.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTP_CVAL_NS - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0010 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12628
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHPS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if SCR.NS == '1' then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCEN ==
'0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 CNTP_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTPOFF_EL2;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 CNTP_CVAL_NS = SignExtend(R[t], 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12629
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.19 CNTPCT, Counter-timer Physical Count register

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch32 System register CNTPCT bits [63:0] are architecturally mapped to AArch64 System
register CNTPCT_EL0[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTPCT
are UNDEFINED.

All reads to the CNTPCT occur in program order relative to reads to CNTPCTSS or CNTPCT.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

Bits [63:0]

Physical count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCT

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCTEN
== '0' then

Physical count value

63 32

Physical count value

31 0

coproc CRm opc1

0b1111 0b1110 0b0000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12630
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTPOFF_EL2, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTPOFF_EL2, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12631
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.20 CNTPCTSS, Counter-timer Self-Synchronized Physical Count register

The CNTPCTSS characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch32 System register CNTPCTSS bits [63:0] are architecturally mapped to AArch64 System
register CNTPCTSS_EL0[63:0].

This register is present only when AArch32 is supported and FEAT_ECV is implemented.
Otherwise, direct accesses to CNTPCTSS are UNDEFINED.

All reads to the CNTPCTSS occur in program order relative to reads to CNTPCT or CNTPCTSS.

This register is a self-synchronised view of the CNTPCT counter, and cannot be read speculatively.

Attributes

CNTPCTSS is a 64-bit register.

Field descriptions

Bits [63:0]

Self-Synchronized Physical count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTPCTSS

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL2) && CNTHCTL_EL2.EL1PCTEN

Self-Synchronized Physical count value

63 32

Self-Synchronized Physical count value

31 0

coproc CRm opc1

0b1111 0b1110 0b1000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12632
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
== '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL2) && HCR_EL2.TGE == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' && !ELIsInHost(EL0) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTPOFF_EL2, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 if IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELUsingAArch32(EL2) &&
SCR_EL3.ECVEn == '1' && CNTHCTL_EL2.ECV == '1' then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTPOFF_EL2, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12633
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.21 CNTV_CTL, Counter-timer Virtual Timer Control register

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

Configurations

AArch32 System register CNTV_CTL bits [31:0] are architecturally mapped to AArch64 System
register CNTV_CTL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTV_CTL
are UNDEFINED.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12634
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing CNTV_CTL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 R[t] = CNTHVS_CTL_EL2<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 R[t] = CNTHV_CTL_EL2<31:0>;
 else
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL2 then
 R[t] = CNTV_CTL;
elsif PSTATE.EL == EL3 then
 R[t] = CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12635
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CTL_EL2 = R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12636
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.22 CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL characteristics are:

Purpose

Holds the compare value for the virtual timer.

Configurations

AArch32 System register CNTV_CVAL bits [63:0] are architecturally mapped to AArch64 System
register CNTV_CVAL_EL0[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTV_CVAL are UNDEFINED.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_CVAL

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);

CompareValue

63 32

CompareValue

31 0

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12637
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 (R[t2], R[t]) = (CNTHVS_CVAL_EL2<63:32>, CNTHVS_CVAL_EL2<31:0>);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 (R[t2], R[t]) = (CNTHV_CVAL_EL2<63:32>, CNTHV_CVAL_EL2<31:0>);
 else
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);
elsif PSTATE.EL == EL3 then
 (R[t2], R[t]) = (CNTV_CVAL<63:32>, CNTV_CVAL<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];
 else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else

coproc CRm opc1

0b1111 0b1110 0b0011
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12638
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12639
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.23 CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

Configurations

AArch32 System register CNTV_TVAL bits [31:0] are architecturally mapped to AArch64 System
register CNTV_TVAL_EL0[31:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to
CNTV_TVAL are UNDEFINED.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - CNTVCT).

On a write of this register, CNTV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTP_CVAL) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTV_TVAL

Accesses to this register use the following encodings in the System register encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

TimerValue

31 0

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12640
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 if CNTHVS_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHVS_CVAL_EL2 - PhysicalCountInt())<31:0>;
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 if CNTHV_CTL_EL2.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTHV_CVAL_EL2 - PhysicalCountInt())<31:0>;
 else
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) && !ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF_EL2))<31:0>;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;
elsif PSTATE.EL == EL2 then
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 else
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
elsif PSTATE.EL == EL3 then
 if CNTV_CTL.ENABLE == '0' then
 R[t] = bits(32) UNKNOWN;
 elsif HaveEL(EL2) then
 R[t] = (CNTV_CVAL - (PhysicalCountInt() - CNTVOFF))<31:0>;
 else
 R[t] = (CNTV_CVAL - PhysicalCountInt())<31:0>;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2

0b1111 0b000 0b1110 0b0011 0b000
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12641
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVT ==
'1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then
 CNTHVS_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 elsif ELIsInHost(EL0) && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = SignExtend(R[t], 64) + PhysicalCountInt();
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF_EL2;
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 CNTV_CVAL = (SignExtend(R[t], 64) + PhysicalCountInt()) - CNTVOFF;
 else
 CNTV_CVAL = SignExtend(R[t], 64) + PhysicalCountInt();

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12642
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.24 CNTVCT, Counter-timer Virtual Count register

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
minus the virtual offset visible in CNTVOFF.

Configurations

AArch32 System register CNTVCT bits [63:0] are architecturally mapped to AArch64 System
register CNTVCT_EL0[63:0].

This register is present only when AArch32 is supported. Otherwise, direct accesses to CNTVCT
are UNDEFINED.

The value of this register is the same as the value of CNTPCT in the following conditions:

• When EL2 is not implemented.

• When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from
Non-secure EL0.

All reads to the CNTVCT occur in program order relative to reads to CNTVCTSS or CNTVCT.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCT

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

Virtual count value

63 32

Virtual count value

31 0

coproc CRm opc1

0b1111 0b1110 0b0001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12643
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVCT
== '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF_EL2, 32);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF_EL2, 32);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12644
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.25 CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register

The CNTVCTSS characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value
visible in CNTPCT minus the virtual offset visible in CNTVOFF.

Configurations

AArch32 System register CNTVCTSS bits [63:0] are architecturally mapped to AArch64 System
register CNTVCTSS_EL0[63:0].

This register is present only when AArch32 is supported and FEAT_ECV is implemented.
Otherwise, direct accesses to CNTVCTSS are UNDEFINED.

All reads to the CNTVCTSS occur in program order relative to reads to CNTVCT or CNTVCTSS.

This register is a self-synchronised view of the CNTVCT counter, and cannot be read speculatively.

Attributes

CNTVCTSS is a 64-bit register.

Field descriptions

Bits [63:0]

Self-Synchronized Virtual count value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVCTSS

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELIsInHost(EL0) && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else

Self-Synchronized Virtual count value

63 32

Self-Synchronized Virtual count value

31 0

coproc CRm opc1

0b1111 0b1110 0b1001
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12645
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
 elsif ELIsInHost(EL0) && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELIsInHost(EL0) && CNTHCTL_EL2.EL1TVCT
== '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) && (!EL2Enabled() || !ELIsInHost(EL0)) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF_EL2, 32);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 if HaveEL(EL2) && !ELUsingAArch32(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF_EL2, 32);
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
elsif PSTATE.EL == EL3 then
 if HaveEL(EL2) then
 (R[t2], R[t]) = Split(PhysicalCountInt() - CNTVOFF, 32);
 else
 (R[t2], R[t]) = Split(PhysicalCountInt(), 32);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12646
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
G8.7.26 CNTVOFF, Counter-timer Virtual Offset register

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in
CNTPCT and the virtual count value visible in CNTVCT.

Configurations

AArch32 System register CNTVOFF bits [63:0] are architecturally mapped to AArch64 System
register CNTVOFF_EL2[63:0].

This register is present only when EL2 is capable of using AArch32. Otherwise, direct accesses to
CNTVOFF are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual
offset of zero.

Note

When the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, the virtual counter uses a fixed
virtual offset of zero when CNTVCT is read from Non-secure EL0.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be
implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing CNTVOFF

Accesses to this register use the following encodings in the System register encoding space:

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

Virtual offset

63 32

Virtual offset

31 0

coproc CRm opc1

0b1111 0b1110 0b0100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12647
ID032224 Non-Confidential

AArch32 System Register Descriptions
G8.7 Generic Timer registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 (R[t2], R[t]) = (CNTVOFF<63:32>, CNTVOFF<31:0>);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 (R[t2], R[t]) = (CNTVOFF<63:32>, CNTVOFF<31:0>);

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTVOFF = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 CNTVOFF = R[t2]:R[t];

coproc CRm opc1

0b1111 0b1110 0b0100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. G8-12648
ID032224 Non-Confidential

Part H
 External Debug

Chapter H1
About External Debug

This chapter gives an overview of A-profile external debug and specifies the required debug authentication. It
contains the following sections:

• Introduction to external debug.

• External debug.

• Required debug authentication.

Note

For information about self-hosted debug, see Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32
Self-hosted Debug.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H1-12650
ID032224 Non-Confidential

About External Debug
H1.1 Introduction to external debug
H1.1 Introduction to external debug

 The A-profile supports both:

Self-hosted debug

The PE itself hosts a debugger. That is, developers developing software to run on the PE use
debugger software running on the same PE.

External debug

The debugger is external to the PE. The debugging might be either on-chip, for example in a second
PE, or off-chip, for example a JTAG debugger that accesses the chip through a Debug Access Port.

External debug is particularly useful for:

• Hardware bring-up. That is, debugging during development when a system is first powered
up and not all of the software functionality is available.

• PEs that are deeply embedded inside systems.

To support external debug, the Arm architecture defines required features that are called external
debug features.

Note

An external debugger has a potentially high level of control over and visibility into the PE. The
system sets this level using debug authentication. See Required debug authentication.

If the debug authentication level is set too low, agents may be able to bypass elements of the security
and privilege models. This includes both off-chip agents and on-chip agents such as unprivileged or
Non-secure software.

H1.1.1 Definition and constraints of a debugger in the context of external debug

When the description of external debug in this Part of the manual describes a debugger as controlling external debug
this debugger might be a second on-chip PE or an off-chip device such as a JTAG debugger using a Debug Access
Port (DAP).

If a Debug Access Port is implemented:

• When debug is prohibited at the Debug Access Port, the port must not generate accesses to the external debug
interface of the PE.

• When debug is prohibited for a Security state at the Debug Access Port, it must not be possible to generate
accesses to PA spaces that are not accessible for that Security state.

• When accesses for a Security state are allowed at the Debug Access Port, the port must be able to generate
accesses to PA spaces that are accessible for that Security state.

If FEAT_Debugv8p4 is not implemented, accesses to the PE are controlled by the external authentication interface
functions, ExternalInvasiveDebugEnabled(), ExternalNoninvasiveDebugEnabled(),
ExternalSecureNoninvasiveDebugEnabled(), and ExternalSecureInvasiveDebugEnabled().

If FEAT_TRBE and FEAT_RME are implemented, the external authentication interface functions
ExternalRealmNoninvasiveDebugEnabled(), ExternalRealmInvasiveDebugEnabled(),
ExternalRootNoninvasiveDebugEnabled(), and ExternalRootInvasiveDebugEnabled() are added.

If FEAT_Debugv8p4 is implemented, the bus Requester, which may be the Debug Access Port, controls the
accesses it makes to the PE and MDCR_EL3.{EPMAD, EDAD} and, if FEAT_TRBE is implemented,
MDCR_EL3.ETAD, control access to registers by an external debugger.

If FEAT_TRBE and FEAT_RME are implemented, MDCR_EL3.{ETAD, EPMAD, EDAD, EDADE, ETADE,
EPMADE} control the Security state of access to registers by an external debugger.

If FEAT_Debugv8p4 is not implemented, the external authentication interface functions override
MDCR_EL3.{EPMAD, EDAD}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H1-12651
ID032224 Non-Confidential

About External Debug
H1.1 Introduction to external debug
The Debug Access Port is not required to use the same authentication interface as the PE.

Arm recommends the following authentication interface:

• When ExternalSecureInvasiveDebugEnabled() == FALSE at the PE, Secure debug is disabled at the DAP.

• When ExternalRealmInvasiveDebugEnabled() == FALSE at the PE, Realm debug is disabled at the DAP.

• When ExternalRootInvasiveDebugEnabled() == FALSE at the PE, Root debug is disabled at the DAP.

• When ExternalInvasiveDebugEnabled() == FALSE at the PE, all debug is prohibited at the DAP.

See also Required debug authentication.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H1-12652
ID032224 Non-Confidential

About External Debug
H1.2 External debug
H1.2 External debug

Debug events allow an external debugger to halt the PE. The A-profile provides the following debug events:

• Halting Step debug events:

— The debugger can use this resource to make the PE step through code one line at a time.

• Halt Instruction debug event:

— This might occur when software executes the Halting breakpoint instruction, HLT.

• Exception Catch debug event:

— This can be programmed to occur on all entries to a given Exception level.

• External Debug Request debug event:

— An embedded cross-trigger can signal this debug event.

• OS Unlock Catch debug event:

— This might occur when the state of the OS Lock changes from locked to unlocked.

• Reset Catch debug events:

— This might occur when the PE exits reset state.

• Software Access debug event:

— This can be programmed to occur when software tries to access the Breakpoint Value registers, the
Breakpoint Control registers, the Watchpoint value registers, or the Watchpoint Control registers. It
caused a trap to Debug state.

Breakpoints and watchpoints can also halt the PE.

When the PE is in Debug state:

• It stops executing instructions from the location indicated by the program counter, and is instead controlled
through the external debug interface.

• The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state:

— The ITR contains a single register, EDITR, and associated flow-control flags.

• The Debug Communications Channel, DCC, passes data between the PE and the debugger:

— The DCC includes the data transfer registers, DTRRX and DTRTX, and associated flow-control flags.

— Although the DCC is an essential part of Debug state operation, it can also be used in Non-debug state.

• The PE cannot service any interrupts in Debug state.

Chapter H2 Debug State describes Debug state in more detail.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H1-12653
ID032224 Non-Confidential

About External Debug
H1.3 Required debug authentication
H1.3 Required debug authentication

Any implementation must provide the debug authentication defined in this section, which controls:

• Whether the PE can halt.

• Whether some aspects of non-invasive debug are permitted.

• Some legacy aspects of the AArch32 self-hosted debug model.

The pseudocode functions shown in Table H1-1, and the conditions that follow that table, define the architectural
requirements for debug authentication.

The following conditions always apply:

• If ExternalInvasiveDebugEnabled() is FALSE then ExternalSecureInvasiveDebugEnabled() is FALSE.

• If ExternalNoninvasiveDebugEnabled() is FALSE then ExternalSecureNoninvasiveDebugEnabled() is FALSE.

• If ExternalInvasiveDebugEnabled() is TRUE then ExternalNoninvasiveDebugEnabled() is TRUE.

• If ExternalSecureInvasiveDebugEnabled() is TRUE then ExternalSecureNoninvasiveDebugEnabled() is TRUE.

If FEAT_Debugv8p4 is implemented:

• ExternalNoninvasiveDebugEnabled() always returns TRUE.

• ExternalSecureNoninvasiveDebugEnabled() returns the same as ExternalSecureInvasiveDebugEnabled().

If FEAT_RME is implemented, the following additional conditions always apply:

• If ExternalInvasiveDebugEnabled() is FALSE then ExternalRealmInvasiveDebugEnabled() is FALSE.

• If any of ExternalInvasiveDebugEnabled(), ExternalSecureNoninvasiveDebugEnabled(), or
ExternalRealmInvasiveDebugEnabled() are FALSE, then ExternalRootInvasiveDebugEnabled() is FALSE.

• ExternalRealmNoninvasiveDebugEnabled() returns the same as ExternalRealmInvasiveDebugEnabled().

• ExternalRootNoninvasiveDebugEnabled() returns the same as ExternalRootInvasiveDebugEnabled().

If FEAT_RME is not implemented, ExternalSecureInvasiveDebugEnabled() determines whether halting is prohibited
or allowed at EL3. If FEAT_RME is implemented, ExternalRootInvasiveDebugEnabled() determines whether halting
is prohibited or allowed at EL3.

Table H1-1 Debug authentication functions

Pseudocode function Description

ExternalNoninvasiveDebugEnabled() Returns TRUE if Non-secure non-invasive debug is enabled.

ExternalInvasiveDebugEnabled() Returns TRUE if Non-secure invasive debug is enabled.

ExternalSecureNoninvasiveDebugEnabled() Returns TRUE if Secure non-invasive debug is enabled.

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() Returns TRUE if Secure invasive self-hosted debug is enabled in
AArch32 state.

ExternalSecureInvasiveDebugEnabled() Returns TRUE if Secure invasive debug is enabled.

ExternalRealmNoninvasiveDebugEnabled() Returns TRUE if Realm non-invasive debug is enabled.

ExternalRealmInvasiveDebugEnabled() Returns TRUE if Realm invasive debug is enabled.

ExternalRootNoninvasiveDebugEnabled() Returns TRUE if Root non-invasive debug is enabled.

ExternalRootInvasiveDebugEnabled() Returns TRUE if Root invasive debug is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H1-12654
ID032224 Non-Confidential

About External Debug
H1.3 Required debug authentication
Arm recommends the use of the interface described in Recommended authentication interface to provide this debug
authentication. The pseudocode functions in Chapter J1 Armv8 Pseudocode, which are linked to by the entries in
the Pseudocode function column of Table H1-1, assume that this interface is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H1-12655
ID032224 Non-Confidential

Chapter H2
Debug State

This chapter describes Debug state. It contains the following sections:

• About Debug state.

• Halting the PE on debug events.

• Entering Debug state.

• Behavior in Debug state.

• Exiting Debug state.

Note

Table K17-1 disambiguates the general register references used in this chapter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12656
ID032224 Non-Confidential

Debug State
H2.1 About Debug state
H2.1 About Debug state

In external debug, debug events allow an external debugger to halt the PE. The PE then enters Debug state. When
the PE is in Debug state:

• It stops executing instructions from the location indicated by the Program Counter, and is instead controlled
through the external debug interface.

• The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state.

• The Debug Communications Channel, DCC, passes data between the PE and the debugger.

The PE cannot service any interrupts in Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12657
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
H2.2 Halting the PE on debug events

For details of debug events, see Introduction to Halting debug events and Breakpoint and Watchpoint debug events.

On a debug event, the PE must do one of the following:

• Enter Debug state.

• Pend the debug event.

• Generate a debug exception.

• Ignore the debug event.

This behavior depends on both:

• Whether halting is allowed by the current state of the debug authentication interface. See Halting allowed
and halting prohibited.

• The type of debug event and the programming of the debug control registers.

— See Halting debug events for all Halting debug events.

— See Breakpoint and Watchpoint debug events for Breakpoint and Watchpoint debug events.

See also Other debug exceptions.

This means that behavior can be CONSTRAINED UNPREDICTABLE if the conditions change. See Synchronization and
Halting debug events.

Summary of debug events and possible outcomes summarizes the possible outcomes of each type of debug event.

H2.2.1 Halting allowed and halting prohibited

Halting can be either allowed or prohibited:

• Halting is always prohibited in Debug state.

• Halting is always prohibited when DoubleLockStatus() == TRUE.

— This means that FEAT_DoubleLock is implemented and OS Double lock is locked.

• Halting is also controlled by the IMPLEMENTATION DEFINED authentication interface, and is prohibited when
all of the following apply:

— The PE is in Non-secure state and ExternalInvasiveDebugEnabled() == FALSE.

— The PE is in Secure state and ExternalSecureInvasiveDebugEnabled() == FALSE.

— The PE is in Realm state and ExternalRealmInvasiveDebugEnabled() == FALSE.

— The PE is in Root state and ExternalRootInvasiveDebugEnabled() == FALSE.

Note

See Appendix K7 Recommended External Debug Interface for more information on these functions.

• Otherwise, halting is allowed.

For more information, see:

• Pseudocode description of Halting on debug events.

• Required debug authentication.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12658
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
H2.2.2 Halting debug events

The Halting debug events are described in Chapter H3 Halting Debug Events.

When a Halting debug event is generated, it causes entry to Debug state if all of the following are true:

• Halting is allowed. See Halting allowed and halting prohibited.

• The Halting debug event is one of:

— A Halt Instruction debug event and EDSCR.HDE == 1.

— A Software Access debug event and OSLSR_EL1.OSLK == 0, meaning that the OS Lock is unlocked.

— Neither a Halt Instruction debug event nor a Software Access debug event.

Note

— A Halt Instruction debug event is the only Halting debug event that relies on EDSCR.HDE == 1.

— Halting on Breakpoint and Watchpoint debug events is also controlled by EDSCR.HDE. See
Breakpoint and Watchpoint debug events.

— EDSCR.HDE can be written by software when the OS Lock is locked. Privileged code can use
MDCR_EL3.TDOSA and HDCR.TDOSA to trap writes to these registers.

If a Halting debug event does not generate entry to Debug state because the conditions listed in this section do not
hold, then:

• If the Halting debug event is a Halt Instruction debug event, the instruction that generated the Halting debug
event is treated as UNDEFINED.

• If the Halting debug event is a Software Access debug event, it is ignored.

• If the Halting debug event is an Exception Catch debug event, it is ignored except when FEAT_Debugv8p8
is implemented, in which case the event might be pended.

In all other cases the Halting debug event is pended, see Pending Halting debug events.

Summary of actions from debug events summarizes the possible outcome for each type of Debug event.

Note

Halting debug events never generate debug exceptions.

H2.2.3 Breakpoint and Watchpoint debug events

A breakpoint or watchpoint generates an entry to Debug state if all of the following conditions hold:

• Halting debug is enabled, that is EDSCR.HDE == 1.

• Halting is allowed. See Halting allowed and halting prohibited.

• The OS Lock is unlocked, that is OSLSR.OSLK == 0.

The Address Mismatch breakpoint type is reserved when all of these conditions are met.

MDSCR_EL1.MDE or DBGDSCRext.MDBGen is ignored when determining whether to enter Debug state. A
breakpoint or watchpoint that generates entry to Debug state is a Breakpoint or Watchpoint debug event and does
not generate a debug exception.

A breakpoint or watchpoint that does not generate an entry to Debug state either:

• Generates a Breakpoint or Watchpoint exception.

• Is ignored.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12659
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
Note

EDSCR.HDE is ignored when determining whether to generate a debug exception. The debug exception is
suppressed only if the PE enters Debug state. This means that the use of Halting debug mode in one Security state
does not affect the Exception model in another Security state.

See Chapter D2 AArch64 Self-hosted Debug, Chapter G2 AArch32 Self-hosted Debug, and the Note in Other debug
exceptions.

H2.2.4 Other debug exceptions

The following events never generate entry to Debug state:

• Breakpoint Instruction exceptions.

• Software Step exceptions.

• Vector Catch exceptions.

The behavior of these events is unchanged when Halting debug mode is enabled, that is when EDSCR.HDE == 1.
This means that these events can do one of the following:

• They can generate a debug exception.

• They can be ignored.

For additional information, see Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32 Self-hosted
Debug.

H2.2.5 Debug state entry and debug event prioritization

The following are synchronous debug events:

• Breakpoint debug event.

• Watchpoint debug event.

• Halting Step debug event.

• Halt Instruction debug event.

• Exception Catch debug event.

• Software Access debug event.

• Reset Catch debug event.

Each of these synchronous debug events are treated as a synchronous exception generated by an instruction, or by
the taking of an exception or reset. That is, if halting is allowed, the synchronous debug event must be taken before
any subsequent instructions are executed. Reset Catch debug events must be taken before the PE executes the
instruction at the reset vector.

Note

• Reset Catch and Exception Catch debug events might be generated asynchronously, because they can result
from an asynchronous exception. However, if halting is allowed after the reset or asynchronous exception
has been processed, the Reset Catch or Exception Catch debug event is taken synchronously.

• The Halting Step debug event is generated by the instruction after the stepped instruction. Therefore, if the
stepped instruction generates any other synchronous exceptions or debug events these are taken first.

If halting is prohibited then Halting Step debug events and Reset Catch debug events might be pended and taken
asynchronously. OS Unlock Catch debug events are always pended and taken asynchronously. See Pending Halting
debug events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12660
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
The architecture does not define when asynchronous debug events are taken, and therefore the prioritization of
asynchronous debug events is IMPLEMENTATION DEFINED. See Synchronization and Halting debug events.

The following list shows how the synchronous debug events are prioritized, with 1 being the highest priority.

Note

The priority numbering is the same as the numbering for AArch64 synchronous exception priorities listed in
Synchronous exception types, and in particular Prioritization of interrupts. This numbering correlates with the
equivalent AArch32 list in Exception prioritization for exceptions taken to AArch32 state.

The priority for synchronous debug events is as follows:

1 Reset Catch debug event. See Reset Catch debug events.

This debug event has a higher priority than the synchronous exceptions listed in Synchronous
exception types.

2 Exception Catch debug event. See Exception Catch debug event.

This debug event can be assigned one of two priorities. When it has a priority of 2, it has a higher
priority than the synchronous exceptions listed in the Exception model.

3 Halting Step debug event. See Halting Step debug events.

This debug event has a higher priority than the synchronous exceptions listed in the Exception
model.

4-5 This event is not a debug event.

6 Exception Catch debug event. See Exception Catch debug event.

This debug event can be assigned one of two priorities, 2 or 6.

7-8 These events are not debug events.

9 Breakpoint debug events. See Breakpoint and Watchpoint debug events.

These two debug events have the same priority.

10 This event is not a debug event.

11 Halt Instruction debug event. See Halt Instruction debug event.

12-35 These events are not debug events.

36 Software Access debug event. See Software Access debug event.

37-41 These events are not debug events.

42 Watchpoint debug events. See Breakpoint and Watchpoint debug events.

43-44 These events are not debug events.

For Reset Catch debug events and Halting Step debug events, the priorities listed in this section apply only when
halting is allowed at the time the event is generated. This means that the event is taken synchronously and not
pended.

For more information on the prioritization of exceptions, see:

• Synchronous exception types.

• Prioritization of interrupts.

• Exception prioritization for exceptions taken to AArch32 state. This section covers synchronous and
asynchronous exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12661
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
H2.2.5.1 Breakpoint debug events and Vector Catch exception

An Address Matching Vector Catch exception has the same priority as a Breakpoint debug event. See Prioritization
of Synchronous exceptions taken to AArch64 state.

The prioritization of these events is unchanged even if the breakpoint generates entry to Debug state instead of a
Breakpoint exception. This means that if a single instruction generates both an Address Matching Vector Catch
exception and a Breakpoint debug event, there is a CONSTRAINED UNPREDICTABLE choice of:

• The PE entering Debug state due to the Breakpoint debug event.

• A Vector Catch exception.

This applies only if all of the following are true:

• Halting debug is enabled.

• Halting is allowed.

• The OS Lock is unlocked.

An Exception Trapping Vector Catch exception must be generated immediately following the exception that
generated it. This means that it does not appear in the priority table.

H2.2.6 Imprecise entry to Debug state

Debug state entry is normally precise. This means that the PE cannot enter Debug state if it can neither complete
nor abandon all currently executing instructions and leave the PE in a precise state. See Definition of a precise
exception and imprecise exception.

A debugger can write a value of 1 to EDRCR.CBRRQ to allow imprecise entry to Debug state. An External Debug
Request debug event must be pending before writing 1 to this bit. Support for this feature is OPTIONAL and it is
IMPLEMENTATION DEFINED when it is effective at forcing entry to Debug state.

The PE ignores writes to this bit in all the following cases:

• ExternalInvasiveDebugEnabled() == FALSE.

• FEAT_RME is not implemented and ExternalSecureInvasiveDebugEnabled() == FALSE, and either:

— EL3 is not implemented and the implemented Security state is Secure state.

— EL3 is implemented.

• FEAT_RME is implemented and ExternalRootInvasiveDebugEnabled() == FALSE.

Example H2-1 shows how entry to Debug state can be forced.

Example H2-1 Forcing entry to Debug state

The debugger pends an External Debug Request debug event through the CTI to halt a program that has stopped
responding. However, the memory system is not responding and a memory access instruction cannot complete. This
means that Debug state cannot be entered precisely. The debugger writes a value of 1 to EDRCR.CBRRQ. The PE
cancels all outstanding memory accesses and enters Debug state. As some instructions might not have completed
correctly, entry to Debug state is imprecise.

When Debug state is entered imprecisely, all memory access instructions executed through the ITR have
CONSTRAINED UNPREDICTABLE behavior. The value of all registers is UNKNOWN, but might be useful for diagnostic
purposes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12662
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
H2.2.7 Summary of actions from debug events

Table H2-1 shows the Software and Halting debug events. In Table H2-1, the columns have the following meaning:

Debug event type

This means the type of debug event where:

Other software Means one of:

• Software Step exceptions.

• Breakpoint Instruction exceptions.

• Vector Catch exceptions for AArch64 state or Vector Catch
exceptions for AArch32 state.

Other Halting Means one of the following:

• Halting Step debug events.

• External Debug Request debug event.

• Reset Catch debug events.

• OS Unlock Catch debug event.

Other debug events are referred to explicitly.

Authentication

This means halting is allowed by the IMPLEMENTATION DEFINED external authentication interface.
It is the result of one of the following pseudocode functions:

In Non-secure state ExternalInvasiveDebugEnabled().

In Secure state ExternalSecureInvasiveDebugEnabled().

In Realm state ExternalRealmInvasiveDebugEnabled().

In Root state ExternalRootInvasiveDebugEnabled().

DLK This indicates whether FEAT_DoubleLock is implemented and locked, DoubleLockStatus() ==
TRUE.

OSLK This is the value of OSLSR.OSLK. It indicates whether the OS Lock is locked.

HDE This is the value of EDSCR.HDE. It indicates whether Halting debug is enabled.

The letter X in Table H2-1 indicates that the value can be either 0 or 1.

Table H2-1 Debug authentication for external debug

Debug event type Authentication DLK OSLK HDE Behavior

Other software X X X X Handled by the Exception model

Breakpoint or Watchpoint debug event X TRUE X X Handled by the Exception model
(ignored)

X FALSE 1 X Handled by the Exception model
(ignored)

FALSE FALSE 0 X Handled by the Exception model

TRUE FALSE 0 0 Handled by the Exception model

TRUE FALSE 0 1 Entry to Debug state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12663
ID032224 Non-Confidential

Debug State
H2.2 Halting the PE on debug events
H2.2.8 Pseudocode description of Halting on debug events

The Halted(), Restarting(), HaltingAllowed(), and HaltOnBreakpointOrWatchpoint() functions are described in the
pseudocode.

Halt Instruction debug event FALSE X X X UNDEFINED

TRUE TRUE X X UNDEFINED

TRUE FALSE X 0 UNDEFINED

TRUE FALSE X 1 Entry to Debug state

Exception Catch debug event FALSE X X X Might be pendeda

TRUE TRUE X X Ignored

TRUE FALSE X X Entry to Debug state

Software Access debug event FALSE X X X Ignored

TRUE TRUE X X Ignored

TRUE FALSE 1 X Ignored

TRUE FALSE 0 X Entry to Debug state

Other Halting FALSE X X X Debug event is pended

TRUE TRUE X X Debug event is pended

TRUE FALSE X X Entry to Debug state

a. See Exception Catch debug event.

Table H2-1 Debug authentication for external debug (continued)

Debug event type Authentication DLK OSLK HDE Behavior
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12664
ID032224 Non-Confidential

Debug State
H2.3 Entering Debug state
H2.3 Entering Debug state

On entry to Debug state, the preferred restart address and PSTATE are saved in DLR and DSPSR. The PE remains
in the mode and Security state from which it entered Debug state.

If EDRCR.CBRRQ has a value of 0, entry to Debug state is precise. If EDRCR.CBRRQ has a value of 1, then
imprecise entry to Debug state is permitted.

If a Watchpoint debug event causes an entry to Debug state, the PE records all of the following:

• When FEAT_EDHSR is not implemented or the PE sets EDHSR.FnV to 0, the address of the access that
generated the Watchpoint debug event is recorded in EDWAR.

• When FEAT_EDHSR is implemented, information about the access that generated the Watchpoint debug
event is recorded in EDHSR.

For more information, see:

• Determining the memory location that caused a Watchpoint exception and Exception syndrome information
and preferred return address for a debug event taken from AArch64 state.

• Determining the memory location that caused a Watchpoint exception for a debug event taken from AArch32
state.

Other than the effect on PSTATE and EDSCR, entry to Debug state is not a Context Synchronization event. The
effects of entry to Debug state on PSTATE and EDSCR are synchronized.

H2.3.1 Entering Debug state from AArch32 state

When entering Debug state from AArch32 state, the PE remains in AArch32 state. In AArch32 Debug state the PE
executes T32 instructions, regardless of the value of PSTATE.T before entering Debug state.

To allow the debugger to determine the state of the PE, the current Execution state for all four Exception levels can
be read from EDSCR.RW, and the current Exception level can be read from EDSCR.EL.

The current endianness state, PSTATE.E, is unchanged on entry to Debug state.

Note

• If EL1 is using AArch32 state, the current endianness state can differ from that indicated by SCTLR.EE.

• If EL2 is using AArch32 state, the current endianness state can differ from that indicated by HSCTLR.EE.

• On entry to Debug state from AArch32 state, PSTATE.SS is copied to DSPSR.SS, even though the PE
remains in AArch32 state.

See also Effect of entering Debug state on PSTATE.

H2.3.2 Effect of Debug state entry on DLR and DSPSR

DLR is set to the preferred restart address for the debug event, which depends on the event type. The value of
PSTATE is saved in DSPSR.

For entry to Debug state from AArch32 state, the values saved in DSPSR.IT are always correct for the preferred
restart address.

For synchronous Halting debug events, the preferred restart address is the address of the instruction that generated
the debug event. It is CONSTRAINED UNPREDICTABLE whether DSPSR_EL0.BTYPE is set to the value of
PSTATE.BTYPE or 0 for synchronous debug events other than the following debug events:

• A Halting Step debug event.

• A Breakpoint debug event.

• A Halt Instruction debug event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12665
ID032224 Non-Confidential

Debug State
H2.3 Entering Debug state
For asynchronous Halting debug events, including pending Halting debug events taken asynchronously, the
preferred restart address is the address of the first instruction that must be executed on exit from Debug state.

This means that:

• For Breakpoint and Watchpoint debug events, the preferred restart address is the same as the preferred return
address for a debug exception, as described in Chapter D2 AArch64 Self-hosted Debug and Chapter G2
AArch32 Self-hosted Debug.

• For Halt Instruction debug events, DLR is set to the address of the HLT instruction and DSPSR.IT is correct
for the HLT instruction.

• For Software Access debug events, DLR is set to the address of the accessing instruction and DSPSR.IT is
correct for this instruction.

• For Halting Step debug events taken synchronously, DLR and DSPSR are set as the ELR and SPSR would
be set for a Software Step exception. This is usually the address of, and PSTATE for, the instruction after the
one that was stepped.

• For Exception Catch debug events, DLR is set to the address of the first instruction that must be executed on
exit from Debug state, and DSPSR is correct for this instruction. This is the exception vector or reset vector
address.

— If the debug event is generated on taking an exception to a trapped Exception level, the DLR is set to
the address of the exception vector the PE would have started fetching from. This is UNKNOWN if the
VBAR for the Exception level has never been initialized. The DSPSR records the value of PSTATE
after taking the exception. The Exception Catch occurs after the SPSR and the Link register are set,
and the debugger can use these registers to determine where in the application program the exception
occurred.

Note

Depending on the target Exception level and Execution state for the exception, the Link register is one
of ELR_EL1, ELR_EL2, ELR_EL3, ELR_hyp, or LR (R14).

— If the debug event is generated on an exception return to a trapped Exception level, the DLR is set to
the target address of the exception return and the DSPSR records the value of PSTATE after the
exception return.

• Reset Catch debug events taken synchronously behave like Exception Catch debug events.

• For Reset Catch debug events and Exception Catch debug events generated on reset to a trapped Exception
level, the DLR is set to is set to the reset address and the DSPSR records the reset value of PSTATE.

• For pending Halting debug events and External Debug Request debug events, DLR is set to the address of
the first instruction that must be executed on exit from Debug state and DSPSR.IT is correct for this
instruction. See Pending Halting debug events.

Normally DLR is aligned according to the instruction set state indicated in DSPSR. However, a debug event might
be taken at a point where the PC is not aligned.

H2.3.3 Effect of Debug state entry on System registers, the Event register, and Exclusives monitors

Entering Debug state has no effect on System registers other than DLR and DSPSR. In particular, ESRs, FARs, and
FSRs are not updated on entering Debug state. SCR is unchanged, even when entering Debug state from EL3 when
EL3 is using AArch32.

Entering Debug state has no architecturally-defined effect on the Event Register and Exclusives monitors.

Note

Entry to Debug state might set the Event Register or clear the Exclusives monitors, or both. However, this is not a
requirement, and debuggers must not rely on any implementation specific behavior.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12666
ID032224 Non-Confidential

Debug State
H2.3 Entering Debug state
Unless otherwise described in this reference manual, instructions executed in Debug state have their
architecturally-defined effects on the System registers, the Event register, and Exclusives monitors.

H2.3.4 Effect of entering Debug state on PSTATE

The effect of an entry to Debug state on PSTATE is described in Entering Debug state and Entering Debug state
from AArch32 state.

On entry to Debug state after PSTATE is saved in DSPSR:

• PSTATE.IL is cleared to 0.

• PSTATE.TCO is set to 1.

• PSTATE.BTYPE is set to 0b00.

• PSTATE.{IT, T, SS, D, A, I, F, SSBS, ALLINT, PM, PPEND} are set to UNKNOWN values

PSTATE.{N, Z, C, V, Q, GE, E, M, nRW, EL, SP, PAN, UAO, DIT, EXLOCK} are unchanged.

For more information, see PSTATE in Debug state.

H2.3.5 Entering Debug state during loads and stores

The PE can enter Debug state during instructions that perform a sequence of memory accesses, as opposed to a
single single-copy atomic access, because of a Watchpoint debug event. The effect of entering Debug state on such
an instruction is the same as taking a Data Abort exception during such an instruction.

In addition, when executing in AArch64 state, the PE can enter Debug state during instructions that perform a
sequence of memory accesses because of an External Debug Request debug event. The effect of entering Debug
state on such an instruction is the same as taking an interrupt exception during such an instruction.

This applies to all memory types.

H2.3.6 Entering Debug state and Software Step

When Software Step is active, a debug event that causes entry to Debug state behaves like an exception taken to an
Exception level above the debug target Exception level. That is:

• If the instruction that is stepped generates a synchronous debug event that causes entry to Debug state, or an
asynchronous debug event is taken before the step completes, the PE enters Debug state with DSPSR.SS set
to 1.

• A pending Halting debug event or an asynchronous debug event can be taken after the step has completed.
In this case the PE enters Debug state with DSPSR.SS set to 0.

In addition:

• If the instruction that is stepped generates an exception trapped by an Exception Catch debug event, the PE
enters Debug state at the exception vector with DSPSR.SS set to 0. This is because PSTATE.SS is set to 0 by
taking the exception.

• If the PE is reset, PSTATE.SS is reset to 0. If the following debug events are enabled, and halting is allowed,
the PE enters Debug state with DSPSR.SS set to 0:

— Reset Catch debug event at the reset Exception level.

— Exception Catch debug event at the reset Exception level.

— Halting Step debug event.

• If Halting Step is also active, then Halting Step and Software Step operate in parallel and can both become
active-pending. In this case Halting step has a higher priority than Software step. This means that the PE
enters Debug state and DSPSR.SS is set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12667
ID032224 Non-Confidential

Debug State
H2.3 Entering Debug state
H2.3.7 Pseudocode description of entering Debug state

The DebugHalt constants are described in shared/debug/halting/DebugHalt in the pseudocode. The
UpdateEDSCRFields() and Halt() functions are described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12668
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4 Behavior in Debug state

Instructions are executed in Debug state from the Instruction Transfer Register, ITR. The debugger controls which
instructions are executed in Debug state by writing the instructions to the External Debug Instruction Transfer
register, EDITR. The Execution state of the PE determines which instruction set is executed:

• If the PE is in AArch64 state it executes A64 instructions.

• If the PE is in AArch32 state it executes T32 instructions:

— For a 32-bit T32 instruction, EDITR[15:0] specifies the first halfword and EDITR[31:16] specifies the
second halfword.

— For a 16-bit T32 instruction, EDITR[15:0] contains the instruction and EDITR[31:16] is ignored. All
16-bit T32 instructions are UNPREDICTABLE in Debug state.

The PE does not execute A32 instructions in Debug state.

Some instructions are available only in Debug state. See Debug state operations, DCPS, DRPS, MRS, MSR. In
Non-debug state these instructions are UNDEFINED.

The following sections describe behavior in Debug state:

• PSTATE in Debug state.

• Executing instructions in Debug state.

• Decode tables.

• Security in Debug state.

• Privilege in Debug state.

• Debug state operations, DCPS, DRPS, MRS, MSR.

• Exceptions in Debug state.

• Accessing registers in Debug state.

• Accessing memory in Debug state.

This section specifies the CONSTRAINED UNPREDICTABLE behaviors that apply in Debug state, but see Changing the
value of EDECR.SS when not in Debug state for a change in Non-debug state that causes CONSTRAINED
UNPREDICTABLE behavior.

H2.4.1 PSTATE in Debug state

PSTATE.{N, Z, C, V, Q, IT, GE, SS, ALLINT, SSBS, BTYPE, D, A, I, F, T, PM} are all ignored in Debug state:

• There are no conditional instructions in Debug state.

• In AArch32 state, the PE executes only T32 instructions and PSTATE.IT is ignored.

• Software step is inactive.

• Asynchronous exceptions and debug events are ignored.

• If FEAT_SSBS is implemented, then hardware is permitted to load or store speculatively, regardless of the
value of PSTATE.SSBS.

• In AArch64 state, PSTATE.BTYPE is treated as 0b00.

Instructions executed in Debug state indirectly read PSTATE.{TCO, UAO, PAN, IL, E, M, nRW, EL, SP} as they
would in Non-debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12669
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Note

PSTATE.DIT is not guaranteed to have any effect in Debug state.

In Debug state:

• PSTATE.PAN is set to 1 by:

— A DCPS instruction to EL1 using AArch64 if SCTLR_EL1.SPAN == 0.

— A DCPS instruction to EL2 using AArch64 if SCTLR_EL2.SPAN == 0.

• PSTATE.UAO is set to 0 by a DCPS instruction to AArch64 state.

• PSTATE.TCO is set to 1 by a DCPS instruction to AArch64 state.

• PSTATE.EXLOCK is set to 0 by a DCPS instruction to AArch64 state.

PSTATE can also be changed by taking exceptions in Debug state, and by the execution of DCPS and DRPS
instructions.

When FEAT_MTE is implemented, if Memory-access mode is enabled and PSTATE.TCO is 0, reads and writes to
the external debug interface DTR registers are CONSTRAINED UNPREDICTABLE, with the following permitted
behaviors:

• The PE behaves as if PSTATE.TCO is 0. That is, the load or store operation performs the tag check if
required.

• The PE behaves as if PSTATE.TCO is 1. That is, the load or store operation does not perform the tag check.

For more information, see Chapter D10 The Memory Tagging Extension.

H2.4.2 Executing instructions in Debug state

The instructions executed in Debug state must be either A64 instructions or T32 instructions, depending on the
current Execution state.

Each instruction falls into one of the following groups:

• Debug state instructions. These are instructions that are changed in Debug state. See A64 instructions that
are changed in Debug state and T32 instructions that are changed in Debug state.

• Instructions that are unchanged in Debug state. See A64 instructions that are unchanged in Debug state and
T32 instructions that are unchanged in Debug state.

• Instructions that are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Debug state. See A64 instructions
that are CONSTRAINED UNPREDICTABLE in Debug state and T32 instructions that are CONSTRAINED
UNPREDICTABLE in Debug state.

All T32 instructions are treated as unconditional, regardless of PSTATE.IT. See PSTATE in Debug state.

If FEAT_RME is implemented and EDSCR.SDD == 1, then exceptions from Non-secure, Secure, Realm state are
never taken to Root state. If FEAT_RME is not implemented and EDSCR.SDD == 1, then an exception from
Non-secure state is never taken to Secure state. See Security in Debug state.

H2.4.2.1 Executing A64 instructions in Debug state

The following sections describe the behavior of the A64 instructions in Debug state:

• A64 instructions that are changed in Debug state.

• A64 instructions that are unchanged in Debug state.

• A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12670
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.2.1.1 A64 instructions that are changed in Debug state

The following A64 instructions are defined in Debug state, but are UNDEFINED in Non-debug state:

• DCPS.

Note

DCPS can be UNDEFINED in certain conditions in Debug state. See DCPS<n>.

• DRPS.

• MRS (DLR_EL0), MRS (DSPSR_EL0), MSR (DLR_EL0), MSR (DSPSR_EL0)

• When FEAT_SVE is implemented, CMPNE (immediate) with byte element size.

Note

In Debug state, CMPNE (immediate) with byte element size sets DLR_EL0 and DSPSR_EL0 to UNKNOWN
values. However, the instruction is unchanged with respect to the SVE vector and SVE predicate source and
destination registers.

• When FEAT_SME2 is implemented, MOVT (table to scalar) and MOVT (scalar to table).

For more information, see Debug state operations, DCPS, DRPS, MRS, MSR.

H2.4.2.1.2 A64 instructions that are unchanged in Debug state

The following list shows the instructions that are unchanged in Debug state:

Any instruction that is UNDEFINED in Non-debug state

This list of instructions excludes:

• Any instruction listed in A64 instructions that are changed in Debug state.

• Any instruction listed in A64 instructions that are CONSTRAINED UNPREDICTABLE in
Debug state that is UNDEFINED because an enable or disable bit is not RES0 or RES1

Instructions that move System or Special-purpose registers to or from a general-purpose register

This list of instructions:

• Includes the instructions to transfer a general-purpose register to or from the DTR, which can
be executed at any Exception level.

• Excludes PSTATE access instructions.

These instructions are:

• MRS <special_reg>, MSR <special_reg>.

Note

This does not include NZCV, DAIF, DAIFSet, DAIFClr, SPSel, CurrentEL, PAN, UAO, DIT,
TCO, and PM.

• MRS <system_reg>, MSR <system_reg>.

• When FEAT_SYSREG128 is implemented, MRRS <system_reg>, MSRR <system_reg>.

Floating-point moves between a SIMD&FP register and a general-purpose register

These instructions are:

• FMOV (between a general-purpose register and a half-precision register).

• FMOV (between a general-purpose register and a single-precision register).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12671
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• FMOV (between a general-purpose register and a double-precision register).

• FMOV (between a general-purpose register and a SIMD element).

SIMD moves between a SIMD&FP register and a general-purpose register

These instructions are:

• INS (from a general-purpose register to a SIMD element).

• UMOV (from a SIMD element to a general-purpose register).

SVE instructions

When FEAT_SVE is implemented, these instructions are:

• CPY (immediate, zeroing) with byte element size and a shift amount of 0.

• DUP (scalar).

• EXT, destructive variant.

• INSR (scalar).

• PTRUE with ALL constraint and byte element size.

• RDFFR (unpredicated).

• RDVL.

• WRFFR.

SME instructions

When FEAT_SME is implemented, these instructions are:

• MOVA (tile to vector, single), MOVA (vector to tile, single).

• MRS SVCR, MSR SVCR.

• RDSVL.

Barriers These instructions are:

• DMB.

• DSB.

• ISB.

• CSDB.

• SSBB.

• PSSBB.

• When FEAT_SB is implemented, SB.

• When FEAT_SPE is implemented, PSB.

• When FEAT_TRBE is implemented, TSB.

• When FEAT_RAS is implemented, ESB.

Memory access instructions at various access sizes

The following constraints apply:

• General purpose-registers only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12672
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• One of the following addressing modes:

— Unscaled (9-bit signed) immediate offset.

— Immediate (9-bit signed) post-indexed.

— Immediate (9-bit signed) pre-indexed.

— Unprivileged (9-bit signed).

• Not literal.

• One of the following types:

— (Single) register.

— Exclusive.

— Exclusive pair.

— Acquire/Release.

— Acquire/Release Exclusive.

— Acquire/Release Exclusive pair.

• 32-bit and 64-bit target register variants.

These instructions are:

• LDR, LDRB, LDRH, LDRSB, LDRSH, LDRSW (immediate, not literal).

• LDUR, LDURB, LDURH, LDURSB, LDURSH, LDURSW (immediate).

• LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW (immediate).

• LDAR, LDARB, LDARH, LDXR, LDXRB, LDXRH, LDAXR, LDAXRB, LDAXRH.

• LDXP, LDAXP.

• STR, STRB, STRH (immediate).

• STUR, STURB, STURH (immediate).

• STTR, STTRB, STTRH (immediate).

• STLR, STLRB, STLRH, STXR, STXRB, STXRH, STLXR, STLXRB, STLXRH.

• STXP, STLXP.

• When FEAT_LOR is implemented:

— LDLAR, LDLARB, LDLARH.

— STLLR, STLLRBB, STLLRH.

• When FEAT_LSE is implemented:

— CAS, CASB, CASH, CASP.

— SWP, SWPB, SWPH.

— LDADD, LDADDB, LDADDH.

— LDCLR, LDCLRB, LDCLRH.

— LDEOR, LDEORB, LDEORH.

— LDSET, LDSETB, LDSETH.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12673
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
— LDSMAX, LDSMAXB, LDSMAXH.

— LDSMIN, LDSMINB, LDSMINH.

— LDUMAX, LDUMAXB, LDUMAXH.

— LDUMIN, LDUMINB, LDUMINH.

— STADD, STADDB, STADDH.

— STCLR, STCLB, STCLRH.

— STEOR, STEORB, STEORH.

— STSET, STSETB, STSETH.

— STSMAX, STSMAXB, STSMAXH.

— STSMIN, STSMINB, STSMINH.

— STUMAX, STUMAXB, STUMAXH.

— STUMIN, STUMINB, STUMINH.

• When FEAT_LSE128 is implemented:

— LDCLRP.

— LDSETP.

— SWPP.

• When FEAT_LRCPC is implemented, LDAPR, LDAPRB, LDAPRH.

• When FEAT_LRCPC2 is implemented:

— LDAPURH, LDAPURSH, LDAPUR, LDAPURSW, LDAPURSB, LDAPURB.

— STLUR, STLURH, STLURB.

• When FEAT_LRCPC3 is implemented:

— LDAP1 (SIMD&FP), LDAPR, LDAPUR (SIMD&FP), LDAPUR, LDIAPP, STLR.

— STL1 (SIMD&FP), STILP, STLUR (SIMD&FP).

• When FEAT_LS64 is implemented:

— LD64B.

— ST64B.

• When FEAT_LS64_V is implemented, ST64BV.

• When FEAT_LS64_ACCDATA is implemented, ST64BV0.

Move immediate to general-purpose register

These instructions are:

• MOVZ, MOVN, MOVK (immediate).

• MOV (between a general-purpose register and the stack pointer).

System instructions, Send Event, NOP, Clear Exclusive, and Prediction

In this context, the System instructions are the Cache maintenance instructions, TLB maintenance
instructions, Address translation instructions, the prediction restriction instructions, and the check
feature instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12674
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
These instructions are:

• IC.

• DC.

• TLBI and, when FEAT_D128 is implemented, TLBIP.

• AT.

• SEV, SEVL.

• NOP.

• When FEAT_CLRBHB is implemented, CLRBHB.

• CLREX.

• CFP.

• When FEAT_SPECRES2 is implemented, COSP.

• CPP.

• DVP.

• When FEAT_CHK is implemented, CHKFEAT.

Basic pointer authentication instructions

When FEAT_PAuth is implemented, these instructions are:

• AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA.

• AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB.

• AUTDA, AUTDZA.

• AUTDB, AUTDZB.

• PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA.

• PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB.

• PACDA, PACDZA.

• PACDB, PACDZB.

• PACGA.

• XPACD, XPACI, XPACLRI.

Memory Tagging Extension instructions

These instructions are:

• When FEAT_MTE is implemented:

— ADDG.

— SUBG.

— STG (signed offset).

— STZG (signed offset).

— ST2G (signed offset).

— STZ2G (signed offset).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12675
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
— STGP (signed offset).

— LDG.

• When FEAT_MTE2 is implemented:

— LDGM.

— STGM.

— STZGM.

BRBE instructions

When FEAT_BRBE is implemented, these instructions are:

• BRB IALL.

• BRB INJ.

GCS instructions

When FEAT_GCS is implemented, these instructions are:

• GCSB.

• GCSPUSHM, GCSPOPM.

• GCSPUSHX, GCSPOPX.

• GCSSS1, GCSSS2.

• GCSSTR, GCSSTTR.

H2.4.2.1.3 A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state

This subsection describes all instructions that are not listed in either:

• A64 instructions that are changed in Debug state.

• A64 instructions that are unchanged in Debug state.

These instructions are CONSTRAINED UNPREDICTABLE in Debug state. In general, the permissible behaviors are:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• If the instruction reads the PC or PSTATE, it uses an UNKNOWN value.

• If the instruction modifies the PC or PSTATE, other than by advancing the PC to the sequentially next
instruction, it sets DLR_EL0 and DSPSR_EL0 to UNKNOWN values.

• If the instruction is similar to a Debug state instruction, it executes as that Debug state instruction.

• The instruction has the same behavior as in Non-debug state.

The following list shows the permissible behaviors for A64 instruction in Debug state. An instruction might appear
multiple times in the list, in which case the choice of permissible behaviors is any of those listed. An example of
this is CCMP.

Exception-generating instructions

These instructions are:

• SVC.

• HVC.

• SMC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12676
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• BRK.

• HLT.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• SVC behaves as DCPS1.

• HVC behaves as DCPS2.

• SMC behaves as DCPS3.

• They generate the exception that the instruction would generate in Non-debug state. The
exception is taken as described in Exceptions in Debug state.

Note

SMC must not generate a Secure Monitor Call exception if EDSCR.SDD is 1.

Instructions that explicitly write to the PC (branches)

These instructions are:

• B, B.cond, BL, BLR, BR, CBZ, CBNZ, RET, TBZ, TBNZ.

• When FEAT_HBC is implemented, BC.cond.

• When FEAT_PAuth is implemented, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BLRAAZ, BLRABZ.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching and set DSPSR_EL0 and DLR_EL0
to UNKNOWN values.

Exception return and related instructions

These instructions are:

• ERET.

• When FEAT_PAuth is implemented, ERETAA, ERETAB.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching, set DSPSR_EL0 and DLR_EL0 to
UNKNOWN values, and either:

— Execute the DRPS operation instead of performing an exception return, using UNKNOWN
SPSR values.

— Do not change the Exception level.

Instructions that request entry to a low-power state

These instructions are:

• WFE, WFI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12677
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• When FEAT_WFxT is implemented, WFET, WFIT.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They generate a synchronous exception if the corresponding instruction would be trapped in
Non-debug state. See Configurable instruction controls.

• A WFE instruction clears the Event register if it is set.

Note

This means that these instructions must not suspend execution.

Instructions that read the PC

These instructions are:

• LDR (literal), LDRSW (literal).

• ADR, ADRP.

• PRFM (literal).

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state, using an UNKNOWN value for the PC operand.

Instructions that explicitly modify PSTATE, other than DCPS and DRPS

These instructions are:

• ADDS, SUBS, ADCS, SBCS, ANDS, BICS, CCMN, CCMP.

• FCMP, FCMPE, FCCMP, FCCMPE.

• MSR DAIFSet (immediate), MSR DAIFClr (immediate), MSR SPSel (immediate).

• MSR NZCV (register), MSR DAIF (register), MSR SPSel (register).

• When FEAT_PAN is implemented:

— MSR PAN (immediate).

— MSR PAN (register).

• When FEAT_UAO is implemented:

— MSR UAO (immediate).

— MSR UAO (register).

• When FEAT_FlagM is implemented:

— CFINV.

— RMIF.

— SETF8.

— SETF16.

• When FEAT_DIT is implemented, MSR DIT.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12678
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• When FEAT_FlagM2 is implemented:

— AXFLAG.

— XAFLAG.

• When FEAT_MTE is implemented, MSR TCO.

• When FEAT_RNG is implemented:

— MRS RNDR.

— MRS RNDRRS.

• When FEAT_NMI is implemented:

— MSR ALLINT (immediate).

— MSR ALLINT (register).

• When FEAT_EBEP is implemented:

— MSR PM (immediate).

— MSR PM (register).

• When FEAT_MOPS is implemented:

— CPYFP, CPYFPN, CPYFPRN, CPYFPRT, CPYFPRTN, CPYFPRTRN, CPYFPRTWN, CPYFPT, CPYFPTN,
CPYFPTRN, CPYFPTWN, CPYFPWN, CPYFPWT, CPYFPWTN, CPYFPWTRN, CPYFPWTWN.

— CPYP, CPYPN, CPYPRN, CPYPRT, CPYPRTN, CPYPRTRN, CPYPRTWN, CPYPT, CPYPTN, CPYPTRN,
CPYPTWN, CPYPWN, CPYPWT, CPYPWTN, CPYPWTRN, CPYPWTWN.

— SETP, SETPN, SETPT, SETPTN.

— SETGP, SETGPN, SETGPT, SETGPTN.

• When FEAT_SVE is implemented:

— ANDS, BICS, EORS, NANDS, NORS, ORNS, ORRS, PTEST

— BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS

— CMPEQ, CMPGE, CMPGT, CMPHI, CMPHS, CMPLE, CMPLO, CMPLS, CMPLT, CMPNE

— MATCH, NMATCH

— PFIRST, PNEXT, CTERMEQ, CTERMNE

— PTRUES

— RDFFRS

— WHILEGE, WHILEGT, WHILEHI, WHILEHS (predicate)

— WHILELE, WHILELO, WHILELS, WHILELT (predicate)

— WHILERW, WHILEWR

• When FEAT_SME2 or FEAT_SVE2p1 is implemented:

— WHILEGE, WHILEGT, WHILEHI, WHILEHS (predicate pair)

— WHILELE, WHILELO, WHILELS, WHILELT (predicate pair)

— WHILEGE, WHILEGT, WHILEHI, WHILEHS (predicate as counter)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12679
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
— WHILELE, WHILELO, WHILELS, WHILELT (predicate as counter)

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state, setting DSPSR_EL0 and DLR_EL0 to UNKNOWN
values.

Instructions that read PSTATE.{N, Z, C, V} or other PSTATE fields

These instructions are:

• CSEL, CSINC, CSINV, CSNEG, CCMN, CCMP, FCSEL, FCCMP, FCCMPE.

• ADC, ADCS, SBC, SBCS.

• MRS NZCV, MRS DAIF, MRS SPSel, MRS CurrentEL.

• When FEAT_PAN is implemented, MRS PAN.

• When FEAT_UAO is implemented, MRS UAO.

• When FEAT_FlagM is implemented, CFINV.

• When FEAT_FlagM2 is implemented, AXFLAG, XAFLAG.

• When FEAT_DIT is implemented, MRS DIT.

• When FEAT_MTE is implemented, MRS TCO.

• When FEAT_NMI is implemented, MRS ALLINT.

• When FEAT_EBEP is implemented, MRS PM.

• When FEAT_MOPS is implemented:

— CPYFM, CPYFMN, CPYFMRN, CPYFMRT, CPYFMRTN, CPYFMRTRN, CPYFMRTWN, CPYFMT, CPYFMTN,
CPYFMTRN, CPYFMTWN, CPYFMWN, CPYFMWT, CPYFMWTN, CPYFMWTRN, CPYFMWTWN.

— CPYFE, CPYFEN, CPYFERN, CPYFERT, CPYFERTN, CPYFERTRN, CPYFERTWN, CPYFET, CPYFETN,
CPYFETRN, CPYFETWN, CPYFEWN, CPYFEWT, CPYFEWTN, CPYFEWTRN, CPYFEWTWN.

— CPYM, CPYMN, CPYMRN, CPYMRT, CPYMRTN, CPYMRTRN, CPYMRTWN, CPYMT, CPYMTN, CPYMTRN,
CPYMTWN, CPYMWN, CPYMWT, CPYMWTN, CPYMWTRN, CPYMWTWN.

— CPYE, CPYEN, CPYERN, CPYERT, CPYERTN, CPYERTRN, CPYERTWN, CPYET, CPYETN, CPYETRN,
CPYETWN, CPYEWN, CPYEWT, CPYEWTN, CPYEWTRN, CPYEWTWN.

— SETM, SETMN, SETMT, SETMTN.

— SETE, SETEN, SETET, SETETN.

— SETGM, SETGMN, SETGMT, SETGMTN.

— SETGE, SETGEN, SETGET, SETGETN.

• When FEAT_SVE is implemented, all SVE instructions that use a predicate.

• When FEAT_THE is implemented, RCW and RCWS.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12680
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• They execute as in Non-debug state:

— For the conditional operations and those that use Condition flags as an input, these
instructions use UNKNOWN values for the Condition flag.

— For the MRS instruction, they return an UNKNOWN value.

— For the RCW and RCWS instructions, they return an UNKNOWN value.

Hint instructions

When FEAT_DGH is implemented, this instruction is:

• DGH.

This instruction behaves in one of the following ways:

• It executes as a NOP.

• It executes as in Non-debug state.

All other instructions

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state.

Note

This includes instructions defined as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Non-debug state. These instructions are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Debug state.

H2.4.2.2 Executing T32 instructions in Debug state

The following sections describe the behavior of the T32 instructions in Debug state:

• T32 instructions that are changed in Debug state.

• T32 instructions that are unchanged in Debug state.

• T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state.

H2.4.2.2.1 T32 instructions that are changed in Debug state

The following T32 instructions are defined in Debug state, but are UNDEFINED in Non-debug state:

• DCPS.

Note

DCPS can be UNDEFINED in certain conditions in Debug state. See DCPS<n>.

• MRC p15,3,<Rt>,c4,c5,0 (DSPSR).

• MCR p15,3,<Rt>,c4,c5,0 (DSPSR).

• MRC p15,3,<Rt>,c4,c5,1 (DLR).

• MCR p15,3,<Rt>,c4,c5,1 (DLR).

In addition, ERET executes the DRPS operation in Debug state.

For more information, see Debug state operations, DCPS, DRPS, MRS, MSR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12681
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.2.2.2 T32 instructions that are unchanged in Debug state

The following list shows the instructions that are unchanged in Debug state. Any T32 instruction that uses the PC
or APSR.{N, Z, C, V} as the source or destination register is not included in the list. Moreover, the list includes only
the 32-bit T32 encodings.

Any instruction that is UNDEFINED in Non-debug state

The list of instructions:

• Excludes any instruction listed in T32 instructions that are changed in Debug state.

• Excludes any instruction listed in T32 instructions that are CONSTRAINED
UNPREDICTABLE in Debug state that is UNDEFINED because an enable or disable bit is not
RES0 or RES1.

Instructions that move System or Special-purpose registers to or from a general-purpose register

The list of instructions:

• Includes the instructions to transfer a general-purpose register to or from the DTR, which can
be executed at any Exception level.

• Excludes APSR and CPSR access instructions.

• Excludes instructions for accessing banked registers for the current mode.

These instructions are:

• MRS <banked_reg>, MSR <banked_reg>.

Note

This does not apply to cases which are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Non-debug state in the current mode.

• MRC, MCR.

Note

This includes all allocated System registers in the (coproc==0b111x) encoding space other
than an MRC move to APSR_nzcv.

• MRS SPSR, MSR SPSR_fsxc (register).

• VMRS <vfp_system_reg>, VMSR <vfp_system_reg>.

Note

This includes all allocated Advanced SIMD and floating-point System registers, other than
an a VMRS move to APSR_nzcv.

Floating-point moves between a SIMD&FP register and a general-purpose register

These instructions are:

• VMOV (between a general-purpose register and a single-precision register).

• VMOV (between a general-purpose register and a doubleword floating-point register).

SIMD moves between a SIMD&FP register and a general-purpose register

These instructions are:

• VMOV (between a general-purpose register and a scalar).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12682
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Barriers These instructions are:

• CSDB.

• DMB.

• DSB.

• ISB.

• PSSBB.

• SSBB.

• When FEAT_RAS is implemented, ESB.

• When FEAT_SB is implemented, SB.

Memory access instructions at various access sizes

The following constraints apply:

• General purpose-registers only.

• One of the following addressing modes:

— Immediate (8-bit or 12-bit) offset.

— Immediate (8-bit) post-indexed.

— Immediate (8-bit) pre-indexed.

— Unprivileged (8-bit).

• Not literal.

• One of the following types:

— (Single) register.

— Dual.

— Exclusive.

— Exclusive doubleword.

— Acquire/Release.

— Acquire/Release Exclusive.

— Acquire/Release Exclusive doubleword.

These instructions are:

• LDR.W, LDRB.W, LDRH.W, LDRD, LDRSB.W, LDRSH.W (immediate, not literal).

• LDRT, LDRBT, LDRHT, LDRSBT, LDRSHT (immediate).

• LDREX, LDREXB, LDREXH, LDA, LDAB, LDAH, LDAEX, LDAEXB, LDAEXH.

• LDREXD, LDAEXD.

• STR.W, STRB.W, STRH.W, STRD (immediate).

• STRT, STRBT, STRHT (immediate).

• STREX, STREXB, STREXH, STL, STLB, STLH, STLEX, STLEXB, STLEXH.

• STREXD, STLEXD.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12683
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Move to general-purpose register

These instructions are:

• MOVW, MOVT (immediate).

System instructions, Send Event, NOP, and Clear Exclusive

The System instructions are Cache maintenance instructions, TLB maintenance instructions, and
Address translation instructions. These are encoded in the (coproc==0b1111) System register
encoding space.

These instructions are:

• ICIALLU, ICIALLUIS, ICIMVAU.

• DCCIMVAC, DCCISW, DCCMVAC, DCCMVAU, DCCSW, DCIMVAC, DCISW.

• TLBIALL, TLBIALLH, TLBIALLHIS, TLBIALLIS, TLBIALLNSNH,
TLBIALLNSNHIS, TLBIASID, TLBIASIDIS, TLBIIPAS2, TLBIIPAS2IS, TLBIIPAS2L,
TLBIIPAS2LIS, TLBIMVA, TLBIMVAA, TLBIMVAAIS, TLBIMVAAL, TLBIMVAALIS,
TLBIMVAH, TLBIMVAHIS, TLBIMVAIS, TLBIMVAL, TLBIMVALH, TLBIMVALHIS,
TLBIMVALIS.

• ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, ATS12NSOUW, ATS1CPR, ATS1CPW.
ATS1CUR, ATS1CUW, ATS1HR, ATS1HW.

• BPIALL, BPIALLIS, BPIMVA.

• SEV.W, SEVL.W.

• NOP.W.

• CLREX.

H2.4.2.2.3 T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state

This subsection describes all instruction not listed in either:

• T32 instructions that are changed in Debug state.

• T32 instructions that are unchanged in Debug state.

These instructions are CONSTRAINED UNPREDICTABLE in Debug state. In general, the permissible behaviors are:

• The instruction generates an Undefined Instruction exception.

• The instruction executes as a NOP.

• If the instruction reads the PC or PSTATE, it uses an UNKNOWN value.

• If the instruction modifies the PC or PSTATE, other than by advancing the PC to the sequentially next
instruction, it sets DLR, DSPSR, and if FEAT_Debugv8p9 is implemented, DSPSR2, to UNKNOWN values.

• If the instruction is similar to a Debug state instruction, it executes as that Debug state instruction.

• The instruction has the same behavior as in Non-debug state.

The following list shows the permissible behaviors for T32 instruction in Debug state. An instruction might appear
multiple times in the list, in which case the choice of permissible behaviors is any of those listed.

Exception-generating instructions

These instructions are:

• SVC.

• HVC.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12684
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• SMC.

• UDF.

• BKPT.

• HLT.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• SVC behaves as DCPS1.

• HVC behaves as DCPS2.

• SMC behaves as DCPS3.

• They generate the exception the instruction would generate in Non-debug state. The
exception is taken as described in Exceptions in Debug state.

Note

SMC must not generate a Secure Monitor Call exception if EDSCR.SDD is 1.

Instructions that explicitly write to the PC (branches)

These instructions are:

• B, B (conditional), CBZ, CBNZ BL.

• BX, BLX (register or immediate).

• BXJ, TBB, TBH.

• MOV pc and related instructions.

• LDR pc, LDM (with a register list includes the PC), POP (with a register list that includes the PC).

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching and set DLR, DSPSR, and if
FEAT_Debugv8p9 is implemented, DSPSR2, to UNKNOWN values.

Exception return and related instructions, other than ERET

These instructions are:

• SRS, RFE, SUBS pc, 1r, and related instructions.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state without branching, setting DLR, DSPSR, and if
FEAT_Debugv8p9 is implemented, DSPSR2, to UNKNOWN values, and either:

— Execute the DRPS operation instead of performing an exception return, using UNKNOWN
SPSR values.

— Not changing Exception level or PE mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12685
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Instructions that request entry to a low-power state

These instructions are:

• WFE, WFI, WFET, WFIT

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They generate a synchronous exception if the corresponding instruction would be trapped in
Non-debug state. See Configurable instruction controls.

• A WFE instruction is permitted to clear the Event register if it is set.

Note

This means that these instructions must not suspend execution.

Instructions that read the PC

These instructions are:

• LDR (literal), LDRB (literal), LDRH (literal), LDRSB (literal), LDRSH (literal).

• ADR, ADRL, ADRH.

• PLD (literal), PLI (literal).

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state using an UNKNOWN value for the PC operand.

Instructions that explicitly modify PSTATE, other than DCPS and ERET

These instructions are:

• CMP, TST, TEQ, CMN.

• <opc>S.

• MRC p14,0,APSR_nzcv,c0,c1,0 (accessing DBGDSCRint).

• CPS, SETEND, IT.

• MSR CPSR (immediate), MSR CPSR (register), MSR APSR (immediate), MSR APSR (register).

• VMRS APSR_nzcv,FPSCR.

• QADD, QDADD, QSUB, QDSUB.

• SMLABB, SMLABT, SMLATB, SMLATT, SMLAD, SMLAWB, SMLAWT, SMLSD, SMUAD.

• SSAT, SSAT16, USAT, USAT16.

• SADD, SADD8, SADD16, SASX, SSAX, SSUB, SSUB8, SSUB16.

• UADD, UADD8, UADD16, UASX, USAX, USAUB, USUN8, USUB16.

• When FEAT_PAN is implemented, SETPAN.

These instructions behave in one of the following ways:

• They are UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12686
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• They execute as a NOP.

• They execute as in Non-debug state, setting DLR, DSPSR, and if FEAT_Debugv8p9 is
implemented, DSPSR2, to UNKNOWN values.

Instructions that read PSTATE.{N, Z, C, V} or other PSTATE fields

These instructions are:

• SEL, VSEL.

• ADC, SBC, all instructions with an RRX shift.

• MRS CPSR.

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They execute as in Non-debug state:

— For the conditional operations and those using the PSTATE.C flag as an input, these
instructions use an UNKNOWN value for the Condition flag.

— For the MRS instruction, they return an UNKNOWN value.

All other instructions

These instructions behave in one of the following ways:

• They are UNDEFINED.

• They execute as a NOP.

• They have the same behavior as in Non-debug state.

Note

This includes instructions defined as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
Non-debug state. These instructions are CONSTRAINED UNPREDICTABLE in Debug state. This
includes some T32 instructions that specify R15 as a destination or source register.

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors describes the
CONSTRAINED UNPREDICTABLE behavior for these instructions. In Debug state these CONSTRAINED
UNPREDICTABLE choices are further restricted:

• Instructions that specify R15 as a destination register:

— Are not permitted to branch, because the architecture does not define a branch
operation in Debug state.

— Might set DLR, DSPSR, and if FEAT_Debugv8p9 is implemented, DSPSR2, to
UNKNOWN values.

— Might have any of the other permitted behaviors.

• Instructions that specify R15 as a source operand:

— Cannot use PC + offset, because there is no architecturally-defined PC in Debug state.

— Might have any of the other permitted behaviors, including using an UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12687
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.3 Decode tables

The syntax in the tables is defined as follows:

1 The bit has a fixed value of 1.

0 The bit has a fixed value of 0.

!= The field has any value other than the value or values specified. The field might be an encoding field
in the instruction whose value is supplied by the debugger.

Note

The instruction encodings in Chapter C6 A64 Base Instruction Descriptions and Chapter F5 T32 and A32 Base
Instruction Set Instruction Descriptions might show these bits as (0) or (1). A debugger must set these bits to 0 or
1, as appropriate.

Any other value indicates an encoding field in the instruction whose value is supplied by the debugger. Some values
might be reserved or UNDEFINED, in which case the instruction is UNDEFINED or CONSTRAINED UNPREDICTABLE in
Debug state, as it is in Non-debug state.

For more information about the instruction encodings, see:

• Chapter C6 A64 Base Instruction Descriptions.

• Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions.

For information about the syntax used in Table H2-2, Table H2-3, Table H2-4, and Table H2-5, see:

• Common syntax terms.

• Assembler symbols.

Table H2-2 shows the A64 instructions that are modified in Debug state. For details of how these are packed in the
EDITR, see the register description.

Table H2-3 shows the T32 instructions that are modified in Debug state, with the first halfword on the left side and
the second halfword on the right side. For details of how these are packed in the EDITR, see the register description.

Table H2-2 Modified A64 instructions in Debug state

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Description

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 !=00 DCPS<opt>

1 1 0 1 0 1 0 1 0 0 L 1 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 Rt MRS|MSR accessing

DSPSR_EL0

1 1 0 1 0 1 0 1 0 0 L 1 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 Rt MRS|MSR accessing

DLR_EL0

1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 DRPS

0 0 1 0 0 1 0 1 size 0 imm5 1 0 0 Pg Zn 1 Pd CMPNE (immediate)

1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 off3 0 0 1 1 1 1 1 Rt MOVT (scalar to
table)

1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 off3 0 0 1 1 1 1 1 Rt MOVT (table to
scalar)

Table H2-3 Modified T32 instructions in Debug state

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Description

1 1 1 0 1 1 1 0 0 1 1 L 0 1 0 0 !=1111 1 1 1 1 0 0 0 1 0 1 0 1 MRC|MCR accessing DSPSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12688
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Table H2-4 lists the A64 instructions that are unchanged in Debug state, other than some unallocated and
UNDEFINED instructions.

1 1 1 0 1 1 1 0 0 1 1 L 0 1 0 0 !=1111 1 1 1 1 0 0 1 1 0 1 0 1 MRC|MCR accessing DLR

1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 ERET

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 !=00 DCPS<opt>

Table H2-3 Modified T32 instructions in Debug state (continued)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Description

Table H2-4 A64 instructions that are unchanged in Debug state

31302928272625242322212019181716151413121110987 6 5 43210Description

0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 imm6 Rd RDVL

0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 imm6 Rd RDSVL

0 0 0 0 0 1 0 1 0 0 1 imm8h 0 0 0 imm8l Zm Zdn EXT

0 0 0 0 0 1 0 1 0 0 0 1 Pg 0 0 0 imm8 Zd CPY (immediate, zeroing)

0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Zd DUP (scalar)

0 0 0 0 0 1 0 1 size 1 0 0 1 0 0 0 0 1 1 1 0 Rm Zdn INSR (scalar)

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 Rd MOV <Rn>,SP

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn 11 1 1 1MOV SP,<Rn>

0 0 0 1 1 0 0 1 A R 1 Rt2 0 0 0 1 0 0 Rn Rt LDCLRP

0 0 0 1 1 0 0 1 A R 1 Rt2 0 0 1 1 0 0 Rn Rt LDSETP

0 0 0 1 1 0 0 1 A R 1 Rt2 1 0 0 0 0 0 Rn Rt SWPP

0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 Pd RDFFR (unpredicated)

0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 Pn 00 0 0 0WRFFR

0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0Pd PTRUE

1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd PACGA

sf !=01 1 0 0 1 0 1 hw imm16 Rd MOVN, MOVK, MOVZ

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 00 0 00 GCSB

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 11 1 1 1NOP

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 11 1 1 1 CLRBHB

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 L 11 1 11 SEV, SEVL

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 11 1 11 XPACLRI

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 op2 11 1 11 PAC(IA|IB)1716, AUT(IA|IB)1716

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 !=010 11 1 11 CSDB, ESB, PSB

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 11 1 11 If FEAT_TRBE is implemented, TSB

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 op2 11 1 11 PAC(IA|IB)(Z|SP), AUT(IA|IB)(Z|SP)

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 11 1 11 CHKFEAT

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 11 1 11 CLREX

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 option 1 op2 11 1 11 DSB, DMB, ISB, SB, SSBB, PSSBB

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 Rt COSP

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 Rt GCSPUSHX

1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 Rt GCSPOPX

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 Rt GCSSS1

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 Rt GCSPUSHM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12689
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt IC, DC, TLBI, TLBIP, AT

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 Rn Rt GCSSTR

1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 Rn Rt GCSSTTR

1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 Rt GCSPOPM

1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 Rt GCSSS2

1 1 0 1 0 1 0 1 0 0 L 1 0 op1 CRn CRm op2 Rt MRS|MSR accessing System register

1 1 0 1 0 1 0 1 0 0 L 1 1 op1 !=0100 CRm op2 Rt MRS|MSR accessing System register

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 x 0 0 0 11 1 1 1If FEAT_EBEP is implemented, MRS|MSR PM
(immediate)

1 1 0 1 0 1 0 1 0 0 0 1 o0 op1 CRn CRm op2 Rt If FEAT_EBEP is implemented, MRS|MSR PM (register)

1 1 0 1 0 1 0 1 0 0 L 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 Rt MRS|MSR SVCR

1 1 0 1 0 1 0 1 0 0 L 1 1 op1 0 1 0 0 !=0010 op2 Rt MRS|MSR accessing Special-purpose register

1 1 0 1 0 1 0 1 0 1 L 1 0 op1 CRn CRm op2 Rt MRRS|MSRR

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 11 1 1 1 If FEAT_PAuth is implemented, RETAA, RETAB

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 11 1 1 1 If FEAT_PAuth is implemented, ERETAA, ERETAB

1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 M Rn Rm If FEAT_PAuth is implemented, BRAA, BRAB

1 1 0 1 0 1 1 Z 0 0 1 1 1 1 1 1 0 0 0 0 1 M Rn Rm If FEAT_PAuth is implemented, BLRAA, BLRAB, BLRAAZ,
BLRABZ

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 opc Rn Rd PAC(IA|IB|DA|DB), AUT(IA|IB|DA|DB)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 opc 1 1 1 1 1 Rd PAC(IZA|IZB|DZA|DZB), AUT(IZA|IZB|DZA|DZB)

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 op 1 1 1 1 1 Rd XPAC(I|D)

size 0 0 1 0 0 0 o2 L 0 Rs o0 Rt2 Rn Rt LD(A|LA|X|AX)R{B|H},
ST(L|LL|X|LX)R{B|H},
 CAS{A|L|AL}{B|H}

size 0 0 1 0 0 0 o2 L 1 Rs o0 Rt2 Rn Rt LD{A}XP, ST{L}XP, CASP{A|L|AL}

0 x 0 1 1 0 0 1 opc 0 imm9 0 0 Rn Rt LDAPUR(B|H|SB|SH), STLUR(B|H)

1 0 0 1 1 0 0 1 !=11 0 imm9 0 0 Rn Rt LDAPUR{SW}, STLUR

1 1 0 1 1 0 0 1 !=1x 0 imm9 0 0 Rn Rt LDAPUR, STLUR

0 x 1 1 1 0 0 0 opc 0 imm9 0 0 Rn Rt LDUR(B|H|SB|SH),STUR(B|H)

1 0 1 1 1 0 0 0 !=11 0 imm9 0 0 Rn Rt LDUR{SW},STUR

1 1 1 1 1 0 0 0 !=1x 0 imm9 0 0 Rn Rt LDUR,STUR

size 1 1 1 0 0 0 opc 0 imm9 1 0 Rn Rt LDTR{B|H|SB|SH|SW}, STTR{B|H}

size 1 1 1 0 0 0 opc 0 imm9 P 1 Rn Rt LDR{B|H|SB|SH|SW}, STR{B|H}

size 1 1 1 0 0 0 A R 1 Rs 0 opc 0 0 Rn Rt LD<op>{A|L|AL}{B|H},
ST<op>{A|L|AL}{B|H}

size 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt SWP{A|L|AL}{B|H}

size 1 1 1 0 0 0 1 0 1 Rs 1 1 0 0 0 0 Rn Rt LDAPR{B|H}

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd INS <Vd>.<Ts>[<index>],<R><n>

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 1 1 1 Rn Rd UMOV <R><d>,<Vn>.<Ts>[<index>]

0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Sd>,<Wn>, FMOV <Wd>,<Sn>

0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Hd>, <Wn>, FMOV <Wd>, <Hn>

0 S 0 1 1 0 0 1 A R 1 Rs 0 0 0 0 1 x Rn Rt RCW{S}CAS{P}{A|L|AL}

Table H2-4 A64 instructions that are unchanged in Debug state (continued)

31302928272625242322212019181716151413121110987 6 5 43210Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12690
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Table H2-5 lists the T32 instructions that are unchanged in Debug state, other than some unallocated and UNDEFINED
instructions. It shows the T32 instructions with the first halfword on the left side and the second halfword on the
right side.

0 S 0 1 1 0 0 1 A R 1 Rt2 1 0 1 0 0 0 Rn Rt RCW{S}SWPP{A|L|AL}

0 S 0 1 1 0 0 1 A R 1 Rt2 1 0 x 1 0 0 Rn Rt RCW{S}(CLRP|SETP){A|L|AL}

0 x 1 1 1 0 0 0 A R 1 Rs 1 0 1 0 0 0 Rn Rt RCW{S}SWP{A|L|AL}

0 x 1 1 1 0 0 0 A R 1 Rs 1 0 x 1 0 0 Rn Rt RCW{S}(CLR|SET){A|L|AL}

1 0 0 1 1 1 1 0 ft 1 1 0 0 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Dd|Hd>,<Xn>, FMOV <Xd>,<Dn|Hn>

1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 op 0 0 0 0 0 0 Rn Rd FMOV <Vd>.D[1],<Xn>

FMOV <Xd>,<Vn>.D[1]

1 0 0 1 0 0 0 1 1 0 uimm6 (0)(0) uimm4 Xn Xd ADDG <Xd|SP>, <XN|SP>, #<uimm6>, #<uimm4>

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Q V Rs Pg Zn 0 off4 MOVA (vector to tile, single)

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 Q V Rs Pg 0 off4 Zd MOVA (tile to vector, single)

1 1 0 1 1 0 0 1 0 0 1 imm9 1 0 Xn Xd STG <Xt|SP>, [<Xn|SP>{, #<simm}], Signed offset

1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xd STGM <Xt>, [<Xt|SP>]

1 1 0 1 1 0 0 1 1 0 1 imm9 1 0 Xn Xd ST2G <Xt|>, [Xt|SP>{, #<simm>}] Signed offset

1 1 0 1 1 0 0 1 0 1 1 imm9 1 0 Xn Xd STZG <XT|SP>, [<Xn|SP{. #<simm>}] Signed offset

1 1 0 1 1 0 0 1 1 1 1 imm9 1 0 Xn Xd STZ2G <XT|SP>, [<Xn|SP{. #<simm>}] Signed offset

1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xd STZGM, <Xt>, [Xn|SP>]

0 1 1 0 1 0 0 1 0 0 simm7 Xt2 Xn Xt STGP <xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] Signed offset

1 1 0 1 0 0 0 1 1 0 uimm6 op3 uimm4 Xn Xd SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

1 1 0 1 1 0 0 1 0 1 1 imm9 0 0 Xn Xd LDG <Xt>, [<Xn|SP>{, #<simm>}]

1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xd LDGM <Xt>,[<Xn|SP>]

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 Rn Rt ST64B <Xt>, [<Xn|SP> {,#0}]

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 0 0 0 Rn Rt ST64BV0 <Xs>, <Xt>, [<Xn|SP>]

1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 1 0 0 Rn Rt ST64BV <Xs>, <Xt>, [<Xn|SP>]

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Rn Rt LD64B <Xt>, [<Xn|SP> {,#0}]

Table H2-4 A64 instructions that are unchanged in Debug state (continued)

31302928272625242322212019181716151413121110987 6 5 43210Description

Table H2-5 T32 instructions that are unchanged in Debug state

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10Description

1 1 1 0 1 1 0 0 0 1 0 op !=1111 !=1111 1 0 1 1 0 0 M 1 Vm VMOV <Dm>,<Rt>,<Rt2>

VMOV <Rt>,<Rt2>,<Dm>

1 1 1 0 1 1 1 0 0 0 0 op Vn !=1111 1 0 1 0 N 0 0 1 0 0 0 0VMOV <Sn>,<Rt>, VMOV <Rt>,<Sn>

1 1 1 0 1 1 1 0 0 opc 0 Vd !=1111 1 0 1 1 D opc2 1 0 0 0 0VMOV.<size> <Dd>[<x>],<Rt>

1 1 1 0 1 1 1 0 U opc 1 Vn !=1111 1 0 1 1 D opc2 1 0 0 0 0VMOV.<dt> <Rt>,<Dd>[<x>]

1 1 1 0 1 1 1 0 1 1 1 op reg !=1111 1 0 1 0 0 0 0 1 0 0 0 0VMRS, VMSR

1 1 1 0 1 1 0 0 0 1 0 op !=1111 !=1111 1 1 1 cp opc1 CRm MCRR|MRRC accessing System registers

1 1 1 0 1 1 1 0 opc1 op CRn !=1111 1 1 1 cp opc2 1 CRm MCR|MRC accessing System registers

1 1 1 0 1 0 0 0 0 1 0 L !=1111 !=1111 Rd imm8 LDREX, STREX

1 1 1 0 1 0 0 0 1 1 0 L !=1111 !=1111 Rt2 0 1 !=10Rd LDREX(B|H|D), STREX(B|H|D)

1 1 1 0 1 0 0 0 1 1 0 L !=1111 !=1111 Rt2 1 op3 Rd LDA{EX}{B|H|D}, STL{EX}{B|H|D}
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12691
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
1 1 1 0 1 0 0 !=0x10

!=xx0x

L !=1111 !=1111 !=1111 imm8 LDRD, STRD

1 1 1 1 0 i 1 0 T 1 0 0 imm4 0 imm3 !=1111 imm8 MOVW, MOVT

1 1 1 1 0 0 1 1 1 0 0 R !=1111 1 0 0 0 M1 0 0 1 M0 0 0 0MSR <spec_reg><mode>,<Rn>

1 1 1 1 0 0 1 1 1 0 0 1 !=1111 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0MSR SPSR, <Rn>

1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0NOP.W

1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0LSEV.W, SEVL.W

1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 op0 0ESB, CSDB

1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1CLREX

1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 op option DSB, DMB, ISB, SSBB, PSSBB, SB

1 1 1 1 0 0 1 1 1 1 1 R M1 1 0 0 0 !=1111 0 0 1 M0 0 0 0MRS <Rd>,<spec_reg><mode>

1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 !=1111 0 0 0 0 0 0 0 0MRS <Rd>,SPSR

1 1 1 1 1 0 0 0 1 !=11 0 !=1111 !=1111 imm12 STR{B|H}.W (12-bit immediate)

1 1 1 1 1 0 0 0 0 !=11 0 !=1111 !=1111 1 !=000 imm8 STR{B|H|}{T} (8-bit immediate)

1 1 1 1 1 0 0 S 1 !=11 1 !=1111 !=1111 imm12 LDR{SB|SH|B|H}.W (12-bit immediate)

1 1 1 1 1 0 0 S 0 !=11 1 !=1111 !=1111 1 !=000 imm8 LDR{SB|SH|B|H}{T} (8-bit immediate)

Table H2-5 T32 instructions that are unchanged in Debug state (continued)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12692
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.4 Security in Debug state

If EL3 is implemented or the implemented Security state is Secure state, security in Debug state is governed by
EDSCR.SDD.

On entry to Debug state

If FEAT_RME is implemented, EDSCR.SDD is the EL3 debug disabled flag. If entering Debug
state from EL3, EDSCR.SDD is set to 0. Otherwise:

• If ExternalRootInvasiveDebugEnabled() == TRUE, EDSCR.SDD is set to 0.

• If ExternalRootInvasiveDebugEnabled() == FALSE, EDSCR.SDD is set to 1.

If FEAT_RME is not implemented, EDSCR.SDD is the Secure debug disabled flag. If entering
Debug state from Secure state, EDSCR.SDD is set to 0. Otherwise:

• If ExternalSecureInvasiveDebugEnabled() == TRUE, EDSCR.SDD is set to 0.

• If ExternalSecureInvasiveDebugEnabled() == FALSE, EDSCR.SDD is set to 1.

Note

If halting is prohibited in a Security state, it is not possible to enter Debug state from that Security
state. However, because changes to the authentication signals require a Context Synchronization
event to guarantee their effect, there is a period during which the PE might halt even though the
authentication signals prohibit halting.

In Debug state

The value of EDSCR.SDD does not change, even if ExternalRootInvasiveDebugEnabled() or
ExternalSecureInvasiveDebugEnabled() changes.

Note

• DBGAUTHSTATUS_EL1 is not frozen in Debug state. However, a Context Synchronization
event is required to guarantee that changes are visible in DBGAUTHSTATUS_EL1.

• If EDSCR.SDD is 1 in Debug state, there is no means to enter a Security state where halting
was prohibited on entry to Debug state. This means that it is not possible for the PE to be in
such a Security state when EDSCR.SDD is 1. This is a general principle of behavior in Debug
state.

In Non-debug state

If FEAT_RME is implemented, then EDSCR.SDD returns the inverse of
ExternalRootInvasiveDebugEnabled().

If FEAT_RME is not implemented, then EDSCR.SDD returns the inverse of
ExternalSecureInvasiveDebugEnabled(). If the authentication signals that control
ExternalRootInvasiveDebugEnabled() or ExternalSecureInvasiveDebugEnabled() change, a Context
Synchronization event is required to guarantee their effect.

Note

• In Non-debug state, EDSCR.SDD is unaffected by the Security state of the PE.

• A Context Synchronization event is also required to guarantee that changes in the
authentication signals are visible in DBGAUTHSTATUS_EL1.

If EL3 is not implemented and the implemented Security state is Non-Secure state, EDSCR.SDD is RES1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12693
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.5 Privilege in Debug state

The only additional privileges offered to Debug state are:

• The privilege to execute Debug state operations, DCPS, DRPS, MRS, MSR.

• The privilege to execute DTR access instructions regardless of the Exception level and traps.

The DTR access instructions can be executed at any Exception level, including EL0, regardless of any control
register settings that might force these instructions to be UNDEFINED or trapped in Non-debug state. These
instruction are:

• The MRS and MSR instructions that access DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0 in
AArch64 state.

• The MRC and MCR instructions that access DBGDTRTXint and DBGDTRRXint in AArch32 state.

All other instructions operate with the privilege determined by the current Exception level and Security state. This
applies to all Special-purpose and System registers accesses, memory accesses, and UNDEFINED instructions, and
includes generating exceptions when the System registers trap or disable an instruction.

H2.4.6 Debug state operations, DCPS, DRPS, MRS, MSR

The architecture defines operations to change between Exception levels in Debug state. These operations can also
change the mode at the current Exception level.

H2.4.6.1 DCPS<n>

Executing a DCPS<n> instruction in Debug state moves the PE to a higher Exception level or to a specific mode at
the current Exception level.

If the DCPS<n> instruction is executed in AArch32 state and the target Exception level is using AArch64:

• The current instruction set switches from T32 to A64.

• The effect on registers that are not visible or only partially visible in AArch32 state is the same as for system
calls in Non-debug state. See Execution state.

Otherwise, the instruction set state does not change.

If the target Exception level is the same as the current Exception level, then the PE does not change Exception level.
However, the PE might change mode.

The effect on endianness is the same as for exceptions and exception returns in Non-debug state:

• In AArch64 state the current endianness is determined by the value of SCTLR_ELx.EE for the target
Exception level.

• In AArch32 state the current endianness is determined by the value of SCTLR.EE or HSCTLR.EE for the
target Exception level.

The DCPS<n> instructions are:

In AArch64 state

• DCPS1

• DCPS2

• DCPS3

In AArch32 state, in the T32 instruction set only

• DCPS1

• DCPS2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12694
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• DCPS3

The DCPS instructions are UNDEFINED in Non-debug state.

Table H2-6 shows the target of the instruction. In Table H2-6, the entries have the following meaning:

EL1h/Svc This means that the target is:

• EL1h if EL1 is using AArch64.

• EL1 and Supervisor mode if EL1 is using AArch32.

EL2h/Hyp This means that the target is:

• EL2h if EL2 is using AArch64.

• EL2 and Hyp mode if EL2 is using AArch32.

EL3h/Monitor This means that the target is:

• EL3h if EL3 is using AArch64.

• EL3 and Monitor mode if EL3 is using AArch32.

Svc Secure Supervisor mode, in EL3 using AArch32.

Monitor Secure Monitor mode, in EL3 using AArch32.

 In AArch32 Monitor mode, DCPS1 and DCPS3 clear SCR.NS to 0.

Note

In AArch64 state, at EL3, DCPS<n> does not change SCR_EL3.NS.

However:

• DCPS1 is UNDEFINED at EL0 if either:

— EL2 is implemented and enabled in the current Security state, and is using AArch64 and
HCR_EL2.TGE == 1.

— In Non-secure state, EL2 is implemented and using AArch32 and HCR.TGE == 1.

• DCPS2 is UNDEFINED at all Exception levels if EL2 is not implemented.

• DCPS2 is UNDEFINED at the following Exception levels if EL2 is implemented:

— At EL0 and EL1 in Secure state if EL2 is disabled in the current Security state.

— At EL3 if EL3 is using AArch32.

Table H2-6 Target for DCPS instructions in Debug state

Instruction Target when DCPS instruction executed at stated Exception level:

EL0 EL1 EL2 EL3 (AArch64) EL3 (AArch32)

DCPS1 EL1h/Svc EL1h/Svc EL2h/Hyp EL3h Svc, clears SCR.NS to 0

DCPS2 EL2h/Hyp EL2h/Hyp EL2h/Hyp EL3h UNDEFINED

DCPS3 EL3h/Monitor EL3h/Monitor EL3h/Monitor EL3h Monitor, clears SCR.NS to 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12695
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• DCPS3 is UNDEFINED at all Exception levels if either:

— EDSCR.SDD == 1.

— EL3 is not implemented.

Note

The references to DCPS1, DCPS2, and DCPS3 in this section link to the descriptions of the instructions in the A64
instruction set. The DCPS<n> instructions are also defined in the T32 instruction set, see DCPS1, DCPS2, DCPS3. These
instructions are not defined in the A32 instruction set, because A32 instructions cannot be executed in Debug state.

On executing a DCPS instruction:

• If the target Exception level is using AArch64:

— ELR_ELx of the target Exception level becomes UNKNOWN.

— SPSR_ELx of the target Exception level becomes UNKNOWN.

— ESR_ELx of the target Exception level becomes UNKNOWN.

— DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• If the target Exception level is using AArch32, DLR, DSPSR, and if FEAT_Debugv8p9 is implemented,
DSPSR2, become UNKNOWN and:

— If the target Exception level is EL1 or EL3, the LR and SPSR of the target mode become UNKNOWN.

— If the target Exception level is EL2, then ELR_hyp, SPSR_hyp, and HSR become UNKNOWN.

If the target Exception level is using AArch32, and the target Exception level is EL1 or EL3, the LR and SPSR of
the target mode become UNKNOWN.

If FEAT_SSBS is implemented, the DCPS<n> instruction leaves the PSTATE.SSBS bit UNKNOWN.

The DCPSInstruction() function is described in Chapter J1 Armv8 Pseudocode.

H2.4.6.2 DRPS

Executing the DRPS operation in Debug state moves the PE to a lower Exception level, or to another PE mode at
the current Exception level, by copying the current SPSR to PSTATE.

If DRPS is executed in AArch64 state and the target Exception level is using AArch32:

• The current instruction set switches from A64 to T32.

• The effect on registers that are not visible or only partially visible in AArch32 state is the same as for
exception returns in Non-debug state. See Execution state.

Otherwise, the instruction set state does not change.

If the target Exception level is the same as the current Exception level, then the PE does not change Exception level.
However, the PE might change mode.

The effect on endianness is the same as for exceptions and exception returns in Non-debug state:

• If targeting an Exception level using AArch64, current endianness is set according to SCTLR_ELx.EE, or
SCTLR_EL1.E0E for the target Exception level.

• If targeting an Exception level using AArch32, current endianness is set by SPSR.E as appropriate.

The DRPS instructions are:

In AArch64 state

• DRPS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12696
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
In AArch32 state, in the T32 instruction set only

• ERET

If the SPSR specifies an illegal exception return, then PSTATE.{M, nRW, EL, SP} are unchanged and PSTATE.IL
is set to 1. For further information on illegal exception returns, see Illegal exception returns from AArch64 state.

Some PSTATE fields are ignored in Debug state. The effect of the DRPS operation on them is to set them to an
UNKNOWN value that might be the value from the SPSR. For more information, see PSTATE in Debug state.

All other PSTATE fields are copied from SPSR.

DRPS is UNDEFINED at EL0 and in Non-debug state.

Note

Unlike an exception return, the DRPS operation has no architecturally-defined effect on the Event Register and
Exclusives monitors. DRPS might set the Event Register or clear the Exclusives monitors, or both, but this is not a
requirement and debuggers must not rely on any implementation specific behavior.

On executing a DRPS instruction:

• If the target Exception level is using AArch64, then DLR_EL0 and DSPSR_EL0 become UNKNOWN.

• If the target Exception level is using AArch32, then DLR, DSPSR, and if FEAT_Debugv8p9 is implemented,
DSPSR2, become UNKNOWN.

The DRPSInstruction() function is described in Chapter J1 Armv8 Pseudocode.

H2.4.6.3 MRS and MSR

The other Debug state instructions are used to read or write DLR_EL0 and DSPSR_EL0.

These instructions are:

In AArch64 state

• MRS

• MSR (register)

MRS <Xt>, DLR_EL0 ; Copy DLR_EL0 to <Xt>
MRS <Xt>, DSPSR_EL0 ; Copy DSPSR_EL0 to <Xt>
MSR DLR_EL0, <Xt> ; Copy <Xt> to DLR_EL0
MSR DSPSR_EL0, <Xt> ; Copy <Xt> to DSPSR_EL0

In AArch32 state

• MRC

• MCR

MRC <Rn>, DLR ; Copy DLR to <Rn>
MRC <Rn>, DSPSR ; Copy DSPSR to <Rn>
MCR DLR, <Rn> ; Copy <Rn> to DLR
MCR DSPSR, <Rn> ; Copy <Rn> to DSPSR

If FEAT_Debugv8p9 is implemented:

MRC <Rn>, DSPSR2 ; Copy DSPSR2 to <Rn>
MCR DSPSR2, <Rn> ; Copy <Rn> to DSPSR2

These instructions can be executed at any Exception level when in Debug state, including EL0. They are UNDEFINED
in Non-debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12697
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.7 Exceptions in Debug state

The following sections describe how exceptions are handled in Debug state:

• Generating exceptions when in Debug state.

• Taking exceptions when in Debug state.

• Reset in Debug state.

H2.4.7.1 Generating exceptions when in Debug state

In Debug state:

• Instruction Abort exceptions cannot happen because instructions are not fetched from memory.

• Interrupts, including SError and virtual interrupts are ignored and remain pending:

— The pending interrupt remains visible in ISR.

• Debug exceptions and debug events are ignored.

• SCR.EA is treated as 0, regardless of its actual state, other than for the purpose of a direct read.

• Any attempt to execute an instruction bit pattern that is an allocated instruction at the current Exception level,
but is listed in Executing instructions in Debug state as UNDEFINED in Debug state, generates an exception.

Note

If the exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

The priority and syndrome for these exceptions is the same as for executing an encoding that does not have
an allocated instruction.

• Instructions executed at EL2, EL1 and EL0 that are configured by EL3 control registers to trap to EL3:

— When the value of EDSCR.SDD is 0, generate the appropriate trap exception that is taken to EL3.

— When the value of EDSCR.SDD is 1, are treated as UNDEFINED and generate an exception.

If the exception is taken to an Exception level using AArch64 or to AArch32 Hyp mode, then it is
reported with an EC value of 0x00.

• If FEAT_RME is implemented and EDSCR.SDD is 1, SCR_EL3.GPF is treated as 0, regardless of its actual
state, other than for the purpose of a direct read.

Otherwise, synchronous exceptions are generated as they would be in Non-debug state and taken to the appropriate
Exception level in Debug state.

Note

If FEAT_RME is implemented and EDSCR.SDD == 1, then exceptions from Non-secure, Secure, and Realm state
are never taken to Root state. If FEAT_RME is not implemented and EDSCR.SDD == 1, then an exception from
Non-secure state is never taken to Secure state. See Security in Debug state.

H2.4.7.2 Taking exceptions when in Debug state

When the PE is in Debug state, all exceptions are synchronous. When an exception is generated, it is taken to Debug
state. This means that:

• The target Exception level is as defined for the exception in Non-debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12698
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• If the target Exception level is using AArch32 then the target PE mode is as defined for the exception in
Non-debug state.

• The exception syndrome is reported as defined for the exception in Non-debug state, except for the case
described in Data Aborts in Memory access mode for which the reporting requirements are relaxed.

The exception syndrome is reported using the syndrome register or registers for the target Exception level.
In AArch64 state, these are ESR_ELx, and FAR_ELx, and if FEAT_RME is implemented, MFAR_EL3. In
AArch32 state, these are DFSR, DFAR, HSR, HDFAR, and HPFAR. For example:

— If a Data Abort exception is taken to Abort mode at EL1 or EL3 and the exception is taken from
AArch32 state and using the Short-descriptor translation table format, the DFSR reports the exception
using the Short-descriptor format fault encoding. For exceptions other than Data Abort exceptions
taken to Abort mode, DFSR is not updated.

— If an instruction is trapped to an Exception level using AArch64 due to a configurable trap, disable, or
enable, the exception code reported is the same as it would be in Non-debug state.

The effect on auxiliary syndrome registers, such as AFSR, is IMPLEMENTATION DEFINED.

Note

Generally, the AArch32 Fault Address Registers (FARs) and Fault Status Registers (FSRs) are not described
as syndrome registers, although the term is appropriate to their function.

• The PE remains in Debug state and changes to the target mode.

• If EL3 is using AArch32 and the exception is taken from Monitor mode, SCR.NS is cleared to 0.

• If the exception is taken to an Exception level using AArch32, the PE continues to execute T32 instructions,
regardless of the TE bit in the System register for the target Exception level.

• The endianness switches to that indicated by the EE bit of the System register for the target Exception level.

• The SPSR for the target Exception level or mode is corrupted and becomes UNKNOWN.

• If the target Exception level is using AArch64, ELR_ELx for the target Exception level becomes UNKNOWN.

• If the target Exception level is EL2 using AArch32, ELR_hyp becomes UNKNOWN.

• If the target Exception level is EL1 or EL3 using AArch32, LR_<mode> for the target mode becomes
UNKNOWN.

• DLR and DSPSR become UNKNOWN.

• The cumulative error flag, EDSCR.ERR, is set to 1. See Cumulative error flag.

• PSTATE.IL is cleared to 0.

• PSTATE.{IT, T, SS, D, A, I, F, ALLINT} are set to UNKNOWN values, and PSTATE.{N, Z, C, V, Q, GE} are
unchanged. However, these fields are ignored and are not observable in Debug state. For more information,
see PSTATE in Debug state.

The debugger must save any state that can be corrupted by an exception before executing an instruction that might
generate another exception.

H2.4.7.3 Pseudocode description of taking exceptions in Debug state

AArch64.TakeException() shows the behavior when the PE takes an exception to an Exception level using AArch64
in Non-debug state. In Debug state, this redirects to AArch64.TakeExceptionInDebugState().

AArch32.EnterMode(), AArch32.EnterHypMode(), and AArch32.EnterMonitorMode() show the behavior when the PE
takes an exception to an Exception level using AArch32 in Non-debug state. In Debug state:

• AArch32.EnterMode() redirects to AArch32.EnterModeInDebugState().
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12699
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
• AArch32.EnterHypMode() redirects to AArch32.EnterHypModeInDebugState().

• AArch32.EnterMonitorMode() redirects to AArch32.EnterMonitorModeInDebugState().

H2.4.7.4 Reset in Debug state

If the PE is reset when in Debug state, it exits Debug state and enters Non-debug reset state. When the PE is in reset
state, EDSCR.STATUS == 0b000010 and writes to EDITR are ignored.

Note

If EDECR.RCE == 1 or CTIDEVCTL.RCE ==1, meaning that a Reset Catch debug event is programmed, and if
halting is allowed on exiting reset state, then on exiting reset state the PE halts and re-enters Debug state. See Reset
Catch debug events. All PE registers have taken their reset values, which might be UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12700
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
H2.4.8 Accessing registers in Debug state

Register accesses are unchanged in Debug state. The view of each register is determined by either the current
Exception level or the mode, or both, and accesses might be disabled or trapped by controls at a higher Exception
level.

H2.4.8.1 General-purpose register access, other than AArch64 state SP access

A single general-purpose register can be read by issuing an MSR instruction through the ITR to write DBGDTR_EL0
in AArch64 state, or an MCR instruction through the ITR to write DBGDTRTXint in AArch32 state. The debugger
can then read the DTR register or registers through the external debug interface. The reverse sequence writes to a
general-purpose register.

Figure H2-1 shows the reading and writing of general-purpose registers, other than SP, in Debug state in AArch64
state.

Figure H2-1 Reading and writing general-purpose registers, other than SP, in Debug state in AArch64 state

DBGDTRTX = D[63:32]

DBGDTRRX = D[31:0]

Sets RXfull to 1

EDITR = MRS Xn, DBGDTR_EL0
Clears RXfull to 0

TXfull == 0

ITE == 1

EDITR = MSR DBGDTR_EL0, Xn
Sets TXfull to 1

DONE

Xn = D[63:0]

START

RXfull == 0

ITE == 1

No

Yes Yes

No

START

D[63:0] = DBGDTRRX

D[31:0] = DBGDTRTX

Clears TXfull to 0

DONE

D[63:0] = Xn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12701
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
Figure H2-2 shows the reading and writing of general-purpose registers in Debug state in AArch32 state.

Figure H2-2 Reading and writing general-purpose registers in Debug state in AArch32 state

H2.4.8.2 SIMD&FP register, System register, and AArch64 state SP accesses

To read a SIMD&FP register or System register, the debugger must first copy the value into a general-purpose
register using:

• An FMOV instruction in AArch64 state or a VMOV instruction in AArch32 state for floating-point transfers to
SIMD and FP registers.

• A UMOV instruction in AArch64 state or a VMOV instruction in AArch32 state for SIMD transfers to SIMD and
FP registers.

• An MRS instruction in AArch64 state or an MRC instruction in AArch32 state for System registers.

• A MOV Xd,SP instruction for the SP register in AArch64 state.

The debugger can then read out the particular general-purpose register. The reverse sequence writes a register.

H2.4.8.3 PC and PSTATE access

The debugger reads the Program Counter and PSTATE of the process being debugged through the DLR_EL0 and
DSPSR_EL0 System registers. The actual values of PC and PSTATE cannot be directly observed in Debug state:

• Instructions that are used for direct reads and writes of PC and PSTATE in Non-debug state are CONSTRAINED
UNPREDICTABLE in Debug state.

• On taking an exception, ELR_ELx and SPSR_ELx at the target Exception level are UNKNOWN. They do not
record the PC and PSTATE.

DBGDTRRX = W[31:0]

Sets RXfull to 1

EDITR = MRC p14, 0, Rn, c0, c5, 0
Clears RXfull to 0

TXfull == 0

ITE == 1

EDITR = MCR p14, 0, Rn, c0, c5, 0
Sets TXfull to 1

W[31:0] = DBGDTRTX

Clears TXfull to 0

DONE

Rn = W[31:0]

START

RXfull == 0

ITE == 1

No

Yes Yes

No

START

DONE

W[31:0] = Rn
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12702
ID032224 Non-Confidential

Debug State
H2.4 Behavior in Debug state
PSTATE.{TCO, UAO, PAN, IL, E, M, nRW, EL, SP} are indirectly read by instructions executed in Debug state,
but all other PSTATE fields are ignored and cannot be observed. See also:

• PSTATE in Debug state.

• Executing instructions in Debug state.

• Exceptions in Debug state.

H2.4.9 Accessing memory in Debug state

How the PE accesses memory is unchanged in Debug state. This includes:

• The operation of the MMU, including address translation, tagged address handling, access permissions,
memory attribute determination, and the operation of any TLBs.

• The operation of any caches and coherency mechanisms.

• Alignment support.

• Endianness support.

• The Memory order model.

H2.4.9.1 Simple memory transfers

Simple memory accesses can be performed in Debug state by issuing memory access instructions through the ITR
and passing data through the DTR registers. Executing instructions in Debug state lists the memory access
instructions that are supported in Debug state.

H2.4.9.2 Bulk memory transfers

Memory access mode can accelerate bulk memory transfers in Debug state. See DCC and ITR access modes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12703
ID032224 Non-Confidential

Debug State
H2.5 Exiting Debug state
H2.5 Exiting Debug state

The PE exits Debug state when it receives a Restart request trigger event. If EDSCR.ITE == 0 the behavior of any
instruction issued through the ITR in Normal access mode or an operation issued by a DTR access in memory access
mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state after the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

Note

• Implementations can set EDSCR.ITE to 1 to indicate that further instructions can be accepted by ITR before
the previous instructions have completed. If any previous instruction has not completed and
EDSCR.ITE == 1, then the PE must complete these instructions in Debug state before executing the restart
sequence. EDSCR.ITE == 0 indicates that the PE is not ready to restart.

• A debugger must observe that any instructions issued through EDITR that might generate a synchronous
exception, as complete, before issuing a restart request. It can do this by observing the completion of a later
instruction, as synchronous exceptions must occur in program order. For example, a debugger can observe
that an instruction that reads or writes a DTR register is complete because of its effect on the
EDSCR.{TXfull, RXfull} flags.

On exiting Debug state, the PE sets the Program Counter to the address in DLR, where:

• If exiting to AArch32 state:

— Bits[31:1] of the PC are set to the value of bits[31:1] of DLR.

— Bit[0] of the PC is set to a CONSTRAINED UNPREDICTABLE choice of 0 or the value of bit[0] in DLR.

• If exiting to AArch64 state:

— Bits[63:56] of DLR_EL0 might be ignored as part of tagged address handling. See Address tagging.

— Otherwise the PC is set from DLR_EL0.

Note

Bits[63:32] of DLR_EL0 are ignored when exiting to AArch32 state.

Exit from Debug state can give rise to a PC alignment fault exception when the Program Counter is used. Unlike an
exception return, this might also happen when returning to AArch32 state. For more information, see PC alignment
checking.

On exiting Debug state, PSTATE is set from DSPSR in the same way that an exception return sets PSTATE from
SPSR_ELx:

• The same illegal exception return checks that apply to an exception return also apply to exiting Debug state.
If the return from Debug state is an illegal exception return then the effect on PSTATE and the PC is the same
as for any other illegal exception return. See Exception return and Exception return to an Exception level
using AArch32.

• The checks on the PSTATE.IT bits that apply to exiting Debug state into AArch32 state are the same as those
that apply to an exception return. See Appendix K1 Architectural Constraints on UNPREDICTABLE
Behaviors.

• PSTATE.SS is copied from DSPSR.SS if all of the following hold:

— MDSCR_EL1.SS == 1.

— The debug target Exception level is using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12704
ID032224 Non-Confidential

Debug State
H2.5 Exiting Debug state
— Software step exceptions from the restart Exception level are enabled.

Otherwise PSTATE.SS is set to 0.

Note

Unlike a return using ERET, PSTATE.SS must be restored from DSPSR.SS because otherwise it is UNKNOWN.

However, if OSDLR.DLK == 1 and DBGPRCR.CORENPDRQ == 0, meaning FEAT_DoubleLock is
implemented and locked in Non-debug state and therefore Software Step exceptions are disabled, but
otherwise Software Step exceptions would be enabled from the restart Exception level, it is CONSTRAINED
UNPREDICTABLE whether PSTATE.SS is copied from DSPSR.SS.

• If FEAT_SSBS is implemented, DSPSR.SSBS is copied to PSTATE.SSBS.

• If FEAT_PAN is implemented, DSPSR.PAN is copied to PSTATE.PAN.

• If FEAT_UAO is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.UAO is copied to
PSTATE.UAO. On exit from Debug state to AArch32 state, PSTATE.UAO is not updated.

• If FEAT_DIT is implemented, on exit from Debug state, DSPSR.DIT is copied to PSTATE.DIT.

• If FEAT_MTE is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.TCO is copied to
PSTATE.TCO. On exit from Debug state to AArch32 state, PSTATE.TCO is not updated.

• If FEAT_BTI is implemented, DSPSR_EL0.BTYPE is copied to PSTATE.BTYPE.

• If FEAT_NMI is implemented, DSPSR_EL0.ALLINT is copied to PSTATE.ALLINT.

• If FEAT_GCS is implemented, DSPSR_EL0.EXLOCK is copied to PSTATE.EXLOCK.

• If FEAT_EBEP is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.PM is copied to
PSTATE.PM. On exit from Debug state to AArch32 state, PSTATE.PM is not updated.

• If FEAT_SEBEP is implemented, and all of the following apply, then PSTATE.PPEND is copied from
DSPSR.PPEND:

— PMU exceptions from the restart Exception level are enabled.

— The PMU exception will be unmasked in Non-debug state after the Debug state exit.

Otherwise, PSTATE.PPEND is set to 0.

Note

• One important difference between Debug state exit and an exception return is that the PE can exit Debug state
at EL0. Despite this, the behavior of an exit from Debug state is similar to an exception return. For example,
PSTATE.{D, A, I, F} is updated regardless of the value of SCTLR_EL1.UMA.

• Exit from Debug state has no architecturally-defined effect on the Event Register and Exclusives monitors.
An exit from Debug state might set the Event Register or clear the Exclusives monitors, or both, but this is
not a requirement and debuggers must not rely on any implementation specific behavior.

The ExitDebugState() function is described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H2-12705
ID032224 Non-Confidential

Chapter H3
Halting Debug Events

This chapter describes a particular class of debug events. It contains the following sections:

• Introduction to Halting debug events.

• Halting Step debug events.

• Halt Instruction debug event.

• Exception Catch debug event.

• External Debug Request debug event.

• OS Unlock Catch debug event.

• Reset Catch debug events.

• Software Access debug event.

• Synchronization and Halting debug events.

Note

Table K17-1 disambiguates the general register references used in this chapter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12706
ID032224 Non-Confidential

Halting Debug Events
H3.1 Introduction to Halting debug events
H3.1 Introduction to Halting debug events

External debug defines Halting debug events. The following Halting debug events are available from the
introduction of Armv8:

• Halting Step debug events.

• Halt Instruction debug event.

• Exception Catch debug event.

• External Debug Request debug event.

• OS Unlock Catch debug event.

• Reset Catch debug events.

• Software Access debug event.

If halting is allowed, a Halting debug event halts the PE. The PE enters Debug state.

In addition, breakpoints and watchpoints might halt the PE if halting is allowed. See Breakpoint and Watchpoint
debug events. Because breakpoints and watchpoints can generate an exception or halt the PE, Breakpoint and
Watchpoint debug events are not classified as Halting debug events.

For a definition of Debug state, see Chapter H2 Debug State. For a definition of halting allowed, see Halting allowed
and halting prohibited.

Debug state entry and debug event prioritization describes the behavior when multiple debug events are generated
by an instruction.

See also Synchronization and Halting debug events.

Table H3-1 shows the behavior of Breakpoint, Watchpoint, and Halting debug events.

Table H3-2 shows where the pseudocode for each Halting debug event type is located.

Table H3-1 Summary of debug events and possible outcomes

Debug event type
PE behavior when halting is:

Allowed Prohibited

Breakpoint and Watchpoint debug events Halt See Table D2-1
and Table G2-1

Halt Instruction debug event Halt UNDEFINED

Software Access debug event Halt Ignored

Exception Catch debug event Halt Ignored or pended

Halting Step debug events Halt Pended

External Debug Request debug event Halt Pended

Reset Catch debug events Halt Pended

OS Unlock Catch debug event Pended Pended
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12707
ID032224 Non-Confidential

Halting Debug Events
H3.1 Introduction to Halting debug events
Table H3-2 Pseudocode description of Halting debug events

Halting debug event type Pseudocode

Halt Instruction debug event HLT for AArch64 and HLT for AArch32

Software Access debug event Pseudocode description of Software Access debug event

Exception Catch debug event Pseudocode description of Exception Catch debug events

Halting Step debug events Pseudocode description of Halting Step debug events

External Debug Request debug event Pseudocode description of External Debug Request debug events

Reset Catch debug events Pseudocode description of Reset Catch debug event

OS Unlock Catch debug event Pseudocode description of OS Unlock Catch debug event
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12708
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
H3.2 Halting Step debug events

Halting Step is a debug resource that a debugger can use to make the PE step through code one instruction at a time.
This section describes the Halting Step debug events. It is divided into the following sections:

• Overview of a Halting Step debug event.

• The Halting Step state machine.

• Using Halting Step.

• Detailed Halting Step state machine behavior.

• Synchronization and the Halting Step state machine.

• Stepping T32 IT instructions.

• Disabling interrupts while stepping.

• Syndrome information on Halting Step.

• Pseudocode description of Halting Step debug events.

The architecture describes the behavior as a simple Halting Step state machine. See The Halting Step state machine.

H3.2.1 Overview of a Halting Step debug event

The behavior of Halting Step is defined by a state machine, shown in Figure H3-1. A Halting Step debug event
executes a single instruction and then returns control to the debugger. When the debugger software wants to execute
a Halting Step:

1. With the PE in Debug state, the debugger activates Halting Step.

2. The debugger signals the PE to exit Debug state and return to the instruction that is to be stepped.

3. The PE executes that single instruction.

4. The PE enters Debug state before executing the next instruction.

However, an exception might be generated while the instruction is being stepped. That is either:

• A synchronous exception generated by the instruction being stepped.

• An asynchronous exception taken before or after the instruction being stepped.

Halting Step has its own enable control bit, EDECR.SS and EDESR.SS.

Note

Because the Halting Step state machine states occur as a result of normal PE operation, the states can be described
as both:

• PE states.

• Halting Step states.

H3.2.2 The Halting Step state machine

The state machine states are:

Inactive Halting Step is inactive. No Halting Step debug events can be generated, therefore execution is not
affected by Halting Step. The PE is in this state whenever either of the following is true:

• Halting Step is disabled. That is, EDECR.SS is set to 0 and EDESR.SS is set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12709
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
• Halting is prohibited. See Halting the PE on debug events. In this state, if EDECR.SS is set
to 1, then a Halting Step debug event is pending.

In Figure H3-1, this state is shown in red.

Active-not-pending

Halting Step is enabled and active. This is the state in which the PE steps an instruction. EDECR.SS
== 1 and EDESR.SS == 0. Software must not set EDECR.SS to 1 unless the PE is in Debug state,
otherwise behavior is CONSTRAINED UNPREDICTABLE, as described in Changing the value of
EDECR.SS when not in Debug state.

In Figure H3-1, this state is shown in green.

Active-pending

Halting Step is enabled and active. The step has completed and the PE enters Debug state.
EDESR.SS == 1.

In Figure H3-1, this state is shown in green.

Whenever Halting Step is enabled and active, whether the state machine is in the active-not-pending state or in the
active-pending state depends on EDESR.SS. Halting Step state machine states shows this.

In the simple sequential execution of the program, the PE executes the Halting Step state machine as follows:

1. Initially, Halting Step is inactive.

2. After exiting Debug state, Halting Step is active-not-pending.

3. The PE executes an instruction and Halting Step is active-pending.

4. The pending Debug state entry is taken on the next instruction and the step is complete.

Exceptions and other changes to the PE context can interrupt this sequence.

Figure H3-1 shows a Halting Step state machine.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12710
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
Figure H3-1 Halting Step state machine

Execution with

halting prohibited

Execution with

halting prohibited

Debugger activation

Inactive
EDECR.SS=0

Debug state

Inactive
EDECR.SS=1

Debug state

Active-not-pending
EDECR.SS=1

EDESR.SS=0

Halting allowed

Debug state exit

Halting step is disabled

Halting step is enabled

Inactive
EDECR.SS=1

EDESR.SS=1

Debug state

Return to a state

where halting is allowed

Exception to EL3

where halting is prohibited,

other than SMC

Active pending
EDECR.SS=1

EDESR.SS=1

Halting allowed

Write 1 to

EDECR.SS

EDESR.SS is

set to 0 by the

exit from Debug

state

Return to a state

where halting is allowed

Asynchronous

exception
e

Debug state entry

Step completed
b

a. Step completed occurs when:

 • A debug event, other than a Halting Step debug event, causes entry into Debug state.

b. Step completed occurs when:

• An instruction is executed without taking an exception.

• An exception is taken to a state where halting is allowed.

• A reset.

c. Step completed occurs when:

• An SMC exception is taken to EL3 where halting is prohibited.

d. An asynchronous exception taken to a state where halting is allowed.

e. An asynchronous exception taken to EL3 where halting is prohibited.

Step completed
a

Step completed
c

Inactive
EDECR.SS=1

EDESR.SS=0

Halting prohibited

Inactive
EDECR.SS=1

EDESR.SS=1

Halting prohibited

Debug state exit with

 halting prohibited

Asynchronous

exception
d

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12711
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
Note

Figure H3-1 describes only state transitions to and from the inactive state by exit from Debug state, executing an
exception return, or taking an exception. Other changes to the PE context, including writes to registers such as
EDECR and OSDLR and changes to the authentication interface can also cause changes to the Halting Step state
machine. These can lead to UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior. See Synchronization and
the Halting Step state machine.

The following bits control the state machine, as shown in Table H3-3:

• EDECR.SS. This is the Halting Step enable bit.

• EDESR.SS. This is the Halting Step debug event pending bit.

Table H3-3 shows the Halting Step state machine states. The letter X in a register column means that the relevant
bit can be set to either zero or one.

H3.2.3 Using Halting Step

To step a single instruction the PE must be in Debug state:

1. The debugger sets EDECR.SS to 1 to enable Halting step.

2. The debugger signals the PE to exit Debug state with DLR set to the address of the instruction being stepped.
The PE clears EDESR.SS to 0 and the Halting Step state machine enters the active-not-pending state.

3. The PE executes the instruction being stepped.

If an exception is taken to a state where halting is prohibited, then EDESR.SS is always correct for the
preferred return address of the exception.

4. The PE enters Debug state before executing the next instruction and the step is complete.

Note

• If FEAT_DoPD is not implemented, EDECR.SS value is in the Debug power domain, meaning that the state
machine is maintained over a powerdown of the Core power domain.

• If FEAT_DoPD is implemented, the values of EDECR.SS and EDESR.SS are set to 0 on a Cold reset, and,
if the PE was stepping an instruction, EDESR.SS is effectively UNKNOWN after a Warm reset. A debugger
must use a Reset Catch debug event to step over a powerdown state.

• A debugger must only change the value of EDECR.SS when the PE is in Debug state, otherwise behavior is
CONSTRAINED UNPREDICTABLE as described in Changing the value of EDECR.SS when not in Debug state.

Table H3-3 Halting Step state machine states

Halting EDECR.SS EDESR.SS Halting Step state

Prohibited X X Inactive (Halting Step debug even not pending)

Prohibited X 1 Inactive (Halting Step debug event pending)

Allowed 0 0 Inactive

Allowed 1 0 Active-not-pending

Allowed X 1 Active-pending
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12712
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
H3.2.4 Detailed Halting Step state machine behavior

The behavior of the Halting Step state machine is described in the following sections:

• Entering the active-not-pending state.

• PE behavior in the active-not-pending state.

• Entering the active-pending state.

• PE behavior in the active-pending state.

• PE behavior in the inactive state when in Non-debug state.

• PE behavior in Debug state.

H3.2.4.1 Entering the active-not-pending state

The PE enters the active-not-pending state:

• By exiting Debug state to a state where halting is allowed with EDECR.SS == 1.

• By an exception return from a state where halting is prohibited to a state where halting is allowed with
EDECR.SS == 1 and EDESR.SS == 0.

• As described in Synchronization and the Halting Step state machine.

H3.2.4.2 PE behavior in the active-not-pending state

When the PE is in the active-not-pending state it does one of the following:

• It executes one instruction and does one of the following:

— Completes it without taking a synchronous exception.

— Takes a synchronous exception generated by the instruction.

— Generates a debug event that causes entry to Debug state.

• It takes an asynchronous exception without executing any instruction.

• It takes an asynchronous debug event into Debug state.

H3.2.4.2.1 If no exception or debug event is generated

If no exception or debug event is generated the PE sets EDESR.SS to 1. This means that the Halting Step state
machine advances to the active-pending state.

H3.2.4.2.2 If an exception or debug event is generated

The PE sets EDESR.SS according to all of the following:

• The type of exception.

• The target Exception level of the exception.

• If the exception is taken to EL3, whether halting is prohibited at EL3. This is determined by:

— The result of ExternalRootInvasiveDebugEnabled(), if FEAT_RME is implemented.

— The result of ExternalSecureInvasiveDebugEnabled(), if FEAT_RME is not implemented.

If an exception or debug event is generated, the PE sets EDESR.SS to 1 if the exception is an SMC exception or is
taken to a state where halting is allowed.

Otherwise, EDESR.SS is unchanged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12713
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
It is UNPREDICTABLE whether EDESR.SS is set to 1 or unchanged when an SError interrupt is taken to EL3 without
executing the instruction, and halting is prohibited at EL3.

If halting is prohibited after taking the exception or debug event, then the Halting Step state machine advances to
the inactive state. Otherwise, the Halting Step state machine advances to the active-pending state.

Note

The underlying criteria for the value of EDESR.SS on an exception are:

• Whether halting is allowed at the target of the exception. If halting is allowed, the PE must step into the
exception. If halting is prohibited, the PE must step over the exception.

• Whether the preferred return address of the exception is the instruction itself or the next instruction, if the PE
steps over the exception.

Table H3-4 shows the behavior of the active-not-pending state. The letter X indicates that halting can be either
allowed or prohibited at EL3.

H3.2.4.3 Entering the active-pending state

The PE enters the active-pending state by one of the following:

• From the active-not-pending state by:

— Executing an instruction without taking an exception.

— Taking an exception so that the PE remains in a state where halting is allowed.

• An exception return from a state where halting is prohibited when EDESR.SS == 1.

Note
For example, an exception return from EL3 with invasive debug prohibited, to a lower Exception level where
invasive debug is allowed.

• A reset when the value of EDECR.SS == 1, regardless of the state the PE was in before the reset occurred.

• From the active-pending state by taking an asynchronous exception to a state where halting is allowed.

• Following the description in Synchronization and the Halting Step state machine.

Table H3-4 Summary of active-not-pending state behavior

Event
Target
Exception level

Halting is
allowed at EL3

Value written to
EDESR.SS

No exception or debug event Not applicable X 1

SMC exception EL3 X 1

Reset Highest X 1

Exception, other than SMC exception EL1 X 1

EL2 X 1

EL3 TRUE 1

FALSE Unchanged

Debug event Debug state X Unchanged
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12714
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
H3.2.4.4 PE behavior in the active-pending state

When the PE is in the active-pending state, it enters Debug state before executing an instruction.

The entry into Debug state has higher priority than all other types of synchronous debug event and synchronous
exception. However, the architecture does not define the prioritization of this Debug state entry with respect to any
unmasked pending asynchronous exception. If an asynchronous exception is prioritized over the entry to Debug
state, then EDESR.SS is unchanged.

For more information on the prioritization of debug events, see Debug state entry and debug event prioritization.

H3.2.4.5 PE behavior in the inactive state when in Non-debug state

EDESR.SS is not updated by the execution of an instruction or the taking of an exception when Halting Step is
inactive. This means that EDESR.SS is not changed by an exception handled in a state where halting is prohibited.

On return to a state where halting is allowed, the Halting Step state machine is restored either to the active-pending
state or the active-not-pending state, depending on the value of EDESR.SS. The return to a state where halting is
allowed is normally by an exception return, which in some situations is a Context Synchronization event.

See also Synchronization and the Halting Step state machine.

H3.2.4.6 PE behavior in Debug state

Halting Step is inactive in Debug state because halting is prohibited, see Halting allowed and halting prohibited.

Entry to Debug state does not change EDESR.SS.

EDESR.SS is cleared to 0 on exiting Debug state as the result of a restart request. If EDECR.SS == 1, Halting Step
enters the active-not-pending state.

Note

This means that EDESR.SS is never cleared to 0 by the execution of an instruction in Debug state, or by taking an
exception when in Debug state as described in PE behavior in the active-not-pending state, because the Halting Step
state machine is not in the active-not-pending state. EDESR.SS can be cleared by a write to EDESR, see the register
description.

However, if the PE exits Debug state as the result of a PE reset and EDECR.SS == 1, then Halting Step immediately
enters the active-pending state, as EDESR.SS is set to the value of EDECR.SS.

H3.2.5 Synchronization and the Halting Step state machine

The Halting Step state machine also changes state if:

• Halting becomes allowed or prohibited other than by exit from Debug state, an exception return, or taking an
exception. This means that halting becomes allowed or prohibited because:

— The Security state changes without an exception return. See State and mode changes without explicit
context synchronization events.

— The external authentication interface changes.

— FEAT_DoubleLock is implemented and the status, DoubleLockStatus(), changes.

• A write to EDECR when the PE is in Non-debug state changes the value of EDECR.SS.

Note
Behavior is CONSTRAINED UNPREDICTABLE if the value of EDECR.SS is changed when the PE is in
Non-debug state, see Changing the value of EDECR.SS when not in Debug state.

• A write to EDESR when the PE is in Non-debug state clears EDESR.SS to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12715
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
These operations are guaranteed to take effect only after a Context Synchronization event. If the instruction being
stepped generates a Context Synchronization event, then the PE might use the old or new state.

The PE must perform the required behavior of the new state before or immediately following the next Context
Synchronization event, but it is not required to do so immediately. This means that the PE can perform the required
behavior of the old state before the next Context Synchronization event. This is illustrated in Example H3-1 and
Example H3-2.

Example H3-1 Synchronization requirements 1

EDECR.SS is set to 1 in Debug state, requesting the active-not-pending state on exit from Debug state. On exit from
Debug state the PE immediately takes an exception to EL3, where halting is prohibited. The PE does not step any
instructions but executes the software at EL3 as normal. EDESR.SS remains set to 0. If halting is subsequently
allowed, the PE must perform the required behavior of the active-not-pending state before or immediately following
the next Context Synchronization event, but it is not required to do so immediately.

Example H3-2 Synchronization requirements 2

EDECR.SS is set to 1 in Debug state. On exit from Debug the PE executes an MSR instruction that sets
OSDLR_EL1.DLK to 1 and DoubleLockStatus() becomes TRUE. This change requires a Context Synchronization
event to guarantee its effect, meaning it is CONSTRAINED UNPREDICTABLE whether:

• Halting is allowed:

— The PE enters Debug state on the next instruction.

• Halting is prohibited:

— The PE does not enter Debug state.

The value in EDESR.SS depends on whether halting was allowed or prohibited when the write to
OSDLR_EL1.DLK completed, and so it might be 0 or 1. If a second MSR instruction clears OSDLR_EL1.DLK to 0,
the PE must perform the required behavior of the state indicated by EDESR.SS before or immediately following the
next Context Synchronization event, but it is not required to do so immediately.

See also Synchronization and Halting debug events.

H3.2.5.1 Changing the value of EDECR.SS when not in Debug state

If software changes the value of EDECR.SS when the PE is not in Debug state then behavior is CONSTRAINED
UNPREDICTABLE, and one or more of the following behaviors occurs:

• The value of EDECR.SS becomes UNKNOWN.

• The state of the Halting Step state machine becomes UNKNOWN.

• On a reset of the PE, the value of EDECR.SS and the state of the Halting Step state machine are UNKNOWN.

H3.2.6 Stepping T32 IT instructions

In an implementation that supports the ITD control, the architecture permits a combination of one T32 IT instruction
and another 16-bit T32 instruction to be treated as a single 32-bit instruction when the value of the ITD field that
applies to the current Exception level is 1.

For the purpose of stepping an item, it is IMPLEMENTATION DEFINED whether:

• The PE considers such a pair of instructions to be one instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12716
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
• The PE considers such a pair of instructions be two instructions.

It is IMPLEMENTATION DEFINED whether this behavior depends on the value of the applicable ITD bit. For example:

• The debug logic might consider such a pair of instructions as one instruction, regardless of the state of the
applicable ITD field.

• The debug logic might consider such a pair of instructions as two instructions, regardless of the state of the
applicable ITD field.

• The debug logic might consider such a pair of instructions as one instruction when the value of the applicable
ITD field is 1, and as two instructions when the value of the ITD field is 0.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

The ITD control fields are:

HSCTLR.ITD

Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD

Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

H3.2.7 Disabling interrupts while stepping

When using Halting Step, the sequence of entering Debug state, interacting with the debugger, and then exiting
Debug state for each instruction reduces the rate at which the PE executes instructions. However, the rate at which
certain interrupts, such as timer interrupts, are generated might be fixed by the system. This means it might be
necessary to disable interrupts while using Halting Step by setting EDSCR.INTdis, to allow the code being
debugged to make forward progress.

H3.2.8 Syndrome information on Halting Step

Three EDSCR.STATUS encodings record different scenarios for entering Debug state on a Halting Step debug
event:

Halting Step, normal

An instruction other than a Load-Exclusive instruction was stepped.

Halting Step, exclusive

A Load-Exclusive instruction was stepped.

Halting Step, no syndrome

The syndrome data is not available.

If the PE enters Debug state due to a Halting Step debug event immediately after stepping an instruction in the
active-not-pending state, EDSCR.STATUS is set to either:

• Halting Step, normal, if the stepped instruction was not a Load-Exclusive instruction.

• Halting Step, exclusive, if the stepped instruction was a Load-Exclusive instruction.

If the stepped instruction was a conditional Load-Exclusive instruction that failed its Condition code check,
EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, normal, or Halting Step,
exclusive.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12717
ID032224 Non-Confidential

Halting Debug Events
H3.2 Halting Step debug events
Otherwise, the PE enters Debug state without stepping an instruction. This means that the Halting Step state
machine enters the active-pending state directly from the inactive state, without going through active-not-pending
state. In this case, EDSCR.STATUS is set to Halting Step, no syndrome. This happens when:

• The PE enters directly into the active-pending state on an exception return to a state where halting is allowed
from EL3 when halting is prohibited at EL3.

• The active-pending state is entered for other reasons. See Synchronization and the Halting Step state machine

In addition, EDSCR.STATUS is CONSTRAINED UNPREDICTABLE when:

• A different exception is taken before the Halting Step debug event.

In this case EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of:

— Halting Step, no syndrome, or Halting Step, normal, if the stepped instruction was not a
Load-Exclusive instruction.

— Halting Step, no syndrome, or Halting Step, exclusive, if the stepped instruction was a Load-Exclusive
instruction.

• The instruction that was stepped was an Exception Return instruction or an ISB. As these instructions are not
in the Load-Exclusive instructions, EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of
Halting Step, no syndrome or Halting Step, normal.

• The PE enters directly into the active-pending state on a Warm reset because EDECR.SS is set to 1.
EDSCR.STATUS is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, no syndrome or Halting
Step, normal.

In all cases, if EDSCR.STATUS is not set to Halting Step, no syndrome, then it must indicate whether the stepped
instruction was a Load-Exclusive instruction by setting EDSCR.STATUS to Halting Step, normal or Halting Step,
exclusive.

Note

If the PE cannot determine whether the stepped instruction was a Load-Exclusive instruction or not, then it sets
EDSCR.STATUS to Halting Step, no syndrome. For example, the exception is taken before the PE decodes the
stepped instruction, or the exception means the PE has no valid stepped instruction to decode.

Note

In an implementation that always sets EDSCR.STATUS to Halting Step, no syndrome is not compliant.

H3.2.9 Pseudocode description of Halting Step debug events

There are two pseudocode functions for Halting Step debug events:

• HSAdvance(). This is called after an instruction has executed and any exception generated by the instruction
is taken, except for the case of an SVC, HVC, or SMC exception, in which case it is called before the
exception is taken. HSAdvance() affects the next instruction.

• CheckHaltingStep(). This is called before the next instruction is executed. If a step is pending, it generates the
debug event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12718
ID032224 Non-Confidential

Halting Debug Events
H3.3 Halt Instruction debug event
H3.3 Halt Instruction debug event

A Halt Instruction debug event is generated when EDSCR.HDE == 1, halting is allowed, and the PE executes the
Halt instruction, HLT.

The pseudocode for Halt Instruction debug events is described in HLT for A64 and HLT for A32 and T32.

HLT never generates a debug exception. It is treated as UNDEFINED if EDSCR.HDE == 0, or if halting is prohibited.

Note

A debugger can replace a program instruction with a Halt instruction to generate a Halt Instruction debug event.
Debuggers that use the HLT instruction must be aware of the rules for concurrent modification of executable code,
CMODX. The rules for concurrent modification and execution of instructions do not allow one thread of execution
or an external debugger to replace an instruction with an HLT instruction when these same instructions are being
executed by a different thread of execution. See Concurrent modification and execution of instructions.

The T32 HLT instruction is unconditionally executed inside an IT block, even when it is treated as undefined. The
A32 HLT instruction is CONSTRAINED UNPREDICTABLE if the Condition code field is not 0b1110, with the set of
behaviors the same as for BKPT. See Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Note

The HLT instruction is part of the external debug solution from the introduction of Armv8-A. As such, the presence
of the HLT instruction is not indicated in the ID registers. In particular, the AArch32 System register ID_ISAR0.
Debug does not indicate the presence of the HLT instruction.

H3.3.1 HLT instructions as the first instruction in a T32 IT block

In an implementation that supports the ITD control, the architecture permits a combination of one T32 IT instruction
and certain other 16-bit T32 instruction to be treated as a single 32-bit instruction when the value of the ITD field
that applies to the current Exception level is 1.

The T32 HLT instruction cannot be combined with an IT instruction in this way. In an implementation that supports
the ITD control, if the first instruction in an IT block is an HLT instruction, then the behavior of the instruction
depends on the value of the applicable ITD field:

• If the value of the ITD field is 1, then the combination is treated as undefined and an Undefined Instruction
exception is generated either by the IT instruction or by the HLT instruction.

• If the value of the ITD field is 0, then the HLT instruction unconditionally executed.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

To set an Halt Instruction debug event on the first instruction of an IT block, debuggers must replace the IT
instruction with an HLT instruction to ensure consistent behavior.

The ITD control fields are:

HSCTLR.ITD

Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD

Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD

Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

Note

An HLT instruction is always unconditional, even within an IT block.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12719
ID032224 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
H3.4 Exception Catch debug event

Exception Catch debug events:

• Are generated when the corresponding bit in the Exception Catch Control Register, EDECCR, is set to 1 on
all entries to a given Exception level. This means:

— Exceptions taken to the Exception level.

— Exception returns to the Exception level.

— It is IMPLEMENTATION DEFINED whether a reset into an Exception level generates an Exception Catch
debug event.

• Might be taken synchronously, after the exception or reset entry or the exception return has been processed
by the PE.

• Ignore the Execution state of the target Exception level.

• Might be ignored if halting is prohibited.

• If FEAT_Debugv8p8 is implemented, might be pended.

The EDECCR register contains fields that control when Exception Catch debug events are generated.

See Controlling Exception Catch debug events when FEAT_Debugv8p2 is implemented and Controlling Exception
Catch debug events when FEAT_Debugv8p2 is not implemented.

For exception returns, the final Exception level of the exception return determines whether an Exception Catch
debug event is generated. On an illegal exception return, an Exception Catch debug event is generated only if
EDECCR is programmed to generate an Exception Catch debug event for an exception return to the current
Exception level.

H3.4.1 Prioritization of Exception Catch debug events

The following rules define the prioritization of Exception Catch debug events:

• It is IMPLEMENTATION DEFINED whether Exception Catch debug events are higher or lower priority than
Software Step exceptions and Halting Step debug events.

• Exception Catch debug events are higher priority than all synchronous exceptions other than Software Step
exceptions and debug events other than Halting Step debug events.

• Exception Catch debug events are lower priority than Reset Catch debug events.

• When FEAT_Debugv8p2 is implemented and FEAT_Debugv8p8 is not implemented, Exception Catch
debug events are higher priority than pending asynchronous exceptions. Otherwise, the prioritization
between asynchronous exceptions, asynchronous debug events, and an Exception Catch debug event, is
IMPLEMENTATION DEFINED.

Note

As described in Prioritization of Synchronous exceptions taken to AArch64 state, an exception trapping form of a
Vector Catch debug event might generate a second debug exception as part of the exception entry, before the
Exception Catch debug event is taken. See Vector Catch exceptions or Vector Catch exceptions.

H3.4.2 Generating Exception Catch debug events when FEAT_Debugv8p2 is not implemented

When an Exception Catch debug event is generated after exception entry and halting is allowed at the target of the
exception, the PE halts and enters Debug state:

• The PE halts and enters Debug state before the first instruction at the handler is executed, after the exception
entry has updated the program counter, PSTATE, and syndrome registers for the exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12720
ID032224 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
• The PE does not fetch instructions from the vector address before entering Debug state, if address translation
is disabled in the translation regime at the target Exception level.

• A second unmasked asynchronous exception can be taken before the PE enters Debug state. If this second
exception does not generate an Exception Catch debug event, the exception handler executed at the higher
Exception level later returns to the trapped Exception level, causing the Exception Catch debug event to be
generated again.

When an Exception Catch debug event is generated on exception return and halting is allowed at the target of the
exception return:

• There is no prioritization between asynchronous exceptions, asynchronous debug events, and an Exception
Catch debug event generated on an exception return.

• The PE halts and enters Debug state after the exception return has updated the program counter and PSTATE,
and before the execution of the first instruction at the return address is completed.

Otherwise, when the PE is executing code at a given Exception level, and the corresponding EDECCR bit is 1, it is
CONSTRAINED UNPREDICTABLE whether an Exception Catch debug event is generated.

Examples of this are:

• If the debugger writes to EDECCR so that the current Exception level is trapped.

• If the OS restore code writes to OSECCR so that the current Exception level is trapped.

• If the code executing in AArch32 state changes the Exception level or Security state other than by an
exception return, and the target Exception level is trapped. See State and mode changes without explicit
context synchronization events.

See also Debug state entry and debug event prioritization.

Note

It is possible to generate Exception Catch debug events:

• As a trap on all instruction fetches from the trapped Exception level as part of an instruction fetch.

• On entry to the Exception level, as described in Detailed Halting Step state machine behavior.

This is similar to the implementation options allowed for Vector Catch debug events. The architecture does not
require that the event is generated following an ISB operation executed at the Exception level.

H3.4.3 Generating Exception Catch debug events when FEAT_Debugv8p2 is implemented and
FEAT_Debugv8p8 is not implemented

Exception Catch debug events are generated as described in Generating Exception Catch debug events when
FEAT_Debugv8p2 is not implemented, except:

• An Exception Catch debug event is generated only on exception entry or return.

• When an Exception Catch debug event is generated after exception entry and halting is allowed at the target
of the exception, the PE halts and enters Debug state before any other asynchronous exception or debug
event.

H3.4.4 Generating Exception Catch debug events when FEAT_Debugv8p8 is implemented

Exception Catch debug events are generated as described in Generating Exception Catch debug events when
FEAT_Debugv8p2 is not implemented, except:

• An Exception Catch debug event is generated only on exception entry or return.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12721
ID032224 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
• When an Exception Catch debug event is generated after exception entry and halting is allowed at the target
of the exception, the PE sets EDESR.EC to 1, and one of the following occurs:

— The PE halts immediately. On entry to Debug state, EDESR.EC might be 0 or 1.

— The PE might take an unmasked asynchronous exception, changing Exception level. This means that
the PE might enter a state where halting is prohibited before the PE halts and enters Debug state.

• When an Exception Catch debug event is generated on exception return and halting is allowed at the target
of the exception, EDESR.EC is unchanged.

• When EDESR.EC is 1 and halting is allowed, the PE halts and enters Debug state before completing any
instruction.

• When EDESR.EC is 1 and halting is prohibited, an Exception Catch debug event is pending.

• EDESR.EC is cleared to 0 upon:

— A write of 1 to EDESR.EC.

— Exit from Debug state.

Note

If EDESR.EC is 1 and the PE executes a Context synchronizing exception return from a state where halting is
prohibited to a state where halting is allowed, then the Exception Catch debug event is prioritized over any
synchronous exception or synchronous debug event generated by the first instruction after the Context
synchronization event, other than possibly a Halting Step debug event or a Software Step exception.

H3.4.5 Controlling Exception Catch debug events when FEAT_RME is implemented

When FEAT_RME is implemented, the fields EDECCR.{RLR, RLE, NSR, SR, NSE, SE} control generation of
Exception Catch debug events:

• On exception entry but not on exception return.

• On exception return but not on exception entry.

• On exception entry and exception return.

Exception entry, reset and exception return Exception Catch debug events are enabled as shown in Table H3-6.

H3.4.6 Controlling Exception Catch debug events when FEAT_Debugv8p2 is implemented

When FEAT_Debugv8p2 is implemented and FEAT_RME is not implemented, the fields EDECCR.{NSR, SR,
NSE, SE} control generation of Exception Catch debug events:

• On exception entry but not on exception return.

• On exception return but not on exception entry.

Table H3-5 Summary of Exception Catch debug event control when FEAT_RME is implemented

RLR<n>
NSR<n>
SR<n>

RLE<n>
NSE<n>
SE<n>

Behavior on exception return to ELn
Behavior on exception taken to ELn,
and if resets are Exception Catch debug events,
reset into ELn

0 0 No action. No action.

0 1 Halt if allowed. Halt if allowed.

1 0 Halt if allowed. No action.

1 1 No action. Halt if allowed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12722
ID032224 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
• On exception entry and exception return.

Exception entry, reset and exception return Exception Catch debug events are enabled as shown in Table H3-6.

H3.4.7 Controlling Exception Catch debug events when FEAT_Debugv8p2 is not implemented

When FEAT_Debugv8p2 is not implemented and FEAT_RME is not implemented, all Exception Catch debug
events are enabled by a combination of the fields NSE and SE in EDECCR, as shown in Table H3-7.

H3.4.8 Examples of Exception Catch debug events

If EDECCR == 0x0020, meaning that the Exception Catch debug event is enabled for Non-secure EL1, then the
following exceptions generate Exception Catch debug events:

• An exception taken from Non-secure EL0 to Non-secure EL1.

• An exception return from EL2 to Non-secure EL1.

• An exception return from EL3 to Non-secure EL1.

For example, on taking a Data Abort exception from Non-secure EL0 to Non-secure EL1, using AArch64:

• ELR_EL1 and SPSR_EL1 are written with the preferred return address and PE state for a return to EL0.

• ESR_EL1 and FAR_EL1 are written with the syndrome information for the exception.

• DLR_EL0 is set to VBAR_EL1 + 0x400, the synchronous exception vector.

• DSPSR_EL0 is written with the PE state for an exit to EL1.

The following do not generate Exception Catch debug events:

• An exception taken from EL0 to EL2, in either Security state, or EL3.

• An exception return from EL2, in either Security state, to EL0.

• An exception taken from Secure EL0 to Secure EL1.

• An exception return from EL3 to Secure EL1.

Table H3-6 Summary of Exception Catch debug event control when FEAT_Debugv8p2 is implemented and
FEAT_RME is not implemented

(N)SR<n> (N)SE<n> Behavior on exception return to ELn
Behavior on exception taken to ELn,
and if resets are Exception Catch debug events,
reset into ELn

0 0 No action. No action.

0 1 Halt if allowed. Halt if allowed.

1 0 Halt if allowed. No action.

1 1 No action. Halt if allowed.

Table H3-7 Summary of Exception Catch debug event control when FEAT_Debugv8p2 and
FEAT_RME are not implemented

(N)SE<n>
Behavior on exception taken to ELn, return to ELn,
and if resets are Exception Catch debug events, reset into ELn

0 No action.

1 Halt if allowed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12723
ID032224 Non-Confidential

Halting Debug Events
H3.4 Exception Catch debug event
H3.4.9 Pseudocode description of Exception Catch debug events

The pseudocode functions CheckExceptionCatch() and CheckPendingExceptionCatch() are described in Chapter J1
Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12724
ID032224 Non-Confidential

Halting Debug Events
H3.5 External Debug Request debug event
H3.5 External Debug Request debug event

External Debug Request debug events are asynchronous debug events.

An External Debug Request debug event can be generated by any of the following:

• When signaled by the embedded cross-trigger. See Chapter H5 The Embedded Cross-Trigger Interface.

• The trace unit. See ETE external debug request.

• The Trace Buffer Unit. See Trace Buffer Unit external debug request.

• The Performance Monitoring Unit. See PMU Overflow external debug request.

• An implementation might also support IMPLEMENTATION DEFINED ways of generating an External Debug
Request debug event.

H3.5.1 Synchronization and External Debug Request debug events

For all Context synchronization events, if an External Debug Request debug event is asserted before the Context
Synchronization event, and the External Debug Request debug event remains asserted and halting is allowed after
the Context synchronization event, then the debug event is taken and the PE enters Debug state before the first
instruction following the Context synchronization event completes its execution.

An External Debug Request debug event that is being asserted when the PE comes out of reset is taken, and the PE
enters Debug state before the first instruction after the reset completes its execution, provided that halting is allowed
when the PE exits reset state.

If the first instruction after the Context Synchronization event or after coming out of reset generates a synchronous
exception then the architecture does not define the order in which the debug event and the exception or exceptions
are taken.

Otherwise, when all of the following are true, External Debug Request debug events must be taken in finite time,
without requiring the synchronization of any necessary change to the external authentication interface:

• Halting is allowed.

• The PE is not in a low-power state that is not required to exit on an external debug request. See Core power
domain power states.

External debug request is a wakeup event for WFI, WFIT, WFE, or WFET instructions. See Mechanisms for entering a
low-power state.

Note

These rules are based on the rules that apply when taking asynchronous exceptions. See Asynchronous exception
types.

If an unmasked External Debug Request debug event was pending but is changed to not pending before it is taken,
then the architecture permits the External Debug Request debug event to be taken, but does not require this to
happen. If the External Debug Request debug event is taken then it must be taken before the first Context
Synchronization event after the External Debug Request debug event was changed to not pending.

Example H3-3 shows an example of the synchronization requirements.

Example H3-3 Synchronization requirements

Secure software locks up in a tight loop, so it executes indefinitely without any synchronization operations. An
External debug request must be able to break the PE out of that loop. This is a requirement even if DBGEN or
SPIDEN or both are LOW on entry to the loop, meaning that halting is prohibited, and are only asserted HIGH later.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12725
ID032224 Non-Confidential

Halting Debug Events
H3.5 External Debug Request debug event
H3.5.2 ETE external debug request

If FEAT_Debugv8p9 and FEAT_ETEv1p3 are implemented, and all of the following are true, the PE halts and
enters Debug state:

• EDECR.TRCE is 1.

• ETEEvent 0 occurs.

• Halting is allowed.

When the PE halts and enters Debug state due to an ETE external debug request:

• DLR_EL0 is set to the address of the first instruction that must be executed on exit from Debug state.
DSPSR_EL0 is correct for this instruction.

• EDSCR.STATUS is set to 0b010011, external debug request.

See also Trace Buffer Unit external debug request.

H3.5.3 Trace Buffer Unit external debug request

When FEAT_Debugv8p9 and FEAT_TRBE_EXT are implemented, and all of the following apply, the PE halts and
enters Debug state:

• EDECR.TRBE is 1.

• The Trace Buffer Unit is enabled.

• TRBSR_EL1.IRQ is 1.

• Halting is allowed.

Note

The Trace Buffer Unit is not required to be using External mode.

When the PE halts and enters Debug state due to a Trace Buffer Unit external debug request:

• DLR_EL0 is set to the address of the first instruction that must be executed on exit from Debug state.
DSPSR_EL0 is correct for this instruction.

• EDSCR.STATUS is set to 0b010011, external debug request.

H3.5.4 PMU Overflow external debug request

When FEAT_Debugv8p9 and FEAT_PMUv3p9 are implemented and all of the following are true, the PE halts and
enters Debug state:

• EDECR.PME is 1.

• Any of the following are true:

— An event counter <n> is implemented, the global enable control for the event counter is 1,
PMINTENSET_EL1.P<n> is 1, and PMOVSSET_EL0.P<n> is 1.

— PMCR_EL0.E is 1, PMINTENSET_EL1.C is 1, and PMOVSSET_EL0.C is 1.

— FEAT_PMUv3_ICNTR is implemented, PMCR_EL0.E is 1, PMINTENSET_EL1.F0 is 1, and
PMOVSSET_EL0.F0 is 1.

That is, the Performance Monitors overflow trigger event is asserted.

• Halting is allowed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12726
ID032224 Non-Confidential

Halting Debug Events
H3.5 External Debug Request debug event
Note

If FEAT_SEBEP is implemented, PMEVTYPER<n>_EL0.SYNC is ignored and the halt is not required to be
synchronous under any circumstances.

When the PE halts and enters Debug state because of a PMU Overflow external debug request:

• DLR_EL0 is set to the address of the first instruction that must be executed on exit from Debug state.
DSPSR_EL0 is correct for this instruction.

• EDSCR.STATUS is set to 0b010011, external debug request.

H3.5.5 Pseudocode description of External Debug Request debug events

The ExternalDebugRequest() function is described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12727
ID032224 Non-Confidential

Halting Debug Events
H3.6 OS Unlock Catch debug event
H3.6 OS Unlock Catch debug event

An OS Unlock Catch debug event is generated when enabled and the state of the OS Lock changes from locked to
unlocked. When FEAT_DoPD is implemented, CTIDEVCTL.OSUCE enables an OS Unlock Catch debug event,
otherwise EDECR.OSUCE enables an OS Unlock Catch debug event.

When the OS Lock is unlocked, the PE sets EDESR.OSUC to 1 if the OS Unlock Catch debug event is enabled, and
the PE is in Non-debug state, meaning the OS Unlock Catch debug event becomes pending. However, this is an
indirect write to EDESR.OSUC, meaning the OS Unlock Catch debug event is not guaranteed to be taken before a
subsequent Context synchronization event. If the PE enters Debug state or the OS Unlock Catch debug event is
disabled before EDESR.OSUC becomes set to 1, then EDESR.OSUC might not be set.

OS Unlock Catch debug events are not generated if the OS Lock is unlocked when the PE is in Debug state. See
also Synchronization and Halting debug events.

EDESR.OSUC is cleared to 0 on a Warm reset and on exiting Debug state.

H3.6.1 Using the OS Unlock Catch debug event

When the Core power domain is completely off or in a low-power state, a debugger is permitted to access a debug
register that is implemented in the External debug power domain. However, if a debugger attempts to access a debug
register that is implemented in the Core power domain when the Core power domain registers cannot be accessed,
and that access returns an error, the debugger must retry the access.

Regularly powering down the Core power domain can result in unreliable debugger behavior.

The debugger can program a Reset Catch debug event to halt the PE when it has powered up, and can program the
debug registers from Debug state. However, if the PE boot software restores the debug registers, as described in
Debug OS Save and Restore sequences, then newly written values are overwritten by the restore sequence.

The debugger can program an OS Unlock Catch debug event to halt the PE after the restore sequence has completed,
and program the debug registers from Debug state.

H3.6.2 Pseudocode description of OS Unlock Catch debug event

The CheckOSUnlockCatch() function is called when the OS Lock is unlocked.

The CheckPendingOSUnlockCatch() function is called before an instruction is executed. If an OS Unlock Catch is
pending, it generates the debug event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12728
ID032224 Non-Confidential

Halting Debug Events
H3.7 Reset Catch debug events
H3.7 Reset Catch debug events

A Reset Catch debug event is generated when enabled, and the PE exits reset state. When the Reset Catch debug
event is generated, it is recorded by setting EDESR.RC to 1. When FEAT_DoPD is implemented,
CTIDEVCTL.RCE enables a Reset Catch debug event, otherwise EDECR.RCE enables a Reset Catch debug event.

If halting is allowed when the event is generated, the Reset Catch debug event is taken immediately and
synchronously. On entering Debug state, DLR has the address of the reset vector. The PE must not fetch any
instructions from memory.

Otherwise, the Reset Catch debug event is pended and taken when halting is allowed. See Synchronization and
Halting debug events for more information.

This means that EDESR.RC is set to the value of EDECR.RCE or CTIDEVCTL.RCE on a Warm reset. EDESR.RC
is cleared to 0 on exiting Debug state.

H3.7.1 Pseudocode description of Reset Catch debug event

The CheckResetCatch() function is called after reset before executing any instruction.

The CheckPendingResetCatch() function is called before an instruction is executed. If a Reset Catch is pending, it
generates the Reset Catch debug event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12729
ID032224 Non-Confidential

Halting Debug Events
H3.8 Software Access debug event
H3.8 Software Access debug event

When the value of EDSCR.TDA is 1, software access to the following AArch64 and AArch32 debug System
registers generate a Software Access debug event:

• The Breakpoint Value Registers, DBGBVR.

• The Breakpoint Control Registers, DBGBCR.

• The Watchpoint Value Registers, DBGWVR.

• The Watchpoint Control Registers, DBGWCR.

However, EDSCR.TDA is ignored if any of the following applies:

• The value of OSLSR.OSLK == 1, meaning that the OS Lock is locked.

• Halting is prohibited. See Halting allowed and halting prohibited.

• The register access generates a higher priority synchronous exception or debug event.

If FEAT_TRBE_EXT or FEAT_ETEv1p3 is implemented, then when all of the following apply, MRS and MSR
accesses to ETE and TRBE System registers generate a Software Access debug event:

• EDSCR2.TTA is 1.

• The value of OSLSR_EL1.OSLK == 0, meaning that the OS Lock is unlocked.

• Halting is allowed.

• The instruction does not generate any higher priority synchronous exception or debug event.

Note

• The only accesses to the specified registers that generate a Software Access debug event are:

— Accesses to System registers in AArch64 state.

— Accesses to System registers in the (coproc==0b1110) encoding space in AArch32 state.

• Accesses by a PE using the external debug interface never generate a Software Access debug event.

H3.8.1 Pseudocode description of Software Access debug event

The CheckSoftwareAccessToDebugRegisters() function is described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12730
ID032224 Non-Confidential

Halting Debug Events
H3.9 Synchronization and Halting debug events
H3.9 Synchronization and Halting debug events

The behavior of external debug depends on:

• Indirect reads of:

— External debug registers.

— System registers, including system debug registers.

— Special-purpose registers.

• The state of the external authentication interface.

For some registers, all read and write accesses that update the register occur in program order, without any additional
synchronization, but others require an explicit Context Synchronization event. For more information on the
synchronization of register updates, see:

• Synchronization requirements for AArch64 System registers.

• Synchronization of changes to the external debug registers.

• State and mode changes without explicit context synchronization events.

Changes to the external authentication interface do not require explicit synchronization to affect External Debug
Request debug events. See Synchronization and External Debug Request debug events.

For changes that require explicit synchronization, it is CONSTRAINED UNPREDICTABLE whether instructions between
the change and the Context Synchronization event observe the old state or the new state.

This means that any change to these registers or the external authentication interface requires explicit
synchronization by a Context Synchronization event before the change takes effect. This ensures that for instructions
appearing in program order after the change, the change affects the following:

• The generation and behavior of Breakpoint and Watchpoint debug events. See Synchronization and debug
exceptions for exceptions taken from AArch64 state, or Synchronization and debug exceptions for exceptions
taken from AArch32 state.

• The generation of all Halting debug events by instructions.

• Taking a pending Halting debug event or other asynchronous debug event. See:

— Pending Halting debug events.

— Synchronization and External Debug Request debug events.

• The behavior of the Halting Step state machine. See Synchronization and the Halting Step state machine.

H3.9.1 Pending Halting debug events

A Halting debug event might be pending:

• If Halting Step of an instruction sets EDESR.SS to 1, and halting is prohibited following the step, then the
Halting Step state machine is inactive but a Halting Step debug event is pending.

• If a Reset Catch debug event sets EDESR.RC to 1, and halting is prohibited following reset, then a Reset
Catch debug event is pending.

• If an OS Unlock Catch debug event sets EDESR.OSUC to 1, then an OS Unlock Catch debug event is
pending.

• If FEAT_Debugv8p8 is implemented and an Exception Catch debug event sets EDESR.EC to 1, and before
the PE takes the Exception Catch debug event, the PE takes an asynchronous exception, then an Exception
Catch debug event is pending.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12731
ID032224 Non-Confidential

Halting Debug Events
H3.9 Synchronization and Halting debug events
• If FEAT_Debugv8p9 and FEAT_ETEv1p3 are implemented, and an ETE external debug request is
generated, and the PE enters a state where halting is prohibited before the PE halts and enters Debug state.

• If FEAT_Debugv8p9 and FEAT_TRBE_EXT are implemented, and a Trace Buffer Unit external debug
request is generated, and the PE enters a state where halting is prohibited before the PE halts and enters
Debug state.

• If FEAT_Debugv8p9 and FEAT_PMUv3p9 are implemented, and a PMU overflow external debug request
is generated, and the PE enters a state where halting is prohibited before the PE halts and enters Debug state.

Pending Halting debug events are taken asynchronously when halting is allowed.

Pending Halting debug events are discarded by a Cold reset. The debugger can also force a pending event to be
dropped by writing to EDESR.

Any Halting debug event that is observed as pending in the EDESR before a Context Synchronization event is taken
and the PE enters Debug state before the first instruction following the Context Synchronization event completes its
execution. This is possible only if halting is allowed after completion of the Context Synchronization event.

If the first instruction after the Context Synchronization event generates a synchronous exception then the
architecture does not define the order in which the debug event and the exception or exceptions are taken, unless
both:

• A Halting Step debug event is pending. EDESR.SS == 1.

• The Context Synchronization event is an exception return from EL3 when halting is prohibited at EL3 to a
state where halting is allowed.

Example H3-4 Context synchronization event

When FEAT_RME is not implemented, FEAT_ExS is implemented, and SCTLR_EL3.EOS is 0b1, an exception
return from EL3 using AArch64 with ExternalSecureInvasiveDebugEnabled() == FALSE to Non-secure state with
ExternalInvasiveDebugEnabled() == TRUE is such an event.

In this case the order in which the debug events are handled is specified to avoid a double-step. See Entering the
active-pending state.

If FEAT_Debugv8p8 is implemented and EDESR.EC is 1, when a pending Exception Catch debug event is taken
following a Context Synchronization event, the PE enters Debug state before fetching any instruction:

• At ELn in Non-secure state, if EDECCR.NSE<n> is 1 and address translation is disabled at ELn.

• At ELn in Secure state, if EDECCR.SE<n> is 1 and address translation is disabled at ELn.

• At ELn in Realm state, if EDECCR.RLE<n> is 1 and address translation is disabled at ELn.

If an asynchronous exception is also pending after the Context Synchronization event then the architecture does not
define the order in which the debug event and the exception or exceptions are taken.

Note

These rules are based on the rules that apply to taking asynchronous exceptions. See Asynchronous exception types.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H3-12732
ID032224 Non-Confidential

Chapter H4
The Debug Communication Channel and Instruction
Transfer Register

This chapter describes communication between a debugger and the implemented debug logic, using the Debug
Communications Channel (DCC) and the Instruction Transfer Register (ITR), and associated control flags. It
contains the following sections:

• Introduction.

• DCC and ITR registers.

• DCC and ITR access modes.

• Flow control of the DCC and ITR registers.

• Synchronization of DCC and ITR accesses.

• Interrupt-driven use of the DCC.

• Pseudocode description of the operation of the DCC and ITR registers.

Note

Where necessary, Table K17-1 disambiguates the general register references used in this chapter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12733
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.1 Introduction
H4.1 Introduction

The Debug Communications Channel, DCC, is a channel for passing data between the PE and an external agent,
such as a debugger. The DCC provides a communications channel between:

• An external debugger, described as the debug host.

• The debug implementation on the PE, described as the debug target.

The DCC can be used:

• As a 32-bit full-duplex channel.

• As a 64-bit half-duplex channel.

The DCC is an essential part of Debug state operation and can also be used in Non-debug state.

The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state.

The PE includes flow-control mechanisms for both the DCC and ITR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12734
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.2 DCC and ITR registers
H4.2 DCC and ITR registers

The DCC comprises data transfer registers, the DTRs, and associated flow-control flags. The data transfer registers
are DTRRX and DTRTX.

The ITR comprises a single register, EDITR, and associated flow-control flags.

In AArch64 state, software can access the data transfer registers as:

• A receive and transmit pair for 32-bit full duplex operation:

— The write-only DBGDTRTX_EL0 register to transmit data.

— The read-only DBGDTRRX_EL0 register to receive data.

• A single 64-bit read/write register, DBGDTR_EL0, for 64-bit half-duplex operation.

• The read/write OSDTRTX_EL1 and OSDTRRX_EL1 registers for save and restore.

In AArch32 state, software can access the data transfer registers only as:

• A receive and transmit pair, for 32-bit full duplex operation:

— The write-only DBGDTRTXint register to transmit data.

— The read-only DBGDTRRXint register to receive data.

• The read/write DBGDTRTXext and DBGDTRRXext registers for save and restore.

The data transfer registers are also accessible by the external debug interface as a pair of 32-bit registers,
DBGDTRRX_EL0 and DBGDTRTX_EL0. Both registers are read/write, allowing both 32-bit full-duplex and
64-bit half-duplex operation.

The DCC flow-control flags are EDSCR.{RXfull, TXfull, RXO, TXU}:

• The RXfull and TXfull ready flags are used for flow-control and are visible to software in the Debug system
registers in DCCSR.

• The RX overrun flag, RXO, and the TX underrun flag, TXU, report flow-control errors.

• The flow-control flags are also accessible by software as simple read/write bits for saving and restoring over
a powerdown when the OS Lock is locked in DSCR.

• The flow-control flags are accessible from the external debug interface in EDSCR.

Figure H4-1 shows the System register and external debug interface views of the EDSCR and DTR registers in both
AArch64 state and AArch32 state. These figures do not include the save and restore views.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12735
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.2 DCC and ITR registers
Figure H4-1 System register and external debug interface views of EDSCR and DTR registers, Normal access mode

EDITR and the ITR flow-control flags, EDSCR.{ITE, ITO} are accessible only by the external debug interface:

• The EDITR specifies an instruction to execute in Debug state.

• The ITR empty flag, ITE, is used for flow-control.

• The ITR overrun flag, ITO, reports flow-control errors.

Figure H4-2 External debug interface views of EDSCR and EDITR registers, Normal access mode

The sticky overflow flag, EDSCR.ERR, is used by both the DCC and ITR to report flow-control errors.

DBGDTRTXint †

DBGDTRRXint †

DBGDSCRint †

EDSCR

RXO

RXfull

TXfull

TXU

RX

write

logic §

TX

read

logic §

DTRTX
DBGDTRTX_EL0

read/write

DTRRX
DBGDTRRX_EL0

read/write

DBGDTRTX_EL0 ‡

32b, write-only

DBGDTRRX_EL0 ‡

32b, read-only

1, on writes

0, on reads

EDSCR

read/write

MDCCSR_EL0 ‡

read-only

External debug interface

DBGDTR_EL0 ‡

64b, read/write

1, on writes

0, on reads

§ underrun and overrun checks only performed

for accesses by the external debug interface

System register interface

† AArch32 state

‡ AArch64 state

ERR

EDSCR

ERR

ITO

ITR

write

logic

EDITR
EDITR

write-only

EDSCR

read/write

External debug interface

ITE

1, on completion

Instruction issue

logic
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12736
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.2 DCC and ITR registers
To save and restore the DCC registers for an external debugger over powerdown, software uses:

• The MDSCR_EL1, OSDTRTX_EL1, and OSDTRRX_EL1 registers in AArch64 state.

• The DBGDSCRext, DBGDTRTXext, and DBGDTRRXext registers in AArch32 state.

Note

There is no save and restore mechanism for the ITR registers as the ITR is used only in Debug state.

Figure H4-3 System register views of EDSCR and DTR registers for save and restore

DBGDTRTXint †

DBGDTRRXint †

DBGDSCRint †

EDSCR

RXO

RXfull

TXfull

TXU

DTRTX

DTRRX

DBGDTRTX_EL0 ‡

32b, write-only

DBGDTRRX_EL0 ‡

32b, read-only

1, on writes

0, on reads

MDCCSR_EL0 ‡

read-only

System register interface

ERR

† AArch32 state

‡ AArch64 state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12737
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
H4.3 DCC and ITR access modes

The DCC and ITR support two access modes:

H4.3.1 Normal access mode

The Normal access mode allows use of the DCC as a communications channel between target and host. It also
allows the use of the ITR for issuing instructions to the PE in Debug state.

In Normal access mode, if there is no overrun or underrun, the following occurs:

For accesses by software:

• Direct writes to DBGDTRTX update the value in DTRTX and indirectly write 1 to TXfull.

• Direct reads from DBGDTRRX return the value in DTRRX and indirectly write 0 to RXfull.

• In AArch64 state, direct writes to DBGDTR_EL0 update both DTRTX and DTRRX,
indirectly write 1 to TXfull, and do not change RXfull:

— DTRTX is set from bits[31:0] of the transfer register.

— DTRRX is set from bits[63:32] of the transfer register.

• In AArch64 state, direct reads from DBGDTR_EL0 return the concatenation of DTRRX and
DTRTX, indirectly write 0 to RXfull, and do not change TXfull:

— Bits[31:0] of the transfer register are set from DTRRX.

— Bits[63:32] of the transfer register are set from DTRTX.

Note

For DBGDTR_EL0, the word order is reversed for reads with respect to writes.

Software reads TXfull and RXfull using DCCSR.

For accesses by the external debug interface:

• Writes to EDITR trigger the instruction to be executed if the PE is in Debug state:

— If the PE is in AArch64 state, this is an A64 instruction.

— If the PE is in AArch32 state, this is a T32 instruction. The T32 instruction is a pair of
halfwords where the first halfword is taken from the lower 16-bits, and the second
halfword is taken from the upper 16-bits.

• Reads of DBGDTRTX_EL0 return the value in DTRTX and indirectly write 0 to TXfull.

• Writes to DBGDTRTX_EL0 update the value in DTRTX and do not change TXfull.

• Reads of DBGDTRRX_EL0 return the value in DTRRX and do not change RXfull.

• Writes to DBGDTRRX_EL0 update the value in DTRRX and indirectly write 1 to RXfull.

TXfull and RXfull are visible to the external debug interface in EDSCR.

The PE detects overrun and underrun by the external debug interface, and records errors in
EDSCR.{TXU, RXO, ITO, ERR}. See Flow control of the DCC and ITR registers.

DCC and ITR access mode, links to description Applies when:

Normal access mode EDSCR.MA == 0 or the PE is in Non-debug state

Memory access mode EDSCR.MA == 1 and the PE is in Debug state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12738
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
See also Synchronization of DCC and ITR accesses.

H4.3.2 Memory access mode

When the PE is in Debug state, Memory access mode can be selected to accelerate word-aligned block reads or
writes of memory by an external debugger. Memory access mode can be enabled only in Debug state, and no
instructions can be issued directly by the debugger when in Memory access mode.

If there is no overrun or underrun when in Memory access mode, an access by the external debug interface results
in the following:

• External reads from DBGDTRTX_EL0 cause:

1. The existing value in DTRTX to be returned. This clears EDSCR.TXfull to 0.

2. The equivalent of LDR W1,[X0],#4, if in AArch64 state, or LDR R1,[R0],#4, if in AArch32 state, to be
executed.

3. The equivalent of the MSR DBGDTRTX_EL0,X1 instruction, if in AArch64 state, or the MCR
p14,0,R1,c0,c5,0 instruction, if in AArch32 state, to be executed.

4. EDSCR.{TXfull, ITE} to be set to {1,1}, and X1 or R1 to be set to an UNKNOWN value.

• External writes to DBGDTRRX_EL0 cause:

1. The value in DTRRX to be updated. This sets EDSCR.RXfull to 1.

2. The equivalent of the instruction MRS X1,DBGDTRRX_EL0, if in AArch64 state, or MRC p14,0,R1,c0,c5,0 if
in AArch32 state, to be executed.

3. The equivalent of the instruction STR W1,[X0],#4, if in AArch64 state, or STR R1,[R0],#4, if in AArch32
state, to be executed.

4. EDSCR.{RXfull, ITE} to be set to {0,1}, and X1 or R1 to be set to an UNKNOWN value.

• External reads from DBGDTRRX_EL0 return the last value written to DTRRX.

• External writes to EDITR generate an overrun error.

During these accesses, EDSCR.{TXfull, RXfull, ITE} are used for flow control.

Note

An overrun or underrun might result in EDSCR.ERR being set to 1 asynchronously to the sequence of operations
that are outlined in this section. As this is timing-dependent, it is UNPREDICTABLE when the EDSCR.ERR flag
affects the instructions and therefore whether neither instruction, only the first instruction, or both instructions are
executed. If the second instruction is executed, then the first instruction must have been executed. However, in each
case X1 or R1 is set to an UNKNOWN value. This means that:

• In both cases, if the memory access instruction is not executed, then the base register X0 or R0 is not updated,
meaning the debugger can determine the last accessed location.

• In the list describing External reads from DBGDTRTX_EL0, DTRTX and EDSCR.TXfull get set to
UNKNOWN values. If the load was executed, then the value that was read by the PE is lost. This means the
operation might need to be repeated by the debugger, and it is not advisable to use Memory access mode to
read from read-sensitive locations using the underrun and overrun detection for flow control.

• In the list describing External writes to DBGDTRRX_EL0, EDSCR.RXfull is set to an UNKNOWN value.

A Data Abort from the memory access can also set EDSCR.ERR to 1. See Data Aborts in Memory access mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12739
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
The architecture does not require precisely when these flags are set or cleared by the sequence of operations outlined
in this section. For example, in the case of an external write to DBGDTRRX_EL0, in AArch64 state, RXfull might
be cleared after step 2, or it might not be cleared until after step 3, as an implementation is free to fuse these steps
into a single operation. The architecture does require that the flags are set as at step 4 when the PE is ready to accept
a further read or write without causing an overrun error or an underrun error.

The process outlined in this section represents a simple sequential execution model of Memory access mode. An
implementation is free to pipeline, buffer, and reorder instructions and transactions, as long as the following remain
true:

• Data items are transferred into and out of the DTR in order and without loss of data, other than as a result of
an overrun or an underrun.

• Data Aborts occur in order.

• The constraints of the memory type are met.

• In the list describing External reads from DBGDTRTX_EL0:

— The MSR equivalent operation at step 3 of the sequence reads the value loaded by step 2.

— If the list is performed in a loop, for all but the first iteration of this list, the value read by step 1 returns
the values written by the MSR equivalent operation at the previous iteration of step 3.

• In the list describing External writes to DBGDTRRX_EL0:

— The MRS equivalent operation at step 2 of the sequence returns the value written at step 1.

— The STR equivalent at step 3 of the sequence writes the value read at step 2.

• If the PE cannot accept a read or write, as applicable, during the sequence, then the flags are updated to
indicate an overrun or underrun.

See Flow control of the DCC and ITR registers for more information on overrun and underrun.

H4.3.2.1 Ordering, access sizes and effect on Exclusives monitors

For the purposes of memory ordering, access sizes, and effect on the Exclusives monitor, accesses in Memory access
mode are consistent with load/store word instructions executed by the PE.

The simple sequential access model of Memory-access mode, as stated in Memory access mode, must also be
ordered with respect to instructions executed as a result of External writes to EDITR in Normal mode both before
and after accesses to the DTR registers in Memory-access mode.

H4.3.2.2 Data Aborts in Memory access mode

If a memory access generates a Data Abort, then:

• The Data Abort exception is taken. See Exceptions in Debug state:

— This means EDSCR.ERR is set to 1, see Cumulative error flag.

— If the Data Abort occurs on stage 2 of an address translation, then the values returned in the ISV field
and in bits[23:14] of the ISS are UNKNOWN.

If this Data Abort is taken to EL2 using AArch64, the ISS is returned by ESR_EL2. ISS encoding for
an exception from a Data Abort describes the usual encoding of this ISS.

If EL2 is using AArch32 and this Data Abort is taken to Hyp mode, the ISS is returned by HSR. ISS
encoding for exception from a Data Abort describes the usual encoding of this ISS.

• Register R0 retains the address that generated the abort.

• Register R1 is set to an UNKNOWN value.

• EDSCR.TXfull, for a load, or EDSCR.RXfull, for a store, is set to an UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12740
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.3 DCC and ITR access modes
• DTRTX, for a load, or DTRRX, for a store, is set to an UNKNOWN value.

• EDSCR.ITE is set to 1.

H4.3.2.3 Illegal Execution state exception

If PSTATE.IL is set to 1 when EDSCR.MA == 1, then on an external write access to DBGDTRRX_EL0 or an
external read from DBGDTRTX_EL0, it is CONSTRAINED UNPREDICTABLE whether the PE:

• Takes an Illegal Execution state exception without performing any operations. In this case:

— EDSCR.ERR is set to 1, see Cumulative error flag.

— Register R0 is unchanged.

— Register R1 is set to an UNKNOWN value.

— EDSCR.TXfull or EDSCR.RXfull, as applicable, is set to an UNKNOWN value.

— DTRTX or DTRRX, as applicable, is set an UNKNOWN value.

— EDSCR.ITE is set to 1.

See also Exceptions in Debug state.

• Ignores PSTATE.IL.

Note

The typical usage model for Memory access mode involves executing instructions in Normal access mode to set up
X0 before setting EDSCR.MA to 1. These instructions generate an Illegal state exception if PSTATE.IL is set to 1.

H4.3.2.4 Alignment constraints

If the address in R0 is not aligned to a multiple of four, the behavior is as follows:

• For each external DTR access a CONSTRAINED UNPREDICTABLE choice of:

1. The PE makes an unaligned memory access to R0. If alignment checking is enabled for the memory
access, this generates an Alignment fault.

2. The PE makes a memory access to Align(X[0],4) in AArch64 state, or Align(R[0],4) in AArch32
state.

3. The PE generates an Alignment fault, regardless of whether alignment checking is enabled.

4. The PE does nothing.

• Following each memory access, if there is no Data Abort, R0 is updated with an UNKNOWN value.

• For external writes to DBGDTRRX_EL0, if the PE writes to memory, an UNKNOWN value is written.

• For external reads of DBGDTRTX_EL0 an UNKNOWN value is returned.

• The RXfull and TXfull flags are left in an UNKNOWN state, meaning that a DBGDTRTX_EL0 read can trigger
a TX underrun, and a DBGDTRTX_EL0 write can trigger an RX overrun.

H4.3.3 Memory-mapped accesses to the DCC and ITR

Writes to the flags in EDSCR by external debug interface accesses to the DCC and the ITR registers are indirect
writes, because they are a side-effect of the access. The indirect write might not occur for a memory-mapped access
to the external debug interface. For more information, see Register access permissions for memory-mapped
accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12741
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
H4.4 Flow control of the DCC and ITR registers

• Ready flags.

• Buffering writes to EDITR.

• Overrun and underrun flags.

• Cumulative error flag.

H4.4.1 Ready flags

In Normal access mode:

• For the DTR registers there are two ready flags:

— EDSCR.RXfull == 1 indicates that DBGDTRRX_EL0 contains a valid value that has been written by
the external debugger and not yet read by software running on the target.

— EDSCR.TXfull == 1 indicates that DBGDTRTX_EL0 contains a valid value that has been written by
software running on the target and not yet read by an external debugger.

• For the ITR register there is a single ready flag:

— EDSCR.ITE == 1 indicates that the PE is ready to accept an instruction to the ITR.

Note

The architecture permits a PE to continue to accept and buffer instructions when previous instructions
have not completed their architecturally defined behavior, as long as those instructions are discarded
if EDSCR.ERR is set, either by an underrun or overrun or by any of the other error conditions
described in this architecture, such as an instruction generating an abort.

In Memory access mode:

• EDSCR.{RXfull, ITE} == {0,1} indicates that DBGDTRRX_EL0 is empty and the PE is ready to accept a
word external write to DBGDTRRX_EL0.

• EDSCR.{TXfull, ITE} == {1,1} indicates that DBGDTRTX_EL0 is full and the PE is ready to accept a word
external read from DBGDTRTX_EL0.

All other values indicate that the PE is not ready, and result in a DTR overrun or underrun error, an ITR overrun
error, or both, as defined in Overrun and underrun flags.

EDSCR.{ITE, RXfull, TXfull} shows the status of the ITR and DCC registers. It ignores the question of whether a
read or write cannot be accepted because, for example, EDSCR.ERR is set or the OPTIONAL Software Lock is locked
for memory-mapped accesses (EDLSR.SLK == 1).

H4.4.2 Buffering writes to EDITR

The architecture permits a processor to continue to accept and buffer instructions when previous instructions have
not completed their architecturally defined behavior, provided that:

• Those instructions are discarded if EDSCR.ERR is set to 1, either by an underrun or an overrun, or by any
other error conditions described in this architecture, such as an instruction generating an abort.

• The PE maintains the simple sequential execution model with the order of instructions determined by the
order in which the PE accepts the EDITR writes. In particular, the buffered instructions must be executed in
the Execution state consistent with a simple sequential execution of the instructions, even if one of the
previous instructions is a state changing operation, such as DCPS or DRPS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12742
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
H4.4.3 Overrun and underrun flags

Each of the ready flags has a corresponding overrun or a corresponding underrun flag. These are sticky status flags
that are set if the register is accessed using the external debug interface when the corresponding ready flag is not in
the ready state.

If the PE is in Debug state and Memory access mode, the corresponding error flag is also set if the PE is not ready
to accept an operation because a previous load or store is still in progress. The sticky status flag remains set until
cleared by writing 1 to EDRCR.CSE.

Note

The architecture permits a PE to continue to accept and buffer data to write to memory in Memory access mode.

Table H4-1 shows DCC and ITR ready flags and the overrun and underrun flags associated with them.

When an overrun or underrun flag is set to 1, the cumulative error flag, EDSCR.ERR, described in Cumulative error
flag, is also set to 1.

In the event of an external write to DBGDTRRX_EL0 or EDITR generating an overrun, or an external read from
DBGDTRTX_EL0 generating an underrun:

• For a write, the written value is ignored.

• For a read, an UNKNOWN value is returned.

• EDSCR.TXfull, EDSCR.RXfull or EDSCR.ITE, as applicable, are not updated.

There is no overrun or underrun detection on external reads of DBGDTRRX_EL0 or external writes of
DBGDTRTX_EL0.

There is no overrun or underrun detection of direct reads and direct writes of the DTR System registers by software:

• If RXfull == 0, a direct read of DBGDTRRX or DBGDTR_EL0 returns UNKNOWN.

• If TXfull == 1, a direct write of:

— DBGDTRTX sets DTRTX to UNKNOWN.

— DBGDTR_EL0 sets DTRRX and DTRTX to UNKNOWN.

See DCC accesses in Non-debug state for more information.

H4.4.3.1 Accessing 64-bit data

In AArch64 state, a software access to the DBGDTR_EL0 register and an external debugger access to both
DBGDTRRX_EL0 and DBGDTRTX_EL0 can perform a 64-bit half-duplex operation.

However, there is only overrun and underrun detection on one of the external debug registers. That is:

• If software directly writes a 64-bit value to DBGDTR_EL0, only TXfull is set to 1, meaning:

— A subsequent external write to DBGDTRRX_EL0 would not be detected as an overrun.

Table H4-1 DCC and ITR ready flags and the associated overrun/underrun flags

External debug
interface access

Overrun/Underrun condition EDSCR flag

Write DBGDTRRX_EL0 EDSCR.RXfull == ‘1’ || (Halted() && EDSCR.MA == ‘1’ && EDSCR.ITE == ‘0’) RXO

Read DBGDTRTX_EL0 EDSCR.TXfull == ‘0’ || (Halted() && EDSCR.MA == ‘1’ && EDSCR.ITE == ‘0’) TXU

Write EDITR Halted() && (EDSCR.ITE == ‘0’ || EDSCR.MA == ‘1’) ITO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12743
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
— If the external debugger reads DBGDTRTX_EL0 first, software might observe
MDCCSR_EL0.TXfull == 0 and send a second value before the external debugger reads
DBGDTRRX_EL0, leading to an undetected overrun.

• On external writes to both DBGDTRRX_EL0 and DBGDTRTX_EL0, only RXfull is set to 1, meaning:

— A subsequent direct write of DBGDTRTX_EL0 would not be detected as an overrun.

— If the external debugger writes to DBGDTRRX_EL0 first, software might observe
MDCCSR_EL0.RXfull == 1 and read a full 64-bit value, before the external debugger writes to
DBGDTRTX_EL0, leading to an undetected underrun.

To avoid this, debuggers need to be aware of the data size used by software for transfers and ensure that 64-bit data
is read or written in the correct order. If the PE is in Non-debug state, this order is as follows:

• The external debugger must check EDSCR.{RXfull, TXfull} before each transfer.

• To receive a 64-bit value from the target, the external debugger must read DBGDTRRX_EL0 before reading
DBGDTRTX_EL0.

• To send a 64-bit value to the target, the external debugger must write to DBGDTRTX_EL0 before writing
DBGDTRRX_EL0.

Because three accesses are required to transfer 64 bits of data, 64-bit transfers are not recommended for regular
communication between host and target. The use of underrun and overrun detection means that only one access is
required for 32 bits of data when using 32-bit transfers.

In Debug state, the debugger controls the instructions executed by the PE, so these limitations do not apply. 64-bit
transfers provide a means to transfer a 64-bit general register between the host and the target in Debug state.

H4.4.4 Cumulative error flag

The cumulative error flag, EDSCR.ERR, is set to 1:

• On taking an exception from Debug state.

• On any signaled overrun or underrun in the DCC or ITR.

When EDSCR.ERR == 1:

• External reads of DBGDTRTX_EL0 do not have any side-effects.

• External writes to DBGDTRRX_EL0 are ignored.

• External writes to EDITR are ignored.

• No further instructions can be issued in Debug state. This includes any instructions previously accepted as
external writes to EDITR that occur in program order after the instruction or access that caused the error.

This allows a debugger to stream data, or, in Debug state, instructions, to the target without having to:

• Check EDSCR.{RXfull, TXfull, ITE} before each access.

• Check EDSCR.{ITO, RXO, TXU} following each access, for overrun or underrun.

• Check PSTATE or other syndrome registers, or both, for an exception following each instruction executed in
Debug state that might generate a synchronous exception.

The cumulative error flag remains set until cleared to 0 by writing 1 to EDRCR.CSE. However, the effect of
writing 1 to EDRCR.CSE to clear EDSCR.ERR is CONSTRAINED UNPREDICTABLE when both of the following
apply:

• The PE is in Debug state.

• The value of EDSCR.ITE is 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12744
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.4 Flow control of the DCC and ITR registers
When these conditions apply and a value of 1 is written to EDRCR.CSE, either or both of the following might occur:

• EDSCR.ERR is not cleared to 0.

• Any instructions in EDITR that have not been executed might be executed subsequently, rather than being
ignored.

Note

This means that a debugger must poll EDSCR.ITE until it has the value 1, indicating that EDITR is empty, before
writing to EDRCR.CSE to clear the EDSCR.ERR flag to 0.

For overruns and underruns, EDSCR.{ITO, RXO, TXU} record the error type.

H4.4.4.1 Pseudocode description of clearing the error flag

The ClearStickyErrors() pseudocode function is described in Chapter J1 Armv8 Pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12745
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
H4.5 Synchronization of DCC and ITR accesses

In addition to the standard synchronization requirements for register accesses, the following subsections describe
additional requirements that apply for the DCC and ITR registers:

• Summary of System register accesses to the DCC.

• DCC accesses in Non-debug state.

• Synchronization of DCC interrupt request signals.

• DCC and ITR access in Debug state.

In these sections, accesses by the external debug interface are referred to as external reads and external writes.
Accesses to System registers are referred to as direct reads, direct writes, indirect reads, and indirect writes.

Note

In Synchronization requirements for AArch64 System registers external reads and external writes are described as
forms of indirect access. This whole section uses more explicit terminology.

The DTR registers and the DCC flags, TXfull and RXfull, form a communication channel, with one end operating
asynchronously to the other. Implementations must respect the ordering of accesses to these registers in order to
maintain the correct behavior of the channel.

External reads of, and external writes to DBGDTRRX_EL0 and DBGDTRTX_EL0 are asynchronous to direct
reads of, and direct writes to, DBGDTRRX, DBGDTRTX, and in AArch64 state DBGDTR_EL0, made by software
using System register access instructions. The direct reads and direct writes indirectly write to the DCC flags. The
external reads and external writes indirectly read the DCC flags to check for underrun and overrun.

Throughout this section:

DCC flags Means any or all of the following:

• The EDSCR.{RXfull.TXfull} ready flags.

• The EDSCR.RXO overrun flag.

• The EDSCR.TXU underrun flag.

• The EDSCR.ERR cumulative error flag.

ITR flags Means any or all of the following:

• The EDSCR.ITE ready flag.

• The EDSCR.ITO overrun flag.

• The EDSCR.ERR cumulative error flag.

H4.5.1 Summary of System register accesses to the DCC

System register accesses to the DTR registers are direct reads and writes of those registers, as shown in Table H4-2.
Several of these instructions access the same registers using different encodings.

DBGDTRRX_EL0 and DBGDTRTX_EL0 are encoded as MRS and MSR accesses respectively to the same System
register, even though they access different underlying register values. DBGDTRRX and DBGDTRTX are similarly
encoded as MRC and MCR accesses respectively to the same System register. The encoding means that direct reads
and writes using these encodings must be ordered with respect to each other. For more information, see
Synchronization requirements for AArch64 System registers and Synchronization of changes to AArch32 System
registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12746
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
Table H4-2 shows a summary of System register accesses to the DCC.

H4.5.2 DCC accesses in Non-debug state

In Non-debug state DCC accesses are as described in Normal access mode:

• If a direct read of DCCSR returns RXfull == 1, then a following direct read of DBGDTRRX, or in AArch64
state of DBGDTR_EL0, returns valid data and indirectly writes 0 to DCCSR.RXfull as a side-effect.

• If a direct read of DCCSR returns TXfull == 0, then a following direct write to DBGDTRTX, or in AArch64
state to DBGDTR_EL0, writes the intended value, and indirectly writes 1 to DCCSR.TXfull as a side-effect.

No Context Synchronization event is required between these two instructions. Overrun and underrun detection
prevents intervening external reads and external writes affecting the outcome of the second instruction.

The indirect write to the DCC flags as part of the DTR access instruction is made atomically with the DTR access.

Because a direct read of DBGDTRRX is an indirect write to DCCSR.RXfull, it must occur in program order with
respect to the direct read of DCCSR, meaning it must not return a speculative value for DTTRX that predates the
RXfull flag returned by the read of DCCSR. The direct write to DBGDTRTX must not be executed speculatively.

Direct reads of DBGDTRRX, or in AArch64 state DBGDTR_EL0, and DCCSR, must occur in program order with
respect to other direct reads of the same register using the same encoding.

The following accesses have an implied order within the atomic access:

• In the simple sequential execution of the program the indirect write of the DCC flags occurs immediately
after the direct DTR access.

Note

For an access to DBGDTR_EL0, this means the indirect write happens after both DBGDTRRX_EL0 and
DBGDTRTX_EL0 have been accessed.

Table H4-2 Summary of System register accesses to the DCC

Operation OS Lock
AArch64
(MRS/MSR)

AArch32
(MRC/MCR)

Description

Read - DBGDTRRX_EL0 DBGDTRRXint Direct read of DTRRX.

Indirect write to the DCC flags.

An STC instruction that reads DBGDTRRXint makes an
indirect write to DBGDSCRint.RXfull.

Write - DBGDTRTX_EL0 DBGDTRTXint Direct read of DTRTX.

Indirect write to the DCC flags.

An LDC instruction that writes to DBGDTRTXint using a
value read from memory is a direct write to DBGDTRTXint.

Read/write - DBGDTR_EL0 - Direct read/write of both DTRRX and DTRTX.

Indirect write to the DCC flags.

Read - MDCCSR_EL0 DBGDSCRint Direct read of the DCC flags.

Read/write - OSDTRRX_EL1 DBGDTRRXext Direct read/write of DTRRX.

Read/write - OSDTRTX_EL1 DBGDTRTXext Direct read/write of DTRTX.

Read Unlocked MDSCR_EL1 DBGDSCRext Direct read of DCC flags.

Read/write Locked MDSCR_EL1 DBGDSCRext Direct read/write of DCC flags.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12747
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
• In the simple sequential execution model, for an external read of DBGDTRTX_EL0 or an external write of
DBGDTRRX_EL0:

— The check of the DCC flags for overrun or underrun occurs immediately before the access.

— If there is no underrun or overrun, the update of the DCC flags occurs immediately after the access.

— If there is underrun or overrun, the update of the DCC underrun or overrun flags occurs immediately
after the access.

All observers must observe the same order for accesses.

Note

These requirements do not create order where order does not otherwise exist. It applies only for ordered accesses.

Without explicit synchronization following external writes and external reads:

• The value written by the external write to DBGDTRRX_EL0 that does not overrun, must be observable to
direct reads of DBGDTRRX and DBGDTR_EL0 in finite time.

• The DCC flags that are updated as a side-effect of the external write or external read must be observable:

— To subsequent external reads of EDSCR.

— To subsequent external reads of DBGDTRRX_EL0 when checking for underrun.

— To subsequent external writes to DBGDTRTX_EL0 when checking for overrun.

— To direct reads of DCCSR in finite time.

However, explicit synchronization is required to guarantee that a direct read of DCCSR returns up-to-date DCC
flags. This means that if a signal is received from another agent that indicates that DCCSR must be read, an ISB is
required to ensure that the direct read of DCCSR occurs after the signal has been received. This also synchronizes
the value in DBGDTRRX, if applicable. However, if that signal is an interrupt exception triggered by COMMIRQ,
COMMTX, or COMMRX, the exception entry is sufficient synchronization. See Synchronization of DCC
interrupt request signals.

Explicit synchronization is required following a direct read or direct write:

• To ensure that a value directly written to DBGDTRTX is observable to external reads of DBGDTRTX_EL0.

• To ensure that a value directly written to DBGDTR_EL0 is observable to external reads of
DBGDTRTX_EL0 and DBGDTRRX_EL0.

• To guarantee that the indirect writes to the DCC flags that were a side-effect of the direct read or direct write
have occurred, and therefore that the updated values are:

— Observable to external reads of EDSCR.

— Observable to external reads of DBGDTRRX_EL0 when checking for underrun.

— Observable to external writes of DBGDTRTX_EL0 when checking for overrun.

— Returned by a following direct read of DCCSR.

See also Memory-mapped accesses to the DCC and ITR and Synchronization of changes to the external debug
registers.

Note

These ordering rules mean that software:

• Must not read DBGDTRRX without first checking DCCSR.RXfull or if the previously-read value of
DCCSR.RXfull is 0.

It is not sufficient to read both registers and then later decide whether to discard the read value, as there might
be an intervening write from the external debug interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12748
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
• Must not write DBGDTRTX without first checking DCCSR.TXfull or if the previously-read value of
DCCSR.TXfull is 1.

The write to DBGDTRTX overwrites the value in DTRTX, and the external debugger might or might not
have read this value.

• Must ensure there is an explicit Context Synchronization event following a DTR access, even if not
immediately returning to read DCCSR again. This synchronization operation can be an exception return.

H4.5.2.1 Derived requirements

The rules for DCC accesses in Non-debug state are as follows:

• Following a direct read of DBGDTRRX when RXfull is 1:

— If an external write to DBGDTRRX checks the RXfull flag for overrun and observes that the value of
RXfull is 0, the value returned by the previous direct read must not be affected by the external write.

— If an external read of EDSCR returns a RXfull value of 0, then the value returned by the previous direct
read must not be affected by a following external write to DBGDTRRX, and the following external
write does not overrun.

• Following a direct read of DBGDTR_EL0, when RXfull is 1:

— If an external write to DBGDTRRX checks the RXfull flag for overrun and observes that the value of
RXfull is 0, the value returned by the previous direct read must not be affected by the external write
nor by a following direct write to DBGDTRTX.

— If an external read of EDSCR returns a RXfull value of 0, then the value returned by the previous direct
read must not be affected by subsequent external writes to DBGDTRRX and DBGDTRTX in any
order, and the following external write of DBGDTRRX will not overrun.

• Following a direct write to DBGDTRTX, when TXfull is 0:

— If an external read of DBGDTRTX checks the TXfull flag for underrun and observes that the value of
TXfull is 1, the value returned by the external read must be the value written by the previous direct
write.

— If an external read of EDSCR returns a TXfull value of 1, then the value returned by a following
external read of DBGDTRRX must be the value written by the previous direct read, and the
subsequent external read will not underrun.

• Following a direct write to DBGDTR_EL0, when TXfull is 0:

— If an external read of DBGDTRTX checks the TXfull flag for underrun and observes that the value of
TXfull is 1, the values returned by the external read and by a subsequent external read of DBGDTRRX
must be the value written by the previous direct write.

— If an external read of EDSCR returns a TXfull value of 1, then the value returned by subsequent
external reads of DBGDTRRX and DBGDTRTX, in any order, must be the value written by the
previous direct read, and the subsequent external read of DBGDTRTX does not underrun.

• Following an external read of DBGDTRTX that does not underrun, if a direct read of DCCSR returns a
TXfull value of 0, then the value returned by the external read must not be affected by a following direct write
to DBGDTRTX.

• Following a first external read DBGDTRRX and a following second external read of DBGDTRTX that does
not underrun, if a direct read of DCCSR returns a TXfull value of 0, then the values returned by the external
reads must not be affected by a following direct write to DBGDTR_EL0.

• Following an external write to DBGDTRRX that does not overrun, if a direct read of DCCSR returns an
RXfull value of 1, then the value returned by a following direct read of DBGDTRRX or DBGDTR_EL0 must
be the value written by the previous external write.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12749
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
• Following a first external write to DBGDTRTX and a following second external write to DBGDTRRX that
does not overrun, if a direct read of DCCSR returns an RXfull value of 1, then the value returned by a
subsequent direct read of DBGDTR_EL0 must return the values written by the previous external writes.

H4.5.3 Synchronization of DCC interrupt request signals

Following an external read or external write access to the DTR registers, the interrupt request signals, COMMIRQ,
COMMTX, and COMMRX, must be updated in finite time without explicit synchronization.

The updated values must be observable to a direct read of DCCSR or DBGDTRRX, or a direct write of
DBGDTRTX executed after taking an interrupt exception generated by the interrupt request. The updated values
must also be observable to a direct write of DBGDTRTX executed after taking an interrupt exception generated by
the interrupt request.

Note

The requirement that indirect writes to registers are observable to direct reads in finite time does not imply that all
observers will observe the indirect write at the same time. For more information, see Synchronization requirements
for AArch64 System registers and Synchronization of changes to AArch32 System registers.

Following a direct read of DBGDTRRX or a direct write to DBGDTRRX, software must execute a Context
Synchronization event to guarantee the interrupt request signals have been updated in finite time. This
synchronization operation can be an exception return.

H4.5.4 DCC and ITR access in Debug state

In Debug state, stricter observability rules apply for instructions issued through the ITR, to maintain communication
between a debugger and the PE, without requiring excessive explicit synchronization.

In Normal access mode, without explicit synchronization:

• A direct read or direct write of the DTR registers by an instruction written to EDITR must be observable to
an external write or an external read in finite time:

— A direct read of DBGDTRRX must be observable to an external write of DBGDTRRX_EL0.

— A direct read of DBGDTR_EL0 must be observable to an external write of DBGDTRRX_EL0 and
DBGDTRTX_EL0.

— A direct write of DBGDTRTX must be observable to an external read of DBGDTRTX_EL0.

— A direct write of DBGDTR_EL0 must be observable to an external read of DBGDTRRX_EL0 and
DBGDTRTX_EL0.

This includes the indirect write to the DCC flags that occurs atomically with the access as described in DCC
accesses in Non-debug state.

The subsequent external write or external read must observe either the old or the new values of both the DTR
contents and DCC flags. If the old values are observed, this typically results in overrun or underrun, assuming
the old values of the DCC flags indicate an overrun or underrun condition, as would normally be the case.

This means the debugger can observe the direct read or direct write without explicit synchronization and
without explicitly testing the DCC flags in EDSCR, because it can rely on overrun and underrun tests.

• External reads of DBGDTRTX_EL0 that do not underrun and external writes to DBGDTRRX_EL0 that do
not overrun must be observable to an instruction subsequently written to EDITR on completion of the first
external access. This includes the indirect write to the DCC flags.

This means that without explicit synchronization and without the need to first check the DCC flags in
DCCSR:

— If the instruction is a direct read of DBGDTRRX, it observes the external write.

— If the instruction is a direct write of DBGDTRTX, it observes the external read.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12750
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.5 Synchronization of DCC and ITR accesses
• Writes to EDITR that do not overrun commit an instruction for execution immediately. The instruction must
complete execution in finite time without requiring any further operation by the debugger.

• After an external write to the EDITR, the ITR flags that are updated as a side effect of that write must be
observable by:

— An external read of the EDSCR that follows the external write to the EDITR.

— When checking for overrun, another external write to the EDITR that follows the original external
write to the EDITR.

In Memory access mode, these requirements shift to the instructions implicitly executed by external reads and
external writes of the DTR registers, as described in Memory access mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12751
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.6 Interrupt-driven use of the DCC
H4.6 Interrupt-driven use of the DCC

Arm recommends implementations provide a level-sensitive DCC interrupt request through the IMPLEMENTATION
DEFINED interrupt controller as a Private Peripheral Interrupt for the originating PE.

Note

• In addition to connection to the interrupt controller Arm also recommends COMMIRQ, COMMTX, and
COMMRX signals that might be implemented for use by any legacy system peripherals.

• GICv3 reserves a Private Peripheral Interrupt number for the COMMIRQ interrupt.

The DCCINT register provides a first level of interrupt masking within the PE, meaning only a single interrupt
source, COMMIRQ, is needed at the interrupt controller.

See also Synchronization of DCC interrupt request signals.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12752
ID032224 Non-Confidential

The Debug Communication Channel and Instruction Transfer Register
H4.7 Pseudocode description of the operation of the DCC and ITR registers
H4.7 Pseudocode description of the operation of the DCC and ITR registers

The basic operation of the DCC and ITR registers is shown by the following pseudocode functions. These functions
do not cover the behavior when OSLSR.OSLK == 1, meaning that the OS Lock is locked:

• Write_DBGDTR_EL0[].

• Write_DBGDTRRX_EL0[].

• Write_DBGDTRTX_EL0[].

• Write_EDITR[].

• CheckForDCCInterrupts().

For the definition of the DTR Registers, see shared/debug/dccanditr/DTR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H4-12753
ID032224 Non-Confidential

Chapter H5
The Embedded Cross-Trigger Interface

This chapter describes the Embedded Cross-Trigger interface. It contains the following sections:

• About the Embedded Cross-Trigger.

• Basic operation on the ECT.

• Cross-triggers on a PE in an Arm A-profile implementation.

• Description and allocation of CTI triggers.

• CTI registers programmers’ model.

• Examples.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12754
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger
H5.1 About the Embedded Cross-Trigger

The Embedded Cross-Trigger (ECT) allows a debugger to:

• Send trigger events to a PE. For example, this might be done to halt the PE.

• Send a trigger event to one or more PEs, or other system components, when a trigger event occurs on another
PE or system component. For example, this might be done to halt all PEs when one individual PE halts.

Figure H5-1 shows the logical structure of an ECT.

Figure H5-1 Structure of an Embedded Cross-Trigger

The ECT can deliver many types of trigger events, which are described in the following sections:

• Debug request trigger event.

• Restart request trigger event.

• Cross-halt trigger event.

• Performance Monitors overflow trigger event.

• Generic trace external input trigger events.

• Generic trace external output trigger events.

• Generic CTI interrupt trigger event.

From the introduction of Armv8, an A-profile implementation must:

• Include a Cross-Trigger interface, CTI.

• Implement at least the input and output triggers defined in this architecture.

In addition, see Cross-triggers on a PE in an Arm A-profile implementation.

Arm recommends that this Cross-Trigger interface includes:

• The ability to route trigger events between Trace Units, which typically have advanced event triggering logic.

• An output trigger to the interrupt controller.

Also, Arm recommends that the Embedded Cross-Trigger includes the capability to send and receive
IMPLEMENTATION DEFINED system trigger events to and from other system components, including a system counter,
using a system CTI. See Halt-on-debug.

PE PE PE PE

PE
Cross-Trigger
Interface (CTI)

PE CTI PE CTI PE CTI

Cross-Trigger Matrix (CTM)

Embedded Cross-Trigger

Other system

components

System

CTI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12755
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger
Note

The ECT and CTI must only signal trigger events for external debugging. They must not route software events, such
as interrupts. For example, the Performance Monitors overflow input trigger is provided to allow entry to Debug
state on a counter overflow, and the output trigger to the interrupt controller is provided to generally allow events
from the external debug subsystem to be routed to a software agent. However, the combination of the two must not
be used as a mechanism to route Performance Monitors overflows to an interrupt controller.

Note

CTI version 1 (CTIv1) is defined by the CoreSight™ SoC Technical Reference Manual. CTIv2 extends CTIv1 with
the addition of the input channel gate. See Implementation with CTIv2.

H5.1.1 Implementation with a CoreSight CTI

For details of the recommended connections for an A-profile implementation, see Appendix K7 Recommended
External Debug Interface. See also CoreSight™ SoC Technical Reference Manual.

H5.1.2 Implementation with CTIv2

If the CTI implemented is CTIv2 then:

• The CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1 registers must be implemented.

• If the channel gate function is implemented, it applies to both input and output channels.

• The input channel gate function must be implemented if either of the following is true:

— The CTM is implemented and the architecture variant is Armv8.5 or higher.

— The CTIDEVARCH.REVISION field reads as 0b0001 or higher.

Implementation of CTIv2 features in architecture variants below Armv8.5 is OPTIONAL, but Arm recommends that
CTIv2 is implemented, CTIv2 must be implemented from Armv8.5.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12756
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
H5.2 Basic operation on the ECT

The ECT comprises a Cross-Trigger Matrix, CTM, and one Cross-Trigger Interface, CTI, for each PE. The ECT
might also include other CTIs for other system components. The CTM passes events between the CTI blocks over
channels. The CTM can have a maximum of 32 channels.

The main interfaces of the Cross-Trigger interface, CTI, are:

• The input triggers:

— These are trigger event inputs from the PE to the CTI.

• The output triggers:

— These are trigger event outputs from the CTI to the PE.

• The input channels:

— These are channel event inputs from the Cross-Trigger matrix, CTM, to the CTI.

• The output channels:

— These are channel event outputs from the CTI to the CTM.

Each CTI block has:

• Up to 32 input triggers that come from the PE:

— The input triggers are numbered 0-31.

• Up to 32 output triggers that go to the PE:

— The output triggers are numbered 0-31.

If the CTI is not powered up when the Core power domain is powered up, the CTI ignores all input triggers and
input channel events, and does not generate any output triggers or output channel events.

Figure H5-2 shows the logical internal structure of a CTI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12757
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
Figure H5-2 Structure of a Cross-Trigger interface

Note

• The number of triggers in IMPLEMENTATION DEFINED. Figure H5-2 shows eight input and eight output
triggers.

• The number of channels is IMPLEMENTATION DEFINED. Figure H5-2 shows four channels.

• In Figure H5-2 the input channel gate function is a CTIv2 feature.

When the CTI receives an input trigger event, this generates channel events on one or more internal channels,
according to the mapping function defined by the Input triggeroutput channel mapping registers, CTIINEN<n>.

The CTI also contains an application trigger and channel pulse to allow a debugger to create channel events directly
on internal channels by writing to the CTI control registers.

Gate

enable

Application

trigger

(CTIAPP)

Channel

pulse

CTIGATE

CTIAPPSET

Cross Trigger Interface

Input

channel

to

Output

trigger

mapping

CTIAPPCLEAR

CTITRIGINSTATUS

CTITRIGOUTSTATUS

CTIOUTEN[]

PE CTM

CTIINTACK

Input

trigger

interface

Output

channel

interface

Input

trigger

to

Output

channel

mapping

CTIINEN[]

CTICHINSTATUS

CTICHOUTSTATUS

Input

channel

interface

Output

trigger

interface

GLBEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12758
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
Channel events on each internal channel are passed to a corresponding output channel that is controlled by a channel
gate. The channel gate can block propagation of channel events from an internal channel to an output channel.

Note

If the CTM is implemented:

• The gate function must be implemented.

• If the CTI is CTIv1, the gate function applies to output triggers only.

The output channels from a CTI are combined, using a logical OR function, with the output channels from all other
CTIs to form the input channels on other CTIs. The input channels of this CTI are the logical OR of the output
channels on all other CTIs. This is the Cross-Trigger Matrix, CTM. Therefore, the number of input channels must
equal the number of output channels.

Note

The number of input triggers and output triggers is not required to be the same.

The internal channels form an internal Cross-Trigger matrix within the CTI. This delivers events directly from the
input triggers to the output triggers. Therefore the number of internal channels is the same as the number of input
and output channels on the external CTM, and there is a direct mapping between the two.

Channel events received on each input channel are passed to the corresponding internal channel. It is
IMPLEMENTATION DEFINED whether the Cross-Trigger gate also blocks propagation of channel events from input
channels to internal channels.

Note

If CTIv2 is implemented, the Cross-Trigger gate also blocks propagation of channel events from input channels to
internal channels.

When the CTI receives a channel event on an internal channel this generates trigger events on one or more output
triggers, according to the mapping function defined by the Input channel output trigger mapping registers,
CTIOUTEN<n>.

The CTI contains the input and output trigger interfaces to the PE and the interface of the Cross-Trigger matrix. The
architecture does not define the signal protocol used on the trigger interfaces, and:

• It is IMPLEMENTATION DEFINED whether the CTI supports multicycle input trigger events.

• It is IMPLEMENTATION DEFINED whether the CTM supports multicycle channel events.

See Multicycle events.

However, an output trigger is asserted until acknowledged. The output trigger can be:

• Self-acknowledging. This means that no further action is required from the debugger.

• Acknowledged by the debugger writing 1 to the corresponding bit of CTIINTACK.

The time taken to propagate a trigger event from the first PE, through its CTI, across the CTM to another CTI, and
thereby to a second PE is IMPLEMENTATION DEFINED.

Note

Arm recommends that this path is not longer than the shortest software communication path between those PEs.
This is because if the first PE halts, the Cross-halt trigger event can propagate through the ECT and halt the second
PE without causing software on the second PE to malfunction because the first PE is in Debug state and is not
responding.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12759
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.2 Basic operation on the ECT
H5.2.1 Multicycle events

A multicycle event is one with a continuous state that might persist over many cycles, as opposed to a discrete event.
A typical implementation of a multicycle event is a level-based signal interface, whereas a discrete event might be
implemented as a pulse signal or message.

CTI support for multicycle trigger events is IMPLEMENTATION DEFINED. Use of multicycle trigger events is
deprecated. Of the architecturally defined input trigger events, the Performance Monitors overflow trigger event and
Generic trace external output trigger events can be multicycle input triggers.

CTM support for multicycle channel events is IMPLEMENTATION DEFINED. A CTM that does not support multicycle
channel events cannot propagate a multicycle trigger event between CTIs.

Note

A full ECT might comprise a mix of CTIs, some of which can support multicycle trigger events. In bridging these
components, multicycle channel events become single channel events at the boundary between the CTIs.

H5.2.1.1 An ECT that supports multicycle trigger events

When an ECT supports multicycle trigger events, an input trigger event to the CTI continuously asserts channel
events on all output channels mapped to it until either:

• The input trigger event is removed.

• The channel mapping function is disabled.

This means that an input trigger that is asserted for multiple cycles causes any channels that are mapped to it to
become active for multiple cycles. Consequently, any output triggers mapped from that channel are asserted for
multiple cycles.

Note

The output trigger remains asserted for at least as long as the channel remains active. This means that even if the
output trigger is acknowledged, it remains asserted until the channel deactivates.

The CTI does not guarantee that these events have precisely the same duration, as the triggers and channels can cross
between clock domains.

CTIAPPSET and CTIAPPCLEAR can set a channel active for multiple cycles. CTIAPPPULSE generates a single
channel event. CTICHINSTATUS and CTICHOUTSTATUS can report whether a channel is active.

H5.2.1.2 An ECT that does not support multicycle trigger events

When an ECT does not support multicycle trigger events, an input trigger event to the CTI generates a single
channel event on all output channels mapped to it, regardless of how long the input trigger event is asserted.

This means that an input trigger event that is asserted for multiple cycles generates a single channel event on any
channels mapped to it. Consequently any self-acknowledging output triggers mapped from those channels are single
trigger events.

Note

A single event is typically a single cycle, but there is no guarantee that this is always the case.

CTIAPPSET and CTIAPPCLEAR can only generate a single channel event. CTIAPPPULSE generates a single
channel event. If the ECT does not support multicycle channel events, use of CTIAPPSET and CTIAPPCLEAR is
deprecated, and the debugger must only use CTIAPPPULSE. CTICHINSTATUS and CTICHOUTSTATUS must
be treated as UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12760
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.3 Cross-triggers on a PE in an Arm A-profile implementation
H5.3 Cross-triggers on a PE in an Arm A-profile implementation

An A-Profile PE must include a Cross-Trigger interface, and the implementation must include at least the input and
output triggers defined in this architecture. The number of channels in the Cross-Trigger matrix is IMPLEMENTATION
DEFINED, but there must be a minimum of three. Software can read CTIDEVID.NUMCHAN to discover the number
of implemented channels.

The CTM must connect to all PEs in the same Inner Shareability domain as the PE that includes the Cross-Trigger
interface, but can also connect to additional PEs. Arm strongly recommends that the CTM connects all PEs
implementing a CTI in the system. This includes other PEs that can be connected using a CoreSight CTI module.

Note

In a uniprocessor system the CTM is OPTIONAL. In a multiprocessor system the CTM is required. The CTM might
be connected other CTI modules for non-PEs, such as triggers for system visibility components. Arm recommends
that the CTM is implemented.

Any CTI connected to a PE that is not an Arm PE must implement at least:

• The Debug request trigger event.

• The Restart trigger event.

• The Cross-halt trigger event.

For more information about the CTI, see the CoreSight ™ SoC Technical Reference Manual. Arm architecture refines
the generic CTI by defining roles for each of the implemented input and output triggers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12761
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
H5.4 Description and allocation of CTI triggers

Table H5-1 shows the output trigger events defined by the architecture and the related trigger numbers.

Note

Output triggers from the CTI are inputs to other blocks.

Table H5-2 shows the input trigger events defined by the architecture and the related trigger numbers.

Note

Input triggers to the CTI are outputs from other blocks.

Table H5-1 and Table H5-2 show the minimum set of trigger events defined by the architecture. However:

• The Generic trace external input and output trigger events are required only if the OPTIONAL trace unit is
implemented. If the OPTIONAL trace unit is not implemented, these trigger events are reserved.

Table H5-1 Allocation of CTI output trigger events

Number Source Destination Event description

0 CTI PE Debug request trigger event

1 CTI PE Restart request trigger event

2 CTI IRQ controller Generic CTI interrupt trigger event

3 - - Reserved

4 - 7 CTI Trace unit OPTIONAL Generic trace external input trigger events

8 - 15 - - If FEAT_TRBE_EXT is implemented, then Reserved. Otherwise
IMPLEMENTATION DEFINED.

Table H5-2 Allocation of CTI input trigger events

Number Source Destination Event description

0 PE CTI Cross-halt trigger event

1 PE CTI Performance Monitors overflow trigger event

2 PE CTI Statistical Profiling Extension sample trigger event

3 - - Reserved

4 - 7 Trace unit CTI OPTIONAL Generic trace external output trigger events

8 PE TRBU CTI If FEAT_TRBE_EXT is implemented, Trace buffer stopped trigger event

9 PE TRBU CTI If FEAT_TRBE_EXT is implemented, Trace buffer management trigger
event

10 PE TRBU CTI If FEAT_TRBE_EXT is implemented, Trace buffer wrap trigger event

11 - 15 - - If FEAT_TRBE_EXT is implemented, then Reserved. Otherwise
IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12762
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
• Support for the generic CTI interrupt trigger event is IMPLEMENTATION DEFINED because details of interrupt
handling in the system, including any interrupt controllers, are IMPLEMENTATION DEFINED. Details regarding
how the CTI interrupt is connected to an interrupt controller and its allocated interrupt number lie outside the
scope of the architecture. Arm strongly recommends that implementations provide a means to generate
interrupts based on external debug events.

• If FEAT_TRBE_EXT is implemented, then CTI input triggers 8–15 and output triggers 11–15 are reserved
for use by the architecture.

If FEAT_TRBE_EXT is not implemented, then CTI input triggers 8–15 and output triggers 8–15 are
IMPLEMENTATION DEFINED.

• The other trigger events are required by the architecture.

From the introduction of Armv8-A, an implementation can extend the CTI with additional triggers. When
FEAT_TRBE_EXT is not implemented, these start with number eight. When FEAT_TRBE_EXT is implemented,
these start with number 16.

H5.4.1 Debug request trigger event

This is an output trigger event from the CTI, and an input trigger event to the PE, asserted by the CTI to force the
PE into Debug state. The trigger event is asserted until acknowledged by the debugger. The debugger acknowledges
the trigger event by writing 1 to CTIINTACK[0].

Note

A debugger must poll CTITRIGOUTSTATUS[0] until it reads as 0, to confirm that the output trigger has been
deasserted before generating any event that must be ordered after the write to CTIINTACK, such as a write to
CTIAPPPULSE to activate another trigger.

If the PE is already in Debug state, the PE ignores the trigger event, but the CTI continues to assert it until it is
removed by the debugger. See also External Debug Request debug event.

H5.4.2 Restart request trigger event

This is an output trigger event from the CTI, and an input trigger event to the PE, asserted by the CTI to request the
PE to exit Debug state. If the PE is in Non-debug state, the request is ignored by the PE.

If a Restart request trigger event is received at or about the same time as the PE enters Debug state, it is
CONSTRAINED UNPREDICTABLE whether:

• The request is ignored by the PE. In this case the PE enters Debug state and remains in Debug state.

• The PE enters Debug state and then immediately restarts.

Debuggers must program the CTI to send Restart request trigger events only to PEs that are halted. To enable the
PE to disambiguate discrete Restart request trigger events, after sending a Restart request trigger event, the debugger
must confirm that the PE has restarted and halted before sending another Restart request trigger event. Debuggers
can use EDPRSR.{SDR, HALTED} to determine the Execution state of the PE.

Note

Before generating a Restart request trigger event for a PE, a debugger must ensure any Debug request trigger event
targeting that PE is cleared. Debug request trigger event describes how to do this.

The trigger event is self-acknowledging, meaning that the debugger requires no further action to remove the trigger
event. The trigger event is acknowledged even if the request is ignored by the PE. See also Exiting Debug state.

H5.4.3 Cross-halt trigger event

This is an input trigger event to the CTI, and an output trigger event from the PE, asserted by a PE when it is entering
Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12763
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
Note

To reduce the latency of halting, Arm recommends that an implementation issues the Cross-halt trigger event early
in the committed process of entering Debug state. This means that there is no requirement to wait until all aspects
of entry to Debug state have completed before issuing the trigger event. Speculative emission of Cross-halt trigger
events is not allowed. The Cross-halt trigger event must not be issued early enough for a subsequent Debug request
trigger event, which might be derived from the Cross-halt trigger event, to be recorded in the EDSCR.STATUS field.
This applies to Debug request trigger events that are acting as inputs to the PE.

H5.4.4 Performance Monitors overflow trigger event

This is an input trigger event to the CTI, and an output trigger event from the PE, asserted each time the PE records
a Performance Monitors counter overflow. See Chapter D13 The Performance Monitors Extension.

If the CTI supports multicycle trigger events, then the trigger event remains asserted while any of the following are
true, and deasserted otherwise:

• An event counter <n> is implemented, the global enable control for the event counter is 1,
PMINTENSET.P[n] is 1, and PMOVSSET.P[n] is 1. The global enable control is defined in Enabling PMU
counters.

• PMCR.E is 1, PMINTENSET.C is 1, and PMOVSSET.C is 1.

• FEAT_PMUv3_ICNTR is implemented, PMCR_EL0.E is 1, PMINTENSET_EL1.F0 is 1 and
PMOVSSET_EL0.F0 is 1.

Note

• This does not replace the recommended connection of Performance Monitors overflow trigger event to an
interrupt controller. Software must be able to program an interrupt on Performance Monitors overflow
without programming the CTI.

• Events can be counted when ExternalNoninvasiveDebugEnabled()==FALSE, and, in Secure state, when
ExternalSecureNoninvasiveDebugEnabled()==FALSE. Secure software must be aware that overflow trigger
events are nevertheless visible to the CTI.

• This applies in both AArch64 and AArch32 states.

If the CTI does not support multicycle trigger events, then the trigger event is asserted whenever a counter
overflows, causing the PE to set PMOVSSET.P[n] to 1, or a direct write to a System register means the above
conditions become true.

If FEAT_SEBEP is implemented and the overflow trigger event is asserted, PMEVTYPER<n>_EL0.SYNC is
ignored and the trigger event is not required to be synchronous under any circumstances.

For more information, see An ECT that supports multicycle trigger events.

H5.4.5 Statistical Profiling Extension sample trigger event

If the Statistical Profiling Extension is implemented, and a sample record is written to memory, CTI input trigger 2
is asserted. This trigger might also be directly connected to other IMPLEMENTATION DEFINED debug features.

For more information, see Chapter D16 The Statistical Profiling Extension.

H5.4.6 Generic trace external input trigger events

These are output trigger events from the CTI, and input trigger events to the OPTIONAL trace unit, that are used in
conjunction with the Generic trace external output trigger events to pass trigger events between:

• The PE and the OPTIONAL trace unit.

• The OPTIONAL trace unit and any other component attached to the CTM, including other Trace Units.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12764
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
There are four Generic trace external input trigger events.

The trigger events are self-acknowledging. This means that the debugger does not have to take any further action to
remove the events.

H5.4.7 Generic trace external output trigger events

These are input trigger events to the CTI, and output trigger events from the OPTIONAL trace unit, used in
conjunction with the Generic trace external input trigger events to pass trigger events between:

• The PE and the OPTIONAL trace unit.

• The OPTIONAL trace unit and any other component attached to the CTM, including other Trace Units.

There are four Generic trace external output trigger events.

H5.4.8 Generic CTI interrupt trigger event

This is an output trigger event from the CTI, and an input to an IMPLEMENTATION DEFINED interrupt controller, and
can transfer trigger events from the PE, trace units, or any other component attached to the CTI and CTM to software
as an interrupt. The Generic CTI interrupt trigger event must be connected to the interrupt controller as an interrupt
that can target the originating PE.

Note

• Arm recommends that the Generic CTI interrupt trigger event is a private peripheral interrupt, but
implementations might instead make this trigger event available as a shared peripheral interrupt or a local
peripheral interrupt.

• GICv3 reserves a private peripheral interrupt number for this interrupt.

It is IMPLEMENTATION DEFINED whether this trigger event is:

• Self-acknowledging. This means that the debugger is not required to take any further action, and that the
interrupt controller must treat the trigger event as a pulse or edge-sensitive interrupt.

• Acknowledged by the debugger. The debugger acknowledges the trigger event by writing 1 to
CTIINTACK[2]. This means that the interrupt controller must treat the trigger event as a level-sensitive
interrupt.

Arm recommends that the Generic CTI interrupt trigger event is a self-acknowledging trigger event.

H5.4.9 Trace buffer stopped trigger event

If FEAT_TRBE_EXT is implemented, the Trace buffer stopped trigger event is defined.

The Trace buffer stopped trigger event is asserted when Collection is stopped. The trigger is asserted when an event
causes the PE to set TRBSR_EL1.S to 1 and TRBSR_EL1.S was previously 0.

This is an output trigger from the Trace Buffer Unit, and an input trigger to the CTI.

H5.4.10 Trace buffer management trigger event

If FEAT_TRBE_EXT is implemented, the Trace buffer management trigger event is defined.

The Trace buffer management trigger event is asserted when a trace buffer management event occurs. The trigger
is asserted when an event causes the PE to set TRBSR_EL1.IRQ to 1 and TRBSR_EL1.IRQ was previously 0.

This is an output trigger from the Trace Buffer Unit, and an input trigger to the CTI.

H5.4.11 Trace buffer wrap trigger event

If FEAT_TRBE_EXT is implemented, the Trace buffer wrap trigger event is defined.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12765
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.4 Description and allocation of CTI triggers
The Trace buffer wrap trigger event is asserted when the current write pointer wrapped to the Base pointer. The
trigger is asserted when an event causes the PE to set TRBSR_EL1.WRAP to 1, including when
TRBSR_EL1.WRAP was previously 1. The trigger is asserted regardless of the trace buffer mode.

This is an output trigger from the Trace Buffer Unit, and an input trigger to the CTI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12766
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.5 CTI registers programmers’ model
H5.5 CTI registers programmers’ model

The CTI registers programmers’ model is described in Chapter H8 About the External Debug Registers. The
following sections contain information specific to the CTI:

• External debug register resets.

• External debug interface register access permissions.

• Cross-trigger interface registers.

• The individual register descriptions in Cross-Trigger Interface registers.

See also Memory-mapped accesses to the external debug interface.

H5.5.1 CTI reset

An External Debug reset resets the CTI. See External debug register resets for details of CTI register resets. All CTI
output triggers and output channels are deasserted on an External Debug reset.

Note

An indirect read of an output trigger might not observe the deasserted state until the processor is Cold reset. For
more information, see Synchronization of changes to the external debug registers.

H5.5.2 CTI authentication

The CTI ignores the state of the IMPLEMENTATION DEFINED authentication interface. This means that:

• CTITRIGINSTATUS shows the status of the input triggers and CTICHINSTATUS shows the status of the
input channels, regardless of the value of ExternalNoninvasiveDebugEnabled().

Note

The PE does not generate the Cross-halt trigger event and the trace unit does not generate Generic trace
external output trigger events when ExternalNoninvasiveDebugEnabled()==FALSE. However, the PE can
generate Performance Monitors overflow trigger events.

• The CTI can generate external triggers regardless of the value of ExternalInvasiveDebugEnabled().

Note

The PE ignores Debug request and Restart request trigger events when
ExternalInvasiveDebugEnabled()==FALSE. The trace unit ignores Generic trace external input trigger events
when ExternalNoninvasiveDebugEnabled()==FALSE. The behavior of Generic CTI interrupt requests is part
of the IMPLEMENTATION DEFINED handling of these interrupts, but it is permissible for an interrupt controller
to receive these requests even when ExternalInvasiveDebugEnabled()==FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12767
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.6 Examples
H5.6 Examples

The CTI is fully programmable and allows for flexible cross-triggering of events within a PE and between PEs in a
multiprocessor system. For example:

• The Cross-halt trigger event and the Debug request trigger event can be used for cross-triggering in a
multiprocessor system.

• The Cross-halt trigger event and the Generic interrupt trigger event can be used for event-driven debugging
in a multiprocessor system.

• The Performance Monitors overflow trigger event and the Debug request trigger event can force entry to
Debug state on overflow of a Performance Monitors event counter, for event-driven profiling.

Note
This does not replace the recommended connection of Performance Monitors overflow trigger events to an
interrupt controller. Software must be able to program an interrupt on Performance Monitors overflow
without programming the CTI. Arm recommends that the Performance Monitors overflow signal is directly
available as a local interrupt source.

• The Generic trace external input and Generic trace external output trigger events can pass trace events into
and out of the event logic of the trace unit. They can do this:

— To pass trace events between Trace Units.

— In conjunction with the Performance Monitors overflow trigger event, to couple the Performance
Monitors to the PE trace unit.

— In conjunction with the Debug request trigger event, to trigger entry to Debug state on a trace event.

— In conjunction with other CTIs, to signal a trace trigger event onto a CoreSight trace interconnect.

The following sections describe some examples in more detail:

• Halting a single PE.

• Halting all PEs in a group when any one PE halts.

• Synchronously restarting a group of PEs.

• Halting a single PE on Performance Monitors overflow.

Example H5-1 Halting a single PE

To halt a single PE, set:

1. CTIGATE[0] to 0, so that the CTI does not pass channel events on internal channel 0 to the CTM.

2. CTIOUTEN0[0] to 1, so that the CTI generates a Debug request trigger event in response to a channel event
on channel 0.

Note

The Cross-halt trigger event is input trigger 0, meaning it is controlled by the instance of CTIOUTEN<n> for
which <n> is 0.

3. CTIAPPPULSE[0] to 1, to generate a channel event on channel 0.

When the PE has entered Debug state, clear the Debug request trigger event by writing 1 to CTIINTACK[0], before
restarting the PE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12768
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.6 Examples
Example H5-2 Halting all PEs in a group when any one PE halts

To program a group of PEs so that when one PE in the group halts, all of the PEs in that group halt, set the following
registers for each PE in the group:

1. CTIGATE[2] to 1, so that each CTI passes channel events on internal channel 2 to the CTM.

2. CTIINEN0[2] to 1, so that each CTI generates a channel event on channel 2 in response to a Cross-halt trigger
event.

3. CTIOUTEN0[2] to 1, so that each CTI generates a Debug request trigger event in response to a channel event
on channel 2.

Note

The Cross-halt trigger event is input trigger 0, meaning it is controlled by the instances of CTIINEN<n> and
CTIOUTEN<n> for which <n> is 0.

When a PE has halted, clear the Debug request trigger event by writing a value of 1to CTIINTACK[0], before
restarting the PE.

Example H5-3 Synchronously restarting a group of PEs

To restart a group of PEs, for each PE in the group:

1. If the PE was halted because of a Debug request trigger event, the debugger must ensure the trigger event is
deasserted. It can do this by:

a. Writing 1 to CTIINTACK[0] to clear the Debug request trigger event.

b. Polling CTITRIGOUTSTATUS[0], until it reads as 0, to confirm that the trigger event has been
deasserted.

2. Set CTIGATE[1] to 1, so that each CTI passes channel events on internal channel 1 to the CTM.

3. Set CTIOUTEN1[1] to 1, so that each CTI generates a Restart request trigger event in response to a channel
event on channel 1.

Note

This example must use the instance of CTIOUTEN<n> for which <n> is 1.

4. Set CTIAPPPULSE[1] to 1 on any one PE in the group, to generate a channel event on channel 1.

Example H5-4 Halting a single PE on Performance Monitors overflow

To halt a single PE on a Performance Monitors overflow set:

1. CTIGATE[3] to 0, so that the CTI does not pass channel events on internal channel 3 to the CTM.

2. CTIINEN1[3] to 1, so that the CTI generates a channel event on channel 3 in response to a Performance
Monitors overflow trigger event.

Note

This step of this example must use the instance of CTIINEN<n> for which <n> is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12769
ID032224 Non-Confidential

The Embedded Cross-Trigger Interface
H5.6 Examples
3. CTIOUTEN0[3] to 1, so that the CTI generates a Debug request trigger event in response to a channel event
on channel 3.

Note
This step of this example must use the instance of CTIOUTEN<n> for which <n> is 0.

When the PE has entered Debug state, clear the Debug request trigger event by writing 1 to CTIINTACK[0], before
restarting the PE. Clear the overflow status by writing to PMOVSCLR_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H5-12770
ID032224 Non-Confidential

Chapter H6
Debug Reset and Powerdown Support

This chapter describes the reset and powerdown support in the Debug architecture. It contains the following
sections:

• About Debug over powerdown.

• Power domains and debug.

• Core power domain power states.

• Emulating low-power states.

• Powerup request mechanism.

• Debug OS Save and Restore sequences.

• Reset and debug.

Note

Where necessary, Table K17-1 disambiguates the general register references used in this chapter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12771
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.1 About Debug over powerdown
H6.1 About Debug over powerdown

Arm A-profile external debug defines a logical model for the hardware on which a PE executes. This hardware is
logically split into the Core power domain and the Debug power domain, and the model contains descriptions of the
states of those domains. See:

• Power domains and debug.

• Core power domain power states.

An implementation may allow power domains to be powered up and down independently. Debug over powerdown
provides:

• A facility for software executing on the PE to save and restore the PE state on behalf of a self-hosted or
external debugger or both. See Debug OS Save and Restore sequences.

• A facility for an external debugger to request power up of the Core power domain. See Powerup request
mechanism.

• A facility for an external debugger, or software executing on the PE, to request emulation of powerdown of
the Core power domain. See Emulating low-power states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12772
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.2 Power domains and debug
H6.2 Power domains and debug

Arm A-profile external debug has two logical power domains, each with its own reset:

• The Debug power domain contains the interface between the PE and the external debugger, and is powered
up whenever an external debugger is connected to the SoC. It remains powered up while the external
debugger is connected. When the Core power domain is completely off or in a low-power state, a debugger
is permitted to access a register that is implemented in the Debug power domain. Registers in this domain are
reset by an External Debug reset.

• The Core power domain contains the rest of the PE, and might be allowed to power up and power down
independently of the Debug power domain.

Note

• The model of two logical power domains has an impact on the reset and access permission requirements of
the debug programmers’ model.

• The power domains are described as logical because the architecture defines the requirements but does not
require two physical power domains. Any power domain split that meets the requirements of the
programmers’ model is a valid implementation.

The Core power domain contains several types of registers:

• Non-debug logic refers to all registers and logic that are not associated with debug.

• Self-hosted debug logic refers to registers and logic associated solely with the self-hosted debug aspects of
the architecture.

• Shared debug logic refers to registers and logic associated with both the self-hosted and external debug
aspects of the architecture.

• External debug logic refers to registers and logic associated solely with the external debug aspects of the
architecture.

For information about which groups of registers and components are in each power domain, and which registers
change power domain if FEAT_DoPD is implemented, see:

• Access permissions for the External debug interface registers.

• Cross-trigger interface registers.

• Management register access permissions.

• Access permissions for external views of the Performance Monitors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12773
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.3 Core power domain power states
H6.3 Core power domain power states

The Arm architecture does not define the power states of the PE as these are not normally visible to software.
However, they are visible to the external debugger. Arm A-profile external debug uses a four logical power states
model for the Core power domain. Mechanisms for entering a low-power state describes the architectural
mechanisms for entering low-power states.

When the PE enters a low-power state other than Powerdown by executing a WFI, WFIT, WFE, or WFET instruction, it
remains in that low-power state until it receives a wakeup event. See Mechanisms for entering a low-power state
for the definition of wakeup events. When halting is allowed, an External Debug Request is a wakeup event. In
addition, if the PE enters the Standby state for any reason, it will leave that state to service an External Debug
Request debug event.

The four logical power states are as follows:

Normal The Core power domain is fully powered up and the debug registers are accessible.

Standby The Core power domain is on, but there are measures to reduce energy consumption. There can be
other IMPLEMENTATION DEFINED measures the OS can take to enter standby.

The PE preserves the PE state, including the debug logic state. Changing from standby to normal
operation does not involve a reset of the PE.

Standby is the least invasive OS energy saving state. Standby implies only that the PE is unavailable
and does not clear any debug settings. For standby, the Debug architecture requires only the
following:

• If the external debug interface is accessed, the PE must respond to that access. Arm
recommends that, if the PE executed a WFI or WFE instruction to enter standby, then it does not
retire that instruction.

Note

When FEAT_WFxT is implemented, this also applies to the WFET and WFIT instructions.

Standby is transparent, meaning that to software and to an external debugger it is indistinguishable
from normal operation.

Retention The PE state, including debug settings, is preserved in low-power structures, allowing the Core
power domain to be at least partially turned off.

Changing from low-power retention to normal operation does not involve a reset of the PE. The
saved PE state is restored on changing from low-power retention state to normal operation. If
software has to use an IMPLEMENTATION DEFINED code sequence before entering, or after leaving,
a retention state, this is referred to as a software-visible retention state. It is IMPLEMENTATION
DEFINED whether the value of DBGPRCR.CORENPDRQ is set to its Cold reset value on leaving
the software-visible retention state. See the description of DBGPRCR.CORENPDRQ for more
information.

Note

• This model of retention does not include implementations where the PE exits the state in
response to a debug register access. From the Debug architecture perspective,
implementations like this are forms of standby.

Powerdown These measures must include the OS saving any PE state, including the debug settings, that must be
preserved over powerdown.

If FEAT_DoubleLock is implemented, it is used during powerdown.

Changing from powerdown to normal operation must include:

• A Cold reset of the PE after the power level has been restored.

• The OS restoring the saved PE state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12774
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.3 Core power domain power states
External Debug Request debug events stay pending and debug registers in the Core power domain
cannot be accessed.

An implementation might support enabling and disabling threads, either dynamically or once at reset time. Threads
that are disabled in this way must appear to the external debugger as either:

• Powered off, meaning they are either:

— In a powerdown state.

— In a retention state.

• Held in reset state.

Arm A-profile external debug uses a simpler two states model for the Debug power domain. The two states are:

Off The Debug power domain is turned off.

On The Debug power domain is turned on.

The available power states, including the cross-product of Core power domain and Debug power domain power
states is IMPLEMENTATION DEFINED. Implementations are not required to implement all of these states and might
include additional states. These additional states must appear to the debugger as one of the logical power states
defined by this model. The control of power states is IMPLEMENTATION DEFINED.

Note

As a result, it is IMPLEMENTATION DEFINED whether it is possible for the Debug power domain to be on when the
Core power domain is off.

If the Debug power domain is implemented but is not powered up when the Core power domain is powered up, the
Reset Catch debug event and the OS Unlock Catch debug event are disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12775
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.4 Powerup request mechanism
H6.4 Powerup request mechanism

If a powerup request mechanism is implemented, asserting the powerup request requests the power controller to
power up the Core power domain, and to emulate any subsequent powerdown requests, until the powerup request
mechanism is deasserted.

H6.4.1 Powerup request mechanism if FEAT_DoPD is implemented

If FEAT_DoPD is implemented, the external debug component implements an OPTIONAL powerup request
mechanism.

If the powerup request mechanism is implemented, Arm strongly recommends that the powerup request is a
CoreSight Class 0x9 ROM table block that contains both:

• A parent entry for the debug registers of the PE.

• A parent entry for the PMU registers of the PE, if the OPTIONAL PMU with an external debug interface is
implemented.

A parent entry of a component is an entry in a ROM table that either locates the component, or locates another ROM
table that contains the parent entry for the component.

Note

The ROM table and any descendants might describe other debug components, including debug components for
other PEs.

The ROM table might have a parent entry in a second ROM table and that parent entry might also have a powerup
request mechanism in the second ROM table. This applies recursively.

The parent entries for the debug components have the following properties:

For the debug registers and Performance Monitors registers:

These components are in the Core power domain.

The POWERIDVALID bit is 1.

All parent entries must have the same IMPLEMENTATION DEFINED POWERID value.

Note
The IMPLEMENTATION DEFINED POWERID value does not need to be unique for each PE.

For the CTI registers:

This component is in the Debug power domain.

The POWERIDVALID bit is IMPLEMENTATION DEFINED.

If the POWERIDVALID bit is 1, the entries must have a valid POWERID value.

Note
If the Core power domain can be powered down independently of the Debug power domain, Arm
recommends the system implements an external debug component with a powerup request
mechanism which can request the Core power domain to be powered up.

For more information about Coresight Class 0x9 ROM Tables, see ARM® CoreSight™ Architecture Specification.

On a Cold reset, if FEAT_DoPD is implemented, DBGPRCR.CORENPDRQ is set to an IMPLEMENTATION DEFINED
choice between 0 and 1 if the powerup request is implemented and asserted, and 0 otherwise.

H6.4.2 Powerup request mechanism if FEAT_DoPD is not implemented

If FEAT_DoPD is not implemented, the bit EDPRCR.COREPURQ is the powerup request mechanism.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12776
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.4 Powerup request mechanism
The control registers DBGPRCR.CORENPDRQ and EDPRCR.COREPURQ provide an interface between the
power controller and the PE. They typically map directly to signals in the recommended external debug interface.

On Cold reset, if FEAT_DoPD is not implemented, DBGPRCR.CORENPDRQ is set to the value of
EDPRCR.COREPURQ.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12777
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.5 Emulating low-power states
H6.5 Emulating low-power states

DBGPRCR.CORENPDRQ and the powerup request mechanism can request the power controller to emulate states
where the Core power domain is completely off or in a low-power state where the Core power domain registers
cannot be accessed. This simplifies the requirements on software by sacrificing entirely realistic behavior.

If FEAT_DoPD is not implemented, EDPRSR.{SPD, PU} indicates the Core power domain power state. For more
information, see:

• The DBGPRCR_EL1 and DBGPRCR System register descriptions.

• The EDPRCR and EDPRSR external debug register descriptions.

• Appendix K7 Recommended External Debug Interface.

The measures to emulate powerdown are IMPLEMENTATION DEFINED. The ability of the debugger to access the state
of the PE and the system might be limited as a result of the measures adopted.

In an emulated powerdown state, the debugger must be able to access all debug, PMU, CTI, and trace unit registers
that are accessible on the external debug interface and are in one of:

• The Debug power domain.

• The Core power domain.

• When a trace unit with a separate trace unit Core power domain is implemented, and the trace unit Core
power domain is powered on, the trace unit Core power domain.

That is, the debugger must be able to read and write to such registers without receiving errors. This allows an
external debugger to debug the powerup sequence.

Arm recommends that any IMPLEMENTATION DEFINED registers that are on the external debug interface and in either
the Core power domain or the Debug power domain are also accessible in an emulated powerdown state.

If FEAT_DoubleLock is implemented, DoubleLockStatus() == FALSE when DBGPRCR.CORENPDRQ == 1.

Otherwise, the behavior of the PE in emulated powerdown must be similar to that in a real powerdown state. In
particular, the PE must not respond to other system stimuli, such as interrupts.

Example H6-1 and Example H6-2 are examples of two approaches to emulating powerdown.

Example H6-1 An example of emulating powerdown

The PE is held in Standby state, isolated from any system stimuli. It is IMPLEMENTATION DEFINED whether the PE
can respond to debug stimuli such as an External Debug Request debug event.

If the PE can enter Debug state, then the external debugger is able to use the ITR to execute instructions, such as
loads and stores. This causes the external debugger to interact with the system. If the external debugger restarts the
PE, the PE leaves Standby state and restarts fetching instructions from memory.

Example H6-2 Another example of emulating powerdown

The PE is held in Warm reset. This limits the ability of an external debugger to access the resources of the PE. For
example, the PE cannot be put into Debug state.

On exit from emulated powerdown the PE is reset. However, the debug registers that are only reset by a Cold reset
must not be reset. Typically this means that a Warm reset is substituted for the Cold reset. As such, the effect of
accessing any register that is reset by a Warm reset while the PE is in the emulated powerdown state will have an
IMPLEMENTATION DEFINED effect on that register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12778
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.5 Emulating low-power states
Note

• Warm reset and Cold reset have different effects apart from resetting the debug registers. In particular,
RMR_ELx is reset by a Cold reset and controls the reset state on a Warm reset. This means that if a Cold reset
is substituted by a Warm reset, the behavior of the reset code might be different.

• The timing effects of powering down are typically not factored in the powerdown emulation. Examples of
these timing effects are clock and voltage stabilization.

• Emulation does not model the state lost during powerdown, meaning that it might mask errors in the state
storage and recovery routines.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12779
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
H6.6 Debug OS Save and Restore sequences

From the introduction of Armv8-A, the following registers provide the OS Save and Restore mechanism:

• The OS Lock Access Register, OSLAR, locks the OS Lock to restrict access to debug registers before starting
an OS Save sequence, and unlocks the OS Lock after an OS Restore sequence.

• The OS Lock Status Register, OSLSR, shows the status of the OS Lock.

• The PE can be configured to generate an OS Unlock Catch debug event when the OS Lock is unlocked.

• If FEAT_DoubleLock is implemented, the OS Double Lock locks out an external debug interface entirely.
This is only used immediately before a powerdown sequence.

See also:

• FEAT_DoubleLock

• Reset and debug

• Appendix K11 Example OS Save and Restore Sequences

H6.6.1 EDPRSR.{DLK, SPD, PU} and the Core power domain

If FEAT_DoPD is not implemented, a debugger uses EDPRSR.{DLK, SPD, PU} to determine whether registers in
the Core power domain can be accessed, and whether their state has been lost since the last time the register was
read.

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a
retention state, meaning successful reads of EDPRSR always return 1 for EDPRSR.PU.

When FEAT_Debugv8p4 is implemented, and whenever FEAT_DoubleLock is not implemented, EDPRSR.DLK
is always 0.

If FEAT_DoubleLock is not implemented, DoubleLockStatus() always returns FALSE.

If the Core power domain is powered up and DoubleLockStatus() == TRUE, then:

• When FEAT_Debugv8p2 is not implemented, EDPRSR.{DLK, SPD, PU} can read either {1, UNKNOWN, 1}
or {UNKNOWN, 0, 0}.

• When FEAT_Debugv8p2 is implemented, and FEAT_Debugv8p4 is not implemented, EDPRSR.{DLK,
SPD, PU} can only read {UNKNOWN, 0, 0}.

Table H6-1 Interpretation of the EDPRSR.{DLK, SPD, PU} bits

EDPRSR Core power domain
Notes

DLK SPD PU Power Accesses State lost

0 0 1 On OK No -

0 1 1 On OK Yes SPD is cleared to 0 following the read.

1 X 1 On Error Not known FEAT_DoubleLock is implemented and DoubleLockStatus() ==
TRUE. Software locks the OS Double Lock before removing
power.

X 1 0 Off Error Yes A Cold reset will be asserted on exiting powerdown state, but not
on exiting low-power retention state.

X 0 0 Not known Error Not known
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12780
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
H6.6.2 EDPRSR.SPD when the Core domain is in either retention or powerdown state

If FEAT_DoPD is not implemented, when the Core power domain is in either the retention or powerdown state,
EDPRSR.SPD is not cleared following a read of EDPRSR and it is IMPLEMENTATION DEFINED whether:

• EDPRSR.SPD shows whether the state of the debug registers in the Core power domain has been lost since
the last time that EDPRSR was read. This means that:

— When the Core power domain is in the powerdown state, EDPRSR.SPD is RAO, this indicates that
the state of the debug registers has been lost.

— When the Core power domain is in the retention state, EDPRSR.SPD indicates whether the state of the
debug registers was lost before the Core power domain entered retention state.

• EDPRSR.SPD is RAZ, and:

— On leaving the powerdown state, EDPRSR.SPD is set to 1 which indicates that the state of the debug
registers has been lost.

— On leaving the retention state, EDPRSR.SPD reverts the value it had on entering the retention state.

Note

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a
retention state.

H6.6.3 EDPRSR.{DLK, R} and reset state

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a
retention state, meaning successful reads of EDPRSR always return 1 for EDPRSR.PU.

When FEAT_Debugv8p4 is implemented, and whenever FEAT_DoubleLock is not implemented, EDPRSR.DLK
is always 0.

If FEAT_DoubleLock is not implemented, DoubleLockStatus() always returns FALSE.

If FEAT_DoubleLock is implemented and enabled, the behavior of all registers and fields except EDPRSR.DLK is
the same as their behavior if FEAT_Debugv8p4 is not implemented.

If FEAT_Debugv8p4 is implemented EDPRSR.DLK is always 0 and does not give any information about the OS
Double Lock.

EDPRSR.R is UNKNOWN when DoubleLockStatus() == TRUE. OSDLR_EL1.DLK is cleared to 0 by a reset. If the
Core power domain is powered up and entered reset state with the OS Double Lock locked, it is CONSTRAINED
UNPREDICTABLE whether a read of EDPRSR while the PE is in reset state returns:

• EDPRSR.{DLK, R, PU} == {1, UNKNOWN, 1} indicating that the OS Double Lock is locked. This is not
permitted from Armv8.2.

• EDPRSR.{DLK, R, PU} == {0, 1, 1} indicating that the PE is in reset state.

• EDPRSR.{DLK, R, PU} == {UNKNOWN, UNKNOWN, 0} indicating that the registers in the Core power
domain cannot be accessed because the OS Double Lock is locked.

If the PE was powered up and the OS Double Lock was unlocked when the PE was reset, then EDPRSR.{DLK, R,
PU} reads as {0, 1, 1} while the PE is in reset state.

On leaving reset state, EDPRSR.{DLK, R} reads as {0, 0}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12781
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
H6.6.4 Debug registers to save over powerdown

Table H6-2 shows the different requirements for self-hosted debug over powerdown and external debug over
powerdown:

• The column labeled Self-hosted lists registers that software must preserve over powerdown so that it can
support self-hosted debug over powerdown. This does not require use of the OS Save and Restore
mechanism.

• The column labeled External lists registers that software must preserve over powerdown so that it can support
external debug over powerdown. This requires use of the OS Save and Restore mechanism:

— Some external debug registers are not normally accessible to software executing on the PE. Additional
debug registers are provided that give software the required access to save and restore these external
debug registers when OSLSR.OSLK is locked. These registers include OSECCR, OSDTRRX, and
OSDTRTX.

• Some registers might only present in some implementations, or might not be accessible at all Exception levels
or in Non-secure state. DBGVCR32_EL2 and SDER32_EL3 are only required to support AArch32.

Table H6-2 does not include registers for the OPTIONAL Trace and Performance Monitor extensions.

H6.6.5 OS Save sequence

To preserve the debug logic state over a powerdown, the state must be saved to nonvolatile storage. This means the
OS Save sequence must:

1. Lock the OS Lock by:

• Writing the key value 0xC5ACCE55 to the DBGOSLAR in AArch32 state.

• Writing 1 to OSLAR_EL1.OSLK in AArch64 state.

Table H6-2 Debug registers to save over powerdown

Register in AArch64 state Register in AArch32 state Self-hosted External

MDSCR_EL1 DBGDSCRext Yes Yes

DBGBVR<n>_EL1 DBGBVR<n> Yes Yes

DBGBCR<n>_EL1 DBGBCR<n> Yes Yes

DBGWVR<n>_EL1 DBGWVR<n> Yes Yes

DBGWCR<n>_EL1 DBGWCR<n> Yes Yes

DBGVCR32_EL2 DBGVCR Yes -

MDCR_EL2 HDCR Yes -

SDER32_EL3 SDER Yes -

MDCR_EL3 SDCR Yes -

MDCCINT_EL1 DBGDCCINT - Yes

DBGCLAIMSET_EL1

DBGCLAIMCLR_EL1

DBGCLAIMSET,

DBGCLAIMCLR

- Yes

OSECCR_EL1 DBGOSECCR - Yes

OSDTRRX_EL1

OSDTRTX_EL1

DBGDTRRXext

DBGDTRTXext

- Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12782
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
2. Execute an ISB instruction.

3. Walk through the debug registers listed in Debug registers to save over powerdown and save the values to the
nonvolatile storage.

If the FEAT_DoubleLock is implemented, before removing power from the Core power domain, software must:

1. Lock the OS Double Lock by:

• Writing 1 to DBGOSDLR.DLK in AArch32 state.

• Writing 1 to OSDLR_EL1.DLK in AArch64 state.

If FEAT_DoubleLock is not implemented, OSDLR_EL1 and DBGOSDLR ignore writes.

2. Execute a Context Synchronization event.

H6.6.6 OS Restore sequence

After a powerdown, the OS Restore sequence must perform the following steps to restore the debug logic state from
the non-volatile storage:

1. Lock the OS Lock, as described in OS Save sequence. The OS Lock is generally locked by the Cold reset,
but this step ensures that it is locked.

2. Execute an ISB instruction.

3. To ensure that, if an external debugger clears the OS Lock before the end of this sequence, no debug
exceptions are generated:

• Write 0 to MDSCR_EL1 if executing in AArch64 state.

• Write 0 to DBGDSCRext if executing in AArch32 state.

4. Walk through the debug registers listed in Debug registers to save over powerdown, and restore the values
from the nonvolatile storage. The last register to be restored must be:

• MDSCR_EL1 if executing in AArch64 state.

• DBGDSCRext if executing in AArch32 state.

5. Execute an ISB instruction.

6. Unlock the OS Lock by:

• Writing any non-key value to DBGOSLAR if executing in AArch32 state.

• Writing 0 to OSLAR_EL1.OSLK if executing in AArch64 state.

7. Execute a Context Synchronization event.

Note

The OS Restore sequence overwrites the debug registers with the values that were saved. If there are valid values
in these registers immediately before the restore sequence, then those values are lost.

H6.6.7 Debug behavior when the OS Lock is locked

The main purpose of the OS Lock is to prevent updates to debug registers during an OS Save or OS Restore
operation. The OS Lock is locked on a Cold reset.

When the OS Lock is locked:

• Access to debug registers through the System register interface is mainly unchanged except that:

— Certain registers are read and written without side-effects.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12783
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
— Fields in DSCR and OSECCR that are normally read-only become read/write.

This allows the state to be saved or restored. For more information, see the relevant register description in
Chapter H9 External Debug Register Descriptions.

• Access to debug registers by the external debug interface is restricted to prevent an external debugger
modifying the registers that are being saved or restored. For more information, see External debug interface
register access permissions summary.

• Debug exceptions, other than Breakpoint Instruction exceptions are not generated.

• Breakpoint and Watchpoint debug events are not generated. The OS Lock has no effect on Breakpoint
Instruction exceptions and other debug events.

H6.6.8 Debug behavior when the OS Lock is unlocked

When the OS Lock is unlocked, the PE sets EDESR.OSUC to 1 if the OS Unlock Catch debug event is enabled and
the PE is in Non-debug state, meaning the OS Unlock Catch debug event becomes pending. See OS Unlock Catch
debug event.

H6.6.9 Debug behavior when the OS Double Lock is locked

If the FEAT_DoubleLock is implemented, software locks the OS Double Lock immediately before a powerdown
sequence.

The OS Double Lock ensures that it is safe to remove core power by forcing the debug interfaces to be quiescent.

When DoubleLockStatus() == TRUE:

• The external debug interface has only restricted access to the debug registers, so that it is quiescent before
removing power. See External debug interface register access permissions summary.

• Debug exceptions, other than Breakpoint Instruction exceptions, are not generated.

• Halting is prohibited. See Halting allowed and halting prohibited.

Note
Pending Halting debug events might be lost when core power is removed.

• No asynchronous debug events are WF* wakeup events.

If the FEAT_DoubleLock is not implemented, the PE ensures these conditions are met before allowing power to be
removed.

Software must synchronize the update to OSDLR before it indicates to the system that core power can be removed.
The interface between the PE and its power controller is IMPLEMENTATION DEFINED.

Typically software indicates that core power can be removed by entering the Wait For Interrupt state. This means
that software must explicitly synchronize the OSDLR update before issuing the WFI instruction.

OSDLR.DLK is ignored and DoubleLockStatus() == FALSE if either:

• The PE is in Debug state.

• DBGPRCR.CORENPDRQ is set to 1.

Note

It is possible to enter Debug state with OSDLR.DLK set to 1. This is because a Context Synchronization event is
required to ensure the OS Double Lock is locked, meaning that Debug state might be entered before the OSDLR
update is synchronized.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12784
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.6 Debug OS Save and Restore sequences
Because OSDLR.DLK is ignored when DBGPRCR.CORENPDRQ is set to 1, an external debugger can write to
DBGPRCR.CORENPDRQ, and the FEAT_DoubleLock is not always implemented, software must not rely on
using the OS Double Lock to disable debug exceptions or to prohibit halting, or both. Arm deprecates use of the OS
Double Lock for these purposes, and instead recommends that software:

• Uses the OS Lock to disable debug exceptions during save or restore sequences.

• Uses the debug authentication interface to prohibit halting and external debug access to debug registers at
times other than immediately prior to removing power.

As the purpose of the OS Double Lock is to ensure that it is safe to remove core power, if the FEAT_DoubleLock
is implemented, it is important to avoid race conditions that defeat this purpose. Arm recommends that:

• Once the write to OSDLR.DLK has been synchronized by a Context Synchronization event and
DoubleLockStatus() == TRUE, a PE must:

— Not allow a debug event generated before the Context Synchronization event to cause an entry to
Debug state or act as a wakeup event for a WFI or WFE instruction after the Context Synchronization
event has completed.

Note

When FEAT_WFxT is implemented, this also applies to the WFET and WFIT instructions.

— Complete any external debug access started before the Context Synchronization event by the time the
Context Synchronization event completes.

Note

A debug register access might be in progress when software sets OSDLR.DLK to 1. An
implementation must not permit the synchronization of locking the OS Double Lock to stall
indefinitely while waiting for that access to complete. This means that any debug register access that
is in progress when software sets OSDLR.DLK to 1 must complete or return an error in finite time.

• If a write to DBGPRCR or EDPRCR made when OSDLR.DLK == 1 changes DBGPRCR.CORENPDRQ or
EDPRCR.CORENPDRQ from 1 to 0, meaning DoubleLockStatus() changes from FALSE to TRUE, then
before signaling to the system that the CORENPDRQ field has been cleared and emulation of powerdown is
no longer requested, meaning the system can remove core power, the PE must ensure that all the requirements
for DoubleLockStatus() == TRUE listed in this section are met.

In a standard OS Save sequence, the OS Lock is locked before the OS Double Lock is locked. This means that writes
to CORENPDRQ are ignored by the time the OS Double Lock is locked. However, if DoubleLockStatus() ==
FALSE, an external debugger can clear the OS Lock at any time, and then write to EDPRCR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12785
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.7 Reset and debug
H6.7 Reset and debug

All registers in the Core power domain are either:

• Reset by both a Cold and a Warm reset.

• Reset only by a Cold reset and are not changed by a Warm reset.

For more information, see Resets and power domains.

All registers in the Debug power domain are reset by an External Debug reset.

If FEAT_SPMU is implemented, the reset signals for a System PMU are IMPLEMENTATION DEFINED.

Figure H6-1 shows this reset scheme. The following three reset signals are an example implementation of the reset
scheme:

• CORERESET, which must be asserted for a Warm reset.

• CPUPORESET, which must be asserted for a Cold reset.

• PRESETDBG, which must be asserted for an External Debug reset.

As shown in the figure, the external debug logic is split between the Debug power domain and the Core power
domain.

Figure H6-1 Power and reset domains

For more information about power domains and power states, see Power domains and debug.

When power is first applied to the Debug power domain, PRESETDBG must be asserted.

When power is first applied to the Core power domain, CPUPORESET must be asserted.

Note

In this scheme, logic in the Warm reset domain is reset by asserting either CORERESET or CPUPORESET. This
implies a particular implementation style that permits these approaches.

CPUPORESET is not normally asserted on moving from a low-power state, where power has not been removed,
to a full-power state. This can occur, for example, on exiting a low-power retention state. See also Emulating
low-power states and the EDPRSR register description.

External debug logic

(part)

External debug logic

(part, including external

debug registers)

Shared debug logic

Non-debug logic

Self-hosted debug logic

Debug power domain Core power domain

Warm reset

External debug logic

(part)

External debug reset

External debug logic

(part, including external

debug registers)

Shared debug logic

Non-debug logic

Self-hosted debug logicff

Warm resetCold reset

CPUPORESET CORERESET OR

CPUPORESETPRESETDBG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12786
ID032224 Non-Confidential

Debug Reset and Powerdown Support
H6.7 Reset and debug
H6.7.1 External debug interface accesses to registers in reset

If a reset signal is asserted and the external debug interface:

• Writes a register, or indirectly writes a register or register field as a side-effect of an access:

— Then, if the register or register field is reset by that reset signal, it is CONSTRAINED UNPREDICTABLE
whether the register or register field takes the reset value or the value written. The reset value might
be UNKNOWN.

— Otherwise, the register or register field takes the value that is written.

• Reads a register, or indirectly reads a register or register field, as part of an access:

— Then, if the register or register field is reset by that reset signal, the value returned in UNKNOWN.

— Otherwise, the value of the register or register field is returned.

It is IMPLEMENTATION DEFINED whether any register can be accessed when External Debug reset is being asserted.
The result of these accesses is IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H6-12787
ID032224 Non-Confidential

Chapter H7
The PC Sample-based Profiling Extension

This chapter describes the OPTIONAL PC Sample-based Profiling Extension that provides a non-invasive external
debug component.

It contains the following section:

• About the PC Sample-based Profiling Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H7-12788
ID032224 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension

The PC Sample-based Profiling Extension is an OPTIONAL extension that provides coarse-grained, non-invasive
profiling by an external debugger. See also Non-invasive behavior.

PC Sample-based Profiling creates samples so that tools can populate a statistical model of the performance of
software executing on the PE.

Note

Data returned by periodic sampling of PC Sample-based Profiling registers is sufficient to allow tools to estimate
the distribution of time spent executing software on the PE.

The delay between an instruction being executed by the PE and its address appearing in the PC Sample Register is
not defined, and the architecture does not require that the sampled instruction was recently executed. For example,
if a piece of software executes a load instruction that reads the PC Sample Register of the PE it is running on, there
is no guaranteed relationship between the address of the load instruction and the value read. The PC Sample Register
is intended only for use by an external agent to provide statistical information for software profiling.

It must be possible to sample references to branch targets. It is IMPLEMENTATION DEFINED whether references to
other instructions can be sampled. The branch target for a conditional branch instruction that fails its condition
check is the instruction that follows the conditional branch instruction. The branch target for an exception is the
exception vector address.

FEAT_PCSRv8p9 adds a mechanism to suspend PC Sample-based Profiling in systems where:

• It is required to be able to use PC Sample-based Profiling on an ad hoc basis.

• It is required to be able to disable or suspend PC Sample-based Profiling after use.

• It is not acceptable to reset or power down the PE in order to disable or suspend PC Sample-based Profiling.

To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the sampled data is
acceptable. Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable
for the sample to represent an instruction that was not committed for execution.

• Under unusual non-repeating pathological cases, the sample can represent an instruction that was not
committed for execution. These cases are likely to occur as a result of asynchronous exceptions, such as
interrupts, where the chance of a systematic error in sampling is very unlikely.

• Under normal operating conditions, the sample must reference an instruction that was committed for
execution, including its context, and must not reference instructions that are fetched but not committed for
execution.

Note

In the Armv7 PC Sample-based Profiling Extension, an offset was applied to the sampled Program Counter value
and this offset and the instruction set state indicated in bits [1:0] of the sampled value. From the introduction of the
Armv8 PC Sample-based Profiling Extension, the sampled value is the address of an instruction that has executed,
with no offset and no indication of the instruction set state.

• Controlling the PC Sample-based Profiling Extension.

• Registers implemented by the PC Sample-based Profiling Extension.

• Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

• Pseudocode description of PC Sample-based Profiling.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H7-12789
ID032224 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
H7.1.1 Controlling the PC Sample-based Profiling Extension

PC Sample-based Profiling is controlled by the IMPLEMENTATION DEFINED authentication interface
ExternalNoninvasiveDebugEnabled().

PC Sample-based Profiling is allowed if both of the following apply:

• ExternalNoninvasiveDebugEnabled() == TRUE.

• At least one of the following applies:

— The PE is executing in Non-secure state.

— EL3 is not implemented.

— EL3 is implemented, the PE is executing in Secure state, and
ExternalSecureNoninvasiveDebugEnabled() == TRUE.

— EL3 or EL1 is using AArch32, the PE is executing at EL0 in Secure state, and the value of
SDER.SUNIDEN is 1.

— The PE is executing in Realm state and ExternalRealmNoninvasiveDebugEnabled() == TRUE.

— The PE is executing in Root state and ExternalRootNoninvasiveDebugEnabled() == TRUE.

The state of the IMPLEMENTATION DEFINED authentication interface is visible through DBGAUTHSTATUS_EL1.
See Recommended authentication interface.

H7.1.1.1 Suspending and activating PC Sample-based Profiling

If FEAT_PCSRv8p9 is implemented and the value PMPCSCTL.IMP is 1, then all of the following apply:

• When PMPCSCTL.EN is 0, PC Sample-based Profiling is suspended unless otherwise stated.

• When PMPCSCTL.EN is 1, PC Sample-based Profiling is active.

Otherwise, all of the following apply:

• If FEAT_PCSRv8p9 is implemented, then PMPCSCTL.EN is RES0.

• The state of PC Sample-based Profiling at Warm reset is an IMPLEMENTATION DEFINED one of suspended or
active.

When all of the following apply, reading PMPCSR[31:0] or PMPCSR[63:0] makes PC Sample-based Profiling
active:

• PC Sample-based Profiling is suspended and PC sampling is allowed.

• Sampling on reads is enabled.

A subsequent external read of PMPCSR will observe the updated state. This means that if FEAT_PCSRv8p9 is
implemented and PMPCSCTL.IMP reads as 1, then PMPCSCTL.EN is set to 1 as a side-effect of the read of
PMPCSR.

Note

If FEAT_PCSRv8p9 is implemented and PMPCSCTL.IMP reads as 0, then there is no mechanism to return to
suspended state.

When FEAT_PMUv3_SS is implemented and PMPCSCTL.SS is 1, all the following apply:

• PC Sample-based Profiling is active, regardless of the value of PMPCSCTL.EN, if implemented.

• Sampling on PMU snapshot Capture events is enabled.

• Sampling on reads is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H7-12790
ID032224 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
Otherwise, sampling on PMU snapshot Capture events is disabled, and sampling on reads is enabled.

When sampling on reads is disabled, all of the following apply to reads of PMPCSR:

• The reads have none of the side-effects described in PMPCSR, Program Counter Sample Register.

• Return the value of the PC when it was last sampled, or the Cold reset value of the register if the PC has not
been sampled since the last Cold reset.

For more information on the operation of Capture events, see PMU snapshots.

H7.1.2 Registers implemented by the PC Sample-based Profiling Extension

The PC Sample-based Profiling Extension is implemented by either FEAT_PCSRv8 or FEAT_PCSRv8p2:

• If FEAT_PCSRv8 is implemented then the PC Sample-based Profiling Extension registers are implemented
in the external debug register space. EDDEVID1.PCSample identifies when FEAT_PCSRv8 is implemented
and which PC Sample-based Profiling Extension registers are implemented.

• If FEAT_PCSRv8p2 is implemented then the PC Sample-based Profiling Extension registers are
implemented in the Performance Monitors memory-mapped register space. PMDEVID.PCSample identifies
when FEAT_PCSRv8p2 is implemented.

An implementation is not permitted to include both FEAT_PCSRv8 and FEAT_PCSRv8p2. FEAT_PCSRv8 is not
permitted from Armv8.2.

If FEAT_PCSRv8 is implemented:

• The following external debug registers can be implemented:

— EDCIDSR.

— EDPCSR.

— EDVIDSR.

See External debug interface registers.

• If FEAT_VHE is implemented, EDSCR.SC2 controls what PC Sample-based Profiling samples.

If FEAT_PCSRv8p2 is implemented and the 64-bit external PMU programmers’ model extension is not
implemented, the following registers can be implemented in the Performance Monitors memory-mapped register
space:

• PMCID1SR and PMCID2SR.

• PMPCSR.

• PMVIDSR.

When the 64-bit external PMU programmers’ model extension is implemented, these registers are:

• PMCCIDSR.

• PMPCSR.

• PMVCIDSR.

See Performance Monitors external register views.

If FEAT_PCSRv8p2 is implemented but the Performance Monitors Extension is not implemented, then the PC
Sample-based Profiling Extension is implemented in its own memory-mapped register space, within the area that is
reserved for the Performance Monitors, see Table H7-1. If CoreSight compliance is required:

• The management registers are defined as in Table K7-4.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H7-12791
ID032224 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
• The support for PC Sample-based profiling is defined in the following registers:

— PMDEVTYPE.MAJOR has the value 0x0.

— PMDEVARCH.ARCHID has the value 0x0A10.

H7.1.3 Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN

The architecture permits IMPLEMENTATION DEFINED extensions to external debug to define mechanisms that make
the values of the PC Sample-based profiling registers UNKNOWN. However, it requires that any such mechanism is
disabled by default. This means that powerup or a hard reset of the PE must leave the PE in a state where the PC
Sample-based Profiling Extension, if implemented, exhibits its architecturally-defined behavior.

Note

A mechanism that, when enabled, makes the PC Sample-based profiling registers UNKNOWN might use other
sample-based profiling events that are appropriate for a use that is independent of PC Sample-based Profiling.

If no branch instruction has been retired since the PE left Debug state, suspended state, or a state where PC
Sample-based profiling is prohibited, then the sampled value is UNKNOWN.

If all of the following apply, then a read of PMPCSR[31:0] or PMPCSR[63:0] is permitted but not required to return
0xFFFFFFFF for PMPCSR[31:0].

• The PE has not retired any branch instruction since leaving a state where PC Sample-based Profiling was
suspended.

• Sampling on reads is not disabled.

This includes a read of PMPCSR[31:0] or PMPCSR[63:0] that indirectly makes PC Sample-based Profiling active.

When FEAT_MOPS and FEAT_PCSRv8p2 are not implemented, if no branch instruction has been retired since the
last read of PMPCSR[31:0], then the value of PMPCSR[31:0] is UNKNOWN.

Table H7-1 PC Sample-based Profiling register map without the Performance Monitors Extension

Offset Description

0x200 PMPCSR[31:0]

0x204 PMPCSR[63:32]

0x208 PMCID1SR

0x20C PMVIDSR

0x220 PMPCSR[31:0] (alias)

0x224 PMPCSR[63:32] (alias)

0x228 PMCID1SR (alias)

0x22C PMCID2SR

0x600-0x6FC IMPLEMENTATION DEFINED

0xE80-0xEFC IMPLEMENTATION DEFINED for CoreSight compliance

0xFF0-0xFFc Management and CoreSight compliance registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H7-12792
ID032224 Non-Confidential

The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension
H7.1.4 Pseudocode description of PC Sample-based Profiling

When FEAT_PCSRv8 is implemented, the functionality is described by the pseudocode functions:

• CreatePCSample(), which populates a variable of type PCSample.

• Read_EDPCSRlo[], which writes a PC sample to the EDPCSR and associated registers.

When FEAT_PCSRv8p2 is implemented, the functionality is described by the pseudocode functions:

• CreatePCSample(), which populates a variable of type PCSample.

• Read_PMPCSR[], which writes a PC Sample to the PMPCSR and associated registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H7-12793
ID032224 Non-Confidential

Chapter H8
About the External Debug Registers

This chapter provides some additional information about the external debug registers. It contains the following
sections:

• Relationship between external debug and System registers.

• Endianness and supported access sizes.

• Synchronization of changes to the external debug registers.

• Memory-mapped accesses to the external debug interface.

• External debug interface register access permissions.

• External debug interface registers.

• Cross-trigger interface registers.

• External debug register resets.

Note

Where necessary, Table K17-1 disambiguates the general register references used in this chapter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12794
ID032224 Non-Confidential

About the External Debug Registers
H8.1 Relationship between external debug and System registers
H8.1 Relationship between external debug and System registers

Table H8-1 shows the relationship between external debug registers and System registers. Where no relationship
exists, the registers are not listed.

In addition:

• EDSCR.{TXfull, RXfull} are read-only aliases for DCCSR.{TXfull, RXfull}.

• EDPRCR.CORENPDRQ is a read/write alias for DBGPRCR.CORENPDRQ.

• EDPRSR.OSLK is a read-only alias for OSLSR.OSLK.

• If the FEAT_DoubleLock is implemented, EDPRSR.DLK is a read-only function of OSDLR.DLK.

Table H8-1 Equivalence between external debug and System registers

System register

External debug register AArch64 AArch32 Notes

DBGDTRRX_EL0 DBGDTRRX_EL0 DBGDTRRXint See also Summary of System register
accesses to the DCC

DBGDTRTX_EL0 DBGDTRTX_EL0 DBGDTRTXint

OSLAR_EL1 OSLAR_EL1 DBGOSLAR -

DBGBVR<n>_EL1[31:0]

DBGBVR<n>_EL1[63:32]

DBGBVR<n>_EL1[31:0]

DBGBVR<n>_EL1[63:32]

DBGBVR<n>

DBGBXVR<n>

-

DBGBCR<n>_EL1[31:0]

DBGBCR<n>_EL1[63:32]

DBGBCR<n>_EL1[31:0]

DBGBCR<n>_EL1[63:32]

DBGBCR<n> -

DBGWVR<n>_EL1[31:0]

DBGWVR<n>_EL1[63:32]

DBGWVR<n>_EL1[31:0]

DBGWVR<n>_EL1[63:32]

DBGWVR<n> -

DBGWCR<n>_EL1[31:0]

DBGWCR<n>_EL1[63:32]

DBGWCR<n>_EL1[31:0]

DBGWCR<n>_EL1[63:32]

DBGWCR<n> -

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1 DBGCLAIMSET -

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1 DBGCLAIMCLR -

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1 DBGAUTHSTATUS Read-only

EDSCR MDSCR_EL1 DBGDSCRext Only some fields map

EDECCR OSECCR_EL1 DBGOSECCR Applies when the OS Lock is locked

MIDR_EL1 MIDR_EL1 MIDR Read-only copies of Processor ID Registers

EDDEVAFF0

EDDEVAFF1
MPIDR_EL1[31:0]a

MPIDR_EL1[63:32]a

MPIDR Read-only copies of system ID registers

a. This is a word of a 64-bit register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12795
ID032224 Non-Confidential

About the External Debug Registers
H8.2 Endianness and supported access sizes
H8.2 Endianness and supported access sizes

The debug registers, Performance Monitors registers, and CTI registers are implemented as memory-mapped
peripherals. The Arm architecture requires memory-mapped peripherals to be little-endian.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses
to the debug registers, Performance Monitors registers, and CTI registers, implementations must:

• Comply with the requirements of Supported access sizes.

• Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations, even if all components with direct memory access to
the memory-mapped peripheral support making 64-bit accesses.

Note

These requirements mean that a system implementing the debug registers using a 32-bit bus, such as an AMBA
APB3, with a wider system interconnect must implement a bridge between the system and the debug bus that can
split 64-bit accesses.

For accesses from the external debug interface, the size of an access is determined by the interface. For an access
from an ADIv5-compliant Memory Access Port, MEM-AP, this is specified by the MEM-AP CSW register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12796
ID032224 Non-Confidential

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
H8.3 Synchronization of changes to the external debug registers

This section describes the synchronization requirements for the external debug interface.

For more information on how these requirements affect debug, see:

• Synchronization and debug exceptions for exceptions taken from AArch64 state.

• Synchronization and debug exceptions for exceptions taken from AArch32 state.

• Synchronization and Halting debug events.

• Synchronization of DCC and ITR accesses.

This section refers to accesses from the external debug interface as external reads and external writes. It refers to
accesses to System registers as direct reads, direct writes, indirect reads, and indirect writes.

Note

Synchronization requirements for AArch64 System registers and Synchronization of changes to AArch32 System
registers define direct read, direct write, indirect read, and indirect write, and classifies external reads as indirect
reads, and external writes as indirect writes.

For general information about synchronization, access completion, ordering, and observability, see Synchronization
of memory-mapped registers.

Writes to the same register are serialized, meaning they are observed in the same order by all observers, although
some observers might not observe all of the writes. With the exception of DBGBCR<n>_EL1, DBGBVR<n>_EL1,
DBGWCR<n>_EL1, and DBGWVR<n>_EL1, external writes to different registers are not necessarily observed in
the same order by all observers as the order in which they complete.

Synchronization of DCC and ITR accesses describes the synchronization requirements for the DCC and ITR.

Changes to the IMPLEMENTATION DEFINED authentication interface are external writes to the authentication status
registers by the Requester of the authentication interface. See Synchronization and the authentication interface.

The external agent must be able to guarantee completion of a write. For example by:

• Marking the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.

• Reading back the value written.

• Some guaranteed property of the connection between the PE and the external agent.

Note

For an external Debug Access Port, access completion is an IMPLEMENTATION DEFINED property. For a CoreSight
system using APB-AP to access a debug APB, accesses complete in order.

However, the external agent cannot force synchronization of completed writes without halting the PE. Executing an
ISB instruction, either in Debug state or in Non-debug state, and exiting from Debug state forces synchronization.
If the PE is in Debug state, executing an ISB instruction is guaranteed to explicitly synchronize any external reads,
external writes, and changes to the authentication interface that are ordered before the external write to EDITR.

For any given observer, external writes to the following register groups are guaranteed to be observable in the same
order in which they complete:

• The breakpoint registers, DBGBCR<n>_EL1 and DBGBVR<n>_EL1.

• The watchpoint registers, DBGWCR<n>_EL1 and DBGWVR<n>_EL1.

This guarantee applies only to external writes to registers within one of these groups. There is no guarantee
regarding the ordering of the observability of external writes within these groups with respect to external writes to
registers, for example EDSCR, or between breakpoints and watchpoints, including watchpoints linked to context
matching breakpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12797
ID032224 Non-Confidential

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
Note

This means that a debugger can rely on the external writes to be observed in the same order in which they complete.
It does not mean that a debugger can rely on the external writes being observed in finite time.

In a simple sequential execution an indirect write that occurs as a side-effect of an access happens atomically with
the access, meaning no other accesses are allowed between the register access and its side-effect.

If two or more interfaces simultaneously access a register, the behavior must be as if the accesses occurred
atomically and in any order. This is described in Examples of the synchronization of changes to the external debug
registers.

Some registers have the property that for certain bits a write of 0 is ignored and a write of 1 has an effect. This means
that simultaneous writes must be merged. Registers that have this property and support both external debug and
System register access include DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, PMCR_EL0.{C,P},
PMOVSSET_EL0, PMOVSCLR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMINTENSET_EL1,
PMINTENCLR_EL1, and PMSWINC_EL0. This last register is OPTIONAL and deprecated in the external debug
interface.

H8.3.1 Synchronization and the authentication interface

Changes to the authentication interface are indirect writes to the state of the PE by the Requester of the
authentication interface.

For an external debug interface read of any Authentication Status register, or an indirect read of the authentication
interface made in determining the response to a subsequent external debug interface access, a change on the
authentication interface must be observable following a subsequent explicit Context Synchronization event, and:

• It is IMPLEMENTATION DEFINED whether a change is guaranteed to be observable in finite time.

• It is IMPLEMENTATION DEFINED whether a change is guaranteed to be observable following an entry to Debug
state.

For a System register read of DBGAUTHSTATUS_EL1, a change on the authentication interface is guaranteed to
be observable only after a Context Synchronization event.

Note

• In some systems, the authentication interface is fixed by configuration or is changed under the control of
software. These systems can require explicit synchronization for any change to the authentication interface.

• In other systems, the authentication interface is controlled dynamically by an external agent. In these systems,
it is desirable that changes to the authentication interface do not require explicit synchronization by software
executing on the PE to be observable by subsequent external debug interface accesses, and are either
observable in finite time or are synchronized by entry to Debug state. Otherwise, there are scenarios where a
debugger is not able to halt and debug the system.

H8.3.2 Examples of the synchronization of changes to the external debug registers

Example H8-1, Example H8-2, and Example H8-3 show the synchronization of changes to the external debug
registers.

Example H8-1 Order of synchronization of Breakpoint and Watchpoint register writes

Initially DBGBVR<n>_EL1 is 0x8000 and DBGBCR<n>_EL1 is 0x0181. This means that a breakpoint is enabled
on the halfword T32 instruction at address 0x8000.

A sequence of external writes occurs in the following order:

1. 0x0000 is written to DBGBCR<n>_EL1, disabling the breakpoint.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12798
ID032224 Non-Confidential

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
2. 0x9000 is written to DBGBVR<n>_EL1[31:0].

3. 0x0061 is written to DBGBCR<n>_EL1, enabling a breakpoint on the halfword at address 0x9002.

The external writes must be observable to indirect reads in the same order as the external writes complete. This
means that at no point is there a breakpoint enabled on either of the halfwords at address 0x8002 and 0x9000.

Similarly a breakpoint or watchpoint must be disabled:

• If both halves of a 64-bit address have to be updated.

• If any of the DBGBCR<n>_EL1 or DBGWCR<n>_EL1 fields are modified at the same time as updating the
address.

Example H8-2 Simultaneous accesses to DTR registers

Initially EDSCR.{TXfull, TXU, ERR} are 0. Then:

• 0x0DCCDA7A is directly written to DBGDTRTX_EL0 by an MSR instruction.

• DBGDTRTX_EL0 is indirectly read by the external debug interface.

These accesses might happen at the same time and in any order.

If the direct write of 0x0DCCDA7A to DBGDTRTX_EL0 is handled first, then:

• The external debug interface read of DBGDTRTX_EL0 clears EDSCR.TXfull to 0.

• EDSCR.{TXU, ERR} are unchanged.

• The external debug interface read returns 0x0DCCDA7A.

If the indirect read of DBGDTRTX_EL0 by the external debug interface is handled first, then:

• The external debug interface read of DBGDTRTX_EL0 causes an underrun and as a result EDSCR.{TXU,
ERR} are both set to 1.

• The external debug interface returns an UNKNOWN value.

• Writing 0x0DCCDA7A to DBGDTRTX_EL0 sets DTRTX to 0x0DCCDA7A and EDSCR.TXfull to 1.

Example H8-3 Simultaneous writes to CLAIM registers

Initially all CLAIM tag bits are 0. Then:

• 0x01 is written to DBGCLAIMSET_EL1 by a direct write, followed by an explicit Context Synchronization
event.

• 0x02 is written to DBGCLAIMSET_EL1 by an external write.

These events might happen at the same time and in either order.

After this:

• DBGCLAIMCLR_EL1 is read by a direct read.

• DBGCLAIMCLR_EL1 is read by an external read.

In this case, a direct read can return either 0x01 or 0x03, and the external read can return either 0x02 or 0x03.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12799
ID032224 Non-Confidential

About the External Debug Registers
H8.3 Synchronization of changes to the external debug registers
The only permitted final result for the CLAIM tags is the value 0x03, because this would be the result regardless of
whether 0x01 or 0x02 is written first. This is because the external write is guaranteed to be observable to a direct read
in finite time. See Synchronization requirements for AArch64 System registers.

It is not possible for a direct read to return 0x01 and the external read to return 0x02, because the writes to
DBGCLAIMCLR_EL1 are serialized.

In the following scenario, there is only one permitted result. Both observers observe the value 0x03, and then, at the
same time, two writes occur:

• 0x04 is written to DBGCLAIMSET_EL1 by a direct write, followed by an explicit Context Synchronization
event.

• 0x01 is written to DBGCLAIMCLR_EL1 by an external write.

In this case, the only permitted final result for the CLAIM tags is the value 0x06.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12800
ID032224 Non-Confidential

About the External Debug Registers
H8.4 Memory-mapped accesses to the external debug interface
H8.4 Memory-mapped accesses to the external debug interface

Support for memory-mapped access to the external debug interface is OPTIONAL. When memory-mapped access to
the external debug interface is supported, the external debug interface is accessed as a little-endian memory-mapped
peripheral.

If the external debug interface is CoreSight compliant, then an OPTIONAL Software Lock can be implemented for
memory-mapped accesses to each component.

The Software Lock is OPTIONAL and deprecated. If FEAT_Debugv8p4 is implemented, the Software Lock is not
implemented. If it is not implemented, the behavior is as if it is unlocked. The Software Locks are controlled by
EDLSR and EDLAR, PMLSR and PMLAR, and CTILSR and CTILAR. See Management registers and CoreSight
compliance.

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug
components in the Core power domain.

With the exception of these registers and the effect of the Software Lock, the behavior of the memory-mapped
accesses is the same as for other accesses to the external debug interface.

Note

The recommended memory-mapped accesses to the external debug interface are not compatible with the
memory-mapped interface defined in Armv7. In particular:

• The memory map is different.

• Memory-mapped accesses do not behave differently to Debug Access Port accesses when
OSLSR.OSLK == 1, meaning that the OS Lock is locked.

The following sections give more information about these memory-mapped accesses:

• Register access permissions for memory-mapped accesses.

• Synchronization of memory-mapped accesses to external debug registers.

See also Supported access sizes.

H8.4.1 Register access permissions for memory-mapped accesses

It is IMPLEMENTATION DEFINED whether unprivileged memory-mapped accesses are allowed. Privileged software
is responsible for controlling memory-mapped accesses using the MMU.

If FEAT_Debugv8p4 is implemented, the Security state view of a debug component is mapped into the physical
memory for that Security state.

If FEAT_Debugv8p4 is implemented, the access permissions are different in each Security state, but Secure and
Non-secure views of the debug components are identical. Arm recommends the views are located at the same
address in the Secure and Non-secure physical address maps.

If memory-mapped accesses are made through an ADIv5 interface, the Debug Access Port can block the access
using DBGSWENABLE. This is outside the scope of the Arm architecture. See Arm® Debug Interface Architecture
Specification ADIv5.0 to ADIv5.2.

H8.4.1.1 Effect of the OPTIONAL Software Lock on memory-mapped access

For memory-mapped accesses, if other controls permit access to a register, the OPTIONAL Software Lock is
implemented, and EDLSR.SLK, PMLSR.SLK, or CTILSR.SLK is set to 1, meaning the Software Lock is locked,
then with the exception of the LAR itself:

• If other controls permit access to a register, then writes are ignored. That is:

— Read/write (RW) registers become read-only, writes ignored (RO/WI).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12801
ID032224 Non-Confidential

About the External Debug Registers
H8.4 Memory-mapped accesses to the external debug interface
— Write-only (WO) registers become writes ignored (WI).

• Reads and writes have no side-effects. A side-effect is where a direct read or a direct write of a register creates
an indirect write of the same or another register. When the Software Lock is locked, the indirect write does
not occur.

• Writes to EDLAR, PMLAR, and CTILAR are unaffected.

This behavior must also apply to all IMPLEMENTATION DEFINED registers.

For example, if EDLSR.SLK is set to 1:

• EDSCR.{TXfull, TXU, ERR} are unchanged by a memory-mapped read from DBGDTRTX_EL0.

• EDSCR.{RXfull, RXO, ERR} are unchanged by a memory-mapped write to DBGDTRRX_EL0 that is
ignored.

• EDSCR.{ITE, ITO, ERR} are unchanged by a memory-mapped write to EDITR that is ignored.

• OSLSR.OSLK is unchanged by a memory-mapped write to OSLAR_EL1 that is ignored.

• EDPCSR[63:32], EDCIDSR, and EDVIDSR are unchanged by a memory-mapped read from
EDPCSR[31:0].

Note

Updating EDVIDSR, EDCIDSR, and EDPCSRhi are side-effects of reading EDPCSRlo, such that these
registers contain the matching context for EDPCSRlo. The process that updates EDPCSRlo with PC samples
is not a side-effect of the access. Reads of EDPCSRlo made when the Software Lock is locked can be used
to profile software.

• PMPCSR[63:32], PMCID1SR/PMCID2SR, and PMVIDSR are unchanged by a memory-mapped read from
PMPCSR[31:0].

Note

Updating PMVIDSR, PMCID1SR/PMCID2SR, and PMPCSR[31:0] are side-effects of reading
PMPCSR[63:32], such that these registers contain the matching context for PMPCSR[63:32]. The process
that updates PMPCSR[63:32] with PC samples is not a side-effect of the access. Reads of PMPCSR[63:32]
made when the Software Lock is locked can be used to profile software.

• EDPRSR.{SDR, SPMAD, SDAD, SR, SPD} are unchanged by a memory-mapped read from EDPRSR.

• EDPRSR.SDAD is not set if an error response is returned due to a memory-mapped read or write of any
debug register as the result of the value of the EDAD field.

• The CLAIM tags are unchanged by memory-mapped writes to DBGCLAIMSET_EL1 and
DBGCLAIMCLR_EL1 which are ignored.

Similarly, if PMLSR.SLK is set to 1, then EDPRSR.SPMAD is not set if an error response is returned to a
memory-mapped read or write of any Performance Monitors register due to the value of the EPMAD field.

H8.4.1.2 Behavior of a not permitted memory-mapped access

Where the architecture requires that an external debug interface access generates an error response, a
memory-mapped access must also generate an error response. However, it is IMPLEMENTATION DEFINED how the
error response is handled, as this depends on the system.

Arm recommends that the error is returned as either:

• A synchronous external Data Abort.

• An SError interrupt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12802
ID032224 Non-Confidential

About the External Debug Registers
H8.4 Memory-mapped accesses to the external debug interface
H8.4.2 Synchronization of memory-mapped accesses to external debug registers

The synchronization requirements for memory-mapped accesses to the external debug interface is described in
Synchronization of changes to the external debug registers and Synchronization of memory-mapped registers.

The synchronization requirements between different routes to the external debug interface, that is, between Debug
Access Port accesses and memory-mapped accesses are IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12803
ID032224 Non-Confidential

About the External Debug Registers
H8.5 External debug interface register access permissions
H8.5 External debug interface register access permissions

Some external accesses to debug registers and Performance Monitor registers are not permitted and return an error
response if:

• The Core power domain is powered down or is in low-power state where the registers cannot be accessed.

• OSLSR.OSLK == 1. The OS Lock is locked.

• FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is locked.

• The access is disabled by either the authentication interface or secure monitor.

Not all registers are affected in all of these cases. For more information, see External debug interface register access
permissions summary.

H8.5.1 External debug over powerdown and locks

Accessing registers using the external debug interface is not possible when the Debug power domain is off. In this
case, all accesses return an error.

External accesses to debug and Performance Monitors registers in the Core power domain are not permitted and
return an error response if:

• The Core power domain is off or in low-power state where the registers cannot be accessed.

• OSLSR.OSLK == 1, meaning that the OS Lock is locked. This allows software to prevent external debugger
modification of the registers while it saves and restores them over powerdown.

• FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. This means that the OS Double Lock
is locked. The OS Double Lock ensures that it is safe to remove Core power by forcing the debug interface
to be quiescent.

If FEAT_DoubleLock is not implemented, the hardware must provide another method to safely remove Core power.

The OS Lock condition does not apply to the following debug registers:

• OSLAR_EL1. This means that an external debugger can override this lock.

• EDESR. This means that an external debugger can program a debug event for when software unlocks the OS
Lock. See OS Unlock Catch debug event.

• The ID registers that describe the PE to the debugger.

See also Debug registers to save over powerdown.

H8.5.2 External access disabled

Accesses are further controlled by the external authentication interface. An untrusted external debugger cannot
program the breakpoint and watchpoint registers to generate spurious debug exceptions. If external invasive
debugging is not enabled, these external accesses to the registers are disabled. If EL3 is implemented, then SDCR
provides additional external access controls for those registers.

The disable applies to:

• The DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, and DBGWCR<n>_EL1 registers.

• From Armv8.2, the OSLAR_EL1 register.

If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether the disable applies to
OSLAR_EL1.

If FEAT_Debugv8p4 is not implemented, the external debug interface cannot access these registers if any of the
following are true:

• ExternalInvasiveDebugEnabled() == FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12804
ID032224 Non-Confidential

About the External Debug Registers
H8.5 External debug interface register access permissions
• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the PE behaves as if the
Security state is Secure.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is implemented and SDCR.EDAD == 1.

If FEAT_Debugv8p4 is implemented, accesses from the external debug interface to these registers are not permitted
if any of the following are true:

• EL3 is not implemented, the PE behaves as if the Security state is Secure, and the access is Non-secure.

• The access is not permitted by SDCR.EDAD and, if FEAT_RME is implemented, MDCR_EL3.EDADE.

The AllowExternalDebugAccess() pseudocode function describes these accessibility rules.

PEs might also provide an OPTIONAL external debug interface to the Performance Monitor registers. The
authentication interface and SDCR provide similar external access disable controls for those registers.

If FEAT_Debugv8p4 is not implemented, the external debug interface cannot access the Performance Monitor
registers if any of the following are true:

• ExternalNoninvasiveDebugEnabled() == FALSE.

• ExternalSecureNoninvasiveDebugEnabled() == FALSE, EL3 is not implemented and the PE behaves as if the
Security state is Secure.

• ExternalSecureNoninvasiveDebugEnabled() == FALSE, EL3 is implemented and SDCR.EPMAD == 1.

Note

Arm recommends that Secure software that is not making use of debug hardware does not lock out the external
debug interface.

If FEAT_Debugv8p4 is implemented, accesses from the external debug interface to these registers are not permitted
if any of the following are true:

• EL3 is not implemented, the PE behaves as if the Security state is Secure, and the access is Non-secure.

• The access is not permitted by SDCR.EDAD and, if FEAT_RME is implemented, MDCR_EL3.EDADE.

The AllowExternalPMUAccess() pseudocode function describes these accessibility rules.

H8.5.3 Behavior of a not permitted access

For an external debug interface access by a Debug Access Port, the Debug Access Port receives the error response
and must signal this to the external debugger. For an ADIv5 implementation of a Debug Access Port, the error sets
a sticky error flag in the Debug Access Port that the debugger can poll, and that suppresses further accesses until it
is explicitly cleared.

When an error is returned because external access is disabled, and this is the highest priority error condition, a sticky
error flag in EDPRSR is indirectly written to 1 as a side-effect of the access:

• For a debug register access when AllowExternalDebugAccess() == FALSE, EDPRSR.SDAD is indirectly
written to 1.

• For Performance Monitor register access when AllowExternalPMUAccesss() == FALSE, EDPRSR.SPMAD is
indirectly written to 1.

The indirect write might not occur for a memory-mapped access to the external debug interface. For more
information, see Register access permissions for memory-mapped accesses.

If no error is returned, or the error is returned because of a higher priority error condition, the flag in EDPRSR is
unchanged.

See also Behavior of a not permitted memory-mapped access.

For more information, see Arm® Debug Interface Architecture Specification.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12805
ID032224 Non-Confidential

About the External Debug Registers
H8.5 External debug interface register access permissions
H8.5.4 External debug interface register access permissions summary

For accesses to:

• IMPLEMENTATION DEFINED registers, see IMPLEMENTATION DEFINED registers.

• OPTIONAL registers for CoreSight compliance, see Management registers and CoreSight compliance.

• Reserved, unallocated, or unimplemented registers, writes to read-only registers, and reads of write-only
registers, see Reserved and unallocated registers.

For all other external debug interface, CTI, and Performance Monitor registers, Table H8-3, Table H8-4, Table H8-6
and Table I3-2, show the response of the PE to accesses by the external debug interface.

H8.5.5 IMPLEMENTATION DEFINED registers

For debug registers, Performance Monitors registers, CTI registers, register access permissions for
IMPLEMENTATION DEFINED registers are IMPLEMENTATION DEFINED.

If OPTIONAL memory-mapped access to the external debug interface is supported, there are additional constraints
on memory-mapped accesses to registers. These constraints must also apply to IMPLEMENTATION DEFINED registers.
For more information, see Register access permissions for memory-mapped accesses.

If FEAT_DoPD is not implemented, the power domain of these registers in which these registers are implemented
is also IMPLEMENTATION DEFINED. The registers must apply the constraint that if the OPTIONAL Software Lock is
locked, writes are ignored and accesses have no side-effects.

If FEAT_DoPD is implemented, then:

• For debug registers and Performance Monitors registers, IMPLEMENTATION DEFINED registers are
implemented in the Core power domain. Accesses return an error when the Core power domain is off or in a
low-power state.

• For CTI registers, IMPLEMENTATION DEFINED registers are implemented in the Debug power domain.

H8.5.6 Reserved and unallocated registers

The default access requirements for reserved and unallocated registers are described in Access requirements for
reserved and unallocated registers.

Note

Reads of WO and writes to RO refers to the default access permissions for a register. For example, when the SLK
field is set, meaning that the relevant registers become RO, a memory-mapped write to a RW register is ignored,
and not treated as a reserved access.

The following reserved registers are RES0 in all conditions, other than when debug power is off:

• All reserved CTI registers.

• For the debug registers, and Performance Monitors registers, if the implementation is CoreSight architecture
compliant, and either FEAT_DoPD is not implemented or the Core power domain is on, all reserved registers
in the range 0xF00 - 0xFFC. See Management register access permissions.

Otherwise, the architecture defines that:

1. If debug power is off, all register accesses, including reserved accesses, return an error.

2. For reserved debug registers and Performance Monitors registers, if FEAT_DoPD is implemented, and the
Core power domain is off or in a low-power state, the response is an error. Otherwise, the response is a
CONSTRAINED UNPREDICTABLE choice of error or RES0, when any of the following hold:

Off The Core power domain is either completely off or in a low-power state in which the Core power
domain registers cannot be accessed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12806
ID032224 Non-Confidential

About the External Debug Registers
H8.5 External debug interface register access permissions
DLK FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is
locked.

OSLK OSLSR.OSLK == 1. The OS Lock is locked.

3. In addition, for reserved debug registers in the address ranges 0x400 - 0x4FC and 0x800 - 0x8FC, the response
is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when conditions 1 or 2 do not apply and:

EDAD AllowExternalDebugAccess() == FALSE. External debug is disabled.

Note

See also Behavior of a not permitted access.

4. In addition, for reserved Performance Monitors registers in the address ranges 0x000 - 0xEFC, the response
is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when conditions 1 or 2 do not apply and:

EPMAD AllowExternalPMUAccess() == FALSE. External Performance Monitor access is disabled.

Note

See also Behavior of a not permitted access.

5. For reads of WO locations, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the
architecture permits or requires a write to the location to return an error.

6. For writes of RO locations, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the
architecture permits or requires a read to the location to return an error.

7. For reads and writes of locations for features that are not implemented, the response is a CONSTRAINED
UNPREDICTABLE choice of error or RES0 when the architecture permits or requires an access to the location
to return an error if the feature is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12807
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
H8.6 External debug interface registers

The external debug interface register map is described by:

• Summary of external debug registers.

• Cross-trigger interface registers.

• Performance Monitors external register views.

Table H8-2 Summary of external debug registers

Offset Name Description Access

0x020 EDESR External Debug Event Status Register RW

0x024 EDECR External Debug Execution Control Register RW

0x028 EDSCR2 External Debug Status and Control Register 2 RW

0x030 EDWAR External Debug Watchpoint Address Register RO

0x038 EDHSR External Debug Halting Syndrome Register RO

0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive RW

0x084 EDITR External Debug Instruction Transfer Register WO

0x088 EDSCR External Debug Status and Control Register RW

0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit RW

0x090 EDRCR External Debug Reserve Control Register WO

0x094 EDACR External Debug Auxiliary Control Register RW

0x098 EDECCR External Debug Exception Catch Control Register RW

0x0A0 EDPCSR External Debug Program Counter Sample Register RO

0x0A0 EDPCSR External Debug Program Counter Sample Register RO

0x0A4 EDCIDSR External Debug Context ID Sample Register RO

0x0A8 EDVIDSR External Debug Virtual Context Sample Register RO

0x0AC EDPCSR External Debug Program Counter Sample Register RO

0x0AC EDPCSR External Debug Program Counter Sample Register RO

0x300 OSLAR_EL1 OS Lock Access Register WO

0x310 EDPRCR External Debug Power/Reset Control Register RW

0x314 EDPRSR External Debug Processor Status Register RO

0x400 + (16 * n) DBGBVR<n>_EL1 Debug Breakpoint Value Registers RW

0x408 + (16 * n) DBGBCR<n>_EL1 Debug Breakpoint Control Registers RW

0x800 + (16 * n) DBGWVR<n>_EL1 Debug Watchpoint Value Registers RW

0x808 + (16 * n) DBGWCR<n>_EL1 Debug Watchpoint Control Registers RW

0xD00 MIDR_EL1 Main ID Register RO

0xD20 EDPFR External Debug Processor Feature Register RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12808
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
H8.6.1 Access permissions for the External debug interface registers

Table H8-3 and Table H8-4 show the access permissions for the external debug interface registers in an Arm
A-profile Debug implementation. The terms are defined as follows:

Domain This describes the power domain in which the register is logically implemented. Registers described
as implemented in the Core power domain might be implemented in the Debug power domain, as
long as they exhibit the required behavior.

If FEAT_DoPD is implemented, most External debug interface registers are in the Core power
domain, as shown in Table H8-3.

0xD28 EDDFR External Debug Feature Register RO

0xD48 EDDFR1 External Debug Feature Register 1 RO

0xD60 EDAA32PFR External Debug Auxiliary Processor Feature Register RO

0xF00 EDITCTRL External Debug Integration mode Control register RW

0xFA0 DBGCLAIMSET_EL1 Debug CLAIM Tag Set Register RW

0xFA4 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear Register RW

0xFA8 EDDEVAFF0 External Debug Device Affinity register 0 RO

0xFAC EDDEVAFF1 External Debug Device Affinity register 1 RO

0xFB0 EDLAR External Debug Lock Access Register WO

0xFB4 EDLSR External Debug Lock Status Register RO

0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status Register RO

0xFBC EDDEVARCH External Debug Device Architecture Register RO

0xFC0 EDDEVID2 External Debug Device ID register 2 RO

0xFC4 EDDEVID1 External Debug Device ID Register 1 RO

0xFC8 EDDEVID External Debug Device ID register 0 RO

0xFCC EDDEVTYPE External Debug Device Type register RO

0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4 RO

0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0 RO

0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1 RO

0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2 RO

0xFEC EDPIDR3 External Debug Peripheral Identification Register 3 RO

0xFF0 EDCIDR0 External Debug Component Identification Register 0 RO

0xFF4 EDCIDR1 External Debug Component Identification Register 1 RO

0xFF8 EDCIDR2 External Debug Component Identification Register 2 RO

0xFFC EDCIDR3 External Debug Component Identification Register 3 RO

Table H8-2 Summary of external debug registers (continued)

Offset Name Description Access
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12809
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
If FEAT_DoPD is not implemented, most of the registers are in the Debug Power Domain, as shown
in Table H8-4.

Conditions This lists the conditions under which the access is attempted.

To determine the access permissions for a register, read these columns from left to right, and stop at
first column that lists the condition as being true.

The conditions are:

Off The Core power domain is completely off, or in low-power state. In these cases the Core
power domain registers cannot be accessed, and if FEAT_DoPD is not implemented,
EDPRSR.PU will read as 0.

Note

When the Core power domain is off, or in a low-power state, a debugger is permitted to
access a debug register that is implemented in the external Debug power domain.

When the Debug power domain is off, all accesses to the registers in the external Debug
power domain return an error.

DLK FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double
Lock is locked. If FEAT_DoPD is implemented, FEAT_DoubleLock is not
implemented and so Table H8-3 does not include this column.

OSLK OSLSR.OSLK == 1. The OS Lock is locked.

EDAD AllowExternalDebugAccess() == FALSE. External debug access is disabled for the
access. See also Behavior of a not permitted access.

EPMAD AllowExternalPMUAccess() == FALSE. Access to the external Performance Monitors is
disabled for the access. See also Behavior of a not permitted access.

SLK The Software Lock is implemented and SoftwareLockStatus() == TRUE. This provides
the modified default access permissions for OPTIONAL memory-mapped accesses to the
external debug interface if the OPTIONAL Software Lock is locked. See Register access
permissions for memory-mapped accesses. If FEAT_DoPD is implemented, the
Software Lock is not locked or not implemented, this column is ignored.

Default This provides the default access permissions, if there are no conditions that prevent
access to the register.

The access permissions are:

- This means that the default access permission applies. See the Default column, or the SLK column,
if applicable.

RO This means that the register or field is read-only, and:

• Unless the register description states otherwise, a RO field in an RW register ignores writes.

• Where the SLK control makes a RW register RO, the register ignores writes.

RW This means that the register or field is read/write. Individual fields within the register might be RO
or WO. See the relevant register description for details.

RC This means that a read of the register bit clears the field to 0.

WO This means that the register or field is write-only. Unless the register description states otherwise, a
WO field in a RW register returns an UNKNOWN value on a read of the register.

WI This means that the register or field ignores writes.

IMP DEF This means that the access permissions are IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12810
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
DBGBVR<n>_EL1 and DBGWVR<n>_EL1, and if FEAT_Debugv8p9 is implemented, DBGBCR<n>_EL1 and
DBGWCR<n>_EL1, are 64-bit registers mapped to pairs of 32-bit locations in the external debug interface.
Doubleword accesses to these register are not guaranteed to be 64-bit single copy atomic. Software must take care
before altering the values of DBGBVR<n>_EL1, DBGWVR<n>_EL1, DBGBCR<n>_EL1, and
DBGWCR<n>_EL1 to prevent UNPREDICTABLE behavior. See Endianness and supported access sizes for more
information.

If FEAT_Debugv8p9 is not implemented, DBGBCR<n>_EL1 and DBGWCR<n>_EL1 are 32-bit registers in the
external debug interface, and accesses to DBGBCR<n>_EL1[63:32] and DBGWCR<n>_EL1[63:32] are RES0.

If OPTIONAL memory-mapped access to the external debug interface is supported, there might be additional
constraints on memory-mapped accesses. See Register access permissions for memory-mapped accesses.

For the reset values for the external debug interface registers, see Table H8-7.

Table H8-3 Access permissions for the external debug interface registers if FEAT_DoPD is implemented

Domain
Conditions (priority from left to right)

Offset Register Off OSLK EDAD Default

0x020 EDESR Core Error - - RW

0x024 EDECR Core Error - - RW

0x028 EDSCR2 Core Error Error - RW

0x030

0x034

EDWAR[31:0]

EDWAR[63:32]

Core

Core

Error

Error

Error

Error

-

-

RO

RO

0x038

0x03C

EDHSR[31:0]

EDHSR[63:32]

Core

Core

Error

Error

Error

Error

-

-

RO

RO

0x080 DBGDTRRX_EL0 Core Error Error - RW

0x084 EDITR Core Error Error - WO

0x088 EDSCR Core Error Error - RW

0x08C DBGDTRTX_EL0 Core Error Error - RW

0x090 EDRCR Core Error Error - WO

0x094 EDACR Core Error IMP DEF - RW

0x098 EDECCR Core Error Error - RW

0x0A0 EDPCSR[31:0]a Core Error Error - RO

0x0A4 EDCIDSRa Core Error Error - RO

0x0A8 EDVIDSRa Core Error Error - RO

0x0AC EDPCSR[63:32]a Core Error Error - RO

0x300 OSLAR_EL1 Core Error - Error WO

0x310 EDPRCR Core Error - - RW

0x314 EDPRSR Core Error - - RO

0x400+16*n

0x404+16*n

DBGBVR<n>_EL1[31:0]b

DBGBVR<n>_EL1[63:32]b

Core

Core

Error

Error

Error

Error

Error

Error

RW

RW
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12811
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
0x408+16*n

0x40C+16*n

DBGBCR<n>_EL1[31:0]b

DBGBCR<n>_EL1[63:32]bc

Core

Core

Error

Error

Error

Error

Error

Error

RW

RW

0x800+16*n

0x804+16*n

DBGWVR<n>_EL1[31:0]b

DBGWVR<n>_EL1[63:32]b

Core

Core

Error

Error

Error

Error

Error

Error

RW

RW

0x808+16*n

0x80C+16*n

DBGWCR<n>_EL1[31:0]b

DBGWCR<n>_EL1[63:32]bc

Core

Core

Error

Error

Error

Error

Error

Error

RW

RW

0xD00 MIDR_EL1 Core Error - - RO

0xD20 EDPFR[31:0] Core Error - - RO

0xD24 EDPFR[63:32] Core Error - - RO

0xD28 EDDFR[31:0] Core Error - - RO

0xD2C EDDFR[63:32] Core Error - - RO

0xD48 EDDFR1[31:0] Core Error - - RO

0xD4C EDDFR1[63:32] Core Error - - RO

0xD60 EDAA32PFR[31:0] Core Error - - RO

0xD64 EDAA32PFR[63:32] Core Error - - RO

0xFA0 DBGCLAIMSET_EL1 Core Error Error - RW

0xFA4 DBGCLAIMCLR_EL1 Core Error Error - RW

0xFA8 EDDEVAFF0 Core Error - - RO

0xFAC EDDEVAFF1 Core Error - - RO

0xFB8 DBGAUTHSTATUS_EL1 Core Error - - RO

0xFC0 EDDEVID2 Core Error - - RO

0xFC4 EDDEVID1 Core Error - - RO

0xFC8 EDDEVID Core Error - - RO

a. Implemented only if the PC Sample-based Profiling Extension is implemented and FEAT_PCSRv8p2 is not
implemented.

b. Implemented breakpoints and watchpoints only. n is the breakpoint or watchpoint number.

c. When FEAT_Debugv8p9 is implemented.

Table H8-3 Access permissions for the external debug interface registers if FEAT_DoPD is implemented (continued)

Domain
Conditions (priority from left to right)

Offset Register Off OSLK EDAD Default
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12812
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK

0x020 EDESR Core Error Error - - RW RO

0x024 EDECR Debug - - - - RW RO

0x028 EDSCR2 Core Error Error Error - RW RO

0x030

0x034

EDWAR[31:0]

EDWAR[63:32]

Core

Core

Error

Error

Error

Error

Error

Error

-

-

RO

RO

-

-

0x038

0x03C

EDHSR[31:0]

EDHSR[63:32]

Core

Core

Error

Error

Error

Error

Error

Error

-

-

RO

RO

RO

RO

0x080 DBGDTRRX_EL0 Core Error Error Error - RW RO

0x084 EDITR Core Error Error Error - WO WI

0x088 EDSCR Core Error Error Error - RW RO

0x08C DBGDTRTX_EL0 Core Error Error Error - RW RO

0x090 EDRCR Core Error Error Error - WO WI

0x094 EDACR IMP DEF IMP DEF IMP DEF IMP DEF - RW RO

0x098 EDECCR Core Error Error Error - RW RO

0x0A0 EDPCSR[31:0]a Core Error Error Error - RO RO

0x0A4 EDCIDSRa Core Error Error Error - RO RO

0x0A8 EDVIDSRa Core Error Error Error - RO RO

0x0AC EDPCSR[63:32] Core Error Error Error - RO RO

0x300 OSLAR_EL1 Core Error Error - IMP DEFb WO WI

0x310 EDPRCR Core and Debug c - - - - RW RO

0x314 EDPRSR Core and Debug c - - - - RO RO

0x400+16*n

0x404+16*n

DBGBVR<n>_EL1[31:0]d

DBGBVR<n>_EL1[63:32]d

Core

Core

Error

Error

Error

Error

Error

Error

Error

Error

RW

RW

RO

RO

0x408+16*n

0x40C+16*n

DBGBCR<n>_EL1[31:0]d

DBGBCR<n>_EL1[63:32]de

Core

Core

Error

Error

Error

Error

Error

Error

Error

Error

RW

RW

RO

RO

0x800+16*n

0x804+16*n

DBGWVR<n>_EL1[31:0]d

DBGWVR<n>_EL1[63:32]d

Core

Core

Error

Error

Error

Error

Error

Error

Error

Error

RW

RW

RO

RO

0x808+16*n

0x80C+16*n

DBGWCR<n>_EL1[31:0]d

DBGWCR<n>_EL1[63:32]de

Core

Core

Error

Error

Error

Error

Error

Error

Error

Error

RW

RW

RO

RO

0xD00 MIDR_EL1 IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD20 EDPFR[31:0] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD24 EDPFR[63:32] IMP DEF IMP DEFf IMP DEFf - - RO RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12813
ID032224 Non-Confidential

About the External Debug Registers
H8.6 External debug interface registers
0xD28 EDDFR[31:0] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD2C EDDFR[63:32] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD48 EDDFR1[31:0] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD48 EDDFR1[63:32] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD60 EDAA32PFR[31:0] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xD64 EDAA32PFR[63:32] IMP DEF IMP DEFf IMP DEFf - - RO RO

0xFA0 DBGCLAIMSET_EL1 Core Error Error Error - RW RO

0xFA4 DBGCLAIMCLR_EL1 Core Error Error Error - RW RO

0xFA8 EDDEVAFF0 Debug - - - - RO RO

0xFAC EDDEVAFF1 Debug - - - - RO RO

0xFB8 DBGAUTHSTATUS_EL1 Debug - - - - RO RO

0xFC0 EDDEVID2 Debug - - - - RO RO

0xFC4 EDDEVID1 Debug - - - - RO RO

0xFC8 EDDEVID Debug - - - - RO RO

a. Implemented only if the PC Sample-based Profiling Extension is implemented.

b. If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether an error is returned. See External access disabled. If no
error is returned, the access is permitted.

c. Some bits are in the Debug power domain and some bits are in the Core power domain. See register field descriptions for information.

d. Implemented breakpoints and watchpoints only. n is the breakpoint or watchpoint number.

e. When FEAT_Debugv8p9 is implemented.

f. It is IMPLEMENTATION DEFINED whether an error is returned. See External debug over powerdown and locks. If no error is returned, the access
is permitted.

Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12814
ID032224 Non-Confidential

About the External Debug Registers
H8.7 Cross-trigger interface registers
H8.7 Cross-trigger interface registers

The Embedded Cross-Trigger Interface, CTI, is located within its own block of the external debug memory map.
There must be one such block for each PE.

If the CTI of a PE does not implement the CTIDEVAFF0 or CTIDEVAFF1 registers it must be located 64KB above
the debug registers in the external debug interface.

When FEAT_Debugv8p4 is implemented, each debug component has a Secure and Non-secure view. The Secure
view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component
is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug
components are identical.

Table H8-5 shows the CTI register map.

Table H8-5 Summary of external debug register resets, CTI registers

Offset Name Description Access

0x000 CTICONTROL CTI Control register RW

0x010 CTIINTACK CTI Output Trigger Acknowledge register WO

0x014 CTIAPPSET CTI Application Trigger Set register RW

0x018 CTIAPPCLEAR CTI Application Trigger Clear register WO

0x01C CTIAPPPULSE CTI Application Pulse register WO

0x020 + (4 * n) CTIINEN<n> CTI Input Trigger to Output Channel Enable registers RW

0x0A0 + (4 * n) CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers RW

0x130 CTITRIGINSTATUS CTI Trigger In Status register RO

0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register RO

0x138 CTICHINSTATUS CTI Channel In Status register RO

0x13C CTICHOUTSTATUS CTI Channel Out Status register RO

0x140 CTIGATE CTI Channel Gate Enable register RW

0x144 ASICCTL CTI External Multiplexer Control register RO

0x150 CTIDEVCTL CTI Device Control register RW

0xF00 CTIITCTRL CTI Integration mode Control register RW

0xFA0 CTICLAIMSET CTI CLAIM Tag Set register RW

0xFA4 CTICLAIMCLR CTI CLAIM Tag Clear register RW

0xFA8 CTIDEVAFF0 CTI Device Affinity register 0 RO

0xFAC CTIDEVAFF1 CTI Device Affinity register 1 RO

0xFB0 CTILAR CTI Lock Access Register WO

0xFB4 CTILSR CTI Lock Status Register RO

0xFB8 CTIAUTHSTATUS CTI Authentication Status register RO

0xFBC CTIDEVARCH CTI Device Architecture register RO

0xFC0 CTIDEVID2 CTI Device ID register 2 RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12815
ID032224 Non-Confidential

About the External Debug Registers
H8.7 Cross-trigger interface registers
Table H8-6 shows the access permissions for the CTI registers in an Arm A-profile Debug implementation. For a
definition of the terms used, see External debug interface registers.

0xFC4 CTIDEVID1 CTI Device ID register 1 RO

0xFC8 CTIDEVID CTI Device ID register 0 RO

0xFCC CTIDEVTYPE CTI Device Type register RO

0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4 RO

0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0 RO

0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1 RO

0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2 RO

0xFEC CTIPIDR3 CTI Peripheral Identification Register 3 RO

0xFF0 CTICIDR0 CTI Component Identification Register 0 RO

0xFF4 CTICIDR1 CTI Component Identification Register 1 RO

0xFF8 CTICIDR2 CTI Component Identification Register 2 RO

0xFFC CTICIDR3 CTI Component Identification Register 3 RO

Table H8-5 Summary of external debug register resets, CTI registers (continued)

Offset Name Description Access

Table H8-6 Access permissions for the CTI registers

Conditions (priority from left to right)

Offset Register Domain Off DLK OSLK EDAD Default SLK

0x000 CTICONTROL Debug - - - - RW RO

0x010 CTIINTACK Debug - - - - WO WI

0x014 CTIAPPSET Debug - - - - RW RO

0x018 CTIAPPCLEAR Debug - - - - WO WI

0x01C CTIAPPPULSE Debug - - - - WO WI

0x020+4×n CTIINEN<n> Debug - - - - RW RO

0x0A0+4×n CTIOUTEN<n> Debug - - - - RW RO

0x130 CTITRIGINSTATUS Debug - - - - RO RO

0x134 CTITRIGOUTSTATUS Debug - - - - RO RO

0x138 CTICHINSTATUS Debug - - - - RO RO

0x13C CTICHOUTSTATUS Debug - - - - RO RO

0x140 CTIGATE Debug - - - - RW RO

0xFC0 CTIDEVID2 Debug - - - - RO RO

0xFC4 CTIDEVID1 Debug - - - - RO RO

0xFC8 CTIDEVID Debug - - - - RO RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12816
ID032224 Non-Confidential

About the External Debug Registers
H8.7 Cross-trigger interface registers
For the reset values of the CTI registers, see Table H8-8.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12817
ID032224 Non-Confidential

About the External Debug Registers
H8.8 External debug register resets
H8.8 External debug register resets

Each register or field has a defined reset domain:

• Registers and fields in the Warm reset domain are also reset by a Cold reset and unchanged by an External
Debug reset that is not coincident with a Cold reset or a Warm reset.

• Registers and fields in the Cold reset domain are unchanged by a Warm reset or an External Debug reset that
is not coincident with a Cold reset.

• Registers and fields in the External Debug reset domain are unchanged by a Cold reset or a Warm reset that
is not coincident with an External Debug reset.

A reset might change the value of a register. Specific rules apply to the observability of registers in the External
Debug reset domain by indirect reads from the Core power domain when an External Debug reset is asserted without
a coincident Cold reset. For more information, see Synchronization of changes to the external debug registers.

Table H8-2 and Table H8-5 show the external debug register and CTI register resets. For other debug registers, see
Management register resets.

Note

By reference to Figure H6-1 the power domain can be deduced from the reset domain. Table K7-10 also shows reset
power domains.

Table H8-2 and Table H8-5 do not include:

• Read-only identification registers, such as Processor ID Registers and PMCFGR, that have a fixed value from
reset.

• Read-only status registers, such as EDSCR.RW, that are evaluated each time the register is read and that have
no meaningful reset value.

• Write-only registers, such as EDRCR, that only have an effect on writes, and have no meaningful reset value.

• Read/write registers, such as breakpoint and watchpoint registers, and EDPRCR.CORENPDRQ, that alias
other registers. The reset values are described by the descriptions of those other registers.

• IMPLEMENTATION DEFINED registers. The reset values and reset domains of these registers are also
IMPLEMENTATION DEFINED and might be UNKNOWN.

All other fields in the registers are set to an IMPLEMENTATION DEFINED value that can be UNKNOWN. The register is
in the specified reset domain.

Note

An IMPLEMENTATION DEFINED reset value, which can be UNKNOWN, means that hardware is not required to reset
the register on the specified reset, but software must not rely on the register being preserved over reset.

Table H8-7 Summary of external debug register resets, debug registers

Register Reset domain Field Value Description

DBGPRCR_EL1 Cold into
AArch64 state

CORENP
DRQ

The value of the powerup
request a

Debug Power Control Register.

DBGPRCR Cold into
AArch32 state

CORENP
DRQ

The value of the powerup
request a

Debug Power Control Register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12818
ID032224 Non-Confidential

About the External Debug Registers
H8.8 External debug register resets
EDESR, if FEAT_DoPD is
not implemented

Warm SS EDECR.SS Halting Step debug event
pending

RC EDECR.RCE Reset Catch debug event
pending

OSUC 0 OS Unlock Catch debug event
pending

EDESR, if FEAT_DoPD is
implemented

Cold SS 0 Halting Step debug event
pending

Warm RC CTIDEVCTL.RCE Reset Catch debug event
pending

OSUC 0 OS Unlock Catch debug event
pending

EDECR, if FEAT_DoPD is
implemented

Cold SS 0 Halting Step debug event enable

EDECR, if FEAT_DoPD is
not implemented

External debug SS 0 Halting Step debug event enable

RCE 0 Reset Catch debug event enable

OSUCE 0 OS Unlock Catch debug event
enable

EDWAR Cold - - All fields

EDSCR Cold RXfull 0 DTRRX register full

TXfull 0 DTRTX register full

RXO 0 DTRRX overrun

TXU 0 DTRTX underrun

INTdis 0 Interrupt disable

TDA 0 Trap debug register accesses to
Debug state

MA 0 Memory access mode in Debug
state

HDE 0 Halting debug mode enable

ERR 0 Cumulative error flag

EDSCR2 Cold EHBWE 0 Extended Halting Breakpoint
and Watchpoint Enable

TTA 0 Trap Trace Accesses

EDECCR Cold NSE[2:1] 0b00 Coarse-grained Non-secure
Exception Catch

SE[3,1] 0b00 Coarse-grained Secure
Exception Catch

EDPCSR Cold - - All fields

Table H8-7 Summary of external debug register resets, debug registers (continued)

Register Reset domain Field Value Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12819
ID032224 Non-Confidential

About the External Debug Registers
H8.8 External debug register resets
Table H8-5 shows the reset values for the CTI registers

EDCIDSR Cold - - All fields

EDVIDSR Cold - - All fields

EDPRCR, if FEAT_DoPD is
implemented

Cold - - -

EDPRCR, if FEAT_DoPD is
not implemented

External debug COREPU
RQb

- Core powerup request

EDPRSR Warm SDR - Sticky debug restart

Cold SPMAD 0 Sticky EPMAD error

SDAD 0 Sticky EDAD error

Warm SR 1 Sticky reset status

Cold SPD 1 Sticky powerdown status

a. If FEAT_DoPD is not implemented, the powerup request is the EDPRCR.COREPURQ control bit.

b. If FEAT_DoPD is not implemented, on a Cold reset into AArch64 state, DBGPRCR_EL1.CORENPDRQ resets to the value of
EDPRCR.COREPURQ. On a Cold reset into AArch32 state, DBGPRCR.CORENPDRQ resets to the value of EDPRCR.COREPURQ.
If an External Debug reset and a Cold reset coincide, both EDPRCR.COREPURQ and the CORENPDRQ field of the appropriate System
register are reset to 0.

Table H8-7 Summary of external debug register resets, debug registers (continued)

Register Reset domain Field Value Description

Table H8-8 Summary of external debug register resets, CTI registers

Register Reset domain Field Value Description

CTICONTROL External debug GLBEN 0 CTI global enable

CTIDEVCTL External debug RCE 0 If FEAT_DoPD is implemented, Reset Catch debug
event enable

OSUCE 0 If FEAT_DoPD is implemented, OS Unlock Catch
debug event enable

CTIAPPSET External debug - - All fields

CTIINEN<n> External debug - - All fields

CTIOUTEN<n> External debug - - All fields

CTIGATE External debug - - All fields

ASICCTL IMPLEMENTATION
DEFINED

- IMPLEMENTATION
DEFINED

All of register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H8-12820
ID032224 Non-Confidential

Chapter H9
External Debug Register Descriptions

This chapter provides a description of the external debug registers. It contains the following sections:

• About the external debug registers.

• External debug registers.

• External trace registers.

• External Trace Buffer registers.

• Cross-Trigger Interface registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12821
ID032224 Non-Confidential

External Debug Register Descriptions
H9.1 About the external debug registers
H9.1 About the external debug registers

The following sections describe the registers that are accessible through the external debug interface:

• External debug registers.

• External trace registers.

• External Trace Buffer registers.

• Cross-Trigger Interface registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12822
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2 External debug registers

This section describes the debug registers that are accessible through the external debug interface and are used for
external debug.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12823
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.1 DBGAUTHSTATUS_EL1, Debug Authentication Status Register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

External register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch64
System register DBGAUTHSTATUS_EL1[31:0].

External register DBGAUTHSTATUS_EL1 bits [31:0] are architecturally mapped to AArch32
System register DBGAUTHSTATUS[31:0].

When FEAT_DoPD is implemented, DBGAUTHSTATUS_EL1 is in the Core power domain.
Otherwise, DBGAUTHSTATUS_EL1 is in the Debug power domain

Attributes

DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RTNID, bits [27:26]

Root non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RTID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RTID, bits [25:24]

Root invasive debug.

0b00 Not implemented.

0b10 Implemented and disabled.

ExternalRootInvasiveDebugEnabled () == FALSE.

0b11 Implemented and enabled.

ExternalRootInvasiveDebugEnabled () == TRUE.

All other values are reserved.

If FEAT_RME is not implemented, the only permitted value is 0b00.

Bits [23:16]

Reserved, RES0.

RLNID, bits [15:14]

Realm non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RLID.

This field has an IMPLEMENTATION DEFINED value.

RES0

31 28 27 26

RTID

25 24

RES0

23 16 15 14

RLID

13 12

RES0

11 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

RTNID RLNID NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12824
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Access to this field is RO.

RLID, bits [13:12]

Realm invasive debug.

0b00 Not implemented.

0b10 Implemented and disabled.

ExternalRealmInvasiveDebugEnabled () == FALSE.

0b11 Implemented and enabled.

ExternalRealmInvasiveDebugEnabled () == TRUE.

All other values are reserved.

If FEAT_RME is not implemented, the only permitted value is 0b00.

Bits [11:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Secure non-invasive debug.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Secure state is not implemented.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

Access to this field is RO.

SID, bits [5:4]

Secure invasive debug.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Secure state is not implemented.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Access to this field is RO.

NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

Non-secure non-invasive debug.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Non-secure state is not implemented.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

If the Effective value of SCR_EL3.NS is 1, or if EL3 is implemented and EL2 is not implemented,
this field reads as 0b11.

All other values are reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12825
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Access to this field is RO.

Otherwise:

Non-secure non-invasive debug.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Non-secure state is not implemented.

0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

Access to this field is RO.

NSID, bits [1:0]

Non-secure invasive debug.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Non-secure state is not implemented.

0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Access to this field is RO.

Accessing the DBGAUTHSTATUS_EL1:

DBGAUTHSTATUS_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0xFB8 DBGAUTHSTATUS_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12826
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 63

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGBCR<n>_EL1[31:0].

External register DBGBCR<n>_EL1 bits [63:32] are architecturally mapped to AArch64 System
register DBGBCR<n>_EL1[63:32] when FEAT_Debugv8p9 is implemented.

External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGBCR<n>[31:0].

DBGBCR<n>_EL1 is in the Core power domain

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess().

• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

DBGBCR<n>_EL1 is a 64-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [63:32]

Reserved, RES0.

LBNX, bits [31:30]

When FEAT_Debugv8p9 is implemented:

Linked Breakpoint Number.

For Linked address matching breakpoints, with DBGBCR<n>_EL1.LBN, specifies the index of the
breakpoint linked to.

For all other breakpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

This field extends DBGBCR<n>_EL1.LBN to support up to 64 implemented breakpoints.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

LBNX

31 30 29

MASK

28 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

BAS

8 5 4 3

PMC

2 1

E

0

SSCE HMC RES0 BT2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12827
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
SSCE, bit [29]

When FEAT_RME is implemented:

Security State Control Extended.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MASK, bits [28:24]

When FEAT_BWE is implemented:

Address Mask. Only address ranges up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00011..0b11111 Number of address bits masked.

All other values are reserved.

Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

If DBGBCR<n>_EL1.MASK is programmed with a reserved value, then the breakpoint behaves as
if either:

• DBGBCR<n>_EL1.MASK has been programmed with a defined value, which might be
0b00000 (no mask), other than for a direct read of DBGBCR<n>_EL1.

• The breakpoint is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type.

With DBGBCR<n>_EL1.BT2 when implemented, specifies breakpoint type.

0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an
instruction.

0b0001 Linked instruction address match. As 0b0000, but linked to a breakpoint that has linking
enabled.

0b0010 When breakpoint n is context-aware:

Unlinked Context ID match. If the Effective value of HCR_EL2.E2H is 1 and either the
PE is executing at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL2. Otherwise,
DBGBVR<n>_EL1.ContextID is compared against CONTEXTIDR_EL1.

0b0011 When breakpoint n is context-aware:

As 0b0010, with linking enabled.

0b0100 When FEAT_BWE is implemented or EL1 is using AArch32:

Unlinked instruction address mismatch. DBGBVR<n>_EL1 is the address of an
instruction.

0b0101 When FEAT_BWE is implemented or EL1 is using AArch32:

Linked instruction address mismatch. As 0b0100, but linked to a breakpoint that has
linking enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12828
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b0110 When FEAT_VHE is implemented and breakpoint n is context-aware:

Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

0b0111 When FEAT_VHE is implemented and breakpoint n is context-aware:

As 0b0110, with linking enabled.

0b1000 When EL2 is implemented and breakpoint n is context-aware:

Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against
VTTBR_EL2.VMID.

0b1001 When EL2 is implemented and breakpoint n is context-aware:

As 0b1000, with linking enabled.

0b1010 When EL2 is implemented and breakpoint n is context-aware:

Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VTTBR_EL2.VMID.

0b1011 When EL2 is implemented and breakpoint n is context-aware:

As 0b1010, with linking enabled.

0b1100 When FEAT_VHE is implemented and breakpoint n is context-aware:

Unlinked CONTEXTIDR_EL2 match. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 When FEAT_VHE is implemented and breakpoint n is context-aware:

As 0b1100, with linking enabled.

0b1110 When FEAT_VHE is implemented and breakpoint n is context-aware:

Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 When FEAT_VHE is implemented and breakpoint n is context-aware:

As 0b1110, with linking enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked Breakpoint Number.

For Linked address matching breakpoints, with DBGBCR<n>_EL1.LBNX when implemented,
specifies the index of the breakpoint linked to.

For all other breakpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see Reserved
DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} values.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12829
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

When AArch32 is supported:

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless
of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

All other values are reserved.

For more information, see Using the BAS field in Address Match breakpoints.

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values
are:

All other values are reserved.

For more information, see Using the BAS field in Address Match breakpoints.

For Context matching breakpoints, this field is RES1 and ignored.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [4]

Reserved, RES0.

BAS Match instruction at Constraint for debuggers

0b0011 DBGBVR<n>_EL1 Use for T32 instructions.

0b1100 DBGBVR<n>_EL1 + 2 Use for T32 instructions.

0b1111 DBGBVR<n>_EL1 Use for A64 and A32 instructions.

BAS Match instruction at Constraint for debuggers

0b0000 - Use for a match anywhere breakpoint.

0b0011 DBGBVR<n>_EL1 Use for stepping T32 instructions.

0b1100 DBGBVR<n>_EL1 + 2 Use for stepping T32 instructions.

0b1111 DBGBVR<n>_EL1 Use for stepping A64 and A32 instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12830
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
BT2, bit [3]

When FEAT_ABLE is implemented and breakpoint n supports address breakpoint linking:

Breakpoint Type 2. With DBGBCR<n>_EL1.BT, specifies breakpoint type.

0b0 As DBGBCR<n>_EL1.BT.

0b1 As DBGBCR<n>_EL1.BT, but with linking enabled.

This value is only defined for the following DBGBCR<n>_EL1.BT values:

0b0000, 0b0001, 0b0100, and 0b0101.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint n.

0b0 Breakpoint n disabled.

0b1 Breakpoint n enabled.

This field is ignored by the PE and treated as zero when all of the following are true:

• Any of the following are true:

— HaltOnBreakpointOrWatchpoint () is FALSE and the Effective value of
MDSCR_EL1.EMBWE is 0.

— HaltOnBreakpointOrWatchpoint () is TRUE and the Effective value of
EDSCR2.EHBWE is 0.

• FEAT_Debugv8p9 is implemented.

• n >= 16.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBCR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

When FEAT_Debugv8p9 is not implemented, this register is 32-bits wide and offset 0x40C + (16 * n) is reserved.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12831
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
DBGBCR<n>_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalDebugAccess()
accesses to this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x408 + (16 * n) DBGBCR<n>_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12832
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 63

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms
breakpoint n together with control register DBGBCR<n>_EL1.

Configurations

External register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System
register DBGBVR<n>_EL1[63:0].

External register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGBVR<n>[31:0].

If the breakpoint is context-aware and EL2 is implemented, then External register
DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System register DBGBXVR<n>.
Otherwise there is no External register access to DBGBVR<n>_EL1[63:32] from AArch32 state.

DBGBVR<n>_EL1 is in the Core power domain

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b0x0x, this register holds a virtual address.

• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.

• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.

• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.

• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess().

• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

DBGBVR<n>_EL1 is a 64-bit register.

Field descriptions

When DBGBCR<n>_EL1.BT == 0b0x0x:

RESS[14:8], bits [63:57]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is
0 or RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these
bits are ignored, and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value
held in those bits is ignored by hardware.

RESS[14:8]

63 57 56 53 52 49

VA[48:2]

48 32

Bits [56:53] Bits [52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12833
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Bits[56:53]

When FEAT_LVA3 is implemented:

VA[56:53]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[7:4]

Extension to RESS[14:8]. For more information, see RESS[14:8].

Bits[52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:8]. For more information, see RESS[14:8].

VA[48:2], bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime:

• This field contains bits[48:2] of the address for comparison.

• When FEAT_LVA3 is implemented, (VA[56:53]:VA[52:49]) forms the upper part of the
address value. If FEAT_LVA3 is not implemented, bits VA[56:53] are part of the RESS field.

• When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. If
FEAT_LVA is not implemented, bits [52:49] are part of the RESS field.

If the address is being matched in an AArch32 stage 1 translation regime, the first 20 bits of this
field are RES0, and the rest of the field contains bits[31:2] of the address for comparison.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

RES0

63 32

ContextID

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12834
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The value is compared against CONTEXTIDR_EL2 when the Effective value of HCR_EL2.E2H is
1, and either:

• The PE is executing at EL2.

• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security
state.

Otherwise, the value is compared against the following:

• CONTEXTIDR when the PE is executing at AArch32.

• CONTEXTIDR_EL1 when the PE is executing at AArch64.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b011x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VHE is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

If EL2 is using AArch32, this field is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

ContextID

31 0

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12835
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. For more information, see DBGBVR<n>_EL1.VMID[7:0].

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.

• VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

RES0

63 48

VMID[15:8]

47 40

VMID[7:0]

39 32

ContextID

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12836
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is implemented or
FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBVR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGBVR<n>_EL1[63:0] can be accessed through the external debug interface:

ContextID2

63 32

RES0

31 0

ContextID2

63 32

ContextID

31 0

Component Offset Instance Range

Debug 0x400 + (16 * n) DBGBVR<n>_EL1 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12837
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalDebugAccess()
accesses to this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12838
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear Register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configurations

External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGCLAIMCLR_EL1[31:0].

External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGCLAIMCLR[31:0].

DBGCLAIMCLR_EL1 is in the Core power domain

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write
to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing the DBGCLAIMCLR_EL1:

DBGCLAIMCLR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

RAZ/WI

31 8

CLAIM

7 0

Component Offset Instance

Debug 0xFA4 DBGCLAIMCLR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12839
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12840
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set Register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note
CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configurations

External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGCLAIMSET_EL1[31:0].

External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGCLAIMSET[31:0].

DBGCLAIMSET_EL1 is in the Core power domain

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RAZ/WI.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write
to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

Accessing the DBGCLAIMSET_EL1:

DBGCLAIMSET_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• When SoftwareLockStatus() accesses to this register are RO.

RAZ/WI

31 8

CLAIM

7 0

Component Offset Instance

Debug 0xFA0 DBGCLAIMSET_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12841
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12842
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.6 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

External register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch64 System
register DBGDTRRX_EL0[31:0].

External register DBGDTRRX_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DBGDTRRXint[31:0].

DBGDTRRX_EL0 is in the Core power domain

Attributes

DBGDTRRX_EL0 is a 32-bit register.

Field descriptions

Bits [31:0]

Update DTRRX.

Writes to this register:

• If RXfull is set to 1, set DTRRX to UNKNOWN.

• If RXfull is set to 0, update the value in DTRRX.

After the write, RXfull is set to 1.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRX_EL0:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state before the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

Update DTRRX

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12843
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
DBGDTRRX_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x080 DBGDTRRX_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12844
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.7 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to
transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a
component of the Debug Communication Channel.

Configurations

External register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch64 System
register DBGDTRTX_EL0[31:0].

External register DBGDTRTX_EL0 bits [31:0] are architecturally mapped to AArch32 System
register DBGDTRTXint[31:0].

DBGDTRTX_EL0 is in the Core power domain

Attributes

DBGDTRTX_EL0 is a 32-bit register.

Field descriptions

Bits [31:0]

Return DTRTX.

Reads of this register:

• If TXfull is set to 1, return the last value written to DTRTX.

• If TXfull is set to 0, return an UNKNOWN value.

After the read, TXfull is cleared to 0.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRTX_EL0:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

• It must complete execution in Non-debug state before the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

Return DTRTX

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12845
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
DBGDTRTX_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalDebugAccess()
accesses to this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x08C DBGDTRTX_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12846
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.8 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 63

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register
DBGWVR<n>_EL1.

Configurations

External register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGWCR<n>_EL1[31:0].

External register DBGWCR<n>_EL1 bits [63:32] are architecturally mapped to AArch64 System
register DBGWCR<n>_EL1[63:32] when FEAT_Debugv8p9 is implemented.

External register DBGWCR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGWCR<n>[31:0].

DBGWCR<n>_EL1 is in the Core power domain

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess(), RES0.

• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes

DBGWCR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

LBNX, bits [31:30]

When FEAT_Debugv8p9 is implemented:

Linked Breakpoint Number.

For Linked data address watchpoints, with DBGWCR<n>_EL1.LBN, specifies the index of the
breakpoint linked to.

For all other watchpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

This field extends DBGWCR<n>_EL1.LBN to support up to 64 implemented breakpoints.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

LBNX

31 30 29

MASK

28 24

RES0

23 21

WT

20

LBN

19 16

SSC

15 14 13

BAS

12 5

LSC

4 3

PAC

2 1

E

0

SSCE HMC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12847
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
SSCE, bit [29]

When FEAT_RME is implemented:

Security State Control Extended.

The fields that indicate when the watchpoint can be generated are: HMC, PAC, SSC, and SSCE.
These fields must be considered in combination, and the values that are permitted for these fields
are constrained.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MASK, bits [28:24]

Address Mask. Only objects up to 2GB can be watched using a single mask.

0b00000 No mask.

0b00011..0b11111 Number of address bits masked.

All other values are reserved.

Indicates the number of masked address bits, from 0b00011 masking 3 address bits (0x00000007 mask
for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

If programmed with a reserved value, the watchpoint behaves as if either:

• DBGWCR<n>_EL1.MASK has been programmed with a defined value, which might be 0
(no mask), other than for a direct read of DBGWCR<n>_EL1.

• The watchpoint is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked data address match.

0b1 Linked data address match.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked Breakpoint Number.

For Linked data address watchpoints, with DBGWCR<n>_EL1.LBNX when implemented,
specifies the index of the breakpoint linked to.

For all other watchpoint types, this field is ignored and reads of the register return an UNKNOWN
value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12848
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n>_EL1 is being watched.

In cases where DBGWVR<n>_EL1 addresses a double-word:

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] is used. Arm deprecates setting
DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are nonzero binary number all of whose set bits are contiguous. All other
values are reserved and must not be used by software. See Reserved DBGWCR<n>.BAS values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LSC, bits [4:3]

Load/store control. This field enables watchpoint matching on the type of access being made.
Possible values of this field are:

0b01 Match instructions that load from a watchpointed address.

0b10 Match instructions that store to a watchpointed address.

0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not
rely on this property as the behavior of reserved values might change in a future revision of the
architecture.

BAS Description

xxxxxxx1 Match byte at DBGWVR<n>_EL1

xxxxxx1x Match byte at DBGWVR<n>_EL1 + 1

xxxxx1xx Match byte at DBGWVR<n>_EL1 + 2

xxxx1xxx Match byte at DBGWVR<n>_EL1 + 3

BAS Description, if DBGWVR<n>_EL1[2] == 0

xxx1xxxx Match byte at DBGWVR<n>_EL1 + 4

xx1xxxxx Match byte at DBGWVR<n>_EL1 + 5

x1xxxxxx Match byte at DBGWVR<n>_EL1 + 6

1xxxxxxx Match byte at DBGWVR<n>_EL1 + 7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12849
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PAC, bits [2:1]

Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC
fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable watchpoint n.

0b0 Watchpoint n disabled.

0b1 Watchpoint n enabled.

This field is ignored by the PE and treated as zero when all of the following are true:

• Any of the following are true:

— HaltOnBreakpointOrWatchpoint () is FALSE and the Effective value of
MDSCR_EL1.EMBWE is 0.

— HaltOnBreakpointOrWatchpoint () is TRUE and the Effective value of
EDSCR2.EHBWE is 0.

• FEAT_Debugv8p9 is implemented.

• n >= 16.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGWCR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

When FEAT_Debugv8p9 is not implemented, this register is 32-bits wide and offset 0x80C + (16 * n) is reserved.

DBGWCR<n>_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalDebugAccess()
accesses to this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x808 + (16 * n) DBGWCR<n>_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12850
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.9 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 63

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with
control register DBGWCR<n>_EL1.

Configurations

External register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System
register DBGWVR<n>_EL1[63:0].

External register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System
register DBGWVR<n>[31:0].

DBGWVR<n>_EL1 is in the Core power domain

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess(), RES0.

• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

RESS[14:8], bits [63:57]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant
bit of VA is 0 or RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these
bits are ignored, and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value
held in those bits is ignored by hardware.

Bits[56:53]

When FEAT_LVA3 is implemented:

VA[56:53]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[7:4]

Extension to RESS[14:8]. For more information, see RESS[14:8].

RESS[14:8]

63 57 56 53 52 49

VA[48:2]

48 32

Bits [56:53] Bits [52:49]

VA[48:2]

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12851
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Bits[52:49]

When FEAT_LVA is implemented:

VA[52:49]

Extension to VA[48:2]. For more information, see VA[48:2].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RESS[3:0]

Extension to RESS[14:8]. For more information, see RESS[14:8].

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA3 is implemented, (VA[56:53]:VA[52:49]) forms the upper part of the address
value. If FEAT_LVA3 is not implemented, bits VA[56:53] are part of the RESS field.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. If
FEAT_LVA is not implemented, bits [52:49] are part of the RESS field.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGWVR<n>_EL1[63:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalDebugAccess()
accesses to this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance Range

Debug 0x800 + (16 * n) DBGWVR<n>_EL1 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12852
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.10 EDAA32PFR, External Debug Auxiliary Processor Feature Register

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

Note
The register mnemonic, EDAA32PFR, is derived from previous definitions of this register that
defined this register only when AArch64 was not supported.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

EDAA32PFR is a 64-bit register.

Field descriptions

Bits [63:20]

Reserved, RES0.

MSA_frac, bits [19:16]

When EDAA32PFR.PMSA == 0b0000 and EDAA32PFR.VMSA == 0b1111:

Memory System Architecture fractional field. This holds the information on additional Memory
System Architectures supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 PMSAv8-64 supported in all translation regimes. VMSAv8-64 not supported.

0b0010 PMSAv8-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1
EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

EL3, bits [15:12]

When EDPFR.EL3 == 0b0000:

AArch32 EL3 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL3 is not implemented or can be executed in AArch64 state.

0b0001 EL3 can be executed in AArch32 state only.

All other values are reserved.

RES0

63 32

RES0

31 20

MSA_frac

19 16

EL3

15 12

EL2

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12853
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

EL2, bits [11:8]

When EDPFR.EL2 == 0b0000:

AArch32 EL2 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL2 is not implemented or can be executed in AArch64 state.

0b0001 EL2 can be executed in AArch32 state only.

All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

PMSA, bits [7:4]

Indicates support for a 32-bit PMSA.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PMSA-32 not supported.

0b0100 PMSAv8-32 supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

VMSA, bits [3:0]

When EDAA32PFR.PMSA != 0b0000:

Indicates support for a VMSA in addition to a 32-bit PMSA.

0b0000 VMSA not supported.

All other values are reserved.

Access to this field is RO.

When EDAA32PFR.PMSA == 0b0000:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 VMSAv8-64 supported.

0b1111 Memory system architecture described by EDAA32PFR.MSA_frac.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Access to this field is RO.

Otherwise:

Reserved, RAZ.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12854
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDAA32PFR:

EDAA32PFR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are IMPDEF.

Component Offset Instance

Debug 0xD60 EDAA32PFR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12855
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.11 EDACR, External Debug Auxiliary Control Register

The EDACR characteristics are:

Purpose

Allows implementations to support IMPLEMENTATION DEFINED controls.

Configurations

When FEAT_DoPD is implemented, EDACR is in the Core power domain. Otherwise, it is
IMPLEMENTATION DEFINED whether EDACR is implemented in the Core power domain or in the
Debug power domain

Implementation of this register is OPTIONAL.

If this register is implemented, EDDEVID.AuxRegs == 0b0001.

If FEAT_DoPD is implemented, any mechanism to preserve control bits in EDACR over power
down is optional and IMPLEMENTATION DEFINED.

If FEAT_DoPD is not implemented and EDACR contains any control bits that must be preserved
over power down, then these bits must be accessible by the external debug interface when the OS
Lock is locked, OSLSR_EL1.OSLK == 1, and when the Core is powered off.

Changing this register from its reset value causes IMPLEMENTATION DEFINED behavior, including
possible deviation from the architecturally-defined behavior.

Attributes

EDACR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• The following resets apply:

— If the register is implemented in the Core power domain:

— On a Cold reset, this field resets to an architecturally UNKNOWN value.

— On an External debug reset, the value of this field is unchanged.

— On a Warm reset, the value of this field is unchanged.

— If the register is implemented in the External debug power domain:

— On a Cold reset, the value of this field is unchanged.

— On an External debug reset, this field resets to an architecturally UNKNOWN
value.

— On a Warm reset, the value of this field is unchanged.

Accessing the EDACR:

EDACR can be accessed through the external debug interface:

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

Debug 0x094 EDACR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12856
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register are IMPDEF.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12857
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.12 EDCIDR0, External Debug Component Identification Register 0

The EDCIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme.

Configurations

When FEAT_DoPD is implemented, EDCIDR0 is in the Core power domain. Otherwise, EDCIDR0
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the EDCIDR0:

EDCIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Component Offset Instance

Debug 0xFF0 EDCIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12858
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.13 EDCIDR1, External Debug Component Identification Register 1

The EDCIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme.

Configurations

When FEAT_DoPD is implemented, EDCIDR1 is in the Core power domain. Otherwise, EDCIDR1
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

Access to this field is RO.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

Accessing the EDCIDR1:

EDCIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

1 0 0 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Component Offset Instance

Debug 0xFF4 EDCIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12859
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.14 EDCIDR2, External Debug Component Identification Register 2

The EDCIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme.

Configurations

When FEAT_DoPD is implemented, EDCIDR2 is in the Core power domain. Otherwise, EDCIDR2
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the EDCIDR2:

EDCIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Component Offset Instance

Debug 0xFF8 EDCIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12860
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.15 EDCIDR3, External Debug Component Identification Register 3

The EDCIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme.

Configurations

When FEAT_DoPD is implemented, EDCIDR3 is in the Core power domain. Otherwise, EDCIDR3
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the EDCIDR3:

EDCIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

Debug 0xFFC EDCIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12861
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.16 EDCIDSR, External Debug Context ID Sample Register

The EDCIDSR characteristics are:

Purpose

Contains the sampled value of the Context ID, captured on reading EDPCSR[31:0].

Configurations

EDCIDSR is in the Core power domain

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not
implemented. Otherwise, direct accesses to EDCIDSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors registers space.

Attributes

EDCIDSR is a 32-bit register.

Field descriptions

CONTEXTIDR, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent EDPCSR sample.
When the most recent EDPCSR sample is generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.

• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.

• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register, and
EDCIDSR samples the current banked copy of CONTEXTIDR for the Security state that is
associated with the most recent EDPCSR sample.

Because the value written to EDCIDSR is an indirect read of CONTEXTIDR, it is CONSTRAINED
UNPREDICTABLE whether EDCIDSR is set to the original or new value if EDPCSR samples:

• An instruction that writes to CONTEXTIDR.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDCIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

CONTEXTIDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12862
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EDCIDSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0x0A4 EDCIDSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12863
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.17 EDDEVAFF0, External Debug Device Affinity register 0

The EDDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the external debug component relates to.

Configurations

When FEAT_DoPD is implemented, EDDEVAFF0 is in the Core power domain. Otherwise,
EDDEVAFF0 is in the Debug power domain

There are no configuration notes.

Attributes

EDDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the EDDEVAFF0:

EDDEVAFF0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

MPIDR_EL1lo

31 0

Component Offset Instance

Debug 0xFA8 EDDEVAFF0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12864
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.18 EDDEVAFF1, External Debug Device Affinity register 1

The EDDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the external debug component relates to.

Configurations

When FEAT_DoPD is implemented, EDDEVAFF1 is in the Core power domain. Otherwise,
EDDEVAFF1 is in the Debug power domain

There are no configuration notes.

Attributes

EDDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing the EDDEVAFF1:

EDDEVAFF1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

MPIDR_EL1hi

31 0

Component Offset Instance

Debug 0xFAC EDDEVAFF1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12865
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.19 EDDEVARCH, External Debug Device Architecture Register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the external debug component.

Configurations

When FEAT_DoPD is implemented, EDDEVARCH is in the Core power domain. Otherwise,
EDDEVARCH is in the Debug power domain

Implementation of this register is OPTIONAL.

Attributes

EDDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For debug, the revision defined by Armv8 is 0x0.

All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component. Defined values are:

0b0110 Armv8 debug architecture.

0b0111 Armv8 debug architecture with Virtualization Host Extensions.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

0b1010 Armv8.8 debug architecture, FEAT_Debugv8p8.

0b1011 Armv8.9 debug architecture, FEAT_Debugv8p9.

0 1 0 0 0 1 1 1 0 1 1

31 21

1

20

0 0 0 0

19 16

ARCHVER

15 12

1 0 1 0 0 0 0 1 0 1 0 1

11 0

ARCHITECT REVISION
PRESENT

ARCHPART
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12866
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EDDEVARCH.ARCHVER and EDDEVARCH.ARCHPART are also defined as a single field,
EDDEVARCH.ARCHID, so that EDDEVARCH.ARCHVER is EDDEVARCH.ARCHID[15:12].

FEAT_VHE implements the functionality identified by the value 0b0111.

FEAT_Debugv8p2 implements the functionality identified by the value 0b1000.

FEAT_Debugv8p4 implements the functionality identified by the value 0b1001.

FEAT_Debugv8p8 implements the functionality identified by the value 0b1010.

FEAT_Debugv8p9 implements the functionality identified by the value 0b1011.

From Armv8.1, when FEAT_VHE is implemented the value 0b0110 is not permitted.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

From Armv8.8, the value 0b1001 is not permitted.

From Armv8.9, the value 0b1010 is not permitted.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

0xA15 Armv8-A debug architecture.

EDDEVARCH.ARCHVER and EDDEVARCH.ARCHPART are also defined as a single field,
EDDEVARCH.ARCHID, so that EDDEVARCH.ARCHPART is EDDEVARCH.ARCHID[11:0].

Armv8-A debug architecture.

Access to this field is RO.

Accessing the EDDEVARCH:

EDDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0xFBC EDDEVARCH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12867
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.20 EDDEVID, External Debug Device ID register 0

The EDDEVID characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Configurations

When FEAT_DoPD is implemented, EDDEVID is in the Core power domain. Otherwise,
EDDEVID is in the Debug power domain

There are no configuration notes.

Attributes

EDDEVID is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 None supported.

0b0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

Access to this field is RO.

Bits [23:8]

Reserved, RES0.

DebugPower, bits [7:4]

Indicates support for the FEAT_DoPD feature.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_DoPD not implemented. Registers in the external debug interface register map
are implemented in a mix of the Debug and Core power domains.

0b0001 FEAT_DoPD implemented. All registers in the external debug interface register map
are implemented in the Core power domain.

FEAT_DoPD implements the functionality added by the value 0b0001.

All other values are reserved.

Access to this field is RO.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PC Sample-based Profiling Extension is not implemented in the external debug registers
space.

RES0

31 28

AuxRegs

27 24

RES0

23 8 7 4

PCSample

3 0

DebugPower
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12868
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted if EL3
and EL2 are not implemented.

0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note
FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMU.PMDEVID.PCSample.

Access to this field is RO.

Accessing the EDDEVID:

EDDEVID can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0xFC8 EDDEVID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12869
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.21 EDDEVID1, External Debug Device ID Register 1

The EDDEVID1 characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Configurations

When FEAT_DoPD is implemented, EDDEVID1 is in the Core power domain. Otherwise,
EDDEVID1 is in the Debug power domain

There are no configuration notes.

Attributes

EDDEVID1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

HSR, bits [7:4]

Indicates support for the External Debug Halt Status Register, EDHSR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EDHSR not implemented, and the PE follows behaviors consistent with all of the
EDHSR fields having a zero value.

0b0001 EDHSR implemented.

0b0010 As 0b0001, but extends EDHSR to include the VNCR, CM, and WnR fields.

All other values are reserved.

FEAT_EDHSR implements the functionality identified by the value 0b0001.

FEAT_Debugv8p9 implements the functionality identified by the value 0b0010.

When FEAT_Debugv8p2 is not implemented, the only permitted value is 0b0000.

From Armv8.9, the values 0b0000 and 0b0001 are not permitted.

Access to this field is RO.

PCSROffset, bits [3:0]

Indicates the offset applied to PC samples returned by reads of EDPCSR.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EDPCSR not implemented.

0b0010 EDPCSR implemented, and samples have no offset applied and do not sample the
instruction set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors register space, as indicated by the value of PMU.PMDEVID.PCSample.

Access to this field is RO.

RES0

31 8

HSR

7 4 3 0

PCSROffset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12870
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDDEVID1:

EDDEVID1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0xFC4 EDDEVID1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12871
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.22 EDDEVID2, External Debug Device ID register 2

The EDDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

Configurations

When FEAT_DoPD is implemented, EDDEVID2 is in the Core power domain. Otherwise,
EDDEVID2 is in the Debug power domain

There are no configuration notes.

Attributes

EDDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the EDDEVID2:

EDDEVID2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

Debug 0xFC0 EDDEVID2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12872
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.23 EDDEVTYPE, External Debug Device Type register

The EDDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's debug logic.

Configurations

When FEAT_DoPD is implemented, EDDEVTYPE is in the Core power domain. Otherwise,
EDDEVTYPE is in the Debug power domain

Implementation of this register is OPTIONAL.

Attributes

EDDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Indicates this is a component within a PE.

Reads as 0b0001.

Access to this field is RO.

MAJOR, bits [3:0]

Major type. Indicates this is a debug logic component.

Reads as 0b0101.

Access to this field is RO.

Accessing the EDDEVTYPE:

EDDEVTYPE can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 1

7 4

0 1 0 1

3 0

SUB MAJOR

Component Offset Instance

Debug 0xFCC EDDEVTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12873
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.24 EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top level information about the debug system.

Note
Debuggers must use EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

EDDFR is a 64-bit register.

Field descriptions

Bits [63:60]

Reserved, UNKNOWN.

ExtTrcBuff, bits [59:56]

Trace Buffer External Mode Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trace Buffer Extension not implemented or Trace Buffer External Mode not
implemented.

0b0001 Trace Buffer Extension implemented and Trace Buffer External Mode implemented.

All other values are reserved.

If FEAT_TRBE is not implemented, the only permitted value is 0b0000.

FEAT_TRBE_EXT implements the functionality identified by the value 0b0001.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR0_EL1.ExtTrcBuff.

Access to this field is RO.

Bits [55:48]

Reserved, UNKNOWN.

TraceBuffer, bits [47:44]

When FEAT_TRBE_EXT is implemented:

Trace Buffer Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trace Buffer Extension not implemented.

UNKNOWN

63 60 59 56

UNKNOWN

55 48 47 44 43 40

UNKNOWN

39 32

ExtTrcBuff TraceBuffer TraceFilt

CTX_CMPs

31 28

SEBEP

27 24

WRPs

23 20

PMSS

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

UNKNOWN

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12874
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b0001 Trace Buffer Extension implemented.

All other values are reserved.

FEAT_TRBE implements the functionality identified by the value 0b0001.

Access to this field is RO.

Otherwise:

Reserved, UNKNOWN.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Armv8.4 Self-hosted Trace Extension is not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension is implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by 0b0001.

From Armv8.4, the permitted values are 0b0000 and 0b0001.

Access to this field is RO.

Bits [39:32]

Reserved, UNKNOWN.

CTX_CMPs, bits [31:28]

Number of context-aware breakpoints, minus 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1111 The number of context-aware breakpoints, minus 1.

The value of this field is never greater than EDDFR.BRPs.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR0_EL1.CTX_CMPs.

If FEAT_Debugv8p9 is implemented and 16 or more context-aware breakpoints are implemented,
then this field reads as 0b1111 and EDDFR1.CTX_CMPs indicates the number of context-aware
breakpoints.

Note
If AArch32 is supported at EL1, then the PE does not implement more than 16 breakpoints.

Access to this field is RO.

SEBEP, bits [27:24]

This field either has the same value as ID_AA64DFR0_EL1.SEBEP or reads as zero.

WRPs, bits [23:20]

Number of watchpoints, minus 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001..0b1111 The number of watchpoints, minus 1.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR0_EL1.WRPs.

If FEAT_Debugv8p9 is implemented and 16 or more watchpoints are implemented, then this field
reads as 0b1111 and EDDFR1.WRPs indicates the number of watchpoints.

Note

If AArch32 is supported at EL1, then the PE does not implement more than 16 watchpoints.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12875
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The value 0b0000 is reserved.

Access to this field is RO.

PMSS, bits [19:16]

This field either has the same value as ID_AA64DFR0_EL1.PMSS or reads as zero.

BRPs, bits [15:12]

Number of breakpoints, minus 1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001..0b1111 The number of breakpoints, minus 1.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR0_EL1.BRPs.

If FEAT_Debugv8p9 is implemented and 16 or more breakpoints are implemented, then this field
reads as 0b1111 and EDDFR1.BRPs indicates the number of breakpoints.

Note

If AArch32 is supported at EL1, then the PE does not implement more than 16 breakpoints.

The value 0b0000 is reserved.

Access to this field is RO.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
Alternative ID scheme used for the Performance Monitors Extension version

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0001, and adds support for:

• Extended 16-bit PMU.PMEVTYPER<n>_EL0.evtCount field.

• If EL2 is implemented, the MDCR_EL2.HPMD control.

0b0101 PMUv3 for Armv8.4. As 0b0100, and adds support for the PMMIR_EL1 register.

0b0110 PMUv3 for Armv8.5. As 0b0101, and adds support for:

• 64-bit event counters.

• If EL2 is implemented, the MDCR_EL2.HCCD control.

• If EL3 is implemented, the MDCR_EL3.SCCD control.

0b0111 PMUv3 for Armv8.7. As 0b0110, and adds support for:

• The PMU.PMCR_EL0.FZO and, if EL2 is implemented,
MDCR_EL2.HPMFZO controls.

• If EL3 is implemented, the MDCR_EL3.{MPMX,MCCD} controls.

0b1000 PMUv3 for Armv8.8. As 0b0111, and:

• Extends the Common event number space to include 0x0040 to 0x00BF and 0x4040
to 0x40BF.

• Removes the CONSTRAINED UNPREDICTABLE behaviors if a reserved or
unimplemented PMU event number is selected.

0b1001 PMUv3 for Armv8.9. As 0b1000, and:

• Updates the definitions of existing PMU events.

• Adds support for the PMUSERENR_EL0.UEN control and the PMUACR_EL1
register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12876
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Adds support for the EDECR.PME control.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

FEAT_PMUv3p7 implements the functionality identified by the value 0b0111.

FEAT_PMUv3p8 implements the functionality identified by the value 0b1000.

FEAT_PMUv3p9 implements the functionality identified by the value 0b1001.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

From Armv8.7, if FEAT_PMUv3 is implemented, the value 0b0110 is not permitted.

From Armv8.8, if FEAT_PMUv3 is implemented, the value 0b0111 is not permitted.

From Armv8.9, if FEAT_PMUv3 is implemented, the value 0b1000 is not permitted.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR0_EL1.PMUVer.

Access to this field is RO.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a trace unit is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Trace unit System registers not implemented.

0b0001 Trace unit System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a trace unit is implemented. A
trace unit might nevertheless be implemented without a System register interface.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64DFR0_EL1.TraceVer.

Access to this field is RO.

Bits [3:0]

Reserved, UNKNOWN.

Accessing the EDDFR:

EDDFR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

Component Offset Instance

Debug 0xD28 EDDFR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12877
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise accesses to this register are IMPDEF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12878
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.25 EDDFR1, External Debug Feature Register 1

The EDDFR1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64.

Configurations

There are no configuration notes.

Attributes

EDDFR1 is a 64-bit register.

Field descriptions

ABL_CMPs, bits [63:56]

When FEAT_ABLE is implemented:

Number of breakpoints that support address linking, minus 1. Defined values are:

0x00..0x3F Number of breakpoints that support address linking minus 1.

All other values are reserved.

The number of breakpoints that support address linking is never more than either the number of
breakpoints or the number of watchpoints.

Otherwise:

Reserved, RES0.

DPFZS, bits [55:52]

This field either has the same value as ID_AA64DFR1_EL1.DPFZS or reads as zero.

EBEP, bits [51:48]

This field either has the same value as ID_AA64DFR1_EL1.EBEP or reads as zero.

ITE, bits [47:44]

This field either has the same value as ID_AA64DFR1_EL1.ITE or reads as zero.

ABLE, bits [43:40]

Address Breakpoint Linking Extension. Defined values are:

0b0000 Address Breakpoint Linking Extension not implemented.

0b0001 Address Breakpoint Linking Extension implemented.

All other values are reserved.

FEAT_BWE implements the address range breakpoints and mismatch breakpoints part of the
functionality identified by the value 0b0001.

FEAT_ABLE implements the functionality identified by the value 0b0001.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR1_EL1.ABLE.

ABL_CMPs

63 56

DPFZS

55 52

EBEP

51 48

ITE

47 44

ABLE

43 40

PMICNTR

39 36

SPMU

35 32

CTX_CMPs

31 24

WRPs

23 16

BRPs

15 8

SYSPMUID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12879
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
PMICNTR, bits [39:36]

This field either has the same value as ID_AA64DFR1_EL1.PMICNTR or reads as zero.

SPMU, bits [35:32]

This field either has the same value as ID_AA64DFR1_EL1.SPMU or reads as zero.

CTX_CMPs, bits [31:24]

Context-aware breakpoints. Defined values are:

0x00 EDDFR.CTX_CMPs is the number of context-aware breakpoints, minus 1.

0x01..0x3F Number of context-aware breakpoints minus 1.

All other values are reserved.

The value of this field is never greater than EDDFR1.BRPs.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR1_EL1.CTX_CMPs.

WRPs, bits [23:16]

Watchpoints. Defined values are:

0x00 EDDFR.WRPs is the number of watchpoints, minus 1.

0x01..0x3F Number of watchpoints minus 1.

All other values are reserved.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR1_EL1.WRPs.

BRPs, bits [15:8]

Breakpoints. Defined values are:

0x00 EDDFR.BRPs is the number of breakpoints, minus 1.

0x01..0x3F Number of breakpoints minus 1.

All other values are reserved.

In an implementation that supports AArch64, this field has the same value as
ID_AA64DFR1_EL1.BRPs.

SYSPMUID, bits [7:0]

This field either has the same value as ID_AA64DFR1_EL1.SYSPMUID or reads as zero.

Accessing the EDDFR1:

EDDFR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and (!IsZero(EDDFR1) or !OSLockStatus()) accesses to this
register are RO.

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are IMPDEF.

Component Offset Instance

Debug 0xD48 EDDFR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12880
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.26 EDECCR, External Debug Exception Catch Control Register

The EDECCR characteristics are:

Purpose

Controls Exception Catch debug events. For more information, see Exception Catch debug event.

Configurations

External register EDECCR bits [31:0] are architecturally mapped to AArch64 System register
OSECCR_EL1[31:0].

External register EDECCR bits [31:0] are architecturally mapped to AArch32 System register
DBGOSECCR[31:0].

EDECCR is in the Core power domain

Attributes

EDECCR is a 32-bit register.

Field descriptions

Bits [31:23]

Reserved, RES0.

RLR2, bit [22]

When FEAT_RME is implemented:

Controls exception catch on exception return to Realm EL2 in conjunction with EDECCR.RLE2.

0b0 If EDECCR.RLE2 is 0, then Exception Catch debug events are disabled for Realm EL2.

If EDECCR.RLE2 is 1, then Exception Catch debug events are enabled for exception
entry and exception return to Realm EL2.

0b1 If EDECCR.RLE2 is 0, then Exception Catch debug events are enabled for exception
returns to Realm EL2.

If EDECCR.RLE2 is 1, then Exception Catch debug events are enabled for exception
entry to Realm EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RES0

31 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RLR2
RLR1

RLR0
RES0

RLE2
RLE1

RLE0
NSR3

NSR2
NSR1

NSR0

SE0
SE1

SE2
SE3

NSE0
NSE1

NSE2
NSE3

SR0
SR1

SR2
SR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12881
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
RLR1, bit [21]

When FEAT_RME is implemented:

Controls exception catch on exception return to Realm EL1 in conjunction with EDECCR.RLE1.

0b0 If EDECCR.RLE1 is 0, then Exception Catch debug events are disabled for Realm EL1.

If EDECCR.RLE1 is 1, then Exception Catch debug events are enabled for exception
entry and exception return to Realm EL1.

0b1 If EDECCR.RLE1 is 0, then Exception Catch debug events are enabled for exception
returns to Realm EL1.

If EDECCR.RLE1 is 1, then Exception Catch debug events are enabled for exception
entry to Realm EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RLR0, bit [20]

When FEAT_RME is implemented:

Controls exception catch on exception return to Realm EL0.

0b0 Exception Catch debug events are disabled for Realm EL0.

0b1 Exception Catch debug events are enabled for exception returns to Realm EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

RLE2, bit [18]

When FEAT_RME is implemented:

Controls exception catch on exception entry to Realm EL2. Also controls exception catch on
exception return to Realm EL2 in conjunction with EDECCR.RLR2.

0b0 If EDECCR.RLR2 is 0, then Exception Catch debug events are disabled for Realm EL2.

If EDECCR.RLR2 is 1, then Exception Catch debug events are enabled for exception
returns to Realm EL2.

0b1 If EDECCR.RLR2 is 0, then Exception Catch debug events are enabled for exception
entry and exception return to Realm EL2.

If EDECCR.RLR2 is 1, then Exception Catch debug events are enabled for exception
entry to Realm EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RLE1, bit [17]

When FEAT_RME is implemented:

Controls exception catch on exception entry to Realm EL1. Also controls exception catch on
exception return to Realm EL1 in conjunction with EDECCR.RLR1.

0b0 If EDECCR.RLR1 is 0, then Exception Catch debug events are disabled for Realm EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12882
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
If EDECCR.RLR1 is 1, then Exception Catch debug events are enabled for exception
returns to Realm EL1.

0b1 If EDECCR.RLR1 is 0, then Exception Catch debug events are enabled for exception
entry and exception return to Realm EL1.

If EDECCR.RLR1 is 1, then Exception Catch debug events are enabled for exception
entry to Realm EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RLE0, bit [16]

Access to this field is RES0.

NSR3, bit [15]

Access to this field is RES0.

NSR2, bit [14]

When FEAT_Debugv8p2 is implemented and Non-secure EL2 is implemented:

Controls exception catch on exception return to Non-secure EL2 in conjunction with
EDECCR.NSE2.

0b0 If EDECCR.NSE2 is 0, then Exception Catch debug events are disabled for Non-secure
EL2.

If EDECCR.NSE2 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL2.

0b1 If EDECCR.NSE2 is 0, then Exception Catch debug events are enabled for exception
returns to Non-secure EL2.

If EDECCR.NSE2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSR1, bit [13]

When FEAT_Debugv8p2 is implemented and Non-secure EL1 is implemented:

Controls exception catch on exception return to Non-secure EL1 in conjunction with
EDECCR.NSE1.

0b0 If EDECCR.NSE1 is 0, then Exception Catch debug events are disabled for Non-secure
EL1.

If EDECCR.NSE1 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL1.

0b1 If EDECCR.NSE1 is 0, then Exception Catch debug events are enabled for exception
returns to Non-secure EL1.

If EDECCR.NSE1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12883
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
NSR0, bit [12]

When FEAT_Debugv8p2 is implemented and Non-secure EL0 is implemented:

Controls exception catch on exception return to Non-secure EL0.

0b0 Exception Catch debug events are disabled for Non-secure EL0.

0b1 Exception Catch debug events are enabled for exception returns to Non-secure EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR3, bit [11]

When FEAT_Debugv8p2 is implemented and EL3 is implemented:

Controls exception catch on exception return to EL3 in conjunction with EDECCR.SE3.

0b0 If EDECCR.SE3 is 0, then Exception Catch debug events are disabled for EL3.

If EDECCR.SE3 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to EL3.

0b1 If EDECCR.SE3 is 0, then Exception Catch debug events are enabled for exception
returns to EL3.

If EDECCR.SE3 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR2, bit [10]

When FEAT_Debugv8p2 is implemented and FEAT_SEL2 is implemented:

Controls exception catch on exception return to Secure EL2 in conjunction with EDECCR.SE2.

0b0 If EDECCR.SE2 is 0, then Exception Catch debug events are disabled for Secure EL2.

If EDECCR.SE2 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL2.

0b1 If EDECCR.SE2 is 0, then Exception Catch debug events are enabled for exception
returns to Secure EL2.

If EDECCR.SE2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR1, bit [9]

When FEAT_Debugv8p2 is implemented and Secure EL1 is implemented:

Controls exception catch on exception return to Secure EL1 in conjunction with EDECCR.SE1.

0b0 If EDECCR.SE1 is 0, then Exception Catch debug events are disabled for Secure EL1.

If EDECCR.SE1 is 1, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL1.

0b1 If EDECCR.SE1 is 0, then Exception Catch debug events are enabled for exception
returns to Secure EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12884
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
If EDECCR.SE1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SR0, bit [8]

When FEAT_Debugv8p2 is implemented and Secure EL0 is implemented:

Controls exception catch on exception return to Secure EL0.

0b0 Exception Catch debug events are disabled for Secure EL0.

0b1 Exception Catch debug events are enabled for exception returns to Secure EL0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE3, bit [7]

Access to this field is RES0.

NSE2, bit [6]

When FEAT_Debugv8p2 is implemented and Non-secure EL2 is implemented:

Controls exception catch on exception entry to Non-secure EL2. Also controls exception catch on
exception return to Non-secure EL2 in conjunction with EDECCR.NSR2.

0b0 If EDECCR.NSR2 is 0, then Exception Catch debug events are disabled for Non-secure
EL2.

If EDECCR.NSR2 is 1, then Exception Catch debug events are enabled for exception
returns to Non-secure EL2.

0b1 If EDECCR.NSR2 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL2.

If EDECCR.NSR2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL2.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Non-secure EL2 is implemented:

Coarse-grained exception catch for Non-secure EL2. Controls Exception Catch debug events for
Non-secure EL2.

0b0 Exception Catch debug events are disabled for Non-secure EL2.

0b1 Exception Catch debug events are enabled for Non-secure EL2.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12885
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
NSE1, bit [5]

When FEAT_Debugv8p2 is implemented and Non-secure EL1 is implemented:

Controls exception catch on exception entry to Non-secure EL1. Also controls exception catch on
exception return to Non-secure EL1 in conjunction with EDECCR.NSR1.

0b0 If EDECCR.NSR1 is 0, then Exception Catch debug events are disabled for Non-secure
EL1.

If EDECCR.NSR1 is 1, then Exception Catch debug events are enabled for exception
returns to Non-secure EL1.

0b1 If EDECCR.NSR1 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Non-secure EL1.

If EDECCR.NSR1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Non-secure EL1.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When Non-secure EL1 is implemented:

Coarse-grained exception catch for Non-secure EL1. Controls Exception Catch debug events for
Non-secure EL1.

0b0 Exception Catch debug events are disabled for Non-secure EL1.

0b1 Exception Catch debug events are enabled for Non-secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSE0, bit [4]

Access to this field is RES0.

SE3, bit [3]

When FEAT_Debugv8p2 is implemented and EL3 is implemented:

Controls exception catch on exception entry to EL3. Also controls exception catch on exception
return to EL3 in conjunction with EDECCR.SR3.

0b0 If EDECCR.SR3 is 0, then Exception Catch debug events are disabled for EL3.

If EDECCR.SR3 is 1, then Exception Catch debug events are enabled for exception
returns to EL3.

0b1 If EDECCR.SR3 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to EL3.

If EDECCR.SR3 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to EL3.

Note
It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12886
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When FEAT_Debugv8p2 is not implemented and EL3 is implemented:

Coarse-grained exception catch for EL3. Controls Exception Catch debug events for EL3.

0b0 Exception Catch debug events are disabled for EL3.

0b1 Exception Catch debug events are enabled for EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE2, bit [2]

When FEAT_Debugv8p2 is implemented and FEAT_SEL2 is implemented:

Controls exception catch on exception entry to Secure EL2. Also controls exception catch on
exception return to Secure EL2 in conjunction with EDECCR.SR2.

0b0 If EDECCR.SR2 is 0, then Exception Catch debug events are disabled for Secure EL2.

If EDECCR.SR2 is 1, then Exception Catch debug events are enabled for exception
returns to Secure EL2.

0b1 If EDECCR.SR2 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL2.

If EDECCR.SR2 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL2.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE1, bit [1]

When FEAT_Debugv8p2 is implemented and Secure EL1 is implemented:

Controls exception catch on exception entry to Secure EL1. Also controls exception catch on
exception return to Secure EL1 in conjunction with EDECCR.SR1.

0b0 If EDECCR.SR1 is 0, then Exception Catch debug events are disabled for Secure EL1.

If EDECCR.SR1 is 1, then Exception Catch debug events are enabled for exception
returns to Secure EL1.

0b1 If EDECCR.SR1 is 0, then Exception Catch debug events are enabled for exception
entry, reset entry, and exception return to Secure EL1.

If EDECCR.SR1 is 1, then Exception Catch debug events are enabled for exception
entry and reset entry to Secure EL1.

Note

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level will generate an
Exception Catch debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12887
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When Secure EL1 is implemented:

Coarse-grained exception catch for Secure EL1. Controls Exception Catch debug events for Secure
EL1.

0b0 Exception Catch debug events are disabled for Secure EL1.

0b1 Exception Catch debug events are enabled for Secure EL1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SE0, bit [0]

Access to this field is RES0.

Accessing the EDECCR:

EDECCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x098 EDECCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12888
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.27 EDECR, External Debug Execution Control Register

The EDECR characteristics are:

Purpose

Controls Halting debug events.

Configurations

When FEAT_DoPD is implemented, EDECR is in the Core power domain. Otherwise, EDECR is
in the Debug power domain

There are no configuration notes.

Attributes

EDECR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TRBE, bit [6]

When FEAT_Debugv8p9 is implemented and FEAT_TRBE_EXT is implemented:

Trace Buffer External Debug Request Enable.

0b0 Trace Buffer External Debug Request disabled.

0b1 Trace Buffer External Debug Request enabled.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCE, bit [5]

When FEAT_ETEv1p3 is implemented and FEAT_Debugv8p9 is implemented:

ETE External Debug Request Enable.

0b0 ETE External Debug Request disabled.

0b1 ETE External Debug Request enabled.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RES0

31 7 6 5 4 3

SS

2 1 0

TRBE
TRCE

PME

OSUCE
RCE

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12889
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
PME, bit [4]

When FEAT_Debugv8p9 is implemented and FEAT_PMUv3p9 is implemented:

PMU Overflow External Debug Request Enable.

0b0 PMU Overflow External Debug Request disabled.

0b1 PMU Overflow External Debug Request enabled.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [3]

Reserved, RES0.

SS, bit [2]

Halting step enable. Possible values of this field are:

0b0 Halting step debug event disabled.

0b1 Halting step debug event enabled.

If the value of EDECR.SS is changed when the PE is in Non-debug state, behavior is CONSTRAINED
UNPREDICTABLE as described in Changing the value of EDECR.SS when not in Debug state.

The reset behavior of this field is:

• On a Cold reset, when FEAT_DoPD is implemented, this field resets to 0.

• On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 0.

RCE, bit [1]

When FEAT_DoPD is not implemented:

Reset Catch Enable.

0b0 Reset Catch debug event disabled.

0b1 Reset Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Otherwise:

Reserved, RES0.

OSUCE, bit [0]

When FEAT_DoPD is not implemented:

OS Unlock Catch Enable.

0b0 OS Unlock Catch debug event disabled.

0b1 OS Unlock Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12890
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDECR:

EDECR can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x024 EDECR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12891
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.28 EDESR, External Debug Event Status Register

The EDESR characteristics are:

Purpose

Indicates the status of internally pending Halting debug events.

Configurations

EDESR is in the Core power domain

There are no configuration notes.

Attributes

EDESR is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

EC, bit [3]

When FEAT_Debugv8p8 is implemented:

Exception Catch debug event pending.

0b0 Exception Catch debug event is not pending.

0b1 Exception Catch debug event is pending.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

SS, bit [2]

When FEAT_DoPD is implemented:

Halting step debug event pending. Possible values of this field are:

0b0 Reading this means that a Halting step debug event is not pending. Writing this means
no action.

0b1 Reading this means that a Halting step debug event is pending. Writing this clears the
pending Halting step debug event.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Halting step debug event pending. Possible values of this field are:

0b0 Reading this means that a Halting step debug event is not pending. Writing this means
no action.

0b1 Reading this means that a Halting step debug event is pending. Writing this clears the
pending Halting step debug event.

RES0

31 4

EC

3

SS

2

RC

1 0

OSUC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12892
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to the value in EDECR.SS.

RC, bit [1]

Reset Catch debug event pending. Possible values of this field are:

0b0 Reading this means that a Reset Catch debug event is not pending. Writing this means
no action.

0b1 Reading this means that a Reset Catch debug event is pending. Writing this clears the
pending Reset Catch debug event.

The reset behavior of this field is:

• On a Warm reset:

— When FEAT_DoPD is implemented, this field resets to the value in
CTIDEVCTL.RCE.

— When FEAT_DoPD is not implemented, this field resets to the value in EDECR.RCE.

OSUC, bit [0]

OS Unlock Catch debug event pending. Possible values of this field are:

0b0 Reading this means that an OS Unlock Catch debug event is not pending. Writing this
means no action.

0b1 Reading this means that an OS Unlock Catch debug event is pending. Writing this clears
the pending OS Unlock Catch debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing the EDESR:

If a request to clear a pending Halting debug event is received at or about the time when halting becomes allowed,
it is CONSTRAINED UNPREDICTABLE whether the event is taken.

If Core power is removed while a Halting debug event is pending, it is lost. However, it might become pending again
when the Core is powered back on and Cold reset.

EDESR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x020 EDESR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12893
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.29 EDHSR, External Debug Halting Syndrome Register

The EDHSR characteristics are:

Purpose

Holds syndrome information for a debug event.

Configurations

EDHSR is in the Core power domain

This register is present only when FEAT_EDHSR is implemented. Otherwise, direct accesses to
EDHSR are RES0.

The value of this register is UNKNOWN if the PE is in Non-debug state, or if EDSCR.STATUS is not
0b101011.

Attributes

EDHSR is a 64-bit register.

Field descriptions

Bits [63:41]

Reserved, RES0.

GCS, bit [40]

When FEAT_GCS is implemented and FEAT_Debugv8p9 is implemented:

Guarded control stack data access.

Indicates that the Watchpoint debug event is due to a Guarded control stack data access.

0b0 The Watchpoint debug event is not due to a Guarded control stack data access.

0b1 The Watchpoint debug event is due to a Guarded control stack data access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:24]

Reserved, RES0.

WPT, bits [23:18]

Watchpoint number. When EDHSR.WPTV is 1, holds the index of a watchpoint that triggered the
Watchpoint debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 41 40

RES0

39 32

GCS

RES0

31 24

WPT

23 18 17 16 15 14 13

RES0

12 11 10 9

CM

8 7 6

RES0

5 0

WPTV
WPF

FnP
RES0

WnR
RES0

RES0
FnV

VNCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12894
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
WPTV, bit [17]

Watchpoint number valid.

0b0 When FEAT_Debugv8p9 is not implemented:

EDHSR.WPT field is not valid, and holds an UNKNOWN value.

0b1 EDHSR.WPT field is valid, and holds the number of a watchpoint that triggered the
Watchpoint debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WPF, bit [16]

Watchpoint might be false-positive.

0b0 The watchpoint matched an address or address range that was accessed by the
instruction.

0b1 When FEAT_SVE is implemented or FEAT_SME is implemented:

The watchpoint matched an address or address range that might not have been accessed
by the instruction.

Arm strongly recommends that this bit is set to 0, other than when one of the following instructions
might generate a watchpoint match for an address or address range that the instruction does not
access:

• An SVE contiguous vector load/store instruction, when the PE is in Streaming SVE mode.

• An SME load/store instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FnP, bit [15]

EDWAR not Precise.

0b0 If the EDWAR is valid, it holds the virtual address of an access or sequence of
contiguous accesses that triggered the Watchpoint debug event.

0b1 When FEAT_SME is implemented or FEAT_SVE is implemented:

If the EDWAR is valid, it holds any virtual address within the smallest implemented
translation granule that contains the virtual address of an access or set of contiguous
accesses that triggered the Watchpoint debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [14]

Reserved, RES0.

VNCR, bit [13]

When FEAT_Debugv8p9 is implemented:

VNCR_EL2 access. Indicates that the Watchpoint debug event came from use of VNCR_EL2
register by EL1 code.

0b0 The Watchpoint debug event was not generated by the use of VNCR_EL2 by EL1 code.

0b1 When FEAT_NV2 is implemented:

The Watchpoint debug event was generated by the use of VNCR_EL2 by EL1 code.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12895
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Bits [12:11]

Reserved, RES0.

FnV, bit [10]

EDWAR not Valid.

0b0 EDWAR is valid.

0b1 When FEAT_SME is implemented or FEAT_SVE is implemented:

EDWAR is not valid, and holds an UNKNOWN value.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

CM, bit [8]

When FEAT_Debugv8p9 is implemented:

Cache maintenance. Indicates whether the Watchpoint debug event came from a cache maintenance
instruction.

0b0 The Watchpoint debug event was not generated by the execution of one of the System
instructions identified in the description of value 1.

0b1 The Watchpoint debug event was generated by the execution of a cache maintenance
instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not cache
maintenance instructions, and therefore do not cause this field to be set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

WnR, bit [6]

When FEAT_Debugv8p9 is implemented:

Write not Read. Indicates whether the Watchpoint debug event was caused by an instruction writing
to a memory location, or by an instruction reading from a memory location.

0b0 Watchpoint debug event caused by an instruction reading from a memory location.

0b1 Watchpoint debug event caused by an instruction writing to a memory location.

For Watchpoint debug events on cache maintenance instructions, this field is set to 1.

For Watchpoint debug events from an atomic instruction, this field is set to 0 if a read of the location
would have generated the Watchpoint debug event, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates
the Watchpoint debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12896
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDHSR:

EDHSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0x038 EDHSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12897
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.30 EDITCTRL, External Debug Integration mode Control register

The EDITCTRL characteristics are:

Purpose

Enables the external debug to switch from its default mode into integration mode, where test
software can control directly the inputs and outputs of the PE, for integration testing or topology
detection.

Configurations

The power domain of EDITCTRL is IMPLEMENTATION DEFINED

Implementation of this register is OPTIONAL.

Attributes

EDITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable
integration testing or topology detection.

0b0 Normal operation.

0b1 Integration mode enabled.

The integration mode behavior is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• The following resets apply:

— Whichever power domain the register is implemented in, this field resets to 0.

— Otherwise, the value of this field is unchanged.

Accessing the EDITCTRL:

EDITCTRL can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register are IMPDEF.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

RES0

31 1 0

IME

Component Offset Instance

Debug 0xF00 EDITCTRL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12898
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.31 EDITR, External Debug Instruction Transfer Register

The EDITR characteristics are:

Purpose

Used in Debug state for passing instructions to the PE for execution.

Configurations

EDITR is in the Core power domain

There are no configuration notes.

Attributes

EDITR is a 32-bit register.

Field descriptions

When AArch32 is supported and in AArch32 state:

hw2, bits [31:16]

Second halfword of the T32 instruction to be executed on the PE. When EDITR contains a 16-bit
T32 instruction, this field is ignored. For more information, see Behavior in Debug state.

Note

The hw2 field is displayed on the left. This is not the usual convention for display of T32 instruction
halfwords.

hw1, bits [15:0]

First halfword of the T32 instruction to be executed on the PE.

Note

The hw1 field is displayed on the right. This is not the usual convention for display of T32
instruction halfwords.

When AArch64 is supported and in AArch64 state:

Bits [31:0]

A64 instruction to be executed on the PE.

Accessing the EDITR:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any
instruction issued through the ITR in Normal access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.

hw2

31 16

hw1

15 0

A64 instruction to be executed on the PE

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12899
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• It must complete execution in Non-debug state before the PE executes the restart sequence.

• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed
by the instruction are left in an UNKNOWN state.

EDITR ignores writes if the PE is in Non-debug state.

EDITR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• When SoftwareLockStatus() accesses to this register are WI.

• Otherwise accesses to this register are WO.

Component Offset Instance

Debug 0x084 EDITR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12900
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.32 EDLAR, External Debug Lock Access Register

The EDLAR characteristics are:

Purpose

Allows or disallows access to the external debug registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug
registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the
debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

When FEAT_DoPD is implemented, EDLAR is in the Core power domain. Otherwise, EDLAR is
in the Debug power domain

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLAR is a 32-bit register.

Field descriptions

When Software Lock is implemented:

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write
accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

Otherwise:

Otherwise

Bits [31:0]

Reserved, RES0.

Accessing the EDLAR:

EDLAR can be accessed through its memory-mapped interface:

KEY

31 0

RES0

31 0

Component Offset Instance

Debug 0xFB0 EDLAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12901
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are WO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12902
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.33 EDLSR, External Debug Lock Status Register

The EDLSR characteristics are:

Purpose

Indicates the current status of the software lock for external debug registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug
registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the
debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

When FEAT_DoPD is implemented, EDLSR is in the Core power domain. Otherwise, EDLSR is in
the Debug power domain

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLK, bit [1]

When Software Lock is implemented:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access,
or when Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when Software Lock is implemented, possible values of this field
are:

0b0 Lock clear. Writes are permitted to this component's registers.

0b1 Lock set. Writes to this component's registers are ignored, and reads have no side
effects.

The reset behavior of this field is:

• On a Cold reset, when FEAT_DoPD is implemented, this field resets to 1.

• On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 1.

Otherwise:

Reserved, RAZ.

RES0

31 3 2 1 0

nTT SLI
SLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12903
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field
is RAZ.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Software Lock not implemented or not memory-mapped access.

0b1 Software Lock implemented and memory-mapped access.

Access to this field is RO.

Accessing the EDLSR:

EDLSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0xFB4 EDLSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12904
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.34 EDPCSR, External Debug Program Counter Sample Register

The EDPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configurations

EDPCSR is in the Core power domain

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not
implemented. Otherwise, direct accesses to EDPCSR are RES0.

EDPCSR[63:32] and EDPCSR[31:0] are accessed at 32-bit memory mapped addresses that are not
contiguous.

If FEAT_VHE is implemented, the format of this register differs depending on the value of
EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors registers space.

Attributes

EDPCSR is a 64-bit register.

Field descriptions

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits
[63:32] of the sampled instruction address value. The translation regime that EDPCSR samples can
be determined from EDVIDSR.{NS,E2,E3}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If a branch instruction has retired since the PE left reset state, then the first read of EDPCSR[31:0]
is permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in reset state.

PC Sample high word, EDPCSRhi

63 32

PC Sample low word

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12905
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• No branch instruction has retired since the PE left reset state, Debug state, or a state where
PC Sample-based Profiling is prohibited.

• No branch instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has
the side-effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and
has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation
regime that EDPCSR samples can be determined from EDVIDSR.{NS,E2,E3}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning
the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and
EDPCSRhi, EDCIDSR, and EDVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When FEAT_VHE is implemented and EDSCR.SC2 == 1:

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent
EDPCSR sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The
translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.

0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent
EDPCSR sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The
translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

0b00 Sample is from EL0.

0b01 Sample is from EL1.

0b10 Sample is from EL2.

0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [60:56]

Reserved, RES0.

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The
translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

NS

63

EL

62 61

RES0

60 56

PC Sample high word, EDPCSRhi

55 32

PC Sample low word

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12906
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If a branch instruction has retired since the PE left reset state, then the first read of EDPCSR[31:0]
is permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in reset state.

• No branch instruction has retired since the PE left reset state, Debug state, or a state where
PC Sample-based Profiling is prohibited.

• No branch instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has
the side-effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and
has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation
regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning
the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and
EDPCSRhi, EDCIDSR, and EDVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDPCSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN

EDPCSR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to EDPCSR[31:0] generate an
error response.

• Otherwise accesses to EDPCSR[31:0] are RO.

EDPCSR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to EDPCSR[63:32] generate
an error response.

Component Offset Instance Range

Debug 0x0A0 EDPCSR 31:0

Component Offset Instance Range

Debug 0x0AC EDPCSR 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12907
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• Otherwise accesses to EDPCSR[63:32] are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12908
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.35 EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers.

Configurations

There are no configuration notes.

Attributes

EDPFR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, UNKNOWN.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Activity Monitors Extension is not implemented.

0b0001 FEAT_AMUv1 is implemented.

0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the
activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

Access to this field is RO.

Bits [43:40]

Reserved, UNKNOWN.

SEL2, bits [39:36]

Secure EL2.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Secure EL2 is not implemented.

0b0001 Secure EL2 is implemented.

All other values are reserved.

UNKNOWN

63 48

AMU

47 44

UNKNOWN

43 40

SEL2

39 36

SVE

35 32

UNKNOWN

31 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12909
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Access to this field is RO.

SVE, bits [35:32]

Scalable Vector Extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 SVE is not implemented.

0b0001 SVE is implemented.

All other values are reserved.

Access to this field is RO.

Bits [31:28]

Reserved, UNKNOWN.

GIC, bits [27:24]

System register GIC interface support.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.GIC.

Access to this field is RO.

AdvSIMD, bits [23:20]

Advanced SIMD.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD
operations:

• Integer byte, halfword, word and doubleword element operations.

• Single-precision and double-precision floating-point arithmetic.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support, that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with Advanced SIMD support, that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without Advanced SIMD support.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.AdvSIMD.

Access to this field is RO.

FP, bits [19:16]

Floating-point.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12910
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support, that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with floating-point support, that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without floating-point support.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.FP.

Access to this field is RO.

EL3, bits [15:12]

AArch64 EL3 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL3 is not implemented or cannot be executed in AArch64 state.

0b0001 EL3 can be executed in AArch64 state only.

0b0010 EL3 can be executed in both Execution states.

When the value of EDAA32PFR.EL3 is nonzero, this field must be 0b0000.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL3.

Access to this field is RO.

EL2, bits [11:8]

AArch64 EL2 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL2 is not implemented or cannot be executed in AArch64 state.

0b0001 EL2 can be executed in AArch64 state only.

0b0010 EL2 can be executed in both Execution states.

When the value of EDAA32PFR.EL2 is nonzero, this field must be 0b0000.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL2.

Access to this field is RO.

EL1, bits [7:4]

AArch64 EL1 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL1 cannot be executed in AArch64 state.

EL1 can be executed in AArch32 state only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12911
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b0001 EL1 can be executed in AArch64 state only.

0b0010 EL1 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL1.

Access to this field is RO.

EL0, bits [3:0]

AArch64 EL0 Exception level handling.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 EL0 cannot be executed in AArch64 state.

EL0 can be executed in AArch32 state only.

0b0001 EL0 can be executed in AArch64 state only.

0b0010 EL0 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL0.

Access to this field is RO.

Accessing the EDPFR:

EDPFR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are IMPDEF.

Component Offset Instance

Debug 0xD20 EDPFR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12912
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.36 EDPIDR0, External Debug Peripheral Identification Register 0

The EDPIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme.

Configurations

When FEAT_DoPD is implemented, EDPIDR0 is in the Core power domain. Otherwise, EDPIDR0
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR0:

EDPIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

Debug 0xFE0 EDPIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12913
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.37 EDPIDR1, External Debug Peripheral Identification Register 1

The EDPIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme.

Configurations

When FEAT_DoPD is implemented, EDPIDR1 is in the Core power domain. Otherwise, EDPIDR1
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR1:

EDPIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

Debug 0xFE4 EDPIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12914
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.38 EDPIDR2, External Debug Peripheral Identification Register 2

The EDPIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme.

Configurations

When FEAT_DoPD is implemented, EDPIDR2 is in the Core power domain. Otherwise, EDPIDR2
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR2:

EDPIDR2 can be accessed through the external debug interface:

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

Debug 0xFE8 EDPIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12915
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12916
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.39 EDPIDR3, External Debug Peripheral Identification Register 3

The EDPIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme.

Configurations

When FEAT_DoPD is implemented, EDPIDR3 is in the Core power domain. Otherwise, EDPIDR3
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using EDPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR3:

EDPIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset Instance

Debug 0xFEC EDPIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12917
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.40 EDPIDR4, External Debug Peripheral Identification Register 4

The EDPIDR4 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme.

Configurations

When FEAT_DoPD is implemented, EDPIDR4 is in the Core power domain. Otherwise, EDPIDR4
is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

EDPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the EDPIDR4:

EDPIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0

7 4

DES_2

3 0

SIZE

Component Offset Instance

Debug 0xFD0 EDPIDR4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12918
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.41 EDPRCR, External Debug Power/Reset Control Register

The EDPRCR characteristics are:

Purpose

Controls the PE functionality related to powerup, reset, and powerdown.

Configurations

When FEAT_DoPD is implemented, EDPRCR is in the Core power domain. Otherwise, EDPRCR
contains fields that are in the Core power domain and fields that are in the Debug power domain

CORENPDRQ is the only field that is mapped between the EDPRCR and DBGPRCR and
DBGPRCR_EL1.

Attributes

EDPRCR is a 32-bit register.

Field descriptions

When FEAT_DoPD is implemented:

Bits [31:2]

Reserved, RES0.

CWRR, bit [1]

When FEAT_RME is implemented:

The PE ignores all writes to this bit.

Otherwise:

Warm reset request.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.

• Only this PE is Warm reset.

• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

0b0 No action.

0b1 Request Warm reset.

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented
Security state is Non-secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the
implemented Security state is Secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGRSTREQ signal.

RES0

31 2 1 0

CWRR CORENPDRQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12919
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• RAZ/WI if any of the following are true:

— OSLockStatus().

— SoftwareLockStatus().

• Otherwise, access to this field is WO/RAZ.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the
DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states, see Core power domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, if the powerup request is implemented and the powerup request has been
asserted, this field is an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup request
is not asserted, this field is set to 0.

Accessing this field has the following behavior:

• When OSLockStatus(), access to this field is UNKNOWN/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Otherwise:

Bits [31:4]

Reserved, RES0.

RES0

31 4 3 2 1 0

COREPURQ
RES0

CORENPDRQ
CWRR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12920
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
COREPURQ, bit [3]

Core powerup request. Allows a debugger to request that the power controller power up the core,
enabling access to the debug register in the Core power domain, and that the power controller
emulates powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 Do not request power up of the Core power domain.

0b1 Request power up of the Core power domain, and emulation of powerdown.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGPWRUPREQ signal.

This field is in the Debug power domain and can be read and written when the Core power domain
is powered off.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Bit [2]

Reserved, RES0.

CWRR, bit [1]

When FEAT_RME is implemented:

The PE ignores all writes to this bit.

Otherwise:

Warm reset request.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:

• The request is ignored.

• Only this PE is Warm reset.

• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

0b0 No action.

0b1 Request Warm reset.

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented
Security state is Non-secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the
implemented Security state is Secure state.

• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGRSTREQ signal.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12921
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• RAZ/WI if any of the following are true:

— !IsCorePowered().

— DoubleLockStatus().

— OSLockStatus().

— SoftwareLockStatus().

• Otherwise, access to this field is WO/RAZ.

CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.

0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the
DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on
exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information
about retention states, see Core power domain power states.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

The reset behavior of this field is:

• On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— !IsCorePowered().

— DoubleLockStatus().

— OSLockStatus().

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RW.

Accessing the EDPRCR:

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

EDPRCR can be accessed through the external debug interface:

Component Offset Instance

Debug 0x310 EDPRCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12922
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12923
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.42 EDPRSR, External Debug Processor Status Register

The EDPRSR characteristics are:

Purpose

Holds information about the reset and powerdown state of the PE.

Configurations

When FEAT_DoPD is implemented, EDPRSR is in the Core power domain. Otherwise, EDPRSR
contains fields that are in the Core power domain and fields that are in the Debug power domain

If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.

Attributes

EDPRSR is a 32-bit register.

Field descriptions

Bits [31:17]

Reserved, RES0.

EPMADE, bit [16]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable Extended Status. Together with EDPRSR.EPMAD,
reports whether access to Performance Monitor registers by an external debugger is permitted.

For a description of the values derived by evaluating EPMAD and EPMADE together, see
EDPRSR.EPMAD.

Otherwise:

Reserved, RES0.

ETADE, bit [15]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is
implemented:

External Trace Access Disable Extended Status. Together with EDPRSR.ETAD, reports whether
access to trace unit registers by an external debugger is permitted.

For a description of the values derived by evaluating ETAD and ETADE together, see
EDPRSR.ETAD.

Otherwise:

Reserved, RES0.

EDADE, bit [14]

When FEAT_RME is implemented:

External Debug Access Disable Extended Status. Together with EDPRSR.EDAD, reports whether
access to breakpoint registers, watchpoint registers, and OSLAR_EL1 by an external debugger is
permitted.

RES0

31 17 16 15 14 13 12 11 10 9 8 7 6 5 4

SR

3

R

2 1

PU

0

EPMADE
ETADE

EDADE
STAD

ETAD
SDR
SPMAD

SPD
HALTED

OSLK
DLK

EDAD
SDAD

EPMAD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12924
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
For a description of the values derived by evaluating EDAD and EDADE together, see
EDPRSR.EDAD.

Otherwise:

Reserved, RES0.

STAD, bit [13]

When FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

Sticky ETAD error. Set to 1 when a Non-secure external debug interface access to an external trace
register returns an error because AllowExternalTraceAccess () == FALSE for the access.

0b0 Since EDPRSR was last read, no external accesses to the trace unit registers have failed
because AllowExternalTraceAccess () was FALSE for the access.

0b1 Since EDPRSR was last read, at least one external access to the trace unit registers has
failed because AllowExternalTraceAccess () was FALSE for the access.

If IsCorePowered () == TRUE, the Core power domain is powered up, then, following a read of
EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus () == FALSE then this bit
clears to 0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus () == TRUE then it is
CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This bit is in the Core power domain.

Note

If FEAT_DoPD is implemented, FEAT_DoubleLock is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— DoubleLockStatus().

— FEAT_DoPD is not implemented and !IsCorePowered().

— EDPRSR.R == 1.

• Otherwise, access to this field is RC/WI.

Otherwise:

Reserved, RES0.

ETAD, bit [12]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is
implemented:

External Trace Access Disable Status. Together with EDPRSR.ETADE, reports whether access to
trace unit registers by an external debugger is permitted.

ETADE ETAD Meaning

0b0 0b0 Access to trace unit registers by an external debugger is permitted.

0b0 0b1 Root and Secure access to trace unit registers by an external debugger is permitted. Realm and
Non-secure access to trace unit registers by an external debugger is not permitted.

0b1 0b0 Root and Realm access to trace unit registers by an external debugger is permitted. Secure and
Non-secure access to trace unit registers by an external debugger is not permitted.

0b1 0b1 Root access to trace unit registers by an external debugger is permitted. Secure, Non-secure, and
Realm access to trace unit registers by an external debugger is not permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12925
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable status.

0b0 External Non-secure trace unit accesses enabled. AllowExternalTraceAccess () ==
TRUE for a Non-secure access.

0b1 External Non-secure trace unit accesses disabled. AllowExternalTraceAccess () ==
FALSE for a Non-secure access.

This bit is in the Core power domain.

Note

If FEAT_DoPD is implemented, FEAT_DoubleLock is not implemented.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— DoubleLockStatus().

— FEAT_DoPD is not implemented and !IsCorePowered().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

SDR, bit [11]

Sticky Debug Restart. Set to 1 when the PE exits Debug state.

Permitted values are:

0b0 The PE has not restarted since EDPRSR was last read.

0b1 The PE has restarted since EDPRSR was last read.

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR is UNKNOWN on Warm
reset, meaning a debugger must also use the SR bit to determine whether the PE has left Debug state.

If the Core power domain is powered up, then following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

SPMAD, bit [10]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3_EXT is implemented:

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors
register returns an error because AllowExternalPMUAccess() == FALSE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12926
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Permitted values are:

0b0 No Non-secure external debug interface accesses to the external Performance Monitors
registers have failed because AllowExternalPMUAccess() == FALSE for the access since
EDPRSR was last read.

0b1 At least one Non-secure external debug interface access to the external Performance
Monitors register has failed and returned an error because AllowExternalPMUAccess() ==
FALSE for the access since EDPRSR was last read.

If the Core power domain is powered up, then following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears
to 0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

When FEAT_PMUv3_EXT is implemented:

Sticky EPMAD error.

0b0 No external debug interface accesses to the Performance Monitors registers have failed
because AllowExternalPMUAccess() == FALSE since EDPRSR was last read.

0b1 At least one external debug interface access to the Performance Monitors registers has
failed and returned an error because AllowExternalPMUAccess() == FALSE since
EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears
to 0.

• If FEAT_DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— OSLockStatus().

— DoubleLockStatus().

— EDPRSR.R == 1.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12927
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EPMAD, bit [9]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable Status. Together with EDPRSR.EPMADE, reports
whether access to Performance Monitor registers by an external debugger is permitted.

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Non-secure Access Disable status.

0b0 External Non-secure Performance Monitors access enabled. AllowExternalPMUAccess()
== TRUE for a Non-secure access.

0b1 External Non-secure Performance Monitors access disabled. AllowExternalPMUAccess()
== FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

When FEAT_PMUv3_EXT is implemented and FEAT_Debugv8p4 is not implemented:

External Performance Monitors access disable status.

0b0 External Performance Monitors access enabled. AllowExternalPMUAccess() == TRUE.

0b1 External Performance Monitors access disabled. AllowExternalPMUAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— OSLockStatus().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

When FEAT_PMUv3 is implemented and FEAT_PMUv3_EXT is not implemented:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

EPMADE EPMAD Meaning

0b0 0b0 Access to Performance Monitor registers by an external debugger is permitted.

0b0 0b1 Root and Secure access to Performance Monitor registers by an external debugger is permitted.
Realm and Non-secure access to Performance Monitor registers by an external debugger is not
permitted.

0b1 0b0 Root and Realm access to Performance Monitor registers by an external debugger is permitted.
Secure and Non-secure access to Performance Monitor registers by an external debugger is not
permitted.

0b1 0b1 Root access to Performance Monitor registers by an external debugger is permitted. Secure,
Non-secure, and Realm access to Performance Monitor registers by an external debugger is not
permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12928
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
SDAD, bit [8]

When FEAT_Debugv8p4 is implemented:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error
because AllowExternalDebugAccess() == FALSE.

0b0 No Non-secure external debug interface accesses to the debug registers have failed
because AllowExternalDebugAccess() == FALSE for the access since EDPRSR was last
read.

0b1 At least one Non-secure external debug interface access to the debug registers has failed
and returned an error because AllowExternalDebugAccess() == FALSE for the access
since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

Otherwise:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error
because AllowExternalDebugAccess() == FALSE.

0b0 No external debug interface accesses to the debug registers have failed because
AllowExternalDebugAccess() == FALSE since EDPRSR was last read.

0b1 At least one external debug interface access to the debug registers has failed and
returned an error because AllowExternalDebugAccess() == FALSE since EDPRSR was
last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This bit is UNKNOWN on reads if OSLockStatus() == TRUE and external debug writes to
OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12929
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EDAD, bit [7]

When FEAT_RME is implemented:

External Debug Access Disable Status. Together with EDPRSR.EDADE, reports whether access to
breakpoint registers, watchpoint registers, and OSLAR_EL1 by an external debugger is permitted.

When FEAT_Debugv8p4 is implemented:

External Debug Access Disable status.

0b0 External Non-secure access to breakpoint registers, watchpoint registers, and
OSLAR_EL1 enabled. AllowExternalDebugAccess() == TRUE for a Non-secure access.

0b1 External Non-secure access to breakpoint registers, watchpoint registers, and
OSLAR_EL1 disabled. AllowExternalDebugAccess() == FALSE for a Non-secure
access.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

When FEAT_Debugv8p2 is implemented:

External Debug Access Disable status.

0b0 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1
enabled. AllowExternalDebugAccess() == TRUE.

0b1 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1
disabled. AllowExternalDebugAccess() == FALSE.

This bit is not valid and reads UNKNOWN if OSLockStatus() == TRUE and external debug writes to
OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

Otherwise:

External Debug Access Disable status.

0b0 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1
enabled. AllowExternalDebugAccess() == TRUE.

EDADE EDAD Meaning

0b0 0b0 Access to Debug registers by an external debugger is permitted.

0b0 0b1 Root and Secure access to Debug registers by an external debugger is permitted. Realm and
Non-secure access to Debug registers by an external debugger is not permitted.

0b1 0b0 Root and Realm access to Debug registers by an external debugger is permitted. Secure and
Non-secure access to Debug registers by an external debugger is not permitted.

0b1 0b1 Root access to Debug registers by an external debugger is permitted. Secure, Non-secure, and
Realm access to Debug registers by an external debugger is not permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12930
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b1 External access to breakpoint registers, watchpoint registers disabled. It is
IMPLEMENTATION DEFINED whether accesses to OSLAR_EL1 are enabled or disabled.
AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

DLK, bit [6]

When FEAT_Debugv8p4 is implemented:

This field is RES0.

When FEAT_Debugv8p2 is implemented and FEAT_DoubleLock is implemented:

Double Lock.

From Armv8.2, this field is deprecated.

This field is in the Core power domain.

Accessing this field has the following behavior:

• RAZ/WI if all of the following are true:

— IsCorePowered().

— !DoubleLockStatus().

• Otherwise, access to this field is UNKNOWN/WI.

When FEAT_DoubleLock is implemented:

Double Lock.

This field returns the result of the pseudocode function DoubleLockStatus().

If the Core power domain is powered up and DoubleLockStatus() == TRUE, it is IMPLEMENTATION
DEFINED whether:

• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is UNKNOWN.

• EDPRSR.PU reads as 0, EDPRSR.DLK is UNKNOWN, and EDPRSR.SPD reads as 0.

This field is in the Core power domain.

0b0 DoubleLockStatus() returns FALSE.

0b1 DoubleLockStatus() returns TRUE and the Core power domain is powered up.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— FEAT_DoPD is not implemented.

— !IsCorePowered().

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RES0.

OSLK, bit [5]

OS Lock status bit.

A read of this bit returns the value of OSLSR_EL1.OSLK.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— FEAT_DoPD is not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12931
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
— !IsCorePowered().

— DoubleLockStatus().

— EDPRSR.R == 1.

• Otherwise, access to this field is RO.

HALTED, bit [4]

Halted status bit.

0b0 PE is in Non-debug state.

0b1 PE is in Debug state.

This field is in the Core power domain.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— FEAT_DoPD is not implemented.

— !IsCorePowered().

• Otherwise, access to this field is RO.

SR, bit [3]

Sticky core Reset status bit.

Permitted values are:

0b0 The non-debug logic of the PE is not in reset state and has not been reset since the last
time EDPRSR was read.

0b1 The non-debug logic of the PE is in reset state or has been reset since the last time
EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is
in a powerup state and that the non-debug logic of the PE is not in reset state, then following a read
of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is RC/WI.

R, bit [2]

PE Reset status bit.

Permitted values are:

0b0 The non-debug logic of the PE is not in reset state.

0b1 The non-debug logic of the PE is in reset state.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information, see EDPRSR.{DLK, R} and reset state.

This field is in the Core power domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12932
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— FEAT_DoPD is not implemented and !IsCorePowered().

— DoubleLockStatus().

• Otherwise, access to this field is RO.

SPD, bit [1]

Sticky core Powerdown status bit.

If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, then:

• If FEAT_Debugv8p2 is implemented, this bit reads as 0.

• If FEAT_Debugv8p2 is not implemented, this bit might read as 0 or 1.

For more information, see EDPRSR.{DLK, SPD, PU} and the Core power domain.

0b0 If EDPRSR.PU is 0, it is not known whether the state of the debug registers in the Core
power domain is lost.

If EDPRSR.PU is 1, the state of the debug registers in the Core power domain has not
been lost.

0b1 The state of the debug registers in the Core power domain has been lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to
0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether this bit clears to 0 or is unchanged.

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain.

When FEAT_DoPD is not implemented and the Core power domain is in either retention or
powerdown state, the value of EDPRSR.SPD is IMPLEMENTATION DEFINED. For more information,
see EDPRSR.SPD when the Core domain is in either retention or powerdown state.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing this field has the following behavior:

• RAZ/WI if all of the following are true:

— FEAT_DoPD is not implemented.

— !IsCorePowered().

• UNKNOWN/WI if all of the following are true:

— IsCorePowered().

— DoubleLockStatus().

• Otherwise, access to this field is RO.

PU, bit [0]

When FEAT_DoPD is implemented:

Core powerup status bit.

Access to this field is RAO/WI.

When FEAT_Debugv8p2 is implemented:

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be
accessed.

0b0 Either the Core power domain is in a low-power or powerdown state, or
FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, meaning the
debug registers in the Core power domain cannot be accessed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12933
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b1 The Core power domain is in a powerup state, and either FEAT_DoubleLock is not
implemented or DoubleLockStatus() == FALSE, meaning the debug registers in the
Core power domain can be accessed.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information, see EDPRSR.{DLK, R} and reset state

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain

Access to this field is RO.

Otherwise:

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be
accessed.

0b0 Core power domain is in a low-power or powerdown state where the debug registers in
the Core power domain cannot be accessed.

0b1 Core power domain is in a powerup state where the debug registers in the Core power
domain can be accessed.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information see EDPRSR.{DLK, R} and reset state

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain.

When the Core power domain is powered-up and DoubleLockStatus() == TRUE, then the value of
EDPRSR.PU is IMPLEMENTATION DEFINED. See the description of the DLK bit for more
information.

If FEAT_DoubleLock is implemented, the Core power domain is powered up, and
DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED whether this bit reads as 0 or 1.

Access to this field is RO.

Accessing the EDPRSR:

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, then:

— EDPRSR.{SDR, SPMAD, SDAD, SPD} are cleared to 0.

— EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED
UNPREDICTABLE whether or not this clearing occurs.

If FEAT_DoPD is not implemented and the Core power domain is powered down (EDPRSR.PU == 0), then:

• EDPRSR.{SDR, SPMAD, SDAD, SR} are all UNKNOWN, and are either reset or restored on being powered
up.

• EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12934
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
EDPRSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is implemented and !IsCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0x314 EDPRSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12935
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.43 EDRCR, External Debug Reserve Control Register

The EDRCR characteristics are:

Purpose

This register is used to allow imprecise entry to Debug state and clear sticky bits in EDSCR.

Configurations

EDRCR is in the Core power domain

There are no configuration notes.

Attributes

EDRCR is a 32-bit register.

Field descriptions

Bits [31:5]

Reserved, RES0.

CBRRQ, bit [4]

Allow imprecise entry to Debug state. The actions on writing to this bit are:

0b0 No action.

0b1 Allow imprecise entry to Debug state, for example by canceling pending bus accesses.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug
Request debug event must be pending before the debugger sets this bit to 1.

This feature is optional. If this feature is not implemented, writes to this bit are ignored.

CSPA, bit [3]

Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The actions
on writing to this bit are:

0b0 No action.

0b1 Clear the EDSCR.PipeAdv bit to 0.

CSE, bit [2]

Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The actions on writing to
this bit are:

0b0 No action.

0b1 Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the
EDSCR.ITO bit, to 0.

Bits [1:0]

Reserved, RES0.

RES0

31 5 4 3 2

RES0

1 0

CBRRQ CSE
CSPA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12936
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing the EDRCR:

EDRCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• When SoftwareLockStatus() accesses to this register are WI.

• Otherwise accesses to this register are WO.

Component Offset Instance

Debug 0x090 EDRCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12937
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.44 EDSCR, External Debug Status and Control Register

The EDSCR characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

External register EDSCR bits [30:29] are architecturally mapped to AArch64 System register
MDCCSR_EL0[30:29].

EDSCR is in the Core power domain

Attributes

EDSCR is a 32-bit register.

Field descriptions

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace
any visible Exception level.

0b0 Trace Filter controls are not affected.

0b1 Trace Filter controls in TRFCR_EL1 and TRFCR_EL2 are ignored.

Trace Filter controls TRFCR and HTRFCR are ignored.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

This bit is ignored by the PE when any of the following is true:

• ExternalSecureNoninvasiveDebugEnabled() is FALSE and the Effective value of
MDCR_EL3.STE is 1.

• FEAT_RME is implemented, ExternalRealmNoninvasiveDebugEnabled() is FALSE, and the
Effective value of MDCR_EL3.RLTE is 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full.

31 30 29 28 27 26 25 24 23 22 21

MA

20 19

NS

18 17 16 15 14

RW

13 10

EL

9 8

A

7 6

STATUS

5 0

TFO
RXfull

TXfull
ITO

RXO
TXU

PipeAdv

HDE
NSE

SDD
RES0

SC2
TDA

INTdis
ITE

ERR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12938
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXfull, bit [29]

DTRTX full.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

ITO, bit [28]

ITR overrun. Set to 0 on entry to Debug state.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

RXO, bit [27]

DTRRX overrun.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

TXU, bit [26]

DTRTX underrun.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

PipeAdv, bit [25]

Pipeline Advance. Indicates that software execution is progressing.

0b0 No progress has been made by the PE since the last time this field was cleared to zero
by writing 1 to EDRCR.CSPA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12939
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b1 Progress has been made by the PE since the last time this field was cleared to zero by
writing 1 to EDRCR.CSPA.

The architecture does not define precisely when this field is set to 1. It requires only that this happen
periodically in Non-debug state to indicate that software execution is progressing. For example, a
PE might set this field to 1 each time the PE retires one or more instructions, or at periodic intervals
during the progression of an instruction.

When FEAT_MOPS is implemented, CPY, CPYF, SET, and SETG are examples of instructions that
periodically make forward progress.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

ITE, bit [24]

ITR empty.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

INTdis, bits [23:22]

When FEAT_RME is implemented:

Interrupt and SError exception disable. Disables taking interrupts and SError exceptions in
Non-debug state.

0b00 This bit has no effect on the masking of interrupts and SError exceptions.

0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts and SError exceptions
taken to Non-secure state are masked.

If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts and SError
exceptions taken to Secure state are masked.

If ExternalRootInvasiveDebugEnabled() is TRUE, then all interrupts and SError
exceptions taken to Root state are masked.

If ExternalRealmInvasiveDebugEnabled() is TRUE, then all interrupts and SError
exceptions taken to Realm state are masked.

Note
This control affects both physical and virtual interrupts and SError exceptions.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

When FEAT_RME is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented:

Interrupt and SError exception disable. Disables taking interrupts and SError exceptions in
Non-debug state.

0b00 Masking of interrupts and SError exceptions is controlled by PSTATE and interrupt
routing controls.

0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts and SError exceptions
taken to Non-secure state are masked.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12940
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts and SError
exceptions taken to Secure state are masked.

Note
This control affects both physical and virtual interrupts and SError exceptions.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

When FEAT_Debugv8p4 is implemented, bit[23] of this register is RES0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Interrupt and SError exception disable. Disables taking interrupts and SError exceptions in
Non-debug state.

0b00 Masking of interrupts and SError exceptions is controlled by PSTATE and interrupt
routing controls.

0b01 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts and SError exceptions
taken to Non-secure EL1 are masked.

0b10 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts and SError exceptions
taken to Non-secure state are masked.

If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts and SError
exceptions taken to Secure EL1 are masked.

0b11 If ExternalInvasiveDebugEnabled() is TRUE, then all interrupts and SError exceptions
taken to Non-secure state are masked.

If ExternalSecureInvasiveDebugEnabled() is TRUE, then all interrupts and SError
exceptions taken to Secure state are masked.

Note

This control affects both physical and virtual interrupts and SError exceptions.

When OSLSR_EL1.OSLK is 1, this field can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The Effective value of this field is 0b00 when ExternalInvasiveDebugEnabled() is FALSE.

Support for the values 0b01 and 0b10 is IMPLEMENTATION DEFINED. If these values are not supported,
they are reserved. If programmed with a reserved value, the PE behaves as if EDSCR.INTdis has
been programmed with a defined value, other than for a direct read of EDSCR, and the value
returned by a read of EDSCR.INTdis is UNKNOWN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

TDA, bit [21]

Traps accesses to the following debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1,
DBGWVR<n>_EL1.

• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

0b0 Accesses to debug System registers do not generate a Software Access Debug event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12941
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
0b1 Accesses to debug System registers generate a Software Access Debug event, if
OSLSR_EL1.OSLK is 0 and if halting is allowed.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC.
This bit is ignored if in Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

0b0 Normal access mode.

0b1 Memory access mode.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, (FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented) and FEAT_PCSRv8p2 is not implemented:

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples
CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

0b0 Sample VTTBR_EL2.VMID.

0b1 Sample CONTEXTIDR_EL2.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NS, bit [18]

When FEAT_RME is implemented:

Non-secure status. Together with the NSE field, gives the current Security state:

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12942
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Otherwise:

Non-secure status. In Debug state, gives the current Security state:

0b0 Secure state.

0b1 Non-secure state.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

Bit [17]

Reserved, RES0.

SDD, bit [16]

When FEAT_RME is implemented:

EL3 debug disabled.

On entry to Debug state:

• If entering from EL3, SDD is set to 0.

• Otherwise, SDD is set to the inverse of ExternalRootInvasiveDebugEnabled ().

In Debug state, the value of SDD does not change, even if ExternalRootInvasiveDebugEnabled ()
changes.

In Non-debug state, SDD returns the inverse of ExternalRootInvasiveDebugEnabled ().

Access to this field is RO.

Otherwise:

Secure debug disabled.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.

• If entering in Non-secure state, SDD is set to the inverse of
ExternalSecureInvasiveDebugEnabled ().

In Debug state, the value of the SDD bit does not change, even if
ExternalSecureInvasiveDebugEnabled () changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled (). If the authentication
signals that control ExternalSecureInvasiveDebugEnabled () change, a context
synchronization event is required to guarantee their effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Access to this field is RO.

NSE, bit [15]

When FEAT_RME is implemented:

Together with the NS field, this field gives the current Security state.

For a description of the values derived by evaluating NS and NSE together, see EDSCR.NS.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12943
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
HDE, bit [14]

Halting debug enable.

0b0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction debug events.

0b1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction debug events.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of
each Exception level.

0b1111 Any of the following:

• The PE is in Non-debug state.

• The PE is at EL0 using AArch64.

• The PE is not at EL0, and EL1, EL2, and EL3 are using AArch64.

0b1110 When AArch32 is supported:

The PE is in Debug state at EL0. EL0 is using AArch32. EL1, EL2, and EL3 are using
AArch64.

0b110x When AArch32 is supported and EL2 is implemented:

The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 is enabled in the current
Security state and is using AArch64. If implemented, EL3 is using AArch64.

0b10xx When AArch32 is supported and EL3 is implemented:

The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 is not implemented,
disabled in the current Security state, or using AArch32. EL3 is using AArch64.

0b0xxx When AArch32 is supported:

The PE is in Debug state. All Exception levels are using AArch32.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is RAO/WI.

• Otherwise, access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, gives the current Exception level of the PE.

Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is RAZ/WI.

• Otherwise, access to this field is RO.

A, bit [7]

SError exception pending. In Debug state, indicates whether an SError exception is pending:

• If EL2 is enabled in the current Security state, the PE is executing at EL0 or EL1,
HCR_EL2.TGE is 0 and either HCR_EL2.AMO is 1 or FEAT_DoubleFault2 is implemented
and the Effective value of HCRX_EL2.TMEA is 1, a virtual SError exception.

• Otherwise, a physical SError exception.

0b0 No SError exception pending.

0b1 SError exception pending.

A debugger can read EDSCR to check whether an SError exception is pending without having to
execute further instructions. A pending SError might indicate data from target memory is corrupted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12944
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Accessing this field has the following behavior:

• When the PE is in Non-debug state, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled
overrun or underrun on the DTR or EDITR.

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Access to this field is RO.

STATUS, bits [5:0]

Debug status flags.

0b000001 PE is restarting, exiting Debug state.

0b000010 PE is in Non-debug state.

0b000111 Breakpoint.

0b010011 External debug request.

0b011011 Halting step, normal.

0b011111 Halting step, exclusive.

0b100011 OS Unlock Catch.

0b100111 Reset Catch.

0b101011 Watchpoint.

0b101111 HLT instruction.

0b110011 Software access to debug register.

0b110111 Exception Catch.

0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing the EDSCR:

EDSCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x088 EDSCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12945
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.45 EDSCR2, External Debug Status and Control Register 2

The EDSCR2 characteristics are:

Purpose

Main control register 2 for the debug implementation.

Configurations

External register EDSCR2 bits [31:0] are architecturally mapped to AArch64 System register
MDSCR_EL1[63:32].

EDSCR2 is in the Core power domain

This register is present only when FEAT_Debugv8p9 is implemented or FEAT_TRBE_EXT is
implemented. Otherwise, direct accesses to EDSCR2 are RES0.

Attributes

EDSCR2 is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

EHBWE, bit [3]

When FEAT_Debugv8p9 is implemented:

Extended Halting Breakpoint and Watchpoint Enable. Enables use of additional breakpoints or
watchpoints.

0b0 Halting disabled for Breakpoint and Watchpoint debug events generated by each
breakpoint <n> and Watchpoint <n>, where n is greater than or equal to 16.

0b1 Breakpoints and Watchpoint debug events are not affected by this mechanism.

When OSLSR_EL1.OSLK is 1, this field can be read and written through the MDSCR_EL1 System
register.

It is IMPLEMENTATION DEFINED whether this field is implemented or is RES0 when 16 or fewer
breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is
implemented as RAZ/WI.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [2]

Reserved, RES0.

TTA, bit [1]

When FEAT_TRBE_EXT is implemented or FEAT_ETEv1p3 is implemented:

Trap Trace Accesses.

Traps access to the following System registers:

RES0

31 4 3 2 1 0

EHBWE
RES0

RES0
TTA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12946
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
AArch64: TRBBASER_EL1, TRBIDR_EL1, TRBLIMITR_EL1, TRBMAR_EL1,
TRBMPAM_EL1, TRBPTR_EL1, TRBSR_EL1, TRBTRG_EL1, TRCACATR<n>,
TRCACVR<n>, TRCAUTHSTATUS, TRCAUXCTLR, TRCBBCTLR, TRCCCCTLR,
TRCCIDCCTLR0, TRCCIDCCTLR1, TRCCIDCVR<n>, TRCCLAIMCLR, TRCCLAIMSET,
TRCCNTCTLR<n>, TRCCNTRLDVR<n>, TRCCNTVR<n>, TRCCONFIGR, TRCDEVARCH,
TRCDEVID, TRCEVENTCTL0R, TRCEVENTCTL1R, TRCEXTINSELR<n>, TRCIDR0,
TRCIDR1, TRCIDR2, TRCIDR3, TRCIDR4, TRCIDR5, TRCIDR6, TRCIDR7, TRCIDR8,
TRCIDR9, TRCIDR10, TRCIDR11, TRCIDR12, TRCIDR13, TRCIMSPEC0, TRCIMSPEC<n>,
TRCITEEDCR, TRCOSLSR, TRCPRGCTLR, TRCQCTLR, TRCRSCTLR<n>, TRCRSR,
TRCSEQEVR<n>, TRCSEQRSTEVR, TRCSEQSTR, TRCSSCCR<n>, TRCSSCSR<n>,
TRCSSPCICR<n>, TRCSTALLCTLR, TRCSTATR, TRCSYNCPR, TRCTRACEIDR,
TRCTSCTLR, TRCVICTLR, TRCVIIECTLR, TRCVIPCSSCTLR, TRCVISSCTLR,
TRCVMIDCCTLR0, TRCVMIDCCTLR1, and TRCVMIDCVR<n>.

0b0 Accesses to trace System registers do not generate a Software Access debug event.

0b1 Accesses to trace System registers generate a Software Access debug event, if
OSLSR_EL1.OSLK is 0 and if halting is allowed.

When OSLSR_EL1.OSLK is 1, this field can be read and written through the MDSCR_EL1 System
register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [0]

Reserved, RES0.

Accessing the EDSCR2:

EDSCR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

Debug 0x028 EDSCR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12947
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.46 EDVIDSR, External Debug Virtual Context Sample Register

The EDVIDSR characteristics are:

Purpose

Contains sampled values captured on reading EDPCSR[31:0].

Configurations

EDVIDSR is in the Core power domain

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not
implemented. Otherwise, direct accesses to EDVIDSR are RES0.

If FEAT_VHE is implemented, the format of this register differs depending on the value of
EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

When the PC Sample-based Profiling Extension is implemented in the external debug registers
space, if EL2 is not implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED
whether EDVIDSR is implemented.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance
Monitors registers space.

Attributes

EDVIDSR is a 32-bit register.

Field descriptions

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

This format applies in all Armv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR
sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.

0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E2, bit [30]

When EL2 is implemented:

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated
with EL2.

0b0 Sample is not from EL2.

0b1 Sample is from EL2.

NS

31

E2

30

E3

29

HV

28

RES0

27 16

VMID[15:8]

15 8

VMID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12948
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [29]

When EL3 is implemented and AArch64 is supported:

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated
with EL3 using AArch64.

0b0 Sample is not from EL3 using AArch64.

0b1 Sample is from EL3 using AArch64.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR
sample might be nonzero:

0b0 Bits[63:32] of the most recent EDPCSR sample are zero.

0b1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An
EDVIDSR.HV value of 0 is a hint that EDPCSRhi (EDPCSR[63:32]) does not need to be read.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [27:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented and EL2 is implemented:

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

When EL2 is implemented:

VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample.
When the most recent EDPCSR sample was generated:

• This field is RES0 if any of the following apply:

— The PE is executing in Secure state.

— The PE is executing at EL2.

• Otherwise:

— If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or
VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12949
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
— If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0,
PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and
PMVIDSR.VMID[15:8] is RES0.

— If EL2 is using AArch32, this field is set to VTTBR.VMID.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and EDSCR.SC2 == 1:

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent EDPCSR
sample. When the most recent EDPCSR sample is generated:

• If the PE is not executing at EL3, EL2 is using AArch64, and EL2 is enabled in the current
Security state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• Otherwise, this field is set to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDVIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

EDVIDSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• Otherwise accesses to this register are RO.

CONTEXTIDR_EL2

31 0

Component Offset Instance

Debug 0x0A8 EDVIDSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12950
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.47 EDWAR, External Debug Watchpoint Address Register

The EDWAR characteristics are:

Purpose

Returns the virtual data address being accessed when a Watchpoint Debug Event was triggered.

Configurations

EDWAR is in the Core power domain

The value of this register is UNKNOWN if the PE is in Non-debug state, or if EDSCR.STATUS is not
0b101011.

Attributes

EDWAR is a 64-bit register.

Field descriptions

Bits [63:0]

Watchpoint address. The data virtual address being accessed when a Watchpoint Debug Event was
triggered and caused entry to Debug state. This address must be within a naturally-aligned block of
memory of power-of-two size no larger than the DC ZVA block size.

When the PE sets EDHSR.{FnP, FnV} to {0,1} on taking a Watchpoint exception, the PE sets
EDWAR to any address within the naturally-aligned fault granule that contains the virtual address
of the memory access that generated the Watchpoint exception.

The value of this register is UNKNOWN if the PE is in Non-debug state, or if Debug state was entered
other than for a Watchpoint debug event.

The value of EDWAR[63:32] is UNKNOWN if Debug state was entered for a Watchpoint debug event
taken from AArch32 state.

The EDWAR is subject to the same alignment rules as the reporting of a watchpointed address in
the FAR. See Determining the memory location that caused a Watchpoint exception.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDWAR:

EDWAR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register generate an
error response.

• Otherwise accesses to this register are RO.

Watchpoint address

63 32

Watchpoint address

31 0

Component Offset Instance

Debug 0x030 EDWAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12951
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.48 MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a
device ID number.

Configurations

External register MIDR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
MIDR_EL1[31:0].

External register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
MIDR[31:0].

The power domain of MIDR_EL1 is IMPLEMENTATION DEFINED

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are
reserved and must not be used.

Access to this field is RO.

Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or
major revisions of a product.

This field has an IMPLEMENTATION DEFINED value.

Implementer

31 24

Variant

23 20 19 16

PartNum

15 4

Revision

3 0

Architecture
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12952
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
Access to this field is RO.

Architecture, bits [19:16]

Architecture version.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 Armv4.

0b0010 Armv4T.

0b0011 Armv5 (obsolete).

0b0100 Armv5T.

0b0101 Armv5TE.

0b0110 Armv5TEJ.

0b0111 Armv6.

0b1111 Architectural features are individually identified in the ID_* registers.

All other values are reserved.

Access to this field is RO.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7,
the variant and architecture are encoded differently.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [3:0]

Revision number for the device.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the MIDR_EL1:

MIDR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register are IMPDEF.

• Otherwise accesses to this register are RO.

Component Offset Instance

Debug 0xD00 MIDR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12953
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
H9.2.49 OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS Lock.

Configurations

External register OSLAR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
OSLAR_EL1[31:0].

OSLAR_EL1 is in the Core power domain

The OS Lock can also be locked or unlocked using DBGOSLAR.

If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether external debug
accesses to OSLAR_EL1 are ignored and return an error when AllowExternalDebugAccess()
returns FALSE for the access.

If FEAT_Debugv8p2 is implemented, external debug accesses to OSLAR_EL1 are ignored and
return an error when AllowExternalDebugAccess() returns FALSE for the access.

Attributes

OSLAR_EL1 is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

OSLK, bit [0]

On writes to OSLAR_EL1, bit[0] is copied to the OS Lock.

Use EDPRSR.OSLK to check the current status of the lock.

Accessing the OSLAR_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

OSLAR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or (!AllowExternalDebugAccess() and FEAT_Debugv8p2
is implemented) accesses to this register generate an error response.

• When AllowExternalDebugAccess() and SoftwareLockStatus() accesses to this register are WI.

RES0

31 1 0

OSLK

Component Offset Instance

Debug 0x300 OSLAR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12954
ID032224 Non-Confidential

External Debug Register Descriptions
H9.2 External debug registers
• When AllowExternalDebugAccess() and !SoftwareLockStatus() accesses to this register are WO.

• Otherwise accesses to this register are IMPDEF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12955
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3 External trace registers

This section lists the external Trace unit registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12956
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.1 TRCACATR<n>, Trace Address Comparator Access Type Register <n>, n = 0 - 15

The TRCACATR<n> characteristics are:

Purpose

Defines the type of access for the corresponding TRCACVR<n> Register. This register configures
the context type, Exception levels, alignment, masking that is applied by the Address Comparator,
and how the Address Comparator behaves when it is one half of an Address Range Comparator.

Configurations

External register TRCACATR<n> bits [63:0] are architecturally mapped to AArch64 System
register TRCACATR<n>[63:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMACPAIRS) * 2 > n. Otherwise, direct accesses to TRCACATR<n> are
RES0.

Attributes

TRCACATR<n> is a 64-bit register.

Field descriptions

Bits [63:19]

Reserved, RES0.

EXLEVEL_RL_EL2, bit [18]

When FEAT_RME is implemented:

Realm EL2 address comparison control. Controls whether a comparison can occur at EL2 in Realm
state.

0b0 When TRCACATR<n>.EXLEVEL_NS_EL2 is 0 the Address Comparator performs
comparisons in Realm EL2.

When TRCACATR<n>.EXLEVEL_NS_EL2 is 1 the Address Comparator does not
perform comparisons in Realm EL2.

0b1 When TRCACATR<n>.EXLEVEL_NS_EL2 is 0 the Address Comparator does not
perform comparisons in Realm EL2.

When TRCACATR<n>.EXLEVEL_NS_EL2 is 1 the Address Comparator performs
comparisons in Realm EL2.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 32

RES0

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 3 2

RES0

1 0

EXLEVEL_RL_EL2
EXLEVEL_RL_EL1

EXLEVEL_RL_EL0
RES0

EXLEVEL_NS_EL2
EXLEVEL_NS_EL1

EXLEVEL_NS_EL0

CONTEXTTYPE
CONTEXT

RES0
EXLEVEL_S_EL0

EXLEVEL_S_EL1
EXLEVEL_S_EL2

EXLEVEL_S_EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12957
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
EXLEVEL_RL_EL1, bit [17]

When FEAT_RME is implemented:

Realm EL1 address comparison control. Controls whether a comparison can occur at EL1 in Realm
state.

0b0 When TRCACATR<n>.EXLEVEL_NS_EL1 is 0 the Address Comparator performs
comparisons in Realm EL1.

When TRCACATR<n>.EXLEVEL_NS_EL1 is 1 the Address Comparator does not
perform comparisons in Realm EL1.

0b1 When TRCACATR<n>.EXLEVEL_NS_EL1 is 0 the Address Comparator does not
perform comparisons in Realm EL1.

When TRCACATR<n>.EXLEVEL_NS_EL1 is 1 the Address Comparator performs
comparisons in Realm EL1.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_RL_EL0, bit [16]

When FEAT_RME is implemented:

Realm EL0 address comparison control. Controls whether a comparison can occur at EL0 in Realm
state.

0b0 When TRCACATR<n>.EXLEVEL_NS_EL0 is 0 the Address Comparator performs
comparisons in Realm EL0.

When TRCACATR<n>.EXLEVEL_NS_EL0 is 1 the Address Comparator does not
perform comparisons in Realm EL0.

0b1 When TRCACATR<n>.EXLEVEL_NS_EL0 is 0 the Address Comparator does not
perform comparisons in Realm EL0.

When TRCACATR<n>.EXLEVEL_NS_EL0 is 1 the Address Comparator performs
comparisons in Realm EL0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [15]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [14]

When Non-secure EL2 is implemented:

Non-secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in
Non-secure state.

0b0 The Address Comparator performs comparisons in Non-secure EL2.

0b1 The Address Comparator does not perform comparisons in Non-secure EL2.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12958
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
EXLEVEL_NS_EL1, bit [13]

When Non-secure EL1 is implemented:

Non-secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in
Non-secure state.

0b0 The Address Comparator performs comparisons in Non-secure EL1.

0b1 The Address Comparator does not perform comparisons in Non-secure EL1.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL0, bit [12]

When Non-secure EL0 is implemented:

Non-secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in
Non-secure state.

0b0 The Address Comparator performs comparisons in Non-secure EL0.

0b1 The Address Comparator does not perform comparisons in Non-secure EL0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [11]

When EL3 is implemented:

EL3 address comparison control. Controls whether a comparison can occur at EL3.

0b0 The Address Comparator performs comparisons at EL3.

0b1 The Address Comparator does not perform comparisons at EL3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [10]

When Secure EL2 is implemented:

Secure EL2 address comparison control. Controls whether a comparison can occur at EL2 in Secure
state.

0b0 The Address Comparator performs comparisons in Secure EL2.

0b1 The Address Comparator does not perform comparisons in Secure EL2.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [9]

When Secure EL1 is implemented:

Secure EL1 address comparison control. Controls whether a comparison can occur at EL1 in Secure
state.

0b0 The Address Comparator performs comparisons in Secure EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12959
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
0b1 The Address Comparator does not perform comparisons in Secure EL1.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [8]

When Secure EL0 is implemented:

Secure EL0 address comparison control. Controls whether a comparison can occur at EL0 in Secure
state.

0b0 The Address Comparator performs comparisons in Secure EL0.

0b1 The Address Comparator does not perform comparisons in Secure EL0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [7]

Reserved, RES0.

CONTEXT, bits [6:4]

When TRCIDR4.NUMCIDC != 0b0000 or TRCIDR4.NUMVMIDC != 0b0000:

Selects a Context Identifier Comparator or Virtual Context Identifier Comparator:

0b000 Comparator 0.

0b001 When UInt(TRCIDR4.NUMCIDC) > 1 or UInt(TRCIDR4.NUMVMIDC) > 1:

Comparator 1.

0b010 When UInt(TRCIDR4.NUMCIDC) > 2 or UInt(TRCIDR4.NUMVMIDC) > 2:

Comparator 2.

0b011 When UInt(TRCIDR4.NUMCIDC) > 3 or UInt(TRCIDR4.NUMVMIDC) > 3:

Comparator 3.

0b100 When UInt(TRCIDR4.NUMCIDC) > 4 or UInt(TRCIDR4.NUMVMIDC) > 4:

Comparator 4.

0b101 When UInt(TRCIDR4.NUMCIDC) > 5 or UInt(TRCIDR4.NUMVMIDC) > 5:

Comparator 5.

0b110 When UInt(TRCIDR4.NUMCIDC) > 6 or UInt(TRCIDR4.NUMVMIDC) > 6:

Comparator 6.

0b111 When UInt(TRCIDR4.NUMCIDC) > 7 or UInt(TRCIDR4.NUMVMIDC) > 7:

Comparator 7.

The width of this field is dependent on the maximum number of Context Identifier Comparators or
Virtual Context Identifier Comparators implemented. Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12960
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
CONTEXTTYPE, bits [3:2]

When TRCIDR4.NUMCIDC != 0b0000 or TRCIDR4.NUMVMIDC != 0b0000:

Controls whether the Address Comparator is dependent on a Context Identifier Comparator, a
Virtual Context Identifier Comparator, or both comparisons.

0b00 The Address Comparator is not dependent on the Context Identifier Comparators or
Virtual Context Identifier Comparators.

0b01 When TRCIDR4.NUMCIDC != 0b0000:

The Address Comparator is dependent on the Context Identifier Comparator that
TRCACATR<n>.CONTEXT specifies. The Address Comparator signals a match only
if both the Context Identifier Comparator and the address comparison match.

0b10 When TRCIDR4.NUMVMIDC != 0b0000:

The Address Comparator is dependent on the Virtual Context Identifier Comparator that
TRCACATR<n>.CONTEXT specifies. The Address Comparator signals a match only
if both the Virtual Context Identifier Comparator and the address comparison match.

0b11 When TRCIDR4.NUMCIDC != 0b0000 and TRCIDR4.NUMVMIDC != 0b0000:

The Address Comparator is dependent on the Context Identifier Comparator and Virtual
Context Identifier Comparator that TRCACATR<n>.CONTEXT specifies. The
Address Comparator signals a match only if the Context Identifier Comparator, the
Virtual Context Identifier Comparator, and address comparison all match.

If TRCIDR4.NUMCIDC == 0b0000, then bit [2] is RES0.

If TRCIDR4.NUMVMIDC == 0b0000, then bit [3] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [1:0]

Reserved, RES0.

Accessing the TRCACATR<n>:

Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 1.

• TRCRSCTLR<n>.GROUP == 0b0100 and TRCRSCTLR<n>.SAC[n] == 1.

• TRCRSCTLR<n>.GROUP == 0b0101 and TRCRSCTLR<n>.ARC[n/2] == 1.

• TRCVIIECTLR.EXCLUDE[n/2] == 1.

• TRCVIIECTLR.INCLUDE[n/2] == 1.

• TRCVISSCTLR.START[n] == 1.

• TRCVISSCTLR.STOP[n] == 1.

• TRCSSCCR<>.ARC[n/2] == 1.

• TRCSSCCR<>.SAC[n] == 1.

• TRCQCTLR.RANGE[n/2] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12961
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
TRCACATR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x480 + (8 * n) TRCACATR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12962
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.2 TRCACVR<n>, Trace Address Comparator Value Register <n>, n = 0 - 15

The TRCACVR<n> characteristics are:

Purpose

Contains the address value.

Configurations

External register TRCACVR<n> bits [63:0] are architecturally mapped to AArch64 System register
TRCACVR<n>[63:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMACPAIRS) * 2 > n. Otherwise, direct accesses to TRCACVR<n> are
RES0.

Attributes

TRCACVR<n> is a 64-bit register.

Field descriptions

ADDRESS, bits [63:0]

Address Value.

The Address Comparators can support implementations that use multiple address widths. When the
trace unit compares the ADDRESS field with an address that has a width less than this field, then
the address must be zero-extended to the ADDRESS field width. The trace unit then compares all
implemented bits. For example, in a system that supports both 32-bit and 64-bit addresses, when the
PE is in AArch32 state the comparator must zero-extend the 32-bit address and compare against the
full 64 bits that are stored in TRCACVR<n>.ADDRESS. This requires that the trace analyzer
always programs all implemented bits of TRCACVR<n>.ADDRESS.

The result of writing a value other than all zeros or all ones to ADDRESS at bits[63:P] is an
UNKNOWN value, where P is defined as:

• 56, when FEAT_LVA3 is implemented.

• 52, when FEAT_LVA is implemented.

• 48, otherwise.

The result of writing a value of all zeros or all ones to ADDRESS at bits[63:P] is the written value,
and a read of the register returns the written value.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCACVR<n>:

Must be programmed if any of the following are true:

• TRCBBCTLR.RANGE[n/2] == 1.

• TRCRSCTLR<n>.GROUP == 0b0100 and TRCRSCTLR<n>.SAC[n] == 1.

• TRCRSCTLR<n>.GROUP == 0b0101 and TRCRSCTLR<n>.ARC[n/2] == 1.

ADDRESS

63 32

ADDRESS

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12963
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• TRCVIIECTLR.EXCLUDE[n/2] == 1.

• TRCVIIECTLR.INCLUDE[n/2] == 1.

• TRCVISSCTLR.START[n] == 1.

• TRCVISSCTLR.STOP[n] == 1.

• TRCSSCCR<n>.ARC[n/2] == 1.

• TRCSSCCR<n>.SAC[n] == 1.

• TRCQCTLR.RANGE[n/2] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCACVR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x400 + (8 * n) TRCACVR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12964
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.3 TRCAUTHSTATUS, Trace Authentication Status Register

The TRCAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

For additional information, see the CoreSight Architecture Specification.

Configurations

External register TRCAUTHSTATUS bits [31:0] are architecturally mapped to AArch64 System
register TRCAUTHSTATUS[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCAUTHSTATUS are RES0.

Attributes

TRCAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RTNID, bits [27:26]

Root non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RTNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RTID, bits [25:24]

Root invasive debug.

0b00 Not implemented.

Bits [23:16]

Reserved, RES0.

RLNID, bits [15:14]

Realm non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RLNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RLID, bits [13:12]

Realm invasive debug.

0b00 Not implemented.

RES0

31 28 27 26

RTID

25 24

RES0

23 16 15 14

RLID

13 12

HNID

11 10

HID

9 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

RTNID RLNID NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12965
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
HNID, bits [11:10]

Hyp Non-invasive Debug. Indicates whether a separate enable control for EL2 non-invasive debug
features is implemented and enabled.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Separate Hyp non-invasive debug enable not implemented, or EL2 non-invasive debug
features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Access to this field is RO.

HID, bits [9:8]

Hyp Invasive Debug. Indicates whether a separate enable control for EL2 invasive debug features
is implemented and enabled.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Separate Hyp invasive debug enable not implemented, or EL2 invasive debug features
not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Access to this field is RO.

SNID, bits [7:6]

Secure Non-invasive Debug. Indicates whether Secure non-invasive debug features are
implemented and enabled.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Secure non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

When Secure state is implemented, this field reads as 0b10 or 0b11 depending whether Secure
non-invasive debug is enabled.

When Secure state is not implemented, this field reads as 0b00.

Access to this field is RO.

SID, bits [5:4]

Secure Invasive Debug. Indicates whether Secure invasive debug features are implemented and
enabled.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Secure invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12966
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
NSNID, bits [3:2]

Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug features are
implemented and enabled.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Non-secure non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

When Non-secure state is implemented, this field reads as 0b11.

When Non-secure state is not implemented, this field reads as 0b00.

Access to this field is RO.

NSID, bits [1:0]

Non-secure Invasive Debug. Indicates whether Non-secure invasive debug features are
implemented and enabled.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Non-secure invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

This field reads as 0b00.

Access to this field is RO.

Accessing the TRCAUTHSTATUS:

For implementations that support multiple access mechanisms, different access mechanisms can return different
values for reads of TRCAUTHSTATUS if the authentication signals have changed and that change has not yet been
synchronized by a Context synchronization event. This scenario can happen if, for example, the external debugger
view is implemented separately from the system instruction view to allow for separate power domains, and so
observes changes on the signals differently.

External debugger accesses to this register are unaffected by the OS Lock.

TRCAUTHSTATUS can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFB8 TRCAUTHSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12967
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.4 TRCAUXCTLR, Trace Auxiliary Control Register

The TRCAUXCTLR characteristics are:

Purpose

The function of this register is IMPLEMENTATION DEFINED.

Configurations

External register TRCAUXCTLR bits [31:0] are architecturally mapped to AArch64 System
register TRCAUXCTLR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCAUXCTLR are RES0.

Attributes

TRCAUXCTLR is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have
IMPLEMENTATION DEFINED behavior.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Accessing the TRCAUXCTLR:

If this register is nonzero then it might cause the behavior of a trace unit to contradict this architecture specification.
See the documentation of the specific implementation for information about the IMPLEMENTATION DEFINED support
for this register.

TRCAUXCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

ETE 0x018 TRCAUXCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12968
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.5 TRCBBCTLR, Trace Branch Broadcast Control Register

The TRCBBCTLR characteristics are:

Purpose

Controls the regions in the memory map where branch broadcasting is active.

Configurations

External register TRCBBCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCBBCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented,
TRCIDR0.TRCBB == 1 and UInt(TRCIDR4.NUMACPAIRS) > 0. Otherwise, direct accesses to
TRCBBCTLR are RES0.

Attributes

TRCBBCTLR is a 32-bit register.

Field descriptions

Bits [31:9]

Reserved, RES0.

MODE, bit [8]

Mode.

0b0 Exclude Mode.

Branch broadcasting is not active for instructions in the address ranges defined by
TRCBBCTLR.RANGE.

If TRCBBCTLR.RANGE == 0x00 then branch broadcasting is active for all
instructions.

0b1 Include Mode.

Branch broadcasting is active for instructions in the address ranges defined by
TRCBBCTLR.RANGE.

If TRCBBCTLR.RANGE == 0x00 then the behavior of the trace unit is CONSTRAINED
UNPREDICTABLE. That is, the trace unit might or might not consider any instructions to
be in a branch broadcasting region.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE[<m>], bit [m], for m = 7 to 0

Selects whether Address Range Comparator <m> is used with branch broadcasting.

0b0 The address range that Address Range Comparator <m> defines, is not selected.

0b1 The address range that Address Range Comparator <m> defines, is selected.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

31 9 8 7 6 5 4 3 2 1 0

MODE
RANGE[7]

RANGE[6]
RANGE[5]

RANGE[0]
RANGE[1]

RANGE[2]
RANGE[3]

RANGE[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12969
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCBBCTLR:

Must be programmed if TRCCONFIGR.BB == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCBBCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x03C TRCBBCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12970
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.6 TRCCCCTLR, Trace Cycle Count Control Register

The TRCCCCTLR characteristics are:

Purpose

Set the threshold value for cycle counting.

Configurations

External register TRCCCCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCCCCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR0.TRCCCI == 1. Otherwise, direct accesses to TRCCCCTLR are RES0.

Attributes

TRCCCCTLR is a 32-bit register.

Field descriptions

Bits [31:12]

Reserved, RES0.

THRESHOLD, bits [11:0]

Sets the threshold value for instruction trace cycle counting.

The minimum threshold value that can be programmed into THRESHOLD is given in
TRCIDR3.CCITMIN. If the THRESHOLD value is smaller than the value in TRCIDR3.CCITMIN
then the behavior is CONSTRAINED UNPREDICTABLE. That is, cycle counts might or might not be
included in the trace and the cycle count threshold is not known.

Writing a value of zero when TRCCONFIGR.CCI enables instruction trace cycle counting results
in CONSTRAINED UNPREDICTABLE behavior. That is, cycle counts might or might not be included in
the trace and the cycle count threshold is not known.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCCCTLR:

Must be programmed if TRCCONFIGR.CCI == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCCCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 12

THRESHOLD

11 0

Component Offset Instance

ETE 0x038 TRCCCCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12971
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.7 TRCCIDCCTLR0, Trace Context Identifier Comparator Control Register 0

The TRCCIDCCTLR0 characteristics are:

Purpose

Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 0 to 3.

Configurations

External register TRCCIDCCTLR0 bits [31:0] are architecturally mapped to AArch64 System
register TRCCIDCCTLR0[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented,
UInt(TRCIDR4.NUMCIDC) > 0x0 and UInt(TRCIDR2.CIDSIZE) > 0. Otherwise, direct accesses
to TRCCIDCCTLR0 are RES0.

Attributes

TRCCIDCCTLR0 is a 32-bit register.

Field descriptions

COMP3[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 3:

TRCCIDCVR3 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR3.
Each bit in this field corresponds to a byte in TRCCIDCVR3.

0b0 The trace unit includes TRCCIDCVR3[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR3[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP2[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 2:

TRCCIDCVR2 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR2.
Each bit in this field corresponds to a byte in TRCCIDCVR2.

0b0 The trace unit includes TRCCIDCVR2[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR2[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP3[<m>]

31 24

COMP2[<m>]

23 16

COMP1[<m>]

15 8

COMP0[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12972
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
COMP1[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 1:

TRCCIDCVR1 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR1.
Each bit in this field corresponds to a byte in TRCCIDCVR1.

0b0 The trace unit includes TRCCIDCVR1[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR1[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP0[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 0:

TRCCIDCVR0 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR0.
Each bit in this field corresponds to a byte in TRCCIDCVR0.

0b0 The trace unit includes TRCCIDCVR0[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR0[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCCIDCCTLR0:

If software uses the TRCCIDCVR<n> registers, for n = 0 to 3, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCIDCCTLR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x680 TRCCIDCCTLR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12973
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.8 TRCCIDCCTLR1, Trace Context Identifier Comparator Control Register 1

The TRCCIDCCTLR1 characteristics are:

Purpose

Contains Context identifier mask values for the TRCCIDCVR<n> registers, for n = 4 to 7.

Configurations

External register TRCCIDCCTLR1 bits [31:0] are architecturally mapped to AArch64 System
register TRCCIDCCTLR1[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented,
UInt(TRCIDR4.NUMCIDC) > 0x4 and UInt(TRCIDR2.CIDSIZE) > 0. Otherwise, direct accesses
to TRCCIDCCTLR1 are RES0.

Attributes

TRCCIDCCTLR1 is a 32-bit register.

Field descriptions

COMP7[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 7:

TRCCIDCVR7 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR7.
Each bit in this field corresponds to a byte in TRCCIDCVR7.

0b0 The trace unit includes TRCCIDCVR7[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR7[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP6[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 6:

TRCCIDCVR6 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR6.
Each bit in this field corresponds to a byte in TRCCIDCVR6.

0b0 The trace unit includes TRCCIDCVR6[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR6[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP7[<m>]

31 24

COMP6[<m>]

23 16

COMP5[<m>]

15 8

COMP4[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12974
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
COMP5[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 5:

TRCCIDCVR5 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR5.
Each bit in this field corresponds to a byte in TRCCIDCVR5.

0b0 The trace unit includes TRCCIDCVR5[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR5[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP4[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMCIDC) > 4:

TRCCIDCVR4 mask control. Specifies the mask value that the trace unit applies to TRCCIDCVR4.
Each bit in this field corresponds to a byte in TRCCIDCVR4.

0b0 The trace unit includes TRCCIDCVR4[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

0b1 The trace unit ignores TRCCIDCVR4[(m×8+7):(m×8)] when it performs the Context
identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.CIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCCIDCCTLR1:

If software uses the TRCCIDCVR<n> registers, for n = 4 to 7, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCCIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCCIDCVR<n> is not 0x00, the behavior of the Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCIDCCTLR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x684 TRCCIDCCTLR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12975
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.9 TRCCIDCVR<n>, Trace Context Identifier Comparator Value Registers <n>, n = 0 - 7

The TRCCIDCVR<n> characteristics are:

Purpose

Contains a Context identifier value.

Configurations

External register TRCCIDCVR<n> bits [63:0] are architecturally mapped to AArch64 System
register TRCCIDCVR<n>[63:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMCIDC) > n. Otherwise, direct accesses to TRCCIDCVR<n> are RES0.

Attributes

TRCCIDCVR<n> is a 64-bit register.

Field descriptions

VALUE, bits [63:0]

Context identifier value. The width of this field is indicated by TRCIDR2.CIDSIZE.
Unimplemented bits are RES0. After a PE Reset, the trace unit assumes that the Context identifier is
zero until the PE updates the Context identifier.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCIDCVR<n>:

Must be programmed if any of the following are true:

• TRCRSCTLR<n>.GROUP == 0b0110 and TRCRSCTLR<n>.CID[n] == 1.

• TRCACATR<n>.CONTEXTTYPE == 0b01 or 0b11 and TRCACATR<n>.CONTEXT == n.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCIDCVR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

VALUE

63 32

VALUE

31 0

Component Offset Instance

ETE 0x600 + (8 * n) TRCCIDCVR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12976
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.10 TRCCIDR0, Trace Component Identification Register 0

The TRCCIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCIDR0 are RES0.

Attributes

TRCCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Reads as 0x0D.

Access to this field is RO.

Accessing the TRCCIDR0:

External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Component Offset Instance

ETE 0xFF0 TRCCIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12977
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.11 TRCCIDR1, Trace Component Identification Register 1

The TRCCIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCIDR1 are RES0.

Attributes

TRCCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight peripheral.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

Access to this field is RO.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

Reads as 0b0000.

Access to this field is RO.

Accessing the TRCCIDR1:

External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

1 0 0 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Component Offset Instance

ETE 0xFF4 TRCCIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12978
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.12 TRCCIDR2, Trace Component Identification Register 2

The TRCCIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCIDR2 are RES0.

Attributes

TRCCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

Reads as 0x05.

Access to this field is RO.

Accessing the TRCCIDR2:

External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Component Offset Instance

ETE 0xFF8 TRCCIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12979
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.13 TRCCIDR3, Trace Component Identification Register 3

The TRCCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCIDR3 are RES0.

Attributes

TRCCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

Reads as 0xB1.

Access to this field is RO.

Accessing the TRCCIDR3:

External debugger accesses to this register are unaffected by the OS Lock.

TRCCIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

ETE 0xFFC TRCCIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12980
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.14 TRCCLAIMCLR, Trace Claim Tag Clear Register

The TRCCLAIMCLR characteristics are:

Purpose

In conjunction with TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared
to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

External register TRCCLAIMCLR bits [31:0] are architecturally mapped to AArch64 System
register TRCCLAIMCLR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCLAIMCLR are RES0.

Attributes

TRCCLAIMCLR is a 32-bit register.

Field descriptions

CLR[<m>], bit [m], for m = 31 to 0

Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag
bit <m> to 0.

0b0 On a read: Claim Tag bit <m> is not set.

On a write: Ignored.

0b1 On a read: Claim Tag bit <m> is set.

On a write: Clear Claim tag bit <m> to 0.

The number of Claim Tag bits implemented is indicated in TRCCLAIMSET.

This bit reads-as-zero and ignores writes if m > the number of Claim Tag bits.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Access to this field is W1C.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR[31]
CLR[30]

CLR[29]
CLR[28]

CLR[27]
CLR[26]

CLR[25]
CLR[24]

CLR[23]
CLR[22]

CLR[21]
CLR[20]

CLR[19]
CLR[18]

CLR[17]
CLR[16]

CLR[0]
CLR[1]

CLR[2]
CLR[3]

CLR[4]
CLR[5]

CLR[6]
CLR[7]

CLR[8]
CLR[9]

CLR[10]
CLR[11]

CLR[12]
CLR[13]

CLR[14]
CLR[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12981
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCCLAIMCLR:

TRCCLAIMCLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0xFA4 TRCCLAIMCLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12982
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.15 TRCCLAIMSET, Trace Claim Tag Set Register

The TRCCLAIMSET characteristics are:

Purpose

In conjunction with TRCCLAIMCLR, provides Claim Tag bits that can be separately set and
cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

External register TRCCLAIMSET bits [31:0] are architecturally mapped to AArch64 System
register TRCCLAIMSET[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCLAIMSET are RES0.

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. Arm recommends that
implementations support a minimum of four claim tag bits, that is, SET[3:0] reads as 0b1111.

Attributes

TRCCLAIMSET is a 32-bit register.

Field descriptions

SET[<m>], bit [m], for m = 31 to 0

Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag
bit <m> to 1.

0b0 On a read: Claim Tag bit <m> is not implemented.

On a write: Ignored.

0b1 On a read: Claim Tag bit <m> is implemented.

On a write: Set Claim Tag bit <m> to 1.

This bit reads-as-zero and ignores writes if m > the number of Claim Tag bits.

Access to this field is RAO/W1S.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET[31]
SET[30]

SET[29]
SET[28]

SET[27]
SET[26]

SET[25]
SET[24]

SET[23]
SET[22]

SET[21]
SET[20]

SET[19]
SET[18]

SET[17]
SET[16]

SET[0]
SET[1]

SET[2]
SET[3]

SET[4]
SET[5]

SET[6]
SET[7]

SET[8]
SET[9]

SET[10]
SET[11]

SET[12]
SET[13]

SET[14]
SET[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12983
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCCLAIMSET:

TRCCLAIMSET can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0xFA0 TRCCLAIMSET
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12984
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.16 TRCCNTCTLR<n>, Trace Counter Control Register <n>, n = 0 - 3

The TRCCNTCTLR<n> characteristics are:

Purpose

Controls the operation of Counter <n>.

Configurations

External register TRCCNTCTLR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCCNTCTLR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR5.NUMCNTR) > n. Otherwise, direct accesses to TRCCNTCTLR<n> are RES0.

Attributes

TRCCNTCTLR<n> is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

CNTCHAIN, bit [17]

When n is odd:

For TRCCNTCTLR3 and TRCCNTCTLR1, this field controls whether the Counter decrements
when a reload event occurs for Counter <n-1>.

0b0 The Counter does not decrement when a reload event for Counter <n-1> occurs.

0b1 Counter <n> decrements when a reload event for Counter <n-1> occurs. This
concatenates Counter <n> and Counter <n-1>, to provide a larger count value.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLDSELF, bit [16]

Controls whether a reload event occurs for the Counter, when the Counter reaches zero.

0b0 Normal mode.

The Counter is in Normal mode.

0b1 Self-reload mode.

The Counter is in Self-reload mode.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RLDEVENT_TYPE, bit [15]

Selects an event, that when it occurs causes a reload event for Counter <n>

RES0

31 18 17 16 15

RES0

14 13 12 8 7

RES0

6 5 4 0

CNTCHAIN
RLDSELF

RLDEVENT_TYPE

CNTEVENT_SEL
CNTEVENT_TYPE

RLDEVENT_SEL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12985
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCCNTCTLR<n>.RLDEVENT.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCCNTCTLR<n>.RLDEVENT.SEL[3:0] selects the Resource Selector pair, from
0-15, that has a Boolean function that is applied to it whose output is used to activate
the resource event. TRCCNTCTLR<n>.RLDEVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

RLDEVENT_SEL, bits [12:8]

Selects an event, that when it occurs causes a reload event for Counter <n>

Defines the selected Resource Selector or pair of Resource Selectors.
TRCCNTCTLR<n>.RLDEVENT.TYPE controls whether TRCCNTCTLR<n>.RLDEVENT.SEL
is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

CNTEVENT_TYPE, bit [7]

Selects an event, that when it occurs causes Counter <n> to decrement.

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCCNTCTLR<n>.CNTEVENT.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCCNTCTLR<n>.CNTEVENT.SEL[3:0] selects the Resource Selector pair, from
0-15, that has a Boolean function that is applied to it whose output is used to activate
the resource event. TRCCNTCTLR<n>.CNTEVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

CNTEVENT_SEL, bits [4:0]

Selects an event, that when it occurs causes Counter <n> to decrement.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCCNTCTLR<n>.CNTEVENT.TYPE controls whether TRCCNTCTLR<n>.CNTEVENT.SEL
is the index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12986
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTCTLR<n>:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.COUNTERS[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCNTCTLR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x150 + (4 * n) TRCCNTCTLR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12987
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.17 TRCCNTRLDVR<n>, Trace Counter Reload Value Register <n>, n = 0 - 3

The TRCCNTRLDVR<n> characteristics are:

Purpose

This sets or returns the reload count value for Counter <n>.

Configurations

External register TRCCNTRLDVR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCCNTRLDVR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR5.NUMCNTR) > n. Otherwise, direct accesses to TRCCNTRLDVR<n> are
RES0.

Attributes

TRCCNTRLDVR<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the reload value for Counter <n>. When a reload event occurs for Counter <n> then the
trace unit copies the VALUE<n> field into Counter <n>.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTRLDVR<n>:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.COUNTERS[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCNTRLDVR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 16

VALUE

15 0

Component Offset Instance

ETE 0x140 + (4 * n) TRCCNTRLDVR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12988
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.18 TRCCNTVR<n>, Trace Counter Value Register <n>, n = 0 - 3

The TRCCNTVR<n> characteristics are:

Purpose

This sets or returns the value of Counter <n>.

Configurations

External register TRCCNTVR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCCNTVR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR5.NUMCNTR) > n. Otherwise, direct accesses to TRCCNTVR<n> are RES0.

Attributes

TRCCNTVR<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

VALUE, bits [15:0]

Contains the count value of Counter.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCCNTVR<n>:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.COUNTERS[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCCNTVR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 16

VALUE

15 0

Component Offset Instance

ETE 0x160 + (4 * n) TRCCNTVR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12989
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.19 TRCCONFIGR, Trace Configuration Register

The TRCCONFIGR characteristics are:

Purpose

Controls the tracing options.

Configurations

External register TRCCONFIGR bits [31:0] are architecturally mapped to AArch64 System register
TRCCONFIGR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCCONFIGR are RES0.

Attributes

TRCCONFIGR is a 32-bit register.

Field descriptions

Bits [31:19]

Reserved, RES0.

ITO, bit [18]

When TRCIDR0.ITE == 1:

Instrumentation Trace Override.

0b0 Instrumentation Trace Override disabled.

0b1 Instrumentation Trace Override enabled.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [17:16]

Reserved, RES0.

VMIDOPT, bit [15]

When TRCIDR2.VMIDOPT == 0b01:

Virtual context identifier selection control.

0b0 VTTBR_EL2.VMID is used as the Virtual context identifier.

0b1 CONTEXTIDR_EL2.PROCID is used as the Virtual context identifier.

When TRCIDR2.VMIDOPT == 0b00:

Reserved, RES0.

Virtual context identifier selection control.

VTTBR_EL2.VMID is used as the Virtual context identifier.

RES0

31 19 18

RES0

17 16 15

QE

14 13

RS

12

TS

11

RES0

10 8 7 6 5 4

BB

3

RES0

2 1 0

ITO VMIDOPT VMID
CID

RES1
CCI

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12990
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
When TRCIDR2.VMIDOPT == 0b10:

Reserved, RES1.

Virtual context identifier selection control.

CONTEXTIDR_EL2.PROCID is used as the Virtual context identifier.

Otherwise:

Reserved, RES0.

QE, bits [14:13]

When TRCIDR0.QSUPP == 0b01:

Q element generation control.

0b00 Q elements are disabled.

0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b10:

Q element generation control.

0b00 Q elements are disabled.

0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

When TRCIDR0.QSUPP == 0b11:

Q element generation control.

0b00 Q elements are disabled.

0b01 Q elements with instruction counts are enabled.

Q elements without instruction counts are disabled.

0b11 Q elements with instruction counts are enabled.

Q elements without instruction counts are enabled.

All other values are reserved.

Otherwise:

Reserved, RES0.

RS, bit [12]

When TRCIDR0.RETSTACK == 1:

Return stack control.

0b0 Return stack is disabled.

0b1 Return stack is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TS, bit [11]

When TRCIDR0.TSSIZE != 0b00000:

Global timestamp tracing control.

0b0 Global timestamp tracing is disabled.

0b1 Global timestamp tracing is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12991
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [10:8]

Reserved, RES0.

VMID, bit [7]

When TRCIDR2.VMIDSIZE != 0b00000:

Virtual context identifier tracing control.

0b0 Virtual context identifier tracing is disabled.

0b1 Virtual context identifier tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CID, bit [6]

When TRCIDR2.CIDSIZE != 0b00000:

Context identifier tracing control.

0b0 Context identifier tracing is disabled.

0b1 Context identifier tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

CCI, bit [4]

When TRCIDR0.TRCCCI == 1:

Cycle counting instruction tracing control.

0b0 Cycle counting instruction tracing is disabled.

0b1 Cycle counting instruction tracing is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BB, bit [3]

When TRCIDR0.TRCBB == 1:

Branch broadcasting control.

0b0 Branch broadcasting is disabled.

0b1 Branch broadcasting is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12992
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Otherwise:

Reserved, RES0.

Bits [2:1]

Reserved, RES0.

Bit [0]

Reserved, RES1.

Accessing the TRCCONFIGR:

Must always be programmed.

TRCCONFIGR.QE must be set to 0b00 if TRCCONFIGR.BB is not 0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCCONFIGR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !IsTraceCorePowered() or !AllowExternalTraceAccess() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x010 TRCCONFIGR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12993
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.20 TRCDEVAFF, Trace Device Affinity Register

The TRCDEVAFF characteristics are:

Purpose

For additional information, see the CoreSight Architecture Specification.

Reads the same value as the MPIDR_EL1 register for the PE that this trace unit has affinity with.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCDEVAFF are RES0.

Attributes

TRCDEVAFF is a 64-bit register.

Field descriptions

MPIDR_EL1, bits [63:0]

Read-only copy of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the TRCDEVAFF:

External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVAFF can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

MPIDR_EL1

63 32

MPIDR_EL1

31 0

Component Offset Instance

ETE 0xFA8 TRCDEVAFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12994
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.21 TRCDEVARCH, Trace Device Architecture Register

The TRCDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

External register TRCDEVARCH bits [31:0] are architecturally mapped to AArch64 System
register TRCDEVARCH[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCDEVARCH are RES0.

Attributes

TRCDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

0b01000111011 JEP106 continuation code 0x4, ID code 0x3B.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

Access to this field is RO.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Device Architecture information not present.

0b1 Device Architecture information present.

This field reads as 1.

Access to this field is RO.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 ETEv1.0, FEAT_ETE.

0b0001 ETEv1.1, FEAT_ETEv1p1.

0b0010 ETEv1.2, FEAT_ETEv1p2.

0b0011 ETEv1.3, FEAT_ETEv1p3.

All other values are reserved.

Access to this field is RO.

0 1 0 0 0 1 1 1 0 1 1

31 21 20

REVISION

19 16

0 1 0 1

15 12

1 0 1 0 0 0 0 1 0 0 1 1

11 0

ARCHITECT
PRESENT

ARCHPART
ARCHVER
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12995
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

0b0101 ETEv1.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0x5.

Access to this field is RO.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

0xA13 Arm PE trace architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA13.

Access to this field is RO.

Accessing the TRCDEVARCH:

External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFBC TRCDEVARCH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12996
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.22 TRCDEVID, Trace Device Configuration Register

The TRCDEVID characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

External register TRCDEVID bits [31:0] are architecturally mapped to AArch64 System register
TRCDEVID[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCDEVID are RES0.

Attributes

TRCDEVID is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCDEVID:

External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVID can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0xFC8 TRCDEVID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12997
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.23 TRCDEVID1, Trace Device Configuration Register 1

The TRCDEVID1 characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCDEVID1 are RES0.

Attributes

TRCDEVID1 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCDEVID1:

External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVID1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0xFC4 TRCDEVID1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12998
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.24 TRCDEVID2, Trace Device Configuration Register 2

The TRCDEVID2 characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCDEVID2 are RES0.

Attributes

TRCDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCDEVID2:

External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVID2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0xFC0 TRCDEVID2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-12999
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.25 TRCDEVTYPE, Trace Device Type Register

The TRCDEVTYPE characteristics are:

Purpose

Provides discovery information for the component. If the part number field is not recognized, a
debugger can report the information that is provided by TRCDEVTYPE about the component
instead.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCDEVTYPE are RES0.

Attributes

TRCDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Component sub-type.

0b0001 When MAJOR == 0x3 (Trace source): Associated with a PE.

This field reads as 0x1.

Access to this field is RO.

MAJOR, bits [3:0]

Component major type.

0b0011 Trace source.

Other values are defined by the CoreSight Architecture.

This field reads as 0x3.

Access to this field is RO.

Accessing the TRCDEVTYPE:

External debugger accesses to this register are unaffected by the OS Lock.

TRCDEVTYPE can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

RES0

31 8

0 0 0 1

7 4

0 0 1 1

3 0

SUB MAJOR

Component Offset Instance

ETE 0xFCC TRCDEVTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13000
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• Otherwise accesses to this register are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13001
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.26 TRCEVENTCTL0R, Trace Event Control 0 Register

The TRCEVENTCTL0R characteristics are:

Purpose

Controls the generation of ETEEvents.

Configurations

External register TRCEVENTCTL0R bits [31:0] are architecturally mapped to AArch64 System
register TRCEVENTCTL0R[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR4.NUMRSPAIR != 0b0000. Otherwise, direct accesses to TRCEVENTCTL0R are
RES0.

Attributes

TRCEVENTCTL0R is a 32-bit register.

Field descriptions

EVENT3_TYPE, bit [31]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 3:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT3.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT3.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT3.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [30:29]

Reserved, RES0.

EVENT3_SEL, bits [28:24]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 3:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[3] == 1, then
Event element 3 is generated in the instruction trace element stream.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT3.TYPE controls whether TRCEVENTCTL0R.EVENT3.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

31

RES0

30 29

EVENT3_SEL

28 24 23

RES0

22 21

EVENT2_SEL

20 16 15

RES0

14 13

EVENT1_SEL

12 8 7

RES0

6 5

EVENT0_SEL

4 0

EVENT3_TYPE

EVENT2_TYPE

EVENT0_TYPE
EVENT1_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13002
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT2_TYPE, bit [23]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 2:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT2.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT2.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT2.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [22:21]

Reserved, RES0.

EVENT2_SEL, bits [20:16]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 2:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[2] == 1, then
Event element 2 is generated in the instruction trace element stream.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT2.TYPE controls whether TRCEVENTCTL0R.EVENT2.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT1_TYPE, bit [15]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 1:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT1.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13003
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT1.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT1.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [14:13]

Reserved, RES0.

EVENT1_SEL, bits [12:8]

When TRCIDR4.NUMRSPAIR != 0b0000 and UInt(TRCIDR0.NUMEVENT) >= 1:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[1] == 1, then
Event element 1 is generated in the instruction trace element stream.

Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT1.TYPE controls whether TRCEVENTCTL0R.EVENT1.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EVENT0_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCEVENTCTL0R.EVENT0.SEL[4:0] selects the single Resource Selector, from
0-31, used to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCEVENTCTL0R.EVENT0.SEL[3:0] selects the Resource Selector pair, from 0-15,
that has a Boolean function that is applied to it whose output is used to activate the
resource event. TRCEVENTCTL0R.EVENT0.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

EVENT0_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

When any of the selected resource events occurs and TRCEVENTCTL1R.INSTEN[0] == 1, then
Event element 0 is generated in the instruction trace element stream.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13004
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Defines the selected Resource Selector or pair of Resource Selectors.
TRCEVENTCTL0R.EVENT0.TYPE controls whether TRCEVENTCTL0R.EVENT0.SEL is the
index of a single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCEVENTCTL0R:

Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCEVENTCTL0R can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x020 TRCEVENTCTL0R
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13005
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.27 TRCEVENTCTL1R, Trace Event Control 1 Register

The TRCEVENTCTL1R characteristics are:

Purpose

Controls the behavior of the ETEEvents that TRCEVENTCTL0R selects.

Configurations

External register TRCEVENTCTL1R bits [31:0] are architecturally mapped to AArch64 System
register TRCEVENTCTL1R[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCEVENTCTL1R are RES0.

Attributes

TRCEVENTCTL1R is a 32-bit register.

Field descriptions

Bits [31:14]

Reserved, RES0.

OE, bit [13]

When TRCIDR5.OE == 1:

ETE Trace Output Enable control.

0b0 Trace output to any IMPLEMENTATION DEFINED trace output interface is disabled.

0b1 Trace output to any IMPLEMENTATION DEFINED trace output interface is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LPOVERRIDE, bit [12]

When TRCIDR5.LPOVERRIDE == 1:

Low-power Override Mode select.

0b0 Trace unit Low-power Override Mode is not enabled. That is, the trace unit is permitted
to enter low-power state.

0b1 Trace unit Low-power Override Mode is enabled. That is, entry to a low-power state
does not affect the trace unit resources or trace generation.

Otherwise:

Reserved, RES0.

ATB, bit [11]

When TRCIDR5.ATBTRIG == 1:

AMBA Trace Bus (ATB) trigger enable.

If a CoreSight ATB interface is implemented then when ETEEvent 0 occurs the trace unit sets:

• ATID == 0x7D.

RES0

31 14

OE

13 12 11

RES0

10 4 3 2 1 0

LPOVERRIDE ATB INSTEN[3]
INSTEN[2]

INSTEN[0]
INSTEN[1]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13006
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• ATDATA to the value of TRCTRACEIDR.

If the width of ATDATA is greater than the width of TRCTRACEIDR.TRACEID then the trace unit
zeros the upper ATDATA bits.

If ETEEvent 0 is programmed to occur based on program execution, such as an Address
Comparator, the ATB trigger might not be inserted into the ATB stream at the same time as any trace
generated by that program execution is output by the trace unit. Typically, the generated trace might
be buffered in a trace unit which means that the ATB trigger would be output before the associated
trace is output.

If ETEEvent 0 is asserted multiple times in close succession, the trace unit is required to generate
an ATB trigger for the first assertion, but might ignore one or more of the subsequent assertions.
Arm recommends that the window in which ETEEvent 0 is ignored is limited only by the time taken
to output an ATB trigger.

0b0 ATB trigger is disabled.

0b1 ATB trigger is enabled.

Otherwise:

Reserved, RES0.

Bits [10:4]

Reserved, RES0.

INSTEN[<m>], bit [m], for m = 3 to 0

Event element control.

0b0 The trace unit does not generate an Event element <m>.

0b1 The trace unit generates an Event element <m> when ETEEvent <m> occurs.

Accessing this field has the following behavior:

• When TRCIDR4.NUMRSPAIR == 0b0000, access to this field is RES0.

• RES0 if all of the following are true:

— TRCIDR4.NUMRSPAIR != 0b0000.

— m > UInt(TRCIDR0.NUMEVENT).

• Otherwise, access to this field is RW.

Accessing the TRCEVENTCTL1R:

Must be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCEVENTCTL1R can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x024 TRCEVENTCTL1R
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13007
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.28 TRCEXTINSELR<n>, Trace External Input Select Register <n>, n = 0 - 3

The TRCEXTINSELR<n> characteristics are:

Purpose

Use this to set, or read, which External Inputs are resources to the trace unit.

The name TRCEXTINSELR is an alias of TRCEXTINSELR0.

Configurations

External register TRCEXTINSELR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCEXTINSELR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR5.NUMEXTINSEL) > n. Otherwise, direct accesses to TRCEXTINSELR<n>
are RES0.

Attributes

TRCEXTINSELR<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

PMU event to select.

The event number as defined by the Arm ARM.

Software must program this field with a PMU event that is supported by the PE being programmed.

There are three ranges of PMU event numbers:

• PMU event numbers in the range 0x0000 to 0x003F are common architectural and
microarchitectural events.

• PMU event numbers in the range 0x0040 to 0x00BF are Arm recommended common
architectural and microarchitectural PMU events.

• PMU event numbers in the range 0x00C0 to 0x03FF are IMPLEMENTATION DEFINED PMU
events.

If evtCount is programmed to a PMU event that is reserved or not supported by the PE, the behavior
depends on the PMU event type:

• For the range 0x0000 to 0x003F, then the PMU event is not active, and the value returned by a
direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED PMU events, it is UNPREDICTABLE what PMU event, if any,
is counted, and the value returned by a direct or external read of the evtCount field is
UNKNOWN.

UNPREDICTABLE means the PMU event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include a PMU event from a set of common IMPLEMENTATION
DEFINED PMU events, then no PMU event is counted and the value read back on evtCount is the
value written.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13008
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCEXTINSELR<n>:

Must be programmed if any of the following is true: TRCRSCTLR<n>.GROUP == 0b0000 and
TRCRSCTLR<n>.EXTIN[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCEXTINSELR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x120 + (4 * n) TRCEXTINSELR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13009
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.29 TRCIDR0, Trace ID Register 0

The TRCIDR0 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR0 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR0[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR0 are RES0.

Attributes

TRCIDR0 is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

COMMTRANS, bit [30]

Transaction Start element behavior.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Transaction Start elements are P0 elements.

0b1 Transaction Start elements are not P0 elements.

Access to this field is RO.

COMMOPT, bit [29]

Indicates the contents and encodings of Cycle count packets.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Commit mode 0.

0b1 Commit mode 1.

The Commit mode defines the contents and encodings of Cycle Count packets, in particular how
Commit elements are indicated by these packets. See the descriptions of these packets for more
details.

Accessing this field has the following behavior:

• RAO/WI if all of the following are true:

— TRCIDR0.TRCCCI == 1.

— UInt(TRCIDR8.MAXSPEC) == 0x0.

• When TRCIDR0.TRCCCI == 0, access to this field is RAZ/WI.

31 30 29

TSSIZE

28 24 23 22

RES0

21 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0
COMMTRANS

COMMOPT
TSMARK

ITE
TRCEXDATA

QSUPP
QFILT
CONDTYPE

RES1
INSTP0

TRCDATA
TRCBB

TRCCOND
TRCCCI

RES0
RETSTACK

NUMEVENT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13010
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• Otherwise, access to this field is RO.

TSSIZE, bits [28:24]

Indicates that the trace unit implements Global timestamping and the size of the timestamp value.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Global timestamping not implemented.

0b01000 Global timestamping implemented with a 64-bit timestamp value.

All other values are reserved.

This field reads as 0b01000.

Access to this field is RO.

TSMARK, bit [23]

When FEAT_ETEv1p1 is implemented:

Indicates whether Timestamp Marker elements are generated.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Timestamp Marker elements are not generated.

0b1 Timestamp Marker elements are generated.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ITE, bit [22]

When FEAT_ETEv1p3 is implemented:

Indicates whether Instrumentation Trace is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Instrumentation Trace not implemented.

0b1 Instrumentation Trace implemented.

This field has the value 1 if FEAT_ITE is implemented.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [21:18]

Reserved, RES0.

TRCEXDATA, bit [17]

When TRCIDR0.TRCDATA != 0b00:

Indicates if the trace unit implements tracing of data transfers for exceptions and exception returns.
Data tracing is not implemented in ETE and this field is reserved for other trace architectures.
Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Tracing of data transfers for exceptions and exception returns not implemented.

0b1 Tracing of data transfers for exceptions and exception returns implemented.

Access to this field is RO.

Otherwise:

Reserved, RES0.

QSUPP, bits [16:15]

Indicates that the trace unit implements Q element support.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13011
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Q element support is not implemented.

0b01 Q element support is implemented, and only supports Q elements with instruction
counts.

0b10 Q element support is implemented, and only supports Q elements without instruction
counts.

0b11 Q element support is implemented, and supports:

• Q elements with instruction counts.

• Q elements without instruction counts.

Access to this field is RO.

QFILT, bit [14]

Indicates if the trace unit implements Q element filtering.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Q element filtering is not implemented.

0b1 Q element filtering is implemented.

If TRCIDR0.QSUPP == 0b00 then this field is 0.

Access to this field is RO.

CONDTYPE, bits [13:12]

When TRCIDR0.TRCCOND == 1:

Indicates how conditional instructions are traced. Conditional instruction tracing is not implemented
in ETE and this field is reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Conditional instructions are traced with an indication of whether they pass or fail their
condition code check.

0b01 Conditional instructions are traced with an indication of the APSR condition flags.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

NUMEVENT, bits [11:10]

When TRCIDR4.NUMRSPAIR == 0b0000:

Indicates the number of ETEEvents implemented.

0b00 The trace unit supports 0 ETEEvents.

All other values are reserved.

Access to this field is RO.

When TRCIDR4.NUMRSPAIR != 0b0000:

Indicates the number of ETEEvents implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 The trace unit supports 1 ETEEvent.

0b01 The trace unit supports 2 ETEEvents.

0b10 The trace unit supports 3 ETEEvents.

0b11 The trace unit supports 4 ETEEvents.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13012
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Otherwise:

Reserved, RES0.

RETSTACK, bit [9]

Indicates if the trace unit supports the return stack.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Return stack not implemented.

0b1 Return stack implemented.

Access to this field is RO.

Bit [8]

Reserved, RES0.

TRCCCI, bit [7]

Indicates if the trace unit implements cycle counting.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Cycle counting not implemented.

0b1 Cycle counting implemented.

This field reads as 1.

Access to this field is RO.

TRCCOND, bit [6]

Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing
is not implemented in ETE and this field is reserved for other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Conditional instruction tracing not implemented.

0b1 Conditional instruction tracing implemented.

This field reads as 0.

Access to this field is RO.

TRCBB, bit [5]

Indicates if the trace unit implements branch broadcasting.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Branch broadcasting not implemented.

0b1 Branch broadcasting implemented.

This field reads as 1.

Access to this field is RO.

TRCDATA, bits [4:3]

Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this
field is reserved for other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Data tracing not implemented.

0b11 Data tracing implemented.

All other values are reserved.

This field reads as 0b00.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13013
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
INSTP0, bits [2:1]

Indicates if load and store instructions are P0 instructions. Load and store instructions as P0
instructions is not implemented in ETE and this field is reserved for other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Load and store instructions are not P0 instructions.

0b11 Load and store instructions are P0 instructions.

All other values are reserved.

When FEAT_ETE is implemented, the only permitted value is 0b00.

Access to this field is RO.

Bit [0]

Reserved, RES1.

Accessing the TRCIDR0:

TRCIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x1E0 TRCIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13014
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.30 TRCIDR1, Trace ID Register 1

The TRCIDR1 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR1 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR1[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR1 are RES0.

Attributes

TRCIDR1 is a 32-bit register.

Field descriptions

DESIGNER, bits [31:24]

Indicates which company designed the trace unit. The permitted values of this field are the same as
MIDR_EL1.Implementer.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [23:16]

Reserved, RES0.

Bits [15:12]

Reserved, RES1.

TRCARCHMAJ, bits [11:8]

Major architecture version.

0b1111 If both TRCIDR1.TRCARCHMAJ and TRCIDR1.TRCARCHMIN == 0xF then refer to
TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

Access to this field is RO.

TRCARCHMIN, bits [7:4]

Minor architecture version.

0b1111 If both TRCIDR1.TRCARCHMAJ and TRCIDR1.TRCARCHMIN == 0xF then refer to
TRCDEVARCH.

All other values are reserved.

This field reads as 0b1111.

Access to this field is RO.

REVISION, bits [3:0]

Implementation revision.

DESIGNER

31 24

RES0

23 16

RES1

15 12

1 1 1 1

11 8

1 1 1 1

7 4

REVISION

3 0

TRCARCHMAJ TRCARCHMIN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13015
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Returns an IMPLEMENTATION DEFINED value that identifies the revision of the trace unit.

Arm deprecates any use of this field and recommends that implementations set this field to zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRCIDR1:

TRCIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x1E4 TRCIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13016
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.31 TRCIDR10, Trace ID Register 10

The TRCIDR10 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR10 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR10[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR10 are RES0.

Attributes

TRCIDR10 is a 32-bit register.

Field descriptions

NUMP1KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P1 right-hand keys. Data tracing is not implemented in ETE and this field
is reserved for other trace architectures. Allocated in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR10:

TRCIDR10 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

NUMP1KEY

31 0

Component Offset Instance

ETE 0x188 TRCIDR10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13017
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.32 TRCIDR11, Trace ID Register 11

The TRCIDR11 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR11 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR11[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR11 are RES0.

Attributes

TRCIDR11 is a 32-bit register.

Field descriptions

NUMP1SPC, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of special P1 right-hand keys. Data tracing is not implemented in ETE and this
field is reserved for other trace architectures. Allocated in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR11:

TRCIDR11 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

NUMP1SPC

31 0

Component Offset Instance

ETE 0x18C TRCIDR11
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13018
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.33 TRCIDR12, Trace ID Register 12

The TRCIDR12 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR12 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR12[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR12 are RES0.

Attributes

TRCIDR12 is a 32-bit register.

Field descriptions

NUMCONDKEY, bits [31:0]

When TRCIDR0.TRCCOND == 1:

Indicates the number of conditional instruction right-hand keys. Conditional instruction tracing is
not implemented in ETE and this field is reserved for other trace architectures. Allocated in other
trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR12:

TRCIDR12 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

NUMCONDKEY

31 0

Component Offset Instance

ETE 0x190 TRCIDR12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13019
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.34 TRCIDR13, Trace ID Register 13

The TRCIDR13 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR13 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR13[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR13 are RES0.

Attributes

TRCIDR13 is a 32-bit register.

Field descriptions

NUMCONDSPC, bits [31:0]

When TRCIDR0.TRCCOND == 1:

Indicates the number of special conditional instruction right-hand keys. Conditional instruction
tracing is not implemented in ETE and this field is reserved for other trace architectures. Allocated
in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR13:

TRCIDR13 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

NUMCONDSPC

31 0

Component Offset Instance

ETE 0x194 TRCIDR13
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13020
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.35 TRCIDR2, Trace ID Register 2

The TRCIDR2 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR2 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR2[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR2 are RES0.

Attributes

TRCIDR2 is a 32-bit register.

Field descriptions

WFXMODE, bit [31]

Indicates whether WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 WFI, WFIT, WFE, and WFET instructions are not classified as P0 instructions.

0b1 WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions.

Access to this field is RO.

VMIDOPT, bits [30:29]

Indicates the options for Virtual context identifier selection.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Virtual context identifier selection not supported. TRCCONFIGR.VMIDOPT is RES0.

0b01 Virtual context identifier selection supported. TRCCONFIGR.VMIDOPT is
implemented.

0b10 Virtual context identifier selection not supported. TRCCONFIGR.VMIDOPT is RES1.

All other values are reserved.

If TRCIDR2.VMIDSIZE == 0b00000 then this field is 0b00.

If TRCIDR2.VMIDSIZE != 0b00000 then this field is 0b10.

Access to this field is RO.

CCSIZE, bits [28:25]

When TRCIDR0.TRCCCI == 1:

Indicates the size of the cycle counter.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The cycle counter is 12 bits in length.

0b0001 The cycle counter is 13 bits in length.

0b0010 The cycle counter is 14 bits in length.

0b0011 The cycle counter is 15 bits in length.

31 30 29

CCSIZE

28 25

DVSIZE

24 20

DASIZE

19 15

VMIDSIZE

14 10

CIDSIZE

9 5

IASIZE

4 0

WFXMODE VMIDOPT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13021
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
0b0100 The cycle counter is 16 bits in length.

0b0101 The cycle counter is 17 bits in length.

0b0110 The cycle counter is 18 bits in length.

0b0111 The cycle counter is 19 bits in length.

0b1000 The cycle counter is 20 bits in length.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DVSIZE, bits [24:20]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data value size in bytes. Data tracing is not implemented in ETE and this field is
reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Data value tracing not implemented.

0b00100 Data value tracing has a maximum of 32-bit data values.

0b01000 Data value tracing has a maximum of 64-bit data values.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DASIZE, bits [19:15]

When TRCIDR0.TRCDATA != 0b00:

Indicates the data address size in bytes. Data tracing is not implemented in ETE and this field is
reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Data address tracing not implemented.

0b00100 Data address tracing has a maximum of 32-bit data addresses.

0b01000 Data address tracing has a maximum of 64-bit data addresses.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

VMIDSIZE, bits [14:10]

Indicates the trace unit Virtual context identifier size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Virtual context identifier tracing is not supported.

0b00001 8-bit Virtual context identifier size.

0b00010 16-bit Virtual context identifier size.

0b00100 32-bit Virtual context identifier size.

All other values are reserved.

If the PE does not implement EL2 then this field is 0b00000.

If the PE implements EL2 then this field is 0b00100.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13022
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Access to this field is RO.

CIDSIZE, bits [9:5]

Indicates the Context identifier size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00000 Context identifier tracing is not supported.

0b00100 32-bit Context identifier size.

All other values are reserved.

This field reads as 0b00100.

Access to this field is RO.

IASIZE, bits [4:0]

Virtual instruction address size.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00100 Maximum of 32-bit instruction address size.

0b01000 Maximum of 64-bit instruction address size.

All other values are reserved.

This field reads as 0b01000.

Access to this field is RO.

Accessing the TRCIDR2:

TRCIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x1E8 TRCIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13023
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.36 TRCIDR3, Trace ID Register 3

The TRCIDR3 characteristics are:

Purpose

Returns the base architecture of the trace unit.

Configurations

External register TRCIDR3 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR3[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR3 are RES0.

Attributes

TRCIDR3 is a 32-bit register.

Field descriptions

NOOVERFLOW, bit [31]

Indicates if overflow prevention is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Overflow prevention is not implemented.

0b1 Overflow prevention is implemented.

If TRCIDR3.STALLCTL == 0 then this field is 0.

Access to this field is RO.

NUMPROC, bits [13:12, 30:28]

Indicates the number of PEs available for tracing.

0b00000 The trace unit can trace one PE.

This field reads as 0b00000.

The NUMPROC field is split as follows:

• NUMPROC[2:0] is TRCIDR3[30:28].

• NUMPROC[4:3] is TRCIDR3[13:12].

Access to this field is RO.

SYSSTALL, bit [27]

Indicates if stalling of the PE is permitted.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Stalling of the PE is not permitted.

0b1 Stalling of the PE is permitted.

The value of this field might be dynamic and change based on system conditions.

31

0 0 0

30 28 27 26 25 24 23 22 21 20 19 18 17 16

RES0

15 14

0 0

13 12

CCITMIN

11 0

NOOVERFLOW

NUMPROC[2:0]
SYSSTALL

STALLCTL
SYNCPR

TRCERR
RES0

NUMPROC[4:3]
EXLEVEL_S_EL0

EXLEVEL_S_EL1
EXLEVEL_S_EL2

EXLEVEL_S_EL3
EXLEVEL_NS_EL0

EXLEVEL_NS_EL1
EXLEVEL_NS_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13024
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
If TRCIDR3.STALLCTL == 0 then this field is 0.

Access to this field is RO.

STALLCTL, bit [26]

Indicates if trace unit implements stalling of the PE.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Stalling of the PE is not implemented.

0b1 Stalling of the PE is implemented.

Access to this field is RO.

SYNCPR, bit [25]

Indicates if an implementation has a fixed synchronization period.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 TRCSYNCPR is read/write so software can change the synchronization period.

0b1 TRCSYNCPR is read-only so the synchronization period is fixed.

This field reads as 0.

Access to this field is RO.

TRCERR, bit [24]

Indicates forced tracing of System Error exceptions is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Forced tracing of System Error exceptions is not implemented.

0b1 Forced tracing of System Error exceptions is implemented.

This field reads as 1.

Access to this field is RO.

Bit [23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

Indicates if Non-secure EL2 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Non-secure EL2 is not implemented.

0b1 Non-secure EL2 is implemented.

Access to this field is RO.

EXLEVEL_NS_EL1, bit [21]

Indicates if Non-secure EL1 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Non-secure EL1 is not implemented.

0b1 Non-secure EL1 is implemented.

Access to this field is RO.

EXLEVEL_NS_EL0, bit [20]

Indicates if Non-secure EL0 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Non-secure EL0 is not implemented.

0b1 Non-secure EL0 is implemented.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13025
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
EXLEVEL_S_EL3, bit [19]

Indicates if EL3 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 EL3 is not implemented.

0b1 EL3 is implemented.

Access to this field is RO.

EXLEVEL_S_EL2, bit [18]

Indicates if Secure EL2 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Secure EL2 is not implemented.

0b1 Secure EL2 is implemented.

Access to this field is RO.

EXLEVEL_S_EL1, bit [17]

Indicates if Secure EL1 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Secure EL1 is not implemented.

0b1 Secure EL1 is implemented.

Access to this field is RO.

EXLEVEL_S_EL0, bit [16]

Indicates if Secure EL0 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Secure EL0 is not implemented.

0b1 Secure EL0 is implemented.

Access to this field is RO.

Bits [15:14]

Reserved, RES0.

CCITMIN, bits [11:0]

When TRCIDR0.TRCCCI == 0:

Indicates the minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

Reads as 0x000.

Access to this field is RO.

When TRCIDR0.TRCCCI == 1:

Indicates the minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x001..0xFFF The minimum value that can be programmed in TRCCCCTLR.THRESHOLD.

The minimum value of this field is 0x001.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13026
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCIDR3:

TRCIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x1EC TRCIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13027
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.37 TRCIDR4, Trace ID Register 4

The TRCIDR4 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR4 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR4[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR4 are RES0.

Attributes

TRCIDR4 is a 32-bit register.

Field descriptions

NUMVMIDC, bits [31:28]

Indicates the number of Virtual Context Identifier Comparators that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Virtual Context Identifier Comparators in this implementation.

All other values are reserved.

Access to this field is RO.

NUMCIDC, bits [27:24]

Indicates the number of Context Identifier Comparators that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Context Identifier Comparators in this implementation.

All other values are reserved.

Access to this field is RO.

NUMSSCC, bits [23:20]

Indicates the number of Single-shot Comparator Controls that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Single-shot Comparator Controls in this implementation.

All other values are reserved.

Access to this field is RO.

NUMRSPAIR, bits [19:16]

Indicates the number of resource selector pairs that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 This implementation has zero resource selector pairs.

0b0001..0b1111 The number of resource selector pairs in this implementation, minus one.

All other values are reserved.

Access to this field is RO.

NUMVMIDC

31 28

NUMCIDC

27 24

NUMSSCC

23 20 19 16

NUMPC

15 12

RES0

11 9 8

NUMDVC

7 4 3 0

NUMRSPAIR SUPPDAC NUMACPAIRS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13028
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
NUMPC, bits [15:12]

Indicates the number of PE Comparator Inputs that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of PE Comparator Inputs in this implementation.

All other values are reserved.

Access to this field is RO.

Bits [11:9]

Reserved, RES0.

SUPPDAC, bit [8]

When TRCIDR4.NUMACPAIRS != 0b0000:

Indicates whether data address comparisons are implemented. Data address comparisons are not
implemented in ETE and are reserved for other trace architectures. Allocated in other trace
architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Data address comparisons not implemented.

0b1 Data address comparisons implemented.

This field reads as 0b0.

Access to this field is RO.

Otherwise:

Reserved, RES0.

NUMDVC, bits [7:4]

Indicates the number of data value comparators. Data value comparators are not implemented in
ETE and are reserved for other trace architectures. Allocated in other trace architectures.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of data value comparators in this implementation.

All other values are reserved.

This field reads as 0b0000.

Access to this field is RO.

NUMACPAIRS, bits [3:0]

Indicates the number of Address Comparator pairs that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000..0b1000 The number of Address Comparator pairs in this implementation.

All other values are reserved.

Access to this field is RO.

Accessing the TRCIDR4:

TRCIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

Component Offset Instance

ETE 0x1F0 TRCIDR4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13029
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• Otherwise accesses to this register are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13030
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.38 TRCIDR5, Trace ID Register 5

The TRCIDR5 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR5 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR5[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR5 are RES0.

Attributes

TRCIDR5 is a 32-bit register.

Field descriptions

OE, bit [31]

Indicates support for the ETE Trace Output Enable.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 ETE Trace Output Enable is not implemented.

0b1 ETE Trace Output Enable is implemented.

When FEAT_ETEv1p3 is implemented and when any IMPLEMENTATION DEFINED trace output
interface is implemented, this field is 1.

Access to this field is RO.

NUMCNTR, bits [30:28]

Indicates the number of Counters that are available for tracing.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000..0b100 The number of Counters implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

Access to this field is RO.

NUMSEQSTATE, bits [27:25]

Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000 The Sequencer is not implemented.

0b100 Four Sequencer states are implemented.

All other values are reserved.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0b000.

Access to this field is RO.

OE

31 30 28 27 25 24 23 22

TRACEIDSIZE

21 16

RES0

15 12 11 9

1 1 1 1 1 1 1 1 1

8 0

NUMCNTR
NUMSEQSTATE

ATBTRIG
LPOVERRIDE

RES0

NUMEXTINSEL NUMEXTIN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13031
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Bit [24]

Reserved, RES0.

LPOVERRIDE, bit [23]

Indicates support for Low-power Override Mode.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The trace unit does not support Low-power Override Mode.

0b1 The trace unit supports Low-power Override Mode.

Access to this field is RO.

ATBTRIG, bit [22]

Indicates if the implementation can support ATB triggers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The implementation does not support ATB triggers.

0b1 The implementation supports ATB triggers.

If TRCIDR4.NUMRSPAIR == 0b0000 then this field is 0.

Access to this field is RO.

TRACEIDSIZE, bits [21:16]

Indicates the trace ID width.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000000 The external trace interface is not implemented.

0b000111 The implementation supports a 7-bit trace ID.

All other values are reserved.

Note

AMBA ATB requires a 7-bit trace ID width.

Access to this field is RO.

Bits [15:12]

Reserved, RES0.

NUMEXTINSEL, bits [11:9]

Indicates how many External Input Selector resources are implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000..0b100 The number of External Input Selector resources implemented.

All other values are reserved.

Access to this field is RO.

NUMEXTIN, bits [8:0]

Indicates how many External Inputs are implemented.

0b111111111 Unified PMU event selection.

All other values are reserved.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13032
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCIDR5:

TRCIDR5 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x1F4 TRCIDR5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13033
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.39 TRCIDR6, Trace ID Register 6

The TRCIDR6 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR6 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR6[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR6 are RES0.

Attributes

TRCIDR6 is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

EXLEVEL_RL_EL2, bit [2]

Indicates if Realm EL2 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Realm EL2 is not implemented.

0b1 Realm EL2 is implemented.

Access to this field is RO.

EXLEVEL_RL_EL1, bit [1]

Indicates if Realm EL1 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Realm EL1 is not implemented.

0b1 Realm EL1 is implemented.

Access to this field is RO.

EXLEVEL_RL_EL0, bit [0]

Indicates if Realm EL0 is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Realm EL0 is not implemented.

0b1 Realm EL0 is implemented.

Access to this field is RO.

RES0

31 3 2 1 0

EXLEVEL_RL_EL2 EXLEVEL_RL_EL0

EXLEVEL_RL_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13034
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCIDR6:

TRCIDR6 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x1F8 TRCIDR6
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13035
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.40 TRCIDR7, Trace ID Register 7

The TRCIDR7 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR7 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR7[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR7 are RES0.

Attributes

TRCIDR7 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCIDR7:

TRCIDR7 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0x1FC TRCIDR7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13036
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.41 TRCIDR8, Trace ID Register 8

The TRCIDR8 characteristics are:

Purpose

Returns the maximum speculation depth of the instruction trace element stream.

Configurations

External register TRCIDR8 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR8[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR8 are RES0.

Attributes

TRCIDR8 is a 32-bit register.

Field descriptions

MAXSPEC, bits [31:0]

Indicates the maximum speculation depth of the instruction trace element stream. This is the
maximum number of P0 elements in the trace element stream that can be speculative at any time.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRCIDR8:

TRCIDR8 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

MAXSPEC

31 0

Component Offset Instance

ETE 0x180 TRCIDR8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13037
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.42 TRCIDR9, Trace ID Register 9

The TRCIDR9 characteristics are:

Purpose

Returns the tracing capabilities of the trace unit.

Configurations

External register TRCIDR9 bits [31:0] are architecturally mapped to AArch64 System register
TRCIDR9[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIDR9 are RES0.

Attributes

TRCIDR9 is a 32-bit register.

Field descriptions

NUMP0KEY, bits [31:0]

When TRCIDR0.TRCDATA != 0b00:

Indicates the number of P0 right-hand keys. Data tracing is not implemented in ETE and this field
is reserved for other trace architectures. Allocated in other trace architectures.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing the TRCIDR9:

TRCIDR9 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus() or !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

NUMP0KEY

31 0

Component Offset Instance

ETE 0x184 TRCIDR9
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13038
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.43 TRCIMSPEC0, Trace IMP DEF Register 0

The TRCIMSPEC0 characteristics are:

Purpose

TRCIMSPEC0 shows the presence of any IMPLEMENTATION DEFINED features, and provides an
interface to enable the features that are provided.

Configurations

External register TRCIMSPEC0 bits [31:0] are architecturally mapped to AArch64 System register
TRCIMSPEC0[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCIMSPEC0 are RES0.

Attributes

TRCIMSPEC0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

EN, bits [7:4]

When TRCIMSPEC0.SUPPORT != 0b0000:

Enable. Controls whether the IMPLEMENTATION DEFINED features are enabled.

0b0000 The IMPLEMENTATION DEFINED features are not enabled. The trace unit must behave as
if the IMPLEMENTATION DEFINED features are not supported.

0b0001 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0010 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0011 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0100 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0101 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0110 The trace unit behavior is IMPLEMENTATION DEFINED.

0b0111 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1000 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1001 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1010 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1011 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1100 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1101 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1110 The trace unit behavior is IMPLEMENTATION DEFINED.

0b1111 The trace unit behavior is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

RES0

31 8

EN

7 4

SUPPORT

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13039
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Otherwise:

Reserved, RES0.

SUPPORT, bits [3:0]

Indicates whether the implementation supports IMPLEMENTATION DEFINED features.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 No IMPLEMENTATION DEFINED features are supported.

0b0001 IMPLEMENTATION DEFINED features are supported.

0b0010 IMPLEMENTATION DEFINED features are supported.

0b0011 IMPLEMENTATION DEFINED features are supported.

0b0100 IMPLEMENTATION DEFINED features are supported.

0b0101 IMPLEMENTATION DEFINED features are supported.

0b0110 IMPLEMENTATION DEFINED features are supported.

0b0111 IMPLEMENTATION DEFINED features are supported.

0b1000 IMPLEMENTATION DEFINED features are supported.

0b1001 IMPLEMENTATION DEFINED features are supported.

0b1010 IMPLEMENTATION DEFINED features are supported.

0b1011 IMPLEMENTATION DEFINED features are supported.

0b1100 IMPLEMENTATION DEFINED features are supported.

0b1101 IMPLEMENTATION DEFINED features are supported.

0b1110 IMPLEMENTATION DEFINED features are supported.

0b1111 IMPLEMENTATION DEFINED features are supported.

Use of nonzero values requires written permission from Arm.

Access to this field is RO.

Accessing the TRCIMSPEC0:

TRCIMSPEC0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x1C0 TRCIMSPEC0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13040
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.44 TRCIMSPEC<n>, Trace IMP DEF Register <n>, n = 1 - 7

The TRCIMSPEC<n> characteristics are:

Purpose

These registers might return information that is specific to an implementation, or enable features
specific to an implementation to be programmed. The product Technical Reference Manual
describes these registers.

Configurations

External register TRCIMSPEC<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCIMSPEC<n>[31:0].

This register is present only when an implementation implements TRCIMSPEC<n>, FEAT_ETE is
implemented and FEAT_TRC_EXT is implemented. Otherwise, direct accesses to
TRCIMSPEC<n> are RES0.

Attributes

TRCIMSPEC<n> is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have
IMPLEMENTATION DEFINED behavior.

Accessing the TRCIMSPEC<n>:

TRCIMSPEC<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

ETE 0x1C0 + (4 * n) TRCIMSPEC<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13041
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.45 TRCITCTRL, Trace Integration Mode Control Register

The TRCITCTRL characteristics are:

Purpose

A component can use TRCITCTRL to dynamically switch between functional mode and integration
mode. In integration mode, topology detection is enabled. After switching to integration mode and
performing integration tests or topology detection, reset the system to ensure correct behavior of
CoreSight and other connected system components.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCITCTRL are RES0.

Attributes

TRCITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

When topology detection or integration functionality is implemented:

Integration Mode Enable.

0b0 Component functional mode.

0b1 Component integration mode. Support for topology detection and integration testing is
enabled.

Otherwise:

Reserved, RES0.

Accessing the TRCITCTRL:

External debugger accesses to this register are IMPLEMENTATION DEFINED when the trace unit is not in the Idle state.

TRCITCTRL can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 1 0

IME

Component Offset Instance

ETE 0xF00 TRCITCTRL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13042
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.46 TRCITEEDCR, Instrumentation Trace Extension External Debug Control Register

The TRCITEEDCR characteristics are:

Purpose

Controls instrumentation trace filtering.

Configurations

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR0.ITE == 1. Otherwise, direct accesses to TRCITEEDCR are RES0.

Attributes

TRCITEEDCR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

RL, bit [6]

When FEAT_RME is implemented:

Instrumentation Trace in Realm state.

0b0 Instrumentation trace prohibited in Realm state.

0b1 Instrumentation trace permitted in Realm state.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

This field is used in conjunction with TRCCONFIGR.ITO and TRCITEEDCR.E<m> to control
whether Instrumentation trace is permitted or prohibited in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

S, bit [5]

When Secure state is implemented:

Instrumentation Trace in Secure state.

0b0 Instrumentation trace prohibited in Secure state.

0b1 Instrumentation trace permitted in Secure state.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

When FEAT_RME is not implemented, this field is used in conjunction with TRCCONFIGR.ITO,
TRCITEEDCR.E3, and TRCITEEDCR.E<m> to control whether Instrumentation trace is
permitted or prohibited in Secure state.

When FEAT_RME is implemented, this field is used in conjunction with TRCCONFIGR.ITO and
TRCITEEDCR.E<m> to control whether Instrumentation trace is permitted or prohibited in Secure
state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

31 7

RL

6

S

5

NS

4

E3

3

E2

2

E1

1

E0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13043
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Otherwise:

Reserved, RES0.

NS, bit [4]

When Non-secure state is implemented:

Instrumentation Trace in Non-secure state.

0b0 Instrumentation trace prohibited in Non-secure state.

0b1 Instrumentation trace permitted in Non-secure state.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

This field is used in conjunction with TRCCONFIGR.ITO and TRCITEEDCR.E<m> to control
whether Instrumentation trace is permitted or prohibited in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [3]

When EL3 is implemented:

Instrumentation Trace Enable at EL3.

0b0 Instrumentation trace prohibited at EL3.

0b1 Instrumentation trace permitted at EL3.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

When FEAT_RME is not implemented, TRCITEEDCR.E3 is used in conjunction with
TRCCONFIGR.ITO and TRCITEEDCR.S to control whether Instrumentation trace is permitted or
prohibited at EL3.

When FEAT_RME is implemented, TRCITEEDCR.E3 is used in conjunction with
TRCCONFIGR.ITO to control whether Instrumentation trace is permitted or prohibited at EL3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E<m>, bit [m], for m = 2 to 0

Instrumentation Trace Enable at EL<m>.

0b0 Instrumentation trace prohibited at EL<m>.

0b1 Instrumentation trace permitted at EL<m>.

This field is ignored when SelfHostedTraceEnabled () returns TRUE.

This bit is used in conjunction with TRCCONFIGR.ITO, TRCITEEDCR.NS, TRCITEEDCR.S,
and TRCITEEDCR.RL to control whether Instrumentation trace is permitted or prohibited at
EL<m> in the specified Security states.

TRCITEEDCR.E<2> is RES0 if EL2 is not implemented in any Security states.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCITEEDCR:

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13044
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
TRCITEEDCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x048 TRCITEEDCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13045
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.47 TRCLAR, Trace Lock Access Register

The TRCLAR characteristics are:

Purpose

Used to lock and unlock the Software Lock.

Note
ETE does not implement the Software Lock.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and the Software Lock is implemented. Otherwise, direct accesses to TRCLAR are RES0.

Attributes

TRCLAR is a 32-bit register.

Field descriptions

KEY, bits [31:0]

When Software Lock is implemented:

Software Lock Key.

A value of 0xC5ACCE55 unlocks the Software Lock.

Any other value locks the Software Lock.

Otherwise:

Reserved, RES0.

Accessing the TRCLAR:

External debugger accesses to this register are unaffected by the OS Lock.

TRCLAR can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are WO.

KEY

31 0

Component Offset Instance

ETE 0xFB0 TRCLAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13046
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.48 TRCLSR, Trace Lock Status Register

The TRCLSR characteristics are:

Purpose

Indicates whether the Software Lock is implemented, and the current status of the Software Lock.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCLSR are RES0.

Attributes

TRCLSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Software lock size.

Reads as 0b0.

Access to this field is RO.

SLK, bit [1]

The current Software Lock status.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Software Lock is unlocked.

0b1 Software Lock is locked. Writes to the other registers in this component, except for the
TRCLAR, are ignored.

This field reads as 0.

Access to this field is RO.

SLI, bit [0]

Indicates whether the Software Lock is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Software Lock is not implemented. Writes to the TRCLAR are ignored.

0b1 Software Lock is implemented.

This field reads as 0.

Access to this field is RO.

Accessing the TRCLSR:

External debugger accesses to this register are unaffected by the OS Lock.

RES0

31 3

0

2 1 0

nTT SLI
SLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13047
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
TRCLSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFB4 TRCLSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13048
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.49 TRCOSLSR, Trace OS Lock Status Register

The TRCOSLSR characteristics are:

Purpose

Returns the status of the Trace OS Lock.

Configurations

External register TRCOSLSR bits [31:0] are architecturally mapped to AArch64 System register
TRCOSLSR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCOSLSR are RES0.

Attributes

TRCOSLSR is a 32-bit register.

Field descriptions

Bits [31:5]

Reserved, RES0.

OSLM, bits [4:3, 0]

OS Lock model.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000 Trace OS Lock is not implemented.

0b010 Trace OS Lock is implemented.

0b100 Trace OS Lock is not implemented, and the trace unit is controlled by the PE OS Lock.

All other values are reserved.

When FEAT_ETE is implemented, the values 0b000 and 0b010 are not permitted.

The OSLM field is split as follows:

• OSLM[2:1] is TRCOSLSR[4:3].

• OSLM[0] is TRCOSLSR[0].

Access to this field is RO.

Bit [2]

Reserved, RES0.

OSLK, bit [1]

OS Lock status.

0b0 The OS Lock is unlocked.

0b1 The OS Lock is locked.

Note

This field indicates the state of the PE OS Lock.

RES0

31 5 4 3 2 1 0

OSLM[2:1]
RES0

OSLM[0]
OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13049
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCOSLSR:

External debugger accesses to this register are unaffected by the OS Lock.

TRCOSLSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register generate an error
response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x304 TRCOSLSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13050
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.50 TRCPDCR, Trace PowerDown Control Register

The TRCPDCR characteristics are:

Purpose

Requests the system to provide power to the trace unit.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPDCR are RES0.

Attributes

TRCPDCR is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

PU, bit [3]

Power Up Request.

0b0 The system can remove power from the trace unit core power domain, or requests for
power to the trace unit core power domain are implemented outside of the trace unit.

0b1 The system must provide power to the trace unit core power domain.

This field is RES0.

Bits [2:0]

Reserved, RES0.

Accessing the TRCPDCR:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPDCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 4

PU

3

RES0

2 0

Component Offset Instance

ETE 0x310 TRCPDCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13051
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.51 TRCPDSR, Trace PowerDown Status Register

The TRCPDSR characteristics are:

Purpose

Indicates the power status of the trace unit.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPDSR are RES0.

Attributes

TRCPDSR is a 32-bit register.

Field descriptions

Bits [31:6]

Reserved, RES0.

OSLK, bit [5]

OS Lock Status.

0b0 The OS Lock is unlocked.

0b1 The OS Lock is locked.

Note
This field indicates the state of the PE OS Lock.

Bits [4:2]

Reserved, RES0.

STICKYPD, bit [1]

Sticky powerdown status. Indicates whether the trace register state is valid.

0b0 The state of TRCOSLSR and the trace registers are valid.

0b1 The state of TRCOSLSR and the trace registers might not be valid.

This field is set to 1 if the power to the trace unit core power domain is removed and the trace unit
register state is not valid.

The STICKYPD field is read-sensitive. On a read of the TRCPDSR, this field is cleared to 0 after
the register has been read.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 1.

POWER, bit [0]

Power Status.

0b0 The trace unit core power domain is not powered. All trace unit registers are not
accessible and they all return an error response.

0b1 The trace unit core power domain is powered. Trace unit registers are accessible.

RES0

31 6 5

RES0

4 2 1 0

OSLK POWER
STICKYPD
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13052
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Access to this field is RAO/WI.

Accessing the TRCPDSR:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPDSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0x314 TRCPDSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13053
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.52 TRCPIDR0, Trace Peripheral Identification Register 0

The TRCPIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR0 are RES0.

Attributes

TRCPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, bits [7:0].

The part number is selected by the designer of the component, and is stored in TRCPIDR1.PART_1
and TRCPIDR0.PART_0.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRCPIDR0:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

ETE 0xFE0 TRCPIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13054
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.53 TRCPIDR1, Trace Peripheral Identification Register 1

The TRCPIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR1 are RES0.

Attributes

TRCPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, JEP106 identification code, bits [3:0].

JEP106 identification and continuation codes, which are stored as follows:

• TRCPIDR1.DES_0: JEP106 identification code bits[3:0].

• TRCPIDR2.DES_1: JEP106 identification code bits[6:4].

• TRCPIDR4.DES_2: JEP106 continuation code.

These codes indicate the designer of the component and not the implementer, except where the two
are the same. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.

The parity bit in the JEP106 identification code is not included.

Note

For example, Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

• The continuation code is the number of times 0x7F appears before the final number. For
example, a component designed by Arm Limited has the code 0x4.

• The identification code is bits[6:0] of the final number. For example, a component designed
by Arm Limited has the code 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, bits [11:8].

The part number is selected by the designer of the component, and is stored in TRCPIDR1.PART_1
and TRCPIDR0.PART_0.

RES0

31 8

DES_0

7 4

PART_1

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13055
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRCPIDR1:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFE4 TRCPIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13056
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.54 TRCPIDR2, Trace Peripheral Identification Register 2

The TRCPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR2 are RES0.

Attributes

TRCPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component major revision.

TRCPIDR2.REVISION and TRCPIDR3.REVAND together form the revision number of the
component, with TRCPIDR2.REVISION being the most significant part and TRCPIDR3.REVAND
the least significant part.

When a component is changed, TRCPIDR2.REVISION or TRCPIDR3.REVAND are increased to
ensure that software can differentiate the different revisions of the component.
TRCPIDR3.REVAND should be set to 0b0000 when TRCPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4].

JEP106 identification and continuation codes, which are stored as follows:

• TRCPIDR1.DES_0: JEP106 identification code bits[3:0].

• TRCPIDR2.DES_1: JEP106 identification code bits[6:4].

• TRCPIDR4.DES_2: JEP106 continuation code.

These codes indicate the designer of the component and not the implementer, except where the two
are the same. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13057
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.

The parity bit in the JEP106 identification code is not included.

Note

For example, Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

• The continuation code is the number of times 0x7F appears before the final number. For
example, a component designed by Arm Limited has the code 0x4.

• The identification code is bits[6:0] of the final number. For example, a component designed
by Arm Limited has the code 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRCPIDR2:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFE8 TRCPIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13058
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.55 TRCPIDR3, Trace Peripheral Identification Register 3

The TRCPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR3 are RES0.

Attributes

TRCPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Component minor revision.

TRCPIDR2.REVISION and TRCPIDR3.REVAND together form the revision number of the
component, with TRCPIDR2.REVISION being the most significant part and TRCPIDR3.REVAND
the least significant part. When a component is changed, TRCPIDR2.REVISION or
TRCPIDR3.REVAND are increased to ensure that software can differentiate the different revisions
of the component. TRCPIDR3.REVAND should be set to 0b0000 when TRCPIDR2.REVISION is
increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are
identical.

• If the CMOD fields of both components have the same nonzero value, it does not necessarily
mean that they have the same modifications.

• If the value of the CMOD field of either of the two components is nonzero, they might not
be identical, even though they have the same Unique Component Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

REVAND

7 4

CMOD

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13059
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCPIDR3:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFEC TRCPIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13060
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.56 TRCPIDR4, Trace Peripheral Identification Register 4

The TRCPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR4 are RES0.

Attributes

TRCPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One of the following is true:

• The component uses a single 4KB block.

• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

0b0001..0b1111 The component occupies 2TRCPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly
indicate the size of the component. Arm recommends that software determine the size of the
component from the Unique Component Identifier fields, and other IMPLEMENTATION DEFINED
registers in the component.

This field has the value 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code.

JEP106 identification and continuation codes, which are stored as follows:

• TRCPIDR1.DES_0: JEP106 identification code bits[3:0].

• TRCPIDR2.DES_1: JEP106 identification code bits[6:4].

• TRCPIDR4.DES_2: JEP106 continuation code.

These codes indicate the designer of the component and not the implementer, except where the two
are the same. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.

The parity bit in the JEP106 identification code is not included.

RES0

31 8

SIZE

7 4

DES_2

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13061
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Note

For example, Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

• The continuation code is the number of times 0x7F appears before the final number. For
example, a component designed by Arm Limited has the code 0x4.

• The identification code is bits[6:0] of the final number. For example, a component designed
by Arm Limited has the code 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRCPIDR4:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

ETE 0xFD0 TRCPIDR4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13062
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.57 TRCPIDR5, Trace Peripheral Identification Register 5

The TRCPIDR5 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR5 are RES0.

Attributes

TRCPIDR5 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCPIDR5:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR5 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0xFD4 TRCPIDR5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13063
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.58 TRCPIDR6, Trace Peripheral Identification Register 6

The TRCPIDR6 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR6 are RES0.

Attributes

TRCPIDR6 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCPIDR6:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR6 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0xFD8 TRCPIDR6
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13064
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.59 TRCPIDR7, Trace Peripheral Identification Register 7

The TRCPIDR7 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPIDR7 are RES0.

Attributes

TRCPIDR7 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRCPIDR7:

External debugger accesses to this register are unaffected by the OS Lock.

TRCPIDR7 can be accessed through the external debug interface:

This interface is accessible as follows:

• When !IsTraceCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

ETE 0xFDC TRCPIDR7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13065
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.60 TRCPRGCTLR, Trace Programming Control Register

The TRCPRGCTLR characteristics are:

Purpose

Enables the trace unit.

Configurations

External register TRCPRGCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCPRGCTLR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCPRGCTLR are RES0.

Attributes

TRCPRGCTLR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Trace unit enable.

0b0 The trace unit is disabled.

0b1 The trace unit is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to 0.

Accessing the TRCPRGCTLR:

Must be programmed.

TRCPRGCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 1

EN

0

Component Offset Instance

ETE 0x004 TRCPRGCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13066
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.61 TRCQCTLR, Trace Q Element Control Register

The TRCQCTLR characteristics are:

Purpose

Controls when Q elements are enabled.

Configurations

External register TRCQCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCQCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR0.QFILT == 1. Otherwise, direct accesses to TRCQCTLR are RES0.

Attributes

TRCQCTLR is a 32-bit register.

Field descriptions

Bits [31:9]

Reserved, RES0.

MODE, bit [8]

Selects whether the Address Range Comparators selected by TRCQCTLR.RANGE indicate
address ranges where the trace unit is permitted to generate Q elements or address ranges where the
trace unit is not permitted to generate Q elements:

0b0 Exclude mode.

The Address Range Comparators selected by TRCQCTLR.RANGE indicate address
ranges where the trace unit must not generate Q elements. If no ranges are selected, Q
elements are permitted across the entire memory map.

0b1 Include Mode.

The Address Range Comparators selected by TRCQCTLR.RANGE indicate address
ranges where the trace unit can generate Q elements. If all the implemented bits in
RANGE are set to 0 then Q elements are disabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RANGE[<m>], bit [m], for m = 7 to 0

Specifies whether Address Range Comparator <m> controls Q elements.

0b0 The address range that Address Range Comparator <m> defines is not selected.

0b1 The address range that Address Range Comparator <m> defines is selected.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

RES0

31 9 8 7 6 5 4 3 2 1 0

MODE
RANGE[7]

RANGE[6]
RANGE[5]

RANGE[0]
RANGE[1]

RANGE[2]
RANGE[3]

RANGE[4]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13067
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCQCTLR:

Must be programmed if TRCCONFIGR.QE != 0b00.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCQCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x044 TRCQCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13068
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.62 TRCRSCTLR<n>, Trace Resource Selection Control Register <n>, n = 2 - 31

The TRCRSCTLR<n> characteristics are:

Purpose

Controls the selection of the resources in the trace unit.

Configurations

External register TRCRSCTLR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCRSCTLR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and (UInt(TRCIDR4.NUMRSPAIR) + 1) * 2 > n. Otherwise, direct accesses to TRCRSCTLR<n>
are RES0.

Resource selector 0 always returns FALSE.

Resource selector 1 always returns TRUE.

Resource selectors are implemented in pairs. Each odd numbered resource selector is part of a pair
with the even numbered resource selector that is numbered as one less than it. For example, resource
selectors 2 and 3 form a pair.

Attributes

TRCRSCTLR<n> is a 32-bit register.

Field descriptions

Bits [31:22]

Reserved, RES0.

PAIRINV, bit [21]

When n is even:

Controls whether the combined result from a resource selector pair is inverted.

0b0 Do not invert the combined output of the 2 resource selectors.

0b1 Invert the combined output of the 2 resource selectors.

If:

• A is the register TRCRSCTLR<n>.

• B is the register TRCRSCTLR<n+1>.

Then the combined output of the 2 resource selectors A and B depends on the value of (A.PAIRINV,
A.INV, B.INV) as follows:

• 0b000 -> A and B.

• 0b001 -> Reserved.

• 0b010 -> not(A) and B.

• 0b011 -> not(A) and not(B).

• 0b100 -> not(A) or not(B).

• 0b101 -> not(A) or B.

• 0b110 -> Reserved.

• 0b111 -> A or B.

RES0

31 22 21 20

GROUP

19 16

SELECT

15 0

PAIRINV INV
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13069
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

INV, bit [20]

Controls whether the resource, that TRCRSCTLR<n>.GROUP and TRCRSCTLR<n>.SELECT
selects, is inverted.

0b0 Do not invert the output of this selector.

0b1 Invert the output of this selector.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

GROUP, bits [19:16]

Selects a group of resources.

0b0000 External Input Selectors.

0b0001 PE Comparator Inputs.

0b0010 Counters and Sequencer.

0b0011 Single-shot Comparator Controls.

0b0100 Single Address Comparators.

0b0101 Address Range Comparators.

0b0110 Context Identifier Comparators.

0b0111 Virtual Context Identifier Comparators.

All other values are reserved.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT, bits [15:0]

Resource Specific Controls. Contains the controls specific to the resource group selected by
GROUP, described in the following sections.

SELECT encoding for External Input Selectors

Bits [15:4]

Reserved, RES0.

EXTIN[<m>], bit [m], for m = 3 to 0

Selects one or more External Inputs.

0b0 Ignore EXTIN <m>.

0b1 Select EXTIN <m>.

This bit is RES0 if m >= TRCIDR5.NUMEXTINSEL.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

15 4 3 2 1 0

EXTIN[3]
EXTIN[2]

EXTIN[0]
EXTIN[1]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13070
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
SELECT encoding for PE Comparator Inputs

Bits [15:8]

Reserved, RES0.

PECOMP[<m>], bit [m], for m = 7 to 0

Selects one or more PE Comparator Inputs.

0b0 Ignore PE Comparator Input <m>.

0b1 Select PE Comparator Input <m>.

This bit is RES0 if m >= TRCIDR4.NUMPC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Counters and Sequencer

Bits [15:8]

Reserved, RES0.

SEQUENCER[<m>], bit [m+4], for m = 3 to 0

Sequencer states.

0b0 Ignore Sequencer state <m>.

0b1 Select Sequencer state <m>.

This bit is RES0 if m >= TRCIDR5.NUMSEQSTATE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

COUNTERS[<m>], bit [m], for m = 3 to 0

Counters resources at zero.

0b0 Ignore Counter <m>.

0b1 Select Counter <m> is zero.

This bit is RES0 if m >= TRCIDR5.NUMCNTR.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

15 8 7 6 5 4 3 2 1 0

PECOMP[7]
PECOMP[6]

PECOMP[5]
PECOMP[4]

PECOMP[0]
PECOMP[1]

PECOMP[2]
PECOMP[3]

RES0

15 8 7 6 5 4 3 2 1 0

SEQUENCER[3]
SEQUENCER[2]

SEQUENCER[1]
SEQUENCER[0]

COUNTERS[
0]

COUNTERS[1]
COUNTERS[2]

COUNTERS[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13071
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
SELECT encoding for Single-shot Comparator Controls

Bits [15:8]

Reserved, RES0.

SINGLE_SHOT[<m>], bit [m], for m = 7 to 0

Selects one or more Single-shot Comparator Controls.

0b0 Ignore Single-shot Comparator Control <m>.

0b1 Select Single-shot Comparator Control <m>.

This bit is RES0 if m >= TRCIDR4.NUMSSCC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Single Address Comparators

SAC[<m>], bit [m], for m = 15 to 0

Selects one or more Single Address Comparators.

0b0 Ignore Single Address Comparator <m>.

0b1 Select Single Address Comparator <m>.

This bit is RES0 if m >= 2 × TRCIDR4.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

15 8 7 6 5 4 3 2 1 0

SINGLE_SHOT[7]
SINGLE_SHOT[6]

SINGLE_SHOT[5]
SINGLE_SHOT[4]

SINGLE_SH
OT[0]

SINGLE_SHOT
[1]

SINGLE_SHOT[2
]

SINGLE_SHOT[3]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAC[15]
SAC[14]

SAC[13]
SAC[12]

SAC[11]
SAC[10]

SAC[9]
SAC[8]

SAC[0]
SAC[1]

SAC[2]
SAC[3]

SAC[4]
SAC[5]

SAC[6]
SAC[7]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13072
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
SELECT encoding for Address Range Comparators

Bits [15:8]

Reserved, RES0.

ARC[<m>], bit [m], for m = 7 to 0

Selects one or more Address Range Comparators.

0b0 Ignore Address Range Comparator <m>.

0b1 Select Address Range Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMACPAIRS.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Context Identifier Comparators

Bits [15:8]

Reserved, RES0.

CID[<m>], bit [m], for m = 7 to 0

Selects one or more Context Identifier Comparators.

0b0 Ignore Context Identifier Comparator <m>.

0b1 Select Context Identifier Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMCIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SELECT encoding for Virtual Context Identifier Comparators

RES0

15 8 7 6 5 4 3 2 1 0

ARC[7]
ARC[6]

ARC[5]
ARC[4]

ARC[0]
ARC[1]

ARC[2]
ARC[3]

RES0

15 8 7 6 5 4 3 2 1 0

CID[7]
CID[6]

CID[5]
CID[4]

CID[0]
CID[1]

CID[2]
CID[3]

RES0

15 8 7 6 5 4 3 2 1 0

VMID[7]
VMID[6]

VMID[5]
VMID[4]

VMID[0]
VMID[1]

VMID[2]
VMID[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13073
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Bits [15:8]

Reserved, RES0.

VMID[<m>], bit [m], for m = 7 to 0

Selects one or more Virtual Context Identifier Comparators.

0b0 Ignore Virtual Context Identifier Comparator <m>.

0b1 Select Virtual Context Identifier Comparator <m>.

This bit is RES0 if m >= TRCIDR4.NUMVMIDC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCRSCTLR<n>:

Must be programmed if any of the following are true:

• TRCCNTCTLR<n>.RLDEVENT.TYPE == 0 and TRCCNTCTLR<n>.RLDEVENT.SEL == n.

• TRCCNTCTLR<n>.RLDEVENT.TYPE == 1 and TRCCNTCTLR<n>.RLDEVENT.SEL == n/2.

• TRCCNTCTLR<n>.CNTEVENT.TYPE == 0 and TRCCNTCTLR<n>.CNTEVENT.SEL == n.

• TRCCNTCTLR<n>.CNTEVENT.TYPE == 1 and TRCCNTCTLR<n>.CNTEVENT.SEL == n/2.

• TRCEVENTCTL0R.EVENT0.TYPE == 0 and TRCEVENTCTL0R.EVENT0.SEL == n.

• TRCEVENTCTL0R.EVENT0.TYPE == 1 and TRCEVENTCTL0R.EVENT0.SEL == n/2.

• TRCEVENTCTL0R.EVENT1.TYPE == 0 and TRCEVENTCTL0R.EVENT1.SEL == n.

• TRCEVENTCTL0R.EVENT1.TYPE == 1 and TRCEVENTCTL0R.EVENT1.SEL == n/2.

• TRCEVENTCTL0R.EVENT2.TYPE == 0 and TRCEVENTCTL0R.EVENT2.SEL == n.

• TRCEVENTCTL0R.EVENT2.TYPE == 1 and TRCEVENTCTL0R.EVENT2.SEL == n/2.

• TRCEVENTCTL0R.EVENT3.TYPE == 0 and TRCEVENTCTL0R.EVENT3.SEL == n.

• TRCEVENTCTL0R.EVENT3.TYPE == 1 and TRCEVENTCTL0R.EVENT3.SEL == n/2.

• TRCSEQEVR<n>.B.TYPE == 0 and TRCSEQEVR<n>.B.SEL = n.

• TRCSEQEVR<n>.B.TYPE == 1 and TRCSEQEVR<n>.B.SEL = n/2.

• TRCSEQEVR<n>.F.TYPE == 0 and TRCSEQEVR<n>.F.SEL = n.

• TRCSEQEVR<n>.F.TYPE == 1 and TRCSEQEVR<n>.F.SEL = n/2.

• TRCSEQRSTEVR.RST.TYPE == 0 and TRCSEQRSTEVR.RST.SEL == n.

• TRCSEQRSTEVR.RST.TYPE == 1 and TRCSEQRSTEVR.RST.SEL == n/2.

• TRCTSCTLR.EVENT.TYPE == 0 and TRCTSCTLR.EVENT.SEL == n.

• TRCTSCTLR.EVENT.TYPE == 1 and TRCTSCTLR.EVENT.SEL == n/2.

• TRCVICTLR.EVENT.TYPE == 0 and TRCVICTLR.EVENT.SEL == n.

• TRCVICTLR.EVENT.TYPE == 1 and TRCVICTLR.EVENT.SEL == n/2.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13074
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
TRCRSCTLR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x200 + (4 * n) TRCRSCTLR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13075
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.63 TRCRSR, Trace Resources Status Register

The TRCRSR characteristics are:

Purpose

Use this to set, or read, the status of the resources.

Configurations

External register TRCRSR bits [31:0] are architecturally mapped to AArch64 System register
TRCRSR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCRSR are RES0.

Attributes

TRCRSR is a 32-bit register.

Field descriptions

Bits [31:13]

Reserved, RES0.

TA, bit [12]

Tracing active.

0b0 Tracing is not active.

0b1 Tracing is active.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

EVENT[<m>], bit [m+8], for m = 3 to 0

Untraced status of ETEEvents.

0b0 An ETEEvent <m> has not occurred.

0b1 An ETEEvent <m> has occurred while the resources were in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When TRCIDR4.NUMRSPAIR == 0b0000, access to this field is RES0.

• RES0 if all of the following are true:

— TRCIDR4.NUMRSPAIR != 0b0000.

— m > UInt(TRCIDR0.NUMEVENT).

• Otherwise, access to this field is RW.

Bits [7:4]

Reserved, RES0.

RES0

31 13

TA

12 11 10 9 8

RES0

7 4 3 2 1 0

EVENT[3]
EVENT[2]

EVENT[1]
EVENT[0]

EXTIN[0]
EXTIN[1]

EXTIN[2]
EXTIN[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13076
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
EXTIN[<m>], bit [m], for m = 3 to 0

The sticky status of the External Input Selectors.

0b0 An event selected by External Input Selector <m> has not occurred.

0b1 At least one event selected by External Input Selector <m> has occurred while the
resources were in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR5.NUMEXTINSEL), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCRSR:

Must always be programmed.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCRSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x028 TRCRSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13077
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.64 TRCSEQEVR<n>, Trace Sequencer State Transition Control Register <n>, n = 0 - 2

The TRCSEQEVR<n> characteristics are:

Purpose

Moves the Sequencer state:

• Backwards, from state n+1 to state n when a programmed resource event occurs.

• Forwards, from state n to state n+1 when a programmed resource event occurs.

Configurations

External register TRCSEQEVR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCSEQEVR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct accesses to TRCSEQEVR<n> are
RES0.

Attributes

TRCSEQEVR<n> is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

B_TYPE, bit [15]

Chooses the type of Resource Selector.

Backward field. Defines whether the backward resource event is a single Resource Selector or a
Resource Selector pair. When the resource event occurs then the Sequencer state moves from state
n+1 to state n. For example, if TRCSEQEVR2.B.SEL == 0x14 then when event 0x14 occurs, the
Sequencer moves from state 3 to state 2.

0b0 A single Resource Selector.

TRCSEQEVR<n>.B.SEL[4:0] selects the single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCSEQEVR<n>.B.SEL[3:0] selects the Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output is used to activate the resource event.
TRCSEQEVR<n>.B.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

B_SEL, bits [12:8]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.B.TYPE
controls whether TRCSEQEVR<n>.B.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

Backward field. Selects the single Resource Selector or Resource Selector pair.

RES0

31 16 15

RES0

14 13

B_SEL

12 8 7

RES0

6 5

F_SEL

4 0

B_TYPE F_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13078
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

F_TYPE, bit [7]

Chooses the type of Resource Selector.

Backward field. Defines whether the forward resource event is a single Resource Selector or a
Resource Selector pair. When the resource event occurs then the Sequencer state moves from state
n to state n+1. For example, if TRCSEQEVR1.F.SEL == 0x12 then when event 0x12 occurs, the
Sequencer moves from state 1 to state 2.

0b0 A single Resource Selector.

TRCSEQEVR<n>.F.SEL[4:0] selects the single Resource Selector, from 0-31, used to
activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCSEQEVR<n>.F.SEL[3:0] selects the Resource Selector pair, from 0-15, that has a
Boolean function that is applied to it whose output is used to activate the resource event.
TRCSEQEVR<n>.F.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

F_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors. TRCSEQEVR<n>.F.TYPE
controls whether TRCSEQEVR<n>.F.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

Forward field. Selects the single Resource Selector or Resource Selector pair.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQEVR<n>:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSEQEVR<n> can be accessed through the external debug interface:

Component Offset Instance

ETE 0x100 + (4 * n) TRCSEQEVR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13079
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13080
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.65 TRCSEQRSTEVR, Trace Sequencer Reset Control Register

The TRCSEQRSTEVR characteristics are:

Purpose

Moves the Sequencer to state 0 when a programmed resource event occurs.

Configurations

External register TRCSEQRSTEVR bits [31:0] are architecturally mapped to AArch64 System
register TRCSEQRSTEVR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct accesses to TRCSEQRSTEVR are
RES0.

Attributes

TRCSEQRSTEVR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

RST_TYPE, bit [7]

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCSEQRSTEVR.RST.SEL[4:0] selects the single Resource Selector, from 0-31, used
to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCSEQRSTEVR.RST.SEL[3:0] selects the Resource Selector pair, from 0-15, that
has a Boolean function that is applied to it whose output is used to activate the resource
event. TRCSEQRSTEVR.RST.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

RST_SEL, bits [4:0]

Defines the selected Resource Selector or pair of Resource Selectors.
TRCSEQRSTEVR.RST.TYPE controls whether TRCSEQRSTEVR.RST.SEL is the index of a
single Resource Selector, or the index of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

31 8 7

RES0

6 5

RST_SEL

4 0

RST_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13081
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCSEQRSTEVR:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSEQRSTEVR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x118 TRCSEQRSTEVR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13082
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.66 TRCSEQSTR, Trace Sequencer State Register

The TRCSEQSTR characteristics are:

Purpose

Use this to set, or read, the Sequencer state.

Configurations

External register TRCSEQSTR bits [31:0] are architecturally mapped to AArch64 System register
TRCSEQSTR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR5.NUMSEQSTATE != 0b000. Otherwise, direct accesses to TRCSEQSTR are RES0.

Attributes

TRCSEQSTR is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

STATE, bits [1:0]

Set or returns the state of the Sequencer.

0b00 State 0.

0b01 State 1.

0b10 State 2.

0b11 State 3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSEQSTR:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0010 and TRCRSCTLR<n>.SEQUENCER != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSEQSTR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 2 1 0

STATE

Component Offset Instance

ETE 0x11C TRCSEQSTR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13083
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.67 TRCSSCCR<n>, Trace Single-shot Comparator Control Register <n>, n = 0 - 7

The TRCSSCCR<n> characteristics are:

Purpose

Controls the corresponding Single-shot Comparator Control resource.

Configurations

External register TRCSSCCR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCSSCCR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMSSCC) > n. Otherwise, direct accesses to TRCSSCCR<n> are RES0.

Attributes

TRCSSCCR<n> is a 32-bit register.

Field descriptions

Bits [31:25]

Reserved, RES0.

RST, bit [24]

Selects the Single-shot Comparator Control mode.

0b0 The Single-shot Comparator Control is in single-shot mode.

0b1 The Single-shot Comparator Control is in multi-shot mode.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

ARC[<m>], bit [m+16], for m = 7 to 0

Selects one or more Address Range Comparators for Single-shot control.

0b0 The Address Range Comparator <m>, is not selected for Single-shot control.

0b1 The Address Range Comparator <m>, is selected for Single-shot control.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

RES0

31 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RST
ARC[7]

ARC[6]
ARC[5]

ARC[4]
ARC[3]

ARC[2]
ARC[1]

ARC[0]
SAC[15]

SAC[14]
SAC[13]

SAC[0]
SAC[1]

SAC[2]
SAC[3]

SAC[4]
SAC[5]

SAC[6]
SAC[7]

SAC[8]
SAC[9]

SAC[10]
SAC[11]

SAC[12]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13084
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
SAC[<m>], bit [m], for m = 15 to 0

Selects one or more Single Address Comparators for Single-shot control.

0b0 The Single Address Comparator <m>, is not selected for Single-shot control.

0b1 The Single Address Comparator <m>, is selected for Single-shot control.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS) * 2, access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCSSCCR<n>:

Must be programmed if any TRCRSCTLR<n>.GROUP == 0b0011 and TRCRSCTLR<n>.SINGLE_SHOT[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSSCCR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x280 + (4 * n) TRCSSCCR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13085
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.68 TRCSSCSR<n>, Trace Single-shot Comparator Control Status Register <n>, n = 0 - 7

The TRCSSCSR<n> characteristics are:

Purpose

Returns the status of the corresponding Single-shot Comparator Control.

Configurations

External register TRCSSCSR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCSSCSR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMSSCC) > n. Otherwise, direct accesses to TRCSSCSR<n> are RES0.

Attributes

TRCSSCSR<n> is a 32-bit register.

Field descriptions

STATUS, bit [31]

Single-shot Comparator Control status. Indicates if any of the comparators selected by this
Single-shot Comparator control have matched. The selected comparators are defined by
TRCSSCCR<n>.ARC, TRCSSCCR<n>.SAC, and TRCSSPCICR<n>.PC.

0b0 No match has occurred. When the first match occurs, this field takes a value of 1. It
remains at 1 until explicitly modified by a write to this register.

0b1 One or more matches has occurred. If TRCSSCCR<n>.RST == 0 then:

• There is only one match and no more matches are possible.

• Software must reset this field to 0 to re-enable the Single-shot Comparator
Control.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

PENDING, bit [30]

Single-shot pending status. The Single-shot Comparator Control fired while the resources were in
the Paused state.

0b0 No match has occurred.

0b1 One or more matches has occurred.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [29:4]

Reserved, RES0.

31 30

RES0

29 4

PC

3

DV

2

DA

1 0

STATUS PENDING INST
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13086
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
PC, bit [3]

PE Comparator Input support. Indicates if the Single-shot Comparator Control supports PE
Comparator Inputs.

0b0 This Single-shot Comparator Control does not support PE Comparator Inputs. Selecting
any PE Comparator Inputs using the associated TRCSSPCICR<n> results in
CONSTRAINED UNPREDICTABLE behavior of the Single-shot Comparator Control
resource. The Single-shot Comparator Control might match unexpectedly or might not
match.

0b1 This Single-shot Comparator Control supports PE Comparator Inputs.

Access to this field is RO.

DV, bit [2]

Data value comparator support. Data value comparisons are not implemented in ETE and are
reserved for other trace architectures. Allocated in other trace architectures.

0b0 This Single-shot Comparator Control does not support data value comparisons.

0b1 This Single-shot Comparator Control supports data value comparisons.

This field reads as 0.

Access to this field is RO.

DA, bit [1]

Data Address Comparator support. Data address comparisons are not implemented in ETE and are
reserved for other trace architectures. Allocated in other trace architectures.

0b0 This Single-shot Comparator Control does not support data address comparisons.

0b1 This Single-shot Comparator Control supports data address comparisons.

This field reads as 0.

Access to this field is RO.

INST, bit [0]

Instruction Address Comparator support. Indicates if the Single-shot Comparator Control supports
instruction address comparisons.

0b0 This Single-shot Comparator Control does not support instruction address comparisons.

0b1 This Single-shot Comparator Control supports instruction address comparisons.

This field reads as 1.

Access to this field is RO.

Accessing the TRCSSCSR<n>:

Must be programmed if TRCRSCTLR<n>.GROUP == 0b0011 and TRCRSCTLR<n>.SINGLE_SHOT[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSSCSR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

Component Offset Instance

ETE 0x2A0 + (4 * n) TRCSSCSR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13087
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13088
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.69 TRCSSPCICR<n>, Trace Single-shot Processing Element Comparator Input Control Register
<n>, n = 0 - 7

The TRCSSPCICR<n> characteristics are:

Purpose

Returns the status of the corresponding Single-shot Comparator Control.

Configurations

External register TRCSSPCICR<n> bits [31:0] are architecturally mapped to AArch64 System
register TRCSSPCICR<n>[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented,
UInt(TRCIDR4.NUMSSCC) > n, UInt(TRCIDR4.NUMPC) > 0 and TRCSSCSR<n>.PC == 1.
Otherwise, direct accesses to TRCSSPCICR<n> are RES0.

Attributes

TRCSSPCICR<n> is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PC[<m>], bit [m], for m = 7 to 0

Selects one or more PE Comparator Inputs for Single-shot control.

0b0 The single PE Comparator Input <m>, is not selected as for Single-shot control.

0b1 The single PE Comparator Input <m>, is selected as for Single-shot control.

This bit is RES0 if m >= TRCIDR4.NUMPC.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSSPCICR<n>:

Must be programmed if implemented and any TRCRSCTLR<n>.GROUP == 0b0011 and
TRCRSCTLR<n>.SINGLE_SHOT[n] == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.

TRCSSPCICR<n> can be accessed through the external debug interface:

RES0

31 8 7 6 5 4 3 2 1 0

PC[7]
PC[6]

PC[5]
PC[4]

PC[0]
PC[1]

PC[2]
PC[3]

Component Offset Instance

ETE 0x2C0 + (4 * n) TRCSSPCICR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13089
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13090
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.70 TRCSTALLCTLR, Trace Stall Control Register

The TRCSTALLCTLR characteristics are:

Purpose

Enables trace unit functionality that prevents trace unit buffer overflows.

Configurations

External register TRCSTALLCTLR bits [31:0] are architecturally mapped to AArch64 System
register TRCSTALLCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR3.STALLCTL == 1. Otherwise, direct accesses to TRCSTALLCTLR are RES0.

Attributes

TRCSTALLCTLR is a 32-bit register.

Field descriptions

Bits [31:14]

Reserved, RES0.

NOOVERFLOW, bit [13]

When TRCIDR3.NOOVERFLOW == 1:

Trace overflow prevention.

0b0 Trace unit buffer overflow prevention is disabled.

0b1 Trace unit buffer overflow prevention is enabled.

Note

Enabling this feature might cause a significant performance impact.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

ISTALL, bit [8]

Instruction stall control. Controls if a trace unit can stall the PE when the trace buffer space is less
than LEVEL.

0b0 The trace unit must not stall the PE.

0b1 The trace unit can stall the PE.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

RES0

31 14 13

RES0

12 9 8

RES0

7 4

LEVEL

3 0

NOOVERFLOW ISTALL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13091
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
LEVEL, bits [3:0]

Threshold level field. The field can support 16 monotonic levels from 0b0000 to 0b1111.

The value 0b0000 defines the Minimal invasion level. This setting has a greater risk of a trace unit
buffer overflow.

The value 0b1111 defines the Maximum invasion level. This setting has a reduced risk of a trace unit
buffer overflow.

Note

For some implementations, invasion might occur at the minimal invasion level.

One or more of the least significant bits of LEVEL are permitted to be RES0. Arm recommends that
LEVEL[3:2] are fully implemented. Arm strongly recommends that LEVEL[3] is always
implemented. If one or more bits are RES0 and are written with a nonzero value, the effective value
of LEVEL is rounded down to the nearest power of 2 value which has the RES0 bits as zero. For
example, if LEVEL[1:0] are RES0 and a value of 0b1110 is written to LEVEL, the effective value of
LEVEL is 0b1100.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCSTALLCTLR:

Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSTALLCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x02C TRCSTALLCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13092
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.71 TRCSTATR, Trace Status Register

The TRCSTATR characteristics are:

Purpose

Returns the trace unit status.

Configurations

External register TRCSTATR bits [31:0] are architecturally mapped to AArch64 System register
TRCSTATR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCSTATR are RES0.

Attributes

TRCSTATR is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

PMSTABLE, bit [1]

Programmers' model stable.

0b0 The programmers' model is not stable.

0b1 The programmers' model is stable.

Accessing this field has the following behavior:

• When the trace unit is enabled, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is RO.

IDLE, bit [0]

Idle status.

0b0 The trace unit is not idle.

0b1 The trace unit is idle.

Accessing the TRCSTATR:

TRCSTATR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 2 1 0

PMSTABLE IDLE

Component Offset Instance

ETE 0x00C TRCSTATR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13093
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.72 TRCSYNCPR, Trace Synchronization Period Register

The TRCSYNCPR characteristics are:

Purpose

Controls how often trace protocol synchronization requests occur.

Configurations

External register TRCSYNCPR bits [31:0] are architecturally mapped to AArch64 System register
TRCSYNCPR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCSYNCPR are RES0.

Attributes

TRCSYNCPR is a 32-bit register.

Field descriptions

Bits [31:5]

Reserved, RES0.

PERIOD, bits [4:0]

Defines the number of bytes of trace between each periodic trace protocol synchronization request.

0b00000 Trace protocol synchronization is disabled.

0b01000 Trace protocol synchronization request occurs after 28 bytes of trace.

0b01001 Trace protocol synchronization request occurs after 29 bytes of trace.

0b01010 Trace protocol synchronization request occurs after 210 bytes of trace.

0b01011 Trace protocol synchronization request occurs after 211 bytes of trace.

0b01100 Trace protocol synchronization request occurs after 212 bytes of trace.

0b01101 Trace protocol synchronization request occurs after 213 bytes of trace.

0b01110 Trace protocol synchronization request occurs after 214 bytes of trace.

0b01111 Trace protocol synchronization request occurs after 215 bytes of trace.

0b10000 Trace protocol synchronization request occurs after 216 bytes of trace.

0b10001 Trace protocol synchronization request occurs after 217 bytes of trace.

0b10010 Trace protocol synchronization request occurs after 218 bytes of trace.

0b10011 Trace protocol synchronization request occurs after 219 bytes of trace.

0b10100 Trace protocol synchronization request occurs after 220 bytes of trace.

Other values are reserved. If a reserved value is programmed into PERIOD, then the behavior of the
synchronization period counter is CONSTRAINED UNPREDICTABLE and one of the following
behaviors occurs:

• No trace protocol synchronization requests are generated by this counter.

• Trace protocol synchronization requests occur at the specified period.

• Trace protocol synchronization requests occur at some other UNKNOWN period which can
vary.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

RES0

31 5

PERIOD

4 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13094
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCSYNCPR:

Must be programmed if TRCIDR3.SYNCPR == 0.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCSYNCPR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x034 TRCSYNCPR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13095
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.73 TRCTRACEIDR, Trace ID Register

The TRCTRACEIDR characteristics are:

Purpose

Sets the trace ID for instruction trace.

Configurations

External register TRCTRACEIDR bits [31:0] are architecturally mapped to AArch64 System
register TRCTRACEIDR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCTRACEIDR are RES0.

Attributes

TRCTRACEIDR is a 32-bit register.

Field descriptions

Bits [31:7]

Reserved, RES0.

TRACEID, bits [6:0]

Trace ID field. Sets the trace ID value for instruction trace. The width of the field is indicated by the
value of TRCIDR5.TRACEIDSIZE. Unimplemented bits are RES0.

If an implementation supports AMBA ATB, then:

• The width of the field is 7 bits.

• Writing a reserved trace ID value does not affect behavior of the trace unit but it might cause
UNPREDICTABLE behavior of the trace capture infrastructure.

See the AMBA ATB Protocol Specification for information about which ATID values are reserved.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCTRACEIDR:

Must be programmed if implemented.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCTRACEIDR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !IsTraceCorePowered() or !AllowExternalTraceAccess() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

RES0

31 7

TRACEID

6 0

Component Offset Instance

ETE 0x040 TRCTRACEIDR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13096
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.74 TRCTSCTLR, Trace Timestamp Control Register

The TRCTSCTLR characteristics are:

Purpose

Controls the insertion of global timestamps in the trace stream.

Configurations

External register TRCTSCTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCTSCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and TRCIDR0.TSSIZE != 0b00000. Otherwise, direct accesses to TRCTSCTLR are RES0.

Attributes

TRCTSCTLR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCTSCTLR.EVENT.SEL[4:0] selects the single Resource Selector, from 0-31, used
to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCTSCTLR.EVENT.SEL[3:0] selects the Resource Selector pair, from 0-15, that has
a Boolean function that is applied to it whose output is used to activate the resource
event. TRCTSCTLR.EVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

EVENT_SEL, bits [4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

Defines the selected Resource Selector or pair of Resource Selectors. TRCTSCTLR.EVENT.TYPE
controls whether TRCTSCTLR.EVENT.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

RES0

31 8 7

RES0

6 5

EVENT_SEL

4 0

EVENT_TYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13097
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRCTSCTLR:

Must be programmed if TRCCONFIGR.TS == 1.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCTSCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x030 TRCTSCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13098
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.75 TRCVICTLR, Trace ViewInst Main Control Register

The TRCVICTLR characteristics are:

Purpose

Controls instruction trace filtering.

Configurations

External register TRCVICTLR bits [31:0] are architecturally mapped to AArch64 System register
TRCVICTLR[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_EXT is
implemented. Otherwise, direct accesses to TRCVICTLR are RES0.

Attributes

TRCVICTLR is a 32-bit register.

Field descriptions

Bits [31:27]

Reserved, RES0.

EXLEVEL_RL_EL2, bit [26]

When FEAT_RME is implemented:

Filter instruction trace for EL2 in Realm state.

0b0 When TRCVICTLR.EXLEVEL_NS_EL2 is 0 the trace unit generates instruction trace
for EL2 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL2 is 1 the trace unit does not generate
instruction trace for EL2 in Realm state.

0b1 When TRCVICTLR.EXLEVEL_NS_EL2 is 0 the trace unit does not generate
instruction trace for EL2 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL2 is 1 the trace unit generates instruction trace
for EL2 in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_RL_EL1, bit [25]

When FEAT_RME is implemented:

Filter instruction trace for EL1 in Realm state.

0b0 When TRCVICTLR.EXLEVEL_NS_EL1 is 0 the trace unit generates instruction trace
for EL1 in Realm state.

RES0

31 27 26 25 24 23 22 21 20 19 18 17 16

RES0

15 12 11 10 9 8 7

RES0

6 5

Bits [4:0]

4 0

EXLEVEL_RL_EL2
EXLEVEL_RL_EL1

EXLEVEL_RL_EL0
RES0

EXLEVEL_NS_EL2
EXLEVEL_NS_EL1

EXLEVEL_NS_EL0
EXLEVEL_S_EL3

EVENT_TYPE
RES0

SSSTATUS
TRCRESET

TRCERR
EXLEVEL_S_EL0

EXLEVEL_S_EL1
EXLEVEL_S_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13099
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
When TRCVICTLR.EXLEVEL_NS_EL1 is 1 the trace unit does not generate
instruction trace for EL1 in Realm state.

0b1 When TRCVICTLR.EXLEVEL_NS_EL1 is 0 the trace unit does not generate
instruction trace for EL1 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL1 is 1 the trace unit generates instruction trace
for EL1 in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_RL_EL0, bit [24]

When FEAT_RME is implemented:

Filter instruction trace for EL0 in Realm state.

0b0 When TRCVICTLR.EXLEVEL_NS_EL0 is 0 the trace unit generates instruction trace
for EL0 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL0 is 1 the trace unit does not generate
instruction trace for EL0 in Realm state.

0b1 When TRCVICTLR.EXLEVEL_NS_EL0 is 0 the trace unit does not generate
instruction trace for EL0 in Realm state.

When TRCVICTLR.EXLEVEL_NS_EL0 is 1 the trace unit generates instruction trace
for EL0 in Realm state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES0.

EXLEVEL_NS_EL2, bit [22]

When Non-secure EL2 is implemented:

Filter instruction trace for EL2 in Non-secure state.

0b0 The trace unit generates instruction trace for EL2 in Non-secure state.

0b1 The trace unit does not generate instruction trace for EL2 in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_NS_EL1, bit [21]

When Non-secure EL1 is implemented:

Filter instruction trace for EL1 in Non-secure state.

0b0 The trace unit generates instruction trace for EL1 in Non-secure state.

0b1 The trace unit does not generate instruction trace for EL1 in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13100
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
EXLEVEL_NS_EL0, bit [20]

When Non-secure EL0 is implemented:

Filter instruction trace for EL0 in Non-secure state.

0b0 The trace unit generates instruction trace for EL0 in Non-secure state.

0b1 The trace unit does not generate instruction trace for EL0 in Non-secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL3, bit [19]

When EL3 is implemented:

Filter instruction trace for EL3.

0b0 The trace unit generates instruction trace for EL3.

0b1 The trace unit does not generate instruction trace for EL3.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL2, bit [18]

When Secure EL2 is implemented:

Filter instruction trace for EL2 in Secure state.

0b0 The trace unit generates instruction trace for EL2 in Secure state.

0b1 The trace unit does not generate instruction trace for EL2 in Secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL1, bit [17]

When Secure EL1 is implemented:

Filter instruction trace for EL1 in Secure state.

0b0 The trace unit generates instruction trace for EL1 in Secure state.

0b1 The trace unit does not generate instruction trace for EL1 in Secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EXLEVEL_S_EL0, bit [16]

When Secure EL0 is implemented:

Filter instruction trace for EL0 in Secure state.

0b0 The trace unit generates instruction trace for EL0 in Secure state.

0b1 The trace unit does not generate instruction trace for EL0 in Secure state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13101
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Otherwise:

Reserved, RES0.

Bits [15:12]

Reserved, RES0.

TRCERR, bit [11]

When TRCIDR3.TRCERR == 1:

Controls the forced tracing of System Error exceptions.

0b0 Forced tracing of System Error exceptions is disabled.

0b1 Forced tracing of System Error exceptions is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRCRESET, bit [10]

Controls the forced tracing of PE Resets.

0b0 Forced tracing of PE Resets is disabled.

0b1 Forced tracing of PE Resets is enabled.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

SSSTATUS, bit [9]

ViewInst start/stop function status.

0b0 Stopped State.

The ViewInst start/stop function is in the stopped state.

0b1 Started State.

The ViewInst start/stop function is in the started state.

Before software enables the trace unit, it must write to this field to set the initial state of the ViewInst
start/stop function. If the ViewInst start/stop function is not used then set this field to 1. Arm
recommends that the value of this field is set before each trace session begins.

If the trace unit becomes disabled while a start point or stop point is still speculative, then the value
of TRCVICTLR.SSSTATUS is UNKNOWN and might represent the result of a speculative start point
or stop point.

If software which is running on the PE being traced disables the trace unit, either by clearing
TRCPRGCTLR.EN or locking the OS Lock, Arm recommends that a DSB and an ISB instruction
are executed before disabling the trace unit to prevent any start points or stop points being
speculative at the point of disabling the trace unit. This procedure assumes that all start points or
stop points occur before the barrier instructions are executed. The procedure does not guarantee that
there are no speculative start points or stop points when disabling, although it helps minimize the
probability.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• RES1 if all of the following are true:

— TRCIDR4.NUMACPAIRS == 0b0000.

— TRCIDR4.NUMPC == 0b0000.

• Otherwise, access to this field is RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13102
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Bit [8]

Reserved, RES0.

EVENT_TYPE, bit [7]

When TRCIDR4.NUMRSPAIR != 0b0000:

Chooses the type of Resource Selector.

0b0 A single Resource Selector.

TRCVICTLR.EVENT.SEL[4:0] selects the single Resource Selector, from 0-31, used
to activate the resource event.

0b1 A Boolean-combined pair of Resource Selectors.

TRCVICTLR.EVENT.SEL[3:0] selects the Resource Selector pair, from 0-15, that has
a Boolean function that is applied to it whose output is used to activate the resource
event. TRCVICTLR.EVENT.SEL[4] is RES0.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [6:5]

Reserved, RES0.

Bits[4:0]

When TRCIDR4.NUMRSPAIR != 0b0000:

EVENT_SEL

Defines the selected Resource Selector or pair of Resource Selectors. TRCVICTLR.EVENT.TYPE
controls whether TRCVICTLR.EVENT.SEL is the index of a single Resource Selector, or the index
of a pair of Resource Selectors.

If an unimplemented Resource Selector is selected using this field, the behavior of the resource
event is UNPREDICTABLE, and the resource event might fire or might not fire when the resources are
not in the Paused state.

Selecting Resource Selector pair 0 using this field is UNPREDICTABLE, and the resource event might
fire or might not fire when the resources are not in the Paused state.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

When TRCIDR4.NUMRSPAIR == 0b0000:

Reserved

This field is reserved:

• Bits [4:1] are RES0.

• Bit [0] is RES1.

Otherwise:

Reserved, RES0.

Accessing the TRCVICTLR:

Must be programmed.

Reads from this register might return an UNKNOWN value if the trace unit is not in either of the Idle or Stable states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13103
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
TRCVICTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x080 TRCVICTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13104
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.76 TRCVIIECTLR, Trace ViewInst Include/Exclude Control Register

The TRCVIIECTLR characteristics are:

Purpose

Use this to select, or read, the Address Range Comparators for the ViewInst include/exclude
function.

Configurations

External register TRCVIIECTLR bits [31:0] are architecturally mapped to AArch64 System
register TRCVIIECTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMACPAIRS) > 0. Otherwise, direct accesses to TRCVIIECTLR are RES0.

Attributes

TRCVIIECTLR is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

EXCLUDE[<m>], bit [m+16], for m = 7 to 0

Exclude Address Range Comparator <m>. Selects whether Address Range Comparator <m> is in
use with the ViewInst exclude function.

0b0 The address range that Address Range Comparator <m> defines, is not selected for the
ViewInst exclude function.

0b1 The address range that Address Range Comparator <m> defines, is selected for the
ViewInst exclude function.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Bits [15:8]

Reserved, RES0.

INCLUDE[<m>], bit [m], for m = 7 to 0

Include Address Range Comparator <m>.

Selects whether Address Range Comparator <m> is in use with the ViewInst include function.

RES0

31 24 23 22 21 20 19 18 17 16

RES0

15 8 7 6 5 4 3 2 1 0

EXCLUDE[7]
EXCLUDE[6]

EXCLUDE[5]
EXCLUDE[4]

EXCLUDE[3]
EXCLUDE[2]

EXCLUDE[1]
EXCLUDE[0]

INCLUDE[0
]

INCLUDE[1]
INCLUDE[2]

INCLUDE[3]
INCLUDE[4]

INCLUDE[5]
INCLUDE[6]

INCLUDE[7]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13105
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Selecting no comparators for the ViewInst include function indicates that all instructions are
included by default.

The ViewInst exclude function then indicates which ranges are excluded.

0b0 The address range that Address Range Comparator <m> defines, is not selected for the
ViewInst include function.

0b1 The address range that Address Range Comparator <m> defines, is selected for the
ViewInst include function.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCVIIECTLR:

Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVIIECTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x084 TRCVIIECTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13106
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.77 TRCVIPCSSCTLR, Trace ViewInst Start/Stop PE Comparator Control Register

The TRCVIPCSSCTLR characteristics are:

Purpose

Use this to select, or read, which PE Comparator Inputs can control the ViewInst start/stop function.

Configurations

External register TRCVIPCSSCTLR bits [31:0] are architecturally mapped to AArch64 System
register TRCVIPCSSCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMPC) > 0. Otherwise, direct accesses to TRCVIPCSSCTLR are RES0.

Attributes

TRCVIPCSSCTLR is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

STOP[<m>], bit [m+16], for m = 7 to 0

Selects whether PE Comparator Input <m> is in use with the ViewInst start/stop function for the
purpose of stopping trace.

0b0 The PE Comparator Input <m> is not selected as a stop resource.

0b1 The PE Comparator Input <m> is selected as a stop resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMPC), access to this field is RES0.

• Otherwise, access to this field is RW.

Bits [15:8]

Reserved, RES0.

START[<m>], bit [m], for m = 7 to 0

Selects whether PE Comparator Input <m> is in use with the ViewInst start/stop function for the
purpose of starting trace.

0b0 The PE Comparator Input <m> is not selected as a start resource.

0b1 The PE Comparator Input <m> is selected as a start resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMPC), access to this field is RES0.

• Otherwise, access to this field is RW.

RES0

31 24 23 22 21 20 19 18 17 16

RES0

15 8 7 6 5 4 3 2 1 0

STOP[7]
STOP[6]

STOP[5]
STOP[4]

STOP[0]
STOP[1]

STOP[2]
STOP[3]

START[7]
START[6]

START[5]
START[4]

START[0]
START[1]

START[2]
START[3]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13107
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing the TRCVIPCSSCTLR:

Must be programmed if TRCIDR4.NUMPC != 0b0000.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVIPCSSCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x08C TRCVIPCSSCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13108
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.78 TRCVISSCTLR, Trace ViewInst Start/Stop Control Register

The TRCVISSCTLR characteristics are:

Purpose

Use this to select, or read, the Single Address Comparators for the ViewInst start/stop function.

Configurations

External register TRCVISSCTLR bits [31:0] are architecturally mapped to AArch64 System
register TRCVISSCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMACPAIRS) > 0. Otherwise, direct accesses to TRCVISSCTLR are RES0.

Attributes

TRCVISSCTLR is a 32-bit register.

Field descriptions

STOP[<m>], bit [m+16], for m = 15 to 0

Selects whether Single Address Comparator <m> is used with the ViewInst start/stop function for
the purpose of stopping trace.

0b0 The Single Address Comparator <m> is not selected as a stop resource.

0b1 The Single Address Comparator <m> is selected as a stop resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS) * 2, access to this field is RES0.

• Otherwise, access to this field is RW.

START[<m>], bit [m], for m = 15 to 0

Selects whether Single Address Comparator <m> is used with the ViewInst start/stop function for
the purpose of starting trace.

0b0 The Single Address Comparator <m> is not selected as a start resource.

0b1 The Single Address Comparator <m> is selected as a start resource.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STOP[15]
STOP[14]

STOP[13]
STOP[12]

STOP[11]
STOP[10]

STOP[9]
STOP[8]

STOP[7]
STOP[6]

STOP[5]
STOP[4]

STOP[3]
STOP[2]

STOP[1]
STOP[0]

START[0]
START[1]

START[2]
START[3]

START[4]
START[5]

START[6]
START[7]

START[8]
START[9]

START[10]
START[11]

START[12]
START[13]

START[14]
START[15]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13109
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
Accessing this field has the following behavior:

• When m >= UInt(TRCIDR4.NUMACPAIRS) * 2, access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCVISSCTLR:

Must be programmed if TRCIDR4.NUMACPAIRS > 0b0000.

For any 2 comparators selected for the ViewInst start/stop function, the comparator containing the lower address
must be a lower numbered comparator.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVISSCTLR can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x088 TRCVISSCTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13110
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.79 TRCVMIDCCTLR0, Trace Virtual Context Identifier Comparator Control Register 0

The TRCVMIDCCTLR0 characteristics are:

Purpose

Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where
n=0-3.

Configurations

External register TRCVMIDCCTLR0 bits [31:0] are architecturally mapped to AArch64 System
register TRCVMIDCCTLR0[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented,
UInt(TRCIDR4.NUMVMIDC) > 0x0 and UInt(TRCIDR2.VMIDSIZE) > 0. Otherwise, direct
accesses to TRCVMIDCCTLR0 are RES0.

Attributes

TRCVMIDCCTLR0 is a 32-bit register.

Field descriptions

COMP3[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 3:

TRCVMIDCVR3 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR3. Each bit in this field corresponds to a byte in TRCVMIDCVR3.

0b0 The trace unit includes TRCVMIDCVR3[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR3[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP2[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 2:

TRCVMIDCVR2 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR2. Each bit in this field corresponds to a byte in TRCVMIDCVR2.

0b0 The trace unit includes TRCVMIDCVR2[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR2[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP3[<m>]

31 24

COMP2[<m>]

23 16

COMP1[<m>]

15 8

COMP0[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13111
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
COMP1[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 1:

TRCVMIDCVR1 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR1. Each bit in this field corresponds to a byte in TRCVMIDCVR1.

0b0 The trace unit includes TRCVMIDCVR1[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR1[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP0[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 0:

TRCVMIDCVR0 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR0. Each bit in this field corresponds to a byte in TRCVMIDCVR0.

0b0 The trace unit includes TRCVMIDCVR0[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR0[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCVMIDCCTLR0:

If software uses the TRCVMIDCVR<n> registers, where n=0-3, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVMIDCCTLR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x688 TRCVMIDCCTLR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13112
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.80 TRCVMIDCCTLR1, Trace Virtual Context Identifier Comparator Control Register 1

The TRCVMIDCCTLR1 characteristics are:

Purpose

Virtual Context Identifier Comparator mask values for the TRCVMIDCVR<n> registers, where
n=4-7.

Configurations

External register TRCVMIDCCTLR1 bits [31:0] are architecturally mapped to AArch64 System
register TRCVMIDCCTLR1[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented,
UInt(TRCIDR4.NUMVMIDC) > 0x4 and UInt(TRCIDR2.VMIDSIZE) > 0. Otherwise, direct
accesses to TRCVMIDCCTLR1 are RES0.

Attributes

TRCVMIDCCTLR1 is a 32-bit register.

Field descriptions

COMP7[<m>], bit [m+24], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 7:

TRCVMIDCVR7 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR7. Each bit in this field corresponds to a byte in TRCVMIDCVR7.

0b0 The trace unit includes TRCVMIDCVR7[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR7[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP6[<m>], bit [m+16], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 6:

TRCVMIDCVR6 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR6. Each bit in this field corresponds to a byte in TRCVMIDCVR6.

0b0 The trace unit includes TRCVMIDCVR6[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR6[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP7[<m>]

31 24

COMP6[<m>]

23 16

COMP5[<m>]

15 8

COMP4[<m>]

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13113
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
COMP5[<m>], bit [m+8], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 5:

TRCVMIDCVR5 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR5. Each bit in this field corresponds to a byte in TRCVMIDCVR5.

0b0 The trace unit includes TRCVMIDCVR5[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR5[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

COMP4[<m>], bit [m], for m = 7 to 0

When UInt(TRCIDR4.NUMVMIDC) > 4:

TRCVMIDCVR4 mask control. Specifies the mask value that the trace unit applies to
TRCVMIDCVR4. Each bit in this field corresponds to a byte in TRCVMIDCVR4.

0b0 The trace unit includes TRCVMIDCVR4[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

0b1 The trace unit ignores TRCVMIDCVR4[(m×8+7):(m×8)] when it performs the Virtual
context identifier comparison.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= UInt(TRCIDR2.VMIDSIZE), access to this field is RES0.

• Otherwise, access to this field is RW.

Accessing the TRCVMIDCCTLR1:

If software uses the TRCVMIDCVR<n> registers, where n=4-7, then it must program this register.

If software sets a mask bit to 1 then it must program the relevant byte in TRCVMIDCVR<n> to 0x00.

If any bit is 1 and the relevant byte in TRCVMIDCVR<n> is not 0x00, the behavior of the Virtual Context Identifier
Comparator is CONSTRAINED UNPREDICTABLE. In this scenario the comparator might match unexpectedly or might
not match.

Writes are CONSTRAINED UNPREDICTABLE if the trace unit is not in the Idle state.

TRCVMIDCCTLR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

ETE 0x68C TRCVMIDCCTLR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13114
ID032224 Non-Confidential

External Debug Register Descriptions
H9.3 External trace registers
H9.3.81 TRCVMIDCVR<n>, Trace Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

The TRCVMIDCVR<n> characteristics are:

Purpose

Contains the Virtual Context Identifier Comparator value.

Configurations

External register TRCVMIDCVR<n> bits [63:0] are architecturally mapped to AArch64 System
register TRCVMIDCVR<n>[63:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_EXT is implemented
and UInt(TRCIDR4.NUMVMIDC) > n. Otherwise, direct accesses to TRCVMIDCVR<n> are
RES0.

Attributes

TRCVMIDCVR<n> is a 64-bit register.

Field descriptions

VALUE, bits [63:0]

Virtual context identifier value. The width of this field is indicated by TRCIDR2.VMIDSIZE.
Unimplemented bits are RES0. After a PE Reset, the trace unit assumes that the Virtual context
identifier is zero until the PE updates the Virtual context identifier.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRCVMIDCVR<n>:

Must be programmed if any of the following are true:

• TRCRSCTLR<n>.GROUP == 0b0111 and TRCRSCTLR<n>.VMID[n] == 1.

• TRCACATR<n>.CONTEXTTYPE == 0b10 or 0b11 and TRCACATR<n>.CONTEXT == n.

TRCVMIDCVR<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When OSLockStatus(), or !AllowExternalTraceAccess() or !IsTraceCorePowered() accesses to this register
generate an error response.

• Otherwise accesses to this register are RW.

VALUE

63 32

VALUE

31 0

Component Offset Instance

ETE 0x640 + (8 * n) TRCVMIDCVR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13115
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4 External Trace Buffer registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13116
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.1 TRBAUTHSTATUS, Authentication Status Register

The TRBAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBAUTHSTATUS is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBAUTHSTATUS are RES0.

Attributes

TRBAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RTNID, bits [27:26]

Root non-invasive debug.

0b00 Not implemented.

Access to this field is RO.

RTID, bits [25:24]

Root invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RTID.

Bits [23:16]

Reserved, RES0.

RLNID, bits [15:14]

Realm non-invasive debug.

0b00 Not implemented.

Access to this field is RO.

RLID, bits [13:12]

Realm invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RLID.

Bits [11:8]

Reserved, RES0.

SNID, bits [7:6]

Secure non-invasive debug.

0b00 Not implemented.

RES0

31 28

0 0

27 26

RTID

25 24

RES0

23 16

0 0

15 14

RLID

13 12

RES0

11 8

0 0

7 6

SID

5 4

0 0

3 2

NSID

1 0

RTNID RLNID SNID NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13117
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Access to this field is RO.

SID, bits [5:4]

Secure invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

NSNID, bits [3:2]

Non-secure non-invasive debug.

0b00 Not implemented.

Access to this field is RO.

NSID, bits [1:0]

Non-secure invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.NSID.

Accessing the TRBAUTHSTATUS:

TRBAUTHSTATUS can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

TRBE 0xFB8 TRBAUTHSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13118
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.2 TRBBASER_EL1, Trace Buffer Base Address Register

The TRBBASER_EL1 characteristics are:

Purpose

Defines the base address for the trace buffer.

Configurations

External register TRBBASER_EL1 bits [63:0] are architecturally mapped to AArch64 System
register TRBBASER_EL1[63:0].

TRBBASER_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBBASER_EL1 are RES0.

Attributes

TRBBASER_EL1 is a 64-bit register.

Field descriptions

BASE, bits [63:12]

Trace Buffer Base pointer address. (TRBBASER_EL1.BASE << 12) is the address of the first byte
in the trace buffer. Bits [11:0] of the Base pointer address are always zero. If the smallest
implemented translation granule is not 4KB, then TRBBASER_EL1[N-1:12] are RES0, where N is
the IMPLEMENTATION DEFINED value Log2(smallest implemented translation granule).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

Accessing the TRBBASER_EL1:

The PE might ignore a write to TRBBASER_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1 and the Trace Buffer Unit is using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1 and the Trace Buffer Unit is using External mode.

TRBBASER_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

BASE

63 32

BASE

31 12

RES0

11 0

Component Offset Instance

TRBE 0x000 TRBBASER_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13119
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13120
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.3 TRBCIDR0, Component Identification Register 0

The TRBCIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBCIDR0 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBCIDR0 are RES0.

Attributes

TRBCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Reads as 0x0D.

Access to this field is RO.

Accessing the TRBCIDR0:

TRBCIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Component Offset Instance

TRBE 0xFF0 TRBCIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13121
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.4 TRBCIDR1, Component Identification Register 1

The TRBCIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBCIDR1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBCIDR1 are RES0.

Attributes

TRBCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight peripheral.

Other values are defined by the CoreSight Architecture.

Access to this field is RO.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

Reads as 0b0000.

Access to this field is RO.

Accessing the TRBCIDR1:

TRBCIDR1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

1 0 0 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Component Offset Instance

TRBE 0xFF4 TRBCIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13122
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.5 TRBCIDR2, Component Identification Register 2

The TRBCIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBCIDR2 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBCIDR2 are RES0.

Attributes

TRBCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

Reads as 0x05.

Access to this field is RO.

Accessing the TRBCIDR2:

TRBCIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Component Offset Instance

TRBE 0xFF8 TRBCIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13123
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.6 TRBCIDR3, Component Identification Register 3

The TRBCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBCIDR3 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBCIDR3 are RES0.

Attributes

TRBCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

Reads as 0xB1.

Access to this field is RO.

Accessing the TRBCIDR3:

TRBCIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

TRBE 0xFFC TRBCIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13124
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.7 TRBCR, Trace Buffer Control Register

The TRBCR characteristics are:

Purpose

Provides trace buffer controls for an external debugger.

Configurations

TRBCR is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBCR are RES0.

Attributes

TRBCR is a 64-bit register.

Field descriptions

Bits [63:1]

Reserved, RES0.

ManStop, bit [0]

Flush and Stop collection. A write of 1 to this field causes a trace buffer flush, and on completion
of the flush, Collection is stopped and the Trace Buffer Unit writes all trace data it has Accepted
from the trace unit to memory, adding padding data if necessary.

This field is write-only and reads-as-zero.

Accessing the TRBCR:

TRBCR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

RES0

63 32

RES0

31 1 0

ManStop

Component Offset Instance

TRBE 0x038 TRBCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13125
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.8 TRBDEVAFF, Device Affinity Register

The TRBDEVAFF characteristics are:

Purpose

For additional information, see the CoreSight Architecture Specification.

Reads the same value as the MPIDR_EL1 register for the PE that this trace buffer has affinity with.

Depending on the IMPLEMENTATION DEFINED nature of the system, it might be possible that
TRBDEVAFF is read before system firmware has configured the trace buffer and/or the PE or group
of PEs that the trace buffer has affinity with. When this is the case, TRBDEVAFF reads as zero.

Configurations

TRBDEVAFF is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBDEVAFF are RES0.

Attributes

TRBDEVAFF is a 64-bit register.

Field descriptions

MPIDR_EL1, bits [63:0]

Read-only copy of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the TRBDEVAFF:

TRBDEVAFF can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

MPIDR_EL1

63 32

MPIDR_EL1

31 0

Component Offset Instance

TRBE 0xFA8 TRBDEVAFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13126
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.9 TRBDEVARCH, Trace Buffer Device Architecture Register

The TRBDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

Configurations

TRBDEVARCH is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBDEVARCH are RES0.

Attributes

TRBDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Access to this field is RO.

PRESENT, bit [20]

DEVARCH present. Defines that TRBDEVARCH register is present.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Device Architecture information not present.

0b1 Device Architecture information present.

This field reads as 1.

Access to this field is RO.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

0b0000 Revision 0.

All other values are reserved.

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

0b0000 Trace Buffer Extension version 1.

All other values are reserved.

TRBDEVARCH.ARCHVER and TRBDEVARCH.ARCHPART are also defined as a single field,
TRBDEVARCH.ARCHID, so that TRBDEVARCH.ARCHVER is
TRBDEVARCH.ARCHID[15:12].

Access to this field is RO.

0 1 0 0 0 1 1 1 0 1 1

31 21 20

0 0 0 0

19 16

0 0 0 0

15 12

1 0 1 0 0 0 0 1 1 0 0 0

11 0

ARCHITECT
PRESENT

ARCHPART
ARCHVER

REVISION
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13127
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

0xA18 Armv9-A Trace Buffer Extension.

TRBDEVARCH.ARCHVER and TRBDEVARCH.ARCHPART are also defined as a single field,
TRBDEVARCH.ARCHID, so that TRBDEVARCH.ARCHPART is
TRBDEVARCH.ARCHID[11:0].

Access to this field is RO.

Accessing the TRBDEVARCH:

TRBDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

TRBE 0xFBC TRBDEVARCH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13128
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.10 TRBDEVID, Device Configuration Register

The TRBDEVID characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBDEVID is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBDEVID are RES0.

Attributes

TRBDEVID is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

MPAM, bits [3:0]

MPAM extensions. Indicates support for Memory Partitioning and Monitoring (MPAM) and the
Trace Buffer MPAM extensions.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 MPAM not implemented by Trace Buffer Unit.

0b0001 MPAM implemented by Trace Buffer Unit, using default PARTID and PMG values.

0b0010 Trace Buffer MPAM extensions implemented.

When FEAT_MPAM is not implemented by the PE, this field reads as 0b0000.

When FEAT_MPAM is implemented by the PE, the value 0b0000 is not permitted.

FEAT_TRBE_MPAM implements the functionality identified by the value 0b0010.

Access to this field is RO.

Accessing the TRBDEVID:

TRBDEVID can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 4

MPAM

3 0

Component Offset Instance

TRBE 0xFC8 TRBDEVID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13129
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.11 TRBDEVID1, Device Configuration Register 1

The TRBDEVID1 characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBDEVID1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBDEVID1 are RES0.

Attributes

TRBDEVID1 is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

PMG_MAX, bits [23:16]

When FEAT_TRBE_MPAM is implemented:

Largest permitted PMG value. The TRBMPAM_EL1.PMG field must implement at least enough
bits to represent TRBDEVID1.PMG_MAX.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

PARTID_MAX, bits [15:0]

When FEAT_TRBE_MPAM is implemented:

Largest permitted PARTID value. The TRBMPAM_EL1.PARTID field must implement at least
enough bits to represent TRBDEVID1.PARTID_MAX.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Accessing the TRBDEVID1:

TRBDEVID1 can be accessed through the external debug interface:

RES0

31 24

PMG_MAX

23 16

PARTID_MAX

15 0

Component Offset Instance

TRBE 0xFC4 TRBDEVID1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13130
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13131
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.12 TRBDEVID2, Device Configuration Register 2

The TRBDEVID2 characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBDEVID2 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBDEVID2 are RES0.

Attributes

TRBDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRBDEVID2:

TRBDEVID2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

TRBE 0xFC0 TRBDEVID2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13132
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.13 TRBDEVTYPE, Device Type Register

The TRBDEVTYPE characteristics are:

Purpose

Provides discovery information for the component. If the part number field is not recognized, a
debugger can report the information that is provided by TRBDEVTYPE about the component
instead.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBDEVTYPE is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBDEVTYPE are RES0.

Attributes

TRBDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Component sub-type.

0b0010 When MAJOR == 0x1 (Trace sink), Trace buffer or router.

This field reads as 0x2.

Access to this field is RO.

MAJOR, bits [3:0]

Component major type.

0b0001 Trace sink.

This field reads as 0x1.

Access to this field is RO.

Accessing the TRBDEVTYPE:

TRBDEVTYPE can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

0 0 1 0

7 4

0 0 0 1

3 0

SUB MAJOR

Component Offset Instance

TRBE 0xFCC TRBDEVTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13133
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.14 TRBIDR_EL1, Trace Buffer ID Register

The TRBIDR_EL1 characteristics are:

Purpose

Describes constraints on using the Trace Buffer Unit to an external debugger.

Configurations

External register TRBIDR_EL1 bits [63:0] are architecturally mapped to AArch64 System register
TRBIDR_EL1[63:0].

TRBIDR_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBIDR_EL1 are RES0.

Attributes

TRBIDR_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

EA, bits [11:8]

From Armv9.3:

External Abort handling. Describes how the PE manages External aborts on writes made by the
Trace Buffer Unit to the trace buffer.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0001 The PE ignores External aborts on writes made by the Trace Buffer Unit.

0b0010 The External abort generates an asynchronous SError exception at the PE.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [7:6]

Reserved, RES0.

F, bit [5]

Flag updates. Describes how address translations performed by the Trace Buffer Unit manage the
Access flag and dirty state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Hardware management of the Access flag and dirty state for accesses made by the Trace
Buffer Unit is always disabled for all translation stages.

0b1 Hardware management of the Access flag and dirty state for accesses made by the Trace
Buffer Unit is controlled in the same way as explicit memory accesses in the trace buffer
owning translation regime.

RES0

63 32

RES0

31 12

EA

11 8

RES0

7 6

F

5

P

4

Align

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13134
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Note

If hardware management of the Access flag is disabled for a stage of translation, an access to a Page
or Block with the Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page
or Block will ignore the Dirty Bit Modifier in the descriptor and might generate a Permission fault,
depending on the values of the access permission bits in the descriptor.

From Armv9.3, the value 0b0 is not permitted.

Access to this field is RO.

P, bit [4]

This field reads as an UNKNOWN value.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Align, bits [3:0]

Defines the minimum alignment constraint for writes to TRBPTR_EL1 and TRBTRG_EL1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Byte.

0b0001 Halfword.

0b0010 Word.

0b0011 Doubleword.

0b0100 16 bytes.

0b0101 32 bytes.

0b0110 64 bytes.

0b0111 128 bytes.

0b1000 256 bytes.

0b1001 512 bytes.

0b1010 1KB.

0b1011 2KB.

All other values are reserved.

Access to this field is RO.

Accessing the TRBIDR_EL1:

TRBIDR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

TRBE 0x030 TRBIDR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13135
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.15 TRBITCTRL, Integration Mode Control Register

The TRBITCTRL characteristics are:

Purpose

A component can use TRBITCTRL to dynamically switch between functional mode and integration
mode. In integration mode, topology detection is enabled. After switching to integration mode and
performing integration tests or topology detection, reset the system to ensure correct behavior of
CoreSight and other connected system components.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBITCTRL is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBITCTRL are RES0.

Attributes

TRBITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

When topology detection or integration functionality is implemented:

Integration Mode Enable.

0b0 Component functional mode.

0b1 Component integration mode. Support for topology detection and integration testing is
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TRBITCTRL:

The PE might ignore a write to TRBITCTRL if any of the following apply:

• TRBLIMITR_EL1.E == 1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using External
mode.

RES0

31 1 0

IME
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13136
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
TRBITCTRL can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

TRBE 0xF00 TRBITCTRL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13137
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.16 TRBLAR, Lock Access Register

The TRBLAR characteristics are:

Purpose

For components that implement the Software Lock, used to lock and unlock the Software Lock. This
component does not implement the Software Lock.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBLAR is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBLAR are RES0.

Attributes

TRBLAR is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, WI.

Software Lock Key. The Software Lock is not implemented.

This field ignores writes.

Accessing the TRBLAR:

TRBLAR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are WO.

WI

31 0

Component Offset Instance

TRBE 0xFB0 TRBLAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13138
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.17 TRBLIMITR_EL1, Trace Buffer Limit Address Register

The TRBLIMITR_EL1 characteristics are:

Purpose

Defines the top address for the trace buffer, and controls the trace buffer modes and enable.

Configurations

External register TRBLIMITR_EL1 bits [63:0] are architecturally mapped to AArch64 System
register TRBLIMITR_EL1[63:0].

TRBLIMITR_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBLIMITR_EL1 are RES0.

Attributes

TRBLIMITR_EL1 is a 64-bit register.

Field descriptions

LIMIT, bits [63:12]

Trace buffer Limit pointer address. (TRBLIMITR_EL1.LIMIT << 12) is the address of the last byte
in the trace buffer plus one. Bits [11:0] of the Limit pointer address are always zero. If the smallest
implemented translation granule is not 4KB, then TRBLIMITR_EL1[N-1:12] are RES0, where N is
the IMPLEMENTATION DEFINED value Log2(smallest implemented translation granule).

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

XE, bit [6]

Trace Buffer Unit External mode enable. Controls whether the Trace Buffer Unit is enabled when
SelfHostedTraceEnabled() == FALSE.

0b0 Trace Buffer Unit is not enabled by this control.

0b1 If SelfHostedTraceEnabled() is FALSE, the Trace Buffer Unit is enabled.

If SelfHostedTraceEnabled() == TRUE, then TRBLIMITR_EL1.E controls whether the Trace
Buffer Unit is enabled.

All output is discarded by the Trace Buffer Unit when the Trace Buffer Unit is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

nVM, bit [5]

Address mode.

0b0 The trace buffer pointers are virtual addresses.

LIMIT

63 32

LIMIT

31 12

RES0

11 7

XE

6 5

TM

4 3

FM

2 1

E

0

nVM
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13139
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
0b1 The trace buffer pointers are:

• Physical address in the owning security state if the owning translation regime has
no stage 2 translation.

• Intermediate physical addresses in the owning security state if the owning
translation regime has stage 2 translations.

When SelfHostedTraceEnabled() == FALSE, the trace buffer pointers are always physical addresses.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When !SelfHostedTraceEnabled(), access to this field is RES1.

• Otherwise, access to this field is RW.

TM, bits [4:3]

Trigger mode.

0b00 Stop on trigger. Flush trace, then stop collection and set TRBSR_EL1.IRQ to 1 on
Trigger Event.

0b01 IRQ on trigger. Continue collection and set TRBSR_EL1.IRQ to 1 on Trigger Event.

0b11 Ignore trigger. Continue collection and leave TRBSR_EL1.IRQ unchanged on Trigger
Event.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

FM, bits [2:1]

Trace buffer mode.

0b00 Fill mode. Stop collection and set TRBSR_EL1.IRQ to 1 on current write pointer wrap.

0b01 Wrap mode. Continue collection and set TRBSR_EL1.IRQ to 1 on current write pointer
wrap.

0b11 Circular Buffer mode. Continue collection and leave TRBSR_EL1.IRQ unchanged on
current write pointer wrap.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Trace Buffer Unit enable. Controls whether the Trace Buffer Unit is enabled when
SelfHostedTraceEnabled() == TRUE.

0b0 Trace Buffer Unit is not enabled by this control.

0b1 If SelfHostedTraceEnabled() is TRUE, the Trace Buffer Unit is enabled.

If FEAT_TRBE_EXT is implemented and SelfHostedTraceEnabled() == FALSE, then
TRBLIMITR_EL1.XE controls whether the Trace Buffer Unit is enabled.

If FEAT_TRBE_EXT is not implemented, then the Trace Buffer Unit is disabled when
SelfHostedTraceEnabled() == FALSE.

All output is discarded by the Trace Buffer Unit when the Trace Buffer Unit is disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13140
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Accessing the TRBLIMITR_EL1:

The PE might ignore a write to TRBLIMITR_EL1, other than a write that modifies TRBLIMITR_EL1.E or
TRBLIMITR_EL1.XE as appropriate, if any of the following apply:

• TRBLIMITR_EL1.E == 0b1, and either FEAT_TRBE_EXT is not implemented or the Trace Buffer Unit is
using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1, FEAT_TRBE_EXT is implemented, and the Trace Buffer Unit is using
External mode.

TRBLIMITR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

TRBE 0x010 TRBLIMITR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13141
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.18 TRBLSR, Lock Status Register

The TRBLSR characteristics are:

Purpose

Indicates the Software Lock is not implemented.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBLSR is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBLSR are RES0.

Attributes

TRBLSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

Bits [2:1]

Reserved, RAZ.

Not thirty-two bit. Describes the size of the TRBLAR register.

This field reads-as-zero.

SLI, bit [0]

Indicates the Software Lock is not implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Software Lock is not implemented. Writes to the TRBLAR are ignored.

0b1 Software Lock is implemented.

Access to this field is RAZ/WI.

Accessing the TRBLSR:

TRBLSR can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 3

RAZ

2 1 0

SLI

Component Offset Instance

TRBE 0xFB4 TRBLSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13142
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.19 TRBMAR_EL1, Trace Buffer Memory Attribute Register

The TRBMAR_EL1 characteristics are:

Purpose

Controls Trace Buffer Unit accesses to memory.

Configurations

External register TRBMAR_EL1 bits [63:0] are architecturally mapped to AArch64 System register
TRBMAR_EL1[63:0].

TRBMAR_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBMAR_EL1 are RES0.

Attributes

TRBMAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:12]

Reserved, RES0.

PAS, bits [11:10]

When FEAT_TRBE_EXT is implemented:

Physical address specifier. Defines the PAS attribute for memory addressed by the buffer in External
mode.

0b00 When Secure state is implemented:

Secure.

0b01 Non-secure.

0b10 When FEAT_RME is implemented:

Root.

0b11 When FEAT_RME is implemented:

Realm.

All other values are reserved.

If the Trace Buffer Unit is using external mode and either TRBMAR_EL1.PAS is set to a reserved
value, or the IMPLEMENTATION DEFINED authentication interface prohibits invasive debug of the
Security state corresponding to the physical address space selected by TRBMAR_EL1.PAS, then
when the Trace Buffer Unit receives trace data from the trace unit, it does not write the trace data to
memory and generates a trace buffer management event. That is, if any of the following apply:

• ExternalInvasiveDebugEnabled () == FALSE.

• Secure state is implemented, ExternalSecureInvasiveDebugEnabled () == FALSE, and
TRBMAR_EL1.PAS is 0b00.

• FEAT_RME is implemented, ExternalRootInvasiveDebugEnabled () == FALSE, and
TRBMAR_EL1.PAS is 0b10.

RES0

63 32

RES0

31 12

PAS

11 10

SH

9 8

Attr

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13143
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
• FEAT_RME is implemented, ExternalRealmInvasiveDebugEnabled () == FALSE, and
TRBMAR_EL1.PAS is 0b11.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bits [9:8]

Trace buffer shareability domain. Defines the shareability domain for Normal memory used by the
trace buffer.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when TRBMAR_EL1.Attr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Attr, bits [7:0]

When TRBMAR_EL1.Attr == 0bxxxx0000:

Trace buffer memory type and attributes. Defines the memory type and, for Normal memory, the
cacheability attributes, for memory addressed by the trace buffer.

0x00 Device-nGnRnE memory.

0x40 When FEAT_XS is implemented:

Normal memory, Inner Non-cacheable, Outer Non-cacheable with the XS attribute set
to 0.

0xA0 When FEAT_XS is implemented:

Normal memory, Inner Write-through Cacheable, Outer Write-through Cacheable,
Non-transient, Read-Allocate with the XS attribute set to 0.

0xF0 When FEAT_MTE2 is implemented:

Tagged Normal memory, Outer Write-Back Non-transient, Read-allocate
Write-allocate.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When TRBMAR_EL1.Attr == 0b0000xxxx and TRBMAR_EL1.Attr != 0b00000000:

Trace buffer memory attributes. Defines the Device memory attributes for memory addressed by the
trace buffer.

0x04 Device-nGnRE memory.

0x08 Device-nGRE memory.

0x0C Device-GRE memory.

0x01 When FEAT_XS is implemented:

Device-nGnRnE memory with the XS attribute set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13144
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
0x05 When FEAT_XS is implemented:

Device-nGnRE memory with the XS attribute set to 0.

0x09 When FEAT_XS is implemented:

Device-nGRE memory with the XS attribute set to 0.

0x0D When FEAT_XS is implemented:

Device-GRE memory with the XS attribute set to 0.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When TRBMAR_EL1.Attr != 0bxxxx0000 and TRBMAR_EL1.Attr != 0b0000xxxx:

Trace buffer memory type and attributes. Defines the memory type and, for Normal memory, the
Outer and Inner cacheability attributes, for memory addressed by the trace buffer.

0b0001xxxx Normal memory, Outer Write-Through Transient, Write-allocate.

0b0010xxxx Normal memory, Outer Write-Through Transient, Read-allocate.

0b0011xxxx Normal memory, Outer Write-Through Transient, Read-allocate Write-allocate.

0b0100xxxx Normal memory, Outer Non-cacheable.

0b0101xxxx Normal memory, Outer Write-Back Transient, Write-allocate.

0b0110xxxx Normal memory, Outer Write-Back Transient, Read-allocate.

0b0111xxxx Normal memory, Outer Write-Back Transient, Read-allocate Write-allocate.

0b1000xxxx Normal memory, Outer Write-Through Non-transient, No allocate.

0b1001xxxx Normal memory, Outer Write-Through Non-transient, Write-allocate.

0b1010xxxx Normal memory, Outer Write-Through Non-transient, Read-allocate.

0b1011xxxx Normal memory, Outer Write-Through Non-transient, Read-allocate Write-allocate.

0b1100xxxx Normal memory, Outer Write-Back Non-transient, No allocate.

0b1101xxxx Normal memory, Outer Write-Back Non-transient, Write-allocate.

0b1110xxxx Normal memory, Outer Write-Back Non-transient, Read-allocate.

0b1111xxxx Normal memory, Outer Write-Back Non-transient, Read-allocate Write-allocate.

0bxxxx0001 Normal memory, Inner Write-Through Transient, Write-allocate.

0bxxxx0010 Normal memory, Inner Write-Through Transient, Read-allocate.

0bxxxx0011 Normal memory, Inner Write-Through Transient, Read-allocate Write-allocate.

0bxxxx0100 Normal memory, Inner Non-cacheable.

0bxxxx0101 Normal memory, Inner Write-Back Transient, Write-allocate.

0bxxxx0110 Normal memory, Inner Write-Back Transient, Read-allocate.

0bxxxx0111 Normal memory, Inner Write-Back Transient, Read-allocate Write-allocate.

0bxxxx1000 Normal memory, Inner Write-Through Non-transient, No allocate.

0bxxxx1001 Normal memory, Inner Write-Through Non-transient, Write-allocate.

0bxxxx1010 Normal memory, Inner Write-Through Non-transient, Read-allocate.

0bxxxx1011 Normal memory, Inner Write-Through Non-transient, Read-allocate Write-allocate.

0bxxxx1100 Normal memory, Inner Write-Back Non-transient, No allocate.

0bxxxx1101 Normal memory, Inner Write-Back Non-transient, Write-allocate.

0bxxxx1110 Normal memory, Inner Write-Back Non-transient, Read-allocate.

0bxxxx1111 Normal memory, Inner Write-Back Non-transient, Read-allocate Write-allocate.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13145
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Otherwise:

Reserved, RES0.

Accessing the TRBMAR_EL1:

The PE might ignore a write to TRBMAR_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1 and the Trace Buffer Unit is using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1 and the Trace Buffer Unit is using External mode.

TRBMAR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

TRBE 0x028 TRBMAR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13146
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.20 TRBMPAM_EL1, Trace Buffer MPAM Configuration Register

The TRBMPAM_EL1 characteristics are:

Purpose

Defines the PARTID, PMG, and MPAM_SP values used by the trace buffer unit in external mode.

Configurations

External register TRBMPAM_EL1 bits [63:0] are architecturally mapped to AArch64 System
register TRBMPAM_EL1[63:0].

TRBMPAM_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented and FEAT_TRBE_MPAM is
implemented. Otherwise, direct accesses to TRBMPAM_EL1 are RES0.

Attributes

TRBMPAM_EL1 is a 64-bit register.

Field descriptions

Bits [63:27]

Reserved, RES0.

EN, bit [26]

Enable. Enables use of non-default MPAM values.

0b0 Use default MPAM values.

0b1 Use TRBMPAM_EL1.{PARTID, PMG, MPAM_SP}.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

MPAM_SP, bits [25:24]

Partition Identifier space. Selects the PARTID space.

0b00 When Secure state is implemented:

PARTID is in the Secure PARTID space.

0b01 PARTID is in the Non-secure PARTID space.

0b10 When FEAT_RME is implemented:

PARTID is in the Root PARTID space.

0b11 When FEAT_RME is implemented:

PARTID is in the Realm PARTID space.

All other values are reserved.

If the Trace Buffer Unit is using external mode and either TRBMPAM_EL1.MPAM_SP is set to
reserved value, or the IMPLEMENTATION DEFINED authentication interface prohibits invasive debug
of the Security state corresponding to the Partition Identifier space selected by

RES0

63 32

RES0

31 27

EN

26 25 24

PMG

23 16

PARTID

15 0

MPAM_SP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13147
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
TRBMPAM_EL1.MPAM_SP, then when the Trace Buffer Unit receives trace data from the trace
unit, it does not write the trace data to memory and generates a trace buffer management event. That
is, if any of the following apply:

• ExternalInvasiveDebugEnabled () == FALSE.

• Secure state is implemented, ExternalSecureInvasiveDebugEnabled () == FALSE and
TRBMPAM_EL1.MPAM_SP is 0b00.

• FEAT_RME is implemented, ExternalRootInvasiveDebugEnabled () == FALSE, and
TRBMPAM_EL1.MPAM_SP is 0b10.

• FEAT_RME is implemented, ExternalRealmInvasiveDebugEnabled () == FALSE, and
TRBMPAM_EL1.MPAM_SP is 0b11.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PMG, bits [23:16]

Performance Monitoring Group. Selects the PMG.

Only sufficient low-order bits are required to represent the TRBDEVID1.PMG_MAX.
Higher-order bits are RES0.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition Identifier. Selects the PARTID.

Only sufficient low-order bits are required to represent the TRBDEVID1.PARTID_MAX.
Higher-order bits are RES0.

This field is ignored by the PE when SelfHostedTraceEnabled () == TRUE.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRBMPAM_EL1:

The PE might ignore a write to TRBMPAM_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1 and the Trace Buffer Unit is using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1 and the Trace Buffer Unit is using External mode.

TRBMPAM_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

TRBE 0x040 TRBMPAM_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13148
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.21 TRBPIDR0, Peripheral Identification Register 0

The TRBPIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR0 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR0 are RES0.

Attributes

TRBPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, bits [7:0].

The part number is selected by the designer of the component, and is stored in TRBPIDR1.PART_1
and TRBPIDR0.PART_0.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRBPIDR0:

TRBPIDR0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

TRBE 0xFE0 TRBPIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13149
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.22 TRBPIDR1, Peripheral Identification Register 1

The TRBPIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR1 are RES0.

Attributes

TRBPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, JEP106 identification code, bits [3:0]. TRBPIDR1.DES_0 and TRBPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note
For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, bits [11:8].

The part number is selected by the designer of the component, and is stored in TRBPIDR1.PART_1
and TRBPIDR0.PART_0.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the TRBPIDR1:

TRBPIDR1 can be accessed through the external debug interface:

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

TRBE 0xFE4 TRBPIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13150
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13151
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.23 TRBPIDR2, Peripheral Identification Register 2

The TRBPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR2 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR2 are RES0.

Attributes

TRBPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component major revision. TRBPIDR2.REVISION and TRBPIDR3.REVAND together form the
revision number of the component, with TRBPIDR2.REVISION being the most significant part and
TRBPIDR3.REVAND the least significant part. When a component is changed,
TRBPIDR2.REVISION or TRBPIDR3.REVAND are increased to ensure that software can
differentiate the different revisions of the component. TRBPIDR3.REVAND should be set to 0b0000
when TRBPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. TRBPIDR1.DES_0 and TRBPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note
For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13152
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Accessing the TRBPIDR2:

TRBPIDR2 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

TRBE 0xFE8 TRBPIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13153
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.24 TRBPIDR3, Peripheral Identification Register 3

The TRBPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR3 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR3 are RES0.

Attributes

TRBPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Component minor revision. TRBPIDR2.REVISION and TRBPIDR3.REVAND together form the
revision number of the component, with TRBPIDR2.REVISION being the most significant part and
TRBPIDR3.REVAND the least significant part. When a component is changed,
TRBPIDR2.REVISION or TRBPIDR3.REVAND are increased to ensure that software can
differentiate the different revisions of the component. TRBPIDR3.REVAND should be set to 0b0000
when TRBPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If TRBPIDR3.CMOD is zero in both components, then the components are identical.

• If TRBPIDR3.CMOD has the same nonzero value in both components, then this does not
necessarily mean that they have the same modifications.

• If TRBPIDR3.CMOD is nonzero in either component, the two components might not be
identical despite having the same Unique Component Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

REVAND

7 4

CMOD

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13154
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Accessing the TRBPIDR3:

TRBPIDR3 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

TRBE 0xFEC TRBPIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13155
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.25 TRBPIDR4, Peripheral Identification Register 4

The TRBPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR4 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR4 are RES0.

Attributes

TRBPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component.

The distance from the start of the address space used by this component to the end of the component
identification registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.

• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2TRBPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly
indicate the size of the component. Arm recommends that software determine the size of the
component from the Unique Component Identifier fields, and other IMPLEMENTATION DEFINED
registers in the component.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the
designer of the component, minus 1. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a
number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the value
0x4.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

0 0 0 0

7 4

DES_2

3 0

SIZE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13156
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Accessing the TRBPIDR4:

TRBPIDR4 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

Component Offset Instance

TRBE 0xFD0 TRBPIDR4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13157
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.26 TRBPIDR5, Peripheral Identification Register 5

The TRBPIDR5 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR5 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR5 are RES0.

Attributes

TRBPIDR5 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRBPIDR5:

TRBPIDR5 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

TRBE 0xFD4 TRBPIDR5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13158
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.27 TRBPIDR6, Peripheral Identification Register 6

The TRBPIDR6 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR6 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR6 are RES0.

Attributes

TRBPIDR6 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRBPIDR6:

TRBPIDR6 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

TRBE 0xFD8 TRBPIDR6
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13159
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.28 TRBPIDR7, Peripheral Identification Register 7

The TRBPIDR7 characteristics are:

Purpose

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

TRBPIDR7 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPIDR7 are RES0.

Attributes

TRBPIDR7 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the TRBPIDR7:

TRBPIDR7 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus() or !IsCorePowered() accesses to this register generate an error response.

• Otherwise accesses to this register are RO.

RES0

31 0

Component Offset Instance

TRBE 0xFDC TRBPIDR7
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13160
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.29 TRBPTR_EL1, Trace Buffer Write Pointer Register

The TRBPTR_EL1 characteristics are:

Purpose

Defines the current write pointer for the trace buffer.

Configurations

External register TRBPTR_EL1 bits [63:0] are architecturally mapped to AArch64 System register
TRBPTR_EL1[63:0].

TRBPTR_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBPTR_EL1 are RES0.

Attributes

TRBPTR_EL1 is a 64-bit register.

Field descriptions

PTR, bits [63:0]

Trace Buffer current write pointer address.

Defines the virtual address of the next entry to be written to the trace buffer.

If PMBIDR_EL1.Align is not zero, then it is IMPLEMENTATION DEFINED whether bits [M-1:0] are
RES0 or read/write, where M is an integer between 1 and PMBIDR_EL1.Align inclusive.

The architecture places restrictions on the values that software can write to the pointer. For more
information see Restrictions on programming the Trace Buffer Unit.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRBPTR_EL1:

The PE might ignore a write to TRBPTR_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1 and the Trace Buffer Unit is using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1 and the Trace Buffer Unit is using External mode.

TRBPTR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

PTR

63 32

PTR

31 0

Component Offset Instance

TRBE 0x008 TRBPTR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13161
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13162
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.30 TRBSR_EL1, Trace Buffer Status/syndrome Register

The TRBSR_EL1 characteristics are:

Purpose

Provides syndrome information to software for a trace buffer management event.

Configurations

External register TRBSR_EL1 bits [63:0] are architecturally mapped to AArch64 System register
TRBSR_EL1[63:0].

TRBSR_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBSR_EL1 are RES0.

Attributes

TRBSR_EL1 is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

MSS2, bits [55:32]

Management event Specific Syndrome 2. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EC, bits [31:26]

Event Class. Top-level description of the cause of the trace buffer management event.

0b000000 Other trace buffer management event. All trace buffer management events other than
those described by the other defined event class codes.

0b011110 When FEAT_RME is implemented:

Granule Protection Check fault on write to trace buffer, other than Granule Protection
Fault (GPF). That is, any of the following:

• Granule Protection Table (GPT) address size fault.

• GPT walk fault.

• Synchronous External abort on GPT fetch.

A GPF on translation table walk or update is reported as either a Stage 1 or Stage 2 Data
Abort, as appropriate. Other GPFs are reported as a Stage 1 Data Abort.

0b011111 Buffer management event for an IMPLEMENTATION DEFINED reason.

0b100100 Stage 1 Data Abort on write to trace buffer.

RES0

63 56

MSS2

55 32

EC

31 26

RES0

25 24 23 22 21 20 19 18

S

17 16

MSS

15 0

DAT
IRQ

TRG

RES0
RES0

RES0
WRAP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13163
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
0b100101 Stage 2 Data Abort on write to trace buffer.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [25:24]

Reserved, RES0.

DAT, bit [23]

Data. Indicates when the Trace Buffer Unit has trace data that has not yet been written to memory.

0b0 Internal buffers are empty. All Trace operations Accepted by the Trace Buffer Unit will
Complete in finite time.

0b1 Internal buffers are not empty.

When TRBSR_EL1.{DAT, S} is {0, 1}, meaning Collection is stopped and the Trace Buffer Unit
internal buffers are empty, then all trace data has been written to memory. An additional Data
Synchronization Barrier may be required to ensure that the writes are Complete. When
TRBSR_EL1.DAT is 0 and Collection is not stopped, there may still be trace data held by the trace
unit that the Trace Buffer Unit has not Accepted.

That is, TRBSR_EL1.DAT reads as 1 when the Trace Buffer Unit has Accepted trace data from the
trace unit, but has not yet written it to memory.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [22]

Maintenance interrupt status.

0b0 Maintenance interrupt is not asserted.

0b1 Maintenance interrupt is asserted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

TRG, bit [21]

Triggered.

0b0 No Detected Trigger has been observed since this field was last cleared to zero.

0b1 A Detected Trigger has been observed since this field was last cleared to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WRAP, bit [20]

Wrapped.

0b0 The current write pointer has not wrapped since this field was last cleared to zero.

0b1 The current write pointer has wrapped since this field was last cleared to zero.

For each byte of trace the Trace Buffer Unit Accepts and writes to the trace buffer at the address in
the current write pointer, if the current write pointer is equal to the Limit pointer minus one, the
current write pointer is wrapped by setting it to the Base pointer, and this field is set to 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13164
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Bit [18]

From Armv9.3:

Reserved, RES0.

When the PE sets this bit as the result of an External abort:

External Abort.

0b0 An External abort has not been asserted.

0b1 An External abort has been asserted and detected by the Trace Buffer Unit.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

S, bit [17]

Stopped.

0b0 Collection has not been stopped.

0b1 Collection is stopped.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bit [16]

Reserved, RES0.

MSS, bits [15:0]

Management event Specific Syndrome. Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

MSS2 encoding for other trace buffer management events

Bits [23:0]

Reserved, RES0.

MSS2 encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [23:0]

IMPLEMENTATION DEFINED.

RES0

23 0

IMPLEMENTATION DEFINED

23 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13165
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
MSS2 encoding for stage 1 or stage 2 Data Aborts on write to trace buffer

Bits [23:9]

Reserved, RES0.

TopLevel, bit [8]

When FEAT_THE is implemented:

TopLevel. Indicates if the fault was due to TopLevel.

0b0 Fault is not due to TopLevel.

0b1 Fault is due to TopLevel.

Otherwise:

Reserved, RES0.

AssuredOnly, bit [7]

When FEAT_THE is implemented, TRBSR_EL1.EC == 0b100101 and GetTRBSR_EL1_FSC() ==
0b0011xx:

AssuredOnly flag. If a memory access generates a stage 2 Data Abort, then this field holds
information about the fault.

0b0 Data Abort is not due to AssuredOnly.

0b1 Data Abort is due to AssuredOnly.

Otherwise:

Reserved, RES0.

Overlay, bit [6]

When (FEAT_S1POE is implemented or FEAT_S2POE is implemented) and
GetTRBSR_EL1_FSC() == 0b0011xx:

Overlay flag. If a memory access generates a Data Abort for a Permission fault, then this field holds
information about the fault.

0b0 Data Abort is not due to Overlay Permissions.

0b1 Data Abort is due to Overlay Permissions.

Otherwise:

Reserved, RES0.

DirtyBit, bit [5]

When (FEAT_S1PIE is implemented or FEAT_S2PIE is implemented) and GetTRBSR_EL1_FSC()
== 0b0011xx:

DirtyBit flag. If a memory access generates a Data Abort (Write Access) for a Permission fault
(When using Indirect Permission), then this field holds information about the fault.

0b0 Permission Fault is not due to state of nDirty / Dirty bit.

0b1 Permission Fault is due to state of nDirty / Dirty bit.

Otherwise:

Reserved, RES0.

RES0

23 9 8 7 6 5

RES0

4 0

TopLevel
AssuredOnly

DirtyBit
Overlay
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13166
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Bits [4:0]

Reserved, RES0.

MSS encoding for other trace buffer management events

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Trace buffer status code.

0b000000 Collection not stopped, or access not allowed.

0b000001 Trace buffer filled. Collection stopped because the current write pointer wrapped to the
base pointer and the trace buffer mode is Fill mode.

0b000010 Trigger Event. Collection stopped because of a Trigger Event. See TRBTRG_EL1 for
more information.

0b000011 Manual Stop. Collection stopped because of a Manual Stop event. See
TRBCR.ManStop for more information.

All other values are reserved.

MSS encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [15:0]

IMPLEMENTATION DEFINED.

MSS encoding for stage 1 or stage 2 Data Aborts on write to trace buffer

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault Status Code.

0b000000 Address size fault, level 0 of translation or translation table base register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

RES0

15 6

BSC

5 0

IMPLEMENTATION DEFINED

15 0

RES0

15 6

FSC

5 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13167
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001000 When FEAT_LPA2 is implemented:

Access flag fault, level 0.

0b001100 When FEAT_LPA2 is implemented:

Permission fault, level 0.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk or hardware update of
translation table.

0b010001 Asynchronous External abort.

0b010010 When FEAT_D128 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -2.

0b010011 When FEAT_LPA2 is implemented:

Synchronous External abort on translation table walk or hardware update of translation
table, level -1.

0b010100 Synchronous External abort on translation table walk or hardware update of translation
table, level 0.

0b010101 Synchronous External abort on translation table walk or hardware update of translation
table, level 1.

0b010110 Synchronous External abort on translation table walk or hardware update of translation
table, level 2.

0b010111 Synchronous External abort on translation table walk or hardware update of translation
table, level 3.

0b011011 When FEAT_LPA2 is implemented and FEAT_RAS is not implemented:

Synchronous parity or ECC error on memory access on translation table walk or
hardware update of translation table, level -1.

0b100001 Alignment fault.

0b100010 When FEAT_D128 is implemented and FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -2.

0b100011 When FEAT_RME is implemented and FEAT_LPA2 is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level -1.

0b100100 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 0.

0b100101 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 1.

0b100110 When FEAT_RME is implemented:

Granule Protection Fault on translation table walk or hardware update of translation
table, level 2.

0b100111 When FEAT_RME is implemented:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13168
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
Granule Protection Fault on translation table walk or hardware update of translation
table, level 3.

0b101000 When FEAT_RME is implemented:

Granule Protection Fault, not on translation table walk or hardware update of translation
table.

0b101001 When FEAT_LPA2 is implemented:

Address size fault, level -1.

0b101010 When FEAT_D128 is implemented:

Translation fault, level -2.

0b101011 When FEAT_LPA2 is implemented:

Translation fault, level -1.

0b101100 When FEAT_D128 is implemented:

Address Size fault, level -2.

0b110000 TLB conflict abort.

0b110001 When FEAT_HAFDBS is implemented:

Unsupported atomic hardware update fault.

All other values are reserved.

Accessing the TRBSR_EL1:

The PE might ignore a write to TRBSR_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1 and the Trace Buffer Unit is using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1 and the Trace Buffer Unit is using External mode.

TRBSR_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

TRBE 0x018 TRBSR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13169
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
H9.4.31 TRBTRG_EL1, Trace Buffer Trigger Counter Register

The TRBTRG_EL1 characteristics are:

Purpose

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger
Event.

Configurations

External register TRBTRG_EL1 bits [63:0] are architecturally mapped to AArch64 System register
TRBTRG_EL1[63:0].

TRBTRG_EL1 is in the Core power domain

This register is present only when FEAT_TRBE_EXT is implemented. Otherwise, direct accesses
to TRBTRG_EL1 are RES0.

Attributes

TRBTRG_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TRG, bits [31:0]

Trigger count.

Specifies the number of bytes of trace to capture following a Detected Trigger before a Trigger
Event.

TRBTRG_EL1 decrements by 1 for every byte of trace written to the trace buffer when all of the
following are true:

• TRBTRG_EL1 is nonzero.

• TRBSR_EL1.TRG is 1.

The architecture places restrictions on the values that software can write to the counter.

Note

As a result of the restrictions an implementation might treat some of TRG[M:0] as RES0, where M
is defined by TRBIDR_EL1.Align.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the TRBTRG_EL1:

The PE might ignore a write to TRBTRG_EL1 if any of the following apply:

• TRBLIMITR_EL1.E == 0b1 and the Trace Buffer Unit is using Self-hosted mode.

• TRBLIMITR_EL1.XE == 0b1 and the Trace Buffer Unit is using External mode.

RES0

63 32

TRG

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13170
ID032224 Non-Confidential

External Debug Register Descriptions
H9.4 External Trace Buffer registers
TRBTRG_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or !AllowExternalTraceBufferAccess()
accesses to this register generate an error response.

• Otherwise accesses to this register are RW.

Component Offset Instance

TRBE 0x020 TRBTRG_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13171
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5 Cross-Trigger Interface registers

This section lists the Cross-Trigger Interface registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13172
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.1 ASICCTL, CTI External Multiplexer Control register

The ASICCTL characteristics are:

Purpose

Can be used to provide IMPLEMENTATION DEFINED controls for the CTI. For example, the register
might be used to control multiplexors for additional IMPLEMENTATION DEFINED triggers. The
IMPLEMENTATION DEFINED controls provided by this register might modify the architecturally
defined behavior of the CTI.

Note
The architecturally-defined triggers must not be multiplexed.

Configurations

It is IMPLEMENTATION DEFINED whether ASICCTL is implemented in the Core power domain or in
the Debug power domain

If it is implemented in the Core power domain then it is IMPLEMENTATION DEFINED whether it is in
the Cold reset domain or the Warm reset domain.

This register must reset to a value that supports the architecturally-defined behavior of the CTI.
Changing the value of the register from its reset value causes IMPLEMENTATION DEFINED behavior
that might differ from the architecturally-defined behavior of the CTI.

Other than the requirements listed in this register description, all aspects of the reset behavior of the
ASICCTL are IMPLEMENTATION DEFINED.

Attributes

ASICCTL is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ASICCTL:

ASICCTL can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are IMPDEF.

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

CTI 0x144 ASICCTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13173
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.2 CTIAPPCLEAR, CTI Application Trigger Clear register

The CTIAPPCLEAR characteristics are:

Purpose

Clears the application triggers.

Configurations

CTIAPPCLEAR is in the Debug power domain

There are no configuration notes.

Attributes

CTIAPPCLEAR is a 32-bit register.

Field descriptions

APPCLEAR<x>, bit [x], for x = 31 to 0

Application trigger <x> disable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

0b0 No effect.

0b1 Clear corresponding application trigger to 0 and clear the corresponding channel event.

If the ECT does not support multicycle channel events, use of CTIAPPCLEAR is deprecated and
the debugger must only use CTIAPPPULSE.

Accessing the CTIAPPCLEAR:

CTIAPPCLEAR can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPCLEAR31

APPCLEAR30
APPCLEAR29

APPCLEAR28
APPCLEAR27

APPCLEAR26
APPCLEAR25

APPCLEAR24
APPCLEAR23

APPCLEAR22
APPCLEAR21

APPCLEAR20
APPCLEAR19

APPCLEAR18
APPCLEAR17

APPCLEAR16

APPCLEAR0
APPCLEAR1

APPCLEAR2
APPCLEAR3

APPCLEAR4
APPCLEAR5

APPCLEAR6
APPCLEAR7

APPCLEAR8
APPCLEAR9

APPCLEAR10
APPCLEAR11

APPCLEAR12
APPCLEAR13

APPCLEAR14
APPCLEAR15

Component Offset Instance

CTI 0x018 CTIAPPCLEAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13174
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.

• Otherwise accesses to this register are WO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13175
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.3 CTIAPPPULSE, CTI Application Pulse register

The CTIAPPPULSE characteristics are:

Purpose

Causes event pulses to be generated on ECT channels.

Configurations

CTIAPPPULSE is in the Debug power domain

There are no configuration notes.

Attributes

CTIAPPPULSE is a 32-bit register.

Field descriptions

APPPULSE<x>, bit [x], for x = 31 to 0

Generate event pulse on ECT channel <x>.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

0b0 No effect.

0b1 Channel <x> event pulse generated.

Note

• The CTIAPPPULSE operation does not affect the state of the application trigger. If the
channel is active, either because of an earlier event or from the application trigger, then the
value written to CTIAPPPULSE might have no effect.

• Multiple pulse events that occur close together might be merged into a single pulse event.

Accessing the CTIAPPPULSE:

It is CONSTRAINED UNPREDICTABLE whether a write to CTIAPPPULSE generates an event on a channel if
CTICONTROL.GLBEN is 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPPULSE31

APPPULSE30
APPPULSE29

APPPULSE28
APPPULSE27

APPPULSE26
APPPULSE25

APPPULSE24
APPPULSE23

APPPULSE22
APPPULSE21

APPPULSE20
APPPULSE19

APPPULSE18
APPPULSE17

APPPULSE16

APPPULSE0
APPPULSE1

APPPULSE2
APPPULSE3

APPPULSE4
APPPULSE5

APPPULSE6
APPPULSE7

APPPULSE8
APPPULSE9

APPPULSE10
APPPULSE11

APPPULSE12
APPPULSE13

APPPULSE14
APPPULSE15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13176
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
CTIAPPPULSE can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.

• Otherwise accesses to this register are WO.

Component Offset Instance

CTI 0x01C CTIAPPPULSE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13177
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.4 CTIAPPSET, CTI Application Trigger Set register

The CTIAPPSET characteristics are:

Purpose

Sets the application triggers.

Configurations

CTIAPPSET is in the Debug power domain

There are no configuration notes.

Attributes

CTIAPPSET is a 32-bit register.

Field descriptions

APPSET<x>, bit [x], for x = 31 to 0

Application trigger <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Reading this means the application trigger is inactive. Writing this has no effect.

0b1 Reading this means the application trigger is active. Writing this sets the corresponding
application trigger to 1 and generates a channel event.

If the ECT does not support multicycle channel events, use of CTIAPPSET is deprecated and the
debugger must only use CTIAPPPULSE.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIAPPSET:

CTIAPPSET can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APPSET31
APPSET30

APPSET29
APPSET28

APPSET27
APPSET26

APPSET25
APPSET24

APPSET23
APPSET22

APPSET21
APPSET20

APPSET19
APPSET18

APPSET17
APPSET16

APPSET0
APPSET1

APPSET2
APPSET3

APPSET4
APPSET5

APPSET6
APPSET7

APPSET8
APPSET9

APPSET10
APPSET11

APPSET12
APPSET13

APPSET14
APPSET15

Component Offset Instance

CTI 0x014 CTIAPPSET
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13178
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13179
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.5 CTIAUTHSTATUS, CTI Authentication Status register

The CTIAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
CTI.

Configurations

CTIAUTHSTATUS is in the Debug power domain

This register is OPTIONAL, and is required for CoreSight compliance.

Attributes

CTIAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

Bits [27:24]

Reserved, RAZ.

Bits [23:16]

Reserved, RES0.

Bits [15:12]

Reserved, RAZ.

Bits [11:8]

Reserved, RES0.

Bits [7:4]

Reserved, RAZ.

NSNID, bits [3:2]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSNID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the
same value as DBGAUTHSTATUS_EL1.SNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

NSID, bits [1:0]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the
same value as DBGAUTHSTATUS_EL1.SID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 28

RAZ

27 24

RES0

23 16

RAZ

15 12

RES0

11 8

RAZ

7 4 3 2

NSID

1 0

NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13180
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
Accessing the CTIAUTHSTATUS:

CTIAUTHSTATUS can be accessed through the external debug interface:

Accesses to this interface are RO.

Component Offset Instance

CTI 0xFB8 CTIAUTHSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13181
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.6 CTICHINSTATUS, CTI Channel In Status register

The CTICHINSTATUS characteristics are:

Purpose

Provides the raw status of the ECT channel inputs to the CTI.

Configurations

CTICHINSTATUS is in the Debug power domain

There are no configuration notes.

Attributes

CTICHINSTATUS is a 32-bit register.

Field descriptions

CHIN<n>, bit [n], for n = 31 to 0

Input channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Input channel <n> is inactive.

0b1 Input channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether
an input channel can be observed as active.

Accessing the CTICHINSTATUS:

CTICHINSTATUS can be accessed through the external debug interface:

Accesses to this interface are RO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHIN31
CHIN30

CHIN29
CHIN28

CHIN27
CHIN26

CHIN25
CHIN24

CHIN23
CHIN22

CHIN21
CHIN20

CHIN19
CHIN18

CHIN17
CHIN16

CHIN0
CHIN1

CHIN2
CHIN3

CHIN4
CHIN5

CHIN6
CHIN7

CHIN8
CHIN9

CHIN10
CHIN11

CHIN12
CHIN13

CHIN14
CHIN15

Component Offset Instance

CTI 0x138 CTICHINSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13182
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.7 CTICHOUTSTATUS, CTI Channel Out Status register

The CTICHOUTSTATUS characteristics are:

Purpose

Provides the status of the ECT channel outputs from the CTI.

Configurations

CTICHOUTSTATUS is in the Debug power domain

There are no configuration notes.

Attributes

CTICHOUTSTATUS is a 32-bit register.

Field descriptions

CHOUT<n>, bit [n], for n = 31 to 0

Output channel <n> status.

Bits [31:N] are RAZ. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Possible values of this bit are:

0b0 Output channel <n> is inactive.

0b1 Output channel <n> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether
an output channel can be observed as active.

Note
The value in CTICHOUTSTATUS is after gating by the channel gate. For more information, see
CTIGATE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHOUT31
CHOUT30

CHOUT29
CHOUT28

CHOUT27
CHOUT26

CHOUT25
CHOUT24

CHOUT23
CHOUT22

CHOUT21
CHOUT20

CHOUT19
CHOUT18

CHOUT17
CHOUT16

CHOUT0
CHOUT1

CHOUT2
CHOUT3

CHOUT4
CHOUT5

CHOUT6
CHOUT7

CHOUT8
CHOUT9

CHOUT10
CHOUT11

CHOUT12
CHOUT13

CHOUT14
CHOUT15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13183
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
Accessing the CTICHOUTSTATUS:

CTICHOUTSTATUS can be accessed through the external debug interface:

Accesses to this interface are RO.

Component Offset Instance

CTI 0x13C CTICHOUTSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13184
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.8 CTICIDR0, CTI Component Identification Register 0

The CTICIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme.

Configurations

CTICIDR0 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the CTICIDR0:

CTICIDR0 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Component Offset Instance

CTI 0xFF0 CTICIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13185
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.9 CTICIDR1, CTI Component Identification Register 1

The CTICIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme.

Configurations

CTICIDR1 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

Access to this field is RO.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

Accessing the CTICIDR1:

CTICIDR1 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

1 0 0 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Component Offset Instance

CTI 0xFF4 CTICIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13186
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.10 CTICIDR2, CTI Component Identification Register 2

The CTICIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme.

Configurations

CTICIDR2 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the CTICIDR2:

CTICIDR2 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Component Offset Instance

CTI 0xFF8 CTICIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13187
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.11 CTICIDR3, CTI Component Identification Register 3

The CTICIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme.

Configurations

CTICIDR3 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the CTICIDR3:

CTICIDR3 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

CTI 0xFFC CTICIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13188
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.12 CTICLAIMCLR, CTI CLAIM Tag Clear register

The CTICLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM bits, and to clear CLAIM tag bits to 0.

Configurations

CTICLAIMCLR is in the Debug power domain

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMCLR is a 32-bit register.

Field descriptions

CLAIM<x>, bit [x], for x = 31 to 0

CLAIM tag clear bit.

Reads return the value of CLAIM<x>, writes have the following behavior:

0b0 No action.

0b1 Indirectly clear CLAIM<x> to 0.

A single write to CTICLAIMCLR can clear multiple tags to 0.

If x is greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is
RAZ/WI.

The reset behavior of this field is:

• An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMCLR:

CTICLAIMCLR can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLAIM31
CLAIM30

CLAIM29
CLAIM28

CLAIM27
CLAIM26

CLAIM25
CLAIM24

CLAIM23
CLAIM22

CLAIM21
CLAIM20

CLAIM19
CLAIM18

CLAIM17
CLAIM16

CLAIM0
CLAIM1

CLAIM2
CLAIM3

CLAIM4
CLAIM5

CLAIM6
CLAIM7

CLAIM8
CLAIM9

CLAIM10
CLAIM11

CLAIM12
CLAIM13

CLAIM14
CLAIM15

Component Offset Instance

CTI 0xFA4 CTICLAIMCLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13189
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13190
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.13 CTICLAIMSET, CTI CLAIM Tag Set register

The CTICLAIMSET characteristics are:

Purpose

Used by software to set CLAIM bits to 1.

Configurations

CTICLAIMSET is in the Debug power domain

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMSET is a 32-bit register.

Field descriptions

CLAIM<x>, bit [x], for x = 31 to 0

CLAIM tag set bit.

If x is less than the IMPLEMENTATION DEFINED number of CLAIM tags, this field is RAO and the
behavior on writes is:

0b0 No action.

0b1 Indirectly set CLAIM<x> tag to 1.

A single write to CTICLAIMSET can set multiple tags to 1.

If x is greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is
RAZ/WI.

The reset behavior of this field is:

• An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMSET:

CTICLAIMSET can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLAIM31
CLAIM30

CLAIM29
CLAIM28

CLAIM27
CLAIM26

CLAIM25
CLAIM24

CLAIM23
CLAIM22

CLAIM21
CLAIM20

CLAIM19
CLAIM18

CLAIM17
CLAIM16

CLAIM0
CLAIM1

CLAIM2
CLAIM3

CLAIM4
CLAIM5

CLAIM6
CLAIM7

CLAIM8
CLAIM9

CLAIM10
CLAIM11

CLAIM12
CLAIM13

CLAIM14
CLAIM15

Component Offset Instance

CTI 0xFA0 CTICLAIMSET
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13191
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13192
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.14 CTICONTROL, CTI Control register

The CTICONTROL characteristics are:

Purpose

Controls whether the CTI is enabled.

Configurations

CTICONTROL is in the Debug power domain

There are no configuration notes.

Attributes

CTICONTROL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

GLBEN, bit [0]

Enables or disables the CTI mapping functions. Possible values of this field are:

0b0 CTI mapping functions and application trigger disabled.

0b1 CTI mapping functions and application trigger enabled.

When GLBEN is 0, the input channel to output trigger, input trigger to output channel, and
application trigger functions are disabled and do not signal new events on either output triggers or
output channels. If a previously asserted output trigger has not been acknowledged, it is
CONSTRAINED UNPREDICTABLE which of the following occurs:

• The output trigger remains asserted after the mapping functions are disabled.

• The output trigger is deasserted after the mapping functions are disabled.

All output triggers are disabled by CTI reset.

If the ECT supports multicycle channel events any existing output channel events will be
terminated.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Accessing the CTICONTROL:

CTICONTROL can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

RES0

31 1 0

GLBEN

Component Offset Instance

CTI 0x000 CTICONTROL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13193
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.15 CTIDEVAFF0, CTI Device Affinity register 0

The CTIDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the CTI component relates to.

Configurations

CTIDEVAFF0 is in the Debug power domain

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF1 must also be implemented. If the CTI of a PE
does not implement the CTI Device Affinity registers, the CTI block of the external debug memory
map must be located 64KB above the debug registers in the external debug interface.

Attributes

CTIDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIDEVAFF0:

CTIDEVAFF0 can be accessed through the external debug interface:

Accesses to this interface are RO.

MPIDR_EL1lo

31 0

Component Offset Instance

CTI 0xFA8 CTIDEVAFF0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13194
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.16 CTIDEVAFF1, CTI Device Affinity register 1

The CTIDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the CTI component relates to.

Configurations

CTIDEVAFF1 is in the Debug power domain

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF0 must also be implemented. If the CTI of a PE
does not implement the CTI Device Affinity registers, the CTI block of the external debug memory
map must be located 64KB above the debug registers in the external debug interface.

Attributes

CTIDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIDEVAFF1:

CTIDEVAFF1 can be accessed through the external debug interface:

Accesses to this interface are RO.

MPIDR_EL1hi

31 0

Component Offset Instance

CTI 0xFAC CTIDEVAFF1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13195
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.17 CTIDEVARCH, CTI Device Architecture register

The CTIDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the CTI component.

Configurations

CTIDEVARCH is in the Debug power domain

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is not implemented, CTIDEVAFF0 and CTIDEVAFF1 are also not implemented.

Attributes

CTIDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For CTI, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

When FEAT_DoPD is implemented:

Revision.

Defines the architecture revision of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 First revision.

0b0001 As 0b0000, and also adds support for CTIDEVCTL.

All other values are reserved.

Access to this field is RO.

Otherwise:

Revision.

Defines the architecture revision of the component.

All other values are reserved.

0 1 0 0 0 1 1 1 0 1 1

31 21

1

20

REVISION

19 16

0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0

15 0

ARCHITECT PRESENT ARCHID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13196
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
Reads as 0b0000.

Access to this field is RO.

ARCHID, bits [15:0]

Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further
subdivided.

For CTI:

• Bits [15:12] are the architecture version, 0x1.

• Bits [11:0] are the architecture part number, 0xA14.

This corresponds to CTI architecture version CTIv2.

Reads as 0x1A14.

Access to this field is RO.

Accessing the CTIDEVARCH:

CTIDEVARCH can be accessed through the external debug interface:

Accesses to this interface are RO.

Component Offset Instance

CTI 0xFBC CTIDEVARCH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13197
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.18 CTIDEVCTL, CTI Device Control register

The CTIDEVCTL characteristics are:

Purpose

Provides target-specific device controls

Configurations

CTIDEVCTL is in the Debug power domain

This register is present only when FEAT_DoPD is implemented. Otherwise, direct accesses to
CTIDEVCTL are RES0.

Attributes

CTIDEVCTL is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

RCE, bit [1]

Reset Catch Enable.

0b0 Reset Catch debug event disabled.

0b1 Reset Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

OSUCE, bit [0]

OS Unlock Catch Enable

0b0 OS Unlock Catch debug event disabled.

0b1 OS Unlock Catch debug event enabled.

The reset behavior of this field is:

• On an External debug reset, this field resets to 0.

Accessing the CTIDEVCTL:

CTIDEVCTL can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.

RES0

31 2 1 0

RCE OSUCE

Component Offset Instance

CTI 0x150 CTIDEVCTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13198
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.19 CTIDEVID, CTI Device ID register 0

The CTIDEVID characteristics are:

Purpose

Describes the CTI component to the debugger.

Configurations

CTIDEVID is in the Debug power domain

There are no configuration notes.

Attributes

CTIDEVID is a 32-bit register.

Field descriptions

Bits [31:26]

Reserved, RES0.

INOUT, bits [25:24]

Input/output options. Indicates presence of the input gate. If the CTM is not implemented or CTIv2
is not implemented, this field is RAZ.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 CTIGATE does not mask propagation of input events from external channels.

0b01 CTIGATE masks propagation of input events from external channels.

All other values are reserved.

Access to this field is RO.

Bits [23:22]

Reserved, RES0.

NUMCHAN, bits [21:16]

Number of ECT channels implemented. For Armv8, valid values are:

• 0b000011 3 channels (0..2) implemented.

• 0b000100 4 channels (0..3) implemented.

• 0b000101 5 channels (0..4) implemented.

• 0b000110 6 channels (0..5) implemented.

and so on up to 0b100000, 32 channels (0..31) implemented.

All other values are reserved.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [15:14]

Reserved, RES0.

RES0

31 26 25 24

RES0

23 22

NUMCHAN

21 16

RES0

15 14

NUMTRIG

13 8

RES0

7 5

EXTMUXNUM

4 0

INOUT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13199
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
NUMTRIG, bits [13:8]

Upper bound for number of triggers. The indices of all implemented input and output triggers are
less than this value.

All other values are reserved. If the PE contains a Trace extension, this field must be at least
0b001000. There is no guarantee that all of the input and output triggers, including the highest
numbered, are connected to any components, or that the implementation of input and output triggers
is symmetrical.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [7:5]

Reserved, RES0.

EXTMUXNUM, bits [4:0]

Number of multiplexors available on triggers. This value is used in conjunction with External
Control register, ASICCTL.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIDEVID:

CTIDEVID can be accessed through the external debug interface:

Accesses to this interface are RO.

Component Offset Instance

CTI 0xFC8 CTIDEVID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13200
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.20 CTIDEVID1, CTI Device ID register 1

The CTIDEVID1 characteristics are:

Purpose

Reserved for future information about the CTI component to the debugger.

Configurations

CTIDEVID1 is in the Debug power domain

There are no configuration notes.

Attributes

CTIDEVID1 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID1:

CTIDEVID1 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 0

Component Offset Instance

CTI 0xFC4 CTIDEVID1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13201
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.21 CTIDEVID2, CTI Device ID register 2

The CTIDEVID2 characteristics are:

Purpose

Reserved for future information about the CTI component to the debugger.

Configurations

CTIDEVID2 is in the Debug power domain

There are no configuration notes.

Attributes

CTIDEVID2 is a 32-bit register.

Field descriptions

Bits [31:0]

Reserved, RES0.

Accessing the CTIDEVID2:

CTIDEVID2 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 0

Component Offset Instance

CTI 0xFC0 CTIDEVID2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13202
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.22 CTIDEVTYPE, CTI Device Type register

The CTIDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's cross-trigger interface.

Configurations

CTIDEVTYPE is in the Debug power domain

Implementation of this register is OPTIONAL.

Attributes

CTIDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Indicates this is a component within a PE.

Reads as 0b0001.

Access to this field is RO.

MAJOR, bits [3:0]

Major type. Indicates this is a cross-trigger component.

Reads as 0b0100.

Access to this field is RO.

Accessing the CTIDEVTYPE:

CTIDEVTYPE can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

0 0 0 1

7 4

0 1 0 0

3 0

SUB MAJOR

Component Offset Instance

CTI 0xFCC CTIDEVTYPE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13203
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.23 CTIGATE, CTI Channel Gate Enable register

The CTIGATE characteristics are:

Purpose

Determines whether events on channels propagate through the CTM to other ECT components, or
from the CTM into the CTI.

Configurations

CTIGATE is in the Debug power domain

There are no configuration notes.

Attributes

CTIGATE is a 32-bit register.

Field descriptions

GATE<x>, bit [x], for x = 31 to 0

Channel <x> gate enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Disable output and, if CTIDEVID.INOUT == 0b01, input channel <x> propagation.

0b1 Enable output and, if CTIDEVID.INOUT == 0b01, input channel <x> propagation.

If GATE<x> is set to 0, no new events will be propagated to the ECT, and if the ECT supports
multicycle channel events any existing output channel events will be terminated.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIGATE:

CTIGATE can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GATE31
GATE30

GATE29
GATE28

GATE27
GATE26

GATE25
GATE24

GATE23
GATE22

GATE21
GATE20

GATE19
GATE18

GATE17
GATE16

GATE0
GATE1

GATE2
GATE3

GATE4
GATE5

GATE6
GATE7

GATE8
GATE9

GATE10
GATE11

GATE12
GATE13

GATE14
GATE15

Component Offset Instance

CTI 0x140 CTIGATE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13204
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13205
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.24 CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

The CTIINEN<n> characteristics are:

Purpose

Enables the signaling of an event on output channels when input trigger event n is received by the
CTI.

Configurations

CTIINEN<n> is in the Debug power domain

If input trigger n is not implemented or not connected, CTIINEN<n> is RES0.

Attributes

CTIINEN<n> is a 32-bit register.

Field descriptions

INEN<x>, bit [x], for x = 31 to 0

Input trigger <n> to output channel <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

0b0 Input trigger <n> will not generate an event on output channel <x>.

0b1 Input trigger <n> will generate an event on output channel <x>.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIINEN<n>:

CTIINEN<n> can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INEN31
INEN30

INEN29
INEN28

INEN27
INEN26

INEN25
INEN24

INEN23
INEN22

INEN21
INEN20

INEN19
INEN18

INEN17
INEN16

INEN0
INEN1

INEN2
INEN3

INEN4
INEN5

INEN6
INEN7

INEN8
INEN9

INEN10
INEN11

INEN12
INEN13

INEN14
INEN15

Component Offset Instance

CTI 0x020 + (4 * n) CTIINEN<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13206
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13207
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.25 CTIINTACK, CTI Output Trigger Acknowledge register

The CTIINTACK characteristics are:

Purpose

Can be used to deactivate the output triggers.

Configurations

CTIINTACK is in the Debug power domain

There are no configuration notes.

Attributes

CTIINTACK is a 32-bit register.

Field descriptions

ACK<n>, bit [n], for n = 31 to 0

Acknowledge for output trigger <n>.

Bits [31:N] are RAZ/WI. N is the number of CTI triggers implemented as defined by the
CTIDEVID.NUMTRIG field.

If any of the following is true, writes to ACK<n> are ignored:

• n >= CTIDEVID.NUMTRIG, the number of implemented triggers.

• Output trigger n is not active.

• The channel mapping function output, as controlled by CTIOUTEN<n>, is still active.

Otherwise, if any of the following are true, ACK<n> is RES0:

• Output trigger n is not implemented.

• Output trigger n is not connected.

• Output trigger n is self-acknowledging and does not require software acknowledge.

Otherwise, the behavior on writes to ACK<n> is as follows:

0b0 No effect

0b1 Deactivate the trigger.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACK31
ACK30

ACK29
ACK28

ACK27
ACK26

ACK25
ACK24

ACK23
ACK22

ACK21
ACK20

ACK19
ACK18

ACK17
ACK16

ACK0
ACK1

ACK2
ACK3

ACK4
ACK5

ACK6
ACK7

ACK8
ACK9

ACK10
ACK11

ACK12
ACK13

ACK14
ACK15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13208
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
Accessing the CTIINTACK:

A debugger must read CTITRIGOUTSTATUS to confirm that the output trigger has been acknowledged before
generating any event that must be ordered after the write to CTIINTACK, such as a write to CTIAPPPULSE to
activate another trigger.

CTIINTACK can be accessed through the external debug interface:

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are WI.

• Otherwise accesses to this register are WO.

Component Offset Instance

CTI 0x010 CTIINTACK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13209
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.26 CTIITCTRL, CTI Integration mode Control register

The CTIITCTRL characteristics are:

Purpose

Enables the CTI to switch from its default mode into integration mode, where test software can
control directly the inputs and outputs of the PE, for integration testing or topology detection.

Configurations

The power domain of CTIITCTRL is IMPLEMENTATION DEFINED

Implementation of this register is OPTIONAL.

Attributes

CTIITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable
integration testing or topology detection.

0b0 Normal operation.

0b1 Integration mode enabled.

The integration mode behavior is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• The following resets apply:

— If the register is implemented in the Core power domain:

— On a Cold reset, this field resets to 0.

— On an External debug reset, the value of this field is unchanged.

— On a Warm reset, the value of this field is unchanged.

— If the register is implemented in the External debug power domain:

— On a Cold reset, the value of this field is unchanged.

— On an External debug reset, this field resets to 0.

— On a Warm reset, the value of this field is unchanged.

Accessing the CTIITCTRL:

CTIITCTRL can be accessed through the external debug interface:

RES0

31 1 0

IME

Component Offset Instance

CTI 0xF00 CTIITCTRL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13210
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() accesses to this register are IMPDEF.

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13211
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.27 CTILAR, CTI Lock Access Register

The CTILAR characteristics are:

Purpose

Allows or disallows access to the CTI registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger
Interface registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

CTILAR is in the Debug power domain

If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILAR is a 32-bit register.

Field descriptions

When Software Lock is implemented:

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write
accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

Otherwise:

Otherwise

Bits [31:0]

Reserved, RES0.

Accessing the CTILAR:

CTILAR can be accessed through its memory-mapped interface:

Accesses to this interface are WO.

KEY

31 0

RES0

31 0

Component Offset Instance

CTI 0xFB0 CTILAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13212
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.28 CTILSR, CTI Lock Status Register

The CTILSR characteristics are:

Purpose

Indicates the current status of the Software Lock for CTI registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger
Interface registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

CTILSR is in the Debug power domain

If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLK, bit [1]

When Software Lock is implemented:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access,
or when the Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when the Software Lock is implemented, possible values of this field
are:

0b0 Lock clear. Writes are permitted to this component's registers.

0b1 Lock set. Writes to this component's registers are ignored, and reads have no side
effects.

The reset behavior of this field is:

• On an External debug reset, this field resets to 1.

Otherwise:

Reserved, RAZ.

SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field
is RAZ.

RES0

31 3 2 1 0

nTT SLI
SLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13213
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Software Lock not implemented or not memory-mapped access.

0b1 Software Lock implemented and memory-mapped access.

Access to this field is RO.

Accessing the CTILSR:

CTILSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

CTI 0xFB4 CTILSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13214
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.29 CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

The CTIOUTEN<n> characteristics are:

Purpose

Defines which input channels generate output trigger n.

Configurations

CTIOUTEN<n> is in the Debug power domain

If output trigger n is not implemented or not connected, CTIOUTEN<n> is RES0.

Attributes

CTIOUTEN<n> is a 32-bit register.

Field descriptions

OUTEN<x>, bit [x], for x = 31 to 0

Input channel <x> to output trigger <n> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the
CTIDEVID.NUMCHAN field.

Possible values of this bit are:

0b0 An event on input channel <x> will not cause output trigger <n> to be asserted.

0b1 An event on input channel <x> will cause output trigger <n> to be asserted.

The reset behavior of this field is:

• On an External debug reset, this field resets to an architecturally UNKNOWN value.

Accessing the CTIOUTEN<n>:

CTIOUTEN<n> can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUTEN31
OUTEN30

OUTEN29
OUTEN28

OUTEN27
OUTEN26

OUTEN25
OUTEN24

OUTEN23
OUTEN22

OUTEN21
OUTEN20

OUTEN19
OUTEN18

OUTEN17
OUTEN16

OUTEN0
OUTEN1

OUTEN2
OUTEN3

OUTEN4
OUTEN5

OUTEN6
OUTEN7

OUTEN8
OUTEN9

OUTEN10
OUTEN11

OUTEN12
OUTEN13

OUTEN14
OUTEN15

Component Offset Instance

CTI 0x0A0 + (4 * n) CTIOUTEN<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13215
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13216
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.30 CTIPIDR0, CTI Peripheral Identification Register 0

The CTIPIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme.

Configurations

CTIPIDR0 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR0:

CTIPIDR0 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

CTI 0xFE0 CTIPIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13217
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.31 CTIPIDR1, CTI Peripheral Identification Register 1

The CTIPIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme.

Configurations

CTIPIDR1 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR1:

CTIPIDR1 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

DES_0

7 4

PART_1

3 0

Component Offset Instance

CTI 0xFE4 CTIPIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13218
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.32 CTIPIDR2, CTI Peripheral Identification Register 2

The CTIPIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme.

Configurations

CTIPIDR2 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR2:

CTIPIDR2 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

CTI 0xFE8 CTIPIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13219
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.33 CTIPIDR3, CTI Peripheral Identification Register 3

The CTIPIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme.

Configurations

CTIPIDR3 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using CTIPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR3:

CTIPIDR3 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

REVAND

7 4

CMOD

3 0

Component Offset Instance

CTI 0xFEC CTIPIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13220
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.34 CTIPIDR4, CTI Peripheral Identification Register 4

The CTIPIDR4 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme.

Configurations

CTIPIDR4 is in the Debug power domain

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the CTIPIDR4:

CTIPIDR4 can be accessed through the external debug interface:

Accesses to this interface are RO.

RES0

31 8

0 0 0 0

7 4

DES_2

3 0

SIZE

Component Offset Instance

CTI 0xFD0 CTIPIDR4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13221
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.35 CTITRIGINSTATUS, CTI Trigger In Status register

The CTITRIGINSTATUS characteristics are:

Purpose

Provides the status of the trigger inputs.

Configurations

CTITRIGINSTATUS is in the Debug power domain

There are no configuration notes.

Attributes

CTITRIGINSTATUS is a 32-bit register.

Field descriptions

TRIN<n>, bit [n], for n = 31 to 0

Trigger input <n> status.

Bits [31:N] are RAZ. N is the number of CTI triggers implemented as defined by the
CTIDEVID.NUMTRIG field.

0b0 Input trigger n is inactive.

0b1 Input trigger n is active.

Not implemented and not-connected input triggers are always inactive.

It is IMPLEMENTATION DEFINED whether an input trigger that does not support multicycle events can
be observed as active.

Accessing the CTITRIGINSTATUS:

CTITRIGINSTATUS can be accessed through the external debug interface:

Accesses to this interface are RO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRIN31
TRIN30

TRIN29
TRIN28

TRIN27
TRIN26

TRIN25
TRIN24

TRIN23
TRIN22

TRIN21
TRIN20

TRIN19
TRIN18

TRIN17
TRIN16

TRIN0
TRIN1

TRIN2
TRIN3

TRIN4
TRIN5

TRIN6
TRIN7

TRIN8
TRIN9

TRIN10
TRIN11

TRIN12
TRIN13

TRIN14
TRIN15

Component Offset Instance

CTI 0x130 CTITRIGINSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13222
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
H9.5.36 CTITRIGOUTSTATUS, CTI Trigger Out Status register

The CTITRIGOUTSTATUS characteristics are:

Purpose

Provides the raw status of the trigger outputs, after processing by any IMPLEMENTATION DEFINED
trigger interface logic. For output triggers that are self-acknowledging, this is only meaningful if the
CTI implements multicycle channel events.

Configurations

CTITRIGOUTSTATUS is in the Debug power domain

There are no configuration notes.

Attributes

CTITRIGOUTSTATUS is a 32-bit register.

Field descriptions

TROUT<n>, bit [n], for n = 31 to 0

Trigger output <n> status.

Bits [31:N] are RAZ. N is the value in CTIDEVID.NUMTRIG.

If n < N, and output trigger <n> is implemented and connected, and either the trigger is not
self-acknowledging or the CTI implements multicycle channel events, then permitted values for
TROUT<n> are:

0b0 Output trigger n is inactive.

0b1 Output trigger n is active.

Otherwise when n < N it is IMPLEMENTATION DEFINED whether TROUT<n> behaves as described
here or is RAZ.

Accessing the CTITRIGOUTSTATUS:

CTITRIGOUTSTATUS can be accessed through the external debug interface:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TROUT31
TROUT30

TROUT29
TROUT28

TROUT27
TROUT26

TROUT25
TROUT24

TROUT23
TROUT22

TROUT21
TROUT20

TROUT19
TROUT18

TROUT17
TROUT16

TROUT0
TROUT1

TROUT2
TROUT3

TROUT4
TROUT5

TROUT6
TROUT7

TROUT8
TROUT9

TROUT10
TROUT11

TROUT12
TROUT13

TROUT14
TROUT15

Component Offset Instance

CTI 0x134 CTITRIGOUTSTATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13223
ID032224 Non-Confidential

External Debug Register Descriptions
H9.5 Cross-Trigger Interface registers
Accesses to this interface are RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. H9-13224
ID032224 Non-Confidential

Part I
Memory-mapped Components of the Arm Architecture

Chapter I1
Requirements for Memory-mapped Components

This chapter provides some additional information about memory-mapped components. It contains the following
sections:

• Supported access sizes.

• Synchronization of memory-mapped registers.

• Access requirements for reserved and unallocated registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I1-13226
ID032224 Non-Confidential

Requirements for Memory-mapped Components
I1.1 Supported access sizes
I1.1 Supported access sizes

The information in this section applies to all accesses to memory-mapped components of the Armv8 and later
architectures, unless a register or component description explicitly states otherwise.

The memory access sizes that are supported by any peripheral are IMPLEMENTATION DEFINED by the peripheral.

When FEAT_Debugv8p4 is implemented, each debug component has a Secure and Non-secure view. The Secure
view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component
is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug
components are identical.

An implementation of a memory-mapped component that is compatible with the Armv8 and later architectures must
support the following:

• Word-aligned 32-bit accesses to access 32-bit registers.

• If the system includes any component with direct memory access to the memory-mapped component which
needs to access the component but does not support making 64-bit accesses, word-aligned 32-bit accesses to
either half of a 64-bit register that is mapped to a doubleword-aligned pair of adjacent 32-bit locations. This
includes, but is not limited to:

— A PE that supports AArch32 at any Exception level.

— A PE that implements a 32-bit ISA that does not include 64-bit memory operations. For example,
Armv8-M T32.

— A Debug Access Port that cannot make 64-bit accesses.

Arm deprecates support for 32-bit accesses to either half of 64-bit registers.

Note

Although AArch32 implementations might make 64-bit accesses for LDP and STP instructions, this is not
architecturally required. To guarantee ordering of accesses, portable AArch32 software should use LDR and
STR. For compatibility with such software, the memory-mapped component should treat the PE that supports
AArch32 as not making 64-bit accesses using portable code.

Note

Some memory-mapped components of the Arm architecture require support for word-aligned 32-bit accesses
to either half of a 64-bit memory mapped register even if all components with direct memory access to the
memory-mapped component support making 64-bit accesses. These include:

— The memory-mapped interface to the external debug and CTI registers that are described in
Chapter H9 External Debug Register Descriptions.

— The memory-mapped interfaces to the Generic Timer registers that are described in Chapter I2 System
Level Implementation of the Generic Timer.

— When the 64-bit external PMU programmers’ model extension is not implemented, the
memory-mapped interfaces to the Performance Monitors registers that are described in Chapter I3
Recommended External Interface to the Performance Monitors.

— The memory-mapped interfaces to the Activity Monitors registers that are described in Chapter I4
Recommended External Interface to the Activity Monitors.

• Doubleword-aligned 64-bit accesses to access 64-bit registers that are mapped to a doubleword-aligned pair
of adjacent 32-bit locations.

Unless otherwise specified, all registers are only single-copy atomic at word granularity. This means that for 64-bit
accesses to a 64-bit register, the system might generate a pair of 32-bit accesses. The order in which the two halves
are accessed is not specified.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I1-13227
ID032224 Non-Confidential

Requirements for Memory-mapped Components
I1.1 Supported access sizes
The following accesses are not supported:

• Byte accesses.

• Halfword accesses.

• Unaligned word accesses. These accesses are not word single-copy atomic.

• Unaligned doubleword accesses. These accesses are not doubleword single-copy atomic.

• Doubleword accesses to a pair of 32-bit locations that are not a doubleword-aligned pair that forms a 64-bit
register.

• Quadword accesses or higher accesses.

• Exclusive accesses.

For unsupported accesses, it is CONSTRAINED UNPREDICTABLE whether:

• The access generates an External abort or not.

• The defined side-effects of a read occur or not. A read returns UNKNOWN values.

• A write is ignored or sets the accessed register or registers to UNKNOWN.

• The access generates a fault handling interrupt or not. A read returns UNKNOWN data.

For memory-mapped accesses from a PE that complies with an Arm architecture, the single-copy atomicity rules
for the instruction, the type of instruction, and the type of memory that is accessed, determine the size of the access
that is made by an instruction. Example I1-1 shows this.

Example I1-1 Access sizes for memory-mapped accesses

Two Load Doubleword instructions that are made to consecutive doubleword-aligned locations generate a pair of
single-copy atomic doubleword reads. However, if the accesses are made to Normal memory or Device-GRE
memory they might appear as a single quadword access that is not supported by the peripheral.

The Arm architecture does not require the size of each element that is accessed by a multi-register load or store
instruction to be identifiable by the memory system beyond the PE. Unless otherwise specified by the component,
any access to a memory-mapped component of the Arm architecture is defined to be beyond the PE.

Software must use a Device-nGRE or stronger memory type, and only single register load and store instructions, to
create memory accesses that are supported by the peripheral. For more information, see Memory types and
attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I1-13228
ID032224 Non-Confidential

Requirements for Memory-mapped Components
I1.2 Synchronization of memory-mapped registers
I1.2 Synchronization of memory-mapped registers

This section describes the synchronization requirements for the memory-mapped accesses to System registers.

This section refers to accesses to external system control registers as external reads and external writes. It refers to
accesses to System registers as direct reads, direct writes, indirect reads, and indirect writes.

Note

Synchronization requirements for AArch64 System registers and Synchronization of changes to AArch32 System
registers define direct read, direct write, indirect read, and indirect write, and classifies external reads as indirect
reads and external writes as indirect writes.

Writes to the same register are serialized, meaning they are observed in the same order by all observers, although
some observers might not observe all of the writes. Unless otherwise stated, external writes to different registers are
not necessarily observed in the same order by all observers as the order in which they complete.

Explicit synchronization is not required for an external read or an external write by an external agent to be
observable to a following external read or external write by that agent to the same register using the same address,
and so is never required for registers that are accessible as external system control registers.

Unless required to be observable to all observers in finite time, without explicit synchronization, explicit
synchronization is normally required following an external write to any register for that write to be observable by:

• A direct access.

• An indirect read by an instruction.

• An external read of the register using a different address.

This means that an external write by an external agent is guaranteed to have an effect on subsequent instructions
executed by the PE only if all of the following are true:

• The write has completed.

• The PE has executed a Context synchronization event.

• The Context synchronization event was executed after the write completed.

The order and synchronization of direct reads and direct writes of System registers is defined by:

• Synchronization requirements for AArch64 System registers.

• Synchronization of changes to AArch32 System registers.

The external agent must be able to guarantee completion of a write. For example, the agent can:

• Mark the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.

• If the register is read/write and reads are not destructive, read back the value written.

• Use some guaranteed property of the connection between the PE and the external agent.

The external agent and PE can guarantee ordering by, for example, passing messages in an ordered way with respect
to the external write and the Context synchronization event, and relying on the memory ordering rules provided by
the memory model.

External reads and external write complete in the order in which they arrive at the PE. For accesses to different
register locations, the external agent must create this order. The agent can:

• Mark the memory as Device-nGnRnE or Device-nGnRE.

• Use the appropriate memory barriers.

• Rely on some guaranteed property of the connection between the PE and the external agent.

However, the external agent cannot force the synchronization of completed writes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I1-13229
ID032224 Non-Confidential

Requirements for Memory-mapped Components
I1.2 Synchronization of memory-mapped registers
In a simple sequential execution, an indirect write that occurs as a side-effect of an access happens atomically with
the access, meaning no other accesses are allowed between the register access and its side-effect.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two
or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a
result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order.
This applies even if the accesses occur simultaneously.

For example, some registers have the property that for certain bits a write of 0 is ignored and a write of 1 has an
effect. This means the simultaneous writes must be merged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I1-13230
ID032224 Non-Confidential

Requirements for Memory-mapped Components
I1.3 Access requirements for reserved and unallocated registers
I1.3 Access requirements for reserved and unallocated registers

This section describes the access requirements for reserved and unallocated memory-mapped components.

The following information relates to certain types of reserved accesses:

• Reads and writes of unallocated locations. These accesses are reserved for the architecture.

• Reads and writes of locations for features that are not implemented, including:

— OPTIONAL features that are not implemented.

— Breakpoints and watchpoints that are not implemented.

— Performance Monitors counters that are not implemented.

— CTI triggers that are not implemented.

— Error records that are not implemented.

These accesses are reserved.

• Reads of WO locations. These accesses are reserved for the architecture.

• Writes to RO locations. These accesses are reserved for the architecture.

Reserved accesses are normally RAZ/WI. However, software must not rely on this property as the behavior of
reserved values might change in a future revision of the architecture. Software must treat reserved accesses as RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I1-13231
ID032224 Non-Confidential

Chapter I2
System Level Implementation of the Generic Timer

This chapter defines the system level implementation of the Generic Timer. It contains the following sections:

• About the Generic Timer specification.

• Memory-mapped counter module.

• Memory-mapped timer components.

Note

• Generic Timer memory-mapped register descriptions describes the System level Generic Timer registers.
These registers are memory-mapped.

• Appendix K8 Additional Information for Implementations of the Generic Timer gives additional information,
that does not form part of the architectural definition of a system level implementation of the Generic Timer.

• Chapter D12 The Generic Timer in AArch64 state gives a general description of the AArch64 state view of
the Generic Timer, and describes the AArch64 System register interface to the Generic Timer.

• Chapter G6 The Generic Timer in AArch32 state gives a general description of the AArch32 state view of the
Generic Timer, and describes the AArch32 System register interface to the Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13232
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification
I2.1 About the Generic Timer specification

Chapter D12 The Generic Timer in AArch64 state describes the Arm Generic Timer and its implementation as seen
from AArch64 state. Chapter G6 The Generic Timer in AArch32 state describes the Arm Generic Timer and its
implementation as seen from AArch32 state. These chapters include the definition of the low-latency System
register interface to the Generic Timer. However, the Arm Generic Timer architecture also defines a
memory-mapped component, that comprises:

• A memory-mapped counter module, that controls the generation of the Count value used by the Generic
Timer.

This memory-mapped counter module is required in any Arm Generic Timer implementation that requires
software control of the Count value of the Generic Timer.

• Optional memory-mapped timer modules. These give a standardized way of providing timers for
programmable system components other than PEs that implement the Arm architecture.

The full set of Generic Timer components summarizes these components as seen from AArch64 state, and The full
set of Generic Timer components summarizes them as seen from AArch32 state. The system level components of the
Generic Timer summarizes the system level components.

I2.1.1 Registers in the system level implementation of the Generic Timer

Registers that control components of the system level implementation of the Generic Timer are grouped into frames.
This specification defines the registers in each frame, and their offsets within the frame. The system defines the
position of each frame in the memory map. This means the base addresses for each frame are IMPLEMENTATION
DEFINED.

Note

The final 12 words of the first or only 4KB block of a register memory frame is an ID block.

Each frame must be in its own memory page, or memory protection region, and must be aligned to the size of the
translation granule or protection granule.

Note

When a system level implementation of the Generic Timer is accessed by a PE:

• Using a VMSA, each frame is in its own memory page, aligned to the size of the translation granule.

• Using a PMSA, each frame is in its own memory protection region, aligned to the size of the memory
protection granule.

The following sections give more information about the requirements for the system level Generic Timer
component:

• Endianness and supported access sizes.

• Power and reset domains for the system level implementation of the Generic Timer.

I2.1.1.1 Endianness and supported access sizes

All memory-mapped peripherals defined in the Arm architecture must be little-endian. This means the system-level
Generic Timer registers, and the register frames, are little-endian.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13233
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification
The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses
to the memory-mapped Generic Timer registers implementations must:

• Comply with the requirements of Supported access sizes.

• Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations, even if all components with direct memory access to
the Generic Timer support making 64-bit accesses.

I2.1.1.2 Power and reset domains for the system level implementation of the Generic
Timer

The power and reset domains of the system level implementation of the Generic Timer are IMPLEMENTATION
DEFINED as part of the system implementation. In register descriptions, they are called Timer resets to indicate they
can be outside the PE power and reset domains defined by the remainder of this manual.

The Arm architecture requires that the CNTCR.{FCREQ, EN} and CNTSR.FCACK fields reset to 0. These Timer
reset values apply only on powerup of the power domain in which the registers are implemented or a reset of the
reset domain in which they are implemented.

Every other register, or register field, of a system level implementation of the Generic Timer resets to a value that
is architecturally UNKNOWN if it has a meaningful reset value. These Timer resets apply on powerup of the power
domain in which the register is implemented, and on a reset of the reset domain in which it is implemented.

I2.1.2 The system level components of the Generic Timer

Each system level component has one or two register frames. The possible system level components are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:

• A control frame, CNTControlBase.

• A status frame, CNTReadBase.

Memory-mapped counter module describes this component.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers, and the
memory-mapped timer control module identifies:

• Which timers are implemented.

• The features of each implemented timer.

This module has a single frame, CNTCTLBase.

The CNTCTLBase frame describes this frame.

Memory-mapped timers, optional

An implemented memory-mapped timer:

• Must provide a privileged view of the timer, in the CNTBaseN frame.

• Optionally provides an unprivileged view of the timer in the CNTEL0BaseN frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

The CNTBaseN and CNTEL0BaseN frames describes these frames.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13234
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
I2.2 Memory-mapped counter module

The memory-mapped counter module provides top-level control of the system counter. The CNTControlBase frame
holds the registers for the memory-mapped counter, and provides:

• An RW control register, CNTCR, that provides:

— An enable bit for the system counter.

— An enable bit for Halt-on-debug. For more information, see Halt-on-debug.

— A field that can be written to request a change to the update frequency of the system counter, with a
corresponding change to the increment made at each update. This mechanism means that, for example,
if the update frequency is halved, the increment at each update is doubled.

For more information, see Control of counter operating frequency and increment.

Writes to this register are rare. In a system that supports two Security states, this register is writable only by
Secure writes.

• A RO status register, CNTSR, that provides:

— A bit that indicates whether the system counter is halted because of an asserted Halt-on-debug signal.

— A field that indicates the current update frequency of the system counter. This field can be polled to
determine when a requested change to the update frequency has been made.

• Two contiguous 32-bit RW registers that hold the current system counter value, CNTCV. If the system
supports 64-bit atomic accesses, these two registers must be accessible by such accesses.

The system counter must be disabled before writing to these registers, otherwise the effect of the write is
UNPREDICTABLE.

Writes to these registers are rare. In a system that supports two Security states, these registers are writable
only by Secure writes.

• A Frequency modes table of one or more 32-bit entries, where:

— The first entry in the table defines the base frequency of the system counter. This is the maximum
frequency at which the counter updates.

— Each subsequent entry in the table defines an alternative frequency of the system counter, that must be
an exact divisor of the base frequency.

A 32-bit zero entry immediately follows the last table entry.

This table can be RO or RW. For more information, see The Frequency modes table.

In addition, the CNTReadBase frame includes a read-only copy of the system counter value, CNTCV, as two
contiguous 32-bit RO registers. If the system supports 64-bit atomic accesses, these two registers must be accessible
by such accesses.

Counter module control and status register summary describes CNTReadBase and CNTControlBase memory
maps, and the registers in each frame.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13235
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
I2.2.1 Control of counter operating frequency and increment

The system counter has a fixed base frequency, and must maintain the required counter accuracy, meaning Arm
recommends that it does not gain or lose more than ten seconds in a 24-hour period, see The system counter.
However, the counter can increment at a lower frequency than the base frequency, using a correspondingly larger
increment. For example, it can increment by four at a quarter of the base frequency. Any lower-frequency operation,
and any switching between operating frequencies, must not reduce the accuracy of the counter.

Control of the system counter frequency and increment is provided only through the memory-mapped counter
module. The following sections describe this control:

• The Frequency modes table.

• Changing the system counter and increment.

I2.2.1.1 The Frequency modes table

The Frequency modes table starts at offset 0x20 in the CNTControlBase frame.

Table entries are 32-bits, and each entry specifies a system counter update frequency, in Hz.

The first entry in the table specifies the base frequency of the system counter.

When the system counter is operating at a lower frequency than the base frequency, the increment applied at each
counter update is given by:

increment = (base_frequency) / (selected_frequency)

A 32-bit word of zero value marks the end of the table. That is, the word of memory immediately after the last entry
in the table must be zero.

The only required entry in the table is the entry for the base frequency.

Typically, the Frequency modes table is in RO memory. However, a system implementation might use RW memory
for the table, and initialize the table entries as part of its startup sequence. Therefore, the CNTControlBase memory
map shows the table region as RO or RW.

Arm strongly recommends that the Frequency modes table is not updated once the system is running.

The architecture can support up to 1004 entries in the Frequency modes table, including the zero-word end marker,
and the number of entries is IMPLEMENTATION DEFINED, up to this limit.

Note

• Arm considers it likely that implementations will require significantly fewer entries than the architectural
limit.

• In the CNTControlBase frame, the offset range 0x0C0-0x0FC can be used for IMPLEMENTATION DEFINED
registers. If any registers are defined in this space, then the Frequency modes table cannot extend beyond
offset 0x0B8, with a zero word at offset 0x0BC. This means that if any IMPLEMENTATION DEFINED registers are
defined the maximum number of entries in the table is 40, including the zero-word end marker.

I2.2.1.2 Changing the system counter and increment

The value of the CNTCR.FCREQ field specifies which entry in the Frequency modes table specifies the system
counter update frequency.

Changing the value of CNTCR.FCREQ requests a change to the system counter update frequency. To ensure the
frequency change does not affect the overall accuracy of the counter, a change is made as follows:

• When changing from a higher frequency to a lower frequency, the counter:

1. Continues running at the higher frequency until the count reaches an integer multiple of the required
lower frequency.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13236
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
2. Switches to operating at the lower frequency.

• When changing from a lower frequency to a higher frequency, the counter:

1. Waits until the end of the current lower-frequency cycle.

2. Makes the counter increment required for operation at that lower frequency.

3. Switches to operating at the higher frequency.

When the frequency has changed, CNTSR is updated to indicate the new frequency. Therefore, a system component
that is waiting for a frequency change can poll CNTSR to detect the change.

I2.2.2 Halt-on-debug

The CNTCR register provides an enable bit for an OPTIONAL Halt-on-debug signal.

When the CNTCR.HDBG bit is set to 1, and the Halt-on-debug signal is implemented and asserted, the system
counter is halted. Otherwise, the system counter ignores the state of this signal.

Where the system counter implements a Halt-on-debug signal and the system supports halting the system counter,
Arm recommends that the Halt-on-debug signal can be controlled by a debugger using the Embedded Cross-Trigger
(ECT) using a system-level cross-trigger interface that includes:

• A debug request output trigger event that asserts the Halt-on-debug signal.

• A restart request output trigger event that deasserts the Halt-on-debug signal.

For more information, see About the Embedded Cross-Trigger.

Note

Software must use the Halt-on-debug enable bit to ensure that the timers cannot be halted maliciously in an attempt
to prohibit progress.

For more information about Halt-on-debug, contact Arm.

I2.2.3 Counter module control and status register summary

The Counter module control and status registers are memory-mapped registers in the following register memory
frames:

• A control frame, with base address CNTControlBase.

• A status frame, with base address CNTReadBase.

Each of these register memory frames is in its own memory page or memory protection region, and the frame base
address points to the start of this region. Each base address must be aligned to the size of the translation granule or
protection granule.

Note

Each frame of a memory-mapped Generic Timer takes the name of its base address.

In each register memory frame, the memory at offset 0xFD0-0xFFF is reserved for twelve 32-bit IMPLEMENTATION
DEFINED ID registers, see the CounterID<n> register descriptions for more information.

Note

The Arm architecture requires memory-mapped peripherals to be little-endian, and therefore the counter is
little-endian.

In an implementation that supports Secure and Non-secure memory maps, CNTControlBase is accessible only by
Secure accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13237
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.2 Memory-mapped counter module
Table I2-1 shows the CNTControlBase control registers, in order of their offsets from the CNTControlBase base
address, for an implementation that includes registers in the IMPLEMENTATION DEFINED register space 0x0C0-0x0FC,
and also has fewer than 39 CNTFID<n> registers. The Frequency modes table describes how this memory map
differs if more CNTFID<n> registers are implemented.

Generic Timer memory-mapped register descriptions describes each of these registers.

Table I2-2 shows the CNTReadBase control registers, in order of their offsets from the CNTReadBase base address.
Generic Timer memory-mapped register descriptions describes each of these registers.

Table I2-1 CNTControlBase memory map

Offset Name Type Description

0x000 CNTCR RW Counter Control Register.

0x004 CNTSR RO Counter Status Register.

0x008 CNTCV[31:0] RW Counter Count Value register.

0x00C CNTCV[63:32] RW

0x010 CNTSCRa RW Counter Scale Register.

0x014-0x018 - RES0 Reserved.

0x01C CNTIDa RO Counter Identification Register.

0x020 CNTFID0 RO or RW Frequency modes table, and end marker.

For more information, see The Frequency modes table.
0x020+4n CNTFID<n> RO or RW

0x024+4n - RO or RW, RAZ

(0x028+4n)-0x0BC - RO, RES0 Reserved.

0x0C0-0x0FC - IMPLEMENTATION
DEFINED

Reserved for IMPLEMENTATION DEFINED registers.

0x100-0xFCC - RO, RES0 Reserved.

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11.

a. Implemented only if FEAT_CNTSC is implemented.

Table I2-2 CNTReadBase memory map

Offset Name Type Description

0x000 CNTCV[31:0] RO Counter Count Value register

0x004 CNTCV[63:32] RO

0x008-0xFCC - RES0 Reserved

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13238
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
I2.3 Memory-mapped timer components

This part of the Arm Generic Timer specification defines an optional memory-mapped timer component. This can
be implemented as part of any programmable system component that does not incorporate a System register mapped
Arm Generic Timer, to provide that system component with the timer functionality of an Arm Generic Timer.

The memory map consists of up to eight timer frames. The base address of a frame is CNTBaseN, where N numbers
from 0 up to a maximum permitted value of 7.

Each CNTBaseN timer frame:

• Provides its own set of timers and associated interrupts.

• Is implemented in its own memory page or memory protection region.

• Is implemented at a base address, identified as CNTBaseN, that is aligned to the size of the translation granule
or memory protection region.

For each implemented CNTBaseN frame the system can optionally provide an unprivileged view of the frame,
described as the EL0 view of the frame. The base address of this second view of the CNTBaseN frame is
CNTEL0BaseN.

Note

In the naming of the registers associated with a CNTBaseN or CNTEL0BaseN frame, the value of N is represented
as <n>, for example CNTACR<n>.

If a CNTEL0BaseN frame is implemented:

• Is implemented in its own memory page or memory protection region and is aligned to the size of the
translation granule or memory protection region.

• All registers visible in CNTBaseN, except for CNTVOFF and CNTEL0ACR, can be visible in
CNTEL0BaseN.

— Control fields in CNTEL0ACR determine whether each register is visible.

• The offsets of all visible registers are the same as their offsets in the CNTBaseN frame.

In addition to the implemented CNTBaseN and CNTEL0BaseN frames, the system must provide a single control
frame at base address CNTCTLBase. CNTCTLBase must be implemented in its own memory page or memory
protection region and is aligned to the size of the translation granule or memory protection region.

The system defines the position of each frame in the memory map. This means the values of each of the CNTBaseN,
CNTEL0BaseN, and CNTCTLBase base addresses is IMPLEMENTATION DEFINED.

Note

The Arm architecture requires memory-mapped peripherals to be little-endian, and therefore the memory-mapped
timers are little-endian.

The following sections describe the implementation of a memory-mapped view of the counter and timer:

• The CNTCTLBase frame.

• The CNTBaseN and CNTEL0BaseN frames.

Note

Providing a complete set of features in a system level implementation gives an implementation example for a system
level Generic Timer implementation that provides equivalent features to a System registers Generic Timer
implementation in a PE that includes all of the Exception levels.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13239
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
I2.3.1 The CNTCTLBase frame

The CNTCTLBase frame contains:

• An identification register for the features of the memory-mapped counter and timer implementation.

• Access controls for each CNTBaseN frame.

• A virtual offset register for frames that implement a virtual timer.

Table I2-3 shows the CNTCTLBase registers, in order of their offsets from the CNTCTLBase base address.

Note

CNTFRQ and CNTVOFF registers are also implemented in a System register interface to the Generic Timer.

Generic Timer memory-mapped register descriptions describes each of these registers.

All implementations of the Generic Timer include the virtual counter. Therefore, conceptually, all implementations
include the CNTVOFF register that defines the virtual offset between the physical count and the virtual count. If a
memory-mapped Generic Timer component does not distinguish between real time and virtual time, then it can
implement CNTVOFF as RAZ/WI. Otherwise CNTVOFF is an RW register, and Arm strongly recommends that
the system only permits access to CNTVOFF from EL2 or higher.

Table I2-3 CNTCTLBase memory map

Offset Register Type Securitya Description

0x000 CNTFRQb RW Secure only Counter Frequency register.

0x004 CNTNSAR RW Secure only Counter Non-Secure Access register.

0x008 CNTTIDR RO Both Counter Timer ID register.

0x00C- 0x03F - RES0 - Reserved.

0x040+4Nc CNTACR<n> RW Configurabled Counter Access Control register N.

0x060- 0x07F - RES0 - Reserved.

0x080+8Nc CNTVOFF<n>[31:0]b RWe Configurabled Virtual Offset register N. If the CNTBaseN frame has
virtual timer capability then CNTVOFF<n> is
implemented as an RW register, otherwise its location is
RAZ/WI.

0x084+8Nc CNTVOFF<n>[63:32]b RWe

0x0C0-0x0FC - RES0 - Reserved.

0x100-0x7FC - - - IMPLEMENTATION DEFINED.

0x800-0xFBC - RES0 - Reserved.

0xFC0-0xFCF - - - IMPLEMENTATION DEFINED.

0xFD0- 0xFFC CounterID<n> RO Both Counter ID registers 0-11.

a. Access security requirement in an implementation that supports two Security states. In an implementation that does not support
multiple Security states all registers are accessible as shown in the Type column.

b. These registers are also defined in the System register interface to the Generic Timer, and therefore are also described in Generic
Timer registers and Generic Timer registers. The bit assignments of the registers are identical in the System register interface and in
the memory-mapped system level interface.

c. Implemented for each value of N from 0 to 7 for which a CNTBaseN frame is implemented.

d. The CNTNSAR determines the Non-secure accessibility of the CNTACR<n>s and the CNTVOFF<n> in the CNTCTLBase frame.
For more information, see the register descriptions.

e. Address is reserved, RAZ/WI if register not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13240
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
I2.3.2 The CNTBaseN and CNTEL0BaseN frames

Each CNTBaseN frame, or {CNTBaseN, CNTEL0BaseN} pair of frames, provides a memory-mapped counter and
timer, see:

• The CNTBaseN frame.

• The CNTEL0BaseN frame.

• CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames.

I2.3.2.1 The CNTBaseN frame

Table I2-4 shows the CNTBaseN registers, in order of their offsets from the CNTBaseN base address. Whether a
frame includes a virtual timer is IMPLEMENTATION DEFINED. If it does not, then memory at offsets 0x030-0x03C is
RAZ/WI. Except for CNTEL0ACR and the CounterID<n> registers, equivalent registers are also implemented in a
System register interface to the timer component of a Generic Timer.

Generic Timer memory-mapped register descriptions describes each of these registers.

Table I2-4 CNTBaseN memory map

Offset Register Type Description

0x000 CNTPCT[31:0]a RO Physical Count register.

0x004 CNTPCT[63:32]a RO

0x008 CNTVCT[31:0]a RO Virtual Count register.

0x00C CNTVCT[63:32]a RO

0x010 CNTFRQa ROc Counter Frequency register.

0x014 CNTEL0ACR RWb Counter EL0 Access Control Register, optional in the CNTBaseN memory
map.

0x018 CNTVOFF[31:0]a ROc Virtual Offset register. If CNTVOFFin the CNTCTLBase frame is an RW
register, a read of this register returns the value of that register. Otherwise is
RAZ.0x01C CNTVOFF[63:32]a ROc

0x020 CNTP_CVAL[31:0]a RW Physical Timer CompareValue register.

0x024 CNTP_CVAL[63:32]a RW

0x028 CNTP_TVALa RW Physical TimerValue register.

0x02C CNTP_CTL a RW Physical Timer Control register.

0x030 CNTV_CVAL[31:0]a RWb Virtual Timer CompareValue register, optional in the CNTBaseN memory
map.

0x034 CNTV_CVAL[63:32]a RWb

0x038 CNTV_TVALa RWb Virtual TimerValue register, optional in the CNTBaseN memory map.

0x03C CNTV_CTLa RWb Virtual Timer Control register, optional in the CNTBaseN memory map.

0x040-0xFCF - RES0 Reserved.

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11.

a. These registers are also defined in the System register interface to the Generic Timer, and therefore are also described in Generic
Timer registers and Generic Timer registers. The bit assignments of the registers are identical in the System register interface and
in the memory-mapped system level interface.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13241
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
I2.3.2.2 The CNTEL0BaseN frame

For any value of N, the layout of the registers in the CNTEL0BaseN frame is identical to the CNTBaseN frame,
except that, in the CNTEL0BaseN frame:

• CNTVOFF is never visible, and the memory at 0x018-0x01C is RAZ/WI.

• CNTEL0ACR is never visible, and the memory at 0x014 is RAZ/WI.

• If implemented in the CNTBaseN frame, CNTEL0ACR controls whether CNTPCT, CNTVCT, CNTFRQ,
the Physical Timer, and the Virtual Timer registers are visible in the CNTEL0BaseN frame.

If CNTEL0ACR is not implemented then these registers are not visible in the CNTEL0BaseN frame, and
their addresses in that frame are RAZ/WI.

If an implementation supports 64-bit atomic accesses, then CNTPCT, CNTVCT, CNTVOFF, CNTP_CVAL, and
CNTV_CVAL must be accessible as atomic 64-bit values.

I2.3.2.3 CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN
frames

In the CNTCTLBase frame:

CNTTIDR controls:

• Whether each CNTBaseN frame is implemented.

• If a CNTBaseN frame is implemented, whether:

— That CNTBaseN frame has virtual timer capability.

— A corresponding CNTEL0BaseN frame is implemented.

CNTNSAR controls:

Whether all the following are accessible by Non-secure accesses and, if FEAT_RME is
implemented, Root accesses and Realm accesses:

• CNTACR<n>.

• CNTVOFF<n>.

• Each implemented CNTBaseN frame, and any corresponding CNTEL0BaseN frame.

The CNTACR<n> registers control:

For each implemented CNTBaseN frame, the accessibility of the following registers in that frame:

• CNTP_CTL, CNTP_CVAL, and CNTP_TVAL.

• CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.

• CNTVOFF.

• CNTFRQ.

• CNTPCT.

• CNTVCT.

For CNTACR<n>, the value of <n> corresponds to the value of N for the controlled CNTBaseN
frame.

b. Address is reserved, RAZ/WI if register not implemented.

c. The CNTCTLBase frame includes an RW view of this register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13242
ID032224 Non-Confidential

System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
The CNTVOFF<n> registers provide:

For each implemented CNTBaseN frame that has virtual capability, the RW copy of the CNTVOFF
register for that frame.

Note
In a CNTBaseN frame that has virtual timer capability the CNTVOFF register is RO.

For CNTVOFF<n>, the value of <n> corresponds to the value of N for the controlled CNTBaseN
frame.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I2-13243
ID032224 Non-Confidential

Chapter I3
Recommended External Interface to the
Performance Monitors

This chapter describes the recommended external interface to the Performance Monitors. It contains the following
section:

• About the external interface to the Performance Monitors registers.

Note

Performance Monitors external register descriptions describes the external view of the Performance Monitors
registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13244
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
I3.1 About the external interface to the Performance Monitors registers

Arm recommends that:

• An implementation provides the OPTIONAL external debug interface to the Performance Monitors registers,
FEAT_PMUv3_EXT.

Note

A debugger can use this interface to access counters in the Performance Monitors.

• The implementation includes the OPTIONAL support for memory-mapped access to the External debug
interface.

Note

— Software running on any PE in a system can use this interface to access counters in the Performance
Monitors.

— Privileged software should use the MMU to control access to this interface.

• The external debug interface is implemented as defined in Appendix K7 Recommended External Debug
Interface.

When FEAT_PMUv3_EXT64, the 64-bit external PMU programmers’ model extension is implemented, all
Performance Monitors registers are 64-bit except the 32-bit CoreSight management registers.

Note

This means that register views in the external debug interface to the Performance Monitors registers are the same
size as the register views in the System interface when the PE is using AArch64. The 32-bit external view
FEAT_PMUv3_EXT32, is not accessible for Performance Monitors registers which are extended to 64 bits.

The following sections describe the memory-mapped views of the Performance Monitors registers:

• Differences in the external views of the Performance Monitors registers.

• Synchronization of changes to the memory-mapped views.

• Access permissions for external views of the Performance Monitors.

In this section, unless the context explicitly indicates otherwise, any reference to a memory-mapped view applies
equally to a register view using:

• An access through an external debug interface.

• A memory-mapped access.

I3.1.1 Endianness and supported access sizes

When an implementation supports memory-mapped access to the external debug interface the interface is accessed
as a little-endian memory-mapped peripheral. External Performance Monitors registers summary gives the memory
map of these registers.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses
to the external interface to the Performance Monitors registers implementations must:

• Comply with the requirements of Supported access sizes.

• When FEAT_PMUv3_EXT32 is implemented, support word-aligned 32-bit accesses to access 32-bit
registers or either half of a 64-bit register that is mapped to a doubleword-aligned pair of adjacent 32-bit
locations, even if all components with direct memory access to the PMU support making 64-bit accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13245
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
Permitted word-aligned 32-bit accesses are single-copy atomic at word granularity. When FEAT_PMUv3_EXT64
is implemented, permitted doubleword-aligned 64-bit accesses are single-copy atomic at doubleword granularity.

I3.1.2 Differences in the external views of the Performance Monitors registers

An external view of the Performance Monitors registers accesses the same registers as the System registers interface
described in Performance Monitors Extension registers, except that:

• The PMSELR is accessible only in the System registers interface.

• The following registers are accessible only in external views:

— PMPCSR.

— PMCFGR.

— PMIIDR.

— PMLAR.

— PMLSR.

— PMAUTHSTATUS.

— PMDEVARCH.

— PMDEVTYPE.

— PMPIDR0.

— PMPIDR1.

— PMPIDR2.

— PMPIDR3.

— PMPIDR4.

— PMCIDR0.

— PMCIDR1.

— PMCIDR2.

— PMCIDR3.

Performance Monitors external register descriptions describes these registers.

• The following registers are accessible only in the 32-bit external view:

— PMCID1SR.

— PMVIDSR.

— PMCID2SR.

— PMDEVAFF0.

— PMDEVAFF1.

Performance Monitors external register descriptions describes these registers.

• The following controls do not affect the external views:

— PMSELR.

— PMUSERENR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13246
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
— HDCR.{TPM, TPMCR, HPMN}.

Instead, see the register descriptions in Chapter I6 External System Control Register Descriptions.

• The PMSWINC_EL0 register is OPTIONAL in the 32-bit external view.

I3.1.2.1 External views of the Performance Monitors registers when the 64-bit external
PMU programmers’ model extension is implemented

When the 64-bit external PMU programmers’ model extension is implemented, the following registers are
accessible only in external views:

• PMDEVAFF, provided as a concatenation of PMDEVAFF0 and PMDEVAFF1.

• If FEAT_PCSRv8p2 is implemented:

— PMCCIDSR, provided as a concatenation of PMCID1SR and PMCID2SR.

— PMVCIDSR, provided as a concatenation of PMCID1SR and PMVIDSR.

• The following registers, which provide direct read/write access to the event counter control and status bits,
and access the same registers as the corresponding SET and CLR pairs in the System register interface:

— PMCNTEN.

— PMINTEN.

— PMOVS.

Note

— Writing 1 to a bit in one of these registers causes the corresponding SET and CLR register values to
be 1.

— Writing 0 to a bit in one of these registers causes the corresponding SET and CLR register values to
be 0.

— Bits [63:32] of these registers are RES0.

PMSWINC_EL0, otherwise OPTIONAL in the external views, is not accessible through the memory-mapped
interface.

Performance Monitors external register descriptions describes these registers.

I3.1.3 Synchronization of changes to the memory-mapped views

Synchronization must comply with Synchronization of memory-mapped registers.

In particular, if a Performance Monitor is visible in both System register and an external view, and is accessed
simultaneously through these two mechanisms, the behavior must be as if the accesses occurred atomically and in
any order. For more information, see Synchronization of changes to the external debug registers.

I3.1.4 Access permissions for external views of the Performance Monitors

For more information, see External debug interface register access permissions.

The following tables show the access permissions for the Performance Monitors registers in a Debug
implementation for Armv8 or later architectures:

• Table I3-1 when the 64-bit external PMU programmers’ model extension, FEAT_PMUv3_EXT64, is
implemented.

• Table I3-2 when FEAT_PMUv3_EXT32 is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13247
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
These tables use the following terms:

DLK When FEAT_DoubleLock is implemented and locked, DoubleLockStatus() == TRUE, accesses to
some registers produce an error. Applies to both interfaces.

EPMAD When AllowExternalPMUAccess() == FALSE, external debug access is disabled for the access. See
also Behavior of a not permitted memory-mapped access.

EPMSSAD If FEAT_PMUv3_SS is implemented, when AllowExternalPMSSAccess() == FALSE, external debug
access is disabled for the access. See also Behavior of a not permitted memory-mapped access.

Error Indicates that the access gives an error response.

Def This shows the default access permissions, if none of the conditions in this list prevent access to the
register.

Off The Core power domain is completely off, or in a low-power state where the Core power domain
registers cannot be accessed, and EDPRSR.PU will read as zero.

Note

If debug power is off, then all external debug interface accesses return an error.

OSLK When the OS Lock is locked, OSLAR_EL1.OSLK == 1, accesses to some registers produces an
error. This column shows the effect of this control on accesses using the external debug interface.

SLK This indicates the modified default access permissions for OPTIONAL memory-mapped accesses to
the external debug interface if the optional Software Lock is locked. See Register access
permissions for memory-mapped accesses.

For all other accesses, this column is ignored.

Note

When FEAT_PMUv3_EXT64 is implemented, the Software Lock is not implemented.

- Indicates that the control has no effect on the behavior of the access:

• If no other control affects the behavior, the Default access behavior applies.

• However, another control might determine the behavior.

Table I3-1 Access permissions for the Performance Monitors registers when FEAT_PMUv3_EXT64 is implemented

Offset Register Domain Off DLK OSLK EPMAD EPMSSAD Def

0x000+8xn PMEVCNTR<n>_EL0a Core Error Error Error Error - RW

0x0F8 PMCCNTR_EL0 Core Error Error Error Error - RW

0x100 PMICNTR_EL0 Core Error Error Error Error - RW

0x200 PMPCSR Core Error Error Error - - RO

0x208 PMVIDSR Core Error Error Error - - RO

0x220 PMPCSR Core Error Error Error - - RO

0x228 PMCCIDSR Core Error Error Error - - RO

0x400+8xn PMEVTYPER<n>_EL0a Core Error Error Error Error - RW

0x4F8 PMCCFILTR_EL0 Core Error Error Error Error - RW

0x500 PMICFILTR_EL0 Core Error Error Error Error - RW
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13248
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
0x600+8xnb PMEVCNTSVR<n>_EL1a Core Error Error - - Error RO

0x6F8b PMCCNTSVR_EL1 Core Error Error - - Error RO

0x700b PMICNTSVR_EL1 Core Error Error - - Error RO

0x708-0x7FCb Reserved -

0x800+8xn PMEVFILT2R<n> Core Error Error Error - - RW

0xC00 PMCNTENSET_EL0 Core Error Error Error Error - RW

0xC10 PMCNTEN Core Error Error Error Error - RW

0xC20 PMCNTENCLR_EL0 Core Error Error Error Error - RW

0xC40 PMINTENSET_EL1 Core Error Error Error Error - RW

0xC50 PMINTEN Core Error Error Error Error - RW

0xC60 PMINTENCLR_EL1 Core Error Error Error Error - RW

0xC80 PMOVSCLR_EL0 Core Error Error Error Error - RW

0xC90 PMOVS Core Error Error Error Error - RW

0xCA0 PMZR_EL0 Core Error Error Error Error - WO

0xCC0 PMOVSSET_EL0 Core Error Error Error Error - RW

0xCE0 PMCGCR0 Core Error Error Error Error - RO

0xD80-0xDFC - - IMPLEMENTATION DEFINED registersc

0xE00 PMCFGR Core Error Error Error Error - RO

0xE08 PMIIDR Core Error Error Error Error - RO

0xE10 PMCR_EL0 Core Error Error Error Error - RW

0xE30b PMSSCR_EL1 Core Error Error - - Error RO

0xE38-0xE3C - - IMPLEMENTATION DEFINED registersc

0xE40 PMMIR Core Error Error Error Error - RO

0xE50 PMPCSCTL Core Error Error Error Error - RW

0xE80-0xEFC Integration registers - IMPLEMENTATION DEFINED registersc

0xF00-0xFFC Management registers and CoreSight compliance

a. Implemented event counters only. n is the counter number.

b. If FEAT_PMUv3_SS is implemented, then 0x600 - 0x7FC are defined or reserved. Otherwise, these locations are
IMPLEMENTATION DEFINED.

c. See IMPLEMENTATION DEFINED registers.

Table I3-1 Access permissions for the Performance Monitors registers when FEAT_PMUv3_EXT64 is implemented

Offset Register Domain Off DLK OSLK EPMAD EPMSSAD Def
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13249
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
Table I3-2 Access permissions for the Performance Monitors registers when FEAT_PMUv3_EXT32 is implemented

Offset Register Domain Off DLK OSLK EPMAD EPMSSAD Def SLK

0x000+8xn

0x004+8xn

PMEVCNTR<n>_EL0[31:0]a

PMEVCNTR<n>_EL0[63:32]a

Core Error Error Error Error - RW RO

0x0F8

0x0FC

PMCCNTR_EL0[31:0]

PMCCNTR_EL0[63:32]

Core Error Error Error Error - RW RO

0x200

0x204

PMPCSR[31:0]

PMPCSR[63:32]

Core Error Error Error - - RO RO

0x208 PMCID1SR Core Error Error Error - - RO RO

0x20C PMVIDSR Core Error Error Error - - RO RO

0x220

0x224

PMPCSR[31:0]

PMPCSR[63:32]

Core Error Error Error - - RO RO

0x228 PMCID1SR Core Error Error Error - - RO RO

0x22C PMCID2SR Core Error Error Error - - RO RO

0x400+4xn PMEVTYPER<n>_EL0a[31:0] Core Error Error Error Error - RW RO

0x47C PMCCFILTR_EL0[31:0] Core Error Error Error Error - RW RO

0x480 PMICFILTR_EL0[31:0] Core Error Error Error Error - RW RO

0x600+8xnb

0x604+8xnb

PMEVCNTSVR<n>_EL1[31:0]

PMEVCNTSVR<n>_EL1[63:32]

Core Error Error - - Error RO RO

0x6F8b

0x6FCb

PMCCNTSVR_EL1[31:0]

PMCCNTSVR_EL1[63:32]

Core Error Error - - Error RO RO

0x700b

0x704b

PMICNTSVR_EL1[31:0]

PMICNTSVR_EL1[63:32]

Core Error Error - - Error RO RO

0x708-0x7FCb Reserved -

0xA00+4xnc PMEVTYPER<n>_EL0 [63:32] Core Error Error Error Error - RW RO

0xA7Cc PMCCFILTR_EL0[63:32] Core Error Error Error Error - RW RO

0xA80c PMICFILTR_EL0[63:32] Core Error Error Error Error - RW RO

0xA84-0xAFCc Reserved -

0xB00-0xBFC - - IMPLEMENTATION DEFINED registersd

0xC00

0xC04

PMCNTENSET_EL0[31:0]

PMCNTENSET_EL0[63:32]

Core Error Error Error Error - RW RO

0xC20

0xC24

PMCNTENCLR_EL0[31:0]

PMCNTENCLR_EL0[63:32]

Core Error Error Error Error - RW RO

0xC40

0xC44

PMINTENSET_EL1[31:0]

PMINTENSET_EL1[63:32]

Core Error Error Error Error - RW RO

0xC60

0xC64

PMINTENCLR_EL1[31:0]

PMINTENCLR_EL1[63:32]

Core Error Error Error Error - RW RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13250
ID032224 Non-Confidential

Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers
0xC80

0xC84

PMOVSCLR_EL0[31:0]

PMOVSCLR_EL0[63:32]

Core Error Error Error Error - RW RO

0xCA0 PMSWINC_EL0 Core Error Error Error Error - WO WI

0xCA0

0xCA4

PMZR_EL0[31:0]

PMZR_EL0[63:32]

Core Error Error Error Error - WO WI

0xCC0

0xCC4

PMOVSSET_EL0[31:0]

PMOVSSET_EL0[63:32]

Core Error Error Error Error - RW RO

0xCE0 PMCGCR0 Core Error Error Error Error - RO RO

0xD80-0xDFC - - IMPLEMENTATION DEFINED registersd

0xE00 PMCFGR Core Error Error Error Error - RO RO

0xE04 PMCR_EL0 Core Error Error Error Error - RW RO

0xE08 PMIIDR Core Error Error Error Error - RO RO

0xE20

0xE24

0xE28

0xE2C

PMCEID0

PMCEID1

PMCEID2

PMCEID3

Core Error Error Error Error - RO RO

0xE30b

0xE34b

PMSSCR_EL1[31:0]

PMSSCR_EL1[63:32]

Core Error Error - - Error RO RO

0xE38-0xE3C - IMPLEMENTATION DEFINED registersd

0xE40

0xE44

PMMIR[31:0]

PMMIR[63:32]

Core Error Error Error Error - RO RO

0xE50

0xE54

PMPCSCTL[31:0]

PMPCSCTL[63:32]

Core Error Error Error Error - RW RW

0xE80-0xEFC Integration registers - IMPLEMENTATION DEFINED registersd

0xF00-0xFFC Management registers and CoreSight compliance

a. Implemented event counters only. n is the counter number.

b. If FEAT_PMUv3_SS is implemented, then 0x600 - 0x7FC are defined or reserved. Otherwise, these locations are IMPLEMENTATION DEFINED.

c. If any of FEAT_PMUv3_TH, FEAT_PMUv3p8, or FEAT_PMUv3_SME is implemented, then 0xA00 - 0xAFC are defined or reserved for top
halves of the TYPER/FILTR registers. Otherwise, these locations are IMPLEMENTATION DEFINED.

d. See IMPLEMENTATION DEFINED registers.

Table I3-2 Access permissions for the Performance Monitors registers when FEAT_PMUv3_EXT32 is implemented

Offset Register Domain Off DLK OSLK EPMAD EPMSSAD Def SLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I3-13251
ID032224 Non-Confidential

Chapter I4
Recommended External Interface to the Activity
Monitors

This chapter describes the optional external interface to the Activity Monitors Extension registers. It contains the
following section:

• About the external interface to the Activity Monitors Extension registers

Note

Activity Monitors external register descriptions describes the external view of the Activity Monitors Extension
registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I4-13252
ID032224 Non-Confidential

Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers
I4.1 About the external interface to the Activity Monitors Extension registers

If an implementation supports the Activity Monitors Extension, it can optionally support an external
memory-mapped interface to the Activity Monitors Extension, FEAT_AMU_EXT. If the implementation supports
FEAT_AMU_EXT, it may further optionally support CoreSight device registers and ID registers.

The memory access sizes supported by the external interface to the Activity Monitors registers:

• Comply with the requirements of Supported access sizes.

• When FEAT_AMU_EXT32 is implemented, include word-aligned 32-bit accesses to access 32-bit registers
or either half of a 64-bit register mapped to a doubleword-aligned pair of adjacent 32-bit locations, even if
all components with direct memory access to the AMU support making 64-bit accesses.

• When FEAT_AMU_EXT64 is implemented, all AMU registers are 64 bits and accessed at
doubleword-aligned addresses, other than the CoreSight management registers, when implemented,
excluding AMDEVAFF.

The base address of the memory-mapped view is aligned to a 4KB boundary, but is otherwise IMPLEMENTATION
DEFINED. The address offsets for the memory-mapped view are given in Table I6-3.

When FEAT_AMU_EXT32 is implemented, AMCNTENSET0, AMCNTENSET1, AMCNTENCLR0, and
AMCNTENCLR1 are all read-only views of the 32-bit AMU count enable and disable control registers.

When FEAT_AMU_EXT64 is implemented, all of the following apply:

• AMCNTENSET0 and AMCNTENSET1 are accessed as a single 64-bit register, AMCNTENSET.
AMCNTENSET[31:0] is architecturally mapped to AMCNTENSET0_EL0[31:0] and
AMCNTENSET[63:32] is architecturally mapped to AMCNTENSET1_EL0[31:0].

• AMCNTENCLR0 and AMCNTENCLR1 are accessed as a single 64-bit register AMCNTENCLR.
AMCNTENCLR[31:0] is architecturally mapped to AMCNTENCLR0_EL0[31:0], and
AMCNTENCLR[63:32] is architecturally mapped to AMCNTENCLR1_EL0[31:0].

• AMCNTEN is provided as a 64-bit register, accessing the same state as the 64-bit AMU count enable and
disable control registers, AMCNTENSET and AMCNTENCLR. This means that AMCNTEN,
AMCNTENSET, and AMCNTENCLR are all read-only views of the same state.

• AMDEVAFF0 and AMDEVAFF1 are accessed as a single 64-bit register, AMDEVAFF.

• When FEAT_AMU_EXT64 is implemented, all of the following apply:

— All AMU registers are 64 bits and are accessed as single 64-bit registers.

— Permitted doubleword-aligned 64-bit accesses to 64-bit registers are single-copy atomic at
doubleword granularity.

— It is IMPLEMENTATION DEFINED whether word-aligned 32-bit accesses to either half of a 64-bit register
that is mapped to a doubleword-aligned pair of adjacent 32-bit locations are supported.

I4.1.1 Differences in the external views of the Activity Monitors Extension registers

The external memory-mapped interface view of the Activity Monitors Extension registers accesses the same
registers as the System registers interface to the registers, except that:

• The following are accessible only in the System registers interface:

— AMUSERENR_EL0.

— AMEVCNTVOFF0<n>_EL2.

— AMEVCNTVOFF1<n>_EL2.

— AMCG1IDR_EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I4-13253
ID032224 Non-Confidential

Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers
• If implemented, the following registers are accessible only in the memory-mapped view:

— AMIIDR.

— AMDEVAFF.

— AMDEVAFF0.

— AMDEVAFF1.

— AMDEVARCH.

— AMDEVTYPE.

— AMPIDR0.

— AMPIDR1.

— AMPIDR2.

— AMPIDR3.

— AMPIDR4.

— AMCIDR0.

— AMCIDR1.

— AMCIDR2.

— AMCIDR3.

Activity Monitors external register descriptions describes these registers.

• If FEAT_AMUv1p1 virtualization of the activity monitors is enabled, the memory-mapped view of the
registers presents the physical view of the counter without any offset. Virtualization of the Activity Monitors
does not affect the memory-mapped view of the registers.

Note

The memory mapped view of the activity monitors is unaffected byAMCR_EL0.CG1RZ and
AMCR.CG1RZ.

I4.1.2 Access during reset and power transitions

As described in Power and reset domains, the power and reset domains of the Activity Monitoring Unit are named
the AMU domain and AMU reset, and when reset of the AMU power domain occurs, the Activity Monitoring Unit
is reset and the counters are reset to zero.

If the AMU domain is an always-on power domain, while the PE is reset or powered down counter values may be
preserved and might be accessible by memory-mapped access.

If the AMU domain is the Core power domain, while the PE is reset or powered down and when a memory-mapped
access occurs, the access reads as zero and the bus access completes without an error.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I4-13254
ID032224 Non-Confidential

Chapter I5
RAS System Architecture

This chapter describes the RAS System Architecture. It contains the following sections:

• About the RAS System Architecture.

• Nodes.

• Detecting and consuming errors.

• Standard error record.

• Error recovery interrupt.

• Fault handling interrupt.

• In-band error response signaling.

• Critical error interrupt.

• Standard format Corrected error counter.

• Error recovery, fault handling, and critical error signaling.

• Error record reset.

• The RAS Timestamp Extension.

• The Common Fault Injection Model Extension.

• IMPLEMENTATION DEFINED fault or error injection models

• Memory-mapped view.

• Reset values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13255
ID032224 Non-Confidential

RAS System Architecture
I5.1 About the RAS System Architecture
I5.1 About the RAS System Architecture

IXKHGG The RAS System Architecture provides a framework for building RAS features in a system. It provides a reusable
component architecture for components that can detect and record errors, and signal them to a PE.

RDKJPB A node is a RAS System Architecture element that records errors detected or consumed by one or more system
components.

INTRXQ A RAS System Architecture implementation includes one or more node. The RAS System Architecture does not
require that all components in a system implement the RAS System Architecture or appear as a node.

IFPMKF The RAS System Architecture does not prescribe the level of reliability, availability, and serviceability in the
system. The RAS features that the system includes, for example to detect, correct, contain, or defer errors, are
IMPLEMENTATION DEFINED.

ILJWMZ The RAS features and behavior of components that do not implement the RAS System Architecture are
IMPLEMENTATION DEFINED.

IQTZCK Arm recommends that all errors are reported to a RAS System Architecture node to enable error recovery and fault
handling.

IHTDRT This section describes the behavior of RAS System Architecture nodes, and other required behaviors of components
that implement the RAS System Architecture.

DTGKPM In this chapter, permitted from refers to the earliest version of the RAS System Architecture in which the feature is
permitted to be implemented. A system must be FEAT_RASSAv1p1 compliant to include a feature permitted from
FEAT_RASSAv1p1, and must be FEAT_RASSAv2 compliant to include a feature permitted from
FEAT_RASSAv2.

RBBJHD Unless otherwise specified, all required features in FEAT_RASSAv1 compliant implementations are required in
FEAT_RASSAv1p1 compliant implementations, and all required features in FEAT_RASSAv1p1 compliant
implementations are required in FEAT_RASSAv2 compliant implementations.

RZPMBK Except where restricted by DTGKPM, FEAT_RASSAv1 compliant implementations can implement any subset of
features from FEAT_RASSAv1p1, and FEAT_RASSAv1p1 compliant implementations can implement any subset
of features from FEAT_RASSAv2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13256
ID032224 Non-Confidential

RAS System Architecture
I5.2 Nodes
I5.2 Nodes

IRDHHP A component might implement one or more nodes, or a node might be implemented outside of a component.

See also RWXPDN and RGCDCL.

DBYMCW The RAS System Architecture defines the features described in this section for a node.

RXMFKF Error detection and correction

The level of error correction and detection implemented at a component is IMPLEMENTATION DEFINED.

A node might include the control to disable error reporting and recording of detected errors, for example
while software initializes the component.

It is IMPLEMENTATION DEFINED whether error detection and correction is fully disabled at the
component when reporting and recording are disabled at the node.

See Detecting and consuming errors.

RFNBYQ Fault handling interrupt

Asynchronous reporting of all or some recorded errors by an interrupt, that is, Corrected errors, Deferred
errors, and Uncorrected errors. It is IMPLEMENTATION DEFINED whether a node provides a single control
for all errors, or a first control for Corrected errors and a second control for all other detected errors.

See Fault handling interrupt.

RQQRSQ Corrected error counter

It is IMPLEMENTATION DEFINED whether a node implements a counter for counting errors. Software can
poll the error counter or initialize the counter with a threshold value and receive an interrupt when the
counter overflows. A counter overflows when incrementing the counter results in unsigned integer
overflow.

It is IMPLEMENTATION DEFINED which Corrected errors are counted.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred errors and Uncorrected
errors are counted by the Corrected error counter.

See Standard format Corrected error counter.

RWFWCL Timestamps

It is IMPLEMENTATION DEFINED whether a node records a timestamp in each Error record.

See The RAS Timestamp Extension.

RZMMBH In-band error response (External abort)

In-band signaling of detected Uncorrected error to the Requester of the transaction. It is also referred to
as an External abort.

Corrected errors and errors deferred to the Requester are not reported by such means.

See In-band error response signaling.

RVHDZW Error recovery interrupt

Asynchronous (out-of-band) reporting of recorded Uncorrected errors by an interrupt. The interrupt can
be used for error recovery, fault handling, or both. Corrected errors are not reported by this means. It is
IMPLEMENTATION DEFINED whether the node provides the control to enable Deferred errors to be
reported in this way. If the control is not provided, then Deferred errors are not reported by this means.

See Error recovery interrupt.

RBJNDJ Critical Error interrupt

Critical error interrupts provide a mechanism for a node to report a critical error condition to a system
controller for error recovery.

See Critical error interrupt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13257
ID032224 Non-Confidential

RAS System Architecture
I5.2 Nodes
RRFNHX Records

A node implements one or more standard Error records. When an error is detected or consumed,
syndrome about the error is written to an Error record.

See Standard error record.

RFYYXR Proxies

A node can be a proxy for another component implementing multiple other nodes. In this case, there is
a proxy error record.

See System RAS Agents.

IWRWMK A node might implement some or all of these features.

RYHBGJ The first standard Error record for a node contains:

• An identification register, ERR<n>FR, that describes the implemented features of the node.

• The ERR<n>CTLR register to enable or disable the features.

RJMRML A node has a single ERR<n>FR and a single ERR<n>CTLR register.

RCWWXN If the node implements multiple Error records, then each Error record has the same features and all Error records
share the controls.

Note: If a component requires multiple sets of controls, then the component implements multiple nodes.

RGSGNZ For each node, it is IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to both reads
and writes, or whether the mechanisms can be individually controlled for reads and writes.

I5.2.1 Multiple error records per node

RRMRKT Each node contains at least one Error record.

IYKNTD A node might implement multiple Error records for one or more of the following purposes:

• To record different types of error in different Error records.

• To record errors from different components, or different FRUs accessed by a component, in different Error
records.

• To record multiple errors.

RPZCQV If a single node implements multiple Error records, then all of the following are true:

• The Error records are indexed sequentially within an Error record group starting from the first Error record
for the node.

• For each Error record other than the first Error record for the node, the following are true:

— The ERR<n>FR.ED field is 0b00.

— If FEAT_RASSA_ERT is not implemented, ERR<n>FR[63:2] are RES0.

— The ERR<n>CTLR register is RES0.

DHFVSH When FEAT_RASSAv2 is implemented, each node implements support for FEAT_RASSA_ERT.
FEAT_RASSA_ERT is permitted from FEAT_RASSAv2.

ICCZLX FEAT_RASSA_ERT enables software to discover differences between error records owned by the same error node,
and allows continuation records, which enable an error node to record more IMPLEMENTATION DEFINED syndrome
information in ERR<n>MISC<m> registers.

IKVCGG In a continuation record, error record <n> is a continuation of error record <n-1>. Error record <n−1> might also
be a continuation of error record <n−2>, and so on.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13258
ID032224 Non-Confidential

RAS System Architecture
I5.2 Nodes
DDJPDM When FEAT_RASSA_ERT is implemented, if ERR<n>FR.ED is 0b00, then ERR<n>FR.ERT defines the error
record type.

RBRDWX Continuation records are only permitted in an Error record group. Within the Error record group, error record 0 is
not permitted to be a continuation record.

RRFPVW An Error record group consists of the Error records of one or more nodes.

RDBPFH An Error record group might be sparsely populated. Locations relating to unimplemented Error records are
RAZ/WI, meaning that they have an ERR<n>FR register that reads as zero.

See Nodes.

Example I5-1

An Error record group contains five error records owned by three nodes, arranged as shown below:

• Node <0> owns a single Error record: <0>. ERR0FR describes the features for this node, and ERR0CTLR
contains the controls for this node. ERR0STATUS, ERR0ADDR, and ERR0MISC<m> record syndrome for
this Error record.

• Node <1> owns three Error records: <1>, <2>, and <3>.

— Error record <1> is the first error record of the node. ERR1FR.ED is 0b01 or 0b10. ERR1FR describes
the features for this node, and ERR1CTLR contains the controls for this node. ERR1STATUS,
ERR1ADDR, and ERR1MISC<m> record syndrome for this Error record.

— ERR2FR.{ED, ERT} is {0b00, 0b00} and ERR2CTLR is RES0. ERR2STATUS, ERR2ADDR, and
ERR2MISC<m> record syndrome for this Error record.

— Error record <3> is a continuation of Error record <2>. ERR3FR.{ED, ERT} is {0b00, 0b01},
ERR3CTLR is RES0, ERR3STATUS.{V, AV, MV, IERR} are defined and all other values in
ERR3STATUS are RES0, and ERR3ADDR and ERR3MISC<m> are IMPLEMENTATION DEFINED,
recording additional syndrome for the error recorded by error record <2>.

• Error record <4> is not implemented. ERR4FR.{ED, ERT} is {0b00, 0b00}, and ERR4CTLR, ERR4STATUS,
ERR4ADDR, and ERR4MISC<m> are RAZ/WI.

• Node <5> owns a single error record: <5>. ERR5FR describes the features for this node, and ERR5CTLR
contains the controls for this node. ERR5STATUS, ERR5ADDR, and ERR5MISC<m> record syndrome for
this error record.

• If the Error record group is accessed using a memory-mapped view then ERRDEVID.NUM is 6.

• If the Error record group is accessed using System registers then ERRIDR_EL1.NUM is 6.

��
�� ��� ���

��� ��� ��� ���

�	�

�
� �	�������
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13259
ID032224 Non-Confidential

RAS System Architecture
I5.3 Detecting and consuming errors
I5.3 Detecting and consuming errors

RQZHDT A component detects an error when it detects that a deviation from correct service has occurred or will occur. For
example, including but not limited to when any of the following occurs that would not be permitted to occur had the
fault not been activated:

• A corrupt value has been or will be passed to a consumer.

• A transaction or other operation occurs or will occur that should not occur.

• A transaction or other operation that should occur does not occur or will not occur.

• A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is or will
be observed. See ISVZKY.

• The timing and/or order of transactions or other operations has been or will be changed.

• A latent error has become or will become undetectable. See IQXPLK.

ISVZKY Examples of a loss of uniprocessor semantics or other loss of coherency that might occur because of an error
include:

• A cache loses data that it holds in a modified state.

• A cache writes back unmodified data to memory.

An example that should not occur is when a partial write to the protection granule of a cache location holding poison
occurs, and the cache later invalidates the line without writing back the poison value.

Example I5-2

A cache fetches data from memory and receives poison, and subsequently, a partial write to that location is
insufficient to clean the location of the poison and the location remains poisoned.

The cache should treat the location as modified, even though it appears that the write did not modify the location.

That is, the cache should take ownership of the location and write-back poison when the location is evicted from
the cache. Otherwise if the original error was transient and later disappears from memory, the location reverts to the
unmodified value, silently propagating the error.

IQXPLK An example of a latent error becoming undetectable includes when a poison value indicating a deferred error is lost
at the interface between domains. For example, because a poison value is passed to a component that does not
support poisoning.

An example of a latent error becoming undetectable that should not occur is when a poison value is lost by a partial
write to the protection granule. In this case, the partial write should leave the protection granule containing poison.

RLRSMZ A component consumes an error that is signaled to the component in response to a memory access, cache
maintenance operation, or other transaction initiated by the component as one of:

• An In-band error response.

• A deferred error.

RWXPDN When an error is detected or consumed by a component, the error is reported to one or more nodes.

RVYRXT It is IMPLEMENTATION DEFINED whether a Requester that consumes a signaled detected error reports the consumed
error.

RLRQSG It is IMPLEMENTATION DEFINED whether errors are reported when a detected error is propagated between
components.

RWDJGD It is IMPLEMENTATION DEFINED whether all corrected errors are reported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13260
ID032224 Non-Confidential

RAS System Architecture
I5.3 Detecting and consuming errors
RGVPMK It is IMPLEMENTATION DEFINED whether errors detected on hardware speculation are reported.

RGCDCL It is IMPLEMENTATION DEFINED whether the node or nodes that an error is reported to are one or more of the
following:

• The same component that detected the error.

• The consumer of the transaction that consumes a detected error signaled by the producer of the transaction
which detected the error. Syndrome information might be passed with the signaled detected error to the
consumer.

• Another component that neither detected nor consumed the error. For example, a node whose purpose is to
record errors for other components. Such a node might comprise one record for each component for which it
is recording an error, or a number of shared records, where each record identifies the originating component,
or some other arrangement.

RLBHMF When an error is detected or consumed by a component, if the error can be corrected:

• The error is corrected.

• Optionally, the detected error is reported to a node, the node records a Corrected error, and if implemented
and enabled, a Fault handling interrupt is raised.

• If the error is detected on a read access by a Requester, corrected data is returned to the Requester.

RLMCVC When an error is detected or consumed by a component, if the error cannot be corrected and can be deferred:

• The error is deferred. For example, the location being accessed is poisoned or poisoned data is returned to
the Requester.

• The error is reported to a node and the node records a Deferred error.

• If the error is detected on an access by a Requester, the error is not deferred to the Requester, and if
implemented and enabled, it is IMPLEMENTATION DEFINED whether an In-band error response is returned to
the Requester.

• If the error is detected on a read access by a Requester, the error is not deferred to the Requester, and an
In-band error response is not returned to the Requester, the data returned to the Requester is
IMPLEMENTATION DEFINED and might be UNKNOWN.

• If implemented and enabled, a Fault handling interrupt is raised.

• If implemented and enabled, an Error recovery interrupt is raised.

Note: An error cannot be deferred to a component that does not accept deferred errors.

RLKCNC When an error is detected or consumed by a component, if the error cannot be corrected and cannot be deferred:

• The error is reported to a node and the node records an Uncorrected error.

• If implemented and enabled, a Fault handling interrupt is raised.

• If implemented and enabled, an Error recovery interrupt is raised.

• If the error is detected on an access by a Requester, and if implemented and enabled, an In-band error
response is returned to the Requester.

• If the error is detected on a read access by a Requester, and an In-band error response is not returned to the
Requester, the data returned to the Requester is IMPLEMENTATION DEFINED and might be UNKNOWN.

• If the component is unable to continue operation, it might enter a service failure mode.

INJHPF The criteria by which a component determines when it can correct or defer an error are IMPLEMENTATION DEFINED.
For example, if the error is detected in response to an access by a Requester that is not capable of receiving a
Deferred error response, then it is not possible to defer the error to the Requester.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13261
ID032224 Non-Confidential

RAS System Architecture
I5.3 Detecting and consuming errors
IQQRKD RLMCVC permits a component to both defer an error and return an In-band error response to the Requester. For
instance if it is not possible to defer the error to the Requester.

Example I5-3

A PE executes a load instruction which misses in the PE cache and the subsequent cache refill receives poison in
the cache line for the location being accessed. The cache line is allocated into the cache, but the cache cannot return
poison to PE and signals an In-band error response to the PE. It is IMPLEMENTATION DEFINED whether the cache
records this as a Deferred error or an Uncorrected error.

ILRNRJ RLKCNC and RLMCVC permit a component to return a fixed known value to a Requester when an uncorrected error
is detected on a read access, not deferred to the Requester, and either support for an In-band error response is not
implemented or the In-band error response is disabled. For example, zero or an all-ones value.

See also Software faults.

RLTBDP When an error is reported to a node, the node records syndrome information for the error in a standard Error record.

ISNNZR Arm recommends that hardware records sufficient information to:

• Determine whether error recovery is possible, if the error was not corrected by hardware.

• Allow fault analysis to find trends in the faults. This information is IMPLEMENTATION DEFINED but might
include the location of the data.

• Allow identification of a FRU.

IJNMFY The node registers might also contain control registers for error detection, correction and reporting at the
component.

IWMVTN Corrected errors can be recorded by counting each Corrected error. Counting might be done by either software or
hardware. The fault handling process compares the Corrected error rate with a threshold value to determine whether
to take action.

IQGNHF Standard format Corrected error counter and Corrected error counter describe an optional standard hardware
mechanism for counting errors.

IGGQSR The details of any service failure mode are IMPLEMENTATION DEFINED. For example:

• A component that fetches data from memory and processes that data might halt processing and await
servicing by an application processor when it receives an In-band error response. This is a form of service
failure mode.

• When a PE takes an Error exception and executes an error handler, this is also a form of service failure mode.

The component might implement multiple functions, some of which can be in a service failure mode while others
continue to operate, or the service failure mode might affect multiple or all functions of the component.

IZZKRS See also:

• Standard error record.

• Fault handling interrupt.

• Error recovery interrupt.

• In-band error response signaling.

• Standard format Corrected error counter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13262
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
I5.4 Standard error record

RGTCQJ The RAS System Architecture defines a standard Error record and a mechanism to access Error records as System
registers or as a memory-mapped component.

RXGGTZ The standard Error record contains:

• A status register, ERR<n>STATUS, for common status fields, such as the type and coarse characterization
of the error.

• An optional address register, ERR<n>ADDR.

• IMPLEMENTATION DEFINED status registers, referred to as ERR<n>MISC<m>. Arm recommends these are
used for:

— Identifying a FRU.

— Locating the error within the FRU.

— Optionally, a Corrected error counter or counters for software to poll the rate of Corrected errors.

— Optionally, a timestamp value for when the error was recorded.

RMQPFL When FEAT_RASSAv1 is implemented, there are two ERR<n>MISC<m> for each Error record:

• ERR<n>MISC0.

• ERR<n>MISC1.

RQCKVG When FEAT_RASSAv1p1 is implemented, there are four ERR<n>MISC<m> for each Error record:

• ERR<n>MISC0.

• ERR<n>MISC1.

• ERR<n>MISC2.

• ERR<n>MISC3.

IPSZMK The RAS System Architecture permits the implementation of ERR<n>MISC2 and ERR<n>MISC3 in
implementations of the FEAT_RASSAv1.

RDXZPX An Error record might include additional IMPLEMENTATION DEFINED controls and identification registers.

IPVYZG Error record System register view defines System registers for accessing a group of Error records.

IPBJTL Memory-mapped view defines reusable formats for a memory-mapped views of Error records. Use of reusable
formats by any component in the system is OPTIONAL.

IBNPZB The format of the Error record registers is the same for both access mechanisms.

RWDSFZ Error records are preserved over Error Recovery reset. This allows for a diagnosis after system failure.

IVWGCR See also RAS registers summary.

I5.4.1 Error record types

RKWYKP An Error record might be a proxy error record. See System RAS Agents.

RPGPVB An Error record might be a continuation record. See Multiple error records per node.

I5.4.2 Component error states

RVWSSX When a node records an error, the component error state is recorded in the Error record.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13263
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
IKXNHF The component error state recorded in the Error record describes the error state of the component only. For example,
the component state might be Unrecoverable but the system is recoverable by resetting the component.

RLBBPN For a standard Error record, the component error state types that can be recorded are:

• Corrected error (CE).

• Deferred error (DE).

• Uncorrected error.

RKFPDF If and only if all of the following are true, then on recording an error, the component error state is recorded as
Corrected error (CE):

• The error was corrected.

• The error has not been silently propagated.

• The component has not entered as service failure mode and continues to operate.

• The implementation has not elected to record the component error state as Deferred error, or Uncorrected
error.

In normal circumstances, the error no longer infects the state of the component. However, in the case of a persistent
correctable fault, or other rare IMPLEMENTATION DEFINED circumstances, the error might remain latent in the
component.

RXJFMG If and only if all of the following are true, then on recording an error, the component error state is recorded as
Deferred error (DE):

• At least one of the following are true:

— The error was not corrected, and was deferred.

— The error was corrected, and the implementation elected to record the component error state as
Deferred error.

• The error has not been silently propagated.

• The error might be latent in the system.

• It is IMPLEMENTATION DEFINED whether the error continues to infect the state of the component or whether
it has been deferred to a consumer.

• The component has not entered as service failure mode and continues to operate.

• The implementation has not elected to record the component error state as Uncorrected error.

IRFZHC A Deferred error might be recorded for an error that cannot be corrected. However, for the purposes of the
component error state taxonomy, Deferred error is classified separately from Uncorrected error.

RKJTQQ If and only if all of the following are true, then on recording an error, the component error state is recorded as
Uncorrected error:

• At least one of the following are true:

— The error was not corrected and not deferred.

— The error might have been silently propagated.

— The component has entered as service failure mode and does not continue to operate the function that
consumed the error.

— The error was either corrected or deferred, and the implementation elected to record the component
error state as Uncorrected error.

• The error is latent in the system.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13264
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
RWHGSP An Uncorrected error is recorded as one of the following sub-types:

• Uncontainable error (UC).

• Unrecoverable error (UEU).

• Recoverable error or Signaled error (UER).

• Restartable error or Latent error (UEO).

RPHLQQ If any of the following are true, then on recording an Uncorrected error, the component error state is recorded as
Uncontainable error (UC):

• The error might have been silently propagated by the component.

• The implementation has elected to record the error as Uncontainable error.

If the error cannot be isolated, then the system must be shut down to avoid catastrophic failure.

RCTYHC If and only if all of the following are true, then on recording an Uncorrected error, the component error state is
recorded as Unrecoverable error (UEU):

• The error has not been silently propagated by the component.

• Either of the following are true:

— The component has halted operation (entered a service failure mode) of the function that consumed
the error. The component determines that software will not be able to recover operation of the function.

— The implementation has elected to record the error as Unrecoverable error.

• The implementation has not elected to record the error as Uncontainable error.

RCNBRY If and only if all of the following are true, then on recording an Uncorrected error, the component error state is
recorded as Signaled error (UER):

• The error was produced at the component.

• The error has not been silently propagated by the component.

• The error has been or might have been consumed, and was not recorded as a Deferred error.

• The implementation has not elected to record the error as Unrecoverable error, or Uncontainable error.

RFFTXZ If and only if all of the following are true, then on recording an Uncorrected error, the component error state is
recorded as Latent error (UEO):

• The error was produced at the component.

• The error has not been propagated by the component, silently or otherwise.

• The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

That is, the error was detected but not consumed, and was not recorded as a Deferred error.

INGDWZ The producer is usually unable to determine whether a consumer has architecturally consumed the error. An error
might be recorded as Latent error if it has definitely not been propagated to any consumer, and as Signaled error
otherwise.

RQTYFD If and only if all of the following are true, then on recording an Uncorrected error, the component error state is
recorded as Recoverable error (UER):

• The error has not been silently propagated by the component.

• The component has halted operation (entered a service failure mode) of the function that consumed the error.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13265
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
• Either of the following is true:

— The component is reliant on consuming the corrupted data to continue operation of the function that
consumed the error. The component determines that software will be able to recover operation of the
function if it locates and repairs the error.

— The implementation has elected to record the error as Recoverable error.

• The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

RCFZTH If and only if all of the following are true, then on recording an Uncorrected error, the component error state is
recorded as Restartable error (UEO):

• The error has not been silently propagated by the component.

• The component has halted operation (entered a service failure mode) of the function that consumed the error.

• The component determines that it does not rely on the corrupted data, and so can recover operation even if
software does not locate and repair the error.

• The implementation has not elected to record the error as Deferred error, Unrecoverable error, or
Uncontainable error.

IDCYVN As described by RWHGSP, for an Uncorrected error, the Error record records the component error state as one of UC,
UEU, UER, or UEO. UER and UEO have two possible interpretations:

• UER can mean either Recoverable error or Signaled error.

• UEO can mean either Restartable error or Latent error.

This might depend on the type of component:

• Signaled error and Latent error are more applicable to a producer or Completer component. For example, one
that stores or transports data, such as memory or a cache.

• Recoverable error and Restartable error are more applicable to a consumer or Requester component. For
example, one that might consume data and performs some operation on it.

ITVJNM The component error state types are summarized by Figure I5-1. Figure I5-1 assumes the component supports the
resulting component error state and the implementation never elects to record an error as a different component error
state when permitted.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13266
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
Figure I5-1 Component error state types

I5.4.3 Writing the error record

RMDXXV When a new error is recorded, the node:

• Does one of the following:

— Overwrites the Error record with the syndrome for the new error.

— Keeps the syndrome for the previous error.

The previous component error state and the new component error state determine which. See:

— Prioritizing errors, FEAT_RASSAv1.

— Prioritizing errors, FEAT_RASSAv1p1.

• Modifies ERR<n>STATUS.{CE, DE, UE} to indicate the component error state. See Component error states
and priorities.

• Counts the error, if a Corrected error counter is implemented and the error is of a type that the counter counts.

RTQKFF If the Error record is corrupt or the previous component error state is otherwise not known, the node overwrites the
Error record with the new error syndrome and sets ERR<n>STATUS.OF to 0b1.

�����������

�����	���������

�����	��������

��

���������
���

�����������
����������

��

�������������
���

�����

��������
���

���

�����	�����������

��

��������	��	��������

������	��������

��������

����������

��������	��	������

��������

���

�������������
����

��

 ����������
��	��������	�� �

���

 ����������
��	!�����	��"�

�� ��� ��
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13267
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
RBGXQQ If counting a Deferred error or Uncorrected error causes the counter to overflow, then ERR<n>STATUS.OF is set
as it would be for a Corrected error that causes Corrected error counter overflow. However, if the RAS System
Architecture requires that recording the Deferred error or Uncorrected error sets the ERR<n>STATUS.OF flag to
0b1, then this flag is also set to 0b1 even if the error is counted and the Corrected error counter does not overflow.

I5.4.3.1 Component error states and priorities

RPXCDZ The highest priority recorded component error state type is recorded in the ERR<n>STATUS.{V, CE, DE, UE,
UET} fields, as shown in Table I5-1.

In Table I5-1, V, CE, DE, UE, UET refer to fields in ERR<n>STATUS.

IQHBGV The component error state types implemented at a node are IMPLEMENTATION DEFINED. An implementation might
only include a simplified subset of these component error state types.

A node can always elect to record:

• UEO as any of UER, UEU, or UC.

• UER as either UEU or UC.

• UEU as UC.

I5.4.3.2 Prioritizing errors, FEAT_RASSAv1

RZPTXT When FEAT_RASSAv1 is implemented, overwriting depends on the component error state type of the previous
highest priority error and on the component error state type of the newly recorded error, as shown in Table I5-2.

In Table I5-2:

• Each row corresponds to the highest priority previous component error state type recorded in the Error
record.

• Each column corresponds to the component error state type of the new detected error.

The row and column headings use the mnemonics from Table I5-1, and the following additional abbreviations are
used:

K

Keep. Keep the previous error syndrome. It is IMPLEMENTATION DEFINED whether
ERR<n>STATUS.OF is set to 0b1 or unchanged.

O

Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.

Table I5-1 Encoding the highest priority component error state

V CE DE UE UET Highest priority component error state type Mnemonic

0 UNKNOWN UNKNOWN UNKNOWN UNKNOWN None (not valid) -

1 0b00 0 0 UNKNOWN None -

1 != 0b00 0 0 UNKNOWN Corrected error CE

1 X 1 0 UNKNOWN Deferred error DE

1 X X 1 0b10 Uncorrected error: Latent error or Restartable error UEO

1 X X 1 0b11 Uncorrected error: Signaled error or Recoverable error UER

1 X X 1 0b01 Uncorrected error: Unrecoverable error UEU

1 X X 1 0b00 Uncorrected error: Uncontainable error UC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13268
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
W

Overwrite. Overwrite with the new error syndrome. It is IMPLEMENTATION DEFINED whether
ERR<n>STATUS.OF is set to 0b0 or unchanged.

CK

Count and keep. Count the error if a Corrected error counter is implemented, and keep the previous error
syndrome. If the counter overflows, or if no Corrected error counter is implemented, then it is
IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF is set to 0b1 or unchanged.

CWK

Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the value of
ERR<q>FR.CEO, where <q> is the index of the first Error record owned by the node:

• 0b00: Count the error if a Corrected error counter is implemented. Keep the previous error
syndrome.

• 0b01: Count the error. If ERR<n>STATUS.OF is 0b1 before the error is counted, then keep the
previous syndrome. Otherwise, overwrite with the new error syndrome.

If counting the error causes unsigned overflow of the counter, or if no Corrected error counter is
implemented, then ERR<n>STATUS.OF is set to 0b1.

CW

Count and overwrite. Count the error if a Corrected error counter is implemented, and overwrite with
the new error syndrome. If a Corrected error counter is implemented and counting the error causes
unsigned overflow of the counter, then ERR<n>STATUS.OF is set to an UNKNOWN value. Otherwise,
it is IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF is set to 0b0 or unchanged.

WO

Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.

I5.4.3.3 Prioritizing errors, FEAT_RASSAv1p1

RPNFPB When FEAT_RASSAv1p1 is implemented, overwriting depends on the component error state type of the previous
highest priority error and on the component error state type of the newly recorded error, as shown in Table I5-3.

In Table I5-3:

• Each row corresponds to the highest priority previous component error state type recorded in the Error
record.

• Each column corresponds to the component error state type of the new detected error.

Table I5-2 FEAT_RASSAv1 rules for overwriting error records

CE DE UEO UER UEU UC

- CW W W W W W

CE CWK W W W W W

DE CK O W W W W

UEO CK K O WO WO WO

UER CK K O O WO WO

UEU CK K O O O WO

UC CK K O O O O
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13269
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
The row and column headings use the mnemonics from Table I5-1, and the following additional abbreviations are
used:

W

Overwrite. Overwrite with the new error syndrome. ERR<n>STATUS.OF is unchanged.

WO

Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.

O

Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.

If no Corrected error counter is implemented, then all of the following apply:

CW

Behaves the same as W.

CWO and CO

Behave the same as O.

Otherwise, a Corrected error counter is implemented, and all of the following apply:

CW

Count and overwrite. Overwrite with the new error syndrome, and count the error. If counting the error
causes unsigned overflow of the counter, then ERR<n>STATUS.OF is set to 0b1.

CWO

Count, overwrite or keep, and overflow. The behavior is IMPLEMENTATION DEFINED and described by
the value of ERR<q>FR.CEO, where <q> is the index of the first Error record owned by the node:

• 0b00: The behavior is the same as CO.

• 0b01: Count the error. If ERR<n>STATUS.OF is 0b1 before the error is counted, then the behavior
is the same as CO. Otherwise, the behavior is the same as CW.

CO

Count and overflow. Keep the previous error syndrome, and count the error. If counting the error causes
unsigned overflow of the counter, then ERR<n>STATUS.OF is set to 0b1.

Table I5-3 FEAT_RASSAv1p1 rules for overwriting error records

CE DE UEO UER UEU UC

- CW W W W W W

CE CWO WO WO WO WO WO

DE CO O WO WO WO WO

UEO CO O O WO WO WO

UER CO O O O WO WO

UEU CO O O O O WO

UC CO O O O O O
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13270
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
I5.4.3.4 Overwriting the error syndrome

RRVGRM When the node records an error in an Error record and either the previous syndrome is overwritten with the new
error syndrome, or the Error record was previously not valid:

• Modifies ERR<n>STATUS.{V, CE, DE, UE} to indicate the new component error state, as described by
Table I5-1:

— Fields shown as X in Table I5-1 are unchanged.

— Other ERR<n>STATUS.{V, CE, DE, UE} fields are set to the value given in Table I5-1.

If the component error state is Corrected error, then the nonzero value written to ERR<n>STATUS.CE is
IMPLEMENTATION DEFINED and depends on the properties of the Corrected error recorded.

• If the new error is a type of Uncorrected error, then ERR<n>STATUS.UET is set to indicate the component
error state sub-type. See Component error states and priorities.

• The ERR<n>STATUS.{ER, PN, IERR, SERR} syndrome fields are written with the syndrome for the new
error.

• If there is an address syndrome for the new error, then ERR<n>STATUS.AV is set to 0b1 and the address is
written to ERR<n>ADDR. Otherwise ERR<n>STATUS.AV is set to 0b0 and ERR<n>ADDR becomes
UNKNOWN.

• If the RAS Timestamp Extension is implemented, then a timestamp is recorded in ERR<n>MISC3 and
ERR<n>STATUS.MV is set to 0b1.

• If there is other miscellaneous syndrome for the new error, then the syndrome is written to the
ERR<n>MISC<m> registers and ERR<n>STATUS.MV is set to 0b1.

• If there is no additional miscellaneous syndrome for the new error written to the ERR<n>MISC<m>
registers, then it is IMPLEMENTATION DEFINED whether ERR<n>STATUS.MV is set to 0b0 or unchanged.

— If software can determine from the ERR<n>MISC<m> contents that the syndrome is not related to the
highest priority error, then the ERR<n>STATUS.MV bit is unchanged.

— Otherwise the ERR<n>STATUS.MV bit is cleared to zero.

• ERR<n>STATUS.V is set to 0b1.

SXFYQK After reading an ERR<n>STATUS register, software has to write to the register to clear the valid bits in the register
to allow new errors to be recorded. During this period, a new error might overwrite the syndrome for the previously
read error. To prevent this, the write, or part of the write, is ignored by hardware if fields appear to have been
updated. For more information see ERR<n>STATUS.

I5.4.3.5 Keeping the previous error syndrome

RBGBBD When the previous Error record is kept:

• Sets the applicable one of ERR<n>STATUS.{CE, DE, UE} to indicate the new component error state:

— If Uncorrected error, then ERR<n>STATUS.UE is set to 0b1.

— If Deferred error, then ERR<n>STATUS.DE is set to 0b1.

— If Corrected error, then the nonzero value written to ERR<n>STATUS.CE is IMPLEMENTATION
DEFINED and depends on the properties of the Corrected error recorded.

The remaining ERR<n>STATUS.{UE, DE, CE} fields are unchanged.

• ERR<n>STATUS.UET is unchanged, even if the new error is a type of Uncorrected error.

• ERR<n>STATUS.{ER, PN, IERR, SERR}, ERR<n>ADDR, and ERR<n>STATUS.AV are unchanged.

• If the RAS Timestamp Extension is implemented, then the timestamp is not recorded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13271
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
• It is IMPLEMENTATION DEFINED whether any of ERR<n>MISC<m> are updated. The contents of
ERR<n>MISC<m> are IMPLEMENTATION DEFINED. Therefore, it is possible that some of the information
about an otherwise discarded error is recorded in these registers. If data is written to any of
ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.

I5.4.3.6 Detecting multiple errors

RRXQWW If multiple errors are simultaneously reported to a node, then it is IMPLEMENTATION DEFINED whether the node
behaves:

• As if all errors were recorded, in any order. In this case, the prioritization rules mean that the highest priority
error is recorded in the syndrome registers. However, the final value of the syndrome registers might depend
on the logical order in which the errors were recorded.

• As if the highest priority error was recorded and one or more of the lower priority errors were not recorded.

RZJXMD If a Corrected error counter is implemented, and multiple countable errors are detected simultaneously, then at least
one of the detected errors is counted and it is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether any
other of the detected errors are counted.

IWNKMD If a pair of error counters that count repeat and other errors are implemented, and the multiple countable errors
comprise at least one repeat error and at least one other error, then Arm recommends that at least one repeat error
and at least one other error are counted. RXYFVB and IFYBWQ describe such an implementation.

IPHBRX See also Standard format Corrected error counter.

I5.4.4 Error syndrome

IYLHWP This section provides additional information for some of the error syndrome fields defined in the standard Error
record.

I5.4.4.1 Corrected error field

IBRMPK When the syndrome for a Corrected error is recorded, the node can indicate through the ERR<n>STATUS.CE error
type field one of the following:

• The component or node has determined that the error is transient, or likely to be so.

• The component or node has determined that the error is persistent, or likely to be so.

• The component or node does not support making such a determination or is unable to.

RFCQDJ The mechanism by which a component or node determines whether a Corrected error is transient or persistent is
IMPLEMENTATION DEFINED.

I5.4.4.2 Poison indicator

IDTYHM If supported by a node, then when the syndrome for a Deferred error or Uncorrected error is recorded, the
ERR<n>STATUS.PN syndrome field is set to indicate that a poisoned value was detected.

RPNKSH When the node records an error and overwrites the previous error syndrome, if all of the following are true the
ERR<n>STATUS.PN syndrome field is set to 0b1, and is set to 0b0 otherwise:

• The component checks a value for an error and detects the value indicates a previously deferred error. For
example, the value is a poisoned value.

• The node does one of the following:

— Records the error as an Uncorrected error. For example, because the component does one or more of:

— Enters a service failure mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13272
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
— Propagates the value to a component that does not support poison. This is an Uncontainable
error.

— If the component has deferred the error again, records the error as a Deferred error. See also Bridges
to other architectures.

IJBDPT When a component checks a value and detects an Uncorrectable error, and defers the error by generating a poisoned
value, the node records this as a Deferred error with ERR<n>STATUS.PN set to 0b0.

Therefore when software examines the Error records, an ERR<n>STATUS.PN value of 0b1 indicates that the
component was propagating a previously deferred error, and so the fault did not originate in that component. An
ERR<n>STATUS.PN value of 0b0 indicates that the fault originated at the component.

IQLSMY In some Error Detection Code (EDC) schemes, a poisoned value is encoded as a reserved value, one that would not
be generated by a detectable corruption of valid data.

Example I5-4

In a SECDED error detection scheme, a value with a Hamming distance greater than 2 bits from all valid values is
chosen to represent a poisoned value.

For such a scheme, it is IMPLEMENTATION DEFINED whether the component can distinguish a corrupt data value from
the poison value. The component might accept and store a poisoned value when an error is deferred to it, but treat
it as any other Uncorrectable error when it is accessed, meaning ERR<n>STATUS.PN is set to 0b0.

I5.4.5 Security and Virtualization

I5.4.5.1 Confidential data

ICLQTQ In a PE with FEAT_RME:

In normal operation, when a Security state cannot access data because that data is from a different
Security state, that data is confidential data. For example:

• Non-secure state cannot access data from any other Security state. When executing in Non-secure
state, data from all other Security states is confidential.

When executing in:

• Realm state, data from Secure and Root states is confidential.

• Secure state, data from Realm and Root states is confidential.

• Root state, there is no confidential data.

Confidential data comprises all of:

• Confidential data in memory locations, including locations that the Granule Protection Table
(GPT) prohibits access to.

• Confidential data in registers: SIMD&FP, SVE, SME, System, Special-purpose, and
general-purpose registers.

All the following are considered to be always non-confidential data:

• Addresses at which errors are detected, captured in ERR<n>ADDR registers.

Note

There are exceptions in the case of error injection. See The Common Fault Injection Model
Extension.

• Identities of FRUs, captured in ERR<n>STATUS and/or ERR<n>MISC<m> registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13273
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
• Information about the severity of an error, such as:

— Error record status information captured in ERR<n>STATUS registers.

— Error counters.

• Information used to ascertain the priorities of an error node, identification, and affinity.

IXLTYW In a PE without FEAT_RME:

Which data is categorized as confidential data is implementation-specific and depends on how the
information encoded in the data relates to the threat model for the system.

Example I5-5

Data from Secure state might be called Secure data. Non-secure state cannot access Secure data, therefore when
executing in Non-secure state, Secure data is categorized as confidential data.

Confidential data comprises all of:

• Confidential data in memory locations.

• Confidential data in registers: SIMD&FP, SVE, SME, System, Special-purpose, and general-purpose
registers.

ITLCJT The highest Security state is:

• Root state if FEAT_RME is implemented.

• Secure state otherwise.

RSXKNQ Error detection and correction for accesses to memory assigned to the:

• Secure physical address space, cannot be disabled by either:

— Controls accessible in the Non-secure or Realm physical address spaces.

— A PE executing in Non-secure or Realm state.

• Realm physical address space, cannot be disabled by either:

— Controls accessible in the Non-secure or Secure physical address spaces.

— A PE executing in Non-secure or Secure state.

• Root physical address space, cannot be disabled by any of:

— Controls accessible in the Non-secure, Secure, or Realm physical address spaces.

— A PE executing in Non-secure, Secure, or Realm state.

IPWXNT Arm strongly recommends that all the following apply:

• Error detection and correction for accesses to shared resources, and for memory that can be assigned to any
physical address space, cannot be disabled by controls accessible to all Security states.

• Any configuration that can control error detection and correction is writable in the highest Security state only,
or firmware can block write access to the configuration by using a control that is writable in the highest
Security state only.

RDDQTB In a PE with FEAT_RME, error signaling and recording controls for error records that might contain confidential
data are accessible in Root state only.

IVKZNJ In a PE without FEAT_RME, Arm recommends that error signaling and recording controls for error records that
might contain confidential data are accessible in Secure state only.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13274
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
IFMRZD Memory contents that are encrypted without freshness are considered as confidential as their corresponding
plaintext.

RSKYHW Scrubbers and DMAs must report faults or errors back to an agent that can attribute the error back to the owner.

I5.4.5.2 Security of error records

RVGSMG For memory-mapped components, accesses to error records from:

• Non-secure state do not expose Secure, Realm, or Root data.

• Secure state do not expose Realm or Root data.

• Realm state do not expose Secure or Root data.

This might be guaranteed by the implementation, or by software executing at the highest Security state, or both.

ITFGNP To achieve RVGSMG, a number of implementation options are possible, for example:

• Error records contain always non-confidential data only.

• The Security state accessing the error record defines the data that the error record exposes. For example, for
an access from Secure state:

— Data from Realm and Root states is confidential. The error record cannot expose this.

— Data from Secure and Non-secure states is non-confidential. The error record can expose this.

• Error records that might contain confidential data are accessible to the highest Security state only:

— For memory-mapped components, they are accessible in the physical address space corresponding to
the highest Security state only.

— If a PE implements System register access to error records, software can use PE Trap exception
controls to ensure that error records that might contain confidential data are accessible to the highest
Security state only.

• FEAT_RASSA_ACR might be implemented.

If a memory-mapped component processes Non-confidential data only, it is IMPLEMENTATION DEFINED whether:

• Error records are accessible to all Security states.

• Error records are accessible to the highest Security state only.

• The ERRACR register is implemented.

For each Security state, it can be configurable whether error records are accessible.

Arm strongly recommends against making all error records accessible to the highest Security state only.

IFCRRD See also:

• Confidential data.

DVKJVV FEAT_RASSA_ACR is an OPTIONAL Error record group feature from FEAT_RASSAv2. FEAT_RASSA_ACR is
permitted from FEAT_RASSAv1p1.

IMTYGN When FEAT_RASSA_ACR is implemented, a trusted agent is able to restrict control over error detection,
correction, and signaling for data owned by a Security state to at least the owner of the data or the trusted agent, and
prevent untrusted agents from being able to modify error records that might be used by trusted agents.

RFTLLR When FEAT_RASSA_ACR is implemented by an Error record group, the group includes the Access Control
Register, ERRACR.

SNXXBP FEAT_RASSA_ACR is identified to software by ERRACR.IMPL.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13275
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
RQZWVX When FEAT_RASSA_ACR is implemented and FEAT_RME is not implemented, all of the following apply:

• Each Error record group has views in the Secure and Non-secure physical address spaces (PASs).

• The Secure PAS view includes ERRACR.

• ERRACR controls Non-secure access to the error records.

• ERRACR is RAZ/WI in the Non-secure PAS view.

RVSVLC When FEAT_RASSA_ACR is implemented and FEAT_RME is implemented, all of the following apply:

• Each Error record group has views in the Root, Secure, Realm, and Non-secure physical address spaces
(PASs).

• The Root PAS view includes ERRACR.

• ERRACR controls Secure, Realm, and Non-secure access to the error records.

It is IMPLEMENTATION DEFINED whether ERRACR includes one control that applies to all PASs other than
Root, or one control per other PAS.

• ERRACR is RAZ/WI in the Secure, Realm, and Non-secure PAS views.

SHSDRT Providing controls per PAS allows system firmware that trusts Secure state software to handle RAS configuration,
but not Realm or Non-secure states.

RQSFYN The access control levels provided for a PAS in ERRACR are:

• Access is disabled. All registers are RAZ/WI.

• Read-only access is enabled. All error record and interrupt configuration registers ignore writes. The effect
on accesses to IMPLEMENTATION DEFINED registers is IMPLEMENTATION DEFINED.

• Read/write access is enabled.

IKFNCK The read-only access level applies to all error record registers (ERR<n>*, including, if implemented, the fault
injection registers ERR<n>PFG*), and interrupt configuration registers (ERR<irq>CR<m> and, if implemented,
ERRIRQSR) in the Error record group.

Access to error records is enabled from reset.

RVKJDY When FEAT_RASSA_ACR is implemented and ERRACR allows Non-secure or Realm writes to an
ERR<irq>CR<m> register, ERR<irq>CR2.NSMSI is ignored and writes for that message signaled interrupt are
always to the Non-secure PAS.

IXBPWR ERRACR is intended for use by system firmware. An implementation might include IMPLEMENTATION DEFINED
equivalent controls in a different location, for example, outside of the Error record group page.

IFCDDX An implementation might extend the ERRACR to control other aspects of the Error record group.

For example, by default the access PAS also determines what confidential information is visible in other views,
when FEAT_RME is implemented. However, an implementation might include confidential information
observability controls for different PAS accesses.

For example, fine-grained write access controls might be defined for the ERR<n>CTLR and ERR<irq>CR<m>
registers:

• Per-interrupt write access controls for control fields relating to each of the FHI, ERI, and CRI interrupts.

• Write access control for the in-band error response control, ERR<n>CTLR.UE.

• Write access control for the error detection enable control, ERR<n>CTLR.ED.

ILFCBW Common Fault Injection Model Extension registers can be placed in a separate fault injection group page, with
ERR<n>PFGCTL for node n located at 0x000+64×n.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13276
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
I5.4.6 Synchronization and error record accesses

RVKYVJ When a component reports an error to a node, the node updates the Error record registers and might generate one
or more of the following:

• A Fault handling interrupt.

• An Error recovery interrupt.

• A Critical Error interrupt.

• An In-band error response.

Each of these might generate an exception at a PE.

RVYCRY If the PE reads the Error record registers at the node, after taking an exception generated by such a signal from a
node, then the read returns the updated values. This applies for both:

• Error records accessed through memory-mapped registers, only if the memory-mapped registers are mapped
as a Device type that does not permit read speculation.

• Error records accessed through System registers, only if either the exception is a Context synchronization
event or a Context synchronization event occurs in program order after taking the exception and before
reading the System registers

RNHZBG When a component reports an error to node, the node updates the Error record registers in finite time, and the update
is globally observed for all observers in the system in finite time.

I5.4.7 Bridges to other architectures

RLWGCK A bridge is a component that passes transaction between two domains. For example, a bridge between an SoC
domain and a Peripheral Component Interconnect Express (PCIe) domain.

IFKKVY As described in Error propagation, a high-level transaction might consist of a sequence of operations passed
between the domains by the bridge. For the purposes of this manual, the most basic form of a unidirectional transfer
between a producer and consumer is considered as a transaction. That is, each one of the sequence of operations is
a transaction.

RZXBSX Other standards might define mechanisms for RAS error recording and handling in particular domains.

IYQMVB In the case of PCIe, the PCIe domain might implement one or more of:

• Simple error recording. Errors are recorded in the PCIe device status register.

• PCIe advanced error reporting (AER). Errors are recorded in the AER logs.

• Vendor-specific error recording. Errors are recorded in Designated-Vendor-Specific Extended Capability
(DVSEC) logs.

In each case, errors detected in the PCIe domain are recorded in the PCIe domain and not in the SoC domain.

I5.4.8 Software faults

ISSQXP Examples of software faults include:

• Access to memory or peripheral register that is not present. This includes cases where physical address spaces
are physically aliased.

• Access to a peripheral that is not permitted at the completer. For example, a Non-secure access to a Secure
register.

• Access to a peripheral that is in an inaccessible state or other illegal access. For example, the peripheral is
powered down, or the value written is not supported.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13277
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
IBYWQQ Software fault handling is outside the scope of the RAS System Architecture. Arm makes the following
recommendations for accesses that constitute a software fault:

• Accesses to a memory location that is not present can return an In-band error response when all of the
following are true:

— The location is not present due to a configuration of the physical address map that is either static or
controlled by trusted software. For example, a configuration choice made by the designer, set during
initial system configuration, or reconfigured by trusted software.

It is not because a peripheral has been unexpectedly removed or the address map has been otherwise
reconfigured. For example, when a user unplugs a peripheral, or using software controls intended to
be available to untrusted software. The split between trusted and untrusted is implementation-specific,
but, for example untrusted would typically include unprivileged software and, in systems that supports
virtualization, guest operating systems. Untrusted might or might not include Non-secure hypervisors.

— Within the aligned page that contains the not-present location, all other locations are also not present
and have the same behavior. The size of this page is the largest supported translation granule size of
all PEs in the system.

That is, there is never any legitimate reason for software to access the page containing the location, and
trusted software should set up the translation tables to prevent accesses from occurring.

• Where another standard defines a rule or sets a convention, that should be followed. For example:

— For a PCIe device, certain illegal accesses are RAO/WI or can have their behavior configured by
software.

— The Arm architecture requires that reserved accesses to a component behave as RAZ/WI. This
includes reads and writes of unallocated or unimplemented registers and writes to read-only registers.

— The Arm architecture requires that under certain conditions accesses to certain debug registers return
an error response.

For other cases, the access should do one of the following:

• Return zeros to the requester for a read and ignore writes. This is the recommended behavior for reads and
writes of unallocated or unimplemented registers, reads of write-only registers, and writes of read-only
registers.

• Return all-ones to the requester for a read and ignore writes.

• Return an IMPLEMENTATION DEFINED value to the requester for a read and ignore writes.

In some implementations, this is done by the completer of the access.

In other implementations, this might be done by a bridge wrapper for a component or components that do not
natively support recording a software fault. The wrapper detects and suppresses an In-band error response from the
completer and responds to the requester appropriately. Such a wrapper might be configurable and might also record
the software fault, as described by INXCDR.

If the system does not support any means to record the software fault, then an In-band error response should not be
returned to the requester.

INXCDR The system might implement a RAS System Architecture node or nodes and Error records to record software faults,
for improved debuggability of the faults.

When a node and Error records for recording software faults is implemented, software faults can be recorded as an
error, and reported with an In-band error response and/or a Fault handling interrupt, referred to as a software fault
interrupt. Arm recommends that this is configurable through ERR<n>CTLR, allowing software to disable the
feature. For example, if an Error exception might cause an unrecoverable software state.

When the feature is disabled, accesses should behave as recommended above.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13278
ID032224 Non-Confidential

RAS System Architecture
I5.4 Standard error record
The following ERR<n>STATUS.SERR values can be used to record software faults.

I5.4.9 Other sources of error and warnings

INWXQS Other sources of error and warning are possible in a system. Within the RAS System Architecture, these are signaled
to a PE using an Error recovery interrupt or Fault handling interrupt.

SERR Description

13 Illegal address (software fault). For example, access to unpopulated memory.

14 Illegal access (software fault). For example, byte write to word register.

15 Illegal state (software fault). For example, device not ready.

25 Error recorded by PCIe error logs. Indicates that the node has recorded an error in a PCIe error log. This might be the PCIe
device status register, AER, DVSEC, or other mechanisms defined by PCIe.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13279
ID032224 Non-Confidential

RAS System Architecture
I5.5 Error recovery interrupt
I5.5 Error recovery interrupt

IJXHYH If an Error recovery interrupt is implemented by a node, then the set of controls for enabling Error recovery
interrupts is IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are implemented.

RVYFND For a node <n>, if an Error recovery interrupt is implemented, then a control for enabling the Error recovery
interrupt on Deferred errors, ERR<n>CTLR.DUI, might be implemented.

RXGBJV For a node <n>, if the ERR<n>CTLR.DUI control is implemented, then the Error recovery interrupt is enabled for
Deferred errors when ERR<n>CTLR.DUI is 0b1, and disabled for Deferred errors when ERR<n>CTLR.DUI is 0b0.

RKRDFZ For a node <n>, if the ERR<n>CTLR.DUI control is not implemented, then the Error recovery interrupt is always
disabled for Deferred errors.

RQSYLK For a node <n>, if an Error recovery interrupt is implemented, then a control for enabling the Error recovery
interrupt on Uncorrected errors, ERR<n>CTLR.UI, might be implemented.

RCBVJB For a node <n>, if the ERR<n>CTLR.UI control is implemented, then the Error recovery interrupt is enabled for
Uncorrected errors when ERR<n>CTLR.UI is 1 and disabled for Uncorrected errors when ERR<n>CTLR.UI is 0.

RZLXWQ For a node <n>, if the ERR<n>CTLR.UI control is not implemented, then the Error recovery interrupt is always
enabled for Uncorrected errors.

RBLVMZ For a node <n>, if an Error recovery interrupt is not implemented, then the ERR<n>CTLR.{DUI,UI} controls are
not implemented.

RXWHZR For each implemented control, it is further IMPLEMENTATION DEFINED whether there is a single control or separate
controls for reads and writes.

RLMFJX The Error recovery interrupt is generated when the node records an error, even if the error syndrome is discarded
because the Error record already records a higher priority error.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13280
ID032224 Non-Confidential

RAS System Architecture
I5.6 Fault handling interrupt
I5.6 Fault handling interrupt

IDZTCG If a Fault handling interrupt is implemented by a node, then the set of controls for enabling Fault handling interrupts
is IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are implemented.

RWHXMB For a node <n>, if the Fault handling interrupt is implemented, then the control for generating the Fault handling
interrupt on Corrected error events, ERR<n>CTLR.CFI, might be implemented.

RQWFKB For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the Fault handling interrupt is enabled for
Corrected error events when ERR<n>CTLR.CFI is 0b1 and disabled for Corrected error events when
ERR<n>CTLR.CFI is 0b0.

RTSPRZ For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the ERR<n>CTLR.FI control is
implemented.

RJSKSW For a node <n>, if the ERR<n>CTLR.FI control is implemented and FEAT_RASSA_DFI is not implemented, then
the Fault handling interrupt is enabled for Deferred errors when ERR<n>CTLR.FI is 0b1, and disabled for Deferred
errors when ERR<n>CTLR.FI is 0b0.

RZVPHD For a node <n>, if the ERR<n>CTLR.FI control is implemented, then the Fault handling interrupt is enabled for
Uncorrected errors when ERR<n>CTLR.FI is 0b1, and disabled for Uncorrected errors when ERR<n>CTLR.FI is
0b0.

RTSXMY For a node <n>, if the ERR<n>CTLR.CFI control is not implemented, then the control for generating the Fault
handling interrupt on all recorded errors, ERR<n>CTLR.FI, might be implemented.

DZTFFN FEAT_RASSA_DFI is an OPTIONAL node feature from FEAT_RASSAv2. FEAT_RASSA_DFI is permitted from
FEAT_RASSAv1p1.

RNQWKT For a node <n>, if FEAT_RASSA_DFI is implemented, then the node includes the Fault handling interrupt for
Deferred errors enable control, ERR<n>CTLR.DFI.

RQLBNC For a node <n>, if FEAT_RASSA_DFI is implemented, then the ERR<n>CTLR.FI control is implemented.

RHSGLQ For a node <n>, if FEAT_RASSA_DFI is implemented, then the fault handling interrupt for Deferred errors is:

• Enabled when ERR<n>CTLR.DFI is not equal to ERR<n>CTLR.FI.

• Disabled when ERR<n>CTLR.DFI is equal to ERR<n>CTLR.FI.

RMSWTP For a node <n>, if the ERR<n>CTLR.FI control is implemented, the ERR<n>FR.CFI control is not implemented,
and FEAT_RASSA_DFI is not implemented, then the Fault handling interrupt is enabled for Corrected error events
when ERR<n>CTLR.FI is 0b1, and disabled for Corrected error events when ERR<n>CTLR.FI is 0b0.

RBSXNL For a node <n>, if the ERR<n>CTLR.FI control is implemented, the ERR<n>FR.CFI control is not implemented,
and FEAT_RASSA_DFI is implemented, then the Fault handling interrupt is enabled for Corrected error events
when ERR<n>CTLR.FI is 0b1, and disabled for Corrected error events when ERR<n>CTLR.FI is 0b0.

RMLJNK For a node <n>, if the ERR<n>CTLR.FI control is not implemented, then the Fault handling interrupt is always
enabled for all Corrected error events, Deferred errors and Uncorrected errors.

RWFNLG For a node <n>, if a Fault handling interrupt is not implemented, then the ERR<n>CTLR.{CFI,DFI,FI} controls are
not implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13281
ID032224 Non-Confidential

RAS System Architecture
I5.6 Fault handling interrupt
IXFWMB A RAS node that implements separate ERR<n>CTLR.{CFI,DFI,FI} controls generates fault handling interrupts as
follows:

DGGMPV A Corrected error event is defined in RCGZMD.

DNDSNV FEAT_RASSA_CED is an OPTIONAL node feature from FEAT_RASSAv2. FEAT_RASSA_CED is permitted from
FEAT_RASSAv1p1.

IWBBGW FEAT_RASSA_CED allows software to switch to a mode where each corrected error generates a fault handling
interrupt, without having to reset the error counter after each interrupt.

SFHBJT FEAT_RASSA_CED is identified to software by ERR<n>FR.CED.

RCPLTL When FEAT_RASSA_CED is implemented by a node, each error record <n> owned by the node that includes an
error counter includes the corrected error event from error counter disable control, ERR<n>CTLR.CED.

RCGZMD If the node implements a Corrected error counter, and either FEAT_RASSA_CED is not implemented or
ERR<n>CTLR.CED is 0b0, then all of the following are true:

• A Corrected error event occurs when a counter overflows and sets a counter overflow flag to 0b1.

• It is UNPREDICTABLE whether a Corrected error event occurs when a software write sets the counter overflow
flag to 0b1.

• It is UNPREDICTABLE whether a Corrected error event occurs when a counter overflows and the overflow flag
was previously set to 0b1.

Otherwise, a Corrected error event occurs when the node records an error as Corrected error.

RJJHNT If FEAT_RASSA_DFI is implemented and an error counter or counters are implemented, then the error counter
counts Deferred errors and Corrected errors. It is IMPLEMENTATION DEFINED whether the counter counts
Uncorrected errors.

This means that a Deferred error might also cause a Corrected error event and, if the ERR<n>CTLR.CFI control is
implemented, might generate a fault handling interrupt when fault handling interrupt for Deferred errors is Disabled
because fault handling interrupt for Corrected error events is enabled.

RYZDHM For each implemented control, it is IMPLEMENTATION DEFINED whether there is a single control or separate controls
for reads and writes.

RDQWYH The Fault handling interrupt is generated when the node records an error, even if the error syndrome is discarded
because the Error record already records a higher priority error.

Table I5-4 Fault handling interrupt generation when FEAT_RASSA_DFI is implemented

CFI DFI FI FHI generated by CE Event FHI generated by DE FHI generated by UE

0b0 0b0 0b0 No No No

0b0 0b0 0b1 No Yes Yes

0b0 0b1 0b0 No Yes No

0b0 0b1 0b1 No No Yes

0b1 0b0 0b0 Yes No No

0b1 0b0 0b1 Yes Yes Yes

0b1 0b1 0b0 Yes Yes No

0b1 0b1 0b1 Yes No Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13282
ID032224 Non-Confidential

RAS System Architecture
I5.7 In-band error response signaling
I5.7 In-band error response signaling

RQTNMH For a node <n>, if support for In-band error response signaling, also referred to as External aborts, is implemented
by the node, then the control for enabling In-band error response signaling, ERR<n>CTLR.UE, might be
implemented. Software uses ERR<n>FR to determine what controls are implemented.

RBBFMC For a node <n>, if the ERR<n>CTLR.UE control is implemented, then In-band error response signaling is enabled
when ERR<n>CTLR.UE is 0b1, and In-band error response signaling is disabled when ERR<n>CTLR.UE is 0b0.

RXDXWP For a node <n>, if the ERR<n>CTLR.UE control is not implemented and support for In-band error response
signaling is implemented, then In-band error response signaling is always enabled.

RDMTCY For a node <n>, if support for In-band error response signaling is not implemented, then the ERR<n>CTLR.UE
control is not implemented.

RNKMDL For the ERR<n>CTLR.UE control, it is further IMPLEMENTATION DEFINED whether there is a single control or
separate ERR<n>CTLR.{RUE, WUE} controls for reads and writes.

RJRYXD When the node signals an In-band error response, it sets ERR<n>STATUS.ER to 0b1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13283
ID032224 Non-Confidential

RAS System Architecture
I5.8 Critical error interrupt
I5.8 Critical error interrupt

RQHJMS Support for critical error conditions and Critical Error interrupts at a node is IMPLEMENTATION DEFINED. Software
uses ERR<n>FR to determine what support is implemented.

RLWHDB Critical Error interrupts provide a mechanism for a node to report a critical error condition to a system controller
for error recovery.

IWPFSF An example of a critical error is one where the node has entered a service failure mode which means that the primary
error recovery mechanisms cannot be used.

Example I5-6

A memory controller enters a failure mode and stops servicing memory requests from application processors, and
application processors host the primary error recovery software. The error is signaled to a secondary error controller
that has its own private resources in order to log the error.

RYQLPR For a node <n>, if the Critical Error interrupt is implemented, then the Error recovery interrupt is implemented.

RLZVMK For a node <n>, if the Critical Error interrupt is implemented, then the Critical Error interrupt is enabled when
ERR<n>CTLR.CI is 0b1 and disabled when ERR<n>CTLR.CI is 0b0.

RJSVFW For a node <n>, if the Critical Error interrupt is implemented, then when a critical error condition is recorded the
node sets ERR<n>STATUS.CI to 0b1, regardless of whether the Critical Error interrupt is enabled or disabled.

ERR<n>STATUS.CI is set to 0b1 in addition to the other syndrome information for the error, which is handled in
the normal way.

RYMGQG For a node <n>, if the Critical Error interrupt is implemented and disabled, then when a critical error condition is
detected, the node records the critical error as an Uncontainable error.

IBNDZW Classifying the critical error condition as an Uncontainable error if the Critical Error interrupt is disabled has the
effect of causing the node to generate an Error recovery interrupt.

IVSKSB For a node <n>, if the Critical Error interrupt is implemented and enabled, then it is IMPLEMENTATION DEFINED how
the error is classified at the node.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13284
ID032224 Non-Confidential

RAS System Architecture
I5.9 Standard format Corrected error counter
I5.9 Standard format Corrected error counter

IFQLPT The RAS System Architecture defines standard formats for a Corrected error counter. Software uses ERR<n>FR to
determine whether any standard format Corrected error counter is implemented by a node.

RXYFVB If a standard format Corrected error counter is implemented by a node, then it is IMPLEMENTATION DEFINED whether
a single counter or a pair of counters is implemented by Error records owned by the node.

RSLPQW For an Error record <n>, if a standard format Corrected error counter is implemented by the node and the error
record can record countable errors, then the counter or counters are recorded in ERR<n>MISC0.

RBYDBW It is IMPLEMENTATION DEFINED whether an Error record can record countable errors.

IFYBWQ If a pair of standard format Corrected error counters are implemented by a node, then the node provides all of the
following:

• A first (repeat) error counter to count the first error and any subsequent error detected at the same location.

• A second (other) error counter to count errors detected in other locations.

RGYPDJ If a pair of standard format Corrected error counters are implemented by a node, then an Error record <n> records
a counted-fault location for the error, in one or more of:

• The ERR<n>ADDR register.

• The ERR<n>STATUS.IERR field.

• The ERR<n>STATUS.SERR field.

• The ERR<n>MISC<m> registers.

It is IMPLEMENTATION DEFINED which of these or parts thereof describe the counted-fault location.

Note: These registers might contain additional IMPLEMENTATION DEFINED fault location information that is not
considered part of the counted-fault location.

RJMTCG The counted-fault location recorded in Error record <n> is either valid or invalid.

RJCNNX If the counted-fault location or part of the counted-fault location is held in the ERR<n>ADDR register, then all of
the following apply:

• This part is valid when ERR<n>STATUS.{V, AV} is {0b1, 0b1}.

• It is IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or invalid
when ERR<n>STATUS.{V, AV} is {0b1, 0b0}.

• This part is invalid when ERR<n>STATUS.V is 0b0.

RJMVKQ If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.IERR field, then
this part is valid when ERR<n>STATUS.V is 0b1 and invalid otherwise.

RLTFXM If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.SERR field, then
this part is valid when ERR<n>STATUS.V is 0b1 and invalid otherwise.

RSLYKF If the counted-fault location or part of the counted-fault location is held in the ERR<n>MISC<m> registers, then:

• This part is valid when ERR<n>STATUS.{V, MV} is {0b1, 0b1} and IMPLEMENTATION DEFINED parts of the
syndrome data indicate the registers contain a valid counted-fault location.

• It is IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or invalid
when ERR<n>STATUS.{V, MV} is {0b1, 0b0}.

• This part is invalid when ERR<n>STATUS.V is 0b0.

RLSTYJ If the counted-fault location is held across multiple of these registers, then the counted-fault location is valid only
if all parts are valid and invalid otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13285
ID032224 Non-Confidential

RAS System Architecture
I5.9 Standard format Corrected error counter
IQDPMP The counted-fault location is always invalid if ERR<n>STATUS.V is 0b0, that is, if no error has been recorded by
the Error record since ERR<n>STATUS.V was last cleared to 0b0.

IGGWGP The content of IMPLEMENTATION DEFINED syndrome is IMPLEMENTATION DEFINED. This permits, but does not
require, for example, the ERR<n>MISC<m> registers to contain additional valid flags for other parts of the
syndrome, or for some parts of ERR<n>MISC<m> to be valid only for some values of ERR<n>STATUS.{IERR,
SERR}.

IWRGPQ For some implementations, ERR<n>ADDR is always written when an error is recorded, meaning the hardware
never sets ERR<n>STATUS.{V, AV} to {0b1, 0b0} when recording an error. Similarly, for some implementations,
the hardware never sets ERR<n>STATUS.{V, MV} to {0b1, 0b0} when recording an error. For these cases, the
implementation might ignore the applicable one or ones of the AV and MV bits when determining whether the
counted-fault location is valid.

RJQZZT If a pair of standard format Corrected error counters are implemented by a node, then when a countable error is
recorded by Error record <n>:

• The first (repeat) error counter counts an error if either of the following are true:

— The counted-fault location recorded in error record <n> is invalid.

— The error being counted is at the same location as the valid counted-fault location recorded in error
record <n>.

• The second (other) counter counts the error otherwise.

IBYGGW When the counted-fault location recorded in error record <n> is invalid, because this typically means that
ERR<n>STATUS.V is 0b0, the node typically overwrites the syndrome, meaning it captures the new counted-fault
location. Otherwise, because ERR<n>STATUS.V is 0b1 the node keeps the syndrome, meaning the counted-fault
location is unchanged.

RFYCFY If a standard format Corrected error counter is implemented by a node, then if counting an error causes unsigned
overflow of the Corrected error counter:

• The counter overflow flag is set to 0b1.

• A Corrected error event occurs.

IQZJFY IMPLEMENTATION DEFINED forms of counters, including other sizes, other overflow models, and other
miscellaneous syndrome register locations, might be implemented.

IYTTKW See also:

• Fault handling interrupt.

• Writing the error record.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13286
ID032224 Non-Confidential

RAS System Architecture
I5.10 Error recovery, fault handling, and critical error signaling
I5.10 Error recovery, fault handling, and critical error signaling

IBHBCB Error recovery, Fault handling, and Critical Error interrupt requests are normally routed to a PE using an interrupt
controller.

IQTQBJ For an Arm Generic Interrupt Controller (GIC), if the Error records of the node that generates the interrupt requests
are only accessible via the System registers of one or more PEs, Arm strongly recommends that the interrupt is a
Private Peripheral Interrupt (PPI) targeting that PE or one of those PEs.

RVKLWD It is IMPLEMENTATION DEFINED whether each Error record has independent interrupt request signals for Error
recovery, Fault handling, and Critical Error interrupt requests, or whether it shares any of these interrupt requests
with other Error records and/or other nodes.

RWMQZP It is IMPLEMENTATION DEFINED whether interrupt requests are edge-triggered or level-sensitive.

RBRKDL It is IMPLEMENTATION DEFINED whether interrupt requests are implemented as a direct connection (wire) to an
interrupt controller or controllers, as an Message Signaled Interrupt (MSI), or both.

RSVWPZ If the Fault handling interrupt is level-sensitive, then the interrupt request is asserted by the node for an Error record
<n> while any of the following apply:

• Fault handling interrupts on all Uncorrected errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.UE is 0b1.

• Fault handling interrupts on all Deferred errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.DE is 0b1.

• Fault handling interrupts on Corrected errors are enabled and either:

— The Error record implements a Corrected error counter, ERR<n>STATUS.V is 0b1, and any of the
following apply:

— The counter overflow flag is 0b1, and either FEAT_RASSA_CED is not implemented or
ERR<n>CTLR.CED is 0b0.

— FEAT_RASSA_CED is implemented, ERR<n>CTLR.CED is 0b1, and ERR<n>STATUS.CE is
nonzero.

— The Error record does not implement a Corrected error counter, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.CE is nonzero.

RVHSRJ If the Error recovery interrupt is level-sensitive, then the interrupt request is asserted by the node for an Error record
<n> while any of the following apply:

• Error recovery interrupts on Uncorrected errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.UE is 0b1.

• Error recovery interrupts on Deferred errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.DE is 0b1.

RKTVHF If the Critical Error interrupt is level-sensitive, then the interrupt request is asserted by the node for an Error record
<n> while Critical Error interrupts are enabled, ERR<n>STATUS.V is 0b1, and ERR<n>STATUS.CI is 0b1.

RYPPWB If the Fault handling interrupt is edge-triggered, then the interrupt request is generated by the node for an Error
record when any of the following occur:

• Fault handling interrupts on all Deferred errors and Uncorrected errors are enabled, and an error is recorded
in the Error record as either Deferred error or Uncorrected error.

• Fault handling interrupts on Corrected errors are enabled and a Corrected error event occurs for the Error
record.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13287
ID032224 Non-Confidential

RAS System Architecture
I5.10 Error recovery, fault handling, and critical error signaling
RFLWGK If the Error recovery interrupt is edge-triggered, then the interrupt request is generated by the node for an Error
record when any of the following occur:

• Error recovery interrupts on Uncorrected errors are enabled, and an error is recorded in the Error record as
Uncorrected error.

• Error recovery interrupts on Deferred errors are enabled, and an error is recorded in the Error record as
Deferred error.

RFLPKB If the Critical Error interrupt is edge-triggered, then the interrupt request is generated by the node for an Error record
<n> when Critical Error interrupts are enabled, and the node records an error setting ERR<n>STATUS.CI to 0b1.

The Critical Error interrupt request is generated even if ERR<n>STATUS.CI was already 0b1.

IMYKYF An enabled edge-triggered interrupt request is generated even if the error syndrome is discarded because the Error
record already records a higher priority error.

RXWMLB It is IMPLEMENTATION DEFINED whether an edge-triggered interrupt request is generated by a write to a register that
enables an interrupt or otherwise creates the conditions for the interrupt request in the other syndrome registers, as
defined for a level-sensitive interrupt request.

DJWTHK FEAT_RASSA_IRQCR_SIMPLE is an OPTIONAL Error record group feature. FEAT_RASSA_IRQCR_SIMPLE is
permitted from FEAT_RASSAv1.

DPRGRZ FEAT_RASSA_IRQCR_MSI is an OPTIONAL Error record group feature. FEAT_RASSA_IRQCR_MSI is
permitted from FEAT_RASSAv1.

SKMMSP FEAT_RASSA_IRQCR_SIMPLE and FEAT_RASSA_IRQCR_MSI are identified to software by
ERRDEVID.IRQCR from FEAT_RASSAv2.

The following are identified to software by ERRDEVID.IRQCR:

• Whether interrupt control registers are implemented.

• If interrupt control registers are implemented, whether the registers use the recommended format or are
IMPLEMENTATION DEFINED.

• If the interrupt control registers use the recommended format, which of the following controls are
implemented:

— Simple interrupt controls, FEAT_RASSA_IRQCR_SIMPLE.

— Message-signaled interrupt controls, FEAT_RASSA_IRQCR_MSI.

RGZQWV The standard Error record reserves a set of register locations for configuring Message Signaled Interrupts (MSIs),
ERRIRQCR<n>. Two recommended layouts for these registers are described by FEAT_RASSA_IRQCR_SIMPLE
and FEAT_RASSA_IRQCR_MSI, as follows:

• If FEAT_RASSA_IRQCR_SIMPLE is implemented, an interrupt enable control for each of the Error
recovery, Fault handling, and Critical Error interrupt requests is implemented. These are
ERRERICR2.IRQEN, ERRFRICR2.IRQEN, and ERRCRICR2.IRQEN respectively. The reset value for
these controls is IMPLEMENTATION DEFINED.

• If FEAT_RASSA_IRQCR_MSI is implemented, the Interrupt Status Register, ERRIRQSR, is implemented,
and for each of the Error recovery, Fault handling, and Critical Error interrupt requests, three configuration
registers are implemented:

— Interrupt Configuration Register 0 holds the address to which the node writes to request the interrupt.
These are ERRERICR0, ERRFHICR0, and ERRCRICR0 respectively.

— Interrupt Configuration Register 1 holds the 32-bit data value that the node writes to the address. These
are ERRERICR1, ERRFHICR1, and ERRCRICR1 respectively.

— Interrupt Configuration Register 2 configures all the following:

— Whether the message signaled interrupt is enabled or disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13288
ID032224 Non-Confidential

RAS System Architecture
I5.10 Error recovery, fault handling, and critical error signaling
— The Shareability domain and memory type attributes for the address.

— The physical address space for the address. This is either the Non-secure physical address space
or the Secure physical address space.

These controls and attributes are optional. These registers are ERRERICR2, ERRFHICR2, and
ERRCRICR2 respectively.

If the recommended layouts are not used, then the ERRIRQCR<n> registers are IMPLEMENTATION DEFINED.

RRZDWL When an error is recorded, or an interrupt becomes enabled, the state of the interrupt requests is updated in finite
time.

IVXQXS See also:

• Fault handling interrupt.

• Error recovery interrupt.

• Critical error interrupt.

• Synchronization and error record accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13289
ID032224 Non-Confidential

RAS System Architecture
I5.11 Error record reset
I5.11 Error record reset

IFQDBT A system comprises multiple power and logical domains, each of which might implement one or more reset signals.

RLVDPS The RAS System Architecture defines two classes of reset: a Cold reset and an Error Recovery reset.

RDKKYC A Cold reset resets all of the logic in a component, including RAS functionality, to a known initial state.

RWXRXD An Error Recovery reset resets some of the logic in the component to a known state.

However, some state is purposefully unchanged by an Error Recovery reset. Unlike Cold reset, any recorded error
syndrome information is preserved by Error Recovery reset.

RDXBFS All logic of the component that is reset by a Error Recovery reset is also reset by a Cold reset.

RLPJWX How these resets map to other resets is IMPLEMENTATION DEFINED.

RZLZDR Mechanisms for asserting resets are IMPLEMENTATION DEFINED.

IWFGQQ RZLZDR means it is IMPLEMENTATION DEFINED whether it is possible to independently assert an Error Recovery reset
and a Cold reset. Arm recommends that Error Recovery reset can be asserted independently of Cold reset, and:

• Cold reset is asserted to a component when it transitions from a powered off state to a powered on state. No
state is preserved from the previous powered off state.

• Error Recovery reset can be asserted at other times, for example when a system fatal error is detected. Error
recovery software executed after reset can recover the recorded error syndrome information.

For example, Error Recovery reset might be implemented by a Warm reset, such as the architectural Warm reset
defined for a PE by the Arm architecture. In such an implementation, when Warm reset is asserted, the error records
of the component are preserved.

RKWZYL For each message-signaled fault handling, error recovery, and critical error interrupt, the implementation must
ensure that assertion of the interrupt is disabled at reset, to prevent a spurious write to a location.

RJNSQZ For each fault handling, error recovery, and critical error interrupt that is not message-signaled, it is
IMPLEMENTATION DEFINED whether the assertion of the interrupt is disabled at Cold and/or Error Recovery resets.

IVDQFV Assertion of an interrupt at reset can be disabled by one of the following:

• Implementing the interrupt control registers using a recommended layout, and setting the interrupt enable
controls, ERR<irq>CR2.IRQEN, to 0b0 at reset. See also RGZQWV.

• Implementing interrupt control registers using an IMPLEMENTATION DEFINED layout with an equivalent
interrupt enable control that is disabled at reset.

• Defining that each architecturally UNKNOWN reset value for an interrupt enable control in each error record
control register ERR<n>CTLR is 0b0.

Using the interrupt control registers in this way is only possible when the error record registers and interrupt control
registers are reset by the same reset signals.

IMBLBG For many systems, it is recommended that assertion of interrupts is disabled at Cold and Error Recovery resets.
However, for some systems this is not necessary or not recommended. For example:

• The interrupts are simple wired interrupts and will be ignored following a reset until software enables the
interrupt at the interrupt controller. Software can disable the interrupt at the node before enabling the interrupt
at the interrupt controller.

• The system has a requirement that the system must not rely on boot software correctly re-enabling interrupts
after a system reset. For example, where a complete system failure must trigger a fail-safe mode of operation.

DMCHNV FEAT_RASSA_SRV is an OPTIONAL node feature from FEAT_RASSAv2. FEAT_RASSA_SRV is permitted from
FEAT_RASSAv2.

SGHQHP FEAT_RASSA_SRV is identified to software for node <n> by ERR<n>FR.SRV.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13290
ID032224 Non-Confidential

RAS System Architecture
I5.11 Error record reset
IMKKGG When FEAT_RASSA_SRV is not implemented by a node <n>, all of the following apply:

• ERR<n>STATUS.{AV, V, MV} are set to {0b0, 0b0, 0b0} on a Cold reset and preserved on Error Recovery
reset.

• ERR<FirstRecordOfNode(n)>CTLR.ED is set to an IMPLEMENTATION DEFINED value, 0b0 or 0b1, on a Cold
reset and preserved on Error Recovery reset.

• If the Common Fault Injection Model extension is implemented, ERR<n>PFGCTL.CDNEN is set to 0b0 on
a Cold reset and preserved by Error Recovery reset.

• When FEAT_RASSA_RV is implemented, ERR<n>STATUS.{RV, RV2} are set to {0b1, 0b1} on both Cold
reset and Error Recovery reset. This means that there are two reset signals for the node. (See RSVWHL.)

RLCDPD When FEAT_RASSA_SRV is implemented by a node <n>, all of the following apply:

• ERR<n>STATUS.{AV, V, MV} are set to architecturally UNKNOWN values on a Cold reset and preserved on
Error Recovery reset.

• ERR<FirstRecordOfNode(n)>CTLR.ED is set to 0b0 on both Cold reset and Error Recovery reset.

• If the Common Fault Injection Model extension is implemented, ERR<n>PFGCTL.CDNEN is set to 0b0 on
both Cold reset and Error Recovery reset.

• When FEAT_RASSA_RV is implemented, ERR<n>STATUS.{RV, RV2} are set to {0b1, 0b1} on both Cold
reset and Error Recovery reset. (See RSVWHL.)

This means there is effectively a single reset signal for the node.

SDVBVS If ERR<n>STATUS.V is set to an architecturally UNKNOWN value then power-on reset software must initialize
ERR<n>STATUS before enabling error detection and recording by the node. If error detection and recording is
enabled when ERR<n>STATUS.V is still architecturally UNKNOWN, then any detected error might be discarded
because of the error record overwriting rules described in the sections Prioritizing errors, FEAT_RASSAv1 and
Prioritizing errors, FEAT_RASSAv1p1.

I5.11.1 Error record reset flag

DCPRWG FEAT_RASSA_RV is an OPTIONAL node feature from FEAT_RASSAv2. FEAT_RASSA_RV is permitted from
FEAT_RASSAv2.

IRNJWF FEAT_RASSA_RV and FEAT_RASSA_SRV allow software to determine, during boot, whether an error recorded
by the error record occurred before or after an Error Recovery reset.

RSMQPN When FEAT_RASSA_RV is implemented by a node, each Error record <n> owned by the node includes the reset
valid flags, ERR<n>STATUS.{RV, RV2}.

SSKYFL FEAT_RASSA_RV is identified to software for node <n> by ERR<n>FR.RV.

RSVWHL On an Error Recovery reset ERR<n>STATUS.{RV, RV2} is set to {0b1, 0b1}.

RQHQSD On recording a fault:

• If recording the fault overwrites the error syndrome, or if the error record was previously not valid, then
ERR<n>STATUS.RV is set to 0b0. Otherwise, ERR<n>STATUS.RV is unchanged.

• ERR<n>STATUS.RV2 is set to 0b0.

RGGTCT ERR<n>STATUS.{RV, RV2} are R/W1C fields.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13291
ID032224 Non-Confidential

RAS System Architecture
I5.12 The RAS Timestamp Extension
I5.12 The RAS Timestamp Extension

RBWYMJ The RAS Timestamp Extension is an optional part of FEAT_RASSAv1p1.

IPZVXP The RAS Timestamp Extension provides a standard mechanism for timestamping Error records.

RTRHJP For a given Error record <n>, if the RAS Timestamp Extension is implemented, the timestamp value is recorded in
ERR<n>MISC3.

SFZJMJ Software uses ERR<n>FR.TS to determine whether the RAS Timestamp Extension is implemented by node <n>.

RMHTSQ The timestamp value uses either the system Generic Timer counter or an IMPLEMENTATION DEFINED timebase.

SHLDRQ Software uses ERR<n>FR.TS to determine which timebase is used by node <n>.

RXKBJS Other than when IMPLEMENTATION DEFINED conditions apply, the following are true:

• The timebase is encoded as a plain binary number.

• The timebase is monotonically increasing at a fixed rate compared to wallclock time.

IPQCNK The IMPLEMENTATION DEFINED conditions are to allow for the timebase to violate these conditions during initial
system configuration.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13292
ID032224 Non-Confidential

RAS System Architecture
I5.13 The Common Fault Injection Model Extension
I5.13 The Common Fault Injection Model Extension

RCVLDN The Common Fault Injection Model Extension is an optional part of FEAT_RASSAv1p1.

ITSWKX Other forms of error or fault injection are permitted. For example, if the Common Fault Injection Model Extension
is not implemented, the ERRIMPDEF<n> registers might be used for an IMPLEMENTATION DEFINED fault injection
mechanism.

RYBSBX The Common Fault Injection Model Extension can only be implemented for Error records accessed through a
memory-mapped group of Error records if ERRDEVARCH.REVISION >= 0b0001.

IPTGZW The Common Fault Injection Model Extension fakes the detection of an error at a component.

ICPYFQ A faked error detection results in the node signaling the appropriate ones of the Fault handling interrupt, Error
recovery interrupt, and In-band error response, according to the type of injected error and the control settings of the
node.

RXGXNW If FEAT_RME is:

• Implemented, then from an address captured in an ERR<n>ADDR as a result of error injection, it must not
be possible to determine which address a PE is accessing, when all the following are true:

— The ERR<n>ADDR is accessible to PEs not in Root state.

— The error injection controls are accessible to PEs not in Root state.

• Not implemented, Arm recommends the same, that is, it must not be possible to determine which address a
PE is accessing when both the ERR<n>ADDR and error injection controls are accessible to PEs not in Secure
state.

IFRCGL To achieve RXGXNW, it is permitted for an implementation to, for example:

• Not provide a valid address.

• Not update the ERR<n>ADDR as a result of error injection.

RRYFQP The Common Fault Injection Model Extension supports generating a subset of the component error state types
supported by the node.

IYSQHB Arm recommends that the Common Fault Injection Model Extension supports all the component error state types
supported by the node.

SQVLPN The Common Fault Injection Model Extension is identified to software for node <n> by ERR<n>FR.INJ,

SZBZHW Software uses ERR<n>PFGF to determine the Common Fault Injection Model Extension capabilities for node <n>
that implements the Common Fault Injection Model Extension.

IZDPWF If a node is not capable of recording a component error state type, then it does not support injecting that component
error state type.

IYMWNF The Common Fault Injection Model Extension registers are:

• ERR<n>PFGF.

• ERR<n>PFGCTL.

• ERR<n>PFGCDN.

The Common Fault Injection Model Extension registers are not accessible from AArch32 state. However, when
accessed via ERXFR, AArch32 state can access the ERR<n>FR.INJ field described in this section.

IJFHGG The Common Fault Injection Model Extension registers can be implemented directly, or as a Fault Injection Group.
See Fault injection groups.

IQFYWD Additional constraints might apply if fault injection can affect the operation of Secure and/or Root states.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13293
ID032224 Non-Confidential

RAS System Architecture
I5.13 The Common Fault Injection Model Extension
ITQVQW See also Security and Virtualization.

I5.13.1 Operation of the Common Fault Injection Model Extension

DYHZHK The behaviors in this section apply for a given node <n> if node <n> implements the Common Fault Injection Model
Extension.

RVDZSG When software writes 0b1 to ERR<n>PFGCTL.CDNEN:

• The internal Error Generation Counter is set to ERR<n>PFGCDN.CDN if all of the following apply:

— Error reporting and logging at the node is enabled.

— ERR<n>PFGCTL.CDNEN was previously 0b0.

— ERR<n>PFGCDN.CDN is nonzero.

— The component is not in the fault injection state.

• Otherwise, all of the following apply:

— It is UNPREDICTABLE whether the Error Generation Counter is unchanged or is set to
ERR<n>PFGCDN.CDN, which might be zero.

— If the component is in the fault injection state, the component might leave the fault injection state.

— If the component is not in the fault injection state, the component might enter the fault injection state.

IXDWGY The current value of the Error Generation Counter is not visible to software.

RPLZMT If error reporting and logging at the node is enabled, then while ERR<n>PFGCTL.CDNEN is 0b1 and the Error
Generation Counter is nonzero, the Error Generation Counter decrements by 1 for each cycle at an
IMPLEMENTATION DEFINED clock rate.

RPQTKT If error reporting and logging at the node is disabled, then while ERR<n>PFGCTL.CDNEN is 0b1 and the Error
Generation Counter is nonzero, it is IMPLEMENTATION DEFINED whether:

• The Error Generation Counter decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate.

• The Error Generation Counter remains unchanged.

IDMNZX The rate at which the component decrements the counter is defined by the component. For example, it might be the
native clock rate for the component, and this might not be the same as the PE clock rate. Software typically discovers
this rate from firmware.

RDDPMH When the Error Generation Counter decrements to or past zero, the component enters a fault injection state.

RYXXWT When the component is in the fault injection state, the component does all of the following:

• Fakes detection of the component error state type(s) described by ERR<n>PFGCTL.

• Reports the injected error to the node.

• If error reporting and logging at the node is enabled in ERR<n>CTLR.ED, then the node recorded the
injected error.

• If error reporting and logging at the node is disabled in ERR<n>CTLR.ED, then it is UNPREDICTABLE
whether or not the node records the injected error.

It is IMPLEMENTATION DEFINED whether this occurs only on the next access to the component in the fault injection
state, or occurs spontaneously in the fault injection state. ERR<n>PFGF.NA describes which.

The component then leaves fault injection state.

IDNMXX For components that support the concept of an access to the component, Arm recommends that RYXXWT applies on
the next access to the component.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13294
ID032224 Non-Confidential

RAS System Architecture
I5.13 The Common Fault Injection Model Extension
RYFBLN If ERR<n>PFGCTL.CDNEN is cleared to 0b0 when the component is in the fault injection state, it is
UNPREDICTABLE whether the component leaves the fault injection state or remains in the fault injection state.

RXMZBB When an injected error is recorded, the node signals the appropriate ones of the Fault handling interrupt, Error
recovery interrupt, and In-band error response, according to the type of injected error and the control settings of the
node.

RGJXGL When an injected error is recorded, the node writes the ERR<n>STATUS.{V, UE, CE, DE, UET} fields according
to the component error state type described by ERR<n>PFGCTL.

RTSXMT If ERR<n>PFGCTL defines multiple component error state types, or none, then the behavior is UNPREDICTABLE
and is one of the following:

• No error is injected.

• An error is injected with an UNPREDICTABLE choice of component error state.

RXLJMM It is IMPLEMENTATION DEFINED how the node updates the ERR<n>STATUS.{AV, ER, OF, MV, PN, CI, IERR,
SERR}, ERR<n>ADDR, and ERR<n>MISC<m> when recorded an injected error. ERR<n>PFGF describes the
IMPLEMENTATION DEFINED options and the controls available in ERR<n>PFGCTL.

ICSSDM For many fields, the implementation has the choice to either set the syndrome register or field according to the
access that triggers the injected error, or provide finer-grained control over the field, either by a control bit in
ERR<n>PFGCTL or by not updating the register or field when the injected error is recorded meaning software can
write the injected syndrome to the register or field ahead of injecting the error.

RWMDWR For each of the ERR<n>STATUS.{CI, ER, PN} bits, the behavior is UNPREDICTABLE if all of the following are true:

• ERR<n>PFGF defines that the value injected is controlled by the corresponding ERR<n>PFGCTL bit.

• The corresponding ERR<n>PFGCTL bit is 0b1.

• For the ER and PN bits, the definition of the ERR<n>STATUS field defines that the bit is not valid for the
component error state requested by ERR<n>PFGCTL. For the CI bit, the component error state requested by
ERR<n>PFGCTL is not one of an IMPLEMENTATION DEFINED set of permitted values for critical error
conditions.

The UNPREDICTABLE behavior is one of:

• No error is injected.

• An error is injected, but the component error state and syndrome bits do not match the requested error type.

• The error is injected as requested, including setting the invalid bit or bits to the requested values.

IQSLVZ This means that:

• It is IMPLEMENTATION DEFINED which component error states the CI value can be injected with.

• The PN value can be injected with an Uncorrected error or Deferred error and cannot be injected with a
Corrected error.

• The ER value can be injected with an Uncorrected error and cannot be injected with a Corrected error.

• It is IMPLEMENTATION DEFINED whether the ER value can be injected with a Deferred error.

RGGFSF If a single node has multiple Error records, then only the first Error record has fault injection registers.

RRBYRG If a single node has multiple Error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first Error record of
the node are nonzero, meaning the fault injection mechanism does not update all or some of the ERR<n>MISC<m>
or fields when the injected error is recorded, then the injected fault is recorded in the first Error record. Otherwise,
the injected error might be recorded in any of the multiple Error records.

Note: If a single node has multiple Error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first Error
record of the node are zero then a node might define which Error record is updated or implement an
IMPLEMENTATION DEFINED control to allow this to be specified.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13295
ID032224 Non-Confidential

RAS System Architecture
I5.13 The Common Fault Injection Model Extension
IBDDZZ If the node implements Fault handling interrupt, Error recovery interrupt, and Critical Error interrupt as
edge-triggered interrupts, then recording an injected error has the same behavior as recording a detected error, for
generating the edge-triggered interrupt. That is, the interrupt is generated if the interrupt is enabled for the type of
error being injected.

ITVRDH If the node implements Fault handling interrupt, Error recovery interrupt, and Critical Error interrupt as
level-sensitive interrupts, then the level of the interrupt request is a function of the values of the control and status
register fields. The behavior of the interrupt request does not depend on whether the control and status registers were
written by the node when detecting an error, or written by error injection.

RCFTGZ If the Error Generation Counter is zero and ERR<n>PFGCTL.R is 1, then:

• If ERR<n>PFGCDN.CDN is nonzero, then the internal Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

• If ERR<n>PFGCDN.CDN is zero, the behavior is UNPREDICTABLE and is one of:

— The Error Generation Counter is unchanged.

— The Error Generation Counter is set to zero.

— The Error Generation Counter is set to zero and the component reenters the fault injection state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13296
ID032224 Non-Confidential

RAS System Architecture
I5.14 IMPLEMENTATION DEFINED fault or error injection models
I5.14 IMPLEMENTATION DEFINED fault or error injection models

RZBSKS If FEAT_RME is:

• Implemented, IMPLEMENTATION DEFINED error injection mechanisms must not corrupt any data.

• Not implemented, Arm recommends this same behavior.

RNYGDN If FEAT_RME is:

• Implemented, IMPLEMENTATION DEFINED error injection models that support signaling an error on a PE
accessing a specific physical address, must not be implemented when all the following are true:

— The address can be set by PEs not in Root state.

— The error injection controls are accessible to PEs not in Root state.

• Not implemented, Arm recommends the same, that is, not to implement the model when the address can be
set by, and the error injection controls are accessible to PEs not in Secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13297
ID032224 Non-Confidential

RAS System Architecture
I5.15 Memory-mapped view
I5.15 Memory-mapped view

IMQDMJ RAS registers summary defines the registers for memory-mapped Error records.

RHQQNS It is IMPLEMENTATION DEFINED which components in the system, if any, implement memory-mapped Error records.

RWWDBV A memory-mapped component might implement several Error records in an Error record group, relating to one or
more nodes.

DXPBLL The RAS System Architecture defines the reusable formats described in this section for memory-mapped Error
records.

RDHYDC The RAS, single error record, memory-mapped register map describes a format for a memory-mapped component
that implements a single Error record. This might be implemented as part of the control registers for a
memory-mapped component. In this format, the first register, ERR0FR, is at an address aligned to a multiple of 64
bytes.

The RAS, single error record, memory-mapped register map might be repeated in the control registers for a
memory-mapped component that implements a small number of Error records. Each error record has its own
IMPLEMENTATION DEFINED base within the control registers of the component.

RPCXRD The Error records in a memory-mapped component might be accessible only through that component, or might be
shared and accessible through any of:

• System registers by one or more PEs.

• Other memory-mapped components in the same physical address space, including aliases with the same Error
record group.

• Other memory-mapped components in other address spaces. For example, in both Non-secure and Secure
physical address spaces.

IJFZRW Arm recommends that each memory-mapped Error record is accessible at most once in any given physical address
space.

I5.15.1 Error record groups

DQJRWD When FEAT_RASSAv2 is implemented, each Error record group and, if applicable, its corresponding fault injection
group, implements one of:

• FEAT_RASSA_4KB_GRP, meaning it supports the 4KB Error record group format.
FEAT_RASSA_4KB_GRP is permitted from FEAT_RASSAv1.

• FEAT_RASSA_16KB_GRP, meaning it supports the 16KB Error record group format.
FEAT_RASSA_16KB_GRP is permitted from FEAT_RASSAv2.

• FEAT_RASSA_64KB_GRP, meaning it supports the 64KB Error record group format
FEAT_RASSA_64KB_GRP is permitted from FEAT_RASSAv2.

When FEAT_RASSAv2 is not implemented, an Error record group implements FEAT_RASSA_4KB_GRP.

RTPFWF The Standard memory-mapped view of group of error records, 4KB pages describes a Error record group The first
register, ERR0FR, is aligned to a multiple of:

• 4KB, when accessed via a standard 4KB memory-mapped peripheral when FEAT_RASSA_4KB_GRP is
implemented.

• 16KB, when accessed via a standard 16KB memory-mapped peripheral when FEAT_RASSA_16KB_GRP
is implemented.

• 64KB, when accessed via a standard 64KB memory-mapped peripheral when FEAT_RASSA_64KB_GRP
is implemented.

accessed via a standard 4KB memory-mapped peripheral. In this format, the first register, ERR<n>FR, is at an
address aligned to a multiple of 4KB.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13298
ID032224 Non-Confidential

RAS System Architecture
I5.15 Memory-mapped view
SNVRSW For each Error record group and each fault injection group, implementation of one of FEAT_RASSA_4KB_GRP,
FEAT_RASSA_16KB_GRP, or FEAT_RASSA_64KB_GRP is identified to software by ERRPIDR4.SIZE.

If this optional register is not implemented, software identifies the group format by IMPLEMENTATION DEFINED
means.

SNBFYF In an Error record groupthe Standard memory-mapped view of group of error records, 4KB pages, the group is
described to software by the following registers:

• The following registers provide a unique combination of a part number identifier, revision, and designer of
the group:

— The ERRIIDR identification register. This register is optional.

— ERRCIDR<n> and ERRPIDR<n> component and peripheral identification registers. These registers
are optional.

Arm recommends that at least one of these identification mechanisms is implemented.

• The ERRDEVARCH register defines that the group implements the RAS System Architecture and the
version implemented.

• The optional ERRDEVAFF register describes when the group records errors for components that have an
affinity with a single PE, or a group of PEs in the system.

Each PE has a unique value that identifies it in the system. MPIDR_EL1 in the PE and ERRDEVAFF in the
Error record group contain this value. ERRDEVAFF might contain a value that matches a group of PEs.

• ERRDEVID identifies the highest numbered index of the Error records that can be accessed.

IGFLXS The maximum number of Error records that can be accessed depends on which of FEAT_RASSA_4KB_GRP,
FEAT_RASSA_16KB_GRP, or FEAT_RASSA_64KB_GRP is implemented. If the Common Fault Injection
Model Extension is implemented and fault injection groups are not implemented, fewer Error records will be
accessible.

IGFLXS For a 4KB peripheral implementing the Standard memory-mapped view of group of error records, 4KB pages, up
to 24 Error records can be accessed if the Common Fault Injection Model Extension is implemented, and up to 56
otherwise. Groups containing more records can be defined by increasing the page size for a group. This is not
described by current versions of the RAS System Architecture. For more information, contact Arm.

RYGWDK In an Error record group,the Standard memory-mapped view of group of error records, 4KB pages, each Error record
occupies a set of locations at offsets from an Error record base. This Error record base is a fixed multiple of 64.a
fixed multiple of the index of the Error record from the group base.

RYFCNK The Standard memory-mapped view of group of error records, 4KB pages When FEAT_RASSA_4KB_GRP is
implemented, the Error record group includes a group status register, ERRGSR.

Common Fault Injection
Model Extension
implemented and Fault
Injection Groups not
implemented

Feature Implemented Number of accessible Error records

No FEAT_RASSA_4KB_GRP ≤56

No FEAT_RASSA_16KB_GRP ≤224

No FEAT_RASSA_64KB_GRP ≤896

Yes FEAT_RASSA_4KB_GRP ≤24

Yes FEAT_RASSA_16KB_GRP ≤96

Yes FEAT_RASSA_64KB_GRP ≤384
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13299
ID032224 Non-Confidential

RAS System Architecture
I5.15 Memory-mapped view
When FEAT_RASSA_16KB_GRP or FEAT_RASSA_64KB_GRP is implemented, the Error record group includes
multiple group status registers, ERRGSR<n>, where ERRGSR<m> defines the group status for error records
[(64×m)..(64×m+63)].

RCKXQC When FEAT_RASSAv2 is not implemented, it is IMPLEMENTATION DEFINED whether the status of each error record
<n> supports being read through the group status register.

When FEAT_RASSAv2 is implemented, a group status register bit ERRGSR<n DIV 64>[n MOD 64] is
implemented for each error record <n> in the Error record group.

IWLXTV A read from ERRGSR<m> requires the component to collect all ERR<n>STATUS.V values for Error records
[(64×m)..(64×m+63)] into a single return value. This allows software to check the status of up to 64 error records
in a single read.

When the component aggregates error records for multiple other components into a single view, this might involve
many accesses into those other components. When multiple ERRGSR<m> registers are implemented, because a
read of ERRGSR<m> only accesses ERR<n>STATUS.V values for error records [(64×m)..(64×m+63)], one
implementation choice might be to assign error record indices so as to reduce the number of remote accesses that
need to be made. However, the advantage to software of using ERRGSR<m> scales with the number of status bits
returned with each read. For example, if a single record is mapped to the ERRGSR<m> register, then there is no
advantage for software over reading the ERR<n>STATUS register directly.

I5.15.2 Fault injection groups

ITJYGF The Common Fault Injection Model Extension is not supported in the RAS, single error record, memory-mapped
register map format.

DFQHBV FEAT_RASSA_PFG_GRP is an OPTIONAL Error record group feature from FEAT_RASSAv2.
FEAT_RASSA_PFG_GRP is permitted from FEAT_RASSAv2.

ICCQHP FEAT_RASSA_PFG_GRP allows for fault injection controls to be separated from error records, so that software
with access to the latter does not necessarily have access to the former.

RRGWJK When FEAT_RASSA_PFG_GRP is implemented by an Error record group, the Common Fault Injection Model
Extension registers for any node that is part of an Error record group implementing the Common Fault Injection
Model Extension are accessed through a fault injection group.

SXMPMK FEAT_RASSA_PFG_GRP is identified to software by ERRDEVID.PFG.

DXCNYR A fault injection group is a component comprising the Common Fault Injection Model Extension registers for a
corresponding Error record group.

SFSZQF A fault injection group is identified to software by ERRDEVARCH.

SJVCXF If the ERRDEVAFF register is implemented, then it has the same value for both the Error record group and the fault
injection group.

IFKNGJ If FEAT_RASSA_PFG_GRP is not implemented, the Common Fault Injection Model Extension registers might be
implemented directly. See The Common Fault Injection Model Extension.

RPCXRD The Error records in a memory-mapped component might be accessible only through that component, or might be
shared and accessible through any of:

• System registers by one or more PEs.

• Other memory-mapped components in the same physical address space, including aliases with the same Error
record group.

• Other memory-mapped components in other address spaces. For example, in both Non-secure and Secure
physical address spaces.

RJFZRW Arm recommends that each memory-mapped Error record is accessible at most once in any given physical address
space.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13300
ID032224 Non-Confidential

RAS System Architecture
I5.15 Memory-mapped view
I5.15.3 System RAS Agents

DYDPRQ A RAS agent implements an Error record group and provides RAS error control and reporting for other components.

RAS agents can be hierarchical. That is, a first RAS agent reports errors to a second RAS agent. In this case, the
first RAS agent (called the downstream RAS agent) records the error, but signals the second RAS agent (called the
upstream RAS agent) that it has a valid RAS record. This then repeats to create a hierarchy.

The RAS agent at the top of such a tree is called a System RAS agent. The System RAS agent is connected to the
interrupt controller.

ILYRFR RAS agents reduce the cost of finding an active error record to a log(n) search. Each layer indicates the status of
up-to 64 lower levels through a single 64-bit ERRGSR<n> status register.

IFJVMZ Per-node error detection and interrupt controls (ERR<n>CTLR.{DFI, CFI, FI, DUI, UI}) and error records are
implemented by the downstream RAS agent connected to the component that detects the error.

The downstream RAS agent might implement FEAT_RASSA_IRQCR_SIMPLE to control signaling interrupts on
the interface to the upstream RAS agent. Any interrupt control registers that control signaling interrupts to the
interrupt controller are implemented by the System RAS agent.

This allows software the same fine-grain control of which nodes generate interrupts, and provides an additional
level of control and merging of interrupt sources at the upstream RAS agent.

IHGJRX The downstream RAS agent might include Common Fault Injection Model Extension registers, as permitted by
FEAT_RASv1p1, or might implement a complementary fault injection group.

IJTSVG The downstream RAS agent might include ERRIMPDEF<n> IMPLEMENTATION DEFINED registers, as permitted by
FEAT_RASv1p1.

RBZMHP A downstream RAS agent appears in the programmers’ model of the upstream RAS agent as occupying a proxy
error record. For the proxy error record <n> in the upstream RAS agent:

• ERR<n>FR.{ED, ERT} indicates that the record is a proxy for a downstream RAS agent.

• ERR<n>STATUS.{V, ERI, FHI, CRI} are read-only flags which report the downstream RAS agent error
record error and interrupt status:

— ERR<n>STATUS.V reads as 1 if, for any error record <p> in the downstream RAS agent,
ERR<p>STATUS.V is 1, and ERR<n>STATUS.V reads as 0 otherwise.

— ERR<n>STATUS.ERI reads as 1 if any error record <p> in the downstream RAS agent is asserting an
error recovery interrupt.

— ERR<n>STATUS.FHI reads as 1 if any error record <p> in the downstream RAS agent is asserting a
fault handling interrupt.

— ERR<n>STATUS.CRI reads as 1 if any error record <p> in the downstream RAS agent is asserting a
critical error interrupt.

Reset of the proxy error record does not affect ERR<n>STATUS.{V, ERI, FHI, CRI}.

• ERR<n>CTLR, ERR<n>ADDR, ERR<n>MISC<m>, and the remaining fields in ERR<n>STATUS are
RES0.

For the upstream RAS agent, ERRGSR<n DIV 64>[n MOD 64] is an alias for ERR<n>STATUS.V.

RRBKZK The upstream RAS agent implements FEAT_RASSA_PARENT_GRP.

A RAS agent that does not implement FEAT_RASSA_PARENT_GRP does not include proxy error records.

DTJQKB When FEAT_RASSA_PARENT_GRP is implemented by a RAS agent, FEAT_RASSA_ERT is implemented by
each node <n> in the RAS agent, and, if ERR<n>FR.ED is 0b11, then ERR<n>FR.ERT defines the error record
type.

IFNPWG Because the downstream RAS agent and upstream RAS agent are separate peripherals in the system, the architecture
does not guarantee the order in which accesses are completed. This includes two accesses from the same PE to
Device-nGnRnE memory, and the indirect writes of a reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13301
ID032224 Non-Confidential

RAS System Architecture
I5.15 Memory-mapped view
In addition, the link between the downstream and upstream RAS agents is a separate path from the paths used by a
PE to access the RAS agent registers.

For more information, see Ordering relations.

Example I5-7

Considering the following sequence:

1. PE A performs a sequence of writes W1, consisting of a write to each ERR<n>STATUS register in a
downstream RAS agent B that clears ERR<n>STATUS.V to 0b0.

2. PE A executes an instruction or sequence of instructions R2 to ensure that W1 is complete. For example, one
of the following:

• R2 is a sequence of reads of ERR<n>STATUS in B, each in program order after the corresponding
write in W1.

• R2 is a read of ERRGSR in B, that is ordered after W1 and observes that ERRGSR[n] is 0b0.

3. PE A performs a read R3 of ERR<m>STATUS in the proxy error record <m> for B in an upstream RAS agent
C, such that R2 is Ordered-before R3.

Even if no other fault is recorded by B after W1, IFNPWG means that R3 might not return ERR<m>STATUS.V in C
equal to 0b0 as expected. This is similar to the issue of deasserting an interrupt request at a peripheral and that
interrupt still being observed as asserted at an interrupt controller.

SCFTWB The topology that maps error record <n> in the upstream RAS agent to a downstream RAS agent is described to
software through firmware tables. There is no description of this mapping nor hardware support for topology
detection in the architecture.

I5.15.4 Access requirements for memory-mapped views of RAS error records

DDRNNK The requirements for a memory-mapped view of RAS Error records are described in Chapter I1 Requirements for
Memory-mapped Components.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13302
ID032224 Non-Confidential

RAS System Architecture
I5.16 Reset values
I5.16 Reset values

IPQVFQ When the node records an error in an Error record, depending on the type of error being recorded, it is
IMPLEMENTATION DEFINED whether some fields are set to a zero or unchanged.

In most cases, this is because one of the following applies, and it is IMPLEMENTATION DEFINED which:

• The node sets the field to zero on Cold reset, meaning the value is not required to be changed when the first
error is recorded

• The node sets the field to zero on recording the first error after Cold reset.

To allow for either implementation, software must clear these fields to zero after logging a recorded error and
performing a software reset of the Error record.

For more information, see Accessing the ERR<n>STATUS in ERR<n>STATUS.

IZTWHG The Reset values of ERR<n>STATUS.{AV,V,MV}, ERR<FirstRecordOfNode(n)>CTLR.ED, and
ERR<n>PFGCTL.CDNEN depend on whether FEAT_RASSA_SRV is implemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I5-13303
ID032224 Non-Confidential

Chapter I6
External System Control Register Descriptions

This chapter describes the external system control registers. It excludes the External debug registers that are
described in Chapter H9 External Debug Register Descriptions. It contains the following sections:

• About the external system control register descriptions.

• External Performance Monitors registers summary.

• Performance Monitors external register descriptions.

• External Activity Monitors Extension registers summary.

• Activity Monitors external register descriptions.

• Generic Timer memory-mapped registers overview.

• Generic Timer memory-mapped register descriptions.

• RAS registers summary.

• RAS register descriptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13304
ID032224 Non-Confidential

External System Control Register Descriptions
I6.1 About the external system control register descriptions
I6.1 About the external system control register descriptions

This chapter describes the external system control registers other than the external debug registers. That is, it
describes:

An external view of the Performance Monitors registers

Arm recommends that implementations provide access to the Performance Monitors registers
through the OPTIONAL External debug interface, and provide the OPTIONAL memory-mapped
interface to this interface:

• External Performance Monitors registers summary lists the registers that are accessible in
this view of the Performance Monitors, and describes their memory map.

• Performance Monitors external register descriptions describes each of the memory-mapped
registers.

Chapter I4 Recommended External Interface to the Activity Monitors describes the recommended
interface to these registers.

Note

Chapter D13 The Performance Monitors Extension describes the Performance Monitors. The
following sections describe the System register interfaces to the Performance Monitors:

• Performance Monitors registers, for accesses from an Exception level that is using AArch64.

• Performance Monitors registers, for accesses from an Exception level that is using AArch32.

An external view of the Activity Monitors Extension registers

An implementation which supports the Activity Monitors Extension may support an optional
external memory-mapped interface to the Activity Monitors Extension registers.

• External Activity Monitors Extension registers summary lists the registers that are accessible
in this view of the Performance Monitors, and describes their memory map.

• Activity Monitors external register descriptions describes each of the memory-mapped
registers.

Chapter I4 Recommended External Interface to the Activity Monitors describes the recommended
interface to these registers.

Note

Chapter D15 The Activity Monitors Extension describes the Activity Monitors. The following
sections describe the System register interfaces to the Activity Monitors:

• Activity Monitors registers, for accesses from an Exception level that is using AArch64.

• Activity Monitors registers, for accesses from an Exception level that is using AArch32.

The registers for the system level Generic Timer component

Any implementation that includes the Generic Timer must include the memory-mapped system
level component described in Chapter I2 System Level Implementation of the Generic Timer. In this
chapter:

• Generic Timer memory-mapped registers overview gives an overview of the registers,
referring to Chapter I2 for more information.

• Generic Timer memory-mapped register descriptions describes each of the memory-mapped
registers.

Note
Chapter D12 The Generic Timer in AArch64 state describes the Generic Timer component that is
accessible using the System registers. The following sections describe the System register interfaces
to that component:

• Generic Timer registers, for accesses from an Exception level that is using AArch64.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13305
ID032224 Non-Confidential

External System Control Register Descriptions
I6.1 About the external system control register descriptions
• Generic Timer registers, for accesses from an Exception level that is using AArch32.

An external view of the RAS registers

The memory-mapped interface to the RAS Extension registers. In this chapter:

• RAS registers summary lists the registers that are accessible and describes their memory map.

• RAS register descriptions describes each of the memory-mapped registers.

Note

Chapter D19 RAS PE Architecture describes the RAS Extension. The following sections describe
the System register interfaces to the RAS Extension:

• RAS registers, for accesses from an Exception level that is using AArch64.

• RAS registers, for accesses from an Exception level that is using AArch32.

Note

Chapter H9 External Debug Register Descriptions describes the external debug registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13306
ID032224 Non-Confidential

External System Control Register Descriptions
I6.2 External Performance Monitors registers summary
I6.2 External Performance Monitors registers summary

When an implementation provides access to the Performance Monitors registers through the External debug
interface, that interface provides access to:

• Performance Monitors System registers.

• A read-only configuration register, PMCFGR.

• The OPTIONAL CoreSight registers for the Performance Monitors, if they are implemented.

The locations of the registers are defined as offsets from a system-defined base address. Performance Monitors
external register views defines this memory map.

I6.2.1 Performance Monitors external register views

The following tables show the external view of the Performance Monitors registers:

• Table I6-1 when FEAT_PMUv3_EXT64, the 64-bit external PMU programmers’ model extension is
implemented.

• Table I6-2 when FEAT_PMUv3_EXT32 is implemented.

All other entries are reserved.

Note

• Counters that are reserved because HDCR.HPMN has been changed from its reset value remain visible in
any external view.

• The registers that relate to an implemented event counter, PMNx, are PMEVCNTR<n> and
PMEVTYPER<n>.

• Tables in this section only list the Armv8 registers. For encoding information of the registers introduced by
Armv9, see the individual register descriptions in this chapter.

Each entry in the Name column links to the register description in Performance Monitors external register
descriptions.

Table I6-1 Performance Monitors external register views when FEAT_PMUv3_EXT64 is implemented

Name Type Description Offset

PMEVCNTR<n>_EL0 RW Performance Monitors Event Counter Register 0x000+8xn

PMCCNTR_EL0 RW Performance Monitors Cycle Counter Register 0x0F8

PMICNTR_EL0 RW Performance Monitors Instruction Counter Register 0x100

PMPCSRa RW Program Counter Sample Register 0x200

PMVCIDSRa RW CONTEXTIDR_EL1 and VMID Sample Register 0x208

PMPCSRa RW Program Counter Sample Register, alias 0x220

PMCCIDSRa RW CONTEXTIDR_ELx Sample Register 0x228

PMEVTYPER<n>_EL0 RW Performance Monitors Event Type and Filter Register 0x400+8xn

PMCCFILTR_EL0 RW Performance Monitors Cycle Counter Filter Register 0x4F8

PMICFILTR_EL0 RW Performance Monitors Instruction Counter Filter Register 0x500

PMEVCNTSVR<n>_EL1 RO Performance Monitors Event Count Saved Value Register <n> 0x600+8xnb

PMCCNTSVR_EL1 RO Performance Monitors Cycle Count Saved Value Register 0x6F8b

PMICNTSVR_EL1 RO Performance Monitors Instruction Count Saved Value Register 0x700b
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13307
ID032224 Non-Confidential

External System Control Register Descriptions
I6.2 External Performance Monitors registers summary
- - Reserved 0x708-0x7FC

PMEVFILT2R<n> RW Performance Monitors Event Filter Register 0800+8xn

PMCNTENSET_EL0 RW Performance Monitors Count Enable Set Register 0xC00

PMCNTEN RW Performance Monitors Count Enable Register 0xC10

PMCNTENCLR_EL0 RW Performance Monitors Count Enable Clear Register 0xC20

PMINTENSET_EL1 RW Performance Monitors Interrupt Enable Set Register 0xC40

PMINTEN RW Performance Monitors Interrupt Enable Register 0xC50

PMINTENCLR_EL1 RW Performance Monitors Interrupt Enable Clear Register 0xC60

PMOVSCLR_EL0 RW Performance Monitors Overflow Flag Status Clear Register 0xC80

PMOVS RW Performance Monitors Overflow Flag Status Register 0xC90

PMZR_EL0 WO Performance Monitors Zero with Mask 0xCA0

PMOVSSET_EL0 RW Performance Monitors Overflow Flag Status Set Register 0xCC0

PMCGCR0 RO Counter Group Configuration Register 0 0xCE0

- - IMPLEMENTATION DEFINED 0xD80-0xDFC

PMCFGR RO Performance Monitors Configuration Register 0xE00

PMIIDR RO Performance Monitors Implementation Identification Register 0xE08

PMCR_EL0 RW Performance Monitors Control Register 0xE10

PMSSCR_EL1 RO Performance Monitors Snapshot Status and Capture Register 0xE30b

- - IMPLEMENTATION DEFINED 0xE38-0xE3C

PMMIR RO Performance Monitors Machine Identification Register 0xE40

PMPCSCTL RW PC Sample-based Profiling Control Register 0xE50

- - IMPLEMENTATION DEFINED 0xE80-0xEFC

PMITCTRLc RW Integration Model Control registers 0xF00

PMDEVAFFc RO Device Affinity Register 0xFA8

PMLARc, d WO Lock Access Register 0xFB0

PMLSRc, d RO Lock Status Register 0xFB4

PMAUTHSTATUSc RO Authentication Status Register 0XFB8

PMDEVARCHc RO Device Architecture Register 0xFBC

PMDEVIDa RO Performance Monitors Device ID Register 0xFC8

Table I6-1 Performance Monitors external register views when FEAT_PMUv3_EXT64 is implemented (continued)

Name Type Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13308
ID032224 Non-Confidential

External System Control Register Descriptions
I6.2 External Performance Monitors registers summary
PMDEVTYPEc RO Device Type Register 0xFCC

PMPIDR4c

PMPIDR0c

PMPIDR1c

PMPIDR2c

PMPIDR3c

RO Peripheral ID registers 0xFD0

0xFE0

0xFE4

0xFE8

0xFEC

PMCIDR0c

PMCIDR1c

PMCIDR2c

PMCIDR3c

RO Component ID registers 0xFF0

0xFF4

0xFF8

0xFFC

a. PC Sample-based Profiling Extension registers. Implemented only when FEAT_PCSRv8p2 is implemented, except that
from Armv8.2 PMDEVID is required regardless of whether FEAT_PCSRv8p2 is implemented.

Before Armv8.2. the PC Sample-based Profiling Extension can, instead, be implemented in the memory-mapped debug
registers space, see Chapter H7 The PC Sample-based Profiling Extension.

b. If FEAT_PMUv3_SS is implemented, then 0x600 - 0x7FC are defined or reserved. Otherwise, these locations are
IMPLEMENTATION DEFINED.

c. CoreSight interface registers, see Management registers and CoreSight compliance.

d. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access
that is made and whether the OPTIONAL Software lock is implemented. See the register description for details.

Table I6-2 Performance Monitors external register views when FEAT_PMUv3_EXT32 is implemented

Name Type Description Offset

PMEVCNTR<n>_EL0[31:0]

PMEVCNTR<n>_EL0[63:32]

RW Performance Monitors Event Counter Register 0x000+8xn

0x004+8xn

PMCCNTR_EL0[31:0]

PMCCNTR_EL0[63:32]

RW Performance Monitors Cycle Counter Register a 0x0F8

0x0FC

PMICNTR_EL0[31:0]

PMICNTR_EL0[63:32]

RW Performance Monitors Instruction Counter Register 0x100

0x104

PMPCSR[31:0]b

PMPCSR[63:32]b

RW Program Counter Sample Register 0x200

0x204

PMCID1SRb RW CONTEXTIDR_EL1 Sample Register 0x208

PMVIDSRb RW VMID Sample Register 0x20C

PMPCSR[31:0]b

PMPCSR[63:32]b

RW Program Counter Sample Register, alias 0x220

0x224

PMCID1SRb RW CONTEXTIDR_EL1 Sample Register (alias) 0x228

PMCID2SRb RW CONTEXTIDR_EL2 Sample Register 0x22C

PMEVTYPER<n>_EL0[31:0] RW Performance Monitors Event Type and Filter Register 0x400+4xn

PMCCFILTR_EL0 [31:0] RW Performance Monitors Cycle Counter Filter Register 0x47C

PMICFILTR_EL0[31:0] RW Performance Monitors Instruction Counter Filter Register 0x480

Table I6-1 Performance Monitors external register views when FEAT_PMUv3_EXT64 is implemented (continued)

Name Type Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13309
ID032224 Non-Confidential

External System Control Register Descriptions
I6.2 External Performance Monitors registers summary
PMEVCNTSVR<n>_EL1[31:0]

PMEVCNTSVR<n>_EL1[63:32]

RO Performance Monitors Event Count Saved Value Register <n> 0x600+8xnc

0x604+8xnc

PMCCNTSVR_EL1[31:0]

PMCCNTSVR_EL1[63:32]

RO Performance Monitors Cycle Count Saved Value Register 0x6F8c

0x6FCc

PMICNTSVR_EL1[31:0]

PMICNTSVR_EL1[63:32]

RO Performance Monitors Instruction Count Saved Value Register 0x700c

0x704c

- - Reserved 0x708-0x7FCc

PMEVFILT2R<n> RW Performance Monitors Event Filter Registers 0x800+8xn

PMEVTYPER<n>_EL0 [63:32] RW Performance Monitors Event Type and Filter Register 0xA00+4xnd

PMCCFILTR_EL0 [63:32] RW Performance Monitors Cycle Counter Filter Register 0xA7Cd

PMICFILTR_EL0[63:32] RW Performance Monitors Instruction Counter Filter Register 0xA80d

- - RESERVED 0xA84-0xAFCd

- - IMPLEMENTATION DEFINED 0xB00-0xBFC

PMCNTENSET_EL0[31:0] e

PMCNTENSET_EL0[63:32] h
RW Performance Monitors Count Enable Set Register 0xC00

0xC04

PMCNTENCLR_EL0[31:0] e

PMCNTENCLR_EL0[63:32] e
RW Performance Monitors Count Enable Clear Register 0xC20

0xC24

PMINTENSET_EL1[31:0] e

PMINTENSET_EL1[63:32] e
RW Performance Monitors Interrupt Enable Set Register 0xC40

0xC44

PMINTENCLR_EL1[31:0] e

PMINTENCLR_EL1[63:32] e
RW Performance Monitors Interrupt Enable Clear Register 0xC60

0xC64

PMOVSCLR_EL0[31:0]e

PMOVSCLR_EL0[63:32]e

RW Performance Monitors Overflow Flag Status Clear Register 0xC80

0xC84

PMSWINC_EL0f WO Performance Monitors Software Increment Register 0xCA0

PMZR_EL0[31:0]

PMZR_EL0[63:32]

WO Performance Monitors Zero with Mask 0xCA0

0xCA4

PMOVSSET_EL0[31:0]e

PMOVSSET_EL0[63:32]e

RW Performance Monitors Overflow Flag Status Set Register 0xCC0

0xCC4

PMCGCR0 RO Counter Group Configuration Register 0 0xCE0

- - IMPLEMENTATION DEFINED 0xD80-0xDFC

PMCFGR RO Performance Monitors Configuration Register 0xE00

PMCR_EL0 RW Performance Monitors Control Register 0xE04

PMIIDR RO Performance Monitors Implementation Identification Register 0xE08

Table I6-2 Performance Monitors external register views when FEAT_PMUv3_EXT32 is implemented (continued)

Name Type Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13310
ID032224 Non-Confidential

External System Control Register Descriptions
I6.2 External Performance Monitors registers summary
PMCEID0

PMCEID1

PMCEID2

PMCEID3

RO Performance Monitors Common Event Identification Registers 0xE20

0xE24

0xE28

0xE2C

PMSSCR_EL1[31:0]

PMSSCR_EL1[63:32]

RO Performance Monitors Snapshot Status and Capture Register, bits
[31:0]

0xE30c

0xE34c

- - IMPLEMENTATION DEFINED 0xE38-0xE3C

PMMIR[31:0] e

PMMIR[63:32] e
RO Performance Monitors Machine Identification Register, bits [31:0] 0xE40

0xE44

PMPCSCTL[31:0] e

PMPCSCTL[63:32] e
RW PC Sample-based Profiling Control Register, bits [31:0] 0xE50

0xE54

- - IMPLEMENTATION DEFINED 0xE80-0xEFC

PMITCTRLg RW Integration Model Control registers 0xF00

PMDEVAFF0g

PMDEVAFF1g

RO Device Affinity registers 0xFA8

0xFAC

PMLARg, h WO Lock Access Register 0xFB0

PMLSRg, h RO Lock Status Register 0xFB4

PMAUTHSTATUSg RO Authentication Status Register 0XFB8

PMDEVARCHg RO Device Architecture Register 0xFBC

PMDEVIDb RO Performance Monitors Device ID Register 0xFC8

PMDEVTYPEg RO Device Type Register 0xFCC

PMPIDR4g

PMPIDR0g

PMPIDR1g

PMPIDR2g

PMPIDR3g

RO Peripheral ID registers 0xFD0

0xFE0

0xFE4

0xFE8

0xFEC

PMCIDR0g

PMCIDR1g

PMCIDR2g

PMCIDR3g

RO Component ID registers 0xFF0

0xFF4

0xFF8

0xFFC

a. The interface must support at least single-copy atomic 32-bit accesses. If single-copy atomic 64-bit access to the registers is not possible,
software must use a high-low-high read access to read the counter value if the counter is enabled.

b. PC Sample-based Profiling Extension registers. Implemented only when FEAT_PCSRv8p2 is implemented, except that from Armv8.2
PMDEVID is required regardless of whether FEAT_PCSRv8p2 is implemented.

Before Armv8.2. the PC Sample-based Profiling Extension can, instead, be implemented in the memory-mapped debug registers space, see
Chapter H7 The PC Sample-based Profiling Extension.

c. If FEAT_PMUv3_SS is implemented, then 0x600 - 0x7FC are defined or reserved. Otherwise, these locations are IMPLEMENTATION DEFINED.

d. If any of FEAT_PMUv3_TH, FEAT_PMUv3p8, or FEAT_PMUv3_SME is implemented, then 0xA00 - 0xAFC are defined or reserved for top
halves of the TYPER/FILTR registers. Otherwise, these locations are IMPLEMENTATION DEFINED.

Table I6-2 Performance Monitors external register views when FEAT_PMUv3_EXT32 is implemented (continued)

Name Type Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13311
ID032224 Non-Confidential

External System Control Register Descriptions
I6.2 External Performance Monitors registers summary
e. If FEAT_PMUv3p9 is implemented, then the register is 64-bits in the external debug interface to the PMU, even if FEAT_PMUv3_EXT64
is not implemented. 64-bit accesses to the registers must be supported, however, these are not required to be atomic at more than a 32-bit
granularity. When AllowExternalPMUAccess() == FALSE, the behavior of 32-bit accesses to the top half of these registers is well-defined.

f. OPTIONAL if FEAT_PMUv3p9 is not implemented. Not permitted if FEAT_PMUv3p9 is implemented.

g. CoreSight interface registers, see Management registers and CoreSight compliance.

h. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access that is made and
whether the OPTIONAL Software lock is implemented. See the register description for details.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13312
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3 Performance Monitors external register descriptions

This section describes the external view of the Performance Monitors registers. External Performance Monitors
registers summary lists these registers in offset order.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13313
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.1 PMAUTHSTATUS, Performance Monitors Authentication Status register

The PMAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
Performance Monitors.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMAUTHSTATUS are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance. Arm recommends that this
register is implemented.

Attributes

PMAUTHSTATUS is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RTNID, bits [27:26]

Root non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RTNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RTID, bits [25:24]

Root invasive debug.

0b00 Not implemented.

Bits [23:16]

Reserved, RES0.

RLNID, bits [15:14]

Realm non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.RLNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RLID, bits [13:12]

Realm invasive debug.

0b00 Not implemented.

RES0

31 28 27 26

RTID

25 24

RES0

23 16 15 14

RLID

13 12

RES0

11 8

SNID

7 6

0 0

5 4 3 2

0 0

1 0

RTNID RLNID SID NSID
NSNID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13314
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Bits [11:8]

Reserved, RES0.

SNID, bits [7:6]

Holds the same value as DBGAUTHSTATUS_EL1.SNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SID, bits [5:4]

Secure invasive debug.

0b00 Not implemented.

All other values are reserved.

Access to this field is RO.

NSNID, bits [3:2]

Holds the same value as DBGAUTHSTATUS_EL1.NSNID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

NSID, bits [1:0]

Non-secure invasive debug.

0b00 Not implemented.

All other values are reserved.

Access to this field is RO.

Accessing PMAUTHSTATUS

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFB8 from PMU PMAUTHSTATUS can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xFB8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13315
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.2 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMU.PMCCNTR_EL0, increments.

Configurations

External register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCCFILTR_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented.

External register PMCCFILTR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCCFILTR_EL0[63:0] when FEAT_PMUv3_EXT64 is implemented, or
FEAT_PMUv3_TH is implemented or FEAT_PMUv3p8 is implemented.

External register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCCFILTR[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCCFILTR_EL0 are RES0.

PMCCFILTR_EL0 is in the Core power domain.

On a Warm or Cold reset, RW fields in this register reset to:

• Architecturally UNKNOWN values if the reset is to an Exception level that is using AArch64.

• 0 if the reset is to an Exception level that is using AArch32.

The register is not affected by an External debug reset.

Attributes

PMCCFILTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

P, bit [31]

EL1 filtering. Controls counting cycles in EL1.

0b0 This mechanism has no effect on filtering of cycles.

0b1 The PE does not count cycles in EL1.

If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL1 is further
controlled by PMCCFILTR_EL0.NSK.

If FEAT_RME is implemented, then counting cycles in Realm EL1 is further controlled by
PMCCFILTR_EL0.RLK.

If EL3 is implemented, then counting cycles in EL3 is further controlled by PMCCFILTR_EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

P

31

U

30 29 28 27

M

26 25

SH

24

T

23 22 21 20

RES0

19 0

NSK
NSU

NSH

RLH
RLU

RLK
RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13316
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
U, bit [30]

EL0 filtering. Controls counting cycles in EL0.

0b0 This mechanism has no effect on filtering of cycles.

0b1 The PE does not count cycles in EL0.

If Secure and Non-secure states are implemented, then counting cycles in Non-secure EL0 is further
controlled by PMCCFILTR_EL0.NSU.

If FEAT_RME is implemented, then counting cycles in Realm EL0 is further controlled by
PMCCFILTR_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting cycles in Non-secure EL1. If PMCCFILTR_EL0.NSK
is not equal to PMCCFILTR_EL0.P, then the PE does not count cycles in Non-secure EL1.
Otherwise, this mechanism has no effect on filtering of cycles in Non-secure EL1.

0b0 When PMCCFILTR_EL0.P == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.P == 1, the PE does not count cycles in Non-secure EL1.

0b1 When PMCCFILTR_EL0.P == 0, the PE does not count cycles in Non-secure EL1.

When PMCCFILTR_EL0.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting cycles in Non-secure EL0. If PMCCFILTR_EL0.NSU
is not equal to PMCCFILTR_EL0.U, then the PE does not count cycles in Non-secure EL0.
Otherwise, this mechanism has no effect on filtering of cycles in Non-secure EL0.

0b0 When PMCCFILTR_EL0.U == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.U == 1, the PE does not count cycles in Non-secure EL0.

0b1 When PMCCFILTR_EL0.U == 0, the PE does not count cycles in Non-secure EL0.

When PMCCFILTR_EL0.U == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting cycles in EL2.

0b0 The PE does not count cycles in EL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13317
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
0b1 This mechanism has no effect on filtering of cycles.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting cycles in Secure EL2 is
further controlled by PMCCFILTR_EL0.SH.

If FEAT_RME is implemented, then counting cycles in Realm EL2 is further controlled by
PMCCFILTR_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented and AArch64 is supported:

EL3 filtering. Controls counting cycles in EL3. If PMCCFILTR_EL0.M is not equal to
PMCCFILTR_EL0.P, then the PE does not count cycles in EL3. Otherwise, this mechanism has no
effect on filtering of cycles in EL3.

0b0 When PMCCFILTR_EL0.P == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.P == 1, the PE does not count cycles in EL3.

0b1 When PMCCFILTR_EL0.P == 0, the PE does not count cycles in EL3.

When PMCCFILTR_EL0.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When EL3 is implemented and FEAT_SEL2 is implemented:

Secure EL2 filtering. Controls counting cycles in Secure EL2. If PMCCFILTR_EL0.SH is equal to
PMCCFILTR_EL0.NSH, then the PE does not count cycles in Secure EL2. Otherwise, this
mechanism has no effect on filtering of cycles in Secure EL2.

0b0 When PMCCFILTR_EL0.NSH == 0, the PE does not count cycles in Secure EL2.

When PMCCFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
cycles.

0b1 When PMCCFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
cycles.

When PMCCFILTR_EL0.NSH == 1, the PE does not count cycles in Secure EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When Secure EL2 is not implemented, access to this field is RES0.

Otherwise:

Reserved, RES0.

T, bit [23]

When FEAT_TME is implemented:

Non-Transactional state filtering bit. Controls counting of cycles in Non-transactional state.

0b0 This bit has no effect on the filtering of cycles.

0b1 Do not count Attributable cycles in Non-transactional state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13318
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLK, bit [22]

When FEAT_RME is implemented:

Realm EL1 filtering. Controls counting cycles in Realm EL1. If PMCCFILTR_EL0.RLK is not
equal to PMCCFILTR_EL0.P, then the PE does not count cycles in Realm EL1. Otherwise, this
mechanism has no effect on filtering of cycles in Realm EL1.

0b0 When PMCCFILTR_EL0.P == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.P == 1, the PE does not count cycles in Realm EL1.

0b1 When PMCCFILTR_EL0.P == 0, the PE does not count cycles in Realm EL1.

When PMCCFILTR_EL0.P == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting cycles in Realm EL0. If PMCCFILTR_EL0.RLU is not
equal to PMCCFILTR_EL0.U, then the PE does not count cycles in Realm EL0. Otherwise, this
mechanism has no effect on filtering of cycles in Realm EL0.

0b0 When PMCCFILTR_EL0.U == 0, this mechanism has no effect on filtering of cycles.

When PMCCFILTR_EL0.U == 1, the PE does not count cycles in Realm EL0.

0b1 When PMCCFILTR_EL0.U == 0, the PE does not count cycles in Realm EL0.

When PMCCFILTR_EL0.U == 1, this mechanism has no effect on filtering of cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLH, bit [20]

When FEAT_RME is implemented:

Realm EL2 filtering. Controls counting cycles in Realm EL2. If PMCCFILTR_EL0.RLH is equal
to PMCCFILTR_EL0.NSH, then the PE does not count cycles in Realm EL2. Otherwise, this
mechanism has no effect on filtering of cycles in Realm EL2.

0b0 When PMCCFILTR_EL0.NSH == 0, the PE does not count cycles in Realm EL2.

When PMCCFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
cycles.

0b1 When PMCCFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
cycles.

When PMCCFILTR_EL0.NSH == 1, the PE does not count cycles in Realm EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13319
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Bits [19:0]

Reserved, RES0.

Accessing PMCCFILTR_EL0

If FEAT_PMUv3_EXT32 is implemented, and at least one of FEAT_PMUv3_TH or FEAT_PMUv3p8 is
implemented, then bits [63:32] of this register are accessible at offset 0xA7C. Otherwise accesses at this offset are
IMPLEMENTATION DEFINED.

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0x47C from PMU

PMCCFILTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT64 is implemented: Accessible at offset 0x4F8 from PMU

PMCCFILTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented and (FEAT_PMUv3_TH is implemented or FEAT_PMUv3p8
is implemented): [63:32] Accessible at offset 0xA7C from PMU

PMCCFILTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0x47C 31:0

Frame Offset

PMU 0x4F8

Frame Offset Range

PMU 0xA7C 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13320
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.3 PMCCIDSR, CONTEXTIDR_ELx Sample Register

The PMCCIDSR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL1 and CONTEXTIDR_EL2, captured on reading
PMU.PMPCSR.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCCIDSR are RES0.

If FEAT_PMUv3_EXT32 is implemented, the same content is present in the same location, and can
be accessed using PMCID2SR[31:0] and PMCID1SR[31:0].

Note

If FEAT_PCSRv8p2 is not implemented, the PC Sample-based Profiling Extension can be
implemented in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes

PMCCIDSR is a 64-bit register.

Field descriptions

CONTEXTIDR_EL2, bits [63:32]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent
PMU.PMPCSR sample. When the most recent PMU.PMPCSR sample is generated:

• If the PE is not executing at EL3, EL2 is using AArch64, and EL2 is enabled in the current
Security state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• Otherwise, this field is set to an UNKNOWN value.

Because the value written to this field is an indirect read of CONTEXTIDR_EL2, it is CONSTRAINED
UNPREDICTABLE whether this field is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to CONTEXTIDR_EL2.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMU.PMPCSR
sample. When the most recent PMU.PMPCSR sample is generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.

• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.

CONTEXTIDR_EL2

63 32

CONTEXTIDR_EL1

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13321
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and
this register samples the current banked copy of CONTEXTIDR for the Security state that is
associated with the most recent PMU.PMPCSR sample.

Because the value written to this register is an indirect read of CONTEXTIDR, it is CONSTRAINED
UNPREDICTABLE whether this register is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to CONTEXTIDR.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCIDSR

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: Accessible at offset 0x228 from PMU

PMCCIDSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0x228
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13322
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.4 PMCCNTR_EL0, Performance Monitors Cycle Counter

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. For more
information, see Time as measured by the Performance Monitors cycle counter.

PMU.PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can
increment.

Configurations

External register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCCNTR_EL0[63:0].

External register PMCCNTR_EL0 bits [63:0] are architecturally mapped to AArch32 System
register PMCCNTR[63:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCCNTR_EL0 are RES0.

PMCCNTR_EL0 is in the Core power domain.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Cycle count. Depending on the values of PMU.PMCR_EL0.{LC,D}, the cycle count increments in
one of the following ways:

• Every processor clock cycle.

• Every 64th processor clock cycle.

Writing 1 to PMU.PMCR_EL0.C sets this field to 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0x0F8 from PMU

CCNT

63 32

CCNT

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13323
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMCCNTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0x0F8 from PMU

PMCCNTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented: [63:32] Accessible at offset 0x0FC from PMU

PMCCNTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0x0F8 63:0

Frame Offset Range

PMU 0x0F8 31:0

Frame Offset Range

PMU 0x0FC 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13324
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.5 PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register

The PMCCNTSVR_EL1 characteristics are:

Purpose

Captures the PMU Cycle counter, PMU.PMCCNTR_EL0.

Configurations

External register PMCCNTSVR_EL1 bits [63:0] are architecturally mapped to AArch64 System
register PMCCNTSVR_EL1[63:0].

This register is present only when FEAT_PMUv3_SS is implemented. Otherwise, direct accesses to
PMCCNTSVR_EL1 are RES0.

Attributes

PMCCNTSVR_EL1 is a 64-bit register.

Field descriptions

CCNT, bits [63:0]

Sampled Cycle Count. The value of PMU.PMCCNTR_EL0 at the last successful Capture event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCCNTSVR_EL1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x6F8 from PMU PMCCNTSVR_EL1 can be accessed through the PMU block as follows:

• When !AllowExternalPMSSAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

CCNT

63 32

CCNT

31 0

Frame Offset

PMU 0x6F8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13325
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.6 PMCEID0, Performance Monitors Common Event Identification register 0

The PMCEID0 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x0000 to 0x001F.

For more information about the Common events and the use of the PMCEIDn registers, see The
PMU event number space and common events.

Note

This view of the register was previously called PMCEID0_EL0.

Configurations

External register PMCEID0 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[31:0].

External register PMCEID0 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID0[31:0].

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMCEID0 are RES0.

PMCEID0 is in the Core power domain.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Common event n.

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13326
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID0

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xE20 from PMU PMCEID0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xE20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13327
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.7 PMCEID1, Performance Monitors Common Event Identification register 1

The PMCEID1 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x020 to 0x03F.

For more information about the Common events and the use of the PMCEIDn registers, see The
PMU event number space and common events.

Note

This view of the register was previously called PMCEID1_EL0.

Configurations

External register PMCEID1 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[31:0].

External register PMCEID1 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID1[31:0].

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMCEID1 are RES0.

PMCEID1 is in the Core power domain.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

ID<n>, bit [n], for n = 31 to 0

ID[n] corresponds to Common event (0x0020 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID31
ID30

ID29
ID28

ID27
ID26

ID25
ID24

ID23
ID22

ID21
ID20

ID19
ID18

ID17
ID16

ID0
ID1

ID2
ID3

ID4
ID5

ID6
ID7

ID8
ID9

ID10
ID11

ID12
ID13

ID14
ID15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13328
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID1

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xE24 from PMU PMCEID1 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xE24
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13329
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.8 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the Common events and the use of the PMCEIDn registers, see The
PMU event number space and common events.

Configurations

External register PMCEID2 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID0_EL0[63:32].

External register PMCEID2 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID2[31:0].

This register is present only when FEAT_PMUv3_EXT32 is implemented and FEAT_PMUv3p1 is
implemented. Otherwise, direct accesses to PMCEID2 are RES0.

PMCEID2 is in the Core power domain.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Common event (0x4000 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13330
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID2

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xE28 from PMU PMCEID2 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xE28
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13331
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.9 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which Common architectural events and Common microarchitectural events are
implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the Common events and the use of the PMCEIDn registers, see The
PMU event number space and common events.

Configurations

External register PMCEID3 bits [31:0] are architecturally mapped to AArch64 System register
PMCEID1_EL0[63:32].

External register PMCEID3 bits [31:0] are architecturally mapped to AArch32 System register
PMCEID3[31:0].

This register is present only when FEAT_PMUv3_EXT32 is implemented and FEAT_PMUv3p1 is
implemented. Otherwise, direct accesses to PMCEID3 are RES0.

PMCEID3 is in the Core power domain.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

IDhi<n>, bit [n], for n = 31 to 0

IDhi[n] corresponds to Common event (0x4020 + n).

For each bit:

0b0 The Common event is not implemented, or not counted.

0b1 The Common event is implemented.

When the value of a bit in the field is 1, the corresponding Common event is implemented and
counted.

Note

Arm recommends that if a Common event is never counted, the value of the corresponding bit is 0.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future
revision of the architecture to identify an additional Common event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDhi31
IDhi30

IDhi29
IDhi28

IDhi27
IDhi26

IDhi25
IDhi24

IDhi23
IDhi22

IDhi21
IDhi20

IDhi19
IDhi18

IDhi17
IDhi16

IDhi0
IDhi1

IDhi2
IDhi3

IDhi4
IDhi5

IDhi6
IDhi7

IDhi8
IDhi9

IDhi10
IDhi11

IDhi12
IDhi13

IDhi14
IDhi15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13332
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Note

Such an event might be added retrospectively to an earlier version of the PMU architecture,
provided the event does not require any additional PMU features and has an event number that can
be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing PMCEID3

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xE2C from PMU PMCEID3 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xE2C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13333
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.10 PMCFGR, Performance Monitors Configuration Register

The PMCFGR characteristics are:

Purpose

Contains PMU-specific configuration data.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCFGR are RES0.

PMCFGR is in the Core power domain.

Attributes

PMCFGR is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3_EXT64 is implemented:

Bits [63:32]

Reserved, RES0.

NCG, bits [31:28]

Defines the number of counter groups implemented, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One counter group implemented.

0b0001 Two counter groups implemented.

All other values are reserved.

FEAT_PMUv3_ICNTR implements the functionality identified by the value 0b0001.

Access to this field is RO.

Bits [27:23]

Reserved, RES0.

SS, bit [22]

Snapshot supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Snapshot mechanism not supported. The locations 0x600-0x7FC and 0xE30-0xE3C are
IMPLEMENTATION DEFINED.

0b1 Snapshot mechanism supported.

RES0

63 32

NCG

31 28

RES0

27 23

SS

22 21 20

0

19

0

18

0

17

EX

16 15

1

14

1 1 1 1 1 1

13 8

N

7 0

FZO
RES0

UEN
WT

SIZE
CC

CCD
NA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13334
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
If FEAT_PMUv3_SS is implemented, then the following registers are implemented:

• PMU.PMEVCNTSVR<n>_EL1.

• PMU.PMCCNTSVR_EL1.

• If FEAT_PMUv3_ICNTR is implemented, PMU.PMICNTSVR_EL1.

• PMU.PMSSCR_EL1.

Otherwise, locations 0x600-0x7FC and 0xE30-0xE3C contain IMPLEMENTATION DEFINED
snapshot registers.

FEAT_PMUv3_SS implements the functionality identified by the value 1.

If FEAT_PMUv3_SS is not implemented, a PMU might include an IMPLEMENTATION DEFINED
snapshot mechanism, including one using the IMPLEMENTATION DEFINED registers 0x600-0x7FC and
0xE30-0xE3C.

Access to this field is RO.

FZO, bit [21]

Freeze-on-overflow supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Freeze-on-overflow mechanism is not supported. PMU.PMCR_EL0.FZO is RES0.

0b1 Freeze-on-overflow mechanism is supported. PMU.PMCR_EL0.FZO is RW.

FEAT_PMUv3p7 implements the functionality added by the value 0b1.

From Armv8.7, if FEAT_PMUv3 is implemented, the only permitted value is 0b1.

Access to this field is RO.

Bit [20]

Reserved, RES0.

UEN, bit [19]

User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug
interface, so this bit is RAZ.

Reads as 0b0.

Access to this field is RO.

WT, bit [18]

This feature is not supported, so this bit is RAZ.

Reads as 0b0.

Access to this field is RO.

NA, bit [17]

This feature is not supported, so this bit is RAZ.

Reads as 0b0.

Access to this field is RO.

EX, bit [16]

Export supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMU.PMCR_EL0.X is RES0.

0b1 PMU.PMCR_EL0.X is read/write.

Access to this field is RO.

CCD, bit [15]

Cycle counter has prescale.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13335
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
This is RES1 if AArch32 is supported, and RAZ otherwise.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMU.PMCR_EL0.D is RES0.

0b1 PMU.PMCR_EL0.D is read/write.

Access to this field is RO.

CC, bit [14]

Dedicated cycle counter (counter 31) supported.

Reads as 0b1.

Access to this field is RO.

SIZE, bits [13:8]

Size of counters, minus one. This field defines the size of the largest counter implemented by the
Performance Monitors Unit.

From Armv8.0, the largest counter is 64-bits, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. From
Armv8.0, the counters are a doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Number of counters, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 Only PMU.PMCCNTR_EL0 implemented.

0x01..0x20 Number of counters implemented, 2 to 33, minus one.

All other values are reserved.

The count includes:

• The cycle counter, PMU.PMCCNTR_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the Instruction Counter, PMU.PMICNTR_EL0.

For example, if PMCFGR.N == 0x07 then:

• There are eight counters in total.

• If FEAT_PMUv3_ICNTR is not implemented, this comprises 7 event counters and the cycle
counter.

• If FEAT_PMUv3_ICNTR is implemented, this comprises 6 event counters, the cycle
counter, and the instruction counter.

Access to this field is RO.

Otherwise:

NCG, bits [31:28]

Defines the number of counter groups implemented, minus one.

NCG

31 28

RES0

27 23

SS

22 21 20

0

19

0

18

0

17

EX

16 15

1

14

1 1 1 1 1 1

13 8

N

7 0

FZO
RES0

UEN
WT

SIZE
CC

CCD
NA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13336
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One counter group implemented.

0b0001 Two counter groups implemented.

All other values are reserved.

FEAT_PMUv3_ICNTR implements the functionality identified by the value 0b0001.

Access to this field is RO.

Bits [27:23]

Reserved, RES0.

SS, bit [22]

Snapshot supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Snapshot mechanism not supported. The locations 0x600-0x7FC and 0xE30-0xE3C are
IMPLEMENTATION DEFINED.

0b1 Snapshot mechanism supported.

If FEAT_PMUv3_SS is implemented, then the following registers are implemented:

• PMU.PMEVCNTSVR<n>_EL1.

• PMU.PMCCNTSVR_EL1.

• If FEAT_PMUv3_ICNTR is implemented, PMU.PMICNTSVR_EL1.

• PMU.PMSSCR_EL1.

Otherwise, locations 0x600-0x7FC and 0xE30-0xE3C contain IMPLEMENTATION DEFINED
snapshot registers.

FEAT_PMUv3_SS implements the functionality identified by the value 1.

If FEAT_PMUv3_SS is not implemented, a PMU might include an IMPLEMENTATION DEFINED
snapshot mechanism, including one using the IMPLEMENTATION DEFINED registers 0x600-0x7FC and
0xE30-0xE3C.

Access to this field is RO.

FZO, bit [21]

Freeze-on-overflow supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Freeze-on-overflow mechanism is not supported. PMU.PMCR_EL0.FZO is RES0.

0b1 Freeze-on-overflow mechanism is supported. PMU.PMCR_EL0.FZO is RW.

FEAT_PMUv3p7 implements the functionality added by the value 0b1.

From Armv8.7, if FEAT_PMUv3 is implemented, the only permitted value is 0b1.

Access to this field is RO.

Bit [20]

Reserved, RES0.

UEN, bit [19]

User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug
interface, so this bit is RAZ.

Reads as 0b0.

Access to this field is RO.

WT, bit [18]

This feature is not supported, so this bit is RAZ.

Reads as 0b0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13337
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Access to this field is RO.

NA, bit [17]

This feature is not supported, so this bit is RAZ.

Reads as 0b0.

Access to this field is RO.

EX, bit [16]

Export supported.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMU.PMCR_EL0.X is RES0.

0b1 PMU.PMCR_EL0.X is read/write.

Access to this field is RO.

CCD, bit [15]

Cycle counter has prescale.

This is RES1 if AArch32 is supported, and RAZ otherwise.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMU.PMCR_EL0.D is RES0.

0b1 PMU.PMCR_EL0.D is read/write.

Access to this field is RO.

CC, bit [14]

Dedicated cycle counter (counter 31) supported.

Reads as 0b1.

Access to this field is RO.

SIZE, bits [13:8]

Size of counters, minus one. This field defines the size of the largest counter implemented by the
Performance Monitors Unit.

From Armv8.0, the largest counter is 64-bits, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. From
Armv8.0, the counters are a doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Number of counters, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x00 Only PMU.PMCCNTR_EL0 implemented.

0x01..0x20 Number of counters implemented, 2 to 33, minus one.

All other values are reserved.

The count includes:

• The cycle counter, PMU.PMCCNTR_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the Instruction Counter, PMU.PMICNTR_EL0.

For example, if PMCFGR.N == 0x07 then:

• There are eight counters in total.

• If FEAT_PMUv3_ICNTR is not implemented, this comprises 7 event counters and the cycle
counter.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13338
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
• If FEAT_PMUv3_ICNTR is implemented, this comprises 6 event counters, the cycle
counter, and the instruction counter.

Access to this field is RO.

Accessing PMCFGR

Note

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more
information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0xE00 from PMU

PMCFGR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0xE00 from PMU

PMCFGR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset Range

PMU 0xE00 63:0

Frame Offset Range

PMU 0xE00 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13339
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.11 PMCGCR0, Counter Group Configuration Register 0

The PMCGCR0 characteristics are:

Purpose

Encodes the number of PMU.PMEVCNTR<n>_EL0 counters implemented.

Configurations

This register is present only when FEAT_PMUv3_ICNTR is implemented. Otherwise, direct
accesses to PMCGCR0 are RES0.

PMCGCR0 is in the Core power domain.

Attributes

PMCGCR0 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3_EXT64 is implemented:

Bits [63:16]

Reserved, RES0.

CG1NC, bits [15:8]

Number of counters in group 1, which comprises the instruction counter PMU.PMICNTR_EL0.

Reads as 0x01.

Access to this field is RO.

CG0NC, bits [7:0]

Number of counters in group 0, which comprises the event counters PMU.PMEVCNTR<n>_EL0
and the cycle counter PMU.PMCCNTR_EL0.

This field reads as PMU.PMCFGR.N.

Otherwise:

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Number of counters in group 1, which comprises the instruction counter PMU.PMICNTR_EL0.

RES0

63 32

RES0

31 16

0 0 0 0 0 0 0 1

15 8

CG0NC

7 0

CG1NC

RES0

31 16

0 0 0 0 0 0 0 1

15 8

CG0NC

7 0

CG1NC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13340
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Reads as 0x01.

Access to this field is RO.

CG0NC, bits [7:0]

Number of counters in group 0, which comprises the event counters PMU.PMEVCNTR<n>_EL0
and the cycle counter PMU.PMCCNTR_EL0.

This field reads as PMU.PMCFGR.N.

Accessing PMCGCR0

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT32 is implemented [31:0] Accessible at offset 0xCE0 from PMU

PMCGCR0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT64 is implemented [63:0] Accessible at offset 0xCE0 from PMU

PMCGCR0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset Range

PMU 0xCE0 31:0

Frame Offset Range

PMU 0xCE0 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13341
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.12 PMCID1SR, CONTEXTIDR_EL1 Sample Register

The PMCID1SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL1, captured on reading PMU.PMPCSR[31:0].

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented and FEAT_PCSRv8p2 is
implemented. Otherwise, direct accesses to PMCID1SR are RES0.

If FEAT_PMUv3_EXT64 is implemented, the same content is present in the same location, and can
be accessed using PMCCIDSR[31:0] or PMCVIDSR[31:0].

PMCID1SR is in the Core power domain.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMCID1SR is a 32-bit register.

Field descriptions

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMU.PMPCSR
sample. When the most recent PMU.PMPCSR sample is generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.

• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.

• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and
this register samples the current banked copy of CONTEXTIDR for the Security state that is
associated with the most recent PMU.PMPCSR sample.

Because the value written to this register is an indirect read of CONTEXTIDR, it is CONSTRAINED
UNPREDICTABLE whether this register is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to CONTEXTIDR.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCID1SR

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

CONTEXTIDR_EL1

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13342
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x208 from PMU PMCID1SR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Accessible at offset 0x228 from PMU PMCID1SR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0x208

Frame Offset

PMU 0x228
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13343
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.13 PMCID2SR, CONTEXTIDR_EL2 Sample Register

The PMCID2SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL2, captured on reading PMU.PMPCSR[31:0].

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMCID2SR are RES0.

If FEAT_PMUv3_EXT64 is implemented, the same content is present in the same location, and can
be accessed using PMCCIDSR[63:32].

PMCIDR2SR is in the Core power domain.

Note

If FEAT_PCSRv8p2 is not implemented, the PC Sample-based Profiling Extension can be
implemented in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes

PMCID2SR is a 32-bit register.

Field descriptions

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent
PMU.PMPCSR sample. When the most recent PMU.PMPCSR sample is generated:

• If the PE is not executing at EL3, EL2 is using AArch64, and EL2 is enabled in the current
Security state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• Otherwise, this field is set to an UNKNOWN value.

Because the value written to this field is an indirect read of CONTEXTIDR_EL2, it is CONSTRAINED
UNPREDICTABLE whether this field is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to CONTEXTIDR_EL2.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCID2SR

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

CONTEXTIDR_EL2

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13344
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x22C from PMU PMCID2SR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0x22C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13345
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.14 PMCIDR0, Performance Monitors Component Identification Register 0

The PMCIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMCIDR0. Otherwise, direct accesses to PMCIDR0 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing PMCIDR0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFF0 from PMU PMCIDR0 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Frame Offset

PMU 0xFF0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13346
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.15 PMCIDR1, Performance Monitors Component Identification Register 1

The PMCIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMCIDR1. Otherwise, direct accesses to PMCIDR1 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

Access to this field is RO.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

Accessing PMCIDR1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFF4 from PMU PMCIDR1 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

1 0 0 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Frame Offset

PMU 0xFF4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13347
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.16 PMCIDR2, Performance Monitors Component Identification Register 2

The PMCIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMCIDR2. Otherwise, direct accesses to PMCIDR2 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing PMCIDR2

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFF8 from PMU PMCIDR2 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Frame Offset

PMU 0xFF8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13348
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.17 PMCIDR3, Performance Monitors Component Identification Register 3

The PMCIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMCIDR3. Otherwise, direct accesses to PMCIDR3 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing PMCIDR3

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFFC from PMU PMCIDR3 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Frame Offset

PMU 0xFFC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13349
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.18 PMCNTEN, Performance Monitors Count Enable register

The PMCNTEN characteristics are:

Purpose

Enables the Cycle Count Register, PMU.PMCCNTR_EL0, and any implemented event counters
PMEVCNTR<n>.

Configurations

External register PMCNTEN bits [63:0] are architecturally mapped to AArch64 System register
PMCNTENSET_EL0[63:0].

External register PMCNTEN bits [63:0] are architecturally mapped to AArch64 System register
PMCNTENCLR_EL0[63:0].

External register PMCNTEN bits [31:0] are architecturally mapped to AArch32 System register
PMCNTENSET[31:0].

External register PMCNTEN bits [31:0] are architecturally mapped to AArch32 System register
PMCNTENCLR[31:0].

This register is present only when FEAT_PMUv3_EXT64 is implemented. Otherwise, direct
accesses to PMCNTEN are RES0.

Attributes

PMCNTEN is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

PMU.PMICNTR_EL0 counter enable. Enables the instruction counter.

0b0 PMU.PMICNTR_EL0 disabled.

0b1 PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13350
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
C, bit [31]

PMU.PMCCNTR_EL0 enable. Enables the cycle counter register. Possible values are:

0b0 PMU.PMCCNTR_EL0 is disabled.

0b1 PMU.PMCCNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter enable for PMU.PMEVCNTR<n>_EL0.

If PMU.PMCFGR.N is less than 31, bits [30:PMU.PMCFGR.N] are RAZ/WI.

0b0 PMU.PMEVCNTR<n>_EL0 is disabled.

0b1 PMU.PMEVCNTR<n>_EL0 is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMCNTEN

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC10 from PMU PMCNTEN can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

Frame Offset

PMU 0xC10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13351
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.19 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Allows software to disable the following counters:

• The cycle counter PMU.PMCCNTR_EL0.

• The event counters PMU.PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter
PMU.PMICNTR_EL0.

Reading from this register shows which counters are enabled.

Configurations

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCNTENCLR_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented,
FEAT_PMUv3p9 is not implemented and FEAT_PMUv3_ICNTR is not implemented.

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCNTENSET_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented,
FEAT_PMUv3p9 is not implemented and FEAT_PMUv3_ICNTR is not implemented.

External register PMCNTENCLR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCNTENCLR_EL0[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMCNTENCLR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCNTENSET_EL0[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCNTENCLR[31:0].

External register PMCNTENCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCNTENSET[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCNTENCLR_EL0 are RES0.

PMCNTENCLR_EL0 is in the Core power domain.

Attributes

PMCNTENCLR_EL0 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is
implemented or FEAT_PMUv3_ICNTR is implemented

• 32-bit register otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13352
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Field descriptions

When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or
FEAT_PMUv3_ICNTR is implemented:

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

PMU.PMICNTR_EL0 disable. On writes, allows software to disable PMU.PMICNTR_EL0. On
reads, returns the PMU.PMICNTR_EL0 enable status.

0b0 PMU.PMICNTR_EL0 disabled.

0b1 PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

C, bit [31]

PMU.PMCCNTR_EL0 disable. On writes, allows software to disable PMU.PMCCNTR_EL0. On
reads, returns the PMU.PMCCNTR_EL0 enable status.

0b0 PMU.PMCCNTR_EL0 disabled.

0b1 PMU.PMCCNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13353
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n>_EL0 disable. On writes, allows software to disable PMEVCNTR<n>_EL0. On
reads, returns the PMEVCNTR<n>_EL0 enable status.

0b0 PMEVCNTR<n>_EL0 disabled.

0b1 PMEVCNTR<n>_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Otherwise:

C, bit [31]

PMU.PMCCNTR_EL0 disable. On writes, allows software to disable PMU.PMCCNTR_EL0. On
reads, returns the PMU.PMCCNTR_EL0 enable status.

0b0 PMU.PMCCNTR_EL0 disabled.

0b1 PMU.PMCCNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n>_EL0 disable. On writes, allows software to disable PMEVCNTR<n>_EL0. On
reads, returns the PMEVCNTR<n>_EL0 enable status.

0b0 PMEVCNTR<n>_EL0 disabled.

0b1 PMEVCNTR<n>_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13354
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMCNTENCLR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3_ICNTR is implemented or
FEAT_PMUv3p9 is implemented: [63:0] Accessible at offset 0xC20 from PMU

PMCNTENCLR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When FEAT_PMUv3_EXT32 is implemented and SoftwareLockStatus(), accesses to this
register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3_ICNTR is not implemented and
FEAT_PMUv3p9 is not implemented: [31:0] Accessible at offset 0xC20 from PMU

PMCNTENCLR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xC20 63:0

Frame Offset Range

PMU 0xC20 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13355
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.20 PMCNTENSET_EL0, Performance Monitors Count Enable Set Register

The PMCNTENSET_EL0 characteristics are:

Purpose

Allows software to enable the following counters:

• The cycle counter PMU.PMCCNTR_EL0.

• The event counters PMU.PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter
PMU.PMICNTR_EL0.

Reading from this register shows which counters are enabled.

Configurations

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCNTENSET_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented,
FEAT_PMUv3p9 is not implemented and FEAT_PMUv3_ICNTR is not implemented.

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMCNTENCLR_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented,
FEAT_PMUv3p9 is not implemented and FEAT_PMUv3_ICNTR is not implemented.

External register PMCNTENSET_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCNTENSET_EL0[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMCNTENSET_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMCNTENCLR_EL0[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCNTENCLR[31:0].

External register PMCNTENSET_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMCNTENSET[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCNTENSET_EL0 are RES0.

PMCNTENSET_EL0 is in the Core power domain.

Attributes

PMCNTENSET_EL0 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is
implemented or FEAT_PMUv3_ICNTR is implemented

• 32-bit register otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13356
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Field descriptions

When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or
FEAT_PMUv3_ICNTR is implemented:

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

PMU.PMICNTR_EL0 enable. On writes, allows software to enable PMU.PMICNTR_EL0. On
reads, returns the PMU.PMICNTR_EL0 enable status.

0b0 PMU.PMICNTR_EL0 disabled.

0b1 PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Otherwise:

Reserved, RES0.

C, bit [31]

PMU.PMCCNTR_EL0 enable. On writes, allows software to enable PMU.PMCCNTR_EL0. On
reads, returns the PMU.PMCCNTR_EL0 enable status.

0b0 PMU.PMCCNTR_EL0 disabled.

0b1 PMU.PMCCNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13357
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n>_EL0 enable. On writes, allows software to enable PMEVCNTR<n>_EL0. On
reads, returns the PMEVCNTR<n>_EL0 enable status.

0b0 PMEVCNTR<n>_EL0 disabled.

0b1 PMEVCNTR<n>_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Otherwise:

C, bit [31]

PMU.PMCCNTR_EL0 enable. On writes, allows software to enable PMU.PMCCNTR_EL0. On
reads, returns the PMU.PMCCNTR_EL0 enable status.

0b0 PMU.PMCCNTR_EL0 disabled.

0b1 PMU.PMCCNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

P<m>, bit [m], for m = 30 to 0

PMEVCNTR<n>_EL0 enable. On writes, allows software to enable PMEVCNTR<n>_EL0. On
reads, returns the PMEVCNTR<n>_EL0 enable status.

0b0 PMEVCNTR<n>_EL0 disabled.

0b1 PMEVCNTR<n>_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13358
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMCNTENSET_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3_ICNTR is implemented or
FEAT_PMUv3p9 is implemented: [63:0] Accessible at offset 0xC00 from PMU

PMCNTENSET_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When FEAT_PMUv3_EXT32 is implemented and SoftwareLockStatus(), accesses to this
register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3_ICNTR is not implemented and
FEAT_PMUv3p9 is not implemented: [31:0] Accessible at offset 0xC00 from PMU

PMCNTENSET_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xC00 63:0

Frame Offset Range

PMU 0xC00 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13359
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.21 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

External register PMCR_EL0 bits [63:32] are architecturally mapped to AArch64 System register
PMCR_EL0[63:32] when FEAT_PMUv3_EXT64 is implemented.

External register PMCR_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMCR_EL0[31:0].

External register PMCR_EL0 bits [10:0] are architecturally mapped to AArch32 System register
PMCR[10:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMCR_EL0 are RES0.

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must
use other means to discover the information held in PMCR[31:11], such as accessing
PMU.PMCFGR and the ID registers.

Attributes

PMCR_EL0 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3_EXT64 is implemented:

Bits [63:33]

Reserved, RES0.

FZS, bit [32]

When FEAT_SPEv1p2 is implemented and FEAT_SPE_DPFZS is implemented:

Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and
PMBSR_EL1.S == 1.

0b0 Do not freeze on a Statistical Profiling Buffer Management event.

0b1 Affected counters do not count following a Statistical Profiling Buffer Management
event.

RES0

63 33 32

FZS

RAZ/WI

31 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13360
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN, where PMN is:

— If EL2 is implemented and using AArch32, HDCR.HPMN.

— If EL2 is implemented and using AArch64, MDCR_EL2.HPMN.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0, where n is less
than PMCR_EL0.N.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMU.PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter PMU.PMCCNTR_EL0.

Note

The same counters are affected even when EL2 is disabled in the current Security state.

Other event counters are not affected by this field.

When PMCR_EL0.DP is 0, PMU.PMCCNTR_EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

When FEAT_SPEv1p2 is implemented:

Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and
PMBSR_EL1.S == 1.

0b0 Do not freeze on Statistical Profiling Buffer Management event.

0b1 Event counter PMU.PMEVCNTR<n>_EL0 does not count following a Statistical
Profiling Buffer Management event if n is in the range of affected event counters.

The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN, where PMN is:

— If EL2 is implemented and using AArch32,HDCR.HPMN.

— If EL2 is implemented and using AArch64, MDCR_EL2.HPMN.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0, where n is less
than PMCR_EL0.N.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMU.PMICNTR_EL0.

Note

The same counters are affected even when EL2 is disabled in the current Security state.

Other event counters and PMU.PMCCNTR_EL0 are not affected by this field.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— When the implementation only supports execution in AArch64 state, this field resets
to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [31:11]

Reserved, RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13361
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Do not freeze on overflow.

0b1 Affected counters do not count when any of the following applies:

• For any value of m less than PMN, PMU.PMOVSCLR_EL0[m] is 1, and either
FEAT_SEBEP is not implemented or PMEVTYPER<n>_EL0.SYNC is 0.

• FEAT_PMUv3_ICNTR is implemented, PMU.PMOVSCLR_EL0.F0 is 1, and
either FEAT_SEBEP is not implemented or PMU.PMICFILTR_EL0.SYNC is 0.

The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN. This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMU.PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter PMU.PMCCNTR_EL0.

Other event counters are not affected by this field.

When PMCR_EL0.DP is 0, PMU.PMCCNTR_EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMU.PMEVCNTR<n>_EL0[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMU.PMEVCNTR<n>_EL0[63:0].

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13362
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN. This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0.

Other event counters, PMU.PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMU.PMICNTR_EL0 are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMU.PMCCNTR_EL0[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMU.PMCCNTR_EL0[63:0].

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.

Arm deprecates use of PMU.PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMU.PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMU.PMCCNTR_EL0 is disabled in prohibited regions and when
event counting is frozen:

• If FEAT_PMUv3p1 is implemented, EL2 is implemented, and
MDCR_EL2.HPMD is 1, then cycle counting by PMU.PMCCNTR_EL0 is
disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented and using AArch64,
and MDCR_EL3.MPMX is 1, then cycle counting by PMU.PMCCNTR_EL0 is
disabled at EL3.

• If FEAT_PMUv3p7 is implemented and event counting is frozen by
PMCR_EL0.FZO, then cycle counting by PMU.PMCCNTR_EL0 is disabled.

• If FEAT_SPE_DPFZS is implemented and event counting is frozen by
PMCR_EL0.FZS, then cycle counting by PMCCNTR_EL0 is disabled.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either FEAT_PMUv3p7 is
not implemented or MDCR_EL3.MPMX is 0, then cycle counting by
PMU.PMCCNTR_EL0 is disabled at EL3 and in Secure state.

The conditions when this field disables the cycle counter are the same as when event counting by
an event counter PMU.PMEVCNTR<n>_EL0 is prohibited or frozen, when either EL2 is not
implemented or n is less than MDCR_EL2.HPMN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13363
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
If FEAT_PMUv3p7 and FEAT_SPEv1p2 are implemented, meaning PMCR_EL0.FZS is
implemented, and FEAT_SPE_DPFZS is not implemented, then cycle counting by
PMCCNTR_EL0 is not affected by PMCR_EL0.FZS.

For more information, see Prohibiting counting.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported:

Clock divider.

0b0 When enabled, PMU.PMCCNTR_EL0 counts every clock cycle.

0b1 When enabled, PMU.PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13364
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMU.PMCCNTR_EL0 to zero.

Note

Resetting PMU.PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and bits [63:0] of the
cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset all event counters, not including PMU.PMCCNTR_EL0, to zero.

Note

Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5
is implemented, the value of MDCR_EL2.HLP, or PMCR_EL0.LP is ignored and bits [63:0] of all
affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Affected counters are disabled and do not count.

0b1 Affected counters are enabled by PMCNTENSET_EL0.

The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN. This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMU.PMICNTR_EL0.

• The cycle counter PMU.PMCCNTR_EL0.

Other event counters are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

RAZ/WI

31 11 10 9 8

LP

7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

RES0 RES0
FZO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13365
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Do not freeze on overflow.

0b1 Affected counters do not count when any of the following applies:

• For any value of m less than PMN, PMU.PMOVSCLR_EL0[m] is 1, and either
FEAT_SEBEP is not implemented or PMEVTYPER<n>_EL0.SYNC is 0.

• FEAT_PMUv3_ICNTR is implemented, PMU.PMOVSCLR_EL0.F0 is 1, and
either FEAT_SEBEP is not implemented or PMU.PMICFILTR_EL0.SYNC is 0.

The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN. This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMU.PMICNTR_EL0.

• If PMCR_EL0.DP is 1, the cycle counter PMU.PMCCNTR_EL0.

Other event counters are not affected by this field.

When PMCR_EL0.DP is 0, PMU.PMCCNTR_EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an event counter
overflow bit.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Event counter overflow on increment that causes unsigned overflow of
PMU.PMEVCNTR<n>_EL0[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of
PMU.PMEVCNTR<n>_EL0[63:0].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13366
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.

The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN. This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0.

Other event counters, PMU.PMCCNTR_EL0, and, if FEAT_PMUv3_ICNTR is implemented,
PMU.PMICNTR_EL0 are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMU.PMCCNTR_EL0[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMU.PMCCNTR_EL0[63:0].

When FEAT_EBEP is implemented and the PMU exception is enabled, the Effective value of this
field is 1.

Arm deprecates use of PMU.PMCR_EL0.LC = 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMU.PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMU.PMCCNTR_EL0 is disabled in prohibited regions and when
event counting is frozen:

• If FEAT_PMUv3p1 is implemented, EL2 is implemented, and
MDCR_EL2.HPMD is 1, then cycle counting by PMU.PMCCNTR_EL0 is
disabled at EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented and using AArch64,
and MDCR_EL3.MPMX is 1, then cycle counting by PMU.PMCCNTR_EL0 is
disabled at EL3.

• If FEAT_PMUv3p7 is implemented and event counting is frozen by
PMCR_EL0.FZO, then cycle counting by PMU.PMCCNTR_EL0 is disabled.

• If FEAT_SPE_DPFZS is implemented and event counting is frozen by
PMCR_EL0.FZS, then cycle counting by PMCCNTR_EL0 is disabled.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either FEAT_PMUv3p7 is
not implemented or MDCR_EL3.MPMX is 0, then cycle counting by
PMU.PMCCNTR_EL0 is disabled at EL3 and in Secure state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13367
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
The conditions when this field disables the cycle counter are the same as when event counting by
an event counter PMU.PMEVCNTR<n>_EL0 is prohibited or frozen, when either EL2 is not
implemented or n is less than MDCR_EL2.HPMN.

If FEAT_PMUv3p7 and FEAT_SPEv1p2 are implemented, meaning PMCR_EL0.FZS is
implemented, and FEAT_SPE_DPFZS is not implemented, then cycle counting by
PMCCNTR_EL0 is not affected by PMCR_EL0.FZS.

For more information, see Prohibiting counting.

The reset behavior of this field is:

• On a Warm reset:

— When the implementation only supports execution in AArch32 state, this field resets
to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported:

Clock divider.

0b0 When enabled, PMU.PMCCNTR_EL0 counts every clock cycle.

0b1 When enabled, PMU.PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

The reset behavior of this field is:

• When this register has an architecturally-defined reset value, if this field is implemented as
an RW field it resets to:

— A value that is architecturally UNKNOWN if the reset is into an Exception level that is
using AArch64.

— 0 if the reset is into an Exception level that is using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13368
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMU.PMCCNTR_EL0 to zero.

Note

Resetting PMU.PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and bits [63:0] of the
cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset all event counters, not including PMU.PMCCNTR_EL0, to zero.

Note

Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5
is implemented, the value of MDCR_EL2.HLP, or PMCR_EL0.LP is ignored and bits [63:0] of all
affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

In the description of this field:

• If EL2 is implemented and is using AArch32, then PMN is HDCR.HPMN.

• If EL2 is implemented and is using AArch64, then PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, then PMN is PMCR_EL0.N.

0b0 Affected counters are disabled and do not count.

0b1 Affected counters are enabled by PMCNTENSET_EL0.

The counters affected by this field are:

• If EL2 is implemented, event counters PMU.PMEVCNTR<n>_EL0 for values of n less than
PMN. This applies even when EL2 is disabled in the current Security state.

• If EL2 is not implemented, all event counters PMU.PMEVCNTR<n>_EL0.

• If FEAT_PMUv3_ICNTR is implemented, the instruction counter PMU.PMICNTR_EL0.

• The cycle counter PMU.PMCCNTR_EL0.

Other event counters are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13369
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT32 is implemented: Accessible at offset 0xE04 from PMU

PMCR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT64 is implemented: Accessible at offset 0xE10 from PMU

PMCR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

Frame Offset

PMU 0xE04

Frame Offset

PMU 0xE10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13370
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.22 PMDEVAFF, Performance Monitors Device Affinity register

The PMDEVAFF characteristics are:

Purpose

Copy of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a
multiprocessor system the Performance Monitor component relates to.

Configurations

This register is present only when FEAT_PMUv3_EXT64 is implemented. Otherwise, direct
accesses to PMDEVAFF are RES0.

Attributes

PMDEVAFF is a 64-bit register.

Field descriptions

MPIDR_EL1, bits [63:0]

MPIDR_EL1. Read-only copy of MPIDR_EL1, as seen from the highest implemented Exception
level.

Accessing PMDEVAFF

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFA8 from PMU PMDEVAFF can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

MPIDR_EL1

63 32

MPIDR_EL1

31 0

Frame Offset

PMU 0xFA8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13371
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.23 PMDEVAFF0, Performance Monitors Device Affinity register 0

The PMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the Performance Monitor component relates to.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMDEVAFF0 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes

PMDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing PMDEVAFF0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFA8 from PMU PMDEVAFF0 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

MPIDR_EL1lo

31 0

Frame Offset

PMU 0xFA8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13372
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.24 PMDEVAFF1, Performance Monitors Device Affinity register 1

The PMDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the Performance Monitor component relates to.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMDEVAFF1 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes

PMDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing PMDEVAFF1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFAC from PMU PMDEVAFF1 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

MPIDR_EL1hi

31 0

Frame Offset

PMU 0xFAC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13373
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.25 PMDEVARCH, Performance Monitors Device Architecture register

The PMDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the Performance Monitor component.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMDEVARCH are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

PMDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For Performance Monitors, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For Performance Monitors, the revision defined by Armv8 is 0x0.

All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

0b0010 Performance Monitors Extension version 3, PMUv3.

All other values are reserved.

PMDEVARCH.ARCHVER and PMDEVARCH.ARCHPART are also defined as a single field,
PMDEVARCH.ARCHID, so that PMDEVARCH.ARCHVER is PMDEVARCH.ARCHID[15:12].

Access to this field is RO.

0 1 0 0 0 1 1 1 0 1 1

31 21

1

20

0 0 0 0

19 16

0 0 1 0

15 12

ARCHPART

11 0

ARCHITECT
PRESENT

ARCHVER
REVISION
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13374
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0xA16 Armv8-A PE performance monitors, including the 32-bit programmers' model
extension.

0xA26 Armv8-A PE performance monitors, including the 64-bit programmers' model
extension.

FEAT_PMUv3_EXT32 implements the functionality described by the value 0xA16.

FEAT_PMUv3_EXT64 implements the functionality described by the value 0xA26.

PMDEVARCH.ARCHVER and PMDEVARCH.ARCHPART are also defined as a single field,
PMDEVARCH.ARCHID, so that PMDEVARCH.ARCHPART is PMDEVARCH.ARCHID[11:0].

Access to this field is RO.

Accessing PMDEVARCH

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFBC from PMU PMDEVARCH can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xFBC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13375
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.26 PMDEVID, Performance Monitors Device ID register

The PMDEVID characteristics are:

Purpose

Provides information about features of the Performance Monitors implementation.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMDEVID are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required from Armv8.2 and in any implementation that includes FEAT_PCSRv8p2.
Otherwise, its location is RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMDEVID is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PMSS, bits [7:4]

PMU Snapshot extension.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PMU snapshot extension not implemented.

0b0001 PMU snapshot extension implemented.

All other values are reserved.

FEAT_PMUv3_SS implements the functionality identified by the value 0b0001.

Access to this field is RO.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using Performance Monitors registers.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 PC Sample-based Profiling Extension is not implemented in the Performance Monitors
register space.

0b0001 PC Sample-based Profiling Extension is implemented in the Performance Monitors
register space.

0b0010 As 0b0001, and adds support for PMU.PMPCSCTL.

All other values are reserved.

FEAT_PCSRv8p2 implements the functionality identified by the value 0b0001.

RES0

31 8

PMSS

7 4

PCSample

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13376
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
FEAT_PCSRv8p9 implements the functionality identified by the value 0b0010.

If FEAT_PCSRv8p2 is not implemented, then the only permitted value is 0b0000.

From Armv8.2, when FEAT_PCSRv8p2 is implemented, the value 0b0000 is not permitted.

From Armv8.9, when FEAT_PCSRv8p9 is implemented, the value 0b0001 is not permitted.

Access to this field is RO.

Accessing PMDEVID

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFC8 from PMU PMDEVID can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xFC8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13377
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.27 PMDEVTYPE, Performance Monitors Device Type register

The PMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented and an implementation
implements PMDEVTYPE. Otherwise, direct accesses to PMDEVTYPE are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

Attributes

PMDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Indicates this is a component within a PE.

Reads as 0b0001.

Access to this field is RO.

MAJOR, bits [3:0]

Major type. Indicates this is a performance monitor component.

Reads as 0b0110.

Access to this field is RO.

Accessing PMDEVTYPE

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFCC from PMU PMDEVTYPE can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

0 0 0 1

7 4

0 1 1 0

3 0

SUB MAJOR

Frame Offset

PMU 0xFCC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13378
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.28 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter <n>, which counts events, where <n> is 0 to 30.

Configurations

External register PMEVCNTR<n>_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMEVCNTR<n>_EL0[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p5 is implemented.

External register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMEVCNTR<n>_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p5 is not implemented.

External register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMEVCNTR<n>[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMEVCNTR<n>_EL0 are RES0.

PMEVCNTR<n>_EL0 is in the Core power domain.

Attributes

PMEVCNTR<n>_EL0 is a:

• 64-bit register when FEAT_PMUv3p5 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3p5 is implemented:

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

If the highest implemented Exception level is using AArch32, the optional external interface to the
performance monitors is implemented, and the PMCR.LP and HDCR.HLP bits are RAZ/WI, then
locations in the external interface to the performance monitors that map to
PMEVCNTR<n>_EL0[63:32] return UNKNOWN values on reads.

If the implementation does not support AArch64, bits [63:32] of the event counters are not required
to be implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Event counter n

63 32

Event counter n

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13379
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Otherwise:

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number
from 0 to 30.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTR<n>_EL0

External accesses to the performance monitors ignore the following controls:

• PMUSERENR_EL0.

• If implemented, MDCR_EL2.{TPM, TPMCR, HPMN}.

• MDCR_EL3.TPM.

This means that all counters are accessible regardless of the current Exception level or privilege of the access.

If FEAT_PMUv3p5 is not implemented, when IsCorePowered(), DoubleLockStatus(), OSLockStatus() or
!AllowExternalPMUAccess(), 32-bit accesses to 0x004+8×n have a CONSTRAINED UNPREDICTABLE behavior.

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0x000 + (8 * n) from PMU

PMEVCNTR<n>_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented and FEAT_PMUv3p5 is implemented: [63:0] Accessible at
offset 0x000 + (8 * n) from PMU

PMEVCNTR<n>_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

Event counter n

31 0

Frame Offset Range

PMU 0x000 + (8 * n) 63:0

Frame Offset Range

PMU 0x000 + (8 * n) 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13380
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented and FEAT_PMUv3p5 is not implemented: [31:0] Accessible
at offset 0x000 + (8 * n) from PMU

PMEVCNTR<n>_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0x000 + (8 * n) 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13381
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.29 PMEVCNTSVR<n>_EL1, Performance Monitors Event Count Saved Value Register <n>, n = 0
- 30

The PMEVCNTSVR<n>_EL1 characteristics are:

Purpose

Captures the PMU Event counter <n>, PMU.PMEVCNTR<n>_EL0.

Configurations

External register PMEVCNTSVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64
System register PMEVCNTSVR<n>_EL1[63:0].

This register is present only when FEAT_PMUv3_SS is implemented. Otherwise, direct accesses to
PMEVCNTSVR<n>_EL1 are RES0.

PMEVCNTSVR<n>_EL1 is in the Core power domain.

If event counter n is not implemented:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalPMUAccess(), accesses are RES0.

• Otherwise, it is CONSTRAINED UNPREDICTABLE whether accesses to this register are RES0 or
generate an error response.

Attributes

PMEVCNTSVR<n>_EL1 is a 64-bit register.

Field descriptions

EVCNT, bits [63:0]

Sampled Event Count. The value of PMU.PMEVCNTR<n>_EL0 at the last successful Capture
event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVCNTSVR<n>_EL1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x600 + (8 * n) from PMU PMEVCNTSVR<n>_EL1 can be accessed through the PMU
block as follows:

• When !AllowExternalPMSSAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

EVCNT

63 32

EVCNT

31 0

Frame Offset

PMU 0x600 + (8 * n)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13382
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.30 PMEVFILT2R<n>, Performance Monitors Event Filter Registers, n = 0 - 63

The PMEVFILT2R<n> characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED configuration controls for PMU counters.

Each PMEVFILT2R<n> register can provide additional configuration controls for a PMU counter,
where:

• For values of n less than 31, if event counter n is implemented, then the controls are for PMU
event counter <n>.

• For n equal to 31, the controls are for the cycle counter, PMCCNTR_EL0;

• For n equal to 32, if FEAT_PMUv3_ICNTR is implemented, the controls are for the
instruction counter, PMCCNTR_EL0;

• For all other values of n, PMEVFILT2R<n> is not implemented.

Although this mapping is recommended, it is not required and the function of each register is
IMPLEMENTATION DEFINED.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMEVFILT2R<n>. Otherwise, direct accesses to PMEVFILT2R<n> are RES0.

PMEVFILT2R<n> is in the Core power domain.

If PMEVFILT2R<n> is not implemented:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalPMUAccess(), accesses are RES0.

• Otherwise, it is CONSTRAINED UNPREDICTABLE whether accesses to this register are RES0 or
generate an error response.

Attributes

PMEVFILT2R<n> is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3_EXT64 is implemented:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Otherwise:

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13383
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing PMEVFILT2R<n>

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0x800 + (4 * n) from PMU

PMEVFILT2R<n> can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0x800 + (8 * n) from PMU

PMEVFILT2R<n> can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0x800 + (4 * n) 31:0

Frame Offset Range

PMU 0x800 + (8 * n) 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13384
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.31 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch64
System register PMEVTYPER<n>_EL0[31:0].

External register PMEVTYPER<n>_EL0 bits [63:32] are architecturally mapped to AArch64
System register PMEVTYPER<n>_EL0[63:32] when FEAT_PMUv3_TH is implemented, or
FEAT_PMUv3p8 is implemented or FEAT_PMUv3_EXT64 is implemented.

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32
System register PMEVTYPER<n>[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMEVTYPER<n>_EL0 are RES0.

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalPMUAccess(), accesses are RES0.

• Otherwise, it is CONSTRAINED UNPREDICTABLE whether accesses to this register are RES0 or
generate an error response.

Attributes

PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions

TC, bits [63:61]

When FEAT_PMUv3_TH is implemented and (FEAT_PMUv3_EDGE is not implemented or
PMU.PMEVTYPER<n>_EL0.TE == 0):

Threshold Control. Defines the threshold function. In the description of this field:

• VB[n] is the value the event specified by PMEVTYPER<n>_EL0 would increment event
counter n by on a processor cycle if the threshold function is disabled.

• TH[n] is the value of PMEVTYPER<n>_EL0.TH.

0b000 Not-equal. The counter increments by VB[n] on each processor cycle when VB[n] is not
equal to TH[n].

0b001 Not-equal, count. The counter increments by 1 on each processor cycle when VB[n] is
not equal to TH[n].

0b010 Equals. The counter increments by VB[n] on each processor cycle when VB[n] is equal
to TH[n].

TC

63 61

TE

60 59 58

RES0

57 44

TH

43 32

RES0 SYNC

P

31

U

30 29 28 27

M

26

MT

25

SH

24

T

23 22 21 20

RES0

19 16 15 10

evtCount[9:0]

9 0

NSK NSH
NSU

RLK
RLU

evtCount[15:10]
RLH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13385
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
0b011 Equals, count. The counter increments by 1 on each processor cycle when VB[n] is
equal to TH[n].

0b100 Greater-than-or-equal. The counter increments by VB[n] on each processor cycle when
VB[n] is greater than or equal to TH[n].

0b101 Greater-than-or-equal, count. The counter increments by 1 on each processor cycle
when VB[n] is greater than or equal to TH[n].

0b110 Less-than. The counter increments by VB[n] on each processor cycle when VB[n] is
less than TH[n].

0b111 Less-than, count. The counter increments by 1 on each processor cycle when VB[n] is
less than TH[n].

Comparisons treat VB[n] and TH[n] as unsigned integer values.

On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC[2:1] is true:

• If PMEVTYPER<n>_EL0.TC[0] is 0, then the counter increments by VB[n].

• If PMEVTYPER<n>_EL0.TC[0] is 1, then the counter increments by 1.

On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC[2:1] is false,
the counter does not increment.

If PMEVTYPER<n>_EL0.{TC, TH} are zero then the threshold function is disabled.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

When FEAT_PMUv3_EDGE is implemented and PMU.PMEVTYPER<n>_EL0.TE == 1:

Threshold Control. Defines the threshold function. In the description of this field:

• VB[n] is the value the event specified by PMEVTYPER<n>_EL0 would increment event
counter n by on a processor cycle if the threshold function is disabled.

• TH[n] is the value of PMEVTYPER<n>_EL0.TH.

0b001 Equal to not-equal. The counter increments on each processor cycle when VB[n] is not
equal to TH[n] and VB[n] was equal to TH[n] on the previous processor cycle.

0b010 Equal to/from not-equal. The counter increments on each processor cycle when either:

• VB[n] is not equal to TH[n] and VB[n] was equal to TH[n] on the previous
processor cycle.

• VB[n] is equal to TH[n] and VB[n] was not equal to TH[n] on the previous
processor cycle.

0b011 Not-equal to equal. The counter increments on each processor cycle when VB[n] is
equal to TH[n] and VB[n] was not equal to TH[n] on the previous processor cycle.

0b101 Less-than to greater-than-or-equal. The counter increments on each processor cycle
when VB[n] is greater than or equal to TH[n] and VB[n] was less than TH[n] on the
previous processor cycle.

0b110 Less-than to/from greater-than-or-equal. The counter increments on each processor
cycle when either:

• VB[n] is greater than or equal to TH[n] and VB[n] was less than TH[n] on the
previous processor cycle.

• VB[n] is less than TH[n] and VB[n] was greater than or equal to TH[n] on the
previous processor cycle.

0b111 Greater-than-or-equal to less-than. The counter increments on each processor cycle
when VB[n] is less than TH[n] and VB[n] was greater than or equal to TH[n] on the
previous processor cycle.

All other values are reserved.

Comparisons treat VB[n] and TH[n] as unsigned integer values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13386
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC is true, the
counter increments by 1.

On each processor cycle when the condition specified by PMEVTYPER<n>_EL0.TC is false, the
counter does not increment.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TE, bit [60]

When FEAT_PMUv3_EDGE is implemented:

Threshold Edge. Enables the edge condition. When PMEVTYPER<n>_EL0.TE is 1, the event
counter increments on cycles when the result of the threshold condition changes. See
PMEVTYPER<n>_EL0.TC for more information.

0b0 Threshold edge condition disabled.

0b1 Threshold edge condition enabled.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [59]

Reserved, RES0.

SYNC, bit [58]

When FEAT_SEBEP is implemented:

Synchronous mode. Controls whether a PMU exception generated by the counter is synchronous or
asynchronous.

0b0 Asynchronous PMU exception is enabled.

0b1 Synchronous PMU exception is enabled.

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [57:44]

Reserved, RES0.

TH, bits [43:32]

When FEAT_PMUv3_TH is implemented:

Threshold value. Provides the unsigned value for the threshold function defined by
PMEVTYPER<n>_EL0.TC.

If PMEVTYPER<n>_EL0.{TC, TH} are zero then the threshold function is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13387
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
If PMU.PMMIR_EL1.THWIDTH is less than 12, then bits
PMEVTYPER<n>_EL0.TH[11:UInt(PMU.PMMIR_EL1.THWIDTH)] are RES0. This accounts
for the behavior when writing a value greater-than-or-equal-to 2UInt(PMU.PMMIR_EL1.THWIDTH).

The reset behavior of this field is:

• On a Warm reset:

— When AArch32 is supported, this field resets to 0.

— Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

P, bit [31]

EL1 filtering. Controls counting events in EL1.

0b0 This mechanism has no effect on filtering of events.

0b1 The PE does not count events in EL1.

If Secure and Non-secure states are implemented, then counting events in Non-secure EL1 is further
controlled by PMEVTYPER<n>_EL0.NSK.

If FEAT_RME is implemented, then counting events in Realm EL1 is further controlled by
PMEVTYPER<n>_EL0.RLK.

If EL3 is implemented, then counting events in EL3 is further controlled by
PMEVTYPER<n>_EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

EL0 filtering. Controls counting events in EL0.

0b0 This mechanism has no effect on filtering of events.

0b1 The PE does not count events in EL0.

If Secure and Non-secure states are implemented, then counting events in Non-secure EL0 is further
controlled by PMEVTYPER<n>_EL0.NSU.

If FEAT_RME is implemented, then counting events in Realm EL0 is further controlled by
PMEVTYPER<n>_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting events in Non-secure EL1. If
PMEVTYPER<n>_EL0.NSK is not equal to PMEVTYPER<n>_EL0.P, then the PE does not count
events in Non-secure EL1. Otherwise, this mechanism has no effect on filtering of events in
Non-secure EL1.

0b0 When PMEVTYPER<n>_EL0.P == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.P == 1, the PE does not count events in Non-secure
EL1.

0b1 When PMEVTYPER<n>_EL0.P == 0, the PE does not count events in Non-secure
EL1.

When PMEVTYPER<n>_EL0.P == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13388
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting events in Non-secure EL0. If
PMEVTYPER<n>_EL0.NSU is not equal to PMEVTYPER<n>_EL0.U, then the PE does not
count events in Non-secure EL0. Otherwise, this mechanism has no effect on filtering of events in
Non-secure EL0.

0b0 When PMEVTYPER<n>_EL0.U == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.U == 1, the PE does not count events in Non-secure
EL0.

0b1 When PMEVTYPER<n>_EL0.U == 0, the PE does not count events in Non-secure
EL0.

When PMEVTYPER<n>_EL0.U == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting events in EL2.

0b0 The PE does not count events in EL2.

0b1 This mechanism has no effect on filtering of events.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting events in Secure EL2 is
further controlled by PMEVTYPER<n>_EL0.SH.

If FEAT_RME is implemented, then counting events in Realm EL2 is further controlled by
PMEVTYPER<n>_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented and AArch64 is supported:

EL3 filtering. Controls counting events in EL3. If PMEVTYPER<n>_EL0.M is not equal to
PMEVTYPER<n>_EL0.P, then the PE does not count events in EL3. Otherwise, this mechanism
has no effect on filtering of events in EL3.

0b0 When PMEVTYPER<n>_EL0.P == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.P == 1, the PE does not count events in EL3.

0b1 When PMEVTYPER<n>_EL0.P == 0, the PE does not count events in EL3.

When PMEVTYPER<n>_EL0.P == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13389
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Otherwise:

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU
extension is implemented:

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted,
meaning if FEAT_MTPMU is not implemented, this field is RES0. See
ID_AA64DFR0_EL1.MTPMU.

This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and
disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When EL3 is implemented and FEAT_SEL2 is implemented:

Secure EL2 filtering. Controls counting events in Secure EL2. If PMEVTYPER<n>_EL0.SH is
equal to PMEVTYPER<n>_EL0.NSH, then the PE does not count events in Secure EL2.
Otherwise, this mechanism has no effect on filtering of events in Secure EL2.

0b0 When PMEVTYPER<n>_EL0.NSH == 0, the PE does not count events in Secure EL2.

When PMEVTYPER<n>_EL0.NSH == 1, this mechanism has no effect on filtering of
events.

0b1 When PMEVTYPER<n>_EL0.NSH == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.NSH == 1, the PE does not count events in Secure EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When Secure EL2 is not implemented, access to this field is RES0.

Otherwise:

Reserved, RES0.

T, bit [23]

When FEAT_TME is implemented:

Non-Transactional state filtering bit. Controls counting of events in Non-transactional state.

0b0 This bit has no effect on the filtering of events.

0b1 Do not count Attributable events in Non-transactional state.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13390
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
RLK, bit [22]

When FEAT_RME is implemented:

Realm EL1 filtering. Controls counting events in Realm EL1. If PMEVTYPER<n>_EL0.RLK is
not equal to PMEVTYPER<n>_EL0.P, then the PE does not count events in Realm EL1. Otherwise,
this mechanism has no effect on filtering of events in Realm EL1.

0b0 When PMEVTYPER<n>_EL0.P == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.P == 1, the PE does not count events in Realm EL1.

0b1 When PMEVTYPER<n>_EL0.P == 0, the PE does not count events in Realm EL1.

When PMEVTYPER<n>_EL0.P == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting events in Realm EL0. If PMEVTYPER<n>_EL0.RLU is
not equal to PMEVTYPER<n>_EL0.U, then the PE does not count events in Realm EL0.
Otherwise, this mechanism has no effect on filtering of events in Realm EL0.

0b0 When PMEVTYPER<n>_EL0.U == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.U == 1, the PE does not count events in Realm EL0.

0b1 When PMEVTYPER<n>_EL0.U == 0, the PE does not count events in Realm EL0.

When PMEVTYPER<n>_EL0.U == 1, this mechanism has no effect on filtering of
events.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLH, bit [20]

When FEAT_RME is implemented:

Realm EL2 filtering. Controls counting events in Realm EL2. If PMEVTYPER<n>_EL0.RLH is
equal to PMEVTYPER<n>_EL0.NSH, then the PE does not count events in Realm EL2. Otherwise,
this mechanism has no effect on filtering of events in Realm EL2.

0b0 When PMEVTYPER<n>_EL0.NSH == 0, the PE does not count events in Realm EL2.

When PMEVTYPER<n>_EL0.NSH == 1, this mechanism has no effect on filtering of
events.

0b1 When PMEVTYPER<n>_EL0.NSH == 0, this mechanism has no effect on filtering of
events.

When PMEVTYPER<n>_EL0.NSH == 1, the PE does not count events in Realm EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:16]

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13391
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count.

The event number of the event that is counted by event counter PMU.PMEVCNTR<n>_EL0.

The ranges of event numbers allocated to each type of event are shown in Table D13-13.

If FEAT_PMUv3p8 is implemented and PMEVTYPER<n>_EL0.evtCount is programmed to an
event that is reserved or not supported by the PE, no events are counted and the value returned by a
direct or external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

Note

Arm recommends this behavior for all implementations of FEAT_PMUv3.

Otherwise, if PMEVTYPER<n>_EL0.evtCount is programmed to an event that is reserved or not
supported by the PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted and the value returned by a direct or
external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted and
the value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field
is the value written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted and the value returned
by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>_EL0

If FEAT_PMUv3_EXT32 is implemented, and at least one of FEAT_PMUv3_TH or FEAT_PMUv3p8 is
implemented, then bits [63:32] of this register are accessible at offset 0xA00 + (4*n). Otherwise accesses at this offset
are IMPLEMENTATION DEFINED.

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0x400 + (8 * n) from PMU
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13392
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMEVTYPER<n>_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0x400 + (4 * n) from PMU

PMEVTYPER<n>_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented and (FEAT_PMUv3_TH is implemented or FEAT_PMUv3p8
is implemented): [63:32] Accessible at offset 0xA00 + (4 * n) from PMU

PMEVTYPER<n>_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0x400 + (8 * n) 63:0

Frame Offset Range

PMU 0x400 + (4 * n) 31:0

Frame Offset Range

PMU 0xA00 + (4 * n) 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13393
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.32 PMICFILTR_EL0, Performance Monitors Instruction Counter Filter Register

The PMICFILTR_EL0 characteristics are:

Purpose

Configures the Instruction Counter.

Configurations

External register PMICFILTR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMICFILTR_EL0[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented. Otherwise, direct
accesses to PMICFILTR_EL0 are RES0.

PMICFILTR_EL0 is in the Core power domain.

Attributes

PMICFILTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:59]

Reserved, RES0.

SYNC, bit [58]

When FEAT_SEBEP is implemented:

Synchronous mode. Controls whether a PMU exception generated by the counter is synchronous or
asynchronous.

0b0 Asynchronous PMU exception is enabled.

0b1 Synchronous PMU exception is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [57:32]

Reserved, RES0.

P, bit [31]

EL1 filtering. Controls counting instructions in EL1.

0b0 This mechanism has no effect on filtering of instructions.

0b1 The PE does not count instructions in EL1.

If Secure and Non-secure states are implemented, then counting instructions in Non-secure EL1 is
further controlled by PMICFILTR_EL0.NSK.

RES0

63 59 58

RES0

57 32

SYNC

P

31

U

30 29 28 27

M

26 25

SH

24

T

23 22 21 20

RES0

19 16

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 0

NSK
NSU

NSH

RLH
RLU

RLK
RES0

evtCount
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13394
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
If FEAT_RME is implemented, then counting instructions in Realm EL1 is further controlled by
PMICFILTR_EL0.RLK.

If EL3 is implemented, then counting instructions in EL3 is further controlled by
PMICFILTR_EL0.M.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

EL0 filtering. Controls counting instructions in EL0.

0b0 This mechanism has no effect on filtering of instructions.

0b1 The PE does not count instructions in EL0.

If Secure and Non-secure states are implemented, then counting instructions in Non-secure EL0 is
further controlled by PMICFILTR_EL0.NSU.

If FEAT_RME is implemented, then counting instructions in Realm EL0 is further controlled by
PMICFILTR_EL0.RLU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 filtering. Controls counting instructions in Non-secure EL1. If
PMICFILTR_EL0.NSK is not equal to PMICFILTR_EL0.P, then the PE does not count instructions
in Non-secure EL1. Otherwise, this mechanism has no effect on filtering of instructions in
Non-secure EL1.

0b0 When PMICFILTR_EL0.P == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.P == 1, the PE does not count instructions in Non-secure EL1.

0b1 When PMICFILTR_EL0.P == 0, the PE does not count instructions in Non-secure EL1.

When PMICFILTR_EL0.P == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 filtering. Controls counting instructions in Non-secure EL0. If
PMICFILTR_EL0.NSU is not equal to PMICFILTR_EL0.U, then the PE does not count
instructions in Non-secure EL0. Otherwise, this mechanism has no effect on filtering of instructions
in Non-secure EL0.

0b0 When PMICFILTR_EL0.U == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.U == 1, the PE does not count instructions in Non-secure EL0.

0b1 When PMICFILTR_EL0.U == 0, the PE does not count instructions in Non-secure EL0.

When PMICFILTR_EL0.U == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13395
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 filtering. Controls counting instructions in EL2.

0b0 The PE does not count instructions in EL2.

0b1 This mechanism has no effect on filtering of instructions.

If EL3 is implemented and FEAT_SEL2 is implemented, then counting instructions in Secure EL2
is further controlled by PMICFILTR_EL0.SH.

If FEAT_RME is implemented, then counting instructions in Realm EL2 is further controlled by
PMICFILTR_EL0.RLH.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

EL3 filtering. Controls counting instructions in EL3. If PMICFILTR_EL0.M is not equal to
PMICFILTR_EL0.P, then the PE does not count instructions in EL3. Otherwise, this mechanism
has no effect on filtering of instructions in EL3.

0b0 When PMICFILTR_EL0.P == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.P == 1, the PE does not count instructions in EL3.

0b1 When PMICFILTR_EL0.P == 0, the PE does not count instructions in EL3.

When PMICFILTR_EL0.P == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When EL3 is implemented and FEAT_SEL2 is implemented:

Secure EL2 filtering. Controls counting instructions in Secure EL2. If PMICFILTR_EL0.SH is
equal to PMICFILTR_EL0.NSH, then the PE does not count instructions in Secure EL2. Otherwise,
this mechanism has no effect on filtering of instructions in Secure EL2.

0b0 When PMICFILTR_EL0.NSH == 0, the PE does not count instructions in Secure EL2.

When PMICFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
instructions.

0b1 When PMICFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.NSH == 1, the PE does not count instructions in Secure EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When Secure EL2 is not implemented, access to this field is RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13396
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Otherwise:

Reserved, RES0.

T, bit [23]

When FEAT_TME is implemented:

Non-Transactional state filtering bit. Controls counting of instructions in Non-transactional state.

0b0 This bit has no effect on the filtering of instructions.

0b1 Do not count Attributable instructions in Non-transactional state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLK, bit [22]

When FEAT_RME is implemented:

Realm EL1 filtering. Controls counting instructions in Realm EL1. If PMICFILTR_EL0.RLK is not
equal to PMICFILTR_EL0.P, then the PE does not count instructions in Realm EL1. Otherwise, this
mechanism has no effect on filtering of instructions in Realm EL1.

0b0 When PMICFILTR_EL0.P == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.P == 1, the PE does not count instructions in Realm EL1.

0b1 When PMICFILTR_EL0.P == 0, the PE does not count instructions in Realm EL1.

When PMICFILTR_EL0.P == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RLU, bit [21]

When FEAT_RME is implemented:

Realm EL0 filtering. Controls counting instructions in Realm EL0. If PMICFILTR_EL0.RLU is not
equal to PMICFILTR_EL0.U, then the PE does not count instructions in Realm EL0. Otherwise, this
mechanism has no effect on filtering of instructions in Realm EL0.

0b0 When PMICFILTR_EL0.U == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.U == 1, the PE does not count instructions in Realm EL0.

0b1 When PMICFILTR_EL0.U == 0, the PE does not count instructions in Realm EL0.

When PMICFILTR_EL0.U == 1, this mechanism has no effect on filtering of
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13397
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
RLH, bit [20]

When FEAT_RME is implemented:

Realm EL2 filtering. Controls counting instructions in Realm EL2. If PMICFILTR_EL0.RLH is
equal to PMICFILTR_EL0.NSH, then the PE does not count instructions in Realm EL2. Otherwise,
this mechanism has no effect on filtering of instructions in Realm EL2.

0b0 When PMICFILTR_EL0.NSH == 0, the PE does not count instructions in Realm EL2.

When PMICFILTR_EL0.NSH == 1, this mechanism has no effect on filtering of
instructions.

0b1 When PMICFILTR_EL0.NSH == 0, this mechanism has no effect on filtering of
instructions.

When PMICFILTR_EL0.NSH == 1, the PE does not count instructions in Realm EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [19:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count.

Reads as 0x0008.

Access to this field is RO.

Accessing PMICFILTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT32 is implemented [31:0] Accessible at offset 0x480 from PMU

PMICFILTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT64 is implemented Accessible at offset 0x500 from PMU

PMICFILTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented [63:32] Accessible at offset 0xA80 from PMU

Frame Offset Range

PMU 0x480 31:0

Frame Offset

PMU 0x500
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13398
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMICFILTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xA80 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13399
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.33 PMICNTR_EL0, Performance Monitors Instruction Counter Register

The PMICNTR_EL0 characteristics are:

Purpose

If event counting is not prohibited and the instruction counter is enabled, the counter increments for
each architecturally-executed instruction, according to the configuration specified by
PMU.PMICFILTR_EL0.

Configurations

External register PMICNTR_EL0 bits [63:0] are architecturally mapped to AArch64 System
register PMICNTR_EL0[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented. Otherwise, direct
accesses to PMICNTR_EL0 are RES0.

PMICNTR_EL0 is in the Core power domain.

Attributes

PMICNTR_EL0 is a 64-bit register.

Field descriptions

ICNT, bits [63:0]

Instruction Counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMICNTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x100 from PMU PMICNTR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

ICNT

63 32

ICNT

31 0

Frame Offset

PMU 0x100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13400
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.34 PMICNTSVR_EL1, Performance Monitors Instruction Count Saved Value Register

The PMICNTSVR_EL1 characteristics are:

Purpose

Captures the PMU Instruction counter, PMU.PMICNTR_EL0.

Configurations

External register PMICNTSVR_EL1 bits [63:0] are architecturally mapped to AArch64 System
register PMICNTSVR_EL1[63:0].

This register is present only when FEAT_PMUv3_ICNTR is implemented and FEAT_PMUv3_SS
is implemented. Otherwise, direct accesses to PMICNTSVR_EL1 are RES0.

Attributes

PMICNTSVR_EL1 is a 64-bit register.

Field descriptions

ICNT, bits [63:0]

Sampled Instruction Count. The value of PMU.PMICNTR_EL0 at the last successful Capture
event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMICNTSVR_EL1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x700 from PMU PMICNTSVR_EL1 can be accessed through the PMU block as follows:

ICNT

63 32

ICNT

31 0

Frame Offset

PMU 0x700
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13401
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.35 PMIIDR, Performance Monitors Implementation Identification Register

The PMIIDR characteristics are:

Purpose

Provides discovery information about the Performance Monitor component.

Configurations

This register is present only when (FEAT_PMUv3_EXT32 is implemented and an implementation
implements PMIIDR) or FEAT_PMUv3_EXT64 is implemented. Otherwise, direct accesses to
PMIIDR are RES0.

Attributes

PMIIDR is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3_EXT64 is implemented:

Bits [63:32]

Reserved, RES0.

ProductID, bits [31:20]

Part number, bits [11:0]. The part number is selected by the designer of the component.

Matches the PMU.PMPIDR1.PART_1, PMU.PMPIDR0.PART_0 fields if present.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

Component major revision.

Defines either a variant of the component defined by PMIIDR.ProductID, or the major revision of
the component.

When defining a major revision, PMIIDR.Variant and PMIIDR.Revision together form the revision
number of the component, with this field being the most significant part.

When a component is changed, PMIIDR.Variant or PMIIDR.Revision is increased to ensure that
software can differentiate between different revisions of the component. If this field is increased,
PMIIDR.Revision should be set to 0b0000.

Matches the PMU.PMPIDR2.REVISION field, if present.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

63 32

ProductID

31 20

Variant

19 16

Revision

15 12 11 8 7 6 0

Implementer[10:7] Implementer[6:0
]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13402
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Revision, bits [15:12]

Component minor revision.

PMIIDR.Variant and PMIIDR.Revision together form the revision number of the component, with
this field being the least significant part.

When a component is changed, PMIIDR.Variant or PMIIDR.Revision is increased to ensure that
software can differentiate between different revisions of the component. If PMIIDR.Variant field is
increased, this field should be set to 0b0000, otherwise the value in this field should be increased.

Matches the PMU.PMPIDR3.REVAND field, if present.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:8, 6:0]

JEDEC-assigned JEP106 identifcation code of the designer of the component.

Bits [11:8] are the JEP106 bank identifier minus 1 and bits [6:0] are the JEP106 identification code
for the designer of the component.

Note

For Arm Limited, the JEP106 bank is 5 and the JEP106 identification code is 0x3B, meaning
PMIIDR[11:0] has the value 0x43B.

Bits [11:8] match the PMU.PMPIDR4.DES_2 field, if present.

Bits[6:0] match the {PMPIDR2.DES1, PMPIDR1.DES_0} fields if present.

This field has an IMPLEMENTATION DEFINED value.

The Implementer field is split as follows:

• Implementer[10:7] is PMIIDR[11:8].

• Implementer[6:0] is PMIIDR[6:0].

Access to this field is RO.

Bit [7]

Reserved, RES0.

Otherwise:

ProductID, bits [31:20]

Part number, bits [11:0]. The part number is selected by the designer of the component.

Matches the PMU.PMPIDR1.PART_1, PMU.PMPIDR0.PART_0 fields if present.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

Component major revision.

Defines either a variant of the component defined by PMIIDR.ProductID, or the major revision of
the component.

ProductID

31 20

Variant

19 16

Revision

15 12 11 8 7 6 0

Implementer[10:7] Implementer[6:0
]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13403
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
When defining a major revision, PMIIDR.Variant and PMIIDR.Revision together form the revision
number of the component, with this field being the most significant part.

When a component is changed, PMIIDR.Variant or PMIIDR.Revision is increased to ensure that
software can differentiate between different revisions of the component. If this field is increased,
PMIIDR.Revision should be set to 0b0000.

Matches the PMU.PMPIDR2.REVISION field, if present.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Component minor revision.

PMIIDR.Variant and PMIIDR.Revision together form the revision number of the component, with
this field being the least significant part.

When a component is changed, PMIIDR.Variant or PMIIDR.Revision is increased to ensure that
software can differentiate between different revisions of the component. If PMIIDR.Variant field is
increased, this field should be set to 0b0000, otherwise the value in this field should be increased.

Matches the PMU.PMPIDR3.REVAND field, if present.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:8, 6:0]

JEDEC-assigned JEP106 identifcation code of the designer of the component.

Bits [11:8] are the JEP106 bank identifier minus 1 and bits [6:0] are the JEP106 identification code
for the designer of the component.

Note

For Arm Limited, the JEP106 bank is 5 and the JEP106 identification code is 0x3B, meaning
PMIIDR[11:0] has the value 0x43B.

Bits [11:8] match the PMU.PMPIDR4.DES_2 field, if present.

Bits[6:0] match the {PMPIDR2.DES1, PMPIDR1.DES_0} fields if present.

This field has an IMPLEMENTATION DEFINED value.

The Implementer field is split as follows:

• Implementer[10:7] is PMIIDR[11:8].

• Implementer[6:0] is PMIIDR[6:0].

Access to this field is RO.

Bit [7]

Reserved, RES0.

Accessing PMIIDR

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: Accessible at offset 0xE08 from PMU
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13404
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMIIDR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xE08
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13405
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.36 PMINTEN, Performance Monitors Interrupt Enable register

The PMINTEN characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register,
PMU.PMCCNTR_EL0, and the event counters PMU.PMEVCNTR<n>_EL0.

Configurations

External register PMINTEN bits [63:0] are architecturally mapped to AArch64 System register
PMINTENSET_EL1[63:0].

External register PMINTEN bits [63:0] are architecturally mapped to AArch64 System register
PMINTENCLR_EL1[63:0].

External register PMINTEN bits [31:0] are architecturally mapped to AArch32 System register
PMINTENCLR[31:0].

External register PMINTEN bits [31:0] are architecturally mapped to AArch32 System register
PMINTENSET[31:0].

This register is present only when FEAT_PMUv3_EXT64 is implemented. Otherwise, direct
accesses to PMINTEN are RES0.

Attributes

PMINTEN is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enable.

0b0 Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 disabled.

0b1 Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13406
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
C, bit [31]

PMU.PMCCNTR_EL0 unsigned overflow interrupt request enable bit. Possible values are:

0b0 The cycle counter overflow interrupt request is disabled.

0b1 The cycle counter overflow interrupt request is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter unsigned overflow interrupt request enable bit for PMU.PMEVCNTR<n>_EL0.

If PMU.PMCFGR.N is less than 31, bits [30:PMU.PMCFGR.N] are RAZ/WI.

0b0 The PMU.PMEVCNTR<n>_EL0 event counter interrupt request is disabled.

0b1 The PMU.PMEVCNTR<n>_EL0 event counter interrupt request is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMINTEN

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC50 from PMU PMINTEN can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

Frame Offset

PMU 0xC50
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13407
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.37 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register

The PMINTENCLR_EL1 characteristics are:

Purpose

Allows software to disable the generation of interrupt requests or, when FEAT_EBEP is
implemented, PMU exceptions on overflows from the following counters:

• The cycle counter PMU.PMCCNTR_EL0.

• The event counters PMU.PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter
PMU.PMICNTR_EL0.

Reading from this register shows which overflow interrupt requests or PMU exceptions are enabled.

Configurations

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System
register PMINTENCLR_EL1[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System
register PMINTENSET_EL1[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMINTENCLR_EL1 bits [63:0] are architecturally mapped to AArch64 System
register PMINTENCLR_EL1[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMINTENCLR_EL1 bits [63:0] are architecturally mapped to AArch64 System
register PMINTENSET_EL1[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PMINTENCLR[31:0].

External register PMINTENCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PMINTENSET[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMINTENCLR_EL1 are RES0.

PMINTENCLR_EL1 is in the Core power domain.

Attributes

PMINTENCLR_EL1 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is
implemented or FEAT_PMUv3_ICNTR is implemented

• 32-bit register otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13408
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Field descriptions

When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or
FEAT_PMUv3_ICNTR is implemented:

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 disable. On writes, allows
software to disable the interrupt request on unsigned overflow of PMU.PMICNTR_EL0. On reads,
returns the interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enable status.

0b0 Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 disabled.

0b1 Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0 disable. On
writes, allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMU.PMCCNTR_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMU.PMCCNTR_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13409
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
• Otherwise, access to this field is W1C.

P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0 disable. On
writes, allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMEVCNTR<n>_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Otherwise:

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0 disable. On
writes, allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMU.PMCCNTR_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMU.PMCCNTR_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13410
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0 disable. On
writes, allows software to disable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMEVCNTR<n>_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Accessing PMINTENCLR_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3_ICNTR is implemented or
FEAT_PMUv3p9 is implemented: [63:0] Accessible at offset 0xC60 from PMU

PMINTENCLR_EL1 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When FEAT_PMUv3_EXT32 is implemented and SoftwareLockStatus(), accesses to this
register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3_ICNTR is not implemented and
FEAT_PMUv3p9 is not implemented: [31:0] Accessible at offset 0xC60 from PMU

PMINTENCLR_EL1 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xC60 63:0

Frame Offset Range

PMU 0xC60 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13411
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.38 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register

The PMINTENSET_EL1 characteristics are:

Purpose

Allows software to enable the generation of interrupt requests or, when FEAT_EBEP is
implemented, PMU exceptions on overflows from the following counters:

• The cycle counter PMU.PMCCNTR_EL0.

• The event counters PMU.PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter
PMU.PMICNTR_EL0.

Reading from this register shows which overflow interrupt requests or PMU exceptions are enabled.

Configurations

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch64 System
register PMINTENSET_EL1[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch64 System
register PMINTENCLR_EL1[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMINTENSET_EL1 bits [63:0] are architecturally mapped to AArch64 System
register PMINTENSET_EL1[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMINTENSET_EL1 bits [63:0] are architecturally mapped to AArch64 System
register PMINTENCLR_EL1[63:0] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PMINTENSET[31:0].

External register PMINTENSET_EL1 bits [31:0] are architecturally mapped to AArch32 System
register PMINTENCLR[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMINTENSET_EL1 are RES0.

PMINTENSET_EL1 is in the Core power domain.

Attributes

PMINTENSET_EL1 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is
implemented or FEAT_PMUv3_ICNTR is implemented

• 32-bit register otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13412
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Field descriptions

When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or
FEAT_PMUv3_ICNTR is implemented:

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enable. On writes, allows software
to enable the interrupt request on unsigned overflow of PMU.PMICNTR_EL0. On reads, returns the
interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enable status.

0b0 Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 disabled.

0b1 Interrupt request on unsigned overflow of PMU.PMICNTR_EL0 enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Otherwise:

Reserved, RES0.

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0 enable. On
writes, allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMU.PMCCNTR_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMU.PMCCNTR_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13413
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
• Otherwise, access to this field is W1S.

P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0 enable. On
writes, allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMEVCNTR<n>_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Otherwise:

C, bit [31]

Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0 enable. On
writes, allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMU.PMCCNTR_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMU.PMCCNTR_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMU.PMCCNTR_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13414
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0 enable. On
writes, allows software to enable the interrupt request or PMU exception on unsigned overflow of
PMEVCNTR<n>_EL0. On reads, returns the interrupt request or PMU exception on unsigned
overflow of PMEVCNTR<n>_EL0 enable status.

0b0 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
disabled.

0b1 Interrupt request or PMU exception on unsigned overflow of PMEVCNTR<n>_EL0
enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Accessing PMINTENSET_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3_ICNTR is implemented or
FEAT_PMUv3p9 is implemented: [63:0] Accessible at offset 0xC40 from PMU

PMINTENSET_EL1 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When FEAT_PMUv3_EXT32 is implemented and SoftwareLockStatus(), accesses to this
register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3_ICNTR is not implemented and
FEAT_PMUv3p9 is not implemented: [31:0] Accessible at offset 0xC40 from PMU

PMINTENSET_EL1 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xC40 63:0

Frame Offset Range

PMU 0xC40 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13415
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.39 PMITCTRL, Performance Monitors Integration mode Control register

The PMITCTRL characteristics are:

Purpose

Enables the Performance Monitors to switch from default mode into integration mode, where test
software can control directly the inputs and outputs of the PE, for integration testing or topology
detection.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented and an implementation
implements PMITCTRL. Otherwise, direct accesses to PMITCTRL are RES0.

Attributes

PMITCTRL is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

IME, bit [0]

Integration mode enable. When IME == 1, the device reverts to an integration mode to enable
integration testing or topology detection.

0b0 Normal operation.

0b1 Integration mode enabled.

The integration mode behavior is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• The following resets apply:

— If the register is implemented in the Core power domain:

— On a Cold reset, this field resets to 0.

— On an External debug reset, the value of this field is unchanged.

— On a Warm reset, the value of this field is unchanged.

— If the register is implemented in the External debug power domain:

— On a Cold reset, the value of this field is unchanged.

— On an External debug reset, this field resets to 0.

— On a Warm reset, the value of this field is unchanged.

RES0

31 1 0

IME
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13416
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMITCTRL

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xF00 from PMU PMITCTRL can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset

PMU 0xF00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13417
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.40 PMLAR, Performance Monitors Lock Access Register

The PMLAR characteristics are:

Purpose

Allows or disallows access to the Performance Monitors registers through a memory-mapped
interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance
Monitors registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Performance Monitors registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMLAR are RES0.

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMU.PMLSR to check the current status of the
lock.

Attributes

PMLAR is a 32-bit register.

Field descriptions

When Software Lock is implemented:

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write
accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

Otherwise:

Otherwise

Bits [31:0]

Reserved, RES0.

KEY

31 0

RES0

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13418
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMLAR

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFB0 from PMU PMLAR can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are WO.

Frame Offset

PMU 0xFB0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13419
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.41 PMLSR, Performance Monitors Lock Status Register

The PMLSR characteristics are:

Purpose

Indicates the current status of the software lock for Performance Monitors registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance
Monitors registers. Use of this lock mechanism reduces the risk of accidental damage to the contents
of the Performance Monitors registers. It does not, and cannot, prevent all accidental or malicious
damage.

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented. Otherwise, direct
accesses to PMLSR are RES0.

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined
debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses PMU.PMLAR to set or clear the lock, and PMLSR to check the current status of the
lock.

Attributes

PMLSR is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required.

Reads as 0b0.

Access to this field is RO.

SLK, bit [1]

When Software Lock is implemented and FEAT_DoPD is not implemented:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access,
or when Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when Software Lock is implemented, possible values of this field
are:

0b0 Lock clear. Writes are permitted to this component's registers.

0b1 Lock set. Writes to this component's registers are ignored, and reads have no side
effects.

The reset behavior of this field is:

• On an External debug reset, this field resets to 1.

Otherwise:

Reserved, RAZ.

RES0

31 3

0

2 1 0

nTT SLI
SLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13420
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field
is RAZ.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Software Lock not implemented or not memory-mapped access.

0b1 Software Lock implemented and memory-mapped access.

Access to this field is RO.

Accessing PMLSR

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFB4 from PMU PMLSR can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xFB4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13421
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.42 PMMIR, Performance Monitors Machine Identification Register

The PMMIR characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and FEAT_PMUv3p4 is
implemented. Otherwise, direct accesses to PMMIR are RES0.

PMMIR is in the Core power domain.

Attributes

PMMIR is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_PMUv3_EXT64 is implemented:

Bits [63:28]

Reserved, RES0.

EDGE, bits [27:24]

PMU event edge detection. With PMMIR_EL1.THWIDTH, indicates implementation of event
counter thresholding features.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_EDGE is not implemented.

0b0001 FEAT_PMUv3_EDGE is implemented.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, the only permitted value is 0b0000.

FEAT_PMUv3_EDGE implements the functionality identified by the value 0b0001.

Access to this field is RO.

THWIDTH, bits [23:20]

PMU.PMEVTYPER<n>_EL0.TH width. Indicates implementation of the FEAT_PMUv3_TH
feature, and, if implemented, the size of the PMU.PMEVTYPER<n>_EL0.TH field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_TH is not implemented.

0b0001 1 bit. PMU.PMEVTYPER<n>_EL0.TH[11:1] are RES0.

0b0010 2 bits. PMU.PMEVTYPER<n>_EL0.TH[11:2] are RES0.

0b0011 3 bits. PMU.PMEVTYPER<n>_EL0.TH[11:3] are RES0.

0b0100 4 bits. PMU.PMEVTYPER<n>_EL0.TH[11:4] are RES0.

RES0

63 32

RES0

31 28

EDGE

27 24

THWIDTH

23 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13422
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
0b0101 5 bits. PMU.PMEVTYPER<n>_EL0.TH[11:5] are RES0.

0b0110 6 bits. PMU.PMEVTYPER<n>_EL0.TH[11:6] are RES0.

0b0111 7 bits. PMU.PMEVTYPER<n>_EL0.TH[11:7] are RES0.

0b1000 8 bits. PMU.PMEVTYPER<n>_EL0.TH[11:8] are RES0.

0b1001 9 bits. PMU.PMEVTYPER<n>_EL0.TH[11:9] are RES0.

0b1010 10 bits. PMU.PMEVTYPER<n>_EL0.TH[11:10] are RES0.

0b1011 11 bits. PMU.PMEVTYPER<n>_EL0.TH[11] is RES0.

0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMU.PMEVTYPER<n>_EL0.TH is
2(PMMIR.THWIDTH) minus one.

Access to this field is RO.

BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

If the bus count information is not available, this field will read as zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment in a single
cycle. If the STALL_SLOT event is not implemented, this field might read as zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13423
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Bits [31:28]

Reserved, RES0.

EDGE, bits [27:24]

PMU event edge detection. With PMMIR_EL1.THWIDTH, indicates implementation of event
counter thresholding features.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_EDGE is not implemented.

0b0001 FEAT_PMUv3_EDGE is implemented.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, the only permitted value is 0b0000.

FEAT_PMUv3_EDGE implements the functionality identified by the value 0b0001.

Access to this field is RO.

THWIDTH, bits [23:20]

PMU.PMEVTYPER<n>_EL0.TH width. Indicates implementation of the FEAT_PMUv3_TH
feature, and, if implemented, the size of the PMU.PMEVTYPER<n>_EL0.TH field.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 FEAT_PMUv3_TH is not implemented.

0b0001 1 bit. PMU.PMEVTYPER<n>_EL0.TH[11:1] are RES0.

0b0010 2 bits. PMU.PMEVTYPER<n>_EL0.TH[11:2] are RES0.

0b0011 3 bits. PMU.PMEVTYPER<n>_EL0.TH[11:3] are RES0.

0b0100 4 bits. PMU.PMEVTYPER<n>_EL0.TH[11:4] are RES0.

0b0101 5 bits. PMU.PMEVTYPER<n>_EL0.TH[11:5] are RES0.

0b0110 6 bits. PMU.PMEVTYPER<n>_EL0.TH[11:6] are RES0.

0b0111 7 bits. PMU.PMEVTYPER<n>_EL0.TH[11:7] are RES0.

0b1000 8 bits. PMU.PMEVTYPER<n>_EL0.TH[11:8] are RES0.

0b1001 9 bits. PMU.PMEVTYPER<n>_EL0.TH[11:9] are RES0.

0b1010 10 bits. PMU.PMEVTYPER<n>_EL0.TH[11:10] are RES0.

0b1011 11 bits. PMU.PMEVTYPER<n>_EL0.TH[11] is RES0.

0b1100 12 bits.

All other values are reserved.

If FEAT_PMUv3_TH is not implemented, this field is zero.

Otherwise, the largest value that can be written to PMU.PMEVTYPER<n>_EL0.TH is
2(PMMIR.THWIDTH) minus one.

Access to this field is RO.

RES0

31 28

EDGE

27 24

THWIDTH

23 20 19 16

BUS_SLOTS

15 8

SLOTS

7 0

BUS_WIDTH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13424
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
BUS_WIDTH, bits [19:16]

Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as
Log2(number of bytes), plus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 The information is not available.

0b0011 Four bytes.

0b0100 8 bytes.

0b0101 16 bytes.

0b0110 32 bytes.

0b0111 64 bytes.

0b1000 128 bytes.

0b1001 256 bytes.

0b1010 512 bytes.

0b1011 1024 bytes.

0b1100 2048 bytes.

All other values are reserved.

Each transfer is up to this number of bytes. An access might be smaller than the bus width.

When this field is nonzero, each access counted by BUS_ACCESS is at most BUS_WIDTH bytes.
An implementation might treat a wide bus as multiple narrower buses, such that a wide access on
the bus increments the BUS_ACCESS counter by more than one.

Access to this field is RO.

BUS_SLOTS, bits [15:8]

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle.

When this field is nonzero, the largest value by which the BUS_ACCESS event might increment in
a single BUS_CYCLES cycle is BUS_SLOTS.

If the bus count information is not available, this field will read as zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment in a single
cycle. If the STALL_SLOT event is not implemented, this field might read as zero.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMMIR

If the Core power domain is off or in a low-power state, access to this register returns an Error.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented or FEAT_PMUv3p9 is implemented: [63:0] Accessible at
offset 0xE40 from PMU
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13425
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMMIR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT32 is implemented and FEAT_PMUv3p9 is not implemented: [31:0] Accessible
at offset 0xE40 from PMU

PMMIR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset Range

PMU 0xE40 63:0

Frame Offset Range

PMU 0xE40 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13426
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.43 PMOVS, Performance Monitors Overflow Flag Status register

The PMOVS characteristics are:

Purpose

The unsigned overflow flags for the Cycle Count Register, PMU.PMCCNTR_EL0, and each of the
implemented event counters PMEVCNTR<n>.

Configurations

External register PMOVS bits [63:0] are architecturally mapped to AArch64 System register
PMOVSSET_EL0[63:0].

External register PMOVS bits [63:0] are architecturally mapped to AArch64 System register
PMOVSCLR_EL0[63:0].

External register PMOVS bits [31:0] are architecturally mapped to AArch32 System register
PMOVSSET[31:0].

External register PMOVS bits [31:0] are architecturally mapped to AArch32 System register
PMOVSR[31:0].

This register is present only when FEAT_PMUv3_EXT64 is implemented. Otherwise, direct
accesses to PMOVS are RES0.

Attributes

PMOVS is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

PMU.PMICNTR_EL0 unsigned overflow flag.

0b0 PMU.PMICNTR_EL0 has not overflowed.

0b1 PMU.PMICNTR_EL0 has overflowed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13427
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
C, bit [31]

Cycle counter unsigned overflow flag.

0b0 The cycle counter has not overflowed since this bit was last cleared.

0b1 The cycle counter has overflowed since this bit was last cleared.

PMU.PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMU.PMCCNTR_EL0[31:0] or unsigned overflow of PMU.PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 30 to 0

Event counter unsigned overflow bit for PMU.PMEVCNTR<n>_EL0.

If PMU.PMCFGR.N is less than 31, bits [30:PMU.PMCFGR.N] are RAZ/WI.

0b0 PMU.PMEVCNTR<n>_EL0 has not overflowed since this bit was last cleared.

0b1 PMU.PMEVCNTR<n>_EL0 has overflowed since this bit was last cleared.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMU.PMCR_EL0.LP control whether
an overflow is detected from unsigned overflow of PMU.PMEVCNTR<n>_EL0[31:0] or unsigned
overflow of PMU.PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMOVS

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC90 from PMU PMOVS can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

Frame Offset

PMU 0xC90
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13428
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.44 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

The PMOVSCLR_EL0 characteristics are:

Purpose

Allows software to clear the unsigned overflow flags for the following counters to 0:

• The cycle counter PMU.PMCCNTR_EL0.

• The event counters PMU.PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter
PMU.PMICNTR_EL0.

Reading from this register shows the current unsigned overflow flag values.

Configurations

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMOVSCLR_EL0 bits [63:32] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[63:32] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMOVSCLR_EL0 bits [63:32] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[63:32] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMOVSSET[31:0].

External register PMOVSCLR_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMOVSR[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMOVSCLR_EL0 are RES0.

PMOVSCLR_EL0 is in the Core power domain.

Attributes

PMOVSCLR_EL0 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is
implemented or FEAT_PMUv3_ICNTR is implemented

• 32-bit register otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13429
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Field descriptions

When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or
FEAT_PMUv3_ICNTR is implemented:

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

Unsigned overflow flag for PMU.PMICNTR_EL0 clear. On writes, allows software to clear the
unsigned overflow flag for PMU.PMICNTR_EL0 to 0. On reads, returns the unsigned overflow flag
for PMU.PMICNTR_EL0.

0b0 PMU.PMICNTR_EL0 has not overflowed.

0b1 PMU.PMICNTR_EL0 has overflowed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

C, bit [31]

Unsigned overflow flag for PMU.PMCCNTR_EL0 clear. On writes, allows software to clear the
unsigned overflow flag for PMU.PMCCNTR_EL0 to 0. On reads, returns the unsigned overflow
flag for PMU.PMCCNTR_EL0 overflow status.

0b0 PMU.PMCCNTR_EL0 has not overflowed.

0b1 PMU.PMCCNTR_EL0 has overflowed.

PMU.PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMU.PMCCNTR_EL0[31:0] or unsigned overflow of PMU.PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13430
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n>_EL0 clear. On writes, allows software to clear the
unsigned overflow flag for PMEVCNTR<n>_EL0 to 0. On reads, returns the unsigned overflow
flag for PMEVCNTR<n>_EL0 overflow status.

0b0 PMEVCNTR<n>_EL0 has not overflowed.

0b1 PMEVCNTR<n>_EL0 has overflowed.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMU.PMCR_EL0.LP control whether
an overflow is detected from unsigned overflow of PMU.PMEVCNTR<n>_EL0[31:0] or unsigned
overflow of PMU.PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Otherwise:

C, bit [31]

Unsigned overflow flag for PMU.PMCCNTR_EL0 clear. On writes, allows software to clear the
unsigned overflow flag for PMU.PMCCNTR_EL0 to 0. On reads, returns the unsigned overflow
flag for PMU.PMCCNTR_EL0 overflow status.

0b0 PMU.PMCCNTR_EL0 has not overflowed.

0b1 PMU.PMCCNTR_EL0 has overflowed.

PMU.PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMU.PMCCNTR_EL0[31:0] or unsigned overflow of PMU.PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n>_EL0 clear. On writes, allows software to clear the
unsigned overflow flag for PMEVCNTR<n>_EL0 to 0. On reads, returns the unsigned overflow
flag for PMEVCNTR<n>_EL0 overflow status.

0b0 PMEVCNTR<n>_EL0 has not overflowed.

0b1 PMEVCNTR<n>_EL0 has overflowed.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13431
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMU.PMCR_EL0.LP control whether
an overflow is detected from unsigned overflow of PMU.PMEVCNTR<n>_EL0[31:0] or unsigned
overflow of PMU.PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1C.

Accessing PMOVSCLR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3_ICNTR is implemented or
FEAT_PMUv3p9 is implemented: [63:0] Accessible at offset 0xC80 from PMU

PMOVSCLR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When FEAT_PMUv3_EXT32 is implemented and SoftwareLockStatus(), accesses to this
register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3_ICNTR is not implemented and
FEAT_PMUv3p9 is not implemented: [31:0] Accessible at offset 0xC80 from PMU

PMOVSCLR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xC80 63:0

Frame Offset Range

PMU 0xC80 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13432
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.45 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register

The PMOVSSET_EL0 characteristics are:

Purpose

Allows software to set the unsigned overflow flags for the following counters to 1:

• The cycle counter PMU.PMCCNTR_EL0.

• The event counters PMU.PMEVCNTR<n>_EL0.

• When FEAT_PMUv3_ICNTR is implemented, the instruction counter
PMU.PMICNTR_EL0.

Reading from this register shows the current unsigned overflow flag values.

Configurations

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[31:0] when FEAT_PMUv3_EXT32 is implemented and
FEAT_PMUv3p9 is not implemented.

External register PMOVSSET_EL0 bits [63:32] are architecturally mapped to AArch64 System
register PMOVSSET_EL0[63:32] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMOVSSET_EL0 bits [63:32] are architecturally mapped to AArch64 System
register PMOVSCLR_EL0[63:32] when FEAT_PMUv3_EXT64 is implemented or
FEAT_PMUv3p9 is implemented.

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMOVSR[31:0].

External register PMOVSSET_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMOVSSET[31:0].

This register is present only when FEAT_PMUv3_EXT is implemented. Otherwise, direct accesses
to PMOVSSET_EL0 are RES0.

PMOVSSET_EL0 is in the Core power domain.

Attributes

PMOVSSET_EL0 is a:

• 64-bit register when FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is
implemented or FEAT_PMUv3_ICNTR is implemented

• 32-bit register otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13433
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Field descriptions

When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3p9 is implemented or
FEAT_PMUv3_ICNTR is implemented:

Bits [63:33]

Reserved, RES0.

F0, bit [32]

When FEAT_PMUv3_ICNTR is implemented:

Unsigned overflow flag for PMU.PMICNTR_EL0 set. On writes, allows software to set the
unsigned overflow flag for PMU.PMICNTR_EL0 to 1. On reads, returns the unsigned overflow flag
for PMU.PMICNTR_EL0.

0b0 PMU.PMICNTR_EL0 has not overflowed.

0b1 PMU.PMICNTR_EL0 has overflowed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Otherwise:

Reserved, RES0.

C, bit [31]

Unsigned overflow flag for PMU.PMCCNTR_EL0 set. On writes, allows software to set the
unsigned overflow flag for PMU.PMCCNTR_EL0 to 1. On reads, returns the unsigned overflow
flag for PMU.PMCCNTR_EL0 overflow status.

0b0 PMU.PMCCNTR_EL0 has not overflowed.

0b1 PMU.PMCCNTR_EL0 has overflowed.

PMU.PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMU.PMCCNTR_EL0[31:0] or unsigned overflow of PMU.PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

RES0

63 33

F0

32

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13434
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n>_EL0 set. On writes, allows software to set the
unsigned overflow flag for PMEVCNTR<n>_EL0 to 1. On reads, returns the unsigned overflow
flag for PMEVCNTR<n>_EL0 overflow status.

0b0 PMEVCNTR<n>_EL0 has not overflowed.

0b1 PMEVCNTR<n>_EL0 has overflowed.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMU.PMCR_EL0.LP control whether
an overflow is detected from unsigned overflow of PMU.PMEVCNTR<n>_EL0[31:0] or unsigned
overflow of PMU.PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Otherwise:

C, bit [31]

Unsigned overflow flag for PMU.PMCCNTR_EL0 set. On writes, allows software to set the
unsigned overflow flag for PMU.PMCCNTR_EL0 to 1. On reads, returns the unsigned overflow
flag for PMU.PMCCNTR_EL0 overflow status.

0b0 PMU.PMCCNTR_EL0 has not overflowed.

0b1 PMU.PMCCNTR_EL0 has overflowed.

PMU.PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of
PMU.PMCCNTR_EL0[31:0] or unsigned overflow of PMU.PMCCNTR_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

P<m>, bit [m], for m = 30 to 0

Unsigned overflow flag for PMEVCNTR<n>_EL0 set. On writes, allows software to set the
unsigned overflow flag for PMEVCNTR<n>_EL0 to 1. On reads, returns the unsigned overflow
flag for PMEVCNTR<n>_EL0 overflow status.

0b0 PMEVCNTR<n>_EL0 has not overflowed.

0b1 PMEVCNTR<n>_EL0 has overflowed.

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13435
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMU.PMCR_EL0.LP control whether
an overflow is detected from unsigned overflow of PMU.PMEVCNTR<n>_EL0[31:0] or unsigned
overflow of PMU.PMEVCNTR<n>_EL0[63:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When m >= NUM_PMU_COUNTERS, access to this field is RAZ/WI.

• When SoftwareLockStatus(), access to this field is RO.

• Otherwise, access to this field is W1S.

Accessing PMOVSSET_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented, or FEAT_PMUv3_ICNTR is implemented or
FEAT_PMUv3p9 is implemented: [63:0] Accessible at offset 0xCC0 from PMU

PMOVSSET_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When FEAT_PMUv3_EXT32 is implemented and SoftwareLockStatus(), accesses to this
register are RO.

• Otherwise, accesses to this register are RW.

 When FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3_ICNTR is not implemented and
FEAT_PMUv3p9 is not implemented: [31:0] Accessible at offset 0xCC0 from PMU

PMOVSSET_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are RO.

• Otherwise, accesses to this register are RW.

Frame Offset Range

PMU 0xCC0 63:0

Frame Offset Range

PMU 0xCC0 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13436
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.46 PMPCSCTL, PC Sample-based Profiling Control Register

The PMPCSCTL characteristics are:

Purpose

Controls the PC Sample-based Profiling feature.

Configurations

This register is present only when FEAT_PCSRv8p9 is implemented. Otherwise, direct accesses to
PMPCSCTL are RES0.

PMPCSCTL is in the Core power domain.

Attributes

PMPCSCTL is a 64-bit register.

Field descriptions

Bits [63:5]

Reserved, RES0.

SS, bit [4]

When FEAT_PMUv3_SS is implemented:

Sample on Snapshot.

Controls whether the following registers are sampled on a PMU snapshot Capture event:

• If FEAT_PMUv3_EXT32 is implemented: PMU.PMCID1SR, PMU.PMCID2SR,
PMU.PMPCSR, and PMU.PMVIDSR.

• If FEAT_PMUv3_EXT64 is implemented: PMU.PMCCIDSR, PMU.PMPCSR, and
PMU.PMVCIDSR.

0b0 Sample on Read.

0b1 Sample on Snapshot.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

IMP, bit [1]

Profiling enable implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 PMPCSCTL.EN reads-as-zero and ignores writes.

0b1 PMPCSCTL.EN is a read-write control bit.

Access to this field is RO.

RES0

63 32

RES0

31 5

SS

4

RES0

3 2 1

EN

0

IMP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13437
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
EN, bit [0]

When PMU.PMPCSCTL.IMP == 1:

PC Sample-based Profiling Enable.

0b0 PC Sample-based Profiling is suspended.

0b1 PC Sample-based Profiling is active.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing PMPCSCTL

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xE50 from PMU PMPCSCTL can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RW.

Frame Offset

PMU 0xE50
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13438
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.47 PMPCSR, Program Counter Sample Register

The PMPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and FEAT_PCSRv8p2 is
implemented. Otherwise, direct accesses to PMPCSR are RES0.

PMPCSR is in the Core power domain.

Note
Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are
implemented, a 64-bit read of PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0]
followed by a 32-bit read of PMPCSR[63:32], returning the combined value. For example, if the PE
is in Debug state then a 64-bit atomic read returns bits[31:0] == 0xFFFFFFFF and bits[63:32]
UNKNOWN.

Attributes

PMPCSR is a 64-bit register.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

Together with the NSE field, indicates the Security state that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

Otherwise:

Non-secure state sample. Indicates the Security state that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.

NS

63

EL

62 61

T

60 59

RES0

58 56

PCSample[55:32]

55 32

NSE

PCSample[31:0]

31 0

NSE NS Meaning

0b0 0b0 When Secure state is implemented, Secure. Otherwise reserved.

0b0 0b1 Non-secure.

0b1 0b0 Root.

0b1 0b1 Realm.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13439
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
0b1 Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

0b00 Sample is from EL0.

0b01 Sample is from EL1.

0b10 Sample is from EL2.

0b11 Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

T, bit [60]

When FEAT_TME is implemented:

Transactional state of the sample. Indicates the Transactional state that is associated with the most
recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR
sample.

0b0 Sample is from Non-transactional state.

0b1 Sample is from Transactional state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSE, bit [59]

When FEAT_RME is implemented:

Together with the NS field, indicates the Security state that is associated with the most recent
PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

For a description of the values derived by evaluating NS and NSE together, see PMPCSR.NS.

Otherwise:

Reserved, RES0.

Bits [58:56]

Reserved, RES0.

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples
can be determined from PMPCSR.{NS,EL}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If a branch instruction has retired since the PE left reset state, then the first read of PMPCSR[31:0]
is permitted but not required to return 0xFFFFFFFF.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13440
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMPCSR[31:0] reads as an UNKNOWN value when any of the following are true:

• The PE is in reset state.

• No branch instruction has retired since the PE left reset state, Debug state, or a state where
PC Sample-based Profiling is prohibited.

• No branch instruction has retired since the last read of PMPCSR[31:0].

For the cases where a read of PMPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read
has the side-effect of setting PMPCSR[63:32], PMU.PMCID1SR, PMU.PMCID2SR, and
PMU.PMVIDSR to UNKNOWN values.

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and
has the side-effect of indirectly writing to PMPCSR[63:32], PMU.PMCID1SR, PMU.PMCID2SR,
and PMU.PMVIDSR. The translation regime that PMPCSR samples can be determined from
PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning
the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and
PMPCSR[63:32], PMU.PMCID1SR, PMU.PMCID2SR, and PMU.PMVIDSR are unchanged.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMPCSR

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

Note

A 32-bit access to PMPCSR[63:32] does not update the PC sample registers. Only a 64-bit access to PMPCSR[63:0]
or a 32-bit access to PMPCSR[31:0] updates the PC sample registers. This includes the value a subsequent 32-bit
read of PMPCSR[63:32] will return.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0x200 from PMU

PMPCSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0x200 from PMU

PMPCSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT32 is implemented: [63:32] Accessible at offset 0x204 from PMU

Frame Offset Range

PMU 0x200 63:0

Frame Offset Range

PMU 0x200 31:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13441
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
PMPCSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT64 is implemented: [63:0] Accessible at offset 0x220 from PMU

PMPCSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT32 is implemented: [31:0] Accessible at offset 0x220 from PMU

PMPCSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

 When FEAT_PMUv3_EXT32 is implemented: [63:32] Accessible at offset 0x224 from PMU

PMPCSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset Range

PMU 0x204 63:32

Frame Offset Range

PMU 0x220 63:0

Frame Offset Range

PMU 0x220 31:0

Frame Offset Range

PMU 0x224 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13442
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.48 PMPIDR0, Performance Monitors Peripheral Identification Register 0

The PMPIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMPIDR0. Otherwise, direct accesses to PMPIDR0 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMPIDR0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFE0 from PMU PMPIDR0 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

PART_0

7 0

Frame Offset

PMU 0xFE0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13443
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.49 PMPIDR1, Performance Monitors Peripheral Identification Register 1

The PMPIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMPIDR1. Otherwise, direct accesses to PMPIDR1 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMPIDR1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFE4 from PMU PMPIDR1 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

DES_0

7 4

PART_1

3 0

Frame Offset

PMU 0xFE4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13444
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.50 PMPIDR2, Performance Monitors Peripheral Identification Register 2

The PMPIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMPIDR2. Otherwise, direct accesses to PMPIDR2 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13445
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMPIDR2

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFE8 from PMU PMPIDR2 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xFE8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13446
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.51 PMPIDR3, Performance Monitors Peripheral Identification Register 3

The PMPIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMPIDR3. Otherwise, direct accesses to PMPIDR3 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using PMU.PMPIDR2.REVISION as an extension to the Part number
must use this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMPIDR3

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFEC from PMU PMPIDR3 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

REVAND

7 4

CMOD

3 0

Frame Offset

PMU 0xFEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13447
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.52 PMPIDR4, Performance Monitors Peripheral Identification Register 4

The PMPIDR4 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme.

Configurations

This register is present only when FEAT_PMUv3_EXT is implemented and an implementation
implements PMPIDR4. Otherwise, direct accesses to PMPIDR4 are RES0.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not
implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing PMPIDR4

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFD0 from PMU PMPIDR4 can be accessed through the PMU block as follows:

• When FEAT_DoPD is implemented and !IsCorePowered(), accesses to this register generate
an error response.

• Otherwise, accesses to this register are RO.

RES0

31 8

0 0 0 0

7 4

DES_2

3 0

SIZE

Frame Offset

PMU 0xFD0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13448
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.53 PMSSCR_EL1, Performance Monitors Snapshot Status and Capture Register

The PMSSCR_EL1 characteristics are:

Purpose

Holds status information about the captured counters and provides a mechanism for software to
initiate a sample.

Configurations

This register is present only when FEAT_PMUv3_SS is implemented. Otherwise, direct accesses to
PMSSCR_EL1 are RES0.

Attributes

PMSSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

NC, bit [32]

No Capture. Indicates whether the PMU counters have been captured.

0b0 PMU counters captured.

0b1 PMU counters not captured.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Bits [31:1]

Reserved, RES0.

SS, bit [0]

Snapshot Capture and Status.

0b0 On a read, the Capture event has completed.

0b1 On a read, the Capture event has not completed.

On a write, request a Capture event.

A write of 0 to this field is ignored.

It is CONSTRAINED UNPREDICTABLE whether a Capture event has completed if this field is modified
when the Capture event is ongoing.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When SoftwareLockStatus(), access to this field is RO.

• When !PMUCaptureEventEnabled(), access to this field is RO.

• Otherwise, access to this field is RW.

RES0

63 33

NC

32

RES0

31 1

SS

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13449
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMSSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xE30 from PMU PMSSCR_EL1 can be accessed through the PMU block as follows:

• When !AllowExternalPMSSAccess(), accesses to this register generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0xE30
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13450
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.54 PMSWINC_EL0, Performance Monitors Software Increment Register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more
information, see SW_INCR.

Configurations

External register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch64 System
register PMSWINC_EL0[31:0].

External register PMSWINC_EL0 bits [31:0] are architecturally mapped to AArch32 System
register PMSWINC[31:0].

This register is present only when FEAT_PMUv3_EXT32 is implemented, FEAT_PMUv3p9 is not
implemented and an implementation implements PMSWINC_EL0. Otherwise, direct accesses to
PMSWINC_EL0 are RES0.

PMSWINC_EL0 is in the Core power domain.

If this register is implemented, use of it is deprecated.

If 1 is written to bit [n] from the external debug interface, it is CONSTRAINED UNPREDICTABLE
whether or not a SW_INCR event is created for counter n. This is consistent with not implementing
the register in the external debug interface.

Attributes

PMSWINC_EL0 is a 32-bit register.

Field descriptions

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 30 to 0

Event counter software increment bit for PMU.PMEVCNTR<n>_EL0.

If PMU.PMCFGR.N is less than 31, bits [30:PMU.PMCFGR.N] are WI.

0b0 No action. The write to this bit is ignored.

0b1 It is CONSTRAINED UNPREDICTABLE whether a SW_INCR event is generated for event
counter n.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

RES0
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13451
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
Accessing PMSWINC_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xCA0 from PMU PMSWINC_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are WI.

• Otherwise, accesses to this register are WO.

Frame Offset

PMU 0xCA0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13452
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.55 PMVCIDSR, CONTEXTIDR_EL1 and VMID Sample Register

The PMVCIDSR characteristics are:

Purpose

Contains the sampled CONTEXTIDR_EL1 and VMID values that are captured on reading
PMU.PMPCSR.

Configurations

This register is present only when FEAT_PMUv3_EXT64 is implemented and FEAT_PCSRv8p2 is
implemented. Otherwise, direct accesses to PMVCIDSR are RES0.

If FEAT_PMUv3_EXT32 is implemented, the same content is present in the same location, and can
be accessed using PMVIDSR[31:0] and PMCID1SR[31:0].

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMVCIDSR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented:

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [39:32]

VMID sample. The VMID associated with the most recent PMU.PMPCSR sample. When the most
recent PMU.PMPCSR sample was generated:

• This field is set to an UNKNOWN value if any of the following apply:

— EL2 is disabled in the current Security state.

— The PE is executing at EL2.

— The PE is executing at EL0, and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}.

• Otherwise:

— If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or
VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.

RES0

63 48

VMID[15:8]

47 40

VMID

39 32

CONTEXTIDR_EL1

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13453
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
— If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0,
PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and
PMVIDSR.VMID[15:8] is RES0.

— If EL2 is using AArch32, this field is set to VTTBR.VMID.

Because the value written to PMVIDSR is an indirect read of the VMID value, it is CONSTRAINED
UNPREDICTABLE whether PMVIDSR is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to the VMID value.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMU.PMPCSR
sample. When the most recent PMU.PMPCSR sample is generated:

• If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.

• If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.

• If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and
this register samples the current banked copy of CONTEXTIDR for the Security state that is
associated with the most recent PMU.PMPCSR sample.

Because the value written to this register is an indirect read of CONTEXTIDR, it is CONSTRAINED
UNPREDICTABLE whether this register is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to CONTEXTIDR.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMVCIDSR

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x208 from PMU PMVCIDSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0x208
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13454
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.56 PMVIDSR, VMID Sample Register

The PMVIDSR characteristics are:

Purpose

Contains the sampled VMID value that is captured on reading PMU.PMPCSR[31:0].

Configurations

This register is present only when FEAT_PMUv3_EXT32 is implemented, FEAT_PCSRv8p2 is
implemented and EL2 is implemented. Otherwise, direct accesses to PMVIDSR are RES0.

PMVIDSR is in the Core power domain.

If FEAT_PMUv3_EXT64 is implemented, the same content is present in the same location, and can
be accessed using PMVCIDSR[63:32].

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external
debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMVIDSR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented:

Extension to VMID[7:0]. For more information, see VMID[7:0].

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

VMID sample. The VMID associated with the most recent PMU.PMPCSR sample. When the most
recent PMU.PMPCSR sample was generated:

• This field is set to an UNKNOWN value if any of the following apply:

— EL2 is disabled in the current Security state.

— The PE is executing at EL2.

— The PE is executing at EL0, and the Effective value of HCR_EL2.{E2H, TGE} is {1,
1}.

• Otherwise:

— If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or
VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.

RES0

31 16

VMID[15:8]

15 8

VMID

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13455
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
— If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0,
PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and
PMVIDSR.VMID[15:8] is RES0.

— If EL2 is using AArch32, this field is set to VTTBR.VMID.

Because the value written to PMVIDSR is an indirect read of the VMID value, it is CONSTRAINED
UNPREDICTABLE whether PMVIDSR is set to the original or new value if PMU.PMPCSR samples:

• An instruction that writes to the VMID value.

• The next Context synchronization event.

• Any instruction executed between these two instructions.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing PMVIDSR

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see
Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0x20C from PMU PMVIDSR can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register
generate an error response.

• Otherwise, accesses to this register are RO.

Frame Offset

PMU 0x20C
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13456
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
I6.3.57 PMZR_EL0, Performance Monitors Zero with Mask

The PMZR_EL0 characteristics are:

Purpose

Zero the set of counters specified by the mask written to PMZR_EL0.

Configurations

External register PMZR_EL0 bits [63:0] are architecturally mapped to AArch64 System register
PMZR_EL0[63:0].

This register is present only when FEAT_PMUv3_EXT64 is implemented and FEAT_PMUv3p9 is
implemented. Otherwise, direct accesses to PMZR_EL0 are RES0.

PMZR_EL0 is in the Core power domain.

Attributes

PMZR_EL0 is a 64-bit register.

Field descriptions

Bits [63:33]

Reserved, RES0.

F<m>, bit [m+32], for m = 0

When FEAT_PMUv3_ICNTR is implemented:

F<m>

Zero fixed-function counter <m>.

0b0 Write is ignored.

0b1 Set fixed-function counter <m> to zero.

Writing 1 to PMZR_EL0.F0 sets PMU.PMICNTR_EL0 to zero.

Otherwise:

Reserved, RES0.

C, bit [31]

Zero PMU.PMCCNTR_EL0.

0b0 Write is ignored.

0b1 Set PMU.PMCCNTR_EL0 to zero.

RES0

63 33 32

F<m>

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P30
P29

P28
P27

P26
P25

P24
P23

P22
P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13457
ID032224 Non-Confidential

External System Control Register Descriptions
I6.3 Performance Monitors external register descriptions
P<m>, bit [m], for m = 30 to 0

Zero PMEVCNTR<n>_EL0.

0b0 Write is ignored.

0b1 Set PMEVCNTR<n>_EL0 to zero.

Accessing this field has the following behavior:

• This field ignores writes if m > UInt(PMCFGR.N).

• Otherwise, this field is write-only.

Accessing PMZR_EL0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xCA0 from PMU PMZR_EL0 can be accessed through the PMU block as follows:

• When DoubleLockStatus(), or !IsCorePowered(), or OSLockStatus() or
!AllowExternalPMUAccess(), accesses to this register generate an error response.

• When SoftwareLockStatus(), accesses to this register are WI.

• Otherwise, accesses to this register are WO.

Frame Offset

PMU 0xCA0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13458
ID032224 Non-Confidential

External System Control Register Descriptions
I6.4 External Activity Monitors Extension registers summary
I6.4 External Activity Monitors Extension registers summary

The memory-mapped interface to the Activity Monitors Extension registers provides read-only access to:

• Read-only copies of the Activity Monitors Extension System registers, with the exception of AMUSERENR.

• An implementation identification register, AMIIDR.

• If they are implemented, the OPTIONAL Activity Monitors CoreSight and ID registers.

The locations of the registers are defined as offsets from a base address. The base address of the memory-mapped
view must be aligned to a 4KB boundary, but is otherwise IMPLEMENTATION DEFINED. Activity Monitors external
register views defines this memory map.

I6.4.1 Activity Monitors external register views

The following tables show the external view of the Activity Monitors registers. All implemented registers are RO.
Offsets within the 4KB regions not defined in these tables are RAZ/WI.

• Table I6-3 shows the external view of the Activity Monitors registers when FEAT_AMU_EXT32 is
implemented.

• Table I6-4 shows the external view of the Activity Monitors registers when FEAT_AMU_EXT64 is
implemented.

• Table I6-5 shows the Peripheral and Component Identification Registers AMPIDR<n>, and AMCIDR<n>.
The offsets of these registers are the same in both FEAT_AMU_EXT32 and FEAT_AMU_EXT64.

Each entry in the Name column links to the register description in Activity Monitors external register descriptions,
and:

• If the System register? column of the table shows that the register is a System register, the memory-mapped
interface provides a view of the System register described in:

— Activity Monitors registers, for the AArch64 System register.

— Activity Monitors registers, for the AArch32 System register.

• Otherwise, the register is accessible only using the external memory-mapped interface.

Table I6-3 Activity Monitors external register views when FEAT_AMU_EXT32 is implemented

Name Description System register? Size Offset

AMEVCNTR0<n>[31:0]

AMEVCNTR0<n>[63:32]

Activity Monitor Event Counter registers 0 Yes 64 0x000+8n

0x004+8n

AMEVCNTR1<n>[31:0]

AMEVCNTR1<n>[63:32]

Activity Monitor Event Counter registers 1 Yes 64 0x100+8n

0x104+8n

AMEVTYPER0<n> Activity Monitor Event Type registers 0 Yes 32 0x400+4n

AMEVTYPER1<n> Activity Monitor Event Type registers 1 Yes 32 0x480+4n

AMCNTENSET0 Activity Monitors Counter Enable Set register 0 Yes 32 0xC00

AMCNTENSET1 Activity Monitors Counter Enable Set register 1 Yes 32 0xC04

AMCNTENCLR0 Activity Monitors Counter Enable Clear register 0 Yes 32 0xC20

AMCNTENCLR1 Activity Monitors Counter Enable Clear register 1 Yes 32 0xC24

AMCGCR Activity Monitors Counter Group Configuration Register Yes 32 0xCE0

AMCFGR Activity Monitors Configuration Register Yes 32 0xE00

AMCR Activity Monitors Control Register Yes 32 0xE04

AMIIDR Activity Monitors Implementation Identification Register No 32 0xE08
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13459
ID032224 Non-Confidential

External System Control Register Descriptions
I6.4 External Activity Monitors Extension registers summary
AMDEVAFF0a Device Affinity registers No 32 0xFA8

AMDEVAFF1a No 32 0xFAC

AMDEVARCHa Device Architecture register No 32 0xFBC

AMDEVTYPEa Device Type register No 32 0xFCC

a. CoreSight interface registers, see Management registers and CoreSight compliance.

Table I6-4 Activity Monitors external register views when FEAT_AMU_EXT64 is implemented

Name Description System register? Size Offset

AMEVCNTR0<n>[63:0] Activity Monitor Event Counter registers 0 Yes 64 0x000+8n

AMEVCNTR1<n>[63:0] Activity Monitor Event Counter registers 1 Yes 64 0x100+8n

AMEVTYPER0<n> Activity Monitor Event Type registers 0 Yes 64 0x400+8n

AMEVTYPER1<n> Activity Monitor Event Type registers 1 Yes 64 0x500+8n

AMCNTENSET Activity Monitors Counter Enable Set register Yes 64 0xC00

AMCNTEN Activity Monitors Counter Enable register Yes 64 0xC10

AMCNTENCLR Activity Monitors Counter Enable Clear register Yes 64 0xC20

AMCGCR Activity Monitors Counter Group Configuration Register Yes 64 0xCE0

AMCFGR Activity Monitors Configuration Register Yes 64 0xE00

AMIIDR Activity Monitors Implementation Identification Register No 64 0xE08

AMCR Activity Monitors Control Register Yes 64 0xE10

AMDEVAFFa Device Affinity registers No 64 0xFA8

AMDEVARCHa Device Architecture register No 32 0xFBC

AMDEVTYPEa Device Type register No 32 0xFCC

a. CoreSight interface registers, see Management registers and CoreSight compliance.

Table I6-3 Activity Monitors external register views when FEAT_AMU_EXT32 is implemented (continued)

Name Description System register? Size Offset

Table I6-5 Activity Monitors external register views of Peripheral and Component Identification
Registers

Name Description System register? Size Offset

AMPIDR4a Peripheral ID registers No 32 0xFD0

AMPIDR0a No 32 0xFE0

AMPIDR1a No 32 0xFE4

AMPIDR2a No 32 0xFE8

AMPIDR3a No 32 0xFEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13460
ID032224 Non-Confidential

External System Control Register Descriptions
I6.4 External Activity Monitors Extension registers summary
AMCIDR0a Component ID registers No 32 0xFF0

AMCIDR1a No 32 0xFF4

AMCIDR2a No 32 0xFF8

AMCIDR3a No 32 0xFFC

a. CoreSight interface registers, see Management registers and CoreSight
compliance.

Table I6-5 Activity Monitors external register views of Peripheral and Component Identification
Registers (continued)

Name Description System register? Size Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13461
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5 Activity Monitors external register descriptions

This section lists the external Activity Monitors registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13462
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.1 AMCFGR, Activity Monitors Configuration Register

The AMCFGR characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total
number of activity monitor event counters implemented, and the size of the counters. AMCFGR is
applicable to both the architected and the auxiliary counter groups.

Configurations

External register AMCFGR bits [31:0] are architecturally mapped to AArch64 System register
AMCFGR_EL0[31:0] when FEAT_AMU_EXT32 is implemented.

External register AMCFGR bits [63:0] are architecturally mapped to AArch64 System register
AMCFGR_EL0[63:0] when FEAT_AMU_EXT64 is implemented.

External register AMCFGR bits [31:0] are architecturally mapped to AArch32 System register
AMCFGR[31:0].

It is IMPLEMENTATION DEFINED whether AMCFGR is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCFGR are RES0.

Attributes

AMCFGR is a:

• 64-bit register when FEAT_AMU_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_AMU_EXT64 is implemented:

Bits [63:32]

Reserved, RES0.

NCG, bits [31:28]

Defines the number of counter groups implemented, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One counter group implemented.

0b0001 Two counter groups implemented.

All other values are reserved.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

RES0

63 32

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13463
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 AMCR.HDBG is RES0.

0b1 AMCR.HDBG is read/write.

Access to this field is RO.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of the activity monitor event counters, minus one.

The counters are 64-bit, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. The
counters are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters implemented in all groups, minus one.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

NCG, bits [31:28]

Defines the number of counter groups implemented, minus one.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 One counter group implemented.

0b0001 Two counter groups implemented.

All other values are reserved.

Access to this field is RO.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

This feature must be supported, and so this bit is 0b1.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 AMCR.HDBG is RES0.

0b1 AMCR.HDBG is read/write.

Access to this field is RO.

NCG

31 28

RES0

27 25 24

RAZ

23 14

1 1 1 1 1 1

13 8

N

7 0

HDBG SIZE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13464
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of the activity monitor event counters, minus one.

The counters are 64-bit, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. The
counters are at doubleword-aligned addresses.

Reads as 0b111111.

Access to this field is RO.

N, bits [7:0]

Defines the number of activity monitor event counters implemented in all groups, minus one.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMCFGR

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0xE00 from AMU

AMCFGR can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0xE00 from AMU

AMCFGR can be accessed through the AMU block as follows:

Frame Offset

AMU 0xE00

Frame Offset

AMU 0xE00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13465
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register

The AMCGCR characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each
counter group.

Configurations

External register AMCGCR bits [31:0] are architecturally mapped to AArch64 System register
AMCGCR_EL0[31:0] when FEAT_AMU_EXT32 is implemented.

External register AMCGCR bits [63:0] are architecturally mapped to AArch64 System register
AMCGCR_EL0[63:0] when FEAT_AMU_EXT64 is implemented.

External register AMCGCR bits [31:0] are architecturally mapped to AArch32 System register
AMCGCR[31:0].

It is IMPLEMENTATION DEFINED whether AMCGCR is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCGCR are RES0.

Attributes

AMCGCR is a:

• 64-bit register when FEAT_AMU_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_AMU_EXT64 is implemented:

Bits [63:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

RES0

63 32

RES0

31 16

CG1NC

15 8

0 0 0 0 0 1 0 0

7 0

CG0NC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13466
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Otherwise:

Bits [31:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

Reads as 0x04.

Access to this field is RO.

Accessing AMCGCR

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0xCE0 from AMU

AMCGCR can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0xCE0 from AMU

AMCGCR can be accessed through the AMU block as follows:

RES0

31 16

CG1NC

15 8

0 0 0 0 0 1 0 0

7 0

CG0NC

Frame Offset

AMU 0xCE0

Frame Offset

AMU 0xCE0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13467
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.3 AMCIDR0, Activity Monitors Component Identification Register 0

The AMCIDR0 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMCIDR0 is implemented in the Core power domain or
in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMCIDR0. Otherwise, direct accesses to AMCIDR0 are RES0.

Attributes

AMCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing AMCIDR0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFF0 from AMU AMCIDR0 can be accessed through the AMU block as follows:

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Frame Offset

AMU 0xFF0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13468
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.4 AMCIDR1, Activity Monitors Component Identification Register 1

The AMCIDR1 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMCIDR1 is implemented in the Core power domain or
in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMCIDR1. Otherwise, direct accesses to AMCIDR1 are RES0.

Attributes

AMCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

Access to this field is RO.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

Accessing AMCIDR1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFF4 from AMU AMCIDR1 can be accessed through the AMU block as follows:

RES0

31 8

1 0 0 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Frame Offset

AMU 0xFF4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13469
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.5 AMCIDR2, Activity Monitors Component Identification Register 2

The AMCIDR2 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMCIDR2 is implemented in the Core power domain or
in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMCIDR2. Otherwise, direct accesses to AMCIDR2 are RES0.

Attributes

AMCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing AMCIDR2

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFF8 from AMU AMCIDR2 can be accessed through the AMU block as follows:

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Frame Offset

AMU 0xFF8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13470
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.6 AMCIDR3, Activity Monitors Component Identification Register 3

The AMCIDR3 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMCIDR3 is implemented in the Core power domain or
in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMCIDR3. Otherwise, direct accesses to AMCIDR3 are RES0.

Attributes

AMCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing AMCIDR3

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFFC from AMU AMCIDR3 can be accessed through the AMU block as follows:

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Frame Offset

AMU 0xFFC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13471
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.7 AMCNTEN, Activity Monitors Count Set and Clear Register

The AMCNTEN characteristics are:

Purpose

Control bits for the architected and auxiliary activity monitors event counters, AMEVCNTR0<n>.
and AMEVCNTR1<n>.

Configurations

It is IMPLEMENTATION DEFINED whether AMCNTEN is implemented in the Core power domain or
in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and FEAT_AMU_EXT64 is
implemented. Otherwise, direct accesses to AMCNTEN are RES0.

Attributes

AMCNTEN is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

P1<n>, bit [n+32], for n = 15 to 0

Activity monitor event counter control bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

RES0

63 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P115
P114

P113
P112

P111
P110

P19
P18

P10
P11

P12
P13

P14
P15

P16
P17

RES0

31 16

RAZ/WI

15 4 3 2 1 0

P03
P02

P00
P01
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13472
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
P0<n>, bit [n], for n = 3 to 0

Activity monitor event counter control bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTEN

If there are no auxiliary monitor event counters implemented, reads of AMCNTEN[63:32] are RAZ. Software must
treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC10 from AMU AMCNTEN can be accessed through the AMU block as follows:

Frame Offset

AMU 0xC10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13473
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.8 AMCNTENCLR, Activity Monitors Count Enable Clear Register

The AMCNTENCLR characteristics are:

Purpose

Disable control bits for the architected and auxiliary activity monitors event counters,
AMEVCNTR0<n> and AMEVCNTR1<n>.

Configurations

External register AMCNTENCLR bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR0_EL0[31:0].

External register AMCNTENCLR bits [63:32] are architecturally mapped to AArch64 System
register AMCNTENCLR1_EL0[31:0].

It is IMPLEMENTATION DEFINED whether AMCNTENCLR is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and FEAT_AMU_EXT64 is
implemented. Otherwise, direct accesses to AMCNTENCLR are RES0.

Attributes

AMCNTENCLR is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

P1<n>, bit [n+32], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMEVCNTR1<n>.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Bits [31:16]

Reserved, RES0.

RES0

63 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P115
P114

P113
P112

P111
P110

P19
P18

P10
P11

P12
P13

P14
P15

P16
P17

RES0

31 16

RAZ/WI

15 4 3 2 1 0

P03
P02

P00
P01
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13474
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P0<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR

If there are no auxiliary monitor event counters implemented, reads of AMCNTENCLR[63:32] are RAZ. Software
must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC20 from AMU AMCNTENCLR can be accessed through the AMU block as follows:

Frame Offset

AMU 0xC20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13475
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.9 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR0_EL0[31:0].

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET0_EL0[31:0].

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENCLR0[31:0].

External register AMCNTENCLR0 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENSET0[31:0].

It is IMPLEMENTATION DEFINED whether AMCNTENCLR0 is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and FEAT_AMU_EXT32 is
implemented. Otherwise, direct accesses to AMCNTENCLR0 are RES0.

Attributes

AMCNTENCLR0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13476
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Accessing AMCNTENCLR0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC20 from AMU AMCNTENCLR0 can be accessed through the AMU block as follows:

Frame Offset

AMU 0xC20
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13477
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.10 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR1_EL0[31:0].

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET1_EL0[31:0].

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENCLR1[31:0].

External register AMCNTENCLR1 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENSET1[31:0].

It is IMPLEMENTATION DEFINED whether AMCNTENCLR1 is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCNTENCLR1 are RES0.

Attributes

AMCNTENCLR1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR1

If there are no auxiliary monitor event counters implemented, reads of AMCNTENCLR1 are RAZ. Software must
treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13478
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0xC24 from AMU

AMCNTENCLR1 can be accessed through the AMU block as follows:

Frame Offset

AMU 0xC24
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13479
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.11 AMCNTENSET, Activity Monitors Count Enable Set Register

The AMCNTENSET characteristics are:

Purpose

Enable control bits for the architected and auxiliary activity monitors event counters,
AMEVCNTR0<n> and AMEVCNTR1<n>.

Configurations

External register AMCNTENSET bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET0_EL0[31:0].

External register AMCNTENSET bits [63:32] are architecturally mapped to AArch64 System
register AMCNTENSET1_EL0[31:0].

It is IMPLEMENTATION DEFINED whether AMCNTENSET is implemented in the Core power domain
or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and FEAT_AMU_EXT64 is
implemented. Otherwise, direct accesses to AMCNTENSET are RES0.

Attributes

AMCNTENSET is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

P1<n>, bit [n+32], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Bits [31:16]

Reserved, RES0.

RES0

63 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

P115
P114

P113
P112

P111
P110

P19
P18

P10
P11

P12
P13

P14
P15

P16
P17

RES0

31 16

RAZ/WI

15 4 3 2 1 0

P03
P02

P00
P01
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13480
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P0<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET

If there are no auxiliary monitor event counters implemented, reads of AMCNTENSET[63:32] are RAZ. Software
must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC00 from AMU AMCNTENSET can be accessed through the AMU block as follows:

Frame Offset

AMU 0xC00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13481
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.12 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR0_EL0[31:0].

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET0_EL0[31:0].

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENCLR0[31:0].

External register AMCNTENSET0 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENSET0[31:0].

It is IMPLEMENTATION DEFINED whether AMCNTENSET0 is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and FEAT_AMU_EXT32 is
implemented. Otherwise, direct accesses to AMCNTENSET0 are RES0.

Attributes

AMCNTENSET0 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

Bits [15:4]

Reserved, RAZ/WI.

This field is reserved for additional architected activity monitor event counters, which Arm might
define in a future version of the Activity Monitors architecture.

P<n>, bit [n], for n = 3 to 0

Activity monitor event counter enable bit for AMEVCNTR0<n>.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters. In an
implementation that includes FEAT_AMUv1, the number of architected activity monitor event
counters is 4.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR0<n> is disabled.

0b1 When read, means that AMEVCNTR0<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

RES0

31 16

RAZ/WI

15 4

P3

3

P2

2

P1

1

P0

0

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13482
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Accessing AMCNTENSET0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC00 from AMU

AMCNTENSET0 can be accessed through the AMU block as follows:

Accesses to this interface are RO.

Frame Offset

AMU 0xC00
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13483
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.13 AMCNTENSET1, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

Configurations

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENCLR1_EL0[31:0].

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch64 System
register AMCNTENSET1_EL0[31:0].

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENCLR1[31:0].

External register AMCNTENSET1 bits [31:0] are architecturally mapped to AArch32 System
register AMCNTENSET1[31:0].

It is IMPLEMENTATION DEFINED whether AMCNTENSET1 is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and FEAT_AMU_EXT32 is
implemented. Otherwise, direct accesses to AMCNTENSET1 are RES0.

Attributes

AMCNTENSET1 is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 15 to 0

Activity monitor event counter enable bit for AMEVCNTR1<n>.

When N is less than 16, bits [15:N] are RAZ, where N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

0b0 When read, means that AMEVCNTR1<n> is disabled.

0b1 When read, means that AMEVCNTR1<n> is enabled.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENSET1

If there are no auxiliary monitor event counters implemented, reads of AMCNTENSET1 are RAZ. Software must
treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers.

Note

There are no implemented auxiliary activity monitor event counters when AMCFGR.NCG == 0b0000.

RES0

31 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P15
P14

P13

P10
P11

P12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13484
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xC04 from AMU AMCNTENSET1 can be accessed through the AMU block as follows:

Frame Offset

AMU 0xC04
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13485
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.14 AMCR, Activity Monitors Control Register

The AMCR characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR is applicable to both the
architected and the auxiliary counter groups.

Configurations

External register AMCR bits [31:0] are architecturally mapped to AArch64 System register
AMCR_EL0[31:0] when FEAT_AMU_EXT32 is implemented.

External register AMCR bits [63:0] are architecturally mapped to AArch64 System register
AMCR_EL0[63:0] when FEAT_AMU_EXT64 is implemented.

External register AMCR bits [31:0] are architecturally mapped to AArch32 System register
AMCR[31:0].

It is IMPLEMENTATION DEFINED whether AMCR is implemented in the Core power domain or in the
Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR are RES0.

Attributes

AMCR is a:

• 64-bit register when FEAT_AMU_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_AMU_EXT64 is implemented:

Bits [63:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

RES0

63 32

RES0

31 11 10

RES0

9 0

HDBG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13486
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Otherwise:

Bits [31:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing AMCR

Accesses to this register use the following encodings in the System register encoding space:

When FEAT_AMU_EXT32 is implemented:

Accessible at offset 0xE04 from AMU

AMCR can be accessed through the AMU block as follows:

Accesses to this interface are RO.

When FEAT_AMU_EXT64 is implemented:

Accessible at offset 0xE10 from AMU

AMCR can be accessed through the AMU block as follows:

Accesses to this interface are RO.

RES0

31 11 10

RES0

9 0

HDBG

Frame Offset

AMU 0xE04

Frame Offset

AMU 0xE10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13487
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.15 AMDEVAFF, Activity Monitors Device Affinity Register

The AMDEVAFF characteristics are:

Purpose

Copy of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a
multiprocessor system the AMU component relates to.

Configurations

It is IMPLEMENTATION DEFINED whether AMDEVAFF is implemented in the Core power domain or
in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented, FEAT_AMU_EXT64 is
implemented and an implementation implements AMDEVAFF1. Otherwise, direct accesses to
AMDEVAFF are RES0.

Attributes

AMDEVAFF is a 64-bit register.

Field descriptions

MPIDR_EL1hi, bits [63:32]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing AMDEVAFF

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFA8 from AMU AMDEVAFF can be accessed through the AMU block as follows:

MPIDR_EL1hi

63 32

MPIDR_EL1lo

31 0

Frame Offset

AMU 0xFA8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13488
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.16 AMDEVAFF0, Activity Monitors Device Affinity Register 0

The AMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the AMU component relates to.

Configurations

It is IMPLEMENTATION DEFINED whether AMDEVAFF0 is implemented in the Core power domain
or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented, FEAT_AMU_EXT32 is
implemented and an implementation implements AMDEVAFF0. Otherwise, direct accesses to
AMDEVAFF0 are RES0.

Attributes

AMDEVAFF0 is a 32-bit register.

Field descriptions

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing AMDEVAFF0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFA8 from AMU AMDEVAFF0 can be accessed through the AMU block as follows:

MPIDR_EL1lo

31 0

Frame Offset

AMU 0xFA8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13489
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.17 AMDEVAFF1, Activity Monitors Device Affinity Register 1

The AMDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE
in a multiprocessor system the AMU component relates to.

Configurations

It is IMPLEMENTATION DEFINED whether AMDEVAFF1 is implemented in the Core power domain
or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented, FEAT_AMU_EXT32 is
implemented and an implementation implements AMDEVAFF1. Otherwise, direct accesses to
AMDEVAFF1 are RES0.

Attributes

AMDEVAFF1 is a 32-bit register.

Field descriptions

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest
implemented Exception level.

Accessing AMDEVAFF1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFAC from AMU AMDEVAFF1 can be accessed through the AMU block as follows:

MPIDR_EL1hi

31 0

Frame Offset

AMU 0xFAC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13490
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.18 AMDEVARCH, Activity Monitors Device Architecture Register

The AMDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the AMU component.

Configurations

It is IMPLEMENTATION DEFINED whether AMDEVARCH is implemented in the Core power domain
or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMDEVARCH. Otherwise, direct accesses to AMDEVARCH are RES0.

Attributes

AMDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For AMU, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates that the DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

0b0000 Architecture revision is AMUv1.

All other values are reserved.

Access to this field is RO.

ARCHID, bits [15:0]

Defines this part to be an AMU component. For architectures defined by Arm this is further
subdivided.

For AMU:

• Bits [15:12] are the architecture version, also identified as AMDEVARCH.ARCHVER.

• Bits [11:0] are the architecture part number, also identified as AMDEVARCH.ARCHPART.

AMDEVARCH.ARCHVER = 0x0, which corresponds to AMU architecture version AMUv1.

If FEAT_AMU_EXT32 is implemented, AMDEVARCH is 0xA66.

If FEAT_AMU_EXT64 is implemented, AMDEVARCH is 0xA67.

0 1 0 0 0 1 1 1 0 1 1

31 21

1

20

0 0 0 0

19 16

ARCHID

15 0

ARCHITECT REVISION
PRESENT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13491
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
The value of this field is an IMPLEMENTATION DEFINED choice of:

0x0A66 AMUv1, with FEAT_AMU_EXT32 implemented.

0x0A67 AMUv1, with FEAT_AMU_EXT64 implemented.

Access to this field is RO.

Accessing AMDEVARCH

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0xFBC from AMU

AMDEVARCH can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0xFBC from AMU

AMDEVARCH can be accessed through the AMU block as follows:

Frame Offset

AMU 0xFBC

Frame Offset

AMU 0xFBC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13492
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.19 AMDEVTYPE, Activity Monitors Device Type Register

The AMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

It is IMPLEMENTATION DEFINED whether AMDEVTYPE is implemented in the Core power domain
or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMDEVTYPE. Otherwise, direct accesses to AMDEVTYPE are RES0.

Attributes

AMDEVTYPE is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype.

0b0001 Component within a PE.

Access to this field is RO.

MAJOR, bits [3:0]

Major type.

0b0110 Performance monitor component

Access to this field is RO.

Accessing AMDEVTYPE

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0xFCC from AMU

AMDEVTYPE can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0xFCC from AMU

AMDEVTYPE can be accessed through the AMU block as follows:

RES0

31 8

0 0 0 1

7 4

0 1 1 0

3 0

SUB MAJOR

Frame Offset

AMU 0xFCC

Frame Offset

AMU 0xFCC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13493
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.20 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3

The AMEVCNTR0<n> characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

External register AMEVCNTR0<n> bits [63:0] are architecturally mapped to AArch64 System
register AMEVCNTR0<n>_EL0[63:0].

External register AMEVCNTR0<n> bits [31:0] are architecturally mapped to AArch32 System
register AMEVCNTR0<n>[31:0].

It is IMPLEMENTATION DEFINED whether AMEVCNTR0<n> is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR0<n> are RES0.

Attributes

AMEVCNTR0<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is
a number from 0 to 3.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR0<n>

If <n> is greater than or equal to the number of architected activity monitor event counters, reads of
AMEVCNTR0<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: [63:0] Accessible at offset 0x000 + (8 * n) from AMU

AMEVCNTR0<n> can be accessed through the AMU block as follows:

ACNT

63 32

ACNT

31 0

Frame Offset Range

AMU 0x000 + (8 * n) 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13494
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
 When FEAT_AMU_EXT32 is implemented: [63:0] Accessible at offset 0x000 + (8 * n) from AMU

AMEVCNTR0<n> can be accessed through the AMU block as follows:

Frame Offset Range

AMU 0x000 + (8 * n) 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13495
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.21 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

External register AMEVCNTR1<n> bits [63:0] are architecturally mapped to AArch64 System
register AMEVCNTR1<n>_EL0[63:0].

External register AMEVCNTR1<n> bits [31:0] are architecturally mapped to AArch32 System
register AMEVCNTR1<n>[31:0].

It is IMPLEMENTATION DEFINED whether AMEVCNTR1<n> is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVCNTR1<n> are RES0.

Attributes

AMEVCNTR1<n> is a 64-bit register.

Field descriptions

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a
number from 0 to 15.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMEVCNTR1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads of
AMEVCNTR1<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: [63:0] Accessible at offset 0x100 + (8 * n) from AMU

AMEVCNTR1<n> can be accessed through the AMU block as follows:

ACNT

63 32

ACNT

31 0

Frame Offset Range

AMU 0x100 + (8 * n) 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13496
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
 When FEAT_AMU_EXT32 is implemented: [63:0] Accessible at offset 0x100 + (8 * n) from AMU

AMEVCNTR1<n> can be accessed through the AMU block as follows:

Frame Offset Range

AMU 0x100 + (8 * n) 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13497
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.22 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3

The AMEVTYPER0<n> characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter
AMEVCNTR0<n> counts.

Configurations

External register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch64 System
register AMEVTYPER0<n>_EL0[31:0] when FEAT_AMU_EXT32 is implemented.

External register AMEVTYPER0<n> bits [63:0] are architecturally mapped to AArch64 System
register AMEVTYPER0<n>_EL0[63:0] when FEAT_AMU_EXT64 is implemented.

External register AMEVTYPER0<n> bits [31:0] are architecturally mapped to AArch32 System
register AMEVTYPER0<n>[31:0].

It is IMPLEMENTATION DEFINED whether AMEVTYPER0<n> is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER0<n> are RES0.

Attributes

AMEVTYPER0<n> is a:

• 64-bit register when FEAT_AMU_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_AMU_EXT64 is implemented:

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

RES0

63 32

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13498
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Memory stall cycles

Access to this field is RO.

Otherwise:

Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor
event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each
architected counter.

The following table shows the mapping between required event numbers and the corresponding
counters:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0x0011 When n == 0:

Processor frequency cycles

0x4004 When n == 1:

Constant frequency cycles

0x0008 When n == 2:

Instructions retired

0x4005 When n == 3:

Memory stall cycles

Access to this field is RO.

Accessing AMEVTYPER0<n>

If <n> is greater than or equal to the number of architected activity monitor event counters, reads of
AMEVTYPER0<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0x400 + (8 * n) from AMU

AMEVTYPER0<n> can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0x400 + (4 * n) from AMU

RES0

31 16

evtCount

15 0

Frame Offset

AMU 0x400 + (8 * n)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13499
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
AMEVTYPER0<n> can be accessed through the AMU block as follows:

Frame Offset

AMU 0x400 + (4 * n)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13500
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.23 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter
AMEVCNTR1<n> counts.

Configurations

External register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch64 System
register AMEVTYPER1<n>_EL0[31:0] when FEAT_AMU_EXT32 is implemented.

External register AMEVTYPER1<n> bits [63:0] are architecturally mapped to AArch64 System
register AMEVTYPER1<n>_EL0[63:0] when FEAT_AMU_EXT64 is implemented.

External register AMEVTYPER1<n> bits [31:0] are architecturally mapped to AArch32 System
register AMEVTYPER1<n>[31:0].

It is IMPLEMENTATION DEFINED whether AMEVTYPER1<n> is implemented in the Core power
domain or in the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMEVTYPER1<n> are RES0.

Attributes

AMEVTYPER1<n> is a:

• 64-bit register when FEAT_AMU_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_AMU_EXT64 is implemented:

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

63 32

RES0

31 16

evtCount

15 0

RES0

31 16

evtCount

15 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13501
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Bits [31:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event
counter AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing AMEVTYPER1<n>

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads of
AMEVTYPER1<n> are RAZ. Software must treat reserved accesses as RES0. See Access requirements for reserved
and unallocated registers.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0x480 + (4 * n) from AMU

AMEVTYPER1<n> can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0x500 + (8 * n) from AMU

AMEVTYPER1<n> can be accessed through the AMU block as follows:

Frame Offset

AMU 0x480 + (4 * n)

Frame Offset

AMU 0x500 + (8 * n)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13502
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.24 AMIIDR, Activity Monitors Implementation Identification Register

The AMIIDR characteristics are:

Purpose

Defines the implementer and revisions of the AMU.

Configurations

It is IMPLEMENTATION DEFINED whether AMIIDR is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMIIDR are RES0.

Attributes

AMIIDR is a:

• 64-bit register when FEAT_AMU_EXT64 is implemented

• 32-bit register otherwise

Field descriptions

When FEAT_AMU_EXT64 is implemented:

Bits [63:32]

Reserved, RES0.

ProductID, bits [31:20]

This field is an AMU part identifier.

If AMPIDR0 is implemented, AMPIDR0.PART_0 matches bits [27:20] of this field.

If AMPIDR1 is implemented, AMPIDR1.PART_1 matches bits [31:28] of this field.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

If AMPIDR2 is implemented, AMPIDR2.REVISION matches AMIIDR.Variant.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

If AMPIDR3 is implemented, AMPIDR3.REVAND matches AMIIDR.Revision.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

63 32

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13503
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the AMU.

For an Arm implementation, this field reads as 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer.

Bit 7 is RES0

Bits [6:0] contain the JEP106 identity code of the implementer.

If AMPIDR4 is implemented, AMPIDR4.DES_2 matches bits [11:8] of this field.

If AMPIDR2 is implemented, AMPIDR2.DES_1 matches bits [6:4] of this field.

If AMPIDR1 is implemented, AMPIDR1.DES_0 matches bits [3:0] of this field.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

ProductID, bits [31:20]

This field is an AMU part identifier.

If AMPIDR0 is implemented, AMPIDR0.PART_0 matches bits [27:20] of this field.

If AMPIDR1 is implemented, AMPIDR1.PART_1 matches bits [31:28] of this field.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

If AMPIDR2 is implemented, AMPIDR2.REVISION matches AMIIDR.Variant.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

If AMPIDR3 is implemented, AMPIDR3.REVAND matches AMIIDR.Revision.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the AMU.

For an Arm implementation, this field reads as 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer.

Bit 7 is RES0

Bits [6:0] contain the JEP106 identity code of the implementer.

If AMPIDR4 is implemented, AMPIDR4.DES_2 matches bits [11:8] of this field.

If AMPIDR2 is implemented, AMPIDR2.DES_1 matches bits [6:4] of this field.

If AMPIDR1 is implemented, AMPIDR1.DES_0 matches bits [3:0] of this field.

This field has an IMPLEMENTATION DEFINED value.

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13504
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
Access to this field is RO.

Accessing AMIIDR

Accesses to this register use the following encodings in the System register encoding space:

 When FEAT_AMU_EXT64 is implemented: Accessible at offset 0xE08 from AMU

AMIIDR can be accessed through the AMU block as follows:

 When FEAT_AMU_EXT32 is implemented: Accessible at offset 0xE08 from AMU

AMIIDR can be accessed through the AMU block as follows:

Frame Offset

AMU 0xE08

Frame Offset

AMU 0xE08
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13505
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.25 AMPIDR0, Activity Monitors Peripheral Identification Register 0

The AMPIDR0 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMPIDR0 is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMPIDR0. Otherwise, direct accesses to AMPIDR0 are RES0.

Attributes

AMPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMPIDR0

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFE0 from AMU AMPIDR0 can be accessed through the AMU block as follows:

RES0

31 8

PART_0

7 0

Frame Offset

AMU 0xFE0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13506
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.26 AMPIDR1, Activity Monitors Peripheral Identification Register 1

The AMPIDR1 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMPIDR1 is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMPIDR1. Otherwise, direct accesses to AMPIDR1 are RES0.

Attributes

AMPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code.

For Arm Limited, this field is 0b1011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, most significant nibble.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMPIDR1

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFE4 from AMU AMPIDR1 can be accessed through the AMU block as follows:

RES0

31 8

DES_0

7 4

PART_1

3 0

Frame Offset

AMU 0xFE4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13507
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.27 AMPIDR2, Activity Monitors Peripheral Identification Register 2

The AMPIDR2 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMPIDR2 is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMPIDR2. Otherwise, direct accesses to AMPIDR2 are RES0.

Attributes

AMPIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

Indicates a JEP106 identity code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code.

For Arm Limited, this field is 0b011.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMPIDR2

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFE8 from AMU AMPIDR2 can be accessed through the AMU block as follows:

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC

Frame Offset

AMU 0xFE8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13508
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.28 AMPIDR3, Activity Monitors Peripheral Identification Register 3

The AMPIDR3 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMPIDR3 is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMPIDR3. Otherwise, direct accesses to AMPIDR3 are RES0.

Attributes

AMPIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using AMPIDR2.REVISION as an extension to the Part number must use
this field as a major revision number.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMPIDR3

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFEC from AMU AMPIDR3 can be accessed through the AMU block as follows:

RES0

31 8

REVAND

7 4

CMOD

3 0

Frame Offset

AMU 0xFEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13509
ID032224 Non-Confidential

External System Control Register Descriptions
I6.5 Activity Monitors external register descriptions
I6.5.29 AMPIDR4, Activity Monitors Peripheral Identification Register 4

The AMPIDR4 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme.

Configurations

It is IMPLEMENTATION DEFINED whether AMPIDR4 is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_AMUv1 is implemented and an implementation
implements AMPIDR4. Otherwise, direct accesses to AMPIDR4 are RES0.

Attributes

AMPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

Reads as 0b0000.

Access to this field is RO.

DES_2, bits [3:0]

Designer. JEP106 continuation code, least significant nibble.

For Arm Limited, this field is 0b0100.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing AMPIDR4

Accesses to this register use the following encodings in the System register encoding space:

Accessible at offset 0xFD0 from AMU AMPIDR4 can be accessed through the AMU block as follows:

RES0

31 8

0 0 0 0

7 4

DES_2

3 0

SIZE

Frame Offset

AMU 0xFD0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13510
ID032224 Non-Confidential

External System Control Register Descriptions
I6.6 Generic Timer memory-mapped registers overview
I6.6 Generic Timer memory-mapped registers overview

The Generic Timer memory-mapped registers are implemented as multiple register frames, with each register frame
having its own base address, as follows:

• A single CNTCTLBase register frame, at base address CNTCTLBase.

• Between one and seven CNTBaseN register frames, each with its own base address CNTBaseN.

• For each CNTBaseN register frame, if required, a CNTEL0BaseN register frame, at base address
CNTEL0BaseN, that provides an EL0 view of the CNTBaseN register frame.

For more information, see:

• Memory-mapped timer components.

• The CNTBaseN and CNTEL0BaseN frames. This section includes the memory map of the CNTBaseN and
CNTBaseN register frames.

• The CNTCTLBase frame. This section includes the memory map of the CNTCTLBase register frame.

Note

Providing a complete set of features in a system level implementation gives an implementation example for a system
level implementation of the Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13511
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7 Generic Timer memory-mapped register descriptions

This section describes the Generic Timer registers. Generic Timer memory-mapped registers overview gives an
overview of these registers, and includes links to their memory maps.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13512
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.1 CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

The CNTACR<n> characteristics are:

Purpose

Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the
controls for frame CNTBaseN.

In addition to the CNTACR<n> control:

• CNTNSAR controls whether CNTACR<n> is accessible by Non-secure accesses.

• If frame CNTEL0BaseN is implemented, the CNTEL0ACR in frame CNTBaseN provides
additional control of accesses to frame CNTEL0BaseN.

Configurations

It is IMPLEMENTATION DEFINED whether CNTACR<n> is implemented in the Core power domain
or in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Implemented only if the value of CNTTIDR.Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the
features. In this case, the associated field in the CNTACR<n> register is:

• RAZ/WI if access is always denied.

• RAO/WI if access is always permitted.

Attributes

CNTACR<n> is a 32-bit register.

Field descriptions

Bits [31:6]

Reserved, RES0.

RWPT, bit [5]

Read/write access to the EL1 Physical Timer registers CNTP_CVAL, CNTP_TVAL, and
CNTP_CTL, in frame <n>.

0b0 No access to the EL1 Physical Timer registers in frame <n>. The registers are RES0.

0b1 Read/write access to the EL1 Physical Timer registers in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RWVT, bit [4]

Read/write access to the Virtual Timer register CNTV_CVAL, CNTV_TVAL, and CNTV_CTL, in
frame <n>.

0b0 No access to the Virtual Timer registers in frame <n>. The registers are RES0.

0b1 Read/write access to the Virtual Timer registers in frame <n>.

RES0

31 6 5 4 3 2 1 0

RWPT
RWVT
RVOFF

RPCT
RVCT

RFRQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13513
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RVOFF, bit [3]

Read-only access to CNTVOFF, in frame <n>.

0b0 No access to CNTVOFF in frame <n>. The register is RES0.

0b1 Read-only access to CNTVOFF in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RFRQ, bit [2]

Read-only access to CNTFRQ, in frame <n>.

0b0 No access to CNTFRQ in frame <n>. The register is RES0.

0b1 Read-only access to CNTFRQ in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RVCT, bit [1]

Read-only access to CNTVCT, in frame <n>.

0b0 No access to CNTVCT in frame <n>. The register is RES0.

0b1 Read-only access to CNTVCT in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RPCT, bit [0]

Read-only access to CNTPCT, in frame <n>.

0b0 No access to CNTPCT in frame <n>. The register is RES0.

0b1 Read-only access to CNTPCT in frame <n>.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTACR<n>:

In a system that supports the Realm Management Extension, CNTNSAR.NS<n> describes how these registers can
be accessed by Root or Realm accesses.

In a system that recognizes two Security states:

• CNTACR<n> is always accessible by Secure accesses.

• CNTNSAR.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

CNTACR<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTCTLBase 0x040 + (4 * n) CNTACR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13514
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.2 CNTCR, Counter Control Register

The CNTCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during
debug.

Configurations

It is IMPLEMENTATION DEFINED whether CNTCR is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTCR is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

FCREQ, bits [17:8]

Frequency change request. Indicates the number of the entry in the Frequency modes table to select.

Selecting an unimplemented entry, or an entry that contains 0, has no effect on the counter.

The maximum number of entries in the Frequency modes table is IMPLEMENTATION DEFINED up to
a maximum of 1004 entries, see The Frequency modes table. An implementation is only required to
implement an FCREQ field that can hold values from 0 to the highest supported Frequency modes
table entry. Any unrequired most-significant bits of FCREQ can be implemented as RES0.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Bits [7:3]

Reserved, RES0.

SCEN, bit [2]

When FEAT_CNTSC is implemented:

Scale Enable.

0b0 Scaling is not enabled. The counter value is incremented by 0x1.0000000 for each
counter tick.

0b1 Scaling is enabled. The counter is incremented by CNTSCR.ScaleVal for each counter
tick.

The SCEN bit can only be changed when the counter is disabled, when CNTCR.EN == 0.

If the value of CNTCR.SCEN changes when CNTCR.EN == 1 then:

• The counter value becomes UNKNOWN.

• The counter value remains UNKNOWN on future ticks of the clock.

RES0

31 18

FCREQ

17 8

RES0

7 3 2 1

EN

0

SCEN HDBG
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13515
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
When the CNTCV register in the CNTControlBase frame of the memory mapped counter module
is written to, the accumulated fraction information is reset to zero.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HDBG, bit [1]

Halt-on-debug. Controls whether a Halt-on-debug signal halts the system counter:

0b0 System counter ignores Halt-on-debug.

0b1 Asserted Halt-on-debug signal halts system counter update.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Enables the counter:

0b0 System counter disabled.

0b1 System counter enabled.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Accessing the CNTCR:

In a system that supports the Realm Management Extension, the CNTControlBase frame, which includes this
register, is implemented only in the Root physical address space.

In a system that supports Secure and Non-secure physical address spaces, the CNTControlBase frame, which
includes this register, is implemented only in the Secure physical address space.

CNTCR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTControlBase 0x000 CNTCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13516
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.3 CNTCV, Counter Count Value register

The CNTCV characteristics are:

Purpose

Indicates the current count value.

Configurations

It is IMPLEMENTATION DEFINED whether CNTCV is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTCV is a 64-bit register.

Field descriptions

CountValue, bits [63:0]

Indicates the counter value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTCV:

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

• In a system that supports the Realm Management Extension, this register is implemented only in the Root
physical address space.

• In a system that supports Secure and Non-secure physical address spaces, this register is implemented only
in the Secure physical address space.

• If the counter is enabled, the effect of writing to the register is UNKNOWN.

For the instance of the register in the CNTReadBase frame, this register is accessible in all physical address spaces.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit
atomic access.

CountValue

63 32

CountValue

31 0

Frame Accessibility

CNTControlBase RW

CNTReadBase RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13517
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
CNTCV[63:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTCV[63:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance Range

Timer CNTControlBase 0x008 CNTCV 63:0

Component Frame Offset Instance Range

Timer CNTReadBase 0x000 CNTCV 63:0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13518
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.4 CNTEL0ACR, Counter-timer EL0 Access Control Register

The CNTEL0ACR characteristics are:

Purpose

An implementation of CNTEL0ACR in the frame at CNTBaseN controls whether the CNTPCT,
CNTVCT, CNTFRQ, EL1 Physical Timer, and Virtual Timer registers are visible in the frame at
CNTEL0BaseN.

Configurations

It is IMPLEMENTATION DEFINED whether CNTEL0ACR is implemented in the Core power domain
or in the Debug power domain

Implementation of this register is OPTIONAL.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTEL0ACR is a 32-bit register.

Field descriptions

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

Second view read/write access control for the EL1 Physical Timer registers. This bit controls
whether the CNTP_CVAL, CNTP_TVAL, and CNTP_CTL registers in the current CNTBaseN
frame are also accessible in the corresponding CNTEL0BaseN frame.

0b0 No access. Registers are RES0 in the second view.

0b1 Access permitted. If the registers are accessible in the current frame then they are
accessible in the second view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Second view read/write access control for the Virtual Timer registers. This bit controls whether the
CNTV_CVAL, CNTV_TVAL, and CNTV_CTL registers in the current CNTBaseN frame are also
accessible in the corresponding CNTEL0BaseN frame.

0b0 No access. Registers are RES0 in the second view.

0b1 Access permitted. If the registers are accessible in the current frame then they are
accessible in the second view.

The definition of this bit means that, if the Virtual Timer registers are not implemented in the current
CNTBaseN frame, then the Virtual Timer register addresses are RES0 in the corresponding
CNTEL0BaseN frame, regardless of the value of this bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RES0

31 10 9 8

RES0

7 2 1 0

EL0PTEN
EL0VTEN

EL0PCTEN
EL0VCTEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13519
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
Bits [7:2]

Reserved, RES0.

EL0VCTEN, bit [1]

Second view read access control for CNTVCT and CNTFRQ.

0b0 CNTVCT is not visible in the second view.

If EL0PCTEN is set to 0, CNTFRQ is not visible in the second view.

0b1 Access permitted. If CNTVCT and CNTFRQ are visible in the current frame then they
are visible in the second view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Second view read access control for CNTPCT and CNTFRQ.

0b0 CNTPCT is not visible in the second view.

If EL0VCTEN is set to 0, CNTFRQ is not visible in the second view.

0b1 Access permitted. If CNTPCT and CNTFRQ are visible in the current frame then they
are visible in the second view.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTEL0ACR:

CNTEL0ACR can be implemented in any implemented CNTBaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

If CNTEL0ACR is not implemented in an implemented CNTBaseN frame:

• The register location in that frame is RAZ/WI.

• If the corresponding CNTEL0BaseN frame is implemented, the registers CNTFRQ, CNTP_CTL,
CNTP_CVAL, CNTP_TVAL, CNTPCT, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, and CNTVCT are not
visible and accesses are RAZ/WI in that frame.

CNTEL0ACR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x014 CNTEL0ACR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13520
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.5 CNTFID0, Counter Frequency ID

The CNTFID0 characteristics are:

Purpose

Indicates the base frequency of the system counter.

Configurations

It is IMPLEMENTATION DEFINED whether CNTFID0 is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit
words starting with the base frequency, CNTFID0. For more information, see The Frequency modes
table.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to
mark the end of the table.

Typically, the Frequency modes table will be in read-only memory. However, a system
implementation might use read/write memory for the table, and initialize the table entries as part of
its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is
not updated once the system is running.

Attributes

CNTFID0 is a 32-bit register.

Field descriptions

Frequency, bits [31:0]

The base frequency of the system counter, in Hz.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTFID0:

It is IMPLEMENTATION DEFINED whether this register is RO or RW

In a system that supports the Realm Management Extension, the CNTControlBase frame, which includes this
register, is implemented only in the Root physical address space.

In a system that supports Secure and Non-secure physical address spaces, the CNTControlBase frame, which
includes this register, is implemented only in the Secure physical address space.

CNTFID0 can be accessed through its memory-mapped interface:

Accesses to this interface are RO or RW.

Frequency

31 0

Component Frame Offset Instance

Timer CNTControlBase 0x020 CNTFID0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13521
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.6 CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003

The CNTFID<n> characteristics are:

Purpose

Indicates alternative system counter update frequencies.

Configurations

It is IMPLEMENTATION DEFINED whether CNTFID<n> is implemented in the Core power domain or
in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit
words starting with the base frequency, CNTFID0, see The Frequency modes table.

The number of CNTFID<n> registers is IMPLEMENTATION DEFINED, and the only required
CNTFID<n> register is CNTFID0.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to
mark the end of the table.

The architecture can support up to 1004 entries in the Frequency modes table, including the
zero-word end marker, and the number of entries is IMPLEMENTATION DEFINED up to this limit. For
an implementation that includes registers in the IMPLEMENTATION DEFINED register space
0x0C0-0x0FC, the maximum number of entries in the Frequency modes table is 40, including the
zero-word end marker.

Typically, the Frequency modes table will be in read-only memory. However, a system
implementation might use read/write memory for the table, and initialize the table entries as part of
its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is
not updated once the system is running.

Attributes

CNTFID<n> is a 32-bit register.

Field descriptions

Frequency, bits [31:0]

A system counter update frequency, in Hz. Must be an exact divisor of the base frequency. Arm
strongly recommends that all frequency values in the Frequency modes table are integer
power-of-two divisors of the base frequency.

When the system timer is operating at a lower frequency than the base frequency, the increment
applied at each counter update is given by:

increment = (base frequency) / (selected frequency)

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTFID<n>:

It is IMPLEMENTATION DEFINED whether this register is RO or RW

Frequency

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13522
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
In a system that supports the Realm Management Extension, the CNTControlBase frame, which includes these
registers, is implemented only in the Root physical address space.

In a system that supports Secure and Non-secure physical address spaces, the CNTControlBase frame, which
includes these registers, is implemented only in the Secure physical address space.

CNTFID<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RO or RW.

Component Frame Offset Instance

Timer CNTControlBase 0x020 + (4 * n) CNTFID<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13523
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.7 CNTFRQ, Counter-timer Frequency

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. The
instance of the register in the CNTCTLBase frame must be programmed with this value as part of
system initialization. The value of the register is not interpreted by hardware.

Configurations

It is IMPLEMENTATION DEFINED whether CNTFRQ is implemented in the Core power domain or in
the Debug power domain

For more information see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

Bits [31:0]

Clock frequency. Indicates the system counter clock frequency, in Hz.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTFRQ:

CNTFRQ must be implemented as an RW register in the CNTCTLBase frame.

In a system that supports the Realm Management Extension, the instance of the register in the CNTCTLBase frame
is accessible as follows:

• For Root accesses, it is IMPLEMENTATION DEFINED whether accesses to the register are permitted or behave
as RES0.

• For Realm accesses, this register behaves as RES0.

In a system that recognizes two Security states, the instance of the register in the CNTCTLBase frame is only
accessible by Secure accesses.

CNTFRQ can be implemented as a RO register in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

Clock frequency

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13524
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame:

• CNTFRQ is accessible in that frame, as a RO register, if the value of CNTACR<n>.RFRQ is 1.

• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTFRQ is accessible as a RO register in that frame if both:

— CNTFRQ is accessible in the corresponding CNTBaseN frame.

— Either the value of CNTEL0ACR.EL0VCTEN is 1 or the value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTFRQ address in that frame is RAZ/WI.

CNTFRQ can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTFRQ can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTFRQ can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance

Timer CNTBaseN 0x010 CNTFRQ

Component Frame Offset Instance

Timer CNTEL0BaseN 0x010 CNTFRQ

Component Frame Offset Instance

Timer CNTCTLBase 0x000 CNTFRQ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13525
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.8 CNTID, Counter Identification Register

The CNTID characteristics are:

Purpose

Indicates whether counter scaling is implemented.

Configurations

It is IMPLEMENTATION DEFINED whether CNTID is implemented in the Core power domain or in the
Debug power domain

This register is present only when FEAT_CNTSC is implemented. Otherwise, direct accesses to
CNTID are RES0.

Attributes

CNTID is a 32-bit register.

Field descriptions

Bits [31:4]

Reserved, RES0.

CNTSC, bits [3:0]

Indicates whether Counter Scaling is implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 Counter scaling is not implemented.

0b0001 Counter scaling is implemented.

All other values are reserved.

Access to this field is RO.

Accessing the CNTID:

In a system that supports the Realm Management Extension, the CNTControlBase frame, which includes this
register, is implemented only in the Root physical address space.

In a system that supports Secure and Non-secure physical address spaces, the CNTControlBase frame, which
includes this register, is implemented only in the Secure physical address space.

CNTID can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 4

CNTSC

3 0

Component Frame Offset Instance

Timer CNTControlBase 0x1C CNTID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13526
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.9 CNTNSAR, Counter-timer Non-secure Access Register

The CNTNSAR characteristics are:

Purpose

Provides the highest-level control of whether frames CNTBaseN and CNTEL0BaseN are accessible
by Non-secure accesses.

Configurations

It is IMPLEMENTATION DEFINED whether CNTNSAR is implemented in the Core power domain or
in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTNSAR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

NS<n>, bit [n], for n = 7 to 0

Non-secure access to frame n.

0b0 Secure access only. Behaves as RES0 to Non-secure accesses.

If FEAT_RME is implemented, it is IMPLEMENTATION DEFINED whether Root accesses
to the specified registers are permitted or behave as RES0. For Realm accesses, the
specified registers behave as RES0.

0b1 Secure and Non-secure accesses permitted.

If FEAT_RME is implemented, it is IMPLEMENTATION DEFINED whether Root and
Realm accesses to the specified registers are permitted. If not permitted, the specified
registers behave as RES0 for Root and Realm accesses.

This bit also determines whether, in the CNTCTLBase frame, CNTACR<n> and CNTVOFF<n> are
accessible to Non-secure accesses.

If frame CNTBase<n>:

• Is not implemented, then NS<n> is RES0.

• Is not Configurable access, and is accessible only by Secure accesses, then NS<n> is RES0.

• Is not Configurable access, and is accessible by both Secure and Non-secure accesses, then
NS<n> is RES1.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

RES0

31 8 7 6 5 4 3 2 1 0

NS7
NS6

NS5
NS4

NS0
NS1

NS2
NS3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13527
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
Accessing the CNTNSAR:

In a system that supports the Realm Management Extension, this register is accessible as follows:

• For Root accesses, it is IMPLEMENTATION DEFINED whether accesses to the register are permitted or behave
as RES0.

• For Realm accesses, this register behaves as RES0.

In a system that recognizes two Security states, this register is only accessible by Secure accesses.

CNTNSAR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTCTLBase 0x004 CNTNSAR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13528
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.10 CNTP_CTL, Counter-timer Physical Timer Control

The CNTP_CTL characteristics are:

Purpose

Control register for the EL1 physical timer.

Configurations

It is IMPLEMENTATION DEFINED whether CNTP_CTL is implemented in the Core power domain or
in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTP_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13529
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL:

CNTP_CTL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CTL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CTL is accessible in that frame if both:

— CNTP_CTL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

CNTP_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTP_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x02C CNTP_CTL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x02C CNTP_CTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13530
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.11 CNTP_CVAL, Counter-timer Physical Timer CompareValue

The CNTP_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the EL1 physical timer.

Configurations

It is IMPLEMENTATION DEFINED whether CNTP_CVAL is implemented in the Core power domain
or in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• An interrupt is generated if CNTP_CTL.IMASK is 0.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL:

CNTP_CVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13531
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
For an implemented CNTBaseN frame:

• CNTP_CVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CVAL is accessible in that frame if both:

— CNTP_CVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTP_CVAL register must be accessible as an
atomic 64-bit value.

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance Range

Timer CNTBaseN 0x020 CNTP_CVAL 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x020 CNTP_CVAL 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x024 CNTP_CVAL 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x024 CNTP_CVAL 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13532
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.12 CNTP_TVAL, Counter-timer Physical Timer TimerValue

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

It is IMPLEMENTATION DEFINED whether CNTP_TVAL is implemented in the Core power domain
or in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

• If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTP_CTL.ENABLE is 1, the value returned is (CompareValue - CNTPCT).

On a write of this register, CompareValue is set to (CNTPCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTP_CTL.ISTATUS is set to 1.

• If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_TVAL:

CNTP_TVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding
CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13533
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame:

• CNTP_TVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_TVAL is accessible in that frame if both:

— CNTP_TVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

CNTP_TVAL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTP_TVAL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x028 CNTP_TVAL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x028 CNTP_TVAL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13534
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.13 CNTPCT, Counter-timer Physical Count

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

It is IMPLEMENTATION DEFINED whether CNTPCT is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

Bits [63:0]

Physical count value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTPCT:

CNTPCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame, as a RO register.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame:

• CNTPCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RPCT is 1.

• Otherwise, the CNTPCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTPCT is accessible in that frame if both:

— CNTPCT is accessible in the corresponding CNTBaseN frame.

Physical count value

63 32

Physical count value

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13535
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
— The value of CNTEL0ACR.EL0PCTEN is 1.

• Otherwise, the CNTPCT address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTPCT register must be accessible as an atomic
64-bit value.

CNTPCT[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTPCT[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTPCT[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTPCT[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance Range

Timer CNTBaseN 0x000 CNTPCT 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x000 CNTPCT 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x004 CNTPCT 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x004 CNTPCT 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13536
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.14 CNTSCR, Counter Scale Register

The CNTSCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during
debug.

Configurations

It is IMPLEMENTATION DEFINED whether CNTSCR is implemented in the Core power domain or in
the Debug power domain

This register is present only when FEAT_CNTSC is implemented. Otherwise, direct accesses to
CNTSCR are RES0.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTSCR is a 32-bit register.

Field descriptions

ScaleVal, bits [31:0]

Scale Value

When counter scaling is enabled, ScaleVal is the average amount added to the counter value for one
period of the frequency of the Generic counter as described in the CNTFRQ register.

The actual rate of update of the counter value is determined by the counter update frequency.

ScaleVal is expressed as an unsigned fixed point number with an 8-bit integer value and a 24-bit
fractional value.

CNTSCR.ScaleVal can only be changed when CNTCR.EN == 0. If the value of this field is changed
when CNTCR.EN == 1:

• The counter value becomes UNKNOWN.

• The counter value remains UNKNOWN on future ticks of the clock.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTSCR:

In a system that supports the Realm Management Extension, the CNTControlBase frame, which includes this
register, is implemented only in the Root physical address space.

In a system that supports Secure and Non-secure physical address spaces, the CNTControlBase frame, which
includes this register, is implemented only in the Secure physical address space.

CNTSCR can be accessed through its memory-mapped interface:

ScaleVal

31 0

Component Frame Offset Instance

Timer CNTControlBase 0x10 CNTSCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13537
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
Accesses to this interface are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13538
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.15 CNTSR, Counter Status Register

The CNTSR characteristics are:

Purpose

Provides counter frequency status information.

Configurations

It is IMPLEMENTATION DEFINED whether CNTSR is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTSR is a 32-bit register.

Field descriptions

Bits [31:18]

Reserved, RES0.

FCACK, bits [17:8]

Frequency Change Acknowledge. Indicates the currently selected entry in the Frequency modes
table, see The Frequency modes table.

The reset behavior of this field is:

• On a Timer reset, this field resets to 0.

Bits [7:2]

Reserved, RES0.

DBGH, bit [1]

Indicates whether the counter is halted because the Halt-on-debug signal is asserted:

0b0 Counter is not halted.

0b1 Counter is halted.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing the CNTSR:

In a system that supports the Realm Management Extension, the CNTControlBase frame, which includes this
register, is implemented only in the Root physical address space.

In a system that supports Secure and Non-secure physical address spaces, the CNTControlBase frame, which
includes this register, is implemented only in the Secure physical address space.

RES0

31 18

FCACK

17 8

RES0

7 2 1 0

DBGH RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13539
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
CNTSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance

Timer CNTControlBase 0x004 CNTSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13540
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.16 CNTTIDR, Counter-timer Timer ID Register

The CNTTIDR characteristics are:

Purpose

Indicates the implemented timers in the physical address space, and their features. For each value
of N from 0 to 7 it indicates whether:

• Frame CNTBaseN is a view of an implemented timer.

• Frame CNTBaseN has a second view, CNTEL0BaseN.

• Frame CNTBaseN has a virtual timer capability.

Configurations

It is IMPLEMENTATION DEFINED whether CNTTIDR is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTTIDR is a 32-bit register.

Field descriptions

Frame<n>, bits [4n+3:4n], for n = 7 to 0

A 4-bit field indicating the features of frame CNTBase<n>.

Bit[3] of the field is RES0.

Bit[2], the FEL0 subfield, indicates whether frame CNTBase<n> has a second view,
CNTEL0Base<n>. The possible values of this bit are:

If bit[0] is 0, bit[2] is RES0.

Bit[1], the FVI subfield, indicates whether both:

• Frame CNTBase<n> implements the virtual timer registers CNTV_CVAL, CNTV_TVAL,
and CNTV_CTL.

• This CNTCTLBase frame implements the virtual timer offset register CNTVOFF<n>.

The possible values of bit[1] are:

If bit[0] is 0, bit[1] is RES0.

Frame7

31 28

Frame6

27 24

Frame5

23 20

Frame4

19 16

Frame3

15 12

Frame2

11 8

Frame1

7 4

Frame0

3 0

Bit[2] Meaning

0b0 Frame<n> does not have a second view. The register in the first view of the frame is

0b1 Frame<n> has a second view, CNTEL0Base<n>.

Bit[1] Meaning

0b0 Frame<n> does not have virtual capability. The virtual time and offset registers are.

0b1 Frame<n> has virtual capability. The virtual time and offset registers are implemented
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13541
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
Bit[0], the FI subfield, indicates whether frame CNTBase<n> is implemented. The possible values
of this bit are:

Accessing the CNTTIDR:

In a system that supports the Realm Management Extension, it is IMPLEMENTATION DEFINED whether Root and
Realm accesses to this register are permitted. If not permitted, this register behaves as RES0 for Root and Realm
accesses.

In a system that recognizes two Security states, this register is accessible by both Secure and Non-secure accesses.

CNTTIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Bit[0] Meaning

0b0 Frame<n> is not implemented. All registers associated with the frame are.

0b1 Frame<n> is implemented

Component Frame Offset Instance

Timer CNTCTLBase 0x008 CNTTIDR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13542
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.17 CNTV_CTL, Counter-timer Virtual Timer Control

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

Configurations

It is IMPLEMENTATION DEFINED whether CNTV_CTL is implemented in the Core power domain or
in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.

0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.

0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.

0b1 Timer enabled.

RES0

31 3 2 1 0

ISTATUS ENABLE
IMASK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13543
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTV_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CTL:

CNTV_CTL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the
corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CTL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CTL is accessible in that frame if both:

— CNTV_CTL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

CNTV_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTV_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x03C CNTV_CTL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x03C CNTV_CTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13544
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.18 CNTV_CVAL, Counter-timer Virtual Timer CompareValue

The CNTV_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the virtual timer.

Configurations

It is IMPLEMENTATION DEFINED whether CNTV_CVAL is implemented in the Core power domain
or in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

CompareValue, bits [63:0]

Holds the virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is
greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• An interrupt is generated if CNTV_CTL.IMASK is 0.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CVAL:

CNTV_CVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in
the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

CompareValue

63 32

CompareValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13545
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CVAL is accessible in that frame if both:

— CNTV_CVAL is accessible in the corresponding CNTBaseN frame:

— The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTV_CVAL register must be accessible as an
atomic 64-bit value.

CNTV_CVAL[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTV_CVAL[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTV_CVAL[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTV_CVAL[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance Range

Timer CNTBaseN 0x030 CNTV_CVA
L

31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x030 CNTV_CVA
L

31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x034 CNTV_CVA
L

63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x034 CNTV_CVA
L

63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13546
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.19 CNTV_TVAL, Counter-timer Virtual Timer TimerValue

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

Configurations

It is IMPLEMENTATION DEFINED whether CNTV_TVAL is implemented in the Core power domain
or in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

• If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.

• If CNTV_CTL.ENABLE is 1, the value returned is (CompareValue - CNTVCT).

On a write of this register, CompareValue is set to (CNTVCT + TimerValue), where TimerValue is
treated as a signed 32-bit integer.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is
greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.
When the timer condition is met:

• CNTV_CTL.ISTATUS is set to 1.

• If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count,
so the TimerValue view appears to continue to count down.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_TVAL:

CNTV_TVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in
the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

TimerValue

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13547
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_TVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_TVAL is accessible in that frame if both:

— CNTV_TVAL is accessible in the corresponding CNTBaseN frame.

— The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_TVAL address in that frame is RAZ/WI.

CNTV_TVAL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTV_TVAL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

Timer CNTBaseN 0x038 CNTV_TVAL

Component Frame Offset Instance

Timer CNTEL0BaseN 0x038 CNTV_TVAL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13548
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.20 CNTVCT, Counter-timer Virtual Count

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value.

Configurations

It is IMPLEMENTATION DEFINED whether CNTVCT is implemented in the Core power domain or in
the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual count value.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTVCT:

CNTVCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame, as a RO register.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame:

• CNTVCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVCT is 1.

• Otherwise, the CNTVCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTVCT is accessible in that frame if both:

— CNTVCT is accessible in the corresponding CNTBaseN frame.

Virtual count value

63 32

Virtual count value

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13549
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
— The value of CNTEL0ACR.EL0VCTEN is 1.

• Otherwise, the CNTVCT address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTVCT register must be accessible as an atomic
64-bit value.

CNTVCT[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTVCT[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTVCT[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTVCT[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance Range

Timer CNTBaseN 0x008 CNTVCT 31:0

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x008 CNTVCT 31:0

Component Frame Offset Instance Range

Timer CNTBaseN 0x00C CNTVCT 63:32

Component Frame Offset Instance Range

Timer CNTEL0BaseN 0x00C CNTVCT 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13550
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.21 CNTVOFF, Counter-timer Virtual Offset

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset for a CNTBaseN frame that has virtual timer capability. This is the
offset between real time and virtual time.

Configurations

It is IMPLEMENTATION DEFINED whether CNTVOFF is implemented in the Core power domain or
in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF:

CNTVOFF is implemented, as a RO register, in any implemented CNTBaseN frame that has virtual timer capability.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTVOFF is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVOFF is 1.

• Otherwise, the CNTVOFF address in that frame is RAZ/WI.

Note

CNTVOFF is never visible in any CNTEL0BaseN frame. This means that the CNTVOFF address in any
implemented CNTEL0BaseN frame is RAZ/WI.

Virtual offset

63 32

Virtual offset

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13551
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
In an implementation that supports 64-bit atomic accesses, then the CNTVOFF register must be accessible as an
atomic 64-bit value.

CNTVOFF[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CNTVOFF[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Range

Timer CNTBaseN 0x018 31:0

Component Frame Offset Range

Timer CNTBaseN 0x01C 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13552
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.22 CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

The CNTVOFF<n> characteristics are:

Purpose

Holds the 64-bit virtual offset for frame CNTBase<n>. This is the offset between real time and
virtual time.

Configurations

It is IMPLEMENTATION DEFINED whether CNTVOFF<n> is implemented in the Core power domain
or in the Debug power domain

Implementation of this register is OPTIONAL.

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

Attributes

CNTVOFF<n> is a 64-bit register.

Field descriptions

Bits [63:0]

Virtual offset.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF<n>:

In the CNTCTLBase frame a CNTVOFF<n> register must be implemented, as a RW register, for each CNTBaseN
frame that has virtual timer capability. For more information, see CNTCTLBase status and control fields for the
CNTBaseN and CNTEL0BaseN frames.

Note

The value of <n> in an instance of CNTVOFF<n> specifies the value of N for the associated CNTBaseN frame.

In a system that supports the Realm Management Extension, CNTNSAR.NS<n> describes how these registers can
be accessed by Root or Realm accesses.

In a system that recognizes two Security states, for any CNTVOFF<n> register in the CNTCTLBase frame:

• CNTVOFF<n> is always accessible by Secure accesses.

• CNTNSAR.NS<n> determines whether CNTVOFF<n> is accessible by Non-secure accesses.

The register location of any unimplemented CNTVOFF<n> register in the CNTCTLBase frame is RAZ/WI.

The CNTVOFF<n> register is accessible in the CNTBaseN frame using CNTVOFF.

In an implementation that supports 64-bit atomic accesses, then the CNTVOFF<n> registers must be accessible as
atomic 64-bit values.

Virtual offset

63 32

Virtual offset

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13553
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
CNTVOFF<n>[31:0] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

CNTVOFF<n>[63:32] can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Range

Timer CNTCTLBase 0x080 + (8 * n) 31:0

Component Frame Offset Range

Timer CNTCTLBase 0x084 + (8 * n) 63:32
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13554
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
I6.7.23 CounterID<n>, Counter ID registers, n = 0 - 11

The CounterID<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED identification registers 0 to 11 for the memory-mapped Generic Timer.

Configurations

It is IMPLEMENTATION DEFINED whether CounterID<n> is implemented in the Core power domain
or in the Debug power domain

For more information, see Power and reset domains for the system level implementation of the
Generic Timer.

These registers are implemented independently in each of the implemented Generic Timer
memory-mapped frames.

If the implementation of the Counter ID registers requires an architecture version, the value for this
version of the Arm Generic Timer is version 0.

The Counter ID registers can be implemented as a set of CoreSight ID registers, comprising
Peripheral ID Registers and Component ID Registers. An implementation of these registers for the
Generic Timer must use a Component class value of 0xF.

Attributes

CounterID<n> is a 32-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the CounterID<n>:

These registers must be implemented, as RO registers, in every implemented Generic Timer memory-mapped
frame.

For the CNTCTLBase frame, in a system that supports the Realm Management Extension, it is IMPLEMENTATION
DEFINED whether Root and Realm accesses to these registers are permitted. If not permitted, these registers behave
as RES0 for Root and Realm accesses.

For the CNTCTLBase frame, in a system that recognizes two Security states these registers are accessible by both
Secure and Non-secure accesses.

For the CNTControlBase frame, in a system that supports the Realm Management Extension, the frame is
implemented only in the Root physical address space, meaning these registers are implemented only in the Root
physical address space.

For the CNTControlBase frame, in a system that supports Secure and Non-secure physical address spaces, the frame
is implemented only in the Secure physical address space, meaning these registers are implemented only in the
Secure physical address space.

For the CNTReadBase frame, these registers are accessible in all physical address spaces.

For the CNTBaseN frames, CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames
describes the status fields that identify whether a frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13555
ID032224 Non-Confidential

External System Control Register Descriptions
I6.7 Generic Timer memory-mapped register descriptions
• Whether the corresponding CNTEL0BaseN frame is implemented.

• For an implementation that supports the Realm Management Extension, whether the CNTBaseN frame, and
any corresponding CNTEL0BaseN frame, is accessible by Root and Realm accesses.

• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses. The CNTBaseN frame is always
accessible by Secure accesses.

CounterID<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CounterID<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CounterID<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CounterID<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

CounterID<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance

Timer CNTControlBase 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTReadBase 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTBaseN 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTEL0BaseN 0xFD0 + (4 * n) CounterID<n>

Component Frame Offset Instance

Timer CNTCTLBase 0xFD0 + (4 * n) CounterID<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13556
ID032224 Non-Confidential

External System Control Register Descriptions
I6.8 RAS registers summary
I6.8 RAS registers summary

This section describes the memory-mapped interface to the RAS Extension registers. The descriptions in this section
apply whether the error records is accessed:

• Through the indirection mechanism, as described in Error record System register view.

• As memory-mapped registers, as described in RAS external register views.

I6.8.1 RAS external register views

The following tables show the external view of the RAS registers:

• Table I6-6 for the error record group memory-mapped registers when FEAT_RASSA_4KB_GRP is
implemented.

• Table I6-7 for the error record group memory-mapped registers when FEAT_RASSA_16KB_GRP is
implemented.

• Table I6-8 for the error record group memory-mapped registers when FEAT_RASSA_64KB_GRP is
implemented.

• Table I6-9 for the single error record memory-mapped registers.

• Table I6-10 for the fault injection group memory-mapped registers.

Each entry in the Name column links to the register description in RAS register descriptions.

The number of ERRGSR<m> registers is the ceiling of (N÷64). This means that:

• When FEAT_RASSA_4KB_GRP is implemented, there is a single ERRGSR register.

• When FEAT_RASSA_16KB_GRP is implemented, the ERRGSR registers are ERRGSR0 to ERRGSR3.

• When FEAT_RASSA_64KB_GRP is implemented, the ERRGSR registers are ERRGSR0 to ERRGSR13.

Table I6-6 Standard memory-mapped view of group of error records, 4KB pages

Name Type Size Description Offset

ERR<n>FR RO 64 Error Record <n> Feature Register 0x000+64×n

ERR<n>CTLR RW 64 Error Record <n> Control Register 0x008+64×n

ERR<n>STATUS RW 64 Error Record <n> Primary Status Register 0x010+64×n

ERR<n>ADDR RW 64 Error Record <n> Address Register 0x018+64×n

ERR<n>MISC0 RW 64 Error Record <n> Miscellaneous Register 0 0x020+64×n

ERR<n>MISC1 RW 64 Error Record <n> Miscellaneous Register 1 0x028+64×n

ERR<n>MISC2 RW 64 Error Record <n> Miscellaneous Register 2 0x030+64×n

ERR<n>MISC3 RW 64 Error Record <n> Miscellaneous Register 3 0x038+64×n

ERRIMPDEF<n> RW 64 IMPLEMENTATION DEFINED Register <n> 0x800+8×n

ERR<n>PFGF RO 64 Error Record <n> Pseudo-fault Generation Feature Register 0x800+64×n

ERR<n>PFGCTL RW 64 Error Record <n> Pseudo-fault Generation Control Register 0x808+64×n

ERR<n>PFGCDN RW 64 Error Record <n> Pseudo-fault Generation Countdown Register 0x810+64×n

ERRGSR RO 64 Error Group Status Register 0xE00

ERRIIDR RO 32 Error Group Implementation Identification Register 0xE10

ERRIRQCR<n> RW 64 Generic Error Interrupt Configuration Register <n> 0xE80+64×n

ERRFHICR0 RW 64 Fault Handling Interrupt Configuration Register 0 0xE80
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13557
ID032224 Non-Confidential

External System Control Register Descriptions
I6.8 RAS registers summary
ERRFHICR1 RW 32 Fault Handling Interrupt Configuration Register 1 0xE88

ERRFHICR2 RW 32 Fault Handling Interrupt Configuration Register 2 0xE8C

ERRERICR0 RW 64 Error Recovery Interrupt Configuration Register 0 0xE90

ERRERICR1 RW 32 Error Recovery Interrupt Configuration Register 1 0xE98

ERRERICR2 RW 32 Error Recovery Interrupt Configuration Register 2 0xE9C

ERRCRICR0 RW 64 Critical Error Interrupt Configuration Register 0 0xEA0

ERRCRICR1 RW 32 Critical Error Interrupt Configuration Register 1 0xEA8

ERRCRICR2 RW 32 Critical Error Interrupt Configuration Register 2 0xEAC

ERRIRQSR RW 64 Error Interrupt Status Register 0xEF8

ERRDEVAFF RO 64 Device Affinity Register 0xFA8

ERRDEVARCH RO 32 Device Architecture Register 0xFBC

ERRDEVID RO 32 Device Configuration Register 0xFC8

ERRPIDR4 RO 32 Peripheral Identification Register 4 0xFD0

ERRPIDR0 RO 32 Peripheral Identification Register 0 0XFE0

ERRPIDR1 RO 32 Peripheral Identification Register 1 0xFE4

ERRPIDR2 RO 32 Peripheral Identification Register 2 0xFE8

ERRPIDR3 RO 32 Peripheral Identification Register 3 0xFEC

ERRCIDR0 RO 32 Component Identification Register 0 0xFF0

ERRCIDR1 RO 32 Component Identification Register 1 0xFF4

ERRCIDR2 RO 32 Component Identification Register 2 0xFF8

ERRCIDR3 RO 32 Component Identification Register 3 0xFFC

Table I6-7 Standard memory-mapped view of group of error records, 16KB pages

Name Type Size Description Offset

ERR<n>FR RO 64 Error Record <n> Feature Register 0x0000+64×n

ERR<n>CTLR RW 64 Error Record <n> Control Register 0x0008+64×n

ERR<n>STATUS RW 64 Error Record <n> Primary Status Register 0x0010+64×n

ERR<n>ADDR RW 64 Error Record <n> Address Register 0x0018+64×n

ERR<n>MISC0 RW 64 Error Record <n> Miscellaneous Register 0 0x0020+64×n

ERR<n>MISC1 RW 64 Error Record <n> Miscellaneous Register 1 0x0028+64×n

ERR<n>MISC2 RW 64 Error Record <n> Miscellaneous Register 2 0x0030+64×n

ERR<n>MISC3 RW 64 Error Record <n> Miscellaneous Register 3 0x0038+64×n

Table I6-6 Standard memory-mapped view of group of error records, 4KB pages (continued)

Name Type Size Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13558
ID032224 Non-Confidential

External System Control Register Descriptions
I6.8 RAS registers summary
ERRIMPDEF<n> RW 64 IMPLEMENTATION DEFINED Register <n> 0x2000+8×n

ERR<n>PFGF RO 64 Error Record <n> Pseudo-fault Generation Feature Register 0x2000+64×n

ERR<n>PFGCTL RW 64 Error Record <n> Pseudo-fault Generation Control Register 0x2008+64×n

ERR<n>PFGCDN RW 64 Error Record <n> Pseudo-fault Generation Countdown Register 0x2010+64×n

ERRGSR<n> RO 64 Error Group Status Register <n> 0x3800+8×n

ERRIIDR RO 32 Error Group Implementation Identification Register 0x3E10

ERRIRQCR<n> RW 64 Generic Error Interrupt Configuration Register <n> 0x3E80+64×n

ERRFHICR0 RW 64 Fault Handling Interrupt Configuration Register 0 0x3E80

ERRFHICR1 RW 32 Fault Handling Interrupt Configuration Register 1 0x3E88

ERRFHICR2 RW 32 Fault Handling Interrupt Configuration Register 2 0x3E8C

ERRERICR0 RW 64 Error Recovery Interrupt Configuration Register 0 0x3E90

ERRERICR1 RW 32 Error Recovery Interrupt Configuration Register 1 0x3E98

ERRERICR2 RW 32 Error Recovery Interrupt Configuration Register 2 0x3E9C

ERRCRICR0 RW 64 Critical Error Interrupt Configuration Register 0 0x3EA0

ERRCRICR1 RW 32 Critical Error Interrupt Configuration Register 1 0x3EA8

ERRCRICR2 RW 32 Critical Error Interrupt Configuration Register 2 0x3EAC

ERRIRQSR RW 64 Error Interrupt Status Register 0x3EF8

ERRDEVAFF RO 64 Device Affinity Register 0x3FA8

ERRDEVARCH RO 32 Device Architecture Register 0x3FBC

ERRDEVID RO 32 Device Configuration Register 0x3FC8

ERRPIDR4 RO 32 Peripheral Identification Register 4 0x3FD0

ERRPIDR0 RO 32 Peripheral Identification Register 0 0X3FE0

ERRPIDR1 RO 32 Peripheral Identification Register 1 0x3FE4

ERRPIDR2 RO 32 Peripheral Identification Register 2 0x3FE8

ERRPIDR3 RO 32 Peripheral Identification Register 3 0x3FEC

ERRCIDR0 RO 32 Component Identification Register 0 0x3FF0

ERRCIDR1 RO 32 Component Identification Register 1 0x3FF4

ERRCIDR2 RO 32 Component Identification Register 2 0x3FF8

ERRCIDR3 RO 32 Component Identification Register 3 0x3FFC

Table I6-7 Standard memory-mapped view of group of error records, 16KB pages (continued)

Name Type Size Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13559
ID032224 Non-Confidential

External System Control Register Descriptions
I6.8 RAS registers summary
Table I6-8 Standard memory-mapped view of group of error records, 64KB pages

Name Type Size Description Offset

ERR<n>FR RO 64 Error Record <n> Feature Register 0x0000+64×n

ERR<n>CTLR RW 64 Error Record <n> Control Register 0x0008+64×n

ERR<n>STATUS RW 64 Error Record <n> Primary Status Register 0x0010+64×n

ERR<n>ADDR RW 64 Error Record <n> Address Register 0x0018+64×n

ERR<n>MISC0 RW 64 Error Record <n> Miscellaneous Register 0 0x0020+64×n

ERR<n>MISC1 RW 64 Error Record <n> Miscellaneous Register 1 0x0028+64×n

ERR<n>MISC2 RW 64 Error Record <n> Miscellaneous Register 2 0x0030+64×n

ERR<n>MISC3 RW 64 Error Record <n> Miscellaneous Register 3 0x0038+64×n

ERRIMPDEF<n> RW 64 IMPLEMENTATION DEFINED Register <n> 0x8000+8×n

ERR<n>PFGF RO 64 Error Record <n> Pseudo-fault Generation Feature Register 0x8000+64×n

ERR<n>PFGCTL RW 64 Error Record <n> Pseudo-fault Generation Control Register 0x8008+64×n

ERR<n>PFGCDN RW 64 Error Record <n> Pseudo-fault Generation Countdown Register 0x8010+64×n

ERRGSR<n> RO 64 Error Group Status Register <n> 0xE000+8×n

ERRIIDR RO 32 Error Group Implementation Identification Register 0xFE10

ERRIRQCR<n> RW 64 Generic Error Interrupt Configuration Register <n> 0xFE80+64×n

ERRFHICR0 RW 64 Fault Handling Interrupt Configuration Register 0 0xFE80

ERRFHICR1 RW 32 Fault Handling Interrupt Configuration Register 1 0xFE88

ERRFHICR2 RW 32 Fault Handling Interrupt Configuration Register 2 0xFE8C

ERRERICR0 RW 64 Error Recovery Interrupt Configuration Register 0 0xFE90

ERRERICR1 RW 32 Error Recovery Interrupt Configuration Register 1 0xFE98

ERRERICR2 RW 32 Error Recovery Interrupt Configuration Register 2 0xFE9C

ERRCRICR0 RW 64 Critical Error Interrupt Configuration Register 0 0xFEA0

ERRCRICR1 RW 32 Critical Error Interrupt Configuration Register 1 0xFEA8

ERRCRICR2 RW 32 Critical Error Interrupt Configuration Register 2 0xFEAC

ERRIRQSR RW 64 Error Interrupt Status Register 0xFEF8

ERRDEVAFF RO 64 Device Affinity Register 0xFFA8

ERRDEVARCH RO 32 Device Architecture Register 0xFFBC

ERRDEVID RO 32 Device Configuration Register 0xFFC8

ERRPIDR4 RO 32 Peripheral Identification Register 4 0xFFD0

ERRPIDR0 RO 32 Peripheral Identification Register 0 0XFFE0

ERRPIDR1 RO 32 Peripheral Identification Register 1 0xFFE4

ERRPIDR2 RO 32 Peripheral Identification Register 2 0xFFE8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13560
ID032224 Non-Confidential

External System Control Register Descriptions
I6.8 RAS registers summary
ERRPIDR3 RO 32 Peripheral Identification Register 3 0xFFEC

ERRCIDR0 RO 32 Component Identification Register 0 0xFFF0

ERRCIDR1 RO 32 Component Identification Register 1 0xFFF4

ERRCIDR2 RO 32 Component Identification Register 2 0xFFF8

ERRCIDR3 RO 32 Component Identification Register 3 0xFFFC

Table I6-8 Standard memory-mapped view of group of error records, 64KB pages (continued)

Name Type Size Description Offset

Table I6-9 RAS, single error record, memory-mapped register map

Name Type Size Description Offset

ERR<n>FR RO 64 Error Record <n> Feature Register 0x000

ERR<n>CTLR RW 64 Error Record <n> Control Register 0x008

ERR<n>STATUS RW 64 Error Record <n> Primary Status Register 0x010

ERR<n>ADDR RW 64 Error Record <n> Address Register 0x018

ERR<n>MISC0 RW 64 Error Record <n> Miscellaneous Register 0 0x020

ERR<n>MISC1 RW 64 Error Record <n> Miscellaneous Register 1 0x028

ERR<n>MISC2 RW 64 Error Record <n> Miscellaneous Register 2 0x030

ERR<n>MISC3 RW 64 Error Record <n> Miscellaneous Register 3 0x038

Table I6-10 RAS, fault injection group, memory-mapped register map

Name Type Size Description Offset

ERR<n>PFGF RO 64 Error Record <n> Pseudo-fault Generation
Feature Register

0x000+64×n

ERR<n>PFGCTL RW 64 Error Record <n> Pseudo-fault Generation
Control Register

0x008+64×n

ERR<n>PFGCDN RW 64 Error Record <n> Pseudo-fault Generation
Countdown Register

0x010+64×n

ERRIIDR RO 32 Implementation Identification Register 0xE10

ERRACR RW 64 Access Configuration Register 0xE40

ERRDEVAFF RO 64 Device Affinity Register 0xFA8

ERRDEVARCH RO 32 Device Architecture Register 0xFBC

ERRDEVID RO 32 Device Configuration Register 0xFC8

ERRPIDR4 RO 32 Peripheral Identification Register 4 0xFD0

ERRPIDR0 RO 32 Peripheral Identification Register 0 0xFE0

ERRPIDR1 RO 32 Peripheral Identification Register 1 0xFE4

ERRPIDR2 RO 32 Peripheral Identification Register 2 0xFE8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13561
ID032224 Non-Confidential

External System Control Register Descriptions
I6.8 RAS registers summary
ERRPIDR3 RO 32 Peripheral Identification Register 3 0xFEC

ERRCIDR0 RO 32 Component Identification Register 0 0xFF0

ERRCIDR1 RO 32 Component Identification Register 1 0xFF4

ERRCIDR2 RO 32 Component Identification Register 2 0xFF8

ERRCIDR3 RO 32 Component Identification Register 3 0xFFC

Table I6-10 RAS, fault injection group, memory-mapped register map (continued)

Name Type Size Description Offset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13562
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9 RAS register descriptions

This section describes the RAS registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13563
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.1 ERRACR, Access Configuration Register

The ERRACR characteristics are:

Purpose

Controls visibility of error records.

Configurations

This register is present only when (Root state is implemented or Secure state is implemented) and
an implementation implements ERRACR. Otherwise, direct accesses to ERRACR are RES0.

Attributes

ERRACR is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:32]

IMPLEMENTATION DEFINED observation controls. Additional IMPLEMENTATION DEFINED access
control bits.

Bit [31]

Reserved, RAO.

Indicates ERRACR is present.

This field reads-as-one.

Bits [30:6]

Reserved, RES0.

RLRA, bits [5:4]

When FEAT_RME is implemented and the error record group allows configuration of Realm register
accesses:

Realm Restricted Access. Controls Realm access to error records and interrupt configuration
registers in the error record group.

0b00 Realm access is disabled. All error record, ERR<irq>CR<m>, and ERRIRQSR
registers are RAZ/WI to Realm accesses.

0b01 Realm read access is enabled. Realm writes are ignored.

0b11 Realm read/write access is allowed. If the error record group supports MSIs, generated
MSIs are always Non-secure.

All other values are reserved.

This control applies to all error record registers (ERR<n>*, including fault injection registers
ERR<n>PFG* if implemented), and interrupt configuration registers (ERR<irq>CR<m> and
ERRIRQSR, if implemented) in the error record group. The effect on any IMPLEMENTATION
DEFINED registers is IMPLEMENTATION DEFINED.

When Realm access to error records is disabled, a Realm read of ERRGSR will return the error
record status for the error records that cannot be accessed.

IMPLEMENTATION DEFINED

63 32

31

RES0

30 6

RLRA

5 4

SRA

3 2

NSRA

1 0

RAO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13564
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When Realm access is fully or partially disabled, the effect on Realm accesses to IMPLEMENTATION
DEFINED registers is IMPLEMENTATION DEFINED.

Note
Realm access to error records is enabled from reset.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 3.

Otherwise:

Reserved, RAZ/WI.

SRA, bits [3:2]

When Secure state is implemented, FEAT_RME is implemented and the error record group allows
configuration of Secure register accesses:

Secure Restricted Access. Controls Secure access to error records and interrupt configuration
registers in the error record group.

0b00 Secure access is disabled. All error record, ERR<irq>CR<m>, and ERRIRQSR
registers are RAZ/WI to Secure accesses.

0b01 Secure read access is enabled. Secure writes are ignored.

0b11 Secure read/write access is allowed. If the error record group supports MSIs, generated
MSIs are always Non-secure.

All other values are reserved.

This control applies to all error record registers (ERR<n>*, including fault injection registers
ERR<n>PFG* if implemented), and interrupt configuration registers (ERR<irq>CR<m> and
ERRIRQSR, if implemented) in the error record group. The effect on any IMPLEMENTATION
DEFINED registers is IMPLEMENTATION DEFINED.

When Secure access to error records is disabled, a Secure read of ERRGSR will return the error
record status for the error records that cannot be accessed.

When Secure access is fully or partially disabled, the effect on Secure accesses to IMPLEMENTATION
DEFINED registers is IMPLEMENTATION DEFINED.

Note

Secure access to error records is enabled from reset.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 3.

Otherwise:

Reserved, RAZ/WI.

NSRA, bits [1:0]

Non-secure Restricted Access. Controls Non-secure access to error records and interrupt
configuration registers in the error record group.

0b00 Non-secure access is disabled. All error record, ERR<irq>CR<m>, and ERRIRQSR
registers are RAZ/WI to Non-secure accesses.

0b01 Non-secure read access is enabled. Non-secure writes are ignored.

0b11 Non-secure read/write access is allowed. If the error record group supports MSIs,
generated MSIs are always Non-secure.

All other values are reserved.

This control applies to all error record registers (ERR<n>*, including fault injection registers
ERR<n>PFG* if implemented), and interrupt configuration registers (ERR<irq>CR<m> and
ERRIRQSR, if implemented) in the error record group. The effect on any IMPLEMENTATION
DEFINED registers is IMPLEMENTATION DEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13565
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When Non-secure access to error records is disabled, a Non-secure read of ERRGSR will return the
error record status for the error records that cannot be accessed.

When Non-secure access is fully or partially disabled, the effect on Non-secure accesses to
IMPLEMENTATION DEFINED registers is IMPLEMENTATION DEFINED.

Note

Non-secure access to error records is enabled from reset.

If FEAT_RME is implemented and ERRACR.{RLRA, SRA} are not implemented, then
ERRACR.NSRA applies to all Security states other than Root.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 3.

Accessing the ERRACR:

ERRACR can be accessed through the external debug interface:

This interface is accessible as follows:

• When (FEAT_RME is implemented and an access is not Root) or an access is Non-secure accesses to this
register are RAZ/WI.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xE40 ERRACR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13566
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.2 ERRCIDR0, Component Identification Register 0

The ERRCIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Component Identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Reads as 0x0D.

Access to this field is RO.

Accessing the ERRCIDR0:

ERRCIDR0 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

0 0 0 0 1 1 0 1

7 0

PRMBL_0

Component Offset Instance

RAS 0xFF0 ERRCIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13567
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.3 ERRCIDR1, Component Identification Register 1

The ERRCIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Component Identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

0b1111 Generic peripheral with IMPLEMENTATION DEFINED register layout.

Other values are defined by the CoreSight Architecture.

This field reads as 0xF.

Access to this field is RO.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

Reads as 0b0000.

Access to this field is RO.

Accessing the ERRCIDR1:

ERRCIDR1 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

1 1 1 1

7 4

0 0 0 0

3 0

CLASS PRMBL_1

Component Offset Instance

RAS 0xFF4 ERRCIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13568
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.4 ERRCIDR2, Component Identification Register 2

The ERRCIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Component Identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR2 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

Reads as 0x05.

Access to this field is RO.

Accessing the ERRCIDR2:

ERRCIDR2 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

0 0 0 0 0 1 0 1

7 0

PRMBL_2

Component Offset Instance

RAS 0xFF8 ERRCIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13569
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.5 ERRCIDR3, Component Identification Register 3

The ERRCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Component Identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR3 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

Reads as 0xB1.

Access to this field is RO.

Accessing the ERRCIDR3:

ERRCIDR3 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

1 0 1 1 0 0 0 1

7 0

PRMBL_3

Component Offset Instance

RAS 0xFFC ERRCIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13570
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.6 ERRCRICR0, Critical Error Interrupt Configuration Register 0

The ERRCRICR0 characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation
does not use the recommended layout for the ERRIRQCR registers) and interrupt configuration
registers are implemented. Otherwise, direct accesses to ERRCRICR0 are RES0.

ERRCRICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR0 is a 64-bit register.

Field descriptions

When the Critical Error Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [63:0]

Reserved, RES0.

When the implementation uses message-signaled interrupts, the Critical Error Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRCRICR0.ADDR << 2) is the address that the component
writes to when signaling the Critical Error Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.
Unimplemented high-order physical address bits are RES0.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

RES0

63 32

RES0

31 0

RES0

63 56

ADDR

55 32

ADDR

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13571
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR0:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRCRICR0 are IMPLEMENTATION DEFINED.

ERRCRICR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRCRICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xEA0 ERRCRICR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13572
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.7 ERRCRICR1, Critical Error Interrupt Configuration Register 1

The ERRCRICR1 characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation
does not use the recommended layout for the ERRIRQCR registers) and interrupt configuration
registers are implemented. Otherwise, direct accesses to ERRCRICR1 are RES0.

ERRCRICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR1 is a 32-bit register.

Field descriptions

When the Critical Error Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [31:0]

Reserved, RES0.

When the implementation uses message-signaled interrupts, the Critical Error Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

DATA, bits [31:0]

Payload for the message signaled interrupt.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR1:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRCRICR1 are IMPLEMENTATION DEFINED.

RES0

31 0

DATA

31 0

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13573
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
ERRCRICR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRCRICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xEA8 ERRCRICR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13574
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.8 ERRCRICR2, Critical Error Interrupt Configuration Register 2

The ERRCRICR2 characteristics are:

Purpose

Critical Error Interrupt control and configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation
does not use the recommended layout for the ERRIRQCR registers) and interrupt configuration
registers are implemented. Otherwise, direct accesses to ERRCRICR2 are RES0.

ERRCRICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR2 is a:

• 64-bit register when the Critical Error Interrupt is implemented, the implementation uses the
recommended layout for the ERRIRQCR registers and the implementation uses simple
interrupts

• 32-bit register when the implementation uses message-signaled interrupts, the Critical Error
Interrupt is implemented and the implementation uses the recommended layout for the
ERRIRQCR registers

• 32-bit register when the implementation does not use the recommended layout for the
ERRIRQCR registers

Field descriptions

When the Critical Error Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [63:8]

Reserved, RES0.

IRQEN, bit [7]

Interrupts enable. Enables generation of interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [6:0]

Reserved, RES0.

RES0

63 32

RES0

31 8 7

RES0

6 0

IRQEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13575
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the implementation uses message-signaled interrupts, the Critical Error Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]

When the component supports configuring the physical address space for message signaled
interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled
interrupts.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• RO if any of the following are true:

— an access is Non-secure.

— an access is Realm.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

Non-secure message signaled interrupt.

The physical address space for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

IRQEN NSMSI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13576
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
All other values are reserved.

This field is ignored when ERRCRICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.

0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.

0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.

0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.

0b1110 Normal memory, Inner Write-Through, Outer Write-Back.

0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note
This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13577
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR2:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRCRICR2 are IMPLEMENTATION DEFINED.

ERRCRICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRCRICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xEAC ERRCRICR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13578
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.9 ERRDEVAFF, Device Affinity Register

The ERRDEVAFF characteristics are:

Purpose

For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a
copy of MPIDR_EL1 or part of MPIDR_EL1:

• If the group of error records has affinity with a single PE, the affinity level is 0, then
ERRDEVAFF reads the same value as MPIDR_EL1, and ERRDEVAFF.F0V reads-as-one to
indicate affinity level 0.

• If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3,
then parts of ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of
ERRDEVAFF indicates the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following
are true:

• All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values
are equal to ERRDEVAFF.{Aff3,Aff2}.

• ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFF.{Aff0,F0V} read-as-zero, to
indicate at least affinity level 1. The subset of PEs at level 1 that the group of error records
has affinity with is indicated by the least-significant set bit in ERRDEVAFF.Aff1. In this
example, if ERRDEVAFF.Aff1[2:0] is 0b100, then the group of error records has affinity with
the up-to 8 PEs that have MPIDR_EL1.Aff1[7:3] == ERRDEVAFF.Aff1[7:3].

Depending on the IMPLEMENTATION DEFINED nature of the system, it might be possible that
ERRDEVAFF is read before system firmware has configured the group of error records or the PE
or group of PEs that the group of error records has affinity with. When this is the case, ERRDEVAFF
reads as zero.

If RAS System Architecture v1.1 is not implemented then ERRDEVAFF can only describe a group
of error records that is affine with a single PE or all the PEs at an affinity level.

Configurations

This register is present only when the group of error records has affinity with a PE or cluster of PEs.
Otherwise, direct accesses to ERRDEVAFF are RES0.

ERRDEVAFF is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVAFF is a 64-bit register.

Field descriptions

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the
associated PE or PEs.

RES0

63 40

Aff3

39 32

31

U

30

RES0

29 25

MT

24

Aff2

23 16

Aff1

15 8

Aff0

7 0

F0V
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13579
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
F0V, bit [31]

Indicates that the ERRDEVAFF.Aff0 field is valid.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 ERRDEVAFF.Aff0 is not valid, and the PE affinity is above level 0 or a subset of level 0.

0b1 ERRDEVAFF.Aff0 is valid, and the PE affinity is at level 0.

Access to this field is RO.

U, bit [30]

When ERRDEVAFF.F0V == 1:

Uniprocessor. The MPIDR_EL1.U field, viewed from the highest Exception level of the associated
PE.

Otherwise:

Reserved, UNKNOWN.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

When ERRDEVAFF.F0V == 1:

Multithreaded. The MPIDR_EL1.MT field, viewed from the highest Exception level of the
associated PE.

Otherwise:

Reserved, UNKNOWN.

Aff2, bits [23:16]

When !IsZero(ERRDEVAFF.[Aff1,Aff0,F0V]):

PE affinity level 2. The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the
associated PE or PEs.

Otherwise:

PE affinity level 2. Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception
level of the associated PEs.

0bxxxxxxx1 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:1] is the value of
MPIDR_EL1.Aff2[7:1], viewed from the highest Exception level of the associated PEs.

0bxxxxxx10 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:2] is the value of
MPIDR_EL1.Aff2[7:2], viewed from the highest Exception level of the associated PEs.

0bxxxxx100 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:3] is the value of
MPIDR_EL1.Aff2[7:3], viewed from the highest Exception level of the associated PEs.

0bxxxx1000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:4] is the value of
MPIDR_EL1.Aff2[7:4], viewed from the highest Exception level of the associated PEs.

0bxxx10000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:5] is the value of
MPIDR_EL1.Aff2[7:5], viewed from the highest Exception level of the associated PEs.

0bxx100000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:6] is the value of
MPIDR_EL1.Aff2[7:6], viewed from the highest Exception level of the associated PEs.

0bx1000000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7] is the value of
MPIDR_EL1.Aff2[7], viewed from the highest Exception level of the associated PEs.

0x80 PE affinity is at level 3.

Aff1, bits [15:8]

When !IsZero(ERRDEVAFF.[Aff0,F0V]):

PE affinity level 1. The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the
associated PE or PEs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13580
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Otherwise:

PE affinity level 1. Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception
level of the associated PEs.

0bxxxxxxx1 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:1] is the value of
MPIDR_EL1.Aff1[7:1], viewed from the highest Exception level of the associated PEs.

0bxxxxxx10 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:2] is the value of
MPIDR_EL1.Aff1[7:2], viewed from the highest Exception level of the associated PEs.

0bxxxxx100 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:3] is the value of
MPIDR_EL1.Aff1[7:3], viewed from the highest Exception level of the associated PEs.

0bxxxx1000 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:4] is the value of
MPIDR_EL1.Aff1[7:4], viewed from the highest Exception level of the associated PEs.

0bxxx10000 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:5] is the value of
MPIDR_EL1.Aff1[7:5], viewed from the highest Exception level of the associated PEs.

0bxx100000 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:6] is the value of
MPIDR_EL1.Aff1[7:6], viewed from the highest Exception level of the associated PEs.

0bx1000000 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7] is the value of
MPIDR_EL1.Aff1[7], viewed from the highest Exception level of the associated PEs.

0x80 PE affinity is at level 2.

0x00 PE affinity is above level 2 or a subset of level 2.

Aff0, bits [7:0]

When ERRDEVAFF.F0V == 1:

PE affinity level 0. The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the
associated PE.

Otherwise:

PE affinity level 0. Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception
level of the associated PEs.

0bxxxxxxx1 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:1] is the value of
MPIDR_EL1.Aff0[7:1], viewed from the highest Exception level of the associated PEs.

0bxxxxxx10 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:2] is the value of
MPIDR_EL1.Aff0[7:2], viewed from the highest Exception level of the associated PEs.

0bxxxxx100 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:3] is the value of
MPIDR_EL1.Aff0[7:3], viewed from the highest Exception level of the associated PEs.

0bxxxx1000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:4] is the value of
MPIDR_EL1.Aff0[7:4], viewed from the highest Exception level of the associated PEs.

0bxxx10000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:5] is the value of
MPIDR_EL1.Aff0[7:5], viewed from the highest Exception level of the associated PEs.

0bxx100000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:6] is the value of
MPIDR_EL1.Aff0[7:6], viewed from the highest Exception level of the associated PEs.

0bx1000000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7] is the value of
MPIDR_EL1.Aff0[7], viewed from the highest Exception level of the associated PEs.

0x80 PE affinity is at level 1.

0x00 PE affinity is above level 1 or a subset of level 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13581
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Accessing the ERRDEVAFF:

ERRDEVAFF can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

RAS 0xFA8 ERRDEVAFF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13582
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.10 ERRDEVARCH, Device Architecture Register

The ERRDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

Configurations

ERRDEVARCH is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVARCH is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Access to this field is RO.

PRESENT, bit [20]

DEVARCH present. Defines that ERRDEVARCH register is present.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Device Architecture information not present.

0b1 Device Architecture information present.

This field reads as 1.

Access to this field is RO.

REVISION, bits [19:16]

When UInt(ERRDEVARCH.ARCHPART) == 0xA00 and ERRDEVARCH.ARCHVER == 0b0000:

Revision. Defines the architecture revision of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 RAS System Architecture, error record group v1.0.

0b0001 RAS System Architecture, error record group v1.1. As 0b0000 and also:

• Simplifies ERR<n>STATUS.

• Adds support for additional ERR<n>MISC<m> registers.

• Adds support for the optional RAS Timestamp Extension.

• Adds support for the optional Common Fault Injection Model Extension.

All other values are reserved.

Access to this field is RO.

When UInt(ERRDEVARCH.ARCHPART) == 0xA00 and ERRDEVARCH.ARCHVER == 0b0001:

Revision. Defines the architecture revision of the component.

0b0000 RAS System Architecture, error record group v2.0.

All other values are reserved.

0 1 0 0 0 1 1 1 0 1 1

31 21 20

REVISION

19 16

ARCHVER

15 12

ARCHPART

11 0

ARCHITECT PRESENT
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13583
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Access to this field is RO.

When UInt(ERRDEVARCH.ARCHPART) == 0xA08 and ERRDEVARCH.ARCHVER == 0b0000:

Revision. Defines the architecture revision of the component.

0b0000 RAS System Architecture, fault injection group v1.0.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ARCHVER, bits [15:12]

When UInt(ERRDEVARCH.ARCHPART) == 0xA00:

Architecture Version. Defines the architecture version of the component. Defined values are:

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 RAS System Architecture, error record group v1.

0b0001 RAS System Architecture, error record group v2. As 0b0000 and also:

• Adds an optional access control register, ERRACR.

• Adds an optional control for disabling error counters.

• Adds optional fault handling interrupt controls for Deferred errors.

• Adds support for continuation and proxy error records.

• Adds support for implementing Common Fault Injection Mechanism registers in
a separate page from the error record registers.

• Adds support for simple interrupt control registers.

• Defines fields in ERRDEVID that describe these properties.

All other values are reserved.

ERRDEVARCH.ARCHVER and ERRDEVARCH.ARCHPART are also defined as a single field,
ERRDEVARCH.ARCHID, so that ERRDEVARCH.ARCHVER is
ERRDEVARCH.ARCHID[15:12].

Access to this field is RO.

When UInt(ERRDEVARCH.ARCHPART) == 0xA08:

Architecture Version. Defines the architecture version of the component.

0b0000 RAS System Architecture, fault injection group v1.

All other values are reserved.

ERRDEVARCH.ARCHVER and ERRDEVARCH.ARCHPART are also defined as a single field,
ERRDEVARCH.ARCHID, so that ERRDEVARCH.ARCHVER is
ERRDEVARCH.ARCHID[15:12].

Access to this field is RO.

Otherwise:

Reserved, RES0.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0xA00 RAS System Architecture, error record group.

0xA08 RAS System Architecture, fault injection group.

ERRDEVARCH.ARCHVER and ERRDEVARCH.ARCHPART are also defined as a single field,
ERRDEVARCH.ARCHID, so that ERRDEVARCH.ARCHPART is
ERRDEVARCH.ARCHID[11:0].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13584
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Access to this field is RO.

Accessing the ERRDEVARCH:

ERRDEVARCH can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

RAS 0xFBC ERRDEVARCH
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13585
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.11 ERRDEVID, Device Configuration Register

The ERRDEVID characteristics are:

Purpose

Provides discovery information for the component.

Configurations

ERRDEVID is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVID is a 32-bit register.

Field descriptions

Bits [31:22]

Reserved, RES0.

PFG, bit [21]

When RAS System Architecture v2 is implemented:

Common Fault Injection Mechanism. Describes whether any Common Fault Injection Mechanism
registers are implemented in the same page as this register.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Any Common Fault Injection Mechanism registers are implemented in the same page
as this register.

0b1 Any Common Fault Injection Mechanism registers are implemented in a separate fault
injection group page.

Accessing this field has the following behavior:

• When ERRDEVID is part of a fault injection group, access to this field is RAZ/WI.

• Otherwise, access to this field is RO.

Otherwise:

Reserved, RAZ.

Bit [20]

Reserved, RES0.

IRQCR, bits [19:16]

Interrupt Control registers. Describes whether the interrupt control registers are implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0000 It is IMPLEMENTATION DEFINED whether any interrupt control registers are
implemented.

0b0001 An IMPLEMENTATION DEFINED form of interrupt control registers are implemented.

0b0010 The recommended layout form of interrupt control registers are implemented, for
simple interrupts.

0b0011 The recommended layout form of interrupt control registers are implemented, for
message-signaled interrupts.

0b1111 Interrupt control registers are not implemented.

RES0

31 22 21 20

IRQCR

19 16

NUM

15 0

PFG RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13586
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
All other values are reserved.

Accessing this field has the following behavior:

• When ERRDEVID is part of a RAS agent that is not a System RAS agent, access to this field
is RAO/WI.

• When ERRDEVID is part of a fault injection group, access to this field is RAZ/WI.

• Otherwise, access to this field is RO.

NUM, bits [15:0]

Highest numbered index of the error records in this group, plus one. Each implemented record is
owned by a node. A node might own multiple records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped
peripheral. For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault
Injection Model is implemented, and up to 56 otherwise.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRDEVID:

ERRDEVID can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

RAS 0xFC8 ERRDEVID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13587
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.12 ERRERICR0, Error Recovery Interrupt Configuration Register 0

The ERRERICR0 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR registers) and interrupt
configuration registers are implemented. Otherwise, direct accesses to ERRERICR0 are RES0.

ERRERICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR0 is a 64-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [63:0]

Reserved, RES0.

When the implementation uses message-signaled interrupts, the Error Recovery Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRERICR0.ADDR << 2) is the address that the component
writes to when signaling the Error Recovery Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.
Unimplemented high-order physical address bits are RES0.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

RES0

63 32

RES0

31 0

RES0

63 56

ADDR

55 32

ADDR

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13588
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR0:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRERICR0 are IMPLEMENTATION DEFINED.

ERRERICR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRERICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE90 ERRERICR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13589
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.13 ERRERICR1, Error Recovery Interrupt Configuration Register 1

The ERRERICR1 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR registers) and interrupt
configuration registers are implemented. Otherwise, direct accesses to ERRERICR1 are RES0.

ERRERICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR1 is a 32-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [31:0]

Reserved, RES0.

When the implementation uses message-signaled interrupts, the Error Recovery Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

DATA, bits [31:0]

Payload for the message signaled interrupt.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR1:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRERICR1 are IMPLEMENTATION DEFINED.

RES0

31 0

DATA

31 0

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13590
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
ERRERICR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRERICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xE98 ERRERICR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13591
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.14 ERRERICR2, Error Recovery Interrupt Configuration Register 2

The ERRERICR2 characteristics are:

Purpose

Error Recovery Interrupt control and configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR registers) and interrupt
configuration registers are implemented. Otherwise, direct accesses to ERRERICR2 are RES0.

ERRERICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR2 is a:

• 64-bit register when the Error Recovery Interrupt is implemented, the implementation uses
the recommended layout for the ERRIRQCR registers and the implementation uses simple
interrupts

• 32-bit register when the implementation uses message-signaled interrupts, the Error
Recovery Interrupt is implemented and the implementation uses the recommended layout for
the ERRIRQCR registers

• 32-bit register when the implementation does not use the recommended layout for the
ERRIRQCR registers

Field descriptions

When the Error Recovery Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [63:8]

Reserved, RES0.

IRQEN, bit [7]

Interrupts enable. Enables generation of interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [6:0]

Reserved, RES0.

RES0

63 32

RES0

31 8 7

RES0

6 0

IRQEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13592
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the implementation uses message-signaled interrupts, the Error Recovery Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]

When the component supports configuring the physical address space for message signaled
interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled
interrupts.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• RO if any of the following are true:

— an access is Non-secure.

— an access is Realm.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

Non-secure message signaled interrupt.

The physical address space for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

IRQEN NSMSI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13593
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
All other values are reserved.

This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.

0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.

0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.

0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.

0b1110 Normal memory, Inner Write-Through, Outer Write-Back.

0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note
This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13594
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR2:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRERICR2 are IMPLEMENTATION DEFINED.

ERRERICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRERICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xE9C ERRERICR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13595
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.15 ERRFHICR0, Fault Handling Interrupt Configuration Register 0

The ERRFHICR0 characteristics are:

Purpose

Fault Handling Interrupt configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR registers) and interrupt
configuration registers are implemented. Otherwise, direct accesses to ERRFHICR0 are RES0.

ERRFHICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR0 is a 64-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [63:0]

Reserved, RES0.

When the implementation uses message-signaled interrupts, the Fault Handling Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRFHICR0.ADDR << 2) is the address that the component
writes to when signaling the Fault Handling Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.
Unimplemented high-order physical address bits are RES0.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

RES0

63 32

RES0

31 0

RES0

63 56

ADDR

55 32

ADDR

31 2

RES0

1 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13596
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRFHICR0:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRFHICR0 are IMPLEMENTATION DEFINED.

ERRFHICR0 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRFHICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE80 ERRFHICR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13597
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.16 ERRFHICR1, Fault Handling Interrupt Configuration Register 1

The ERRFHICR1 characteristics are:

Purpose

Fault Handling Interrupt configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR registers) and interrupt
configuration registers are implemented. Otherwise, direct accesses to ERRFHICR1 are RES0.

ERRFHICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR1 is a 32-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [31:0]

Reserved, RES0.

When the implementation uses message-signaled interrupts, the Fault Handling Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

DATA, bits [31:0]

Payload for the message signaled interrupt.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRFHICR1:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRFHICR1 are IMPLEMENTATION DEFINED.

RES0

31 0

DATA

31 0

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13598
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
ERRFHICR1 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRFHICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xE88 ERRFHICR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13599
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.17 ERRFHICR2, Fault Handling Interrupt Configuration Register 2

The ERRFHICR2 characteristics are:

Purpose

Fault Handling Interrupt control and configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the
implementation does not use the recommended layout for the ERRIRQCR registers) and interrupt
configuration registers are implemented. Otherwise, direct accesses to ERRFHICR2 are RES0.

ERRFHICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR2 is a:

• 64-bit register when the Fault Handling Interrupt is implemented, the implementation uses
the recommended layout for the ERRIRQCR registers and the implementation uses simple
interrupts

• 32-bit register when the implementation uses message-signaled interrupts, the Fault
Handling Interrupt is implemented and the implementation uses the recommended layout for
the ERRIRQCR registers

• 32-bit register when the implementation does not use the recommended layout for the
ERRIRQCR registers

Field descriptions

When the Fault Handling Interrupt is implemented, the implementation uses the recommended
layout for the ERRIRQCR registers and the implementation uses simple interrupts:

Bits [63:8]

Reserved, RES0.

IRQEN, bit [7]

Interrupts enable. Enables generation of interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [6:0]

Reserved, RES0.

RES0

63 32

RES0

31 8 7

RES0

6 0

IRQEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13600
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the implementation uses message-signaled interrupts, the Fault Handling Interrupt is
implemented and the implementation uses the recommended layout for the ERRIRQCR registers:

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]

When the component supports configuring the physical address space for message signaled
interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled
interrupts.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• RO if any of the following are true:

— an access is Non-secure.

— an access is Realm.

• Otherwise, access to this field is RW.

Otherwise:

Reserved, RES0.

Non-secure message signaled interrupt.

The physical address space for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

RES0

31 8 7 6

SH

5 4

MemAttr

3 0

IRQEN NSMSI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13601
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
All other values are reserved.

This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always
treated as Outer Shareable.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.

0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.

0b1010 Normal memory, Inner Write-Through, Outer Write-Through.

0b1011 Normal memory, Inner Write-Back, Outer Write-Through.

0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.

0b1110 Normal memory, Inner Write-Through, Outer Write-Back.

0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note
This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13602
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRFHICR2:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRFHICR2 are IMPLEMENTATION DEFINED.

ERRFHICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRFHICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xE8C ERRFHICR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13603
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.18 ERRGSR, Error Group Status Register

The ERRGSR characteristics are:

Purpose

Shows the status for the records in the group.

Configurations

ERRGSR is implemented only as part of a memory-mapped group of error records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped
peripheral. For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault
Injection Model is implemented, and up to 56 otherwise.

Attributes

ERRGSR is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

S<m>, bit [m], for m = 55 to 0

When error record m is implemented and error record m supports this type of reporting:

The status for error record <m>. A read-only copy of ERR<n>STATUS.V.

0b0 No error.

0b1 One or more errors.

If the Common Fault Injection Model is implemented then up-to 24 records can be implemented
meaning bits [55:24] are RES0.

Accessing the ERRGSR:

ERRGSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

63 56

S<m>

55 32

S<m>

31 0

Component Offset Instance

RAS 0xE00 ERRGSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13604
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.19 ERRIIDR, Implementation Identification Register

The ERRIIDR characteristics are:

Purpose

Defines the implementer of the component.

Configurations

This register is present only when RAS System Architecture v1p1 is implemented. Otherwise, direct
accesses to ERRIIDR are RES0.

Attributes

ERRIIDR is a 32-bit register.

Field descriptions

ProductID, bits [31:20]

Part number, bits [11:0]. The part number is selected by the designer of the component.

If ERRPIDR0 and ERRPIDR1 are implemented, ERRPIDR0.PART_0 matches bits [7:0] of
ERRIIDR.ProductID and ERRPIDR1.PART_1 matches bits [11:8] of ERRIIDR.ProductID.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

Component major revision.

This field distinguishes product variants or major revisions of the product.

If ERRPIDR2 is implemented, ERRPIDR2.REVISION matches ERRIIDR.Variant.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

Component minor revision.

This field distinguishes minor revisions of the product.

If ERRPIDR3 is implemented, ERRPIDR3.REVAND matches ERRIIDR.Revision.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:8, 6:0]

Contains the JEP106 code of the company that implemented the RAS component. For an Arm
implementation, this field has the value 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer, and bits [6:0] contain the
JEP106 identity code of the implementer.

If ERRPIDR4 is implemented, ERRPIDR2 is implemented, and ERRPIDR1 is implemented,
ERRPIDR4.DES_2 matches bits [11:8] of ERRIIDR.Implementer, ERRPIDR2.DES_1 matches
bits [6:4] of ERRIIDR.Implementer, and ERRPIDR1.DES_0 matches bits [3:0] of
ERRIIDR.Implementer.

ProductID

31 20

Variant

19 16

Revision

15 12 11 8 7 6 0

Implementer[10:7] Implementer[6:0
]

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13605
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
This field has an IMPLEMENTATION DEFINED value.

The Implementer field is split as follows:

• Implementer[10:7] is ERRIIDR[11:8].

• Implementer[6:0] is ERRIIDR[6:0].

Access to this field is RO.

Bit [7]

Reserved, RES0.

Accessing the ERRIIDR:

ERRIIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset

RAS 0xE10
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13606
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.20 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191

The ERRIMPDEF<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED RAS extensions.

Configurations

This register is present only when the Common Fault Injection Model Extension is not
implemented, UInt(ERRDEVID.NUM) <= 32 and an implementation implements
ERRIMPDEF<n>. Otherwise, direct accesses to ERRIMPDEF<n> are RES0.

Attributes

ERRIMPDEF<n> is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRIMPDEF<n>:

ERRIMPDEF<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0x800 + (8 * n) ERRIMPDEF<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13607
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.21 ERRIRQCR<n>, Generic Error Interrupt Configuration Register <n>, n = 0 - 15

The ERRIRQCR<n> characteristics are:

Purpose

The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration
registers.

The architecture provides a recommended layout for the ERRIRQCR<n> registers. These registers
are named:

• ERRFHICR0, ERRFHICR1, and ERRFHICR2 for the fault handling interrupt controls.

• ERRERICR0, ERRERICR1, and ERRERICR2 for the error recovery interrupt controls.

• ERRCRICR0, ERRCRICR1, and ERRCRICR2 for the critical error interrupt controls.

• ERRIRQSR for the status register.

This section describes the generic, IMPLEMENTATION DEFINED, format.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when the interrupt configuration registers are implemented. Otherwise,
direct accesses to ERRIRQCR<n> are RES0.

ERRIRQCR<n> is implemented only as part of a memory-mapped group of error records.

Attributes

ERRIRQCR<n> is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

Accessing the ERRIRQCR<n>:

ERRIRQCR<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0xE80 + (8 * n) ERRIRQCR<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13608
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.22 ERRIRQSR, Error Interrupt Status Register

The ERRIRQSR characteristics are:

Purpose

Interrupt status register.

Configurations

This register is present only when interrupt configuration registers are implemented. Otherwise,
direct accesses to ERRIRQSR are RES0.

ERRIRQSR is implemented only as part of a memory-mapped group of error records.

Attributes

ERRIRQSR is a 64-bit register.

Field descriptions

When the implementation uses the recommended layout for the ERRIRQCR registers and the
implementation uses simple interrupts:

Bits [63:0]

Reserved, RES0.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

When the implementation uses message-signaled interrupts and the implementation uses the
recommended layout for the ERRIRQCR registers:

Bits [63:6]

Reserved, RES0.

CRIERR, bit [5]

When the Critical Error Interrupt is implemented:

Critical Error Interrupt Error.

0b0 Critical Error Interrupt write has not returned an error since this field was last cleared to
zero.

0b1 Critical Error Interrupt write has returned an error since this field was last cleared to
zero.

RES0

63 32

RES0

31 0

RES0

63 32

RES0

31 6 5 4 3 2 1 0

CRIERR
CRI
ERIERR

FHI
FHIERR

ERI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13609
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

CRI, bit [4]

When the Critical Error Interrupt is implemented:

Critical Error Interrupt write in progress.

0b0 Critical Error Interrupt write not in progress.

0b1 Critical Error Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This field does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

ERIERR, bit [3]

When the Error Recovery Interrupt is implemented:

Error Recovery Interrupt Error.

0b0 Error Recovery Interrupt write has not returned an error since this field was last cleared
to zero.

0b1 Error Recovery Interrupt write has returned an error since this field was last cleared to
zero.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

ERI, bit [2]

When the Error Recovery Interrupt is implemented:

Error Recovery Interrupt write in progress.

0b0 Error Recovery Interrupt write not in progress.

0b1 Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This field does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13610
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Otherwise:

Reserved, RES0.

FHIERR, bit [1]

When the Fault Handling Interrupt is implemented:

Fault Handling Interrupt Error.

0b0 Fault Handling Interrupt write has not returned an error since this field was last cleared
to zero.

0b1 Fault Handling Interrupt write has returned an error since this field was last cleared to
zero.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

FHI, bit [0]

When the Fault Handling Interrupt is implemented:

Fault Handling Interrupt write in progress.

0b0 Fault Handling Interrupt write not in progress.

0b1 Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note

This field does not indicate whether an interrupt is active, but rather whether a write triggered by
the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.

Otherwise:

Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRIRQSR:

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to
ERRIRQSR are IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13611
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
ERRIRQSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the implementation uses message-signaled interrupts, (an access is Non-secure or an access is Realm),
the implementation uses the recommended layout for the ERRIRQCR registers and ERRIRQSR.NSMSI
configures the physical address space for message-signaled interrupts as Secure accesses to this register are
RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0xEF8 ERRIRQSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13612
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.23 ERR<n>ADDR, Error Record <n> Address Register, n = 0 - 65534

The ERR<n>ADDR characteristics are:

Purpose

If an address is associated with a detected error, then it is written to ERR<n>ADDR when the error
is recorded. It is IMPLEMENTATION DEFINED how the recorded address maps to the software-visible
physical address. Software might have to reconstruct the actual physical addresses using the identity
of the node and knowledge of the system.

Configurations

This register is present only when error record n is implemented and error record n includes an
address associated with an error. Otherwise, direct accesses to ERR<n>ADDR are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record
<n>. If the node owns a single record then FirstRecordOfNode(n) = n.

Attributes

ERR<n>ADDR is a 64-bit register.

Field descriptions

NS, bit [63]

When FEAT_RME is implemented:

Non-secure attribute. With ERR<n>ADDR.NSE, indicates the physical address space of the
recorded location.

0b0 When ERR<n>ADDR.NSE == 0: ERR<n>ADDR.PADDR is a Secure address.

When ERR<n>ADDR.NSE == 1: ERR<n>ADDR.PADDR is a Root address.

0b1 When ERR<n>ADDR.NSE == 0: ERR<n>ADDR.PADDR is a Non-secure address.

When ERR<n>ADDR.NSE == 1: ERR<n>ADDR.PADDR is a Realm address.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure attribute.

0b0 ERR<n>ADDR.PADDR is a Secure address.

0b1 ERR<n>ADDR.PADDR is a Non-secure address.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SI, bit [62]

When FEAT_RME is implemented:

Secure Incorrect. Indicates whether ERR<n>ADDR.{NS, NSE} are valid.

0b0 ERR<n>ADDR.{NS, NSE} are correct. That is, they match the software's view of the
physical address space for the recorded location.

NS

63

SI

62

AI

61

VA

60 59

RES0

58 56

PADDR

55 32

NSE

PADDR

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13613
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
0b1 ERR<n>ADDR.{NS, NSE} might not be correct, and might not match the software's
view of the physical address space for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Secure Incorrect. Indicates whether ERR<n>ADDR.NS is valid.

0b0 ERR<n>ADDR.NS is correct. That is, it matches the software's view of the Non-secure
attribute for the recorded location.

0b1 ERR<n>ADDR.NS might not be correct, and might not match the software's view of
the Non-secure attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

AI, bit [61]

Address Incorrect. Indicates whether ERR<n>ADDR.PADDR is a valid physical address that is
known to match the software's view of the physical address for the recorded location.

0b0 ERR<n>ADDR.PADDR is a valid physical address. That is, it matches the software's
view of the physical address for the recorded location.

0b1 ERR<n>ADDR.PADDR might not be a valid physical address, and might not match the
software's view of the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

VA, bit [60]

Virtual Address. Indicates whether ERR<n>ADDR.PADDR field is a virtual address.

0b0 ERR<n>ADDR.PADDR is not a virtual address.

0b1 ERR<n>ADDR.PADDR is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA is recorded as
1, ERR<n>ADDR.{NS, SI, AI} are recorded as {0, 1, 1} and, if FEAT_RME is implemented,
ERR<n>ADDR.NSE is recorded as 0.

Support for this field is optional. If this field is not implemented and ERR<n>ADDR.PADDR field
is a virtual address, then ERR<n>ADDR.{NS, SI, AI} read as {0, 1, 1} and, if FEAT_RME is
implemented, ERR<n>ADDR.NSE reads as 0.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [59]

When FEAT_RME is implemented:

Physical Address Space. Together with ERR<n>ADDR.NS, indicates the address space for
ERR<n>ADDR.PADDR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13614
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Bits [58:56]

Reserved, RES0.

PADDR, bits [55:0]

Physical Address. Address of the recorded location. If the physical address size implemented by this
component is smaller than the size of this field, then high-order bits are unimplemented and either
RES0 or have a fixed read-only IMPLEMENTATION DEFINED value. Low-order address bits might also
be unimplemented and RES0, for example, if the physical address is always aligned to the size of a
protection granule.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>ADDR:

ERR<n>ADDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When the node that owns error record n implements the Common Fault Injection Model Extension,
ERRPFGF[FirstRecordOfNode(n)].AV == 0 and ERR<n>STATUS.AV == 1 accesses to this register are RO.

• When the node that owns error record n does not implement the Common Fault Injection Model Extension
and ERR<n>STATUS.AV == 1 accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0x018 + (64 * n) ERR<n>ADDR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13615
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.24 ERR<n>CTLR, Error Record <n> Control Register, n = 0 - 65534

The ERR<n>CTLR characteristics are:

Purpose

The error control register contains enable bits for the node that writes to this record:

• Enabling error detection and correction.

• Enabling the critical error, error recovery, and fault handling interrupts.

• Enabling in-band error response for uncorrected errors.

For each bit, if the node does not support the feature, then the bit is RES0. The definition of each
record is IMPLEMENTATION DEFINED.

Configurations

This register is present only when error record n is implemented and error record n is the first error
record in the node. Otherwise, direct accesses to ERR<n>CTLR are RES0.

ERR<n>FR contains additional information about the node.

Attributes

ERR<n>CTLR is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:32]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

Bits [31:16]

Reserved, RES0.

WDFI, bit [15]

When RAS System Architecture v2 is implemented and ERR<n>FR.DFI == 0b11:

Fault handling interrupt for Deferred errors on writes enable, with ERR<n>CTLR.WFI.

When enabled by ERR<n>CTLR.{WDFI, WFI}:

• The fault handling interrupt is generated for errors recorded as Deferred error on writes.

• If the corresponding fault handling interrupt control for corrected error events,
ERR<n>CTLR.WCFI, is not implemented, then the fault handling interrupt is generated for
corrected error events on writes.

0b0 When ERR<n>CTLR.WFI == 0, Fault handling interrupt not generated for Deferred
errors on writes.

IMPLEMENTATION DEFINED

63 32

RES0

31 16 15 14

CI

13 12 11 10 9 8 7 6 5 4 3 2 1

ED

0

WDFI
Bit [14]

CED
WDUI

Bit [10]
WCFI
Bit [8]

IMPLEMENTATION DEFINED

Bit [2]
Bit [3]

Bit [4]
WUI

WFI
WUE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13616
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When ERR<n>CTLR.WFI == 1, Fault handling interrupt generated for Deferred errors
on writes.

0b1 When ERR<n>CTLR.WFI == 0, Fault handling interrupt generated for Deferred errors
on writes.

When ERR<n>CTLR.WFI == 1, Fault handling interrupt not generated for Deferred
errors on writes.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[14]

When RAS System Architecture v2 is implemented and ERR<n>FR.DFI == 0b10:

DFI

Fault handling interrupt for Deferred errors enable, with ERR<n>CTLR.FI.

When ERR<n>FR.DFI == 0b10, this control applies to errors on both reads and writes.

When enabled by ERR<n>CTLR.{DFI, FI}:

• The fault handling interrupt is generated for all errors recorded as Deferred error.

• If the fault handling interrupt control for corrected error events, ERR<n>CTLR.CFI, is not
implemented, then the fault handling interrupt is generated for all corrected error events.

0b0 When ERR<n>CTLR.FI == 0, Fault handling interrupt not generated for Deferred
errors.

When ERR<n>CTLR.FI == 1, Fault handling interrupt generated for Deferred errors.

0b1 When ERR<n>CTLR.FI == 0, Fault handling interrupt generated for Deferred errors.

When ERR<n>CTLR.FI == 1, Fault handling interrupt not generated for Deferred
errors.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When RAS System Architecture v2 is implemented and ERR<n>FR.DFI == 0b11:

RDFI

Fault handling interrupt for Deferred errors on reads enable, with ERR<n>CTLR.RFI.

When ERR<n>FR.DFI == 0b11, this field is named RDFI.

When enabled by ERR<n>CTLR.{RDFI, RFI}:

• The fault handling interrupt is generated for errors recorded as Deferred error on reads.

• If the corresponding fault handling interrupt control for corrected error events,
ERR<n>CTLR.RCFI, is not implemented, then the fault handling interrupt is generated for
corrected error events on reads.

0b0 When ERR<n>CTLR.RFI == 0, Fault handling interrupt not generated for Deferred
errors on reads.

When ERR<n>CTLR.RFI == 1, Fault handling interrupt generated for Deferred errors
on reads.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13617
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
0b1 When ERR<n>CTLR.RFI == 0, Fault handling interrupt generated for Deferred errors
on reads.

When ERR<n>CTLR.RFI == 1, Fault handling interrupt not generated for Deferred
errors on reads.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CI, bit [13]

When ERR<n>FR.CI == 0b10:

Critical error interrupt enable. When enabled, the critical error interrupt is generated for a critical
error condition.

0b0 Critical error interrupt not generated for critical errors. Critical errors are treated as
Uncontained errors.

0b1 Critical error interrupt generated for critical errors.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CED, bit [12]

When RAS System Architecture v2 is implemented, ERR<n>FR.CEC != 0b000 and
ERR<n>FR.CED == 1:

Disable generation of corrected error events from error counters.

0b0 Corrected error events are generated by the error counter or counters.

0b1 Corrected error events are generated when a Corrected error is recorded.

See ERR<n>CTLR.CFI for more information on corrected error events.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WDUI, bit [11]

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for Deferred errors on writes enable.

When enabled, the error recovery interrupt is generated for errors recorded as Deferred error on
writes.

0b0 Error recovery interrupt not generated for Deferred errors on writes.

0b1 Error recovery interrupt generated for Deferred errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13618
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Otherwise:

Reserved, RES0.

Bit[10]

When ERR<n>FR.DUI == 0b10:

DUI

Error recovery interrupt for Deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all errors recorded as Deferred error.

0b0 Error recovery interrupt not generated for Deferred errors.

0b1 Error recovery interrupt generated for Deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.DUI == 0b11:

RDUI

Error recovery interrupt for Deferred errors on reads enable.

When ERR<n>FR.DUI == 0b11, this field is named RDUI.

When enabled, the error recovery interrupt is generated for errors recorded as Deferred error on
reads.

0b0 Error recovery interrupt not generated for Deferred errors on reads.

0b1 Error recovery interrupt generated for Deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WCFI, bit [9]

When ERR<n>FR.CFI == 0b11:

Fault handling interrupt for corrected error events on writes enable.

When enabled, the fault handling interrupt is generated for corrected error events on writes.

0b0 Fault handling interrupt not generated for corrected error events on writes.

0b1 Fault handling interrupt generated for corrected error events on writes.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[8]

When ERR<n>FR.CFI == 0b10:

CFI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13619
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Fault handling interrupt for corrected error events enable.

When ERR<n>FR.CFI == 0b10, this control applies to errors on both reads and writes.

When enabled, the fault handling interrupt is generated for all corrected error events.

0b0 Fault handling interrupt not generated for corrected error events.

0b1 Fault handling interrupt generated for corrected error events.

If the node implements a corrected error counter or counters, and either ERR<n>CTLR.CED is not
implemented or ERR<n>CTLR.CED is 0, then a corrected error event is defined as follows:

• A corrected error event occurs when a counter overflows and sets a counter overflow flag to
1.

• It is UNPREDICTABLE whether a corrected error event occurs when a software write sets a
counter overflow flag to 1.

• It is UNPREDICTABLE whether a corrected error event occurs when a counter overflows and
the overflow flag was previously set to 1.

Otherwise, a corrected error event occurs when the error record records an error as a Corrected error.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.CFI == 0b11:

RCFI

Fault handling interrupt for corrected error events on reads enable.

When ERR<n>FR.CFI == 0b11, this field is named RCFI.

When enabled, the fault handling interrupt is generated for corrected error events on reads.

0b0 Fault handling interrupt not generated for corrected error events on reads.

0b1 Fault handling interrupt generated for corrected error events on reads.

If the node implements a corrected error counter or counters, and either ERR<n>CTLR.CED is not
implemented or ERR<n>CTLR.CED is 0, then a corrected error event is defined as follows:

• A corrected error event occurs when a counter overflows and sets a counter overflow flag to
1.

• It is UNPREDICTABLE whether a corrected error event occurs when a software write sets a
counter overflow flag to 1.

• It is UNPREDICTABLE whether a corrected error event occurs when a counter overflows and
the overflow flag was previously set to 1.

Otherwise, a corrected error event occurs when the error record records an error as a Corrected error.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUE, bit [7]

When ERR<n>FR.UE == 0b11:

In-band error response on writes enable.

When enabled, responses to writes that detect an error that is not corrected and is not deferred are
signaled with an in-band error response (External abort).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13620
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

0b0 In-band error response for uncorrected errors on writes disabled.

0b1 In-band error response for uncorrected errors on writes enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WFI, bit [6]

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on writes enable.

When enabled:

• The fault handling interrupt is generated for errors recorded as Uncorrected error on writes.

• If the corresponding fault handling interrupt control for Deferred errors,
ERR<n>CTLR.WDFI, is not implemented, then the fault handling interrupt is generated for
errors recorded as Deferred error on writes.

• If the corresponding fault handling interrupt controls for Deferred errors and corrected error
events, ERR<n>CTLR.{WDFI, WCFI}, are not implemented, then the fault handling
interrupt is generated for corrected error events on writes.

0b0 Fault handling interrupt on writes disabled.

0b1 Fault handling interrupt on writes enabled.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUI, bit [5]

When ERR<n>FR.UI == 0b11:

Uncorrected error recovery interrupt on writes enable.

When enabled, the error recovery interrupt is generated for errors recorded as Uncorrected error on
writes.

0b0 Error recovery interrupt on writes disabled.

0b1 Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[4]

When ERR<n>FR.UE == 0b10:

UE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13621
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
In-band error response enable.

When ERR<n>FR.UE == 0b10, this control applies to errors arising from both reads and writes.

When enabled, responses to transactions that detect an error that is not corrected and is not deferred
are signaled with an in-band error response (External abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

0b0 In-band error response for uncorrected errors disabled.

0b1 In-band error response for uncorrected errors enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UE == 0b11:

RUE

In-band error response on reads enable.

When ERR<n>FR.UE == 0b11, this field is named RUE.

When enabled, responses to reads that detect an error that is not corrected and is not deferred are
signaled with an in-band error response (External abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

0b0 In-band error response for uncorrected errors on reads disabled.

0b1 In-band error response for uncorrected errors on reads enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[3]

When ERR<n>FR.FI == 0b10:

FI

Fault handling interrupt enable.

When ERR<n>FR.FI == 0b10, this control applies to errors on both reads and writes.

When enabled:

• The fault handling interrupt is generated for all errors recorded as Uncorrected error.

• If the fault handling interrupt control for Deferred errors, ERR<n>CTLR.DFI, is not
implemented, then the fault handling interrupt is generated for all errors recorded as Deferred
error.

• If the fault handling interrupt controls for Deferred errors and corrected error events,
ERR<n>CTLR.{DFI, CFI}, are not implemented, then the fault handling interrupt is
generated for all corrected error events.

0b0 Fault handling interrupt disabled.

0b1 Fault handling interrupt enabled.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13622
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When ERR<n>FR.FI == 0b11:

RFI

Fault handling interrupt on reads enable.

When ERR<n>FR.FI == 0b11, this field is named RFI.

When enabled:

• The fault handling interrupt is generated for errors recorded as Uncorrected error on reads.

• If the corresponding fault handling interrupt control for Deferred errors,
ERR<n>CTLR.RDFI, is not implemented, then the fault handling interrupt is generated for
errors recorded as Deferred error on reads.

• If the corresponding fault handling interrupt controls for Deferred errors and corrected error
events, ERR<n>CTLR.{RDFI, RCFI}, are not implemented, then the fault handling interrupt
is generated for corrected error events on reads.

0b0 Fault handling interrupt on reads disabled.

0b1 Fault handling interrupt on reads enabled.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit[2]

When ERR<n>FR.UI == 0b10:

UI

Uncorrected error recovery interrupt enable.

When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all errors recorded as Uncorrected error.

0b0 Error recovery interrupt disabled.

0b1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UI == 0b11:

RUI

Uncorrected error recovery interrupt on reads enable.

When ERR<n>FR.UI == 0b11, this field is named RUI.

When enabled, the error recovery interrupt is generated for errors recorded as Uncorrected error on
reads.

0b0 Error recovery interrupt on reads disabled.

0b1 Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13623
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Otherwise:

Reserved, RES0.

IMPLEMENTATION DEFINED, bit [1]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

ED, bit [0]

When ERR<n>FR.ED == 0b10:

Error reporting and logging enable. When disabled, the node behaves as if error detection and
correction are disabled, and no errors are recorded or signaled by the node. Arm recommends that,
when disabled, correct error detection and correction codes are written for writes, unless disabled
by an IMPLEMENTATION DEFINED control for error injection.

0b0 Error reporting disabled.

0b1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting is disabled. That is, even with error reporting disabled, the node might continue to silently
correct errors. Uncorrected errors might result in corrupt data being silently propagated by the node.

Note

If this node requires initialization after Cold reset to prevent signaling false errors, then Arm
recommends this field is set to 0 on Cold reset, meaning errors are not reported from Cold reset. This
allows boot software to initialize a node without signaling errors. Software can enable error
reporting after the node is initialized. Otherwise, the Cold reset value is IMPLEMENTATION DEFINED.
If the Cold reset value is 1, the reset values of other controls in this register are also
IMPLEMENTATION DEFINED and should not be UNKNOWN.

The reset behavior of this field is:

• On an Error recovery reset, when RAS System Architecture v2 is implemented and
ERR<n>FR.SRV == 1, this field resets to 0.

• On a Cold reset:

— When RAS System Architecture v2 is implemented and ERR<n>FR.SRV == 1, this
field resets to 0.

— Otherwise, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Accessing the ERR<n>CTLR:

ERR<n>CTLR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Offset Instance

RAS 0x008 + (64 * n) ERR<n>CTLR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13624
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.25 ERR<n>FR, Error Record <n> Feature Register, n = 0 - 65534

The ERR<n>FR characteristics are:

Purpose

Defines whether error record <n> is the first record owned by a node:

• If error record <n> is the first error record owned by a node, then ERR<n>FR.ED is not 0b00.

• If error record <n> is not the first error record owned by a node, then ERR<n>FR.ED is 0b00.

If error record <n> is the first record owned by the node, defines which of the common
architecturally-defined features are implemented by the node and, of the implemented features,
which are software programmable.

Configurations

There are no configuration notes.

Attributes

ERR<n>FR is a 64-bit register.

Field descriptions

When error record n is not implemented or error record n is not the first error record in the node:

Bits [63:56]

Reserved, RES0.

NCE, bit [55]

When ERR<n>FR.FRX == 1 and ERRFR[FirstRecordOfNode(n)].CEC != 0b000:

No countable errors. Describes whether this error record supports recording countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Records countable errors.

0b1 Does not record countable errors.

When ERRFR[FirstRecordOfNode(n)].CEC != 0b000, at least one error record owned by the node
records countable errors.

Access to this field is RO.

Otherwise:

Reserved, RES0.

CE, bits [54:53]

When ERR<n>FR.FRX == 1:

Corrected Error recording. Describes the types of Corrected errors the error record can record, if
any.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not record Corrected errors.

RES0

63 56 55

CE

54 53

DE

52 51 50 49

UC

48

RES0

47 32

NCE
UEO

UEU
UER

31

RES0

30 4

ERT

3 2

0 0

1 0

FRX ED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13625
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
0b01 Records only transient or persistent Corrected errors. That is, Corrected errors recorded
by setting ERR<n>STATUS.CE to either 0b01 or 0b11.

0b10 Records only non-specific Corrected errors. That is, Corrected errors recorded by
setting ERR<n>STATUS.CE to 0b10.

0b11 Records all types of Corrected error.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DE, bit [52]

When ERR<n>FR.FRX == 1:

Deferred Error recording. Describes whether the error record supports recording Deferred errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Deferred errors.

0b1 Records Deferred errors.

Access to this field is RO.

Otherwise:

Reserved, RES0.

UEO, bit [51]

When ERR<n>FR.FRX == 1:

Latent or Restartable Error recording. Describes whether the error record supports recording Latent
or Restartable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Latent or Restartable errors.

0b1 Records Latent or Restartable errors.

Access to this field is RO.

Otherwise:

Reserved, RES0.

UER, bit [50]

When ERR<n>FR.FRX == 1:

Signaled or Recoverable Error recording. Describes whether the error record supports recording
Signaled or Recoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Signaled or Recoverable errors.

0b1 Records Signaled or Recoverable errors.

Access to this field is RO.

Otherwise:

Reserved, RES0.

UEU, bit [49]

When ERR<n>FR.FRX == 1:

Unrecoverable Error recording. Describes whether the error record supports recording
Unrecoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Unrecoverable errors.

0b1 Records Unrecoverable errors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13626
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Access to this field is RO.

Otherwise:

Reserved, RES0.

UC, bit [48]

When ERR<n>FR.FRX == 1:

Uncontainable Error recording. Describes whether the error record supports recording
Uncontainable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Uncontainable errors.

0b1 Records Uncontainable errors.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [47:32]

Reserved, RES0.

FRX, bit [31]

When error record n is implemented, RAS System Architecture v2 is implemented and
ERR<n>FR.ERT == 0b00:

Feature Register extension. Defines whether ERR<n>FR[63:48] describe architecturally-defined
properties of this error record, including the supported error types.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 ERR<n>FR[63:48] are RES0.

0b1 ERR<n>FR[63:48] are defined by the architecture.

If ERR<n>FR.FRX is 0, error record <n> is implemented, and
ERRFR[FirstRecordOfNode(n)].FRX is 1, then ERRFR[FirstRecordOfNode(n)][63:48] describe
the architecturally-defined properties of all error records owned by the node.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [30:4]

Reserved, RES0.

ERT, bits [3:2]

When RAS System Architecture v2 is implemented:

Error Record Type. Defines the type of error record.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Error record <n> not implemented or is a normal record that is not the first error record
of the node.

0b01 Error record <n> is a continuation record of the previous error record, <n-1>.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13627
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is not the first error record owned the node.

0b00 Error record <n> is not implemented or is not the first error record owned by the node.

Access to this field is RO.

When error record n is the first error record in the node:

Bits [63:56]

When ERR<n>FR.FRX == 1:

Reserved, RES0.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

NCE, bit [55]

When RAS System Architecture v2 is implemented, ERR<n>FR.FRX == 1 and ERR<n>FR.CEC !=
0b000:

No countable errors. Describes whether this error record supports recording countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Records countable errors.

0b1 Does not record countable errors.

When ERR<n>FR.CEC != 0b000, at least one error record owned by the node records countable
errors.

Access to this field is RO.

When ERR<n>FR.FRX == 1:

Reserved, RES0.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

CE, bits [54:53]

When ERR<n>FR.FRX == 1:

Corrected Error recording. Describes the types of Corrected errors the node can record, if any.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not record Corrected errors.

0b01 Records only transient or persistent Corrected errors. That is, Corrected errors recorded
by setting ERR<n>STATUS.CE to either 0b01 or 0b11.

0b10 Records only non-specific Corrected errors. That is, Corrected errors recorded by
setting ERR<n>STATUS.CE to 0b10.

0b11 Records all types of Corrected error.

Access to this field is RO.

RES0

63 56 55

CE

54 53

DE

52 51 50 49

UC

48

IMPLEMENTATION DEFINED

47 32

NCE
UEO

UEU
UER

31 30 29

RV

28

DFI

27 26

TS

25 24

CI

23 22

INJ

21 20

CEO

19 18

DUI

17 16

RP

15

CEC

14 12

CFI

11 10

UE

9 8

FI

7 6

UI

5 4 3 2

ED

1 0

FRX SRV
CED

IMPLEMENTATION
DEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13628
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

DE, bit [52]

When ERR<n>FR.FRX == 1:

Deferred Error recording. Describes whether the node supports recording Deferred errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Deferred errors.

0b1 Records Deferred errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UEO, bit [51]

When ERR<n>FR.FRX == 1:

Latent or Restartable Error recording. Describes whether the node supports recording Latent or
Restartable errors. Defined values are:

0b0 Does not record Latent or Restartable errors.

0b1 Records Latent or Restartable errors.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UER, bit [50]

When ERR<n>FR.FRX == 1:

Signaled or Recoverable Error recording. Describes whether the node supports recording Signaled
or Recoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Signaled or Recoverable errors.

0b1 Records Signaled or Recoverable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UEU, bit [49]

When ERR<n>FR.FRX == 1:

Unrecoverable Error recording. Describes whether the node supports recording Unrecoverable
errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Unrecoverable errors.

0b1 Records Unrecoverable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UC, bit [48]

When ERR<n>FR.FRX == 1:

Uncontainable Error recording. Describes whether the node supports recording Uncontainable
errors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13629
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Does not record Uncontainable errors.

0b1 Records Uncontainable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

IMPLEMENTATION DEFINED, bits [47:32]

Reserved for identifying IMPLEMENTATION DEFINED controls.

FRX, bit [31]

When RAS System Architecture v1p1 is implemented:

Feature Register extension.

Defines whether ERR<n>FR[63:48] describe architecturally-defined properties of this error record
or node, including the supported error types, or describe IMPLEMENTATION DEFINED properties.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 ERR<n>FR[63:48] are IMPLEMENTATION DEFINED.

0b1 ERR<n>FR[63:48] are defined by the architecture.

When ERR<n>FR.FRX is 1:

• If RAS System Architecture v2 is implemented and ERR<m>FR.FRX is 1 for other error
records <m> owned by the same node, then ERR<n>FR[63:48] describe the
architecturally-defined properties of error record <n> only, and ERR<m>FR[63:48] describe
the properties for error record <m>.

• Otherwise, ERR<n>FR[63:48] describe the architecturally-defined properties of all error
records owned by the node.

Access to this field is RO.

Otherwise:

Reserved, RES0.

CED, bit [30]

When RAS System Architecture v2 is implemented and ERR<n>FR.CEC != 0b000:

Error counter disable. Indicates whether the node implements a control to disable any implemented
Corrected error counters.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Error counter disable control is not implemented and the error counter(s) are always
enabled. ERR<n>CTLR.CED is RES0.

0b1 Enabling and disabling of error counter(s) is supported and controlled by
ERR<n>CTLR.CED.

Access to this field is RO.

Otherwise:

Reserved, RES0.

SRV, bit [29]

When RAS System Architecture v2 is implemented:

Status Reset Value. Indicates how node <n> and each error record <m> owned by node <n> is reset.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Node <n> and each error record <m> owned by node <n> are reset as follows:

• ERR<n>STATUS.{AV, V, MV} are set to {0, 0, 0} on a Cold reset and preserved
on Error Recovery reset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13630
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
• ERR<n>CTLR.ED is set to an IMPLEMENTATION DEFINED value on a Cold reset
and preserved on Error Recovery reset.

0b1 Node <n> and each error record <m> owned by node <n> are reset as follows:

• ERR<n>STATUS.{AV, V, MV} are set to architecturally UNKNOWN values on a
Cold reset and preserved on Error Recovery reset.

• ERR<n>CTLR.ED is set to 0 on both Cold reset and Error Recovery reset.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

RV, bit [28]

When RAS System Architecture v2 is implemented:

Reset Valid. Indicates whether each error record <m> implemented by the node includes the Reset
Valid flag, ERR<n>STATUS.RV.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 ERR<n>STATUS.RV is RES0.

0b1 ERR<n>STATUS.RV is a R/W1C bit set to 1 on Error Recovery reset.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

DFI, bits [27:26]

When RAS System Architecture v2 is implemented and ERR<n>FR.FI != 0b0x:

Fault handling interrupt for deferred errors control. Indicates whether the enabling and disabling of
fault handling interrupts on deferred errors is supported by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the enabling and disabling of fault handling interrupts on deferred
errors. ERR<n>CTLR.DFI is RES0.

0b10 Enabling and disabling of fault handling interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.DFI.

0b11 Enabling and disabling of fault handling interrupts on deferred errors is supported, and
controllable using ERR<n>CTLR.WDFI for writes and ERR<n>CTLR.RDFI for reads.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

TS, bits [25:24]

Timestamp Extension. Indicates whether, for each error record <m> owned by this node,
ERR<n>MISC3 is used as the timestamp register, and, if it is, the timebase used by the timestamp.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support a timestamp register.

0b01 Implements a timestamp register in ERR<n>MISC3 for each error record <m> owned
by the node. The timestamp uses the same timebase as the system Generic Timer.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13631
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Note
For an error record that has an affinity to a PE, this is the same timer that is visible
through CNTPCT_EL0 at the highest Exception level on that PE.

0b10 Implements a timestamp register in ERR<n>MISC3 for each error record <m> owned
by the node. The timestamp uses an IMPLEMENTATION DEFINED timebase.

All other values are reserved.

Access to this field is RO.

CI, bits [23:22]

Critical error interrupt. Indicates whether the critical error interrupt and associated controls are
implemented by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the critical error interrupt. ERR<n>CTLR.CI is RES0.

0b01 Critical error interrupt is supported and always enabled. ERR<n>CTLR.CI is RES0.

0b10 Critical error interrupt is supported and controllable using ERR<n>CTLR.CI.

All other values are reserved.

Access to this field is RO.

INJ, bits [21:20]

Fault Injection Extension. Indicates whether the Common Fault Injection Model Extension is
implemented by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the Common Fault Injection Model Extension.

0b01 Supports the Common Fault Injection Model Extension. See ERR<n>PFGF for more
information.

All other values are reserved.

Access to this field is RO.

CEO, bits [19:18]

When ERR<n>FR.CEC != 0b000:

Corrected Error overwrite. Indicates the behavior of the node when a second or subsequent
Corrected error is recorded and a first Corrected error has previously been recorded by an error
record <m> owned by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Keeps the previous error syndrome.

0b01 If ERR<n>STATUS.OF is 1 before the Corrected error is counted, then the error record
keeps the previous syndrome. Otherwise the previous syndrome is overwritten.

All other values are reserved.

The second or subsequent Corrected error is counted by the Corrected error counter, regardless of
the value of this field. If counting the error causes unsigned overflow of the counter, then
ERR<n>STATUS.OF is set to 1.

This means that, if no other error is subsequently recorded that overwrites the syndrome:

• If ERR<n>FR.CEO is 0b00, the error record holds the syndrome for the first recorded
Corrected error.

• If ERR<n>FR.CEO is 0b01, the error record holds the syndrome for the most recently
recorded Corrected error before the counter overflows.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13632
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Otherwise:

Reserved, RES0.

DUI, bits [17:16]

When ERR<n>FR.UI != 0b00:

Error recovery interrupt for deferred errors control. Indicates whether the enabling and disabling of
error recovery interrupts on deferred errors is supported by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the enabling and disabling of error recovery interrupts on deferred
errors. ERR<n>CTLR.DUI is RES0.

0b10 Enabling and disabling of error recovery interrupts on deferred errors is supported and
controllable using ERR<n>CTLR.DUI.

0b11 Enabling and disabling of error recovery interrupts on deferred errors is supported, and
controllable using ERR<n>CTLR.WDUI for writes and ERR<n>CTLR.RDUI for
reads.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

RP, bit [15]

When ERR<n>FR.CEC != 0b000:

Repeat counter. Indicates whether the node implements a second Corrected error counter in
ERR<n>MISC0 for each error record <m> owned by the node that can record countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 Implements a single Corrected error counter in ERR<n>MISC0 for each error record
<m> owned by the node that can record countable errors.

0b1 Implements a first (repeat) counter and a second (other) counter in ERR<n>MISC0 for
each error record <m> owned by the node that can record countable errors. The repeat
counter is the same size as the primary error counter.

Access to this field is RO.

Otherwise:

Reserved, RES0.

CEC, bits [14:12]

Corrected Error Counter. Indicates whether the node implements the standard format Corrected
error counter mechanisms in ERR<n>MISC0 for each error record <m> owned by the node that can
record countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b000 Does not implement the standard format Corrected error counter model.

0b010 Implements an 8-bit Corrected error counter in ERR<n>MISC0[39:32] for each error
record <m> owned by the node that can record countable errors.

0b100 Implements a 16-bit Corrected error counter in ERR<n>MISC0[47:32] for each error
record <m> owned by the node that can record countable errors.

All other values are reserved.

Note

Implementations might include other error counter models, or might include the standard format
model and not indicate this in ERR<n>FR.

Access to this field is RO.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13633
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
CFI, bits [11:10]

When ERR<n>FR.FI != 0b0x:

Fault handling interrupt for corrected errors control. Indicates whether the enabling and disabling
of fault handling interrupts on corrected errors is supported by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the enabling and disabling of fault handling interrupts on corrected
errors. ERR<n>CTLR.CFI is RES0.

0b10 Enabling and disabling of fault handling interrupts on corrected errors is supported and
controllable using ERR<n>CTLR.CFI.

0b11 Enabling and disabling of fault handling interrupts on corrected errors is supported, and
controllable using ERR<n>CTLR.WCFI for writes and ERR<n>CTLR.RCFI for reads.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RES0.

UE, bits [9:8]

In-band error response (External abort). Indicates whether the in-band error response and associated
controls are implemented by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the in-band error response. ERR<n>CTLR.UE is RES0.

0b01 In-band error response is supported and always enabled. ERR<n>CTLR.UE is RES0.

0b10 In-band error response is supported and controllable using ERR<n>CTLR.UE.

0b11 In-band error response is supported, and controllable using ERR<n>CTLR.WUE for
writes and ERR<n>CTLR.RUE for reads.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as
Deferred error, but is not deferred to the Requester, will signal an in-band error response to the
Requester.

Access to this field is RO.

FI, bits [7:6]

Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are
implemented by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the fault handling interrupt. ERR<n>CTLR.FI is RES0.

0b01 Fault handling interrupt is supported and always enabled. ERR<n>CTLR.FI is RES0.

0b10 Fault handling interrupt is supported and controllable using ERR<n>CTLR.FI.

0b11 Fault handling interrupt is supported, and controllable using ERR<n>CTLR.WFI for
writes and ERR<n>CTLR.RFI for reads.

Access to this field is RO.

UI, bits [5:4]

Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and
associated controls are implemented by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 Does not support the error handling interrupt. ERR<n>CTLR.UI is RES0.

0b01 Error handling interrupt is supported and always enabled. ERR<n>CTLR.UI is RES0.

0b10 Error handling interrupt is supported and controllable using ERR<n>CTLR.UI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13634
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
0b11 Error handling interrupt is supported, and controllable using ERR<n>CTLR.WUI for
writes and ERR<n>CTLR.RUI for reads.

Access to this field is RO.

IMPLEMENTATION DEFINED, bits [3:2]

IMPLEMENTATION DEFINED.

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is a normal record and the first record owned
the node, and whether the node implements the controls for enabling and disabling error reporting
and logging.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b01 Error reporting and logging always enabled. ERR<n>CTLR.ED is RES0.

0b10 Error reporting and logging is controllable using ERR<n>CTLR.ED.

All other values are reserved.

Access to this field is RO.

When RAS System Architecture v2 is implemented and error record <n> is a proxy for a RAS
agent:

Bits [63:4]

Reserved, RES0.

ERT, bits [3:2]

Error Record Type. Defines the type of error record.

0b01 Error record is a proxy for a RAS agent.

All other values are reserved.

Access to this field is RO.

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is not a true error record.

0b11 Error record <n> is not an error record.

Access to this field is RO.

Accessing the ERR<n>FR:

ERR<n>FR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

63 32

RES0

31 4

0 1

3 2

1 1

1 0

ERT ED

Component Offset Instance

RAS 0x000 + (64 * n) ERR<n>FR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13635
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.26 ERR<n>MISC0, Error Record <n> Miscellaneous Register 0, n = 0 - 65534

The ERR<n>MISC0 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements a standard format Corrected error counter or
counters (ERR<n>FR.CEC != 0b000), then it is IMPLEMENTATION DEFINED whether error record
<n> can record countable errors, and:

• If error record <n> records countable errors, then ERR<n>MISC0 implements the standard
format Corrected error counter or counters for error record <n>.

• If error record <n> does not record countable errors, then it is recommended that the fields in
ERR<n>MISC0 defined for the standard format counter or counters are RES0. That is, the
fields behave like counters that never count.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when error record n is implemented. Otherwise, direct accesses to
ERR<n>MISC0 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record
<n>. If the node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC0, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Note
Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC0 is a 64-bit register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13636
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Field descriptions

When ERRFR[FirstRecordOfNode(n)].CEC == 0b000 or error record n does not record countable
errors:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0b100, ERRFR[FirstRecordOfNode(n)].RP == 0 and
error record n records countable errors:

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED syndrome.

OF, bit [47]

Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero.

0b0 Counter has not overflowed.

0b1 Counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [46:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

63 48

OF

47

CEC

46 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13637
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When ERRFR[FirstRecordOfNode(n)].CEC == 0b010, ERRFR[FirstRecordOfNode(n)].RP == 0 and
error record n records countable errors:

IMPLEMENTATION DEFINED, bits [63:40]

IMPLEMENTATION DEFINED syndrome.

OF, bit [39]

Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero.

0b0 Counter has not overflowed.

0b1 Counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [38:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and
might be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0b100, ERRFR[FirstRecordOfNode(n)].RP == 1 and
error record n records countable errors:

OFO, bit [63]

Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through
zero.

0b0 Other counter has not overflowed.

0b1 Other counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

IMPLEMENTATION DEFINED

63 40

OF

39

CEC

38 32

IMPLEMENTATION DEFINED

31 0

63

CECO

62 48 47

CECR

46 32

OFO OFR

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13638
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [62:48]

Corrected error count, other. Incremented for each countable error that is not accounted for by
incrementing ERR<n>MISC0.CECR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [47]

Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through
zero.

0b0 Repeat counter has not overflowed.

0b1 Repeat counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [46:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other
syndrome for the error, and subsequently for each countable error that matches the recorded other
syndrome. Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are countable errors.

Note

For example, the other syndrome might include the set and way information for an error detected in
a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a
first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent Corrected
Error in the same set and way.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0b010, ERRFR[FirstRecordOfNode(n)].RP == 1 and
error record n records countable errors:

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED syndrome.

IMPLEMENTATION DEFINED

63 48 47

CECO

46 40 39

CECR

38 32

OFO OFR

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13639
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
OFO, bit [47]

Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through
zero.

0b0 Other counter has not overflowed.

0b1 Other counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [46:40]

Corrected error count, other. Incremented for each countable error that is not accounted for by
incrementing ERR<n>MISC0.CECR.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [39]

Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through
zero.

0b0 Repeat counter has not overflowed.

0b1 Repeat counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN
value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field
to an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [38:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other
syndrome for the error, and subsequently for each countable error that matches the recorded other
syndrome. Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are countable errors.

Note

For example, the other syndrome might include the set and way information for an error detected in
a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a
first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent Corrected
Error in the same set and way.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC0:

Reads from ERR<n>MISC0 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 0. See
ERR<n>PFGF.MV for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13640
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC0 can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Offset Instance

RAS 0x020 + (64 * n) ERR<n>MISC0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13641
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.27 ERR<n>MISC1, Error Record <n> Miscellaneous Register 1, n = 0 - 65534

The ERR<n>MISC1 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

Configurations

This register is present only when error record n is implemented. Otherwise, direct accesses to
ERR<n>MISC1 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record
<n>. If the node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC1 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC1:

Reads from ERR<n>MISC1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 0. See
ERR<n>PFGF.MV for more information.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13642
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC1 can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Offset Instance

RAS 0x028 + (64 * n) ERR<n>MISC1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13643
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.28 ERR<n>MISC2, Error Record <n> Miscellaneous Register 2, n = 0 - 65534

The ERR<n>MISC2 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

Configurations

This register is present only when (an implementation implements ERR<n>MISC2 or RAS System
Architecture v1p1 is implemented) and error record n is implemented. Otherwise, direct accesses to
ERR<n>MISC2 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record
<n>. If the node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that if RAS System Architecture v1.1 is not implemented then ERR<n>MISC2
does not require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC2 is a 64-bit register.

Field descriptions

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC2:

Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13644
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 0. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC2 can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Offset Instance

RAS 0x030 + (64 * n) ERR<n>MISC2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13645
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.29 ERR<n>MISC3, Error Record <n> Miscellaneous Register 3, n = 0 - 65534

The ERR<n>MISC3 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might
contain:

• Information to locate where the error was detected.

• If the error was detected within a FRU, the identity of the FRU.

• A Corrected error counter or counters.

• Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<n>FR.TS !=
0b00), then ERR<n>MISC3 contains the timestamp value for error record n when the error was
detected. Otherwise the contents of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when (an implementation implements ERR<n>MISC3 or RAS System
Architecture v1p1 is implemented) and error record n is implemented. Otherwise, direct accesses to
ERR<n>MISC3 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record
<n>. If the node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an
initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that if RAS System Architecture v1.1 is not implemented then ERR<n>MISC3
does not require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC3 is a 64-bit register.

Field descriptions

When ERRFR[FirstRecordOfNode(n)].TS != 0b00:

TS

63 32

TS

31 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13646
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
TS, bits [63:0]

Timestamp. Timestamp value recorded when the error was detected. Valid only if
ERR<n>STATUS.V == 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO or RW.

When ERRFR[FirstRecordOfNode(n)].TS == 0b00:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC3:

Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<n>PFGF.MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV is 0. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

• When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC3 can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

IMPLEMENTATION DEFINED

63 32

IMPLEMENTATION DEFINED

31 0

Component Offset Instance

RAS 0x038 + (64 * n) ERR<n>MISC3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13647
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.30 ERR<n>PFGCDN, Error Record <n> Pseudo-fault Generation Countdown Register, n = 0 -
65534

The ERR<n>PFGCDN characteristics are:

Purpose

Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when error record n is implemented, the node that owns error record n
implements the Common Fault Injection Model Extension and error record n is the first error record
in the node. Otherwise, direct accesses to ERR<n>PFGCDN are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGCDN is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

CDN, bits [31:0]

Countdown value.

This field is copied to Error Generation Counter when either:

• Software writes 1 to ERR<n>PFGCTL.CDNEN.

• The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R is 1.

While ERR<n>PFGCTL.CDNEN is 1 and the Error Generation Counter is nonzero, the counter
decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter
reaches zero, one of the errors enabled in the ERR<n>PFGCTL register is generated.

Note

The current Error Generation Counter value is not visible to software.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>PFGCDN:

ERR<n>PFGCDN can be accessed through its memory-mapped interface:

RES0

63 32

CDN

31 0

Component Offset Instance

RAS 0x810 + (64 * n) ERR<n>PFGCDN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13648
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Accesses to this interface are RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13649
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.31 ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

The ERR<n>PFGCTL characteristics are:

Purpose

Enables controlled fault generation.

Configurations

This register is present only when error record n is implemented, the node that owns error record n
implements the Common Fault Injection Model Extension and error record n is the first error record
in the node. Otherwise, direct accesses to ERR<n>PFGCTL are RES0.

ERR<n>PFGF describes the Common Fault Injection features implemented by the node.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGCTL is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

CDNEN, bit [31]

Countdown Enable. Controls transfers of the value held in ERR<n>PFGCDN to the Error
Generation Counter and enables this counter.

0b0 The Error Generation Counter is disabled.

0b1 The Error Generation Counter is enabled. On a write of 1 to this field, the Error
Generation Counter is set to ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

R, bit [30]

When ERR<n>PFGF.R == 1:

Restart. Controls whether the Error Generation Counter restarts or stops counting on reaching zero.

0b0 On reaching zero, the Error Generation Counter will stop counting.

0b1 On reaching zero, the Error Generation Counter is set to ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:13]

Reserved, RES0.

RES0

63 32

31

R

30

RES0

29 13

MV

12

AV

11

PN

10

ER

9

CI

8

CE

7 6

DE

5 4 3 2

UC

1

OF

0

CDNEN UEO UEU
UER
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13650
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
MV, bit [12]

When ERR<n>PFGF.MV == 1:

Miscellaneous syndrome. The value written to ERR<n>STATUS.MV when an injected error is
recorded.

0b0 ERR<n>STATUS.MV is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.MV is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the node always sets ERR<n>STATUS.MV to 1 when an injected error is recorded, access to
this field is RAO/WI.

When the node always sets ERR<n>STATUS.MV to 1 when an injected error is recorded and this
field is RAO/WI:

Reserved, RAO/WI.

Otherwise:

Reserved, RES0.

AV, bit [11]

When ERR<n>PFGF.AV == 1:

Address syndrome. The value written to ERR<n>STATUS.AV when an injected error is recorded.

0b0 ERR<n>STATUS.AV is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.AV is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the node always sets ERR<n>STATUS.AV to 1 when an injected error is recorded, access to
this field is RAO/WI.

When the node always sets ERR<n>STATUS.AV to 1 when an injected error is recorded and this field
is RAO/WI:

Reserved, RAO/WI.

Otherwise:

Reserved, RES0.

PN, bit [10]

When ERR<n>PFGF.PN == 1:

Poison flag. The value written to ERR<n>STATUS.PN when an injected error is recorded.

0b0 ERR<n>STATUS.PN is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.PN is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ER, bit [9]

When ERR<n>PFGF.ER == 1:

Error Reported flag. The value written to ERR<n>STATUS.ER when an injected error is recorded.

0b0 ERR<n>STATUS.ER is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.ER is set to 1 when an injected error is recorded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13651
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CI, bit [8]

When ERR<n>PFGF.CI == 1:

Critical Error flag. The value written to ERR<n>STATUS.CI when an injected error is recorded.

0b0 ERR<n>STATUS.CI is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.CI is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CE, bits [7:6]

When ERR<n>PFGF.CE != 0b00:

Corrected Error generation enable. Controls the type of injected Corrected error generated by the
fault injection feature of the node.

0b00 An injected Corrected error will not be generated by the fault injection feature of the
node.

0b01 When ERR<n>PFGF.CE == 0b01:

An injected non-specific Corrected error is generated in the fault injection state.
ERR<n>STATUS.CE is set to 0b10 when the injected error is recorded.

0b10 When ERR<n>PFGF.CE == 0b11:

An injected transient Corrected error is generated in the fault injection state.
ERR<n>STATUS.CE is set to 0b01 when the injected error is recorded.

0b11 When ERR<n>PFGF.CE == 0b11:

An injected persistent Corrected error is generated in the fault injection state.
ERR<n>STATUS.CE is set to 0b11 when the injected error is recorded.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DE, bit [5]

When ERR<n>PFGF.DE == 1:

Deferred Error generation enable. Controls whether an injected Deferred error is generated by the
fault injection feature of the node.

0b0 An injected Deferred error will not be generated by the fault generation feature of the
node.

0b1 An injected Deferred error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13652
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UEO, bit [4]

When ERR<n>PFGF.UEO == 1:

Latent or Restartable Error generation enable. Controls whether an injected Latent or Restartable
error is generated by the fault injection feature of the node.

0b0 An injected Latent or Restartable error will not be generated by the fault generation
feature of the node.

0b1 An injected Latent or Restartable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UER, bit [3]

When ERR<n>PFGF.UER == 1:

Signaled or Recoverable Error generation enable. Controls whether an injected Signaled or
Recoverable error is generated by the fault injection feature of the node.

0b0 An injected Signaled or Recoverable error will not be generated by the fault generation
feature of the node.

0b1 An injected Signaled or Recoverable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UEU, bit [2]

When ERR<n>PFGF.UEU == 1:

Unrecoverable Error generation enable. Controls whether an injected Unrecoverable error is
generated by the fault injection feature of the node.

0b0 An injected Unrecoverable error will not be generated by the fault generation feature of
the node.

0b1 An injected Unrecoverable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13653
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
UC, bit [1]

When ERR<n>PFGF.UC == 1:

Uncontainable Error generation enable. Controls whether an injected Uncontainable error is
generated by the fault injection feature of the node.

0b0 An injected Uncontainable error will not be generated by the fault generation feature of
the node.

0b1 An injected Uncontainable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It
is IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on
an access to the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

OF, bit [0]

When ERR<n>PFGF.OF == 1:

Overflow flag. The value written to ERR<n>STATUS.OF when an injected error is recorded.

0b0 ERR<n>STATUS.OF is set to 0 when an injected error is recorded.

0b1 ERR<n>STATUS.OF is set to 1 when an injected error is recorded.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the ERR<n>PFGCTL:

ERR<n>PFGCTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Offset Instance

RAS 0x808 + (64 * n) ERR<n>PFGCTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13654
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.32 ERR<n>PFGF, Error Record <n> Pseudo-fault Generation Feature Register, n = 0 - 65534

The ERR<n>PFGF characteristics are:

Purpose

Defines which common architecturally-defined fault generation features are implemented.

Configurations

This register is present only when error record n is implemented, the node that owns error record n
implements the Common Fault Injection Model Extension and error record n is the first error record
in the node. Otherwise, direct accesses to ERR<n>PFGF are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGF is a 64-bit register.

Field descriptions

Bits [63:31]

Reserved, RES0.

R, bit [30]

Restartable. Support for Error Generation Counter restart mode.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The node does not support this feature. ERR<n>PFGCTL.R is RES0.

0b1 Error Generation Counter restart mode is implemented and is controlled by
ERR<n>PFGCTL.R. ERR<n>PFGCTL.R is a read/write field.

Access to this field is RO.

SYN, bit [29]

Syndrome. Fault syndrome injection.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.{IERR, SERR} to
IMPLEMENTATION DEFINED values. ERR<n>STATUS.{IERR, SERR} are UNKNOWN
when ERR<n>STATUS.V is 0.

0b1 When an injected error is recorded, the node does not update the
ERR<n>STATUS.{IERR, SERR} fields. ERR<n>STATUS.{IERR, SERR} are
writable when ERR<n>STATUS.V is 0.

Note

If ERR<n>PFGF.SYN is 1 then software can write specific values into the
ERR<n>STATUS.{IERR, SERR} fields when setting up a fault injection event. The sets of values
that can be written to these fields is IMPLEMENTATION DEFINED.

Access to this field is RO.

RES0

63 32

31

R

30 29

NA

28

RES0

27 13

MV

12

AV

11

PN

10

ER

9

CI

8

CE

7 6

DE

5 4 3 2

UC

1

OF

0

RES0 SYN UEO UEU
UER
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13655
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
NA, bit [28]

No access required. Defines whether this component fakes detection of the error on an access to the
component or spontaneously in the fault injection state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The component fakes detection of the error on an access to the component.

0b1 The component fakes detection of the error spontaneously in the fault injection state.

Access to this field is RO.

Bits [27:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome.

Defines whether software can control all or part of the syndrome recorded in the
ERR<n>MISC<m> registers when an injected error is recorded.

It is IMPLEMENTATION DEFINED which ERR<n>MISC<m> syndrome fields, if any, are updated by
the node when an injected error is recorded. Some syndrome fields might always be updated by the
node when an error, including an injected error, is recorded. For example, a corrected error counter
might always be updated when any countable error, including a injected countable error, is recorded.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, the node might update the ERR<n>MISC<m>
registers:

• If any syndrome is recorded by the node in the ERR<n>MISC<m> registers, then
ERR<n>STATUS.MV is set to 1.

• Otherwise, ERR<n>STATUS.MV is unchanged.

If the node always sets ERR<n>STATUS.MV to 1 when recording an injected error then
ERR<n>PFGCTL.MV might be RAO/WI. Otherwise ERR<n>PFGCTL.MV is RES0.

0b1 When an injected error is recorded, the node might update some, but not all
ERR<n>MISC<m> syndrome fields:

• If any syndrome is recorded by the node in the ERR<n>MISC<m> registers, then
ERR<n>STATUS.MV is set to 1.

• Otherwise, ERR<n>STATUS.MV is set to ERR<n>PFGCTL.MV.

ERR<n>MISC<m> syndrome fields that are not updated by the node are writable when
ERR<n>STATUS.MV is 0.

If the node always sets ERR<n>STATUS.MV to 1 when recording an injected error then
ERR<n>PFGCTL.MV is RAO/WI. Otherwise ERR<n>PFGCTL.MV is a read/write
field.

If ERR<n>PFGF.MV is 1, software can write specific additional syndrome values into the
ERR<n>MISC<m> registers when setting up a fault injection event. The permitted values that can
be written to these registers are IMPLEMENTATION DEFINED.

Access to this field is RO.

AV, bit [11]

Address syndrome. Defines whether software can control the address recorded in ERR<n>ADDR
when an injected error is recorded.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, the node might record an address in
ERR<n>ADDR. If an address is recorded in ERR<n>ADDR, then
ERR<n>STATUS.AV is set to 1. Otherwise, ERR<n>ADDR and ERR<n>STATUS.AV
are unchanged.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13656
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
If the node always records an address and sets ERR<n>STATUS.AV to 1 when
recording an injected error then ERR<n>PFGCTL.AV might be RAO/WI. Otherwise
ERR<n>PFGCTL.AV is RES0.

0b1 When an injected error is recorded, the node does not update ERR<n>ADDR and does
one of:

• Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV. ERR<n>PFGCTL.AV is a
read/write field.

• Sets ERR<n>STATUS.AV to 1. ERR<n>PFGCTL.AV is RAO/WI.

ERR<n>ADDR is writable when ERR<n>STATUS.AV is 0.

If ERR<n>PFGF.AV is 1 then software can write a specific address value into ERR<n>ADDR when
setting up a fault injection event.

Access to this field is RO.

PN, bit [10]

When the node supports this flag:

Poison flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN
status flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node
sets ERR<n>STATUS.PN to 1. ERR<n>PFGCTL.PN is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.PN is set to
ERR<n>PFGCTL.PN. ERR<n>PFGCTL.PN is a read/write field.

This behavior replaces the architecture-defined rules for setting the ERR<n>STATUS.PN bit.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

ER, bit [9]

When the node supports this flag:

Error Reported flag. Describes how the fault generation feature of the node sets the
ERR<n>STATUS.ER status flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.ER according to the
architecture-defined rules for setting the ER field. ERR<n>PFGCTL.ER is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.ER is set to
ERR<n>PFGCTL.ER. This behavior replaces the architecture-defined rules for setting
the ER bit. ERR<n>PFGCTL.ER is a read/write field.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

CI, bit [8]

When the node supports this flag:

Critical Error flag. Describes how the fault generation feature of the node sets the
ERR<n>STATUS.CI status flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node
sets ERR<n>STATUS.CI to 1. ERR<n>PFGCTL.CI is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.CI is set to ERR<n>PFGCTL.CI.
ERR<n>PFGCTL.CI is a read/write field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13657
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
This behavior replaces the architecture-defined rules for setting the ERR<n>STATUS.CI bit.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

CE, bits [7:6]

When the node supports this type of error:

Corrected Error generation. Describes the types of Corrected error that the fault generation feature
of the node can generate.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b00 The fault generation feature of the node does not generate Corrected errors.
ERR<n>PFGCTL.CE is RES0.

0b01 The fault generation feature of the node allows generation of a non-specific Corrected
error, that is, a Corrected error that is recorded by setting ERR<n>STATUS.CE to 0b10.
ERR<n>PFGCTL.CE is a read/write field. The values 0b10 and 0b11 in
ERR<n>PFGCTL.CE are reserved.

0b11 The fault generation feature of the node allows generation of transient or persistent
Corrected errors, that is, Corrected errors that are recorded by setting
ERR<n>STATUS.CE to 0b01 or 0b11 respectively. ERR<n>PFGCTL.CE is a read/write
field. The value 0b01 in ERR<n>PFGCTL.CE is reserved.

All other values are reserved.

If ERR<n>FR.FRX is 1 then ERR<n>FR.CE indicates whether the node supports this type of error.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

DE, bit [5]

When the node supports this type of error:

Deferred Error generation. Describes whether the fault generation feature of the node can generate
Deferred errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The fault generation feature of the node does not generate Deferred errors.
ERR<n>PFGCTL.DE is RES0.

0b1 The fault generation feature of the node allows generation of Deferred errors.
ERR<n>PFGCTL.DE is a read/write field.

If ERR<n>FR.FRX is 1 then ERR<n>FR.DE indicates whether the node supports this type of error.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

UEO, bit [4]

When the node supports this type of error:

Latent or Restartable Error generation. Describes whether the fault generation feature of the node
can generate Latent or Restartable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The fault generation feature of the node does not generate Latent or Restartable errors.
ERR<n>PFGCTL.UEO is RES0.

0b1 The fault generation feature of the node allows generation of Latent or Restartable
errors. ERR<n>PFGCTL.UEO is a read/write field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13658
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
If ERR<n>FR.FRX is 1 then ERR<n>FR.UEO indicates whether the node supports this type of
error.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

UER, bit [3]

When the node supports this type of error:

Signaled or Recoverable Error generation. Describes whether the fault generation feature of the
node can generate Signaled or Recoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The fault generation feature of the node does not generate Signaled or Recoverable
errors. ERR<n>PFGCTL.UER is RES0.

0b1 The fault generation feature of the node allows generation of Signaled or Recoverable
errors. ERR<n>PFGCTL.UER is a read/write field.

If ERR<n>FR.FRX is 1 then ERR<n>FR.UER indicates whether the node supports this type of
error.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

UEU, bit [2]

When the node supports this type of error:

Unrecoverable Error generation. Describes whether the fault generation feature of the node can
generate Unrecoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The fault generation feature of the node does not generate Unrecoverable errors.
ERR<n>PFGCTL.UEU is RES0.

0b1 The fault generation feature of the node allows generation of Unrecoverable errors.
ERR<n>PFGCTL.UEU is a read/write field.

If ERR<n>FR.FRX is 1 then ERR<n>FR.UEU indicates whether the node supports this type of
error.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

UC, bit [1]

When the node supports this type of error:

Uncontainable Error generation. Describes whether the fault generation feature of the node can
generate Uncontainable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 The fault generation feature of the node does not generate Uncontainable errors.
ERR<n>PFGCTL.UC is RES0.

0b1 The fault generation feature of the node allows generation of Uncontainable errors.
ERR<n>PFGCTL.UC is a read/write field.

If ERR<n>FR.FRX is 1 then ERR<n>FR.UC indicates whether the node supports this type of error.

Access to this field is RO.

Otherwise:

Reserved, RAZ.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13659
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
OF, bit [0]

When the node supports this flag:

Overflow flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF
status flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.OF according to the
architecture-defined rules for setting the OF field. ERR<n>PFGCTL.OF is RES0.

0b1 When an injected error is recorded, ERR<n>STATUS.OF is set to
ERR<n>PFGCTL.OF. This behavior replaces the architecture-defined rules for setting
the OF bit. ERR<n>PFGCTL.OF is a read/write field.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

Accessing the ERR<n>PFGF:

ERR<n>PFGF can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

RAS 0x800 + (64 * n) ERR<n>PFGF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13660
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.33 ERR<n>STATUS, Error Record <n> Primary Status Register, n = 0 - 65534

The ERR<n>STATUS characteristics are:

Purpose

When RAS System Architecture v2 is implemented, error record <n> might be one of the following:

• A continuation record containing more information about the error recorded in error record
<n-1>. In this case, ERR<n>STATUS contains a subset of the values of a normal error record
status register.

• A proxy for a different RAS agent. In this case, ERR<n>STATUS reports the status of the
RAS agent.

Otherwise, ERR<n>STATUS contains status information for error record <n>, including:

• Whether any error has been detected (valid).

• Whether any detected error was not corrected, and returned to a Requester.

• Whether any detected error was not corrected and deferred.

• Whether an error record has been discarded because additional errors have been detected
before the first error was handled by software (overflow).

• Whether any error has been reported.

• Whether the other error record registers contain valid information.

• Whether the error was reported because poison data was detected or because a corrupt value
was detected by an error detection code.

• A primary error code.

• An IMPLEMENTATION DEFINED extended error code.

Within this register:

• ERR<n>STATUS.{AV, V, MV} are valid bits that define whether error record <n> registers
are valid.

• ERR<n>STATUS.{UE, OF, CE, DE, UET} encode the types of error or errors recorded.

• ERR<n>STATUS.{CI, ER, PN, IERR, SERR} are syndrome fields.

Configurations

This register is present only when error record n is implemented. Otherwise, direct accesses to
ERR<n>STATUS are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record
<n>. If the node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero returns the error record to
an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or
Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault
Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at
Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an
IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>STATUS is a 64-bit register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13661
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Field descriptions

When RAS System Architecture v2 is implemented, ERR<n>FR.ED == 0b00 and ERR<n>FR.ERT
== 0b01:

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record n includes an address associated with an error:

Address Valid.

0b0 ERR<n>ADDR not valid.

0b1 ERR<n>ADDR contains an additional address associated with the highest priority error
recorded by this record.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

0b0 ERR<n>STATUS not valid.

0b1 ERR<n>STATUS valid. Additional syndrome has been recorded.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Access to this field is W1C.

Bit [29]

Reserved, RAZ.

Bits [28:27]

Reserved, RES0.

RES0

63 32

AV

31

V

30 29

RES0

28 27

MV

26

RAZ

25 23

RES0

22 20 19

RES0

18 16

IERR

15 8

RES0

7 0

RAZ RAZ
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13662
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
MV, bit [26]

When error record <n> includes additional information for an error:

Miscellaneous Registers Valid.

0b0 ERR<n>MISC<m> not valid.

0b1 The contents of the ERR<n>MISC<m> registers contain additional information for an
error recorded by this record.

Note
If the ERR<n>MISC<m> registers can contain additional information for a previously recorded
error, then the contents must be self-describing to software or a user. For example, certain fields
might relate only to Corrected errors, and other fields only to the most recent error that was not
discarded.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

Bits [25:23]

Reserved, RAZ.

Bits [22:20]

Reserved, RES0.

Bit [19]

Reserved, RAZ.

Bits [18:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED additional error code. Used with any primary error code
ERR<n>STATUS.SERR value. Further IMPLEMENTATION DEFINED information can be placed in the
ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— ERR<n>STATUS.V == 0.

— the node that owns error record n does not implement the Common Fault Injection
Model Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13663
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
• UNKNOWN/WI if all of the following are true:

— ERR<n>STATUS.V == 0.

— ERRPFGF[FirstRecordOfNode(n)].SYN == 0.

• Otherwise, access to this field is RW.

Bits [7:0]

Reserved, RES0.

When RAS System Architecture v2 is implemented, ERR<n>FR.ED == 0b11 and ERR<n>FR.ERT
== 0b01:

Bits [63:31]

Reserved, RES0.

V, bit [30]

RAS agent error status.

0b0 RAS agent error status is not asserted.

0b1 RAS agent error status is asserted.

Access to this field is RO.

ERI, bit [29]

RAS agent Error Recovery Interrupt.

0b0 RAS agent error recovery interrupt is not asserted.

0b1 RAS agent error recovery interrupt is asserted.

Access to this field is RO.

Bits [28:25]

Reserved, RES0.

FHI, bit [24]

RAS agent Fault Handling Interrupt.

0b0 RAS agent fault handling interrupt is not asserted.

0b1 RAS agent fault handling interrupt is asserted.

Access to this field is RO.

Bits [23:20]

Reserved, RES0.

CRI, bit [19]

RAS agent criticial error interrupt.

0b0 RAS agent criticial error interrupt is not asserted.

0b1 RAS agent criticial error interrupt is asserted.

Access to this field is RO.

RES0

63 32

31

V

30 29

RES0

28 25 24

RES0

23 20 19

RES0

18 0

RES0 ERI FHI CRI
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13664
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Bits [18:0]

Reserved, RES0.

When RAS System Architecture v1p1 is implemented:

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record n includes an address associated with an error:

Address Valid.

0b0 ERR<n>ADDR not valid.

0b1 ERR<n>ADDR contains an address associated with the highest priority error recorded
by this record.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

0b0 ERR<n>STATUS not valid.

0b1 ERR<n>STATUS valid. At least one error has been recorded.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Access to this field is W1C.

UE, bit [29]

Uncorrected Error.

0b0 No errors have been detected, or all detected errors have been either corrected or
deferred.

0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

RES0

63 32

AV

31

V

30

UE

29

ER

28

OF

27

MV

26

CE

25 24

DE

23

PN

22

UET

21 20

CI

19

RV

18

RES0

17 16

IERR

15 8

SERR

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13665
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

ER, bit [28]

When in-band error responses can be returned for a Deferred error:

Error Reported.

0b0 No in-band error response (External abort) signaled to the Requester making the access
or other transaction.

0b1 An in-band error response was signaled by the component to the Requester making the
access or other transaction. This can be because any of the following are true:

• The ERR<n>CTLR.UE field, or applicable one of the ERR<n>CTLR.{WUE,
RUE} fields, is implemented and was 1 when an error was detected and not
corrected.

• The ERR<n>CTLR.{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

Note

An in-band error response signaled by the component might be masked and not generate any
exception.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a
Deferred error, but is not deferred to the Requester, can signal an in-band error response to the
Requester, causing this field to be set to 1.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.[DE,UE] == 0b00.

• Otherwise, access to this field is W1C.

When in-band error responses are never returned for a Deferred error:

Error Reported.

0b0 No in-band error response (External abort) signaled to the Requester making the access
or other transaction.

0b1 An in-band error response was signaled by the component to the Requester making the
access or other transaction. This can be because any of the following are true:

• The ERR<n>CTLR.UE field, or applicable one of the ERR<n>CTLR.{WUE,
RUE} fields, is implemented and was 1 when an error was detected and not
corrected.

• The ERR<n>CTLR.{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

Note

An in-band error response signaled by the component might be masked and not generate any
exception.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a
Deferred error, but is not deferred to the Requester, can signal an in-band error response to the
Requester, causing this field to be set to 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13666
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.UE == 0.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This field is set to 1 when one of the following
occurs:

• A Corrected error counter is implemented, an error is counted, and the counter overflows.

• ERR<n>STATUS.V was previously 1, a Corrected error counter is not implemented, and a
Corrected error is recorded.

• ERR<n>STATUS.V was previously 1, and a type of error other than a Corrected error is
recorded.

Otherwise, this field is unchanged when an error is recorded.

If a Corrected error counter is implemented, then:

• A direct write that modifies the counter overflow flag indirectly might set this field to an
UNKNOWN value.

• A direct write to this field that clears this field to zero might indirectly set the counter
overflow flag to an UNKNOWN value.

0b0 Since this field was last cleared to zero, no error syndrome has been discarded and, if a
Corrected error counter is implemented, it has not overflowed.

0b1 Since this field was last cleared to zero, at least one error syndrome has been discarded
or, if a Corrected error counter is implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

MV, bit [26]

When error record <n> includes additional information for an error:

Miscellaneous Registers Valid.

0b0 ERR<n>MISC<m> not valid.

0b1 The contents of the ERR<n>MISC<m> registers contain additional information for an
error recorded by this record.

Note

If the ERR<n>MISC<m> registers can contain additional information for a previously recorded
error, then the contents must be self-describing to software or a user. For example, certain fields
might relate only to Corrected errors, and other fields only to the most recent error that was not
discarded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13667
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Access to this field is W1C.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

0b00 No errors were corrected.

0b01 At least one transient error was corrected.

0b10 At least one error was corrected.

0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a Corrected error is transient or
persistent is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets
this field to 0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write ones to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

DE, bit [23]

Deferred Error.

0b0 No errors were deferred.

0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

PN, bit [22]

Poison.

0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13668
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.[DE,UE] == 0b00.

• Otherwise, access to this field is W1C.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an
Uncorrected error.

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).

0b11 Uncorrected error, Signaled or Recoverable error (UER).

UER can mean either Signaled or Recoverable error, and UEO can mean either Latent or Restartable
error.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write ones to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.UE == 0.

• Otherwise, access to this field is W1C.

CI, bit [19]

Critical Error. Indicates whether a critical error condition has been recorded.

0b0 No critical error condition.

0b1 Critical error condition.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

RV, bit [18]

When RAS System Architecture v2 is implemented:

Reset Valid. When ERR<n>STATUS.V is 1, indicating the error record is valid, this field indicates
whether the error was recorded before or after the most recent Error Recovery reset.

0b0 If the error record is valid then it was recorded after the last Error Recovery reset.

0b1 If the error record is valid then it was recorded before the last Error Recovery reset.

This field is set to 0 when an error is recorded.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to 1.

Access to this field is W1C.

Otherwise:

Reserved, RES0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13669
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Bits [17:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR
value. Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m>
registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection
Model Extension.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERRPFGF[FirstRecordOfNode(n)].SYN == 0.

— ERR<n>STATUS.V == 0.

• Otherwise, access to this field is RW.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault
handling agent to triage an error without requiring device-specific code. For example, to count and
threshold corrected errors in software, or generate a short log entry.

0x00 No error.

0x01 IMPLEMENTATION DEFINED error.

0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip
SRAM or buffer.

0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

0x04 Assertion failure. For example, consistency failure.

0x05 Error detected on internal data path. For example, parity on ALU result.

0x06 Data value from associative memory. For example, ECC error on cache data.

0x07 Address/control value from associative memory. For example, ECC error on cache tag.

0x08 Data value from a TLB. For example, ECC error on TLB data.

0x09 Address/control value from a TLB. For example, ECC error on TLB tag.

0x0A Data value from producer. For example, parity error on write data bus.

0x0B Address/control value from producer. For example, parity error on address bus.

0x0C Data value from (non-associative) external memory. For example, ECC error in
SDRAM.

0x0D Illegal address (software fault). For example, access to unpopulated memory.

0x0E Illegal access (software fault). For example, byte write to word register.

0x0F Illegal state (software fault). For example, device not ready.

0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all
general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are data registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13670
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
0x11 Internal control register. For example, parity on a System register. For a PE, all registers
other than general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are
control registers.

0x12 Error response from Completer of access. For example, error response from cache
write-back.

0x13 External timeout. For example, timeout on interaction with another component.

0x14 Internal timeout. For example, timeout on interface within the component.

0x15 Deferred error from Completer not supported at Requester. For example, poisoned data
received from the Completer of an access by a Requester that cannot defer the error
further.

0x16 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

0x17 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

0x18 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

0x19 Error recorded by PCIe error logs. Indicates that the component has recorded an error
in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or
other mechanisms defined by PCIe.

0x1A Other internal error. For example, parity error on internal state of the component that is
not covered by another primary error code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection
Model Extension.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERRPFGF[FirstRecordOfNode(n)].SYN == 0.

— ERR<n>STATUS.V == 0.

• Otherwise, access to this field is RW.

Otherwise:

RES0

63 32

AV

31

V

30

UE

29

ER

28

OF

27

MV

26

CE

25 24

DE

23

PN

22

UET

21 20

RES0

19 16

IERR

15 8

SERR

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13671
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record n includes an address associated with an error:

Address Valid.

0b0 ERR<n>ADDR not valid.

0b1 ERR<n>ADDR contains an address associated with the highest priority error recorded
by this record.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Accessing this field has the following behavior:

• RO if all of the following are true:

— ERR<n>STATUS.[DE,UE] == 0b00.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

0b0 ERR<n>STATUS not valid.

0b1 ERR<n>STATUS valid. At least one error has been recorded.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.

Accessing this field has the following behavior:

• RO if all of the following are true:

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13672
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

UE, bit [29]

Uncorrected Error.

0b0 No errors have been detected, or all detected errors have been either corrected or
deferred.

0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.OF == 1.

— ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

ER, bit [28]

When in-band error responses can be returned for a Deferred error:

Error Reported.

0b0 No in-band error response (External abort) signaled to the Requester making the access
or other transaction.

0b1 An in-band error response was signaled by the component to the Requester making the
access or other transaction. This can be because any of the following are true:

• The ERR<n>CTLR.UE field, or applicable one of the ERR<n>CTLR.{WUE,
RUE} fields, is implemented and was 1 when an error was detected and not
corrected.

• The ERR<n>CTLR.{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to
zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing both ERR<n>STATUS.{DE, UE} to 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.[DE,UE] == 0b00.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13673
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
• Otherwise, access to this field is W1C.

When in-band error responses are never returned for a Deferred error:

Error Reported.

0b0 No in-band error response (External abort) signaled to the Requester making the access
or other transaction.

0b1 An in-band error response was signaled by the component to the Requester making the
access or other transaction. This can be because any of the following are true:

• The ERR<n>CTLR.UE field, or applicable one of the ERR<n>CTLR.{WUE,
RUE} fields, is implemented and was 1 when an error was detected and not
corrected.

• The ERR<n>CTLR.{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to
zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing ERR<n>STATUS.UE to 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.UE == 0.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This field is set to 1 when one of the following
occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 1.

• A Deferred error is detected, ERR<n>STATUS.UE == 0 and ERR<n>STATUS.DE == 1.

• A Corrected error is detected, no Corrected error counter is implemented,
ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and ERR<n>STATUS.CE != 0b00.
ERR<n>STATUS.CE might be updated for the new Corrected error.

• A Corrected error counter is implemented, ERR<n>STATUS.UE == 0,
ERR<n>STATUS.DE == 0, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this field is set to 1 when one of the following occurs:

• A Deferred error is detected and ERR<n>STATUS.UE == 1.

• A Corrected error is detected, no Corrected error counter is implemented, and
ERR<n>STATUS.{UE, DE} != {0, 0}.

• A Corrected error counter is implemented, ERR<n>STATUS.{UE, DE} != {0, 0}, and the
counter overflows.

It is IMPLEMENTATION DEFINED whether this field is cleared to 0 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0.

• A Deferred error is detected, ERR<n>STATUS.UE == 0, and ERR<n>STATUS.DE == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13674
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
• A Corrected error is detected, ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and
ERR<n>STATUS.CE == 0b00.

The IMPLEMENTATION DEFINED clearing of this field might also depend on the value of the other
error status fields.

If a Corrected error counter is implemented, then:

• A direct write that modifies the counter overflow flag indirectly might set this field to an
UNKNOWN value.

• A direct write to this field that clears this field to 0 might indirectly set the counter overflow
flag to an UNKNOWN value.

0b0 If ERR<n>STATUS.UE == 1, then no error syndrome for an Uncorrected error has been
discarded.

If ERR<n>STATUS.UE == 0 and ERR<n>STATUS.DE == 1, then no error syndrome
for a Deferred error has been discarded.

If ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and a Corrected error
counter is implemented, then the counter has not overflowed.

If ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, ERR<n>STATUS.CE !=
0b00, and no Corrected error counter is implemented, then no error syndrome for a
Corrected error has been discarded.

Note
This field might have been set to 1 when an error syndrome was discarded and later
cleared to 0 when a higher priority syndrome was recorded.

0b1 At least one error syndrome has been discarded or, if a Corrected error counter is
implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• Otherwise, access to this field is W1C.

MV, bit [26]

When error record <n> includes additional information for an error:

Miscellaneous Registers Valid.

0b0 ERR<n>MISC<m> not valid.

0b1 The contents of the ERR<n>MISC<m> registers contain additional information for an
error recorded by this record.

Note
If the ERR<n>MISC<m> registers can contain additional information for a previously recorded
error, then the contents must be self-describing to software or a user. For example, certain fields
might relate only to Corrected errors, and other fields only to the most recent error that was not
discarded.

The reset behavior of this field is:

• On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally
UNKNOWN value.

— Otherwise, this field resets to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13675
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Accessing this field has the following behavior:

• RO if all of the following are true:

— ERR<n>STATUS.[DE,UE] == 0b00.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

0b00 No errors were corrected.

0b01 At least one transient error was corrected.

0b10 At least one error was corrected.

0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a Corrected error is transient or
persistent is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets
this field to 0b10 when a corrected error is recorded.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write ones to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.OF == 1.

— ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

DE, bit [23]

Deferred Error.

0b0 No errors were deferred.

0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that
software write 1 to this field to clear this field to zero.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

• RO if all of the following are true:

— ERR<n>STATUS.OF == 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13676
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
— ERR<n>STATUS.OF is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

PN, bit [22]

Poison.

0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for
example, by an error detection code (EDC), or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to
zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing both ERR<n>STATUS.{DE, UE} to 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.

— ERR<n>STATUS.[DE,UE] == 0b00.

• RO if all of the following are true:

— ERR<n>STATUS.[DE,UE] == 0b00.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an
Uncorrected error.

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).

0b11 Uncorrected error, Signaled or Recoverable error (UER).

UER can mean either Signaled or Recoverable error, and UEO can mean either Latent or Restartable
error.

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field
to zero, when any of:

• Clearing ERR<n>STATUS.V to 0.

• Clearing ERR<n>STATUS.UE to 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V == 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13677
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
— ERR<n>STATUS.UE == 0.

• RO if all of the following are true:

— ERR<n>STATUS.[DE,UE] == 0b00.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is W1C.

Bits [19:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR
value. Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m>
registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection
Model Extension.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERRPFGF[FirstRecordOfNode(n)].SYN == 0.

— ERR<n>STATUS.V == 0.

• RO if all of the following are true:

— ERR<n>STATUS.[DE,UE] == 0b00.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is RW.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13678
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault
handling agent to triage an error without requiring device-specific code. For example, to count and
threshold corrected errors in software, or generate a short log entry.

0x00 No error.

0x01 IMPLEMENTATION DEFINED error.

0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip
SRAM or buffer.

0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

0x04 Assertion failure. For example, consistency failure.

0x05 Error detected on internal data path. For example, parity on ALU result.

0x06 Data value from associative memory. For example, ECC error on cache data.

0x07 Address/control value from associative memory. For example, ECC error on cache tag.

0x08 Data value from a TLB. For example, ECC error on TLB data.

0x09 Address/control value from a TLB. For example, ECC error on TLB tag.

0x0A Data value from producer. For example, parity error on write data bus.

0x0B Address/control value from producer. For example, parity error on address bus.

0x0C Data value from (non-associative) external memory. For example, ECC error in
SDRAM.

0x0D Illegal address (software fault). For example, access to unpopulated memory.

0x0E Illegal access (software fault). For example, byte write to word register.

0x0F Illegal state (software fault). For example, device not ready.

0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all
general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are data registers.

0x11 Internal control register. For example, parity on a System register. For a PE, all registers
other than general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are
control registers.

0x12 Error response from Completer of access. For example, error response from cache
write-back.

0x13 External timeout. For example, timeout on interaction with another component.

0x14 Internal timeout. For example, timeout on interface within the component.

0x15 Deferred error from Completer not supported at Requester. For example, poisoned data
received from the Completer of an access by a Requester that cannot defer the error
further.

0x16 Deferred error from Requester not supported at Completer. For example, poisoned data
received from the Requester of an access by a Completer that cannot defer the error
further.

0x17 Deferred error from Completer passed through. For example, poisoned data received
from the Completer of an access and returned to the Requester.

0x18 Deferred error from Requester passed through. For example, poisoned data received
from the Requester of an access and deferred to the Completer.

0x19 Error recorded by PCIe error logs. Indicates that the component has recorded an error
in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or
other mechanisms defined by PCIe.

0x1A Other internal error. For example, parity error on internal state of the component that is
not covered by another primary error code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register, then the value read back from this field is UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13679
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or
read-as-one values.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

• UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection
Model Extension.

— ERR<n>STATUS.V == 0.

• UNKNOWN/WI if all of the following are true:

— ERRPFGF[FirstRecordOfNode(n)].SYN == 0.

— ERR<n>STATUS.V == 0.

• RO if all of the following are true:

— ERR<n>STATUS.DE == 0.

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.CE != 0b00.

— ERR<n>STATUS.CE is not being cleared to 0b00 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE == 0.

— ERR<n>STATUS.DE != 0.

— ERR<n>STATUS.DE is not being cleared to 0b0 in the same write.

• RO if all of the following are true:

— ERR<n>STATUS.UE != 0.

— ERR<n>STATUS.UE is not being cleared to 0b0 in the same write.

• Otherwise, access to this field is RW.

Accessing the ERR<n>STATUS:

ERR<n>STATUS.{AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} are write-one-to-clear (W1C) fields, meaning
writes of zero are ignored, and a write of one or all-ones to the field clears the field to zero.
ERR<n>STATUS.{IERR, SERR} are read/write (RW) fields, although the set of implemented valid values is
IMPLEMENTATION DEFINED. See also ERR<n>PFGF.SYN.

After reading ERR<n>STATUS, software must clear the valid fields in the register to allow new errors to be
recorded. However, between reading the register and clearing the valid fields, a new error might have overwritten
the register. To prevent this error being lost by software, the register prevents updates to fields that might have been
updated by a new error.

When RAS System Architecture v1.0 is implemented:

• Writes to ERR<n>STATUS.{UE, DE, CE} are ignored if ERR<n>STATUS.OF is 1 and is not being cleared
to 0.

• Writes to ERR<n>STATUS.V are ignored if any of ERR<n>STATUS.{UE, DE, CE} are nonzero and are not
being cleared to zero.

• Writes to ERR<n>STATUS.{AV, MV} and the ERR<n>STATUS.{ER, PN, UET, IERR, SERR} syndrome
fields are ignored if the highest priority nonzero error status field is not being cleared to zero. The error status
fields in priority order from highest to lowest, are ERR<n>STATUS.UE, ERR<n>STATUS.DE, and
ERR<n>STATUS.CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

• Any of ERR<n>STATUS.{V, UE, OF, CE, DE} are nonzero before the write.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13680
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
• The write does not clear the nonzero ERR<n>STATUS.{V, UE, OF, CE, DE} fields to zero by writing ones
to the applicable field or fields.

Some of the fields in ERR<n>STATUS are also defined as UNKNOWN where certain combinations of
ERR<n>STATUS.{V, DE, UE} are zero. The rules for writes to ERR<n>STATUS allow a node to implement such
a field as a fixed read-only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<n>STATUS when
ERR<n>STATUS.V is 1 results in either ERR<n>STATUS.V field being cleared to zero, or ERR<n>STATUS.V
not changing. Since all fields in ERR<n>STATUS, other than ERR<n>STATUS.{AV, V, MV}, usually read as
UNKNOWN values when ERR<n>STATUS.V is zero, this means those fields can be implemented as read-only if
applicable.

To ensure correct and portable operation, when software is clearing the valid fields in the register to allow new errors
to be recorded, Arm recommends that software performs the following sequence of operations in order:

1. Read ERR<n>STATUS and determine which fields need to be cleared to zero.

2. In a single write to ERR<n>STATUS:

• Write ones to all the W1C fields that are nonzero in the read value.

• Write zero to all the W1C fields that are zero in the read value.

• Write zero to all the RW fields.

3. Read back ERR<n>STATUS after the write to confirm no new fault has been recorded.

Otherwise, these fields might not have the correct value when a new fault is recorded.

ERR<n>STATUS can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When ERR<n>STATUS.V != 0, ERR<n>STATUS.V is not being cleared to 0b0 in the same write and RAS
System Architecture v1p1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.UE != 0, ERR<n>STATUS.UE is not being cleared to 0b0 in the same write and
RAS System Architecture v1p1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.OF != 0, ERR<n>STATUS.OF is not being cleared to 0b0 in the same write and
RAS System Architecture v1p1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.CE != 0b00, ERR<n>STATUS.CE is not being cleared to 0b00 in the same write
and RAS System Architecture v1p1 is implemented accesses to this register are RO.

• When ERR<n>STATUS.DE != 0, ERR<n>STATUS.DE is not being cleared to 0b0 in the same write and
RAS System Architecture v1p1 is implemented accesses to this register are RO.

• Otherwise accesses to this register are RW.

Component Offset Instance

RAS 0x010 + (64 * n) ERR<n>STATUS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13681
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.34 ERRPIDR0, Peripheral Identification Register 0

The ERRPIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR0 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use
a 12-bit or a 16-bit part number:

• If a 12-bit part number is used, then it is stored in ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND,
available to define the revision of the component.

• If a 16-bit part number is used, then it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1
and ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the
revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRPIDR0:

ERRPIDR0 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

PART_0

7 0

Component Offset Instance

RAS 0xFE0 ERRPIDR0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13682
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.35 ERRPIDR1, Peripheral Identification Register 1

The ERRPIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR1 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

PART_1, bits [3:0]

Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use
a 12-bit or a 16-bit part number:

• If a 12-bit part number is used, then it is stored in ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND,
available to define the revision of the component.

• If a 16-bit part number is used, then it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1
and ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the
revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

DES_0

7 4

PART_1

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13683
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Accessing the ERRPIDR1:

ERRPIDR1 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

RAS 0xFE4 ERRPIDR1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13684
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.36 ERRPIDR2, Peripheral Identification Register 2

The ERRPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR2 is a 32-bit register.

Field descriptions

When the component uses a 12-bit part number:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed,
ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that software can
differentiate the different revisions of the component. ERRPIDR3.REVAND should be set to 0b0000
when ERRPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

RES0

31 8

REVISION

7 4

1

3

DES_1

2 0

JEDEC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13685
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Access to this field is RO.

When the component uses a 16-bit part number:

Bits [31:8]

Reserved, RES0.

PART_2, bits [7:4]

Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use
a 12-bit or a 16-bit part number:

• If a 12-bit part number is used, then it is stored in ERRPIDR1.PART_1 and
ERRPIDR0.PART_0. There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND,
available to define the revision of the component.

• If a 16-bit part number is used, then it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1
and ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the
revision of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1
together form the JEDEC-assigned JEP106 identification code for the designer of the component.
The parity bit in the JEP106 identification code is not included. The code identifies the designer of
the component, which might not be not the same as the implementer of the device containing the
component. To obtain a number, or to see the assignment of these codes, contact JEDEC
http://www.jedec.org.

Note
For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRPIDR2:

ERRPIDR2 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

PART_2

7 4

1

3

DES_1

2 0

JEDEC

Component Offset Instance

RAS 0xFE8 ERRPIDR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13686
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.37 ERRPIDR3, Peripheral Identification Register 3

The ERRPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR3 is a 32-bit register.

Field descriptions

When the component uses a 12-bit part number:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the
revision number of the component, with ERRPIDR2.REVISION being the most significant part and
ERRPIDR3.REVAND the least significant part. When a component is changed,
ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that software can
differentiate the different revisions of the component. ERRPIDR3.REVAND should be set to 0b0000
when ERRPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If ERRPIDR3.CMOD is zero in both components, then the components are identical.

• If ERRPIDR3.CMOD has the same nonzero value in both components, then this does not
necessarily mean that they have the same modifications.

• If ERRPIDR3.CMOD is nonzero in either component, the two components might not be
identical despite having the same Unique Component Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

REVAND

7 4

CMOD

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13687
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
When the component uses a 16-bit part number:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. When a component is changed, ERRPIDR3.REVISION is increased to ensure
that software can differentiate the different revisions of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

• If ERRPIDR3.CMOD is zero in both components, then the components are identical.

• If ERRPIDR3.CMOD has the same nonzero value in both components, then this does not
necessarily mean that they have the same modifications.

• If ERRPIDR3.CMOD is nonzero in either component, the two components might not be
identical despite having the same Unique Component Identifier.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing the ERRPIDR3:

ERRPIDR3 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

RES0

31 8

REVISION

7 4

CMOD

3 0

Component Offset Instance

RAS 0xFEC ERRPIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13688
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
I6.9.38 ERRPIDR4, Peripheral Identification Register 4

The ERRPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR4 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR4 is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component.

The distance from the start of the address space used by this component to the end of the component
identification registers.

A value of 0b0000 means one of the following is true:

• The component uses a single 4KB block.

• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies 2ERRPIDR4.SIZE 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly
indicate the size of the component. Arm recommends that software determine the size of the
component from the Unique Component Identifier fields, and other IMPLEMENTATION DEFINED
registers in the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

DES_2, bits [3:0]

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the
designer of the component, minus 1. The code identifies the designer of the component, which
might not be not the same as the implementer of the device containing the component. To obtain a
number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

Note

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the value
0x4.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

RES0

31 8

SIZE

7 4

DES_2

3 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13689
ID032224 Non-Confidential

External System Control Register Descriptions
I6.9 RAS register descriptions
Accessing the ERRPIDR4:

ERRPIDR4 can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Offset Instance

RAS 0xFD0 ERRPIDR4
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. I6-13690
ID032224 Non-Confidential

Part J
Architectural Pseudocode

Chapter J1
Armv8 Pseudocode

This chapter contains pseudocode that describes many features of the A-profile architecture. It contains the
following sections:

• Pseudocode for AArch64 operation.

• Pseudocode for AArch32 operation.

• Shared pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13692
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
J1.1 Pseudocode for AArch64 operation

This section holds the pseudocode for execution in AArch64 state. Functions that are listed in this section are
identified as AArch64.FunctionName. Some of these functions have an equivalent AArch32 function,
AArch32.FunctionName. This section is organized by functional groups, with the functional groups being indicated by
hierarchical path names, for example aarch64/debug/breakpoint.

The top-level sections of the AArch64 pseudocode hierarchy are:

• aarch64/debug.

• aarch64/exceptions.

• aarch64/functions.

• aarch64/translation.

J1.1.1 aarch64/debug

This section includes the following pseudocode functions:

• aarch64/debug/brbe/BRBCycleCountingEnabled.

• aarch64/debug/brbe/BRBEBranch.

• aarch64/debug/brbe/BRBEBranchOnISB.

• aarch64/debug/brbe/BRBEDebugStateExit.

• aarch64/debug/brbe/BRBEException.

• aarch64/debug/brbe/BRBEExceptionReturn.

• aarch64/debug/brbe/BRBEFreeze.

• aarch64/debug/brbe/BRBEISB.

• aarch64/debug/brbe/BRBEMispredictAllowed.

• aarch64/debug/brbe/BRBETimeStamp.

• aarch64/debug/brbe/BRB_IALL.

• aarch64/debug/brbe/BRB_INJ.

• aarch64/debug/brbe/Branch.

• aarch64/debug/brbe/BranchEncCycleCount.

• aarch64/debug/brbe/BranchMispredict.

• aarch64/debug/brbe/BranchRawCycleCount.

• aarch64/debug/brbe/BranchRecordAllowed.

• aarch64/debug/brbe/Contents.

• aarch64/debug/brbe/FilterBranchRecord.

• aarch64/debug/brbe/FirstBranchAfterProhibited.

• aarch64/debug/brbe/GetBRBENumRecords.

• aarch64/debug/brbe/Getter.

• aarch64/debug/brbe/ShouldBRBEFreeze.

• aarch64/debug/brbe/UpdateBranchRecordBuffer.

• aarch64/debug/breakpoint/AArch64.BreakpointMatch.

• aarch64/debug/breakpoint/AArch64.BreakpointValueMatch.

• aarch64/debug/breakpoint/AArch64.ReservedBreakpointType.

• aarch64/debug/breakpoint/AArch64.StateMatch.

• aarch64/debug/breakpoint/BreakpointType.

• aarch64/debug/breakpoint/DebugAddrTop.

• aarch64/debug/breakpoint/EffectiveMDSELR_EL1_BANK.

• aarch64/debug/breakpoint/IsBreakpointEnabled.

• aarch64/debug/breakpoint/SelfHostedExtendedBPWPEnabled.

• aarch64/debug/ebep/CheckForPMUException.

• aarch64/debug/ebep/ExceptionReturnPPEND.

• aarch64/debug/ebep/IsSupportingPMUSynchronousMode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13693
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/debug/ebep/PMUExceptionEnabled.

• aarch64/debug/ebep/PMUExceptionMasked.

• aarch64/debug/ebep/PMUInterruptEnabled.

• aarch64/debug/ebep/TakePMUException.

• aarch64/debug/ebep/inst_addr_executed.

• aarch64/debug/ebep/sync_counter_overflowed.

• aarch64/debug/enables/AArch64.GenerateDebugExceptions.

• aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom.

• aarch64/debug/ite/AArch64.TRCIT.

• aarch64/debug/ite/TraceInstrumentation.

• aarch64/debug/pmu/AArch64.IncrementCycleCounter.

• aarch64/debug/pmu/AArch64.IncrementEventCounter.

• aarch64/debug/pmu/AArch64.PMUCycle.

• aarch64/debug/statisticalprofiling/CollectContextIDR1.

• aarch64/debug/statisticalprofiling/CollectContextIDR2.

• aarch64/debug/statisticalprofiling/CollectPhysicalAddress.

• aarch64/debug/statisticalprofiling/CollectTimeStamp.

• aarch64/debug/statisticalprofiling/OpType.

• aarch64/debug/statisticalprofiling/ProfilingBufferEnabled.

• aarch64/debug/statisticalprofiling/ProfilingBufferOwner.

• aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier.

• aarch64/debug/statisticalprofiling/SPEAddByteToRecord.

• aarch64/debug/statisticalprofiling/SPEAddPacketToRecord.

• aarch64/debug/statisticalprofiling/SPEBranch.

• aarch64/debug/statisticalprofiling/SPEBufferFilled.

• aarch64/debug/statisticalprofiling/SPEBufferIsFull.

• aarch64/debug/statisticalprofiling/SPECollectRecord.

• aarch64/debug/statisticalprofiling/SPEConstructRecord.

• aarch64/debug/statisticalprofiling/SPECycle.

• aarch64/debug/statisticalprofiling/SPEEmptyRecord.

• aarch64/debug/statisticalprofiling/SPEEvent.

• aarch64/debug/statisticalprofiling/SPEFreezeOnEvent.

• aarch64/debug/statisticalprofiling/SPEGetDataSourcePayloadSize.

• aarch64/debug/statisticalprofiling/SPEGetEventsPayloadSize.

• aarch64/debug/statisticalprofiling/SPEGetRandomBoolean.

• aarch64/debug/statisticalprofiling/SPEGetRandomInterval.

• aarch64/debug/statisticalprofiling/SPEISB.

• aarch64/debug/statisticalprofiling/SPEMaxAddrs.

• aarch64/debug/statisticalprofiling/SPEMaxCounters.

• aarch64/debug/statisticalprofiling/SPEMaxRecordSize.

• aarch64/debug/statisticalprofiling/SPEPostExecution.

• aarch64/debug/statisticalprofiling/SPEPreExecution.

• aarch64/debug/statisticalprofiling/SPEResetSampleCounter.

• aarch64/debug/statisticalprofiling/SPEResetSampleStorage.

• aarch64/debug/statisticalprofiling/SPESampleAddAddressPCVirtual.

• aarch64/debug/statisticalprofiling/SPESampleAddContext.

• aarch64/debug/statisticalprofiling/SPESampleAddOpOther.

• aarch64/debug/statisticalprofiling/SPESampleAddOpSVELoadStore.

• aarch64/debug/statisticalprofiling/SPESampleAddOpSVEOther.

• aarch64/debug/statisticalprofiling/SPESampleAddTimeStamp.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13694
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/debug/statisticalprofiling/SPESampleExtendedLoadStore.

• aarch64/debug/statisticalprofiling/SPESampleGeneralPurposeLoadStore.

• aarch64/debug/statisticalprofiling/SPESampleLoadStore.

• aarch64/debug/statisticalprofiling/SPESampleMemCopy.

• aarch64/debug/statisticalprofiling/SPESampleMemSet.

• aarch64/debug/statisticalprofiling/SPESampleSIMDFPLoadStore.

• aarch64/debug/statisticalprofiling/SPESetDataPhysicalAddress.

• aarch64/debug/statisticalprofiling/SPESetDataVirtualAddress.

• aarch64/debug/statisticalprofiling/SPEStartCounter.

• aarch64/debug/statisticalprofiling/SPEStopCounter.

• aarch64/debug/statisticalprofiling/SPEToCollectSample.

• aarch64/debug/statisticalprofiling/SPEWriteToBuffer.

• aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled.

• aarch64/debug/statisticalprofiling/TimeStamp.

• aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState.

• aarch64/debug/watchpoint/AArch64.WatchpointByteMatch.

• aarch64/debug/watchpoint/AArch64.WatchpointMatch.

• aarch64/debug/watchpoint/IsWatchpointEnabled.

aarch64/debug/brbe/BRBCycleCountingEnabled

 // BRBCycleCountingEnabled()
 // =========================
 // Returns TRUE if the recording of cycle counts is allowed,
 // FALSE otherwise.

 boolean BRBCycleCountingEnabled()
 if HaveEL(EL2) && BRBCR_EL2.CC == '0' then return FALSE;
 if BRBCR_EL1.CC == '0' then return FALSE;
 return TRUE;

aarch64/debug/brbe/BRBEBranch

 // BRBEBranch()
 // ============
 // Called to write branch record for the following branches when BRB is active:
 // direct branches,
 // indirect branches,
 // direct branches with link,
 // indirect branches with link,
 // returns from subroutines.

 BRBEBranch(BranchType br_type, boolean cond, bits(64) target_address)
 if BranchRecordAllowed(PSTATE.EL) && FilterBranchRecord(br_type, cond) then
 bits(6) branch_type;
 case br_type of
 when BranchType_DIR
 branch_type = if cond then '001000' else '000000';
 when BranchType_INDIR branch_type = '000001';
 when BranchType_DIRCALL branch_type = '000010';
 when BranchType_INDCALL branch_type = '000011';
 when BranchType_RET branch_type = '000101';
 otherwise Unreachable();

 bit ccu;
 bits(14) cc;
 (ccu, cc) = BranchEncCycleCount();
 bit lastfailed = if IsFeatureImplemented(FEAT_TME) then BRBFCR_EL1.LASTFAILED else '0';
 bit transactional = if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then '1' else '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13695
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(2) el = PSTATE.EL;
 bit mispredict = if BRBEMispredictAllowed() && BranchMispredict() then '1' else '0';

 UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional, branch_type, el, mispredict,
 '11', PC64, target_address);

 BRBFCR_EL1.LASTFAILED = '0';

 PMUEvent(PMU_EVENT_BRB_FILTRATE);

 return;

aarch64/debug/brbe/BRBEBranchOnISB

 // BRBEBranchOnISB()
 // =================
 // Returns TRUE if ISBs generate Branch records, and FALSE otherwise.

 boolean BRBEBranchOnISB()
 return boolean IMPLEMENTATION_DEFINED "ISB generates Branch records";

aarch64/debug/brbe/BRBEDebugStateExit

 // BRBEDebugStateExit()
 // ====================
 // Called to write Debug state exit branch record when BRB is active.

 BRBEDebugStateExit(bits(64) target_address)
 if BranchRecordAllowed(PSTATE.EL) then
 // Debug state is a prohibited region, therefore ccu=1, cc=0, source_address=0
 bits(6) branch_type = '111001';
 bit ccu = '1';
 bits(14) cc = Zeros(14);
 bit lastfailed = if IsFeatureImplemented(FEAT_TME) then BRBFCR_EL1.LASTFAILED else '0';
 bit transactional = '0';
 bits(2) el = PSTATE.EL;
 bit mispredict = '0';

 UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional, branch_type, el, mispredict,
 '01', Zeros(64), target_address);

 BRBFCR_EL1.LASTFAILED = '0';

 PMUEvent(PMU_EVENT_BRB_FILTRATE);

 return;

aarch64/debug/brbe/BRBEException

 // BRBEException()
 // ===============
 // Called to write exception branch record when BRB is active.

 BRBEException(ExceptionRecord erec, boolean source_valid,
 bits(64) source_address_in,
 bits(64) target_address_in, bits(2) target_el,
 boolean trappedsyscallinst)
 bits(64) target_address = target_address_in;
 Exception except = erec.exceptype;
 bits(25) iss = erec.syndrome;
 case target_el of
 when EL3
 if !IsFeatureImplemented(FEAT_BRBEv1p1) || (MDCR_EL3.E3BREC == MDCR_EL3.E3BREW) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13696
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return;
 when EL2 if BRBCR_EL2.EXCEPTION == '0' then return;
 when EL1 if BRBCR_EL1.EXCEPTION == '0' then return;

 boolean target_valid = BranchRecordAllowed(target_el);

 if source_valid || target_valid then
 bits(6) branch_type;
 case except of
 when Exception_Uncategorized branch_type = '100011'; // Trap
 when Exception_WFxTrap branch_type = '100011'; // Trap
 when Exception_CP15RTTrap branch_type = '100011'; // Trap
 when Exception_CP15RRTTrap branch_type = '100011'; // Trap
 when Exception_CP14RTTrap branch_type = '100011'; // Trap
 when Exception_CP14DTTrap branch_type = '100011'; // Trap
 when Exception_AdvSIMDFPAccessTrap branch_type = '100011'; // Trap
 when Exception_FPIDTrap branch_type = '100011'; // Trap
 when Exception_PACTrap branch_type = '100011'; // Trap
 when Exception_TSTARTAccessTrap branch_type = '100011'; // Trap
 when Exception_CP14RRTTrap branch_type = '100011'; // Trap
 when Exception_BranchTarget branch_type = '101011'; // Inst Fault
 when Exception_IllegalState branch_type = '100011'; // Trap
 when Exception_SupervisorCall
 if !trappedsyscallinst then branch_type = '100010'; // Call
 else branch_type = '100011'; // Trap
 when Exception_HypervisorCall branch_type = '100010'; // Call
 when Exception_MonitorCall
 if !trappedsyscallinst then branch_type = '100010'; // Call
 else branch_type = '100011'; // Trap
 when Exception_SystemRegisterTrap branch_type = '100011'; // Trap
 when Exception_SystemRegister128Trap branch_type = '100011'; // Trap
 when Exception_SVEAccessTrap branch_type = '100011'; // Trap
 when Exception_SMEAccessTrap branch_type = '100011'; // Trap
 when Exception_ERetTrap branch_type = '100011'; // Trap
 when Exception_PACFail branch_type = '101100'; // Data Fault
 when Exception_InstructionAbort branch_type = '101011'; // Inst Fault
 when Exception_PCAlignment branch_type = '101010'; // Alignment
 when Exception_DataAbort branch_type = '101100'; // Data Fault
 when Exception_NV2DataAbort branch_type = '101100'; // Data Fault
 when Exception_SPAlignment branch_type = '101010'; // Alignment
 when Exception_FPTrappedException branch_type = '100011'; // Trap
 when Exception_SError branch_type = '100100'; // System Error
 when Exception_Breakpoint branch_type = '100110'; // Inst debug
 when Exception_SoftwareStep branch_type = '100110'; // Inst debug
 when Exception_Watchpoint branch_type = '100111'; // Data debug
 when Exception_NV2Watchpoint branch_type = '100111'; // Data debug
 when Exception_SoftwareBreakpoint branch_type = '100110'; // Inst debug
 when Exception_IRQ branch_type = '101110'; // IRQ
 when Exception_FIQ branch_type = '101111'; // FIQ
 when Exception_MemCpyMemSet branch_type = '100011'; // Trap
 when Exception_GCSFail
 if iss<23:20> == '0000' then branch_type = '101100'; // Data Fault
 elsif iss<23:20> == '0001' then branch_type = '101011'; // Inst Fault
 elsif iss<23:20> == '0010' then branch_type = '100011'; // Trap
 else Unreachable();
 when Exception_PMU branch_type = '100110'; // Inst debug;
 otherwise Unreachable();

 bit ccu;
 bits(14) cc;
 (ccu, cc) = BranchEncCycleCount();
 bit lastfailed = if IsFeatureImplemented(FEAT_TME) then BRBFCR_EL1.LASTFAILED else '0';
 bit transactional = (if source_valid && IsFeatureImplemented(FEAT_TME) &&
 TSTATE.depth > 0 then '1' else '0');
 bits(2) el = if target_valid then target_el else '00';
 bit mispredict = '0';
 bit sv = if source_valid then '1' else '0';
 bit tv = if target_valid then '1' else '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13697
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(64) source_address = if source_valid then source_address_in else Zeros(64);

 if !target_valid then
 target_address = Zeros(64);
 else
 target_address = AArch64.BranchAddr(target_address, target_el);

 UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional,
 branch_type, el, mispredict,
 sv:tv, source_address, target_address);

 BRBFCR_EL1.LASTFAILED = '0';

 PMUEvent(PMU_EVENT_BRB_FILTRATE);

 return;

aarch64/debug/brbe/BRBEExceptionReturn

 // BRBEExceptionReturn()
 // =====================
 // Called to write exception return branch record when BRB is active.

 BRBEExceptionReturn(bits(64) target_address_in, bits(2) source_el,
 boolean source_valid, bits(64) source_address_in)
 bits(64) target_address = target_address_in;
 case source_el of
 when EL3
 if !IsFeatureImplemented(FEAT_BRBEv1p1) || (MDCR_EL3.E3BREC == MDCR_EL3.E3BREW) then
 return;
 when EL2 if BRBCR_EL2.ERTN == '0' then return;
 when EL1 if BRBCR_EL1.ERTN == '0' then return;

 boolean target_valid = BranchRecordAllowed(PSTATE.EL);

 if source_valid || target_valid then
 bits(6) branch_type = '000111';
 bit ccu;
 bits(14) cc;
 (ccu, cc) = BranchEncCycleCount();
 bit lastfailed = if IsFeatureImplemented(FEAT_TME) then BRBFCR_EL1.LASTFAILED else '0';
 bit transactional = (if source_valid && IsFeatureImplemented(FEAT_TME) &&
 TSTATE.depth > 0 then '1' else '0');
 bits(2) el = if target_valid then PSTATE.EL else '00';
 bit mispredict = if (source_valid && BRBEMispredictAllowed() &&
 BranchMispredict()) then '1' else '0';
 bit sv = if source_valid then '1' else '0';
 bit tv = if target_valid then '1' else '0';
 bits(64) source_address = if source_valid then source_address_in else Zeros(64);
 if !target_valid then
 target_address = Zeros(64);

 UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional,
 branch_type, el, mispredict,
 sv:tv, source_address, target_address);

 BRBFCR_EL1.LASTFAILED = '0';

 PMUEvent(PMU_EVENT_BRB_FILTRATE);

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13698
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/brbe/BRBEFreeze

 // BRBEFreeze()
 // ============
 // Generates BRBE freeze event.

 BRBEFreeze()
 BRBFCR_EL1.PAUSED = '1';
 BRBTS_EL1 = GetTimestamp(BRBETimeStamp());

aarch64/debug/brbe/BRBEISB

 // BRBEISB()
 // =========
 // Handles ISB instruction for BRBE.

 BRBEISB()
 boolean branch_conditional = FALSE;
 BRBEBranch(BranchType_DIR, branch_conditional, PC64 + 4);

aarch64/debug/brbe/BRBEMispredictAllowed

 // BRBEMispredictAllowed()
 // =======================
 // Returns TRUE if the recording of branch misprediction is allowed,
 // FALSE otherwise.

 boolean BRBEMispredictAllowed()
 if HaveEL(EL2) && BRBCR_EL2.MPRED == '0' then return FALSE;
 if BRBCR_EL1.MPRED == '0' then return FALSE;
 return TRUE;

aarch64/debug/brbe/BRBETimeStamp

 // BRBETimeStamp()
 // ===============
 // Returns captured timestamp.

 TimeStamp BRBETimeStamp()
 if HaveEL(EL2) then
 TS_el2 = BRBCR_EL2.TS;
 if !IsFeatureImplemented(FEAT_ECV) && TS_el2 == '10' then
 // Reserved value
 (-, TS_el2) = ConstrainUnpredictableBits(Unpredictable_EL2TIMESTAMP, 2);
 case TS_el2 of
 when '00'
 // Falls out to check BRBCR_EL1.TS
 when '01'
 return TimeStamp_Virtual;
 when '10'
 assert IsFeatureImplemented(FEAT_ECV); // Otherwise ConstrainUnpredictableBits
 // removes this case
 return TimeStamp_OffsetPhysical;
 when '11'
 return TimeStamp_Physical;

 TS_el1 = BRBCR_EL1.TS;
 if TS_el1 == '00' || (!IsFeatureImplemented(FEAT_ECV) && TS_el1 == '10') then
 // Reserved value
 (-, TS_el1) = ConstrainUnpredictableBits(Unpredictable_EL1TIMESTAMP, 2);
 case TS_el1 of
 when '01'
 return TimeStamp_Virtual;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13699
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '10'
 return TimeStamp_OffsetPhysical;
 when '11'
 return TimeStamp_Physical;
 otherwise
 Unreachable(); // ConstrainUnpredictableBits removes this case

aarch64/debug/brbe/BRB_IALL

 // BRB_IALL()
 // ==========
 // Called to perform invalidation of branch records

 BRB_IALL()
 for i = 0 to GetBRBENumRecords() - 1
 Records_SRC[i] = Zeros(64);
 Records_TGT[i] = Zeros(64);
 Records_INF[i] = Zeros(64);

aarch64/debug/brbe/BRB_INJ

 // BRB_INJ()
 // =========
 // Called to perform manual injection of branch records.

 BRB_INJ()
 UpdateBranchRecordBuffer(BRBINFINJ_EL1.CCU, BRBINFINJ_EL1.CC, BRBINFINJ_EL1.LASTFAILED,
 BRBINFINJ_EL1.T, BRBINFINJ_EL1.TYPE, BRBINFINJ_EL1.EL,
 BRBINFINJ_EL1.MPRED, BRBINFINJ_EL1.VALID, BRBSRCINJ_EL1.ADDRESS,
 BRBTGTINJ_EL1.ADDRESS);
 BRBINFINJ_EL1 = bits(64) UNKNOWN;
 BRBSRCINJ_EL1 = bits(64) UNKNOWN;
 BRBTGTINJ_EL1 = bits(64) UNKNOWN;

 if ConstrainUnpredictableBool(Unpredictable_BRBFILTRATE) then PMUEvent(PMU_EVENT_BRB_FILTRATE);

aarch64/debug/brbe/Branch

 type BRBSRCType;
 type BRBTGTType;
 type BRBINFType;

aarch64/debug/brbe/BranchEncCycleCount

 // BranchEncCycleCount()
 // =====================

 // The first return result is '1' if either of the following is true, and '0' otherwise:
 // - This is the first Branch record after the PE exited a Prohibited Region.
 // - This is the first Branch record after cycle counting has been enabled.
 // If the first return return is '0', the second return result is the encoded cycle count
 // since the last branch.
 // The format of this field uses a mantissa and exponent to express the cycle count value.
 // - bits[7:0] indicate the mantissa M.
 // - bits[13:8] indicate the exponent E.
 // The cycle count is expressed using the following function:
 // cycle_count = (if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1)))
 // A value of all ones in both the mantissa and exponent indicates the cycle count value
 // exceeded the size of the cycle counter.
 // If the cycle count is not known, the second return result is zero.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13700
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 (bit, bits(14)) BranchEncCycleCount();

aarch64/debug/brbe/BranchMispredict

 // BranchMispredict()
 // ==================
 // Returns TRUE if the branch being executed was mispredicted, FALSE otherwise.

 boolean BranchMispredict();

aarch64/debug/brbe/BranchRawCycleCount

 // BranchRawCycleCount()
 // =====================
 // If the cycle count is known, the return result is the cycle count since the last branch.

 integer BranchRawCycleCount();

aarch64/debug/brbe/BranchRecordAllowed

 // BranchRecordAllowed()
 // =====================
 // Returns TRUE if branch recording is allowed, FALSE otherwise.

 boolean BranchRecordAllowed(bits(2) el)
 if ELUsingAArch32(el) then
 return FALSE;

 if BRBFCR_EL1.PAUSED == '1' then
 return FALSE;

 if el == EL3 && IsFeatureImplemented(FEAT_BRBEv1p1) then
 return (MDCR_EL3.E3BREC != MDCR_EL3.E3BREW);

 if HaveEL(EL3) && (MDCR_EL3.SBRBE == '00' ||
 (CurrentSecurityState() == SS_Secure && MDCR_EL3.SBRBE == '01')) then
 return FALSE;

 case el of
 when EL3 return FALSE; // FEAT_BRBEv1p1 not implemented
 when EL2 return BRBCR_EL2.E2BRE == '1';
 when EL1 return BRBCR_EL1.E1BRE == '1';
 when EL0
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 return BRBCR_EL2.E0HBRE == '1';
 else
 return BRBCR_EL1.E0BRE == '1';

aarch64/debug/brbe/Contents

 // Contents of the Branch Record Buffer
 //=====================================

 array [0..63] of BRBSRCType Records_SRC;

 array [0..63] of BRBTGTType Records_TGT;

 array [0..63] of BRBINFType Records_INF;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13701
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/brbe/FilterBranchRecord

 // FilterBranchRecord()
 // ====================
 // Returns TRUE if the branch record is not filtered out, FALSE otherwise.

 boolean FilterBranchRecord(BranchType br, boolean cond)
 case br of
 when BranchType_DIRCALL
 return BRBFCR_EL1.DIRCALL != BRBFCR_EL1.EnI;
 when BranchType_INDCALL
 return BRBFCR_EL1.INDCALL != BRBFCR_EL1.EnI;
 when BranchType_RET
 return BRBFCR_EL1.RTN != BRBFCR_EL1.EnI;
 when BranchType_DIR
 if cond then
 return BRBFCR_EL1.CONDDIR != BRBFCR_EL1.EnI;
 else
 return BRBFCR_EL1.DIRECT != BRBFCR_EL1.EnI;
 when BranchType_INDIR
 return BRBFCR_EL1.INDIRECT != BRBFCR_EL1.EnI;
 otherwise Unreachable();
 return FALSE;

aarch64/debug/brbe/FirstBranchAfterProhibited

 // FirstBranchAfterProhibited()
 // ============================
 // Returns TRUE if branch recorded is the first branch after a prohibited region,
 // FALSE otherwise.

 FirstBranchAfterProhibited();

aarch64/debug/brbe/GetBRBENumRecords

 // GetBRBENumRecords()
 // ===================
 // Returns the number of branch records implemented.

 integer GetBRBENumRecords()
 assert UInt(BRBIDR0_EL1.NUMREC) IN {0x08, 0x10, 0x20, 0x40};
 return integer IMPLEMENTATION_DEFINED "Number of BRB records";

aarch64/debug/brbe/Getter

 // Getter functions for branch records
 // ===================================
 // Functions used by MRS instructions that access branch records

 BRBSRCType BRBSRC_EL1[integer n]
 assert n IN {0..31};
 integer record = UInt(BRBFCR_EL1.BANK:n<4:0>);
 if record < GetBRBENumRecords() then
 return Records_SRC[record];
 else
 return Zeros(64);

 BRBTGTType BRBTGT_EL1[integer n]
 assert n IN {0..31};
 integer record = UInt(BRBFCR_EL1.BANK:n<4:0>);
 if record < GetBRBENumRecords() then
 return Records_TGT[record];
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13702
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return Zeros(64);

 BRBINFType BRBINF_EL1[integer n]
 assert n IN {0..31};
 integer record = UInt(BRBFCR_EL1.BANK:n<4:0>);
 if record < GetBRBENumRecords() then
 return Records_INF[record];
 else
 return Zeros(64);

aarch64/debug/brbe/ShouldBRBEFreeze

 // ShouldBRBEFreeze()
 // ==================
 // Returns TRUE if the BRBE freeze event conditions have been met, and FALSE otherwise.

 boolean ShouldBRBEFreeze()
 if !BranchRecordAllowed(PSTATE.EL) then return FALSE;
 boolean check_e = FALSE;
 boolean check_cnten = FALSE;
 boolean check_inten = FALSE;
 boolean exclude_sync = IsFeatureImplemented(FEAT_SEBEP);
 boolean exclude_cyc = TRUE;
 boolean include_lo;
 boolean include_hi;

 if HaveEL(EL2) then
 include_lo = (BRBCR_EL1.FZP == '1');
 include_hi = (BRBCR_EL2.FZP == '1');
 else
 include_lo = TRUE;
 include_hi = TRUE;

 return PMUOverflowCondition(check_e, check_cnten, check_inten,
 include_hi, include_lo, exclude_cyc,
 exclude_sync);

aarch64/debug/brbe/UpdateBranchRecordBuffer

 // UpdateBranchRecordBuffer()
 // ==========================
 // Add a new Branch record to the buffer.

 UpdateBranchRecordBuffer(bit ccu, bits(14) cc, bit lastfailed, bit transactional,
 bits(6) branch_type, bits(2) el, bit mispredict, bits(2) valid,
 bits(64) source_address, bits(64) target_address)
 // Shift the Branch Records in the buffer
 for i = GetBRBENumRecords() - 1 downto 1
 Records_SRC[i] = Records_SRC[i - 1];
 Records_TGT[i] = Records_TGT[i - 1];
 Records_INF[i] = Records_INF[i - 1];

 Records_INF[0].CCU = ccu;
 Records_INF[0].CC = cc;

 Records_INF[0].EL = el;
 Records_INF[0].VALID = valid;
 Records_INF[0].T = transactional;
 Records_INF[0].LASTFAILED = lastfailed;
 Records_INF[0].MPRED = mispredict;
 Records_INF[0].TYPE = branch_type;

 Records_SRC[0] = source_address;
 Records_TGT[0] = target_address;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13703
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return;

aarch64/debug/breakpoint/AArch64.BreakpointMatch

 // AArch64.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch64 translation regime.
 // Returns breakpoint type and a boolean to indicate the type of breakpoint and whether
 // the breakpoint is active and matched successfully. For Address Mismatch breakpoints,
 // the returned boolean is the inverted result.

 (BreakpointType, boolean) AArch64.BreakpointMatch(integer n, bits(64) vaddress,
 AccessDescriptor accdesc, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n < NumBreakpointsImplemented();

 linking_enabled = (DBGBCR_EL1[n].BT IN {'0x11', '1xx1'} ||
 (HaveFeatABLE() && DBGBCR_EL1[n].BT2 == '1'));

 // A breakpoint that has linking enabled does not generate debug events in isolation
 if linking_enabled then
 return (BreakpointType_Inactive, FALSE);

 enabled = IsBreakpointEnabled(n);
 linked = DBGBCR_EL1[n].BT IN {'0x01'};
 isbreakpnt = TRUE;
 linked_to = FALSE;
 from_linking_enabled = FALSE;
 lbnx = if IsFeatureImplemented(FEAT_Debugv8p9) then DBGBCR_EL1[n].LBNX else '00';
 linked_n = UInt(lbnx : DBGBCR_EL1[n].LBN);
 ssce = if IsFeatureImplemented(FEAT_RME) then DBGBCR_EL1[n].SSCE else '0';
 state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, ssce, DBGBCR_EL1[n].HMC,
 DBGBCR_EL1[n].PMC, linked, linked_n, isbreakpnt,
 vaddress, accdesc);

 (bp_type, value_match) = AArch64.BreakpointValueMatch(n, vaddress, linked_to, isbreakpnt,
 from_linking_enabled);

 if HaveAArch32() && size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 (-, match_i) = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to, isbreakpnt,
 from_linking_enabled);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

 if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR_EL1[n]+2.
 if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

 if !(state_match && enabled) then
 return (BreakpointType_Inactive, FALSE);
 else
 return (bp_type, value_match);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13704
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

 // AArch64.BreakpointValueMatch()
 // ==============================
 // Returns breakpoint type to indicate the type of breakpoint and a boolean to indicate
 // whether the breakpoint matched successfully. For Address Mismatch breakpoints, the
 // returned boolean is the inverted result. If the breakpoint type return value is Inactive,
 // then the boolean result is FALSE.

 (BreakpointType, boolean) AArch64.BreakpointValueMatch(integer n_in, bits(64) vaddress,
 boolean linked_to, boolean isbreakpnt,
 boolean from_linking_enabled)

 // "n_in" is the identity of the breakpoint unit to match against.
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.
 // "isbreakpnt" TRUE is this is a call from BreakpointMatch or from StateMatch for a
 // linked breakpoint or from BreakpointValueMatch for a linked breakpoint with linking enabled.
 // "from_linking_enabled" is TRUE if this is a call from BreakpointValueMatch for a linked
 // breakpoint with linking enabled.
 integer n = n_in;
 Constraint c;

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n >= NumBreakpointsImplemented() then
 (c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1,
 Unpredictable_BPNOTIMPL);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (BreakpointType_Inactive, FALSE);

 // If this breakpoint is not enabled, it cannot generate a match.
 // (This could also happen on a call from StateMatch for linking).
 if !IsBreakpointEnabled(n) then return (BreakpointType_Inactive, FALSE);

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 dbgtype = DBGBCR_EL1[n].BT;
 bt2 = if HaveFeatABLE() then DBGBCR_EL1[n].BT2 else '0';

 (c, bt2, dbgtype) = AArch64.ReservedBreakpointType(n, bt2, dbgtype);
 if c == Constraint_DISABLED then return (BreakpointType_Inactive, FALSE);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (dbgtype IN {'0x0x'});
 mismatch = (dbgtype IN {'010x'});
 match_vmid = (dbgtype IN {'10xx'});
 match_cid = (dbgtype IN {'001x'});
 match_cid1 = (dbgtype IN {'101x', 'x11x'});
 match_cid2 = (dbgtype IN {'11xx'});
 linking_enabled = (dbgtype IN {'xx11', '1xx1'} || bt2 == '1');

 // If this is a call from StateMatch, return FALSE if the breakpoint is not
 // programmed with linking enabled.
 if linked_to && !linking_enabled then
 return (BreakpointType_Inactive, FALSE);

 // If called from BreakpointMatch return FALSE for breakpoint with linking enabled.
 if !linked_to && linking_enabled then
 return (BreakpointType_Inactive, FALSE);

 boolean linked = (dbgtype IN {'0x01'});
 if from_linking_enabled then // A breakpoint with linking enabled has called this function.
 assert linked_to && isbreakpnt;
 if linked then
 // A breakpoint with linking enabled is linked to a linked breakpoint. This is
 // architecturally UNPREDICTABLE, but treated as disabled in the pseudo code to
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13705
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // avoid potential recursion in BreakpointValueMatch().
 return (BreakpointType_Inactive, FALSE);

 // If a linked breakpoint is linked to an address matching breakpoint,
 // the behavior is CONSTRAINED UNPREDICTABLE.
 if linked_to && match_addr && isbreakpnt then
 if !ConstrainUnpredictableBool(Unpredictable_BPLINKEDADDRMATCH) then
 return (BreakpointType_Inactive, FALSE);

 // A breakpoint programmed for address mismatch does not match in AArch32 state.
 if mismatch && UsingAArch32() then
 return (BreakpointType_Inactive, FALSE);

 boolean bvr_match = FALSE;
 boolean bxvr_match = FALSE;
 BreakpointType bp_type;
 integer mask;

 if IsFeatureImplemented(FEAT_BWE) then
 mask = UInt(DBGBCR_EL1[n].MASK);

 // If the mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask IN {1, 2} then
 (c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESBPMASK);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return (BreakpointType_Inactive, FALSE); // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableBits must
 // be a not-reserved value.

 if mask != 0 then
 // When DBGBCR_EL1[n].MASK is a valid nonzero value, the behavior is
 // CONSTRAINED UNPREDICTABLE if any of the following are true:
 // - DBGBCR_EL1[n].<BT2,BT> is programmed for a Context matching breakpoint.
 // - DBGBCR_EL1[n].BAS is not '1111' and AArch32 is supported at EL0.
 if ((match_cid || match_cid1 || match_cid2) ||
 (DBGBCR_EL1[n].BAS != '1111' && HaveAArch32())) then
 if !ConstrainUnpredictableBool(Unpredictable_BPMASK) then
 return (BreakpointType_Inactive, FALSE);
 else
 // A stand-alone mismatch of a single address is not supported.
 if mismatch then
 return (BreakpointType_Inactive, FALSE);

 else
 mask = 0;

 // Do the comparison.
 if match_addr then
 boolean byte_select_match;
 integer byte = UInt(vaddress<1:0>);

 if HaveAArch32() then
 // T32 instructions can be executed at EL0 in an AArch64 translation regime.
 assert byte IN {0,2}; // "vaddress" is halfword aligned
 byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');
 else
 assert byte == 0; // "vaddress" is word aligned
 byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1

 // When FEAT_LVA3 is not implemented, if the DBGBVR_EL1[n].RESS field bits are not a
 // sign extension of the MSB of DBGBVR_EL1[n].VA, it is UNPREDICTABLE whether they
 // appear to be included in the match.
 // If 'vaddress' is outside of the current virtual address space, then the access
 // generates a Translation fault.
 constant integer dbgtop = DebugAddrTop();
 boolean unpredictable_ress = (dbgtop < 55 && !IsOnes(DBGBVR_EL1[n]<63:dbgtop>) &&
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13706
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 !IsZero(DBGBVR_EL1[n]<63:dbgtop>) &&
 ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS));
 constant integer cmpmsb = if unpredictable_ress then 63 else dbgtop;
 constant integer cmplsb = if mask > 2 then mask else 2;
 bvr_match = ((vaddress<cmpmsb:cmplsb> == DBGBVR_EL1[n]<cmpmsb:cmplsb>) &&
 byte_select_match);
 if mask > 2 then
 // If masked bits of DBGBVR_EL1[n] are not zero, the behavior
 // is CONSTRAINED UNPREDICTABLE.
 constant integer masktop = mask - 1;
 if bvr_match && !IsZero(DBGBVR_EL1[n]<masktop:2>) then
 bvr_match = ConstrainUnpredictableBool(Unpredictable_BPMASKEDBITS);

 elsif match_cid then
 if IsInHost() then
 bvr_match = (CONTEXTIDR_EL2<31:0> == DBGBVR_EL1[n]<31:0>);
 else
 bvr_match = (PSTATE.EL IN {EL0, EL1} && CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);

 elsif match_cid1 then
 bvr_match = (PSTATE.EL IN {EL0, EL1} && !IsInHost() &&
 CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);

 if match_vmid then
 bits(16) vmid;
 bits(16) bvr_vmid;

 if !IsFeatureImplemented(FEAT_VMID16) || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBVR_EL1[n]<47:32>;

 bxvr_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() && vmid == bvr_vmid);

 elsif match_cid2 then
 bxvr_match = (PSTATE.EL != EL3 && EL2Enabled() &&
 DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2<31:0>);

 bvr_match_valid = (match_addr || match_cid || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 value_match = (!bxvr_match_valid || bxvr_match) && (!bvr_match_valid || bvr_match);

 // A watchpoint might be linked to a linked address matching breakpoint with linking enabled,
 // which is in turn linked to a context matching breakpoint.
 if linked_to && linked then
 // If called from StateMatch and breakpoint is a linked breakpoint then it must be a
 // watchpoint that is linked to an address matching breakpoint which is linked to a
 // context matching breakpoint.
 assert !isbreakpnt && match_addr && IsFeatureImplemented(FEAT_ABLE);
 lbnx = if IsFeatureImplemented(FEAT_Debugv8p9) then DBGBCR_EL1[n].LBNX else '00';
 linked_linked_n = UInt(lbnx : DBGBCR_EL1[n].LBN);
 boolean linked_value_match;
 linked_vaddress = bits(64) UNKNOWN;
 linked_linked_to = TRUE;
 linked_isbreakpnt = TRUE;
 linked_from_linking_enabled = TRUE;
 (bp_type, linked_value_match) = AArch64.BreakpointValueMatch(linked_linked_n,
 linked_vaddress,
 linked_linked_to,
 linked_isbreakpnt,
 linked_from_linking_enabled);
 value_match = value_match && linked_value_match;

 if match_addr && !mismatch then
 bp_type = BreakpointType_AddrMatch;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13707
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif match_addr && mismatch then
 bp_type = BreakpointType_AddrMismatch;
 elsif match_vmid || match_cid || match_cid1 || match_cid2 then
 bp_type = BreakpointType_CtxtMatch;
 else
 Unreachable();

 return (bp_type, value_match);

aarch64/debug/breakpoint/AArch64.ReservedBreakpointType

 // AArch64.ReservedBreakpointType()
 // ================================
 // Checks if the given DBGBCR<n>_EL1.{BT2,BT} values are reserved and will
 // generate Constrained Unpredictable behavior, otherwise returns Constraint_NONE.

 (Constraint, bit, bits(4)) AArch64.ReservedBreakpointType(integer n, bit bt2_in ,bits(4) bt_in)
 bit bt2 = bt2_in;
 bits(4) bt = bt_in;
 boolean reserved = FALSE;
 context_aware = IsContextAwareBreakpoint(n);

 if bt2 == '0' then
 // Context matching
 if !(bt IN {'0x0x'}) && !context_aware then
 reserved = TRUE;

 // EL2 extension
 if bt IN {'1xxx'} && !HaveEL(EL2) then
 reserved = TRUE;

 // Context matching
 if (bt IN {'011x','11xx'} && !IsFeatureImplemented(FEAT_VHE) &&
 !IsFeatureImplemented(FEAT_Debugv8p2)) then
 reserved = TRUE;

 // Reserved
 if bt IN {'010x'} && !IsFeatureImplemented(FEAT_BWE) && !HaveAArch32EL(EL1) then
 reserved = TRUE;
 else
 // Reserved
 if !(bt IN {'0x0x'}) then
 reserved = TRUE;

 if reserved then
 Constraint c;
 (c, <bt2,bt>) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE, 5);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then
 return (c, bit UNKNOWN, bits(4) UNKNOWN);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 return (Constraint_NONE, bt2, bt);

aarch64/debug/breakpoint/AArch64.StateMatch

 // AArch64.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch64.StateMatch(bits(2) ssc_in, bit ssce_in, bit hmc_in,
 bits(2) pxc_in, boolean linked_in, integer linked_n_in,
 boolean isbreakpnt, bits(64) vaddress, AccessDescriptor accdesc)
 if !IsFeatureImplemented(FEAT_RME) then assert ssce_in == '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13708
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // "ssc_in","ssce_in","hmc_in","pxc_in" are the control fields from
 // the DBGBCR_EL1[n] or DBGWCR_EL1[n] register.
 // "linked_in" is TRUE if this is a linked breakpoint/watchpoint type.
 // "linked_n_in" is the linked breakpoint number from the DBGBCR_EL1[n] or
 // DBGWCR_EL1[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "vaddress" is the program counter for a linked watchpoint or the same value passed to
 // AArch64.CheckBreakpoint for a linked breakpoint.
 // "accdesc" describes the properties of the access being matched.
 bits(2) ssc = ssc_in;
 bit ssce = ssce_in;
 bit hmc = hmc_in;
 bits(2) pxc = pxc_in;
 boolean linked = linked_in;
 integer linked_n = linked_n_in;

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 Constraint c;
 (c, ssc, ssce, hmc, pxc) = CheckValidStateMatch(ssc, ssce, hmc, pxc, isbreakpnt);
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the hmc,ssc,ssce,pxc values are either valid or the values returned by
 // CheckValidStateMatch are valid.

 EL3_match = HaveEL(EL3) && hmc == '1' && ssc<0> == '0';
 EL2_match = HaveEL(EL2) && ((hmc == '1' && (ssc:pxc != '1000')) || ssc == '11');
 EL1_match = pxc<0> == '1';
 EL0_match = pxc<1> == '1';

 boolean priv_match;
 case accdesc.el of
 when EL3 priv_match = EL3_match;
 when EL2 priv_match = EL2_match;
 when EL1 priv_match = EL1_match;
 when EL0 priv_match = EL0_match;

 // Security state match
 boolean ss_match;
 case ssce:ssc of
 when '000' ss_match = hmc == '1' || accdesc.ss != SS_Root;
 when '001' ss_match = accdesc.ss == SS_NonSecure;
 when '010' ss_match = (hmc == '1' && accdesc.ss == SS_Root) || accdesc.ss == SS_Secure;
 when '011' ss_match = (hmc == '1' && accdesc.ss != SS_Root) || accdesc.ss == SS_Secure;
 when '101' ss_match = accdesc.ss == SS_Realm;

 boolean linked_match = FALSE;

 if linked then
 // "linked_n" must be an enabled context-aware breakpoint unit. If it is not context-aware
 // then it is CONSTRAINED UNPREDICTABLE whether this gives no match, gives a match without
 // linking, or linked_n is mapped to some UNKNOWN breakpoint that is context-aware.
 if !IsContextAwareBreakpoint(linked_n) then
 (first_ctx_cmp, last_ctx_cmp) = ContextAwareBreakpointRange();
 (c, linked_n) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp,
 Unpredictable_BPNOTCTXCMP);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};

 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 linked_to = TRUE;
 BreakpointType bp_type;
 from_linking_enabled = FALSE;
 (bp_type, linked_match) = AArch64.BreakpointValueMatch(linked_n, vaddress,
 linked_to, isbreakpnt,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13709
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 from_linking_enabled);
 if bp_type == BreakpointType_AddrMismatch then
 linked_match = !linked_match;
 return priv_match && ss_match && (!linked || linked_match);

aarch64/debug/breakpoint/BreakpointType

 // BreakpointType
 // ==============

 enumeration BreakpointType {
 BreakpointType_Inactive, // Breakpoint inactive or disabled
 BreakpointType_AddrMatch, // Address Match breakpoint
 BreakpointType_AddrMismatch, // Address Mismatch breakpoint
 BreakpointType_CtxtMatch };// Context matching breakpoint

aarch64/debug/breakpoint/DebugAddrTop

 // DebugAddrTop()
 // ==============
 // Returns the value for the top bit used in Breakpoint and Watchpoint address comparisons.

 integer DebugAddrTop()
 if IsFeatureImplemented(FEAT_LVA3) then
 return 55;
 elsif IsFeatureImplemented(FEAT_LVA) then
 return 52;
 else
 return 48;

aarch64/debug/breakpoint/EffectiveMDSELR_EL1_BANK

 // EffectiveMDSELR_EL1_BANK()
 // ==========================
 // Return the effective value of MDSELR_EL1.BANK.

 bits(2) EffectiveMDSELR_EL1_BANK()
 // If 16 or fewer breakpoints and 16 or fewer watchpoints are implemented,
 // then the field is RES0.
 integer num_bp = NumBreakpointsImplemented();
 integer num_wp = NumWatchpointsImplemented();
 if num_bp <= 16 && num_wp <= 16 then
 return '00';

 // At EL3, the Effective value of this field is zero if MDCR_EL3.EBWE is 0.
 // At EL2, the Effective value is zero if the Effective value of MDCR_EL2.EBWE is 0.
 // That is, if either MDCR_EL3.EBWE is 0 or MDCR_EL2.EBWE is 0.
 // At EL1, the Effective value is zero if the Effective value of MDSCR_EL2.EMBWE is 0.
 // That is, if any of MDCR_EL3.EBWE, MDCR_EL2.EBWE, or MDSCR_EL1.EMBWE is 0.
 if ((HaveEL(EL3) && MDCR_EL3.EBWE == '0') ||
 (PSTATE.EL != EL3 && EL2Enabled() && MDCR_EL2.EBWE == '0') ||
 (PSTATE.EL == EL1 && MDSCR_EL1.EMBWE == '0')) then
 return '00';

 bits(2) bank = MDSELR_EL1.BANK;

 // Values are reserved depending on the number of breakpoints or watchpoints
 // implemented.
 if ((bank == '11' && num_bp <= 48 && num_wp <= 48) ||
 (bank == '10' && num_bp <= 32 && num_wp <= 32)) then
 // Reserved value
 (-, bank) = ConstrainUnpredictableBits(Unpredictable_RESMDSELR, 2);
 // The value returned by ConstrainUnpredictableBits must be a not-reserved value
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13710
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return bank;

aarch64/debug/breakpoint/IsBreakpointEnabled

 // IsBreakpointEnabled()
 // =====================
 // Returns TRUE if the effective value of DBGBCR_EL1[n].E is '1', and FALSE otherwise.

 boolean IsBreakpointEnabled(integer n)
 if (n > 15 &&
 ((!HaltOnBreakpointOrWatchpoint() && !SelfHostedExtendedBPWPEnabled()) ||
 (HaltOnBreakpointOrWatchpoint() && EDSCR2.EHBWE == '0'))) then
 return FALSE;

 return DBGBCR_EL1[n].E == '1';

aarch64/debug/breakpoint/SelfHostedExtendedBPWPEnabled

 // SelfHostedExtendedBPWPEnabled()
 // ===============================
 // Returns TRUE if the extended breakpoints and watchpoints are enabled, and FALSE otherwise
 // from a self-hosted debug perspective.

 boolean SelfHostedExtendedBPWPEnabled()
 if NumBreakpointsImplemented() <= 16 && NumWatchpointsImplemented() <= 16 then
 return FALSE;

 if ((HaveEL(EL3) && MDCR_EL3.EBWE == '0') ||
 (EL2Enabled() && MDCR_EL2.EBWE == '0')) then
 return FALSE;

 return MDSCR_EL1.EMBWE == '1';

aarch64/debug/ebep/CheckForPMUException

 // CheckForPMUException()
 // ======================
 // Take a PMU exception if enabled, permitted, and unmasked.

 CheckForPMUException()
 boolean enabled;
 bits(2) target_el;
 boolean pmu_exception;
 (enabled, target_el) = PMUExceptionEnabled();
 if !enabled || PMUExceptionMasked(target_el, PSTATE.EL, PSTATE.PM) then
 pmu_exception = FALSE;
 elsif IsFeatureImplemented(FEAT_SEBEP) && PSTATE.PPEND == '1' then
 pmu_exception = TRUE;
 else
 boolean check_cnten = FALSE;
 boolean check_e = TRUE;
 boolean check_inten = TRUE;
 boolean include_lo = TRUE;
 boolean include_hi = TRUE;
 boolean exclude_cyc = FALSE;
 boolean exclude_sync = IsFeatureImplemented(FEAT_SEBEP);
 pmu_exception = PMUOverflowCondition(check_e, check_cnten, check_inten,
 include_hi, include_lo,
 exclude_cyc, exclude_sync);
 if pmu_exception then
 TakePMUException(target_el);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13711
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/ebep/ExceptionReturnPPEND

 // ExceptionReturnPPEND()
 // ======================
 // Sets ShouldSetPPEND to the value to write to PSTATE.PPEND
 // on an exception return.
 // This function is called before any change in Exception level.

 ExceptionReturnPPEND(bits(64) spsr)
 boolean enabled_at_source;
 boolean masked_at_source;
 if spsr<33> == '1' then // SPSR.PPEND
 bits(2) target_except;
 (enabled_at_source, target_except) = PMUExceptionEnabled();
 masked_at_source = PMUExceptionMasked(target_except, PSTATE.EL, PSTATE.PM);

 bits(2) target_eret;
 if IllegalExceptionReturn(spsr) then
 target_eret = PSTATE.EL;
 else
 boolean valid;
 (valid, target_eret) = ELFromSPSR(spsr);
 assert valid;

 bit target_pm = spsr<32>; // SPSR.PM
 boolean masked_at_dest = PMUExceptionMasked(target_except, target_eret, target_pm);
 if enabled_at_source && masked_at_source && !masked_at_dest then
 PSTATE.PPEND = '1';
 ShouldSetPPEND = FALSE;
 // PSTATE.PPEND will not be changed again by this instruction.

 // If PSTATE.PPEND has not been set by this function, ShouldSetPPEND is
 // unchanged, meaning PSTATE.PPEND might either be set by the current instruction
 // causing a counter overflow, or cleared to zero at the end of instruction.

 return;

aarch64/debug/ebep/IsSupportingPMUSynchronousMode

 // IsSupportingPMUSynchronousMode()
 // ================================
 // Returns TRUE if the event support synchronous mode,
 // and FALSE otherwise.

 boolean IsSupportingPMUSynchronousMode(bits(16) pmuevent);

aarch64/debug/ebep/PMUExceptionEnabled

 // PMUExceptionEnabled()
 // =====================
 // The first return value is TRUE if the PMU exception is enabled, and FALSE otherwise.
 // The second return value is the target Exception level for an enabled PMU exception.

 (boolean, bits(2)) PMUExceptionEnabled()

 if !IsFeatureImplemented(FEAT_EBEP) then
 return (FALSE, bits(2) UNKNOWN);

 boolean enabled;
 bits(2) target = bits(2) UNKNOWN;

 if HaveEL(EL3) && MDCR_EL3.PMEE != '01' then
 enabled = MDCR_EL3.PMEE == '11';
 if enabled then target = EL3;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13712
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 elsif EL2Enabled() && MDCR_EL2.PMEE != '01' then
 enabled = MDCR_EL2.PMEE == '11';
 if enabled then target = EL2;

 else
 bits(2) pmee_el1 = PMECR_EL1.PMEE;
 if pmee_el1 == '01' then // Reserved value
 Constraint c;
 (c, pmee_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMEE, 2);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then pmee_el1 = '10';
 // Otherwise the value returned by ConstrainUnpredictableBits must be
 // a non-reserved value

 enabled = pmee_el1 == '11';
 if enabled then
 target = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

 return (enabled, target);

aarch64/debug/ebep/PMUExceptionMasked

 // PMUExceptionMasked()
 // ====================
 // Return TRUE if the PMU Exception is masked at the specified target Exception level
 // relative to the specified source Exception level, and by the value of PSTATE.PM,
 // and FALSE otherwise.

 boolean PMUExceptionMasked(bits(2) target_el, bits(2) from_el, bit pm)
 assert IsFeatureImplemented(FEAT_EBEP);

 if Halted() then
 return TRUE;
 elsif UInt(target_el) < UInt(from_el) then
 return TRUE;
 elsif from_el == EL2 && target_el == EL2 && MDCR_EL2.PMEE != '11' then
 return TRUE;
 elsif target_el == from_el && (PMECR_EL1.KPME == '0' || pm == '1') then
 return TRUE;

 return FALSE;

aarch64/debug/ebep/PMUInterruptEnabled

 // PMUInterruptEnabled()
 // =====================
 // Return TRUE if the PMU interrupt request (PMUIRQ) is enabled, FALSE otherwise.

 boolean PMUInterruptEnabled()
 if !IsFeatureImplemented(FEAT_EBEP) then
 return TRUE;

 boolean enabled;

 if HaveEL(EL3) && MDCR_EL3.PMEE != '01' then
 enabled = MDCR_EL3.PMEE == '00';

 elsif EL2Enabled() && MDCR_EL2.PMEE != '01' then
 enabled = MDCR_EL2.PMEE == '00';

 else
 bits(2) pmee_el1 = PMECR_EL1.PMEE;
 if pmee_el1 == '01' then // Reserved value
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13713
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 Constraint c;
 (c, pmee_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMEE, 2);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then pmee_el1 = '10';
 // Otherwise the value returned by ConstrainUnpredictableBits must be
 // a non-reserved value
 enabled = pmee_el1 == '00';

 return enabled;

aarch64/debug/ebep/TakePMUException

 // TakePMUException()
 // ==================
 // Takes a PMU exception.

 TakePMUException(bits(2) target_el)
 ExceptionRecord except = ExceptionSyndrome(Exception_PMU);
 bit synchronous = if IsFeatureImplemented(FEAT_SEBEP) then PSTATE.PPEND else '0';
 except.syndrome = Zeros(24) : synchronous;
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/debug/ebep/inst_addr_executed

 bits(64) inst_addr_executed;

aarch64/debug/ebep/sync_counter_overflowed

 boolean sync_counter_overflowed;

aarch64/debug/enables/AArch64.GenerateDebugExceptions

 // AArch64.GenerateDebugExceptions()
 // =================================

 boolean AArch64.GenerateDebugExceptions()
 ss = CurrentSecurityState();
 return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, ss, PSTATE.D);

aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

 // AArch64.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from_el, SecurityState from_state, bit mask)

 if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 route_to_el2 = (HaveEL(EL2) && (from_state != SS_Secure || IsSecureEL2Enabled()) &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));
 target = (if route_to_el2 then EL2 else EL1);
 boolean enabled;
 if HaveEL(EL3) && from_state == SS_Secure then
 enabled = MDCR_EL3.SDD == '0';
 if from_el == EL0 && ELUsingAArch32(EL1) then
 enabled = enabled || SDER32_EL3.SUIDEN == '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13714
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 enabled = TRUE;

 if from_el == target then
 enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';
 else
 enabled = enabled && UInt(target) > UInt(from_el);

 return enabled;

aarch64/debug/ite/AArch64.TRCIT

 // AArch64.TRCIT()
 // ===============
 // Determines whether an Instrumentation trace packet should
 // be generated and then generates an instrumentation trace packet
 // containing the value of the register passed as an argument

 AArch64.TRCIT(bits(64) Xt)
 ss = CurrentSecurityState();
 if TraceInstrumentationAllowed(ss, PSTATE.EL) then
 TraceInstrumentation(Xt);

aarch64/debug/ite/TraceInstrumentation

 // TraceInstrumentation()
 // ======================
 // Generates an instrumentation trace packet
 // containing the value of the register passed as an argument

 TraceInstrumentation(bits(64) Xt);

aarch64/debug/pmu/AArch64.IncrementCycleCounter

 // AArch64.IncrementCycleCounter()
 // ===============================
 // Increment the cycle counter and possibly set overflow bits.

 AArch64.IncrementCycleCounter()
 if !CountPMUEvents(CYCLE_COUNTER_ID) then return;
 bit d = PMCR_EL0.D; // Check divide-by-64
 bit lc = PMCR_EL0.LC;
 boolean lc_enabled;
 (lc_enabled, -) = PMUExceptionEnabled();
 lc = if lc_enabled then '1' else lc;
 // Effective value of 'D' bit is 0 when Effective value of LC is '1'
 if lc == '1' then d = '0';
 if d == '1' && !HasElapsed64Cycles() then return;

 integer old_value = UInt(PMCCNTR_EL0);
 integer new_value = old_value + 1;
 PMCCNTR_EL0 = new_value<63:0>;

 constant integer ovflw = if HaveAArch32() && lc == '1' then 64 else 32;

 if old_value<64:ovflw> != new_value<64:ovflw> then
 PMOVSSET_EL0.C = '1';
 PMOVSCLR_EL0.C = '1';

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13715
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/pmu/AArch64.IncrementEventCounter

 // AArch64.IncrementEventCounter()
 // ===============================
 // Increment the specified event counter 'idx' by the specified amount 'increment'.

 AArch64.IncrementEventCounter(integer idx, integer increment_in)
 integer old_value;
 integer new_value;

 old_value = UInt(PMEVCNTR_EL0[idx]);
 integer increment = PMUCountValue(idx, increment_in);
 new_value = old_value + increment;

 bit lp;
 if IsFeatureImplemented(FEAT_PMUv3p5) then
 PMEVCNTR_EL0[idx] = new_value<63:0>;
 boolean pmuexception_enabled;
 (pmuexception_enabled, -) = PMUExceptionEnabled();
 if pmuexception_enabled then
 lp = '1';
 else
 lp = if PMUCounterIsHyp(idx) then MDCR_EL2.HLP else PMCR_EL0.LP;
 else
 lp = '0';
 PMEVCNTR_EL0[idx] = ZeroExtend(new_value<31:0>, 64);
 constant integer ovflw = if lp == '1' then 64 else 32;

 if old_value<64:ovflw> != new_value<64:ovflw> then
 PMOVSSET_EL0<idx> = '1';
 PMOVSCLR_EL0<idx> = '1';
 // Check for the CHAIN event from an even counter
 if (idx<0> == '0' && idx + 1 < GetNumEventCounters() &&
 (!IsFeatureImplemented(FEAT_PMUv3p5) || lp == '0')) then
 PMUEvent(PMU_EVENT_CHAIN, 1, idx + 1);
 if (IsFeatureImplemented(FEAT_SEBEP) &&
 IsSupportingPMUSynchronousMode(PMEVTYPER_EL0[idx].evtCount) &&
 PMINTENSET_EL1[idx] == '1' && PMOVSCLR_EL0[idx] == '1' && increment != 0) then
 SyncCounterOverflowed = TRUE;

 return;

aarch64/debug/pmu/AArch64.PMUCycle

 // AArch64.PMUCycle()
 // ==================
 // Called at the end of each cycle to increment event counters and
 // check for PMU overflow. In pseudocode, a cycle ends after the
 // execution of the operational pseudocode.

 AArch64.PMUCycle()
 if !IsFeatureImplemented(FEAT_PMUv3) then
 return;

 PMUEvent(PMU_EVENT_CPU_CYCLES);

 integer counters = GetNumEventCounters();
 if counters != 0 then
 for idx = 0 to counters - 1
 if ((!IsFeatureImplemented(FEAT_SEBEP) || PMEVTYPER_EL0[idx].SYNC == '0' ||
 !IsSupportingPMUSynchronousMode(PMEVTYPER_EL0[idx].evtCount)) &&
 CountPMUEvents(idx)) then
 integer accumulated = PMUEventAccumulator[idx];
 AArch64.IncrementEventCounter(idx, accumulated);
 PMUEventAccumulator[idx] = 0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13716
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AArch64.IncrementCycleCounter();
 CheckForPMUOverflow();

aarch64/debug/statisticalprofiling/CollectContextIDR1

 // CollectContextIDR1()
 // ====================

 boolean CollectContextIDR1()
 if !StatisticalProfilingEnabled() then return FALSE;
 if PSTATE.EL == EL2 then return FALSE;
 if EL2Enabled() && HCR_EL2.TGE == '1' then return FALSE;
 return PMSCR_EL1.CX == '1';

aarch64/debug/statisticalprofiling/CollectContextIDR2

 // CollectContextIDR2()
 // ====================

 boolean CollectContextIDR2()
 if !StatisticalProfilingEnabled() then return FALSE;
 if !EL2Enabled() then return FALSE;
 return PMSCR_EL2.CX == '1';

aarch64/debug/statisticalprofiling/CollectPhysicalAddress

 // CollectPhysicalAddress()
 // ========================

 boolean CollectPhysicalAddress()
 if !StatisticalProfilingEnabled() then return FALSE;
 (owning_ss, owning_el) = ProfilingBufferOwner();
 if HaveEL(EL2) && (owning_ss != SS_Secure || IsSecureEL2Enabled()) then
 return PMSCR_EL2.PA == '1' && (owning_el == EL2 || PMSCR_EL1.PA == '1');
 else
 return PMSCR_EL1.PA == '1';

aarch64/debug/statisticalprofiling/CollectTimeStamp

 // CollectTimeStamp()
 // ==================

 TimeStamp CollectTimeStamp()
 if !StatisticalProfilingEnabled() then return TimeStamp_None;
 (-, owning_el) = ProfilingBufferOwner();

 if owning_el == EL2 then
 if PMSCR_EL2.TS == '0' then return TimeStamp_None;
 else
 if PMSCR_EL1.TS == '0' then return TimeStamp_None;

 bits(2) PCT_el1;
 if !IsFeatureImplemented(FEAT_ECV) then
 PCT_el1 = '0':PMSCR_EL1.PCT<0>; // PCT<1> is RES0
 else
 PCT_el1 = PMSCR_EL1.PCT;
 if PCT_el1 == '10' then
 // Reserved value
 (-, PCT_el1) = ConstrainUnpredictableBits(Unpredictable_PMSCR_PCT, 2);
 if EL2Enabled() then
 bits(2) PCT_el2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13717
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !IsFeatureImplemented(FEAT_ECV) then
 PCT_el2 = '0':PMSCR_EL2.PCT<0>; // PCT<1> is RES0
 else
 PCT_el2 = PMSCR_EL2.PCT;
 if PCT_el2 == '10' then
 // Reserved value
 (-, PCT_el2) = ConstrainUnpredictableBits(Unpredictable_PMSCR_PCT, 2);
 case PCT_el2 of
 when '00'
 return if IsInHost() then TimeStamp_Physical else TimeStamp_Virtual;
 when '01'
 if owning_el == EL2 then return TimeStamp_Physical;
 when '11'
 assert IsFeatureImplemented(FEAT_ECV); // FEAT_ECV must be implemented
 if owning_el == EL1 && PCT_el1 == '00' then
 return if IsInHost() then TimeStamp_Physical else TimeStamp_Virtual;
 else
 return TimeStamp_OffsetPhysical;
 otherwise
 Unreachable();

 case PCT_el1 of
 when '00' return if IsInHost() then TimeStamp_Physical else TimeStamp_Virtual;
 when '01' return TimeStamp_Physical;
 when '11'
 assert IsFeatureImplemented(FEAT_ECV); // FEAT_ECV must be implemented
 return TimeStamp_OffsetPhysical;
 otherwise Unreachable();

aarch64/debug/statisticalprofiling/OpType

 // OpType
 // ======
 // Types of operation filtered by SPECollectRecord().

 enumeration OpType {
 OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and swap
 OpType_Store, // Any memory-write operation, including atomics without return
 OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
 OpType_Branch, // Software write to the PC
 OpType_Other // Any other class of operation
 };

aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

 // ProfilingBufferEnabled()
 // ========================

 boolean ProfilingBufferEnabled()
 if !IsFeatureImplemented(FEAT_SPE) then return FALSE;
 (owning_ss, owning_el) = ProfilingBufferOwner();
 bits(2) state_bits;
 if IsFeatureImplemented(FEAT_RME) then
 state_bits = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
 else
 state_bits = '0' : SCR_EL3.NS;

 boolean state_match;
 case owning_ss of
 when SS_Secure state_match = state_bits == '00';
 when SS_NonSecure state_match = state_bits == '01';
 when SS_Realm state_match = state_bits == '11';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13718
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return (!ELUsingAArch32(owning_el) && state_match &&
 PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

aarch64/debug/statisticalprofiling/ProfilingBufferOwner

 // ProfilingBufferOwner()
 // ======================

 (SecurityState, bits(2)) ProfilingBufferOwner()
 SecurityState owning_ss;

 if HaveEL(EL3) then
 bits(3) state_bits;
 if IsFeatureImplemented(FEAT_RME) then
 state_bits = MDCR_EL3.<NSPBE,NSPB>;
 if (state_bits IN {'10x'} ||
 (!IsFeatureImplemented(FEAT_SEL2) && state_bits IN {'00x'})) then
 // Reserved value
 (-, state_bits) = ConstrainUnpredictableBits(Unpredictable_RESERVEDNSxB, 3);
 else
 state_bits = '0' : MDCR_EL3.NSPB;

 case state_bits of
 when '00x' owning_ss = SS_Secure;
 when '01x' owning_ss = SS_NonSecure;
 when '11x' owning_ss = SS_Realm;
 else
 owning_ss = if SecureOnlyImplementation() then SS_Secure else SS_NonSecure;

 bits(2) owning_el;
 if HaveEL(EL2) && (owning_ss != SS_Secure || IsSecureEL2Enabled()) then
 owning_el = if MDCR_EL2.E2PB == '00' then EL2 else EL1;
 else
 owning_el = EL1;

 return (owning_ss, owning_el);

aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

 // ProfilingSynchronizationBarrier()
 // =================================
 // Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
 // addresses have been translated such that writes to the profiling buffer have been initiated.
 // A following DSB completes when writes to the profiling buffer have completed.

 ProfilingSynchronizationBarrier();

aarch64/debug/statisticalprofiling/SPEAddByteToRecord

 // SPEAddByteToRecord()
 // ====================
 // Add one byte to a record and increase size property appropriately.

 SPEAddByteToRecord(bits(8) b)
 assert SPERecordSize < SPEMaxRecordSize;
 SPERecordData[SPERecordSize] = b;
 SPERecordSize = SPERecordSize + 1;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13719
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/statisticalprofiling/SPEAddPacketToRecord

 // SPEAddPacketToRecord()
 // ======================
 // Add passed header and payload data to the record.
 // Payload must be a multiple of 8.

 SPEAddPacketToRecord(bits(2) header_hi, bits(4) header_lo,
 bits(N) payload)
 assert N MOD 8 == 0;
 bits(2) sz;
 case N of
 when 8 sz = '00';
 when 16 sz = '01';
 when 32 sz = '10';
 when 64 sz = '11';
 otherwise Unreachable();

 bits(8) header = header_hi:sz:header_lo;
 SPEAddByteToRecord(header);
 for i = 0 to (N DIV 8)-1
 SPEAddByteToRecord(payload<i*8+7:i*8>);

aarch64/debug/statisticalprofiling/SPEBranch

 // SPEBranch()
 // ===========
 // Called on every branch if SPE is present. Maintains previous branch target
 // and branch related SPE functionality.

 SPEBranch(bits(N) target, BranchType branch_type, boolean conditional, boolean taken_flag)
 boolean is_isb = FALSE;
 SPEBranch(target, branch_type, conditional, taken_flag, is_isb);

 SPEBranch(bits(N) target, BranchType branch_type, boolean conditional, boolean taken_flag,
 boolean is_isb)
 // If the PE implements branch prediction, data about (mis)prediction is collected
 // through the PMU events.

 boolean collect_prev_br;
 boolean collect_prev_br_eret = boolean IMPLEMENTATION_DEFINED "SPE prev br on eret";
 boolean collect_prev_br_exception = boolean IMPLEMENTATION_DEFINED "SPE prev br on exception";
 boolean collect_prev_br_isb = boolean IMPLEMENTATION_DEFINED "SPE prev br on isb";
 case branch_type of
 when BranchType_EXCEPTION
 collect_prev_br = collect_prev_br_exception;
 when BranchType_ERET
 collect_prev_br = collect_prev_br_eret;
 otherwise
 collect_prev_br = !is_isb || collect_prev_br_isb;

 // Implements previous branch target functionality
 if (taken_flag && !IsZero(PMSIDR_EL1.PBT) && StatisticalProfilingEnabled() &&
 collect_prev_br) then

 if SPESampleInFlight then
 // Save the target address for it to be added to record.
 bits(64) previous_target = SPESamplePreviousBranchAddress;
 SPESampleAddress[SPEAddrPosPrevBranchTarget]<63:0> = previous_target<63:0>;
 boolean previous_branch_valid = SPESamplePreviousBranchAddressValid;
 SPESampleAddressValid[SPEAddrPosPrevBranchTarget] = previous_branch_valid;
 SPESamplePreviousBranchAddress<55:0> = target<55:0>;

 bit ns;
 bit nse;
 case CurrentSecurityState() of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13720
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when SS_Secure
 ns = '0';
 nse = '0';
 when SS_NonSecure
 ns = '1';
 nse = '0';
 when SS_Realm
 ns = '1';
 nse = '1';
 otherwise Unreachable();

 SPESamplePreviousBranchAddress<63> = ns;
 SPESamplePreviousBranchAddress<60> = nse;
 SPESamplePreviousBranchAddress<62:61> = PSTATE.EL;
 SPESamplePreviousBranchAddressValid = TRUE;

 if !StatisticalProfilingEnabled() then
 if taken_flag then
 // Invalidate previous branch address, if profiling is disabled
 // or prohibited.
 SPESamplePreviousBranchAddressValid = FALSE;
 return;

 if SPESampleInFlight then
 is_direct = branch_type IN {BranchType_DIR, BranchType_DIRCALL};
 SPESampleClass = '10';
 SPESampleSubclass<1> = if is_direct then '0' else '1';
 SPESampleSubclass<0> = if conditional then '1' else '0';
 SPESampleOpType = OpType_Branch;

 // Save the target address.
 if taken_flag then
 SPESampleAddress[SPEAddrPosBranchTarget]<55:0> = target<55:0>;

 bit ns;
 bit nse;
 case CurrentSecurityState() of
 when SS_Secure
 ns = '0';
 nse = '0';
 when SS_NonSecure
 ns = '1';
 nse = '0';
 when SS_Realm
 ns = '1';
 nse = '1';
 otherwise Unreachable();

 SPESampleAddress[SPEAddrPosBranchTarget]<63> = ns;
 SPESampleAddress[SPEAddrPosBranchTarget]<60> = nse;
 SPESampleAddress[SPEAddrPosBranchTarget]<62:61> = PSTATE.EL;
 SPESampleAddressValid[SPEAddrPosBranchTarget] = TRUE;

 SPESampleEvents<6> = if !taken_flag then '1' else '0';

aarch64/debug/statisticalprofiling/SPEBufferFilled

 // SPEBufferFilled()
 // =================
 // Deal with a full buffer event.

 SPEBufferFilled()
 if IsZero(PMBSR_EL1.S) then
 PMBSR_EL1.S = '1'; // Assert PMBIRQ
 PMBSR_EL1.EC = '000000'; // Other buffer management event
 PMBSR_EL1.MSS = ZeroExtend('000001', 16); // Set buffer full event
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13721
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 PMUEvent(PMU_EVENT_SAMPLE_BUFFER_FULL);

aarch64/debug/statisticalprofiling/SPEBufferIsFull

 // SPEBufferIsFull()
 // =================
 // Return true if another full size sample record would not fit in the
 // profiling buffer.

 boolean SPEBufferIsFull()
 integer write_pointer_limit = UInt(PMBLIMITR_EL1.LIMIT:Zeros(12));
 integer current_write_pointer = UInt(PMBPTR_EL1);
 integer record_max_size = 1<<UInt(PMSIDR_EL1.MaxSize);
 return current_write_pointer > (write_pointer_limit - record_max_size);

aarch64/debug/statisticalprofiling/SPECollectRecord

 // SPECollectRecord()
 // ==================
 // Returns TRUE if the sampled class of instructions or operations, as
 // determined by PMSFCR_EL1, are recorded and FALSE otherwise.

 boolean SPECollectRecord(bits(64) events, integer total_latency, OpType optype)
 assert StatisticalProfilingEnabled();

 // "mask" defines which Events packet bits are checked by the filter
 bits(64) mask = Zeros(64);
 bits(64) impdef_mask = bits(64) IMPLEMENTATION_DEFINED "SPE mask";

 mask<63:48> = impdef_mask<63:48>;
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 mask<23:19> = '11111'; // Snoop hit, recent fetch, modified,
 // L2 access, L2 hit
 else
 mask<31:24> = impdef_mask<31:24>;
 if IsFeatureImplemented(FEAT_SPEv1p1) && IsFeatureImplemented(FEAT_SVE) then
 mask<18:17> = '11'; // Predicates
 if IsFeatureImplemented(FEAT_TME) then
 mask<16> = '1'; // Transactional state
 mask<15:12> = impdef_mask<15:12>;
 if IsFeatureImplemented(FEAT_SPEv1p1) then
 mask<11> = '1'; // Data alignment
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 mask<10:8> = '111'; // Remote access, LLC access, LLC miss
 else
 mask<10:8> = impdef_mask<10:8>;
 mask<7> = '1'; // Mispredicted
 if IsFeatureImplemented(FEAT_SPEv1p2) then
 mask<6> = '1'; // Not taken
 mask<5,3,1> = '111'; // TLB walk, L1 miss, retired
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 mask<4,2> = '11'; // TLB access, L1 access
 else
 mask<4,2> = impdef_mask<4,2>;

 bits(64) e = events AND mask;

 // Filtering by event
 bits(64) evfr = PMSEVFR_EL1 AND mask;
 boolean is_rejected_event = FALSE;
 boolean is_evt = IsZero(NOT(e) AND evfr);
 if PMSFCR_EL1.FE == '1' then
 // Filtering by event is enabled
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13722
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !IsZero(evfr) then
 // Not UNPREDICTABLE case
 is_rejected_event = !is_evt;
 else
 is_rejected_event = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

 // Filtering by inverse event
 boolean is_rejected_nevent = FALSE;
 boolean is_nevt;
 if IsFeatureImplemented(FEAT_SPEv1p2) then
 bits(64) nevfr = PMSNEVFR_EL1 AND mask;
 is_nevt = IsZero(e AND nevfr);
 if PMSFCR_EL1.FnE == '1' then
 // Inverse filtering by event is enabled
 if !IsZero(nevfr) then
 // Not UNPREDICTABLE case
 is_rejected_nevent = !is_nevt;
 else
 is_rejected_nevent = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);
 else
 is_nevt = TRUE; // not implemented

 if (IsFeatureImplemented(FEAT_SPEv1p2) && PMSFCR_EL1.<FnE,FE> == '11' &&
 !IsZero(PMSEVFR_EL1 AND PMSNEVFR_EL1 AND mask)) then
 // UNPREDICTABLE case due to combination of filter and inverse filter
 is_rejected_nevent = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);
 is_rejected_event = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

 if is_evt && is_nevt then
 PMUEvent(PMU_EVENT_SAMPLE_FEED_EVENT);

 boolean is_op_br = FALSE;
 boolean is_op_ld = FALSE;
 boolean is_op_st = FALSE;

 is_op_br = (optype == OpType_Branch);
 is_op_ld = (optype IN {OpType_Load, OpType_LoadAtomic});
 is_op_st = (optype IN {OpType_Store, OpType_LoadAtomic});

 if is_op_br then PMUEvent(PMU_EVENT_SAMPLE_FEED_BR);
 if is_op_ld then PMUEvent(PMU_EVENT_SAMPLE_FEED_LD);
 if is_op_st then PMUEvent(PMU_EVENT_SAMPLE_FEED_ST);

 boolean is_op = ((is_op_br && PMSFCR_EL1.B == '1') ||
 (is_op_ld && PMSFCR_EL1.LD == '1') ||
 (is_op_st && PMSFCR_EL1.ST == '1'));

 if is_op then PMUEvent(PMU_EVENT_SAMPLE_FEED_OP);

 // Filter by type
 boolean is_rejected_type = FALSE;
 if PMSFCR_EL1.FT == '1' then
 // Filtering by type is enabled
 if !IsZero(PMSFCR_EL1.<B, LD, ST>) then
 // Not an UNPREDICTABLE case
 is_rejected_type = !is_op;
 else
 is_rejected_type = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

 // Filter by latency
 boolean is_rejected_latency = FALSE;
 boolean is_lat = (total_latency < UInt(PMSLATFR_EL1.MINLAT));
 if is_lat then PMUEvent(PMU_EVENT_SAMPLE_FEED_LAT);

 if PMSFCR_EL1.FL == '1' then
 // Filtering by latency is enabled
 if !IsZero(PMSLATFR_EL1.MINLAT) then
 // Not an UNPREDICTABLE case
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13723
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 is_rejected_latency = !is_lat;
 else
 is_rejected_latency = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

 // Filtering by Data Source
 boolean is_rejected_data_source = FALSE;
 if (IsFeatureImplemented(FEAT_SPE_FDS) &&
 is_op_ld && SPESampleDataSourceValid) then
 bits(16) data_source = SPESampleDataSource;
 integer index = UInt(data_source<5:0>);
 boolean is_ds = PMSDSFR_EL1<index> == '1';
 if is_ds then PMUEvent(PMU_EVENT_SAMPLE_FEED_DS);
 if PMSFCR_EL1.FDS == '1' then
 // Filtering by Data Source is enabled
 is_rejected_data_source = !is_ds;

 boolean return_value;
 return_value = !(is_rejected_nevent || is_rejected_event ||
 is_rejected_type || is_rejected_latency ||
 is_rejected_data_source);

 if return_value then
 PMUEvent(PMU_EVENT_SAMPLE_FILTRATE);

 return return_value;

aarch64/debug/statisticalprofiling/SPEConstructRecord

 // SPEConstructRecord()
 // ====================
 // Create new record and populate it with packets using sample storage data.
 // This is an example implementation, packets may appear in
 // any order as long as the record ends with an End or Timestamp packet.

 SPEConstructRecord()
 // Empty the record.
 SPEEmptyRecord();

 // Add contextEL1 if available
 if SPESampleContextEL1Valid then
 SPEAddPacketToRecord('01', '0100', SPESampleContextEL1);

 // Add contextEL2 if available
 if SPESampleContextEL2Valid then
 SPEAddPacketToRecord('01', '0101', SPESampleContextEL2);

 // Add valid counters
 for counter_index = 0 to (SPEMaxCounters - 1)
 if SPESampleCounterValid[counter_index] then
 if counter_index >= 8 then
 // Need extended format
 SPEAddByteToRecord('001000':counter_index<4:3>);
 // Check for overflow
 boolean large_counters = boolean IMPLEMENTATION_DEFINED "SPE 16bit counters";
 if SPESampleCounter[counter_index] > 0xFFFF && large_counters then
 SPESampleCounter[counter_index] = 0xFFFF;
 elsif SPESampleCounter[counter_index] > 0xFFF then
 SPESampleCounter[counter_index] = 0xFFF;

 // Add byte0 for short format (byte1 for extended format)
 SPEAddPacketToRecord('10', '1':counter_index<2:0>,
 SPESampleCounter[counter_index]<15:0>);

 // Add valid addresses
 if IsFeatureImplemented(FEAT_SPEv1p2) then
 // Under the some conditions, it is IMPLEMENTATION_DEFINED whether
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13724
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // previous branch packet is present.
 boolean include_prev_br = boolean IMPLEMENTATION_DEFINED "SPE get prev br if not br";
 if SPESampleOpType != OpType_Branch && !include_prev_br then
 SPESampleAddressValid[SPEAddrPosPrevBranchTarget] = FALSE;

 // Data Virtual address should not be collected if this was an NV2 access and Statistical
 // Profiling is disabled at EL2.
 if !StatisticalProfilingEnabled(EL2) && SPESampleInstIsNV2 then
 SPESampleAddressValid[SPEAddrPosDataVirtual] = FALSE;

 for address_index = 0 to (SPEMaxAddrs - 1)
 if SPESampleAddressValid[address_index] then
 if address_index >= 8 then
 // Need extended format
 SPEAddByteToRecord('001000':address_index<4:3>);
 // Add byte0 for short format (byte1 for extended format)
 SPEAddPacketToRecord('10', '0':address_index<2:0>,
 SPESampleAddress[address_index]);

 // Add Data Source
 if SPESampleDataSourceValid then
 constant integer ds_payload_size = SPEGetDataSourcePayloadSize();
 SPEAddPacketToRecord('01', '0011', SPESampleDataSource<8*ds_payload_size-1:0>);

 // Add operation details
 SPEAddPacketToRecord('01', '10':SPESampleClass, SPESampleSubclass);

 // Add events
 // Get size of payload in bytes.
 constant integer events_payload_size = SPEGetEventsPayloadSize();
 SPEAddPacketToRecord('01', '0010', SPESampleEvents<8*events_payload_size-1:0>);

 // Add Timestamp to end the record if one is available.
 // Otherwise end with an End packet.
 if SPESampleTimestampValid then
 SPEAddPacketToRecord('01', '0001', SPESampleTimestamp);
 else
 SPEAddByteToRecord('00000001');

 // Add padding
 while SPERecordSize MOD (1<<UInt(PMBIDR_EL1.Align)) != 0 do
 SPEAddByteToRecord(Zeros(8));
 SPEWriteToBuffer();

aarch64/debug/statisticalprofiling/SPECycle

 // SPECycle()
 // ==========
 // Function called at the end of every cycle. Responsible for asserting interrupts
 // and advancing counters.

 SPECycle()
 if !IsFeatureImplemented(FEAT_SPE) then
 return;

 // Increment pending counters
 if SPESampleInFlight then
 for i = 0 to (SPEMaxCounters - 1)
 if SPESampleCounterPending[i] then
 SPESampleCounter[i] = SPESampleCounter[i] + 1;

 // Assert PMBIRQ if appropriate.
 SetInterruptRequestLevel(InterruptID_PMBIRQ,
 if PMBSR_EL1.S == '1' then Signal_High else Signal_Low);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13725
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/statisticalprofiling/SPEEmptyRecord

 // SPEEmptyRecord()
 // ================
 // Reset record data.

 SPEEmptyRecord()
 SPERecordSize = 0;
 for i = 0 to (SPEMaxRecordSize - 1)
 SPERecordData[i] = Zeros(8);

aarch64/debug/statisticalprofiling/SPEEvent

 // SPEEvent()
 // ==========
 // Called by PMUEvent if a sample is in flight.
 // Sets appropriate bit in SPESampleStorage.events.

 SPEEvent(bits(16) pmuevent)
 case pmuevent of
 when PMU_EVENT_DSNP_HIT_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<23> = '1';
 when PMU_EVENT_L1D_LFB_HIT_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<22> = '1';
 when PMU_EVENT_L2D_LFB_HIT_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<22> = '1';
 when PMU_EVENT_L3D_LFB_HIT_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<22> = '1';
 when PMU_EVENT_LL_LFB_HIT_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<22> = '1';
 when PMU_EVENT_L1D_CACHE_HITM_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<21> = '1';
 when PMU_EVENT_L2D_CACHE_HITM_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<21> = '1';
 when PMU_EVENT_L3D_CACHE_HITM_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<21> = '1';
 when PMU_EVENT_LL_CACHE_HITM_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<21> = '1';
 when PMU_EVENT_L2D_CACHE_LMISS_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<20> = '1';
 when PMU_EVENT_L2D_CACHE_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<19> = '1';
 when PMU_EVENT_SVE_PRED_EMPTY_SPEC
 if IsFeatureImplemented(FEAT_SPEv1p1) then
 SPESampleEvents<18> = '1';
 when PMU_EVENT_SVE_PRED_NOT_FULL_SPEC
 if IsFeatureImplemented(FEAT_SPEv1p1) then
 SPESampleEvents<17> = '1';
 when PMU_EVENT_LDST_ALIGN_LAT
 if IsFeatureImplemented(FEAT_SPEv1p1) then
 SPESampleEvents<11> = '1';
 when PMU_EVENT_REMOTE_ACCESS SPESampleEvents<10> = '1';
 when PMU_EVENT_LL_CACHE_MISS SPESampleEvents<9> = '1';
 when PMU_EVENT_LL_CACHE SPESampleEvents<8> = '1';
 when PMU_EVENT_BR_MIS_PRED SPESampleEvents<7> = '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13726
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when PMU_EVENT_BR_MIS_PRED_RETIRED SPESampleEvents<7> = '1';
 when PMU_EVENT_DTLB_WALK SPESampleEvents<5> = '1';
 when PMU_EVENT_L1D_TLB SPESampleEvents<4> = '1';
 when PMU_EVENT_L1D_CACHE_REFILL
 if !IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<3> = '1';
 when PMU_EVENT_L1D_CACHE_LMISS_RD
 if IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<3> = '1';
 when PMU_EVENT_L1D_CACHE SPESampleEvents<2> = '1';
 when PMU_EVENT_INST_RETIRED SPESampleEvents<1> = '1';
 when PMU_EVENT_EXC_TAKEN SPESampleEvents<0> = '1';
 otherwise return;
 return;

aarch64/debug/statisticalprofiling/SPEFreezeOnEvent

 // SPEFreezeOnEvent()
 // ==================
 // Returns TRUE if PMU event counter idx should be frozen due to an SPE event, and FALSE otherwise.

 boolean SPEFreezeOnEvent(integer idx)
 assert 0 <= idx;
 if !IsFeatureImplemented(FEAT_SPEv1p2) || !IsFeatureImplemented(FEAT_PMUv3p7) then return FALSE;
 if PMBSR_EL1.S != '1' || PMBLIMITR_EL1.<E,PMFZ> != '11' then return FALSE;

 if idx == CYCLE_COUNTER_ID && !IsFeatureImplemented(FEAT_SPE_DPFZS) then
 // FZS does not affect the cycle counter when FEAT_SPE_DPFZS is not implemented
 return FALSE;

 if PMUCounterIsHyp(idx) then
 return MDCR_EL2.HPMFZS == '1';
 else
 return PMCR_EL0.FZS == '1';

aarch64/debug/statisticalprofiling/SPEGetDataSourcePayloadSize

 // SPEGetDataSourcePayloadSize()
 // =============================
 // Returns the size of the Data Source payload in bytes.

 integer SPEGetDataSourcePayloadSize()
 return integer IMPLEMENTATION_DEFINED "SPE Data Source packet payload size";

aarch64/debug/statisticalprofiling/SPEGetEventsPayloadSize

 // SPEGetEventsPayloadSize()
 // =========================
 // Returns the size in bytes of the Events packet payload as an integer.

 integer SPEGetEventsPayloadSize()
 integer size = integer IMPLEMENTATION_DEFINED "SPE Events packet payload size";
 return size;

aarch64/debug/statisticalprofiling/SPEGetRandomBoolean

 // SPEGetRandomBoolean()
 // =====================
 // Returns a random or pseudo-random boolean value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13727
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 boolean SPEGetRandomBoolean();

aarch64/debug/statisticalprofiling/SPEGetRandomInterval

 // SPEGetRandomInterval()
 // ======================
 // Returns a random or pseudo-random byte for resetting COUNT or ECOUNT.

 bits(8) SPEGetRandomInterval();

aarch64/debug/statisticalprofiling/SPEISB

 // SPEISB()
 // ========
 // Called by ISB instruction, correctly calls SPEBranch to save previous branches.

 SPEISB()
 bits(64) address = PC64 + 4;
 BranchType branch_type = BranchType_DIR;
 boolean branch_conditional = FALSE;
 boolean taken = FALSE;
 boolean is_isb = TRUE;

 SPEBranch(address, branch_type, branch_conditional, taken, is_isb);

aarch64/debug/statisticalprofiling/SPEMaxAddrs

 constant integer SPEMaxAddrs = 32;

aarch64/debug/statisticalprofiling/SPEMaxCounters

 constant integer SPEMaxCounters = 32;

aarch64/debug/statisticalprofiling/SPEMaxRecordSize

 constant integer SPEMaxRecordSize = 64;

aarch64/debug/statisticalprofiling/SPEPostExecution

 constant integer SPEAddrPosPCVirtual = 0;
 constant integer SPEAddrPosBranchTarget = 1;
 constant integer SPEAddrPosDataVirtual = 2;
 constant integer SPEAddrPosDataPhysical = 3;
 constant integer SPEAddrPosPrevBranchTarget = 4;
 constant integer SPECounterPosTotalLatency = 0;
 constant integer SPECounterPosIssueLatency = 1;
 constant integer SPECounterPosTranslationLatency = 2;
 boolean SPESampleInFlight = FALSE;
 bits(32) SPESampleContextEL1;
 boolean SPESampleContextEL1Valid;
 bits(32) SPESampleContextEL2;
 boolean SPESampleContextEL2Valid;
 boolean SPESampleInstIsNV2 = FALSE;
 bits(64) SPESamplePreviousBranchAddress;
 boolean SPESamplePreviousBranchAddressValid;
 bits(16) SPESampleDataSource;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13728
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean SPESampleDataSourceValid;
 OpType SPESampleOpType;
 bits(2) SPESampleClass;
 bits(8) SPESampleSubclass;
 boolean SPESampleSubclassValid;
 bits(64) SPESampleTimestamp;
 boolean SPESampleTimestampValid;
 bits(64) SPESampleEvents;

 // SPEPostExecution()
 // ==================
 // Called after every executed instruction.

 SPEPostExecution()
 if SPESampleInFlight then
 SPESampleInFlight = FALSE;
 PMUEvent(PMU_EVENT_SAMPLE_FEED);

 // Stop any pending counters
 for counter_index = 0 to (SPEMaxCounters - 1)
 if SPESampleCounterPending[counter_index] then
 SPEStopCounter(counter_index);

 // Record any IMPLEMENTATION DEFINED events
 bits(64) impdef_events = bits(64) IMPLEMENTATION_DEFINED "SPE EVENTS";
 SPESampleEvents<63:48> = impdef_events<63:48>;
 if !IsFeatureImplemented(FEAT_SPEv1p4) then
 SPESampleEvents<31:24> = impdef_events<31:24>;
 SPESampleEvents<15:12> = impdef_events<15:12>;

 boolean discard = FALSE;
 if IsFeatureImplemented(FEAT_SPEv1p2) then
 discard = PMBLIMITR_EL1.FM == '10';
 if SPECollectRecord(SPESampleEvents,
 SPESampleCounter[SPECounterPosTotalLatency],
 SPESampleOpType) && !discard then
 SPEConstructRecord();
 if SPEBufferIsFull() then
 SPEBufferFilled();

 SPEResetSampleStorage();

 // Counter storage
 array [0..SPEMaxCounters-1] of integer SPESampleCounter;

 array [0..SPEMaxCounters-1] of boolean SPESampleCounterValid;

 array [0..SPEMaxCounters-1] of boolean SPESampleCounterPending;

 // Address storage
 array [0..SPEMaxAddrs-1] of bits(64) SPESampleAddress;

 array [0..SPEMaxAddrs-1] of boolean SPESampleAddressValid;

aarch64/debug/statisticalprofiling/SPEPreExecution

 // SPEPreExecution()
 // =================
 // Called prior to execution, for all instructions.

 SPEPreExecution()
 if StatisticalProfilingEnabled() then
 PMUEvent(PMU_EVENT_SAMPLE_POP);
 if SPEToCollectSample() then
 if !SPESampleInFlight then
 SPESampleInFlight = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13729
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // Start total latency and issue latency counters for SPE
 SPEStartCounter(SPECounterPosTotalLatency);
 SPEStartCounter(SPECounterPosIssueLatency);

 SPESampleAddContext();

 SPESampleAddAddressPCVirtual();

 // Timestamp may be collected at any point in the sampling operation.
 // Collecting prior to execution is one possible choice.
 // This choice is IMPLEMENTATION_DEFINED.
 SPESampleAddTimeStamp();
 else
 PMUEvent(PMU_EVENT_SAMPLE_COLLISION);
 PMBSR_EL1.COLL = '1';

 // Many operations are type other and not conditional, can save footprint
 // and overhead by having this as the default and not calling SPESampleAddOpOther
 // if conditional == FALSE
 SPESampleAddOpOther(FALSE);

aarch64/debug/statisticalprofiling/SPEResetSampleCounter

 // SPEResetSampleCounter()
 // =======================
 // Reset PMSICR_EL1.Counter

 SPEResetSampleCounter()
 PMSICR_EL1.COUNT<31:8> = PMSIRR_EL1.INTERVAL;
 if PMSIRR_EL1.RND == '1' && PMSIDR_EL1.ERnd == '0' then
 PMSICR_EL1.COUNT<7:0> = SPEGetRandomInterval();
 else
 PMSICR_EL1.COUNT<7:0> = Zeros(8);

aarch64/debug/statisticalprofiling/SPEResetSampleStorage

 integer SPERecordSize;

 // SPEResetSampleStorage()
 // =======================
 // Reset all variables inside sample storage.

 SPEResetSampleStorage()
 // Context values
 SPESampleContextEL1 = Zeros(32);
 SPESampleContextEL1Valid = FALSE;
 SPESampleContextEL2 = Zeros(32);
 SPESampleContextEL2Valid = FALSE;

 // Counter values
 for i = 0 to (SPEMaxCounters - 1)
 SPESampleCounter[i] = 0;
 SPESampleCounterValid[i] = FALSE;
 SPESampleCounterPending[i] = FALSE;

 // Address values
 for i = 0 to (SPEMaxAddrs - 1)
 SPESampleAddressValid[i] = FALSE;
 SPESampleAddress[i] = Zeros(64);

 // Data source values
 SPESampleDataSource = Zeros(16);
 SPESampleDataSourceValid = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13730
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // Operation values
 SPESampleClass = Zeros(2);
 SPESampleSubclass = Zeros(8);
 SPESampleSubclassValid = FALSE;

 // Timestamp values
 SPESampleTimestamp = Zeros(64);
 SPESampleTimestampValid = FALSE;

 // Event values
 SPESampleEvents = Zeros(64);

 SPESampleInstIsNV2 = FALSE;

 array [0..SPEMaxRecordSize-1] of bits(8) SPERecordData;

aarch64/debug/statisticalprofiling/SPESampleAddAddressPCVirtual

 // SPESampleAddAddressPCVirtual()
 // ==============================
 // Save the current PC address to sample storage.

 SPESampleAddAddressPCVirtual()
 bits(64) this_address = ThisInstrAddr(64);
 SPESampleAddress[SPEAddrPosPCVirtual]<55:0> = this_address<55:0>;

 bit ns;
 bit nse;
 case CurrentSecurityState() of
 when SS_Secure
 ns = '0';
 nse = '0';
 when SS_NonSecure
 ns = '1';
 nse = '0';
 when SS_Realm
 ns = '1';
 nse = '1';
 otherwise Unreachable();

 bits(2) el = PSTATE.EL;
 SPESampleAddress[SPEAddrPosPCVirtual]<63:56> = ns:el:nse:Zeros(4);
 SPESampleAddressValid[SPEAddrPosPCVirtual] = TRUE;

aarch64/debug/statisticalprofiling/SPESampleAddContext

 // SPESampleAddContext()
 // =====================
 // Save contexts to sample storage if appropriate.

 SPESampleAddContext()
 if CollectContextIDR1() then
 SPESampleContextEL1 = CONTEXTIDR_EL1<31:0>;
 SPESampleContextEL1Valid = TRUE;
 if CollectContextIDR2() then
 SPESampleContextEL2 = CONTEXTIDR_EL2<31:0>;
 SPESampleContextEL2Valid = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13731
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/statisticalprofiling/SPESampleAddOpOther

 // SPESampleAddOpOther()
 // =====================
 // Add other operation to sample storage.

 SPESampleAddOpOther(boolean conditional, boolean taken)
 SPESampleEvents<6> = if conditional && !taken then '1' else '0';
 SPESampleAddOpOther(conditional);

 SPESampleAddOpOther(boolean conditional)
 SPESampleClass = '00';
 SPESampleSubclass<0> = if conditional then '1' else '0';
 SPESampleOpType = OpType_Other;

aarch64/debug/statisticalprofiling/SPESampleAddOpSVELoadStore

 // SPESampleAddOpSVELoadStore()
 // ============================
 // Sets the subclass of the operation type packet to Load/Store for SVE operations.

 SPESampleAddOpSVELoadStore(boolean is_gather_scatter, integer vl_in, boolean predicated,
 boolean is_load)
 bit sg = if is_gather_scatter then '1' else '0';
 bit pred = if predicated then '1' else '0';
 bit ldst = if is_load then '0' else '1';
 bits(3) evl = '000';
 assert IsPow2(vl_in);
 integer vl = Max(vl_in, 32);
 case vl of
 when 32 evl = '000';
 when 64 evl = '001';
 when 128 evl = '010';
 when 256 evl = '011';
 when 512 evl = '100';
 when 1024 evl = '101';
 when 2048 evl = '110';
 otherwise Unreachable();

 SPESampleClass = '01';
 SPESampleSubclass<7:0> = sg:evl:'1':pred:'0':ldst;
 SPESampleSubclassValid = TRUE;
 SPESampleOpType = if is_load then OpType_Load else OpType_Store;

aarch64/debug/statisticalprofiling/SPESampleAddOpSVEOther

 // SPESampleAddOpSVEOther()
 // ========================
 // Sets the subclass of the operation type packet to Other for SVE operations.

 SPESampleAddOpSVEOther(integer vl_in, boolean predicated, boolean floating_point)
 bit pred = if predicated then '1' else '0';
 bit fp = if floating_point then '1' else '0';
 bits(3) evl = '000';
 assert IsPow2(vl_in);
 integer vl = Max(vl_in, 32);
 case vl of
 when 32 evl = '000';
 when 64 evl = '001';
 when 128 evl = '010';
 when 256 evl = '011';
 when 512 evl = '100';
 when 1024 evl = '101';
 when 2048 evl = '110';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13732
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 otherwise Unreachable();

 SPESampleClass = '00';
 SPESampleSubclass<7:0> = '0':evl:'1':pred:fp:'0';
 SPESampleSubclassValid = TRUE;
 SPESampleOpType = OpType_Other;

aarch64/debug/statisticalprofiling/SPESampleAddTimeStamp

 // SPESampleAddTimeStamp()
 // =======================
 // Save the appropriate type of timestamp to sample storage.

 SPESampleAddTimeStamp()
 TimeStamp timestamp = CollectTimeStamp();
 case timestamp of
 when TimeStamp_None
 SPESampleTimestampValid = FALSE;
 otherwise
 SPESampleTimestampValid = TRUE;
 SPESampleTimestamp = GetTimestamp(timestamp);

aarch64/debug/statisticalprofiling/SPESampleExtendedLoadStore

 // SPESampleExtendedLoadStore()
 // ============================
 // Sets the subclass of the operation type packet for
 // extended load/store operations.

 SPESampleExtendedLoadStore(bit ar, bit excl, bit at, boolean is_load)
 SPESampleClass = '01';
 bit ldst = if is_load then '0' else '1';
 SPESampleSubclass = '000':ar:excl:at:'1':ldst;

 SPESampleSubclassValid = TRUE;

 if is_load then
 if at == '1' then
 SPESampleOpType = OpType_LoadAtomic;
 else
 SPESampleOpType = OpType_Load;
 else
 SPESampleOpType = OpType_Store;

aarch64/debug/statisticalprofiling/SPESampleGeneralPurposeLoadStore

 // SPESampleGeneralPurposeLoadStore()
 // ==================================
 // Sets the subclass of the operation type packet for general
 // purpose load/store operations.

 SPESampleGeneralPurposeLoadStore()
 SPESampleClass = '01';

 SPESampleSubclass<7:1> = Zeros(7);
 SPESampleSubclassValid = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13733
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/statisticalprofiling/SPESampleLoadStore

 // SPESampleLoadStore()
 // ====================
 // Called if a sample is in flight when writing or reading memory,
 // indicating that the operation being sampled is in the Load, Store or atomic category.

 SPESampleLoadStore(boolean is_load, AccessDescriptor accdesc, AddressDescriptor addrdesc)
 // Check if this access type should be sampled.
 if accdesc.acctype IN {AccessType_SPE,
 AccessType_IFETCH,
 AccessType_DC,
 AccessType_TTW,
 AccessType_AT} then
 return;

 // MOPS instructions indicate which operation should be sampled before the
 // operation is executed. Has the instruction indicated that the load should be sampled?
 boolean sample_loads;
 sample_loads = SPESampleSubclass<0> == '0' && SPESampleSubclassValid;

 // Has the instruction indicated that the store should be sampled?
 boolean sample_stores;
 sample_stores = SPESampleSubclass<0> == '1' && SPESampleSubclassValid;

 // No valid data has been collected, or this is operation has specifically been selected for
 // sampling.
 if (!SPESampleSubclassValid || (sample_loads && is_load) ||
 (sample_stores && !is_load)) then
 // Data access virtual address
 SPESetDataVirtualAddress(addrdesc.vaddress);

 // Data access physical address
 if CollectPhysicalAddress() then
 SPESetDataPhysicalAddress(addrdesc, accdesc);

 if !SPESampleSubclassValid then
 // Set as unspecified load/store by default, instructions will overwrite this if it does not
 // apply to them.
 SPESampleClass = '01';
 SPESampleSubclassValid = TRUE;
 SPESampleSubclass<7:1> = '0001000';
 SPESampleSubclass<0> = if is_load then '0' else '1';
 SPESampleOpType = if is_load then OpType_Load else OpType_Store;

 if accdesc.acctype == AccessType_NV2 then
 // NV2 register load/store
 SPESampleSubclass<7:1> = '0011000';
 SPESampleInstIsNV2 = TRUE;

aarch64/debug/statisticalprofiling/SPESampleMemCopy

 // SPESampleMemCopy()
 // ==================
 // Sets the subclass of the operation type packet for Memory Copy load/store
 // operations.

 SPESampleMemCopy()
 // MemCopy does a read and a write. If one is filtered out, the other should be recorded.
 // If neither or both are filtered out, pick one in a (pseudo)random way.

 // Are loads allowed by filter?
 boolean loads_pass_filter = PMSFCR_EL1.FT == '1' && PMSFCR_EL1.LD == '1';
 // Are stores allowed by filter?
 boolean stores_pass_filter = PMSFCR_EL1.FT == '1' && PMSFCR_EL1.ST == '1';

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13734
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean record_load;
 if loads_pass_filter && !stores_pass_filter then
 // Only loads pass filter
 record_load = TRUE;
 elsif !loads_pass_filter && stores_pass_filter then
 // Only stores pass filter
 record_load = FALSE;
 else
 // Pick randomly between
 record_load = SPEGetRandomBoolean();

 SPESampleClass = '01';
 bit ldst = if record_load then '0' else '1';
 SPESampleSubclass<7:0> = '0010000':ldst;
 SPESampleSubclassValid = TRUE;
 SPESampleOpType = if record_load then OpType_Load else OpType_Store;

aarch64/debug/statisticalprofiling/SPESampleMemSet

 // SPESampleMemSet()
 // =================
 // Sets the subclass of the operation type packet for Memory Set load/store
 // operation.

 SPESampleMemSet()
 SPESampleClass = '01';
 SPESampleSubclass<7:0> = '00100101';
 SPESampleSubclassValid = TRUE;
 SPESampleOpType = OpType_Store;

aarch64/debug/statisticalprofiling/SPESampleSIMDFPLoadStore

 // SPESampleSIMDFPLoadStore()
 // ==========================
 // Sets the subclass of the operation type packet for SIMD & FP
 // load store operations.

 SPESampleSIMDFPLoadStore()
 SPESampleClass = '01';

 SPESampleSubclass<7:1> = '0000010';
 SPESampleSubclassValid = TRUE;

aarch64/debug/statisticalprofiling/SPESetDataPhysicalAddress

 // SPESetDataPhysicalAddress()
 // ===========================
 // Called from SampleLoadStore() to save data physical packet.

 SPESetDataPhysicalAddress(AddressDescriptor addrdesc, AccessDescriptor accdesc)
 bit ns;
 bit nse;
 case addrdesc.paddress.paspace of
 when PAS_Secure
 ns = '0';
 nse = '0';
 when PAS_NonSecure
 ns = '1';
 nse = '0';
 when PAS_Realm
 ns = '1';
 nse = '1';
 otherwise Unreachable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13735
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if IsFeatureImplemented(FEAT_MTE2) then
 bits(4) pat;
 if accdesc.tagchecked then
 SPESampleAddress[SPEAddrPosDataPhysical]<62> = '1'; // CH
 pat = AArch64.PhysicalTag(addrdesc.vaddress);
 else
 // CH is reset to 0 on each new packet
 // If the access is Unchecked, this is an IMPLEMENTATION_DEFINED choice
 // between 0b0000 and the Physical Address Tag
 boolean zero_unchecked;
 zero_unchecked = boolean IMPLEMENTATION_DEFINED "SPE PAT for tag unchecked access zero";
 if !zero_unchecked then
 pat = AArch64.PhysicalTag(addrdesc.vaddress);
 else
 pat = Zeros(4);
 SPESampleAddress[SPEAddrPosDataPhysical]<59:56> = pat;

 bits(56) paddr = addrdesc.paddress.address;
 SPESampleAddress[SPEAddrPosDataPhysical]<56-1:0> = paddr;
 SPESampleAddress[SPEAddrPosDataPhysical]<63> = ns;
 SPESampleAddress[SPEAddrPosDataPhysical]<60> = nse;
 SPESampleAddressValid[SPEAddrPosDataPhysical] = TRUE;

aarch64/debug/statisticalprofiling/SPESetDataVirtualAddress

 // SPESetDataVirtualAddress()
 // ==========================
 // Called from SampleLoadStore() to save data virtual packet.
 // Also used by exclusive load/stores to save virtual addresses if exclusive monitor is lost
 // before a read/write is completed.

 SPESetDataVirtualAddress(bits(64) vaddress)
 bit tbi;
 tbi = EffectiveTBI(vaddress, FALSE, PSTATE.EL);
 boolean non_tbi_is_zeros;
 non_tbi_is_zeros = boolean IMPLEMENTATION_DEFINED "SPE non-tbi tag is zero";
 if tbi == '1' || !non_tbi_is_zeros then
 SPESampleAddress[SPEAddrPosDataVirtual]<63:0> = vaddress<63:0>;
 else
 SPESampleAddress[SPEAddrPosDataVirtual]<63:56> = Zeros(8);
 SPESampleAddress[SPEAddrPosDataVirtual]<55:0> = vaddress<55:0>;
 SPESampleAddressValid[SPEAddrPosDataVirtual] = TRUE;

aarch64/debug/statisticalprofiling/SPEStartCounter

 // SPEStartCounter()
 // =================
 // Enables incrementing of the counter at the passed index when SPECycle is called.

 SPEStartCounter(integer counter_index)
 assert counter_index < SPEMaxCounters;
 SPESampleCounterPending[counter_index] = TRUE;

aarch64/debug/statisticalprofiling/SPEStopCounter

 // SPEStopCounter()
 // ================
 // Disables incrementing of the counter at the passed index when SPECycle is called.

 SPEStopCounter(integer counter_index)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13736
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 SPESampleCounterValid[counter_index] = TRUE;
 SPESampleCounterPending[counter_index] = FALSE;

aarch64/debug/statisticalprofiling/SPEToCollectSample

 // SPEToCollectSample()
 // ====================
 // Returns TRUE if the instruction which is about to be executed should be
 // sampled. Returns FALSE otherwise.

 boolean SPEToCollectSample()
 if IsZero(PMSICR_EL1.COUNT) then
 SPEResetSampleCounter();
 else
 PMSICR_EL1.COUNT = PMSICR_EL1.COUNT - 1;
 if IsZero(PMSICR_EL1.COUNT) then
 if PMSIRR_EL1.RND == '1' && PMSIDR_EL1.ERnd == '1' then
 PMSICR_EL1.ECOUNT = SPEGetRandomInterval();
 else
 return TRUE;
 if UInt(PMSICR_EL1.ECOUNT) != 0 then
 PMSICR_EL1.ECOUNT = PMSICR_EL1.ECOUNT - 1;
 if IsZero(PMSICR_EL1.ECOUNT) then
 return TRUE;
 return FALSE;

aarch64/debug/statisticalprofiling/SPEWriteToBuffer

 // SPEWriteToBuffer()
 // ==================
 // Write the active record to the Profiling Buffer.

 SPEWriteToBuffer()
 assert ProfilingBufferEnabled();

 // Check alignment
 constant integer align = UInt(PMBIDR_EL1.Align);
 boolean aligned = IsZero(PMBPTR_EL1.PTR<align-1:0>);
 boolean ttw_fault_as_external_abort;
 ttw_fault_as_external_abort = boolean IMPLEMENTATION_DEFINED "SPE TTW fault External abort";

 FaultRecord fault;
 PhysMemRetStatus memstatus;
 AddressDescriptor addrdesc;
 AccessDescriptor accdesc;

 SecurityState owning_ss;
 bits(2) owning_el;
 (owning_ss, owning_el) = ProfilingBufferOwner();
 accdesc = CreateAccDescSPE(owning_ss, owning_el);

 bits(64) start_vaddr = PMBPTR_EL1<63:0>;
 for i = 0 to SPERecordSize - 1
 // If a previous write did not cause an issue
 if PMBSR_EL1.S == '0' then
 (memstatus, addrdesc) = DebugMemWrite(PMBPTR_EL1<63:0>, accdesc, aligned,
 SPERecordData[i]);

 fault = addrdesc.fault;

 boolean ttw_fault;
 ttw_fault = fault.statuscode IN {Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk};

 if IsFault(fault.statuscode) && !(ttw_fault && ttw_fault_as_external_abort) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13737
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 DebugWriteFault(PMBPTR_EL1<63:0>, fault);
 elsif IsFault(memstatus) || (ttw_fault && ttw_fault_as_external_abort) then
 DebugWriteExternalAbort(memstatus, addrdesc, start_vaddr);

 // Move pointer if no Buffer Management Event has been caused.
 if IsZero(PMBSR_EL1.S) then
 PMBPTR_EL1 = PMBPTR_EL1 + 1;

 return;

aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

 // StatisticalProfilingEnabled()
 // =============================
 // Return TRUE if Statistical Profiling is Enabled in the current EL, FALSE otherwise.

 boolean StatisticalProfilingEnabled()
 return StatisticalProfilingEnabled(PSTATE.EL);

 // StatisticalProfilingEnabled()
 // =============================
 // Return TRUE if Statistical Profiling is Enabled in the specified EL, FALSE otherwise.

 boolean StatisticalProfilingEnabled(bits(2) el)
 if !IsFeatureImplemented(FEAT_SPE) || UsingAArch32() || !ProfilingBufferEnabled() then
 return FALSE;

 tge_set = EL2Enabled() && HCR_EL2.TGE == '1';
 (owning_ss, owning_el) = ProfilingBufferOwner();
 if (UInt(owning_el) < UInt(el) || (tge_set && owning_el == EL1) ||
 owning_ss != SecurityStateAtEL(el)) then
 return FALSE;
 bit spe_bit;
 case el of
 when EL3 Unreachable();
 when EL2 spe_bit = PMSCR_EL2.E2SPE;
 when EL1 spe_bit = PMSCR_EL1.E1SPE;
 when EL0 spe_bit = (if tge_set then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);

 return spe_bit == '1';

aarch64/debug/statisticalprofiling/TimeStamp

 // TimeStamp
 // =========

 enumeration TimeStamp {
 TimeStamp_None, // No timestamp
 TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
 TimeStamp_Physical, // Physical counter value with no offset
 TimeStamp_OffsetPhysical, // Physical counter value minus CNTPOFF_EL2
 TimeStamp_Virtual }; // Physical counter value minus CNTVOFF_EL2

aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

 // AArch64.TakeExceptionInDebugState()
 // ===================================
 // Take an exception in Debug state to an Exception level using AArch64.

 AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception_in)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
 assert target_el != EL3 || EDSCR.SDD == '0';
 ExceptionRecord except = exception_in;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13738
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean sync_errors;
 if IsFeatureImplemented(FEAT_IESB) then
 sync_errors = SCTLR_EL[target_el].IESB == '1';
 if IsFeatureImplemented(FEAT_DoubleFault) then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
 // SCTLR_EL[].IESB and/or SCR_EL3.NMEA (if applicable) might be ignored in Debug state.
 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
 sync_errors = FALSE;
 else
 sync_errors = FALSE;

 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 TMFailure cause;
 case except.exceptype of
 when Exception_SoftwareBreakpoint cause = TMFailure_DBG;
 when Exception_Breakpoint cause = TMFailure_DBG;
 when Exception_Watchpoint cause = TMFailure_DBG;
 when Exception_SoftwareStep cause = TMFailure_DBG;
 otherwise cause = TMFailure_ERR;
 FailTransaction(cause, FALSE);

 boolean brbe_source_allowed = FALSE;
 bits(64) brbe_source_address = Zeros(64);
 if IsFeatureImplemented(FEAT_BRBE) then
 brbe_source_allowed = BranchRecordAllowed(PSTATE.EL);
 brbe_source_address = bits(64) UNKNOWN;

 if !IsFeatureImplemented(FEAT_ExS) || SCTLR_EL[target_el].EIS == '1' then
 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();
 if from_32 && IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 ResetSVEState();
 else
 MaybeZeroSVEUppers(target_el);

 AArch64.ReportException(except, target_el);

 if IsFeatureImplemented(FEAT_GCS) then
 PSTATE.EXLOCK = '0'; // Effective value of GCSCR_ELx.EXLOCKEN is 0 in Debug state

 PSTATE.EL = target_el;
 PSTATE.nRW = '0';
 PSTATE.SP = '1';

 SPSR_ELx[] = bits(64) UNKNOWN;
 ELR_ELx[] = bits(64) UNKNOWN;

 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if (IsFeatureImplemented(FEAT_PAN) && (PSTATE.EL == EL1 ||
 (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
 SCTLR_ELx[].SPAN == '0') then
 PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = '0';
 if IsFeatureImplemented(FEAT_BTI) then PSTATE.BTYPE = '00';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = bit UNKNOWN;
 if IsFeatureImplemented(FEAT_MTE) then PSTATE.TCO = '1';
 if IsFeatureImplemented(FEAT_EBEP) then PSTATE.PM = bit UNKNOWN;
 if IsFeatureImplemented(FEAT_SEBEP) then
 PSTATE.PPEND = '0';
 ShouldSetPPEND = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13739
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 if sync_errors then
 SynchronizeErrors();

 EndOfInstruction();

aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

 // AArch64.WatchpointByteMatch()
 // =============================

 boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)
 constant integer dbgtop = DebugAddrTop();
 constant integer cmpbottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
 integer bottom = cmpbottom;
 constant integer select = UInt(vaddress<cmpbottom-1:0>);
 byte_select_match = (DBGWCR_EL1[n].BAS<select> != '0');
 mask = UInt(DBGWCR_EL1[n].MASK);

 // If DBGWCR_EL1[n].MASK is a nonzero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
 // DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
 else
 LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 Constraint c;
 (c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 // When FEAT_LVA3 is not implemented, if the DBGWVR_EL1[n].RESS field bits are not a
 // sign extension of the MSB of DBGWVR_EL1[n].VA, it is UNPREDICTABLE whether they
 // appear to be included in the match.
 boolean unpredictable_ress = (dbgtop < 55 && !IsOnes(DBGWVR_EL1[n]<63:dbgtop>) &&
 !IsZero(DBGWVR_EL1[n]<63:dbgtop>) &&
 ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS));
 constant integer cmpmsb = if unpredictable_ress then 63 else dbgtop;
 constant integer cmplsb = if mask > bottom then mask else bottom;
 constant integer bottombit = bottom;
 boolean WVR_match = (vaddress<cmpmsb:cmplsb> == DBGWVR_EL1[n]<cmpmsb:cmplsb>);
 if mask > bottom then
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR_EL1[n]<cmpbottom-1:bottombit>) then
 WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);

 return (WVR_match && byte_select_match);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13740
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/debug/watchpoint/AArch64.WatchpointMatch

 // AArch64.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch64 translation regime.

 boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size,
 AccessDescriptor accdesc)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n < NumWatchpointsImplemented();

 boolean enabled = IsWatchpointEnabled(n);
 linked = DBGWCR_EL1[n].WT == '1';
 isbreakpnt = FALSE;
 lbnx = if IsFeatureImplemented(FEAT_Debugv8p9) then DBGWCR_EL1[n].LBNX else '00';
 linked_n = UInt(lbnx : DBGWCR_EL1[n].LBN);
 ssce = if IsFeatureImplemented(FEAT_RME) then DBGWCR_EL1[n].SSCE else '0';
 state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, ssce, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
 linked, linked_n, isbreakpnt, PC64, accdesc);

 boolean ls_match;
 case DBGWCR_EL1[n].LSC<1:0> of
 when '00' ls_match = FALSE;
 when '01' ls_match = accdesc.read;
 when '10' ls_match = accdesc.write || accdesc.acctype == AccessType_DC;
 when '11' ls_match = TRUE;

 boolean value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

aarch64/debug/watchpoint/IsWatchpointEnabled

 // IsWatchpointEnabled()
 // =====================
 // Returns TRUE if the effective value of DBGWCR_EL1[n].E is '1', and FALSE otherwise.

 boolean IsWatchpointEnabled(integer n)
 if (n > 15 &&
 ((!HaltOnBreakpointOrWatchpoint() && !SelfHostedExtendedBPWPEnabled()) ||
 (HaltOnBreakpointOrWatchpoint() && EDSCR2.EHBWE == '0'))) then
 return FALSE;
 return DBGWCR_EL1[n].E == '1';

J1.1.2 aarch64/exceptions

This section includes the following pseudocode functions:

• aarch64/exceptions/aborts/AArch64.Abort.

• aarch64/exceptions/aborts/AArch64.AbortSyndrome.

• aarch64/exceptions/aborts/AArch64.CheckPCAlignment.

• aarch64/exceptions/aborts/AArch64.DataAbort.

• aarch64/exceptions/aborts/AArch64.EffectiveTCF.

• aarch64/exceptions/aborts/AArch64.InstructionAbort.

• aarch64/exceptions/aborts/AArch64.PCAlignmentFault.

• aarch64/exceptions/aborts/AArch64.PhysicalSErrorTarget.

• aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault.

• aarch64/exceptions/aborts/AArch64.ReportTagCheckFault.

• aarch64/exceptions/aborts/AArch64.RouteToSErrorOffset.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13741
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/exceptions/aborts/AArch64.SPAlignmentFault.

• aarch64/exceptions/aborts/AArch64.SyncExternalAbortTarget.

• aarch64/exceptions/aborts/AArch64.TagCheckFault.

• aarch64/exceptions/aborts/BranchTargetException.

• aarch64/exceptions/aborts/TCFType.

• aarch64/exceptions/aborts/TakeGPCException.

• aarch64/exceptions/async/AArch64.TakePhysicalFIQException.

• aarch64/exceptions/async/AArch64.TakePhysicalIRQException.

• aarch64/exceptions/async/AArch64.TakePhysicalSErrorException.

• aarch64/exceptions/async/AArch64.TakeVirtualFIQException.

• aarch64/exceptions/async/AArch64.TakeVirtualIRQException.

• aarch64/exceptions/async/AArch64.TakeVirtualSErrorException.

• aarch64/exceptions/debug/AArch64.BreakpointException.

• aarch64/exceptions/debug/AArch64.SoftwareBreakpoint.

• aarch64/exceptions/debug/AArch64.SoftwareStepException.

• aarch64/exceptions/debug/AArch64.VectorCatchException.

• aarch64/exceptions/debug/AArch64.WatchpointException.

• aarch64/exceptions/exceptions/AArch64.ExceptionClass.

• aarch64/exceptions/exceptions/AArch64.ReportException.

• aarch64/exceptions/exceptions/AArch64.ResetControlRegisters.

• aarch64/exceptions/exceptions/AArch64.TakeReset.

• aarch64/exceptions/ieeefp/AArch64.FPTrappedException.

• aarch64/exceptions/syscalls/AArch64.CallHypervisor.

• aarch64/exceptions/syscalls/AArch64.CallSecureMonitor.

• aarch64/exceptions/syscalls/AArch64.CallSupervisor.

• aarch64/exceptions/takeexception/AArch64.TakeException.

• aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap.

• aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome.

• aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap.

• aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps.

• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled.

• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap.

• aarch64/exceptions/traps/AArch64.CheckFPEnabled.

• aarch64/exceptions/traps/AArch64.CheckForERetTrap.

• aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap.

• aarch64/exceptions/traps/AArch64.CheckForSVCTrap.

• aarch64/exceptions/traps/AArch64.CheckForWFxTrap.

• aarch64/exceptions/traps/AArch64.CheckIllegalState.

• aarch64/exceptions/traps/AArch64.MonitorModeTrap.

• aarch64/exceptions/traps/AArch64.SystemAccessTrap.

• aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome.

• aarch64/exceptions/traps/AArch64.Undefined.

• aarch64/exceptions/traps/AArch64.WFxTrap.

• aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64.

• aarch64/exceptions/traps/CheckFPEnabled64.

• aarch64/exceptions/traps/CheckLDST64BEnabled.

• aarch64/exceptions/traps/CheckST64BV0Enabled.

• aarch64/exceptions/traps/CheckST64BVEnabled.

• aarch64/exceptions/traps/LDST64BTrap.

• aarch64/exceptions/traps/WFETrapDelay.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13742
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/exceptions/traps/WaitForEventUntilDelay.

aarch64/exceptions/aborts/AArch64.Abort

 // AArch64.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch64 translation regime.

 AArch64.Abort(bits(64) vaddress, FaultRecord fault)

 if IsDebugException(fault) then
 if fault.accessdesc.acctype == AccessType_IFETCH then
 if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
 AArch64.VectorCatchException(fault);
 else
 AArch64.BreakpointException(fault);
 else
 AArch64.WatchpointException(vaddress, fault);
 elsif fault.gpcf.gpf != GPCF_None && ReportAsGPCException(fault) then
 TakeGPCException(vaddress, fault);
 elsif fault.statuscode == Fault_TagCheck then
 AArch64.RaiseTagCheckFault(vaddress, fault);
 elsif fault.accessdesc.acctype == AccessType_IFETCH then
 AArch64.InstructionAbort(vaddress, fault);
 else
 AArch64.DataAbort(vaddress, fault);

aarch64/exceptions/aborts/AArch64.AbortSyndrome

 // AArch64.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort and Watchpoint exceptions
 //
 // from an AArch64 translation regime.

 ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault,
 bits(64) vaddress, bits(2) target_el)
 except = ExceptionSyndrome(exceptype);

 if (!IsFeatureImplemented(FEAT_PFAR) ||
 !IsExternalSyncAbort(fault) ||
 (EL2Enabled() && HCR_EL2.VM == '1' && target_el == EL1)) then
 except.pavalid = FALSE;
 else
 except.pavalid = boolean IMPLEMENTATION_DEFINED "PFAR_ELx is valid";

 (except.syndrome, except.syndrome2) = AArch64.FaultSyndrome(exceptype, fault, except.pavalid,
 vaddress);
 if fault.statuscode == Fault_TagCheck then
 if IsFeatureImplemented(FEAT_MTE4) then
 except.vaddress = ZeroExtend(vaddress, 64);
 else
 except.vaddress = bits(4) UNKNOWN : vaddress<59:0>;
 else
 except.vaddress = ZeroExtend(vaddress, 64);

 if IPAValid(fault) then
 except.ipavalid = TRUE;
 except.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
 except.ipaddress = fault.ipaddress.address;
 else
 except.ipavalid = FALSE;

 return except;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13743
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/aborts/AArch64.CheckPCAlignment

 // AArch64.CheckPCAlignment()
 // ==========================

 AArch64.CheckPCAlignment()
 bits(64) pc = ThisInstrAddr(64);

 if pc<1:0> != '00' then
 AArch64.PCAlignmentFault();

aarch64/exceptions/aborts/AArch64.DataAbort

 // AArch64.DataAbort()
 // ===================

 AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
 bits(2) target_el;
 if IsExternalAbort(fault) then
 target_el = AArch64.SyncExternalAbortTarget(fault);
 else
 route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR_EL2.TGE == '1' ||
 (IsFeatureImplemented(FEAT_RME) && fault.gpcf.gpf == GPCF_Fail &&
 HCR_EL2.GPF == '1') ||
 (IsFeatureImplemented(FEAT_NV2) &&
 fault.accessdesc.acctype == AccessType_NV2) ||
 IsSecondStage(fault)));

 if PSTATE.EL == EL3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 else
 target_el = EL1;

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset;

 if IsExternalAbort(fault) && AArch64.RouteToSErrorOffset(target_el) then
 vect_offset = 0x180;
 else
 vect_offset = 0x0;

 ExceptionRecord except;
 if IsFeatureImplemented(FEAT_NV2) && fault.accessdesc.acctype == AccessType_NV2 then
 except = AArch64.AbortSyndrome(Exception_NV2DataAbort, fault, vaddress, target_el);
 else
 except = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress, target_el);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.EffectiveTCF

 // AArch64.EffectiveTCF()
 // ======================
 // Indicate if a Tag Check Fault should cause a synchronous exception,
 // be asynchronously accumulated, or have no effect on the PE.

 TCFType AArch64.EffectiveTCF(bits(2) el, boolean read)
 bits(2) tcf;

 Regime regime = TranslationRegime(el);

 case regime of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13744
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when Regime_EL3 tcf = SCTLR_EL3.TCF;
 when Regime_EL2 tcf = SCTLR_EL2.TCF;
 when Regime_EL20 tcf = if el == EL0 then SCTLR_EL2.TCF0 else SCTLR_EL2.TCF;
 when Regime_EL10 tcf = if el == EL0 then SCTLR_EL1.TCF0 else SCTLR_EL1.TCF;
 otherwise Unreachable();

 if tcf == '11' then // Reserved value
 if !IsFeatureImplemented(FEAT_MTE_ASYM_FAULT) then
 (-,tcf) = ConstrainUnpredictableBits(Unpredictable_RESTCF, 2);

 case tcf of
 when '00' // Tag Check Faults have no effect on the PE
 return TCFType_Ignore;
 when '01' // Tag Check Faults cause a synchronous exception
 return TCFType_Sync;
 when '10'
 if IsFeatureImplemented(FEAT_MTE_ASYNC) then
 // If asynchronous faults are implemented,
 // Tag Check Faults are asynchronously accumulated
 return TCFType_Async;
 else
 // Otherwise, Tag Check Faults have no effect on the PE
 return TCFType_Ignore;
 when '11'
 if IsFeatureImplemented(FEAT_MTE_ASYM_FAULT) then
 // Tag Check Faults cause a synchronous exception on reads or on
 // a read/write access, and are asynchronously accumulated on writes
 if read then
 return TCFType_Sync;
 else
 return TCFType_Async;
 else
 // Otherwise, Tag Check Faults have no effect on the PE
 return TCFType_Ignore;
 otherwise
 Unreachable();

aarch64/exceptions/aborts/AArch64.InstructionAbort

 // AArch64.InstructionAbort()
 // ==========================

 AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
 // External aborts on instruction fetch must be taken synchronously
 if IsFeatureImplemented(FEAT_DoubleFault) then assert fault.statuscode != Fault_AsyncExternal;

 bits(2) target_el;
 if IsExternalAbort(fault) then
 target_el = AArch64.SyncExternalAbortTarget(fault);
 else
 route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR_EL2.TGE == '1' ||
 (IsFeatureImplemented(FEAT_RME) && fault.gpcf.gpf == GPCF_Fail &&
 HCR_EL2.GPF == '1') ||
 IsSecondStage(fault)));

 if PSTATE.EL == EL3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 else
 target_el = EL1;

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13745
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if IsExternalAbort(fault) && AArch64.RouteToSErrorOffset(target_el) then
 vect_offset = 0x180;
 else
 vect_offset = 0x0;

 ExceptionRecord except = AArch64.AbortSyndrome(Exception_InstructionAbort, fault,
 vaddress, target_el);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PCAlignmentFault

 // AArch64.PCAlignmentFault()
 // ==========================
 // Called on unaligned program counter in AArch64 state.

 AArch64.PCAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_PCAlignment);
 except.vaddress = ThisInstrAddr(64);
 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PhysicalSErrorTarget

 // AArch64.PhysicalSErrorTarget()
 // ==============================
 // Returns a tuple of whether SError exception can be taken and, if so, the target Exception level.

 (boolean, bits(2)) AArch64.PhysicalSErrorTarget()
 boolean route_to_el3;
 boolean route_to_el2;

 // The exception is explicitly routed to EL3.
 if PSTATE.EL != EL3 then
 route_to_el3 = (HaveEL(EL3) && EffectiveEA() == '1');
 else
 route_to_el3 = FALSE;

 // The exception is explicitly routed to EL2.
 if !route_to_el3 && EL2Enabled() && PSTATE.EL == EL1 then
 route_to_el2 = (HCR_EL2.AMO == '1');
 elsif !route_to_el3 && EL2Enabled() && PSTATE.EL == EL0 then
 route_to_el2 = (!IsInHost() && HCR_EL2.<TGE,AMO> != '00');
 else
 route_to_el2 = FALSE;

 // The exception is "masked".
 boolean masked;
 case PSTATE.EL of
 when EL3
 masked = (EffectiveEA() == '0' || PSTATE.A == '1');
 when EL2
 masked = (!route_to_el3 &&
 (HCR_EL2.<TGE,AMO> == '00' || PSTATE.A == '1'));
 when EL1, EL0
 masked = (!route_to_el3 && !route_to_el2 && PSTATE.A == '1');

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13746
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // When FEAT_DoubleFault or FEAT_DoubleFault2 is implemented, the mask might be overridden.
 if IsFeatureImplemented(FEAT_DoubleFault2) then
 bit nmea_bit;
 case PSTATE.EL of
 when EL3
 nmea_bit = SCR_EL3.NMEA;
 when EL2
 nmea_bit = if IsSCTLR2EL2Enabled() then SCTLR2_EL2.NMEA else '0';
 when EL1
 nmea_bit = if IsSCTLR2EL1Enabled() then SCTLR2_EL1.NMEA else '0';
 when EL0
 if IsInHost() then
 nmea_bit = if IsSCTLR2EL2Enabled() then SCTLR2_EL2.NMEA else '0';
 else
 nmea_bit = if IsSCTLR2EL1Enabled() then SCTLR2_EL1.NMEA else '0';
 masked = masked && (nmea_bit == '0');

 elsif IsFeatureImplemented(FEAT_DoubleFault) && PSTATE.EL == EL3 then
 bit nmea_bit = SCR_EL3.NMEA AND EffectiveEA();
 masked = masked && (nmea_bit == '0');

 boolean route_masked_to_el3;
 boolean route_masked_to_el2;

 if IsFeatureImplemented(FEAT_DoubleFault2) then
 // The masked exception is routed to EL2.
 route_masked_to_el2 = (EL2Enabled() && !route_to_el3 &&
 IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1' &&
 ((PSTATE.EL == EL1 && (PSTATE.A == '1' || masked)) ||
 (PSTATE.EL == EL0 && masked && !IsInHost())));

 // The masked exception is routed to EL3.
 route_masked_to_el3 = (HaveEL(EL3) && SCR_EL3.TMEA == '1' &&
 !(route_to_el2 || route_masked_to_el2) &&
 ((PSTATE.EL IN {EL2, EL1} &&
 (PSTATE.A == '1' || masked)) ||
 (PSTATE.EL == EL0 && masked)));
 else
 route_masked_to_el2 = FALSE;
 route_masked_to_el3 = FALSE;

 // The exception is taken at EL3.
 take_in_el3 = PSTATE.EL == EL3 && !masked;

 // The exception is taken at EL2 or in the Host EL0.
 take_in_el2_0 = ((PSTATE.EL == EL2 || IsInHost()) &&
 !(route_to_el3 || route_masked_to_el3) && !masked);

 // The exception is taken at EL1 or in the non-Host EL0.
 take_in_el1_0 = ((PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost())) &&
 !(route_to_el2 || route_masked_to_el2) &&
 !(route_to_el3 || route_masked_to_el3) && !masked);

 bits(2) target_el;
 if take_in_el3 || route_to_el3 || route_masked_to_el3 then
 masked = FALSE; target_el = EL3;
 elsif take_in_el2_0 || route_to_el2 || route_masked_to_el2 then
 masked = FALSE; target_el = EL2;
 elsif take_in_el1_0 then
 masked = FALSE; target_el = EL1;
 else
 masked = TRUE; target_el = bits(2) UNKNOWN;

 return (masked, target_el);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13747
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault

 // AArch64.RaiseTagCheckFault()
 // ============================
 // Raise a Tag Check Fault exception.

 AArch64.RaiseTagCheckFault(bits(64) va, FaultRecord fault)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;
 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;

 except = AArch64.AbortSyndrome(Exception_DataAbort, fault, va, target_el);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.ReportTagCheckFault

 // AArch64.ReportTagCheckFault()
 // =============================
 // Records a Tag Check Fault exception into the appropriate TFSR_ELx.

 AArch64.ReportTagCheckFault(bits(2) el, bit ttbr)
 case el of
 when EL3 assert ttbr == '0'; TFSR_EL3.TF0 = '1';
 when EL2 if ttbr == '0' then TFSR_EL2.TF0 = '1'; else TFSR_EL2.TF1 = '1';
 when EL1 if ttbr == '0' then TFSR_EL1.TF0 = '1'; else TFSR_EL1.TF1 = '1';
 when EL0 if ttbr == '0' then TFSRE0_EL1.TF0 = '1'; else TFSRE0_EL1.TF1 = '1';

aarch64/exceptions/aborts/AArch64.RouteToSErrorOffset

 // AArch64.RouteToSErrorOffset()
 // =============================
 // Returns TRUE if synchronous External abort exceptions are taken to the
 // appropriate SError vector offset, and FALSE otherwise.

 boolean AArch64.RouteToSErrorOffset(bits(2) target_el)
 if !IsFeatureImplemented(FEAT_DoubleFault) then return FALSE;

 bit ease_bit;
 case target_el of
 when EL3
 ease_bit = SCR_EL3.EASE;
 when EL2
 if IsFeatureImplemented(FEAT_DoubleFault2) && IsSCTLR2EL2Enabled() then
 ease_bit = SCTLR2_EL2.EASE;
 else
 ease_bit = '0';
 when EL1
 if IsFeatureImplemented(FEAT_DoubleFault2) && IsSCTLR2EL1Enabled() then
 ease_bit = SCTLR2_EL1.EASE;
 else
 ease_bit = '0';

 return (ease_bit == '1');

aarch64/exceptions/aborts/AArch64.SPAlignmentFault

 // AArch64.SPAlignmentFault()
 // ==========================
 // Called on an unaligned stack pointer in AArch64 state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13748
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 AArch64.SPAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_SPAlignment);

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.SyncExternalAbortTarget

 // AArch64.SyncExternalAbortTarget()
 // =================================
 // Returns the target Exception level for a Synchronous External
 // Data or Instruction Abort.

 bits(2) AArch64.SyncExternalAbortTarget(FaultRecord fault)
 boolean route_to_el3;

 // The exception is explicitly routed to EL3
 if PSTATE.EL != EL3 then
 route_to_el3 = (HaveEL(EL3) && EffectiveEA() == '1');
 else
 route_to_el3 = FALSE;

 // The exception is explicitly routed to EL2
 bit tea_bit = (if IsFeatureImplemented(FEAT_RAS) && EL2Enabled() then HCR_EL2.TEA else '0');

 boolean route_to_el2;
 if !route_to_el3 && EL2Enabled() && PSTATE.EL == EL1 then
 route_to_el2 = (tea_bit == '1' ||
 fault.accessdesc.acctype == AccessType_NV2 ||
 IsSecondStage(fault));

 elsif !route_to_el3 && EL2Enabled() && PSTATE.EL == EL0 then
 route_to_el2 = (!IsInHost() && (HCR_EL2.TGE == '1' || tea_bit == '1' ||
 IsSecondStage(fault)));
 else
 route_to_el2 = FALSE;

 boolean route_masked_to_el3;
 boolean route_masked_to_el2;

 if IsFeatureImplemented(FEAT_DoubleFault2) then
 // The masked exception is routed to EL2
 route_masked_to_el2 = (EL2Enabled() && !route_to_el3 &&
 (PSTATE.EL == EL1 && PSTATE.A == '1') &&
 IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1');

 // The masked exception is routed to EL3
 route_masked_to_el3 = (HaveEL(EL3) &&
 !(route_to_el2 || route_masked_to_el2) &&
 (PSTATE.EL IN {EL2, EL1} && PSTATE.A == '1') &&
 SCR_EL3.TMEA == '1');
 else
 route_masked_to_el2 = FALSE;
 route_masked_to_el3 = FALSE;

 // The exception is taken at EL3
 take_in_el3 = PSTATE.EL == EL3;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13749
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // The exception is taken at EL2 or in the Host EL0
 take_in_el2_0 = ((PSTATE.EL == EL2 || IsInHost()) &&
 !(route_to_el3 || route_masked_to_el3));

 // The exception is taken at EL1 or in the non-Host EL0
 take_in_el1_0 = ((PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost())) &&
 !(route_to_el2 || route_masked_to_el2) &&
 !(route_to_el3 || route_masked_to_el3));

 bits(2) target_el;
 if take_in_el3 || route_to_el3 || route_masked_to_el3 then
 target_el = EL3;
 elsif take_in_el2_0 || route_to_el2 || route_masked_to_el2 then
 target_el = EL2;
 elsif take_in_el1_0 then
 target_el = EL1;
 else
 assert(FALSE);

 return target_el;

aarch64/exceptions/aborts/AArch64.TagCheckFault

 // AArch64.TagCheckFault()
 // =======================
 // Handle a Tag Check Fault condition.

 AArch64.TagCheckFault(bits(64) vaddress, AccessDescriptor accdesc)
 TCFType tcftype = AArch64.EffectiveTCF(accdesc.el, accdesc.read);

 case tcftype of
 when TCFType_Sync
 FaultRecord fault = NoFault();
 fault.accessdesc = accdesc;
 fault.write = accdesc.write;
 fault.statuscode = Fault_TagCheck;
 AArch64.RaiseTagCheckFault(vaddress, fault);
 when TCFType_Async
 AArch64.ReportTagCheckFault(accdesc.el, vaddress<55>);
 when TCFType_Ignore
 return;
 otherwise
 Unreachable();

aarch64/exceptions/aborts/BranchTargetException

 // BranchTargetException()
 // =======================
 // Raise branch target exception.

 AArch64.BranchTargetException(bits(52) vaddress)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_BranchTarget);
 except.syndrome<1:0> = PSTATE.BTYPE;
 except.syndrome<24:2> = Zeros(23); // RES0

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13750
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 target_el = EL2;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/TCFType

 // TCFType
 // =======

 enumeration TCFType { TCFType_Sync, TCFType_Async, TCFType_Ignore };

aarch64/exceptions/aborts/TakeGPCException

 // TakeGPCException()
 // ==================
 // Report Granule Protection Exception faults

 TakeGPCException(bits(64) vaddress, FaultRecord fault)
 assert IsFeatureImplemented(FEAT_RME);
 assert IsFeatureImplemented(FEAT_LSE);
 assert IsFeatureImplemented(FEAT_HAFDBS);
 assert IsFeatureImplemented(FEAT_DoubleFault);

 ExceptionRecord except;

 except.exceptype = Exception_GPC;
 except.vaddress = ZeroExtend(vaddress, 64);
 except.paddress = fault.paddress;
 except.pavalid = TRUE;

 if IPAValid(fault) then
 except.ipavalid = TRUE;
 except.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
 except.ipaddress = fault.ipaddress.address;
 else
 except.ipavalid = FALSE;

 if fault.accessdesc.acctype == AccessType_GCS then
 except.syndrome2<8> = '1'; //GCS

 // Populate the fields grouped in ISS
 except.syndrome<24:22> = Zeros(3); // RES0
 except.syndrome<21> = if fault.gpcfs2walk then '1' else '0'; // S2PTW
 if fault.accessdesc.acctype == AccessType_IFETCH then
 except.syndrome<20> = '1'; // InD
 else
 except.syndrome<20> = '0'; // InD
 except.syndrome<19:14> = EncodeGPCSC(fault.gpcf); // GPCSC
 if IsFeatureImplemented(FEAT_NV2) && fault.accessdesc.acctype == AccessType_NV2 then
 except.syndrome<13> = '1'; // VNCR
 else
 except.syndrome<13> = '0'; // VNCR
 except.syndrome<12:11> = '00'; // RES0
 except.syndrome<10:9> = '00'; // RES0

 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 except.syndrome<8> = '1'; // CM
 else
 except.syndrome<8> = '0'; // CM

 except.syndrome<7> = if fault.s2fs1walk then '1' else '0'; // S1PTW

 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 except.syndrome<6> = '1'; // WnR
 elsif fault.statuscode IN {Fault_HWUpdateAccessFlag, Fault_Exclusive} then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13751
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 except.syndrome<6> = bit UNKNOWN; // WnR
 elsif fault.accessdesc.atomicop && IsExternalAbort(fault) then
 except.syndrome<6> = bit UNKNOWN; // WnR
 else
 except.syndrome<6> = if fault.write then '1' else '0'; // WnR

 except.syndrome<5:0> = EncodeLDFSC(fault.statuscode, fault.level); // xFSC

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 bits(2) target_el = EL3;

 integer vect_offset;
 if IsExternalAbort(fault) && AArch64.RouteToSErrorOffset(target_el) then
 vect_offset = 0x180;
 else
 vect_offset = 0x0;

 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalFIQException

 // AArch64.TakePhysicalFIQException()
 // ==================================

 AArch64.TakePhysicalFIQException()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x100;
 except = ExceptionSyndrome(Exception_FIQ);

 if route_to_el3 then
 AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0, EL1};
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalIRQException

 // AArch64.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch64.TakePhysicalIRQException()

 route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x80;

 except = ExceptionSyndrome(Exception_IRQ);

 if route_to_el3 then
 AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13752
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 assert PSTATE.EL IN {EL0, EL1};
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalSErrorException

 // AArch64.TakePhysicalSErrorException()
 // =====================================

 AArch64.TakePhysicalSErrorException(boolean implicit_esb)

 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x180;

 bits(2) target_el;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 else
 target_el = EL1;

 except = ExceptionSyndrome(Exception_SError);
 bits(25) syndrome = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 if IsSErrorEdgeTriggered() then
 ClearPendingPhysicalSError();
 except.syndrome = syndrome;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakeVirtualFIQException

 // AArch64.TakeVirtualFIQException()
 // =================================

 AArch64.TakeVirtualFIQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x100;

 except = ExceptionSyndrome(Exception_FIQ);

 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakeVirtualIRQException

 // AArch64.TakeVirtualIRQException()
 // =================================

 AArch64.TakeVirtualIRQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x80;

 except = ExceptionSyndrome(Exception_IRQ);

 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13753
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/async/AArch64.TakeVirtualSErrorException

 // AArch64.TakeVirtualSErrorException()
 // ====================================

 AArch64.TakeVirtualSErrorException()

 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x180;
 except = ExceptionSyndrome(Exception_SError);

 if IsFeatureImplemented(FEAT_RAS) then
 except.syndrome<24> = VSESR_EL2.IDS;
 except.syndrome<23:0> = VSESR_EL2.ISS;
 else
 bits(25) syndrome = bits(25) IMPLEMENTATION_DEFINED "Virtual SError syndrome";
 impdef_syndrome = syndrome<24> == '1';
 if impdef_syndrome then except.syndrome = syndrome;

 ClearPendingVirtualSError();
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.BreakpointException

 // AArch64.BreakpointException()
 // =============================

 AArch64.BreakpointException(FaultRecord fault)
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 bits(2) target_el;
 vect_offset = 0x0;
 target_el = if (PSTATE.EL == EL2 || route_to_el2) then EL2 else EL1;

 vaddress = bits(64) UNKNOWN;
 except = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress, target_el);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

 // AArch64.SoftwareBreakpoint()
 // ============================

 AArch64.SoftwareBreakpoint(bits(16) immediate)

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} &&
 EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_SoftwareBreakpoint);
 except.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13754
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareStepException

 // AArch64.SoftwareStepException()
 // ===============================

 AArch64.SoftwareStepException()
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_SoftwareStep);
 if SoftwareStep_DidNotStep() then
 except.syndrome<24> = '0';
 else
 except.syndrome<24> = '1';
 except.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';
 except.syndrome<5:0> = '100010'; // IFSC = Debug Exception

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.VectorCatchException

 // AArch64.VectorCatchException()
 // ==============================
 // Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
 // being routed to EL2, as Vector Catch is a legacy debug event.

 AArch64.VectorCatchException(FaultRecord fault)
 assert PSTATE.EL != EL2;
 assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 vaddress = bits(64) UNKNOWN;
 except = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress, EL2);

 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.WatchpointException

 // AArch64.WatchpointException()
 // =============================

 AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 bits(2) target_el;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13755
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 vect_offset = 0x0;
 target_el = if (PSTATE.EL == EL2 || route_to_el2) then EL2 else EL1;

 ExceptionRecord except;
 if IsFeatureImplemented(FEAT_NV2) && fault.accessdesc.acctype == AccessType_NV2 then
 except = AArch64.AbortSyndrome(Exception_NV2Watchpoint, fault, vaddress, target_el);
 else
 except = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress, target_el);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/exceptions/AArch64.ExceptionClass

 // AArch64.ExceptionClass()
 // ========================
 // Returns the Exception Class and Instruction Length fields to be reported in ESR

 (integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)

 il_is_valid = TRUE;
 from_32 = UsingAArch32();
 integer ec;
 case exceptype of
 when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03; assert from_32;
 when Exception_CP15RRTTrap ec = 0x04; assert from_32;
 when Exception_CP14RTTrap ec = 0x05; assert from_32;
 when Exception_CP14DTTrap ec = 0x06; assert from_32;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_PACTrap ec = 0x09;
 when Exception_LDST64BTrap ec = 0x0A;
 when Exception_TSTARTAccessTrap ec = 0x1B;
 when Exception_GPC ec = 0x1E;
 when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
 when Exception_BranchTarget ec = 0x0D;
 when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
 when Exception_SystemRegister128Trap ec = 0x14; assert !from_32;
 when Exception_SVEAccessTrap ec = 0x19; assert !from_32;
 when Exception_ERetTrap ec = 0x1A; assert !from_32;
 when Exception_PACFail ec = 0x1C; assert !from_32;
 when Exception_SMEAccessTrap ec = 0x1D; assert !from_32;
 when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
 when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
 when Exception_DataAbort ec = 0x24;
 when Exception_NV2DataAbort ec = 0x25;
 when Exception_SPAlignment ec = 0x26; il_is_valid = FALSE; assert !from_32;
 when Exception_MemCpyMemSet ec = 0x27;
 when Exception_GCSFail ec = 0x2D; assert !from_32;
 when Exception_FPTrappedException ec = 0x28;
 when Exception_SError ec = 0x2F; il_is_valid = FALSE;
 when Exception_Breakpoint ec = 0x30; il_is_valid = FALSE;
 when Exception_SoftwareStep ec = 0x32; il_is_valid = FALSE;
 when Exception_Watchpoint ec = 0x34; il_is_valid = FALSE;
 when Exception_NV2Watchpoint ec = 0x35; il_is_valid = FALSE;
 when Exception_SoftwareBreakpoint ec = 0x38;
 when Exception_VectorCatch ec = 0x3A; il_is_valid = FALSE; assert from_32;
 when Exception_PMU ec = 0x3D;
 otherwise Unreachable();

 if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
 ec = ec + 1;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13756
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
 ec = ec + 4;
 bit il;
 if il_is_valid then
 il = if ThisInstrLength() == 32 then '1' else '0';
 else
 il = '1';
 assert from_32 || il == '1'; // AArch64 instructions always 32-bit

 return (ec,il);

aarch64/exceptions/exceptions/AArch64.ReportException

 // AArch64.ReportException()
 // =========================
 // Report syndrome information for exception taken to AArch64 state.

 AArch64.ReportException(ExceptionRecord except, bits(2) target_el)

 Exception exceptype = except.exceptype;

 (ec,il) = AArch64.ExceptionClass(exceptype, target_el);
 iss = except.syndrome;
 iss2 = except.syndrome2;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 ESR_EL[target_el] = (Zeros(8) : // <63:56>
 iss2 : // <55:32>
 ec<5:0> : // <31:26>
 il : // <25>
 iss); // <24:0>

 if exceptype IN {
 Exception_InstructionAbort,
 Exception_PCAlignment,
 Exception_DataAbort,
 Exception_NV2DataAbort,
 Exception_NV2Watchpoint,
 Exception_GPC,
 Exception_Watchpoint
 } then
 FAR_EL[target_el] = except.vaddress;
 else
 FAR_EL[target_el] = bits(64) UNKNOWN;

 if except.ipavalid then
 HPFAR_EL2<47:4> = except.ipaddress<55:12>;
 if IsSecureEL2Enabled() && CurrentSecurityState() == SS_Secure then
 HPFAR_EL2.NS = except.NS;
 else
 HPFAR_EL2.NS = '0';
 elsif target_el == EL2 then
 HPFAR_EL2<47:4> = bits(44) UNKNOWN;

 if except.pavalid then
 bits(64) faultaddr = ZeroExtend(except.paddress.address, 64);
 if IsFeatureImplemented(FEAT_RME) then
 case except.paddress.paspace of
 when PAS_Secure faultaddr<63:62> = '00';
 when PAS_NonSecure faultaddr<63:62> = '10';
 when PAS_Root faultaddr<63:62> = '01';
 when PAS_Realm faultaddr<63:62> = '11';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13757
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if exceptype == Exception_GPC then
 faultaddr<11:0> = Zeros(12);
 else
 faultaddr<63> = if except.paddress.paspace == PAS_NonSecure then '1' else '0';
 PFAR_EL[target_el] = faultaddr;
 elsif (IsFeatureImplemented(FEAT_PFAR) ||
 (IsFeatureImplemented(FEAT_RME) && target_el == EL3)) then
 PFAR_EL[target_el] = bits(64) UNKNOWN;
 return;

aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

 // AArch64.ResetControlRegisters()
 // ===============================
 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.

 AArch64.ResetControlRegisters(boolean cold_reset);

aarch64/exceptions/exceptions/AArch64.TakeReset

 // AArch64.TakeReset()
 // ===================
 // Reset into AArch64 state

 AArch64.TakeReset(boolean cold_reset)
 assert HaveAArch64();

 // Enter the highest implemented Exception level in AArch64 state
 PSTATE.nRW = '0';
 if HaveEL(EL3) then
 PSTATE.EL = EL3;
 elsif HaveEL(EL2) then
 PSTATE.EL = EL2;
 else
 PSTATE.EL = EL1;

 // Reset System registers
 // and other system components
 AArch64.ResetControlRegisters(cold_reset);

 // Reset all other PSTATE fields
 PSTATE.SP = '1'; // Select stack pointer
 PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
 PSTATE.SS = '0'; // Clear software step bit
 PSTATE.DIT = '0'; // PSTATE.DIT is reset to 0 when resetting into AArch64
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 if IsFeatureImplemented(FEAT_TME) then TSTATE.depth = 0; // Non-transactional state

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch64.ResetGeneralRegisters();
 AArch64.ResetSIMDFPRegisters();
 AArch64.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(64) rv; // IMPLEMENTATION DEFINED reset vector

 if HaveEL(EL3) then
 rv = RVBAR_EL3;
 elsif HaveEL(EL2) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13758
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 rv = RVBAR_EL2;
 else
 rv = RVBAR_EL1;

 // The reset vector must be correctly aligned
 constant integer pamax = AArch64.PAMax();
 assert IsZero(rv<63:pamax>) && IsZero(rv<1:0>);

 boolean branch_conditional = FALSE;
 EDPRSR.R = '0'; // Leaving Reset State.
 BranchTo(rv, BranchType_RESET, branch_conditional);

aarch64/exceptions/ieeefp/AArch64.FPTrappedException

 // AArch64.FPTrappedException()
 // ============================

 AArch64.FPTrappedException(boolean is_ase, bits(8) accumulated_exceptions)
 except = ExceptionSyndrome(Exception_FPTrappedException);
 if is_ase then
 if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then
 except.syndrome<23> = '1'; // TFV
 else
 except.syndrome<23> = '0'; // TFV
 else
 except.syndrome<23> = '1'; // TFV
 except.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
 if except.syndrome<23> == '1' then
 except.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
 else
 except.syndrome<7,4:0> = bits(6) UNKNOWN;

 route_to_el2 = EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallHypervisor

 // AArch64.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch64.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_HypervisorCall);
 except.syndrome<15:0> = immediate;

 if PSTATE.EL == EL3 then
 AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13759
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

 // AArch64.CallSecureMonitor()
 // ===========================

 AArch64.CallSecureMonitor(bits(16) immediate)
 assert HaveEL(EL3) && !ELUsingAArch32(EL3);
 if UsingAArch32() then AArch32.ITAdvance();
 HSAdvance();
 SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_MonitorCall);
 except.syndrome<15:0> = immediate;
 AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSupervisor

 // AArch64.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch64.CallSupervisor(bits(16) immediate)
 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = NextInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_SupervisorCall);
 except.syndrome<15:0> = immediate;
 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/takeexception/AArch64.TakeException

 // AArch64.TakeException()
 // =======================
 // Take an exception to an Exception level using AArch64.

 AArch64.TakeException(bits(2) target_el, ExceptionRecord exception_in,
 bits(64) preferred_exception_return, integer vect_offset_in)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
 if Halted() then
 AArch64.TakeExceptionInDebugState(target_el, exception_in);
 return;
 ExceptionRecord except = exception_in;
 boolean sync_errors;
 boolean iesb_req;
 if IsFeatureImplemented(FEAT_IESB) then
 sync_errors = SCTLR_EL[target_el].IESB == '1';
 if IsFeatureImplemented(FEAT_DoubleFault) then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
 if sync_errors && InsertIESBBeforeException(target_el) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13760
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 SynchronizeErrors();
 iesb_req = FALSE;
 sync_errors = FALSE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
 else
 sync_errors = FALSE;

 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 TMFailure cause;
 case except.exceptype of
 when Exception_SoftwareBreakpoint cause = TMFailure_DBG;
 when Exception_Breakpoint cause = TMFailure_DBG;
 when Exception_Watchpoint cause = TMFailure_DBG;
 when Exception_SoftwareStep cause = TMFailure_DBG;
 otherwise cause = TMFailure_ERR;
 FailTransaction(cause, FALSE);

 boolean brbe_source_allowed = FALSE;
 bits(64) brbe_source_address = Zeros(64);
 if IsFeatureImplemented(FEAT_BRBE) then
 brbe_source_allowed = BranchRecordAllowed(PSTATE.EL);
 brbe_source_address = preferred_exception_return;

 if !IsFeatureImplemented(FEAT_ExS) || SCTLR_EL[target_el].EIS == '1' then
 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();
 if from_32 && IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 ResetSVEState();
 else
 MaybeZeroSVEUppers(target_el);

 integer vect_offset = vect_offset_in;
 if UInt(target_el) > UInt(PSTATE.EL) then
 boolean lower_32;
 if target_el == EL3 then
 if EL2Enabled() then
 lower_32 = ELUsingAArch32(EL2);
 else
 lower_32 = ELUsingAArch32(EL1);
 elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
 lower_32 = ELUsingAArch32(EL0);
 else
 lower_32 = ELUsingAArch32(target_el - 1);
 vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

 elsif PSTATE.SP == '1' then
 vect_offset = vect_offset + 0x200;

 bits(64) spsr = GetPSRFromPSTATE(AArch64_NonDebugState, 64);

 if PSTATE.EL == EL1 && target_el == EL1 && EL2Enabled() then
 if EffectiveHCR_EL2_NVx() IN {'x01', '111'} then
 spsr<3:2> = '10';

 if IsFeatureImplemented(FEAT_BTI) && !UsingAArch32() then
 boolean zero_btype;
 // SPSR_ELx[].BTYPE is only guaranteed valid for these exception types
 if except.exceptype IN {Exception_SError, Exception_IRQ, Exception_FIQ,
 Exception_SoftwareStep, Exception_PCAlignment,
 Exception_InstructionAbort, Exception_Breakpoint,
 Exception_VectorCatch, Exception_SoftwareBreakpoint,
 Exception_IllegalState, Exception_BranchTarget} then
 zero_btype = FALSE;
 else
 zero_btype = ConstrainUnpredictableBool(Unpredictable_ZEROBTYPE);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13761
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if zero_btype then spsr<11:10> = '00';

 if (IsFeatureImplemented(FEAT_NV2) &&
 except.exceptype == Exception_NV2DataAbort && target_el == EL3) then
 // External aborts are configured to be taken to EL3
 except.exceptype = Exception_DataAbort;
 if !(except.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch64.ReportException(except, target_el);

 if IsFeatureImplemented(FEAT_BRBE) then
 bits(64) brbe_target_address = VBAR_EL[target_el]<63:11>:vect_offset<10:0>;
 BRBEException(except, brbe_source_allowed, brbe_source_address,
 brbe_target_address, target_el,
 except.trappedsyscallinst);

 if IsFeatureImplemented(FEAT_GCS) then
 if PSTATE.EL == target_el then
 if GetCurrentEXLOCKEN() then
 PSTATE.EXLOCK = '1';
 else
 PSTATE.EXLOCK = '0';
 else
 PSTATE.EXLOCK = '0';

 PSTATE.EL = target_el;
 PSTATE.nRW = '0';
 PSTATE.SP = '1';

 SPSR_ELx[] = spsr;
 ELR_ELx[] = preferred_exception_return;

 PSTATE.SS = '0';
 if IsFeatureImplemented(FEAT_NMI) && !ELUsingAArch32(target_el) then
 PSTATE.ALLINT = NOT SCTLR_ELx[].SPINTMASK;
 PSTATE.<D,A,I,F> = '1111';
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if (IsFeatureImplemented(FEAT_PAN) && (PSTATE.EL == EL1 ||
 (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
 SCTLR_ELx[].SPAN == '0') then
 PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = '0';
 if IsFeatureImplemented(FEAT_BTI) then PSTATE.BTYPE = '00';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = SCTLR_ELx[].DSSBS;
 if IsFeatureImplemented(FEAT_MTE) then PSTATE.TCO = '1';
 if IsFeatureImplemented(FEAT_EBEP) then PSTATE.PM = '1';
 if IsFeatureImplemented(FEAT_SEBEP) then
 PSTATE.PPEND = '0';
 ShouldSetPPEND = FALSE;

 boolean branch_conditional = FALSE;
 BranchTo(VBAR_ELx[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

 EndOfInstruction();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13762
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

 // AArch64.AArch32SystemAccessTrap()
 // =================================
 // Trapped AARCH32 System register access.

 AArch64.AArch32SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = AArch64.AArch32SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

 // AArch64.AArch32SystemAccessTrapSyndrome()
 // ===
 // Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS,
 // VMSR instructions, other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord except;

 case ec of
 when 0x0 except = ExceptionSyndrome(Exception_Uncategorized);
 when 0x3 except = ExceptionSyndrome(Exception_CP15RTTrap);
 when 0x4 except = ExceptionSyndrome(Exception_CP15RRTTrap);
 when 0x5 except = ExceptionSyndrome(Exception_CP14RTTrap);
 when 0x6 except = ExceptionSyndrome(Exception_CP14DTTrap);
 when 0x7 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 when 0x8 except = ExceptionSyndrome(Exception_FPIDTrap);
 when 0xC except = ExceptionSyndrome(Exception_CP14RRTTrap);
 otherwise Unreachable();

 bits(20) iss = Zeros(20);

 if except.exceptype == Exception_Uncategorized then
 return except;
 elsif except.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap,
 Exception_CP15RTTrap} then
 // Trapped MRC/MCR, VMRS on FPSID
 if except.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<13:10> = instr<19:16>; // CRn
 iss<4:1> = instr<3:0>; // CRm
 else
 iss<19:17> = '000';
 iss<16:14> = '111';
 iss<13:10> = instr<19:16>; // reg
 iss<4:1> = '0000';

 if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15
 iss<9:5> = '11111';
 elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15
 iss<9:5> = bits(5) UNKNOWN;
 else
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
 elsif except.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,
 Exception_CP15RRTTrap} then
 // Trapped MRRC/MCRR, VMRS/VMSR
 iss<19:16> = instr<7:4>; // opc1
 if instr<19:16> == '1111' then // Rt2==15
 iss<14:10> = bits(5) UNKNOWN;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13763
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;

 if instr<15:12> == '1111' then // Rt==15
 iss<9:5> = bits(5) UNKNOWN;
 else
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
 iss<4:1> = instr<3:0>; // CRm
 elsif except.exceptype == Exception_CP14DTTrap then
 // Trapped LDC/STC
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<9:5> = bits(5) UNKNOWN;
 iss<3> = '1';
 iss<0> = instr<20>; // Direction

 except.syndrome<24:20> = ConditionSyndrome();
 except.syndrome<19:0> = iss;

 return except;

aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

 // AArch64.AdvSIMDFPAccessTrap()
 // =============================
 // Trapped access to Advanced SIMD or FP registers due to CPACR[].

 AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 ExceptionRecord except;
 vect_offset = 0x0;

 route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

 if route_to_el2 then
 except = ExceptionSyndrome(Exception_Uncategorized);
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 except.syndrome<24:20> = ConditionSyndrome();
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

 return;

aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

 // AArch64.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained AArch32 traps to System registers in the
 // coproc=0b1111 encoding space by HSTR_EL2, HCR_EL2, and SCTLR_ELx.

 AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
 trapped_encoding = ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}));

 // Check for MRC and MCR disabled by SCTLR_EL1.TIDCP.
 if (IsFeatureImplemented(FEAT_TIDCP1) && PSTATE.EL == EL0 && !IsInHost() &&
 !ELUsingAArch32(EL1) && SCTLR_EL1.TIDCP == '1' && trapped_encoding) then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x3);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13764
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 AArch64.AArch32SystemAccessTrap(EL1, 0x3);

 // Check for coarse-grained Hyp traps
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 // Check for MRC and MCR disabled by SCTLR_EL2.TIDCP.
 if (IsFeatureImplemented(FEAT_TIDCP1) && PSTATE.EL == EL0 && IsInHost() &&
 SCTLR_EL2.TIDCP == '1' && trapped_encoding) then
 AArch64.AArch32SystemAccessTrap(EL2, 0x3);

 major = if nreg == 1 then CRn else CRm;
 // Check for MCR, MRC, MCRR, and MRRC disabled by HSTR_EL2<CRn/CRm>
 // and MRC and MCR disabled by HCR_EL2.TIDCP.
 if ((!IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1') ||
 (HCR_EL2.TIDCP == '1' && nreg == 1 && trapped_encoding)) then
 if (PSTATE.EL == EL0 &&
 boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at EL0") then
 UNDEFINED;
 AArch64.AArch32SystemAccessTrap(EL2, 0x3);

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

 // AArch64.CheckFPAdvSIMDEnabled()
 // ===============================

 AArch64.CheckFPAdvSIMDEnabled()
 AArch64.CheckFPEnabled();
 // Check for illegal use of Advanced
 // SIMD in Streaming SVE Mode
 if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' && !IsFullA64Enabled() then
 SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

 // AArch64.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch64.CheckFPAdvSIMDTrap()
 if HaveEL(EL3) && CPTR_EL3.TFP == '1' && EL3SDDUndefPriority() then
 UNDEFINED;

 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 // Check if access disabled in CPTR_EL2
 if ELIsInHost(EL2) then
 boolean disabled;
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 if HaveEL(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AdvSIMDFPAccessTrap(EL3);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13765
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/traps/AArch64.CheckFPEnabled

 // AArch64.CheckFPEnabled()
 // ========================
 // Check against CPACR[]

 AArch64.CheckFPEnabled()
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check if access disabled in CPACR_EL1
 boolean disabled;
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

 AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

aarch64/exceptions/traps/AArch64.CheckForERetTrap

 // AArch64.CheckForERetTrap()
 // ==========================
 // Check for trap on ERET, ERETAA, ERETAB instruction

 AArch64.CheckForERetTrap(boolean eret_with_pac, boolean pac_uses_key_a)

 route_to_el2 = FALSE;
 // Non-secure EL1 execution of ERET, ERETAA, ERETAB when either HCR_EL2.NV or
 // HFGITR_EL2.ERET is set, is trapped to EL2
 route_to_el2 = (PSTATE.EL == EL1 && EL2Enabled() &&
 (EffectiveHCR_EL2_NVx()<0> == '1' ||
 (IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFGITR_EL2.ERET == '1')));
 if route_to_el2 then
 ExceptionRecord except;
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;
 except = ExceptionSyndrome(Exception_ERetTrap);
 if !eret_with_pac then // ERET
 except.syndrome<1> = '0';
 except.syndrome<0> = '0'; // RES0
 else
 except.syndrome<1> = '1';
 if pac_uses_key_a then // ERETAA
 except.syndrome<0> = '0';
 else // ERETAB
 except.syndrome<0> = '1';
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

 // AArch64.CheckForSMCUndefOrTrap()
 // ================================
 // Check for UNDEFINED or trap on SMC instruction

 AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
 if PSTATE.EL == EL0 then UNDEFINED;
 if (!(PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1') &&
 HaveEL(EL3) && SCR_EL3.SMD == '1') then
 UNDEFINED;
 route_to_el2 = FALSE;
 if !HaveEL(EL3) then
 if PSTATE.EL == EL1 && EL2Enabled() then
 if EffectiveHCR_EL2_NVx()<0> == '1' && HCR_EL2.TSC == '1' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13766
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 route_to_el2 = TRUE;
 else
 UNDEFINED;
 else
 UNDEFINED;
 else
 route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
 if route_to_el2 then
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;
 except = ExceptionSyndrome(Exception_MonitorCall);
 except.syndrome<15:0> = imm;
 except.trappedsyscallinst = TRUE;
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForSVCTrap

 // AArch64.CheckForSVCTrap()
 // =========================
 // Check for trap on SVC instruction

 AArch64.CheckForSVCTrap(bits(16) immediate)
 if IsFeatureImplemented(FEAT_FGT) then
 route_to_el2 = FALSE;
 if PSTATE.EL == EL0 then
 route_to_el2 = (!UsingAArch32() && !ELUsingAArch32(EL1) &&
 EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
 (!IsInHost() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

 elsif PSTATE.EL == EL1 then
 route_to_el2 = (EL2Enabled() && HFGITR_EL2.SVC_EL1 == '1' &&
 (!HaveEL(EL3) || SCR_EL3.FGTEn == '1'));

 if route_to_el2 then
 except = ExceptionSyndrome(Exception_SupervisorCall);
 except.syndrome<15:0> = immediate;
 except.trappedsyscallinst = TRUE;
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForWFxTrap

 // AArch64.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch64.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
 assert HaveEL(target_el);

 boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};
 boolean trap;
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR_ELx[].nTWE else SCTLR_ELx[].nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';
 when EL3
 trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';

 if trap then
 AArch64.WFxTrap(wfxtype, target_el);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13767
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/exceptions/traps/AArch64.CheckIllegalState

 // AArch64.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch64.CheckIllegalState()
 if PSTATE.IL == '1' then
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_IllegalState);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.MonitorModeTrap

 // AArch64.MonitorModeTrap()
 // =========================
 // Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

 AArch64.MonitorModeTrap()
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_Uncategorized);

 if IsSecureEL2Enabled() then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrap

 // AArch64.SystemAccessTrap()
 // ==========================
 // Trapped access to AArch64 System register or system instruction.

 AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

 // AArch64.SystemAccessTrapSyndrome()
 // ==================================
 // Returns the syndrome information for traps on AArch64 MSR/MRS instructions.

 ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr_in, integer ec)
 ExceptionRecord except;
 bits(32) instr = instr_in;
 case ec of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13768
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 0x0 // Trapped access due to unknown reason.
 except = ExceptionSyndrome(Exception_Uncategorized);
 when 0x7 // Trapped access to SVE, Advance SIMD&FP System register.
 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 except.syndrome<24:20> = ConditionSyndrome();
 when 0x14 // Trapped access to 128-bit System register or
 // 128-bit System instruction.
 except = ExceptionSyndrome(Exception_SystemRegister128Trap);
 instr = ThisInstr();
 except.syndrome<21:20> = instr<20:19>; // Op0
 except.syndrome<19:17> = instr<7:5>; // Op2
 except.syndrome<16:14> = instr<18:16>; // Op1
 except.syndrome<13:10> = instr<15:12>; // CRn
 except.syndrome<9:6> = instr<4:1>; // Rt
 except.syndrome<4:1> = instr<11:8>; // CRm
 except.syndrome<0> = instr<21>; // Direction
 when 0x18 // Trapped access to System register or system instruction.
 except = ExceptionSyndrome(Exception_SystemRegisterTrap);
 instr = ThisInstr();
 except.syndrome<21:20> = instr<20:19>; // Op0
 except.syndrome<19:17> = instr<7:5>; // Op2
 except.syndrome<16:14> = instr<18:16>; // Op1
 except.syndrome<13:10> = instr<15:12>; // CRn
 except.syndrome<9:5> = instr<4:0>; // Rt
 except.syndrome<4:1> = instr<11:8>; // CRm
 except.syndrome<0> = instr<21>; // Direction
 when 0x19 // Trapped access to SVE System register
 except = ExceptionSyndrome(Exception_SVEAccessTrap);
 when 0x1D // Trapped access to SME System register
 except = ExceptionSyndrome(Exception_SMEAccessTrap);
 otherwise
 Unreachable();

 return except;

aarch64/exceptions/traps/AArch64.Undefined

 // AArch64.Undefined()
 // ===================

 AArch64.Undefined()

 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_Uncategorized);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.WFxTrap

 // AArch64.WFxTrap()
 // =================

 AArch64.WFxTrap(WFxType wfxtype, bits(2) target_el)
 assert UInt(target_el) > UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr(64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13769
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_WFxTrap);
 except.syndrome<24:20> = ConditionSyndrome();

 case wfxtype of
 when WFxType_WFI
 except.syndrome<1:0> = '00';
 when WFxType_WFE
 except.syndrome<1:0> = '01';
 when WFxType_WFIT
 except.syndrome<1:0> = '10';
 except.syndrome<2> = '1'; // Register field is valid
 except.syndrome<9:5> = ThisInstr()<4:0>;
 when WFxType_WFET
 except.syndrome<1:0> = '11';
 except.syndrome<2> = '1'; // Register field is valid
 except.syndrome<9:5> = ThisInstr()<4:0>;

 if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

 // CheckFPAdvSIMDEnabled64()
 // =========================
 // AArch64 instruction wrapper

 CheckFPAdvSIMDEnabled64()
 AArch64.CheckFPAdvSIMDEnabled();

aarch64/exceptions/traps/CheckFPEnabled64

 // CheckFPEnabled64()
 // ==================
 // AArch64 instruction wrapper

 CheckFPEnabled64()
 AArch64.CheckFPEnabled();

aarch64/exceptions/traps/CheckLDST64BEnabled

 // CheckLDST64BEnabled()
 // =====================
 // Checks for trap on ST64B and LD64B instructions

 CheckLDST64BEnabled()
 boolean trap = FALSE;
 bits(25) iss = ZeroExtend('10', 25); // 0x2
 bits(2) target_el;

 if PSTATE.EL == EL0 then
 if !IsInHost() then
 trap = SCTLR_EL1.EnALS == '0';
 target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;
 else
 trap = SCTLR_EL2.EnALS == '0';
 target_el = EL2;
 else
 target_el = EL1;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13770
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if (!trap && EL2Enabled() &&
 ((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
 trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnALS == '0';
 target_el = EL2;

 if trap then LDST64BTrap(target_el, iss);

aarch64/exceptions/traps/CheckST64BV0Enabled

 // CheckST64BV0Enabled()
 // =====================
 // Checks for trap on ST64BV0 instruction

 CheckST64BV0Enabled()
 boolean trap = FALSE;
 bits(25) iss = ZeroExtend('1', 25); // 0x1
 bits(2) target_el;

 if (PSTATE.EL != EL3 && HaveEL(EL3) &&
 SCR_EL3.EnAS0 == '0' && EL3SDDUndefPriority()) then
 UNDEFINED;

 if PSTATE.EL == EL0 then
 if !IsInHost() then
 trap = SCTLR_EL1.EnAS0 == '0';
 target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;
 else
 trap = SCTLR_EL2.EnAS0 == '0';
 target_el = EL2;

 if (!trap && EL2Enabled() &&
 ((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
 trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnAS0 == '0';
 target_el = EL2;

 if !trap && PSTATE.EL != EL3 then
 trap = HaveEL(EL3) && SCR_EL3.EnAS0 == '0';
 target_el = EL3;

 if trap then
 if target_el == EL3 && EL3SDDUndef() then
 UNDEFINED;
 else
 LDST64BTrap(target_el, iss);

aarch64/exceptions/traps/CheckST64BVEnabled

 // CheckST64BVEnabled()
 // ====================
 // Checks for trap on ST64BV instruction

 CheckST64BVEnabled()
 boolean trap = FALSE;
 bits(25) iss = Zeros(25);
 bits(2) target_el;

 if PSTATE.EL == EL0 then
 if !IsInHost() then
 trap = SCTLR_EL1.EnASR == '0';
 target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;
 else
 trap = SCTLR_EL2.EnASR == '0';
 target_el = EL2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13771
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if (!trap && EL2Enabled() &&
 ((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
 trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnASR == '0';
 target_el = EL2;

 if trap then LDST64BTrap(target_el, iss);

aarch64/exceptions/traps/LDST64BTrap

 // LDST64BTrap()
 // =============
 // Trapped access to LD64B, ST64B, ST64BV and ST64BV0 instructions

 LDST64BTrap(bits(2) target_el, bits(25) iss)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_LDST64BTrap);
 except.syndrome = iss;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

 return;

aarch64/exceptions/traps/WFETrapDelay

 // WFETrapDelay()
 // ==============
 // Returns TRUE when delay in trap to WFE is enabled with value to amount of delay,
 // FALSE otherwise.

 (boolean, integer) WFETrapDelay(bits(2) target_el)
 boolean delay_enabled;
 integer delay;
 case target_el of
 when EL1
 if !IsInHost() then
 delay_enabled = SCTLR_EL1.TWEDEn == '1';
 delay = 1 << (UInt(SCTLR_EL1.TWEDEL) + 8);
 else
 delay_enabled = SCTLR_EL2.TWEDEn == '1';
 delay = 1 << (UInt(SCTLR_EL2.TWEDEL) + 8);
 when EL2
 assert EL2Enabled();
 delay_enabled = HCR_EL2.TWEDEn == '1';
 delay = 1 << (UInt(HCR_EL2.TWEDEL) + 8);
 when EL3
 delay_enabled = SCR_EL3.TWEDEn == '1';
 delay = 1 << (UInt(SCR_EL3.TWEDEL) + 8);

 return (delay_enabled, delay);

aarch64/exceptions/traps/WaitForEventUntilDelay

 // WaitForEventUntilDelay()
 // ========================
 // Returns TRUE if WaitForEvent() returns before WFE trap delay expires,
 // FALSE otherwise.

 boolean WaitForEventUntilDelay(boolean delay_enabled, integer delay);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13772
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
J1.1.3 aarch64/functions

This section includes the following pseudocode functions:

• aarch64/functions/aborts/AArch64.FaultSyndrome.

• aarch64/functions/aborts/EncodeGPCSC.

• aarch64/functions/aborts/LS64InstructionSyndrome.

• aarch64/functions/aborts/WatchpointFARNotPrecise.

• aarch64/functions/at/AArch64.AT.

• aarch64/functions/at/AArch64.EncodePAR.

• aarch64/functions/at/AArch64.PARFaultStatus.

• aarch64/functions/at/AArch64.isPARFormatD128.

• aarch64/functions/at/GetPAR_EL1_D128.

• aarch64/functions/at/GetPAR_EL1_F.

• aarch64/functions/barrierop/MemBarrierOp.

• aarch64/functions/bfxpreferred/BFXPreferred.

• aarch64/functions/bitmasks/AltDecodeBitMasks.

• aarch64/functions/bitmasks/DecodeBitMasks.

• aarch64/functions/cache/AArch64.DataMemZero.

• aarch64/functions/cache/AArch64.TagMemZero.

• aarch64/functions/compareop/CompareOp.

• aarch64/functions/countop/CountOp.

• aarch64/functions/d128/IsD128Enabled.

• aarch64/functions/dc/AArch64.DC.

• aarch64/functions/dc/AArch64.MemZero.

• aarch64/functions/dc/MemZero.

• aarch64/functions/eret/AArch64.ExceptionReturn.

• aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass.

• aarch64/functions/exclusive/AArch64.IsExclusiveVA.

• aarch64/functions/exclusive/AArch64.MarkExclusiveVA.

• aarch64/functions/exclusive/AArch64.SetExclusiveMonitors.

• aarch64/functions/extendreg/DecodeRegExtend.

• aarch64/functions/extendreg/ExtendReg.

• aarch64/functions/extendreg/ExtendType.

• aarch64/functions/fpconvop/FPConvOp.

• aarch64/functions/fpmaxminop/FPMaxMinOp.

• aarch64/functions/fpunaryop/FPUnaryOp.

• aarch64/functions/fusedrstep/FPRSqrtStepFused.

• aarch64/functions/fusedrstep/FPRecipStepFused.

• aarch64/functions/gcs/AddGCSExRecord.

• aarch64/functions/gcs/AddGCSRecord.

• aarch64/functions/gcs/CheckGCSExRecord.

• aarch64/functions/gcs/CheckGCSSTREnabled.

• aarch64/functions/gcs/EXLOCKException.

• aarch64/functions/gcs/GCSDataCheckException.

• aarch64/functions/gcs/GCSEnabled.

• aarch64/functions/gcs/GCSInstruction.

• aarch64/functions/gcs/GCSPCREnabled.

• aarch64/functions/gcs/GCSPCRSelected.

• aarch64/functions/gcs/GCSPOPCX.

• aarch64/functions/gcs/GCSPOPM.

• aarch64/functions/gcs/GCSPOPX.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13773
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/gcs/GCSPUSHM.

• aarch64/functions/gcs/GCSPUSHX.

• aarch64/functions/gcs/GCSReturnValueCheckEnabled.

• aarch64/functions/gcs/GCSSS1.

• aarch64/functions/gcs/GCSSS2.

• aarch64/functions/gcs/GCSSTRTrapException.

• aarch64/functions/gcs/GCSSynchronizationBarrier.

• aarch64/functions/gcs/GetCurrentEXLOCKEN.

• aarch64/functions/gcs/GetCurrentGCSPointer.

• aarch64/functions/gcs/LoadCheckGCSRecord.

• aarch64/functions/gcs/SetCurrentGCSPointer.

• aarch64/functions/ic/AArch64.IC.

• aarch64/functions/immediateop/ImmediateOp.

• aarch64/functions/logicalop/LogicalOp.

• aarch64/functions/mec/AArch64.S1AMECFault.

• aarch64/functions/mec/AArch64.S1DisabledOutputMECID.

• aarch64/functions/mec/AArch64.S1OutputMECID.

• aarch64/functions/mec/AArch64.S2OutputMECID.

• aarch64/functions/mec/AArch64.TTWalkMECID.

• aarch64/functions/mec/DEFAULT_MECID.

• aarch64/functions/memory/AArch64.AccessIsTagChecked.

• aarch64/functions/memory/AArch64.AddressWithAllocationTag.

• aarch64/functions/memory/AArch64.AllocationTagCheck.

• aarch64/functions/memory/AArch64.AllocationTagFromAddress.

• aarch64/functions/memory/AArch64.CanonicalTagCheck.

• aarch64/functions/memory/AArch64.CheckTag.

• aarch64/functions/memory/AArch64.IsUnprivAccessPriv.

• aarch64/functions/memory/AArch64.MemSingle.

• aarch64/functions/memory/AArch64.MemSingleRead.

• aarch64/functions/memory/AArch64.MemSingleWrite.

• aarch64/functions/memory/AArch64.MemTag.

• aarch64/functions/memory/AArch64.PhysicalTag.

• aarch64/functions/memory/AArch64.UnalignedAccessFaults.

• aarch64/functions/memory/AddressSupportsLS64.

• aarch64/functions/memory/AllInAlignedQuantity.

• aarch64/functions/memory/CheckSPAlignment.

• aarch64/functions/memory/Mem.

• aarch64/functions/memory/MemAtomic.

• aarch64/functions/memory/MemAtomicRCW.

• aarch64/functions/memory/MemLoad64B.

• aarch64/functions/memory/MemStore64B.

• aarch64/functions/memory/MemStore64BWithRet.

• aarch64/functions/memory/MemStore64BWithRetStatus.

• aarch64/functions/memory/NVMem.

• aarch64/functions/memory/PhysMemTagRead.

• aarch64/functions/memory/PhysMemTagWrite.

• aarch64/functions/memory/StoreOnlyTagCheckingEnabled.

• aarch64/functions/mops/CPYFOptionA.

• aarch64/functions/mops/CPYOptionA.

• aarch64/functions/mops/CPYParams.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13774
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/mops/CPYPostSizeChoice.

• aarch64/functions/mops/CPYPreSizeChoice.

• aarch64/functions/mops/CPYSizeChoice.

• aarch64/functions/mops/CheckMOPSEnabled.

• aarch64/functions/mops/CheckMemCpyParams.

• aarch64/functions/mops/CheckMemSetParams.

• aarch64/functions/mops/IsMemCpyForward.

• aarch64/functions/mops/MOPSStage.

• aarch64/functions/mops/MaxBlockSizeCopiedBytes.

• aarch64/functions/mops/MemCpyBytes.

• aarch64/functions/mops/MemCpyParametersIllformedE.

• aarch64/functions/mops/MemCpyParametersIllformedM.

• aarch64/functions/mops/MemCpyStageSize.

• aarch64/functions/mops/MemCpyZeroSizeCheck.

• aarch64/functions/mops/MemSetBytes.

• aarch64/functions/mops/MemSetParametersIllformedE.

• aarch64/functions/mops/MemSetParametersIllformedM.

• aarch64/functions/mops/MemSetStageSize.

• aarch64/functions/mops/MemSetZeroSizeCheck.

• aarch64/functions/mops/MismatchedCpySetTargetEL.

• aarch64/functions/mops/MismatchedMemCpyException.

• aarch64/functions/mops/MismatchedMemSetException.

• aarch64/functions/mops/SETGOptionA.

• aarch64/functions/mops/SETOptionA.

• aarch64/functions/mops/SETParams.

• aarch64/functions/mops/SETPostSizeChoice.

• aarch64/functions/mops/SETPreSizeChoice.

• aarch64/functions/mops/SETSizeChoice.

• aarch64/functions/mops/UpdateCpyRegisters.

• aarch64/functions/mops/UpdateSetRegisters.

• aarch64/functions/movewideop/MoveWideOp.

• aarch64/functions/movwpreferred/MoveWidePreferred.

• aarch64/functions/pac/addpac/AddPAC.

• aarch64/functions/pac/addpacda/AddPACDA.

• aarch64/functions/pac/addpacdb/AddPACDB.

• aarch64/functions/pac/addpacga/AddPACGA.

• aarch64/functions/pac/addpacia/AddPACIA.

• aarch64/functions/pac/addpacib/AddPACIB.

• aarch64/functions/pac/auth/AArch64.PACFailException.

• aarch64/functions/pac/auth/Auth.

• aarch64/functions/pac/authda/AuthDA.

• aarch64/functions/pac/authdb/AuthDB.

• aarch64/functions/pac/authia/AuthIA.

• aarch64/functions/pac/authib/AuthIB.

• aarch64/functions/pac/calcbottompacbit/AArch64.PACEffectiveTxSZ.

• aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit.

• aarch64/functions/pac/computepac/ComputePAC.

• aarch64/functions/pac/computepac/ComputePAC2.

• aarch64/functions/pac/computepac/ComputePACIMPDEF.

• aarch64/functions/pac/computepac/ComputePACQARMA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13775
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/pac/computepac/PACCellInvShuffle.

• aarch64/functions/pac/computepac/PACCellShuffle.

• aarch64/functions/pac/computepac/PACInvSub.

• aarch64/functions/pac/computepac/PACMult.

• aarch64/functions/pac/computepac/PACSub.

• aarch64/functions/pac/computepac/PacSub1.

• aarch64/functions/pac/computepac/RC.

• aarch64/functions/pac/computepac/RotCell.

• aarch64/functions/pac/computepac/TweakCellInvRot.

• aarch64/functions/pac/computepac/TweakCellRot.

• aarch64/functions/pac/computepac/TweakInvShuffle.

• aarch64/functions/pac/computepac/TweakShuffle.

• aarch64/functions/pac/computepac/UsePACIMP.

• aarch64/functions/pac/computepac/UsePACQARMA3.

• aarch64/functions/pac/computepac/UsePACQARMA5.

• aarch64/functions/pac/pac/ConstPACField.

• aarch64/functions/pac/pac/HavePACIMPAuth.

• aarch64/functions/pac/pac/HavePACIMPGeneric.

• aarch64/functions/pac/pac/HavePACQARMA3Auth.

• aarch64/functions/pac/pac/HavePACQARMA3Generic.

• aarch64/functions/pac/pac/HavePACQARMA5Auth.

• aarch64/functions/pac/pac/HavePACQARMA5Generic.

• aarch64/functions/pac/pac/IsAPDAKeyEnabled.

• aarch64/functions/pac/pac/IsAPDBKeyEnabled.

• aarch64/functions/pac/pac/IsAPIAKeyEnabled.

• aarch64/functions/pac/pac/IsAPIBKeyEnabled.

• aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges.

• aarch64/functions/pac/strip/Strip.

• aarch64/functions/pac/trappacuse/TrapPACUse.

• aarch64/functions/predictionrestrict/AArch64.RestrictPrediction.

• aarch64/functions/prefetch/Prefetch.

• aarch64/functions/pstatefield/PSTATEField.

• aarch64/functions/ras/AArch64.ESBOperation.

• aarch64/functions/ras/AArch64.EncodeAsyncErrorSyndrome.

• aarch64/functions/ras/AArch64.EncodeSyncErrorSyndrome.

• aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome.

• aarch64/functions/ras/AArch64.vESBOperation.

• aarch64/functions/ras/FirstRecordOfNode.

• aarch64/functions/ras/IsCommonFaultInjectionImplemented.

• aarch64/functions/ras/IsCountableErrorsRecorded.

• aarch64/functions/ras/IsErrorAddressIncluded.

• aarch64/functions/ras/IsErrorRecordImplemented.

• aarch64/functions/ras/IsFirstRecordOfNode.

• aarch64/functions/ras/IsSPMUCounterImplemented.

• aarch64/functions/rcw/ProtectionEnabled.

• aarch64/functions/rcw/RCW128_PROTECTED_BIT.

• aarch64/functions/rcw/RCW64_PROTECTED_BIT.

• aarch64/functions/rcw/RCWCheck.

• aarch64/functions/reduceop/FPReduce.

• aarch64/functions/reduceop/IntReduce.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13776
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/reduceop/ReduceOp.

• aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers.

• aarch64/functions/registers/AArch64.ResetGeneralRegisters.

• aarch64/functions/registers/AArch64.ResetSIMDFPRegisters.

• aarch64/functions/registers/AArch64.ResetSpecialRegisters.

• aarch64/functions/registers/AArch64.ResetSystemRegisters.

• aarch64/functions/registers/PC64.

• aarch64/functions/registers/SP.

• aarch64/functions/registers/SPMCFGR_EL1.

• aarch64/functions/registers/SPMCGCR_EL1.

• aarch64/functions/registers/SPMCNTENCLR_EL0.

• aarch64/functions/registers/SPMCNTENSET_EL0.

• aarch64/functions/registers/SPMCR_EL0.

• aarch64/functions/registers/SPMDEVAFF_EL1.

• aarch64/functions/registers/SPMDEVARCH_EL1.

• aarch64/functions/registers/SPMEVCNTR_EL0.

• aarch64/functions/registers/SPMEVFILT2R_EL0.

• aarch64/functions/registers/SPMEVFILTR_EL0.

• aarch64/functions/registers/SPMEVTYPER_EL0.

• aarch64/functions/registers/SPMIIDR_EL1.

• aarch64/functions/registers/SPMINTENCLR_EL1.

• aarch64/functions/registers/SPMINTENSET_EL1.

• aarch64/functions/registers/SPMOVSCLR_EL0.

• aarch64/functions/registers/SPMOVSSET_EL0.

• aarch64/functions/registers/SPMROOTCR_EL3.

• aarch64/functions/registers/SPMSCR_EL1.

• aarch64/functions/registers/V.

• aarch64/functions/registers/Vpart.

• aarch64/functions/registers/X.

• aarch64/functions/shiftreg/DecodeShift.

• aarch64/functions/shiftreg/ShiftReg.

• aarch64/functions/shiftreg/ShiftType.

• aarch64/functions/sme/CounterToPredicate.

• aarch64/functions/sme/EncodePredCount.

• aarch64/functions/sme/HaveSME.

• aarch64/functions/sme/HaveSME2.

• aarch64/functions/sme/HaveSME2p1.

• aarch64/functions/sme/HaveSMEB16B16.

• aarch64/functions/sme/HaveSMEF16F16.

• aarch64/functions/sme/HaveSMEF64F64.

• aarch64/functions/sme/HaveSMEI16I64.

• aarch64/functions/sme/Lookup.

• aarch64/functions/sme/PredCountTest.

• aarch64/functions/sme/System.

• aarch64/functions/sme/ZAhslice.

• aarch64/functions/sme/ZAslice.

• aarch64/functions/sme/ZAtile.

• aarch64/functions/sme/ZAvector.

• aarch64/functions/sme/ZAvslice.

• aarch64/functions/sme/ZT0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13777
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/sve/AArch32.IsFPEnabled.

• aarch64/functions/sve/AArch64.IsFPEnabled.

• aarch64/functions/sve/ActivePredicateElement.

• aarch64/functions/sve/AnyActiveElement.

• aarch64/functions/sve/BitDeposit.

• aarch64/functions/sve/BitExtract.

• aarch64/functions/sve/BitGroup.

• aarch64/functions/sve/CeilPow2.

• aarch64/functions/sve/CheckNonStreamingSVEEnabled.

• aarch64/functions/sve/CheckOriginalSVEEnabled.

• aarch64/functions/sve/CheckSMEAccess.

• aarch64/functions/sve/CheckSMEAndZAEnabled.

• aarch64/functions/sve/CheckSMEEnabled.

• aarch64/functions/sve/CheckSMEZT0Enabled.

• aarch64/functions/sve/CheckSVEEnabled.

• aarch64/functions/sve/CheckStreamingSVEAndZAEnabled.

• aarch64/functions/sve/CheckStreamingSVEEnabled.

• aarch64/functions/sve/CurrentNSVL.

• aarch64/functions/sve/CurrentSVL.

• aarch64/functions/sve/CurrentVL.

• aarch64/functions/sve/DecodePredCount.

• aarch64/functions/sve/ElemFFR.

• aarch64/functions/sve/FFR.

• aarch64/functions/sve/FPCompareNE.

• aarch64/functions/sve/FPCompareUN.

• aarch64/functions/sve/FPConvertSVE.

• aarch64/functions/sve/FPExpA.

• aarch64/functions/sve/FPExpCoefficient.

• aarch64/functions/sve/FPLogB.

• aarch64/functions/sve/FPMinNormal.

• aarch64/functions/sve/FPOne.

• aarch64/functions/sve/FPPointFive.

• aarch64/functions/sve/FPReducePredicated.

• aarch64/functions/sve/FPScale.

• aarch64/functions/sve/FPTrigMAdd.

• aarch64/functions/sve/FPTrigMAddCoefficient.

• aarch64/functions/sve/FPTrigSMul.

• aarch64/functions/sve/FPTrigSSel.

• aarch64/functions/sve/FirstActive.

• aarch64/functions/sve/FloorPow2.

• aarch64/functions/sve/HaveSMEFullA64.

• aarch64/functions/sve/HaveSVE.

• aarch64/functions/sve/HaveSVE2.

• aarch64/functions/sve/HaveSVE2AES.

• aarch64/functions/sve/HaveSVE2BitPerm.

• aarch64/functions/sve/HaveSVE2PMULL128.

• aarch64/functions/sve/HaveSVE2SHA256.

• aarch64/functions/sve/HaveSVE2SHA3.

• aarch64/functions/sve/HaveSVE2SHA512.

• aarch64/functions/sve/HaveSVE2SM3.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13778
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/sve/HaveSVE2SM4.

• aarch64/functions/sve/HaveSVE2p1.

• aarch64/functions/sve/HaveSVEB16B16.

• aarch64/functions/sve/HaveSVEFP32MatMulExt.

• aarch64/functions/sve/HaveSVEFP64MatMulExt.

• aarch64/functions/sve/ImplementedSMEVectorLength.

• aarch64/functions/sve/ImplementedSVEVectorLength.

• aarch64/functions/sve/InStreamingMode.

• aarch64/functions/sve/IntReducePredicated.

• aarch64/functions/sve/IsEven.

• aarch64/functions/sve/IsFPEnabled.

• aarch64/functions/sve/IsFullA64Enabled.

• aarch64/functions/sve/IsOdd.

• aarch64/functions/sve/IsOriginalSVEEnabled.

• aarch64/functions/sve/IsPow2.

• aarch64/functions/sve/IsSMEEnabled.

• aarch64/functions/sve/IsSVEEnabled.

• aarch64/functions/sve/LastActive.

• aarch64/functions/sve/LastActiveElement.

• aarch64/functions/sve/MaxImplementedAnyVL.

• aarch64/functions/sve/MaxImplementedSVL.

• aarch64/functions/sve/MaxImplementedVL.

• aarch64/functions/sve/MaybeZeroSVEUppers.

• aarch64/functions/sve/MemNF.

• aarch64/functions/sve/MemSingleNF.

• aarch64/functions/sve/NoneActive.

• aarch64/functions/sve/P.

• aarch64/functions/sve/PredTest.

• aarch64/functions/sve/PredicateElement.

• aarch64/functions/sve/ResetSMEState.

• aarch64/functions/sve/ResetSVEState.

• aarch64/functions/sve/SMEAccessTrap.

• aarch64/functions/sve/SMEExceptionType.

• aarch64/functions/sve/SVEAccessTrap.

• aarch64/functions/sve/SVECmp.

• aarch64/functions/sve/SVEMoveMaskPreferred.

• aarch64/functions/sve/SetPSTATE_SM.

• aarch64/functions/sve/SetPSTATE_SVCR.

• aarch64/functions/sve/SetPSTATE_ZA.

• aarch64/functions/sve/ShiftSat.

• aarch64/functions/sve/SupportedPowerTwoSVL.

• aarch64/functions/sve/System.

• aarch64/functions/sve/Z.

• aarch64/functions/syshintop/SystemHintOp.

• aarch64/functions/sysop/SysOp.

• aarch64/functions/sysop/SystemOp.

• aarch64/functions/sysop_128/SysOp128.

• aarch64/functions/sysop_128/SystemOp128.

• aarch64/functions/sysregisters/ELR_EL.

• aarch64/functions/sysregisters/ELR_ELx.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13779
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/sysregisters/ESRType.

• aarch64/functions/sysregisters/ESR_EL.

• aarch64/functions/sysregisters/ESR_ELx.

• aarch64/functions/sysregisters/FAR_EL.

• aarch64/functions/sysregisters/FAR_ELx.

• aarch64/functions/sysregisters/PFAR_EL.

• aarch64/functions/sysregisters/PFAR_ELx.

• aarch64/functions/sysregisters/S1PIRType.

• aarch64/functions/sysregisters/S1PORType.

• aarch64/functions/sysregisters/S2PIRType.

• aarch64/functions/sysregisters/S2PORType.

• aarch64/functions/sysregisters/SCTLRType.

• aarch64/functions/sysregisters/SCTLR_EL.

• aarch64/functions/sysregisters/SCTLR_ELx.

• aarch64/functions/sysregisters/VBAR_EL.

• aarch64/functions/sysregisters/VBAR_ELx.

• aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled.

• aarch64/functions/system/AArch64.CheckDAIFAccess.

• aarch64/functions/system/AArch64.CheckSystemAccess.

• aarch64/functions/system/AArch64.ChooseNonExcludedTag.

• aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr.

• aarch64/functions/system/AArch64.ExecutingBTIInstr.

• aarch64/functions/system/AArch64.ExecutingERETInstr.

• aarch64/functions/system/AArch64.ImpDefSysInstr.

• aarch64/functions/system/AArch64.ImpDefSysInstr128.

• aarch64/functions/system/AArch64.ImpDefSysInstrWithResult.

• aarch64/functions/system/AArch64.ImpDefSysRegRead.

• aarch64/functions/system/AArch64.ImpDefSysRegRead128.

• aarch64/functions/system/AArch64.ImpDefSysRegWrite.

• aarch64/functions/system/AArch64.ImpDefSysRegWrite128.

• aarch64/functions/system/AArch64.NextRandomTagBit.

• aarch64/functions/system/AArch64.RandomTag.

• aarch64/functions/system/AArch64.SysInstr.

• aarch64/functions/system/AArch64.SysInstrWithResult.

• aarch64/functions/system/AArch64.SysRegRead.

• aarch64/functions/system/AArch64.SysRegWrite.

• aarch64/functions/system/BTypeCompatible.

• aarch64/functions/system/BTypeCompatible_BTI.

• aarch64/functions/system/BTypeCompatible_PACIXSP.

• aarch64/functions/system/BTypeNext.

• aarch64/functions/system/ChooseRandomNonExcludedTag.

• aarch64/functions/system/InGuardedPage.

• aarch64/functions/system/IsHCRXEL2Enabled.

• aarch64/functions/system/IsSCTLR2EL1Enabled.

• aarch64/functions/system/IsSCTLR2EL2Enabled.

• aarch64/functions/system/IsTCR2EL1Enabled.

• aarch64/functions/system/IsTCR2EL2Enabled.

• aarch64/functions/system/SetBTypeCompatible.

• aarch64/functions/system/SetBTypeNext.

• aarch64/functions/system/SetInGuardedPage.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13780
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/system128/AArch64.SysInstr128.

• aarch64/functions/system128/AArch64.SysRegRead128.

• aarch64/functions/system128/AArch64.SysRegWrite128.

• aarch64/functions/tlbi/AArch64.TLBIP_IPAS2.

• aarch64/functions/tlbi/AArch64.TLBIP_RIPAS2.

• aarch64/functions/tlbi/AArch64.TLBIP_RVA.

• aarch64/functions/tlbi/AArch64.TLBIP_RVAA.

• aarch64/functions/tlbi/AArch64.TLBIP_VA.

• aarch64/functions/tlbi/AArch64.TLBIP_VAA.

• aarch64/functions/tlbi/AArch64.TLBI_ALL.

• aarch64/functions/tlbi/AArch64.TLBI_ASID.

• aarch64/functions/tlbi/AArch64.TLBI_IPAS2.

• aarch64/functions/tlbi/AArch64.TLBI_PAALL.

• aarch64/functions/tlbi/AArch64.TLBI_RIPAS2.

• aarch64/functions/tlbi/AArch64.TLBI_RPA.

• aarch64/functions/tlbi/AArch64.TLBI_RVA.

• aarch64/functions/tlbi/AArch64.TLBI_RVAA.

• aarch64/functions/tlbi/AArch64.TLBI_VA.

• aarch64/functions/tlbi/AArch64.TLBI_VAA.

• aarch64/functions/tlbi/AArch64.TLBI_VMALL.

• aarch64/functions/tlbi/AArch64.TLBI_VMALLS12.

• aarch64/functions/tlbi/ASID_NONE.

• aarch64/functions/tlbi/Broadcast.

• aarch64/functions/tlbi/DecodeTLBITG.

• aarch64/functions/tlbi/GPTTLBIMatch.

• aarch64/functions/tlbi/HasLargeAddress.

• aarch64/functions/tlbi/ResTLBIRTTL.

• aarch64/functions/tlbi/ResTLBITTL.

• aarch64/functions/tlbi/TGBits.

• aarch64/functions/tlbi/TLBI.

• aarch64/functions/tlbi/TLBILevel.

• aarch64/functions/tlbi/TLBIMatch.

• aarch64/functions/tlbi/TLBIMemAttr.

• aarch64/functions/tlbi/TLBIOp.

• aarch64/functions/tlbi/TLBIPRange.

• aarch64/functions/tlbi/TLBIRange.

• aarch64/functions/tlbi/TLBIRecord.

• aarch64/functions/tlbi/VMID.

• aarch64/functions/tlbi/VMID_NONE.

• aarch64/functions/tme/CheckTransactionalSystemAccess.

• aarch64/functions/tme/CommitTransactionalWrites.

• aarch64/functions/tme/DiscardTransactionalWrites.

• aarch64/functions/tme/FailTransaction.

• aarch64/functions/tme/IsTMEEnabled.

• aarch64/functions/tme/MemHasTransactionalAccess.

• aarch64/functions/tme/RestoreTransactionCheckpoint.

• aarch64/functions/tme/StartTrackingTransactionalReadsWrites.

• aarch64/functions/tme/TMFailure.

• aarch64/functions/tme/TMState.

• aarch64/functions/tme/TSTATE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13781
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/functions/tme/TakeTransactionCheckpoint.

• aarch64/functions/tme/TransactionStartTrap.

• aarch64/functions/vbitop/VBitOp.

aarch64/functions/aborts/AArch64.FaultSyndrome

 // AArch64.FaultSyndrome()
 // =======================
 // Creates an exception syndrome value and updates the virtual address for Abort and Watchpoint
 // exceptions taken to an Exception level using AArch64.

 (bits(25), bits(24)) AArch64.FaultSyndrome(Exception exceptype, FaultRecord fault, boolean pavalid,
 bits(64) vaddress)
 assert fault.statuscode != Fault_None;

 bits(25) iss = Zeros(25);
 bits(24) iss2 = Zeros(24);

 boolean d_side = exceptype IN {Exception_DataAbort, Exception_NV2DataAbort,
 Exception_Watchpoint, Exception_NV2Watchpoint};
 if IsFeatureImplemented(FEAT_RAS) && fault.statuscode == Fault_SyncExternal then
 ErrorState errstate = PEErrorState(fault);
 iss<12:11> = AArch64.EncodeSyncErrorSyndrome(errstate); // SET

 if d_side then
 if fault.accessdesc.acctype == AccessType_GCS then
 iss2<8> = '1';
 if exceptype == Exception_Watchpoint then
 iss<23:0> = WatchpointRelatedSyndrome(fault, vaddress);
 if IsFeatureImplemented(FEAT_LS64) && fault.accessdesc.ls64 then
 if (fault.statuscode IN {Fault_AccessFlag, Fault_Translation, Fault_Permission}) then
 (iss2, iss<24:14>) = LS64InstructionSyndrome();
 elsif (IsSecondStage(fault) && !fault.s2fs1walk &&
 (!IsExternalSyncAbort(fault) ||
 (!IsFeatureImplemented(FEAT_RAS) && fault.accessdesc.acctype == AccessType_TTW &&
 boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
 iss<24:14> = LSInstructionSyndrome();

 if IsFeatureImplemented(FEAT_NV2) && fault.accessdesc.acctype == AccessType_NV2 then
 iss<13> = '1'; // Fault is generated by use of VNCR_EL2

 if (IsFeatureImplemented(FEAT_LS64) &&
 fault.statuscode IN {Fault_AccessFlag, Fault_Translation, Fault_Permission}) then
 iss<12:11> = GetLoadStoreType();

 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 iss<8> = '1';

 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 iss<6> = '1';
 elsif fault.statuscode IN {Fault_HWUpdateAccessFlag, Fault_Exclusive} then
 iss<6> = bit UNKNOWN;
 elsif fault.accessdesc.atomicop && IsExternalAbort(fault) then
 iss<6> = bit UNKNOWN;
 else
 iss<6> = if fault.write then '1' else '0';

 if fault.statuscode == Fault_Permission then
 iss2<5> = if fault.dirtybit then '1' else '0';
 iss2<6> = if fault.overlay then '1' else '0';
 if iss<24> == '0' then
 iss<21> = if fault.toplevel then '1' else '0';
 iss2<7> = if fault.assuredonly then '1' else '0';
 iss2<9> = if fault.tagaccess then '1' else '0';
 iss2<10> = if fault.s1tagnotdata then '1' else '0';

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13782
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 if (fault.accessdesc.acctype == AccessType_IFETCH &&
 fault.statuscode == Fault_Permission) then
 iss2<5> = if fault.dirtybit then '1' else '0';
 iss<21> = if fault.toplevel then '1' else '0';
 iss2<7> = if fault.assuredonly then '1' else '0';
 iss2<6> = if fault.overlay then '1' else '0';
 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

 return (iss, iss2);

aarch64/functions/aborts/EncodeGPCSC

 // EncodeGPCSC()
 // =============
 // Function that gives the GPCSC code for types of GPT Fault

 bits(6) EncodeGPCSC(GPCFRecord gpcf)
 assert gpcf.level IN {0,1};

 case gpcf.gpf of
 when GPCF_AddressSize return '00000':gpcf.level<0>;
 when GPCF_Walk return '00010':gpcf.level<0>;
 when GPCF_Fail return '00110':gpcf.level<0>;
 when GPCF_EABT return '01010':gpcf.level<0>;

aarch64/functions/aborts/LS64InstructionSyndrome

 // LS64InstructionSyndrome()
 // =========================
 // Returns the syndrome information and LST for a Data Abort by a
 // ST64B, ST64BV, ST64BV0, or LD64B instruction. The syndrome information
 // includes the ISS2, extended syndrome field.

 (bits(24), bits(11)) LS64InstructionSyndrome();

aarch64/functions/aborts/WatchpointFARNotPrecise

 // WatchpointFARNotPrecise()
 // =========================
 // Returns TRUE If the lowest watchpointed address that is higher than or equal to the address
 // recorded in EDWAR might not have been accessed by the instruction, other than the CONSTRAINED
 // UNPREDICTABLE condition of watchpoint matching a range of addresses with lowest address 16 bytes
 // rounded down and upper address rounded up to nearest 16 byte multiple,
 // FALSE otherwise.

 boolean WatchpointFARNotPrecise(FaultRecord fault);

aarch64/functions/at/AArch64.AT

 // AArch64.AT()
 // ============
 // Perform address translation as per AT instructions.

 AArch64.AT(bits(64) address, TranslationStage stage_in, bits(2) el_in, ATAccess ataccess)
 TranslationStage stage = stage_in;
 bits(2) el = el_in;
 bits(2) effective_nse_ns = EffectiveSCR_EL3_NSE() : EffectiveSCR_EL3_NS();
 if (IsFeatureImplemented(FEAT_RME) && PSTATE.EL == EL3 &&
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13783
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 effective_nse_ns == '10' && el != EL3) then
 UNDEFINED;
 // For stage 1 translation, when HCR_EL2.{E2H, TGE} is {1,1} and requested EL is EL1,
 // the EL2&0 translation regime is used.
 if ELIsInHost(EL0) && el == EL1 && stage == TranslationStage_1 then
 el = EL2;

 if HaveEL(EL3) && stage == TranslationStage_12 && !EL2Enabled() then
 stage = TranslationStage_1;

 SecurityState ss = SecurityStateAtEL(el);

 accdesc = CreateAccDescAT(ss, el, ataccess);
 aligned = TRUE;

 FaultRecord fault = NoFault(accdesc);
 Regime regime;
 if stage == TranslationStage_12 then
 regime = Regime_EL10;
 else
 regime = TranslationRegime(el);

 AddressDescriptor addrdesc;
 if (el == EL0 && ELUsingAArch32(EL1)) || (el != EL0 && ELUsingAArch32(el)) then
 if regime == Regime_EL2 || TTBCR.EAE == '1' then
 (fault, addrdesc) = AArch32.S1TranslateLD(fault, regime, address<31:0>, aligned,
 accdesc);
 else
 (fault, addrdesc, -) = AArch32.S1TranslateSD(fault, regime, address<31:0>, aligned,
 accdesc);
 else
 (fault, addrdesc) = AArch64.S1Translate(fault, regime, address, aligned, accdesc);

 if stage == TranslationStage_12 && fault.statuscode == Fault_None then
 boolean s1aarch64;
 if ELUsingAArch32(EL1) && regime == Regime_EL10 && EL2Enabled() then
 addrdesc.vaddress = ZeroExtend(address, 64);
 (fault, addrdesc) = AArch32.S2Translate(fault, addrdesc, aligned, accdesc);
 elsif regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 (fault, addrdesc) = AArch64.S2Translate(fault, addrdesc, s1aarch64, aligned, accdesc);

 is_ATS1Ex = stage != TranslationStage_12;
 if fault.statuscode != Fault_None then
 addrdesc = CreateFaultyAddressDescriptor(address, fault);
 // Take an exception on:
 // * A Synchronous External abort occurs on translation table walk
 // * A stage 2 fault occurs on a stage 1 walk
 // * A GPC Exception (FEAT_RME)
 // * A GPF from ATS1E{1,0}* when executed from EL1 and HCR_EL2.GPF == '1' (FEAT_RME)
 if (IsExternalAbort(fault) ||
 (PSTATE.EL == EL1 && fault.s2fs1walk) ||
 (IsFeatureImplemented(FEAT_RME) && fault.gpcf.gpf != GPCF_None && (
 ReportAsGPCException(fault) ||
 (EL2Enabled() && HCR_EL2.GPF == '1' && PSTATE.EL == EL1 && el IN {EL1, EL0} &&
 is_ATS1Ex)
))) then
 PAR_EL1 = bits(128) UNKNOWN;
 AArch64.Abort(address, addrdesc.fault);

 AArch64.EncodePAR(regime, is_ATS1Ex, addrdesc);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13784
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/at/AArch64.EncodePAR

 // AArch64.EncodePAR()
 // ===================
 // Encode PAR register with result of translation.

 AArch64.EncodePAR(Regime regime, boolean is_ATS1Ex, AddressDescriptor addrdesc)
 PAR_EL1 = Zeros(128);
 paspace = addrdesc.paddress.paspace;

 if AArch64.isPARFormatD128(regime, is_ATS1Ex) then
 PAR_EL1.D128 = '1';
 else
 PAR_EL1.D128 = '0';

 if !IsFault(addrdesc) then
 PAR_EL1.F = '0';
 if IsFeatureImplemented(FEAT_RME) then
 if regime == Regime_EL3 then
 case paspace of
 when PAS_Secure PAR_EL1.<NSE,NS> = '00';
 when PAS_NonSecure PAR_EL1.<NSE,NS> = '01';
 when PAS_Root PAR_EL1.<NSE,NS> = '10';
 when PAS_Realm PAR_EL1.<NSE,NS> = '11';

 elsif SecurityStateForRegime(regime) == SS_Secure then
 PAR_EL1.NSE = bit UNKNOWN;
 PAR_EL1.NS = if paspace == PAS_Secure then '0' else '1';

 elsif SecurityStateForRegime(regime) == SS_Realm then
 if regime == Regime_EL10 && is_ATS1Ex then
 PAR_EL1.NSE = bit UNKNOWN;
 PAR_EL1.NS = bit UNKNOWN;
 else
 PAR_EL1.NSE = bit UNKNOWN;
 PAR_EL1.NS = if paspace == PAS_Realm then '0' else '1';

 else
 PAR_EL1.NSE = bit UNKNOWN;
 PAR_EL1.NS = bit UNKNOWN;
 else
 PAR_EL1<11> = '1'; // RES1
 if SecurityStateForRegime(regime) == SS_Secure then
 PAR_EL1.NS = if paspace == PAS_Secure then '0' else '1';
 else
 PAR_EL1.NS = bit UNKNOWN;
 PAR_EL1.SH = ReportedPARShareability(PAREncodeShareability(addrdesc.memattrs));
 if PAR_EL1.D128 == '1' then
 PAR_EL1<119:76> = addrdesc.paddress.address<55:12>;
 else
 PAR_EL1<55:12> = addrdesc.paddress.address<55:12>;
 PAR_EL1.ATTR = ReportedPARAttrs(EncodePARAttrs(addrdesc.memattrs));
 PAR_EL1<10> = bit IMPLEMENTATION_DEFINED "Non-Faulting PAR";
 else
 PAR_EL1.F = '1';
 PAR_EL1.DirtyBit = if addrdesc.fault.dirtybit then '1' else '0';
 PAR_EL1.Overlay = if addrdesc.fault.overlay then '1' else '0';
 PAR_EL1.TopLevel = if addrdesc.fault.toplevel then '1' else '0';
 PAR_EL1.AssuredOnly = if addrdesc.fault.assuredonly then '1' else '0';
 PAR_EL1.FST = AArch64.PARFaultStatus(addrdesc.fault);
 PAR_EL1.PTW = if addrdesc.fault.s2fs1walk then '1' else '0';
 PAR_EL1.S = if addrdesc.fault.secondstage then '1' else '0';
 PAR_EL1<11> = '1'; // RES1
 PAR_EL1<63:48> = bits(16) IMPLEMENTATION_DEFINED "Faulting PAR";
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13785
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/at/AArch64.PARFaultStatus

 // AArch64.PARFaultStatus()
 // ========================
 // Fault status field decoding of 64-bit PAR.

 bits(6) AArch64.PARFaultStatus(FaultRecord fault)
 bits(6) fst;

 if fault.statuscode == Fault_Domain then
 // Report Domain fault
 assert fault.level IN {1,2};
 fst<1:0> = if fault.level == 1 then '01' else '10';
 fst<5:2> = '1111';
 else
 fst = EncodeLDFSC(fault.statuscode, fault.level);
 return fst;

aarch64/functions/at/AArch64.isPARFormatD128

 // AArch64.isPARFormatD128()
 // =========================
 // Check if last stage of translation uses VMSAv9-128.
 // Last stage of translation is stage 2 if enabled, else it is stage 1.

 boolean AArch64.isPARFormatD128(Regime regime, boolean is_ATS1Ex)
 boolean isPARFormatD128;
 // Regime_EL2 does not support VMSAv9-128
 if regime == Regime_EL2 || !IsFeatureImplemented(FEAT_D128) then
 isPARFormatD128 = FALSE;
 else
 isPARFormatD128 = FALSE;
 case regime of
 when Regime_EL3
 isPARFormatD128 = TCR_EL3.D128 == '1';
 when Regime_EL20
 isPARFormatD128 = TCR2_EL2.D128 == '1';
 when Regime_EL10
 if is_ATS1Ex || !EL2Enabled() || HCR_EL2.<VM,DC> == '00' then
 isPARFormatD128 = TCR2_EL1.D128 == '1';
 else
 isPARFormatD128 = VTCR_EL2.D128 == '1';

 return isPARFormatD128;

aarch64/functions/at/GetPAR_EL1_D128

 // GetPAR_EL1_D128()
 // =================
 // Query the PAR_EL1.D128 field

 bit GetPAR_EL1_D128()
 bit D128;

 D128 = PAR_EL1.D128;
 return D128;

aarch64/functions/at/GetPAR_EL1_F

 // GetPAR_EL1_F()
 // ==============
 // Query the PAR_EL1.F field.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13786
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bit GetPAR_EL1_F()
 bit F;

 F = PAR_EL1.F;
 return F;

aarch64/functions/barrierop/MemBarrierOp

 // MemBarrierOp
 // ============
 // Memory barrier instruction types.

 enumeration MemBarrierOp { MemBarrierOp_DSB // Data Synchronization Barrier
 , MemBarrierOp_DMB // Data Memory Barrier
 , MemBarrierOp_ISB // Instruction Synchronization Barrier
 , MemBarrierOp_SSBB // Speculative Synchronization Barrier to VA
 , MemBarrierOp_PSSBB // Speculative Synchronization Barrier to PA
 , MemBarrierOp_SB // Speculation Barrier
 };

aarch64/functions/bfxpreferred/BFXPreferred

 // BFXPreferred()
 // ==============
 //
 // Return TRUE if UBFX or SBFX is the preferred disassembly of a
 // UBFM or SBFM bitfield instruction. Must exclude more specific
 // aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

 boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)

 // must not match UBFIZ/SBFIX alias
 if UInt(imms) < UInt(immr) then
 return FALSE;

 // must not match LSR/ASR/LSL alias (imms == 31 or 63)
 if imms == sf:'11111' then
 return FALSE;

 // must not match UXTx/SXTx alias
 if immr == '000000' then
 // must not match 32-bit UXT[BH] or SXT[BH]
 if sf == '0' && imms IN {'000111', '001111'} then
 return FALSE;
 // must not match 64-bit SXT[BHW]
 if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then
 return FALSE;

 // must be UBFX/SBFX alias
 return TRUE;

aarch64/functions/bitmasks/AltDecodeBitMasks

 // AltDecodeBitMasks()
 // ===================
 // Alternative but logically equivalent implementation of DecodeBitMasks() that
 // uses simpler primitives to compute tmask and wmask.

 (bits(M), bits(M)) AltDecodeBitMasks(bit immN, bits(6) imms, bits(6) immr,
 boolean immediate, integer M)
 bits(64) tmask, wmask;
 bits(6) tmask_and, wmask_and;
 bits(6) tmask_or, wmask_or;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13787
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(6) levels;

 // Compute log2 of element size
 // 2^len must be in range [2, M]
 len = HighestSetBit(immN:NOT(imms));
 if len < 1 then UNDEFINED;
 assert M >= (1 << len);

 // Determine s, r and s - r parameters
 levels = ZeroExtend(Ones(len), 6);

 // For logical immediates an all-ones value of s is reserved
 // since it would generate a useless all-ones result (many times)
 if immediate && (imms AND levels) == levels then
 UNDEFINED;

 s = UInt(imms AND levels);
 r = UInt(immr AND levels);
 diff = s - r; // 6-bit subtract with borrow

 // Compute "top mask"
 tmask_and = diff<5:0> OR NOT(levels);
 tmask_or = diff<5:0> AND levels;

 tmask = Ones(64);
 tmask = ((tmask
 AND Replicate(Replicate(tmask_and<0>, 1) : Ones(1), 32))
 OR Replicate(Zeros(1) : Replicate(tmask_or<0>, 1), 32));
 // optimization of first step:
 // tmask = Replicate(tmask_and<0> : '1', 32);
 tmask = ((tmask
 AND Replicate(Replicate(tmask_and<1>, 2) : Ones(2), 16))
 OR Replicate(Zeros(2) : Replicate(tmask_or<1>, 2), 16));
 tmask = ((tmask
 AND Replicate(Replicate(tmask_and<2>, 4) : Ones(4), 8))
 OR Replicate(Zeros(4) : Replicate(tmask_or<2>, 4), 8));
 tmask = ((tmask
 AND Replicate(Replicate(tmask_and<3>, 8) : Ones(8), 4))
 OR Replicate(Zeros(8) : Replicate(tmask_or<3>, 8), 4));
 tmask = ((tmask
 AND Replicate(Replicate(tmask_and<4>, 16) : Ones(16), 2))
 OR Replicate(Zeros(16) : Replicate(tmask_or<4>, 16), 2));
 tmask = ((tmask
 AND Replicate(Replicate(tmask_and<5>, 32) : Ones(32), 1))
 OR Replicate(Zeros(32) : Replicate(tmask_or<5>, 32), 1));

 // Compute "wraparound mask"
 wmask_and = immr OR NOT(levels);
 wmask_or = immr AND levels;

 wmask = Zeros(64);
 wmask = ((wmask
 AND Replicate(Ones(1) : Replicate(wmask_and<0>, 1), 32))
 OR Replicate(Replicate(wmask_or<0>, 1) : Zeros(1), 32));
 // optimization of first step:
 // wmask = Replicate(wmask_or<0> : '0', 32);
 wmask = ((wmask
 AND Replicate(Ones(2) : Replicate(wmask_and<1>, 2), 16))
 OR Replicate(Replicate(wmask_or<1>, 2) : Zeros(2), 16));
 wmask = ((wmask
 AND Replicate(Ones(4) : Replicate(wmask_and<2>, 4), 8))
 OR Replicate(Replicate(wmask_or<2>, 4) : Zeros(4), 8));
 wmask = ((wmask
 AND Replicate(Ones(8) : Replicate(wmask_and<3>, 8), 4))
 OR Replicate(Replicate(wmask_or<3>, 8) : Zeros(8), 4));
 wmask = ((wmask
 AND Replicate(Ones(16) : Replicate(wmask_and<4>, 16), 2))
 OR Replicate(Replicate(wmask_or<4>, 16) : Zeros(16), 2));
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13788
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 wmask = ((wmask
 AND Replicate(Ones(32) : Replicate(wmask_and<5>, 32), 1))
 OR Replicate(Replicate(wmask_or<5>, 32) : Zeros(32), 1));

 if diff<6> != '0' then // borrow from s - r
 wmask = wmask AND tmask;
 else
 wmask = wmask OR tmask;

 return (wmask<M-1:0>, tmask<M-1:0>);

aarch64/functions/bitmasks/DecodeBitMasks

 // DecodeBitMasks()
 // ================
 // Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

 (bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr,
 boolean immediate, integer M)
 bits(M) tmask, wmask;
 bits(6) levels;

 // Compute log2 of element size
 // 2^len must be in range [2, M]
 constant integer len = HighestSetBit(immN:NOT(imms));
 if len < 1 then UNDEFINED;
 assert M >= (1 << len);

 // Determine s, r and s - r parameters
 levels = ZeroExtend(Ones(len), 6);

 // For logical immediates an all-ones value of s is reserved
 // since it would generate a useless all-ones result (many times)
 if immediate && (imms AND levels) == levels then
 UNDEFINED;

 s = UInt(imms AND levels);
 r = UInt(immr AND levels);
 constant integer diff = s - r; // 6-bit subtract with borrow

 constant integer esize = 1 << len;
 d = UInt(diff<len-1:0>);
 welem = ZeroExtend(Ones(s + 1), esize);
 telem = ZeroExtend(Ones(d + 1), esize);
 wmask = Replicate(ROR(welem, r), M DIV esize);
 tmask = Replicate(telem, M DIV esize);
 return (wmask, tmask);

aarch64/functions/cache/AArch64.DataMemZero

 // AArch64.DataMemZero()
 // =====================
 // Write Zero to data memory.

 AArch64.DataMemZero(bits(64) regval, bits(64) vaddress, AccessDescriptor accdesc_in, integer size)
 AccessDescriptor accdesc = accdesc_in;

 // If the instruction targets tags as a payload, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagaccess then
 accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13789
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(vaddress, accdesc);

 boolean aligned = TRUE;
 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

 if IsFault(memaddrdesc) then
 if IsDebugException(memaddrdesc.fault) then
 AArch64.Abort(vaddress, memaddrdesc.fault);
 else
 AArch64.Abort(regval, memaddrdesc.fault);

 if IsFeatureImplemented(FEAT_TME) then
 if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs) then
 FailTransaction(TMFailure_IMP, FALSE);

 for i = 0 to size-1
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(vaddress);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 if (boolean IMPLEMENTATION_DEFINED
 "DC_ZVA tag fault reported with lowest faulting address") then
 AArch64.TagCheckFault(vaddress, accdesc);
 else
 AArch64.TagCheckFault(regval, accdesc);
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, Zeros(8));
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 return;

aarch64/functions/cache/AArch64.TagMemZero

 // AArch64.TagMemZero()
 // ====================
 // Write Zero to tag memory.

 AArch64.TagMemZero(bits(64) regval, bits(64) vaddress, AccessDescriptor accdesc_in, integer size)
 assert accdesc_in.tagaccess && !accdesc_in.tagchecked;

 AccessDescriptor accdesc = accdesc_in;

 integer count = size >> LOG2_TAG_GRANULE;
 bits(4) tag = AArch64.AllocationTagFromAddress(vaddress);
 boolean aligned = IsAligned(vaddress, TAG_GRANULE);

 // Stores of allocation tags must be aligned
 if !aligned then
 AArch64.Abort(vaddress, AlignmentFault(accdesc));

 if IsFeatureImplemented(FEAT_MTE2) then
 accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

 memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 if IsDebugException(memaddrdesc.fault) then
 AArch64.Abort(vaddress, memaddrdesc.fault);
 else
 AArch64.Abort(regval, memaddrdesc.fault);

 if !accdesc.tagaccess || memaddrdesc.memattrs.tags != MemTag_AllocationTagged then
 return;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13790
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 for i = 0 to count-1
 memstatus = PhysMemTagWrite(memaddrdesc, accdesc, tag);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address + TAG_GRANULE;

 return;

aarch64/functions/compareop/CompareOp

 // CompareOp
 // =========
 // Vector compare instruction types.

 enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
 CompareOp_LE, CompareOp_LT};

aarch64/functions/countop/CountOp

 // CountOp
 // =======
 // Bit counting instruction types.

 enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

aarch64/functions/d128/IsD128Enabled

 // IsD128Enabled()
 // ===============
 // Returns true if 128-bit page descriptor is enabled

 boolean IsD128Enabled(bits(2) el)
 boolean d128enabled;
 if IsFeatureImplemented(FEAT_D128) then
 case el of
 when EL0
 if !ELIsInHost(EL0) then
 d128enabled = IsTCR2EL1Enabled() && TCR2_EL1.D128 == '1';
 else
 d128enabled = IsTCR2EL2Enabled() && TCR2_EL2.D128 == '1';
 when EL1
 d128enabled = IsTCR2EL1Enabled() && TCR2_EL1.D128 == '1';
 when EL2
 d128enabled = IsTCR2EL2Enabled() && IsInHost() && TCR2_EL2.D128 == '1';
 when EL3
 d128enabled = TCR_EL3.D128 == '1';
 else
 d128enabled = FALSE;

 return d128enabled;

aarch64/functions/dc/AArch64.DC

 // AArch64.DC()
 // ============
 // Perform Data Cache Operation.

 AArch64.DC(bits(64) regval, CacheType cachetype, CacheOp cacheop, CacheOpScope opscope_in)
 CacheOpScope opscope = opscope_in;
 CacheRecord cache;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13791
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 cache.acctype = AccessType_DC;
 cache.cachetype = cachetype;
 cache.cacheop = cacheop;
 cache.opscope = opscope;

 if opscope == CacheOpScope_SetWay then
 ss = SecurityStateAtEL(PSTATE.EL);
 cache.cpas = CPASAtSecurityState(ss);
 cache.shareability = Shareability_NSH;
 (cache.setnum, cache.waynum, cache.level) = DecodeSW(regval, cachetype);
 if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
 (HCR_EL2.SWIO == '1' || HCR_EL2.<DC,VM> != '00')) then
 cache.cacheop = CacheOp_CleanInvalidate;

 CACHE_OP(cache);
 return;

 if EL2Enabled() && !IsInHost() then
 if PSTATE.EL IN {EL0, EL1} then
 cache.is_vmid_valid = TRUE;
 cache.vmid = VMID[];
 else
 cache.is_vmid_valid = FALSE;
 else
 cache.is_vmid_valid = FALSE;

 if PSTATE.EL == EL0 then
 cache.is_asid_valid = TRUE;
 cache.asid = ASID[];
 else
 cache.is_asid_valid = FALSE;

 if (opscope == CacheOpScope_PoDP &&
 boolean IMPLEMENTATION_DEFINED "Memory system does not supports PoDP") then
 opscope = CacheOpScope_PoP;
 if (opscope == CacheOpScope_PoP &&
 boolean IMPLEMENTATION_DEFINED "Memory system does not supports PoP") then
 opscope = CacheOpScope_PoC;
 vaddress = regval;

 size = 0; // by default no watchpoint address
 if cacheop == CacheOp_Invalidate then
 size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
 assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
 assert UInt(size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
 vaddress = Align(regval, size);

 if DCInstNeedsTranslation(opscope) then
 cache.vaddress = vaddress;
 boolean aligned = TRUE;
 AccessDescriptor accdesc = CreateAccDescDC(cache);
 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);
 if IsFault(memaddrdesc) then
 AArch64.Abort(regval, memaddrdesc.fault);

 cache.translated = TRUE;
 cache.paddress = memaddrdesc.paddress;
 cache.cpas = CPASAtPAS(memaddrdesc.paddress.paspace);
 if opscope IN {CacheOpScope_PoC, CacheOpScope_PoP, CacheOpScope_PoDP} then
 cache.shareability = memaddrdesc.memattrs.shareability;
 else
 cache.shareability = Shareability_NSH;
 elsif opscope == CacheOpScope_PoE then
 cache.translated = TRUE;
 cache.shareability = Shareability_OSH;
 cache.paddress.address = regval<55:0>;
 cache.paddress.paspace = DecodePASpace(regval<62>, regval<63>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13792
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 cache.cpas = CPASAtPAS(cache.paddress.paspace);

 // If a Reserved encoding is selected, the instruction is permitted to be treated as a NOP.
 if cache.paddress.paspace != PAS_Realm then
 EndOfInstruction();

 if boolean IMPLEMENTATION_DEFINED "Apply granule protection check on DC to PoE" then
 AddressDescriptor memaddrdesc;
 AccessDescriptor accdesc = CreateAccDescDC(cache);
 memaddrdesc.paddress = cache.paddress;
 memaddrdesc.fault.gpcf = GranuleProtectionCheck(memaddrdesc, accdesc);

 if memaddrdesc.fault.gpcf.gpf != GPCF_None then
 memaddrdesc.fault.statuscode = Fault_GPCFOnOutput;
 memaddrdesc.fault.paddress = memaddrdesc.paddress;
 AArch64.Abort(bits(64) UNKNOWN, memaddrdesc.fault);
 elsif opscope == CacheOpScope_PoPA then
 cache.translated = TRUE;
 cache.shareability = Shareability_OSH;
 cache.paddress.address = regval<55:0>;
 cache.paddress.paspace = DecodePASpace(regval<62>, regval<63>);
 cache.cpas = CPASAtPAS(cache.paddress.paspace);
 else
 cache.vaddress = vaddress;
 cache.translated = FALSE;
 cache.shareability = Shareability UNKNOWN;
 cache.paddress = FullAddress UNKNOWN;

 if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
 HCR_EL2.<DC,VM> != '00') then
 cache.cacheop = CacheOp_CleanInvalidate;

 // If Secure state is not implemented, but RME is, the instruction acts as a NOP
 if cache.translated && cache.cpas == CPAS_Secure && !HaveSecureState() then
 return;

 CACHE_OP(cache);
 return;

aarch64/functions/dc/AArch64.MemZero

 // AArch64.MemZero()
 // =================

 AArch64.MemZero(bits(64) regval, CacheType cachetype)
 integer size = 4*(2^(UInt(DCZID_EL0.BS)));
 assert size <= MAX_ZERO_BLOCK_SIZE;
 if IsFeatureImplemented(FEAT_MTE2) then
 assert size >= TAG_GRANULE;

 bits(64) vaddress = Align(regval, size);

 boolean tagaccess = cachetype IN {CacheType_Tag, CacheType_Data_Tag};
 boolean tagchecked = cachetype == CacheType_Data;
 AccessDescriptor accdesc = CreateAccDescDCZero(tagaccess, tagchecked);

 if cachetype IN {CacheType_Tag, CacheType_Data_Tag} then
 AArch64.TagMemZero(regval, vaddress, accdesc, size);

 if cachetype IN {CacheType_Data, CacheType_Data_Tag} then
 AArch64.DataMemZero(regval, vaddress, accdesc, size);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13793
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/dc/MemZero

 constant integer MAX_ZERO_BLOCK_SIZE = 2048;

aarch64/functions/eret/AArch64.ExceptionReturn

 // AArch64.ExceptionReturn()
 // =========================

 AArch64.ExceptionReturn(bits(64) new_pc_in, bits(64) spsr)
 bits(64) new_pc = new_pc_in;
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 if IsFeatureImplemented(FEAT_IESB) then
 sync_errors = SCTLR_ELx[].IESB == '1';
 if IsFeatureImplemented(FEAT_DoubleFault) then
 sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && PSTATE.EL == EL3);
 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

 boolean brbe_source_allowed = FALSE;
 bits(64) brbe_source_address = Zeros(64);
 if IsFeatureImplemented(FEAT_BRBE) then
 brbe_source_allowed = BranchRecordAllowed(PSTATE.EL);
 brbe_source_address = PC64;

 if !IsFeatureImplemented(FEAT_ExS) || SCTLR_ELx[].EOS == '1' then
 SynchronizeContext();

 // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
 bits(2) source_el = PSTATE.EL;
 boolean illegal_psr_state = IllegalExceptionReturn(spsr);
 SetPSTATEFromPSR(spsr, illegal_psr_state);
 ClearExclusiveLocal(ProcessorID());
 SendEventLocal();

 if illegal_psr_state && spsr<4> == '1' then
 // If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
 new_pc<63:32> = bits(32) UNKNOWN;
 new_pc<1:0> = bits(2) UNKNOWN;
 elsif UsingAArch32() then // Return to AArch32
 // ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the
 // target instruction set state
 if PSTATE.T == '1' then
 new_pc<0> = '0'; // T32
 else
 new_pc<1:0> = '00'; // A32
 else // Return to AArch64
 // ELR_ELx[63:56] might include a tag
 new_pc = AArch64.BranchAddr(new_pc, PSTATE.EL);

 if IsFeatureImplemented(FEAT_BRBE) then
 BRBEExceptionReturn(new_pc, source_el,
 brbe_source_allowed, brbe_source_address);

 if UsingAArch32() then
 if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then ResetSVEState();

 // 32 most significant bits are ignored.
 boolean branch_conditional = FALSE;
 BranchTo(new_pc<31:0>, BranchType_ERET, branch_conditional);
 else
 BranchToAddr(new_pc, BranchType_ERET);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13794
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 CheckExceptionCatch(FALSE); // Check for debug event on exception return

aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

 // AArch64.ExclusiveMonitorsPass()
 // ===============================
 // Return TRUE if the Exclusives monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusives monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size, AccessDescriptor accdesc)
 boolean aligned = IsAligned(address, size);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 if !AArch64.IsExclusiveVA(address, ProcessorID(), size) then
 return FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 ClearExclusiveLocal(ProcessorID());

 if passed && memaddrdesc.memattrs.shareability != Shareability_NSH then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch64/functions/exclusive/AArch64.IsExclusiveVA

 // AArch64.IsExclusiveVA()
 // =======================
 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.

 boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.MarkExclusiveVA

 // AArch64.MarkExclusiveVA()
 // =========================
 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.

 AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13795
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

 // AArch64.SetExclusiveMonitors()
 // ==============================
 // Sets the Exclusives monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch64.SetExclusiveMonitors(bits(64) address, integer size)
 boolean acqrel = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, acqrel, tagchecked);
 boolean aligned = IsAligned(address, size);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch64.MarkExclusiveVA(address, ProcessorID(), size);

aarch64/functions/extendreg/DecodeRegExtend

 // DecodeRegExtend()
 // =================
 // Decode a register extension option

 ExtendType DecodeRegExtend(bits(3) op)
 case op of
 when '000' return ExtendType_UXTB;
 when '001' return ExtendType_UXTH;
 when '010' return ExtendType_UXTW;
 when '011' return ExtendType_UXTX;
 when '100' return ExtendType_SXTB;
 when '101' return ExtendType_SXTH;
 when '110' return ExtendType_SXTW;
 when '111' return ExtendType_SXTX;

aarch64/functions/extendreg/ExtendReg

 // ExtendReg()
 // ===========
 // Perform a register extension and shift

 bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift, integer N)
 assert shift >= 0 && shift <= 4;
 bits(N) val = X[reg, N];
 boolean unsigned;
 integer len;

 case exttype of
 when ExtendType_SXTB unsigned = FALSE; len = 8;
 when ExtendType_SXTH unsigned = FALSE; len = 16;
 when ExtendType_SXTW unsigned = FALSE; len = 32;
 when ExtendType_SXTX unsigned = FALSE; len = 64;
 when ExtendType_UXTB unsigned = TRUE; len = 8;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13796
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when ExtendType_UXTH unsigned = TRUE; len = 16;
 when ExtendType_UXTW unsigned = TRUE; len = 32;
 when ExtendType_UXTX unsigned = TRUE; len = 64;

 // Note the extended width of the intermediate value and
 // that sign extension occurs from bit <len+shift-1>, not
 // from bit <len-1>. This is equivalent to the instruction
 // [SU]BFIZ Rtmp, Rreg, #shift, #len
 // It may also be seen as a sign/zero extend followed by a shift:
 // LSL(Extend(val<len-1:0>, N, unsigned), shift);

 constant integer nbits = Min(len, N - shift);
 return Extend(val<nbits-1:0> : Zeros(shift), N, unsigned);

aarch64/functions/extendreg/ExtendType

 // ExtendType
 // ==========
 // AArch64 register extend and shift.

 enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
 ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

aarch64/functions/fpconvop/FPConvOp

 // FPConvOp
 // ========
 // Floating-point convert/move instruction types.

 enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
 FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
 , FPConvOp_CVT_FtoI_JS
 };

aarch64/functions/fpmaxminop/FPMaxMinOp

 // FPMaxMinOp
 // ==========
 // Floating-point min/max instruction types.

 enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
 FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

aarch64/functions/fpunaryop/FPUnaryOp

 // FPUnaryOp
 // =========
 // Floating-point unary instruction types.

 enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
 FPUnaryOp_NEG, FPUnaryOp_SQRT};

aarch64/functions/fusedrstep/FPRSqrtStepFused

 // FPRSqrtStepFused()
 // ==================

 bits(N) FPRSqrtStepFused(bits(N) op1_in, bits(N) op2, FPCR_Type fpcr_in)
 assert N IN {16, 32, 64};
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13797
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 FPCR_Type fpcr = fpcr_in;
 bits(N) result;
 bits(N) op1 = op1_in;
 boolean done;
 op1 = FPNeg(op1, fpcr);
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
 FPRounding rounding = FPRoundingMode(fpcr);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPOnePointFive('0', N);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2, N);
 else
 // Fully fused multiply-add and halve
 result_value = (3.0 + (value1 * value2)) / 2.0;
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 return result;

aarch64/functions/fusedrstep/FPRecipStepFused

 // FPRecipStepFused()
 // ==================

 bits(N) FPRecipStepFused(bits(N) op1_in, bits(N) op2, FPCR_Type fpcr_in)
 assert N IN {16, 32, 64};
 FPCR_Type fpcr = fpcr_in;
 bits(N) op1 = op1_in;
 bits(N) result;
 boolean done;
 op1 = FPNeg(op1, fpcr);

 boolean altfp = IsFeatureImplemented(FEAT_AFP) && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
 FPRounding rounding = FPRoundingMode(fpcr);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13798
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo('0', N);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2, N);
 else
 // Fully fused multiply-add
 result_value = 2.0 + (value1 * value2);
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 return result;

aarch64/functions/gcs/AddGCSExRecord

 // AddGCSExRecord()
 // ================
 // Generates and then writes an exception record to the
 // current Guarded control stack.

 AddGCSExRecord(bits(64) elr, bits(64) spsr, bits(64) lr)
 bits(64) ptr;
 AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_STORE);

 ptr = GetCurrentGCSPointer();

 // Store the record
 Mem[ptr-8, 8, accdesc] = lr;
 Mem[ptr-16, 8, accdesc] = spsr;
 Mem[ptr-24, 8, accdesc] = elr;
 Mem[ptr-32, 8, accdesc] = Zeros(60):'1001';

 // Decrement the pointer value
 ptr = ptr - 32;

 SetCurrentGCSPointer(ptr);
 return;

aarch64/functions/gcs/AddGCSRecord

 // AddGCSRecord()
 // ==============
 // Generates and then writes a record to the current Guarded
 // control stack.

 AddGCSRecord(bits(64) vaddress)
 bits(64) ptr;
 AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_STORE);

 ptr = GetCurrentGCSPointer();

 // Store the record
 Mem[ptr-8, 8, accdesc] = vaddress;

 // Decrement the pointer value
 ptr = ptr - 8;

 SetCurrentGCSPointer(ptr);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13799
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/gcs/CheckGCSExRecord

 // CheckGCSExRecord()
 // ==================
 // Validates the provided values against the top entry of the
 // current Guarded control stack.

 CheckGCSExRecord(bits(64) elr, bits(64) spsr, bits(64) lr, GCSInstruction gcsinst_type)
 bits(64) ptr;
 AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);
 ptr = GetCurrentGCSPointer();

 // Check the lowest doubleword is correctly formatted
 bits(64) recorded_first_dword = Mem[ptr, 8, accdesc];
 if recorded_first_dword != Zeros(60):'1001' then
 GCSDataCheckException(gcsinst_type);

 // Check the ELR matches the recorded value
 bits(64) recorded_elr = Mem[ptr+8, 8, accdesc];
 if recorded_elr != elr then
 GCSDataCheckException(gcsinst_type);

 // Check the SPSR matches the recorded value
 bits(64) recorded_spsr = Mem[ptr+16, 8, accdesc];
 if recorded_spsr != spsr then
 GCSDataCheckException(gcsinst_type);

 // Check the LR matches the recorded value
 bits(64) recorded_lr = Mem[ptr+24, 8, accdesc];
 if recorded_lr != lr then
 GCSDataCheckException(gcsinst_type);

 // Increment the pointer value
 ptr = ptr + 32;

 SetCurrentGCSPointer(ptr);
 return;

aarch64/functions/gcs/CheckGCSSTREnabled

 // CheckGCSSTREnabled()
 // ====================
 // Trap GCSSTR or GCSSTTR instruction if trapping is enabled.

 CheckGCSSTREnabled()
 case PSTATE.EL of
 when EL0
 if GCSCRE0_EL1.STREn == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 GCSSTRTrapException(EL2);
 else
 GCSSTRTrapException(EL1);
 when EL1
 if GCSCR_EL1.STREn == '0' then
 GCSSTRTrapException(EL1);
 elsif (EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFGITR_EL2.nGCSSTR_EL1 == '0') then
 GCSSTRTrapException(EL2);
 when EL2
 if GCSCR_EL2.STREn == '0' then
 GCSSTRTrapException(EL2);
 when EL3
 if GCSCR_EL3.STREn == '0' then
 GCSSTRTrapException(EL3);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13800
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/gcs/EXLOCKException

 // EXLOCKException()
 // =================
 // Handle an EXLOCK exception condition.

 EXLOCKException()
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_GCSFail);
 except.syndrome<24> = Zeros();
 except.syndrome<23:20> = '0001';
 except.syndrome<19:0> = Zeros();
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

aarch64/functions/gcs/GCSDataCheckException

 // GCSDataCheckException()
 // =======================
 // Handle a Guarded Control Stack data check fault condition.

 GCSDataCheckException(GCSInstruction gcsinst_type)
 bits(2) target_el;
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;
 boolean rn_unknown = FALSE;
 boolean is_ret = FALSE;

 if PSTATE.EL == EL0 then
 target_el = if (EL2Enabled() && HCR_EL2.TGE == '1') then EL2 else EL1;
 else
 target_el = PSTATE.EL;
 except = ExceptionSyndrome(Exception_GCSFail);
 case gcsinst_type of
 when GCSInstType_PRET
 except.syndrome<4:0> = '00000';
 is_ret = TRUE;
 when GCSInstType_POPM
 except.syndrome<4:0> = '00001';
 when GCSInstType_PRETAA
 except.syndrome<4:0> = '00010';
 is_ret = TRUE;
 when GCSInstType_PRETAB
 except.syndrome<4:0> = '00011';
 is_ret = TRUE;
 when GCSInstType_SS1
 except.syndrome<4:0> = '00100';
 when GCSInstType_SS2
 except.syndrome<4:0> = '00101';
 rn_unknown = TRUE;
 when GCSInstType_POPCX
 rn_unknown = TRUE;
 except.syndrome<4:0> = '01000';
 when GCSInstType_POPX
 except.syndrome<4:0> = '01001';
 if rn_unknown == TRUE then
 except.syndrome<9:5> = bits(5) UNKNOWN;
 elsif is_ret == TRUE then
 except.syndrome<9:5> = ThisInstr()<9:5>;
 else
 except.syndrome<9:5> = ThisInstr()<4:0>;
 except.syndrome<24:10> = Zeros();
 except.vaddress = bits(64) UNKNOWN;
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13801
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/gcs/GCSEnabled

 // GCSEnabled()
 // ============
 // Returns TRUE if the Guarded control stack is enabled at
 // the provided Exception level.

 boolean GCSEnabled(bits(2) el)
 if UsingAArch32() then
 return FALSE;

 if HaveEL(EL3) && el != EL3 && SCR_EL3.GCSEn == '0' then
 return FALSE;

 if (el IN {EL0, EL1} && EL2Enabled() && !ELIsInHost(EL0) &&
 (!IsHCRXEL2Enabled() || HCRX_EL2.GCSEn == '0')) then
 return FALSE;

 return GCSPCRSelected(el);

aarch64/functions/gcs/GCSInstruction

 // GCSInstruction
 // ==============

 enumeration GCSInstruction {
 GCSInstType_PRET, // Procedure return without Pointer authentication
 GCSInstType_POPM, // GCSPOPM instruction
 GCSInstType_PRETAA, // Procedure return with Pointer authentication that used key A
 GCSInstType_PRETAB, // Procedure return with Pointer authentication that used key B
 GCSInstType_SS1, // GCSSS1 instruction
 GCSInstType_SS2, // GCSSS2 instruction
 GCSInstType_POPCX, // GCSPOPCX instruction
 GCSInstType_POPX // GCSPOPX instruction
 };

aarch64/functions/gcs/GCSPCREnabled

 // GCSPCREnabled()
 // ===============
 // Returns TRUE if the Guarded control stack is PCR enabled
 // at the provided Exception level.

 boolean GCSPCREnabled(bits(2) el)
 return GCSPCRSelected(el) && GCSEnabled(el);

aarch64/functions/gcs/GCSPCRSelected

 // GCSPCRSelected()
 // ================
 // Returns TRUE if the Guarded control stack is PCR selected
 // at the provided Exception level.

 boolean GCSPCRSelected(bits(2) el)
 case el of
 when EL0 return GCSCRE0_EL1.PCRSEL == '1';
 when EL1 return GCSCR_EL1.PCRSEL == '1';
 when EL2 return GCSCR_EL2.PCRSEL == '1';
 when EL3 return GCSCR_EL3.PCRSEL == '1';
 Unreachable();
 return TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13802
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/gcs/GCSPOPCX

 // GCSPOPCX()
 // ==========
 // Called to pop and compare a Guarded control stack exception return record.

 GCSPOPCX()
 bits(64) spsr = SPSR_ELx[];
 if !GCSEnabled(PSTATE.EL) then
 EndOfInstruction();
 CheckGCSExRecord(ELR_ELx[], spsr, X[30,64], GCSInstType_POPCX);
 PSTATE.EXLOCK = if GetCurrentEXLOCKEN() then '1' else '0';
 return;

aarch64/functions/gcs/GCSPOPM

 // GCSPOPM()
 // =========
 // Called to pop a Guarded control stack procedure return record.

 bits(64) GCSPOPM()
 bits(64) ptr;
 AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);

 if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
 ptr = GetCurrentGCSPointer();
 bits(64) gcs_entry = Mem[ptr, 8, accdesc];

 if gcs_entry<1:0> != '00' then
 GCSDataCheckException(GCSInstType_POPM);

 ptr = ptr + 8;
 SetCurrentGCSPointer(ptr);
 return gcs_entry;

aarch64/functions/gcs/GCSPOPX

 // GCSPOPX()
 // =========
 // Called to pop a Guarded control stack exception return record.

 GCSPOPX()
 if !GCSEnabled(PSTATE.EL) then EndOfInstruction();

 bits(64) ptr;
 AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);
 ptr = GetCurrentGCSPointer();

 // Check the lowest doubleword is correctly formatted
 bits(64) recorded_first_dword = Mem[ptr, 8, accdesc];
 if recorded_first_dword != Zeros(60):'1001' then
 GCSDataCheckException(GCSInstType_POPX);

 // Ignore these loaded values, however they might have
 // faulted which is why we load them anyway
 bits(64) recorded_elr = Mem[ptr+8, 8, accdesc];
 bits(64) recorded_spsr = Mem[ptr+16, 8, accdesc];
 bits(64) recorded_lr = Mem[ptr+24, 8, accdesc];

 // Increment the pointer value
 ptr = ptr + 32;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13803
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 SetCurrentGCSPointer(ptr);
 return;

aarch64/functions/gcs/GCSPUSHM

 // GCSPUSHM()
 // ==========
 // Called to push a Guarded control stack procedure return record.

 GCSPUSHM(bits(64) value)
 if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
 AddGCSRecord(value);
 return;

aarch64/functions/gcs/GCSPUSHX

 // GCSPUSHX()
 // ==========
 // Called to push a Guarded control stack exception return record.

 GCSPUSHX()
 bits(64) spsr = SPSR_ELx[];
 if !GCSEnabled(PSTATE.EL) then
 EndOfInstruction();
 AddGCSExRecord(ELR_ELx[], spsr, X[30,64]);
 PSTATE.EXLOCK = '0';
 return;

aarch64/functions/gcs/GCSReturnValueCheckEnabled

 // GCSReturnValueCheckEnabled()
 // ============================
 // Returns TRUE if the Guarded control stack has return value
 // checking enabled at the current Exception level.

 boolean GCSReturnValueCheckEnabled(bits(2) el)
 if UsingAArch32() then
 return FALSE;
 case el of
 when EL0 return GCSCRE0_EL1.RVCHKEN == '1';
 when EL1 return GCSCR_EL1.RVCHKEN == '1';
 when EL2 return GCSCR_EL2.RVCHKEN == '1';
 when EL3 return GCSCR_EL3.RVCHKEN == '1';

aarch64/functions/gcs/GCSSS1

 // GCSSS1()
 // ========
 // Operational pseudocode for GCSSS1 instruction.

 GCSSS1(bits(64) incoming_pointer)
 bits(64) outgoing_pointer, cmpoperand, operand, data;
 if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
 AccessDescriptor accdesc = CreateAccDescGCSSS1(PSTATE.EL);
 outgoing_pointer = GetCurrentGCSPointer();
 // Valid cap entry is expected
 cmpoperand = incoming_pointer[63:12]:'000000000001';
 // In-progress cap entry should be stored if the comparison is successful
 operand = outgoing_pointer[63:3]:'101';

 data = MemAtomic(incoming_pointer, cmpoperand, operand, accdesc);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13804
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if data == cmpoperand then
 SetCurrentGCSPointer(incoming_pointer[63:3]:'000');
 else
 GCSDataCheckException(GCSInstType_SS1);
 return;

aarch64/functions/gcs/GCSSS2

 // GCSSS2()
 // ========
 // Operational pseudocode for GCSSS2 instruction.

 bits(64) GCSSS2()
 bits(64) outgoing_pointer, incoming_pointer, outgoing_value;
 AccessDescriptor accdesc_ld = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);
 AccessDescriptor accdesc_st = CreateAccDescGCS(PSTATE.EL, MemOp_STORE);
 if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
 incoming_pointer = GetCurrentGCSPointer();
 outgoing_value = Mem[incoming_pointer, 8, accdesc_ld];

 if outgoing_value[2:0] == '101' then //in_progress token
 outgoing_pointer[63:3] = outgoing_value[63:3] - 1;
 outgoing_pointer[2:0] = '000';
 outgoing_value = outgoing_pointer[63:12]: '000000000001';
 Mem[outgoing_pointer, 8, accdesc_st] = outgoing_value;
 SetCurrentGCSPointer(incoming_pointer + 8);
 GCSSynchronizationBarrier();
 else
 GCSDataCheckException(GCSInstType_SS2);
 return outgoing_pointer;

aarch64/functions/gcs/GCSSTRTrapException

 // GCSSTRTrapException()
 // =====================
 // Handle a trap on GCSSTR instruction condition.

 GCSSTRTrapException(bits(2) target_el)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_GCSFail);
 except.syndrome<24> = Zeros();
 except.syndrome<23:20> = '0010';
 except.syndrome<19:15> = Zeros();
 except.syndrome<14:10> = ThisInstr()<9:5>;
 except.syndrome<9:5> = ThisInstr()<4:0>;
 except.syndrome<4:0> = Zeros();
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/functions/gcs/GCSSynchronizationBarrier

 // GCSSynchronizationBarrier()
 // ===========================
 // Barrier instruction that synchronizes Guarded Control Stack
 // accesses in relation to other load and store accesses

 GCSSynchronizationBarrier();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13805
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/gcs/GetCurrentEXLOCKEN

 // GetCurrentEXLOCKEN()
 // ====================

 boolean GetCurrentEXLOCKEN()
 if Halted() || Restarting() then
 return FALSE;

 case PSTATE.EL of
 when EL0
 Unreachable();
 when EL1
 return GCSCR_EL1.EXLOCKEN == '1';
 when EL2
 return GCSCR_EL2.EXLOCKEN == '1';
 when EL3
 return GCSCR_EL3.EXLOCKEN == '1';

aarch64/functions/gcs/GetCurrentGCSPointer

 // GetCurrentGCSPointer()
 // ======================
 // Returns the value of the current Guarded control stack
 // pointer register.

 bits(64) GetCurrentGCSPointer()
 bits(64) ptr;

 case PSTATE.EL of
 when EL0
 ptr = GCSPR_EL0.PTR:'000';
 when EL1
 ptr = GCSPR_EL1.PTR:'000';
 when EL2
 ptr = GCSPR_EL2.PTR:'000';
 when EL3
 ptr = GCSPR_EL3.PTR:'000';
 return ptr;

aarch64/functions/gcs/LoadCheckGCSRecord

 // LoadCheckGCSRecord()
 // ====================
 // Validates the provided address against the top entry of the
 // current Guarded control stack.

 bits(64) LoadCheckGCSRecord(bits(64) vaddress, GCSInstruction gcsinst_type)
 bits(64) ptr;
 bits(64) recorded_va;
 AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);

 ptr = GetCurrentGCSPointer();
 recorded_va = Mem[ptr, 8, accdesc];
 if GCSReturnValueCheckEnabled(PSTATE.EL) && (recorded_va != vaddress) then
 GCSDataCheckException(gcsinst_type);

 return recorded_va;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13806
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/gcs/SetCurrentGCSPointer

 // SetCurrentGCSPointer()
 // ======================
 // Writes a value to the current Guarded control stack pointer register.

 SetCurrentGCSPointer(bits(64) ptr)
 case PSTATE.EL of
 when EL0
 GCSPR_EL0.PTR = ptr<63:3>;
 when EL1
 GCSPR_EL1.PTR = ptr<63:3>;
 when EL2
 GCSPR_EL2.PTR = ptr<63:3>;
 when EL3
 GCSPR_EL3.PTR = ptr<63:3>;
 return;

aarch64/functions/ic/AArch64.IC

 // AArch64.IC()
 // ============
 // Perform Instruction Cache Operation.

 AArch64.IC(CacheOpScope opscope)
 regval = bits(64) UNKNOWN;
 AArch64.IC(regval, opscope);

 // AArch64.IC()
 // ============
 // Perform Instruction Cache Operation.

 AArch64.IC(bits(64) regval, CacheOpScope opscope)
 CacheRecord cache;

 cache.acctype = AccessType_IC;
 cache.cachetype = CacheType_Instruction;
 cache.cacheop = CacheOp_Invalidate;
 cache.opscope = opscope;

 if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
 ss = SecurityStateAtEL(PSTATE.EL);
 cache.cpas = CPASAtSecurityState(ss);
 if (opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1
 && EL2Enabled() && HCR_EL2.FB == '1')) then
 cache.shareability = Shareability_ISH;
 else
 cache.shareability = Shareability_NSH;
 cache.regval = regval;
 CACHE_OP(cache);
 else
 assert opscope == CacheOpScope_PoU;

 if EL2Enabled() && !IsInHost() then
 if PSTATE.EL IN {EL0, EL1} then
 cache.is_vmid_valid = TRUE;
 cache.vmid = VMID[];
 else
 cache.is_vmid_valid = FALSE;
 else
 cache.is_vmid_valid = FALSE;

 if PSTATE.EL == EL0 then
 cache.is_asid_valid = TRUE;
 cache.asid = ASID[];
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13807
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 cache.is_asid_valid = FALSE;

 bits(64) vaddress = regval;
 boolean need_translate = ICInstNeedsTranslation(opscope);

 cache.vaddress = regval;
 cache.shareability = Shareability_NSH;
 cache.translated = need_translate;

 if !need_translate then
 cache.paddress = FullAddress UNKNOWN;
 CACHE_OP(cache);
 return;

 AccessDescriptor accdesc = CreateAccDescIC(cache);
 boolean aligned = TRUE;
 integer size = 0;
 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

 if IsFault(memaddrdesc) then
 AArch64.Abort(regval, memaddrdesc.fault);

 cache.cpas = CPASAtPAS(memaddrdesc.paddress.paspace);
 cache.paddress = memaddrdesc.paddress;
 CACHE_OP(cache);
 return;

aarch64/functions/immediateop/ImmediateOp

 // ImmediateOp
 // ===========
 // Vector logical immediate instruction types.

 enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
 ImmediateOp_ORR, ImmediateOp_BIC};

aarch64/functions/logicalop/LogicalOp

 // LogicalOp
 // =========
 // Logical instruction types.

 enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

aarch64/functions/mec/AArch64.S1AMECFault

 // AArch64.S1AMECFault()
 // =====================
 // Returns TRUE if a Translation fault should occur for Realm EL2 and Realm EL2&0
 // stage 1 translated addresses to Realm PA space.

 boolean AArch64.S1AMECFault(S1TTWParams walkparams, PASpace paspace, Regime regime,
 bits(N) descriptor)
 assert N IN {64,128};
 bit descriptor_amec = if walkparams.d128 == '1' then descriptor<103> else descriptor<63>;

 return (walkparams.<emec,amec> == '10' &&
 regime IN {Regime_EL2, Regime_EL20} &&
 paspace == PAS_Realm &&
 descriptor_amec == '1');
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13808
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/mec/AArch64.S1DisabledOutputMECID

 // AArch64.S1DisabledOutputMECID()
 // ===============================
 // Returns the output MECID when stage 1 address translation is disabled.

 bits(16) AArch64.S1DisabledOutputMECID(S1TTWParams walkparams, Regime regime, PASpace paspace)
 if walkparams.emec == '0' then
 return DEFAULT_MECID;

 if !(regime IN {Regime_EL2, Regime_EL20, Regime_EL10}) then
 return DEFAULT_MECID;

 if paspace != PAS_Realm then
 return DEFAULT_MECID;

 if regime == Regime_EL10 then
 return VMECID_P_EL2.MECID;
 else
 return MECID_P0_EL2.MECID;

aarch64/functions/mec/AArch64.S1OutputMECID

 // AArch64.S1OutputMECID()
 // =======================
 // Returns the output MECID when stage 1 address translation is enabled.

 bits(16) AArch64.S1OutputMECID(S1TTWParams walkparams, Regime regime, VARange varange,
 PASpace paspace, bits(N) descriptor)
 assert N IN {64,128};

 if walkparams.emec == '0' then
 return DEFAULT_MECID;

 if paspace != PAS_Realm then
 return DEFAULT_MECID;

 bit descriptor_amec = if walkparams.d128 == '1' then descriptor<103> else descriptor<63>;
 case regime of
 when Regime_EL3
 return MECID_RL_A_EL3.MECID;
 when Regime_EL2
 if descriptor_amec == '0' then
 return MECID_P0_EL2.MECID;
 else
 return MECID_A0_EL2.MECID;
 when Regime_EL20
 if varange == VARange_LOWER then
 if descriptor_amec == '0' then
 return MECID_P0_EL2.MECID;
 else
 return MECID_A0_EL2.MECID;
 else
 if descriptor_amec == '0' then
 return MECID_P1_EL2.MECID;
 else
 return MECID_A1_EL2.MECID;
 when Regime_EL10
 return VMECID_P_EL2.MECID;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13809
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/mec/AArch64.S2OutputMECID

 // AArch64.S2OutputMECID()
 // =======================
 // Returns the output MECID for stage 2 address translation.

 bits(16) AArch64.S2OutputMECID(S2TTWParams walkparams, PASpace paspace, bits(N) descriptor)
 assert N IN {64,128};

 if walkparams.emec == '0' then
 return DEFAULT_MECID;

 if paspace != PAS_Realm then
 return DEFAULT_MECID;

 bit descriptor_amec = if walkparams.d128 == '1' then descriptor<103> else descriptor<63>;
 if descriptor_amec == '0' then
 return VMECID_P_EL2.MECID;
 else
 return VMECID_A_EL2.MECID;

aarch64/functions/mec/AArch64.TTWalkMECID

 // AArch64.TTWalkMECID()
 // =====================
 // Returns the associated MECID for the translation table walk of the given
 // translation regime and Security state.

 bits(16) AArch64.TTWalkMECID(bit emec, Regime regime, SecurityState ss)
 if emec == '0' then
 return DEFAULT_MECID;

 if ss != SS_Realm then
 return DEFAULT_MECID;

 case regime of
 when Regime_EL2
 return MECID_P0_EL2.MECID;
 when Regime_EL20
 if TCR_EL2.A1 == '0' then
 return MECID_P1_EL2.MECID;
 else
 return MECID_P0_EL2.MECID;
 // This applies to stage 1 and stage 2 translation table walks for
 // Realm EL1&0, but the stage 2 translation for a stage 1 walk
 // might later override the MECID according to AMEC configuration.
 when Regime_EL10
 return VMECID_P_EL2.MECID;
 otherwise
 Unreachable();

aarch64/functions/mec/DEFAULT_MECID

 constant bits(16) DEFAULT_MECID = Zeros(16);

aarch64/functions/memory/AArch64.AccessIsTagChecked

 // AArch64.AccessIsTagChecked()
 // ============================
 // TRUE if a given access is tag-checked, FALSE otherwise.

 boolean AArch64.AccessIsTagChecked(bits(64) vaddr, AccessDescriptor accdesc)
 assert accdesc.tagchecked;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13810
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if UsingAArch32() then
 return FALSE;

 boolean is_instr = FALSE;
 if (EffectiveMTX(vaddr, is_instr, PSTATE.EL) == '0' &&
 EffectiveTBI(vaddr, is_instr, PSTATE.EL) == '0') then
 return FALSE;

 if (EffectiveTCMA(vaddr, PSTATE.EL) == '1' &&
 (vaddr<59:55> == '00000' || vaddr<59:55> == '11111')) then
 return FALSE;

 if !AArch64.AllocationTagAccessIsEnabled(accdesc.el) then
 return FALSE;

 if PSTATE.TCO=='1' then
 return FALSE;

 if (IsFeatureImplemented(FEAT_MTE_STORE_ONLY) && !accdesc.write &&
 StoreOnlyTagCheckingEnabled(accdesc.el)) then
 return FALSE;

 return TRUE;

aarch64/functions/memory/AArch64.AddressWithAllocationTag

 // AArch64.AddressWithAllocationTag()
 // ==================================
 // Generate a 64-bit value containing a Logical Address Tag from a 64-bit
 // virtual address and an Allocation Tag.
 // If the extension is disabled, treats the Allocation Tag as '0000'.

 bits(64) AArch64.AddressWithAllocationTag(bits(64) address, bits(4) allocation_tag)
 bits(64) result = address;
 bits(4) tag;
 if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then
 tag = allocation_tag;
 else
 tag = '0000';
 result<59:56> = tag;
 return result;

aarch64/functions/memory/AArch64.AllocationTagCheck

 // AArch64.AllocationTagCheck()
 // ============================
 // Performs an Allocation Tag Check operation for a memory access and
 // returns whether the check passed.

 boolean AArch64.AllocationTagCheck(AddressDescriptor memaddrdesc, AccessDescriptor accdesc,
 bits(4) ptag)
 if memaddrdesc.memattrs.tags == MemTag_AllocationTagged then
 (memstatus, readtag) = PhysMemTagRead(memaddrdesc, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);

 return ptag == readtag;
 else
 return TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13811
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/memory/AArch64.AllocationTagFromAddress

 // AArch64.AllocationTagFromAddress()
 // ==================================
 // Generate an Allocation Tag from a 64-bit value containing a Logical Address Tag.

 bits(4) AArch64.AllocationTagFromAddress(bits(64) tagged_address)
 return tagged_address<59:56>;

aarch64/functions/memory/AArch64.CanonicalTagCheck

 // AArch64.CanonicalTagCheck()
 // ===========================
 // Performs a Canonical Tag Check operation for a memory access and
 // returns whether the check passed.

 boolean AArch64.CanonicalTagCheck(AddressDescriptor memaddrdesc, bits(4) ptag)
 expected_tag = if memaddrdesc.vaddress<55> == '0' then '0000' else '1111';
 return ptag == expected_tag;

aarch64/functions/memory/AArch64.CheckTag

 // AArch64.CheckTag()
 // ==================
 // Performs a Tag Check operation for a memory access and returns
 // whether the check passed

 boolean AArch64.CheckTag(AddressDescriptor memaddrdesc, AccessDescriptor accdesc, bits(4) ptag)
 if memaddrdesc.memattrs.tags == MemTag_AllocationTagged then
 return AArch64.AllocationTagCheck(memaddrdesc, accdesc, ptag);
 elsif memaddrdesc.memattrs.tags == MemTag_CanonicallyTagged then
 return AArch64.CanonicalTagCheck(memaddrdesc, ptag);
 else
 return TRUE;

aarch64/functions/memory/AArch64.IsUnprivAccessPriv

 // AArch64.IsUnprivAccessPriv()
 // ============================
 // Returns TRUE if an unprivileged access is privileged, and FALSE otherwise.

 boolean AArch64.IsUnprivAccessPriv()
 boolean privileged;

 case PSTATE.EL of
 when EL0
 privileged = FALSE;
 when EL1 privileged = EffectiveHCR_EL2_NVx()<1:0> == '11';
 when EL2 privileged = !ELIsInHost(EL0);
 when EL3
 privileged = TRUE;

 if IsFeatureImplemented(FEAT_UAO) && PSTATE.UAO == '1' then
 privileged = PSTATE.EL != EL0;

 return privileged;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13812
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/memory/AArch64.MemSingle

 // AArch64.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccessDescriptor accdesc,
 boolean aligned]
 bits(size*8) value;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;

 (value, memaddrdesc, memstatus) = AArch64.MemSingleRead(address, size, accdesc, aligned);

 // Check for a fault from translation or the output of translation.
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Check for external aborts.
 if IsFault(memstatus) then
 HandleExternalAbort(memstatus, accdesc.write, memaddrdesc, size, accdesc);

 return value;

 // AArch64.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch64.MemSingle[bits(64) address, integer size, AccessDescriptor accdesc,
 boolean aligned] = bits(size*8) value
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;

 (memaddrdesc, memstatus) = AArch64.MemSingleWrite(address, size, accdesc, aligned, value);

 // Check for a fault from translation or the output of translation.
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Check for external aborts.
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);

 return;

aarch64/functions/memory/AArch64.MemSingleRead

 // AArch64.MemSingleRead()
 // =======================
 // Perform an atomic, little-endian read of 'size' bytes.

 (bits(size*8), AddressDescriptor, PhysMemRetStatus) AArch64.MemSingleRead(bits(64) address,
 integer size,
 AccessDescriptor accdesc_in,
 boolean aligned)
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value = bits(size*8) UNKNOWN;
 PhysMemRetStatus memstatus = PhysMemRetStatus UNKNOWN;
 AccessDescriptor accdesc = accdesc_in;
 if IsFeatureImplemented(FEAT_LSE2) then
 assert AllInAlignedQuantity(address, size, 16);
 else
 assert IsAligned(address, size);

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13813
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 AddressDescriptor memaddrdesc;
 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return (value, memaddrdesc, memstatus);

 // Memory array access
 if IsFeatureImplemented(FEAT_TME) then
 if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs) then
 FailTransaction(TMFailure_IMP, FALSE);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 TCFType tcf = AArch64.EffectiveTCF(accdesc.el, accdesc.read);
 case tcf of
 when TCFType_Ignore
 // Tag Check Faults have no effect on the PE.
 when TCFType_Sync
 memaddrdesc.fault.statuscode = Fault_TagCheck;
 return (value, memaddrdesc, memstatus);
 when TCFType_Async
 AArch64.ReportTagCheckFault(accdesc.el, address<55>);

 if SPESampleInFlight then
 boolean is_load = TRUE;
 SPESampleLoadStore(is_load, accdesc, memaddrdesc);

 boolean atomic;
 if (memaddrdesc.memattrs.memtype == MemType_Normal &&
 memaddrdesc.memattrs.inner.attrs == MemAttr_WB &&
 memaddrdesc.memattrs.outer.attrs == MemAttr_WB) then
 atomic = TRUE;
 elsif (accdesc.exclusive || accdesc.atomicop ||
 accdesc.acqsc || accdesc.acqpc || accdesc.relsc) then
 if !aligned && !ConstrainUnpredictableBool(Unpredictable_MISALIGNEDATOMIC) then
 memaddrdesc.fault = AlignmentFault(accdesc);
 return (value, memaddrdesc, memstatus);
 else
 atomic = TRUE;
 elsif aligned then
 atomic = !accdesc.ispair;
 else
 // Misaligned accesses within 16 byte aligned memory but
 // not Normal Cacheable Writeback are Atomic
 atomic = boolean IMPLEMENTATION_DEFINED "FEAT_LSE2: access is atomic";

 if atomic then
 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 return (value, memaddrdesc, memstatus);

 elsif aligned && accdesc.ispair then
 assert size IN {8, 16};
 constant integer halfsize = size DIV 2;
 bits(halfsize * 8) lowhalf, highhalf;
 (memstatus, lowhalf) = PhysMemRead(memaddrdesc, halfsize, accdesc);
 if IsFault(memstatus) then
 return (value, memaddrdesc, memstatus);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
 (memstatus, highhalf) = PhysMemRead(memaddrdesc, halfsize, accdesc);
 if IsFault(memstatus) then
 return (value, memaddrdesc, memstatus);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13814
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 value = highhalf:lowhalf;
 else
 for i = 0 to size-1
 (memstatus, value<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
 if IsFault(memstatus) then
 return (value, memaddrdesc, memstatus);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;

 return (value, memaddrdesc, memstatus);

aarch64/functions/memory/AArch64.MemSingleWrite

 // AArch64.MemSingleWrite()
 // ========================
 // Perform an atomic, little-endian write of 'size' bytes.

 (AddressDescriptor, PhysMemRetStatus) AArch64.MemSingleWrite(bits(64) address, integer size,
 AccessDescriptor accdesc_in,
 boolean aligned, bits(size*8) value)
 assert size IN {1, 2, 4, 8, 16};
 AccessDescriptor accdesc = accdesc_in;
 if IsFeatureImplemented(FEAT_LSE2) then
 assert AllInAlignedQuantity(address, size, 16);
 else
 assert IsAligned(address, size);

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus = PhysMemRetStatus UNKNOWN;
 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return (memaddrdesc, memstatus);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 if IsFeatureImplemented(FEAT_TME) then
 if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs) then
 FailTransaction(TMFailure_IMP, FALSE);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 TCFType tcf = AArch64.EffectiveTCF(accdesc.el, accdesc.read);
 case tcf of
 when TCFType_Ignore
 // Tag Check Faults have no effect on the PE.
 when TCFType_Sync
 memaddrdesc.fault.statuscode = Fault_TagCheck;
 return (memaddrdesc, memstatus);
 when TCFType_Async
 AArch64.ReportTagCheckFault(accdesc.el, address<55>);

 if SPESampleInFlight then
 boolean is_load = FALSE;
 SPESampleLoadStore(is_load, accdesc, memaddrdesc);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13815
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean atomic;
 if (memaddrdesc.memattrs.memtype == MemType_Normal &&
 memaddrdesc.memattrs.inner.attrs == MemAttr_WB &&
 memaddrdesc.memattrs.outer.attrs == MemAttr_WB) then
 atomic = TRUE;
 elsif (accdesc.exclusive || accdesc.atomicop ||
 accdesc.acqsc || accdesc.acqpc || accdesc.relsc) then
 if !aligned && !ConstrainUnpredictableBool(Unpredictable_MISALIGNEDATOMIC) then
 memaddrdesc.fault = AlignmentFault(accdesc);
 return (memaddrdesc, memstatus);
 else
 atomic = TRUE;
 elsif aligned then
 atomic = !accdesc.ispair;
 else
 // Misaligned accesses within 16 byte aligned memory but
 // not Normal Cacheable Writeback are Atomic
 atomic = boolean IMPLEMENTATION_DEFINED "FEAT_LSE2: access is atomic";

 if atomic then
 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 return (memaddrdesc, memstatus);

 elsif aligned && accdesc.ispair then
 assert size IN {8, 16};
 constant integer halfsize = size DIV 2;
 bits(halfsize*8) lowhalf, highhalf;
 <highhalf, lowhalf> = value;

 memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, lowhalf);
 if IsFault(memstatus) then
 return (memaddrdesc, memstatus);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
 memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, highhalf);
 if IsFault(memstatus) then
 return (memaddrdesc, memstatus);

 else
 for i = 0 to size-1
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
 if IsFault(memstatus) then
 return (memaddrdesc, memstatus);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;

 return (memaddrdesc, memstatus);

aarch64/functions/memory/AArch64.MemTag

 // AArch64.MemTag[] - non-assignment (read) form
 // ===
 // Load an Allocation Tag from memory.

 bits(4) AArch64.MemTag[bits(64) address, AccessDescriptor accdesc_in]
 assert accdesc_in.tagaccess && !accdesc_in.tagchecked;

 AddressDescriptor memaddrdesc;
 AccessDescriptor accdesc = accdesc_in;

 boolean aligned = TRUE;

 if IsFeatureImplemented(FEAT_MTE2) then
 accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, TAG_GRANULE);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13816
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Return the granule tag if tagging is enabledtable
 if accdesc.tagaccess && memaddrdesc.memattrs.tags == MemTag_AllocationTagged then
 (memstatus, tag) = PhysMemTagRead(memaddrdesc, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
 return tag;
 elsif (IsFeatureImplemented(FEAT_MTE_CANONICAL_TAGS) &&
 accdesc.tagaccess &&
 memaddrdesc.memattrs.tags == MemTag_CanonicallyTagged) then
 return if address<55> == '0' then '0000' else '1111';
 else
 // tableotherwise read tag as zero.
 return '0000';

 // AArch64.MemTag[] - assignment (write) form
 // ==
 // Store an Allocation Tag to memory.

 AArch64.MemTag[bits(64) address, AccessDescriptor accdesc_in] = bits(4) value
 assert accdesc_in.tagaccess && !accdesc_in.tagchecked;

 AddressDescriptor memaddrdesc;
 AccessDescriptor accdesc = accdesc_in;

 boolean aligned = IsAligned(address, TAG_GRANULE);

 // Stores of allocation tags must be aligned
 if !aligned then
 AArch64.Abort(address, AlignmentFault(accdesc));

 if IsFeatureImplemented(FEAT_MTE2) then
 accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, TAG_GRANULE);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Memory array access
 if accdesc.tagaccess && memaddrdesc.memattrs.tags == MemTag_AllocationTagged then
 memstatus = PhysMemTagWrite(memaddrdesc, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

aarch64/functions/memory/AArch64.PhysicalTag

 // AArch64.PhysicalTag()
 // =====================
 // Generate a Physical Tag from a Logical Tag in an address

 bits(4) AArch64.PhysicalTag(bits(64) vaddr)
 return vaddr<59:56>;

aarch64/functions/memory/AArch64.UnalignedAccessFaults

 // AArch64.UnalignedAccessFaults()
 // ===============================
 // Determine whether the unaligned access generates an Alignment fault
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13817
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 boolean AArch64.UnalignedAccessFaults(AccessDescriptor accdesc, bits(64) address, integer size)
 if AlignmentEnforced() then
 return TRUE;
 elsif accdesc.acctype == AccessType_GCS then
 return TRUE;
 elsif accdesc.rcw then
 return TRUE;
 elsif accdesc.ls64 then
 return TRUE;
 elsif accdesc.exclusive || accdesc.atomicop then
 return !IsFeatureImplemented(FEAT_LSE2) || !AllInAlignedQuantity(address, size, 16);
 elsif accdesc.acqsc || accdesc.acqpc || accdesc.relsc then
 return (!IsFeatureImplemented(FEAT_LSE2) ||
 (SCTLR_ELx[].nAA == '0' && !AllInAlignedQuantity(address, size, 16)));
 else
 return FALSE;

aarch64/functions/memory/AddressSupportsLS64

 // AddressSupportsLS64()
 // =====================
 // Returns TRUE if the 64-byte block following the given address supports the
 // LD64B and ST64B instructions, and FALSE otherwise.

 boolean AddressSupportsLS64(bits(56) paddress);

aarch64/functions/memory/AllInAlignedQuantity

 // AllInAlignedQuantity()
 // ======================
 // Returns TRUE if all accessed bytes are within one aligned quantity, FALSE otherwise.

 boolean AllInAlignedQuantity(bits(64) address, integer size, integer alignment)
 assert(size <= alignment);
 return Align((address+size)-1, alignment) == Align(address, alignment);

aarch64/functions/memory/CheckSPAlignment

 // CheckSPAlignment()
 // ==================
 // Check correct stack pointer alignment for AArch64 state.

 CheckSPAlignment()
 bits(64) sp = SP[];
 boolean stack_align_check;
 if PSTATE.EL == EL0 then
 stack_align_check = (SCTLR_ELx[].SA0 != '0');
 else
 stack_align_check = (SCTLR_ELx[].SA != '0');

 if stack_align_check && sp != Align(sp, 16) then
 AArch64.SPAlignmentFault();

 return;

aarch64/functions/memory/Mem

 // Mem[] - non-assignment (read) form
 // ==================================
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13818
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Instruction fetches would call AArch64.MemSingle directly.

 bits(size*8) Mem[bits(64) address, integer size, AccessDescriptor accdesc_in]
 assert size IN {1, 2, 4, 8, 16};
 AccessDescriptor accdesc = accdesc_in;
 bits(size * 8) value;
 // Check alignment on size of element accessed, not overall access size
 integer alignment = if accdesc.ispair then size DIV 2 else size;
 boolean aligned = IsAligned(address, alignment);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 if accdesc.acctype == AccessType_ASIMD && size == 16 && IsAligned(address, 8) then
 // If 128-bit SIMD&FP ordered access are treated as a pair of
 // 64-bit single-copy atomic accesses, then these single copy atomic
 // access can be observed in any order.
 constant integer halfsize = size DIV 2;
 bits(64) highaddress = GenerateAddress(address, halfsize, accdesc);
 bits(halfsize * 8) lowhalf, highhalf;
 lowhalf = AArch64.MemSingle[address, halfsize, accdesc, aligned];
 highhalf = AArch64.MemSingle[highaddress, halfsize, accdesc, aligned];
 value = highhalf:lowhalf;
 elsif IsFeatureImplemented(FEAT_LSE2) && AllInAlignedQuantity(address, size, 16) then
 value = AArch64.MemSingle[address, size, accdesc, aligned];
 elsif accdesc.ispair && aligned then
 accdesc.ispair = FALSE;
 constant integer halfsize = size DIV 2;
 bits(64) highaddress = GenerateAddress(address, halfsize, accdesc);
 bits(halfsize * 8) lowhalf, highhalf;
 if IsFeatureImplemented(FEAT_LRCPC3) && accdesc.highestaddressfirst then
 highhalf = AArch64.MemSingle[highaddress, halfsize, accdesc, aligned];
 lowhalf = AArch64.MemSingle[address, halfsize, accdesc, aligned];
 else
 lowhalf = AArch64.MemSingle[address, halfsize, accdesc, aligned];
 highhalf = AArch64.MemSingle[highaddress, halfsize, accdesc, aligned];
 value = highhalf:lowhalf;
 elsif aligned then
 value = AArch64.MemSingle[address, size, accdesc, aligned];
 else
 assert size > 1;
 if IsFeatureImplemented(FEAT_LRCPC3) && accdesc.ispair && accdesc.highestaddressfirst then
 // Performing memory accesses from one load or store instruction to Device memory that
 // crosses a boundary corresponding to the smallest translation granule size of the
 // implementation causes CONSTRAINED UNPREDICTABLE behavior.
 constant integer halfsize = size DIV 2;
 bits(halfsize * 8) lowhalf, highhalf;
 for i = 0 to halfsize-1
 bits(64) byteaddress = GenerateAddress(address, halfsize + i, accdesc);
 // Individual byte access can be observed in any order
 highhalf<8*i+7:8*i> = AArch64.MemSingle[byteaddress, 1, accdesc, aligned];
 for i = 0 to halfsize-1
 bits(64) byteaddress = GenerateAddress(address, i, accdesc);
 // Individual byte access can be observed in any order
 lowhalf<8*i+7:8*i> = AArch64.MemSingle[byteaddress, 1, accdesc, aligned];

 value = highhalf:lowhalf;

 else
 value<7:0> = AArch64.MemSingle[address, 1, accdesc, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device
 // memory access will generate an Alignment Fault, as to get this far means the first
 // byte did not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13819
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 for i = 1 to size-1
 bits(64) byteaddress = GenerateAddress(address, i, accdesc);
 value<8*i+7:8*i> = AArch64.MemSingle[byteaddress, 1, accdesc, aligned];

 if BigEndian(accdesc.acctype) then
 value = BigEndianReverse(value);

 return value;

 // Mem[] - assignment (write) form
 // ===============================
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem[bits(64) address, integer size, AccessDescriptor accdesc_in] = bits(size*8) value_in
 bits(size*8) value = value_in;
 AccessDescriptor accdesc = accdesc_in;

 // Check alignment on size of element accessed, not overall access size
 integer alignment = if accdesc.ispair then size DIV 2 else size;
 boolean aligned = IsAligned(address, alignment);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 if BigEndian(accdesc.acctype) then
 value = BigEndianReverse(value);

 if accdesc.acctype == AccessType_ASIMD && size == 16 && IsAligned(address, 8) then
 constant integer halfsize = size DIV 2;
 bits(halfsize*8) lowhalf, highhalf;
 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 <highhalf, lowhalf> = value;
 bits(64) highaddress = GenerateAddress(address, halfsize, accdesc);
 AArch64.MemSingle[address, halfsize, accdesc, aligned] = lowhalf;
 AArch64.MemSingle[highaddress, halfsize, accdesc, aligned] = highhalf;
 elsif IsFeatureImplemented(FEAT_LSE2) && AllInAlignedQuantity(address, size, 16) then
 AArch64.MemSingle[address, size, accdesc, aligned] = value;
 elsif accdesc.ispair && aligned then
 constant integer halfsize = size DIV 2;
 bits(halfsize*8) lowhalf, highhalf;
 accdesc.ispair = FALSE;
 <highhalf, lowhalf> = value;
 bits(64) highaddress = GenerateAddress(address, halfsize, accdesc);
 if IsFeatureImplemented(FEAT_LRCPC3) && accdesc.highestaddressfirst then
 AArch64.MemSingle[highaddress, halfsize, accdesc, aligned] = highhalf;
 AArch64.MemSingle[address, halfsize, accdesc, aligned] = lowhalf;
 else
 AArch64.MemSingle[address, halfsize, accdesc, aligned] = lowhalf;
 AArch64.MemSingle[highaddress, halfsize, accdesc, aligned] = highhalf;
 elsif aligned then
 AArch64.MemSingle[address, size, accdesc, aligned] = value;
 else
 assert size > 1;
 if IsFeatureImplemented(FEAT_LRCPC3) && accdesc.ispair && accdesc.highestaddressfirst then
 // Performing memory accesses from one load or store instruction to Device memory that
 // crosses a boundary corresponding to the smallest translation granule size of the
 // implementation causes CONSTRAINED UNPREDICTABLE behavior.
 constant integer halfsize = size DIV 2;
 bits(halfsize*8) lowhalf, highhalf;
 <highhalf, lowhalf> = value;
 for i = 0 to halfsize-1
 bits(64) byteaddress = GenerateAddress(address, halfsize + i, accdesc);
 // Individual byte access can be observed in any order
 AArch64.MemSingle[byteaddress, 1, accdesc, aligned] = highhalf<8*i+7:8*i>;
 for i = 0 to halfsize-1
 bits(64) byteaddress = GenerateAddress(address, halfsize + i, accdesc);
 // Individual byte access can be observed in any order, but implies observability
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13820
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // of highhalf
 AArch64.MemSingle[byteaddress, 1, accdesc, aligned] = lowhalf<8*i+7:8*i>;
 else
 AArch64.MemSingle[address, 1, accdesc, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device
 // memory access will generate an Alignment Fault, as to get this far means the first
 // byte did not, so we must be changing to a new translation page.

 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 bits(64) byteaddress = GenerateAddress(address, i, accdesc);
 AArch64.MemSingle[byteaddress, 1, accdesc, aligned] = value<8*i+7:8*i>;
 return;

aarch64/functions/memory/MemAtomic

 // MemAtomic()
 // ===========
 // Performs load and store memory operations for a given virtual address.

 bits(size) MemAtomic(bits(64) address, bits(size) cmpoperand, bits(size) operand,
 AccessDescriptor accdesc_in)
 assert accdesc_in.atomicop;

 constant integer bytes = size DIV 8;
 assert bytes IN {1, 2, 4, 8, 16};

 bits(size) newvalue;
 bits(size) oldvalue;
 AccessDescriptor accdesc = accdesc_in;
 boolean aligned = IsAligned(address, bytes);

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, bytes) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 // MMU or MPU lookup
 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // For Store-only Tag checking, the tag check is performed on the store.
 if (IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked &&
 (!IsFeatureImplemented(FEAT_MTE_STORE_ONLY) ||
 !StoreOnlyTagCheckingEnabled(accdesc.el))) then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 accdesc.write = FALSE; // Tag Check Fault on a read
 AArch64.TagCheckFault(address, accdesc);

 // All observers in the shareability domain observe the following load and store atomically.
 PhysMemRetStatus memstatus;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13821
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 (memstatus, oldvalue) = PhysMemRead(memaddrdesc, bytes, accdesc);

 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, bytes, accdesc);
 if BigEndian(accdesc.acctype) then
 oldvalue = BigEndianReverse(oldvalue);

 boolean cmpfail = FALSE;
 case accdesc.modop of
 when MemAtomicOp_ADD newvalue = oldvalue + operand;
 when MemAtomicOp_BIC newvalue = oldvalue AND NOT(operand);
 when MemAtomicOp_EOR newvalue = oldvalue EOR operand;
 when MemAtomicOp_ORR newvalue = oldvalue OR operand;
 when MemAtomicOp_SMAX newvalue = Max(SInt(oldvalue), SInt(operand))<size-1:0>;
 when MemAtomicOp_SMIN newvalue = Min(SInt(oldvalue), SInt(operand))<size-1:0>;
 when MemAtomicOp_UMAX newvalue = Max(UInt(oldvalue), UInt(operand))<size-1:0>;
 when MemAtomicOp_UMIN newvalue = Min(UInt(oldvalue), UInt(operand))<size-1:0>;
 when MemAtomicOp_SWP newvalue = operand;
 when MemAtomicOp_CAS newvalue = operand; cmpfail = cmpoperand != oldvalue;
 when MemAtomicOp_GCSSS1 newvalue = operand; cmpfail = cmpoperand != oldvalue;

 if IsFeatureImplemented(FEAT_MTE_STORE_ONLY) && StoreOnlyTagCheckingEnabled(accdesc.el) then
 // If the compare on a CAS fails, then it is CONSTRAINED UNPREDICTABLE whether the
 // Tag check is performed.
 if accdesc.tagchecked && cmpfail then
 accdesc.tagchecked = ConstrainUnpredictableBool(Unpredictable_STOREONLYTAGCHECKEDCAS);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 AArch64.TagCheckFault(address, accdesc);

 if !cmpfail then
 if BigEndian(accdesc.acctype) then
 newvalue = BigEndianReverse(newvalue);
 memstatus = PhysMemWrite(memaddrdesc, bytes, accdesc, newvalue);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, bytes, accdesc);

 if SPESampleInFlight then
 boolean is_load = FALSE;
 SPESampleLoadStore(is_load, accdesc, memaddrdesc);

 // Load operations return the old (pre-operation) value
 return oldvalue;

aarch64/functions/memory/MemAtomicRCW

 // MemAtomicRCW()
 // ==============
 // Perform a single-copy-atomic access with Read-Check-Write operation

 (bits(4), bits(size)) MemAtomicRCW(bits(64) address, bits(size) cmpoperand, bits(size) operand,
 AccessDescriptor accdesc_in)
 assert accdesc_in.atomicop;
 assert accdesc_in.rcw;

 constant integer bytes = size DIV 8;
 assert bytes IN {8, 16};

 bits(4) nzcv;
 bits(size) oldvalue;
 bits(size) newvalue;
 AccessDescriptor accdesc = accdesc_in;
 boolean aligned = IsAligned(address, bytes);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13822
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, bytes) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 // MMU or MPU lookup
 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // For Store-only Tag checking, the tag check is performed on the store.
 if (IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked &&
 (!IsFeatureImplemented(FEAT_MTE_STORE_ONLY) ||
 !StoreOnlyTagCheckingEnabled(accdesc.el))) then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 accdesc.write = FALSE; // Tag Check Fault on a read
 AArch64.TagCheckFault(address, accdesc);

 // All observers in the shareability domain observe the following load and store atomically.
 PhysMemRetStatus memstatus;
 (memstatus, oldvalue) = PhysMemRead(memaddrdesc, bytes, accdesc);

 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, bytes, accdesc);

 if BigEndian(accdesc.acctype) then
 oldvalue = BigEndianReverse(oldvalue);

 boolean cmpfail = FALSE;
 case accdesc.modop of
 when MemAtomicOp_BIC newvalue = oldvalue AND NOT(operand);
 when MemAtomicOp_ORR newvalue = oldvalue OR operand;
 when MemAtomicOp_SWP newvalue = operand;
 when MemAtomicOp_CAS newvalue = operand; cmpfail = oldvalue != cmpoperand;

 if cmpfail then
 nzcv = '1010'; // N = 1 indicates compare failure
 else
 nzcv = RCWCheck(oldvalue, newvalue, accdesc.rcws);

 if IsFeatureImplemented(FEAT_MTE_STORE_ONLY) && StoreOnlyTagCheckingEnabled(accdesc.el) then
 // If the compare on a CAS fails, then it is CONSTRAINED UNPREDICTABLE whether the
 // Tag check is performed.
 if accdesc.tagchecked && cmpfail then
 accdesc.tagchecked = ConstrainUnpredictableBool(Unpredictable_STOREONLYTAGCHECKEDCAS);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 AArch64.TagCheckFault(address, accdesc);

 if nzcv == '0010' then
 if BigEndian(accdesc.acctype) then
 newvalue = BigEndianReverse(newvalue);

 memstatus = PhysMemWrite(memaddrdesc, bytes, accdesc, newvalue);

 if IsFault(memstatus) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13823
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 HandleExternalWriteAbort(memstatus, memaddrdesc, bytes, accdesc);

 return (nzcv, oldvalue);

aarch64/functions/memory/MemLoad64B

 // MemLoad64B()
 // ============
 // Performs an atomic 64-byte read from a given virtual address.

 bits(512) MemLoad64B(bits(64) address, AccessDescriptor accdesc_in)
 bits(512) data;
 constant integer size = 64;
 AccessDescriptor accdesc = accdesc_in;
 boolean aligned = IsAligned(address, size);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 AArch64.TagCheckFault(address, accdesc);

 if !AddressSupportsLS64(memaddrdesc.paddress.address) then
 c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

 if c == Constraint_FAULT then
 // Generate a stage 1 Data Abort reported using the DFSC code of 110101.
 AArch64.Abort(address, ExclusiveFault(accdesc));
 else
 // Accesses are not single-copy atomic above the byte level.
 for i = 0 to size-1
 PhysMemRetStatus memstatus;
 (memstatus, data<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 else
 PhysMemRetStatus memstatus;
 (memstatus, data) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);

 return data;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13824
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/memory/MemStore64B

 // MemStore64B()
 // =============
 // Performs an atomic 64-byte store to a given virtual address. Function does
 // not return the status of the store.

 MemStore64B(bits(64) address, bits(512) value, AccessDescriptor accdesc_in)
 constant integer size = 64;
 AccessDescriptor accdesc = accdesc_in;
 boolean aligned = IsAligned(address, size);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 AArch64.TagCheckFault(address, accdesc);

 PhysMemRetStatus memstatus;
 if !AddressSupportsLS64(memaddrdesc.paddress.address) then
 c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

 if c == Constraint_FAULT then
 // Generate a Data Abort reported using the DFSC code of 110101.
 AArch64.Abort(address, ExclusiveFault(accdesc));
 else
 // Accesses are not single-copy atomic above the byte level.
 for i = 0 to size-1
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

 memaddrdesc.paddress.address = memaddrdesc.paddress.address+1;
 else
 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);

 return;

aarch64/functions/memory/MemStore64BWithRet

 // MemStore64BWithRet()
 // ====================
 // Performs an atomic 64-byte store to a given virtual address returning
 // the status value of the operation.

 bits(64) MemStore64BWithRet(bits(64) address, bits(512) value, AccessDescriptor accdesc_in)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13825
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 constant integer size = 64;
 AccessDescriptor accdesc = accdesc_in;
 boolean aligned = IsAligned(address, size);

 if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
 AArch64.Abort(address, AlignmentFault(accdesc));

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);
 return ZeroExtend('1', 64);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 AArch64.TagCheckFault(address, accdesc);
 return ZeroExtend('1', 64);

 PhysMemRetStatus memstatus;
 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);

 return memstatus.store64bstatus;

aarch64/functions/memory/MemStore64BWithRetStatus

 // MemStore64BWithRetStatus()
 // ==========================
 // Generates the return status of memory write with ST64BV or ST64BV0
 // instructions. The status indicates if the operation succeeded, failed,
 // or was not supported at this memory location.

 bits(64) MemStore64BWithRetStatus();

aarch64/functions/memory/NVMem

 // NVMem[] - non-assignment form
 // =============================
 // This function is the load memory access for the transformed System register read access
 // when Enhanced Nested Virtualization is enabled with HCR_EL2.NV2 = 1.
 // The address for the load memory access is calculated using
 // the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
 // * VNCR_EL2.BADDR holds the base address of the memory location, and
 // * Offset is the unique offset value defined architecturally for each System register that
 // supports transformation of register access to memory access.

 bits(64) NVMem[integer offset]
 assert offset > 0;
 constant integer size = 64;
 return NVMem[offset, size];

 bits(N) NVMem[integer offset, integer N]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13826
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 assert offset > 0;
 assert N IN {64,128};
 bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
 AccessDescriptor accdesc = CreateAccDescNV2(MemOp_LOAD);
 return Mem[address, N DIV 8, accdesc];

 // NVMem[] - assignment form
 // =========================
 // This function is the store memory access for the transformed System register write access
 // when Enhanced Nested Virtualization is enabled with HCR_EL2.NV2 = 1.
 // The address for the store memory access is calculated using
 // the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
 // * VNCR_EL2.BADDR holds the base address of the memory location, and
 // * Offset is the unique offset value defined architecturally for each System register that
 // supports transformation of register access to memory access.

 NVMem[integer offset] = bits(64) value
 assert offset > 0;
 constant integer size = 64;
 NVMem[offset, size] = value;
 return;

 NVMem[integer offset, integer N] = bits(N) value
 assert offset > 0;
 assert N IN {64,128};
 bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
 AccessDescriptor accdesc = CreateAccDescNV2(MemOp_STORE);
 Mem[address, N DIV 8, accdesc] = value;
 return;

aarch64/functions/memory/PhysMemTagRead

 // PhysMemTagRead()
 // ================
 // This is the hardware operation which perform a single-copy atomic,
 // Allocation Tag granule aligned, memory access from the tag in PA space.
 //
 // The function address the array using desc.paddress which supplies:
 // * A 52-bit physical address
 // * A single NS bit to select between Secure and Non-secure parts of the array.
 //
 // The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
 // etc and other parameters required to access the physical memory or for setting syndrome
 // register in the event of an External abort.

 (PhysMemRetStatus, bits(4)) PhysMemTagRead(AddressDescriptor desc, AccessDescriptor accdesc);

aarch64/functions/memory/PhysMemTagWrite

 // PhysMemTagWrite()
 // =================
 // This is the hardware operation which perform a single-copy atomic,
 // Allocation Tag granule aligned, memory access to the tag in PA space.
 //
 // The function address the array using desc.paddress which supplies:
 // * A 52-bit physical address
 // * A single NS bit to select between Secure and Non-secure parts of the array.
 //
 // The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
 // etc and other parameters required to access the physical memory or for setting syndrome
 // register in the event of an External abort.

 PhysMemRetStatus PhysMemTagWrite(AddressDescriptor desc, AccessDescriptor accdesc, bits (4) value);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13827
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/memory/StoreOnlyTagCheckingEnabled

 // StoreOnlyTagCheckingEnabled()
 // =============================
 // Returns TRUE if loads executed at the given Exception level are Tag unchecked.

 boolean StoreOnlyTagCheckingEnabled(bits(2) el)
 assert IsFeatureImplemented(FEAT_MTE_STORE_ONLY);
 bit tcso;

 case el of
 when EL0
 if !ELIsInHost(el) then
 tcso = SCTLR_EL1.TCSO0;
 else
 tcso = SCTLR_EL2.TCSO0;
 when EL1
 tcso = SCTLR_EL1.TCSO;
 when EL2
 tcso = SCTLR_EL2.TCSO;
 otherwise
 tcso = SCTLR_EL3.TCSO;

 return tcso == '1';

aarch64/functions/mops/CPYFOptionA

 // CPYFOptionA()
 // =============
 // Returns TRUE if the implementation uses Option A for the
 // CPYF* instructions, and FALSE otherwise.

 boolean CPYFOptionA()
 return boolean IMPLEMENTATION_DEFINED "CPYF* instructions use Option A";

aarch64/functions/mops/CPYOptionA

 // CPYOptionA()
 // ============
 // Returns TRUE if the implementation uses Option A for the
 // CPY* instructions, and FALSE otherwise.

 boolean CPYOptionA()
 return boolean IMPLEMENTATION_DEFINED "CPY* instructions use Option A";

aarch64/functions/mops/CPYParams

 // CPYParams
 // =========

 type CPYParams is (
 MOPSStage stage,
 boolean implements_option_a,
 boolean forward,
 integer cpysize,
 integer stagecpysize,
 bits(64) toaddress,
 bits(64) fromaddress,
 bits(4) nzcv,
 integer n,
 integer d,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13828
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 integer s
)

aarch64/functions/mops/CPYPostSizeChoice

 // CPYPostSizeChoice()
 // ===================
 // Returns the size of the copy that is performed by the CPYE* instructions for this
 // implementation given the parameters of the destination, source and size of the copy.

 integer CPYPostSizeChoice(CPYParams memcpy);

aarch64/functions/mops/CPYPreSizeChoice

 // CPYPreSizeChoice()
 // ==================
 // Returns the size of the copy that is performed by the CPYP* instructions for this
 // implementation given the parameters of the destination, source and size of the copy.

 integer CPYPreSizeChoice(CPYParams memcpy);

aarch64/functions/mops/CPYSizeChoice

 // CPYSizeChoice()
 // ===============
 // Returns the size of the block this performed for an iteration of the copy given the
 // parameters of the destination, source and size of the copy.

 integer CPYSizeChoice(CPYParams memcpy);

aarch64/functions/mops/CheckMOPSEnabled

 // CheckMOPSEnabled()
 // ==================
 // Check for EL0 and EL1 access to the CPY* and SET* instructions.

 CheckMOPSEnabled()
 if (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELIsInHost(EL0) &&
 (!IsHCRXEL2Enabled() || HCRX_EL2.MSCEn == '0')) then
 UNDEFINED;

 if PSTATE.EL == EL0 && !IsInHost() && SCTLR_EL1.MSCEn == '0' then
 UNDEFINED;

 if PSTATE.EL == EL0 && IsInHost() && SCTLR_EL2.MSCEn == '0' then
 UNDEFINED;

aarch64/functions/mops/CheckMemCpyParams

 // CheckMemCpyParams()
 // ===================
 // Check if the parameters to a CPY* or CPYF* instruction are consistent with the
 // PE state and well-formed.

 CheckMemCpyParams(CPYParams memcpy, bits(4) options)
 boolean from_epilogue = memcpy.stage == MOPSStage_Epilogue;

 // Check if this version is consistent with the state of the call.
 if MemCpyZeroSizeCheck() || memcpy.cpysize != 0 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13829
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean using_option_a = memcpy.nzcv<1> == '0';
 if memcpy.implements_option_a != using_option_a then
 boolean wrong_option = TRUE;
 MismatchedMemCpyException(memcpy, options, wrong_option);

 // Check if the parameters to this instruction are valid.
 if memcpy.stage == MOPSStage_Main then
 if (MemCpyParametersIllformedM(memcpy) && (memcpy.stagecpysize != 0 ||
 (boolean IMPLEMENTATION_DEFINED
 "MismatchedMemCpyException is not deferred to the epilogue"))) then
 boolean wrong_option = FALSE;
 MismatchedMemCpyException(memcpy, options, wrong_option);
 else
 integer postsize = CPYPostSizeChoice(memcpy);
 if memcpy.cpysize != postsize || MemCpyParametersIllformedE(memcpy) then
 boolean wrong_option = FALSE;
 MismatchedMemCpyException(memcpy, options, wrong_option);

 return;

aarch64/functions/mops/CheckMemSetParams

 // CheckMemSetParams()
 // ===================
 // Check if the parameters to a SET* or SETG* instruction are consistent with the
 // PE state and well-formed.

 CheckMemSetParams(SETParams memset, bits(2) options)
 boolean from_epilogue = memset.stage == MOPSStage_Epilogue;

 // Check if this version is consistent with the state of the call.
 if MemCpyZeroSizeCheck() || memset.setsize != 0 then
 boolean using_option_a = memset.nzcv<1> == '0';
 if memset.implements_option_a != using_option_a then
 boolean wrong_option = TRUE;
 MismatchedMemSetException(memset, options, wrong_option);

 // Check if the parameters to this instruction are valid.
 if memset.stage == MOPSStage_Main then
 if (MemSetParametersIllformedM(memset) && (memset.stagesetsize != 0 ||
 (boolean IMPLEMENTATION_DEFINED
 "MismatchedMemSetException is not deferred to the epilogue"))) then
 boolean wrong_option = FALSE;
 MismatchedMemSetException(memset, options, wrong_option);
 else
 integer postsize = SETPostSizeChoice(memset);
 if memset.setsize != postsize || MemSetParametersIllformedE(memset) then
 boolean wrong_option = FALSE;
 MismatchedMemSetException(memset, options, wrong_option);

 return;

aarch64/functions/mops/IsMemCpyForward

 // IsMemCpyForward()
 // =================
 // Returns TRUE if in a memcpy of size cpysize bytes from the source address fromaddress
 // to destination address toaddress is done in the forward direction on this implementation.

 boolean IsMemCpyForward(CPYParams memcpy)
 boolean forward;

 // Check for overlapping cases
 if ((UInt(memcpy.fromaddress<55:0>) > UInt(memcpy.toaddress<55:0>)) &&
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13830
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 (UInt(memcpy.fromaddress<55:0>) < UInt(ZeroExtend(memcpy.toaddress<55:0>, 64) +
 memcpy.cpysize))) then
 forward = TRUE;

 elsif ((UInt(memcpy.fromaddress<55:0>) < UInt(memcpy.toaddress<55:0>)) &&
 (UInt(ZeroExtend(memcpy.fromaddress<55:0>, 64) + memcpy.cpysize) >
 UInt(memcpy.toaddress<55:0>))) then
 forward = FALSE;

 // Non-overlapping case
 else
 forward = boolean IMPLEMENTATION_DEFINED "CPY in the forward direction";

 return forward;

aarch64/functions/mops/MOPSStage

 // MOPSStage
 // =========

 enumeration MOPSStage { MOPSStage_Prologue, MOPSStage_Main, MOPSStage_Epilogue };

aarch64/functions/mops/MaxBlockSizeCopiedBytes

 // MaxBlockSizeCopiedBytes()
 // =========================
 // Returns the maximum number of bytes that can used in a single block of the copy.

 integer MaxBlockSizeCopiedBytes()
 return integer IMPLEMENTATION_DEFINED "Maximum bytes used in a single block of a copy";

aarch64/functions/mops/MemCpyBytes

 // MemCpyBytes()
 // =============
 // Copies 'bytes' bytes of memory from fromaddress to toaddress.
 // The integer return parameter indicates the number of bytes copied. The boolean return parameter
 // indicates if a Fault or Abort occurred on the write. The AddressDescriptor and PhysMemRetStatus
 // parameters contain Fault or Abort information for the caller to handle.

 (integer, boolean, AddressDescriptor, PhysMemRetStatus) MemCpyBytes(bits(64) toaddress,
 bits(64) fromaddress,
 boolean forward,
 integer bytes,
 AccessDescriptor raccdesc,
 AccessDescriptor waccdesc)
 AddressDescriptor rmemaddrdesc; // AddressDescriptor for reads
 PhysMemRetStatus rmemstatus; // PhysMemRetStatus for writes
 rmemaddrdesc.fault = NoFault();
 rmemstatus.statuscode = Fault_None;

 AddressDescriptor wmemaddrdesc; // AddressDescriptor for writes
 PhysMemRetStatus wmemstatus; // PhysMemRetStatus for writes
 wmemaddrdesc.fault = NoFault();
 wmemstatus.statuscode = Fault_None;

 bits(8*bytes) value;
 boolean aligned = TRUE;

 if forward then
 integer read = 0; // Bytes read
 integer write = 0; // Bytes written

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13831
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Read until all bytes are read or until a fault is encountered.
 while read < bytes && !IsFault(rmemaddrdesc) && !IsFault(rmemstatus) do
 (value<8 * read +:8>, rmemaddrdesc, rmemstatus) = AArch64.MemSingleRead(
 fromaddress + read, 1,
 raccdesc, aligned);
 read = read + 1;

 // Ensure no UNKNOWN data is written.
 if IsFault(rmemaddrdesc) || IsFault(rmemstatus) then
 read = read - 1;

 // Write all bytes that were read or until a fault is encountered.
 while write < read && !IsFault(wmemaddrdesc) && !IsFault(wmemstatus) do
 (wmemaddrdesc, wmemstatus) = AArch64.MemSingleWrite(toaddress + write, 1,
 waccdesc, aligned,
 value<8 * write +:8>);
 write = write + 1;

 // Check all bytes were written.
 if IsFault(wmemaddrdesc) || IsFault(wmemstatus) then
 boolean fault_on_write = TRUE;
 return (write - 1, fault_on_write, wmemaddrdesc, wmemstatus);

 // Check all bytes were read.
 if IsFault(rmemaddrdesc) || IsFault(rmemstatus) then
 boolean fault_on_write = FALSE;
 return (read, fault_on_write, rmemaddrdesc, rmemstatus);

 else
 integer read = bytes; // Bytes to read
 integer write = bytes; // Bytes to write

 // Read until all bytes are read or until a fault is encountered.
 while read > 0 && !IsFault(rmemaddrdesc) && !IsFault(rmemstatus) do
 read = read - 1;
 (value<8 * read +:8>, rmemaddrdesc, rmemstatus) = AArch64.MemSingleRead(
 fromaddress + read, 1,
 raccdesc, aligned);

 // Ensure no UNKNOWN data is written.
 if IsFault(rmemaddrdesc) || IsFault(rmemstatus) then
 read = read + 1;

 // Write all bytes that were read or until a fault is encountered.
 while write > read && !IsFault(wmemaddrdesc) && !IsFault(wmemstatus) do
 write = write - 1;
 (wmemaddrdesc, wmemstatus) = AArch64.MemSingleWrite(toaddress + write, 1,
 waccdesc, aligned,
 value<8 * write +:8>);

 // Check all bytes were written.
 if IsFault(wmemaddrdesc) || IsFault(wmemstatus) then
 boolean fault_on_write = TRUE;
 return (bytes - (write + 1), fault_on_write, wmemaddrdesc, wmemstatus);

 // Check all bytes were read.
 if IsFault(rmemaddrdesc) || IsFault(rmemstatus) then
 boolean fault_on_write = FALSE;
 return (bytes - read, fault_on_write, rmemaddrdesc, rmemstatus);

 // Return any AddressDescriptor and PhysMemRetStatus.
 return (bytes, FALSE, wmemaddrdesc, wmemstatus);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13832
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/mops/MemCpyParametersIllformedE

 // MemCpyParametersIllformedE()
 // ============================
 // Returns TRUE if the inputs are not well formed (in terms of their size and/or alignment)
 // for a CPYE* instruction for this implementation given the parameters of the destination,
 // source and size of the copy.

 boolean MemCpyParametersIllformedE(CPYParams memcpy);

aarch64/functions/mops/MemCpyParametersIllformedM

 // MemCpyParametersIllformedM()
 // ============================
 // Returns TRUE if the inputs are not well formed (in terms of their size and/or alignment)
 // for a CPYM* instruction for this implementation given the parameters of the destination,
 // source and size of the copy.

 boolean MemCpyParametersIllformedM(CPYParams memcpy);

aarch64/functions/mops/MemCpyStageSize

 // MemCpyStageSize()
 // =================
 // Returns the number of bytes copied by the given stage of a CPY* or CPYF* instruction.

 integer MemCpyStageSize(CPYParams memcpy)
 integer stagecpysize;

 if memcpy.stage == MOPSStage_Prologue then
 // IMP DEF selection of the amount covered by pre-processing.
 stagecpysize = CPYPreSizeChoice(memcpy);
 assert stagecpysize == 0 || (stagecpysize < 0) == (memcpy.cpysize < 0);

 if memcpy.cpysize > 0 then
 assert stagecpysize <= memcpy.cpysize;
 else
 assert stagecpysize >= memcpy.cpysize;

 else
 integer postsize = CPYPostSizeChoice(memcpy);
 assert postsize == 0 || (postsize < 0) == (memcpy.cpysize < 0);

 if memcpy.stage == MOPSStage_Main then
 stagecpysize = memcpy.cpysize - postsize;
 else
 stagecpysize = postsize;

 return stagecpysize;

aarch64/functions/mops/MemCpyZeroSizeCheck

 // MemCpyZeroSizeCheck()
 // =====================
 // Returns TRUE if the implementation option is checked on a copy of size zero remaining.

 boolean MemCpyZeroSizeCheck()
 return boolean IMPLEMENTATION_DEFINED "Implementation option is checked with a cpysize of 0";
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13833
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/mops/MemSetBytes

 // MemSetBytes()
 // =============
 // Writes a byte of data to the given address 'bytes' times.
 // The integer return parameter indicates the number of bytes set. The AddressDescriptor and
 // PhysMemRetStatus parameters contain Fault or Abort information for the caller to handle.

 (integer, AddressDescriptor, PhysMemRetStatus) MemSetBytes(bits(64) toaddress, bits(8) data,
 integer bytes, AccessDescriptor accdesc)
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 memaddrdesc.fault = NoFault();
 memstatus.statuscode = Fault_None;

 boolean aligned = TRUE;
 integer write = 0; // Bytes written

 // Write until all bytes are written or a fault is encountered.
 while write < bytes && !IsFault(memaddrdesc) && !IsFault(memstatus) do
 (memaddrdesc, memstatus) = AArch64.MemSingleWrite(toaddress + write, 1, accdesc,
 aligned, data);
 write = write + 1;

 // Check all bytes were written.
 if IsFault(memaddrdesc) || IsFault(memstatus) then
 return (write - 1, memaddrdesc, memstatus);

 return (bytes, memaddrdesc, memstatus);

aarch64/functions/mops/MemSetParametersIllformedE

 // MemSetParametersIllformedE()
 // ============================
 // Returns TRUE if the inputs are not well formed (in terms of their size and/or
 // alignment) for a SETE* or SETGE* instruction for this implementation given the
 // parameters of the destination and size of the set.

 boolean MemSetParametersIllformedE(SETParams memset);

aarch64/functions/mops/MemSetParametersIllformedM

 // MemSetParametersIllformedM()
 // ============================
 // Returns TRUE if the inputs are not well formed (in terms of their size and/or
 // alignment) for a SETM* or SETGM* instruction for this implementation given the
 // parameters of the destination and size of the copy.

 boolean MemSetParametersIllformedM(SETParams memset);

aarch64/functions/mops/MemSetStageSize

 // MemSetStageSize()
 // =================
 // Returns the number of bytes set by the given stage of a SET* or SETG* instruction.

 integer MemSetStageSize(SETParams memset)
 integer stagesetsize;

 if memset.stage == MOPSStage_Prologue then
 // IMP DEF selection of the amount covered by pre-processing.
 stagesetsize = SETPreSizeChoice(memset);
 assert stagesetsize == 0 || (stagesetsize < 0) == (memset.setsize < 0);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13834
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if memset.is_setg then assert stagesetsize<3:0> == '0000';

 if memset.setsize > 0 then
 assert stagesetsize <= memset.setsize;
 else
 assert stagesetsize >= memset.setsize;

 else
 integer postsize = SETPostSizeChoice(memset);
 assert postsize == 0 || (postsize < 0) == (memset.setsize < 0);
 if memset.is_setg then assert postsize<3:0> == '0000';

 if memset.stage == MOPSStage_Main then
 stagesetsize = memset.setsize - postsize;
 else
 stagesetsize = postsize;

 return stagesetsize;

aarch64/functions/mops/MemSetZeroSizeCheck

 // MemSetZeroSizeCheck()
 // =====================
 // Returns TRUE if the implementation option is checked on a copy of size zero remaining.

 boolean MemSetZeroSizeCheck()
 return boolean IMPLEMENTATION_DEFINED "Implementation option is checked with a setsize of 0";

aarch64/functions/mops/MismatchedCpySetTargetEL

 // MismatchedCpySetTargetEL()
 // ==========================
 // Return the target exception level for an Exception_MemCpyMemSet.

 bits(2) MismatchedCpySetTargetEL()
 bits(2) target_el;

 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 elsif (PSTATE.EL == EL1 && EL2Enabled() &&
 IsHCRXEL2Enabled() && HCRX_EL2.MCE2 == '1') then
 target_el = EL2;
 else
 target_el = EL1;

 return target_el;

aarch64/functions/mops/MismatchedMemCpyException

 // MismatchedMemCpyException()
 // ===========================
 // Generates an exception for a CPY* instruction if the version
 // is inconsistent with the state of the call.

 MismatchedMemCpyException(CPYParams memcpy, bits(4) options, boolean wrong_option)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;
 bits(2) target_el = MismatchedCpySetTargetEL();

 ExceptionRecord except = ExceptionSyndrome(Exception_MemCpyMemSet);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13835
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 except.syndrome<24> = '0';
 except.syndrome<23> = '0';
 except.syndrome<22:19> = options;
 except.syndrome<18> = if memcpy.stage == MOPSStage_Epilogue then '1' else '0';
 except.syndrome<17> = if wrong_option then '1' else '0';
 except.syndrome<16> = if memcpy.implements_option_a then '1' else '0';
 // exception.syndrome<15> is RES0.
 except.syndrome<14:10> = memcpy.d<4:0>;
 except.syndrome<9:5> = memcpy.s<4:0>;
 except.syndrome<4:0> = memcpy.n<4:0>;

 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/functions/mops/MismatchedMemSetException

 // MismatchedMemSetException()
 // ===========================
 // Generates an exception for a SET* instruction if the version
 // is inconsistent with the state of the call.

 MismatchedMemSetException(SETParams memset, bits(2) options, boolean wrong_option)
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 integer vect_offset = 0x0;
 bits(2) target_el = MismatchedCpySetTargetEL();

 ExceptionRecord except = ExceptionSyndrome(Exception_MemCpyMemSet);
 except.syndrome<24> = '1';
 except.syndrome<23> = if memset.is_setg then '1' else '0';
 // exception.syndrome<22:21> is RES0.
 except.syndrome<20:19> = options;
 except.syndrome<18> = if memset.stage == MOPSStage_Epilogue then '1' else '0';
 except.syndrome<17> = if wrong_option then '1' else '0';
 except.syndrome<16> = if memset.implements_option_a then '1' else '0';
 // exception.syndrome<15> is RES0.
 except.syndrome<14:10> = memset.d<4:0>;
 except.syndrome<9:5> = memset.s<4:0>;
 except.syndrome<4:0> = memset.n<4:0>;

 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/functions/mops/SETGOptionA

 // SETGOptionA()
 // =============
 // Returns TRUE if the implementation uses Option A for the
 // SETG* instructions, and FALSE otherwise.

 boolean SETGOptionA()
 return boolean IMPLEMENTATION_DEFINED "SETG* instructions use Option A";

aarch64/functions/mops/SETOptionA

 // SETOptionA()
 // ============
 // Returns TRUE if the implementation uses Option A for the
 // SET* instructions, and FALSE otherwise.

 boolean SETOptionA()
 return boolean IMPLEMENTATION_DEFINED "SET* instructions use Option A";
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13836
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/mops/SETParams

 // SETParams
 // =========

 type SETParams is (
 MOPSStage stage,
 boolean implements_option_a,
 boolean is_setg,
 integer setsize,
 integer stagesetsize,
 bits(64) toaddress,
 bits(4) nzcv,
 integer n,
 integer d,
 integer s
)

aarch64/functions/mops/SETPostSizeChoice

 // SETPostSizeChoice()
 // ===================
 // Returns the size of the set that is performed by the SETE* or SETGE* instructions
 // for this implementation, given the parameters of the destination and size of the set.

 integer SETPostSizeChoice(SETParams memset);

aarch64/functions/mops/SETPreSizeChoice

 // SETPreSizeChoice()
 // ==================
 // Returns the size of the set that is performed by the SETP* or SETGP* instructions
 // for this implementation, given the parameters of the destination and size of the set.

 integer SETPreSizeChoice(SETParams memset);

aarch64/functions/mops/SETSizeChoice

 // SETSizeChoice()
 // ===============
 // Returns the size of the block thisperformed for an iteration of the set given
 // the parameters of the destination and size of the set. The size of the block
 // is an integer multiple of alignsize.

 integer SETSizeChoice(SETParams memset, integer alignsize);

aarch64/functions/mops/UpdateCpyRegisters

 // UpdateCpyRegisters()
 // ====================
 // Performs updates to the X[n], X[d], and X[s] registers, as appropriate, for the CPY* and CPYF*
 // instructions. When fault is TRUE, the values correspond to the first element not copied,
 // such that a return to the instruction will enable a resumption of the copy.

 UpdateCpyRegisters(CPYParams memcpy, boolean fault, integer copied)
 if fault then
 if memcpy.stage == MOPSStage_Prologue then
 // Undo any formatting of the input parameters performed in the prologue.
 if memcpy.implements_option_a && memcpy.forward then
 // cpysize is negative.
 integer cpysize = memcpy.cpysize + copied;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13837
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 X[memcpy.n, 64] = (0 - cpysize)<63:0>;
 X[memcpy.d, 64] = memcpy.toaddress + cpysize;
 X[memcpy.s, 64] = memcpy.fromaddress + cpysize;

 elsif !memcpy.implements_option_a && !memcpy.forward then
 integer cpysize = memcpy.cpysize - copied;
 X[memcpy.n, 64] = cpysize<63:0>;
 X[memcpy.d, 64] = memcpy.toaddress - cpysize;
 X[memcpy.s, 64] = memcpy.fromaddress - cpysize;

 else
 X[memcpy.n, 64] = (memcpy.cpysize - copied)<63:0>;
 X[memcpy.d, 64] = memcpy.toaddress + copied;
 X[memcpy.s, 64] = memcpy.fromaddress + copied;

 else
 if memcpy.implements_option_a then
 if memcpy.forward then
 X[memcpy.n, 64] = (memcpy.cpysize + copied)<63:0>;
 else
 X[memcpy.n, 64] = (memcpy.cpysize - copied)<63:0>;

 else
 X[memcpy.n, 64] = (memcpy.cpysize - copied)<63:0>;

 if memcpy.forward then
 X[memcpy.d, 64] = memcpy.toaddress + copied;
 X[memcpy.s, 64] = memcpy.fromaddress + copied;
 else
 X[memcpy.d, 64] = memcpy.toaddress - copied;
 X[memcpy.s, 64] = memcpy.fromaddress - copied;
 else
 X[memcpy.n, 64] = memcpy.cpysize<63:0>;
 if memcpy.stage == MOPSStage_Prologue || !memcpy.implements_option_a then
 X[memcpy.d, 64] = memcpy.toaddress;
 X[memcpy.s, 64] = memcpy.fromaddress;

 return;

aarch64/functions/mops/UpdateSetRegisters

 // UpdateSetRegisters()
 // ====================
 // Performs updates to the X[n] and X[d] registers, as appropriate, for the SET* and SETG*
 // instructions. When fault is TRUE, the values correspond to the first element not set, such
 // that a return to the instruction will enable a resumption of the memory set.

 UpdateSetRegisters(SETParams memset, boolean fault, integer memory_set)
 if fault then
 // Undo any formatting of the input parameters performed in the prologue.
 if memset.stage == MOPSStage_Prologue then
 if memset.implements_option_a then
 // setsize is negative.
 integer setsize = memset.setsize + memory_set;
 X[memset.n, 64] = (0 - setsize)<63:0>;
 X[memset.d, 64] = memset.toaddress + setsize;
 else
 X[memset.n, 64] = (memset.setsize - memory_set)<63:0>;
 X[memset.d, 64] = memset.toaddress + memory_set;

 else
 if memset.implements_option_a then
 X[memset.n, 64] = (memset.setsize + memory_set)<63:0>;
 else
 X[memset.n, 64] = (memset.setsize - memory_set)<63:0>;
 X[memset.d, 64] = memset.toaddress + memory_set;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13838
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 X[memset.n, 64] = memset.setsize<63:0>;
 if memset.stage == MOPSStage_Prologue || !memset.implements_option_a then
 X[memset.d, 64] = memset.toaddress;

 return;

aarch64/functions/movewideop/MoveWideOp

 // MoveWideOp
 // ==========
 // Move wide 16-bit immediate instruction types.

 enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

aarch64/functions/movwpreferred/MoveWidePreferred

 // MoveWidePreferred()
 // ===================
 //
 // Return TRUE if a bitmask immediate encoding would generate an immediate
 // value that could also be represented by a single MOVZ or MOVN instruction.
 // Used as a condition for the preferred MOV<-ORR alias.

 boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
 integer s = UInt(imms);
 integer r = UInt(immr);
 integer width = if sf == '1' then 64 else 32;

 // element size must equal total immediate size
 if sf == '1' && !((immN:imms) IN {'1xxxxxx'}) then
 return FALSE;
 if sf == '0' && !((immN:imms) IN {'00xxxxx'}) then
 return FALSE;

 // for MOVZ must contain no more than 16 ones
 if s < 16 then
 // ones must not span halfword boundary when rotated
 return (-r MOD 16) <= (15 - s);

 // for MOVN must contain no more than 16 zeros
 if s >= width - 15 then
 // zeros must not span halfword boundary when rotated
 return (r MOD 16) <= (s - (width - 15));

 return FALSE;

aarch64/functions/pac/addpac/AddPAC

 // AddPAC()
 // ========
 // Calculates the pointer authentication code for a 64-bit quantity and then
 // inserts that into pointer authentication code field of that 64-bit quantity.

 bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
 bits(64) PAC;
 bits(64) result;
 bits(64) ext_ptr;
 bits(64) extfield;
 bit selbit;
 bit bit55;
 boolean isgeneric = FALSE;
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13839
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean mtx = EffectiveMTX(ptr, !data, PSTATE.EL) == '1';
 constant integer top_bit = if tbi then 55 else 63;
 boolean EL3_using_lva3 = (IsFeatureImplemented(FEAT_LVA3) &&
 TranslationRegime(PSTATE.EL) == Regime_EL3 &&
 AArch64.IASize(TCR_EL3.T0SZ) > 52);
 boolean is_VA_56bit = (TranslationRegime(PSTATE.EL) == Regime_EL3 &&
 AArch64.IASize(TCR_EL3.T0SZ) == 56);

 // If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
 // the pointer to select between upper and lower ranges, and preserve this.
 // This handles the awkward case where there is apparently no correct choice between
 // the upper and lower address range - ie an addr of 1xxxxxxx0table with TBI0=0 and TBI1=1
 // and 0xxxxxxx1 with TBI1=0 and TBI0=1:
 if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() IN {EL1, EL2};
 if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 if data then
 if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||
 (TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 // EL2 translation regime registers
 if data then
 if TCR_EL2.TBI1 == '1' || TCR_EL2.TBI0 == '1' then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL2.TBI1 == '1' && TCR_EL2.TBID1 == '0') ||
 (TCR_EL2.TBI0 == '1' && TCR_EL2.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else selbit = if tbi then ptr<55> else ptr<63>;

 if IsFeatureImplemented(FEAT_PAuth2) && IsFeatureImplemented(FEAT_CONSTPACFIELD) then
 selbit = ptr<55>;
 constant integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

 if EL3_using_lva3 then
 extfield = Replicate('0', 64);
 else
 extfield = Replicate(selbit, 64);

 // Compute the pointer authentication code for a ptr with good extension bits
 if tbi then
 if bottom_PAC_bit <= 55 then
 ext_ptr = (ptr<63:56> :
 extfield<55:bottom_PAC_bit> : ptr<bottom_PAC_bit-1:0>);
 else
 ext_ptr = ptr<63:56> : ptr<55:0>;
 elsif mtx then
 if bottom_PAC_bit <= 55 then
 ext_ptr = (extfield<63:60> : ptr<59:56> :
 extfield<55:bottom_PAC_bit> : ptr<bottom_PAC_bit-1:0>);
 else
 ext_ptr = extfield<63:60> : ptr<59:56> : ptr<55:0>;
 else
 ext_ptr = extfield<63:bottom_PAC_bit> : ptr<bottom_PAC_bit-1:0>;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13840
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>, isgeneric);

 if !IsFeatureImplemented(FEAT_PAuth2) then
 // If FEAT_PAuth2 is not implemented, the PAC is corrupted if the pointer does not have
 // a canonical VA.
 assert !mtx;
 assert bottom_PAC_bit <= 52;
 if !IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then
 if IsFeatureImplemented(FEAT_EPAC) then
 PAC = 0x0000000000000000<63:0>;
 else
 PAC<top_bit-1> = NOT(PAC<top_bit-1>);

 // Preserve the determination between upper and lower address at bit<55> and insert PAC into
 // bits that are not used for the address or the tag(s).
 if !IsFeatureImplemented(FEAT_PAuth2) then
 assert (bottom_PAC_bit <= 52);
 if tbi then
 result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 // A compliant implementation of FEAT_MTE4 also implements FEAT_PAuth2
 assert !mtx;
 else
 if EL3_using_lva3 then
 // Bit 55 is an address bit (when VA size is 56-bits) or
 // used to store PAC (when VA size is less than 56-bits)
 if is_VA_56bit then
 bit55 = ptr<55>;
 else
 bit55 = ptr<55> EOR PAC<55>;
 else
 bit55 = selbit;
 if tbi then
 if bottom_PAC_bit < 55 then
 result = (ptr<63:56> : bit55 :
 (ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>) :
 ptr<bottom_PAC_bit-1:0>);
 else
 result = (ptr<63:56> : bit55 : ptr<54:0>);
 elsif mtx then
 if bottom_PAC_bit < 55 then
 result = ((ptr<63:60> EOR PAC<63:60>) : ptr<59:56> : bit55 :
 (ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>) :
 ptr<bottom_PAC_bit-1:0>);
 else
 result = ((ptr<63:60> EOR PAC<63:60>) : ptr<59:56> : bit55 :
 ptr<54:0>);
 else
 if bottom_PAC_bit < 55 then
 result = ((ptr<63:56> EOR PAC<63:56>) : bit55 :
 (ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>) :
 ptr<bottom_PAC_bit-1:0>);
 else
 result = ((ptr<63:56> EOR PAC<63:56>) : bit55 :
 ptr<54:0>);
 return result;

aarch64/functions/pac/addpacda/AddPACDA

 // AddPACDA()
 // ==========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of x, y and the
 // APDAKey_EL1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13841
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 bits(64) AddPACDA(bits(64) x, bits(64) y)
 bits(128) APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
 if !IsAPDAKeyEnabled() then
 return x;
 else
 return AddPAC(x, y, APDAKey_EL1, TRUE);

aarch64/functions/pac/addpacdb/AddPACDB

 // AddPACDB()
 // ==========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of x, y and the
 // APDBKey_EL1.

 bits(64) AddPACDB(bits(64) x, bits(64) y)
 bits(128) APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 if !IsAPDBKeyEnabled() then
 return x;
 else
 return AddPAC(x, y, APDBKey_EL1, TRUE);

aarch64/functions/pac/addpacga/AddPACGA

 // AddPACGA()
 // ==========
 // Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
 // a 32-bit pointer authentication code which is derived using a cryptographic
 // algorithm as a combination of x, y and the APGAKey_EL1.

 bits(64) AddPACGA(bits(64) x, bits(64) y)
 boolean TrapEL2;
 boolean TrapEL3;
 boolean isgeneric = TRUE;
 bits(128) APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;

 case PSTATE.EL of
 when EL0
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0' && !IsInHost();
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if TrapEL3 && EL3SDDUndefPriority() then
 UNDEFINED;
 elsif TrapEL2 then
 TrapPACUse(EL2);
 elsif TrapEL3 then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 TrapPACUse(EL3);
 else
 return ComputePAC(x, y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>, isgeneric)<63:32>:Zeros(32);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13842
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/pac/addpacia/AddPACIA

 // AddPACIA()
 // ==========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of x, y, and the
 // APIAKey_EL1.

 bits(64) AddPACIA(bits(64) x, bits(64) y)
 bits(128) APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;
 if !IsAPIAKeyEnabled() then
 return x;
 else
 return AddPAC(x, y, APIAKey_EL1, FALSE);

aarch64/functions/pac/addpacib/AddPACIB

 // AddPACIB()
 // ==========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of x, y and the
 // APIBKey_EL1.

 bits(64) AddPACIB(bits(64) x, bits(64) y)
 bits(128) APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
 if !IsAPIBKeyEnabled() then
 return x;
 else
 return AddPAC(x, y, APIBKey_EL1, FALSE);

aarch64/functions/pac/auth/AArch64.PACFailException

 // AArch64.PACFailException()
 // ==========================
 // Generates a PAC Fail Exception

 AArch64.PACFailException(bits(2) syndrome)
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_PACFail);
 except.syndrome<1:0> = syndrome;
 except.syndrome<24:2> = Zeros(23); // RES0

 if UInt(PSTATE.EL) > UInt(EL0) then
 AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

aarch64/functions/pac/auth/Auth

 // Auth()
 // ======
 // Restores the upper bits of the address to be all zeros or all ones (based on the
 // value of bit[55]) and computes and checks the pointer authentication code. If the
 // check passes, then the restored address is returned. If the check fails, the
 // second-top and third-top bits of the extension bits in the pointer authentication code
 // field are corrupted to ensure that accessing the address will give a translation fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13843
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number,
 boolean is_combined)
 bits(64) PAC;
 bits(64) result;
 bits(64) original_ptr;
 bits(2) error_code;
 bits(64) extfield;
 boolean isgeneric = FALSE;

 // Reconstruct the extension field used of adding the PAC to the pointer
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
 boolean mtx = EffectiveMTX(ptr, !data, PSTATE.EL) == '1';
 constant integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);
 boolean EL3_using_lva3 = (IsFeatureImplemented(FEAT_LVA3) &&
 TranslationRegime(PSTATE.EL) == Regime_EL3 &&
 AArch64.IASize(TCR_EL3.T0SZ) > 52);
 boolean is_VA_56bit = (TranslationRegime(PSTATE.EL) == Regime_EL3 &&
 AArch64.IASize(TCR_EL3.T0SZ) == 56);
 if EL3_using_lva3 then
 extfield = Replicate('0', 64);
 else
 extfield = Replicate(ptr<55>, 64);

 if tbi then
 if bottom_PAC_bit <= 55 then
 original_ptr = (ptr<63:56> :
 extfield<55:bottom_PAC_bit> : ptr<bottom_PAC_bit-1:0>);
 else
 original_ptr = ptr<63:56> : ptr<55:0>;
 elsif mtx then
 if bottom_PAC_bit <= 55 then
 original_ptr = (extfield<63:60> : ptr<59:56> :
 extfield<55:bottom_PAC_bit> : ptr<bottom_PAC_bit-1:0>);
 else
 original_ptr = extfield<63:60> : ptr<59:56> : ptr<55:0>;
 else
 original_ptr = extfield<63:bottom_PAC_bit> : ptr<bottom_PAC_bit-1:0>;

 PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>, isgeneric);
 // Check pointer authentication code
 if tbi then
 if !IsFeatureImplemented(FEAT_PAuth2) then
 assert (bottom_PAC_bit <= 52);
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63:55>:error_code:original_ptr<52:0>;
 else
 result = ptr;
 if EL3_using_lva3 && !is_VA_56bit then
 result<55> = result<55> EOR PAC<55>;
 if (bottom_PAC_bit < 55) then
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 if (IsFeatureImplemented(FEAT_FPACCOMBINE) ||
 (IsFeatureImplemented(FEAT_FPAC) && !is_combined)) then
 if (bottom_PAC_bit < 55 &&
 result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit))) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 elsif mtx then
 assert IsFeatureImplemented(FEAT_PAuth2);
 result = ptr;
 if EL3_using_lva3 && !is_VA_56bit then
 result<55> = result<55> EOR PAC<55>;
 if (bottom_PAC_bit < 55) then
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13844
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 result<63:60> = result<63:60> EOR PAC<63:60>;
 if (IsFeatureImplemented(FEAT_FPACCOMBINE) ||
 (IsFeatureImplemented(FEAT_FPAC) && !is_combined)) then
 if ((bottom_PAC_bit < 55 &&
 result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit))) ||
 (result<63:60> != Replicate(result<55>, 4))) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 else
 if !IsFeatureImplemented(FEAT_PAuth2) then
 assert (bottom_PAC_bit <= 52);
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63>:error_code:original_ptr<60:0>;
 else
 result = ptr;
 if EL3_using_lva3 && !is_VA_56bit then
 result<55> = result<55> EOR PAC<55>;
 if bottom_PAC_bit < 55 then
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 result<63:56> = result<63:56> EOR PAC<63:56>;
 if (IsFeatureImplemented(FEAT_FPACCOMBINE) ||
 (IsFeatureImplemented(FEAT_FPAC) && !is_combined)) then
 if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 return result;

aarch64/functions/pac/authda/AuthDA

 // AuthDA()
 // ========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of x, using the same
 // algorithm and key as AddPACDA().

 bits(64) AuthDA(bits(64) x, bits(64) y, boolean is_combined)
 bits(128) APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
 if !IsAPDAKeyEnabled() then
 return x;
 else
 return Auth(x, y, APDAKey_EL1, TRUE, '0', is_combined);

aarch64/functions/pac/authdb/AuthDB

 // AuthDB()
 // ========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a
 // pointer authentication code in the pointer authentication code field bits of x, using
 // the same algorithm and key as AddPACDB().

 bits(64) AuthDB(bits(64) x, bits(64) y, boolean is_combined)
 bits(128) APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 if !IsAPDBKeyEnabled() then
 return x;
 else
 return Auth(x, y, APDBKey_EL1, TRUE, '1', is_combined);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13845
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/pac/authia/AuthIA

 // AuthIA()
 // ========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of x, using the same
 // algorithm and key as AddPACIA().

 bits(64) AuthIA(bits(64) x, bits(64) y, boolean is_combined)
 bits(128) APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;
 if !IsAPIAKeyEnabled() then
 return x;
 else
 return Auth(x, y, APIAKey_EL1, FALSE, '0', is_combined);

aarch64/functions/pac/authib/AuthIB

 // AuthIB()
 // ========
 // Returns a 64-bit value containing x, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of x, using the same
 // algorithm and key as AddPACIB().

 bits(64) AuthIB(bits(64) x, bits(64) y, boolean is_combined)
 bits(128) APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
 if !IsAPIBKeyEnabled() then
 return x;
 else
 return Auth(x, y, APIBKey_EL1, FALSE, '1', is_combined);

aarch64/functions/pac/calcbottompacbit/AArch64.PACEffectiveTxSZ

 // AArch64.PACEffectiveTxSZ()
 // ==========================
 // Compute the effective value for TxSZ used to determine the placement of the PAC field

 bits(6) AArch64.PACEffectiveTxSZ(Regime regime, S1TTWParams walkparams)
 constant integer s1maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 constant integer s1mintxsz = AArch64.S1MinTxSZ(regime, walkparams.d128,
 walkparams.ds, walkparams.tgx);

 if AArch64.S1TxSZFaults(regime, walkparams) then
 if ConstrainUnpredictable(Unpredictable_RESTnSZ) == Constraint_FORCE then
 if UInt(walkparams.txsz) < s1mintxsz then
 return s1mintxsz<5:0>;
 if UInt(walkparams.txsz) > s1maxtxsz then
 return s1maxtxsz<5:0>;
 elsif UInt(walkparams.txsz) < s1mintxsz then
 return s1mintxsz<5:0>;
 elsif UInt(walkparams.txsz) > s1maxtxsz then
 return s1maxtxsz<5:0>;

 return walkparams.txsz;

aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

 // CalculateBottomPACBit()
 // =======================

 integer CalculateBottomPACBit(bit top_bit)
 Regime regime;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13846
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 S1TTWParams walkparams;
 integer bottom_PAC_bit;

 regime = TranslationRegime(PSTATE.EL);
 ss = CurrentSecurityState();
 walkparams = AArch64.GetS1TTWParams(regime, ss, Replicate(top_bit, 64));
 bottom_PAC_bit = 64 - UInt(AArch64.PACEffectiveTxSZ(regime, walkparams));

 return bottom_PAC_bit;

aarch64/functions/pac/computepac/ComputePAC

 // ComputePAC()
 // ============

 bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1,
 boolean isgeneric)
 if UsePACIMP(isgeneric) then
 return ComputePACIMPDEF(data, modifier, key0, key1);
 if UsePACQARMA3(isgeneric) then
 boolean isqarma3 = TRUE;
 return ComputePACQARMA(data, modifier, key0, key1, isqarma3);
 if UsePACQARMA5(isgeneric) then
 boolean isqarma3 = FALSE;
 return ComputePACQARMA(data, modifier, key0, key1, isqarma3);
 Unreachable();

aarch64/functions/pac/computepac/ComputePAC2

 // ComputePAC2()
 // =============

 bits(64) ComputePAC2(bits(64) data, bits(64) modifier1, bits(64) modifier2,
 bits(64) key0, bits(64) key1, boolean isgeneric)
 bits(64) concat_modifiers = modifier2<36:5>:modifier1<35:4>;
 if UsePACIMP(isgeneric) then
 return ComputePACIMPDEF(data, concat_modifiers, key0, key1);
 if UsePACQARMA3(isgeneric) then
 boolean isqarma3 = TRUE;
 return ComputePACQARMA(data, concat_modifiers, key0, key1, isqarma3);
 if UsePACQARMA5(isgeneric) then
 boolean isqarma3 = FALSE;
 return ComputePACQARMA(data, concat_modifiers, key0, key1, isqarma3);
 Unreachable();

aarch64/functions/pac/computepac/ComputePACIMPDEF

 // ComputePACIMPDEF()
 // ==================
 // Compute IMPLEMENTATION DEFINED cryptographic algorithm to be used for PAC calculation.

 bits(64) ComputePACIMPDEF(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1);

aarch64/functions/pac/computepac/ComputePACQARMA

 // ComputePACQARMA()
 // =================
 // Compute QARMA3 or QARMA5 cryptographic algorithm for PAC calculation

 bits(64) ComputePACQARMA(bits(64) data, bits(64) modifier, bits(64) key0,
 bits(64) key1, boolean isqarma3)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13847
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(64) workingval;
 bits(64) runningmod;
 bits(64) roundkey;
 bits(64) modk0;
 constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;

 integer iterations;
 RC[0] = 0x0000000000000000<63:0>;
 RC[1] = 0x13198A2E03707344<63:0>;
 RC[2] = 0xA4093822299F31D0<63:0>;

 if isqarma3 then
 iterations = 2;
 else // QARMA5
 iterations = 4;
 RC[3] = 0x082EFA98EC4E6C89<63:0>;
 RC[4] = 0x452821E638D01377<63:0>;

 modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
 runningmod = modifier;
 workingval = data EOR key0;

 for i = 0 to iterations
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = workingval EOR RC[i];
 if i > 0 then
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 if isqarma3 then
 workingval = PACSub1(workingval);
 else
 workingval = PACSub(workingval);
 runningmod = TweakShuffle(runningmod<63:0>);
 roundkey = modk0 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 if isqarma3 then
 workingval = PACSub1(workingval);
 else
 workingval = PACSub(workingval);
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = key1 EOR workingval;
 workingval = PACCellInvShuffle(workingval);
 if isqarma3 then
 workingval = PACSub1(workingval);
 else
 workingval = PACInvSub(workingval);
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
 workingval = workingval EOR key0;
 workingval = workingval EOR runningmod;
 for i = 0 to iterations
 if isqarma3 then
 workingval = PACSub1(workingval);
 else
 workingval = PACInvSub(workingval);
 if i < iterations then
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
 runningmod = TweakInvShuffle(runningmod<63:0>);
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR RC[iterations-i];
 workingval = workingval EOR roundkey;
 workingval = workingval EOR Alpha;
 workingval = workingval EOR modk0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13848
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return workingval;

aarch64/functions/pac/computepac/PACCellInvShuffle

 // PACCellInvShuffle()
 // ===================

 bits(64) PACCellInvShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<15:12>;
 outdata<7:4> = indata<27:24>;
 outdata<11:8> = indata<51:48>;
 outdata<15:12> = indata<39:36>;
 outdata<19:16> = indata<59:56>;
 outdata<23:20> = indata<47:44>;
 outdata<27:24> = indata<7:4>;
 outdata<31:28> = indata<19:16>;
 outdata<35:32> = indata<35:32>;
 outdata<39:36> = indata<55:52>;
 outdata<43:40> = indata<31:28>;
 outdata<47:44> = indata<11:8>;
 outdata<51:48> = indata<23:20>;
 outdata<55:52> = indata<3:0>;
 outdata<59:56> = indata<43:40>;
 outdata<63:60> = indata<63:60>;
 return outdata;

aarch64/functions/pac/computepac/PACCellShuffle

 // PACCellShuffle()
 // ================

 bits(64) PACCellShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<55:52>;
 outdata<7:4> = indata<27:24>;
 outdata<11:8> = indata<47:44>;
 outdata<15:12> = indata<3:0>;
 outdata<19:16> = indata<31:28>;
 outdata<23:20> = indata<51:48>;
 outdata<27:24> = indata<7:4>;
 outdata<31:28> = indata<43:40>;
 outdata<35:32> = indata<35:32>;
 outdata<39:36> = indata<15:12>;
 outdata<43:40> = indata<59:56>;
 outdata<47:44> = indata<23:20>;
 outdata<51:48> = indata<11:8>;
 outdata<55:52> = indata<39:36>;
 outdata<59:56> = indata<19:16>;
 outdata<63:60> = indata<63:60>;
 return outdata;

aarch64/functions/pac/computepac/PACInvSub

 // PACInvSub()
 // ===========

 bits(64) PACInvSub(bits(64) Tinput)
 // This is a 4-bit substitution from the PRINCE-family cipher
 bits(64) Toutput;
 for i = 0 to 15
 case Tinput<4*i+3:4*i> of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13849
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '0000' Toutput<4*i+3:4*i> = '0101';
 when '0001' Toutput<4*i+3:4*i> = '1110';
 when '0010' Toutput<4*i+3:4*i> = '1101';
 when '0011' Toutput<4*i+3:4*i> = '1000';
 when '0100' Toutput<4*i+3:4*i> = '1010';
 when '0101' Toutput<4*i+3:4*i> = '1011';
 when '0110' Toutput<4*i+3:4*i> = '0001';
 when '0111' Toutput<4*i+3:4*i> = '1001';
 when '1000' Toutput<4*i+3:4*i> = '0010';
 when '1001' Toutput<4*i+3:4*i> = '0110';
 when '1010' Toutput<4*i+3:4*i> = '1111';
 when '1011' Toutput<4*i+3:4*i> = '0000';
 when '1100' Toutput<4*i+3:4*i> = '0100';
 when '1101' Toutput<4*i+3:4*i> = '1100';
 when '1110' Toutput<4*i+3:4*i> = '0111';
 when '1111' Toutput<4*i+3:4*i> = '0011';
 return Toutput;

aarch64/functions/pac/computepac/PACMult

 // PACMult()
 // =========

 bits(64) PACMult(bits(64) Sinput)
 bits(4) t0;
 bits(4) t1;
 bits(4) t2;
 bits(4) t3;
 bits(64) Soutput;

 for i = 0 to 3
 t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
 t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
 t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1);
 t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 2);
 t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 Soutput<4*i+3:4*i> = t3<3:0>;
 Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
 Soutput<4*(i+8)+3:4*(i+8)> = t1<3:0>;
 Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;
 return Soutput;

aarch64/functions/pac/computepac/PACSub

 // PACSub()
 // ========

 bits(64) PACSub(bits(64) Tinput)
 // This is a 4-bit substitution from the PRINCE-family cipher
 bits(64) Toutput;
 for i = 0 to 15
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '1011';
 when '0001' Toutput<4*i+3:4*i> = '0110';
 when '0010' Toutput<4*i+3:4*i> = '1000';
 when '0011' Toutput<4*i+3:4*i> = '1111';
 when '0100' Toutput<4*i+3:4*i> = '1100';
 when '0101' Toutput<4*i+3:4*i> = '0000';
 when '0110' Toutput<4*i+3:4*i> = '1001';
 when '0111' Toutput<4*i+3:4*i> = '1110';
 when '1000' Toutput<4*i+3:4*i> = '0011';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13850
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '1001' Toutput<4*i+3:4*i> = '0111';
 when '1010' Toutput<4*i+3:4*i> = '0100';
 when '1011' Toutput<4*i+3:4*i> = '0101';
 when '1100' Toutput<4*i+3:4*i> = '1101';
 when '1101' Toutput<4*i+3:4*i> = '0010';
 when '1110' Toutput<4*i+3:4*i> = '0001';
 when '1111' Toutput<4*i+3:4*i> = '1010';
 return Toutput;

aarch64/functions/pac/computepac/PacSub1

 // PacSub1()
 // =========

 bits(64) PACSub1(bits(64) Tinput)
 // This is a 4-bit substitution from Qarma sigma1
 bits(64) Toutput;
 for i = 0 to 15
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '1010';
 when '0001' Toutput<4*i+3:4*i> = '1101';
 when '0010' Toutput<4*i+3:4*i> = '1110';
 when '0011' Toutput<4*i+3:4*i> = '0110';
 when '0100' Toutput<4*i+3:4*i> = '1111';
 when '0101' Toutput<4*i+3:4*i> = '0111';
 when '0110' Toutput<4*i+3:4*i> = '0011';
 when '0111' Toutput<4*i+3:4*i> = '0101';
 when '1000' Toutput<4*i+3:4*i> = '1001';
 when '1001' Toutput<4*i+3:4*i> = '1000';
 when '1010' Toutput<4*i+3:4*i> = '0000';
 when '1011' Toutput<4*i+3:4*i> = '1100';
 when '1100' Toutput<4*i+3:4*i> = '1011';
 when '1101' Toutput<4*i+3:4*i> = '0001';
 when '1110' Toutput<4*i+3:4*i> = '0010';
 when '1111' Toutput<4*i+3:4*i> = '0100';
 return Toutput;

aarch64/functions/pac/computepac/RC

 // RC[]
 // ====

 array bits(64) RC[0..4];

aarch64/functions/pac/computepac/RotCell

 // RotCell()
 // =========

 bits(4) RotCell(bits(4) incell, integer amount)
 bits(8) tmp;
 bits(4) outcell;

 // assert amount>3 || amount<1;
 tmp<7:0> = incell<3:0>:incell<3:0>;
 outcell = tmp<7-amount:4-amount>;
 return outcell;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13851
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/pac/computepac/TweakCellInvRot

 // TweakCellInvRot()
 // =================

 bits(4) TweakCellInvRot(bits(4) incell)
 bits(4) outcell;
 outcell<3> = incell<2>;
 outcell<2> = incell<1>;
 outcell<1> = incell<0>;
 outcell<0> = incell<0> EOR incell<3>;
 return outcell;

aarch64/functions/pac/computepac/TweakCellRot

 // TweakCellRot()
 // ==============

 bits(4) TweakCellRot(bits(4) incell)
 bits(4) outcell;
 outcell<3> = incell<0> EOR incell<1>;
 outcell<2> = incell<3>;
 outcell<1> = incell<2>;
 outcell<0> = incell<1>;
 return outcell;

aarch64/functions/pac/computepac/TweakInvShuffle

 // TweakInvShuffle()
 // =================

 bits(64) TweakInvShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = TweakCellInvRot(indata<51:48>);
 outdata<7:4> = indata<55:52>;
 outdata<11:8> = indata<23:20>;
 outdata<15:12> = indata<27:24>;
 outdata<19:16> = indata<3:0>;
 outdata<23:20> = indata<7:4>;
 outdata<27:24> = TweakCellInvRot(indata<11:8>);
 outdata<31:28> = indata<15:12>;
 outdata<35:32> = TweakCellInvRot(indata<31:28>);
 outdata<39:36> = TweakCellInvRot(indata<63:60>);
 outdata<43:40> = TweakCellInvRot(indata<59:56>);
 outdata<47:44> = TweakCellInvRot(indata<19:16>);
 outdata<51:48> = indata<35:32>;
 outdata<55:52> = indata<39:36>;
 outdata<59:56> = indata<43:40>;
 outdata<63:60> = TweakCellInvRot(indata<47:44>);
 return outdata;

aarch64/functions/pac/computepac/TweakShuffle

 // TweakShuffle()
 // ==============

 bits(64) TweakShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<19:16>;
 outdata<7:4> = indata<23:20>;
 outdata<11:8> = TweakCellRot(indata<27:24>);
 outdata<15:12> = indata<31:28>;
 outdata<19:16> = TweakCellRot(indata<47:44>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13852
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 outdata<23:20> = indata<11:8>;
 outdata<27:24> = indata<15:12>;
 outdata<31:28> = TweakCellRot(indata<35:32>);
 outdata<35:32> = indata<51:48>;
 outdata<39:36> = indata<55:52>;
 outdata<43:40> = indata<59:56>;
 outdata<47:44> = TweakCellRot(indata<63:60>);
 outdata<51:48> = TweakCellRot(indata<3:0>);
 outdata<55:52> = indata<7:4>;
 outdata<59:56> = TweakCellRot(indata<43:40>);
 outdata<63:60> = TweakCellRot(indata<39:36>);
 return outdata;

aarch64/functions/pac/computepac/UsePACIMP

 // UsePACIMP()
 // ===========
 // Checks whether IMPLEMENTATION DEFINED cryptographic algorithm to be used for PAC
 // calculation.

 boolean UsePACIMP(boolean isgeneric)
 return if isgeneric then HavePACIMPGeneric() else HavePACIMPAuth();

aarch64/functions/pac/computepac/UsePACQARMA3

 // UsePACQARMA3()
 // ==============
 // Checks whether QARMA3 cryptographic algorithm to be used for PAC calculation.

 boolean UsePACQARMA3(boolean isgeneric)
 return if isgeneric then HavePACQARMA3Generic() else HavePACQARMA3Auth();

aarch64/functions/pac/computepac/UsePACQARMA5

 // UsePACQARMA5()
 // ==============
 // Checks whether QARMA5 cryptographic algorithm to be used for PAC calculation.

 boolean UsePACQARMA5(boolean isgeneric)
 return if isgeneric then HavePACQARMA5Generic() else HavePACQARMA5Auth();

aarch64/functions/pac/pac/ConstPACField

 // ConstPACField()
 // ===============
 // Returns TRUE if bit<55> can be used to determine the size of the PAC field, FALSE otherwise.

 boolean ConstPACField()
 return IsFeatureImplemented(FEAT_CONSTPACFIELD);

aarch64/functions/pac/pac/HavePACIMPAuth

 // HavePACIMPAuth()
 // ================
 // Returns TRUE if support for PAC IMP Auth is implemented, FALSE otherwise.

 boolean HavePACIMPAuth()
 return IsFeatureImplemented(FEAT_PACIMP);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13853
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/pac/pac/HavePACIMPGeneric

 // HavePACIMPGeneric()
 // ===================
 // Returns TRUE if support for PAC IMP Generic is implemented, FALSE otherwise.

 boolean HavePACIMPGeneric()
 return IsFeatureImplemented(FEAT_PACIMP);

aarch64/functions/pac/pac/HavePACQARMA3Auth

 // HavePACQARMA3Auth()
 // ===================
 // Returns TRUE if support for PAC QARMA3 Auth is implemented, FALSE otherwise.

 boolean HavePACQARMA3Auth()
 return IsFeatureImplemented(FEAT_PACQARMA3);

aarch64/functions/pac/pac/HavePACQARMA3Generic

 // HavePACQARMA3Generic()
 // ======================
 // Returns TRUE if support for PAC QARMA3 Generic is implemented, FALSE otherwise.

 boolean HavePACQARMA3Generic()
 return IsFeatureImplemented(FEAT_PACQARMA3);

aarch64/functions/pac/pac/HavePACQARMA5Auth

 // HavePACQARMA5Auth()
 // ===================
 // Returns TRUE if support for PAC QARMA5 Auth is implemented, FALSE otherwise.

 boolean HavePACQARMA5Auth()
 return IsFeatureImplemented(FEAT_PACQARMA5);

aarch64/functions/pac/pac/HavePACQARMA5Generic

 // HavePACQARMA5Generic()
 // ======================
 // Returns TRUE if support for PAC QARMA5 Generic is implemented, FALSE otherwise.

 boolean HavePACQARMA5Generic()
 return IsFeatureImplemented(FEAT_PACQARMA5);

aarch64/functions/pac/pac/IsAPDAKeyEnabled

 // IsAPDAKeyEnabled()
 // ==================
 // Returns TRUE if authentication using the APDAKey_EL1 key is enabled.
 // Otherwise, depending on the state of the PE, generate a trap, or return FALSE.

 boolean IsAPDAKeyEnabled()
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;

 case PSTATE.EL of
 when EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13854
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0' && !IsInHost();
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then
 return FALSE;
 elsif TrapEL3 && EL3SDDUndefPriority() then
 UNDEFINED;
 elsif TrapEL2 then
 TrapPACUse(EL2);
 elsif TrapEL3 then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 TrapPACUse(EL3);
 else
 return TRUE;

aarch64/functions/pac/pac/IsAPDBKeyEnabled

 // IsAPDBKeyEnabled()
 // ==================
 // Returns TRUE if authentication using the APDBKey_EL1 key is enabled.
 // Otherwise, depending on the state of the PE, generate a trap, or return FALSE.

 boolean IsAPDBKeyEnabled()
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;

 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0' && !IsInHost();
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then
 return FALSE;
 elsif TrapEL3 && EL3SDDUndefPriority() then
 UNDEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13855
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif TrapEL2 then
 TrapPACUse(EL2);
 elsif TrapEL3 then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 TrapPACUse(EL3);
 else
 return TRUE;

aarch64/functions/pac/pac/IsAPIAKeyEnabled

 // IsAPIAKeyEnabled()
 // ==================
 // Returns TRUE if authentication using the APIAKey_EL1 key is enabled.
 // Otherwise, depending on the state of the PE, generate a trap, or return FALSE.

 boolean IsAPIAKeyEnabled()
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;

 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0' && !IsInHost();
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then
 return FALSE;
 elsif TrapEL3 && EL3SDDUndefPriority() then
 UNDEFINED;
 elsif TrapEL2 then
 TrapPACUse(EL2);
 elsif TrapEL3 then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 TrapPACUse(EL3);
 else
 return TRUE;

aarch64/functions/pac/pac/IsAPIBKeyEnabled

 // IsAPIBKeyEnabled()
 // ==================
 // Returns TRUE if authentication using the APIBKey_EL1 key is enabled.
 // Otherwise, depending on the state of the PE, generate a trap, or return FALSE.

 boolean IsAPIBKeyEnabled()
 boolean TrapEL2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13856
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean TrapEL3;
 bits(1) Enable;

 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0' && !IsInHost();
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

 if Enable == '0' then
 return FALSE;
 elsif TrapEL3 && EL3SDDUndefPriority() then
 UNDEFINED;
 elsif TrapEL2 then
 TrapPACUse(EL2);
 elsif TrapEL3 then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 TrapPACUse(EL3);
 else
 return TRUE;

aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

 // PtrHasUpperAndLowerAddRanges()
 // ==============================
 // Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

 boolean PtrHasUpperAndLowerAddRanges()
 regime = TranslationRegime(PSTATE.EL);
 return HasUnprivileged(regime);

aarch64/functions/pac/strip/Strip

 // Strip()
 // =======
 // Strip() returns a 64-bit value containing A, but replacing the pointer authentication
 // code field bits with the extension of the address bits. This can apply to either
 // instructions or data, where, as the use of tagged pointers is distinct, it might be
 // handled differently.

 bits(64) Strip(bits(64) A, boolean data)
 bits(64) original_ptr;
 bits(64) extfield;
 boolean tbi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
 boolean mtx = EffectiveMTX(A, !data, PSTATE.EL) == '1';
 constant integer bottom_PAC_bit = CalculateBottomPACBit(A<55>);
 boolean EL3_using_lva3 = (IsFeatureImplemented(FEAT_LVA3) &&
 TranslationRegime(PSTATE.EL) == Regime_EL3 &&
 AArch64.IASize(TCR_EL3.T0SZ) > 52);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13857
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if EL3_using_lva3 then
 extfield = Replicate('0', 64);
 else
 extfield = Replicate(A<55>, 64);

 if tbi then
 if (bottom_PAC_bit <= 55) then
 original_ptr = (A<63:56> :
 extfield<55:bottom_PAC_bit> : A<bottom_PAC_bit-1:0>);
 else
 original_ptr = A<63:56> : A<55:0>;
 elsif mtx then
 if (bottom_PAC_bit <= 55) then
 original_ptr = (extfield<63:60> : A<59:56> :
 extfield<55:bottom_PAC_bit> : A<bottom_PAC_bit-1:0>);
 else
 original_ptr = extfield<63:60> : A<59:56> : A<55:0>;
 else
 original_ptr = extfield<63:bottom_PAC_bit> : A<bottom_PAC_bit-1:0>;

 return original_ptr;

aarch64/functions/pac/trappacuse/TrapPACUse

 // TrapPACUse()
 // ============
 // Used for the trapping of the pointer authentication functions by higher exception
 // levels.

 TrapPACUse(bits(2) target_el)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr(64);
 ExceptionRecord except;
 vect_offset = 0;
 except = ExceptionSyndrome(Exception_PACTrap);
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/functions/predictionrestrict/AArch64.RestrictPrediction

 // AArch64.RestrictPrediction()
 // ============================
 // Clear all predictions in the context.

 AArch64.RestrictPrediction(bits(64) val, RestrictType restriction)

 ExecutionCntxt c;
 target_el = val<25:24>;

 // If the target EL is not implemented or the instruction is executed at an
 // EL lower than the specified level, the instruction is treated as a NOP.
 if !HaveEL(target_el) || UInt(target_el) > UInt(PSTATE.EL) then EndOfInstruction();

 bit ns = val<26>;
 bit nse = val<27>;
 ss = TargetSecurityState(ns, nse);

 // If the combination of Security state and Exception level is not implemented,
 // the instruction is treated as a NOP.
 if ss == SS_Root && target_el != EL3 then EndOfInstruction();
 if !IsFeatureImplemented(FEAT_RME) && target_el == EL3 && ss != SS_Secure then
 EndOfInstruction();

 c.security = ss;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13858
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 c.target_el = target_el;

 if EL2Enabled() then
 if (PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1 then
 c.is_vmid_valid = TRUE;
 c.all_vmid = FALSE;
 c.vmid = VMID[];

 elsif (target_el == EL0 && !ELIsInHost(target_el)) || target_el == EL1 then
 c.is_vmid_valid = TRUE;
 c.all_vmid = val<48> == '1';
 c.vmid = val<47:32>; // Only valid if val<48> == '0';

 else
 c.is_vmid_valid = FALSE;
 else
 c.is_vmid_valid = FALSE;

 if PSTATE.EL == EL0 then
 c.is_asid_valid = TRUE;
 c.all_asid = FALSE;
 c.asid = ASID[];

 elsif target_el == EL0 then
 c.is_asid_valid = TRUE;
 c.all_asid = val<16> == '1';
 c.asid = val<15:0>; // Only valid if val<16> == '0';

 else
 c.is_asid_valid = FALSE;

 c.restriction = restriction;
 RESTRICT_PREDICTIONS(c);

aarch64/functions/prefetch/Prefetch

 // Prefetch()
 // ==========

 // Decode and execute the prefetch hint on ADDRESS specified by PRFOP

 Prefetch(bits(64) address, bits(5) prfop)
 PrefetchHint hint;
 integer target;
 boolean stream;

 case prfop<4:3> of
 when '00' hint = Prefetch_READ; // PLD: prefetch for load
 when '01' hint = Prefetch_EXEC; // PLI: preload instructions
 when '10' hint = Prefetch_WRITE; // PST: prepare for store
 when '11' return; // unallocated hint
 target = UInt(prfop<2:1>); // target cache level
 stream = (prfop<0> != '0'); // streaming (non-temporal)
 Hint_Prefetch(address, hint, target, stream);
 return;

aarch64/functions/pstatefield/PSTATEField

 // PSTATEField
 // ===========
 // MSR (immediate) instruction destinations.

 enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
 PSTATEField_PAN, // Armv8.1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13859
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 PSTATEField_UAO, // Armv8.2
 PSTATEField_DIT, // Armv8.4
 PSTATEField_SSBS,
 PSTATEField_TCO, // Armv8.5
 PSTATEField_SVCRSM,
 PSTATEField_SVCRZA,
 PSTATEField_SVCRSMZA,
 PSTATEField_ALLINT,
 PSTATEField_PM,
 PSTATEField_SP
 };

aarch64/functions/ras/AArch64.ESBOperation

 // AArch64.ESBOperation()
 // ======================
 // Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
 // ESB in AArch32 state when SError interrupts are routed to an Exception level using
 // AArch64

 AArch64.ESBOperation()
 bits(2) target_el;
 boolean masked;

 (masked, target_el) = AArch64.PhysicalSErrorTarget();

 intdis = Halted() || ExternalDebugInterruptsDisabled(target_el);
 masked = masked || intdis;

 // Check for a masked Physical SError pending that can be synchronized
 // by an Error synchronization event.
 if masked && IsSynchronizablePhysicalSErrorPending() then
 // This function might be called for an interworking case, and INTdis is masking
 // the SError interrupt.
 if ELUsingAArch32(S1TranslationRegime()) then
 bits(32) syndrome = Zeros(32);
 syndrome<31> = '1'; // A
 syndrome<15:0> = AArch32.PhysicalSErrorSyndrome();
 DISR = syndrome;
 else
 implicit_esb = FALSE;
 bits(64) syndrome = Zeros(64);
 syndrome<31> = '1'; // A
 syndrome<24:0> = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 DISR_EL1 = syndrome;
 ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

 return;

aarch64/functions/ras/AArch64.EncodeAsyncErrorSyndrome

 // AArch64.EncodeAsyncErrorSyndrome()
 // ==================================
 // Return the encoding for specified ErrorState for an SError exception taken
 // to AArch64 state.

 bits(3) AArch64.EncodeAsyncErrorSyndrome(ErrorState errorstate)
 case errorstate of
 when ErrorState_UC return '000';
 when ErrorState_UEU return '001';
 when ErrorState_UEO return '010';
 when ErrorState_UER return '011';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13860
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when ErrorState_CE return '110';
 otherwise Unreachable();

aarch64/functions/ras/AArch64.EncodeSyncErrorSyndrome

 // AArch64.EncodeSyncErrorSyndrome()
 // =================================
 // Return the encoding for specified ErrorState for a synchronous Abort
 // exception taken to AArch64 state.

 bits(2) AArch64.EncodeSyncErrorSyndrome(ErrorState errorstate)
 case errorstate of
 when ErrorState_UC return '10';
 when ErrorState_UEU return '10'; // UEU is reported as UC
 when ErrorState_UEO return '11';
 when ErrorState_UER return '00';
 otherwise Unreachable();

aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

 // AArch64.PhysicalSErrorSyndrome()
 // ================================
 // Generate SError syndrome.

 bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb)
 bits(25) syndrome = Zeros(25);

 if ReportErrorAsUncategorized() then
 syndrome = Zeros(25);
 elsif ReportErrorAsIMPDEF() then
 syndrome<24> = '1'; // IDS
 syndrome<23:0> = bits(24) IMPLEMENTATION_DEFINED "IMPDEF ErrorState";
 else
 FaultRecord fault = GetPendingPhysicalSError();
 ErrorState errorstate = PEErrorState(fault);
 syndrome<24> = '0'; // IDS
 syndrome<13> = (if implicit_esb then '1' else '0'); // IESB
 syndrome<12:10> = AArch64.EncodeAsyncErrorSyndrome(errorstate); // AET
 syndrome<9> = fault.extflag; // EA
 syndrome<5:0> = '010001'; // DFSC

 return syndrome;

aarch64/functions/ras/AArch64.vESBOperation

 // AArch64.vESBOperation()
 // =======================
 // Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
 // executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

 AArch64.vESBOperation()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 // If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
 // SError interrupt might be pending
 vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
 vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
 vmasked = vintdis || PSTATE.A == '1';

 // Check for a masked virtual SError pending
 if vSEI_pending && vmasked then
 // This function might be called for the interworking case, and INTdis is masking
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13861
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // the virtual SError interrupt.
 if ELUsingAArch32(EL1) then
 bits(32) target = Zeros(32);
 target<31> = '1'; // A
 target<15:14> = VDFSR<15:14>; // AET
 target<12> = VDFSR<12>; // ExT
 target<9> = TTBCR.EAE; // LPAE
 if TTBCR.EAE == '1' then // Long-descriptor format
 target<5:0> = '010001'; // STATUS
 else // Short-descriptor format
 target<10,3:0> = '10110'; // FS
 VDISR = target;
 else
 bits(64) target = Zeros(64);
 target<31> = '1'; // A
 target<24:0> = VSESR_EL2<24:0>;
 VDISR_EL2 = target;
 HCR_EL2.VSE = '0'; // Clear pending virtual SError

 return;

aarch64/functions/ras/FirstRecordOfNode

 // FirstRecordOfNode()
 // ===================
 // Return the first record in the node that contains the record n.

 integer FirstRecordOfNode(integer n)
 for q = n downto 0
 if IsFirstRecordOfNode(q) then return q;
 Unreachable();

aarch64/functions/ras/IsCommonFaultInjectionImplemented

 // IsCommonFaultInjectionImplemented()
 // ===================================
 // Check if the Common Fault Injection Model Extension is implemented by the node that owns this
 // error record.

 boolean IsCommonFaultInjectionImplemented(integer n);

aarch64/functions/ras/IsCountableErrorsRecorded

 // IsCountableErrorsRecorded()
 // ===========================
 // Check whether Error record n records countable errors.

 boolean IsCountableErrorsRecorded(integer n);

aarch64/functions/ras/IsErrorAddressIncluded

 // IsErrorAddressIncluded()
 // ========================
 // Check whether Error record n includes an address associated with an error.

 boolean IsErrorAddressIncluded(integer n);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13862
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/ras/IsErrorRecordImplemented

 // IsErrorRecordImplemented()
 // ==========================
 // Is the error record n implemented

 boolean IsErrorRecordImplemented(integer n);

aarch64/functions/ras/IsFirstRecordOfNode

 // IsFirstRecordOfNode()
 // =====================
 // Check if the record q is the first error record in its node.

 boolean IsFirstRecordOfNode(integer q);

aarch64/functions/ras/IsSPMUCounterImplemented

 // IsSPMUCounterImplemented()
 // ==========================
 // Does the System PMU s implement the counter n.

 boolean IsSPMUCounterImplemented(integer s, integer n);

aarch64/functions/rcw/ProtectionEnabled

 // ProtectionEnabled()
 // ===================
 // Returns TRUE if the ProtectedBit is
 // enabled in the current Exception level.

 boolean ProtectionEnabled(bits(2) el)
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));
 if (!IsD128Enabled(el)) then
 case regime of
 when EL1
 return IsTCR2EL1Enabled() && TCR2_EL1.PnCH == '1';
 when EL2
 return IsTCR2EL2Enabled() && TCR2_EL2.PnCH == '1';
 when EL3
 return TCR_EL3.PnCH == '1';
 else
 return TRUE;
 return FALSE;

aarch64/functions/rcw/RCW128_PROTECTED_BIT

 constant integer RCW128_PROTECTED_BIT = 114;

aarch64/functions/rcw/RCW64_PROTECTED_BIT

 constant integer RCW64_PROTECTED_BIT = 52;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13863
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/rcw/RCWCheck

 // RCWCheck()
 // ==========
 // Returns nzcv based on : if the new value for RCW/RCWS instructions satisfy RCW and/or RCWS checks
 // Z is set to 1 if RCW checks fail
 // C is set to 0 if RCWS checks fail

 bits(4) RCWCheck(bits(N) old, bits(N) new, boolean soft)
 assert N IN {64,128};
 integer protectedbit = if N == 128 then RCW128_PROTECTED_BIT else RCW64_PROTECTED_BIT;
 boolean rcw_fail = FALSE;
 boolean rcws_fail = FALSE;
 boolean rcw_state_fail = FALSE;
 boolean rcws_state_fail = FALSE;
 boolean rcw_mask_fail = FALSE;
 boolean rcws_mask_fail = FALSE;

 //Effective RCWMask calculation
 bits(N) rcwmask = RCWMASK_EL1<N-1:0>;
 if N == 64 then
 rcwmask<49:18> = Replicate(rcwmask<17>,32);
 rcwmask<0> = '0';
 else
 rcwmask<55:17> = Replicate(rcwmask<16>,39);
 rcwmask<126:125,120:119,107:101,90:56,1:0> = Zeros(48);

 //Effective RCWSMask calculation
 bits(N) rcwsoftmask = RCWSMASK_EL1<N-1:0>;
 if N == 64 then
 rcwsoftmask<49:18> = Replicate(rcwsoftmask<17>,32);
 rcwsoftmask<0> = '0';
 if(ProtectionEnabled(PSTATE.EL)) then
 rcwsoftmask<52> = '0';
 else
 rcwsoftmask<55:17> = Replicate(rcwsoftmask<16>,39);
 rcwsoftmask<126:125,120:119,107:101,90:56,1:0> = Zeros(48);
 rcwsoftmask<114> = '0';

 //RCW Checks
 //State Check
 if (ProtectionEnabled(PSTATE.EL)) then
 if old<protectedbit> == '1' then
 rcw_state_fail = new<protectedbit,0> != old<protectedbit,0>;
 elsif old<protectedbit> == '0' then
 rcw_state_fail = new<protectedbit> != old<protectedbit>;

 //Mask Check
 if (ProtectionEnabled(PSTATE.EL)) then
 if old<protectedbit,0> == '11' then
 rcw_mask_fail = !IsZero((new EOR old) AND NOT(rcwmask));

 //RCWS Checks
 if soft then
 //State Check
 if old<0> == '1' then
 rcws_state_fail = new<0> != old<0>;
 elsif (!ProtectionEnabled(PSTATE.EL) ||
 (ProtectionEnabled(PSTATE.EL) && old<protectedbit> == '0')) then
 rcws_state_fail = new<0> != old<0> ;
 //Mask Check
 if old<0> == '1' then
 rcws_mask_fail = !IsZero((new EOR old) AND NOT(rcwsoftmask));

 rcw_fail = rcw_state_fail || rcw_mask_fail ;
 rcws_fail = rcws_state_fail || rcws_mask_fail;

 bit n = '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13864
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bit z = if rcw_fail then '1' else '0';
 bit c = if rcws_fail then '0' else '1';
 bit v = '0';
 return <n, z, c, v>;

aarch64/functions/reduceop/FPReduce

 // FPReduce()
 // ==========
 // Perform the floating-point operation 'op' on pairs of elements from the input vector,
 // reducing the vector to a scalar result.

 bits(esize) FPReduce(ReduceOp op, bits(N) input, integer esize, FPCR_Type fpcr)
 bits(esize) hi;
 bits(esize) lo;
 bits(esize) result;
 constant integer half = N DIV 2;

 if N == esize then
 return input<esize-1:0>;

 hi = FPReduce(op, input<N-1:half>, esize, fpcr);
 lo = FPReduce(op, input<half-1:0>, esize, fpcr);
 case op of
 when ReduceOp_FMINNUM
 result = FPMinNum(lo, hi, fpcr);
 when ReduceOp_FMAXNUM
 result = FPMaxNum(lo, hi, fpcr);
 when ReduceOp_FMIN
 result = FPMin(lo, hi, fpcr);
 when ReduceOp_FMAX
 result = FPMax(lo, hi, fpcr);
 when ReduceOp_FADD
 result = FPAdd(lo, hi, fpcr);

 return result;

aarch64/functions/reduceop/IntReduce

 // IntReduce()
 // ===========
 // Perform the integer operation 'op' on pairs of elements from the input vector,
 // reducing the vector to a scalar result.

 bits(esize) IntReduce(ReduceOp op, bits(N) input, integer esize)
 bits(esize) hi;
 bits(esize) lo;
 bits(esize) result;
 constant integer half = N DIV 2;
 if N == esize then
 return input<esize-1:0>;

 hi = IntReduce(op, input<N-1:half>, esize);
 lo = IntReduce(op, input<half-1:0>, esize);
 case op of
 when ReduceOp_ADD
 result = lo + hi;

 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13865
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/reduceop/ReduceOp

 // ReduceOp
 // ========
 // Vector reduce instruction types.

 enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
 ReduceOp_FMIN, ReduceOp_FMAX,
 ReduceOp_FADD, ReduceOp_ADD};

aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

 // AArch64.MaybeZeroRegisterUppers()
 // =================================
 // On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
 // 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

 AArch64.MaybeZeroRegisterUppers()
 assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

 integer first;
 integer last;
 boolean include_R15;
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 first = 0; last = 14; include_R15 = FALSE;
 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
 first = 0; last = 30; include_R15 = FALSE;
 else
 first = 0; last = 30; include_R15 = TRUE;

 for n = first to last
 if (n != 15 || include_R15) && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then
 _R[n]<63:32> = Zeros(32);

 return;

aarch64/functions/registers/AArch64.ResetGeneralRegisters

 // AArch64.ResetGeneralRegisters()
 // ===============================

 AArch64.ResetGeneralRegisters()

 for i = 0 to 30
 X[i, 64] = bits(64) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

 // AArch64.ResetSIMDFPRegisters()
 // ==============================

 AArch64.ResetSIMDFPRegisters()

 for i = 0 to 31
 V[i, 128] = bits(128) UNKNOWN;

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13866
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/registers/AArch64.ResetSpecialRegisters

 // AArch64.ResetSpecialRegisters()
 // ===============================

 AArch64.ResetSpecialRegisters()

 // AArch64 special registers
 SP_EL0 = bits(64) UNKNOWN;
 SP_EL1 = bits(64) UNKNOWN;
 SPSR_EL1 = bits(64) UNKNOWN;
 ELR_EL1 = bits(64) UNKNOWN;
 if HaveEL(EL2) then
 SP_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(64) UNKNOWN;
 ELR_EL2 = bits(64) UNKNOWN;
 if HaveEL(EL3) then
 SP_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(64) UNKNOWN;
 ELR_EL3 = bits(64) UNKNOWN;

 // AArch32 special registers that are not architecturally mapped to AArch64 registers
 if HaveAArch32EL(EL1) then
 SPSR_fiq<31:0> = bits(32) UNKNOWN;
 SPSR_irq<31:0> = bits(32) UNKNOWN;
 SPSR_abt<31:0> = bits(32) UNKNOWN;
 SPSR_und<31:0> = bits(32) UNKNOWN;

 // External debug special registers
 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSystemRegisters

 // AArch64.ResetSystemRegisters()
 // ==============================

 AArch64.ResetSystemRegisters(boolean cold_reset);

aarch64/functions/registers/PC64

 // Program counter
 // +++++++++++++++

 // PC64 - non-assignment form
 // ========================
 // Read program counter.

 bits(64) PC64
 return _PC;

aarch64/functions/registers/SP

 // SP[] - assignment form
 // ======================
 // Write to stack pointer from a 64-bit value.

 SP[] = bits(64) value
 if PSTATE.SP == '0' then
 SP_EL0 = value;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13867
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 case PSTATE.EL of
 when EL0 SP_EL0 = value;
 when EL1 SP_EL1 = value;
 when EL2 SP_EL2 = value;
 when EL3 SP_EL3 = value;
 return;

 // SP[] - non-assignment form
 // ==========================
 // Read stack pointer with slice of 64 bits.

 bits(64) SP[]
 if PSTATE.SP == '0' then
 return SP_EL0;
 else
 case PSTATE.EL of
 when EL0 return SP_EL0;
 when EL1 return SP_EL1;
 when EL2 return SP_EL2;
 when EL3 return SP_EL3;

aarch64/functions/registers/SPMCFGR_EL1

 // SPMCFGR_EL1[] - non-assignment form
 // =====================================
 // Read the current configuration of System Performance monitor for
 // System PMU 's'.

 bits(64) SPMCFGR_EL1[integer s];

aarch64/functions/registers/SPMCGCR_EL1

 // SPMCGCR_EL1[] - non-assignment form
 // ===================================
 // Read counter group 'n' configuration for System PMU 's'.

 bits(64) SPMCGCR_EL1[integer s, integer n];

aarch64/functions/registers/SPMCNTENCLR_EL0

 // SPMCNTENCLR_EL0[] - non-assignment form
 // =======================================
 // Read the current mapping of disabled event counters for an 's'.

 bits(64) SPMCNTENCLR_EL0[integer s];

 // SPMCNTENCLR_EL0[] - assignment form
 // ===================================
 // Disable event counters for System PMU 's'.

 SPMCNTENCLR_EL0[integer s] = bits(64) value;

aarch64/functions/registers/SPMCNTENSET_EL0

 // SPMCNTENSET_EL0[] - non-assignment form
 // =======================================
 // Read the current mapping for enabled event counters of System PMU 's'.

 bits(64) SPMCNTENSET_EL0[integer s];

 // SPMCNTENSET_EL0[] - assignment form
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13868
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // ===================================
 // Enable event counters of System PMU 's'.

 SPMCNTENSET_EL0[integer s] = bits(64) value;

aarch64/functions/registers/SPMCR_EL0

 // SPMCR_EL0[] - non-assignment form
 // ==================================
 // Read the control register for System PMU 's'.

 bits(64) SPMCR_EL0[integer s];

 // SPMCR_EL0[] - assignment form
 // =============================
 // Write to the control register for System PMU 's'.

 SPMCR_EL0[integer s] = bits(64) value;

aarch64/functions/registers/SPMDEVAFF_EL1

 // SPMDEVAFF_EL1[] - non-assignment form
 // =====================================
 // Read the discovery information for System PMU 's'.

 bits(64) SPMDEVAFF_EL1[integer s];

aarch64/functions/registers/SPMDEVARCH_EL1

 // SPMDEVARCH_EL1[] - non-assignment form
 // ======================================
 // Read the discovery information for System PMU 's'.

 bits(64) SPMDEVARCH_EL1[integer s];

aarch64/functions/registers/SPMEVCNTR_EL0

 // SPMEVCNTR_EL0[] - non-assignment form
 // =====================================
 // Read a System PMU Event Counter register for counter 'n' of a given
 // System PMU 's'.

 bits(64) SPMEVCNTR_EL0[integer s, integer n];

 // SPMEVCNTR_EL0[] - assignment form
 // =================================
 // Write to a System PMU Event Counter register for counter 'n' of a given
 // System PMU 's'.

 SPMEVCNTR_EL0[integer s, integer n] = bits(64) value;

aarch64/functions/registers/SPMEVFILT2R_EL0

 // SPMEVFILT2R_EL0[] - non-assignment form
 // =======================================
 // Read the additional event selection controls for
 // counter 'n' of a given System PMU 's'.

 bits(64) SPMEVFILT2R_EL0[integer s, integer n];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13869
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // SPMEVFILT2R_EL0[] - assignment form
 // ===================================
 // Configure the additional event selection controls for
 // counter 'n' of a given System PMU 's'.

 SPMEVFILT2R_EL0[integer s, integer n] = bits(64) value;

aarch64/functions/registers/SPMEVFILTR_EL0

 // SPMEVFILTR_EL0[] - non-assignment form
 // ======================================
 // Read the additional event selection controls for
 // counter 'n' of a given System PMU 's'.

 bits(64) SPMEVFILTR_EL0[integer s, integer n];

 // SPMEVFILTR_EL0[] - assignment form
 // ==================================
 // Configure the additional event selection controls for
 // counter 'n' of a given System PMU 's'.

 SPMEVFILTR_EL0[integer s, integer n] = bits(64) value;

aarch64/functions/registers/SPMEVTYPER_EL0

 // SPMEVTYPER_EL0[] - non-assignment form
 // ======================================
 // Read the current mapping of event with event counter SPMEVCNTR_EL0
 // for counter 'n' of a given System PMU 's'.

 bits(64) SPMEVTYPER_EL0[integer s, integer n];

 // SPMEVTYPER_EL0[] - assignment form
 // ==================================
 // Configure which event increments the event counter SPMEVCNTR_EL0, for
 // counter 'n' of a given System PMU 's'.

 SPMEVTYPER_EL0[integer s, integer n] = bits(64) value;

aarch64/functions/registers/SPMIIDR_EL1

 // SPMIIDR_EL1[] - non-assignment form
 // ===================================
 // Read the discovery information for System PMU 's'.

 bits(64) SPMIIDR_EL1[integer s];

aarch64/functions/registers/SPMINTENCLR_EL1

 // SPMINTENCLR_EL1[] - non-assignment form
 // =======================================
 // Read the masking information for interrupt requests on overflows of
 // implemented counters of System PMU 's'.

 bits(64) SPMINTENCLR_EL1[integer s];

 // SPMINTENCLR_EL1[] - assignment form
 // ===================================
 // Disable the generation of interrupt requests on overflows of
 // implemented counters of System PMU 's'.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13870
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 SPMINTENCLR_EL1[integer s] = bits(64) value;

aarch64/functions/registers/SPMINTENSET_EL1

 // SPMINTENSET_EL1[] - non-assignment form
 // =======================================
 // Read the masking information for interrupt requests on overflows of
 // implemented counters of System PMU 's'.

 bits(64) SPMINTENSET_EL1[integer s];

 // SPMINTENSET_EL1[] - assignment form
 // ===================================
 // Disable the generation of interrupt requests on overflows of
 // implemented counters for System PMU 's'.

 SPMINTENSET_EL1[integer s] = bits(64) value;

aarch64/functions/registers/SPMOVSCLR_EL0

 // SPMOVSCLR_EL0[] - non-assignment form
 // =====================================
 // Read the overflow bit clear status of implemented counters for System PMU 's'.

 bits(64) SPMOVSCLR_EL0[integer s];

 // SPMOVSCLR_EL0[] - assignment form
 // =================================
 // Clear the overflow bit clear status of implemented counters for
 // System PMU 's'.

 SPMOVSCLR_EL0[integer s] = bits(64) value;

aarch64/functions/registers/SPMOVSSET_EL0

 // SPMOVSSET_EL0[] - non-assignment form
 // =====================================
 // Read state of the overflow bit for the implemented event counters
 // of System PMU 's'.

 bits(64) SPMOVSSET_EL0[integer s];

 // SPMOVSSET_EL0[] - assignment form
 // =================================
 // Sets the state of the overflow bit for the implemented event counters
 // of System PMU 's'.

 SPMOVSSET_EL0[integer s] = bits(64) value;

aarch64/functions/registers/SPMROOTCR_EL3

 // SPMROOTCR_EL3[] - non-assignment form
 // =====================================
 // Read the observability of Root and Realm events by System Performance
 // Monitor for System PMU 's'.

 bits(64) SPMROOTCR_EL3[integer s];

 // SPMROOTCR_EL3[] - assignment form
 // =================================
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13871
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Configure the observability of Root and Realm events by System
 // Performance Monitor for System PMU 's'.

 SPMROOTCR_EL3[integer s] = bits(64) value;

aarch64/functions/registers/SPMSCR_EL1

 // SPMSCR_EL1[] - non-assignment form
 // ===================================
 // Read the observability of Secure events by System Performance Monitor
 // for System PMU 's'.

 bits(64) SPMSCR_EL1[integer s];

 // SPMSCR_EL1[] - assignment form
 // ==============================
 // Configure the observability of secure events by System Performance
 // Monitor for System PMU 's'.

 SPMSCR_EL1[integer s] = bits(64) value;

aarch64/functions/registers/V

 // V[] - assignment form
 // =====================
 // Write to SIMD&FP register with implicit extension from
 // 8, 16, 32, 64 or 128 bits.

 V[integer n, integer width] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 constant integer vlen = if IsSVEEnabled(PSTATE.EL) then CurrentVL else 128;
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _Z[n] = ZeroExtend(value, MAX_VL);
 else
 _Z[n]<vlen-1:0> = ZeroExtend(value, vlen);

 // V[] - non-assignment form
 // =========================
 // Read from SIMD&FP register with implicit slice of 8, 16
 // 32, 64 or 128 bits.

 bits(width) V[integer n, integer width]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 return _Z[n]<width-1:0>;

aarch64/functions/registers/Vpart

 // Vpart[] - non-assignment form
 // =============================
 // Reads a 128-bit SIMD&FP register in up to two parts:
 // part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
 // part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
 // value held in the register.

 bits(width) Vpart[integer n, integer part, integer width]
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width < 128;
 return V[n, width];
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13872
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 assert width IN {32,64};
 bits(128) vreg = V[n, 128];
 return vreg<(width * 2)-1:width>;

 // Vpart[] - assignment form
 // =========================
 // Writes a 128-bit SIMD&FP register in up to two parts:
 // part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
 // part 1 inserts a 64-bit value into the top half of the register.

 Vpart[integer n, integer part, integer width] = bits(width) value
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width < 128;
 V[n, width] = value;
 else
 assert width == 64;
 bits(64) vreg = V[n, 64];
 V[n, 128] = value<63:0> : vreg;

aarch64/functions/registers/X

 // X[] - assignment form
 // =====================
 // Write to general-purpose register from either a 32-bit or a 64-bit value,
 // where the size of the value is passed as an argument.

 X[integer n, integer width] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {32,64};
 if n != 31 then
 _R[n] = ZeroExtend(value, 64);
 return;

 // X[] - non-assignment form
 // =========================
 // Read from general-purpose register with an explicit slice of 8, 16, 32 or 64 bits.

 bits(width) X[integer n, integer width]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64};
 if n != 31 then
 return _R[n]<width-1:0>;
 else
 return Zeros(width);

aarch64/functions/shiftreg/DecodeShift

 // DecodeShift()
 // =============
 // Decode shift encodings

 ShiftType DecodeShift(bits(2) op)
 case op of
 when '00' return ShiftType_LSL;
 when '01' return ShiftType_LSR;
 when '10' return ShiftType_ASR;
 when '11' return ShiftType_ROR;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13873
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/shiftreg/ShiftReg

 // ShiftReg()
 // ==========
 // Perform shift of a register operand

 bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount, integer N)
 bits(N) result = X[reg, N];
 case shiftype of
 when ShiftType_LSL result = LSL(result, amount);
 when ShiftType_LSR result = LSR(result, amount);
 when ShiftType_ASR result = ASR(result, amount);
 when ShiftType_ROR result = ROR(result, amount);
 return result;

aarch64/functions/shiftreg/ShiftType

 // ShiftType
 // =========
 // AArch64 register shifts.

 enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

aarch64/functions/sme/CounterToPredicate

 // CounterToPredicate()
 // ====================

 bits(width) CounterToPredicate(bits(16) pred, integer width)
 integer count;
 integer esize;
 integer elements;
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 constant integer maxbit = HighestSetBit(CeilPow2(PL * 4)<15:0>);
 assert maxbit <= 14;
 bits(PL*4) result;
 boolean invert = pred<15> == '1';

 assert width == PL || width == PL*2 || width == PL*3 || width == PL*4;

 if IsZero(pred<3:0>) then
 return Zeros(width);

 case pred<3:0> of
 when 'xxx1'
 count = UInt(pred<maxbit:1>);
 esize = 8;
 when 'xx10'
 count = UInt(pred<maxbit:2>);
 esize = 16;
 when 'x100'
 count = UInt(pred<maxbit:3>);
 esize = 32;
 when '1000'
 count = UInt(pred<maxbit:4>);
 esize = 64;

 elements = (VL * 4) DIV esize;
 result = Zeros(PL*4);
 constant integer psize = esize DIV 8;
 for e = 0 to elements-1
 bit pbit = if e < count then '1' else '0';
 if invert then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13874
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 pbit = NOT(pbit);
 Elem[result, e, psize] = ZeroExtend(pbit, psize);

 return result<width-1:0>;

aarch64/functions/sme/EncodePredCount

 // EncodePredCount()
 // =================

 bits(width) EncodePredCount(integer esize, integer elements,
 integer count_in, boolean invert_in, integer width)
 integer count = count_in;
 boolean invert = invert_in;
 constant integer PL = CurrentVL DIV 8;
 assert width == PL;
 assert esize IN {8, 16, 32, 64};
 assert count >=0 && count <= elements;
 bits(16) pred;

 if count == 0 then
 return Zeros(width);

 if invert then
 count = elements - count;
 elsif count == elements then
 count = 0;
 invert = TRUE;

 bit inv = (if invert then '1' else '0');
 case esize of
 when 8 pred = inv : count<13:0> : '1';
 when 16 pred = inv : count<12:0> : '10';
 when 32 pred = inv : count<11:0> : '100';
 when 64 pred = inv : count<10:0> : '1000';

 return ZeroExtend(pred, width);

aarch64/functions/sme/HaveSME

 // HaveSME()
 // =========
 // Returns TRUE if the SME extension is implemented, FALSE otherwise.

 boolean HaveSME()
 return IsFeatureImplemented(FEAT_SME);

aarch64/functions/sme/HaveSME2

 // HaveSME2()
 // ==========
 // Returns TRUE if the SME2 extension is implemented, FALSE otherwise.

 boolean HaveSME2()
 return IsFeatureImplemented(FEAT_SME2);

aarch64/functions/sme/HaveSME2p1

 // HaveSME2p1()
 // ============
 // Returns TRUE if the SME2.1 extension is implemented, FALSE otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13875
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 boolean HaveSME2p1()
 return IsFeatureImplemented(FEAT_SME2p1);

aarch64/functions/sme/HaveSMEB16B16

 // HaveSMEB16B16()
 // ===============
 // Returns TRUE if the SME2.1 non-widening BFloat16 instructions are implemented, FALSE otherwise.

 boolean HaveSMEB16B16()
 return IsFeatureImplemented(FEAT_SVE_B16B16);

aarch64/functions/sme/HaveSMEF16F16

 // HaveSMEF16F16()
 // ===============
 // Returns TRUE if the SME2.1 half-precision instructions are implemented, FALSE otherwise.

 boolean HaveSMEF16F16()
 return IsFeatureImplemented(FEAT_SME_F16F16);

aarch64/functions/sme/HaveSMEF64F64

 // HaveSMEF64F64()
 // ===============
 // Returns TRUE if the SMEF64F64 extension is implemented, FALSE otherwise.

 boolean HaveSMEF64F64()
 return IsFeatureImplemented(FEAT_SME_F64F64);

aarch64/functions/sme/HaveSMEI16I64

 // HaveSMEI16I64()
 // ===============
 // Returns TRUE if the SMEI16I64 extension is implemented, FALSE otherwise.

 boolean HaveSMEI16I64()
 return IsFeatureImplemented(FEAT_SME_I16I64);

aarch64/functions/sme/Lookup

 bits(512) _ZT0;

aarch64/functions/sme/PredCountTest

 // PredCountTest()
 // ===============

 bits(4) PredCountTest(integer elements, integer count, boolean invert)
 bit n, z, c, v;
 z = (if count == 0 then '1' else '0'); // none active
 if !invert then
 n = (if count != 0 then '1' else '0'); // first active
 c = (if count == elements then '0' else '1'); // NOT last active
 else
 n = (if count == elements then '1' else '0'); // first active
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13876
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 c = (if count != 0 then '0' else '1'); // NOT last active
 v = '0';

 return n:z:c:v;

aarch64/functions/sme/System

 // System Registers
 // ================

 array bits(MAX_VL) _ZA[0..255];

aarch64/functions/sme/ZAhslice

 // ZAhslice[] - non-assignment form
 // ================================

 bits(width) ZAhslice[integer tile, integer esize, integer slice, integer width]
 assert esize IN {8, 16, 32, 64, 128};
 integer tiles = esize DIV 8;
 assert tile >= 0 && tile < tiles;
 integer slices = CurrentSVL DIV esize;
 assert slice >= 0 && slice < slices;

 return ZAvector[tile + slice * tiles, width];

 // ZAhslice[] - assignment form
 // ============================

 ZAhslice[integer tile, integer esize, integer slice, integer width] = bits(width) value
 assert esize IN {8, 16, 32, 64, 128};
 integer tiles = esize DIV 8;
 assert tile >= 0 && tile < tiles;
 integer slices = CurrentSVL DIV esize;
 assert slice >= 0 && slice < slices;

 ZAvector[tile + slice * tiles, width] = value;

aarch64/functions/sme/ZAslice

 // ZAslice[] - non-assignment form
 // ===============================

 bits(width) ZAslice[integer tile, integer esize, boolean vertical, integer slice, integer width]
 bits(width) result;

 if vertical then
 result = ZAvslice[tile, esize, slice, width];
 else
 result = ZAhslice[tile, esize, slice, width];

 return result;

 // ZAslice[] - assignment form
 // ===========================

 ZAslice[integer tile, integer esize, boolean vertical,
 integer slice, integer width] = bits(width) value
 if vertical then
 ZAvslice[tile, esize, slice, width] = value;
 else
 ZAhslice[tile, esize, slice, width] = value;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13877
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sme/ZAtile

 // ZAtile[] - non-assignment form
 // ==============================

 bits(width) ZAtile[integer tile, integer esize, integer width]
 constant integer SVL = CurrentSVL;
 integer slices = SVL DIV esize;
 assert width == SVL * slices;
 bits(width) result;

 for slice = 0 to slices-1
 Elem[result, slice, SVL] = ZAhslice[tile, esize, slice, SVL];

 return result;

 // ZAtile[] - assignment form
 // ==========================

 ZAtile[integer tile, integer esize, integer width] = bits(width) value
 constant integer SVL = CurrentSVL;
 integer slices = SVL DIV esize;
 assert width == SVL * slices;

 for slice = 0 to slices-1
 ZAhslice[tile, esize, slice, SVL] = Elem[value, slice, SVL];

aarch64/functions/sme/ZAvector

 // ZAvector[] - non-assignment form
 // ================================

 bits(width) ZAvector[integer index, integer width]
 assert width == CurrentSVL;
 assert index >= 0 && index < (width DIV 8);

 return _ZA[index]<width-1:0>;

 // ZAvector[] - assignment form
 // ============================

 ZAvector[integer index, integer width] = bits(width) value
 assert width == CurrentSVL;
 assert index >= 0 && index < (width DIV 8);

 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
 _ZA[index] = ZeroExtend(value, MAX_VL);
 else
 _ZA[index]<width-1:0> = value;

aarch64/functions/sme/ZAvslice

 // ZAvslice[] - non-assignment form
 // ================================

 bits(width) ZAvslice[integer tile, integer esize, integer slice, integer width]
 integer slices = CurrentSVL DIV esize;
 bits(width) result;

 for s = 0 to slices-1
 bits(width) hslice = ZAhslice[tile, esize, s, width];
 Elem[result, s, esize] = Elem[hslice, slice, esize];

 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13878
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // ZAvslice[] - assignment form
 // ============================

 ZAvslice[integer tile, integer esize, integer slice, integer width] = bits(width) value
 integer slices = CurrentSVL DIV esize;

 for s = 0 to slices-1
 bits(width) hslice = ZAhslice[tile, esize, s, width];
 Elem[hslice, slice, esize] = Elem[value, s, esize];
 ZAhslice[tile, esize, s, width] = hslice;

aarch64/functions/sme/ZT0

 // ZT0[] - non-assignment form
 // ===========================

 bits(width) ZT0[integer width]
 assert width == 512;
 return _ZT0<width-1:0>;

 // ZT0[] - assignment form
 // =======================

 ZT0[integer width] = bits(width) value
 assert width == 512;
 _ZT0<width-1:0> = value;

aarch64/functions/sve/AArch32.IsFPEnabled

 // AArch32.IsFPEnabled()
 // =====================
 // Returns TRUE if access to the SIMD&FP instructions or System registers are
 // enabled at the target exception level in AArch32 state and FALSE otherwise.

 boolean AArch32.IsFPEnabled(bits(2) el)
 if el == EL0 && !ELUsingAArch32(EL1) then
 return AArch64.IsFPEnabled(el);

 if HaveEL(EL3) && ELUsingAArch32(EL3) && CurrentSecurityState() == SS_NonSecure then
 // Check if access disabled in NSACR
 if NSACR.cp10 == '0' then return FALSE;

 if el IN {EL0, EL1} then
 // Check if access disabled in CPACR
 boolean disabled;
 case CPACR.cp10 of
 when '00' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '10' disabled = ConstrainUnpredictableBool(Unpredictable_RESCPACR);
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if !ELUsingAArch32(EL2) then
 return AArch64.IsFPEnabled(EL2);
 if HCPTR.TCP10 == '1' then return FALSE;

 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then return FALSE;

 return TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13879
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/AArch64.IsFPEnabled

 // AArch64.IsFPEnabled()
 // =====================
 // Returns TRUE if access to the SIMD&FP instructions or System registers are
 // enabled at the target exception level in AArch64 state and FALSE otherwise.

 boolean AArch64.IsFPEnabled(bits(2) el)
 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check SIMD&FP at EL0/EL1
 boolean disabled;
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if ELIsInHost(EL2) then
 boolean disabled;
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TFP == '1' then return FALSE;

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.TFP == '1' then return FALSE;

 return TRUE;

aarch64/functions/sve/ActivePredicateElement

 // ActivePredicateElement()
 // ========================
 // Returns TRUE if the predicate bit is 1 and FALSE otherwise

 boolean ActivePredicateElement(bits(N) pred, integer e, integer esize)
 assert esize IN {8, 16, 32, 64, 128};
 integer n = e * (esize DIV 8);
 assert n >= 0 && n < N;
 return pred<n> == '1';

aarch64/functions/sve/AnyActiveElement

 // AnyActiveElement()
 // ==================
 // Return TRUE if there is at least one active element in mask. Otherwise,
 // return FALSE.

 boolean AnyActiveElement(bits(N) mask, integer esize)
 return LastActiveElement(mask, esize) >= 0;

aarch64/functions/sve/BitDeposit

 // BitDeposit()
 // ============
 // Deposit the least significant bits from DATA into result positions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13880
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // selected by nonzero bits in MASK, setting other result bits to zero.

 bits(N) BitDeposit (bits(N) data, bits(N) mask)
 bits(N) res = Zeros(N);
 integer db = 0;
 for rb = 0 to N-1
 if mask<rb> == '1' then
 res<rb> = data<db>;
 db = db + 1;
 return res;

aarch64/functions/sve/BitExtract

 // BitExtract()
 // ============
 // Extract and pack DATA bits selected by the nonzero bits in MASK into
 // the least significant result bits, setting other result bits to zero.

 bits(N) BitExtract (bits(N) data, bits(N) mask)
 bits(N) res = Zeros(N);
 integer rb = 0;
 for db = 0 to N-1
 if mask<db> == '1' then
 res<rb> = data<db>;
 rb = rb + 1;
 return res;

aarch64/functions/sve/BitGroup

 // BitGroup()
 // ==========
 // Extract and pack DATA bits selected by the nonzero bits in MASK into
 // the least significant result bits, and pack unselected bits into the
 // most significant result bits.

 bits(N) BitGroup (bits(N) data, bits(N) mask)
 bits(N) res;
 integer rb = 0;

 // compress masked bits to right
 for db = 0 to N-1
 if mask<db> == '1' then
 res<rb> = data<db>;
 rb = rb + 1;
 // compress unmasked bits to left
 for db = 0 to N-1
 if mask<db> == '0' then
 res<rb> = data<db>;
 rb = rb + 1;
 return res;

aarch64/functions/sve/CeilPow2

 // CeilPow2()
 // ==========
 // For a positive integer X, return the smallest power of 2 >= X

 integer CeilPow2(integer x)
 if x == 0 then return 0;
 if x == 1 then return 2;
 return FloorPow2(x - 1) * 2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13881
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/CheckNonStreamingSVEEnabled

 // CheckNonStreamingSVEEnabled()
 // =============================
 // Checks for traps on SVE instructions that are not legal in streaming mode.

 CheckNonStreamingSVEEnabled()
 CheckSVEEnabled();

 if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' && !IsFullA64Enabled() then
 SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

aarch64/functions/sve/CheckOriginalSVEEnabled

 // CheckOriginalSVEEnabled()
 // =========================
 // Checks for traps on SVE instructions and instructions that access SVE System
 // registers.

 CheckOriginalSVEEnabled()
 assert IsFeatureImplemented(FEAT_SVE);
 boolean disabled;

 if (HaveEL(EL3) && (CPTR_EL3.EZ == '0' || CPTR_EL3.TFP == '1') &&
 EL3SDDUndefPriority()) then
 UNDEFINED;

 // Check if access disabled in CPACR_EL1
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check SVE at EL0/EL1
 case CPACR_EL1.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then SVEAccessTrap(EL1);

 // Check SIMD&FP at EL0/EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

 // Check if access disabled in CPTR_EL2
 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if ELIsInHost(EL2) then
 // Check SVE at EL2
 case CPTR_EL2.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then SVEAccessTrap(EL2);

 // Check SIMD&FP at EL2
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TZ == '1' then SVEAccessTrap(EL2);
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.EZ == '0' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13882
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if EL3SDDUndef() then
 UNDEFINED;
 else
 SVEAccessTrap(EL3);

 if CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AdvSIMDFPAccessTrap(EL3);

aarch64/functions/sve/CheckSMEAccess

 // CheckSMEAccess()
 // ================
 // Check that access to SME System registers is enabled.

 CheckSMEAccess()
 boolean disabled;
 // Check if access disabled in CPACR_EL1
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check SME at EL0/EL1
 case CPACR_EL1.SMEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);

 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if ELIsInHost(EL2) then
 // Check SME at EL2
 case CPTR_EL2.SMEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
 else
 if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);

aarch64/functions/sve/CheckSMEAndZAEnabled

 // CheckSMEAndZAEnabled()
 // ======================

 CheckSMEAndZAEnabled()
 CheckSMEEnabled();

 if PSTATE.ZA == '0' then
 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

aarch64/functions/sve/CheckSMEEnabled

 // CheckSMEEnabled()
 // =================

 CheckSMEEnabled()
 boolean disabled;
 // Check if access disabled in CPACR_EL1
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13883
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Check SME at EL0/EL1
 case CPACR_EL1.SMEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);

 // Check SIMD&FP at EL0/EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if ELIsInHost(EL2) then
 // Check SME at EL2
 case CPTR_EL2.SMEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);

 // Check SIMD&FP at EL2
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

aarch64/functions/sve/CheckSMEZT0Enabled

 // CheckSMEZT0Enabled()
 // ====================
 // Checks for ZT0 enabled.

 CheckSMEZT0Enabled()
 // Check if ZA and ZT0 are inactive in PSTATE
 if PSTATE.ZA == '0' then
 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

 // Check if EL0/EL1 accesses to ZT0 are disabled in SMCR_EL1
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 if SMCR_EL1.EZT0 == '0' then
 SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL1);

 // Check if EL0/EL1/EL2 accesses to ZT0 are disabled in SMCR_EL2
 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if SMCR_EL2.EZT0 == '0' then
 SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL2);

 // Check if all accesses to ZT0 are disabled in SMCR_EL3
 if HaveEL(EL3) then
 if SMCR_EL3.EZT0 == '0' then
 SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL3);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13884
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/CheckSVEEnabled

 // CheckSVEEnabled()
 // =================
 // Checks for traps on SVE instructions and instructions that
 // access SVE System registers.

 CheckSVEEnabled()
 if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 CheckSMEEnabled();
 elsif IsFeatureImplemented(FEAT_SME) && !IsFeatureImplemented(FEAT_SVE) then
 CheckStreamingSVEEnabled();
 else
 CheckOriginalSVEEnabled();

aarch64/functions/sve/CheckStreamingSVEAndZAEnabled

 // CheckStreamingSVEAndZAEnabled()
 // ===============================

 CheckStreamingSVEAndZAEnabled()
 CheckStreamingSVEEnabled();

 if PSTATE.ZA == '0' then
 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

aarch64/functions/sve/CheckStreamingSVEEnabled

 // CheckStreamingSVEEnabled()
 // ==========================

 CheckStreamingSVEEnabled()
 CheckSMEEnabled();

 if PSTATE.SM == '0' then
 SMEAccessTrap(SMEExceptionType_NotStreaming, PSTATE.EL);

aarch64/functions/sve/CurrentNSVL

 // CurrentNSVL - non-assignment form
 // =================================
 // Non-Streaming VL

 integer CurrentNSVL
 integer vl;

 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
 vl = UInt(ZCR_EL1.LEN);

 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
 vl = UInt(ZCR_EL2.LEN);
 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 vl = Min(vl, UInt(ZCR_EL2.LEN));

 if PSTATE.EL == EL3 then
 vl = UInt(ZCR_EL3.LEN);
 elsif HaveEL(EL3) then
 vl = Min(vl, UInt(ZCR_EL3.LEN));

 vl = (vl + 1) * 128;
 vl = ImplementedSVEVectorLength(vl);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13885
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return vl;

aarch64/functions/sve/CurrentSVL

 // CurrentSVL - non-assignment form
 // ================================
 // Streaming SVL

 integer CurrentSVL
 integer vl;

 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
 vl = UInt(SMCR_EL1.LEN);

 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
 vl = UInt(SMCR_EL2.LEN);
 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 vl = Min(vl, UInt(SMCR_EL2.LEN));

 if PSTATE.EL == EL3 then
 vl = UInt(SMCR_EL3.LEN);
 elsif HaveEL(EL3) then
 vl = Min(vl, UInt(SMCR_EL3.LEN));

 vl = (vl + 1) * 128;
 vl = ImplementedSMEVectorLength(vl);

 return vl;

aarch64/functions/sve/CurrentVL

 // CurrentVL - non-assignment form
 // ===============================

 integer CurrentVL
 return if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then CurrentSVL else CurrentNSVL;

aarch64/functions/sve/DecodePredCount

 // DecodePredCount()
 // =================

 integer DecodePredCount(bits(5) bitpattern, integer esize)
 integer elements = CurrentVL DIV esize;
 integer numElem;
 case bitpattern of
 when '00000' numElem = FloorPow2(elements);
 when '00001' numElem = if elements >= 1 then 1 else 0;
 when '00010' numElem = if elements >= 2 then 2 else 0;
 when '00011' numElem = if elements >= 3 then 3 else 0;
 when '00100' numElem = if elements >= 4 then 4 else 0;
 when '00101' numElem = if elements >= 5 then 5 else 0;
 when '00110' numElem = if elements >= 6 then 6 else 0;
 when '00111' numElem = if elements >= 7 then 7 else 0;
 when '01000' numElem = if elements >= 8 then 8 else 0;
 when '01001' numElem = if elements >= 16 then 16 else 0;
 when '01010' numElem = if elements >= 32 then 32 else 0;
 when '01011' numElem = if elements >= 64 then 64 else 0;
 when '01100' numElem = if elements >= 128 then 128 else 0;
 when '01101' numElem = if elements >= 256 then 256 else 0;
 when '11101' numElem = elements - (elements MOD 4);
 when '11110' numElem = elements - (elements MOD 3);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13886
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '11111' numElem = elements;
 otherwise numElem = 0;
 return numElem;

aarch64/functions/sve/ElemFFR

 // ElemFFR[] - non-assignment form
 // ===============================

 bit ElemFFR[integer e, integer esize]
 return PredicateElement(_FFR, e, esize);

 // ElemFFR[] - assignment form
 // ===========================

 ElemFFR[integer e, integer esize] = bit value
 constant integer psize = esize DIV 8;
 constant integer n = e * psize;
 assert n >= 0 && (n + psize) <= CurrentVL DIV 8;
 _FFR<(n+psize)-1:n> = ZeroExtend(value, psize);
 return;

aarch64/functions/sve/FFR

 // FFR[] - non-assignment form
 // ===========================

 bits(width) FFR[integer width]
 assert width == CurrentVL DIV 8;
 return _FFR<width-1:0>;

 // FFR[] - assignment form
 // =======================

 FFR[integer width] = bits(width) value
 assert width == CurrentVL DIV 8;
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _FFR = ZeroExtend(value, MAX_PL);
 else
 _FFR<width-1:0> = value;

aarch64/functions/sve/FPCompareNE

 // FPCompareNE()
 // =============

 boolean FPCompareNE(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 assert N IN {16,32,64};
 boolean result;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

 if op1_nan || op2_nan then
 result = TRUE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 != value2);
 FPProcessDenorms(type1, type2, N, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13887
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return result;

aarch64/functions/sve/FPCompareUN

 // FPCompareUN()
 // =============

 boolean FPCompareUN(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 result = type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN};
 if !result then
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

aarch64/functions/sve/FPConvertSVE

 // FPConvertSVE()
 // ==============

 bits(M) FPConvertSVE(bits(N) op, FPCR_Type fpcr_in, FPRounding rounding, integer M)
 FPCR_Type fpcr = fpcr_in;
 fpcr.AHP = '0';
 return FPConvert(op, fpcr, rounding, M);

 // FPConvertSVE()
 // ==============

 bits(M) FPConvertSVE(bits(N) op, FPCR_Type fpcr_in, integer M)
 FPCR_Type fpcr = fpcr_in;
 fpcr.AHP = '0';
 return FPConvert(op, fpcr, FPRoundingMode(fpcr), M);

aarch64/functions/sve/FPExpA

 // FPExpA()
 // ========

 bits(N) FPExpA(bits(N) op)
 assert N IN {16,32,64};
 bits(N) result;
 bits(N) coeff;
 integer idx = if N == 16 then UInt(op<4:0>) else UInt(op<5:0>);
 coeff = FPExpCoefficient[idx, N];
 if N == 16 then
 result<15:0> = '0':op<9:5>:coeff<9:0>;
 elsif N == 32 then
 result<31:0> = '0':op<13:6>:coeff<22:0>;
 else // N == 64
 result<63:0> = '0':op<16:6>:coeff<51:0>;

 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13888
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/FPExpCoefficient

 // FPExpCoefficient()
 // ==================

 bits(N) FPExpCoefficient[integer index, integer N]
 assert N IN {16,32,64};
 integer result;

 if N == 16 then
 case index of
 when 0 result = 0x0000;
 when 1 result = 0x0016;
 when 2 result = 0x002d;
 when 3 result = 0x0045;
 when 4 result = 0x005d;
 when 5 result = 0x0075;
 when 6 result = 0x008e;
 when 7 result = 0x00a8;
 when 8 result = 0x00c2;
 when 9 result = 0x00dc;
 when 10 result = 0x00f8;
 when 11 result = 0x0114;
 when 12 result = 0x0130;
 when 13 result = 0x014d;
 when 14 result = 0x016b;
 when 15 result = 0x0189;
 when 16 result = 0x01a8;
 when 17 result = 0x01c8;
 when 18 result = 0x01e8;
 when 19 result = 0x0209;
 when 20 result = 0x022b;
 when 21 result = 0x024e;
 when 22 result = 0x0271;
 when 23 result = 0x0295;
 when 24 result = 0x02ba;
 when 25 result = 0x02e0;
 when 26 result = 0x0306;
 when 27 result = 0x032e;
 when 28 result = 0x0356;
 when 29 result = 0x037f;
 when 30 result = 0x03a9;
 when 31 result = 0x03d4;

 elsif N == 32 then
 case index of
 when 0 result = 0x000000;
 when 1 result = 0x0164d2;
 when 2 result = 0x02cd87;
 when 3 result = 0x043a29;
 when 4 result = 0x05aac3;
 when 5 result = 0x071f62;
 when 6 result = 0x08980f;
 when 7 result = 0x0a14d5;
 when 8 result = 0x0b95c2;
 when 9 result = 0x0d1adf;
 when 10 result = 0x0ea43a;
 when 11 result = 0x1031dc;
 when 12 result = 0x11c3d3;
 when 13 result = 0x135a2b;
 when 14 result = 0x14f4f0;
 when 15 result = 0x16942d;
 when 16 result = 0x1837f0;
 when 17 result = 0x19e046;
 when 18 result = 0x1b8d3a;
 when 19 result = 0x1d3eda;
 when 20 result = 0x1ef532;
 when 21 result = 0x20b051;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13889
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 22 result = 0x227043;
 when 23 result = 0x243516;
 when 24 result = 0x25fed7;
 when 25 result = 0x27cd94;
 when 26 result = 0x29a15b;
 when 27 result = 0x2b7a3a;
 when 28 result = 0x2d583f;
 when 29 result = 0x2f3b79;
 when 30 result = 0x3123f6;
 when 31 result = 0x3311c4;
 when 32 result = 0x3504f3;
 when 33 result = 0x36fd92;
 when 34 result = 0x38fbaf;
 when 35 result = 0x3aff5b;
 when 36 result = 0x3d08a4;
 when 37 result = 0x3f179a;
 when 38 result = 0x412c4d;
 when 39 result = 0x4346cd;
 when 40 result = 0x45672a;
 when 41 result = 0x478d75;
 when 42 result = 0x49b9be;
 when 43 result = 0x4bec15;
 when 44 result = 0x4e248c;
 when 45 result = 0x506334;
 when 46 result = 0x52a81e;
 when 47 result = 0x54f35b;
 when 48 result = 0x5744fd;
 when 49 result = 0x599d16;
 when 50 result = 0x5bfbb8;
 when 51 result = 0x5e60f5;
 when 52 result = 0x60ccdf;
 when 53 result = 0x633f89;
 when 54 result = 0x65b907;
 when 55 result = 0x68396a;
 when 56 result = 0x6ac0c7;
 when 57 result = 0x6d4f30;
 when 58 result = 0x6fe4ba;
 when 59 result = 0x728177;
 when 60 result = 0x75257d;
 when 61 result = 0x77d0df;
 when 62 result = 0x7a83b3;
 when 63 result = 0x7d3e0c;

 else // N == 64
 case index of
 when 0 result = 0x0000000000000;
 when 1 result = 0x02C9A3E778061;
 when 2 result = 0x059B0D3158574;
 when 3 result = 0x0874518759BC8;
 when 4 result = 0x0B5586CF9890F;
 when 5 result = 0x0E3EC32D3D1A2;
 when 6 result = 0x11301D0125B51;
 when 7 result = 0x1429AAEA92DE0;
 when 8 result = 0x172B83C7D517B;
 when 9 result = 0x1A35BEB6FCB75;
 when 10 result = 0x1D4873168B9AA;
 when 11 result = 0x2063B88628CD6;
 when 12 result = 0x2387A6E756238;
 when 13 result = 0x26B4565E27CDD;
 when 14 result = 0x29E9DF51FDEE1;
 when 15 result = 0x2D285A6E4030B;
 when 16 result = 0x306FE0A31B715;
 when 17 result = 0x33C08B26416FF;
 when 18 result = 0x371A7373AA9CB;
 when 19 result = 0x3A7DB34E59FF7;
 when 20 result = 0x3DEA64C123422;
 when 21 result = 0x4160A21F72E2A;
 when 22 result = 0x44E086061892D;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13890
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 23 result = 0x486A2B5C13CD0;
 when 24 result = 0x4BFDAD5362A27;
 when 25 result = 0x4F9B2769D2CA7;
 when 26 result = 0x5342B569D4F82;
 when 27 result = 0x56F4736B527DA;
 when 28 result = 0x5AB07DD485429;
 when 29 result = 0x5E76F15AD2148;
 when 30 result = 0x6247EB03A5585;
 when 31 result = 0x6623882552225;
 when 32 result = 0x6A09E667F3BCD;
 when 33 result = 0x6DFB23C651A2F;
 when 34 result = 0x71F75E8EC5F74;
 when 35 result = 0x75FEB564267C9;
 when 36 result = 0x7A11473EB0187;
 when 37 result = 0x7E2F336CF4E62;
 when 38 result = 0x82589994CCE13;
 when 39 result = 0x868D99B4492ED;
 when 40 result = 0x8ACE5422AA0DB;
 when 41 result = 0x8F1AE99157736;
 when 42 result = 0x93737B0CDC5E5;
 when 43 result = 0x97D829FDE4E50;
 when 44 result = 0x9C49182A3F090;
 when 45 result = 0xA0C667B5DE565;
 when 46 result = 0xA5503B23E255D;
 when 47 result = 0xA9E6B5579FDBF;
 when 48 result = 0xAE89F995AD3AD;
 when 49 result = 0xB33A2B84F15FB;
 when 50 result = 0xB7F76F2FB5E47;
 when 51 result = 0xBCC1E904BC1D2;
 when 52 result = 0xC199BDD85529C;
 when 53 result = 0xC67F12E57D14B;
 when 54 result = 0xCB720DCEF9069;
 when 55 result = 0xD072D4A07897C;
 when 56 result = 0xD5818DCFBA487;
 when 57 result = 0xDA9E603DB3285;
 when 58 result = 0xDFC97337B9B5F;
 when 59 result = 0xE502EE78B3FF6;
 when 60 result = 0xEA4AFA2A490DA;
 when 61 result = 0xEFA1BEE615A27;
 when 62 result = 0xF50765B6E4540;
 when 63 result = 0xFA7C1819E90D8;

 return result<N-1:0>;

aarch64/functions/sve/FPLogB

 // FPLogB()
 // ========

 bits(N) FPLogB(bits(N) op, FPCR_Type fpcr)
 assert N IN {16,32,64};
 integer result;
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN || fptype == FPType_Zero then
 FPProcessException(FPExc_InvalidOp, fpcr);
 result = -(2^(N-1)); // MinInt, 100..00
 elsif fptype == FPType_Infinity then
 result = 2^(N-1) - 1; // MaxInt, 011..11
 else
 // FPUnpack has already scaled a subnormal input
 value = Abs(value);
 result = 0;
 while value < 1.0 do
 value = value * 2.0;
 result = result - 1;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13891
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 while value >= 2.0 do
 value = value / 2.0;
 result = result + 1;

 FPProcessDenorm(fptype, N, fpcr);

 return result<N-1:0>;

aarch64/functions/sve/FPMinNormal

 // FPMinNormal()
 // =============

 bits(N) FPMinNormal(bit sign, integer N)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Zeros(E-1):'1';
 frac = Zeros(F);
 return sign : exp : frac;

aarch64/functions/sve/FPOne

 // FPOne()
 // =======

 bits(N) FPOne(bit sign, integer N)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-1);
 frac = Zeros(F);
 return sign : exp : frac;

aarch64/functions/sve/FPPointFive

 // FPPointFive()
 // =============

 bits(N) FPPointFive(bit sign, integer N)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-2):'0';
 frac = Zeros(F);
 return sign : exp : frac;

aarch64/functions/sve/FPReducePredicated

 // FPReducePredicated()
 // ====================

 bits(esize) FPReducePredicated(ReduceOp op, bits(N) input, bits(M) mask,
 bits(esize) identity, FPCR_Type fpcr)
 assert(N == M * 8);
 assert IsPow2(N);
 bits(N) operand;
 integer elements = N DIV esize;

 for e = 0 to elements-1
 if e * esize < N && ActivePredicateElement(mask, e, esize) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13892
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 Elem[operand, e, esize] = Elem[input, e, esize];
 else
 Elem[operand, e, esize] = identity;

 return FPReduce(op, operand, esize, fpcr);

aarch64/functions/sve/FPScale

 // FPScale()
 // =========

 bits(N) FPScale(bits(N) op, integer scale, FPCR_Type fpcr)
 assert N IN {16,32,64};
 bits(N) result;
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign, N);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign, N);
 else
 result = FPRound(value * (2.0^scale), fpcr, N);
 FPProcessDenorm(fptype, N, fpcr);

 return result;

aarch64/functions/sve/FPTrigMAdd

 // FPTrigMAdd()
 // ============

 bits(N) FPTrigMAdd(integer x_in, bits(N) op1, bits(N) op2_in, FPCR_Type fpcr)
 assert N IN {16,32,64};
 bits(N) coeff;
 bits(N) op2 = op2_in;
 integer x = x_in;
 assert x >= 0;
 assert x < 8;

 if op2<N-1> == '1' then
 x = x + 8;

 coeff = FPTrigMAddCoefficient[x, N];
 // Safer to use EffectiveFPCR() in case the input fpcr argument
 // is modified as opposed to actual value of FPCR

 op2 = FPAbs(op2, EffectiveFPCR());
 result = FPMulAdd(coeff, op1, op2, fpcr);
 return result;

aarch64/functions/sve/FPTrigMAddCoefficient

 // FPTrigMAddCoefficient()
 // =======================

 bits(N) FPTrigMAddCoefficient[integer index, integer N]
 assert N IN {16,32,64};
 integer result;

 if N == 16 then
 case index of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13893
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when 0 result = 0x3c00;
 when 1 result = 0xb155;
 when 2 result = 0x2030;
 when 3 result = 0x0000;
 when 4 result = 0x0000;
 when 5 result = 0x0000;
 when 6 result = 0x0000;
 when 7 result = 0x0000;
 when 8 result = 0x3c00;
 when 9 result = 0xb800;
 when 10 result = 0x293a;
 when 11 result = 0x0000;
 when 12 result = 0x0000;
 when 13 result = 0x0000;
 when 14 result = 0x0000;
 when 15 result = 0x0000;
 elsif N == 32 then
 case index of
 when 0 result = 0x3f800000;
 when 1 result = 0xbe2aaaab;
 when 2 result = 0x3c088886;
 when 3 result = 0xb95008b9;
 when 4 result = 0x36369d6d;
 when 5 result = 0x00000000;
 when 6 result = 0x00000000;
 when 7 result = 0x00000000;
 when 8 result = 0x3f800000;
 when 9 result = 0xbf000000;
 when 10 result = 0x3d2aaaa6;
 when 11 result = 0xbab60705;
 when 12 result = 0x37cd37cc;
 when 13 result = 0x00000000;
 when 14 result = 0x00000000;
 when 15 result = 0x00000000;
 else // N == 64
 case index of
 when 0 result = 0x3ff0000000000000;
 when 1 result = 0xbfc5555555555543;
 when 2 result = 0x3f8111111110f30c;
 when 3 result = 0xbf2a01a019b92fc6;
 when 4 result = 0x3ec71de351f3d22b;
 when 5 result = 0xbe5ae5e2b60f7b91;
 when 6 result = 0x3de5d8408868552f;
 when 7 result = 0x0000000000000000;
 when 8 result = 0x3ff0000000000000;
 when 9 result = 0xbfe0000000000000;
 when 10 result = 0x3fa5555555555536;
 when 11 result = 0xbf56c16c16c13a0b;
 when 12 result = 0x3efa01a019b1e8d8;
 when 13 result = 0xbe927e4f7282f468;
 when 14 result = 0x3e21ee96d2641b13;
 when 15 result = 0xbda8f76380fbb401;

 return result<N-1:0>;

aarch64/functions/sve/FPTrigSMul

 // FPTrigSMul()
 // ============

 bits(N) FPTrigSMul(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 assert N IN {16,32,64};
 result = FPMul(op1, op1, fpcr);
 fpexc = FALSE;
 (fptype, sign, value) = FPUnpack(result, fpcr, fpexc);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13894
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if !(fptype IN {FPType_QNaN, FPType_SNaN}) then
 result<N-1> = op2<0>;

 return result;

aarch64/functions/sve/FPTrigSSel

 // FPTrigSSel()
 // ============

 bits(N) FPTrigSSel(bits(N) op1, bits(N) op2)
 assert N IN {16,32,64};
 bits(N) result;

 if op2<0> == '1' then
 result = FPOne(op2<1>, N);
 elsif op2<1> == '1' then
 result = FPNeg(op1, EffectiveFPCR());
 else
 result = op1;

 return result;

aarch64/functions/sve/FirstActive

 // FirstActive()
 // =============

 bit FirstActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) then
 return PredicateElement(x, e, esize);
 return '0';

aarch64/functions/sve/FloorPow2

 // FloorPow2()
 // ===========
 // For a positive integer X, return the largest power of 2 <= X

 integer FloorPow2(integer x)
 assert x >= 0;
 integer n = 1;
 if x == 0 then return 0;
 while x >= 2^n do
 n = n + 1;
 return 2^(n - 1);

aarch64/functions/sve/HaveSMEFullA64

 // HaveSMEFullA64()
 // ================
 // Returns TRUE if the SME FA64 extension is implemented, FALSE otherwise.

 boolean HaveSMEFullA64()
 return IsFeatureImplemented(FEAT_SME_FA64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13895
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/HaveSVE

 // HaveSVE()
 // =========

 boolean HaveSVE()
 return IsFeatureImplemented(FEAT_SVE);

aarch64/functions/sve/HaveSVE2

 // HaveSVE2()
 // ==========
 // Returns TRUE if the SVE2 extension is implemented, FALSE otherwise.

 boolean HaveSVE2()
 return IsFeatureImplemented(FEAT_SVE2);

aarch64/functions/sve/HaveSVE2AES

 // HaveSVE2AES()
 // =============
 // Returns TRUE if the SVE2 AES extension is implemented, FALSE otherwise.

 boolean HaveSVE2AES()
 return IsFeatureImplemented(FEAT_SVE_AES);

aarch64/functions/sve/HaveSVE2BitPerm

 // HaveSVE2BitPerm()
 // =================
 // Returns TRUE if the SVE2 Bit Permissions extension is implemented, FALSE otherwise.

 boolean HaveSVE2BitPerm()
 return IsFeatureImplemented(FEAT_SVE_BitPerm);

aarch64/functions/sve/HaveSVE2PMULL128

 // HaveSVE2PMULL128()
 // ==================
 // Returns TRUE if the SVE2 128 bit PMULL extension is implemented, FALSE otherwise.

 boolean HaveSVE2PMULL128()
 return IsFeatureImplemented(FEAT_SVE_PMULL128);

aarch64/functions/sve/HaveSVE2SHA256

 // HaveSVE2SHA256()
 // ================
 // Returns TRUE if the SVE2 SHA256 extension is implemented, FALSE otherwise.

 boolean HaveSVE2SHA256()
 return (IsFeatureImplemented(FEAT_SVE2) &&
 boolean IMPLEMENTATION_DEFINED "Have SVE2 SHA256 extension");
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13896
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/HaveSVE2SHA3

 // HaveSVE2SHA3()
 // ==============
 // Returns TRUE if the SVE2 SHA3 extension is implemented, FALSE otherwise.

 boolean HaveSVE2SHA3()
 return IsFeatureImplemented(FEAT_SVE_SHA3);

aarch64/functions/sve/HaveSVE2SHA512

 // HaveSVE2SHA512()
 // ================
 // Returns TRUE if the SVE2 SHA512 extension is implemented, FALSE otherwise.

 boolean HaveSVE2SHA512()
 return (IsFeatureImplemented(FEAT_SVE2) &&
 boolean IMPLEMENTATION_DEFINED "Have SVE2 SHA512 extension");

aarch64/functions/sve/HaveSVE2SM3

 // HaveSVE2SM3()
 // =============
 // Returns TRUE if the SVE2 SM3 extension is implemented, FALSE otherwise.

 boolean HaveSVE2SM3()
 return (IsFeatureImplemented(FEAT_SVE2) &&
 boolean IMPLEMENTATION_DEFINED "Have SVE2 SM3 extension");

aarch64/functions/sve/HaveSVE2SM4

 // HaveSVE2SM4()
 // =============
 // Returns TRUE if the SVE2 SM4 extension is implemented, FALSE otherwise.

 boolean HaveSVE2SM4()
 return IsFeatureImplemented(FEAT_SVE_SM4);

aarch64/functions/sve/HaveSVE2p1

 // HaveSVE2p1()
 // ============
 // Returns TRUE if the SVE2.1 extension is implemented, FALSE otherwise.

 boolean HaveSVE2p1()
 return IsFeatureImplemented(FEAT_SVE2p1);

aarch64/functions/sve/HaveSVEB16B16

 // HaveSVEB16B16()
 // ===============
 // Returns TRUE if the SVE2.1 non-widening BFloat16 instructions are implemented, FALSE otherwise.

 boolean HaveSVEB16B16()
 return IsFeatureImplemented(FEAT_SVE_B16B16);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13897
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/HaveSVEFP32MatMulExt

 // HaveSVEFP32MatMulExt()
 // ======================
 // Returns TRUE if single-precision floating-point matrix multiply instruction support implemented
 // and FALSE otherwise.

 boolean HaveSVEFP32MatMulExt()
 return IsFeatureImplemented(FEAT_F32MM);

aarch64/functions/sve/HaveSVEFP64MatMulExt

 // HaveSVEFP64MatMulExt()
 // ======================
 // Returns TRUE if double-precision floating-point matrix multiply instruction support implemented
 // and FALSE otherwise.

 boolean HaveSVEFP64MatMulExt()
 return IsFeatureImplemented(FEAT_F64MM);

aarch64/functions/sve/ImplementedSMEVectorLength

 // ImplementedSMEVectorLength()
 // ============================
 // Reduce SVE/SME vector length to a supported value (power of two)

 integer ImplementedSMEVectorLength(integer nbits_in)
 integer maxbits = MaxImplementedSVL();
 assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
 integer nbits = Min(nbits_in, maxbits);
 assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;

 // Search for a supported power-of-two VL less than or equal to nbits
 while nbits > 128 do
 if IsPow2(nbits) && SupportedPowerTwoSVL(nbits) then return nbits;
 nbits = nbits - 128;

 // Return the smallest supported power-of-two VL
 nbits = 128;
 while nbits < maxbits do
 if SupportedPowerTwoSVL(nbits) then return nbits;
 nbits = nbits * 2;

 // The only option is maxbits
 return maxbits;

aarch64/functions/sve/ImplementedSVEVectorLength

 // ImplementedSVEVectorLength()
 // ============================
 // Reduce SVE vector length to a supported value (power of two)

 integer ImplementedSVEVectorLength(integer nbits_in)
 integer maxbits = MaxImplementedVL();
 assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
 integer nbits = Min(nbits_in, maxbits);
 assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;

 while nbits > 128 do
 if IsPow2(nbits) then return nbits;
 nbits = nbits - 128;
 return nbits;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13898
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/InStreamingMode

 // InStreamingMode()
 // =================

 boolean InStreamingMode()
 return IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1';

aarch64/functions/sve/IntReducePredicated

 // IntReducePredicated()
 // =====================

 bits(esize) IntReducePredicated(ReduceOp op, bits(N) input, bits(M) mask, bits(esize) identity)
 assert(N == M * 8);
 constant integer p2bits = CeilPow2(N);
 bits(p2bits) operand;
 integer elements = p2bits DIV esize;

 for e = 0 to elements-1
 if e * esize < N && ActivePredicateElement(mask, e, esize) then
 Elem[operand, e, esize] = Elem[input, e, esize];
 else
 Elem[operand, e, esize] = identity;

 return IntReduce(op, operand, esize);

aarch64/functions/sve/IsEven

 // IsEven()
 // ========

 boolean IsEven(integer val)
 return val MOD 2 == 0;

aarch64/functions/sve/IsFPEnabled

 // IsFPEnabled()
 // =============
 // Returns TRUE if accesses to the Advanced SIMD and floating-point
 // registers are enabled at the target exception level in the current
 // execution state and FALSE otherwise.

 boolean IsFPEnabled(bits(2) el)
 if ELUsingAArch32(el) then
 return AArch32.IsFPEnabled(el);
 else
 return AArch64.IsFPEnabled(el);

aarch64/functions/sve/IsFullA64Enabled

 // IsFullA64Enabled()
 // ==================
 // Returns TRUE is full A64 is enabled in Streaming mode and FALSE othersise.

 boolean IsFullA64Enabled()
 if !HaveSMEFullA64() then return FALSE;

 // Check if full SVE disabled in SMCR_EL1
 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check full SVE at EL0/EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13899
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if SMCR_EL1.FA64 == '0' then return FALSE;

 // Check if full SVE disabled in SMCR_EL2
 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if SMCR_EL2.FA64 == '0' then return FALSE;

 // Check if full SVE disabled in SMCR_EL3
 if HaveEL(EL3) then
 if SMCR_EL3.FA64 == '0' then return FALSE;

 return TRUE;

aarch64/functions/sve/IsOdd

 // IsOdd()
 // =======

 boolean IsOdd(integer val)
 return val MOD 2 == 1;

aarch64/functions/sve/IsOriginalSVEEnabled

 // IsOriginalSVEEnabled()
 // ======================
 // Returns TRUE if access to SVE functionality is enabled at the target
 // exception level and FALSE otherwise.

 boolean IsOriginalSVEEnabled(bits(2) el)
 boolean disabled;
 if ELUsingAArch32(el) then
 return FALSE;

 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check SVE at EL0/EL1
 case CPACR_EL1.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if ELIsInHost(EL2) then
 case CPTR_EL2.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TZ == '1' then return FALSE;

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.EZ == '0' then return FALSE;

 return TRUE;

aarch64/functions/sve/IsPow2

 // IsPow2()
 // ========
 // Return TRUE if positive integer X is a power of 2. Otherwise,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13900
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // return FALSE.

 boolean IsPow2(integer x)
 if x <= 0 then return FALSE;
 return FloorPow2(x) == CeilPow2(x);

aarch64/functions/sve/IsSMEEnabled

 // IsSMEEnabled()
 // ==============
 // Returns TRUE if access to SME functionality is enabled at the target
 // exception level and FALSE otherwise.

 boolean IsSMEEnabled(bits(2) el)
 boolean disabled;
 if ELUsingAArch32(el) then
 return FALSE;

 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check SME at EL0/EL1
 case CPACR_EL1.SMEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if ELIsInHost(EL2) then
 case CPTR_EL2.SMEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TSM == '1' then return FALSE;

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.ESM == '0' then return FALSE;

 return TRUE;

aarch64/functions/sve/IsSVEEnabled

 // IsSVEEnabled()
 // ==============
 // Returns TRUE if access to SVE registers is enabled at the target exception
 // level and FALSE otherwise.

 boolean IsSVEEnabled(bits(2) el)
 if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 return IsSMEEnabled(el);
 elsif IsFeatureImplemented(FEAT_SVE) then
 return IsOriginalSVEEnabled(el);
 else
 return FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13901
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/LastActive

 // LastActive()
 // ============

 bit LastActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = elements-1 downto 0
 if ActivePredicateElement(mask, e, esize) then
 return PredicateElement(x, e, esize);
 return '0';

aarch64/functions/sve/LastActiveElement

 // LastActiveElement()
 // ===================

 integer LastActiveElement(bits(N) mask, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = elements-1 downto 0
 if ActivePredicateElement(mask, e, esize) then return e;
 return -1;

aarch64/functions/sve/MaxImplementedAnyVL

 // MaxImplementedAnyVL()
 // =====================

 integer MaxImplementedAnyVL()
 if IsFeatureImplemented(FEAT_SME) && IsFeatureImplemented(FEAT_SVE) then
 return Max(MaxImplementedVL(), MaxImplementedSVL());
 if IsFeatureImplemented(FEAT_SME) then
 return MaxImplementedSVL();
 return MaxImplementedVL();

aarch64/functions/sve/MaxImplementedSVL

 // MaxImplementedSVL()
 // ===================

 integer MaxImplementedSVL()
 return integer IMPLEMENTATION_DEFINED "Max implemented SVL";

aarch64/functions/sve/MaxImplementedVL

 // MaxImplementedVL()
 // ==================

 integer MaxImplementedVL()
 return integer IMPLEMENTATION_DEFINED "Max implemented VL";

aarch64/functions/sve/MaybeZeroSVEUppers

 // MaybeZeroSVEUppers()
 // ====================

 MaybeZeroSVEUppers(bits(2) target_el)
 boolean lower_enabled;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13902
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
 return;

 if target_el == EL3 then
 if EL2Enabled() then
 lower_enabled = IsFPEnabled(EL2);
 else
 lower_enabled = IsFPEnabled(EL1);
 elsif target_el == EL2 then
 assert EL2Enabled() && !ELUsingAArch32(EL2);
 if HCR_EL2.TGE == '0' then
 lower_enabled = IsFPEnabled(EL1);
 else
 lower_enabled = IsFPEnabled(EL0);
 else
 assert target_el == EL1 && !ELUsingAArch32(EL1);
 lower_enabled = IsFPEnabled(EL0);

 if lower_enabled then
 constant integer VL = if IsSVEEnabled(PSTATE.EL) then CurrentVL else 128;
 constant integer PL = VL DIV 8;
 for n = 0 to 31
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _Z[n] = ZeroExtend(_Z[n]<VL-1:0>, MAX_VL);
 for n = 0 to 15
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _P[n] = ZeroExtend(_P[n]<PL-1:0>, MAX_PL);
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _FFR = ZeroExtend(_FFR<PL-1:0>, MAX_PL);
 if IsFeatureImplemented(FEAT_SME) && PSTATE.ZA == '1' then
 constant integer SVL = CurrentSVL;
 constant integer accessiblevecs = SVL DIV 8;
 constant integer allvecs = MaxImplementedSVL() DIV 8;

 for n = 0 to accessiblevecs - 1
 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
 _ZA[n] = ZeroExtend(_ZA[n]<SVL-1:0>, MAX_VL);
 for n = accessiblevecs to allvecs - 1
 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
 _ZA[n] = Zeros(MAX_VL);

aarch64/functions/sve/MemNF

 // MemNF[] - non-assignment form
 // =============================

 (bits(8*size), boolean) MemNF[bits(64) address, integer size, AccessDescriptor accdesc]
 assert size IN {1, 2, 4, 8, 16};
 bits(8*size) value;
 boolean bad;

 boolean aligned = IsAligned(address, size);

 if !aligned && AlignmentEnforced() then
 return (bits(8*size) UNKNOWN, TRUE);

 boolean atomic = aligned || size == 1;

 if !atomic then
 (value<7:0>, bad) = MemSingleNF[address, 1, accdesc, aligned];

 if bad then
 return (bits(8*size) UNKNOWN, TRUE);

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13903
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 (value<8*i+7:8*i>, bad) = MemSingleNF[address+i, 1, accdesc, aligned];

 if bad then
 return (bits(8*size) UNKNOWN, TRUE);
 else
 (value, bad) = MemSingleNF[address, size, accdesc, aligned];
 if bad then
 return (bits(8*size) UNKNOWN, TRUE);

 if BigEndian(accdesc.acctype) then
 value = BigEndianReverse(value);

 return (value, FALSE);

aarch64/functions/sve/MemSingleNF

 // MemSingleNF[] - non-assignment form
 // ===================================

 (bits(8*size), boolean) MemSingleNF[bits(64) address, integer size, AccessDescriptor accdesc_in,
 boolean aligned]
 assert accdesc_in.acctype == AccessType_SVE;
 assert accdesc_in.nonfault || (accdesc_in.firstfault && !accdesc_in.first);

 bits(8*size) value;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;
 AccessDescriptor accdesc = accdesc_in;
 FaultRecord fault = NoFault(accdesc);

 // Implementation may suppress NF load for any reason
 if ConstrainUnpredictableBool(Unpredictable_NONFAULT) then
 return (bits(8*size) UNKNOWN, TRUE);

 // If the instruction encoding permits tag checking, confer with system register configuration
 // which may override this.
 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

 // MMU or MPU
 memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

 // Non-fault load from Device memory must not be performed externally
 if memaddrdesc.memattrs.memtype == MemType_Device then
 return (bits(8*size) UNKNOWN, TRUE);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return (bits(8*size) UNKNOWN, TRUE);

 if IsFeatureImplemented(FEAT_MTE2) && accdesc.tagchecked then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then
 return (bits(8*size) UNKNOWN, TRUE);

 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 boolean iswrite = FALSE;
 if IsExternalAbortTakenSynchronously(memstatus, iswrite, memaddrdesc, size, accdesc) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13904
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return (bits(8*size) UNKNOWN, TRUE);
 fault.merrorstate = memstatus.merrorstate;
 fault.extflag = memstatus.extflag;
 fault.statuscode = memstatus.statuscode;
 PendSErrorInterrupt(fault);

 return (value, FALSE);

aarch64/functions/sve/NoneActive

 // NoneActive()
 // ============

 bit NoneActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = 0 to elements-1
 if ActivePredicateElement(mask, e, esize) && ActivePredicateElement(x, e, esize) then
 return '0';
 return '1';

aarch64/functions/sve/P

 // P[] - non-assignment form
 // =========================

 bits(width) P[integer n, integer width]
 assert n >= 0 && n <= 31;
 assert width == CurrentVL DIV 8;
 return _P[n]<width-1:0>;

 // P[] - assignment form
 // =====================

 P[integer n, integer width] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width == CurrentVL DIV 8;
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _P[n] = ZeroExtend(value, MAX_PL);
 else
 _P[n]<width-1:0> = value;

aarch64/functions/sve/PredTest

 // PredTest()
 // ==========

 bits(4) PredTest(bits(N) mask, bits(N) result, integer esize)
 bit n = FirstActive(mask, result, esize);
 bit z = NoneActive(mask, result, esize);
 bit c = NOT LastActive(mask, result, esize);
 bit v = '0';
 return n:z:c:v;

aarch64/functions/sve/PredicateElement

 // PredicateElement()
 // ==================
 // Returns the predicate bit

 bit PredicateElement(bits(N) pred, integer e, integer esize)
 assert esize IN {8, 16, 32, 64, 128};
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13905
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 integer n = e * (esize DIV 8);
 assert n >= 0 && n < N;
 return pred<n>;

aarch64/functions/sve/ResetSMEState

 // ResetSMEState()
 // ===============

 ResetSMEState()
 integer vectors = MAX_VL DIV 8;
 for n = 0 to vectors - 1
 _ZA[n] = Zeros(MAX_VL);
 _ZT0 = Zeros(ZT0_LEN);

aarch64/functions/sve/ResetSVEState

 // ResetSVEState()
 // ===============

 ResetSVEState()
 for n = 0 to 31
 _Z[n] = Zeros(MAX_VL);
 for n = 0 to 15
 _P[n] = Zeros(MAX_PL);
 _FFR = Zeros(MAX_PL);
 FPSR = ZeroExtend(0x0800009f<31:0>, 64);

aarch64/functions/sve/SMEAccessTrap

 // SMEAccessTrap()
 // ===============
 // Trapped access to SME registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

 SMEAccessTrap(SMEExceptionType etype, bits(2) target_el_in)
 bits(2) target_el = target_el_in;
 assert UInt(target_el) >= UInt(PSTATE.EL);
 if target_el == EL0 then
 target_el = EL1;
 boolean route_to_el2;
 route_to_el2 = PSTATE.EL == EL0 && target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';

 except = ExceptionSyndrome(Exception_SMEAccessTrap);
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 case etype of
 when SMEExceptionType_AccessTrap
 except.syndrome<2:0> = '000';
 when SMEExceptionType_Streaming
 except.syndrome<2:0> = '001';
 when SMEExceptionType_NotStreaming
 except.syndrome<2:0> = '010';
 when SMEExceptionType_InactiveZA
 except.syndrome<2:0> = '011';
 when SMEExceptionType_InaccessibleZT0
 except.syndrome<2:0> = '100';

 if route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13906
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/SMEExceptionType

 // SMEExceptionType
 // ================
 enumeration SMEExceptionType {
 SMEExceptionType_AccessTrap, // SME functionality trapped or disabled
 SMEExceptionType_Streaming, // Illegal instruction in Streaming SVE mode
 SMEExceptionType_NotStreaming, // Illegal instruction not in Streaming SVE mode
 SMEExceptionType_InactiveZA, // Illegal instruction when ZA is inactive
 SMEExceptionType_InaccessibleZT0, // Access to ZT0 is disabled
 };

aarch64/functions/sve/SVEAccessTrap

 // SVEAccessTrap()
 // ===============
 // Trapped access to SVE registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

 SVEAccessTrap(bits(2) target_el)
 assert UInt(target_el) >= UInt(PSTATE.EL) && target_el != EL0 && HaveEL(target_el);
 route_to_el2 = target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';

 except = ExceptionSyndrome(Exception_SVEAccessTrap);
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 if route_to_el2 then
 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

aarch64/functions/sve/SVECmp

 // SVECmp
 // ======

 enumeration SVECmp { Cmp_EQ, Cmp_NE, Cmp_GE, Cmp_GT, Cmp_LT, Cmp_LE, Cmp_UN };

aarch64/functions/sve/SVEMoveMaskPreferred

 // SVEMoveMaskPreferred()
 // ======================
 // Return FALSE if a bitmask immediate encoding would generate an immediate
 // value that could also be represented by a single DUP instruction.
 // Used as a condition for the preferred MOV<-DUPM alias.

 boolean SVEMoveMaskPreferred(bits(13) imm13)
 bits(64) imm;
 (imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE, 64);

 // Check for 8 bit immediates
 if !IsZero(imm<7:0>) then
 // Check for 'ffffffffffffffxy' or '00000000000000xy'
 if IsZero(imm<63:7>) || IsOnes(imm<63:7>) then
 return FALSE;

 // Check for 'ffffffxyffffffxy' or '000000xy000000xy'
 if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then
 return FALSE;

 // Check for 'ffxyffxyffxyffxy' or '00xy00xy00xy00xy'
 if (imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> &&
 (IsZero(imm<15:7>) || IsOnes(imm<15:7>))) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13907
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return FALSE;

 // Check for 'xyxyxyxyxyxyxyxy'
 if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> && (imm<15:8> == imm<7:0>) then
 return FALSE;

 // Check for 16 bit immediates
 else
 // Check for 'ffffffffffffxy00' or '000000000000xy00'
 if IsZero(imm<63:15>) || IsOnes(imm<63:15>) then
 return FALSE;

 // Check for 'ffffxy00ffffxy00' or '0000xy000000xy00'
 if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then
 return FALSE;

 // Check for 'xy00xy00xy00xy00'
 if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> then
 return FALSE;

 return TRUE;

aarch64/functions/sve/SetPSTATE_SM

 // SetPSTATE_SM()
 // ==============

 SetPSTATE_SM(bit value)
 if PSTATE.SM != value then
 ResetSVEState();
 PSTATE.SM = value;

aarch64/functions/sve/SetPSTATE_SVCR

 // SetPSTATE_SVCR
 // ==============

 SetPSTATE_SVCR(bits(32) svcr)
 SetPSTATE_SM(svcr<0>);
 SetPSTATE_ZA(svcr<1>);

aarch64/functions/sve/SetPSTATE_ZA

 // SetPSTATE_ZA()
 // ==============

 SetPSTATE_ZA(bit value)
 if PSTATE.ZA != value then
 ResetSMEState();
 PSTATE.ZA = value;

aarch64/functions/sve/ShiftSat

 // ShiftSat()
 // ==========

 integer ShiftSat(integer shift, integer esize)
 if shift > esize+1 then return esize+1;
 elsif shift < -(esize+1) then return -(esize+1);
 return shift;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13908
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sve/SupportedPowerTwoSVL

 // SupportedPowerTwoSVL()
 // ======================
 // Return an IMPLEMENTATION DEFINED specific value
 // returns TRUE if SVL is supported and is a power of two, FALSE otherwise

 boolean SupportedPowerTwoSVL(integer nbits);

aarch64/functions/sve/System

 constant integer MAX_VL = 2048;
 constant integer MAX_PL = 256;
 constant integer ZT0_LEN = 512;
 bits(MAX_PL) _FFR;

 array bits(MAX_VL) _Z[0..31];

 array bits(MAX_PL) _P[0..15];

aarch64/functions/sve/Z

 // Z[] - non-assignment form
 // =========================

 bits(width) Z[integer n, integer width]
 assert n >= 0 && n <= 31;
 assert width == CurrentVL;
 return _Z[n]<width-1:0>;

 // Z[] - assignment form
 // =====================

 Z[integer n, integer width] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width == CurrentVL;
 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
 _Z[n] = ZeroExtend(value, MAX_VL);
 else
 _Z[n]<width-1:0> = value;

aarch64/functions/syshintop/SystemHintOp

 // SystemHintOp
 // ============
 // System Hint instruction types.

 enumeration SystemHintOp {
 SystemHintOp_NOP,
 SystemHintOp_YIELD,
 SystemHintOp_WFE,
 SystemHintOp_WFI,
 SystemHintOp_SEV,
 SystemHintOp_SEVL,
 SystemHintOp_DGH,
 SystemHintOp_ESB,
 SystemHintOp_PSB,
 SystemHintOp_TSB,
 SystemHintOp_BTI,
 SystemHintOp_WFET,
 SystemHintOp_WFIT,
 SystemHintOp_CLRBHB,
 SystemHintOp_GCSB,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13909
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 SystemHintOp_CHKFEAT,
 SystemHintOp_CSDB
 };

aarch64/functions/sysop/SysOp

 // SysOp()
 // =======

 SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
 case op1:CRn:CRm:op2 of
 when '000 0111 1000 000' return Sys_AT; // S1E1R
 when '000 0111 1000 001' return Sys_AT; // S1E1W
 when '000 0111 1000 010' return Sys_AT; // S1E0R
 when '000 0111 1000 011' return Sys_AT; // S1E0W
 when '000 0111 1001 000' return Sys_AT; // S1E1RP
 when '000 0111 1001 001' return Sys_AT; // S1E1WP
 when '100 0111 1000 000' return Sys_AT; // S1E2R
 when '100 0111 1000 001' return Sys_AT; // S1E2W
 when '100 0111 1000 100' return Sys_AT; // S12E1R
 when '100 0111 1000 101' return Sys_AT; // S12E1W
 when '100 0111 1000 110' return Sys_AT; // S12E0R
 when '100 0111 1000 111' return Sys_AT; // S12E0W
 when '110 0111 1000 000' return Sys_AT; // S1E3R
 when '110 0111 1000 001' return Sys_AT; // S1E3W
 when '001 0111 0010 100' return Sys_BRB; // IALL
 when '001 0111 0010 101' return Sys_BRB; // INJ
 when '000 0111 0110 001' return Sys_DC; // IVAC
 when '000 0111 0110 010' return Sys_DC; // ISW
 when '000 0111 0110 011' return Sys_DC; // IGVAC
 when '000 0111 0110 100' return Sys_DC; // IGSW
 when '000 0111 0110 101' return Sys_DC; // IGDVAC
 when '000 0111 0110 110' return Sys_DC; // IGDSW
 when '000 0111 1010 010' return Sys_DC; // CSW
 when '000 0111 1010 100' return Sys_DC; // CGSW
 when '000 0111 1010 110' return Sys_DC; // CGDSW
 when '000 0111 1110 010' return Sys_DC; // CISW
 when '000 0111 1110 100' return Sys_DC; // CIGSW
 when '000 0111 1110 110' return Sys_DC; // CIGDSW
 when '011 0111 0100 001' return Sys_DC; // ZVA
 when '011 0111 0100 011' return Sys_DC; // GVA
 when '011 0111 0100 100' return Sys_DC; // GZVA
 when '011 0111 1010 001' return Sys_DC; // CVAC
 when '011 0111 1010 011' return Sys_DC; // CGVAC
 when '011 0111 1010 101' return Sys_DC; // CGDVAC
 when '011 0111 1011 001' return Sys_DC; // CVAU
 when '011 0111 1100 001' return Sys_DC; // CVAP
 when '011 0111 1100 011' return Sys_DC; // CGVAP
 when '011 0111 1100 101' return Sys_DC; // CGDVAP
 when '011 0111 1101 001' return Sys_DC; // CVADP
 when '011 0111 1101 011' return Sys_DC; // CGVADP
 when '011 0111 1101 101' return Sys_DC; // CGDVADP
 when '011 0111 1110 001' return Sys_DC; // CIVAC
 when '011 0111 1110 011' return Sys_DC; // CIGVAC
 when '011 0111 1110 101' return Sys_DC; // CIGDVAC
 when '100 0111 1110 000' return Sys_DC; // CIPAE
 when '100 0111 1110 111' return Sys_DC; // CIGDPAE
 when '110 0111 1110 001' return Sys_DC; // CIPAPA
 when '110 0111 1110 101' return Sys_DC; // CIGDPAPA
 when '000 0111 0001 000' return Sys_IC; // IALLUIS
 when '000 0111 0101 000' return Sys_IC; // IALLU
 when '011 0111 0101 001' return Sys_IC; // IVAU
 when '000 1000 0001 000' return Sys_TLBI; // VMALLE1OS
 when '000 1000 0001 001' return Sys_TLBI; // VAE1OS
 when '000 1000 0001 010' return Sys_TLBI; // ASIDE1OS
 when '000 1000 0001 011' return Sys_TLBI; // VAAE1OS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13910
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '000 1000 0001 101' return Sys_TLBI; // VALE1OS
 when '000 1000 0001 111' return Sys_TLBI; // VAALE1OS
 when '000 1000 0010 001' return Sys_TLBI; // RVAE1IS
 when '000 1000 0010 011' return Sys_TLBI; // RVAAE1IS
 when '000 1000 0010 101' return Sys_TLBI; // RVALE1IS
 when '000 1000 0010 111' return Sys_TLBI; // RVAALE1IS
 when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
 when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
 when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
 when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
 when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
 when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
 when '000 1000 0101 001' return Sys_TLBI; // RVAE1OS
 when '000 1000 0101 011' return Sys_TLBI; // RVAAE1OS
 when '000 1000 0101 101' return Sys_TLBI; // RVALE1OS
 when '000 1000 0101 111' return Sys_TLBI; // RVAALE1OS
 when '000 1000 0110 001' return Sys_TLBI; // RVAE1
 when '000 1000 0110 011' return Sys_TLBI; // RVAAE1
 when '000 1000 0110 101' return Sys_TLBI; // RVALE1
 when '000 1000 0110 111' return Sys_TLBI; // RVAALE1
 when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
 when '000 1000 0111 001' return Sys_TLBI; // VAE1
 when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
 when '000 1000 0111 011' return Sys_TLBI; // VAAE1
 when '000 1000 0111 101' return Sys_TLBI; // VALE1
 when '000 1000 0111 111' return Sys_TLBI; // VAALE1
 when '000 1001 0001 000' return Sys_TLBI; // VMALLE1OSNXS
 when '000 1001 0001 001' return Sys_TLBI; // VAE1OSNXS
 when '000 1001 0001 010' return Sys_TLBI; // ASIDE1OSNXS
 when '000 1001 0001 011' return Sys_TLBI; // VAAE1OSNXS
 when '000 1001 0001 101' return Sys_TLBI; // VALE1OSNXS
 when '000 1001 0001 111' return Sys_TLBI; // VAALE1OSNXS
 when '000 1001 0010 001' return Sys_TLBI; // RVAE1ISNXS
 when '000 1001 0010 011' return Sys_TLBI; // RVAAE1ISNXS
 when '000 1001 0010 101' return Sys_TLBI; // RVALE1ISNXS
 when '000 1001 0010 111' return Sys_TLBI; // RVAALE1ISNXS
 when '000 1001 0011 000' return Sys_TLBI; // VMALLE1ISNXS
 when '000 1001 0011 001' return Sys_TLBI; // VAE1ISNXS
 when '000 1001 0011 010' return Sys_TLBI; // ASIDE1ISNXS
 when '000 1001 0011 011' return Sys_TLBI; // VAAE1ISNXS
 when '000 1001 0011 101' return Sys_TLBI; // VALE1ISNXS
 when '000 1001 0011 111' return Sys_TLBI; // VAALE1ISNXS
 when '000 1001 0101 001' return Sys_TLBI; // RVAE1OSNXS
 when '000 1001 0101 011' return Sys_TLBI; // RVAAE1OSNXS
 when '000 1001 0101 101' return Sys_TLBI; // RVALE1OSNXS
 when '000 1001 0101 111' return Sys_TLBI; // RVAALE1OSNXS
 when '000 1001 0110 001' return Sys_TLBI; // RVAE1NXS
 when '000 1001 0110 011' return Sys_TLBI; // RVAAE1NXS
 when '000 1001 0110 101' return Sys_TLBI; // RVALE1NXS
 when '000 1001 0110 111' return Sys_TLBI; // RVAALE1NXS
 when '000 1001 0111 000' return Sys_TLBI; // VMALLE1NXS
 when '000 1001 0111 001' return Sys_TLBI; // VAE1NXS
 when '000 1001 0111 010' return Sys_TLBI; // ASIDE1NXS
 when '000 1001 0111 011' return Sys_TLBI; // VAAE1NXS
 when '000 1001 0111 101' return Sys_TLBI; // VALE1NXS
 when '000 1001 0111 111' return Sys_TLBI; // VAALE1NXS
 when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
 when '100 1000 0000 010' return Sys_TLBI; // RIPAS2E1IS
 when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
 when '100 1000 0000 110' return Sys_TLBI; // RIPAS2LE1IS
 when '100 1000 0001 000' return Sys_TLBI; // ALLE2OS
 when '100 1000 0001 001' return Sys_TLBI; // VAE2OS
 when '100 1000 0001 100' return Sys_TLBI; // ALLE1OS
 when '100 1000 0001 101' return Sys_TLBI; // VALE2OS
 when '100 1000 0001 110' return Sys_TLBI; // VMALLS12E1OS
 when '100 1000 0010 001' return Sys_TLBI; // RVAE2IS
 when '100 1000 0010 101' return Sys_TLBI; // RVALE2IS
 when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13911
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
 when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
 when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
 when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
 when '100 1000 0100 000' return Sys_TLBI; // IPAS2E1OS
 when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
 when '100 1000 0100 010' return Sys_TLBI; // RIPAS2E1
 when '100 1000 0100 011' return Sys_TLBI; // RIPAS2E1OS
 when '100 1000 0100 100' return Sys_TLBI; // IPAS2LE1OS
 when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
 when '100 1000 0100 110' return Sys_TLBI; // RIPAS2LE1
 when '100 1000 0100 111' return Sys_TLBI; // RIPAS2LE1OS
 when '100 1000 0101 001' return Sys_TLBI; // RVAE2OS
 when '100 1000 0101 101' return Sys_TLBI; // RVALE2OS
 when '100 1000 0110 001' return Sys_TLBI; // RVAE2
 when '100 1000 0110 101' return Sys_TLBI; // RVALE2
 when '100 1000 0111 000' return Sys_TLBI; // ALLE2
 when '100 1000 0111 001' return Sys_TLBI; // VAE2
 when '100 1000 0111 100' return Sys_TLBI; // ALLE1
 when '100 1000 0111 101' return Sys_TLBI; // VALE2
 when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
 when '100 1001 0000 001' return Sys_TLBI; // IPAS2E1ISNXS
 when '100 1001 0000 010' return Sys_TLBI; // RIPAS2E1ISNXS
 when '100 1001 0000 101' return Sys_TLBI; // IPAS2LE1ISNXS
 when '100 1001 0000 110' return Sys_TLBI; // RIPAS2LE1ISNXS
 when '100 1001 0001 000' return Sys_TLBI; // ALLE2OSNXS
 when '100 1001 0001 001' return Sys_TLBI; // VAE2OSNXS
 when '100 1001 0001 100' return Sys_TLBI; // ALLE1OSNXS
 when '100 1001 0001 101' return Sys_TLBI; // VALE2OSNXS
 when '100 1001 0001 110' return Sys_TLBI; // VMALLS12E1OSNXS
 when '100 1001 0010 001' return Sys_TLBI; // RVAE2ISNXS
 when '100 1001 0010 101' return Sys_TLBI; // RVALE2ISNXS
 when '100 1001 0011 000' return Sys_TLBI; // ALLE2ISNXS
 when '100 1001 0011 001' return Sys_TLBI; // VAE2ISNXS
 when '100 1001 0011 100' return Sys_TLBI; // ALLE1ISNXS
 when '100 1001 0011 101' return Sys_TLBI; // VALE2ISNXS
 when '100 1001 0011 110' return Sys_TLBI; // VMALLS12E1ISNXS
 when '100 1001 0100 000' return Sys_TLBI; // IPAS2E1OSNXS
 when '100 1001 0100 001' return Sys_TLBI; // IPAS2E1NXS
 when '100 1001 0100 010' return Sys_TLBI; // RIPAS2E1NXS
 when '100 1001 0100 011' return Sys_TLBI; // RIPAS2E1OSNXS
 when '100 1001 0100 100' return Sys_TLBI; // IPAS2LE1OSNXS
 when '100 1001 0100 101' return Sys_TLBI; // IPAS2LE1NXS
 when '100 1001 0100 110' return Sys_TLBI; // RIPAS2LE1NXS
 when '100 1001 0100 111' return Sys_TLBI; // RIPAS2LE1OSNXS
 when '100 1001 0101 001' return Sys_TLBI; // RVAE2OSNXS
 when '100 1001 0101 101' return Sys_TLBI; // RVALE2OSNXS
 when '100 1001 0110 001' return Sys_TLBI; // RVAE2NXS
 when '100 1001 0110 101' return Sys_TLBI; // RVALE2NXS
 when '100 1001 0111 000' return Sys_TLBI; // ALLE2NXS
 when '100 1001 0111 001' return Sys_TLBI; // VAE2NXS
 when '100 1001 0111 100' return Sys_TLBI; // ALLE1NXS
 when '100 1001 0111 101' return Sys_TLBI; // VALE2NXS
 when '100 1001 0111 110' return Sys_TLBI; // VMALLS12E1NXS
 when '110 1000 0001 000' return Sys_TLBI; // ALLE3OS
 when '110 1000 0001 001' return Sys_TLBI; // VAE3OS
 when '110 1000 0001 100' return Sys_TLBI; // PAALLOS
 when '110 1000 0001 101' return Sys_TLBI; // VALE3OS
 when '110 1000 0010 001' return Sys_TLBI; // RVAE3IS
 when '110 1000 0010 101' return Sys_TLBI; // RVALE3IS
 when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
 when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
 when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
 when '110 1000 0100 011' return Sys_TLBI; // RPAOS
 when '110 1000 0100 111' return Sys_TLBI; // RPALOS
 when '110 1000 0101 001' return Sys_TLBI; // RVAE3OS
 when '110 1000 0101 101' return Sys_TLBI; // RVALE3OS
 when '110 1000 0110 001' return Sys_TLBI; // RVAE3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13912
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '110 1000 0110 101' return Sys_TLBI; // RVALE3
 when '110 1000 0111 000' return Sys_TLBI; // ALLE3
 when '110 1000 0111 001' return Sys_TLBI; // VAE3
 when '110 1000 0111 100' return Sys_TLBI; // PAALL
 when '110 1000 0111 101' return Sys_TLBI; // VALE3
 when '110 1001 0001 000' return Sys_TLBI; // ALLE3OSNXS
 when '110 1001 0001 001' return Sys_TLBI; // VAE3OSNXS
 when '110 1001 0001 101' return Sys_TLBI; // VALE3OSNXS
 when '110 1001 0010 001' return Sys_TLBI; // RVAE3ISNXS
 when '110 1001 0010 101' return Sys_TLBI; // RVALE3ISNXS
 when '110 1001 0011 000' return Sys_TLBI; // ALLE3ISNXS
 when '110 1001 0011 001' return Sys_TLBI; // VAE3ISNXS
 when '110 1001 0011 101' return Sys_TLBI; // VALE3ISNXS
 when '110 1001 0101 001' return Sys_TLBI; // RVAE3OSNXS
 when '110 1001 0101 101' return Sys_TLBI; // RVALE3OSNXS
 when '110 1001 0110 001' return Sys_TLBI; // RVAE3NXS
 when '110 1001 0110 101' return Sys_TLBI; // RVALE3NXS
 when '110 1001 0111 000' return Sys_TLBI; // ALLE3NXS
 when '110 1001 0111 001' return Sys_TLBI; // VAE3NXS
 when '110 1001 0111 101' return Sys_TLBI; // VALE3NXS
 otherwise return Sys_SYS;

aarch64/functions/sysop/SystemOp

 // SystemOp
 // ========
 // System instruction types.

 enumeration SystemOp {Sys_AT, Sys_BRB, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

aarch64/functions/sysop_128/SysOp128

 // SysOp128()
 // ==========

 SystemOp128 SysOp128(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
 case op1:CRn:CRm:op2 of
 when '000 1000 0001 001' return Sys_TLBIP; // VAE1OS
 when '000 1000 0001 011' return Sys_TLBIP; // VAAE1OS
 when '000 1000 0001 101' return Sys_TLBIP; // VALE1OS
 when '000 1000 0001 111' return Sys_TLBIP; // VAALE1OS
 when '000 1000 0011 001' return Sys_TLBIP; // VAE1IS
 when '000 1000 0011 011' return Sys_TLBIP; // VAAE1IS
 when '000 1000 0011 101' return Sys_TLBIP; // VALE1IS
 when '000 1000 0011 111' return Sys_TLBIP; // VAALE1IS
 when '000 1000 0111 001' return Sys_TLBIP; // VAE1
 when '000 1000 0111 011' return Sys_TLBIP; // VAAE1
 when '000 1000 0111 101' return Sys_TLBIP; // VALE1
 when '000 1000 0111 111' return Sys_TLBIP; // VAALE1
 when '000 1001 0001 001' return Sys_TLBIP; // VAE1OSNXS
 when '000 1001 0001 011' return Sys_TLBIP; // VAAE1OSNXS
 when '000 1001 0001 101' return Sys_TLBIP; // VALE1OSNXS
 when '000 1001 0001 111' return Sys_TLBIP; // VAALE1OSNXS
 when '000 1001 0011 001' return Sys_TLBIP; // VAE1ISNXS
 when '000 1001 0011 011' return Sys_TLBIP; // VAAE1ISNXS
 when '000 1001 0011 101' return Sys_TLBIP; // VALE1ISNXS
 when '000 1001 0011 111' return Sys_TLBIP; // VAALE1ISNXS
 when '000 1001 0111 001' return Sys_TLBIP; // VAE1NXS
 when '000 1001 0111 011' return Sys_TLBIP; // VAAE1NXS
 when '000 1001 0111 101' return Sys_TLBIP; // VALE1NXS
 when '000 1001 0111 111' return Sys_TLBIP; // VAALE1NXS
 when '100 1000 0001 001' return Sys_TLBIP; // VAE2OS
 when '100 1000 0001 101' return Sys_TLBIP; // VALE2OS
 when '100 1000 0011 001' return Sys_TLBIP; // VAE2IS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13913
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '100 1000 0011 101' return Sys_TLBIP; // VALE2IS
 when '100 1000 0111 001' return Sys_TLBIP; // VAE2
 when '100 1000 0111 101' return Sys_TLBIP; // VALE2
 when '100 1001 0001 001' return Sys_TLBIP; // VAE2OSNXS
 when '100 1001 0001 101' return Sys_TLBIP; // VALE2OSNXS
 when '100 1001 0011 001' return Sys_TLBIP; // VAE2ISNXS
 when '100 1001 0011 101' return Sys_TLBIP; // VALE2ISNXS
 when '100 1001 0111 001' return Sys_TLBIP; // VAE2NXS
 when '100 1001 0111 101' return Sys_TLBIP; // VALE2NXS
 when '110 1000 0001 001' return Sys_TLBIP; // VAE3OS
 when '110 1000 0001 101' return Sys_TLBIP; // VALE3OS
 when '110 1000 0011 001' return Sys_TLBIP; // VAE3IS
 when '110 1000 0011 101' return Sys_TLBIP; // VALE3IS
 when '110 1000 0111 001' return Sys_TLBIP; // VAE3
 when '110 1000 0111 101' return Sys_TLBIP; // VALE3
 when '110 1001 0001 001' return Sys_TLBIP; // VAE3OSNXS
 when '110 1001 0001 101' return Sys_TLBIP; // VALE3OSNXS
 when '110 1001 0011 001' return Sys_TLBIP; // VAE3ISNXS
 when '110 1001 0011 101' return Sys_TLBIP; // VALE3ISNXS
 when '110 1001 0111 001' return Sys_TLBIP; // VAE3NXS
 when '110 1001 0111 101' return Sys_TLBIP; // VALE3NXS
 when '100 1000 0000 001' return Sys_TLBIP; // IPAS2E1IS
 when '100 1000 0000 101' return Sys_TLBIP; // IPAS2LE1IS
 when '100 1000 0100 000' return Sys_TLBIP; // IPAS2E1OS
 when '100 1000 0100 001' return Sys_TLBIP; // IPAS2E1
 when '100 1000 0100 100' return Sys_TLBIP; // IPAS2LE1OS
 when '100 1000 0100 101' return Sys_TLBIP; // IPAS2LE1
 when '100 1001 0000 001' return Sys_TLBIP; // IPAS2E1ISNXS
 when '100 1001 0000 101' return Sys_TLBIP; // IPAS2LE1ISNXS
 when '100 1001 0100 000' return Sys_TLBIP; // IPAS2E1OSNXS
 when '100 1001 0100 001' return Sys_TLBIP; // IPAS2E1NXS
 when '100 1001 0100 100' return Sys_TLBIP; // IPAS2LE1OSNXS
 when '100 1001 0100 101' return Sys_TLBIP; // IPAS2LE1NXS
 when '000 1000 0010 001' return Sys_TLBIP; // RVAE1IS
 when '000 1000 0010 011' return Sys_TLBIP; // RVAAE1IS
 when '000 1000 0010 101' return Sys_TLBIP; // RVALE1IS
 when '000 1000 0010 111' return Sys_TLBIP; // RVAALE1IS
 when '000 1000 0101 001' return Sys_TLBIP; // RVAE1OS
 when '000 1000 0101 011' return Sys_TLBIP; // RVAAE1OS
 when '000 1000 0101 101' return Sys_TLBIP; // RVALE1OS
 when '000 1000 0101 111' return Sys_TLBIP; // RVAALE1OS
 when '000 1000 0110 001' return Sys_TLBIP; // RVAE1
 when '000 1000 0110 011' return Sys_TLBIP; // RVAAE1
 when '000 1000 0110 101' return Sys_TLBIP; // RVALE1
 when '000 1000 0110 111' return Sys_TLBIP; // RVAALE1
 when '000 1001 0010 001' return Sys_TLBIP; // RVAE1ISNXS
 when '000 1001 0010 011' return Sys_TLBIP; // RVAAE1ISNXS
 when '000 1001 0010 101' return Sys_TLBIP; // RVALE1ISNXS
 when '000 1001 0010 111' return Sys_TLBIP; // RVAALE1ISNXS
 when '000 1001 0101 001' return Sys_TLBIP; // RVAE1OSNXS
 when '000 1001 0101 011' return Sys_TLBIP; // RVAAE1OSNXS
 when '000 1001 0101 101' return Sys_TLBIP; // RVALE1OSNXS
 when '000 1001 0101 111' return Sys_TLBIP; // RVAALE1OSNXS
 when '000 1001 0110 001' return Sys_TLBIP; // RVAE1NXS
 when '000 1001 0110 011' return Sys_TLBIP; // RVAAE1NXS
 when '000 1001 0110 101' return Sys_TLBIP; // RVALE1NXS
 when '000 1001 0110 111' return Sys_TLBIP; // RVAALE1NXS
 when '100 1000 0010 001' return Sys_TLBIP; // RVAE2IS
 when '100 1000 0010 101' return Sys_TLBIP; // RVALE2IS
 when '100 1000 0101 001' return Sys_TLBIP; // RVAE2OS
 when '100 1000 0101 101' return Sys_TLBIP; // RVALE2OS
 when '100 1000 0110 001' return Sys_TLBIP; // RVAE2
 when '100 1000 0110 101' return Sys_TLBIP; // RVALE2
 when '100 1001 0010 001' return Sys_TLBIP; // RVAE2ISNXS
 when '100 1001 0010 101' return Sys_TLBIP; // RVALE2ISNXS
 when '100 1001 0101 001' return Sys_TLBIP; // RVAE2OSNXS
 when '100 1001 0101 101' return Sys_TLBIP; // RVALE2OSNXS
 when '100 1001 0110 001' return Sys_TLBIP; // RVAE2NXS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13914
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '100 1001 0110 101' return Sys_TLBIP; // RVALE2NXS
 when '110 1000 0010 001' return Sys_TLBIP; // RVAE3IS
 when '110 1000 0010 101' return Sys_TLBIP; // RVALE3IS
 when '110 1000 0101 001' return Sys_TLBIP; // RVAE3OS
 when '110 1000 0101 101' return Sys_TLBIP; // RVALE3OS
 when '110 1000 0110 001' return Sys_TLBIP; // RVAE3
 when '110 1000 0110 101' return Sys_TLBIP; // RVALE3
 when '110 1001 0010 001' return Sys_TLBIP; // RVAE3ISNXS
 when '110 1001 0010 101' return Sys_TLBIP; // RVALE3ISNXS
 when '110 1001 0101 001' return Sys_TLBIP; // RVAE3OSNXS
 when '110 1001 0101 101' return Sys_TLBIP; // RVALE3OSNXS
 when '110 1001 0110 001' return Sys_TLBIP; // RVAE3NXS
 when '110 1001 0110 101' return Sys_TLBIP; // RVALE3NXS
 when '100 1000 0000 010' return Sys_TLBIP; // RIPAS2E1IS
 when '100 1000 0000 110' return Sys_TLBIP; // RIPAS2LE1IS
 when '100 1000 0100 010' return Sys_TLBIP; // RIPAS2E1
 when '100 1000 0100 011' return Sys_TLBIP; // RIPAS2E1OS
 when '100 1000 0100 110' return Sys_TLBIP; // RIPAS2LE1
 when '100 1000 0100 111' return Sys_TLBIP; // RIPAS2LE1OS
 when '100 1001 0000 010' return Sys_TLBIP; // RIPAS2E1ISNXS
 when '100 1001 0000 110' return Sys_TLBIP; // RIPAS2LE1ISNXS
 when '100 1001 0100 010' return Sys_TLBIP; // RIPAS2E1NXS
 when '100 1001 0100 011' return Sys_TLBIP; // RIPAS2E1OSNXS
 when '100 1001 0100 110' return Sys_TLBIP; // RIPAS2LE1NXS
 when '100 1001 0100 111' return Sys_TLBIP; // RIPAS2LE1OSNXS
 otherwise return Sys_SYSP;

aarch64/functions/sysop_128/SystemOp128

 // SystemOp128()
 // =============
 // System instruction types.

 enumeration SystemOp128 {Sys_TLBIP, Sys_SYSP};

aarch64/functions/sysregisters/ELR_EL

 // ELR_EL[] - non-assignment form
 // ==============================

 bits(64) ELR_EL[bits(2) el]
 bits(64) r;
 case el of
 when EL1 r = ELR_EL1;
 when EL2 r = ELR_EL2;
 when EL3 r = ELR_EL3;
 otherwise Unreachable();
 return r;

 // ELR_EL[] - assignment form
 // ==========================

 ELR_EL[bits(2) el] = bits(64) value
 bits(64) r = value;
 case el of
 when EL1 ELR_EL1 = r;
 when EL2 ELR_EL2 = r;
 when EL3 ELR_EL3 = r;
 otherwise Unreachable();
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13915
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sysregisters/ELR_ELx

 // ELR_ELx[] - non-assignment form
 // ===============================

 bits(64) ELR_ELx[]
 assert PSTATE.EL != EL0;
 return ELR_EL[PSTATE.EL];

 // ELR_ELx[] - assignment form
 // ===========================

 ELR_ELx[] = bits(64) value
 assert PSTATE.EL != EL0;
 ELR_EL[PSTATE.EL] = value;
 return;

aarch64/functions/sysregisters/ESRType

 type ESRType;

aarch64/functions/sysregisters/ESR_EL

 // ESR_EL[] - non-assignment form
 // ==============================

 ESRType ESR_EL[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = ESR_EL1;
 when EL2 r = ESR_EL2;
 when EL3 r = ESR_EL3;
 otherwise Unreachable();
 return r;

 // ESR_EL[] - assignment form
 // ==========================

 ESR_EL[bits(2) regime] = ESRType value
 bits(64) r = value;
 case regime of
 when EL1 ESR_EL1 = r;
 when EL2 ESR_EL2 = r;
 when EL3 ESR_EL3 = r;
 otherwise Unreachable();
 return;

aarch64/functions/sysregisters/ESR_ELx

 // ESR_ELx[] - non-assignment form
 // ===============================

 ESRType ESR_ELx[]
 return ESR_EL[S1TranslationRegime()];

 // ESR_ELx[] - assignment form
 // ===========================

 ESR_ELx[] = ESRType value
 ESR_EL[S1TranslationRegime()] = value;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13916
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sysregisters/FAR_EL

 // FAR_EL[] - non-assignment form
 // ==============================

 bits(64) FAR_EL[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = FAR_EL1;
 when EL2 r = FAR_EL2;
 when EL3 r = FAR_EL3;
 otherwise Unreachable();
 return r;

 // FAR_EL[] - assignment form
 // ==========================

 FAR_EL[bits(2) regime] = bits(64) value
 bits(64) r = value;
 case regime of
 when EL1 FAR_EL1 = r;
 when EL2 FAR_EL2 = r;
 when EL3 FAR_EL3 = r;
 otherwise Unreachable();
 return;

aarch64/functions/sysregisters/FAR_ELx

 // FAR_ELx[] - non-assignment form
 // ===============================

 bits(64) FAR_ELx[]
 return FAR_EL[S1TranslationRegime()];

 // FAR_ELx[] - assignment form
 // ===========================

 FAR_ELx[] = bits(64) value
 FAR_EL[S1TranslationRegime()] = value;
 return;

aarch64/functions/sysregisters/PFAR_EL

 // PFAR_EL[] - non-assignment form
 // ===============================

 bits(64) PFAR_EL[bits(2) regime]
 assert (IsFeatureImplemented(FEAT_PFAR) || (regime == EL3 && IsFeatureImplemented(FEAT_RME)));
 bits(64) r;
 case regime of
 when EL1 r = PFAR_EL1;
 when EL2 r = PFAR_EL2;
 when EL3 r = MFAR_EL3;
 otherwise Unreachable();
 return r;

 // PFAR_EL[] - assignment form
 // ===========================

 PFAR_EL[bits(2) regime] = bits(64) value
 bits(64) r = value;
 assert (IsFeatureImplemented(FEAT_PFAR) || (IsFeatureImplemented(FEAT_RME) && regime == EL3));
 case regime of
 when EL1 PFAR_EL1 = r;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13917
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when EL2 PFAR_EL2 = r;
 when EL3 MFAR_EL3 = r;
 otherwise Unreachable();
 return;

aarch64/functions/sysregisters/PFAR_ELx

 // PFAR_ELx[] - non-assignment form
 // ================================

 bits(64) PFAR_ELx[]
 return PFAR_EL[S1TranslationRegime()];

 // PFAR_ELx[] - assignment form
 // ============================

 PFAR_ELx[] = bits(64) value
 PFAR_EL[S1TranslationRegime()] = value;
 return;

aarch64/functions/sysregisters/S1PIRType

 type S1PIRType;

aarch64/functions/sysregisters/S1PORType

 type S1PORType;

aarch64/functions/sysregisters/S2PIRType

 type S2PIRType;

aarch64/functions/sysregisters/S2PORType

 type S2PORType;

aarch64/functions/sysregisters/SCTLRType

 type SCTLRType;

aarch64/functions/sysregisters/SCTLR_EL

 // SCTLR_EL[] - non-assignment form
 // ================================

 SCTLRType SCTLR_EL[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = SCTLR_EL1;
 when EL2 r = SCTLR_EL2;
 when EL3 r = SCTLR_EL3;
 otherwise Unreachable();
 return r;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13918
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/sysregisters/SCTLR_ELx

 // SCTLR_ELx[] - non-assignment form
 // =================================

 SCTLRType SCTLR_ELx[]
 return SCTLR_EL[S1TranslationRegime()];

aarch64/functions/sysregisters/VBAR_EL

 // VBAR_EL[] - non-assignment form
 // ===============================

 bits(64) VBAR_EL[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = VBAR_EL1;
 when EL2 r = VBAR_EL2;
 when EL3 r = VBAR_EL3;
 otherwise Unreachable();
 return r;

aarch64/functions/sysregisters/VBAR_ELx

 // VBAR_ELx[] - non-assignment form
 // ================================

 bits(64) VBAR_ELx[]
 return VBAR_EL[S1TranslationRegime()];

aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled

 // AArch64.AllocationTagAccessIsEnabled()
 // ======================================
 // Check whether access to Allocation Tags is enabled.

 boolean AArch64.AllocationTagAccessIsEnabled(bits(2) el)
 if SCR_EL3.ATA == '0' && el IN {EL0, EL1, EL2} then
 return FALSE;
 if HCR_EL2.ATA == '0' && el IN {EL0, EL1} && EL2Enabled() && !ELIsInHost(EL0) then
 return FALSE;

 Regime regime = TranslationRegime(el);
 case regime of
 when Regime_EL3 return SCTLR_EL3.ATA == '1';
 when Regime_EL2 return SCTLR_EL2.ATA == '1';
 when Regime_EL20 return if el == EL0 then SCTLR_EL2.ATA0 == '1' else SCTLR_EL2.ATA == '1';
 when Regime_EL10 return if el == EL0 then SCTLR_EL1.ATA0 == '1' else SCTLR_EL1.ATA == '1';
 otherwise Unreachable();

aarch64/functions/system/AArch64.CheckDAIFAccess

 // AArch64.CheckDAIFAccess()
 // =========================
 // Check that an AArch64 MSR/MRS access to the DAIF flags is permitted.

 AArch64.CheckDAIFAccess(PSTATEField field)
 if PSTATE.EL == EL0 && field IN {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then
 if IsInHost() || SCTLR_EL1.UMA == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13919
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 AArch64.SystemAccessTrap(EL1, 0x18);

aarch64/functions/system/AArch64.CheckSystemAccess

 // AArch64.CheckSystemAccess()
 // ===========================

 AArch64.CheckSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn,
 bits(4) crm, bits(3) op2, bits(5) rt, bit read)
 if IsFeatureImplemented(FEAT_BTI) then
 BranchTargetCheck();

 if (IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 &&
 !CheckTransactionalSystemAccess(op0, op1, crn, crm, op2, read)) then
 FailTransaction(TMFailure_ERR, FALSE);

 return;

aarch64/functions/system/AArch64.ChooseNonExcludedTag

 // AArch64.ChooseNonExcludedTag()
 // ==============================
 // Return a tag derived from the start and the offset values, excluding
 // any tags in the given mask.

 bits(4) AArch64.ChooseNonExcludedTag(bits(4) tag_in, bits(4) offset_in, bits(16) exclude)
 bits(4) tag = tag_in;
 bits(4) offset = offset_in;

 if IsOnes(exclude) then
 return '0000';

 if offset == '0000' then
 while exclude<UInt(tag)> == '1' do
 tag = tag + '0001';

 while offset != '0000' do
 offset = offset - '0001';
 tag = tag + '0001';
 while exclude<UInt(tag)> == '1' do
 tag = tag + '0001';

 return tag;

aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr

 // AArch64.ExecutingBROrBLROrRetInstr()
 // ====================================
 // Returns TRUE if current instruction is a BR, BLR, RET, B[L]RA[B][Z], or RETA[B].

 boolean AArch64.ExecutingBROrBLROrRetInstr()
 if !IsFeatureImplemented(FEAT_BTI) then return FALSE;

 instr = ThisInstr();
 if instr<31:25> == '1101011' && instr<20:16> == '11111' then
 opc = instr<24:21>;
 return opc != '0101';
 else
 return FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13920
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/system/AArch64.ExecutingBTIInstr

 // AArch64.ExecutingBTIInstr()
 // ===========================
 // Returns TRUE if current instruction is a BTI.

 boolean AArch64.ExecutingBTIInstr()
 if !IsFeatureImplemented(FEAT_BTI) then return FALSE;

 instr = ThisInstr();
 if instr<31:22> == '1101010100' && instr<21:12> == '0000110010' && instr<4:0> == '11111' then
 CRm = instr<11:8>;
 op2 = instr<7:5>;
 return (CRm == '0100' && op2<0> == '0');
 else
 return FALSE;

aarch64/functions/system/AArch64.ExecutingERETInstr

 // AArch64.ExecutingERETInstr()
 // ============================
 // Returns TRUE if current instruction is ERET.

 boolean AArch64.ExecutingERETInstr()
 instr = ThisInstr();
 return instr<31:12> == '11010110100111110000';

aarch64/functions/system/AArch64.ImpDefSysInstr

 // AArch64.ImpDefSysInstr()
 // ========================
 // Execute an implementation-defined system instruction with write (source operand).

 AArch64.ImpDefSysInstr(integer el, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2, integer t);

aarch64/functions/system/AArch64.ImpDefSysInstr128

 // AArch64.ImpDefSysInstr128()
 // ===========================
 // Execute an implementation-defined system instruction with write (128-bit source operand).

 AArch64.ImpDefSysInstr128(integer el, bits(3) op1, bits(4) CRn,
 bits(4) CRm, bits(3) op2,
 integer t, integer t2);

aarch64/functions/system/AArch64.ImpDefSysInstrWithResult

 // AArch64.ImpDefSysInstrWithResult()
 // ==================================
 // Execute an implementation-defined system instruction with read (result operand).

 AArch64.ImpDefSysInstrWithResult(integer el, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2);

aarch64/functions/system/AArch64.ImpDefSysRegRead

 // AArch64.ImpDefSysRegRead()
 // ==========================
 // Read from an implementation-defined System register and write the contents of the register
 // to X[t].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13921
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 AArch64.ImpDefSysRegRead(bits(2) op0, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2,
 integer t);

aarch64/functions/system/AArch64.ImpDefSysRegRead128

 // AArch64.ImpDefSysRegRead128()
 // =============================
 // Read from an 128-bit implementation-defined System register
 // and write the contents of the register to X[t], X[t+1].

 AArch64.ImpDefSysRegRead128(bits(2) op0, bits(3) op1, bits(4) CRn,
 bits(4) CRm, bits(3) op2,
 integer t, integer t2);

aarch64/functions/system/AArch64.ImpDefSysRegWrite

 // AArch64.ImpDefSysRegWrite()
 // ===========================
 // Write to an implementation-defined System register.

 AArch64.ImpDefSysRegWrite(bits(2) op0, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2,
 integer t);

aarch64/functions/system/AArch64.ImpDefSysRegWrite128

 // AArch64.ImpDefSysRegWrite128()
 // ==============================
 // Write the contents of X[t], X[t+1] to an 128-bit implementation-defined System register.

 AArch64.ImpDefSysRegWrite128(bits(2) op0, bits(3) op1, bits(4) CRn,
 bits(4) CRm, bits(3) op2,
 integer t, integer t2);

aarch64/functions/system/AArch64.NextRandomTagBit

 // AArch64.NextRandomTagBit()
 // ==========================
 // Generate a random bit suitable for generating a random Allocation Tag.

 bit AArch64.NextRandomTagBit()
 assert GCR_EL1.RRND == '0';
 bits(16) lfsr = RGSR_EL1.SEED<15:0>;
 bit top = lfsr<5> EOR lfsr<3> EOR lfsr<2> EOR lfsr<0>;
 RGSR_EL1.SEED<15:0> = top:lfsr<15:1>;
 return top;

aarch64/functions/system/AArch64.RandomTag

 // AArch64.RandomTag()
 // ===================
 // Generate a random Allocation Tag.

 bits(4) AArch64.RandomTag()
 bits(4) tag;
 for i = 0 to 3
 tag<i> = AArch64.NextRandomTagBit();
 return tag;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13922
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/system/AArch64.SysInstr

 // AArch64.SysInstr()
 // ==================
 // Execute a system instruction with write (source operand).

 AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, integer t);

aarch64/functions/system/AArch64.SysInstrWithResult

 // AArch64.SysInstrWithResult()
 // ============================
 // Execute a system instruction with read (result operand).
 // Writes the result of the instruction to X[t].

 AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2,
 integer t);

aarch64/functions/system/AArch64.SysRegRead

 // AArch64.SysRegRead()
 // ====================
 // Read from a System register and write the contents of the register to X[t].

 AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crm, integer op2, integer t);

aarch64/functions/system/AArch64.SysRegWrite

 // AArch64.SysRegWrite()
 // =====================
 // Write to a System register.

 AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, integer t);

aarch64/functions/system/BTypeCompatible

 boolean BTypeCompatible;

aarch64/functions/system/BTypeCompatible_BTI

 // BTypeCompatible_BTI
 // ===================
 // This function determines whether a given hint encoding is compatible with the current value of
 // PSTATE.BTYPE. A value of TRUE here indicates a valid Branch Target Identification instruction.

 boolean BTypeCompatible_BTI(bits(2) hintcode)
 case hintcode of
 when '00'
 return FALSE;
 when '01'
 return PSTATE.BTYPE != '11';
 when '10'
 return PSTATE.BTYPE != '10';
 when '11'
 return TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13923
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/system/BTypeCompatible_PACIXSP

 // BTypeCompatible_PACIXSP()
 // =========================
 // Returns TRUE if PACIASP, PACIBSP instruction is implicit compatible with PSTATE.BTYPE,
 // FALSE otherwise.

 boolean BTypeCompatible_PACIXSP()
 if PSTATE.BTYPE IN {'01', '10'} then
 return TRUE;
 elsif PSTATE.BTYPE == '11' then
 index = if PSTATE.EL == EL0 then 35 else 36;
 return SCTLR_ELx[]<index> == '0';
 else
 return FALSE;

aarch64/functions/system/BTypeNext

 bits(2) BTypeNext;

aarch64/functions/system/ChooseRandomNonExcludedTag

 // ChooseRandomNonExcludedTag()
 // ============================
 // The ChooseRandomNonExcludedTag function is used when GCR_EL1.RRND == '1' to generate random
 // Allocation Tags.
 //
 // The resulting Allocation Tag is selected from the set [0,15], excluding any Allocation Tag where
 // exclude[tag_value] == 1. If 'exclude' is all Ones, the returned Allocation Tag is '0000'.
 //
 // This function is permitted to generate a non-deterministic selection from the set of non-excluded
 // Allocation Tags. A reasonable implementation is described by the Pseudocode used when
 // GCR_EL1.RRND is 0, but with a non-deterministic implementation of NextRandomTagBit().
 // Implementations may choose to behave the same as GCR_EL1.RRND=0.
 //
 // This function can read RGSR_EL1 and/or write RGSR_EL1 to an IMPLEMENTATION DEFINED value.
 // If it is not capable of writing RGSR_EL1.SEED[15:0] to zero from a previous nonzero
 // RGSR_EL1.SEED value, it is IMPLEMENTATION DEFINED whether the randomness is significantly
 // impacted if RGSR_EL1.SEED[15:0] is set to zero.

 bits(4) ChooseRandomNonExcludedTag(bits(16) exclude_in);

aarch64/functions/system/InGuardedPage

 boolean InGuardedPage;

aarch64/functions/system/IsHCRXEL2Enabled

 // IsHCRXEL2Enabled()
 // ==================
 // Returns TRUE if access to HCRX_EL2 register is enabled, and FALSE otherwise.
 // Indirect read of HCRX_EL2 returns 0 when access is not enabled.

 boolean IsHCRXEL2Enabled()
 if !IsFeatureImplemented(FEAT_HCX) then return FALSE;
 if HaveEL(EL3) && SCR_EL3.HXEn == '0' then
 return FALSE;

 return EL2Enabled();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13924
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/system/IsSCTLR2EL1Enabled

 // IsSCTLR2EL1Enabled()
 // ====================
 // Returns TRUE if access to SCTLR2_EL1 register is enabled, and FALSE otherwise.
 // Indirect read of SCTLR2_EL1 returns 0 when access is not enabled.

 boolean IsSCTLR2EL1Enabled()
 if !IsFeatureImplemented(FEAT_SCTLR2) then return FALSE;
 if HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 return FALSE;
 elsif (EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.SCTLR2En == '0')) then
 return FALSE;
 else
 return TRUE;

aarch64/functions/system/IsSCTLR2EL2Enabled

 // IsSCTLR2EL2Enabled()
 // ====================
 // Returns TRUE if access to SCTLR2_EL2 register is enabled, and FALSE otherwise.
 // Indirect read of SCTLR2_EL2 returns 0 when access is not enabled.

 boolean IsSCTLR2EL2Enabled()
 if !IsFeatureImplemented(FEAT_SCTLR2) then return FALSE;
 if HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then
 return FALSE;

 return EL2Enabled();

aarch64/functions/system/IsTCR2EL1Enabled

 // IsTCR2EL1Enabled()
 // ==================
 // Returns TRUE if access to TCR2_EL1 register is enabled, and FALSE otherwise.
 // Indirect read of TCR2_EL1 returns 0 when access is not enabled.

 boolean IsTCR2EL1Enabled()
 if !IsFeatureImplemented(FEAT_TCR2) then return FALSE;
 if HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 return FALSE;
 elsif (EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.TCR2En == '0')) then
 return FALSE;
 else
 return TRUE;

aarch64/functions/system/IsTCR2EL2Enabled

 // IsTCR2EL2Enabled()
 // ==================
 // Returns TRUE if access to TCR2_EL2 register is enabled, and FALSE otherwise.
 // Indirect read of TCR2_EL2 returns 0 when access is not enabled.

 boolean IsTCR2EL2Enabled()
 if !IsFeatureImplemented(FEAT_TCR2) then return FALSE;
 if HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
 return FALSE;

 return EL2Enabled();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13925
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/system/SetBTypeCompatible

 // SetBTypeCompatible()
 // ====================
 // Sets the value of BTypeCompatible global variable used by BTI

 SetBTypeCompatible(boolean x)
 BTypeCompatible = x;

aarch64/functions/system/SetBTypeNext

 // SetBTypeNext()
 // ==============
 // Set the value of BTypeNext global variable used by BTI

 SetBTypeNext(bits(2) x)
 BTypeNext = x;

aarch64/functions/system/SetInGuardedPage

 // SetInGuardedPage()
 // ==================
 // Global state updated to denote if memory access is from a guarded page.

 SetInGuardedPage(boolean guardedpage)
 InGuardedPage = guardedpage;

aarch64/functions/system128/AArch64.SysInstr128

 // AArch64.SysInstr128()
 // =====================
 // Execute a system instruction with write (2 64-bit source operands).

 AArch64.SysInstr128(integer op0, integer op1, integer crn, integer crm,
 integer op2, integer t, integer t2);

aarch64/functions/system128/AArch64.SysRegRead128

 // AArch64.SysRegRead128()
 // =======================
 // Read from a 128-bit System register and write the contents of the register to X[t] and X[t2].

 AArch64.SysRegRead128(integer op0, integer op1, integer crn, integer crm,
 integer op2, integer t, integer t2);

aarch64/functions/system128/AArch64.SysRegWrite128

 // AArch64.SysRegWrite128()
 // ========================
 // Read the contents of X[t] and X[t2] and write the contents to a 128-bit System register.

 AArch64.SysRegWrite128(integer op0, integer op1, integer crn, integer crm,
 integer op2, integer t, integer t2);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13926
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/AArch64.TLBIP_IPAS2

 // AArch64.TLBIP_IPAS2()
 // =====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Xt.

 AArch64.TLBIP_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl = Xt<47:44>;
 r.address = ZeroExtend(Xt<107:64> : Zeros(12), 64);
 r.d64 = r.ttl IN {'00xx'};
 r.d128 = TRUE;

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
 when SS_Realm
 r.ipaspace = PAS_Realm;
 otherwise
 // Root security state does not have stage 2 translation
 Unreachable();

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBIP_RIPAS2

 // AArch64.TLBIP_RIPAS2()
 // ======================
 // Range invalidate by IPA all stage 2 only TLB entries in the indicated
 // shareability domain matching the indicated VMID in the indicated regime with the indicated
 // security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // The range of IPA and related parameters of the are derived from Xt.

 AArch64.TLBIP_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RIPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl<1:0> = Xt<38:37>;
 r.d64 = r.ttl<1:0> == '00';
 r.d128 = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13927
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIPRange(regime, Xt);

 if !valid then return;

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
 when SS_Realm
 r.ipaspace = PAS_Realm;
 otherwise
 // Root security state does not have stage 2 translation
 Unreachable();

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBIP_RVA

 // AArch64.TLBIP_RVA()
 // ===================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID and ASID (where regime
 // supports VMID, ASID) in the indicated regime with the indicated security state.
 // ASID, and range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBIP_RVA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;
 r.ttl<1:0> = Xt<38:37>;
 r.d64 = r.ttl<1:0> == '00';
 r.d128 = TRUE;

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIPRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13928
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/AArch64.TLBIP_RVAA

 // AArch64.TLBIP_RVAA()
 // ====================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID (where regimesupports VMID)
 // and all ASID in the indicated regime with the indicated security state.
 // VA range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBIP_RVAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl<1:0> = Xt<38:37>;
 r.d64 = r.ttl<1:0> == '00';
 r.d128 = TRUE;

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIPRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBIP_VA

 // AArch64.TLBIP_VA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBIP_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;
 r.ttl = Xt<47:44>;
 r.address = ZeroExtend(Xt<107:64> : Zeros(12), 64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13929
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 r.d64 = r.ttl IN {'00xx'};
 r.d128 = TRUE;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBIP_VAA

 // AArch64.TLBIP_VAA()
 // ===================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBIP_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl = Xt<47:44>;
 r.address = ZeroExtend(Xt<107:64> : Zeros(12), 64);
 r.d64 = r.ttl IN {'00xx'};
 r.d128 = TRUE;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_ALL

 // AArch64.TLBI_ALL()
 // ==================
 // Invalidate all entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.

 AArch64.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_ALL;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13930
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/AArch64.TLBI_ASID

 // AArch64.TLBI_ASID()
 // ===================
 // Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Xt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_ASID;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Xt<63:48>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_IPAS2

 // AArch64.TLBI_IPAS2()
 // ====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Xt.

 AArch64.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl = Xt<47:44>;
 r.address = ZeroExtend(Xt<39:0> : Zeros(12), 64);
 r.d64 = TRUE;
 r.d128 = r.ttl IN {'00xx'};

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
 when SS_Realm
 r.ipaspace = PAS_Realm;
 otherwise
 // Root security state does not have stage 2 translation
 Unreachable();

 TLBI(r);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13931
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_PAALL

 // AArch64.TLBI_PAALL()
 // ====================
 // TLB Invalidate ALL GPT Information.
 // Invalidates cached copies of GPT entries from TLBs in the indicated
 // Shareabilty domain.
 // The invalidation applies to all TLB entries containing GPT information.

 AArch64.TLBI_PAALL(Shareability shareability)
 assert IsFeatureImplemented(FEAT_RME) && PSTATE.EL == EL3;

 TLBIRecord r;

 // r.security and r.regime do not apply for TLBI by PA operations
 r.op = TLBIOp_PAALL;
 r.level = TLBILevel_Any;
 r.attr = TLBI_AllAttr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);

 return;

aarch64/functions/tlbi/AArch64.TLBI_RIPAS2

 // AArch64.TLBI_RIPAS2()
 // =====================
 // Range invalidate by IPA all stage 2 only TLB entries in the indicated
 // shareability domain matching the indicated VMID in the indicated regime with the indicated
 // security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // The range of IPA and related parameters of the are derived from Xt.

 AArch64.TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RIPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl<1:0> = Xt<38:37>;
 r.d64 = TRUE;
 r.d128 = r.ttl<1:0> == '00';

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13932
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
 when SS_Realm
 r.ipaspace = PAS_Realm;
 otherwise
 // Root security state does not have stage 2 translation
 Unreachable();

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_RPA

 // AArch64.TLBI_RPA()
 // ==================
 // TLB Range Invalidate GPT Information by PA.
 // Invalidates cached copies of GPT entries from TLBs in the indicated
 // Shareabilty domain.
 // The invalidation applies to TLB entries containing GPT information relating
 // to the indicated physical address range.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries containing GPT information
 // from all levels of the GPT walk
 // TLBILevel_Last : this applies to TLB entries containing GPT information
 // from the last level of the GPT walk

 AArch64.TLBI_RPA(TLBILevel level, bits(64) Xt, Shareability shareability)
 assert IsFeatureImplemented(FEAT_RME) && PSTATE.EL == EL3;

 TLBIRecord r;
 integer range_bits;
 integer p;

 // r.security and r.regime do not apply for TLBI by PA operations
 r.op = TLBIOp_RPA;
 r.level = level;
 r.attr = TLBI_AllAttr;

 // SIZE field
 case Xt<47:44> of
 when '0000' range_bits = 12; // 4KB
 when '0001' range_bits = 14; // 16KB
 when '0010' range_bits = 16; // 64KB
 when '0011' range_bits = 21; // 2MB
 when '0100' range_bits = 25; // 32MB
 when '0101' range_bits = 29; // 512MB
 when '0110' range_bits = 30; // 1GB
 when '0111' range_bits = 34; // 16GB
 when '1000' range_bits = 36; // 64GB
 when '1001' range_bits = 39; // 512GB
 otherwise range_bits = 0; // Reserved encoding

 // If SIZE selects a range smaller than PGS, then PGS is used instead
 case DecodePGS(GPCCR_EL3.PGS) of
 when PGS_4KB p = 12;
 when PGS_16KB p = 14;
 when PGS_64KB p = 16;

 if range_bits < p then
 range_bits = p;

 bits(52) BaseADDR = Zeros(52);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13933
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 case GPCCR_EL3.PGS of
 when '00' BaseADDR<51:12> = Xt<39:0>; // 4KB
 when '10' BaseADDR<51:14> = Xt<39:2>; // 16KB
 when '01' BaseADDR<51:16> = Xt<39:4>; // 64KB

 // The calculation here automatically aligns BaseADDR to the size of
 // the region specififed in SIZE. However, the architecture does not
 // require this alignment and if BaseADDR is not aligned to the region
 // specified by SIZE then no entries are required to be invalidated.
 bits(52) start_addr = BaseADDR AND NOT ZeroExtend(Ones(range_bits), 52);
 bits(52) end_addr = start_addr + ZeroExtend(Ones(range_bits), 52);

 // PASpace is not considered in TLBI by PA operations
 r.address = ZeroExtend(start_addr, 64);
 r.end_address = ZeroExtend(end_addr, 64);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);

aarch64/functions/tlbi/AArch64.TLBI_RVA

 // AArch64.TLBI_RVA()
 // ==================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID and ASID (where regime
 // supports VMID, ASID) in the indicated regime with the indicated security state.
 // ASID, and range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;
 r.ttl<1:0> = Xt<38:37>;
 r.d64 = TRUE;
 r.d128 = r.ttl<1:0> == '00';

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_RVAA

 // AArch64.TLBI_RVAA()
 // ===================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID (where regimesupports VMID)
 // and all ASID in the indicated regime with the indicated security state.
 // VA range related parameters are derived from Xt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13934
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl<1:0> = Xt<38:37>;
 r.d64 = TRUE;
 r.d128 = r.ttl<1:0> == '00';

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_VA

 // AArch64.TLBI_VA()
 // =================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;
 r.ttl = Xt<47:44>;
 r.address = ZeroExtend(Xt<43:0> : Zeros(12), 64);
 r.d64 = TRUE;
 r.d128 = r.ttl IN {'00xx'};

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13935
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/AArch64.TLBI_VAA

 // AArch64.TLBI_VAA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch64.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.ttl = Xt<47:44>;
 r.address = ZeroExtend(Xt<43:0> : Zeros(12), 64);
 r.d64 = TRUE;
 r.d128 = r.ttl IN {'00xx'};

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_VMALL

 // AArch64.TLBI_VMALL()
 // ====================
 // Invalidate all stage 1 entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability
 // domain that match the indicated VMID (where applicable).
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // Note: stage 2 only entries are not in the scope of this operation.

 AArch64.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VMALL;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/AArch64.TLBI_VMALLS12

 // AArch64.TLBI_VMALLS12()
 // =======================
 // Invalidate all stage 1 and stage 2 entries for the indicated translation
 // regime with the indicated security state for all TLBs within the indicated
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13936
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // shareability domain that match the indicated VMID.

 AArch64.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_VMALLS12;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/functions/tlbi/ASID_NONE

 constant bits(16) ASID_NONE = Zeros(16);

aarch64/functions/tlbi/Broadcast

 // Broadcast()
 // ===========
 // IMPLEMENTATION DEFINED function to broadcast TLBI operation within the indicated shareability
 // domain.

 Broadcast(Shareability shareability, TLBIRecord r)
 IMPLEMENTATION_DEFINED;

aarch64/functions/tlbi/DecodeTLBITG

 // DecodeTLBITG()
 // ==============
 // Decode translation granule size in TLBI range instructions

 TGx DecodeTLBITG(bits(2) tg)
 case tg of
 when '01' return TGx_4KB;
 when '10' return TGx_16KB;
 when '11' return TGx_64KB;

aarch64/functions/tlbi/GPTTLBIMatch

 // GPTTLBIMatch()
 // ==============
 // Determine whether the GPT TLB entry lies within the scope of invalidation

 boolean GPTTLBIMatch(TLBIRecord tlbi, GPTEntry gpt_entry)
 assert tlbi.op IN {TLBIOp_RPA, TLBIOp_PAALL};

 boolean match;
 bits(64) entry_size_mask = ZeroExtend(Ones(gpt_entry.size), 64);
 bits(64) entry_end_address = ZeroExtend(gpt_entry.pa<55:0> OR entry_size_mask<55:0>, 64);
 bits(64) entry_start_address = ZeroExtend(gpt_entry.pa<55:0> AND NOT entry_size_mask<55:0>, 64);

 case tlbi.op of
 when TLBIOp_RPA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13937
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 match = (UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
 UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>) &&
 (tlbi.level == TLBILevel_Any || gpt_entry.level == 1));
 when TLBIOp_PAALL
 match = TRUE;

 return match;

aarch64/functions/tlbi/HasLargeAddress

 // HasLargeAddress()
 // =================
 // Returns TRUE if the regime is configured for 52 bit addresses, FALSE otherwise.

 boolean HasLargeAddress(Regime regime)
 if !IsFeatureImplemented(FEAT_LPA2) then
 return FALSE;
 case regime of
 when Regime_EL3
 return TCR_EL3<32> == '1';
 when Regime_EL2
 return TCR_EL2<32> == '1';
 when Regime_EL20
 return TCR_EL2<59> == '1';
 when Regime_EL10
 return TCR_EL1<59> == '1';
 otherwise
 Unreachable();

aarch64/functions/tlbi/ResTLBIRTTL

 // ResTLBIRTTL()
 // =============
 // Determine whether the TTL field in TLBI instructions that do apply
 // to a range of addresses contains a reserved value

 boolean ResTLBIRTTL(bits(2) tg, bits(2) ttl)
 case ttl of
 when '00' return TRUE;
 when '01' return DecodeTLBITG(tg) == TGx_16KB && !IsFeatureImplemented(FEAT_LPA2);
 otherwise return FALSE;

aarch64/functions/tlbi/ResTLBITTL

 // ResTLBITTL()
 // ============
 // Determine whether the TTL field in TLBI instructions that do not apply
 // to a range of addresses contains a reserved value

 boolean ResTLBITTL(bits(4) ttl)
 case ttl of
 when '00xx' return TRUE;
 when '0100' return !IsFeatureImplemented(FEAT_LPA2);
 when '1000' return TRUE;
 when '1001' return !IsFeatureImplemented(FEAT_LPA2);
 when '1100' return TRUE;
 otherwise return FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13938
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/TGBits

 // TGBits()
 // ========
 // Return the number of bits required for a Tag Granule.

 integer TGBits(bits(2) tg)
 case tg of
 when '01' return 12; // 4KB
 when '10' return 14; // 16KB
 when '11' return 16; // 64KB
 otherwise
 Unreachable();

aarch64/functions/tlbi/TLBI

 // TLBI()
 // ======
 // Invalidates TLB entries for which TLBIMatch() returns TRUE.

 TLBI(TLBIRecord r)
 IMPLEMENTATION_DEFINED;

aarch64/functions/tlbi/TLBILevel

 // TLBILevel
 // =========

 enumeration TLBILevel {
 TLBILevel_Any, // this applies to TLB entries at all levels
 TLBILevel_Last // this applies to TLB entries at last level only
 };

aarch64/functions/tlbi/TLBIMatch

 // TLBIMatch()
 // ===========
 // Determine whether the TLB entry lies within the scope of invalidation

 boolean TLBIMatch(TLBIRecord tlbi, TLBRecord tlb_entry)
 boolean match;
 bits(64) entry_block_mask = ZeroExtend(Ones(tlb_entry.blocksize), 64);
 bits(64) entry_end_address = tlb_entry.context.ia OR entry_block_mask;
 bits(64) entry_start_address = tlb_entry.context.ia AND NOT entry_block_mask;
 case tlbi.op of
 when TLBIOp_DALL, TLBIOp_IALL
 match = (tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime);
 when TLBIOp_DASID, TLBIOp_IASID
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 (UseASID(tlb_entry.context) && tlb_entry.context.nG == '1' &&
 tlbi.asid == tlb_entry.context.asid));
 when TLBIOp_DVA, TLBIOp_IVA
 boolean regime_match;
 boolean context_match;
 boolean address_match;
 boolean level_match;
 regime_match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13939
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 context_match = ((!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 (!UseASID(tlb_entry.context) || tlbi.asid == tlb_entry.context.asid ||
 tlb_entry.context.nG == '0'));
 constant integer addr_lsb = tlb_entry.blocksize;
 address_match = tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb>;
 level_match = (tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable);
 match = regime_match && context_match && address_match && level_match;
 when TLBIOp_ALL
 relax_regime = (tlbi.from_aarch64 &&
 tlbi.regime IN {Regime_EL20, Regime_EL2} &&
 tlb_entry.context.regime IN {Regime_EL20, Regime_EL2});
 match = (tlbi.security == tlb_entry.context.ss &&
 (tlbi.regime == tlb_entry.context.regime || relax_regime));
 when TLBIOp_ASID
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 (UseASID(tlb_entry.context) && tlb_entry.context.nG == '1' &&
 tlbi.asid == tlb_entry.context.asid));
 when TLBIOp_IPAS2, TLBIPOp_IPAS2
 constant integer addr_lsb = tlb_entry.blocksize;
 match = (!tlb_entry.context.includes_s1 && tlb_entry.context.includes_s2 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 tlbi.ipaspace == tlb_entry.context.ipaspace &&
 tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb> &&
 (!tlbi.from_aarch64 || ResTLBITTL(tlbi.ttl) || (
 DecodeTLBITG(tlbi.ttl<3:2>) == tlb_entry.context.tg &&
 UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level)
) &&
 ((tlbi.d128 && tlb_entry.context.isd128) ||
 (tlbi.d64 && !tlb_entry.context.isd128) ||
 (tlbi.d64 && tlbi.d128)) &&
 (tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable));
 when TLBIOp_VAA, TLBIPOp_VAA
 constant integer addr_lsb = tlb_entry.blocksize;
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb> &&
 (!tlbi.from_aarch64 || ResTLBITTL(tlbi.ttl) || (
 DecodeTLBITG(tlbi.ttl<3:2>) == tlb_entry.context.tg &&
 UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level)
) &&
 ((tlbi.d128 && tlb_entry.context.isd128) ||
 (tlbi.d64 && !tlb_entry.context.isd128) ||
 (tlbi.d64 && tlbi.d128)) &&
 (tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable));
 when TLBIOp_VA, TLBIPOp_VA
 constant integer addr_lsb = tlb_entry.blocksize;
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 (!UseASID(tlb_entry.context) || tlbi.asid == tlb_entry.context.asid ||
 tlb_entry.context.nG == '0') &&
 tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb> &&
 (!tlbi.from_aarch64 || ResTLBITTL(tlbi.ttl) || (
 DecodeTLBITG(tlbi.ttl<3:2>) == tlb_entry.context.tg &&
 UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level)
) &&
 ((tlbi.d128 && tlb_entry.context.isd128) ||
 (tlbi.d64 && !tlb_entry.context.isd128) ||
 (tlbi.d64 && tlbi.d128)) &&
 (tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable));
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13940
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when TLBIOp_VMALL
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid));
 when TLBIOp_VMALLS12
 match = (tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid));
 when TLBIOp_RIPAS2, TLBIPOp_RIPAS2
 match = (!tlb_entry.context.includes_s1 && tlb_entry.context.includes_s2 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 tlbi.ipaspace == tlb_entry.context.ipaspace &&
 (tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == tlb_entry.context.tg) &&
 (!tlbi.from_aarch64 || ResTLBIRTTL(tlbi.tg, tlbi.ttl<1:0>) ||
 UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level) &&
 ((tlbi.d128 && tlb_entry.context.isd128) ||
 (tlbi.d64 && !tlb_entry.context.isd128) ||
 (tlbi.d64 && tlbi.d128)) &&
 UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
 UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));
 when TLBIOp_RVAA, TLBIPOp_RVAA
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 (tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == tlb_entry.context.tg) &&
 (!tlbi.from_aarch64 || ResTLBIRTTL(tlbi.tg, tlbi.ttl<1:0>) ||
 UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level) &&
 ((tlbi.d128 && tlb_entry.context.isd128) ||
 (tlbi.d64 && !tlb_entry.context.isd128) ||
 (tlbi.d64 && tlbi.d128)) &&
 UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
 UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));
 when TLBIOp_RVA, TLBIPOp_RVA
 match = (tlb_entry.context.includes_s1 &&
 tlbi.security == tlb_entry.context.ss &&
 tlbi.regime == tlb_entry.context.regime &&
 (!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
 (!UseASID(tlb_entry.context) || tlbi.asid == tlb_entry.context.asid ||
 tlb_entry.context.nG == '0') &&
 (tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == tlb_entry.context.tg) &&
 (!tlbi.from_aarch64 || ResTLBIRTTL(tlbi.tg, tlbi.ttl<1:0>) ||
 UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level) &&
 ((tlbi.d128 && tlb_entry.context.isd128) ||
 (tlbi.d64 && !tlb_entry.context.isd128) ||
 (tlbi.d64 && tlbi.d128)) &&
 UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
 UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));
 when TLBIOp_RPA
 entry_end_address<55:0> = (tlb_entry.walkstate.baseaddress.address<55:0> OR
 entry_block_mask<55:0>);
 entry_start_address<55:0> = (tlb_entry.walkstate.baseaddress.address<55:0> AND
 NOT entry_block_mask<55:0>);
 match = (tlb_entry.context.includes_gpt &&
 UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
 UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));
 when TLBIOp_PAALL
 match = tlb_entry.context.includes_gpt;

 if tlbi.attr == TLBI_ExcludeXS && tlb_entry.context.xs == '1' then
 match = FALSE;

 return match;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13941
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/TLBIMemAttr

 // TLBIMemAttr
 // ===========
 // Defines the attributes of the memory operations that must be completed in
 // order to deem the TLBI operation as completed.

 enumeration TLBIMemAttr {
 TLBI_AllAttr, // All TLB entries within the scope of the invalidation
 TLBI_ExcludeXS // Only TLB entries with XS=0 within the scope of the invalidation
 };

aarch64/functions/tlbi/TLBIOp

 // TLBIOp
 // ======

 enumeration TLBIOp {
 TLBIOp_DALL, // AArch32 Data TLBI operations - deprecated
 TLBIOp_DASID,
 TLBIOp_DVA,
 TLBIOp_IALL, // AArch32 Instruction TLBI operations - deprecated
 TLBIOp_IASID,
 TLBIOp_IVA,
 TLBIOp_ALL,
 TLBIOp_ASID,
 TLBIOp_IPAS2,
 TLBIPOp_IPAS2,
 TLBIOp_VAA,
 TLBIOp_VA,
 TLBIPOp_VAA,
 TLBIPOp_VA,
 TLBIOp_VMALL,
 TLBIOp_VMALLS12,
 TLBIOp_RIPAS2,
 TLBIPOp_RIPAS2,
 TLBIOp_RVAA,
 TLBIOp_RVA,
 TLBIPOp_RVAA,
 TLBIPOp_RVA,
 TLBIOp_RPA,
 TLBIOp_PAALL,
 };

aarch64/functions/tlbi/TLBIPRange

 // TLBIPRange()
 // ============
 // Extract the input address range information from encoded Xt.

 (boolean, bits(2), bits(64), bits(64)) TLBIPRange(Regime regime, bits(128) Xt)
 boolean valid = TRUE;
 bits(64) start_address = Zeros(64);
 bits(64) end_address = Zeros(64);

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);

 if tg == '00' then
 return (FALSE, tg, start_address, end_address);

 constant integer tg_bits = TGBits(tg);
 start_address<55:tg_bits> = Xt<107:64+(tg_bits-12)>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13942
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if HasUnprivileged(regime) then
 start_address<63:56> = Replicate(Xt<107>, 8);
 else
 start_address<63:56> = Zeros(8);

 integer range = (num+1) << (5*scale + 1 + tg_bits);
 end_address = start_address + range<63:0>;

 if end_address<55> != start_address<55> then
 // overflow, saturate it
 end_address = Replicate(start_address<55>, 64-55) : Ones(55);

 return (valid, tg, start_address, end_address);

aarch64/functions/tlbi/TLBIRange

 // TLBIRange()
 // ===========
 // Extract the input address range information from encoded Xt.

 (boolean, bits(2), bits(64), bits(64)) TLBIRange(Regime regime, bits(64) Xt)
 boolean valid = TRUE;
 bits(64) start_address = Zeros(64);
 bits(64) end_address = Zeros(64);

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer tg_bits;

 if tg == '00' then
 return (FALSE, tg, start_address, end_address);

 case tg of
 when '01' // 4KB
 tg_bits = 12;
 if HasLargeAddress(regime) then
 start_address<52:16> = Xt<36:0>;
 start_address<63:53> = Replicate(Xt<36>, 11);
 else
 start_address<48:12> = Xt<36:0>;
 start_address<63:49> = Replicate(Xt<36>, 15);
 when '10' // 16KB
 tg_bits = 14;
 if HasLargeAddress(regime) then
 start_address<52:16> = Xt<36:0>;
 start_address<63:53> = Replicate(Xt<36>, 11);
 else
 start_address<50:14> = Xt<36:0>;
 start_address<63:51> = Replicate(Xt<36>, 13);
 when '11' // 64KB
 tg_bits = 16;
 start_address<52:16> = Xt<36:0>;
 start_address<63:53> = Replicate(Xt<36>, 11);
 otherwise
 Unreachable();

 integer range = (num+1) << (5*scale + 1 + tg_bits);
 end_address = start_address + range<63:0>;

 if end_address<52> != start_address<52> then
 // overflow, saturate it
 end_address = Replicate(start_address<52>, 64-52) : Ones(52);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13943
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return (valid, tg, start_address, end_address);

aarch64/functions/tlbi/TLBIRecord

 // TLBIRecord
 // ==========
 // Details related to a TLBI operation.

 type TLBIRecord is (
 TLBIOp op,
 boolean from_aarch64, // originated as an AArch64 operation
 SecurityState security,
 Regime regime,
 bits(16) vmid,
 bits(16) asid,
 TLBILevel level,
 TLBIMemAttr attr,
 PASpace ipaspace, // For operations that take IPA as input address
 bits(64) address, // input address, for range operations, start address
 bits(64) end_address, // for range operations, end address
 boolean d64, // For operations that evict VMSAv8-64 based TLB entries
 boolean d128, // For operations that evict VMSAv9-128 based TLB entries
 bits(4) ttl, // translation table walk level holding the leaf entry
 // for the address being invalidated
 // For Non-Range Invalidations:
 // When the ttl is
 // '00xx' : this applies to all TLB entries
 // Otherwise : TLBIP instructions invalidates D128 TLB
 // entries only
 // TLBI instructions invalidates D64 TLB
 // entries only
 // For Range Invalidations:
 // When the ttl is
 // '00' : this applies to all TLB entries
 // Otherwise : TLBIP instructions invalidates D128 TLB
 // entries only
 // TLBI instructions invalidates D64 TLB
 // entries only
 bits(2) tg // for range operations, translation granule
)

aarch64/functions/tlbi/VMID

 // VMID[]
 // ======
 // Effective VMID.

 bits(16) VMID[]
 if EL2Enabled() then
 if !ELUsingAArch32(EL2) then
 if IsFeatureImplemented(FEAT_VMID16) && VTCR_EL2.VS == '1' then
 return VTTBR_EL2.VMID;
 else
 return ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 else
 return ZeroExtend(VTTBR.VMID, 16);
 elsif HaveEL(EL2) && IsFeatureImplemented(FEAT_SEL2) then
 return Zeros(16);
 else
 return VMID_NONE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13944
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tlbi/VMID_NONE

 constant bits(16) VMID_NONE = Zeros(16);

aarch64/functions/tme/CheckTransactionalSystemAccess

 // CheckTransactionalSystemAccess()
 // ================================
 // Returns TRUE if an AArch64 MSR, MRS, or SYS instruction is permitted in
 // Transactional state, based on the opcode's encoding, and FALSE otherwise.

 boolean CheckTransactionalSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm,
 bits(3) op2, bit read)
 case read:op0:op1:crn:crm:op2 of
 when '0 00 011 0100 xxxx 11x' return TRUE; // MSR (imm): DAIFSet, DAIFClr
 when '0 01 011 0111 0100 001' return TRUE; // DC ZVA
 when '0 11 011 0100 0010 00x' return TRUE; // MSR: NZCV, DAIF
 when '0 11 011 0100 0100 00x' return TRUE; // MSR: FPCR, FPSR
 when '0 11 000 0100 0110 000' return TRUE; // MSR: ICC_PMR_EL1
 when '0 11 011 1001 1100 100' return TRUE; // MRS: PMSWINC_EL0
 when '1 11 011 0010 0101 001' // MRS: GCSPR_EL0, at EL0
 return PSTATE.EL == EL0;
 // MRS: GCSPR_EL1 at EL1 OR at EL2 when E2H is '1'
 when '1 11 000 0010 0101 001'
 return PSTATE.EL == EL1 || (PSTATE.EL == EL2 && IsInHost());
 when '1 11 100 0010 0101 001' // MRS: GCSPR_EL2, at EL2 when E2H is '0'
 return PSTATE.EL == EL2 && !IsInHost();
 when '1 11 110 0010 0101 001' // MRS: GCSPR_EL3, at EL3
 return PSTATE.EL == EL3;
 when '0 01 011 0111 0111 000' return TRUE; // GCSPUSHM
 when '1 01 011 0111 0111 001' return TRUE; // GCSPOPM
 when '0 01 011 0111 0111 010' return TRUE; // GCSSS1
 when '1 01 011 0111 0111 011' return TRUE; // GCSSS2
 when '0 01 000 0111 0111 110' return TRUE; // GCSPOPX
 when '1 11 101 0010 0101 001' return FALSE; // MRS: GCSPR_EL12
 when '1 11 000 0010 0101 010' return FALSE; // MRS: GCSCRE0_EL1
 when '1 11 000 0010 0101 000' return FALSE; // MRS: GCSCR_EL1
 when '1 11 101 0010 0101 000' return FALSE; // MRS: GCSCR_EL12
 when '1 11 100 0010 0101 000' return FALSE; // MRS: GCSCR_EL2
 when '1 11 110 0010 0101 000' return FALSE; // MRS: GCSCR_EL3
 when '1 11 xxx 0xxx xxxx xxx' return TRUE; // MRS: op0=3, CRn=0..7
 when '1 11 xxx 100x xxxx xxx' return TRUE; // MRS: op0=3, CRn=8..9
 when '1 11 xxx 1010 xxxx xxx' return TRUE; // MRS: op0=3, CRn=10
 when '1 11 000 1100 1x00 010' return TRUE; // MRS: op0=3, CRn=12 - ICC_HPPIRx_EL1
 when '1 11 000 1100 1011 011' return TRUE; // MRS: op0=3, CRn=12 - ICC_RPR_EL1
 when '1 11 xxx 1101 xxxx xxx' return TRUE; // MRS: op0=3, CRn=13
 when '1 11 xxx 1110 xxxx xxx' return TRUE; // MRS: op0=3, CRn=14
 when '0 01 011 0111 0011 111' return TRUE; // CPP RCTX
 when '0 01 011 0111 0011 10x' return TRUE; // CFP RCTX, DVP RCTX
 when 'x 11 xxx 1x11 xxxx xxx' // MRS: op0=3, CRn=11,15
 return (boolean IMPLEMENTATION_DEFINED
 "Accessibility of registers encoded with op0=0b11 and CRn=0b1x11 is allowed");
 otherwise return FALSE; // All other SYS, SYSL, MRS, MSR

aarch64/functions/tme/CommitTransactionalWrites

 // CommitTransactionalWrites()
 // ===========================
 // Makes all transactional writes to memory observable by other PEs and reset
 // the transactional read and write sets.

 CommitTransactionalWrites();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13945
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tme/DiscardTransactionalWrites

 // DiscardTransactionalWrites()
 // ============================
 // Discards all transactional writes to memory and reset the transactional
 // read and write sets.

 DiscardTransactionalWrites();

aarch64/functions/tme/FailTransaction

 // FailTransaction()
 // =================

 FailTransaction(TMFailure cause, boolean retry)
 FailTransaction(cause, retry, FALSE, Zeros(15));
 return;

 // FailTransaction()
 // =================
 // Exits Transactional state and discards transactional updates to registers
 // and memory.

 FailTransaction(TMFailure cause, boolean retry, boolean interrupt, bits(15) reason)
 assert !retry || !interrupt;

 if IsFeatureImplemented(FEAT_BRBE) && BranchRecordAllowed(PSTATE.EL) then
 BRBFCR_EL1.LASTFAILED = '1';

 DiscardTransactionalWrites();
 // For trivial implementation no transaction checkpoint was taken
 if cause != TMFailure_TRIVIAL then
 RestoreTransactionCheckpoint();
 ClearExclusiveLocal(ProcessorID());

 bits(64) result = Zeros(64);

 result<23> = if interrupt then '1' else '0';
 result<15> = if retry && !interrupt then '1' else '0';
 case cause of
 when TMFailure_TRIVIAL result<24> = '1';
 when TMFailure_DBG result<22> = '1';
 when TMFailure_NEST result<21> = '1';
 when TMFailure_SIZE result<20> = '1';
 when TMFailure_ERR result<19> = '1';
 when TMFailure_IMP result<18> = '1';
 when TMFailure_MEM result<17> = '1';
 when TMFailure_CNCL result<16> = '1'; result<14:0> = reason;

 TSTATE.depth = 0;
 X[TSTATE.Rt, 64] = result;
 boolean branch_conditional = FALSE;
 BranchTo(TSTATE.nPC, BranchType_TMFAIL, branch_conditional);
 EndOfInstruction();
 return;

aarch64/functions/tme/IsTMEEnabled

 // IsTMEEnabled()
 // ==============
 // Returns TRUE if access to TME instruction is enabled, FALSE otherwise.

 boolean IsTMEEnabled()
 if PSTATE.EL IN {EL0, EL1, EL2} && HaveEL(EL3) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13946
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if SCR_EL3.TME == '0' then
 return FALSE;
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if HCR_EL2.TME == '0' then
 return FALSE;
 return TRUE;

aarch64/functions/tme/MemHasTransactionalAccess

 // MemHasTransactionalAccess()
 // ===========================
 // Function checks if transactional accesses are not supported for an address
 // range or memory type.

 boolean MemHasTransactionalAccess(MemoryAttributes memattrs)
 if ((memattrs.shareability == Shareability_ISH ||
 memattrs.shareability == Shareability_OSH) &&
 memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.inner.hints == MemHint_RWA &&
 memattrs.inner.transient == FALSE &&
 memattrs.outer.hints == MemHint_RWA &&
 memattrs.outer.attrs == MemAttr_WB &&
 memattrs.outer.transient == FALSE) then
 return TRUE;
 else
 return boolean IMPLEMENTATION_DEFINED "Memory Region does not support Transactional access";

aarch64/functions/tme/RestoreTransactionCheckpoint

 // RestoreTransactionCheckpoint()
 // ==============================
 // Restores part of the PE registers from the transaction checkpoint.

 RestoreTransactionCheckpoint()
 SP[] = TSTATE.SP;
 ICC_PMR_EL1 = TSTATE.ICC_PMR_EL1;
 PSTATE.<N,Z,C,V> = TSTATE.nzcv;
 PSTATE.<D,A,I,F> = TSTATE.<D,A,I,F>;

 for n = 0 to 30
 X[n, 64] = TSTATE.X[n];

 if IsFPEnabled(PSTATE.EL) then
 if IsSVEEnabled(PSTATE.EL) then
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 for n = 0 to 31
 Z[n, VL] = TSTATE.Z[n]<VL-1:0>;
 for n = 0 to 15
 P[n, PL] = TSTATE.P[n]<PL-1:0>;
 FFR[PL] = TSTATE.FFR<PL-1:0>;
 else
 for n = 0 to 31
 V[n, 128] = TSTATE.Z[n]<127:0>;
 FPCR = TSTATE.FPCR;
 FPSR = TSTATE.FPSR;

 if IsFeatureImplemented(FEAT_GCS) then
 case PSTATE.EL of
 when EL0 GCSPR_EL0 = TSTATE.GCSPR_ELx;
 when EL1 GCSPR_EL1 = TSTATE.GCSPR_ELx;
 when EL2 GCSPR_EL2 = TSTATE.GCSPR_ELx;
 when EL3 GCSPR_EL3 = TSTATE.GCSPR_ELx;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13947
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return;

aarch64/functions/tme/StartTrackingTransactionalReadsWrites

 // StartTrackingTransactionalReadsWrites()
 // =======================================
 // Starts tracking transactional reads and writes to memory.

 StartTrackingTransactionalReadsWrites();

aarch64/functions/tme/TMFailure

 // TMFailure
 // =========
 // Transactional failure causes

 enumeration TMFailure {
 TMFailure_CNCL, // Executed a TCANCEL instruction
 TMFailure_DBG, // A debug event was generated
 TMFailure_ERR, // A non-permissible operation was attempted
 TMFailure_NEST, // The maximum transactional nesting level was exceeded
 TMFailure_SIZE, // The transactional read or write set limit was exceeded
 TMFailure_MEM, // A transactional conflict occurred
 TMFailure_TRIVIAL, // Only a TRIVIAL version of TM is available
 TMFailure_IMP // Any other failure cause
 };

aarch64/functions/tme/TMState

 // TMState
 // =======
 // Transactional execution state bits.
 // There is no significance to the field order.

 type TMState is (
 integer depth, // Transaction nesting depth
 integer Rt, // TSTART destination register
 bits(64) nPC, // Fallback instruction address
 array[0..30] of bits(64) X, // General purpose registers
 array[0..31] of bits(MAX_VL) Z, // Vector registers
 array[0..15] of bits(MAX_PL) P, // Predicate registers
 bits(MAX_PL) FFR, // First Fault Register
 bits(64) SP, // Stack Pointer at current EL
 bits(64) FPCR, // Floating-point Control Register
 bits(64) FPSR, // Floating-point Status Register
 bits(64) ICC_PMR_EL1, // Interrupt Controller Interrupt Priority Mask Register
 bits(64) GCSPR_ELx, // GCS pointer for current EL
 bits(4) nzcv, // Condition flags
 bits(1) D, // Debug mask bit
 bits(1) A, // SError interrupt mask bit
 bits(1) I, // IRQ mask bit
 bits(1) F // FIQ mask bit
)

aarch64/functions/tme/TSTATE

 TMState TSTATE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13948
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/tme/TakeTransactionCheckpoint

 // TakeTransactionCheckpoint()
 // ===========================
 // Captures part of the PE registers into the transaction checkpoint.

 TakeTransactionCheckpoint()
 TSTATE.SP = SP[];
 TSTATE.ICC_PMR_EL1 = ICC_PMR_EL1;
 TSTATE.nzcv = PSTATE.<N,Z,C,V>;
 TSTATE.<D,A,I,F> = PSTATE.<D,A,I,F>;

 for n = 0 to 30
 TSTATE.X[n] = X[n, 64];

 if IsFPEnabled(PSTATE.EL) then
 if IsSVEEnabled(PSTATE.EL) then
 constant integer VL = CurrentVL;
 constant integer PL = VL DIV 8;
 for n = 0 to 31
 TSTATE.Z[n]<VL-1:0> = Z[n, VL];
 for n = 0 to 15
 TSTATE.P[n]<PL-1:0> = P[n, PL];
 TSTATE.FFR<PL-1:0> = FFR[PL];
 else
 for n = 0 to 31
 TSTATE.Z[n]<127:0> = V[n, 128];
 TSTATE.FPCR = FPCR;
 TSTATE.FPSR = FPSR;

 if IsFeatureImplemented(FEAT_GCS) then
 case PSTATE.EL of
 when EL0 TSTATE.GCSPR_ELx = GCSPR_EL0;
 when EL1 TSTATE.GCSPR_ELx = GCSPR_EL1;
 when EL2 TSTATE.GCSPR_ELx = GCSPR_EL2;
 when EL3 TSTATE.GCSPR_ELx = GCSPR_EL3;

 return;

aarch64/functions/tme/TransactionStartTrap

 // TransactionStartTrap()
 // ======================
 // Traps the execution of TSTART instruction.

 TransactionStartTrap(integer dreg)
 bits(2) targetEL;
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 except = ExceptionSyndrome(Exception_TSTARTAccessTrap);
 except.syndrome<9:5> = dreg<4:0>;

 if UInt(PSTATE.EL) > UInt(EL1) then
 targetEL = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 targetEL = EL2;
 else
 targetEL = EL1;
 AArch64.TakeException(targetEL, except, preferred_exception_return, vect_offset);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13949
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/functions/vbitop/VBitOp

 // VBitOp
 // ======
 // Vector bit select instruction types.

 enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

J1.1.4 aarch64/translation

This section includes the following pseudocode functions:

• aarch64/translation/attrs/AArch64.MAIRAttr.

• aarch64/translation/debug/AArch64.CheckBreakpoint.

• aarch64/translation/debug/AArch64.CheckDebug.

• aarch64/translation/debug/AArch64.CheckWatchpoint.

• aarch64/translation/vmsa_addrcalc/AArch64.IASize.

• aarch64/translation/vmsa_addrcalc/AArch64.LeafBase.

• aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase.

• aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize.

• aarch64/translation/vmsa_addrcalc/AArch64.S1SLTTEntryAddress.

• aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel.

• aarch64/translation/vmsa_addrcalc/AArch64.S1TTBaseAddress.

• aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress.

• aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel.

• aarch64/translation/vmsa_addrcalc/AArch64.S2TTBaseAddress.

• aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress.

• aarch64/translation/vmsa_faults/AArch64.AddrTop.

• aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults.

• aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange.

• aarch64/translation/vmsa_faults/AArch64.OAOutOfRange.

• aarch64/translation/vmsa_faults/AArch64.S1CheckPermissions.

• aarch64/translation/vmsa_faults/AArch64.S1ComputePermissions.

• aarch64/translation/vmsa_faults/AArch64.S1DirectBasePermissions.

• aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault.

• aarch64/translation/vmsa_faults/AArch64.S1IndirectBasePermissions.

• aarch64/translation/vmsa_faults/AArch64.S1OverlayPermissions.

• aarch64/translation/vmsa_faults/AArch64.S1TxSZFaults.

• aarch64/translation/vmsa_faults/AArch64.S2CheckPermissions.

• aarch64/translation/vmsa_faults/AArch64.S2ComputePermissions.

• aarch64/translation/vmsa_faults/AArch64.S2DirectBasePermissions.

• aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault.

• aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL.

• aarch64/translation/vmsa_faults/AArch64.S2IndirectBasePermissions.

• aarch64/translation/vmsa_faults/AArch64.S2InvalidSL.

• aarch64/translation/vmsa_faults/AArch64.S2OverlayPermissions.

• aarch64/translation/vmsa_faults/AArch64.S2TxSZFaults.

• aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange.

• aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs.

• aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext.

• aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext.

• aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10.

• aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13950
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL20.

• aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL3.

• aarch64/translation/vmsa_translation/AArch64.FullTranslate.

• aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc.

• aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput.

• aarch64/translation/vmsa_translation/AArch64.S1Translate.

• aarch64/translation/vmsa_translation/AArch64.S2Translate.

• aarch64/translation/vmsa_translation/AArch64.SettingAccessFlagPermitted.

• aarch64/translation/vmsa_translation/AArch64.SettingDirtyStatePermitted.

• aarch64/translation/vmsa_translation/AArch64.TranslateAddress.

• aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported.

• aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults.

• aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit.

• aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType.

• aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms.

• aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms.

• aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms.

• aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState.

• aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLeaf.

• aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable.

• aarch64/translation/vmsa_walk/AArch64.S1Walk.

• aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState.

• aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLeaf.

• aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable.

• aarch64/translation/vmsa_walk/AArch64.S2Walk.

• aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState.

• aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace.

• aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel.

• aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams.

• aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams.

• aarch64/translation/vmsa_walkparams/AArch64.GetVARange.

• aarch64/translation/vmsa_walkparams/AArch64.HaveS1TG.

• aarch64/translation/vmsa_walkparams/AArch64.HaveS2TG.

• aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ.

• aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams.

• aarch64/translation/vmsa_walkparams/AArch64.PAMax.

• aarch64/translation/vmsa_walkparams/AArch64.RLS2TTWParams.

• aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled.

• aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG0.

• aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG1.

• aarch64/translation/vmsa_walkparams/AArch64.S1E0POEnabled.

• aarch64/translation/vmsa_walkparams/AArch64.S1EPD.

• aarch64/translation/vmsa_walkparams/AArch64.S1Enabled.

• aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled.

• aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ.

• aarch64/translation/vmsa_walkparams/AArch64.S1POEnabled.

• aarch64/translation/vmsa_walkparams/AArch64.S1POR.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTBR.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13951
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3.

• aarch64/translation/vmsa_walkparams/AArch64.S2DecodeTG0.

• aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ.

• aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams.

• aarch64/translation/vmsa_walkparams/S2DCacheEnabled.

aarch64/translation/attrs/AArch64.MAIRAttr

 // AArch64.MAIRAttr()
 // ==================
 // Retrieve the memory attribute encoding indexed in the given MAIR

 bits(8) AArch64.MAIRAttr(integer index, MAIRType mair2, MAIRType mair)
 assert (index < 8 || (IsFeatureImplemented(FEAT_AIE) && (index < 16)));
 if (index > 7) then
 return Elem[mair2, index-8, 8]; // Read from LSB at MAIR2
 else
 return Elem[mair, index, 8];

aarch64/translation/debug/AArch64.CheckBreakpoint

 // AArch64.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
 // and halting is allowed.

 FaultRecord AArch64.CheckBreakpoint(FaultRecord fault_in, bits(64) vaddress,
 AccessDescriptor accdesc, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert (UsingAArch32() && size IN {2,4}) || size == 4;

 FaultRecord fault = fault_in;
 boolean match = FALSE;
 boolean addr_match_bp = FALSE; // Default assumption that all address match breakpoints
 // are inactive or disabled.
 boolean addr_mismatch_bp = FALSE; // Default assumption that all address mismatch
 // breakpoints are inactive or disabled.
 boolean addr_match = FALSE;
 boolean addr_mismatch = TRUE; // Default assumption that the given virtual address is
 // outside the range of all address mismatch breakpoints
 boolean ctxt_match = FALSE;

 for i = 0 to NumBreakpointsImplemented() - 1
 (bp_type, match_i) = AArch64.BreakpointMatch(i, vaddress, accdesc, size);
 if bp_type == BreakpointType_AddrMatch then
 addr_match_bp = TRUE;
 addr_match = addr_match || match_i;
 elsif bp_type == BreakpointType_AddrMismatch then
 addr_mismatch_bp = TRUE;
 addr_mismatch = addr_mismatch && !match_i;
 elsif bp_type == BreakpointType_CtxtMatch then
 ctxt_match = ctxt_match || match_i;

 if addr_match_bp && addr_mismatch_bp then
 match = addr_match && addr_mismatch;
 else
 match = (addr_match_bp && addr_match) || (addr_mismatch_bp && addr_mismatch);

 match = match || ctxt_match;

 if match then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13952
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 fault.statuscode = Fault_Debug;
 if HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);

 return fault;

aarch64/translation/debug/AArch64.CheckDebug

 // AArch64.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccessDescriptor accdesc, integer size)

 FaultRecord fault = NoFault(accdesc);
 boolean generate_exception;

 boolean d_side = (IsDataAccess(accdesc.acctype) || accdesc.acctype == AccessType_DC);
 boolean i_side = (accdesc.acctype == AccessType_IFETCH);
 if accdesc.acctype == AccessType_NV2 then
 mask = '0';
 ss = CurrentSecurityState();
 generate_exception = (AArch64.GenerateDebugExceptionsFrom(EL2, ss, mask) &&
 MDSCR_EL1.MDE == '1');
 else
 generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
 halt = HaltOnBreakpointOrWatchpoint();

 if generate_exception || halt then
 if d_side then
 fault = AArch64.CheckWatchpoint(fault, vaddress, accdesc, size);
 elsif i_side then
 fault = AArch64.CheckBreakpoint(fault, vaddress, accdesc, size);

 return fault;

aarch64/translation/debug/AArch64.CheckWatchpoint

 // AArch64.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address",
 // when either debug exceptions are enabled for the access, or halting debug
 // is enabled and halting is allowed.

 FaultRecord AArch64.CheckWatchpoint(FaultRecord fault_in, bits(64) vaddress_in,
 AccessDescriptor accdesc, integer size_in)
 assert !ELUsingAArch32(S1TranslationRegime());
 FaultRecord fault = fault_in;
 bits(64) vaddress = vaddress_in;
 integer size = size_in;
 boolean rounded_match = FALSE;
 bits(64) original_vaddress = vaddress;
 integer original_size = size;

 if accdesc.acctype == AccessType_DC then
 if accdesc.cacheop != CacheOp_Invalidate then
 return fault;
 elsif !IsDataAccess(accdesc.acctype) then
 return fault;

 // In case of set of contiguous memory accesses each call to this function is such that:
 // - the lowest accessed address is rounded down to the nearest multiple of 16 bytes
 // - the highest accessed address is rounded up to the nearest multiple of 16 bytes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13953
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Since the WPF field is set if the implementation does rounding, regardless of true or
 // false match, it would be acceptable to return TRUE for either/both of the first and last
 // access.
 if IsSVEAccess(accdesc) || IsSMEAccess(accdesc) then
 integer upper_vaddress = UInt(original_vaddress) + original_size;
 if ConstrainUnpredictableBool(Unpredictable_16BYTEROUNDEDDOWNACCESS) then
 vaddress = Align(vaddress, 16);
 rounded_match = TRUE;
 if ConstrainUnpredictableBool(Unpredictable_16BYTEROUNDEDUPACCESS) then
 upper_vaddress = Align(upper_vaddress + 15, 16) ;
 rounded_match = TRUE;
 size = upper_vaddress - UInt(vaddress);

 for i = 0 to NumWatchpointsImplemented() - 1
 if AArch64.WatchpointMatch(i, vaddress, size, accdesc) then
 fault.statuscode = Fault_Debug;
 if DBGWCR_EL1[i].LSC<0> == '1' && accdesc.read then
 fault.write = FALSE;
 elsif DBGWCR_EL1[i].LSC<1> == '1' && accdesc.write then
 fault.write = TRUE;
 fault.maybe_false_match = rounded_match;
 fault.watchpt_num = i;
 if (fault.statuscode == Fault_Debug && HaltOnBreakpointOrWatchpoint() &&
 !accdesc.nonfault && !(accdesc.firstfault && !accdesc.first)) then
 reason = DebugHalt_Watchpoint;
 EDWAR = vaddress;
 is_async = FALSE;
 Halt(reason, is_async, fault);
 return fault;

aarch64/translation/vmsa_addrcalc/AArch64.IASize

 // AArch64.IASize()
 // ================
 // Retrieve the number of bits containing the input address

 integer AArch64.IASize(bits(6) txsz)
 return 64 - UInt(txsz);

aarch64/translation/vmsa_addrcalc/AArch64.LeafBase

 // AArch64.LeafBase()
 // ==================
 // Extract the address embedded in a block and page descriptor pointing to the
 // base of a memory block

 bits(56) AArch64.LeafBase(bits(N) descriptor, bit d128, bit ds,
 TGx tgx, integer level)
 bits(56) leafbase = Zeros(56);

 granulebits = TGxGranuleBits(tgx);
 descsizelog2 = if d128 == '1' then 4 else 3;
 constant integer stride = granulebits - descsizelog2;
 constant integer leafsize = granulebits + stride * (FINAL_LEVEL - level);

 leafbase<47:0> = Align(descriptor<47:0>, 1 << leafsize);

 if IsFeatureImplemented(FEAT_D128) && d128 == '1' then
 leafbase<55:48> = descriptor<55:48>;
 return leafbase;
 if IsFeatureImplemented(FEAT_LPA) && tgx == TGx_64KB then
 leafbase<51:48> = descriptor<15:12>;
 elsif ds == '1' then
 leafbase<51:48> = descriptor<9:8>:descriptor<49:48>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13954
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return leafbase;

aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase

 // AArch64.NextTableBase()
 // =======================
 // Extract the address embedded in a table descriptor pointing to the base of
 // the next level table of descriptors

 bits(56) AArch64.NextTableBase(bits(N) descriptor, bit d128, bits(2) skl, bit ds, TGx tgx)
 bits(56) tablebase = Zeros(56);
 integer granulebits = TGxGranuleBits(tgx);
 integer tablesize;

 if d128 == '1' then
 integer descsizelog2 = 4;
 integer stride = granulebits - descsizelog2;
 tablesize = stride*(1 + UInt(skl)) + descsizelog2;
 else
 tablesize = granulebits;

 case tgx of
 when TGx_4KB tablebase<47:12> = descriptor<47:12>;
 when TGx_16KB tablebase<47:14> = descriptor<47:14>;
 when TGx_64KB tablebase<47:16> = descriptor<47:16>;

 tablebase = Align(tablebase, 1 << tablesize);

 if IsFeatureImplemented(FEAT_D128) && d128 == '1' then
 tablebase<55:48> = descriptor<55:48>;
 return tablebase;
 if IsFeatureImplemented(FEAT_LPA) && tgx == TGx_64KB then
 tablebase<51:48> = descriptor<15:12>;
 return tablebase;
 if ds == '1' then
 tablebase<51:48> = descriptor<9:8>:descriptor<49:48>;
 return tablebase;
 return tablebase;

aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize

 // AArch64.PhysicalAddressSize()
 // =============================
 // Retrieve the number of bits bounding the physical address

 integer AArch64.PhysicalAddressSize(bit d128, bits(3) encoded_ps, TGx tgx)
 integer ps;
 integer max_ps;

 case encoded_ps of
 when '000' ps = 32;
 when '001' ps = 36;
 when '010' ps = 40;
 when '011' ps = 42;
 when '100' ps = 44;
 when '101' ps = 48;
 when '110' ps = 52;
 when '111' ps = 56;
 if !IsFeatureImplemented(FEAT_D128) || d128 == '0' then
 if tgx != TGx_64KB && !IsFeatureImplemented(FEAT_LPA2) then
 max_ps = Min(48, AArch64.PAMax());
 elsif !IsFeatureImplemented(FEAT_LPA) then
 max_ps = Min(48, AArch64.PAMax());
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13955
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 max_ps = Min(52, AArch64.PAMax());
 else
 max_ps = AArch64.PAMax();

 return Min(ps, max_ps);

aarch64/translation/vmsa_addrcalc/AArch64.S1SLTTEntryAddress

 // AArch64.S1SLTTEntryAddress()
 // ============================
 // Compute the first stage 1 translation table descriptor address within the
 // table pointed to by the base at the start level

 FullAddress AArch64.S1SLTTEntryAddress(integer level, S1TTWParams walkparams,
 bits(64) ia, FullAddress tablebase)
 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
 stride = granulebits - descsizelog2;
 levels = FINAL_LEVEL - level;

 bits(56) index;
 constant integer lsb = levels*stride + granulebits;
 constant integer msb = iasize - 1;
 index = ZeroExtend(ia<msb:lsb>:Zeros(descsizelog2), 56);

 FullAddress descaddress;
 descaddress.address = tablebase.address OR index;
 descaddress.paspace = tablebase.paspace;

 return descaddress;

aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel

 // AArch64.S1StartLevel()
 // ======================
 // Compute the initial lookup level when performing a stage 1 translation
 // table walk

 integer AArch64.S1StartLevel(S1TTWParams walkparams)
 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
 stride = granulebits - descsizelog2;
 s1startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
 if walkparams.d128 == '1' then
 s1startlevel = s1startlevel + UInt(walkparams.skl);
 return s1startlevel;

aarch64/translation/vmsa_addrcalc/AArch64.S1TTBaseAddress

 // AArch64.S1TTBaseAddress()
 // =========================
 // Retrieve the PA/IPA pointing to the base of the initial translation table of stage 1

 bits(56) AArch64.S1TTBaseAddress(S1TTWParams walkparams, Regime regime, bits(N) ttbr)
 bits(56) tablebase = Zeros(56);

 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13956
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
 stride = granulebits - descsizelog2;
 startlevel = AArch64.S1StartLevel(walkparams);
 levels = FINAL_LEVEL - startlevel;

 // Base address is aligned to size of the initial translation table in bytes
 tsize = (iasize - (levels*stride + granulebits)) + descsizelog2;

 if IsFeatureImplemented(FEAT_D128) && walkparams.d128 == '1' then
 tsize = Max(tsize, 5);
 if regime == Regime_EL3 then
 tablebase<55:5> = ttbr<55:5>;
 else
 tablebase<55:5> = ttbr<87:80>:ttbr<47:5>;
 elsif ((IsFeatureImplemented(FEAT_LPA) && walkparams.tgx == TGx_64KB &&
 walkparams.ps == '110') || (walkparams.ds == '1')) then
 tsize = Max(tsize, 6);
 tablebase<51:6> = ttbr<5:2>:ttbr<47:6>;
 else
 tablebase<47:1> = ttbr<47:1>;
 tablebase = Align(tablebase, 1 << tsize);
 return tablebase;

aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress

 // AArch64.S2SLTTEntryAddress()
 // ============================
 // Compute the first stage 2 translation table descriptor address within the
 // table pointed to by the base at the start level

 FullAddress AArch64.S2SLTTEntryAddress(S2TTWParams walkparams, bits(56) ipa,
 FullAddress tablebase)
 startlevel = AArch64.S2StartLevel(walkparams);
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
 stride = granulebits - descsizelog2;
 levels = FINAL_LEVEL - startlevel;

 bits(56) index;
 constant integer lsb = levels*stride + granulebits;
 constant integer msb = iasize - 1;
 index = ZeroExtend(ipa<msb:lsb>:Zeros(descsizelog2), 56);

 FullAddress descaddress;
 descaddress.address = tablebase.address OR index;
 descaddress.paspace = tablebase.paspace;

 return descaddress;

aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel

 // AArch64.S2StartLevel()
 // ======================
 // Determine the initial lookup level when performing a stage 2 translation
 // table walk

 integer AArch64.S2StartLevel(S2TTWParams walkparams)
 if walkparams.d128 == '1' then
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = 4;
 stride = granulebits - descsizelog2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13957
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 s2startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
 s2startlevel = s2startlevel + UInt(walkparams.skl);

 return s2startlevel;

 case walkparams.tgx of
 when TGx_4KB
 case walkparams.sl2:walkparams.sl0 of
 when '000' return 2;
 when '001' return 1;
 when '010' return 0;
 when '011' return 3;
 when '100' return -1;
 when TGx_16KB
 case walkparams.sl0 of
 when '00' return 3;
 when '01' return 2;
 when '10' return 1;
 when '11' return 0;
 when TGx_64KB
 case walkparams.sl0 of
 when '00' return 3;
 when '01' return 2;
 when '10' return 1;

aarch64/translation/vmsa_addrcalc/AArch64.S2TTBaseAddress

 // AArch64.S2TTBaseAddress()
 // =========================
 // Retrieve the PA/IPA pointing to the base of the initial translation table of stage 2

 bits(56) AArch64.S2TTBaseAddress(S2TTWParams walkparams, PASpace paspace, bits(N) ttbr)
 bits(56) tablebase = Zeros(56);

 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
 stride = granulebits - descsizelog2;
 startlevel = AArch64.S2StartLevel(walkparams);
 levels = FINAL_LEVEL - startlevel;

 // Base address is aligned to size of the initial translation table in bytes
 tsize = (iasize - (levels*stride + granulebits)) + descsizelog2;

 if IsFeatureImplemented(FEAT_D128) && walkparams.d128 == '1' then
 tsize = Max(tsize, 5);
 if paspace == PAS_Secure then
 tablebase<55:5> = ttbr<55:5>;
 else
 tablebase<55:5> = ttbr<87:80>:ttbr<47:5>;
 elsif ((IsFeatureImplemented(FEAT_LPA) && walkparams.tgx == TGx_64KB &&
 walkparams.ps == '110') || (walkparams.ds == '1')) then
 tsize = Max(tsize, 6);
 tablebase<51:6> = ttbr<5:2>:ttbr<47:6>;
 else
 tablebase<47:1> = ttbr<47:1>;
 tablebase = Align(tablebase, 1 << tsize);
 return tablebase;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13958
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress

 // AArch64.TTEntryAddress()
 // ========================
 // Compute translation table descriptor address within the table pointed to by
 // the table base

 FullAddress AArch64.TTEntryAddress(integer level, bit d128, bits(2) skl, TGx tgx, bits(6) txsz,
 bits(64) ia, FullAddress tablebase)
 // Input Address size
 iasize = AArch64.IASize(txsz);
 granulebits = TGxGranuleBits(tgx);
 descsizelog2 = if d128 == '1' then 4 else 3;
 stride = granulebits - descsizelog2;
 levels = FINAL_LEVEL - level;

 bits(56) index;

 constant integer lsb = levels*stride + granulebits;
 constant integer nstride = if d128 == '1' then UInt(skl) + 1 else 1;
 constant integer msb = (lsb + (stride * nstride)) - 1;
 index = ZeroExtend(ia<msb:lsb>:Zeros(descsizelog2), 56);

 FullAddress descaddress;
 descaddress.address = tablebase.address OR index;
 descaddress.paspace = tablebase.paspace;

 return descaddress;

aarch64/translation/vmsa_faults/AArch64.AddrTop

 // AArch64.AddrTop()
 // =================
 // Get the top bit position of the virtual address.
 // Bits above are not accounted as part of the translation process.

 integer AArch64.AddrTop(bit tbid, AccessType acctype, bit tbi)
 if tbid == '1' && acctype == AccessType_IFETCH then
 return 63;

 if tbi == '1' then
 return 55;
 else
 return 63;

aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults

 // AArch64.ContiguousBitFaults()
 // =============================
 // If contiguous bit is set, returns whether the translation size exceeds the
 // input address size and if the implementation generates a fault

 boolean AArch64.ContiguousBitFaults(bit d128, bits(6) txsz, TGx tgx, integer level)
 // Input Address size
 iasize = AArch64.IASize(txsz);
 // Translation size
 tsize = TranslationSize(d128, tgx, level) + ContiguousSize(d128, tgx, level);

 return (tsize > iasize &&
 boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit");
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13959
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange

 // AArch64.IPAIsOutOfRange()
 // =========================
 // Check bits not resolved by translation are ZERO

 boolean AArch64.IPAIsOutOfRange(bits(56) ipa, S2TTWParams walkparams)
 //Input Address size
 constant integer iasize = AArch64.IASize(walkparams.txsz);

 if iasize < 56 then
 return !IsZero(ipa<55:iasize>);
 else
 return FALSE;

aarch64/translation/vmsa_faults/AArch64.OAOutOfRange

 // AArch64.OAOutOfRange()
 // ======================
 // Returns whether output address is expressed in the configured size number of bits

 boolean AArch64.OAOutOfRange(bits(56) address, bit d128, bits(3) ps, TGx tgx)
 // Output Address size
 constant integer oasize = AArch64.PhysicalAddressSize(d128, ps, tgx);

 if oasize < 56 then
 return !IsZero(address<55:oasize>);
 else
 return FALSE;

aarch64/translation/vmsa_faults/AArch64.S1CheckPermissions

 // AArch64.S1CheckPermissions()
 // ============================
 // Checks whether stage 1 access violates permissions of target memory
 // and returns a fault record

 FaultRecord AArch64.S1CheckPermissions(FaultRecord fault_in, Regime regime, TTWState walkstate,
 S1TTWParams walkparams, AccessDescriptor accdesc)
 FaultRecord fault = fault_in;
 Permissions permissions = walkstate.permissions;
 S1AccessControls s1perms;

 s1perms = AArch64.S1ComputePermissions(regime, walkstate, walkparams, accdesc);

 if accdesc.acctype == AccessType_IFETCH then
 if s1perms.overlay && s1perms.ox == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif (walkstate.memattrs.memtype == MemType_Device &&
 ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT) then
 fault.statuscode = Fault_Permission;
 elsif s1perms.x == '0' then
 fault.statuscode = Fault_Permission;
 elsif accdesc.acctype == AccessType_DC then
 if accdesc.cacheop == CacheOp_Invalidate then
 if s1perms.overlay && s1perms.ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif s1perms.w == '0' then
 fault.statuscode = Fault_Permission;
 // DC from privileged context which clean cannot generate a Permission fault
 elsif accdesc.el == EL0 then
 if s1perms.overlay && s1perms.or == '0' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13960
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif (walkparams.cmow == '1' &&
 accdesc.opscope == CacheOpScope_PoC &&
 accdesc.cacheop == CacheOp_CleanInvalidate &&
 s1perms.overlay && s1perms.ow == '0') then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif s1perms.r == '0' then
 fault.statuscode = Fault_Permission;
 elsif (walkparams.cmow == '1' &&
 accdesc.opscope == CacheOpScope_PoC &&
 accdesc.cacheop == CacheOp_CleanInvalidate &&
 s1perms.w == '0') then
 fault.statuscode = Fault_Permission;
 elsif accdesc.acctype == AccessType_IC then
 // IC from privileged context cannot generate Permission fault
 if accdesc.el == EL0 then
 if (s1perms.overlay && s1perms.or == '0' &&
 boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif walkparams.cmow == '1' && s1perms.overlay && s1perms.ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif (s1perms.r == '0' &&
 boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then
 fault.statuscode = Fault_Permission;
 elsif walkparams.cmow == '1' && s1perms.w == '0' then
 fault.statuscode = Fault_Permission;
 elsif IsFeatureImplemented(FEAT_GCS) && accdesc.acctype == AccessType_GCS then
 if s1perms.gcs == '0' then
 fault.statuscode = Fault_Permission;
 elsif accdesc.write && walkparams.<ha,hd> != '11' && permissions.ndirty == '1' then
 fault.statuscode = Fault_Permission;
 fault.dirtybit = TRUE;
 fault.write = TRUE;
 elsif accdesc.read && s1perms.overlay && s1perms.or == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 fault.write = FALSE;
 elsif accdesc.write && s1perms.overlay && s1perms.ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 fault.write = TRUE;
 elsif accdesc.read && s1perms.r == '0' then
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif accdesc.write && s1perms.w == '0' then
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif (accdesc.write && accdesc.tagaccess &&
 walkstate.memattrs.tags == MemTag_CanonicallyTagged) then
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 fault.s1tagnotdata = TRUE;
 elsif (accdesc.write && !(walkparams.<ha,hd> == '11') && walkparams.pie == '1' &&
 permissions.ndirty == '1') then
 fault.statuscode = Fault_Permission;
 fault.dirtybit = TRUE;
 fault.write = TRUE;

 return fault;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13961
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_faults/AArch64.S1ComputePermissions

 // AArch64.S1ComputePermissions()
 // ==============================
 // Computes the overall stage 1 permissions

 S1AccessControls AArch64.S1ComputePermissions(Regime regime, TTWState walkstate,
 S1TTWParams walkparams, AccessDescriptor accdesc)
 Permissions permissions = walkstate.permissions;
 S1AccessControls s1perms;

 if walkparams.pie == '1' then
 s1perms = AArch64.S1IndirectBasePermissions(regime, walkstate, walkparams, accdesc);
 else
 s1perms = AArch64.S1DirectBasePermissions(regime, walkstate, walkparams, accdesc);

 if accdesc.el == EL0 && !AArch64.S1E0POEnabled(regime, walkparams.nv1) then
 s1perms.overlay = FALSE;
 elsif accdesc.el != EL0 && !AArch64.S1POEnabled(regime) then
 s1perms.overlay = FALSE;

 if s1perms.overlay then
 s1overlay_perms = AArch64.S1OverlayPermissions(regime, walkstate, accdesc);
 s1perms.or = s1overlay_perms.or;
 s1perms.ow = s1overlay_perms.ow;
 s1perms.ox = s1overlay_perms.ox;

 // If wxn is set, overlay execute permissions is set to 0
 if s1perms.overlay && s1perms.wxn == '1' && s1perms.ox == '1' then
 s1perms.ow = '0';
 elsif s1perms.wxn == '1' then
 s1perms.x = '0';

 return s1perms;

aarch64/translation/vmsa_faults/AArch64.S1DirectBasePermissions

 // AArch64.S1DirectBasePermissions()
 // =================================
 // Computes the stage 1 direct base permissions

 S1AccessControls AArch64.S1DirectBasePermissions(Regime regime, TTWState walkstate,
 S1TTWParams walkparams, AccessDescriptor accdesc)
 bit r, w, x;
 bit pr, pw, px;
 bit ur, uw, ux;
 Permissions permissions = walkstate.permissions;
 S1AccessControls s1perms;

 if HasUnprivileged(regime) then
 // Apply leaf permissions
 case permissions.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // Privileged access
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // No effect
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // Read-only, privileged access
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // Read-only

 // Apply hierarchical permissions
 case permissions.ap_table of
 when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
 when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
 when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
 when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

 // Locations writable by unprivileged cannot be executed by privileged
 px = NOT(permissions.pxn OR permissions.pxn_table OR uw);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13962
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 ux = NOT(permissions.uxn OR permissions.uxn_table);

 if (IsFeatureImplemented(FEAT_PAN) && accdesc.pan && !(regime == Regime_EL10 &&
 walkparams.nv1 == '1')) then
 bit pan;
 if (boolean IMPLEMENTATION_DEFINED "SCR_EL3.SIF affects EPAN" &&
 accdesc.ss == SS_Secure &&
 walkstate.baseaddress.paspace == PAS_NonSecure &&
 walkparams.sif == '1') then
 ux = '0';

 if (boolean IMPLEMENTATION_DEFINED "Realm EL2&0 regime affects EPAN" &&
 accdesc.ss == SS_Realm && regime == Regime_EL20 &&
 walkstate.baseaddress.paspace != PAS_Realm) then
 ux = '0';

 pan = PSTATE.PAN AND (ur OR uw OR (walkparams.epan AND ux));
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 else
 // Apply leaf permissions
 case permissions.ap<2> of
 when '0' (pr,pw) = ('1','1'); // No effect
 when '1' (pr,pw) = ('1','0'); // Read-only

 // Apply hierarchical permissions
 case permissions.ap_table<1> of
 when '0' (pr,pw) = (pr, pw); // No effect
 when '1' (pr,pw) = (pr,'0'); // Read-only

 px = NOT(permissions.xn OR permissions.xn_table);

 (r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

 // Compute WXN value
 wxn = walkparams.wxn AND w AND x;

 // Prevent execution from Non-secure space by PE in secure state if SIF is set
 if accdesc.ss == SS_Secure && walkstate.baseaddress.paspace == PAS_NonSecure then
 x = x AND NOT(walkparams.sif);
 // Prevent execution from non-Root space by Root
 if accdesc.ss == SS_Root && walkstate.baseaddress.paspace != PAS_Root then
 x = '0';
 // Prevent execution from non-Realm space by Realm EL2 and Realm EL2&0
 if (accdesc.ss == SS_Realm && regime IN {Regime_EL2, Regime_EL20} &&
 walkstate.baseaddress.paspace != PAS_Realm) then
 x = '0';

 s1perms.r = r;
 s1perms.w = w;
 s1perms.x = x;
 s1perms.gcs = '0';
 s1perms.wxn = wxn;
 s1perms.overlay = TRUE;

 return s1perms;

aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault

 // AArch64.S1HasAlignmentFault()
 // =============================
 // Returns whether stage 1 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch64.S1HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13963
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bit ntlsmd, MemoryAttributes memattrs)
 if accdesc.acctype == AccessType_IFETCH then
 return FALSE;
 elsif IsFeatureImplemented(FEAT_MTE) && accdesc.tagaccess && accdesc.write then
 return (memattrs.memtype == MemType_Device &&
 ConstrainUnpredictable(Unpredictable_DEVICETAGSTORE) == Constraint_FAULT);
 elsif accdesc.a32lsmd && ntlsmd == '0' then
 return memattrs.memtype == MemType_Device && memattrs.device != DeviceType_GRE;
 elsif accdesc.acctype == AccessType_DCZero then
 return memattrs.memtype == MemType_Device;
 else
 return memattrs.memtype == MemType_Device && !aligned;

aarch64/translation/vmsa_faults/AArch64.S1IndirectBasePermissions

 // AArch64.S1IndirectBasePermissions()
 // ===================================
 // Computes the stage 1 indirect base permissions

 S1AccessControls AArch64.S1IndirectBasePermissions(Regime regime, TTWState walkstate,
 S1TTWParams walkparams,
 AccessDescriptor accdesc)

 bit r, w, x, gcs, wxn, overlay;
 bit pr, pw, px, pgcs, pwxn, p_overlay;
 bit ur, uw, ux, ugcs, uwxn, u_overlay;
 Permissions permissions = walkstate.permissions;
 S1AccessControls s1perms;

 // Apply privileged indirect permissions
 case permissions.ppi of
 when '0000' (pr,pw,px,pgcs) = ('0','0','0','0'); // No access
 when '0001' (pr,pw,px,pgcs) = ('1','0','0','0'); // Privileged read
 when '0010' (pr,pw,px,pgcs) = ('0','0','1','0'); // Privileged execute
 when '0011' (pr,pw,px,pgcs) = ('1','0','1','0'); // Privileged read and execute
 when '0100' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved
 when '0101' (pr,pw,px,pgcs) = ('1','1','0','0'); // Privileged read and write
 when '0110' (pr,pw,px,pgcs) = ('1','1','1','0'); // Privileged read, write and execute
 when '0111' (pr,pw,px,pgcs) = ('1','1','1','0'); // Privileged read, write and execute
 when '1000' (pr,pw,px,pgcs) = ('1','0','0','0'); // Privileged read
 when '1001' (pr,pw,px,pgcs) = ('1','0','0','1'); // Privileged read and gcs
 when '1010' (pr,pw,px,pgcs) = ('1','0','1','0'); // Privileged read and execute
 when '1011' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved
 when '1100' (pr,pw,px,pgcs) = ('1','1','0','0'); // Privileged read and write
 when '1101' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved
 when '1110' (pr,pw,px,pgcs) = ('1','1','1','0'); // Privileged read, write and execute
 when '1111' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved

 p_overlay = NOT(permissions.ppi[3]);
 pwxn = if permissions.ppi == '0110' then '1' else '0';

 if HasUnprivileged(regime) then
 // Apply unprivileged indirect permissions
 case permissions.upi of
 when '0000' (ur,uw,ux,ugcs) = ('0','0','0','0'); // No access
 when '0001' (ur,uw,ux,ugcs) = ('1','0','0','0'); // Unprivileged read
 when '0010' (ur,uw,ux,ugcs) = ('0','0','1','0'); // Unprivileged execute
 when '0011' (ur,uw,ux,ugcs) = ('1','0','1','0'); // Unprivileged read and execute
 when '0100' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved
 when '0101' (ur,uw,ux,ugcs) = ('1','1','0','0'); // Unprivileged read and write
 when '0110' (ur,uw,ux,ugcs) = ('1','1','1','0'); // Unprivileged read, write and execute
 when '0111' (ur,uw,ux,ugcs) = ('1','1','1','0'); // Unprivileged read, write and execute
 when '1000' (ur,uw,ux,ugcs) = ('1','0','0','0'); // Unprivileged read
 when '1001' (ur,uw,ux,ugcs) = ('1','0','0','1'); // Unprivileged read and gcs
 when '1010' (ur,uw,ux,ugcs) = ('1','0','1','0'); // Unprivileged read and execute
 when '1011' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13964
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '1100' (ur,uw,ux,ugcs) = ('1','1','0','0'); // Unprivileged read and write
 when '1101' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved
 when '1110' (ur,uw,ux,ugcs) = ('1','1','1','0'); // Unprivileged read,write and execute
 when '1111' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved

 u_overlay = NOT(permissions.upi[3]);
 uwxn = if permissions.upi == '0110' then '1' else '0';

 // If the decoded permissions has either px or pgcs along with either uw or ugcs,
 // then all effective Stage 1 Base Permissions are set to 0
 if ((px == '1' || pgcs == '1') && (uw == '1' || ugcs == '1')) then
 (pr,pw,px,pgcs) = ('0','0','0','0');
 (ur,uw,ux,ugcs) = ('0','0','0','0');

 if (IsFeatureImplemented(FEAT_PAN) && accdesc.pan && !(regime == Regime_EL10 &&
 walkparams.nv1 == '1')) then
 if PSTATE.PAN == '1' && (permissions.upi != '0000') then
 (pr,pw) = ('0','0');

 if accdesc.el == EL0 then
 (r,w,x,gcs,wxn,overlay) = (ur,uw,ux,ugcs,uwxn,u_overlay);
 else
 (r,w,x,gcs,wxn,overlay) = (pr,pw,px,pgcs,pwxn,p_overlay);

 // Prevent execution from Non-secure space by PE in secure state if SIF is set
 if accdesc.ss == SS_Secure && walkstate.baseaddress.paspace == PAS_NonSecure then
 x = x AND NOT(walkparams.sif);
 gcs = '0';
 // Prevent execution from non-Root space by Root
 if accdesc.ss == SS_Root && walkstate.baseaddress.paspace != PAS_Root then
 x = '0';
 gcs = '0';
 // Prevent execution from non-Realm space by Realm EL2 and Realm EL2&0
 if (accdesc.ss == SS_Realm && regime IN {Regime_EL2, Regime_EL20} &&
 walkstate.baseaddress.paspace != PAS_Realm) then
 x = '0';
 gcs = '0';

 s1perms.r = r;
 s1perms.w = w;
 s1perms.x = x;
 s1perms.gcs = gcs;
 s1perms.wxn = wxn;
 s1perms.overlay = overlay == '1';

 return s1perms;

aarch64/translation/vmsa_faults/AArch64.S1OverlayPermissions

 // AArch64.S1OverlayPermissions()
 // ==============================
 // Computes the stage 1 overlay permissions

 S1AccessControls AArch64.S1OverlayPermissions(Regime regime, TTWState walkstate,
 AccessDescriptor accdesc)

 bit r, w, x;
 bit pr, pw, px;
 bit ur, uw, ux;
 Permissions permissions = walkstate.permissions;
 S1AccessControls s1overlay_perms;

 S1PORType por = AArch64.S1POR(regime);
 constant integer bit_index = 4 * UInt(permissions.po_index);
 bits(4) ppo = por<bit_index+3:bit_index>;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13965
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // Apply privileged overlay permissions
 case ppo of
 when '0000' (pr,pw,px) = ('0','0','0'); // No access
 when '0001' (pr,pw,px) = ('1','0','0'); // Privileged read
 when '0010' (pr,pw,px) = ('0','0','1'); // Privileged execute
 when '0011' (pr,pw,px) = ('1','0','1'); // Privileged read and execute
 when '0100' (pr,pw,px) = ('0','1','0'); // Privileged write
 when '0101' (pr,pw,px) = ('1','1','0'); // Privileged read and write
 when '0110' (pr,pw,px) = ('0','1','1'); // Privileged write and execute
 when '0111' (pr,pw,px) = ('1','1','1'); // Privileged read, write and execute
 when '1xxx' (pr,pw,px) = ('0','0','0'); // Reserved

 if HasUnprivileged(regime) then
 bits(4) upo = POR_EL0<bit_index+3:bit_index>;

 // Apply unprivileged overlay permissions
 case upo of
 when '0000' (ur,uw,ux) = ('0','0','0'); // No access
 when '0001' (ur,uw,ux) = ('1','0','0'); // Unprivileged read
 when '0010' (ur,uw,ux) = ('0','0','1'); // Unprivileged execute
 when '0011' (ur,uw,ux) = ('1','0','1'); // Unprivileged read and execute
 when '0100' (ur,uw,ux) = ('0','1','0'); // Unprivileged write
 when '0101' (ur,uw,ux) = ('1','1','0'); // Unprivileged read and write
 when '0110' (ur,uw,ux) = ('0','1','1'); // Unprivileged write and execute
 when '0111' (ur,uw,ux) = ('1','1','1'); // Unprivileged read, write and execute
 when '1xxx' (ur,uw,ux) = ('0','0','0'); // Reserved

 (r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

 s1overlay_perms.or = r;
 s1overlay_perms.ow = w;
 s1overlay_perms.ox = x;

 return s1overlay_perms;

aarch64/translation/vmsa_faults/AArch64.S1TxSZFaults

 // AArch64.S1TxSZFaults()
 // ======================
 // Detect whether configuration of stage 1 TxSZ field generates a fault

 boolean AArch64.S1TxSZFaults(Regime regime, S1TTWParams walkparams)
 mintxsz = AArch64.S1MinTxSZ(regime, walkparams.d128, walkparams.ds, walkparams.tgx);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

 if UInt(walkparams.txsz) < mintxsz then
 return (IsFeatureImplemented(FEAT_LVA) ||
 boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum");
 if UInt(walkparams.txsz) > maxtxsz then
 return boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum";

 return FALSE;

aarch64/translation/vmsa_faults/AArch64.S2CheckPermissions

 // AArch64.S2CheckPermissions()
 // ============================
 // Verifies memory access with available permissions.

 (FaultRecord, boolean) AArch64.S2CheckPermissions(FaultRecord fault_in, TTWState walkstate,
 S2TTWParams walkparams, AddressDescriptor ipa,
 AccessDescriptor accdesc)
 MemType memtype = walkstate.memattrs.memtype;
 Permissions permissions = walkstate.permissions;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13966
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 FaultRecord fault = fault_in;
 S2AccessControls s2perms = AArch64.S2ComputePermissions(permissions, walkparams, accdesc);

 bit r, w;
 bit or, ow;

 if accdesc.acctype == AccessType_TTW then
 r = s2perms.r_mmu;
 w = s2perms.w_mmu;
 or = s2perms.or_mmu;
 ow = s2perms.ow_mmu;
 elsif accdesc.rcw then
 r = s2perms.r_rcw;
 w = s2perms.w_rcw;
 or = s2perms.or_rcw;
 ow = s2perms.ow_rcw;
 else
 r = s2perms.r;
 w = s2perms.w;
 or = s2perms.or;
 ow = s2perms.ow;

 if accdesc.acctype == AccessType_TTW then
 if (accdesc.toplevel && accdesc.varange == VARange_LOWER &&
 ((walkparams.tl0 == '1' && s2perms.toplevel0 == '0') ||
 (walkparams.tl1 == '1' && s2perms.<toplevel1,toplevel0> == '10'))) then
 fault.statuscode = Fault_Permission;
 fault.toplevel = TRUE;
 elsif (accdesc.toplevel && accdesc.varange == VARange_UPPER &&
 ((walkparams.tl1 == '1' && s2perms.toplevel1 == '0') ||
 (walkparams.tl0 == '1' && s2perms.<toplevel1,toplevel0> == '01'))) then
 fault.statuscode = Fault_Permission;
 fault.toplevel = TRUE;
 // Stage 2 Permission fault due to AssuredOnly check
 elsif (walkstate.s2assuredonly == '1' && !ipa.s1assured) then
 fault.statuscode = Fault_Permission;
 fault.assuredonly = TRUE;

 elsif walkparams.ptw == '1' && memtype == MemType_Device then
 fault.statuscode = Fault_Permission;
 elsif s2perms.overlay && or == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif accdesc.write && s2perms.overlay && ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 // Prevent translation table walks in Non-secure space by Realm state
 elsif accdesc.ss == SS_Realm && walkstate.baseaddress.paspace != PAS_Realm then
 fault.statuscode = Fault_Permission;
 elsif r == '0' then
 fault.statuscode = Fault_Permission;
 elsif accdesc.write && w == '0' then
 fault.statuscode = Fault_Permission;
 elsif (accdesc.write && !(walkparams.<ha,hd> == '11') && walkparams.s2pie == '1' &&
 permissions.s2dirty == '0') then
 fault.statuscode = Fault_Permission;
 fault.dirtybit = TRUE;

 // Stage 2 Permission fault due to AssuredOnly check
 elsif ((walkstate.s2assuredonly == '1' && !ipa.s1assured) ||
 (walkstate.s2assuredonly != '1' && IsFeatureImplemented(FEAT_GCS) &&
 VTCR_EL2.GCSH == '1' && accdesc.acctype == AccessType_GCS && accdesc.el != EL0)) then
 fault.statuscode = Fault_Permission;
 fault.assuredonly = TRUE;

 elsif accdesc.acctype == AccessType_IFETCH then
 if s2perms.overlay && s2perms.ox == '0' then
 fault.statuscode = Fault_Permission;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13967
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 fault.overlay = TRUE;
 elsif (memtype == MemType_Device &&
 ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT) then
 fault.statuscode = Fault_Permission;

 // Prevent execution from Non-secure space by Realm state
 elsif accdesc.ss == SS_Realm && walkstate.baseaddress.paspace != PAS_Realm then
 fault.statuscode = Fault_Permission;
 elsif s2perms.x == '0' then
 fault.statuscode = Fault_Permission;

 elsif accdesc.acctype == AccessType_DC then
 if accdesc.cacheop == CacheOp_Invalidate then
 if !ELUsingAArch32(EL1) && s2perms.overlay && ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 if !ELUsingAArch32(EL1) && w == '0' then
 fault.statuscode = Fault_Permission;
 elsif !ELUsingAArch32(EL1) && accdesc.el == EL0 && s2perms.overlay && or == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif (walkparams.cmow == '1' &&
 accdesc.opscope == CacheOpScope_PoC &&
 accdesc.cacheop == CacheOp_CleanInvalidate &&
 s2perms.overlay && ow == '0') then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif !ELUsingAArch32(EL1) && accdesc.el == EL0 && r == '0' then
 fault.statuscode = Fault_Permission;
 elsif (walkparams.cmow == '1' &&
 accdesc.opscope == CacheOpScope_PoC &&
 accdesc.cacheop == CacheOp_CleanInvalidate &&
 w == '0') then
 fault.statuscode = Fault_Permission;

 elsif accdesc.acctype == AccessType_IC then
 if (!ELUsingAArch32(EL1) && accdesc.el == EL0 && s2perms.overlay && or == '0' &&
 boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif walkparams.cmow == '1' && s2perms.overlay && ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 elsif (!ELUsingAArch32(EL1) && accdesc.el == EL0 && r == '0' &&
 boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then
 fault.statuscode = Fault_Permission;
 elsif walkparams.cmow == '1' && w == '0' then
 fault.statuscode = Fault_Permission;

 elsif accdesc.read && s2perms.overlay && or == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 fault.write = FALSE;
 elsif accdesc.write && s2perms.overlay && ow == '0' then
 fault.statuscode = Fault_Permission;
 fault.overlay = TRUE;
 fault.write = TRUE;
 elsif accdesc.read && r == '0' then
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif accdesc.write && w == '0' then
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif (IsFeatureImplemented(FEAT_MTE_PERM) &&
 ((accdesc.tagchecked &&
 AArch64.EffectiveTCF(accdesc.el, accdesc.read) != TCFType_Ignore) ||
 accdesc.tagaccess) &&
 ipa.memattrs.tags == MemTag_AllocationTagged &&
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13968
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 permissions.s2tag_na == '1' && S2DCacheEnabled()) then
 fault.statuscode = Fault_Permission;
 fault.tagaccess = TRUE;
 fault.write = accdesc.tagaccess && accdesc.write;
 elsif (accdesc.write && !(walkparams.<ha,hd> == '11') && walkparams.s2pie == '1' &&
 permissions.s2dirty == '0') then
 fault.statuscode = Fault_Permission;
 fault.dirtybit = TRUE;
 fault.write = TRUE;

 // MRO* allows only RCW and MMU writes
 boolean mro;
 if s2perms.overlay then
 mro = (s2perms.<w,w_rcw,w_mmu> AND s2perms.<ow,ow_rcw,ow_mmu>) == '011';
 else
 mro = s2perms.<w,w_rcw,w_mmu> == '011';

 return (fault, mro);

aarch64/translation/vmsa_faults/AArch64.S2ComputePermissions

 // AArch64.S2ComputePermissions()
 // ==============================
 // Compute the overall stage 2 permissions.

 S2AccessControls AArch64.S2ComputePermissions(Permissions permissions, S2TTWParams walkparams,
 AccessDescriptor accdesc)

 S2AccessControls s2perms;

 if walkparams.s2pie == '1' then
 s2perms = AArch64.S2IndirectBasePermissions(permissions, accdesc);
 s2perms.overlay = IsFeatureImplemented(FEAT_S2POE) && VTCR_EL2.S2POE == '1';
 if s2perms.overlay then
 s2overlay_perms = AArch64.S2OverlayPermissions(permissions, accdesc);
 s2perms.or = s2overlay_perms.or;
 s2perms.ow = s2overlay_perms.ow;
 s2perms.ox = s2overlay_perms.ox;
 s2perms.or_rcw = s2overlay_perms.or_rcw;
 s2perms.ow_rcw = s2overlay_perms.ow_rcw;
 s2perms.or_mmu = s2overlay_perms.or_mmu;
 s2perms.ow_mmu = s2overlay_perms.ow_mmu;

 // Toplevel is applicable only when the effective S2 permissions is MRO
 if ((s2perms.<w,w_rcw,w_mmu> AND s2perms.<ow,ow_rcw,ow_mmu>) == '011') then
 s2perms.toplevel0 = s2perms.toplevel0 OR s2overlay_perms.toplevel0;
 s2perms.toplevel1 = s2perms.toplevel1 OR s2overlay_perms.toplevel1;

 else
 s2perms.toplevel0 = '0';
 s2perms.toplevel1 = '0';
 else
 s2perms = AArch64.S2DirectBasePermissions(permissions, accdesc);

 return s2perms;

aarch64/translation/vmsa_faults/AArch64.S2DirectBasePermissions

 // AArch64.S2DirectBasePermissions()
 // =================================
 // Computes the stage 2 direct base permissions.

 S2AccessControls AArch64.S2DirectBasePermissions(Permissions permissions,
 AccessDescriptor accdesc)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13969
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 S2AccessControls s2perms;
 r = permissions.s2ap<0>;
 w = permissions.s2ap<1>;
 bit px, ux;
 case (permissions.s2xn:permissions.s2xnx) of
 when '00' (px,ux) = ('1','1');
 when '01' (px,ux) = ('0','1');
 when '10' (px,ux) = ('0','0');
 when '11' (px,ux) = ('1','0');

 x = if accdesc.el == EL0 then ux else px;
 s2perms.r = r;
 s2perms.w = w;
 s2perms.x = x;
 s2perms.r_rcw = r;
 s2perms.w_rcw = w;
 s2perms.r_mmu = r;
 s2perms.w_mmu = w;

 return s2perms;

aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault

 // AArch64.S2HasAlignmentFault()
 // =============================
 // Returns whether stage 2 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch64.S2HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
 MemoryAttributes memattrs)
 if accdesc.acctype == AccessType_IFETCH then
 return FALSE;
 elsif IsFeatureImplemented(FEAT_MTE) && accdesc.tagaccess && accdesc.write then
 return (memattrs.memtype == MemType_Device &&
 ConstrainUnpredictable(Unpredictable_DEVICETAGSTORE) == Constraint_FAULT);
 elsif accdesc.acctype == AccessType_DCZero then
 return memattrs.memtype == MemType_Device;
 else
 return memattrs.memtype == MemType_Device && !aligned;

aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL

 // AArch64.S2InconsistentSL()
 // ==========================
 // Detect inconsistent configuration of stage 2 TxSZ and SL fields

 boolean AArch64.S2InconsistentSL(S2TTWParams walkparams)
 startlevel = AArch64.S2StartLevel(walkparams);
 levels = FINAL_LEVEL - startlevel;
 granulebits = TGxGranuleBits(walkparams.tgx);
 descsizelog2 = 3;
 stride = granulebits - descsizelog2;

 // Input address size must at least be large enough to be resolved from the start level
 sl_min_iasize = (
 levels * stride // Bits resolved by table walk, except initial level
 + granulebits // Bits directly mapped to output address
 + 1); // At least 1 more bit to be decoded by initial level

 // Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
 sl_max_iasize = sl_min_iasize + (stride-1) + 4;
 // Configured Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13970
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return iasize < sl_min_iasize || iasize > sl_max_iasize;

aarch64/translation/vmsa_faults/AArch64.S2IndirectBasePermissions

 // AArch64.S2IndirectBasePermissions()
 // ===================================
 // Computes the stage 2 indirect base permissions.

 S2AccessControls AArch64.S2IndirectBasePermissions(Permissions permissions,
 AccessDescriptor accdesc)
 bit r, w;
 bit r_rcw, w_rcw;
 bit r_mmu, w_mmu;
 bit px, ux;
 bit toplevel0, toplevel1;
 S2AccessControls s2perms;

 bits(4) s2pi = permissions.s2pi;
 case s2pi of
 when '0000' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // No Access
 when '0001' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
 when '0010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO
 when '0011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL1
 when '0100' (r,w,px,ux,w_rcw,w_mmu) = ('0','1','0','0','0','0'); // Write Only
 when '0101' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
 when '0110' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL0
 when '0111' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL01
 when '1000' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','0','0'); // Read Only
 when '1001' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','1','0','0'); // Read, Unpriv Execute
 when '1010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','0','0','0'); // Read, Priv Execute
 when '1011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','1','0','0'); // Read, All Execute
 when '1100' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','0','1','1'); // RW
 when '1101' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','1','1','1'); // RW, Unpriv Execute
 when '1110' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','0','1','1'); // RW, Priv Execute
 when '1111' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','1','1','1'); // RW, All Execute

 x = if accdesc.el == EL0 then ux else px;

 // RCW and MMU read permissions.
 (r_rcw, r_mmu) = (r, r);

 // Stage 2 Top Level Permission Attributes.
 case s2pi of
 when '0110' (toplevel0,toplevel1) = ('1','0');
 when '0011' (toplevel0,toplevel1) = ('0','1');
 when '0111' (toplevel0,toplevel1) = ('1','1');
 otherwise (toplevel0,toplevel1) = ('0','0');

 s2perms.r = r;
 s2perms.w = w;
 s2perms.x = x;
 s2perms.r_rcw = r_rcw;
 s2perms.r_mmu = r_mmu;
 s2perms.w_rcw = w_rcw;
 s2perms.w_mmu = w_mmu;
 s2perms.toplevel0 = toplevel0;
 s2perms.toplevel1 = toplevel1;

 return s2perms;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13971
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_faults/AArch64.S2InvalidSL

 // AArch64.S2InvalidSL()
 // =====================
 // Detect invalid configuration of SL field

 boolean AArch64.S2InvalidSL(S2TTWParams walkparams)
 case walkparams.tgx of
 when TGx_4KB
 case walkparams.sl2:walkparams.sl0 of
 when '1x1' return TRUE;
 when '11x' return TRUE;
 when '010' return AArch64.PAMax() < 44;
 when '011' return !IsFeatureImplemented(FEAT_TTST);
 otherwise return FALSE;
 when TGx_16KB
 case walkparams.sl0 of
 when '11' return walkparams.ds == '0';
 when '10' return AArch64.PAMax() < 42;
 otherwise return FALSE;
 when TGx_64KB
 case walkparams.sl0 of
 when '11' return TRUE;
 when '10' return AArch64.PAMax() < 44;
 otherwise return FALSE;

aarch64/translation/vmsa_faults/AArch64.S2OverlayPermissions

 // AArch64.S2OverlayPermissions()
 // ==============================
 // Computes the stage 2 overlay permissions.

 S2AccessControls AArch64.S2OverlayPermissions(Permissions permissions, AccessDescriptor accdesc)
 bit r, w;
 bit r_rcw, w_rcw;
 bit r_mmu, w_mmu;
 bit px, ux;
 bit toplevel0, toplevel1;
 S2AccessControls s2overlay_perms;

 constant integer index = 4 * UInt(permissions.s2po_index);
 bits(4) s2po = S2POR_EL1<index+3 : index>;
 case s2po of
 when '0000' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // No Access
 when '0001' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
 when '0010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO
 when '0011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL1
 when '0100' (r,w,px,ux,w_rcw,w_mmu) = ('0','1','0','0','0','0'); // Write Only
 when '0101' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
 when '0110' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL0
 when '0111' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL01
 when '1000' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','0','0'); // Read Only
 when '1001' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','1','0','0'); // Read, Unpriv Execute
 when '1010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','0','0','0'); // Read, Priv Execute
 when '1011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','1','0','0'); // Read, All Execute
 when '1100' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','0','1','1'); // RW
 when '1101' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','1','1','1'); // RW, Unpriv Execute
 when '1110' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','0','1','1'); // RW, Priv Execute
 when '1111' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','1','1','1'); // RW, All Execute

 x = if accdesc.el == EL0 then ux else px;

 // RCW and MMU read permissions.
 (r_rcw, r_mmu) = (r, r);

 // Stage 2 Top Level Permission Attributes.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13972
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 case s2po of
 when '0110' (toplevel0,toplevel1) = ('1','0');
 when '0011' (toplevel0,toplevel1) = ('0','1');
 when '0111' (toplevel0,toplevel1) = ('1','1');
 otherwise (toplevel0,toplevel1) = ('0','0');

 s2overlay_perms.or = r;
 s2overlay_perms.ow = w;
 s2overlay_perms.ox = x;
 s2overlay_perms.or_rcw = r_rcw;
 s2overlay_perms.ow_rcw = w_rcw;
 s2overlay_perms.or_mmu = r_mmu;
 s2overlay_perms.ow_mmu = w_mmu;
 s2overlay_perms.toplevel0 = toplevel0;
 s2overlay_perms.toplevel1 = toplevel1;

 return s2overlay_perms;

aarch64/translation/vmsa_faults/AArch64.S2TxSZFaults

 // AArch64.S2TxSZFaults()
 // ======================
 // Detect whether configuration of stage 2 TxSZ field generates a fault

 boolean AArch64.S2TxSZFaults(S2TTWParams walkparams, boolean s1aarch64)
 mintxsz = AArch64.S2MinTxSZ(walkparams.d128, walkparams.ds, walkparams.tgx, s1aarch64);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

 if UInt(walkparams.txsz) < mintxsz then
 return (IsFeatureImplemented(FEAT_LPA) ||
 boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum");
 if UInt(walkparams.txsz) > maxtxsz then
 return boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum";

 return FALSE;

aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange

 // AArch64.VAIsOutOfRange()
 // ========================
 // Check bits not resolved by translation are identical and of accepted value

 boolean AArch64.VAIsOutOfRange(bits(64) va_in, AccessType acctype,
 Regime regime, S1TTWParams walkparams)
 bits(64) va = va_in;

 constant integer addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);

 // If the VA has a Logical Address Tag then the bits holding the Logical Address Tag are
 // ignored when checking if the address is out of range.
 if walkparams.mtx == '1' && acctype != AccessType_IFETCH then
 va<59:56> = if AArch64.GetVARange(va) == VARange_UPPER then '1111' else '0000';

 // Input Address size
 constant integer iasize = AArch64.IASize(walkparams.txsz);

 // The min value of TxSZ can be 8, with LVA3 implemented.
 // If TxSZ is set to 8 iasize becomes 64 - 8 = 56
 // If tbi is also set, addrtop becomes 55
 // Then the return statements check va<56:55>
 // The check here is to guard against this corner case.
 if addrtop < iasize then
 return FALSE;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13973
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if HasUnprivileged(regime) then
 if AArch64.GetVARange(va) == VARange_LOWER then
 return !IsZero(va<addrtop:iasize>);
 else
 return !IsOnes(va<addrtop:iasize>);
 else
 return !IsZero(va<addrtop:iasize>);

aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs

 // AArch64.S2ApplyFWBMemAttrs()
 // ============================
 // Apply stage 2 forced Write-Back on stage 1 memory attributes.

 MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs, S2TTWParams walkparams,
 bits(N) descriptor)
 MemoryAttributes memattrs;
 s2_attr = descriptor<5:2>;
 s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
 s2_fnxs = descriptor<11>;

 if s2_attr<2> == '0' then // S2 Device, S1 any
 s2_device = DecodeDevice(s2_attr<1:0>);
 memattrs.memtype = MemType_Device;
 if s1_memattrs.memtype == MemType_Device then
 memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_device);
 else
 memattrs.device = s2_device;

 memattrs.xs = s1_memattrs.xs;

 elsif s2_attr<1:0> == '11' then // S2 attr = S1 attr
 memattrs = s1_memattrs;

 elsif s2_attr<1:0> == '10' then // Force writeback
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.outer.attrs = MemAttr_WB;

 if (s1_memattrs.memtype == MemType_Normal &&
 s1_memattrs.inner.attrs != MemAttr_NC) then
 memattrs.inner.hints = s1_memattrs.inner.hints;
 memattrs.inner.transient = s1_memattrs.inner.transient;
 else
 memattrs.inner.hints = MemHint_RWA;
 memattrs.inner.transient = FALSE;

 if (s1_memattrs.memtype == MemType_Normal &&
 s1_memattrs.outer.attrs != MemAttr_NC) then
 memattrs.outer.hints = s1_memattrs.outer.hints;
 memattrs.outer.transient = s1_memattrs.outer.transient;
 else
 memattrs.outer.hints = MemHint_RWA;
 memattrs.outer.transient = FALSE;

 memattrs.xs = '0';

 else // Non-cacheable unless S1 is device
 if s1_memattrs.memtype == MemType_Device then
 memattrs = s1_memattrs;
 else
 MemAttrHints cacheability_attr;
 cacheability_attr.attrs = MemAttr_NC;

 memattrs.memtype = MemType_Normal;
 memattrs.inner = cacheability_attr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13974
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 memattrs.outer = cacheability_attr;

 memattrs.xs = s1_memattrs.xs;

 s2_shareability = DecodeShareability(s2_sh);
 memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability, s2_shareability);
 memattrs.tags = S2MemTagType(memattrs, s1_memattrs.tags);
 memattrs.notagaccess = (s2_attr<3:1> == '111' && memattrs.tags == MemTag_AllocationTagged);

 if s2_fnxs == '1' then
 memattrs.xs = '0';

 memattrs.shareability = EffectiveShareability(memattrs);
 return memattrs;

aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext

 // AArch64.GetS1TLBContext()
 // =========================
 // Gather translation context for accesses with VA to match against TLB entries

 TLBContext AArch64.GetS1TLBContext(Regime regime, SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 case regime of
 when Regime_EL3 tlbcontext = AArch64.TLBContextEL3(ss, va, tg);
 when Regime_EL2 tlbcontext = AArch64.TLBContextEL2(ss, va, tg);
 when Regime_EL20 tlbcontext = AArch64.TLBContextEL20(ss, va, tg);
 when Regime_EL10 tlbcontext = AArch64.TLBContextEL10(ss, va, tg);

 tlbcontext.includes_s1 = TRUE;
 // The following may be amended for EL1&0 Regime if caching of stage 2 is successful
 tlbcontext.includes_s2 = FALSE;
 // The following may be amended if Granule Protection Check passes
 tlbcontext.includes_gpt = FALSE;
 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext

 // AArch64.GetS2TLBContext()
 // =========================
 // Gather translation context for accesses with IPA to match against TLB entries

 TLBContext AArch64.GetS2TLBContext(SecurityState ss, FullAddress ipa, TGx tg)
 assert EL2Enabled();

 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL10;
 tlbcontext.ipaspace = ipa.paspace;
 tlbcontext.vmid = VMID[];
 tlbcontext.tg = tg;
 tlbcontext.ia = ZeroExtend(ipa.address, 64);
 if IsFeatureImplemented(FEAT_TTCNP) then
 tlbcontext.cnp = if ipa.paspace == PAS_Secure then VSTTBR_EL2.CnP else VTTBR_EL2.CnP;
 else
 tlbcontext.cnp = '0';

 tlbcontext.includes_s1 = FALSE;
 tlbcontext.includes_s2 = TRUE;
 // This amy be amended if Granule Protection Check passes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13975
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 tlbcontext.includes_gpt = FALSE;
 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10

 // AArch64.TLBContextEL10()
 // ========================
 // Gather translation context for accesses under EL10 regime to match against TLB entries

 TLBContext AArch64.TLBContextEL10(SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL10;
 tlbcontext.vmid = VMID[];

 tlbcontext.asid = if TCR_EL1.A1 == '0' then TTBR0_EL1.ASID else TTBR1_EL1.ASID;

 if TCR_EL1.AS == '0' then
 tlbcontext.asid<15:8> = Zeros(8);
 tlbcontext.tg = tg;
 tlbcontext.ia = va;

 if IsFeatureImplemented(FEAT_TTCNP) then
 if AArch64.GetVARange(va) == VARange_LOWER then
 tlbcontext.cnp = TTBR0_EL1.CnP;
 else
 tlbcontext.cnp = TTBR1_EL1.CnP;
 else
 tlbcontext.cnp = '0';

 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2

 // AArch64.TLBContextEL2()
 // =======================
 // Gather translation context for accesses under EL2 regime to match against TLB entries

 TLBContext AArch64.TLBContextEL2(SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL2;
 tlbcontext.tg = tg;
 tlbcontext.ia = va;
 tlbcontext.cnp = if IsFeatureImplemented(FEAT_TTCNP) then TTBR0_EL2.CnP else '0';

 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL20

 // AArch64.TLBContextEL20()
 // ========================
 // Gather translation context for accesses under EL20 regime to match against TLB entries

 TLBContext AArch64.TLBContextEL20(SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL20;

 tlbcontext.asid = if TCR_EL2.A1 == '0' then TTBR0_EL2.ASID else TTBR1_EL2.ASID;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13976
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 if TCR_EL2.AS == '0' then
 tlbcontext.asid<15:8> = Zeros(8);
 tlbcontext.tg = tg;
 tlbcontext.ia = va;

 if IsFeatureImplemented(FEAT_TTCNP) then
 if AArch64.GetVARange(va) == VARange_LOWER then
 tlbcontext.cnp = TTBR0_EL2.CnP;
 else
 tlbcontext.cnp = TTBR1_EL2.CnP;
 else
 tlbcontext.cnp = '0';

 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL3

 // AArch64.TLBContextEL3()
 // =======================
 // Gather translation context for accesses under EL3 regime to match against TLB entries

 TLBContext AArch64.TLBContextEL3(SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL3;
 tlbcontext.tg = tg;
 tlbcontext.ia = va;
 tlbcontext.cnp = if IsFeatureImplemented(FEAT_TTCNP) then TTBR0_EL3.CnP else '0';

 return tlbcontext;

aarch64/translation/vmsa_translation/AArch64.FullTranslate

 // AArch64.FullTranslate()
 // =======================
 // Address translation as specified by VMSA
 // Alignment check NOT due to memory type is expected to be done before translation

 AddressDescriptor AArch64.FullTranslate(bits(64) va, AccessDescriptor accdesc, boolean aligned)
 Regime regime = TranslationRegime(accdesc.el);
 FaultRecord fault = NoFault(accdesc);

 AddressDescriptor ipa;
 (fault, ipa) = AArch64.S1Translate(fault, regime, va, aligned, accdesc);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(va, fault);

 if accdesc.ss == SS_Realm then
 assert EL2Enabled();
 if regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 AddressDescriptor pa;
 (fault, pa) = AArch64.S2Translate(fault, ipa, s1aarch64, aligned, accdesc);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(va, fault);
 else
 return pa;
 else
 return ipa;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13977
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc

 // AArch64.MemSwapTableDesc()
 // ==========================
 // Perform HW update of table descriptor as an atomic operation

 (FaultRecord, bits(N)) AArch64.MemSwapTableDesc(FaultRecord fault_in, bits(N) prev_desc,
 bits(N) new_desc, bit ee,
 AccessDescriptor descaccess,
 AddressDescriptor descpaddr)
 FaultRecord fault = fault_in;
 boolean iswrite;

 if IsFeatureImplemented(FEAT_RME) then
 fault.gpcf = GranuleProtectionCheck(descpaddr, descaccess);
 if fault.gpcf.gpf != GPCF_None then
 fault.statuscode = Fault_GPCFOnWalk;
 fault.paddress = descpaddr.paddress;
 fault.gpcfs2walk = fault.secondstage;
 return (fault, bits(N) UNKNOWN);

 // All observers in the shareability domain observe the
 // following memory read and write accesses atomically.
 bits(N) mem_desc;
 PhysMemRetStatus memstatus;
 (memstatus, mem_desc) = PhysMemRead(descpaddr, N DIV 8, descaccess);

 if ee == '1' then
 mem_desc = BigEndianReverse(mem_desc);

 if IsFault(memstatus) then
 iswrite = FALSE;
 fault = HandleExternalTTWAbort(memstatus, iswrite, descpaddr, descaccess, N DIV 8, fault);
 if IsFault(fault.statuscode) then
 return (fault, bits(N) UNKNOWN);

 if mem_desc == prev_desc then
 ordered_new_desc = if ee == '1' then BigEndianReverse(new_desc) else new_desc;
 memstatus = PhysMemWrite(descpaddr, N DIV 8, descaccess, ordered_new_desc);

 if IsFault(memstatus) then
 iswrite = TRUE;
 fault = HandleExternalTTWAbort(memstatus, iswrite, descpaddr, descaccess, N DIV 8,
 fault);

 if IsFault(fault.statuscode) then
 return (fault, bits(N) UNKNOWN);

 // Reflect what is now in memory (in little endian format)
 mem_desc = new_desc;

 return (fault, mem_desc);

aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput

 // AArch64.S1DisabledOutput()
 // ==========================
 // Map the VA to IPA/PA and assign default memory attributes

 (FaultRecord, AddressDescriptor) AArch64.S1DisabledOutput(FaultRecord fault_in, Regime regime,
 bits(64) va_in, AccessDescriptor accdesc,
 boolean aligned)

 bits(64) va = va_in;
 walkparams = AArch64.GetS1TTWParams(regime, accdesc.ss, va);
 FaultRecord fault = fault_in;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13978
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 // No memory page is guarded when stage 1 address translation is disabled
 SetInGuardedPage(FALSE);

 // Output Address
 FullAddress oa;
 oa.address = va<55:0>;
 case accdesc.ss of
 when SS_Secure oa.paspace = PAS_Secure;
 when SS_NonSecure oa.paspace = PAS_NonSecure;
 when SS_Root oa.paspace = PAS_Root;
 when SS_Realm oa.paspace = PAS_Realm;

 MemoryAttributes memattrs;
 if regime == Regime_EL10 && EL2Enabled() && walkparams.dc == '1' then
 MemAttrHints default_cacheability;
 default_cacheability.attrs = MemAttr_WB;
 default_cacheability.hints = MemHint_RWA;
 default_cacheability.transient = FALSE;

 memattrs.memtype = MemType_Normal;
 memattrs.outer = default_cacheability;
 memattrs.inner = default_cacheability;
 memattrs.shareability = Shareability_NSH;
 if walkparams.dct == '1' then
 memattrs.tags = MemTag_AllocationTagged;
 elsif walkparams.mtx == '1' then
 memattrs.tags = MemTag_CanonicallyTagged;
 else
 memattrs.tags = MemTag_Untagged;
 memattrs.xs = '0';
 elsif accdesc.acctype == AccessType_IFETCH then
 MemAttrHints i_cache_attr;
 if AArch64.S1ICacheEnabled(regime) then
 i_cache_attr.attrs = MemAttr_WT;
 i_cache_attr.hints = MemHint_RA;
 i_cache_attr.transient = FALSE;
 else
 i_cache_attr.attrs = MemAttr_NC;

 memattrs.memtype = MemType_Normal;
 memattrs.outer = i_cache_attr;
 memattrs.inner = i_cache_attr;
 memattrs.shareability = Shareability_OSH;
 memattrs.tags = MemTag_Untagged;
 memattrs.xs = '1';
 else
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 if walkparams.mtx == '1' then
 memattrs.tags = MemTag_CanonicallyTagged;
 else
 memattrs.tags = MemTag_Untagged;
 memattrs.xs = '1';
 memattrs.notagaccess = FALSE;

 if walkparams.mtx == '1' && walkparams.tbi == '0' && accdesc.acctype != AccessType_IFETCH then
 // For the purpose of the checks in this function, the MTE tag bits are ignored.
 va<59:56> = if HasUnprivileged(regime) then Replicate(va<55>, 4) else '0000';

 fault.level = 0;
 constant integer addrtop = AArch64.AddrTop(walkparams.tbid, accdesc.acctype, walkparams.tbi);
 constant integer pamax = AArch64.PAMax();

 if !IsZero(va<addrtop:pamax>) then
 fault.statuscode = Fault_AddressSize;
 elsif AArch64.S1HasAlignmentFault(accdesc, aligned, walkparams.ntlsmd, memattrs) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13979
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 fault.statuscode = Fault_Alignment;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);
 else
 ipa = CreateAddressDescriptor(va_in, oa, memattrs);
 ipa.mecid = AArch64.S1DisabledOutputMECID(walkparams, regime, ipa.paddress.paspace);
 return (fault, ipa);

aarch64/translation/vmsa_translation/AArch64.S1Translate

 // AArch64.S1Translate()
 // =====================
 // Translate VA to IPA/PA depending on the regime

 (FaultRecord, AddressDescriptor) AArch64.S1Translate(FaultRecord fault_in, Regime regime,
 bits(64) va, boolean aligned,
 AccessDescriptor accdesc)
 FaultRecord fault = fault_in;
 // Prepare fault fields in case a fault is detected
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 if !AArch64.S1Enabled(regime, accdesc.acctype) then
 return AArch64.S1DisabledOutput(fault, regime, va, accdesc, aligned);

 walkparams = AArch64.GetS1TTWParams(regime, accdesc.ss, va);

 constant integer s1mintxsz = AArch64.S1MinTxSZ(regime, walkparams.d128,
 walkparams.ds, walkparams.tgx);
 constant integer s1maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 if AArch64.S1TxSZFaults(regime, walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 elsif UInt(walkparams.txsz) < s1mintxsz then
 walkparams.txsz = s1mintxsz<5:0>;
 elsif UInt(walkparams.txsz) > s1maxtxsz then
 walkparams.txsz = s1maxtxsz<5:0>;

 if AArch64.VAIsOutOfRange(va, accdesc.acctype, regime, walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 if accdesc.el == EL0 && walkparams.e0pd == '1' then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 if (IsFeatureImplemented(FEAT_TME) && accdesc.el == EL0 && walkparams.nfd == '1' &&
 accdesc.transactional) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 if (IsFeatureImplemented(FEAT_SVE) && accdesc.el == EL0 && walkparams.nfd == '1' &&
 ((accdesc.nonfault && accdesc.contiguous) ||
 (accdesc.firstfault && !accdesc.first && !accdesc.contiguous))) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 AddressDescriptor descipaddr;
 TTWState walkstate;
 bits(128) descriptor;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13980
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bits(128) new_desc;
 bits(128) mem_desc;
 repeat
 if walkparams.d128 == '1' then
 (fault, descipaddr, walkstate, descriptor) = AArch64.S1Walk(fault, walkparams, va,
 regime, accdesc, 128);
 else
 (fault, descipaddr, walkstate, descriptor<63:0>) = AArch64.S1Walk(fault, walkparams,
 va, regime, accdesc,
 64);
 descriptor<127:64> = Zeros(64);
 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 if accdesc.acctype == AccessType_IFETCH then
 // Flag the fetched instruction is from a guarded page
 SetInGuardedPage(walkstate.guardedpage == '1');

 if AArch64.S1HasAlignmentFault(accdesc, aligned, walkparams.ntlsmd,
 walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;

 if fault.statuscode == Fault_None then
 fault = AArch64.S1CheckPermissions(fault, regime, walkstate, walkparams, accdesc);

 new_desc = descriptor;
 if walkparams.ha == '1' && AArch64.SettingAccessFlagPermitted(fault) then
 // Set descriptor AF bit
 new_desc<10> = '1';

 // If HW update of dirty bit is enabled, the walk state permissions
 // will already reflect a configuration permitting writes.
 // The update of the descriptor occurs only if the descriptor bits in
 // memory do not reflect that and the access instigates a write.

 if (AArch64.SettingDirtyStatePermitted(fault) &&
 walkparams.ha == '1' &&
 walkparams.hd == '1' &&
 (walkparams.pie == '1' || descriptor<51> == '1') &&
 accdesc.write &&
 !(accdesc.acctype IN {AccessType_AT, AccessType_IC, AccessType_DC})) then
 // Clear descriptor AP[2]/nDirty bit permitting stage 1 writes
 new_desc<7> = '0';

 // Either the access flag was clear or AP[2]/nDirty is set
 if new_desc != descriptor then
 AddressDescriptor descpaddr;
 descaccess = CreateAccDescTTEUpdate(accdesc);
 if regime == Regime_EL10 && EL2Enabled() then
 FaultRecord s2fault;
 s1aarch64 = TRUE;
 s2aligned = TRUE;
 (s2fault, descpaddr) = AArch64.S2Translate(fault, descipaddr, s1aarch64, s2aligned,
 descaccess);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN);

 else
 descpaddr = descipaddr;
 if walkparams.d128 == '1' then
 (fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
 walkparams.ee, descaccess, descpaddr);
 else
 (fault, mem_desc<63:0>) = AArch64.MemSwapTableDesc(fault, descriptor<63:0>,
 new_desc<63:0>, walkparams.ee,
 descaccess, descpaddr);
 mem_desc<127:64> = Zeros(64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13981
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 until new_desc == descriptor || mem_desc == new_desc;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 // Output Address
 oa = StageOA(va, walkparams.d128, walkparams.tgx, walkstate);
 MemoryAttributes memattrs;
 if (accdesc.acctype == AccessType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime))) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;
 elsif (accdesc.acctype != AccessType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
 walkstate.memattrs.memtype == MemType_Normal) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;

 // The effect of SCTLR_ELx.C when '0' is Constrained UNPREDICTABLE
 // on the Tagged attribute
 if (IsFeatureImplemented(FEAT_MTE2) &&
 walkstate.memattrs.tags == MemTag_AllocationTagged &&
 !ConstrainUnpredictableBool(Unpredictable_S1CTAGGED)) then
 memattrs.tags = MemTag_Untagged;
 else
 memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 memattrs.shareability = walkstate.memattrs.shareability;
 else
 memattrs.shareability = EffectiveShareability(memattrs);

 if accdesc.ls64 && memattrs.memtype == MemType_Normal then
 if memattrs.inner.attrs != MemAttr_NC || memattrs.outer.attrs != MemAttr_NC then
 fault.statuscode = Fault_Exclusive;
 return (fault, AddressDescriptor UNKNOWN);

 ipa = CreateAddressDescriptor(va, oa, memattrs);
 ipa.s1assured = walkstate.s1assured;
 varange = AArch64.GetVARange(va);
 ipa.mecid = AArch64.S1OutputMECID(walkparams, regime, varange, ipa.paddress.paspace,
 descriptor);
 return (fault, ipa);

aarch64/translation/vmsa_translation/AArch64.S2Translate

 // AArch64.S2Translate()
 // =====================
 // Translate stage 1 IPA to PA and combine memory attributes

 (FaultRecord, AddressDescriptor) AArch64.S2Translate(FaultRecord fault_in, AddressDescriptor ipa,
 boolean s1aarch64, boolean aligned,
 AccessDescriptor accdesc)

 walkparams = AArch64.GetS2TTWParams(accdesc.ss, ipa.paddress.paspace, s1aarch64);
 FaultRecord fault = fault_in;
 boolean s2fs1mro;

 // Prepare fault fields in case a fault is detected
 fault.statuscode = Fault_None; // Ignore any faults from stage 1
 fault.secondstage = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13982
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 fault.s2fs1walk = accdesc.acctype == AccessType_TTW;
 fault.ipaddress = ipa.paddress;

 if walkparams.vm != '1' then
 // Stage 2 translation is disabled
 return (fault, ipa);

 constant integer s2mintxsz = AArch64.S2MinTxSZ(walkparams.d128, walkparams.ds,
 walkparams.tgx, s1aarch64);
 constant integer s2maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 if AArch64.S2TxSZFaults(walkparams, s1aarch64) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 elsif UInt(walkparams.txsz) < s2mintxsz then
 walkparams.txsz = s2mintxsz<5:0>;
 elsif UInt(walkparams.txsz) > s2maxtxsz then
 walkparams.txsz = s2maxtxsz<5:0>;

 if (walkparams.d128 == '0' &&
 (AArch64.S2InvalidSL(walkparams) || AArch64.S2InconsistentSL(walkparams))) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 if AArch64.IPAIsOutOfRange(ipa.paddress.address, walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 AddressDescriptor descpaddr;
 TTWState walkstate;
 bits(128) descriptor;
 bits(128) new_desc;
 bits(128) mem_desc;
 repeat
 if walkparams.d128 == '1' then
 (fault, descpaddr, walkstate, descriptor) = AArch64.S2Walk(fault, ipa, walkparams,
 accdesc, 128);
 else
 (fault, descpaddr, walkstate, descriptor<63:0>) = AArch64.S2Walk(fault, ipa,
 walkparams, accdesc,
 64);
 descriptor<127:64> = Zeros(64);
 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 if AArch64.S2HasAlignmentFault(accdesc, aligned, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;

 if fault.statuscode == Fault_None then
 (fault, s2fs1mro) = AArch64.S2CheckPermissions(fault, walkstate, walkparams, ipa,
 accdesc);

 new_desc = descriptor;
 if walkparams.ha == '1' && AArch64.SettingAccessFlagPermitted(fault) then
 // Set descriptor AF bit
 new_desc<10> = '1';

 // If HW update of dirty bit is enabled, the walk state permissions
 // will already reflect a configuration permitting writes.
 // The update of the descriptor occurs only if the descriptor bits in
 // memory do not reflect that and the access instigates a write.

 if (AArch64.SettingDirtyStatePermitted(fault) &&
 walkparams.ha == '1' &&
 walkparams.hd == '1' &&
 (walkparams.s2pie == '1' || descriptor<51> == '1') &&
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13983
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 accdesc.write &&
 !(accdesc.acctype IN {AccessType_AT, AccessType_IC, AccessType_DC})) then
 // Set descriptor S2AP[1]/Dirty bit permitting stage 2 writes
 new_desc<7> = '1';

 // Either the access flag was clear or S2AP[1]/Dirty is clear
 if new_desc != descriptor then
 AccessDescriptor descaccess = CreateAccDescTTEUpdate(accdesc);
 if walkparams.d128 == '1' then
 (fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
 walkparams.ee, descaccess,
 descpaddr);
 else
 (fault, mem_desc<63:0>) = AArch64.MemSwapTableDesc(fault, descriptor<63:0>,
 new_desc<63:0>, walkparams.ee,
 descaccess, descpaddr);
 mem_desc<127:64> = Zeros(64);

 until new_desc == descriptor || mem_desc == new_desc;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 ipa_64 = ZeroExtend(ipa.paddress.address, 64);
 // Output Address
 oa = StageOA(ipa_64, walkparams.d128, walkparams.tgx, walkstate);
 MemoryAttributes s2_memattrs;
 if ((accdesc.acctype == AccessType_TTW &&
 walkstate.memattrs.memtype == MemType_Device && walkparams.ptw == '0') ||
 (accdesc.acctype == AccessType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||
 (accdesc.acctype != AccessType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && !S2DCacheEnabled())) then
 // Treat memory attributes as Normal Non-Cacheable
 s2_memattrs = NormalNCMemAttr();
 s2_memattrs.xs = walkstate.memattrs.xs;
 else
 s2_memattrs = walkstate.memattrs;

 if accdesc.ls64 && s2_memattrs.memtype == MemType_Normal then
 if s2_memattrs.inner.attrs != MemAttr_NC || s2_memattrs.outer.attrs != MemAttr_NC then
 fault.statuscode = Fault_Exclusive;
 return (fault, AddressDescriptor UNKNOWN);

 s2aarch64 = TRUE;
 MemoryAttributes memattrs;
 if walkparams.fwb == '0' then
 memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs, s2aarch64);
 else
 memattrs = s2_memattrs;

 pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);
 pa.s2fs1mro = s2fs1mro;
 pa.mecid = AArch64.S2OutputMECID(walkparams, pa.paddress.paspace, descriptor);
 return (fault, pa);

aarch64/translation/vmsa_translation/AArch64.SettingAccessFlagPermitted

 // AArch64.SettingAccessFlagPermitted()
 // ====================================
 // Determine whether the access flag could be set by HW given the fault status

 boolean AArch64.SettingAccessFlagPermitted(FaultRecord fault)
 if fault.statuscode == Fault_None then
 return TRUE;
 elsif fault.statuscode IN {Fault_Alignment, Fault_Permission} then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13984
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return ConstrainUnpredictableBool(Unpredictable_AFUPDATE);
 else
 return FALSE;

aarch64/translation/vmsa_translation/AArch64.SettingDirtyStatePermitted

 // AArch64.SettingDirtyStatePermitted()
 // ====================================
 // Determine whether the dirty state could be set by HW given the fault status

 boolean AArch64.SettingDirtyStatePermitted(FaultRecord fault)
 if fault.statuscode == Fault_None then
 return TRUE;
 elsif fault.statuscode == Fault_Alignment then
 return ConstrainUnpredictableBool(Unpredictable_DBUPDATE);
 else
 return FALSE;

aarch64/translation/vmsa_translation/AArch64.TranslateAddress

 // AArch64.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch64.TranslateAddress(bits(64) va, AccessDescriptor accdesc,
 boolean aligned, integer size)
 if (SPESampleInFlight && !(accdesc.acctype IN {AccessType_IFETCH,
 AccessType_SPE})) then
 SPEStartCounter(SPECounterPosTranslationLatency);

 AddressDescriptor result = AArch64.FullTranslate(va, accdesc, aligned);

 if !IsFault(result) && accdesc.acctype != AccessType_IFETCH then
 result.fault = AArch64.CheckDebug(va, accdesc, size);

 if (IsFeatureImplemented(FEAT_RME) && !IsFault(result) &&
 (accdesc.acctype != AccessType_DC ||
 boolean IMPLEMENTATION_DEFINED "GPC Fault on DC operations")) then
 result.fault.gpcf = GranuleProtectionCheck(result, accdesc);

 if result.fault.gpcf.gpf != GPCF_None then
 result.fault.statuscode = Fault_GPCFOnOutput;
 result.fault.paddress = result.paddress;

 if !IsFault(result) && accdesc.acctype == AccessType_IFETCH then
 result.fault = AArch64.CheckDebug(va, accdesc, size);

 if (SPESampleInFlight && !(accdesc.acctype IN {AccessType_IFETCH,
 AccessType_SPE})) then
 SPEStopCounter(SPECounterPosTranslationLatency);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(va, 64);

 return result;

aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported

 // AArch64.BlockDescSupported()
 // ============================
 // Determine whether a block descriptor is valid for the given granule size
 // and level

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13985
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 boolean AArch64.BlockDescSupported(bit d128, bit ds, TGx tgx, integer level)
 case tgx of
 when TGx_4KB return ((level == 0 && (ds == '1' || d128 == '1')) ||
 level == 1 ||
 level == 2);
 when TGx_16KB return ((level == 1 && (ds == '1' || d128 == '1')) ||
 level == 2);
 when TGx_64KB return ((level == 1 && (d128 == '1' || AArch64.PAMax() >= 52)) ||
 level == 2);
 return FALSE;

aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults

 // AArch64.BlocknTFaults()
 // =======================
 // Identify whether the nT bit in a block descriptor is effectively set
 // causing a translation fault

 boolean AArch64.BlocknTFaults(bit d128, bits(N) descriptor)
 bit nT;
 if !IsFeatureImplemented(FEAT_BBM) then
 return FALSE;
 nT = if d128 == '1' then descriptor<6> else descriptor<16>;
 bbm_level = AArch64.BlockBBMSupportLevel();
 nT_faults = (boolean IMPLEMENTATION_DEFINED
 "BBM level 1 or 2 support nT bit causes Translation Fault");

 return bbm_level IN {1, 2} && nT == '1' && nT_faults;

aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit

 // AArch64.ContiguousBit()
 // =======================
 // Get the value of the contiguous bit

 bit AArch64.ContiguousBit(TGx tgx, bit d128, integer level, bits(N) descriptor)
 if d128 == '1' then
 if (tgx == TGx_64KB && level == 1) || (tgx == TGx_4KB && level == 0) then
 return '0'; // RES0
 else
 return descriptor<111>;
 // When using TGx 64KB and FEAT_LPA is implememted,
 // the Contiguous bit is RES0 for Block descriptors at level 1

 if tgx == TGx_64KB && level == 1 then
 return '0'; // RES0

 // When the effective value of TCR_ELx.DS is '1',
 // the Contiguous bit is RES0 for all the following:
 // * For TGx 4KB, Block descriptors at level 0
 // * For TGx 16KB, Block descriptors at level 1

 if tgx == TGx_16KB && level == 1 then
 return '0'; // RES0

 if tgx == TGx_4KB && level == 0 then
 return '0'; // RES0

 return descriptor<52>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13986
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType

 // AArch64.DecodeDescriptorType()
 // ==============================
 // Determine whether the descriptor is a page, block or table

 DescriptorType AArch64.DecodeDescriptorType(bits(N) descriptor, bit d128, bit ds,
 TGx tgx, integer level)
 if descriptor<0> == '0' then
 return DescriptorType_Invalid;
 elsif d128 == '1' then
 bits(2) skl = descriptor<110:109>;
 if tgx IN {TGx_16KB, TGx_64KB} && UInt(skl) == 3 then
 return DescriptorType_Invalid;

 integer effective_level = level + UInt(skl);
 if effective_level > FINAL_LEVEL then
 return DescriptorType_Invalid;
 elsif effective_level == FINAL_LEVEL then
 return DescriptorType_Leaf;
 else
 return DescriptorType_Table;
 else
 if descriptor<1> == '1' then
 if level == FINAL_LEVEL then
 return DescriptorType_Leaf;
 else
 return DescriptorType_Table;
 elsif descriptor<1> == '0' then
 if AArch64.BlockDescSupported(d128, ds, tgx, level) then
 return DescriptorType_Leaf;
 else
 return DescriptorType_Invalid;
 Unreachable();

aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms

 // AArch64.S1ApplyOutputPerms()
 // ============================
 // Apply output permissions encoded in stage 1 page/block descriptors

 Permissions AArch64.S1ApplyOutputPerms(Permissions permissions_in, bits(N) descriptor,
 Regime regime, S1TTWParams walkparams)
 Permissions permissions = permissions_in;

 bits (4) pi_index;
 if walkparams.pie == '1' then
 if walkparams.d128 == '1' then
 pi_index = descriptor<118:115>;
 else
 pi_index = descriptor<54:53>:descriptor<51>:descriptor<6>;
 permissions.ppi = Elem[walkparams.pir, UInt(pi_index), 4];
 permissions.upi = Elem[walkparams.pire0, UInt(pi_index), 4];
 permissions.ndirty = descriptor<7>;
 else
 if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
 permissions.ap<2:1> = descriptor<7>:'0';
 permissions.pxn = descriptor<54>;
 elsif HasUnprivileged(regime) then
 permissions.ap<2:1> = descriptor<7:6>;
 permissions.uxn = descriptor<54>;
 permissions.pxn = descriptor<53>;
 else
 permissions.ap<2:1> = descriptor<7>:'1';
 permissions.xn = descriptor<54>;
 // Descriptors marked with DBM set have the effective value of AP[2] cleared.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13987
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 // This implies no Permission faults caused by lack of write permissions are
 // reported, and the Dirty bit can be set.
 if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then
 permissions.ap<2> = '0';

 if IsFeatureImplemented(FEAT_S1POE) then
 if walkparams.d128 == '1' then
 permissions.po_index = descriptor<124:121>;
 else
 permissions.po_index = '0':descriptor<62:60>;

 return permissions;

aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms

 // AArch64.S1ApplyTablePerms()
 // ===========================
 // Apply hierarchical permissions encoded in stage 1 table descriptors

 Permissions AArch64.S1ApplyTablePerms(Permissions permissions_in, bits(N) descriptor,
 Regime regime, S1TTWParams walkparams)
 Permissions permissions = permissions_in;
 bits(2) ap_table;
 bit pxn_table;
 bit uxn_table;
 bit xn_table;
 if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
 if walkparams.d128 == '1' then
 ap_table = descriptor<126>:'0';
 pxn_table = descriptor<124>;
 else
 ap_table = descriptor<62>:'0';
 pxn_table = descriptor<60>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.pxn_table = permissions.pxn_table OR pxn_table;

 elsif HasUnprivileged(regime) then
 if walkparams.d128 == '1' then
 ap_table = descriptor<126:125>;
 uxn_table = descriptor<124>;
 pxn_table = descriptor<123>;
 else
 ap_table = descriptor<62:61>;
 uxn_table = descriptor<60>;
 pxn_table = descriptor<59>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.uxn_table = permissions.uxn_table OR uxn_table;
 permissions.pxn_table = permissions.pxn_table OR pxn_table;
 else
 if walkparams.d128 == '1' then
 ap_table = descriptor<126>:'0';
 xn_table = descriptor<124>;
 else
 ap_table = descriptor<62>:'0';
 xn_table = descriptor<60>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.xn_table = permissions.xn_table OR xn_table;

 return permissions;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13988
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms

 // AArch64.S2ApplyOutputPerms()
 // ============================
 // Apply output permissions encoded in stage 2 page/block descriptors

 Permissions AArch64.S2ApplyOutputPerms(bits(N) descriptor, S2TTWParams walkparams)
 Permissions permissions;
 bits(4) s2pi_index;
 if walkparams.s2pie == '1' then
 if walkparams.d128 == '1' then
 s2pi_index = descriptor<118:115>;
 else
 s2pi_index = descriptor<54:53,51,6>;
 permissions.s2pi = Elem[walkparams.s2pir, UInt(s2pi_index), 4];
 permissions.s2dirty = descriptor<7>;
 else
 permissions.s2ap = descriptor<7:6>;
 if walkparams.d128 == '1' then
 permissions.s2xn = descriptor<118>;
 else
 permissions.s2xn = descriptor<54>;

 if IsFeatureImplemented(FEAT_XNX) then
 if walkparams.d128 == '1' then
 permissions.s2xnx = descriptor<117>;
 else
 permissions.s2xnx = descriptor<53>;
 else
 permissions.s2xnx = '0';

 // Descriptors marked with DBM set have the effective value of S2AP[1] set.
 // This implies no Permission faults caused by lack of write permissions are
 // reported, and the Dirty bit can be set.
 bit desc_dbm;
 if walkparams.d128 == '1' then
 desc_dbm = descriptor<115>;
 else
 desc_dbm = descriptor<51>;
 if walkparams.ha == '1' && walkparams.hd == '1' && desc_dbm == '1' then
 permissions.s2ap<1> = '1';
 if IsFeatureImplemented(FEAT_S2POE) then
 if walkparams.d128 == '1' then
 permissions.s2po_index = descriptor<124:121>;
 else
 permissions.s2po_index = descriptor<62:59>;
 return permissions;

aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState

 // AArch64.S1InitialTTWState()
 // ===========================
 // Set properties of first access to translation tables in stage 1

 TTWState AArch64.S1InitialTTWState(S1TTWParams walkparams, bits(64) va, Regime regime,
 SecurityState ss)
 TTWState walkstate;
 FullAddress tablebase;
 Permissions permissions;
 bits(128) ttbr;

 ttbr = AArch64.S1TTBR(regime, va);
 case ss of
 when SS_Secure tablebase.paspace = PAS_Secure;
 when SS_NonSecure tablebase.paspace = PAS_NonSecure;
 when SS_Root tablebase.paspace = PAS_Root;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13989
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when SS_Realm tablebase.paspace = PAS_Realm;

 tablebase.address = AArch64.S1TTBaseAddress(walkparams, regime, ttbr);

 permissions.ap_table = '00';
 if HasUnprivileged(regime) then
 permissions.uxn_table = '0';
 permissions.pxn_table = '0';
 else
 permissions.xn_table = '0';

 walkstate.baseaddress = tablebase;
 walkstate.level = AArch64.S1StartLevel(walkparams);
 walkstate.istable = TRUE;
 // In regimes that support global and non-global translations, translation
 // table entries from lookup levels other than the final level of lookup
 // are treated as being non-global
 walkstate.nG = if HasUnprivileged(regime) then '1' else '0';
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
 walkstate.permissions = permissions;
 if (regime == Regime_EL10 && EL2Enabled() && (HCR_EL2.VM == '1' || HCR_EL2.DC == '1')) then
 if ((AArch64.GetVARange(va) == VARange_LOWER && VTCR_EL2.TL0 == '1') ||
 (AArch64.GetVARange(va) == VARange_UPPER && VTCR_EL2.TL1 == '1')) then
 walkstate.s1assured = TRUE;
 else
 walkstate.s1assured = FALSE;
 else
 walkstate.s1assured = FALSE;
 walkstate.disch = walkparams.disch;

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLeaf

 // AArch64.S1NextWalkStateLeaf()
 // =============================
 // Decode stage 1 page or block descriptor as output to this stage of translation

 TTWState AArch64.S1NextWalkStateLeaf(TTWState currentstate, boolean s2fs1mro, Regime regime,
 SecurityState ss, S1TTWParams walkparams, bits(N) descriptor)
 TTWState nextstate;
 FullAddress baseaddress;
 baseaddress.address = AArch64.LeafBase(descriptor, walkparams.d128,
 walkparams.ds,
 walkparams.tgx, currentstate.level);

 if currentstate.baseaddress.paspace == PAS_Secure then
 // Determine PA space of the block from NS bit
 bit ns;
 ns = if walkparams.d128 == '1' then descriptor<127> else descriptor<5>;
 baseaddress.paspace = if ns == '0' then PAS_Secure else PAS_NonSecure;
 elsif currentstate.baseaddress.paspace == PAS_Root then
 // Determine PA space of the block from NSE and NS bits
 bit nse;
 bit ns;
 <nse,ns> = if walkparams.d128 == '1' then descriptor<11,127> else descriptor<11,5>;
 baseaddress.paspace = DecodePASpace(nse, ns);

 // If Secure state is not implemented, but RME is,
 // force Secure space accesses to Non-secure space
 if baseaddress.paspace == PAS_Secure && !HaveSecureState() then
 baseaddress.paspace = PAS_NonSecure;

 elsif (currentstate.baseaddress.paspace == PAS_Realm &&
 regime IN {Regime_EL2, Regime_EL20}) then
 // Realm EL2 and EL2&0 regimes have a stage 1 NS bit
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13990
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 bit ns;
 ns = if walkparams.d128 == '1' then descriptor<127> else descriptor<5>;
 baseaddress.paspace = if ns == '0' then PAS_Realm else PAS_NonSecure;
 elsif currentstate.baseaddress.paspace == PAS_Realm then
 // Realm EL1&0 regime does not have a stage 1 NS bit
 baseaddress.paspace = PAS_Realm;
 else
 baseaddress.paspace = PAS_NonSecure;

 nextstate.istable = FALSE;
 nextstate.level = currentstate.level;
 nextstate.baseaddress = baseaddress;

 bits(4) attrindx;
 if walkparams.aie == '1' then
 if walkparams.d128 == '1' then
 attrindx = descriptor<5:2>;
 else
 attrindx = descriptor<59,4:2>;
 else
 attrindx = '0':descriptor<4:2>;

 bits(2) sh;
 if walkparams.d128 == '1' then
 sh = descriptor<9:8>;
 elsif walkparams.ds == '1' then
 sh = walkparams.sh;
 else
 sh = descriptor<9:8>;
 attr = AArch64.MAIRAttr(UInt(attrindx), walkparams.mair2, walkparams.mair);
 s1aarch64 = TRUE;

 nextstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64, walkparams);
 nextstate.permissions = AArch64.S1ApplyOutputPerms(currentstate.permissions,
 descriptor, regime, walkparams);
 bit protectedbit;
 if walkparams.d128 == '1' then
 protectedbit = descriptor<114>;
 else
 protectedbit = if walkparams.pnch == '1' then descriptor<52> else '0';
 if (currentstate.s1assured && s2fs1mro && protectedbit == '1') then
 nextstate.s1assured = TRUE;
 else
 nextstate.s1assured = FALSE;

 if walkparams.pnch == '1' || currentstate.disch == '1' then
 nextstate.contiguous = '0';
 else
 nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, walkparams.d128,
 currentstate.level, descriptor);
 if !HasUnprivileged(regime) then
 nextstate.nG = '0';
 elsif ss == SS_Secure && currentstate.baseaddress.paspace == PAS_NonSecure then
 // In Secure state, a translation must be treated as non-global,
 // regardless of the value of the nG bit,
 // if NSTable is set to 1 at any level of the translation table walk
 nextstate.nG = '1';
 else
 nextstate.nG = descriptor<11>;

 if walkparams.d128 == '1' then
 nextstate.guardedpage = descriptor<113>;
 else
 nextstate.guardedpage = descriptor<50>;

 return nextstate;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13991
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable

 // AArch64.S1NextWalkStateTable()
 // ==============================
 // Decode stage 1 table descriptor to transition to the next level

 TTWState AArch64.S1NextWalkStateTable(TTWState currentstate, boolean s2fs1mro, Regime regime,
 S1TTWParams walkparams, bits(N) descriptor)
 TTWState nextstate;
 FullAddress tablebase;
 bits(2) skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';

 tablebase.address = AArch64.NextTableBase(descriptor, walkparams.d128,
 skl, walkparams.ds,
 walkparams.tgx);
 if currentstate.baseaddress.paspace == PAS_Secure then
 // Determine PA space of the next table from NSTable bit
 bit nstable;
 nstable = if walkparams.d128 == '1' then descriptor<127> else descriptor<63>;
 tablebase.paspace = if nstable == '0' then PAS_Secure else PAS_NonSecure;
 else
 // Otherwise bit 63 is RES0 and there is no NSTable bit
 tablebase.paspace = currentstate.baseaddress.paspace;

 nextstate.istable = TRUE;
 nextstate.nG = currentstate.nG;
 if walkparams.d128 == '1' then
 nextstate.level = currentstate.level + UInt(skl) + 1;
 else
 nextstate.level = currentstate.level + 1;
 nextstate.baseaddress = tablebase;
 nextstate.memattrs = currentstate.memattrs;
 if walkparams.hpd == '0' && walkparams.pie == '0' then
 nextstate.permissions = AArch64.S1ApplyTablePerms(currentstate.permissions, descriptor,
 regime, walkparams);
 else
 nextstate.permissions = currentstate.permissions;
 bit protectedbit;
 if walkparams.d128 == '1' then
 protectedbit = descriptor<114>;
 else
 protectedbit = if walkparams.pnch == '1' then descriptor<52> else '0';
 if (currentstate.s1assured && s2fs1mro && protectedbit == '1') then
 nextstate.s1assured = TRUE;
 else
 nextstate.s1assured = FALSE;
 nextstate.disch = if walkparams.d128 == '1' then descriptor<112> else '0';

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S1Walk

 // AArch64.S1Walk()
 // ================
 // Traverse stage 1 translation tables obtaining the final descriptor
 // as well as the address leading to that descriptor

 (FaultRecord, AddressDescriptor, TTWState, bits(N)) AArch64.S1Walk(FaultRecord fault_in,
 S1TTWParams walkparams,
 bits(64) va, Regime regime,
 AccessDescriptor accdesc,
 integer N)
 FaultRecord fault = fault_in;
 boolean s1aarch64;
 boolean aligned;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13992
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if HasUnprivileged(regime) && AArch64.S1EPD(regime, va) == '1' then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 walkstate = AArch64.S1InitialTTWState(walkparams, va, regime, accdesc.ss);
 constant integer startlevel = walkstate.level;

 if startlevel > 3 then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 bits(N) descriptor;
 AddressDescriptor walkaddress;
 bits(2) skl = '00';
 walkaddress.vaddress = va;
 walkaddress.mecid = AArch64.TTWalkMECID(walkparams.emec, regime, accdesc.ss);

 if !AArch64.S1DCacheEnabled(regime) then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
 else
 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

 boolean s2fs1mro = FALSE;

 DescriptorType desctype;
 FullAddress descaddress = AArch64.S1SLTTEntryAddress(walkstate.level, walkparams, va,
 walkstate.baseaddress);

 // Detect Address Size Fault by Descriptor Address
 if AArch64.OAOutOfRange(descaddress.address, walkparams.d128,
 walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 repeat
 fault.level = walkstate.level;
 walkaddress.paddress = descaddress;
 walkaddress.s1assured = walkstate.s1assured;

 boolean toplevel = walkstate.level == startlevel;
 VARange varange = AArch64.GetVARange(va);
 AccessDescriptor walkaccess = CreateAccDescS1TTW(toplevel, varange, accdesc);
 FaultRecord s2fault;
 AddressDescriptor s2walkaddress;
 if regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 aligned = TRUE;
 (s2fault, s2walkaddress) = AArch64.S2Translate(fault, walkaddress, s1aarch64, aligned,
 walkaccess);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);

 s2fs1mro = s2walkaddress.s2fs1mro;
 (fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, walkaccess,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13993
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 fault, N);
 else
 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess,
 fault, N);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);

 bits(N) new_descriptor;
 repeat
 new_descriptor = descriptor;
 desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.d128, walkparams.ds,
 walkparams.tgx, walkstate.level);
 case desctype of
 when DescriptorType_Table
 walkstate = AArch64.S1NextWalkStateTable(walkstate, s2fs1mro,
 regime, walkparams, descriptor);
 skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';
 descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.d128, skl,
 walkparams.tgx, walkparams.txsz, va,
 walkstate.baseaddress);

 // Detect Address Size Fault by Descriptor Address
 if AArch64.OAOutOfRange(descaddress.address, walkparams.d128,
 walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);

 if walkparams.haft == '1' then
 new_descriptor<10> = '1';
 if (walkparams.d128 == '1' && skl != '00' &&
 AArch64.BlocknTFaults(walkparams.d128, descriptor)) then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);
 when DescriptorType_Leaf
 walkstate = AArch64.S1NextWalkStateLeaf(walkstate, s2fs1mro,
 regime, accdesc.ss, walkparams,
 descriptor);
 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);
 otherwise
 Unreachable();

 if new_descriptor != descriptor then
 AddressDescriptor descpaddr;
 AccessDescriptor descaccess = CreateAccDescTTEUpdate(accdesc);
 if regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 aligned = TRUE;
 (s2fault, descpaddr) = AArch64.S2Translate(fault, walkaddress,
 s1aarch64, aligned,
 descaccess);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN,
 TTWState UNKNOWN, bits(N) UNKNOWN);
 else
 descpaddr = walkaddress;

 (fault, descriptor) = AArch64.MemSwapTableDesc(fault, descriptor, new_descriptor,
 walkparams.ee, descaccess,
 descpaddr);
 if fault.statuscode != Fault_None then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13994
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 return (fault, AddressDescriptor UNKNOWN,
 TTWState UNKNOWN, bits(N) UNKNOWN);
 until new_descriptor == descriptor;
 until desctype == DescriptorType_Leaf;

 FullAddress oa = StageOA(va, walkparams.d128, walkparams.tgx, walkstate);

 if (walkstate.contiguous == '1' &&
 AArch64.ContiguousBitFaults(walkparams.d128, walkparams.txsz, walkparams.tgx,
 walkstate.level)) then
 fault.statuscode = Fault_Translation;
 elsif (desctype == DescriptorType_Leaf && walkstate.level < FINAL_LEVEL &&
 AArch64.BlocknTFaults(walkparams.d128, descriptor)) then
 fault.statuscode = Fault_Translation;
 elsif AArch64.S1AMECFault(walkparams, walkstate.baseaddress.paspace, regime, descriptor) then
 fault.statuscode = Fault_Translation;
 // Detect Address Size Fault by final output
 elsif AArch64.OAOutOfRange(oa.address, walkparams.d128,
 walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 // Check descriptor AF bit
 elsif (descriptor<10> == '0' && walkparams.ha == '0' &&
 !(accdesc.acctype IN {AccessType_DC, AccessType_IC} &&
 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations")) then
 fault.statuscode = Fault_AccessFlag;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 return (fault, walkaddress, walkstate, descriptor);

aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState

 // AArch64.S2InitialTTWState()
 // ===========================
 // Set properties of first access to translation tables in stage 2

 TTWState AArch64.S2InitialTTWState(SecurityState ss, S2TTWParams walkparams)
 TTWState walkstate;
 FullAddress tablebase;
 bits(128) ttbr;

 ttbr = ZeroExtend(VTTBR_EL2, 128);
 case ss of
 when SS_NonSecure tablebase.paspace = PAS_NonSecure;
 when SS_Realm tablebase.paspace = PAS_Realm;
 tablebase.address = AArch64.S2TTBaseAddress(walkparams, tablebase.paspace, ttbr);

 walkstate.baseaddress = tablebase;
 walkstate.level = AArch64.S2StartLevel(walkparams);
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLeaf

 // AArch64.S2NextWalkStateLeaf()
 // =============================
 // Decode stage 2 page or block descriptor as output to this stage of translation

 TTWState AArch64.S2NextWalkStateLeaf(TTWState currentstate, SecurityState ss,
 S2TTWParams walkparams, AddressDescriptor ipa,
 bits(N) descriptor)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13995
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 TTWState nextstate;
 FullAddress baseaddress;

 if ss == SS_Secure then
 baseaddress.paspace = AArch64.SS2OutputPASpace(walkparams, ipa.paddress.paspace);
 elsif ss == SS_Realm then
 bit ns;
 ns = if walkparams.d128 == '1' then descriptor<127> else descriptor<55>;
 baseaddress.paspace = if ns == '1' then PAS_NonSecure else PAS_Realm;
 else
 baseaddress.paspace = PAS_NonSecure;
 baseaddress.address = AArch64.LeafBase(descriptor, walkparams.d128, walkparams.ds,
 walkparams.tgx, currentstate.level);

 nextstate.istable = FALSE;
 nextstate.level = currentstate.level;
 nextstate.baseaddress = baseaddress;
 nextstate.permissions = AArch64.S2ApplyOutputPerms(descriptor, walkparams);

 s2_attr = descriptor<5:2>;
 s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
 s2_fnxs = descriptor<11>;
 if walkparams.fwb == '1' then
 nextstate.memattrs = AArch64.S2ApplyFWBMemAttrs(ipa.memattrs, walkparams, descriptor);
 if s2_attr<3:1> == '111' then
 nextstate.permissions.s2tag_na = '1';
 else
 nextstate.permissions.s2tag_na = '0';
 else
 s2aarch64 = TRUE;
 nextstate.memattrs = S2DecodeMemAttrs(s2_attr, s2_sh, s2aarch64);
 // FnXS is used later to mask the XS value from stage 1
 nextstate.memattrs.xs = NOT s2_fnxs;
 if s2_attr == '0100' then
 nextstate.permissions.s2tag_na = '1';
 else
 nextstate.permissions.s2tag_na = '0';
 nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, walkparams.d128,
 currentstate.level, descriptor);
 if walkparams.d128 == '1' then
 nextstate.s2assuredonly = descriptor<114>;
 else
 nextstate.s2assuredonly = if walkparams.assuredonly == '1' then descriptor<58> else '0';

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable

 // AArch64.S2NextWalkStateTable()
 // ==============================
 // Decode stage 2 table descriptor to transition to the next level

 TTWState AArch64.S2NextWalkStateTable(TTWState currentstate, S2TTWParams walkparams,
 bits(N) descriptor)
 TTWState nextstate;
 FullAddress tablebase;
 bits(2) skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';

 tablebase.address = AArch64.NextTableBase(descriptor, walkparams.d128,
 skl, walkparams.ds,
 walkparams.tgx);
 tablebase.paspace = currentstate.baseaddress.paspace;

 nextstate.istable = TRUE;
 if walkparams.d128 == '1' then
 nextstate.level = currentstate.level + UInt(skl) + 1;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13996
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 nextstate.level = currentstate.level + 1;
 nextstate.baseaddress = tablebase;
 nextstate.memattrs = currentstate.memattrs;

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S2Walk

 // AArch64.S2Walk()
 // ================
 // Traverse stage 2 translation tables obtaining the final descriptor
 // as well as the address leading to that descriptor

 (FaultRecord, AddressDescriptor, TTWState, bits(N)) AArch64.S2Walk(FaultRecord fault_in,
 AddressDescriptor ipa,
 S2TTWParams walkparams,
 AccessDescriptor accdesc,
 integer N)

 FaultRecord fault = fault_in;
 ipa_64 = ZeroExtend(ipa.paddress.address, 64);

 TTWState walkstate;
 if accdesc.ss == SS_Secure then
 walkstate = AArch64.SS2InitialTTWState(walkparams, ipa.paddress.paspace);
 else
 walkstate = AArch64.S2InitialTTWState(accdesc.ss, walkparams);
 constant integer startlevel = walkstate.level;

 if startlevel > 3 then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 bits(N) descriptor;
 AccessDescriptor walkaccess = CreateAccDescS2TTW(accdesc);
 AddressDescriptor walkaddress;
 bits(2) skl = '00';

 walkaddress.vaddress = ipa.vaddress;
 walkaddress.mecid = AArch64.TTWalkMECID(walkparams.emec, Regime_EL10, accdesc.ss);

 if !S2DCacheEnabled() then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

 DescriptorType desctype;

 // Initial lookup might index into concatenated tables
 FullAddress descaddress = AArch64.S2SLTTEntryAddress(walkparams, ipa.paddress.address,
 walkstate.baseaddress);

 // Detect Address Size Fault by Descriptor Address
 if AArch64.OAOutOfRange(descaddress.address, walkparams.d128, walkparams.ps,
 walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 repeat
 fault.level = walkstate.level;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13997
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 walkaddress.paddress = descaddress;
 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess, fault, N);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 bits(N) new_descriptor;
 repeat
 new_descriptor = descriptor;
 desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.d128, walkparams.ds,
 walkparams.tgx, walkstate.level);
 case desctype of
 when DescriptorType_Table
 walkstate = AArch64.S2NextWalkStateTable(walkstate, walkparams, descriptor);
 skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';
 descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.d128, skl,
 walkparams.tgx, walkparams.txsz, ipa_64,
 walkstate.baseaddress);

 // Detect Address Size Fault by table descriptor
 if AArch64.OAOutOfRange(descaddress.address, walkparams.d128, walkparams.ps,
 walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);

 if walkparams.haft == '1' then
 new_descriptor<10> = '1';

 if (walkparams.d128 == '1' && skl != '00' &&
 AArch64.BlocknTFaults(walkparams.d128, descriptor)) then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
 bits(N) UNKNOWN);

 when DescriptorType_Leaf
 walkstate = AArch64.S2NextWalkStateLeaf(walkstate, accdesc.ss, walkparams, ipa,
 descriptor);
 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

 otherwise
 Unreachable();

 if new_descriptor != descriptor then
 AccessDescriptor descaccess = CreateAccDescTTEUpdate(accdesc);
 (fault, descriptor) = AArch64.MemSwapTableDesc(fault, descriptor, new_descriptor,
 walkparams.ee, descaccess,
 walkaddress);
 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);
 until new_descriptor == descriptor;
 until desctype == DescriptorType_Leaf;

 FullAddress oa = StageOA(ipa_64, walkparams.d128, walkparams.tgx, walkstate);

 if (walkstate.contiguous == '1' &&
 AArch64.ContiguousBitFaults(walkparams.d128, walkparams.txsz, walkparams.tgx,
 walkstate.level)) then
 fault.statuscode = Fault_Translation;
 elsif (desctype == DescriptorType_Leaf && walkstate.level < FINAL_LEVEL &&
 AArch64.BlocknTFaults(walkparams.d128, descriptor)) then
 fault.statuscode = Fault_Translation;
 // Detect Address Size Fault by final output
 elsif AArch64.OAOutOfRange(oa.address, walkparams.d128, walkparams.ps, walkparams.tgx) then
 fault.statuscode = Fault_AddressSize;
 // Check descriptor AF bit
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13998
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 elsif (descriptor<10> == '0' && walkparams.ha == '0' &&
 !(accdesc.acctype IN {AccessType_DC, AccessType_IC} &&
 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations")) then
 fault.statuscode = Fault_AccessFlag;

 return (fault, walkaddress, walkstate, descriptor);

aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState

 // AArch64.SS2InitialTTWState()
 // ============================
 // Set properties of first access to translation tables in Secure stage 2

 TTWState AArch64.SS2InitialTTWState(S2TTWParams walkparams, PASpace ipaspace)
 TTWState walkstate;
 FullAddress tablebase;
 bits(128) ttbr;

 if ipaspace == PAS_Secure then
 ttbr = ZeroExtend(VSTTBR_EL2, 128);
 else
 ttbr = ZeroExtend(VTTBR_EL2, 128);

 if ipaspace == PAS_Secure then
 if walkparams.sw == '0' then
 tablebase.paspace = PAS_Secure;
 else
 tablebase.paspace = PAS_NonSecure;
 else
 if walkparams.nsw == '0' then
 tablebase.paspace = PAS_Secure;
 else
 tablebase.paspace = PAS_NonSecure;

 tablebase.address = AArch64.S2TTBaseAddress(walkparams, tablebase.paspace, ttbr);

 walkstate.baseaddress = tablebase;
 walkstate.level = AArch64.S2StartLevel(walkparams);
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace

 // AArch64.SS2OutputPASpace()
 // ==========================
 // Assign PA Space to output of Secure stage 2 translation

 PASpace AArch64.SS2OutputPASpace(S2TTWParams walkparams, PASpace ipaspace)
 if ipaspace == PAS_Secure then
 if walkparams.<sw,sa> == '00' then
 return PAS_Secure;
 else
 return PAS_NonSecure;
 else
 if walkparams.<sw,sa,nsw,nsa> == '0000' then
 return PAS_Secure;
 else
 return PAS_NonSecure;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-13999
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel

 // AArch64.BBMSupportLevel()
 // =========================
 // Returns the level of FEAT_BBM supported

 integer AArch64.BlockBBMSupportLevel()
 if !IsFeatureImplemented(FEAT_BBM) then
 return integer UNKNOWN;
 else
 return integer IMPLEMENTATION_DEFINED "Block BBM support level";

aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams

 // AArch64.GetS1TTWParams()
 // ========================
 // Returns stage 1 translation table walk parameters from respective controlling
 // System registers.

 S1TTWParams AArch64.GetS1TTWParams(Regime regime, SecurityState ss, bits(64) va)
 S1TTWParams walkparams;

 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL3 walkparams = AArch64.S1TTWParamsEL3();
 when Regime_EL2 walkparams = AArch64.S1TTWParamsEL2(ss);
 when Regime_EL20 walkparams = AArch64.S1TTWParamsEL20(ss, varange);
 when Regime_EL10 walkparams = AArch64.S1TTWParamsEL10(varange);

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams

 // AArch64.GetS2TTWParams()
 // ========================
 // Gather walk parameters for stage 2 translation

 S2TTWParams AArch64.GetS2TTWParams(SecurityState ss, PASpace ipaspace, boolean s1aarch64)
 S2TTWParams walkparams;

 if ss == SS_NonSecure then
 walkparams = AArch64.NSS2TTWParams(s1aarch64);
 elsif IsFeatureImplemented(FEAT_SEL2) && ss == SS_Secure then
 walkparams = AArch64.SS2TTWParams(ipaspace, s1aarch64);
 elsif ss == SS_Realm then
 walkparams = AArch64.RLS2TTWParams(s1aarch64);
 else
 Unreachable();

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.GetVARange

 // AArch64.GetVARange()
 // ====================
 // Determines if the VA that is to be translated lies in LOWER or UPPER address range.

 VARange AArch64.GetVARange(bits(64) va)
 if va<55> == '0' then
 return VARange_LOWER;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14000
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 else
 return VARange_UPPER;

aarch64/translation/vmsa_walkparams/AArch64.HaveS1TG

 // AArch64.HaveS1TG()
 // ==================
 // Determine whether the given translation granule is supported for stage 1

 boolean AArch64.HaveS1TG(TGx tgx)
 case tgx of
 when TGx_4KB return boolean IMPLEMENTATION_DEFINED "Has 4K Translation Granule";
 when TGx_16KB return boolean IMPLEMENTATION_DEFINED "Has 16K Translation Granule";
 when TGx_64KB return boolean IMPLEMENTATION_DEFINED "Has 64K Translation Granule";

aarch64/translation/vmsa_walkparams/AArch64.HaveS2TG

 // AArch64.HaveS2TG()
 // ==================
 // Determine whether the given translation granule is supported for stage 2

 boolean AArch64.HaveS2TG(TGx tgx)
 assert HaveEL(EL2);

 if IsFeatureImplemented(FEAT_GTG) then
 case tgx of
 when TGx_4KB
 return boolean IMPLEMENTATION_DEFINED "Has Stage 2 4K Translation Granule";
 when TGx_16KB
 return boolean IMPLEMENTATION_DEFINED "Has Stage 2 16K Translation Granule";
 when TGx_64KB
 return boolean IMPLEMENTATION_DEFINED "Has Stage 2 64K Translation Granule";
 else
 return AArch64.HaveS1TG(tgx);

aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ

 // AArch64.MaxTxSZ()
 // =================
 // Retrieve the maximum value of TxSZ indicating minimum input address size for both
 // stages of translation

 integer AArch64.MaxTxSZ(TGx tgx)
 if IsFeatureImplemented(FEAT_TTST) then
 case tgx of
 when TGx_4KB return 48;
 when TGx_16KB return 48;
 when TGx_64KB return 47;

 return 39;

aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams

 // AArch64.NSS2TTWParams()
 // =======================
 // Gather walk parameters specific for Non-secure stage 2 translation

 S2TTWParams AArch64.NSS2TTWParams(boolean s1aarch64)
 S2TTWParams walkparams;

 walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14001
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 walkparams.tgx = AArch64.S2DecodeTG0(VTCR_EL2.TG0);
 walkparams.txsz = VTCR_EL2.T0SZ;
 walkparams.ps = VTCR_EL2.PS;
 walkparams.irgn = VTCR_EL2.IRGN0;
 walkparams.orgn = VTCR_EL2.ORGN0;
 walkparams.sh = VTCR_EL2.SH0;
 walkparams.ee = SCTLR_EL2.EE;
 walkparams.d128 = if IsFeatureImplemented(FEAT_D128) then VTCR_EL2.D128 else '0';
 if walkparams.d128 == '1' then
 walkparams.skl = VTTBR_EL2.SKL;
 else
 walkparams.sl0 = VTCR_EL2.SL0;

 walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
 walkparams.fwb = if IsFeatureImplemented(FEAT_S2FWB) then HCR_EL2.FWB else '0';
 walkparams.ha = if IsFeatureImplemented(FEAT_HAFDBS) then VTCR_EL2.HA else '0';
 walkparams.hd = if IsFeatureImplemented(FEAT_HAFDBS) then VTCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.ds = VTCR_EL2.DS;
 else
 walkparams.ds = '0';
 if walkparams.tgx == TGx_4KB && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
 else
 walkparams.sl2 = '0';
 walkparams.cmow = (if IsFeatureImplemented(FEAT_CMOW) && IsHCRXEL2Enabled() then HCRX_EL2.CMOW
 else '0');
 if walkparams.d128 == '1' then
 walkparams.s2pie = '1';
 else
 walkparams.s2pie = if IsFeatureImplemented(FEAT_S2PIE) then VTCR_EL2.S2PIE else '0';
 walkparams.s2pir = if IsFeatureImplemented(FEAT_S2PIE) then S2PIR_EL2 else Zeros(64);
 if IsFeatureImplemented(FEAT_THE) && walkparams.d128 != '1' then
 walkparams.assuredonly = VTCR_EL2.AssuredOnly;
 else
 walkparams.assuredonly = '0';
 walkparams.tl0 = if IsFeatureImplemented(FEAT_THE) then VTCR_EL2.TL0 else '0';
 walkparams.tl1 = if IsFeatureImplemented(FEAT_THE) then VTCR_EL2.TL1 else '0';
 if IsFeatureImplemented(FEAT_HAFT) && walkparams.ha == '1' then
 walkparams.haft = VTCR_EL2.HAFT;
 else
 walkparams.haft = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.PAMax

 // AArch64.PAMax()
 // ===============
 // Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
 // physical address for this processor

 integer AArch64.PAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

aarch64/translation/vmsa_walkparams/AArch64.RLS2TTWParams

 // AArch64.RLS2TTWParams()
 // =======================
 // Gather walk parameters specific for Realm stage 2 translation

 S2TTWParams AArch64.RLS2TTWParams(boolean s1aarch64)
 // Realm stage 2 walk parameters are similar to Non-secure
 S2TTWParams walkparams = AArch64.NSS2TTWParams(s1aarch64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14002
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 walkparams.emec = (if IsFeatureImplemented(FEAT_MEC) &&
 IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0');
 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled

 // AArch64.S1DCacheEnabled()
 // =========================
 // Determine cacheability of stage 1 data accesses

 boolean AArch64.S1DCacheEnabled(Regime regime)
 case regime of
 when Regime_EL3 return SCTLR_EL3.C == '1';
 when Regime_EL2 return SCTLR_EL2.C == '1';
 when Regime_EL20 return SCTLR_EL2.C == '1';
 when Regime_EL10 return SCTLR_EL1.C == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG0

 // AArch64.S1DecodeTG0()
 // =====================
 // Decode stage 1 granule size configuration bits TG0

 TGx AArch64.S1DecodeTG0(bits(2) tg0_in)
 bits(2) tg0 = tg0_in;
 TGx tgx;

 if tg0 == '11' then
 tg0 = bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size";

 case tg0 of
 when '00' tgx = TGx_4KB;
 when '01' tgx = TGx_64KB;
 when '10' tgx = TGx_16KB;

 if !AArch64.HaveS1TG(tgx) then
 case bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size" of
 when '00' tgx = TGx_4KB;
 when '01' tgx = TGx_64KB;
 when '10' tgx = TGx_16KB;

 return tgx;

aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG1

 // AArch64.S1DecodeTG1()
 // =====================
 // Decode stage 1 granule size configuration bits TG1

 TGx AArch64.S1DecodeTG1(bits(2) tg1_in)
 bits(2) tg1 = tg1_in;
 TGx tgx;

 if tg1 == '00' then
 tg1 = bits(2) IMPLEMENTATION_DEFINED "TG1 encoded granule size";

 case tg1 of
 when '10' tgx = TGx_4KB;
 when '11' tgx = TGx_64KB;
 when '01' tgx = TGx_16KB;

 if !AArch64.HaveS1TG(tgx) then
 case bits(2) IMPLEMENTATION_DEFINED "TG1 encoded granule size" of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14003
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when '10' tgx = TGx_4KB;
 when '11' tgx = TGx_64KB;
 when '01' tgx = TGx_16KB;

 return tgx;

aarch64/translation/vmsa_walkparams/AArch64.S1E0POEnabled

 // AArch64.S1E0POEnabled()
 // =======================
 // Determine whether stage 1 unprivileged permission overlay is enabled

 boolean AArch64.S1E0POEnabled(Regime regime, bit nv1)
 assert HasUnprivileged(regime);

 if !IsFeatureImplemented(FEAT_S1POE) then
 return FALSE;

 case regime of
 when Regime_EL20 return IsTCR2EL2Enabled() && TCR2_EL2.E0POE == '1';
 when Regime_EL10 return IsTCR2EL1Enabled() && nv1 == '0' && TCR2_EL1.E0POE == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1EPD

 // AArch64.S1EPD()
 // ===============
 // Determine whether stage 1 translation table walk is allowed for the VA range

 bit AArch64.S1EPD(Regime regime, bits(64) va)
 assert HasUnprivileged(regime);
 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL20 return if varange == VARange_LOWER then TCR_EL2.EPD0 else TCR_EL2.EPD1;
 when Regime_EL10 return if varange == VARange_LOWER then TCR_EL1.EPD0 else TCR_EL1.EPD1;

aarch64/translation/vmsa_walkparams/AArch64.S1Enabled

 // AArch64.S1Enabled()
 // ===================
 // Determine if stage 1 is enabled for the access type for this translation regime

 boolean AArch64.S1Enabled(Regime regime, AccessType acctype)
 case regime of
 when Regime_EL3 return SCTLR_EL3.M == '1';
 when Regime_EL2 return SCTLR_EL2.M == '1';
 when Regime_EL20 return SCTLR_EL2.M == '1';
 when Regime_EL10 return (!EL2Enabled() || HCR_EL2.<DC,TGE> == '00') && SCTLR_EL1.M == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled

 // AArch64.S1ICacheEnabled()
 // =========================
 // Determine cacheability of stage 1 instruction fetches

 boolean AArch64.S1ICacheEnabled(Regime regime)
 case regime of
 when Regime_EL3 return SCTLR_EL3.I == '1';
 when Regime_EL2 return SCTLR_EL2.I == '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14004
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when Regime_EL20 return SCTLR_EL2.I == '1';
 when Regime_EL10 return SCTLR_EL1.I == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ

 // AArch64.S1MinTxSZ()
 // ===================
 // Retrieve the minimum value of TxSZ indicating maximum input address size for stage 1

 integer AArch64.S1MinTxSZ(Regime regime, bit d128, bit ds, TGx tgx)
 if IsFeatureImplemented(FEAT_LVA3) && d128 == '1' then
 if HasUnprivileged(regime) then
 return 9;
 else
 return 8;
 if (IsFeatureImplemented(FEAT_LVA) && tgx == TGx_64KB) || ds == '1' then
 return 12;

 return 16;

aarch64/translation/vmsa_walkparams/AArch64.S1POEnabled

 // AArch64.S1POEnabled()
 // =====================
 // Determine whether stage 1 privileged permission overlay is enabled

 boolean AArch64.S1POEnabled(Regime regime)
 if !IsFeatureImplemented(FEAT_S1POE) then
 return FALSE;

 case regime of
 when Regime_EL3 return TCR_EL3.POE == '1';
 when Regime_EL2 return IsTCR2EL2Enabled() && TCR2_EL2.POE == '1';
 when Regime_EL20 return IsTCR2EL2Enabled() && TCR2_EL2.POE == '1';
 when Regime_EL10 return IsTCR2EL1Enabled() && TCR2_EL1.POE == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1POR

 // AArch64.S1POR()
 // ===============
 // Identify stage 1 permissions overlay register for the acting translation regime

 S1PORType AArch64.S1POR(Regime regime)
 case regime of
 when Regime_EL3 return POR_EL3;
 when Regime_EL2 return POR_EL2;
 when Regime_EL20 return POR_EL2;
 when Regime_EL10 return POR_EL1;

aarch64/translation/vmsa_walkparams/AArch64.S1TTBR

 // AArch64.S1TTBR()
 // ================
 // Identify stage 1 table base register for the acting translation regime

 bits(128) AArch64.S1TTBR(Regime regime, bits(64) va)
 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL3 return ZeroExtend(TTBR0_EL3, 128);
 when Regime_EL2 return ZeroExtend(TTBR0_EL2, 128);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14005
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 when Regime_EL20
 if varange == VARange_LOWER then
 return ZeroExtend(TTBR0_EL2, 128);
 else
 return ZeroExtend(TTBR1_EL2, 128);
 when Regime_EL10
 if varange == VARange_LOWER then
 return ZeroExtend(TTBR0_EL1, 128);
 else
 return ZeroExtend(TTBR1_EL1, 128);

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10

 // AArch64.S1TTWParamsEL10()
 // =========================
 // Gather stage 1 translation table walk parameters for EL1&0 regime
 // (with EL2 enabled or disabled)

 S1TTWParams AArch64.S1TTWParamsEL10(VARange varange)
 S1TTWParams walkparams;

 if IsFeatureImplemented(FEAT_D128) && IsTCR2EL1Enabled() then
 walkparams.d128 = TCR2_EL1.D128;
 else
 walkparams.d128 = '0';
 if varange == VARange_LOWER then
 walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL1.TG0);
 walkparams.txsz = TCR_EL1.T0SZ;
 walkparams.irgn = TCR_EL1.IRGN0;
 walkparams.orgn = TCR_EL1.ORGN0;
 walkparams.sh = TCR_EL1.SH0;
 walkparams.tbi = TCR_EL1.TBI0;

 walkparams.nfd = (if IsFeatureImplemented(FEAT_SVE) || IsFeatureImplemented(FEAT_TME)
 then TCR_EL1.NFD0 else '0');
 walkparams.tbid = if IsFeatureImplemented(FEAT_PAuth) then TCR_EL1.TBID0 else '0';
 walkparams.e0pd = if IsFeatureImplemented(FEAT_E0PD) then TCR_EL1.E0PD0 else '0';
 walkparams.hpd = if IsFeatureImplemented(FEAT_HPDS) then TCR_EL1.HPD0 else '0';
 walkparams.mtx = if IsFeatureImplemented(FEAT_MTE4) then TCR_EL1.MTX0 else '0';
 walkparams.skl = if walkparams.d128 == '1' then TTBR0_EL1.SKL else '00';
 walkparams.disch = if walkparams.d128 == '1' then TCR2_EL1.DisCH0 else '0';
 else
 walkparams.tgx = AArch64.S1DecodeTG1(TCR_EL1.TG1);
 walkparams.txsz = TCR_EL1.T1SZ;
 walkparams.irgn = TCR_EL1.IRGN1;
 walkparams.orgn = TCR_EL1.ORGN1;
 walkparams.sh = TCR_EL1.SH1;
 walkparams.tbi = TCR_EL1.TBI1;

 walkparams.nfd = (if IsFeatureImplemented(FEAT_SVE) || IsFeatureImplemented(FEAT_TME)
 then TCR_EL1.NFD1 else '0');
 walkparams.tbid = if IsFeatureImplemented(FEAT_PAuth) then TCR_EL1.TBID1 else '0';
 walkparams.e0pd = if IsFeatureImplemented(FEAT_E0PD) then TCR_EL1.E0PD1 else '0';
 walkparams.hpd = if IsFeatureImplemented(FEAT_HPDS) then TCR_EL1.HPD1 else '0';
 walkparams.mtx = if IsFeatureImplemented(FEAT_MTE4) then TCR_EL1.MTX1 else '0';
 walkparams.skl = if walkparams.d128 == '1' then TTBR1_EL1.SKL else '00';
 walkparams.disch = if walkparams.d128 == '1' then TCR2_EL1.DisCH1 else '0';

 walkparams.mair = MAIR_EL1;
 if IsFeatureImplemented(FEAT_AIE) then
 walkparams.mair2 = MAIR2_EL1;
 walkparams.aie = (if IsFeatureImplemented(FEAT_AIE) && IsTCR2EL1Enabled() then TCR2_EL1.AIE
 else '0');
 walkparams.wxn = SCTLR_EL1.WXN;
 walkparams.ps = TCR_EL1.IPS;
 walkparams.ee = SCTLR_EL1.EE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14006
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if (HaveEL(EL3) && (!IsFeatureImplemented(FEAT_RME) || IsFeatureImplemented(FEAT_SEL2))) then
 walkparams.sif = SCR_EL3.SIF;
 else
 walkparams.sif = '0';

 if EL2Enabled() then
 walkparams.dc = HCR_EL2.DC;
 walkparams.dct = if IsFeatureImplemented(FEAT_MTE2) then HCR_EL2.DCT else '0';

 if IsFeatureImplemented(FEAT_LSMAOC) then
 walkparams.ntlsmd = SCTLR_EL1.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 bits(3) nvs = EffectiveHCR_EL2_NVx();
 if nvs<1:0> == '10' then
 case ConstrainUnpredictable(Unpredictable_NVNV1) of
 when Constraint_NVNV1_00 walkparams.nv1 = '0';
 when Constraint_NVNV1_01 walkparams.nv1 = '1';
 when Constraint_NVNV1_11 walkparams.nv1 = '1';
 else
 walkparams.nv1 = nvs<1>;

 walkparams.cmow = if IsFeatureImplemented(FEAT_CMOW) then SCTLR_EL1.CMOW else '0';
 walkparams.ha = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL1.HA else '0';
 walkparams.hd = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL1.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.ds = TCR_EL1.DS;
 else
 walkparams.ds = '0';
 if walkparams.d128 == '1' then
 walkparams.pie = '1';
 else
 walkparams.pie = (if IsFeatureImplemented(FEAT_S1PIE) &&
 IsTCR2EL1Enabled() then TCR2_EL1.PIE else '0');
 if IsFeatureImplemented(FEAT_S1PIE) then
 walkparams.pir = PIR_EL1;
 if walkparams.nv1 != '1'then
 walkparams.pire0 = PIRE0_EL1;
 if IsFeatureImplemented(FEAT_PAN3) then
 walkparams.epan = if walkparams.pie == '0' then SCTLR_EL1.EPAN else '1';
 else
 walkparams.epan = '0';
 if IsFeatureImplemented(FEAT_THE) && walkparams.d128 == '0' && IsTCR2EL1Enabled() then
 walkparams.pnch = TCR2_EL1.PnCH;
 else
 walkparams.pnch = '0';
 if IsFeatureImplemented(FEAT_HAFT) && walkparams.ha == '1' && IsTCR2EL1Enabled() then
 walkparams.haft = TCR2_EL1.HAFT;
 else
 walkparams.haft = '0';
 walkparams.emec = (if IsFeatureImplemented(FEAT_MEC) &&
 IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0');

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2

 // AArch64.S1TTWParamsEL2()
 // ========================
 // Gather stage 1 translation table walk parameters for EL2 regime

 S1TTWParams AArch64.S1TTWParamsEL2(SecurityState ss)
 S1TTWParams walkparams;

 walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL2.TG0);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14007
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 walkparams.txsz = TCR_EL2.T0SZ;
 walkparams.ps = TCR_EL2.PS;
 walkparams.irgn = TCR_EL2.IRGN0;
 walkparams.orgn = TCR_EL2.ORGN0;
 walkparams.sh = TCR_EL2.SH0;
 walkparams.tbi = TCR_EL2.TBI;
 walkparams.mair = MAIR_EL2;
 if IsFeatureImplemented(FEAT_AIE) then
 walkparams.mair2 = MAIR2_EL2;
 walkparams.aie = (if IsFeatureImplemented(FEAT_AIE) && IsTCR2EL2Enabled() then TCR2_EL2.AIE
 else '0');
 walkparams.wxn = SCTLR_EL2.WXN;
 walkparams.ee = SCTLR_EL2.EE;
 if (HaveEL(EL3) && (!IsFeatureImplemented(FEAT_RME) || IsFeatureImplemented(FEAT_SEL2))) then
 walkparams.sif = SCR_EL3.SIF;
 else
 walkparams.sif = '0';

 walkparams.tbid = if IsFeatureImplemented(FEAT_PAuth) then TCR_EL2.TBID else '0';
 walkparams.hpd = if IsFeatureImplemented(FEAT_HPDS) then TCR_EL2.HPD else '0';
 walkparams.ha = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL2.HA else '0';
 walkparams.hd = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.ds = TCR_EL2.DS;
 else
 walkparams.ds = '0';
 walkparams.pie = (if IsFeatureImplemented(FEAT_S1PIE) && IsTCR2EL2Enabled() then TCR2_EL2.PIE
 else '0');
 if IsFeatureImplemented(FEAT_S1PIE) then
 walkparams.pir = PIR_EL2;
 walkparams.mtx = if IsFeatureImplemented(FEAT_MTE4) then TCR_EL2.MTX else '0';
 walkparams.pnch = (if IsFeatureImplemented(FEAT_THE) && IsTCR2EL2Enabled() then TCR2_EL2.PnCH
 else '0');
 if IsFeatureImplemented(FEAT_HAFT) && walkparams.ha == '1' && IsTCR2EL2Enabled() then
 walkparams.haft = TCR2_EL2.HAFT;
 else
 walkparams.haft = '0';
 walkparams.emec = (if IsFeatureImplemented(FEAT_MEC) &&
 IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0');
 if IsFeatureImplemented(FEAT_MEC) && ss == SS_Realm && IsTCR2EL2Enabled() then
 walkparams.amec = TCR2_EL2.AMEC0;
 else
 walkparams.amec = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20

 // AArch64.S1TTWParamsEL20()
 // =========================
 // Gather stage 1 translation table walk parameters for EL2&0 regime

 S1TTWParams AArch64.S1TTWParamsEL20(SecurityState ss, VARange varange)
 S1TTWParams walkparams;

 if IsFeatureImplemented(FEAT_D128) && IsTCR2EL2Enabled() then
 walkparams.d128 = TCR2_EL2.D128;
 else
 walkparams.d128 = '0';
 if varange == VARange_LOWER then
 walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL2.TG0);
 walkparams.txsz = TCR_EL2.T0SZ;
 walkparams.irgn = TCR_EL2.IRGN0;
 walkparams.orgn = TCR_EL2.ORGN0;
 walkparams.sh = TCR_EL2.SH0;
 walkparams.tbi = TCR_EL2.TBI0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14008
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 walkparams.nfd = (if IsFeatureImplemented(FEAT_SVE) ||
 IsFeatureImplemented(FEAT_TME) then TCR_EL2.NFD0 else '0');
 walkparams.tbid = if IsFeatureImplemented(FEAT_PAuth) then TCR_EL2.TBID0 else '0';
 walkparams.e0pd = if IsFeatureImplemented(FEAT_E0PD) then TCR_EL2.E0PD0 else '0';
 walkparams.hpd = if IsFeatureImplemented(FEAT_HPDS) then TCR_EL2.HPD0 else '0';
 walkparams.mtx = if IsFeatureImplemented(FEAT_MTE4) then TCR_EL2.MTX0 else '0';
 walkparams.skl = if walkparams.d128 == '1' then TTBR0_EL2.SKL else '00';
 walkparams.disch = if walkparams.d128 == '1' then TCR2_EL2.DisCH0 else '0';
 else
 walkparams.tgx = AArch64.S1DecodeTG1(TCR_EL2.TG1);
 walkparams.txsz = TCR_EL2.T1SZ;
 walkparams.irgn = TCR_EL2.IRGN1;
 walkparams.orgn = TCR_EL2.ORGN1;
 walkparams.sh = TCR_EL2.SH1;
 walkparams.tbi = TCR_EL2.TBI1;

 walkparams.nfd = (if IsFeatureImplemented(FEAT_SVE) || IsFeatureImplemented(FEAT_TME)
 then TCR_EL2.NFD1 else '0');
 walkparams.tbid = if IsFeatureImplemented(FEAT_PAuth) then TCR_EL2.TBID1 else '0';
 walkparams.e0pd = if IsFeatureImplemented(FEAT_E0PD) then TCR_EL2.E0PD1 else '0';
 walkparams.hpd = if IsFeatureImplemented(FEAT_HPDS) then TCR_EL2.HPD1 else '0';
 walkparams.mtx = if IsFeatureImplemented(FEAT_MTE4) then TCR_EL2.MTX1 else '0';
 walkparams.skl = if walkparams.d128 == '1' then TTBR1_EL2.SKL else '00';
 walkparams.disch = if walkparams.d128 == '1' then TCR2_EL2.DisCH1 else '0';

 walkparams.mair = MAIR_EL2;
 if IsFeatureImplemented(FEAT_AIE) then
 walkparams.mair2 = MAIR2_EL2;
 walkparams.aie = (if IsFeatureImplemented(FEAT_AIE) && IsTCR2EL2Enabled() then TCR2_EL2.AIE
 else '0');
 walkparams.wxn = SCTLR_EL2.WXN;
 walkparams.ps = TCR_EL2.IPS;
 walkparams.ee = SCTLR_EL2.EE;
 if (HaveEL(EL3) && (!IsFeatureImplemented(FEAT_RME) || IsFeatureImplemented(FEAT_SEL2))) then
 walkparams.sif = SCR_EL3.SIF;
 else
 walkparams.sif = '0';

 if IsFeatureImplemented(FEAT_LSMAOC) then
 walkparams.ntlsmd = SCTLR_EL2.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 walkparams.cmow = if IsFeatureImplemented(FEAT_CMOW) then SCTLR_EL2.CMOW else '0';
 walkparams.ha = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL2.HA else '0';
 walkparams.hd = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.ds = TCR_EL2.DS;
 else
 walkparams.ds = '0';
 if walkparams.d128 == '1' then
 walkparams.pie = '1';
 else
 walkparams.pie = (if IsFeatureImplemented(FEAT_S1PIE) &&
 IsTCR2EL2Enabled() then TCR2_EL2.PIE else '0');
 if IsFeatureImplemented(FEAT_S1PIE) then
 walkparams.pir = PIR_EL2;
 walkparams.pire0 = PIRE0_EL2;
 if IsFeatureImplemented(FEAT_PAN3) then
 walkparams.epan = if walkparams.pie == '0' then SCTLR_EL2.EPAN else '1';
 else
 walkparams.epan = '0';
 if IsFeatureImplemented(FEAT_THE) && walkparams.d128 == '0' && IsTCR2EL2Enabled() then
 walkparams.pnch = TCR2_EL2.PnCH;
 else
 walkparams.pnch = '0';
 if IsFeatureImplemented(FEAT_HAFT) && walkparams.ha == '1' && IsTCR2EL2Enabled() then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14009
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 walkparams.haft = TCR2_EL2.HAFT;
 else
 walkparams.haft = '0';
 walkparams.emec = (if IsFeatureImplemented(FEAT_MEC) && IsSCTLR2EL2Enabled()
 then SCTLR2_EL2.EMEC else '0');
 if IsFeatureImplemented(FEAT_MEC) && ss == SS_Realm && IsTCR2EL2Enabled() then
 walkparams.amec = if varange == VARange_LOWER then TCR2_EL2.AMEC0 else TCR2_EL2.AMEC1;
 else
 walkparams.amec = '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3

 // AArch64.S1TTWParamsEL3()
 // ========================
 // Gather stage 1 translation table walk parameters for EL3 regime

 S1TTWParams AArch64.S1TTWParamsEL3()
 S1TTWParams walkparams;

 walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL3.TG0);
 walkparams.txsz = TCR_EL3.T0SZ;
 walkparams.ps = TCR_EL3.PS;
 walkparams.irgn = TCR_EL3.IRGN0;
 walkparams.orgn = TCR_EL3.ORGN0;
 walkparams.sh = TCR_EL3.SH0;
 walkparams.tbi = TCR_EL3.TBI;
 walkparams.mair = MAIR_EL3;
 if IsFeatureImplemented(FEAT_AIE) then
 walkparams.mair2 = MAIR2_EL3;
 walkparams.aie = if IsFeatureImplemented(FEAT_AIE) then TCR_EL3.AIE else '0';
 walkparams.wxn = SCTLR_EL3.WXN;
 walkparams.ee = SCTLR_EL3.EE;
 walkparams.sif = (if !IsFeatureImplemented(FEAT_RME) || IsFeatureImplemented(FEAT_SEL2)
 then SCR_EL3.SIF else '0');

 walkparams.tbid = if IsFeatureImplemented(FEAT_PAuth) then TCR_EL3.TBID else '0';
 walkparams.hpd = if IsFeatureImplemented(FEAT_HPDS) then TCR_EL3.HPD else '0';
 walkparams.ha = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL3.HA else '0';
 walkparams.hd = if IsFeatureImplemented(FEAT_HAFDBS) then TCR_EL3.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.ds = TCR_EL3.DS;
 else
 walkparams.ds = '0';
 walkparams.d128 = if IsFeatureImplemented(FEAT_D128) then TCR_EL3.D128 else '0';
 walkparams.skl = if walkparams.d128 == '1' then TTBR0_EL3.SKL else '00';
 walkparams.disch = if walkparams.d128 == '1' then TCR_EL3.DisCH0 else '0';
 if walkparams.d128 == '1' then
 walkparams.pie = '1';
 else
 walkparams.pie = if IsFeatureImplemented(FEAT_S1PIE) then TCR_EL3.PIE else '0';
 if IsFeatureImplemented(FEAT_S1PIE) then
 walkparams.pir = PIR_EL3;
 walkparams.mtx = if IsFeatureImplemented(FEAT_MTE4) then TCR_EL3.MTX else '0';
 if IsFeatureImplemented(FEAT_THE) && walkparams.d128 == '0' then
 walkparams.pnch = TCR_EL3.PnCH;
 else
 walkparams.pnch = '0';
 if IsFeatureImplemented(FEAT_HAFT) && walkparams.ha == '1' then
 walkparams.haft = TCR_EL3.HAFT;
 else
 walkparams.haft = '0';
 walkparams.emec = if IsFeatureImplemented(FEAT_MEC) then SCTLR2_EL3.EMEC else '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14010
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S2DecodeTG0

 // AArch64.S2DecodeTG0()
 // =====================
 // Decode stage 2 granule size configuration bits TG0

 TGx AArch64.S2DecodeTG0(bits(2) tg0_in)
 bits(2) tg0 = tg0_in;
 TGx tgx;

 if tg0 == '11' then
 tg0 = bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size";

 case tg0 of
 when '00' tgx = TGx_4KB;
 when '01' tgx = TGx_64KB;
 when '10' tgx = TGx_16KB;

 if !AArch64.HaveS2TG(tgx) then
 case bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size" of
 when '00' tgx = TGx_4KB;
 when '01' tgx = TGx_64KB;
 when '10' tgx = TGx_16KB;

 return tgx;

aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ

 // AArch64.S2MinTxSZ()
 // ===================
 // Retrieve the minimum value of TxSZ indicating maximum input address size for stage 2

 integer AArch64.S2MinTxSZ(bit d128, bit ds, TGx tgx, boolean s1aarch64)
 ips = AArch64.PAMax();

 if d128 == '0' then
 if IsFeatureImplemented(FEAT_LPA) && tgx != TGx_64KB && ds == '0' then
 ips = Min(48, AArch64.PAMax());
 else
 ips = Min(52, AArch64.PAMax());
 min_txsz = 64 - ips;
 if !s1aarch64 then
 // EL1 is AArch32
 min_txsz = Min(min_txsz, 24);

 return min_txsz;

aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams

 // AArch64.SS2TTWParams()
 // ======================
 // Gather walk parameters specific for secure stage 2 translation

 S2TTWParams AArch64.SS2TTWParams(PASpace ipaspace, boolean s1aarch64)
 S2TTWParams walkparams;

 walkparams.d128 = if IsFeatureImplemented(FEAT_D128) then VTCR_EL2.D128 else '0';
 if ipaspace == PAS_Secure then
 walkparams.tgx = AArch64.S2DecodeTG0(VSTCR_EL2.TG0);
 walkparams.txsz = VSTCR_EL2.T0SZ;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14011
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
 if walkparams.d128 == '1' then
 walkparams.skl = VSTTBR_EL2.SKL;
 else
 walkparams.sl0 = VSTCR_EL2.SL0;
 if walkparams.tgx == TGx_4KB && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.sl2 = VSTCR_EL2.SL2 AND VTCR_EL2.DS;
 else
 walkparams.sl2 = '0';
 elsif ipaspace == PAS_NonSecure then
 walkparams.tgx = AArch64.S2DecodeTG0(VTCR_EL2.TG0);
 walkparams.txsz = VTCR_EL2.T0SZ;
 if walkparams.d128 == '1' then
 walkparams.skl = VTTBR_EL2.SKL;
 else
 walkparams.sl0 = VTCR_EL2.SL0;
 if walkparams.tgx == TGx_4KB && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
 else
 walkparams.sl2 = '0';
 else
 Unreachable();

 walkparams.sw = VSTCR_EL2.SW;
 walkparams.nsw = VTCR_EL2.NSW;
 walkparams.sa = VSTCR_EL2.SA;
 walkparams.nsa = VTCR_EL2.NSA;
 walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
 walkparams.ps = VTCR_EL2.PS;
 walkparams.irgn = VTCR_EL2.IRGN0;
 walkparams.orgn = VTCR_EL2.ORGN0;
 walkparams.sh = VTCR_EL2.SH0;
 walkparams.ee = SCTLR_EL2.EE;

 walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
 walkparams.fwb = if IsFeatureImplemented(FEAT_S2FWB) then HCR_EL2.FWB else '0';
 walkparams.ha = if IsFeatureImplemented(FEAT_HAFDBS) then VTCR_EL2.HA else '0';
 walkparams.hd = if IsFeatureImplemented(FEAT_HAFDBS) then VTCR_EL2.HD else '0';
 if walkparams.tgx IN {TGx_4KB, TGx_16KB} && IsFeatureImplemented(FEAT_LPA2) then
 walkparams.ds = VTCR_EL2.DS;
 else
 walkparams.ds = '0';
 walkparams.cmow = (if IsFeatureImplemented(FEAT_CMOW) && IsHCRXEL2Enabled() then HCRX_EL2.CMOW
 else '0');
 if walkparams.d128 == '1' then
 walkparams.s2pie = '1';
 else
 walkparams.s2pie = if IsFeatureImplemented(FEAT_S2PIE) then VTCR_EL2.S2PIE else '0';
 walkparams.s2pir = if IsFeatureImplemented(FEAT_S2PIE) then S2PIR_EL2 else Zeros(64);
 if IsFeatureImplemented(FEAT_THE) && walkparams.d128 != '1' then
 walkparams.assuredonly = VTCR_EL2.AssuredOnly;
 else
 walkparams.assuredonly = '0';
 walkparams.tl0 = if IsFeatureImplemented(FEAT_THE) then VTCR_EL2.TL0 else '0';
 walkparams.tl1 = if IsFeatureImplemented(FEAT_THE) then VTCR_EL2.TL1 else '0';
 if IsFeatureImplemented(FEAT_HAFT) && walkparams.ha == '1' then
 walkparams.haft = VTCR_EL2.HAFT;
 else
 walkparams.haft = '0';
 walkparams.emec = '0';

 return walkparams;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14012
ID032224 Non-Confidential

Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation
aarch64/translation/vmsa_walkparams/S2DCacheEnabled

 // S2DCacheEnabled()
 // =================
 // Returns TRUE if Stage 2 Data access cacheability is enabled

 boolean S2DCacheEnabled()
 return HCR_EL2.CD == '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14013
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
J1.2 Pseudocode for AArch32 operation

This section holds the pseudocode for execution in AArch32 state. Functions that are listed in this section are
identified as AArch32.FunctionName. Some of these functions have an equivalent AArch64 function,
AArch64.FunctionName. This section is organized by functional groups, with the functional groups being indicated by
hierarchical path names, for example aarch32/debug/breakpoint.

Note

Many AArch32 pseudocode functions have not been updated to show the constraints on the Armv7 UNPREDICTABLE
behaviors that are described in Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors. Where
AArch32 pseudocode shows something to be UNPREDICTABLE, check Appendix K1 for possible constraints on the
permitted behavior.

The top-level sections of the AArch32 pseudocode hierarchy are:

• aarch32/debug.

• aarch32/exceptions.

• aarch32/functions.

• aarch32/translation.

J1.2.1 aarch32/debug

This section includes the following pseudocode functions:

• aarch32/debug/VCRMatch/AArch32.VCRMatch.

• aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled.

• aarch32/debug/breakpoint/AArch32.BreakpointMatch.

• aarch32/debug/breakpoint/AArch32.BreakpointValueMatch.

• aarch32/debug/breakpoint/AArch32.ReservedBreakpointType.

• aarch32/debug/breakpoint/AArch32.StateMatch.

• aarch32/debug/enables/AArch32.GenerateDebugExceptions.

• aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom.

• aarch32/debug/pmu/AArch32.IncrementCycleCounter.

• aarch32/debug/pmu/AArch32.IncrementEventCounter.

• aarch32/debug/pmu/AArch32.PMUCycle.

• aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState.

• aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState.

• aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState.

• aarch32/debug/watchpoint/AArch32.WatchpointByteMatch.

• aarch32/debug/watchpoint/AArch32.WatchpointMatch.

aarch32/debug/VCRMatch/AArch32.VCRMatch

 // AArch32.VCRMatch()
 // ==================

 boolean AArch32.VCRMatch(bits(32) vaddress)

 boolean match;
 if UsingAArch32() && ELUsingAArch32(EL1) && PSTATE.EL != EL2 then
 // Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
 match_word = Zeros(32);

 ss = CurrentSecurityState();
 if vaddress<31:5> == ExcVectorBase()<31:5> then
 if HaveEL(EL3) && ss == SS_NonSecure then
 match_word<UInt(vaddress<4:2>) + 24> = '1'; // Non-secure vectors
 else
 match_word<UInt(vaddress<4:2>) + 0> = '1'; // Secure vectors (or no EL3)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14014
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 if (HaveEL(EL3) && ELUsingAArch32(EL3) && vaddress<31:5> == MVBAR<31:5> &&
 ss == SS_Secure) then
 match_word<UInt(vaddress<4:2>) + 8> = '1'; // Monitor vectors

 // Mask out bits not corresponding to vectors.
 bits(32) mask;
 if !HaveEL(EL3) then
 mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
 elsif !ELUsingAArch32(EL3) then
 mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
 else
 mask = '11011110':'00000000':'11011100':'11011110';

 match_word = match_word AND DBGVCR AND mask;
 match = !IsZero(match_word);

 // Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
 if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then
 match = ConstrainUnpredictableBool(Unpredictable_VCMATCHDAPA);

 if !IsZero(vaddress<1:0>) && match then
 match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);
 else
 match = FALSE;

 return match;

aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEna
bled

 // AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
 // ==

 boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
 // the state of the (DBGEN AND SPIDEN) signal.
 if !HaveEL(EL3) && NonSecureOnlyImplementation() then return FALSE;
 return DBGEN == Signal_High && SPIDEN == Signal_High;

aarch32/debug/breakpoint/AArch32.BreakpointMatch

 // AArch32.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch32 translation regime.

 (boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, AccessDescriptor accdesc,
 integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert n < NumBreakpointsImplemented();

 enabled = DBGBCR[n].E == '1';
 isbreakpnt = TRUE;
 linked = DBGBCR[n].BT IN {'0x01'};
 linked_to = FALSE;
 linked_n = UInt(DBGBCR[n].LBN);

 state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
 linked, linked_n, isbreakpnt, accdesc);
 (value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

 if size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14015
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 (match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);

 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

 if value_mismatch && !mismatch_i then
 value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

 if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR[n]+2.
 if value_match then
 value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

 if !value_mismatch then
 value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

 match = value_match && state_match && enabled;
 mismatch = value_mismatch && state_match && enabled;

 return (match, mismatch);

aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

 // AArch32.BreakpointValueMatch()
 // ==============================
 // The first result is whether an Address Match or Context breakpoint is programmed on the
 // instruction at "address". The second result is whether an Address Mismatch breakpoint is
 // programmed on the instruction, that is, whether the instruction should be stepped.

 (boolean, boolean) AArch32.BreakpointValueMatch(integer n_in, bits(32) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against.
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.
 integer n = n_in;
 Constraint c;

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n >= NumBreakpointsImplemented() then
 (c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1,
 Unpredictable_BPNOTIMPL);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE, FALSE);

 // If this breakpoint is not enabled, it cannot generate a match.
 // (This could also happen on a call from StateMatch for linking).
 if DBGBCR[n].E == '0' then return (FALSE, FALSE);

 dbgtype = DBGBCR[n].BT;

 (c, dbgtype) = AArch32.ReservedBreakpointType(n, dbgtype);
 if c == Constraint_DISABLED then return (FALSE, FALSE);
 // Otherwise the dbgtype value returned by AArch32.ReservedBreakpointType is valid.

 // Determine what to compare against.
 match_addr = (dbgtype IN {'0x0x'});
 mismatch = (dbgtype IN {'010x'});
 match_vmid = (dbgtype IN {'10xx'});
 match_cid1 = (dbgtype IN {'xx1x'});
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14016
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 match_cid2 = (dbgtype IN {'11xx'});
 linking_enabled = (dbgtype IN {'xxx1'});

 // If called from StateMatch, is is CONSTRAINED UNPREDICTABLE if the
 // breakpoint is not programmed with linking enabled.
 if linked_to && !linking_enabled then
 if !ConstrainUnpredictableBool(Unpredictable_BPLINKINGDISABLED) then
 return (FALSE, FALSE);

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linking_enabled && !match_addr then
 return (FALSE, FALSE);

 boolean bvr_match = FALSE;
 boolean bxvr_match = FALSE;

 // Do the comparison.
 if match_addr then
 integer byte = UInt(vaddress<1:0>);
 assert byte IN {0,2}; // "vaddress" is halfword aligned

 boolean byte_select_match = (DBGBCR[n].BAS<byte> == '1');
 bvr_match = (vaddress<31:2> == DBGBVR[n]<31:2>) && byte_select_match;

 elsif match_cid1 then
 bvr_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);

 if match_vmid then
 bits(16) vmid;
 bits(16) bvr_vmid;

 if ELUsingAArch32(EL2) then
 vmid = ZeroExtend(VTTBR.VMID, 16);
 bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
 elsif !IsFeatureImplemented(FEAT_VMID16) || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBXVR[n]<15:0>;

 bxvr_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && vmid == bvr_vmid);

 elsif match_cid2 then
 bxvr_match = (PSTATE.EL != EL3 && EL2Enabled() && !ELUsingAArch32(EL2) &&
 DBGBXVR[n]<31:0> == CONTEXTIDR_EL2<31:0>);

 bvr_match_valid = (match_addr || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 match = (!bxvr_match_valid || bxvr_match) && (!bvr_match_valid || bvr_match);

 return (match && !mismatch, !match && mismatch);

aarch32/debug/breakpoint/AArch32.ReservedBreakpointType

 // AArch32.ReservedBreakpointType()
 // ================================
 // Checks if the given DBGBCR<n>.BT value is reserved and will generate Constrained Unpredictable
 // behavior, otherwise returns Constraint_NONE.

 (Constraint, bits(4)) AArch32.ReservedBreakpointType(integer n, bits(4) bt_in)
 bits(4) bt = bt_in;
 boolean reserved = FALSE;
 context_aware = IsContextAwareBreakpoint(n);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14017
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Address mismatch
 if bt IN {'010x'} && HaltOnBreakpointOrWatchpoint() then
 reserved = TRUE;

 // Context matching
 if !(bt IN {'0x0x'}) && !context_aware then
 reserved = TRUE;

 // EL2 extension
 if bt IN {'1xxx'} && !HaveEL(EL2) then
 reserved = TRUE;

 // Context matching
 if (bt IN {'011x','11xx'} && !IsFeatureImplemented(FEAT_VHE) &&
 !IsFeatureImplemented(FEAT_Debugv8p2)) then
 reserved = TRUE;

 if reserved then
 Constraint c;
 (c, bt) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE, 4);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then
 return (c, bits(4) UNKNOWN);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 return (Constraint_NONE, bt);

aarch32/debug/breakpoint/AArch32.StateMatch

 // AArch32.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch32.StateMatch(bits(2) ssc_in, bit hmc_in, bits(2) pxc_in, boolean linked_in,
 integer linked_n_in, boolean isbreakpnt, AccessDescriptor accdesc)

 // "ssc_in","hmc_in","pxc_in" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked_in" is TRUE if this is a linked breakpoint/watchpoint type.
 // "linked_n_in" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "accdesc" describes the properties of the access being matched.
 bit hmc = hmc_in;
 bits(2) ssc = ssc_in;
 bits(2) pxc = pxc_in;
 boolean linked = linked_in;
 integer linked_n = linked_n_in;

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 Constraint c;
 // SSCE value discarded as there is no SSCE bit in AArch32.
 (c, ssc, -, hmc, pxc) = CheckValidStateMatch(ssc, '0', hmc, pxc, isbreakpnt);
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the hmc,ssc,pxc values are either valid or the values returned by
 // CheckValidStateMatch are valid.

 pl2_match = HaveEL(EL2) && ((hmc == '1' && (ssc:pxc != '1000')) || ssc == '11');
 pl1_match = pxc<0> == '1';
 pl0_match = pxc<1> == '1';
 ssu_match = isbreakpnt && hmc == '0' && pxc == '00' && ssc != '11';

 boolean priv_match;
 if ssu_match then
 priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};
 else
 case accdesc.el of
 when EL3 priv_match = pl1_match; // EL3 and EL1 are both PL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14018
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when EL2 priv_match = pl2_match;
 when EL1 priv_match = pl1_match;
 when EL0 priv_match = pl0_match;

 // Security state match
 boolean ss_match;
 case ssc of
 when '00' ss_match = TRUE; // Both
 when '01' ss_match = accdesc.ss == SS_NonSecure; // Non-secure only
 when '10' ss_match = accdesc.ss == SS_Secure; // Secure only
 when '11' ss_match = (hmc == '1' || accdesc.ss == SS_Secure); // HMC=1 -> Both,
 // HMC=0 -> Secure only

 boolean linked_match = FALSE;

 if linked then
 // "linked_n" must be an enabled context-aware breakpoint unit.
 // If it is not context-aware then it is CONSTRAINED UNPREDICTABLE whether
 // this gives no match, gives a match without linking, or linked_n is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 if !IsContextAwareBreakpoint(linked_n) then
 (first_ctx_cmp, last_ctx_cmp) = ContextAwareBreakpointRange();
 (c, linked_n) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp,
 Unpredictable_BPNOTCTXCMP);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};

 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 vaddress = bits(32) UNKNOWN;
 linked_to = TRUE;
 (linked_match,-) = AArch32.BreakpointValueMatch(linked_n, vaddress, linked_to);

 return priv_match && ss_match && (!linked || linked_match);

aarch32/debug/enables/AArch32.GenerateDebugExceptions

 // AArch32.GenerateDebugExceptions()
 // =================================

 boolean AArch32.GenerateDebugExceptions()
 ss = CurrentSecurityState();
 return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, ss);

aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

 // AArch32.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from_el, SecurityState from_state)

 if !ELUsingAArch32(DebugTargetFrom(from_state)) then
 mask = '0'; // No PSTATE.D in AArch32 state
 return AArch64.GenerateDebugExceptionsFrom(from_el, from_state, mask);

 if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 boolean enabled;
 if HaveEL(EL3) && from_state == SS_Secure then
 assert from_el != EL2; // Secure EL2 always uses AArch64
 if IsSecureEL2Enabled() then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14019
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Implies that EL3 and EL2 both using AArch64
 enabled = MDCR_EL3.SDD == '0';
 else
 spd = if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32;
 if spd<1> == '1' then
 enabled = spd<0> == '1';
 else
 // SPD == 0b01 is reserved, but behaves the same as 0b00.
 enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();
 if from_el == EL0 then enabled = enabled || SDER.SUIDEN == '1';
 else
 enabled = from_el != EL2;

 return enabled;

aarch32/debug/pmu/AArch32.IncrementCycleCounter

 // AArch32.IncrementCycleCounter()
 // ===============================
 // Increment the cycle counter and possibly set overflow bits.

 AArch32.IncrementCycleCounter()
 if !CountPMUEvents(CYCLE_COUNTER_ID) then return;
 bit d = PMCR.D; // Check divide-by-64
 bit lc = PMCR.LC;
 // Effective value of 'D' bit is 0 when Effective value of LC is '1'
 if lc == '1' then d = '0';
 if d == '1' && !HasElapsed64Cycles() then return;

 integer old_value = UInt(PMCCNTR);
 integer new_value = old_value + 1;
 PMCCNTR = new_value<63:0>;

 constant integer ovflw = if lc == '1' then 64 else 32;

 if old_value<64:ovflw> != new_value<64:ovflw> then
 PMOVSSET.C = '1';
 PMOVSR.C = '1';

 return;

aarch32/debug/pmu/AArch32.IncrementEventCounter

 // AArch32.IncrementEventCounter()
 // ===============================
 // Increment the specified event counter 'idx' by the specified amount 'increment'.

 AArch32.IncrementEventCounter(integer idx, integer increment_in)
 if HaveAArch64() then
 // Force the counter to be incremented as a 64-bit counter.
 AArch64.IncrementEventCounter(idx, increment_in);
 return;

 // In this model, event counters in an AArch32-only implementation are 32 bits and
 // the LP bits are RES0 in this model, even if FEAT_PMUv3p5 is implemented.
 integer old_value;
 integer new_value;

 old_value = UInt(PMEVCNTR[idx]);
 integer increment = PMUCountValue(idx, increment_in);
 new_value = old_value + increment;

 PMEVCNTR[idx] = new_value<31:0>;
 constant integer ovflw = 32;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14020
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 if old_value<64:ovflw> != new_value<64:ovflw> then
 PMOVSSET<idx> = '1';
 PMOVSR<idx> = '1';
 // Check for the CHAIN event from an even counter
 if idx<0> == '0' && idx + 1 < GetNumEventCounters() then
 PMUEvent(PMU_EVENT_CHAIN, 1, idx + 1);

 return;

aarch32/debug/pmu/AArch32.PMUCycle

 // AArch32.PMUCycle()
 // ==================
 // Called at the end of each cycle to increment event counters and
 // check for PMU overflow. In pseudocode, a cycle ends after the
 // execution of the operational pseudocode.

 AArch32.PMUCycle()
 if HaveAArch64() then
 AArch64.PMUCycle();
 return;

 if !IsFeatureImplemented(FEAT_PMUv3) then
 return;

 PMUEvent(PMU_EVENT_CPU_CYCLES);

 integer counters = GetNumEventCounters();
 if counters != 0 then
 for idx = 0 to counters - 1
 if CountPMUEvents(idx) then
 integer accumulated = PMUEventAccumulator[idx];
 AArch32.IncrementEventCounter(idx, accumulated);
 PMUEventAccumulator[idx] = 0;
 AArch32.IncrementCycleCounter();
 CheckForPMUOverflow();

aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

 // AArch32.EnterHypModeInDebugState()
 // ==================================
 // Take an exception in Debug state to Hyp mode.

 AArch32.EnterHypModeInDebugState(ExceptionRecord except)
 SynchronizeContext();
 assert HaveEL(EL2) && CurrentSecurityState() == SS_NonSecure && ELUsingAArch32(EL2);

 AArch32.ReportHypEntry(except);
 AArch32.WriteMode(M32_Hyp);
 SPSR_curr[] = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DSPSR2 = bits(32) UNKNOWN;
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = bit UNKNOWN;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14021
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 EDSCR.ERR = '1';
 UpdateEDSCRFields();

 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

 // AArch32.EnterModeInDebugState()
 // ===============================
 // Take an exception in Debug state to a mode other than Monitor and Hyp mode.

 AArch32.EnterModeInDebugState(bits(5) target_mode)
 SynchronizeContext();
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(target_mode);
 SPSR_curr[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DSPSR2 = bits(32) UNKNOWN;
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if IsFeatureImplemented(FEAT_PAN) && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = bit UNKNOWN;
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState

 // AArch32.EnterMonitorModeInDebugState()
 // ======================================
 // Take an exception in Debug state to Monitor mode.

 AArch32.EnterMonitorModeInDebugState()
 SynchronizeContext();
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = CurrentSecurityState() == SS_Secure;
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 SPSR_curr[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if IsFeatureImplemented(FEAT_PAN) then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = bit UNKNOWN;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14022
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DSPSR2 = bits(32) UNKNOWN;
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 EndOfInstruction();

aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

 // AArch32.WatchpointByteMatch()
 // =============================

 boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)
 constant integer dbgtop = 31;
 constant integer cmpbottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
 integer bottom = cmpbottom;
 constant integer select = UInt(vaddress<cmpbottom-1:0>);
 byte_select_match = (DBGWCR[n].BAS<select> != '0');
 mask = UInt(DBGWCR[n].MASK);

 // If DBGWCR[n].MASK is a nonzero value and DBGWCR[n].BAS is not set to '11111111', or
 // DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
 else
 LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 Constraint c;
 (c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 constant integer cmpmsb = dbgtop;
 constant integer cmplsb = if mask > bottom then mask else bottom;
 constant integer bottombit = bottom;
 boolean WVR_match = (vaddress<cmpmsb:cmplsb> == DBGWVR[n]<cmpmsb:cmplsb>);
 if mask > bottom then
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR[n]<cmpbottom-1:bottombit>) then
 WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);

 return (WVR_match && byte_select_match);

aarch32/debug/watchpoint/AArch32.WatchpointMatch

 // AArch32.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch32 translation regime.

 boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size,
 AccessDescriptor accdesc)
 assert ELUsingAArch32(S1TranslationRegime());
 assert n < NumWatchpointsImplemented();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14023
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 boolean enabled = DBGWCR[n].E == '1';
 linked = DBGWCR[n].WT == '1';
 isbreakpnt = FALSE;
 linked_n = UInt(DBGWCR_EL1[n].LBN);
 state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,
 linked, linked_n, isbreakpnt, accdesc);

 boolean ls_match;
 case DBGWCR[n].LSC<1:0> of
 when '00' ls_match = FALSE;
 when '01' ls_match = accdesc.read;
 when '10' ls_match = accdesc.write || accdesc.acctype == AccessType_DC;
 when '11' ls_match = TRUE;

 boolean value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

J1.2.2 aarch32/exceptions

This section includes the following pseudocode functions:

• aarch32/exceptions/aborts/AArch32.Abort.

• aarch32/exceptions/aborts/AArch32.AbortSyndrome.

• aarch32/exceptions/aborts/AArch32.CheckPCAlignment.

• aarch32/exceptions/aborts/AArch32.CommonFaultStatus.

• aarch32/exceptions/aborts/AArch32.ReportDataAbort.

• aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort.

• aarch32/exceptions/aborts/AArch32.TakeDataAbortException.

• aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException.

• aarch32/exceptions/async/AArch32.TakePhysicalFIQException.

• aarch32/exceptions/async/AArch32.TakePhysicalIRQException.

• aarch32/exceptions/async/AArch32.TakePhysicalSErrorException.

• aarch32/exceptions/async/AArch32.TakeVirtualFIQException.

• aarch32/exceptions/async/AArch32.TakeVirtualIRQException.

• aarch32/exceptions/async/AArch32.TakeVirtualSErrorException.

• aarch32/exceptions/debug/AArch32.SoftwareBreakpoint.

• aarch32/exceptions/debug/DebugException.

• aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps.

• aarch32/exceptions/exceptions/AArch32.ExceptionClass.

• aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64.

• aarch32/exceptions/exceptions/AArch32.ReportHypEntry.

• aarch32/exceptions/exceptions/AArch32.ResetControlRegisters.

• aarch32/exceptions/exceptions/AArch32.TakeReset.

• aarch32/exceptions/exceptions/ExcVectorBase.

• aarch32/exceptions/ieeefp/AArch32.FPTrappedException.

• aarch32/exceptions/syscalls/AArch32.CallHypervisor.

• aarch32/exceptions/syscalls/AArch32.CallSupervisor.

• aarch32/exceptions/syscalls/AArch32.TakeHVCException.

• aarch32/exceptions/syscalls/AArch32.TakeSMCException.

• aarch32/exceptions/syscalls/AArch32.TakeSVCException.

• aarch32/exceptions/takeexception/AArch32.EnterHypMode.

• aarch32/exceptions/takeexception/AArch32.EnterMode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14024
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
• aarch32/exceptions/takeexception/AArch32.EnterMonitorMode.

• aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled.

• aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap.

• aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap.

• aarch32/exceptions/traps/AArch32.CheckForSVCTrap.

• aarch32/exceptions/traps/AArch32.CheckForWFxTrap.

• aarch32/exceptions/traps/AArch32.CheckITEnabled.

• aarch32/exceptions/traps/AArch32.CheckIllegalState.

• aarch32/exceptions/traps/AArch32.CheckSETENDEnabled.

• aarch32/exceptions/traps/AArch32.SystemAccessTrap.

• aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome.

• aarch32/exceptions/traps/AArch32.TakeHypTrapException.

• aarch32/exceptions/traps/AArch32.TakeMonitorTrapException.

• aarch32/exceptions/traps/AArch32.TakeUndefInstrException.

• aarch32/exceptions/traps/AArch32.Undefined.

aarch32/exceptions/aborts/AArch32.Abort

 // AArch32.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch32 translation regime.

 AArch32.Abort(bits(32) vaddress, FaultRecord fault)

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
 (IsFeatureImplemented(FEAT_RAS) && HCR_EL2.TEA == '1' &&
 IsExternalAbort(fault)) ||
 (IsDebugException(fault) && MDCR_EL2.TDE == '1'));

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = EffectiveEA() == '1' && IsExternalAbort(fault);

 if route_to_aarch64 then
 AArch64.Abort(ZeroExtend(vaddress, 64), fault);
 elsif fault.accessdesc.acctype == AccessType_IFETCH then
 AArch32.TakePrefetchAbortException(vaddress, fault);
 else
 AArch32.TakeDataAbortException(vaddress, fault);

aarch32/exceptions/aborts/AArch32.AbortSyndrome

 // AArch32.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort exceptions
 // taken to Hyp mode
 // from an AArch32 translation regime.

 ExceptionRecord AArch32.AbortSyndrome(Exception exceptype, FaultRecord fault,
 bits(32) vaddress, bits(2) target_el)
 except = ExceptionSyndrome(exceptype);

 except.syndrome = AArch32.FaultSyndrome(exceptype, fault);
 except.vaddress = ZeroExtend(vaddress, 64);

 if IPAValid(fault) then
 except.ipavalid = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14025
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 except.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
 except.ipaddress = ZeroExtend(fault.ipaddress.address, 56);
 else
 except.ipavalid = FALSE;

 return except;

aarch32/exceptions/aborts/AArch32.CheckPCAlignment

 // AArch32.CheckPCAlignment()
 // ==========================

 AArch32.CheckPCAlignment()
 bits(32) pc = ThisInstrAddr(32);

 if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then
 if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

 AccessDescriptor accdesc = CreateAccDescIFetch();
 FaultRecord fault = NoFault(accdesc);
 // Generate an Alignment fault Prefetch Abort exception
 fault.statuscode = Fault_Alignment;
 AArch32.Abort(pc, fault);

aarch32/exceptions/aborts/AArch32.CommonFaultStatus

 // AArch32.CommonFaultStatus()
 // ===========================
 // Return the common part of the fault status on reporting a Data
 // or Prefetch Abort.

 bits(32) AArch32.CommonFaultStatus(FaultRecord fault, boolean long_format)
 bits(32) target = Zeros(32);
 if IsFeatureImplemented(FEAT_RAS) && IsAsyncAbort(fault) then
 ErrorState errstate = PEErrorState(fault);
 target<15:14> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET
 if IsExternalAbort(fault) then target<12> = fault.extflag; // ExT
 target<9> = if long_format then '1' else '0'; // LPAE
 if long_format then // Long-descriptor format
 target<5:0> = EncodeLDFSC(fault.statuscode, fault.level); // STATUS
 else // Short-descriptor format
 target<10,3:0> = EncodeSDFSC(fault.statuscode, fault.level); // FS
 return target;

aarch32/exceptions/aborts/AArch32.ReportDataAbort

 // AArch32.ReportDataAbort()
 // =========================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault,
 bits(32) vaddress)
 boolean long_format;
 if route_to_monitor && CurrentSecurityState() != SS_Secure then
 long_format = ((TTBCR_S.EAE == '1') ||
 (IsExternalSyncAbort(fault) && ((PSTATE.EL == EL2 || TTBCR.EAE == '1') ||
 (fault.secondstage && (boolean IMPLEMENTATION_DEFINED
 "Report abort using Long-descriptor format")))));
 else
 long_format = TTBCR.EAE == '1';
 bits(32) syndrome = AArch32.CommonFaultStatus(fault, long_format);

 // bits of syndrome that are not common to I and D side
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14026
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 syndrome<13> = '1'; // CM
 syndrome<11> = '1'; // WnR
 else
 syndrome<11> = if fault.write then '1' else '0'; // WnR

 if !long_format then
 syndrome<7:4> = fault.domain; // Domain

 if fault.accessdesc.acctype == AccessType_IC then
 bits(32) i_syndrome;
 if (!long_format &&
 boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
 i_syndrome = syndrome;
 syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);
 else
 i_syndrome = bits(32) UNKNOWN;
 if route_to_monitor then
 IFSR_S = i_syndrome;
 else
 IFSR = i_syndrome;

 if route_to_monitor then
 DFSR_S = syndrome;
 DFAR_S = vaddress;
 else
 DFSR = syndrome;
 DFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

 // AArch32.ReportPrefetchAbort()
 // =============================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
 // The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format.
 // Normally, the current translation table format determines the format. For an abort from
 // Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the
 // following applies:
 // * The Secure TTBCR.EAE is set to 1.
 // * It is taken from Hyp mode.
 // * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
 long_format = FALSE;
 if route_to_monitor && CurrentSecurityState() != SS_Secure then
 long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
 else
 long_format = TTBCR.EAE == '1';

 bits(32) fsr = AArch32.CommonFaultStatus(fault, long_format);

 if route_to_monitor then
 IFSR_S = fsr;
 IFAR_S = vaddress;
 else
 IFSR = fsr;
 IFAR = vaddress;

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14027
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/aborts/AArch32.TakeDataAbortException

 // AArch32.TakeDataAbortException()
 // ================================

 AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
 route_to_monitor = HaveEL(EL3) && EffectiveEA() == '1' && IsExternalAbort(fault);
 route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR.TGE == '1' ||
 (IsFeatureImplemented(FEAT_RAS) && HCR2.TEA == '1' &&
 IsExternalAbort(fault)) ||
 (IsDebugException(fault) && HDCR.TDE == '1') ||
 IsSecondStage(fault)));

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x10;
 lr_offset = 8;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
 if route_to_monitor then
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 except = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress, EL2);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

 // AArch32.TakePrefetchAbortException()
 // ====================================

 AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
 route_to_monitor = HaveEL(EL3) && EffectiveEA() == '1' && IsExternalAbort(fault);

 route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR.TGE == '1' ||
 (IsFeatureImplemented(FEAT_RAS) && HCR2.TEA == '1' &&
 IsExternalAbort(fault)) ||
 (IsDebugException(fault) && HDCR.TDE == '1') ||
 IsSecondStage(fault)));

 ExceptionRecord except;
 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x0C;
 lr_offset = 4;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
 if route_to_monitor then
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 if fault.statuscode == Fault_Alignment then // PC Alignment fault
 except = ExceptionSyndrome(Exception_PCAlignment);
 except.vaddress = ThisInstrAddr(64);
 else
 except = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress, EL2);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14028
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakePhysicalFIQException

 // AArch32.TakePhysicalFIQException()
 // ==================================

 AArch32.TakePhysicalFIQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.FMO == '1' && !IsInHost());

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.FIQ == '1';

 if route_to_aarch64 then AArch64.TakePhysicalFIQException();
 route_to_monitor = HaveEL(EL3) && SCR.FIQ == '1';
 route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR.TGE == '1' || HCR.FMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x1C;
 lr_offset = 4;
 if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 except = ExceptionSyndrome(Exception_FIQ);
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakePhysicalIRQException

 // AArch32.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch32.TakePhysicalIRQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.IRQ == '1';

 if route_to_aarch64 then AArch64.TakePhysicalIRQException();

 route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
 route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR.TGE == '1' || HCR.IMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x18;
 lr_offset = 4;
 if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 except = ExceptionSyndrome(Exception_IRQ);
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14029
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakePhysicalSErrorException

 // AArch32.TakePhysicalSErrorException()
 // =====================================

 AArch32.TakePhysicalSErrorException(boolean implicit_esb)
 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1'));
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = EffectiveEA() == '1';

 if route_to_aarch64 then
 AArch64.TakePhysicalSErrorException(implicit_esb);

 route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
 route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR.TGE == '1' || HCR.AMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x10;
 lr_offset = 8;

 bits(2) target_el;
 if route_to_monitor then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_hyp then
 target_el = EL2;
 else
 target_el = EL1;

 FaultRecord fault = GetPendingPhysicalSError();
 vaddress = bits(32) UNKNOWN;
 except = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress, target_el);

 if IsSErrorEdgeTriggered() then
 ClearPendingPhysicalSError();
 case target_el of
 when EL3
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 when EL2
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
 when EL1
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);
 otherwise
 Unreachable();

aarch32/exceptions/async/AArch32.TakeVirtualFIQException

 // AArch32.TakeVirtualFIQException()
 // =================================

 AArch32.TakeVirtualFIQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE==0 and FMO==1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14030
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 assert HCR.TGE == '0' && HCR.FMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x1C;
 lr_offset = 4;

 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakeVirtualIRQException

 // AArch32.TakeVirtualIRQException()
 // =================================

 AArch32.TakeVirtualIRQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE==0 and IMO==1
 assert HCR.TGE == '0' && HCR.IMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';

 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x18;
 lr_offset = 4;

 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/async/AArch32.TakeVirtualSErrorException

 // AArch32.TakeVirtualSErrorException()
 // ====================================

 AArch32.TakeVirtualSErrorException()

 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE==0 and AMO==1
 assert HCR.TGE == '0' && HCR.AMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualSErrorException();
 route_to_monitor = FALSE;

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x10;
 lr_offset = 8;

 vaddress = bits(32) UNKNOWN;
 parity = FALSE;
 Fault fault = Fault_AsyncExternal;
 integer level = integer UNKNOWN;
 bits(32) fsr = Zeros(32);
 if IsFeatureImplemented(FEAT_RAS) then
 if ELUsingAArch32(EL2) then
 fsr<15:14> = VDFSR.AET;
 fsr<12> = VDFSR.ExT;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14031
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 fsr<15:14> = VSESR_EL2.AET;
 fsr<12> = VSESR_EL2.ExT;
 else
 fsr<12> = bit IMPLEMENTATION_DEFINED "Virtual External abort type";
 if TTBCR.EAE == '1' then // Long-descriptor format
 fsr<9> = '1';
 fsr<5:0> = EncodeLDFSC(fault, level);
 else // Short-descriptor format
 fsr<9> = '0';
 fsr<10,3:0> = EncodeSDFSC(fault, level);
 DFSR = fsr;
 DFAR = bits(32) UNKNOWN;
 ClearPendingVirtualSError();
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

 // AArch32.SoftwareBreakpoint()
 // ============================

 AArch32.SoftwareBreakpoint(bits(16) immediate)

 if (EL2Enabled() && !ELUsingAArch32(EL2) &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
 AArch64.SoftwareBreakpoint(immediate);

 accdesc = CreateAccDescIFetch();
 fault = NoFault(accdesc);
 vaddress = bits(32) UNKNOWN;

 fault.statuscode = Fault_Debug;
 fault.debugmoe = DebugException_BKPT;

 AArch32.Abort(vaddress, fault);

aarch32/exceptions/debug/DebugException

 constant bits(4) DebugException_Breakpoint = '0001';
 constant bits(4) DebugException_BKPT = '0011';
 constant bits(4) DebugException_VectorCatch = '0101';
 constant bits(4) DebugException_Watchpoint = '1010';

aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps

 // AArch32.CheckAdvSIMDOrFPRegisterTraps()
 // =======================================
 // Check if an instruction that accesses an Advanced SIMD and
 // floating-point System register is trapped by an appropriate HCR.TIDx
 // ID group trap control.

 AArch32.CheckAdvSIMDOrFPRegisterTraps(bits(4) reg)

 if PSTATE.EL == EL1 && EL2Enabled() then
 tid0 = if ELUsingAArch32(EL2) then HCR.TID0 else HCR_EL2.TID0;
 tid3 = if ELUsingAArch32(EL2) then HCR.TID3 else HCR_EL2.TID3;

 if ((tid0 == '1' && reg == '0000') || // FPSID
 (tid3 == '1' && reg IN {'0101', '0110', '0111'})) then // MVFRx
 if ELUsingAArch32(EL2) then
 AArch32.SystemAccessTrap(M32_Hyp, 0x8);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x8);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14032
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/exceptions/AArch32.ExceptionClass

 // AArch32.ExceptionClass()
 // ========================
 // Returns the Exception Class and Instruction Length fields to be reported in HSR

 (integer,bit) AArch32.ExceptionClass(Exception exceptype)

 il_is_valid = TRUE;
 integer ec;
 case exceptype of
 when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03;
 when Exception_CP15RRTTrap ec = 0x04;
 when Exception_CP14RTTrap ec = 0x05;
 when Exception_CP14DTTrap ec = 0x06;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_PACTrap ec = 0x09;
 when Exception_TSTARTAccessTrap ec = 0x1B;
 when Exception_GPC ec = 0x1E;
 when Exception_CP14RRTTrap ec = 0x0C;
 when Exception_BranchTarget ec = 0x0D;
 when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
 when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
 when Exception_DataAbort ec = 0x24;
 when Exception_NV2DataAbort ec = 0x25;
 when Exception_FPTrappedException ec = 0x28;
 when Exception_PMU ec = 0x3D;
 otherwise Unreachable();

 if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
 ec = ec + 1;
 bit il;
 if il_is_valid then
 il = if ThisInstrLength() == 32 then '1' else '0';
 else
 il = '1';

 return (ec,il);

aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64

 // AArch32.GeneralExceptionsToAArch64()
 // ====================================
 // Returns TRUE if exceptions normally routed to EL1 are being handled at an Exception
 // level using AArch64, because either EL1 is using AArch64 or TGE is in force and EL2
 // is using AArch64.

 boolean AArch32.GeneralExceptionsToAArch64()
 return ((PSTATE.EL == EL0 && !ELUsingAArch32(EL1)) ||
 (EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'));

aarch32/exceptions/exceptions/AArch32.ReportHypEntry

 // AArch32.ReportHypEntry()
 // ========================
 // Report syndrome information to Hyp mode registers.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14033
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.ReportHypEntry(ExceptionRecord except)

 Exception exceptype = except.exceptype;

 (ec,il) = AArch32.ExceptionClass(exceptype);
 iss = except.syndrome;
 iss2 = except.syndrome2;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 HSR = ec<5:0>:il:iss;

 if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment} then
 HIFAR = except.vaddress<31:0>;
 HDFAR = bits(32) UNKNOWN;
 elsif exceptype == Exception_DataAbort then
 HIFAR = bits(32) UNKNOWN;
 HDFAR = except.vaddress<31:0>;

 if except.ipavalid then
 HPFAR<31:4> = except.ipaddress<39:12>;
 else
 HPFAR<31:4> = bits(28) UNKNOWN;

 return;

aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

 // AArch32.ResetControlRegisters()
 // ===============================
 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.

 AArch32.ResetControlRegisters(boolean cold_reset);

aarch32/exceptions/exceptions/AArch32.TakeReset

 // AArch32.TakeReset()
 // ===================
 // Reset into AArch32 state

 AArch32.TakeReset(boolean cold_reset)
 assert !HaveAArch64();

 // Enter the highest implemented Exception level in AArch32 state
 if HaveEL(EL3) then
 AArch32.WriteMode(M32_Svc);
 SCR.NS = '0'; // Secure state
 elsif HaveEL(EL2) then
 AArch32.WriteMode(M32_Hyp);
 else
 AArch32.WriteMode(M32_Svc);

 // Reset System registers in the coproc=0b111x encoding space
 // and other system components
 AArch32.ResetControlRegisters(cold_reset);
 FPEXC.EN = '0';

 // Reset all other PSTATE fields, including instruction set and endianness according to the
 // SCTLR values produced by the above call to ResetControlRegisters()
 PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
 PSTATE.IT = '00000000'; // IT block state reset
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14034
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if HaveEL(EL2) && !HaveEL(EL3) then
 PSTATE.T = HSCTLR.TE; // Instruction set: TE=0:A32, TE=1:T32. PSTATE.J is RES0.
 PSTATE.E = HSCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian.
 else
 PSTATE.T = SCTLR.TE; // Instruction set: TE=0:A32, TE=1:T32. PSTATE.J is RES0.
 PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian.
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch32.ResetGeneralRegisters();
 AArch32.ResetSIMDFPRegisters();
 AArch32.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(32) rv; // IMPLEMENTATION DEFINED reset vector

 if HaveEL(EL3) then
 if MVBAR<0> == '1' then // Reset vector in MVBAR
 rv = MVBAR<31:1>:'0';
 else
 rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
 else
 rv = RVBAR<31:1>:'0';

 // The reset vector must be correctly aligned
 assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

 boolean branch_conditional = FALSE;
 EDPRSR.R = '0'; // Leaving Reset State.
 BranchTo(rv, BranchType_RESET, branch_conditional);

aarch32/exceptions/exceptions/ExcVectorBase

 // ExcVectorBase()
 // ===============

 bits(32) ExcVectorBase()
 if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000
 return Ones(16):Zeros(16);
 else
 return VBAR<31:5>:Zeros(5);

aarch32/exceptions/ieeefp/AArch32.FPTrappedException

 // AArch32.FPTrappedException()
 // ============================

 AArch32.FPTrappedException(bits(8) accumulated_exceptions)
 if AArch32.GeneralExceptionsToAArch64() then
 is_ase = FALSE;
 element = 0;
 AArch64.FPTrappedException(is_ase, accumulated_exceptions);
 FPEXC.DEX = '1';
 FPEXC.TFV = '1';
 FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
 FPEXC<10:8> = '111'; // VECITR is RES1

 AArch32.TakeUndefInstrException();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14035
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/syscalls/AArch32.CallHypervisor

 // AArch32.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch32.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);

 if !ELUsingAArch32(EL2) then
 AArch64.CallHypervisor(immediate);
 else
 AArch32.TakeHVCException(immediate);

aarch32/exceptions/syscalls/AArch32.CallSupervisor

 // AArch32.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch32.CallSupervisor(bits(16) immediate_in)
 bits(16) immediate = immediate_in;
 if AArch32.CurrentCond() != '1110' then
 immediate = bits(16) UNKNOWN;
 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CallSupervisor(immediate);
 else
 AArch32.TakeSVCException(immediate);

aarch32/exceptions/syscalls/AArch32.TakeHVCException

 // AArch32.TakeHVCException()
 // ==========================

 AArch32.TakeHVCException(bits(16) immediate)
 assert HaveEL(EL2) && ELUsingAArch32(EL2);

 AArch32.ITAdvance();
 SSAdvance();
 bits(32) preferred_exception_return = NextInstrAddr(32);
 vect_offset = 0x08;

 except = ExceptionSyndrome(Exception_HypervisorCall);
 except.syndrome<15:0> = immediate;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);

aarch32/exceptions/syscalls/AArch32.TakeSMCException

 // AArch32.TakeSMCException()
 // ==========================

 AArch32.TakeSMCException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 AArch32.ITAdvance();
 HSAdvance();
 SSAdvance();
 bits(32) preferred_exception_return = NextInstrAddr(32);
 vect_offset = 0x08;
 lr_offset = 0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14036
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/syscalls/AArch32.TakeSVCException

 // AArch32.TakeSVCException()
 // ==========================

 AArch32.TakeSVCException(bits(16) immediate)

 AArch32.ITAdvance();
 SSAdvance();
 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

 bits(32) preferred_exception_return = NextInstrAddr(32);
 vect_offset = 0x08;
 lr_offset = 0;

 if PSTATE.EL == EL2 || route_to_hyp then
 except = ExceptionSyndrome(Exception_SupervisorCall);
 except.syndrome<15:0> = immediate;
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/takeexception/AArch32.EnterHypMode

 // AArch32.EnterHypMode()
 // ======================
 // Take an exception to Hyp mode.

 AArch32.EnterHypMode(ExceptionRecord except, bits(32) preferred_exception_return,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL2) && CurrentSecurityState() == SS_NonSecure && ELUsingAArch32(EL2);

 if Halted() then
 AArch32.EnterHypModeInDebugState(except);
 return;
 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
 if !(except.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch32.ReportHypEntry(except);
 AArch32.WriteMode(M32_Hyp);
 SPSR_curr[] = spsr;
 ELR_hyp = preferred_exception_return;
 PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if !HaveEL(EL3) || SCR_curr[].EA == '0' then PSTATE.A = '1';
 if !HaveEL(EL3) || SCR_curr[].IRQ == '0' then PSTATE.I = '1';
 if !HaveEL(EL3) || SCR_curr[].FIQ == '0' then PSTATE.F = '1';
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = HSCTLR.DSSBS;
 boolean branch_conditional = FALSE;
 BranchTo(HVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 EndOfInstruction();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14037
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/takeexception/AArch32.EnterMode

 // AArch32.EnterMode()
 // ===================
 // Take an exception to a mode other than Monitor and Hyp mode.

 AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 if Halted() then
 AArch32.EnterModeInDebugState(target_mode);
 return;
 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(target_mode);
 SPSR_curr[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if target_mode == M32_FIQ then
 PSTATE.<A,I,F> = '111';
 elsif target_mode IN {M32_Abort, M32_IRQ} then
 PSTATE.<A,I> = '11';
 else
 PSTATE.I = '1';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if IsFeatureImplemented(FEAT_PAN) && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = SCTLR.DSSBS;
 boolean branch_conditional = FALSE;
 BranchTo(ExcVectorBase()<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMonitorMode

 // AArch32.EnterMonitorMode()
 // ==========================
 // Take an exception to Monitor mode.

 AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = CurrentSecurityState() == SS_Secure;
 if Halted() then
 AArch32.EnterMonitorModeInDebugState();
 return;
 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(M32_Monitor);
 SPSR_curr[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 PSTATE.<A,I,F> = '111';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 if IsFeatureImplemented(FEAT_PAN) then
 if !from_secure then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14038
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = SCTLR.DSSBS;
 boolean branch_conditional = FALSE;
 BranchTo(MVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 EndOfInstruction();

aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

 // AArch32.CheckAdvSIMDOrFPEnabled()
 // =================================
 // Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

 AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check_in, boolean advsimd)
 boolean fpexc_check = fpexc_check_in;
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 // When executing at EL0 using AArch32, if EL1 is using AArch64 then the Effective value of
 // FPEXC.EN is 1. This includes when EL2 is using AArch64 and enabled in the current
 // Security state, HCR_EL2.TGE is 1, and the Effective value of HCR_EL2.RW is 1.
 AArch64.CheckFPAdvSIMDEnabled();
 else
 cpacr_asedis = CPACR.ASEDIS;
 cpacr_cp10 = CPACR.cp10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) && CurrentSecurityState() == SS_NonSecure then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
 if NSACR.cp10 == '0' then cpacr_cp10 = '00';

 if PSTATE.EL != EL2 then
 // Check if Advanced SIMD disabled in CPACR
 if advsimd && cpacr_asedis == '1' then AArch32.Undefined();

 // Check if access disabled in CPACR
 boolean disabled;
 case cpacr_cp10 of
 when '00' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '10' disabled = ConstrainUnpredictableBool(Unpredictable_RESCPACR);
 when '11' disabled = FALSE;
 if disabled then AArch32.Undefined();

 // If required, check FPEXC enabled bit.
 if (fpexc_check && PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2) &&
 HCR_EL2.TGE == '1') then
 // When executing at EL0 using AArch32, if EL2 is using AArch64 and enabled in the
 // current Security state, HCR_EL2.TGE is 1, and the Effective value of HCR_EL2.RW is 0
 // then it is IMPLEMENTATION DEFINED whether the Effective value of FPEXC.EN is 1
 // or the value of FPEXC32_EL2.EN.
 fpexc_check = (boolean IMPLEMENTATION_DEFINED
 "Use FPEXC32_EL2.EN value when {TGE,RW} == {1,0}");

 if fpexc_check && FPEXC.EN == '0' then
 AArch32.Undefined();

 AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14039
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

 // AArch32.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch32.CheckFPAdvSIMDTrap(boolean advsimd)
 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.CheckFPAdvSIMDTrap();
 else
 if (HaveEL(EL3) && !ELUsingAArch32(EL3) &&
 CPTR_EL3.TFP == '1' && EL3SDDUndefPriority()) then
 UNDEFINED;

 ss = CurrentSecurityState();
 if HaveEL(EL2) && ss != SS_Secure then
 hcptr_tase = HCPTR.TASE;
 hcptr_cp10 = HCPTR.TCP10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
 if NSACR.cp10 == '0' then hcptr_cp10 = '1';

 // Check if access disabled in HCPTR
 if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then
 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 except.syndrome<24:20> = ConditionSyndrome();

 if advsimd then
 except.syndrome<5> = '1';
 else
 except.syndrome<5> = '0';
 except.syndrome<3:0> = '1010'; // coproc field, always 0xA

 if PSTATE.EL == EL2 then
 AArch32.TakeUndefInstrException(except);
 else
 AArch32.TakeHypTrapException(except);

 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then
 if EL3SDDUndef() then
 UNDEFINED;
 else
 AArch64.AdvSIMDFPAccessTrap(EL3);

aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap

 // AArch32.CheckForSMCUndefOrTrap()
 // ================================
 // Check for UNDEFINED or trap on SMC instruction

 AArch32.CheckForSMCUndefOrTrap()
 if !HaveEL(EL3) || PSTATE.EL == EL0 then
 UNDEFINED;

 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.CheckForSMCUndefOrTrap(Zeros(16));
 else
 route_to_hyp = EL2Enabled() && PSTATE.EL == EL1 && HCR.TSC == '1';
 if route_to_hyp then
 except = ExceptionSyndrome(Exception_MonitorCall);
 AArch32.TakeHypTrapException(except);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14040
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/traps/AArch32.CheckForSVCTrap

 // AArch32.CheckForSVCTrap()
 // =========================
 // Check for trap on SVC instruction

 AArch32.CheckForSVCTrap(bits(16) immediate)
 if IsFeatureImplemented(FEAT_FGT) then
 route_to_el2 = FALSE;
 if PSTATE.EL == EL0 then
 route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
 (!IsInHost() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

 if route_to_el2 then
 except = ExceptionSyndrome(Exception_SupervisorCall);
 except.syndrome<15:0> = immediate;
 except.trappedsyscallinst = TRUE;
 bits(64) preferred_exception_return = ThisInstrAddr(64);
 vect_offset = 0x0;

 AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

aarch32/exceptions/traps/AArch32.CheckForWFxTrap

 // AArch32.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch32.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
 assert HaveEL(target_el);

 // Check for routing to AArch64
 if !ELUsingAArch32(target_el) then
 AArch64.CheckForWFxTrap(target_el, wfxtype);
 return;

 boolean is_wfe = wfxtype == WFxType_WFE;
 boolean trap;
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';
 when EL3
 trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';

 if trap then
 if target_el == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.WFxTrap(wfxtype, target_el);

 if target_el == EL3 then
 AArch32.TakeMonitorTrapException();
 elsif target_el == EL2 then
 except = ExceptionSyndrome(Exception_WFxTrap);
 except.syndrome<24:20> = ConditionSyndrome();

 case wfxtype of
 when WFxType_WFI
 except.syndrome<0> = '0';
 when WFxType_WFE
 except.syndrome<0> = '1';

 AArch32.TakeHypTrapException(except);
 else
 AArch32.TakeUndefInstrException();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14041
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/exceptions/traps/AArch32.CheckITEnabled

 // AArch32.CheckITEnabled()
 // ========================
 // Check whether the T32 IT instruction is disabled.

 AArch32.CheckITEnabled(bits(4) mask)
 bit it_disabled;
 if PSTATE.EL == EL2 then
 it_disabled = HSCTLR.ITD;
 else
 it_disabled = (if ELUsingAArch32(EL1) then SCTLR.ITD else SCTLR_ELx[].ITD);
 if it_disabled == '1' then
 if mask != '1000' then UNDEFINED;

 accdesc = CreateAccDescIFetch();
 aligned = TRUE;
 // Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
 next_instr = AArch32.MemSingle[NextInstrAddr(32), 2, accdesc, aligned];

 if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
 '01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then
 // It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
 // taken on the IT instruction or the next instruction. This is not reflected in
 // the pseudocode, which always takes the exception on the IT instruction. This
 // also does not take into account cases where the next instruction is UNPREDICTABLE.
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.CheckIllegalState

 // AArch32.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch32.CheckIllegalState()
 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CheckIllegalState();
 elsif PSTATE.IL == '1' then
 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x04;

 if PSTATE.EL == EL2 || route_to_hyp then
 except = ExceptionSyndrome(Exception_IllegalState);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

 // AArch32.CheckSETENDEnabled()
 // ============================
 // Check whether the AArch32 SETEND instruction is disabled.

 AArch32.CheckSETENDEnabled()
 bit setend_disabled;
 if PSTATE.EL == EL2 then
 setend_disabled = HSCTLR.SED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14042
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 setend_disabled = (if ELUsingAArch32(EL1) then SCTLR.SED else SCTLR_ELx[].SED);
 if setend_disabled == '1' then
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.SystemAccessTrap

 // AArch32.SystemAccessTrap()
 // ==========================
 // Trapped System register access.

 AArch32.SystemAccessTrap(bits(5) mode, integer ec)
 (valid, target_el) = ELFromM32(mode);
 assert valid && HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 if target_el == EL2 then
 except = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch32.TakeHypTrapException(except);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome

 // AArch32.SystemAccessTrapSyndrome()
 // ==================================
 // Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS,
 // VMSR instructions, other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch32.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord except;

 case ec of
 when 0x0 except = ExceptionSyndrome(Exception_Uncategorized);
 when 0x3 except = ExceptionSyndrome(Exception_CP15RTTrap);
 when 0x4 except = ExceptionSyndrome(Exception_CP15RRTTrap);
 when 0x5 except = ExceptionSyndrome(Exception_CP14RTTrap);
 when 0x6 except = ExceptionSyndrome(Exception_CP14DTTrap);
 when 0x7 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 when 0x8 except = ExceptionSyndrome(Exception_FPIDTrap);
 when 0xC except = ExceptionSyndrome(Exception_CP14RRTTrap);
 otherwise Unreachable();

 bits(20) iss = Zeros(20);

 if except.exceptype == Exception_Uncategorized then
 return except;
 elsif except.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap,
 Exception_CP15RTTrap} then
 // Trapped MRC/MCR, VMRS on FPSID
 iss<13:10> = instr<19:16>; // CRn, Reg in case of VMRS
 iss<8:5> = instr<15:12>; // Rt
 iss<9> = '0'; // RES0

 if except.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<4:1> = instr<3:0>; //CRm
 else //VMRS Access
 iss<19:17> = '000'; //opc2 - Hardcoded for VMRS
 iss<16:14> = '111'; //opc1 - Hardcoded for VMRS
 iss<4:1> = '0000'; //CRm - Hardcoded for VMRS
 elsif except.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14043
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 Exception_CP15RRTTrap} then
 // Trapped MRRC/MCRR, VMRS/VMSR
 iss<19:16> = instr<7:4>; // opc1
 iss<13:10> = instr<19:16>; // Rt2
 iss<8:5> = instr<15:12>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif except.exceptype == Exception_CP14DTTrap then
 // Trapped LDC/STC
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<8:5> = bits(4) UNKNOWN;
 iss<3> = '1';
 iss<0> = instr<20>; // Direction

 except.syndrome<24:20> = ConditionSyndrome();
 except.syndrome<19:0> = iss;

 return except;

aarch32/exceptions/traps/AArch32.TakeHypTrapException

 // AArch32.TakeHypTrapException()
 // ==============================
 // Exceptions routed to Hyp mode as a Hyp Trap exception.

 AArch32.TakeHypTrapException(integer ec)
 except = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch32.TakeHypTrapException(except);

 // AArch32.TakeHypTrapException()
 // ==============================
 // Exceptions routed to Hyp mode as a Hyp Trap exception.

 AArch32.TakeHypTrapException(ExceptionRecord except)
 assert HaveEL(EL2) && CurrentSecurityState() == SS_NonSecure && ELUsingAArch32(EL2);

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x14;

 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

aarch32/exceptions/traps/AArch32.TakeMonitorTrapException

 // AArch32.TakeMonitorTrapException()
 // ==================================
 // Exceptions routed to Monitor mode as a Monitor Trap exception.

 AArch32.TakeMonitorTrapException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);

 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.TakeUndefInstrException

 // AArch32.TakeUndefInstrException()
 // =================================

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14044
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.TakeUndefInstrException()
 except = ExceptionSyndrome(Exception_Uncategorized);
 AArch32.TakeUndefInstrException(except);

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException(ExceptionRecord except)

 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';
 bits(32) preferred_exception_return = ThisInstrAddr(32);
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
 elsif route_to_hyp then
 AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.Undefined

 // AArch32.Undefined()
 // ===================

 AArch32.Undefined()

 if AArch32.GeneralExceptionsToAArch64() then AArch64.Undefined();
 AArch32.TakeUndefInstrException();

J1.2.3 aarch32/functions

This section includes the following pseudocode functions:

• aarch32/functions/aborts/AArch32.DomainValid.

• aarch32/functions/aborts/AArch32.FaultSyndrome.

• aarch32/functions/aborts/EncodeSDFSC.

• aarch32/functions/common/A32ExpandImm.

• aarch32/functions/common/A32ExpandImm_C.

• aarch32/functions/common/DecodeImmShift.

• aarch32/functions/common/DecodeRegShift.

• aarch32/functions/common/RRX.

• aarch32/functions/common/RRX_C.

• aarch32/functions/common/SRType.

• aarch32/functions/common/Shift.

• aarch32/functions/common/Shift_C.

• aarch32/functions/common/T32ExpandImm.

• aarch32/functions/common/T32ExpandImm_C.

• aarch32/functions/common/VBitOps.

• aarch32/functions/common/VCGEType.

• aarch32/functions/common/VCGTtype.

• aarch32/functions/common/VFPNegMul.

• aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps.

• aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass.

• aarch32/functions/exclusive/AArch32.IsExclusiveVA.

• aarch32/functions/exclusive/AArch32.MarkExclusiveVA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14045
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
• aarch32/functions/exclusive/AArch32.SetExclusiveMonitors.

• aarch32/functions/float/CheckAdvSIMDEnabled.

• aarch32/functions/float/CheckAdvSIMDOrVFPEnabled.

• aarch32/functions/float/CheckCryptoEnabled32.

• aarch32/functions/float/CheckVFPEnabled.

• aarch32/functions/float/FPHalvedSub.

• aarch32/functions/float/FPRSqrtStep.

• aarch32/functions/float/FPRecipStep.

• aarch32/functions/float/StandardFPCR.

• aarch32/functions/memory/AArch32.MemSingle.

• aarch32/functions/memory/AArch32.MemSingleRead.

• aarch32/functions/memory/AArch32.MemSingleWrite.

• aarch32/functions/memory/AArch32.UnalignedAccessFaults.

• aarch32/functions/memory/Hint_PreloadData.

• aarch32/functions/memory/Hint_PreloadDataForWrite.

• aarch32/functions/memory/Hint_PreloadInstr.

• aarch32/functions/memory/MemA.

• aarch32/functions/memory/MemO.

• aarch32/functions/memory/MemS.

• aarch32/functions/memory/MemU.

• aarch32/functions/memory/MemU_unpriv.

• aarch32/functions/memory/Mem_with_type.

• aarch32/functions/ras/AArch32.ESBOperation.

• aarch32/functions/ras/AArch32.EncodeAsyncErrorSyndrome.

• aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome.

• aarch32/functions/ras/AArch32.vESBOperation.

• aarch32/functions/registers/AArch32.ResetGeneralRegisters.

• aarch32/functions/registers/AArch32.ResetSIMDFPRegisters.

• aarch32/functions/registers/AArch32.ResetSpecialRegisters.

• aarch32/functions/registers/AArch32.ResetSystemRegisters.

• aarch32/functions/registers/ALUExceptionReturn.

• aarch32/functions/registers/ALUWritePC.

• aarch32/functions/registers/BXWritePC.

• aarch32/functions/registers/BranchWritePC.

• aarch32/functions/registers/CBWritePC.

• aarch32/functions/registers/D.

• aarch32/functions/registers/Din.

• aarch32/functions/registers/LR.

• aarch32/functions/registers/LoadWritePC.

• aarch32/functions/registers/LookUpRIndex.

• aarch32/functions/registers/Monitor_mode_registers.

• aarch32/functions/registers/PC32.

• aarch32/functions/registers/PCStoreValue.

• aarch32/functions/registers/Q.

• aarch32/functions/registers/Qin.

• aarch32/functions/registers/R.

• aarch32/functions/registers/RBankSelect.

• aarch32/functions/registers/Rmode.

• aarch32/functions/registers/S.

• aarch32/functions/registers/_Dclone.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14046
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
• aarch32/functions/system/AArch32.ExceptionReturn.

• aarch32/functions/system/AArch32.ExecutingCP10or11Instr.

• aarch32/functions/system/AArch32.ITAdvance.

• aarch32/functions/system/AArch32.SysRegRead.

• aarch32/functions/system/AArch32.SysRegRead64.

• aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR.

• aarch32/functions/system/AArch32.SysRegWrite.

• aarch32/functions/system/AArch32.SysRegWrite64.

• aarch32/functions/system/AArch32.SysRegWriteM.

• aarch32/functions/system/AArch32.WriteMode.

• aarch32/functions/system/AArch32.WriteModeByInstr.

• aarch32/functions/system/BadMode.

• aarch32/functions/system/BankedRegisterAccessValid.

• aarch32/functions/system/CPSRWriteByInstr.

• aarch32/functions/system/ConditionPassed.

• aarch32/functions/system/CurrentCond.

• aarch32/functions/system/InITBlock.

• aarch32/functions/system/LastInITBlock.

• aarch32/functions/system/SPSRWriteByInstr.

• aarch32/functions/system/SPSRaccessValid.

• aarch32/functions/system/SelectInstrSet.

• aarch32/functions/tlbi/AArch32.DTLBI_ALL.

• aarch32/functions/tlbi/AArch32.DTLBI_ASID.

• aarch32/functions/tlbi/AArch32.DTLBI_VA.

• aarch32/functions/tlbi/AArch32.ITLBI_ALL.

• aarch32/functions/tlbi/AArch32.ITLBI_ASID.

• aarch32/functions/tlbi/AArch32.ITLBI_VA.

• aarch32/functions/tlbi/AArch32.TLBI_ALL.

• aarch32/functions/tlbi/AArch32.TLBI_ASID.

• aarch32/functions/tlbi/AArch32.TLBI_IPAS2.

• aarch32/functions/tlbi/AArch32.TLBI_VA.

• aarch32/functions/tlbi/AArch32.TLBI_VAA.

• aarch32/functions/tlbi/AArch32.TLBI_VMALL.

• aarch32/functions/tlbi/AArch32.TLBI_VMALLS12.

• aarch32/functions/v6simd/Sat.

• aarch32/functions/v6simd/SignedSat.

• aarch32/functions/v6simd/UnsignedSat.

aarch32/functions/aborts/AArch32.DomainValid

 // AArch32.DomainValid()
 // =====================
 // Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

 boolean AArch32.DomainValid(Fault statuscode, integer level)
 assert statuscode != Fault_None;

 case statuscode of
 when Fault_Domain
 return TRUE;
 when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk
 return level == 2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14047
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 otherwise
 return FALSE;

aarch32/functions/aborts/AArch32.FaultSyndrome

 // AArch32.FaultSyndrome()
 // =======================
 // Creates an exception syndrome value and updates the virtual address for Abort and Watchpoint
 // exceptions taken to AArch32 Hyp mode.

 bits(25) AArch32.FaultSyndrome(Exception exceptype, FaultRecord fault)
 assert fault.statuscode != Fault_None;

 bits(25) iss = Zeros(25);

 boolean d_side = exceptype == Exception_DataAbort;
 if IsFeatureImplemented(FEAT_RAS) && IsAsyncAbort(fault) then
 ErrorState errstate = PEErrorState(fault);
 iss<11:10> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET

 if d_side then
 if (IsSecondStage(fault) && !fault.s2fs1walk &&
 (!IsExternalSyncAbort(fault) ||
 (!IsFeatureImplemented(FEAT_RAS) && fault.accessdesc.acctype == AccessType_TTW &&
 boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
 iss<24:14> = LSInstructionSyndrome();

 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 iss<8> = '1';

 if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
 iss<6> = '1';
 elsif fault.statuscode IN {Fault_HWUpdateAccessFlag, Fault_Exclusive} then
 iss<6> = bit UNKNOWN;
 elsif fault.accessdesc.atomicop && IsExternalAbort(fault) then
 iss<6> = bit UNKNOWN;
 else
 iss<6> = if fault.write then '1' else '0';

 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

 return (iss);

aarch32/functions/aborts/EncodeSDFSC

 // EncodeSDFSC()
 // =============
 // Function that gives the Short-descriptor FSR code for different types of Fault

 bits(5) EncodeSDFSC(Fault statuscode, integer level)

 bits(5) result;
 case statuscode of
 when Fault_AccessFlag
 assert level IN {1,2};
 result = if level == 1 then '00011' else '00110';
 when Fault_Alignment
 result = '00001';
 when Fault_Permission
 assert level IN {1,2};
 result = if level == 1 then '01101' else '01111';
 when Fault_Domain
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14048
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 assert level IN {1,2};
 result = if level == 1 then '01001' else '01011';
 when Fault_Translation
 assert level IN {1,2};
 result = if level == 1 then '00101' else '00111';
 when Fault_SyncExternal
 result = '01000';
 when Fault_SyncExternalOnWalk
 assert level IN {1,2};
 result = if level == 1 then '01100' else '01110';
 when Fault_SyncParity
 result = '11001';
 when Fault_SyncParityOnWalk
 assert level IN {1,2};
 result = if level == 1 then '11100' else '11110';
 when Fault_AsyncParity
 result = '11000';
 when Fault_AsyncExternal
 result = '10110';
 when Fault_Debug
 result = '00010';
 when Fault_TLBConflict
 result = '10000';
 when Fault_Lockdown
 result = '10100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive
 result = '10101'; // IMPLEMENTATION DEFINED
 when Fault_ICacheMaint
 result = '00100';
 otherwise
 Unreachable();

 return result;

aarch32/functions/common/A32ExpandImm

 // A32ExpandImm()
 // ==============

 bits(32) A32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/A32ExpandImm_C

 // A32ExpandImm_C()
 // ================

 (bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

 unrotated_value = ZeroExtend(imm12<7:0>, 32);
 (imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

 return (imm32, carry_out);

aarch32/functions/common/DecodeImmShift

 // DecodeImmShift()
 // ================

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14049
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 (SRType, integer) DecodeImmShift(bits(2) srtype, bits(5) imm5)

 SRType shift_t;
 integer shift_n;
 case srtype of
 when '00'
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when '01'
 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '10'
 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '11'
 if imm5 == '00000' then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);

aarch32/functions/common/DecodeRegShift

 // DecodeRegShift()
 // ================

 SRType DecodeRegShift(bits(2) srtype)
 SRType shift_t;
 case srtype of
 when '00' shift_t = SRType_LSL;
 when '01' shift_t = SRType_LSR;
 when '10' shift_t = SRType_ASR;
 when '11' shift_t = SRType_ROR;
 return shift_t;

aarch32/functions/common/RRX

 // RRX()
 // =====

 bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
 return result;

aarch32/functions/common/RRX_C

 // RRX_C()
 // =======

 (bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

aarch32/functions/common/SRType

 // SRType
 // ======

 enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14050
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/common/Shift

 // Shift()
 // =======

 bits(N) Shift(bits(N) value, SRType srtype, integer amount, bit carry_in)
 (result, -) = Shift_C(value, srtype, amount, carry_in);
 return result;

aarch32/functions/common/Shift_C

 // Shift_C()
 // =========

 (bits(N), bit) Shift_C(bits(N) value, SRType srtype, integer amount, bit carry_in)
 assert !(srtype == SRType_RRX && amount != 1);

 bits(N) result;
 bit carry_out;
 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case srtype of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);

aarch32/functions/common/T32ExpandImm

 // T32ExpandImm()
 // ==============

 bits(32) T32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/T32ExpandImm_C

 // T32ExpandImm_C()
 // ================

 (bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)
 bits(32) imm32;
 bit carry_out;
 if imm12<11:10> == '00' then
 case imm12<9:8> of
 when '00'
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when '01'
 imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
 when '10'
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14051
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
 when '11'
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;
 else
 unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);

aarch32/functions/common/VBitOps

 // VBitOps
 // =======

 enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

aarch32/functions/common/VCGEType

 // VCGEType
 // ========

 enumeration VCGEType {VCGEType_signed, VCGEType_unsigned, VCGEType_fp};

aarch32/functions/common/VCGTtype

 // VCGTtype
 // ========

 enumeration VCGTtype {VCGTtype_signed, VCGTtype_unsigned, VCGTtype_fp};

aarch32/functions/common/VFPNegMul

 // VFPNegMul
 // =========

 enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

 // AArch32.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained traps to System registers in the
 // coproc=0b1111 encoding space by HSTR and HCR.

 AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
 if PSTATE.EL == EL0 && (!ELUsingAArch32(EL1) ||
 (EL2Enabled() && !ELUsingAArch32(EL2))) then
 AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);

 trapped_encoding = ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}));

 // Check for coarse-grained Hyp traps
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 major = if nreg == 1 then CRn else CRm;
 // Check for MCR, MRC, MCRR, and MRRC disabled by HSTR<CRn/CRm>
 // and MRC and MCR disabled by HCR.TIDCP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14052
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if ((!(major IN {4,14}) && HSTR<major> == '1') ||
 (HCR.TIDCP == '1' && nreg == 1 && trapped_encoding)) then
 if (PSTATE.EL == EL0 &&
 boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at EL0") then
 UNDEFINED;
 if ELUsingAArch32(EL2) then
 AArch32.SystemAccessTrap(M32_Hyp, 0x3);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x3);

aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

 // AArch32.ExclusiveMonitorsPass()
 // ===============================
 // Return TRUE if the Exclusives monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusives monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)
 boolean acqrel = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, acqrel, tagchecked);
 boolean aligned = IsAligned(address, size);

 if !aligned then
 AArch32.Abort(address, AlignmentFault(accdesc));

 if !AArch32.IsExclusiveVA(address, ProcessorID(), size) then
 return FALSE;

 memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 ClearExclusiveLocal(ProcessorID());

 if passed && memaddrdesc.memattrs.shareability != Shareability_NSH then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch32/functions/exclusive/AArch32.IsExclusiveVA

 // AArch32.IsExclusiveVA()
 // =======================
 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.

 boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14053
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/exclusive/AArch32.MarkExclusiveVA

 // AArch32.MarkExclusiveVA()
 // =========================
 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.

 AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

 // AArch32.SetExclusiveMonitors()
 // ==============================
 // Sets the Exclusives monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch32.SetExclusiveMonitors(bits(32) address, integer size)
 boolean acqrel = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, acqrel, tagchecked);
 boolean aligned = IsAligned(address, size);

 if !aligned then
 AArch32.Abort(address, AlignmentFault(accdesc));

 memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch32.MarkExclusiveVA(address, ProcessorID(), size);

aarch32/functions/float/CheckAdvSIMDEnabled

 // CheckAdvSIMDEnabled()
 // =====================

 CheckAdvSIMDEnabled()

 fpexc_check = TRUE;
 advsimd = TRUE;

 AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

 // Make temporary copy of D registers
 // _Dclone[] is used as input data for instruction pseudocode
 for i = 0 to 31
 _Dclone[i] = D[i];

 return;

aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

 // CheckAdvSIMDOrVFPEnabled()
 // ==========================

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14054
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/CheckCryptoEnabled32

 // CheckCryptoEnabled32()
 // ======================

 CheckCryptoEnabled32()
 CheckAdvSIMDEnabled();
 // Return from CheckAdvSIMDEnabled() occurs only if access is permitted
 return;

aarch32/functions/float/CheckVFPEnabled

 // CheckVFPEnabled()
 // =================

 CheckVFPEnabled(boolean include_fpexc_check)
 advsimd = FALSE;
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/FPHalvedSub

 // FPHalvedSub()
 // =============

 bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(fpcr, N);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0', N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1', N);
 elsif zero1 && zero2 && sign1 != sign2 then
 result = FPZero(sign1, N);
 else
 result_value = (value1 - value2) / 2.0;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, fpcr, N);
 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14055
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/float/FPRSqrtStep

 // FPRSqrtStep()
 // =============

 bits(N) FPRSqrtStep(bits(N) op1, bits(N) op2)
 assert N IN {16,32};
 constant FPCR_Type fpcr = StandardFPCR();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(N) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0', N);
 else
 product = FPMul(op1, op2, fpcr);
 bits(N) three = FPThree('0', N);
 result = FPHalvedSub(three, product, fpcr);
 return result;

aarch32/functions/float/FPRecipStep

 // FPRecipStep()
 // =============

 bits(N) FPRecipStep(bits(N) op1, bits(N) op2)
 assert N IN {16,32};
 constant FPCR_Type fpcr = StandardFPCR();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(N) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0', N);
 else
 product = FPMul(op1, op2, fpcr);
 bits(N) two = FPTwo('0', N);
 result = FPSub(two, product, fpcr);
 return result;

aarch32/functions/float/StandardFPCR

 // StandardFPCR()
 // ==============

 FPCR_Type StandardFPCR()
 bits(32) value = '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';
 return ZeroExtend(value, 64);

aarch32/functions/memory/AArch32.MemSingle

 // AArch32.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccessDescriptor accdesc,
 boolean aligned]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14056
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bits(size*8) value;
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;

 (value, memaddrdesc, memstatus) = AArch32.MemSingleRead(address, size, accdesc, aligned);

 // Check for a fault from translation or the output of translation.
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Check for external aborts.
 if IsFault(memstatus) then
 HandleExternalAbort(memstatus, accdesc.write, memaddrdesc, size, accdesc);

 return value;

 // AArch32.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch32.MemSingle[bits(32) address, integer size, AccessDescriptor accdesc,
 boolean aligned] = bits(size*8) value
 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus;

 (memaddrdesc, memstatus) = AArch32.MemSingleWrite(address, size, accdesc, aligned, value);

 // Check for a fault from translation or the output of translation.
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Check for external aborts.
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);

 return;

aarch32/functions/memory/AArch32.MemSingleRead

 // AArch32.MemSingleRead()
 // =======================
 // Perform an atomic, little-endian read of 'size' bytes.

 (bits(size*8), AddressDescriptor, PhysMemRetStatus) AArch32.MemSingleRead(bits(32) address,
 integer size,
 AccessDescriptor accdesc_in,
 boolean aligned)
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value = bits(size*8) UNKNOWN;
 PhysMemRetStatus memstatus = PhysMemRetStatus UNKNOWN;
 AccessDescriptor accdesc = accdesc_in;
 assert IsAligned(address, size);

 AddressDescriptor memaddrdesc;
 memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return (value, memaddrdesc, memstatus);

 // Memory array access
 if SPESampleInFlight then
 boolean is_load = TRUE;
 SPESampleLoadStore(is_load, accdesc, memaddrdesc);

 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14057
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if IsFault(memstatus) then
 return (value, memaddrdesc, memstatus);

 return (value, memaddrdesc, memstatus);

aarch32/functions/memory/AArch32.MemSingleWrite

 // AArch32.MemSingleWrite()
 // ========================
 // Perform an atomic, little-endian write of 'size' bytes.

 (AddressDescriptor, PhysMemRetStatus) AArch32.MemSingleWrite(bits(32) address, integer size,
 AccessDescriptor accdesc_in,
 boolean aligned, bits(size*8) value)
 assert size IN {1, 2, 4, 8, 16};
 AccessDescriptor accdesc = accdesc_in;
 assert IsAligned(address, size);

 AddressDescriptor memaddrdesc;
 PhysMemRetStatus memstatus = PhysMemRetStatus UNKNOWN;
 memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return (memaddrdesc, memstatus);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 if SPESampleInFlight then
 boolean is_load = FALSE;
 SPESampleLoadStore(is_load, accdesc, memaddrdesc);

 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 return (memaddrdesc, memstatus);

 return (memaddrdesc, memstatus);

aarch32/functions/memory/AArch32.UnalignedAccessFaults

 // AArch32.UnalignedAccessFaults()
 // ===============================
 // Determine whether the unaligned access generates an Alignment fault

 boolean AArch32.UnalignedAccessFaults(AccessDescriptor accdesc)
 return (AlignmentEnforced() ||
 accdesc.a32lsmd ||
 accdesc.exclusive ||
 accdesc.acqsc ||
 accdesc.relsc);

aarch32/functions/memory/Hint_PreloadData

 // Hint_PreloadData()
 // ==================

 Hint_PreloadData(bits(32) address);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14058
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/memory/Hint_PreloadDataForWrite

 // Hint_PreloadDataForWrite()
 // ==========================

 Hint_PreloadDataForWrite(bits(32) address);

aarch32/functions/memory/Hint_PreloadInstr

 // Hint_PreloadInstr()
 // ===================

 Hint_PreloadInstr(bits(32) address);

aarch32/functions/memory/MemA

 // MemA[] - non-assignment form
 // ============================

 bits(8*size) MemA[bits(32) address, integer size]
 boolean acqrel = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, acqrel, tagchecked);
 return Mem_with_type[address, size, accdesc];

 // MemA[] - assignment form
 // ========================

 MemA[bits(32) address, integer size] = bits(8*size) value
 boolean acqrel = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, acqrel, tagchecked);
 Mem_with_type[address, size, accdesc] = value;
 return;

aarch32/functions/memory/MemO

 // MemO[] - non-assignment form
 // ============================

 bits(8*size) MemO[bits(32) address, integer size]
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);
 return Mem_with_type[address, size, accdesc];

 // MemO[] - assignment form
 // ========================

 MemO[bits(32) address, integer size] = bits(8*size) value
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);
 Mem_with_type[address, size, accdesc] = value;
 return;

aarch32/functions/memory/MemS

 // MemS[] - non-assignment form
 // ============================
 // Memory accessor for streaming load multiple instructions

 bits(8*size) MemS[bits(32) address, integer size]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14059
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AccessDescriptor accdesc = CreateAccDescA32LSMD(MemOp_LOAD);
 return Mem_with_type[address, size, accdesc];

 // MemS[] - assignment form
 // ========================
 // Memory accessor for streaming store multiple instructions

 MemS[bits(32) address, integer size] = bits(8*size) value
 AccessDescriptor accdesc = CreateAccDescA32LSMD(MemOp_STORE);
 Mem_with_type[address, size, accdesc] = value;
 return;

aarch32/functions/memory/MemU

 // MemU[] - non-assignment form
 // ============================

 bits(8*size) MemU[bits(32) address, integer size]
 boolean nontemporal = FALSE;
 boolean privileged = PSTATE.EL != EL0;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, nontemporal, privileged, tagchecked);
 return Mem_with_type[address, size, accdesc];

 // MemU[] - assignment form
 // ========================

 MemU[bits(32) address, integer size] = bits(8*size) value
 boolean nontemporal = FALSE;
 boolean privileged = PSTATE.EL != EL0;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, nontemporal, privileged, tagchecked);
 Mem_with_type[address, size, accdesc] = value;
 return;

aarch32/functions/memory/MemU_unpriv

 // MemU_unpriv[] - non-assignment form
 // ===================================

 bits(8*size) MemU_unpriv[bits(32) address, integer size]
 boolean nontemporal = FALSE;
 boolean privileged = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, nontemporal, privileged, tagchecked);
 return Mem_with_type[address, size, accdesc];

 // MemU_unpriv[] - assignment form
 // ===============================

 MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 boolean nontemporal = FALSE;
 boolean privileged = FALSE;
 boolean tagchecked = FALSE;
 AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, nontemporal, privileged, tagchecked);
 Mem_with_type[address, size, accdesc] = value;
 return;

aarch32/functions/memory/Mem_with_type

 // Mem_with_type[] - non-assignment (read) form
 // ==
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14060
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Instruction fetches would call AArch32.MemSingle directly.

 bits(size*8) Mem_with_type[bits(32) address, integer size, AccessDescriptor accdesc_in]
 assert size IN {1, 2, 4, 8, 16};
 AccessDescriptor accdesc = accdesc_in;
 bits(size * 8) value;
 // Check alignment on size of element accessed, not overall access size
 integer alignment = if accdesc.ispair then size DIV 2 else size;
 boolean aligned = IsAligned(address, alignment);

 if !aligned && AArch32.UnalignedAccessFaults(accdesc) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 if aligned then
 value = AArch32.MemSingle[address, size, accdesc, aligned];
 else
 assert size > 1;
 value<7:0> = AArch32.MemSingle[address, 1, accdesc, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, accdesc, aligned];

 if BigEndian(accdesc.acctype) then
 value = BigEndianReverse(value);

 return value;

 // Mem_with_type[] - assignment (write) form
 // ===
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem_with_type[bits(32) address, integer size, AccessDescriptor accdesc_in] = bits(size*8) value_in
 bits(size*8) value = value_in;
 AccessDescriptor accdesc = accdesc_in;

 // Check alignment on size of element accessed, not overall access size
 integer alignment = if accdesc.ispair then size DIV 2 else size;
 boolean aligned = IsAligned(address, alignment);

 if !aligned && AArch32.UnalignedAccessFaults(accdesc) then
 AArch32.Abort(address, AlignmentFault(accdesc));

 if BigEndian(accdesc.acctype) then
 value = BigEndianReverse(value);

 if aligned then
 AArch32.MemSingle[address, size, accdesc, aligned] = value;
 else
 assert size > 1;
 AArch32.MemSingle[address, 1, accdesc, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.

 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14061
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.MemSingle[address+i, 1, accdesc, aligned] = value<8*i+7:8*i>;
 return;

aarch32/functions/ras/AArch32.ESBOperation

 // AArch32.ESBOperation()
 // ======================
 // Perform the AArch32 ESB operation for ESB executed in AArch32 state

 AArch32.ESBOperation()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1';
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = EffectiveEA() == '1';

 if route_to_aarch64 then
 AArch64.ESBOperation();
 return;

 route_to_monitor = HaveEL(EL3) && ELUsingAArch32(EL3) && EffectiveEA() == '1';
 route_to_hyp = PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR.TGE == '1' || HCR.AMO == '1');

 bits(5) target;
 if route_to_monitor then
 target = M32_Monitor;
 elsif route_to_hyp || PSTATE.M == M32_Hyp then
 target = M32_Hyp;
 else
 target = M32_Abort;

 boolean mask_active;
 if CurrentSecurityState() == SS_Secure then
 mask_active = TRUE;
 elsif target == M32_Monitor then
 mask_active = SCR.AW == '1' && (!HaveEL(EL2) || (HCR.TGE == '0' && HCR.AMO == '0'));
 else
 mask_active = target == M32_Abort || PSTATE.M == M32_Hyp;

 mask_set = PSTATE.A == '1';
 (-, el) = ELFromM32(target);
 intdis = Halted() || ExternalDebugInterruptsDisabled(el);
 masked = intdis || (mask_active && mask_set);

 // Check for a masked Physical SError pending that can be synchronized
 // by an Error synchronization event.
 if masked && IsSynchronizablePhysicalSErrorPending() then
 bits(32) syndrome = Zeros(32);
 syndrome<31> = '1'; // A
 syndrome<15:0> = AArch32.PhysicalSErrorSyndrome();
 DISR = syndrome;
 ClearPendingPhysicalSError();

 return;

aarch32/functions/ras/AArch32.EncodeAsyncErrorSyndrome

 // AArch32.EncodeAsyncErrorSyndrome()
 // ==================================
 // Return the encoding for specified ErrorState for an SError exception taken
 // to AArch32 state.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14062
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bits(2) AArch32.EncodeAsyncErrorSyndrome(ErrorState errorstate)
 case errorstate of
 when ErrorState_UC return '00';
 when ErrorState_UEU return '01';
 when ErrorState_UEO return '10';
 when ErrorState_UER return '11';
 otherwise Unreachable();

aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome

 // AArch32.PhysicalSErrorSyndrome()
 // ================================
 // Generate SError syndrome.

 bits(16) AArch32.PhysicalSErrorSyndrome()
 bits(32) syndrome = Zeros(32);
 FaultRecord fault = GetPendingPhysicalSError();
 if PSTATE.EL == EL2 then
 ErrorState errstate = PEErrorState(fault);
 syndrome<11:10> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET
 syndrome<9> = fault.extflag; // EA
 syndrome<5:0> = '010001'; // DFSC
 else
 boolean long_format = TTBCR.EAE == '1';
 syndrome = AArch32.CommonFaultStatus(fault, long_format);
 return syndrome<15:0>;

aarch32/functions/ras/AArch32.vESBOperation

 // AArch32.vESBOperation()
 // =======================
 // Perform the ESB operation for virtual SError interrupts executed in AArch32 state

 AArch32.vESBOperation()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 // Check for EL2 using AArch64 state
 if !ELUsingAArch32(EL2) then
 AArch64.vESBOperation();
 return;

 // If physical SError interrupts are routed to Hyp mode, and TGE is not set,
 // then a virtual SError interrupt might be pending
 vSEI_enabled = HCR.TGE == '0' && HCR.AMO == '1';
 vSEI_pending = vSEI_enabled && HCR.VA == '1';
 vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
 vmasked = vintdis || PSTATE.A == '1';

 // Check for a masked virtual SError pending
 if vSEI_pending && vmasked then
 bits(32) syndrome = Zeros(32);
 syndrome<31> = '1'; // A
 syndrome<15:14> = VDFSR<15:14>; // AET
 syndrome<12> = VDFSR<12>; // ExT
 syndrome<9> = TTBCR.EAE; // LPAE
 if TTBCR.EAE == '1' then // Long-descriptor format
 syndrome<5:0> = '010001'; // STATUS
 else // Short-descriptor format
 syndrome<10,3:0> = '10110'; // FS
 VDISR = syndrome;
 HCR.VA = '0'; // Clear pending virtual SError

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14063
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/AArch32.ResetGeneralRegisters

 // AArch32.ResetGeneralRegisters()
 // ===============================

 AArch32.ResetGeneralRegisters()

 for i = 0 to 7
 R[i] = bits(32) UNKNOWN;
 for i = 8 to 12
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
 for i = 13 to 14
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
 Rmode[i, M32_Svc] = bits(32) UNKNOWN;
 Rmode[i, M32_Abort] = bits(32) UNKNOWN;
 Rmode[i, M32_Undef] = bits(32) UNKNOWN;
 if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

 // AArch32.ResetSIMDFPRegisters()
 // ==============================

 AArch32.ResetSIMDFPRegisters()

 for i = 0 to 15
 Q[i] = bits(128) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSpecialRegisters

 // AArch32.ResetSpecialRegisters()
 // ===============================

 AArch32.ResetSpecialRegisters()

 // AArch32 special registers
 SPSR_fiq<31:0> = bits(32) UNKNOWN;
 SPSR_irq<31:0> = bits(32) UNKNOWN;
 SPSR_svc<31:0> = bits(32) UNKNOWN;
 SPSR_abt<31:0> = bits(32) UNKNOWN;
 SPSR_und<31:0> = bits(32) UNKNOWN;
 if HaveEL(EL2) then
 SPSR_hyp = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 if HaveEL(EL3) then
 SPSR_mon = bits(32) UNKNOWN;

 // External debug special registers
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14064
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/AArch32.ResetSystemRegisters

 // AArch32.ResetSystemRegisters()
 // ==============================

 AArch32.ResetSystemRegisters(boolean cold_reset);

aarch32/functions/registers/ALUExceptionReturn

 // ALUExceptionReturn()
 // ====================

 ALUExceptionReturn(bits(32) address)
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 Constraint c = ConstrainUnpredictable(Unpredictable_ALUEXCEPTIONRETURN);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 else
 AArch32.ExceptionReturn(address, SPSR_curr[]);

aarch32/functions/registers/ALUWritePC

 // ALUWritePC()
 // ============

 ALUWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_A32 then
 BXWritePC(address, BranchType_INDIR);
 else
 BranchWritePC(address, BranchType_INDIR);

aarch32/functions/registers/BXWritePC

 // BXWritePC()
 // ===========

 BXWritePC(bits(32) address_in, BranchType branch_type)
 bits(32) address = address_in;
 if address<0> == '1' then
 SelectInstrSet(InstrSet_T32);
 address<0> = '0';
 else
 SelectInstrSet(InstrSet_A32);
 // For branches to an unaligned PC counter in A32 state, the processor takes the branch
 // and does one of:
 // * Forces the address to be aligned
 // * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
 if address<1> == '1' && ConstrainUnpredictableBool(Unpredictable_A32FORCEALIGNPC) then
 address<1> = '0';
 boolean branch_conditional = !(AArch32.CurrentCond() IN {'111x'});
 BranchTo(address, branch_type, branch_conditional);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14065
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/BranchWritePC

 // BranchWritePC()
 // ===============

 BranchWritePC(bits(32) address_in, BranchType branch_type)
 bits(32) address = address_in;
 if CurrentInstrSet() == InstrSet_A32 then
 address<1:0> = '00';
 else
 address<0> = '0';
 boolean branch_conditional = !(AArch32.CurrentCond() IN {'111x'});
 BranchTo(address, branch_type, branch_conditional);

aarch32/functions/registers/CBWritePC

 // CBWritePC()
 // ===========
 // Takes a branch from a CBNZ/CBZ instruction.

 CBWritePC(bits(32) address_in)
 bits(32) address = address_in;
 assert CurrentInstrSet() == InstrSet_T32;
 address<0> = '0';
 boolean branch_conditional = TRUE;
 BranchTo(address, BranchType_DIR, branch_conditional);

aarch32/functions/registers/D

 // D[] - non-assignment form
 // =========================

 bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 bits(128) vreg = V[n DIV 2, 128];
 return Elem[vreg, n MOD 2, 64];

 // D[] - assignment form
 // =====================

 D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 bits(128) vreg = V[n DIV 2, 128];
 Elem[vreg, n MOD 2, 64] = value;
 V[n DIV 2, 128] = vreg;
 return;

aarch32/functions/registers/Din

 // Din[] - non-assignment form
 // ===========================

 bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 return _Dclone[n];

aarch32/functions/registers/LR

 // LR - assignment form
 // ====================

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14066
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 LR = bits(32) value
 R[14] = value;
 return;

 // LR - non-assignment form
 // ========================

 bits(32) LR
 return R[14];

aarch32/functions/registers/LoadWritePC

 // LoadWritePC()
 // =============

 LoadWritePC(bits(32) address)
 BXWritePC(address, BranchType_INDIR);

aarch32/functions/registers/LookUpRIndex

 // LookUpRIndex()
 // ==============

 integer LookUpRIndex(integer n, bits(5) mode)
 assert n >= 0 && n <= 14;

 integer result;
 case n of // Select index by mode: usr fiq irq svc abt und hyp
 when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
 when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
 when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
 when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
 when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
 when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
 when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
 otherwise result = n;

 return result;

aarch32/functions/registers/Monitor_mode_registers

 bits(32) SP_mon;
 bits(32) LR_mon;

aarch32/functions/registers/PC32

 // AArch32 program counter

 // PC32 - non-assignment form
 // ==========================

 bits(32) PC32
 return R[15]; // This includes the offset from AArch32 state

aarch32/functions/registers/PCStoreValue

 // PCStoreValue()
 // ==============

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14067
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bits(32) PCStoreValue()
 // This function returns the PC value. On architecture versions before Armv7, it
 // is permitted to instead return PC+4, provided it does so consistently. It is
 // used only to describe A32 instructions, so it returns the address of the current
 // instruction plus 8 (normally) or 12 (when the alternative is permitted).
 return PC32;

aarch32/functions/registers/Q

 // Q[] - non-assignment form
 // =========================

 bits(128) Q[integer n]
 assert n >= 0 && n <= 15;
 return V[n, 128];

 // Q[] - assignment form
 // =====================

 Q[integer n] = bits(128) value
 assert n >= 0 && n <= 15;
 V[n, 128] = value;
 return;

aarch32/functions/registers/Qin

 // Qin[] - non-assignment form
 // ===========================

 bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];

aarch32/functions/registers/R

 // R[] - assignment form
 // =====================

 R[integer n] = bits(32) value
 Rmode[n, PSTATE.M] = value;
 return;

 // R[] - non-assignment form
 // =========================

 bits(32) R[integer n]
 if n == 15 then
 offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
 return _PC<31:0> + offset;
 else
 return Rmode[n, PSTATE.M];

aarch32/functions/registers/RBankSelect

 // RBankSelect()
 // =============

 integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
 integer svc, integer abt, integer und, integer hyp)

 integer result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14068
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 case mode of
 when M32_User result = usr; // User mode
 when M32_FIQ result = fiq; // FIQ mode
 when M32_IRQ result = irq; // IRQ mode
 when M32_Svc result = svc; // Supervisor mode
 when M32_Abort result = abt; // Abort mode
 when M32_Hyp result = hyp; // Hyp mode
 when M32_Undef result = und; // Undefined mode
 when M32_System result = usr; // System mode uses User mode registers
 otherwise Unreachable(); // Monitor mode

 return result;

aarch32/functions/registers/Rmode

 // Rmode[] - non-assignment form
 // =============================

 bits(32) Rmode[integer n, bits(5) mode]
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if CurrentSecurityState() != SS_Secure then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then return SP_mon;
 elsif n == 14 then return LR_mon;
 else return _R[n]<31:0>;
 else
 return _R[LookUpRIndex(n, mode)]<31:0>;

 // Rmode[] - assignment form
 // =========================

 Rmode[integer n, bits(5) mode] = bits(32) value
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if CurrentSecurityState() != SS_Secure then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then SP_mon = value;
 elsif n == 14 then LR_mon = value;
 else _R[n]<31:0> = value;
 else
 // It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
 // register are unchanged or set to zero. This is also tested for on
 // exception entry, as this applies to all AArch32 registers.
 if HaveAArch64() && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then
 _R[LookUpRIndex(n, mode)] = ZeroExtend(value, 64);
 else
 _R[LookUpRIndex(n, mode)]<31:0> = value;

 return;

aarch32/functions/registers/S

 // S[] - non-assignment form
 // =========================

 bits(32) S[integer n]
 assert n >= 0 && n <= 31;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14069
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bits(128) vreg = V[n DIV 4, 128];
 return Elem[vreg, n MOD 4, 32];

 // S[] - assignment form
 // =====================

 S[integer n] = bits(32) value
 assert n >= 0 && n <= 31;
 bits(128) vreg = V[n DIV 4, 128];
 Elem[vreg, n MOD 4, 32] = value;
 V[n DIV 4, 128] = vreg;
 return;

aarch32/functions/registers/_Dclone

 // _Dclone[]
 // =========
 // Clone the 64-bit Advanced SIMD and VFP extension register bank for use as input to
 // instruction pseudocode, to avoid read-after-write for Advanced SIMD and VFP operations.

 array bits(64) _Dclone[0..31];

aarch32/functions/system/AArch32.ExceptionReturn

 // AArch32.ExceptionReturn()
 // =========================

 AArch32.ExceptionReturn(bits(32) new_pc_in, bits(32) spsr)
 bits(32) new_pc = new_pc_in;
 SynchronizeContext();
 // Attempts to change to an illegal mode or state will invoke the Illegal Execution state
 // mechanism
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 SendEventLocal();

 if PSTATE.IL == '1' then
 // If the exception return is illegal, PC[1:0] are UNKNOWN
 new_pc<1:0> = bits(2) UNKNOWN;
 else
 // LR[1:0] or LR[0] are treated as being 0, depending on the target instruction set state
 if PSTATE.T == '1' then
 new_pc<0> = '0'; // T32
 else
 new_pc<1:0> = '00'; // A32

 boolean branch_conditional = !(AArch32.CurrentCond() IN {'111x'});
 BranchTo(new_pc, BranchType_ERET, branch_conditional);

 CheckExceptionCatch(FALSE); // Check for debug event on exception return

aarch32/functions/system/AArch32.ExecutingCP10or11Instr

 // AArch32.ExecutingCP10or11Instr()
 // ================================

 boolean AArch32.ExecutingCP10or11Instr()
 instr = ThisInstr();
 instr_set = CurrentInstrSet();
 assert instr_set IN {InstrSet_A32, InstrSet_T32};

 if instr_set == InstrSet_A32 then
 return ((instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> IN {'101x'});
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14070
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else // InstrSet_T32
 return (instr<31:28> IN {'111x'} && (instr<27:24> == '1110' || instr<27:25> == '110') &&
 instr<11:8> IN {'101x'});

aarch32/functions/system/AArch32.ITAdvance

 // AArch32.ITAdvance()
 // ===================

 AArch32.ITAdvance()
 if PSTATE.IT<2:0> == '000' then
 PSTATE.IT = '00000000';
 else
 PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
 return;

aarch32/functions/system/AArch32.SysRegRead

 // AArch32.SysRegRead()
 // ====================
 // Read from a 32-bit AArch32 System register and write the register's contents to R[t].

 AArch32.SysRegRead(integer cp_num, bits(32) instr, integer t);

aarch32/functions/system/AArch32.SysRegRead64

 // AArch32.SysRegRead64()
 // ======================
 // Read from a 64-bit AArch32 System register and write the register's contents to R[t] and R[t2].

 AArch32.SysRegRead64(integer cp_num, bits(32) instr, integer t, integer t2);

aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

 // AArch32.SysRegReadCanWriteAPSR()
 // ================================
 // Determines whether the AArch32 System register read instruction can write to APSR flags.

 boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
 assert UsingAArch32();
 assert (cp_num IN {14,15});
 assert cp_num == UInt(instr<11:8>);

 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);

 if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
 return TRUE;

 return FALSE;

aarch32/functions/system/AArch32.SysRegWrite

 // AArch32.SysRegWrite()
 // =====================
 // Read the contents of R[t] and write to a 32-bit AArch32 System register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14071
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 AArch32.SysRegWrite(integer cp_num, bits(32) instr, integer t);

aarch32/functions/system/AArch32.SysRegWrite64

 // AArch32.SysRegWrite64()
 // =======================
 // Read the contents of R[t] and R[t2] and write to a 64-bit AArch32 System register.

 AArch32.SysRegWrite64(integer cp_num, bits(32) instr, integer t, integer t2);

aarch32/functions/system/AArch32.SysRegWriteM

 // AArch32.SysRegWriteM()
 // ======================
 // Read a value from a virtual address and write it to an AArch32 System register.

 AArch32.SysRegWriteM(integer cp_num, bits(32) instr, bits(32) address);

aarch32/functions/system/AArch32.WriteMode

 // AArch32.WriteMode()
 // ===================
 // Function for dealing with writes to PSTATE.M from AArch32 state only.
 // This ensures that PSTATE.EL and PSTATE.SP are always valid.

 AArch32.WriteMode(bits(5) mode)
 (valid,el) = ELFromM32(mode);
 assert valid;
 PSTATE.M = mode;
 PSTATE.EL = el;
 PSTATE.nRW = '1';
 PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
 return;

aarch32/functions/system/AArch32.WriteModeByInstr

 // AArch32.WriteModeByInstr()
 // ==========================
 // Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
 // illegal state changes are correctly flagged in PSTATE.IL.

 AArch32.WriteModeByInstr(bits(5) mode)
 (valid,el) = ELFromM32(mode);

 // 'valid' is set to FALSE if' mode' is invalid for this implementation or the current value
 // of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
 // PSTATE.EL if it would result in any of:
 // * A change to a mode that would cause entry to a higher Exception level.
 if UInt(el) > UInt(PSTATE.EL) then
 valid = FALSE;

 // * A change to or from Hyp mode.
 if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then
 valid = FALSE;

 // * When EL2 is implemented, the value of HCR.TGE is '1', a change to a Non-secure EL1 mode.
 if PSTATE.M == M32_Monitor && HaveEL(EL2) && el == EL1 && SCR.NS == '1' && HCR.TGE == '1' then
 valid = FALSE;

 if !valid then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14072
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 PSTATE.IL = '1';
 else
 AArch32.WriteMode(mode);

aarch32/functions/system/BadMode

 // BadMode()
 // =========

 boolean BadMode(bits(5) mode)
 // Return TRUE if 'mode' encodes a mode that is not valid for this implementation
 boolean valid;
 case mode of
 when M32_Monitor
 valid = HaveAArch32EL(EL3);
 when M32_Hyp
 valid = HaveAArch32EL(EL2);
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 // Therefore it is sufficient to test this implementation supports EL1 using AArch32.
 valid = HaveAArch32EL(EL1);
 when M32_User
 valid = HaveAArch32EL(EL0);
 otherwise
 valid = FALSE; // Passed an illegal mode value
 return !valid;

aarch32/functions/system/BankedRegisterAccessValid

 // BankedRegisterAccessValid()
 // ===========================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
 // other than the SPSRs that are invalid. This includes ELR_hyp accesses.

 BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

 case SYSm of
 when '000xx', '00100' // R8_usr to R12_usr
 if mode != M32_FIQ then UNPREDICTABLE;
 when '00101' // SP_usr
 if mode == M32_System then UNPREDICTABLE;
 when '00110' // LR_usr
 if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
 when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '1000x' // LR_irq, SP_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '1001x' // LR_svc, SP_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '1010x' // LR_abt, SP_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '1011x' // LR_und, SP_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '1110x' // LR_mon, SP_mon
 if (!HaveEL(EL3) || CurrentSecurityState() != SS_Secure ||
 mode == M32_Monitor) then UNPREDICTABLE;
 when '11110' // ELR_hyp, only from Monitor or Hyp mode
 if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;
 when '11111' // SP_hyp, only from Monitor mode
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14073
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 return;

aarch32/functions/system/CPSRWriteByInstr

 // CPSRWriteByInstr()
 // ==================
 // Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

 CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
 privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

 // Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
 if bytemask<3> == '1' then
 PSTATE.<N,Z,C,V,Q> = value<31:27>;
 // Bits <26:24> are ignored

 if bytemask<2> == '1' then
 if IsFeatureImplemented(FEAT_SSBS) then
 PSTATE.SSBS = value<23>;
 if privileged then
 PSTATE.PAN = value<22>;
 if IsFeatureImplemented(FEAT_DIT) then
 PSTATE.DIT = value<21>;
 // Bit <20> is RES0
 PSTATE.GE = value<19:16>;

 if bytemask<1> == '1' then
 // Bits <15:10> are RES0
 PSTATE.E = value<9>; // PSTATE.E is writable at EL0
 if privileged then
 PSTATE.A = value<8>;

 if bytemask<0> == '1' then
 if privileged then
 PSTATE.<I,F> = value<7:6>;
 // Bit <5> is RES0
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
 AArch32.WriteModeByInstr(value<4:0>);
 return;

aarch32/functions/system/ConditionPassed

 // ConditionPassed()
 // =================

 boolean ConditionPassed()
 return ConditionHolds(AArch32.CurrentCond());

aarch32/functions/system/CurrentCond

 // CurrentCond()
 // =============

 bits(4) AArch32.CurrentCond();

aarch32/functions/system/InITBlock

 // InITBlock()
 // ===========

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14074
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 boolean InITBlock()
 if CurrentInstrSet() == InstrSet_T32 then
 return PSTATE.IT<3:0> != '0000';
 else
 return FALSE;

aarch32/functions/system/LastInITBlock

 // LastInITBlock()
 // ===============

 boolean LastInITBlock()
 return (PSTATE.IT<3:0> == '1000');

aarch32/functions/system/SPSRWriteByInstr

 // SPSRWriteByInstr()
 // ==================

 SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

 bits(32) new_spsr = SPSR_curr[];

 if bytemask<3> == '1' then
 new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

 if bytemask<2> == '1' then
 new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

 if bytemask<1> == '1' then
 new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

 if bytemask<0> == '1' then
 new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

 SPSR_curr[] = new_spsr; // UNPREDICTABLE if User or System mode

 return;

aarch32/functions/system/SPSRaccessValid

 // SPSRaccessValid()
 // =================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
 // that are UNPREDICTABLE

 SPSRaccessValid(bits(5) SYSm, bits(5) mode)
 case SYSm of
 when '01110' // SPSR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '10000' // SPSR_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '10010' // SPSR_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '10100' // SPSR_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '10110' // SPSR_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '11100' // SPSR_mon
 if (!HaveEL(EL3) || mode == M32_Monitor ||
 CurrentSecurityState() != SS_Secure) then UNPREDICTABLE;
 when '11110' // SPSR_hyp
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14075
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/SelectInstrSet

 // SelectInstrSet()
 // ================

 SelectInstrSet(InstrSet iset)
 assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
 assert iset IN {InstrSet_A32, InstrSet_T32};

 PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

 return;

aarch32/functions/tlbi/AArch32.DTLBI_ALL

 // AArch32.DTLBI_ALL()
 // ===================
 // Invalidate all data TLB entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.

 AArch32.DTLBI_ALL(SecurityState security, Regime regime, Shareability shareability,
 TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.DTLBI_ASID

 // AArch32.DTLBI_ASID()
 // ====================
 // Invalidate all data TLB stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.DTLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14076
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.DTLBI_VA

 // AArch32.DTLBI_VA()
 // ==================
 // Invalidate by VA all stage 1 data TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.DTLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DVA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.ITLBI_ALL

 // AArch32.ITLBI_ALL()
 // ===================
 // Invalidate all instruction TLB entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.

 AArch32.ITLBI_ALL(SecurityState security, Regime regime, Shareability shareability,
 TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14077
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/tlbi/AArch32.ITLBI_ASID

 // AArch32.ITLBI_ASID()
 // ====================
 // Invalidate all instruction TLB stage 1 entries matching the indicated VMID
 // (where regime supports) and ASID in the parameter Rt in the indicated translation
 // regime with the indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.ITLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.ITLBI_VA

 // AArch32.ITLBI_VA()
 // ==================
 // Invalidate by VA all stage 1 instruction TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.ITLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IVA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.TLBI_ALL

 // AArch32.TLBI_ALL()
 // ==================
 // Invalidate all entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14078
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 AArch32.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_ALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.TLBI_ASID

 // AArch32.TLBI_ASID()
 // ===================
 // Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_ASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.TLBI_IPAS2

 // AArch32.TLBI_IPAS2()
 // ====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Rt.

 AArch32.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2};
 assert security == SS_NonSecure;

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14079
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 r.address = Zeros(24) : Rt<27:0> : Zeros(12);
 r.ipaspace = PAS_NonSecure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.TLBI_VA

 // AArch32.TLBI_VA()
 // =================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.TLBI_VAA

 // AArch32.TLBI_VAA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.

 AArch32.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14080
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/tlbi/AArch32.TLBI_VMALL

 // AArch32.TLBI_VMALL()
 // ====================
 // Invalidate all stage 1 entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability
 // domain that match the indicated VMID (where applicable).
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // Note: stage 2 only entries are not in the scope of this operation.

 AArch32.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VMALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/tlbi/AArch32.TLBI_VMALLS12

 // AArch32.TLBI_VMALLS12()
 // =======================
 // Invalidate all stage 1 and stage 2 entries for the indicated translation
 // regime with the indicated security state for all TLBs within the indicated
 // shareability domain that match the indicated VMID.

 AArch32.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_VMALLS12;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch32/functions/v6simd/Sat

 // Sat()
 // =====

 bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14081
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/functions/v6simd/SignedSat

 // SignedSat()
 // ===========

 bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

aarch32/functions/v6simd/UnsignedSat

 // UnsignedSat()
 // =============

 bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

J1.2.4 aarch32/translation

This section includes the following pseudocode functions:

• aarch32/translation/attrs/AArch32.DefaultTEXDecode.

• aarch32/translation/attrs/AArch32.MAIRAttr.

• aarch32/translation/attrs/AArch32.RemappedTEXDecode.

• aarch32/translation/debug/AArch32.CheckBreakpoint.

• aarch32/translation/debug/AArch32.CheckDebug.

• aarch32/translation/debug/AArch32.CheckVectorCatch.

• aarch32/translation/debug/AArch32.CheckWatchpoint.

• aarch32/translation/faults/AArch32.IPAIsOutOfRange.

• aarch32/translation/faults/AArch32.S1HasAlignmentFault.

• aarch32/translation/faults/AArch32.S1LDHasPermissionsFault.

• aarch32/translation/faults/AArch32.S1SDHasPermissionsFault.

• aarch32/translation/faults/AArch32.S2HasAlignmentFault.

• aarch32/translation/faults/AArch32.S2HasPermissionsFault.

• aarch32/translation/faults/AArch32.S2InconsistentSL.

• aarch32/translation/faults/AArch32.VAIsOutOfRange.

• aarch32/translation/tlbcontext/AArch32.GetS1TLBContext.

• aarch32/translation/tlbcontext/AArch32.GetS2TLBContext.

• aarch32/translation/tlbcontext/AArch32.TLBContextEL10.

• aarch32/translation/tlbcontext/AArch32.TLBContextEL2.

• aarch32/translation/tlbcontext/AArch32.TLBContextEL30.

• aarch32/translation/translation/AArch32.EL2Enabled.

• aarch32/translation/translation/AArch32.FullTranslate.

• aarch32/translation/translation/AArch32.OutputDomain.

• aarch32/translation/translation/AArch32.S1DisabledOutput.

• aarch32/translation/translation/AArch32.S1Enabled.

• aarch32/translation/translation/AArch32.S1TranslateLD.

• aarch32/translation/translation/AArch32.S1TranslateSD.

• aarch32/translation/translation/AArch32.S2Translate.

• aarch32/translation/translation/AArch32.SDStageOA.

• aarch32/translation/translation/AArch32.TranslateAddress.

• aarch32/translation/translation/SDFSize.

• aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14082
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
• aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD.

• aarch32/translation/walk/AArch32.S1IASize.

• aarch32/translation/walk/AArch32.S1WalkLD.

• aarch32/translation/walk/AArch32.S1WalkSD.

• aarch32/translation/walk/AArch32.S2IASize.

• aarch32/translation/walk/AArch32.S2StartLevel.

• aarch32/translation/walk/AArch32.S2Walk.

• aarch32/translation/walk/AArch32.TranslationSizeSD.

• aarch32/translation/walk/RemapRegsHaveResetValues.

• aarch32/translation/walkparams/AArch32.GetS1TTWParams.

• aarch32/translation/walkparams/AArch32.GetS2TTWParams.

• aarch32/translation/walkparams/AArch32.GetVARange.

• aarch32/translation/walkparams/AArch32.S1DCacheEnabled.

• aarch32/translation/walkparams/AArch32.S1ICacheEnabled.

• aarch32/translation/walkparams/AArch32.S1TTWParamsEL10.

• aarch32/translation/walkparams/AArch32.S1TTWParamsEL2.

• aarch32/translation/walkparams/AArch32.S1TTWParamsEL30.

aarch32/translation/attrs/AArch32.DefaultTEXDecode

 // AArch32.DefaultTEXDecode()
 // ==========================
 // Apply short-descriptor format memory region attributes, without TEX remap

 MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX_in, bit C_in, bit B_in, bit s)
 MemoryAttributes memattrs;
 bits(3) TEX = TEX_in;
 bit C = C_in;
 bit B = B_in;

 // Reserved values map to allocated values
 if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then
 bits(5) texcb;
 (-, texcb) = ConstrainUnpredictableBits(Unpredictable_RESTEXCB, 5);
 TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;

 // Distinction between Inner Shareable and Outer Shareable is not supported in this format
 // A memory region is either Non-shareable or Outer Shareable
 case TEX:C:B of
 when '00000'
 // Device-nGnRnE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 when '00001', '01000'
 // Device-nGnRE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.shareability = Shareability_OSH;
 when '00010'
 // Write-through Read allocate
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.outer.attrs = MemAttr_WT;
 memattrs.outer.hints = MemHint_RA;
 memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;
 when '00011'
 // Write-back Read allocate
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14083
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 memattrs.inner.hints = MemHint_RA;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RA;
 memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;
 when '00100'
 // Non-cacheable
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.outer.attrs = MemAttr_NC;
 memattrs.shareability = Shareability_OSH;
 when '00110'
 memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
 when '00111'
 // Write-back Read and Write allocate
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RWA;
 memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;
 when '1xxxx'
 // Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
 memattrs.memtype = MemType_Normal;
 memattrs.inner = DecodeSDFAttr(C:B);
 memattrs.outer = DecodeSDFAttr(TEX<1:0>);

 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareability = Shareability_OSH;
 else
 memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;
 otherwise
 // Reserved, handled above
 Unreachable();

 // The Transient hint is not supported in this format
 memattrs.inner.transient = FALSE;
 memattrs.outer.transient = FALSE;
 memattrs.tags = MemTag_Untagged;

 if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
 memattrs.xs = '0';
 else
 memattrs.xs = '1';

 return memattrs;

aarch32/translation/attrs/AArch32.MAIRAttr

 // AArch32.MAIRAttr()
 // ==================
 // Retrieve the memory attribute encoding indexed in the given MAIR

 bits(8) AArch32.MAIRAttr(integer index, MAIRType mair)
 assert (index < 8);
 return Elem[mair, index, 8];

aarch32/translation/attrs/AArch32.RemappedTEXDecode

 // AArch32.RemappedTEXDecode()
 // ===========================
 // Apply short-descriptor format memory region attributes, with TEX remap

 MemoryAttributes AArch32.RemappedTEXDecode(Regime regime, bits(3) TEX, bit C, bit B, bit s)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14084
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 MemoryAttributes memattrs;
 PRRR_Type prrr;
 NMRR_Type nmrr;

 region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
 if region == 6 then
 return MemoryAttributes IMPLEMENTATION_DEFINED;

 if regime == Regime_EL30 then
 prrr = PRRR_S;
 nmrr = NMRR_S;
 elsif HaveAArch32EL(EL3) then
 prrr = PRRR_NS;
 nmrr = NMRR_NS;
 else
 prrr = PRRR;
 nmrr = NMRR;

 constant integer base = 2 * region;
 attrfield = Elem[prrr, region, 2];

 if attrfield == '11' then // Reserved, maps to allocated value
 (-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESPRRR, 2);

 case attrfield of
 when '00' // Device-nGnRnE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 when '01' // Device-nGnRE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.shareability = Shareability_OSH;
 when '10'
 NSn = if s == '0' then prrr.NS0 else prrr.NS1;
 NOSm = prrr<region+24> AND NSn;
 IRn = nmrr<base+1:base>;
 ORn = nmrr<base+17:base+16>;

 memattrs.memtype = MemType_Normal;
 memattrs.inner = DecodeSDFAttr(IRn);
 memattrs.outer = DecodeSDFAttr(ORn);
 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareability = Shareability_OSH;
 else
 bits(2) sh = NSn:NOSm;
 memattrs.shareability = DecodeShareability(sh);
 when '11'
 Unreachable();

 // The Transient hint is not supported in this format
 memattrs.inner.transient = FALSE;
 memattrs.outer.transient = FALSE;
 memattrs.tags = MemTag_Untagged;

 if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
 memattrs.xs = '0';
 else
 memattrs.xs = '1';

 return memattrs;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14085
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/debug/AArch32.CheckBreakpoint

 // AArch32.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
 // and halting is allowed.

 FaultRecord AArch32.CheckBreakpoint(FaultRecord fault_in, bits(32) vaddress,
 AccessDescriptor accdesc, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert size IN {2,4};

 FaultRecord fault = fault_in;
 match = FALSE;
 mismatch = FALSE;

 for i = 0 to NumBreakpointsImplemented() - 1
 (match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, accdesc, size);
 match = match || match_i;
 mismatch = mismatch || mismatch_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
 elsif (match || mismatch) then
 fault.statuscode = Fault_Debug;
 fault.debugmoe = DebugException_Breakpoint;

 return fault;

aarch32/translation/debug/AArch32.CheckDebug

 // AArch32.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccessDescriptor accdesc, integer size)

 FaultRecord fault = NoFault(accdesc);

 boolean d_side = (IsDataAccess(accdesc.acctype) || accdesc.acctype == AccessType_DC);
 boolean i_side = (accdesc.acctype == AccessType_IFETCH);
 generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
 halt = HaltOnBreakpointOrWatchpoint();
 // Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
 vector_catch_first = ConstrainUnpredictableBool(Unpredictable_BPVECTORCATCHPRI);

 if i_side && vector_catch_first && generate_exception then
 fault = AArch32.CheckVectorCatch(fault, vaddress, size);

 if fault.statuscode == Fault_None && (generate_exception || halt) then
 if d_side then
 fault = AArch32.CheckWatchpoint(fault, vaddress, accdesc, size);
 elsif i_side then
 fault = AArch32.CheckBreakpoint(fault, vaddress, accdesc, size);

 if fault.statuscode == Fault_None && i_side && !vector_catch_first && generate_exception then
 return AArch32.CheckVectorCatch(fault, vaddress, size);

 return fault;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14086
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/debug/AArch32.CheckVectorCatch

 // AArch32.CheckVectorCatch()
 // ==========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime, when debug exceptions are enabled.

 FaultRecord AArch32.CheckVectorCatch(FaultRecord fault_in, bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());

 FaultRecord fault = fault_in;
 match = AArch32.VCRMatch(vaddress);
 if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then
 match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);

 if match then
 fault.statuscode = Fault_Debug;
 fault.debugmoe = DebugException_VectorCatch;

 return fault;

aarch32/translation/debug/AArch32.CheckWatchpoint

 // AArch32.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address",
 // when either debug exceptions are enabled for the access, or halting debug
 // is enabled and halting is allowed.

 FaultRecord AArch32.CheckWatchpoint(FaultRecord fault_in, bits(32) vaddress,
 AccessDescriptor accdesc, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 FaultRecord fault = fault_in;

 if accdesc.acctype == AccessType_DC then
 if accdesc.cacheop != CacheOp_Invalidate then
 return fault;
 elsif !(boolean IMPLEMENTATION_DEFINED "DCIMVAC generates watchpoint") then
 return fault;
 elsif !IsDataAccess(accdesc.acctype) then
 return fault;

 match = FALSE;
 for i = 0 to NumWatchpointsImplemented() - 1
 if AArch32.WatchpointMatch(i, vaddress, size, accdesc) then
 match = TRUE;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 EDWAR = ZeroExtend(vaddress, 64);
 Halt(reason);
 elsif match then
 fault.statuscode = Fault_Debug;
 fault.debugmoe = DebugException_Watchpoint;

 return fault;

aarch32/translation/faults/AArch32.IPAIsOutOfRange

 // AArch32.IPAIsOutOfRange()
 // =========================
 // Check intermediate physical address bits not resolved by translation are ZERO

 boolean AArch32.IPAIsOutOfRange(S2TTWParams walkparams, bits(40) ipa)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14087
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Input Address size
 constant integer iasize = AArch32.S2IASize(walkparams.t0sz);

 return iasize < 40 && !IsZero(ipa<39:iasize>);

aarch32/translation/faults/AArch32.S1HasAlignmentFault

 // AArch32.S1HasAlignmentFault()
 // =============================
 // Returns whether stage 1 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch32.S1HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
 bit ntlsmd, MemoryAttributes memattrs)
 if accdesc.acctype == AccessType_IFETCH then
 return FALSE;
 elsif accdesc.a32lsmd && ntlsmd == '0' then
 return memattrs.memtype == MemType_Device && memattrs.device != DeviceType_GRE;
 elsif accdesc.acctype == AccessType_DCZero then
 return memattrs.memtype == MemType_Device;
 else
 return memattrs.memtype == MemType_Device && !aligned;

aarch32/translation/faults/AArch32.S1LDHasPermissionsFault

 // AArch32.S1LDHasPermissionsFault()
 // =================================
 // Returns whether an access using stage 1 long-descriptor translation
 // violates permissions of target memory

 boolean AArch32.S1LDHasPermissionsFault(Regime regime, S1TTWParams walkparams, Permissions perms,
 MemType memtype, PASpace paspace, AccessDescriptor accdesc)
 bit r, w, x;
 bit pr, pw;
 bit ur, uw;
 bit xn;
 if HasUnprivileged(regime) then
 // Apply leaf permissions
 case perms.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

 // Apply hierarchical permissions
 case perms.ap_table of
 when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
 when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
 when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
 when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

 xn = perms.xn OR perms.xn_table;
 pxn = perms.pxn OR perms.pxn_table;

 ux = ur AND NOT(xn OR (uw AND walkparams.wxn));
 px = pr AND NOT(xn OR pxn OR (pw AND walkparams.wxn) OR (uw AND walkparams.uwxn));

 if IsFeatureImplemented(FEAT_PAN) && accdesc.pan then
 pan = PSTATE.PAN AND (ur OR uw);
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 (r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14088
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Prevent execution from Non-secure space by PE in Secure state if SIF is set
 if accdesc.ss == SS_Secure && paspace == PAS_NonSecure then
 x = x AND NOT(walkparams.sif);
 else
 // Apply leaf permissions
 case perms.ap<2> of
 when '0' (r,w) = ('1','1'); // No effect
 when '1' (r,w) = ('1','0'); // Read-only

 // Apply hierarchical permissions
 case perms.ap_table<1> of
 when '0' (r,w) = (r , w); // No effect
 when '1' (r,w) = (r ,'0'); // Read-only

 xn = perms.xn OR perms.xn_table;
 x = NOT(xn OR (w AND walkparams.wxn));

 if accdesc.acctype == AccessType_IFETCH then
 constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
 if constraint == Constraint_FAULT && memtype == MemType_Device then
 return TRUE;
 else
 return x == '0';
 elsif accdesc.acctype IN {AccessType_IC, AccessType_DC} then
 return FALSE;
 elsif accdesc.write then
 return w == '0';
 else
 return r == '0';

aarch32/translation/faults/AArch32.S1SDHasPermissionsFault

 // AArch32.S1SDHasPermissionsFault()
 // =================================
 // Returns whether an access using stage 1 short-descriptor translation
 // violates permissions of target memory

 boolean AArch32.S1SDHasPermissionsFault(Regime regime, Permissions perms_in, MemType memtype,
 PASpace paspace, AccessDescriptor accdesc)
 Permissions perms = perms_in;
 bit pr, pw;
 bit ur, uw;
 SCTLR_Type sctlr;
 if regime == Regime_EL30 then
 sctlr = SCTLR_S;
 elsif HaveAArch32EL(EL3) then
 sctlr = SCTLR_NS;
 else
 sctlr = SCTLR;

 if sctlr.AFE == '0' then
 // Map Reserved encoding '100'
 if perms.ap == '100' then
 perms.ap = bits(3) IMPLEMENTATION_DEFINED "Reserved short descriptor AP encoding";

 case perms.ap of
 when '000' (pr,pw,ur,uw) = ('0','0','0','0'); // No access
 when '001' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
 when '010' (pr,pw,ur,uw) = ('1','1','1','0'); // R/W at PL1, RO at PL0
 when '011' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
 // '100' is reserved
 when '101' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
 when '110' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL (deprecated)
 when '111' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL
 else // Simplified access permissions model
 case perms.ap<2:1> of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14089
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

 ux = ur AND NOT(perms.xn OR (uw AND sctlr.WXN));
 px = pr AND NOT(perms.xn OR perms.pxn OR (pw AND sctlr.WXN) OR (uw AND sctlr.UWXN));

 if IsFeatureImplemented(FEAT_PAN) && accdesc.pan then
 pan = PSTATE.PAN AND (ur OR uw);
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 (r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

 // Prevent execution from Non-secure space by PE in Secure state if SIF is set
 if accdesc.ss == SS_Secure && paspace == PAS_NonSecure then
 x = x AND NOT(if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF);

 if accdesc.acctype == AccessType_IFETCH then
 if (memtype == MemType_Device &&
 ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT) then
 return TRUE;
 else
 return x == '0';
 elsif accdesc.acctype IN {AccessType_IC, AccessType_DC} then
 return FALSE;
 elsif accdesc.write then
 return w == '0';
 else
 return r == '0';

aarch32/translation/faults/AArch32.S2HasAlignmentFault

 // AArch32.S2HasAlignmentFault()
 // =============================
 // Returns whether stage 2 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch32.S2HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
 MemoryAttributes memattrs)
 if accdesc.acctype == AccessType_IFETCH then
 return FALSE;
 elsif accdesc.acctype == AccessType_DCZero then
 return memattrs.memtype == MemType_Device;
 else
 return memattrs.memtype == MemType_Device && !aligned;

aarch32/translation/faults/AArch32.S2HasPermissionsFault

 // AArch32.S2HasPermissionsFault()
 // ===============================
 // Returns whether stage 2 access violates permissions of target memory

 boolean AArch32.S2HasPermissionsFault(S2TTWParams walkparams, Permissions perms, MemType memtype,
 AccessDescriptor accdesc)
 bit px;
 bit ux;
 r = perms.s2ap<0>;
 w = perms.s2ap<1>;
 bit x;
 if IsFeatureImplemented(FEAT_XNX) then
 case perms.s2xn:perms.s2xnx of
 when '00' (px, ux) = (r , r);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14090
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when '01' (px, ux) = ('0', r);
 when '10' (px, ux) = ('0','0');
 when '11' (px, ux) = (r ,'0');

 x = if accdesc.el == EL0 then ux else px;
 else
 x = r AND NOT(perms.s2xn);

 if accdesc.acctype == AccessType_TTW then
 return (walkparams.ptw == '1' && memtype == MemType_Device) || r == '0';

 elsif accdesc.acctype == AccessType_IFETCH then
 constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
 return (constraint == Constraint_FAULT && memtype == MemType_Device) || x == '0';

 elsif accdesc.acctype IN {AccessType_IC, AccessType_DC} then
 return FALSE;

 elsif accdesc.write then
 return w == '0';

 else
 return r == '0';

aarch32/translation/faults/AArch32.S2InconsistentSL

 // AArch32.S2InconsistentSL()
 // ==========================
 // Detect inconsistent configuration of stage 2 T0SZ and SL fields

 boolean AArch32.S2InconsistentSL(S2TTWParams walkparams)
 startlevel = AArch32.S2StartLevel(walkparams.sl0);
 levels = FINAL_LEVEL - startlevel;
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 // Input address size must at least be large enough to be resolved from the start level
 sl_min_iasize = (
 levels * stride // Bits resolved by table walk, except initial level
 + granulebits // Bits directly mapped to output address
 + 1); // At least 1 more bit to be decoded by initial level

 // Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
 sl_max_iasize = sl_min_iasize + (stride-1) + 4;
 // Configured Input Address size
 iasize = AArch32.S2IASize(walkparams.t0sz);

 return iasize < sl_min_iasize || iasize > sl_max_iasize;

aarch32/translation/faults/AArch32.VAIsOutOfRange

 // AArch32.VAIsOutOfRange()
 // ========================
 // Check virtual address bits not resolved by translation are identical
 // and of accepted value

 boolean AArch32.VAIsOutOfRange(Regime regime, S1TTWParams walkparams, bits(32) va)
 if regime == Regime_EL2 then
 // Input Address size
 constant integer iasize = AArch32.S1IASize(walkparams.t0sz);
 return walkparams.t0sz != '000' && !IsZero(va<31:iasize>);
 elsif walkparams.t1sz != '000' && walkparams.t0sz != '000' then
 // Lower range Input Address size
 constant integer lo_iasize = AArch32.S1IASize(walkparams.t0sz);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14091
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Upper range Input Address size
 constant integer up_iasize = AArch32.S1IASize(walkparams.t1sz);
 return !IsZero(va<31:lo_iasize>) && !IsOnes(va<31:up_iasize>);
 else
 return FALSE;

aarch32/translation/tlbcontext/AArch32.GetS1TLBContext

 // AArch32.GetS1TLBContext()
 // =========================
 // Gather translation context for accesses with VA to match against TLB entries

 TLBContext AArch32.GetS1TLBContext(Regime regime, SecurityState ss, bits(32) va)
 TLBContext tlbcontext;

 case regime of
 when Regime_EL2 tlbcontext = AArch32.TLBContextEL2(va);
 when Regime_EL10 tlbcontext = AArch32.TLBContextEL10(ss, va);
 when Regime_EL30 tlbcontext = AArch32.TLBContextEL30(va);

 tlbcontext.includes_s1 = TRUE;
 // The following may be amended for EL1&0 Regime if caching of stage 2 is successful
 tlbcontext.includes_s2 = FALSE;
 return tlbcontext;

aarch32/translation/tlbcontext/AArch32.GetS2TLBContext

 // AArch32.GetS2TLBContext()
 // =========================
 // Gather translation context for accesses with IPA to match against TLB entries

 TLBContext AArch32.GetS2TLBContext(FullAddress ipa)
 assert ipa.paspace == PAS_NonSecure;

 TLBContext tlbcontext;

 tlbcontext.ss = SS_NonSecure;
 tlbcontext.regime = Regime_EL10;
 tlbcontext.ipaspace = ipa.paspace;
 tlbcontext.vmid = ZeroExtend(VTTBR.VMID, 16);
 tlbcontext.tg = TGx_4KB;
 tlbcontext.includes_s1 = FALSE;
 tlbcontext.includes_s2 = TRUE;
 tlbcontext.ia = ZeroExtend(ipa.address, 64);
 tlbcontext.cnp = if IsFeatureImplemented(FEAT_TTCNP) then VTTBR.CnP else '0';

 return tlbcontext;

aarch32/translation/tlbcontext/AArch32.TLBContextEL10

 // AArch32.TLBContextEL10()
 // ========================
 // Gather translation context for accesses under EL10 regime
 // (PL10 when EL3 is A64) to match against TLB entries

 TLBContext AArch32.TLBContextEL10(SecurityState ss, bits(32) va)
 TLBContext tlbcontext;
 TTBCR_Type ttbcr;
 TTBR0_Type ttbr0;
 TTBR1_Type ttbr1;
 CONTEXTIDR_Type contextidr;

 if HaveAArch32EL(EL3) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14092
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 ttbcr = TTBCR_NS;
 ttbr0 = TTBR0_NS;
 ttbr1 = TTBR1_NS;
 contextidr = CONTEXTIDR_NS;
 else
 ttbcr = TTBCR;
 ttbr0 = TTBR0;
 ttbr1 = TTBR1;
 contextidr = CONTEXTIDR;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL10;

 if AArch32.EL2Enabled(ss) then
 tlbcontext.vmid = ZeroExtend(VTTBR.VMID, 16);

 if ttbcr.EAE == '1' then
 tlbcontext.asid = ZeroExtend(if ttbcr.A1 == '0' then ttbr0.ASID else ttbr1.ASID, 16);
 else
 tlbcontext.asid = ZeroExtend(contextidr.ASID, 16);

 tlbcontext.tg = TGx_4KB;
 tlbcontext.ia = ZeroExtend(va, 64);

 if IsFeatureImplemented(FEAT_TTCNP) && ttbcr.EAE == '1' then
 if AArch32.GetVARange(va, ttbcr.T0SZ, ttbcr.T1SZ) == VARange_LOWER then
 tlbcontext.cnp = ttbr0.CnP;
 else
 tlbcontext.cnp = ttbr1.CnP;
 else
 tlbcontext.cnp = '0';

 return tlbcontext;

aarch32/translation/tlbcontext/AArch32.TLBContextEL2

 // AArch32.TLBContextEL2()
 // =======================
 // Gather translation context for accesses under EL2 regime to match against TLB entries

 TLBContext AArch32.TLBContextEL2(bits(32) va)
 TLBContext tlbcontext;

 tlbcontext.ss = SS_NonSecure;
 tlbcontext.regime = Regime_EL2;
 tlbcontext.ia = ZeroExtend(va, 64);
 tlbcontext.tg = TGx_4KB;
 tlbcontext.cnp = if IsFeatureImplemented(FEAT_TTCNP) then HTTBR.CnP else '0';

 return tlbcontext;

aarch32/translation/tlbcontext/AArch32.TLBContextEL30

 // AArch32.TLBContextEL30()
 // ========================
 // Gather translation context for accesses under EL30 regime
 // (PL10 in Secure state and EL3 is A32) to match against TLB entries

 TLBContext AArch32.TLBContextEL30(bits(32) va)
 TLBContext tlbcontext;

 tlbcontext.ss = SS_Secure;
 tlbcontext.regime = Regime_EL30;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14093
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 if TTBCR_S.EAE == '1' then
 tlbcontext.asid = ZeroExtend(if TTBCR_S.A1 == '0' then TTBR0_S.ASID else TTBR1_S.ASID, 16);
 else
 tlbcontext.asid = ZeroExtend(CONTEXTIDR_S.ASID, 16);

 tlbcontext.tg = TGx_4KB;
 tlbcontext.ia = ZeroExtend(va, 64);

 if IsFeatureImplemented(FEAT_TTCNP) && TTBCR_S.EAE == '1' then
 if AArch32.GetVARange(va, TTBCR_S.T0SZ, TTBCR_S.T1SZ) == VARange_LOWER then
 tlbcontext.cnp = TTBR0_S.CnP;
 else
 tlbcontext.cnp = TTBR1_S.CnP;
 else
 tlbcontext.cnp = '0';

 return tlbcontext;

aarch32/translation/translation/AArch32.EL2Enabled

 // AArch32.EL2Enabled()
 // ====================
 // Returns whether EL2 is enabled for the given Security State

 boolean AArch32.EL2Enabled(SecurityState ss)
 if ss == SS_Secure then
 if !(HaveEL(EL2) && IsFeatureImplemented(FEAT_SEL2)) then
 return FALSE;
 elsif HaveEL(EL3) then
 return SCR_EL3.EEL2 == '1';
 else
 return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";
 else
 return HaveEL(EL2);

aarch32/translation/translation/AArch32.FullTranslate

 // AArch32.FullTranslate()
 // =======================
 // Perform address translation as specified by VMSA-A32

 AddressDescriptor AArch32.FullTranslate(bits(32) va, AccessDescriptor accdesc, boolean aligned)

 // Prepare fault fields in case a fault is detected
 FaultRecord fault = NoFault(accdesc);
 Regime regime = TranslationRegime(accdesc.el);

 // First Stage Translation
 AddressDescriptor ipa;
 if regime == Regime_EL2 || TTBCR.EAE == '1' then
 (fault, ipa) = AArch32.S1TranslateLD(fault, regime, va, aligned, accdesc);
 else
 (fault, ipa, -) = AArch32.S1TranslateSD(fault, regime, va, aligned, accdesc);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(ZeroExtend(va, 64), fault);

 if regime == Regime_EL10 && EL2Enabled() then
 ipa.vaddress = ZeroExtend(va, 64);
 AddressDescriptor pa;
 (fault, pa) = AArch32.S2Translate(fault, ipa, aligned, accdesc);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(ZeroExtend(va, 64), fault);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14094
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 return pa;
 else
 return ipa;

aarch32/translation/translation/AArch32.OutputDomain

 // AArch32.OutputDomain()
 // ======================
 // Determine the domain the translated output address

 bits(2) AArch32.OutputDomain(Regime regime, bits(4) domain)
 bits(2) Dn;
 if regime == Regime_EL30 then
 Dn = Elem[DACR_S, UInt(domain), 2];
 elsif HaveAArch32EL(EL3) then
 Dn = Elem[DACR_NS, UInt(domain), 2];
 else
 Dn = Elem[DACR, UInt(domain), 2];

 if Dn == '10' then
 // Reserved value maps to an allocated value
 (-, Dn) = ConstrainUnpredictableBits(Unpredictable_RESDACR, 2);

 return Dn;

aarch32/translation/translation/AArch32.S1DisabledOutput

 // AArch32.S1DisabledOutput()
 // ==========================
 // Flat map the VA to IPA/PA, depending on the regime, assigning default memory attributes

 (FaultRecord, AddressDescriptor) AArch32.S1DisabledOutput(FaultRecord fault_in, Regime regime,
 bits(32) va, boolean aligned,
 AccessDescriptor accdesc)

 FaultRecord fault = fault_in;
 // No memory page is guarded when stage 1 address translation is disabled
 SetInGuardedPage(FALSE);

 MemoryAttributes memattrs;
 bit default_cacheable;
 if regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) then
 if ELStateUsingAArch32(EL2, accdesc.ss == SS_Secure) then
 default_cacheable = HCR.DC;
 else
 default_cacheable = HCR_EL2.DC;
 else
 default_cacheable = '0';

 if default_cacheable == '1' then
 // Use default cacheable settings
 memattrs.memtype = MemType_Normal;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RWA;
 memattrs.shareability = Shareability_NSH;
 if (EL2Enabled() && !ELStateUsingAArch32(EL2, accdesc.ss == SS_Secure) &&
 IsFeatureImplemented(FEAT_MTE2) && HCR_EL2.DCT == '1') then
 memattrs.tags = MemTag_AllocationTagged;
 else
 memattrs.tags = MemTag_Untagged;
 memattrs.xs = '0';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14095
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 elsif accdesc.acctype == AccessType_IFETCH then
 memattrs.memtype = MemType_Normal;
 memattrs.shareability = Shareability_OSH;
 memattrs.tags = MemTag_Untagged;
 if AArch32.S1ICacheEnabled(regime) then
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.outer.attrs = MemAttr_WT;
 memattrs.outer.hints = MemHint_RA;
 else
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.outer.attrs = MemAttr_NC;
 memattrs.xs = '1';
 else
 // Treat memory region as Device
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;
 memattrs.tags = MemTag_Untagged;
 memattrs.xs = '1';

 bit ntlsmd;
 if IsFeatureImplemented(FEAT_LSMAOC) then
 case regime of
 when Regime_EL30 ntlsmd = SCTLR_S.nTLSMD;
 when Regime_EL2 ntlsmd = HSCTLR.nTLSMD;
 when Regime_EL10 ntlsmd = if HaveAArch32EL(EL3) then SCTLR_NS.nTLSMD else SCTLR.nTLSMD;
 else
 ntlsmd = '1';

 if AArch32.S1HasAlignmentFault(accdesc, aligned, ntlsmd, memattrs) then
 fault.statuscode = Fault_Alignment;
 return (fault, AddressDescriptor UNKNOWN);

 FullAddress oa;
 oa.address = ZeroExtend(va, 56);
 oa.paspace = if accdesc.ss == SS_Secure then PAS_Secure else PAS_NonSecure;
 ipa = CreateAddressDescriptor(ZeroExtend(va, 64), oa, memattrs);

 return (fault, ipa);

aarch32/translation/translation/AArch32.S1Enabled

 // AArch32.S1Enabled()
 // ===================
 // Returns whether stage 1 translation is enabled for the active translation regime

 boolean AArch32.S1Enabled(Regime regime, SecurityState ss)
 if regime == Regime_EL2 then
 return HSCTLR.M == '1';
 elsif regime == Regime_EL30 then
 return SCTLR_S.M == '1';
 elsif !AArch32.EL2Enabled(ss) then
 return (if HaveAArch32EL(EL3) then SCTLR_NS.M else SCTLR.M) == '1';
 elsif ELStateUsingAArch32(EL2, ss == SS_Secure) then
 return HCR.<TGE,DC> == '00' && (if HaveAArch32EL(EL3) then SCTLR_NS.M else SCTLR.M) == '1';
 else
 return EL2Enabled() && HCR_EL2.<TGE,DC> == '00' && SCTLR.M == '1';

aarch32/translation/translation/AArch32.S1TranslateLD

 // AArch32.S1TranslateLD()
 // =======================
 // Perform a stage 1 translation using long-descriptor format mapping VA to IPA/PA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14096
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // depending on the regime

 (FaultRecord, AddressDescriptor) AArch32.S1TranslateLD(FaultRecord fault_in, Regime regime,
 bits(32) va, boolean aligned,
 AccessDescriptor accdesc)
 FaultRecord fault = fault_in;

 if !AArch32.S1Enabled(regime, accdesc.ss) then
 return AArch32.S1DisabledOutput(fault, regime, va, aligned, accdesc);

 walkparams = AArch32.GetS1TTWParams(regime, va);

 if AArch32.VAIsOutOfRange(regime, walkparams, va) then
 fault.level = 1;
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 TTWState walkstate;
 (fault, walkstate) = AArch32.S1WalkLD(fault, regime, walkparams, accdesc, va);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

 if AArch32.S1HasAlignmentFault(accdesc, aligned, walkparams.ntlsmd, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif AArch32.S1LDHasPermissionsFault(regime, walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 accdesc) then
 fault.statuscode = Fault_Permission;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 MemoryAttributes memattrs;
 if ((accdesc.acctype == AccessType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || !AArch32.S1ICacheEnabled(regime))) ||
 (accdesc.acctype != AccessType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && !AArch32.S1DCacheEnabled(regime))) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;
 else
 memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&
 (if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 memattrs.shareability = walkstate.memattrs.shareability;
 else
 memattrs.shareability = EffectiveShareability(memattrs);

 // Output Address
 oa = StageOA(ZeroExtend(va, 64), walkparams.d128, walkparams.tgx, walkstate);
 ipa = CreateAddressDescriptor(ZeroExtend(va, 64), oa, memattrs);

 return (fault, ipa);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14097
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/translation/AArch32.S1TranslateSD

 // AArch32.S1TranslateSD()
 // =======================
 // Perform a stage 1 translation using short-descriptor format mapping VA to IPA/PA
 // depending on the regime

 (FaultRecord, AddressDescriptor, SDFType) AArch32.S1TranslateSD(FaultRecord fault_in, Regime regime,
 bits(32) va, boolean aligned,
 AccessDescriptor accdesc)

 FaultRecord fault = fault_in;

 if !AArch32.S1Enabled(regime, accdesc.ss) then
 AddressDescriptor ipa;
 (fault, ipa) = AArch32.S1DisabledOutput(fault, regime, va, aligned, accdesc);
 return (fault, ipa, SDFType UNKNOWN);

 TTWState walkstate;
 (fault, walkstate) = AArch32.S1WalkSD(fault, regime, accdesc, va);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, SDFType UNKNOWN);

 domain = AArch32.OutputDomain(regime, walkstate.domain);
 SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

 bit ntlsmd;
 if IsFeatureImplemented(FEAT_LSMAOC) then
 case regime of
 when Regime_EL30 ntlsmd = SCTLR_S.nTLSMD;
 when Regime_EL10 ntlsmd = if HaveAArch32EL(EL3) then SCTLR_NS.nTLSMD else SCTLR.nTLSMD;
 else
 ntlsmd = '1';

 if AArch32.S1HasAlignmentFault(accdesc, aligned, ntlsmd, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif (!(accdesc.acctype IN {AccessType_IC, AccessType_DC}) &&
 domain == Domain_NoAccess) then
 fault.statuscode = Fault_Domain;
 elsif domain == Domain_Client then
 if AArch32.S1SDHasPermissionsFault(regime, walkstate.permissions,
 walkstate.memattrs.memtype,
 walkstate.baseaddress.paspace,
 accdesc) then
 fault.statuscode = Fault_Permission;

 if fault.statuscode != Fault_None then
 fault.domain = walkstate.domain;
 return (fault, AddressDescriptor UNKNOWN, walkstate.sdftype);

 MemoryAttributes memattrs;
 if ((accdesc.acctype == AccessType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || !AArch32.S1ICacheEnabled(regime))) ||
 (accdesc.acctype != AccessType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && !AArch32.S1DCacheEnabled(regime))) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 memattrs.xs = walkstate.memattrs.xs;
 else
 memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&
 (if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 memattrs.shareability = walkstate.memattrs.shareability;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14098
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 else
 memattrs.shareability = EffectiveShareability(memattrs);

 // Output Address
 oa = AArch32.SDStageOA(walkstate.baseaddress, va, walkstate.sdftype);
 ipa = CreateAddressDescriptor(ZeroExtend(va, 64), oa, memattrs);

 return (fault, ipa, walkstate.sdftype);

aarch32/translation/translation/AArch32.S2Translate

 // AArch32.S2Translate()
 // =====================
 // Perform a stage 2 translation mapping an IPA to a PA

 (FaultRecord, AddressDescriptor) AArch32.S2Translate(FaultRecord fault_in, AddressDescriptor ipa,
 boolean aligned, AccessDescriptor accdesc)

 FaultRecord fault = fault_in;
 assert IsZero(ipa.paddress.address<55:40>);

 if !ELStateUsingAArch32(EL2, accdesc.ss == SS_Secure) then
 s1aarch64 = FALSE;
 return AArch64.S2Translate(fault, ipa, s1aarch64, aligned, accdesc);

 // Prepare fault fields in case a fault is detected
 fault.statuscode = Fault_None;
 fault.secondstage = TRUE;
 fault.s2fs1walk = accdesc.acctype == AccessType_TTW;
 fault.ipaddress = ipa.paddress;

 walkparams = AArch32.GetS2TTWParams();

 if walkparams.vm == '0' then
 // Stage 2 is disabled
 return (fault, ipa);

 if AArch32.IPAIsOutOfRange(walkparams, ipa.paddress.address<39:0>) then
 fault.statuscode = Fault_Translation;
 fault.level = 1;
 return (fault, AddressDescriptor UNKNOWN);

 TTWState walkstate;
 (fault, walkstate) = AArch32.S2Walk(fault, walkparams, accdesc, ipa);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 if AArch32.S2HasAlignmentFault(accdesc, aligned, walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif AArch32.S2HasPermissionsFault(walkparams,
 walkstate.permissions,
 walkstate.memattrs.memtype,
 accdesc) then
 fault.statuscode = Fault_Permission;
 MemoryAttributes s2_memattrs;
 if ((accdesc.acctype == AccessType_TTW &&
 walkstate.memattrs.memtype == MemType_Device) ||
 (accdesc.acctype == AccessType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || HCR2.ID == '1')) ||
 (accdesc.acctype != AccessType_IFETCH &&
 walkstate.memattrs.memtype == MemType_Normal && HCR2.CD == '1')) then
 // Treat memory attributes as Normal Non-Cacheable
 s2_memattrs = NormalNCMemAttr();
 s2_memattrs.xs = walkstate.memattrs.xs;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14099
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 s2_memattrs = walkstate.memattrs;

 s2aarch64 = FALSE;
 memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs, s2aarch64);
 ipa_64 = ZeroExtend(ipa.paddress.address<39:0>, 64);
 // Output Address
 oa = StageOA(ipa_64, walkparams.d128, walkparams.tgx, walkstate);
 pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);

 return (fault, pa);

aarch32/translation/translation/AArch32.SDStageOA

 // AArch32.SDStageOA()
 // ===================
 // Given the final walk state of a short-descriptor translation walk,
 // map the untranslated input address bits to the base output address

 FullAddress AArch32.SDStageOA(FullAddress baseaddress, bits(32) va, SDFType sdftype)
 constant integer tsize = SDFSize(sdftype);

 // Output Address
 FullAddress oa;
 oa.address = baseaddress.address<55:tsize> : va<tsize-1:0>;
 oa.paspace = baseaddress.paspace;
 return oa;

aarch32/translation/translation/AArch32.TranslateAddress

 // AArch32.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch32.TranslateAddress(bits(32) va, AccessDescriptor accdesc,
 boolean aligned, integer size)

 Regime regime = TranslationRegime(PSTATE.EL);
 if !RegimeUsingAArch32(regime) then
 return AArch64.TranslateAddress(ZeroExtend(va, 64), accdesc, aligned, size);

 AddressDescriptor result = AArch32.FullTranslate(va, accdesc, aligned);

 if !IsFault(result) then
 result.fault = AArch32.CheckDebug(va, accdesc, size);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(va, 64);

 return result;

aarch32/translation/translation/SDFSize

 // SDFSize()
 // =========
 // Returns the short-descriptor format translation granule size

 integer SDFSize(SDFType sdftype)
 case sdftype of
 when SDFType_SmallPage return 12;
 when SDFType_LargePage return 16;
 when SDFType_Section return 20;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14100
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 when SDFType_Supersection return 24;
 otherwise Unreachable();

aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD

 // AArch32.DecodeDescriptorTypeLD()
 // ================================
 // Determine whether the long-descriptor is a page, block or table

 DescriptorType AArch32.DecodeDescriptorTypeLD(bits(64) descriptor, integer level)
 if descriptor<1:0> == '11' && level == FINAL_LEVEL then
 return DescriptorType_Leaf;
 elsif descriptor<1:0> == '11' then
 return DescriptorType_Table;
 elsif descriptor<1:0> == '01' && level != FINAL_LEVEL then
 return DescriptorType_Leaf;
 else
 return DescriptorType_Invalid;

aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD

 // AArch32.DecodeDescriptorTypeSD()
 // ================================
 // Determine the type of the short-descriptor

 SDFType AArch32.DecodeDescriptorTypeSD(bits(32) descriptor, integer level)
 if level == 1 && descriptor<1:0> == '01' then
 return SDFType_Table;
 elsif level == 1 && descriptor<18,1> == '01' then
 return SDFType_Section;
 elsif level == 1 && descriptor<18,1> == '11' then
 return SDFType_Supersection;
 elsif level == 2 && descriptor<1:0> == '01' then
 return SDFType_LargePage;
 elsif level == 2 && descriptor<1:0> IN {'1x'} then
 return SDFType_SmallPage;
 else
 return SDFType_Invalid;

aarch32/translation/walk/AArch32.S1IASize

 // AArch32.S1IASize()
 // ==================
 // Retrieve the number of bits containing the input address for stage 1 translation

 integer AArch32.S1IASize(bits(3) txsz)
 return 32 - UInt(txsz);

aarch32/translation/walk/AArch32.S1WalkLD

 // AArch32.S1WalkLD()
 // ==================
 // Traverse stage 1 translation tables in long format to obtain the final descriptor

 (FaultRecord, TTWState) AArch32.S1WalkLD(FaultRecord fault_in, Regime regime,
 S1TTWParams walkparams, AccessDescriptor accdesc,
 bits(32) va)
 FaultRecord fault = fault_in;
 bits(3) txsz;
 bits(64) ttbr;
 bit epd;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14101
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 VARange varange;
 if regime == Regime_EL2 then
 ttbr = HTTBR;
 txsz = walkparams.t0sz;
 varange = VARange_LOWER;
 else
 varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
 bits(64) ttbr0;
 bits(64) ttbr1;
 TTBCR_Type ttbcr;
 if regime == Regime_EL30 then
 ttbcr = TTBCR_S;
 ttbr0 = TTBR0_S;
 ttbr1 = TTBR1_S;
 elsif HaveAArch32EL(EL3) then
 ttbcr = TTBCR_NS;
 ttbr0 = TTBR0_NS;
 ttbr1 = TTBR1_NS;
 else
 ttbcr = TTBCR;
 ttbr0 = TTBR0;
 ttbr1 = TTBR1;

 assert ttbcr.EAE == '1';
 if varange == VARange_LOWER then
 txsz = walkparams.t0sz;
 ttbr = ttbr0;
 epd = ttbcr.EPD0;
 else
 txsz = walkparams.t1sz;
 ttbr = ttbr1;
 epd = ttbcr.EPD1;

 if regime != Regime_EL2 && epd == '1' then
 fault.level = 1;
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 // Input Address size
 iasize = AArch32.S1IASize(txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;
 startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
 levels = FINAL_LEVEL - startlevel;

 if !IsZero(ttbr<47:40>) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, TTWState UNKNOWN);

 FullAddress baseaddress;
 constant integer baselsb = (iasize - (levels*stride + granulebits)) + 3;
 baseaddress.paspace = if accdesc.ss == SS_Secure then PAS_Secure else PAS_NonSecure;
 baseaddress.address = ZeroExtend(ttbr<39:baselsb>:Zeros(baselsb), 56);

 TTWState walkstate;
 walkstate.baseaddress = baseaddress;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 // In regimes that support global and non-global translations, translation
 // table entries from lookup levels other than the final level of lookup
 // are treated as being non-global
 walkstate.nG = if HasUnprivileged(regime) then '1' else '0';
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
 walkstate.permissions.ap_table = '00';
 walkstate.permissions.xn_table = '0';
 walkstate.permissions.pxn_table = '0';

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14102
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 bits(64) descriptor;
 AddressDescriptor walkaddress;

 walkaddress.vaddress = ZeroExtend(va, 64);

 if !AArch32.S1DCacheEnabled(regime) then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&
 (if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
 else
 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

 DescriptorType desctype;
 integer msb_residue = iasize - 1;
 repeat
 fault.level = walkstate.level;
 constant integer indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
 constant integer indexmsb = msb_residue;
 bits(40) index = ZeroExtend(va<indexmsb:indexlsb>:'000', 40);

 walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index, 56);
 walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

 boolean toplevel = walkstate.level == startlevel;
 AccessDescriptor walkaccess = CreateAccDescS1TTW(toplevel, varange, accdesc);
 // If there are two stages of translation, then the first stage table walk addresses
 // are themselves subject to translation
 if regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) then
 s2aligned = TRUE;
 (s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2aligned,
 walkaccess);
 // Check for a fault on the stage 2 walk
 if s2fault.statuscode != Fault_None then
 return (s2fault, TTWState UNKNOWN);

 (fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, walkaccess,
 fault, 64);
 else
 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess,
 fault, 64);

 if fault.statuscode != Fault_None then
 return (fault, TTWState UNKNOWN);

 desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

 case desctype of
 when DescriptorType_Table
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12), 56);
 if walkstate.baseaddress.paspace == PAS_Secure && descriptor<63> == '1' then
 walkstate.baseaddress.paspace = PAS_NonSecure;

 if walkparams.hpd == '0' then
 walkstate.permissions.xn_table = (walkstate.permissions.xn_table OR
 descriptor<60>);
 walkstate.permissions.ap_table = (walkstate.permissions.ap_table OR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14103
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 descriptor<62:61>);
 walkstate.permissions.pxn_table = (walkstate.permissions.pxn_table OR
 descriptor<59>);

 walkstate.level = walkstate.level + 1;
 msb_residue = indexlsb - 1;

 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 when DescriptorType_Leaf
 walkstate.istable = FALSE;

 until desctype == DescriptorType_Leaf;

 // Check the output address is inside the supported range
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 // Check the access flag
 if descriptor<10> == '0' then
 fault.statuscode = Fault_AccessFlag;
 return (fault, TTWState UNKNOWN);

 walkstate.permissions.xn = descriptor<54>;
 walkstate.permissions.pxn = descriptor<53>;
 walkstate.permissions.ap = descriptor<7:6>:'1';
 walkstate.contiguous = descriptor<52>;
 if regime == Regime_EL2 then
 // All EL2 regime accesses are treated as Global
 walkstate.nG = '0';
 elsif accdesc.ss == SS_Secure && walkstate.baseaddress.paspace == PAS_NonSecure then
 // When a PE is using the Long-descriptor translation table format,
 // and is in Secure state, a translation must be treated as non-global,
 // regardless of the value of the nG bit,
 // if NSTable is set to 1 at any level of the translation table walk.
 walkstate.nG = '1';
 else
 walkstate.nG = descriptor<11>;

 constant integer indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
 walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb), 56);
 if walkstate.baseaddress.paspace == PAS_Secure && descriptor<5> == '1' then
 walkstate.baseaddress.paspace = PAS_NonSecure;

 memattr = descriptor<4:2>;
 sh = descriptor<9:8>;
 attr = AArch32.MAIRAttr(UInt(memattr), walkparams.mair);
 s1aarch64 = FALSE;
 walkstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64, walkparams);

 return (fault, walkstate);

aarch32/translation/walk/AArch32.S1WalkSD

 // AArch32.S1WalkSD()
 // ==================
 // Traverse stage 1 translation tables in short format to obtain the final descriptor

 (FaultRecord, TTWState) AArch32.S1WalkSD(FaultRecord fault_in, Regime regime,
 AccessDescriptor accdesc, bits(32) va)
 FaultRecord fault = fault_in;
 SCTLR_Type sctlr;
 TTBCR_Type ttbcr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14104
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 TTBR0_Type ttbr0;
 TTBR1_Type ttbr1;
 // Determine correct translation control registers to use.
 if regime == Regime_EL30 then
 sctlr = SCTLR_S;
 ttbcr = TTBCR_S;
 ttbr0 = TTBR0_S;
 ttbr1 = TTBR1_S;
 elsif HaveAArch32EL(EL3) then
 sctlr = SCTLR_NS;
 ttbcr = TTBCR_NS;
 ttbr0 = TTBR0_NS;
 ttbr1 = TTBR1_NS;
 else
 sctlr = SCTLR;
 ttbcr = TTBCR;
 ttbr0 = TTBR0;
 ttbr1 = TTBR1;

 assert ttbcr.EAE == '0';
 ee = sctlr.EE;
 afe = sctlr.AFE;
 tre = sctlr.TRE;
 constant integer ttbcr_n = UInt(ttbcr.N);
 constant boolean use_ttbr0 = IsZero(va<31:(32-ttbcr_n)>);
 VARange varange = (if ttbcr_n == 0 || use_ttbr0 then VARange_LOWER
 else VARange_UPPER);
 constant integer n = if varange == VARange_LOWER then ttbcr_n else 0;
 bits(32) ttb;
 bits(1) pd;
 bits(2) irgn;
 bits(2) rgn;
 bits(1) s;
 bits(1) nos;
 if varange == VARange_LOWER then
 ttb = ttbr0.TTB0:Zeros(7);
 pd = ttbcr.PD0;
 irgn = ttbr0.IRGN;
 rgn = ttbr0.RGN;
 s = ttbr0.S;
 nos = ttbr0.NOS;
 else
 ttb = ttbr1.TTB1:Zeros(7);
 pd = ttbcr.PD1;
 irgn = ttbr1.IRGN;
 rgn = ttbr1.RGN;
 s = ttbr1.S;
 nos = ttbr1.NOS;

 // Check if Translation table walk disabled for translations with this Base register.
 if pd == '1' then
 fault.level = 1;
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 FullAddress baseaddress;
 baseaddress.paspace = if accdesc.ss == SS_Secure then PAS_Secure else PAS_NonSecure;
 baseaddress.address = ZeroExtend(ttb<31:14-n>:Zeros(14-n), 56);

 constant integer startlevel = 1;
 TTWState walkstate;
 walkstate.baseaddress = baseaddress;
 // In regimes that support global and non-global translations, translation
 // table entries from lookup levels other than the final level of lookup
 // are treated as being non-global. Translations in Short-Descriptor Format
 // always support global & non-global translations.
 walkstate.nG = '1';
 walkstate.memattrs = WalkMemAttrs(s:nos, irgn, rgn);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14105
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 walkstate.level = startlevel;
 walkstate.istable = TRUE;

 bits(4) domain;
 bits(32) descriptor;
 AddressDescriptor walkaddress;

 walkaddress.vaddress = ZeroExtend(va, 64);

 if !AArch32.S1DCacheEnabled(regime) then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&
 (if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 walkaddress.memattrs.shareability = walkstate.memattrs.shareability;
 else
 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

 bit nG;
 bit ns;
 bit pxn;
 bits(3) ap;
 bits(3) tex;
 bit c;
 bit b;
 bit xn;
 repeat
 fault.level = walkstate.level;

 bits(32) index;
 if walkstate.level == 1 then
 index = ZeroExtend(va<31-n:20>:'00', 32);
 else
 index = ZeroExtend(va<19:12>:'00', 32);

 walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index,
 56);
 walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

 boolean toplevel = walkstate.level == startlevel;
 AccessDescriptor walkaccess = CreateAccDescS1TTW(toplevel, varange, accdesc);
 if regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) then
 s2aligned = TRUE;
 (s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2aligned,
 walkaccess);

 if s2fault.statuscode != Fault_None then
 return (s2fault, TTWState UNKNOWN);

 (fault, descriptor) = FetchDescriptor(ee, s2walkaddress, walkaccess, fault, 32);
 else
 (fault, descriptor) = FetchDescriptor(ee, walkaddress, walkaccess, fault, 32);

 if fault.statuscode != Fault_None then
 return (fault, TTWState UNKNOWN);

 walkstate.sdftype = AArch32.DecodeDescriptorTypeSD(descriptor, walkstate.level);

 case walkstate.sdftype of
 when SDFType_Invalid
 fault.domain = domain;
 fault.statuscode = Fault_Translation;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14106
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 return (fault, TTWState UNKNOWN);

 when SDFType_Table
 domain = descriptor<8:5>;
 ns = descriptor<3>;
 pxn = descriptor<2>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:10>:Zeros(10),
 56);
 walkstate.level = 2;

 when SDFType_SmallPage
 nG = descriptor<11>;
 s = descriptor<10>;
 ap = descriptor<9,5:4>;
 tex = descriptor<8:6>;
 c = descriptor<3>;
 b = descriptor<2>;
 xn = descriptor<0>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:12>:Zeros(12),
 56);
 walkstate.istable = FALSE;

 when SDFType_LargePage
 xn = descriptor<15>;
 tex = descriptor<14:12>;
 nG = descriptor<11>;
 s = descriptor<10>;
 ap = descriptor<9,5:4>;
 c = descriptor<3>;
 b = descriptor<2>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:16>:Zeros(16),
 56);
 walkstate.istable = FALSE;

 when SDFType_Section
 ns = descriptor<19>;
 nG = descriptor<17>;
 s = descriptor<16>;
 ap = descriptor<15,11:10>;
 tex = descriptor<14:12>;
 domain = descriptor<8:5>;
 xn = descriptor<4>;
 c = descriptor<3>;
 b = descriptor<2>;
 pxn = descriptor<0>;

 walkstate.baseaddress.address = ZeroExtend(descriptor<31:20>:Zeros(20),
 56);
 walkstate.istable = FALSE;

 when SDFType_Supersection
 ns = descriptor<19>;
 nG = descriptor<17>;
 s = descriptor<16>;
 ap = descriptor<15,11:10>;
 tex = descriptor<14:12>;
 xn = descriptor<4>;
 c = descriptor<3>;
 b = descriptor<2>;
 pxn = descriptor<0>;
 domain = '0000';

 walkstate.baseaddress.address = ZeroExtend(descriptor<8:5,23:20,31:24>:Zeros(24),
 56);
 walkstate.istable = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14107
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation

 until walkstate.sdftype != SDFType_Table;

 if afe == '1' && ap<0> == '0' then
 fault.domain = domain;
 fault.statuscode = Fault_AccessFlag;
 return (fault, TTWState UNKNOWN);

 // Decode the TEX, C, B and S bits to produce target memory attributes
 if tre == '1' then
 walkstate.memattrs = AArch32.RemappedTEXDecode(regime, tex, c, b, s);
 elsif RemapRegsHaveResetValues() then
 walkstate.memattrs = AArch32.DefaultTEXDecode(tex, c, b, s);
 else
 walkstate.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

 walkstate.permissions.ap = ap;
 walkstate.permissions.xn = xn;
 walkstate.permissions.pxn = pxn;
 walkstate.domain = domain;
 walkstate.nG = nG;

 if accdesc.ss == SS_Secure && ns == '0' then
 walkstate.baseaddress.paspace = PAS_Secure;
 else
 walkstate.baseaddress.paspace = PAS_NonSecure;

 return (fault, walkstate);

aarch32/translation/walk/AArch32.S2IASize

 // AArch32.S2IASize()
 // ==================
 // Retrieve the number of bits containing the input address for stage 2 translation

 integer AArch32.S2IASize(bits(4) t0sz)
 return 32 - SInt(t0sz);

aarch32/translation/walk/AArch32.S2StartLevel

 // AArch32.S2StartLevel()
 // ======================
 // Determine the initial lookup level when performing a stage 2 translation
 // table walk

 integer AArch32.S2StartLevel(bits(2) sl0)
 return 2 - UInt(sl0);

aarch32/translation/walk/AArch32.S2Walk

 // AArch32.S2Walk()
 // ================
 // Traverse stage 2 translation tables in long format to obtain the final descriptor

 (FaultRecord, TTWState) AArch32.S2Walk(FaultRecord fault_in, S2TTWParams walkparams,
 AccessDescriptor accdesc, AddressDescriptor ipa)
 FaultRecord fault = fault_in;

 if walkparams.sl0 IN {'1x'} || AArch32.S2InconsistentSL(walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 1;
 return (fault, TTWState UNKNOWN);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14108
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 // Input Address size
 iasize = AArch32.S2IASize(walkparams.t0sz);
 startlevel = AArch32.S2StartLevel(walkparams.sl0);
 levels = FINAL_LEVEL - startlevel;
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 if !IsZero(VTTBR<47:40>) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, TTWState UNKNOWN);

 FullAddress baseaddress;
 constant integer baselsb = (iasize - (levels*stride + granulebits)) + 3;
 baseaddress.paspace = PAS_NonSecure;
 baseaddress.address = ZeroExtend(VTTBR<39:baselsb>:Zeros(baselsb), 56);

 TTWState walkstate;
 walkstate.baseaddress = baseaddress;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,
 walkparams.orgn);

 bits(64) descriptor;
 AccessDescriptor walkaccess = CreateAccDescS2TTW(accdesc);
 AddressDescriptor walkaddress;

 walkaddress.vaddress = ipa.vaddress;

 if HCR2.CD == '1' then
 walkaddress.memattrs = NormalNCMemAttr();
 walkaddress.memattrs.xs = walkstate.memattrs.xs;
 else
 walkaddress.memattrs = walkstate.memattrs;

 walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

 integer msb_residual = iasize - 1;
 DescriptorType desctype;
 repeat
 fault.level = walkstate.level;

 constant integer indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
 constant integer indexmsb = msb_residual;
 bits(40) index = ZeroExtend(ipa.paddress.address<indexmsb:indexlsb>:'000', 40);

 walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index, 56);
 walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

 (fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess, fault, 64);

 if fault.statuscode != Fault_None then
 return (fault, TTWState UNKNOWN);

 desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

 case desctype of
 when DescriptorType_Table
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12), 56);
 walkstate.level = walkstate.level + 1;
 msb_residual = indexlsb - 1;

 when DescriptorType_Invalid
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14109
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 fault.statuscode = Fault_Translation;
 return (fault, TTWState UNKNOWN);

 when DescriptorType_Leaf
 walkstate.istable = FALSE;

 until desctype IN {DescriptorType_Leaf};

 // Check the output address is inside the supported range
 if !IsZero(descriptor<47:40>) then
 fault.statuscode = Fault_AddressSize;
 return (fault, TTWState UNKNOWN);

 // Check the access flag
 if descriptor<10> == '0' then
 fault.statuscode = Fault_AccessFlag;
 return (fault, TTWState UNKNOWN);

 // Unpack the descriptor into address and upper and lower block attributes
 constant integer indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
 walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb), 56);

 walkstate.permissions.s2ap = descriptor<7:6>;
 walkstate.permissions.s2xn = descriptor<54>;
 if IsFeatureImplemented(FEAT_XNX) then
 walkstate.permissions.s2xnx = descriptor<53>;
 else
 walkstate.permissions.s2xnx = '0';

 memattr = descriptor<5:2>;
 sh = descriptor<9:8>;
 s2aarch64 = FALSE;
 walkstate.memattrs = S2DecodeMemAttrs(memattr, sh, s2aarch64);
 walkstate.contiguous = descriptor<52>;

 return (fault, walkstate);

aarch32/translation/walk/AArch32.TranslationSizeSD

 // AArch32.TranslationSizeSD()
 // ===========================
 // Determine the size of the translation

 integer AArch32.TranslationSizeSD(SDFType sdftype)
 integer tsize;
 case sdftype of
 when SDFType_SmallPage tsize = 12;
 when SDFType_LargePage tsize = 16;
 when SDFType_Section tsize = 20;
 when SDFType_Supersection tsize = 24;

 return tsize;

aarch32/translation/walk/RemapRegsHaveResetValues

 // RemapRegsHaveResetValues()
 // ==========================

 boolean RemapRegsHaveResetValues();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14110
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
aarch32/translation/walkparams/AArch32.GetS1TTWParams

 // AArch32.GetS1TTWParams()
 // ========================
 // Returns stage 1 translation table walk parameters from respective controlling
 // System registers.

 S1TTWParams AArch32.GetS1TTWParams(Regime regime, bits(32) va)
 S1TTWParams walkparams;

 case regime of
 when Regime_EL2 walkparams = AArch32.S1TTWParamsEL2();
 when Regime_EL10 walkparams = AArch32.S1TTWParamsEL10(va);
 when Regime_EL30 walkparams = AArch32.S1TTWParamsEL30(va);

 return walkparams;

aarch32/translation/walkparams/AArch32.GetS2TTWParams

 // AArch32.GetS2TTWParams()
 // ========================
 // Gather walk parameters for stage 2 translation

 S2TTWParams AArch32.GetS2TTWParams()
 S2TTWParams walkparams;

 walkparams.tgx = TGx_4KB;
 walkparams.s = VTCR.S;
 walkparams.t0sz = VTCR.T0SZ;
 walkparams.sl0 = VTCR.SL0;
 walkparams.irgn = VTCR.IRGN0;
 walkparams.orgn = VTCR.ORGN0;
 walkparams.sh = VTCR.SH0;
 walkparams.ee = HSCTLR.EE;
 walkparams.ptw = HCR.PTW;
 walkparams.vm = HCR.VM OR HCR.DC;

 // VTCR.S must match VTCR.T0SZ[3]
 if walkparams.s != walkparams.t0sz<3> then
 (-, walkparams.t0sz) = ConstrainUnpredictableBits(Unpredictable_RESVTCRS, 4);

 return walkparams;

aarch32/translation/walkparams/AArch32.GetVARange

 // AArch32.GetVARange()
 // ====================
 // Select the translation base address for stage 1 long-descriptor walks

 VARange AArch32.GetVARange(bits(32) va, bits(3) t0sz, bits(3) t1sz)
 // Lower range Input Address size
 constant integer lo_iasize = AArch32.S1IASize(t0sz);
 // Upper range Input Address size
 constant integer up_iasize = AArch32.S1IASize(t1sz);

 if t1sz == '000' && t0sz == '000' then
 return VARange_LOWER;
 elsif t1sz == '000' then
 return if IsZero(va<31:lo_iasize>) then VARange_LOWER else VARange_UPPER;
 elsif t0sz == '000' then
 return if IsOnes(va<31:up_iasize>) then VARange_UPPER else VARange_LOWER;
 elsif IsZero(va<31:lo_iasize>) then
 return VARange_LOWER;
 elsif IsOnes(va<31:up_iasize>) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14111
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 return VARange_UPPER;
 else
 // Will be reported as a Translation Fault
 return VARange UNKNOWN;

aarch32/translation/walkparams/AArch32.S1DCacheEnabled

 // AArch32.S1DCacheEnabled()
 // =========================
 // Determine cacheability of stage 1 data accesses

 boolean AArch32.S1DCacheEnabled(Regime regime)
 case regime of
 when Regime_EL30 return SCTLR_S.C == '1';
 when Regime_EL2 return HSCTLR.C == '1';
 when Regime_EL10 return (if HaveAArch32EL(EL3) then SCTLR_NS.C else SCTLR.C) == '1';

aarch32/translation/walkparams/AArch32.S1ICacheEnabled

 // AArch32.S1ICacheEnabled()
 // =========================
 // Determine cacheability of stage 1 instruction fetches

 boolean AArch32.S1ICacheEnabled(Regime regime)
 case regime of
 when Regime_EL30 return SCTLR_S.I == '1';
 when Regime_EL2 return HSCTLR.I == '1';
 when Regime_EL10 return (if HaveAArch32EL(EL3) then SCTLR_NS.I else SCTLR.I) == '1';

aarch32/translation/walkparams/AArch32.S1TTWParamsEL10

 // AArch32.S1TTWParamsEL10()
 // =========================
 // Gather stage 1 translation table walk parameters for EL1&0 regime
 // (with EL2 enabled or disabled).

 S1TTWParams AArch32.S1TTWParamsEL10(bits(32) va)
 bits(64) mair;
 bit sif;
 TTBCR_Type ttbcr;
 TTBCR2_Type ttbcr2;
 SCTLR_Type sctlr;

 if ELUsingAArch32(EL3) then
 ttbcr = TTBCR_NS;
 ttbcr2 = TTBCR2_NS;
 sctlr = SCTLR_NS;
 mair = MAIR1_NS:MAIR0_NS;
 sif = SCR.SIF;
 else
 ttbcr = TTBCR;
 ttbcr2 = TTBCR2;
 sctlr = SCTLR;
 mair = MAIR1:MAIR0;
 sif = if HaveEL(EL3) then SCR_EL3.SIF else '0';

 assert ttbcr.EAE == '1';
 S1TTWParams walkparams;

 walkparams.t0sz = ttbcr.T0SZ;
 walkparams.t1sz = ttbcr.T1SZ;
 walkparams.ee = sctlr.EE;
 walkparams.wxn = sctlr.WXN;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14112
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 walkparams.uwxn = sctlr.UWXN;
 walkparams.ntlsmd = if IsFeatureImplemented(FEAT_LSMAOC) then sctlr.nTLSMD else '1';
 walkparams.mair = mair;
 walkparams.sif = sif;

 varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
 if varange == VARange_LOWER then
 walkparams.sh = ttbcr.SH0;
 walkparams.irgn = ttbcr.IRGN0;
 walkparams.orgn = ttbcr.ORGN0;
 walkparams.hpd = (if IsFeatureImplemented(FEAT_AA32HPD) then ttbcr.T2E AND ttbcr2.HPD0
 else '0');
 else
 walkparams.sh = ttbcr.SH1;
 walkparams.irgn = ttbcr.IRGN1;
 walkparams.orgn = ttbcr.ORGN1;
 walkparams.hpd = (if IsFeatureImplemented(FEAT_AA32HPD) then ttbcr.T2E AND ttbcr2.HPD1
 else '0');

 return walkparams;

aarch32/translation/walkparams/AArch32.S1TTWParamsEL2

 // AArch32.S1TTWParamsEL2()
 // ========================
 // Gather stage 1 translation table walk parameters for EL2 regime

 S1TTWParams AArch32.S1TTWParamsEL2()
 S1TTWParams walkparams;

 walkparams.tgx = TGx_4KB;
 walkparams.t0sz = HTCR.T0SZ;
 walkparams.irgn = HTCR.SH0;
 walkparams.orgn = HTCR.IRGN0;
 walkparams.sh = HTCR.ORGN0;
 walkparams.hpd = if IsFeatureImplemented(FEAT_AA32HPD) then HTCR.HPD else '0';
 walkparams.ee = HSCTLR.EE;
 walkparams.wxn = HSCTLR.WXN;
 if IsFeatureImplemented(FEAT_LSMAOC) then
 walkparams.ntlsmd = HSCTLR.nTLSMD;
 else
 walkparams.ntlsmd = '1';

 walkparams.mair = HMAIR1:HMAIR0;

 return walkparams;

aarch32/translation/walkparams/AArch32.S1TTWParamsEL30

 // AArch32.S1TTWParamsEL30()
 // =========================
 // Gather stage 1 translation table walk parameters for EL3&0 regime

 S1TTWParams AArch32.S1TTWParamsEL30(bits(32) va)
 assert TTBCR_S.EAE == '1';
 S1TTWParams walkparams;

 walkparams.t0sz = TTBCR_S.T0SZ;
 walkparams.t1sz = TTBCR_S.T1SZ;
 walkparams.ee = SCTLR_S.EE;
 walkparams.wxn = SCTLR_S.WXN;
 walkparams.uwxn = SCTLR_S.UWXN;
 walkparams.ntlsmd = if IsFeatureImplemented(FEAT_LSMAOC) then SCTLR_S.nTLSMD else '1';
 walkparams.mair = MAIR1_S:MAIR0_S;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14113
ID032224 Non-Confidential

Armv8 Pseudocode
J1.2 Pseudocode for AArch32 operation
 walkparams.sif = SCR.SIF;

 varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
 if varange == VARange_LOWER then
 walkparams.sh = TTBCR_S.SH0;
 walkparams.irgn = TTBCR_S.IRGN0;
 walkparams.orgn = TTBCR_S.ORGN0;
 walkparams.hpd = (if IsFeatureImplemented(FEAT_AA32HPD) then TTBCR_S.T2E AND TTBCR2_S.HPD0
 else '0');
 else
 walkparams.sh = TTBCR_S.SH1;
 walkparams.irgn = TTBCR_S.IRGN1;
 walkparams.orgn = TTBCR_S.ORGN1;
 walkparams.hpd = (if IsFeatureImplemented(FEAT_AA32HPD) then TTBCR_S.T2E AND TTBCR2_S.HPD1
 else '0');

 return walkparams;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14114
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
J1.3 Shared pseudocode

This section holds the pseudocode that is common to execution in AArch64 state and in AArch32 state. Functions
listed in this section are identified only by a FunctionName, without an AArch64. or AArch32. prefix. This section is
organized by functional groups, with the functional groups being indicated by hierarchical path names, for example
shared/debug/DebugTarget.

The top-level sections of the shared pseudocode hierarchy are:

• shared/debug.

• shared/exceptions.

• shared/functions.

• shared/trace.

• shared/translation.

J1.3.1 shared/debug

This section includes the following pseudocode functions:

• shared/debug/ClearStickyErrors/ClearStickyErrors.

• shared/debug/DebugTarget/DebugTarget.

• shared/debug/DebugTarget/DebugTargetFrom.

• shared/debug/DoubleLockStatus/DoubleLockStatus.

• shared/debug/OSLockStatus/OSLockStatus.

• shared/debug/SoftwareLockStatus/Component.

• shared/debug/SoftwareLockStatus/GetAccessComponent.

• shared/debug/SoftwareLockStatus/SoftwareLockStatus.

• shared/debug/authentication/AccessState.

• shared/debug/authentication/AllowExternalDebugAccess.

• shared/debug/authentication/AllowExternalPMSSAccess.

• shared/debug/authentication/AllowExternalPMUAccess.

• shared/debug/authentication/AllowExternalTraceAccess.

• shared/debug/authentication/Debug_authentication.

• shared/debug/authentication/ExternalInvasiveDebugEnabled.

• shared/debug/authentication/ExternalNoninvasiveDebugAllowed.

• shared/debug/authentication/ExternalNoninvasiveDebugEnabled.

• shared/debug/authentication/ExternalRealmInvasiveDebugEnabled.

• shared/debug/authentication/ExternalRealmNoninvasiveDebugEnabled.

• shared/debug/authentication/ExternalRootInvasiveDebugEnabled.

• shared/debug/authentication/ExternalRootNoninvasiveDebugEnabled.

• shared/debug/authentication/ExternalSecureInvasiveDebugEnabled.

• shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled.

• shared/debug/authentication/IsAccessNonSecure.

• shared/debug/authentication/IsAccessSecure.

• shared/debug/authentication/IsCorePowered.

• shared/debug/breakpoint/CheckValidStateMatch.

• shared/debug/breakpoint/ContextAwareBreakpointRange.

• shared/debug/breakpoint/IsContextAwareBreakpoint.

• shared/debug/breakpoint/NumBreakpointsImplemented.

• shared/debug/breakpoint/NumContextAwareBreakpointsImplemented.

• shared/debug/breakpoint/NumWatchpointsImplemented.

• shared/debug/cti/CTI_ProcessEvent.

• shared/debug/cti/CTI_SetEventLevel.

• shared/debug/cti/CTI_SignalEvent.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14115
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/debug/cti/CrossTrigger.

• shared/debug/dccanditr/CheckForDCCInterrupts.

• shared/debug/dccanditr/DTR.

• shared/debug/dccanditr/Read_DBGDTRRX_EL0.

• shared/debug/dccanditr/Read_DBGDTRTX_EL0.

• shared/debug/dccanditr/Read_DBGDTR_EL0.

• shared/debug/dccanditr/Write_DBGDTRRX_EL0.

• shared/debug/dccanditr/Write_DBGDTRTX_EL0.

• shared/debug/dccanditr/Write_DBGDTR_EL0.

• shared/debug/dccanditr/Write_EDITR.

• shared/debug/halting/DCPSInstruction.

• shared/debug/halting/DRPSInstruction.

• shared/debug/halting/DebugHalt.

• shared/debug/halting/DebugRestorePSR.

• shared/debug/halting/DisableITRAndResumeInstructionPrefetch.

• shared/debug/halting/ExecuteA64.

• shared/debug/halting/ExecuteT32.

• shared/debug/halting/ExitDebugState.

• shared/debug/halting/Halt.

• shared/debug/halting/HaltOnBreakpointOrWatchpoint.

• shared/debug/halting/Halted.

• shared/debug/halting/HaltingAllowed.

• shared/debug/halting/Restarting.

• shared/debug/halting/StopInstructionPrefetchAndEnableITR.

• shared/debug/halting/UpdateDbgAuthStatus.

• shared/debug/halting/UpdateEDHSR.

• shared/debug/halting/UpdateEDSCRFields.

• shared/debug/haltingevents/CheckExceptionCatch.

• shared/debug/haltingevents/CheckHaltingStep.

• shared/debug/haltingevents/CheckOSUnlockCatch.

• shared/debug/haltingevents/CheckPendingExceptionCatch.

• shared/debug/haltingevents/CheckPendingOSUnlockCatch.

• shared/debug/haltingevents/CheckPendingResetCatch.

• shared/debug/haltingevents/CheckResetCatch.

• shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters.

• shared/debug/haltingevents/CheckTRBEHalt.

• shared/debug/haltingevents/ExternalDebugRequest.

• shared/debug/haltingevents/HSAdvance.

• shared/debug/haltingevents/HaltingStep_DidNotStep.

• shared/debug/haltingevents/HaltingStep_SteppedEX.

• shared/debug/interrupts/ExternalDebugInterruptsDisabled.

• shared/debug/pmu.

• shared/debug/pmu/CYCLE_COUNTER_ID.

• shared/debug/pmu/CheckForPMUOverflow.

• shared/debug/pmu/ClearEventCounters.

• shared/debug/pmu/CountPMUEvents.

• shared/debug/pmu/GetNumEventCounters.

• shared/debug/pmu/GetNumEventCountersAccessible.

• shared/debug/pmu/GetPMUAccessMask.

• shared/debug/pmu/GetPMUReadMask.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14116
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/debug/pmu/GetPMUWriteMask.

• shared/debug/pmu/HasElapsed64Cycles.

• shared/debug/pmu/INSTRUCTION_COUNTER_ID.

• shared/debug/pmu/IncrementInstructionCounter.

• shared/debug/pmu/PMUCaptureEvent.

• shared/debug/pmu/PMUCaptureEventAllowed.

• shared/debug/pmu/PMUCaptureEventEnabled.

• shared/debug/pmu/PMUCountValue.

• shared/debug/pmu/PMUCounterIsHyp.

• shared/debug/pmu/PMUEvent.

• shared/debug/pmu/PMUOverflowCondition.

• shared/debug/pmu/PMUSwIncrement.

• shared/debug/pmu/ReservedPMUThreshold.

• shared/debug/pmu/ShouldPMUFreeze.

• shared/debug/pmu/ZeroCycleCounter.

• shared/debug/pmu/ZeroPMUCounters.

• shared/debug/samplebasedprofiling/CreatePCSample.

• shared/debug/samplebasedprofiling/PCSRSuspended.

• shared/debug/samplebasedprofiling/PCSample.

• shared/debug/samplebasedprofiling/Read_EDPCSRlo.

• shared/debug/samplebasedprofiling/Read_PMPCSR.

• shared/debug/samplebasedprofiling/SetPCSRActive.

• shared/debug/samplebasedprofiling/SetPCSRUnknown.

• shared/debug/samplebasedprofiling/SetPCSample.

• shared/debug/softwarestep/CheckSoftwareStep.

• shared/debug/softwarestep/DebugExceptionReturnSS.

• shared/debug/softwarestep/SSAdvance.

• shared/debug/softwarestep/SoftwareStep_DidNotStep.

• shared/debug/softwarestep/SoftwareStep_SteppedEX.

shared/debug/ClearStickyErrors/ClearStickyErrors

 // ClearStickyErrors()
 // ===================

 ClearStickyErrors()
 EDSCR.TXU = '0'; // Clear TX underrun flag
 EDSCR.RXO = '0'; // Clear RX overrun flag

 if Halted() then // in Debug state
 EDSCR.ITO = '0'; // Clear ITR overrun flag

 // If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
 // The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
 // in the pseudocode.
 if (Halted() && EDSCR.ITE == '0' &&
 ConstrainUnpredictableBool(Unpredictable_CLEARERRITEZERO)) then
 return;
 EDSCR.ERR = '0'; // Clear cumulative error flag

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14117
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/DebugTarget/DebugTarget

 // DebugTarget()
 // =============
 // Returns the debug exception target Exception level

 bits(2) DebugTarget()
 ss = CurrentSecurityState();
 return DebugTargetFrom(ss);

shared/debug/DebugTarget/DebugTargetFrom

 // DebugTargetFrom()
 // =================

 bits(2) DebugTargetFrom(SecurityState from_state)
 boolean route_to_el2;
 if HaveEL(EL2) && (from_state != SS_Secure ||
 (IsFeatureImplemented(FEAT_SEL2) && (!HaveEL(EL3) || SCR_EL3.EEL2 == '1'))) then
 if ELUsingAArch32(EL2) then
 route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
 else
 route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
 else
 route_to_el2 = FALSE;

 bits(2) target;
 if route_to_el2 then
 target = EL2;
 elsif HaveEL(EL3) && !HaveAArch64() && from_state == SS_Secure then
 target = EL3;
 else
 target = EL1;

 return target;

shared/debug/DoubleLockStatus/DoubleLockStatus

 // DoubleLockStatus()
 // ==================
 // Returns the state of the OS Double Lock.
 // FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
 // TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

 boolean DoubleLockStatus()
 if !IsFeatureImplemented(FEAT_DoubleLock) then
 return FALSE;
 elsif ELUsingAArch32(EL1) then
 return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
 else
 return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

shared/debug/OSLockStatus/OSLockStatus

 // OSLockStatus()
 // ==============
 // Returns the state of the OS Lock.

 boolean OSLockStatus()
 return (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK) == '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14118
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/SoftwareLockStatus/Component

 // Component
 // =========
 // Component Types.

 enumeration Component {
 Component_PMU,
 Component_Debug,
 Component_CTI
 };

shared/debug/SoftwareLockStatus/GetAccessComponent

 // GetAccessComponent()
 // ====================
 // Returns the accessed component.

 Component GetAccessComponent();

shared/debug/SoftwareLockStatus/SoftwareLockStatus

 // SoftwareLockStatus()
 // ====================
 // Returns the state of the Software Lock.

 boolean SoftwareLockStatus()
 Component component = GetAccessComponent();
 if !HaveSoftwareLock(component) then
 return FALSE;
 case component of
 when Component_Debug
 return EDLSR.SLK == '1';
 when Component_PMU
 return PMLSR.SLK == '1';
 when Component_CTI
 return CTILSR.SLK == '1';
 otherwise
 Unreachable();

shared/debug/authentication/AccessState

 // AccessState()
 // =============
 // Returns the Security state of the access.

 SecurityState AccessState();

shared/debug/authentication/AllowExternalDebugAccess

 // AllowExternalDebugAccess()
 // ==========================
 // Returns TRUE if an external debug interface access to the External debug registers
 // is allowed, FALSE otherwise.

 boolean AllowExternalDebugAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 return AllowExternalDebugAccess(AccessState());

 // AllowExternalDebugAccess()
 // ==========================
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14119
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Returns TRUE if an external debug interface access to the External debug registers
 // is allowed for the given Security state, FALSE otherwise.

 boolean AllowExternalDebugAccess(SecurityState access_state)
 // The access may also be subject to OS Lock, power-down, etc.
 if IsFeatureImplemented(FEAT_RME) then
 case MDCR_EL3.<EDADE,EDAD> of
 when '00' return TRUE;
 when '01' return access_state IN {SS_Root, SS_Secure};
 when '10' return access_state IN {SS_Root, SS_Realm};
 when '11' return access_state == SS_Root;

 if IsFeatureImplemented(FEAT_Debugv8p4) then
 if access_state == SS_Secure then return TRUE;
 else
 if !ExternalInvasiveDebugEnabled() then return FALSE;
 if ExternalSecureInvasiveDebugEnabled() then return TRUE;

 if HaveEL(EL3) then
 EDAD_bit = if ELUsingAArch32(EL3) then SDCR.EDAD else MDCR_EL3.EDAD;
 return EDAD_bit == '0';
 else
 return NonSecureOnlyImplementation();

shared/debug/authentication/AllowExternalPMSSAccess

 // AllowExternalPMSSAccess()
 // =========================
 // Returns TRUE if an external debug interface access to the PMU Snapshot
 // registers is allowed, FALSE otherwise.

 boolean AllowExternalPMSSAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 return AllowExternalPMSSAccess(AccessState());

 // AllowExternalPMSSAccess()
 // =========================
 // Returns TRUE if an external debug interface access to the PMU Snapshot
 // registers is allowed for the given Security state, FALSE otherwise.

 boolean AllowExternalPMSSAccess(SecurityState access_state)
 assert IsFeatureImplemented(FEAT_PMUv3_SS) && HaveAArch64();
 // FEAT_Debugv8p4 is always implemented when FEAT_PMUv3_SS is implemented.
 assert IsFeatureImplemented(FEAT_Debugv8p4);

 // The access may also be subject to the OS Double Lock, power-down, etc.
 bits(2) epmssad = if HaveEL(EL3) then MDCR_EL3.EPMSSAD else '11';

 // Check for reserved values
 if !IsFeatureImplemented(FEAT_RME) && epmssad IN {'01','10'} then
 (-, epmssad) = ConstrainUnpredictableBits(Unpredictable_RESEPMSSAD, 2);
 // The value returned by ConstrainUnpredictableBits() must be a
 // non-reserved value
 assert epmssad IN {'00','11'};

 case epmssad of
 when '00'
 if IsFeatureImplemented(FEAT_RME) then
 return access_state == SS_Root;
 else
 return access_state == SS_Secure;
 when '01'
 assert IsFeatureImplemented(FEAT_RME);
 return access_state IN {SS_Root, SS_Realm};
 when '10'
 assert IsFeatureImplemented(FEAT_RME);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14120
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return access_state IN {SS_Root, SS_Secure};
 when '11'
 return TRUE;

shared/debug/authentication/AllowExternalPMUAccess

 // AllowExternalPMUAccess()
 // ========================
 // Returns TRUE if an external debug interface access to the PMU registers is
 // allowed, FALSE otherwise.

 boolean AllowExternalPMUAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 return AllowExternalPMUAccess(AccessState());

 // AllowExternalPMUAccess()
 // ========================
 // Returns TRUE if an external debug interface access to the PMU registers is
 // allowed for the given Security state, FALSE otherwise.

 boolean AllowExternalPMUAccess(SecurityState access_state)
 // The access may also be subject to OS Lock, power-down, etc.
 if IsFeatureImplemented(FEAT_RME) then
 case MDCR_EL3.<EPMADE,EPMAD> of
 when '00' return TRUE;
 when '01' return access_state IN {SS_Root, SS_Secure};
 when '10' return access_state IN {SS_Root, SS_Realm};
 when '11' return access_state == SS_Root;

 if IsFeatureImplemented(FEAT_Debugv8p4) then
 if access_state == SS_Secure then return TRUE;
 else
 if !ExternalInvasiveDebugEnabled() then return FALSE;
 if ExternalSecureInvasiveDebugEnabled() then return TRUE;

 if HaveEL(EL3) then
 EPMAD_bit = if ELUsingAArch32(EL3) then SDCR.EPMAD else MDCR_EL3.EPMAD;
 return EPMAD_bit == '0';
 else
 return NonSecureOnlyImplementation();

shared/debug/authentication/AllowExternalTraceAccess

 // AllowExternalTraceAccess()
 // ==========================
 // Returns TRUE if an external Trace access to the Trace registers is allowed, FALSE otherwise.

 boolean AllowExternalTraceAccess()
 if !IsFeatureImplemented(FEAT_TRBE) then
 return TRUE;
 else
 return AllowExternalTraceAccess(AccessState());

 // AllowExternalTraceAccess()
 // ==========================
 // Returns TRUE if an external Trace access to the Trace registers is allowed for the
 // given Security state, FALSE otherwise.

 boolean AllowExternalTraceAccess(SecurityState access_state)
 // The access may also be subject to OS lock, power-down, etc.
 if !IsFeatureImplemented(FEAT_TRBE) then return TRUE;
 assert IsFeatureImplemented(FEAT_Debugv8p4);
 if IsFeatureImplemented(FEAT_RME) then
 case MDCR_EL3.<ETADE,ETAD> of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14121
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when '00' return TRUE;
 when '01' return access_state IN {SS_Root, SS_Secure};
 when '10' return access_state IN {SS_Root, SS_Realm};
 when '11' return access_state == SS_Root;

 if access_state == SS_Secure then return TRUE;
 if HaveEL(EL3) then
 // External Trace access is not supported for EL3 using AArch32
 assert !ELUsingAArch32(EL3);
 return MDCR_EL3.ETAD == '0';
 else
 return NonSecureOnlyImplementation();

shared/debug/authentication/Debug_authentication

 Signal DBGEN;
 Signal NIDEN;
 Signal SPIDEN;
 Signal SPNIDEN;
 Signal RLPIDEN;
 Signal RTPIDEN;

shared/debug/authentication/ExternalInvasiveDebugEnabled

 // ExternalInvasiveDebugEnabled()
 // ==============================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the DBGEN signal.

 boolean ExternalInvasiveDebugEnabled()
 return DBGEN == Signal_High;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed

 // ExternalNoninvasiveDebugAllowed()
 // =================================
 // Returns TRUE if Trace and PC Sample-based Profiling are allowed

 boolean ExternalNoninvasiveDebugAllowed()
 return ExternalNoninvasiveDebugAllowed(PSTATE.EL);

 // ExternalNoninvasiveDebugAllowed()
 // =================================

 boolean ExternalNoninvasiveDebugAllowed(bits(2) el)
 if !ExternalNoninvasiveDebugEnabled() then return FALSE;
 ss = SecurityStateAtEL(el);

 if ((ELUsingAArch32(EL3) || ELUsingAArch32(EL1)) && el == EL0 &&
 ss == SS_Secure && SDER.SUNIDEN == '1') then
 return TRUE;

 case ss of
 when SS_NonSecure return TRUE;
 when SS_Secure return ExternalSecureNoninvasiveDebugEnabled();
 when SS_Realm return ExternalRealmNoninvasiveDebugEnabled();
 when SS_Root return ExternalRootNoninvasiveDebugEnabled();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14122
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/authentication/ExternalNoninvasiveDebugEnabled

 // ExternalNoninvasiveDebugEnabled()
 // =================================
 // This function returns TRUE if the FEAT_Debugv8p4 is implemented.
 // Otherwise, this function is IMPLEMENTATION DEFINED, and, in the
 // recommended interface, ExternalNoninvasiveDebugEnabled returns
 // the state of the (DBGEN OR NIDEN) signal.

 boolean ExternalNoninvasiveDebugEnabled()
 return (IsFeatureImplemented(FEAT_Debugv8p4) || ExternalInvasiveDebugEnabled() ||
 NIDEN == Signal_High);

shared/debug/authentication/ExternalRealmInvasiveDebugEnabled

 // ExternalRealmInvasiveDebugEnabled()
 // ===================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the
 // (DBGEN AND RLPIDEN) signal.

 boolean ExternalRealmInvasiveDebugEnabled()
 if !IsFeatureImplemented(FEAT_RME) then return FALSE;
 return ExternalInvasiveDebugEnabled() && RLPIDEN == Signal_High;

shared/debug/authentication/ExternalRealmNoninvasiveDebugEnabled

 // ExternalRealmNoninvasiveDebugEnabled()
 // ======================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the
 // (DBGEN AND RLPIDEN) signal.

 boolean ExternalRealmNoninvasiveDebugEnabled()
 if !IsFeatureImplemented(FEAT_RME) then return FALSE;
 return ExternalRealmInvasiveDebugEnabled();

shared/debug/authentication/ExternalRootInvasiveDebugEnabled

 // ExternalRootInvasiveDebugEnabled()
 // ==================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the
 // (DBGEN AND RLPIDEN AND RTPIDEN AND SPIDEN) signal when FEAT_SEL2 is implemented
 // and the (DBGEN AND RLPIDEN AND RTPIDEN) signal when FEAT_SEL2 is not implemented.

 boolean ExternalRootInvasiveDebugEnabled()
 if !IsFeatureImplemented(FEAT_RME) then return FALSE;
 return (ExternalInvasiveDebugEnabled() &&
 (!IsFeatureImplemented(FEAT_SEL2) || ExternalSecureInvasiveDebugEnabled()) &&
 ExternalRealmInvasiveDebugEnabled() &&
 RTPIDEN == Signal_High);

shared/debug/authentication/ExternalRootNoninvasiveDebugEnabled

 // ExternalRootNoninvasiveDebugEnabled()
 // =====================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the
 // (DBGEN AND RLPIDEN AND SPIDEN AND RTPIDEN) signal.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14123
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 boolean ExternalRootNoninvasiveDebugEnabled()
 if !IsFeatureImplemented(FEAT_RME) then return FALSE;
 return ExternalRootInvasiveDebugEnabled();

shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

 // ExternalSecureInvasiveDebugEnabled()
 // ====================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
 // CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

 boolean ExternalSecureInvasiveDebugEnabled()
 if !HaveEL(EL3) && !SecureOnlyImplementation() then return FALSE;
 return ExternalInvasiveDebugEnabled() && SPIDEN == Signal_High;

shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

 // ExternalSecureNoninvasiveDebugEnabled()
 // =======================================
 // This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
 // is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
 // (SPIDEN OR SPNIDEN) signal.

 boolean ExternalSecureNoninvasiveDebugEnabled()
 if !HaveEL(EL3) && !SecureOnlyImplementation() then return FALSE;
 if !IsFeatureImplemented(FEAT_Debugv8p4) then
 return (ExternalNoninvasiveDebugEnabled() &&
 (SPIDEN == Signal_High || SPNIDEN == Signal_High));
 else
 return ExternalSecureInvasiveDebugEnabled();

shared/debug/authentication/IsAccessNonSecure

 // IsAccessNonSecure()
 // ===================
 // Returns TRUE when an access is Non-Secure

 boolean IsAccessNonSecure()
 return !IsAccessSecure();

shared/debug/authentication/IsAccessSecure

 // IsAccessSecure()
 // ================
 // Returns TRUE when an access is Secure

 boolean IsAccessSecure();

shared/debug/authentication/IsCorePowered

 // IsCorePowered()
 // ===============
 // Returns TRUE if the Core power domain is powered on, FALSE otherwise.

 boolean IsCorePowered();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14124
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/breakpoint/CheckValidStateMatch

 // CheckValidStateMatch()
 // ======================
 // Checks for an invalid state match that will generate Constrained
 // Unpredictable behavior, otherwise returns Constraint_NONE.

 (Constraint, bits(2), bit, bit, bits(2)) CheckValidStateMatch(bits(2) ssc_in, bit ssce_in,
 bit hmc_in, bits(2) pxc_in,
 boolean isbreakpnt)
 if !IsFeatureImplemented(FEAT_RME) then assert ssce_in == '0';
 boolean reserved = FALSE;
 bits(2) ssc = ssc_in;
 bit ssce = ssce_in;
 bit hmc = hmc_in;
 bits(2) pxc = pxc_in;

 // Values that are not allocated in any architecture version
 case hmc:ssce:ssc:pxc of
 when '0 0 11 10' reserved = TRUE;
 when '0 0 1x xx' reserved = !HaveSecureState();
 when '1 0 00 x0' reserved = TRUE;
 when '1 0 01 10' reserved = TRUE;
 when '1 0 1x 10' reserved = TRUE;
 when 'x 1 xx xx' reserved = ssc != '01' || (hmc:pxc) IN {'000','110'};
 otherwise reserved = FALSE;

 // Match 'Usr/Sys/Svc' valid only for AArch32 breakpoints
 if (!isbreakpnt || !HaveAArch32EL(EL1)) && hmc:pxc == '000' && ssc != '11' then
 reserved = TRUE;

 // Both EL3 and EL2 are not implemented
 if !HaveEL(EL3) && !HaveEL(EL2) && (hmc != '0' || ssc != '00') then
 reserved = TRUE;

 // EL3 is not implemented
 if !HaveEL(EL3) && ssc IN {'01','10'} && hmc:ssc:pxc != '10100' then
 reserved = TRUE;

 // EL3 using AArch64 only
 if (!HaveEL(EL3) || !HaveAArch64()) && hmc:ssc:pxc == '11000' then
 reserved = TRUE;

 // EL2 is not implemented
 if !HaveEL(EL2) && hmc:ssc:pxc == '11100' then
 reserved = TRUE;

 // Secure EL2 is not implemented
 if !IsFeatureImplemented(FEAT_SEL2) && (hmc:ssc:pxc) IN {'01100','10100','x11x1'} then
 reserved = TRUE;

 if reserved then
 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 Constraint c;
 (c, <hmc,ssc,ssce,pxc>) = ConstrainUnpredictableBits(Unpredictable_RESBPWPCTRL, 6);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then
 return (c, bits(2) UNKNOWN, bit UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 return (Constraint_NONE, ssc, ssce, hmc, pxc);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14125
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/breakpoint/ContextAwareBreakpointRange

 // ContextAwareBreakpointRange()
 // =============================
 // Returns two numbers indicating the index of the first and last context-aware breakpoint.

 (integer, integer) ContextAwareBreakpointRange()
 integer b = NumBreakpointsImplemented();
 integer c = NumContextAwareBreakpointsImplemented();

 if b <= 16 then
 return (b - c, b - 1);
 elsif c <= 16 then
 return (16 - c, 15);
 else
 return (0, c - 1);

shared/debug/breakpoint/IsContextAwareBreakpoint

 // IsContextAwareBreakpoint()
 // ==========================
 // Returns TRUE if DBGBCR_EL1[n] is a context-aware breakpoint.

 boolean IsContextAwareBreakpoint(integer n)
 (lower, upper) = ContextAwareBreakpointRange();
 return n >= lower && n <= upper;

shared/debug/breakpoint/NumBreakpointsImplemented

 // NumBreakpointsImplemented()
 // ===========================
 // Returns the number of breakpoints implemented.

 integer NumBreakpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of breakpoints";

shared/debug/breakpoint/NumContextAwareBreakpointsImplemented

 // NumContextAwareBreakpointsImplemented()
 // =======================================
 // Returns the number of context-aware breakpoints implemented.

 integer NumContextAwareBreakpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of context-aware breakpoints";

shared/debug/breakpoint/NumWatchpointsImplemented

 // NumWatchpointsImplemented()
 // ===========================
 // Returns the number of watchpoints implemented.

 integer NumWatchpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of watchpoints";

shared/debug/cti/CTI_ProcessEvent

 // CTI_ProcessEvent()
 // ==================
 // Process a discrete event on a Cross Trigger output event trigger.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14126
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 CTI_ProcessEvent(CrossTriggerOut id);

shared/debug/cti/CTI_SetEventLevel

 // CTI_SetEventLevel()
 // ===================
 // Set a Cross Trigger multi-cycle input event trigger to the specified level.

 CTI_SetEventLevel(CrossTriggerIn id, Signal level);

shared/debug/cti/CTI_SignalEvent

 // CTI_SignalEvent()
 // =================
 // Signal a discrete event on a Cross Trigger input event trigger.

 CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

 // CrossTrigger
 // ============

 enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
 CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
 CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
 CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

 enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
 CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
 CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
 CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

shared/debug/dccanditr/CheckForDCCInterrupts

 // CheckForDCCInterrupts()
 // =======================

 CheckForDCCInterrupts()
 commrx = (EDSCR.RXfull == '1');
 commtx = (EDSCR.TXfull == '0');

 // COMMRX and COMMTX support is optional and not recommended for new designs.
 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then Signal_High else Signal_Low);
 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then Signal_High else Signal_Low);

 // The value to be driven onto the common COMMIRQ signal.
 boolean commirq;
 if ELUsingAArch32(EL1) then
 commirq = ((commrx && DBGDCCINT.RX == '1') ||
 (commtx && DBGDCCINT.TX == '1'));
 else
 commirq = ((commrx && MDCCINT_EL1.RX == '1') ||
 (commtx && MDCCINT_EL1.TX == '1'));
 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then Signal_High else Signal_Low);

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14127
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/dccanditr/DTR

 bits(32) DTRRX;
 bits(32) DTRTX;

shared/debug/dccanditr/Read_DBGDTRRX_EL0

 // Read_DBGDTRRX_EL0()
 // ===================
 // Called on reads of debug register 0x080.

 bits(32) Read_DBGDTRRX_EL0(boolean memory_mapped)
 return DTRRX;

shared/debug/dccanditr/Read_DBGDTRTX_EL0

 // Read_DBGDTRTX_EL0()
 // ===================
 // Called on reads of debug register 0x08C.

 bits(32) Read_DBGDTRTX_EL0(boolean memory_mapped)
 underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
 value = if underrun then bits(32) UNKNOWN else DTRTX;

 if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

 if underrun then
 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
 return value; // Return UNKNOWN

 EDSCR.TXfull = '0';
 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in Write_EDITR()

 if !UsingAArch32() then
 ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"
 else
 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"
 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.TXfull = bit UNKNOWN;
 DBGDTRTX_EL0 = bits(64) UNKNOWN;
 else
 if !UsingAArch32() then
 ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
 else
 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
 // "MSR DBGDTRTX_EL0,X1" calls Write_DBGDTR_EL0() which sets TXfull.
 assert EDSCR.TXfull == '1';
 if !UsingAArch32() then
 X[1, 64] = bits(64) UNKNOWN;
 else
 R[1] = bits(32) UNKNOWN;
 EDSCR.ITE = '1'; // See comments in Write_EDITR()

 return value;

shared/debug/dccanditr/Read_DBGDTR_EL0

 // Read_DBGDTR_EL0()
 // =================
 // System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14128
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(N) Read_DBGDTR_EL0(integer N)
 // For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
 // For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
 assert N IN {32,64};
 bits(N) result;
 if EDSCR.RXfull == '0' then
 result = bits(N) UNKNOWN;
 else
 // On a 64-bit read, implement a half-duplex channel
 // NOTE: the word order is reversed on reads with regards to writes
 if N == 64 then result<63:32> = DTRTX;
 result<31:0> = DTRRX;
 EDSCR.RXfull = '0';
 return result;

shared/debug/dccanditr/Write_DBGDTRRX_EL0

 // Write_DBGDTRRX_EL0()
 // ====================
 // Called on writes to debug register 0x080.

 Write_DBGDTRRX_EL0(boolean memory_mapped, bits(32) value)
 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
 return;

 EDSCR.RXfull = '1';
 DTRRX = value;

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in Write_EDITR()
 if !UsingAArch32() then
 ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
 ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
 X[1, 64] = bits(64) UNKNOWN;
 else
 ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
 ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
 R[1] = bits(32) UNKNOWN;
 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.RXfull = bit UNKNOWN;
 DBGDTRRX_EL0 = bits(64) UNKNOWN;
 else
 // "MRS X1,DBGDTRRX_EL0" calls Read_DBGDTR_EL0() which clears RXfull.
 assert EDSCR.RXfull == '0';

 EDSCR.ITE = '1'; // See comments in Write_EDITR()
 return;

shared/debug/dccanditr/Write_DBGDTRTX_EL0

 // Write_DBGDTRTX_EL0()
 // ====================
 // Called on writes to debug register 0x08C.

 Write_DBGDTRTX_EL0(boolean memory_mapped, bits(32) value)
 DTRTX = value;
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14129
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/dccanditr/Write_DBGDTR_EL0

 // Write_DBGDTR_EL0()
 // ==================
 // System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

 Write_DBGDTR_EL0(bits(N) value_in)
 bits(N) value = value_in;
 // For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
 // For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
 assert N IN {32,64};
 if EDSCR.TXfull == '1' then
 value = bits(N) UNKNOWN;
 // On a 64-bit write, implement a half-duplex channel
 if N == 64 then DTRRX = value<63:32>;
 DTRTX = value<31:0>; // 32-bit or 64-bit write
 EDSCR.TXfull = '1';
 return;

shared/debug/dccanditr/Write_EDITR

 // Write_EDITR()
 // =============
 // Called on writes to debug register 0x084.

 Write_EDITR(boolean memory_mapped, bits(32) value)
 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 if !Halted() then return; // Non-debug state: ignore write

 if EDSCR.ITE == '0' || EDSCR.MA == '1' then
 EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
 return;

 // ITE indicates whether the processor is ready to accept another instruction; the processor
 // may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
 // is no indication that the pipeline is empty (all instructions have completed). In this
 // pseudocode, the assumption is that only one instruction can be executed at a time,
 // meaning ITE acts like "InstrCompl".
 EDSCR.ITE = '0';

 if !UsingAArch32() then
 ExecuteA64(value);
 else
 ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

 EDSCR.ITE = '1';

 return;

shared/debug/halting/DCPSInstruction

 // DCPSInstruction()
 // =================
 // Operation of the DCPS instruction in Debug state

 DCPSInstruction(bits(2) target_el)

 SynchronizeContext();

 bits(2) handle_el;
 case target_el of
 when EL1
 if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14130
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 handle_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 UNDEFINED;
 else
 handle_el = EL1;
 when EL2
 if !HaveEL(EL2) then
 UNDEFINED;
 elsif PSTATE.EL == EL3 && !UsingAArch32() then
 handle_el = EL3;
 elsif !IsSecureEL2Enabled() && CurrentSecurityState() == SS_Secure then
 UNDEFINED;
 else
 handle_el = EL2;
 when EL3
 if EDSCR.SDD == '1' || !HaveEL(EL3) then
 UNDEFINED;
 else
 handle_el = EL3;
 otherwise
 Unreachable();

 from_secure = CurrentSecurityState() == SS_Secure;
 if ELUsingAArch32(handle_el) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32
 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 if IsFeatureImplemented(FEAT_PAN) && SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 when EL2 AArch32.WriteMode(M32_Hyp);
 when EL3
 AArch32.WriteMode(M32_Monitor);
 if IsFeatureImplemented(FEAT_PAN) then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR_curr[] = bits(32) UNKNOWN;
 PSTATE.E = SCTLR_ELx[].EE;
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

 else // Targeting AArch64
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();
 if from_32 && IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' then
 ResetSVEState();
 else
 MaybeZeroSVEUppers(target_el);
 PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
 if IsFeatureImplemented(FEAT_PAN) && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||
 (handle_el == EL2 && ELIsInHost(EL0) &&
 SCTLR_EL2.SPAN == '0')) then
 PSTATE.PAN = '1';
 ELR_ELx[] = bits(64) UNKNOWN; SPSR_ELx[] = bits(64) UNKNOWN; ESR_ELx[] = bits(64) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = '0';
 if IsFeatureImplemented(FEAT_MTE) then PSTATE.TCO = '1';
 if IsFeatureImplemented(FEAT_GCS) then PSTATE.EXLOCK = '0';

 UpdateEDSCRFields(); // Update EDSCR PE state flags
 sync_errors = IsFeatureImplemented(FEAT_IESB) && SCTLR_ELx[].IESB == '1';
 if IsFeatureImplemented(FEAT_DoubleFault) && !UsingAArch32() then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14131
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 sync_errors = (sync_errors ||
 (EffectiveEA() == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3));
 // SCTLR_ELx[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();
 return;

shared/debug/halting/DRPSInstruction

 // DRPSInstruction()
 // =================
 // Operation of the A64 DRPS and T32 ERET instructions in Debug state

 DRPSInstruction()

 sync_errors = IsFeatureImplemented(FEAT_IESB) && SCTLR_ELx[].IESB == '1';
 if IsFeatureImplemented(FEAT_DoubleFault) && !UsingAArch32() then
 sync_errors = (sync_errors ||
 (EffectiveEA() == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3));
 // SCTLR_ELx[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();

 SynchronizeContext();

 DebugRestorePSR();

 return;

shared/debug/halting/DebugHalt

 constant bits(6) DebugHalt_Breakpoint = '000111';
 constant bits(6) DebugHalt_EDBGRQ = '010011';
 constant bits(6) DebugHalt_Step_Normal = '011011';
 constant bits(6) DebugHalt_Step_Exclusive = '011111';
 constant bits(6) DebugHalt_OSUnlockCatch = '100011';
 constant bits(6) DebugHalt_ResetCatch = '100111';
 constant bits(6) DebugHalt_Watchpoint = '101011';
 constant bits(6) DebugHalt_HaltInstruction = '101111';
 constant bits(6) DebugHalt_SoftwareAccess = '110011';
 constant bits(6) DebugHalt_ExceptionCatch = '110111';
 constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DebugRestorePSR

 // DebugRestorePSR()
 // =================

 DebugRestorePSR()
 // PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 if UsingAArch32() then
 bits(32) spsr = SPSR_curr[];
 SetPSTATEFromPSR(spsr);
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14132
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(64) spsr = SPSR_ELx[];
 SetPSTATEFromPSR(spsr);
 PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;
 UpdateEDSCRFields(); // Update EDSCR PE state flags

shared/debug/halting/DisableITRAndResumeInstructionPrefetch

 // DisableITRAndResumeInstructionPrefetch()
 // ==

 DisableITRAndResumeInstructionPrefetch();

shared/debug/halting/ExecuteA64

 // ExecuteA64()
 // ============
 // Execute an A64 instruction in Debug state.

 ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

 // ExecuteT32()
 // ============
 // Execute a T32 instruction in Debug state.

 ExecuteT32(bits(16) hw1, bits(16) hw2);

shared/debug/halting/ExitDebugState

 // ExitDebugState()
 // ================

 ExitDebugState()
 assert Halted();
 SynchronizeContext();

 // Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
 // detect that the PE has restarted.
 EDSCR.STATUS = '000001'; // Signal restarting
 // Clear any pending Halting debug events
 if IsFeatureImplemented(FEAT_Debugv8p8) then
 EDESR<3:0> = '0000';
 else
 EDESR<2:0> = '000';

 bits(64) new_pc;
 bits(64) spsr;

 if UsingAArch32() then
 new_pc = ZeroExtend(DLR, 64);
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 spsr = DSPSR2 : DSPSR;
 else
 spsr = ZeroExtend(DSPSR, 64);
 else
 new_pc = DLR_EL0;
 spsr = DSPSR_EL0;

 boolean illegal_psr_state = IllegalExceptionReturn(spsr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14133
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
 SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0

 boolean branch_conditional = FALSE;
 if UsingAArch32() then
 if ConstrainUnpredictableBool(Unpredictable_RESTARTALIGNPC) then new_pc<0> = '0';
 // AArch32 branch
 BranchTo(new_pc<31:0>, BranchType_DBGEXIT, branch_conditional);
 else
 // If targeting AArch32 then PC[63:32,1:0] might be set to UNKNOWN.
 if illegal_psr_state && spsr<4> == '1' then
 new_pc<63:32> = bits(32) UNKNOWN;
 new_pc<1:0> = bits(2) UNKNOWN;
 if IsFeatureImplemented(FEAT_BRBE) then
 BRBEDebugStateExit(new_pc);
 // A type of branch that is never predicted
 BranchTo(new_pc, BranchType_DBGEXIT, branch_conditional);

 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
 EDPRSR.HALTED = '0';
 UpdateEDSCRFields(); // Stop signalling PE state
 DisableITRAndResumeInstructionPrefetch();

 return;

shared/debug/halting/Halt

 // Halt()
 // ======

 Halt(bits(6) reason)
 boolean is_async = FALSE;
 FaultRecord fault = NoFault();
 Halt(reason, is_async, fault);

 // Halt()
 // ======

 Halt(bits(6) reason, boolean is_async, FaultRecord fault)
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_DBG, FALSE);

 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

 bits(64) preferred_restart_address = ThisInstrAddr(64);
 bits(64) spsr = GetPSRFromPSTATE(DebugState, 64);

 if (IsFeatureImplemented(FEAT_BTI) && !is_async &&
 !(reason IN {DebugHalt_Step_Normal, DebugHalt_Step_Exclusive,
 DebugHalt_Step_NoSyndrome, DebugHalt_Breakpoint, DebugHalt_HaltInstruction}) &&
 ConstrainUnpredictableBool(Unpredictable_ZEROBTYPE)) then
 spsr<11:10> = '00';

 if UsingAArch32() then
 DLR = preferred_restart_address<31:0>;
 DSPSR = spsr<31:0>;
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 DSPSR2 = spsr<63:32>;
 else
 DLR_EL0 = preferred_restart_address;
 DSPSR_EL0 = spsr;

 EDSCR.ITE = '1';
 EDSCR.ITO = '0';
 if IsFeatureImplemented(FEAT_RME) then
 if PSTATE.EL == EL3 then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14134
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 EDSCR.SDD = '0';
 else
 EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';
 elsif CurrentSecurityState() == SS_Secure then
 EDSCR.SDD = '0'; // If entered in Secure state, allow debug
 elsif HaveEL(EL3) then
 EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
 else
 EDSCR.SDD = '1'; // Otherwise EDSCR.SDD is RES1
 EDSCR.MA = '0';

 // In Debug state:
 // * PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
 // * PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
 // are not changed on exception entry, this function also leaves them unchanged.
 // * PSTATE.{IT,T} are ignored.
 // * PSTATE.IL is ignored and behave-as-if 0.
 // * PSTATE.BTYPE is ignored and behave-as-if 0.
 // * PSTATE.TCO is set 1.
 // * PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.

 if UsingAArch32() then
 PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;
 else
 PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;

 if IsFeatureImplemented(FEAT_MTE) then PSTATE.TCO = '1';
 if IsFeatureImplemented(FEAT_BTI) then PSTATE.BTYPE = '00';
 PSTATE.IL = '0';
 StopInstructionPrefetchAndEnableITR();
 (EDSCR.STATUS,EDPRSR.HALTED) = (reason,'1');
 UpdateEDSCRFields(); // Update EDSCR PE state flags.
 if IsFeatureImplemented(FEAT_EDHSR) then
 UpdateEDHSR(reason, fault); // Update EDHSR fields.
 if !is_async then EndOfInstruction();
 return;

shared/debug/halting/HaltOnBreakpointOrWatchpoint

 // HaltOnBreakpointOrWatchpoint()
 // ==============================
 // Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
 // state entry, FALSE if they should be considered for a debug exception.

 boolean HaltOnBreakpointOrWatchpoint()
 return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

shared/debug/halting/Halted

 // Halted()
 // ========

 boolean Halted()
 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

shared/debug/halting/HaltingAllowed

 // HaltingAllowed()
 // ================
 // Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

 boolean HaltingAllowed()
 if Halted() || DoubleLockStatus() then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14135
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return FALSE;
 ss = CurrentSecurityState();
 case ss of
 when SS_NonSecure return ExternalInvasiveDebugEnabled();
 when SS_Secure return ExternalSecureInvasiveDebugEnabled();
 when SS_Root return ExternalRootInvasiveDebugEnabled();
 when SS_Realm return ExternalRealmInvasiveDebugEnabled();

shared/debug/halting/Restarting

 // Restarting()
 // ============

 boolean Restarting()
 return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StopInstructionPrefetchAndEnableITR

 // StopInstructionPrefetchAndEnableITR()
 // =====================================

 StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateDbgAuthStatus

 // UpdateDbgAuthStatus()
 // =====================
 // Provides information about the state of the
 // implementation defined authentication interface for debug.

 UpdateDbgAuthStatus()
 bits(2) nsid, nsnid;
 bits(2) sid, snid;
 bits(32) regVal = Zeros(32);
 if HaveEL(EL3) then
 if ExternalInvasiveDebugEnabled() then
 nsid = '11'; // Non-Secure Invasive debug implemented and enabled.
 else
 nsid = '10'; // Non-Secure Invasive debug implemented and disabled.
 if IsFeatureImplemented(FEAT_Debugv8p4) || ExternalNoninvasiveDebugEnabled() then
 nsnid = '11'; // Non-Secure Non-Invasive debug implemented and enabled.
 else
 nsnid = '10'; // Non-Secure Non-Invasive debug implemented and disabled.
 if ExternalSecureInvasiveDebugEnabled() then
 sid = '11'; // Secure Invasive debug implemented and enabled.
 else
 sid = '10'; // Secure Invasive debug implemented and disabled.
 if IsFeatureImplemented(FEAT_Debugv8p4) || ExternalSecureNoninvasiveDebugEnabled() then
 snid = '11'; // Field has the same value as DBGAUTHSTATUS_EL1.SID
 else
 snid = '10'; // Secure Non-Invasive debug implemented and disabled.
 else
 sid = '00';
 snid = '00';
 nsid = '00';
 nsnid = '00';

 DBGAUTHSTATUS_EL1.NSID = nsid;
 DBGAUTHSTATUS_EL1.NSNID = nsnid;
 DBGAUTHSTATUS_EL1.SID = sid;
 DBGAUTHSTATUS_EL1.SNID = snid;
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14136
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/halting/UpdateEDHSR

 // UpdateEDHSR()
 // =============
 // Update EDHSR watchpoint related fields.

 UpdateEDHSR(bits(6) reason, FaultRecord fault)
 bits(64) syndrome = Zeros(64);
 if reason == DebugHalt_Watchpoint then
 if IsFeatureImplemented(FEAT_GCS) && fault.accessdesc.acctype == AccessType_GCS then
 syndrome<40> = '1'; // GCS
 syndrome<23:0> = WatchpointRelatedSyndrome(fault, EDWAR);
 else
 syndrome = bits(64) UNKNOWN;
 EDHSR = syndrome;

shared/debug/halting/UpdateEDSCRFields

 // UpdateEDSCRFields()
 // ===================
 // Update EDSCR PE state fields

 UpdateEDSCRFields()

 if !Halted() then
 EDSCR.EL = '00';
 if IsFeatureImplemented(FEAT_RME) then
 // SDD bit.
 EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';
 EDSCR.<NSE,NS> = bits(2) UNKNOWN;
 else
 // SDD bit.
 EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
 EDSCR.NS = bit UNKNOWN;

 EDSCR.RW = '1111';
 else
 EDSCR.EL = PSTATE.EL;
 // SError Pending.
 if EL2Enabled() && HCR_EL2.<AMO,TGE> == '10' && PSTATE.EL IN {EL0,EL1} then
 EDSCR.A = if IsVirtualSErrorPending() then '1' else '0';
 else
 EDSCR.A = if IsPhysicalSErrorPending() then '1' else '0';

 ss = CurrentSecurityState();
 if IsFeatureImplemented(FEAT_RME) then
 case ss of
 when SS_Secure EDSCR.<NSE,NS> = '00';
 when SS_NonSecure EDSCR.<NSE,NS> = '01';
 when SS_Root EDSCR.<NSE,NS> = '10';
 when SS_Realm EDSCR.<NSE,NS> = '11';
 else
 EDSCR.NS = if ss == SS_Secure then '0' else '1';

 bits(4) RW;
 RW<1> = if ELUsingAArch32(EL1) then '0' else '1';
 if PSTATE.EL != EL0 then
 RW<0> = RW<1>;
 else
 RW<0> = if UsingAArch32() then '0' else '1';
 if !HaveEL(EL2) || (HaveEL(EL3) && SCR_curr[].NS == '0' && !IsSecureEL2Enabled()) then
 RW<2> = RW<1>;
 else
 RW<2> = if ELUsingAArch32(EL2) then '0' else '1';
 if !HaveEL(EL3) then
 RW<3> = RW<2>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14137
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 RW<3> = if ELUsingAArch32(EL3) then '0' else '1';

 // The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
 if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
 elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
 elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
 EDSCR.RW = RW;
 return;

shared/debug/haltingevents/CheckExceptionCatch

 // CheckExceptionCatch()
 // =====================
 // Check whether an Exception Catch debug event is set on the current Exception level

 CheckExceptionCatch(boolean exception_entry)
 // Called after an exception entry or exit, that is, such that the Security state
 // and PSTATE.EL are correct for the exception target. When FEAT_Debugv8p2
 // is not implemented, this function might also be called at any time.
 ss = SecurityStateAtEL(PSTATE.EL);
 integer base;

 case ss of
 when SS_Secure base = 0;
 when SS_NonSecure base = 4;
 when SS_Realm base = 16;
 when SS_Root base = 0;
 if HaltingAllowed() then
 boolean halt;
 if IsFeatureImplemented(FEAT_Debugv8p2) then
 exception_exit = !exception_entry;
 increment = if ss == SS_Realm then 4 else 8;
 ctrl = EDECCR<UInt(PSTATE.EL) + base + increment>:EDECCR<UInt(PSTATE.EL) + base>;
 case ctrl of
 when '00' halt = FALSE;
 when '01' halt = TRUE;
 when '10' halt = (exception_exit == TRUE);
 when '11' halt = (exception_entry == TRUE);
 else
 halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');

 if halt then
 if IsFeatureImplemented(FEAT_Debugv8p8) && exception_entry then
 EDESR.EC = '1';
 else
 Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep

 // CheckHaltingStep()
 // ==================
 // Check whether EDESR.SS has been set by Halting Step

 CheckHaltingStep(boolean is_async)
 step_enabled = EDECR.SS == '1' && HaltingAllowed();
 active_pending = step_enabled && EDESR.SS == '1';
 if active_pending then
 if HaltingStep_DidNotStep() then
 FaultRecord fault = NoFault();
 Halt(DebugHalt_Step_NoSyndrome, is_async, fault);
 elsif HaltingStep_SteppedEX() then
 FaultRecord fault = NoFault();
 Halt(DebugHalt_Step_Exclusive, is_async, fault);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14138
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 FaultRecord fault = NoFault();
 Halt(DebugHalt_Step_Normal, is_async, fault);
 if step_enabled then ShouldAdvanceHS = TRUE;
 return;

shared/debug/haltingevents/CheckOSUnlockCatch

 // CheckOSUnlockCatch()
 // ====================
 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

 CheckOSUnlockCatch()
 if ((IsFeatureImplemented(FEAT_DoPD) && CTIDEVCTL.OSUCE == '1') ||
 (!IsFeatureImplemented(FEAT_DoPD) && EDECR.OSUCE == '1')) then
 if !Halted() then EDESR.OSUC = '1';

shared/debug/haltingevents/CheckPendingExceptionCatch

 // CheckPendingExceptionCatch()
 // ============================
 // Check whether EDESR.EC has been set by an Exception Catch debug event.

 CheckPendingExceptionCatch(boolean is_async)
 if IsFeatureImplemented(FEAT_Debugv8p8) && HaltingAllowed() && EDESR.EC == '1' then
 FaultRecord fault = NoFault();
 Halt(DebugHalt_ExceptionCatch, is_async, fault);

shared/debug/haltingevents/CheckPendingOSUnlockCatch

 // CheckPendingOSUnlockCatch()
 // ===========================
 // Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

 CheckPendingOSUnlockCatch()
 if HaltingAllowed() && EDESR.OSUC == '1' then
 boolean is_async = TRUE;
 FaultRecord fault = NoFault();
 Halt(DebugHalt_OSUnlockCatch, is_async, fault);

shared/debug/haltingevents/CheckPendingResetCatch

 // CheckPendingResetCatch()
 // ========================
 // Check whether EDESR.RC has been set by a Reset Catch debug event

 CheckPendingResetCatch()
 if HaltingAllowed() && EDESR.RC == '1' then
 boolean is_async = TRUE;
 FaultRecord fault = NoFault();
 Halt(DebugHalt_ResetCatch, is_async, fault);

shared/debug/haltingevents/CheckResetCatch

 // CheckResetCatch()
 // =================
 // Called after reset

 CheckResetCatch()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14139
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if ((IsFeatureImplemented(FEAT_DoPD) && CTIDEVCTL.RCE == '1') ||
 (!IsFeatureImplemented(FEAT_DoPD) && EDECR.RCE == '1')) then
 EDESR.RC = '1';
 // If halting is allowed then halt immediately
 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

 // CheckSoftwareAccessToDebugRegisters()
 // =====================================
 // Check for access to Breakpoint and Watchpoint registers.

 CheckSoftwareAccessToDebugRegisters()
 os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
 if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then
 Halt(DebugHalt_SoftwareAccess);

shared/debug/haltingevents/CheckTRBEHalt

 // CheckTRBEHalt()
 // ===============

 CheckTRBEHalt()
 if !IsFeatureImplemented(FEAT_Debugv8p9) || !IsFeatureImplemented(FEAT_TRBE_EXT) then
 return;

 if (HaltingAllowed() && TraceBufferEnabled() &&
 TRBSR_EL1.IRQ == '1' && EDECR.TRBE == '1') then
 Halt(DebugHalt_EDBGRQ);

shared/debug/haltingevents/ExternalDebugRequest

 // ExternalDebugRequest()
 // ======================

 ExternalDebugRequest()
 if HaltingAllowed() then
 boolean is_async = TRUE;
 FaultRecord fault = NoFault();
 Halt(DebugHalt_EDBGRQ, is_async, fault);
 // Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HSAdvance

 // HSAdvance()
 // ===========
 // Advance the Halting Step State Machine

 HSAdvance()
 if !ShouldAdvanceHS then return;
 step_enabled = EDECR.SS == '1' && HaltingAllowed();
 active_not_pending = step_enabled && EDESR.SS == '0';
 if active_not_pending then EDESR.SS = '1'; // set as pending.
 ShouldAdvanceHS = FALSE;
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14140
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/haltingevents/HaltingStep_DidNotStep

 // HaltingStep_DidNotStep()
 // ========================
 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.

 boolean HaltingStep_DidNotStep();

shared/debug/haltingevents/HaltingStep_SteppedEX

 // HaltingStep_SteppedEX()
 // =======================
 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
 // executed in the active-not-pending state.

 boolean HaltingStep_SteppedEX();

shared/debug/interrupts/ExternalDebugInterruptsDisabled

 // ExternalDebugInterruptsDisabled()
 // =================================
 // Determine whether EDSCR disables interrupts routed to 'target'.

 boolean ExternalDebugInterruptsDisabled(bits(2) target)
 boolean int_dis;
 SecurityState ss = SecurityStateAtEL(target);
 if IsFeatureImplemented(FEAT_Debugv8p4) then
 if EDSCR.INTdis[0] == '1' then
 case ss of
 when SS_NonSecure int_dis = ExternalInvasiveDebugEnabled();
 when SS_Secure int_dis = ExternalSecureInvasiveDebugEnabled();
 when SS_Realm int_dis = ExternalRealmInvasiveDebugEnabled();
 when SS_Root int_dis = ExternalRootInvasiveDebugEnabled();
 else
 int_dis = FALSE;
 else
 case target of
 when EL3
 int_dis = (EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled());
 when EL2
 int_dis = (EDSCR.INTdis IN {'1x'} && ExternalInvasiveDebugEnabled());
 when EL1
 if ss == SS_Secure then
 int_dis = (EDSCR.INTdis IN {'1x'} && ExternalSecureInvasiveDebugEnabled());
 else
 int_dis = (EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled());
 return int_dis;

shared/debug/pmu

 array integer PMUEventAccumulator[0..30]; // Accumulates PMU events for a cycle

 array boolean PMULastThresholdValue[0..30];// A record of the threshold result for each

shared/debug/pmu/CYCLE_COUNTER_ID

 constant integer CYCLE_COUNTER_ID = 31;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14141
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/pmu/CheckForPMUOverflow

 // CheckForPMUOverflow()
 // =====================
 // Signal Performance Monitors overflow IRQ and CTI overflow events.
 // Called before each instruction is executed.

 CheckForPMUOverflow()
 boolean check_cnten = FALSE;
 boolean check_e = TRUE;
 boolean check_inten = TRUE;
 boolean include_lo = TRUE;
 boolean include_hi = TRUE;
 boolean exclude_cyc = FALSE;
 boolean exclude_sync = FALSE;

 boolean enabled = PMUInterruptEnabled();
 boolean pmuirq = PMUOverflowCondition(check_e, check_cnten, check_inten,
 include_hi, include_lo,
 exclude_cyc, exclude_sync);

 SetInterruptRequestLevel(InterruptID_PMUIRQ,
 if enabled && pmuirq then Signal_High else Signal_Low);
 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow,
 if pmuirq then Signal_High else Signal_Low);

 // The request remains set until the condition is cleared.
 // For example, an interrupt handler or cross-triggered event handler clears
 // the overflow status flag by writing to PMOVSCLR_EL0.

 if IsFeatureImplemented(FEAT_PMUv3p9) && IsFeatureImplemented(FEAT_Debugv8p9) then
 if pmuirq && HaltingAllowed() && EDECR.PME == '1' then
 Halt(DebugHalt_EDBGRQ);

 if ShouldBRBEFreeze() then
 BRBEFreeze();

 return;

shared/debug/pmu/ClearEventCounters

 // ClearEventCounters()
 // ====================
 // Zero all the event counters.
 // Called on a write to PMCR_EL0 or PMCR that writes '1' to PMCR_EL0.P or PMCR.P.

 ClearEventCounters()
 // Although ZeroPMUCounters implements the functionality for PMUACR_EL1
 // that is part of FEAT_PMUv3p9, it should be noted that writes to
 // PMCR_EL0 are not allowed at EL0 when PMUSERENR_EL0.UEN is 1, meaning
 // it is not relevant in this case.
 ZeroPMUCounters(Zeros(33) : Ones(31));

shared/debug/pmu/CountPMUEvents

 // CountPMUEvents()
 // ================
 // Return TRUE if counter "idx" should count its event.
 // For the cycle counter, idx == CYCLE_COUNTER_ID (32).
 // For the instruction counter, idx == INSTRUCTION_COUNTER_ID (33).

 boolean CountPMUEvents(integer idx)
 constant integer num_counters = GetNumEventCounters();
 assert (idx == CYCLE_COUNTER_ID || idx < num_counters ||
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14142
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (idx == INSTRUCTION_COUNTER_ID && IsFeatureImplemented(FEAT_PMUv3_ICNTR)));

 boolean debug;
 boolean enabled;
 boolean prohibited;
 boolean filtered;
 boolean frozen;
 boolean resvd_for_el2;
 bit E;

 // Event counting is disabled in Debug state
 debug = Halted();

 // Software can reserve some counters for EL2
 resvd_for_el2 = PMUCounterIsHyp(idx);
 ss = CurrentSecurityState();

 // Main enable controls
 case idx of
 when INSTRUCTION_COUNTER_ID
 assert HaveAArch64();
 enabled = PMCR_EL0.E == '1' && PMCNTENSET_EL0.F0 == '1';
 when CYCLE_COUNTER_ID
 if HaveAArch64() then
 enabled = PMCR_EL0.E == '1' && PMCNTENSET_EL0.C == '1';
 else
 enabled = PMCR.E == '1' && PMCNTENSET.C == '1';
 otherwise
 if resvd_for_el2 then
 E = if HaveAArch64() then MDCR_EL2.HPME else HDCR.HPME;
 else
 E = if HaveAArch64() then PMCR_EL0.E else PMCR.E;

 if HaveAArch64() then
 enabled = E == '1' && PMCNTENSET_EL0<idx> == '1';
 else
 enabled = E == '1' && PMCNTENSET<idx> == '1';

 // Event counting is allowed unless it is prohibited by any rule below
 prohibited = FALSE;

 // Event counting in Secure state or at EL3 is prohibited if all of:
 // * EL3 is implemented
 // * One of the following is true:
 // - EL3 is using AArch64, MDCR_EL3.SPME == 0, and either:
 // - FEAT_PMUv3p7 is not implemented
 // - MDCR_EL3.MPMX == 0
 // - EL3 is using AArch32 and SDCR.SPME == 0
 // * Executing at EL0 using AArch32 and one of the following is true:
 // - EL3 is using AArch32 and SDER.SUNIDEN == 0
 // - EL3 is using AArch64, EL1 is using AArch32, and SDER32_EL3.SUNIDEN == 0
 if HaveEL(EL3) && (ss == SS_Secure || PSTATE.EL == EL3) then
 if !ELUsingAArch32(EL3) then
 prohibited = (MDCR_EL3.SPME == '0' && IsFeatureImplemented(FEAT_PMUv3p7) &&
 MDCR_EL3.MPMX == '0');
 else
 prohibited = SDCR.SPME == '0';

 if prohibited && PSTATE.EL == EL0 then
 if ELUsingAArch32(EL3) then
 prohibited = SDER.SUNIDEN == '0';
 elsif ELUsingAArch32(EL1) then
 prohibited = SDER32_EL3.SUNIDEN == '0';

 // Event counting at EL3 is prohibited if all of:
 // * FEAT_PMUv3p7 is implemented
 // * EL3 is using AArch64
 // * One of the following is true:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14143
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // - MDCR_EL3.SPME == 0
 // - PMNx is not reserved for EL2
 // * MDCR_EL3.MPMX == 1
 if !prohibited && IsFeatureImplemented(FEAT_PMUv3p7) && PSTATE.EL == EL3 && HaveAArch64() then
 prohibited = MDCR_EL3.MPMX == '1' && (MDCR_EL3.SPME == '0' || !resvd_for_el2);

 // Event counting at EL2 is prohibited if all of:
 // * The HPMD Extension is implemented
 // * PMNx is not reserved for EL2
 // * EL2 is using AArch64 and MDCR_EL2.HPMD == 1 or EL2 is using AArch32 and HDCR.HPMD == 1
 if !prohibited && PSTATE.EL == EL2 && IsFeatureImplemented(FEAT_PMUv3p1) && !resvd_for_el2 then
 hpmd = if HaveAArch64() then MDCR_EL2.HPMD else HDCR.HPMD;
 prohibited = hpmd == '1';

 // The IMPLEMENTATION DEFINED authentication interface might override software
 if prohibited && !IsFeatureImplemented(FEAT_Debugv8p2) then
 prohibited = !ExternalSecureNoninvasiveDebugEnabled();

 // Event counting might be frozen
 frozen = FALSE;

 // If FEAT_PMUv3p7 is implemented, event counting can be frozen
 if IsFeatureImplemented(FEAT_PMUv3p7) then
 bit FZ;
 if resvd_for_el2 then
 FZ = if HaveAArch64() then MDCR_EL2.HPMFZO else HDCR.HPMFZO;
 else
 FZ = if HaveAArch64() then PMCR_EL0.FZO else PMCR.FZO;

 frozen = (FZ == '1') && ShouldPMUFreeze(resvd_for_el2);

 frozen = frozen || SPEFreezeOnEvent(idx);

 // PMCR_EL0.DP or PMCR.DP disables the cycle counter when event counting is prohibited
 if (prohibited || frozen) && idx == CYCLE_COUNTER_ID then
 dp = if HaveAArch64() then PMCR_EL0.DP else PMCR.DP;
 enabled = enabled && dp == '0';
 // Otherwise whether event counting is prohibited does not affect the cycle counter
 prohibited = FALSE;
 frozen = FALSE;

 // If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
 // This is not overridden by PMCR_EL0.DP.
 if IsFeatureImplemented(FEAT_PMUv3p5) && idx == CYCLE_COUNTER_ID then
 if HaveEL(EL3) && (ss == SS_Secure || PSTATE.EL == EL3) then
 sccd = if HaveAArch64() then MDCR_EL3.SCCD else SDCR.SCCD;
 if sccd == '1' then
 prohibited = TRUE;

 if PSTATE.EL == EL2 then
 hccd = if HaveAArch64() then MDCR_EL2.HCCD else HDCR.HCCD;
 if hccd == '1' then
 prohibited = TRUE;

 // If FEAT_PMUv3p7 is implemented, cycle counting an be prohibited at EL3.
 // This is not overriden by PMCR_EL0.DP.
 if IsFeatureImplemented(FEAT_PMUv3p7) && idx == CYCLE_COUNTER_ID then
 if PSTATE.EL == EL3 && HaveAArch64() && MDCR_EL3.MCCD == '1' then
 prohibited = TRUE;

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH, M, SH, RLK, RLU, RLH} bits
 bits(32) filter;
 case idx of
 when INSTRUCTION_COUNTER_ID
 filter = PMICFILTR_EL0<31:0>;
 when CYCLE_COUNTER_ID
 filter = if HaveAArch64() then PMCCFILTR_EL0<31:0> else PMCCFILTR;
 otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14144
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 filter = if HaveAArch64() then PMEVTYPER_EL0[idx]<31:0> else PMEVTYPER[idx];

 P = filter<31>;
 U = filter<30>;
 NSK = if HaveEL(EL3) then filter<29> else '0';
 NSU = if HaveEL(EL3) then filter<28> else '0';
 NSH = if HaveEL(EL2) then filter<27> else '0';
 M = if HaveEL(EL3) && HaveAArch64() then filter<26> else '0';
 SH = if HaveEL(EL3) && IsFeatureImplemented(FEAT_SEL2) then filter<24> else '0';
 RLK = if IsFeatureImplemented(FEAT_RME) then filter<22> else '0';
 RLU = if IsFeatureImplemented(FEAT_RME) then filter<21> else '0';
 RLH = if IsFeatureImplemented(FEAT_RME) then filter<20> else '0';

 ss = CurrentSecurityState();
 case PSTATE.EL of
 when EL0
 case ss of
 when SS_NonSecure filtered = U != NSU;
 when SS_Secure filtered = U == '1';
 when SS_Realm filtered = U != RLU;
 when EL1
 case ss of
 when SS_NonSecure filtered = P != NSK;
 when SS_Secure filtered = P == '1';
 when SS_Realm filtered = P != RLK;
 when EL2
 case ss of
 when SS_NonSecure filtered = NSH == '0';
 when SS_Secure filtered = NSH == SH;
 when SS_Realm filtered = NSH == RLH;
 when EL3
 if HaveAArch64() then
 filtered = M != P;
 else
 filtered = P == '1';
 return !debug && enabled && !prohibited && !filtered && !frozen;

shared/debug/pmu/GetNumEventCounters

 // GetNumEventCounters()
 // =====================
 // Returns the number of event counters implemented. This is indicated to software at the
 // highest Exception level by PMCR.N in AArch32 state, and PMCR_EL0.N in AArch64 state.

 integer GetNumEventCounters()
 return integer IMPLEMENTATION_DEFINED "Number of event counters";

shared/debug/pmu/GetNumEventCountersAccessible

 // GetNumEventCountersAccessible()
 // ===============================
 // Return the number of event counters that can be accessed at the current Exception level.

 integer GetNumEventCountersAccessible()
 integer n;
 integer total_counters = GetNumEventCounters();
 // Software can reserve some counters for EL2
 if PSTATE.EL IN {EL1, EL0} && EL2Enabled() then
 if UsingAArch32() then
 n = UInt(if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN);
 else
 n = UInt(MDCR_EL2.HPMN);
 if n > total_counters || (!IsFeatureImplemented(FEAT_HPMN0) && n == 0) then
 (-, n) = ConstrainUnpredictableInteger(0, total_counters,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14145
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Unpredictable_PMUEVENTCOUNTER);
 else
 n = total_counters;

 return n;

shared/debug/pmu/GetPMUAccessMask

 // GetPMUAccessMask()
 // ==================
 // Return a mask of the PMU counters accessible at the current Exception level

 bits(64) GetPMUAccessMask()
 bits(64) mask = Zeros(64);

 // PMICNTR_EL0 is only accessible at EL0 using AArch64 when PMUSERENR_EL0.UEN is 1.
 if IsFeatureImplemented(FEAT_PMUv3_ICNTR) && !UsingAArch32() then
 assert IsFeatureImplemented(FEAT_PMUv3p9);
 if PSTATE.EL != EL0 || PMUSERENR_EL0.UEN == '1' then
 mask<INSTRUCTION_COUNTER_ID> = '1';

 // PMCCNTR_EL0 is always implemented and accessible
 mask<CYCLE_COUNTER_ID> = '1';

 // PMEVCNTR<n>_EL0
 constant integer counters = GetNumEventCountersAccessible();
 if counters > 0 then
 mask<counters-1:0> = Ones(counters);

 // Check EL0 ignore access conditions
 if (IsFeatureImplemented(FEAT_PMUv3p9) && !ELUsingAArch32(EL1) &&
 PSTATE.EL == EL0 && PMUSERENR_EL0.UEN == '1') then
 mask = mask AND PMUACR_EL1; // User access control

 return mask;

shared/debug/pmu/GetPMUReadMask

 // GetPMUReadMask()
 // ================
 // Return a mask of the PMU counters that can be read at the current
 // Exception level.
 // This mask masks reads from PMCNTENSET_EL0, PMCNTENCLR_EL0, PMINTENSET_EL1,
 // PMINTENCLR_EL1, PMOVSSET_EL0, and PMOVSCLR_EL0.

 bits(64) GetPMUReadMask()
 bits(64) mask = GetPMUAccessMask();

 // Additional PMICNTR_EL0 accessibility checks. PMICNTR_EL0 controls read-as-zero
 // if a read of PMICFILTR_EL0 would be trapped to a higher Exception level.
 if IsFeatureImplemented(FEAT_PMUv3_ICNTR) && mask<INSTRUCTION_COUNTER_ID> == '1' then
 // Check for trap to EL3.
 if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.EnPM2 == '0' then
 mask<INSTRUCTION_COUNTER_ID> = '0';

 // Check for trap to EL2.
 if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.<E2H,TGE> != '11' then
 // If FEAT_PMUv3_ICNTR and EL2 are implemented, then so is FEAT_FGT2.
 assert IsFeatureImplemented(FEAT_FGT2);
 if ((HaveEL(EL3) && SCR_EL3.FGTEn2 == '0') ||
 HDFGRTR2_EL2.nPMICFILTR_EL0 == '0') then
 mask<INSTRUCTION_COUNTER_ID> = '0';

 // Traps on other counters do not affect those counters' controls in the same way.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14146
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return mask;

shared/debug/pmu/GetPMUWriteMask

 // GetPMUWriteMask()
 // =================
 // Return a mask of the PMU counters writable at the current Exception level.
 // This mask masks writes to PMCNTENSET_EL0, PMCNTENCLR_EL0, PMINTENSET_EL1,
 // PMINTENCLR_EL1, PMOVSSET_EL0, PMOVSCLR_EL0, and PMZR_EL0.
 // 'write_counter' is TRUE for a write to PMZR_EL0, when the counter is being
 // updated, and FALSE for other cases when the controls are being updated.

 bits(64) GetPMUWriteMask(boolean write_counter)
 bits(64) mask = GetPMUAccessMask();

 // Check EL0 ignore write conditions
 if (IsFeatureImplemented(FEAT_PMUv3p9) && !ELUsingAArch32(EL1) &&
 PSTATE.EL == EL0 && PMUSERENR_EL0.UEN == '1') then
 if (IsFeatureImplemented(FEAT_PMUv3_ICNTR) &&
 PMUSERENR_EL0.IR == '1') then // PMICNTR_EL0 read-only
 mask<INSTRUCTION_COUNTER_ID> = '0';
 if PMUSERENR_EL0.CR == '1' then // PMCCNTR_EL0 read-only
 mask<CYCLE_COUNTER_ID> = '0';
 if PMUSERENR_EL0.ER == '1' then // PMEVCNTR<n>_EL0 read-only
 mask<30:0> = Zeros(31);

 // Additional PMICNTR_EL0 accessibility checks. PMICNTR_EL0 controls ignore writes
 // if a write of PMICFILTR_EL0 would be trapped to a higher Exception level.
 // Indirect writes to PMICNTR_EL0 (through PMZR_EL0) are ignored if a write of
 // PMICNTR_EL0 would be trapped to a higher Exception level.
 if IsFeatureImplemented(FEAT_PMUv3_ICNTR) && mask<INSTRUCTION_COUNTER_ID> == '1' then
 // Check for trap to EL3.
 if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.EnPM2 == '0' then
 mask<INSTRUCTION_COUNTER_ID> = '0';

 // Check for trap to EL2.
 if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.<E2H,TGE> != '11' then
 // If FEAT_PMUv3_ICNTR and EL2 are implemented, then so is FEAT_FGT2.
 assert IsFeatureImplemented(FEAT_FGT2);
 fgt_bit = (if write_counter then HDFGWTR2_EL2.nPMICNTR_EL0
 else HDFGWTR2_EL2.nPMICFILTR_EL0);
 if (HaveEL(EL3) && SCR_EL3.FGTEn2 == '0') || fgt_bit == '0' then
 mask<INSTRUCTION_COUNTER_ID> = '0';

 // Traps on other counters do not affect those counters' controls in the same way.

 return mask;

shared/debug/pmu/HasElapsed64Cycles

 // HasElapsed64Cycles()
 // ====================
 // Returns TRUE if 64 cycles have elapsed between the last count, and FALSE otherwise.

 boolean HasElapsed64Cycles();

shared/debug/pmu/INSTRUCTION_COUNTER_ID

 constant integer INSTRUCTION_COUNTER_ID = 32;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14147
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/pmu/IncrementInstructionCounter

 // IncrementInstructionCounter()
 // =============================
 // Increment the instruction counter and possibly set overflow bits.

 IncrementInstructionCounter(integer increment)
 if CountPMUEvents(INSTRUCTION_COUNTER_ID) then
 integer old_value = UInt(PMICNTR_EL0);
 integer new_value = old_value + increment;
 PMICNTR_EL0 = new_value<63:0>;

 // The effective value of PMCR_EL0.LP is '1' for the instruction counter
 if old_value<64> != new_value<64> then
 PMOVSSET_EL0.F0 = '1';
 PMOVSCLR_EL0.F0 = '1';

 return;

shared/debug/pmu/PMUCaptureEvent

 // PMUCaptureEvent()
 // =================
 // If permitted and enabled, generate a PMU snapshot Capture event.

 PMUCaptureEvent()
 assert HaveEL(EL3) && IsFeatureImplemented(FEAT_PMUv3_SS) && HaveAArch64();
 boolean debug_state = Halted();

 if !PMUCaptureEventAllowed() then
 // Indicate a Capture event completed, unsuccessfully
 PMSSCR_EL1.<NC,SS> = '10';
 return;

 for idx = 0 to GetNumEventCounters() - 1
 PMEVCNTSVR_EL1[idx] = PMEVCNTR_EL0[idx];

 PMCCNTSVR_EL1 = PMCCNTR_EL0;

 if IsFeatureImplemented(FEAT_PMUv3_ICNTR) then
 PMICNTSVR_EL1 = PMICNTR_EL0;

 if IsFeatureImplemented(FEAT_PCSRv8p9) && PMPCSCTL.SS == '1' then
 if pc_sample.valid && !debug_state then
 SetPCSample();
 else
 SetPCSRUnknown();

 if (IsFeatureImplemented(FEAT_BRBE) && BranchRecordAllowed(PSTATE.EL) &&
 BRBCR_EL1.FZPSS == '1' && (!HaveEL(EL2) || BRBCR_EL2.FZPSS == '1')) then
 BRBEFreeze();

 // Indicate a successful Capture event
 PMSSCR_EL1.<NC,SS> = '00';
 if !debug_state || ConstrainUnpredictableBool(Unpredictable_PMUSNAPSHOTEVENT) then
 PMUEvent(PMU_EVENT_PMU_SNAPSHOT);

 return;

shared/debug/pmu/PMUCaptureEventAllowed

 // PMUCaptureEventAllowed()
 // ========================
 // Returns TRUE if PMU Capture events are allowed, and FALSE otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14148
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean PMUCaptureEventAllowed()
 if !IsFeatureImplemented(FEAT_PMUv3_SS) || !HaveAArch64() then
 return FALSE;

 if !PMUCaptureEventEnabled() || OSLockStatus() then
 return FALSE;
 elsif HaveEL(EL3) && MDCR_EL3.PMSSE != '01' then
 return MDCR_EL3.PMSSE == '11';
 elsif HaveEL(EL2) && MDCR_EL2.PMSSE != '01' then
 return MDCR_EL2.PMSSE == '11';
 else
 bits(2) pmsse_el1 = PMECR_EL1.SSE;
 if pmsse_el1 == '01' then // Reserved value
 Constraint c;
 (c, pmsse_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMSSE, 2);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then pmsse_el1 = '00';
 // Otherwise the value returned by ConstrainUnpredictableBits must be
 // a non-reserved value
 return pmsse_el1 == '11';

shared/debug/pmu/PMUCaptureEventEnabled

 // PMUCaptureEventEnabled()
 // ========================
 // Returns TRUE if PMU Capture events are enabled, and FALSE otherwise.

 boolean PMUCaptureEventEnabled()
 if !IsFeatureImplemented(FEAT_PMUv3_SS) || !HaveAArch64() then
 return FALSE;
 if HaveEL(EL3) && MDCR_EL3.PMSSE != '01' then
 return MDCR_EL3.PMSSE IN {'1x'};
 elsif HaveEL(EL2) && ELUsingAArch32(EL2) then
 return FALSE;
 elsif HaveEL(EL2) && MDCR_EL2.PMSSE != '01' then
 return MDCR_EL2.PMSSE IN {'1x'};
 elsif ELUsingAArch32(EL1) then
 return FALSE;
 else
 bits(2) pmsse_el1 = PMECR_EL1.SSE;
 if pmsse_el1 == '01' then // Reserved value
 Constraint c;
 (c, pmsse_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMSSE, 2);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then pmsse_el1 = '00';
 // Otherwise the value returned by ConstrainUnpredictableBits must be
 // a non-reserved value
 return pmsse_el1 IN {'1x'};

shared/debug/pmu/PMUCountValue

 // PMUCountValue()
 // ===============
 // Implements the PMU threshold function, if implemented.
 // Returns the value to increment event counter 'n' by.
 // 'Vb' is the base value of the event that event counter 'n' is configured to count.

 integer PMUCountValue(integer n, integer Vb)
 assert n < GetNumEventCounters();

 if !IsFeatureImplemented(FEAT_PMUv3_TH) || !HaveAArch64() then
 return Vb;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14149
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 integer TH = UInt(PMEVTYPER_EL0[n].TH);

 // Control register fields
 bits(3) tc = PMEVTYPER_EL0[n].TC;
 bit te = '0';
 if IsFeatureImplemented(FEAT_PMUv3_EDGE) then
 te = PMEVTYPER_EL0[n].TE;

 // Check for reserved cases
 Constraint c;
 (c, tc, te) = ReservedPMUThreshold(tc, te);
 if c == Constraint_DISABLED then
 return Vb;
 // Otherwise the values returned by ReservedPMUThreshold must be defined values

 // Check if disabled. Note that this function will return the value of Vb when
 // the control register fields are all zero, even without this check.
 if tc == '000' && te == '0' then
 return Vb;

 // Threshold condition
 boolean Ct;
 case tc<2:1> of
 when '00' Ct = (Vb != TH); // Disabled or not-equal
 when '01' Ct = (Vb == TH); // Equals
 when '10' Ct = (Vb >= TH); // Greater-than-or-equal
 when '11' Ct = (Vb < TH); // Less-than

 integer Vn;
 if te == '1' then
 // Edge condition
 boolean Cp = PMULastThresholdValue[n];
 boolean Ce;
 integer Ve;
 case tc<1:0> of
 when '10' Ce = (Cp != Ct); // Both edges
 when 'x1' Ce = (!Cp && Ct); // Single edge
 otherwise Unreachable(); // Covered by ReservedPMUThreshold
 Ve = (if Ce then 1 else 0);
 Vn = Ve;
 else
 // Threshold condition
 integer Vt;
 if tc<0> == '0' then
 Vt = (if Ct then Vb else 0); // Count values
 else
 Vt = (if Ct then 1 else 0); // Count matches
 Vn = Vt;

 PMULastThresholdValue[n] = Ct;

 return Vn;

shared/debug/pmu/PMUCounterIsHyp

 // PMUCounterIsHyp()
 // =================
 // Returns TRUE if a counter is reserved for use by EL2, FALSE otherwise.

 boolean PMUCounterIsHyp(integer n)
 if n == INSTRUCTION_COUNTER_ID then return FALSE;
 if n == CYCLE_COUNTER_ID then return FALSE;

 boolean resvd_for_el2;
 if HaveEL(EL2) then // Software can reserve some event counters for EL2
 bits(5) hpmn_bits = if HaveAArch64() then MDCR_EL2.HPMN else HDCR.HPMN;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14150
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 resvd_for_el2 = n >= UInt(hpmn_bits);
 if (UInt(hpmn_bits) > GetNumEventCounters() ||
 (!IsFeatureImplemented(FEAT_HPMN0) && IsZero(hpmn_bits))) then
 resvd_for_el2 = ConstrainUnpredictableBool(Unpredictable_CounterReservedForEL2);
 else
 resvd_for_el2 = FALSE;

 return resvd_for_el2;

shared/debug/pmu/PMUEvent

 // PMUEvent()
 // ==========
 // Generate a PMU event. By default, increment by 1.

 PMUEvent(bits(16) pmuevent)
 PMUEvent(pmuevent, 1);

 // PMUEvent()
 // ==========
 // Accumulate a PMU Event.

 PMUEvent(bits(16) pmuevent, integer increment)
 if SPESampleInFlight then
 SPEEvent(pmuevent);
 integer counters = GetNumEventCounters();
 if counters != 0 then
 for idx = 0 to counters - 1
 PMUEvent(pmuevent, increment, idx);

 if (HaveAArch64() && IsFeatureImplemented(FEAT_PMUv3_ICNTR) &&
 pmuevent == PMU_EVENT_INST_RETIRED) then
 IncrementInstructionCounter(increment);

 // PMUEvent()
 // ==========
 // Accumulate a PMU Event for a specific event counter.

 PMUEvent(bits(16) pmuevent, integer increment, integer idx)
 if !IsFeatureImplemented(FEAT_PMUv3) then
 return;

 if UsingAArch32() then
 if PMEVTYPER[idx].evtCount == pmuevent then
 PMUEventAccumulator[idx] = PMUEventAccumulator[idx] + increment;
 else
 if PMEVTYPER_EL0[idx].evtCount == pmuevent then
 PMUEventAccumulator[idx] = PMUEventAccumulator[idx] + increment;

shared/debug/pmu/PMUOverflowCondition

 // PMUOverflowCondition()
 // ======================
 // Checks for PMU overflow under certain parameter conditions
 // If 'check_e' is TRUE, then check the applicable one of PMCR_EL0.E and MDCR_EL2.HPME.
 // If 'check_cnten' is TRUE, then check the applicable PMCNTENCLR_EL0 bit.
 // If 'check_cnten' is TRUE, then check the applicable PMINTENCLR_EL1 bit.
 // If 'include_lo' is TRUE, then check counters in the set [0..(HPMN-1)], CCNTR
 // and ICNTR, unless excluded by other flags.
 // If 'include_hi' is TRUE, then check counters in the set [HPMN..(N-1)].
 // If 'exclude_cyc' is TRUE, then CCNTR is NOT checked.
 // If 'exclude_sync' is TRUE, then counters in synchronous mode are NOT checked.

 boolean PMUOverflowCondition(boolean check_e, boolean check_cnten,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14151
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 boolean check_inten,
 boolean include_hi, boolean include_lo,
 boolean exclude_cyc, boolean exclude_sync)
 constant integer counters = GetNumEventCounters();

 bits(64) ovsf;

 if HaveAArch64() then
 ovsf = PMOVSCLR_EL0;
 ovsf<63:33> = Zeros(31);
 if !IsFeatureImplemented(FEAT_PMUv3_ICNTR) then
 ovsf<INSTRUCTION_COUNTER_ID> = '0';
 else
 ovsf = ZeroExtend(PMOVSR, 64);

 // Remove unimplemented counters - these fields are RES0
 if counters < 31 then
 ovsf<30:counters> = Zeros(31-counters);

 for idx = 0 to counters - 1
 bit E;
 boolean is_hyp = PMUCounterIsHyp(idx);
 if HaveAArch64() then
 E = (if is_hyp then MDCR_EL2.HPME else PMCR_EL0.E);
 if exclude_sync then
 bit sync = (PMCNTENCLR_EL0<idx> AND PMEVTYPER_EL0[idx].SYNC);
 ovsf<idx> = ovsf<idx> AND NOT sync;
 else
 E = (if is_hyp then HDCR.HPME else PMCR.E);
 if check_e then
 ovsf<idx> = ovsf<idx> AND E;
 if (!is_hyp && !include_lo) || (is_hyp && !include_hi) then
 ovsf<idx> = '0';

 // Cycle counter
 if exclude_cyc || !include_lo then
 ovsf<CYCLE_COUNTER_ID> = '0';

 if check_e then
 ovsf<CYCLE_COUNTER_ID> = ovsf<CYCLE_COUNTER_ID> AND PMCR_EL0.E;

 // Instruction counter
 if HaveAArch64() && IsFeatureImplemented(FEAT_PMUv3_ICNTR) then
 if !include_lo then
 ovsf<INSTRUCTION_COUNTER_ID> = '0';
 if exclude_sync then
 bit sync = (PMCNTENCLR_EL0.F0 AND PMICFILTR_EL0.SYNC);
 ovsf<INSTRUCTION_COUNTER_ID> = ovsf<INSTRUCTION_COUNTER_ID> AND NOT sync;
 if check_e then
 ovsf<INSTRUCTION_COUNTER_ID> = ovsf<INSTRUCTION_COUNTER_ID> AND PMCR_EL0.E;

 if check_cnten then
 bits(64) cnten = if HaveAArch64() then PMCNTENCLR_EL0 else ZeroExtend(PMCNTENCLR, 64);
 ovsf = ovsf AND cnten;

 if check_inten then
 bits(64) inten = if HaveAArch64() then PMINTENCLR_EL1 else ZeroExtend(PMINTENCLR, 64);
 ovsf = ovsf AND inten;

 return !IsZero(ovsf);

shared/debug/pmu/PMUSwIncrement

 // PMUSwIncrement()
 // ================
 // Generate PMU Events on a write to PMSWINC
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14152
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 PMUSwIncrement(bits(64) sw_incr_in)

 bits(64) sw_incr = sw_incr_in;
 bits(31) mask = Zeros(31);
 constant integer counters = GetNumEventCountersAccessible();
 if counters > 0 then
 mask<counters-1:0> = Ones(counters);

 if (IsFeatureImplemented(FEAT_PMUv3p9) && !ELUsingAArch32(EL1) &&
 PSTATE.EL == EL0 && PMUSERENR_EL0.<UEN,SW> == '10') then
 mask = mask AND PMUACR_EL1<30:0>;

 sw_incr = sw_incr AND ZeroExtend(mask, 64);
 for idx = 0 to 30
 if sw_incr<idx> == '1' then
 PMUEvent(PMU_EVENT_SW_INCR, 1, idx);

 return;

shared/debug/pmu/ReservedPMUThreshold

 // ReservedPMUThreshold()
 // ======================
 // Checks if the given PMEVTYPER<n>_EL1.{TH,TE} values are reserved and will
 // generate Constrained Unpredictable behavior, otherwise return Constraint_NONE.

 (Constraint, bits(3), bit) ReservedPMUThreshold(bits(3) tc_in, bit te_in)
 bits(3) tc = tc_in;
 bit te = te_in;

 boolean reserved = FALSE;

 if IsFeatureImplemented(FEAT_PMUv3_EDGE) then
 if te == '1' && tc<1:0> == '00' then // Edge condition
 reserved = TRUE;
 else
 te = '0'; // Control is RES0

 Constraint c = Constraint_NONE;
 if reserved then
 (c, <tc,te>) = ConstrainUnpredictableBits(Unpredictable_RESTC, 4);

 return (c, tc, te);

shared/debug/pmu/ShouldPMUFreeze

 // ShouldPMUFreeze()
 // =================

 boolean ShouldPMUFreeze(boolean resvd_for_el2)
 boolean check_cnten = FALSE;
 boolean check_e = FALSE;
 boolean check_inten = FALSE;
 boolean include_lo = !resvd_for_el2;
 boolean include_hi = resvd_for_el2;
 boolean exclude_cyc = FALSE;
 boolean exclude_sync = IsFeatureImplemented(FEAT_SEBEP);

 boolean overflow = PMUOverflowCondition(check_e, check_cnten, check_inten,
 include_hi, include_lo,
 exclude_cyc, exclude_sync);
 return overflow;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14153
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/pmu/ZeroCycleCounter

 // ZeroCycleCounter()
 // ==================
 // Called on a write to PMCR_EL0 or PMCR that writes '1' to PMCR_EL0.C or PMCR.C.

 ZeroCycleCounter()
 bits(64) mask = Zeros(64);
 mask<CYCLE_COUNTER_ID> = '1';
 ZeroPMUCounters(mask);

shared/debug/pmu/ZeroPMUCounters

 // ZeroPMUCounters()
 // =================
 // Zero set of counters specified by the mask in 'val'.
 // For a write to PMZR_EL0, 'val' is the value passed in X<t>.

 ZeroPMUCounters(bits(64) val)
 bits(64) masked_val = val AND GetPMUWriteMask(TRUE);

 for idx = 0 to 63
 if masked_val<idx> == '1' then
 case idx of
 when INSTRUCTION_COUNTER_ID
 PMICNTR_EL0 = Zeros(64);
 when CYCLE_COUNTER_ID
 if !HaveAArch64() then
 PMCCNTR = Zeros(64);
 else
 PMCCNTR_EL0 = Zeros(64);
 otherwise
 if !HaveAArch64() then
 PMEVCNTR[idx] = Zeros(32);
 elsif IsFeatureImplemented(FEAT_PMUv3p5) then
 PMEVCNTR_EL0[idx] = Zeros(64);
 else
 PMEVCNTR_EL0[idx]<31:0> = Zeros(32);

 return;

shared/debug/samplebasedprofiling/CreatePCSample

 // CreatePCSample()
 // ================

 CreatePCSample()
 // In a simple sequential execution of the program, CreatePCSample is executed each time the PE
 // executes an instruction that can be sampled. An implementation is not constrained such that
 // reads of EDPCSRlo return the current values of PC, etc.

 if IsFeatureImplemented(FEAT_PCSRv8p9) && PCSRSuspended() then return;
 pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
 pc_sample.pc = ThisInstrAddr(64);
 pc_sample.el = PSTATE.EL;
 pc_sample.rw = if UsingAArch32() then '0' else '1';
 pc_sample.ss = CurrentSecurityState();
 pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1<31:0>;
 pc_sample.has_el2 = PSTATE.EL != EL3 && EL2Enabled();

 if pc_sample.has_el2 then
 if ELUsingAArch32(EL2) then
 pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);
 elsif !IsFeatureImplemented(FEAT_VMID16) || VTCR_EL2.VS == '0' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14154
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 else
 pc_sample.vmid = VTTBR_EL2.VMID;
 if ((IsFeatureImplemented(FEAT_VHE) || IsFeatureImplemented(FEAT_Debugv8p2)) &&
 !ELUsingAArch32(EL2)) then
 pc_sample.contextidr_el2 = CONTEXTIDR_EL2<31:0>;
 else
 pc_sample.contextidr_el2 = bits(32) UNKNOWN;
 pc_sample.el0h = PSTATE.EL == EL0 && IsInHost();
 return;

shared/debug/samplebasedprofiling/PCSRSuspended

 // PCSRSuspended()
 // ===============
 // Returns TRUE if PC Sample-based Profiling is suspended, and FALSE otherwise.

 boolean PCSRSuspended()
 if PMPCSCTL.IMP == '1' then
 return PMPCSCTL.EN == '0';
 else
 return boolean IMPLEMENTATION_DEFINED "PCSR is suspended";

shared/debug/samplebasedprofiling/PCSample

 PCSample pc_sample;

 // PCSample
 // ========

 type PCSample is (
 boolean valid,
 bits(64) pc,
 bits(2) el,
 bit rw,
 SecurityState ss,
 boolean has_el2,
 bits(32) contextidr,
 bits(32) contextidr_el2,
 boolean el0h,
 bits(16) vmid
)

shared/debug/samplebasedprofiling/Read_EDPCSRlo

 // Read_EDPCSRlo()
 // ===============

 bits(32) Read_EDPCSRlo(boolean memory_mapped)
 // The Software lock is OPTIONAL.
 update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects
 bits(32) sample;
 if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 if IsFeatureImplemented(FEAT_VHE) && EDSCR.SC2 == '1' then
 EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 EDPCSRhi.EL = pc_sample.el;
 EDPCSRhi.NS = (if pc_sample.ss == SS_Secure then '0' else '1');
 else
 EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);
 EDCIDSR = pc_sample.contextidr;
 if ((IsFeatureImplemented(FEAT_VHE) || IsFeatureImplemented(FEAT_Debugv8p2)) &&
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14155
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 EDSCR.SC2 == '1') then
 EDVIDSR = (if pc_sample.has_el2 then pc_sample.contextidr_el2
 else bits(32) UNKNOWN);
 else
 EDVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0}
 then pc_sample.vmid else Zeros(16));
 EDVIDSR.NS = (if pc_sample.ss == SS_Secure then '0' else '1');
 EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
 EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
 // The conditions for setting HV are not specified if PCSRhi is zero.
 // An example implementation may be "pc_sample.rw".
 EDVIDSR.HV = (if !IsZero(EDPCSRhi) then '1'
 else bit IMPLEMENTATION_DEFINED "0 or 1");
 else
 sample = Ones(32);
 if update then
 EDPCSRhi = bits(32) UNKNOWN;
 EDCIDSR = bits(32) UNKNOWN;
 EDVIDSR = bits(32) UNKNOWN;

 return sample;

shared/debug/samplebasedprofiling/Read_PMPCSR

 // Read_PMPCSR()
 // =============

 bits(64) Read_PMPCSR(boolean memory_mapped)
 // The Software lock is OPTIONAL.
 update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects

 if IsFeatureImplemented(FEAT_PCSRv8p9) && update then
 if IsFeatureImplemented(FEAT_PMUv3_SS) && PMPCSCTL.SS == '1' then
 update = FALSE;
 elsif PMPCSCTL.<IMP,EN> == '10' || (PMPCSCTL.IMP == '0' && PCSRSuspended()) then
 pc_sample.valid = FALSE;
 SetPCSRActive();

 if pc_sample.valid then
 if update then SetPCSample();
 return PMPCSR;
 else
 if update then SetPCSRUnknown();
 return (bits(32) UNKNOWN : Ones(32));

shared/debug/samplebasedprofiling/SetPCSRActive

 // SetPCSRActive()
 // ===============
 // Sets PC Sample-based Profiling to active state.

 SetPCSRActive()
 if PMPCSCTL.IMP == '1' then
 PMPCSCTL.EN = '1';
 // If PMPCSCTL.IMP reads as `0b0`, then PMPCSCTL.EN is RES0, and it is
 // IMPLEMENTATION DEFINED whether PSCR is suspended or active at reset.

shared/debug/samplebasedprofiling/SetPCSRUnknown

 // SetPCSRUnknown()
 // ================
 // Sets the PC sample registers to UNKNOWN values because PC sampling
 // is prohibited.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14156
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 SetPCSRUnknown()
 PMPCSR<31:0> = Ones(32);
 PMPCSR<55:32> = bits(24) UNKNOWN;
 PMPCSR.EL = bits(2) UNKNOWN;
 PMPCSR.NS = bit UNKNOWN;

 PMCID1SR = bits(32) UNKNOWN;
 PMCID2SR = bits(32) UNKNOWN;

 PMVIDSR.VMID = bits(16) UNKNOWN;

 return;

shared/debug/samplebasedprofiling/SetPCSample

 // SetPCSample()
 // =============
 // Sets the PC sample registers to the appropriate sample values.

 SetPCSample()
 PMPCSR<31:0> = pc_sample.pc<31:0>;
 PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 PMPCSR.EL = pc_sample.el;
 if IsFeatureImplemented(FEAT_RME) then
 case pc_sample.ss of
 when SS_Secure
 PMPCSR.NSE = '0'; PMPCSR.NS = '0';
 when SS_NonSecure
 PMPCSR.NSE = '0'; PMPCSR.NS = '1';
 when SS_Root
 PMPCSR.NSE = '1'; PMPCSR.NS = '0';
 when SS_Realm
 PMPCSR.NSE = '1'; PMPCSR.NS = '1';
 else
 PMPCSR.NS = (if pc_sample.ss == SS_Secure then '0' else '1');

 PMCID1SR = pc_sample.contextidr;
 PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;

 PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
 then pc_sample.vmid else bits(16) UNKNOWN);

 return;

shared/debug/softwarestep/CheckSoftwareStep

 // CheckSoftwareStep()
 // ===================
 // Take a Software Step exception if in the active-pending state

 CheckSoftwareStep()

 // Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
 // AArch32 state. However, because Software Step is only active when the debug target Exception
 // level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
 step_enabled = (!ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() &&
 MDSCR_EL1.SS == '1');
 active_pending = step_enabled && PSTATE.SS == '0'; // active-pending
 if active_pending then
 AArch64.SoftwareStepException();
 ShouldAdvanceSS = TRUE;
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14157
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/softwarestep/DebugExceptionReturnSS

 // DebugExceptionReturnSS()
 // ========================
 // Returns value to write to PSTATE.SS on an exception return or Debug state exit.

 bit DebugExceptionReturnSS(bits(N) spsr)
 assert Halted() || Restarting() || PSTATE.EL != EL0;

 boolean enabled_at_source;
 if Restarting() then
 enabled_at_source = FALSE;
 elsif UsingAArch32() then
 enabled_at_source = AArch32.GenerateDebugExceptions();
 else
 enabled_at_source = AArch64.GenerateDebugExceptions();

 boolean valid;
 bits(2) dest_el;
 if IllegalExceptionReturn(spsr) then
 dest_el = PSTATE.EL;
 else
 (valid, dest_el) = ELFromSPSR(spsr); assert valid;

 dest_ss = SecurityStateAtEL(dest_el);
 bit mask;
 boolean enabled_at_dest;
 dest_using_32 = (if dest_el == EL0 then spsr<4> == '1' else ELUsingAArch32(dest_el));
 if dest_using_32 then
 enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest_el, dest_ss);
 else
 mask = spsr<9>;
 enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest_el, dest_ss, mask);

 ELd = DebugTargetFrom(dest_ss);
 bit SS_bit;
 if !ELUsingAArch32(ELd) && MDSCR_EL1.SS == '1' && !enabled_at_source && enabled_at_dest then
 SS_bit = spsr<21>;
 else
 SS_bit = '0';

 return SS_bit;

shared/debug/softwarestep/SSAdvance

 // SSAdvance()
 // ===========
 // Advance the Software Step state machine.

 SSAdvance()

 // A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
 // current Software Step state machine. However, this check is made to illustrate that the
 // processor only needs to consider advancing the state machine from the active-not-pending
 // state.
 if !ShouldAdvanceSS then return;
 target = DebugTarget();
 step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
 active_not_pending = step_enabled && PSTATE.SS == '1';
 if active_not_pending then PSTATE.SS = '0';
 ShouldAdvanceSS = FALSE;
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14158
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/debug/softwarestep/SoftwareStep_DidNotStep

 // SoftwareStep_DidNotStep()
 // =========================
 // Returns TRUE if the previously executed instruction was executed in the
 // inactive state, that is, if it was not itself stepped.
 // Might return TRUE or FALSE if the previously executed instruction was an ISB
 // or ERET executed in the active-not-pending state, or if another exception
 // was taken before the Software Step exception. Returns FALSE otherwise,
 // indicating that the previously executed instruction was executed in the
 // active-not-pending state, that is, the instruction was stepped.

 boolean SoftwareStep_DidNotStep();

shared/debug/softwarestep/SoftwareStep_SteppedEX

 // SoftwareStep_SteppedEX()
 // ========================
 // Returns a value that describes the previously executed instruction. The
 // result is valid only if SoftwareStep_DidNotStep() returns FALSE.
 // Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX
 // that failed its condition code test. Otherwise returns TRUE if the
 // instruction was a Load-Exclusive class instruction, and FALSE if the
 // instruction was not a Load-Exclusive class instruction.
 boolean SoftwareStep_SteppedEX();

J1.3.2 shared/exceptions

This section includes the following pseudocode functions:

• shared/exceptions/exceptions/ConditionSyndrome.

• shared/exceptions/exceptions/Exception.

• shared/exceptions/exceptions/ExceptionRecord.

• shared/exceptions/exceptions/ExceptionSyndrome.

• shared/exceptions/traps/Undefined.

shared/exceptions/exceptions/ConditionSyndrome

 // ConditionSyndrome()
 // ===================
 // Return CV and COND fields of instruction syndrome

 bits(5) ConditionSyndrome()

 bits(5) syndrome;

 if UsingAArch32() then
 cond = AArch32.CurrentCond();
 if PSTATE.T == '0' then // A32
 syndrome<4> = '1';
 // A conditional A32 instruction that is known to pass its condition code check
 // can be presented either with COND set to 0xE, the value for unconditional, or
 // the COND value held in the instruction.
 if ConditionHolds(cond) && ConstrainUnpredictableBool(Unpredictable_ESRCONDPASS) then
 syndrome<3:0> = '1110';
 else
 syndrome<3:0> = cond;
 else // T32
 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 // * CV set to 0 and COND is set to an UNKNOWN value
 // * CV set to 1 and COND is set to the condition code for the condition that
 // applied to the instruction.
 if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14159
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 syndrome<4> = '1';
 syndrome<3:0> = cond;
 else
 syndrome<4> = '0';
 syndrome<3:0> = bits(4) UNKNOWN;
 else
 syndrome<4> = '1';
 syndrome<3:0> = '1110';

 return syndrome;

shared/exceptions/exceptions/Exception

 // Exception
 // =========
 // Classes of exception.

 enumeration Exception {
 Exception_Uncategorized, // Uncategorized or unknown reason
 Exception_WFxTrap, // Trapped WFI or WFE instruction
 Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access, coproc=0b111
 Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access, coproc=0b1111
 Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access, coproc=0b1110
 Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access, coproc=0b1110
 Exception_CP14RRTTrap, // Trapped AArch32 MRRC access, coproc=0b1110
 Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
 Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
 Exception_LDST64BTrap, // Trapped access to ST64BV, ST64BV0, ST64B and LD64B
 // Trapped BXJ instruction not supported in Armv8
 Exception_PACTrap, // Trapped invalid PAC use
 Exception_IllegalState, // Illegal Execution state
 Exception_SupervisorCall, // Supervisor Call
 Exception_HypervisorCall, // Hypervisor Call
 Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
 Exception_SystemRegisterTrap, // Trapped MRS or MSR System register access
 Exception_ERetTrap, // Trapped invalid ERET use
 Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
 Exception_PCAlignment, // PC alignment fault
 Exception_DataAbort, // Data Abort
 Exception_NV2DataAbort, // Data abort at EL1 reported as being from EL2
 Exception_PACFail, // PAC Authentication failure
 Exception_SPAlignment, // SP alignment fault
 Exception_FPTrappedException, // IEEE trapped FP exception
 Exception_SError, // SError interrupt
 Exception_Breakpoint, // (Hardware) Breakpoint
 Exception_SoftwareStep, // Software Step
 Exception_Watchpoint, // Watchpoint
 Exception_NV2Watchpoint, // Watchpoint at EL1 reported as being from EL2
 Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
 Exception_VectorCatch, // AArch32 Vector Catch
 Exception_IRQ, // IRQ interrupt
 Exception_SVEAccessTrap, // HCPTR trapped access to SVE
 Exception_SMEAccessTrap, // HCPTR trapped access to SME
 Exception_TSTARTAccessTrap, // Trapped TSTART access
 Exception_GPC, // Granule protection check
 Exception_BranchTarget, // Branch Target Identification
 Exception_MemCpyMemSet, // Exception from a CPY* or SET* instruction
 Exception_GCSFail, // GCS Exceptions
 Exception_PMU, // PMU exception
 Exception_SystemRegister128Trap, // Trapped MRRS or MSRR System register or SYSP access
 Exception_FIQ}; // FIQ interrupt
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14160
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/exceptions/exceptions/ExceptionRecord

 // ExceptionRecord
 // ===============

 type ExceptionRecord is (
 Exception exceptype, // Exception class
 bits(25) syndrome, // Syndrome record
 bits(24) syndrome2, // Syndrome record
 FullAddress paddress, // Physical fault address
 bits(64) vaddress, // Virtual fault address
 boolean ipavalid, // Validity of Intermediate Physical fault address
 boolean pavalid, // Validity of Physical fault address
 bit NS, // Intermediate Physical fault address space
 bits(56) ipaddress, // Intermediate Physical fault address
 boolean trappedsyscallinst) // Trapped SVC or SMC instruction

shared/exceptions/exceptions/ExceptionSyndrome

 // ExceptionSyndrome()
 // ===================
 // Return a blank exception syndrome record for an exception of the given type.

 ExceptionRecord ExceptionSyndrome(Exception exceptype)

 ExceptionRecord r;

 r.exceptype = exceptype;

 // Initialize all other fields
 r.syndrome = Zeros(25);
 r.syndrome2 = Zeros(24);
 r.vaddress = Zeros(64);
 r.ipavalid = FALSE;
 r.NS = '0';
 r.ipaddress = Zeros(56);
 r.paddress.paspace = PASpace UNKNOWN;
 r.paddress.address = bits(56) UNKNOWN;
 r.trappedsyscallinst = FALSE;
 return r;

shared/exceptions/traps/Undefined

 // Undefined()
 // ===========

 Undefined()
 if UsingAArch32() then
 AArch32.Undefined();
 else
 AArch64.Undefined();

J1.3.3 shared/functions

This section includes the following pseudocode functions:

• shared/functions/aborts/EncodeLDFSC.

• shared/functions/aborts/IPAValid.

• shared/functions/aborts/IsAsyncAbort.

• shared/functions/aborts/IsDebugException.

• shared/functions/aborts/IsExternalAbort.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14161
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/aborts/IsExternalSyncAbort.

• shared/functions/aborts/IsFault.

• shared/functions/aborts/IsSErrorInterrupt.

• shared/functions/aborts/IsSecondStage.

• shared/functions/aborts/LSInstructionSyndrome.

• shared/functions/aborts/ReportAsGPCException.

• shared/functions/cache/CACHE_OP.

• shared/functions/cache/CPASAtPAS.

• shared/functions/cache/CPASAtSecurityState.

• shared/functions/cache/CacheRecord.

• shared/functions/cache/DCInstNeedsTranslation.

• shared/functions/cache/DecodeSW.

• shared/functions/cache/GetCacheInfo.

• shared/functions/cache/ICInstNeedsTranslation.

• shared/functions/common/ASR.

• shared/functions/common/ASR_C.

• shared/functions/common/Abs.

• shared/functions/common/Align.

• shared/functions/common/BitCount.

• shared/functions/common/CountLeadingSignBits.

• shared/functions/common/CountLeadingZeroBits.

• shared/functions/common/Elem.

• shared/functions/common/Extend.

• shared/functions/common/HighestSetBit.

• shared/functions/common/Int.

• shared/functions/common/IsAligned.

• shared/functions/common/IsOnes.

• shared/functions/common/IsZero.

• shared/functions/common/IsZeroBit.

• shared/functions/common/LSL.

• shared/functions/common/LSL_C.

• shared/functions/common/LSR.

• shared/functions/common/LSR_C.

• shared/functions/common/LowestSetBit.

• shared/functions/common/Max.

• shared/functions/common/Min.

• shared/functions/common/Ones.

• shared/functions/common/ROR.

• shared/functions/common/ROR_C.

• shared/functions/common/RShr.

• shared/functions/common/Replicate.

• shared/functions/common/Reverse.

• shared/functions/common/RoundDown.

• shared/functions/common/RoundTowardsZero.

• shared/functions/common/RoundUp.

• shared/functions/common/SInt.

• shared/functions/common/SignExtend.

• shared/functions/common/Signal.

• shared/functions/common/Split.

• shared/functions/common/UInt.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14162
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/common/ZeroExtend.

• shared/functions/common/Zeros.

• shared/functions/counters/AArch32.CheckTimerConditions.

• shared/functions/counters/AArch64.CheckTimerConditions.

• shared/functions/counters/CNTHCTL_EL2_VHE.

• shared/functions/counters/GenericCounterTick.

• shared/functions/counters/IsTimerConditionMet.

• shared/functions/counters/PhysicalCount.

• shared/functions/counters/SetEventRegister.

• shared/functions/counters/TestEventCNTP.

• shared/functions/counters/TestEventCNTV.

• shared/functions/crc/BitReverse.

• shared/functions/crc/Poly32Mod2.

• shared/functions/crypto/AESInvMixColumns.

• shared/functions/crypto/AESInvShiftRows.

• shared/functions/crypto/AESInvSubBytes.

• shared/functions/crypto/AESMixColumns.

• shared/functions/crypto/AESShiftRows.

• shared/functions/crypto/AESSubBytes.

• shared/functions/crypto/FFmul02.

• shared/functions/crypto/FFmul03.

• shared/functions/crypto/FFmul09.

• shared/functions/crypto/FFmul0B.

• shared/functions/crypto/FFmul0D.

• shared/functions/crypto/FFmul0E.

• shared/functions/crypto/ROL.

• shared/functions/crypto/SHA256hash.

• shared/functions/crypto/SHAchoose.

• shared/functions/crypto/SHAhashSIGMA0.

• shared/functions/crypto/SHAhashSIGMA1.

• shared/functions/crypto/SHAmajority.

• shared/functions/crypto/SHAparity.

• shared/functions/crypto/Sbox.

• shared/functions/exclusive/ClearExclusiveByAddress.

• shared/functions/exclusive/ClearExclusiveLocal.

• shared/functions/exclusive/ExclusiveMonitorsStatus.

• shared/functions/exclusive/IsExclusiveGlobal.

• shared/functions/exclusive/IsExclusiveLocal.

• shared/functions/exclusive/MarkExclusiveGlobal.

• shared/functions/exclusive/MarkExclusiveLocal.

• shared/functions/exclusive/ProcessorID.

• shared/functions/extension/HaveBF16Ext.

• shared/functions/extension/HaveFeatABLE.

• shared/functions/extension/HaveInt8MatMulExt.

• shared/functions/extension/HaveSoftwareLock.

• shared/functions/extension/HaveTME.

• shared/functions/extension/HaveTraceExt.

• shared/functions/extension/InsertIESBBeforeException.

• shared/functions/extension/IsG1ActivityMonitorImplemented.

• shared/functions/extension/IsG1ActivityMonitorOffsetImplemented.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14163
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/externalaborts/ActionRequired.

• shared/functions/externalaborts/ClearPendingPhysicalSError.

• shared/functions/externalaborts/ClearPendingVirtualSError.

• shared/functions/externalaborts/ErrorIsContained.

• shared/functions/externalaborts/ErrorIsSynchronized.

• shared/functions/externalaborts/ExtAbortToA64.

• shared/functions/externalaborts/FaultIsCorrected.

• shared/functions/externalaborts/GetPendingPhysicalSError.

• shared/functions/externalaborts/HandleExternalAbort.

• shared/functions/externalaborts/HandleExternalReadAbort.

• shared/functions/externalaborts/HandleExternalTTWAbort.

• shared/functions/externalaborts/HandleExternalWriteAbort.

• shared/functions/externalaborts/IsExternalAbortTakenSynchronously.

• shared/functions/externalaborts/IsPhysicalSErrorPending.

• shared/functions/externalaborts/IsSErrorEdgeTriggered.

• shared/functions/externalaborts/IsSynchronizablePhysicalSErrorPending.

• shared/functions/externalaborts/IsVirtualSErrorPending.

• shared/functions/externalaborts/PEErrorState.

• shared/functions/externalaborts/PendSErrorInterrupt.

• shared/functions/externalaborts/ReportErrorAsIMPDEF.

• shared/functions/externalaborts/ReportErrorAsUC.

• shared/functions/externalaborts/ReportErrorAsUER.

• shared/functions/externalaborts/ReportErrorAsUEU.

• shared/functions/externalaborts/ReportErrorAsUncategorized.

• shared/functions/externalaborts/StateIsRecoverable.

• shared/functions/float/bfloat/BFAdd.

• shared/functions/float/bfloat/BFAdd_ZA.

• shared/functions/float/bfloat/BFDotAdd.

• shared/functions/float/bfloat/BFInfinity.

• shared/functions/float/bfloat/BFMatMulAdd.

• shared/functions/float/bfloat/BFMax.

• shared/functions/float/bfloat/BFMaxNum.

• shared/functions/float/bfloat/BFMin.

• shared/functions/float/bfloat/BFMinNum.

• shared/functions/float/bfloat/BFMul.

• shared/functions/float/bfloat/BFMulAdd.

• shared/functions/float/bfloat/BFMulAddH.

• shared/functions/float/bfloat/BFMulAddH_ZA.

• shared/functions/float/bfloat/BFMulAdd_ZA.

• shared/functions/float/bfloat/BFMulH.

• shared/functions/float/bfloat/BFNeg.

• shared/functions/float/bfloat/BFRound.

• shared/functions/float/bfloat/BFSub.

• shared/functions/float/bfloat/BFSub_ZA.

• shared/functions/float/bfloat/BFUnpack.

• shared/functions/float/bfloat/BFZero.

• shared/functions/float/bfloat/FPAdd_BF16.

• shared/functions/float/bfloat/FPConvertBF.

• shared/functions/float/bfloat/FPRoundBF.

• shared/functions/float/fixedtofp/FixedToFP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14164
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/float/fpabs/FPAbs.

• shared/functions/float/fpadd/FPAdd.

• shared/functions/float/fpadd/FPAdd_ZA.

• shared/functions/float/fpcompare/FPCompare.

• shared/functions/float/fpcompareeq/FPCompareEQ.

• shared/functions/float/fpcomparege/FPCompareGE.

• shared/functions/float/fpcomparegt/FPCompareGT.

• shared/functions/float/fpconvert/FPConvert.

• shared/functions/float/fpconvertnan/FPConvertNaN.

• shared/functions/float/fpcrtype/FPCR_Type.

• shared/functions/float/fpdecoderm/FPDecodeRM.

• shared/functions/float/fpdecoderounding/FPDecodeRounding.

• shared/functions/float/fpdefaultnan/FPDefaultNaN.

• shared/functions/float/fpdiv/FPDiv.

• shared/functions/float/fpdot/FPDot.

• shared/functions/float/fpdot/FPDotAdd.

• shared/functions/float/fpdot/FPDotAdd_ZA.

• shared/functions/float/fpexc/FPExc.

• shared/functions/float/fpinfinity/FPInfinity.

• shared/functions/float/fpmatmul/FPMatMulAdd.

• shared/functions/float/fpmax/FPMax.

• shared/functions/float/fpmaxnormal/FPMaxNormal.

• shared/functions/float/fpmaxnum/FPMaxNum.

• shared/functions/float/fpmerge/IsMerging.

• shared/functions/float/fpmin/FPMin.

• shared/functions/float/fpminnum/FPMinNum.

• shared/functions/float/fpmul/FPMul.

• shared/functions/float/fpmuladd/FPMulAdd.

• shared/functions/float/fpmuladd/FPMulAdd_ZA.

• shared/functions/float/fpmuladdh/FPMulAddH.

• shared/functions/float/fpmuladdh/FPMulAddH_ZA.

• shared/functions/float/fpmuladdh/FPProcessNaNs3H.

• shared/functions/float/fpmulx/FPMulX.

• shared/functions/float/fpneg/FPNeg.

• shared/functions/float/fponepointfive/FPOnePointFive.

• shared/functions/float/fpprocessdenorms/FPProcessDenorm.

• shared/functions/float/fpprocessdenorms/FPProcessDenorms.

• shared/functions/float/fpprocessdenorms/FPProcessDenorms3.

• shared/functions/float/fpprocessdenorms/FPProcessDenorms4.

• shared/functions/float/fpprocessexception/FPProcessException.

• shared/functions/float/fpprocessnan/FPProcessNaN.

• shared/functions/float/fpprocessnans/FPProcessNaNs.

• shared/functions/float/fpprocessnans3/FPProcessNaNs3.

• shared/functions/float/fpprocessnans4/FPProcessNaNs4.

• shared/functions/float/fprecipestimate/FPRecipEstimate.

• shared/functions/float/fprecipestimate/RecipEstimate.

• shared/functions/float/fprecpx/FPRecpX.

• shared/functions/float/fpround/FPBits.

• shared/functions/float/fpround/FPRound.

• shared/functions/float/fpround/FPRoundBase.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14165
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/float/fpround/FPRoundCV.

• shared/functions/float/fprounding/FPRounding.

• shared/functions/float/fproundingmode/FPRoundingMode.

• shared/functions/float/fproundint/FPRoundInt.

• shared/functions/float/fproundintn/FPRoundIntN.

• shared/functions/float/fprsqrtestimate/FPRSqrtEstimate.

• shared/functions/float/fprsqrtestimate/RecipSqrtEstimate.

• shared/functions/float/fpsqrt/FPSqrt.

• shared/functions/float/fpsub/FPSub.

• shared/functions/float/fpsub/FPSub_ZA.

• shared/functions/float/fpthree/FPThree.

• shared/functions/float/fptofixed/FPToFixed.

• shared/functions/float/fptofixedjs/FPToFixedJS.

• shared/functions/float/fptwo/FPTwo.

• shared/functions/float/fptype/FPType.

• shared/functions/float/fpunpack/FPUnpack.

• shared/functions/float/fpunpack/FPUnpackBase.

• shared/functions/float/fpunpack/FPUnpackCV.

• shared/functions/float/fpzero/FPZero.

• shared/functions/float/vfpexpandimm/VFPExpandImm.

• shared/functions/integer/AddWithCarry.

• shared/functions/interrupts/InterruptID.

• shared/functions/interrupts/SetInterruptRequestLevel.

• shared/functions/memory/AArch64.BranchAddr.

• shared/functions/memory/AccessDescriptor.

• shared/functions/memory/AccessType.

• shared/functions/memory/AddrTop.

• shared/functions/memory/AlignmentEnforced.

• shared/functions/memory/Allocation.

• shared/functions/memory/BigEndian.

• shared/functions/memory/BigEndianReverse.

• shared/functions/memory/Cacheability.

• shared/functions/memory/CreateAccDescA32LSMD.

• shared/functions/memory/CreateAccDescASIMD.

• shared/functions/memory/CreateAccDescASIMDAcqRel.

• shared/functions/memory/CreateAccDescAT.

• shared/functions/memory/CreateAccDescAcqRel.

• shared/functions/memory/CreateAccDescAtomicOp.

• shared/functions/memory/CreateAccDescDC.

• shared/functions/memory/CreateAccDescDCZero.

• shared/functions/memory/CreateAccDescExLDST.

• shared/functions/memory/CreateAccDescGCS.

• shared/functions/memory/CreateAccDescGCSSS1.

• shared/functions/memory/CreateAccDescGPR.

• shared/functions/memory/CreateAccDescGPTW.

• shared/functions/memory/CreateAccDescIC.

• shared/functions/memory/CreateAccDescIFetch.

• shared/functions/memory/CreateAccDescLDAcqPC.

• shared/functions/memory/CreateAccDescLDGSTG.

• shared/functions/memory/CreateAccDescLOR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14166
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/memory/CreateAccDescLS64.

• shared/functions/memory/CreateAccDescMOPS.

• shared/functions/memory/CreateAccDescNV2.

• shared/functions/memory/CreateAccDescRCW.

• shared/functions/memory/CreateAccDescS1TTW.

• shared/functions/memory/CreateAccDescS2TTW.

• shared/functions/memory/CreateAccDescSME.

• shared/functions/memory/CreateAccDescSPE.

• shared/functions/memory/CreateAccDescSTGMOPS.

• shared/functions/memory/CreateAccDescSVE.

• shared/functions/memory/CreateAccDescSVEFF.

• shared/functions/memory/CreateAccDescSVENF.

• shared/functions/memory/CreateAccDescTRBE.

• shared/functions/memory/CreateAccDescTTEUpdate.

• shared/functions/memory/DataMemoryBarrier.

• shared/functions/memory/DataSynchronizationBarrier.

• shared/functions/memory/DeviceType.

• shared/functions/memory/EffectiveMTX.

• shared/functions/memory/EffectiveTBI.

• shared/functions/memory/EffectiveTCMA.

• shared/functions/memory/ErrorState.

• shared/functions/memory/Fault.

• shared/functions/memory/FaultRecord.

• shared/functions/memory/FullAddress.

• shared/functions/memory/GPCF.

• shared/functions/memory/GPCFRecord.

• shared/functions/memory/Hint_Prefetch.

• shared/functions/memory/Hint_RangePrefetch.

• shared/functions/memory/IsDataAccess.

• shared/functions/memory/IsSMEAccess.

• shared/functions/memory/IsSVEAccess.

• shared/functions/memory/MBReqDomain.

• shared/functions/memory/MBReqTypes.

• shared/functions/memory/MPAM.

• shared/functions/memory/MemAtomicOp.

• shared/functions/memory/MemAttrHints.

• shared/functions/memory/MemOp.

• shared/functions/memory/MemType.

• shared/functions/memory/Memory.

• shared/functions/memory/MemoryAttributes.

• shared/functions/memory/NewAccDesc.

• shared/functions/memory/PASpace.

• shared/functions/memory/Permissions.

• shared/functions/memory/PhysMemRead.

• shared/functions/memory/PhysMemRetStatus.

• shared/functions/memory/PhysMemWrite.

• shared/functions/memory/PrefetchHint.

• shared/functions/memory/S1AccessControls.

• shared/functions/memory/S2AccessControls.

• shared/functions/memory/Shareability.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14167
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/memory/SpeculativeStoreBypassBarrierToPA.

• shared/functions/memory/SpeculativeStoreBypassBarrierToVA.

• shared/functions/memory/Tag.

• shared/functions/memory/VARange.

• shared/functions/mpam/AltPARTIDspace.

• shared/functions/mpam/AltPIdRealm.

• shared/functions/mpam/AltPIdSecure.

• shared/functions/mpam/DefaultMPAMinfo.

• shared/functions/mpam/DefaultPARTID.

• shared/functions/mpam/DefaultPMG.

• shared/functions/mpam/GenMPAMatEL.

• shared/functions/mpam/GenMPAMcurEL.

• shared/functions/mpam/MAP_vPARTID.

• shared/functions/mpam/MPAMisEnabled.

• shared/functions/mpam/MPAMisVirtual.

• shared/functions/mpam/PARTIDspaceFromSS.

• shared/functions/mpam/UsePrimarySpaceEL10.

• shared/functions/mpam/UsePrimarySpaceEL2.

• shared/functions/mpam/genMPAM.

• shared/functions/mpam/genPARTID.

• shared/functions/mpam/genPMG.

• shared/functions/mpam/getMPAM_PARTID.

• shared/functions/mpam/getMPAM_PMG.

• shared/functions/mpam/mapvpmw.

• shared/functions/predictionrestrict/ASID.

• shared/functions/predictionrestrict/ExecutionCntxt.

• shared/functions/predictionrestrict/RESTRICT_PREDICTIONS.

• shared/functions/predictionrestrict/RestrictType.

• shared/functions/predictionrestrict/TargetSecurityState.

• shared/functions/registers/BranchTo.

• shared/functions/registers/BranchToAddr.

• shared/functions/registers/BranchType.

• shared/functions/registers/EffectiveFPCR.

• shared/functions/registers/Hint_Branch.

• shared/functions/registers/NextInstrAddr.

• shared/functions/registers/ResetExternalDebugRegisters.

• shared/functions/registers/ThisInstrAddr.

• shared/functions/registers/_PC.

• shared/functions/registers/_R.

• shared/functions/sysregisters/SPSR_ELx.

• shared/functions/sysregisters/SPSR_curr.

• shared/functions/system/AArch64.ChkFeat.

• shared/functions/system/AddressNotInNaturallyAlignedBlock.

• shared/functions/system/BranchTargetCheck.

• shared/functions/system/ClearEventRegister.

• shared/functions/system/ConditionHolds.

• shared/functions/system/ConsumptionOfSpeculativeDataBarrier.

• shared/functions/system/CurrentInstrSet.

• shared/functions/system/CurrentPL.

• shared/functions/system/CurrentSecurityState.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14168
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/system/DSBAlias.

• shared/functions/system/EL0.

• shared/functions/system/EL2Enabled.

• shared/functions/system/EL3SDDUndef.

• shared/functions/system/EL3SDDUndefPriority.

• shared/functions/system/ELFromM32.

• shared/functions/system/ELFromSPSR.

• shared/functions/system/ELIsInHost.

• shared/functions/system/ELStateUsingAArch32.

• shared/functions/system/ELStateUsingAArch32K.

• shared/functions/system/ELUsingAArch32.

• shared/functions/system/ELUsingAArch32K.

• shared/functions/system/EffectiveEA.

• shared/functions/system/EffectiveHCR_EL2_E2H.

• shared/functions/system/EffectiveHCR_EL2_NVx.

• shared/functions/system/EffectiveSCR_EL3_NS.

• shared/functions/system/EffectiveSCR_EL3_NSE.

• shared/functions/system/EffectiveSCR_EL3_RW.

• shared/functions/system/EffectiveTGE.

• shared/functions/system/EndOfInstruction.

• shared/functions/system/EnterLowPowerState.

• shared/functions/system/EventRegister.

• shared/functions/system/ExceptionalOccurrenceTargetState.

• shared/functions/system/FIQPending.

• shared/functions/system/GenerateAddress.

• shared/functions/system/GetAccumulatedFPExceptions.

• shared/functions/system/GetLoadStoreType.

• shared/functions/system/GetPSRFromPSTATE.

• shared/functions/system/HasArchVersion.

• shared/functions/system/HaveAArch32.

• shared/functions/system/HaveAArch32EL.

• shared/functions/system/HaveAArch64.

• shared/functions/system/HaveEL.

• shared/functions/system/HaveELUsingSecurityState.

• shared/functions/system/HaveFP16Ext.

• shared/functions/system/HaveSecureState.

• shared/functions/system/HighestEL.

• shared/functions/system/Hint_CLRBHB.

• shared/functions/system/Hint_DGH.

• shared/functions/system/Hint_WFE.

• shared/functions/system/Hint_WFI.

• shared/functions/system/Hint_Yield.

• shared/functions/system/IRQPending.

• shared/functions/system/IllegalExceptionReturn.

• shared/functions/system/InstrSet.

• shared/functions/system/InstructionSynchronizationBarrier.

• shared/functions/system/InterruptPending.

• shared/functions/system/IsASEInstruction.

• shared/functions/system/IsCurrentSecurityState.

• shared/functions/system/IsEventRegisterSet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14169
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/system/IsHighestEL.

• shared/functions/system/IsInHost.

• shared/functions/system/IsSecure.

• shared/functions/system/IsSecureBelowEL3.

• shared/functions/system/IsSecureEL2Enabled.

• shared/functions/system/LocalTimeoutEvent.

• shared/functions/system/Mode_Bits.

• shared/functions/system/NonSecureOnlyImplementation.

• shared/functions/system/PLOfEL.

• shared/functions/system/PSTATE.

• shared/functions/system/PhysicalCountInt.

• shared/functions/system/PrivilegeLevel.

• shared/functions/system/ProcState.

• shared/functions/system/RestoredITBits.

• shared/functions/system/SCRType.

• shared/functions/system/SCR_curr.

• shared/functions/system/SecureOnlyImplementation.

• shared/functions/system/SecurityState.

• shared/functions/system/SecurityStateAtEL.

• shared/functions/system/SendEvent.

• shared/functions/system/SendEventLocal.

• shared/functions/system/SetAccumulatedFPExceptions.

• shared/functions/system/SetPSTATEFromPSR.

• shared/functions/system/ShouldAdvanceHS.

• shared/functions/system/ShouldAdvanceIT.

• shared/functions/system/ShouldAdvanceSS.

• shared/functions/system/ShouldSetPPEND.

• shared/functions/system/SmallestTranslationGranule.

• shared/functions/system/SpeculationBarrier.

• shared/functions/system/SyncCounterOverflowed.

• shared/functions/system/SynchronizeContext.

• shared/functions/system/SynchronizeErrors.

• shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts.

• shared/functions/system/TakeUnmaskedSErrorInterrupts.

• shared/functions/system/ThisInstr.

• shared/functions/system/ThisInstrLength.

• shared/functions/system/Unreachable.

• shared/functions/system/UsingAArch32.

• shared/functions/system/ValidSecurityStateAtEL.

• shared/functions/system/VirtualFIQPending.

• shared/functions/system/VirtualIRQPending.

• shared/functions/system/WFxType.

• shared/functions/system/WaitForEvent.

• shared/functions/system/WaitForInterrupt.

• shared/functions/system/WatchpointRelatedSyndrome.

• shared/functions/unpredictable/ConstrainUnpredictable.

• shared/functions/unpredictable/ConstrainUnpredictableBits.

• shared/functions/unpredictable/ConstrainUnpredictableBool.

• shared/functions/unpredictable/ConstrainUnpredictableInteger.

• shared/functions/unpredictable/ConstrainUnpredictableProcedure.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14170
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/functions/unpredictable/Constraint.

• shared/functions/unpredictable/Unpredictable.

• shared/functions/vector/AdvSIMDExpandImm.

• shared/functions/vector/MatMulAdd.

• shared/functions/vector/PolynomialMult.

• shared/functions/vector/SatQ.

• shared/functions/vector/SignedSatQ.

• shared/functions/vector/UnsignedRSqrtEstimate.

• shared/functions/vector/UnsignedRecipEstimate.

• shared/functions/vector/UnsignedSatQ.

shared/functions/aborts/EncodeLDFSC

 // EncodeLDFSC()
 // =============
 // Function that gives the Long-descriptor FSC code for types of Fault

 bits(6) EncodeLDFSC(Fault statuscode, integer level)
 bits(6) result;

 // 128-bit descriptors will start from level -2 for 4KB to resolve bits IA[55:51]
 if level == -2 then
 assert IsFeatureImplemented(FEAT_D128);
 case statuscode of
 when Fault_AddressSize result = '101100';
 when Fault_Translation result = '101010';
 when Fault_SyncExternalOnWalk result = '010010';
 when Fault_SyncParityOnWalk
 result = '011010';
 assert !IsFeatureImplemented(FEAT_RAS);
 when Fault_GPCFOnWalk result = '100010';
 otherwise Unreachable();
 return result;

 if level == -1 then
 assert IsFeatureImplemented(FEAT_LPA2);
 case statuscode of
 when Fault_AddressSize result = '101001';
 when Fault_Translation result = '101011';
 when Fault_SyncExternalOnWalk result = '010011';
 when Fault_SyncParityOnWalk
 result = '011011';
 assert !IsFeatureImplemented(FEAT_RAS);
 when Fault_GPCFOnWalk result = '100011';
 otherwise Unreachable();

 return result;
 case statuscode of
 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {0,1,2,3};
 when Fault_Permission result = '0011':level<1:0>; assert level IN {0,1,2,3};
 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncExternal result = '010000';
 when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncParity result = '011000';
 when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AsyncParity result = '011001';
 when Fault_AsyncExternal result = '010001'; assert UsingAArch32();
 when Fault_TagCheck result = '010001'; assert IsFeatureImplemented(FEAT_MTE2);
 when Fault_Alignment result = '100001';
 when Fault_Debug result = '100010';
 when Fault_GPCFOnWalk result = '1001':level<1:0>; assert level IN {0,1,2,3};
 when Fault_GPCFOnOutput result = '101000';
 when Fault_TLBConflict result = '110000';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14171
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when Fault_HWUpdateAccessFlag result = '110001';
 when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
 otherwise Unreachable();

 return result;

shared/functions/aborts/IPAValid

 // IPAValid()
 // ==========
 // Return TRUE if the IPA is reported for the abort

 boolean IPAValid(FaultRecord fault)
 assert fault.statuscode != Fault_None;

 if fault.gpcf.gpf != GPCF_None then
 return fault.secondstage;
 elsif fault.s2fs1walk then
 return fault.statuscode IN {
 Fault_AccessFlag,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize
 };
 elsif fault.secondstage then
 return fault.statuscode IN {
 Fault_AccessFlag,
 Fault_Translation,
 Fault_AddressSize
 };
 else
 return FALSE;

shared/functions/aborts/IsAsyncAbort

 // IsAsyncAbort()
 // ==============
 // Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
 // otherwise.

 boolean IsAsyncAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsAsyncAbort()
 // ==============

 boolean IsAsyncAbort(FaultRecord fault)
 return IsAsyncAbort(fault.statuscode);

shared/functions/aborts/IsDebugException

 // IsDebugException()
 // ==================

 boolean IsDebugException(FaultRecord fault)
 assert fault.statuscode != Fault_None;
 return fault.statuscode == Fault_Debug;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14172
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/aborts/IsExternalAbort

 // IsExternalAbort()
 // =================
 // Returns TRUE if the abort currently being processed is an External abort and FALSE otherwise.

 boolean IsExternalAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {
 Fault_SyncExternal,
 Fault_SyncParity,
 Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk,
 Fault_AsyncExternal,
 Fault_AsyncParity
 });

 // IsExternalAbort()
 // =================

 boolean IsExternalAbort(FaultRecord fault)
 return IsExternalAbort(fault.statuscode) || fault.gpcf.gpf == GPCF_EABT;

shared/functions/aborts/IsExternalSyncAbort

 // IsExternalSyncAbort()
 // =====================
 // Returns TRUE if the abort currently being processed is an external
 // synchronous abort and FALSE otherwise.

 boolean IsExternalSyncAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {
 Fault_SyncExternal,
 Fault_SyncParity,
 Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk
 });

 // IsExternalSyncAbort()
 // =====================

 boolean IsExternalSyncAbort(FaultRecord fault)
 return IsExternalSyncAbort(fault.statuscode) || fault.gpcf.gpf == GPCF_EABT;

shared/functions/aborts/IsFault

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with an address descriptor

 boolean IsFault(AddressDescriptor addrdesc)
 return addrdesc.fault.statuscode != Fault_None;

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with a memory access.

 boolean IsFault(Fault fault)
 return fault != Fault_None;

 // IsFault()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14173
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // =========
 // Return TRUE if a fault is associated with status returned by memory.

 boolean IsFault(PhysMemRetStatus retstatus)
 return retstatus.statuscode != Fault_None;

shared/functions/aborts/IsSErrorInterrupt

 // IsSErrorInterrupt()
 // ===================
 // Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
 // otherwise.

 boolean IsSErrorInterrupt(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsSErrorInterrupt()
 // ===================

 boolean IsSErrorInterrupt(FaultRecord fault)
 return IsSErrorInterrupt(fault.statuscode);

shared/functions/aborts/IsSecondStage

 // IsSecondStage()
 // ===============

 boolean IsSecondStage(FaultRecord fault)
 assert fault.statuscode != Fault_None;

 return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome

 // LSInstructionSyndrome()
 // =======================
 // Returns the extended syndrome information for a second stage fault.
 // <10> - Syndrome valid bit. The syndrome is valid only for certain types of access instruction.
 // <9:8> - Access size.
 // <7> - Sign extended (for loads).
 // <6:2> - Transfer register.
 // <1> - Transfer register is 64-bit.
 // <0> - Instruction has acquire/release semantics.

 bits(11) LSInstructionSyndrome();

shared/functions/aborts/ReportAsGPCException

 // ReportAsGPCException()
 // ======================
 // Determine whether the given GPCF is reported as a Granule Protection Check Exception
 // rather than a Data or Instruction Abort

 boolean ReportAsGPCException(FaultRecord fault)
 assert IsFeatureImplemented(FEAT_RME);
 assert fault.statuscode IN {Fault_GPCFOnWalk, Fault_GPCFOnOutput};
 assert fault.gpcf.gpf != GPCF_None;

 case fault.gpcf.gpf of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14174
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when GPCF_Walk return TRUE;
 when GPCF_AddressSize return TRUE;
 when GPCF_EABT return TRUE;
 when GPCF_Fail return SCR_EL3.GPF == '1' && PSTATE.EL != EL3;

shared/functions/cache/CACHE_OP

 // CACHE_OP()
 // ==========
 // Performs Cache maintenance operations as per CacheRecord.

 CACHE_OP(CacheRecord cache)
 IMPLEMENTATION_DEFINED;

shared/functions/cache/CPASAtPAS

 // CPASAtPAS()
 // ===========
 // Get cache PA space for given PA space.

 CachePASpace CPASAtPAS(PASpace pas)
 case pas of
 when PAS_NonSecure
 return CPAS_NonSecure;
 when PAS_Secure
 return CPAS_Secure;
 when PAS_Root
 return CPAS_Root;
 when PAS_Realm
 return CPAS_Realm;

shared/functions/cache/CPASAtSecurityState

 // CPASAtSecurityState()
 // =====================
 // Get cache PA space for given security state.

 CachePASpace CPASAtSecurityState(SecurityState ss)
 case ss of
 when SS_NonSecure
 return CPAS_NonSecure;
 when SS_Secure
 return CPAS_SecureNonSecure;
 when SS_Root
 return CPAS_Any;
 when SS_Realm
 return CPAS_RealmNonSecure;

shared/functions/cache/CacheRecord

 // CacheRecord
 // ===========
 // Details related to a cache operation.

 type CacheRecord is (
 AccessType acctype, // Access type
 CacheOp cacheop, // Cache operation
 CacheOpScope opscope, // Cache operation type
 CacheType cachetype, // Cache type
 bits(64) regval,
 FullAddress paddress,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14175
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(64) vaddress, // For VA operations
 integer setnum, // For SW operations
 integer waynum, // For SW operations
 integer level, // For SW operations
 Shareability shareability,
 boolean translated,
 boolean is_vmid_valid, // is vmid valid for current context
 bits(16) vmid,
 boolean is_asid_valid, // is asid valid for current context
 bits(16) asid,
 SecurityState security,
 // For cache operations to full cache or by setnum/waynum
 // For operations by address, PA space in paddress
 CachePASpace cpas
)

shared/functions/cache/DCInstNeedsTranslation

 // DCInstNeedsTranslation()
 // ========================
 // Check whether Data Cache operation needs translation.

 boolean DCInstNeedsTranslation(CacheOpScope opscope)
 if opscope == CacheOpScope_PoE then
 return FALSE;

 if opscope == CacheOpScope_PoPA then
 return FALSE;

 if CLIDR_EL1.LoC == '000' then
 return !(boolean IMPLEMENTATION_DEFINED
 "No fault generated for DC operations if PoC is before any level of cache");

 if CLIDR_EL1.LoUU == '000' && opscope == CacheOpScope_PoU then
 return !(boolean IMPLEMENTATION_DEFINED
 "No fault generated for DC operations if PoU is before any level of cache");

 return TRUE;

shared/functions/cache/DecodeSW

 // DecodeSW()
 // ==========
 // Decode input value into setnum, waynum and level for SW instructions.

 (integer, integer, integer) DecodeSW(bits(64) regval, CacheType cachetype)
 level = UInt(regval[3:1]);
 (setnum, waynum, linesize) = GetCacheInfo(level, cachetype);
 return (setnum, waynum, level);

shared/functions/cache/GetCacheInfo

 // GetCacheInfo()
 // ==============
 // Returns numsets, assosciativity & linesize.

 (integer, integer, integer) GetCacheInfo(integer level, CacheType cachetype);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14176
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/cache/ICInstNeedsTranslation

 // ICInstNeedsTranslation()
 // ========================
 // Check whether Instruction Cache operation needs translation.

 boolean ICInstNeedsTranslation(CacheOpScope opscope)
 return boolean IMPLEMENTATION_DEFINED "Instruction Cache needs translation";

shared/functions/common/ASR

 // ASR()
 // =====

 bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 bits(N) result;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

shared/functions/common/ASR_C

 // ASR_C()
 // =======

 (bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0 && shift < 256;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<(shift+N)-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/Abs

 // Abs()
 // =====

 integer Abs(integer x)
 return if x >= 0 then x else -x;

 // Abs()
 // =====

 real Abs(real x)
 return if x >= 0.0 then x else -x;

shared/functions/common/Align

 // Align()
 // =======

 integer Align(integer x, integer y)
 return y * (x DIV y);

 // Align()
 // =======

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14177
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;

shared/functions/common/BitCount

 // BitCount()
 // ==========

 integer BitCount(bits(N) x)
 integer result = 0;
 for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
 return result;

shared/functions/common/CountLeadingSignBits

 // CountLeadingSignBits()
 // ======================

 integer CountLeadingSignBits(bits(N) x)
 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

shared/functions/common/CountLeadingZeroBits

 // CountLeadingZeroBits()
 // ======================

 integer CountLeadingZeroBits(bits(N) x)
 return N - (HighestSetBit(x) + 1);

shared/functions/common/Elem

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e, integer size]
 assert e >= 0 && (e+1)*size <= N;
 return vector<(e*size+size)-1 : e*size>;

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
 assert e >= 0 && (e+1)*size <= N;
 vector<(e+1)*size-1:e*size> = value;
 return;

shared/functions/common/Extend

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14178
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/HighestSetBit

 // HighestSetBit()
 // ===============

 integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;

shared/functions/common/Int

 // Int()
 // =====

 integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

shared/functions/common/IsAligned

 // IsAligned()
 // ===========

 boolean IsAligned(bits(N) x, integer y)
 return x == Align(x, y);

shared/functions/common/IsOnes

 // IsOnes()
 // ========

 boolean IsOnes(bits(N) x)
 return x == Ones(N);

shared/functions/common/IsZero

 // IsZero()
 // ========

 boolean IsZero(bits(N) x)
 return x == Zeros(N);

shared/functions/common/IsZeroBit

 // IsZeroBit()
 // ===========

 bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

shared/functions/common/LSL

 // LSL()
 // =====

 bits(N) LSL(bits(N) x, integer shift)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14179
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert shift >= 0;
 bits(N) result;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;

shared/functions/common/LSL_C

 // LSL_C()
 // =======

 (bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0 && shift < 256;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

shared/functions/common/LSR

 // LSR()
 // =====

 bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 bits(N) result;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

shared/functions/common/LSR_C

 // LSR_C()
 // =======

 (bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0 && shift < 256;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<(shift+N)-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/LowestSetBit

 // LowestSetBit()
 // ==============

 integer LowestSetBit(bits(N) x)
 for i = 0 to N-1
 if x<i> == '1' then return i;
 return N;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14180
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/Max

 // Max()
 // =====

 integer Max(integer a, integer b)
 return if a >= b then a else b;

 // Max()
 // =====

 real Max(real a, real b)
 return if a >= b then a else b;

shared/functions/common/Min

 // Min()
 // =====

 integer Min(integer a, integer b)
 return if a <= b then a else b;

 // Min()
 // =====

 real Min(real a, real b)
 return if a <= b then a else b;

shared/functions/common/Ones

 // Ones()
 // ======

 bits(N) Ones(integer N)
 return Replicate('1',N);

shared/functions/common/ROR

 // ROR()
 // =====

 bits(N) ROR(bits(N) x, integer shift)
 assert shift >= 0;
 bits(N) result;
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

shared/functions/common/ROR_C

 // ROR_C()
 // =======

 (bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0 && shift < 256;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14181
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 carry_out = result<N-1>;
 return (result, carry_out);

shared/functions/common/RShr

 // RShr()
 // ======
 // Shift integer value right with rounding

 integer RShr(integer value, integer shift, boolean round)
 assert shift > 0;
 if round then
 return (value + (1 << (shift - 1))) >> shift;
 else
 return value >> shift;

shared/functions/common/Replicate

 // Replicate()
 // ===========

 bits(M*N) Replicate(bits(M) x, integer N);

shared/functions/common/Reverse

 // Reverse()
 // =========
 // Reverse subwords of M bits in an N-bit word

 bits(N) Reverse(bits(N) word, integer M)
 bits(N) result;
 integer sw = N DIV M;
 assert N == sw * M;
 for s = 0 to sw-1
 Elem[result, (sw - 1) - s, M] = Elem[word, s, M];
 return result;

shared/functions/common/RoundDown

 // RoundDown()
 // ===========

 integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

 // RoundTowardsZero()
 // ==================

 integer RoundTowardsZero(real x)
 return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14182
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/RoundUp

 // RoundUp()
 // =========

 integer RoundUp(real x);

shared/functions/common/SInt

 // SInt()
 // ======

 integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;

shared/functions/common/SignExtend

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x, integer N)
 assert N >= M;
 return Replicate(x<M-1>, N-M) : x;

shared/functions/common/Signal

 // Signal
 // ======
 // Available signal types

 enumeration Signal {Signal_Low, Signal_High};

shared/functions/common/Split

 // Split()
 // =======

 (bits(M-N), bits(N)) Split(bits(M) value, integer N)
 assert M > N;
 return (value<M-1:N>, value<N-1:0>);

shared/functions/common/UInt

 // UInt()
 // ======

 integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14183
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/common/ZeroExtend

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x, integer N)
 assert N >= M;
 return Zeros(N-M) : x;

shared/functions/common/Zeros

 // Zeros()
 // =======

 bits(N) Zeros(integer N)
 return Replicate('0',N);

shared/functions/counters/AArch32.CheckTimerConditions

 // AArch32.CheckTimerConditions()
 // ==============================
 // Checking timer conditions for all A32 timer registers

 AArch32.CheckTimerConditions()
 boolean status;
 bits(64) offset;
 offset = Zeros(64);
 assert !HaveAArch64();

 if HaveEL(EL3) then
 if CNTP_CTL_S.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL_S,
 CNTP_CTL_S.IMASK, InterruptID_CNTPS);
 CNTP_CTL_S.ISTATUS = if status then '1' else '0';

 if CNTP_CTL_NS.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL_NS,
 CNTP_CTL_NS.IMASK, InterruptID_CNTP);
 CNTP_CTL_NS.ISTATUS = if status then '1' else '0';
 else
 if CNTP_CTL.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL,
 CNTP_CTL.IMASK, InterruptID_CNTP);
 CNTP_CTL.ISTATUS = if status then '1' else '0';

 if HaveEL(EL2) && CNTHP_CTL.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTHP_CVAL,
 CNTHP_CTL.IMASK, InterruptID_CNTHP);
 CNTHP_CTL.ISTATUS = if status then '1' else '0';

 if CNTV_CTL_EL0.ENABLE == '1' then
 status = IsTimerConditionMet(CNTVOFF_EL2, CNTV_CVAL_EL0,
 CNTV_CTL_EL0.IMASK, InterruptID_CNTV);
 CNTV_CTL_EL0.ISTATUS = if status then '1' else '0';

 return;

shared/functions/counters/AArch64.CheckTimerConditions

 // AArch64.CheckTimerConditions()
 // ==============================
 // Checking timer conditions for all A64 timer registers

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14184
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 AArch64.CheckTimerConditions()
 boolean status;
 bits(64) offset;
 bit imask;
 SecurityState ss = CurrentSecurityState();
 if (IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELIsInHost(EL0) &&
 CNTHCTL_EL2.ECV == '1' && SCR_EL3.ECVEn == '1') then
 offset = CNTPOFF_EL2;
 else
 offset = Zeros(64);
 if CNTP_CTL_EL0.ENABLE == '1' then
 imask = CNTP_CTL_EL0.IMASK;
 if (IsFeatureImplemented(FEAT_RME) && ss IN {SS_Root, SS_Realm} &&
 CNTHCTL_EL2.CNTPMASK == '1') then
 imask = '1';
 status = IsTimerConditionMet(offset, CNTP_CVAL_EL0,
 imask, InterruptID_CNTP);
 CNTP_CTL_EL0.ISTATUS = if status then '1' else '0';
 if ((HaveEL(EL3) || (HaveEL(EL2) && !IsFeatureImplemented(FEAT_SEL2))) &&
 CNTHP_CTL_EL2.ENABLE == '1') then
 status = IsTimerConditionMet(Zeros(64), CNTHP_CVAL_EL2,
 CNTHP_CTL_EL2.IMASK, InterruptID_CNTHP);
 CNTHP_CTL_EL2.ISTATUS = if status then '1' else '0';
 if HaveEL(EL2) && IsFeatureImplemented(FEAT_SEL2) && CNTHPS_CTL_EL2.ENABLE == '1' then
 status = IsTimerConditionMet(Zeros(64), CNTHPS_CVAL_EL2,
 CNTHPS_CTL_EL2.IMASK, InterruptID_CNTHPS);
 CNTHPS_CTL_EL2.ISTATUS = if status then '1' else '0';

 if CNTPS_CTL_EL1.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTPS_CVAL_EL1,
 CNTPS_CTL_EL1.IMASK, InterruptID_CNTPS);
 CNTPS_CTL_EL1.ISTATUS = if status then '1' else '0';

 if CNTV_CTL_EL0.ENABLE == '1' then
 imask = CNTV_CTL_EL0.IMASK;
 if (IsFeatureImplemented(FEAT_RME) && ss IN {SS_Root, SS_Realm} &&
 CNTHCTL_EL2.CNTVMASK == '1') then
 imask = '1';
 status = IsTimerConditionMet(CNTVOFF_EL2, CNTV_CVAL_EL0,
 imask, InterruptID_CNTV);
 CNTV_CTL_EL0.ISTATUS = if status then '1' else '0';

 if ((IsFeatureImplemented(FEAT_VHE) && (HaveEL(EL3) || !IsFeatureImplemented(FEAT_SEL2))) &&
 CNTHV_CTL_EL2.ENABLE == '1') then
 status = IsTimerConditionMet(Zeros(64), CNTHV_CVAL_EL2,
 CNTHV_CTL_EL2.IMASK, InterruptID_CNTHV);
 CNTHV_CTL_EL2.ISTATUS = if status then '1' else '0';

 if ((IsFeatureImplemented(FEAT_SEL2) && IsFeatureImplemented(FEAT_VHE)) &&
 CNTHVS_CTL_EL2.ENABLE == '1') then
 status = IsTimerConditionMet(Zeros(64), CNTHVS_CVAL_EL2,
 CNTHVS_CTL_EL2.IMASK, InterruptID_CNTHVS);
 CNTHVS_CTL_EL2.ISTATUS = if status then '1' else '0';
 return;

shared/functions/counters/CNTHCTL_EL2_VHE

 // CNTHCTL_EL2_VHE()
 // =================
 // In the case where EL2 accesses the CNTKCTL_EL1 register, and the access
 // is redirected to CNTHCTL_EL2 as a result of HCR_EL2.E2H being 1,
 // then the bits of CNTHCTL_EL2 that are RES0 in CNTKCTL_EL1 are
 // treated as being UNKNOWN. This function applies the UNKNOWN behavior.

 bits(64) CNTHCTL_EL2_VHE(bits(64) original_value)
 assert PSTATE.EL == EL2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14185
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert IsInHost();

 bits(64) return_value = original_value;

 return_value<19:18> = bits(2) UNKNOWN;
 return_value<16:10> = bits(7) UNKNOWN;
 return return_value;

shared/functions/counters/GenericCounterTick

 // GenericCounterTick()
 // ====================
 // Increments PhysicalCount value for every clock tick.

 GenericCounterTick()
 bits(64) prev_physical_count;
 if CNTCR.EN == '0' then
 if !HaveAArch64() then
 AArch32.CheckTimerConditions();
 else
 AArch64.CheckTimerConditions();
 return;
 prev_physical_count = PhysicalCountInt();
 if IsFeatureImplemented(FEAT_CNTSC) && CNTCR.SCEN == '1' then
 PhysicalCount = PhysicalCount + ZeroExtend(CNTSCR, 88);
 else
 PhysicalCount<87:24> = PhysicalCount<87:24> + 1;
 if !HaveAArch64() then
 AArch32.CheckTimerConditions();
 else
 AArch64.CheckTimerConditions();
 TestEventCNTP(prev_physical_count, PhysicalCountInt());
 TestEventCNTV(prev_physical_count, PhysicalCountInt());
 return;

shared/functions/counters/IsTimerConditionMet

 // IsTimerConditionMet()
 // =====================

 boolean IsTimerConditionMet(bits(64) offset, bits(64) compare_value,
 bits(1) imask, InterruptID intid)
 boolean condition_met;
 Signal level;
 condition_met = (UInt(PhysicalCountInt() - offset) -
 UInt(compare_value)) >= 0;
 level = if condition_met && imask == '0' then Signal_High else Signal_Low;
 SetInterruptRequestLevel(intid, level);
 return condition_met;

shared/functions/counters/PhysicalCount

 bits(88) PhysicalCount;

shared/functions/counters/SetEventRegister

 // SetEventRegister()
 // ==================
 // Sets the Event Register of this PE

 SetEventRegister()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14186
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 EventRegister = '1';
 return;

shared/functions/counters/TestEventCNTP

 // TestEventCNTP()
 // ===============
 // Generate Event stream from the physical counter

 TestEventCNTP(bits(64) prev_physical_count, bits(64) current_physical_count)
 bits(64) offset;
 bits(1) samplebit, previousbit;
 if CNTHCTL_EL2.EVNTEN == '1' then
 n = UInt(CNTHCTL_EL2.EVNTI);
 if IsFeatureImplemented(FEAT_ECV) && CNTHCTL_EL2.EVNTIS == '1' then
 n = n + 8;
 if (IsFeatureImplemented(FEAT_ECV) && EL2Enabled() && !ELIsInHost(EL0) &&
 CNTHCTL_EL2.ECV == '1' && SCR_EL3.ECVEn == '1') then
 offset = CNTPOFF_EL2;
 else
 offset = Zeros(64);
 samplebit = (current_physical_count - offset)<n>;
 previousbit = (prev_physical_count - offset)<n>;
 if CNTHCTL_EL2.EVNTDIR == '0' then
 if previousbit == '0' && samplebit == '1' then SetEventRegister();
 else
 if previousbit == '1' && samplebit == '0' then SetEventRegister();
 return;

shared/functions/counters/TestEventCNTV

 // TestEventCNTV()
 // ===============
 // Generate Event stream from the virtual counter

 TestEventCNTV(bits(64) prev_physical_count, bits(64) current_physical_count)
 bits(64) offset;
 bits(1) samplebit, previousbit;
 if !ELIsInHost(EL0) && CNTKCTL_EL1.EVNTEN == '1' then
 n = UInt(CNTKCTL_EL1.EVNTI);
 if IsFeatureImplemented(FEAT_ECV) && CNTKCTL_EL1.EVNTIS == '1' then
 n = n + 8;
 if HaveEL(EL2) && !ELIsInHost(EL0) then
 offset = CNTVOFF_EL2;
 else
 offset = Zeros(64);
 samplebit = (current_physical_count - offset)<n>;
 previousbit = (prev_physical_count - offset)<n>;
 if CNTKCTL_EL1.EVNTDIR == '0' then
 if previousbit == '0' && samplebit == '1' then SetEventRegister();
 else
 if previousbit == '1' && samplebit == '0' then SetEventRegister();
 return;

shared/functions/crc/BitReverse

 // BitReverse()
 // ============

 bits(N) BitReverse(bits(N) data)
 bits(N) result;
 for i = 0 to N-1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14187
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 result<(N-i)-1> = data<i>;
 return result;

shared/functions/crc/Poly32Mod2

 // Poly32Mod2()
 // ============

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

 bits(32) Poly32Mod2(bits(N) data_in, bits(32) poly)
 assert N > 32;
 bits(N) data = data_in;
 for i = N-1 downto 32
 if data<i> == '1' then
 data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));
 return data<31:0>;

shared/functions/crypto/AESInvMixColumns

 // AESInvMixColumns()
 // ==================
 // Transformation in the Inverse Cipher that is the inverse of AESMixColumns.

 bits(128) AESInvMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = (FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR
 FFmul09(in3<c*8+:8>));
 out1<c*8+:8> = (FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR
 FFmul0D(in3<c*8+:8>));
 out2<c*8+:8> = (FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR
 FFmul0B(in3<c*8+:8>));
 out3<c*8+:8> = (FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR
 FFmul0E(in3<c*8+:8>));

 return (
 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
);

shared/functions/crypto/AESInvShiftRows

 // AESInvShiftRows()
 // =================
 // Transformation in the Inverse Cipher that is inverse of AESShiftRows.

 bits(128) AESInvShiftRows(bits(128) op)
 return (
 op< 31: 24> : op< 55: 48> : op< 79: 72> : op<103: 96> :
 op<127:120> : op< 23: 16> : op< 47: 40> : op< 71: 64> :
 op< 95: 88> : op<119:112> : op< 15: 8> : op< 39: 32> :
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14188
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 op< 63: 56> : op< 87: 80> : op<111:104> : op< 7: 0>
);

shared/functions/crypto/AESInvSubBytes

 // AESInvSubBytes()
 // ================
 // Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

 bits(128) AESInvSubBytes(bits(128) op)
 // Inverse S-box values
 bits(16*16*8) GF2_inv = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x7d0c2155631469e126d677ba7e042b17<127:0> :
 /*E*/ 0x619953833cbbebc8b0f52aae4d3be0a0<127:0> :
 /*D*/ 0xef9cc9939f7ae52d0d4ab519a97f5160<127:0> :
 /*C*/ 0x5fec8027591012b131c7078833a8dd1f<127:0> :
 /*B*/ 0xf45acd78fec0db9a2079d2c64b3e56fc<127:0> :
 /*A*/ 0x1bbe18aa0e62b76f89c5291d711af147<127:0> :
 /*9*/ 0x6edf751ce837f9e28535ade72274ac96<127:0> :
 /*8*/ 0x73e6b4f0cecff297eadc674f4111913a<127:0> :
 /*7*/ 0x6b8a130103bdafc1020f3fca8f1e2cd0<127:0> :
 /*6*/ 0x0645b3b80558e4f70ad3bc8c00abd890<127:0> :
 /*5*/ 0x849d8da75746155edab9edfd5048706c<127:0> :
 /*4*/ 0x92b6655dcc5ca4d41698688664f6f872<127:0> :
 /*3*/ 0x25d18b6d49a25b76b224d92866a12e08<127:0> :
 /*2*/ 0x4ec3fa420b954cee3d23c2a632947b54<127:0> :
 /*1*/ 0xcbe9dec444438e3487ff2f9b8239e37c<127:0> :
 /*0*/ 0xfbd7f3819ea340bf38a53630d56a0952<127:0>
);
 bits(128) out;
 for i = 0 to 15
 out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
 return out;

shared/functions/crypto/AESMixColumns

 // AESMixColumns()
 // ===============
 // Transformation in the Cipher that takes all of the columns of the
 // State and mixes their data (independently of one another) to
 // produce new columns.

 bits(128) AESMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = (FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR
 in2<c*8+:8> EOR in3<c*8+:8>);
 out1<c*8+:8> = (FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR
 in3<c*8+:8> EOR in0<c*8+:8>);
 out2<c*8+:8> = (FFmul02(in2<c*8+:8>) EOR FFmul03(in3<c*8+:8>) EOR
 in0<c*8+:8> EOR in1<c*8+:8>);
 out3<c*8+:8> = (FFmul02(in3<c*8+:8>) EOR FFmul03(in0<c*8+:8>) EOR
 in1<c*8+:8> EOR in2<c*8+:8>);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14189
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return (
 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
);

shared/functions/crypto/AESShiftRows

 // AESShiftRows()
 // ==============
 // Transformation in the Cipher that processes the State by cyclically
 // shifting the last three rows of the State by different offsets.

 bits(128) AESShiftRows(bits(128) op)
 return (
 op< 95: 88> : op< 55: 48> : op< 15: 8> : op<103: 96> :
 op< 63: 56> : op< 23: 16> : op<111:104> : op< 71: 64> :
 op< 31: 24> : op<119:112> : op< 79: 72> : op< 39: 32> :
 op<127:120> : op< 87: 80> : op< 47: 40> : op< 7: 0>
);

shared/functions/crypto/AESSubBytes

 // AESSubBytes()
 // =============
 // Transformation in the Cipher that processes the State using a nonlinear
 // byte substitution table (S-box) that operates on each of the State bytes
 // independently.

 bits(128) AESSubBytes(bits(128) op)
 // S-box values
 bits(16*16*8) GF2 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
 /*E*/ 0xdf2855cee9871e9b948ed9691198f8e1<127:0> :
 /*D*/ 0x9e1dc186b95735610ef6034866b53e70<127:0> :
 /*C*/ 0x8a8bbd4b1f74dde8c6b4a61c2e2578ba<127:0> :
 /*B*/ 0x08ae7a65eaf4566ca94ed58d6d37c8e7<127:0> :
 /*A*/ 0x79e4959162acd3c25c2406490a3a32e0<127:0> :
 /*9*/ 0xdb0b5ede14b8ee4688902a22dc4f8160<127:0> :
 /*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
 /*7*/ 0xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
 /*6*/ 0xa89f3c507f02f94585334d43fbaaefd0<127:0> :
 /*5*/ 0xcf584c4a39becb6a5bb1fc20ed00d153<127:0> :
 /*4*/ 0x842fe329b3d63b52a05a6e1b1a2c8309<127:0> :
 /*3*/ 0x75b227ebe28012079a059618c323c704<127:0> :
 /*2*/ 0x1531d871f1e5a534ccf73f362693fdb7<127:0> :
 /*1*/ 0xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
 /*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>
);
 bits(128) out;
 for i = 0 to 15
 out<i*8+:8> = GF2<UInt(op<i*8+:8>)*8+:8>;
 return out;

shared/functions/crypto/FFmul02

 // FFmul02()
 // =========

 bits(8) FFmul02(bits(8) b)
 bits(256*8) FFmul_02 = (
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14190
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :
 /*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
 /*D*/ 0xA5A7A1A3ADAFA9ABB5B7B1B3BDBFB9BB<127:0> :
 /*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
 /*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
 /*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
 /*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
 /*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
 /*7*/ 0xFEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0<127:0> :
 /*6*/ 0xDEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0<127:0> :
 /*5*/ 0xBEBCBAB8B6B4B2B0AEACAAA8A6A4A2A0<127:0> :
 /*4*/ 0x9E9C9A98969492908E8C8A8886848280<127:0> :
 /*3*/ 0x7E7C7A78767472706E6C6A6866646260<127:0> :
 /*2*/ 0x5E5C5A58565452504E4C4A4846444240<127:0> :
 /*1*/ 0x3E3C3A38363432302E2C2A2826242220<127:0> :
 /*0*/ 0x1E1C1A18161412100E0C0A0806040200<127:0>
);
 return FFmul_02<UInt(b)*8+:8>;

shared/functions/crypto/FFmul03

 // FFmul03()
 // =========

 bits(8) FFmul03(bits(8) b)
 bits(256*8) FFmul_03 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
 /*E*/ 0x2A292C2F26252023323134373E3D383B<127:0> :
 /*D*/ 0x7A797C7F76757073626164676E6D686B<127:0> :
 /*C*/ 0x4A494C4F46454043525154575E5D585B<127:0> :
 /*B*/ 0xDAD9DCDFD6D5D0D3C2C1C4C7CECDC8CB<127:0> :
 /*A*/ 0xEAE9ECEFE6E5E0E3F2F1F4F7FEFDF8FB<127:0> :
 /*9*/ 0xBAB9BCBFB6B5B0B3A2A1A4A7AEADA8AB<127:0> :
 /*8*/ 0x8A898C8F86858083929194979E9D989B<127:0> :
 /*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
 /*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
 /*5*/ 0xE1E2E7E4EDEEEBE8F9FAFFFCF5F6F3F0<127:0> :
 /*4*/ 0xD1D2D7D4DDDEDBD8C9CACFCCC5C6C3C0<127:0> :
 /*3*/ 0x414247444D4E4B48595A5F5C55565350<127:0> :
 /*2*/ 0x717277747D7E7B78696A6F6C65666360<127:0> :
 /*1*/ 0x212227242D2E2B28393A3F3C35363330<127:0> :
 /*0*/ 0x111217141D1E1B18090A0F0C05060300<127:0>
);
 return FFmul_03<UInt(b)*8+:8>;

shared/functions/crypto/FFmul09

 // FFmul09()
 // =========

 bits(8) FFmul09(bits(8) b)
 bits(256*8) FFmul_09 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x464F545D626B70790E071C152A233831<127:0> :
 /*E*/ 0xD6DFC4CDF2FBE0E99E978C85BAB3A8A1<127:0> :
 /*D*/ 0x7D746F6659504B42353C272E1118030A<127:0> :
 /*C*/ 0xEDE4FFF6C9C0DBD2A5ACB7BE8188939A<127:0> :
 /*B*/ 0x3039222B141D060F78716A635C554E47<127:0> :
 /*A*/ 0xA0A9B2BB848D969FE8E1FAF3CCC5DED7<127:0> :
 /*9*/ 0x0B0219102F263D34434A5158676E757C<127:0> :
 /*8*/ 0x9B928980BFB6ADA4D3DAC1C8F7FEE5EC<127:0> :
 /*7*/ 0xAAA3B8B18E879C95E2EBF0F9C6CFD4DD<127:0> :
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14191
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 /*6*/ 0x3A3328211E170C05727B6069565F444D<127:0> :
 /*5*/ 0x9198838AB5BCA7AED9D0CBC2FDF4EFE6<127:0> :
 /*4*/ 0x0108131A252C373E49405B526D647F76<127:0> :
 /*3*/ 0xDCD5CEC7F8F1EAE3949D868FB0B9A2AB<127:0> :
 /*2*/ 0x4C455E5768617A73040D161F2029323B<127:0> :
 /*1*/ 0xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127:0> :
 /*0*/ 0x777E656C535A41483F362D241B120900<127:0>
);
 return FFmul_09<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0B

 // FFmul0B()
 // =========

 bits(8) FFmul0B(bits(8) b)
 bits(256*8) FFmul_0B = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xA3A8B5BE8F849992FBF0EDE6D7DCC1CA<127:0> :
 /*E*/ 0x1318050E3F3429224B405D56676C717A<127:0> :
 /*D*/ 0xD8D3CEC5F4FFE2E9808B969DACA7BAB1<127:0> :
 /*C*/ 0x68637E75444F5259303B262D1C170A01<127:0> :
 /*B*/ 0x555E434879726F640D061B10212A373C<127:0> :
 /*A*/ 0xE5EEF3F8C9C2DFD4BDB6ABA0919A878C<127:0> :
 /*9*/ 0x2E2538330209141F767D606B5A514C47<127:0> :
 /*8*/ 0x9E958883B2B9A4AFC6CDD0DBEAE1FCF7<127:0> :
 /*7*/ 0x545F424978736E650C071A11202B363D<127:0> :
 /*6*/ 0xE4EFF2F9C8C3DED5BCB7AAA1909B868D<127:0> :
 /*5*/ 0x2F2439320308151E777C616A5B504D46<127:0> :
 /*4*/ 0x9F948982B3B8A5AEC7CCD1DAEBE0FDF6<127:0> :
 /*3*/ 0xA2A9B4BF8E859893FAF1ECE7D6DDC0CB<127:0> :
 /*2*/ 0x1219040F3E3528234A415C57666D707B<127:0> :
 /*1*/ 0xD9D2CFC4F5FEE3E8818A979CADA6BBB0<127:0> :
 /*0*/ 0x69627F74454E5358313A272C1D160B00<127:0>
);
 return FFmul_0B<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0D

 // FFmul0D()
 // =========

 bits(8) FFmul0D(bits(8) b)
 bits(256*8) FFmul_0D = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
 /*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
 /*D*/ 0x2C21363B1815020F44495E53707D6A67<127:0> :
 /*C*/ 0xFCF1E6EBC8C5D2DF94998E83A0ADBAB7<127:0> :
 /*B*/ 0xFAF7E0EDCEC3D4D9929F8885A6ABBCB1<127:0> :
 /*A*/ 0x2A27303D1E130409424F5855767B6C61<127:0> :
 /*9*/ 0x414C5B5675786F622924333E1D10070A<127:0> :
 /*8*/ 0x919C8B86A5A8BFB2F9F4E3EECDC0D7DA<127:0> :
 /*7*/ 0x4D40575A7974636E25283F32111C0B06<127:0> :
 /*6*/ 0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127:0> :
 /*5*/ 0xF6FBECE1C2CFD8D59E938489AAA7B0BD<127:0> :
 /*4*/ 0x262B3C31121F08054E4354597A77606D<127:0> :
 /*3*/ 0x202D3A3714190E034845525F7C71666B<127:0> :
 /*2*/ 0xF0FDEAE7C4C9DED39895828FACA1B6BB<127:0> :
 /*1*/ 0x9B96818CAFA2B5B8F3FEE9E4C7CADDD0<127:0> :
 /*0*/ 0x4B46515C7F726568232E3934171A0D00<127:0>
);
 return FFmul_0D<UInt(b)*8+:8>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14192
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/crypto/FFmul0E

 // FFmul0E()
 // =========

 bits(8) FFmul0E(bits(8) b)
 bits(256*8) FFmul_0E = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC5CBD9D7<127:0> :
 /*E*/ 0x6D63717F555B49471D13010F252B3937<127:0> :
 /*D*/ 0x56584A446E60727C26283A341E10020C<127:0> :
 /*C*/ 0xB6B8AAA48E80929CC6C8DAD4FEF0E2EC<127:0> :
 /*B*/ 0x202E3C321816040A505E4C426866747A<127:0> :
 /*A*/ 0xC0CEDCD2F8F6E4EAB0BEACA28886949A<127:0> :
 /*9*/ 0xFBF5E7E9C3CDDFD18B859799B3BDAFA1<127:0> :
 /*8*/ 0x1B150709232D3F316B657779535D4F41<127:0> :
 /*7*/ 0xCCC2D0DEF4FAE8E6BCB2A0AE848A9896<127:0> :
 /*6*/ 0x2C22303E141A08065C52404E646A7876<127:0> :
 /*5*/ 0x17190B052F21333D67697B755F51434D<127:0> :
 /*4*/ 0xF7F9EBE5CFC1D3DD87899B95BFB1A3AD<127:0> :
 /*3*/ 0x616F7D735957454B111F0D032927353B<127:0> :
 /*2*/ 0x818F9D93B9B7A5ABF1FFEDE3C9C7D5DB<127:0> :
 /*1*/ 0xBAB4A6A8828C9E90CAC4D6D8F2FCEEE0<127:0> :
 /*0*/ 0x5A544648626C7E702A243638121C0E00<127:0>
);
 return FFmul_0E<UInt(b)*8+:8>;

shared/functions/crypto/ROL

 // ROL()
 // =====

 bits(N) ROL(bits(N) x, integer shift)
 assert shift >= 0 && shift <= N;
 if (shift == 0) then
 return x;
 return ROR(x, N-shift);

shared/functions/crypto/SHA256hash

 // SHA256hash()
 // ============

 bits(128) SHA256hash(bits (128) x_in, bits(128) y_in, bits(128) w, boolean part1)
 bits(32) chs, maj, t;
 bits(128) x = x_in;
 bits(128) y = y_in;

 for e = 0 to 3
 chs = SHAchoose(y<31:0>, y<63:32>, y<95:64>);
 maj = SHAmajority(x<31:0>, x<63:32>, x<95:64>);
 t = y<127:96> + SHAhashSIGMA1(y<31:0>) + chs + Elem[w, e, 32];
 x<127:96> = t + x<127:96>;
 y<127:96> = t + SHAhashSIGMA0(x<31:0>) + maj;
 <y, x> = ROL(y : x, 32);
 return (if part1 then x else y);

shared/functions/crypto/SHAchoose

 // SHAchoose()
 // ===========

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14193
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
 return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMA0

 // SHAhashSIGMA0()
 // ===============

 bits(32) SHAhashSIGMA0(bits(32) x)
 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

shared/functions/crypto/SHAhashSIGMA1

 // SHAhashSIGMA1()
 // ===============

 bits(32) SHAhashSIGMA1(bits(32) x)
 return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

shared/functions/crypto/SHAmajority

 // SHAmajority()
 // =============

 bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
 return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

 // SHAparity()
 // ===========

 bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
 return (x EOR y EOR z);

shared/functions/crypto/Sbox

 // Sbox()
 // ======
 // Used in SM4E crypto instruction

 bits(8) Sbox(bits(8) sboxin)
 bits(8) sboxout;
 bits(2048) sboxstring = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xd690e9fecce13db716b614c228fb2c05<127:0> :
 /*E*/ 0x2b679a762abe04c3aa44132649860699<127:0> :
 /*D*/ 0x9c4250f491ef987a33540b43edcfac62<127:0> :
 /*C*/ 0xe4b31ca9c908e89580df94fa758f3fa6<127:0> :
 /*B*/ 0x4707a7fcf37317ba83593c19e6854fa8<127:0> :
 /*A*/ 0x686b81b27164da8bf8eb0f4b70569d35<127:0> :
 /*9*/ 0x1e240e5e6358d1a225227c3b01217887<127:0> :
 /*8*/ 0xd40046579fd327524c3602e7a0c4c89e<127:0> :
 /*7*/ 0xeabf8ad240c738b5a3f7f2cef96115a1<127:0> :
 /*6*/ 0xe0ae5da49b341a55ad933230f58cb1e3<127:0> :
 /*5*/ 0x1df6e22e8266ca60c02923ab0d534e6f<127:0> :
 /*4*/ 0xd5db3745defd8e2f03ff6a726d6c5b51<127:0> :
 /*3*/ 0x8d1baf92bbddbc7f11d95c411f105ad8<127:0> :
 /*2*/ 0x0ac13188a5cd7bbd2d74d012b8e5b4b0<127:0> :
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14194
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 /*1*/ 0x8969974a0c96777e65b9f109c56ec684<127:0> :
 /*0*/ 0x18f07dec3adc4d2079ee5f3ed7cb3948<127:0>
);
 constant integer sboxindex = 255 - UInt(sboxin);
 sboxout = Elem[sboxstring, sboxindex, 8];
 return sboxout;

shared/functions/exclusive/ClearExclusiveByAddress

 // ClearExclusiveByAddress()
 // =========================
 // Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
 // record any part of the physical address region of size bytes starting at paddress.
 // It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
 // is also cleared if it records any part of the address region.

 ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ClearExclusiveLocal

 // ClearExclusiveLocal()
 // =====================
 // Clear the local Exclusives monitor for the specified processorid.

 ClearExclusiveLocal(integer processorid);

shared/functions/exclusive/ExclusiveMonitorsStatus

 // ExclusiveMonitorsStatus()
 // =========================
 // Returns '0' to indicate success if the last memory write by this PE was to
 // the same physical address region endorsed by ExclusiveMonitorsPass().
 // Returns '1' to indicate failure if address translation resulted in a different
 // physical address.

 bit ExclusiveMonitorsStatus();

shared/functions/exclusive/IsExclusiveGlobal

 // IsExclusiveGlobal()
 // ===================
 // Return TRUE if the global Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.

 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/IsExclusiveLocal

 // IsExclusiveLocal()
 // ==================
 // Return TRUE if the local Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.

 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14195
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/exclusive/MarkExclusiveGlobal

 // MarkExclusiveGlobal()
 // =====================
 // Record the physical address region of size bytes starting at paddress in
 // the global Exclusives monitor for processorid.

 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveLocal

 // MarkExclusiveLocal()
 // ====================
 // Record the physical address region of size bytes starting at paddress in
 // the local Exclusives monitor for processorid.

 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ProcessorID

 // ProcessorID()
 // =============
 // Return the ID of the currently executing PE.

 integer ProcessorID();

shared/functions/extension/HaveBF16Ext

 // HaveBF16Ext()
 // =============
 // Returns TRUE if AArch64 BFloat16 instruction support is implemented, and FALSE otherwise.

 boolean HaveBF16Ext()
 return IsFeatureImplemented(FEAT_BF16);

shared/functions/extension/HaveFeatABLE

 // HaveFeatABLE()
 // ==============
 // Returns TRUE if support for linking watchpoints to address matching
 // breakpoints is implemented, and FALSE otherwise.

 boolean HaveFeatABLE()
 return IsFeatureImplemented(FEAT_ABLE);

shared/functions/extension/HaveInt8MatMulExt

 // HaveInt8MatMulExt()
 // ===================
 // Returns TRUE if AArch64 8-bit integer matrix multiply instruction support
 // implemented, and FALSE otherwise

 boolean HaveInt8MatMulExt()
 return IsFeatureImplemented(FEAT_I8MM);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14196
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/extension/HaveSoftwareLock

 // HaveSoftwareLock()
 // ==================
 // Returns TRUE if Software Lock is implemented.

 boolean HaveSoftwareLock(Component component)
 if IsFeatureImplemented(FEAT_Debugv8p4) then
 return FALSE;
 if IsFeatureImplemented(FEAT_DoPD) && component != Component_CTI then
 return FALSE;
 case component of
 when Component_Debug
 return boolean IMPLEMENTATION_DEFINED "Debug has Software Lock";
 when Component_PMU
 return boolean IMPLEMENTATION_DEFINED "PMU has Software Lock";
 when Component_CTI
 return boolean IMPLEMENTATION_DEFINED "CTI has Software Lock";
 otherwise
 Unreachable();

shared/functions/extension/HaveTME

 // HaveTME()
 // =========

 boolean HaveTME()
 return IsFeatureImplemented(FEAT_TME);

shared/functions/extension/HaveTraceExt

 // HaveTraceExt()
 // ==============
 // Returns TRUE if Trace functionality as described by the Trace Architecture
 // is implemented.

 boolean HaveTraceExt()
 return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

shared/functions/extension/InsertIESBBeforeException

 // InsertIESBBeforeException()
 // ===========================
 // Returns an implementation defined choice whether to insert an implicit error synchronization
 // barrier before exception.
 // If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
 // SError interrupt must be taken before executing any instructions in the exception handler.
 // However, this can be before the branch to the exception handler is made.

 boolean InsertIESBBeforeException(bits(2) el)
 return (IsFeatureImplemented(FEAT_IESB) && boolean IMPLEMENTATION_DEFINED
 "Has Implicit Error Synchronization Barrier before Exception");

shared/functions/extension/IsG1ActivityMonitorImplemented

 // IsG1ActivityMonitorImplemented()
 // ================================
 // Returns TRUE if a G1 activity monitor is implemented for the counter
 // and FALSE otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14197
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean IsG1ActivityMonitorImplemented(integer i);

shared/functions/extension/IsG1ActivityMonitorOffsetImplemented

 // IsG1ActivityMonitorOffsetImplemented()
 // ======================================
 // Returns TRUE if a G1 activity monitor offset is implemented for the counter,
 // and FALSE otherwise.

 boolean IsG1ActivityMonitorOffsetImplemented(integer i);

shared/functions/externalaborts/ActionRequired

 // ActionRequired()
 // ================
 // Return an implementation specific value:
 // returns TRUE if action is required, FALSE otherwise.

 boolean ActionRequired();

shared/functions/externalaborts/ClearPendingPhysicalSError

 // ClearPendingPhysicalSError()
 // ============================
 // Clear a pending physical SError interrupt.

 ClearPendingPhysicalSError();

shared/functions/externalaborts/ClearPendingVirtualSError

 // ClearPendingVirtualSError()
 // ===========================
 // Clear a pending virtual SError interrupt.

 ClearPendingVirtualSError()
 if ELUsingAArch32(EL2) then
 HCR.VA = '0';
 else
 HCR_EL2.VSE = '0';

shared/functions/externalaborts/ErrorIsContained

 // ErrorIsContained()
 // ==================
 // Return an implementation specific value:
 // TRUE if Error is contained by the PE, FALSE otherwise.

 boolean ErrorIsContained();

shared/functions/externalaborts/ErrorIsSynchronized

 // ErrorIsSynchronized()
 // =====================
 // Return an implementation specific value:
 // returns TRUE if Error is synchronized by any synchronization event
 // FALSE otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14198
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean ErrorIsSynchronized();

shared/functions/externalaborts/ExtAbortToA64

 // ExtAbortToA64()
 // ===============
 // Returns TRUE if synchronous exception is being taken to A64 exception
 // level.

 boolean ExtAbortToA64(FaultRecord fault)
 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
 (IsFeatureImplemented(FEAT_RAS) && HCR_EL2.TEA == '1' &&
 IsExternalAbort(fault)) ||
 (IsDebugException(fault) && MDCR_EL2.TDE == '1'));

 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_curr[].EA == '1' && IsExternalAbort(fault);

 return route_to_aarch64 && IsExternalSyncAbort(fault.statuscode);

shared/functions/externalaborts/FaultIsCorrected

 // FaultIsCorrected()
 // ==================
 // Return an implementation specific value:
 // TRUE if fault is corrected by the PE, FALSE otherwise.

 boolean FaultIsCorrected();

shared/functions/externalaborts/GetPendingPhysicalSError

 // GetPendingPhysicalSError()
 // ==========================
 // Returns the FaultRecord containing details of pending Physical SError
 // interrupt.

 FaultRecord GetPendingPhysicalSError();

shared/functions/externalaborts/HandleExternalAbort

 // HandleExternalAbort()
 // =====================
 // Takes a Synchronous/Asynchronous abort based on fault.

 HandleExternalAbort(PhysMemRetStatus memretstatus, boolean iswrite,
 AddressDescriptor memaddrdesc, integer size,
 AccessDescriptor accdesc)
 assert (memretstatus.statuscode IN {Fault_SyncExternal, Fault_AsyncExternal} ||
 (!IsFeatureImplemented(FEAT_RAS) && memretstatus.statuscode IN {Fault_SyncParity,
 Fault_AsyncParity}));

 fault = NoFault(accdesc);
 fault.statuscode = memretstatus.statuscode;
 fault.write = iswrite;
 fault.extflag = memretstatus.extflag;
 // It is implementation specific whether External aborts signaled
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14199
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // in-band synchronously are taken synchronously or asynchronously
 if (IsExternalSyncAbort(fault) &&
 ((IsFeatureImplemented(FEAT_RASv2) && ExtAbortToA64(fault) &&
 PEErrorState(fault) IN {ErrorState_UC, ErrorState_UEU}) ||
 !IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
 size, accdesc))) then
 if fault.statuscode == Fault_SyncParity then
 fault.statuscode = Fault_AsyncParity;
 else
 fault.statuscode = Fault_AsyncExternal;

 if IsFeatureImplemented(FEAT_RAS) then
 fault.merrorstate = memretstatus.merrorstate;

 if IsExternalSyncAbort(fault) then
 if UsingAArch32() then
 AArch32.Abort(memaddrdesc.vaddress<31:0>, fault);
 else
 AArch64.Abort(memaddrdesc.vaddress, fault);

 else
 PendSErrorInterrupt(fault);

shared/functions/externalaborts/HandleExternalReadAbort

 // HandleExternalReadAbort()
 // =========================
 // Wrapper function for HandleExternalAbort function in case of an External
 // Abort on memory read.

 HandleExternalReadAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
 integer size, AccessDescriptor accdesc)
 iswrite = FALSE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

shared/functions/externalaborts/HandleExternalTTWAbort

 // HandleExternalTTWAbort()
 // ========================
 // Take Asynchronous abort or update FaultRecord for Translation Table Walk
 // based on PhysMemRetStatus.

 FaultRecord HandleExternalTTWAbort(PhysMemRetStatus memretstatus, boolean iswrite,
 AddressDescriptor memaddrdesc,
 AccessDescriptor accdesc, integer size,
 FaultRecord input_fault)
 output_fault = input_fault;
 output_fault.extflag = memretstatus.extflag;
 output_fault.statuscode = memretstatus.statuscode;
 if (IsExternalSyncAbort(output_fault) &&
 ((IsFeatureImplemented(FEAT_RASv2) && ExtAbortToA64(output_fault) &&
 PEErrorState(output_fault) IN {ErrorState_UC, ErrorState_UEU}) ||
 !IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
 size, accdesc))) then
 if output_fault.statuscode == Fault_SyncParity then
 output_fault.statuscode = Fault_AsyncParity;
 else
 output_fault.statuscode = Fault_AsyncExternal;

 // If a synchronous fault is on a translation table walk, then update
 // the fault type
 if IsExternalSyncAbort(output_fault) then
 if output_fault.statuscode == Fault_SyncParity then
 output_fault.statuscode = Fault_SyncParityOnWalk;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14200
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 output_fault.statuscode = Fault_SyncExternalOnWalk;
 if IsFeatureImplemented(FEAT_RAS) then
 output_fault.merrorstate = memretstatus.merrorstate;
 if !IsExternalSyncAbort(output_fault) then
 PendSErrorInterrupt(output_fault);
 output_fault.statuscode = Fault_None;
 return output_fault;

shared/functions/externalaborts/HandleExternalWriteAbort

 // HandleExternalWriteAbort()
 // ==========================
 // Wrapper function for HandleExternalAbort function in case of an External
 // Abort on memory write.

 HandleExternalWriteAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
 integer size, AccessDescriptor accdesc)
 iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

shared/functions/externalaborts/IsExternalAbortTakenSynchronously

 // IsExternalAbortTakenSynchronously()
 // ===================================
 // Return an implementation specific value:
 // TRUE if the fault returned for the access can be taken synchronously,
 // FALSE otherwise.
 //
 // This might vary between accesses, for example depending on the error type
 // or memory type being accessed.
 // External aborts on data accesses and translation table walks on data accesses
 // can be either synchronous or asynchronous.
 //
 // When FEAT_DoubleFault is not implemented, External aborts on instruction
 // fetches and translation table walks on instruction fetches can be either
 // synchronous or asynchronous.
 // When FEAT_DoubleFault is implemented, all External abort exceptions on
 // instruction fetches and translation table walks on instruction fetches
 // must be synchronous.

 boolean IsExternalAbortTakenSynchronously(PhysMemRetStatus memstatus,
 boolean iswrite,
 AddressDescriptor desc,
 integer size,
 AccessDescriptor accdesc);

shared/functions/externalaborts/IsPhysicalSErrorPending

 // IsPhysicalSErrorPending()
 // =========================
 // Returns TRUE if a physical SError interrupt is pending.

 boolean IsPhysicalSErrorPending();

shared/functions/externalaborts/IsSErrorEdgeTriggered

 // IsSErrorEdgeTriggered()
 // =======================
 // Returns TRUE if the physical SError interrupt is edge-triggered
 // and FALSE otherwise.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14201
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean IsSErrorEdgeTriggered()
 if IsFeatureImplemented(FEAT_DoubleFault) then
 return TRUE;
 else
 return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";

shared/functions/externalaborts/IsSynchronizablePhysicalSErrorPending

 // IsSynchronizablePhysicalSErrorPending()
 // =======================================
 // Returns TRUE if a synchronizable physical SError interrupt is pending.

 boolean IsSynchronizablePhysicalSErrorPending();

shared/functions/externalaborts/IsVirtualSErrorPending

 // IsVirtualSErrorPending()
 // ========================
 // Return TRUE if a virtual SError interrupt is pending.

 boolean IsVirtualSErrorPending()
 if ELUsingAArch32(EL2) then
 return HCR.VA == '1';
 else
 return HCR_EL2.VSE == '1';

shared/functions/externalaborts/PEErrorState

 // PEErrorState()
 // ==============
 // Returns the error state of the PE on taking an error exception:
 // The PE error state reported to software through the exception syndrome also
 // depends on how the exception is taken, and so might differ from the value
 // returned from this function.

 ErrorState PEErrorState(FaultRecord fault)
 assert !FaultIsCorrected();
 if (!ErrorIsContained() ||
 (!ErrorIsSynchronized() && !StateIsRecoverable()) ||
 ReportErrorAsUC()) then
 return ErrorState_UC;

 if !StateIsRecoverable() || ReportErrorAsUEU() then
 return ErrorState_UEU;

 if ActionRequired() || ReportErrorAsUER() then
 return ErrorState_UER;

 return ErrorState_UEO;

shared/functions/externalaborts/PendSErrorInterrupt

 // PendSErrorInterrupt()
 // =====================
 // Pend the SError Interrupt.

 PendSErrorInterrupt(FaultRecord fault);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14202
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/externalaborts/ReportErrorAsIMPDEF

 // ReportErrorAsIMPDEF()
 // =====================
 // Return an implementation specific value:
 // returns TRUE if Error is IMPDEF, FALSE otherwise.

 boolean ReportErrorAsIMPDEF();

shared/functions/externalaborts/ReportErrorAsUC

 // ReportErrorAsUC()
 // =================
 // Return an implementation specific value:
 // returns TRUE if Error is Uncontainable, FALSE otherwise.

 boolean ReportErrorAsUC();

shared/functions/externalaborts/ReportErrorAsUER

 // ReportErrorAsUER()
 // ==================
 // Return an implementation specific value:
 // returns TRUE if Error is Recoverable, FALSE otherwise.

 boolean ReportErrorAsUER();

shared/functions/externalaborts/ReportErrorAsUEU

 // ReportErrorAsUEU()
 // ==================
 // Return an implementation specific value:
 // returns TRUE if Error is Unrecoverable, FALSE otherwise.

 boolean ReportErrorAsUEU();

shared/functions/externalaborts/ReportErrorAsUncategorized

 // ReportErrorAsUncategorized()
 // ===========================
 // Return an implementation specific value:
 // returns TRUE if Error is uncategorized, FALSE otherwise.

 boolean ReportErrorAsUncategorized();

shared/functions/externalaborts/StateIsRecoverable

 // StateIsRecoverable()
 // =====================
 // Return an implementation specific value:
 // returns TRUE is PE State is unrecoverable else FALSE.

 boolean StateIsRecoverable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14203
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/bfloat/BFAdd

 // BFAdd()
 // =======
 // Non-widening BFloat16 addition used by SVE2 instructions.

 bits(N) BFAdd(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE;
 return BFAdd(op1, op2, fpcr, fpexc);

 // BFAdd()
 // =======
 // Non-widening BFloat16 addition following computational behaviors
 // corresponding to instructions that read and write BFloat16 values.
 // Calculates op1 + op2.
 // The 'fpcr' argument supplies the FPCR control bits.

 bits(N) BFAdd(bits(N) op1, bits(N) op2, FPCR_Type fpcr, boolean fpexc)

 assert N == 16;
 FPRounding rounding = FPRoundingMode(fpcr);
 boolean done;
 bits(2*N) result;

 bits(2*N) op1_s = op1 : Zeros(N);
 bits(2*N) op2_s = op2 : Zeros(N);
 (type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

 (done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr, fpexc);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN(fpcr, 2*N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0', 2*N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1', 2*N);
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1, 2*N);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, 2*N);
 else
 result = FPRoundBF(result_value, fpcr, rounding, fpexc, 2*N);

 if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

 return result<2*N-1:N>;

shared/functions/float/bfloat/BFAdd_ZA

 // BFAdd_ZA()
 // ==========
 // Non-widening BFloat16 addition used by SME2 ZA-targeting instructions.

 bits(N) BFAdd_ZA(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in)
 boolean fpexc = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14204
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 FPCR_Type fpcr = fpcr_in;
 fpcr.DN = '1'; // Generate default NaN values
 return BFAdd(op1, op2, fpcr, fpexc);

shared/functions/float/bfloat/BFDotAdd

 // BFDotAdd()
 // ==========
 // BFloat16 2-way dot-product and add to single-precision
 // result = addend + op1_a*op2_a + op1_b*op2_b

 bits(N) BFDotAdd(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
 bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCR_Type fpcr_in)
 assert N == 32;
 FPCR_Type fpcr = fpcr_in;

 bits(N) prod;

 bits(N) result;
 if !IsFeatureImplemented(FEAT_EBF16) || fpcr.EBF == '0' then // Standard BFloat16 behaviors
 prod = FPAdd_BF16(BFMulH(op1_a, op2_a, fpcr), BFMulH(op1_b, op2_b, fpcr), fpcr);
 result = FPAdd_BF16(addend, prod, fpcr);
 else // Extended BFloat16 behaviors
 boolean isbfloat16 = TRUE;
 boolean fpexc = FALSE; // Do not generate floating-point exceptions
 fpcr.DN = '1'; // Generate default NaN values
 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);
 result = FPAdd(addend, prod, fpcr, fpexc);

 return result;

shared/functions/float/bfloat/BFInfinity

 // BFInfinity()
 // ============

 bits(N) BFInfinity(bit sign, integer N)
 assert N == 16;
 constant integer E = 8;
 constant integer F = N - (E + 1);
 return sign : Ones(E) : Zeros(F);

shared/functions/float/bfloat/BFMatMulAdd

 // BFMatMulAdd()
 // =============
 // BFloat16 matrix multiply and add to single-precision matrix
 // result[2, 2] = addend[2, 2] + (op1[2, 4] * op2[4, 2])

 bits(N) BFMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N == 128;

 bits(N) result;
 bits(32) sum;

 for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, 32];
 for k = 0 to 1
 bits(16) elt1_a = Elem[op1, 4*i + 2*k + 0, 16];
 bits(16) elt1_b = Elem[op1, 4*i + 2*k + 1, 16];
 bits(16) elt2_a = Elem[op2, 4*j + 2*k + 0, 16];
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14205
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(16) elt2_b = Elem[op2, 4*j + 2*k + 1, 16];
 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, fpcr);
 Elem[result, 2*i + j, 32] = sum;

 return result;

shared/functions/float/bfloat/BFMax

 // BFMax()
 // =======
 // BFloat16 maximum.

 bits(N) BFMax(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 return BFMax(op1, op2, fpcr, altfp);

 // BFMax()
 // =======
 // BFloat16 maximum following computational behaviors
 // corresponding to instructions that read and write BFloat16 values.
 // Compare op1 and op2 and return the larger value after rounding.
 // The 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
 // if the function should use alternative floating-point behavior.

 bits(N) BFMax(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in, boolean altfp)

 assert N == 16;
 FPCR_Type fpcr = fpcr_in;
 boolean fpexc = TRUE;
 FPRounding rounding = FPRoundingMode(fpcr);
 boolean done;
 bits(2*N) result;

 bits(2*N) op1_s = op1 : Zeros(N);
 bits(2*N) op2_s = op2 : Zeros(N);
 (type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

 if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
 // Alternate handling of zeros with differing sign
 return BFZero(sign2, N);
 elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
 // Alternate handling of NaN inputs
 FPProcessException(FPExc_InvalidOp, fpcr);
 return (if type2 == FPType_Zero then BFZero(sign2, N) else op2);

 (done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr);
 if !done then
 FPType fptype;
 bit sign;
 real value;
 if value1 > value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign, 2*N);
 elsif fptype == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign, 2*N);
 else
 if altfp then // Denormal output is not flushed to zero
 fpcr.FZ = '0';
 result = FPRoundBF(value, fpcr, rounding, fpexc, 2*N);

 if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14206
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result<2*N-1:N>;

shared/functions/float/bfloat/BFMaxNum

 // BFMaxNum()
 // ==========
 // BFloat16 maximum number following computational behaviors corresponding
 // to instructions that read and write BFloat16 values.
 // Compare op1 and op2 and return the smaller number operand after rounding.
 // The 'fpcr' argument supplies the FPCR control bits.

 bits(N) BFMaxNum(bits(N) op1_in, bits(N) op2_in, FPCR_Type fpcr)

 assert N == 16;
 boolean fpexc = TRUE;
 boolean isbfloat16 = TRUE;
 bits(N) op1 = op1_in;
 bits(N) op2 = op2_in;
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 bits(N) result;

 (type1,-,-) = FPUnpackBase(op1, fpcr, fpexc, isbfloat16);
 (type2,-,-) = FPUnpackBase(op2, fpcr, fpexc, isbfloat16);

 boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
 boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};

 if !(altfp && type1_nan && type2_nan) then
 // Treat a single quiet-NaN as -Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = BFInfinity('1', N);
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = BFInfinity('1', N);

 boolean altfmaxfmin = FALSE; // Do not use alternate NaN handling
 result = BFMax(op1, op2, fpcr, altfmaxfmin);

 return result;

shared/functions/float/bfloat/BFMin

 // BFMin()
 // =======
 // BFloat16 minimum.

 bits(N) BFMin(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 return BFMin(op1, op2, fpcr, altfp);

 // BFMin()
 // =======
 // BFloat16 minimum following computational behaviors
 // corresponding to instructions that read and write BFloat16 values.
 // Compare op1 and op2 and return the smaller value after rounding.
 // The 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
 // if the function should use alternative floating-point behavior.

 bits(N) BFMin(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in, boolean altfp)

 assert N == 16;
 FPCR_Type fpcr = fpcr_in;
 boolean fpexc = TRUE;
 FPRounding rounding = FPRoundingMode(fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14207
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 boolean done;
 bits(2*N) result;

 bits(2*N) op1_s = op1 : Zeros(N);
 bits(2*N) op2_s = op2 : Zeros(N);
 (type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

 if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
 // Alternate handling of zeros with differing sign
 return BFZero(sign2, N);
 elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
 // Alternate handling of NaN inputs
 FPProcessException(FPExc_InvalidOp, fpcr);
 return (if type2 == FPType_Zero then BFZero(sign2, N) else op2);

 (done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr);
 if !done then
 FPType fptype;
 bit sign;
 real value;
 if value1 < value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign, 2*N);
 elsif fptype == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign, 2*N);
 else
 if altfp then // Denormal output is not flushed to zero
 fpcr.FZ = '0';
 result = FPRoundBF(value, fpcr, rounding, fpexc, 2*N);

 if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

 return result<2*N-1:N>;

shared/functions/float/bfloat/BFMinNum

 // BFMinNum()
 // ==========
 // BFloat16 minimum number following computational behaviors corresponding
 // to instructions that read and write BFloat16 values.
 // Compare op1 and op2 and return the smaller number operand after rounding.
 // The 'fpcr' argument supplies the FPCR control bits.

 bits(N) BFMinNum(bits(N) op1_in, bits(N) op2_in, FPCR_Type fpcr)

 assert N == 16;
 boolean fpexc = TRUE;
 boolean isbfloat16 = TRUE;
 bits(N) op1 = op1_in;
 bits(N) op2 = op2_in;
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 bits(N) result;

 (type1,-,-) = FPUnpackBase(op1, fpcr, fpexc, isbfloat16);
 (type2,-,-) = FPUnpackBase(op2, fpcr, fpexc, isbfloat16);

 boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
 boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};

 if !(altfp && type1_nan && type2_nan) then
 // Treat a single quiet-NaN as +Infinity.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14208
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = BFInfinity('0', N);
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = BFInfinity('0', N);

 boolean altfmaxfmin = FALSE; // Do not use alternate NaN handling
 result = BFMin(op1, op2, fpcr, altfmaxfmin);

 return result;

shared/functions/float/bfloat/BFMul

 // BFMul()
 // =======
 // Non-widening BFloat16 multiply used by SVE2 instructions.

 bits(N) BFMul(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE;
 return BFMul(op1, op2, fpcr, fpexc);

 // BFMul()
 // =======
 // Non-widening BFloat16 multiply following computational behaviors
 // corresponding to instructions that read and write BFloat16 values.
 // Calculates op1 * op2.
 // The 'fpcr' argument supplies the FPCR control bits.

 bits(N) BFMul(bits(N) op1, bits(N) op2, FPCR_Type fpcr, boolean fpexc)

 assert N == 16;
 FPRounding rounding = FPRoundingMode(fpcr);
 boolean done;
 bits(2*N) result;

 bits(2*N) op1_s = op1 : Zeros(N);
 bits(2*N) op2_s = op2 : Zeros(N);
 (type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

 (done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr, fpexc);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(fpcr, 2*N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2, 2*N);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2, 2*N);
 else
 result = FPRoundBF(value1*value2, fpcr, rounding, fpexc, 2*N);

 if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

 return result<2*N-1:N>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14209
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/bfloat/BFMulAdd

 // BFMulAdd()
 // ==========
 // Non-widening BFloat16 fused multiply-add used by SVE2 instructions.

 bits(N) BFMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE;
 return BFMulAdd(addend, op1, op2, fpcr, fpexc);

 // BFMulAdd()
 // ==========
 // Non-widening BFloat16 fused multiply-add following computational behaviors
 // corresponding to instructions that read and write BFloat16 values.
 // Calculates addend + op1*op2 with a single rounding.
 // The 'fpcr' argument supplies the FPCR control bits.

 bits(N) BFMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCR_Type fpcr, boolean fpexc)

 assert N == 16;
 FPRounding rounding = FPRoundingMode(fpcr);
 boolean done;
 bits(2*N) result;

 bits(2*N) addend_s = addend : Zeros(N);
 bits(2*N) op1_s = op1 : Zeros(N);
 bits(2*N) op2_s = op2 : Zeros(N);
 (typeA,signA,valueA) = FPUnpack(addend_s, fpcr, fpexc);
 (type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend_s, op1_s, op2_s, fpcr, fpexc);

 if !(IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1') then
 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN(fpcr, 2*N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity);
 zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero
 // by infinity and additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN(fpcr, 2*N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0', 2*N);
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1', 2*N);

 // Cases where the result is exactly zero and its sign is not determined by the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14210
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA, 2*N);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, 2*N);
 else
 result = FPRoundBF(result_value, fpcr, rounding, fpexc, 2*N);

 if !invalidop && fpexc then
 FPProcessDenorms3(typeA, type1, type2, 2*N, fpcr);

 return result<2*N-1:N>;

shared/functions/float/bfloat/BFMulAddH

 // BFMulAddH()
 // ===========
 // Used by BFMLALB, BFMLALT, BFMLSLB and BFMLSLT instructions.

 bits(N) BFMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCR_Type fpcr_in)
 assert N == 32;
 bits(N) value1 = op1 : Zeros(N DIV 2);
 bits(N) value2 = op2 : Zeros(N DIV 2);
 FPCR_Type fpcr = fpcr_in;
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && fpcr.AH == '1'; // When TRUE:
 boolean fpexc = !altfp; // Do not generate floating
 // point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and
 // output to zero
 if altfp then fpcr.RMode = '00'; // Use RNE rounding mode
 return FPMulAdd(addend, value1, value2, fpcr, fpexc);

shared/functions/float/bfloat/BFMulAddH_ZA

 // BFMulAddH_ZA()
 // ==============
 // Used by SME2 ZA-targeting BFMLAL and BFMLSL instructions.

 bits(N) BFMulAddH_ZA(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCR_Type fpcr)
 assert N == 32;
 bits(N) value1 = op1 : Zeros(N DIV 2);
 bits(N) value2 = op2 : Zeros(N DIV 2);
 return FPMulAdd_ZA(addend, value1, value2, fpcr);

shared/functions/float/bfloat/BFMulAdd_ZA

 // BFMulAdd_ZA()
 // =============
 // Non-widening BFloat16 fused multiply-add used by SME2 ZA-targeting instructions.

 bits(N) BFMulAdd_ZA(bits(N) addend, bits(N) op1, bits(N) op2, FPCR_Type fpcr_in)
 boolean fpexc = FALSE;
 FPCR_Type fpcr = fpcr_in;
 fpcr.DN = '1'; // Generate default NaN values
 return BFMulAdd(addend, op1, op2, fpcr, fpexc);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14211
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/bfloat/BFMulH

 // BFMulH()
 // ========
 // BFloat16 widening multiply to single-precision following BFloat16
 // computation behaviors.

 bits(2*N) BFMulH(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N == 16;
 bits(2*N) result;

 (type1,sign1,value1) = BFUnpack(op1);
 (type2,sign2,value2) = BFUnpack(op2);
 if type1 == FPType_QNaN || type2 == FPType_QNaN then
 result = FPDefaultNaN(fpcr, 2*N);
 else
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(fpcr, 2*N);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2, 2*N);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2, 2*N);
 else
 result = BFRound(value1*value2, 2*N);

 return result;

shared/functions/float/bfloat/BFNeg

 // BFNeg()
 // =======

 bits(N) BFNeg(bits(N) op)
 assert N == 16;
 boolean honor_altfp = TRUE; // Honor alternate handling
 return BFNeg(op, honor_altfp);

 // BFNeg()
 // =======

 bits(N) BFNeg(bits(N) op, boolean honor_altfp)

 assert N == 16;
 if honor_altfp && !UsingAArch32() && IsFeatureImplemented(FEAT_AFP) then
 if FPCR.AH == '1' then
 boolean fpexc = FALSE;
 boolean isbfloat16 = TRUE;
 (fptype, -, -) = FPUnpackBase(op, FPCR, fpexc, isbfloat16);
 if fptype IN {FPType_SNaN, FPType_QNaN} then

 return op; // When FPCR.AH=1, sign of NaN has no consequence

 return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/bfloat/BFRound

 // BFRound()
 // =========
 // Converts a real number OP into a single-precision value using the
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14212
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Round to Odd rounding mode and following BFloat16 computation behaviors.

 bits(N) BFRound(real op, integer N)

 assert N == 32;
 assert op != 0.0;
 bits(N) result;

 // Format parameters - minimum exponent, numbers of exponent and fraction bits.
 constant integer minimum_exp = -126; constant integer E = 8; constant integer F = 23;

 // Split value into sign, unrounded mantissa and exponent.
 bit sign;
 real mantissa;
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // Fixed Flush-to-zero.
 if exponent < minimum_exp then
 return FPZero(sign, N);

 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max((exponent - minimum_exp) + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Round to Odd
 if error != 0.0 then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if biased_exp >= 2^E - 1 then
 result = FPInfinity(sign, N); // Overflows generate appropriately-signed Infinity
 else
 result = sign : biased_exp<(N-2)-F:0> : int_mant<F-1:0>;

 return result;

shared/functions/float/bfloat/BFSub

 // BFSub()
 // =======
 // Non-widening BFloat16 subtraction used by SVE2 instructions.

 bits(N) BFSub(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE;
 return BFSub(op1, op2, fpcr, fpexc);

 // BFSub()
 // =======
 // Non-widening BFloat16 subtraction following computational behaviors
 // corresponding to instructions that read and write BFloat16 values.
 // Calculates op1 - op2.
 // The 'fpcr' argument supplies the FPCR control bits.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14213
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(N) BFSub(bits(N) op1, bits(N) op2, FPCR_Type fpcr, boolean fpexc)

 assert N == 16;
 FPRounding rounding = FPRoundingMode(fpcr);
 boolean done;
 bits(2*N) result;

 bits(2*N) op1_s = op1 : Zeros(N);
 bits(2*N) op2_s = op2 : Zeros(N);
 (type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

 (done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr, fpexc);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(fpcr, 2*N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0', 2*N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1', 2*N);
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1, 2*N);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, 2*N);
 else
 result = FPRoundBF(result_value, fpcr, rounding, fpexc, 2*N);

 if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

 return result<2*N-1:N>;

shared/functions/float/bfloat/BFSub_ZA

 // BFSub_ZA()
 // ==========
 // Non-widening BFloat16 subtraction used by SME2 ZA-targeting instructions.

 bits(N) BFSub_ZA(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in)
 boolean fpexc = FALSE;
 FPCR_Type fpcr = fpcr_in;
 fpcr.DN = '1'; // Generate default NaN values
 return BFSub(op1, op2, fpcr, fpexc);

shared/functions/float/bfloat/BFUnpack

 // BFUnpack()
 // ==========
 // Unpacks a BFloat16 or single-precision value into its type,
 // sign bit and real number that it represents.
 // The real number result has the correct sign for numbers and infinities,
 // is very large in magnitude for infinities, and is 0.0 for NaNs.
 // (These values are chosen to simplify the description of
 // comparisons and conversions.)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14214
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (FPType, bit, real) BFUnpack(bits(N) fpval)

 assert N IN {16,32};

 bit sign;
 bits(8) exp;
 bits(23) frac;
 if N == 16 then
 sign = fpval<15>;
 exp = fpval<14:7>;
 frac = fpval<6:0> : Zeros(16);
 else // N == 32
 sign = fpval<31>;
 exp = fpval<30:23>;
 frac = fpval<22:0>;

 FPType fptype;
 real value;
 if IsZero(exp) then
 fptype = FPType_Zero; value = 0.0; // Fixed Flush to Zero
 elsif IsOnes(exp) then
 if IsZero(frac) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else // no SNaN for BF16 arithmetic
 fptype = FPType_QNaN; value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp)-127) * (1.0 + Real(UInt(frac)) * 2.0^-23);

 if sign == '1' then value = -value;

 return (fptype, sign, value);

shared/functions/float/bfloat/BFZero

 // BFZero()
 // ========

 bits(N) BFZero(bit sign, integer N)
 assert N == 16;
 constant integer E = 8;
 constant integer F = N - (E + 1);
 return sign : Zeros(E) : Zeros(F);

shared/functions/float/bfloat/FPAdd_BF16

 // FPAdd_BF16()
 // ============
 // Single-precision add following BFloat16 computation behaviors.

 bits(N) FPAdd_BF16(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N == 32;
 bits(N) result;

 (type1,sign1,value1) = BFUnpack(op1);
 (type2,sign2,value2) = BFUnpack(op2);
 if type1 == FPType_QNaN || type2 == FPType_QNaN then
 result = FPDefaultNaN(fpcr, N);
 else
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14215
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN(fpcr, N);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0', N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1', N);
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1, N);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then
 result = FPZero('0', N); // Positive sign when Round to Odd
 else
 result = BFRound(result_value, N);

 return result;

shared/functions/float/bfloat/FPConvertBF

 // FPConvertBF()
 // =============
 // Converts a single-precision OP to BFloat16 value using the
 // Round to Nearest Even rounding mode when executed from AArch64 state and
 // FPCR.AH == '1', otherwise rounding is controlled by FPCR/FPSCR.

 bits(N DIV 2) FPConvertBF(bits(N) op, FPCR_Type fpcr_in, FPRounding rounding_in)

 assert N == 32;
 constant integer halfsize = N DIV 2;
 FPCR_Type fpcr = fpcr_in;
 FPRounding rounding = rounding_in;
 bits(N) result; // BF16 value in top 16 bits
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 if altfp then rounding = FPRounding_TIEEVEN; // Use RNE rounding mode

 // Unpack floating-point operand, with always flush-to-zero if fpcr.AH == '1'.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 if fpcr.DN == '1' then
 result = FPDefaultNaN(fpcr, N);
 else
 result = FPConvertNaN(op, N);
 if fptype == FPType_SNaN then
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fptype == FPType_Zero then
 result = FPZero(sign, N);
 else
 result = FPRoundBF(value, fpcr, rounding, fpexc, N);

 // Returns correctly rounded BF16 value from top 16 bits
 return result<(2*halfsize)-1:halfsize>;

 // FPConvertBF()
 // =============
 // Converts a single-precision operand to BFloat16 value.

 bits(N DIV 2) FPConvertBF(bits(N) op, FPCR_Type fpcr)
 return FPConvertBF(op, fpcr, FPRoundingMode(fpcr));
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14216
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/bfloat/FPRoundBF

 // FPRoundBF()
 // ===========
 // Converts a real number OP into a BFloat16 value using the supplied
 // rounding mode RMODE. The 'fpexc' argument controls the generation of
 // floating-point exceptions.

 bits(N) FPRoundBF(real op, FPCR_Type fpcr, FPRounding rounding, boolean fpexc, integer N)
 assert N == 32;
 boolean isbfloat16 = TRUE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

shared/functions/float/fixedtofp/FixedToFP

 // FixedToFP()
 // ===========

 // Convert M-bit fixed point 'op' with FBITS fractional bits to
 // N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCR_Type fpcr,
 FPRounding rounding, integer N)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(N) result;
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Correct signed-ness
 int_operand = Int(op, unsigned);

 // Scale by fractional bits and generate a real value
 real_operand = Real(int_operand) / 2.0^fbits;

 if real_operand == 0.0 then
 result = FPZero('0', N);
 else
 result = FPRound(real_operand, fpcr, rounding, N);

 return result;

shared/functions/float/fpabs/FPAbs

 // FPAbs()
 // =======

 bits(N) FPAbs(bits(N) op, FPCR_Type fpcr)

 assert N IN {16,32,64};
 if !UsingAArch32() && IsFeatureImplemented(FEAT_AFP) then
 if fpcr.AH == '1' then
 (fptype, -, -) = FPUnpack(op, fpcr, FALSE);
 if fptype IN {FPType_SNaN, FPType_QNaN} then
 return op; // When fpcr.AH=1, sign of NaN has no consequence

 return '0' : op<N-2:0>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14217
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpadd/FPAdd

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPAdd(op1, op2, fpcr, fpexc);

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCR_Type fpcr, boolean fpexc)

 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0', N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1', N);
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1, N);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 if fpexc then FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpadd/FPAdd_ZA

 // FPAdd_ZA()
 // ==========
 // Calculates op1+op2 for SME2 ZA-targeting instructions.

 bits(N) FPAdd_ZA(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 boolean fpexc = FALSE; // Do not generate floating-point exceptions
 fpcr.DN = '1'; // Generate default NaN values
 return FPAdd(op1, op2, fpcr, fpexc);

shared/functions/float/fpcompare/FPCompare

 // FPCompare()
 // ===========

 bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCR_Type fpcr)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14218
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 bits(4) result;
 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = '0011';
 if type1 == FPType_SNaN || type2 == FPType_SNaN || signal_nans then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = '0110';
 elsif value1 < value2 then
 result = '1000';
 else // value1 > value2
 result = '0010';

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpcompareeq/FPCompareEQ

 // FPCompareEQ()
 // =============

 boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 boolean result;
 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 == value2);
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpcomparege/FPCompareGE

 // FPCompareGE()
 // =============

 boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 boolean result;
 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);
 FPProcessDenorms(type1, type2, N, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14219
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fpcomparegt/FPCompareGT

 // FPCompareGT()
 // =============

 boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 boolean result;
 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);
 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpconvert/FPConvert

 // FPConvert()
 // ===========

 // Convert floating point 'op' with N-bit precision to M-bit precision,
 // with rounding controlled by ROUNDING.
 // This is used by the FP-to-FP conversion instructions and so for
 // half-precision data ignores FZ16, but observes AHP.

 bits(M) FPConvert(bits(N) op, FPCR_Type fpcr, FPRounding rounding, integer M)

 assert M IN {16,32,64};
 assert N IN {16,32,64};
 bits(M) result;

 // Unpack floating-point operand optionally with flush-to-zero.
 (fptype,sign,value) = FPUnpackCV(op, fpcr);

 alt_hp = (M == 16) && (fpcr.AHP == '1');

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 if alt_hp then
 result = FPZero(sign, M);
 elsif fpcr.DN == '1' then
 result = FPDefaultNaN(fpcr, M);
 else
 result = FPConvertNaN(op, M);
 if fptype == FPType_SNaN || alt_hp then
 FPProcessException(FPExc_InvalidOp,fpcr);
 elsif fptype == FPType_Infinity then
 if alt_hp then
 result = sign:Ones(M-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPInfinity(sign, M);
 elsif fptype == FPType_Zero then
 result = FPZero(sign, M);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14220
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 result = FPRoundCV(value, fpcr, rounding, M);
 FPProcessDenorm(fptype, N, fpcr);

 return result;

 // FPConvert()
 // ===========

 bits(M) FPConvert(bits(N) op, FPCR_Type fpcr, integer M)
 return FPConvert(op, fpcr, FPRoundingMode(fpcr), M);

shared/functions/float/fpconvertnan/FPConvertNaN

 // FPConvertNaN()
 // ==============
 // Converts a NaN of one floating-point type to another

 bits(M) FPConvertNaN(bits(N) op, integer M)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(M) result;
 bits(51) frac;

 sign = op<N-1>;

 // Unpack payload from input NaN
 case N of
 when 64 frac = op<50:0>;
 when 32 frac = op<21:0>:Zeros(29);
 when 16 frac = op<8:0>:Zeros(42);

 // Repack payload into output NaN, while
 // converting an SNaN to a QNaN.
 case M of
 when 64 result = sign:Ones(M-52):frac;
 when 32 result = sign:Ones(M-23):frac<50:29>;
 when 16 result = sign:Ones(M-10):frac<50:42>;

 return result;

shared/functions/float/fpcrtype/FPCR_Type

 type FPCR_Type;

shared/functions/float/fpdecoderm/FPDecodeRM

 // FPDecodeRM()
 // ============

 // Decode most common AArch32 floating-point rounding encoding.

 FPRounding FPDecodeRM(bits(2) rm)

 FPRounding result;
 case rm of
 when '00' result = FPRounding_TIEAWAY; // A
 when '01' result = FPRounding_TIEEVEN; // N
 when '10' result = FPRounding_POSINF; // P
 when '11' result = FPRounding_NEGINF; // M

 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14221
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpdecoderounding/FPDecodeRounding

 // FPDecodeRounding()
 // ==================

 // Decode floating-point rounding mode and common AArch64 encoding.

 FPRounding FPDecodeRounding(bits(2) rmode)
 case rmode of
 when '00' return FPRounding_TIEEVEN; // N
 when '01' return FPRounding_POSINF; // P
 when '10' return FPRounding_NEGINF; // M
 when '11' return FPRounding_ZERO; // Z

shared/functions/float/fpdefaultnan/FPDefaultNaN

 // FPDefaultNaN()
 // ==============

 bits(N) FPDefaultNaN(FPCR_Type fpcr, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 bit sign = if IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() then fpcr.AH else '0';

 bits(E) exp = Ones(E);
 bits(F) frac = '1':Zeros(F-1);

 return sign : exp : frac;

shared/functions/float/fpdiv/FPDiv

 // FPDiv()
 // =======

 bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

 if !done then
 inf1 = type1 == FPType_Infinity;
 inf2 = type2 == FPType_Infinity;
 zero1 = type1 == FPType_Zero;
 zero2 = type2 == FPType_Zero;

 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN(fpcr, N);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || zero2 then
 result = FPInfinity(sign1 EOR sign2, N);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif zero1 || inf2 then
 result = FPZero(sign1 EOR sign2, N);
 else
 result = FPRound(value1/value2, fpcr, N);

 if !zero2 then
 FPProcessDenorms(type1, type2, N, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14222
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fpdot/FPDot

 // FPDot()
 // =======
 // Calculates single-precision result of 2-way 16-bit floating-point dot-product
 // with a single rounding.
 // The 'fpcr' argument supplies the FPCR control bits and 'isbfloat16'
 // determines whether input operands are BFloat16 or half-precision type.
 // and 'fpexc' controls the generation of floating-point exceptions.

 bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,
 bits(N DIV 2) op2_b, FPCR_Type fpcr, boolean isbfloat16, integer N)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);

 bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,
 bits(N DIV 2) op2_b, FPCR_Type fpcr_in, boolean isbfloat16, boolean fpexc, integer N)
 FPCR_Type fpcr = fpcr_in;

 assert N == 32;
 bits(N) result;
 boolean done;
 fpcr.AHP = '0'; // Ignore alternative half-precision option
 rounding = FPRoundingMode(fpcr);

 (type1_a,sign1_a,value1_a) = FPUnpackBase(op1_a, fpcr, fpexc, isbfloat16);
 (type1_b,sign1_b,value1_b) = FPUnpackBase(op1_b, fpcr, fpexc, isbfloat16);
 (type2_a,sign2_a,value2_a) = FPUnpackBase(op2_a, fpcr, fpexc, isbfloat16);
 (type2_b,sign2_b,value2_b) = FPUnpackBase(op2_b, fpcr, fpexc, isbfloat16);

 inf1_a = (type1_a == FPType_Infinity); zero1_a = (type1_a == FPType_Zero);
 inf1_b = (type1_b == FPType_Infinity); zero1_b = (type1_b == FPType_Zero);
 inf2_a = (type2_a == FPType_Infinity); zero2_a = (type2_a == FPType_Zero);
 inf2_b = (type2_b == FPType_Infinity); zero2_b = (type2_b == FPType_Zero);

 (done,result) = FPProcessNaNs4(type1_a, type1_b, type2_a, type2_b,
 op1_a, op1_b, op2_a, op2_b, fpcr, fpexc, N);

 if !done then
 // Determine sign and type products will have if it does not cause an Invalid
 // Operation.
 signPa = sign1_a EOR sign2_a;
 signPb = sign1_b EOR sign2_b;
 infPa = inf1_a || inf2_a;
 infPb = inf1_b || inf2_b;
 zeroPa = zero1_a || zero2_a;
 zeroPb = zero1_b || zero2_b;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero
 // by infinity and additions of opposite-signed infinities.
 invalidop = ((inf1_a && zero2_a) || (zero1_a && inf2_a) ||
 (inf1_b && zero2_b) || (zero1_b && inf2_b) || (infPa && infPb && signPa != signPb));

 if invalidop then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infPa && signPa == '0') || (infPb && signPb == '0') then
 result = FPInfinity('0', N);
 elsif (infPa && signPa == '1') || (infPb && signPb == '1') then
 result = FPInfinity('1', N);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14223
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroPa && zeroPb && signPa == signPb then
 result = FPZero(signPa, N);

 // Otherwise calculate fused sum of products and round it.
 else
 result_value = (value1_a * value2_a) + (value1_b * value2_b);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 return result;

shared/functions/float/fpdot/FPDotAdd

 // FPDotAdd()
 // ==========
 // Half-precision 2-way dot-product and add to single-precision.

 bits(N) FPDotAdd(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
 bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCR_Type fpcr)
 assert N == 32;

 bits(N) prod;
 boolean isbfloat16 = FALSE;
 boolean fpexc = TRUE; // Generate floating-point exceptions
 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);
 result = FPAdd(addend, prod, fpcr, fpexc);

 return result;

shared/functions/float/fpdot/FPDotAdd_ZA

 // FPDotAdd_ZA()
 // =============
 // Half-precision 2-way dot-product and add to single-precision
 // for SME ZA-targeting instructions.

 bits(N) FPDotAdd_ZA(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
 bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 assert N == 32;

 bits(N) prod;
 boolean isbfloat16 = FALSE;
 boolean fpexc = FALSE; // Do not generate floating-point exceptions
 fpcr.DN = '1'; // Generate default NaN values
 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);
 result = FPAdd(addend, prod, fpcr, fpexc);

 return result;

shared/functions/float/fpexc/FPExc

 // FPExc
 // =====

 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14224
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpinfinity/FPInfinity

 // FPInfinity()
 // ============

 bits(N) FPInfinity(bit sign, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 bits(E) exp = Ones(E);
 bits(F) frac = Zeros(F);

 return sign : exp : frac;

shared/functions/float/fpmatmul/FPMatMulAdd

 // FPMatMulAdd()
 // =============
 //
 // Floating point matrix multiply and add to same precision matrix
 // result[2, 2] = addend[2, 2] + (op1[2, 2] * op2[2, 2])

 bits(N) FPMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, integer esize, FPCR_Type fpcr)

 assert N == esize * 2 * 2;
 bits(N) result;
 bits(esize) prod0, prod1, sum;

 for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, esize];
 prod0 = FPMul(Elem[op1, 2*i + 0, esize],
 Elem[op2, 2*j + 0, esize], fpcr);
 prod1 = FPMul(Elem[op1, 2*i + 1, esize],
 Elem[op2, 2*j + 1, esize], fpcr);
 sum = FPAdd(sum, FPAdd(prod0, prod1, fpcr), fpcr);
 Elem[result, 2*i + j, esize] = sum;

 return result;

shared/functions/float/fpmax/FPMax

 // FPMax()
 // =======

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 return FPMax(op1, op2, fpcr, altfp);

 // FPMax()
 // =======
 // Compare two inputs and return the larger value after rounding. The
 // 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
 // if the function should use alternative floating-point behavior.

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in, boolean altfp)

 assert N IN {16,32,64};
 boolean done;
 bits(N) result;
 FPCR_Type fpcr = fpcr_in;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14225
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
 // Alternate handling of zeros with differing sign
 return FPZero(sign2, N);
 elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
 // Alternate handling of NaN inputs
 FPProcessException(FPExc_InvalidOp, fpcr);
 return (if type2 == FPType_Zero then FPZero(sign2, N) else op2);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 FPType fptype;
 bit sign;
 real value;
 if value1 > value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fptype == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign, N);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 rounding = FPRoundingMode(fpcr);
 if altfp then // Denormal output is not flushed to zero
 fpcr.FZ = '0';
 fpcr.FZ16 = '0';

 result = FPRound(value, fpcr, rounding, TRUE, N);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

 // FPMaxNormal()
 // =============

 bits(N) FPMaxNormal(bit sign, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Ones(E-1):'0';
 frac = Ones(F);

 return sign : exp : frac;

shared/functions/float/fpmaxnum/FPMaxNum

 // FPMaxNum()
 // ==========

 bits(N) FPMaxNum(bits(N) op1_in, bits(N) op2_in, FPCR_Type fpcr)

 assert N IN {16,32,64};
 bits(N) op1 = op1_in;
 bits(N) op2 = op2_in;
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14226
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
 boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';

 if !(altfp && type1_nan && type2_nan) then
 // Treat a single quiet-NaN as -Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1', N);
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1', N);

 altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
 result = FPMax(op1, op2, fpcr, altfmaxfmin);

 return result;

shared/functions/float/fpmerge/IsMerging

 // IsMerging()
 // ===========
 // Returns TRUE if the output elements other than the lowest are taken from
 // the destination register.

 boolean IsMerging(FPCR_Type fpcr)
 bit nep = (if IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' &&
 !IsFullA64Enabled() then '0' else fpcr.NEP);
 return IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && nep == '1';

shared/functions/float/fpmin/FPMin

 // FPMin()
 // =======

 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 return FPMin(op1, op2, fpcr, altfp);

 // FPMin()
 // =======
 // Compare two operands and return the smaller operand after rounding. The
 // 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
 // if the function should use alternative behavior.

 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in, boolean altfp)

 assert N IN {16,32,64};
 boolean done;
 bits(N) result;
 FPCR_Type fpcr = fpcr_in;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
 // Alternate handling of zeros with differing sign
 return FPZero(sign2, N);
 elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
 // Alternate handling of NaN inputs
 FPProcessException(FPExc_InvalidOp, fpcr);
 return (if type2 == FPType_Zero then FPZero(sign2, N) else op2);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 FPType fptype;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14227
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bit sign;
 real value;
 FPRounding rounding;
 if value1 < value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fptype == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign, N);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 rounding = FPRoundingMode(fpcr);
 if altfp then // Denormal output is not flushed to zero
 fpcr.FZ = '0';
 fpcr.FZ16 = '0';

 result = FPRound(value, fpcr, rounding, TRUE, N);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpminnum/FPMinNum

 // FPMinNum()
 // ==========

 bits(N) FPMinNum(bits(N) op1_in, bits(N) op2_in, FPCR_Type fpcr)

 assert N IN {16,32,64};
 bits(N) op1 = op1_in;
 bits(N) op2 = op2_in;
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
 boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';

 if !(altfp && type1_nan && type2_nan) then
 // Treat a single quiet-NaN as +Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('0', N);
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('0', N);

 altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
 result = FPMin(op1, op2, fpcr, altfmaxfmin);

 return result;

shared/functions/float/fpmul/FPMul

 // FPMul()
 // =======

 bits(N) FPMul(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14228
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(fpcr, N);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2, N);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2, N);
 else
 result = FPRound(value1*value2, fpcr, N);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpmuladd/FPMulAdd

 // FPMulAdd()
 // ==========

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPMulAdd(addend, op1, op2, fpcr, fpexc);

 // FPMulAdd()
 // ==========
 //
 // Calculates addend + op1*op2 with a single rounding. The 'fpcr' argument
 // supplies the FPCR control bits, and 'fpexc' controls the generation of
 // floating-point exceptions.

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2,
 FPCR_Type fpcr, boolean fpexc)

 assert N IN {16,32,64};

 (typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 rounding = FPRoundingMode(fpcr);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

 if !(IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1') then
 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14229
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Non SNaN-generated Invalid Operation cases are multiplies of zero
 // by infinity and additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0', N);
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1', N);

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA, N);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 if !invalidop && fpexc then
 FPProcessDenorms3(typeA, type1, type2, N, fpcr);

 return result;

shared/functions/float/fpmuladd/FPMulAdd_ZA

 // FPMulAdd_ZA()
 // =============
 // Calculates addend + op1*op2 with a single rounding for SME ZA-targeting
 // instructions.

 bits(N) FPMulAdd_ZA(bits(N) addend, bits(N) op1, bits(N) op2, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 boolean fpexc = FALSE; // Do not generate floating-point exceptions
 fpcr.DN = '1'; // Generate default NaN values
 return FPMulAdd(addend, op1, op2, fpcr, fpexc);

shared/functions/float/fpmuladdh/FPMulAddH

 // FPMulAddH()
 // ===========
 // Calculates addend + op1*op2.

 bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPMulAddH(addend, op1, op2, fpcr, fpexc);

 // FPMulAddH()
 // ===========
 // Calculates addend + op1*op2.

 bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2,
 FPCR_Type fpcr, boolean fpexc)

 assert N == 32;
 rounding = FPRoundingMode(fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14230
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

 if !(IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1') then
 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
 // additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0', N);
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1', N);

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA, N);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 if !invalidop && fpexc then
 FPProcessDenorm(typeA, N, fpcr);

 return result;

shared/functions/float/fpmuladdh/FPMulAddH_ZA

 // FPMulAddH_ZA()
 // ==============
 // Calculates addend + op1*op2 for SME2 ZA-targeting instructions.

 bits(N) FPMulAddH_ZA(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 boolean fpexc = FALSE; // Do not generate floating-point exceptions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14231
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 fpcr.DN = '1'; // Generate default NaN values
 return FPMulAddH(addend, op1, op2, fpcr, fpexc);

shared/functions/float/fpmuladdh/FPProcessNaNs3H

 // FPProcessNaNs3H()
 // =================

 (boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
 FPCR_Type fpcr, boolean fpexc)

 assert N IN {32,64};

 bits(N) result;
 FPType type_nan;
 // When TRUE, use alternative NaN propagation rules.
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};
 if altfp then
 if (type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN) then
 type_nan = FPType_SNaN;
 else
 type_nan = FPType_QNaN;

 boolean done;
 if altfp && op1_nan && op2_nan && op3_nan then // <n> register NaN selected
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc), N);
 elsif altfp && op2_nan && (op1_nan || op3_nan) then // <n> register NaN selected
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc), N);
 elsif altfp && op3_nan && op1_nan then // <m> register NaN selected
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op3, fpcr, fpexc), N);
 elsif type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
 else
 done = FALSE; result = Zeros(N); // 'Don't care' result
 return (done, result);

shared/functions/float/fpmulx/FPMulX

 // FPMulX()
 // ========

 bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCR_Type fpcr)

 assert N IN {16,32,64};
 bits(N) result;
 boolean done;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14232
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo(sign1 EOR sign2, N);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2, N);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2, N);
 else
 result = FPRound(value1*value2, fpcr, N);

 FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpneg/FPNeg

 // FPNeg()
 // =======

 bits(N) FPNeg(bits(N) op, FPCR_Type fpcr)

 assert N IN {16,32,64};
 if !UsingAArch32() && IsFeatureImplemented(FEAT_AFP) then
 if fpcr.AH == '1' then
 (fptype, -, -) = FPUnpack(op, fpcr, FALSE);
 if fptype IN {FPType_SNaN, FPType_QNaN} then

 return op; // When fpcr.AH=1, sign of NaN has no consequence

 return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

 // FPOnePointFive()
 // ================

 bits(N) FPOnePointFive(bit sign, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-1);
 frac = '1':Zeros(F-1);
 result = sign : exp : frac;

 return result;

shared/functions/float/fpprocessdenorms/FPProcessDenorm

 // FPProcessDenorm()
 // =================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorm(FPType fptype, integer N, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14233
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if altfp && N != 16 && fptype == FPType_Denormal then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessdenorms/FPProcessDenorms

 // FPProcessDenorms()
 // ==================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorms(FPType type1, FPType type2, integer N, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal) then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessdenorms/FPProcessDenorms3

 // FPProcessDenorms3()
 // ===================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorms3(FPType type1, FPType type2, FPType type3, integer N, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||
 type3 == FPType_Denormal) then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessdenorms/FPProcessDenorms4

 // FPProcessDenorms4()
 // ===================
 // Handles denormal input in case of single-precision or double-precision
 // when using alternative floating-point mode.

 FPProcessDenorms4(FPType type1, FPType type2, FPType type3, FPType type4, integer N, FPCR_Type fpcr)
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||
 type3 == FPType_Denormal || type4 == FPType_Denormal) then
 FPProcessException(FPExc_InputDenorm, fpcr);

shared/functions/float/fpprocessexception/FPProcessException

 // FPProcessException()
 // ====================
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 FPProcessException(FPExc except, FPCR_Type fpcr)

 integer cumul;
 // Determine the cumulative exception bit number
 case except of
 when FPExc_InvalidOp cumul = 0;
 when FPExc_DivideByZero cumul = 1;
 when FPExc_Overflow cumul = 2;
 when FPExc_Underflow cumul = 3;
 when FPExc_Inexact cumul = 4;
 when FPExc_InputDenorm cumul = 7;
 enable = cumul + 8;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14234
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if (fpcr<enable> == '1' && (!IsFeatureImplemented(FEAT_SME) || PSTATE.SM == '0' ||
 IsFullA64Enabled())) then
 // Trapping of the exception enabled.
 // It is IMPLEMENTATION DEFINED whether the enable bit may be set at all,
 // and if so then how exceptions and in what order that they may be
 // accumulated before calling FPTrappedException().
 bits(8) accumulated_exceptions = GetAccumulatedFPExceptions();
 accumulated_exceptions<cumul> = '1';
 if boolean IMPLEMENTATION_DEFINED "Support trapping of floating-point exceptions" then
 if UsingAArch32() then
 AArch32.FPTrappedException(accumulated_exceptions);
 else
 is_ase = IsASEInstruction();
 AArch64.FPTrappedException(is_ase, accumulated_exceptions);
 else
 // The exceptions generated by this instruction are accumulated by the PE and
 // FPTrappedException is called later during its execution, before the next
 // instruction is executed. This field is cleared at the start of each FP instruction.
 SetAccumulatedFPExceptions(accumulated_exceptions);
 elsif UsingAArch32() then
 // Set the cumulative exception bit
 FPSCR<cumul> = '1';
 else
 // Set the cumulative exception bit
 FPSR<cumul> = '1';

 return;

shared/functions/float/fpprocessnan/FPProcessNaN

 // FPProcessNaN()
 // ==============

 bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPProcessNaN(fptype, op, fpcr, fpexc);

 // FPProcessNaN()
 // ==============
 // Handle NaN input operands, returning the operand or default NaN value
 // if fpcr.DN is selected. The 'fpcr' argument supplies the FPCR control bits.
 // The 'fpexc' argument controls the generation of exceptions, regardless of
 // whether 'fptype' is a signalling NaN or a quiet NaN.

 bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCR_Type fpcr, boolean fpexc)

 assert N IN {16,32,64};
 assert fptype IN {FPType_QNaN, FPType_SNaN};
 integer topfrac;

 case N of
 when 16 topfrac = 9;
 when 32 topfrac = 22;
 when 64 topfrac = 51;

 result = op;
 if fptype == FPType_SNaN then
 result<topfrac> = '1';
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 if fpcr.DN == '1' then // DefaultNaN requested
 result = FPDefaultNaN(fpcr, N);

 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14235
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpprocessnans/FPProcessNaNs

 // FPProcessNaNs()
 // ===============

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1,
 bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);

 // FPProcessNaNs()
 // ===============
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits and 'altfmaxfmin' controls
 // alternative floating-point behavior for FMAX, FMIN and variants. 'fpexc'
 // controls the generation of floating-point exceptions. Status information
 // is updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
 FPCR_Type fpcr, boolean fpexc)

 assert N IN {16,32,64};
 boolean done;
 bits(N) result;
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 boolean any_snan = type1 == FPType_SNaN || type2 == FPType_SNaN;
 FPType type_nan = if any_snan then FPType_SNaN else FPType_QNaN;

 if altfp && op1_nan && op2_nan then
 // <n> register NaN selected
 done = TRUE; result = FPProcessNaN(type_nan, op1, fpcr, fpexc);
 elsif type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 else
 done = FALSE; result = Zeros(N); // 'Don't care' result

 return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

 // FPProcessNaNs3()
 // ================

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPProcessNaNs3(type1, type2, type3, op1, op2, op3, fpcr, fpexc);

 // FPProcessNaNs3()
 // ================
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14236
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 //
 // The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
 // generation of floating-point exceptions. Status information is updated
 // directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCR_Type fpcr, boolean fpexc)

 assert N IN {16,32,64};
 bits(N) result;
 boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};

 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 FPType type_nan;
 if altfp then
 if type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN then
 type_nan = FPType_SNaN;
 else
 type_nan = FPType_QNaN;

 boolean done;
 if altfp && op1_nan && op2_nan && op3_nan then
 // <n> register NaN selected
 done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc);
 elsif altfp && op2_nan && (op1_nan || op3_nan) then
 // <n> register NaN selected
 done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc);
 elsif altfp && op3_nan && op1_nan then
 // <m> register NaN selected
 done = TRUE; result = FPProcessNaN(type_nan, op3, fpcr, fpexc);
 elsif type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);
 else
 done = FALSE; result = Zeros(N); // 'Don't care' result

 return (done, result);

shared/functions/float/fpprocessnans4/FPProcessNaNs4

 // FPProcessNaNs4()
 // ================
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits.
 // Status information is updated directly in the FPSR where appropriate.
 // The 'fpexc' controls the generation of floating-point exceptions.

 (boolean, bits(N)) FPProcessNaNs4(FPType type1, FPType type2, FPType type3, FPType type4,
 bits(N DIV 2) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
 bits(N DIV 2) op4, FPCR_Type fpcr, boolean fpexc, integer N)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14237
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert N == 32;

 bits(N) result;
 boolean done;
 // The FPCR.AH control does not affect these checks
 if type1 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc), N);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
 elsif type4 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc), N);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc), N);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
 elsif type4 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc), N);
 else
 done = FALSE; result = Zeros(N); // 'Don't care' result

 return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

 // FPRecipEstimate()
 // =================

 bits(N) FPRecipEstimate(bits(N) operand, FPCR_Type fpcr_in)

 assert N IN {16,32,64};
 FPCR_Type fpcr = fpcr_in;
 bits(N) result;
 boolean overflow_to_inf;
 // When using alternative floating-point behavior, do not generate
 // floating-point exceptions, flush denormal input and output to zero,
 // and use RNE rounding mode.
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 boolean fpexc = !altfp;
 if altfp then fpcr.<FIZ,FZ> = '11';
 if altfp then fpcr.RMode = '00';

 (fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

 FPRounding rounding = FPRoundingMode(fpcr);
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr, fpexc);
 elsif fptype == FPType_Infinity then
 result = FPZero(sign, N);
 elsif fptype == FPType_Zero then
 result = FPInfinity(sign, N);
 if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif (
 (N == 16 && Abs(value) < 2.0^-16) ||
 (N == 32 && Abs(value) < 2.0^-128) ||
 (N == 64 && Abs(value) < 2.0^-1024)
) then
 case rounding of
 when FPRounding_TIEEVEN
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14238
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO
 overflow_to_inf = FALSE;
 result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
 if fpexc then
 FPProcessException(FPExc_Overflow, fpcr);
 FPProcessException(FPExc_Inexact, fpcr);
 elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
 && (
 (N == 16 && Abs(value) >= 2.0^14) ||
 (N == 32 && Abs(value) >= 2.0^126) ||
 (N == 64 && Abs(value) >= 2.0^1022)
) then
 // Result flushed to zero of correct sign
 result = FPZero(sign, N);

 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 if fpexc then FPSR.UFC = '1';
 else
 // Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
 // calculate result exponent. Scaled value has copied sign bit,
 // exponent = 1022 = double-precision biased version of -1,
 // fraction = original fraction
 bits(52) fraction;
 integer exp;
 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 if fraction<51> == '0' then
 exp = -1;
 fraction = fraction<49:0>:'00';
 else
 fraction = fraction<50:0>:'0';

 integer scaled;
 boolean increasedprecision = N==32 && IsFeatureImplemented(FEAT_RPRES) && altfp;

 if !increasedprecision then
 scaled = UInt('1':fraction<51:44>);
 else
 scaled = UInt('1':fraction<51:41>);

 integer result_exp;
 case N of
 when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
 when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
 when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

 // Scaled is in range 256 .. 511 or 2048 .. 4095 range representing a
 // fixed-point number in range [0.5 .. 1.0].
 estimate = RecipEstimate(scaled, increasedprecision);

 // Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
 // fixed-point result in the range [1.0 .. 2.0].
 // Convert to scaled floating point result with copied sign bit,
 // high-order bits from estimate, and exponent calculated above.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14239
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if !increasedprecision then
 fraction = estimate<7:0> : Zeros(44);
 else
 fraction = estimate<11:0> : Zeros(40);

 if result_exp == 0 then
 fraction = '1' : fraction<51:1>;
 elsif result_exp == -1 then
 fraction = '01' : fraction<51:2>;
 result_exp = 0;

 case N of
 when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
 when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
 when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;

 return result;

shared/functions/float/fprecipestimate/RecipEstimate

 // RecipEstimate()
 // ===============
 // Compute estimate of reciprocal of 9-bit fixed-point number.
 //
 // a is in range 256 .. 511 or 2048 .. 4096 representing a number in
 // the range 0.5 <= x < 1.0.
 // increasedprecision determines if the mantissa is 8-bit or 12-bit.
 // result is in the range 256 .. 511 or 4096 .. 8191 representing a
 // number in the range 1.0 to 511/256 or 1.00 to 8191/4096.

 integer RecipEstimate(integer a_in, boolean increasedprecision)

 integer a = a_in;
 integer r;
 if !increasedprecision then
 assert 256 <= a && a < 512;
 a = a*2+1; // Round to nearest
 integer b = (2 ^ 19) DIV a;
 r = (b+1) DIV 2; // Round to nearest
 assert 256 <= r && r < 512;
 else
 assert 2048 <= a && a < 4096;
 a = a*2+1; // Round to nearest
 real real_val = Real(2^25)/Real(a);
 r = RoundDown(real_val);
 real error = real_val - Real(r);
 boolean round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
 if round_up then r = r+1;
 assert 4096 <= r && r < 8192;

 return r;

shared/functions/float/fprecpx/FPRecpX

 // FPRecpX()
 // =========

 bits(N) FPRecpX(bits(N) op, FPCR_Type fpcr_in)

 assert N IN {16,32,64};
 FPCR_Type fpcr = fpcr_in;
 boolean isbfloat16 = FALSE;
 constant (E, F, -) = FPBits(N, isbfloat16);
 bits(N) result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14240
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(E) exp;
 bits(E) max_exp;
 constant bits(F) frac = Zeros(F);

 boolean altfp = IsFeatureImplemented(FEAT_AFP) && fpcr.AH == '1';
 boolean fpexc = !altfp; // Generate no floating-point exceptions
 if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);
 exp = op<F+:E>;
 max_exp = Ones(E) - 1;

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr, fpexc);
 else
 if IsZero(exp) then // Zero and denormals
 result = ZeroExtend(sign:max_exp:frac, N);
 else // Infinities and normals
 result = ZeroExtend(sign:NOT(exp):frac, N);

 return result;

shared/functions/float/fpround/FPBits

 // FPBits()
 // ========
 // Returns the minimum exponent, numbers of exponent and fraction bits.

 (integer, integer, integer) FPBits(integer N, boolean isbfloat16)
 integer E;
 integer F;
 integer minimum_exp;
 if N == 16 then
 minimum_exp = -14; E = 5; F = 10;
 elsif N == 32 && isbfloat16 then
 minimum_exp = -126; E = 8; F = 7;
 elsif N == 32 then
 minimum_exp = -126; E = 8; F = 23;
 else // N == 64
 minimum_exp = -1022; E = 11; F = 52;

 return (E, F, minimum_exp);

shared/functions/float/fpround/FPRound

 // FPRound()
 // =========
 // Generic conversion from precise, unbounded real data type to IEEE format.

 bits(N) FPRound(real op, FPCR_Type fpcr, integer N)
 return FPRound(op, fpcr, FPRoundingMode(fpcr), N);

 // FPRound()
 // =========
 // For directed FP conversion, includes an explicit 'rounding' argument.

 bits(N) FPRound(real op, FPCR_Type fpcr_in, FPRounding rounding, integer N)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPRound(op, fpcr_in, rounding, fpexc, N);

 // FPRound()
 // =========
 // For AltFP, includes an explicit FPEXC argument to disable exception
 // generation and switches off Arm alternate half-precision mode.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14241
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(N) FPRound(real op, FPCR_Type fpcr_in, FPRounding rounding, boolean fpexc, integer N)
 FPCR_Type fpcr = fpcr_in;
 fpcr.AHP = '0';
 boolean isbfloat16 = FALSE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

shared/functions/float/fpround/FPRoundBase

 // FPRoundBase()
 // =============
 // For BFloat16, includes an explicit 'isbfloat16' argument.

 bits(N) FPRoundBase(real op, FPCR_Type fpcr, FPRounding rounding, boolean isbfloat16, integer N)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

 // FPRoundBase()
 // =============
 // Convert a real number 'op' into an N-bit floating-point value using the
 // supplied rounding mode 'rounding'.
 //
 // The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
 // generation of floating-point exceptions. Status information is updated
 // directly in the FPSR where appropriate.

 bits(N) FPRoundBase(real op, FPCR_Type fpcr, FPRounding rounding,
 boolean isbfloat16, boolean fpexc, integer N)

 assert N IN {16,32,64};
 assert op != 0.0;
 assert rounding != FPRounding_TIEAWAY;
 bits(N) result;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 constant (E, F, minimum_exp) = FPBits(N, isbfloat16);

 // Split value into sign, unrounded mantissa and exponent.
 bit sign;
 real mantissa;
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // When TRUE, detection of underflow occurs after rounding and the test for a
 // denormalized number for single and double precision values occurs after rounding.
 altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';

 // Deal with flush-to-zero before rounding if FPCR.AH != '1'.
 if (!altfp && ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
 exponent < minimum_exp) then
 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 if fpexc then FPSR.UFC = '1';
 return FPZero(sign, N);

 biased_exp_unconstrained = (exponent - minimum_exp) + 1;
 int_mant_unconstrained = RoundDown(mantissa * 2.0^F);
 error_unconstrained = mantissa * 2.0^F - Real(int_mant_unconstrained);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14242
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max((exponent - minimum_exp) + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped. This applies before rounding if FPCR.AH != '1'.
 boolean trapped_UF = fpcr.UFE == '1' && (!InStreamingMode() || IsFullA64Enabled());
 if !altfp && biased_exp == 0 && (error != 0.0 || trapped_UF) then
 if fpexc then FPProcessException(FPExc_Underflow, fpcr);

 // Round result according to rounding mode.
 boolean round_up_unconstrained;
 boolean round_up;
 boolean overflow_to_inf;
 if altfp then

 case rounding of
 when FPRounding_TIEEVEN
 round_up_unconstrained = (error_unconstrained > 0.5 ||
 (error_unconstrained == 0.5 && int_mant_unconstrained<0> == '1'));
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up_unconstrained = (error_unconstrained != 0.0 && sign == '0');
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up_unconstrained = (error_unconstrained != 0.0 && sign == '1');
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up_unconstrained = FALSE;
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up_unconstrained then
 int_mant_unconstrained = int_mant_unconstrained + 1;
 if int_mant_unconstrained == 2^(F+1) then // Rounded up to next exponent
 biased_exp_unconstrained = biased_exp_unconstrained + 1;
 int_mant_unconstrained = int_mant_unconstrained DIV 2;

 // Deal with flush-to-zero and underflow after rounding if FPCR.AH == '1'.
 if biased_exp_unconstrained < 1 && int_mant_unconstrained != 0 then
 // the result of unconstrained rounding is less than the minimum normalized number
 if (fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16) then // Flush-to-zero
 if fpexc then
 FPSR.UFC = '1';
 FPProcessException(FPExc_Inexact, fpcr);
 return FPZero(sign, N);
 elsif error != 0.0 || trapped_UF then
 if fpexc then FPProcessException(FPExc_Underflow, fpcr);
 else // altfp == FALSE
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14243
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when FPRounding_ZERO, FPRounding_ODD
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1;
 int_mant = int_mant DIV 2;

 // Handle rounding to odd
 if error != 0.0 && rounding == FPRounding_ODD then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
 if fpexc then FPProcessException(FPExc_Overflow, fpcr);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

 // Deal with Inexact exception.
 if error != 0.0 then
 if fpexc then FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fpround/FPRoundCV

 // FPRoundCV()
 // ===========
 // Used for FP to FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 bits(N) FPRoundCV(real op, FPCR_Type fpcr_in, FPRounding rounding, integer N)
 FPCR_Type fpcr = fpcr_in;
 fpcr.FZ16 = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 boolean isbfloat16 = FALSE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

shared/functions/float/fprounding/FPRounding

 // FPRounding
 // ==========
 // The conversion and rounding functions take an explicit
 // rounding mode enumeration instead of booleans or FPCR values.

 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
 FPRounding_NEGINF, FPRounding_ZERO,
 FPRounding_TIEAWAY, FPRounding_ODD};
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14244
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fproundingmode/FPRoundingMode

 // FPRoundingMode()
 // ================
 // Return the current floating-point rounding mode.

 FPRounding FPRoundingMode(FPCR_Type fpcr)
 return FPDecodeRounding(fpcr.RMode);

shared/functions/float/fproundint/FPRoundInt

 // FPRoundInt()
 // ============

 // Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.
 // If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.

 bits(N) FPRoundInt(bits(N) op, FPCR_Type fpcr, FPRounding rounding, boolean exact)

 assert rounding != FPRounding_ODD;
 assert N IN {16,32,64};

 // When alternative floating-point support is TRUE, do not generate
 // Input Denormal floating-point exceptions.
 altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 fpexc = !altfp;

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 bits(N) result;
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fptype == FPType_Zero then
 result = FPZero(sign, N);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 boolean round_up;
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign, N);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO, N);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14245
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 // Generate inexact exceptions.
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fproundintn/FPRoundIntN

 // FPRoundIntN()
 // =============

 bits(N) FPRoundIntN(bits(N) op, FPCR_Type fpcr, FPRounding rounding, integer intsize)
 assert rounding != FPRounding_ODD;
 assert N IN {32,64};
 assert intsize IN {32, 64};
 integer exp;
 bits(N) result;
 boolean round_up;
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - (E + 1);

 // When alternative floating-point support is TRUE, do not generate
 // Input Denormal floating-point exceptions.
 altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 fpexc = !altfp;

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
 exp = 1022+intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign, N);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');
 when FPRounding_POSINF
 round_up = error != 0.0;
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = error != 0.0 && int_result < 0;
 when FPRounding_TIEAWAY
 round_up = error > 0.5 || (error == 0.5 && int_result >= 0);

 if round_up then int_result = int_result + 1;
 overflow = int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1);

 if overflow then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14246
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 exp = 1022 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 // This case shouldn't set Inexact.
 error = 0.0;

 else
 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign, N);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO, N);

 // Generate inexact exceptions.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

 // FPRSqrtEstimate()
 // =================

 bits(N) FPRSqrtEstimate(bits(N) operand, FPCR_Type fpcr_in)

 assert N IN {16,32,64};
 FPCR_Type fpcr = fpcr_in;

 // When using alternative floating-point behavior, do not generate
 // floating-point exceptions and flush denormal input to zero.
 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 boolean fpexc = !altfp;
 if altfp then fpcr.<FIZ,FZ> = '11';

 (fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

 bits(N) result;
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr, fpexc);
 elsif fptype == FPType_Zero then
 result = FPInfinity(sign, N);
 if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif sign == '1' then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPZero('0', N);
 else
 // Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
 // evenness or oddness of the exponent unchanged, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
 // biased version of -1 or -2, fraction = original fraction extended with zeros.

 bits(52) fraction;
 integer exp;
 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14247
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 while fraction<51> == '0' do
 fraction = fraction<50:0> : '0';
 exp = exp - 1;
 fraction = fraction<50:0> : '0';

 integer scaled;
 boolean increasedprecision = N==32 && IsFeatureImplemented(FEAT_RPRES) && altfp;

 if !increasedprecision then
 if exp<0> == '0' then
 scaled = UInt('1':fraction<51:44>);
 else
 scaled = UInt('01':fraction<51:45>);
 else
 if exp<0> == '0' then
 scaled = UInt('1':fraction<51:41>);
 else
 scaled = UInt('01':fraction<51:42>);

 integer result_exp;
 case N of
 when 16 result_exp = (44 - exp) DIV 2;
 when 32 result_exp = (380 - exp) DIV 2;
 when 64 result_exp = (3068 - exp) DIV 2;

 estimate = RecipSqrtEstimate(scaled, increasedprecision);

 // Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
 // fixed-point result in the range [1.0 .. 2.0].
 // Convert to scaled floating point result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.
 case N of
 when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
 when 32
 if !increasedprecision then
 result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);
 else
 result = '0' : result_exp<N-25:0> : estimate<11:0>:Zeros(11);
 when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

 return result;

shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

 // RecipSqrtEstimate()
 // ===================
 // Compute estimate of reciprocal square root of 9-bit fixed-point number.
 //
 // a_in is in range 128 .. 511 or 1024 .. 4095, with increased precision,
 // representing a number in the range 0.25 <= x < 1.0.
 // increasedprecision determines if the mantissa is 8-bit or 12-bit.
 // result is in the range 256 .. 511 or 4096 .. 8191, with increased precision,
 // representing a number in the range 1.0 to 511/256 or 8191/4096.

 integer RecipSqrtEstimate(integer a_in, boolean increasedprecision)

 integer a = a_in;
 integer r;
 if !increasedprecision then
 assert 128 <= a && a < 512;
 if a < 256 then // 0.25 .. 0.5
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14248
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 a = a*2+1; // a in units of 1/512 rounded to nearest
 else // 0.5 .. 1.0
 a = (a >> 1) << 1; // Discard bottom bit
 a = (a+1)*2; // a in units of 1/256 rounded to nearest
 integer b = 512;
 while a*(b+1)*(b+1) < 2^28 do
 b = b+1;
 // b = largest b such that b < 2^14 / sqrt(a)
 r = (b+1) DIV 2; // Round to nearest
 assert 256 <= r && r < 512;
 else
 assert 1024 <= a && a < 4096;
 real real_val;
 real error;
 integer int_val;

 if a < 2048 then // 0.25table 0.5
 a = a*2 + 1; // Take 10 bits of fraction and force a 1 at the bottom
 real_val = Real(a)/2.0;
 else // 0.5..1.0
 a = (a >> 1) << 1; // Discard bottom bit
 a = a+1; // Take 10 bits of fraction and force a 1 at the bottom
 real_val = Real(a);

 real_val = Sqrt(real_val); // This number will lie in the range of 32 to 64
 // Round to nearest even for a DP float number
 real_val = real_val * Real(2^47); // The integer is the size of the whole DP mantissa
 int_val = RoundDown(real_val); // Calculate rounding value
 error = real_val - Real(int_val);
 round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
 if round_up then int_val = int_val+1;

 real_val = Real(2^65)/Real(int_val); // Lies in the range 4096 <= real_val < 8192
 int_val = RoundDown(real_val); // Round that (to nearest even) to give integer
 error = real_val - Real(int_val);
 round_up = (error > 0.5 || (error == 0.5 && int_val<0> == '1'));
 if round_up then int_val = int_val+1;

 r = int_val;
 assert 4096 <= r && r < 8192;

 return r;

shared/functions/float/fpsqrt/FPSqrt

 // FPSqrt()
 // ========

 bits(N) FPSqrt(bits(N) op, FPCR_Type fpcr)

 assert N IN {16,32,64};
 (fptype,sign,value) = FPUnpack(op, fpcr);

 bits(N) result;
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign, N);
 elsif fptype == FPType_Infinity && sign == '0' then
 result = FPInfinity(sign, N);
 elsif sign == '1' then
 result = FPDefaultNaN(fpcr, N);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPRound(Sqrt(value), fpcr, N);
 FPProcessDenorm(fptype, N, fpcr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14249
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/float/fpsub/FPSub

 // FPSub()
 // =======

 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCR_Type fpcr)
 boolean fpexc = TRUE; // Generate floating-point exceptions
 return FPSub(op1, op2, fpcr, fpexc);

 // FPSub()
 // =======

 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCR_Type fpcr, boolean fpexc)

 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);

 (type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
 (type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(fpcr, N);
 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0', N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1', N);
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1, N);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, fpcr, rounding, fpexc, N);

 if fpexc then FPProcessDenorms(type1, type2, N, fpcr);

 return result;

shared/functions/float/fpsub/FPSub_ZA

 // FPSub_ZA()
 // ==========
 // Calculates op1-op2 for SME2 ZA-targeting instructions.

 bits(N) FPSub_ZA(bits(N) op1, bits(N) op2, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 boolean fpexc = FALSE; // Do not generate floating-point exceptions
 fpcr.DN = '1'; // Generate default NaN values
 return FPSub(op1, op2, fpcr, fpexc);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14250
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpthree/FPThree

 // FPThree()
 // =========

 bits(N) FPThree(bit sign, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '1':Zeros(E-1);
 frac = '1':Zeros(F-1);
 result = sign : exp : frac;

 return result;

shared/functions/float/fptofixed/FPToFixed

 // FPToFixed()
 // ===========

 // Convert N-bit precision floating point 'op' to M-bit fixed point with
 // FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

 bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCR_Type fpcr,
 FPRounding rounding, integer M)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // When alternative floating-point support is TRUE, do not generate
 // Input Denormal floating-point exceptions.
 altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1';
 fpexc = !altfp;

 // Unpack using fpcr to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

 // If NaN, set cumulative flag or take exception.
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Scale by fractional bits and produce integer rounded towards minus-infinity.
 value = value * 2.0^fbits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 boolean round_up;
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Generate saturated result and exceptions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14251
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fptofixedjs/FPToFixedJS

 // FPToFixedJS()
 // =============

 // Converts a double precision floating point input value
 // to a signed integer, with rounding to zero.

 (bits(N), bit) FPToFixedJS(bits(M) op, FPCR_Type fpcr, boolean Is64, integer N)

 assert M == 64 && N == 32;

 // If FALSE, never generate Input Denormal floating-point exceptions.
 fpexc_idenorm = !(IsFeatureImplemented(FEAT_AFP) && !UsingAArch32() && fpcr.AH == '1');

 // Unpack using fpcr to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr, fpexc_idenorm);

 z = '1';
 // If NaN, set cumulative flag or take exception.
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 z = '0';

 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.

 round_it_up = (error != 0.0 && int_result < 0);
 if round_it_up then int_result = int_result + 1;

 integer result;
 if int_result < 0 then
 result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));
 else
 result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));

 // Generate exceptions.
 if int_result < -(2^31) || int_result > (2^31)-1 then
 FPProcessException(FPExc_InvalidOp, fpcr);
 z = '0';
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
 z = '0';
 elsif sign == '1' && value == 0.0 then
 z = '0';
 elsif sign == '0' && value == 0.0 && !IsZero(op<51:0>) then
 z = '0';

 if fptype == FPType_Infinity then result = 0;

 return (result<N-1:0>, z);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14252
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fptwo/FPTwo

 // FPTwo()
 // =======

 bits(N) FPTwo(bit sign, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '1':Zeros(E-1);
 frac = Zeros(F);
 result = sign : exp : frac;

 return result;

shared/functions/float/fptype/FPType

 // FPType
 // ======

 enumeration FPType {FPType_Zero,
 FPType_Denormal,
 FPType_Nonzero,
 FPType_Infinity,
 FPType_QNaN,
 FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

 // FPUnpack()
 // ==========

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 fpcr.AHP = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);

 // FPUnpack()
 // ==========
 //
 // Used by data processing, int/fixed to FP and FP to int/fixed conversion instructions.
 // For half-precision data it ignores AHP, and observes FZ16.

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCR_Type fpcr_in, boolean fpexc)
 FPCR_Type fpcr = fpcr_in;
 fpcr.AHP = '0';
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);

shared/functions/float/fpunpack/FPUnpackBase

 // FPUnpackBase()
 // ==============

 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCR_Type fpcr, boolean fpexc)
 boolean isbfloat16 = FALSE;
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc, isbfloat16);
 return (fp_type, sign, value);

 // FPUnpackBase()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14253
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // ==============
 //
 // Unpack a floating-point number into its type, sign bit and the real number
 // that it represents. The real number result has the correct sign for numbers
 // and infinities, is very large in magnitude for infinities, and is 0.0 for
 // NaNs. (These values are chosen to simplify the description of comparisons
 // and conversions.)
 //
 // The 'fpcr_in' argument supplies FPCR control bits, 'fpexc' controls the
 // generation of floating-point exceptions and 'isbfloat16' determines whether
 // N=16 signifies BFloat16 or half-precision type. Status information is updated
 // directly in the FPSR where appropriate.

 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCR_Type fpcr_in, boolean fpexc,
 boolean isbfloat16)

 assert N IN {16,32,64};

 FPCR_Type fpcr = fpcr_in;

 boolean altfp = IsFeatureImplemented(FEAT_AFP) && !UsingAArch32();
 boolean fiz = altfp && fpcr.FIZ == '1';
 boolean fz = fpcr.FZ == '1' && !(altfp && fpcr.AH == '1');
 real value;
 bit sign;
 FPType fptype;

 if N == 16 && !isbfloat16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 if IsZero(frac16) || fpcr.FZ16 == '1' then
 fptype = FPType_Zero; value = 0.0;
 else
 fptype = FPType_Denormal; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
 elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
 if IsZero(frac16) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

 elsif N == 32 || isbfloat16 then
 bits(8) exp32;
 bits(23) frac32;
 if isbfloat16 then
 sign = fpval<15>;
 exp32 = fpval<14:7>;
 frac32 = fpval<6:0> : Zeros(16);
 else
 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;

 if IsZero(exp32) then
 if IsZero(frac32) then
 // Produce zero if value is zero.
 fptype = FPType_Zero; value = 0.0;
 elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
 fptype = FPType_Zero; value = 0.0;
 // Check whether to raise Input Denormal floating-point exception.
 // fpcr.FIZ==1 does not raise Input Denormal exception.
 if fz then
 // Denormalized input flushed to zero
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14254
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Denormal; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

 else // N == 64
 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;

 if IsZero(exp64) then
 if IsZero(frac64) then
 // Produce zero if value is zero.
 fptype = FPType_Zero; value = 0.0;
 elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
 fptype = FPType_Zero; value = 0.0;
 // Check whether to raise Input Denormal floating-point exception.
 // fpcr.FIZ==1 does not raise Input Denormal exception.
 if fz then
 // Denormalized input flushed to zero
 if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Denormal; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

 if sign == '1' then value = -value;

 return (fptype, sign, value);

shared/functions/float/fpunpack/FPUnpackCV

 // FPUnpackCV()
 // ============
 //
 // Used for FP to FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCR_Type fpcr_in)
 FPCR_Type fpcr = fpcr_in;
 fpcr.FZ16 = '0';
 boolean fpexc = TRUE; // Generate floating-point exceptions
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
 return (fp_type, sign, value);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14255
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/float/fpzero/FPZero

 // FPZero()
 // ========

 bits(N) FPZero(bit sign, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Zeros(E);
 frac = Zeros(F);
 result = sign : exp : frac;

 return result;

shared/functions/float/vfpexpandimm/VFPExpandImm

 // VFPExpandImm()
 // ==============

 bits(N) VFPExpandImm(bits(8) imm8, integer N)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = (N - E) - 1;
 sign = imm8<7>;
 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
 frac = imm8<3:0>:Zeros(F-4);
 result = sign : exp : frac;

 return result;

shared/functions/integer/AddWithCarry

 // AddWithCarry()
 // ==============
 // Integer addition with carry input, returning result and NZCV flags

 (bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
 bit n = result<N-1>;
 bit z = if IsZero(result) then '1' else '0';
 bit c = if UInt(result) == unsigned_sum then '0' else '1';
 bit v = if SInt(result) == signed_sum then '0' else '1';
 return (result, n:z:c:v);

shared/functions/interrupts/InterruptID

 // InterruptID
 // ===========

 enumeration InterruptID {
 InterruptID_PMUIRQ,
 InterruptID_COMMIRQ,
 InterruptID_CTIIRQ,
 InterruptID_COMMRX,
 InterruptID_COMMTX,
 InterruptID_CNTP,
 InterruptID_CNTHP,
 InterruptID_CNTHPS,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14256
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 InterruptID_CNTPS,
 InterruptID_CNTV,
 InterruptID_CNTHV,
 InterruptID_CNTHVS,
 InterruptID_PMBIRQ,
 };

shared/functions/interrupts/SetInterruptRequestLevel

 // SetInterruptRequestLevel()
 // ==========================
 // Set a level-sensitive interrupt to the specified level.

 SetInterruptRequestLevel(InterruptID id, Signal level);

shared/functions/memory/AArch64.BranchAddr

 // AArch64.BranchAddr()
 // ====================
 // Return the virtual address with tag bits removed.
 // This is typically used when the address will be stored to the program counter.

 bits(64) AArch64.BranchAddr(bits(64) vaddress, bits(2) el)
 assert !UsingAArch32();
 constant integer msbit = AddrTop(vaddress, TRUE, el);
 if msbit == 63 then
 return vaddress;
 elsif (el IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then
 return SignExtend(vaddress<msbit:0>, 64);
 else
 return ZeroExtend(vaddress<msbit:0>, 64);

shared/functions/memory/AccessDescriptor

 // AccessDescriptor
 // ================
 // Memory access or translation invocation details that steer architectural behavior

 type AccessDescriptor is (
 AccessType acctype,
 bits(2) el, // Acting EL for the access
 SecurityState ss, // Acting Security State for the access
 boolean acqsc, // Acquire with Sequential Consistency
 boolean acqpc, // FEAT_LRCPC: Acquire with Processor Consistency
 boolean relsc, // Release with Sequential Consistency
 boolean limitedordered, // FEAT_LOR: Acquire/Release with limited ordering
 boolean exclusive, // Access has Exclusive semantics
 boolean atomicop, // FEAT_LSE: Atomic read-modify-write access
 MemAtomicOp modop, // FEAT_LSE: The modification operation in the 'atomicop' access
 boolean nontemporal, // Hints the access is non-temporal
 boolean read, // Read from memory or only require read permissions
 boolean write, // Write to memory or only require write permissions
 CacheOp cacheop, // DC/IC: Cache operation
 CacheOpScope opscope, // DC/IC: Scope of cache operation
 CacheType cachetype, // DC/IC: Type of target cache
 boolean pan, // FEAT_PAN: The access is subject to PSTATE.PAN
 boolean transactional, // FEAT_TME: Access is part of a transaction
 boolean nonfault, // SVE: Non-faulting load
 boolean firstfault, // SVE: First-fault load
 boolean first, // SVE: First-fault load for the first active element
 boolean contiguous, // SVE: Contiguous load/store not gather load/scatter store
 boolean streamingsve, // SME: Access made by PE while in streaming SVE mode
 boolean ls64, // FEAT_LS64: Accesses by accelerator support loads/stores
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14257
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 boolean mops, // FEAT_MOPS: Memory operation (CPY/SET) accesses
 boolean rcw, // FEAT_THE: Read-Check-Write access
 boolean rcws, // FEAT_THE: Read-Check-Write Software access
 boolean toplevel, // FEAT_THE: Translation table walk access for TTB address
 VARange varange, // FEAT_THE: The corresponding TTBR supplying the TTB
 boolean a32lsmd, // A32 Load/Store Multiple Data access
 boolean tagchecked, // FEAT_MTE2: Access is tag checked
 boolean tagaccess, // FEAT_MTE: Access targets the tag bits
 boolean ispair, // Access represents a Load/Store pair access
 boolean highestaddressfirst, // FEAT_LRCPC3: Highest address is accessed first
 MPAMinfo mpam // FEAT_MPAM: MPAM information
)

shared/functions/memory/AccessType

 // AccessType
 // ==========

 enumeration AccessType {
 AccessType_IFETCH, // Instruction FETCH
 AccessType_GPR, // Software load/store to a General Purpose Register
 AccessType_ASIMD, // Software ASIMD extension load/store instructions
 AccessType_SVE, // Software SVE load/store instructions
 AccessType_SME, // Software SME load/store instructions
 AccessType_IC, // Sysop IC
 AccessType_DC, // Sysop DC (not DC {Z,G,GZ}VA)
 AccessType_DCZero, // Sysop DC {Z,G,GZ}VA
 AccessType_AT, // Sysop AT
 AccessType_NV2, // NV2 memory redirected access
 AccessType_SPE, // Statistical Profiling buffer access
 AccessType_GCS, // Guarded Control Stack access
 AccessType_TRBE, // Trace Buffer access
 AccessType_GPTW, // Granule Protection Table Walk
 AccessType_TTW // Translation Table Walk
 };

shared/functions/memory/AddrTop

 // AddrTop()
 // =========
 // Return the MSB number of a virtual address in the stage 1 translation regime for "el".
 // If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.

 integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 if ELUsingAArch32(regime) then
 // AArch32 translation regime.
 return 31;
 else
 if EffectiveTBI(address, IsInstr, el) == '1' then
 return 55;
 else
 return 63;

shared/functions/memory/AlignmentEnforced

 // AlignmentEnforced()
 // ===================
 // For the active translation regime, determine if alignment is required by all accesses

 boolean AlignmentEnforced()
 Regime regime = TranslationRegime(PSTATE.EL);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14258
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 bit A;
 case regime of
 when Regime_EL3 A = SCTLR_EL3.A;
 when Regime_EL30 A = SCTLR.A;
 when Regime_EL2 A = if ELUsingAArch32(EL2) then HSCTLR.A else SCTLR_EL2.A;
 when Regime_EL20 A = SCTLR_EL2.A;
 when Regime_EL10 A = if ELUsingAArch32(EL1) then SCTLR.A else SCTLR_EL1.A;
 otherwise Unreachable();

 return A == '1';

shared/functions/memory/Allocation

 constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
 constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
 constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
 constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

shared/functions/memory/BigEndian

 // BigEndian()
 // ===========

 boolean BigEndian(AccessType acctype)
 boolean bigend;
 if IsFeatureImplemented(FEAT_NV2) && acctype == AccessType_NV2 then
 return SCTLR_EL2.EE == '1';

 if UsingAArch32() then
 bigend = (PSTATE.E != '0');
 elsif PSTATE.EL == EL0 then
 bigend = (SCTLR_ELx[].E0E != '0');
 else
 bigend = (SCTLR_ELx[].EE != '0');
 return bigend;

shared/functions/memory/BigEndianReverse

 // BigEndianReverse()
 // ==================

 bits(width) BigEndianReverse (bits(width) value)
 assert width IN {8, 16, 32, 64, 128};
 if width == 8 then return value;
 constant integer half = width DIV 2;
 return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

shared/functions/memory/Cacheability

 constant bits(2) MemAttr_NC = '00'; // Non-cacheable
 constant bits(2) MemAttr_WT = '10'; // Write-through
 constant bits(2) MemAttr_WB = '11'; // Write-back

shared/functions/memory/CreateAccDescA32LSMD

 // CreateAccDescA32LSMD()
 // ======================
 // Access descriptor for A32 loads/store multiple general purpose registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14259
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 AccessDescriptor CreateAccDescA32LSMD(MemOp memop)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.a32lsmd = TRUE;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescASIMD

 // CreateAccDescASIMD()
 // ====================
 // Access descriptor for ASIMD&FP loads/stores

 AccessDescriptor CreateAccDescASIMD(MemOp memop, boolean nontemporal, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_ASIMD);

 accdesc.nontemporal = nontemporal;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.streamingsve = InStreamingMode();
 if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED
 "No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
 accdesc.tagchecked = FALSE;
 else
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescASIMDAcqRel

 // CreateAccDescASIMDAcqRel()
 // ==========================
 // Access descriptor for ASIMD&FP loads/stores with ordering semantics

 AccessDescriptor CreateAccDescASIMDAcqRel(MemOp memop, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_ASIMD);

 accdesc.acqpc = memop == MemOp_LOAD;
 accdesc.relsc = memop == MemOp_STORE;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.streamingsve = InStreamingMode();
 if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED
 "No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
 accdesc.tagchecked = FALSE;
 else
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14260
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/CreateAccDescAT

 // CreateAccDescAT()
 // =================
 // Access descriptor for address translation operations

 AccessDescriptor CreateAccDescAT(SecurityState ss, bits(2) el, ATAccess ataccess)
 AccessDescriptor accdesc = NewAccDesc(AccessType_AT);

 accdesc.el = el;
 accdesc.ss = ss;
 case ataccess of
 when ATAccess_Read
 (accdesc.read, accdesc.write, accdesc.pan) = (TRUE, FALSE, FALSE);
 when ATAccess_ReadPAN
 (accdesc.read, accdesc.write, accdesc.pan) = (TRUE, FALSE, TRUE);
 when ATAccess_Write
 (accdesc.read, accdesc.write, accdesc.pan) = (FALSE, TRUE, FALSE);
 when ATAccess_WritePAN
 (accdesc.read, accdesc.write, accdesc.pan) = (FALSE, TRUE, TRUE);
 when ATAccess_Any
 (accdesc.read, accdesc.write, accdesc.pan) = (FALSE, FALSE, FALSE);

 return accdesc;

shared/functions/memory/CreateAccDescAcqRel

 // CreateAccDescAcqRel()
 // =====================
 // Access descriptor for general purpose register loads/stores with ordering semantics

 AccessDescriptor CreateAccDescAcqRel(MemOp memop, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.acqsc = memop == MemOp_LOAD;
 accdesc.relsc = memop == MemOp_STORE;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescAtomicOp

 // CreateAccDescAtomicOp()
 // =======================
 // Access descriptor for atomic read-modify-write memory accesses

 AccessDescriptor CreateAccDescAtomicOp(MemAtomicOp modop, boolean acquire, boolean release,
 boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.acqsc = acquire;
 accdesc.relsc = release;
 accdesc.atomicop = TRUE;
 accdesc.modop = modop;
 accdesc.read = TRUE;
 accdesc.write = TRUE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14261
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return accdesc;

shared/functions/memory/CreateAccDescDC

 // CreateAccDescDC()
 // =================
 // Access descriptor for data cache operations

 AccessDescriptor CreateAccDescDC(CacheRecord cache)
 AccessDescriptor accdesc = NewAccDesc(AccessType_DC);

 accdesc.cacheop = cache.cacheop;
 accdesc.cachetype = cache.cachetype;
 accdesc.opscope = cache.opscope;

 return accdesc;

shared/functions/memory/CreateAccDescDCZero

 // CreateAccDescDCZero()
 // =====================
 // Access descriptor for data cache zero operations

 AccessDescriptor CreateAccDescDCZero(boolean tagaccess, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_DCZero);

 accdesc.write = TRUE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.tagaccess = tagaccess;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescExLDST

 // CreateAccDescExLDST()
 // =====================
 // Access descriptor for general purpose register loads/stores with exclusive semantics

 AccessDescriptor CreateAccDescExLDST(MemOp memop, boolean acqrel, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.acqsc = acqrel && memop == MemOp_LOAD;
 accdesc.relsc = acqrel && memop == MemOp_STORE;
 accdesc.exclusive = TRUE;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescGCS

 // CreateAccDescGCS()
 // ==================
 // Access descriptor for memory accesses to the Guarded Control Stack

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14262
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 AccessDescriptor CreateAccDescGCS(bits(2) el, MemOp memop)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GCS);

 accdesc.el = el;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;

 return accdesc;

shared/functions/memory/CreateAccDescGCSSS1

 // CreateAccDescGCSSS1()
 // =====================
 // Access descriptor for memory accesses to the Guarded Control Stack that switch stacks

 AccessDescriptor CreateAccDescGCSSS1(bits(2) el)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GCS);

 accdesc.el = el;
 accdesc.atomicop = TRUE;
 accdesc.modop = MemAtomicOp_GCSSS1;
 accdesc.read = TRUE;
 accdesc.write = TRUE;

 return accdesc;

shared/functions/memory/CreateAccDescGPR

 // CreateAccDescGPR()
 // ==================
 // Access descriptor for general purpose register loads/stores
 // without exclusive or ordering semantics

 AccessDescriptor CreateAccDescGPR(MemOp memop, boolean nontemporal, boolean privileged,
 boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.el = if !privileged then EL0 else PSTATE.EL;
 accdesc.nontemporal = nontemporal;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescGPTW

 // CreateAccDescGPTW()
 // ===================
 // Access descriptor for Granule Protection Table walks

 AccessDescriptor CreateAccDescGPTW(AccessDescriptor accdesc_in)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPTW);

 accdesc.el = accdesc_in.el;
 accdesc.ss = accdesc_in.ss;
 accdesc.read = TRUE;
 accdesc.mpam = accdesc_in.mpam;

 return accdesc;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14263
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/CreateAccDescIC

 // CreateAccDescIC()
 // =================
 // Access descriptor for instruction cache operations

 AccessDescriptor CreateAccDescIC(CacheRecord cache)
 AccessDescriptor accdesc = NewAccDesc(AccessType_IC);

 accdesc.cacheop = cache.cacheop;
 accdesc.cachetype = cache.cachetype;
 accdesc.opscope = cache.opscope;

 return accdesc;

shared/functions/memory/CreateAccDescIFetch

 // CreateAccDescIFetch()
 // =====================
 // Access descriptor for instruction fetches

 AccessDescriptor CreateAccDescIFetch()
 AccessDescriptor accdesc = NewAccDesc(AccessType_IFETCH);

 return accdesc;

shared/functions/memory/CreateAccDescLDAcqPC

 // CreateAccDescLDAcqPC()
 // ======================
 // Access descriptor for general purpose register loads with local ordering semantics

 AccessDescriptor CreateAccDescLDAcqPC(boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.acqpc = TRUE;
 accdesc.read = TRUE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescLDGSTG

 // CreateAccDescLDGSTG()
 // =====================
 // Access descriptor for tag memory loads/stores

 AccessDescriptor CreateAccDescLDGSTG(MemOp memop)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.tagaccess = TRUE;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14264
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/CreateAccDescLOR

 // CreateAccDescLOR()
 // ==================
 // Access descriptor for general purpose register loads/stores with limited ordering semantics

 AccessDescriptor CreateAccDescLOR(MemOp memop, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.acqsc = memop == MemOp_LOAD;
 accdesc.relsc = memop == MemOp_STORE;
 accdesc.limitedordered = TRUE;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescLS64

 // CreateAccDescLS64()
 // ===================
 // Access descriptor for accelerator-supporting memory accesses

 AccessDescriptor CreateAccDescLS64(MemOp memop, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.ls64 = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescMOPS

 // CreateAccDescMOPS()
 // ===================
 // Access descriptor for data memory copy and set instructions

 AccessDescriptor CreateAccDescMOPS(MemOp memop, boolean privileged, boolean nontemporal)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.el = if !privileged then EL0 else PSTATE.EL;
 accdesc.nontemporal = nontemporal;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.mops = TRUE;
 accdesc.tagchecked = TRUE;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescNV2

 // CreateAccDescNV2()
 // ==================
 // Access descriptor nested virtualization memory indirection loads/stores
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14265
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 AccessDescriptor CreateAccDescNV2(MemOp memop)
 AccessDescriptor accdesc = NewAccDesc(AccessType_NV2);

 accdesc.el = EL2;
 accdesc.ss = SecurityStateAtEL(EL2);
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescRCW

 // CreateAccDescRCW()
 // ==================
 // Access descriptor for atomic read-check-write memory accesses

 AccessDescriptor CreateAccDescRCW(MemAtomicOp modop, boolean soft, boolean acquire,
 boolean release, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.acqsc = acquire;
 accdesc.relsc = release;
 accdesc.rcw = TRUE;
 accdesc.rcws = soft;
 accdesc.atomicop = TRUE;
 accdesc.modop = modop;
 accdesc.read = TRUE;
 accdesc.write = TRUE;
 accdesc.pan = TRUE;
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescS1TTW

 // CreateAccDescS1TTW()
 // ====================
 // Access descriptor for stage 1 translation table walks

 AccessDescriptor CreateAccDescS1TTW(boolean toplevel, VARange varange, AccessDescriptor accdesc_in)
 AccessDescriptor accdesc = NewAccDesc(AccessType_TTW);

 accdesc.el = accdesc_in.el;
 accdesc.ss = accdesc_in.ss;
 accdesc.read = TRUE;
 accdesc.toplevel = toplevel;
 accdesc.varange = varange;
 accdesc.mpam = accdesc_in.mpam;

 return accdesc;

shared/functions/memory/CreateAccDescS2TTW

 // CreateAccDescS2TTW()
 // ====================
 // Access descriptor for stage 2 translation table walks

 AccessDescriptor CreateAccDescS2TTW(AccessDescriptor accdesc_in)
 AccessDescriptor accdesc = NewAccDesc(AccessType_TTW);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14266
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 accdesc.el = accdesc_in.el;
 accdesc.ss = accdesc_in.ss;
 accdesc.read = TRUE;
 accdesc.mpam = accdesc_in.mpam;

 return accdesc;

shared/functions/memory/CreateAccDescSME

 // CreateAccDescSME()
 // ==================
 // Access descriptor for SME loads/stores

 AccessDescriptor CreateAccDescSME(MemOp memop, boolean nontemporal, boolean contiguous,
 boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_SME);

 accdesc.nontemporal = nontemporal;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.contiguous = contiguous;
 accdesc.streamingsve = TRUE;
 if boolean IMPLEMENTATION_DEFINED "No tag checking of SME LDR & STR instructions" then
 accdesc.tagchecked = FALSE;
 else
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescSPE

 // CreateAccDescSPE()
 // ==================
 // Access descriptor for memory accesses by Statistical Profiling unit

 AccessDescriptor CreateAccDescSPE(SecurityState owning_ss, bits(2) owning_el)
 AccessDescriptor accdesc = NewAccDesc(AccessType_SPE);

 accdesc.el = owning_el;
 accdesc.ss = owning_ss;
 accdesc.write = TRUE;
 accdesc.mpam = GenMPAMatEL(AccessType_SPE, owning_el);

 return accdesc;

shared/functions/memory/CreateAccDescSTGMOPS

 // CreateAccDescSTGMOPS()
 // ======================
 // Access descriptor for tag memory set instructions

 AccessDescriptor CreateAccDescSTGMOPS(boolean privileged, boolean nontemporal)
 AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

 accdesc.el = if !privileged then EL0 else PSTATE.EL;
 accdesc.nontemporal = nontemporal;
 accdesc.write = TRUE;
 accdesc.pan = TRUE;
 accdesc.mops = TRUE;
 accdesc.tagaccess = TRUE;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14267
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return accdesc;

shared/functions/memory/CreateAccDescSVE

 // CreateAccDescSVE()
 // ==================
 // Access descriptor for general SVE loads/stores

 AccessDescriptor CreateAccDescSVE(MemOp memop, boolean nontemporal, boolean contiguous,
 boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_SVE);

 accdesc.nontemporal = nontemporal;
 accdesc.read = memop == MemOp_LOAD;
 accdesc.write = memop == MemOp_STORE;
 accdesc.pan = TRUE;
 accdesc.contiguous = contiguous;
 accdesc.streamingsve = InStreamingMode();
 if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED
 "No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
 accdesc.tagchecked = FALSE;
 else
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescSVEFF

 // CreateAccDescSVEFF()
 // ====================
 // Access descriptor for first-fault SVE loads

 AccessDescriptor CreateAccDescSVEFF(boolean contiguous, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_SVE);

 accdesc.read = TRUE;
 accdesc.pan = TRUE;
 accdesc.firstfault = TRUE;
 accdesc.first = TRUE;
 accdesc.contiguous = contiguous;
 accdesc.streamingsve = InStreamingMode();
 if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED
 "No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
 accdesc.tagchecked = FALSE;
 else
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescSVENF

 // CreateAccDescSVENF()
 // ====================
 // Access descriptor for non-fault SVE loads

 AccessDescriptor CreateAccDescSVENF(boolean contiguous, boolean tagchecked)
 AccessDescriptor accdesc = NewAccDesc(AccessType_SVE);

 accdesc.read = TRUE;
 accdesc.pan = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14268
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 accdesc.nonfault = TRUE;
 accdesc.contiguous = contiguous;
 accdesc.streamingsve = InStreamingMode();
 if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED
 "No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
 accdesc.tagchecked = FALSE;
 else
 accdesc.tagchecked = tagchecked;
 accdesc.transactional = IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0;

 return accdesc;

shared/functions/memory/CreateAccDescTRBE

 // CreateAccDescTRBE()
 // ===================
 // Access descriptor for memory accesses by Trace Buffer Unit

 AccessDescriptor CreateAccDescTRBE(SecurityState owning_ss, bits(2) owning_el)
 AccessDescriptor accdesc = NewAccDesc(AccessType_TRBE);

 accdesc.el = owning_el;
 accdesc.ss = owning_ss;
 accdesc.write = TRUE;

 return accdesc;

shared/functions/memory/CreateAccDescTTEUpdate

 // CreateAccDescTTEUpdate()
 // ========================
 // Access descriptor for translation table entry HW update

 AccessDescriptor CreateAccDescTTEUpdate(AccessDescriptor accdesc_in)
 AccessDescriptor accdesc = NewAccDesc(AccessType_TTW);

 accdesc.el = accdesc_in.el;
 accdesc.ss = accdesc_in.ss;
 accdesc.atomicop = TRUE;
 accdesc.modop = MemAtomicOp_CAS;
 accdesc.read = TRUE;
 accdesc.write = TRUE;
 accdesc.mpam = accdesc_in.mpam;

 return accdesc;

shared/functions/memory/DataMemoryBarrier

 // DataMemoryBarrier()
 // ===================

 DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DataSynchronizationBarrier

 // DataSynchronizationBarrier()
 // ============================

 DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types, boolean nXS);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14269
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/DeviceType

 // DeviceType
 // ==========
 // Extended memory types for Device memory.

 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

shared/functions/memory/EffectiveMTX

 // EffectiveMTX()
 // ==============
 // Returns the effective MTX in the AArch64 stage 1 translation regime for "el".

 bit EffectiveMTX(bits(64) address, boolean is_instr, bits(2) el)
 bit mtx;
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));

 if !IsFeatureImplemented(FEAT_MTE4) || is_instr then
 mtx = '0';
 else
 case regime of
 when EL1
 mtx = if address<55> == '1' then TCR_EL1.MTX1 else TCR_EL1.MTX0;
 when EL2
 if IsFeatureImplemented(FEAT_VHE) && ELIsInHost(el) then
 mtx = if address<55> == '1' then TCR_EL2.MTX1 else TCR_EL2.MTX0;
 else
 mtx = TCR_EL2.MTX;
 when EL3
 mtx = TCR_EL3.MTX;

 return mtx;

shared/functions/memory/EffectiveTBI

 // EffectiveTBI()
 // ==============
 // Returns the effective TBI in the AArch64 stage 1 translation regime for "el".

 bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
 bit tbi;
 bit tbid;
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));

 case regime of
 when EL1
 tbi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0;
 if IsFeatureImplemented(FEAT_PAuth) then
 tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBID0;
 when EL2
 if IsFeatureImplemented(FEAT_VHE) && ELIsInHost(el) then
 tbi = if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0;
 if IsFeatureImplemented(FEAT_PAuth) then
 tbid = if address<55> == '1' then TCR_EL2.TBID1 else TCR_EL2.TBID0;
 else
 tbi = TCR_EL2.TBI;
 if IsFeatureImplemented(FEAT_PAuth) then tbid = TCR_EL2.TBID;
 when EL3
 tbi = TCR_EL3.TBI;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14270
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if IsFeatureImplemented(FEAT_PAuth) then tbid = TCR_EL3.TBID;

 return (if (tbi == '1' && (!IsFeatureImplemented(FEAT_PAuth) || tbid == '0' ||
 !IsInstr)) then '1' else '0');

shared/functions/memory/EffectiveTCMA

 // EffectiveTCMA()
 // ===============
 // Returns the effective TCMA of a virtual address in the stage 1 translation regime for "el".

 bit EffectiveTCMA(bits(64) address, bits(2) el)
 bit tcma;
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));

 case regime of
 when EL1
 tcma = if address<55> == '1' then TCR_EL1.TCMA1 else TCR_EL1.TCMA0;
 when EL2
 if IsFeatureImplemented(FEAT_VHE) && ELIsInHost(el) then
 tcma = if address<55> == '1' then TCR_EL2.TCMA1 else TCR_EL2.TCMA0;
 else
 tcma = TCR_EL2.TCMA;
 when EL3
 tcma = TCR_EL3.TCMA;

 return tcma;

shared/functions/memory/ErrorState

 // ErrorState
 // ==========
 // The allowed error states that can be returned by memory and used by the PE.

 enumeration ErrorState {ErrorState_UC, // Uncontainable
 ErrorState_UEU, // Unrecoverable state
 ErrorState_UEO, // Restartable state
 ErrorState_UER, // Recoverable state
 ErrorState_CE}; // Corrected

shared/functions/memory/Fault

 // Fault
 // =====
 // Fault types.

 enumeration Fault {Fault_None,
 Fault_AccessFlag,
 Fault_Alignment,
 Fault_Background,
 Fault_Domain,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize,
 Fault_SyncExternal,
 Fault_SyncExternalOnWalk,
 Fault_SyncParity,
 Fault_SyncParityOnWalk,
 Fault_GPCFOnWalk,
 Fault_GPCFOnOutput,
 Fault_AsyncParity,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14271
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Fault_AsyncExternal,
 Fault_TagCheck,
 Fault_Debug,
 Fault_TLBConflict,
 Fault_BranchTarget,
 Fault_HWUpdateAccessFlag,
 Fault_Lockdown,
 Fault_Exclusive,
 Fault_ICacheMaint};

shared/functions/memory/FaultRecord

 // FaultRecord
 // ===========
 // Fields that relate only to Faults.

 type FaultRecord is (
 Fault statuscode, // Fault Status
 AccessDescriptor accessdesc, // Details of the faulting access
 FullAddress ipaddress, // Intermediate physical address
 GPCFRecord gpcf, // Granule Protection Check Fault record
 FullAddress paddress, // Physical address
 boolean gpcfs2walk, // GPC for a stage 2 translation table walk
 boolean s2fs1walk, // Is on a Stage 1 translation table walk
 boolean write, // TRUE for a write, FALSE for a read
 boolean s1tagnotdata, // TRUE for a fault due to tag not accessible at stage 1.
 boolean tagaccess, // TRUE for a fault due to NoTagAccess permission.
 integer level, // For translation, access flag and Permission faults
 bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
 boolean secondstage, // Is a Stage 2 abort
 boolean assuredonly, // Stage 2 Permission fault due to AssuredOnly attribute
 boolean toplevel, // Stage 2 Permission fault due to TopLevel
 boolean overlay, // Fault due to overlay permissions
 boolean dirtybit, // Fault due to dirty state
 bits(4) domain, // Domain number, AArch32 only
 ErrorState merrorstate, // Incoming error state from memory
 boolean maybe_false_match, // Watchpoint matches rounded range
 integer watchpt_num, // Matching watchpoint number
 bits(4) debugmoe // Debug method of entry, from AArch32 only
)

shared/functions/memory/FullAddress

 // FullAddress
 // ===========
 // Physical or Intermediate Physical Address type.
 // Although AArch32 only has access to 40 bits of physical or intermediate physical address space,
 // the full address type has 56 bits to allow interprocessing with AArch64.
 // The maximum physical or intermediate physical address size is IMPLEMENTATION DEFINED,
 // but never exceeds 56 bits.

 type FullAddress is (
 PASpace paspace,
 bits(56) address
)

shared/functions/memory/GPCF

 // GPCF
 // ====
 // Possible Granule Protection Check Fault reasons

 enumeration GPCF {
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14272
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 GPCF_None, // No fault
 GPCF_AddressSize, // GPT address size fault
 GPCF_Walk, // GPT walk fault
 GPCF_EABT, // Synchronous External abort on GPT fetch
 GPCF_Fail // Granule protection fault
 };

shared/functions/memory/GPCFRecord

 // GPCFRecord
 // ==========
 // Full details of a Granule Protection Check Fault

 type GPCFRecord is (
 GPCF gpf,
 integer level
)

shared/functions/memory/Hint_Prefetch

 // Hint_Prefetch()
 // ===============
 // Signals the memory system that memory accesses of type HINT to or from the specified address are
 // likely in the near future. The memory system may take some action to speed up the memory
 // accesses when they do occur, such as pre-loading the specified address into one or more
 // caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
 // stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
 // synchronous abort due to Alignment or Translation faults and the like. Its only effect on
 // software-visible state should be on caches and TLBs associated with address, which must be
 // accessible by reads, writes or execution, as defined in the translation regime of the current
 // Exception level. It is guaranteed not to access Device memory.
 // A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
 // instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
 // memory location that cannot be accessed by instruction fetches.

 Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/Hint_RangePrefetch

 // Hint_RangePrefetch()
 // ====================
 // Signals the memory system that data memory accesses from a specified range
 // of addresses are likely to occur in the near future. The memory system can
 // respond by taking actions that are expected to speed up the memory accesses
 // when they do occur, such as preloading the locations within the specified
 // address ranges into one or more caches.

 Hint_RangePrefetch(bits(64) address, integer length, integer stride,
 integer count, integer reuse, bits(6) operation);

shared/functions/memory/IsDataAccess

 // IsDataAccess()
 // ==============
 // Return TRUE if access is to data memory.

 boolean IsDataAccess(AccessType acctype)
 return !(acctype IN {AccessType_IFETCH,
 AccessType_TTW,
 AccessType_DC,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14273
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 AccessType_IC,
 AccessType_AT});

shared/functions/memory/IsSMEAccess

 // IsSMEAccess()
 // =============
 // Return TRUE if access is of SME load/stores.

 boolean IsSMEAccess(AccessDescriptor accdesc)
 return IsFeatureImplemented(FEAT_SME) && accdesc.acctype == AccessType_SME;

shared/functions/memory/IsSVEAccess

 // IsSVEAccess()
 // =============
 // Return TRUE if memory access is load/stores in an SVE mode.

 boolean IsSVEAccess(AccessDescriptor accdesc)
 return IsFeatureImplemented(FEAT_SVE) && accdesc.acctype == AccessType_SVE;

shared/functions/memory/MBReqDomain

 // MBReqDomain
 // ===========
 // Memory barrier domain.

 enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

shared/functions/memory/MBReqTypes

 // MBReqTypes
 // ==========
 // Memory barrier read/write.

 enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

shared/functions/memory/MPAM

 // MPAM Types
 // ==========

 type PARTIDtype = bits(16);

 type PMGtype = bits(8);

 enumeration PARTIDspaceType {
 PIdSpace_Secure,
 PIdSpace_Root,
 PIdSpace_Realm,
 PIdSpace_NonSecure
 };

 type MPAMinfo is (
 PARTIDspaceType mpam_sp,
 PARTIDtype partid,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14274
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 PMGtype pmg
)

shared/functions/memory/MemAtomicOp

 // MemAtomicOp
 // ===========
 // Atomic data processing instruction types.

 enumeration MemAtomicOp {
 MemAtomicOp_GCSSS1,
 MemAtomicOp_ADD,
 MemAtomicOp_BIC,
 MemAtomicOp_EOR,
 MemAtomicOp_ORR,
 MemAtomicOp_SMAX,
 MemAtomicOp_SMIN,
 MemAtomicOp_UMAX,
 MemAtomicOp_UMIN,
 MemAtomicOp_SWP,
 MemAtomicOp_CAS
 };

 enumeration CacheOp {
 CacheOp_Clean,
 CacheOp_Invalidate,
 CacheOp_CleanInvalidate
 };

 enumeration CacheOpScope {
 CacheOpScope_SetWay,
 CacheOpScope_PoU,
 CacheOpScope_PoC,
 CacheOpScope_PoE,
 CacheOpScope_PoP,
 CacheOpScope_PoDP,
 CacheOpScope_PoPA,
 CacheOpScope_ALLU,
 CacheOpScope_ALLUIS
 };

 enumeration CacheType {
 CacheType_Data,
 CacheType_Tag,
 CacheType_Data_Tag,
 CacheType_Instruction
 };

 enumeration CachePASpace {
 CPAS_NonSecure,
 CPAS_Any, // Applicable only for DC *SW / IC IALLU* in Root state:
 // match entries from any PA Space
 CPAS_RealmNonSecure, // Applicable only for DC *SW / IC IALLU* in Realm state:
 // match entries from Realm or Non-Secure PAS
 CPAS_Realm,
 CPAS_Root,
 CPAS_SecureNonSecure, // Applicable only for DC *SW / IC IALLU* in Secure state:
 // match entries from Secure or Non-Secure PAS
 CPAS_Secure
 };
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14275
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/MemAttrHints

 // MemAttrHints
 // ============
 // Attributes and hints for Normal memory.

 type MemAttrHints is (
 bits(2) attrs, // See MemAttr_*, Cacheability attributes
 bits(2) hints, // See MemHint_*, Allocation hints
 boolean transient
)

shared/functions/memory/MemOp

 // MemOp
 // =====
 // Memory access instruction types.

 enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

shared/functions/memory/MemType

 // MemType
 // =======
 // Basic memory types.

 enumeration MemType {MemType_Normal, MemType_Device};

shared/functions/memory/Memory

 // Memory Tag type
 // ===============

 enumeration MemTagType {
 MemTag_Untagged,
 MemTag_AllocationTagged,
 MemTag_CanonicallyTagged
 };

shared/functions/memory/MemoryAttributes

 // MemoryAttributes
 // ================
 // Memory attributes descriptor

 type MemoryAttributes is (
 MemType memtype,
 DeviceType device, // For Device memory types
 MemAttrHints inner, // Inner hints and attributes
 MemAttrHints outer, // Outer hints and attributes
 Shareability shareability, // Shareability attribute
 MemTagType tags, // MTE tag type for this memory.
 boolean notagaccess, // Allocation Tag access permission
 bit xs // XS attribute
)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14276
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/NewAccDesc

 // NewAccDesc()
 // ============
 // Create a new AccessDescriptor with initialised fields

 AccessDescriptor NewAccDesc(AccessType acctype)
 AccessDescriptor accdesc;

 accdesc.acctype = acctype;
 accdesc.el = PSTATE.EL;
 accdesc.ss = SecurityStateAtEL(PSTATE.EL);
 accdesc.acqsc = FALSE;
 accdesc.acqpc = FALSE;
 accdesc.relsc = FALSE;
 accdesc.limitedordered = FALSE;
 accdesc.exclusive = FALSE;
 accdesc.rcw = FALSE;
 accdesc.rcws = FALSE;
 accdesc.atomicop = FALSE;
 accdesc.nontemporal = FALSE;
 accdesc.read = FALSE;
 accdesc.write = FALSE;
 accdesc.pan = FALSE;
 accdesc.nonfault = FALSE;
 accdesc.firstfault = FALSE;
 accdesc.first = FALSE;
 accdesc.contiguous = FALSE;
 accdesc.streamingsve = FALSE;
 accdesc.ls64 = FALSE;
 accdesc.mops = FALSE;
 accdesc.a32lsmd = FALSE;
 accdesc.tagchecked = FALSE;
 accdesc.tagaccess = FALSE;
 accdesc.transactional = FALSE;
 accdesc.mpam = GenMPAMcurEL(acctype);
 accdesc.ispair = FALSE;
 accdesc.highestaddressfirst = FALSE;

 return accdesc;

shared/functions/memory/PASpace

 // PASpace
 // =======
 // Physical address spaces

 enumeration PASpace {
 PAS_NonSecure,
 PAS_Secure,
 PAS_Root,
 PAS_Realm
 };

shared/functions/memory/Permissions

 // Permissions
 // ===========
 // Access Control bits in translation table descriptors

 type Permissions is (
 bits(2) ap_table, // Stage 1 hierarchical access permissions
 bit xn_table, // Stage 1 hierarchical execute-never for single EL regimes
 bit pxn_table, // Stage 1 hierarchical privileged execute-never
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14277
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bit uxn_table, // Stage 1 hierarchical unprivileged execute-never
 bits(3) ap, // Stage 1 access permissions
 bit xn, // Stage 1 execute-never for single EL regimes
 bit uxn, // Stage 1 unprivileged execute-never
 bit pxn, // Stage 1 privileged execute-never
 bits(4) ppi, // Stage 1 privileged indirect permissions
 bits(4) upi, // Stage 1 unprivileged indirect permissions
 bit ndirty, // Stage 1 dirty state for indirect permissions scheme
 bits(4) s2pi, // Stage 2 indirect permissions
 bit s2dirty, // Stage 2 dirty state
 bits(4) po_index, // Stage 1 overlay permissions index
 bits(4) s2po_index, // Stage 2 overlay permissions index
 bits(2) s2ap, // Stage 2 access permissions
 bit s2tag_na, // Stage 2 tag access
 bit s2xnx, // Stage 2 extended execute-never
 bit s2xn // Stage 2 execute-never
)

shared/functions/memory/PhysMemRead

 // PhysMemRead()
 // =============
 // Returns the value read from memory, and a status.
 // Returned value is UNKNOWN if an External abort occurred while reading the
 // memory.
 // Otherwise the PhysMemRetStatus statuscode is Fault_None.

 (PhysMemRetStatus, bits(8*size)) PhysMemRead(AddressDescriptor desc, integer size,
 AccessDescriptor accdesc);

shared/functions/memory/PhysMemRetStatus

 // PhysMemRetStatus
 // ================
 // Fields that relate only to return values of PhysMem functions.

 type PhysMemRetStatus is (
 Fault statuscode, // Fault Status
 bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
 ErrorState merrorstate, // Optional error state returned on a physical memory access
 bits(64) store64bstatus // Status of 64B store
)

shared/functions/memory/PhysMemWrite

 // PhysMemWrite()
 // ==============
 // Writes the value to memory, and returns the status of the write.
 // If there is an External abort on the write, the PhysMemRetStatus indicates this.
 // Otherwise the statuscode of PhysMemRetStatus is Fault_None.

 PhysMemRetStatus PhysMemWrite(AddressDescriptor desc, integer size, AccessDescriptor accdesc,
 bits(8*size) value);

shared/functions/memory/PrefetchHint

 // PrefetchHint
 // ============
 // Prefetch hint types.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14278
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

shared/functions/memory/S1AccessControls

 // S1AccessControls
 // ================
 // Effective access controls defined by stage 1 translation

 type S1AccessControls is (
 bit r, // Stage 1 base read permission
 bit w, // Stage 1 base write permission
 bit x, // Stage 1 base execute permission
 bit gcs, // Stage 1 GCS permission
 boolean overlay, // Stage 1 overlay feature enabled
 bit or, // Stage 1 overlay read permission
 bit ow, // Stage 1 overlay write permission
 bit ox, // Stage 1 overlay execute permission
 bit wxn // Stage 1 write permission implies execute-never
)

shared/functions/memory/S2AccessControls

 // S2AccessControls
 // ================
 // Effective access controls defined by stage 2 translation

 type S2AccessControls is (
 bit r, // Stage 2 read permission.
 bit w, // Stage 2 write permission.
 bit x, // Stage 2 execute permission.
 bit r_rcw, // Stage 2 Read perms for RCW instruction.
 bit w_rcw, // Stage 2 Write perms for RCW instruction.
 bit r_mmu, // Stage 2 Read perms for TTW data.
 bit w_mmu, // Stage 2 Write perms for TTW data.
 bit toplevel0, // IPA as top level table for TTBR0_EL1.
 bit toplevel1, // IPA as top level table for TTBR1_EL1.
 boolean overlay, // Overlay enable
 bit or, // Stage 2 overlay read permission.
 bit ow, // Stage 2 overlay write permission.
 bit ox, // Stage 2 overlay execute permission.
 bit or_rcw, // Stage 2 overlay Read perms for RCW instruction.
 bit ow_rcw, // Stage 2 overlay Write perms for RCW instruction.
 bit or_mmu, // Stage 2 overlay Read perms for TTW data.
 bit ow_mmu, // Stage 2 overlay Write perms for TTW data.
)

shared/functions/memory/Shareability

 // Shareability
 // ============

 enumeration Shareability {
 Shareability_NSH,
 Shareability_ISH,
 Shareability_OSH
 };
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14279
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/memory/SpeculativeStoreBypassBarrierToPA

 // SpeculativeStoreBypassBarrierToPA()
 // ===================================

 SpeculativeStoreBypassBarrierToPA();

shared/functions/memory/SpeculativeStoreBypassBarrierToVA

 // SpeculativeStoreBypassBarrierToVA()
 // ===================================

 SpeculativeStoreBypassBarrierToVA();

shared/functions/memory/Tag

 constant integer LOG2_TAG_GRANULE = 4;

 constant integer TAG_GRANULE = 1 << LOG2_TAG_GRANULE;

shared/functions/memory/VARange

 // VARange
 // =======
 // Virtual address ranges

 enumeration VARange {
 VARange_LOWER,
 VARange_UPPER
 };

shared/functions/mpam/AltPARTIDspace

 // AltPARTIDspace()
 // ================
 // From the Security state, EL and ALTSP configuration, determine
 // whether to primary space or the alt space is selected and which
 // PARTID space is the alternative space. Return that alternative
 // PARTID space if selected or the primary space if not.

 PARTIDspaceType AltPARTIDspace(bits(2) el, SecurityState security,
 PARTIDspaceType primaryPIdSpace)
 case security of
 when SS_NonSecure
 assert el != EL3;
 return primaryPIdSpace;
 when SS_Secure
 assert el != EL3;
 if primaryPIdSpace == PIdSpace_NonSecure then
 return primaryPIdSpace;
 return AltPIdSecure(el, primaryPIdSpace);
 when SS_Root
 assert el == EL3;
 if MPAM3_EL3.ALTSP_EL3 == '1' then
 if MPAM3_EL3.RT_ALTSP_NS == '1' then
 return PIdSpace_NonSecure;
 else
 return PIdSpace_Secure;
 else
 return primaryPIdSpace;
 when SS_Realm
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14280
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 assert el != EL3;
 return AltPIdRealm(el, primaryPIdSpace);
 otherwise
 Unreachable();

shared/functions/mpam/AltPIdRealm

 // AltPIdRealm()
 // =============
 // Compute PARTID space as either the primary PARTID space or
 // alternative PARTID space in the Realm Security state.
 // Helper for AltPARTIDspace.

 PARTIDspaceType AltPIdRealm(bits(2) el, PARTIDspaceType primaryPIdSpace)
 PARTIDspaceType PIdSpace = primaryPIdSpace;
 case el of
 when EL0
 if ELIsInHost(EL0) then
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 elsif !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 when EL1
 if !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 when EL2
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 otherwise
 Unreachable();
 return PIdSpace;

shared/functions/mpam/AltPIdSecure

 // AltPIdSecure()
 // ==============
 // Compute PARTID space as either the primary PARTID space or
 // alternative PARTID space in the Secure Security state.
 // Helper for AltPARTIDspace.

 PARTIDspaceType AltPIdSecure(bits(2) el, PARTIDspaceType primaryPIdSpace)
 PARTIDspaceType PIdSpace = primaryPIdSpace;
 boolean el2en = EL2Enabled();
 case el of
 when EL0
 if el2en then
 if ELIsInHost(EL0) then
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 elsif !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 elsif MPAM3_EL3.ALTSP_HEN == '0' && MPAM3_EL3.ALTSP_HFC == '1' then
 PIdSpace = PIdSpace_NonSecure;
 when EL1
 if el2en then
 if !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 elsif MPAM3_EL3.ALTSP_HEN == '0' && MPAM3_EL3.ALTSP_HFC == '1' then
 PIdSpace = PIdSpace_NonSecure;
 when EL2
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14281
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Unreachable();
 return PIdSpace;

shared/functions/mpam/DefaultMPAMinfo

 // DefaultMPAMinfo()
 // =================
 // Returns default MPAM info. The partidspace argument sets
 // the PARTID space of the default MPAM information returned.

 MPAMinfo DefaultMPAMinfo(PARTIDspaceType partidspace)
 MPAMinfo DefaultInfo;
 DefaultInfo.mpam_sp = partidspace;
 DefaultInfo.partid = DefaultPARTID;
 DefaultInfo.pmg = DefaultPMG;
 return DefaultInfo;

shared/functions/mpam/DefaultPARTID

 constant PARTIDtype DefaultPARTID = 0<15:0>;

shared/functions/mpam/DefaultPMG

 constant PMGtype DefaultPMG = 0<7:0>;

shared/functions/mpam/GenMPAMatEL

 // GenMPAMatEL()
 // =============
 // Returns MPAMinfo for the specified EL.
 // May be called if MPAM is not implemented (but in an version that supports
 // MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
 // EL if can and use that to drive MPAM information generation. If mode
 // cannot be converted, MPAM is not implemented, or MPAM is disabled return
 // default MPAM information for the current security state.

 MPAMinfo GenMPAMatEL(AccessType acctype, bits(2) el)
 bits(2) mpamEL;
 boolean validEL = FALSE;
 SecurityState security = SecurityStateAtEL(el);
 boolean InD = FALSE;
 boolean InSM = FALSE;
 PARTIDspaceType pspace = PARTIDspaceFromSS(security);
 if pspace == PIdSpace_NonSecure && !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 if UsingAArch32() then
 (validEL, mpamEL) = ELFromM32(PSTATE.M);
 else
 mpamEL = if acctype == AccessType_NV2 then EL2 else el;
 validEL = TRUE;
 case acctype of
 when AccessType_IFETCH, AccessType_IC
 InD = TRUE;
 when AccessType_SME
 InSM = (boolean IMPLEMENTATION_DEFINED "Shared SMCU" ||
 boolean IMPLEMENTATION_DEFINED "MPAMSM_EL1 label precedence");
 when AccessType_ASIMD
 InSM = (IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' &&
 (boolean IMPLEMENTATION_DEFINED "Shared SMCU" ||
 boolean IMPLEMENTATION_DEFINED "MPAMSM_EL1 label precedence"));
 when AccessType_SVE
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14282
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 InSM = (IsFeatureImplemented(FEAT_SME) && PSTATE.SM == '1' &&
 (boolean IMPLEMENTATION_DEFINED "Shared SMCU" ||
 boolean IMPLEMENTATION_DEFINED "MPAMSM_EL1 label precedence"));
 otherwise
 // Other access types are DATA accesses
 InD = FALSE;
 if !validEL then
 return DefaultMPAMinfo(pspace);
 elsif IsFeatureImplemented(FEAT_RME) && MPAMIDR_EL1.HAS_ALTSP == '1' then
 // Substitute alternative PARTID space if selected
 pspace = AltPARTIDspace(mpamEL, security, pspace);
 if IsFeatureImplemented(FEAT_MPAMv0p1) && MPAMIDR_EL1.HAS_FORCE_NS == '1' then
 if MPAM3_EL3.FORCE_NS == '1' && security == SS_Secure then
 pspace = PIdSpace_NonSecure;
 if ((IsFeatureImplemented(FEAT_MPAMv0p1) || IsFeatureImplemented(FEAT_MPAMv1p1)) &&
 MPAMIDR_EL1.HAS_SDEFLT == '1') then
 if MPAM3_EL3.SDEFLT == '1' && security == SS_Secure then
 return DefaultMPAMinfo(pspace);
 if !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 else
 return genMPAM(mpamEL, InD, InSM, pspace);

shared/functions/mpam/GenMPAMcurEL

 // GenMPAMcurEL()
 // ==============
 // Returns MPAMinfo for the current EL and security state.
 // May be called if MPAM is not implemented (but in an version that supports
 // MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
 // EL if can and use that to drive MPAM information generation. If mode
 // cannot be converted, MPAM is not implemented, or MPAM is disabled return
 // default MPAM information for the current security state.

 MPAMinfo GenMPAMcurEL(AccessType acctype)
 return GenMPAMatEL(acctype, PSTATE.EL);

shared/functions/mpam/MAP_vPARTID

 // MAP_vPARTID()
 // =============
 // Performs conversion of virtual PARTID into physical PARTID
 // Contains all of the error checking and implementation
 // choices for the conversion.

 (PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
 // should not ever be called if EL2 is not implemented
 // or is implemented but not enabled in the current
 // security state.
 PARTIDtype ret;
 boolean err;
 integer virt = UInt(vpartid);
 integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

 // vpartid_max is largest vpartid supported
 integer vpartid_max = (vpmrmax << 2) + 3;

 // One of many ways to reduce vpartid to value less than vpartid_max.
 if UInt(vpartid) > vpartid_max then
 virt = virt MOD (vpartid_max+1);

 // Check for valid mapping entry.
 if MPAMVPMV_EL2<virt> == '1' then
 // vpartid has a valid mapping so access the map.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14283
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 ret = mapvpmw(virt);
 err = FALSE;

 // Is the default virtual PARTID valid?
 elsif MPAMVPMV_EL2<0> == '1' then
 // Yes, so use default mapping for vpartid == 0.
 ret = MPAMVPM0_EL2<0 +: 16>;
 err = FALSE;

 // Neither is valid so use default physical PARTID.
 else
 ret = DefaultPARTID;
 err = TRUE;

 // Check that the physical PARTID is in-range.
 // This physical PARTID came from a virtual mapping entry.
 integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
 if UInt(ret) > partid_max then
 // Out of range, so return default physical PARTID
 ret = DefaultPARTID;
 err = TRUE;
 return (ret, err);

shared/functions/mpam/MPAMisEnabled

 // MPAMisEnabled()
 // ===============
 // Returns TRUE if MPAMisEnabled.

 boolean MPAMisEnabled()
 el = HighestEL();
 case el of
 when EL3 return MPAM3_EL3.MPAMEN == '1';
 when EL2 return MPAM2_EL2.MPAMEN == '1';
 when EL1 return MPAM1_EL1.MPAMEN == '1';

shared/functions/mpam/MPAMisVirtual

 // MPAMisVirtual()
 // ===============
 // Returns TRUE if MPAM is configured to be virtual at EL.

 boolean MPAMisVirtual(bits(2) el)
 return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&
 ((el == EL0 && MPAMHCR_EL2.EL0_VPMEN == '1' && !ELIsInHost(EL0)) ||
 (el == EL1 && MPAMHCR_EL2.EL1_VPMEN == '1')));

shared/functions/mpam/PARTIDspaceFromSS

 // PARTIDspaceFromSS()
 // ===================
 // Returns the primary PARTID space from the Security State.

 PARTIDspaceType PARTIDspaceFromSS(SecurityState security)
 case security of
 when SS_NonSecure
 return PIdSpace_NonSecure;
 when SS_Root
 return PIdSpace_Root;
 when SS_Realm
 return PIdSpace_Realm;
 when SS_Secure
 return PIdSpace_Secure;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14284
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 otherwise
 Unreachable();

shared/functions/mpam/UsePrimarySpaceEL10

 // UsePrimarySpaceEL10()
 // =====================
 // Checks whether Primary space is configured in the
 // MPAM3_EL3 and MPAM2_EL2 ALTSP control bits that affect
 // MPAM ALTSP use at EL1 and EL0.

 boolean UsePrimarySpaceEL10()
 if MPAM3_EL3.ALTSP_HEN == '0' then
 return MPAM3_EL3.ALTSP_HFC == '0';
 return !MPAMisEnabled() || !EL2Enabled() || MPAM2_EL2.ALTSP_HFC == '0';

shared/functions/mpam/UsePrimarySpaceEL2

 // UsePrimarySpaceEL2()
 // ====================
 // Checks whether Primary space is configured in the
 // MPAM3_EL3 and MPAM2_EL2 ALTSP control bits that affect
 // MPAM ALTSP use at EL2.

 boolean UsePrimarySpaceEL2()
 if MPAM3_EL3.ALTSP_HEN == '0' then
 return MPAM3_EL3.ALTSP_HFC == '0';
 return !MPAMisEnabled() || MPAM2_EL2.ALTSP_EL2 == '0';

shared/functions/mpam/genMPAM

 // genMPAM()
 // =========
 // Returns MPAMinfo for exception level el.
 // If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
 // of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
 // If InSM is TRUE returns MPAM information using PARTID_D and PMG_D fields
 // of MPAMSM_EL1 register.
 // Produces a PARTID in PARTID space pspace.

 MPAMinfo genMPAM(bits(2) el, boolean InD, boolean InSM, PARTIDspaceType pspace)
 MPAMinfo returninfo;
 PARTIDtype partidel;
 boolean perr;
 // gstplk is guest OS application locked by the EL2 hypervisor to
 // only use EL1 the virtual machine's PARTIDs.
 boolean gstplk = (el == EL0 && EL2Enabled() &&
 MPAMHCR_EL2.GSTAPP_PLK == '1' &&
 HCR_EL2.TGE == '0');
 bits(2) eff_el = if gstplk then EL1 else el;
 (partidel, perr) = genPARTID(eff_el, InD, InSM);
 PMGtype groupel = genPMG(eff_el, InD, InSM, perr);
 returninfo.mpam_sp = pspace;
 returninfo.partid = partidel;
 returninfo.pmg = groupel;
 return returninfo;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14285
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/mpam/genPARTID

 // genPARTID()
 // ===========
 // Returns physical PARTID and error boolean for exception level el.
 // If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
 // otherwise from MPAMel_ELx.PARTID_D.
 // If InSM is TRUE then PARTID is from MPAMSM_EL1.PARTID_D.

 (PARTIDtype, boolean) genPARTID(bits(2) el, boolean InD, boolean InSM)
 PARTIDtype partidel = getMPAM_PARTID(el, InD, InSM);
 PARTIDtype partid_max = MPAMIDR_EL1.PARTID_MAX;
 if UInt(partidel) > UInt(partid_max) then
 return (DefaultPARTID, TRUE);
 if MPAMisVirtual(el) then
 return MAP_vPARTID(partidel);
 else
 return (partidel, FALSE);

shared/functions/mpam/genPMG

 // genPMG()
 // ========
 // Returns PMG for exception level el and I- or D-side (InD).
 // If PARTID generation (genPARTID) encountered an error, genPMG() should be
 // called with partid_err as TRUE.

 PMGtype genPMG(bits(2) el, boolean InD, boolean InSM, boolean partid_err)
 integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);
 // It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
 // use the default or if it uses the PMG from getMPAM_PMG.
 if partid_err then
 return DefaultPMG;
 PMGtype groupel = getMPAM_PMG(el, InD, InSM);
 if UInt(groupel) <= pmg_max then
 return groupel;
 return DefaultPMG;

shared/functions/mpam/getMPAM_PARTID

 // getMPAM_PARTID()
 // ================
 // Returns a PARTID from one of the MPAMn_ELx or MPAMSM_EL1 registers.
 // If InSM is TRUE, the MPAMSM_EL1 register is used. Otherwise,
 // MPAMn selects the MPAMn_ELx register used.
 // If InD is TRUE, selects the PARTID_I field of that
 // register. Otherwise, selects the PARTID_D field.

 PARTIDtype getMPAM_PARTID(bits(2) MPAMn, boolean InD, boolean InSM)
 PARTIDtype partid;
 boolean el2avail = EL2Enabled();

 if InSM then
 partid = MPAMSM_EL1.PARTID_D;
 return partid;

 if InD then
 case MPAMn of
 when '11' partid = MPAM3_EL3.PARTID_I;
 when '10' partid = if el2avail then MPAM2_EL2.PARTID_I else Zeros(16);
 when '01' partid = MPAM1_EL1.PARTID_I;
 when '00' partid = MPAM0_EL1.PARTID_I;
 otherwise partid = PARTIDtype UNKNOWN;
 else
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14286
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 case MPAMn of
 when '11' partid = MPAM3_EL3.PARTID_D;
 when '10' partid = if el2avail then MPAM2_EL2.PARTID_D else Zeros(16);
 when '01' partid = MPAM1_EL1.PARTID_D;
 when '00' partid = MPAM0_EL1.PARTID_D;
 otherwise partid = PARTIDtype UNKNOWN;
 return partid;

shared/functions/mpam/getMPAM_PMG

 // getMPAM_PMG()
 // =============
 // Returns a PMG from one of the MPAMn_ELx or MPAMSM_EL1 registers.
 // If InSM is TRUE, the MPAMSM_EL1 register is used. Otherwise,
 // MPAMn selects the MPAMn_ELx register used.
 // If InD is TRUE, selects the PMG_I field of that
 // register. Otherwise, selects the PMG_D field.

 PMGtype getMPAM_PMG(bits(2) MPAMn, boolean InD, boolean InSM)
 PMGtype pmg;
 boolean el2avail = EL2Enabled();

 if InSM then
 pmg = MPAMSM_EL1.PMG_D;
 return pmg;

 if InD then
 case MPAMn of
 when '11' pmg = MPAM3_EL3.PMG_I;
 when '10' pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros(8);
 when '01' pmg = MPAM1_EL1.PMG_I;
 when '00' pmg = MPAM0_EL1.PMG_I;
 otherwise pmg = PMGtype UNKNOWN;
 else
 case MPAMn of
 when '11' pmg = MPAM3_EL3.PMG_D;
 when '10' pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros(8);
 when '01' pmg = MPAM1_EL1.PMG_D;
 when '00' pmg = MPAM0_EL1.PMG_D;
 otherwise pmg = PMGtype UNKNOWN;
 return pmg;

shared/functions/mpam/mapvpmw

 // mapvpmw()
 // =========
 // Map a virtual PARTID into a physical PARTID using
 // the MPAMVPMn_EL2 registers.
 // vpartid is now assumed in-range and valid (checked by caller)
 // returns physical PARTID from mapping entry.

 PARTIDtype mapvpmw(integer vpartid)
 bits(64) vpmw;
 integer wd = vpartid DIV 4;
 case wd of
 when 0 vpmw = MPAMVPM0_EL2;
 when 1 vpmw = MPAMVPM1_EL2;
 when 2 vpmw = MPAMVPM2_EL2;
 when 3 vpmw = MPAMVPM3_EL2;
 when 4 vpmw = MPAMVPM4_EL2;
 when 5 vpmw = MPAMVPM5_EL2;
 when 6 vpmw = MPAMVPM6_EL2;
 when 7 vpmw = MPAMVPM7_EL2;
 otherwise vpmw = Zeros(64);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14287
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // vpme_lsb selects LSB of field within register
 integer vpme_lsb = (vpartid MOD 4) * 16;
 return vpmw<vpme_lsb +: 16>;

shared/functions/predictionrestrict/ASID

 // ASID[]
 // ======
 // Effective ASID.

 bits(16) ASID[]
 if ELIsInHost(EL0) then
 if TCR_EL2.A1 == '1' then
 return TTBR1_EL2.ASID;
 else
 return TTBR0_EL2.ASID;

 elsif !ELUsingAArch32(EL1) then
 if TCR_EL1.A1 == '1' then
 return TTBR1_EL1.ASID;
 else
 return TTBR0_EL1.ASID;

 else
 if TTBCR.EAE == '0' then
 return ZeroExtend(CONTEXTIDR.ASID, 16);
 else
 if TTBCR.A1 == '1' then
 return ZeroExtend(TTBR1.ASID, 16);
 else
 return ZeroExtend(TTBR0.ASID, 16);

shared/functions/predictionrestrict/ExecutionCntxt

 // ExecutionCntxt
 // ===============
 // Context information for prediction restriction operation.

 type ExecutionCntxt is (
 boolean is_vmid_valid, // is vmid valid for current context
 boolean all_vmid, // should the operation be applied for all vmids
 bits(16) vmid, // if all_vmid = FALSE, vmid to which operation is applied
 boolean is_asid_valid, // is asid valid for current context
 boolean all_asid, // should the operation be applied for all asids
 bits(16) asid, // if all_asid = FALSE, ASID to which operation is applied
 bits(2) target_el, // target EL at which operation is performed
 SecurityState security,
 RestrictType restriction // type of restriction operation
)

shared/functions/predictionrestrict/RESTRICT_PREDICTIONS

 // RESTRICT_PREDICTIONS()
 // ======================
 // Clear all speculated values.

 RESTRICT_PREDICTIONS(ExecutionCntxt c)
 IMPLEMENTATION_DEFINED;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14288
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/predictionrestrict/RestrictType

 // RestrictType
 // ============
 // Type of restriction on speculation.

 enumeration RestrictType {
 RestrictType_DataValue,
 RestrictType_ControlFlow,
 RestrictType_CachePrefetch,
 RestrictType_Other // Any other trained speculation mechanisms than those above
 };

shared/functions/predictionrestrict/TargetSecurityState

 // TargetSecurityState()
 // =====================
 // Decode the target security state for the prediction context.

 SecurityState TargetSecurityState(bit NS, bit NSE)
 curr_ss = SecurityStateAtEL(PSTATE.EL);
 if curr_ss == SS_NonSecure then
 return SS_NonSecure;
 elsif curr_ss == SS_Secure then
 case NS of
 when '0' return SS_Secure;
 when '1' return SS_NonSecure;
 elsif IsFeatureImplemented(FEAT_RME) then
 if curr_ss == SS_Root then
 case NSE:NS of
 when '00' return SS_Secure;
 when '01' return SS_NonSecure;
 when '11' return SS_Realm;
 when '10' return SS_Root;
 elsif curr_ss == SS_Realm then
 return SS_Realm;
 Unreachable();

shared/functions/registers/BranchTo

 // BranchTo()
 // ==========
 // Set program counter to a new address, with a branch type.
 // Parameter branch_conditional indicates whether the executed branch has a conditional encoding.
 // In AArch64 state the address might include a tag in the top eight bits.

 BranchTo(bits(N) target, BranchType branch_type, boolean branch_conditional)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target, 64);
 else
 assert N == 64 && !UsingAArch32();
 bits(64) target_vaddress = AArch64.BranchAddr(target<63:0>, PSTATE.EL);
 if (IsFeatureImplemented(FEAT_BRBE) &&
 branch_type IN {BranchType_DIR, BranchType_INDIR,
 BranchType_DIRCALL, BranchType_INDCALL,
 BranchType_RET}) then
 BRBEBranch(branch_type, branch_conditional, target_vaddress);
 boolean branch_taken = TRUE;

 if IsFeatureImplemented(FEAT_SPE) then
 SPEBranch(target, branch_type, branch_conditional, branch_taken);

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14289
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 _PC = target_vaddress;
 return;

shared/functions/registers/BranchToAddr

 // BranchToAddr()
 // ==============
 // Set program counter to a new address, with a branch type.
 // In AArch64 state the address does not include a tag in the top eight bits.

 BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target, 64);
 else
 assert N == 64 && !UsingAArch32();
 _PC = target<63:0>;
 return;

shared/functions/registers/BranchType

 // BranchType
 // ==========
 // Information associated with a change in control flow.

 enumeration BranchType {
 BranchType_DIRCALL, // Direct Branch with link
 BranchType_INDCALL, // Indirect Branch with link
 BranchType_ERET, // Exception return (indirect)
 BranchType_DBGEXIT, // Exit from Debug state
 BranchType_RET, // Indirect branch with function return hint
 BranchType_DIR, // Direct branch
 BranchType_INDIR, // Indirect branch
 BranchType_EXCEPTION, // Exception entry
 BranchType_TMFAIL, // Transaction failure
 BranchType_RESET, // Reset
 BranchType_UNKNOWN}; // Other

shared/functions/registers/EffectiveFPCR

 // EffectiveFPCR()
 // ===============
 // Returns the effective FPCR value

 FPCR_Type EffectiveFPCR()
 if UsingAArch32() then
 FPCR_Type fpcr = ZeroExtend(FPSCR, 64);
 fpcr<7:0> = '00000000';
 fpcr<31:27> = '00000';
 return fpcr;
 return FPCR;

shared/functions/registers/Hint_Branch

 // Hint_Branch()
 // =============
 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
 // the next instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14290
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 Hint_Branch(BranchType hint);

shared/functions/registers/NextInstrAddr

 // NextInstrAddr()
 // ===============
 // Return address of the sequentially next instruction.

 bits(N) NextInstrAddr(integer N);

shared/functions/registers/ResetExternalDebugRegisters

 // ResetExternalDebugRegisters()
 // =============================
 // Reset the External Debug registers in the Core power domain.

 ResetExternalDebugRegisters(boolean cold_reset);

shared/functions/registers/ThisInstrAddr

 // ThisInstrAddr()
 // ===============
 // Return address of the current instruction.

 bits(N) ThisInstrAddr(integer N)
 assert N == 64 || (N == 32 && UsingAArch32());
 return _PC<N-1:0>;

shared/functions/registers/_PC

 bits(64) _PC;

shared/functions/registers/_R

 // _R[] - the general-purpose register file
 // ==

 array bits(64) _R[0..30];

shared/functions/sysregisters/SPSR_ELx

 // SPSR_ELx[] - non-assignment form
 // ================================

 bits(64) SPSR_ELx[]
 bits(64) result;
 case PSTATE.EL of
 when EL1 result = SPSR_EL1<63:0>;
 when EL2 result = SPSR_EL2<63:0>;
 when EL3 result = SPSR_EL3<63:0>;
 otherwise Unreachable();
 return result;

 // SPSR_ELx[] - assignment form
 // ============================

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14291
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 SPSR_ELx[] = bits(64) value
 case PSTATE.EL of
 when EL1 SPSR_EL1<63:0> = value<63:0>;
 when EL2 SPSR_EL2<63:0> = value<63:0>;
 when EL3 SPSR_EL3<63:0> = value<63:0>;
 otherwise Unreachable();
 return;

shared/functions/sysregisters/SPSR_curr

 // SPSR_curr[] - non-assignment form
 // =================================

 bits(32) SPSR_curr[]
 bits(32) result;
 case PSTATE.M of
 when M32_FIQ result = SPSR_fiq<31:0>;
 when M32_IRQ result = SPSR_irq<31:0>;
 when M32_Svc result = SPSR_svc<31:0>;
 when M32_Monitor result = SPSR_mon<31:0>;
 when M32_Abort result = SPSR_abt<31:0>;
 when M32_Hyp result = SPSR_hyp<31:0>;
 when M32_Undef result = SPSR_und<31:0>;
 otherwise Unreachable();
 return result;

 // SPSR_curr[] - assignment form
 // =============================

 SPSR_curr[] = bits(32) value
 case PSTATE.M of
 when M32_FIQ SPSR_fiq<31:0> = value<31:0>;
 when M32_IRQ SPSR_irq<31:0> = value<31:0>;
 when M32_Svc SPSR_svc<31:0> = value<31:0>;
 when M32_Monitor SPSR_mon<31:0> = value<31:0>;
 when M32_Abort SPSR_abt<31:0> = value<31:0>;
 when M32_Hyp SPSR_hyp<31:0> = value<31:0>;
 when M32_Undef SPSR_und<31:0> = value<31:0>;
 otherwise Unreachable();
 return;

shared/functions/system/AArch64.ChkFeat

 // AArch64.ChkFeat()
 // =================
 // Indicates the status of some features

 bits(64) AArch64.ChkFeat(bits(64) feat_select)
 bits(64) feat_en = Zeros(64);
 feat_en[0] = if IsFeatureImplemented(FEAT_GCS) && GCSEnabled(PSTATE.EL) then '1' else '0';
 return feat_select AND NOT(feat_en);

shared/functions/system/AddressNotInNaturallyAlignedBlock

 // AddressNotInNaturallyAlignedBlock()
 // ===================================
 // The 'address' is not in a naturally aligned block if it doesn't meet all the below conditions:
 // * is a power-of-two size.
 // * Is no larger than the DC ZVA block size if ESR_ELx.FnP is being set to 0b0, or EDHSR is not
 // implemented or EDHSR.FnP is being set to 0b0 (as appropriate).
 // * Is no larger than the smallest implemented translation granule if ESR_ELx.FnP, or EDHSR.FnP
 // (as appropriate) is being set to 0b1.
 // * Contains a watchpointed address accessed by the memory access or set of contiguous memory
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14292
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // accesses that triggered the watchpoint.

 boolean AddressNotInNaturallyAlignedBlock(bits(64) address);

shared/functions/system/BranchTargetCheck

 // BranchTargetCheck()
 // ===================
 // This function is executed checks if the current instruction is a valid target for a branch
 // taken into, or inside, a guarded page. It is executed on every cycle once the current
 // instruction has been decoded and the values of InGuardedPage and BTypeCompatible have been
 // determined for the current instruction.

 BranchTargetCheck()
 assert IsFeatureImplemented(FEAT_BTI) && !UsingAArch32();

 // The branch target check considers two state variables:
 // * InGuardedPage, which is evaluated during instruction fetch.
 // * BTypeCompatible, which is evaluated during instruction decode.
 if InGuardedPage && PSTATE.BTYPE != '00' && !BTypeCompatible && !Halted() then
 bits(64) pc = ThisInstrAddr(64);
 AArch64.BranchTargetException(pc<51:0>);

 boolean branch_instr = AArch64.ExecutingBROrBLROrRetInstr();
 boolean bti_instr = AArch64.ExecutingBTIInstr();

 // PSTATE.BTYPE defaults to 00 for instructions that do not explictly set BTYPE.
 if !(branch_instr || bti_instr) then
 BTypeNext = '00';

shared/functions/system/ClearEventRegister

 // ClearEventRegister()
 // ====================
 // Clear the Event Register of this PE.

 ClearEventRegister()
 EventRegister = '0';
 return;

shared/functions/system/ConditionHolds

 // ConditionHolds()
 // ================
 // Return TRUE iff COND currently holds

 boolean ConditionHolds(bits(4) cond)
 // Evaluate base condition.
 boolean result;
 case cond<3:1> of
 when '000' result = (PSTATE.Z == '1'); // EQ or NE
 when '001' result = (PSTATE.C == '1'); // CS or CC
 when '010' result = (PSTATE.N == '1'); // MI or PL
 when '011' result = (PSTATE.V == '1'); // VS or VC
 when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
 when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
 when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

 // Condition flag values in the set '111x' indicate always true
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14293
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return result;

shared/functions/system/ConsumptionOfSpeculativeDataBarrier

 // ConsumptionOfSpeculativeDataBarrier()
 // =====================================

 ConsumptionOfSpeculativeDataBarrier();

shared/functions/system/CurrentInstrSet

 // CurrentInstrSet()
 // =================

 InstrSet CurrentInstrSet()
 InstrSet result;
 if UsingAArch32() then
 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
 else
 result = InstrSet_A64;
 return result;

shared/functions/system/CurrentPL

 // CurrentPL()
 // ===========

 PrivilegeLevel CurrentPL()
 return PLOfEL(PSTATE.EL);

shared/functions/system/CurrentSecurityState

 // CurrentSecurityState()
 // ======================
 // Returns the effective security state at the exception level based off current settings.

 SecurityState CurrentSecurityState()
 return SecurityStateAtEL(PSTATE.EL);

shared/functions/system/DSBAlias

 // DSBAlias
 // ========
 // Aliases of DSB.

 enumeration DSBAlias {DSBAlias_SSBB, DSBAlias_PSSBB, DSBAlias_DSB};

shared/functions/system/EL0

 constant bits(2) EL3 = '11';
 constant bits(2) EL2 = '10';
 constant bits(2) EL1 = '01';
 constant bits(2) EL0 = '00';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14294
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/EL2Enabled

 // EL2Enabled()
 // ============
 // Returns TRUE if EL2 is present and executing
 // - with the PE in Non-secure state when Non-secure EL2 is implemented, or
 // - with the PE in Realm state when Realm EL2 is implemented, or
 // - with the PE in Secure state when Secure EL2 is implemented and enabled, or
 // - when EL3 is not implemented.

 boolean EL2Enabled()
 return HaveEL(EL2) && (!HaveEL(EL3) || SCR_curr[].NS == '1' || IsSecureEL2Enabled());

shared/functions/system/EL3SDDUndef

 // EL3SDDUndef()
 // =============
 // Returns TRUE if in Debug state and EDSCR.SDD is set.

 boolean EL3SDDUndef()
 return Halted() && EDSCR.SDD == '1';

shared/functions/system/EL3SDDUndefPriority

 // EL3SDDUndefPriority()
 // =====================
 // Returns TRUE if in Debug state, EDSCR.SDD is set, and an EL3 trap by an
 // EL3 control register has priority over other traps.
 // The IMPLEMENTATION DEFINED priority may be different for each case.

 boolean EL3SDDUndefPriority()
 return (Halted() && EDSCR.SDD == '1' &&
 boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'");

shared/functions/system/ELFromM32

 // ELFromM32()
 // ===========

 (boolean,bits(2)) ELFromM32(bits(5) mode)
 // Convert an AArch32 mode encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
 // and the current value of SCR.NS/SCR_EL3.NS.
 // 'EL' is the Exception level decoded from 'mode'.
 bits(2) el;
 boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
 bits(2) effective_nse_ns = EffectiveSCR_EL3_NSE() : EffectiveSCR_EL3_NS();

 case mode of
 when M32_Monitor
 el = EL3;
 when M32_Hyp
 el = EL2;
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 el = (if HaveEL(EL3) && !HaveAArch64() && SCR.NS == '0' then EL3 else EL1);
 when M32_User
 el = EL0;
 otherwise
 valid = FALSE; // Passed an illegal mode value
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14295
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 if valid && el == EL2 && HaveEL(EL3) && SCR_curr[].NS == '0' then
 valid = FALSE; // EL2 only valid in Non-secure state in AArch32

 elsif valid && IsFeatureImplemented(FEAT_RME) && effective_nse_ns == '10' then
 valid = FALSE; // Illegal Exception Return from EL3 if SCR_EL3.<NSE,NS>
 // selects a reserved encoding

 if !valid then el = bits(2) UNKNOWN;
 return (valid, el);

shared/functions/system/ELFromSPSR

 // ELFromSPSR()
 // ============

 // Convert an SPSR value encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
 // 'EL' is the Exception level decoded from 'spsr'.

 (boolean,bits(2)) ELFromSPSR(bits(N) spsr)
 bits(2) el;
 boolean valid;
 bits(2) effective_nse_ns;
 if spsr<4> == '0' then // AArch64 state
 el = spsr<3:2>;
 effective_nse_ns = EffectiveSCR_EL3_NSE() : EffectiveSCR_EL3_NS();
 if !HaveAArch64() then
 valid = FALSE; // No AArch64 support
 elsif !HaveEL(el) then
 valid = FALSE; // Exception level not implemented
 elsif spsr<1> == '1' then
 valid = FALSE; // M[1] must be 0
 elsif el == EL0 && spsr<0> == '1' then
 valid = FALSE; // for EL0, M[0] must be 0
 elsif IsFeatureImplemented(FEAT_RME) && el != EL3 && effective_nse_ns == '10' then
 valid = FALSE; // Only EL3 valid in Root state
 elsif el == EL2 && HaveEL(EL3) && !IsSecureEL2Enabled() && SCR_EL3.NS == '0' then
 valid = FALSE; // Unless Secure EL2 is enabled, EL2 valid only in Non-secure state
 else
 valid = TRUE;
 elsif HaveAArch32() then // AArch32 state
 (valid, el) = ELFromM32(spsr<4:0>);
 else
 valid = FALSE;

 if !valid then el = bits(2) UNKNOWN;
 return (valid,el);

shared/functions/system/ELIsInHost

 // ELIsInHost()
 // ============

 boolean ELIsInHost(bits(2) el)
 if !IsFeatureImplemented(FEAT_VHE) || ELUsingAArch32(EL2) then
 return FALSE;
 case el of
 when EL3
 return FALSE;
 when EL2
 return EffectiveHCR_EL2_E2H() == '1';
 when EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14296
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return FALSE;
 when EL0
 return EffectiveHCR_EL2_E2H():HCR_EL2.TGE == '11';
 otherwise
 Unreachable();

shared/functions/system/ELStateUsingAArch32

 // ELStateUsingAArch32()
 // =====================

 boolean ELStateUsingAArch32(bits(2) el, boolean secure)
 // See ELStateUsingAArch32K() for description. Must only be called in circumstances where
 // result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
 (known, aarch32) = ELStateUsingAArch32K(el, secure);
 assert known;
 return aarch32;

shared/functions/system/ELStateUsingAArch32K

 // ELStateUsingAArch32K()
 // ======================
 // Returns (known, aarch32):
 // 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
 // using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
 // 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.

 (boolean, boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
 assert HaveEL(el);

 if !HaveAArch32EL(el) then
 return (TRUE, FALSE); // Exception level is using AArch64
 elsif secure && el == EL2 then
 return (TRUE, FALSE); // Secure EL2 is using AArch64
 elsif !HaveAArch64() then
 return (TRUE, TRUE); // Highest Exception level, therefore all levels are using AArch32

 // Remainder of function deals with the interprocessing cases when highest
 // Exception level is using AArch64.

 if el == EL3 then
 return (TRUE, FALSE);

 if (HaveEL(EL3) && SCR_EL3.RW == '0' &&
 (!secure || !IsFeatureImplemented(FEAT_SEL2) || SCR_EL3.EEL2 == '0')) then
 // AArch32 below EL3.
 return (TRUE, TRUE);

 if el == EL2 then
 return (TRUE, FALSE);

 if (HaveEL(EL2) && !ELIsInHost(EL0) && HCR_EL2.RW == '0' &&
 (!secure || (IsFeatureImplemented(FEAT_SEL2) && SCR_EL3.EEL2 == '1'))) then
 // AArch32 below EL2.
 return (TRUE, TRUE);

 if el == EL1 then
 return (TRUE, FALSE);

 // The execution state of EL0 is only known from PSTATE.nRW when executing at EL0.
 if PSTATE.EL == EL0 then
 return (TRUE, PSTATE.nRW == '1');
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14297
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 return (FALSE, boolean UNKNOWN);

shared/functions/system/ELUsingAArch32

 // ELUsingAArch32()
 // ================

 boolean ELUsingAArch32(bits(2) el)
 return ELStateUsingAArch32(el, IsSecureBelowEL3());

shared/functions/system/ELUsingAArch32K

 // ELUsingAArch32K()
 // =================

 (boolean,boolean) ELUsingAArch32K(bits(2) el)
 return ELStateUsingAArch32K(el, IsSecureBelowEL3());

shared/functions/system/EffectiveEA

 // EffectiveEA()
 // =============
 // Returns effective SCR_EL3.EA value

 bit EffectiveEA()
 if Halted() && EDSCR.SDD == '0' then
 return '0';
 else
 return if HaveAArch64() then SCR_EL3.EA else SCR.EA;

shared/functions/system/EffectiveHCR_EL2_E2H

 // EffectiveHCR_EL2_E2H()
 // ======================
 // Return the Effective HCR_EL2.E2H value.

 bit EffectiveHCR_EL2_E2H()
 if !EL2Enabled() then
 return '0';

 if !IsFeatureImplemented(FEAT_VHE) then
 return '0';

 return HCR_EL2.E2H;

shared/functions/system/EffectiveHCR_EL2_NVx

 // EffectiveHCR_EL2_NVx()
 // ======================
 // Return the Effective value of HCR_EL2.<NV2,NV1,NV>.

 bits(3) EffectiveHCR_EL2_NVx()
 if !EL2Enabled() || !IsFeatureImplemented(FEAT_NV) || HCR_EL2.NV == '0' then
 return '000';

 bit nv1 = HCR_EL2.NV1;

 if !IsFeatureImplemented(FEAT_NV2) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14298
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return '0' : nv1 : '1';

 bit nv2 = HCR_EL2.NV2;

 return nv2 : nv1 : '1';

shared/functions/system/EffectiveSCR_EL3_NS

 // EffectiveSCR_EL3_NS()
 // =====================
 // Return Effective SCR_EL3.NS value.

 bit EffectiveSCR_EL3_NS()
 if !HaveSecureState() then
 return '1';
 elsif !HaveEL(EL3) then
 return '0';
 else
 return SCR_EL3.NS;

shared/functions/system/EffectiveSCR_EL3_NSE

 // EffectiveSCR_EL3_NSE()
 // ======================
 // Return Effective SCR_EL3.NSE value.

 bit EffectiveSCR_EL3_NSE()
 return if !IsFeatureImplemented(FEAT_RME) then '0' else SCR_EL3.NSE;

shared/functions/system/EffectiveSCR_EL3_RW

 // EffectiveSCR_EL3_RW()
 // =====================
 // Returns effective SCR_EL3.RW value

 bit EffectiveSCR_EL3_RW()
 if !HaveAArch64() then
 return '0';
 if !HaveAArch32EL(EL2) && !HaveAArch32EL(EL1) then
 return '1';
 if HaveAArch32EL(EL1) then
 if !HaveAArch32EL(EL2) && SCR_EL3.NS == '1' then
 return '1';
 if IsFeatureImplemented(FEAT_SEL2) && SCR_EL3.EEL2 == '1' && SCR_EL3.NS == '0' then
 return '1';
 return SCR_EL3.RW;

shared/functions/system/EffectiveTGE

 // EffectiveTGE()
 // ==============
 // Returns effective TGE value

 bit EffectiveTGE()
 if EL2Enabled() then
 return if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE;
 else
 return '0'; // Effective value of TGE is zero
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14299
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/EndOfInstruction

 // EndOfInstruction()
 // ==================
 // Terminate processing of the current instruction.

 EndOfInstruction();

shared/functions/system/EnterLowPowerState

 // EnterLowPowerState()
 // ====================
 // PE enters a low-power state.

 EnterLowPowerState();

shared/functions/system/EventRegister

 bits(1) EventRegister;

shared/functions/system/ExceptionalOccurrenceTargetState

 // ExceptionalOccurrenceTargetState
 // ================================
 // Enumeration to represent the target state of an Exceptional Occurrence.
 // The Exceptional Occurrence can be either Exception or Debug State entry.

 enumeration ExceptionalOccurrenceTargetState {
 AArch32_NonDebugState,
 AArch64_NonDebugState,
 DebugState
 };

shared/functions/system/FIQPending

 // FIQPending()
 // ============
 // Returns a tuple indicating if there is any pending physical FIQ
 // and if the pending FIQ has superpriority.

 (boolean, boolean) FIQPending();

shared/functions/system/GenerateAddress

 // GenerateAddress()
 // =================
 // Generate and address by adding a pointer with an offset and returning the result.

 bits(64) GenerateAddress(bits(64) base, integer offset, AccessDescriptor accdesc)
 return GenerateAddress(base, offset<63:0>, accdesc);

 bits(64) GenerateAddress(bits(64) base, bits(64) offset, AccessDescriptor accdesc)
 bits(64) result = base + offset;
 return result;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14300
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/GetAccumulatedFPExceptions

 // GetAccumulatedFPExceptions()
 // ============================
 // Returns FP exceptions accumulated by the PE.

 bits(8) GetAccumulatedFPExceptions();

shared/functions/system/GetLoadStoreType

 // GetLoadStoreType()
 // ==================
 // Returns the Load/Store Type. Used when a Translation fault,
 // Access flag fault, or Permission fault generates a Data Abort.

 bits(2) GetLoadStoreType();

shared/functions/system/GetPSRFromPSTATE

 // GetPSRFromPSTATE()
 // ==================
 // Return a PSR value which represents the current PSTATE

 bits(N) GetPSRFromPSTATE(ExceptionalOccurrenceTargetState targetELState, integer N)
 if UsingAArch32() && targetELState == AArch32_NonDebugState then
 assert N == 32;
 else
 assert N == 64;

 bits(N) spsr = Zeros(N);
 spsr<31:28> = PSTATE.<N,Z,C,V>;
 if IsFeatureImplemented(FEAT_PAN) then spsr<22> = PSTATE.PAN;
 spsr<20> = PSTATE.IL;
 if PSTATE.nRW == '1' then // AArch32 state
 if targetELState != AArch32_NonDebugState then
 spsr<33> = PSTATE.PPEND;
 spsr<27> = PSTATE.Q;
 spsr<26:25> = PSTATE.IT<1:0>;
 if IsFeatureImplemented(FEAT_SSBS) then spsr<23> = PSTATE.SSBS;
 if IsFeatureImplemented(FEAT_DIT) then
 if targetELState == AArch32_NonDebugState then
 spsr<21> = PSTATE.DIT;
 else // AArch64_NonDebugState or DebugState
 spsr<24> = PSTATE.DIT;
 if targetELState IN {AArch64_NonDebugState, DebugState} then
 spsr<21> = PSTATE.SS;
 spsr<19:16> = PSTATE.GE;
 spsr<15:10> = PSTATE.IT<7:2>;
 spsr<9> = PSTATE.E;
 spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
 spsr<5> = PSTATE.T;
 assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
 spsr<4:0> = PSTATE.M;
 else // AArch64 state
 if IsFeatureImplemented(FEAT_GCS) then spsr<34> = PSTATE.EXLOCK;
 if IsFeatureImplemented(FEAT_SEBEP) then spsr<33> = PSTATE.PPEND;
 if IsFeatureImplemented(FEAT_EBEP) then spsr<32> = PSTATE.PM;
 if IsFeatureImplemented(FEAT_MTE) then spsr<25> = PSTATE.TCO;
 if IsFeatureImplemented(FEAT_DIT) then spsr<24> = PSTATE.DIT;
 if IsFeatureImplemented(FEAT_UAO) then spsr<23> = PSTATE.UAO;
 spsr<21> = PSTATE.SS;
 if IsFeatureImplemented(FEAT_NMI) then spsr<13> = PSTATE.ALLINT;
 if IsFeatureImplemented(FEAT_SSBS) then spsr<12> = PSTATE.SSBS;
 if IsFeatureImplemented(FEAT_BTI) then spsr<11:10> = PSTATE.BTYPE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14301
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 spsr<9:6> = PSTATE.<D,A,I,F>;
 spsr<4> = PSTATE.nRW;
 spsr<3:2> = PSTATE.EL;
 spsr<0> = PSTATE.SP;
 return spsr;

shared/functions/system/HasArchVersion

 // HasArchVersion()
 // ================
 // Returns TRUE if the implemented architecture includes the extensions defined in the specified
 // architecture version.

 boolean HasArchVersion(boolean version)
 return version;

shared/functions/system/HaveAArch32

 // HaveAArch32()
 // =============
 // Return TRUE if AArch32 state is supported at at least EL0.

 boolean HaveAArch32()
 return IsFeatureImplemented(FEAT_AA32EL0);

shared/functions/system/HaveAArch32EL

 // HaveAArch32EL()
 // ===============
 // Return TRUE if Exception level 'el' supports AArch32 in this implementation

 boolean HaveAArch32EL(bits(2) el)
 case el of
 when EL0 return IsFeatureImplemented(FEAT_AA32EL0);
 when EL1 return IsFeatureImplemented(FEAT_AA32EL1);
 when EL2 return IsFeatureImplemented(FEAT_AA32EL2);
 when EL3 return IsFeatureImplemented(FEAT_AA32EL3);

shared/functions/system/HaveAArch64

 // HaveAArch64()
 // =============
 // Return TRUE if the highest Exception level is using AArch64 state.

 boolean HaveAArch64()
 return (IsFeatureImplemented(FEAT_AA64EL0) || IsFeatureImplemented(FEAT_AA64EL1) ||
 IsFeatureImplemented(FEAT_AA64EL2) || IsFeatureImplemented(FEAT_AA64EL3));

shared/functions/system/HaveEL

 // HaveEL()
 // ========
 // Return TRUE if Exception level 'el' is supported

 boolean HaveEL(bits(2) el)
 case el of
 when EL1,EL0
 return TRUE; // EL1 and EL0 must exist
 when EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14302
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return IsFeatureImplemented(FEAT_AA64EL2) || IsFeatureImplemented(FEAT_AA32EL2);
 when EL3
 return IsFeatureImplemented(FEAT_AA64EL3) || IsFeatureImplemented(FEAT_AA32EL3);
 otherwise
 Unreachable();

shared/functions/system/HaveELUsingSecurityState

 // HaveELUsingSecurityState()
 // ==========================
 // Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
 // FALSE otherwise.

 boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

 case el of
 when EL3
 assert secure;
 return HaveEL(EL3);
 when EL2
 if secure then
 return HaveEL(EL2) && IsFeatureImplemented(FEAT_SEL2);
 else
 return HaveEL(EL2);
 otherwise
 return (HaveEL(EL3) ||
 (secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

shared/functions/system/HaveFP16Ext

 // HaveFP16Ext()
 // =============
 // Return TRUE if FP16 extension is supported

 boolean HaveFP16Ext()
 return IsFeatureImplemented(FEAT_FP16);

shared/functions/system/HaveSecureState

 // HaveSecureState()
 // =================
 // Return TRUE if Secure State is supported.

 boolean HaveSecureState()
 if !HaveEL(EL3) then
 return SecureOnlyImplementation();
 if IsFeatureImplemented(FEAT_RME) && !IsFeatureImplemented(FEAT_SEL2) then
 return FALSE;
 return TRUE;

shared/functions/system/HighestEL

 // HighestEL()
 // ===========
 // Returns the highest implemented Exception level.

 bits(2) HighestEL()
 if HaveEL(EL3) then
 return EL3;
 elsif HaveEL(EL2) then
 return EL2;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14303
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 return EL1;

shared/functions/system/Hint_CLRBHB

 // Hint_CLRBHB()
 // =============
 // Provides a hint to clear the branch history for the current context.

 Hint_CLRBHB();

shared/functions/system/Hint_DGH

 // Hint_DGH()
 // ==========
 // Provides a hint to close any gathering occurring within the micro-architecture.

 Hint_DGH();

shared/functions/system/Hint_WFE

 // Hint_WFE()
 // ==========
 // Provides a hint indicating that the PE can enter a low-power state
 // and remain there until a wakeup event occurs or, for WFET, a local
 // timeout event is generated when the virtual timer value equals or
 // exceeds the supplied threshold value.

 Hint_WFE(integer localtimeout, WFxType wfxtype)
 if IsEventRegisterSet() then
 ClearEventRegister();
 elsif IsFeatureImplemented(FEAT_WFxT) && LocalTimeoutEvent(localtimeout) then
 // No further operation if the local timeout has expired.
 EndOfInstruction();
 else
 bits(2) target_el;
 trap = FALSE;
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 if IsFeatureImplemented(FEAT_TWED) then
 sctlr = SCTLR_ELx[];
 trap = sctlr.nTWE == '0';
 target_el = EL1;
 else
 AArch64.CheckForWFxTrap(EL1, wfxtype);
 if !trap && PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 if IsFeatureImplemented(FEAT_TWED) then
 trap = HCR_EL2.TWE == '1';
 target_el = EL2;
 else
 AArch64.CheckForWFxTrap(EL2, wfxtype);

 if !trap && HaveEL(EL3) && PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 if IsFeatureImplemented(FEAT_TWED) then
 trap = SCR_EL3.TWE == '1';
 target_el = EL3;
 else
 AArch64.CheckForWFxTrap(EL3, wfxtype);

 if trap && PSTATE.EL != EL3 then
 // Determine if trap delay is enabled and delay amount
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14304
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (delay_enabled, delay) = WFETrapDelay(target_el);
 if !WaitForEventUntilDelay(delay_enabled, delay) then
 // Event did not arrive before delay expired so trap WFE
 AArch64.WFxTrap(wfxtype, target_el);
 else
 WaitForEvent(localtimeout);

shared/functions/system/Hint_WFI

 // Hint_WFI()
 // ==========
 // Provides a hint indicating that the PE can enter a low-power state and
 // remain there until a wakeup event occurs or, for WFIT, a local timeout
 // event is generated when the virtual timer value equals or exceeds the
 // supplied threshold value.

 Hint_WFI(integer localtimeout, WFxType wfxtype)
 if IsFeatureImplemented(FEAT_TME) && TSTATE.depth > 0 then
 FailTransaction(TMFailure_ERR, FALSE);

 if (InterruptPending() || (IsFeatureImplemented(FEAT_WFxT) &&
 LocalTimeoutEvent(localtimeout))) then
 // No further operation if an interrupt is pending or the local timeout has expired.
 EndOfInstruction();
 else
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch64.CheckForWFxTrap(EL1, wfxtype);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch64.CheckForWFxTrap(EL2, wfxtype);
 if HaveEL(EL3) && PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 AArch64.CheckForWFxTrap(EL3, wfxtype);
 WaitForInterrupt(localtimeout);

shared/functions/system/Hint_Yield

 // Hint_Yield()
 // ============
 // Provides a hint that the task performed by a thread is of low
 // importance so that it could yield to improve overall performance.

 Hint_Yield();

shared/functions/system/IRQPending

 // IRQPending()
 // ============
 // Returns a tuple indicating if there is any pending physical IRQ
 // and if the pending IRQ has superpriority.

 (boolean, boolean) IRQPending();

shared/functions/system/IllegalExceptionReturn

 // IllegalExceptionReturn()
 // ========================

 boolean IllegalExceptionReturn(bits(N) spsr)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14305
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Check for illegal return:
 // * To an unimplemented Exception level.
 // * To EL2 in Secure state, when SecureEL2 is not enabled.
 // * To EL0 using AArch64 state, with SPSR.M[0]==1.
 // * To AArch64 state with SPSR.M[1]==1.
 // * To AArch32 state with an illegal value of SPSR.M.
 (valid, target) = ELFromSPSR(spsr);
 if !valid then return TRUE;

 // Check for return to higher Exception level
 if UInt(target) > UInt(PSTATE.EL) then return TRUE;

 spsr_mode_is_aarch32 = (spsr<4> == '1');

 // Check for illegal return:
 // * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
 // Execution state used in the Exception level being returned to, as determined by
 // the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
 // * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
 // SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
 // * To AArch64 state from AArch32 state (should be caught by above)
 (known, target_el_is_aarch32) = ELUsingAArch32K(target);
 assert known || (target == EL0 && !ELUsingAArch32(EL1));
 if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

 // Check for illegal return from AArch32 to AArch64
 if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

 // Check for illegal return to EL1 when HCR.TGE is set and when either of
 // * SecureEL2 is enabled.
 // * SecureEL2 is not enabled and EL1 is in Non-secure state.
 if EL2Enabled() && target == EL1 && HCR_EL2.TGE == '1' then
 if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;

 if (IsFeatureImplemented(FEAT_GCS) && PSTATE.EXLOCK == '0' &&
 PSTATE.EL == target && GetCurrentEXLOCKEN()) then
 return TRUE;

 return FALSE;

shared/functions/system/InstrSet

 // InstrSet
 // ========

 enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

shared/functions/system/InstructionSynchronizationBarrier

 // InstructionSynchronizationBarrier()
 // ===================================
 InstructionSynchronizationBarrier();

shared/functions/system/InterruptPending

 // InterruptPending()
 // ==================
 // Returns TRUE if there are any pending physical or virtual
 // interrupts, and FALSE otherwise.

 boolean InterruptPending()
 boolean pending_virtual_interrupt = FALSE;
 (irq_pending, -) = IRQPending();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14306
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (fiq_pending, -) = FIQPending();
 boolean pending_physical_interrupt = (irq_pending || fiq_pending ||
 IsPhysicalSErrorPending());

 if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.TGE == '0' then
 boolean virq_pending = HCR_EL2.IMO == '1' && (VirtualIRQPending() || HCR_EL2.VI == '1') ;
 boolean vfiq_pending = HCR_EL2.FMO == '1' && (VirtualFIQPending() || HCR_EL2.VF == '1');
 boolean vsei_pending = HCR_EL2.AMO == '1' && (IsVirtualSErrorPending() ||
 HCR_EL2.VSE == '1');
 pending_virtual_interrupt = vsei_pending || virq_pending || vfiq_pending;

 return pending_physical_interrupt || pending_virtual_interrupt;

shared/functions/system/IsASEInstruction

 // IsASEInstruction()
 // ==================
 // Returns TRUE if the current instruction is an ASIMD or SVE vector instruction.

 boolean IsASEInstruction();

shared/functions/system/IsCurrentSecurityState

 // IsCurrentSecurityState()
 // ========================
 // Returns TRUE if the current Security state matches
 // the given Security state, and FALSE otherwise.

 boolean IsCurrentSecurityState(SecurityState ss)
 return CurrentSecurityState() == ss;

shared/functions/system/IsEventRegisterSet

 // IsEventRegisterSet()
 // ====================
 // Return TRUE if the Event Register of this PE is set, and FALSE if it is clear.

 boolean IsEventRegisterSet()
 return EventRegister == '1';

shared/functions/system/IsHighestEL

 // IsHighestEL()
 // =============
 // Returns TRUE if given exception level is the highest exception level implemented

 boolean IsHighestEL(bits(2) el)
 return HighestEL() == el;

shared/functions/system/IsInHost

 // IsInHost()
 // ==========

 boolean IsInHost()
 return ELIsInHost(PSTATE.EL);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14307
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/IsSecure

 // IsSecure()
 // ==========
 // Returns TRUE if current Exception level is in Secure state.

 boolean IsSecure()
 if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then
 return TRUE;
 elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then
 return TRUE;
 return IsSecureBelowEL3();

shared/functions/system/IsSecureBelowEL3

 // IsSecureBelowEL3()
 // ==================
 // Return TRUE if an Exception level below EL3 is in Secure state
 // or would be following an exception return to that level.
 //
 // Differs from IsSecure in that it ignores the current EL or Mode
 // in considering security state.
 // That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
 // exception return would pass to Secure or Non-secure state.

 boolean IsSecureBelowEL3()
 if HaveEL(EL3) then
 return SCR_curr[].NS == '0';
 elsif HaveEL(EL2) && (!IsFeatureImplemented(FEAT_SEL2) || !HaveAArch64()) then
 // If Secure EL2 is not an architecture option then we must be Non-secure.
 return FALSE;
 else
 // TRUE if processor is Secure or FALSE if Non-secure.
 return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

shared/functions/system/IsSecureEL2Enabled

 // IsSecureEL2Enabled()
 // ====================
 // Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

 boolean IsSecureEL2Enabled()
 if HaveEL(EL2) && IsFeatureImplemented(FEAT_SEL2) then
 if HaveEL(EL3) then
 if !ELUsingAArch32(EL3) && SCR_EL3.EEL2 == '1' then
 return TRUE;
 else
 return FALSE;
 else
 return SecureOnlyImplementation();
 else
 return FALSE;

shared/functions/system/LocalTimeoutEvent

 // LocalTimeoutEvent()
 // ===================
 // Returns TRUE if CNTVCT_EL0 equals or exceeds the localtimeout value.

 boolean LocalTimeoutEvent(integer localtimeout);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14308
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/Mode_Bits

 constant bits(5) M32_User = '10000';
 constant bits(5) M32_FIQ = '10001';
 constant bits(5) M32_IRQ = '10010';
 constant bits(5) M32_Svc = '10011';
 constant bits(5) M32_Monitor = '10110';
 constant bits(5) M32_Abort = '10111';
 constant bits(5) M32_Hyp = '11010';
 constant bits(5) M32_Undef = '11011';
 constant bits(5) M32_System = '11111';

shared/functions/system/NonSecureOnlyImplementation

 // NonSecureOnlyImplementation()
 // =============================
 // Returns TRUE if the security state is always Non-secure for this implementation.

 boolean NonSecureOnlyImplementation()
 return boolean IMPLEMENTATION_DEFINED "Non-secure only implementation";

shared/functions/system/PLOfEL

 // PLOfEL()
 // ========

 PrivilegeLevel PLOfEL(bits(2) el)
 case el of
 when EL3 return if !HaveAArch64() then PL1 else PL3;
 when EL2 return PL2;
 when EL1 return PL1;
 when EL0 return PL0;

shared/functions/system/PSTATE

 ProcState PSTATE;

shared/functions/system/PhysicalCountInt

 // PhysicalCountInt()
 // ==================
 // Returns the integral part of physical count value of the System counter.

 bits(64) PhysicalCountInt()
 return PhysicalCount<87:24>;

shared/functions/system/PrivilegeLevel

 // PrivilegeLevel
 // ==============
 // Privilege Level abstraction.

 enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14309
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/ProcState

 // ProcState
 // =========
 // Armv8 processor state bits.
 // There is no significance to the field order.

 type ProcState is (
 bits (1) N, // Negative condition flag
 bits (1) Z, // Zero condition flag
 bits (1) C, // Carry condition flag
 bits (1) V, // Overflow condition flag
 bits (1) D, // Debug mask bit [AArch64 only]
 bits (1) A, // SError interrupt mask bit
 bits (1) I, // IRQ mask bit
 bits (1) F, // FIQ mask bit
 bits (1) EXLOCK, // Lock exception return state
 bits (1) PAN, // Privileged Access Never Bit [v8.1]
 bits (1) UAO, // User Access Override [v8.2]
 bits (1) DIT, // Data Independent Timing [v8.4]
 bits (1) TCO, // Tag Check Override [v8.5, AArch64 only]
 bits (1) PM, // PMU exception Mask
 bits (1) PPEND, // synchronous PMU exception to be observed
 bits (2) BTYPE, // Branch Type [v8.5]
 bits (1) ZA, // Accumulation array enabled [SME]
 bits (1) SM, // Streaming SVE mode enabled [SME]
 bits (1) ALLINT, // Interrupt mask bit
 bits (1) SS, // Software step bit
 bits (1) IL, // Illegal Execution state bit
 bits (2) EL, // Exception level
 bits (1) nRW, // Execution state: 0=AArch64, 1=AArch32
 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
 bits (1) Q, // Cumulative saturation flag [AArch32 only]
 bits (4) GE, // Greater than or Equal flags [AArch32 only]
 bits (1) SSBS, // Speculative Store Bypass Safe
 bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
 bits (1) E, // Endianness bit [AArch32 only]
 bits (5) M // Mode field [AArch32 only]
)

shared/functions/system/RestoredITBits

 // RestoredITBits()
 // ================
 // Get the value of PSTATE.IT to be restored on this exception return.

 bits(8) RestoredITBits(bits(N) spsr)
 it = spsr<15:10,26:25>;

 // When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
 // to zero or copied from the SPSR.
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool(Unpredictable_ILZEROIT) then return '00000000';
 else return it;

 // The IT bits are forced to zero when they are set to a reserved value.
 if !IsZero(it<7:4>) && IsZero(it<3:0>) then
 return '00000000';

 // The IT bits are forced to zero when returning to A32 state, or when returning to an EL
 // with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
 itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
 if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then
 return '00000000';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14310
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 return it;

shared/functions/system/SCRType

 type SCRType;

shared/functions/system/SCR_curr

 // SCR_curr[]
 // ==========

 SCRType SCR_curr[]
 // AArch32 secure & AArch64 EL3 registers are not architecturally mapped
 assert HaveEL(EL3);
 bits(64) r;
 if !HaveAArch64() then
 r = ZeroExtend(SCR, 64);
 else
 r = SCR_EL3;
 return r;

shared/functions/system/SecureOnlyImplementation

 // SecureOnlyImplementation()
 // ==========================
 // Returns TRUE if the security state is always Secure for this implementation.

 boolean SecureOnlyImplementation()
 return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

shared/functions/system/SecurityState

 // SecurityState
 // =============
 // The Security state of an execution context

 enumeration SecurityState {
 SS_NonSecure,
 SS_Root,
 SS_Realm,
 SS_Secure
 };

shared/functions/system/SecurityStateAtEL

 // SecurityStateAtEL()
 // ===================
 // Returns the effective security state at the exception level based off current settings.

 SecurityState SecurityStateAtEL(bits(2) EL)
 if IsFeatureImplemented(FEAT_RME) then
 if EL == EL3 then return SS_Root;
 effective_nse_ns = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
 case effective_nse_ns of
 when '00' if IsFeatureImplemented(FEAT_SEL2) then return SS_Secure; else Unreachable();
 when '01' return SS_NonSecure;
 when '11' return SS_Realm;
 otherwise Unreachable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14311
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 if !HaveEL(EL3) then
 if SecureOnlyImplementation() then
 return SS_Secure;
 else
 return SS_NonSecure;
 elsif EL == EL3 then
 return SS_Secure;
 else
 // For EL2 call only when EL2 is enabled in current security state
 assert(EL != EL2 || EL2Enabled());
 if !ELUsingAArch32(EL3) then
 return if SCR_EL3.NS == '1' then SS_NonSecure else SS_Secure;
 else
 return if SCR.NS == '1' then SS_NonSecure else SS_Secure;

shared/functions/system/SendEvent

 // SendEvent()
 // ===========
 // Signal an event to all PEs in a multiprocessor system to set their Event Registers.
 // When a PE executes the SEV instruction, it causes this function to be executed.

 SendEvent();

shared/functions/system/SendEventLocal

 // SendEventLocal()
 // ================
 // Set the local Event Register of this PE.
 // When a PE executes the SEVL instruction, it causes this function to be executed.

 SendEventLocal()
 EventRegister = '1';
 return;

shared/functions/system/SetAccumulatedFPExceptions

 // SetAccumulatedFPExceptions()
 // ============================
 // Stores FP Exceptions accumulated by the PE.

 SetAccumulatedFPExceptions(bits(8) accumulated_exceptions);

shared/functions/system/SetPSTATEFromPSR

 // SetPSTATEFromPSR()
 // ==================

 SetPSTATEFromPSR(bits(N) spsr)
 boolean illegal_psr_state = IllegalExceptionReturn(spsr);
 SetPSTATEFromPSR(spsr, illegal_psr_state);

 // SetPSTATEFromPSR()
 // ==================
 // Set PSTATE based on a PSR value

 SetPSTATEFromPSR(bits(N) spsr_in, boolean illegal_psr_state)
 bits(N) spsr = spsr_in;
 boolean from_aarch64 = !UsingAArch32();
 PSTATE.SS = DebugExceptionReturnSS(spsr);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14312
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if IsFeatureImplemented(FEAT_SEBEP) then
 assert N == 64;
 ExceptionReturnPPEND(ZeroExtend(spsr, 64));

 ShouldAdvanceSS = FALSE;
 if illegal_psr_state then
 PSTATE.IL = '1';
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = bit UNKNOWN;
 if IsFeatureImplemented(FEAT_BTI) then PSTATE.BTYPE = bits(2) UNKNOWN;
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = bit UNKNOWN;
 if IsFeatureImplemented(FEAT_DIT) then PSTATE.DIT = bit UNKNOWN;
 if IsFeatureImplemented(FEAT_MTE) then PSTATE.TCO = bit UNKNOWN;
 else
 // State that is reinstated only on a legal exception return
 PSTATE.IL = spsr<20>;
 if spsr<4> == '1' then // AArch32 state
 AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = spsr<23>;
 else // AArch64 state
 PSTATE.nRW = '0';
 PSTATE.EL = spsr<3:2>;
 PSTATE.SP = spsr<0>;
 if IsFeatureImplemented(FEAT_BTI) then PSTATE.BTYPE = spsr<11:10>;
 if IsFeatureImplemented(FEAT_SSBS) then PSTATE.SSBS = spsr<12>;
 if IsFeatureImplemented(FEAT_UAO) then PSTATE.UAO = spsr<23>;
 if IsFeatureImplemented(FEAT_DIT) then PSTATE.DIT = spsr<24>;
 if IsFeatureImplemented(FEAT_MTE) then PSTATE.TCO = spsr<25>;
 if IsFeatureImplemented(FEAT_GCS) then PSTATE.EXLOCK = spsr<34>;

 // If PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the T bit is set to zero or
 // copied from SPSR.
 if PSTATE.IL == '1' && PSTATE.nRW == '1' then
 if ConstrainUnpredictableBool(Unpredictable_ILZEROT) then spsr<5> = '0';

 // State that is reinstated regardless of illegal exception return
 PSTATE.<N,Z,C,V> = spsr<31:28>;
 if IsFeatureImplemented(FEAT_PAN) then PSTATE.PAN = spsr<22>;
 if PSTATE.nRW == '1' then // AArch32 state
 PSTATE.Q = spsr<27>;
 PSTATE.IT = RestoredITBits(spsr);
 ShouldAdvanceIT = FALSE;
 if IsFeatureImplemented(FEAT_DIT) then
 PSTATE.DIT = (if (Restarting() || from_aarch64) then spsr<24> else spsr<21>);
 PSTATE.GE = spsr<19:16>;
 PSTATE.E = spsr<9>;
 PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
 PSTATE.T = spsr<5>; // PSTATE.J is RES0
 else // AArch64 state
 PSTATE.PM = spsr<32>;
 if IsFeatureImplemented(FEAT_NMI) then PSTATE.ALLINT = spsr<13>;
 PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state
 return;

shared/functions/system/ShouldAdvanceHS

 boolean ShouldAdvanceHS;

shared/functions/system/ShouldAdvanceIT

 boolean ShouldAdvanceIT;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14313
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/ShouldAdvanceSS

 boolean ShouldAdvanceSS;

shared/functions/system/ShouldSetPPEND

 boolean ShouldSetPPEND;

shared/functions/system/SmallestTranslationGranule

 // SmallestTranslationGranule()
 // ============================
 // Smallest implemented translation granule.

 integer SmallestTranslationGranule()
 if boolean IMPLEMENTATION_DEFINED "Has 4K Translation Granule" then return 12;
 if boolean IMPLEMENTATION_DEFINED "Has 16K Translation Granule" then return 14;
 if boolean IMPLEMENTATION_DEFINED "Has 64K Translation Granule" then return 16;
 Unreachable();

shared/functions/system/SpeculationBarrier

 // SpeculationBarrier()
 // ====================

 SpeculationBarrier();

shared/functions/system/SyncCounterOverflowed

 boolean SyncCounterOverflowed;

shared/functions/system/SynchronizeContext

 // SynchronizeContext()
 // ====================

 SynchronizeContext();

shared/functions/system/SynchronizeErrors

 // SynchronizeErrors()
 // ===================
 // Implements the error synchronization event.

 SynchronizeErrors();

shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

 // TakeUnmaskedPhysicalSErrorInterrupts()
 // ======================================
 // Take any pending unmasked physical SError interrupt.

 TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14314
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/system/TakeUnmaskedSErrorInterrupts

 // TakeUnmaskedSErrorInterrupts()
 // ==============================
 // Take any pending unmasked physical SError interrupt or unmasked virtual SError
 // interrupt.

 TakeUnmaskedSErrorInterrupts();

shared/functions/system/ThisInstr

 // ThisInstr()
 // ===========

 bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

 // ThisInstrLength()
 // =================

 integer ThisInstrLength();

shared/functions/system/Unreachable

 // Unreachable()
 // =============

 Unreachable();

shared/functions/system/UsingAArch32

 // UsingAArch32()
 // ==============
 // Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

 boolean UsingAArch32()
 boolean aarch32 = (PSTATE.nRW == '1');
 if !HaveAArch32() then assert !aarch32;
 if !HaveAArch64() then assert aarch32;
 return aarch32;

shared/functions/system/ValidSecurityStateAtEL

 // ValidSecurityStateAtEL()
 // ========================
 // Returns TRUE if the current settings and architecture choices for this
 // implementation permit a valid Security state at the indicated EL.

 boolean ValidSecurityStateAtEL(bits(2) el)
 if !HaveEL(el) then
 return FALSE;

 if el == EL3 then
 return TRUE;

 if IsFeatureImplemented(FEAT_RME) then
 bits(2) effective_nse_ns = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
 if effective_nse_ns == '10' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14315
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return FALSE;

 if el == EL2 then
 return EL2Enabled();

 return TRUE;

shared/functions/system/VirtualFIQPending

 // VirtualFIQPending()
 // ===================
 // Returns TRUE if there is any pending virtual FIQ.

 boolean VirtualFIQPending();

shared/functions/system/VirtualIRQPending

 // VirtualIRQPending()
 // ===================
 // Returns TRUE if there is any pending virtual IRQ.

 boolean VirtualIRQPending();

shared/functions/system/WFxType

 // WFxType
 // =======
 // WFx instruction types.

 enumeration WFxType {WFxType_WFE, WFxType_WFI, WFxType_WFET, WFxType_WFIT};

shared/functions/system/WaitForEvent

 // WaitForEvent()
 // ==============
 // PE optionally suspends execution until one of the following occurs:
 // - A WFE wakeup event.
 // - A reset.
 // - The implementation chooses to resume execution.
 // - A Wait for Event with Timeout (WFET) is executing, and a local timeout event occurs
 // It is IMPLEMENTATION DEFINED whether restarting execution after the period of
 // suspension causes the Event Register to be cleared.

 WaitForEvent(integer localtimeout)
 if !(IsEventRegisterSet() ||
 (IsFeatureImplemented(FEAT_WFxT) && LocalTimeoutEvent(localtimeout))) && !Halted() then
 EnterLowPowerState();
 return;

shared/functions/system/WaitForInterrupt

 // WaitForInterrupt()
 // ==================
 // PE optionally suspends execution until one of the following occurs:
 // - A WFI wakeup event.
 // - A reset.
 // - The implementation chooses to resume execution.
 // - A Wait for Interrupt with Timeout (WFIT) is executing, and a local timeout event occurs.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14316
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 WaitForInterrupt(integer localtimeout)
 if !(IsFeatureImplemented(FEAT_WFxT) && LocalTimeoutEvent(localtimeout)) && !Halted() then
 EnterLowPowerState();
 return;

shared/functions/system/WatchpointRelatedSyndrome

 // WatchpointRelatedSyndrome()
 // ===========================
 // Update common Watchpoint related fields.

 bits(24) WatchpointRelatedSyndrome(FaultRecord fault, bits(64) vaddress)
 bits(24) syndrome = Zeros(24);

 if fault.maybe_false_match then
 syndrome<16> = '1';
 else
 syndrome<16> = bit IMPLEMENTATION_DEFINED "WPF value on TRUE Watchpoint match";

 if IsSVEAccess(fault.accessdesc) || IsSMEAccess(fault.accessdesc) then
 if HaltOnBreakpointOrWatchpoint() then
 if boolean IMPLEMENTATION_DEFINED "EDWAR is not valid on watchpoint debug event" then
 syndrome<10> = '1'; // FnV
 else
 if boolean IMPLEMENTATION_DEFINED "FAR is not valid on watchpoint exception" then
 syndrome<10> = '1'; // FnV
 else
 if WatchpointFARNotPrecise(fault) then
 syndrome<15> = '1'; // FnP

 // Watchpoint number is valid if FEAT_Debugv8p9 is implemented or
 // if Feat_Debugv8p2 is implemented and below set of conditions are satisfied:
 // - Either FnV = 1 or FnP = 1.
 // - If the address recorded in FAR is not within a naturally-aligned block of memory.
 // Otherwise , it is IMPLEMENTATION DEFINED if watchpoint number is valid.
 if IsFeatureImplemented(FEAT_Debugv8p9) then
 syndrome<17> = '1'; // WPTV
 syndrome<23:18> = fault.watchpt_num<5:0>; // WPT
 elsif IsFeatureImplemented(FEAT_Debugv8p2) then
 if syndrome<15> == '1' || syndrome<10> == '1' then // Either of FnP or FnV is 1
 syndrome<17> = '1'; // WPTV
 elsif AddressNotInNaturallyAlignedBlock(vaddress) then
 syndrome<17> = '1'; // WPTV
 elsif boolean IMPLEMENTATION_DEFINED "WPTV field is valid" then
 syndrome<17> = '1';
 if syndrome<17> == '1' then
 syndrome<23:18> = fault.watchpt_num<5:0>; // WPT
 else
 syndrome<23:18> = bits(6) UNKNOWN;

 return syndrome;

shared/functions/unpredictable/ConstrainUnpredictable

 // ConstrainUnpredictable()
 // ========================
 // Return the appropriate Constraint result to control the caller's behavior.
 // The return value is IMPLEMENTATION DEFINED within a permitted list for each
 // UNPREDICTABLE case.
 // (The permitted list is determined by an assert or case statement at the call site.)

 Constraint ConstrainUnpredictable(Unpredictable which);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14317
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/unpredictable/ConstrainUnpredictableBits

 // ConstrainUnpredictableBits()
 // ============================

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
 // value is always an allocated value; that is, one for which the behavior is not itself
 // CONSTRAINED.

 (Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which, integer width);

shared/functions/unpredictable/ConstrainUnpredictableBool

 // ConstrainUnpredictableBool()
 // ============================
 // This is a variant of the ConstrainUnpredictable function where the result is either
 // Constraint_TRUE or Constraint_FALSE.

 boolean ConstrainUnpredictableBool(Unpredictable which);

shared/functions/unpredictable/ConstrainUnpredictableInteger

 // ConstrainUnpredictableInteger()
 // ===============================
 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
 // If the result is Constraint_UNKNOWN then the function also returns an UNKNOWN
 // value in the range low to high, inclusive.

 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high,
 Unpredictable which);

shared/functions/unpredictable/ConstrainUnpredictableProcedure

 // ConstrainUnpredictableProcedure()
 // =================================
 // This is a variant of ConstrainUnpredictable that implements a Constrained
 // Unpredictable behavior for a given Unpredictable situation.
 // The behavior is within permitted behaviors for a given Unpredictable situation,
 // these are documented in the textual part of the architecture specification.
 //
 // This function is expected to be refined in an IMPLEMENTATION DEFINED manner.
 // The details of possible outcomes may not be present in the code and must be interpreted
 // for each use with respect to the CONSTRAINED UNPREDICTABLE specifications
 // for the specific area.

 ConstrainUnpredictableProcedure(Unpredictable which);

shared/functions/unpredictable/Constraint

 // Constraint
 // ==========
 // List of Constrained Unpredictable behaviors.

 enumeration Constraint {// General
 Constraint_NONE, // Instruction executes with
 // no change or side-effect
 // to its described behavior
 Constraint_UNKNOWN, // Destination register
 // has UNKNOWN value
 Constraint_UNDEF, // Instruction is UNDEFINED
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14318
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
 Constraint_NOP, // Instruction executes as NOP
 Constraint_TRUE,
 Constraint_FALSE,
 Constraint_DISABLED,
 Constraint_UNCOND, // Instruction executes unconditionally
 Constraint_COND, // Instruction executes conditionally
 Constraint_ADDITIONAL_DECODE, // Instruction executes
 // with additional decode
 // Load-store
 Constraint_WBSUPPRESS,
 Constraint_FAULT,
 Constraint_LIMITED_ATOMICITY, // Accesses are not
 // single-copy atomic
 // above the byte level
 Constraint_NVNV1_00,
 Constraint_NVNV1_01,
 Constraint_NVNV1_11,
 Constraint_EL1TIMESTAMP, // Constrain to Virtual Timestamp
 Constraint_EL2TIMESTAMP, // Constrain to Virtual Timestamp
 Constraint_OSH, // Constrain to Outer Shareable
 Constraint_ISH, // Constrain to Inner Shareable
 Constraint_NSH, // Constrain to Nonshareable

 Constraint_NC, // Constrain to Noncacheable
 Constraint_WT, // Constrain to Writethrough
 Constraint_WB, // Constrain to Writeback

 // IPA too large
 Constraint_FORCE, Constraint_FORCENOSLCHECK,
 // An unallocated System register value maps onto an allocated value
 Constraint_MAPTOALLOCATED,
 // PMSCR_PCT reserved values select Virtual timestamp
 Constraint_PMSCR_PCT_VIRT
 };

shared/functions/unpredictable/Unpredictable

 // Unpredictable
 // =============
 // List of Constrained Unpredictable situations.

 enumeration Unpredictable {
 // VMSR on MVFR
 Unpredictable_VMSR,
 // Writeback/transfer register overlap (load)
 Unpredictable_WBOVERLAPLD,
 // Writeback/transfer register overlap (store)
 Unpredictable_WBOVERLAPST,
 // Load Pair transfer register overlap
 Unpredictable_LDPOVERLAP,
 // Store-exclusive base/status register overlap
 Unpredictable_BASEOVERLAP,
 // Store-exclusive data/status register overlap
 Unpredictable_DATAOVERLAP,
 // Load-store alignment checks
 Unpredictable_DEVPAGE2,
 // Instruction fetch from Device memory
 Unpredictable_INSTRDEVICE,
 // Reserved CPACR value
 Unpredictable_RESCPACR,
 // Reserved MAIR value
 Unpredictable_RESMAIR,
 // Effect of SCTLR_ELx.C on Tagged attribute
 Unpredictable_S1CTAGGED,
 // Reserved Stage 2 MemAttr value
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14319
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Unpredictable_S2RESMEMATTR,
 // Reserved TEX:C:B value
 Unpredictable_RESTEXCB,
 // Reserved PRRR value
 Unpredictable_RESPRRR,
 // Reserved DACR field
 Unpredictable_RESDACR,
 // Reserved VTCR.S value
 Unpredictable_RESVTCRS,
 // Reserved TCR.TnSZ value
 Unpredictable_RESTnSZ,
 // Reserved SCTLR_ELx.TCF value
 Unpredictable_RESTCF,
 // Tag stored to Device memory
 Unpredictable_DEVICETAGSTORE,
 // Out-of-range TCR.TnSZ value
 Unpredictable_OORTnSZ,

 // IPA size exceeds PA size
 Unpredictable_LARGEIPA,
 // Syndrome for a known-passing conditional A32 instruction
 Unpredictable_ESRCONDPASS,
 // Illegal State exception: zero PSTATE.IT
 Unpredictable_ILZEROIT,
 // Illegal State exception: zero PSTATE.T
 Unpredictable_ILZEROT,
 // Debug: prioritization of Vector Catch
 Unpredictable_BPVECTORCATCHPRI,
 // Debug Vector Catch: match on 2nd halfword
 Unpredictable_VCMATCHHALF,
 // Debug Vector Catch: match on Data Abort
 // or Prefetch abort
 Unpredictable_VCMATCHDAPA,
 // Debug watchpoints: nonzero MASK and non-ones BAS
 Unpredictable_WPMASKANDBAS,
 // Debug watchpoints: non-contiguous BAS
 Unpredictable_WPBASCONTIGUOUS,
 // Debug watchpoints: reserved MASK
 Unpredictable_RESWPMASK,
 // Debug watchpoints: nonzero MASKed bits of address
 Unpredictable_WPMASKEDBITS,
 // Debug breakpoints and watchpoints: reserved control bits
 Unpredictable_RESBPWPCTRL,
 // Debug breakpoints: not implemented
 Unpredictable_BPNOTIMPL,
 // Debug breakpoints: reserved type
 Unpredictable_RESBPTYPE,
 // Debug breakpoints and watchpoints: reserved MDSELR_EL1.BANK
 Unpredictable_RESMDSELR,
 // Debug breakpoints: not-context-aware breakpoint
 Unpredictable_BPNOTCTXCMP,
 // Debug breakpoints: match on 2nd halfword of instruction
 Unpredictable_BPMATCHHALF,
 // Debug breakpoints: mismatch on 2nd halfword of instruction
 Unpredictable_BPMISMATCHHALF,
 // Debug breakpoints: a breakpoint is linked to that is not
 // programmed with linking enabled
 Unpredictable_BPLINKINGDISABLED,
 // Debug breakpoints: reserved MASK
 Unpredictable_RESBPMASK,
 // Debug breakpoints: MASK is set for a Context matching
 // breakpoint or when DBGBCR_EL1[n].BAS != '1111'
 Unpredictable_BPMASK,
 // Debug breakpoints: nonzero MASKed bits of address
 Unpredictable_BPMASKEDBITS,
 // Debug breakpoints: A linked breakpoint is
 // linked to an address matching breakpoint
 Unpredictable_BPLINKEDADDRMATCH,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14320
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // Debug: restart to a misaligned AArch32 PC value
 Unpredictable_RESTARTALIGNPC,
 // Debug: restart to a not-zero-extended AArch32 PC value
 Unpredictable_RESTARTZEROUPPERPC,
 // Zero top 32 bits of X registers in AArch32 state
 Unpredictable_ZEROUPPER,
 // Zero top 32 bits of PC on illegal return to
 // AArch32 state
 Unpredictable_ERETZEROUPPERPC,
 // Force address to be aligned when interworking
 // branch to A32 state
 Unpredictable_A32FORCEALIGNPC,
 // SMC disabled
 Unpredictable_SMD,
 // FF speculation
 Unpredictable_NONFAULT,
 // Zero top bits of Z registers in EL change
 Unpredictable_SVEZEROUPPER,
 // Load mem data in NF loads
 Unpredictable_SVELDNFDATA,
 // Write zeros in NF loads
 Unpredictable_SVELDNFZERO,
 // SP alignment fault when predicate is all zero
 Unpredictable_CHECKSPNONEACTIVE,
 // Zero top bits of ZA registers in EL change
 Unpredictable_SMEZEROUPPER,
 // Watchpoint match of last rounded up memory access in case of
 // 16 byte rounding
 Unpredictable_16BYTEROUNDEDUPACCESS,
 // Watchpoint match of first rounded down memory access in case of
 // 16 byte rounding
 Unpredictable_16BYTEROUNDEDDOWNACCESS,
 // HCR_EL2.<NV,NV1> == '01'
 Unpredictable_NVNV1,
 // Reserved shareability encoding
 Unpredictable_Shareability,
 // Access Flag Update by HW
 Unpredictable_AFUPDATE,
 // Dirty Bit State Update by HW
 Unpredictable_DBUPDATE,
 // Consider SCTLR_ELx[].IESB in Debug state
 Unpredictable_IESBinDebug,
 // Bad settings for PMSFCR_EL1/PMSEVFR_EL1/PMSLATFR_EL1
 Unpredictable_BADPMSFCR,
 // Zero saved BType value in SPSR_ELx/DPSR_EL0
 Unpredictable_ZEROBTYPE,
 // Timestamp constrained to virtual or physical
 Unpredictable_EL2TIMESTAMP,
 Unpredictable_EL1TIMESTAMP,
 // Reserved MDCR_EL3.<NSTBE,NSTB> or MDCR_EL3.<NSPBE,NSPB> value
 Unpredictable_RESERVEDNSxB,
 // WFET or WFIT instruction in Debug state
 Unpredictable_WFxTDEBUG,
 // Address does not support LS64 instructions
 Unpredictable_LS64UNSUPPORTED,
 // Misaligned exclusives, atomics, acquire/release
 // to region that is not Normal Cacheable WB
 Unpredictable_MISALIGNEDATOMIC,
 // 128-bit Atomic or 128-bit RCW{S} transfer register overlap
 Unpredictable_LSE128OVERLAP,
 // Clearing DCC/ITR sticky flags when instruction is in flight
 Unpredictable_CLEARERRITEZERO,
 // ALUEXCEPTIONRETURN when in user/system mode in
 // A32 instructions
 Unpredictable_ALUEXCEPTIONRETURN,
 // Trap to register in debug state are ignored
 Unpredictable_IGNORETRAPINDEBUG,
 // Compare DBGBVR.RESS for BP/WP
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14321
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 Unpredictable_DBGxVR_RESS,
 // Inaccessible event counter
 Unpredictable_PMUEVENTCOUNTER,
 // Reserved PMSCR.PCT behavior
 Unpredictable_PMSCR_PCT,
 // MDCR_EL2.HPMN or HDCR.HPMN is larger than PMCR.N or
 // FEAT_HPMN0 is not implemented and HPMN is 0.
 Unpredictable_CounterReservedForEL2,
 // Generate BRB_FILTRATE event on BRB injection
 Unpredictable_BRBFILTRATE,
 // Generate PMU_SNAPSHOT event in Debug state
 Unpredictable_PMUSNAPSHOTEVENT,
 // Reserved MDCR_EL3.EPMSSAD value
 Unpredictable_RESEPMSSAD,
 // Reserved PMECR_EL1.SSE value
 Unpredictable_RESPMSSE,
 // Enable for PMU exception and PMUIRQ
 Unpredictable_RESPMEE,
 // Operands for CPY*/SET* instructions overlap or
 // use 0b11111 as a register specifier
 Unpredictable_MOPSOVERLAP31,
 // Store-only Tag checking on a failed Atomic Compare and Swap
 Unpredictable_STOREONLYTAGCHECKEDCAS,
 // Reserved MDCR_EL3.ETBAD value
 Unpredictable_RES_ETBAD,
 // accessing DBGDSCRint via MRC in debug state
 Unpredictable_MRC_APSR_TARGET,
 // Reserved PMEVTYPER<n>_EL0.{TC,TE,TC2} values
 Unpredictable_RESTC
 };

shared/functions/vector/AdvSIMDExpandImm

 // AdvSIMDExpandImm()
 // ==================

 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
 bits(64) imm64;
 case cmode<3:1> of
 when '000'
 imm64 = Replicate(Zeros(24):imm8, 2);
 when '001'
 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when '010'
 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when '011'
 imm64 = Replicate(imm8:Zeros(24), 2);
 when '100'
 imm64 = Replicate(Zeros(8):imm8, 4);
 when '101'
 imm64 = Replicate(imm8:Zeros(8), 4);
 when '110'
 if cmode<0> == '0' then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
 when '111'
 if cmode<0> == '0' && op == '0' then
 imm64 = Replicate(imm8, 8);
 if cmode<0> == '0' && op == '1' then
 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
 if cmode<0> == '1' && op == '0' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14322
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 imm64 = Replicate(imm32, 2);
 if cmode<0> == '1' && op == '1' then
 if UsingAArch32() then ReservedEncoding();
 imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

 return imm64;

shared/functions/vector/MatMulAdd

 // MatMulAdd()
 // ===========
 //
 // Signed or unsigned 8-bit integer matrix multiply and add to 32-bit integer matrix
 // result[2, 2] = addend[2, 2] + (op1[2, 8] * op2[8, 2])

 bits(N) MatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean op1_unsigned,
 boolean op2_unsigned)
 assert N == 128;

 bits(N) result;
 bits(32) sum;
 integer prod;

 for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, 32];
 for k = 0 to 7
 prod = (Int(Elem[op1, 8*i + k, 8], op1_unsigned) *
 Int(Elem[op2, 8*j + k, 8], op2_unsigned));
 sum = sum + prod;
 Elem[result, 2*i + j, 32] = sum;

 return result;

shared/functions/vector/PolynomialMult

 // PolynomialMult()
 // ================

 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
 result = Zeros(M+N);
 extended_op2 = ZeroExtend(op2, M+N);
 for i=0 to M-1
 if op1<i> == '1' then
 result = result EOR LSL(extended_op2, i);
 return result;

shared/functions/vector/SatQ

 // SatQ()
 // ======

 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14323
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/functions/vector/SignedSatQ

 // SignedSatQ()
 // ============

 (bits(N), boolean) SignedSatQ(integer i, integer N)
 integer result;
 boolean saturated;
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

shared/functions/vector/UnsignedRSqrtEstimate

 // UnsignedRSqrtEstimate()
 // =======================

 bits(N) UnsignedRSqrtEstimate(bits(N) operand)
 assert N == 32;
 bits(N) result;
 if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
 else
 // input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)
 // estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
 increasedprecision = FALSE;
 estimate = RecipSqrtEstimate(UInt(operand<31:23>), increasedprecision);
 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);

 return result;

shared/functions/vector/UnsignedRecipEstimate

 // UnsignedRecipEstimate()
 // =======================

 bits(N) UnsignedRecipEstimate(bits(N) operand)
 assert N == 32;
 bits(N) result;
 if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
 else
 // input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

 // estimate is in the range 256 to 511 representing [1.0 .. 2.0)
 increasedprecision = FALSE;
 estimate = RecipEstimate(UInt(operand<31:23>), increasedprecision);

 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);

 return result;

shared/functions/vector/UnsignedSatQ

 // UnsignedSatQ()
 // ==============

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14324
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
 integer result;
 boolean saturated;
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

J1.3.4 shared/trace

This section includes the following pseudocode functions:

• shared/trace/Common/DebugMemWrite.

• shared/trace/Common/DebugWriteExternalAbort.

• shared/trace/Common/DebugWriteFault.

• shared/trace/Common/GetTimestamp.

• shared/trace/Common/PhysicalOffsetIsValid.

• shared/trace/TraceBranch/BranchNotTaken.

• shared/trace/TraceBuffer/AllowExternalTraceBufferAccess.

• shared/trace/TraceBuffer/TraceBufferEnabled.

• shared/trace/TraceBuffer/TraceBufferOwner.

• shared/trace/TraceBuffer/TraceBufferRunning.

• shared/trace/TraceInstrumentationAllowed/TraceInstrumentationAllowed.

• shared/trace/selfhosted/EffectiveE0HTRE.

• shared/trace/selfhosted/EffectiveE0TRE.

• shared/trace/selfhosted/EffectiveE1TRE.

• shared/trace/selfhosted/EffectiveE2TRE.

• shared/trace/selfhosted/SelfHostedTraceEnabled.

• shared/trace/selfhosted/TraceAllowed.

• shared/trace/selfhosted/TraceContextIDR2.

• shared/trace/selfhosted/TraceSynchronizationBarrier.

• shared/trace/selfhosted/TraceTimeStamp.

• shared/trace/system/IsTraceCorePowered.

shared/trace/Common/DebugMemWrite

 // DebugMemWrite()
 // ===============
 // Write data to memory one byte at a time. Starting at the passed virtual address.
 // Used by SPE.

 (PhysMemRetStatus, AddressDescriptor) DebugMemWrite(bits(64) vaddress, AccessDescriptor accdesc,
 boolean aligned, bits(8) data)

 PhysMemRetStatus memstatus = PhysMemRetStatus UNKNOWN;

 // Translate virtual address
 AddressDescriptor addrdesc;
 integer size = 1;
 addrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

 if IsFault(addrdesc) then
 return (memstatus, addrdesc);

 memstatus = PhysMemWrite(addrdesc, 1, accdesc, data);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14325
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return (memstatus, addrdesc);

shared/trace/Common/DebugWriteExternalAbort

 // DebugWriteExternalAbort()
 // =========================
 // Populate the syndrome register for an External abort caused by a call of DebugMemWrite().

 DebugWriteExternalAbort(PhysMemRetStatus memstatus, AddressDescriptor addrdesc,
 bits(64) start_vaddr)

 boolean iswrite = TRUE;

 boolean handle_as_SError = FALSE;
 boolean async_external_abort = FALSE;
 bits(64) syndrome;
 case addrdesc.fault.accessdesc.acctype of
 when AccessType_SPE
 handle_as_SError = boolean IMPLEMENTATION_DEFINED "SPE SyncExternal as SError";
 async_external_abort = boolean IMPLEMENTATION_DEFINED "SPE async External abort";
 syndrome = PMBSR_EL1<63:0>;
 otherwise
 Unreachable();

 boolean ttw_abort;
 ttw_abort = addrdesc.fault.statuscode IN {Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk};
 Fault statuscode = if ttw_abort then addrdesc.fault.statuscode else memstatus.statuscode;
 bit extflag = if ttw_abort then addrdesc.fault.extflag else memstatus.extflag;
 if (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity} || handle_as_SError) then
 // ASYNC Fault -> SError or SYNC Fault handled as SError
 FaultRecord fault = NoFault();
 boolean parity = statuscode IN {Fault_SyncParity, Fault_AsyncParity,
 Fault_SyncParityOnWalk};
 fault.statuscode = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 if IsFeatureImplemented(FEAT_RAS) then
 fault.merrorstate = memstatus.merrorstate;
 fault.extflag = extflag;
 fault.accessdesc.acctype = addrdesc.fault.accessdesc.acctype;
 PendSErrorInterrupt(fault);
 else
 // SYNC Fault, not handled by SError
 // Generate Buffer Management Event
 // EA bit
 syndrome<18> = '1';

 // DL bit for SPE
 if addrdesc.fault.accessdesc.acctype == AccessType_SPE && (async_external_abort ||
 (start_vaddr != addrdesc.vaddress)) then
 syndrome<19> = '1';

 // Do not change following values if previous Buffer Management Event
 // has not been handled.
 // S bit
 if IsZero(syndrome<17>) then
 syndrome<17> = '1';

 // EC bits
 bits(6) ec;
 if (IsFeatureImplemented(FEAT_RME) && addrdesc.fault.gpcf.gpf != GPCF_None &&
 addrdesc.fault.gpcf.gpf != GPCF_Fail) then
 ec = '011110';
 else
 ec = if addrdesc.fault.secondstage then '100101' else '100100';
 syndrome<31:26> = ec;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14326
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 // MSS bits
 if async_external_abort then
 syndrome<15:0> = Zeros(10) : '010001';
 else
 syndrome<15:0> = Zeros(10) : EncodeLDFSC(statuscode, addrdesc.fault.level);

 case addrdesc.fault.accessdesc.acctype of
 when AccessType_SPE
 PMBSR_EL1<63:0> = syndrome;
 otherwise
 Unreachable();

shared/trace/Common/DebugWriteFault

 // DebugWriteFault()
 // =================
 // Populate the syndrome register for a Translation fault caused by a call of DebugMemWrite().

 DebugWriteFault(bits(64) vaddress, FaultRecord fault)
 bits(64) syndrome;
 case fault.accessdesc.acctype of
 when AccessType_SPE
 syndrome = PMBSR_EL1<63:0>;
 otherwise
 Unreachable();

 // MSS
 syndrome<15:0> = Zeros(10) : EncodeLDFSC(fault.statuscode, fault.level);

 // MSS2
 syndrome<55:32> = Zeros(24);

 // EC bits
 bits(6) ec;
 if (IsFeatureImplemented(FEAT_RME) && fault.gpcf.gpf != GPCF_None &&
 fault.gpcf.gpf != GPCF_Fail) then
 ec = '011110';
 else
 ec = if fault.secondstage then '100101' else '100100';
 syndrome<31:26> = ec;

 // S bit
 syndrome<17> = '1';

 if fault.statuscode == Fault_Permission then
 // assuredonly bit
 syndrome<39> = if fault.assuredonly then '1' else '0';
 // overlay bit
 syndrome<38> = if fault.overlay then '1' else '0';
 // dirtybit
 syndrome<37> = if fault.dirtybit then '1' else '0';

 case fault.accessdesc.acctype of
 when AccessType_SPE
 PMBSR_EL1<63:0> = syndrome;
 otherwise
 Unreachable();

 // Buffer Write Pointer already points to the address that generated the fault.
 // Writing to memory never started so no data loss. DL is unchanged.

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14327
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/trace/Common/GetTimestamp

 // GetTimestamp()
 // ==============
 // Returns the Timestamp depending on the type

 bits(64) GetTimestamp(TimeStamp timeStampType)
 case timeStampType of
 when TimeStamp_Physical
 return PhysicalCountInt();
 when TimeStamp_Virtual
 return PhysicalCountInt() - CNTVOFF_EL2;
 when TimeStamp_OffsetPhysical
 bits(64) physoff = if PhysicalOffsetIsValid() then CNTPOFF_EL2 else Zeros(64);
 return PhysicalCountInt() - physoff;
 when TimeStamp_None
 return Zeros(64);
 when TimeStamp_CoreSight
 return bits(64) IMPLEMENTATION_DEFINED "CoreSight timestamp";
 otherwise
 Unreachable();

shared/trace/Common/PhysicalOffsetIsValid

 // PhysicalOffsetIsValid()
 // =======================
 // Returns whether the Physical offset for the timestamp is valid

 boolean PhysicalOffsetIsValid()
 if !HaveAArch64() then
 return FALSE;
 elsif !HaveEL(EL2) || !IsFeatureImplemented(FEAT_ECV) then
 return FALSE;
 elsif HaveEL(EL3) && SCR_EL3.NS == '1' && EffectiveSCR_EL3_RW() == '0' then
 return FALSE;
 elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
 return FALSE;
 elsif CNTHCTL_EL2.ECV == '0' then
 return FALSE;
 else
 return TRUE;

shared/trace/TraceBranch/BranchNotTaken

 // BranchNotTaken()
 // ================
 // Called when a branch is not taken.

 BranchNotTaken(BranchType branchtype, boolean branch_conditional)
 boolean branchtaken = FALSE;
 if IsFeatureImplemented(FEAT_SPE) then
 SPEBranch(bits(64) UNKNOWN, branchtype, branch_conditional, branchtaken);
 return;

shared/trace/TraceBuffer/AllowExternalTraceBufferAccess

 // AllowExternalTraceBufferAccess()
 // ================================
 // Returns TRUE if an external debug interface access to the Trace Buffer
 // registers is allowed, FALSE otherwise.
 // The access may also be subject to OS Lock, power-down, etc.

 boolean AllowExternalTraceBufferAccess()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14328
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 return AllowExternalTraceBufferAccess(AccessState());

 // AllowExternalTraceBufferAccess()
 // ================================
 // Returns TRUE if an external debug interface access to the Trace Buffer
 // registers is allowed for the given Security state, FALSE otherwise.
 // The access may also be subject to OS Lock, power-down, etc.

 boolean AllowExternalTraceBufferAccess(SecurityState access_state)
 assert IsFeatureImplemented(FEAT_TRBE_EXT);
 // FEAT_Debugv8p4 is always implemented when FEAT_TRBE_EXT is implemented.
 assert IsFeatureImplemented(FEAT_Debugv8p4);

 bits(2) etbad = if HaveEL(EL3) then MDCR_EL3.ETBAD else '11';

 // Check for reserved values
 if !IsFeatureImplemented(FEAT_RME) && etbad IN {'01','10'} then
 (-, etbad) = ConstrainUnpredictableBits(Unpredictable_RES_ETBAD, 2);
 // The value returned by ConstrainUnpredictableBits must be a
 // non-reserved value
 assert etbad IN {'00', '11'};

 case etbad of
 when '00'
 if IsFeatureImplemented(FEAT_RME) then
 return access_state == SS_Root;
 else
 return access_state == SS_Secure;
 when '01'
 assert IsFeatureImplemented(FEAT_RME);
 return access_state IN {SS_Root, SS_Realm};
 when '10'
 assert IsFeatureImplemented(FEAT_RME);
 return access_state IN {SS_Root, SS_Secure};
 when '11'
 return TRUE;

shared/trace/TraceBuffer/TraceBufferEnabled

 // TraceBufferEnabled()
 // ====================

 boolean TraceBufferEnabled()
 if !IsFeatureImplemented(FEAT_TRBE) || TRBLIMITR_EL1.E == '0' then
 return FALSE;
 if !SelfHostedTraceEnabled() then
 return FALSE;
 (-, el) = TraceBufferOwner();
 return !ELUsingAArch32(el);

shared/trace/TraceBuffer/TraceBufferOwner

 // TraceBufferOwner()
 // ==================
 // Return the owning Security state and Exception level. Must only be called
 // when SelfHostedTraceEnabled() is TRUE.

 (SecurityState, bits(2)) TraceBufferOwner()
 assert IsFeatureImplemented(FEAT_TRBE) && SelfHostedTraceEnabled();

 SecurityState owning_ss;
 if HaveEL(EL3) then
 bits(3) state_bits;
 if IsFeatureImplemented(FEAT_RME) then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14329
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 state_bits = MDCR_EL3.<NSTBE,NSTB>;
 if (state_bits IN {'10x'} ||
 (!IsFeatureImplemented(FEAT_SEL2) && state_bits IN {'00x'})) then
 // Reserved value
 (-, state_bits) = ConstrainUnpredictableBits(Unpredictable_RESERVEDNSxB, 3);
 else
 state_bits = '0' : MDCR_EL3.NSTB;

 case state_bits of
 when '00x' owning_ss = SS_Secure;
 when '01x' owning_ss = SS_NonSecure;
 when '11x' owning_ss = SS_Realm;
 else
 owning_ss = if SecureOnlyImplementation() then SS_Secure else SS_NonSecure;
 bits(2) owning_el;
 if HaveEL(EL2) && (owning_ss != SS_Secure || IsSecureEL2Enabled()) then
 owning_el = if MDCR_EL2.E2TB == '00' then EL2 else EL1;
 else
 owning_el = EL1;
 return (owning_ss, owning_el);

shared/trace/TraceBuffer/TraceBufferRunning

 // TraceBufferRunning()
 // ====================

 boolean TraceBufferRunning()
 return TraceBufferEnabled() && TRBSR_EL1.S == '0';

shared/trace/TraceInstrumentationAllowed/TraceInstrumentationAllowed

 // TraceInstrumentationAllowed()
 // =============================
 // Returns TRUE if Instrumentation Trace is allowed
 // in the given Exception level and Security state.

 boolean TraceInstrumentationAllowed(SecurityState ss, bits(2) el)
 if !IsFeatureImplemented(FEAT_ITE) then return FALSE;
 if ELUsingAArch32(el) then return FALSE;

 if TraceAllowed(el) then
 bit ite_bit;
 case el of
 when EL3 ite_bit = '0';
 when EL2 ite_bit = TRCITECR_EL2.E2E;
 when EL1 ite_bit = TRCITECR_EL1.E1E;
 when EL0
 if EffectiveTGE() == '1' then
 ite_bit = TRCITECR_EL2.E0HE;
 else
 ite_bit = TRCITECR_EL1.E0E;

 if SelfHostedTraceEnabled() then
 return ite_bit == '1';
 else
 bit el_bit;
 bit ss_bit;
 case el of
 when EL0 el_bit = TRCITEEDCR.E0;
 when EL1 el_bit = TRCITEEDCR.E1;
 when EL2 el_bit = TRCITEEDCR.E2;
 when EL3 el_bit = TRCITEEDCR.E3;
 case ss of
 when SS_Realm ss_bit = TRCITEEDCR.RL;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14330
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when SS_Secure ss_bit = TRCITEEDCR.S;
 when SS_NonSecure ss_bit = TRCITEEDCR.NS;
 otherwise ss_bit = '1';

 boolean ed_allowed = ss_bit == '1' && el_bit == '1';

 if TRCCONFIGR.ITO == '1' then
 return ed_allowed;
 else
 return ed_allowed && ite_bit == '1';
 else
 return FALSE;

shared/trace/selfhosted/EffectiveE0HTRE

 // EffectiveE0HTRE()
 // =================
 // Returns effective E0HTRE value

 bit EffectiveE0HTRE()
 return if ELUsingAArch32(EL2) then HTRFCR.E0HTRE else TRFCR_EL2.E0HTRE;

shared/trace/selfhosted/EffectiveE0TRE

 // EffectiveE0TRE()
 // ================
 // Returns effective E0TRE value

 bit EffectiveE0TRE()
 return if ELUsingAArch32(EL1) then TRFCR.E0TRE else TRFCR_EL1.E0TRE;

shared/trace/selfhosted/EffectiveE1TRE

 // EffectiveE1TRE()
 // ================
 // Returns effective E1TRE value

 bit EffectiveE1TRE()
 return if UsingAArch32() then TRFCR.E1TRE else TRFCR_EL1.E1TRE;

shared/trace/selfhosted/EffectiveE2TRE

 // EffectiveE2TRE()
 // ================
 // Returns effective E2TRE value

 bit EffectiveE2TRE()
 return if UsingAArch32() then HTRFCR.E2TRE else TRFCR_EL2.E2TRE;

shared/trace/selfhosted/SelfHostedTraceEnabled

 // SelfHostedTraceEnabled()
 // ========================
 // Returns TRUE if Self-hosted Trace is enabled.

 boolean SelfHostedTraceEnabled()
 bit secure_trace_enable = '0';
 if !(HaveTraceExt() && IsFeatureImplemented(FEAT_TRF)) then return FALSE;
 if EDSCR.TFO == '0' then return TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14331
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if IsFeatureImplemented(FEAT_RME) then
 secure_trace_enable = if IsFeatureImplemented(FEAT_SEL2) then MDCR_EL3.STE else '0';
 return ((secure_trace_enable == '1' && !ExternalSecureNoninvasiveDebugEnabled()) ||
 (MDCR_EL3.RLTE == '1' && !ExternalRealmNoninvasiveDebugEnabled()));
 if HaveEL(EL3) then
 secure_trace_enable = if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE;
 else
 secure_trace_enable = if SecureOnlyImplementation() then '1' else '0';

 if secure_trace_enable == '1' && !ExternalSecureNoninvasiveDebugEnabled() then
 return TRUE;

 return FALSE;

shared/trace/selfhosted/TraceAllowed

 // TraceAllowed()
 // ==============
 // Returns TRUE if Self-hosted Trace is allowed in the given Exception level.

 boolean TraceAllowed(bits(2) el)
 if !HaveTraceExt() then return FALSE;
 if SelfHostedTraceEnabled() then
 boolean trace_allowed;
 ss = SecurityStateAtEL(el);
 // Detect scenarios where tracing in this Security state is never allowed.
 case ss of
 when SS_NonSecure
 trace_allowed = TRUE;
 when SS_Secure
 bit trace_bit;
 if HaveEL(EL3) then
 trace_bit = if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE;
 else
 trace_bit = '1';
 trace_allowed = trace_bit == '1';
 when SS_Realm
 trace_allowed = MDCR_EL3.RLTE == '1';
 when SS_Root
 trace_allowed = FALSE;

 // Tracing is prohibited if the trace buffer owning security state is not the
 // current Security state or the owning Exception level is a lower Exception level.
 if IsFeatureImplemented(FEAT_TRBE) && TraceBufferEnabled() then
 (owning_ss, owning_el) = TraceBufferOwner();
 if (ss != owning_ss || UInt(owning_el) < UInt(el) ||
 (EffectiveTGE() == '1' && owning_el == EL1)) then
 trace_allowed = FALSE;

 bit TRE_bit;
 case el of
 when EL3 TRE_bit = if !HaveAArch64() then TRFCR.E1TRE else '0';
 when EL2 TRE_bit = EffectiveE2TRE();
 when EL1 TRE_bit = EffectiveE1TRE();
 when EL0
 if EffectiveTGE() == '1' then
 TRE_bit = EffectiveE0HTRE();
 else
 TRE_bit = EffectiveE0TRE();

 return trace_allowed && TRE_bit == '1';
 else
 return ExternalNoninvasiveDebugAllowed(el);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14332
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/trace/selfhosted/TraceContextIDR2

 // TraceContextIDR2()
 // ==================

 boolean TraceContextIDR2()
 if !TraceAllowed(PSTATE.EL)|| !HaveEL(EL2) then return FALSE;
 return (!SelfHostedTraceEnabled() || TRFCR_EL2.CX == '1');

shared/trace/selfhosted/TraceSynchronizationBarrier

 // TraceSynchronizationBarrier()
 // =============================
 // Memory barrier instruction that preserves the relative order of memory accesses to System
 // registers due to trace operations and other memory accesses to the same registers

 TraceSynchronizationBarrier();

shared/trace/selfhosted/TraceTimeStamp

 // TraceTimeStamp()
 // ================

 TimeStamp TraceTimeStamp()
 if SelfHostedTraceEnabled() then
 if HaveEL(EL2) then
 TS_el2 = TRFCR_EL2.TS;
 if !IsFeatureImplemented(FEAT_ECV) && TS_el2 == '10' then
 // Reserved value
 (-, TS_el2) = ConstrainUnpredictableBits(Unpredictable_EL2TIMESTAMP, 2);

 case TS_el2 of
 when '00'
 // Falls out to check TRFCR_EL1.TS
 when '01'
 return TimeStamp_Virtual;
 when '10'
 // Otherwise ConstrainUnpredictableBits removes this case
 assert IsFeatureImplemented(FEAT_ECV);
 return TimeStamp_OffsetPhysical;
 when '11'
 return TimeStamp_Physical;

 TS_el1 = TRFCR_EL1.TS;
 if TS_el1 == '00' || (!IsFeatureImplemented(FEAT_ECV) && TS_el1 == '10') then
 // Reserved value
 (-, TS_el1) = ConstrainUnpredictableBits(Unpredictable_EL1TIMESTAMP, 2);

 case TS_el1 of
 when '01'
 return TimeStamp_Virtual;
 when '10'
 assert IsFeatureImplemented(FEAT_ECV);
 return TimeStamp_OffsetPhysical;
 when '11'
 return TimeStamp_Physical;
 otherwise
 Unreachable(); // ConstrainUnpredictableBits removes this case
 else
 return TimeStamp_CoreSight;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14333
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/trace/system/IsTraceCorePowered

 // IsTraceCorePowered()
 // ====================
 // Returns TRUE if the Trace Core Power Domain is powered up

 boolean IsTraceCorePowered();

J1.3.5 shared/translation

This section includes the following pseudocode functions:

• shared/translation/at.

• shared/translation/at/EncodePARAttrs.

• shared/translation/at/PAREncodeShareability.

• shared/translation/at/ReportedPARAttrs.

• shared/translation/at/ReportedPARShareability.

• shared/translation/attrs/DecodeDevice.

• shared/translation/attrs/DecodeLDFAttr.

• shared/translation/attrs/DecodeSDFAttr.

• shared/translation/attrs/DecodeShareability.

• shared/translation/attrs/EffectiveShareability.

• shared/translation/attrs/NormalNCMemAttr.

• shared/translation/attrs/S1ConstrainUnpredictableRESMAIR.

• shared/translation/attrs/S1DecodeMemAttrs.

• shared/translation/attrs/S2CombineS1AttrHints.

• shared/translation/attrs/S2CombineS1Device.

• shared/translation/attrs/S2CombineS1MemAttrs.

• shared/translation/attrs/S2CombineS1Shareability.

• shared/translation/attrs/S2DecodeCacheability.

• shared/translation/attrs/S2DecodeMemAttrs.

• shared/translation/attrs/S2MemTagType.

• shared/translation/attrs/WalkMemAttrs.

• shared/translation/faults/AlignmentFault.

• shared/translation/faults/ExclusiveFault.

• shared/translation/faults/NoFault.

• shared/translation/gpc/AbovePPS.

• shared/translation/gpc/DecodeGPTBlock.

• shared/translation/gpc/DecodeGPTContiguous.

• shared/translation/gpc/DecodeGPTGranules.

• shared/translation/gpc/DecodeGPTTable.

• shared/translation/gpc/DecodePGS.

• shared/translation/gpc/DecodePGSRange.

• shared/translation/gpc/DecodePPS.

• shared/translation/gpc/GPCFault.

• shared/translation/gpc/GPCNoFault.

• shared/translation/gpc/GPCRegistersConsistent.

• shared/translation/gpc/GPICheck.

• shared/translation/gpc/GPIIndex.

• shared/translation/gpc/GPIValid.

• shared/translation/gpc/GPTL0Size.

• shared/translation/gpc/GPTLevel0Index.

• shared/translation/gpc/GPTLevel1Index.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14334
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
• shared/translation/gpc/GPTWalk.

• shared/translation/gpc/GranuleProtectionCheck.

• shared/translation/gpc/PGS.

• shared/translation/gpc/Table.

• shared/translation/translation/S1TranslationRegime.

• shared/translation/vmsa/AddressDescriptor.

• shared/translation/vmsa/ContiguousSize.

• shared/translation/vmsa/CreateAddressDescriptor.

• shared/translation/vmsa/CreateFaultyAddressDescriptor.

• shared/translation/vmsa/DecodePASpace.

• shared/translation/vmsa/DescriptorType.

• shared/translation/vmsa/Domains.

• shared/translation/vmsa/FetchDescriptor.

• shared/translation/vmsa/HasUnprivileged.

• shared/translation/vmsa/Regime.

• shared/translation/vmsa/RegimeUsingAArch32.

• shared/translation/vmsa/S1TTWParams.

• shared/translation/vmsa/S2TTWParams.

• shared/translation/vmsa/SDFType.

• shared/translation/vmsa/SecurityStateForRegime.

• shared/translation/vmsa/StageOA.

• shared/translation/vmsa/TGx.

• shared/translation/vmsa/TGxGranuleBits.

• shared/translation/vmsa/TLBContext.

• shared/translation/vmsa/TLBRecord.

• shared/translation/vmsa/TTWState.

• shared/translation/vmsa/TranslationRegime.

• shared/translation/vmsa/TranslationSize.

• shared/translation/vmsa/UseASID.

• shared/translation/vmsa/UseVMID.

shared/translation/at

 enumeration TranslationStage {
 TranslationStage_1,
 TranslationStage_12
 };

 enumeration ATAccess {
 ATAccess_Read,
 ATAccess_Write,
 ATAccess_Any,
 ATAccess_ReadPAN,
 ATAccess_WritePAN
 };

shared/translation/at/EncodePARAttrs

 // EncodePARAttrs()
 // ================
 // Convert orthogonal attributes and hints to 64-bit PAR ATTR field.

 bits(8) EncodePARAttrs(MemoryAttributes memattrs)
 bits(8) result;

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14335
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 if IsFeatureImplemented(FEAT_MTE) && memattrs.tags == MemTag_AllocationTagged then
 if IsFeatureImplemented(FEAT_MTE_PERM) && memattrs.notagaccess then
 result<7:0> = '11100000';
 else
 result<7:0> = '11110000';
 return result;

 if memattrs.memtype == MemType_Device then
 result<7:4> = '0000';
 case memattrs.device of
 when DeviceType_nGnRnE result<3:0> = '0000';
 when DeviceType_nGnRE result<3:0> = '0100';
 when DeviceType_nGRE result<3:0> = '1000';
 when DeviceType_GRE result<3:0> = '1100';
 otherwise Unreachable();
 result<0> = NOT memattrs.xs;
 else
 if memattrs.xs == '0' then
 if (memattrs.outer.attrs == MemAttr_WT && memattrs.inner.attrs == MemAttr_WT &&
 !memattrs.outer.transient && memattrs.outer.hints == MemHint_RA) then
 return '10100000';
 elsif memattrs.outer.attrs == MemAttr_NC && memattrs.inner.attrs == MemAttr_NC then
 return '01000000';

 if memattrs.outer.attrs == MemAttr_WT then
 result<7:6> = if memattrs.outer.transient then '00' else '10';
 result<5:4> = memattrs.outer.hints;
 elsif memattrs.outer.attrs == MemAttr_WB then
 result<7:6> = if memattrs.outer.transient then '01' else '11';
 result<5:4> = memattrs.outer.hints;
 else // MemAttr_NC
 result<7:4> = '0100';

 if memattrs.inner.attrs == MemAttr_WT then
 result<3:2> = if memattrs.inner.transient then '00' else '10';
 result<1:0> = memattrs.inner.hints;
 elsif memattrs.inner.attrs == MemAttr_WB then
 result<3:2> = if memattrs.inner.transient then '01' else '11';
 result<1:0> = memattrs.inner.hints;
 else // MemAttr_NC
 result<3:0> = '0100';

 return result;

shared/translation/at/PAREncodeShareability

 // PAREncodeShareability()
 // =======================
 // Derive 64-bit PAR SH field.

 bits(2) PAREncodeShareability(MemoryAttributes memattrs)
 if (memattrs.memtype == MemType_Device ||
 (memattrs.inner.attrs == MemAttr_NC &&
 memattrs.outer.attrs == MemAttr_NC)) then
 // Force Outer-Shareable on Device and Normal Non-Cacheable memory
 return '10';

 case memattrs.shareability of
 when Shareability_NSH return '00';
 when Shareability_ISH return '11';
 when Shareability_OSH return '10';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14336
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/at/ReportedPARAttrs

 // ReportedPARAttrs()
 // ==================
 // The value returned in this field can be the resulting attribute, as determined by any permitted
 // implementation choices and any applicable configuration bits, instead of the value that appears
 // in the translation table descriptor.

 bits(8) ReportedPARAttrs(bits(8) parattrs);

shared/translation/at/ReportedPARShareability

 // ReportedPARShareability()
 // =========================
 // The value returned in SH field can be the resulting attribute, as determined by any
 // permitted implementation choices and any applicable configuration bits, instead of
 // the value that appears in the translation table descriptor.

 bits(2) ReportedPARShareability(bits(2) sh);

shared/translation/attrs/DecodeDevice

 // DecodeDevice()
 // ==============
 // Decode output Device type

 DeviceType DecodeDevice(bits(2) device)
 case device of
 when '00' return DeviceType_nGnRnE;
 when '01' return DeviceType_nGnRE;
 when '10' return DeviceType_nGRE;
 when '11' return DeviceType_GRE;

shared/translation/attrs/DecodeLDFAttr

 // DecodeLDFAttr()
 // ===============
 // Decode memory attributes using LDF (Long Descriptor Format) mapping

 MemAttrHints DecodeLDFAttr(bits(4) attr)
 MemAttrHints ldfattr;

 if attr IN {'x0xx'} then ldfattr.attrs = MemAttr_WT; // Write-through
 elsif attr == '0100' then ldfattr.attrs = MemAttr_NC; // Non-cacheable
 elsif attr IN {'x1xx'} then ldfattr.attrs = MemAttr_WB; // Write-back
 else Unreachable();

 // Allocation hints are applicable only to cacheable memory.
 if ldfattr.attrs != MemAttr_NC then
 case attr<1:0> of
 when '00' ldfattr.hints = MemHint_No; // No allocation hints
 when '01' ldfattr.hints = MemHint_WA; // Write-allocate
 when '10' ldfattr.hints = MemHint_RA; // Read-allocate
 when '11' ldfattr.hints = MemHint_RWA; // Read/Write allocate

 // The Transient hint applies only to cacheable memory with some allocation hints.
 if ldfattr.attrs != MemAttr_NC && ldfattr.hints != MemHint_No then
 ldfattr.transient = attr<3> == '0';

 return ldfattr;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14337
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/attrs/DecodeSDFAttr

 // DecodeSDFAttr()
 // ===============
 // Decode memory attributes using SDF (Short Descriptor Format) mapping

 MemAttrHints DecodeSDFAttr(bits(2) rgn)
 MemAttrHints sdfattr;

 case rgn of
 when '00' // Non-cacheable (no allocate)
 sdfattr.attrs = MemAttr_NC;
 when '01' // Write-back, Read and Write allocate
 sdfattr.attrs = MemAttr_WB;
 sdfattr.hints = MemHint_RWA;
 when '10' // Write-through, Read allocate
 sdfattr.attrs = MemAttr_WT;
 sdfattr.hints = MemHint_RA;
 when '11' // Write-back, Read allocate
 sdfattr.attrs = MemAttr_WB;
 sdfattr.hints = MemHint_RA;

 sdfattr.transient = FALSE;

 return sdfattr;

shared/translation/attrs/DecodeShareability

 // DecodeShareability()
 // ====================
 // Decode shareability of target memory region

 Shareability DecodeShareability(bits(2) sh)
 case sh of
 when '10' return Shareability_OSH;
 when '11' return Shareability_ISH;
 when '00' return Shareability_NSH;
 otherwise
 case ConstrainUnpredictable(Unpredictable_Shareability) of
 when Constraint_OSH return Shareability_OSH;
 when Constraint_ISH return Shareability_ISH;
 when Constraint_NSH return Shareability_NSH;

shared/translation/attrs/EffectiveShareability

 // EffectiveShareability()
 // =======================
 // Force Outer Shareability on Device and Normal iNCoNC memory

 Shareability EffectiveShareability(MemoryAttributes memattrs)
 if (memattrs.memtype == MemType_Device ||
 (memattrs.inner.attrs == MemAttr_NC &&
 memattrs.outer.attrs == MemAttr_NC)) then
 return Shareability_OSH;
 else
 return memattrs.shareability;

shared/translation/attrs/NormalNCMemAttr

 // NormalNCMemAttr()
 // =================
 // Normal Non-cacheable memory attributes

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14338
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 MemoryAttributes NormalNCMemAttr()
 MemAttrHints non_cacheable;
 non_cacheable.attrs = MemAttr_NC;

 MemoryAttributes nc_memattrs;
 nc_memattrs.memtype = MemType_Normal;
 nc_memattrs.outer = non_cacheable;
 nc_memattrs.inner = non_cacheable;
 nc_memattrs.shareability = Shareability_OSH;
 nc_memattrs.tags = MemTag_Untagged;
 nc_memattrs.notagaccess = FALSE;

 return nc_memattrs;

shared/translation/attrs/S1ConstrainUnpredictableRESMAIR

 // S1ConstrainUnpredictableRESMAIR()
 // =================================
 // Determine whether a reserved value occupies MAIR_ELx.AttrN

 boolean S1ConstrainUnpredictableRESMAIR(bits(8) attr, boolean s1aarch64)
 case attr of
 when '0000xx01' return !(s1aarch64 && IsFeatureImplemented(FEAT_XS));
 when '0000xxxx' return attr<1:0> != '00';
 when '01000000' return !(s1aarch64 && IsFeatureImplemented(FEAT_XS));
 when '10100000' return !(s1aarch64 && IsFeatureImplemented(FEAT_XS));
 when '11110000' return !(s1aarch64 && IsFeatureImplemented(FEAT_MTE2));
 when 'xxxx0000' return TRUE;
 otherwise return FALSE;

shared/translation/attrs/S1DecodeMemAttrs

 // S1DecodeMemAttrs()
 // ==================
 // Decode MAIR-format memory attributes assigned in stage 1

 MemoryAttributes S1DecodeMemAttrs(bits(8) attr_in, bits(2) sh, boolean s1aarch64,
 S1TTWParams walkparams)
 bits(8) attr = attr_in;
 if S1ConstrainUnpredictableRESMAIR(attr, s1aarch64) then
 (-, attr) = ConstrainUnpredictableBits(Unpredictable_RESMAIR, 8);

 MemoryAttributes memattrs;
 case attr of
 when '0000xxxx' // Device memory
 memattrs.memtype = MemType_Device;
 memattrs.device = DecodeDevice(attr<3:2>);
 memattrs.xs = if s1aarch64 then NOT attr<0> else '1';
 when '01000000'
 assert s1aarch64 && IsFeatureImplemented(FEAT_XS);
 memattrs.memtype = MemType_Normal;
 memattrs.outer.attrs = MemAttr_NC;
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.xs = '0';

 when '10100000'
 assert s1aarch64 && IsFeatureImplemented(FEAT_XS);
 memattrs.memtype = MemType_Normal;
 memattrs.outer.attrs = MemAttr_WT;
 memattrs.outer.hints = MemHint_RA;
 memattrs.outer.transient = FALSE;
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.inner.transient = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14339
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 memattrs.xs = '0';
 when '11110000' // Tagged memory
 assert s1aarch64 && IsFeatureImplemented(FEAT_MTE2);
 memattrs.memtype = MemType_Normal;
 memattrs.outer.attrs = MemAttr_WB;
 memattrs.outer.hints = MemHint_RWA;
 memattrs.outer.transient = FALSE;
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.inner.transient = FALSE;
 memattrs.xs = '0';
 otherwise
 memattrs.memtype = MemType_Normal;
 memattrs.outer = DecodeLDFAttr(attr<7:4>);
 memattrs.inner = DecodeLDFAttr(attr<3:0>);

 if (memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB) then
 memattrs.xs = '0';
 else
 memattrs.xs = '1';

 if s1aarch64 && attr IN {'11110000'} then
 memattrs.tags = MemTag_AllocationTagged;
 elsif s1aarch64 && walkparams.mtx == '1' then
 memattrs.tags = MemTag_CanonicallyTagged;
 else
 memattrs.tags = MemTag_Untagged;

 memattrs.notagaccess = FALSE;

 memattrs.shareability = DecodeShareability(sh);

 return memattrs;

shared/translation/attrs/S2CombineS1AttrHints

 // S2CombineS1AttrHints()
 // ======================
 // Determine resultant Normal memory cacheability and allocation hints from
 // combining stage 1 Normal memory attributes and stage 2 cacheability attributes.

 MemAttrHints S2CombineS1AttrHints(MemAttrHints s1_attrhints, MemAttrHints s2_attrhints)
 MemAttrHints attrhints;

 if s1_attrhints.attrs == MemAttr_NC || s2_attrhints.attrs == MemAttr_NC then
 attrhints.attrs = MemAttr_NC;
 elsif s1_attrhints.attrs == MemAttr_WT || s2_attrhints.attrs == MemAttr_WT then
 attrhints.attrs = MemAttr_WT;
 else
 attrhints.attrs = MemAttr_WB;

 // Stage 2 does not assign any allocation hints
 // Instead, they are inherited from stage 1
 if attrhints.attrs != MemAttr_NC then
 attrhints.hints = s1_attrhints.hints;
 attrhints.transient = s1_attrhints.transient;

 return attrhints;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14340
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/attrs/S2CombineS1Device

 // S2CombineS1Device()
 // ===================
 // Determine resultant Device type from combining output memory attributes
 // in stage 1 and Device attributes in stage 2

 DeviceType S2CombineS1Device(DeviceType s1_device, DeviceType s2_device)
 if s1_device == DeviceType_nGnRnE || s2_device == DeviceType_nGnRnE then
 return DeviceType_nGnRnE;
 elsif s1_device == DeviceType_nGnRE || s2_device == DeviceType_nGnRE then
 return DeviceType_nGnRE;
 elsif s1_device == DeviceType_nGRE || s2_device == DeviceType_nGRE then
 return DeviceType_nGRE;
 else
 return DeviceType_GRE;

shared/translation/attrs/S2CombineS1MemAttrs

 // S2CombineS1MemAttrs()
 // =====================
 // Combine stage 2 with stage 1 memory attributes

 MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs, MemoryAttributes s2_memattrs,
 boolean s2aarch64)
 MemoryAttributes memattrs;

 if s1_memattrs.memtype == MemType_Device && s2_memattrs.memtype == MemType_Device then
 memattrs.memtype = MemType_Device;
 memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_memattrs.device);
 elsif s1_memattrs.memtype == MemType_Device then // S2 Normal, S1 Device
 memattrs = s1_memattrs;
 elsif s2_memattrs.memtype == MemType_Device then // S2 Device, S1 Normal
 memattrs = s2_memattrs;
 else // S2 Normal, S1 Normal
 memattrs.memtype = MemType_Normal;
 memattrs.inner = S2CombineS1AttrHints(s1_memattrs.inner, s2_memattrs.inner);
 memattrs.outer = S2CombineS1AttrHints(s1_memattrs.outer, s2_memattrs.outer);

 memattrs.tags = S2MemTagType(memattrs, s1_memattrs.tags);

 if !IsFeatureImplemented(FEAT_MTE_PERM) then
 memattrs.notagaccess = FALSE;
 else
 memattrs.notagaccess = (s2_memattrs.notagaccess &&
 s1_memattrs.tags == MemTag_AllocationTagged);
 memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,
 s2_memattrs.shareability);

 if (memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB) then
 memattrs.xs = '0';
 elsif s2aarch64 then
 memattrs.xs = s2_memattrs.xs AND s1_memattrs.xs;
 else
 memattrs.xs = s1_memattrs.xs;

 memattrs.shareability = EffectiveShareability(memattrs);
 return memattrs;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14341
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/attrs/S2CombineS1Shareability

 // S2CombineS1Shareability()
 // =========================
 // Combine stage 2 shareability with stage 1

 Shareability S2CombineS1Shareability(Shareability s1_shareability,
 Shareability s2_shareability)

 if (s1_shareability == Shareability_OSH ||
 s2_shareability == Shareability_OSH) then
 return Shareability_OSH;
 elsif (s1_shareability == Shareability_ISH ||
 s2_shareability == Shareability_ISH) then
 return Shareability_ISH;
 else
 return Shareability_NSH;

shared/translation/attrs/S2DecodeCacheability

 // S2DecodeCacheability()
 // ======================
 // Determine the stage 2 cacheability for Normal memory

 MemAttrHints S2DecodeCacheability(bits(2) attr)
 MemAttrHints s2attr;

 case attr of
 when '01' s2attr.attrs = MemAttr_NC; // Non-cacheable
 when '10' s2attr.attrs = MemAttr_WT; // Write-through
 when '11' s2attr.attrs = MemAttr_WB; // Write-back
 otherwise // Constrained unpredictable
 case ConstrainUnpredictable(Unpredictable_S2RESMEMATTR) of
 when Constraint_NC s2attr.attrs = MemAttr_NC;
 when Constraint_WT s2attr.attrs = MemAttr_WT;
 when Constraint_WB s2attr.attrs = MemAttr_WB;

 // Stage 2 does not assign hints or the transient property
 // They are inherited from stage 1 if the result of the combination allows it
 s2attr.hints = bits(2) UNKNOWN;
 s2attr.transient = boolean UNKNOWN;

 return s2attr;

shared/translation/attrs/S2DecodeMemAttrs

 // S2DecodeMemAttrs()
 // ==================
 // Decode stage 2 memory attributes

 MemoryAttributes S2DecodeMemAttrs(bits(4) attr, bits(2) sh, boolean s2aarch64)
 MemoryAttributes memattrs;

 case attr of
 when '00xx' // Device memory
 memattrs.memtype = MemType_Device;
 memattrs.device = DecodeDevice(attr<1:0>);
 when '0100' // Normal, Inner+Outer WB cacheable NoTagAccess memory
 if s2aarch64 && IsFeatureImplemented(FEAT_MTE_PERM) then
 memattrs.memtype = MemType_Normal;
 memattrs.outer = S2DecodeCacheability('11'); // Write-back
 memattrs.inner = S2DecodeCacheability('11'); // Write-back
 else
 memattrs.memtype = MemType_Normal;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14342
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 memattrs.outer = S2DecodeCacheability(attr<3:2>);
 memattrs.inner = S2DecodeCacheability(attr<1:0>);
 otherwise // Normal memory
 memattrs.memtype = MemType_Normal;
 memattrs.outer = S2DecodeCacheability(attr<3:2>);
 memattrs.inner = S2DecodeCacheability(attr<1:0>);

 memattrs.shareability = DecodeShareability(sh);

 if s2aarch64 && IsFeatureImplemented(FEAT_MTE_PERM) then
 memattrs.notagaccess = attr == '0100';
 else
 memattrs.notagaccess = FALSE;

 return memattrs;

shared/translation/attrs/S2MemTagType

 // S2MemTagType()
 // ==============
 // Determine whether the combined output memory attributes of stage 1 and
 // stage 2 indicate tagged memory

 MemTagType S2MemTagType(MemoryAttributes s2_memattrs, MemTagType s1_tagtype)

 if !IsFeatureImplemented(FEAT_MTE2) then
 return MemTag_Untagged;

 if ((s1_tagtype == MemTag_AllocationTagged) &&
 (s2_memattrs.memtype == MemType_Normal) &&
 (s2_memattrs.inner.attrs == MemAttr_WB) &&
 (s2_memattrs.inner.hints == MemHint_RWA) &&
 (!s2_memattrs.inner.transient) &&
 (s2_memattrs.outer.attrs == MemAttr_WB) &&
 (s2_memattrs.outer.hints == MemHint_RWA) &&
 (!s2_memattrs.outer.transient)) then
 return MemTag_AllocationTagged;

 // Return what stage 1 asked for if we can, otherwise Untagged.
 if s1_tagtype != MemTag_AllocationTagged then
 return s1_tagtype;

 return MemTag_Untagged;

shared/translation/attrs/WalkMemAttrs

 // WalkMemAttrs()
 // ==============
 // Retrieve memory attributes of translation table walk

 MemoryAttributes WalkMemAttrs(bits(2) sh, bits(2) irgn, bits(2) orgn)
 MemoryAttributes walkmemattrs;

 walkmemattrs.memtype = MemType_Normal;
 walkmemattrs.shareability = DecodeShareability(sh);
 walkmemattrs.inner = DecodeSDFAttr(irgn);
 walkmemattrs.outer = DecodeSDFAttr(orgn);
 walkmemattrs.tags = MemTag_Untagged;
 if (walkmemattrs.inner.attrs == MemAttr_WB &&
 walkmemattrs.outer.attrs == MemAttr_WB) then
 walkmemattrs.xs = '0';
 else
 walkmemattrs.xs = '1';
 walkmemattrs.notagaccess = FALSE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14343
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return walkmemattrs;

shared/translation/faults/AlignmentFault

 // AlignmentFault()
 // ================
 // Return a fault record indicating an Alignment fault not due to memory type has occured
 // for a specific access

 FaultRecord AlignmentFault(AccessDescriptor accdesc)
 FaultRecord fault;

 fault.statuscode = Fault_Alignment;
 fault.accessdesc = accdesc;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;
 fault.write = !accdesc.read && accdesc.write;
 fault.gpcfs2walk = FALSE;
 fault.gpcf = GPCNoFault();

 return fault;

shared/translation/faults/ExclusiveFault

 // ExclusiveFault()
 // ================
 // Return a fault record indicating an Exclusive fault for a specific access

 FaultRecord ExclusiveFault(AccessDescriptor accdesc)
 FaultRecord fault;

 fault.statuscode = Fault_Exclusive;
 fault.accessdesc = accdesc;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;
 fault.write = !accdesc.read && accdesc.write;
 fault.gpcfs2walk = FALSE;
 fault.gpcf = GPCNoFault();

 return fault;

shared/translation/faults/NoFault

 // NoFault()
 // =========
 // Return a clear fault record indicating no faults have occured

 FaultRecord NoFault()
 FaultRecord fault;

 fault.statuscode = Fault_None;
 fault.accessdesc = AccessDescriptor UNKNOWN;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;
 fault.dirtybit = FALSE;
 fault.overlay = FALSE;
 fault.toplevel = FALSE;
 fault.assuredonly = FALSE;
 fault.s1tagnotdata = FALSE;
 fault.tagaccess = FALSE;
 fault.gpcfs2walk = FALSE;
 fault.gpcf = GPCNoFault();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14344
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return fault;

 // NoFault()
 // =========
 // Return a clear fault record indicating no faults have occured for a specific access

 FaultRecord NoFault(AccessDescriptor accdesc)
 FaultRecord fault;

 fault.statuscode = Fault_None;
 fault.accessdesc = accdesc;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;
 fault.dirtybit = FALSE;
 fault.overlay = FALSE;
 fault.toplevel = FALSE;
 fault.assuredonly = FALSE;
 fault.s1tagnotdata = FALSE;
 fault.tagaccess = FALSE;
 fault.write = !accdesc.read && accdesc.write;
 fault.gpcfs2walk = FALSE;
 fault.gpcf = GPCNoFault();

 return fault;

shared/translation/gpc/AbovePPS

 // AbovePPS()
 // ==========
 // Returns TRUE if an address exceeds the range configured in GPCCR_EL3.PPS.

 boolean AbovePPS(bits(56) address)
 constant integer pps = DecodePPS();
 if pps >= 56 then
 return FALSE;

 return !IsZero(address<55:pps>);

shared/translation/gpc/DecodeGPTBlock

 // DecodeGPTBlock()
 // ================
 // Validate and decode a GPT Block descriptor

 (GPCF, GPTEntry) DecodeGPTBlock(PGSe pgs, bits(64) gpt_entry)
 assert gpt_entry<3:0> == GPT_Block;
 GPTEntry result;

 if !IsZero(gpt_entry<63:8>) then
 return (GPCF_Walk, GPTEntry UNKNOWN);

 if !GPIValid(gpt_entry<7:4>) then
 return (GPCF_Walk, GPTEntry UNKNOWN);

 result.gpi = gpt_entry<7:4>;
 result.level = 0;

 // GPT information from a level 0 GPT Block descriptor is permitted
 // to be cached in a TLB as though the Block is a contiguous region
 // of granules each of the size configured in GPCCR_EL3.PGS.
 case pgs of
 when PGS_4KB result.size = GPTRange_4KB;
 when PGS_16KB result.size = GPTRange_16KB;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14345
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 when PGS_64KB result.size = GPTRange_64KB;
 otherwise Unreachable();
 result.contig_size = GPTL0Size();

 return (GPCF_None, result);

shared/translation/gpc/DecodeGPTContiguous

 // DecodeGPTContiguous()
 // =====================
 // Validate and decode a GPT Contiguous descriptor

 (GPCF, GPTEntry) DecodeGPTContiguous(PGSe pgs, bits(64) gpt_entry)
 assert gpt_entry<3:0> == GPT_Contig;
 GPTEntry result;

 if !IsZero(gpt_entry<63:10>) then
 return (GPCF_Walk, result);

 result.gpi = gpt_entry<7:4>;
 if !GPIValid(result.gpi) then
 return (GPCF_Walk, result);

 case pgs of
 when PGS_4KB result.size = GPTRange_4KB;
 when PGS_16KB result.size = GPTRange_16KB;
 when PGS_64KB result.size = GPTRange_64KB;
 otherwise Unreachable();

 case gpt_entry<9:8> of
 when '01' result.contig_size = GPTRange_2MB;
 when '10' result.contig_size = GPTRange_32MB;
 when '11' result.contig_size = GPTRange_512MB;
 otherwise return (GPCF_Walk, GPTEntry UNKNOWN);

 result.level = 1;

 return (GPCF_None, result);

shared/translation/gpc/DecodeGPTGranules

 // DecodeGPTGranules()
 // ===================
 // Validate and decode a GPT Granules descriptor

 (GPCF, GPTEntry) DecodeGPTGranules(PGSe pgs, integer index, bits(64) gpt_entry)
 GPTEntry result;

 for i = 0 to 15
 if !GPIValid(gpt_entry<i*4 +:4>) then
 return (GPCF_Walk, result);

 result.gpi = gpt_entry<index*4 +:4>;

 case pgs of
 when PGS_4KB result.size = GPTRange_4KB;
 when PGS_16KB result.size = GPTRange_16KB;
 when PGS_64KB result.size = GPTRange_64KB;
 otherwise Unreachable();

 result.contig_size = result.size; // No contiguity
 result.level = 1;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14346
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 return (GPCF_None, result);

shared/translation/gpc/DecodeGPTTable

 // DecodeGPTTable()
 // ================
 // Validate and decode a GPT Table descriptor

 (GPCF, GPTTable) DecodeGPTTable(PGSe pgs, bits(64) gpt_entry)
 assert gpt_entry<3:0> == GPT_Table;
 GPTTable result;

 if !IsZero(gpt_entry<63:52,11:4>) then
 return (GPCF_Walk, GPTTable UNKNOWN);

 constant integer l0sz = GPTL0Size();
 constant integer p = DecodePGSRange(pgs);

 if !IsZero(gpt_entry<(l0sz-p)-2:12>) then
 return (GPCF_Walk, GPTTable UNKNOWN);

 case pgs of
 when PGS_4KB result.address = gpt_entry<55:17>:Zeros(17);
 when PGS_16KB result.address = gpt_entry<55:15>:Zeros(15);
 when PGS_64KB result.address = gpt_entry<55:13>:Zeros(13);
 otherwise Unreachable();

 // The address must be within the range covered by the GPT
 if AbovePPS(result.address) then
 return (GPCF_AddressSize, GPTTable UNKNOWN);

 return (GPCF_None, result);

shared/translation/gpc/DecodePGS

 // DecodePGS()
 // ===========

 PGSe DecodePGS(bits(2) pgs)
 case pgs of
 when '00' return PGS_4KB;
 when '10' return PGS_16KB;
 when '01' return PGS_64KB;
 otherwise Unreachable();

shared/translation/gpc/DecodePGSRange

 // DecodePGSRange()
 // ================

 integer DecodePGSRange(PGSe pgs)
 case pgs of
 when PGS_4KB return GPTRange_4KB;
 when PGS_16KB return GPTRange_16KB;
 when PGS_64KB return GPTRange_64KB;
 otherwise Unreachable();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14347
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/gpc/DecodePPS

 // DecodePPS()
 // ===========
 // Size of region protected by the GPT, in bits.

 integer DecodePPS()
 case GPCCR_EL3.PPS of
 when '000' return 32;
 when '001' return 36;
 when '010' return 40;
 when '011' return 42;
 when '100' return 44;
 when '101' return 48;
 when '110' return 52;
 otherwise Unreachable();

shared/translation/gpc/GPCFault

 // GPCFault()
 // ==========
 // Constructs and returns a GPCF

 GPCFRecord GPCFault(GPCF gpf, integer level)
 GPCFRecord fault;
 fault.gpf = gpf;
 fault.level = level;
 return fault;

shared/translation/gpc/GPCNoFault

 // GPCNoFault()
 // ============
 // Returns the default properties of a GPCF that does not represent a fault

 GPCFRecord GPCNoFault()
 GPCFRecord result;
 result.gpf = GPCF_None;
 return result;

shared/translation/gpc/GPCRegistersConsistent

 // GPCRegistersConsistent()
 // ========================
 // Returns whether the GPT registers are configured correctly.
 // This returns false if any fields select a Reserved value.

 boolean GPCRegistersConsistent()

 // Check for Reserved register values
 if GPCCR_EL3.PPS == '111' || DecodePPS() > AArch64.PAMax() then
 return FALSE;
 if GPCCR_EL3.PGS == '11' then
 return FALSE;
 if GPCCR_EL3.SH == '01' then
 return FALSE;

 // Inner and Outer Non-cacheable requires Outer Shareable
 if GPCCR_EL3.<ORGN, IRGN> == '0000' && GPCCR_EL3.SH != '10' then
 return FALSE;

 return TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14348
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
shared/translation/gpc/GPICheck

 // GPICheck()
 // ==========
 // Returns whether an access to a given physical address space is permitted
 // given the configured GPI value.
 // paspace: Physical address space of the access
 // gpi: Value read from GPT for the access
 // ss: Security state of the access

 boolean GPICheck(PASpace paspace, bits(4) gpi, SecurityState ss)
 case gpi of
 when GPT_NoAccess
 return FALSE;
 when GPT_Secure
 assert IsFeatureImplemented(FEAT_SEL2);
 return paspace == PAS_Secure;
 when GPT_NonSecure
 return paspace == PAS_NonSecure;
 when GPT_Root
 return paspace == PAS_Root;
 when GPT_Realm
 return paspace == PAS_Realm;
 when GPT_Any
 return TRUE;
 otherwise
 Unreachable();

shared/translation/gpc/GPIIndex

 // GPIIndex()
 // ==========

 integer GPIIndex(bits(56) pa)
 case DecodePGS(GPCCR_EL3.PGS) of
 when PGS_4KB return UInt(pa<15:12>);
 when PGS_16KB return UInt(pa<17:14>);
 when PGS_64KB return UInt(pa<19:16>);
 otherwise Unreachable();

shared/translation/gpc/GPIValid

 // GPIValid()
 // ==========
 // Returns whether a given value is a valid encoding for a GPI value

 boolean GPIValid(bits(4) gpi)
 if gpi == GPT_Secure then
 return IsFeatureImplemented(FEAT_SEL2);

 return gpi IN {GPT_NoAccess,
 GPT_NonSecure,
 GPT_Root,
 GPT_Realm,
 GPT_Any};

shared/translation/gpc/GPTL0Size

 // GPTL0Size()
 // ===========
 // Returns number of bits covered by a level 0 GPT entry

 integer GPTL0Size()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14349
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 case GPCCR_EL3.L0GPTSZ of
 when '0000' return GPTRange_1GB;
 when '0100' return GPTRange_16GB;
 when '0110' return GPTRange_64GB;
 when '1001' return GPTRange_512GB;
 otherwise Unreachable();
 return 30;

shared/translation/gpc/GPTLevel0Index

 // GPTLevel0Index()
 // ================
 // Compute the level 0 index based on input PA.

 integer GPTLevel0Index(bits(56) pa)
 // Input address and index bounds
 constant integer pps = DecodePPS();
 constant integer l0sz = GPTL0Size();
 if pps <= l0sz then
 return 0;

 return UInt(pa<pps-1:l0sz>);

shared/translation/gpc/GPTLevel1Index

 // GPTLevel1Index()
 // ================
 // Compute the level 1 index based on input PA.

 integer GPTLevel1Index(bits(56) pa)
 // Input address and index bounds
 constant integer l0sz = GPTL0Size();
 case DecodePGS(GPCCR_EL3.PGS) of
 when PGS_4KB return UInt(pa<l0sz-1:16>);
 when PGS_16KB return UInt(pa<l0sz-1:18>);
 when PGS_64KB return UInt(pa<l0sz-1:20>);
 otherwise Unreachable();

shared/translation/gpc/GPTWalk

 // GPTWalk()
 // =========
 // Get the GPT entry for a given physical address, pa

 (GPCFRecord, GPTEntry) GPTWalk(bits(56) pa, AccessDescriptor accdesc)

 // GPT base address
 bits(56) base;
 pgs = DecodePGS(GPCCR_EL3.PGS);

 // The level 0 GPT base address is aligned to the greater of:
 // * the size of the level 0 GPT, determined by GPCCR_EL3.{PPS, L0GPTSZ}.
 // * 4KB
 base = ZeroExtend(GPTBR_EL3.BADDR:Zeros(12), 56);
 pps = DecodePPS();
 l0sz = GPTL0Size();
 integer alignment = Max((pps - l0sz) + 3, 12);
 base = base AND NOT ZeroExtend(Ones(alignment), 56);

 AccessDescriptor gptaccdesc = CreateAccDescGPTW(accdesc);

 // Access attributes and address for GPT fetches
 AddressDescriptor gptaddrdesc;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14350
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 gptaddrdesc.memattrs = WalkMemAttrs(GPCCR_EL3.SH, GPCCR_EL3.ORGN, GPCCR_EL3.IRGN);
 gptaddrdesc.fault = NoFault(gptaccdesc);

 // Address of level 0 GPT entry
 gptaddrdesc.paddress.paspace = PAS_Root;
 gptaddrdesc.paddress.address = base + GPTLevel0Index(pa) * 8;

 // Fetch L0GPT entry
 bits(64) level_0_entry;
 PhysMemRetStatus memstatus;
 (memstatus, level_0_entry) = PhysMemRead(gptaddrdesc, 8, gptaccdesc);
 if IsFault(memstatus) then
 return (GPCFault(GPCF_EABT, 0), GPTEntry UNKNOWN);

 GPTEntry result;
 GPTTable table;
 GPCF gpf;
 case level_0_entry<3:0> of
 when GPT_Block
 // Decode the GPI value and return that
 (gpf, result) = DecodeGPTBlock(pgs, level_0_entry);
 result.pa = pa;
 return (GPCFault(gpf, 0), result);
 when GPT_Table
 // Decode the table entry and continue walking
 (gpf, table) = DecodeGPTTable(pgs, level_0_entry);
 if gpf != GPCF_None then
 return (GPCFault(gpf, 0), GPTEntry UNKNOWN);
 otherwise
 // GPF - invalid encoding
 return (GPCFault(GPCF_Walk, 0), GPTEntry UNKNOWN);

 // Must be a GPT Table entry
 assert level_0_entry<3:0> == GPT_Table;

 // Address of level 1 GPT entry
 offset = GPTLevel1Index(pa) * 8;
 gptaddrdesc.paddress.address = table.address + offset;

 // Fetch L1GPT entry
 bits(64) level_1_entry;
 (memstatus, level_1_entry) = PhysMemRead(gptaddrdesc, 8, gptaccdesc);
 if IsFault(memstatus) then
 return (GPCFault(GPCF_EABT, 1), GPTEntry UNKNOWN);

 case level_1_entry<3:0> of
 when GPT_Contig
 (gpf, result) = DecodeGPTContiguous(pgs, level_1_entry);
 otherwise
 gpi_index = GPIIndex(pa);
 (gpf, result) = DecodeGPTGranules(pgs, gpi_index, level_1_entry);

 if gpf != GPCF_None then
 return (GPCFault(gpf, 1), GPTEntry UNKNOWN);

 result.pa = pa;
 return (GPCNoFault(), result);

shared/translation/gpc/GranuleProtectionCheck

 // GranuleProtectionCheck()
 // ========================
 // Returns whether a given access is permitted, according to the
 // granule protection check.
 // addrdesc and accdesc describe the access to be checked.

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14351
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 GPCFRecord GranuleProtectionCheck(AddressDescriptor addrdesc, AccessDescriptor accdesc)

 assert IsFeatureImplemented(FEAT_RME);
 // The address to be checked
 address = addrdesc.paddress;

 // Bypass mode - all accesses pass
 if GPCCR_EL3.GPC == '0' then
 return GPCNoFault();

 // Configuration consistency check
 if !GPCRegistersConsistent() then
 return GPCFault(GPCF_Walk, 0);

 // Input address size check
 if AbovePPS(address.address) then
 if address.paspace == PAS_NonSecure then
 return GPCNoFault();
 else
 return GPCFault(GPCF_Fail, 0);

 // GPT base address size check
 bits(56) gpt_base = ZeroExtend(GPTBR_EL3.BADDR:Zeros(12), 56);
 if AbovePPS(gpt_base) then
 return GPCFault(GPCF_AddressSize, 0);

 // GPT lookup
 (gpcf, gpt_entry) = GPTWalk(address.address, accdesc);
 if gpcf.gpf != GPCF_None then
 return gpcf;

 // Check input physical address space against GPI
 permitted = GPICheck(address.paspace, gpt_entry.gpi, accdesc.ss);

 if !permitted then
 gpcf = GPCFault(GPCF_Fail, gpt_entry.level);
 return gpcf;

 // Check passed

 return GPCNoFault();

shared/translation/gpc/PGS

 // PGS
 // ===
 // Physical granule size

 enumeration PGSe {
 PGS_4KB,
 PGS_16KB,
 PGS_64KB
 };

shared/translation/gpc/Table

 constant bits(4) GPT_NoAccess = '0000';
 constant bits(4) GPT_Table = '0011';
 constant bits(4) GPT_Block = '0001';
 constant bits(4) GPT_Contig = '0001';
 constant bits(4) GPT_Secure = '1000';
 constant bits(4) GPT_NonSecure = '1001';
 constant bits(4) GPT_Root = '1010';
 constant bits(4) GPT_Realm = '1011';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14352
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 constant bits(4) GPT_Any = '1111';
 constant integer GPTRange_4KB = 12;
 constant integer GPTRange_16KB = 14;
 constant integer GPTRange_64KB = 16;
 constant integer GPTRange_2MB = 21;
 constant integer GPTRange_32MB = 25;
 constant integer GPTRange_512MB = 29;
 constant integer GPTRange_1GB = 30;
 constant integer GPTRange_16GB = 34;
 constant integer GPTRange_64GB = 36;
 constant integer GPTRange_512GB = 39;

 type GPTTable is (
 bits(56) address // Base address of next table
)

 type GPTEntry is (
 bits(4) gpi, // GPI value for this region
 integer size, // Region size
 integer contig_size, // Contiguous region size
 integer level, // Level of GPT lookup
 bits(56) pa // PA uniquely identifying the GPT entry
)

shared/translation/translation/S1TranslationRegime

 // S1TranslationRegime()
 // =====================
 // Stage 1 translation regime for the given Exception level

 bits(2) S1TranslationRegime(bits(2) el)
 if el != EL0 then
 return el;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' then
 return EL3;
 elsif IsFeatureImplemented(FEAT_VHE) && ELIsInHost(el) then
 return EL2;
 else
 return EL1;

 // S1TranslationRegime()
 // =====================
 // Returns the Exception level controlling the current Stage 1 translation regime. For the most
 // part this is unused in code because the System register accessors (SCTLR_ELx[], etc.) implicitly
 // return the correct value.

 bits(2) S1TranslationRegime()
 return S1TranslationRegime(PSTATE.EL);

shared/translation/vmsa/AddressDescriptor

 constant integer FINAL_LEVEL = 3;

 // AddressDescriptor
 // =================
 // Descriptor used to access the underlying memory array.

 type AddressDescriptor is (
 FaultRecord fault, // fault.statuscode indicates whether the address is valid
 MemoryAttributes memattrs,
 FullAddress paddress,
 boolean s1assured, // Stage 1 Assured Translation Property
 boolean s2fs1mro, // Stage 2 MRO permission for Stage 1
 bits(16) mecid, // FEAT_MEC: Memory Encryption Context ID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14353
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bits(64) vaddress
)

shared/translation/vmsa/ContiguousSize

 // ContiguousSize()
 // ================
 // Return the number of entries log 2 marking a contiguous output range

 integer ContiguousSize(bit d128, TGx tgx, integer level)
 if d128 == '1' then
 case tgx of
 when TGx_4KB
 assert level IN {1, 2, 3};
 return if level == 1 then 2 else 4;
 when TGx_16KB
 assert level IN {1, 2, 3};
 if level == 1 then
 return 2;
 elsif level == 2 then
 return 4;
 else
 return 6;
 when TGx_64KB
 assert level IN {2, 3};
 return if level == 2 then 6 else 4;
 else
 case tgx of
 when TGx_4KB
 assert level IN {1, 2, 3};
 return 4;
 when TGx_16KB
 assert level IN {2, 3};
 return if level == 2 then 5 else 7;
 when TGx_64KB
 assert level IN {2, 3};
 return 5;

shared/translation/vmsa/CreateAddressDescriptor

 // CreateAddressDescriptor()
 // =========================
 // Set internal members for address descriptor type to valid values

 AddressDescriptor CreateAddressDescriptor(bits(64) va, FullAddress pa,
 MemoryAttributes memattrs)
 AddressDescriptor addrdesc;

 addrdesc.paddress = pa;
 addrdesc.vaddress = va;
 addrdesc.memattrs = memattrs;
 addrdesc.fault = NoFault();
 addrdesc.s1assured = FALSE;

 return addrdesc;

shared/translation/vmsa/CreateFaultyAddressDescriptor

 // CreateFaultyAddressDescriptor()
 // ===============================
 // Set internal members for address descriptor type with values indicating error

 AddressDescriptor CreateFaultyAddressDescriptor(bits(64) va, FaultRecord fault)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14354
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 AddressDescriptor addrdesc;

 addrdesc.vaddress = va;
 addrdesc.fault = fault;

 return addrdesc;

shared/translation/vmsa/DecodePASpace

 // DecodePASpace()
 // ===============
 // Decode the target PA Space

 PASpace DecodePASpace (bit nse, bit ns)
 case nse:ns of
 when '00' return PAS_Secure;
 when '01' return PAS_NonSecure;
 when '10' return PAS_Root;
 when '11' return PAS_Realm;

shared/translation/vmsa/DescriptorType

 // DescriptorType
 // ==============
 // Translation table descriptor formats

 enumeration DescriptorType {
 DescriptorType_Table,
 DescriptorType_Leaf,
 DescriptorType_Invalid
 };

shared/translation/vmsa/Domains

 constant bits(2) Domain_NoAccess = '00';
 constant bits(2) Domain_Client = '01';
 constant bits(2) Domain_Manager = '11';

shared/translation/vmsa/FetchDescriptor

 // FetchDescriptor()
 // =================
 // Fetch a translation table descriptor

 (FaultRecord, bits(N)) FetchDescriptor(bit ee, AddressDescriptor walkaddress,
 AccessDescriptor walkaccess, FaultRecord fault_in,
 integer N)
 // 32-bit descriptors for AArch32 Short-descriptor format
 // 64-bit descriptors for AArch64 or AArch32 Long-descriptor format
 // 128-bit descriptors for AArch64 when FEAT_D128 is set and {V}TCR_ELx.d128 is set
 assert N == 32 || N == 64 || N == 128;
 bits(N) descriptor;
 FaultRecord fault = fault_in;

 if IsFeatureImplemented(FEAT_RME) then
 fault.gpcf = GranuleProtectionCheck(walkaddress, walkaccess);
 if fault.gpcf.gpf != GPCF_None then
 fault.statuscode = Fault_GPCFOnWalk;
 fault.paddress = walkaddress.paddress;
 fault.gpcfs2walk = fault.secondstage;
 return (fault, bits(N) UNKNOWN);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14355
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode

 PhysMemRetStatus memstatus;
 (memstatus, descriptor) = PhysMemRead(walkaddress, N DIV 8, walkaccess);
 if IsFault(memstatus) then
 boolean iswrite = FALSE;
 fault = HandleExternalTTWAbort(memstatus, iswrite, walkaddress,
 walkaccess, N DIV 8, fault);
 if IsFault(fault.statuscode) then
 return (fault, bits(N) UNKNOWN);

 if ee == '1' then
 descriptor = BigEndianReverse(descriptor);

 return (fault, descriptor);

shared/translation/vmsa/HasUnprivileged

 // HasUnprivileged()
 // =================
 // Returns whether a translation regime serves EL0 as well as a higher EL

 boolean HasUnprivileged(Regime regime)
 return (regime IN {
 Regime_EL20,
 Regime_EL30,
 Regime_EL10
 });

shared/translation/vmsa/Regime

 // Regime
 // ======
 // Translation regimes

 enumeration Regime {
 Regime_EL3, // EL3
 Regime_EL30, // EL3&0 (PL1&0 when EL3 is AArch32)
 Regime_EL2, // EL2
 Regime_EL20, // EL2&0
 Regime_EL10 // EL1&0
 };

shared/translation/vmsa/RegimeUsingAArch32

 // RegimeUsingAArch32()
 // ====================
 // Determine if the EL controlling the regime executes in AArch32 state

 boolean RegimeUsingAArch32(Regime regime)
 case regime of
 when Regime_EL10 return ELUsingAArch32(EL1);
 when Regime_EL30 return TRUE;
 when Regime_EL20 return FALSE;
 when Regime_EL2 return ELUsingAArch32(EL2);
 when Regime_EL3 return FALSE;

shared/translation/vmsa/S1TTWParams

 // S1TTWParams
 // ===========
 // Register fields corresponding to stage 1 translation
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14356
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // For A32-VMSA, if noted, they correspond to A32-LPAE (Long descriptor format)

 type S1TTWParams is (
 // A64-VMSA exclusive parameters
 bit ha, // TCR_ELx.HA
 bit hd, // TCR_ELx.HD
 bit tbi, // TCR_ELx.TBI{x}
 bit tbid, // TCR_ELx.TBID{x}
 bit nfd, // TCR_EL1.NFDx or TCR_EL2.NFDx when HCR_EL2.E2H == '1'
 bit e0pd, // TCR_EL1.E0PDx or TCR_EL2.E0PDx when HCR_EL2.E2H == '1'
 bit d128, // TCR_ELx.D128
 bit aie, // (TCR2_ELx/TCR_EL3).AIE
 MAIRType mair2, // MAIR2_ELx
 bit ds, // TCR_ELx.DS
 bits(3) ps, // TCR_ELx.{I}PS
 bits(6) txsz, // TCR_ELx.TxSZ
 bit epan, // SCTLR_EL1.EPAN or SCTLR_EL2.EPAN when HCR_EL2.E2H == '1'
 bit dct, // HCR_EL2.DCT
 bit nv1, // HCR_EL2.NV1
 bit cmow, // SCTLR_EL1.CMOW or SCTLR_EL2.CMOW when HCR_EL2.E2H == '1'
 bit pnch, // TCR{2}_ELx.PnCH
 bit disch, // TCR{2}_ELx.DisCH
 bit haft, // TCR{2}_ELx.HAFT
 bit mtx, // TCR_ELx.MTX{y}
 bits(2) skl, // TCR_ELx.SKL
 bit pie, // TCR2_ELx.PIE or TCR_EL3.PIE
 S1PIRType pir, // PIR_ELx
 S1PIRType pire0, // PIRE0_EL1 or PIRE0_EL2 when HCR_EL2.E2H == '1'
 bit emec, // SCTLR2_EL2.EMEC or SCTLR2_EL3.EMEC
 bit amec, // TCR2_EL2.AMEC0 or TCR2_EL2.AMEC1 when HCR_EL2.E2H == '1'

 // A32-VMSA exclusive parameters
 bits(3) t0sz, // TTBCR.T0SZ
 bits(3) t1sz, // TTBCR.T1SZ
 bit uwxn, // SCTLR.UWXN

 // Parameters common to both A64-VMSA & A32-VMSA (A64/A32)
 TGx tgx, // TCR_ELx.TGx / Always TGx_4KB
 bits(2) irgn, // TCR_ELx.IRGNx / TTBCR.IRGNx or HTCR.IRGN0
 bits(2) orgn, // TCR_ELx.ORGNx / TTBCR.ORGNx or HTCR.ORGN0
 bits(2) sh, // TCR_ELx.SHx / TTBCR.SHx or HTCR.SH0
 bit hpd, // TCR_ELx.HPD{x} / TTBCR2.HPDx or HTCR.HPD
 bit ee, // SCTLR_ELx.EE / SCTLR.EE or HSCTLR.EE
 bit wxn, // SCTLR_ELx.WXN / SCTLR.WXN or HSCTLR.WXN
 bit ntlsmd, // SCTLR_ELx.nTLSMD / SCTLR.nTLSMD or HSCTLR.nTLSMD
 bit dc, // HCR_EL2.DC / HCR.DC
 bit sif, // SCR_EL3.SIF / SCR.SIF
 MAIRType mair // MAIR_ELx / MAIR1:MAIR0 or HMAIR1:HMAIR0
)

shared/translation/vmsa/S2TTWParams

 // S2TTWParams
 // ===========
 // Register fields corresponding to stage 2 translation.

 type S2TTWParams is (
 // A64-VMSA exclusive parameters
 bit ha, // VTCR_EL2.HA
 bit hd, // VTCR_EL2.HD
 bit sl2, // V{S}TCR_EL2.SL2
 bit ds, // VTCR_EL2.DS
 bit d128, // VTCR_ELx.D128
 bit sw, // VSTCR_EL2.SW
 bit nsw, // VTCR_EL2.NSW
 bit sa, // VSTCR_EL2.SA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14357
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 bit nsa, // VTCR_EL2.NSA
 bits(3) ps, // VTCR_EL2.PS
 bits(6) txsz, // V{S}TCR_EL2.T0SZ
 bit fwb, // HCR_EL2.FWB
 bit cmow, // HCRX_EL2.CMOW
 bits(2) skl, // VTCR_EL2.SKL
 bit s2pie, // VTCR_EL2.S2PIE
 S2PIRType s2pir, // S2PIR_EL2
 bit tl0, // VTCR_EL2.TL0
 bit tl1, // VTCR_EL2.TL1
 bit assuredonly,// VTCR_EL2.AssuredOnly
 bit haft, // VTCR_EL2.HAFT
 bit emec, // SCTLR2_EL2.EMEC

 // A32-VMSA exclusive parameters
 bit s, // VTCR.S
 bits(4) t0sz, // VTCR.T0SZ

 // Parameters common to both A64-VMSA & A32-VMSA if implemented (A64/A32)
 TGx tgx, // V{S}TCR_EL2.TG0 / Always TGx_4KB
 bits(2) sl0, // V{S}TCR_EL2.SL0 / VTCR.SL0
 bits(2) irgn, // VTCR_EL2.IRGN0 / VTCR.IRGN0
 bits(2) orgn, // VTCR_EL2.ORGN0 / VTCR.ORGN0
 bits(2) sh, // VTCR_EL2.SH0 / VTCR.SH0
 bit ee, // SCTLR_EL2.EE / HSCTLR.EE
 bit ptw, // HCR_EL2.PTW / HCR.PTW
 bit vm // HCR_EL2.VM / HCR.VM
)

shared/translation/vmsa/SDFType

 // SDFType
 // =======
 // Short-descriptor format type

 enumeration SDFType {
 SDFType_Table,
 SDFType_Invalid,
 SDFType_Supersection,
 SDFType_Section,
 SDFType_LargePage,
 SDFType_SmallPage
 };

shared/translation/vmsa/SecurityStateForRegime

 // SecurityStateForRegime()
 // ========================
 // Return the Security State of the given translation regime

 SecurityState SecurityStateForRegime(Regime regime)
 case regime of
 when Regime_EL3 return SecurityStateAtEL(EL3);
 when Regime_EL30 return SS_Secure; // A32 EL3 is always Secure
 when Regime_EL2 return SecurityStateAtEL(EL2);
 when Regime_EL20 return SecurityStateAtEL(EL2);
 when Regime_EL10 return SecurityStateAtEL(EL1);

shared/translation/vmsa/StageOA

 // StageOA()
 // =========
 // Given the final walk state (a page or block descriptor), map the untranslated
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14358
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 // input address bits to the output address

 FullAddress StageOA(bits(64) ia, bit d128, TGx tgx, TTWState walkstate)
 // Output Address
 FullAddress oa;
 integer csize;

 tsize = TranslationSize(d128, tgx, walkstate.level);
 if walkstate.contiguous == '1' then
 csize = ContiguousSize(d128, tgx, walkstate.level);
 else
 csize = 0;

 constant integer ia_msb = tsize + csize;
 oa.paspace = walkstate.baseaddress.paspace;
 oa.address = walkstate.baseaddress.address<55:ia_msb>:ia<ia_msb-1:0>;

 return oa;

shared/translation/vmsa/TGx

 // TGx
 // ===
 // Translation granules sizes

 enumeration TGx {
 TGx_4KB,
 TGx_16KB,
 TGx_64KB
 };

shared/translation/vmsa/TGxGranuleBits

 // TGxGranuleBits()
 // ================
 // Retrieve the address size, in bits, of a granule

 integer TGxGranuleBits(TGx tgx)
 case tgx of
 when TGx_4KB return 12;
 when TGx_16KB return 14;
 when TGx_64KB return 16;

shared/translation/vmsa/TLBContext

 // TLBContext
 // ==========
 // Translation context compared on TLB lookups and invalidations, promoting a TLB hit on match

 type TLBContext is (
 SecurityState ss,
 Regime regime,
 bits(16) vmid,
 bits(16) asid,
 bit nG,
 PASpace ipaspace, // Used in stage 2 lookups & invalidations only
 boolean includes_s1,
 boolean includes_s2,
 boolean includes_gpt,
 bits(64) ia, // Input Address
 TGx tg,
 bit cnp,
 integer level, // Assist TLBI level hints (FEAT_TTL)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14359
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 boolean isd128,
 bit xs // XS attribute (FEAT_XS)
)

shared/translation/vmsa/TLBRecord

 // TLBRecord
 // =========
 // Translation output as a TLB payload

 type TLBRecord is (
 TLBContext context,
 TTWState walkstate,
 integer blocksize, // Number of bits directly mapped from IA to OA
 integer contigsize, // Number of entries log 2 marking a contiguous output range
 bits(128) s1descriptor, // Stage 1 leaf descriptor in memory (valid if the TLB caches stage 1)
 bits(128) s2descriptor // Stage 2 leaf descriptor in memory (valid if the TLB caches stage 2)
)

shared/translation/vmsa/TTWState

 // TTWState
 // ========
 // Translation table walk state

 type TTWState is (
 boolean istable,
 integer level,
 FullAddress baseaddress,
 bit contiguous,
 boolean s1assured, // Stage 1 Assured Translation Property
 bit s2assuredonly, // Stage 2 AssuredOnly attribute
 bit disch, // Stage 1 Disable Contiguous Hint
 bit nG,
 bit guardedpage,
 SDFType sdftype, // AArch32 Short-descriptor format walk only
 bits(4) domain, // AArch32 Short-descriptor format walk only
 MemoryAttributes memattrs,
 Permissions permissions
)

shared/translation/vmsa/TranslationRegime

 // TranslationRegime()
 // ===================
 // Select the translation regime given the target EL and PE state

 Regime TranslationRegime(bits(2) el)
 if el == EL3 then
 return if ELUsingAArch32(EL3) then Regime_EL30 else Regime_EL3;
 elsif el == EL2 then
 return if ELIsInHost(EL2) then Regime_EL20 else Regime_EL2;
 elsif el == EL1 then
 return Regime_EL10;
 elsif el == EL0 then
 if CurrentSecurityState() == SS_Secure && ELUsingAArch32(EL3) then
 return Regime_EL30;
 elsif ELIsInHost(EL0) then
 return Regime_EL20;
 else
 return Regime_EL10;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14360
ID032224 Non-Confidential

Armv8 Pseudocode
J1.3 Shared pseudocode
 else
 Unreachable();

shared/translation/vmsa/TranslationSize

 // TranslationSize()
 // =================
 // Compute the number of bits directly mapped from the input address
 // to the output address

 integer TranslationSize(bit d128, TGx tgx, integer level)
 granulebits = TGxGranuleBits(tgx);
 descsizelog2 = if d128 == '1' then 4 else 3;
 blockbits = (FINAL_LEVEL - level) * (granulebits - descsizelog2);

 return granulebits + blockbits;

shared/translation/vmsa/UseASID

 // UseASID()
 // =========
 // Determine whether the translation context for the access requires ASID or is a global entry

 boolean UseASID(TLBContext accesscontext)
 return HasUnprivileged(accesscontext.regime);

shared/translation/vmsa/UseVMID

 // UseVMID()
 // =========
 // Determine whether the translation context for the access requires VMID to match a TLB entry

 boolean UseVMID(TLBContext accesscontext)
 return accesscontext.regime == Regime_EL10 && EL2Enabled();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. J1-14361
ID032224 Non-Confidential

Part K
Appendixes

Appendix K1
Architectural Constraints on UNPREDICTABLE
Behaviors

This chapter describes the architectural constraints on UNPREDICTABLE behaviors in the Armv8 and later
architectures. It contains the following sections:

• AArch32 CONSTRAINED UNPREDICTABLE behaviors.

• AArch64 CONSTRAINED UNPREDICTABLE behaviors.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14363
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors

From the introduction of Armv8, the architecture defines architecturally required constraints on many behaviors that
are UNPREDICTABLE in Armv7. The following sections define those constraints:

• Overview of the constraints on Armv7 UNPREDICTABLE behaviors.

• Using R13 by instruction.

• Using R15 by instruction.

• Branching into an IT block.

• Branching to an unaligned PC.

• Loads and Stores to unaligned locations.

• CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT.

• Unallocated System register access instructions.

• SBZ or SBO fields T32 and A32 in instructions.

• UNPREDICTABLE cases in immediate constants in T32 data-processing instructions.

• UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions.

• CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values.

• CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization

• Translation Table Base Address alignment.

• Handling of System register control fields for Advanced SIMD and floating-point operation.

• Mapping of non-idempotent memory locations using the Normal memory type.

• The Performance Monitors Extension.

• The Activity Monitors Extension.

• Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED.

• Out of range VA.

• Instruction fetches from Device memory.

• Multi-access instructions that load the PC from Device memory.

• Programming CSSELR.Level for a cache level that is not implemented.

• Crossing a page boundary with different memory types or Shareability attributes.

• Crossing a 4KB boundary with a Device access.

• UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs.

• CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings.

• Out of range values of the Set/Way/Index fields in cache maintenance instructions.

• CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction
set.

• CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point instructions.

• CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14364
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• CONSTRAINED UNPREDICTABLE behavior of EL2 features.

• Reserved values in System and memory-mapped registers and translation table entries.

• CONSTRAINED UNPREDICTABLE behavior in Debug state.

K1.1.1 Overview of the constraints on Armv7 UNPREDICTABLE behaviors

The term UNPREDICTABLE describes a number of cases where the architecture has a feature that software must not
use. For execution in AArch32 state, where previous versions of the architecture define behavior as
UNPREDICTABLE, from the introduction of Armv8-A the architecture specifies a narrow range of permitted
behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are
compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Note

Software designed to be compatible with the Armv8-A and later architectures must not rely on these CONSTRAINED
UNPREDICTABLE cases.

K1.1.2 Using R13 by instruction

In prior versions of the architecture, the use of R13 by instruction as a named register specifier was described as
UNPREDICTABLE in the pseudocode. From the introduction of the Armv8-A architecture, the use of R13 as a named
register specifier is not UNPREDICTABLE, unless this is specifically stated, and R13 can be used in the regular form.
Bits[1:0] of R13 are not treated as SBZP in the Armv7 architecture or RES0 in the Armv8 and later architectures,
but can hold any values programmed into them.

K1.1.3 Using R15 by instruction

All uses of R15 by instruction as a named register specifier for a source register that are described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this Manual must do one of the following:

• Cause the instruction to be treated as UNDEFINED.

• Cause the instruction to execute as a NOP.

• Read the Program Counter with the standard offset that applies for the current instruction set.

• Read the Program Counter with the standard offset that applies for the current instruction set with alignment
to a word boundary.

• Read 0. This is Arm preferred behavior.

• Read or return an UNKNOWN value for the source register specified as R15.

All uses of R15 as a named register specifier for a destination register that are described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this reference manual must do one of the following:

• Cause the instruction to be treated as UNDEFINED.

• Cause the instruction to execute as a NOP.

• Ignore the write.

• Branch to an UNKNOWN location in either A32 or T32 state.

Instructions that are CONSTRAINED UNPREDICTABLE when the base register is R15 and the instruction specifies a
writeback of the base register, are treated as having R15 as both a source register and a destination register.

For instructions that have two destination registers, for example LDRD, MRRC, and many of the multiply instructions,
if Rt, Rt2, RdLo, or RdHi is R15, then the other destination register of the pair is UNKNOWN if the CONSTRAINED
UNPREDICTABLE behavior for the write to R15 is either to ignore the write or to branch to an UNKNOWN location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14365
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
For instructions that affect any or all of PSTATE.{N, Z, C, V}, PSTATE.Q, and PSTATE.GE when the register
specifier is not R15, any flags affected by an instruction that is CONSTRAINED UNPREDICTABLE when the register
specifier is R15 become UNKNOWN.

In addition, for MRC instructions that use R15 as the destination register descriptor, and therefore target APSR_nzcv
where these are described as being CONSTRAINED UNPREDICTABLE, PSTATE.{N, Z, C, V} becomes UNKNOWN.

K1.1.4 Branching into an IT block

Branching into an IT block leads to CONSTRAINED UNPREDICTABLE behavior. Execution starts from the address
determined by the branch, but each instruction in the IT block is:

• Executed as if it were not in an IT block. This means that it is executed unconditionally.

• Executed as if it had passed its Condition code check within an IT block.

• Executed as a NOP. That is, it behaves as if it had failed the Condition code check.

K1.1.5 Branching to an unaligned PC

In A32 state, when branching to an address that is not word-aligned and is defined to be CONSTRAINED
UNPREDICTABLE, one of the following behaviors must occur:

• The unaligned location is forced to be aligned.

• The unaligned address generates a Prefetch Abort on the first instruction using the unaligned PC value.

If that instruction is executed at EL0 and either of the following applies, the exception is taken to EL2:

— EL2 is using AArch32 and the value of HCR.TGE is 1.

— EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

If the instruction is executed at EL0 when the applicable TGE bit is 0 the exception is taken to EL1.

If the instruction is executed at an Exception level that is higher than EL0 the exception is taken to the
Exception level at which the instruction was executed.

In all cases, the exception is generated only if the first instruction using the unaligned PC value is
architecturally executed.

If the exception that results from a branch to an unaligned PC value:

• Is taken to an Exception level that is using AArch64, it is reported as a PC alignment fault exception, see ISS
encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

• Is taken to an Exception level that is using AArch32, it is reported as a Prefetch Abort exception, see Prefetch
Abort exception reporting a PC alignment fault exception.

Note

Because bit[0] is used for interworking, it is impossible to specify a branch to A32 state when the bottom bit of the
target address is 1. Therefore the bottom bit of IFAR, HIFAR, or FAR_ELx is 0 for all these cases.

K1.1.6 Loads and Stores to unaligned locations

Some unaligned loads and stores in the Armv8-A and later architectures are described as CONSTRAINED
UNPREDICTABLE to do one of the following:

• Take an alignment fault.

• Perform the specified load or store to the unaligned memory location.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14366
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT

A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

• Anywhere within an IT block.

• As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this manual, when these instructions are committed for execution, one of the following
occurs:

• An UNDEFINED exception results.

• The instructions are executed as if they had passed the Condition code check.

• The instructions execute as NOPs. This means that they behave as if they had failed the Condition code
check.

The behavior might in some implementations vary from instruction to instruction, or between different instances of
the same instruction.

Many instructions that are CONSTRAINED UNPREDICTABLE in an IT block are branch instructions or other
non-sequential instructions that change the PC. Where these instructions are not treated as UNDEFINED within an IT
block, the remaining iterations of the PSTATE.IT state machine must be treated in one of the following ways:

• PSTATE.IT is cleared to 0.

• PSTATE.IT advances for either a sequential or a nonsequential change of the PC in the same way as it does
for instructions that are not CONSTRAINED UNPREDICTABLE that cause a sequential change of the PC.

Note

This does not apply to an instruction that is the last instruction in an IT block.

The instructions addressed by the updated PC must do one of the following:

• Execute as if they had passed the Condition code check for the remaining iterations of the PSTATE.IT state
machine.

• Execute as NOPs. That is, they behave as if they had failed the Condition code check for the remaining
iterations of the PSTATE.IT state machine.

• Execute as if they were unconditional, or, if the instructions are part of another IT block, in accordance with
the behavior described in Branching into an IT block.

The behavior might in some implementations vary from instruction to instruction, or between different instances of
the same instruction.

For exception returns or Debug state exits that cause PSTATE.IT to be set to a reserved value in T32 state or that
return to A32 state with a nonzero value in PSTATE.IT, the PSTATE.IT bits are forced to ‘00000000’. The reserved
values are:

PSTATE.IT[7:4] != ‘0000’ && PSTATE.IT[3:0] == ‘0000’
PSTATE.IT[2:0] != ‘000’ when SCTLR/SCTLR_EL_1.ITD == ‘1’

Exception returns or Debug state exits that set PSTATE.IT to a non-reserved value in T32 state can occur when the
flow of execution returns to a point:

• Outside an IT block, but with the PSTATE.IT bits set to a value other than ‘00000000’.

• Inside an IT block, but with a different value of the PSTATE.IT bits than if the IT block had been executed
without an exception return or Debug state exit.

In this case, the instructions at the target of the exception return or Debug state exit must do one of the following:

• Execute as if they passed the Condition code check for the remaining iterations of the PSTATE.IT state
machine.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14367
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• Execute as NOPs. That is, they behave as if they failed the Condition code check for the remaining iterations
of the PSTATE.IT state machine.

• Execute as if they were unconditional, or as if the instruction were part of another IT block, in accordance
with the behavior in Branching into an IT block.

The remaining iterations of the PSTATE.IT state machine must behave in one of the following ways:

• The PSTATE.IT state machine advances as if it were in an IT block.

• The PSTATE.IT bits are ignored.

• The PSTATE.IT bits are forced to ‘00000000’.

K1.1.8 Unallocated System register access instructions

From the introduction of the Armv8-A architecture, accesses to unallocated System register encodings are
UNDEFINED.

This includes:

• Reads using encodings that are defined as WO.

• Writes using encodings that are defined as RO.

• MCR or MRC accesses to using a set of {coproc, CRn, opc1, CRm, opc2} values that the Armv7 architecture defined
as UNPREDICTABLE.

• MCRR and MRRC instructions with unallocated values of opc1 or CRm that are described as UNPREDICTABLE are
UNDEFINED in the Armv8-A and later architectures.

K1.1.9 SBZ or SBO fields T32 and A32 in instructions

Many of the A32 and T32 instructions have (0) or (1) in the instruction decode to indicate Should-Be-Zero, SBZ, or
Should-Be-One, SBO. If the instruction bit pattern of an instruction is executed with these fields not having the
should be values, one of the following must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction operates as if the bit had the should-be value.

• Any destination registers of the instruction become UNKNOWN.

The exceptions to this rule are:

• LDM, LDMIA, LDMFD.

• LDMDB, LDMEA.

• LDR (literal).

• LDRB (literal).

• LDRD (immediate).

• LDRD (register).

• LDRD (literal).

• LDRH (literal).

• LDRSB (literal).

• LDRSH (literal).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14368
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• POP.

• PUSH.

• SDIV.

• STM, STMIA, STMEA.

• STMDB, STMFD.

• UDIV.

K1.1.10 UNPREDICTABLE cases in immediate constants in T32 data-processing instructions

The description of immediate constants in T32 data processing Modified immediate constants in T32 instructions
include constant values that were UNPREDICTABLE in Armv7. Instruction encodings describes 32-bit T32
instructions as {hw1, hw2}, where hw1 is the left-hand halfword in the 32-bit encoding diagram for the instruction.
The UNPREDICTABLE cases are those where both:

• hw2[7:0] == 0b0000000.

• hw1[10] == 0 and either:

— hw2[14:12] == 0b001.

— hw2[14:12] == 0b010.

— hw2[14:12] == 0b011.

From the introduction of the Armv8 architecture, the CONSTRAINED UNPREDICTABLE behavior is that these
encodings produce the value 0b0000000.

K1.1.11 UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions

The description of immediate constants in Modified immediate constants in T32 and A32 Advanced SIMD
instructions include constant values that were UNPREDICTABLE in Armv7. The UNPREDICTABLE cases are those
where:

• The bits that the encoding diagram shows as abcd are all 0.

In the A32 encoding these are bits[24, 18:6, 3:0]. In the T32 encoding they are bits {hw1[12, 2:0], hw2[3:0]}.

• The bits that the encoding diagram shows as cmode[3:1] are one of {0b001, 0b010, 0b011, 0b101, 0b110}.

In the A32 encoding these are bits[11:9]. In the T32 encoding they are bits hw2[11:9].

From the introduction of the Armv8 architecture, the CONSTRAINED UNPREDICTABLE behavior is that these
encodings produce an immediate constant value of zero.

K1.1.12 CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or
data values

The Arm architecture allows copies of System register control or data values to be cached in a cache or TLB. This
can lead to CONSTRAINED UNPREDICTABLE behavior if the cache or TLB has not been correctly invalidated
following a change of the control or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with one of:

• The old data or control value.

• The new data or control value.

• An amalgamation of the old and new data or control values.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14369
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
In an implementation that includes FEAT_TTCNP, this CONSTRAINED UNPREDICTABLE case can arise from
misprogramming when setting TTBR.CnP to 1, as identified in the descriptions of the TTBR.CnP field. In this case,
for a particular TTBR, the behavior of the PE is consistent with one of:

• The value of the translation table entry pointed to by that TTBR on one of the PEs within the Inner Shareable
domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table
entries pointed to by that TTBR are met.

• An amalgamation of the values of the translation table entries pointed to by that TTBR on two or more of the
PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions
for sharing translation table entries pointed to by that TTBR are met.

Note

If the Effective value of a control or data value that determines the behavior of the PE results from the amalgamation
of two or more values, then that Effective value must not generate a privilege violation. So, for example:

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because inadequate invalidation of the TLB
causes multiple hits in the TLB, the failure to invalidate the TLB by software executing at a given Exception
level and Security state must not make it possible to access regions of memory with permissions or attributes
that could not be accessed at that Exception level and Security state.

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because of a programming error, on one or more
PEs in the Inner Shareable domain, when using a TTBR.CnP value of 1 to share translation table entries, the
misprogramming must not make it possible to access regions of memory with permissions or attributes that
could not be accessed at the Exception level of that TTBR and the Security state corresponding to the
translation table entries being shared.

Alternatively to this CONSTRAINED UNPREDICTABLE behavior, an implementation detecting multiple hits within a
TLB might generate an exception, reporting the exception using the TLB Conflict fault code, see TLB conflict
aborts.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

K1.1.13 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization

The Arm architecture requires that changes to System registers must be synchronized before they take effect. This
can lead to CONSTRAINED UNPREDICTABLE behavior if the synchronization has not been performed.

In these cases, the behavior of the PE is consistent with the unsynchronized control value being either the old value
or the new value.

Where multiple control values are updated but not yet synchronized, each control value might independently be the
old value or the new value.

In addition, where the unsynchronized control value applies to different areas of functionality, or what an
implementation has constructed as different areas of functionality, those areas might independently treat the control
value as being either the old value or the new value.

The choice between these behaviors might, in some implementations, vary for each use of a control value.

K1.1.14 Unallocated values with register fields of CP15 registers and Translation Table entries

Unless stated elsewhere, all unallocated or reserved values of fields with allocated values within CP15 registers and
Translation Table entries be have in one in one of the following ways:

• The encoding maps onto any of the allocated values but otherwise does not cause UNPREDICTABLE behavior.

• The encodings cause effects that could be achieved by a combination of more than one of the allocated
encodings.

• The encodings cause the field to have no functional effect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14370
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.15 Translation Table Base Address alignment

A misaligned Translation Table Base Address can occur if:

• The VMSAv8-32 Short-descriptor translation table format is enabled and TTBR0[13-N:7], which is defined
to be RES0, contains a nonzero value.

• The VMSAv8-32 Long-descriptor translation table format is enabled, and TTBR0[x-1:3], TTBR1[x-1:3],
HTTBR[x-1:3], or VTTBR[x-1:3], which are defined to be RES0, contains a nonzero value.

In the event of a misaligned Translation Table Base Address, one of the following behaviors must occur:

• The field that is defined to be RES0 is treated as if all bits were zero:

— The value that is read back might be the value written or it might be zero.

• The calculation of an address for a translation table walk using that register might be corrupted in those bits
that are nonzero.

K1.1.16 Handling of System register control fields for Advanced SIMD and floating-point operation

For historical reasons described in Background to the System register interface, each of the CPACR, HCPTR, and
NSACR has a pair of control fields that were defined to have identical functionality for controlling Advanced SIMD
and floating-point operation. These fields are:

• CPACR.{cp10, cp11}.

• HCPTR.{TCP10, TCP11}.

• NSACR.{cp10, cp11}.

The architecture requires that both fields in one of these pairs are programmed to the same value. If this is not done,
then the CONSTRAINED UNPREDICTABLE behavior is that behavior is the same as if the cp11 or TCP11 control field
was equal to the cp10 or TCP10 field.This is in all respects except for the value read back by a direct read of the
register. After a register write that writes different values to the two fields of a pair, a direct read of the register might
return an UNKNOWN value for the cp11 or TCP11 field.

Note

This means that, when different values are written to the {cp10, cp11} fields in a single register, the architecture
permits but does not require that a read of that register returns the value written to the cp11 field.

K1.1.16.1 CONSTRAINED UNPREDICTABLE CPACR and NSACR settings

If CPACR.cp<n> contains the encoding ‘10’, then one of the following behaviors must occur:

• The encoding maps onto any of the allocated values, but otherwise does not cause UNPREDICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

Note

In Armv7, CPACR had a D32DIS bit, and NSACR had an NSD32DIS bit. There is no CPACR.D32DIS or
NSACR.NSD32DIS in Armv8-A and later architectures, and the corresponding bits in the two registers are RES0.

K1.1.17 Mapping of non-idempotent memory locations using the Normal memory type

If non-idempotent memory locations are mapped using the Normal memory type, the state of the non-idempotent
memory location may become corrupted in the following circumstances:

• Speculative read accesses may cause accesses to the non-idempotent memory locations that would not occur
as part of a simple sequential execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14371
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• Writes to non-idempotent memory locations might be merged or split. In this case, the number and size of
writes seen by the memory location might not be the number and size that occur as part of a simple sequential
execution.

K1.1.18 The Performance Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Performance
Monitors Extension in AArch32 state:

• CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR.

• CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n>.

• CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN.

K1.1.18.1 CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or
PMXEVCNTR

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMXEVCNTR and PMXEVTYPER are not CONSTRAINED UNPREDICTABLE.

Otherwise, if PMSELR.SEL is greater than the number of event counters accessible at this Exception level, accesses
to PMXEVTYPER or PMXEVCNTR can cause CONSTRAINED UNPREDICTABLE behavior. This occurs when one of
the following is true:

• If PMSELR.SEL is not equal to 31, and PMSELR.SEL is greater than or equal to PMCR.N, and the PE is
executing in EL2 or EL3.

• If FEAT_SEL2 is disabled or is not implemented, PMSELR.SEL is not 31, and PMSELR.SEL is greater than
or equal to PMCR.N, and the PE is executing in Secure EL1 or Secure EL0.

• If PMSELR.SEL is not 31, and PMSELR.SEL is greater than or equal to HDCR.HPMN, and the PE is
executing in EL1 or EL0.

In these UNPREDICTABLE cases, one of the following behaviors must occur:

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode are UNDEFINED.

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode behave as RAZ/WI.

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode execute as NOPs.

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode behave as if PMSELR.SEL contains an
UNKNOWN value that is less than the number of counters accessible at the current Exception level and
Security state.

• Accesses to PMXEVTYPER or PMXEVCNTR behave as if PMSELR.SEL is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number
of accessible event counters but greater than the number of accessible counters at this Exception level, access
to PMXEVTYPER or PMXEVCNTR from EL1 or permitted access from EL0 is trapped to EL2.

If PMSELR.SEL is equal to 31, then one of the following behaviors must occur:

• Accesses to PMXEVCNTR are UNDEFINED.

• Accesses to PMXEVCNTR behave as RAZ/WI.

• Accesses to PMXEVCNTR execute as NOPs.

• Accesses to PMXEVCNTR behave as if PMSELR.SEL contains an UNKNOWN value that is less than the
number of counters accessible at the current Exception level and Security state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14372
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• If EL2 is implemented and enabled in the current Security state, for an access to PMXEVCNTR from EL1
or a permitted access from EL0, if the counter is implemented but not accessible at the current Exception
level, the register access is trapped to EL2.

Note

If EL2 is implemented and enabled in the current Security state, HDCR.HPMN, or MDCR_EL2.HPMN, identifies
the number of accessible counters at EL0 or EL1. Otherwise, the number of accessible counters is the number of
accessible event counters.

Accesses from EL0 to PMXEVCNTR are permitted when:

• EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.

• EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMXEVTYPER are permitted when:

• EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

• EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

K1.1.18.2 CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and
PMEVTYPER<n>

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMEVCNTR<n> and PMEVTYPER<n> are not CONSTRAINED UNPREDICTABLE.

Otherwise, if <n> is greater than the number of event counters available in the current Exception level and state,
reads and writes of PMEVCNTR<n> and PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, for an access to PMEVCNTR<n> or
PMEVTYPER<n> from EL1 or a permitted access from EL0, if the counter is implemented but not
accessible at the current Exception level, the register access is trapped to EL2.

Accesses from EL0 are permitted to PMEVCNTR<n> when:

— EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.

— EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 are permitted to PMEVTYPER<n> when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1, HDCR.HPMN, or
MDCR_EL2.HPMN, identifies the number of accessible counters. Otherwise, the number of accessible counters is
the number of accessible event counters.

K1.1.18.3 CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN

If PMCR.N is nonzero, and one of the following is true:

• FEAT_HPMN0 is not implemented and HDCR.HPMN is set to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14373
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• HDCR.HPMN is set to a value greater than PMCR.N.

The CONSTRAINED UNPREDICTABLE behavior is:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
HDCR.HPMN is set to an UNKNOWN nonzero value less than PMCR.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.

K1.1.19 The Activity Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Activity Monitors
registers in AArch32 state:

• CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR0<n> and AMEVTYPER0<n>.

• CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR1<n> and AMEVTYPER1<n>.

• CONSTRAINED UNPREDICTABLE accesses to AMCNTENCLR1 and AMCNTENSET1.

K1.1.19.1 CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR0<n> and
AMEVTYPER0<n>

If <n> is greater than the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n> and AMEVTYPER0<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

K1.1.19.2 CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR1<n> and
AMEVTYPER1<n>

If <n> is greater than the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n> and AMEVTYPER1<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14374
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.19.3 CONSTRAINED UNPREDICTABLE accesses to AMCNTENCLR1 and
AMCNTENSET1

If the number of auxiliary activity monitor event counters that are implemented is zero, reads and writes of
AMCNTENCLR1 and AMCNTENSET1 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

The number of auxiliary activity monitor event counters that are implemented is zero exactly when AMCFGR.NCG
is 0b0000.

K1.1.20 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as
UNDEFINED

When a CONSTRAINED UNPREDICTABLE instruction is treated as UNDEFINED, this generates an exception:

• If this exception is taken to an Exception level that is using AArch64, then ESR_ELx is UNKNOWN.

• If this exception is taken to EL2 and EL2 is using AArch32, then the HSR is unknown.

Note

The value written to ESR or HSR must be consistent with a value that could be created as the result of an exception
from the same Exception level that generated the exception, but resulted from a situation that is not CONSTRAINED
UNPREDICTABLE at that Exception level. This is to avoid a possible privilege violation.

K1.1.21 Out of range VA

If the PE executes an instruction for which the instruction address, size, and alignment mean it contains the bytes
0xFFFF FFFF and 0x0000 0000, then the bytes that wrap around and appear to be from 0x0000 0000 onwards come from
an UNKNOWN address.

If the PE executes a load or store instruction for which the computed address, total access size, and alignment mean
it accesses bytes 0xFFFF FFFF and 0x0000 0000, then the bytes that wrap around and appear to be from 0x0000 0000
onwards come from an UNKNOWN address.

K1.1.22 Instruction fetches from Device memory

Instruction fetches from Device memory are CONSTRAINED UNPREDICTABLE.

If a location in memory has the Device attribute and is not marked as execute-never, then an implementation might
perform speculative instruction accesses to this memory location when address translation is enabled.

If a branch causes the Program Counter to point to a location in memory with the Device attribute that is not marked
as execute-never for the current Exception level for instruction fetches, then an implementation must perform one
of the following behaviors:

• It treats the instruction fetch as if it were to a memory location with the Normal, Non-cacheable attribute.

• It generates a Permission fault.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14375
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.23 Multi-access instructions that load the PC from Device memory

Multi-access instructions that load the PC from Device memory when address translation is enabled are
UNPREDICTABLE in AArch32 state. From the introduction of the Armv8-A architecture in AArch32 state an
implementation must perform one of the following behaviors:

• It loads the PC from the memory location as if the memory location had the Normal Non-cacheable attribute.

• It generates a Permission fault.

K1.1.24 Programming CSSELR.Level for a cache level that is not implemented

If CSSELR.Level is programmed to a cache level that is not implemented, then a read of CSSELR returns an
UNKNOWN value in CSSELR.Level.

If CSSELR.Level is programmed to a cache level that is not implemented, then on a read of CCSIDR an
implementation must perform one of the following behaviors:

• The CCSIDR read is treated as a NOP.

• The CCSIDR read is UNDEFINED.

• The CCSIDR read returns an UNKNOWN value.

When FEAT_CCIDX is implemented, CCSIDR2 is implemented. If CSSELR.Level is programmed to a cache level
that is not implemented, then on a read of CCSIDR2 an implementation must perform one of the following
behaviors:

• The CCSIDR2 read is treated as a NOP.

• The CCSIDR2 read is UNDEFINED.

• The CCSIDR2 read returns an UNKNOWN value.

K1.1.25 Crossing a page boundary with different memory types or Shareability attributes

A memory access from a load or store instruction that crosses a page boundary to a memory location that has a
different memory type or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the
implementation must perform one of the following behaviors:

• Each memory access generated by the instruction uses the memory type and Shareability attribute associated
with its own address.

• The instruction generates an alignment fault caused by the memory type.

For the Non-secure PL1&0 translation regime:

— If the stage 1 translation causes the mismatch, the resulting exception is taken to PL1.

— If the stage 2 translation causes the mismatch, the resulting exception is taken to PL2.

— If both stages of translation cause the mismatch, the resulting exception can be taken to either PL1 or
PL2.

• The instruction executes as a NOP.

K1.1.26 Crossing a 4KB boundary with a Device access

A memory access from a load or store instruction to Device memory that crosses a 4KB boundary results in
CONSTRAINED UNPREDICTABLE behavior. In this case, the implementation must perform one of the following
behaviors:

• All memory accesses generated by the instruction are performed as if the presence of the boundary had no
effect on the memory accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14376
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• All memory accesses generated by the instruction are performed as if the presence of the boundary had no
effect on the memory accesses, except that there is no guarantee of ordering between memory accesses.

• The instruction generates an Alignment fault caused by the memory type.

For the Non-secure PL1&0 translation regime:

— If the stage 1 translation causes the boundary to be crossed, the resulting exception is taken to PL1.

— If the stage 2 translation causes the boundary to be crossed, the resulting exception is taken to PL2.

— If both stages of translation cause the boundary to be crossed, the resulting exception can be taken to
either PL1 or PL2.

• The instruction executes as a NOP.

Note

The boundary referred to is between two Device memory regions that are both of 4KB and aligned to 4KB.

K1.1.27 UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs

Load-Exclusive and Store-Exclusive instruction usage restrictions defines a Load-Exclusive/Store-Exclusive pair,
and identifies various CONSTRAINED UNPREDICTABLE behaviors associated with using
Load-Exclusive/Store-Exclusive pairs. These cases were UNPREDICTABLE in Armv7. In summary, these cases are:

• The target virtual address of a StoreExcl instruction is different from the virtual address of the preceding
LoadExcl instruction in the same thread of execution.

• The transaction size of a StoreExcl instruction is different from the transaction size of the preceding LoadExcl
instruction in the same thread of execution.

• The memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding
LoadExcl instruction in the same thread of execution, either:

— Because the translation of the accessed address changes between the LoadExcl instruction and the
StoreExcl instruction.

— Because the LoadExcl instruction and the StoreExcl instruction use different virtual addresses, with
different attributes, that point to the same physical address.

In addition, the effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or
global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE.

See the descriptions in Load-Exclusive and Store-Exclusive instruction usage restrictions for the permitted behavior
in each of these cases, and any constraints that might apply to whether the case is CONSTRAINED UNPREDICTABLE.

Note

Additional CONSTRAINED UNPREDICTABLE cases can apply to Load-Exclusive and Store-Exclusive instructions, see
CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set.

K1.1.28 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings

The A32 and T32 instruction sets include encodings that result in CONSTRAINED UNPREDICTABLE behavior when
they are decoded.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14377
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.28.1 CONSTRAINED UNPREDICTABLE behavior of CRC32 instruction encodings

In the A32 and T32 instruction sets, there are encodings of the CRC32 and CRC32C instructions that result in
CONSTRAINED UNPREDICTABLE behavior. These encodings are listed in the following places in the A32 and T32
instruction sets:

• Cyclic Redundancy Check for the A32 instruction set, with sz = 11.

• Data-processing (two source registers) for the T32 instruction set, with op1 = 10x and op2 = 11.

The CONSTRAINED UNPREDICTABLE behavior for these encodings is described in CRC32 and CRC32C.

K1.1.28.2 CONSTRAINED UNPREDICTABLE behavior of other A32 instruction
encodings

In the A32 instruction set, there are encodings that result in CONSTRAINED UNPREDICTABLE behavior. These
encodings are listed in:

• Miscellaneous.

• Memory hints and barriers.

• Barriers.

The CONSTRAINED UNPREDICTABLE behavior is that an implementation must treat the encodings in one of the
following ways:

• The instruction encoding is UNDEFINED.

• The instruction encoding executes as a NOP.

K1.1.29 Out of range values of the Set/Way/Index fields in cache maintenance instructions

In the cache maintenance by set/way instructions DCCISW, DCCSW, and DCISW, if any set/way/index argument
is larger than the value supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and
one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Note

This CONSTRAINED UNPREDICTABLE behavior applies, also, to the A64 cache maintenance by set/way instructions
DC CISW, DC CSW, and DC ISW.

K1.1.30 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base
instruction set

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A32 and T32 System instructions.

Note

If an instruction can result in CONSTRAINED UNPREDICTABLE behavior that is not specific to that particular
instruction, see the relevant section in this appendix for a description of the CONSTRAINED UNPREDICTABLE
behavior.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14378
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.30.1 SRS (T32)

For a description of this instruction and the encoding, see SRS, SRSDA, SRSDB, SRSIA, SRSIB.

K1.1.30.1.1 CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If the instruction specifies an illegal mode field, then one of the following behaviors must occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

— R13 of the current mode is used.

— The store occurs to an UNKNOWN address, and if the instruction specifies writeback, any
general-purpose register that can be accessed without privilege violation from the current Exception
level become UNKNOWN.

K1.1.30.2 SRS (A32)

For a description of this instruction and the encoding, see SRS, SRSDA, SRSDB, SRSIA, SRSIB.

K1.1.30.2.1 CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If the instruction specifies an illegal mode field, then one of the following behaviors must occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

— R13 of the current mode is used.

— The store occurs to an UNKNOWN address, and if the instruction specifies writeback, any
general-purpose register that can be accessed without privilege violation from the current Exception
level become UNKNOWN.

K1.1.30.3 SUBS PC, LR and related instructions (T32)

For a description of this instruction and the encoding, see the exception return form of SUB, SUBS (immediate).

K1.1.30.3.1 CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If this instruction is executed in User mode or in System mode, then one of the following behaviors must
occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

• If the instruction transfers an illegal mode encoding to PSTATE.M, then this invokes the illegal exception
return.

Note

An illegal mode encoding is either an unallocated mode encoding or one that is not accessible at the current
Exception level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14379
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
For encoding T5:

• If hw1[3:0] are not 0b1110, and the instruction is executed when not in Hyp mode, System mode, or User mode,
then one of the following behaviors must occur:

— The instruction is UNDEFINED.

— The instruction is treated as a NOP.

— The instruction is treated as if hw1[3:0] are 0b1110.

— The Program Counter is set using the value in the register specified by hw1[3:0].

K1.1.30.4 SUBS PC. LR and related instructions (A32)

For a description of this instruction and the encoding, see the exception return forms of MOV, MOVS (register) and
SUB, SUBS (immediate).

K1.1.30.4.1 CONSTRAINED UNPREDICTABLE behavior

For all encodings:

• If this instruction is executed in User mode or in System mode, then one of the following behaviors must
occur:

— The instruction is UNDEFINED.

— The instruction executes as a NOP.

• If the instruction transfers an illegal mode encoding to PSTATE.M, then this invokes the illegal exception
return.

Note

An illegal mode encoding is either an unallocated mode encoding or one that is not accessible at the current
Exception level.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14380
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.31 CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point
instructions

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A32 and T32 Advanced SIMD and
floating-point instructions listed in Alphabetical list of Advanced SIMD and floating-point instructions.

Note

• The pseudocode used in this section to describe cases that can result in CONSTRAINED UNPREDICTABLE
behavior does not necessarily match the encoding specific pseudocode for a specific instruction.

• If an instruction can result in CONSTRAINED UNPREDICTABLE behavior that is not specific to that particular
instruction, see the relevant section in this appendix for a description of the CONSTRAINED UNPREDICTABLE
behavior.

K1.1.31.1 VCVT (between floating-point and fixed-point)

For a description of this instruction and the encoding, see VCVT (between floating-point and fixed-point,
floating-point).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.2 VLD1 (multiple single elements)

For a description of this instruction and the encoding, see VLD1 (multiple single elements).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.3 VLD1 (single element to all lanes)

For a description of this instruction and the encoding, see VLD1 (single element to all lanes).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.4 VLD2 (multiple 2-element structures)

For a description of this instruction and the encoding, see VLD2 (multiple 2-element structures).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.5 VLD2 (single 2-element structure to one lane)

For a description of this instruction and the encoding, see VLD2 (single 2-element structure to one lane).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14381
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.31.6 VLD2 (single 2-element structure to all lanes)

For a description of this instruction and the encoding, see VLD2 (single 2-element structure to all lanes).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.7 VLD3 (multiple 3-element structures)

For a description of this instruction and the encoding, see VLD3 (multiple 3-element structures).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.8 VLD3 (single 3-element structure to one lane)

For a description of this instruction and the encoding, see VLD3 (single 3-element structure to one lane).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.9 VLD3 (single 3-element structure to all lanes)

For a description of this instruction and the encoding, see VLD3 (single 3-element structure to all lanes).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.10 VLD4 (multiple 4-element structures)

For a description of this instruction and the encoding, see VLD4 (multiple 4-element structures).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.11 VLD4 (single 4-element structure to one lane)

For a description of this instruction and the encoding, see VLD4 (single 4-element structure to one lane).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.12 VLD4 (single 4-element structure to all lanes)

For a description of this instruction and the encoding, see VLD4 (single 4-element structure to all lanes).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14382
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.13 VLDM

For a description of this instruction and the encoding, see VLDM, VLDMDB, VLDMIA.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.14 VMOV (between two general-purpose registers and two single-precision
registers)

For a description of this instruction and the encoding, see VMOV (between two general-purpose registers and two
single-precision registers).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.15 VMOV (between two general-purpose registers and a doubleword
floating-point register)

For a description of this instruction and the encoding, see VMOV (between two general-purpose registers and a
doubleword floating-point register).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.16 VST1 (multiple single elements)

For a description of this instruction and the encoding, see VST1 (multiple single elements).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.17 VST2 (multiple 2-element structures)

For a description of this instruction and the encoding, see VST2 (multiple 2-element structures).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.18 VST2 (single 2-element structure from one lane)

For a description of this instruction and the encoding, see VST2 (single 2-element structure from one lane).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14383
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.19 VST3 (multiple 3-element structures)

For a description of this instruction and the encoding, see VST3 (multiple 3-element structures).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.20 VST3 (single 3-element structure from one lane)

For a description of this instruction and the encoding, see VST3 (single 3-element structure from one lane).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.21 VST4 (multiple 4-element structures)

For a description of this instruction and the encoding, see VST4 (multiple 4-element structures).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.22 VST4 (single 4-element structure from one lane)

For a description of this instruction and the encoding, see VST4 (single 4-element structure from one lane).

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.31.23 VSTM

For a description of this instruction and the encoding, see VSTM, VSTMDB, VSTMIA.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the
SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation
must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the
current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

K1.1.32 CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR

The following subsections describe the CONSTRAINED UNPREDICTABLE behavior associated with programming the
VTCR:

• Misprogramming VTCR.S.

• Misprogramming VTCR.{SL0, T0SZ}.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14384
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.32.1 Misprogramming VTCR.S

VTCR.S must be programmed to the value of T0SZ[3], or the effect is CONSTRAINED UNPREDICTABLE. From the
introduction of the Armv8-A architecture, if VTCR.S is not programmed correctly, then the VTCR.T0SZ value is
treated as an UNKNOWN value.

Note

The CONSTRAINED UNPREDICTABLE behavior described in Misprogramming VTCR.{SL0, T0SZ} means the
UNKNOWN VTCR.T0SZ value might generate a Translation fault.

K1.1.32.2 Misprogramming VTCR.{SL0, T0SZ}

If the stage 2 input address size, as programmed in VTCR.T0SZ, is out of range with respect to the starting level,
as programmed in the VTCR.SL0 field, or the VTCR.SL0 field is programmed to a reserved value, then at the time
of a translation walk that uses the stage 2 translation, a stage 2 level 1 Translation Fault is generated.

K1.1.33 CONSTRAINED UNPREDICTABLE behavior of EL2 features

The following sections, and the instruction descriptions, describe CONSTRAINED UNPREDICTABLE behavior that can
occur in an implementation that includes EL2 where EL2 can use AArch32:

• ERET in User mode or System mode.

• Accessing Hyp mode from outside Hyp mode.

• Modifying PSTATE.M when in Hyp mode

• Use of Hyp mode in Secure state.

• Exception return to Hyp mode.

• Stage 1 default memory type.

• Trapping of general exceptions to Hyp mode.

• MSR (banked register) and MRS (banked register).

K1.1.33.1 ERET in User mode or System mode

If ERET is executed in User mode or System mode, it behaves as described in SUBS PC, LR and related instructions
(T32).

K1.1.33.2 Accessing Hyp mode from outside Hyp mode

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the illegal
exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as
described in SRS (T32) and SRS (A32).

K1.1.33.3 Modifying PSTATE.M when in Hyp mode

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the illegal
exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as
described in SRS (T32) and SRS (A32).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14385
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
K1.1.33.4 Use of Hyp mode in Secure state

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the illegal
exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as
described in SRS (T32) and SRS (A32).

K1.1.33.5 Exception return to Hyp mode

Exception returns to Hyp mode when SCR.NS == 0 or from a Non-secure PL1 mode invokes the illegal exception
return.

K1.1.33.6 Stage 1 default memory type

If HCR.DC == 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode is
consistent with:

• SCTLR.M == 0, regardless of the actual value of SCTLR.M, other than for the value returned by an explicit
read of SCTLR.M.

• HCR.VM == 1, regardless of the actual value of HCR.VM, other than for an explicit read of this bit.

K1.1.33.7 Trapping of general exceptions to Hyp mode

Attempting to perform an exception return to a Non-secure PL1 mode when HCR.TGE == 1 invokes an illegal
exception return.

Attempting to change from Monitor mode to a Non-secure PL1 mode when HCR.TGE == 1 by executing a CPS or
MSR instruction generates an Illegal Execution state exception, by not changing the mode, and setting PSTATE.IL
to 1.

When EL3 is using AArch32, attempting to change from a Secure PL1 mode to a Non-secure PL1 mode when
HCR.TGE is set, by changing SCR.NS from 0 to 1, results in no change of SCR.NS.

Because taking an exception into Non-secure PL1 modes leads to a CONSTRAINED UNPREDICTABLE situation, the
following additional properties apply when HCR.TGE == 1:

• All exceptions that would be routed to EL1 are routed to EL2.

• Non-secure SCTLR.M is treated as being 0, regardless of its actual value, other than for an explicit read of
this bit.

• HCR.FMO, HCR.IMO, and HCR.AMO are treated as being 1, regardless of their actual value, other than for
an explicit read of these bits.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are disabled.

K1.1.33.8 MSR (banked register) and MRS (banked register)

If the target register specified by the {R, SYSm} fields of the instruction encoding is not accessible from the PE mode
in which the instruction was executed (see Usage restrictions on the banked register transfer instructions), then one
of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• For MRS (banked register) instructions, the destination general-purpose register becomes UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14386
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
• For MSR (banked register) instructions, if the register specified could be accessed from the current mode by
other mechanisms, then this register is UNKNOWN. Otherwise, the instruction is a NOP.

If the instruction was executed specifying an unallocated {R, SYSm} field value or an unimplemented register (see
Encoding the register argument in the banked register transfer instructions), then one of the following behaviors
must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• An allocated MRS (banked register) or MSR (banked register) instruction is executed.

K1.1.34 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated, all unallocated or reserved values of fields with allocated values within the AArch32
System registers, memory-mapped registers, and translation table entries behave in one of the following ways:

• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED
UNPREDICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

• The encoding causes the field to have no functional effect.

Note

These constraints are identical to those for the equivalent AArch64 definitions, as given in Reserved values in
System and memory-mapped registers and translation table entries.

Unless otherwise stated, when a direct write of a System register or memory-mapped register writes an unallocated
value to a field, if that value is unallocated in all contexts then a subsequent read of the field returns an UNKNOWN
value.

K1.1.35 CONSTRAINED UNPREDICTABLE behavior in Debug state

Behavior in Debug state of this manual describes the CONSTRAINED UNPREDICTABLE behaviors that are specifically
associated with Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14387
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors

It contains the following sections:

• Overview of the constraints on AArch64 UNPREDICTABLE behaviors.

• SBZ or SBO fields in A64 instructions.

• CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values.

• CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization.

• Translation table base address alignment.

• The Performance Monitors Extension.

• The Activity Monitors Extension.

• Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED.

• Out of range virtual address.

• Mapping of non-idempotent memory locations using the Normal memory type.

• Instruction fetches from Device memory.

• Programming the CSSELR_EL1.{Level, InD, TnD} for a cache level that is not implemented.

• Crossing a page boundary with different memory types or Shareability attributes.

• Crossing a peripheral boundary with a Device access.

• CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs.

• CONSTRAINED UNPREDICTABLE behavior for A64 instructions.

• Out of range values of the Set/Way/Index fields in cache maintenance instructions.

• Reserved values in System and memory-mapped registers and translation table entries.

• CONSTRAINED UNPREDICTABLE behavior in Debug state.

K1.2.1 Overview of the constraints on AArch64 UNPREDICTABLE behaviors

The term UNPREDICTABLE describes a number of cases where the architecture has a feature that software must not
use. For execution in AArch64 state, the Armv8-A and later architectures specify a narrow range of permitted
behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are
compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Note

Software designed to be compatible with the Armv8-A and later architectures must not rely on these CONSTRAINED
UNPREDICTABLE cases being handled in any way other than those listed under the heading CONSTRAINED
UNPREDICTABLE.

K1.2.2 SBZ or SBO fields in A64 instructions

Some A64 instructions have (0) or (1) in the instruction decode to indicate Should-Be-Zero, SBZ, or Should-Be-One,
SBO, as described in Fixed values in AArch64 instruction and System register descriptions. Except for specific
cases identified in CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs, if the
instruction bit pattern of an instruction is executed with these fields not having the should be values, one of the
following must occur:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14388
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction executes as a NOP.

• The instruction operates as if the bit had the should-be value.

• Any destination registers of the instruction become UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.3 CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values

The Arm architecture allows copies of control values or data values to be cached in a cache or TLB. This can lead
to UNPREDICTABLE behavior if the cache or TLB has not been correctly invalidated following a change of the control
or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with one of:

• The old data or control value.

• The new data or control value.

• An amalgamation of the old and new data or control values.

In an implementation that includes FEAT_TTCNP, this CONSTRAINED UNPREDICTABLE case can arise from
misprogramming when setting TTBR.CnP to 1, as identified in the descriptions of the TTBR.CnP field. In this case,
for a particular TTBR, the behavior of the PE is consistent with one of:

• The value of the translation table entry pointed to by that TTBR on one of the PEs within the Inner Shareable
domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table
entries pointed to by that TTBR are met.

• An amalgamation of the values of the translation table entries pointed to by that TTBR on two or more of the
PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions
for sharing translation table entries pointed to by that TTBR are met.

Note

If the Effective value of a control or data value that determines the behavior of the PE results from the amalgamation
of two or more values, then that Effective value must not generate a privilege violation. So, for example:

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because inadequate invalidation of the TLB
causes multiple hits in the TLB, the failure to invalidate the TLB by software executing at a given Exception
level and Security state must not make it possible to access regions of memory with permissions or attributes
that could not be accessed at that Exception level and Security state.

• Where the CONSTRAINED UNPREDICTABLE behavior occurs because of a programming error, on one or more
PEs in the Inner Shareable domain, when using a TTBR.CnP value of 1 to share translation table entries, the
misprogramming must not make it possible to access regions of memory with permissions or attributes that
could not be accessed at the Exception level of that TTBR and the Security state corresponding to the
translation table entries being shared.

Alternatively to this CONSTRAINED UNPREDICTABLE behavior, an implementation detecting multiple hits in a TLB
might generate an exception, reporting the exception using the TLB conflict fault code, see TLB conflict abort.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

K1.2.4 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization

The Arm architecture requires that changes to System registers must be synchronized before they take effect. This
can lead to UNPREDICTABLE behavior if the synchronization has not been performed.

In these cases, the behavior of the PE is consistent with the unsynchronized control value being either the old value
or the new value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14389
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Where multiple control values are updated but not yet synchronized, each control value might independently be the
old value or the new value.

In addition, where the unsynchronized control value applies to different areas of functionality, or what an
implementation has constructed as different areas of functionality, those areas might independently treat the control
value as being either the old value or the new value.

The choice between these behaviors might, in some implementations, vary for each use of a control value.

K1.2.5 Translation table base address alignment

In the translation table base registers TTBR0_EL1, TTBR1_EL1, TTBR0_EL2, VTTBR_EL2, and TTBR0_EL3,
register bits[48:x] hold the translation table base address, where x depends on the translation table granule size and
the size of the addressed translation table, as described in Translation granules. Register bits[(x-1):0], unless
redefined for another purpose, correspond to bits[(x-1):0] of the translation table base address and therefore are
RES0.

Note

• When FEAT_LPA is implemented and the 64KB granule size is used, register bits[5:2] are redefined to hold
bits[51:48] of the translation table base address.

• When FEAT_TTCNP is implemented register bit[0] is redefined as the CnP bit.

For these registers, if one or more RES0 bits in register bits [(x-1):0] does not have a value of 0, this can result in a
misaligned translation table base address. In this case, one of the following behaviors must occur:

• The field that is defined to be RES0 is treated as if all the bits had a value of 0:

— The value read back might be the value written or it might be zero.

• The calculation of an address for a translation table walk using those registers might be corrupted in those
bits that are nonzero.

For more information, see the appropriate TTBR.BADDR field description.

K1.2.6 The Performance Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Performance
Monitors Extension in AArch64 state:

• CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or PMXEVETYPER_EL0.

• CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0.

• CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN.

K1.2.6.1 CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or
PMXEVETYPER_EL0

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMXEVTYPER_EL0 and PMXEVCNTR_EL0 are not CONSTRAINED UNPREDICTABLE.

Otherwise, if PMSELR_EL0.SEL is greater than the number of event counters accessible at this Exception level,
accesses to PMXEVTYPER_EL0 and PMXEVCNTR_EL0 can cause CONSTRAINED UNPREDICTABLE behavior.
This occurs when one of the following is true:

• If PMSELR_EL0.SEL is not equal to 31, and PMSELR_EL0.SEL is greater than or equal to PMCR_EL0.N,
and the PE is executing in EL2 or EL3.

• If FEAT_SEL2 is disabled or is not implemented, PMSELR_EL0.SEL is not 31, and PMSELR_EL0.SEL is
greater than or equal to PMCR_EL0.N, and the PE is executing in Secure EL1 or Secure EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14390
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• If PMSELR_EL0.SEL is not 31, and PMSELR_EL0.SEL is greater than or equal to MDCR_EL2.HPMN,
and the PE is executing in EL0 or EL1.

In these cases, one of the following behaviors must occur:

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state are UNDEFINED.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as RAZ/WI.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state execute as NOPs.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as if PMSELR_EL0.SEL
contains an UNKNOWN value that is less than the number of counters accessible at the current Exception level
and Security state.

• Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as if PMSELR_EL0.SEL
is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the
number of accessible event counters but greater than or equal to the number of accessible counters at this
Exception level, access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from EL1 or a permitted access
from EL0 is trapped to EL2.

Note

If EL2 is implemented and enabled in the current Security state, MDCR_EL2.HPMN identifies the number
of accessible counters at EL0 or EL1. Otherwise, the number of accessible counters is the number of
accessible event counters.

Accesses from EL0 to PMXEVCNTR_EL0 are permitted when:

— EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.

— EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMXEVTYPER_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

If PMSELR_EL0.SEL is equal to 31, then one of the following behaviors must occur:

• Accesses to PMXEVCNTR_EL0 are UNDEFINED.

• Accesses to PMXEVCNTR_EL0 behave as RAZ/WI.

• Accesses to PMXEVCNTR_EL0 execute as NOPs.

• Accesses to PMXEVCNTR_EL0 behave as if PMSELR_EL0.SEL contains an unknown value that is less
than the number of counters accessible at the current Exception level and Security state.

K1.2.6.2 CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and
PMEVTYPER<n>_EL0

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64,
permitted access to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 are not CONSTRAINED UNPREDICTABLE.

Otherwise, if <n> is greater than the number of event counters available in the current Exception level and state,
reads and writes of PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, the
following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14391
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, for an access to PMEVCNTR<n>_EL0 or
PMEVTYPER<n>_EL0 from EL1 or a permitted access from EL0, if the counter is implemented but not
accessible at the current Exception level, the register access is trapped to EL2.

Accesses from EL0 to PMEVCNTR<n>_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.{ER, EN} are both 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMEVTYPER<n>_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.

— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

K1.2.6.3 CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN

If PMCR_EL0.N is nonzero, and one of the following is true:

• FEAT_HPMN0 is not implemented and MDCR_EL2.HPMN is set to 0.

• MDCR_EL2.HPMN is set to a value greater than PMCR_EL0.N.

The following CONSTRAINED UNPREDICTABLE behavior applies:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
MDCR_EL2.HPMN is set to an UNKNOWN nonzero value less than PMCR_EL0.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.

K1.2.7 The Activity Monitors Extension

If <n> is greater than the number of architected activity monitor event counters, reads and writes of
AMEVCNTR0<n>_EL0 and AMEVTYPER0<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

If <n> is greater than the number of auxiliary activity monitor event counters, reads and writes of
AMEVCNTR1<n>_EL0and AMEVTYPER1<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14392
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
If the number of auxiliary activity monitor event counters that are implemented is zero, reads and writes of
AMCNTENCLR1_EL0 and AMCNTENSET0_EL0 are CONSTRAINED UNPREDICTABLE, and the following
behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

Note

The number of auxiliary activity monitor event counters that are implemented is zero exactly when
AMCFGR_EL0.NCG is 0b0000.

K1.2.8 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as
UNDEFINED

When a CONSTRAINED UNPREDICTABLE instruction is treated as UNDEFINED, ESR_ELx is UNKNOWN.

Note

The value written to ESR_ELx must be consistent with a value that could be created as the result of an exception
from the same Exception level that generated the exception, but was the result of a situation that is not CONSTRAINED
UNPREDICTABLE at that Exception level. This is to avoid a possible privilege violation.

K1.2.9 Out of range virtual address

If the PE executes a load or store instruction with tagged addressing disabled in the current translation regime, and
where the computed virtual address, total access size, and alignment mean that it accesses the bytes at 0xFFFF FFFF
FFFF FFFF and 0x0000 0000 0000 0000, then the bytes that appear to be from 0x0000 0000 0000 0000 onwards are
accessed at an UNKNOWN address.

If the PE executes a load or store instruction with tagged addressing enabled in the current translation regime, and
where the computed address, total access size, and alignment mean that it accesses the bytes at 0xFFFF FFFF FFFF
FFFF and 0x0000 0000 0000 0000, then the bytes that appear to be from 0x0000 0000 0000 0000 onwards are accessed
at an unknown address and the tags associated with address also become unknown.

Note

Because of Program Counter alignment constraints, it is impossible for a PE to fetch an A64 instruction that includes
both the byte at virtual address 0xFFFF FFFF FFFF FFFF and the byte at virtual address 0x0000 0000 0000 0000.

K1.2.10 Mapping of non-idempotent memory locations using the Normal memory type

If non-idempotent memory locations are mapped using the Normal memory type, the state of the non-idempotent
memory location may become corrupted in following circumstances:

• Speculative read accesses may cause accesses to the non-idempotent memory locations that would not occur
as part of a simple sequential execution.

• Writes to non-idempotent memory locations might be merged or split. In this case, the number and size of
writes seen by the memory location might not be the number and size that occur as part of a simple sequential
execution.

K1.2.11 Instruction fetches from Device memory

Instruction fetches from Device memory are CONSTRAINED UNPREDICTABLE.

If a location in memory has the Device attribute and is not marked as execute-never, then an implementation might
perform speculative instruction accesses to this memory location at times when address translation is enabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14393
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
For an instruction fetch from a memory location with the Device attribute that is not marked as execute-never for
the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal, Non-cacheable attribute.

• Take a Permission fault.

K1.2.12 Programming the CSSELR_EL1.{Level, InD, TnD} for a cache level that is not implemented

If the CSSELR_EL1.{Level, InD, TnD} is programmed to a cache level that is not implemented, then a read of
CSSELR_EL1 returns an UNKNOWN value in CSSELR_EL1.{Level, InD, TnD}.

If CSSELR_EL1.{Level, InD, TnD} is programmed to a cache level that is not implemented, then on a read of
CCSIDR_EL1 an implementation must perform one of the following behaviors:

• The CCSIDR_EL1 read is treated as a NOP.

• The CCSIDR_EL1 read is UNDEFINED.

• The CCSIDR_EL1 read returns an UNKNOWN value.

When FEAT_CCIDX is implemented, CCSIDR2_EL1 is implemented. If CSSELR_EL1.{Level, InD, TnD} is
programmed to a cache level that is not implemented, then on a read of CCSIDR2_EL1 an implementation must
perform one of the following behaviors:

• The CCSIDR2_EL1 read is treated as a NOP.

• The CCSIDR2_EL1 read is UNDEFINED.

• The CCSIDR2_EL1 read returns an UNKNOWN value.

K1.2.13 Crossing a page boundary with different memory types or Shareability attributes

A memory access from a load or store instruction that crosses a page boundary to a memory location that has a
different memory type or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case, the
implementation must perform one of the following behaviors:

• Each memory access generated by the instruction uses the memory type and Shareability attribute associated
with its own address.

• The instruction generates an Alignment fault caused by the memory type.

For the EL1&0 translation regime, when EL2 is enabled in the current Security state:

— If the stage 1 translation generated the mismatch, the resulting exception is taken to EL1.

— If the stage 2 translation generated the mismatch, the resulting exception is taken to EL2.

— If both stages of translation generate the mismatch, the exception can be taken to either EL1 or EL2.

• The instruction executes as a NOP.

K1.2.14 Crossing a peripheral boundary with a Device access

Performing memory accesses from one load or store instruction to Device memory that crosses a boundary
corresponding to the smallest translation granule size of the implementation causes CONSTRAINED UNPREDICTABLE
behavior. In this case, the implementation performs one of the following behaviors:

• All memory accesses generated by the instruction are performed as if the boundary has no effect on the
memory accesses.

• All memory accesses generated by the instruction are performed as if the boundary has no effect on the
memory accesses except that there is no guarantee of ordering between memory accesses.

• The instruction generates an alignment fault caused by the memory type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14394
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
For the EL1&0 translation regime, when EL2 is enabled in the current Security state:

— If the stage 1 translation causes the boundary to be crossed, the resulting exception is taken to EL1.

— If the stage 2 translation causes the boundary to be crossed, the resulting exception is taken to EL2.

— If both stages of translation cause the boundary to be crossed, the resulting exception can be taken to
either EL1 or EL2.

• The instruction executes as a NOP.

Note

The boundary referred to is between two Device memory regions that are both:

• Of the size of the smallest implemented translation granule.

• Aligned to the size of the smallest implemented translation granule.

K1.2.15 CONSTRAINED UNPREDICTABLE behaviors with SVE memory accesses

The CONSTRAINED UNPREDICTABLE behaviors that are associated with memory accesses due to loads and stores also
apply to SVE vector load and store instructions. The CONSTRAINED UNPREDICTABLE behaviors are described in
Crossing a page boundary with different memory types or Shareability attributes and Crossing a peripheral
boundary with a Device access.

The CONSTRAINED UNPREDICTABLE behaviors apply to the following SVE memory accesses:

• When an SVE unpredicated contiguous load or store instruction accesses an address range that crosses a
boundary between memory types, Shareability attributes, or peripherals.

• When an SVE predicated contiguous load or store instruction performs memory accesses that are associated
with Active elements on both sides of a boundary between different memory types, Shareability attributes,
or peripherals.

• When an SVE predicated non-contiguous load or store instruction performs a memory access that is
associated with an Active element that crosses a boundary between memory types, Shareability attributes, or
peripherals.

Memory addresses that are associated with Inactive elements cannot trigger CONSTRAINED UNPREDICTABLE
behaviors.

If SVE vector loads and stores trigger a CONSTRAINED UNPREDICTABLE behavior that then generates an alignment
fault, the fault is handled in the same as any other synchronous memory fault caused by an SVE load or store
instruction.

K1.2.16 CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs

Load-Exclusive and Store-Exclusive instruction usage restrictions defines a Load-Exclusive/Store-Exclusive pair,
and identifies various CONSTRAINED UNPREDICTABLE behaviors associated with using
Load-Exclusive/Store-Exclusive pairs. In summary, these cases are:

• The target virtual address of a StoreExcl instruction is different from the virtual address of the preceding
LoadExcl instruction in the same thread of execution.

• The transaction size of a StoreExcl instruction is different from the transaction size of the preceding LoadExcl
instruction in the same thread of execution.

• The StoreExcl instruction accesses a different number of registers than the preceding LoadExcl instruction in
the same thread of execution.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14395
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding
LoadExcl instruction in the same thread of execution, either:

— Because the translation of the accessed address changes between the LoadExcl instruction and the
StoreExcl instruction.

— Because the LoadExcl instruction and the StoreExcl instruction use different virtual addresses, with
different attributes, that point to the same physical address.

In addition, the effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or
global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE.

See the descriptions in Load-Exclusive and Store-Exclusive instruction usage restrictions for the permitted behavior
in each of these cases, and any constraints that might apply to whether the case is CONSTRAINED UNPREDICTABLE.

K1.2.17 CONSTRAINED UNPREDICTABLE behavior for A64 instructions

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A64 instructions listed in Chapter C6
A64 Base Instruction Descriptions and Chapter C7 A64 Advanced SIMD and Floating-point Instruction
Descriptions.

K1.2.17.1 Memory Copy and Memory Set CPY*

For a list of these instructions, see Memory Copy and Memory Set instructions.

K1.2.17.1.1 CONSTRAINED UNPREDICTABLE behavior

If s == n || s == d || n == d || d == 31 || s == 31 || n == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.2 LDAXP

For a description of this instruction and the encoding, see LDAXP.

K1.2.17.2.1 CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.3 LDNP

For a description of this instruction and the encoding, see LDNP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14396
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.17.3.1 CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.4 LDNP (SIMD&FP)

For a description of this instruction and the encoding, see LDNP (SIMD&FP).

K1.2.17.4.1 CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.5 LDP and LDIAPP

For a description of these instructions and the encoding, see LDP and LDIAPP.

K1.2.17.5.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n)
&& n != 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the transfer register is set
to an UNKNOWN value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14397
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.6 LDP (SIMD&FP)

For a description of this instruction and the encoding, see LDP (SIMD&FP).

K1.2.17.6.1 CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.7 LDPSW

For a description of this instruction and the encoding, see LDPSW.

K1.2.17.7.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n)
&& n != 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs all of the loads using the specified addressing mode, and the register loaded is set
to an UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14398
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.8 LDR (immediate)

For a description of this instruction and the encoding, see LDR (immediate).

K1.2.17.8.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.9 LDRB (immediate)

For a description of this instruction and the encoding, see LDRB (immediate).

K1.2.17.9.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.10 LDRH (immediate)

For a description of this instruction and the encoding, see LDRH (immediate).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14399
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.17.10.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.11 LDRSB (immediate)

For a description of this instruction and the encoding, see LDRSB (immediate).

K1.2.17.11.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.12 LDRSH (immediate)

For a description of this instruction and the encoding, see LDRSH (immediate).

K1.2.17.12.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14400
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.13 LDRSW (immediate)

For a description of this instruction and the encoding, see LDRSW (immediate).

K1.2.17.13.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the load using the specified addressing mode, and the base register is set to an
UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be
corrupted so that the instruction cannot be repeated.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.14 LDXP

For a description of this instruction and the encoding, see LDXP.

K1.2.17.14.1 CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and the transfer register is set to an
UNKNOWN value.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.15 Memory Copy and Memory Set SET*

For a list of these instructions, see Memory Copy and Memory Set instructions.

K1.2.17.15.1 CONSTRAINED UNPREDICTABLE behavior

If s == n || s == d || n == d || d == 31 || n == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14401
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.16 STP and STILP

For a description of these instructions and the encoding, see STP and STILP.

K1.2.17.16.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n)
&& n != 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.17 STLXP

For a description of this instruction and the encoding, see STLXP.

K1.2.17.17.1 CONSTRAINED UNPREDICTABLE behavior

If s == t || (s == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.18 STLXR

For a description of this instruction and the encoding, see STLXR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14402
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.17.18.1 CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.19 STLXRB

For a description of this instruction and the encoding, see STLXRB.

K1.2.17.19.1 CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.20 STLXRH

For a description of this instruction and the encoding, see STLXRH.

K1.2.17.20.1 CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14403
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.21 STR (immediate)

For a description of this instruction and the encoding, see STR (immediate).

K1.2.17.21.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.22 STRB (immediate)

For a description of this instruction and the encoding, see STRB (immediate).

K1.2.17.22.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14404
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.23 STRH (immediate)

For a description of this instruction and the encoding, see STRH (immediate).

K1.2.17.23.1 CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then
one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

K1.2.17.24 STXP

For a description of this instruction and the encoding, see STXP.

K1.2.17.24.1 CONSTRAINED UNPREDICTABLE behavior

If s == t || (s == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.25 STXR

For a description of this instruction and the encoding, see STXR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14405
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.17.25.1 CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.26 STXRB

For a description of this instruction and the encoding, see STXRB.

K1.2.17.26.1 CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.17.27 STXRH

For a description of this instruction and the encoding, see STXRH.

K1.2.17.27.1 CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14406
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
• The instruction executes as a NOP.

• The instruction performs the store to the specified address, but the value stored is UNKNOWN.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

If s == n && n != 31 then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs the store to an UNKNOWN address.

• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and
HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0. When FEAT_TIDCP1 is
implemented, for execution at EL0, this also applies when SCTLR_EL1.TIDCP or SCTLR_EL2.TIDCP is 1.

K1.2.18 Out of range values of the Set/Way/Index fields in cache maintenance instructions

In the cache maintenance by set/way instructions DC CISW, DC CSW, and DC ISW, if any set/way/index argument
is larger than the value supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and
one of the following occurs:

• The instruction is UNDEFINED.

• The instruction performs cache maintenance on one of:

— No cache lines.

— A single arbitrary cache line.

— Multiple arbitrary cache lines.

Note

This CONSTRAINED UNPREDICTABLE behavior applies, also, to the AArch32 cache maintenance by set/way
instructions DCCISW, DCCSW, and DCISW.

K1.2.19 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated in this manual, all unallocated or reserved values of fields with allocated values within
AArch64 System registers, memory-mapped registers, and translation table entries behave in one of the following
ways:

• The unallocated value maps onto any of the allocated values, but otherwise does not cause CONSTRAINED
UNPREDICTABLE behavior.

• The unallocated value causes effects that could be achieved by a combination of more than one of the
allocated values.

• The unallocated value causes the field to have no functional effect.

Note

These constraints are identical to those for the equivalent AArch32 definitions, as given in Reserved values in
System and memory-mapped registers and translation table entries.

Unless otherwise stated, when a direct write of a System register or memory-mapped register writes an unallocated
value to a field, if that value is unallocated in all contexts then a subsequent read of the field returns an UNKNOWN
value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14407
ID032224 Non-Confidential

Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
K1.2.20 CONSTRAINED UNPREDICTABLE behavior in Debug state

Behavior in Debug state of this manual describes the CONSTRAINED UNPREDICTABLE behaviors that are specifically
associated with Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K1-14408
ID032224 Non-Confidential

Appendix K2
Recommendations for Reporting Memory Attributes
on an Interconnect

This appendix describes the Arm recommendations for reporting the memory attributes that are assigned by the PE.
It contains the following section:

• Arm recommendations for reporting memory attributes on an interconnect.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K2-14409
ID032224 Non-Confidential

Recommendations for Reporting Memory Attributes on an Interconnect
K2.1 Arm recommendations for reporting memory attributes on an interconnect
K2.1 Arm recommendations for reporting memory attributes on an interconnect

The Arm architecture defines the architectural interface between software and the PE hardware. This means the
mechanisms by which different memory type and Cacheability attributes are presented on an interface to an
interconnect fabric such as AMBA® AXI are, strictly, outside the scope of the architecture. This appendix describes
an approach for the interface between a PE implementation and an interconnect fabric that Arm strongly
recommends, but these recommendations do not form part of the Arm architecture.

K2.1.1 Effect of microarchitectural choices on memory attributes

Implementations of the Arm architecture permit considerable variability in the presentation of memory attributes
on the interconnect fabric, particularly in cases where the PE implementation does not provide optimized support
for a memory type. For example, an implementation might treat Write-Through locations as Non-cacheable at some
level of cache, because functionally this is consistent with the definition of Write-Through, but for the particular
implementation the performance trade-off does not merit the hardware directly providing Write-Through capability.
However, in such implementations, the assigned memory attributes are not changed by the microarchitectural
choices. The microarchitecture simply implements different ways of handling some memory attributes.

Therefore, Arm strongly recommended that where any or all of the following memory attributes are presented on
the interface between a PE and an interconnect fabric, the attributes that are presented are completely consistent
with the attributes defined by the translation system:

• The memory type, Normal or Device.

• The Early Write Acknowledgment attribute.

• The ordering requirements.

• The Shareability.

• The Cacheability, including where practicable, the allocation hints.

K2.1.1.1 Effect when memory accesses are forced to be Non-cacheable

Arm also strongly recommends that the effects of forcing accesses to Normal memory to be Non-cacheable, as
described in Enabling and disabling the caching of memory accesses for AArch64 and in Enabling and disabling
the caching of memory accesses in AArch32 state for AArch32, are reflected on the interconnect by the memory
type and attributes used for memory transactions generated while the cache is disabled.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K2-14410
ID032224 Non-Confidential

Appendix K3
GCS Software Usage Examples

This appendix describes the example codes for the Guarded Control Stack. It contains the following sections:

• Recording the call stacks from the current PE.

• Recording the call stacks from a different PE.

• Overwriting a Guarded Control Stack record from a higher Exception level.

• Thread migration between PEs.

• Switching EL0 Guarded Control Stacks from EL1.

• Synchronization of GCS accesses.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14411
ID032224 Non-Confidential

GCS Software Usage Examples
K3.1 Recording the call stacks from the current PE
K3.1 Recording the call stacks from the current PE

SKFTHG Example K3-1shows an example code sequence whereby code running on a PE can inspect the contents of the
current GCS, and the synchronization that is required as part of that process.

Instructions 1, 7 and 8 are part of the program being recorded. All other instructions are part of Call stack recording
software.

Example K3-1

S.No. Instruction
1 BL ; Produces a store to an address 0x100.
2 MRS x0,GCSPR_EL0
3 GCSB DSYNC ; The Memory effect from instruction 1 is Ordered-before
 ; the Memory effect from instruction 4 as both access the same Location.
4 LDR x1,[x0] ; Load from the address 0x100.
5 STR x1,[x2] ; Store the Call stack elsewhere.
6 GCSB DSYNC ; The Memory effect from instruction 4 is Ordered-before
 ; the Memory effect from instruction 7 as both access the same Location.
7 RET ; Produces a load from the address 0x100.
8 BL ; Produces a store to the address 0x100.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14412
ID032224 Non-Confidential

GCS Software Usage Examples
K3.2 Recording the call stacks from a different PE
K3.2 Recording the call stacks from a different PE

SMLWCC Example K3-2 shows an example code sequence of code running on PE1 where the call stack is being recorded by
the GCS, and PE2 is consuming the call stack from the GCS.

Instructions 1, 9 and 10 from PE1 are part of the program being recorded. All other instructions are part of Call stack
recording software.

x1 is a pointer to a shared variable whose initial value is 0.

Example K3-2

PE1:

S.No. Instruction
1 BL ; Produces a store to an address 0x100
2 GCSB DSYNC ; Instructions which observe the Memory effect from instruction 4
 ; also observe the Memory effect from instruction 1
3 MOV x0,#1
4 STLR x0,[x1] ; Set flag to 1
 loop1:
5 LDAR x0,[x1]
6 SUB x0,x0,#0x1
7 CBZ loop1
8 GCSB DSYNC ; Instructions with Memory effects that are Ordered-before
 ; Memory effects from instruction 5 are also Ordered-before
 ; Memory effects from instruction 10.
9 RET ; Produces a load from the address 0x100
10 BL ; Produces a store to the address 0x100

PE2:

S.No. Instruction
 loop2:
1 LDAR x0,[x1]
2 CBZ loop2
3 LDR ; Load from the address 0x100
4 STR ; Store the Call stack elsewhere
5 MOV x0,#2
6 STLR x0,[x1] ; Set flag to 2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14413
ID032224 Non-Confidential

GCS Software Usage Examples
K3.3 Overwriting a Guarded Control Stack record from a higher Exception level
K3.3 Overwriting a Guarded Control Stack record from a higher Exception level

SFFWLL Example K3-3 shows an example code sequence where a EL0 GCS record is modified by code running at a higher
Exception level.

Instructions 1, 2, 11 and 12 are executed at EL0. Execution of instruction 3 is attempted from EL0 and a
synchronous exception is generated. All other instructions are executed at EL1.

Example K3-3

S.No. Instruction or Exception
1 BL ; Produces a store to an address 0x100
2 <program legitimately increments the LR by 4>
3 RET ; Causes an exception as LR did not match the GCS record
4 MRS x0,GCSPR_EL0
5 GCSB DSYNC ; The Memory effect of instructions 1, 3 are Ordered-before
 ; the Memory effect of instructions 6, 8
6 LDR x1,[x0] ; Load from the address 0x100
7 ADD x1,x1,#0x4 ; Increment the loaded value by 4
8 STR x1,[x0] ; Store the incremented value at the address 0x100
9 GCSB DSYNC ; The Memory effect of instructions 6, 8 are Ordered-before
 ; the Memory effect of instructions 11, 12
10 ERET
11 RET ; Observes the store from instruction 8
12 BL ; Produces a store to the address 0x100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14414
ID032224 Non-Confidential

GCS Software Usage Examples
K3.4 Thread migration between PEs
K3.4 Thread migration between PEs

SQDRRJ Example K3-4 shows an example code sequence whereby Stack A is migrated from PE1 to PE2, entirely in EL0
code.

x1 is a pointer to a shared variable whose initial value is 0, x3 is a pointer to a shared variable where the address of
Stack A is stored, and x2 is a pointer to the head of Stack B which is migrated in to PE1.

Example K3-4

PE1:

S.No. Instruction
1 BL ; Produces a store to stack A
 ; GCSPR_EL0 is 0x1000 after instruction 1
2 MOV x2,#0x8000 ; Stack B starts at 0x8000
3 GCSSS1 x2 ; x2 is input and points to stack B
4 GCSSS2 x2 ; x2 is output and contains 0xFF8 after this instruction
 ; Instruction 4 includes a GCSB effect
 ; so that stack A contents are
 ; visible to PE2
5 STR x2,[x3] ; Store stack A address
6 MOV x0,#0x1
7 STLR x0,[x1] ; set flag to 1
8 BL ; Produces a store to stack B

PE2:

S.No. Instruction
1 BL ; Produces a store to stack C
 loop:
2 LDAR x0,[x1]
3 CBZ loop
4 LDR x2,[x3] ; Load stack A address, x2 will be 0xFF8 after this
 ; instruction
5 GCSSS1 x2 ; x2 is input and points to stack A
6 GCSSS2 x2 ; x2 is output and points to stack C
 ; GCSPR_EL0 is 0x1000 after instruction 6
 ; Instruction 6 includes a GCSB effect
 ; so that stack A contents are
 ; visible to PE2
7 RET ; Load from stack A
 ; Observes the store from instruction 1 on PE1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14415
ID032224 Non-Confidential

GCS Software Usage Examples
K3.5 Switching EL0 Guarded Control Stacks from EL1
K3.5 Switching EL0 Guarded Control Stacks from EL1

SVSNDV Example K3-5 and Example K3-6 show example code sequences for EL1 software switching the Guarded Control
Stack of EL0 tasks. The EL1 software switches out Task 1 prior to confirming that Task 2 is ready for switching.

Example K3-5 Switching out an EL0 stack prior to synchronizing incoming stack

S.No. Instruction
 <Task 1 is executed at EL0 and an exception is taken to EL1>
1 ADR x1, PCB1 ; Load the address of a memory structure that
 ; Stores the context of Task 1
2 MRS x0, GCSCRE0_EL1
3 STR x0,[x1],#0x8 ; Save GCSCRE0_EL1 of Task 1
4 MRS x0, GCSPR_EL0
5 STR x0,[x1],#0x8 ; Save GCSPR_EL0 of Task 1
6 GCSB DSYNC ; Synchronize GCS data of Task 1
7 MOV x0,#0x1
8 STLR x0,[x1] ; Save a flag to indicate that Task 1 is switched out
9 ADR x2, PCB2 ; Load the address of a memory structure that
 ; Stores the context of Task 2
10 loop: LDAR x0,[x2,#0x10]
11 CBZ x0, loop ; Wait till Task 2 is switched out by some other PE
12 GCSB DSYNC ; Synchronize GCS data of Task 2
13 LDR x0,[x2],#0x8
14 MSR GCSCRE0_EL1,x0 ; Set GCSCRE0_EL1 of Task 2
15 LDR x0,[x2],#0x8
16 MSR GCSPR_EL0,x0 ; Set GCSPR_EL0 of Task 2
17 ISB
 <An ERET will be executed to resume EL0 execution of Task 2>

Example K3-6 Switching out an EL0 stack after synchronizing incoming stack

S.No. Instruction
 <Task 1 is executed at EL0 and an exception is taken to EL1>
1 ADR x2, PCB2 ; Load the address of a memory structure that
 ; Stores the context of Task 2
2 loop: LDAR x0,[x2,#0x10]
3 CBZ x0, loop ; Wait till Task 2 is switched out by some other PE
4 GCSB DSYNC ; Synchronize GCS data of Task 1 and Task 2
5 ADR x1, PCB1 ; Load the address of a memory structure that
 ; Stores the context of Task 1
6 MRS x0, GCSCRE0_EL1
7 STR x0,[x1],#0x8 ; Save GCSCRE0_EL1 of Task 1
8 MRS x0, GCSPR_EL0
9 STR x0,[x1],#0x8 ; Save GCSPR_EL0 of Task 1
10 MOV x0,#0x1
11 STLR x0,[x1] ; Save a flag to indicate that Task 1 is switched out
12 LDR x0,[x2],#0x8
13 MSR GCSCRE0_EL1,x0 ; Set GCSCRE0_EL1 of Task 2
14 LDR x0,[x2],#0x8
15 MSR GCSPR_EL0,x0 ; Set GCSPR_EL0 of Task 2
16 ISB
 <An ERET will be executed to resume EL0 execution of Task 2>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14416
ID032224 Non-Confidential

GCS Software Usage Examples
K3.6 Synchronization of GCS accesses
K3.6 Synchronization of GCS accesses

IBSXKN In Example K3-7, the store access from the STR instruction is observed by the GCS load access from the RET
instruction, by virtue of the GCSB instruction.

Example K3-7

STR ; Store to an address 0x100
GCSB DSYNC ; Produce a GCSB effect
RET ; Load from the address 0x100

IJVVRW In Example K3-8, the GCS store access from the BL instruction is observed by the GCS load access from the RET
instruction without requiring any explicit synchronization.

Example K3-8

BL ; Store to an address 0x100
ADD
RET ; Load from the address 0x100

IZFDQL In Example K3-9, the atomic GCS access from the GCSSS1 instruction is observed by the GCS load access from the
GCSSS2 instruction without requiring any explicit synchronization.

Example K3-9

GCSSS1 ; Store to an address 0x100
GCSSS2 ; Load from the address 0x100

IHKFDQ In Example K3-10, the GCS store access from the BL instruction on PE1 is observed by the GCS load access from
the RET instruction on PE2, by virtue of the appropriate GCSB instructions and the ordering ensured by the STLR and
LDAR instructions.

Example K3-10

;x1 is a pointer to a shared variable whose initial value is 0
PE1:
 BL ; Store to an address 0x100
 GCSB DSYNC ; Produce a GCSB effect
 MOV x0,#1
 STLR x0,[x1] ; Set flag to 1

PE2:
loop:
 LDAR x0,[x1]
 CBZ loop
 GCSB DSYNC ; Produce a GCSB effect
 RET ; Load from the address 0x100

IWFPWV In Example K3-11, the GCS store access from the BL instruction on PE1 is observed by the GCS accesses from the
GCSSS1 instruction on PE2, by virtue of the appropriate GCSB instruction and the ordering ensured by the STLR and
LDAR instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14417
ID032224 Non-Confidential

GCS Software Usage Examples
K3.6 Synchronization of GCS accesses
Example K3-11

;x1 is a pointer to a shared variable whose initial value is 0
PE1:
 BL ; Store to an address 0x100
 GCSB DSYNC ; Produce a GCSB effect
 MOV x0,#1
 STLR x0,[x1] ; Set flag to 1

PE2:
loop:
 LDAR x0,[x1]
 CBZ loop
 GCSSS1 ; Load from the address 0x100

IDBSTS In Example K3-12, the GCS store access from the BL instruction is observed by the load access from the LDR
instruction, by virtue of the GCSB instruction.

Example K3-12

BL ; Store to an address 0x100
GCSB DSYNC ; Produce a GCSB effect
MOV x3,#0x100
LDR x2,[x3] ; Load from the address 0x100

IPRKMB In Example K3-13, the GCS store access from the BL instruction on PE1 is observed by the load access from the LDR
instruction on PE2, by virtue of the appropriate GCSB instruction and the ordering ensured by the STLR and LDAR
instructions.

Example K3-13

;x1 is a pointer to a shared variable whose initial value is 0
PE1:
 BL ; Store to an address 0x100
 GCSB DSYNC ; Produce a GCSB effect
 MOV x0,#1
 STLR x0,[x1] ; Set flag to 1

PE2:
loop:
 LDAR x0,[x1]
 CBZ loop
 MOV x3,#0x100
 LDR x2,[x3] ; Load from the address 0x100

IRCSNZ In Example K3-14, the GCS store access from the GCSSS1 instruction on PE1 is observed by the GCS load access
from the RET instruction on PE2, by virtue of the appropriate GCSB instruction and the ordering ensured by the STLR
and LDAR instructions.

Example K3-14

;x1 is a pointer to a shared variable whose initial value is 0
PE1:
 GCSSS1 ; Store to an address 0x100
 MOV x0,#1
 STLR x0,[x1] ; Set flag to 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14418
ID032224 Non-Confidential

GCS Software Usage Examples
K3.6 Synchronization of GCS accesses
PE2:
loop:
 LDAR x0,[x1]
 CBZ loop
 GCSB DSYNC ; Produce a GCSB effect
 RET ; Load from the address 0x100

IFDQNJ In Example K3-15, the store access from the STR instruction on PE1 is observed by the GCS load access from the
RET instruction on PE2, by virtue of the appropriate GCSB instruction and the ordering ensured by the STLR and LDAR
instructions.

Example K3-15

;x1 is a pointer to a shared variable whose initial value is 0
PE1:
 STR ; Store to an address 0x100
 MOV x0,#1
 STLR x0,[x1] ; Set flag to 1

PE2:
loop:
 LDAR x0,[x1]
 CBZ loop
 GCSB DSYNC ; Produce a GCSB effect
 RET ; Load from the address 0x100

IWLGDG In Example K3-16, the GCS store access from the BL instruction on PE1 is observed by the load access from the LDR
instruction on PE2, by virtue of the appropriate GCSB instruction and the DSB instruction ensuring completion of the
store.

Example K3-16

PE1:
 BL ; Store to an address 0x100
 GCSB DSYNC
 DSB
 <raise an IRQ to PE2>
PE2:
 <IRQ exception occurred>
 LDR x1,[x0] ; Read from the address 0x100

IKWRFP In Example K3-17, the GCS store access from the BL instruction on PE1 is observed by the GCS load access from
the RET instruction on PE2, by virtue of the appropriate GCSB instructions and the DSB ensuring completion of the
store.

Example K3-17

PE1:
 BL ; Store to an address 0x100
 GCSB DSYNC
 DSB
 <raise an IRQ to PE2>
PE2:
 <IRQ exception occurred>
 GCSB DSYNC
 RET ; Read from the address 0x100
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14419
ID032224 Non-Confidential

GCS Software Usage Examples
K3.6 Synchronization of GCS accesses
IKXZTV In Example K3-18, the GCS store access from the BL instruction on PE1 is observed by the load access from the LDR
instruction on PE2, on the assumption that the TLBI operation is observed by PE1 after the BL, and that the TLBI
operation is completed by the DSB instruction on PE2.

Example K3-18

PE1:
 BL ; Store to an address 0x100
 <TLBI operation has been received from PE2>
PE2:
 TLBI ; Invalidate the address 0x100
 DSB
 LDR x1,[x0] ; Read from the address 0x100

ICHFPV In Example K3-19, the DC IVAC instruction in the following sequence does not invalidate the data produced by the
BL instruction:

Example K3-19

PE1:
 MRS x0,GCSPR_ELx
 SUB x0,x0,#-8
 DC IVAC, x0 ; Data cache invalidation for the address 0x100
 BL ; Store to an address 0x100

K3.6.1 Interaction with non-coherent observers

IWCSFM The GCS store access from the BL instruction on PE1 is observed by the load access from the LDR instruction on, by
virtue of the ordering induced by the DC and DMB instructions on PE1 and the LDAR on E1.

Example K3-20

PE1:
 BL ; Store to an address 0x100
 MRS x0,GCSPR_ELx
 DC CVAC, x0 ; Data cache clean for the address 0x100
 DMB
 STR x1,[x4] ; Send a flag to E1
E1:
loop:
 LDAR x2,[x4] ; Wait for the flag from PE1
 CBZ x2,loop
 LDR x3,[x0] ; Read from the address 0x100

IYMVPM In Example K3-21, the STR instruction from a non-coherent observer E1 in the following sequence is observed by
the RET instruction on PE1.

Example K3-21

E1:
 STR x1,[x0] ; Write to an address 0x100
 DC CVAC, x0
 DMB
 STR x2,[x4] ; Send a flag to PE1
PE1:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14420
ID032224 Non-Confidential

GCS Software Usage Examples
K3.6 Synchronization of GCS accesses
loop:
 LDAR x3,[x4] ; Wait for the flag from E1
 CBZ x3,loop
 DMB ; Ensure LDAR and DC IVAC are ordered
 DC IVAC, x0 ; Data cache invalidation for the address 0x100
 RET ; Load from the address 0x100

IJPQYQ In Example K3-22, the Memory Write effect from the STR instruction from a non-coherent observer E1 in the
following sequence is observed by the GCS Memory Read effect from the RET instruction on PE2. PE1 and PE2 are
in a same Inner Shareable domain, and the address 0x100 is marked with the Inner Shareable attribute.

Example K3-22

E1:
 STR x1,[x0] ; Write to an address 0x100
 DC CVAC, x0
 DMB
 MOV x2,#1
 STR x2,[x4] ; Send a flag to PE1
PE1:
loop:
 LDAR x3,[x4] ; Wait for the flag from E1
 CBZ x3,loop
 DC IVAC, x0
 DMB ; Ensure DC IVAC and STR are ordered
 MOV x2,#2
 STR x2,[x4] ; Send a flag to PE2
PE2:
loop:
 LDAR x3,[x4] ; Wait for the flag from PE1
 SUB x3,x3,#2
 CBNZ x3,loop
 GCSB DSYNC ; Synchronize GCS accesses
 RET ; Load from the address 0x100

IBWBVR In Example K3-23, the GCS Memory Write effect from the BL instruction on PE1 is observed by the Memory Read
effect from the LDR instruction from a non-coherent observer E1 in the following sequence. PE1 and PE2 are in a
same Inner Shareable domain, and the address 0x100 is marked with the Inner Shareable attribute.

Example K3-23

PE1:
 BL ; Store to an address 0x100
 GCSB DSYNC
 MRS x0,GCSPR_ELx
 MOV x2,#1
 STLR x1,[x4] ; Send a flag to E1
PE2:
loop:
 LDAR x2,[x4] ; Wait for the flag from PE1
 CBZ x2,loop
 DMB
 DC CVAC, x0 ; Clean for the address 0x100
 DMB
 MOV x2,#2
 STR x2,[x4] ; Send a flag to PE2
E1:
loop:
 LDAR x3,[x4] ; Wait for the flag from PE1
 SUB x3,x3,#2
 CBNZ x3,loop
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14421
ID032224 Non-Confidential

GCS Software Usage Examples
K3.6 Synchronization of GCS accesses
 LDR x3,[x0] ; Read from the address 0x100https://confluence.arm.com/questions?src=header
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K3-14422
ID032224 Non-Confidential

Appendix K4
ETE Recommended Configurations

This appendix describes the ETE features that Arm recommends are implemented. It contains the following section:

• Configurations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K4-14423
ID032224 Non-Confidential

ETE Recommended Configurations
K4.1 Configurations
K4.1 Configurations

IYCKVP For optional features not described here, it is IMPLEMENTATION DEFINED whether the feature is implemented. For
features which have an IMPLEMENTATION DEFINED size or number, and are not described here, the size or number
of that feature is IMPLEMENTATION DEFINED.

Parameter Description Configuration

ATBTRIG ATB Trigger Support Yes, if ATB is implemented

NUMACPAIRS Address Comparator pairs 4

NUMCIDC Context Identifier Comparators >= 1

NUMVMIDC Virtual Context Identifier Comparators >= 1, if EL2 is implemented

NUMCNTR Number of Counters 2

NUMEVENT Number of ETEEvents 4

NUMEXTINSEL Number of External Input Selectors 4

NUMRSPAIR Number of Resource selection pairs >= 8

NUMSEQSTATE Number of Sequencer states 4

NUMSSCC Number of Single-shot Comparator Controls >= 1

RETSTACK Return stack Yes

STALLCTL PE stalling capability Yes

TRACEIDSIZE Trace ID size 7-bits, if ATB is implemented

CCITMIN Cycle count minimum threshold 4

CCSIZE Cycle counter size >= 12

WFXMODE WFI, WFIT, WFE, and WFET instruction classification WFI, WFIT, WFE, and WFET instructions are classified as P0
instructions
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K4-14424
ID032224 Non-Confidential

Appendix K5
ETE and TRBE Software Usage Examples

This appendix describes a simple trace decompressor. It contains the following sections:

• Trace analyzer.

• ETE programming.

• Trace examples.

• Differences between ETM and ETE.

• Context switching.

• Controlling generation of trace buffer management events.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14425
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1 Trace analyzer

K5.1.1 Introduction

K5.1.1.1 Using Trace Info elements to start trace analysis

IWDKLF After the trace analyzer has located an Alignment Synchronization packet and synchronized with the trace byte
stream, it must search for the following elements to begin to analyze the trace byte stream:

1. A Trace Info element.

2. A Context element and a Target Address element.

IFCGKX The trace unit might not generate a Context element and Target Address element immediately after it generates a
Trace Info element.

IBWQGD If a Cancel element cancels a Trace Info element then the trace analyzer can still use the information from the
discarded Trace Info element, but if the Context element and Target Address element are also discarded, then the
trace analyzer must wait for the trace unit to generate a new Context element and Target Address element.

K5.1.1.2 Encountering Trace Info elements after trace analysis has started

IHTFNG The trace unit might generate Trace Info elements periodically, as a result of trace protocol synchronization requests.
This is useful if trace is stored in a circular buffer, because it provides multiple points where trace analysis can start.

After a trace analyzer observes the first Trace Info element, it can ignore subsequent Trace Info elements in the same
trace session because the static trace programming cannot change and the speculation depth is updated by other
element types during the trace session.

K5.1.1.3 Decompression information

IRGSRY To decompress a trace byte stream, the trace analyzer requires a number of values which differ between
implementations. All the information required by the decompressor to analyze the trace byte stream is provided in
the TRCIDR0 to TRCIDR13 registers.

Table K5-1 lists the static variables required by the decompressing stages and the fields that provide this
information.

K5.1.2 ETE common pseudocode

K5.1.2.1 Element ASL

K5.1.2.1.1 Atom enumeration

// Atom
// ====
// Atom enum. Atoms are either E (taken) or N (not taken).

Table K5-1 Static trace unit information

Variable ID Field Stage

Commit Mode TRCIDR0.COMMOPT 1

Virtual context identifier size TRCIDR2.VMIDSIZE 1

Maximum speculation depth TRCIDR8.MAXSPEC 1

Transactional Memory support TRCIDR0.COMMTRANS 1 & 2

WFx Instructions TRCIDR2.WFXMODE 3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14426
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
enumeration Atom {
Atom_E,
Atom_N

};

K5.1.2.1.2 AtomElement()

// AtomElement()
// =============
// Generates an Atom element based on the given atom.
Element AtomElement(Atom t)
 Element a;

 a.kind = ELEM_ATOM;
 a.payload.atom_type = t;

 return a;

K5.1.2.1.3 QElement()

// QElement()
// ==========
// Generates a Q element based on the number of elements
// to resolve.
Element QElement(integer count)
 Element a;

 a.kind = ELEM_Q;
 a.payload.count = count;

 return a;

K5.1.2.1.4 CancelElement()

// CancelElement()
// ===============
// Generates a Cancel element based on a given number
// of elements to cancel.
Element CancelElement(integer count)
 Element a;

 a.kind = ELEM_CANCEL;
 a.payload.count = count;

 return a;

K5.1.2.1.5 CommitElement()

// CommitElement()
// ===============
// Generates a commit element based on the
// number of elements to commit.
Element CommitElement(integer count)
 Element a;

 a.kind = ELEM_COMMIT;
 a.payload.count = count;

 return a;

K5.1.2.1.6 ContextElement()

// ContextElement()
// ================
// Generates a context element based on context ID, VMID,
// Exception level, Security state and AArch32/64 state.
Element ContextElement(bits(32) context_id,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14427
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 bits(32) vmid,
 bits(2) exception_level,
 SecurityLevel secure,
 boolean sixty_four_bit)
 Element a;

 a.kind = ELEM_CONTEXT;
 a.payload.context_id = context_id;
 a.payload.vmid = vmid;
 a.payload.exception_level = exception_level;
 a.payload.security = secure;
 a.payload.sixty_four_bit = sixty_four_bit;

 return a;

K5.1.2.1.7 CycleCountElement()

// CycleCountElement()
// ===================
// Generates a Cycle Count element based on a number of cycles.
Element CycleCountElement(integer count)
 Element a;

 a.kind = ELEM_CYCLE_COUNT;
 a.payload.count = count;

 return a;

K5.1.2.1.8 DiscardElement()

// DiscardElement()
// ================
// Generates a Discard element.
Element DiscardElement()
 Element a;

 a.kind = ELEM_DISCARD;

 return a;

K5.1.2.1.9 ExceptionElement()

// ExceptionElement()
// ==================
// Generates an Exception element based on the address to branch
// to and the type of exception.
Element ExceptionElement(integer exception_type, bits(64) address)
 Element a;

 a.kind = ELEM_EXCEPTION;
 a.payload.exception_type = exception_type;
 a.payload.address = address;

 return a;

K5.1.2.1.10 EventElement()

// EventElement()
// ==============
// Generates an Event element based on the number of the event that fired.
Element EventElement(integer idx)
 Element a;

 a.kind = ELEM_EVENT;
 a.payload.event_id = idx;

 return a;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14428
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.2.1.11 MispredictElement()

// MispredictElement()
// ===================
// Generates a Mispredict element.
Element MispredictElement()
 Element a;

 a.kind = ELEM_MISPREDICT;

 return a;

K5.1.2.1.12 OverflowElement()

// OverflowElement()
// =================
// Generates an Overflow element.
Element OverflowElement()
 Element a;

 a.kind = ELEM_OVERFLOW;

 return a;

K5.1.2.1.13 TimestampElement()

// TimestampElement()
// ==================
// Generates a Timestamp element based on a timestamp value
// and a cycle count value.
Element TimestampElement(integer timestamp, integer cycles)
 Element a;

 a.kind = ELEM_TIMESTAMP;
 a.payload.timestamp = timestamp;
 a.payload.cycle_count = cycles;

 return a;

K5.1.2.1.14 TraceInfoElement()

// TraceInfoElement()
// ==================
// Generates a Trace Info element based on cycle counting parameters,
// speculation depth, and transaction status.
Element TraceInfoElement(boolean cc_enabled,
 integer cc_threshold,
 integer current_spec_depth,
 boolean in_transaction)
 Element a;

 a.kind = ELEM_TRACE_INFO;
 a.payload.cc_enabled = cc_enabled;
 a.payload.cc_threshold = cc_threshold;
 a.payload.current_spec_depth = current_spec_depth;
 a.payload.in_transaction = in_transaction;

 return a;

K5.1.2.1.15 TraceOnElement()

// TraceOnElement()
// ================
// Generates a Trace On element.
Element TraceOnElement()
 Element a;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14429
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 a.kind = ELEM_TRACE_ON;

 return a;

K5.1.2.1.16 TargetAddressElement()

// TargetAddressElement()
// ======================
// Generates a Target Address element based on a given
// address and sub_isa.
Element TargetAddressElement(AddressHistoryBufferEntry reg)
 Element a;
 a.kind = ELEM_TARGET_ADDRESS;
 a.payload.address = reg.address;
 a.payload.sub_isa = reg.sub_isa;

 return a;

K5.1.2.1.17 SourceAddressElement()

// SourceAddressElement()
// ======================
// Generates a Source Address element based on an instruction's address
// and sub_isa.
Element SourceAddressElement(AddressHistoryBufferEntry reg)
 Element a;

 a.kind = ELEM_SOURCE_ADDRESS;
 a.payload.address = reg.address;
 a.payload.sub_isa = reg.sub_isa;

 return a;

K5.1.2.1.18 TransactionStartElement()

// TransactionStartElement()
// =========================
Element TransactionStartElement()
 Element a;

 a.kind = ELEM_TRANS_START;
 return a;

K5.1.2.1.19 TransactionCommitElement()

// TransactionCommitElement()
// ==========================
Element TransactionCommitElement()
 Element a;

 a.kind = ELEM_TRANS_COMMIT;
 return a;

K5.1.2.1.20 TransactionFailureElement()

// TransactionFailureElement()
// ===========================
Element TransactionFailureElement()
 Element a;

 a.kind = ELEM_TRANS_FAILURE;
 return a;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14430
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.2.2 Decompressor enumerations

K5.1.2.2.1 SubISA enumeration

// SubISA
// ======
// Represents sub instruction set.
// IS0 = AArch32 or AArch64, IS1 = AArch32 Thumb
enumeration SubISA {

IS0,
IS1

};

K5.1.2.2.2 SynchronisationState enumeration

// States to represent synchronisation of the reconstructor, state
// transitions as follows:
// ___
// | Init State| Input | Final State |
// |___________|___________________|______________|
// | NOT_SYNC | context element | CONTEXT |
// | NOT_SYNC | address element | ADDRESS |
// | ADDRESS | context element | FULL_SYNC |
// | ADDRESS | overflow element | NOT_SYNC |
// | ADDRESS | discard element | NOT_SYNC |
// | ADDRESS | trace on element | NOT_SYNC |
// | ADDRESS | atom element | NOT_SYNC |
// | ADDRESS | exception element | NOT_SYNC |
// | CONTEXT | address element | FULL_SYNC |
// | CONTEXT | overflow element | NOT_SYNC |
// | CONTEXT | discard element | NOT_SYNC |
// | CONTEXT | trace on element | NOT_SYNC |
// | FULL_SYNC | indirect branch | CONTEXT |
// | FULL_SYNC | discard element | NOT_SYNC |
// | FULL_SYNC | overflow element | NOT_SYNC |
// | FULL_SYNC | trace on element | NOT_SYNC |
// |___________|___________________|______________|

enumeration SynchronisationState {
NOT_SYNC_STATE, // Not syncing, need sync
CONTEXT_STATE, // Have context, need address
ADDRESS_STATE, // Have address, need context
FULL_SYNC_STATE // Fully synced

};

K5.1.2.2.3 InstType enumeration

// InstType
// ========
// Instruction type. Cannot use BranchType as this does not cover other P0
// non-branching instructions (WFE/WFI, ISB).
// WFX counts as ’Other’ if it is not a P0 element (see TRCIDR2.WFXMODE).

enumeration InstType {
InstType_BRANCH_DIR, // Direct branch
InstType_BRANCH_INDIR, // Indirect branch
InstType_WFX, // WFI/WFE instruction
InstType_ISB, // Instruction barrier
InstType_OTHER // Non-P0 instructions

};

K5.1.2.3 Decompressor functions

K5.1.2.3.1 EndOfStream()

// EndOfStream()
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14431
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
// =============
// Returns TRUE iff all the data in the stream have been consumed.
boolean EndOfStream(bits(S) stream);

K5.1.2.3.2 ReservedEncoding()

// ReservedEncoding()
// ==================
// The trace byte stream is not compliant to the protocol. The trace analyzer
// has to stop.
ReservedEncoding();

K5.1.2.3.3 ReadAndConsume()

// ReadAndConsume()
// ================
// Reads the next N bits from the trace byte stream and returns them, also
// updating the trace byte stream pointer.
bits(N) ReadAndConsume(integer N, bits(S) stream);

K5.1.2.3.4 LogDecompressor()

// Instrumentation functions
// =========================

LogDecompressor(Decomp_Level lvl, string details);
LogElem(Decomp_Level lvl, Element e, string details);
integer GetNextDebugId();
ERROR(string msg);
LogReturnStack();
PrintElement(Element e);
string ExcepTypeToStr(integer type_val);

K5.1.2.3.5 SBZ()

// SBZ()
// =====
// Raise an error if the field B is not zero.
SBZ(bits(N) B);

K5.1.2.3.6 ResolutionQueue

// ResolutionQueue.Initialize()
// ============================
// If decompression starts at a Trace Info element that has a nonzero
// speculation depth, the trace analyzer must wait until the speculation
// of these unseen P0 elements has been resolved.
//
// Set the number of unseen P0 elements that are outstanding that need to be
// resolved.
ResolutionQueue.Initialize(integer i);

// ResolutionQueue.Uninitialized()
// ===============================
// Returns TRUE if the resolution queue is uninitialized.
boolean ResolutionQueue.Uninitialized();

// ResolutionQueue.Aligned()
// =========================
// Returns TRUE if all the unseen P0 elements have been resolved.
boolean ResolutionQueue.Aligned();

// ResolutionQueue.Align()
// =======================
// Mark the oldest oldest unseen P0 element as resolved.
ResolutionQueue.Align();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14432
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
// ResolutionQueue.Length()
// ========================
// Returns the number of elements in the queue.
integer ResolutionQueue.Length();

// ResolutionQueue.PopBack()
// =========================
// Discards the element at the back (youngest) of the queue.
ResolutionQueue.PopBack();

// ResolutionQueue.Back()
// ======================
// Returns the element at the back (youngest) of the queue.
Element ResolutionQueue.Back();

// ResolutionQueue.PopFront()
// ==========================
// Removes the element at the front (oldest) from the queue.
ResolutionQueue.PopFront();

// ResolutionQueue.Front()
// =======================
// Returns the element at the front (oldest) of the queue.
Element ResolutionQueue.Front();

// ResolutionQueue.CommitFront()
// =============================
// Commits the element at the front of the queue.
ResolutionQueue.CommitFront()

// ResolutionQueue.Push()
// ======================
// Add element e to the back of the queue.
ResolutionQueue.Push(Element e);

K5.1.2.3.7 TransactionQueue

// TransactionQueue.Length()
// =========================
// Return the number of entries in the transaction queue.
integer TransactionQueue.Length();

// TransactionQueue.FrontPop()
// ===========================
// Remove the first entry in the transaction queue.
TransactionQueue.FrontPop();

// TransactionQueue.Front()
// ========================
// Return the element at the front of the transaction queue.
Element TransactionQueue.Front();

// TransactionQueue.Push()
// =======================
// Add an element to the back of the transaction queue.
TransactionQueue.Push(Element e);

// TransactionQueue.InTransaction()
// ================================
// Are we currently in a transaction?
boolean TransactionQueue.InTransaction();

// TransactionQueue.StartTransaction()
// ===================================
// Enter a transaction.
TransactionQueue.StartTransaction();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14433
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
// TransactionQueue.EndTransaction()
// =================================
// Leave a transaction.
TransactionQueue.EndTransaction();

K5.1.2.3.8 ReturnStack

// ReturnStack.Reset()
// ===================
// Resets the return stack.
ReturnStack.Reset();

// ReturnStack.Push(bits(64) addr, SubISA sub_isa)
// ===
// Pushes onto the return stack.
ReturnStack.Push(bits(64) addr, SubISA sub_isa);

// ReturnStack.Pop()
// =================
// Pops the top of the return stack.
ReturnStackEntry ReturnStack.Pop();

// ReturnStack.IsEmpty()
// =====================
// Returns TRUE iff the return stack is empty.
boolean ReturnStack.IsEmpty();

K5.1.2.3.9 AddressHistoryBufferEntry()

// AddressHistoryBufferEntry
// =========================
// An entry in the address history buffer.
type AddressHistoryBufferEntry is (
 bits(64) address,
 SubISA sub_isa
)

AddressHistoryBufferEntry UNKNOWN_ADDRESS;

K5.1.2.3.10 AddressHistoryBuffer()

// AddressHistoryBuffer.Reset()
// ============================
// Resets the address history buffer.
AddressHistoryBuffer.Reset()
 for i = 0 to 2
 DSTATE.IA.address_history_buffer[i].address = Zeros();
 DSTATE.IA.address_history_buffer[i].sub_isa = IS0;

 return;

// AddressHistoryBuffer.Add()
// ==========================
// Adds an address to the address history buffer.
AddressHistoryBuffer.Add(AddressHistoryBufferEntry entry)
 DSTATE.IA.address_history_buffer[2] = DSTATE.IA.address_history_buffer[1];
 DSTATE.IA.address_history_buffer[1] = DSTATE.IA.address_history_buffer[0];
 DSTATE.IA.address_history_buffer[0] = entry;
 return;

AddressHistoryBuffer.Add(bits(64) address, SubISA sub_isa)
 AddressHistoryBufferEntry entry;
 entry.address = address;
 entry.sub_isa = sub_isa;

 AddressHistoryBuffer.Add(entry);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14434
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
// AddressHistoryBuffer.Get()
// ==========================
// Returns the given entry from the address history buffer.
AddressHistoryBufferEntry AddressHistoryBuffer.Get(integer n)
 assert n < 3;
 return DSTATE.IA.address_history_buffer[n];

K5.1.2.3.11 ProgramImage

// ProgramImage.DecodeNextInst()
// =============================
// Returns the decoded next instruction in the program image.
DecodedInst ProgramImage.DecodeNextInst();

// ProgramImageDecodeAvilable()
// ============================
// Returns TRUE iff we are currently inside the program image.
boolean ProgramImage.DecodeAvailable();

K5.1.2.3.12 ExceptionWithUnknownAddress()

// ExceptionWithUnknownAddress()
// =============================
// Does this exception type have an unknown
// prefered exception return address.

boolean ExceptionWithUnknownAddress(Element e)
 case e.payload.exception_type<4:0> of
 when '00000', '11001'
 return TRUE;
 when '11000'
 ERROR("Transation Failure Element");
 otherwise
 return FALSE;

K5.1.2.4 Data encodings

K5.1.2.4.1 POD()

// POD()
// =====
// Return data from stream in Plain Old Data Little Endian format.
bits(N) POD(integer N, bits(S) stream)
 return ReadAndConsume(N, stream);

K5.1.2.4.2 ULEB128()

// ULEB128()
// =========
// Gets N bits of continuable data from the stream.
bits(N) ULEB128(bits(S) stream)
 return BitReplacement(stream, Zeros(N));

K5.1.2.4.3 BitReplacement()

// BitReplacement()
// ================
// Gets N bits of continuable, bit replacement data from the stream.
bits(N) BitReplacement(bits(S) stream, bits(N) original)
 R = original;

 I = 0;
 bits(8) BYTE;
 repeat
 BYTE = ReadAndConsume(8, stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14435
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 R<I+6:I> = BYTE<6:0>;
 I = I + 7;
 until BYTE<7> == '0' || I >= N - 8;

 if BYTE<7> == '1' then
 BYTE = ReadAndConsume(8, stream);
 R<I+7:I> = BYTE;
 end = N MOD 7;
 if end == 0 then end = 7;
 if I + 8 > N then SBZ(BYTE<7:end>);

 return R;

K5.1.3 Stage 1, parsing the byte stream

IZLYTH The first stage of analyzing the trace is to convert from the bits of the trace byte stream to the elements that are
encoded in that trace byte stream.

The ETE architecture enables a trace unit to use techniques that can reduce the trace bandwidth and trace storage
requirements. Some of these techniques require the trace analyzer to retain some information between packets so
that it can successfully analyze future packets.

K5.1.3.1 Retained state

RZPQMY The trace analyzer maintains an independent copy of the address history buffer of the last three Target Address
elements.

IHDKHN The address history buffer in the trace analyzer is required to reconstruct the Target Address elements from the trace
byte stream.

RJBGCR The trace analyzer must maintain the current speculation depth of the parsed trace byte stream.

RHDJJV The trace analyzer must have the maximum speculation depth supported by the trace unit.

RRZNPD The trace analyzer maintains a copy of the last Timestamp element value decompressed.

INPCCX The last Timestamp element value in the trace analyzer is required to reconstruct the full timestamp value for a
Timestamp Packet.

RZPNYS The trace analyzer must maintain a copy of the context:

• Context identifier.

• Virtual context identifier.

• AArch64 or AArch32 state

• Exception level

• Security state

RMWFSN The trace analyzer must maintain a copy of the cycle count threshold.

K5.1.3.1.1 InstructionParserState()

// InstructionParserState
// ======================
// State of the instruction parser.

type InstructionParserState is (
 bits(64) timestamp, // The most recently broadcast timestamp value.
 // The Address History Buffer.
 array [0..2] of AddressHistoryBufferEntry address_history_buffer,

 // Context parameters.
 bits(32) context_id, // Most recently broadcast Context ID.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14436
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 bits(32) vmid, // Most recently broadcast VMID.
 bits(2) exception_level, // Most recently broadcast Exception level.
 SecurityLevel security, // Most recently broadcast Security state.
 boolean sixty_four_bit, // Most recently broadcast AArch state
 // (32 or 64?).

 // Speculation
 integer current_spec_depth, // The current speculation depth.
 boolean T, // The current transactional state.

 // Trace Session static
 integer cc_threshold, // Cycle count threshold value.

 // Static state
 integer max_spec_depth, // The maximum speculation depth.
 boolean commit_mode, // Commit mode.
 boolean comm_trans // How transactions traced.
)

K5.1.3.2 Parsing

IPXZJK The first stage of the decompressor is to convert from the trace byte stream to trace element stream. The trace byte
stream can start at the an Alignment Sync packet boundary.

K5.1.3.2.1 Parse_Trace()

// Parse_Trace()
// =============
// Parses a trace bytestream generated by an ETE trace unit.

Parse_Trace(bits(S) stream)
 repeat
 header = ReadAndConsume(8, stream);
 case header of
 when '00000000' Parse_ExtensionPacket(header, stream);
 when '00000001' Parse_TraceInfoPacket(header, stream);
 when '0000001x' Parse_TimestampPacket(header, stream);
 when '00000100' TraceOnPacket();
 when '00000110' Parse_ExceptionPacket(header, stream);
 when '00001010' TransactionStartPacket();
 when '00001011' TransactionCommitPacket();
 when '0000110x' Parse_CycleCountPackets(header, stream);
 when '0000111x' Parse_CycleCountPackets(header, stream);
 when '0001xxxx' Parse_CycleCountPackets(header, stream);
 when '00101101' Parse_CommitPacket(header, stream);
 when '0010111x' Parse_CancelPackets(header, stream);
 when '001100xx' Parse_MispredictPacket(header, stream);
 when '001101xx' Parse_CancelPackets(header, stream);
 when '00111xxx' Parse_CancelPackets(header, stream);
 when '01110000' // Ignore packet
 when '0111xxxx' Parse_EventTracingPacket(header, stream);
 when '1000000x' Parse_ContextPacket(header, stream);
 when '1000001x' Parse_AddressWithContextPacket(header, stream);
 when '10000101' Parse_AddressWithContextPacket(header, stream);
 when '10000110' Parse_AddressWithContextPacket(header, stream);
 when '1001000x' Parse_TargetAddressPacket(header, stream);
 when '10010010' Parse_TargetAddressPacket(header, stream);
 when '100101xx' Parse_TargetAddressPacket(header, stream);
 when '1001100x' Parse_TargetAddressPacket(header, stream);
 when '1001101x' Parse_TargetAddressPacket(header, stream);
 when '10011101' Parse_TargetAddressPacket(header, stream);
 when '10011110' Parse_TargetAddressPacket(header, stream);
 when '1010xxxx' Parse_QPacket(header, stream);
 when '101100xx' Parse_SourceAddressPacket(header,stream);
 when '1011010x' Parse_SourceAddressPacket(header,stream);
 when '1011011x' Parse_SourceAddressPacket(header,stream);
 when '1011100x' Parse_SourceAddressPacket(header,stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14437
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 when '11xxxxxx' Parse_AtomPackets(header, stream);
 otherwise ReservedEncoding();
 until EndOfStream(stream);

 return;

K5.1.3.3 Alignment Sync packet

IVJHHN The Alignment Sync packet is a unique sequence of bits that identifies the boundary of another packet. The unique
sequence is a header byte, 0b00000000, followed by a minimum of ten payload bytes of 0b00000000 and one final
payload byte of 0b10000000.

K5.1.3.3.1 Parse_ExtensionPacket()

// Parse_ExtensionPacket()
// =======================
// Parses Alignment Synchronization, Discard and Overflow packets.

Parse_ExtensionPacket(bits(8) header, bits(S) stream)
 extension = ReadAndConsume(8, stream);
 case extension of
 when '00000000' // A-sync
 while extension == '00000000' do
 extension = ReadAndConsume(8, stream);
 if extension != '10000000' then
 ReservedEncoding();

 when '00000011' // Discard
 DiscardPacket();

 when '00000101' // Overflow
 OverflowPacket();

 otherwise
 ReservedEncoding();

 return;

K5.1.3.4 Discard

RRVFVY The current speculation depth must be reset to 0.

K5.1.3.4.1 DiscardPacket()

// DiscardPacket()
// ===============
// Processes a Discard packet.

DiscardPacket()
 Emit(DiscardElement());
 if DSTATE.IA.T then
 Emit(TransactionFailureElement());

 DSTATE.IA.current_spec_depth = 0;
 DSTATE.IA.T = FALSE;

 return;

K5.1.3.5 Overflow

K5.1.3.5.1 OverflowPacket()

// OverflowPacket()
// ================
// Processes an Overflow packet.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14438
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
OverflowPacket()
 Emit(DiscardElement());
 Emit(OverflowElement());

 if DSTATE.IA.T then
 Emit(TransactionFailureElement());

 DSTATE.IA.T = FALSE;
 DSTATE.IA.current_spec_depth = 0;

 return;

K5.1.3.6 Trace Info

IJMXMP A Trace Info packet indicates where the compression algorithms used by the trace unit have been set to a known
architectural state. As the architectural state of the compression algorithms is known a trace analyzer can start
decompression of the trace byte stream at this point.

If the trace unit exposes some trace speculation to the trace analyzer then the trace info packet indicates the trace
speculation depth at this point in the trace element stream.

If the trace analyzer starts analysis where the trace speculation depth is nonzero then the analyzer should ignore
speculation depth of Commit elements.

RPKZKZ A Trace Info Packet sets all entries of the address history buffer to have an address of 0x0 and to sub_isa of IS0.

RLPYLR The current_spec_depth is set to the speculation depth indicated in the trace info element.

K5.1.3.6.1 Parse_TraceInfoPacket()

// Parse_TraceInfoPacket()
// =======================
// Parses a Trace Info packet.

Parse_TraceInfoPacket(bits(8) header, bits(S) stream)
 bits(8) INFO = Zeros();
 bits(96) SPEC = Zeros();
 bits(96) CYCT = Zeros();

 bits(8) PLCTL = ReadAndConsume(8, stream);

 // Extract the INFO section if present
 if PLCTL<0> == '1' then
 INFO = ReadAndConsume(8, stream);

 // Extract the SPEC section if present
 if PLCTL<2> == '1' then
 SPEC = ULEB128(stream);

 // Extract the CYCT section if present
 if PLCTL<3> == '1' then
 CYCT = ULEB128(stream);

 TraceInfoPacket(PLCTL, INFO, SPEC, CYCT);

 return;

K5.1.3.6.2 TraceInfoPacket()

// TraceInfoPacket()
// =================
// Processes a Trace Info packet.

TraceInfoPacket(bits(8) PLCTL,
 bits(8) INFO,
 bits(SN) SPEC,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14439
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 bits(CN) CYCT)
 DSTATE.IA.timestamp = Zeros();
 DSTATE.IA.context_id = Zeros();
 DSTATE.IA.vmid = Zeros();
 DSTATE.IA.exception_level = EL0;
 DSTATE.IA.security = SecurityLevel_SECURE;
 DSTATE.IA.sixty_four_bit = FALSE;
 AddressHistoryBuffer.Reset();

 cc_threshold = if INFO<0> == '1' then UInt(CYCT) else 0;
 DSTATE.IA.current_spec_depth = UInt(SPEC);

 Emit(TraceInfoElement(INFO<0> == '1', // cc_enabled
 cc_threshold,
 DSTATE.IA.current_spec_depth,
 INFO<6> == '1'));

 return;

K5.1.3.7 Trace On

IGHTQJ The Trace On packet indicates that there has been a discontinuity in the instruction trace element stream. It is output
whenever a gap occurs, after the gap occurs. This means that a Trace On packet is output:

• When trace generation becomes operative, after the first A-Sync and Trace Info packets but before any packet
types that indicate any P0 elements.

• After a trace unit buffer overflow. Again, the Trace On packet is output after the A-Sync and Trace Info
packets but before any packet types that indicate any P0 elements.

• After gaps caused by filtering. For example, if filtering is applied to the generation of the trace element
stream, so that the trace unit only generates trace for a particular program code sequence, the trace unit might
spend much of its time in an inactive state, only generating trace periodically. In this case, a Trace On packet
is output after each discontinuity in the trace element stream. The Trace On packet must be output before any
packet types that indicate any P0 elements.

K5.1.3.7.1 TraceOnPacket()

// TraceOnPacket()
// ===============
// Processes a Trace On packet.

TraceOnPacket()
 Emit(TraceOnElement());
 return;

K5.1.3.8 Speculation

RPSHDJ The Commit element must modify the current speculation depth.

K5.1.3.8.1 Parse_CommitPacket()

// Parse_CommitPacket()
// ====================
// Parses a Commit packet.

Parse_CommitPacket(bits(8) header, bits(S) stream)
 bits(32) COMMIT = ULEB128(stream);
 CommitPacket(COMMIT);
 return;

K5.1.3.8.2 CommitPacket()

// CommitPacket()
// ==============
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14440
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
// Processes a Commit packet.

CommitPacket(bits(N) COMMIT)
 Emit(CommitElement(UInt(COMMIT)));
 UpdateSpecDepth(-UInt(COMMIT));
 return;

RNQHYR The Cancel element must modify the current speculation depth.

K5.1.3.8.3 Parse_CancelPackets()

// Parse_CancelFormatPackets()
// ===========================
// Parses all the various Cancel packets.

Parse_CancelPackets(bits(8) header, bits(S) stream)
 case header of
 when '0010111x' // Cancel Format 1
 M = header<0>;
 bits(32) CANCEL = ULEB128(stream);
 CancelFormat1Packet(M, CANCEL);

 when '001101xx' // Cancel Format 2
 A2 = header<1:0>;
 CancelFormat2Packet(A2);

 when '00111xxx' // Cancel Format 3
 A = header<0>;
 CC = header<2:1>;
 CancelFormat3Packet(CC, A);

 return;

K5.1.3.8.4 CancelFormat1Packet()

// CancelFormat1Packet()
// =====================
// Processes a Cancel packet, format 1.

CancelFormat1Packet(bit M, bits(N) CANCEL)
 count = UInt(CANCEL);
 Emit(CancelElement(count));
 UpdateSpecDepth(-count);
 if M == '1' then
 Emit(MispredictElement());

 return;

K5.1.3.8.5 CancelFormat2Packet()

// CancelFormat2Packet()
// =====================
// Processes a Cancel packet, format 2.

CancelFormat2Packet(bits(2) A)
 case A of
 when '01'
 HandleAtom(Atom_E);
 when '10'
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);
 when '11'
 HandleAtom(Atom_N);

 count = 1;
 Emit(CancelElement(count));
 UpdateSpecDepth(-count);
 Emit(MispredictElement());
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14441
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 return;

K5.1.3.8.6 CancelFormat3Packet()

// CancelFormat3Packet()
// =====================
// Processes a Cancel packet, format 3.

CancelFormat3Packet(bits(2) CC, bit A)
 if A == '1' then
 HandleAtom(Atom_E);
 count = UInt(CC) + 2;
 Emit(CancelElement(count));
 UpdateSpecDepth(-count);
 Emit(MispredictElement());

 return;

K5.1.3.9 Mispredict

K5.1.3.9.1 Parse_MispredictPacket()

// Parse_MispredictPacket()
// ========================
// Parses a Mispredict packet.

Parse_MispredictPacket(bits(8) header, bits(S) stream)
 A = header<1:0>;
 MispredictPacket(A);
 return;

K5.1.3.9.2 MispredictPacket()

// MispredictPacket()
// ==================
// Processes a Mispredict packet.

MispredictPacket(bits(2) A)
 case A of
 when '01'
 HandleAtom(Atom_E);
 when '10'
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);
 when '11'
 HandleAtom(Atom_N);
 otherwise

 Emit(MispredictElement());
 return;

K5.1.3.10 Atom packets

RRVVFW Each Atom element decoded from an Atom packet must increment the current speculation depth of this stage of the
decompressor.

K5.1.3.10.1 Parse_AtomPacket()

// Parse_AtomPackets()
// ===================
// Parses all the various Atom packets.

Parse_AtomPackets(bits(8) header, bits(S) stream)
 case header of
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14442
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 when '1111011x' // Atom Format 1
 bit A = header<0>;
 AtomFormat1Packet(A);

 when '110110xx' // Atom Format 2
 bits(2) A = header<1:0>;
 AtomFormat2Packet(A);

 when '11111xxx' // Atom Format 3
 bits(3) A = header<2:0>;
 AtomFormat3Packet(A);

 when '110111xx' // Atom Format 4
 bits(2) A = header<1:0>;
 AtomFormat4Packet(A);

 when '11110101' // Atom Format 5.1
 AtomFormat5_1Packet();

 when '11010101', '11010110', '11010111' // Atom Format 5.2
 bits(2) A = header<1:0>;
 AtomFormat5_2Packet(A);

 when '11xxxxxx' // Atom Format 6
 bit A = header<5>;
 bits(5) COUNT = header<4:0>;
 AtomFormat6Packet(A, COUNT);

 return;

K5.1.3.10.2 AtomFormat1Packet()

// AtomFormat1Packet()
// ===================
// Processes an Atom packet, format 1.

AtomFormat1Packet(bit A)
 if A == '1' then
 HandleAtom(Atom_E);
 else
 HandleAtom(Atom_N);

 return;

K5.1.3.10.3 AtomFormat2Packet()

// AtomFormat2Packet()
// ===================
// Processes an Atom packet, format 2.

AtomFormat2Packet(bits(2) A)
 for I = 0 to 1
 if A<I> == '1' then
 HandleAtom(Atom_E);
 else
 HandleAtom(Atom_N);

 return;

K5.1.3.10.4 AtomFormat3Packet()

// AtomFormat3Packet()
// ===================
// Processes an Atom packet, format 3.

AtomFormat3Packet(bits(3) A)
 for I = 0 to 2
 if A<I> == '1' then
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14443
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 HandleAtom(Atom_E);
 else
 HandleAtom(Atom_N);

 return;

K5.1.3.10.5 AtomFormat4Packet()

// AtomFormat4Packet()
// ===================
// Processes an Atom packet, format 4.

AtomFormat4Packet(bits(2) A)
 case A of
 when '00'
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);
 when '01'
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 when '10'
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 when '11'
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);

 return;

K5.1.3.10.6 AtomFormat5_1Packet()

// AtomFormat5_1Packet()
// =====================
// Processes an Atom packet, format 5.1.

AtomFormat5_1Packet()
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);
 HandleAtom(Atom_E);

 return;

K5.1.3.10.7 AtomFormat5_2Packet()

// AtomFormat5_2Packet()
// =====================
// Processes an Atom packet, format 5.2.

AtomFormat5_2Packet(bits(2) A)
 case A of
 when '01'
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 HandleAtom(Atom_N);
 when '10'
 HandleAtom(Atom_N);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14444
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);
 when '11'
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);
 HandleAtom(Atom_N);
 HandleAtom(Atom_E);

 return;

K5.1.3.10.8 AtomFormat6Packet()

// AtomFormat6Packet()
// ===================
// Processes an Atom packet, format 6.

AtomFormat6Packet(bit A, bits(5) COUNT)
 for I = 0 to UInt(COUNT) + 2
 HandleAtom(Atom_E);
 if A == '1' then
 HandleAtom(Atom_N);
 else
 HandleAtom(Atom_E);

 return;

K5.1.3.11 Q packets

RRZFZW The Q element must increment the current speculation depth at this stage of the decompressor.

K5.1.3.11.1 Parse_QPacket()

// Parse_QPacket()
// ===============
// Parses a Q packet.

Parse_QPacket(bits(8) header, bits(S) stream)
 AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);
 bits(32) count;

 TYPE = header<3:0>;
 case TYPE of
 when '0000', '0001', '0010'
 ExactMatchBytes(header, stream);
 count = ULEB128(stream);
 QPacket(TYPE, entry, count);

 when '0101'
 ShortAddressBytes(IS0, stream);
 count = ULEB128(stream);
 QPacket(TYPE, entry, count);

 when '0110'
 ShortAddressBytes(IS1, stream);
 count = ULEB128(stream);
 QPacket(TYPE, entry, count);

 when '1010', '1011'
 LongAddressBytes(header, stream);
 count = ULEB128(stream);
 QPacket(TYPE, entry, count);

 when '1100'
 count = ULEB128(stream);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14445
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 QPacket(TYPE, UNKNOWN_ADDRESS, count);

 when '1111'
 QPacket(TYPE, UNKNOWN_ADDRESS, UNKNOWN_COUNT);

 otherwise
 ReservedEncoding();

 return;

K5.1.3.11.2 QPacket()

// QPacket()
// =========
// Processes a Q packet.

QPacket(bits(4) TYPE, AddressHistoryBufferEntry A, bits(CN) COUNT)
 Emit(QElement(UInt(COUNT)));
 UpdateSpecDepth(1);

 // The decoding of the Address field is done by the AddressPacket function,
 // but this did not Emit the address element.
 if (TYPE != '11xx' && TYPE != '00xx') then
 Emit(TargetAddressElement(A));

 return;

K5.1.3.12 Source address packets

K5.1.3.12.1 Parse_SourceAddressPacket()

// Parse_SourceAddressPacket()
// ===========================
// Parses a Source Address packet.

Parse_SourceAddressPacket(bits(8) header, bits(S) stream)
 AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

 case header of
 when '10111000'
 data1 = ReadAndConsume(8, stream);
 data2 = ReadAndConsume(8, stream);
 data3 = ReadAndConsume(48, stream);
 entry.sub_isa = IS0;
 entry.address<63:0> = data3:data2<6:0>:data1<6:0>:'00';
 AddressHistoryBuffer.Add(entry);
 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 when '10111001'
 data11 = ReadAndConsume(8, stream);
 data21 = ReadAndConsume(56, stream);
 a = entry;
 entry.sub_isa = IS1;
 entry.address<63:0> = data21:data11<6:0>:'0';
 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 when '10110110'
 data12 = ReadAndConsume(8, stream);
 data22 = ReadAndConsume(8, stream);
 data32 = ReadAndConsume(16, stream);
 a = entry;
 entry.sub_isa = IS0;
 entry.address<31:0> = data32:data22<6:0>:data12<6:0>:'00';
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14446
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 when '10110111'
 data13 = ReadAndConsume(8, stream);
 data23 = ReadAndConsume(24, stream);
 a = entry;
 entry.sub_isa = IS1;
 entry.address<31:0> = data23:data13<6:0>:'0';
 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 when '10110100'
 data14 = ReadAndConsume(8, stream);
 a = entry;
 entry.sub_isa = IS0;
 if data14<7> == '1' then
 data24 = ReadAndConsume(8, stream);
 entry.address<16:0> = data24<7:0>:data14<6:0>:'00';
 else
 entry.address<8:0> = data14<6:0>:'00';

 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 when '10011101'
 data15 = ReadAndConsume(8, stream);
 a = entry;
 entry.sub_isa = IS0;
 if data15<7> == '1' then
 data25 = ReadAndConsume(8, stream);
 entry.address<15:0> = data25<7:0>:data15<6:0>:'0';
 else
 entry.address<7:0> = data15<6:0>:'0';

 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 when '101100xx' // Exact match
 q = UInt(header<1:0>);
 entry = AddressHistoryBuffer.Get(q);
 AddressHistoryBuffer.Add(entry);
 UpdateSpecDepth(1);
 Emit(SourceAddressElement(entry));

 return;

K5.1.3.13 Exceptions

RSRPFR The Exception element must increment the current speculation depth at this stage of the decompressor.

K5.1.3.13.1 Parse_ExceptionPacket()

// Parse_ExceptionPacket()
// =======================
// Parses an exception packet.

Parse_ExceptionPacket(bits(8) header, bits(S) stream)
 payload = ReadAndConsume(8, stream);
 bits(2) E;
 E<0> = payload<0>;
 E<1> = payload<6>;
 bits(5) TYPE = payload<5:1>;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14447
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 bits(8) AH;

 if E == '01' || E == '10' then
 // Treat the ADDRESS bytes as an Address packet, including
 // updating the address registers.
 AH = ReadAndConsume(8, stream);

 case AH of
 when '1001000x', '10010010' // Exact Match.
 ExactMatchBytes(AH, stream);

 when '10010101' // Short Address IS0.
 ShortAddressBytes(IS0, stream);

 when '10010110' // Short Address IS1.
 ShortAddressBytes(IS1, stream);

 when '1001101x', '10011101', '10011110' // Long Address.
 LongAddressBytes(AH, stream);

 when '1000001x', '10000101', '10000110' // Long Address with
 LongAddressBytes(AH, stream); // Context.
 ContextBytes(stream);

 when '01110000' // Unknown address
 UnknownAddressHistoryBuffer();

 ExceptionPacket(E, TYPE, AH);
 else
 ReservedEncoding();

 return;

K5.1.3.13.2 ExceptionPacket()

// ExceptionPacket()
// =================
// Processes an Exception packet.

ExceptionPacket(bits(2) E, bits(5) TYPE, bits(8) AH)
 AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);
 case E of
 when '01'
 if TYPE == '11000' then
 Emit(TransactionFailureElement());
 else
 Emit(ExceptionElement(UInt(TYPE), entry.address));
 when '10'
 // The new context and address must now be Emitted.
 if AH<7:4> == '1000' then // Long Address with Context
 Emit(ContextElement(DSTATE.IA.context_id,
 DSTATE.IA.vmid,
 DSTATE.IA.exception_level,
 DSTATE.IA.security,
 DSTATE.IA.sixty_four_bit));
 Emit(TargetAddressElement(entry));

 if TYPE == '00000' && DSTATE.IA.T then
 Emit(TransactionFailureElement());
 Emit(ExceptionElement(UInt(TYPE), entry.address));
 elsif TYPE == '11000' then
 Emit(TransactionFailureElement());
 else
 Emit(ExceptionElement(UInt(TYPE), entry.address));

 otherwise
 ReservedEncoding();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14448
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 UpdateSpecDepth(1);

 return;

K5.1.3.14 Address and context

K5.1.3.14.1 Parse_TargetAddressPacket()

// Parse_TargetAddressPacket()
// ===========================
// Parses a Target Address packet.

Parse_TargetAddressPacket(bits(8) header, bits(S) stream)
 case header of
 when '1001101x', '10011101', '10011110' // Long Address
 LongAddressBytes(header, stream);

 when '10010101' // Short Address IS0
 ShortAddressBytes(IS0, stream);

 when '10010110' // Short Address IS1
 ShortAddressBytes(IS1, stream);

 when '1001000x', '10010010' // Exact match
 ExactMatchBytes(header, stream);

 AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);
 Emit(TargetAddressElement(entry));
 return;

K5.1.3.14.2 Parse_LongAddressBytes()

// LongAddressBytes()
// ==================
// Reads and parses the long address form used in some packets.

LongAddressBytes(bits(8) header, bits(S) stream)
 case header<2:0> of
 when '010' // 32-bit IS0
 data32_is0 = ReadAndConsume(16, stream);
 A8_2 = data32_is0<6:0>; SBZ(data32_is0<7>);
 A15_9 = data32_is0<14:8>; SBZ(data32_is0<15>);
 bits(16) A31_16;
 A31_16 = POD(16, stream);
 LongAddressPacket(header, A31_16:A15_9:A8_2);

 when '011' // 32-bit IS1
 data32_is1 = ReadAndConsume(8, stream);
 A7_1 = data32_is1<6:0>; SBZ(data32_is1<7>);
 A31_8 = POD(24, stream);
 LongAddressPacket(header, A31_8:A7_1);

 when '101' // 64-bit IS0
 data64_is0 = ReadAndConsume(16, stream);
 A8_2 = data64_is0<6:0>;
 SBZ(data64_is0<7>);
 A15_9 = data64_is0<14:8>;
 SBZ(data64_is0<15>);
 A63_16 = POD(48, stream);
 LongAddressPacket(header, A63_16:A15_9:A8_2);

 when '110' // 64-bit IS1
 data64_is1 = ReadAndConsume(8, stream);
 A7_1 = data64_is1<6:0>; SBZ(data64_is1<7>);
 A63_8 = POD(56, stream);
 LongAddressPacket(header, A63_8:A7_1);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14449
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 return;

K5.1.3.14.3 LongAddressPacket()

// LongAddressPacket()
// ===================
// Parses the long form address used in some packets.

LongAddressPacket(bits(8) header, bits(AN) A)

 a = AddressHistoryBuffer.Get(0);

 // Called from a variety of packet types, so only look at bits <2:0> of
 // the header.
 case header<2:0> of
 when '010' // 32-bit address, IS0
 assert(AN == 30);
 a.sub_isa = IS0;
 // address<63:32> unchanged
 a.address<31:2> = A<29:0>;
 a.address<1:0> = '00';

 when '011' // 32-bit address, IS1
 assert(AN == 31);
 a.sub_isa = IS1;
 // address<63:32> unchanged
 a.address<31:1> = A<30:0>;
 a.address<0> = '0';

 when '101' // 64-bit address, IS0
 assert(AN == 62);
 a.sub_isa = IS0;
 a.address<63:2> = A<61:0>;
 a.address<1:0> = '00';

 when '110' // 64-bit address, IS1
 assert(AN == 63);
 a.sub_isa = IS1;
 a.address<63:1> = A<62:0>;
 a.address<0> = '0';

 UpdateAddressHistoryBuffer(a.address, a.sub_isa);
 return;

K5.1.3.14.4 Parse_ShortAddressBytes()

// ShortAddressBytes()
// ===================
// Reads and parses the short form address used in some packets.

ShortAddressBytes(SubISA sub_isa, bits(S) stream)
 bits(15) data;

 if sub_isa == IS0 then
 data = BitReplacement(stream,
 AddressHistoryBuffer.Get(0).address<16:2>);
 else
 data = BitReplacement(stream,
 AddressHistoryBuffer.Get(0).address<15:1>);

 ShortAddressPacket(sub_isa, data);
 return;

K5.1.3.14.5 ShortAddressPacket()

// ShortAddressPacket()
// ====================
// Parses the short form address used in some packets.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14450
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
ShortAddressPacket(SubISA sub_isa, bits(AN) A)
 a = AddressHistoryBuffer.Get(0);

 assert (AN == 7 || AN == 15);

 case sub_isa of
 when IS0 // IS0
 a.sub_isa = IS0;
 // address<63:AN+2> unchanged
 a.address<AN+1:0> = A:'00';

 when IS1 // IS1
 a.sub_isa = IS1;
 // address<63:AN+1> unchanged
 a.address<AN:0> = A:'0';

 UpdateAddressHistoryBuffer(a.address, a.sub_isa);
 return;

K5.1.3.14.6 Parse_ExactMatchBytes()

// ExactMatchBytes()
// =================
// Reads and parses an exact address match used in some packets.

ExactMatchBytes(bits(8) header, bits(S) stream)
 QE = header<1:0>;
 ExactMatchPacket(QE);
 return;

K5.1.3.14.7 ExactMatchPacket()

// ExactMatchPacket()
// ==================
// Parses an exact address match.

ExactMatchPacket(bits(2) QE)
 q = UInt(QE);
 AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(q);
 AddressHistoryBuffer.Add(entry);
 return;

RTKBWR The Context element value is created by combining the value encoded in a Context Packet and the last Context
element value.

K5.1.3.14.8 Parse_AddressWithContextPacket()

// Parse_AddressWithContextPacket()
// ================================
// Parses a Target Address with Context packet.

Parse_AddressWithContextPacket(bits(8) header, bits(S) stream)
 LongAddressBytes(header, stream);
 ContextBytes(stream);
 AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

 Emit(ContextElement(DSTATE.IA.context_id,
 DSTATE.IA.vmid,
 DSTATE.IA.exception_level,
 DSTATE.IA.security,
 DSTATE.IA.sixty_four_bit));
 Emit(TargetAddressElement(entry));
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14451
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.3.14.9 Parse_ContextBytes()

// ContextBytes()
// ==============
// Generates a Context packet from the stream.

ContextBytes(bits(S) stream)
 payload = ReadAndConsume(8, stream);
 EL = payload<1:0>;
 SBZ(payload<3:2>);
 SF = payload<4>;
 NS = payload<5>;
 V = payload<6>;
 C = payload<7>;
 case C:V of
 when '00'
 ContextPacket('1', C, V, NS, SF, EL,
 DSTATE.IA.vmid,
 DSTATE.IA.context_id);
 when '01'
 bits(32) VMID;
 VMID = POD(32, stream);
 ContextPacket('1', C, V, NS, SF, EL,
 VMID,
 DSTATE.IA.context_id);
 when '10'
 context_id = POD(32, stream);
 ContextPacket('1', C, V, NS, SF, EL,
 DSTATE.IA.vmid,
 context_id);
 when '11'
 bits(32) VMID;
 VMID = POD(32, stream);
 context_id = POD(32, stream);
 ContextPacket('1', C, V, NS, SF, EL,
 VMID,
 context_id);

 return;

// Parse_ContextPacket()
// =====================
// Parses a Context packet.

Parse_ContextPacket(bits(8) header, bits(S) stream)
 P = header<0>;
 if P == '0' then
 ContextPacket(P, '0', '0', '0', '0', '00',
 DSTATE.IA.vmid,
 DSTATE.IA.context_id);
 else
 ContextBytes(stream);

 Emit(ContextElement(DSTATE.IA.context_id,
 DSTATE.IA.vmid,
 DSTATE.IA.exception_level,
 DSTATE.IA.security,
 DSTATE.IA.sixty_four_bit));
 return;

K5.1.3.14.10 ContextPacket()

// ContextPacket()
// ===============
// Processes a Context packet.

ContextPacket(bit P,
 bit C,
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14452
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 bit V,
 bit NS,
 bit SF,
 bits(2) EL,
 bits(32) VMID,
 bits(32) context_id)
 if P == '1' then
 if C == '1' then
 DSTATE.IA.context_id = context_id;
 if V == '1' then
 DSTATE.IA.vmid = VMID;
 DSTATE.IA.exception_level<1:0> = EL<1:0>;
 if NS == '1' then
 DSTATE.IA.security = SecurityLevel_NONSECURE;
 else
 DSTATE.IA.security = SecurityLevel_SECURE;
 DSTATE.IA.sixty_four_bit = (SF == '1');

 return;

K5.1.3.15 Transactions

K5.1.3.15.1 TransactionStartPacket()

// Transaction Start Packet()
// ==========================
// Processes a Transaction Start packet.

TransactionStartPacket()
 Emit(TransactionStartElement());
 DSTATE.IA.T = TRUE;
 if DSTATE.IA.comm_trans then
 UpdateSpecDepth(1);

 return;

K5.1.3.15.2 TransactionCommitPacket()

// TransactionCommitPacket()
// =========================
// Processes a Transacition Commit packet.

TransactionCommitPacket()
 Emit(TransactionCommitElement());
 DSTATE.IA.T = FALSE;
 return;

K5.1.3.16 Timestamps

RKJNMB The Timestamp element value is created by combining the value encoded in a Timestamp Packet and the last
Timestamp element value.

K5.1.3.16.1 Parse_TimestampPacket()

// Parse_TimestampPacket()
// =======================
// Parses a Timestamp packet.

Parse_TimestampPacket(bits(8) header, bits(S) stream)
 bit N;
 bits(64) TS = BitReplacement(stream, DSTATE.IA.timestamp);
 bits(20) COUNT = Zeros();
 N = header<0>;
 if N == '1' then
 COUNT = ULEB128(stream);
 TimestampPacket(N, TS, COUNT);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14453
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 else
 TimestampPacket(N, TS, COUNT);

 return;

K5.1.3.16.2 Parse_CycleCountPackets()

// Parse_CycleCountPackets()
// =========================
// Parses all the various Cycle Count packets.

Parse_CycleCountPackets(bits(8) header, bits(S) stream)
 case header of
 when '0000111x' // Cycle Count format 1
 bit U = header<0>;
 bits(32) COMMIT = Zeros();
 bits(20) COUNT = Zeros();
 if TRCIDR0.COMMOPT == '0' then
 COMMIT = ULEB128(stream);
 if U == '0' then
 COUNT = ULEB128(stream);
 CycleCountFormat1Packet(U, COMMIT, COUNT);

 when '0000110x' // Cycle Count format 2
 bits(8) payload = POD(8, stream);
 bits(4) BBBB = payload<3:0>;
 if TRCIDR0.COMMOPT == '0' then
 bit F = header<0>;
 bits(4) AAAA = payload<7:4>;
 CycleCountFormat2Packet(F, AAAA, BBBB);
 else
 CycleCountFormat2Packet('1', '1111', BBBB);

 when '0001xxxx' // Cycle Count format 3
 bits(2) BB = header<1:0>;
 if TRCIDR0.COMMOPT == '0' then
 bits(2) AA = header<3:2>;
 CycleCountFormat3Packet(AA, BB);
 else
 CycleCountFormat3Packet('00', BB);

 return;

K5.1.3.16.3 TimestampPacket()

// TimestampPacket()
// =================
// Processes a Timestamp packet.

TimestampPacket(bit N, bits(64) TS, bits(CN) COUNT)
 DSTATE.IA.timestamp = TS;
 if N == '1' then
 Emit(TimestampElement(UInt(DSTATE.IA.timestamp), UInt(COUNT)));
 else
 Emit(TimestampElement(UInt(DSTATE.IA.timestamp), integer UNKNOWN));

 return;

K5.1.3.16.4 CycleCountFormat1Packet()

// CycleCountFormat1Packet()
// =========================
// Processes a Cycle Count packet, format 1.

CycleCountFormat1Packet(bit U, bits(N) COMMIT, bits(20) COUNT)
 if UInt(COMMIT) > 0 then
 Emit(CommitElement(UInt(COMMIT)));
 UpdateSpecDepth(-UInt(COMMIT));
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14454
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 if U == '1' then
 Emit(CycleCountElement(integer UNKNOWN));
 else
 Emit(CycleCountElement(UInt(COUNT) + DSTATE.IA.cc_threshold));

 return;

K5.1.3.16.5 CycleCountFormat2Packet()

// CycleCountFormat2Packet()
// =========================
// Processes a Cycle Count packet, format 2.

CycleCountFormat2Packet(bit F, bits(4) AAAA, bits(4) BBBB)
 if F == '1' then
 commit_count = DSTATE.IA.max_spec_depth + UInt(AAAA) - 15;
 else
 commit_count = UInt(AAAA) + 1;

 if commit_count > 0 then
 Emit(CommitElement(commit_count));
 UpdateSpecDepth(-commit_count);
 Emit(CycleCountElement(DSTATE.IA.cc_threshold + UInt(BBBB)));

 return;

K5.1.3.16.6 CycleCountFormat3Packet()

// CycleCountFormat3Packet()
// =========================
// Processes a Cycle Count packet, format 3.

CycleCountFormat3Packet(bits(2) AA, bits(2) BB)
 if !DSTATE.IA.commit_mode then
 Emit(CommitElement(UInt(AA) + 1));
 UpdateSpecDepth(-(UInt(AA) + 1));
 Emit(CycleCountElement(DSTATE.IA.cc_threshold + UInt(BB)));

 return;

K5.1.3.17 Event tracing

K5.1.3.17.1 Parse_EventTracingPacket()

// Parse_EventTracingPacket()
// ==========================
// Parses an Event packet.

Parse_EventTracingPacket(bits(8) header, bits(S) stream)
 EventTracingPacket(header<3:0>);
 return;

K5.1.3.17.2 EventTracingPacket()

// EventTracingPacket()
// ====================
// Processes an Event packet.

EventTracingPacket(bits(4) EVENT)
 for I = 0 to 3
 if EVENT<I> == '1' then
 Emit(EventElement(I));

 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14455
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.3.18 Functions

K5.1.3.18.1 ReadAndConsume()

// ReadAndConsume()
// ================
// Reads the next N bits from the trace byte stream and returns them, also
// updating the trace byte stream pointer.

bits(N) ReadAndConsume(integer N, bits(S) stream)
 if DSTATE.stream_ptr == S then
 print ("Reached end of trace\n");
 assert(FALSE);

 bits(N) data = stream<DSTATE.stream_ptr + N - 1: DSTATE.stream_ptr>;
 DSTATE.stream_ptr = DSTATE.stream_ptr + N;
 return data;

K5.1.3.18.2 HandleAtom()

// HandleAtom()
// =============
// Emits an atom, and updates the speculation depth.

HandleAtom(Atom t)
 Emit(AtomElement(t));
 UpdateSpecDepth(1);
 return;

K5.1.3.18.3 UpdateSpecDepth()

// UpdateSpecDepth()
// ===================
// Update the speculation depth by a number of elements.

UpdateSpecDepth(integer count)
 DSTATE.IA.current_spec_depth = DSTATE.IA.current_spec_depth + count;
 if DSTATE.IA.current_spec_depth > DSTATE.IA.max_spec_depth then
 commit_number = DSTATE.IA.current_spec_depth - DSTATE.IA.max_spec_depth;
 Emit(CommitElement(commit_number));
 DSTATE.IA.current_spec_depth = DSTATE.IA.max_spec_depth;

 return;

K5.1.3.18.4 UpdateAddressHistoryBuffer()

// UpdateAddressHistoryBuffer()
// ============================
// Adds the given address and sub_isa to the AHB.

UpdateAddressHistoryBuffer(bits(64) address, SubISA sub_isa)
 AddressHistoryBuffer.Add(address, sub_isa);
 return;

K5.1.3.18.5 UnknownAddressHistoryBuffer()

// UnknownAddressHistoryBuffer()
// =============================
// Adds an unknown address and sub_isa to the AHB.

UnknownAddressHistoryBuffer()
 AddressHistoryBuffer.Add(Zeros(), IS0);
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14456
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.4 Stage 2, speculation resolution

IKRXLC The resolution stage operates on the Elements in turn. The Elements are buffered until their resolution is determined.

K5.1.4.1 Emit

K5.1.4.1.1 Emit()

// Emit()
// ======
Emit(Element e)
 e.committed = FALSE;
 case e.kind of
 when ELEM_TRACE_INFO ProcessTraceInfo(e);

 // Speculation Support
 when ELEM_CANCEL ProcessCancel(e);
 when ELEM_COMMIT ProcessCommit(e);
 when ELEM_DISCARD ProcessDiscard(e);

 // Transactional Support
 when ELEM_TRANS_START ProcessTransactionStart(e);
 when ELEM_TRANS_COMMIT ProcessTransactionCommit(e);
 when ELEM_TRANS_FAILURE ProcessTransactionFailure(e);

 // Others
 otherwise Stack(e);

K5.1.4.2 Trace Info element

IRJDHD The Trace Info element can be used as a point to start decompression of the trace element stream. When the Trace
Info element is generated there might still be some speculative P0 elements. The number of speculative P0 elements
is indicated by the current speculation depth member of the Trace Info element.

RJKLZY If the analysis of the trace starts with a Trace Info element with a nonzero current speculation depth the
decompressor must ignore the Commit element or Cancel elements for these P0 elements as they will not have been
observed by the decompressor.

K5.1.4.2.1 ProcessTraceInfo()

// ProcessTraceInfo()
// ==================
// Processes a Trace Info element, resetting the analyzer to a known state.

ProcessTraceInfo(Element e)
 if ResolutionQueue.Uninitialized() then
 ResolutionQueue.Initialize(e.payload.current_spec_depth);

 if e.payload.in_transaction then
 TransactionQueue.StartTransaction();

 Stack(e);
 return;

K5.1.4.3 Commit element

RWGSCJ The Commit element marks a number of P0 elements as resolved, and if at the head of the queue pass these elements
onto the next stage of the decompressor.

K5.1.4.3.1 ProcessCommit()

// ProcessCommit()
// ===============
// Processes a Commit element, committing the given number of speculative
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14457
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
// elements.

ProcessCommit(Element e)
 integer I = 0;

 repeat
 if !ResolutionQueue.Aligned() then
 I = I + 1;
 ResolutionQueue.Align();
 else
 case ResolutionQueue.Front().kind of

 when ELEM_EXCEPTION, ELEM_ATOM, ELEM_Q, ELEM_SOURCE_ADDRESS
 if !ResolutionQueue.Front().committed then
 I = I + 1;

 ProcessTransaction(ResolutionQueue.Front());
 AnalyzeElement(ResolutionQueue.Front());
 ResolutionQueue.PopFront();

 when ELEM_TRANS_START
 if (TRCIDR0.COMMTRANS == '0' &&
 !ResolutionQueue.Front().committed) then
 I = I + 1;
 ProcessTransaction(ResolutionQueue.Front());
 ResolutionQueue.PopFront();

 otherwise
 ProcessTransaction(ResolutionQueue.Front());
 ResolutionQueue.PopFront();

 until I == e.payload.count;

 return;

K5.1.4.4 Cancel element

INYYFS For example, if a Cancel element indicates that the three most recent P0 elements are canceled, then the trace
analyzer must discard:

• The Cancel element.

• All elements back to, and including, the third most recent P0 element.

• Any Trace On elements encountered in that section of the element stream.

RSPBCG When discarding P0 elements that have been canceled, a trace analyzer must also discard many other element types
that occur in the element stream between the Cancel element and the oldest P0 element that the Cancel element
cancels. Table K5-2 shows which elements must be discarded.

Table K5-2 Cancel Element Operation

Element Behavior on cancelation

Atom Remove

Commit Illegal

Context Remove

Cycle Count Process

Discard Illegal

Exception Remove
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14458
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
RCBYHC When a Cancel element occurs, a trace analyzer must not discard Cycle Count elements.

RGZWHY When a Cancel element occurs, a trace analyzer must not discard ETEEvents.

RZLVXG When a Cancel element occurs, a trace analyzer must discard Mispredict elements.

K5.1.4.4.1 ProcessCancel()

// ProcessCancel()
// ===============
// Processes a Cancel element, canceling the given number of speculative
// elements.

ProcessCancel(Element e)
 integer I = 0;

 repeat
 if !ResolutionQueue.Aligned() then
 I = I + 1;
 ResolutionQueue.Align();
 else
 case ResolutionQueue.Back().kind of

 when ELEM_ATOM, ELEM_EXCEPTION, ELEM_Q, ELEM_SOURCE_ADDRESS
 if !ResolutionQueue.Back().committed then
 I = I + 1;
 when ELEM_TRANS_START
 if (TRCIDR0.COMMTRANS == '0' &&
 !ResolutionQueue.Back().committed) then
 I = I + 1;
 TransactionQueue.EndTransaction();
 when ELEM_CYCLE_COUNT, ELEM_EVENT, ELEM_TRACE_INFO
 AnalyzeElement(ResolutionQueue.Back());

 when ELEM_TIMESTAMP
 AnalyzeElement(ResolutionQueue.Back());

 ResolutionQueue.PopBack();
 until I == e.payload.count;

 return;

Event Keep

Mispredict Remove

Overflow Illegal

Target Address Remove

Source Address Remove

Timestamp Process

Trace Info Keep

Trace On Remove

Transaction Start Remove

Transaction Failure Remove

Table K5-2 Cancel Element Operation (continued)

Element Behavior on cancelation
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14459
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.4.5 Discard element

ILYPKS A Discard element indicates that tracing has become inactive while uncommitted P0 elements remain.

RYHRPG The trace analyzer must cancel all speculative P0 elements.

K5.1.4.5.1 ProcessDiscard()

// ProcessDiscard()
// ================
// Processes a Discard element, discarding all speculative elements.

ProcessDiscard(Element e)

 while !ResolutionQueue.Aligned() do
 ResolutionQueue.Align();

 while ResolutionQueue.Length() > 0 do
 case ResolutionQueue.Back().kind of

 when ELEM_EVENT, ELEM_TRACE_INFO, ELEM_TIMESTAMP
 AnalyzeElement(ResolutionQueue.Back());
 ResolutionQueue.PopBack();

 otherwise
 ResolutionQueue.PopBack();

 TransactionQueue.EndTransaction();
 return;

K5.1.4.6 Stack

IJTJSW The Elements processed by this stage of the decompressor must be stored temporarily until the speculation has been
resolved.

K5.1.4.6.1 Stack()

// Stack()
// =======
// Pushes an element onto the resolution queue.
// TODO: Move to ResolutionQueue.asl and rename to Enqueue

Stack(Element e)
 ResolutionQueue.Push(e);
 return;

K5.1.5 Stage 2, transaction resolution

K5.1.5.1 Transaction

K5.1.5.1.1 ProcessTransaction()

// ProcessTransaction()
// ====================
// Push the element into the transaction queue if we are in a transaction,
// else analyze it immediately.

ProcessTransaction(Element e)
 if TransactionQueue.InTransaction() then
 TransactionQueue.Push(e);
 else
 AnalyzeElement(e);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14460
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.5.2 Transaction Start element

K5.1.5.2.1 ProcessTransactionStart()

// ProcessTransactionStart()
// =========================
// Processes a Transaction Start element, marking we are now in a transaction.

ProcessTransactionStart(Element e)
 TransactionQueue.StartTransaction();
 Stack(e);
 return;

K5.1.5.3 Transaction Commit element

K5.1.5.3.1 ProcessTransactionCommit()

// ProcessTransactionCommit()
// ==========================
// Processes a Transaction Commit element, committing all elements in the
// transaction queue and ending the current transaction.

ProcessTransactionCommit(Element e)
 while TransactionQueue.Length() > 0 do
 AnalyzeElement(TransactionQueue.Front());
 TransactionQueue.FrontPop();
 TransactionQueue.EndTransaction();

K5.1.5.4 Transaction Failure element

RXZBFV When a Transaction Failure element occurs, the trace analyzer must process the Cycle Count elements if it is
maintaining a cumulative cycle count. Otherwise it must discard the Cycle Count elements that are associated with
P0 elements within the transaction.

RKPKFL When a Transaction Failure element occurs, a trace analyzer must not discard the ETEEvents.

K5.1.5.4.1 ProcessTransactionFailure()

// ProcessTransactionFailure()
// ===========================
// Processes a Transaction Failure element, discarding all elements in
// the transaction queue and ending the transaction.

ProcessTransactionFailure(Element e)
 TransactionQueue.EndTransaction();
 return;

K5.1.6 Stage 3, analysis

K5.1.6.1 Analyze element

K5.1.6.1.1 AnalyzeElement()

// AnalyzeElement()
// ================
// Analyzes any element.

AnalyzeElement(Element e)
 case e.kind of
 when ELEM_TARGET_ADDRESS AnalyzeTargetAddress(e);
 when ELEM_CONTEXT AnalyzeContext(e);
 when ELEM_MISPREDICT AnalyzeMispredict(e);
 when ELEM_TRACE_ON AnalyzeTraceOn(e);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14461
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 when ELEM_ATOM AnalyzeAtom(e);
 when ELEM_EXCEPTION AnalyzeException(e);
 when ELEM_Q AnalyzeQ(e);
 when ELEM_CANCEL ERROR("cancel element reached analysis stage");
 when ELEM_COMMIT ERROR("commit element reached analysis stage");
 when ELEM_DISCARD AnalyzeDiscard(e);
 when ELEM_OVERFLOW AnalyzeOverflow(e);
 when ELEM_EVENT AnalyzeEvent(e);
 when ELEM_TRACE_INFO AnalyzeTraceInfo(e);
 when ELEM_TIMESTAMP AnalyzeTimestamp(e);
 when ELEM_CYCLE_COUNT AnalyzeCycleCount(e);
 when ELEM_SOURCE_ADDRESS AnalyzeSourceAddress(e);
 otherwise
 ERROR("Unrecognised element kind in analysis stage");

 return;

K5.1.6.2 Retained state

RGWFMZ The trace analyzer must maintain a copy of the context:

• Context identifier.

• Virtual context identifier.

• AArch64 or AArch32 state

• Exception level

• Security state

K5.1.6.2.1 ReconstructState()

// ReconstructState
// ================
// Temporary storage of reconstructor state, can change after resolution.

type ReconstructState is (
 bits(64) address, // Current address
 bits(32) context_id, // Current context ID
 bits(32) vmid, // Current VMID
 bits(2) exception_level, // Current Exception level
 SecurityLevel security, // Current Security state
 boolean sixty_four_bit, // Are we in AArch64?
 SubISA sub_isa // Current sub_isa
)

K5.1.6.3 Operation of the return stack

ISZYZF The trace analyzer maintains an independent copy of the return stack which is used to determine when Target
Address elements have been removed and then infer the target of indirect P0 instructions.

ILGKYD The trace analyzer return stack only operates after a certain point in the tracing flow, that is after the trace analyzer
has decoded the trace packets and after all the elements that indicate speculative execution, except for Mispredict
elements, have been removed from the trace element stream.

RHYMQH Whenever a Branch with Link instruction is initially traced with an E Atom element, the link return address and
sub_isa are pushed onto the trace analyzer return stack. This means that the trace unit return stack grows with each
new entry, until its maximum depth is reached and the oldest entries start being discarded.

RMGHSB Whenever an indirect P0 instruction is traced with a final E Atom element, and no Target Address element is traced
before the next P0 element, the top entry of the trace analyzer return stack is removed and the value of that entry is
the target of the indirect P0 instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14462
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
RXSVZC A trace analyzer is not required to be aware of the depth of the trace unit return stack, and implements a return stack
depth of 15 entries.

IGBVND A trace analyzer return stack push always occurs whenever a Branch with Link instruction is traced with an E Atom
element, even if the status of the E Atom element later changes to be an N Atom element as a result of a subsequent
Mispredict element.

For example, the following sequence might occur:

1. The PE speculatively executes a Branch with Link instruction that the trace unit traces with an E Atom
element. The trace unit pushes the target address of the Branch with Link instruction onto the trace unit return
stack.

2. The trace analyzer receives the E Atom element and pushes the target address of the Branch with Link
instruction onto the trace analyzer return stack.

3. The PE then cancels the speculative execution. The trace unit generates a Mispredict element.

4. The trace analyzer receives the Mispredict element and changes the status of the E Atom element so that it
becomes an N Atom element. The trace analyzer then knows which direction the program flow has taken, and
also knows that the target address stored at the top of the trace analyzer return stack is mispredicted.

Note: Whenever the trace unit generates a Mispredict element to correct a Branch with Link instruction to an N Atom
element, the mispredicted address remains in the return stack because there is no reason to remove it. There are no
adverse consequences of leaving such a mispredicted address in the stack.

RGMTBD If more than one Mispredict element is output corresponding to a particular Atom element, the status of the Atom
element alternates between E and N until it settles in its final E or N state. If the final state of the Atom element is
E, then when the PE executes an indirect P0 instruction and the trace unit compares the target address with the top
entry in its return stack, an address match might occur. An address match can only occur if the final status of the
Atom element is E.

IMPGDD The trace analyzer never needs to discard the entries in its copy of the return stack. If the trace unit discards the
entries in its return stack then the entries in the trace analyzer return stack remain. As more entries are pushed on to
the return stack, the old entries are discarded when they are pushed off the end of the stack.

IWJLDR The trace analyzer does not need to prevent the return stack from being modified while in a branch broadcasting
region. The fact that the trace unit discards the entries in its return stack when entering the branch broadcasting
region ensures that the return stack in the trace unit and the return stack in the trace analyzer remain synchronized.

K5.1.6.3.1 UpdateReturnStack()

// UpdateReturnStack()
// ===================

// Push the given instruction to the return stack if necessary.

UpdateReturnStack(DecodedInst inst)
 if inst.is_link then
 nxt_state = DSTATE.current_analyzer_state;
 nxt_state.address = nxt_state.address + inst.size;
 if !nxt_state.sixty_four_bit then
 nxt_state.address<63:32> = Zeros();

 ReturnStack.Push(nxt_state.address, nxt_state.sub_isa);

 return;

K5.1.6.4 Atom element

RSKGMZ An Atom element implies that one or more instructions have been traced, up to and including the next P0 instruction.

IVHHGW A trace analyzer must analyze each instruction in the program image from the current address until it observes a P0
instruction. This indicates that the PE has executed each instruction between the current address and the P0
instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14463
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.6.4.1 AnalyzeAtom()

// AnalyzeAtom()
// =============
// Analyzes an atom element.

AnalyzeAtom(Element e)
 if e.payload.atom_type == Atom_E then
 DSTATE.most_recent_branch_was_taken = TRUE;
 else
 DSTATE.most_recent_branch_was_taken = FALSE;

 CheckForReturnStackMatch();

 if DSTATE.sync_state == ADDRESS_STATE then
 DSTATE.sync_state = NOT_SYNC_STATE;
 if DSTATE.sync_state != FULL_SYNC_STATE then
 // If we are unsure of context or address then we cannot meaningfully
 // analyze the atom.
 return;

 boolean cur_inst_is_branch = FALSE;

 // Continue logging instructions until we hit a P0 instruction.
 while !cur_inst_is_branch do
 if !ProgramImage.DecodeAvailable() then
 DSTATE.sync_state = CONTEXT_STATE;
 if DSTATE.return_stack_clear_pending then
 ReturnStack.Reset();
 return;

 decoded_inst = ProgramImage.DecodeNextInst();

 case decoded_inst.branchtype of
 when InstType_BRANCH_DIR, InstType_BRANCH_INDIR
 ProcessBranchInstruction(decoded_inst,
 DSTATE.most_recent_branch_was_taken);
 cur_inst_is_branch = TRUE;
 UpdateReturnStack(decoded_inst);
 when InstType_WFX, InstType_ISB
 ProcessBranchInstruction(decoded_inst,
 DSTATE.most_recent_branch_was_taken);
 cur_inst_is_branch = TRUE;
 when InstType_OTHER
 ReconstructState nxt_state = DSTATE.current_analyzer_state;
 nxt_state.address = nxt_state.address + decoded_inst.size;
 if !nxt_state.sixty_four_bit then
 // mask off the left-most bits
 nxt_state.address<63:32> = Replicate('0', 32);
 DSTATE.next_analyzer_state = nxt_state;

 OutputInstruction(decoded_inst);
 DSTATE.current_analyzer_state = DSTATE.next_analyzer_state;

 if DSTATE.return_stack_clear_pending then
 ReturnStack.Reset();
 return;

K5.1.6.5 Context element

K5.1.6.5.1 AnalyzeContext()

// AnalyzeContext()
// ================
// Analyzes a context element.

AnalyzeContext(Element e)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14464
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 DSTATE.current_analyzer_state.context_id = e.payload.context_id;
 DSTATE.current_analyzer_state.vmid = e.payload.vmid;
 DSTATE.current_analyzer_state.security = e.payload.security;
 DSTATE.current_analyzer_state.exception_level = e.payload.exception_level;
 DSTATE.current_analyzer_state.sixty_four_bit = e.payload.sixty_four_bit;

 case DSTATE.sync_state of
 when NOT_SYNC_STATE
 DSTATE.sync_state = CONTEXT_STATE;
 when ADDRESS_STATE
 DSTATE.sync_state = FULL_SYNC_STATE;
 otherwise

 return;

K5.1.6.6 Exception element

RPJFBL For an Exception element, a trace analyzer must analyze each instruction from the current address, up to but not
including the exception return address that the element provides. The PE has executed each instruction in that
address range. The number of instructions that are executed can be zero.

Note: Trace analysis tools must be aware, that if PE execution is at the top of memory space, the address that the
Exception element provides might be lower than the target address of the most recent P0 element.

K5.1.6.6.1 AnalyzeException()

// AnalyzeException()
// ==================
// Analyzes an exception element.

AnalyzeException(Element e)
 CheckForReturnStackMatch();

 if DSTATE.sync_state == CONTEXT_STATE then
 DSTATE.sync_state = NOT_SYNC_STATE;
 if DSTATE.sync_state != FULL_SYNC_STATE then
 return;

 integer PER = UInt(e.payload.address);
 if (ExceptionWithUnknownAddress(e)) then
 continue_forward = FALSE;
 elsif UInt(DSTATE.current_analyzer_state.address) < PER then
 continue_forward = TRUE;
 else
 continue_forward = FALSE;

 // Continue logging instructions until we reach the specified address.
 while continue_forward do
 if !ProgramImage.DecodeAvailable() then
 DSTATE.sync_state = CONTEXT_STATE;
 if DSTATE.return_stack_clear_pending then
 ReturnStack.Reset();
 return;

 decoded_inst = ProgramImage.DecodeNextInst();

 if decoded_inst.branchtype == InstType_OTHER then
 ReconstructState nxt_state = DSTATE.current_analyzer_state;
 nxt_state.address = nxt_state.address + decoded_inst.size;
 DSTATE.next_analyzer_state = nxt_state;
 if !DSTATE.next_analyzer_state.sixty_four_bit then
 // mask off the left-most bits
 DSTATE.next_analyzer_state.address<63:32> = Replicate('0', 32);
 else
 ProcessBranchInstruction(decoded_inst, FALSE);
 UpdateReturnStack(decoded_inst);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14465
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 OutputInstruction(decoded_inst);

 bits(64) next_addr = DSTATE.current_analyzer_state.address + decoded_inst.size;
 DSTATE.current_analyzer_state.address = next_addr;
 if !DSTATE.current_analyzer_state.sixty_four_bit then
 // mask off the left-most bits
 DSTATE.current_analyzer_state.address<63:32> = Replicate('0', 32);

 if UInt(DSTATE.current_analyzer_state.address) >= PER then
 continue_forward = FALSE;

 if DSTATE.return_stack_clear_pending then
 ReturnStack.Reset();

 return;

K5.1.6.7 Source address element

RVDRPP A Source Address element indicates that one or more instructions have been traced, up to and including the
instruction at the address associated with the element.

RYJHMV A Source Address element indicates that the instruction at the address associated with the element was taken.

IGWZMF A trace analyzer must analyze each instruction in the program image from the current address until it analyzes the
instruction at the address associated with the Source Address element. This indicates that the PE has executed each
instruction between the current address and that instruction, and each P0 instruction except the final instruction was
not taken.

K5.1.6.7.1 AnalyzeSourceAddress()

// AnalyzeSourceAddress()
// ======================
// Analyzes a source address element.

AnalyzeSourceAddress(Element e)
 CheckForReturnStackMatch();

 if DSTATE.sync_state == ADDRESS_STATE then
 DSTATE.sync_state = NOT_SYNC_STATE;
 if DSTATE.sync_state != FULL_SYNC_STATE then
 // If we are unsure of context or address then we cannot meaningfully
 // analyze the source address.
 return;

 DSTATE.most_recent_branch_was_taken = FALSE;
 integer address = UInt(e.payload.address);

 // Continue logging instructions until we hit the specified address.
 while (UInt(DSTATE.current_analyzer_state.address) <= address) do
 if !ProgramImage.DecodeAvailable() then
 DSTATE.sync_state = CONTEXT_STATE;
 if DSTATE.return_stack_clear_pending then
 ReturnStack.Reset();
 return;

 decoded_inst = ProgramImage.DecodeNextInst();

 if decoded_inst.branchtype == InstType_OTHER then
 ReconstructState nxt_state = DSTATE.current_analyzer_state;
 nxt_state.address = nxt_state.address + decoded_inst.size;
 DSTATE.next_analyzer_state = nxt_state;
 if !DSTATE.next_analyzer_state.sixty_four_bit then
 DSTATE.next_analyzer_state.address<63:32> = Replicate('0', 32);
 else
 if DSTATE.current_analyzer_state.address == e.payload.address then
 DSTATE.most_recent_branch_was_taken = TRUE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14466
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 ProcessBranchInstruction(decoded_inst,
 DSTATE.most_recent_branch_was_taken);

 cur_inst_is_branch = TRUE;
 UpdateReturnStack(decoded_inst);

 OutputInstruction(decoded_inst);

 DSTATE.current_analyzer_state = DSTATE.next_analyzer_state;

 if DSTATE.return_stack_clear_pending then
 ReturnStack.Reset();
 return;

K5.1.6.8 Target Address element

K5.1.6.8.1 AnalyzeTargetAddress()

// AnalyzeTargetAddress()
// ======================
// Analyzes a target address element.

AnalyzeTargetAddress(Element e)
 DSTATE.current_analyzer_state.address = e.payload.address;
 DSTATE.current_analyzer_state.sub_isa = e.payload.sub_isa;

 case DSTATE.sync_state of
 when NOT_SYNC_STATE
 DSTATE.sync_state = ADDRESS_STATE;
 when CONTEXT_STATE
 DSTATE.sync_state = FULL_SYNC_STATE;
 otherwise

 return;

K5.1.6.9 Trace Info element

K5.1.6.9.1 AnalyzeTraceInfo()

// AnalyzeTraceInfo()
// ==================
// Analyzes a trace info element.

AnalyzeTraceInfo(Element e)
 CheckForReturnStackMatch();
 return_stack_clear_pending = TRUE;
 return;

K5.1.6.10 Trace On element

K5.1.6.10.1 AnalyzeTraceOn()

// AnalyzeTraceOn()
// ================
// Analyzes a trace on element.

AnalyzeTraceOn(Element e)
 return_stack_clear_pending = TRUE;
 DSTATE.sync_state = NOT_SYNC_STATE;
 return;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14467
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.6.11 Mispredict element

RZRVMZ When a Mispredict element corresponds to an Atom element for a direct P0 instruction, before the trace analyzer
can calculate the target of the direct P0 instruction, it must apply any applicable Mispredict elements so that it can
determine whether it is an E Atom element or an N Atom element.

K5.1.6.11.1 AnalyzeMispredict()

// AnalyzeMispredict()
// ===================
// Analyzes a mispredict element.

AnalyzeMispredict(Element e)
 DSTATE.most_recent_branch_was_taken = !DSTATE.most_recent_branch_was_taken;

 ReconstructState nxt_state;
 nxt_state = UpdateBranchState(DSTATE.most_recent_branch_decoded_inst,
 DSTATE.most_recent_branch_state,
 DSTATE.most_recent_branch_was_taken);

 DSTATE.current_analyzer_state = nxt_state;

 return;

K5.1.6.12 ETEEvent element

K5.1.6.12.1 AnalyzeEvent()

// AnalyzeEvent()
// ==============
// Analyzes an event element.

AnalyzeEvent(Element e);

K5.1.6.13 Discard element

IJYPQC When a trace analyzer encounters a Discard element it must be aware that if the last committed P0 element is a
conditional P0 instruction, the E or N status of that Atom element might not be correct. This is because the trace unit
might be unable to generate any Mispredict elements that the conditional P0 instruction might require.

IHPQFK If the last P0 instruction is an indirect P0 instruction then the target address indicated in the trace stream might be
incorrect. This is because the trace unit might be unable to generate any Target Address elements that the indirect
P0 instruction might require.

K5.1.6.13.1 AnalyzeDiscard()

// AnalyzeDiscard()
// ================
// Analyzes a discard element.

AnalyzeDiscard(Element e)
 DSTATE.sync_state = NOT_SYNC_STATE;
 return;

K5.1.6.14 Overflow element

K5.1.6.14.1 AnalyzeOverflow()

// AnalyzeOverflow()
// =================
// Analyzes an overflow element.

AnalyzeOverflow(Element e)
 DSTATE.sync_state = NOT_SYNC_STATE;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14468
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 return;

K5.1.6.15 Q element

ITXGPZ When a trace analyzer encounters a Q element which has a count of M executed instructions, it must proceed
through the program image, analyzing each instruction until it has analyzed M instructions. If it encounters a
conditional P0 instruction, the status of the condition code check for that instruction is UNKNOWN. The status of
these P0 instructions is not explicitly given in the trace element stream but it might be possible to infer the status of
a given P0 instruction that is based on other trace that is generated. After the trace analyzer has analyzed M
instructions, the following Target Address element indicates where PE execution continues.

K5.1.6.15.1 AnalyzeQ()

// AnalyzeQ()
// ==========
// Analyzes a Q element.

AnalyzeQ(Element e)
 CheckForReturnStackMatch();

 q_with_count = e.payload.count > 0;
 if q_with_count then
 further_analysis_possible = TRUE;
 else
 further_analysis_possible = FALSE;
 DSTATE.sync_state = CONTEXT_STATE;
 // If we have no count then just wait to resync, it is not safe to guess

 i = 0;
 while further_analysis_possible do
 if ProgramImage.DecodeAvailable() then
 decoded_inst = ProgramImage.DecodeNextInst();
 addr = DSTATE.current_analyzer_state.address + decoded_inst.size;
 DSTATE.current_analyzer_state.address = addr;
 else
 DSTATE.sync_state = CONTEXT_STATE;
 return;

 i = i + 1;

 further_analysis_possible = (i < e.payload.count);
 OutputInstruction(decoded_inst);

 return;

K5.1.6.16 Timestamp element

K5.1.6.16.1 AnalyzeTimestamp()

// AnalyzeTimestamp()
// ==================
// Analyzes a timestamp element.

AnalyzeTimestamp(Element e);

K5.1.6.17 Cycle Count element

IHTQDP To produce a total cycle count, a trace analyzer can cumulatively add the values from all Cycle Count elements.

RTVWLZ A trace analyzer must not use the cycle count values in Timestamp elements to produce a total cycle count. Such
cycle count values are not a Cycle Count element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14469
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
K5.1.6.17.1 AnalyzeCycleCount()

// AnalyzeCycleCount()
// ===================
// Analyzes a cycle count element.

AnalyzeCycleCount(Element e);

K5.1.6.18 Functions

K5.1.6.18.1 OutputInstruction()

// OutputInstruction()
// ===================
// Log that an instruction has been executed.

OutputInstruction(DecodedInst inst)
 DSTATE.inst_out_count = DSTATE.inst_out_count + 1;
 return;

K5.1.6.18.2 CheckReturnStackMatch()

// CheckForReturnStackMatch()
// ==========================
// Check if there is a return stack match, and log the result.

CheckForReturnStackMatch()
 if DSTATE.sync_state == CONTEXT_STATE then
 if !ReturnStack.IsEmpty() then
 ReturnStackEntry top = ReturnStack.Pop();
 DSTATE.current_analyzer_state.address = top.address;
 DSTATE.current_analyzer_state.sub_isa = top.sub_isa;
 DSTATE.sync_state = FULL_SYNC_STATE;

 return;

K5.1.6.18.3 UpdateBranchState()

// UpdateBranchState()
// ===================
// Returns an updated state based on what was executed.

ReconstructState UpdateBranchState(DecodedInst inst,
 ReconstructState in_state,
 boolean branch_was_taken)

 out_state = DSTATE.current_analyzer_state;
 out_state.address = in_state.address;
 out_state.sixty_four_bit = in_state.sixty_four_bit;
 out_state.sub_isa = in_state.sub_isa;

 if branch_was_taken then
 if inst.branchtype == InstType_BRANCH_INDIR then
 DSTATE.sync_state = CONTEXT_STATE;
 else
 if inst.branchtype == InstType_BRANCH_DIR then
 out_state.address = out_state.address + inst.addressoffset;
 else
 out_state.address = out_state.address + inst.size;
 if !in_state.sixty_four_bit then
 out_state.address<63:32> = Zeros();
 out_state.sub_isa = inst.next_sub_isa;
 else
 out_state.address = out_state.address + inst.size;
 if !out_state.sixty_four_bit then
 out_state.address<63:32> = Zeros();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14470
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.1 Trace analyzer
 return out_state;

K5.1.6.18.4 ProcessBranchInstruction()

// ProcessBranchInstruction()
// ==========================
// Store current state before a branch instruction, as it could change if there
// is a misprediction.

ProcessBranchInstruction(DecodedInst inst, boolean branch_was_taken)
 DSTATE.most_recent_branch_state = DSTATE.current_analyzer_state;
 DSTATE.most_recent_branch_decoded_inst = inst;
 DSTATE.most_recent_branch_was_taken = branch_was_taken;
 DSTATE.next_analyzer_state = UpdateBranchState(inst,
 DSTATE.current_analyzer_state,
 branch_was_taken);

 return;

K5.1.6.18.5 DecodedInst()

// DecodedInst
// ===========
// Data extracted from an instruction.

type DecodedInst is (
 bits(32) instruction, // The instruction itself
 InstType branchtype, // Type of P0 instruction
 boolean is_link, // Is it a linking branch?
 integer size, // Size (32 or 16)
 SubISA next_sub_isa, // sub_isa of the following instruction to be
 // executed
 bits(64) addressoffset
)

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14471
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
K5.2 ETE programming

K5.2.1 Example code sequences

SPWXHJ The enabling sequence should be from the trace sink, such as the trace buffer, to the trace unit. This is to ensure the
trace sink is ready to capture trace before the trace unit generates any trace.

SWPVBX The disabling sequence should be from the trace unit to the trace sink. This is to ensure that any buffered trace
reaches the trace sink while the trace sink is still enabled.

K5.2.1.1 Enabling the trace unit

SXCRYM The following example describes the code sequence to enable the trace unit.

 ;; Program the trace unit registers, except TRCPRGCTLR
 ISB ;; Synchronize the System Register updates.
 MOV x0, #0x1
 MSR TRCPRGCTLR, x0 ;; Enable the ETE.
 ;; Wait for TRCSTATR.IDLE==0
poll_idle
 ISB ;; Synchronize the write to TRCPRGCTLR
 MRS x1, TRCSTATR
 TBNZ x1, #1, poll_idle

K5.2.1.2 Disabling the trace unit

SVRJNB The following example describes the code sequence to disable the trace unit.

 STP x0, x1, [sp, #-16]!

 MRS x0, TRFCR_EL1 ;; Save the current programming of TRFCR_EL1.
 MOV x1, #0x3
 BIC x1, x0, x1
 MSR TRFCR_EL1, x1 ;; Clear the values of TRFCR_EL1.ExTRE.
 ;; to put the PE in to a Trace Prohibited region
 ISB ;; Synchronize the entry to the Trace Prohibited region
 TSB CSYNC ;; Ensure that all trace has reached the
 ;; trace buffer and address translations have
 ;; taken place.
 MOV x1, #0x0
 MSR TRCPRGCTLR, x1 ;; Disable the trace unit
 ;; Wait for TRCSTATR.IDLE==1 and TRCSTATR.PMSTABLE==1
poll_idle
 ISB
 MRS x1, TRCSTATR
 AND x1, x1, #3
 CMP x1, #3
 B.NE poll_idle

 MSR TRFCR_EL1, x0 ;; Restore the programming of TRFCR_EL1.

 LDP x0, x1, [sp], #16

K5.2.1.3 Example save restore routine

SXJRPQ The following example describes the code sequence for saving the trace unit state over a power down.

 STP x0, x1, [sp, #-16]!
 ;; Enter a Trace Prohibited region
 MRS x0, TRFCR_EL1 ;; Save the current programming of TRFCR_EL1.
 MOV x1, #0x3
 BIC x1, x0, x1
 MSR TRFCR_EL1, x1 ;; Clear the values of TRFCR_EL1.ExTRE.
 ISB ;; Synchronizes the entry to the Trace Prohibited region
 TSB CSYNC ;; Ensure the trace unit is synchronized
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14472
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
 MOV x1, #1
 MSR OSLAR_EL1, x1 ;; Lock the OS lock
 ;; Wait for TRCSTATR.PMSTABLE==1
poll_pmstable
 ISB
 MRS x1, TRCSTATR
 TST x1, #2
 B.EQ poll_pmstable

 MSR TRFCR_EL1, x0 ;; Restore the programming of TRFCR_EL1.

<save the trace unit registers, including TRCPRGCTLR>

 ;; Wait for TRCSTATR.IDLE==1
poll_idle
 ISB
 MRS x1, TRCSTATR
 TST x1, #1
 B.EQ poll_idle

 LDP x0, x1, [sp], #16

SDNGPX The following example describes the code sequence for restoring the trace unit state when power is restored.

<restore the trace unit registers, including TRCPRGCTLR>

 STP x0, x1, [sp, #-16]!
 MOV x0, #0
 MSR OSLAR_EL1, x0 ;; Clear the OS lock
 LDP x0, x1, [sp], #16
 ISB

IDHQGM When programming the trace unit, it is important to be aware that the loops that poll TRCSTATR in Figure D4-2
might never complete. Arm recommends that such scenarios are avoided except in rare conditions. However, some
system conditions might prevent a trace unit from either leaving the idle state or becoming idle. In particular, a trace
unit might never become idle if the trace unit is unable to output all trace due to a system condition.

STTPKR If multiple reads of TRCSTATR are required, a Context synchronization event is required between each read of
TRCSTATR to ensure any change to the trace unit state is observed.

K5.2.2 Minimal programming

IFGLHF Table K5-3 gives the values for programming the trace unit to enable tracing of a single process at Non-secure EL0.
When FEAT_RME is implemented, this will enable tracing for both Non-secure EL0 and Realm EL0.

Table K5-3 Minimal programming values

Register Value Description

TRCCONFIGR 0x000018C1 Enable:

• The return stack.

• Global timestamping.

• Context identifier tracing.

• Virtual context identifier tracing.

TRCEVENTCTL0R 0x00000000 Disable all event tracing

TRCEVENTCTL1R 0x00000000

TRCSTALLCTLR 0x00000000 Disable stalling, if implemented

TRCSYNCPR 0x0000000C Enable trace protocol synchronization every 4096 bytes of trace

TRCTRACEIDR Nonzero Set a value for the trace ID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14473
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
SHBZVM Disabling tracing of Secure state might not be strictly necessary as secure tracing might be disabled by
MDCR_EL3.STE, but Arm recommends not enabling trace for un-required Exception levels, to limit the amount of
trace.

SQCWTJ Disabling tracing of EL1 and EL2 of Non-secure state might not be strictly necessary as non-secure tracing might
be disabled by TRFCR_EL2.E2TRE and TRFCR_EL1.E1TRE, but Arm recommends not enabling trace for
un-required Exception levels to limit the amount of trace.

K5.2.3 Filtering models

IVDBGM Different trace applications require different usage models of a trace unit. For example, one trace application might
only require basic program flow trace, whereas another might require tracing of a specific program function.

The ETE architecture provides for each of these usage models. A trace unit can be implemented with a particular
set of implementation options, so that a trade-off between functionality and cost can be achieved in meeting the
requirements of a trace application. Discovery of the particular set of implementation is achieved by reading
TRCIDR0 to TRCIDR13.

In a trace unit that includes all implementation options, the simplest way to use the trace unit is to turn on tracing
of all aspects of PE operation and let the trace analyzer pick out the required information. However, full trace comes
at a high cost in terms of port bandwidth and trace storage. These costs have an impact on the design of a system,
so that a higher pin count and larger buffers might be required.

A trace unit provides on-chip filtering, that facilitates a reduction of the trace bandwidth and therefore provides for
a lower system cost. By suspending and enabling trace during a trace that is run to suit the particular requirements
of the trace run, the best use of both port bandwidth and trace storage can be made.

The ETE architecture provides the following basic filtering models:

Continuous tracing

This is where no filtering is applied. The following modes can be used:

• Continuous instruction tracing only, where only the instruction trace stream is output.

Instruction-based filtering

This is where instruction tracing, and data tracing if it is implemented and enabled, is active only for
certain code sequences, such as for a particular process or function.

TRCTSCTLR 0x00000000 Disable the timestamp event

The trace unit still generates timestamps due to other reasons such as trace protocol
synchronization.

TRCVICTLR 0x006F0201 Enable ViewInst to trace everything, with the start/stop logic started

Disable:

• EL1 in Non-secure state.

• EL2 in Non-secure state.

• EL1 in Realm state.

• EL2 in Realm state.

• EL2-EL0 in Secure state.

• EL3.

TRCVIIECTLR 0x00000000 No address range filtering for logic started

TRCVISSCTLR 0x00000000 No start or stop points for ViewInst

Table K5-3 Minimal programming values (continued)

Register Value Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14474
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
For all the possible filtering modes, the trace unit can be programmed before a trace run to enable various options,
including:

• Context identifier tracing, if implemented, to indicate to a trace analyzer the Context identifier value.

• Virtual context identifier tracing, if implemented, to distinguish between different virtual machines.

• Cycle counting, to enable a trace analyzer to analyze program performance.

• Global timestamping, if implemented, to enable correlation of the two trace streams with other trace sources
in the system.

• Branch broadcasting, if implemented, to force all taken P0 instruction targets to be traced with an explicit
target address.

A trace unit is programmed for continuous instruction tracing when no filtering is applied to the instruction trace
stream.

When a trace unit is programmed for continuous instruction tracing, ViewInst is always active during a trace run.
See Filtering trace generation.

K5.2.4 Filtering used the exclude function

IWPCCT The following table describes the programming for excluding a single address range. When FEAT_RME is
implemented, this applies to both Non-secure EL0 and Realm EL0.

Register Value Description

TRCCONFIGR 0x000018C1 Enable:

• the return stack,

• global timestamping,

• Context identifier,

• Virtual context identifier

tracing.

TRCEVENTCTL0R 0x00000000 Disable all event tracing.

TRCEVENTCTL1R 0x00000000

TRCSTALLCTLR 0x00000000 Disable stalling, if implemented.

TRCSYNCPR 0x0000000C Enable trace protocol synchronization every 4096 bytes of trace.

TRCTRACEIDR Nonzero Set a value for the trace ID.

TRCTSCTLR 0x00000000 Disable the timestamp event.

The trace unit still generates timestamps due to other reasons such as trace protocol
synchronization.

TRCVICTLR 0x006F0201 Enable ViewInst to trace everything, with the start/stop logic started.

Disable:

• EL1 in Non-secure state.

• EL2 in Non-secure state.

• EL1 in Realm state.

• EL2 in Realm state.

• EL2-EL0 in Secure state.

• EL3.

tracing.

TRCVIIECTLR 0x00010000 Use ARC0 for the exclude logic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14475
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
K5.2.5 Filtering used the include function

ICKDRF The following table describes the programming for including a single address range. When FEAT_RME is
implemented, this applies to both Non-secure EL0 and Realm EL0.

TRCVISSCTLR 0x00000000 No start or stop points for ViewInst.

TRCACATR0 0x00000000 The comparator status to match on all instructions at this Virtual address

TRCACVR0 Start Address

TRCACATR1 0x00000000 The comparator status to match on all instructions at this Virtual address

TRCACVR1 End Address

Register Value Description

Register Value Description

TRCCONFIGR 0x000018C1 Enable:

• the return stack,

• global timestamping,

• Context identifier,

• Virtual context identifier

tracing.

TRCEVENTCTL0R 0x00000000 Disable all event tracing.

TRCEVENTCTL1R 0x00000000

TRCSTALLCTLR 0x00000000 Disable stalling, if implemented.

TRCSYNCPR 0x0000000C Enable trace protocol synchronization every 4096 bytes of trace.

TRCTRACEIDR Nonzero Set a value for the trace ID.

TRCTSCTLR 0x00000000 Disable the timestamp event.

The trace unit still generates timestamps due to other reasons such as trace protocol
synchronization.

TRCVICTLR 0x006F0201 Enable ViewInst to trace everything, with the start/stop logic started.

Disable:

• EL1 in Non-secure state.

• EL2 in Non-secure state.

• EL1 in Realm state.

• EL2 in Realm state.

• EL2-EL0 in Secure state.

• EL3.

tracing.

TRCVIIECTLR 0x00000001 Use ARC0 for the include logic.

TRCVISSCTLR 0x00000000 No start or stop points for ViewInst.

TRCACATR0 0x00000000 The comparator status to match on all instructions at this Virtual address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14476
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
K5.2.6 OS save and restore routines

SBMBXL When the PE is context switching of trace unit the following registers need to save and restored. Not all these
registers are necessarily implemented for all implementations. Please refer to the register description page for
information on if the register is implemented.

• TRCPRGCTLR

• TRCCONFIGR

• TRCAUXCTLR

• TRCEVENTCTL0R

• TRCEVENTCTL1R

• TRCRSR

• TRCSTALLCTLR

• TRCTSCTLR

• TRCSYNCPR

• TRCCCCTLR

• TRCBBCTLR

• TRCTRACEIDR

• TRCQCTLR

• TRCVICTLR

• TRCVIIECTLR

• TRCVISSCTLR

• TRCVIPCSSCTLR

• TRCSEQEVR<n>

• TRCSEQRSTEVR

• TRCSEQSTR

• TRCEXTINSELR<n>

• TRCCNTRLDVR<n>

• TRCCNTCTLR<n>

• TRCCNTVR<n>

• TRCIMSPEC<n>

• TRCRSCTLR<n>

TRCACVR0 Start Address

TRCACATR1 0x00000000 The comparator status to match on all instructions at this Virtual address

TRCACVR1 End Address

Register Value Description
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14477
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.2 ETE programming
• TRCSSCCR<n>

• TRCSSCSR<n>

• TRCSSPCICR<n>

• TRCACVR<n>[31:0]

• TRCACVR<n>[63:32]

• TRCACATR<n>[31:0]

• TRCACATR<n>[63:32]

• TRCCIDCVR<n>[31:0]

• TRCCIDCVR<n>[63:32]

• TRCVMIDCVR<n>[31:0]

• TRCVMIDCVR<n>[63:32]

• TRCCIDCCTLR0

• TRCCIDCCTLR1

• TRCVMIDCCTLR0

• TRCVMIDCCTLR1

SHYDYT If the trace unit has not been programmed since the last context switch then there is no requirement to save and
restore the registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14478
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
K5.3 Trace examples

K5.3.1 Basic Examples

IXZCWN The following example shows basic program trace.

IHKPNY The following example shows basic program trace when filtering is applied. In this example, the trace unit is
programmed to exclude all instructions in the address range 0x2000 to 0x200F inclusive, and the trace unit is
programmed to start tracing when the instruction at 0x1000 is accessed.

Table K5-4 Example of program trace

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info(…)
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate both: - A Context
element. - A Target Address element. The instruction executed is a taken
branch, so in addition, the trace unit must generate an E Atom element.

0x2000 MOV

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000 atom(N) This branch is not taken, so the trace unit generates an N Atom element. The N
Atom element implies the execution of the three previous instructions and the
BEQ instruction.

0x2010 STR

IRQ exception (IRQ,0x2014) An IRQ occurs. The Exception element indicates the STR instruction was
executed.

Table K5-5 Example of program trace with filtering

Execution Trace elements Notes

0x1000 B -> 0x2000 Y trace_info(…)
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate both: - A
Context element. - An Target Address element. The instruction executed
is a taken branch, so in addition, the trace unit must generate an E Atom
element.

0x2000 MOV N

0x2004 LDR N

0x2008 CMP N

0x200C BEQ -> 0x3000 N

0x2010 STR Y trace_on()
address(0x2010)

IRQ exception (IRQ,0x2014) An IRQ occurs. The Exception element indicates the STR instruction was
executed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14479
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
IBXYHM The example in Table K5-6 shows basic program trace and demonstrates the canceling of some speculative
execution because of an exception. In this example the trace unit is programmed to start tracing when the instruction
at 0x1000 is accessed.

Table K5-6 Example of basic program trace when an exception occurs, example one

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must
generate both: - Context element. - Target Address
element

The instruction executed is a taken branch, so in
addition, the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000 (not taken) atom(N) This branch is not taken, so the trace unit generates an N
Atom element. The N Atom element implies the
execution of the three previous instructions and the BEQ
instruction.

0x2010 STR This instruction is not traced as a P0 element, therefore
no trace element is generated.

Cancel back to and including 0x2000 cancel(1) This cancels the N Atom element that was generated for
the branch at 0x200C. The trace analyzer must discard the
N Atom element, plus the three instructions that it
implied.

Note

Although PE execution has also canceled execution of
the STR instruction, the trace analyzer is unaware of this,
because the STR instruction was never traced. This is
because no P0 elements were generated that would
indicate execution of the STR instruction.

IRQ exception(IRQ,0x2000) The trace unit generates an Exception element with the
address 0x2000, which indicates no instructions have
executed since the target of the branch at 0x1000.

commit all execution commit(2) This commits the E Atom element that was generated for
the Branch instruction at 0x1000, plus the Exception
element that was generated for the IRQ exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14480
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
IXJLJN The example in Table K5-7 shows basic program trace, and shows the trace generated when a synchronous Data
Abort occurs. In this example the trace unit is programmed to start tracing when the instruction at 0x1000 is accessed.

Table K5-7 Example of basic program trace when an exception occurs, example two

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both: - Context element. - Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000 (not taken) atom(N) This branch is not taken, so the trace unit generates an N
Atom element. The N Atom element implies the execution
of the three previous instructions and the BEQ instruction.

0x2010 STR This instruction is not traced as a P0 element, therefore no
trace element is generated.

LDR aborts Cancel
back to and including 0x2004

cancel(1)
exception_(data fault, 0x2004)

This cancels the N Atom element that was generated for
the branch at 0x200C. The trace analyzer must discard the
N Atom element, plus the four instructions that it implied.

Note

Although PE execution has also canceled execution of the
STR instruction, the trace analyzer is unaware of this,
because the STR instruction was never traced. This is
because no P0 elements were generated that would
indicate execution of the STR instruction.

The data fault exception occurred at 0x2004. The
Exception element indicates the MOV instruction at 0x2000
was executed.

In summary:

1. The MOV instruction was first implied by the N Atom
element at 0x200C. However, the trace analyzer
canceled this because of the Cancel element.

2. The MOV instruction is now implied by the
Exception element.

commit all execution commit(2) This commits the E Atom element that was generated for
the Branch instruction at 0x1000, plus the Exception
element that was generated for the IRQ exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14481
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
IDLXSS The example in Table K5-8 extends the example shown in Table K5-7, and shows how exceptions are traced when
two exceptions occur without any execution between them. In this example the trace unit is programmed to start
tracing when the instruction at 0x1000 is accessed.

Table K5-8 Example of basic program trace when two consecutive exceptions occur

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both: - Context element. - Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000 (not taken) atom(N) This branch is not taken, so the trace unit generates an N
Atom element. The N Atom element implies the execution
of the three previous instructions and the BEQ instruction.

0x2010 STR This instruction is not traced as a P0 element, therefore no
trace element is generated.

LDR aborts Cancel
back to and including 0x2004

cancel(1)
exception_(data fault, 0x2004)

This cancels the N Atom element that was generated for
the branch at 0x200C. The trace analyzer must discard the
N Atom element, plus the four instructions that it implied.

Note

Although PE execution has also canceled execution of the
STR instruction, the trace analyzer is unaware of this,
because the STR instruction was never traced. This is
because no P0 elements were generated that would
indicate execution of the STR instruction.

The data fault exception occurred at 0x2004. The Exception
element indicates the MOV instruction at 0x2000 was
executed.

In summary:

1. The MOV instruction was first implied by the N Atom
element at 0x200C. However, the trace analyzer
canceled this because of the Cancel element.

2. The MOV instruction is now implied by the Exception
element.

IRQ address(0x4000)
exception(IRQ,0x4000)

This Exception element contains the address of the
exception vector of the DataFault exception. This implies
that no instructions have executed since the DataFault
exception.

commit all execution commit(3) This commits the E Atom element that was generated for
the Branch instruction at 0x1000, plus the Exception
element generated for the Data fault exception and the
Exception element that was generated for the IRQ
exception.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14482
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
K5.3.2 Examples of changes in context

IRWRWJ When the PE executes an instruction that changes the execution context, the exact time at which the new element
is traced depends on the PE operation after the write. An example of an instruction that changes the execution
context is an instruction that writes a value to the CONTEXTIDR_EL1. See Context element for more information
about the rules controlling the generation of Context elements. This section provides examples of PE trace that
contain changes of execution context to illustrate these rules. This section is split into the following:

• Exception in software executed after context synchronization.

• Exception immediately after ISB.

• Exception immediately before ISB.

IGCRKW Table K5-9 shows a write to the CONTEXTIDR_EL1 register, followed by an ISB to synchronize that write,
followed by an exception that changes the context again.

Table K5-9 Program trace containing a context changing operation

Execution Context Trace elements Notes

0x1000 B-> 0x2000 0xAA trace_info()
trace_on()
context(0xAA)
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate both:
- A Context element. - A Target Address element.

The instruction executed is a taken branch, so in addition, the
trace unit must generate an E Atom element.

0x2000 MSR CONTEXTIDR 0xAA None of these instructions are traced as P0 elements, therefore
no trace elements are generated. The instructions might be
executed from context 0xAA or 0xBB but they are always traced as
occurring from context 0xAA.

0x2004 ADD 0xAA or 0xBB

0x2008 ISB 0xAA or 0xBB atom(E) The trace unit generates an E Atom element, because the ISB is a
Context synchronization event. All execution is traced as
executing in context 0xAA.

0x200C SUB 0xBB context(0xBB) A Context element is traced to indicate the new context.

IRQ 0xBB exception(IRQ,0x2010) An IRQ exception occurs. The trace unit generates an Exception
element.

0x3000 B -> 0x4000 0xCC context(0xCC)

address(0x3000)

atom(E)

A Context element is traced to indicate the new context.

A Target Address element is also traced, because an Exception
element is always followed by a Target Address element to
indicate the address that the exception has been taken to.

Finally, the instruction executed is a taken branch, so the trace
unit must generate an E Atom element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14483
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
ILSZCM Table K5-10 shows the same execution as Table K5-9 but the exception occurs one instruction earlier. This means
that no execution takes place between the ISB and the exception.

IPDLNN Table K5-11 is the same as Table K5-10 but the exception occurs one instruction earlier. This means that the
exception occurs before the ISB instruction that was present in previous examples.

Table K5-10 Program trace containing a context changing operation (exception immediately after ISB)

Execution Context Trace elements Notes

0x1000 B-> 0x2000 0xAA trace_info()
trace_on()
context(0xAA)
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate both:
- A Context element. - A Target Address element.

The instruction executed is a taken branch, so in addition, the
trace unit must generate an E Atom element.

0x2000 MSR CONTEXTIDR 0xAA None of these instructions are traced as P0 elements, therefore
no trace elements are generated. The instructions might be
executed from context 0xAA or 0xBB but they are always traced as
occurring from context 0xAA.

0x2004 ADD 0xAA or 0xBB

0x2008 ISB 0xAA or 0xBB atom(E) The trace unit generates an E Atom element, because the ISB is
a Context synchronization event. All execution is traced as
executing in context 0xAA.

IRQ 0xBB context(0xBB)
exception(IRQ,0x200C)

A Context element is traced to indicate the new context. An IRQ
exception occurs. The trace unit generates an Exception
element.

0x3000 B -> 0x4000 0xCC context(0xCC)
address(0x3000)
atom(E)

A Context element is traced to indicate the new context.

A Target Address element is also traced, because an Exception
element is always followed by a Target Address element to
indicate the address that the exception has been taken to.

Finally, the instruction executed is a taken branch, so the trace
unit must generate an E Atom element.

Table K5-11 Program trace containing a context changing operation (exception immediately before ISB)

Execution Context Trace elements Notes

0x1000 B-> 0x2000 0xAA trace_info()
trace_on()
context(0xAA)
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate both:
- A Context element. - A Target Address element.

The instruction executed is a taken branch, so in addition, the
trace unit must generate an E Atom element.

0x2000 MSR CONTEXTIDR 0xAA None of these instructions are traced as P0 elements, therefore
no trace elements are generated. The instructions might be
executed from context 0xAA or 0xBB but they are always traced as
occurring from context 0xAA.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14484
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
K5.3.3 An example of the use of the trace unit return stack

IHRHBK This section contains two examples of tracing the same piece of program code. However:

• In the first example the trace unit return stack is disabled.

• In the second example trace unit the return stack is enabled.

The examples demonstrate that use of the trace unit return stack can help to reduce the amount of trace generated.
Table K5-12 the first example, and Table K5-13 shows the second example. In these examples, the trace unit is
programmed for basic program flow, where only branch instructions are traced as P0 instructions, and is
programmed to start tracing when the instruction at 0x1000 is accessed.

0x2004 ADD 0xAA or 0xBB

IRQ 0xAA or 0xBB exception(IRQ,0x2008) An IRQ exception occurs. The trace unit generates an Exception
element.

0x3000 B -> 0x4000 0xCC context(0xCC)
address(0x3000)
atom(E)

A Context element is traced to indicate the new context.

A Target Address element is also traced, because an Exception
element is always followed by a Target Address element to
indicate the address that the exception has been taken to.

Finally, the instruction executed is a taken branch, so the trace
unit must generate an E Atom element.

Table K5-11 Program trace containing a context changing operation (exception immediately before ISB) (continued)

Execution Context Trace elements Notes

Table K5-12 Basic program trace when Branch with Link instructions are executed and the return stack is disabled

Execution Trace elements Notes

0x1000 BL -> 0x2000 trace_info()
trace_on()
context()

address(0x1000)

atom(E)

Tracing begins here, therefore the trace unit must generate both:

• A Context element.

• An Target Address element.

The instruction executed is a taken branch, so in addition, the trace unit
must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements, therefore no trace
elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BLEQ -> 0x3000 (not taken) This branch is not taken, so the trace unit generates an N Atom element.
The N Atom element implies the execution of the three previous
instructions and the BLEQ instruction.

0x2010 STR

0x2014 BX LR atom(E) This branch is taken, so the trace unit generates an E Atom element. The
E Atom element implies the execution of the STR and the BX instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14485
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
0x1004 MOV address(0x1004) This instruction is not traced as a P0 element, therefore no trace element
is generated. However, the last instruction executed was a taken indirect
branch instruction, so the trace unit generates an Target Address element
to indicate the target of that branch.

0x1008 B -> 0x4000 atom(E) This branch is taken, so the trace unit generates an E Atom element. The
E Atom element implies the execution of the MOV instruction at 0x1004
and the B instruction.

commit all execution commit(4) This commits all four of the following:

• The E Atom element generated for the branch at 0x1000.

• The N Atom element generated for the branch at 0x200C.

• The E Atom element generated for the branch at 0x2014.

• The E Atom element generated for the branch at 0x1008.

Table K5-13 Basic program trace when Branch with Link instructions are executed and the return stack is enabled

Execution Trace elements Notes

0x1000 BL -> 0x2000 trace_info()

trace_on()

context()

address(0x1000)

atom(E)

Tracing begins here, therefore the trace unit must generate both:

• A Context element.

• An Target Address element.

The instruction executed is a taken branch, so in addition, the trace unit
must generate an E Atom element. In addition, because the return stack
is enabled, the Branch with Link instruction causes the address 0x1004 to
be pushed onto the trace unit return stack.

0x2000 MOV None of these instructions are traced as P0 elements, therefore no trace
elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BLEQ -> 0x3000 (not taken) This branch is not taken, so the trace unit generates an N Atom element.
The N Atom element implies the execution of the three previous
instructions and the BLEQ instruction. Nothing is pushed onto the trace
unit return stack because the branch is not taken.

0x2010 STR

0x2014 BX LR atom(E) This branch is taken, so the trace unit generates an E Atom element. The
E Atom element implies the execution of the STR and the BX instructions.

Table K5-12 Basic program trace when Branch with Link instructions are executed and the return stack is disabled

Execution Trace elements Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14486
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
K5.3.4 Transactions

IBQTVJ The following is an example of a successful transaction traced by a trace unit with no speculation in the trace
element stream.

0x1004 MOV This instruction is not traced as a P0 element, therefore no trace element
is generated. The address of this instruction matches the top entry on the
trace unit return stack. Therefore, the trace analyzer knows to restart
program execution here and an Target Address element is not required.
The top entry on the return stack, address 0x1004, is popped from the
return stack.

0x1008 B -> 0x4000 atom(E) This branch is taken, so the trace unit generates an E Atom element. The
E Atom element implies the execution of the MOV instruction at 0x1004 and
the B instruction.

commit all execution commit(4) This commits all four of the following:

• The E Atom element generated for the branch at 0x1000.

• The N Atom element generated for the branch at 0x200C.

• The E Atom element generated for the branch at 0x2014.

• The E Atom element generated for the branch at 0x1008.

Table K5-13 Basic program trace when Branch with Link instructions are executed and the return stack is enabled

Execution Trace elements Notes

Table K5-14 Example of trace with a successful transaction

Execution Trace elements Notes

0x1000 B -> 0x2000 Trace_info(…)
Trace_on()
Target_address(0x2000)

Trace on.

0x2000 TSTART Atom(E)
Transaction_start()

The transaction starts.

0x2004 B -> 0x2400 Atom(E)

{…}

0x2804 B -> 0x2808 Atom(E)

0x2808 TCOMMIT Transaction_commit() Transaction finishes.

{…}
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14487
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
IGBKYZ The following is an example of a failed transaction traced by a trace unit with no speculation in the trace element
stream.

IFYFSF The following is an example of trace with speculation in the trace element stream, and a failed transaction occurs.
The speculative elements inside the transaction are cancelled using Cancel elements, and the transaction as a whole
is indicated to have failed using a Transaction Failure element.

ICRDGM The following is an example of a transaction which is started speculatively and is traced using speculative trace
elements, but that speculation is subsequently resolved as misspeculation. The Cancel elements are used to cancel
execution back past the start of the transaction.

Table K5-15 Example of trace with a transaction failure

Execution Trace elements Notes

0x2000 TSTART Trace_on()
Target_address(0x2000)
Atom(E)
Transaction_start()

Trace on.

The transaction starts.

0x2004 TST

0x2008 BEQ Atom(N)

{…}

0x2804 B -> 0x3000 Atom(E)
Target_address(0x3000)

Transaction fails Transaction_failure() Transaction fails.

0x2004 TST Target_address(0x2004) This address is where execution resumes after the transaction failure.

0x2008 BEQ Atom(E)

{…}

Table K5-16 Example of trace with a failed transaction

Execution Trace elements Notes

0x2000 TSTART Trace_on()
Target_address(0x2000)
Atom(E)
Transaction_start()

Trace on.

The transaction starts.

0x2004 TST

0x2008 BEQ Atom(N)

{…}

0x2804 B -> 0x3000 Atom(E)

Transaction fails Target_address(0x3000)
Cancel(2)
Transaction_failure()

Transaction fails.

0x2004 TST Target_address(0x2004)

0x2008 BEQ Atom(E)

{…}
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14488
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.3 Trace examples
Table K5-17 Example of trace with a transaction failure

Execution Trace elements Notes

{…}

0x1000 B -> 0x2000 Atom(E) This branch is speculatively taken, but was incorrectly speculated and will be
corrected later.

0x2000 TSTART Atom(E)
Transaction_start()

The transaction starts.

0x2004 TST

0x2008 BEQ Atom(N)

{…}

0x2804 B -> 0x3000 Atom(E)

Cancel(4)
Mispredict

The transaction was only speculatively started. It is optional if a Transaction Failure
element is traced, because the Cancel element cancels the Transaction Start element.
The Mispredict element corrects the incorrectly speculated first branch.

0x1004 {…}

{…}
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14489
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.4 Differences between ETM and ETE
K5.4 Differences between ETM and ETE

IJNLFZ ETE has a considerable overlap with the ETMv4 architecture , with the intent that broadly unified software stack
can program a trace unit and interpret the trace stream from either an ETMv4 trace unit or an ETE trace unit.

This section describes the primary functional differences between ETMv4 and ETE.

• Removal of data trace documentation, since this is not permitted in A-profile.

• Removal of conditional non-branch documentation, since this is not permitted in A-profile.

• TRCDEVARCH.PRESENT == 1 is mandatory.

• TRCDEVARCH.ARCHVER and TRCDEVARCH.REVISION take new values.

• TRCIDR1.TRCARCHMAJ and TRCIDR1.TRCARCHMIN take new values.

• TRCIDR9 is fixed at zero.

• Context identifier tracing is mandatory, defined in TRCIDR2.CIDSIZE.

• Virtual context identifier tracing is mandatory when the PE implements EL2, defined in
TRCIDR2.VMIDSIZE.

• The Virtual context identifier is always based on CONTEXTIDR_EL2, with support for tracing
VTTBR_EL2.VMID removed.

• 64-bit timestamp is the only supported timestamp size.

• Timestamping is mandatory in ETE.

• TRCIDR2.IASIZE is only permitted to indicate a 64-bit instruction address size.

• External Inputs are unified with the PMU event space, with new TRCEXTINSELR<n> registers introduced.

• TRCIDR5.NUMEXTIN indicates the unified External Input model.

• Added TRCRSR.EXTIN for reading and setting the External Input Selectors state.

• Added TRCRSR.EVENT for reading and setting the ETEEvent state.

• Added TRCRSR.TA for reading and setting whether tracing was active.

• Changed requirements for the tracing of Exceptions to be dependent on the new TRCRSR.TA field.

• Removal of memory-mapped accesses. This was deprecated in ETMv4.4 for Armv8-A.

• Removal of trace unit sharing.

• Added a requirement that trace must be output within finite time.

• Added a requirement that the trace unit resources are paused when entering a Trace Prohibited region.

• Added a bit to TRCSSCSR<n> to indicate that the Single-shot Comparator Control fired while the resources
are paused.

• Added requirements for dependencies on the TSB CSYNC instruction.

• Execution of TSB CSYNC instruction requests a timestamp element.

• The Unified Power Domain Model from ETMv4.5 for Armv8-A is mandatory in ETE.

• Changes to the enable and disable code sequences.

• Addition of the tracing of Transactional state.

• Tightened the requirements for obeying the order of start point and stop points for the ViewInst start/stop
function, and tightened the rules for programming the start/stop function.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14490
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.4 Differences between ETM and ETE
• Addition of Source Address elements.

• Added rules to require no trace to be generated in Trace Prohibited regions, under some circumstances.

• Added constraints for the effect of system instructions causing the trace unit to become enabled or disabled.

• Additional constraints for the forced tracing of exceptions around Trace Prohibited regions, to ensure trace
is not generated in Trace Prohibited regions.

• Removed the flexibility around tracing of an Exceptional occurrence immediately after a Trace Prohibited
region or when trace generation becomes operative. Such Exceptional occurrences are not traced.

• Added a requirement that the resource operations must complete before a TSB instruction completes.

• Defined the behavior of the visibility of reads and writes to trace unit registers from system instructions,
external debugger and by the trace unit.

• Changed branch broadcasting to be required in all implementations, see TRCIDR0.TRCBB.

• TRCSYNCPR is read/write in all implementations, see TRCIDR3.SYNCPR.

• Forced tracing of System Error exceptions is required in all implementations, see TRCIDR3.TRCERR.

• Changed cycle counting to be required in all implementations, see TRCIDR0.TRCCCI.

• Removed the trace unit OS Lock mechanism, and changed to require the PE OS Lock to affect the trace unit.

• Removed the Exception Return element and Exception Return packet.

• Constrained TRCCLAIMCLR and TRCCLAIMSET to not require explicit synchronization.

• Added more constraints to the operation of the Single-shot Comparator Controls when the trace unit becomes
disabled, or when entering a Trace Prohibited region.

• Added more constraints to the operation of the ViewInst start/stop function when the trace unit becomes
disabled, or when entering a Trace Prohibited region.

• Constrained the behavior of cycle counting after a trace unit buffer overflow, to require the cycle count to be
traced as UNKNOWN on the first Cycle Count element after an overflow.

• Export of PMU events to the trace unit is not affected by PMCR.X or PMCR_EL0.X.

• Event elements are permitted to be generated before the first Trace Info element.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14491
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.5 Context switching
K5.5 Context switching

SVKHHY When switching out a process being traced, to save the current trace context and ensure all trace operations are
written to the correct context:

1. Prohibit program-flow trace using TRFCR_ELx. In many cases this is done before the process is traced. For
example if all of the following are true:

• TRFCR_EL1.E0TRE is 1 to allow tracing of a process executed at EL0.

• TRFCR_EL1.E1TRE is 0 to prohibit tracing of the Operating System performing the context switch
executed at EL1.

2. Execute a Context synchronization event to guarantee no new program-flow trace is generated. In the
common case, this Context synchronization event is an exception taken to an Exception level where tracing
is prohibited.

• If the trace unit is an ETE and the ETE is enabled, this also pauses the ETE Resources.

3. Execute a TSB CSYNC instruction to ensure the program-flow trace is flushed.

4. If necessary, disable the trace unit.

• For an ETE this is necessary if context is being switched. Software must set TRCPRGCTLR.EN to
zero. This is necessary as:

— The ETE must be disabled if saving the ETE state, as the ETE System registers can only be read
when the ETE is disabled.

— ETE trace compression logic is stateful, and disabling the ETE resets this compression state.

5. Disable the Trace Buffer Unit. Set TRBLIMITR_EL1.E to zero.

• This must be done before changing the VMSA System registers to prevent the Trace Buffer Unit from
speculatively accessing translation table entries.

6. Execute a DSB operation.

• This is required if software will be reading the trace buffer contents, to ensure the writes to memory
are Complete.

7. Execute a further Context synchronization event.

• This is required to synchronize the effects of any System register writes since the previous Context
synchronization event.

• This is also required if software will be reading the Trace Buffer Unit or trace unit System registers as
part of the context switch, to capture indirect writes to those registers by trace operations synchronized
by the TSB CSYNC.

• For a subsequent direct read to capture the indirect write to TRBSR_EL1 resulting from an External
abort on a completed write, this Context synchronization event must follow the DSB above.

8. Save and/or change the context. For example, save the MDCR_EL3, MDCR_EL2 (if applicable), Trace
Buffer Unit, trace unit, and TRFCR_ELx System registers, and update the VMSA System registers for the
new process.

SFMBCL In other uses cases, tracing is not prohibited when software wants to save the trace context. For this case, if using
an ETE, the sequence is slightly different:

1. Disable the ETE. Set TRCPRGCTLR.EN to zero.

2. Execute a Context synchronization event to guarantee no new program-flow trace is generated.

3. Execute a TSB CSYNC instruction to ensure the program-flow trace is flushed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14492
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.5 Context switching
4. Execute a DSB and/or Context synchronization event as required by the previous example.

5. Save and/or change the context.

For an ETE this sequence does not guarantee that all instructions before disabling the ETE are traced. The ETE
might discard trace for preceding instructions when it is disabled.

SPKLXF To restore the state of the Trace Buffer Unit and trace unit for switching in a process being traced, while tracing is
prohibited:

1. Restore the context. For example:

• Restore MDCR_EL3, MDCR_EL2 (if applicable), and the Trace Buffer Unit System registers, other
than TRBLIMITR_EL1.

• Restore the trace unit System registers, other than enabling the trace unit.

• Ensure the TRFCR_ELx System registers are correct for the process being traced.

• Update VMSA System registers for the process being returned to.

2. Execute a Context synchronization event to guarantee the trace unit and Trace Buffer Unit will observe the
new values of the System registers written by the previous step.

3. Enable the Trace Buffer Unit by setting TRBLIMITR_EL1.E to 1. This must be done after setting up the
correct VMSA System registers for the trace buffer, as the Trace Buffer Unit might now speculatively
prefetch and cache address translations. See <xref ID with type 'rule' not resolved in db: 'MDRule.BSMLW'
(from json 'BSMLW')> and SYKCND.

4. If necessary, enable the trace unit. If using an ETE, software must set TRCPRGCTLR.EN to one.

5. Execute a Context synchronization event to guarantee tracing is allowed. In the common case, this is an ERET
instruction that returns to a different Exception level where tracing is allowed.

This must be done after saving the state from the previous process, if applicable.

SYKCND Because the Trace Buffer Unit can prefetch and cache address translations when the Trace Buffer Unit is enabled:

• Software must not enable the Trace Buffer Unit before programming the System registers for the owning
translation regime. In particular, during a context switch operation:

— If switching from a context using the Trace Buffer Unit, the Trace Buffer Unit must be disabled before
modifying the System registers for the owning translation regime being switched from.

— If switching to a context using the Trace Buffer Unit, the Trace Buffer Unit must not be enabled until
after modifying the System registers for the owning translation regime being switched to.

• The Trace Buffer Unit must not be enabled when the PE is not executing in the owning Security state or when
executing at EL3 and SCR_EL3.NS does not indicate the owning Security state.

• In normal conditions, enabling the Trace Buffer Unit early before returning to the context being traced might
be advantageous if the implementation does prefetch address translations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14493
ID032224 Non-Confidential

ETE and TRBE Software Usage Examples
K5.6 Controlling generation of trace buffer management events
K5.6 Controlling generation of trace buffer management events

SNFQZJ The TRBE does not include a direct capability to program the Trace Buffer Unit to generate a maintenance interrupt
when the trace buffer reaches a programmed level below the Limit pointer, and continue collecting trace until either
the interrupt is serviced or (possibly) the trace buffer fills (whichever comes first). This allows an almost lossless
collection of trace.

However, the Trace Buffer Unit can be programmed to give similar behavior in one of the following ways:

1. Using Wrap mode. At the start of a trace session, configure the Base pointer and Limit pointer for the trace
buffer as normal, but set the trace buffer mode to Wrap mode the current write pointer to point part way
through the trace buffer, such that the remaining space in the trace buffer is the watermark level. When the
amount of trace collected reaches the watermark level, the current write pointer is wrapped and a trace buffer
management event is generated, but trace continues to be collected. This approach has the following
advantages and disadvantages:

• The trace buffer management event is generated and the trace unit receives the TRB_WRAP event at
the watermark level.

• The oldest trace in the trace buffer will be lost if more trace is generated than fits in the trace buffer,
because it is overwritten by newer trace. Note that some loss of trace is inevitable if more trace is
generated than fits in the trace buffer.

• The trace history does not start at the start of the trace buffer, and must be aligned by software.

2. Use a Trigger Event. At the start of a trace session, configure the Base pointer and Limit pointer for the trace
buffer as normal, and set the trace buffer mode to Fill mode and the current write pointer to the start of the
trace buffer. Set the trigger mode to IRQ on trigger, the Trigger Counter to the watermark level, and
TRBSR_EL1.TRG to 1. When the amount of trace collected reaches the watermark level, a Trigger Event
occurs and a trace buffer management event is generated, but trace continues to be collected. This approach
has the following advantages and disadvantages:

• The trace buffer management event is generated and the trace unit receives the TRB_TRIG event at
the watermark level.

• The newest trace in the trace buffer will be discarded if more trace is generated than fits in the trace
buffer. To overwrite the oldest trace instead, set the trace buffer mode to Circular Buffer mode.

• This method cannot be used if also searching for a Detected Trigger event from the trace unit.

• The current write pointer does not have to be set to the start of the trace buffer. If the trace buffer
already contains data that software does not want to be overwritten, the current write pointer can be
set to point to after this data. In this case using Circular Buffer mode or Stop on trigger can also be
used to control when collection is stopped and what data is overwritten.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K5-14494
ID032224 Non-Confidential

Appendix K6
Stages of Execution

This appendix shows the relationship between the stages of execution and the Transactional Memory Extension
(TME). It contains the following sections:

• Stages of execution without the TME.

• Stages of execution with the TME.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K6-14495
ID032224 Non-Confidential

Stages of Execution
K6.1 Stages of execution without the TME
K6.1 Stages of execution without the TME

IKHCRN Figure K6-1 shows the stages of execution in a PE that does not implement FEAT_TME.

Figure K6-1 Stages of execution without TME

����� ���	
�����

��	��
��������

���	�������	��

������	
�����

��	��
��������

�������

���	
�����

��	���������

�������������������

������	
�����

��	���������

�������������������

���	��

�������

��������������
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K6-14496
ID032224 Non-Confidential

Stages of Execution
K6.2 Stages of execution with the TME
K6.2 Stages of execution with the TME

IBBNYK Figure K6-2 shows the stages of execution in a PE that does implement FEAT_TME.

Figure K6-2 Stages of execution with TME

������������	��

���������	��

�����

���	
�����

��	��
���������
����

�����	���

���	
�����

��	��
��������

������
�����	���

���	����

���	��

������	
�����

��	��
��������

�������

���	
�����

��	���������

���������
���������

������	
�����

��	���������

���������
��������� ���	��

�������
��������������

���	��

������	
�����

��	��
��������

�������

���	
�����

��	���������

���������
���������

������	
�����

��	���������

���������
���������

���	��

�������

��� ��

������	����
	��	����

�����!"

������	����
������

#���
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K6-14497
ID032224 Non-Confidential

Appendix K7
Recommended External Debug Interface

This appendix describes the recommended external debug interface. It contains the following sections:

• About the recommended external debug interface.

• PMUEVENT bus.

• Recommended authentication interface.

• Management registers and CoreSight compliance.

Note

This recommended external debug interface specification is not part of the Arm architecture specification.
Implementers and users of the architecture must not consider this appendix as a requirement of the architecture. It
is included as an appendix to this manual only:

• As reference material for users of Arm products that implement this interface.

• As an example of how an external debug interface might be implemented.

The inclusion of this appendix is no indication of whether any Arm products might, or might not, implement this
external debug interface. For details of the implemented external debug interface, you must always see the
appropriate product documentation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14498
ID032224 Non-Confidential

Recommended External Debug Interface
K7.1 About the recommended external debug interface
K7.1 About the recommended external debug interface

See the Note on the first page of this appendix for information about the architectural status of this recommended
debug interface.

This specification provides a recommended external debug interface for Armv8 and later architectures to define a
standard set of connections for validation environments. Generally, the connection between components, such as
between the PE and Trace extension, is not described here, although the table does include the signals for the CTI
connection. Table K7-1 shows the signals in the recommended interface.

Table K7-1 Recommended debug interface signals

Name Direction Description Notes

DBGEN In External debug enable -

SPIDEN In Secure privileged external debug enable -

Secure privileged self-hosted debug
enable

Only in Secure AArch32 modes when
enabled by MDCR_EL3.SPD32

RLPIDEN In Realm privileged external debug enable Only if FEAT_RME is implemented.

RTPIDEN In Root privileged external debug enable

NIDEN In External profiling and trace enable If FEAT_Debugv8p4 is implemented, this
signal is not implemented.

SPNIDEN In Secure external profiling and trace enable If FEAT_Debugv8p4 is implemented, this
signal is not implemented.

EDBGRQ In External halt request IMPLEMENTATION DEFINED mechanism to
halt the PE. See EDBGRQ and DBGACK.

DBGACK Out Debug Acknowledge Indicate to the system that a PE is in Debug
state. See EDBGRQ and DBGACK.

COMMIRQ Out DCC interrupt Interface to an interrupt controller. See
Interrupt-driven use of the DCC and the
pseudocode for function
CheckForDCCInterrupts().

PMUIRQ Out Performance Monitor overflow Interface to an interrupt controller. See
Behavior on overflow.

COMMRX Out DTRRX is full Provided for legacy connection to an
interrupt controller only. See
Interrupt-driven use of the DCC and the
pseudocode for function
CheckForDCCInterrupts().

COMMTX Out DTRTX is empty

PMUEVENT[n:0] Out Performance Monitors event bus See PMUEVENT bus.

DBGNOPWRDWN Out Emulate low-power state request Interface to a power controller.

See Emulating low-power states.

DBGPWRUPREQ Out Core powerup request Interface to a power controller.

See Powerup request mechanism.

DBGRSTREQ Out Warm reset request Interface to a power controller.

See EDPRCR.CWRR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14499
ID032224 Non-Confidential

Recommended External Debug Interface
K7.1 About the recommended external debug interface
DBGBUSCANCELREQ Out Allow asynchronous entry to Debug state Extension to the bus interface.

See EDRCR.CBRRQ.

DBGPWRDUP In Core powerup status Interface to a power controller.

See EDPRSR.PU.

DBGROMADDR[n:12] In MDRAR_EL1.ROMADDR n depends on the size of the physical address
space. Arm recommends these signals are
tied LOW.

DBGROMADDRV In MDRAR_EL1.Valid Arm recommends these signals are tied
LOW.

PRESETDBG In External Debug reset -

CPUPORESET In Cold reset -

CORERESET In Warm reset -

PSELDBG In

Debug APB interfacea

For details, see AMBA APB3. Arm
recommends a single port for all integrated
debug components.

PADDRDBG31 distinguishes
memory-mapped and Debug Access Port
accesses:

0 Memory-mapped access

1 Debug Access Port access

If FEAT_Debugv8p4 is implemented,
PPROTDBG[1] distinguishes between
Secure and Non-secure accesses.

PENABLEDBG In

PWRITEDBG In

PRDATADBG[31:0] Out

PWDATADBG[31:0] In

PADDRDBG[n:2]b In

PREADYDBG Out

PSLVERRDBG Out

PCLKDBG In

PCLKENDBG In

PPROTDBG[1] In

CTICHIN In CoreSight channel interface For details, see the Arm® CoreSight™
Architecture Specification. The ACK signals
are not required if the channel interface is
synchronous.

CTICHOUTACK In

CTICHOUT Out

CTICHINACK Out

CTIIRQ Out CTI interrupt, see Description and
allocation of CTI triggers

Implements a handshake for an
edge-sensitive interrupt.

CTIIRQACK In

ATDATA[nx8-1:0] Out AMBA 4 ATB interfacec For details, see the AMBA 4 ATB Protocol
Specification, ATBv1.0 and ATBv1.1. Only
available if the OPTIONAL Trace extension is
implemented.

ATBYTES[n-1:0] Out

ATID[6:0] Out

ATREADY In

Table K7-1 Recommended debug interface signals (continued)

Name Direction Description Notes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14500
ID032224 Non-Confidential

Recommended External Debug Interface
K7.1 About the recommended external debug interface
Figure K7-1 shows the recommended debug interface.

Figure K7-1 Recommended external debug interface, including the APB4 Completer port

K7.1.1 EDBGRQ and DBGACK

EDBGRQ is an IMPLEMENTATION DEFINED means of generating the External Debug Request debug event described
in External Debug Request debug event.

ATVALID Out AMBA 4 ATB interfacec For details, see the AMBA 4 ATB Protocol
Specification, ATBv1.0 and ATBv1.1. Only
available if the OPTIONAL Trace extension is
implemented.

AFREADY Out

AFVALID Out

SYNCREQ In

ATCLK In

ATCLKEN In

ATRESET In

a. This is the port where the PE completes debug APB transactions. Arm recommends a single port for all integrated debug components.

b. The value of n depends on the size of the address space occupied by the Debug port.

c. This is the port where the PE outputs trace.

Table K7-1 Recommended debug interface signals (continued)

Name Direction Description Notes

Cross-trigger

channel interface

CTICHIN
CTICHOUTACK

CTICHOUT
CTICHINACK

CTIIRQ
CTIIRQACK

Processing

element

DCC

handshake

PSELDBG
PADDRDBG

PRDATADBG
PWDATADBG
PENABLEDBG
PREADYDBG
PSLVERRDBG
PWRITEDBG

PCLKDBG
PCLKENDBG

Debug port,

APB4

Configuration
DBGROMADDR

DBGROMADDRV

DBGBUSCANCELREQ

DBGEN
SPIDEN

NIDEN
SPNIDEN

Authentication

interface

COMMTX
COMMRX
COMMIRQ

DBGNOPWRDWN
DBGPWRDUP

Power and reset

controller

interface

DBGPWRUPREQ
DBGRSTREQ

CPUPORESET
CORERESET
PRESETDBG

DBGACK
EDBGRQ

Run-control

interface PMUEVENT
PMUIRQ

Performance

Monitor

Interface

Trace port,

AMBA ATB

ATRESET ATREADY

ATCLK
AFVALID

ATCLKEN

ATID
ATDATA

ATBYTES

ATVALID
AFREADY

SYNCREQ

PPROTDBG

RLPIDEN
RTPIDEN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14501
ID032224 Non-Confidential

Recommended External Debug Interface
K7.1 About the recommended external debug interface
The PE asserts DBGACK when the PE is in Debug state. The PE might also include variants of this signal:

DBGTRIGGER

Asserted by the PE when it commits to entering Debug state.

DBGCPUDONE

Asserted by the PE when it has completed all Non-debug state memory accesses and Debug state
entry is complete. DBGCPUDONE indicates that memory accesses issued by the PE result from
operations originating from debugger commands.

In previous architecture versions, these signals provide an interface between the PE and cross-trigger logic. In
Armv8, the architectural Cross-Trigger Interface provides this functionality for external debuggers.

K7.1.2 Non-secure, Secure, Realm, and Root views of the debug registers

If FEAT_Debugv8p4 is implemented, the external debug interface has views of debug registers for each physical
address space, Non-secure, Secure and, if FEAT_RME is implemented, Realm and Root. The DAP must ensure that
accesses are made only when permitted. The Arm Debug interface describes a standard APB-AP programmers’
model for APB4, with the PPROTDBG[1] and, if FEAT_RME is implemented, PNSEDBG signals used to
determine the physical address space that is accessed. This model is recommended for new designs that do not
implement FEAT_RME, and is required for new designs that implement FEAT_RME.

If FEAT_RME is not implemented, FEAT_Debugv8p4 is implemented, and an APB-AP implements an APB3
Requester port, which does not support Secure and Non-secure views, Arm recommends that the following is
implemented:

• If SPIDEN is HIGH and DBGEN is HIGH, all external debug accesses are treated as Secure.

• If either SPIDEN is LOW or DBGEN is LOW, all external debug accesses are treated as Non-secure.

If the PE APB Completer port is APB4, this might be implemented by, for example, fixing PPROTDBG[1] to the
inverse of (SPIDEN & DBGEN) when bridging from APB3 to APB4.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14502
ID032224 Non-Confidential

Recommended External Debug Interface
K7.2 PMUEVENT bus
K7.2 PMUEVENT bus

The PMUEVENT bus exports Performance Monitor events from the PE to an on-chip agent. Arm recommends that
it has the following characteristics:

• The bus is synchronous.

• The width of the bus is IMPLEMENTATION DEFINED.

• It is IMPLEMENTATION DEFINED which events are exported on the bus.

• Each exported event occupies a contiguous sub-field of the bus. Arm recommends that the sub-fields of the
bus are occupied in the same order as the event numbers.

• If the event can only occur once per cycle, it occupies a single bit. If the event can occur more than once per
cycle, it is IMPLEMENTATION DEFINED how the event is encoded. The encoding depends on constraints such
as the designated use of the event bus and the number of pins available. For example, the event can be
encoded:

— As a count, using a plain binary number. This is the most useful encoding when exporting to an
external counter. It is not a useful encoding for exporting to a Trace extension external input.

— As a count, using thermometer encoding. This is the most useful encoding when exporting to a Trace
extension.

— Using a single bit encoding to indicate whether the event count is zero or nonzero. This is useful for
exporting to an activity monitor where the number of pins is constrained.

If an ETMv4 Trace extension is implemented, the PMUEVENT bus is normally connected to the Trace extension
using the external inputs. TRCEXTINSELR multiplexes a wide PMUEVENT bus to a narrow set of inputs. An
external PMUEVENT bus might also be provided. For more information, contact Arm.

When FEAT_ETE is implemented, PMU events are connected to the trace unit, however the PMUEVENT bus is
not used to connect the PMU events to the trace unit. See External inputs.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14503
ID032224 Non-Confidential

Recommended External Debug Interface
K7.3 Recommended authentication interface
K7.3 Recommended authentication interface

An implementation of the Armv8 and later architectures must support debug authentication described in Required
debug authentication.

The details of the debug authentication interface are IMPLEMENTATION DEFINED, but Arm recommends the use of
the CoreSight interface, which includes the following signals for external debug authentication:

• DBGEN.

• SPIDEN.

If FEAT_Debugv8p4 is not implemented, Arm also recommends using the following signals:

• NIDEN.

• SPNIDEN.

If FEAT_RME is implemented, Arm recommends the following additional signals for external debug
authentication:

• RLPIDEN.

• RTPIDEN.

Arm recommends an interface in which DBGEN and SPIDEN are also used for self-hosted Secure debug
authentication if either:

• EL3 is using AArch32 and SDCR.SPD == 0b00.

• Secure EL1 is using AArch32 and MDCR_EL3.SPD32 == 0b00.

If EL3 is not implemented and the PE is in Non-secure state, SPIDEN and SPNIDEN are not implemented, and the
PE behaves as if these signals were tied LOW.

If EL3 is not implemented and the PE is in Secure state, SPIDEN is usually connected to DBGEN and SPNIDEN
is connected to NIDEN, but this is not required. The recommended interface is defined as if all four signals are
implemented.

In order to include External debug state in Realm attestation when FEAT_RME is implemented, the authentication
signals that control External debug in the Realm and Root Security states must be sampled before execution starts
in the corresponding Security state and not change value until a system reset event:

• For the RTPIDEN authentication signal, Arm expects that this behavior will be guaranteed by system
construction.

• For the RLPIDEN authentication signal, this behavior can be guaranteed by system construction or by Root
firmware.

How the authentication signals are driven is IMPLEMENTATION DEFINED. For example, the signals might be
hard-wired, connected to fuses, or to an authentication module. The architecture permits PEs within a cluster to have
independent authentication interfaces, but this is not required. Arm recommends that any Trace extension has the
same authentication interface as the PE it is connected to.

If FEAT_Debugv8p4 and CoreSight ETR are both implemented, the ETR has an independent DBGEN signal that
must be tied HIGH to enable self-hosted use of trace.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14504
ID032224 Non-Confidential

Recommended External Debug Interface
K7.3 Recommended authentication interface
Table K7-2 shows the debug authentication pseudocode functions and the recommended implementations.

Table K7-3 shows the Security states that can be externally debugged with different values for the debug
authentication signals, based on the recommended mapping:

The Debug_authentication() pseudocode function on shared/debug defines the authentication signals DBGEN,
SPIDEN, RLPIDEN, RTPIDEN, NIDEN, and SPNIDEN.

Table K7-2 Recommended implementation of debug enable pseudocode functions

Pseudocode function Description Implementation

ExternalNoninvasiveDebugEnabled()a Non-secure non-invasive debug
enabled

(DBGEN OR NIDENc)

ExternalInvasiveDebugEnabled() Non-secure invasive debug enabled DBGEN

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() Secure invasive self-hosted debug
enabled in AArch32 state (legacy)

(DBGEN AND SPIDEN)

ExternalSecureNoninvasiveDebugEnabled()b Secure non-invasive debug enabled (DBGEN OR NIDENc)
AND (SPIDEN OR
SPNIDENd)

ExternalSecureInvasiveDebugEnabled()e Secure invasive debug enabled (DBGEN AND SPIDEN)

ExternalRealmInvasiveDebugEnabled()f Realm invasive debug enabled (DBGEN AND RLPIDEN)

ExternalRootInvasiveDebugEnabled()f Root invasive debug enabled (DBGEN AND RLPIDEN
AND SPIDEN AND
RTPIDEN)

a. If FEAT_Debugv8p4 is implemented, ExternalNoninvasiveDebugEnabled == TRUE.

b. If FEAT_Debugv8p4 is implemented, ExternalSecureNoninvasiveDebugEnabled == ExternalSecureInvasiveDebugEnabled.

c. If FEAT_Debugv8p4 is implemented, the NIDEN signal is not implemented.

d. If FEAT_Debugv8p4 is implemented, the SPNIDEN signal is not implemented.

e. Requires implementation of Secure state.

f. Requires implementation of FEAT_RME.

Table K7-3 Permitted external debug of Security states

DBGEN SPIDEN RLPIDEN RTPIDEN Non-secure Securea

a. Requires implementation of Secure state.

Realmb

b. Requires implementation of FEAT_RME.

Rootb

0 x x x No No No No

1 0 0 x Yes No No No

1 0 1 x Yes No Yes No

1 1 0 x Yes Yes No No

1 1 1 0 Yes Yes Yes No

1 1c

c. x if Secure state is not implemented.

1 1 Yes Yes Yes Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14505
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
K7.4 Management registers and CoreSight compliance

The CoreSight architecture requires the implementation of a set of management registers that occupy the memory
map from 0xF00 upwards in each of the debug components.

CoreSight compliance and complete implementation of the management registers is OPTIONAL, but Arm
recommends that the registers are implemented.

The CoreSight architecture specification recommends that any integration test registers are implemented starting
from 0xEFC downwards. Each of the debug components has an IMPLEMENTATION DEFINED region from 0xE80 to
0xEFC for this purpose.

K7.4.1 CoreSight interface register map

Table K7-4 shows the external management register maps for the following registers:

ED These are the external debug register.

CTI These are the Cross-trigger interface registers.

PMU These are the Performance Monitors registers.

Table K7-4 CoreSight interface register map

Offset
Mnemonic

Name
ED CTI PMU

0xF00 EDITCTRL CTIITCTRL PMITCTRL Integration Model Control registers

0xF04-0xF9C - - - Reserved, RES0

0xFA0 DBGCLAIMSET_EL1a CTICLAIMSETb - CLAIM Tag Set registers

0xFA4 DBGCLAIMCLR_EL1a CTICLAIMCLRb - CLAIM Tag Clear registers

0xFA8 EDDEVAFF0a CTIDEVAFF0c PMDEVAFF0 Device Affinity registers

0xFAC EDDEVAFF1a CTIDEVAFF1c PMDEVAFF1

0xFB0 EDLARd CTILARd PMLARd Lock Access register

0xFB4 EDLSRd CTILSRd PMLSRd Lock Status register

0XFB8 DBGAUTHSTATUS_EL1a CTIAUTHSTATUS PMAUTHSTATUS Authentication Status register

0xFBC EDDEVARCH CTIDEVARCH PMDEVARCH Device Architecture register

0xFC0 EDDEVID2a CTIDEVID2a - Device ID register

0xFC4 EDDEVID1a CTIDEVID1a -

0xFC8 EDDEVIDa CTIDEVIDa PMDEVIDa, e

0xFCC EDDEVTYPE CTIDEVTYPE PMDEVTYPE Device Type register

0xFD0 EDPIDR4 CTIPIDR4 PMPIDR4 Peripheral ID registers

0xFD4-0xFDC - - - Reserved, RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14506
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
K7.4.2 Management register access permissions

Access to the OPTIONAL Integration Control register (ITCTRL) is IMPLEMENTATION DEFINED.

Table K7-5, Table K7-6, Table K7-7, Table K7-8, and Table K7-9 show the response to accesses by the external
debug interface to the CoreSight management registers.

Note

Access to the CoreSight management registers is not affected by the values of EDAD and EPMAD.

Table K7-5, Table K7-6, Table K7-7, Table K7-8, and Table K7-9 include reserved management registers, because
the CoreSight architecture requires that these registers are always RES0. The descriptions in Reserved and
unallocated registers do not apply to reserved management registers if the implementation is CoreSight compliant.

If OPTIONAL memory-mapped access to the external debug interface is supported, there are additional constraints
on memory-mapped accesses. See Register access permissions for memory-mapped accesses.

When FEAT_Debugv8p4 is implemented, each debug component has a Secure and Non-secure view. The Secure
view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component
is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug
components are identical.

The terms in Table K7-5, Table K7-6, Table K7-7, Table K7-8, and Table K7-9 are defined as follows:

Domain This describes the power domain in which the register is logically implemented. Registers described
as implemented in the Core power domain might be implemented in the Debug power domain, as
long as they exhibit the required behavior.

If FEAT_DoPD is implemented, most External debug interface registers are in the Core power
domain, as shown in Table K7-5 and Table K7-8.

If FEAT_DoPD is not implemented, most of the registers are in the Debug Power Domain, as shown
in Table K7-6 and Table K7-9.

Conditions This lists the conditions under which the access is attempted.

0xFE0 EDPIDR0 CTIPIDR0 PMPIDR0 Peripheral ID registers

0xFE4 EDPIDR1 CTIPIDR1 PMPIDR1

0xFE8 EDPIDR2 CTIPIDR2 PMPIDR2

0xFEC EDPIDR3 CTIPIDR3 PMPIDR3

0xFF0 EDCIDR0 CTICIDR0 PMCIDR0 Component ID registers

0xFF4 EDCIDR1 CTICIDR1 PMCIDR1

0xFF8 EDCIDR2 CTICIDR2 PMCIDR2

0xFFC EDCIDR3 CTICIDR3 PMCIDR3

a. This register must always be implemented, regardless of whether the component is CoreSight compliant.

b. If implemented, the number of CLAIM bits is IMPLEMENTATION DEFINED and can be discovered by reading CLAIMSET.

c. If the CTI implements CTIv1, this register is not implemented. See the register description for details.

d. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access that is made and
whether the OPTIONAL Software lock is implemented. See the register description for details.

e. PMDEVID is implemented only from Armv8.2 or if FEAT_PCSRv8p2 is implemented, otherwise its offset is RES0.

Table K7-4 CoreSight interface register map (continued)

Offset
Mnemonic

Name
ED CTI PMU
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14507
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
To determine the access permissions for a register, read these columns from left to right, and stop at
first column that lists the condition as being true.

The conditions are:

Off EDPRSR.PU == 0. The Core power domain is completely off, or in low-power state. In
these cases, the Core power domain registers cannot be accessed.

Note
When the Debug power domain is off, all accesses to the registers in the external Debug
power domain return an error.

DLK If the OS Double Lock is implemented and DoubleLockStatus() == TRUE. The OS
Double Lock is locked.

OSLK OSLSR.OSLK == 1. The OS Lock is locked.

Default This provides the default access permissions, if there are no conditions that prevent access to the
register.

SLK This provides the modified default access permissions for OPTIONAL memory-mapped accesses to
the external debug interface if the OPTIONAL Software Lock is locked. See Register access
permissions for memory-mapped accesses. If FEAT_DoPD is implemented, the Software Lock is
not locked, or not implemented, this column is ignored.

The access permissions are:

- This means that the default access permission applies. See the Default column, or the SLK column,
if applicable.

RO This means that the register or field is read-only.

RW This means that the register or field is read/write. Individual fields within the register might be RO.
See the relevant register description for details.

RC This means that the bit clears to 0 after a read.

(SE) This means that accesses to this register have indirect write side effects. A side effect occurs when
a direct read or a direct write of a register creates an indirect write to the same register or to another
register.

WO This means that the register or field is write-only.

WI This means that the register or field ignores writes.

IMP DEF This means that the access permissions are IMPLEMENTATION DEFINED.

Table K7-5 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is implemented

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK

0xF00 EDITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF

0xF04-0xF8C Reserved - - - RES0

0xFA0 DBGCLAIMSET_EL1 Core Error Error Error RW (SE)

0xFA4 DBGCLAIMCLR_EL1 Core Error Error Error RW (SE)

0xFA8 EDDEVAFF0 Core Error - - RO
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14508
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
0xFAC EDDEVAFF1 Core Error - - RO

0xFB0 EDLAR Core Error - - WO (SE)

0xFB4 EDLSR Core Error - - RO

0xFB8 DBGAUTHSTATUS_EL1 Core Error - - RO

0xFBC EDDEVARCH Core Error - - RO

0xFC0 EDDEVID2 Core Error - - RO

0xFC4 EDDEVID1 Core Error - - RO

0xFC8 EDDEVID Core Error - - RO

0xFCC EDDEVTYPE Core Error - - RO

0xFD0 EDPIDR4 Core Error - - RO

0xFD4-0xFDC Reserved - - - RES0

0xFE0-0xFEC EDPIDR0 Core Error - - RO

0xFE4 EDPIDR1 Core Error - - RO

0xFE8 EDPIDR2 Core Error - - RO

0xFEC EDPIDR3 Core Error - - RO

0xFF0 EDCIDR0 Core Error - - RO

0xFF4 EDCIDR1 Core Error - - RO

0xFF8 EDCIDR2 Core Error - - RO

0xFFC EDCIDR3 Core Error - - RO

Table K7-6 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is not implemented

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

0xF00 EDITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF RO/WI

0xF04-0xF8C Reserved Debug - - - RES0 -

0xFA0 DBGCLAIMSET_EL1 Core Error Error Error RW (SE) RO

0xFA4 DBGCLAIMCLR_EL1 Core Error Error Error RW (SE) RO

0xFA8 EDDEVAFF0 Debug - - - RO -

Table K7-5 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14509
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
0xFAC EDDEVAFF1 Debug - - - RO -

0xFB0 EDLAR Debug - - - WO (SE) -

0xFB4 EDLSR Debug - - - RO -

0xFB8 DBGAUTHSTATUS_EL1 Debug - - - RO -

0xFBC EDDEVARCH Debug - - - RO -

0xFC0 EDDEVID2 Debug - - - RO -

0xFC4 EDDEVID1 Debug - - - RO -

0xFC8 EDDEVID Debug - - - RO -

0xFCC EDDEVTYPE Debug - - - RO -

0xFD0 EDPIDR4 Debug - - - RO -

0xFD4-0xFDC Reserved Debug - - - RES0 -

0xFE0-0xFEC EDPIDR0 Debug - - - RO -

0xFE4 EDPIDR1 Debug - - - RO -

0xFE8 EDPIDR2 Debug - - - RO -

0xFEC EDPIDR3 Debug - - - RO -

0xFF0 EDCIDR0 Debug - - - RO -

0xFF4 EDCIDR1 Debug - - - RO -

0xFF8 EDCIDR2 Debug - - - RO -

0xFFC EDCIDR3 Debug - - - RO -

Table K7-7 External debug interface access permissions, CoreSight registers (CTI)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

0xF00 CTIITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF RO/WI

0xF04-0xF8C Reserved Debug - - - RES0 -

0xFA0 CTICLAIMSET Debug - - - RW (SE) RO

0xFA4 CTICLAIMCLR Debug - - - RW (SE) RO

0xFA8 CTIDEVAFF0 Debug - - - RO -

Table K7-6 External debug interface access permissions, CoreSight registers (debug) if
FEAT_DoPD is not implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14510
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
0xFAC CTIDEVAFF1 Debug - - - RO -

0xFB0 CTILAR Debug - - - WO (SE) -

0xFB4 CTILSR Debug - - - RO -

0xFB8 CTIAUTHSTATUS Debug - - - RO -

0xFBC CTIDEVARCH Debug - - - RO -

0xFC0 CTIDEVID2 Debug - - - RO -

0xFC4 CTIDEVID1 Debug - - - RO -

0xFC8 CTIDEVID Debug - - - RO -

0xFCC CTIDEVTYPE Debug - - - RO -

0xFD0 CTIPIDR4 Debug - - - RO -

0xFD4-0xFDC Reserved Debug - - - RES0 -

0xFE0 CTIPIDR0 Debug - - - RO -

0xFE4 CTIPIDR1 Debug - - - RO -

0xFE8 CTIPIDR2 Debug - - - RO -

0xFEC CTIPIDR3 Debug - - - RO -

0xFF0 CTICIDR0 Debug - - - RO -

0xFF4 CTICIDR1 Debug - - - RO -

0xFF8 CTICIDR2 Debug - - - RO -

0xFFC CTICIDR3 Debug - - - RO -

Table K7-8 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is implemented

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK

0xF00 PMITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF

0xF04-0xFA4 Reserved - - - RES0

0xFA8 PMDEVAFF0 Core Error - - RO

0xFAC PMDEVAFF1 Core Error - - RO

0xFB0 PMLAR Core Error - - WO (SE)

Table K7-7 External debug interface access permissions, CoreSight registers (CTI) (continued)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14511
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
0xFB4 PMLSR Core Error - - RO

0xFB8 PMAUTHSTATUS Core Error - - RO

0xFBC PMDEVARCH Core Error - - RO

0xFC0-0xFC4 Reserved - - - RES0

0xFC8 PMDEVIDa Core Error - - RO

0xFCC PMDEVTYPE Core Error - - RO

0xFD0 PMPIDR4 Core Error - - RO

0xFD4-0xFDC Reserved - - - RES0

0xFE0 PMPIDR0 Core Error - - RO

0xFE4 PMPIDR1 Core Error - - RO

0xFE8 PMPIDR2 Core Error - - RO

0xFEC PMPIDR3 Core Error - - RO

0xFF0 PMCIDR0 Core Error - - RO

0xFF4 PMCIDR1 Core Error - - RO

0xFF8 PMCIDR2 Core Error - - RO

0xFFC PMCIDR3 Core Error - - RO

a. Implemented from Armv8.2, or if FEAT_PCSRv8p2 is implemented. Otherwise this
location is RES0.

Table K7-9 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is not implemented

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK

0xF00 PMITCTRL IMP DEF IMPLEMENTATION DEFINED IMP DEF RO/WI

0xF04-0xFA4 Reserved Debug - - - RES0 -

0xFA8 PMDEVAFF0 Debug - - - RO -

0xFAC PMDEVAFF1 Debug - - - RO -

0xFB0 PMLAR Debug - - - WO (SE) -

0xFB4 PMLSR Debug - - - RO -

0xFB8 PMAUTHSTATUS Debug - - - RO -

Table K7-8 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default

Off DLK OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14512
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
K7.4.3 Management register resets

Table K7-10 shows the management register resets. This table does not include:

• Read-only identification registers that have a fixed value from reset. These registers include those with the
DEVAFFn, DEVARCH, DEVID{n}, DEVTYPE, PIDRn, and CIDRn mnemonics.

• Registers that have the AUTHSTATUS mnemonic. This is a read-only status register that reflects the status
outside of the reset domain of the register.

• Registers that have the LAR mnemonic. These are write-only registers that only have an effect on writes.

All other fields in the management registers are reset to an IMPLEMENTATION DEFINED value which can be
UNKNOWN. The registers are in the reset domain specified in the table.

0xFBC PMDEVARCH Debug - - - RO -

0xFC0-0xFC4 Reserved Debug - - - RES0 -

0xFC8 PMDEVIDa Debug - - - RO -

0xFCC PMDEVTYPE Debug - - - RO -

0xFD0 PMPIDR4 Debug - - - RO -

0xFD4-0xFDC Reserved Debug - - - RES0 -

0xFE0 PMPIDR0 Debug - - - RO -

0xFE4 PMPIDR1 Debug - - - RO -

0xFE8 PMPIDR2 Debug - - - RO -

0xFEC PMPIDR3 Debug - - - RO -

0xFF0 PMCIDR0 Debug - - - RO -

0xFF4 PMCIDR1 Debug - - - RO -

0xFF8 PMCIDR2 Debug - - - RO -

0xFFC PMCIDR3 Debug - - - RO -

a. Implemented from Armv8.2, or if FEAT_PCSRv8p2 is implemented. Otherwise this location is RES0.

Table K7-9 External debug interface access permissions, CoreSight registers (PMU) if
FEAT_DoPD is not implemented (continued)

Offset Register Domain

Conditions
(priority left to right)

Default SLK

Off DLK OSLK
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14513
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
Table K7-10 shows a summary of the management register resets.

K7.4.4 About the Peripheral identification scheme

The Peripheral Identification scheme provides the standard information required by all components that conform to
the Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2, that implements the CoreSight
identification scheme. They identify a peripheral in a particular namespace. For more information, see the Arm®
CoreSight™ Architecture Specification.

Table K7-11 lists the Peripheral ID Registers that make up the Peripheral Identification scheme for each component.

Figure K7-2 shows the register field allocation scheme for the Peripheral ID Registers.

Figure K7-2 Peripheral ID register format

Table K7-10 Management register resets

Register Reset domain Field Value Description

CTIITCTRL

EDITCTRL

PMITCTRL

IMPLEMENTATION DEFINED IME 0 Integration mode enable

DBGCLAIMCLR_EL1 Cold reset CLAIM 0x00 CLAIM tags

CTICLAIMCLR External debug CLAIM 0x00000000

CTILSRa

EDLSRa

PMLSRa

a. Only if the OPTIONAL Software Lock is implemented

If FEAT_DoPD is
implemented, reset by Cold
reset, otherwise External
debug.

SLK 1 Software Lock

Table K7-11 Peripheral Identification Registers

Reference

Register offset Description External Debug CTI Performance Monitors

0xFD0 Peripheral ID4 EDPIDR4 CTIPIDR4 PMPIDR4

0xFD4 Reserved for Peripheral ID5 - - -

0xFD8 Reserved for Peripheral ID6 - - -

0xFDC Reserved for Peripheral ID7 - - -

0xFE0 Peripheral ID0 EDPIDR0 CTIPIDR0 PMPIDR0

0xFE4 Peripheral ID1 EDPIDR1 CTIPIDR1 PMPIDR1

0xFE8 Peripheral ID2 EDPIDR2 CTIPIDR2 PMPIDR2

0xFEC Peripheral ID3 EDPIDR3 CTIPIDR3 PMPIDR3

RES0

31 8

Peripheral ID data

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14514
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
Software can consider the eight Peripheral ID Registers as defining a single 64-bit Peripheral ID, as shown in
Figure K7-3.

Figure K7-3 Mapping between Peripheral ID Registers and a 64-bit Peripheral ID Value

Figure K7-4 shows the fields in the 64-bit Peripheral ID value, and includes the field values for fields that:

• Have fixed values, including the bits that are reserved.

• Have fixed values in an implementation that is designed by Arm.

For more information about the fields and their values, see Table K7-12.

Figure K7-4 Peripheral ID fields, with values for a implementation designed by ARM

Table K7-12 shows the fields in the Peripheral ID.

0

Actual Peripheral ID Register fields

EDPIDR0

7 07 07 07 07 07 07 07

EDPIDR1EDPIDR2EDPIDR3EDPIDR4EDPIDR5EDPIDR6EDPIDR7

63 16 15 8 0724 2332 3140 3948 4756 55

Conceptual 64-bit Peripheral ID

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 1 0 0 1 0 1 1 11 0 1

Conceptual 64-bit Peripheral ID

7 0 07

Reserved, RES0

EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7EDPIDR7

Part numberJEP106

ID code
4KB

count

RevAnd

JEP106

Continuation code

Customer

modified

Revision

63 0

4 3070707070707 2343434

Uses JEP106 ID code

Table K7-12 Fields in the Peripheral Identification Registers

Name Size Description Registers

4KB count 4 bits Log2 of the number of 4KB blocks occupied by the implementation. EDPIDR4

CTIPIDR4

PMPIDR4

JEP106 code 4+7

bits

Identifies the designer of the implementation. This value consists of:

• A 4-bit continuation code, also described as the bank number.

• A 7-bit identification code.

For implementations designed by Arm, the continuation code is 0x4, indicating
bank 5, and the identity code is 0x3B.

EDPIDR1, EDPIDR2,
EDPIDR4

CTIPIDR1,
CTIPIDR2, CTIPIDR4

PMPIDR1, PMPIDR2,
PMPIDR4

RevAnd 4 bits Manufacturing revision number. Indicates a late modification to the
implementation, usually as a result of an Engineering Change Order (ECO).
This field starts at 0x0 and is incremented by the integrated circuit manufacturer
on metal fixes.

EDPIDR3

CTIPIDR3

PMPIDR3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14515
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
A component is identified uniquely by the combination of the following fields:

• JEP106 continuation code.

• JEP106 identity code.

• Part number.

• Revision.

• Customer Modified.

• RevAnd.

For components with a Component class of 0x9, Debug component, indicated by the Component Identification
Registers, multiple components can have the same Part number, provided each component has a different CoreSight
Device type. However, Arm strongly recommends that each device has a unique Part number. For more information:

• About the Component Identification Registers, see About the Component Identification scheme.

• About the CoreSight Device type, see EDDEVTYPE, CTIDEVTYPE, or PMDEVTYPE.

• About CoreSight components and their identification, see the Arm® Debug Interface Architecture
Specification.

K7.4.4.1 Allocating revisions and part numbers

Within the Peripheral Identification registers, the allocation of major and minor revisions, part numbers, and
customer-modified fields is IMPLEMENTATION DEFINED, with the following set of restrictions so that:

• The REVISION field must increase monotonically with revisions.

Note
Arm recommends that the REVISION field is updated for each update to the RTL, regardless of whether this
is a major or minor update.

• The REVAND field should increase monotonically with revisions.

Customer

modified

4 bits Indicates an endorsed modification to the implementation.

If the system designer cannot modify the implementation supplied by the
implementation designer, then this field is RES0.

EDPIDR3

CTIPIDR3

PMPIDR3

Revision 4 bits Revision number for the implementation.

Starts at 0x0 and increments by 1 at both major and minor revisions.

EDPIDR2

CTIPIDR2

PMPIDR2

Uses JEP106

ID code

1 bit This bit is set to 1 when a JEP106 identification code is used.

This bit must be 1 on all Arm implementations from the introduction of Armv8
onwards.

EDPIDR2

CTIPIDR2

PMPIDR2

Part number 12 bits Part number for the implementation. Each organization designing to the Arm
Debug architecture specification keeps its own part number list.

EDPIDR0, EDPIDR1

CTIPIDR0, CTIPIDR1

PMPIDR0, PMPIDR1

Table K7-12 Fields in the Peripheral Identification Registers (continued)

Name Size Description Registers
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14516
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
Note

Arm recommends that the REVAND field is used only for post-release changes. For example, those due to
engineering change order (ECO) fixes related to the debug component of the processor.

• The PART field must have a degree of uniqueness:

— Two component designs can have the same part number so long as they are sub-components of the
same part and the programmers’ model for the part has the means to disambiguate sub-components.

— Otherwise, two component designs must have unique part numbers.

The DEVARCH (if implemented) or DEVTYPE (otherwise) register provides the means to disambiguate
sub-components of the Debug Architecture.

A ROM table has no DEVTYPE or DEVARCH register. However, if it is the only CLASS 0x1 component in a
processor cluster, it can still be disambiguated.

Multiple instances of the same component design have the same part number.

K7.4.5 About the Component Identification scheme

The Component Identification Registers identify the processor as an Arm Debug Interface v5 component. For more
information, see the Arm® Debug Interface Architecture Specification and the Arm® CoreSight™ Architecture
Specification.

The Component Identification Registers occupy the last four words of the 4KB block of debug registers.

Figure K7-5 shows the register field allocation scheme for the Component ID Registers.

Figure K7-5 Component ID Register format

Software can consider the eight Component ID Registers as defining a single 32-bit Component ID, as shown in
Figure K7-6.

Table K7-13 Component Identification Registers

Register offset Description External debug CTI Performance Monitors

0xFF0 Component ID0 EDCIDR0 CTICIDR0 PMCIDR0

0xFF0 Component ID1 EDCIDR1 CTICIDR1 PMCIDR1

0xFF0 Component ID2 EDCIDR2 CTICIDR2 PMCIDR2

0xFF0 Component ID3 EDCIDR3 CTICIDR3 PMCIDR3

RES0

31 8

Component ID Data

7 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14517
ID032224 Non-Confidential

Recommended External Debug Interface
K7.4 Management registers and CoreSight compliance
Figure K7-6 Mapping between Component ID Registers and a 32-bit Component ID Value

EDCIDR3

Conceptual 32-bit component ID

Actual ComponentID register fields
EDCIDR2 EDCIDR1 EDCIDR0

Component ID

Preamble

1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1

7 0 7 0 7 0 7 0

31 2423 1615 8 7 01211

Preamble

34

Component

class
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K7-14518
ID032224 Non-Confidential

Appendix K8
Additional Information for Implementations of the
Generic Timer

This appendix gives additional information about implementations of the Generic Timer. It contains the following
sections:

• Providing a complete set of features in a system level implementation.

• Gray count scheme for timer distribution scheme.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K8-14519
ID032224 Non-Confidential

Additional Information for Implementations of the Generic Timer
K8.1 Providing a complete set of features in a system level implementation
K8.1 Providing a complete set of features in a system level implementation

As an example system design, using memory-mapped Generic Timer components as described in Chapter I2 System
Level Implementation of the Generic Timer, the feature set of a System registers counter and timer, in an
implementation that includes Non-secure EL2 and EL3, can be implemented using the following set of timer
frames:

• A CNTCTLBase control frame.

• The following CNTBaseNN timer frames:

Frame 0 Accessible by Non-secure accesses, with second view and virtual capability. This provides the
Non-secure EL1&0 timers.

Frame 1 Accessible by Non-secure accesses, with no second view and no virtual capability. This provides
the Non-secure EL2 timers.

Frame 2 Accessible only by Secure accesses, with a second view but no virtual capability. This provides
the Secure PL1&0 timers, meaning:

• Compared to a PE where EL3 is using AArch32, it provides the only Secure state timer.

• Compared to a PE where EL3 is using AArch64, it provides the Secure EL1&0 timer.

Frame 3 Accessible only by Secure accesses, with no second view and no virtual capability. This provides
the EL3 timers.

Note

This frame is not required for a memory-mapped timer that provides only the feature set of a PE
for which EL3 is using AArch32.

In this implementation, the full set of implemented frames, and accessibility as memory pages in the different
translation regimes, is as follows:

CNTCTLBase

The control frame. This frame is accessible in both the Secure and Non-secure memory maps, and:

• In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is not accessible.

CNTBase0 The first view of the Non-secure EL1&0 timers. This frame is accessible only in the Non-secure
memory map, and:

• In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is accessible only at EL1.

CNTEL0Base0

The second view of CNTBase0, meaning it is the EL0 view of the Non-secure EL1&0 timers. This
frame is accessible only in the Non-secure memory map, and:

• In the Secure EL1&0 translation regime, the architecture permits this frame to be accessible
at EL1, or at EL1 and EL0, but does not require either of these options.

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is accessible at EL1 and EL0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K8-14520
ID032224 Non-Confidential

Additional Information for Implementations of the Generic Timer
K8.1 Providing a complete set of features in a system level implementation
CNTBase1 The first and only view of the Non-secure EL2 timers. This frame is accessible only in Non-secure
memory map, and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

— In the EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is
accessible only at PL1 (EL3).

• In the Non-secure EL2 translation regime, this frame is accessible.

• In the Non-secure EL1&0 translation regime, this frame is not accessible.

CNTBase2 The first view of the Secure EL1&0, or PL1&0 timers.

Note

In AArch64 state, these timers are always called the Secure EL1&0 timers. In AArch32 state they
are usually called the Secure PL1&0 timers because, in AArch32 Secure state, whether some of the
PE modes map to EL1 or to EL3 depends on whether EL3 is using AArch64 or AArch32. See
Security state, Exception levels, and AArch32 execution privilege.

This frame is accessible only in the Secure memory map, and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is accessible only at EL1.

— In the EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is
accessible only at PL1 (EL3).

• Because the frame is in Secure memory, it is not accessible in any Non-secure translation
regime.

CNTEL0Base2

The second view of CNTBase2, meaning it is the EL0 view of the Secure EL1&0, or PL1&0, timers.

Note

See the Note in the description of the CNTBase2 frame for more information about the naming of
these timers.

This frame is accessible only in the Secure memory map, and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is accessible at EL1 and EL0.

— In the EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is
accessible at PL1 (EL3) and EL0.

• Because the frame is in Secure memory, it is not accessible in any Non-secure translation
regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K8-14521
ID032224 Non-Confidential

Additional Information for Implementations of the Generic Timer
K8.1 Providing a complete set of features in a system level implementation
CNTBase3 The first and only view of the EL3 timers. This frame is accessible only in the Secure memory map,
and:

• When EL3 is using AArch64:

— In the Secure EL1&0 translation regime, this frame is not accessible.

— In the EL3 translation regime, this frame is accessible.

• When EL3 is using AArch32, this frame is not accessible.

• Because the frame is in Secure memory, it is not accessible in any Non-secure translation
regime.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K8-14522
ID032224 Non-Confidential

Additional Information for Implementations of the Generic Timer
K8.2 Gray count scheme for timer distribution scheme
K8.2 Gray count scheme for timer distribution scheme

The distribution of the Counter value using a Gray code provides a relatively simple mechanism to avoid any danger
of the count being sampled with an intermediate value even if the clocking is asynchronous. It has a further
advantage that the distribution is relatively low power, since only one bit changes on the main distribution wires for
each clock tick.

A suitable Gray-coding scheme can be achieved with the following logic:

Gray = Count EOR ('0':Count<N:1>)

Count<N> = Gray<N>
for i = N-1 downto 0

Count<i> = Gray<i> EOR Count<i+1>

This is for an N+1 bit counter, where Count is a conventional binary count value, and Gray is the corresponding
Gray count value.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K8-14523
ID032224 Non-Confidential

Appendix K9
Legacy Instruction Syntax for AArch32 Instruction
Sets

This appendix describes the legacy instruction syntax in the Arm instruction sets, and their Unified Assembler
Language (UAL) equivalents. It contains the following section:

• Legacy Instruction Syntax.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14524
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
K9.1 Legacy Instruction Syntax

Early versions of the Arm Architecture defined an assembly language for A32 (ARM) instructions, and a separate
assembly language for T32 (Thumb) instructions. UAL is based on the A32 assembly language, with some changes
to the instruction syntax. The appendix describes those changes. The pre-UAL mnemonics are compatible with
UAL, and might be supported by an assembler.

The original T32 assembly language is not compatible with UAL, and is not described in the manual.

K9.1.1 Pre-UAL instruction syntax for the A32 base instructions

Table K9-1 lists the syntax for the A32 base instructions that have changed after UAL was introduced.

Table K9-1 Pre-UAL instruction syntax for the A32 base instructions

Pre-UAL syntax UAL equivalent See

ADC<c>S ADCS<c> ADC, ADCS (immediate),

ADC, ADCS (register),

ADC, ADCS (register-shifted register)

ADD<c>S ADDS<c> ADD, ADDS (immediate),

ADD, ADDS (register),

ADD, ADDS (register-shifted register),

ADD, ADDS (SP plus immediate),

ADD, ADDS (SP plus register)

AND<c>S ANDS<c> AND, ANDS (immediate),

AND, ANDS (register),

AND, ANDS (register-shifted register)

BIC<c>S BICS<c> BIC, BICS (immediate),

BIC, BICS (register),

BIC, BICS (register-shifted register)

EOR<c>S EORS<c> EOR, EORS (immediate),

EOR, EORS (register),

EOR, EORS (register-shifted register)

LDC<c>L LDCL<c> LDC (immediate),

LDC (literal)

LDM<c>IA, LDM<c>FD LDM<c> LDM, LDMIA, LDMFD

LDM<c>DA, LDM<c>FA LDMDA<c> LDMDA, LDMFA

LDM<c>DB, LDM<c>EA LDMDB<c> LDMDB, LDMEA

LDM<c>IB, LDM<c>ED LDMIB<c> LDMIB, LDMED

LDR<c>B LDRB<c> LDRB (immediate),

LDRB (literal),

LDRB (register)

LDR<c>BT LDRBT<c> LDRBT

LDR<c>D LDRD<c> LDRD (immediate),

LDRD (literal),

LDRD (register)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14525
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
LDR<c>H LDRH<c> LDRH (immediate),

LDRH (literal),

LDRH (register)

LDR<c>SB LDRSB<c> LDRSB (immediate).

LDRSB (literal),

LDRSB (register)

LDR<c>SH LDRSH<c> LDRSH (immediate),

LDRSH (literal),

LDRSH (register)

LDR<c>T LDRT<c> LDRT

MLA<c>S MLAS<c> MLA, MLAS

LSLS <Rd>, <Rn>, #0 MOVS <Rd>, <Rm> MOV, MOVS (immediate),

MOV, MOVS (register)
MOV<c>S MOVS<c>

MUL<c>S MULS<c> MUL, MULS

MVN<c>S MVNS<c> MVN, MVNS (immediate),

MVN, MVNS (register),

MVN, MVNS (register-shifted register)

ORR<c>S ORRS<C> ORR, ORRS (immediate),

ORR, ORRS (register),

ORR, ORRS (register-shifted register)

QADDSUBX QASX QASX

QSUBADDX QSAX QSAX

RSB<c>S RSBS<c> RSB, RSBS (immediate),

RSB, RSBS (register),

RSB, RSBS (register-shifted register)

RSC<c>S RSCS<c> RSC, RSCS (immediate),

RSC, RSCS (register),

RSC, RSCS (register-shifted register)

SADDSUBX SASX SASX

SBC<c>S SBCS<c> SBC, SBCS (immediate),

SBC, SBCS (register),

SBC, SBCS (register-shifted register)

SHADDSUBX SHASX SHASX

SHSUBADDX SHSAX SHSAX

SMI<c> SMC<c> SMC

SMLAL<c>S SMLALS<c> SMLAL, SMLALS

SMULL<c>S SMULLS<c> SMULL, SMULLS

Table K9-1 Pre-UAL instruction syntax for the A32 base instructions (continued)

Pre-UAL syntax UAL equivalent See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14526
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
SSUBADDX<c> SSAX<c> SSAX

STC<c>L STCL<c> STC

STM<c>EA, STM<c>IA STM<c> STM, STMIA, STMEA

STM<c>DA, STM<c>ED STMDA<c> STMDA, STMED

STM<c>DB, STM<c>FD STMDB<c> STMDB, STMFD

STM<c>IB, STM<c>FA STMIB<c> STMIB, STMFA

STR<c>B STRB<c> STRB (immediate),

STRB (register)

STR<c>BT STRBT<c> STRBT

STR<c>D STRD<c> STRD (immediate),

STRD (register)

STR<c>H STRH<c> STRH (immediate),

STRH (register)

STR<c>T STRT<c> STRT

SUB<c>S SUBS<c> SUB, SUBS (immediate),

SUB, SUBS (register),

SUB, SUBS (register-shifted register),

SUB, SUBS (SP minus immediate),

SUB, SUBS (SP minus register)

SWI SVC SVC

UADDSUBX UASX UASX

UHADDSUBX UHASX UHASX

UHSUBADDX UHSAX UHSAX

UMLAL<c>S UMLALS<c> UMLAL, UMLALS

UMULL<c>S UMULLS<c> UMULL, UMULLS

UQADDSUBX UQASX UQASX

UQSUBADDX UQSAX UQSAX

USUBADDX USAX USAX

UEXT8 UXTB UXTB

UEXT16 UXTH UXTH

Table K9-1 Pre-UAL instruction syntax for the A32 base instructions (continued)

Pre-UAL syntax UAL equivalent See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14527
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
K9.1.2 Pre-UAL instruction syntax for the A32 floating-point instructions

Table K9-2 lists the syntax for A32 floating-point instructions that have changed after UAL was introduced.

Table K9-2 Pre-UAL instruction syntax for A32 floating-point instructions

Pre-UAL syntax UAL equivalent See

FABSD VABS.F64 VABS

FABSS VABS.F32

FADDD VADD.F64 VADD (floating-point)

FADDS VADD.F32

FCMPEZD VCMPE.F64 VCMPE

FCMPEZS VCMPE.F32

FCMPZD VCMP.F64 VCMP,

FCMPZS VCMP.F32

FCONSTD <Dd>, #<imm8> VMOV.F64 <Dd>, #<fpimm> VMOV (immediate)

For more information, see FCONST.
FCONSTS <Sd>, #<imm8> VMOV.F32 <Sd>, #<fpimm>

FCPYD VMOV.F64 VMOV (register)

FCPYS VMOV.F32

FCVTDS VCVT.F64.F32 VCVT (between double-precision and single-precision)

FCVTSD VCVT.F32.F64

FDIVD VDIV.F64 VDIV

FDIVS VDIV.F32

FLDD VLDR.F64 VLDR (immediate)

VLDR (literal)

FLDMD, FLDMIAD VLDM.F64 VLDM, VLDMDB, VLDMIA

FLDMS VLDM.F32

FLDS VLDR.F32 VLDR (immediate)

VLDR (literal)

FMACD VMLA.F64 VMLA (floating-point)

FMACS VMLA.F32

FMDHR <Dd>, <Rt> VMOV <Dd[1]>, <Rt> VMOV (general-purpose register to scalar)

FMDLR <Dd>, <Rt> VMOV <Dd[0]>, <Rt>

FMDRR VMOV VMOV (between two general-purpose registers and a doubleword
floating-point register)

FMRDH <Rt>, <Dd> VMOV <Rt>, <Dd[1]> VMOV (scalar to general-purpose register)

FMRDL <Rt>, <Dd> VMOV <Rt>, <Dd[0]>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14528
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
FMRRD VMOV VMOV (between two general-purpose registers and a doubleword
floating-point register)

FMRRS VMOV VMOV (between two general-purpose registers and two
single-precision registers)

FMRS VMOV VMOV (between general-purpose register and single-precision)

FMRX VMRS VMRS

FMSCD VNMLS.F64 VNMLS

FMSCS VNMLS.F32

FMSR VMOV VMOV (between general-purpose register and single-precision)

FMSRR VMOV VMOV (between two general-purpose registers and two
single-precision registers)

FMSTAT VMRS APSR_nzcv, FPSCR VMRS

FMULD VMUL.F64 VMUL (floating-point)

FMULS VMUL.F32

FMXR VMSR VMSR

FNEGD VNEG.F64 VNEG

FNEGS VNEG.F32

FNMACD VMLS.F64 VNMLS

FNMACS VMLS.F32

FNMSCD VNMLA.F64 VNMLA

FNMSCS VNMLA.F32

FNMULD VNMUL.F64 VNMUL

FNMULS VNMUL.F32

FSHTOD VCVT.F64.S16 VCVT (between floating-point and fixed-point, floating-point)

FSHTOS VCVT.F32.S16

FSITOD VCVT.F64.S32 VCVT (between floating-point and integer, Advanced SIMD), VCVTR

FSITOS VCVT.F32.S32

FSLTOD VCVT.F64.S32 VCVT (between floating-point and fixed-point, floating-point)

FSLTOS VCVT.F32.S32

FSQRTD VSQRT.F64 VSQRT

FSQRTS VSQRT.F32

FSTD VSTR VSTR

Table K9-2 Pre-UAL instruction syntax for A32 floating-point instructions (continued)

Pre-UAL syntax UAL equivalent See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14529
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
FSTMD, FSTMIAS VSTM.F64 VSTM, VSTMDB, VSTMIA

FSTMS VSTM.F32

FSTS VSTR VSTR

FSUBD VSUB.F64 VSUB (floating-point)

FSUBS VSUB.F32

FTOSHD VCVT.S16.F64 VCVT (between floating-point and fixed-point, floating-point)

FTOSHS VCVT.S16.F23

FTOSID VCVT.S32.F64 VCVT (between floating-point and integer, Advanced SIMD)

FTOSIS VCVT.S32.F32

FTOSIZD VCVTR.S32.F64 VCVTR

FTOSIZS VCVTR.S32.F32

FTOSLD VCVT.S32.F64 VCVT (between floating-point and fixed-point, floating-point)

FTOSLS VCVT.S32.F32

FTOUHD VCVT.U16.F64

FTOUHS VCVT.U16.F32

FTOUID VCVT.U32.F64 VCVT (between floating-point and integer, Advanced SIMD)

FTOUIS VCVT.U32.F32

FTOUIZD VCVTR.U32.F64 VCVTR

FTOUIZS VCVTR.U32.F32

FTOULD VCVT.U32.F64 VCVT (between floating-point and fixed-point, floating-point)

FTOULS VCVT.U32.F32

FUHTOD, VCVT.F64.U16

FUHTOS VCVT.F64.U16

FUITOD VCVT.F64.U32 VCVT (between floating-point and integer, Advanced SIMD)

FUITOS VCVT.F32.U32

FULTOD VCVT.F64.U32 VCVT (between floating-point and fixed-point, floating-point)

FULTOS VCVT.F32.U32

Table K9-2 Pre-UAL instruction syntax for A32 floating-point instructions (continued)

Pre-UAL syntax UAL equivalent See
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14530
ID032224 Non-Confidential

Legacy Instruction Syntax for AArch32 Instruction Sets
K9.1 Legacy Instruction Syntax
K9.1.3 FCONST

The syntax of FCONST is

FCONST<dest>{<c>} <Fd>, #<imm8>

where:

<dest> Specifies the destination data type. It must be one of:

S Single-precision floating-point.

D Double-precision floating-point.

<c> This is an optional field. It specifies the condition under which the instruction is executed. See
Conditional execution for the range of available conditions and their encoding. If <c> is omitted, it
defaults to always (AL).

<Fd> Specifies the destination register. It must be one of:

<Dd> 64-bit name of the SIMD&FP destination register.

<Sd> 32-bit name of the SMID&FP destination register.

<imm8> Specifies the immediate value used to generate the floating-point constant.

FCONSTD{<c>} <Dd>, #<imm8> maps to VMOV.F64 <Dd>, #<fpimm>

FCONSTS{<c>} <Sd>, #<imm8> maps to VMOV.F32 <Sd>, #<fpimm>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K9-14531
ID032224 Non-Confidential

Appendix K10
Address Translation Examples

This appendix gives examples of address translations using the translation regimes described in Chapter D8 The
AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual Memory System Architecture.
It contains the following sections:

• AArch64 Address translation examples.

• AArch32 Address translation examples.

Note

This chapter gives examples of translation table lookups for the Armv8 address translation stages. It does not define
any part of the address translation mechanism. If any information in this appendix appears to contradict the
information in Chapter D8 The AArch64 Virtual Memory System Architecture or Chapter G5 The AArch32 Virtual
Memory System Architecture then the information in Chapter D8 or Chapter G5 must be taken as the definition of
the required behavior.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14532
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
K10.1 AArch64 Address translation examples

The VMSAv8 address translation stages that are controlled by an Exception level that is using AArch64 are
described in Relationship between translation regimes and implemented Exception levels. Address translation
describes the VMSAv8-64 address translation scheme. This section gives examples of the use of that scheme, for
common translation requirements.

System registers relevant to MMU operation specifies the relevant registers, including the TCR_ELx and
TTBR_ELx, or TTBR_ELxs, for each stage of address translation.

For any stage of translation, a TCR_ELx.TnSZ field indicates the supported input address size. For a stage of
address translation controlled from an Exception level using AArch64, the supported input address size is 2(64-TnSZ).

This section describes:

• Performing the initial lookup, for an address for which the initial lookup is either:

— At the highest lookup level used for the appropriate translation granule size.

— Because of the concatenation of translation tables at the initial lookup level, one level down from the
highest level used for the translation granule size.

These descriptions take account of the following cases:

— The IA size is smaller than the largest size for the translation level, see Input address size
configuration.

— For a stage 2 translation, translation tables are concatenated, to move the initial lookup level down by
one level, see Concatenated translation tables.

For examples of performing the initial lookup, see Examples of performing the initial lookup.

• The full translation flow for resolving a page of memory. These examples describe resolving the largest IA
size supported by the initial lookup level. For these examples, see Full translation flows for VMSAv8-64
address translation.

K10.1.1 Examples of performing the initial lookup

The address ranges used for the initial translation table lookup depend on the translation granule, as described in:

• Performing the initial lookup using the 4KB translation granule.

• Performing the initial lookup using the 16KB granule.

• Performing the initial lookup using the 64KB translation granule.

K10.1.1.1 Performing the initial lookup using the 4KB translation granule

This subsection describes examples of the initial lookup when using the 4KB translation granule that VMSAv8-64
Stage 2 address translation using the 4KB translation granule describes as starting at level 0 or at level 1. It includes
those stage 2 translations where concatenation of translation tables is required for the lookup to start at level 1. This
means that it gives specific examples of the mechanisms described in Translation process.

Note

For stage 2 translations, the same principles apply to an initial lookup that VMSAv8-64 Stage 2 address translation
using the 4KB translation granule describes as starting at level 1. In this case, for some IA sizes concatenation of
translation tables means the lookup can, instead, start at level 2.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 0, 4KB translation granule.

• Initial lookup at level 1, 4KB translation granule.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14533
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and
this level must be consistent with the value of the VTCR_EL2.T0SZ field, see VMSAv8-64 Stage 2 address
translation using the 4KB translation granule.

K10.1.1.1.1 Initial lookup at level 0, 4KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0]. As described in VMSAv8-64 translation using the 4KB granule, a stage 1 or stage 2 initial lookup at level
0 is required when 39n47. For these lookups:

• TTBR_ELx[47:(n-35)] specify the translation table base address.

• Bits[n:39] of the input address are bits[(n-36):3] of the descriptor offset in the translation table.

Note

This means that, when the input address width is less than 48 bits:

• The size of the translation table is reduced.

• More low-order bits of the TTBR_ELx are required to specify the translation table base
address.

• Fewer input address bit are used to specify the descriptor offset in the translation table.

For example, if the input address width is 46 bits:

• The translation table size is 1KB.

• TTBR_ELx bits[47:10] specify the translation table base address.

• Input address bits[45:39] specify bits[9:3] of the descriptor offset.

Figure K10-1 shows this lookup.

Figure K10-1 Initial lookup for VMSAv8-64 using the 4KB granule, starting at level 0

Translation table base address[47:x]

63 48 47 0

Register-defined RES0* TTBR

x x-1

Input address‡

47 y 39 038

47 x x-1 3 2 0

0 0 0 Descriptor address
†

Supported input address range is IA[y x y = x + 35. When y is 47 the field marked ‡ is absent.

† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor.

Otherwise, the PA of the descriptor.

* Field has additional properties to the default RES0 definition, see the register description for more information.

y+1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14534
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
K10.1.1.1.2 Initial lookup at level 1, 4KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0].

For a stage 1 or stage 2 initial lookup at level 1, without use of concatenated translation tables

As described in VMSAv8-64 translation using the 4KB granule, this applies to IA[n:0], where 30
n 38. For these lookups:

• There is a single translation table at this level.

• TTBR_ELx[47:(n-26)] specify the translation table base address.

• Bits[n:30] of the input address are bits[(n-27):3] of the descriptor offset in the translation
table.

Figure K10-2 shows this lookup.

Figure K10-2 Initial lookup for VMSAv8-64 using the 4KB granule, starting at level 1, without concatenation

For a stage 2 initial lookup at level 1, with concatenated translation tables

As described in VMSAv8-64 Stage 2 address translation using the 4KB translation granule, this
applies to IA[n:0], where 39 n 42. For these lookups:

• There are 2(n-38) concatenated translation tables at this level.

• These concatenated translation tables must be aligned to 2(n-38)4KB. This means
TTBR_ELx[(n-27):12] must be zero.

• TTBR_ELx[47:(n-26)] specify the base address of the block of concatenated translation
tables.

• Bits[n:30] of the input address are bits[(n-27):3] of the descriptor offset from the base address
of the block of concatenated translation tables.

Figure K10-3 shows this lookup.

TTBR

Input addressRES0

47 029y 30

47 3 2 0

0 0 0

Supported input address range is IA[y x y = x + 26.

Translation table base address[47:x]

63 48 47 0

Register-defined RES0*

x x-

x x-

y+1

Descriptor address
†

RES
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14535
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
Figure K10-3 Initial lookup for VMSAv8-64 using the 4KB granule, starting at level 1, with concatenation

K10.1.1.2 Performing the initial lookup using the 16KB granule

This subsection describes examples of the initial lookup when using the 16KB translation granule that VMSAv8-64
Stage 2 address translation using the 16KB translation granule describes as starting at level 0 or at level 1. It
includes those stage 2 translations where concatenation of translation tables is required for the lookup to start at level
1. This means that it gives specific examples of the mechanisms described in Translation process.

Note

For stage 2 translations, the same principles apply to an initial lookup that VMSAv8-64 Stage 2 address translation
using the 16KB translation granule describes as starting at level 1. In this case, for some IA sizes concatenation of
translation tables means the lookup can, instead, start at level 2.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 0, 16KB translation granule.

• Initial lookup at level 1, 16KB translation granule.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and
this level must be consistent with the value of the VTCR_EL2.T0SZ field, see VMSAv8-64 Stage 2 address
translation using the 16KB translation granule.

K10.1.1.2.1 Initial lookup at level 0, 16KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0]. As described in VMSAv8-64 translation using the 16KB granule, the only case where an address translation
using the 16KB granule starts at level 0 is a stage 1 translation of a 48-bit input address, IA[47:0]. For this lookup:

• The required translation table has only two entries, meaning its size is 16bytes, and it must be aligned to 16
bytes.

• TTBR_ELx[47:4] specify the translation table base address.

• Bit[47] of the input address is bit[3] of the descriptor offset in the translation table.

Figure K10-4 shows this lookup.

‡Translation table base address[47:x]

63 48 47 0

Register-defined RES0* TTBR

Input addressRES0

47 02930

y+1

y

47 3 2 0

0 0 0 Descriptor PA

Supported input address range is IPA[y x y = x + 26. The field marked ‡ must be zero.

x
x-1

x
x-1

12 11

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14536
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
Figure K10-4 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 0

K10.1.1.2.2 Initial lookup at level 1, 16KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0].

For a stage 1 or stage 2 initial lookup at level 1, without use of concatenated translation tables

As described in VMSAv8-64 translation using the 16KB granule, this applies to IA[n:0], where 36
 n 46. For these lookups:

• There is a single translation table at this level.

• TTBR_ELx[47:(n-32)] specify the translation table base address.

• Bits[n:36] of the input address are bits[(n-33):3] of the descriptor offset in the translation
table.

Figure K10-5 shows this lookup.

Figure K10-5 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 1, without concatenation

Translation table base address[47:4]

63 48 47 0

Register-defined ‡ TTBR

4 3

Input address

47 46 0

47 4 3 2 0

0 0 0 Descriptor address
†

Supported input address range is IA[47:0]. The field marked ‡ is RES0*.

† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor.

Otherwise, the PA of the descriptor.

* Field has additional properties to the default RES0 definition, see the register description for more information.

TTBR

Input addressRES0

47 035y 36

47 3 2 0

0 0 0

Supported input address range is IA[y x y = x + 32.

Translation table base address[47:x]

63 48 47 0

Register-defined RES0*

x x-

x x-

y+1

Descriptor address
†

RES
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14537
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
For a stage 2 initial lookup at level 1, with concatenated translation tables

As described in VMSAv8-64 Stage 2 address translation using the 16KB translation granule, the
only case where an address translation using the 16KB granule starts at level 1 because of
concatenation of translation tables is a stage 2 translation of a 48-bit input address, IA[47:0]. For
this lookup:

• There are two concatenated translation tables at this level.

• These concatenated translation tables must be aligned to 216KB. This means
TTBR_ELx[14] must be zero.

• TTBR_ELx[47:15] specify the base address of the block of two concatenated translation
tables.

• Bits[47:36] of the input address are bits[14:3] of the descriptor offset from the base address
of the block of concatenated translation tables.

Figure K10-6 shows this lookup.

Figure K10-6 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 1, with concatenation

K10.1.1.3 Performing the initial lookup using the 64KB translation granule

This subsection describes examples of the initial lookup when using the 64KB translation granule that VMSAv8-64
Stage 2 address translation using the 64KB translation granule describes as starting at level 1 or at level 2. It
includes those stage 2 translations where concatenation of translation tables is required for the lookup to start at level
2. This means that it gives specific examples of the mechanisms described in Translation process.

Note

For stage 2 translations, the same principles apply to an initial lookup that VMSAv8-64 Stage 2 address translation
using the 64KB translation granule describes as starting at level 2. In this case, for some IA sizes concatenation of
translation tables means the lookup can, instead, start at level 3.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 1, 64KB translation granule.

• Initial lookup at level 2, 64KB translation granule.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and
this level must be consistent with the value of the VTCR_EL2.T0SZ field, see VMSAv8-64 Stage 2 address
translation using the 64KB translation granule.

‡Translation table base address[47:15]

63 48 47 0

Register-defined RES0* TTBR

47 3 2 0

0 0 0 Descriptor PA

Supported input address range is IPA[47:0]. The bit marked ‡ must be zero.

15 14

15 14 13

Input address

47 03536

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14538
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
K10.1.1.3.1 Initial lookup at level 1, 64KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0]. As described in VMSAv8-64 translation using the 64KB granule, a stage 1 or stage 2 initial lookup at level
1 is required when 42 n 47. For these lookups:

• The size of the translation table is 2(n-39) bytes. This means the size of the translation table, at this level, is
always less than the granule size. The address of this translation table must align to the size of the table.

• Bits[n:42] of the input address are bits[(n-39):3] of the descriptor offset in the translation table.

• Bits[47:(n-38)] of the TTBR_ELx specify the translation table base address.

Figure K10-7 shows this lookup.

Figure K10-7 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 1

K10.1.1.3.2 Initial lookup at level 2, 64KB translation granule

This subsection describes initial lookups with an input address width of (n+1) bits, meaning the input address is
IA[n:0].

For a stage 1 or stage 2 initial lookup at level 2, without the use of concatenated translation tables

As described in , this applies to IA[n:0], where 29 n 41. For these lookups:

• There is a single translation table at this level.

• TTBR_ELx[47:(n-25)] of the specify the translation table base address.

• Bits[n:29] of the input address are bits[(n-26):3] of the descriptor offset in the translation
table.

Input address‡

47 y 0

Translation table base address[47:x]

63 48 47 0

Register-defined RES0* TTBR

42 41

x-1
x

y+1

Supported input address range is IA[y x 9, y = x + 38. When y is 47 the field marked ‡ is absent.

47 3 2 0

0 0 0 Descriptor address
†

x-1
x

† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor.

Otherwise, the PA of the descriptor.

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14539
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
Figure K10-8 shows this lookup.

Figure K10-8 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 2, without concatenation

For a stage 2 initial lookup at level 2, with concatenated translation tables

As described in VMSAv8-64 Stage 2 address translation using the 64KB translation granule, this
applies to IA[n:0], where 42 n 45. For these lookups:

• There are 2(m-41) concatenated translation tables at this level.

• These concatenated translation tables must be aligned to 2(m-41)64KB. This means
TTBR_ELx[(n-26):16] must be zero.

• TTBR_ELx[47:(n-25)] specify the base address of the block of translation tables.

• Bits[n:42] of the input address are bits[(n-26):16] of the descriptor offset from the base
address of the block of translation tables.

Figure K10-9 shows this lookup.

Figure K10-9 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 2, with concatenation

K10.1.2 Full translation flows for VMSAv8-64 address translation

In a translation table walk, only the first lookup uses the translation table base address from the appropriate
TTBR_ELx. Subsequent lookups use a combination of address information from:

• The table descriptor read in the previous lookup.

• The input address.

Base address[47:x]

63 48 47 0

Register-defined RES0* TTBR

47 3 2 0

0 0 0

Supported input address range is IA[y x y = x + 25.

Input address

47 029 28
y

y

x
x-

RES0

x
x-

Descriptor address
†

RES

47 3 2 0

0 0 0 Descriptor PA

Input address

47 029 28
y+1

y

RES0

Supported input address range is IPA[y x y = x + 25.

Base address[47:x]

63 48 47 0

Register-defined RES0* TTBR

x
x-1

x
x-1

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14540
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
This section describes example full translation flows, from the initial lookup to the address of a memory page. The
example flows:

• Resolve the maximum-sized IA range supported by the initial lookup level.

• Do not have any concatenation of translation tables.

• Cover only the 4KB and the 64KB translation granules.

Examples of performing the initial lookup described how either reducing the IA range or concatenating translation
tables affects the initial lookup.

Note

Reducing the IA range or concatenating translation tables affects only the initial lookup.

The following sections describe full VMSAv8-64 translation flows, down to an entry for a memory page:

• The address and properties fields shown in the translation flows.

• Full translation flow using the 4KB granule and starting at level 0.

• Full translation flow using the 4KB granule and starting at level 1.

• Full translation flow using the 64KB granule and starting at level 1.

• Full translation flow using the 64KB granule and starting at level 2.

K10.1.2.1 The address and properties fields shown in the translation flows

For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state:

• Any descriptor address is the IPA of the required descriptor.

• The final output address is the IPA of the block or page.

In these cases, an EL1&0 stage 2 translation is performed to translate the IPA to the required PA.

For all other translations, the final output address is the PA of the block or page, and any descriptor address is the
PA of the descriptor.

Properties indicates register or translation table fields that return information, other than address information, about
the translation or the targeted memory region. For more information, see Translation table descriptor formats.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14541
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
K10.1.2.2 Full translation flow using the 4KB granule and starting at level 0

Figure K10-10 shows the complete translation flow for a stage 1 translation table walk for a 48-bit input address.
This lookup must start with a level 0 lookup. For more information about the fields shown in the figure, see The
address and properties fields shown in the translation flows.

Figure K10-10 Complete stage 1 translation of a 48-bit address using the 4KB translation granule

Descriptor

address

Input address

Level 0 lookup

Descriptor

address

TTBR

Level 0

Table descriptor

Level 2

Table descriptor

Level 3

Page descriptor

47 30 29 021 20 12 1139 38

Translation table base address[47:12]

63 48 47 0

Register-defined RES0*

12 11

47 3 2 0

0 0 0

12 11

Descriptor

address

Level 1

Table descriptor

Descriptor

address

Ignored 11SBZ

48 47

Level 1 table address[47:12]Properties
63 59 58 52 51 0

Ignored

2 112 11

IGNORED 11RES0

48 47

Properties
63 59 58 52 51 0

IGNORED

2 112 11

47 3 2 0

0 0 0

12 11

Level 1 lookup

IGNORED 11RES0

48 47

Level 2 table address[47:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

47 3 2 0

0 0 0

12 11

Level 2 lookup

IGNORED 11RES0

48 47

Level 3 table address[47:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

47 3 2 0

0 0 0

12 11

Level 3 lookup

For details of Properties fields, see the register or descriptor description.

Properties 11RES0

48 47

Output address[47:12]Properties
63 52 51 02 112 11

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14542
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
If the level 1 lookup or level 2 lookup returns a block descriptor then the translation table walk completes at that
level.

Figure K10-10 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the
Table descriptors are SBZ.

K10.1.2.3 Full translation flow using the 4KB granule and starting at level 1

Figure K10-11 shows the complete translation flow for a stage 1 translation table walk for a 39-bit input address.
This lookup must start with a level 1 lookup. For more information about the fields shown in the figure, see The
address and properties fields shown in the translation flows.

Figure K10-11 Complete stage 1 translation of a 39-bit address using the 4KB translation granule

If the level 1 lookup or the level 2 lookup returns a block descriptor then the translation table walk completes at that
level.

Figure K10-11 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the
Table descriptors are SBZ.

Level 2 table address[47:12]

Descriptor

address

Input address

Level 1 lookup

For details of Properties fields, see the register or descriptor description.

TTBR

Level 1

Table descriptor

Level 3

Page descriptor

Translation table base address[47:12]

63 48 47 0

Register-defined RES0*

12 11

47 3 2 0

0 0 0

12 11

Ignored 11SBZ

48 47

Properties
63 59 58 52 51 0

Ignored

2 112 11

47 3 2 0

0 0 0

12 11

Descriptor

address

Level 2 lookup

IGNORED 11RES0

48 47

Properties
63 59 58 52 51 0

IGNORED

2 112 11

IGNORED 11RES0

48 47

Level 3 table address[47:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

Level 2

Table descriptor

47 3 2 0

0 0 0

12 11

Descriptor

address

Level 3 lookup

Properties 11RES0

48 47

Output address[47:12]Properties
63 52 51 02 112 11

30 29 021 20 12 1138

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14543
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
Comparing this translation with the translation for a 48-bit address, shown in Figure K10-10, shows how the
translation for the 42-bit address start the same lookup process one stage later.

K10.1.2.4 Full translation flow using the 64KB granule and starting at level 1

Figure K10-12 shows the complete translation flow for a stage 1 translation table walk for a 48-bit input address.
This lookup must start with a level 1 lookup. For more information about the fields shown in the figure, see The
address and properties fields shown in the translation flows.

Figure K10-12 Complete stage 1 translation of a 48-bit address using the 64KB translation granule

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K10-12 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the
Table descriptors are SBZ.

Descriptor

address

Input address

Level 1 lookup

For details of Properties fields, see the register or descriptor description.

TTBR

Level 1

Table descriptor

Level 3

Page descriptor

Translation table base address[47:9]

63 48 47 0

Register-defined RES0*

9 8

47 3 2 0

0 0 0

9 8

IGNORED 11SBZ

48 47

Properties
63 59 58 52 51 0

Ignored

2 1

47 3 2 0

0 0 0

16 15

Descriptor

address

Level 2 lookup

11RES0

48 47

Level 2 table address[47:16]Properties
63 59 58 52 51 0

IGNORED

2 116 15

IGNORED 11RES0

48 47

Level 3 table address[47:16]Properties
63 59 58 52 51 0

IGNORED

2 116 15

Level 2

Table descriptor

47 3 2 0

0 0 0

16 15

Descriptor

address

Level 3 lookup

Properties 11RES0

48 47

Output address[47:16]Properties
63 52 51 02 112 11

47 29 28 016 1542 41

16 15

RES0

* Field has additional properties to the default RES0 definition, see the register description for more information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14544
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
The level 1 lookup resolves only 6 bits of the input address. As described in Performing the initial lookup using the
64KB translation granule, this means:

• The translation table size for this level is only 512 bytes.

• The required translation table alignment for this level is 512 bytes.

• The Base address field in the TTBR_ELx is extended, at the low-order end, to be bits[47:9].

K10.1.2.5 Full translation flow using the 64KB granule and starting at level 2

Figure K10-13 shows the complete translation flow for a stage 1 translation table walk for a 42-bit input address.
This lookup must start with a level 2 lookup. For more information about the fields shown in the figure, see The
address and properties fields shown in the translation flows.

Figure K10-13 Complete stage 1 translation of a 42-bit address using the 64KB translation granule

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K10-13 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the
Table descriptors are SBZ.

Comparing this translation with the translation for a 48-bit address, shown in Figure K10-12, shows:

• The translation for the 42-bit address starts the same lookup process one stage later.

• Because the initial lookup resolves 13 bits of address:

— The translation table size for this level is 64KB.

— The required translation table alignment for this level is 64KB.

Descriptor

address

Input address

Level 2 lookup

For details of Properties fields, see the register or descriptor description.

TTBR

Level 3

Page descriptor

Translation table base address[47:16]

63 48 47 0

Register-defined RES0*

16 15

47 3 2 0

0 0 0

16 15

IGNORED 11SBZ

48 47

Properties
63 59 58 52 51 0

Ignored

2 1

47 3 2 0

0 0 0

16 15

Descriptor

address

Level 3 lookup

11RES0

48 47

Level 3 table address[47:16]Properties
63 59 58 52 51 0

IGNORED

2 116 15

Level 2

Table descriptor

Properties 11RES0

48 47

Output address[47:16]Properties
63 52 51 02 112 11

29 28 016 1541

* Field has additional properties to the default RES0 definition, see the register description for more information.

16 15

RES0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14545
ID032224 Non-Confidential

Address Translation Examples
K10.1 AArch64 Address translation examples
— The Base address field in the TTBR_ELx is bits[47:16].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14546
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
K10.2 AArch32 Address translation examples

The following sections give address translation examples for the VMSAv8-32 address translation formats:

• Address translation examples using the VMSAv8-32 Short descriptor translation table format.

• Address translation examples using the VMSAv8-32 Long descriptor translation table format.

K10.2.1 Address translation examples using the VMSAv8-32 Short descriptor translation table format

VMSAv8-32 Short-descriptor Translation Table format descriptors describes the memory section and page option
for a single VMSAv8-32 address translation. The following sections show the full translation flow for each of these
options:

• Translation flow for a Supersection.

• Translation flow for a Section.

• Translation flow for a Large page.

• Translation flow for a Small page.

The address and Properties fields shown in the translation flows summarizes the information returned by the
lookup.

K10.2.1.1 Translation flow for a Supersection

Figure K10-14 shows the complete translation flow for a Supersection. For more information about the fields shown
in this figure, see The address and Properties fields shown in the translation flows.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14547
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
Figure K10-14 VMSAv8-32 Short-descriptor Supersection address translation

Note

Figure K10-14 shows how, when the input address, the VA, addresses a Supersection, the top four bits of the
Supersection index bits of the address overlap the bottom four bits of the Table index bits. For more information,
see Additional requirements for Short-descriptor format translation tables.

0 0 0 0 0 0 0 0

For a translation based on TTBR0, N is the value of TTBCR.N.

For a translation based on TTBR1, N is 0.

RES0Translation base

31 14-N 13-N 0

Level 1

Supersection descriptor

Level 1 descriptor address

Supersection index
Table index

Bits[8:5,23:20]

Supersection index

31 24 23 0

Supersection BAExtended BA

39 32

TTBR

Input address

7 6

Properties

Output address, A[39:0]

‡ This field is absent if N is 0.

BA = Base address.

For details of Properties fields, see the register or descriptor description.

31 2 1 0

xExtended Supersection BA and Properties fieldsSupersection BA

24 23

1

Level 1 lookup

0 0Translation base

31 0

Table index

2 114-N 13-N39 32

24 2331 20 19 032-N 31-N

‡

ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14548
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
K10.2.1.2 Translation flow for a Section

Figure K10-15 shows the complete translation flow for a Section. For more information about the fields shown in
this figure, see The address and Properties fields shown in the translation flows.

Figure K10-15 VMSAv8-32 Short-descriptor Section address translation

0 0 0 0 0 0 0 0

39 32

‡ This field is absent if N is 0.

 For a translation based on TTBR0, N is the value of TTBCR.N.

 For a translation based on TTBR1, N is 0.

31 20 19 0

Section base address Section index

0 0Translation base

31 0

Table index

2 114-N 13-N

Table index

31 20 19 032-N 31-N

‡ Section index

For details of Properties fields, see the register or descriptor description.

0 0 0 0 0 0 0 0

39 32

Output address, A[39:0]

Level 1 Section descriptorProperties
31 20 19 2 1 0

Section base address x1

Level 1 lookup

Level 1 descriptor address

TTBRRES0Translation base

31 14-N 13-N 07 6

Properties

Input address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14549
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
K10.2.1.3 Translation flow for a Large page

Figure K10-16 shows the complete translation flow for a Large page. For more information about the fields shown
in this figure, see The address and Properties fields shown in the translation flows.

Figure K10-16 VMSAv8-32 Short-descriptor Large page address translation

Note

Figure K10-16 shows how, when the input address, the VA, addresses a Large page, the top four bits of the page
index bits of the address overlap the bottom four bits of the level 1 table index bits. For more information, see
Additional requirements for Short-descriptor format translation tables.

0 0 0 0 0 0 0 0

39 32

Page index

For a translation based on TTBR0, N is the value of TTBCR.N.

For a translation based on TTBR1, N is 0.

Level 2 descriptor

L2 table index

Page index

31 16 15 0

Large page base address

0 0Translation table base address

31 0

L2 table index

2 110 9

Properties
31 10 9 2 1 0

Translation table base address 10

0 0Translation base

31 0

L1 table index

2 114-N 13-N

L1 table index

31 20 19 032-N 31-N

‡

12 1116 15

TTBR

L1 = Level 1, L2 = Level 2.

‡ This field is absent if N is 0.

For details of Properties fields, see the register or descriptor description.

Output address, A[39:0]0 0 0 0 0 0 0 0

39 32

1Properties
31 16 15 2 1 0

Large page base address 0

Level 2 lookup

Level 2 descriptor

address

Level 1 descriptor

Level 1 lookup

Level 1 descriptor

address
0 0 0 0 0 0 0 0

39 32

RES0Translation base

31 14-N 13-N 07 6

Properties

Input address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14550
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
K10.2.1.4 Translation flow for a Small page

Figure K10-17 shows the complete translation flow for a Small page. For more information about the fields shown
in this figure, see The address and Properties fields shown in the translation flows.

Figure K10-17 VMSAv8-32 Short-descriptor Small page address translation

K10.2.1.5 The address and Properties fields shown in the translation flows

For the Non-secure PL1&0 stage 1 translation tables:

• Any descriptor address is the IPA of the required descriptor.

• The final output address is the IPA of the Section, Supersection, Large page, or Small page.

In these cases, a PL1&0 stage 2 translation is performed to translate the IPA to the required PA.

Page index

31 12 11 0

Small page base address

0 0Translation table base address

31 0

L2 table index

2 110 9

0 0Translation base

31 0

L1 table index

2 114-N 13-N

L1 table index

31 20 19 032-N 31-N

‡ Page index

12 11

L2 table index

For a translation based on TTBR0, N is the value of TTBCR.N.

For a translation based on TTBR1, N is 0.

L1 = Level 1, L2 = Level 2.

‡ This field is absent if N is 0.

For details of Properties fields, see the register or descriptor description.

Output address, A[39:0]0 0 0 0 0 0 0 0

39 32

Properties
31 12 11 2 1 0

Small page base address 1 x Level 2 descriptor

Level 2 lookup

Level 2

descriptor address
0 0 0 0 0 0 0 0

39 32

Level 1 descriptorProperties
31 10 9 2 1 0

Translation table base address 10

Level 1 lookup

Level 1

descriptor address
0 0 0 0 0 0 0 0

39 32

RES0Translation base

31 14-N 13-N 07 6

Properties TTBR

Input address
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14551
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
Otherwise, the address is the PA of the descriptor, Section, Supersection, Large page, or Small page.

Properties indicates register or translation table fields that return information, other than address information, about
the translation or the targeted memory region. For more information, see Information returned by a translation table
lookup, and the description of the register or translation table descriptor.

For translations using the Short-descriptor translation table format, VMSAv8-32 Short-descriptor Translation Table
format descriptors describes the descriptors formats.

K10.2.2 Address translation examples using the VMSAv8-32 Long descriptor translation table format

As described in Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format, in a
translation table walk, only the first lookup uses the translation table base address from the appropriate TTBR.
Subsequent lookups use a combination of address information from:

• The table descriptor read in the previous lookup.

• The input address.

The following sections give examples of full VMSAv8-32 Long-descriptor format address translation flows, down
to an entry for a 4KB page:

• Full translation flow, starting at level 1 lookup.

• Full translation flow, starting at level 2 lookup.

The address and Properties fields shown in the translation flows summarizes the information returned by the
lookup.

K10.2.2.1 Full translation flow, starting at level 1 lookup

Figure K10-18 shows the complete translation flow for a VMSAv8-32 Long-descriptor stage 1 translation table
walk that starts with a level 1 lookup. For more information about the fields shown in the figure, see The address
and Properties fields shown in the translation flows.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14552
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
Figure K10-18 Complete VMSAv8-32 Long-descriptor format stage 1 translation, starting at level 1

If the level 1 lookup or the level 2 lookup returns a block descriptor then the translation table walk completes at that
level.

If bits[47:40] of the TTBR or the descriptor are not zero then the lookup will generate an Address size fault, see
Address size fault.

A stage 2 translation that starts at a level 1 lookup differs from the translation shown in Figure K10-18 only as
follows:

• The possible values of n are 4-13, to support an input address of between 31 and 40 bits.

• A descriptor and output addresses are always PAs.

SBZ
‡

SBZ
‡

SBZ
‡

SBZ
‡

12 1139 3 2 0

0 0 0

n-1

39 n 3 2 0

0 0 0
Descriptor

address

Input address

Level 1 lookup

Descriptor

address

Descriptor

address

For details of Properties fields, see the register or descriptor description.

Translation table base address[39:n]RES0

63 56 55 40 39 n n-1 0

Properties RES0 TTBR

IGNORED 11RES0

48 47

Level 2 table address[39:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11
Level 1

table descriptor

Level 2 lookup

IGNORED 11RES0

48 47

Level 3 table address[39:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

Level 2

table descriptor

12 1139 3 2 0

0 0 0

Level 3 lookup

Properties 11RES0

48 47

Output address[39:12]Properties
63 52 51 02 112 11

Level 3

page descriptor

n is {4, 5}
39

n+27 n+26

30 29 021 20 12 11

40 39

40 39

40 39

48 47

‡ See the lookup description for more information about bits[40:47] of the TTBR and descriptors
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14553
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
K10.2.2.2 Full translation flow, starting at level 2 lookup

Figure K10-19 shows the complete translation flow for a stage 1 VMSAv8-32 Long-descriptor translation table
walk that starts at a level 2 lookup. For more information about the fields shown in the figure, see The address and
Properties fields shown in the translation flows.

Figure K10-19 Complete VMSAv8-32 Long-descriptor format stage 1 translation, starting at level 2

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

If bits[47:40] of the TTBR or the descriptor are not zero then the lookup will generate an Address size fault, see
Address size fault.

A stage 2 translation that starts at a level 2 lookup differs from the translation shown in Figure K10-19 only as
follows:

• The possible values of n are 7-16, to support an input address of up to 34 bits.

• The descriptor and output addresses are always PAs.

K10.2.2.3 The address and Properties fields shown in the translation flows

For the Non-secure PL1&0 stage 1 translation:

• Any descriptor address is the IPA of the required descriptor.

• The final output address is the IPA of the block or page.

SBZ
‡

SBZ
‡

SBZ
‡

12 1139 3 2 0

0 0 0

39 n n-1 3 2 0

0 0 0
Descriptor

address

Descriptor

address

For details of Properties fields, see the register or descriptor description.

Level 2 lookup

Translation table base address[39:n]RES0

63 56 55 48 47 n n-1 0

Properties RES0 TTBR

IGNORED 11RES0

48 47

Level 3 table address[39:12]Properties
63 59 58 52 51 0

IGNORED

2 112 11

Level 2

table descriptor

Level 3 lookup

Properties 11RES0

48 47

Output address[39:12]Properties
63 52 51 02 112 11

Level 3

page descriptor

Input address

n is {7, …, 12}
39

n+18 n+17

021 20 12 113132

40 39

40 39

40 39

‡ See the lookup description for more information about bits[40:47] of the TTBR and descriptors
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14554
ID032224 Non-Confidential

Address Translation Examples
K10.2 AArch32 Address translation examples
In these cases, a PL1&0 stage 2 translation is performed to translate the IPA to the required PA.

For all other translations, the final output address is the PA of the block or page, and any descriptor address is the
PA of the descriptor.

Properties indicates register or translation table fields that return information, other than address information, about
the translation or the targeted memory region. For more information, see Information returned by a translation table
lookup, and the description of the register or translation table descriptor.

For translations using the Long-descriptor translation table format, VMSAv8-32 Long-descriptor Translation Table
format descriptors describes the descriptors formats.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K10-14555
ID032224 Non-Confidential

Appendix K11
Example OS Save and Restore Sequences

This appendix provides possible OS Save and Restore sequences for a Debug implementation using the V8A or later
architectures. It contains the following sections:

• Save Debug registers.

• Restore Debug registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K11-14556
ID032224 Non-Confidential

Example OS Save and Restore Sequences
K11.1 Save Debug registers
K11.1 Save Debug registers

This section shows how to save the registers that are used by an external debugger.

; On entry, X0 points to a block to save the debug registers in.
; Returns the pointer beyond the block and corrupts X1-X3

SaveDebugRegisters
 ; (1) Set OS Lock.
 MOV X2,#1 ; Set the OS Lock. In AArch64 state, the OS Lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.
 ISB ; Context synchronization event

 ; (2) Walk through the registers, saving them
 MRS X1,OSDTRRX_EL1 ; Read DTRRX
 MRS X2,OSDTRTX_EL1 ; Read DTRTX
 STP W1,W2,[X0],#8 ; Save { DTRRX, DTRTX }
 MRS X1,OSECCR_EL1 ; Read ECCR
 MRS X2,MDSCR_EL1 ; Read DSCR
 STP W1,W2,[X0],#8 ; Save { ECCR, DSCR }
 [AARCH32_SUPPORTED
 MRS X1,DBGVCR32_EL2 ; Read DBGVCR
 MRS X2,DBGCLAIMCLR_EL1 ; Read CLAIM - note, have to read via CLAIMCLR
 STP W1,W2,[X0],#8 ; Save { VCR, CLAIM }
]

 ;; Macros for saving off a "register pair"
 ;; $WB is W for watchpoint, B for breakpoint
 ;; $num is the pair’s number
 ;; X0 contains a pointer for the value words
 ;; X1 contains a pointer for the control words
 ;; W2 contains the max index
 MACRO
 SaveRP $WB,$num, $exit
 MRS X3,DBG$WB.VR$num._EL1 ; Read DBGxVRn
 STR X3,[X0],#8 ; Save { xVRn }
 MRS X3,DBG$WB.CR$num._EL1 ; Read DBGxCRn
 STR W3,[X0],#4 ; Save { xCRn }.
 [$num > 1 :LAND: $num < 15
 CMP W1,#$num
 BEQ $exit
]
 MEND

 ; (3) Breakpoints
 MRS X1,ID_AA64DFR0_EL1
 UBFX W1,W1,#12,#4 ; Extract BRPs field
 MACRO
 SaveBRP $num ; Save a Breakpoint Register Pair
 SaveRP B,$num,SaveDebugRegisters_Watchpoints
 MEND
 SaveBRP 0
 SaveBRP 1
 SaveBRP 2
 ;; and so on to ...
 SaveBRP 15

SaveDebugRegisters_Watchpoints
 ; (4) Watchpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#20,#4 ; Extract WRPs field
 MACRO
 SaveWRP $num ; Save a Watchpoint Register Pair
 SaveRP W,$num,SaveDebugRegisters_Exit
 MEND
 SaveWRP 0
 SaveWRP 1
 SaveWRP 2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K11-14557
ID032224 Non-Confidential

Example OS Save and Restore Sequences
K11.1 Save Debug registers
 ;; and so on to ...
 SaveWRP 15

SaveDebugRegisters_Exit
 ; (5) Return the pointer to first word not read. This pointer is already in X0, so
 ; all that is needed is to return from this function. The OS double-lock (OSDLR_EL1.DLK) is
 ; locked later, just before the final entry to WFI state.
 RET
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K11-14558
ID032224 Non-Confidential

Example OS Save and Restore Sequences
K11.2 Restore Debug registers
K11.2 Restore Debug registers

This section shows how to restore the registers that are used by an external debugger.

; On entry, X0 points to a block of saved debug registers.
; Returns the pointer beyond the block and corrupts R1-R3,R12.

RestoreDebugRegisters
 ; (1) Lock OS Lock. The lock will already be set, but this write is included to ensure it
 ; is locked.
 MOV X2,#1 ; Lock the OS Lock. In AArch64 state, the OS Lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.
 ISB ; Context synchronization event

 MSR MDSCR_EL1, XZR ; Initialize MDSCR_EL1

 ; (2) Walk through the registers, restoring them
 LDP W1,W2,[X0],#8 ; Read { DTRRX,DTRTX }
 MSR OSDTRRX_EL1,X1 ; Restore DTRRX
 MSR OSDTRTX_EL1,X2 ; Restore DTRTX
 LDP W1,W3,[X0],#8 ; Read { DSCR, ECCR }
 MSR OSECCR_EL1,X2 ; Restore ECCR
 [AARCH32_SUPPORTED
 LDP W1,W2,[X0],#8 ; Read { VCR,CLAIM }
 MSR DBGVCR32_EL2,X1 ; Restore DBGVCR
 MSR DBGCLAIMSET_EL1,X2 ; Restore CLAIM – note, writes CLAIMSET
]

 ;; Macro for restoring a "register pair"
 MACRO
 RestoreRP $WB,$num,$exit
 LDR X3,[X0],#8 ; Read { xVRn }
 MSR DBG$WB.VR$num._EL1,X3 ; Restore DBGxVRn
 LDR W3,[X0],#4 ; Read { xCRn }
 MSR DBG$WB.CR$num._EL1,X3 ; Restore DBGxCRn
 [$num >= 1 :LAND: $num < 15
 CMP W1,#$num
 BEQ $exit
]
 MEND

 ; (3) Breakpoints
 MRS X1,ID_AA64DFR0_EL1
 UBFX W1,W1,#12,#4 ; Extract BRPs field
 MACRO
 RestoreBRP $num ; Restore a Breakpoint Register Pair
 RestoreRP B,$num,RestoreDebugRegisters_Watchpoints
 MEND
 RestoreBRP 0
 RestoreBRP 1
 RestoreBRP 2
 ;; and so on until ...
 RestoreBRP 15

RestoreDebugRegisters_Watchpoints
 ; (4) Watchpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#20,#4 ; Extract WRPs field
 MACRO
 RestoreWRP $num ; Restore a Watchpoint Register Pair
 RestoreRP W,$num,RestoreDebugRegisters_Exit
 MEND
 RestoreWRP 0
 RestoreWRP 1
 RestoreWRP 2
 ;; and so on until ...
 RestoreWRP 15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K11-14559
ID032224 Non-Confidential

Example OS Save and Restore Sequences
K11.2 Restore Debug registers
RestoreDebugRegisters_Exit
 MSR MDSCR_EL1, X3 ; Restore DSCR

 ; (5) Clear the OS Lock.
 ISB
 MOV X2,#0 ; Clear the OS Lock. In AArch64 state, the OS Lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.

 ; (6) A final ISB guarantees the restored register values are visible to subsequent
 ; instructions.
 ISB

 ; (7) Return the pointer to first word not read. This pointer is already in X0, so
 ; all that is needed is to return from this function.
 RET
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K11-14560
ID032224 Non-Confidential

Appendix K12
Recommended Upload and Download Processes for
External Debug

This appendix contains the following section:

• Using memory access mode in AArch64 state.

Note

This description is not part of the Arm architecture specification. It is supplementary, for the convenience of
developers and users who might find this information useful.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K12-14561
ID032224 Non-Confidential

Recommended Upload and Download Processes for External Debug
K12.1 Using memory access mode in AArch64 state
K12.1 Using memory access mode in AArch64 state

Figure K12-1 and Figure K12-2 show the processes for using memory access mode to implement a download
(external host to target) and an upload (target to external host).

To transfer n words of data:

• The download sequence needs n+6 accesses by the external debug interface.

• The upload sequence needs n+8 accesses by the external debug interface.

In both cases, in the innermost loop the debugger can make an external access to a DTR without polling EDSCR
after each write as underrun and overrun detection prevent failure. Normally external accesses from the debugger
are outpaced by the memory accesses of the PE, making underruns and overruns unlikely. If this is not the case, the
EDSCR.ERR flag is set to 1. This is checked once at the end of the sequence, although a debugger can check it more
often, for example once for each page. If the EDSCR.ERR flag is set to 1 because of overrun or underrun, the
debugger can restart. The address to restart from is frozen in X0. EDSCR.ERR might also be set because of a Data
Abort.

If underruns and overruns are common, the debugger can pace itself accordingly.

Note

• The base address must be a multiple of 4.

• The order of the writes that set up the address does not matter in Debug state.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K12-14562
ID032224 Non-Confidential

Recommended Upload and Download Processes for External Debug
K12.1 Using memory access mode in AArch64 state
Figure K12-1 Fast code download in AArch64 state (external host to target)

In Figure K12-1, the sequence for the fast code download is as follows:

1. Setup. From the external debug interface:

a. Write address [31:0] to DBGDTRRX_EL0.

b. Write address [63:32] to DBGDTRTX_EL0.

c. Write MRS X0, DBGDTR_EL0 to EDITR. The PE executes this instruction.

d. Set EDSCR.MA to 1.

2. Loop n times. From the external debug interface:

a. Write to DBGDTRRX_EL0. The PE reads the word from DTRRX and stores it to memory. It
increments X0 by 4.

3. Epilogue. From the external debug interface:

a. Clear EDSCR.MA to 0.

b. Read EDSCR to check for overruns or Data Aborts during download.

i = i + 1
i == n

AArch64
Write D[n] to A

1. DBGDTRTX = A[63:32]

2. DBGDTRRX = A[31:0]

3. EDITR=“MRS X0,DBGDTR_EL0”

4. EDSCR.MA == 1

Set i = 0

DBGDTRRX = D[i]
Issues store through ITR

Sets ERR to 1 if there is an overrun or abort

5. EDSCR.MA = 0

Error

recovery
6. ERR == 0

Yes

End

No

No

Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K12-14563
ID032224 Non-Confidential

Recommended Upload and Download Processes for External Debug
K12.1 Using memory access mode in AArch64 state
Figure K12-2 Fast data upload in AArch64 state (target to external host)

In Figure K12-2, the sequence for the fast code download is as follows:

1. Setup. From the external debug interface:

a. Write address [31:0] to DBGDTRRX_EL0.

b. Write address [63:32] to DBGDTRTX_EL0.

c. Write MRS X0, DBGDTR_EL0 to EDITR.

d. Write MSR DBGDTR_EL0, X0 to EDITR. This dummy operation ensures EDSCR.TXfull == 1.

e. Set EDSCR.MA to 1.

f. Read DBGDTRTX_EL0 and discard the value. The PE returns the previous DTR value, loads the first
word, and writes it to DTR. It increments X0 by 4.

2. Loop n-1 times. From the external debug interface:

a. Read DBGDTRTX_EL0. The PE returns the previous DTRTX value, loads a new word, and writes it
to DTRTX. It increments X0 by 4.

i = i + 1
i == n

AArch64
Read D[n] from A

1. DBGDTRTX = A[63:32]

2. DBGDTRRX = A[31:0]

3. EDITR=“MRS X0,DBGDTR_EL0”

4. EDITR = “MSR, DBGDTR_EL0,X0” (sets TXfull to 1)

5. EDSCR.MA = 1

Set i = 0

6. Discard DBGDTRTX

Sets ERR to 1 in the case of an underrrun or abort

Issues a load through ITR

7. EDSCR.MA = 0

8. D[n-1] = DBGDTRTX

Sets ERR to 1 if there is an underrun

Error

recovery

D[i-1] = DBGDTRTX

Sets ERR to 1 if there is an underrun or abort

Issues a load through ITR

9. ERR == 0

End

No

No

Yes

Yes
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K12-14564
ID032224 Non-Confidential

Recommended Upload and Download Processes for External Debug
K12.1 Using memory access mode in AArch64 state
3. Epilogue. From the external debug interface:

a. Clear EDSCR.MA to 0.

b. Read DBGDTRTX_EL0 for the nth value.

c. Read EDSCR to check for underruns, overruns or Data Aborts during upload.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K12-14565
ID032224 Non-Confidential

Appendix K13
Software Usage Examples

This appendix gives software usage examples, for cases where these are likely to contribute significantly to an
understanding of the Arm architecture.

It contains the following sections:

• Use of the Advanced SIMD complex number instructions.

• Use of the Armv8.2 extensions to the Cryptographic Extension.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14566
ID032224 Non-Confidential

Software Usage Examples
K13.1 Use of the Advanced SIMD complex number instructions
K13.1 Use of the Advanced SIMD complex number instructions

FEAT_FCMA provides instructions to aid floating-point computations of complex numbers. This section illustrates
the use of these instructions for complex arithmetic. It is not part of the Arm architecture definition.

This section uses the AArch64 instructions FCADD and FCMLA - usage of the AArch32 instructions VCADD and VCMLA is
similar.

When using the instructions implemented by FEAT_FCMA, a complex number is represented in a SIMD&FP
register as a pair of adjacent elements, each holding a floating-point number, with the more significant element
holding the imaginary part of the number and the less significant element holding the real part of the number.

K13.1.1 Complex addition

Simple complex addition on a vector of complex numbers is already provided by the vector form of the FADD
instruction.

The functionality that FCADD adds is to rotate each complex number in the second vector by 90 degrees or 270 degrees
counterclockwise (considering the complex numbers on an Argand diagram) before performing the addition.
Mathematically, this is equivalent to multiplying the second complex number by i or -i before addition.

This means, given a complex number z stored in a pair of elements in one vector, and a complex number w stored
in the corresponding element pair in another vector:

• FADD calculates z + w.

• FCADD calculates z ± iw.

K13.1.2 Complex multiplication

The FCMLA instruction does not provide functionality for complex multiplication directly. However, a pair of FCMLA
instructions can provide this function.

The FCMLA instruction operates on corresponding pairs of complex numbers stored in SIMD&FP vector registers,
and adds the result to the corresponding complex number in the destination SIMD&FP vector register. This
computation is as follows:

1. The second complex number is rotated by 0, 90, 180 or 270 degrees counterclockwise.

2. That complex number is multiplied by either the real or imaginary part of the first complex number:

• When the rotation is 0 or 180 degrees, the real part is used.

• When the rotation is 90 or 270 degrees, the imaginary part is used.

3. The resulting complex number is added to the corresponding complex number in the destination register.

Mathematically, considering the complex numbers on an Argand diagram:

• Rotation by 180 degrees is equivalent to negation.

• Rotation by 90 degrees is equivalent to multiplying by i.

• Rotation by 270 degrees is equivalent to multiplying by -i.

This means that, for a first complex number z, where z = a+bi, and a second complex number w, if initially the
corresponding complex number in the destination register is zero:

• When the rotation is 0 degrees the result of the multiply-add is aw.

• When the rotation is 180 degrees, the result is -aw.

• When the rotation is 90 degrees, the result is biw.

• When the rotation is 270 degrees, the result is -biw.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14567
ID032224 Non-Confidential

Software Usage Examples
K13.1 Use of the Advanced SIMD complex number instructions
This means that, if the destination register is zeroed and an FCMLA instruction is executed with a rotation parameter
of 0, and then the same instruction is executed with a rotation parameter of 90:

• The first execution returns aw in the destination register.

• The second execution accumulates biw to this, meaning the result is aw+biw.

• This result is the product of (a+bi)w, which is the product zw.

So, this pair of instructions can be used to implement complex multiplication.

After zeroing V0, the syntax of a pair of instructions to perform this complex number multiplication might be:

FCMLA V0.4S, V1.4S, V2.4S, #0
FCMLA V0.4S, V1.4S, V2.4S, #90

Other simple pairs of FCMLA instructions perform useful computations. For example, considering a first complex
number z and second complex number w, defined as before, and a destination register that has been zeroed before
the first FCMLA instruction is executed:

1. The following pair of instructions calculates the complex conjugate of z multiplied by w.

FCMLA V0.4S, V1.4S, V2.4S, #0
FCMLA V0.4S, V1.4S, V2.4S, #270

2. The following pair of instructions calculates the negation of z multiplied by w.

FCMLA V0.4S, V1.4S, V2.4S, #180
FCMLA V0.4S, V1.4S, V2.4S, #270

3. The following pair of instructions calculates the negation of the complex conjugate of z multiplied by w.

FCMLA V0.4S, V1.4S, V2.4S, #180
FCMLA V0.4S, V1.4S, V2.4S, #90

Note

For these examples, the following caveats must be considered:

• FCMLA performs a fused multiply-add, meaning there is no intermediate rounding. This lack of intermediate
rounding can give unexpected results in some cases. Arm expects that these instructions are only used in
situations where the effect of the rounding of these results is not material to the calculation.

• When using the FCMLA instructions, the behavior of (∞+∞i) multiplied by (0+i) is (NaN+NaNi), rather than
the result expected by ISO C, which is complex ∞.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14568
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension

K13.2.1 Use of the SHA512 instructions

These instructions are implemented when FEAT_SHA512 is implemented.

The following code sequence shows the use of the SHA512 instructions to calculate a SHA512 hash iteration of 80
rounds. This code is not fully optimized.

// X0 contains the pointer to the bottom of the (padded) 16*64 bytes of message to be
// hashed, with space above the that message to hold a further 64 * 64 bytes of working
// data
// X1 contains the pointer to the 0th element of 80 64-bit constants (in ascending addresses) defined in
the SHA2 specification
// X2 contains a loop variable
// V4,V5,V6, V7 hold VS0 to VS3 respectively
// V8 holds running hash V1
// V9 holds running hash V0
 MOV X2, #0
loop1:
 LD1 {V0.2D}, [X0] // Data
 LD1 {V1.2D}, [X1] // K values
 ADD X1, X1, #16
 ADD X0, X0, #16
 ADD X2, X2, #16
 ADD V2.2D, V0.2D, V1.2D
 EXT V2.16B, V2.16B, V2.16B, #8
 EXT V8.16B, V6.16B, V7.16B, #8
 EXT V9.16B, V5.16B, V6.16B, #8
 ADD V7.2D, V7.2D, V2.2D
 SHA512H Q7, Q8, V9.2D
 ADD V10.2D, V5.2D, V7.2D
 SHA512H2 Q7, Q5, V4.2D
 MOV V5.16B, V4.16B
 MOV V4.16B, V7.16B
 MOV V7.16B, V6.16B
 MOV V6.16B, V10.16B
 CMP X2, #128
 BLT loop1

 // work out pointers to previous words in the data
 SUB X3, X0, #128
 SUB X4, X0, #112
 SUB X5, X0, #16
 SUB X6, X0, #56
loop2:
 LD1 {V11.2D}, [X3]
 LD1 {V12.2D}, [X4]
 LD1 {V13.2D}, [X5]
 LD1 {V14.2D}, [X6]
 SHA512SU0 V11.2D, V12.2D
 SHA512SU1 V11.2D, V13.2D, V14.2D
 ST1 {V11.2D}, [X0]
 LD1 {V1.2D}, [X1] // K values
 ADD X0, X0, #16
 ADD X1, X1, #16
 ADD X3, X3, #16
 ADD X4, X4, #16
 ADD X5, X5, #16
 ADD X6, X6, #16
 ADD X2, X2, #16
 ADD V2.2D, V11.2D, V1.2D
 EXT V2.16B, V2.16B, V2.16B, #8
 EXT V8.16B, V6.16B, V7.16B, #8
 EXT V9.16B, V5.16B, V6.16B, #8
 ADD V7.2D, V7.2D, V2.2D
 SHA512H Q7, Q8, V9.2D
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14569
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
 ADD V10.2D, V5.2D, V7.2D
 SHA512H2 Q7, Q5, V4.2D
 MOV V5.16B, V4.16B
 MOV V4.16B, V7.16B
 MOV V7.16B, V6.16B
 MOV V6.16B, V10.16B
 CMP X2, #320
 BLT loop2

K13.2.2 Use of the SHA3 instructions

These instructions are implemented when FEAT_SHA3 is implemented.

The following code sequence shows the use of the SHA3 instructions to obtain the combined theta, phi, rho and chi
operations of a SHA3 iteration. Arm expects the iota operation to be performed using a lookup table.

This code is not fully optimized for multiple iterations.

// Input State:
 // x=0 x=1 x=2 x=3 x=4
 // y=0 v12 v13 v14 v10 v11
 // y=1 v7 v8 v9 v5 v6
 // y=2 v2 v3 v4 v0 v1
 // y=3 v22 v23 v24 v20 v21
 // y=4 v17 v18 v19 v15 v16

 //- Theta Calculations -//
 eor3 v25.16B, v12.16B, v7.16B, v2.16B
 eor3 v25.16B, v25.16B, v22.16B, v17.16B
 eor3 v26.16B, v13.16B, v8.16B, v3.16B
 eor3 v26.16B, v26.16B, v23.16B, v18.16B
 eor3 v27.16B, v14.16B, v9.16B, v4.16B
 eor3 v27.16B, v27.16B, v24.16B, v19.16B
 eor3 v28.16B, v10.16B, v5.16B, v0.16B
 eor3 v28.16B, v28.16B, v20.16B, v15.16B
 eor3 v29.16B, v11.16B, v6.16B, v1.16B
 eor3 v29.16B, v29.16B, v21.16B, v16.16B

 rax1 v30.2D, v29.2D, v26.2D
 rax1 v31.2D, v27.2D, v29.2D
 rax1 v29.2D, v25.2D, v27.2D
 rax1 v27.2D, v28.2D, v25.2D
 rax1 v25.2D, v26.2D, v28.2D

 //- Phi\rho Stage -//
 eor v12.8B, v12.8B, v30.8B
 xar v26.2D, v21.2D, v27.2D, #56
 xar v21.2D, v15.2D, v31.2D, #8
 xar v15.2D, v22.2D, v30.2D, #23
 xar v22.2D, v11.2D, v27.2D, #37
 xar v11.2D, v16.2D, v27.2D, #50
 xar v16.2D, v18.2D, v29.2D, #62
 xar v18.2D, v5.2D, v31.2D, #9
 xar v5.2D, v23.2D, v29.2D, #19
 xar v23.2D, v7.2D, v30.2D, #28
 xar v7.2D, v10.2D, v31.2D, #36
 xar v10.2D, v20.2D, v31.2D, #43
 xar v20.2D, v24.2D, v25.2D, #49
 xar v24.2D, v3.2D, v29.2D, #54
 xar v3.2D, v9.2D, v25.2D, #58
 xar v9.2D, v2.2D, v30.2D, #61
 xar v2.2D, v13.2D, v29.2D, #63
 xar v13.2D, v8.2D, v29.2D, #20
 xar v8.2D, v6.2D, v27.2D, #44
 xar v6.2D, v19.2D, v25.2D, #3
 xar v19.2D, v1.2D, v27.2D, #25
 xar v1.2D, v17.2D, v30.2D, #46
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14570
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
 xar v17.2D, v14.2D, v25.2D, #2
 xar v14.2D, v4.2D, v25.2D, #21
 xar v4.2D, v0.2D, v31.2D, #39

 // XAR Output:
 //
 // v12 v2 v17 v7 v22
 // v23 v13 v3 v18 v8
 // v9 v24 v14 v4 v19
 // v15 v5 v20 v10 v26
 // v1 v16 v6 v21 v11
 //
 // temp: v0, v25, v27, v28, v29, v30, v31

 // Phi Output:
 //
 // v12 v13 v14 v10 v11
 // v7 v8 v9 v5 v6
 // v2 v3 v4 v26 v1
 // v22 v23 v24 v20 v21
 // v17 v18 v19 v15 v16

 //- Chi transformations -//
 bcax v31.16B, v26.16B, v2.16B, v1.16B
 bcax v27.16B, v1.16B, v3.16B, v2.16B
 bcax v28.16B, v2.16B, v4.16B, v3.16B
 bcax v29.16B, v3.16B, v26.16B, v4.16B
 bcax v30.16B, v4.16B, v1.16B, v26.16B
 bcax v0.16B, v5.16B, v7.16B, v6.16B
 bcax v1.16B, v6.16B, v8.16B, v7.16B
 bcax v2.16B, v7.16B, v9.16B, v8.16B
 bcax v3.16B, v8.16B, v5.16B, v9.16B
 bcax v4.16B, v9.16B, v6.16B, v5.16B
 bcax v5.16B, v10.16B, v12.16B, v11.16B
 bcax v6.16B, v11.16B, v13.16B, v12.16B
 bcax v7.16B, v12.16B, v14.16B, v13.16B
 bcax v8.16B, v13.16B, v10.16B, v14.16B
 bcax v9.16B, v14.16B, v11.16B, v10.16B
 bcax v10.16B, v15.16B, v17.16B, v16.16B
 bcax v11.16B, v16.16B, v18.16B, v17.16B
 bcax v12.16B, v17.16B, v19.16B, v18.16B
 bcax v13.16B, v18.16B, v15.16B, v19.16B
 bcax v14.16B, v19.16B, v16.16B, v15.16B
 bcax v15.16B, v20.16B, v22.16B, v21.16B
 bcax v16.16B, v21.16B, v23.16B, v22.16B
 bcax v17.16B, v22.16B, v24.16B, v23.16B
 bcax v18.16B, v23.16B, v20.16B, v24.16B
 bcax v19.16B, v24.16B, v21.16B, v20.16B

 // Output State from Chi:
 //
 // x=0 x=1 x=2 x=3 x=4
 // y=0 v7 v8 v9 v5 v6
 // y=1 v2 v3 v4 v0 v1
 // y=2 v28 v29 v30 v31 v27
 // y=3 v17 v18 v19 v15 v16
 // y=4 v12 v13 v14 v10 v11

K13.2.3 Use of the SM3 instructions

These instructions are implemented when FEAT_SM3 is implemented.

The following code sequence shows the use of the SM3 instructions to generate a SM3 hash.

.macro MessageExpand VA, VB, VC, VD, VOUT
 EXT \VOUT().16B, \VB().16B, \VC().16B, #12
 SM3PARTW1 \VOUT().4S, \VA().4S, \VD().4S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14571
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
 EXT V17.16B, \VA().16B, \VB().16B, #12
 EXT V18.16B, \VC().16B, \VD().16B, #8
 SM3PARTW2 \VOUT().4S, V18.4S, V17.4S
 .endm

.macro HashPt1 VA, VB, Number SM3SS1 V23.4S, V20.4S, V22.4S, V19.4S
 EOR V21.16B, \VA().16B, \VB().16B
 SM3TT1a V20.4S, V23.4S, V21.S[\Number]
 SM3TT2a V19.4S, V23.4S, \VA().S[\Number]
 SHL V24.4S, V22.4S, #1
 SRI V24.4S, V22.4S, #31
 MOV V22.16B, V24.16B
 .endm

.macro HashPt2 VA, VB, Number SM3SS1 V23.4S, V20.4S, V25.4S, V19.4S
 EOR V21.16B, \VA().16B, \VB().16B
 SM3TT1b V20.4S, V23.4S, V21.S[\Number]
 SM3TT2b V19.4S, V23.4S, \VA().S[\Number]
 SHL V26.4S, V25.4S, #1
 SRI V26.4S, V25.4S, #31
 MOV V25.16B, V26.16B
 .endm

// V0-V3 holds the initial message
// V19 holds EFGH which is the lower half of the input hash
// V20 holds ABCD which is the upper half of the input hash
// V21 = current VPrime
// V22 holds T in bits[127:96] = 0x79cc4519
// V25 holds second value of T in bits[127:96] = 0x9d8a7a87<31:0>;

MessageExpand V0, V1, V2, V3, V4
MessageExpand V1, V2, V3, V4, V5
MessageExpand V2, V3, V4, V5, V6
MessageExpand V3, V4, V5, V6, V7
MessageExpand V4, V5, V6, V7, V8
MessageExpand V5, V6, V7, V8, V9
MessageExpand V6, V7, V8, V9, V10
MessageExpand V7, V8, V9, V10, V11
MessageExpand V8, V9, V10, V11, V12
MessageExpand V9, V10, V11, V12, V13
MessageExpand V10, V11, V12, V13, V14
MessageExpand V11, V12, V13, V14, V15
MessageExpand V12, V13, V14, V15, V16

MOV V29.16B, V19.16B
MOV V30.16B, V20.16B

HashPt1 V0,V1, 0
HashPt1 V0,V1, 1
HashPt1 V0,V1, 2
HashPt1 V0,V1, 3
HashPt1 V1,V2, 0
HashPt1 V1,V2, 1
HashPt1 V1,V2, 2
HashPt1 V1,V2, 3
HashPt1 V2,V3, 0
HashPt1 V2,V3, 1
HashPt1 V2,V3, 2
HashPt1 V2,V3, 3
HashPt1 V3,V4, 0
HashPt1 V3,V4, 1
HashPt1 V3,V4, 2
HashPt1 V3,V4, 3

HashPt2 V4,V5, 0
HashPt2 V4,V5, 1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14572
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
HashPt2 V4,V5, 2
HashPt2 V4,V5, 3
HashPt2 V5,V6, 0
HashPt2 V5,V6, 1
HashPt2 V5,V6, 2
HashPt2 V5,V6, 3
HashPt2 V6,V7, 0
HashPt2 V6,V7, 1
HashPt2 V6,V7, 2
HashPt2 V6,V7, 3
HashPt2 V7,V8, 0
HashPt2 V7,V8, 1
HashPt2 V7,V8, 2
HashPt2 V7,V8, 3
HashPt2 V8,V9, 0
HashPt2 V8,V9, 1
HashPt2 V8,V9, 2
HashPt2 V8,V9, 3
HashPt2 V9,V10, 0
HashPt2 V9,V10, 1
HashPt2 V9,V10, 2
HashPt2 V9,V10, 3
HashPt2 V10,V11, 0
HashPt2 V10,V11, 1
HashPt2 V10,V11, 2
HashPt2 V10,V11, 3
HashPt2 V11,V12, 0
HashPt2 V11,V12, 1
HashPt2 V11,V12, 2
HashPt2 V11,V12, 3
HashPt2 V12,V13, 0
HashPt2 V12,V13, 1
HashPt2 V12,V13, 2
HashPt2 V12,V13, 3
HashPt2 V13,V14, 0
HashPt2 V13,V14, 1
HashPt2 V13,V14, 2
HashPt2 V13,V14, 3
HashPt2 V14,V15, 0
HashPt2 V14,V15, 1
HashPt2 V14,V15, 2
HashPt2 V14,V15, 3
HashPt2 V15,V16, 0
HashPt2 V15,V16, 1
HashPt2 V15,V16, 2
HashPt2 V15,V16, 3

EOR V19.16B, V29.16B, V19.16B
EOR V20.16B, V30.16B, V20.16B

// V19 holds EFGH which is the lower half of the output hash
// V20 holds ABCD which is the upper half of the output hash

K13.2.4 Use of the SM4 instructions

These instructions are implemented when FEAT_SM4 is implemented.

The following code sequences show the use of the SM4 instructions to perform SM4 encryption and decryption:

Encryption

// Encryption
// V0 contains 0xb27022dc677d919756aa3350a3b1bac6<127:0>;
// V8 contains the Key
// V2 contains the data to be encrypted
// V16 contains: 0x545b6269383f464d1c232a3100070e15;
// V17 contains: 0xc4cbd2d9a8afb6bd8c939aa170777e85;
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14573
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
// V18 contains: 0x343b4249181f262dfc030a11e0e7eef5;
// V19 contains: 0xa4abb2b9888f969d6c737a8150575e65;
// V20 contains: 0x141b2229f8ff060ddce3eaf1c0c7ced5;
// V21 contains: 0x848b9299686f767d4c535a6130373e45;
// V22 contains: 0xf4fb0209d8dfe6edbcc3cad1a0a7aeb5;
// V23 contains: 0x646b7279484f565d2c333a4110171e25;

EOR V8.16b, V8.16b, V0.16b;
SM4EKEY V8.4S, V8.4S, V16.4S
SM4EKEY V9.4S, V8.4S, V17.4S
SM4EKEY V10.4S, V9.4S, V18.4S
SM4EKEY V11.4S, V10.4S, V19.4S
SM4EKEY V12.4S, V11.4S, V20.4S
SM4EKEY V13.4S, V12.4S, V21.4S
SM4EKEY V14.4S, V13.4S, V22.4S
SM4EKEY V15.4S, V14.4S, V23.4S

SM4E V2.4S, V8.4S
SM4E V2.4S, V9.4S
SM4E V2.4S, V10.4S
SM4E V2.4S, V11.4S
SM4E V2.4S, V12.4S
SM4E V2.4S, V13.4S
SM4E V2.4S, V14.4S
SM4E V2.4S, V15.4S

// need to reverse the order of the words at the end of the operation
REV64 v2.4S, v2.4S
EXT V2.16B, V2.16B, V2.16B, #8

Decryption

// Decryption
// V0 contains 0xb27022dc677d919756aa3350a3b1bac6<127:0>;
// V8 contains the Key
// V2 contains the data to be decrypted
// V16 contains: 0x545b6269383f464d1c232a3100070e15;
// V17 contains: 0xc4cbd2d9a8afb6bd8c939aa170777e85;
// V18 contains: 0x343b4249181f262dfc030a11e0e7eef5;
// V19 contains: 0xa4abb2b9888f969d6c737a8150575e65;
// V20 contains: 0x141b2229f8ff060ddce3eaf1c0c7ced5;
// V21 contains: 0x848b9299686f767d4c535a6130373e45;
// V22 contains: 0xf4fb0209d8dfe6edbcc3cad1a0a7aeb5;
// V23 contains: 0x646b7279484f565d2c333a4110171e25;

// need to reverse the order of the keys to do a decryption:

EOR V8.16b, V8.16b, V0.16b;
SM4EKEY V8.4S, V8.4S, V16.4S
SM4EKEY V9.4S, V8.4S, V17.4S
SM4EKEY V10.4S, V9.4S, V18.4S
SM4EKEY V11.4S, V10.4S, V19.4S
SM4EKEY V12.4S, V11.4S, V20.4S
SM4EKEY V13.4S, V12.4S, V21.4S
SM4EKEY V14.4S, V13.4S, V22.4S
SM4EKEY V15.4S, V14.4S, V23.4S

REV64 V8.4S, V8.4S
EXT V8.16B, V8.16B, V8.16B, #8
REV64 V9.4S, V9.4S
EXT V9.16B, V9.16B, V9.16B, #8
REV64 V10.4S, V10.4S
EXT V10.16B, V10.16B, V10.16B, #8
REV64 V11.4S, V11.4S
EXT V11.16B, V11.16B, V11.16B, #8
REV64 V12.4S, V12.4S
EXT V12.16B, V12.16B, V12.16B, #8
REV64 V13.4S, V13.4S
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14574
ID032224 Non-Confidential

Software Usage Examples
K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
EXT V13.16B, V13.16B, V13.16B, #8
REV64 V14.4S, V14.4S
EXT V14.16B, V14.16B, V14.16B, #8
REV64 V15.4S, V15.4S
EXT V15.16B, V15.16B, V15.16B, #8

SM4E V2.4S, V15.4S
SM4E V2.4S, V14.4S
SM4E V2.4S, V13.4S
SM4E V2.4S, V12.4S
SM4E V2.4S, V11.4S
SM4E V2.4S, V10.4S
SM4E V2.4S, V9.4S
SM4E V2.4S, V8.4S

// final reversal of the order of the words in the result:
REV64 V2.4S, V2.4S
EXT V2.16B, V2.16B, V2.16B, #8
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K13-14575
ID032224 Non-Confidential

Appendix K14
Barrier Litmus Tests

This appendix gives examples of the use of the barrier instructions provided by the Arm architecture. It contains the
following sections:

• Introduction.

• Load-Acquire, Store-Release and barriers.

• Load-Acquire Exclusive, Store-Release Exclusive and barriers.

• Using a mailbox to send an interrupt.

• Cache and TLB maintenance instructions and barriers.

• Armv7 compatible approaches for ordering, using DMB and DSB barriers.

Note

This information is not part of the Arm architecture specification. It is included here as supplementary information,
for the convenience of developers and users who might require this information.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14576
ID032224 Non-Confidential

Barrier Litmus Tests
K14.1 Introduction
K14.1 Introduction

The exact rules for the insertion of barriers into code sequences is a complicated subject, and this appendix describes
many of the corner cases and behaviors that are possible in an implementation of the Arm architecture.

This appendix is to help programmers, hardware design engineers, and validation engineers understand the need for
the different kinds of barriers.

K14.1.1 Overview of memory consistency

Early generations of microprocessors were relatively simple processing engines that executed each instruction in
program order. In such processors, the effective behavior was that each instruction was executed in its entirety
before a subsequent instruction started to be executed. This behavior is sometimes referred to as the Sequential
Execution Model (SEM), and in this Manual it is described as Simple sequential execution of the program.

In later processor generations, the needs to increase processor performance, both in terms of the frequency of
operation and the number of instructions executed each cycle, mean that such a simple form of execution is
abandoned. Many techniques, such as pipelining, write buffering, caching, speculation, and out-of-order execution,
are introduced to provide improved performance.

For general-purpose PEs, such as Arm, these microarchitectural innovations are largely hidden from the
programmer by a number of microarchitectural techniques. These techniques ensure that, within an individual PE,
the behavior of the PE largely remains the same as the SEM. There are some exceptions to this where explicit
synchronization is required. In the Arm architecture, these are limited to cases such as:

• Synchronization of changes to the instruction stream.

• Synchronization of changes to System registers.

In both these cases, the ISB instruction provides the necessary synchronization.

While the effect of ordering is largely hidden from the programmer within a single PE, the microarchitectural
innovations have a profound impact on the ordering of memory accesses. Write buffering, speculation, and cache
coherency protocols, in particular, can all mean that the order in which memory accesses occur, as seen by an
external observer, differs significantly from the order of accesses that would appear in the SEM. This is usually
invisible in a uniprocessor environment, but the effect becomes much more significant when multiple PEs are trying
to communicate with memory. In reality, these effects are often only significant at particular synchronization
boundaries between the different threads of execution.

The problems that arise from memory ordering considerations are sometimes described as the problem of memory
consistency. Processor architectures have adopted one or more memory consistency models, or memory models, that
describe the permitted limits of the memory reordering that can be performed by an implementation of the
architecture. The comparison and categorization of these has generated significant research and comment in
academic circles, and Arm recommends the Memory Consistency Models for Shared Memory-Multiprocessors
paper as an excellent detailed treatment of this subject.

This appendix does not reproduce such a work, but instead concentrates on some cases that demonstrate the features
of the weakly-ordered memory model of the Arm architecture from Armv6. In particular, the examples show how
the use of the DMB and DSB memory barrier instructions can provide the necessary safeguards to limit memory
ordering effects at the required synchronization points.

K14.1.2 Barrier operation definitions

The following reference, or provide, definitions of terms used in this appendix:

DMB See Data Memory Barrier (DMB).

DSB See Data Synchronization Barrier (DSB).

ISB See Instruction Synchronization Barrier (ISB).

Observer, Completion

See Definition of the Arm memory model.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14577
ID032224 Non-Confidential

Barrier Litmus Tests
K14.1 Introduction
See Completion and endpoint ordering.

Program order

The order of instructions as they appear in an assembly language program. This appendix does not
attempt to describe or define the legal transformations from a program written in a higher-level
programming language, such as C or C++, into the machine language that can then be disassembled
to give an equivalent assembly language program. Such transformations are a function of the
semantics of the higher-level language and the capabilities and options on the compiler.

K14.1.3 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples with
unnecessary code sequences.

AArch32

The construct WAIT([Rx]==1) describes the following sequence:

loop
 LDR R12, [Rx]
 CMP R12, #1
 BNE loop

Also, the construct WAIT_ACQ([Rx]==1) describes the following sequence:

loop
 LDA R12, [Rx] ; load acquire ensures it is ordered before subsequent loads/stores
 CMP R12, #1
 BNE loop

R12 is chosen as an arbitrary temporary register that is not in use. It is named to permit the generation of a false
dependency to ensure ordering.

AArch64

The construct WAIT([Xx]==1) describes the following sequence:

loop
 LDR W12, [Xx]
 CMP W12, #1
 B.NE loop

Also, the construct WAIT_ACQ([Xx]==1) and describes the following sequence:

loop
 LDAR W12, [Xx] ; load acquire ensures it is ordered before subsequent loads/stores
 CMP W12, #1
 B.NE loop

For each example, a code sequence is preceded by an identifier of the observer running it:

• P0, P1…Px refer to caching coherent PEs that implement the Armv9 or Armv8 architecture and are in the
same shareability domain.

• E0, E1…Ex refer to non-caching observers that do not participate in the coherency protocol, but execute
Armv9 or Armv8 instructions and have a weakly ordered memory model. This does not preclude these
observers being different objects, such as DMA engines or other system Requesters.

These observers are unsynchronized other than as required by the documented code sequence.

Note

Throughout this appendix, Armv9 or Armv8 instruction and instruction refer to instructions from the A64, A32, or
T32 instruction set, provided by Armv9 or Armv8 implementations.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14578
ID032224 Non-Confidential

Barrier Litmus Tests
K14.1 Introduction
Results are expressed in terms of <agent>:<register>, such as P0:R5. The results can be described as:

Permissible This does not imply that the results expressed are required or are the only possible results.
In most cases they are results that would not be possible under a sequentially consistent
running of the code sequences on the agents involved. In general terms, this means that these
results might be unexpected to anyone unfamiliar with memory consistency issues.

Not permissible Results that the architecture expressly forbids.

Required Results that the architecture expressly requires.

The examples omit the required shareability domain arguments of DMB and DSB instructions. The arguments are
assumed to be selected appropriately for the shareability domains of the observers.

In AArch32 state, where the barrier function in the litmus test can be achieved by a DMB ST, that is a barrier to stores
only, this is shown by the use of DMB [ST]. This indicates that the ST qualifier can be omitted without affecting the
result of the test. In some implementations DMB ST is faster than DMB.

For AArch64 code, the shareability domain of the DMB or DSB must be included. This is shown in this manual using
the notation DMB <domain> and DSB <domain> respectively.

Except where otherwise stated, other conventions are:

• All memory initializes to 0.

• R0 and W0 contain the value 1.

• R1 - R4 and W1 - W4 contain arbitrary independent addresses that initialize to the same value on all PEs.
The addresses held in these registers are shareable and:

— The addresses held in R1 and R2 are in Write-Back Cacheable Normal memory.

— The address held in R3 is in Write-Through Cacheable Normal memory.

— The address held in R4 is in Non-cacheable Normal memory.

• R5 - R8 and W5 - W8 contain:

— When used with an STR instruction, 0x55, 0x66, 0x77, and 0x88 respectively.

— When used with an LDR instruction, the value 0.

• R11 and W11 contain a new instruction or new translation table entry, as appropriate, and R10 contains the
virtual address and the ASID, for use in this change of translation table entry.

• Memory locations are Normal memory locations unless otherwise stated.

The examples use mnemonics for the cache maintenance and TLB maintenance instructions. The following tables
describe the mnemonics:

• Cache maintenance system instructions.

• TLB maintenance system instructions.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14579
ID032224 Non-Confidential

Barrier Litmus Tests
K14.2 Load-Acquire, Store-Release and barriers
K14.2 Load-Acquire, Store-Release and barriers

The Load-Acquire and Store-Release instructions are described in Load-Acquire, Load-AcquirePC, and
Store-Release.

The following sections show that most of the examples in sections Simple ordering and barrier cases and
Load-Exclusive, Store-Exclusive and barriers can be achieved using the Load-Acquire and Store-Release
instructions without the need for additional barriers.

K14.2.1 Message passing

The following sections describe:

• Resolving weakly-ordered message passing by using Acquire and Release.

• Resolving message passing by the use of Store-Release and address dependency.

K14.2.1.1 Resolving weakly-ordered message passing by using Acquire and Release

The message passing problem described in Weakly-ordered message passing problem can be solved by the use of
Load-Acquire and Store-Release instructions when accessing the communications flag:

AArch32

P1

 STR R5, [R1] ; sets new data
 STL R0, [R2] ; sends flag indicating data ready, which is ordered after the STR

P2

 WAIT_ACQ([R2]==1) ; waits on flag
 LDR R5, [R1]

AArch64

P1

 STR W5, [X1] ; sets new data
 STLR W0, [X2] ; sends flag indicating data ready, which is ordered after the STR

P2

 WAIT_ACQ([X2]==1) ; waits on flag
 LDR W5, [X1]

This ensures the observed order of both the reads and the writes allows transfer of data such that the result
P2:R5==0x55 is guaranteed.

This approach also works with multiple observers, in a way that further observers use the same sequence as P2 uses:

AArch32

P3

 WAIT_ACQ([R2]==1) ; waits on flag
 LDR R5, [R1]

AArch64

P3

 WAIT_ACQ([X2]==1) ; waits on flag
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14580
ID032224 Non-Confidential

Barrier Litmus Tests
K14.2 Load-Acquire, Store-Release and barriers
 LDR W5, [X1]

K14.2.1.2 Resolving message passing by the use of Store-Release and address
dependency

The lack of ordering of stores described in Message passing with multiple observers can be resolved by the use of
Store-Release for the store of the valid flag by P1, even when the observers are using an address dependency:

AArch32

P1

 STR R5, [R1] ; sets new data
 STL R0, [R2] ; sends flag indicating data ready using a Store-Release

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in the WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 : and so is ordered after the flag has been seen

AArch64

P1

 STR W5, [X1] ; sets new data
 STLR W0, [X2] ; sends flag indicating data ready using a Store-Release

P2

 WAIT([X2]==1)
 AND W12, W12, WZR ; W12 is the destination of LDR in the WAIT macro
 LDR W5, [X1, X12] ; the load has an address dependency on W12
 : and so is ordered after the flag has been seen

This ensures the observed order of the writes allows transfer of data such that P2:R5 and P3:R5 contain the same
value of 0x55.

This approach also works with multiple observers, in a way that further observers use the same sequence as P2 uses:

AArch32

P3

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in the WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 : and so is ordered after the flag has been seen

AArch64

P3

 WAIT([X2]==1)
 AND W12, W12, WZR ; R12 is the destination of LDR in the WAIT macro
 LDR W5, [X1, X12] ; the load has an address dependency on W12
 : and so is ordered after the flag has been seen
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14581
ID032224 Non-Confidential

Barrier Litmus Tests
K14.2 Load-Acquire, Store-Release and barriers
K14.2.2 Address dependency with object construction

When accessing an object-oriented data structure, the address dependency rule means that barriers are not required,
even when initializing the object. A Store-Release can be used to ensure the order of the update of the base address:

AArch32

P1

STR R5, [R1, #offset] ; sets new data in a field
STL R1, [R2] ; updates base address

P2

LDR R1, [R2] ; reads base address
CMP R1, #0 ; checks if it is valid
BEQ null_trap
LDR R5, [R1, #offset] ; uses base address to read field

AArch64

P1

STR W5, [X1, #offset] ; sets new data in a field
STLR X1, [X2] ; updates base address

P2

LDR X1, [X2] ; reads base address
CMP X1, #0 ; check if it is valid
B.EQ null_trap
LDR W5, [X1, #offset] ; uses base address to read field

It is required that P2:R5==0x55 if the null_trap is not taken. This avoids P2 observing a partially constructed object
from P1. Significantly, P2 does not need a barrier to ensure this behavior.

The read of the base address in P2 could be a Load-Acquire, but it is not necessary in this case.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14582
ID032224 Non-Confidential

Barrier Litmus Tests
K14.2 Load-Acquire, Store-Release and barriers
K14.2.3 WFE and WFI and barriers

The Wait For Event and Wait For Interrupt instructions permit the PE to suspend execution and enter a low-power
state. An explicit DSB barrier instruction is required if it is necessary to ensure memory accesses made before the WFI
or WFE are visible to other observers, unless some other mechanism has ensured this visibility. Examples of other
mechanism that would guarantee the required visibility are the DMB described in Posting a store before polling for
acknowledgment, or a dependency on a load.

The following example requires the DSB to ensure that the store is visible:

AArch32

P1

STR R0, [R2]
DSB

Loop
WFI
B Loop

AArch64

P1

STR W0, [X2]
DSB <domain>

Loop
WFI
B Loop

This requirement is unchanged in Armv8 and later architectures by the presence of Load-Acquire or Store-Release.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14583
ID032224 Non-Confidential

Barrier Litmus Tests
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers

The Armv8 architecture adds the acquire and release semantics to Load-Exclusive and Store-Exclusive instructions,
which allows them to gain ordering acquire and/or release semantics.

The Load-Exclusive instruction can be specified to have acquire semantics, and the Store-Exclusive instruction can
be specified to have release semantics. These can be arbitrarily combined to allow the atomic update created by a
successful Load-Exclusive and Store-Exclusive pair to have any of:

• No Ordering semantics (using LDREX and STREX).

• Acquire only semantics (using LDAEX and STREX).

• Release only semantics (using LDREX and STLEX).

• Sequentially consistent semantics (using LDAEX and STLEX).

In addition, the Armv8 and later specifications require that the clearing of a global monitor will generate an event
for the PE associated with the global monitor, which can simplify the use of WFE, by removing the need for a DSB
barrier and SEV instruction.

K14.3.1 Acquiring a lock

A common use of Load-Exclusive and Store-Exclusive instructions is to claim a lock to permit entry into a critical
region. This is typically performed by testing a lock variable that indicates 0 for a free lock and some other value,
commonly 1 or an identifier of the process holding the lock, for a taken lock.

Note

The inclusion of AArch32 PLDW instructions or AArch64 PRFM PST* instructions in these examples is not a functional
requirement, but will improve performance on many implementations. The performance benefit of adding these
instructions will vary between different implementations of the architecture.

For a critical region, the requirement on taking a lock is usually for acquire semantics, while the clearing of a lock
requires release semantics:

AArch32

Px

 PLDW[R1] ; preload into cache in unique state
Loop
 LDAEX R5, [R1] ; read lock with acquire
 CMP R5, #0 ; check if 0
 STREXEQ R5, R0, [R1] ; attempt to store new value
 CMPEQ R5, #0 ; test if store suceeded
 BNE Loop ; retry if not

 ; loads and stores in the critical region can now be performed

AArch64

Px

 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop
 LDAXR W5, [X1] ; read lock with acquire
 CBNZ W5, Loop ; check if 0
 STXR W5, W0, [X1] ; attempt to store new value
 CBNZ W5, Loop ; test if store succeeded and retry if not

 ; loads and stores in the critical region can now be performed

The acquire associated with the load is sufficient to ensure the required ordering in a lock situation. The
Store-Exclusive will fail (and so be retried) if there is a store to the location being monitored between the
Load-Exclusive and the Store-Exclusive.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14584
ID032224 Non-Confidential

Barrier Litmus Tests
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
K14.3.2 Releasing a lock

The converse operation of releasing a lock does not require the use of Load-Exclusive and Store-Exclusive
instructions, because only a single observer is able to write to the lock. However, often it is necessary for any
observer to observe any memory updates, or any values that are loaded into memory, before they observe the release
of the lock. Therefore, the lock release needs release semantics:

AArch32

Px

 ; loads and stores in the critical region
 MOV R0, #0
 STL R0, [R1] ; clear the lock with release semantics

AArch64

Px

 ; loads and stores in the critical region
 STLR WZR, [X1] ; clear the lock with release semantics

K14.3.3 Ticket locks

When a lock is free, in order to avoid a rush to get the lock by many PEs, the use of ticket locks is common in more
advanced systems. When the use is requested, the ticket locks determine the order of the users of the critical
sections, in order to avoid starvation that can occur with a simple contention-based spin-lock.

A ticket lock allocates each thread a ticket number when it first requests the lock, and then compares that number
with the current number for the lock. If they are the same, then the critical section can be entered. Otherwise the
thread waits until the current number is equal to the ticket number for that thread.

The reading of the current number of the lock needs acquire semantics for the lock to be acquired.

Note

• The code in this section is little-endian code, as it views the combined current and next values as a single
combined quantity. The addresses of the current and next ticket values must be adjusted for a big-endian
system.

• The inclusion of AArch32 PLDW instructions or AArch64 PRFM PST* instructions in these examples is not a
functional requirement, but improves performance on many implementations. The performance benefit of
adding these instructions varies between different implementations of the architecture.

This is shown in the implementation below:

AArch32

Px

 ; R1 holds two 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PLDW[R1] ; preload into cache in unique state
Loop1
 LDAEX R5, [R1] ; read current and next
 ADD R3, R5, #0x10000 ; increment the next number
 STREX R6, R3, [R1] ; and update the value
 CMP R6, #0 ; did the exclusive pass
 BNE Loop1 ; retry if not
 CMP R5, R5, ROR #16 ; is the current ticket ours
 MOV R6, R5
 BEQ block_start
Loop2
 LDAH R6, [R1] ; read current value
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14585
ID032224 Non-Confidential

Barrier Litmus Tests
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
 CMP R6, R5, LSR #16 ; compare it with our allocated ticket
 BNE Loop2 ; retry (spin) if it is not the same
block_start

AArch64

Px

 ; X1 holds 2 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop1
 LDAXR W5, [X1] ; read current and next
 ADD W3, W5, #0x10000 ; increment the next number
 STXR W6, W3, [X1] ; and update the value
 CBNZ W6, Loop1 ; did the exclusive pass – retry if not

 AND W6, W5, #0xFFFF
 CMP W6, W5, LSR #16 ; is the current ticket ours
 B.EQ block_start
Loop2
 LDARH W6, [X1] ; read current value
 CMP W6, W5, LSR #16 ; compare it with the our allocated ticket
 B.NE Loop2 ; retry (spin) if it isn’t the same
block_start

Releasing the ticket lock simply involves incrementing the current ticket number, which is assumed in this example
to be in R6, and doing a Store-Release:

AArch32

 ADD R6, R6, #1
 STLH R6, [R1]

AArch64

 ADD W6, W6, #1
 STLRH W6, [X1]

K14.3.4 Use of Wait For Event (WFE) and Send Event (SEV) with locks

The Armv8 and later architectures can use the Wait For Event mechanism to minimize the energy cost of polling
variables by putting the PE into a low-power state, suspending execution, until an asynchronous exception or an
explicit event is seen by that PE. In Armv8 and later architectures, the event can be generated as a result of clearing
the global monitor, so removing the need for a DSB barrier or an explicit send event message.

This can be used with simple locks or with ticket locks.

Note

The inclusion of AArch32 PLDW instructions or AArch64 PRFM PST* instructions in these examples is not a functional
requirement, but will improve performance on many implementations. The performance benefit of adding these
instructions will vary between different implementations of the architecture.

K14.3.4.1 Simple lock

The following is an example of lock acquire code using WFE:

AArch32

Px

 PLDW[R1] ; preload into cache in unique state
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14586
ID032224 Non-Confidential

Barrier Litmus Tests
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
Loop
 LDAEX R5, [R1] ; read lock with acquire
 CMP R5, #0 ; check if 0
 WFENE ; sleep if the lock is held
 STREXEQ R5, R0, [R1] ; attempt to store new value
 CMPEQ R5, #0 ; test if store succeeded
 BNE Loop ; retry if not

AArch64

Px

 SEVL ; invalidates the WFE on the first loop iteration
 PRFM PSTL1KEEP, [X1] ; allocate into cache in unique state
Loop
 WFE
 LDAXR W5, [X1] ; read lock with acquire
 CBNZ W5, Loop ; check if 0
 STXR W5, W0, [X1] ; attempt to store new value
 CBNZ W5, Loop ; test if store succeeded and retry if not

 ; loads and stores in the critical region can now be performed

And the following is an example of lock release code:

AArch32

Px

 ; loads and stores in the critical region
 MOV R0, #0
 STL R0, [R1] ; clear the lock

AArch64

Px

 ; loads and stores in the critical region
 STLR WZR, [X1] ; clear the lock

K14.3.4.2 Ticket lock

In the Ticket lock case, the Load-Exclusive instruction can be used to move the monitor into the exclusive state for
the express purpose of creating an event when the monitor changes state:

AArch32

Px

 ; R1 holds 2 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PLDW[R1] ; preload into cache in unique state
Loop1
 LDAEX R5, [R1] ; read current and next
 ADD R3, R5, #0x10000 ; increment the next number
 STREX R6, R3, [R1] ; and update the value
 CMP R6, #0 ; did the exclusive pass
 BNE Loop ; retry if not
 CMP R5, R5, ROR #16 ; is the current ticket ours
 MOV R6, R5
 BEQ block_start
 SEVL
Loop2
 WFE ; wait if there has not been a change to the count since last
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14587
ID032224 Non-Confidential

Barrier Litmus Tests
K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
 ; read
 LDAEXH R6, [R1] ; check the current count
 CMP R6, R5, LSR #16 ; check if it is equal
 BNE Loop2
block_start

AArch64

Px

 ; X1 holds 2 16 bit quantities
 ; the lower halfword holds the current ticket number
 ; the higher halfword holds the next ticket number

 PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop1
 LDAXR W5, [X1] ; read current and next
 ADD W3, W5, #0x10000 ; increment the next number
 STXR W6, W3, [X1] ; and update the value
 CBNZ W6, Loop1 ; did the exclusive pass – retry if not

 AND W6, W5, 0xFFFF
 CMP W6, W5, LSR #16 ; is the current ticket ours
 B.EQ block_start
 SEVL
Loop2
 WFE
 LDAXRH W6, [X1] ; read current value
 CMP W6, W5, LSR #16 ; compare it with our allocated ticket
 B.NE Loop2 ; retry (spin) if it is not the same
block_start
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14588
ID032224 Non-Confidential

Barrier Litmus Tests
K14.4 Using a mailbox to send an interrupt
K14.4 Using a mailbox to send an interrupt

In some message passing systems, it is common for one observer to update memory and then notify a second
observer of the update by sending an interrupt, using a mailbox.

Although a memory access might be made to initiate the sending of the mailbox interrupt, a DSB instruction is
required to ensure the completion of previous memory accesses.

Therefore, the following sequence is required to ensure that P2 observes the updated value:

AArch32

P1

 STR R5, [R1] ; message stored to shared memory location
 DSB ST
 STR R0, [R4] ; R4 contains the address of a mailbox

P2

 ; interrupt service routine
 LDR R5, [R1]

AArch64

P1

 STR W5, [X1] ; message stored to shared memory location
 DSB ST
 STR W0, [X4] ; R4 contains the address of a mailbox

P2

 ; interrupt service routine
 LDR W5, [X1]
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14589
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
K14.5 Cache and TLB maintenance instructions and barriers

The following sections describe the use of barriers with cache and TLB maintenance instructions:

• Data cache maintenance instructions.

• Instruction cache maintenance instructions.

• TLB maintenance instructions and barriers.

K14.5.1 Data cache maintenance instructions

The following sections describe the use of barriers with data cache maintenance instructions:

• Message passing to non-caching observers.

• Multiprocessing message passing to non-caching observers.

• Invalidating DMA buffers, non-functional example.

• Invalidating DMA buffers, functional example with single PE.

• Invalidating DMA buffers, functional example with multiple coherent PEs.

K14.5.1.1 Message passing to non-caching observers

The Armv8 and later architectures require the use of DMB instructions to ensure the ordering of data cache
maintenance instructions and their effects. The Load-Acquire and Store-Release instructions have no effect on
cache maintenance instruction. This means the following message passing approaches can be used when
communicating between caching observers and non-caching observers:

AArch32

P1

 STR R5, [R1] ; updates data (assumed to be in P1 cache)
 DCCMVAC R1 ; cleans cache to point of coherency
 DMB ; ensures effects of the clean will be observed before the
 ; flag is set
 STR R0, [R4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT_ACQ ([R4] == 1) ; waits for the flag (with order)
 LDR R5, [R1] ; reads the data

AArch64

P1

 STR W5, [X1] ; updates data (assumed to be in P1 cache)
 DC CVAC, X1 ; cleans cache to point of coherency
 DMB ISH ; ensures effects of the clean will be observed before the
 ; flag is set
 STR W0, [X4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT_ACQ ([X4] == 1) ; waits for the flag (with order)
 LDR W5, [X1] ; reads the data

In this example, it is required that E1:R5==0x55.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14590
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
K14.5.1.2 Multiprocessing message passing to non-caching observers

The broadcast nature of the cache maintenance instructions combined with properties of barriers, means that the
message passing principle for non-caching observers is:

AArch32

P1

 STR R5, [R1] ; updates data (assumed to be in P1 cache)
 STL R0, [R2] ; sends a flag for P2 (ordered by the store release)

P2

 WAIT ([R2] == 1) ; waits for P1 flag
 DMB ; ensures cache clean is observed after P1 flag is observed
 DCCMVAC R1 ; cleans cache to point of coherency – will clean P1 cache
 DMB ; ensures effects of the clean will be observed before the
 ; flag to E1 is set
 STR R0, [R4] ; sends flag to E1

E1

 WAIT_ACQ ([R4] == 1) ; waits for P2 flag (ordered)
 LDR R5, [R1] ; reads data

AArch64

P1

 STR W5, [X1] ; updates data (assumed to be in P1 cache)
 STLR W0, [X2] ; sends a flag for P2 (ordered)

P2

 WAIT ([X2] == 1) ; waits sfor P1 flag
 DMB SY ; ensure cache clean is observed after P1 flag is observed
 DC CVAC, X1 ; cleans cache to point of coherency, will clean P1 cache
 DMB SY ; ensures effects of the clean will be observed before the
 ; flag to E1 is set
 STR W0, [X4] ; sends flag to E1

E1

 WAIT_ACQ ([X4] == 1) ; waits for P2 flag
 LDR W5, [X1] ; reads data

In this example, it is required that E1:R5==0x55. The clean operation executed by P2 affects the data location in the
P1 cache. The cast-out from the P1 cache is guaranteed to be observed before P2 updates [R4].

Note

The cache maintenance instructions are not ordered by the Load-Acquire and Store-Release instructions.

K14.5.1.3 Invalidating DMA buffers, non-functional example

The basic scheme for communicating with an external observer that is a process that passes data in to a Cacheable
memory region must take account of the architectural requirement that regions with a Normal Cacheable attribute
can be allocated into a cache at any time, for example as a result of speculation. The following example shows this
possibility:

AArch32

P1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14591
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store
 ; is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT_ACQ ([R4]==1) ; waits for a different flag from an external agent
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 STL R0, [R4] ; sends a flag

AArch64

P1

 DC IVAC, X1 ; ensure cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB SY ; ensures cache invalidation is observed before the next store
 ; is observed
 STR W0, [X3] ; sends flag to external agent
 WAIT_ACQ ([X4]==1) ; waits for a different flag from an external agent
 LDR W5, [X1]

E1

 WAIT ([X3] == 1) ; waits for flag
 STR W5, [X1] ; stores new data
 STLR W0, [X4] ; sends a flag

If a speculative access occurs, there is no guarantee that the cache line containing [R1] is not brought back into the
cache after the cache invalidation, but before [R1] is written by E1. Therefore, the result P1:R5=0 is permissible.

K14.5.1.4 Invalidating DMA buffers, functional example with single PE

AArch32

P1

 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store
 ; is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DCIMVAC R1 ; ensures cache discards stale copies before use
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 STL R0, [R4] ; sends a flag

AArch64

P1

 DC IVAC, X1 ; ensures cache is not dirty. A clean operation could be used
 ; but as the DMA will subsequently overwrite this region an
 ; invalidate operation is sufficient and usually more efficient
 DMB SY ; ensures cache invalidation is observed before the next store
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14592
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
 ; is observed
 STR W0, [X3] ; sends flag to external agent
 WAIT ([X4]==1) ; waits for a different flag from an external agent
 DMB SY ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DC IVAC, X1 ; ensures cache discards stale copies before use
 LDR W5, [X1]

E1

 WAIT ([X3] == 1) ; waits for flag
 STR W5, [X1] ; stores new data
 STLR W0, [X4] ; sends a flag

In this example, the result P1:R5 == 0x55 is required. Including a cache invalidation after the store by E1 to [R1] is
observed ensures that the line is fetched from external memory after it has been updated.

K14.5.1.5 Invalidating DMA buffers, functional example with multiple coherent PEs

The broadcasting of cache maintenance instructions, and the use of DMB instructions to ensure their observability,
means that the previous example extends naturally to a multiprocessor system. Typically this requires a transfer of
ownership of the region that the external observer is updating.

AArch32

P0

 (Use data from [R1], potentially using [R1] as scratch space)
 STL R0, [R2] ; signals release of [R1]
 WAIT_ACQ ([R2] == 0) ; waits for new value from DMA
 LDR R5, [R1]

P1

 WAIT ([R2] == 1) ; waits for release of [R1] by P0
 DCIMVAC R1 ; ensures caches are not dirty, an invalidate is sufficient
 DMB
 STR R0, [R3] ; requests new data for [R1]
 WAIT ([R4] == 1) ; waits for new data
 DMB
 DCIMVAC R1 ; ensures caches discard stale copies before use
 DMB
 MOV R0, #0
 STR R0, [R2] ; signals availability of new [R1]

E1

 WAIT ([R3] == 1) ; waits for new data request
 STR R5, [R1] ; sends new [R1]
 DMB [ST]
 STR R0, [R4] ; indicates that new data is available to P1

AArch64

P0

 (Use data from [X1], potentially using [X1] as scratch space)
 STLR W0, [X2] ; signals release of [X1]
 WAIT_ACQ ([X2] == 0) ; waits for new value from DMA
 LDR W5, [X1]

P1

 WAIT ([X2] == 1) ; waits for release of [R1] by P0
 DC IVAC, X1 ; ensures caches are not dirty, an invalidate is sufficient
 DMB SY
 STR W0, [X3] ; requests new data for [R1]
 WAIT ([X4] == 1) ; waits for new data
 DMB SY
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14593
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
 DCIMVAC X1 ; ensures caches discard stale copies before use
 DMB SY
 STR WZR, [X2] ; signals availability of new [R1]

E1

 WAIT ([X3] == 1) ; waits for new data request
 STR W5, [X1] ; sends new [R1]
 STR W0, [X4] ; indicates new data is available to P1

In this example, the result P0:R5 == 0x55 is required. The DMB issued by P1 after the first data cache invalidation
ensures that effect of the cache invalidation on P0 is seen by E1 before the store by E1 to [R1]. The DMB issued by
P1 after the second data cache invalidation ensures that its effects are seen before the store of 0 to the semaphore
location in [R2].

K14.5.2 Instruction cache maintenance instructions

The following sections describe the use of barriers with instruction cache maintenance instructions:

• Ensuring the visibility of updates to instructions for a uniprocessor.

• Ensuring the visibility of updates to instructions for a multiprocessor.

K14.5.2.1 Ensuring the visibility of updates to instructions for a uniprocessor

On a single PE, the agent that causes instruction fetches, or instruction cache linefills, is a separate memory system
observer from the agent that causes data accesses. Therefore, any operations to invalidate the instruction cache can
rely only on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

Also, instruction cache maintenance instructions are only guaranteed to complete after the execution of a DSB, and
an ISB is required to discard any instructions that might have been prefetched before the instruction cache
invalidation completed. Therefore, on a uniprocessor, to ensure the visibility of an update to code and to branch to
it, the following sequence is required:

AArch32

P1

 STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
 DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB
 ICIMVAU R1 ; ensures instruction cache/branch predictor discards stale data
 BPIMVA R1
 DSB ; ensures completion of the invalidation
 ISB ; ensures instruction fetch path sees new instruction cache state
 BX R1

In AArch64 state, the branch predictor maintenance is not required.

AArch64

P1

 STR W11, [X1] ; W11 contains a new instruction to be stored in program memory
 DC CVAU, X1 ; clean to PoU makes the new instruction visible to instruction cache
 DSB ISH
 IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
 DSB ISH ; ensures completion of the invalidation
 ISB ; ensures instruction fetch path sees new instruction cache state
 BR X1

Note

Where the changes to the instructions span multiple cache lines, then the data cache and instruction cache
maintenance instructions can be duplicated to cover each of the lines to be cleaned and to be invalidated.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14594
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
K14.5.2.2 Ensuring the visibility of updates to instructions for a multiprocessor

The Armv8 and later architectures require a PE that executes an instruction cache maintenance instruction to
execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the cache
maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

An ISB is not broadcast, and so does not affect other PEs. This means that any other PE must perform its own ISB
synchronization after it knows that the update is visible, if it is necessary to ensure its synchronization with the
update. The following example shows how this might be done:

AArch32

P1

 STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
 DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB ; ensures completion of the clean on all PEs
 ICIMVAU R1 ; ensures instruction cache discards stale data
 BPIMVA R ; ensures branch predictor discards stale data
 DSB ; ensures completion of the instruction cache and branch predictor
 ; invalidation on all PEs
 STR R0, [R2] ; sets flag to signal completion
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signalling completion
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

AArch64

P1

 STR X11, [X1] ; X11 contains a new instruction to be stored in program memory
 DC CVAU, X1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB ISH ; ensures completion of the clean on all PEs
 IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
 DSB ISH ; ensures completion of the instruction cache/branch predictor
 ; invalidation on all PEs
 STR W0, [X2] ; sets flag to signal completion
 ISB ; synchronizes context on this PE
 BR R1 ; branches to new code

P2-Px

 WAIT ([X2] == 1) ; waits for flag signalling completion
 ISB ; synchronizes context on this PE
 BR X1 ; branches to new code

K14.5.2.2.1 Nonfunctional approach

The following sequence does not have the same effect, because a DSB is not required to complete the instruction
cache maintenance instructions that other PEs issue:

AArch32

P1

 STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
 DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
 DSB ; ensures completion of the clean on all PEs
 ICIMVAU R1 ; ensures instruction cache discards stale data
 BPIMVA R1 : ensures branch predictor discards stale data
 DMB ; ensures ordering of the store after the invalidation
 ; DOES NOT guarantee completion of instruction cache/branch
 ; predictor on other PEs
 STR R0, [R2] ; sets flag to signal completion
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14595
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
 DSB ; ensures completion of the invalidation on all PEs
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signalling completion
 DSB ; this DSB does not guarantee completion of P1
 ; ICIMVAU/BPIMVA
 ISB
 BX R1

AArch64

P1

 STR W11, [X1] ; W11 contains a new instruction to be stored in program memory
 DC CVAU, X1 ; clean to PoU makes the new instruction visible to instruction cache
 DSB ISH ; ensures completion of the clean on all PEs
 IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
 DMB ISH ; ensures ordering of the store after the invalidation
 ; DOES NOT guarantee completion of instruction cache/branch
 ; predictor on other PEs
 STR W0, [X2] ; sets flag to signal completion
 DSB ISH ; ensures completion of the invalidation on all PEs
 ISB ; synchronizes context on this PE
 BR X1 ; branches to new code

P2-Px

 WAIT ([X2] == 1) ; waits for flag signalling completion
 DSB ISH ; this DSB does not guarantee completion of P1
 ; ICIMVAU/BPIMVA
 ISB
 BR X1

In this example, P2…Px might not see the updated region of code at R1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14596
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
K14.5.3 TLB maintenance instructions and barriers

The following sections describe the use of barriers with TLB maintenance instructions:

• Ensuring the visibility of updates to translation tables for a uniprocessor.

• Ensuring the visibility of updates to translation tables for a multiprocessor.

• Paging memory in and out.

• Using break-before-make when updating translation table entries.

K14.5.3.1 Ensuring the visibility of updates to translation tables for a uniprocessor

On a single PE, the agent that causes translation table walks is a separate memory system observer from the agent
that causes data accesses. Therefore, any operations to invalidate the TLB can only rely on seeing updates to
memory that are complete. This must be ensured by the use of a DSB instruction.

The Armv8 and later architectures require that translation table walks look in the data or unified caches at L1, so
such systems do not require data cache cleaning.

After the translation tables update, any old copies of entries that might be held in the TLBs must be invalidated. This
operation is only guaranteed to affect all instructions, including instruction fetches and data accesses, after the
execution of a DSB and an ISB. Therefore, the code for updating a translation table entry is:

AArch32

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVA R10
 BPIALL
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; synchronises context on this PE
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by this observer using
 ; the old mapping have been completed

AArch64

P1

 STR X11, [X1] ; updates the translation table entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1, X10 ; assumes we are in the EL1
 DSB ISH ; ensures completion of the TLB invalidation
 ISB ; synchronise context on this PE
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by this observer using
 ; the old mapping have been completed

Importantly, by the end of this sequence, all accesses that used the old translation table mappings have been
observed by all observers.

An example of this is where a translation table entry is marked as invalid. Such a system must provide a mechanism
to ensure that any access to a region of memory being marked as invalid has completed before any action is taken
as a result of the region being marked as invalid.

K14.5.3.2 Ensuring the visibility of updates to translation tables for a multiprocessor

The same code sequence can be used in a multiprocessing system. The Armv8 and later architectures require a PE
that executes a TLB maintenance instruction to execute a DSB instruction to ensure completion of the maintenance
operation. This ensures that the TLB maintenance instruction is complete on all PEs in the Inner Shareable
shareability domain.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14597
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
The completion of a DSB that completes a TLB maintenance instruction ensures that all accesses that used the old
mapping have completed.

AArch32

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10
 BPIALLIS
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; Note ISB is not broadcast and must be executed locally
 ; on other PEs
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by any observers affected by the broadcast TLBIMVAIS operation using
 ; the old mapping have been completed

AArch64

P1

 STR X11, [X1] ; updates the translation table entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1IS, X10
 DSB ISH ; ensures completion of the TLB invalidation
 ISB ; Note ISB is not broadcast and must be executed locally
 ; on other PEs
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by any observers affected by the broadcast TLBIMVAIS operation using
 ; the old mapping have been completed

The completion of the TLB maintenance instruction is guaranteed only by the execution of a DSB by the observer
that performed the TLB maintenance instruction. The execution of a DSB by a different observer does not have this
effect, even if the DSB is known to be executed after the TLB maintenance instruction is observed by that different
observer.

K14.5.3.3 Paging memory in and out

In a multiprocessor system there is a requirement to ensure the visibility of translation table updates when paging
regions of memory into RAM from a backing store. This might, or might not, also involve paging existing locations
in memory from RAM to a backing store. In such situations, the operating system selects one or more pages of
memory that might be in use but are suitable to discard, with or without copying to a backing store, depending on
whether the region of memory is writable. Disabling the translation table mappings for a page, and ensuring the
visibility of that update to the translation tables, prevents agents accessing the page.

For this reason, it is important that the DSB that is performed after the TLB invalidation ensures that no other updates
to memory using those mappings are possible.

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory,
is as follows:

AArch32

P1

 STR R11, [R1] ; updates the translation table for the region being paged out
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10 ; invalidates the old entry
 DSB ; ensures completion of the invalidation on all PEs
 ISB ; ensures visibility of the invalidation
 BL SaveMemoryPageToBackingStore
 BL LoadMemoryFromBackingStore
 DSB ; ensures completion of the memory transfer (this could be part of
 ; LoadMemoryFromBackingStore)
 ICIALLUIS ; also invalidates the branch predictor
 DSB ; ensures completion of the instruction cache
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14598
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
 ; and branch predictor invalidation
 STR R9, [R1] ; creates a new translation table entry with a new mapping
 DSB ; ensures visibility of the new translation table mapping
 ISB ; ensures synchronisation of this instruction stream

AArch64

P1

 STR X11, [X1] ; updates the translation table for the region being paged out
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1IS, X10 ; invalidates the old entry
 DSB ISH ; ensures completion of the invalidation on all PEs
 ISB ; ensures visibility of the invalidation
 BL SaveMemoryPageToBackingStore
 BL LoadMemoryFromBackingStore
 DSB ISH ; ensures completion of the memory transfer (this could be part of
 ; LoadMemoryFromBackingStore)
 IC IALLUIS ; also invalidates the branch predictor
 DSB ISH ; ensures completion of the instruction cache
 ; and branch predictor invalidation
 STR X9, [X1] ; creates a new translation table entry with a new mapping
 DSB ISH ; ensures visibility of the new translation table mapping
 ISB ; ensures synchronisation of this instruction stream

This example assumes the memory copies are performed by an observer that is coherent with the caches of PE P1.
This observer might be P1 itself, using a specific paging mapping. For clarity, the example omits the functional
descriptions of SaveMemoryPageToBackingStore and LoadMemoryFromBackingStore. LoadMemoryFromBackingStore is
required to ensure that the memory updates that it makes are visible to instruction fetches.

In this example, the use of ICIALLUIS in AArch32 state and IC IALLUIS in AArch64 state to invalidate the entire
instruction cache is a simplification that might not be optimal for performance. An alternative approach involves
invalidating all of the lines in the caches using ICIMVAU in AArch32 state and IC IVAU operations in AArch64
state. This invalidation must be done when the mapping used for the ICIMVAU and IC IVAU operations is valid
but not executable.

K14.5.3.4 Using break-before-make when updating translation table entries

The Arm Architecture requires that reads to the same location are observed in order, and since application level
software relies on this behavior, the operating system needs to maintain this illusion when it is changing a virtual to
physical address mapping for a location, as is the case with copy on write or other memory management techniques.
This illusion can be maintained provided that the software uses a break-before-make sequence when updating
translation table entries whenever multiple threads of execution can use the same translation tables and the change
to the translation entries involves any of:

• Changing the memory type.

• Changing the cacheability attributes

• Changing the output address (OA), if the OA of at least one of the old translation table entry and the new
translation table entry is writable.

The architecture requires use of a break-before make sequence in these situations, see Using break-before-make
when updating translation table entries for more information. However, if software did not use a break-before-make
approach, an implementation might give a result that would occur if the two reads to the same virtual address did
not occur in program order. An example of such an occurrence would be an implementation of copy-on-write, where
one PE is performing two reads to the same virtual address at the same time as a second PE, running code associated
with the operating system, is copying the data from one physical location that is mapped to by that virtual address,
where the page was mapped as read-only, to a different physical location which will be mapped as read/write.

If the operating system changed the address mapping without going through an invalid entry, then it would be
possible for a third PE to perform a write to the location that would be seen by the first load by the first PE, and not
seen by the second load by the same PE.

The required break-before-make code sequence in this case is:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14599
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
AArch32

P1

 ; R1, R2 contain an invalid translation table entry (that is, one with bit[0] == 0)
 ; R3 contains the address of the translation table entry
 ; R4 contains the Virtual Address and ASID of the VA being remapped
 ; R5, R6 contain the new valid translation table entry
 STRD R1, R2, [R3] ; stores invalid entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBIMVAIS R4 ; invalidates the old entry
 DSB ISH ; ensures completion of the invalidation on all PEs
 ICIALLUIS ; also invalidates the branch predictor
 STRD R5, R6, [R3] ; store new mapping
 DSB ISH ; ensures visibility of the update to translation table walks
 ISB ; ensures synchronisation of this instruction stream

Note

This example shows an update to an entry in a translation table that is using the long-descriptor format.

AArch64

P1

 ; X1 contains an invalid translation table entry (that is, one with bit[0] == 0)
 ; X2 contains the address of the translation table entry
 ; X3 contains the Virtual Address and ASID of the VA being remapped
 ; X4 contains the new valid translation table entry
 STR X1, [X2] ; stores invalid entry
 DSB ISH ; ensures visibility of the update to translation table walks
 TLBI VAE1IS, X3 ; invalidates the old entry
 DSB ISH ; ensures completion of the invalidation on all PEs
 IC IALLUIS ; also invalidates the branch predictor
 STR X4, [X2] ; store new mapping
 DSB ISH ; ensures visibility of the update to translation table walks
 ISB ; ensures synchronisation of this instruction stream

If this sequence is correctly followed, then the architecture guarantees that the loads to a virtual address being
remapped will be seen in the correct order.

The instruction cache maintenance is only required if the mapping from input address to output address has been
changed as part of the change of the translation table entries, and the memory being moved is executable. In this
example, the use of ICIALLUIS in AArch32 state and IC IALLUIS in AArch64 state to invalidate the entire instruction
cache is a simplification that might not be optimal for performance. An alternative approach involves invalidating
all of the lines in the caches using ICIMVAU in AArch32 state, and IC IVAU in AArch64 state. This invalidation must
be done when the mapping used for the ICIMVAU and IC IVAU operations is valid but not executable.

K14.5.4 Ordering of Memory-mapped device control with payloads

With a Memory-mapped peripheral, such as a DMA, which can also access memory for its own use, it is common
to have control or status registers which are Memory-mapped. These registers need to be accessed in an ordered
manner with respect to the data that the Memory-mapped peripheral is handling.

Two simple examples of this are:

• When a processing element is writing a buffer of data, and then writing to a control register in the DMA
peripheral to start that peripheral to access the buffer of data.

• When a DMA peripheral has written to a buffer of data in memory, and the processing element is reading a
status register to determine that the DMA transfer has completed, and then is reading the data.

For the case of the processing element writing a buffer of data, before starting the DMA peripheral, the ordering
requirements between the stores to the data buffer and the stores to the Memory-mapped a to the DMA peripheral
can be met by the insertion of a DSB <domain> instruction between these sets of accesses as this ensures the global
observation of the stores before the DMA is started. this is shown by the following code:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14600
ID032224 Non-Confidential

Barrier Litmus Tests
K14.5 Cache and TLB maintenance instructions and barriers
AArch32

P1

 STR R5, [R2] ; data written to the data buffer
 DSB
 STR R0, [R4] ; R4 contains the address of the DMA control register

AArch64

P1

 STR W5, [X2] ; data written to the data buffer
 DSB <domain>
 STR W0, [X4] ; X4 contains the address of the DMA control register

For the case of DMA peripheral writing the data buffer and then setting a status register when those stores are
complete (and so globally observed) and then having this status register polled by the processing element before the
processing element reads the data buffer, the processing element must insert a DSB <domain> between the load that
reads the status register, and the read of the buffer. A DMB, or load-acquire, is not sufficient as this problem is not
solely concerned with observation order, since the polling read is actually a read of a status register at a Completer,
not the polling a data value that has been written by an observer.

For this case, the code is therefore:

AArch32

P1

 WAIT ([R4] == 1) ; R4 contains the address of the status register,
 ; and the value '1' indicates completion of the DMA transfer
 DSB
 LDR R5, [R2] ; reads data from the data buffer

AArch64

P1

 WAIT ([X4] == 1) ; X4 contains the address of the status register,
 ; and the value '1' indicates completion of the DMA transfer
 DSB <domain>
 LDR W5, [X2] ; reads data from the data buffer
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14601
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers

The following sections describe the Armv7 compatible approaches for ordering, using DMB and DSB barriers:

• Simple ordering and barrier cases.

• Load-Exclusive, Store-Exclusive and barriers.

• Using a mailbox to send an interrupt.

• Cache and TLB maintenance instructions and barriers.

K14.6.1 Simple ordering and barrier cases

Arm implements a weakly consistent memory model for Normal memory. In general terms, this means that the order
of memory accesses observed by other observers might not be the order that appears in the program, for either loads
or stores.

This section includes examples of this.

K14.6.1.1 Simple weakly consistent ordering example

P1

 STR R5, [R1]
 LDR R6, [R2]

P2

 STR R6, [R2]
 LDR R5, [R1]

In the absence of barriers, the result of P1: R6=0, P2: R5=0 is permissible.

K14.6.1.2 Message passing

The following sections describe:

• Weakly-ordered message passing problem.

• Message passing with multiple observers.

K14.6.1.2.1 Weakly-ordered message passing problem

P1

 STR R5, [R1] ; sets new data
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1) ; waits on flag
 LDR R5, [R1] ; reads new data

In the absence of barriers, an end result of P2: R5=0 is permissible.

K14.6.1.2.2 Resolving by the addition of barriers

The addition of barriers, to ensure the observed order of the reads and the writes, ensures that data is transferred so
that the result P2:R5==0x55 is guaranteed, as follows:

P1

 STR R5, [R1] ; sets new data
 DMB [ST] ; ensures all observers observe data before the flag
 STR R0, [R2] ; sends flag indicating data ready
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14602
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
P2

 WAIT([R2]==1) ; waits on flag
 DMB ; ensures that the load of data is after the flag has been observed
 LDR R5, [R1]

K14.6.1.2.3 Resolving by the use of barriers and address dependency

There is a rule within the Arm architecture that:

• Where the value returned by a read is used for computation of the virtual address of a subsequent read or
write, then these two memory accesses are observed in program order.

Where the value returned by a read is used for computation of the virtual address of a subsequent read or
write, this is called an address dependency. An address dependency exists even if the value returned by the
first read has no effect on the virtual address. This might occur if the value returned is masked off before it
is used, or if it confirms a predicted address value that it might have changed.

This restriction applies only when the data value returned by a read is used as a data value to calculate the
address of a subsequent read or write. It does not apply if the data value returned by a read determines the
condition flags values, and the values of the flags are used for condition code evaluation to determine the
address of a subsequent read, either through conditional execution or the evaluation of a branch. This is called
a control dependency.

Where both a control and address dependency exist, the ordering behavior is consistent with the address
dependency.

Table K14-1 shows examples of address dependencies, control dependencies, and an address and control
dependency.

This means that the data transfer example of Weakly-ordered message passing problem can also be satisfied as
shown in the following example:

P1

 STR R5, [R1] ; sets new data
 DMB [ST] ; ensures all observers observe data before the flag
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

The load of R5 by P2 is ordered with respect to the load from [R2] because there is an address dependency using
R12. P1 uses a DMB to ensure that P2 does not observe the write of [R2] before the write of [R1].

Table K14-1 Dependency examples

Address dependency Control dependency Address and control dependencya

(a) (b) (c) (d) (e)

LDR r1, [r0] LDR r1, [r0] LDR r1, [r0] LDR r1, [r0] LDR r1, [r0]

LDR r2, [r1] AND r1, r1, #0 CMP r1, #55 CMP r1, #55 CMP r1, #0

LDR r2, [r3, r1] LDRNE r2, [r3] MOVNE r4, #22 LDRNE r2, [r1]

LDR r2, [r3, r4]

a. The address dependency takes priority.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14603
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
K14.6.1.2.4 Message passing with multiple observers

Where the ordering of Normal memory accesses is not resolved by the use of barriers or dependencies, then different
observers might observe the accesses in a different order, as shown in the following example:

P1

 STR R5, [R1] ; sets new data
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

P3

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load is address depndent on R12
 ; and so is ordered after the flag has been seen

In this case, it is permissible for P2:R5 and P3:R5 to contain different values, because there is no order guaranteed
between the two stores performed by P1.

K14.6.1.2.5 Resolving by the addition of barriers

The addition of a barrier by P1, as shown in the following example, ensures the observed order of the writes,
transferring data so that P2:R5 and P3:R5 both contain the value 0x55:

P1

 STR R5, [R1] ; sets new data
 DMB [ST] ; ensures all observers observe data before the flag
 STR R0, [R2] ; sends flag indicating data ready

P2

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

P3

 WAIT([R2]==1)
 AND R12, R12, #0 ; R12 is the destination of LDR in WAIT macro
 LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

K14.6.1.3 Address dependency with object construction

When accessing an object-oriented data structure, the address dependency rule means that barriers are not required,
even when initializing the object:

P1

 STR R5, [R1, #offset] ; sets new data in a field
 DMB [ST] ; ensures all observers observe data before base address is updated
 STR R1, [R2] ; updates base address

P2

 LDR R1, [R2] ; reads for base address
 CMP R1, #0 ; checks if it is valid
 BEQ null_trap
 LDR R5, [R1, #offset] ; uses base address to read field
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14604
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
If the null_trap is not taken, it is required that P2:R5==0x55. This avoids P2 observing a partially constructed object
from P1. Significantly, P2 does not require a barrier to ensure this behavior.

P1 requires a barrier to ensure the observed order of the writes by P1. In general, the impact of requiring a barrier
during the construction phase is much less than the impact of requiring a barrier for every read access.

K14.6.1.4 Posting a store before polling for acknowledgment

In the case where an observer stores to a location, and then polls for an acknowledge from a different observer, the
weak ordering of the memory model can lead to a deadlock, as the following example shows:

P1

 STR R0, [R2]
 WAIT ([R3]==1)

P2

 WAIT ([R2]==1)
 STR R0, [R3]

In Armv7 implementations that do not include the Multiprocessing Extensions, then this can deadlock because P2
might not observe the store by P1 in finite time. For Armv7 implementations with the Multiprocessing Extensions,
for Armv8, and for later architectures, this is not an issue as all stores must be observed by all observers within their
shareability domain in finite time.

The addition of a DMB instruction prevents this deadlock in Armv7 implementations that do not include the
Multiprocessing Extensions:

P1

 STR R0, [R2]
 DMB
 WAIT ([R3]==1)

P2

 WAIT ([R2]==1)
 STR R0, [R3]

The DMB executed by P1 ensures that P2 observes the store by P1 before it observes the load by P1. This ensures a
timely completion.

The following example is a variant of the previous example, where the two observers poll the same memory
location:

P1

 STR R0, [R2]
 WAIT ([R2]==2)

P2

 WAIT ([R2]==1)
 LDR R0, [R2]
 ADD R0, R0, #1
 STR R0, [R2]

In this example, the same deadlock can occur in Armv7 implementations that do not include the Multiprocessing
Extensions, because the architecture permits P1 to read the result of its own store to [R2] early, and continue doing
so for an indefinite amount of time. The addition of a DMB instruction prevents this deadlock:

P1

 STR R0, [R2]
 DMB
 WAIT ([R2]==2)
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14605
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
P2

 WAIT ([R2]==1)
 LDR R0, [R2]
 ADD R0, R0, #1
 STR R0, [R2]

K14.6.1.5 WFE and WFI and barriers

The Wait For Event and Wait For Interrupt instructions permit the PE to suspend execution and enter a low-power
state. A DSB barrier instruction is required if it is necessary to ensure that memory accesses made before the WFI or
WFE are visible to other observers, unless some other mechanism has ensured this visibility. Examples of other
mechanism that would guarantee the required visibility are the DMB described in Posting a store before polling for
acknowledgment, or a dependency on a load.

The following example requires the DSB to ensure that the store is visible:

P1

 STR R0, [R2]
 DSB
Loop
 WFI
 B Loop

However, if the example in Posting a store before polling for acknowledgment is extended to include a WFE, there
is no risk of a deadlock. The extended example is:

P1

 STR R0, [R2]
 DMB
Loop
 LDR R12, [R3]
 CMP R12, #1
 WFENE
 BNE Loop

P2

 WAIT ([R2]==1)
 STR R0, [R3]
 DSB
 SEV

In this example:

• The DMB by P1 ensures that P2 observes the store by P1 before it observes the load by P1.

• The dependency of the WFE on the result of the load by P1 means that this load must complete before P1
executes the WFE.

For more information about SEV, see Use of Wait For Event (WFE) and Send Event (SEV) with locks.

K14.6.2 Load-Exclusive, Store-Exclusive and barriers

The Load-Exclusive and Store-Exclusive instructions, described in Synchronization and semaphores, are
predictable only with Normal memory. These instructions do not have any implicit barrier functionality. Therefore,
any use of these instructions to implement locks of any type requires the addition of explicit barriers.

K14.6.2.1 Acquiring a lock

A common use of Load-Exclusive and Store-Exclusive instructions is to claim a lock to permit entry into a critical
region. This is typically performed by testing a lock variable that indicates 0 for a free lock and some other value,
commonly 1 or an identifier of the process holding the lock, for a taken lock.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14606
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
The lack of implicit barriers in the Load-Exclusive and Store-Exclusive instructions means that the mechanism
requires a DMB instruction between acquiring a lock and making the first access to the critical region, to ensure that
all observers observe the successful claim of the lock before they observe any subsequent loads or stores to the
region. This example shows Px acquiring a lock:

Px

Loop
 LDREX R5, [R1] ; reads lock
 CMP R5, #0 ; checks if 0
 STREXEQ R5, R0, [R1] ; attempts to store new value
 CMPEQ R5, #0 ; tests if store succeeded
 BNE Loop ; retries if not
 DMB ; ensures that all subsequent accesses are observed after the
 ; gaining of the lock is observed
 ; loads and stores in the critical region can now be performed

K14.6.2.2 Releasing a lock

The converse operation of releasing a lock does not require the use of Load-Exclusive and Store-Exclusive
instructions, because only a single observer is able to write to the lock. However, often it is necessary for any
observer to observe any memory updates, or any values that are loaded into memory, before they observe the release
of the lock. Therefore, a DMB usually precedes the lock release, as the following example shows.

Px

 ; loads and stores in the critical region
 MOV R0, #0
 DMB ; ensures all previous accesses are observed before the lock is cleared
 STR R0, [R1] ; clears the lock

K14.6.2.3 Use of Wait For Event (WFE) and Send Event (SEV) with locks

The Armv8 and later architectures include Wait For Event and Send Event instructions, that can be executed to
reduce the required number of iterations of a lock-acquire loop, or spinlock, to reduce power. The basic mechanism
involves an observer that is in a spinlock executing a WFE instruction that suspends execution on that observer until
an asynchronous exception or an explicit event, sent by some other observer using the SEV instruction, is seen by the
suspended observer. An observer that holds the lock executes an SEV instruction to send an event after it has released
the lock.

The Event signal is a non-memory communication, and therefore the memory update that releases the lock must be
observable by all observers before the SEV instruction is executed and the event is sent. This requires the use of DSB
instruction, rather than DMB.

Therefore, the following is an example of lock acquire code using WFE:

Px

Loop
 LDREX R5, [R1] ; reads lock
 CMP R5, #0 ; checks if 0
 WFENE ; sleeps if the lock is held
 STREXEQ R5, R0, [R1] ; attempts to store new value
 CMPEQ R5, #0 ; tests if store succeeded
 BNE Loop ; retries if not
 DMB ; ensures that all subsequent accesses are observed after the
 ; gaining of the lock is observed
 ; loads and stores in the critical region can now be performed

And the following is an example of lock release code using SEV:

Px

 ; loads and stores in the critical region
 MOV R0, #0
 DMB ; ensures all previous accesses are observed before the lock is cleared
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14607
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 STR R0, [R1] ; clears the lock
 DSB ; ensures completion of the store that cleared the lock before
 ; sending the event
 SEV

K14.6.3 Using a mailbox to send an interrupt

In some message passing systems, it is common for one observer to update memory and then notify a second
observer of the update by sending an interrupt, using a mailbox.

Although a memory access might be made to initiate the sending of the mailbox interrupt, a DSB instruction is
required to ensure the completion of previous memory accesses.

Therefore, the following sequence is required to ensure that P2 observes the updated value:

P1

 STR R5, [R1] ; message stored to shared memory location
 DSB [ST]
 STR R1, [R4] ; R4 contains the address of a mailbox

P2

 ; interrupt service routine
 LDR R5, [R1]

Note

The DSB executed by P1 ensures global observation of the store to [R1].The interrupt timing ensures that the code
executed by P2 is executed after the global observation of the update to [R1], and therefore must see this update. In
some implementations, this might be implemented by requiring that interrupts flush non-coherent buffers that hold
speculatively loaded data.

K14.6.4 Cache and TLB maintenance instructions and barriers

The following sections describe the use of barriers with cache and TLB maintenance instructions:

• Data cache maintenance instructions.

• Instruction cache maintenance instructions.

• TLB maintenance instructions and barriers.

K14.6.4.1 Data cache maintenance instructions

The following sections describe the use of barriers with data cache maintenance instructions:

• Message passing to non-caching observers.

• Multiprocessing message passing to non-caching observers.

• Invalidating DMA buffers, non-functional example.

• Invalidating DMA buffers, functional example with single PE.

• Invalidating DMA buffers, functional example with multiple coherent PEs.

K14.6.4.1.1 Message passing to non-caching observers

The Armv8 and later architectures require the use of DMB instructions to ensure the ordering of data cache
maintenance instructions and their effects. This means the following message passing approaches can be used when
communicating between caching observers and non-caching observers:

P1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14608
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 STR R5, [R1] ; updates data (assumed to be in P1's cache)
 DCCMVAC R1 ; cleans cache to point of coherency
 DMB ; ensures effects of the clean will be observed before the flag is set
 STR R0, [R4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT ([R4] == 1) ; waits for the flag
 DMB ; ensures that flag has been seen before reading data
 LDR R5, [R1] ; reads the data

In this example, it is required that E1:R5==0x55.

K14.6.4.1.2 Multiprocessing message passing to non-caching observers

The broadcast nature of the cache maintenance instructions in Armv8 and later architectures, and in Armv7
implementations that include the Multiprocessing Extensions, combined with properties of barriers, means that the
message passing principle for non-caching observers is:

P1

 STR R5, [R1] ; updates data (assumed to be in P1's cache)
 DMB [ST] ; ensures new data is observed before the flag to P2 is set
 STR R0, [R2] ; sends flag to P2

P2

 WAIT ([R2] == 1) ; waits for flag from P1
 DMB ; ensures cache clean is observed after P1 flag is observed
 DCCMVAC R1 ; cleans cache to point of coherency - this cleans the cache of P1
 DMB ; ensures effects of the clean are observed before the flag to E1 is set
 STR R0, [R4] ; sends flag to E1

E1

 WAIT ([R4] == 1) ; waits for flag from P2
 DMB ; ensures that flag has been observed before reading the data
 LDR R5, [R1] ; reads the data

In this example, it is required that E1:R5==0x55. The clean operation executed by P2 affects the data location in the
P1 cache. The cast-out from the P1 cache is guaranteed to be observed before P2 updates [R4].

K14.6.4.1.3 Invalidating DMA buffers, non-functional example

The basic scheme for communicating with an external observer that is a process that passes data in to a Cacheable
memory region must take account of the architectural requirement that regions with a Normal Cacheable attribute
can be allocated into a cache at any time, for example as a result of speculation. The following example shows this
possibility:

P1

 DCIMVAC R1 ; ensures caches are not dirty. A clean operation could be
 ; used but the DMA overwrites this region so an invalidate operation
 ; is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; observes flag from external agent before reading new data. However [R1]
 ; could have been brought into cache earlier
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 DMB
 STR R0, [R4] ; sends a flag
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14609
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
If a speculative access occurs, there is no guarantee that the cache line containing [R1] is not brought back into the
cache after the cache invalidation, but before [R1] is written by E1. Therefore, the result P1:R5=0 is permissible.

K14.6.4.1.4 Invalidating DMA buffers, functional example with single PE

P1

 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be
 ; used but the DMA overwrites this region so an invalidate operation
 ; is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store is observed
 STR R0, [R3] ; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DCIMVAC R1 ; ensures cache discards stale copies before use
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 DMB [ST]
 STR R0, [R4] ; sends a flag

In this example, the result P1:R5 == 0x55 is required. Including a cache invalidation after the store by E1 to [R1] is
observed ensures that the line is fetched from external memory after it has been updated.

K14.6.4.1.5 Invalidating DMA buffers, functional example with multiple coherent PEs

The broadcasting of cache maintenance instructions, and the use of DMB instructions to ensure their observability,
means that the previous example extends naturally to a multiprocessor system. Typically this requires a transfer of
ownership of the region that the external observer is updating.

P0

 (Use data from [R1], potentially using [R1] as scratch space)
 DMB
 STR R0, [R2] ; signals release of [R1]
 WAIT ([R2] == 0) ; waits for new value from DMA
 DMB
 LDR R5, [R1]

P1

 WAIT ([R2] == 1) ; waits for release of [R1] by P0
 DCIMVAC R1 ; ensures caches are not dirty, invalidate is sufficient
 DMB
 STR R0, [R3] ; requests new data for [R1]
 WAIT ([R4] == 1) ; waits for new data
 DMB
 DCIMVAC R1 ; ensures caches discard stale copies before use
 DMB
 MOV R0, #0
 STR R0, [R2] ; signals availability of new [R1]

E1

 WAIT ([R3] == 1) ; waits for new data request
 STR R5, [R1] ; sends new [R1]
 DMB [ST]
 STR R0, [R4] ; indicates new data available to P1

In this example, the result P0:R5 == 0x55 is required. The DMB issued by P1 after the first data cache invalidation
ensures that effect of the cache invalidation on P0 is seen by E1 before the store by E1 to [R1]. The DMB issued by
P1 after the second data cache invalidation ensures that its effects are seen before the store of 0 to the semaphore
location in [R2].
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14610
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
K14.6.4.2 Instruction cache maintenance instructions

The following sections describe the use of barriers with instruction cache maintenance instructions:

• Ensuring the visibility of updates to instructions for a uniprocessor.

• Ensuring the visibility of updates to instructions for a multiprocessor.

K14.6.4.2.1 Ensuring the visibility of updates to instructions for a uniprocessor

On a single PE, the agent that causes instruction fetches, or instruction cache linefills, is a separate memory system
observer from the agent that causes data accesses. Therefore, any operations to invalidate the instruction cache can
rely only on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

Also, instruction cache maintenance instructions are only guaranteed to complete after the execution of a DSB, and
an ISB is required to discard any instructions that might have been prefetched before the instruction cache
invalidation completed. Therefore, on a uniprocessor, to ensure the visibility of an update to code and to branch to
it, the following sequence is required:

P1

 STR R11, [R1] ; R11 contains a new instruction to store in program memory
 DCCMVAU R1 ; clean to PoU makes new instructions visible to instruction cache
 DSB
 ICIMVAU R1 ; ensures instruction cache and branch predictor discard stale data
 BPIMVA R1
 DSB ; ensures completion of the invalidation
 ISB ; ensures instruction fetch path observes new instruction cache state
 BX R1

K14.6.4.2.2 Ensuring the visibility of updates to instructions for a multiprocessor

Armv8 and later architectures, and an Armv7 implementation that includes the Multiprocessing Extensions, require
a PE that executes an instruction cache maintenance instruction to execute a DSB instruction to ensure completion of
the maintenance operation. This ensures that the cache maintenance instruction is complete on all PEs in the Inner
Shareable shareability domain.

An ISB is not broadcast, and so does not affect other PEs. This means that any other PE must perform its own ISB
synchronization after it knows that the update is visible, if it is necessary to ensure its synchronization with the
update. The following example shows how this might be done:

P1

 STR R11, [R1] ; R11 contains a new instruction to store in program memory
 DCCMVAU R1 ; clean to PoU makes new instructions visible to instruction cache
 DSB ; ensures completion of the clean on all processors
 ICIMVAU R1 ; ensures instruction cache/branch predictor discards stale data
 BPIMVA R1
 DSB ; ensures completion of the instruction cache and branch predictor
 ; invalidation on all PEs
 STR R0, [R2] ; sets flag to signal completion
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signaling completion
 ISB ; synchronizes context on this processor
 BX R1 ; branches to new code

K14.6.4.2.3 Nonfunctional approach

The following sequence does not have the same effect, because a DSB is not required to complete the instruction
cache maintenance instructions that other PEs issue:

P1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14611
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
 STR R11, [R1] ; R11 contains a new instruction to store in program memory
 DCCMVAU R1 ; clean to PoU makes new instructions visible to instruction cache
 DSB ; ensure completion of the clean on all PEs
 ICIMVAU R1 ; ensure instruction cache/branch predictor discards stale data
 BPIMVA R1
 DMB ; ensure ordering of the store after the invalidation
 ; DOES NOT guarantee completion of instruction cache/branch
 ; predictor on other PEs
 STR R0, [R2] ; sets flag to signal completion
 DSB ; ensures completion of the invalidation on all PEs
 ISB ; synchronizes context on this PE
 BX R1 ; branches to new code

P2-Px

 WAIT ([R2] == 1) ; waits for flag signaling completion
 DSB ; this DSB does not guarantee completion of P1's ICIMVAU/BPIMVA
 ISB
 BX R1

In this example, P2…Px might not see the updated region of code at R1.

K14.6.4.3 TLB maintenance instructions and barriers

The following sections describe the use of barriers with TLB maintenance instructions:

• Ensuring the visibility of updates to translation tables for a uniprocessor.

• Ensuring the visibility of updates to translation tables for a multiprocessor.

• Paging memory in and out.

K14.6.4.3.1 Ensuring the visibility of updates to translation tables for a uniprocessor

On a single PE, the agent that causes translation table walks is a separate memory system observer from the agent
that causes data accesses. Therefore, any operations to invalidate the TLB can only rely on seeing updates to
memory that are complete. This must be ensured by the use of a DSB instruction.

In the Armv8 and later architectures, and in an Armv7 implementation that includes the Multiprocessing
Extensions, translation table walks must look in the data or unified caches at L1, so such systems do not require data
cache cleaning.

After the translation tables update, any old copies of entries that might be held in the TLBs must be invalidated. This
operation is only guaranteed to affect all instructions, including instruction fetches and data accesses, after the
execution of a DSB and an ISB. Therefore, the code for updating a translation table entry is:

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVA R10
 BPIALL
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; synchronizes context on this PE
 ;
 ; new translation table entry can be relied upon at this point and all accesses
 ; generated by this observer using the old mapping have been completed

Importantly, by the end of this sequence, all accesses that used the old translation table mappings have been
observed by all observers.

An example of this is where a translation table entry is marked as invalid. Such a system must provide a mechanism
to ensure that any access to a region of memory being marked as invalid has completed before any action is taken
as a result of the region being marked as invalid.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14612
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
K14.6.4.3.2 Ensuring the visibility of updates to translation tables for a multiprocessor

The same code sequence can be used in a multiprocessing system. In the Armv8 and later architectures, and in an
Armv7 implementation that includes the Multiprocessing Extensions, a PE that executes a TLB maintenance
instruction must execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the
TLB maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

The completion of a DSB that completes a TLB maintenance instruction ensures that all accesses that used the old
mapping have completed.

P1

 STR R11, [R1] ; updates the translation table entry
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10
 BPIALLIS
 DSB ; ensures completion of the BP and TLB invalidation
 ISB ; Note ISB is not broadcast and must be executed locally on other PEs
 ;
 ; new translation table entry can be relied upon at this point and all accesses generated by any
 ; observers affected by the broadcast TLBIMVAIS operation using the old mapping have completed

The completion of the TLB maintenance instruction is guaranteed only by the execution of a DSB by the observer
that performed the TLB maintenance instruction. The execution of a DSB by a different observer does not have this
effect, even if the DSB is known to be executed after the TLB maintenance instruction is observed by that different
observer.

K14.6.4.3.3 Paging memory in and out

In a multiprocessor system there is a requirement to ensure the visibility of translation table updates when paging
regions of memory into RAM from a backing store. This might, or might not, also involve paging existing locations
in memory from RAM to a backing store. In such situations, the operating system selects one or more pages of
memory that might be in use but are suitable to discard, with or without copying to a backing store, depending on
whether or not the region of memory is writable. Disabling the translation table mappings for a page, and ensuring
the visibility of that update to the translation tables, prevents agents accessing the page.

For this reason, it is important that the DSB that is performed after the TLB invalidation ensures that no other updates
to memory using those mappings are possible.

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory,
is as follows:

P1

 STR R11, [R1] ; updates the translation table for the region being paged out
 DSB ; ensures visibility of the update to translation table walks
 TLBIMVAIS R10 ; invalidates the old entry
 DSB ; ensures completion of the invalidation on all processors
 ISB ; ensures visibility of the invalidation
 BL SaveMemoryPageToBackingStore
 BL LoadMemoryFromBackingStore
 DSB ; ensures completion of the memory transfer (this could be part of
 ; LoadMemoryFromBackingStore
 ICIALLUIS ; also invalidates the branch predictor

DSB ; ensures completion of the instruction cache
 ; and branch predictor invalidation

 STR R9, [R1] ; creates a new translation table entry with a new mapping
 DSB ; ensures visibility of the new translation table mapping
 ISB ; ensures synchronization of this instruction stream

This example assumes the memory copies are performed by an observer that is coherent with the caches of PE P1.
This observer might be P1 itself, using a specific paging mapping. For clarity, the example omits the functional
descriptions of SaveMemoryPageToBackingStore and LoadMemoryFromBackingStore. LoadMemoryFromBackingStore is
required to ensure that the memory updates that it makes are visible to instruction fetches.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14613
ID032224 Non-Confidential

Barrier Litmus Tests
K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
In this example, the use of ICIALLUIS to invalidate the entire instruction cache is a simplification that might not
be optimal for performance. An alternative approach involves invalidating all of the lines in the caches using
ICIMVAU operations. This invalidation must be done when the mapping used for the ICIMVAU operations is valid
but not executable.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K14-14614
ID032224 Non-Confidential

Appendix K15
Random Number Generation

This appendix provides further information on the generation of random numbers using FEAT_RNG. It contains the
following section:

• Properties of the generated random number.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K15-14615
ID032224 Non-Confidential

Random Number Generation
K15.1 Properties of the generated random number
K15.1 Properties of the generated random number

When FEAT_RNG is implemented, reads of the RNDR and RNDRRS registers return 64-bit random numbers. The
RNDR and RNDRRS implementation should conform to approved standards that are appropriate for the market
requirements.

For example, the NIST SP 800-90 series of documents:

• SP 800-90A Recommendation for Random Number Generation Using Deterministic Random Bit
Generators.

• SP 800-90B Recommendation for the Entropy Sources Used for Random Bit Generation.

• SP 800-90C Recommendation for Random Bit Generator Constructions.

Note

• Since an entropy source can only generate random bits at a limited rate, the random number bits are
commonly collected in an “entropy pool” until needed. An implementation should ensure that lower
privileged software cannot impact the performance of higher privileged software by entirely draining this
“entropy pool”. The refill time cost of the “entropy pool” should be paid for by the persistent caller.

• When FEAT_RNG_TRAP is implemented, reads of the RNDR and RNDRRS registers may be trapped to
EL3. For more information about this trapping behavior, see control fields ID_AA64PFR1_EL1.RNDR_trap
and SCR_EL3.TRNDR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K15-14616
ID032224 Non-Confidential

Appendix K16
Arm Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this manual, and defines some helper
procedures and functions that are used by pseudocode. It contains the following sections:

• About the Arm pseudocode.

• Pseudocode for instruction descriptions.

• Data types.

• Operators.

• Statements and control structures.

• Built-in functions.

• Miscellaneous helper procedures and functions.

• Arm pseudocode definition index.

Note

This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of Arm
pseudocode. This appendix is not complete. Changes are planned for future releases.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14617
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.1 About the Arm pseudocode
K16.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description
of the decoding and operation of all valid instructions. Pseudocode for instruction descriptions gives general
information about this instruction pseudocode, including its limitations.

The following sections describe the Arm pseudocode in detail:

• Data types.

• Operators.

• Statements and control structures.

Built-in functions and Miscellaneous helper procedures and functions describe some built-in functions and
pseudocode helper functions that are used by the pseudocode functions that are described elsewhere in this manual.
Arm pseudocode definition index contains the indexes to the pseudocode.

K16.1.1 General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs.

For more information, see Special statements.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14618
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.2 Pseudocode for instruction descriptions
K16.2 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does,
subject to the limitations described in General limitations of Arm pseudocode and Limitations of the instruction
pseudocode.

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the
instruction. Instruction encoding diagrams and instruction pseudocode gives more information about the
pseudocode provided for each instruction.

K16.2.1 Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some encoding-specific
pseudocode that translates the fields of the encoding into inputs for the common pseudocode of the
instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being described.
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its
start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding
corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction
is CONSTRAINED UNPREDICTABLE. For more information, see SBZ or SBO fields T32 and A32 in instructions.

• A named single bit or a bit in a named multi-bit field. The cond field in bits[31:28] of many A32/T32
instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and the
instruction, and one of the following is true:

• The encoding diagram is not for an A32/T32 instruction.

• The encoding diagram is for an A32/T32 instruction that does not have a cond field in bits[31:28].

• The encoding diagram is for an A32/T32 instruction that has a cond field in bits[31:28], and bits[31:28] of
the instruction are not 0b1111.

In the context of the instruction pseudocode, the execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagram matches. In
that case, abandon this execution model and consult the relevant instruction set chapter instead to find out
how the instruction is to be treated. The bit pattern of such an instruction is usually reserved and UNDEFINED,
though there are some other possibilities. For example, unallocated hint instructions are documented as being
reserved and executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition code check, perform
that check. If the condition code check fails, abandon this execution model and treat the instruction as a NOP.
If there are multiple matching encoding diagrams, either all or none of their corresponding pieces of common
pseudocode start with a condition code check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams independently and in
parallel. Each such piece of encoding-specific pseudocode starts with a bitstring variable for each named bit
or multi-bit field in its corresponding encoding diagram, named the same as the bit or multi-bit field and
initialized with the values of the corresponding bit or bits from the bit pattern of the instruction.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14619
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.2 Pseudocode for instruction descriptions
In a few cases, the encoding diagram contains more than one bit or field with same name. In these cases, the
values of the different instances of those bits or fields must be identical. The encoding-specific pseudocode
contains a special case using the Consistent() function to specify what happens if they are not identical.
Consistent() returns TRUE if all instruction bits or fields with the same name as its argument have the same
value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of pseudocode must
contain a special case that indicates that it does not apply. Discard the results of all such pieces of pseudocode
and their corresponding encoding diagrams.

There is now one remaining piece of pseudocode and its corresponding encoding diagram left to consider.
This pseudocode might also contain a special case, most commonly one indicating that it is CONSTRAINED
UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of the
instruction. If any of them do not match, abandon this execution model and treat the instruction as
CONSTRAINED UNPREDICTABLE, see SBZ or SBO fields T32 and A32 in instructions.

5. Perform the rest of the operation pseudocode for the instruction description that contains the encoding
diagram. That pseudocode starts with all variables set to the values they were left with by the
encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode, if present, performs step 2, and the
EncodingSpecificOperations() call performs steps 3 and 4.

K16.2.2 Limitations of the instruction pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due to the
fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple memory
accesses. For a description of the ordering requirements on memory accesses, see External ordering
constraints.

• Pseudocode does not describe the exact rules when an instruction that generates any of the following fails its
condition code check:

— UNDEFINED instruction.

— Hyp trap.

— Monitor trap.

— Trap to AArch64 exception.

In such cases, the UNDEFINED pseudocode statement or call to the applicable trap function lies inside the if
ConditionPassed() then … structure, either directly or in the EncodingSpecificOperations() function call, and
so the pseudocode indicates that the instruction executes as a NOP. For the exact rules, see:

— Conditional execution of undefined instructions.

— EL2 configurable controls.

— EL3 configurable controls.

— Configurable instruction controls.

• Pseudocode does not describe the exact ordering requirements when a single floating-point instruction
generates more than one floating-point exception and one or more of those floating-point exceptions is
trapped. Combinations of floating-point exceptions describes the exact rules.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14620
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.2 Pseudocode for instruction descriptions
Note

There is no limitation in the case where all the floating-point exceptions are untrapped, because the
pseudocode specifies the same behavior as the cross-referenced section.

• An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result
of the execution of a pseudocode function such as Abort(), or implicitly, for example if an interrupt is taken
during execution of an LDM instruction. If this happens, the pseudocode does not describe the extent to which
the normal behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in
Handling exceptions that are taken to an Exception level using AArch32.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14621
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.3 Data types
K16.3 Data types

This section describes:

• General data type rules.

• Bitstrings.

• Integers.

• Reals.

• Booleans.

• Enumerations.

• Structures.

• Tuples.

• Arrays.

K16.3.1 General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following
types:

• Bitstring.

• Integer.

• Boolean.

• Real.

• Enumeration.

• Tuple.

• Struct.

• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the
variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

K16.3.2 Bitstrings

This section describes the bitstring data type.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14622
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.3 Data types
K16.3.2.1 Syntax

bits(N) The type name of a bitstring of length N.

bit A synonym of bits(1).

K16.3.2.2 Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 0.

Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order
matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are
manipulated in registers, memory locations, and instructions. All other data types are abstract.

K16.3.3 Integers

This section describes the data type for integer numbers.

K16.3.3.1 Syntax

integer The type name for the integer data type.

K16.3.3.2 Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret
those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they have
a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in hexadecimal, it
must be written as -0x80000000.

K16.3.4 Reals

This section describes the data type for real numbers.

K16.3.4.1 Syntax

real The type name for the real data type.

K16.3.4.2 Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14623
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.3 Data types
Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal,
but 0.0 is a real constant literal.

K16.3.5 Booleans

This section describes the Boolean data type.

K16.3.5.1 Syntax

boolean The type name for the Boolean data type.

TRUE or FALSE The two values a Boolean variable can take.

K16.3.5.2 Description

A Boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE
or FALSE.

K16.3.6 Enumerations

This section describes the enumeration data type.

K16.3.6.1 Syntax and examples

enumeration Keyword to defined a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration called Example, which can take on the values Example_One,
Example_Two, Example_Three.

K16.3.6.2 Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its
possible values.

K16.3.7 Structures

This section describes the structure data type.

K16.3.7.1 Syntax and examples

type The keyword used to declare the structure data type.

type ShiftSpec is (bits(2) shift, integer amount)

An example definition for a new structure called ShiftSpec that contains an bitstring member called
shift and a integer member named amount. Structure definitions must not be terminated with a
semicolon.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14624
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.3 Data types
ShiftSpec abc;

A declaration of a variable named abc of type ShiftSpec.

abc.shift

Syntax to refer to the individual members within the structure variable.

K16.3.7.2 Description

A structure is a compound data type composed of one or more data items. The data items can be of different data
types. This can include compound data types. The data items of a structure are called its members and are named.

In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of
length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc,
the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical.
For example:

type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in
a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

K16.3.8 Tuples

This section describes the tuple data type.

K16.3.8.1 Examples

(bits(32) shifter_result, bit shifter_carry_out)

An example of the tuple syntax.

(shift_t, shift_n) = ('00', 0);

An example of assigning values to a tuple.

K16.3.8.2 Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of
different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section,
the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift or rotation.
Its return type is a tuple containing two data items, with the first of type bits(32) and the second of type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of
ordered data types between parentheses. This means that the example tuple at the start of this section is of type
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type of
the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).

• shift_n to be of type integer.

• (shift_t, shift_n) to be a tuple of type (bits(2), integer).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14625
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.3 Data types
K16.3.9 Arrays

This section describes the array data type.

K16.3.9.1 Syntax

array The type name for the array data type.

array data_type array_name[A..B];

Declaration of an array of type data_type, which might be compound data type. It is named
array_name and is indexed with an integer range from A to B.

K16.3.9.2 Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types.
Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30.

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.

• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that
enumeration type. An array declared with an integer range type as the index must be accessed using integer values
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing. See Function and procedure calls.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14626
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.4 Operators
K16.4 Operators

This section describes:

• Relational operators.

• Boolean operators.

• Bitstring operators.

• Arithmetic operators.

• The assignment operator.

• Precedence rules.

• Conditional expressions.

• Operator polymorphism.

K16.4.1 Relational operators

The following operations yield results of type boolean.

K16.4.1.1 Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y
and for non-equality by using the expression x != y. In both cases, the result is of type boolean.

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an enumeration
can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for
equality with an integer to allow a d==15 test.

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any bit
with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring, the
expression opcode == '1x0x' matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask.

Note

This special form is permitted in the implied equality comparisons in the when parts of case … of … structures.

K16.4.1.2 Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater than,
and greater than or equal comparisons between them, producing Boolean results.

K16.4.1.3 Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set> must be
a list of expressions separated by commas.

K16.4.2 Boolean operators

If x is a Boolean expression, then !x is its logical inverse.

If x and y are Boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is
FALSE, the result is determined to be FALSE without evaluating y.

Note

This is known as short circuit evaluation.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14627
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.4 Operators
If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.

Note

If x and y are booleans or Boolean expressions, then the result of x != y is the same as the result of exclusive-ORing
x and y together. The operator EOR only accepts bitstring arguments.

K16.4.3 Bitstring operators

The following operations can be applied only to bitstrings.

K16.4.3.1 Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

K16.4.3.2 Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from
extracted bits or to set the value of specific bits. Its syntax is x<integer_list>, where x is the integer or bitstring
being sliced, and <integer_list> is a comma-separated list of integers enclosed in angle brackets. The length of the
resulting bitstring is equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in
<integer_list> must be:

• >= 0.

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of just one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j, with
both end values included. For example, instr<31:28> represents instr<31, 30, 29, 28>.

x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than once in
<integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable synonym for
APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A
comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to
be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14628
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.4 Operators
K16.4.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from
bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no
issues arise about overflow or similar errors.

K16.4.4.1 Unary plus and minus

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

K16.4.4.2 Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x-y are the least significant
N bits of the results of converting x and y to integers and adding or subtracting them. Signed and unsigned
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x + y<N-1:0>
and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y are the bitstrings of
length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y.

K16.4.4.3 Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.

K16.4.4.4 Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

K16.4.4.5 Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).

• x >> n = RoundDown(x * 2^(-n)).

K16.4.4.6 Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer, then x^n is of type integer.

• If x is of type real, then x^n is of type real.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14629
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.4 Operators
K16.4.5 The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax.

K16.4.5.1 General expression syntax

An expression is one of the following:

• A literal.

• A variable, optionally preceded by a data type name to declare its type.

• The word UNKNOWN preceded by a data type name to declare its type.

• The result of applying a language-defined operator to other expressions.

• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register defined in an Arm architecture specification defines a correspondingly named pseudocode bitstring
variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as
RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural
state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be
written as - to indicate that the corresponding item of the assigned tuple value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14630
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.4 Operators
(x, y) = (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.

K16.4.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their
results, but see Boolean operators.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need
not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example,
if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k > 0 is not.

K16.4.7 Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

K16.4.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each
resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on
various combinations of integers, reals and bitstrings.

Table K16-1 summarizes the operand types valid for each unary operator and the result type. Table K16-2
summarizes the operand types valid for each binary operator and the result type.

Table K16-1 Result and operand types permitted for unary operators

Operator Operand Type Result Type

-
integer integer

real real

NOT bits(N) bits(N)

! boolean boolean
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14631
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.4 Operators
Table K16-2 Result and operand types permitted for binary operators

Operator First operand type Second operand type Result type

==

bits(N)
integer

boolean

bits(N)

integer integer

real real

enumeration enumeration

boolean boolean

!=

bits(N) bits(N)

booleaninteger integer

real real

<, >

<= , >=

integer integer
boolean

real real

+, -

integer integer integer

real real real

bits(N)
bits(N)

bits(N)
integer

<<, >> integer integer integer

*

integer integer integer

real real real

bits(N) bits(N) bits(N)

/ real real real

DIV integer integer integer

MOD
integer integer

integer
bits(N) integer

&&, || boolean boolean boolean

AND, OR, EOR bits(N) bits(N) bits(N)

^
integer integer integer

real integer real
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14632
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.5 Statements and control structures
K16.5 Statements and control structures

This section describes the statements and program structures available in the pseudocode:

• Statements and Indentation.

• Function and procedure calls.

• Conditional control structures.

• Loop control structures.

• Special statements.

• Comments.

K16.5.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated
with a semicolon.

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement structure
itself. The end of a compound statement structure and their end is indicated by returning to the original indentation
level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of
indent.

K16.5.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14633
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.5 Statements and control structures
K16.5.2.1 Procedure and function definitions

A procedure definition has the form:

<procedure name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

Note

A function or procedure name can include a ".". This is a convention used for functions that have similar but
different behaviors in AArch32 and AArch64 states.

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist
because reading from and writing to an array element require different functions. They are frequently used in
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For
example:

<return type> <function name>[<argument prototypes>]
<statement 1>;
<statement 2>;
…
<statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

<function name>[<argument prototypes>] = <value prototype>
<statement 1>;
<statement 2>;
…
<statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share the
same name, but the value prototype and return type can be different.

K16.5.2.2 Procedure calls

A procedure call has the form:

<procedure_name>(<arguments>);

K16.5.2.3 Return statements

A procedure return has the form:

return;

A function return has the form:
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14634
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.5 Statements and control structures
return <expression>;

where <expression> is of the type declared in the function prototype line.

K16.5.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

K16.5.3.1 if … then … else …

In addition to being a ternary operator, a multi-line if … then … else … structure can act as a control structure and
has the form:

if <boolean_expression> then
<statement 1>;
<statement 2>;
…
<statement n>;

elsif <boolean_expression> then
<statement a>;
<statement b>;
…
<statement z>;

else
<statement A>;
<statement B>;
…
<statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple
statements such as:

if <boolean_expression> then <statement 1>;
if <boolean_expression> then <statement 1>; else <statement A>;
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note

In these forms, <statement 1>, <statement 2>, and <statement A> must be terminated by semicolons. This, and the
fact that the else part is optional, distinguish its use as a control structure from its use as a ternary operator.

K16.5.3.2 case … of …

A case … of … structure has the form:

case <expression> of
when <literal values1>

<statement 1>;
<statement 2>;
…
<statement n>;

when <literal values2>
<statement 1>;
<statement 2>;
…
<statement n>;

… more "when" groups if required …

otherwise
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14635
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.5 Statements and control structures
<statement A>;
<statement B>;
…
<statement Z>;

In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <expression>,
separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and
otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known
as bitmasks. For details, see Equality and non-equality.

K16.5.4 Loop control structures

This section describes the three loop control structures used in the pseudocode.

K16.5.4.1 repeat … until …

A repeat … until … structure has the form:

repeat
<statement 1>;
<statement 2>;
…
<statement n>;

until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE.
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside
the loop body.

K16.5.4.2 while … do

A while … do structure has the form:

while <boolean_expression> do
<statement 1>;
<statement 2>;
…
<statement n>;

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the
expression is false.

K16.5.4.3 for …

A for … structure has the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>;
<statement 2>;
…
<statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1>
is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This
repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is
less than or equal than <integer_expr2>.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14636
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.5 Statements and control structures
K16.5.5 Special statements

This section describes statements with particular architecturally defined behaviors.

K16.5.5.1 UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.

K16.5.5.2 UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

K16.5.5.3 SEE…

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

K16.5.5.4 IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {"<text>"};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

K16.5.6 Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.

 /**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14637
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.6 Built-in functions
K16.6 Built-in functions

This section describes:

• Bitstring manipulation functions.

• Arithmetic functions.

K16.6.1 Bitstring manipulation functions

The following bitstring manipulation functions are defined:

K16.6.1.1 Bitstring length and most significant bit

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

K16.6.1.2 Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:

• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.

• Zeros(n) = Replicate('0', n).

• Ones(n) = Replicate('1', n).

K16.6.1.3 Bitstring count

If x is a bitstring, BitCount(x) is an integer result equal to the number of bits of x that are ones.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14638
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.6 Built-in functions
K16.6.1.4 Testing a bitstring for being all zero or all ones

If x is a bitstring:

• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones

• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

K16.6.1.5 Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros,
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

K16.6.1.6 Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

K16.6.1.7 Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

K16.6.2 Arithmetic functions

This section defines built-in arithmetic functions.

K16.6.2.1 Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14639
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.6 Built-in functions
K16.6.2.2 Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces:

— RoundDown(x) if x > 0.0.

— 0 if x == 0.0.

— RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)-1:0>, and is a bitstring
of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

K16.6.2.3 Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x and
y must both be of type integer or of type real. The function returns a value of the same type as its operands.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14640
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.7 Miscellaneous helper procedures and functions
K16.7 Miscellaneous helper procedures and functions

This section lists the prototypes of miscellaneous helper procedures and functions used by the pseudocode, together
with a brief description of the effect of the procedure or function. The pseudocode does not define the operation of
these helper procedures and functions.

Note

Chapter J1 Armv8 Pseudocode also has an entry for each of these functions, but currently these entries do not say
anything about the effect of the function. When this information is added in Chapter J1, this section will be removed
from the manual.

K16.7.1 EndOfInstruction()

This procedure terminates processing of the current instruction.

EndOfInstruction();

K16.7.2 Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option);

K16.7.3 Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address);

K16.7.4 Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address);

K16.7.5 Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address);

K16.7.6 Hint_Yield()

This procedure performs a Yield hint.

Hint_Yield();

K16.7.7 IsExternalAbort()

This function returns TRUE if the abort currently being processed is an External abort and FALSE otherwise. It is used
only in exception entry pseudocode.

boolean IsExternalAbort(Fault type)
 assert type != Fault_None;

boolean IsExternalAbort(FaultRecord fault);
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14641
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.7 Miscellaneous helper procedures and functions
K16.7.8 IsAsyncAbort()

This function returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE otherwise. It
is used only in exception entry pseudocode.

boolean IsAsyncAbort(Fault type)
 assert type != Fault_None;

boolean IsAsyncAbort(FaultRecord fault);

K16.7.9 LSInstructionSyndrome()

This function returns the extended syndrome information for a fault reported in the HSR.

bits(11) LSInstructionSyndrome();

K16.7.10 ProcessorID()

This function returns an integer that uniquely identifies the executing PE in the system.

integer ProcessorID();

K16.7.11 RemapRegsHaveResetValues()

This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED reset
values, and FALSE otherwise.

boolean RemapRegsHaveResetValues();

K16.7.12 ResetControlRegisters()

This function resets the System registers and memory-mapped control registers that have architecturally defined
reset values to those values. For more information about the affected registers, see:

• Reset behavior.

• PE state on reset into AArch32 state.

AArch64.ResetControlRegisters(boolean ResetIsCold)
AArch32.ResetControlRegisters(boolean ResetIsCold)

K16.7.13 ThisInstr()

This function returns the bitstring encoding of the currently executing instruction.

bits(32) ThisInstr();

Note

Currently, this function is used only on 32-bit instruction encodings.

K16.7.14 ThisInstrLength()

This function returns the length, in bits, of the current instruction. This means it returns 32 or 16:

integer ThisInstrLength();
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14642
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.8 Arm pseudocode definition index
K16.8 Arm pseudocode definition index

This section contains the following tables:

• Table K16-3 which contains the pseudocode data types.

• Table K16-4 which contains the pseudocode operators.

• Table K16-5 which contains the pseudocode keywords and control structures.

• Table K16-6 which contains the statements with special behaviors.

Table K16-3 Index of pseudocode data types

Keyword Meaning

array Type name for the array type

bit Keyword equivalent to bits(1)

bits(N) Type name for the bitstring of length N data type

boolean Type name for the Boolean data type

enumeration Keyword to define a new enumeration type

integer Type name for the integer data type

real Type name for the real data type

type Keyword to define a new structure

Table K16-4 Index of pseudocode operators

Operator Meaning

- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings

Used in the left-hand side of an assignment or a tuple to discard
the result

+ Unary plus on integers or reals

Addition of integers, reals, and bitstrings

. Extract named member from a list

Extract named bit or field from a register

: Bitstring concatenation

Integer range in bitstring extraction operator

! Boolean NOT

!= Comparison for inequality

(…) Around arguments of procedure or function

[…] Around array index

Around arguments of array-like function

* Multiplication of integers, reals, and bitstrings
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14643
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.8 Arm pseudocode definition index
/ Division of reals

&& Boolean AND

< Less than comparison of integers and reals

<…> Slicing of specified bits of bitstring or integer

<< Multiply integer by power of 2

<= Less than or equal comparison of integers and reals

= Assignment operator

== Comparison for equality

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2

|| Boolean OR

^ Exponential operator

AND Bitwise AND of bitstrings

DIV Quotient from integer division

EOR Bitwise EOR of bitstrings

IN Tests membership of a certain expression in a set of values

MOD Remainder from integer division

NOT Bitwise inversion of bitstrings

OR Bitwise OR of bitstrings

case … of … Control structure for the

if … then … else … Condition expression selecting between two values

Table K16-5 Index of pseudocode keywords and control structures

Operator Meaning

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

FALSE One of two values a Boolean can take (other than TRUE)

for … = …to … Loop control structure, counting up from the initial value to the
upper limit

for … = … downto … Loop control structure, counting down from the initial value to
the lower limit

if … then … else … Conditional control structure

Table K16-4 Index of pseudocode operators (continued)

Operator Meaning
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14644
ID032224 Non-Confidential

Arm Pseudocode Definition
K16.8 Arm pseudocode definition index
otherwise Introduces default case in case … of … control structure

repeat … until … Loop control structure that runs at least once until the
termination condition is satisfied

return Procedure or function return

TRUE One of two values a Boolean can take (other than FALSE)

when Introduces specific case in case … of … control structure

while … do … Loop control structure that runs until the termination condition
is satisfied

Table K16-6 Index of special statements

Keyword Meaning

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

SEE Points to other pseudocode to use instead

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

UNPREDICTABLE Unspecified behavior

Table K16-5 Index of pseudocode keywords and control structures (continued)

Operator Meaning
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K16-14645
ID032224 Non-Confidential

Appendix K17
Registers Index

This appendix provides indexes to the register descriptions in this manual. It contains the following sections:

• Introduction and register disambiguation.

• Alphabetical index of AArch64 registers and System instructions.

• Functional index of AArch64 registers and System instructions.

• Alphabetical index of AArch32 registers and System instructions.

• Functional index of AArch32 registers and System instructions.

• Alphabetical index of memory-mapped registers.

• Functional index of memory-mapped registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14646
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
K17.1 Introduction and register disambiguation

In some sections of this manual, registers are referred to by a general name, where the description applies to more
than one context. Generally, this is one of the following:

• The description applies to both AArch32 state and AArch64 state, and therefore the register names could
apply to either AArch32 System registers or AArch64 System registers.

• The description applies to multiple Exception levels, and therefore at a particular Exception level the register
names need to take the appropriate Exception. level suffix, _EL0, _EL1, _EL2, or _EL3.

The following sections disambiguate the general register names:

• Register name disambiguation by Execution state.

• Register name disambiguation by Exception level.

K17.1.1 Register name disambiguation by Execution state

Table K17-1 disambiguates the general names of the registers by Execution state.

Table K17-1 Disambiguation of general names of registers by Execution state

General name Short description AArch64 register AArch32 register

CONTEXTIDR Context ID CONTEXTIDR_EL1 CONTEXTIDR

DBGAUTHSTATUS Debug Authentication Status DBGAUTHSTATUS_EL1 DBGAUTHSTATUS

DBGBCR Debug Breakpoint Control Registers DBGBCR<n>_EL1 DBGBCR<n>

DBGBVR Debug Breakpoint Value Registers DBGBVR<n>_EL1 DBGBVR<n>

DBGBXVR<n>

DBGCLAIMCLR Debug CLAIM Tag Clear register DBGCLAIMCLR_EL1 DBGCLAIMCLR

DBGCLAIMSET Debug CLAIM Tag Set register DBGCLAIMSET_EL1 DBGCLAIMSET

DBGDTRRX Debug Data Transfer Register, Receive DBGDTRRX_EL0 DBGDTRRXint

DBGDTRTX Debug Data Transfer Register, Transmit DBGDTRTX_EL0 DBGDTRTXint

DBGPRCR Debug Power Control Register DBGPRCR_EL1 DBGPRCR

DBGVCR Debug Vector Catch Register DBGVCR32_EL2 DBGVCR

DBGWCR Debug Watchpoint Control Registers DBGWCR<n>_EL1 DBGWCR<n>

DBGWVR Debug Watchpoint Value Registers DBGWVR<n>_EL1 DBGWVR<n>

DCCINT Debug Comms Channel Interrupt Enable
Register

MDCCINT_EL1 DBGDCCINT

DCCSR Debug Comms Channel Status Register MDCCSR_EL0 DBGDSCRint

DLR Debug Link Register DLR_EL0[31:0] DLR

DSCR Debug System Control Register MDSCR_EL1 DBGDSCRext

DSPSR Debug Saved PE State Register DSPSR_EL0 DSPSR, DSPSR2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14647
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
FAR Fault Address Register FAR_EL1

FAR_EL2

FAR_EL3

HPFAR_EL2

DFAR, IFAR

HDFAR, HIFAR

FAR_EL3

HPFAR

HCR Hypervisor Configuration Register HCR_EL2 HCR

HCR2

HDCR Hyp or EL2 Debug Control Register MDCR_EL2 HDCR

HSCTLR Hypervisor System Control Register SCTLR_EL2 HSCTLR

HTTBR EL2 Translation Table Base Register TTBR0_EL2 HTTBR

ISR Interrupt Status Register ISR_EL1 ISR

MPIDR Multiprocessor Affinity Register MPIDR_EL1 MPIDR

OSDLR OS Double-Lock Register OSDLR_EL1 DBGOSDLR

OSDTRRX OS Lock Data Transfer Register, Receive OSDTRRX_EL1 DBGDTRRXext

OSDTRTX OS Lock Data Transfer Register, Transmit OSDTRTX_EL1 DBGDTRTXext

OSECCR OS Lock Exception Catch Control Register OSECCR_EL1 DBGOSECCR

OSLAR OS Lock Access Register OSLAR_EL1 DBGOSLAR

OSLSR OS Lock Status Register OSLSR_EL1 DBGOSLSR

PMMIR Performance Monitors Machine Identification
Register

PMMIR_EL1 PMMIR

SCR Secure Configuration Register SCR_EL3 SCR

SCTLR System Control Register SCTLR_EL1

SCTLR_EL2

SCTLR_EL3

SCTLR (NS)

HSCTLR

SCTLR (S)

SDCR Secure or EL3 Debug Configuration Register MDCR_EL3 SDCR

SDER Secure Debug Enable Register SDER32_EL3 SDER

SPSR Saved Program Status Register SPSR_EL1

SPSR_EL2

SPSR_EL3

SPSR (general description)

SPSR_abt

SPSR_fiq

SPSR_hyp

SPSR_irq

SPSR_mon

SPSR_svc

SPSR_und

TCR Translation Control Register TCR_EL1

TCR_EL2

TCR_EL3

VTCR_EL2

TTBCR(NS)

HTCR

TTBCR(S)

VTCR

Table K17-1 Disambiguation of general names of registers by Execution state (continued)

General name Short description AArch64 register AArch32 register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14648
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
Table K17-2 disambiguates the general names of the System registers that provide access to the Performance
Monitors by Execution state.

TTBR Translation Table Base Register TTBR0_EL1

TTBR0_EL2

TTBR0_EL3

TTBR1_EL1

VTTBR_EL2

TTBR0

TTBR1

HTTBR

VTTBR

VBAR Vector Base Address Register VBAR_EL1

VBAR_EL2

VBAR_EL3

VBAR

HVBAR

MVBAR

VCR PL1&0 stage 2 Translation Control Register VTCR_EL2 VTCR

VTTBR PL1&0 stage 2 Translation Table Base Register VTTBR_EL2 VTTBR

Table K17-1 Disambiguation of general names of registers by Execution state (continued)

General name Short description AArch64 register AArch32 register

Table K17-2 Disambiguation of general names of the Performance Monitors System registers by Execution state

General name Short description AArch64 register AArch32 register

PMCCFILTR Cycle Count Filter Register PMCCFILTR_EL0 PMCCFILTR

PMCCNTR Cycle Count Register PMCCNTR_EL0 PMCCNTR

PMCEID0 Performance Monitors Common Event Identification
Register 0

PMCEID0_EL0 PMCEID0

PMCEID1 Performance Monitors Common Event Identification
Register 1

PMCEID1_EL0 PMCEID1

PMCEID2 Performance Monitors Common Event Identification
Register 2

PMCEID0_EL0 PMCEID2

PMCEID3 Performance Monitors Common Event Identification
Register 3

PMCEID1_EL0 PMCEID3

PMCNTENCLR Performance Monitors Count Enable Clear register PMCNTENCLR_EL0 PMCNTENCLR

PMCNTENSET Performance Monitors Count Enable Set register PMCNTENSET_EL0 PMCNTENSET

PMCR Performance Monitors Control Register PMCR_EL0 PMCR

PMEVCNTR<n> Performance Monitors Event Count Registers, n = 0-30 PMEVCNTR<n>_EL0 PMEVCNTR<n>

PMEVTYPER<n> Performance Monitors Event Type Registers, n = 0-30 PMEVTYPER<n>_EL0 PMEVTYPER<n>

PMINTENCLR Performance Monitors Interrupt Enable Clear register PMINTENCLR_EL1 PMINTENCLR

PMINTENSET Performance Monitors Interrupt Enable Set register PMINTENSET_EL1 PMINTENSET

PMMIR Performance Monitors Machine Identification Register PMMIR_EL1 PMMIR

PMOVSCLR Performance Monitors Overflow Flag Status Register PMOVSCLR_EL0 PMOVSR

PMOVSSET Performance Monitors Overflow Flag Status Set register PMOVSSET_EL0 PMOVSSET

PMSELR Performance Monitors Event Counter Selection Register PMSELR_EL0 PMSELR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14649
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
Table K17-3 disambiguates the general names of the System registers that provide access to the Activity Monitors
by Execution state.

Table K17-4 disambiguates the general names of the System registers that provide access to the Generic Timer
System by Execution state.

PMSWINC Performance Monitors Software Increment register PMSWINC_EL0 PMSWINC

PMUSERENR Performance Monitors User Enable Register PMUSERENR_EL0 PMUSERENR

PMXEVCNTR Performance Monitors Selected Event Count Register PMXEVCNTR_EL0 PMXEVCNTR

PMXEVTYPER Performance Monitors Selected Event Type Register PMXEVTYPER_EL0 PMXEVTYPER

Table K17-2 Disambiguation of general names of the Performance Monitors System registers by Execution state

General name Short description AArch64 register AArch32 register

Table K17-3 Disambiguation of general names of the Activity Monitors System registers by Execution state

General name Short description AArch64 register AArch32 register

AMCFGR Activity Monitors Configuration Register AMCFGR_EL0 AMCFGR

AMCGCR Activity Monitors Counter Group Configuration
Register

AMCGCR_EL0 AMCGCR

AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0 AMCNTENCLR0_EL0 AMCNTENCLR0

AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1 AMCNTENCLR1_EL0 AMCNTENCLR1

AMCNTENSET0 Activity Monitors Count Enable Set Register 0 AMCNTENSET0_EL0 AMCNTENSET0

AMCNTENSET1 Activity Monitors Count Enable Set Register 1 AMCNTENSET1_EL0 AMCNTENSET1

AMCR Activity Monitors Control Register AMCR_EL0 AMCR

AMEVCNTR0<n> Activity Monitors Event Counter Registers 0, n = 0-15 AMEVCNTR0<n>_EL0 AMEVCNTR0<n>

AMEVCNTR1<n> Activity Monitors Event Counter Registers 1, n = 0-15 AMEVCNTR1<n>_EL0 AMEVCNTR1<n>

AMEVTYPER0<n> Activity Monitors Event Type Registers 0, n = 0-15 AMEVTYPER0<n>_EL0 AMEVTYPER0<n>

AMEVTYPER1<n> Activity Monitors Event Type Registers 1, n = 0-15 AMEVTYPER1<n>_EL0 AMEVTYPER1<n>

AMUSERENR Activity Monitors User Enable Register AMUSERENR_EL0 AMUSERENR

Table K17-4 Disambiguation of general names of the Generic Timer System registers by Execution state

General name Short description AArch64 register AArch32 register

CNTFRQ Counter-timer Frequency register CNTFRQ_EL0 CNTFRQ

CNTHCTL Counter-timer Hypervisor Control register CNTHCTL_EL2 CNTHCTL

CNTHP_CTL Counter-timer Hypervisor Physical Timer Control register CNTHP_CTL_EL2 CNTHP_CTL

CNTHP_CVAL Counter-timer Hypervisor Physical Timer CompareValue register CNTHP_CVAL_EL2 CNTHP_CVAL

CNTHP_TVAL Counter-timer Hypervisor Physical Timer TimerValue register CNTHP_TVAL_EL2 CNTHP_TVAL

CNTKCTL Counter-timer Kernel Control register CNTKCTL_EL1 CNTKCTL

CNTP_CTL Counter-timer Physical Timer Control register CNTP_CTL_EL0 CNTP_CTL
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14650
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
Table K17-5 shows the mappings between the writable AArch64 System registers and the AArch32 System
registers.

CNTP_CVAL Counter-timer Physical Timer CompareValue register CNTP_CVAL_EL0 CNTP_CVAL

CNTP_TVAL Counter-timer Physical Timer TimerValue register CNTP_TVAL_EL0 CNTP_TVAL

CNTPCT Counter-timer Physical Count register CNTPCT_EL0 CNTPCT

CNTPS_CTL Counter-timer Physical Secure Timer Control register CNTPS_CTL_EL1 -

CNTPS_CVAL Counter-timer Physical Secure Timer CompareValue register CNTPS_CVAL_EL1 -

CNTPS_TVAL Counter-timer Physical Secure Timer TimerValue register CNTPS_TVAL_EL1 -

CNTV_CTL Counter-timer Virtual Timer Control register CNTV_CTL_EL0 CNTV_CTL

CNTV_CVAL Counter-timer Virtual Timer CompareValue register CNTV_CVAL_EL0 CNTV_CVAL

CNTV_TVAL Counter-timer Virtual Timer TimerValue register CNTV_TVAL_EL0 CNTV_TVAL

CNTVCT Counter-timer Virtual Count register CNTVCT_EL0 CNTVCT

CNTVOFF Counter-timer Virtual Offset register CNTVOFF_EL2 CNTVOFF

Table K17-4 Disambiguation of general names of the Generic Timer System registers by Execution state (continued)

General name Short description AArch64 register AArch32 register

Table K17-5 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register

ACTLR_EL1[31:0] ACTLRa

ACTLR_EL1[63:32] ACTLR2a if implemented

AFSR0_EL1[31:0] ADFSRa

AFSR1_EL1[31:0] AIFSRa

AMAIR_EL1[31:0] AMAIR0a

AMAIR_EL1[63:32] AMAIR1a

CONTEXTIDR_EL1[31:0] CONTEXTIDRa

CPACR_EL1[31:0] CPACR

CSSELR_EL1[31:0] CSSELRa

DACR32_EL2[31:0] DACRa

FAR_EL1[31:0] DFARa

ESR_EL1[31:0] DFSRa

HACR_EL2[31:0] HACR

ACTLR_EL1[31:0] HACTLR

ACTLR_EL2[63:32] HACTLR2 if implemented

AFSR0_EL1[31:0] HADFSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14651
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
AFSR1_EL1[31:0] HAIFSR

AMAIR_EL2[31:0] HAMAIR0

AMAIR_EL2[63:32] HAMAIR1

CPTR_EL2[31:0] HCPTR

HCR_EL2[31:0] HCR

HCR_EL2[63:32] HCR2

MDCR_EL2[31:0] HDCR

FAR_EL2[31:0] HDFAR

FAR_EL2[63:32] HIFAR

MAIR_EL2[31:0] HMAIR0

MAIR_EL2[63:32] HAMAIR1

HPFAR_EL2[31:0] HPFAR

SCTLR_EL2[31:0] HSCTLR

ESR_EL2[31:0] HSR

HSTR_EL2[31:0] HSTR

TCR_EL3[31:0] HTCR

TPIDR_EL2[31:0] HTPIDR

TTBR0_EL2[47:1] HTTBR

VBAR_EL2[31:0] HVBAR

FAR_EL1[63:32] IFARa

IFSR32_EL2[31:0] IFSRa

MAIR_EL1[63:32] NMRR or MAIR1a

PAR_EL1[63:0] PARa

MAIR_EL1[31:0] PRRR or MAIR0a

RMR_EL1[31:0] RMR (at EL1)

RMR_EL2[31:0] HRMR

RMR_EL3[31:0] RMR (at EL3)

SCTLR_EL1[31:0] SCTLRa

SDER32_EL3[31:0] SDER

TPIDR_EL1[31:0] TPIDRPRWa

TPIDRRO_EL0[31:0] TPIDRUROa

TPIDR_EL0[31:0] TPIDRURWa

Table K17-5 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14652
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
TCR_EL1[31:0] TTBCRa

TCR_EL1[63:32] TTBCR2a if implemented

TTBR0_EL1[63:0] TTBR0a

TTBR1_EL1[63:0] TTBR1a

VBAR_EL1[31:0] VBARa

VMPIDR_EL2[31:0] VMPIDR

VPIDR_EL2[31:0] VPIDR

VTCR_EL2[31:0] VTCR

VTTBR_EL2[63:0] VTTBR

Timer registers

CNTFRQ_EL0 CNTFRQ

CNTHCTL_EL2 CNTHCTL

CNTHP_CTL_EL2 CNTP_CTL

CNTHP_CVAL_EL2 CNTHP_CVAL

CNTHP_TVAL_EL2 CNTHVS_TVAL

CNTHPS_CTL_EL2 CNTHPS_CTL

CNTHPS_CVAL_EL2 CNTHPS_CVAL

CNTHPS_TVAL_EL2 CNTHPS_TVAL

CNTKCTL_EL1 CNTKCTL

CNTP_CTL_EL0 CNTP_CTLa

CNTP_CVAL_EL0 CNTP_CVALa

CNTP_TVAL_EL0 CNTP_TVALa

CNTPCT_EL0[63:0] CNTPCT

CNTV_CTL_EL0[31:0] CNTV_CTL

CNTV_CVAL_EL0[63:0] CNTV_CVAL

CNTV_TVAL_EL0[31:0] CNTV_TVAL

CNTHV_CTL_EL2[63:0] CNTHV_CTL

CNTHV_CVAL_EL2[63:0] CNTHV_CVAL

CNTHV_TVAL_EL2[63:0] CNTHV_TVAL

CNTHVS_CTL_EL2[31:0] CNTHVS_CTL

CNTHVS_CVAL_EL2[63:0] CNTHVS_CVAL

CNTHVS_TVAL_EL2[63:0] CNTHVS_TVAL

Table K17-5 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14653
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
CNTVCT_EL0[63:0] CNTVCT

CNTVOFF_EL2[63:0] CNTVOFF

Debug System registers

DBGAUTHSTATUS_EL1[31:0] DBGAUTHSTATUS

DBGBCR<n>_EL1[31:0] DBGBCR<n>

DBGBVR<n>_EL1[31:0] DBGBVR<n>

DBGBVR<n>_EL1[63:32] DBGBXVR<n>

DBGCLAIMCLR_EL1[31:0] DBGCLAIMCLR

DBGCLAIMSET_EL1[31:0] DBGCLAIMSET

DBGDTR_EL0[63:32] DBGDTRRXint

DBGDTR_EL0[31:0] DBGDTRTXint

DBGDTRRX_EL0[31:0] DBGDTRRXint

DBGDTRTX_EL0[31:0] DBGDTRTXint

DBGPRCR_EL1[31:0] DBGPRCR

DBGVCR32_EL2[31:0] DBGVCR

DBGWCR<n>_EL1[31:0] DBGWCR<n>

DBGWVR<n>_EL1[31:0] DBGWVR<n>

ID_DFR0_EL1[31:0] ID_DFR0

MDCCSR_EL0b[30:29] DBGDSCRintb

MDCR_EL2[31:0] HDCR

MDRAR_EL1[63:0] DBGDRAR

MDSCR_EL1b[31:0] DBGDSCRextb

OSDLR_EL1[31:0] DBGOSDLR

OSDTRRX_EL1b[31:0] DBGDTRRXextb

OSDTRTX_EL1b[31:0] DBGDTRTXextb

OSECCR_EL1[31:0] DBGOSECCR

OSLAR_EL1[31:0] DBGOSLAR

OSLSR_EL1[31:0] DBGOSLSR

SDER32_EL3[31:0] SDER

Performance Monitors System registers

PMCCNTR_EL0[31:0] PMCCNTR (MRC/MCR)

PMCEID0_EL0[31:0] PMCEID0

Table K17-5 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14654
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
PMCEID0_EL0[63:32] PMCEID2

PMCEID1_EL0[31:0] PMCEID1

PMCEID1_EL0[63:32] PMCEID3

PMCNTENCLR_EL0[31:0] PMCNTENCLR

PMCNTENSET_EL0[31:0] PMCNTENSET

PMCR_EL0[31:0] PMCR

PMEVCNTR<n>_EL0[31:0] PMEVCNTR<n>

PMEVTYPER<n>_EL0[31:0] PMEVTYPER<n>

PMINTENCLR_EL1[31:0] PMINTENCLR

PMINTENSET_EL1[31:0] PMINTENSET

PMSELR_EL0[31:0] PMSELR

PMSWINC_EL0[31:0] PMSWINC

PMUSERENR_EL0[31:0] PMUSERENR

PMXEVCNTR_EL0[31:0] PMXEVCNTR

PMXEVTYPER_EL0[31:0] PMXEVTYPER

Activity Monitors System registers

AMCNTENCLR0_EL0[31:0] AMCNTENCLR0

AMCNTENCLR1_EL0[31:0] AMEVCNTR1<n>

AMCNTENSET0_EL0[31:0] AMCNTENSET0

AMCNTENSET1_EL0[31:0] AMCNTENSET1

AMCR_EL0[31:0] AMCR

AMEVCNTR0<n>_EL0[63:0] AMEVCNTR0<n>

AMEVCNTR1<n>_EL0[63:0] AMEVCNTR1<n>

AMEVCNTR1<n>_EL0[31:0] AMEVTYPER1<n>

RAS System registers

DISR_EL1[31:0] DISR

ERRIDR_EL1[31:0] ERRIDR

ERRSELR_EL1[31:0] ERRSELR

ERXADDR_EL1[31:0] ERXADDR

ERXADDR_EL1[63:32] ERXADDR2

ERXCTLR_EL1[31:0] ERXCTLR

ERXCTLR_EL1[63:32] ERXCTLR2

Table K17-5 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14655
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
There are a small number of AArch32 System registers that are not mapped to any AArch64 System registers. The
AArch64 registers listed in Table K17-6 can be used to access these from a higher Exception level that is using
AArch64. The registers shown in the table are UNDEFINED if EL1 cannot use AArch32.

Table K17-7 shows the AArch64 System registers that allow access from AArch64 state to the AArch32
ID registers. These AArch64 registers are UNKNOWN if no Exception level can use AArch32.

ERXFR_EL1[31:0] ERXFR

ERXFR_EL1[63:32] ERXFR2

ERXMISC0_EL1[31:0] ERXMISC0

ERXMISC0_EL1[63:32] ERXMISC1

ERXMISC1_EL1[31:0] ERXMISC2

ERXMISC1_EL1[63:32] ERXMISC3

ERXMISC2_EL1[31:0] ERXMISC4

ERXMISC2_EL1[63:32] ERXMISC5

ERXMISC3_EL1[31:0] ERXMISC6

ERXMISC3_EL1[63:32] ERXMISC7

ERXSTATUS_EL1[31:0] ERXSTATUS

VDISR_EL2[31:0] VDISR

VSESR_EL2[31:0] VDFSR

a. AArch32 registers that are banked if EL3 is using AArch32.

b. These registers have overlapping register content. One or more
bits of one register appear in the other register.

Table K17-5 Mapping of writable AArch64 System registers to the AArch32 System registers

AArch64 register AArch32 register

Table K17-6 AArch64 registers for accessing registers that are only used in AArch32 state

AArch32 register Register for access from AArch64 state Short description

DACR DACR32_EL2 Domain Access Control Register

DBGVCR DBGVCR32_EL2 Debug Vector Catch Register

FPEXC FPEXC32_EL2 Floating-Point Exception Control Register

IFSR IFSR32_EL2 Instruction Fault Status Register

SDER SDER32_EL3 AArch32 Secure Debug Enable Register

Table K17-7 AArch64 registers that access the AArch32 ID registers

AArch32 register Register for access from AArch64 state Short description

ID_AFR0 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0

ID_DFR0 ID_DFR0_EL1 AArch32 Debug Feature Register 0

ID_ISAR0 ID_ISAR0_EL1 EL1, AArch32 Instruction Set Attribute Register 0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14656
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
K17.1.2 Register name disambiguation by Exception level

Table K17-8 disambiguates the general names of the AArch64 System registers by Exception level.

ID_ISAR1 ID_ISAR1_EL1 EL1, AArch32 Instruction Set Attribute Register 1

ID_ISAR2 ID_ISAR2_EL1 EL1, AArch32 Instruction Set Attribute Register 2

ID_ISAR3 ID_ISAR3_EL1 EL1, AArch32 Instruction Set Attribute Register 3

ID_ISAR4 ID_ISAR4_EL1 EL1, AArch32 Instruction Set Attribute Register 4

ID_ISAR5 ID_ISAR5_EL1 EL1, AArch32 Instruction Set Attribute Register 5

ID_MMFR0 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0

ID_MMFR1 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1

ID_MMFR2 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2

ID_MMFR3 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3

ID_MMFR4 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4

ID_PFR0 ID_PFR0_EL1 AArch32 PE Feature Register 0

ID_PFR1 ID_PFR1_EL1 AArch32 PE Feature Register 1

ID_PFR2 ID_PFR2_EL1 AArch32 PE Feature Register 2

Table K17-7 AArch64 registers that access the AArch32 ID registers (continued)

AArch32 register Register for access from AArch64 state Short description

Table K17-8 Disambiguation of AArch64 System registers by Exception level

General form EL0 EL1 EL2 EL3

AFSR0_ELx - AFSR0_EL1 AFSR0_EL2 AFSR0_EL3

AFSR1_ELx - AFSR1_EL1 AFSR1_EL2 AFSR1_EL3

AMAIR2_ELx - AMAIR2_EL1 AMAIR2_EL2 AMAIR2_EL3

AMAIR_ELx - AMAIR_EL1 AMAIR_EL2 AMAIR_EL3

CONTEXTIDR_ELx - CONTEXTIDR_EL1 CONTEXTIDR_EL2 -

CPTR_ELx - - CPTR_EL2 CPTR_EL3

ELR_ELx - ELR_EL1 ELR_EL2 ELR_EL3

ESR_ELx - ESR_EL1 ESR_EL2 ESR_EL3

FAR_ELx - FAR_EL1 FAR_EL2 FAR_EL3

GCSCR_ELx - GCSCR_EL1 GCSCR_EL2 GCSCR_EL3

GCSPR_ELx GCSPR_EL0 GCSPR_EL1 GCSPR_EL2 GCSPR_EL3

MAIR2_ELx - MAIR2_EL1 MAIR2_EL2 MAIR2_EL3

MAIR_ELx - MAIR_EL1 MAIR_EL2 MAIR_EL3

PFAR_ELx - PFAR_EL1 PFAR_EL2 -
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14657
ID032224 Non-Confidential

Registers Index
K17.1 Introduction and register disambiguation
PIR_ELx - PIR_EL1 PIR_EL2 PIR_EL3

PIRE0_ELx - PIRE0_EL1 PIRE0_EL2 -

POR_ELx POR_EL0 POR_EL1 POR_EL2 POR_EL3

RMR_ELx - RMR_EL1 RMR_EL2 RMR_EL3

RVBAR_ELx - RVBAR_EL1 RVBAR_EL2 RVBAR_EL3

SCTLR2_ELx - SCTLR2_EL1 SCTLR2_EL2 SCTLR2_EL3

SCTLR_ELx - SCTLR_EL1 SCTLR_EL2 SCTLR_EL3

SCXTNUM_ELx SCXTNUM_EL0 SCXTNUM_EL1 SCXTNUM_EL2 SCXTNUM_EL3

SMCR_ELx - SMCR_EL1 SMCR_EL2 SMCR_EL3

SP_ELx SP_EL0 SP_EL1 SP_EL2 SP_EL3

SPSR_ELx - SPSR_EL1 SPSR_EL2 SPSR_EL3

TCR2_ELx - TCR2_EL1 TCR2_EL2 -

TCR_ELx - TCR_EL1 TCR_EL2 TCR_EL3

TFSR_ELx TFSRE0_EL1 TFSR_EL1 TFSR_EL2 TFSR_EL3

TRFCR_ELx - TRFCR_EL1 TRFCR_EL2 -

TTBR_ELx - TTBR0_EL1,
TTBR1_EL1

TTBR0_EL2,
TTBR1_EL2,
VTTBR_EL2,
VSTTBR_EL2

TTBR0_EL3

TTBRn_ELx - TTBR0_EL1,
TTBR1_EL1

TTBR0_EL2,
TTBR1_EL2

TTBR0_EL3

TTBR0_ELx - TTBR0_EL1 TTBR0_EL2 TTBR0_EL3

TTBR1_ELx - TTBR1_EL1 - -

VBAR_ELx - VBAR_EL1 VBAR_EL2 VBAR_EL3

ZCR_ELx - ZCR_EL1 ZCR_EL2 ZCR_EL3

Table K17-8 Disambiguation of AArch64 System registers by Exception level (continued)

General form EL0 EL1 EL2 EL3
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14658
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
K17.2 Alphabetical index of AArch64 registers and System instructions

This section is an index of AArch64 registers and System instructions in alphabetical order.

Table K17-9 Alphabetical index of AArch64 Registers

Register Description, see

ACCDATA_EL1 ACCDATA_EL1, Accelerator Data

ACTLR_EL1 ACTLR_EL1, Auxiliary Control Register (EL1)

ACTLR_EL2 ACTLR_EL2, Auxiliary Control Register (EL2)

ACTLR_EL3 ACTLR_EL3, Auxiliary Control Register (EL3)

AFSR0_EL1 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1 AIDR_EL1, Auxiliary ID Register

ALLINT ALLINT, All Interrupt Mask Bit

AMAIR2_EL1 AMAIR2_EL1, Extended Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR2_EL2 AMAIR2_EL2, Extended Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR2_EL3 AMAIR2_EL3, Extended Auxiliary Memory Attribute Indirection Register (EL3)

AMAIR_EL1 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

AMCFGR_EL0 AMCFGR_EL0, Activity Monitors Configuration Register

AMCG1IDR_EL0 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register

AMCGCR_EL0 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

AMCNTENCLR0_EL0 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1_EL0 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

AMCNTENSET0_EL0 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0

AMCNTENSET1_EL0 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1

AMCR_EL0 AMCR_EL0, Activity Monitors Control Register

AMEVCNTR0<n>_EL0 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 3

AMEVCNTR1<n>_EL0 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset
Registers 0, n = 0 - 15
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14659
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset
Registers 1, n = 0 - 15

AMEVTYPER0<n>_EL0 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 3

AMEVTYPER1<n>_EL0 AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15

AMUSERENR_EL0 AMUSERENR_EL0, Activity Monitors User Enable Register

APDAKeyHi_EL1 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])

APDBKeyLo_EL1 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])

APGAKeyHi_EL1 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])

APIAKeyHi_EL1 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1 APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])

AT S12E0R AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

AT S12E0W AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

AT S12E1R AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

AT S12E1W AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

AT S1E0R AT S1E0R, Address Translate Stage 1 EL0 Read

AT S1E0W AT S1E0W, Address Translate Stage 1 EL0 Write

AT S1E1A AT S1E1A, Address Translate Stage 1 EL1 Without Permission checks

AT S1E1R AT S1E1R, Address Translate Stage 1 EL1 Read

AT S1E1RP AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

AT S1E1W AT S1E1W, Address Translate Stage 1 EL1 Write

AT S1E1WP AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

AT S1E2A AT S1E2A, Address Translate Stage 1 EL2 Without Permission checks

AT S1E2R AT S1E2R, Address Translate Stage 1 EL2 Read

AT S1E2W AT S1E2W, Address Translate Stage 1 EL2 Write

AT S1E3A AT S1E3A, Address Translate Stage 1 EL3 Without Permission checks

AT S1E3R AT S1E3R, Address Translate Stage 1 EL3 Read

AT S1E3W AT S1E3W, Address Translate Stage 1 EL3 Write

BRB IALL BRB IALL, Invalidate the Branch Record Buffer

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14660
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
BRB INJ BRB INJ, Branch Record Injection into the Branch Record Buffer

BRBCR_EL1 BRBCR_EL1, Branch Record Buffer Control Register (EL1)

BRBCR_EL2 BRBCR_EL2, Branch Record Buffer Control Register (EL2)

BRBFCR_EL1 BRBFCR_EL1, Branch Record Buffer Function Control Register

BRBIDR0_EL1 BRBIDR0_EL1, Branch Record Buffer ID0 Register

BRBINFINJ_EL1 BRBINFINJ_EL1, Branch Record Buffer Information Injection Register

BRBINF<n>_EL1 BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31

BRBSRCINJ_EL1 BRBSRCINJ_EL1, Branch Record Buffer Source Address Injection Register

BRBSRC<n>_EL1 BRBSRC<n>_EL1, Branch Record Buffer Source Address Register <n>, n = 0 - 31

BRBTGTINJ_EL1 BRBTGTINJ_EL1, Branch Record Buffer Target Address Injection Register

BRBTGT<n>_EL1 BRBTGT<n>_EL1, Branch Record Buffer Target Address Register <n>, n = 0 - 31

BRBTS_EL1 BRBTS_EL1, Branch Record Buffer Timestamp Register

CCSIDR2_EL1 CCSIDR2_EL1, Current Cache Size ID Register 2

CCSIDR_EL1 CCSIDR_EL1, Current Cache Size ID Register

CFP RCTX CFP RCTX, Control Flow Prediction Restriction by Context

CLIDR_EL1 CLIDR_EL1, Cache Level ID Register

CNTFRQ_EL0 CNTFRQ_EL0, Counter-timer Frequency Register

CNTHCTL_EL2 CNTHCTL_EL2, Counter-timer Hypervisor Control Register

CNTHP_CTL_EL2 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control Register

CNTHP_CVAL_EL2 CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue Register (EL2)

CNTHP_TVAL_EL2 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue Register (EL2)

CNTHPS_CTL_EL2 CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control Register (EL2)

CNTHPS_CVAL_EL2 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue
Register (EL2)

CNTHPS_TVAL_EL2 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue Register
(EL2)

CNTHV_CTL_EL2 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control Register (EL2)

CNTHV_CVAL_EL2 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue Register (EL2)

CNTHV_TVAL_EL2 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

CNTHVS_CTL_EL2 CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control Register (EL2)

CNTHVS_CVAL_EL2 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue Register
(EL2)

CNTHVS_TVAL_EL2 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue Register
(EL2)

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14661
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
CNTKCTL_EL1 CNTKCTL_EL1, Counter-timer Kernel Control Register

CNTP_CTL_EL0 CNTP_CTL_EL0, Counter-timer Physical Timer Control Register

CNTP_CVAL_EL0 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue Register

CNTP_TVAL_EL0 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue Register

CNTPCT_EL0 CNTPCT_EL0, Counter-timer Physical Count Register

CNTPCTSS_EL0 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count Register

CNTPOFF_EL2 CNTPOFF_EL2, Counter-timer Physical Offset Register

CNTPS_CTL_EL1 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control Register

CNTPS_CVAL_EL1 CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue Register

CNTPS_TVAL_EL1 CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue Register

CNTV_CTL_EL0 CNTV_CTL_EL0, Counter-timer Virtual Timer Control Register

CNTV_CVAL_EL0 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue Register

CNTV_TVAL_EL0 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue Register

CNTVCT_EL0 CNTVCT_EL0, Counter-timer Virtual Count Register

CNTVCTSS_EL0 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count Register

CNTVOFF_EL2 CNTVOFF_EL2, Counter-timer Virtual Offset Register

CONTEXTIDR_EL1 CONTEXTIDR_EL1, Context ID Register (EL1)

CONTEXTIDR_EL2 CONTEXTIDR_EL2, Context ID Register (EL2)

COSP RCTX COSP RCTX, Clear Other Speculative Prediction Restriction by Context

CPACR_EL1 CPACR_EL1, Architectural Feature Access Control Register

CPP RCTX CPP RCTX, Cache Prefetch Prediction Restriction by Context

CPTR_EL2 CPTR_EL2, Architectural Feature Trap Register (EL2)

CPTR_EL3 CPTR_EL3, Architectural Feature Trap Register (EL3)

CSSELR_EL1 CSSELR_EL1, Cache Size Selection Register

CTR_EL0 CTR_EL0, Cache Type Register

CurrentEL CurrentEL, Current Exception Level

DACR32_EL2 DACR32_EL2, Domain Access Control Register

DAIF DAIF, Interrupt Mask Bits

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1, Debug Authentication Status Register

DBGBCR<n>_EL1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 63

DBGBVR<n>_EL1 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 63

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear Register

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14662
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
DBGCLAIMSET_EL1 DBGCLAIMSET_EL1, Debug CLAIM Tag Set Register

DBGDTR_EL0 DBGDTR_EL0, Debug Data Transfer Register, half-duplex

DBGDTRRX_EL0 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

DBGDTRTX_EL0 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

DBGPRCR_EL1 DBGPRCR_EL1, Debug Power Control Register

DBGVCR32_EL2 DBGVCR32_EL2, Debug Vector Catch Register

DBGWCR<n>_EL1 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 63

DBGWVR<n>_EL1 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 63

DC CGDSW DC CGDSW, Clean of Data and Allocation Tags by Set/Way

DC CGDVAC DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC

DC CGDVADP DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP

DC CGDVAP DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP

DC CGSW DC CGSW, Clean of Allocation Tags by Set/Way

DC CGVAC DC CGVAC, Clean of Allocation Tags by VA to PoC

DC CGVADP DC CGVADP, Clean of Allocation Tags by VA to PoDP

DC CGVAP DC CGVAP, Clean of Allocation Tags by VA to PoP

DC CIGDPAE DC CIGDPAE, Clean and invalidate of data and allocation tags by PA to PoE

DC CIGDPAPA DC CIGDPAPA, Clean and Invalidate of Data and Allocation Tags by PA to PoPA

DC CIGDSW DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way

DC CIGDVAC DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC

DC CIGSW DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way

DC CIGVAC DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

DC CIPAE DC CIPAE, Data or unified Cache line Clean and Invalidate by PA to PoE

DC CIPAPA DC CIPAPA, Data or unified Cache line Clean and Invalidate by PA to PoPA

DC CISW DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

DC CIVAC DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW DC CSW, Data or unified Cache line Clean by Set/Way

DC CVAC DC CVAC, Data or unified Cache line Clean by VA to PoC

DC CVADP DC CVADP, Data or unified Cache line Clean by VA to PoDP

DC CVAP DC CVAP, Data or unified Cache line Clean by VA to PoP

DC CVAU DC CVAU, Data or unified Cache line Clean by VA to PoU

DC GVA DC GVA, Data Cache set Allocation Tag by VA

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14663
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
DC GZVA DC GZVA, Data Cache set Allocation Tags and Zero by VA

DC IGDSW DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way

DC IGDVAC DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC

DC IGSW DC IGSW, Invalidate of Allocation Tags by Set/Way

DC IGVAC DC IGVAC, Invalidate of Allocation Tags by VA to PoC

DC ISW DC ISW, Data or unified Cache line Invalidate by Set/Way

DC IVAC DC IVAC, Data or unified Cache line Invalidate by VA to PoC

DC ZVA DC ZVA, Data Cache Zero by VA

DCZID_EL0 DCZID_EL0, Data Cache Zero ID Register

DISR_EL1 DISR_EL1, Deferred Interrupt Status Register

DIT DIT, Data Independent Timing

DLR_EL0 DLR_EL0, Debug Link Register

DSPSR_EL0 DSPSR_EL0, Debug Saved Program Status Register

DVP RCTX DVP RCTX, Data Value Prediction Restriction by Context

ELR_EL1 ELR_EL1, Exception Link Register (EL1)

ELR_EL2 ELR_EL2, Exception Link Register (EL2)

ELR_EL3 ELR_EL3, Exception Link Register (EL3)

ERRIDR_EL1 ERRIDR_EL1, Error Record ID Register

ERRSELR_EL1 ERRSELR_EL1, Error Record Select Register

ERXADDR_EL1 ERXADDR_EL1, Selected Error Record Address Register

ERXCTLR_EL1 ERXCTLR_EL1, Selected Error Record Control Register

ERXFR_EL1 ERXFR_EL1, Selected Error Record Feature Register

ERXGSR_EL1 ERXGSR_EL1, Selected Error Record Group Status Register

ERXMISC0_EL1 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0

ERXMISC1_EL1 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

ERXMISC2_EL1 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

ERXMISC3_EL1 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

ERXPFGCDN_EL1 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown Register

ERXPFGCTL_EL1 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control Register

ERXPFGF_EL1 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature Register

ERXSTATUS_EL1 ERXSTATUS_EL1, Selected Error Record Primary Status Register

ESR_EL1 ESR_EL1, Exception Syndrome Register (EL1)

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14664
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
ESR_EL2 ESR_EL2, Exception Syndrome Register (EL2)

ESR_EL3 ESR_EL3, Exception Syndrome Register (EL3)

FAR_EL1 FAR_EL1, Fault Address Register (EL1)

FAR_EL2 FAR_EL2, Fault Address Register (EL2)

FAR_EL3 FAR_EL3, Fault Address Register (EL3)

FPCR FPCR, Floating-point Control Register

FPEXC32_EL2 FPEXC32_EL2, Floating-Point Exception Control Register

FPSR FPSR, Floating-point Status Register

GCR_EL1 GCR_EL1, Tag Control Register.

GCSCR_EL1 GCSCR_EL1, Guarded Control Stack Control Register (EL1)

GCSCR_EL2 GCSCR_EL2, Guarded Control Stack Control Register (EL2)

GCSCR_EL3 GCSCR_EL3, Guarded Control Stack Control Register (EL3)

GCSCRE0_EL1 GCSCRE0_EL1, Guarded Control Stack Control Register (EL0)

GCSPOPCX GCSPOPCX, Guarded Control Stack Pop and Compare exception return record

GCSPOPM GCSPOPM, Guarded Control Stack Pop

GCSPOPX GCSPOPX, Guarded Control Stack Pop exception return record

GCSPR_EL0 GCSPR_EL0, Guarded Control Stack Pointer Register (EL0)

GCSPR_EL1 GCSPR_EL1, Guarded Control Stack Pointer Register (EL1)

GCSPR_EL2 GCSPR_EL2, Guarded Control Stack Pointer Register (EL2)

GCSPR_EL3 GCSPR_EL3, Guarded Control Stack Pointer Register (EL3)

GCSPUSHM GCSPUSHM, Guarded Control Stack Push

GCSPUSHX GCSPUSHX, Guarded Control Stack Push exception return record

GCSSS1 GCSSS1, Guarded Control Stack Switch Stack 1

GCSSS2 GCSSS2, Guarded Control Stack Switch Stack 2

GMID_EL1 GMID_EL1, Multiple tag transfer ID Register

GPCCR_EL3 GPCCR_EL3, Granule Protection Check Control Register (EL3)

GPTBR_EL3 GPTBR_EL3, Granule Protection Table Base Register

HACR_EL2 HACR_EL2, Hypervisor Auxiliary Control Register

HAFGRTR_EL2 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCR_EL2 HCR_EL2, Hypervisor Configuration Register

HCRX_EL2 HCRX_EL2, Extended Hypervisor Configuration Register

HDFGRTR2_EL2 HDFGRTR2_EL2, Hypervisor Debug Fine-Grained Read Trap Register 2

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14665
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
HDFGRTR_EL2 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

HDFGWTR2_EL2 HDFGWTR2_EL2, Hypervisor Debug Fine-Grained Write Trap Register 2

HDFGWTR_EL2 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

HFGITR2_EL2 HFGITR2_EL2, Hypervisor Fine-Grained Instruction Trap Register 2

HFGITR_EL2 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

HFGRTR2_EL2 HFGRTR2_EL2, Hypervisor Fine-Grained Read Trap Register 2

HFGRTR_EL2 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

HFGWTR2_EL2 HFGWTR2_EL2, Hypervisor Fine-Grained Write Trap Register 2

HFGWTR_EL2 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

HPFAR_EL2 HPFAR_EL2, Hypervisor IPA Fault Address Register

HSTR_EL2 HSTR_EL2, Hypervisor System Trap Register

IC IALLU IC IALLU, Instruction Cache Invalidate All to PoU

IC IALLUIS IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU IC IVAU, Instruction Cache line Invalidate by VA to PoU

ID_AA64AFR0_EL1 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

ID_AA64DFR0_EL1 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

ID_AA64ISAR2_EL1 ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2

ID_AA64MMFR0_EL1 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

ID_AA64MMFR3_EL1 ID_AA64MMFR3_EL1, AArch64 Memory Model Feature Register 3

ID_AA64MMFR4_EL1 ID_AA64MMFR4_EL1, AArch64 Memory Model Feature Register 4

ID_AA64PFR0_EL1 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

ID_AA64PFR2_EL1 ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2

ID_AA64SMFR0_EL1 ID_AA64SMFR0_EL1, SME Feature ID Register 0

ID_AA64ZFR0_EL1 ID_AA64ZFR0_EL1, SVE Feature ID Register 0

ID_AFR0_EL1 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14666
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
ID_DFR0_EL1 ID_DFR0_EL1, AArch32 Debug Feature Register 0

ID_DFR1_EL1 ID_DFR1_EL1, Debug Feature Register 1

ID_ISAR0_EL1 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

ID_MMFR4_EL1 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

ID_MMFR5_EL1 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

ID_PFR0_EL1 ID_PFR0_EL1, AArch32 Processor Feature Register 0

ID_PFR1_EL1 ID_PFR1_EL1, AArch32 Processor Feature Register 1

ID_PFR2_EL1 ID_PFR2_EL1, AArch32 Processor Feature Register 2

IFSR32_EL2 IFSR32_EL2, Instruction Fault Status Register (EL2)

ISR_EL1 ISR_EL1, Interrupt Status Register

LORC_EL1 LORC_EL1, LORegion Control (EL1)

LOREA_EL1 LOREA_EL1, LORegion End Address (EL1)

LORID_EL1 LORID_EL1, LORegionID (EL1)

LORN_EL1 LORN_EL1, LORegion Number (EL1)

LORSA_EL1 LORSA_EL1, LORegion Start Address (EL1)

MAIR2_EL1 MAIR2_EL1, Extended Memory Attribute Indirection Register (EL1)

MAIR2_EL2 MAIR2_EL2, Extended Memory Attribute Indirection Register (EL2)

MAIR2_EL3 MAIR2_EL3, Extended Memory Attribute Indirection Register (EL3)

MAIR_EL1 MAIR_EL1, Memory Attribute Indirection Register (EL1)

MAIR_EL2 MAIR_EL2, Memory Attribute Indirection Register (EL2)

MAIR_EL3 MAIR_EL3, Memory Attribute Indirection Register (EL3)

MDCCINT_EL1 MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14667
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
MDCCSR_EL0 MDCCSR_EL0, Monitor DCC Status Register

MDCR_EL2 MDCR_EL2, Monitor Debug Configuration Register (EL2)

MDCR_EL3 MDCR_EL3, Monitor Debug Configuration Register (EL3)

MDRAR_EL1 MDRAR_EL1, Monitor Debug ROM Address Register

MDSCR_EL1 MDSCR_EL1, Monitor Debug System Control Register

MDSELR_EL1 MDSELR_EL1, Breakpoint and Watchpoint Selection Register

MECID_A0_EL2 MECID_A0_EL2, Alternate MECID for EL2 and EL2&0 translation regimes

MECID_A1_EL2 MECID_A1_EL2, Alternate MECID for EL2&0 translation regimes.

MECID_P0_EL2 MECID_P0_EL2, Primary MECID for EL2 and EL2&0 translation regimes

MECID_P1_EL2 MECID_P1_EL2, Primary MECID for EL2&0 translation regimes

MECID_RL_A_EL3 MECID_RL_A_EL3, Realm PA space Alternate MECID for EL3 stage 1 translation
regime

MECIDR_EL2 MECIDR_EL2, MEC Identification Register

MFAR_EL3 MFAR_EL3, Physical Fault Address Register (EL3)

MIDR_EL1 MIDR_EL1, Main ID Register

MPAM0_EL1 MPAM0_EL1, MPAM0 Register (EL1)

MPAM1_EL1 MPAM1_EL1, MPAM1 Register (EL1)

MPAM2_EL2 MPAM2_EL2, MPAM2 Register (EL2)

MPAM3_EL3 MPAM3_EL3, MPAM3 Register (EL3)

MPAMHCR_EL2 MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

MPAMIDR_EL1 MPAMIDR_EL1, MPAM ID Register (EL1)

MPAMSM_EL1 MPAMSM_EL1, MPAM Streaming Mode Register

MPAMVPM0_EL2 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

MPAMVPM1_EL2 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

MPAMVPM2_EL2 MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2

MPAMVPM3_EL2 MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

MPAMVPM4_EL2 MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

MPAMVPM5_EL2 MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

MPAMVPM6_EL2 MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

MPAMVPM7_EL2 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

MPAMVPMV_EL2 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

MPIDR_EL1 MPIDR_EL1, Multiprocessor Affinity Register

MVFR0_EL1 MVFR0_EL1, AArch32 Media and VFP Feature Register 0

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14668
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
MVFR1_EL1 MVFR1_EL1, AArch32 Media and VFP Feature Register 1

MVFR2_EL1 MVFR2_EL1, AArch32 Media and VFP Feature Register 2

NZCV NZCV, Condition Flags

OSDLR_EL1 OSDLR_EL1, OS Double Lock Register

OSDTRRX_EL1 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

OSDTRTX_EL1 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

OSECCR_EL1 OSECCR_EL1, OS Lock Exception Catch Control Register

OSLAR_EL1 OSLAR_EL1, OS Lock Access Register

OSLSR_EL1 OSLSR_EL1, OS Lock Status Register

PAN PAN, Privileged Access Never

PAR_EL1 PAR_EL1, Physical Address Register

PFAR_EL1 PFAR_EL1, Physical Fault Address Register (EL1)

PFAR_EL2 PFAR_EL2, Physical Fault Address Register (EL2)

PIR_EL1 PIR_EL1, Permission Indirection Register 1 (EL1)

PIR_EL2 PIR_EL2, Permission Indirection Register 2 (EL2)

PIR_EL3 PIR_EL3, Permission Indirection Register 3 (EL3)

PIRE0_EL1 PIRE0_EL1, Permission Indirection Register 0 (EL1)

PIRE0_EL2 PIRE0_EL2, Permission Indirection Register 0 (EL2)

PM PM, PMU Exception Mask

PMBIDR_EL1 PMBIDR_EL1, Profiling Buffer ID Register

PMBLIMITR_EL1 PMBLIMITR_EL1, Profiling Buffer Limit Address Register

PMBPTR_EL1 PMBPTR_EL1, Profiling Buffer Write Pointer Register

PMBSR_EL1 PMBSR_EL1, Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0 PMCCNTR_EL0, Performance Monitors Cycle Count Register

PMCCNTSVR_EL1 PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register

PMCEID0_EL0 PMCEID0_EL0, Performance Monitors Common Event Identification Register 0

PMCEID1_EL0 PMCEID1_EL0, Performance Monitors Common Event Identification Register 1

PMCNTENCLR_EL0 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register

PMCNTENSET_EL0 PMCNTENSET_EL0, Performance Monitors Count Enable Set Register

PMCR_EL0 PMCR_EL0, Performance Monitors Control Register

PMECR_EL1 PMECR_EL1, Performance Monitors Extended Control Register (EL1)

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14669
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

PMEVCNTSVR<n>_EL1 PMEVCNTSVR<n>_EL1

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

PMIAR_EL1 PMIAR_EL1, Performance Monitors Instruction Address Register

PMICFILTR_EL0 PMICFILTR_EL0, Performance Monitors Instruction Counter Filter Register

PMICNTR_EL0 PMICNTR_EL0, Performance Monitors Instruction Counter Register

PMICNTSVR_EL1 PMICNTSVR_EL1, Performance Monitors Instruction Count Saved Value Register

PMINTENCLR_EL1 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register

PMINTENSET_EL1 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register

PMMIR_EL1 PMMIR_EL1, Performance Monitors Machine Identification Register

PMOVSCLR_EL0 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register

PMSCR_EL1 PMSCR_EL1, Statistical Profiling Control Register (EL1)

PMSCR_EL2 PMSCR_EL2, Statistical Profiling Control Register (EL2)

PMSDSFR_EL1 PMSDSFR_EL1, Sampling Data Source Filter Register

PMSELR_EL0 PMSELR_EL0, Performance Monitors Event Counter Selection Register

PMSEVFR_EL1 PMSEVFR_EL1, Sampling Event Filter Register

PMSFCR_EL1 PMSFCR_EL1, Sampling Filter Control Register

PMSICR_EL1 PMSICR_EL1, Sampling Interval Counter Register

PMSIDR_EL1 PMSIDR_EL1, Sampling Profiling ID Register

PMSIRR_EL1 PMSIRR_EL1, Sampling Interval Reload Register

PMSLATFR_EL1 PMSLATFR_EL1, Sampling Latency Filter Register

PMSNEVFR_EL1 PMSNEVFR_EL1, Sampling Inverted Event Filter Register

PMSSCR_EL1 PMSSCR_EL1, Performance Monitors Snapshot Status and Capture Register

PMSWINC_EL0 PMSWINC_EL0, Performance Monitors Software Increment Register

PMUACR_EL1 PMUACR_EL1, Performance Monitors User Access Control Register

PMUSERENR_EL0 PMUSERENR_EL0, Performance Monitors User Enable Register

PMXEVCNTR_EL0 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

PMZR_EL0 PMZR_EL0, Performance Monitors Zero with Mask

POR_EL0 POR_EL0, Permission Overlay Register 0 (EL0)

POR_EL1 POR_EL1, Permission Overlay Register 1 (EL1)

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14670
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
POR_EL2 POR_EL2, Permission Overlay Register 2 (EL2)

POR_EL3 POR_EL3, Permission Overlay Register 3 (EL3)

RCWMASK_EL1 RCWMASK_EL1, Read Check Write Instruction Mask (EL1)

RCWSMASK_EL1 RCWSMASK_EL1, Software Read Check Write Instruction Mask (EL1)

REVIDR_EL1 REVIDR_EL1, Revision ID Register

RGSR_EL1 RGSR_EL1, Random Allocation Tag Seed Register.

RMR_EL1 RMR_EL1, Reset Management Register (EL1)

RMR_EL2 RMR_EL2, Reset Management Register (EL2)

RMR_EL3 RMR_EL3, Reset Management Register (EL3)

RNDR RNDR, Random Number

RNDRRS RNDRRS, Random Number Full Entropy

RVBAR_EL1 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not
implemented)

RVBAR_EL2 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

S2PIR_EL2 S2PIR_EL2, Stage 2 Permission Indirection Register (EL2)

S2POR_EL1 S2POR_EL1, Stage 2 Permission Overlay Register (EL1)

S3_<op1>_<Cn>_<Cm>_<op2> S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED Registers

SCR_EL3 SCR_EL3, Secure Configuration Register

SCTLR2_EL1 SCTLR2_EL1, System Control Register (EL1)

SCTLR2_EL2 SCTLR2_EL2, System Control Register (EL2)

SCTLR2_EL3 SCTLR2_EL3, System Control Register (EL3)

SCTLR_EL1 SCTLR_EL1, System Control Register (EL1)

SCTLR_EL2 SCTLR_EL2, System Control Register (EL2)

SCTLR_EL3 SCTLR_EL3, System Control Register (EL3)

SCXTNUM_EL0 SCXTNUM_EL0, EL0 Read/Write Software Context Number

SCXTNUM_EL1 SCXTNUM_EL1, EL1 Read/Write Software Context Number

SCXTNUM_EL2 SCXTNUM_EL2, EL2 Read/Write Software Context Number

SCXTNUM_EL3 SCXTNUM_EL3, EL3 Read/Write Software Context Number

SDER32_EL2 SDER32_EL2, AArch32 Secure Debug Enable Register

SDER32_EL3 SDER32_EL3, AArch32 Secure Debug Enable Register

SMCR_EL1 SMCR_EL1, SME Control Register (EL1)

SMCR_EL2 SMCR_EL2, SME Control Register (EL2)

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14671
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
SMCR_EL3 SMCR_EL3, SME Control Register (EL3)

SMIDR_EL1 SMIDR_EL1, Streaming Mode Identification Register

SMPRI_EL1 SMPRI_EL1, Streaming Mode Priority Register

SMPRIMAP_EL2 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

SP_EL0 SP_EL0, Stack Pointer (EL0)

SP_EL1 SP_EL1, Stack Pointer (EL1)

SP_EL2 SP_EL2, Stack Pointer (EL2)

SP_EL3 SP_EL3, Stack Pointer (EL3)

SPMACCESSR_EL1 SPMACCESSR_EL1, System Performance Monitors Access Register (EL1)

SPMACCESSR_EL2 SPMACCESSR_EL2, System Performance Monitors Access Register (EL2)

SPMACCESSR_EL3 SPMACCESSR_EL3, System Performance Monitors Access Register (EL3)

SPMCFGR_EL1 SPMCFGR_EL1, System Performance Monitors Configuration Register

SPMCGCR<n>_EL1 SPMCGCR<n>_EL1, System PMU Counter Group Configuration Register <n>, n
= 0 - 1

SPMCNTENCLR_EL0 SPMCNTENCLR_EL0, System Performance Monitors Count Enable Clear
Register

SPMCNTENSET_EL0 SPMCNTENSET_EL0, System Performance Monitors Count Enable Set Register

SPMCR_EL0 SPMCR_EL0, System Performance Monitor Control Register

SPMDEVAFF_EL1 SPMDEVAFF_EL1, System Performance Monitors Device Affinity Register

SPMDEVARCH_EL1 SPMDEVARCH_EL1, System Performance Monitors Device Architecture Register

SPMEVCNTR<n>_EL0 SPMEVCNTR<n>_EL0, System Performance Monitors Event Count Register, n =
0 - 63

SPMEVFILT2R<n>_EL0 SPMEVFILT2R<n>_EL0, System Performance Monitors Event Filter Control
Register 2, n = 0 - 63

SPMEVFILTR<n>_EL0 SPMEVFILTR<n>_EL0, System Performance Monitors Event Filter Control
Register, n = 0 - 63

SPMEVTYPER<n>_EL0 SPMEVTYPER<n>_EL0, System Performance Monitors Event Type Register, n =
0 - 63

SPMIIDR_EL1 SPMIIDR_EL1, System PMU Implementation Identification Register

SPMINTENCLR_EL1 SPMINTENCLR_EL1, System Performance Monitors Interrupt Enable Clear
Register

SPMINTENSET_EL1 SPMINTENSET_EL1, System Performance Monitors Interrupt Enable Set Register

SPMOVSCLR_EL0 SPMOVSCLR_EL0, System Performance Monitors Overflow Flag Status Clear
Register

SPMOVSSET_EL0 SPMOVSSET_EL0, System Performance Monitors Overflow Flag Status Set
Register

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14672
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
SPMROOTCR_EL3 SPMROOTCR_EL3, System Performance Monitors Root and Realm Control
Register

SPMSCR_EL1 SPMSCR_EL1, System Performance Monitors Secure Control Register

SPMSELR_EL0 SPMSELR_EL0, System Performance Monitors Select Register

SPSel SPSel, Stack Pointer Select

SPSR_abt SPSR_abt, Saved Program Status Register (Abort mode)

SPSR_EL1 SPSR_EL1, Saved Program Status Register (EL1)

SPSR_EL2 SPSR_EL2, Saved Program Status Register (EL2)

SPSR_EL3 SPSR_EL3, Saved Program Status Register (EL3)

SPSR_fiq SPSR_fiq, Saved Program Status Register (FIQ mode)

SPSR_irq SPSR_irq, Saved Program Status Register (IRQ mode)

SPSR_und SPSR_und, Saved Program Status Register (Undefined mode)

SSBS SSBS, Speculative Store Bypass Safe

SVCR SVCR, Streaming Vector Control Register

TCO TCO, Tag Check Override

TCR2_EL1 TCR2_EL1, Extended Translation Control Register (EL1)

TCR2_EL2 TCR2_EL2, Extended Translation Control Register (EL2)

TCR_EL1 TCR_EL1, Translation Control Register (EL1)

TCR_EL2 TCR_EL2, Translation Control Register (EL2)

TCR_EL3 TCR_EL3, Translation Control Register (EL3)

TFSR_EL1 TFSR_EL1, Tag Fault Status Register (EL1)

TFSR_EL2 TFSR_EL2, Tag Fault Status Register (EL2)

TFSR_EL3 TFSR_EL3, Tag Fault Status Register (EL3)

TFSRE0_EL1 TFSRE0_EL1, Tag Fault Status Register (EL0).

TLBI ALLE1, TLBI ALLE1NXS TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1

TLBI ALLE1IS, TLBI ALLE1ISNXS TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE1OS, TLBI ALLE1OSNXS TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable

TLBI ALLE2, TLBI ALLE2NXS TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

TLBI ALLE2IS, TLBI ALLE2ISNXS TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE2OS, TLBI ALLE2OSNXS TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

TLBI ALLE3, TLBI ALLE3NXS TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3

TLBI ALLE3IS, TLBI ALLE3ISNXS TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable

TLBI ALLE3OS, TLBI ALLE3OSNXS TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14673
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TLBI ASIDE1, TLBI ASIDE1NXS TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1

TLBI ASIDE1IS, TLBI ASIDE1ISNXS TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner
Shareable

TLBI ASIDE1OS, TLBI ASIDE1OSNXS TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer
Shareable

TLBI IPAS2E1, TLBI IPAS2E1NXS TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1, Inner Shareable

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, EL1, Outer Shareable

TLBI IPAS2LE1, TLBI IPAS2LE1NXS TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1, Inner Shareable

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Outer Shareable

TLBI PAALL TLBI PAALL, TLB Invalidate GPT Information by PA, All Entries, Local

TLBI PAALLOS TLBI PAALLOS, TLB Invalidate GPT Information by PA, All Entries, Outer
Shareable

TLBI RIPAS2E1, TLBI RIPAS2E1NXS TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1, Inner Shareable

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1, Outer Shareable

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

TLBI RPALOS TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer
Shareable

TLBI RPAOS TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable

TLBI RVAAE1, TLBI RVAAE1NXS TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

TLBI RVAAE1IS, TLBI RVAAE1ISNXS TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID,
EL1, Inner Shareable

TLBI RVAAE1OS, TLBI RVAAE1OSNXS TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID,
EL1, Outer Shareable

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14674
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TLBI RVAALE1, TLBI RVAALE1NXS TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last
level, EL1

TLBI RVAALE1IS, TLBI RVAALE1ISNXS TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID,
Last Level, EL1, Inner Shareable

TLBI RVAALE1OS, TLBI RVAALE1OSNXS TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID,
Last Level, EL1, Outer Shareable

TLBI RVAE1, TLBI RVAE1NXS TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

TLBI RVAE1IS, TLBI RVAE1ISNXS TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner
Shareable

TLBI RVAE1OS, TLBI RVAE1OSNXS TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer
Shareable

TLBI RVAE2, TLBI RVAE2NXS TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

TLBI RVAE2IS, TLBI RVAE2ISNXS TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner
Shareable

TLBI RVAE2OS, TLBI RVAE2OSNXS TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer
Shareable

TLBI RVAE3, TLBI RVAE3NXS TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

TLBI RVAE3IS, TLBI RVAE3ISNXS TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner
Shareable

TLBI RVAE3OS, TLBI RVAE3OSNXS TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer
Shareable

TLBI RVALE1, TLBI RVALE1NXS TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

TLBI RVALE1IS, TLBI RVALE1ISNXS TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level,
EL1, Inner Shareable

TLBI RVALE1OS, TLBI RVALE1OSNXS TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level,
EL1, Outer Shareable

TLBI RVALE2, TLBI RVALE2NXS TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

TLBI RVALE2IS, TLBI RVALE2ISNXS TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level,
EL2, Inner Shareable

TLBI RVALE2OS, TLBI RVALE2OSNXS TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level,
EL2, Outer Shareable

TLBI RVALE3, TLBI RVALE3NXS TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

TLBI RVALE3IS, TLBI RVALE3ISNXS TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level,
EL3, Inner Shareable

TLBI RVALE3OS, TLBI RVALE3OSNXS TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level,
EL3, Outer Shareable

TLBI VAAE1, TLBI VAAE1NXS TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS, TLBI VAAE1ISNXS TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner
Shareable

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14675
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TLBI VAAE1OS, TLBI VAAE1OSNXS TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer
Shareable

TLBI VAALE1, TLBI VAALE1NXS TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

TLBI VAALE1IS, TLBI VAALE1ISNXS TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level,
EL1, Inner Shareable

TLBI VAALE1OS, TLBI VAALE1OSNXS TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last
Level, EL1, Outer Shareable

TLBI VAE1, TLBI VAE1NXS TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

TLBI VAE1IS, TLBI VAE1ISNXS TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE1OS, TLBI VAE1OSNXS TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

TLBI VAE2, TLBI VAE2NXS TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

TLBI VAE2IS, TLBI VAE2ISNXS TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE2OS, TLBI VAE2OSNXS TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

TLBI VAE3, TLBI VAE3NXS TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3

TLBI VAE3IS, TLBI VAE3ISNXS TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable

TLBI VAE3OS, TLBI VAE3OSNXS TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable

TLBI VALE1, TLBI VALE1NXS TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS, TLBI VALE1ISNXS TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner
Shareable

TLBI VALE1OS, TLBI VALE1OSNXS TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer
Shareable

TLBI VALE2, TLBI VALE2NXS TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS, TLBI VALE2ISNXS TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner
Shareable

TLBI VALE2OS, TLBI VALE2OSNXS TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer
Shareable

TLBI VALE3, TLBI VALE3NXS TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS, TLBI VALE3ISNXS TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner
Shareable

TLBI VALE3OS, TLBI VALE3OSNXS TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer
Shareable

TLBI VMALLE1, TLBI VMALLE1NXS TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1,
EL1

TLBI VMALLE1IS, TLBI VMALLE1ISNXS TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage
1, EL1, Inner Shareable

TLBI VMALLE1OS, TLBI
VMALLE1OSNXS

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage
1, EL1, Outer Shareable

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14676
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TLBI VMALLS12E1, TLBI
VMALLS12E1NXS

TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1

TLBI VMALLS12E1IS, TLBI
VMALLS12E1ISNXS

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at
Stage 1 and 2, EL1, Inner Shareable

TLBI VMALLS12E1OS, TLBI
VMALLS12E1OSNXS

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All
at Stage 1 and 2, EL1, Outer Shareable

TLBIP IPAS2E1, TLBIP IPAS2E1NXS TLBIP IPAS2E1, TLBIP IPAS2E1NXS, TLB Invalidate Pair by Intermediate
Physical Address, Stage 2, EL1

TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS, TLB Invalidate Pair by Intermediate
Physical Address, Stage 2, EL1, Inner Shareable

TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS, TLB Invalidate Pair by Intermediate
Physical Address, Stage 2, EL1, Outer Shareable

TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS, TLB Invalidate Pair by Intermediate
Physical Address, Stage 2, Last level, EL1

TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS, TLB Invalidate Pair by Intermediate
Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBIP IPAS2LE1OS, TLBIP
IPAS2LE1OSNXS

TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS, TLB Invalidate Pair by
Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1

TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, EL1, Inner Shareable

TLBIP RIPAS2E1OS, TLBIP
RIPAS2E1OSNXS

TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, EL1, Outer Shareable

TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1

TLBIP RIPAS2LE1IS, TLBIP
RIPAS2LE1ISNXS

TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

TLBIP RIPAS2LE1OS, TLBIP
RIPAS2LE1OSNXS

TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

TLBIP RVAAE1, TLBIP RVAAE1NXS TLBIP RVAAE1, TLBIP RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID,
EL1, Inner Shareable

TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS, TLB Range Invalidate by VA, All
ASID, EL1, Outer Shareable

TLBIP RVAALE1, TLBIP RVAALE1NXS TLBIP RVAALE1, TLBIP RVAALE1NXS, TLB Range Invalidate by VA, All ASID,
Last level, EL1

TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS, TLB Range Invalidate by VA, All
ASID, Last Level, EL1, Inner Shareable

TLBIP RVAALE1OS, TLBIP
RVAALE1OSNXS

TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS, TLB Range Invalidate by VA, All
ASID, Last Level, EL1, Outer Shareable

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14677
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TLBIP RVAE1, TLBIP RVAE1NXS TLBIP RVAE1, TLBIP RVAE1NXS, TLB Range Invalidate by VA, EL1

TLBIP RVAE1IS, TLBIP RVAE1ISNXS TLBIP RVAE1IS, TLBIP RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner
Shareable

TLBIP RVAE1OS, TLBIP RVAE1OSNXS TLBIP RVAE1OS, TLBIP RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer
Shareable

TLBIP RVAE2, TLBIP RVAE2NXS TLBIP RVAE2, TLBIP RVAE2NXS, TLB Range Invalidate by VA, EL2

TLBIP RVAE2IS, TLBIP RVAE2ISNXS TLBIP RVAE2IS, TLBIP RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner
Shareable

TLBIP RVAE2OS, TLBIP RVAE2OSNXS TLBIP RVAE2OS, TLBIP RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer
Shareable

TLBIP RVAE3, TLBIP RVAE3NXS TLBIP RVAE3, TLBIP RVAE3NXS, TLB Range Invalidate by VA, EL3

TLBIP RVAE3IS, TLBIP RVAE3ISNXS TLBIP RVAE3IS, TLBIP RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner
Shareable

TLBIP RVAE3OS, TLBIP RVAE3OSNXS TLBIP RVAE3OS, TLBIP RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer
Shareable

TLBIP RVALE1, TLBIP RVALE1NXS TLBIP RVALE1, TLBIP RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

TLBIP RVALE1IS, TLBIP RVALE1ISNXS TLBIP RVALE1IS, TLBIP RVALE1ISNXS, TLB Range Invalidate by VA, Last level,
EL1, Inner Shareable

TLBIP RVALE1OS, TLBIP RVALE1OSNXS TLBIP RVALE1OS, TLBIP RVALE1OSNXS, TLB Range Invalidate by VA, Last
level, EL1, Outer Shareable

TLBIP RVALE2, TLBIP RVALE2NXS TLBIP RVALE2, TLBIP RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

TLBIP RVALE2IS, TLBIP RVALE2ISNXS TLBIP RVALE2IS, TLBIP RVALE2ISNXS, TLB Range Invalidate by VA, Last level,
EL2, Inner Shareable

TLBIP RVALE2OS, TLBIP RVALE2OSNXS TLBIP RVALE2OS, TLBIP RVALE2OSNXS, TLB Range Invalidate by VA, Last
level, EL2, Outer Shareable

TLBIP RVALE3, TLBIP RVALE3NXS TLBIP RVALE3, TLBIP RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

TLBIP RVALE3IS, TLBIP RVALE3ISNXS TLBIP RVALE3IS, TLBIP RVALE3ISNXS, TLB Range Invalidate by VA, Last level,
EL3, Inner Shareable

TLBIP RVALE3OS, TLBIP RVALE3OSNXS TLBIP RVALE3OS, TLBIP RVALE3OSNXS, TLB Range Invalidate by VA, Last
level, EL3, Outer Shareable

TLBIP VAAE1, TLBIP VAAE1NXS TLBIP VAAE1, TLBIP VAAE1NXS, TLB Invalidate Pair by VA, All ASID, EL1

TLBIP VAAE1IS, TLBIP VAAE1ISNXS TLBIP VAAE1IS, TLBIP VAAE1ISNXS, TLB Invalidate Pair by VA, All ASID, EL1,
Inner Shareable

TLBIP VAAE1OS, TLBIP VAAE1OSNXS TLBIP VAAE1OS, TLBIP VAAE1OSNXS, TLB Invalidate Pair by VA, All ASID,
EL1, Outer Shareable

TLBIP VAALE1, TLBIP VAALE1NXS TLBIP VAALE1, TLBIP VAALE1NXS, TLB Invalidate Pair by VA, All ASID, Last
level, EL1

TLBIP VAALE1IS, TLBIP VAALE1ISNXS TLBIP VAALE1IS, TLBIP VAALE1ISNXS, TLB Invalidate Pair by VA, All ASID,
Last Level, EL1, Inner Shareable

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14678
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TLBIP VAALE1OS, TLBIP VAALE1OSNXS TLBIP VAALE1OS, TLBIP VAALE1OSNXS, TLB Invalidate Pair by VA, All ASID,
Last Level, EL1, Outer Shareable

TLBIP VAE1, TLBIP VAE1NXS TLBIP VAE1, TLBIP VAE1NXS, TLB Invalidate Pair by VA, EL1

TLBIP VAE1IS, TLBIP VAE1ISNXS TLBIP VAE1IS, TLBIP VAE1ISNXS, TLB Invalidate Pair by VA, EL1, Inner
Shareable

TLBIP VAE1OS, TLBIP VAE1OSNXS TLBIP VAE1OS, TLBIP VAE1OSNXS, TLB Invalidate Pair by VA, EL1, Outer
Shareable

TLBIP VAE2, TLBIP VAE2NXS TLBIP VAE2, TLBIP VAE2NXS, TLB Invalidate Pair by VA, EL2

TLBIP VAE2IS, TLBIP VAE2ISNXS TLBIP VAE2IS, TLBIP VAE2ISNXS, TLB Invalidate Pair by VA, EL2, Inner
Shareable

TLBIP VAE2OS, TLBIP VAE2OSNXS TLBIP VAE2OS, TLBIP VAE2OSNXS, TLB Invalidate Pair by VA, EL2, Outer
Shareable

TLBIP VAE3, TLBIP VAE3NXS TLBIP VAE3, TLBIP VAE3NXS, TLB Invalidate Pair by VA, EL3

TLBIP VAE3IS, TLBIP VAE3ISNXS TLBIP VAE3IS, TLBIP VAE3ISNXS, TLB Invalidate Pair by VA, EL3, Inner
Shareable

TLBIP VAE3OS, TLBIP VAE3OSNXS TLBIP VAE3OS, TLBIP VAE3OSNXS, TLB Invalidate Pair by VA, EL3, Outer
Shareable

TLBIP VALE1, TLBIP VALE1NXS TLBIP VALE1, TLBIP VALE1NXS, TLB Invalidate Pair by VA, Last level, EL1

TLBIP VALE1IS, TLBIP VALE1ISNXS TLBIP VALE1IS, TLBIP VALE1ISNXS, TLB Invalidate Pair by VA, Last level, EL1,
Inner Shareable

TLBIP VALE1OS, TLBIP VALE1OSNXS TLBIP VALE1OS, TLBIP VALE1OSNXS, TLB Invalidate Pair by VA, Last level,
EL1, Outer Shareable

TLBIP VALE2, TLBIP VALE2NXS TLBIP VALE2, TLBIP VALE2NXS, TLB Invalidate Pair by VA, Last level, EL2

TLBIP VALE2IS, TLBIP VALE2ISNXS TLBIP VALE2IS, TLBIP VALE2ISNXS, TLB Invalidate Pair by VA, Last level, EL2,
Inner Shareable

TLBIP VALE2OS, TLBIP VALE2OSNXS TLBIP VALE2OS, TLBIP VALE2OSNXS, TLB Invalidate Pair by VA, Last level,
EL2, Outer Shareable

TLBIP VALE3, TLBIP VALE3NXS TLBIP VALE3, TLBIP VALE3NXS, TLB Invalidate Pair by VA, Last level, EL3

TLBIP VALE3IS, TLBIP VALE3ISNXS TLBIP VALE3IS, TLBIP VALE3ISNXS, TLB Invalidate Pair by VA, Last level, EL3,
Inner Shareable

TLBIP VALE3OS, TLBIP VALE3OSNXS TLBIP VALE3OS, TLBIP VALE3OSNXS, TLB Invalidate Pair by VA, Last level,
EL3, Outer Shareable

TPIDR2_EL0 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2

TPIDR_EL0 TPIDR_EL0, EL0 Read/Write Software Thread ID Register

TPIDR_EL1 TPIDR_EL1, EL1 Software Thread ID Register

TPIDR_EL2 TPIDR_EL2, EL2 Software Thread ID Register

TPIDR_EL3 TPIDR_EL3, EL3 Software Thread ID Register

TPIDRRO_EL0 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14679
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TRBBASER_EL1 TRBBASER_EL1, Trace Buffer Base Address Register

TRBIDR_EL1 TRBIDR_EL1, Trace Buffer ID Register

TRBLIMITR_EL1 TRBLIMITR_EL1, Trace Buffer Limit Address Register

TRBMAR_EL1 TRBMAR_EL1, Trace Buffer Memory Attribute Register

TRBMPAM_EL1 TRBMPAM_EL1, Trace Buffer MPAM Configuration Register

TRBPTR_EL1 TRBPTR_EL1, Trace Buffer Write Pointer Register

TRBSR_EL1 TRBSR_EL1, Trace Buffer Status/syndrome Register

TRBTRG_EL1 TRBTRG_EL1, Trace Buffer Trigger Counter Register

TRCACATR<n> TRCACATR<n>, Trace Address Comparator Access Type Register <n>, n = 0 - 15

TRCACVR<n> TRCACVR<n>, Trace Address Comparator Value Register <n>, n = 0 - 15

TRCAUTHSTATUS TRCAUTHSTATUS, Trace Authentication Status Register

TRCAUXCTLR TRCAUXCTLR, Trace Auxiliary Control Register

TRCBBCTLR TRCBBCTLR, Trace Branch Broadcast Control Register

TRCCCCTLR TRCCCCTLR, Trace Cycle Count Control Register

TRCCIDCCTLR0 TRCCIDCCTLR0, Trace Context Identifier Comparator Control Register 0

TRCCIDCCTLR1 TRCCIDCCTLR1, Trace Context Identifier Comparator Control Register 1

TRCCIDCVR<n> TRCCIDCVR<n>, Trace Context Identifier Comparator Value Registers <n>, n =
0 - 7

TRCCLAIMCLR TRCCLAIMCLR, Trace Claim Tag Clear Register

TRCCLAIMSET TRCCLAIMSET, Trace Claim Tag Set Register

TRCCNTCTLR<n> TRCCNTCTLR<n>, Trace Counter Control Register <n>, n = 0 - 3

TRCCNTRLDVR<n> TRCCNTRLDVR<n>, Trace Counter Reload Value Register <n>, n = 0 - 3

TRCCNTVR<n> TRCCNTVR<n>, Trace Counter Value Register <n>, n = 0 - 3

TRCCONFIGR TRCCONFIGR, Trace Configuration Register

TRCDEVARCH TRCDEVARCH, Trace Device Architecture Register

TRCDEVID TRCDEVID, Trace Device Configuration Register

TRCEVENTCTL0R TRCEVENTCTL0R, Trace Event Control 0 Register

TRCEVENTCTL1R TRCEVENTCTL1R, Trace Event Control 1 Register

TRCEXTINSELR<n> TRCEXTINSELR<n>, Trace External Input Select Register <n>, n = 0 - 3

TRCIDR0 TRCIDR0, Trace ID Register 0

TRCIDR1 TRCIDR1, Trace ID Register 1

TRCIDR10 TRCIDR10, Trace ID Register 10

TRCIDR11 TRCIDR11, Trace ID Register 11

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14680
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TRCIDR12 TRCIDR12, Trace ID Register 12

TRCIDR13 TRCIDR13, Trace ID Register 13

TRCIDR2 TRCIDR2, Trace ID Register 2

TRCIDR3 TRCIDR3, Trace ID Register 3

TRCIDR4 TRCIDR4, Trace ID Register 4

TRCIDR5 TRCIDR5, Trace ID Register 5

TRCIDR6 TRCIDR6, Trace ID Register 6

TRCIDR7 TRCIDR7, Trace ID Register 7

TRCIDR8 TRCIDR8, Trace ID Register 8

TRCIDR9 TRCIDR9, Trace ID Register 9

TRCIMSPEC0 TRCIMSPEC0, Trace IMP DEF Register 0

TRCIMSPEC<n> TRCIMSPEC<n>, Trace IMP DEF Register <n>, n = 1 - 7

TRCIT TRCIT, Trace Instrumentation

TRCITECR_EL1 TRCITECR_EL1, Instrumentation Trace Control Register (EL1)

TRCITECR_EL2 TRCITECR_EL2, Instrumentation Trace Control Register (EL2)

TRCITEEDCR TRCITEEDCR, Instrumentation Trace Extension External Debug Control Register

TRCOSLSR TRCOSLSR, Trace OS Lock Status Register

TRCPRGCTLR TRCPRGCTLR, Trace Programming Control Register

TRCQCTLR TRCQCTLR, Trace Q Element Control Register

TRCRSCTLR<n> TRCRSCTLR<n>, Trace Resource Selection Control Register <n>, n = 2 - 31

TRCRSR TRCRSR, Trace Resources Status Register

TRCSEQEVR<n> TRCSEQEVR<n>, Trace Sequencer State Transition Control Register <n>, n = 0
- 2

TRCSEQRSTEVR TRCSEQRSTEVR, Trace Sequencer Reset Control Register

TRCSEQSTR TRCSEQSTR, Trace Sequencer State Register

TRCSSCCR<n> TRCSSCCR<n>, Trace Single-shot Comparator Control Register <n>, n = 0 - 7

TRCSSCSR<n> TRCSSCSR<n>, Trace Single-shot Comparator Control Status Register <n>, n =
0 - 7

TRCSSPCICR<n> TRCSSPCICR<n>, Trace Single-shot Processing Element Comparator Input
Control Register <n>, n = 0 - 7

TRCSTALLCTLR TRCSTALLCTLR, Trace Stall Control Register

TRCSTATR TRCSTATR, Trace Status Register

TRCSYNCPR TRCSYNCPR, Trace Synchronization Period Register

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14681
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
TRCTRACEIDR TRCTRACEIDR, Trace ID Register

TRCTSCTLR TRCTSCTLR, Trace Timestamp Control Register

TRCVICTLR TRCVICTLR, Trace ViewInst Main Control Register

TRCVIIECTLR TRCVIIECTLR, Trace ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR TRCVIPCSSCTLR, Trace ViewInst Start/Stop PE Comparator Control Register

TRCVISSCTLR TRCVISSCTLR, Trace ViewInst Start/Stop Control Register

TRCVMIDCCTLR0 TRCVMIDCCTLR0, Trace Virtual Context Identifier Comparator Control Register
0

TRCVMIDCCTLR1 TRCVMIDCCTLR1, Trace Virtual Context Identifier Comparator Control Register
1

TRCVMIDCVR<n> TRCVMIDCVR<n>, Trace Virtual Context Identifier Comparator Value Register
<n>, n = 0 - 7

TRFCR_EL1 TRFCR_EL1, Trace Filter Control Register (EL1)

TRFCR_EL2 TRFCR_EL2, Trace Filter Control Register (EL2)

TTBR0_EL1 TTBR0_EL1, Translation Table Base Register 0 (EL1)

TTBR0_EL2 TTBR0_EL2, Translation Table Base Register 0 (EL2)

TTBR0_EL3 TTBR0_EL3, Translation Table Base Register 0 (EL3)

TTBR1_EL1 TTBR1_EL1, Translation Table Base Register 1 (EL1)

TTBR1_EL2 TTBR1_EL2, Translation Table Base Register 1 (EL2)

UAO UAO, User Access Override

VBAR_EL1 VBAR_EL1, Vector Base Address Register (EL1)

VBAR_EL2 VBAR_EL2, Vector Base Address Register (EL2)

VBAR_EL3 VBAR_EL3, Vector Base Address Register (EL3)

VDISR_EL2 VDISR_EL2, Virtual Deferred Interrupt Status Register (EL2)

VMECID_A_EL2 VMECID_A_EL2, Alternate MECID for EL1&0 stage 2 translation regime

VMECID_P_EL2 VMECID_P_EL2, Primary MECID for EL1&0 stage 2 translation regime

VMPIDR_EL2 VMPIDR_EL2, Virtualization Multiprocessor ID Register

VNCR_EL2 VNCR_EL2, Virtual Nested Control Register

VPIDR_EL2 VPIDR_EL2, Virtualization Processor ID Register

VSESR_EL2 VSESR_EL2, Virtual SError Exception Syndrome Register

VSTCR_EL2 VSTCR_EL2, Virtualization Secure Translation Control Register

VSTTBR_EL2 VSTTBR_EL2, Virtualization Secure Translation Table Base Register

VTCR_EL2 VTCR_EL2, Virtualization Translation Control Register

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14682
ID032224 Non-Confidential

Registers Index
K17.2 Alphabetical index of AArch64 registers and System instructions
VTTBR_EL2 VTTBR_EL2, Virtualization Translation Table Base Register

ZCR_EL1 ZCR_EL1, SVE Control Register (EL1)

ZCR_EL2 ZCR_EL2, SVE Control Register (EL2)

ZCR_EL3 ZCR_EL3, SVE Control Register (EL3)

Table K17-9 Alphabetical index of AArch64 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14683
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3 Functional index of AArch64 registers and System instructions

This section is an index of the AArch64 registers and System instructions, divided by functional group. Each of the
following sections lists the registers for a functional group:

• Special-purpose registers.

• VMSA-specific registers.

• ID registers.

• Performance monitors registers.

• Activity monitors registers.

• Debug registers.

• Trace registers.

• Branch Record Buffer registers.

• RAS registers.

• Root Security state registers.

• Memory Partitioning and Monitoring registers.

• Generic timer registers.

• Cache maintenance system instructions.

• Address translation system instructions.

• TLB maintenance system instructions.

• Prediction restriction System instructions.

• Base system registers.

K17.3.1 Special-purpose registers

This section is an index to the registers in the Special-purpose registers functional group.

Table K17-10 Special-purpose registers

Register Description, see

ELR_EL1 ELR_EL1

ELR_EL2 ELR_EL2

ELR_EL3 ELR_EL3

SP_EL0 SP_EL0

SP_EL1 SP_EL1

SP_EL2 SP_EL2

SP_EL3 SP_EL3

SPSR_abt SPSR_abt

SPSR_EL1 SPSR_EL1

SPSR_EL2 SPSR_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14684
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.2 VMSA-specific registers

This section is an index to the registers in the Virtual memory control registers functional group.

SPSR_EL3 SPSR_EL3

SPSR_fiq SPSR_fiq

SPSR_irq SPSR_irq

SPSR_und SPSR_und

Table K17-10 Special-purpose registers (continued)

Register Description, see

Table K17-11 VMSA-specific registers

Register Description, see

AMAIR2_EL1 AMAIR2_EL1

AMAIR2_EL2 AMAIR2_EL2

AMAIR2_EL3 AMAIR2_EL3

AMAIR_EL1 AMAIR_EL1

AMAIR_EL2 AMAIR_EL2

AMAIR_EL3 AMAIR_EL3

CONTEXTIDR_EL1 CONTEXTIDR_EL1

CONTEXTIDR_EL2 CONTEXTIDR_EL2

DACR32_EL2 DACR32_EL2

GPCCR_EL3 GPCCR_EL3

GPTBR_EL3 GPTBR_EL3

LORC_EL1 LORC_EL1

LOREA_EL1 LOREA_EL1

LORID_EL1 LORID_EL1

LORN_EL1 LORN_EL1

LORSA_EL1 LORSA_EL1

MAIR2_EL1 MAIR2_EL1

MAIR2_EL2 MAIR2_EL2

MAIR2_EL3 MAIR2_EL3

MAIR_EL1 MAIR_EL1

MAIR_EL2 MAIR_EL2

MAIR_EL3 MAIR_EL3

PIR_EL1 PIR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14685
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.3 ID registers

This section is an index to the registers in the Identification registers functional group.

PIR_EL2 PIR_EL2

PIR_EL3 PIR_EL3

PIRE0_EL1 PIRE0_EL1

PIRE0_EL2 PIRE0_EL2

POR_EL0 POR_EL0

POR_EL1 POR_EL1

POR_EL2 POR_EL2

POR_EL3 POR_EL3

RCWMASK_EL1 RCWMASK_EL1

RCWSMASK_EL1 RCWSMASK_EL1

S2PIR_EL2 S2PIR_EL2

S2POR_EL1 S2POR_EL1

TCR2_EL1 TCR2_EL1

TCR2_EL2 TCR2_EL2

TCR_EL1 TCR_EL1

TCR_EL2 TCR_EL2

TCR_EL3 TCR_EL3

TTBR0_EL1 TTBR0_EL1

TTBR0_EL2 TTBR0_EL2

TTBR0_EL3 TTBR0_EL3

TTBR1_EL1 TTBR1_EL1

TTBR1_EL2 TTBR1_EL2

VTCR_EL2 VTCR_EL2

VTTBR_EL2 VTTBR_EL2

Table K17-11 VMSA-specific registers (continued)

Register Description, see

Table K17-12 ID registers

Register Description, see

CCSIDR2_EL1 CCSIDR2_EL1

CCSIDR_EL1 CCSIDR_EL1

CLIDR_EL1 CLIDR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14686
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
CSSELR_EL1 CSSELR_EL1

CTR_EL0 CTR_EL0

DCZID_EL0 DCZID_EL0

GMID_EL1 GMID_EL1

ID_AA64AFR0_EL1 ID_AA64AFR0_EL1

ID_AA64AFR1_EL1 ID_AA64AFR1_EL1

ID_AA64DFR0_EL1 ID_AA64DFR0_EL1

ID_AA64DFR1_EL1 ID_AA64DFR1_EL1

ID_AA64ISAR0_EL1 ID_AA64ISAR0_EL1

ID_AA64ISAR1_EL1 ID_AA64ISAR1_EL1

ID_AA64ISAR2_EL1 ID_AA64ISAR2_EL1

ID_AA64MMFR0_EL1 ID_AA64MMFR0_EL1

ID_AA64MMFR1_EL1 ID_AA64MMFR1_EL1

ID_AA64MMFR2_EL1 ID_AA64MMFR2_EL1

ID_AA64MMFR3_EL1 ID_AA64MMFR3_EL1

ID_AA64MMFR4_EL1 ID_AA64MMFR4_EL1

ID_AA64PFR0_EL1 ID_AA64PFR0_EL1

ID_AA64PFR1_EL1 ID_AA64PFR1_EL1

ID_AA64PFR2_EL1 ID_AA64PFR2_EL1

ID_AA64SMFR0_EL1 ID_AA64SMFR0_EL1

ID_AA64ZFR0_EL1 ID_AA64ZFR0_EL1

ID_AFR0_EL1 ID_AFR0_EL1

ID_DFR0_EL1 ID_DFR0_EL1

ID_DFR1_EL1 ID_DFR1_EL1

ID_ISAR0_EL1 ID_ISAR0_EL1

ID_ISAR1_EL1 ID_ISAR1_EL1

ID_ISAR2_EL1 ID_ISAR2_EL1

ID_ISAR3_EL1 ID_ISAR3_EL1

ID_ISAR4_EL1 ID_ISAR4_EL1

ID_ISAR5_EL1 ID_ISAR5_EL1

ID_ISAR6_EL1 ID_ISAR6_EL1

ID_MMFR0_EL1 ID_MMFR0_EL1

Table K17-12 ID registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14687
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.4 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

ID_MMFR1_EL1 ID_MMFR1_EL1

ID_MMFR2_EL1 ID_MMFR2_EL1

ID_MMFR3_EL1 ID_MMFR3_EL1

ID_MMFR4_EL1 ID_MMFR4_EL1

ID_MMFR5_EL1 ID_MMFR5_EL1

ID_PFR0_EL1 ID_PFR0_EL1

ID_PFR1_EL1 ID_PFR1_EL1

ID_PFR2_EL1 ID_PFR2_EL1

MIDR_EL1 MIDR_EL1

MPAMIDR_EL1 MPAMIDR_EL1

MPIDR_EL1 MPIDR_EL1

REVIDR_EL1 REVIDR_EL1

SMIDR_EL1 SMIDR_EL1

Table K17-12 ID registers (continued)

Register Description, see

Table K17-13 Performance monitors registers

Register Description, see

PMCCFILTR_EL0 PMCCFILTR_EL0

PMCCNTR_EL0 PMCCNTR_EL0

PMCCNTSVR_EL1 PMCCNTSVR_EL1

PMCEID0_EL0 PMCEID0_EL0

PMCEID1_EL0 PMCEID1_EL0

PMCNTENCLR_EL0 PMCNTENCLR_EL0

PMCNTENSET_EL0 PMCNTENSET_EL0

PMCR_EL0 PMCR_EL0

PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0

PMEVCNTSVR<n>_EL1 PMEVCNTSVR<n>_EL1

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0

PMICFILTR_EL0 PMICFILTR_EL0

PMICNTR_EL0 PMICNTR_EL0

PMINTENCLR_EL1 PMINTENCLR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14688
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.5 Activity monitors registers

This section is an index to the registers in the Activity Monitors registers functional group.

PMINTENSET_EL1 PMINTENSET_EL1

PMMIR_EL1 PMMIR_EL1

PMOVSCLR_EL0 PMOVSCLR_EL0

PMOVSSET_EL0 PMOVSSET_EL0

PMSELR_EL0 PMSELR_EL0

PMSWINC_EL0 PMSWINC_EL0

PMUACR_EL1 PMUACR_EL1

PMUSERENR_EL0 PMUSERENR_EL0

PMXEVCNTR_EL0 PMXEVCNTR_EL0

PMXEVTYPER_EL0 PMXEVTYPER_EL0

PMZR_EL0 PMZR_EL0

Table K17-13 Performance monitors registers (continued)

Register Description, see

Table K17-14 Activity monitors registers

Register Description, see

AMCFGR_EL0 AMCFGR_EL0

AMCG1IDR_EL0 AMCG1IDR_EL0

AMCGCR_EL0 AMCGCR_EL0

AMCNTENCLR0_EL0 AMCNTENCLR0_EL0

AMCNTENCLR1_EL0 AMCNTENCLR1_EL0

AMCNTENSET0_EL0 AMCNTENSET0_EL0

AMCNTENSET1_EL0 AMCNTENSET1_EL0

AMCR_EL0 AMCR_EL0

AMEVCNTR0<n>_EL0 AMEVCNTR0<n>_EL0

AMEVCNTR1<n>_EL0 AMEVCNTR1<n>_EL0

AMEVCNTVOFF0<n>_EL2 AMEVCNTVOFF0<n>_EL2

AMEVCNTVOFF1<n>_EL2 AMEVCNTVOFF1<n>_EL2

AMEVTYPER0<n>_EL0 AMEVTYPER0<n>_EL0

AMEVTYPER1<n>_EL0 AMEVTYPER1<n>_EL0

AMUSERENR_EL0 AMUSERENR_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14689
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.6 Debug registers

This section is an index to the registers in the Debug registers functional group.

Table K17-15 Debug registers

Register Description, see

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1

DBGBCR<n>_EL1 DBGBCR<n>_EL1

DBGBVR<n>_EL1 DBGBVR<n>_EL1

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1

DBGDTR_EL0 DBGDTR_EL0

DBGDTRRX_EL0 DBGDTRRX_EL0

DBGDTRTX_EL0 DBGDTRTX_EL0

DBGPRCR_EL1 DBGPRCR_EL1

DBGVCR32_EL2 DBGVCR32_EL2

DBGWCR<n>_EL1 DBGWCR<n>_EL1

DBGWVR<n>_EL1 DBGWVR<n>_EL1

DLR_EL0 DLR_EL0

DSPSR_EL0 DSPSR_EL0

MDCCINT_EL1 MDCCINT_EL1

MDCCSR_EL0 MDCCSR_EL0

MDRAR_EL1 MDRAR_EL1

MDSCR_EL1 MDSCR_EL1

OSDLR_EL1 OSDLR_EL1

OSDTRRX_EL1 OSDTRRX_EL1

OSDTRTX_EL1 OSDTRTX_EL1

OSECCR_EL1 OSECCR_EL1

OSLAR_EL1 OSLAR_EL1

OSLSR_EL1 OSLSR_EL1

TRFCR_EL1 TRFCR_EL1

TRFCR_EL2 TRFCR_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14690
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.7 Trace registers

This section is an index to the registers in the Trace unit registers functional group.

Table K17-16 Trace registers

Register Description, see

TRBBASER_EL1 TRBBASER_EL1

TRBIDR_EL1 TRBIDR_EL1

TRBLIMITR_EL1 TRBLIMITR_EL1

TRBMAR_EL1 TRBMAR_EL1

TRBMPAM_EL1 TRBMPAM_EL1

TRBPTR_EL1 TRBPTR_EL1

TRBSR_EL1 TRBSR_EL1

TRBTRG_EL1 TRBTRG_EL1

TRCACATR<n> TRCACATR<n>

TRCACVR<n> TRCACVR<n>

TRCAUXCTLR TRCAUXCTLR

TRCBBCTLR TRCBBCTLR

TRCCCCTLR TRCCCCTLR

TRCCIDCCTLR0 TRCCIDCCTLR0

TRCCIDCCTLR1 TRCCIDCCTLR1

TRCCIDCVR<n> TRCCIDCVR<n>

TRCCLAIMCLR TRCCLAIMCLR

TRCCLAIMSET TRCCLAIMSET

TRCCNTCTLR<n> TRCCNTCTLR<n>

TRCCNTRLDVR<n> TRCCNTRLDVR<n>

TRCCNTVR<n> TRCCNTVR<n>

TRCCONFIGR TRCCONFIGR

TRCEVENTCTL0R TRCEVENTCTL0R

TRCEVENTCTL1R TRCEVENTCTL1R

TRCEXTINSELR<n> TRCEXTINSELR<n>

TRCIDR0 TRCIDR0

TRCIDR1 TRCIDR1

TRCIDR10 TRCIDR10

TRCIDR11 TRCIDR11

TRCIDR12 TRCIDR12
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14691
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
TRCIDR13 TRCIDR13

TRCIDR2 TRCIDR2

TRCIDR3 TRCIDR3

TRCIDR4 TRCIDR4

TRCIDR5 TRCIDR5

TRCIDR6 TRCIDR6

TRCIDR7 TRCIDR7

TRCIDR8 TRCIDR8

TRCIDR9 TRCIDR9

TRCIMSPEC0 TRCIMSPEC0

TRCIMSPEC<n> TRCIMSPEC<n>

TRCITECR_EL1 TRCITECR_EL1

TRCITECR_EL2 TRCITECR_EL2

TRCITEEDCR TRCITEEDCR

TRCPRGCTLR TRCPRGCTLR

TRCQCTLR TRCQCTLR

TRCRSCTLR<n> TRCRSCTLR<n>

TRCRSR TRCRSR

TRCSEQEVR<n> TRCSEQEVR<n>

TRCSEQRSTEVR TRCSEQRSTEVR

TRCSEQSTR TRCSEQSTR

TRCSSCCR<n> TRCSSCCR<n>

TRCSSCSR<n> TRCSSCSR<n>

TRCSSPCICR<n> TRCSSPCICR<n>

TRCSTALLCTLR TRCSTALLCTLR

TRCSTATR TRCSTATR

TRCSYNCPR TRCSYNCPR

TRCTRACEIDR TRCTRACEIDR

TRCTSCTLR TRCTSCTLR

TRCVICTLR TRCVICTLR

TRCVIIECTLR TRCVIIECTLR

TRCVIPCSSCTLR TRCVIPCSSCTLR

Table K17-16 Trace registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14692
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.8 Branch Record Buffer registers

This section is an index to the registers in the Branch Record Buffer Extension registers functional group.

K17.3.9 RAS registers

This section is an index to the registers in the RAS registers functional group.

TRCVISSCTLR TRCVISSCTLR

TRCVMIDCCTLR0 TRCVMIDCCTLR0

TRCVMIDCCTLR1 TRCVMIDCCTLR1

TRCVMIDCVR<n> TRCVMIDCVR<n>

Table K17-16 Trace registers (continued)

Register Description, see

Table K17-17 Branch Record Buffer registers

Register Description, see

BRBCR_EL1 BRBCR_EL1

BRBCR_EL2 BRBCR_EL2

BRBFCR_EL1 BRBFCR_EL1

BRBIDR0_EL1 BRBIDR0_EL1

BRBINFINJ_EL1 BRBINFINJ_EL1

BRBINF<n>_EL1 BRBINF<n>_EL1

BRBSRCINJ_EL1 BRBSRCINJ_EL1

BRBSRC<n>_EL1 BRBSRC<n>_EL1

BRBTGTINJ_EL1 BRBTGTINJ_EL1

BRBTGT<n>_EL1 BRBTGT<n>_EL1

BRBTS_EL1 BRBTS_EL1

Table K17-18 RAS registers

Register Description, see

DISR_EL1 DISR_EL1

ERRIDR_EL1 ERRIDR_EL1

ERRSELR_EL1 ERRSELR_EL1

ERXADDR_EL1 ERXADDR_EL1

ERXCTLR_EL1 ERXCTLR_EL1

ERXFR_EL1 ERXFR_EL1

ERXGSR_EL1 ERXGSR_EL1
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14693
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.10 Root Security state registers

This section is an index to the registers in the Root Security state registers functional group.

K17.3.11 Memory Partitioning and Monitoring registers

This section is an index to the registers in the Memory Partitioning and Monitoring registers functional group.

ERXMISC0_EL1 ERXMISC0_EL1

ERXMISC1_EL1 ERXMISC1_EL1

ERXMISC2_EL1 ERXMISC2_EL1

ERXMISC3_EL1 ERXMISC3_EL1

ERXPFGCDN_EL1 ERXPFGCDN_EL1

ERXPFGCTL_EL1 ERXPFGCTL_EL1

ERXPFGF_EL1 ERXPFGF_EL1

ERXSTATUS_EL1 ERXSTATUS_EL1

MFAR_EL3 MFAR_EL3

VDISR_EL2 VDISR_EL2

VSESR_EL2 VSESR_EL2

Table K17-18 RAS registers (continued)

Register Description, see

Table K17-19 Root Security state registers

Register Description, see

GPCCR_EL3 GPCCR_EL3

GPTBR_EL3 GPTBR_EL3

Table K17-20 Memory Partitioning and Monitoring registers

Register Description, see

MPAM0_EL1 MPAM0_EL1, MPAM0 Register (EL1)

MPAM1_EL1 MPAM1_EL1, MPAM1 Register (EL1)

MPAM2_EL2 MPAM2_EL2, MPAM2 Register (EL2)

MPAM3_EL3 MPAM3_EL3, MPAM3 Register (EL3)

MPAMHCR_EL2 MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

MPAMSM_EL1 MPAMSM_EL1, MPAM Streaming Mode Register

MPAMVPM0_EL2 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

MPAMVPM1_EL2 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

MPAMVPM2_EL2 MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14694
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.12 Generic timer registers

This section is an index to the registers in the Generic Timer registers functional group.

MPAMVPM3_EL2 MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

MPAMVPM4_EL2 MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

MPAMVPM5_EL2 MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

MPAMVPM6_EL2 MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

MPAMVPM7_EL2 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

MPAMVPMV_EL2 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

Table K17-20 Memory Partitioning and Monitoring registers (continued)

Register Description, see

Table K17-21 Generic timer registers

Register Description, see

CNTFRQ_EL0 CNTFRQ_EL0

CNTHV_CTL_EL2 CNTHV_CTL_EL2

CNTHV_CVAL_EL2 CNTHV_CVAL_EL2

CNTHV_TVAL_EL2 CNTHV_TVAL_EL2

CNTHVS_CTL_EL2 CNTHVS_CTL_EL2

CNTHVS_CVAL_EL2 CNTHVS_CVAL_EL2

CNTHVS_TVAL_EL2 CNTHVS_TVAL_EL2

CNTKCTL_EL1 CNTKCTL_EL1

CNTP_CTL_EL0 CNTP_CTL_EL0

CNTP_CVAL_EL0 CNTP_CVAL_EL0

CNTP_TVAL_EL0 CNTP_TVAL_EL0

CNTPCT_EL0 CNTPCT_EL0

CNTPCTSS_EL0 CNTPCTSS_EL0

CNTPOFF_EL2 CNTPOFF_EL2

CNTPS_CTL_EL1 CNTPS_CTL_EL1

CNTPS_CVAL_EL1 CNTPS_CVAL_EL1

CNTPS_TVAL_EL1 CNTPS_TVAL_EL1

CNTV_CTL_EL0 CNTV_CTL_EL0

CNTV_CVAL_EL0 CNTV_CVAL_EL0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14695
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.13 Cache maintenance system instructions

This section is an index to the registers in the Cache maintenance instructions functional group.

CNTV_TVAL_EL0 CNTV_TVAL_EL0

CNTVCT_EL0 CNTVCT_EL0

CNTVCTSS_EL0 CNTVCTSS_EL0

Table K17-21 Generic timer registers (continued)

Register Description, see

Table K17-22 Cache maintenance system instructions

Register Description, see

DC CGDSW DC CGDSW

DC CGDVAC DC CGDVAC

DC CGDVADP DC CGDVADP

DC CGDVAP DC CGDVAP

DC CGSW DC CGSW

DC CGVAC DC CGVAC

DC CGVADP DC CGVADP

DC CGVAP DC CGVAP

DC CIGDPAE DC CIGDPAE

DC CIGDPAPA DC CIGDPAPA

DC CIGDSW DC CIGDSW

DC CIGDVAC DC CIGDVAC

DC CIGSW DC CIGSW

DC CIGVAC DC CIGVAC

DC CIPAE DC CIPAE

DC CIPAPA DC CIPAPA

DC CISW DC CISW

DC CIVAC DC CIVAC

DC CSW DC CSW

DC CVAC DC CVAC

DC CVADP DC CVADP

DC CVAP DC CVAP

DC CVAU DC CVAU

DC GVA DC GVA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14696
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.14 Address translation system instructions

This section is an index to the registers in the Address translation instructions functional group.

DC GZVA DC GZVA

DC IGDSW DC IGDSW

DC IGDVAC DC IGDVAC

DC IGSW DC IGSW

DC IGVAC DC IGVAC

DC ISW DC ISW

DC IVAC DC IVAC

DC ZVA DC ZVA

IC IALLU IC IALLU

IC IALLUIS IC IALLUIS

IC IVAU IC IVAU

Table K17-22 Cache maintenance system instructions (continued)

Register Description, see

Table K17-23 Address translation system instructions

Register Description, see

AT S12E0R AT S12E0R

AT S12E0W AT S12E0W

AT S12E1R AT S12E1R

AT S12E1W AT S12E1W

AT S1E0R AT S1E0R

AT S1E0W AT S1E0W

AT S1E1A AT S1E1A

AT S1E1R AT S1E1R

AT S1E1RP AT S1E1RP

AT S1E1W AT S1E1W

AT S1E1WP AT S1E1WP

AT S1E2A AT S1E2A

AT S1E2R AT S1E2R

AT S1E2W AT S1E2W
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14697
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.15 TLB maintenance system instructions

This section is an index to the registers in the TLB maintenance instructions functional group.

AT S1E3A AT S1E3A

AT S1E3R AT S1E3R

AT S1E3W AT S1E3W

Table K17-23 Address translation system instructions (continued)

Register Description, see

Table K17-24 TLB maintenance system instructions

Register Description, see

TLBI ALLE1, TLBI ALLE1NXS TLBI ALLE1, TLBI ALLE1NXS

TLBI ALLE1IS, TLBI ALLE1ISNXS TLBI ALLE1IS, TLBI ALLE1ISNXS

TLBI ALLE1OS, TLBI ALLE1OSNXS TLBI ALLE1OS, TLBI ALLE1OSNXS

TLBI ALLE2, TLBI ALLE2NXS TLBI ALLE2, TLBI ALLE2NXS

TLBI ALLE2IS, TLBI ALLE2ISNXS TLBI ALLE2IS, TLBI ALLE2ISNXS

TLBI ALLE2OS, TLBI ALLE2OSNXS TLBI ALLE2OS, TLBI ALLE2OSNXS

TLBI ALLE3, TLBI ALLE3NXS TLBI ALLE3, TLBI ALLE3NXS

TLBI ALLE3IS, TLBI ALLE3ISNXS TLBI ALLE3IS, TLBI ALLE3ISNXS

TLBI ALLE3OS, TLBI ALLE3OSNXS TLBI ALLE3OS, TLBI ALLE3OSNXS

TLBI ASIDE1, TLBI ASIDE1NXS TLBI ASIDE1, TLBI ASIDE1NXS

TLBI ASIDE1IS, TLBI ASIDE1ISNXS TLBI ASIDE1IS, TLBI ASIDE1ISNXS

TLBI ASIDE1OS, TLBI ASIDE1OSNXS TLBI ASIDE1OS, TLBI ASIDE1OSNXS

TLBI IPAS2E1, TLBI IPAS2E1NXS TLBI IPAS2E1, TLBI IPAS2E1NXS

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS

TLBI IPAS2LE1, TLBI IPAS2LE1NXS TLBI IPAS2LE1, TLBI IPAS2LE1NXS

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS

TLBI PAALL TLBI PAALL

TLBI PAALLOS TLBI PAALLOS

TLBI RIPAS2E1, TLBI RIPAS2E1NXS TLBI RIPAS2E1, TLBI RIPAS2E1NXS

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14698
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS

TLBI RPALOS TLBI RPALOS

TLBI RPAOS TLBI RPAOS

TLBI RVAAE1, TLBI RVAAE1NXS TLBI RVAAE1, TLBI RVAAE1NXS

TLBI RVAAE1IS, TLBI RVAAE1ISNXS TLBI RVAAE1IS, TLBI RVAAE1ISNXS

TLBI RVAAE1OS, TLBI RVAAE1OSNXS TLBI RVAAE1OS, TLBI RVAAE1OSNXS

TLBI RVAALE1, TLBI RVAALE1NXS TLBI RVAALE1, TLBI RVAALE1NXS

TLBI RVAALE1IS, TLBI RVAALE1ISNXS TLBI RVAALE1IS, TLBI RVAALE1ISNXS

TLBI RVAALE1OS, TLBI RVAALE1OSNXS TLBI RVAALE1OS, TLBI RVAALE1OSNXS

TLBI RVAE1, TLBI RVAE1NXS TLBI RVAE1, TLBI RVAE1NXS

TLBI RVAE1IS, TLBI RVAE1ISNXS TLBI RVAE1IS, TLBI RVAE1ISNXS

TLBI RVAE1OS, TLBI RVAE1OSNXS TLBI RVAE1OS, TLBI RVAE1OSNXS

TLBI RVAE2, TLBI RVAE2NXS TLBI RVAE2, TLBI RVAE2NXS

TLBI RVAE2IS, TLBI RVAE2ISNXS TLBI RVAE2IS, TLBI RVAE2ISNXS

TLBI RVAE2OS, TLBI RVAE2OSNXS TLBI RVAE2OS, TLBI RVAE2OSNXS

TLBI RVAE3, TLBI RVAE3NXS TLBI RVAE3, TLBI RVAE3NXS

TLBI RVAE3IS, TLBI RVAE3ISNXS TLBI RVAE3IS, TLBI RVAE3ISNXS

TLBI RVAE3OS, TLBI RVAE3OSNXS TLBI RVAE3OS, TLBI RVAE3OSNXS

TLBI RVALE1, TLBI RVALE1NXS TLBI RVALE1, TLBI RVALE1NXS

TLBI RVALE1IS, TLBI RVALE1ISNXS TLBI RVALE1IS, TLBI RVALE1ISNXS

TLBI RVALE1OS, TLBI RVALE1OSNXS TLBI RVALE1OS, TLBI RVALE1OSNXS

TLBI RVALE2, TLBI RVALE2NXS TLBI RVALE2, TLBI RVALE2NXS

TLBI RVALE2IS, TLBI RVALE2ISNXS TLBI RVALE2IS, TLBI RVALE2ISNXS

TLBI RVALE2OS, TLBI RVALE2OSNXS TLBI RVALE2OS, TLBI RVALE2OSNXS

TLBI RVALE3, TLBI RVALE3NXS TLBI RVALE3, TLBI RVALE3NXS

TLBI RVALE3IS, TLBI RVALE3ISNXS TLBI RVALE3IS, TLBI RVALE3ISNXS

TLBI RVALE3OS, TLBI RVALE3OSNXS TLBI RVALE3OS, TLBI RVALE3OSNXS

TLBI VAAE1, TLBI VAAE1NXS TLBI VAAE1, TLBI VAAE1NXS

TLBI VAAE1IS, TLBI VAAE1ISNXS TLBI VAAE1IS, TLBI VAAE1ISNXS

TLBI VAAE1OS, TLBI VAAE1OSNXS TLBI VAAE1OS, TLBI VAAE1OSNXS

TLBI VAALE1, TLBI VAALE1NXS TLBI VAALE1, TLBI VAALE1NXS

Table K17-24 TLB maintenance system instructions (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14699
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
TLBI VAALE1IS, TLBI VAALE1ISNXS TLBI VAALE1IS, TLBI VAALE1ISNXS

TLBI VAALE1OS, TLBI VAALE1OSNXS TLBI VAALE1OS, TLBI VAALE1OSNXS

TLBI VAE1, TLBI VAE1NXS TLBI VAE1, TLBI VAE1NXS

TLBI VAE1IS, TLBI VAE1ISNXS TLBI VAE1IS, TLBI VAE1ISNXS

TLBI VAE1OS, TLBI VAE1OSNXS TLBI VAE1OS, TLBI VAE1OSNXS

TLBI VAE2, TLBI VAE2NXS TLBI VAE2, TLBI VAE2NXS

TLBI VAE2IS, TLBI VAE2ISNXS TLBI VAE2IS, TLBI VAE2ISNXS

TLBI VAE2OS, TLBI VAE2OSNXS TLBI VAE2OS, TLBI VAE2OSNXS

TLBI VAE3, TLBI VAE3NXS TLBI VAE3, TLBI VAE3NXS

TLBI VAE3IS, TLBI VAE3ISNXS TLBI VAE3IS, TLBI VAE3ISNXS

TLBI VAE3OS, TLBI VAE3OSNXS TLBI VAE3OS, TLBI VAE3OSNXS

TLBI VALE1, TLBI VALE1NXS TLBI VALE1, TLBI VALE1NXS

TLBI VALE1IS, TLBI VALE1ISNXS TLBI VALE1IS, TLBI VALE1ISNXS

TLBI VALE1OS, TLBI VALE1OSNXS TLBI VALE1OS, TLBI VALE1OSNXS

TLBI VALE2, TLBI VALE2NXS TLBI VALE2, TLBI VALE2NXS

TLBI VALE2IS, TLBI VALE2ISNXS TLBI VALE2IS, TLBI VALE2ISNXS

TLBI VALE2OS, TLBI VALE2OSNXS TLBI VALE2OS, TLBI VALE2OSNXS

TLBI VALE3, TLBI VALE3NXS TLBI VALE3, TLBI VALE3NXS

TLBI VALE3IS, TLBI VALE3ISNXS TLBI VALE3IS, TLBI VALE3ISNXS

TLBI VALE3OS, TLBI VALE3OSNXS TLBI VALE3OS, TLBI VALE3OSNXS

TLBI VMALLE1, TLBI VMALLE1NXS TLBI VMALLE1, TLBI VMALLE1NXS

TLBI VMALLE1IS, TLBI VMALLE1ISNXS TLBI VMALLE1IS, TLBI VMALLE1ISNXS

TLBI VMALLE1OS, TLBI VMALLE1OSNXS TLBI VMALLE1OS, TLBI VMALLE1OSNXS

TLBI VMALLS12E1, TLBI VMALLS12E1NXS TLBI VMALLS12E1, TLBI VMALLS12E1NXS

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS

TLBIP IPAS2E1, TLBIP IPAS2E1NXS TLBIP IPAS2E1, TLBIP IPAS2E1NXS

TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS

TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS

TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS

TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS

TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS

Table K17-24 TLB maintenance system instructions (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14700
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS

TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS

TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS

TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS

TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS

TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS

TLBIP RVAAE1, TLBIP RVAAE1NXS TLBIP RVAAE1, TLBIP RVAAE1NXS

TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS

TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS

TLBIP RVAALE1, TLBIP RVAALE1NXS TLBIP RVAALE1, TLBIP RVAALE1NXS

TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS

TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS

TLBIP RVAE1, TLBIP RVAE1NXS TLBIP RVAE1, TLBIP RVAE1NXS

TLBIP RVAE1IS, TLBIP RVAE1ISNXS TLBIP RVAE1IS, TLBIP RVAE1ISNXS

TLBIP RVAE1OS, TLBIP RVAE1OSNXS TLBIP RVAE1OS, TLBIP RVAE1OSNXS

TLBIP RVAE2, TLBIP RVAE2NXS TLBIP RVAE2, TLBIP RVAE2NXS

TLBIP RVAE2IS, TLBIP RVAE2ISNXS TLBIP RVAE2IS, TLBIP RVAE2ISNXS

TLBIP RVAE2OS, TLBIP RVAE2OSNXS TLBIP RVAE2OS, TLBIP RVAE2OSNXS

TLBIP RVAE3, TLBIP RVAE3NXS TLBIP RVAE3, TLBIP RVAE3NXS

TLBIP RVAE3IS, TLBIP RVAE3ISNXS TLBIP RVAE3IS, TLBIP RVAE3ISNXS

TLBIP RVAE3OS, TLBIP RVAE3OSNXS TLBIP RVAE3OS, TLBIP RVAE3OSNXS

TLBIP RVALE1, TLBIP RVALE1NXS TLBIP RVALE1, TLBIP RVALE1NXS

TLBIP RVALE1IS, TLBIP RVALE1ISNXS TLBIP RVALE1IS, TLBIP RVALE1ISNXS

TLBIP RVALE1OS, TLBIP RVALE1OSNXS TLBIP RVALE1OS, TLBIP RVALE1OSNXS

TLBIP RVALE2, TLBIP RVALE2NXS TLBIP RVALE2, TLBIP RVALE2NXS

TLBIP RVALE2IS, TLBIP RVALE2ISNXS TLBIP RVALE2IS, TLBIP RVALE2ISNXS

TLBIP RVALE2OS, TLBIP RVALE2OSNXS TLBIP RVALE2OS, TLBIP RVALE2OSNXS

TLBIP RVALE3, TLBIP RVALE3NXS TLBIP RVALE3, TLBIP RVALE3NXS

TLBIP RVALE3IS, TLBIP RVALE3ISNXS TLBIP RVALE3IS, TLBIP RVALE3ISNXS

TLBIP RVALE3OS, TLBIP RVALE3OSNXS TLBIP RVALE3OS, TLBIP RVALE3OSNXS

TLBIP VAAE1, TLBIP VAAE1NXS TLBIP VAAE1, TLBIP VAAE1NXS

TLBIP VAAE1IS, TLBIP VAAE1ISNXS TLBIP VAAE1IS, TLBIP VAAE1ISNXS

Table K17-24 TLB maintenance system instructions (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14701
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.16 Prediction restriction System instructions

This section is an index to the registers in the prediction restriction instructions functional group.

TLBIP VAAE1OS, TLBIP VAAE1OSNXS TLBIP VAAE1OS, TLBIP VAAE1OSNXS

TLBIP VAALE1, TLBIP VAALE1NXS TLBIP VAALE1, TLBIP VAALE1NXS

TLBIP VAALE1IS, TLBIP VAALE1ISNXS TLBIP VAALE1IS, TLBIP VAALE1ISNXS

TLBIP VAALE1OS, TLBIP VAALE1OSNXS TLBIP VAALE1OS, TLBIP VAALE1OSNXS

TLBIP VAE1, TLBIP VAE1NXS TLBIP VAE1, TLBIP VAE1NXS

TLBIP VAE1IS, TLBIP VAE1ISNXS TLBIP VAE1IS, TLBIP VAE1ISNXS

TLBIP VAE1OS, TLBIP VAE1OSNXS TLBIP VAE1OS, TLBIP VAE1OSNXS

TLBIP VAE2, TLBIP VAE2NXS TLBIP VAE2, TLBIP VAE2NXS

TLBIP VAE2IS, TLBIP VAE2ISNXS TLBIP VAE2IS, TLBIP VAE2ISNXS

TLBIP VAE2OS, TLBIP VAE2OSNXS TLBIP VAE2OS, TLBIP VAE2OSNXS

TLBIP VAE3, TLBIP VAE3NXS TLBIP VAE3, TLBIP VAE3NXS

TLBIP VAE3IS, TLBIP VAE3ISNXS TLBIP VAE3IS, TLBIP VAE3ISNXS

TLBIP VAE3OS, TLBIP VAE3OSNXS TLBIP VAE3OS, TLBIP VAE3OSNXS

TLBIP VALE1, TLBIP VALE1NXS TLBIP VALE1, TLBIP VALE1NXS

TLBIP VALE1IS, TLBIP VALE1ISNXS TLBIP VALE1IS, TLBIP VALE1ISNXS

TLBIP VALE1OS, TLBIP VALE1OSNXS TLBIP VALE1OS, TLBIP VALE1OSNXS

TLBIP VALE2, TLBIP VALE2NXS TLBIP VALE2, TLBIP VALE2NXS

TLBIP VALE2IS, TLBIP VALE2ISNXS TLBIP VALE2IS, TLBIP VALE2ISNXS

TLBIP VALE2OS, TLBIP VALE2OSNXS TLBIP VALE2OS, TLBIP VALE2OSNXS

TLBIP VALE3, TLBIP VALE3NXS TLBIP VALE3, TLBIP VALE3NXS

TLBIP VALE3IS, TLBIP VALE3ISNXS TLBIP VALE3IS, TLBIP VALE3ISNXS

TLBIP VALE3OS, TLBIP VALE3OSNXS TLBIP VALE3OS, TLBIP VALE3OSNXS

Table K17-24 TLB maintenance system instructions (continued)

Register Description, see

Table K17-25 Prediction restriction System instructions

System instruction Description, see

CFP RCTX CFP RCTX

CPP RCTX CPP RCTX

COSP RCTX COSP RCTX

DVP RCTX DVP RCTX
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14702
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
K17.3.17 Base system registers

This section is an index to the registers in the functional group.

Table K17-26 Base system registers

Register Description, see

ACCDATA_EL1 ACCDATA_EL1

ACTLR_EL1 ACTLR_EL1

ACTLR_EL2 ACTLR_EL2

ACTLR_EL3 ACTLR_EL3

AFSR0_EL1 AFSR0_EL1

AFSR0_EL2 AFSR0_EL2

AFSR0_EL3 AFSR0_EL3

AFSR1_EL1 AFSR1_EL1

AFSR1_EL2 AFSR1_EL2

AFSR1_EL3 AFSR1_EL3

AIDR_EL1 AIDR_EL1

ALLINT ALLINT

APDAKeyHi_EL1 APDAKeyHi_EL1

APDAKeyLo_EL1 APDAKeyLo_EL1

APDBKeyHi_EL1 APDBKeyHi_EL1

APDBKeyLo_EL1 APDBKeyLo_EL1

APGAKeyHi_EL1 APGAKeyHi_EL1

APGAKeyLo_EL1 APGAKeyLo_EL1

APIAKeyHi_EL1 APIAKeyHi_EL1

APIAKeyLo_EL1 APIAKeyLo_EL1

APIBKeyHi_EL1 APIBKeyHi_EL1

APIBKeyLo_EL1 APIBKeyLo_EL1

CNTHCTL_EL2 CNTHCTL_EL2

CNTHP_CTL_EL2 CNTHP_CTL_EL2

CNTHP_CVAL_EL2 CNTHP_CVAL_EL2

CNTHP_TVAL_EL2 CNTHP_TVAL_EL2

CNTHPS_CTL_EL2 CNTHPS_CTL_EL2

CNTHPS_CVAL_EL2 CNTHPS_CVAL_EL2

CNTHPS_TVAL_EL2 CNTHPS_TVAL_EL2

CNTVOFF_EL2 CNTVOFF_EL2
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14703
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
CPACR_EL1 CPACR_EL1

CPTR_EL2 CPTR_EL2

CPTR_EL3 CPTR_EL3

CurrentEL CurrentEL

DAIF DAIF

DIT DIT

ESR_EL1 ESR_EL1

ESR_EL2 ESR_EL2

ESR_EL3 ESR_EL3

FAR_EL1 FAR_EL1

FAR_EL2 FAR_EL2

FAR_EL3 FAR_EL3

FPCR FPCR

FPEXC32_EL2 FPEXC32_EL2

FPSR FPSR

GCR_EL1 GCR_EL1

GCSCR_EL1 GCSCR_EL1

GCSCR_EL2 GCSCR_EL2

GCSCR_EL3 GCSCR_EL3

GCSCRE0_EL1 GCSCRE0_EL1

GCSPR_EL0 GCSPR_EL0

GCSPR_EL1 GCSPR_EL1

GCSPR_EL2 GCSPR_EL2

GCSPR_EL3 GCSPR_EL3

HACR_EL2 HACR_EL2

HAFGRTR_EL2 HAFGRTR_EL2

HCR_EL2 HCR_EL2

HCRX_EL2 HCRX_EL2

HDFGRTR2_EL2 HDFGRTR2_EL2

HDFGRTR_EL2 HDFGRTR_EL2

HDFGWTR2_EL2 HDFGWTR2_EL2

HDFGWTR_EL2 HDFGWTR_EL2

Table K17-26 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14704
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
HFGITR2_EL2 HFGITR2_EL2

HFGITR_EL2 HFGITR_EL2

HFGRTR2_EL2 HFGRTR2_EL2

HFGRTR_EL2 HFGRTR_EL2

HFGWTR2_EL2 HFGWTR2_EL2

HFGWTR_EL2 HFGWTR_EL2

HPFAR_EL2 HPFAR_EL2

HSTR_EL2 HSTR_EL2

IFSR32_EL2 IFSR32_EL2

ISR_EL1 ISR_EL1

MDCR_EL2 MDCR_EL2

MDCR_EL3 MDCR_EL3

MDSELR_EL1 MDSELR_EL1

MECID_A0_EL2 MECID_A0_EL2

MECID_A1_EL2 MECID_A1_EL2

MECID_P0_EL2 MECID_P0_EL2

MECID_P1_EL2 MECID_P1_EL2

MECID_RL_A_EL3 MECID_RL_A_EL3

MECIDR_EL2 MECIDR_EL2

MPAM0_EL1 MPAM0_EL1

MPAM1_EL1 MPAM1_EL1

MPAM2_EL2 MPAM2_EL2

MPAM3_EL3 MPAM3_EL3

MPAMHCR_EL2 MPAMHCR_EL2

MPAMSM_EL1 MPAMSM_EL1

MPAMVPM0_EL2 MPAMVPM0_EL2

MPAMVPM1_EL2 MPAMVPM1_EL2

MPAMVPM2_EL2 MPAMVPM2_EL2

MPAMVPM3_EL2 MPAMVPM3_EL2

MPAMVPM4_EL2 MPAMVPM4_EL2

MPAMVPM5_EL2 MPAMVPM5_EL2

MPAMVPM6_EL2 MPAMVPM6_EL2

Table K17-26 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14705
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
MPAMVPM7_EL2 MPAMVPM7_EL2

MPAMVPMV_EL2 MPAMVPMV_EL2

MVFR0_EL1 MVFR0_EL1

MVFR1_EL1 MVFR1_EL1

MVFR2_EL1 MVFR2_EL1

NZCV NZCV

PAN PAN

PAR_EL1 PAR_EL1

PFAR_EL1 PFAR_EL1

PFAR_EL2 PFAR_EL2

PM PM

PMBIDR_EL1 PMBIDR_EL1

PMBLIMITR_EL1 PMBLIMITR_EL1

PMBPTR_EL1 PMBPTR_EL1

PMBSR_EL1 PMBSR_EL1

PMECR_EL1 PMECR_EL1

PMIAR_EL1 PMIAR_EL1

PMICNTSVR_EL1 PMICNTSVR_EL1

PMSCR_EL1 PMSCR_EL1

PMSCR_EL2 PMSCR_EL2

PMSDSFR_EL1 PMSDSFR_EL1

PMSEVFR_EL1 PMSEVFR_EL1

PMSFCR_EL1 PMSFCR_EL1

PMSICR_EL1 PMSICR_EL1

PMSIDR_EL1 PMSIDR_EL1

PMSIRR_EL1 PMSIRR_EL1

PMSLATFR_EL1 PMSLATFR_EL1

PMSNEVFR_EL1 PMSNEVFR_EL1

PMSSCR_EL1 PMSSCR_EL1

RGSR_EL1 RGSR_EL1

RMR_EL1 RMR_EL1

RMR_EL2 RMR_EL2

Table K17-26 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14706
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
RMR_EL3 RMR_EL3

RNDR RNDR

RNDRRS RNDRRS

RVBAR_EL1 RVBAR_EL1

RVBAR_EL2 RVBAR_EL2

RVBAR_EL3 RVBAR_EL3

S3_<op1>_<Cn>_<Cm>_<op2> S3_<op1>_<Cn>_<Cm>_<op2>

SCR_EL3 SCR_EL3

SCTLR2_EL1 SCTLR2_EL1

SCTLR2_EL2 SCTLR2_EL2

SCTLR2_EL3 SCTLR2_EL3

SCTLR_EL1 SCTLR_EL1

SCTLR_EL2 SCTLR_EL2

SCTLR_EL3 SCTLR_EL3

SCXTNUM_EL0 SCXTNUM_EL0

SCXTNUM_EL1 SCXTNUM_EL1

SCXTNUM_EL2 SCXTNUM_EL2

SCXTNUM_EL3 SCXTNUM_EL3

SDER32_EL2 SDER32_EL2

SDER32_EL3 SDER32_EL3

SMCR_EL1 SMCR_EL1

SMCR_EL2 SMCR_EL2

SMCR_EL3 SMCR_EL3

SMPRI_EL1 SMPRI_EL1

SMPRIMAP_EL2 SMPRIMAP_EL2

SPMACCESSR_EL1 SPMACCESSR_EL1

SPMACCESSR_EL2 SPMACCESSR_EL2

SPMACCESSR_EL3 SPMACCESSR_EL3

SPMCFGR_EL1 SPMCFGR_EL1

SPMCGCR<n>_EL1 SPMCGCR<n>_EL1

SPMCNTENCLR_EL0 SPMCNTENCLR_EL0

SPMCNTENSET_EL0 SPMCNTENSET_EL0

Table K17-26 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14707
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
SPMCR_EL0 SPMCR_EL0

SPMDEVAFF_EL1 SPMDEVAFF_EL1

SPMDEVARCH_EL1 SPMDEVARCH_EL1

SPMEVCNTR<n>_EL0 SPMEVCNTR<n>_EL0

SPMEVFILT2R<n>_EL0 SPMEVFILT2R<n>_EL0

SPMEVFILTR<n>_EL0 SPMEVFILTR<n>_EL0

SPMEVTYPER<n>_EL0 SPMEVTYPER<n>_EL0

SPMIIDR_EL1 SPMIIDR_EL1

SPMINTENCLR_EL1 SPMINTENCLR_EL1

SPMINTENSET_EL1 SPMINTENSET_EL1

SPMOVSCLR_EL0 SPMOVSCLR_EL0

SPMOVSSET_EL0 SPMOVSSET_EL0

SPMROOTCR_EL3 SPMROOTCR_EL3

SPMSCR_EL1 SPMSCR_EL1

SPMSELR_EL0 SPMSELR_EL0

SPSel SPSel

SSBS SSBS

SVCR SVCR

TCO TCO

TFSR_EL1 TFSR_EL1

TFSR_EL2 TFSR_EL2

TFSR_EL3 TFSR_EL3

TFSRE0_EL1 TFSRE0_EL1

TPIDR2_EL0 TPIDR2_EL0

TPIDR_EL0 TPIDR_EL0

TPIDR_EL1 TPIDR_EL1

TPIDR_EL2 TPIDR_EL2

TPIDR_EL3 TPIDR_EL3

TPIDRRO_EL0 TPIDRRO_EL0

TRCAUTHSTATUS TRCAUTHSTATUS

TRCDEVARCH TRCDEVARCH

TRCDEVID TRCDEVID

Table K17-26 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14708
ID032224 Non-Confidential

Registers Index
K17.3 Functional index of AArch64 registers and System instructions
TRCOSLSR TRCOSLSR

UAO UAO

VBAR_EL1 VBAR_EL1

VBAR_EL2 VBAR_EL2

VBAR_EL3 VBAR_EL3

VMECID_A_EL2 VMECID_A_EL2

VMECID_P_EL2 VMECID_P_EL2

VMPIDR_EL2 VMPIDR_EL2

VNCR_EL2 VNCR_EL2

VPIDR_EL2 VPIDR_EL2

VSTCR_EL2 VSTCR_EL2

VSTTBR_EL2 VSTTBR_EL2

ZCR_EL1 ZCR_EL1

ZCR_EL2 ZCR_EL2

ZCR_EL3 ZCR_EL3

Table K17-26 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14709
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
K17.4 Alphabetical index of AArch32 registers and System instructions

This section is an index of AArch32 registers and System instructions in alphabetical order.

Table K17-27 Alphabetical index of AArch32 Registers

Register Description, see

ACTLR ACTLR, Auxiliary Control Register

ACTLR2 ACTLR2, Auxiliary Control Register 2

ADFSR ADFSR, Auxiliary Data Fault Status Register

AIDR AIDR, Auxiliary ID Register

AIFSR AIFSR, Auxiliary Instruction Fault Status Register

AMAIR0 AMAIR0, Auxiliary Memory Attribute Indirection Register 0

AMAIR1 AMAIR1, Auxiliary Memory Attribute Indirection Register 1

AMCFGR AMCFGR, Activity Monitors Configuration Register

AMCGCR AMCGCR, Activity Monitors Counter Group Configuration Register

AMCNTENCLR0 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

AMCNTENSET0 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

AMCNTENSET1 AMCNTENSET1, Activity Monitors Count Enable Set Register 1

AMCR AMCR, Activity Monitors Control Register

AMEVCNTR0<n> AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3

AMEVCNTR1<n> AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

AMEVTYPER0<n> AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3

AMEVTYPER1<n> AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

AMUSERENR AMUSERENR, Activity Monitors User Enable Register

APSR APSR, Application Program Status Register

ATS12NSOPR ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR ATS1CPR, Address Translate Stage 1 Current state PL1 Read

ATS1CPRP ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW ATS1CPW, Address Translate Stage 1 Current state PL1 Write

ATS1CPWP ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14710
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
ATS1HR ATS1HR, Address Translate Stage 1 Hyp mode Read

ATS1HW ATS1HW, Address Translate Stage 1 Hyp mode Write

BPIALL BPIALL, Branch Predictor Invalidate All

BPIALLIS BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

BPIMVA BPIMVA, Branch Predictor Invalidate by VA

CCSIDR CCSIDR, Current Cache Size ID Register

CCSIDR2 CCSIDR2, Current Cache Size ID Register 2

CFPRCTX CFPRCTX, Control Flow Prediction Restriction by Context

CLIDR CLIDR, Cache Level ID Register

CNTFRQ CNTFRQ, Counter-timer Frequency register

CNTHCTL CNTHCTL, Counter-timer Hyp Control register

CNTHP_CTL CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

CNTHPS_CTL CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

CNTHPS_CVAL CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

CNTHPS_TVAL CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

CNTHV_CTL CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

CNTHVS_CTL CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

CNTHVS_CVAL CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

CNTHVS_TVAL CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

CNTKCTL CNTKCTL, Counter-timer Kernel Control register

CNTP_CTL CNTP_CTL, Counter-timer Physical Timer Control register

CNTP_CVAL CNTP_CVAL, Counter-timer Physical Timer CompareValue register

CNTP_TVAL CNTP_TVAL, Counter-timer Physical Timer TimerValue register

CNTPCT CNTPCT, Counter-timer Physical Count register

CNTPCTSS CNTPCTSS, Counter-timer Self-Synchronized Physical Count register

CNTV_CTL CNTV_CTL, Counter-timer Virtual Timer Control register

CNTV_CVAL CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

CNTV_TVAL CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14711
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
CNTVCT CNTVCT, Counter-timer Virtual Count register

CNTVCTSS CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register

CNTVOFF CNTVOFF, Counter-timer Virtual Offset register

CONTEXTIDR CONTEXTIDR, Context ID Register

COSPRCTX COSPRCTX

CP15DMB CP15DMB, Data Memory Barrier System instruction

CP15DSB CP15DSB, Data Synchronization Barrier System instruction

CP15ISB CP15ISB, Instruction Synchronization Barrier System instruction

CPACR CPACR, Architectural Feature Access Control Register

CPPRCTX CPPRCTX, Cache Prefetch Prediction Restriction by Context

CPSR CPSR, Current Program Status Register

CSSELR CSSELR, Cache Size Selection Register

CTR CTR, Cache Type Register

DACR DACR, Domain Access Control Register

DBGAUTHSTATUS DBGAUTHSTATUS, Debug Authentication Status register

DBGBCR<n> DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

DBGBVR<n> DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

DBGBXVR<n> DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

DBGCLAIMCLR DBGCLAIMCLR, Debug CLAIM Tag Clear register

DBGCLAIMSET DBGCLAIMSET, Debug CLAIM Tag Set register

DBGDCCINT DBGDCCINT, DCC Interrupt Enable Register

DBGDEVID DBGDEVID, Debug Device ID register 0

DBGDEVID1 DBGDEVID1, Debug Device ID register 1

DBGDEVID2 DBGDEVID2, Debug Device ID register 2

DBGDIDR DBGDIDR, Debug ID Register

DBGDRAR DBGDRAR, Debug ROM Address Register

DBGDSAR DBGDSAR, Debug Self Address Register

DBGDSCRext DBGDSCRext, Debug Status and Control Register, External View

DBGDSCRint DBGDSCRint, Debug Status and Control Register, Internal View

DBGDTRRXext DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint DBGDTRRXint, Debug Data Transfer Register, Receive

DBGDTRTXext DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14712
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
DBGDTRTXint DBGDTRTXint, Debug Data Transfer Register, Transmit

DBGOSDLR DBGOSDLR, Debug OS Double Lock Register

DBGOSECCR DBGOSECCR, Debug OS Lock Exception Catch Control Register

DBGOSLAR DBGOSLAR, Debug OS Lock Access Register

DBGOSLSR DBGOSLSR, Debug OS Lock Status Register

DBGPRCR DBGPRCR, Debug Power Control Register

DBGVCR DBGVCR, Debug Vector Catch Register

DBGWCR<n> DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

DBGWFAR DBGWFAR, Debug Watchpoint Fault Address Register

DBGWVR<n> DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

DCCIMVAC DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

DCCISW DCCISW, Data Cache line Clean and Invalidate by Set/Way

DCCMVAC DCCMVAC, Data Cache line Clean by VA to PoC

DCCMVAU DCCMVAU, Data Cache line Clean by VA to PoU

DCCSW DCCSW, Data Cache line Clean by Set/Way

DCIMVAC DCIMVAC, Data Cache line Invalidate by VA to PoC

DCISW DCISW, Data Cache line Invalidate by Set/Way

DFAR DFAR, Data Fault Address Register

DFSR DFSR, Data Fault Status Register

DISR DISR, Deferred Interrupt Status Register

DLR DLR, Debug Link Register

DSPSR DSPSR, Debug Saved Program Status Register

DSPSR2 DSPSR2, Debug Saved Process State Register 2

DTLBIALL DTLBIALL, Data TLB Invalidate All

DTLBIASID DTLBIASID, Data TLB Invalidate by ASID match

DTLBIMVA DTLBIMVA, Data TLB Invalidate by VA

DVPRCTX DVPRCTX, Data Value Prediction Restriction by Context

ELR_hyp ELR_hyp, Exception Link Register (Hyp mode)

ERRIDR ERRIDR, Error Record ID Register

ERRSELR ERRSELR, Error Record Select Register

ERXADDR ERXADDR, Selected Error Record Address Register

ERXADDR2 ERXADDR2, Selected Error Record Address Register 2

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14713
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
ERXCTLR ERXCTLR, Selected Error Record Control Register

ERXCTLR2 ERXCTLR2, Selected Error Record Control Register 2

ERXFR ERXFR, Selected Error Record Feature Register

ERXFR2 ERXFR2, Selected Error Record Feature Register 2

ERXMISC0 ERXMISC0, Selected Error Record Miscellaneous Register 0

ERXMISC1 ERXMISC1, Selected Error Record Miscellaneous Register 1

ERXMISC2 ERXMISC2, Selected Error Record Miscellaneous Register 2

ERXMISC3 ERXMISC3, Selected Error Record Miscellaneous Register 3

ERXMISC4 ERXMISC4, Selected Error Record Miscellaneous Register 4

ERXMISC5 ERXMISC5, Selected Error Record Miscellaneous Register 5

ERXMISC6 ERXMISC6, Selected Error Record Miscellaneous Register 6

ERXMISC7 ERXMISC7, Selected Error Record Miscellaneous Register 7

ERXSTATUS ERXSTATUS, Selected Error Record Primary Status Register

FCSEIDR FCSEIDR, FCSE Process ID register

FPEXC FPEXC, Floating-Point Exception Control register

FPSCR FPSCR, Floating-Point Status and Control Register

FPSID FPSID, Floating-Point System ID register

HACR HACR, Hyp Auxiliary Configuration Register

HACTLR HACTLR, Hyp Auxiliary Control Register

HACTLR2 HACTLR2, Hyp Auxiliary Control Register 2

HADFSR HADFSR, Hyp Auxiliary Data Fault Status Register

HAIFSR HAIFSR, Hyp Auxiliary Instruction Fault Status Register

HAMAIR0 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR HCPTR, Hyp Architectural Feature Trap Register

HCR HCR, Hyp Configuration Register

HCR2 HCR2, Hyp Configuration Register 2

HDCR HDCR, Hyp Debug Control Register

HDFAR HDFAR, Hyp Data Fault Address Register

HIFAR HIFAR, Hyp Instruction Fault Address Register

HMAIR0 HMAIR0, Hyp Memory Attribute Indirection Register 0

HMAIR1 HMAIR1, Hyp Memory Attribute Indirection Register 1

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14714
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
HPFAR HPFAR, Hyp IPA Fault Address Register

HRMR HRMR, Hyp Reset Management Register

HSCTLR HSCTLR, Hyp System Control Register

HSR HSR, Hyp Syndrome Register

HSTR HSTR, Hyp System Trap Register

HTCR HTCR, Hyp Translation Control Register

HTPIDR HTPIDR, Hyp Software Thread ID Register

HTRFCR HTRFCR, Hyp Trace Filter Control Register

HTTBR HTTBR, Hyp Translation Table Base Register

HVBAR HVBAR, Hyp Vector Base Address Register

ICIALLU ICIALLU, Instruction Cache Invalidate All to PoU

ICIALLUIS ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

ICIMVAU ICIMVAU, Instruction Cache line Invalidate by VA to PoU

ID_AFR0 ID_AFR0, Auxiliary Feature Register 0

ID_DFR0 ID_DFR0, Debug Feature Register 0

ID_DFR1 ID_DFR1, Debug Feature Register 1

ID_ISAR0 ID_ISAR0, Instruction Set Attribute Register 0

ID_ISAR1 ID_ISAR1, Instruction Set Attribute Register 1

ID_ISAR2 ID_ISAR2, Instruction Set Attribute Register 2

ID_ISAR3 ID_ISAR3, Instruction Set Attribute Register 3

ID_ISAR4 ID_ISAR4, Instruction Set Attribute Register 4

ID_ISAR5 ID_ISAR5, Instruction Set Attribute Register 5

ID_ISAR6 ID_ISAR6, Instruction Set Attribute Register 6

ID_MMFR0 ID_MMFR0, Memory Model Feature Register 0

ID_MMFR1 ID_MMFR1, Memory Model Feature Register 1

ID_MMFR2 ID_MMFR2, Memory Model Feature Register 2

ID_MMFR3 ID_MMFR3, Memory Model Feature Register 3

ID_MMFR4 ID_MMFR4, Memory Model Feature Register 4

ID_MMFR5 ID_MMFR5, Memory Model Feature Register 5

ID_PFR0 ID_PFR0, Processor Feature Register 0

ID_PFR1 ID_PFR1, Processor Feature Register 1

ID_PFR2 ID_PFR2, Processor Feature Register 2

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14715
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
IFAR IFAR, Instruction Fault Address Register

IFSR IFSR, Instruction Fault Status Register

ISR ISR, Interrupt Status Register

ITLBIALL ITLBIALL, Instruction TLB Invalidate All

ITLBIASID ITLBIASID, Instruction TLB Invalidate by ASID match

ITLBIMVA ITLBIMVA, Instruction TLB Invalidate by VA

JIDR JIDR, Jazelle ID Register

JMCR JMCR, Jazelle Main Configuration Register

JOSCR JOSCR, Jazelle OS Control Register

MAIR0 MAIR0, Memory Attribute Indirection Register 0

MAIR1 MAIR1, Memory Attribute Indirection Register 1

MIDR MIDR, Main ID Register

MPIDR MPIDR, Multiprocessor Affinity Register

MVBAR MVBAR, Monitor Vector Base Address Register

MVFR0 MVFR0, Media and VFP Feature Register 0

MVFR1 MVFR1, Media and VFP Feature Register 1

MVFR2 MVFR2, Media and VFP Feature Register 2

NMRR NMRR, Normal Memory Remap Register

NSACR NSACR, Non-Secure Access Control Register

PAR PAR, Physical Address Register

PMCCFILTR PMCCFILTR, Performance Monitors Cycle Count Filter Register

PMCCNTR PMCCNTR, Performance Monitors Cycle Count Register

PMCEID0 PMCEID0, Performance Monitors Common Event Identification register 0

PMCEID1 PMCEID1, Performance Monitors Common Event Identification register 1

PMCEID2 PMCEID2, Performance Monitors Common Event Identification register 2

PMCEID3 PMCEID3, Performance Monitors Common Event Identification register 3

PMCNTENCLR PMCNTENCLR, Performance Monitors Count Enable Clear register

PMCNTENSET PMCNTENSET, Performance Monitors Count Enable Set register

PMCR PMCR, Performance Monitors Control Register

PMEVCNTR<n> PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

PMEVTYPER<n> PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

PMINTENCLR PMINTENCLR, Performance Monitors Interrupt Enable Clear register

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14716
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
PMINTENSET PMINTENSET, Performance Monitors Interrupt Enable Set register

PMMIR PMMIR, Performance Monitors Machine Identification Register

PMOVSR PMOVSR, Performance Monitors Overflow Flag Status Register

PMOVSSET PMOVSSET, Performance Monitors Overflow Flag Status Set register

PMSELR PMSELR, Performance Monitors Event Counter Selection Register

PMSWINC PMSWINC, Performance Monitors Software Increment register

PMUSERENR PMUSERENR, Performance Monitors User Enable Register

PMXEVCNTR PMXEVCNTR, Performance Monitors Selected Event Count Register

PMXEVTYPER PMXEVTYPER, Performance Monitors Selected Event Type Register

PRRR PRRR, Primary Region Remap Register

REVIDR REVIDR, Revision ID Register

RMR RMR, Reset Management Register

RVBAR RVBAR, Reset Vector Base Address Register

SCR SCR, Secure Configuration Register

SCTLR SCTLR, System Control Register

SDCR SDCR, Secure Debug Control Register

SDER SDER, Secure Debug Enable Register

SPSR SPSR, Saved Program Status Register

SPSR_abt SPSR_abt, Saved Program Status Register (Abort mode)

SPSR_fiq SPSR_fiq, Saved Program Status Register (FIQ mode)

SPSR_hyp SPSR_hyp, Saved Program Status Register (Hyp mode)

SPSR_irq SPSR_irq, Saved Program Status Register (IRQ mode)

SPSR_mon SPSR_mon, Saved Program Status Register (Monitor mode)

SPSR_svc SPSR_svc, Saved Program Status Register (Supervisor mode)

SPSR_und SPSR_und, Saved Program Status Register (Undefined mode)

TCMTR TCMTR, TCM Type Register

TLBIALL TLBIALL, TLB Invalidate All

TLBIALLH TLBIALLH, TLB Invalidate All, Hyp mode

TLBIALLHIS TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS TLBIALLIS, TLB Invalidate All, Inner Shareable

TLBIALLNSNH TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14717
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
TLBIASID TLBIASID, TLB Invalidate by ASID match

TLBIASIDIS TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2 TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner
Shareable

TLBIMVA TLBIMVA, TLB Invalidate by VA

TLBIMVAA TLBIMVAA, TLB Invalidate by VA, All ASID

TLBIMVAAIS TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH TLBIMVAH, TLB Invalidate by VA, Hyp mode

TLBIMVAHIS TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

TLBIMVAL TLBIMVAL, TLB Invalidate by VA, Last level

TLBIMVALH TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

TLBTR TLBTR, TLB Type Register

TPIDRPRW TPIDRPRW, PL1 Software Thread ID Register

TPIDRURO TPIDRURO, PL0 Read-Only Software Thread ID Register

TPIDRURW TPIDRURW, PL0 Read/Write Software Thread ID Register

TRFCR TRFCR, Trace Filter Control Register

TTBCR TTBCR, Translation Table Base Control Register

TTBCR2 TTBCR2, Translation Table Base Control Register 2

TTBR0 TTBR0, Translation Table Base Register 0

TTBR1 TTBR1, Translation Table Base Register 1

VBAR VBAR, Vector Base Address Register

VDFSR VDFSR, Virtual SError Exception Syndrome Register

VDISR VDISR, Virtual Deferred Interrupt Status Register

VMPIDR VMPIDR, Virtualization Multiprocessor ID Register

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14718
ID032224 Non-Confidential

Registers Index
K17.4 Alphabetical index of AArch32 registers and System instructions
VPIDR VPIDR, Virtualization Processor ID Register

VTCR VTCR, Virtualization Translation Control Register

VTTBR VTTBR, Virtualization Translation Table Base Register

Table K17-27 Alphabetical index of AArch32 Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14719
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5 Functional index of AArch32 registers and System instructions

This section is an index of the AArch32 registers and System instructions, divided by functional group. Each of the
following sections lists the registers for a functional group:

• Special-purpose registers.

• VMSA-specific registers.

• ID registers.

• Performance monitors registers.

• Activity Monitors registers.

• Debug registers.

• RAS registers.

• Generic timer registers.

• Cache maintenance system instructions.

• Address translation system instructions.

• TLB maintenance system instructions.

• Legacy feature registers and system instructions.

• Base system registers.

K17.5.1 Special-purpose registers

This section is an index to the registers in the Processor state registers functional group.

Table K17-28 Special-purpose registers

Register Description, see

DLR DLR

DSPSR DSPSR

ELR_hyp ELR_hyp

SPSR SPSR

SPSR_abt SPSR_abt

SPSR_fiq SPSR_fiq

SPSR_hyp SPSR_hyp

SPSR_irq SPSR_irq

SPSR_mon SPSR_mon

SPSR_svc SPSR_svc

SPSR_und SPSR_und
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14720
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.2 VMSA-specific registers

This section is an index to the registers in the Virtual memory control registers functional group.

K17.5.3 ID registers

This section is an index to the registers in the Identification registers functional group.

Table K17-29 VMSA-specific registers

Register Description, see

AMAIR0 AMAIR0

AMAIR1 AMAIR1

CONTEXTIDR CONTEXTIDR

DACR DACR

HAMAIR0 HAMAIR0

HAMAIR1 HAMAIR1

HMAIR0 HMAIR0

HMAIR1 HMAIR1

HTCR HTCR

HTTBR HTTBR

MAIR0 MAIR0

MAIR1 MAIR1

NMRR NMRR

PRRR PRRR

TTBCR TTBCR

TTBCR2 TTBCR2

TTBR0 TTBR0

TTBR1 TTBR1

VTCR VTCR

VTTBR VTTBR

Table K17-30 ID registers

Register Description, see

CCSIDR CCSIDR

CCSIDR2 CCSIDR2

CLIDR CLIDR

CSSELR CSSELR

CTR CTR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14721
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.4 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

ID_AFR0 ID_AFR0

ID_DFR0 ID_DFR0

ID_DFR1 ID_DFR1

ID_ISAR0 ID_ISAR0

ID_ISAR1 ID_ISAR1

ID_ISAR2 ID_ISAR2

ID_ISAR3 ID_ISAR3

ID_ISAR4 ID_ISAR4

ID_ISAR5 ID_ISAR5

ID_ISAR6 ID_ISAR6

ID_MMFR0 ID_MMFR0

ID_MMFR1 ID_MMFR1

ID_MMFR2 ID_MMFR2

ID_MMFR3 ID_MMFR3

ID_MMFR4 ID_MMFR4

ID_MMFR5 ID_MMFR5

ID_PFR0 ID_PFR0

ID_PFR1 ID_PFR1

ID_PFR2 ID_PFR2

MIDR MIDR

MPIDR MPIDR

REVIDR REVIDR

TCMTR TCMTR

TLBTR TLBTR

Table K17-30 ID registers (continued)

Register Description, see

Table K17-31 Performance monitors registers

Register Description, see

PMCCFILTR PMCCFILTR

PMCCNTR PMCCNTR

PMCEID0 PMCEID0
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14722
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.5 Activity Monitors registers

This section is an index to the registers in the Activity Monitors registers functional group.

PMCEID1 PMCEID1

PMCEID2 PMCEID2

PMCEID3 PMCEID3

PMCNTENCLR PMCNTENCLR

PMCNTENSET PMCNTENSET

PMCR PMCR

PMEVCNTR<n> PMEVCNTR<n>

PMEVTYPER<n> PMEVTYPER<n>

PMINTENCLR PMINTENCLR

PMINTENSET PMINTENSET

PMMIR PMMIR

PMOVSR PMOVSR

PMOVSSET PMOVSSET

PMSELR PMSELR

PMSWINC PMSWINC

PMUSERENR PMUSERENR

PMXEVCNTR PMXEVCNTR

PMXEVTYPER PMXEVTYPER

Table K17-31 Performance monitors registers (continued)

Register Description, see

Table K17-32 Activity monitors registers

Register Description, see

AMCFGR AMCFGR

AMCGCR AMCGCR

AMCNTENCLR0 AMCNTENCLR0

AMCNTENCLR1 AMCNTENCLR1

AMCNTENSET0 AMCNTENSET0

AMCNTENSET1 AMCNTENSET1

AMCR AMCR

AMEVCNTR0<n> AMEVCNTR0<n>

AMEVCNTR1<n> AMEVCNTR1<n>
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14723
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.6 Debug registers

This section is an index to the registers in the Debug registers functional group.

AMEVTYPER0<n> AMEVTYPER0<n>

AMEVTYPER1<n> AMEVTYPER1<n>

AMUSERENR AMUSERENR

Table K17-32 Activity monitors registers (continued)

Register Description, see

Table K17-33 Debug registers

Register Description, see

DBGAUTHSTATUS DBGAUTHSTATUS

DBGBCR<n> DBGBCR<n>

DBGBVR<n> DBGBVR<n>

DBGBXVR<n> DBGBXVR<n>

DBGCLAIMCLR DBGCLAIMCLR

DBGCLAIMSET DBGCLAIMSET

DBGDCCINT DBGDCCINT

DBGDEVID DBGDEVID

DBGDEVID1 DBGDEVID1

DBGDEVID2 DBGDEVID2

DBGDIDR DBGDIDR

DBGDRAR DBGDRAR

DBGDSAR DBGDSAR

DBGDSCRext DBGDSCRext

DBGDSCRint DBGDSCRint

DBGDTRRXext DBGDTRRXext

DBGDTRRXint DBGDTRRXint

DBGDTRTXext DBGDTRTXext

DBGDTRTXint DBGDTRTXint

DBGOSDLR DBGOSDLR

DBGOSECCR DBGOSECCR

DBGOSLAR DBGOSLAR

DBGOSLSR DBGOSLSR

DBGPRCR DBGPRCR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14724
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.7 RAS registers

This section is an index to the registers in the RAS registers functional group.

DBGVCR DBGVCR

DBGWCR<n> DBGWCR<n>

DBGWFAR DBGWFAR

DBGWVR<n> DBGWVR<n>

F TRFCR

Table K17-33 Debug registers (continued)

Register Description, see

Table K17-34 RAS registers

Register Description, see

DISR DISR

ERRIDR ERRIDR

ERRSELR ERRSELR

ERXADDR ERXADDR

ERXADDR2 ERXADDR2

ERXCTLR ERXCTLR

ERXCTLR2 ERXCTLR2

ERXFR ERXFR

ERXFR2 ERXFR2

ERXMISC0 ERXMISC0

ERXMISC1 ERXMISC1

ERXMISC2 ERXMISC2

ERXMISC3 ERXMISC3

ERXMISC4 ERXMISC4

ERXMISC5 ERXMISC5

ERXMISC6 ERXMISC6

ERXMISC7 ERXMISC7

ERXSTATUS ERXSTATUS

VDFSR VDFSR

VDISR VDISR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14725
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.8 Generic timer registers

This section is an index to the registers in the Generic Timer registers functional group.

K17.5.9 Cache maintenance system instructions

This section is an index to the registers in the Cache maintenance instructions functional group.

Table K17-35 Generic timer registers

Register Description, see

CNTFRQ CNTFRQ

CNTHP_CTL CNTHP_CTL

CNTHPS_CTL CNTHPS_CTL

CNTHPS_CVAL CNTHPS_CVAL

CNTHPS_TVAL CNTHPS_TVAL

CNTHV_CTL CNTHV_CTL

CNTHV_CVAL CNTHV_CVAL

CNTHV_TVAL CNTHV_TVAL

CNTHVS_CTL CNTHVS_CTL

CNTHVS_CVAL CNTHVS_CVAL

CNTHVS_TVAL CNTHVS_TVAL

CNTKCTL CNTKCTL

CNTP_CTL CNTP_CTL

CNTP_CVAL CNTP_CVAL

CNTP_TVAL CNTP_TVAL

CNTPCT CNTPCT

CNTPCTSS CNTPCTSS

CNTV_CTL CNTV_CTL

CNTV_CVAL CNTV_CVAL

CNTV_TVAL CNTV_TVAL

CNTVCT CNTVCT

CNTVCTSS CNTVCTSS

Table K17-36 Cache maintenance system instructions

Register Description, see

BPIALL BPIALL

BPIALLIS BPIALLIS

BPIMVA BPIMVA
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14726
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.10 Address translation system instructions

This section is an index to the registers in the Address translation instructions functional group.

DCCIMVAC DCCIMVAC

DCCISW DCCISW

DCCMVAC DCCMVAC

DCCMVAU DCCMVAU

DCCSW DCCSW

DCIMVAC DCIMVAC

DCISW DCISW

ICIALLU ICIALLU

ICIALLUIS ICIALLUIS

ICIMVAU ICIMVAU

Table K17-36 Cache maintenance system instructions (continued)

Register Description, see

Table K17-37 Address translation system instructions

Register Description, see

ATS12NSOPR ATS12NSOPR

ATS12NSOPW ATS12NSOPW

ATS12NSOUR ATS12NSOUR

ATS12NSOUW ATS12NSOUW

ATS1CPR ATS1CPR

ATS1CPRP ATS1CPRP

ATS1CPW ATS1CPW

ATS1CPWP ATS1CPWP

ATS1CUR ATS1CUR

ATS1CUW ATS1CUW

ATS1HR ATS1HR

ATS1HW ATS1HW
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14727
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.11 TLB maintenance system instructions

This section is an index to the registers in the TLB maintenance instructions functional group.

Table K17-38 TLB maintenance system instructions

Register Description, see

CFPRCTX CFPRCTX

COSPRCTX COSPRCTX

CPPRCTX CPPRCTX

DTLBIALL DTLBIALL

DTLBIASID DTLBIASID

DTLBIMVA DTLBIMVA

DVPRCTX DVPRCTX

ITLBIALL ITLBIALL

ITLBIASID ITLBIASID

ITLBIMVA ITLBIMVA

TLBIALL TLBIALL

TLBIALLH TLBIALLH

TLBIALLHIS TLBIALLHIS

TLBIALLIS TLBIALLIS

TLBIALLNSNH TLBIALLNSNH

TLBIALLNSNHIS TLBIALLNSNHIS

TLBIASID TLBIASID

TLBIASIDIS TLBIASIDIS

TLBIIPAS2 TLBIIPAS2

TLBIIPAS2IS TLBIIPAS2IS

TLBIIPAS2L TLBIIPAS2L

TLBIIPAS2LIS TLBIIPAS2LIS

TLBIMVA TLBIMVA

TLBIMVAA TLBIMVAA

TLBIMVAAIS TLBIMVAAIS

TLBIMVAAL TLBIMVAAL

TLBIMVAALIS TLBIMVAALIS

TLBIMVAH TLBIMVAH

TLBIMVAHIS TLBIMVAHIS

TLBIMVAIS TLBIMVAIS
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14728
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
K17.5.12 Prediction restriction instructions

This section is an index to the registers in the Prediction restriction instructions functional group.

K17.5.13 Legacy feature registers and system instructions

This section is an index to the registers in the Legacy feature registers functional group.

K17.5.14 Base system registers

This section is an index to the registers in the functional group.

TLBIMVAL TLBIMVAL

TLBIMVALH TLBIMVALH

TLBIMVALHIS TLBIMVALHIS

TLBIMVALIS TLBIMVALIS

Table K17-38 TLB maintenance system instructions (continued)

Register Description, see

Table K17-39 Prediction restriction System instructions

System instruction Description, see

CFPRCTX CFPRCTX

CPPRCTX CPPRCTX

DVPRCTX DVPRCTX

Table K17-40 Legacy feature registers and system instructions

Register Description, see

CP15DMB CP15DMB

CP15DSB CP15DSB

CP15ISB CP15ISB

FCSEIDR FCSEIDR

JIDR JIDR

JMCR JMCR

JOSCR JOSCR

Table K17-41 Base system registers

Register Description, see

ACTLR ACTLR

ACTLR2 ACTLR2

ADFSR ADFSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14729
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
AIDR AIDR

AIFSR AIFSR

APSR APSR

CNTHCTL CNTHCTL

CNTHP_CVA
L

CNTHP_CVAL

CNTHP_TVAL CNTHP_TVAL

CNTVOFF CNTVOFF

CPACR CPACR

CPSR CPSR

DFAR DFAR

DFSR DFSR

DSPSR2 DSPSR2

FPEXC FPEXC

FPSCR FPSCR

FPSID FPSID

HACR HACR

HACTLR HACTLR

HACTLR2 HACTLR2

HADFSR HADFSR

HAIFSR HAIFSR

HCPTR HCPTR

HCR HCR

HCR2 HCR2

HDCR HDCR

HDFAR HDFAR

HIFAR HIFAR

HPFAR HPFAR

HRMR HRMR

HSCTLR HSCTLR

HSR HSR

HSTR HSTR

HTPIDR HTPIDR

Table K17-41 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14730
ID032224 Non-Confidential

Registers Index
K17.5 Functional index of AArch32 registers and System instructions
HTRFCR HTRFCR

HVBAR HVBAR

IFAR IFAR

IFSR IFSR

ISR ISR

MVBAR MVBAR

MVFR0 MVFR0

MVFR1 MVFR1

MVFR2 MVFR2

NSACR NSACR

PAR PAR

RMR RMR

RVBAR RVBAR

SCR SCR

SCTLR SCTLR

SDCR SDCR

SDER SDER

TPIDRPRW TPIDRPRW

TPIDRURO TPIDRURO

TPIDRURW TPIDRURW

VBAR VBAR

VMPIDR VMPIDR

VPIDR VPIDR

Table K17-41 Base system registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14731
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
K17.6 Alphabetical index of memory-mapped registers

This section is an index of memory-mapped registers in alphabetical order.

Table K17-42 Alphabetical index of Memory-Mapped Registers

Register Description, see

ASICCTL ASICCTL, CTI External Multiplexer Control register

CNTACR<n> CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

CNTCR CNTCR, Counter Control Register

CNTCV CNTCV, Counter Count Value register

CNTEL0ACR CNTEL0ACR, Counter-timer EL0 Access Control Register

CNTFID0 CNTFID0, Counter Frequency ID

CNTFID<n> CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003

CNTFRQ CNTFRQ, Counter-timer Frequency

CNTID CNTID, Counter Identification Register

CNTNSAR CNTNSAR, Counter-timer Non-secure Access Register

CNTP_CTL CNTP_CTL, Counter-timer Physical Timer Control

CNTP_CVAL CNTP_CVAL, Counter-timer Physical Timer CompareValue

CNTP_TVAL CNTP_TVAL, Counter-timer Physical Timer TimerValue

CNTPCT CNTPCT, Counter-timer Physical Count

CNTSCR CNTSCR, Counter Scale Register

CNTSR CNTSR, Counter Status Register

CNTTIDR CNTTIDR, Counter-timer Timer ID Register

CNTV_CTL CNTV_CTL, Counter-timer Virtual Timer Control

CNTV_CVAL CNTV_CVAL, Counter-timer Virtual Timer CompareValue

CNTV_TVAL CNTV_TVAL, Counter-timer Virtual Timer TimerValue

CNTVCT CNTVCT, Counter-timer Virtual Count

CNTVOFF CNTVOFF, Counter-timer Virtual Offset

CNTVOFF<n> CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

CounterID<n> CounterID<n>, Counter ID registers, n = 0 - 11

CTIAPPCLEAR CTIAPPCLEAR, CTI Application Trigger Clear register

CTIAPPPULSE CTIAPPPULSE, CTI Application Pulse register

CTIAPPSET CTIAPPSET, CTI Application Trigger Set register

CTIAUTHSTATUS CTIAUTHSTATUS, CTI Authentication Status register

CTICHINSTATUS CTICHINSTATUS, CTI Channel In Status register

CTICHOUTSTATUS CTICHOUTSTATUS, CTI Channel Out Status register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14732
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
CTICIDR0 CTICIDR0, CTI Component Identification Register 0

CTICIDR1 CTICIDR1, CTI Component Identification Register 1

CTICIDR2 CTICIDR2, CTI Component Identification Register 2

CTICIDR3 CTICIDR3, CTI Component Identification Register 3

CTICLAIMCLR CTICLAIMCLR, CTI CLAIM Tag Clear register

CTICLAIMSET CTICLAIMSET, CTI CLAIM Tag Set register

CTICONTROL CTICONTROL, CTI Control register

CTIDEVAFF0 CTIDEVAFF0, CTI Device Affinity register 0

CTIDEVAFF1 CTIDEVAFF1, CTI Device Affinity register 1

CTIDEVARCH CTIDEVARCH, CTI Device Architecture register

CTIDEVCTL CTIDEVCTL, CTI Device Control register

CTIDEVID CTIDEVID, CTI Device ID register 0

CTIDEVID1 CTIDEVID1, CTI Device ID register 1

CTIDEVID2 CTIDEVID2, CTI Device ID register 2

CTIDEVTYPE CTIDEVTYPE, CTI Device Type register

CTIGATE CTIGATE, CTI Channel Gate Enable register

CTIINEN<n> CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31

CTIINTACK CTIINTACK, CTI Output Trigger Acknowledge register

CTIITCTRL CTIITCTRL, CTI Integration mode Control register

CTILAR CTILAR, CTI Lock Access Register

CTILSR CTILSR, CTI Lock Status Register

CTIOUTEN<n> CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

CTIPIDR0 CTIPIDR0, CTI Peripheral Identification Register 0

CTIPIDR1 CTIPIDR1, CTI Peripheral Identification Register 1

CTIPIDR2 CTIPIDR2, CTI Peripheral Identification Register 2

CTIPIDR3 CTIPIDR3, CTI Peripheral Identification Register 3

CTIPIDR4 CTIPIDR4, CTI Peripheral Identification Register 4

CTITRIGINSTATUS CTITRIGINSTATUS, CTI Trigger In Status register

CTITRIGOUTSTATUS CTITRIGOUTSTATUS, CTI Trigger Out Status register

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1, Debug Authentication Status Register

DBGBCR<n>_EL1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 63

DBGBVR<n>_EL1 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 63

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14733
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear Register

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1, Debug CLAIM Tag Set Register

DBGDTRRX_EL0 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

DBGDTRTX_EL0 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 63

DBGWVR<n>_EL1 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 63

EDAA32PFR EDAA32PFR, External Debug Auxiliary Processor Feature Register

EDACR EDACR, External Debug Auxiliary Control Register

EDCIDR0 EDCIDR0, External Debug Component Identification Register 0

EDCIDR1 EDCIDR1, External Debug Component Identification Register 1

EDCIDR2 EDCIDR2, External Debug Component Identification Register 2

EDCIDR3 EDCIDR3, External Debug Component Identification Register 3

EDCIDSR EDCIDSR, External Debug Context ID Sample Register

EDDEVAFF0 EDDEVAFF0, External Debug Device Affinity register 0

EDDEVAFF1 EDDEVAFF1, External Debug Device Affinity register 1

EDDEVARCH EDDEVARCH, External Debug Device Architecture Register

EDDEVID EDDEVID, External Debug Device ID register 0

EDDEVID1 EDDEVID1, External Debug Device ID Register 1

EDDEVID2 EDDEVID2, External Debug Device ID register 2

EDDEVTYPE EDDEVTYPE, External Debug Device Type register

EDDFR EDDFR, External Debug Feature Register

EDDFR1 EDDFR1, External Debug Feature Register 1

EDECCR EDECCR, External Debug Exception Catch Control Register

EDECR EDECR, External Debug Execution Control Register

EDESR EDESR, External Debug Event Status Register

EDHSR EDHSR, External Debug Halting Syndrome Register

EDITCTRL EDITCTRL, External Debug Integration mode Control register

EDITR EDITR, External Debug Instruction Transfer Register

EDLAR EDLAR, External Debug Lock Access Register

EDLSR EDLSR, External Debug Lock Status Register

EDPCSR EDPCSR, External Debug Program Counter Sample Register

EDPFR EDPFR, External Debug Processor Feature Register

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14734
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
EDPIDR0 EDPIDR0, External Debug Peripheral Identification Register 0

EDPIDR1 EDPIDR1, External Debug Peripheral Identification Register 1

EDPIDR2 EDPIDR2, External Debug Peripheral Identification Register 2

EDPIDR3 EDPIDR3, External Debug Peripheral Identification Register 3

EDPIDR4 EDPIDR4, External Debug Peripheral Identification Register 4

EDPRCR EDPRCR, External Debug Power/Reset Control Register

EDPRSR EDPRSR, External Debug Processor Status Register

EDRCR EDRCR, External Debug Reserve Control Register

EDSCR EDSCR, External Debug Status and Control Register

EDSCR2 EDSCR2, External Debug Status and Control Register 2

EDVIDSR EDVIDSR, External Debug Virtual Context Sample Register

EDWAR EDWAR, External Debug Watchpoint Address Register

ERRACR ERRACR

ERRCIDR0 ERRCIDR0, Component Identification Register 0

ERRCIDR1 ERRCIDR1, Component Identification Register 1

ERRCIDR2 ERRCIDR2, Component Identification Register 2

ERRCIDR3 ERRCIDR3, Component Identification Register 3

ERRCRICR0 ERRCRICR0, Critical Error Interrupt Configuration Register 0

ERRCRICR1 ERRCRICR1, Critical Error Interrupt Configuration Register 1

ERRCRICR2 ERRCRICR2, Critical Error Interrupt Configuration Register 2

ERRDEVAFF ERRDEVAFF, Device Affinity Register

ERRDEVARCH ERRDEVARCH, Device Architecture Register

ERRDEVID ERRDEVID, Device Configuration Register

ERRERICR0 ERRERICR0, Error Recovery Interrupt Configuration Register 0

ERRERICR1 ERRERICR1, Error Recovery Interrupt Configuration Register 1

ERRERICR2 ERRERICR2, Error Recovery Interrupt Configuration Register 2

ERRFHICR0 ERRFHICR0, Fault Handling Interrupt Configuration Register 0

ERRFHICR1 ERRFHICR1, Fault Handling Interrupt Configuration Register 1

ERRFHICR2 ERRFHICR2, Fault Handling Interrupt Configuration Register 2

ERRGSR ERRGSR, Error Group Status Register

ERRIIDR ERRIIDR, Implementation Identification Register

ERRIMPDEF<n> ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14735
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
ERRIRQCR<n> ERRIRQCR<n>, Generic Error Interrupt Configuration Register <n>, n = 0 - 15

ERRIRQSR ERRIRQSR, Error Interrupt Status Register

ERR<n>ADDR ERR<n>ADDR, Error Record <n> Address Register, n = 0 - 65534

ERR<n>CTLR ERR<n>CTLR, Error Record <n> Control Register, n = 0 - 65534

ERR<n>FR ERR<n>FR, Error Record <n> Feature Register, n = 0 - 65534

ERR<n>MISC0 ERR<n>MISC0, Error Record <n> Miscellaneous Register 0, n = 0 - 65534

ERR<n>MISC1 ERR<n>MISC1, Error Record <n> Miscellaneous Register 1, n = 0 - 65534

ERR<n>MISC2 ERR<n>MISC2, Error Record <n> Miscellaneous Register 2, n = 0 - 65534

ERR<n>MISC3 ERR<n>MISC3, Error Record <n> Miscellaneous Register 3, n = 0 - 65534

ERR<n>PFGCDN ERR<n>PFGCDN, Error Record <n> Pseudo-fault Generation Countdown Register, n = 0 -
65534

ERR<n>PFGCTL ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534

ERR<n>PFGF ERR<n>PFGF, Error Record <n> Pseudo-fault Generation Feature Register, n = 0 - 65534

ERR<n>STATUS ERR<n>STATUS, Error Record <n> Primary Status Register, n = 0 - 65534

ERRPIDR0 ERRPIDR0, Peripheral Identification Register 0

ERRPIDR1 ERRPIDR1, Peripheral Identification Register 1

ERRPIDR2 ERRPIDR2, Peripheral Identification Register 2

ERRPIDR3 ERRPIDR3, Peripheral Identification Register 3

ERRPIDR4 ERRPIDR4, Peripheral Identification Register 4

MIDR_EL1 MIDR_EL1, Main ID Register

OSLAR_EL1 OSLAR_EL1, OS Lock Access Register

TRBAUTHSTATUS TRBAUTHSTATUS, Authentication Status Register

TRBBASER_EL1 TRBBASER_EL1, Trace Buffer Base Address Register

TRBCIDR0 TRBCIDR0, Component Identification Register 0

TRBCIDR1 TRBCIDR1, Component Identification Register 1

TRBCIDR2 TRBCIDR2, Component Identification Register 2

TRBCIDR3 TRBCIDR3, Component Identification Register 3

TRBCR TRBCR, Trace Buffer Control Register

TRBDEVAFF TRBDEVAFF, Device Affinity Register

TRBDEVARCH TRBDEVARCH, Trace Buffer Device Architecture Register

TRBDEVID TRBDEVID, Device Configuration Register

TRBDEVID1 TRBDEVID1, Device Configuration Register 1

TRBDEVID2 TRBDEVID2, Device Configuration Register 2

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14736
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
TRBDEVTYPE TRBDEVTYPE, Device Type Register

TRBIDR_EL1 TRBIDR_EL1, Trace Buffer ID Register

TRBITCTRL TRBITCTRL, Integration Mode Control Register

TRBLAR TRBLAR, Lock Access Register

TRBLIMITR_EL1 TRBLIMITR_EL1, Trace Buffer Limit Address Register

TRBLSR TRBLSR, Lock Status Register

TRBMAR_EL1 TRBMAR_EL1, Trace Buffer Memory Attribute Register

TRBMPAM_EL1 TRBMPAM_EL1, Trace Buffer MPAM Configuration Register

TRBPIDR0 TRBPIDR0, Peripheral Identification Register 0

TRBPIDR1 TRBPIDR1, Peripheral Identification Register 1

TRBPIDR2 TRBPIDR2, Peripheral Identification Register 2

TRBPIDR3 TRBPIDR3, Peripheral Identification Register 3

TRBPIDR4 TRBPIDR4, Peripheral Identification Register 4

TRBPIDR5 TRBPIDR5, Peripheral Identification Register 5

TRBPIDR6 TRBPIDR6, Peripheral Identification Register 6

TRBPIDR7 TRBPIDR7, Peripheral Identification Register 7

TRBPTR_EL1 TRBPTR_EL1, Trace Buffer Write Pointer Register

TRBSR_EL1 TRBSR_EL1, Trace Buffer Status/syndrome Register

TRBTRG_EL1 TRBTRG_EL1, Trace Buffer Trigger Counter Register

TRCACATR<n> TRCACATR<n>, Trace Address Comparator Access Type Register <n>, n = 0 - 15

TRCACVR<n> TRCACVR<n>, Trace Address Comparator Value Register <n>, n = 0 - 15

TRCAUTHSTATUS TRCAUTHSTATUS, Trace Authentication Status Register

TRCAUXCTLR TRCAUXCTLR, Trace Auxiliary Control Register

TRCBBCTLR TRCBBCTLR, Trace Branch Broadcast Control Register

TRCCCCTLR TRCCCCTLR, Trace Cycle Count Control Register

TRCCIDCCTLR0 TRCCIDCCTLR0, Trace Context Identifier Comparator Control Register 0

TRCCIDCCTLR1 TRCCIDCCTLR1, Trace Context Identifier Comparator Control Register 1

TRCCIDCVR<n> TRCCIDCVR<n>, Trace Context Identifier Comparator Value Registers <n>, n = 0 - 7

TRCCIDR0 TRCCIDR0, Trace Component Identification Register 0

TRCCIDR1 TRCCIDR1, Trace Component Identification Register 1

TRCCIDR2 TRCCIDR2, Trace Component Identification Register 2

TRCCIDR3 TRCCIDR3, Trace Component Identification Register 3

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14737
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
TRCCLAIMCLR TRCCLAIMCLR, Trace Claim Tag Clear Register

TRCCLAIMSET TRCCLAIMSET, Trace Claim Tag Set Register

TRCCNTCTLR<n> TRCCNTCTLR<n>, Trace Counter Control Register <n>, n = 0 - 3

TRCCNTRLDVR<n> TRCCNTRLDVR<n>, Trace Counter Reload Value Register <n>, n = 0 - 3

TRCCNTVR<n> TRCCNTVR<n>, Trace Counter Value Register <n>, n = 0 - 3

TRCCONFIGR TRCCONFIGR, Trace Configuration Register

TRCDEVAFF TRCDEVAFF, Trace Device Affinity Register

TRCDEVARCH TRCDEVARCH, Trace Device Architecture Register

TRCDEVID TRCDEVID, Trace Device Configuration Register

TRCDEVID1 TRCDEVID1, Trace Device Configuration Register 1

TRCDEVID2 TRCDEVID2, Trace Device Configuration Register 2

TRCDEVTYPE TRCDEVTYPE, Trace Device Type Register

TRCEVENTCTL0R TRCEVENTCTL0R, Trace Event Control 0 Register

TRCEVENTCTL1R TRCEVENTCTL1R, Trace Event Control 1 Register

TRCEXTINSELR<n> TRCEXTINSELR<n>, Trace External Input Select Register <n>, n = 0 - 3

TRCIDR0 TRCIDR0, Trace ID Register 0

TRCIDR1 TRCIDR1, Trace ID Register 1

TRCIDR10 TRCIDR10, Trace ID Register 10

TRCIDR11 TRCIDR11, Trace ID Register 11

TRCIDR12 TRCIDR12, Trace ID Register 12

TRCIDR13 TRCIDR13, Trace ID Register 13

TRCIDR2 TRCIDR2, Trace ID Register 2

TRCIDR3 TRCIDR3, Trace ID Register 3

TRCIDR4 TRCIDR4, Trace ID Register 4

TRCIDR5 TRCIDR5, Trace ID Register 5

TRCIDR6 TRCIDR6, Trace ID Register 6

TRCIDR7 TRCIDR7, Trace ID Register 7

TRCIDR8 TRCIDR8, Trace ID Register 8

TRCIDR9 TRCIDR9, Trace ID Register 9

TRCIMSPEC0 TRCIMSPEC0, Trace IMP DEF Register 0

TRCIMSPEC<n> TRCIMSPEC<n>, Trace IMP DEF Register <n>, n = 1 - 7

TRCITCTRL TRCITCTRL, Trace Integration Mode Control Register

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14738
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
TRCITEEDCR TRCITEEDCR, Instrumentation Trace Extension External Debug Control Register

TRCLAR TRCLAR, Trace Lock Access Register

TRCLSR TRCLSR, Trace Lock Status Register

TRCOSLSR TRCOSLSR, Trace OS Lock Status Register

TRCPDCR TRCPDCR, Trace PowerDown Control Register

TRCPDSR TRCPDSR, Trace PowerDown Status Register

TRCPIDR0 TRCPIDR0, Trace Peripheral Identification Register 0

TRCPIDR1 TRCPIDR1, Trace Peripheral Identification Register 1

TRCPIDR2 TRCPIDR2, Trace Peripheral Identification Register 2

TRCPIDR3 TRCPIDR3, Trace Peripheral Identification Register 3

TRCPIDR4 TRCPIDR4, Trace Peripheral Identification Register 4

TRCPIDR5 TRCPIDR5, Trace Peripheral Identification Register 5

TRCPIDR6 TRCPIDR6, Trace Peripheral Identification Register 6

TRCPIDR7 TRCPIDR7, Trace Peripheral Identification Register 7

TRCPRGCTLR TRCPRGCTLR, Trace Programming Control Register

TRCQCTLR TRCQCTLR, Trace Q Element Control Register

TRCRSCTLR<n> TRCRSCTLR<n>, Trace Resource Selection Control Register <n>, n = 2 - 31

TRCRSR TRCRSR, Trace Resources Status Register

TRCSEQEVR<n> TRCSEQEVR<n>, Trace Sequencer State Transition Control Register <n>, n = 0 - 2

TRCSEQRSTEVR TRCSEQRSTEVR, Trace Sequencer Reset Control Register

TRCSEQSTR TRCSEQSTR, Trace Sequencer State Register

TRCSSCCR<n> TRCSSCCR<n>, Trace Single-shot Comparator Control Register <n>, n = 0 - 7

TRCSSCSR<n> TRCSSCSR<n>, Trace Single-shot Comparator Control Status Register <n>, n = 0 - 7

TRCSSPCICR<n> TRCSSPCICR<n>, Trace Single-shot Processing Element Comparator Input Control Register
<n>, n = 0 - 7

TRCSTALLCTLR TRCSTALLCTLR, Trace Stall Control Register

TRCSTATR TRCSTATR, Trace Status Register

TRCSYNCPR TRCSYNCPR, Trace Synchronization Period Register

TRCTRACEIDR TRCTRACEIDR, Trace ID Register

TRCTSCTLR TRCTSCTLR, Trace Timestamp Control Register

TRCVICTLR TRCVICTLR, Trace ViewInst Main Control Register

TRCVIIECTLR TRCVIIECTLR, Trace ViewInst Include/Exclude Control Register

TRCVIPCSSCTLR TRCVIPCSSCTLR, Trace ViewInst Start/Stop PE Comparator Control Register

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14739
ID032224 Non-Confidential

Registers Index
K17.6 Alphabetical index of memory-mapped registers
TRCVISSCTLR TRCVISSCTLR, Trace ViewInst Start/Stop Control Register

TRCVMIDCCTLR0 TRCVMIDCCTLR0, Trace Virtual Context Identifier Comparator Control Register 0

TRCVMIDCCTLR1 TRCVMIDCCTLR1, Trace Virtual Context Identifier Comparator Control Register 1

TRCVMIDCVR<n> TRCVMIDCVR<n>, Trace Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7

Table K17-42 Alphabetical index of Memory-Mapped Registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14740
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
K17.7 Functional index of memory-mapped registers

This section is an index of the memory-mapped registers, divided by functional group. Each of the following
sections lists the registers for a functional group:

• ID registers.

• Performance monitors registers.

• Debug registers.

• RAS registers.

• Cross-trigger interface registers.

K17.7.1 ID registers

This section is an index to the registers in the Identification registers functional group.

K17.7.2 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

Table K17-43 ID registers

Register Description, see

EDAA32PFR EDAA32PFR

EDDFR EDDFR

EDPFR EDPFR

MIDR_EL1 MIDR_EL1

Table K17-44 Performance monitors registers

Register Description, see

PMAUTHSTATUS PMAUTHSTATUS, Performance Monitors Authentication Status register

PMCCFILTR_EL0 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

PMCCIDSR PMCCIDSR, CONTEXTIDR_ELx Sample Register

PMCCNTR_EL0 PMCCNTR_EL0, Performance Monitors Cycle Counter

PMCCNTSVR_EL1 PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register

PMCEID0 PMCEID0, Performance Monitors Common Event Identification register 0

PMCEID1 PMCEID1, Performance Monitors Common Event Identification register 1

PMCEID2 PMCEID2, Performance Monitors Common Event Identification register 2

PMCEID3 PMCEID3, Performance Monitors Common Event Identification register 3

PMCFGR PMCFGR, Performance Monitors Configuration Register

PMCGCR0 PMCGCR0, Counter Group Configuration Register 0

PMCID1SR PMCID1SR, CONTEXTIDR_EL1 Sample Register

PMCID2SR PMCID2SR, CONTEXTIDR_EL2 Sample Register
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14741
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
PMCIDR0 PMCIDR0, Performance Monitors Component Identification Register 0

PMCIDR1 PMCIDR1, Performance Monitors Component Identification Register 1

PMCIDR2 PMCIDR2, Performance Monitors Component Identification Register 2

PMCIDR3 PMCIDR3, Performance Monitors Component Identification Register 3

PMCNTEN PMCNTEN, Performance Monitors Count Enable register

PMCNTENCLR_EL0 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register

PMCNTENSET_EL0 PMCNTENSET_EL0, Performance Monitors Count Enable Set Register

PMCR_EL0 PMCR_EL0, Performance Monitors Control Register

PMDEVAFF PMDEVAFF, Performance Monitors Device Affinity register

PMDEVAFF0 PMDEVAFF0, Performance Monitors Device Affinity register 0

PMDEVAFF1 PMDEVAFF1, Performance Monitors Device Affinity register 1

PMDEVARCH PMDEVARCH, Performance Monitors Device Architecture register

PMDEVID PMDEVID, Performance Monitors Device ID register

PMDEVTYPE PMDEVTYPE, Performance Monitors Device Type register

PMEVCNTR<n>_EL0 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

PMEVCNTSVR<n>_EL1 PMEVCNTSVR<n>_EL1, Performance Monitors Event Count Saved Value Register <n>, n = 0
- 30

PMEVFILT2R<n> PMEVFILT2R<n>, Performance Monitors Event Filter Registers, n = 0 - 63

PMEVTYPER<n>_EL0 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

PMICFILTR_EL0 PMICFILTR_EL0, Performance Monitors Instruction Counter Filter Register

PMICNTR_EL0 PMICNTR_EL0, Performance Monitors Instruction Counter Register

PMICNTSVR_EL1 PMICNTSVR_EL1, Performance Monitors Instruction Count Saved Value Register

PMIIDR PMIIDR, Performance Monitors Implementation Identification Register

PMINTEN PMINTEN, Performance Monitors Interrupt Enable register

PMINTENCLR_EL1 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register

PMINTENSET_EL1 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register

PMITCTRL PMITCTRL, Performance Monitors Integration mode Control register

PMLAR PMLAR, Performance Monitors Lock Access Register

PMLSR PMLSR, Performance Monitors Lock Status Register

PMMIR PMMIR, Performance Monitors Machine Identification Register

PMOVS PMOVS, Performance Monitors Overflow Flag Status register

PMOVSCLR_EL0 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register

Table K17-44 Performance monitors registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14742
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
K17.7.3 Debug registers

This section is an index to the registers in the Debug registers functional group.

PMPCSCTL PMPCSCTL, PC Sample-based Profiling Control Register

PMPCSR PMPCSR, Program Counter Sample Register

PMPIDR0 PMPIDR0, Performance Monitors Peripheral Identification Register 0

PMPIDR1 PMPIDR1, Performance Monitors Peripheral Identification Register 1

PMPIDR2 PMPIDR2, Performance Monitors Peripheral Identification Register 2

PMPIDR3 PMPIDR3, Performance Monitors Peripheral Identification Register 3

PMPIDR4 PMPIDR4, Performance Monitors Peripheral Identification Register 4

PMSSCR_EL1 PMSSCR_EL1, Performance Monitors Snapshot Status and Capture Register

PMSWINC_EL0 PMSWINC_EL0, Performance Monitors Software Increment Register

PMVCIDSR PMVCIDSR, CONTEXTIDR_EL1 and VMID Sample Register

PMVIDSR PMVIDSR, VMID Sample Register

PMZR_EL0 PMZR_EL0, Performance Monitors Zero with Mask

Table K17-44 Performance monitors registers (continued)

Register Description, see

Table K17-45 Debug registers

Register Description, see

DBGAUTHSTATUS_EL1 DBGAUTHSTATUS_EL1

DBGBCR<n>_EL1 DBGBCR<n>_EL1

DBGBVR<n>_EL1 DBGBVR<n>_EL1

DBGCLAIMCLR_EL1 DBGCLAIMCLR_EL1

DBGCLAIMSET_EL1 DBGCLAIMSET_EL1

DBGDTRRX_EL0 DBGDTRRX_EL0

DBGDTRTX_EL0 DBGDTRTX_EL0

DBGWCR<n>_EL1 DBGWCR<n>_EL1

DBGWVR<n>_EL1 DBGWVR<n>_EL1

EDACR EDACR

EDCIDR0 EDCIDR0

EDCIDR1 EDCIDR1

EDCIDR2 EDCIDR2

EDCIDR3 EDCIDR3

EDCIDSR EDCIDSR
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14743
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
EDDEVAFF0 EDDEVAFF0

EDDEVAFF1 EDDEVAFF1

EDDEVARCH EDDEVARCH

EDDEVID EDDEVID

EDDEVID1 EDDEVID1

EDDEVID2 EDDEVID2

EDDEVTYPE EDDEVTYPE

EDDFR1 EDDFR1

EDECCR EDECCR

EDECR EDECR

EDESR EDESR

EDHSR EDHSR

EDITCTRL EDITCTRL

EDITR EDITR

EDLAR EDLAR

EDLSR EDLSR

EDPCSR EDPCSR

EDPIDR0 EDPIDR0

EDPIDR1 EDPIDR1

EDPIDR2 EDPIDR2

EDPIDR3 EDPIDR3

EDPIDR4 EDPIDR4

EDPRCR EDPRCR

EDPRSR EDPRSR

EDRCR EDRCR

EDSCR EDSCR

EDSCR2 EDSCR2

EDVIDSR EDVIDSR

EDWAR EDWAR

OSLAR_EL1 OSLAR_EL1

Table K17-45 Debug registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14744
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
K17.7.4 RAS registers

This section is an index to the registers in the RAS registers functional group.

Table K17-46 RAS registers

Register Description, see

ERRACR ERRACR

ERRCIDR0 ERRCIDR0

ERRCIDR1 ERRCIDR1

ERRCIDR2 ERRCIDR2

ERRCIDR3 ERRCIDR3

ERRCRICR0 ERRCRICR0

ERRCRICR1 ERRCRICR1

ERRCRICR2 ERRCRICR2

ERRDEVAFF ERRDEVAFF

ERRDEVARCH ERRDEVARCH

ERRDEVID ERRDEVID

ERRERICR0 ERRERICR0

ERRERICR1 ERRERICR1

ERRERICR2 ERRERICR2

ERRFHICR0 ERRFHICR0

ERRFHICR1 ERRFHICR1

ERRFHICR2 ERRFHICR2

ERRGSR ERRGSR

ERRIIDR ERRIIDR

ERRIMPDEF<n> ERRIMPDEF<n>

ERRIRQCR<n> ERRIRQCR<n>

ERRIRQSR ERRIRQSR

ERR<n>ADDR ERR<n>ADDR

ERR<n>CTLR ERR<n>CTLR

ERR<n>FR ERR<n>FR

ERR<n>MISC0 ERR<n>MISC0

ERR<n>MISC1 ERR<n>MISC1

ERR<n>MISC2 ERR<n>MISC2

ERR<n>MISC3 ERR<n>MISC3

ERR<n>PFGCDN ERR<n>PFGCDN
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14745
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
K17.7.5 Cross-trigger interface registers

This section is an index to the registers in the Cross-Trigger Interface registers functional group.

ERR<n>PFGCTL ERR<n>PFGCTL

ERR<n>PFGF ERR<n>PFGF

ERR<n>STATUS ERR<n>STATUS

ERRPIDR0 ERRPIDR0

ERRPIDR1 ERRPIDR1

ERRPIDR2 ERRPIDR2

ERRPIDR3 ERRPIDR3

ERRPIDR4 ERRPIDR4

Table K17-46 RAS registers (continued)

Register Description, see

Table K17-47 Cross-trigger interface registers

Register Description, see

ASICCTL ASICCTL

CTIAPPCLEAR CTIAPPCLEAR

CTIAPPPULSE CTIAPPPULSE

CTIAPPSET CTIAPPSET

CTIAUTHSTATUS CTIAUTHSTATUS

CTICHINSTATUS CTICHINSTATUS

CTICHOUTSTATUS CTICHOUTSTATUS

CTICIDR0 CTICIDR0

CTICIDR1 CTICIDR1

CTICIDR2 CTICIDR2

CTICIDR3 CTICIDR3

CTICLAIMCLR CTICLAIMCLR

CTICLAIMSET CTICLAIMSET

CTICONTROL CTICONTROL

CTIDEVAFF0 CTIDEVAFF0

CTIDEVAFF1 CTIDEVAFF1

CTIDEVARCH CTIDEVARCH

CTIDEVCTL CTIDEVCTL

CTIDEVID CTIDEVID
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14746
ID032224 Non-Confidential

Registers Index
K17.7 Functional index of memory-mapped registers
CTIDEVID1 CTIDEVID1

CTIDEVID2 CTIDEVID2

CTIDEVTYPE CTIDEVTYPE

CTIGATE CTIGATE

CTIINEN<n> CTIINEN<n>

CTIINTACK CTIINTACK

CTIITCTRL CTIITCTRL

CTILAR CTILAR

CTILSR CTILSR

CTIOUTEN<n> CTIOUTEN<n>

CTIPIDR0 CTIPIDR0

CTIPIDR1 CTIPIDR1

CTIPIDR2 CTIPIDR2

CTIPIDR3 CTIPIDR3

CTIPIDR4 CTIPIDR4

CTITRIGINSTATUS CTITRIGINSTATUS

CTITRIGOUTSTATUS CTITRIGOUTSTATUS

Table K17-47 Cross-trigger interface registers (continued)

Register Description, see
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. K17-14747
ID032224 Non-Confidential

Glossary

A32 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using
AArch32 and is in A32 state. A32 instructions must be word-aligned.

A32 instructions were previously called ARM instructions.

See also A32 state, A64 instruction, T32 instruction.

A32 state The AArch32 Instruction set state in which the PE executes A32 instructions.

A32 state was previously called ARM state.

See also T32 instruction, T32 state.

A64 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using
AArch64. A64 instructions must be word-aligned.

See also A32 instruction, T32 instruction.

AArch32 The 32-bit Execution state. In AArch32 state, addresses are held in 32-bit registers, and instructions in the base
instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and A32 instruction sets

See also AArch64, A32 instruction, T32 instruction.

AArch64 The 64-bit Execution state. In AArch64 state, addresses are held in 64-bit registers, and instructions in the base
instruction set can use 64-bit registers for their processing. AArch64 state supports the A64 instruction set.

See also AArch32, A64 instruction.

Abort An exception caused by an illegal memory access. Aborts can be caused by the external memory system or the
MMU.

Active element An Active element is an SVE vector element or predicate element that is a source register element or destination
register element used by an SVE instruction. When the corresponding element in the instruction's Governing
predicate is TRUE, the element is Active. If an instruction is unpredicated, all of the vector elements or predicate
elements are implicitly Active.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14748
ID032224 Non-Confidential

Glossary

Addressing mode
Means a method for generating the memory address used by a load/store instruction.

Advanced SIMD A feature of the Arm architecture that provides SIMD operations on a register file of SIMD and floating-point
registers. Where an implementation supports both Advanced SIMD and floating-point instructions, these
instructions operate on the same register file.

Aligned A data item stored at an address that is exactly divisible by the highest power of 2 that divides exactly into its size
in bytes. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and 8
respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

ALTSP Alternative PARTID space for MPAM.

AMBA Advanced Microcontroller Bus Architecture. The AMBA family of protocol specifications is the Arm open standard
for on-chip buses. AMBA provides solutions for the interconnection and management of the functional blocks that
make up a System-on-Chip (SoC). Applications include the development of embedded systems with one or more
processors or signal processors and multiple peripherals.

Analysis of the trace element stream
Refers to the process of:

• Tracing elements that carry information that a trace analyzer requires to enable it to analyze the trace
successfully.

• Tracing elements that either directly indicate program execution, or carry information about program
execution.

A trace element stream might also contain trace elements that contain timing information.

This term is distinct from analysis of program execution.

Architecturally executed
An instruction is architecturally executed only if it would be executed in a simple sequential execution of the
program. When such an instruction has been executed and retired, it has been architecturally executed. Any
instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition code
check, is an architecturally executed instruction.

In a PE that performs speculative execution, an instruction is not architecturally executed if the PE discards the
results of a speculative execution.

See also Condition code check, Simple sequential execution.

Architecturally mapped
Where this manual describes a register as being architecturally mapped to another register, this indicates that, in an
implementation that supports both of the registers, the two registers access the same state.

Architecturally UNKNOWN
An architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

Architecturally well-formed
An Architecturally well-formed execution must satisfy one of the three alternative representations in the External
ordering constraints.

ARM core registers
Some older documentation uses ARM core registers to refer to the following set of registers for execution in
AArch32 state:

• The 13 general-purpose registers, R0-R12, that software can use for processing.

• SP, the stack pointer, that can also be referred to as R13.

• LR, the link register, that can also be referred to as R14.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14749
ID032224 Non-Confidential

Glossary

• PC, the Program Counter, that can also be referred to as R15.

See also General-purpose registers.

ARM instruction
See A32 instruction.

Associativity See Cache associativity.

Asynchronous accumulation
Faults that are accumulated in a status register, where the update to the register is asynchronous to the instruction
that causes the fault.

Atomicity Describes either single-copy atomicity or multi-copy atomicity. Atomicity in the Arm architecture defines these
forms of atomicity for the Arm architecture.

See also Multi-copy atomicity, Single-copy atomicity.

Availability Readiness for correct service.

Banked register A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.

Baseboard Management Controller
A PE dedicated to system control and monitoring.

Base register A register specified by a load/store instruction that is used as the base value for the address calculation for the
instruction. Depending on the instruction and its addressing mode, an offset can be added to or subtracted from the
base register value to form the virtual address that is sent to memory.

Base register writeback
Describes writing back a modified value to the base register used in an address calculation.

Behaves as if Where this manual indicates that a PE behaves as if a certain condition applies, all descriptions of the operation of
the PE must be re-evaluated taking account of that condition, together with any other conditions that affect
operation.

Big-endian memory
Means that, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also Endianness, Little-endian memory.

BIST See Built-in self test (BIST).

Blocking Describes an operation that does not permit following instructions to be executed before the operation completes.

A non-blocking operation can permit following instructions to be executed before the operation completes, and in
the event of encountering an exception does not signal an exception to the PE. This enables implementations to retire
following instructions while the non-blocking operation is executing, without the need to retain precise PE state.

Branch History Buffer (BHB)
The Branch History Buffer is an internal structure that stores branch instruction information including the history
of previously executed branches.

Branch prediction
Is where a PE selects a future execution path to fetch along. For example, after a branch instruction, the PE can
choose to speculatively fetch either the instruction following the branch or the instruction at the branch target.

See also Prefetching.

Breakpoint A debug event triggered by the execution of a particular instruction, specified by one or both of the address of the
instruction and the state of the PE when the instruction is executed.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14750
ID032224 Non-Confidential

Glossary

Built-in self test (BIST)
A mechanism that permits a machine to test itself.

Burst A group of transfers that form a single transaction.

BWA BandWidth Allocation.

BWPBM BandWidth Portion Bit Map.

Byte An 8-bit data item.

CE See Corrected Error.

Cache associativity
The number of locations in a cache set to which an address can be assigned. Each location is identified by its way
value.

Cache level The position of a cache in the cache hierarchy. In the Arm architecture, the lower numbered levels are those closest
to the PE. For more information, see Terms used in describing the cache maintenance instructions.

Cache line The basic unit of storage in a cache. Its size in words is always a power of two, usually 4 or 8 words. A cache line
must be aligned to a suitable memory boundary. A memory cache line is a block of memory locations with the same
size and alignment as a cache line. Memory cache lines are sometimes loosely called cache lines.

Cache lockdown
Enables critical software and data to be loaded into the cache so that the cache lines containing them are not
subsequently reallocated. It alleviates the delays caused by accessing a cache in a worst-case situation. This ensures
that all subsequent accesses to the software and data concerned are cache hits and so complete quickly.

Cache miss A memory access that cannot be processed at high speed because the data it addresses is not in the cache.

Cache sets Areas of a cache, divided up to simplify and speed up the process of determining whether a cache hit occurs. The
number of cache sets is always a power of two.

Cache way A cache way consists of one cache line from each cache set. The cache ways are indexed from 0 to (Associativity-1).
Each cache line in a cache way is chosen to have the same index as the cache way. For example, cache way n consists
of the cache line with index n from each cache set.

Coherence order
See Coherent.

Coherent Data accesses from a set of observers to a byte in memory are coherent if accesses to that byte in memory by the
members of that set of observers are consistent with there being a single total order of all writes to that byte in
memory by all members of the set of observers. This single total order of all to writes to that memory location is the
coherence order for that byte in memory.

Commit window
The Commit window defines the range of P0 elements that are committed by a Commit element. The oldest P0
element in the Commit window is the first P0 element committed when a Commit element occurs. By default, the
Commit window starts on the oldest uncommitted P0 element and moves forward to the next uncommitted P0
element, with each P0 element committed by a Commit element. The Commit Window Move element moves the
start of the Commit window by a number of P0 elements, to allow a Commit element to commit P0 elements that
are younger than the oldest uncommitted P0 elements, leaving these older P0 elements uncommitted.

Completer An agent in a computing system that responds to and completes a memory transaction that was initiated by a
Requester.

See also Requester.

Constructive instruction encoding
A constructive instruction encoding is an instruction encoding where the destination register is encoded
independently of the source registers.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14751
ID032224 Non-Confidential

Glossary

Condition code check
The process of determining whether a conditional instruction executes normally or is treated as a NOP. For an
instruction that includes a condition code field, that field is compared with the condition flags to determine whether
the instruction is executed normally. For a T32 instruction in an IT block, the value of PSTATE.IT determines
whether the instruction is executed normally.

See also Condition code field, Condition flags, Conditional execution.

Condition code field
A 4-bit field in an instruction that specifies the condition under which the instruction executes.

See also Condition code check.

Condition flags The N, Z, C, and V bits of PSTATE, an SPSR, or FPSCR. See the register descriptions for more information.

See also Condition code check, PSTATE.

Conditional execution
When a conditional instruction starts executing, if the condition code check returns TRUE, the instruction executes
normally. Otherwise, it is treated as a NOP.

See also Condition code check.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 and later architectures specify a narrow
range of permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All
implementations that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.

Containable error
See Contained error.

Contained error An error that is not uncontained or uncontainable.

Context switch The saving and restoring of computational state when switching between different threads or processes. In this
manual, the term context switch describes any situation where the context is switched by an operating system and
might or might not include changes to the address space.

Context Synchronization event
One of:

• Performing an ISB operation. An ISB operation is performed when an ISB instruction is executed and does
not fail its condition code check.

• Exception entry, if FEAT_ExS is not implemented or the exception is taken to AArch32 or if FEAT_ExS is
implemented and the appropriate SCTLR_ELx.EIS bit is set.

• Return from an exception, if FEAT_ExS is not implemented, or the exception is returning from AArch32 or
if FEAT_ExS is implemented and the appropriate SCTLR_ELx.EOS bit is set.

• Exit from Debug state.

• Executing a DCPS instruction.

• Executing a DRPS instruction.

The effects of a Context synchronization event are:

• All unmasked interrupts that are pending at the time of the Context synchronization event are taken before
the first instruction after the Context synchronization event.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14752
ID032224 Non-Confidential

Glossary

• If halting is allowed, all Halting debug events that are pending at the time of the Context synchronization
event are taken before the first instruction after the Context synchronization event.

• No instructions appearing in program order after an instruction that causes a Context synchronization event
will have performed any part of their functionality until the Context synchronization event has occurred.

• All direct and indirect writes to System registers that are made before the Context synchronization event
affect any instruction, including a direct read, that appears in program order after the instruction causing the
Context synchronization event.

• All completed changes to the translation tables for entries that, before the change, were not permitted to be
cached in a TLB, affect all instruction fetches that appear in program order after the instruction causing the
Context synchronization event.

• All invalidations of TLBs, instruction caches, and, in AArch32 state, branch predictors, that are completed
before the Context synchronization event, affect all instructions that appear in program order after an
instruction causing a Context synchronization event.

• In AArch32 state, all Non-cacheable writes that are completed before the Context synchronization event
affect all instructions that appear in program order after an instruction causing a Context synchronization
event.

• Changes to the Debug external authentication interfaces that are made before the Context synchronization
event affect any instruction that appears in program order after the instruction causing the Context
synchronization event.

• The effect of the completion of any of the instructions added by FEAT_SPECRES is synchronized to the
current execution context.

• Restrictions on the effects of speculation (as described in Restrictions on the effects of speculation) are
observed.

• Ensuring that the TSB instruction is executed in the necessary order with respect to other instructions.

• Profiling operations for all instructions that are executed in program order are synchronized by execution of
a PSB instruction before the Context synchronization event.

• See also:

— Restrictions on the effects of speculation.

— Trace Synchronization Barrier (TSB).

— Synchronization and debug exceptions.

— Synchronization in self-hosted trace.

— Synchronization of register updates.

— Speculation in the trace element stream.

— Trace Synchronization event.

— Self-hosted trace extension synchronization rules.

— Execution, data prediction and prefetching restriction System instructions.

— Synchronization and Statistical Profiling.

— Synchronization and Halting debug events.

— Synchronization of memory-mapped registers.

— CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14753
ID032224 Non-Confidential

Glossary

Note

• The architecture requires that instructions that generate Context synchronization events do not appear to be
executed speculatively, except that the performance monitor counters are permitted to reveal such
speculation.

• Context synchronization events were previously described as context synchronization operations.

Conventional memory
Memory locations from which generic OSs and application runtimes expect to create allocations for general
software use.

Core See Processing element (PE).

CoreSight Address Translation Unit
A form of System MMU for trace streams.

Corrected Error An error that is detected by hardware and that hardware has corrected.

CPBM Cache-Portion Bit Map.

CSU Cache-Storage Usage.

Data independent timing (DIT)
The time that it takes to execute a piece of code where the time is not a function of the data being operated on. For
more information, see About PSTATE.DIT and About the DIT bit.

Debugger In most of this manual, debugger refers to any agent that is performing debug. However, some chapters or parts of
this manual require a more rigorous definition, and define debugger locally. See:

• Definition of a debugger in the context of self-hosted debug.

• Definition of a debugger in the context of self-hosted debug.

• Definition and constraints of a debugger in the context of external debug.

Deferred error An error that has not been silently propagated but does not require immediate action at the producer. The error might
have passed from the producer to a consumer.

Deprecated Something that is present in the Arm architecture for backwards compatibility. Whenever possible software must
avoid using deprecated features. Features that are deprecated but are not optional are present in current
implementations of the Arm architecture, but might not be present, or might be deprecated and OPTIONAL, in future
versions of the Arm architecture.

See also OPTIONAL.

Destructive instruction encoding
A destructive instruction encoding is an instruction encoding where one of the source registers is also used as the
destination register.

Detected error An error that has been detected and signaled to a consumer.

Detected uncorrected error
A detected error that has not been be corrected and causes failure.

Digital signal processing (DSP)
Algorithms for processing signals that have been sampled and converted to digital form. DSP algorithms often use
saturated arithmetic.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the PE performing any accesses to the data concerned.

Direct read A direct read of a System register is a read performed by a System register access instruction.

For more information, see Direct read.

See also Direct write, Indirect read, Indirect write.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14754
ID032224 Non-Confidential

Glossary

Direct write A direct write of a System register is a write performed by a System register access instruction.

For more information, see Direct write.

See also Direct read, Indirect read, Indirect write.

DMA See Direct Memory Access (DMA).

DNM See Do-Not-Modify (DNM).

Domain In the Arm architecture, domain is used in the following contexts.

Shareability domain Defines a set of observers for which the Shareability attributes make the data or unified
caches transparent for data accesses.

Power domain Defines a block of logic with a single, common, power supply.

Memory regions domain

When using the Short-descriptor translation table format, defines a collection of Sections,
Large pages and Small pages of memory, that can have their access permissions switched
rapidly by writing to the Domain Access Control Register (DACR). Arm deprecates any use
of memory regions domains.

Do-Not-Modify (DNM)
Means the value must not be altered by software. DNM fields read as UNKNOWN values, and must only be written
with the value read from the same field on the same PE.

Double-precision value
Consists of two consecutive 32-bit words that are interpreted as a basic double-precision floating-point number
according to the IEEE Standard for Floating-point Arithmetic.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned
Means that the address is divisible by 8.

Downstream Information propagating in the direction from Requesters towards terminating Completer components.

DSB Data Synchronization Barrier.

DSP See Digital signal processing (DSP).

DUE See Detected uncorrected error.

DUE FIT RATE The FIT rate for failures from a DUE.

ECC See Error Correction Code (ECC).

EDAC See Error Correction Code (ECC).

EDC See Error Detection Code (EDC).

Effective value A register control field, meaning a field in a register that controls some aspect of the behavior, can be described as
having an Effective value:

• In some cases, the description of a control a specifies that when control a is active it causes a register control
field b to be treated as having a fixed value for all purposes other than direct reads, or direct reads and direct
writes, of the register containing control field b. When control a is active that fixed value is described as the
Effective value of register control field b. For example, when the value of HCR.DC is 1, the Effective value
of HCR.VM is 1, regardless of its actual value.

In other cases, in some contexts a register control field b is not implemented or is not accessible, but behavior
of the PE is as if control field b was implemented and accessible, and had a particular value. In this case, that
value is the Effective value of register control field b.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14755
ID032224 Non-Confidential

Glossary

Note

Where a register control field is introduced in a particular version of the architecture, and is not implemented
in an earlier version of the architecture, typically it will have an Effective value in that earlier version of the
architecture.

• Otherwise, the Effective value of a register control field is the value of that field.

Effective Non-streaming SVE vector length
The Non-streaming SVE vector length in bits at the current Exception level, is an implementation-supported power
of two up to the Maximum implemented Non-streaming SVE vector length, further constrained by ZCR_ELx at the
current and higher Exception levels.

See also Configurable SVE vector lengths.

Effective Streaming SVE vector length
The Streaming SVE vector length in bits at the current Exception level is an implementation-supported power of
two from 128 up to the Maximum implemented Streaming SVE vector length, further constrained by SMCR_ELx
at the current and higher Exception levels.

See also Configurable SVE vector lengths.

Effective SVE vector length
The vector length in bits that applies to the execution of SVE instructions at the current Exception level is the
Effective Streaming SVE vector length when the PE is in Streaming SVE mode, otherwise it is the Effective
Non-streaming SVE vector length.

See also Configurable SVE vector lengths.

Element number
For a given element size of N bits, elements within a vector or predicate register are numbered with element[0]
always representing bits[(N-1):0], element[1] always representing bits[(2N-1):N], and so on.

Endianness An aspect of the system memory mapping.

See also Big-endian memory and Little-endian memory.

Error Correction Code (ECC)
A code capable of detecting and correcting a number of errors.

Error Detection Code (EDC)
A code capable of detecting, but not correcting, errors.

Error propagation
Passing an error from a producer to a consumer.

Error record Data recorded about an error, usually by hardware.

ETEEvent A feature of the trace unit that is used to generate Event elements and drive External Outputs. Each ETEEvent can
be programmed to be sensitive to resource events.

Event trace The trace uses Event elements that indicate certain events have occurred in the program that the PE is executing.
The program events to be indicated are selected before a trace session.

Exceptional occurrence
Events indicated by an Exception element by the ETE architecture, including the following:

• PE architectural exceptions.

• ETE defined exceptions.

• IMPLEMENTATION DEFINED exceptions.

Exception Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Exception vector
A fixed address that contains the address of the first instruction of the corresponding exception handler.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14756
ID032224 Non-Confidential

Glossary

Execution stream
The stream of instructions that would have been executed by sequential execution of the program.

Explicit
memory effect

A read from memory, or a write to memory, generated by a load or store instruction executed by the PE. Reads and
writes generated by hardware translation table accesses, as well as instruction fetches and SPE writes to the Profiling
Buffer, are not explicit memory effects.

External abort An abort that is generated by the external memory system.

Fast Context Switch Extension (FCSE)
Modifies the behavior of an Arm memory system to enable multiple programs running on the Arm PE to use
identical address ranges, while ensuring that the addresses they present to the rest of the memory system differ. The
FCSE is:

• Deprecated from Armv6 and not supported in Armv8.

• Obsolete from the introduction of the Multiprocessing Extensions.

FCSE See Fast Context Switch Extension (FCSE).

Field Replaceable Unit (FRU)
A component or unit in a system that can be replaced without return to base.

First active element
The First active element of an SVE vector or predicate register is the lowest numbered element that is an Active
element.

First-fault load SVE provides a First-fault option for some SVE vector load instructions. This option causes memory access faults
to be suppressed if they do not occur as a result of the First active element of the vector. Instead, the FFR is updated
to indicate which of the active vector elements were not successfully loaded.

Flat address mapping
Is where the physical address for every access is equal to its virtual address.

Flush-to-zero mode
A processing mode that optimizes the performance of some floating-point algorithms by replacing the denormalized
operands and Intermediate results with zeros, without significantly affecting the accuracy of their final results.

FRU See Field Replaceable Unit (FRU).

Gather-load Gather-load is a mechanism that allows the elements of a vector to be read from non-contiguous memory locations
using a vector of addresses, where the addresses are constructed according to the addressing mode.

General-purpose registers
The registers that the base instructions use for processing:

• In AArch32 state the general-purpose registers are R0-R14, that can also be described as R0-R12, SP, LR.

Note

Older documentation defines the AArch32 general-purpose registers as R0-R12, and the Arm core registers
as R0-R12, SP, LR, and PC.

• In AArch64 state the general-purpose registers are:

— W0-W30 when accessed as 32-bit registers.

— X0-X30 when accessed as 64-bit registers.

See also High registers, Low registers.

Generated by The memory model is written in terms of reads from memory and writes to memory. These reads and writes:

• Are generated by instructions such as loads, stores, and atomic memory accesses.

• Correspond to the memory accesses, other than translation table walks, that are defined in the instruction
pseudocode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14757
ID032224 Non-Confidential

Glossary

Some instructions generate more than one read or write.

Generic Interrupt Controller (GIC)
Arm system architecture interrupt controller for IRQ and FIQ interrupt exceptions.

Governing predicate
The predicate register that is used to determine the Active elements of a predicated instruction is known as the
Governing predicate for that instruction.

GIC See Generic Interrupt Controller (GIC).

GPC See Granule Protection Check.

Granule Protection Check
A mechanism for checking the protection information of a particular physical address and physical address space,
For more information, see Chapter D9 The Granule Protection Check Mechanism.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned
Means that the address is divisible by 2.

High registers In AArch32 state, the general-purpose registers R8-R14. Most 16-bit T32 instructions cannot access the high
registers.

Note

In some contexts, high registers refers to R8-R15, meaning R8-R14 and the PC.

See also General-purpose registers, Low registers.

High vectors An alternative location for the exception vectors. The high vector address range is near the top of the address space,
rather than at the bottom.

ICN InterConnect Network.

IGNORED Indicates that the architecture guarantees that the bit or field is not interpreted or modified by hardware.

In body text, the term IGNORED is shown in SMALL CAPITALS.

Illegal Describes an implemented instruction whose attempted execution by a PE when PSTATE.SM and PSTATE.ZA are not in
the required state causes an SME illegal instruction exception to be taken, unless its execution at the current
Exception level is prevented by a higher priority configurable trap or enable.

See Streaming SVE mode.

Immediate and offset fields
Are unsigned unless otherwise stated.

Immediate value
A value that is encoded directly in the instruction and used as numeric data when the instruction is executed. Many
A64, A32, and T32 instructions can be used with an immediate argument.

IMP An abbreviation used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED behavior.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

IMPLEMENTATION SPECIFIC
Means that the behavior is not architecturally defined, and might not be documented by an individual
implementation. Used when there are several implementation options available and the option chosen does not
affect software compatibility.

In body text, the term IMPLEMENTATION SPECIFIC is shown in SMALL CAPITALS.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14758
ID032224 Non-Confidential

Glossary

Imprecise exception
An exception that is not precise.

Inactive element
An Inactive element is an SVE vector element or predicate element that is an unused source register element or
destination register element for the associated instruction. When the corresponding element of an instruction's
Governing predicate is FALSE, the element is inactive.

Index register A register specified in some load and store instructions. The value of this register is used as an offset to be added to
or subtracted from the base register value to form the virtual address that is sent to memory. Some instruction forms
permit the index register value to be shifted before the addition or subtraction.

Indirect read When an instruction uses a System register value to establish operating conditions, that use of the System register
is an indirect read of the System register.

For more information, including additional examples of indirect reads, see Indirect read.

See also Direct read, Direct write, Indirect write.

Indirect write An indirect write of a System register occurs when the contents of a register are updated by some mechanism other
than a Direct write to that register. For example, an indirect write to a register might occur as a side-effect of
executing an instruction that does not perform a direct write to the register, or because of some operation performed
by an external agent.

For more information, see Indirect write.

See also Direct read, Direct write, Indirect read.

Inline literals These are constant addresses and other data items held in the same area as the software itself. They are automatically
generated by compilers, and can also appear in assembler code.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the
IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

Interrupt In a PE context, an asynchronous exception. There are three interrupt exceptions: IRQ, FIQ, and SError. IRQ and
FIQ are always precise. In a system architecture context, an asynchronous event sent to a PE or GIC for processing
as an interrupt exception.

Interworking A method of working that permits branches between software using the A32 and T32 instruction sets.

IPA See Intermediate physical address (IPA).

kvm Kernel-based Virtual Machine, an open-source software package that implements a type-2 hypervisor within Linux.

Latent error An error that is present in a system but not yet detected.

Last active element
The Last active element of an SVE vector or predicate register is the highest numbered element that is an Active
element.

Legal Describes an implemented instruction that can be executed by a PE when PSTATE.SM and PSTATE.ZA are in the required
state, unless its execution at the current Exception level is prevented by a configurable trap or enable.

See Streaming SVE mode.

Level See Cache level.

Level of Coherence (LoC)
The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of coherency.
For more information, see Terms used in describing the cache maintenance instructions.

See also Cache level, Point of coherency (PoC).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14759
ID032224 Non-Confidential

Glossary

Level of Unification, Inner Shareable (LoUIS)
The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of unification
for the Inner Shareable Shareability domain. For more information, see Terms used in describing the cache
maintenance instructions.

See also Cache level, Point of unification (PoU).

Level of Unification, uniprocessor (LoUU)
For a PE, the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of
unification for that PE. For more information, see Terms used in describing the cache maintenance instructions.

See also Cache level, Point of unification (PoU).

Line See Cache line.

Little-endian memory
Means that, for example:

• A byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the least significant byte in the halfword at that address.

See also Big-endian memory, Endianness.

Load/store architecture
An architecture where data-processing operations only operate on register contents, not directly on memory
contents.

LoC See Level of Coherence (LoC).

LoUIS See Level of Unification, Inner Shareable (LoUIS).

LoUU See Level of Unification, uniprocessor (LoUU).

Lockdown See Cache lockdown.

Low registers In AArch32 state, general-purpose registers R0-R7. Unlike the high registers, all T32 instructions can access the
Low registers.

See also General-purpose registers, High registers.

LPI Locality-specific Peripheral Interrupt.

Maximum implemented Non-streaming SVE vector length
The maximum Non-streaming SVE vector length in bits supported by the implementation.

See Maximum implemented SVE vector lengths

Maximum implemented Streaming SVE vector length
The maximum Streaming SVE vector length in bits supported by the implementation.

See Maximum implemented SVE vector lengths

Maximum implemented SVE vector length
The maximum vector length in bits that applies to the execution of SVE instructions at the current Exception level
is the Maximum implemented Streaming SVE vector length when the PE is in Streaming SVE mode; otherwise it
is the Maximum implemented Non-streaming SVE vector length.

See Maximum implemented SVE vector lengths.

MBIST Memory BIST.

See also Built-in self test (BIST).

MEC See Memory Encryption Contexts.

MBWU Memory BandWidth Usage.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14760
ID032224 Non-Confidential

Glossary

Memory barrier See Memory barriers.

Memory coherency
The problem of ensuring that when a memory location is read, either by a data read or an instruction fetch, the value
actually obtained is always the value that was most recently written to the location. This can be difficult when there
are multiple possible physical locations, such as main memory and at least one of a write buffer and one or more
levels of cache.

Memory element
An item of data in memory that is transferred to or from a vector element by an SVE load or store instruction. Each
memory element has an access size and a type. The memory element access size is specified by each load and store
instruction independently of the vector element size.

Memory Encryption Contexts
Unique cryptographic boundaries provided to the Realm physical address space for assignment to Realm virtual
machines, with policy controlled by Realm EL2. For more information, see Memory Encryption Contexts.

Memory Management Unit (MMU)
Provides detailed control of the part of a memory system that provides a single stage of address translation. Most of
the control is provided using translation tables that are held in memory, and define the attributes of different regions
of the physical memory map.

Memory Protection Unit (MPU)
A hardware unit whose registers provide simple control of a limited number of protection regions in memory.

Merging predication
When a predicated SVE instruction specifies merging predication, the Inactive elements of the destination register
remain unchanged.

Memory-system component
MSC. A function, unit, or design block in a memory system that can have partitionable resources. MSCs consist of
all units that handle load or store requests issued by any MPAM Requester. These can include cache memories,
interconnects, memory management units, memory channel controllers, queues, buffers, and rate adaptors. An MSC
can contain one or more resources that each can have zero or more resource partitioning controls. For example, a
PE can contain several caches, each of which might have zero or more resource partitioning controls.

Memory-system resource
A resource that affects the performance of software's use of the memory system and is either local to an MSC (such
as cache-memory capacity) or non-local (such as memory bandwidth, which is present over an entire path, from
Requester to Completer, that can pass through multiple MSCs).

MMR Memory-mapped Register.

MPAM Memory system resource Partitioning and Monitoring.

MPAM information
The MPAM information bundle, comprising PARTID, PMG, and MPAM_NS.

MPAM resource partition
See Resource partition.

Microarchitecturally-finished
An operation that has finished all of its operational pseudocode, although the results of any memory accesses,
including translation table walks and updates, are not yet coherent with other observers.

Microarchitecturally-unfinished
An operation that has not completed all of its operational pseudocode.

Miss See Cache miss.

MMU See Memory Management Unit (MMU).

MPU See Memory Protection Unit (MPU).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14761
ID032224 Non-Confidential

Glossary

Multi-copy atomicity
The form of atomicity described in Requirements for multi-copy atomicity.

See also Atomicity, Single-copy atomicity.

NaN Not a Number. A floating-point value that can be used when neither a numeric value nor an infinity is appropriate.
A NaN can be a Quiet NaN, that propagate through most floating-point operations, or a signaling NaN, that causes
an Invalid Operation floating-point exception when used. For more information, see the IEEE Standard for
Floating-point Arithmetic.

See also Quiet NaN, Signaling NaN.

Natural eviction A natural eviction is an eviction that occurs in the course of the normal operation of the memory system, rather than
because of an operation that explicitly causes an eviction from the cache, such as the execution of a cache
maintenance instruction. Typically, a natural eviction occurs when the caching algorithm requires data to be cached
but the cache does not have room for that data.

Non-fault load SVE provides a Non-fault option for some SVE vector load instructions. This option causes all memory access
faults to be suppressed. Instead, the FFR is updated to indicate which of the active vector elements were not
successfully loaded.

NSVL See Effective Non-streaming SVE vector length.

Observer A PE or mechanism in the system, such as a peripheral device, that can generate reads from or writes to memory.

Obsolete Obsolete indicates something that is no longer supported by Arm. When an architectural feature is described as
obsolete, this indicates that the architecture has no support for that feature, although an earlier version of the
architecture did support it.

Offset addressing
Means that the memory address is formed by adding or subtracting an offset to or from the base register value.

OPTIONAL When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the Arm architecture:

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture.
Arm expects such a features to be included in a new implementation only if there is a known
backwards-compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the Arm
architecture after the initial release of that version of the architecture. Arm recommends that such features
are included in all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALL CAPITALS.

Note

Do not confuse these Arm-specific uses of OPTIONAL with other uses of optional, where it has its usual meaning.
These include:

• Optional arguments in the syntax of many instructions.

• Behavior determined by an implementation choice, for example the optional byte order reversal in an
Armv7-R implementation, where the SCTLR.IE bit indicates the implemented option.

See also Deprecated.

Other-multi-copy atomic
This is a Memory Write effect from an observer that, if observed by a different observer, is then observed by all
other observers that access the location coherently.

PA See Physical address (PA).
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14762
ID032224 Non-Confidential

Glossary

Packed access
A memory access that is performed as a result of an SVE load or store instruction for which the vector element size
and the memory element size are the same.

PCIe See Peripheral Component Interconnect Express (PCI Express or PCIe).

PE See Processing element (PE).

Peripheral Component Interconnect Express (PCI Express or PCIe)
A high-speed serial computer expansion bus standard maintained and developed by the PCI Special Interest Group.

PFA See Predicitve Failure Analysis (PFA).

Physical address (PA)
An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

PoC See Point of coherency (PoC).

PoE See Point of encryption (PoE).

PoP See Point of persistence (PoP).

PoPA See Point of physical aliasing (PoPA).

PoU See Point of unification (PoU).

Point of coherency (PoC)
For a particular VA, the point at which all agents that can access memory are guaranteed to see the same copy of a
memory location. For more information, see Terms used in describing the cache maintenance instructions.

Point of encryption (PoE)
The point in the memory system where any write that has reached that point is encrypted with the context associated
with the MECID that is associated with that write. For more information, see Terms used in describing the cache
maintenance instructions.

Point of persistence (PoP)
The point in a memory system where there is a system guarantee that there is sufficient energy within the system to
ensure that a write to memory will be persistent if system power is removed. For more information, see Terms used
in describing the cache maintenance instructions.

Point of physical aliasing (PoPA)
The point in a memory system beyond which an access from any PA space uses the same copy in a cache or memory,
For more information, see Terms used in describing the cache maintenance instructions.

Point of unification (PoU)
For a particular PE, the point by which the instruction and data caches and the translation table walks of that PE are
guaranteed to see the same copy of a memory location. For more information, see Terms used in describing the
cache maintenance instructions.

Post-indexed addressing
Means that the memory address is the base register value, but an offset is added to or subtracted from the base
register value and the result is written back to the base register.

Precise exception
An exception where the exception handler receives the state of the PE and the state of the memory system consistent
with the PE having executed all of the instructions up to, but not including, the point in the instruction stream where
the exception was taken. The state of the PE and the state of the memory do not include instructions that occurred
after this point.

Predicate A one-dimensional array of predicate elements of the same size.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14763
ID032224 Non-Confidential

Glossary

Predicate element
Individual subdivisions of a predicate register that can be 1, 2, 4, or 8 bits in size. The predicate element size is
specified independently by each instruction and is always one-eighth the size of the corresponding vector element.
The lowest-numbered bit of each predicate element holds the Boolean value of that element, where 1 represents
TRUE and 0 represents FALSE.

Predicated instruction
An SVE instruction that has a Governing predicate operand, which determines the Active and Inactive elements for
that instruction.

Predicate register
An SVE predicate register, P0-P15, having a length that is a power of two, in the range 16 bits to 256 bits, inclusive.

Predicitve Failure Analysis (PFA)
Mechanisms to analyze errors and predict future failures.

Prefetching Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple
sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

In this manual, references to instruction or data fetching apply also to prefetching, unless the context explicitly
indicates otherwise.

Note

The Prefetch Abort exception can be generated on any instruction fetch, and is not limited to speculative instruction
fetches.

See also Simple sequential execution.

Prefixed instruction
The instruction that immediately follows a MOVPRFX instruction in program order.

Pre-indexed addressing
Means that the memory address is formed in the same way as for offset addressing, but the memory address is also
written back to the base register.

Processing element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual. A
PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

Protection granule
A quantum of memory for which an EDC or ECC provides detection or correction. For example, a 72/64 SECDED
ECC scheme has a 64-bit protection granule.

Protection region
A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit See Memory Protection Unit (MPU).

Pseudo-instruction
UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a different
assembler syntax, and is described in this manual under that other syntax. For example, MOV <Rd>, <Rm>, LSL #<n>
is a pseudo-instruction that is expected to disassemble as LSL <Rd>, <Rm>, #<n>.

PSTATE An abstraction of process state information. All of the instruction sets provide instructions that operate on elements
of PSTATE.

See also Condition flags.

Quadword A 128-bit data item. Quadwords are normally at least word-aligned in Arm systems.

Quadword-aligned
Means that the address is divisible by 16.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14764
ID032224 Non-Confidential

Glossary

Quiet NaN A NaN that propagates unchanged through most floating-point operations.

See also NaN, Signaling NaN.

RAO See Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAO/SBOP In versions of the Arm architecture before Armv8, Read-As-One, Should-Be-One-or-Preserved on writes.

From the introduction of the Armv8 architecture, RES1 replaces this description.

See also UNK/SBOP, Read-As-One (RAO), RES1, Should-Be-One-or-Preserved (SBOP).

RAO/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software can rely on the field reading as all 1s, and on writes being ignored.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ/SBZP In versions of the Arm architecture before Armv8, Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

From the introduction of the Armv8 architecture, RES0 replaces this description.

See also UNK/SBZP, Read-As-Zero (RAZ), RES0, Should-Be-Zero-or-Preserved (SBZP).

RAZ/WI Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-As-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-allocate cache
A cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.

Software:

• Can rely on the field reading as all 1s.

• Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also RAO/SBOP, RAO/WI, RES1.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software:

• Can rely on the field reading as all 0s

• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also RAZ/SBZP, RAZ/WI, RES0.

Read-to-Clear (RC)
A read of the field clears the field to 0 once the read is complete.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14765
ID032224 Non-Confidential

Glossary

Read, modify, write
In a read, modify, write instruction sequence, a value is read to a general-purpose register, the relevant fields updated
in that register, and the new value written back.

Recoverable error
A contained error that must be corrected to allow the correct operation of the system or smaller parts of the system
to continue.

Reliability Continuity of correct service.

Requester An agent in a computing system that is capable of initiating memory transactions.

See also Completer.

RES0 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES0 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES0 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
bit-by-bit basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14766
ID032224 Non-Confidential

Glossary

• A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), RES0H, RES1, Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES0H A reserved bit or field with SBZP. This behavior uses the hardwired to 0 subset of the RES0 definition.

See also Read-As-Zero (RAZ), RES0, RES1, Should-Be-Zero-or-Preserved (SBZP).

RES1 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES1 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14767
ID032224 Non-Confidential

Glossary

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
bit-by-bit basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note

As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), RES0, RES0H, Should-Be-One-or-Preserved (SBOP), UNKNOWN.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14768
ID032224 Non-Confidential

Glossary

Reserved Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions described as reserved are:

— In an RW or WO register, RES0.

— In an RO register, UNK.

See also CONSTRAINED UNPREDICTABLE, RES0, RES0H, RES1, UNDEFINED, UNK, UNPREDICTABLE.

Resource partition
The collection of MPAM resource control settings associated with a software environment and identified by the
combination of a physical PARTID space and a partition number.

RESS Reserved, Sign extended. A register value is extended by copying the sign bit into all of the reserved bits to the left
of the most significant bit of the field. The values of these bits are identical to the most significant bit of the value
being extended.

Within the architecture, a register bit or field can be treated:

• As RESS in few defined architectural contexts.

• In a different defined behavior in other architectural contexts.

Rewind point A rewind point is a point in the program flow to which execution can return if all subsequent execution is found to
have been incorrectly speculatively executed.

RISC Reduced Instruction Set Computer.

RIS Resource instance selection. The value in MPAMCFG_PART_SEL.RIS selects the resource instance that is
configured through MPAMCFG_* registers and described by the MPAMF ID registers.

RME Realm Management Extension.

Rounding error The value of the rounded result of an arithmetic operation minus the exact result of the operation.

Rounding mode Specifies how the exact result of a floating-point operation is rounded to a value that is representable in the
destination format. The rounding modes are defined by the IEEE Standard for Floating-point Arithmetic, see
Floating-point standards, and terminology.

Saturated arithmetic
Integer arithmetic in which a result that would be greater than the largest representable number is set to the largest
representable number, and a result that would be less than the smallest representable number is set to the smallest
representable number. Signed saturated arithmetic is often used in DSP algorithms. It contrasts with the normal
signed integer arithmetic used in Arm processors, in which overflowing results wrap around from +231–1 to –231 or
vice versa.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Scalable vector register
An SVE vector register, Z0-Z31, having a length that is a power of two, in the range 128 bits to 2048 bits, inclusive.

Scalar base register
A scalar base register refers to an AArch64 general-purpose register, X0-X31, or the current stack pointer, SP.

Scalar index register
A scalar index register refers to an AArch64 general-purpose register, X0-X31, or for certain instructions, XZR.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14769
ID032224 Non-Confidential

Glossary

Scalar Matrix Extension
Defines architectural state capable of holding two-dimensional matrix tiles, and a Streaming SVE mode which
supports execution of SVE2 instructions with a vector length that matches the tile width, along with instructions
that accumulate the outer product of two vectors into a tile, as well as load, store, and move instructions that transfer
a vector to or from a tile row or column.

See Chapter D21 The Scalable Matrix Extension.

Scalar Matrix Extension version 2
Extends the Scalable Matrix Extension by adding data-processing instructions with multi-vector operands and a
multi-vector predication mechanism, a lookup table feature, a binary outer product instruction, and a range prefetch
hint.

See SME2 Multi-vector operands, Vector predication, and SME2 ZT0 register.

Scatter-store Scatter-store is a mechanism that allows the elements of a vector to be written to non-contiguous memory locations
using a vector of addresses, where the addresses are constructed according to the addressing mode.

SDC See Silent Data Corruption (SDC).

SDC FIT rate The FIT rate for failures because of SDC.

SDEC Single device error correction EDAC. This can detect and correct multiple clustered errors in a protection granule,
such as the types of errors that might be seen if a protection granule is striped across multiple devices and multiple
errors come from a single device.

SECDED Single error correct, double error detect EDAC. This can detect a single or double bit error and correct a single bit
error in a protection granule.

SED Single error detect EDC. This can detect a single bit error in a protection granule.

Security hole A mechanism by which execution at the current level of privilege can achieve an outcome that cannot be achieved
at the current or a lower level of privilege using instructions that are not UNPREDICTABLE and are not CONSTRAINED
UNPREDICTABLE. The Arm architecture forbids security holes.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Self-modifying code
Code that writes one or more instructions to memory and then executes them. When using self-modifying code, you
must use cache maintenance and barrier instructions to ensure synchronization. For more information, see Caches
and memory hierarchy.

SError interrupt An asynchronous interrupt in the Arm architecture.

Serviceability The ability to undergo modifications and repairs.

Service failure mode
A mode entered to reduce the severity of an error.

Set See Cache sets.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One-or-Preserved (SBOP)
From the introduction of the Armv8 architecture, the description Should-Be-One-or-Preserved (SBOP) is
superseded by RES1.

Hardware must ignore writes to the field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14770
ID032224 Non-Confidential

Glossary

When writing this field, software must either write all 1s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 0s. If software writes a value that is not all 0s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero-or-Preserved (SBZP)
From the introduction of the Armv8 architecture, the description Should-Be-Zero-or-Preserved (SBZP) is
superseded by RES0.

Hardware must ignore writes to the field.

When writing this field, software must either write all 0s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Signaling NaN An Invalid Operation floating-point exception occurs whenever any floating-point operation receives a signaling
NaN as an operand. Signaling NaNs can be used in debugging, to track down some uses of uninitialized variables.

See also NaN, Quiet NaN.

Signed immediate and offset fields
Are encoded in two’s complement notation unless otherwise stated.

Silent Data Corruption (SDC)
An error that is not detected by hardware or software.

SIMD Single-Instruction, Multiple-Data.

The SIMD instructions in AArch32 state are:

• The instructions summarized in Parallel addition and subtraction instructions.

• The Advanced SIMD instructions summarized in Advanced SIMD and floating-point instructions, when
operating on vectors.

Simple sequential execution
The behavior of an implementation that fetches, decodes and completely executes each instruction before
proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including
to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the
theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to
a realistic implementation of the architecture.

Single-copy atomicity
The form of atomicity described in Properties of single-copy atomic accesses.

See also Atomicity, Multi-copy atomicity.

Single-precision value
A 32-bit word that is interpreted as a basic single-precision floating-point number according to the IEEE Standard
for Floating-point Arithmetic.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14771
ID032224 Non-Confidential

Glossary

SMCU See Streaming Mode Compute Unit.

SME See Scalar Matrix Extension.

SME2 See Scalar Matrix Extension version 2.

SMMU System Memory Management Unit.

SPE Statistical Profiling Extension.

Spatial locality The observed effect that after a program has accessed a memory location, it is likely to also access nearby memory
locations in the near future. Caches with multi-word cache lines exploit this effect to improve performance.

Special-purpose register
One of a specified set of registers for which all direct and indirect reads and writes to the register appear to occur in
program order relative to other instructions, without the need for any explicit synchronization:

• Special-purpose registers specifies the AArch64 Special-purpose registers.

• AArch32 general-purpose registers, the PC, and the Special-purpose registers lists the AArch32
Special-purpose registers.

Speculative
Speculative operations are:

• Operations that are generated by instructions that appear in the Execution stream after a branch that is not
architecturally resolved.

• Operations that are generated by instructions that appear in the Execution stream after an instruction where
a synchronous exception condition has not been architecturally resolved.

• Operations that are generated by conditional instructions for which the conditions for the instruction have not
been architecturally resolved.

• Operations that are generated by instructions that appear in the Execution stream after the point at which a
precise asynchronous exception will be taken.

• Operations generated by instructions for which one or more of the arguments come from a register that has
not been architecturally resolved.

• Operations generated by the hardware that are not directly generated by any instructions appearing in the
Execution stream.

• Memory effects (M2) generated by load or store instructions (LS2) appearing in program order after load or
store instructions (LS1) that generate memory effects (M1) where all of the following apply:

— M1 is locally-ordered-before M2.

— LS1 has not been executed before LS2.

• Read accesses generated for a translation table walk for which the granule protection check for the address
being accessed has not been architecturally resolved.

See also Execution stream.

Speculative Microarchitecturally-finished
An operation that has finished all of its operational pseudocode, on a predicted execution path.

Speculative Microarchitecturally-unfinished
An operation that is in progress on a predicted execution path.

SPI Shared Peripheral Interrupt.

Streaming execution
Execution of instructions by a PE when that PE is in Streaming SVE mode.

See Streaming SVE mode.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14772
ID032224 Non-Confidential

Glossary

Streaming Mode Compute Unit
Where more than one PE shares resources for Streaming execution of SVE and SME instructions, those shared
resources are called a Streaming Mode Compute Unit (SMCU).

See Streaming execution priority.

Streaming SVE mode
An execution mode that supports a substantial subset of the SVE2 instruction set and architectural state with a
vector length that matches the width of SME tiles, which may be different from the vector length when the PE is
not in Streaming SVE.

See Streaming SVE mode.

Streaming SVE register state
The registers Z0-Z31, P0-P15, and FFR that are accessed by SVE and SME instructions when the PE is in Streaming
SVE mode.

See Streaming SVE mode.

Superpriority An attribute that is used to denote virtual and physical IRQ and FIQ interrupts as non-maskable. IRQ and FIQ
interrupts with Superpriority can be taken under certain conditions where usually they would be masked by the
PSTATE.{I, F} bits.

SVL
See Effective Streaming SVE vector length.

System Control Processor
A PE dedicated to system control and monitoring.

T32 instruction One or two halfwords that specify an operation to be performed by a PE that is executing in an Exception level that
is using AArch32 and is in T32 state. T32 instructions must be halfword-aligned.

T32 instructions were previously called Thumb instructions.

See also A32 instruction, A64 instruction, T32 state.

T32 state The AArch32 Instruction set state in which the PE executes T32 instructions.

T32 state was previously called Thumb state.

See also A32 state, T32 instruction.

Temporal locality
The observed effect that after a program has accesses a memory location, it is likely to access the same memory
location again in the near future. Caches exploit this effect to improve performance.

Thumb instruction
See T32 instruction.

TLB See Translation Lookaside Buffer (TLB).

TLB lockdown A way to prevent specific translation table walk results being accessed. This ensures that accesses to the associated
memory areas never cause a translation table walk.

Translation Lookaside Buffer (TLB)
A memory structure containing the results of translation table walks. They help to reduce the average cost of a
memory access. Usually, there is a TLB for each memory interface of the Arm implementation.

Translation table
A table held in memory that defines the properties of memory areas of various sizes from 1KB to 1MB.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by hardware.

Trap enable bits In VFPv2, VFPv3U, and VFPv4U, determine whether trapped or untrapped exception handling is selected. If
trapped exception handling is selected, the way it is carried out is IMPLEMENTATION DEFINED.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of an element of the access.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14773
ID032224 Non-Confidential

Glossary

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

Unallocated Except where otherwise stated in this manual, an instruction encoding is unallocated if the architecture does not
assign a specific function to the entire bit pattern of the instruction, but instead describes it as CONSTRAINED
UNPREDICTABLE, UNDEFINED, UNPREDICTABLE, or as an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

Uncontainable error
See Uncontained error.

Uncontained error
An error that has been, or might have been, silently propagated.

UNDEFINED Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to
the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was
executed at EL0. This applies to:

• Any encoding that is not allocated to any instruction.

• Any encoding that is defined as never accessible at the current Exception level.

• Some cases where an enable, disable, or trap control means an encoding is not accessible at the current
Exception level.

If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

Note

On reset, the default Exception level for taking exceptions from EL0 is EL1. However, an implementation might
include controls that can change this, effectively making EL1 inactive. See the description of the Exception model
for more information

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

See also Undefined Instruction exception.

Undetected error
See Latent error.

Unified cache Is a cache used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing
Means addressing in which the base register value is used directly as the virtual address to send to memory, without
adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is performed by using
offset addressing with an immediate offset of 0.

UNK An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field
reading as zero.

See also UNKNOWN.

UNK/SBOP Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the value
as if it is UNKNOWN. Software must use an SBOP policy to write to the field.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14774
ID032224 Non-Confidential

Glossary

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

UNK/SBZP Hardware must implement the bit as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register must treat the value
as if it is UNKNOWN. Software must use an SBZP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from implementation to implementation. An
UNKNOWN value must not return information that cannot be accessed at the current or a lower level of privilege using
instructions that are not UNPREDICTABLE, are not CONSTRAINED UNPREDICTABLE, and do not return UNKNOWN
values.

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously been
assigned, other than at reset, to one of the following registers:

• Any of the general-purpose registers.

• Any of the Advanced SIMD and floating-point registers.

• Any of the Scalable Vector Extension registers.

• Any of the PSTATE N, Z, C, or V flags.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

Unpacked access
A memory access that is performed as a result of a load or store instruction for which the vector element size is
larger than the memory element size.

Unpredicated instruction
An SVE instruction that does not have a Governing predicate operand and implicitly treats all other vector and
predicate elements as Active.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or EL0 of an instruction that is UNPREDICTABLE can be implemented as generating a
trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not
CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Unrecoverable error
A contained error that is not recoverable. Continued correct operation is generally not possible. Usually this means
correct operation of the system, but it can also be used in other contexts to describe correct operation of a smaller
part. Systems might use high-level recovery techniques to work around an unrecoverable yet contained error in a
component so that the system recovers from the error.

Upstream Information propagating in the direction from terminating Completer components towards Requesters.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14775
ID032224 Non-Confidential

Glossary

VA See Virtual address (VA).

VFP In Armv7, an extension to the Arm architecture, that provides single-precision and double-precision floating-point
arithmetic.

Vector A one-dimensional array of vector elements of the same size and data type.

Vector element
Individual subdivisions of a vector register that can be 8, 16, 32, 64 or 128 bits in size. The vector element size and
data type is specified independently by each instruction.

Virtual address (VA)
An address generated by an Arm PE. This means it is an address that might be held in the program counter of the
PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).

VL
See Effective SVE vector length.

VM Virtual Machine.

VMM Virtual Machine Monitor. An alias for “hypervisor”.

Virtual PARTID A PARTID in MPAM that can be used by a virtual machine (VM). Virtual PARTIDs are mapped into physical
PARTIDs using the virtual partition mapping entries in the MPAMVPM0 - MPAMVPM7 registers.

Watchpoint A debug event triggered by an access to memory, specified in terms of the address of the location in memory being
accessed.

Way See Cache way.

WI Writes Ignored. In a register that software can write to, a WI attribute applied to a bit or field indicates that the bit
or field ignores the value written by software and retains the value it had before that write.

See also RAO/WI, RAZ/WI, RES0, RES1.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned Means that the address is divisible by 4.

Write-allocate cache
A cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

Write-back cache
A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or reallocated. Another common term for a write-back cache is a copy-back cache.

Write-One-to-Clear (W1C)
Writes of 0 to the bit are ignored. A write of 1 clears the bit to 0.

Write-One-to-Set (W1S)
Writes of 0 to the bit are ignored. A write of 1 sets the bit to 1.

Write-Through cache
A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main memory.
This is normally done using a write buffer, to avoid slowing down the PE.

Write buffer A block of high-speed memory that optimizes stores to main memory.

ZA array
A two-dimensional array of [SVLB × SVLB] bytes contained within the ZA storage.

See ZA storage.

ZA array vector
A one-dimensional vector that is SVL bits in size within the ZA array.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14776
ID032224 Non-Confidential

Glossary

See ZA array vector access.

ZA storage
Architectural state added by SME that is capable of holding two-dimensional matrix tiles.

See ZA storage.

ZA tile
A square, two-dimensional sub-array of elements within the ZA array.

See ZA tile access.

ZA tile slice
A one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.

See ZA tile access.

Zeroing predication
When a predicated instruction specifies zeroing predication, the Inactive elements of the destination register are set
to zero.

ZT0 register
The 512-bit architectural register added by SME2 that consists of up to sixteen 32-bit table entries, each containing
an 8-bit, 16-bit, or 32-bit element.

See SME2 ZT0 register.
ARM DDI 0487K.a Copyright © 2013-2024 Arm Limited or its affiliates. All rights reserved. Glossary-14777
ID032224 Non-Confidential

	Arm Architecture Reference Manual for A-profile architecture
	Contents
	Preface
	About this Manual
	Using this Manual
	Part A, Introduction and Architecture Overview
	Part B, The AArch64 Application Level Architecture
	Part C, The A64 Instruction Set
	Part D, The AArch64 System Level Architecture
	Part E, The AArch32 Application Level Architecture
	Part F, The AArch32 Instruction Sets
	Part G, The AArch32 System Level Architecture
	Part H, External Debug
	Part I, Memory-mapped Components of the Arm architecture
	Part J, Architectural Pseudocode
	Part K, Appendixes
	Glossary

	Conventions
	Typographic conventions
	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes

	Signals
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this Manual
	Inclusive terminology commitment

	Part A: Arm Architecture Introduction and Overview�
	A1: Introduction to the Arm Architecture�
	A1.1 About the Arm architecture
	A1.2 Architecture profiles
	A1.3 Arm architectural concepts
	A1.3.1 Execution state
	A1.3.2 The instruction sets
	A1.3.3 System registers
	A1.3.3.1 The Arm Generic Interrupt Controller System registers

	A1.3.4 Arm Debug

	A1.4 Supported data types
	A1.4.1 Advanced SIMD vector formats
	A1.4.1.1 Advanced SIMD vector formats in AArch64 state
	A1.4.1.2 Advanced SIMD vector formats in AArch32 state

	A1.4.2 SVE vector formats
	A1.4.2.1 Scalable vector formats in AArch64 state

	A1.4.3 Half-precision floating-point formats
	A1.4.4 Single-precision floating-point format
	A1.4.5 Double-precision floating-point format
	A1.4.6 BFloat16 floating-point format
	A1.4.7 Conversion between floating-point and fixed-point values
	A1.4.8 Polynomial arithmetic over {0, 1}
	A1.4.8.1 Pseudocode description of polynomial multiplication

	A1.5 Floating-point support
	A1.5.1 Instruction support
	A1.5.2 Floating-point standards, and terminology
	A1.5.3 Arm standard floating-point input and output values
	A1.5.4 Summary of BFloat16 instruction behaviors
	A1.5.5 Flushing denormalized numbers to zero
	A1.5.5.1 Flushing denormalized inputs to zero
	A1.5.5.2 Flushing denormalized outputs to zero
	A1.5.5.3 Flushing denormalized BFloat16 intermediate results to zero

	A1.5.6 NaN handling and the Default NaN
	A1.5.6.1 Default NaN
	A1.5.6.2 NaN handling
	A1.5.6.3 NaN propagation

	A1.5.7 Rounding
	A1.5.7.1 Round to Nearest (RN) mode
	A1.5.7.2 Round towards Plus Infinity (RP) mode
	A1.5.7.3 Round towards Minus Infinity (RM) mode
	A1.5.7.4 Round towards Zero (RZ) mode
	A1.5.7.5 Round to Nearest with Ties to Away
	A1.5.7.6 Round to Odd

	A1.5.8 Floating-point exceptions and exception traps
	A1.5.8.1 Operations that do not generate floating-point exceptions
	A1.5.8.2 Input Denormal exceptions
	A1.5.8.3 Inexact exceptions
	A1.5.8.4 Underflow exceptions
	A1.5.8.5 Overflow exceptions
	A1.5.8.6 Divide by Zero exceptions
	A1.5.8.7 Invalid Operation exceptions
	A1.5.8.8 Handling floating-point exceptions
	A1.5.8.9 Combinations of floating-point exceptions

	A1.5.9 Alternate BFloat16 behaviors
	A1.5.10 BFloat16 behaviors for instructions that compute sum-of-products

	A1.6 The Arm memory model
	A1.7 Reliability, Availability, and Serviceability
	A1.7.1 Introduction
	A1.7.2 Faults, errors, and failures
	A1.7.3 General taxonomy of errors
	A1.7.3.1 Error detection
	A1.7.3.2 Error propagation
	A1.7.3.3 Infected and poisoned
	A1.7.3.4 Containable and uncontainable

	A1.7.4 Techniques for improving reliability, availability, and serviceability
	A1.7.4.1 Fault prevention and fault removal
	A1.7.4.2 Error handling and recovery
	A1.7.4.3 Fault handling

	A2: A-profile Architecture Extensions�
	A2.1 About the A-profile architecture extensions
	A2.1.1 Permitted implementation of subsets of the A-profile architectural features

	A2.2 Armv8-A architecture extensions
	A2.2.1 The Armv8.0 architecture extension
	A2.2.1.1 Features added to the Armv8.0 extension in later releases

	A2.2.2 The Armv8.1 architecture extension
	A2.2.2.1 Features added to the Armv8.1 extension in later releases

	A2.2.3 The Armv8.2 architecture extension
	A2.2.3.1 Features added to the Armv8.2 extension in later releases

	A2.2.4 The Armv8.3 architecture extension
	A2.2.5 The Armv8.4 architecture extension
	A2.2.6 The Armv8.5 architecture extension
	A2.2.6.1 Features added to the Armv8.5 extension in later releases

	A2.2.7 The Armv8.6 architecture extension
	A2.2.7.1 Features added to the Armv8.6 extension in later releases

	A2.2.8 The Armv8.7 architecture extension
	A2.2.8.1 Features added to the Armv8.7 extension in later releases

	A2.2.9 The Armv8.8 architecture extension
	A2.2.10 The Armv8.9 architecture extension

	A2.3 Armv9-A architecture extensions
	A2.3.1 The Armv9.0 architecture extension
	A2.3.2 The Armv9.1 architecture extension
	A2.3.3 The Armv9.2 architecture extension
	A2.3.3.1 Features added to the Armv9.2 extension in later releases

	A2.3.4 The Armv9.3 architecture extension
	A2.3.5 The Armv9.4 architecture extension

	Part B: The AArch64 Application Level Architecture�
	B1: The AArch64 Application Level Programmers’ Model�
	B1.1 About the Application level programmers’ model
	B1.2 Registers in AArch64 Execution state
	B1.2.1 FFR, First Fault Register
	B1.2.2 System registers
	B1.2.3 Pseudocode description of registers in AArch64 state

	B1.3 Process state, PSTATE
	B1.3.1 Accessing PSTATE fields at EL0
	B1.3.2 SVE use of PSTATE N, Z, C, and V Condition flags

	B1.4 The Scalable Vector and Scalable Matrix Extensions (SVE & SME)
	B1.4.1 Maximum implemented SVE vector lengths
	B1.4.2 Configurable SVE vector lengths
	B1.4.3 Treatment of SVE Z registers
	B1.4.4 SVE writes of scalar values to registers
	B1.4.5 Vector predication
	B1.4.5.1 Predicate-as-mask
	B1.4.5.2 Predicate-as-counter
	B1.4.5.3 SVE predicated instructions

	B1.4.6 Streaming SVE mode
	B1.4.7 About PSTATE.ZA
	B1.4.8 ZA storage
	B1.4.9 ZA array vector access
	B1.4.10 ZA tile access
	B1.4.10.1 Accessing an 8-bit element ZA tile
	B1.4.10.2 Accessing a 16-bit element ZA tile
	B1.4.10.3 Accessing a 32-bit element ZA tile
	B1.4.10.4 Accessing a 64-bit element ZA tile
	B1.4.10.5 Accessing a 128-bit element ZA tile

	B1.4.11 ZA storage layout
	B1.4.11.1 ZA array vector and tile slice mappings
	B1.4.11.2 Tile mappings
	B1.4.11.3 Horizontal tile slice mappings
	B1.4.11.4 Vertical tile slice mappings
	B1.4.11.5 Mixed horizontal and vertical tile slice mappings

	B1.4.12 SME2 Multi-vector operands
	B1.4.12.1 Z multi-vector operands
	B1.4.12.2 ZA multi-slice operands
	B1.4.12.3 ZA multi-vector operands

	B1.4.13 SME2 ZT0 register

	B1.5 Software control features and EL0
	B1.5.1 Exception handling
	B1.5.2 Wait for Interrupt and Wait for Event
	B1.5.3 The YIELD instruction
	B1.5.4 Application level cache management
	B1.5.5 Instructions relating to Debug
	B1.5.6 About PSTATE.DIT

	B2: The AArch64 Application Level Memory Model�
	B2.1 About the Arm memory model
	B2.1.1 Address space
	B2.1.2 Memory type overview
	B2.1.3 SVE memory model
	B2.1.4 SME memory model

	B2.2 Atomicity in the Arm architecture
	B2.2.1 Requirements for single-copy atomicity
	B2.2.1.1 Changes to single-copy atomicity in Armv8.4

	B2.2.2 Properties of single-copy atomic accesses
	B2.2.3 Multi-copy atomicity
	B2.2.4 Requirements for multi-copy atomicity
	B2.2.5 Concurrent modification and execution of instructions
	B2.2.6 Possible implementation restrictions on using atomic instructions

	B2.3 Definition of the Arm memory model
	B2.3.1 Basic definitions
	B2.3.2 Intrinsic Dependency relations
	B2.3.2.1 Intrinsic data, control and order dependencies

	B2.3.3 Tag-check-intrinsically-before
	B2.3.4 Translation-intrinsically-before
	B2.3.5 Fetch-intrinsically-before
	B2.3.6 Dependency relations
	B2.3.7 Ordering relations
	B2.3.8 Observation relations
	B2.3.9 External ordering constraints
	B2.3.9.1 External visibility requirement
	B2.3.9.2 External completion requirement
	B2.3.9.3 External global completion requirement

	B2.4 Completion and endpoint ordering
	B2.4.1 Peripherals

	B2.5 SVE memory ordering relaxations
	B2.6 Streaming SVE mode memory ordering relaxations
	B2.7 Ordering rules for GCS
	B2.8 Ordering of instruction fetches
	B2.9 Restrictions on the effects of speculation
	B2.9.1 Speculative Store Bypass Safe (SSBS)
	B2.9.2 Definition of exploitative control of speculative execution
	B2.9.3 Definition of exploitative predictive leakage
	B2.9.4 Restrictions on the effects of speculation from Armv8.5

	B2.10 Memory barriers
	B2.10.1 Instruction Synchronization Barrier (ISB)
	B2.10.2 Data Memory Barrier (DMB)
	B2.10.3 Speculation Barrier (SB)
	B2.10.4 Consumption of Speculative Data Barrier (CSDB)
	B2.10.5 Speculative Store Bypass Barrier (SSBB)
	B2.10.6 Profiling Synchronization Barrier (PSB)
	B2.10.7 Physical Speculative Store Bypass Barrier (PSSBB)
	B2.10.8 Trace Synchronization Barrier (TSB)
	B2.10.9 Data Synchronization Barrier (DSB)
	B2.10.10 Shareability and access limitations on the data barrier operations
	B2.10.11 Load-Acquire, Load-AcquirePC, and Store-Release
	B2.10.12 LoadLOAcquire, StoreLORelease
	B2.10.13 Guarded Control Stack Barrier (GCSB)

	B2.11 Limited ordering regions
	B2.11.1 Specification of the LORegions

	B2.12 Caches and memory hierarchy
	B2.12.1 Introduction to caches
	B2.12.2 Memory hierarchy
	B2.12.2.1 The cacheability and shareability memory attributes

	B2.12.3 Application level access to functionality related to caches
	B2.12.4 Implication of caches for the application programmer
	B2.12.4.1 Data coherency issues
	B2.12.4.2 Synchronization and coherency issues between data and instruction accesses

	B2.12.5 Preloading caches

	B2.13 Alignment support
	B2.13.1 Instruction alignment
	B2.13.2 Alignment of data accesses
	B2.13.2.1 Unaligned accesses to Normal memory

	B2.14 Endian support
	B2.14.1 General description of endianness in the Arm architecture
	B2.14.2 Instruction endianness
	B2.14.3 Data endianness
	B2.14.3.1 Instructions to reverse bytes in a general-purpose register, a SIMD and floating-point register, or an SVE register
	B2.14.3.2 Endianness in SIMD operations
	B2.14.3.3 Endianness in SVE operations

	B2.14.4 Endianness of memory-mapped peripherals

	B2.15 Memory types and attributes
	B2.15.1 Normal memory
	B2.15.1.1 Shareable Normal memory
	B2.15.1.2 Non-shareable Normal memory
	B2.15.1.3 Cacheability attributes for Normal memory
	B2.15.1.4 Multi-register loads and stores that access Normal memory

	B2.15.2 Device memory
	B2.15.2.1 Gathering
	B2.15.2.2 Reordering
	B2.15.2.3 Early Write Acknowledgement
	B2.15.2.4 Multi-register loads and stores that access Device memory
	B2.15.2.5 SVE loads and stores that access Device memory
	B2.15.2.6 Streaming SVE mode loads and stores that access Device memory

	B2.15.3 Memory access restrictions

	B2.16 Mismatched memory attributes
	B2.17 Synchronization and semaphores
	B2.17.1 Exclusive access instructions and Non-shareable memory locations
	B2.17.1.1 Changes to the local monitor state resulting from speculative execution

	B2.17.2 Exclusive access instructions and Shareable memory locations
	B2.17.2.1 Operation of the global Exclusives monitor

	B2.17.3 Marking and the size of the marked memory block
	B2.17.4 Context switch support
	B2.17.5 Load-Exclusive and Store-Exclusive instruction usage restrictions
	B2.17.5.1 CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive access a different number of registers

	B2.17.6 Use of WFE and SEV instructions by spin-locks

	Part C: The AArch64 Instruction Set�
	C1: The A64 Instruction Set �
	C1.1 About the A64 instruction set
	C1.2 Structure of the A64 assembler language
	C1.2.1 General requirements
	C1.2.2 Common syntax terms
	C1.2.3 Instruction Mnemonics
	C1.2.4 Condition code
	C1.2.5 SVE Condition code aliases
	C1.2.6 Register names
	C1.2.6.1 General-purpose register file and zero register and stack pointer
	C1.2.6.2 Advanced SIMD and floating-point register file
	C1.2.6.3 Advanced SIMD and floating-point scalar register names
	C1.2.6.4 SIMD vector register names
	C1.2.6.5 SIMD vector element names

	C1.3 Address generation
	C1.3.1 Register indexed addressing
	C1.3.2 PC-relative addressing
	C1.3.3 Load/store addressing modes
	C1.3.3.1 Address calculation

	C1.4 Instruction aliases

	C2: About the A64 Instruction Descriptions�
	C2.1 Understanding the A64 instruction descriptions
	C2.1.1 The title
	C2.1.2 An introduction to the instruction
	C2.1.3 The instruction encoding or encodings
	C2.1.4 Any alias conditions, if applicable
	C2.1.5 A list of the assembler symbols for the instruction
	C2.1.6 Pseudocode describing how the instruction operates
	C2.1.7 Notes, if applicable

	C2.2 General information about the A64 instruction descriptions
	C2.2.1 Execution of instructions in Debug state
	C2.2.2 Fixed values in AArch64 instruction and System register descriptions
	C2.2.3 Modified immediate constants in A64 floating-point instructions
	C2.2.3.1 Operation of modified immediate constants, floating-point instructions

	C3: A64 Instruction Set Overview�
	C3.1 Branches, Exception generating, and System instructions
	C3.1.1 Conditional branch
	C3.1.2 Unconditional branch (immediate)
	C3.1.3 Unconditional branch (register)
	C3.1.4 Exception generation and return
	C3.1.4.1 Exception generating
	C3.1.4.2 Exception return
	C3.1.4.3 Debug state

	C3.1.5 System register instructions
	C3.1.6 Instructions with register argument
	C3.1.7 System instructions
	C3.1.8 Hint instructions
	C3.1.9 Barriers and CLREX instructions
	C3.1.10 Pointer authentication instructions
	C3.1.10.1 Basic pointer authentication instructions
	C3.1.10.2 Combined instructions that include pointer authentication

	C3.2 Loads and stores
	C3.2.1 Load/store register
	C3.2.2 Load/store register (unscaled offset)
	C3.2.3 Load/store pair
	C3.2.4 Load/store non-temporal pair
	C3.2.5 Load/store unprivileged
	C3.2.6 Load-Exclusive/Store-Exclusive
	C3.2.7 Load-Acquire/Store-Release
	C3.2.8 LoadLOAcquire/StoreLORelease
	C3.2.9 Load/store scalar SIMD and floating-point
	C3.2.9.1 Load/store scalar SIMD and floating-point register
	C3.2.9.2 Load/store scalar SIMD and floating-point register (unscaled offset)
	C3.2.9.3 Load/store SIMD and floating-point register pair
	C3.2.9.4 Load/store SIMD and floating-point non-temporal pair

	C3.2.10 Load/store Advanced SIMD
	C3.2.10.1 Load/store structures
	Load single structure and replicate

	C3.2.11 Prefetch memory
	C3.2.12 Atomic instructions
	C3.2.12.1 Atomic memory operations
	C3.2.12.2 Single-copy atomic 64-byte load/store
	C3.2.12.3 Swap
	C3.2.12.4 Compare and Swap
	C3.2.12.5 Read-Check-Write

	C3.2.13 Memory Tagging instructions
	C3.2.14 Memory Copy and Memory Set instructions

	C3.3 Loads and stores - SVE
	C3.3.1 Predicated single vector contiguous element accesses
	C3.3.2 Predicated multiple vector contiguous structure load/store
	C3.3.3 Predicated non-contiguous element accesses
	C3.3.4 Predicated replicating element loads
	C3.3.5 Unpredicated vector register load/store
	C3.3.6 Unpredicated predicate register load/store

	C3.4 Loads and stores - SME, SME2, SVE2p1
	C3.4.1 Array vector/table load and store
	C3.4.2 Contiguous multi-vector loads and stores
	C3.4.2.1 Consecutive multi-vector loads and stores
	C3.4.2.2 Strided multi-vector loads and stores
	C3.4.2.3 Tile slice multi-vector loads and stores

	C3.4.3 SVE2.1 quadword loads and stores
	C3.4.3.1 Contiguous quadword loads and stores
	C3.4.3.2 Quadword gather and scatter
	C3.4.3.3 Quadword structure loads and stores

	C3.5 Data processing - immediate
	C3.5.1 Arithmetic (immediate)
	C3.5.2 Integer minimum and maximum (immediate)
	C3.5.3 Logical (immediate)
	C3.5.4 Move (wide immediate)
	C3.5.5 Move (immediate)
	C3.5.6 PC-relative address calculation
	C3.5.7 Bitfield move
	C3.5.8 Bitfield insert and extract
	C3.5.9 Extract register
	C3.5.10 Shift (immediate)
	C3.5.11 Sign-extend and Zero-extend

	C3.6 Data processing - register
	C3.6.1 Arithmetic (shifted register)
	C3.6.2 Arithmetic (extended register)
	C3.6.3 Arithmetic with carry
	C3.6.4 Integer maximum and minimum (register)
	C3.6.5 Flag manipulation instructions
	C3.6.6 Logical (shifted register)
	C3.6.7 Move (register)
	C3.6.8 Absolute value
	C3.6.9 Shift (register)
	C3.6.10 Multiply and divide
	C3.6.10.1 Multiply
	C3.6.10.2 Divide

	C3.6.11 CRC32
	C3.6.12 Bit operation
	C3.6.13 Conditional select
	C3.6.14 Conditional comparison

	C3.7 Data processing - SIMD and floating-point
	C3.7.1 Common features of SIMD instructions
	C3.7.2 Floating-point move (register)
	C3.7.3 Floating-point move (immediate)
	C3.7.4 Floating-point conversion
	C3.7.4.1 Convert floating-point precision
	C3.7.4.2 Convert floating-point single-precision to BFloat16
	C3.7.4.3 Convert between floating-point and integer or fixed-point

	C3.7.5 Floating-point round to integral value
	C3.7.5.1 Floating-point round to an integer of the same size as the register
	C3.7.5.2 Floating-point round to 32-bit or 64-bit integer

	C3.7.6 Floating-point multiply-add
	C3.7.7 Floating-point arithmetic (one source)
	C3.7.8 Floating-point arithmetic (two sources)
	C3.7.9 Floating-point minimum and maximum
	C3.7.10 Floating-point comparison
	C3.7.11 Floating-point conditional select
	C3.7.12 SIMD move
	C3.7.13 SIMD arithmetic
	C3.7.14 SIMD compare
	C3.7.15 SIMD widening and narrowing arithmetic
	C3.7.16 SIMD unary arithmetic
	C3.7.17 SIMD by element arithmetic
	C3.7.18 SIMD permute
	C3.7.19 SIMD immediate
	C3.7.20 SIMD shift (immediate)
	C3.7.21 SIMD floating-point and integer conversion
	C3.7.22 SIMD reduce (across vector lanes)
	C3.7.23 SIMD pairwise arithmetic
	C3.7.24 SIMD integer dot product
	C3.7.25 SIMD integer matrix multiply-accumulate
	C3.7.26 SIMD table lookup
	C3.7.27 SIMD complex number arithmetic
	C3.7.28 SIMD BFloat16
	C3.7.28.1 SIMD BFloat16 floating-point multiply-add
	C3.7.28.2 SIMD BFloat16 floating-point dot product
	C3.7.28.3 SIMD BFloat16 floating-point matrix multiply
	C3.7.28.4 SIMD BFloat16 floating-point convert

	C3.7.29 SIMD integer matrix multiply-accumulate
	C3.7.30 The Cryptographic Extension
	C3.7.30.1 The Armv8.0 Cryptographic Extension
	C3.7.30.2 Armv8.2 extensions to the Cryptographic Extension

	C3.8 Data processing - SVE
	C3.8.1 SVE Vector integer operations
	C3.8.1.1 SVE Integer arithmetic
	C3.8.1.2 SVE Integer dot product
	C3.8.1.3 SVE Integer matrix multiply operations
	C3.8.1.4 SVE Integer comparison

	C3.8.2 SVE Vector address calculation
	C3.8.3 SVE Bitwise logical operations
	C3.8.4 SVE Bitwise shift, reverse, and count
	C3.8.5 SVE Vector floating-point operations
	C3.8.5.1 SVE Floating-point arithmetic
	C3.8.5.2 SVE Floating-point multiply accumulate
	C3.8.5.3 SVE Floating-point complex arithmetic
	C3.8.5.4 SVE Floating-point rounding and conversion
	C3.8.5.5 SVE Floating-point comparisons
	C3.8.5.6 SVE Floating-point transcendental acceleration
	C3.8.5.7 SVE Floating-point indexed multiples
	C3.8.5.8 SVE Floating-point matrix multiply operations
	C3.8.5.9 SVE BFloat16 floating-point multiply-add
	C3.8.5.10 SVE BFloat16 floating-point dot product
	C3.8.5.11 SVE BFloat16 floating-point matrix multiply
	C3.8.5.12 SVE BFloat16 floating-point convert

	C3.8.6 Predicate operations
	C3.8.6.1 SVE Predicate initialization
	C3.8.6.2 SVE Predicate move operations
	C3.8.6.3 SVE Predicate logical operations
	C3.8.6.4 FFR predicate handling
	C3.8.6.5 Predicate counts

	C3.8.7 Loop control
	C3.8.7.1 Simple loops
	C3.8.7.2 Data-independent loops
	C3.8.7.3 Serialized operations

	C3.8.8 SVE Move operations
	C3.8.8.1 Element move and broadcast
	C3.8.8.2 Element permute and shuffle
	C3.8.8.3 Unpacking instructions
	C3.8.8.4 Predicate permute

	C3.8.9 Index vector generation
	C3.8.10 Move prefix
	C3.8.10.1 MOVPRFX instruction behavior in self-hosted debug

	C3.8.11 Reduction operations
	C3.8.11.1 Horizontal reductions

	C3.9 Data processing - SVE2
	C3.9.1 Down-counting loops
	C3.9.2 Constructive multiply
	C3.9.3 Uniform DSP operations
	C3.9.4 Widening DSP operations
	C3.9.5 Narrowing DSP operation
	C3.9.6 Unary narrowing operations
	C3.9.7 Non-widening pairwise arithmetic
	C3.9.8 Widening pairwise arithmetic
	C3.9.9 Bitwise ternary logical instructions
	C3.9.10 Large integer arithmetic
	C3.9.11 Multiplication by indexed elements
	C3.9.12 Complex integer arithmetic
	C3.9.12.1 Uniform complex integer arithmetic
	C3.9.12.2 Widening complex integer arithmetic
	C3.9.12.3 Complex integer dot product

	C3.9.13 Floating-point extra conversions
	C3.9.14 Floating-point widening multiply-accumulate
	C3.9.15 Floating-point integer binary logarithm
	C3.9.16 Cross-lane match detect
	C3.9.16.1 Vector Histogram Count
	C3.9.16.2 Character match
	C3.9.16.3 Contiguous conflict detection

	C3.9.17 Bit permutation
	C3.9.18 Polynomial arithmetic
	C3.9.19 Vector concatenation
	C3.9.20 Extended table lookup permute
	C3.9.21 Non-temporal gather/scatter
	C3.9.22 Cryptography support
	C3.9.22.1 AES-128 instructions
	C3.9.22.2 SHA-3 instructions
	C3.9.22.3 SM4 instructions

	C3.9.23 BFloat16 arithmetic
	C3.9.23.1 Add and subtract
	C3.9.23.2 Multiply and multiply-accumulate

	C3.9.24 BFloat16 minimum/maximum
	C3.9.25 Clamp to minimum/maximum
	C3.9.25.1 Floating-point clamp to minimum/maximum
	C3.9.25.2 Integer clamp to minimum/maximum

	C3.9.26 Floating-point dot product
	C3.9.27 SVE2.1 quadword operations
	C3.9.27.1 Permute within quadwords
	C3.9.27.2 Reduction to quadword

	C3.9.28 Integer shift and convert
	C3.9.29 Multi-vector predication
	C3.9.30 Permute vector
	C3.9.31 Predicate pair loop control
	C3.9.32 Predicate move
	C3.9.33 Predicate select

	C3.10 Data processing - SME, SME2
	C3.10.1 Clamp to minimum/maximum
	C3.10.1.1 Floating-point clamp to minimum/maximum
	C3.10.1.2 Integer clamp to minimum/maximum

	C3.10.2 Dot product
	C3.10.2.1 Floating-point dot product
	C3.10.2.2 Integer dot product

	C3.10.3 Vertical dot product
	C3.10.3.1 Floating-point vertical dot product
	C3.10.3.2 Integer vertical dot product

	C3.10.4 Element concatenate and interleave
	C3.10.5 Floating-point conversions
	C3.10.6 Floating-point round
	C3.10.7 Lookup table
	C3.10.8 Move operations
	C3.10.8.1 Lookup table move
	C3.10.8.2 Move and zero

	C3.10.9 Multi-vector arithmetic
	C3.10.9.1 Add vector to array
	C3.10.9.2 Floating-point add and subtract

	C3.10.10 Multi-vector minimum/maximum
	C3.10.10.1 BFloat16 minimum/maximum
	C3.10.10.2 Floating-point minimum/maximum
	C3.10.10.3 Integer minimum/maximum

	C3.10.11 Multi-vector multiply-accumulate
	C3.10.11.1 BFloat16 multiply-accumulate
	C3.10.11.2 Floating-point multiply-accumulate
	C3.10.11.3 Integer multiply-accumulate

	C3.10.12 Multi-vector multiply high
	C3.10.13 Multi-vector select
	C3.10.14 Multi-vector shift and convert
	C3.10.15 Outer product
	C3.10.15.1 Floating-point outer product
	C3.10.15.2 Binary outer product
	C3.10.15.3 Integer outer product

	C3.10.16 Stack frame operations
	C3.10.17 Unpack and extend
	C3.10.18 Zero operations
	C3.10.18.1 Zero ZA array vectors

	C4: A64 Instruction Set Encoding�
	C4.1 A64 instruction set encoding
	C4.1.1 Reserved
	C4.1.2 SME encodings
	C4.1.3 SME Outer Product - 64 bit
	C4.1.3.1 SME FP64 outer product
	C4.1.3.2 SME Int16 outer product

	C4.1.4 SME FP Outer Product - 32 bit
	C4.1.4.1 SME FP32 outer product
	C4.1.4.2 SME BF16 widening outer product
	C4.1.4.3 SME FP16 widening outer product

	C4.1.5 SME2 Outer Product - Misc
	C4.1.5.1 SME2 32-bit binary outer product
	C4.1.5.2 SME2 FP16 non-widening outer product
	C4.1.5.3 SME2 BF16 non-widening outer product

	C4.1.6 SME Integer Outer Product - 32 bit
	C4.1.6.1 SME2 Int16 two-way outer product
	C4.1.6.2 SME Int8 outer product

	C4.1.7 SME2 Multi-vector - Memory (Contiguous)
	C4.1.7.1 SME2 multi-vec contiguous load (scalar plus scalar, two registers)
	C4.1.7.2 SME2 multi-vec contiguous load (scalar plus scalar, four registers)
	C4.1.7.3 SME2 multi-vec contiguous store (scalar plus scalar, two registers)
	C4.1.7.4 SME2 multi-vec contiguous store (scalar plus scalar, four registers)
	C4.1.7.5 SME2 multi-vec contiguous load (scalar plus immediate, two registers)
	C4.1.7.6 SME2 multi-vec contiguous load (scalar plus immediate, four registers)
	C4.1.7.7 SME2 multi-vec contiguous store (scalar plus immediate, two registers)
	C4.1.7.8 SME2 multi-vec contiguous store (scalar plus immediate, four registers)

	C4.1.8 SME2 Multi-vector - Memory (Strided)
	C4.1.8.1 SME2 multi-vec non-contiguous load (scalar plus scalar, two registers)
	C4.1.8.2 SME2 multi-vec non-contiguous load (scalar plus scalar, four registers)
	C4.1.8.3 SME2 multi-vec non-contiguous store (scalar plus scalar, two registers)
	C4.1.8.4 SME2 multi-vec non-contiguous store (scalar plus scalar, four registers)
	C4.1.8.5 SME2 multi-vec non-contiguous load (scalar plus immediate, two registers)
	C4.1.8.6 SME2 multi-vec non-contiguous load (scalar plus immediate, four registers)
	C4.1.8.7 SME2 multi-vec non-contiguous store (scalar plus immediate, two registers)
	C4.1.8.8 SME2 multi-vec non-contiguous store (scalar plus immediate, four registers)

	C4.1.9 SME Move into Array
	C4.1.9.1 SME move vector to array
	C4.1.9.2 SME2 move vector to tile, two registers
	C4.1.9.3 SME2 move vector to tile, four registers

	C4.1.10 SME Move from Array
	C4.1.10.1 SME zeroing move array to vector
	C4.1.10.2 SME move array to vector
	C4.1.10.3 SME2 move tile to vector, two registers
	C4.1.10.4 SME2 zeroing move tile to vector, two registers
	C4.1.10.5 SME2 move tile to vector, four registers
	C4.1.10.6 SME2 zeroing move tile to vector, four registers

	C4.1.11 SME Add Vector to Array
	C4.1.11.1 SME add vector to array

	C4.1.12 SME Zero
	C4.1.13 SME2 Multiple Zero
	C4.1.13.1 SME multiple vectors zero array

	C4.1.14 SME2 Zero Lookup Table
	C4.1.14.1 SME2 zero lookup table

	C4.1.15 SME2 Move Lookup Table
	C4.1.15.1 SME2 move from lookup table
	C4.1.15.2 SME2 move into lookup table

	C4.1.16 SME2 Expand Lookup Table (Contiguous)
	C4.1.16.1 SME2 lookup table expand four contiguous registers
	C4.1.16.2 SME2 lookup table expand two contiguous registers
	C4.1.16.3 SME2 lookup table expand one register

	C4.1.17 SME2 Expand Lookup Table (Non-contiguous)
	C4.1.17.1 SME2 lookup table expand four non-contiguous registers
	C4.1.17.2 SME2 lookup table expand two non-contiguous registers

	C4.1.18 SME2 Multi-vector - Indexed (One register)
	C4.1.18.1 SME2 multi-vec indexed long long MLA one source 32-bit
	C4.1.18.2 SME2 multi-vec indexed long long MLA one source 64-bit
	C4.1.18.3 SME2 multi-vec indexed long FMA one source
	C4.1.18.4 SME2 multi-vec indexed long MLA one source

	C4.1.19 SME2 Multi-vector - Indexed (Two registers)
	C4.1.19.1 SME2 multi-vec indexed long long MLA two sources 32-bit
	C4.1.19.2 SME2 multi-vec ternary indexed two registers 16-bit
	C4.1.19.3 SME2 multi-vec ternary indexed two registers 32-bit
	C4.1.19.4 SME2 multi-vec indexed long long MLA two sources 64-bit
	C4.1.19.5 SME2 multi-vec indexed long FMA two sources
	C4.1.19.6 SME2 multi-vec ternary indexed two registers 64-bit
	C4.1.19.7 SME2 multi-vec indexed long MLA two sources

	C4.1.20 SME2 Multi-vector - Indexed (Four registers)
	C4.1.20.1 SME2 multi-vec indexed long long MLA four sources 32-bit
	C4.1.20.2 SME2 multi-vec ternary indexed four registers 16-bit
	C4.1.20.3 SME2 multi-vec ternary indexed four registers 32-bit
	C4.1.20.4 SME2 multi-vec indexed long long MLA four sources 64-bit
	C4.1.20.5 SME2 multi-vec indexed long FMA four sources
	C4.1.20.6 SME2 multi-vec ternary indexed four registers 64-bit
	C4.1.20.7 SME2 multi-vec indexed long MLA four sources

	C4.1.21 SME2 Multi-vector - SVE Select
	C4.1.22 SME2 Multi-vector - SVE Constructive Binary
	C4.1.22.1 SME2 multi-vec quadwords ZIP two registers
	C4.1.22.2 SME2 multi-vec saturating shift right narrow two registers
	C4.1.22.3 SME2 multi-vec FCLAMP two registers
	C4.1.22.4 SME2 multi-vec CLAMP two registers
	C4.1.22.5 SME2 multi-vec FCLAMP four registers
	C4.1.22.6 SME2 multi-vec CLAMP four registers
	C4.1.22.7 SME2 multi-vec ZIP two registers
	C4.1.22.8 SME2 multi-vec saturating shift right narrow four registers

	C4.1.23 SME2 Multi-vector - SVE Constructive Unary
	C4.1.23.1 SME2 multi-vec FP to int convert two registers
	C4.1.23.2 SME2 multi-vec int to FP two registers
	C4.1.23.3 SME2 multi-vec FP to int convert four registers
	C4.1.23.4 SME2 multi-vec int to FP four registers
	C4.1.23.5 SME2 multi-vec quadwords ZIP four registers
	C4.1.23.6 SME2 multi-vec FP down convert two registers
	C4.1.23.7 SME2 multi-vec int down convert two registers
	C4.1.23.8 SME2 multi-vec convert two registers
	C4.1.23.9 SME2 multi-vec unpack two registers
	C4.1.23.10 SME2 multi-vec FRINT two registers
	C4.1.23.11 SME2 multi-vec int down convert four registers
	C4.1.23.12 SME2 multi-vec unpack four registers
	C4.1.23.13 SME2 multi-vec ZIP four registers
	C4.1.23.14 SME2 multi-vec FRINT four registers

	C4.1.24 SME2 Multi-vector - Multiple Vectors SVE Destructive (Two registers)
	C4.1.24.1 SME2 multiple vectors int min/max two registers
	C4.1.24.2 SME2 multiple vectors FP min/max two registers
	C4.1.24.3 SME2 multiple vectors shift two registers

	C4.1.25 SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Two registers)
	C4.1.25.1 SME2 multi-vector signed saturating doubling multiply high two registers

	C4.1.26 SME2 Multi-vector - Multiple Vectors SVE Destructive (Four registers)
	C4.1.26.1 SME2 multiple vectors int min/max four registers
	C4.1.26.2 SME2 multiple vectors FP min/max four registers
	C4.1.26.3 SME2 multiple vectors shift four registers

	C4.1.27 SME2 Multi-vector - Multiple Vectors SVE Saturating Multiply (Four registers)
	C4.1.27.1 SME2 multi-vector signed saturating doubling multiply high four registers

	C4.1.28 SME2 Multi-vector - Multiple and Single SVE Destructive (Two registers)
	C4.1.28.1 SME2 single-multi int min/max two registers
	C4.1.28.2 SME2 single-multi FP min/max two registers
	C4.1.28.3 SME2 single-multi shift two registers
	C4.1.28.4 SME2 single-multi add two registers
	C4.1.28.5 SME2 single-multi signed saturating doubling multiply high two registers

	C4.1.29 SME2 Multi-vector - Multiple and Single SVE Destructive (Four registers)
	C4.1.29.1 SME2 single-multi int min/max four registers
	C4.1.29.2 SME2 single-multi FP min/max four registers
	C4.1.29.3 SME2 single-multi shift four registers
	C4.1.29.4 SME2 single-multi add four registers
	C4.1.29.5 SME2 single-multi signed saturating doubling multiply high four registers

	C4.1.30 SME2 Multi-vector - Multiple and Single Array Vectors (Two registers)
	C4.1.30.1 SME2 single-multi long FMA two sources
	C4.1.30.2 SME2 multiple and single vector long FMA one source
	C4.1.30.3 SME2 single-multi FP dot product two registers
	C4.1.30.4 SME2 single-multi mixed dot product two registers
	C4.1.30.5 SME2 single-multi long MLA two sources
	C4.1.30.6 SME2 multiple and single vector long MLA one source
	C4.1.30.7 SME2 single-multi two-way dot product two registers
	C4.1.30.8 SME2 single-multi long long MLA two sources
	C4.1.30.9 SME2 multiple and single vector long long FMA one source
	C4.1.30.10 SME2 single-multi four-way dot product two registers
	C4.1.30.11 SME2 single-multi ternary FP two registers
	C4.1.30.12 SME2 single-multi ternary int two registers
	C4.1.30.13 SME2 single-multi ternary FP16 two registers

	C4.1.31 SME2 Multi-vector - Multiple and Single Array Vectors (Four registers)
	C4.1.31.1 SME2 single-multi long FMA four sources
	C4.1.31.2 SME2 single-multi FP dot product four registers
	C4.1.31.3 SME2 single-multi mixed dot product four registers
	C4.1.31.4 SME2 single-multi long MLA four sources
	C4.1.31.5 SME2 single-multi two-way dot product four registers
	C4.1.31.6 SME2 single-multi long long MLA four sources
	C4.1.31.7 SME2 single-multi four-way dot product four registers
	C4.1.31.8 SME2 single-multi ternary FP four registers
	C4.1.31.9 SME2 single-multi ternary int four registers
	C4.1.31.10 SME2 single-multi ternary FP16 four registers

	C4.1.32 SME2 Multi-vector - Multiple Array Vectors (Two registers)
	C4.1.32.1 SME2 multiple vectors long FMA two sources
	C4.1.32.2 SME2 multiple vectors FP dot product two registers
	C4.1.32.3 SME2 multiple vectors long MLA two sources
	C4.1.32.4 SME2 multiple vectors two-way dot product two registers
	C4.1.32.5 SME2 multiple vectors binary FP two registers
	C4.1.32.6 SME2 multiple vectors binary int two registers
	C4.1.32.7 SME2 multiple vectors binary FP16 two registers
	C4.1.32.8 SME2 multiple vectors long long MLA two sources
	C4.1.32.9 SME2 multiple vectors ternary FP16 two registers
	C4.1.32.10 SME2 multiple vectors four-way dot product two registers
	C4.1.32.11 SME2 multiple vectors ternary FP two registers
	C4.1.32.12 SME2 multiple vectors ternary int two registers

	C4.1.33 SME2 Multi-vector - Multiple Array Vectors (Four registers)
	C4.1.33.1 SME2 multiple vectors long FMA four sources
	C4.1.33.2 SME2 multiple vectors FP dot product four registers
	C4.1.33.3 SME2 multiple vectors long MLA four sources
	C4.1.33.4 SME2 multiple vectors two-way dot product four registers
	C4.1.33.5 SME2 multiple vectors binary FP four registers
	C4.1.33.6 SME2 multiple vectors binary int four registers
	C4.1.33.7 SME2 multiple vectors binary FP16 four registers
	C4.1.33.8 SME2 multiple vectors long long MLA four sources
	C4.1.33.9 SME2 multiple vectors ternary FP16 four registers
	C4.1.33.10 SME2 multiple vectors four-way dot product four registers
	C4.1.33.11 SME2 multiple vectors ternary FP four registers
	C4.1.33.12 SME2 multiple vectors ternary int four registers

	C4.1.34 SME Memory
	C4.1.34.1 SME load array vector (elements)
	C4.1.34.2 SME store array vector (elements)
	C4.1.34.3 SME save and restore array
	C4.1.34.4 SME2 lookup table load/store

	C4.1.35 SVE encodings
	C4.1.35.1 SVE integer add/subtract vectors (unpredicated)
	C4.1.35.2 SVE address generation
	C4.1.35.3 SVE table lookup (three sources)
	C4.1.35.4 SVE permute vector elements
	C4.1.35.5 SVE integer compare with unsigned immediate
	C4.1.35.6 SVE integer compare with signed immediate
	C4.1.35.7 SVE predicate logical operations
	C4.1.35.8 SVE broadcast predicate element
	C4.1.35.9 SVE integer clamp
	C4.1.35.10 SVE permute vector elements (quadwords)
	C4.1.35.11 SVE two-way dot product
	C4.1.35.12 SVE two-way dot product (indexed)
	C4.1.35.13 SVE2 character match
	C4.1.35.14 SVE floating-point convert precision odd elements
	C4.1.35.15 SVE2 floating-point pairwise operations
	C4.1.35.16 SVE floating-point recursive reduction (quadwords)
	C4.1.35.17 SVE floating-point multiply-add (indexed)
	C4.1.35.18 SVE floating-point complex multiply-add (indexed)
	C4.1.35.19 SVE floating-point multiply (indexed)
	C4.1.35.20 SVE FP clamp
	C4.1.35.21 SVE floating point matrix multiply accumulate
	C4.1.35.22 SVE floating-point compare vectors
	C4.1.35.23 SVE floating-point arithmetic (unpredicated)
	C4.1.35.24 SVE floating-point recursive reduction

	C4.1.36 SVE Integer Multiply-Add - Predicated
	C4.1.36.1 SVE integer multiply-accumulate writing addend (predicated)
	C4.1.36.2 SVE integer multiply-add writing multiplicand (predicated)

	C4.1.37 SVE Integer Binary Arithmetic - Predicated
	C4.1.37.1 SVE integer add/subtract vectors (predicated)
	C4.1.37.2 SVE integer min/max/difference (predicated)
	C4.1.37.3 SVE integer multiply vectors (predicated)
	C4.1.37.4 SVE integer divide vectors (predicated)
	C4.1.37.5 SVE bitwise logical operations (predicated)

	C4.1.38 SVE Integer Reduction
	C4.1.38.1 SVE integer add reduction (predicated)
	C4.1.38.2 SVE integer add reduction (quadwords)
	C4.1.38.3 SVE integer min/max reduction (predicated)
	C4.1.38.4 SVE integer min/max reduction (quadwords)
	C4.1.38.5 SVE constructive prefix (predicated)
	C4.1.38.6 SVE bitwise logical reduction (predicated)
	C4.1.38.7 SVE bitwise logical reduction (quadwords)

	C4.1.39 SVE Bitwise Shift - Predicated
	C4.1.39.1 SVE bitwise shift by immediate (predicated)
	C4.1.39.2 SVE bitwise shift by vector (predicated)
	C4.1.39.3 SVE bitwise shift by wide elements (predicated)

	C4.1.40 SVE Integer Unary Arithmetic - Predicated
	C4.1.40.1 SVE integer unary operations (predicated)
	C4.1.40.2 SVE bitwise unary operations (predicated)

	C4.1.41 SVE Bitwise Logical - Unpredicated
	C4.1.41.1 SVE bitwise logical operations (unpredicated)
	C4.1.41.2 SVE2 bitwise ternary operations

	C4.1.42 SVE Index Generation
	C4.1.43 SVE Stack Allocation
	C4.1.43.1 SVE stack frame adjustment
	C4.1.43.2 Streaming SVE stack frame adjustment
	C4.1.43.3 SVE stack frame size
	C4.1.43.4 Streaming SVE stack frame size

	C4.1.44 SVE2 Integer Multiply - Unpredicated
	C4.1.44.1 SVE2 integer multiply vectors (unpredicated)
	C4.1.44.2 SVE2 signed saturating doubling multiply high (unpredicated)

	C4.1.45 SVE Bitwise Shift - Unpredicated
	C4.1.45.1 SVE bitwise shift by wide elements (unpredicated)
	C4.1.45.2 SVE bitwise shift by immediate (unpredicated)

	C4.1.46 SVE Integer Misc - Unpredicated
	C4.1.46.1 SVE floating-point trig select coefficient
	C4.1.46.2 SVE floating-point exponential accelerator
	C4.1.46.3 SVE constructive prefix (unpredicated)

	C4.1.47 SVE Element Count
	C4.1.47.1 SVE saturating inc/dec vector by element count
	C4.1.47.2 SVE element count
	C4.1.47.3 SVE inc/dec vector by element count
	C4.1.47.4 SVE inc/dec register by element count
	C4.1.47.5 SVE saturating inc/dec register by element count

	C4.1.48 SVE Bitwise Immediate
	C4.1.48.1 SVE bitwise logical with immediate (unpredicated)

	C4.1.49 SVE Integer Wide Immediate - Predicated
	C4.1.49.1 SVE copy integer immediate (predicated)

	C4.1.50 SVE Permute Vector - One Source Quadwords
	C4.1.51 SVE Permute Vector - Unpredicated
	C4.1.51.1 SVE move predicate from vector
	C4.1.51.2 SVE move predicate into vector
	C4.1.51.3 SVE unpack vector elements

	C4.1.52 SVE Permute Predicate
	C4.1.52.1 SVE unpack predicate elements
	C4.1.52.2 SVE permute predicate elements

	C4.1.53 SVE Permute Vector - Predicated
	C4.1.53.1 SVE extract element to general register
	C4.1.53.2 SVE extract element to SIMD&FP scalar register
	C4.1.53.3 SVE reverse within elements
	C4.1.53.4 SVE conditionally broadcast element to vector
	C4.1.53.5 SVE conditionally extract element to SIMD&FP scalar
	C4.1.53.6 SVE reverse doublewords
	C4.1.53.7 SVE conditionally extract element to general register

	C4.1.54 SVE Permute Vector - Extract
	C4.1.55 SVE Permute Vector - Segments
	C4.1.55.1 SVE permute vector segments

	C4.1.56 SVE Integer Compare - Vectors
	C4.1.56.1 SVE integer compare vectors
	C4.1.56.2 SVE integer compare with wide elements

	C4.1.57 SVE Propagate Break
	C4.1.57.1 SVE propagate break from previous partition

	C4.1.58 SVE Partition Break
	C4.1.58.1 SVE propagate break to next partition
	C4.1.58.2 SVE partition break condition

	C4.1.59 SVE Predicate Misc
	C4.1.59.1 SVE predicate test
	C4.1.59.2 SVE predicate first active
	C4.1.59.3 SVE predicate zero
	C4.1.59.4 SVE predicate read from FFR (predicated)
	C4.1.59.5 SVE predicate read from FFR (unpredicated)
	C4.1.59.6 SVE predicate initialize

	C4.1.60 SVE Integer Compare - Scalars
	C4.1.60.1 SVE integer compare scalar count and limit
	C4.1.60.2 SVE conditionally terminate scalars
	C4.1.60.3 SVE pointer conflict compare

	C4.1.61 SVE Scalar Integer Compare - Predicate-as-counter
	C4.1.61.1 SVE extract mask predicate from predicate-as-counter
	C4.1.61.2 SVE integer compare scalar count and limit (predicate pair)
	C4.1.61.3 SVE integer compare scalar count and limit (predicate-as-counter)

	C4.1.62 SVE Integer Wide Immediate - Unpredicated
	C4.1.62.1 SVE integer add/subtract immediate (unpredicated)
	C4.1.62.2 SVE integer min/max immediate (unpredicated)
	C4.1.62.3 SVE integer multiply immediate (unpredicated)
	C4.1.62.4 SVE broadcast integer immediate (unpredicated)
	C4.1.62.5 SVE broadcast floating-point immediate (unpredicated)

	C4.1.63 SVE Predicate Count
	C4.1.63.1 SVE predicate count (predicate-as-counter)
	C4.1.63.2 SVE predicate count

	C4.1.64 SVE Inc/Dec by Predicate Count
	C4.1.64.1 SVE saturating inc/dec vector by predicate count
	C4.1.64.2 SVE saturating inc/dec register by predicate count
	C4.1.64.3 SVE inc/dec vector by predicate count
	C4.1.64.4 SVE inc/dec register by predicate count

	C4.1.65 SVE Write FFR
	C4.1.65.1 SVE FFR write from predicate
	C4.1.65.2 SVE FFR initialise

	C4.1.66 SVE Integer Multiply-Add - Unpredicated
	C4.1.66.1 SVE integer dot product (unpredicated)
	C4.1.66.2 SVE2 saturating multiply-add interleaved long
	C4.1.66.3 SVE2 complex integer multiply-add
	C4.1.66.4 SVE2 integer multiply-add long
	C4.1.66.5 SVE2 saturating multiply-add long
	C4.1.66.6 SVE2 saturating multiply-add high
	C4.1.66.7 SVE mixed sign dot product

	C4.1.67 SVE2 Integer - Predicated
	C4.1.67.1 SVE2 integer pairwise add and accumulate long
	C4.1.67.2 SVE2 integer unary operations (predicated)
	C4.1.67.3 SVE2 saturating/rounding bitwise shift left (predicated)
	C4.1.67.4 SVE2 integer halving add/subtract (predicated)
	C4.1.67.5 SVE2 integer pairwise arithmetic
	C4.1.67.6 SVE2 saturating add/subtract

	C4.1.68 SVE Multiply - Indexed
	C4.1.68.1 SVE integer dot product (indexed)
	C4.1.68.2 SVE2 integer multiply-add (indexed)
	C4.1.68.3 SVE2 saturating multiply-add high (indexed)
	C4.1.68.4 SVE mixed sign dot product (indexed)
	C4.1.68.5 SVE2 saturating multiply-add (indexed)
	C4.1.68.6 SVE2 complex integer dot product (indexed)
	C4.1.68.7 SVE2 complex integer multiply-add (indexed)
	C4.1.68.8 SVE2 complex saturating multiply-add (indexed)
	C4.1.68.9 SVE2 integer multiply-add long (indexed)
	C4.1.68.10 SVE2 integer multiply long (indexed)
	C4.1.68.11 SVE2 saturating multiply (indexed)
	C4.1.68.12 SVE2 saturating multiply high (indexed)
	C4.1.68.13 SVE2 integer multiply (indexed)

	C4.1.69 SVE2 Widening Integer Arithmetic
	C4.1.69.1 SVE2 integer add/subtract long
	C4.1.69.2 SVE2 integer add/subtract wide
	C4.1.69.3 SVE2 integer multiply long

	C4.1.70 SVE Misc
	C4.1.70.1 SVE2 bitwise shift left long
	C4.1.70.2 SVE2 integer add/subtract interleaved long
	C4.1.70.3 SVE2 bitwise exclusive-or interleaved
	C4.1.70.4 SVE integer matrix multiply accumulate
	C4.1.70.5 SVE2 bitwise permute

	C4.1.71 SVE2 Accumulate
	C4.1.71.1 SVE2 complex integer add
	C4.1.71.2 SVE2 integer absolute difference and accumulate long
	C4.1.71.3 SVE2 integer add/subtract long with carry
	C4.1.71.4 SVE2 bitwise shift right and accumulate
	C4.1.71.5 SVE2 bitwise shift and insert
	C4.1.71.6 SVE2 integer absolute difference and accumulate

	C4.1.72 SVE2 Narrowing
	C4.1.72.1 SVE2 saturating extract narrow
	C4.1.72.2 SME2 multi-vec extract narrow
	C4.1.72.3 SVE2 bitwise shift right narrow
	C4.1.72.4 SME2 multi-vec shift narrow
	C4.1.72.5 SVE2 integer add/subtract narrow high part

	C4.1.73 SVE2 Histogram Computation (Segment) and Lookup Table
	C4.1.74 SVE2 Crypto Extensions
	C4.1.74.1 SVE2 crypto unary operations
	C4.1.74.2 SVE2 crypto destructive binary operations
	C4.1.74.3 SVE2 crypto constructive binary operations

	C4.1.75 SVE Floating Point Widening Multiply-Add - Indexed
	C4.1.75.1 SVE BFloat16 floating-point dot product (indexed)
	C4.1.75.2 SVE floating-point multiply-add long (indexed)

	C4.1.76 SVE Floating Point Widening Multiply-Add
	C4.1.76.1 SVE BFloat16 floating-point dot product
	C4.1.76.2 SVE floating-point multiply-add long

	C4.1.77 SVE Floating Point Arithmetic - Predicated
	C4.1.77.1 SVE floating-point arithmetic (predicated)
	C4.1.77.2 SVE floating-point arithmetic with immediate (predicated)

	C4.1.78 SVE Floating Point Unary Operations - Predicated
	C4.1.78.1 SVE floating-point round to integral value
	C4.1.78.2 SVE floating-point convert precision
	C4.1.78.3 SVE floating-point unary operations
	C4.1.78.4 SVE integer convert to floating-point
	C4.1.78.5 SVE floating-point convert to integer

	C4.1.79 SVE Floating Point Unary Operations - Unpredicated
	C4.1.79.1 SVE floating-point reciprocal estimate (unpredicated)

	C4.1.80 SVE Floating Point Compare - with Zero
	C4.1.80.1 SVE floating-point compare with zero

	C4.1.81 SVE Floating Point Accumulating Reduction
	C4.1.81.1 SVE floating-point serial reduction (predicated)

	C4.1.82 SVE Floating Point Multiply-Add
	C4.1.82.1 SVE floating-point multiply-accumulate writing addend
	C4.1.82.2 SVE floating-point multiply-accumulate writing multiplicand

	C4.1.83 SVE Memory - 32-bit Gather and Unsized Contiguous
	C4.1.83.1 SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets)
	C4.1.83.2 SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)
	C4.1.83.3 SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
	C4.1.83.4 SVE contiguous prefetch (scalar plus immediate)
	C4.1.83.5 SVE 32-bit gather load (scalar plus 32-bit unscaled offsets)
	C4.1.83.6 SVE2 32-bit gather non-temporal load (vector plus scalar)
	C4.1.83.7 SVE contiguous prefetch (scalar plus scalar)
	C4.1.83.8 SVE 32-bit gather prefetch (vector plus immediate)
	C4.1.83.9 SVE 32-bit gather load (vector plus immediate)
	C4.1.83.10 SVE load and broadcast element

	C4.1.84 SVE Memory - Contiguous Load
	C4.1.84.1 SVE contiguous non-temporal load (scalar plus immediate)
	C4.1.84.2 SVE contiguous load (quadwords, scalar plus immediate)
	C4.1.84.3 SVE load multiple structures (quadwords, scalar plus immediate)
	C4.1.84.4 SVE contiguous load (quadwords, scalar plus scalar)
	C4.1.84.5 SVE contiguous non-temporal load (scalar plus scalar)
	C4.1.84.6 SVE load multiple structures (quadwords, scalar plus scalar)
	C4.1.84.7 SVE load multiple structures (scalar plus immediate)
	C4.1.84.8 SVE load multiple structures (scalar plus scalar)
	C4.1.84.9 SVE load and broadcast quadword (scalar plus immediate)
	C4.1.84.10 SVE contiguous load (scalar plus immediate)
	C4.1.84.11 SVE contiguous non-fault load (scalar plus immediate)
	C4.1.84.12 SVE load and broadcast quadword (scalar plus scalar)
	C4.1.84.13 SVE contiguous load (scalar plus scalar)
	C4.1.84.14 SVE contiguous first-fault load (scalar plus scalar)

	C4.1.85 SVE Memory - 64-bit Gather
	C4.1.85.1 SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets)
	C4.1.85.2 SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled offsets)
	C4.1.85.3 SVE 64-bit gather load (scalar plus 64-bit scaled offsets)
	C4.1.85.4 SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
	C4.1.85.5 SVE 64-bit gather prefetch (vector plus immediate)
	C4.1.85.6 SVE2 64-bit gather non-temporal load (vector plus scalar)
	C4.1.85.7 SVE 64-bit gather load (vector plus immediate)
	C4.1.85.8 SVE 64-bit gather load (scalar plus 64-bit unscaled offsets)
	C4.1.85.9 SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets)

	C4.1.86 SVE Memory - Contiguous Store and Unsized Contiguous
	C4.1.86.1 SVE store multiple structures (quadwords, scalar plus immediate)
	C4.1.86.2 SVE store multiple structures (quadwords, scalar plus scalar)
	C4.1.86.3 SVE contiguous store (scalar plus scalar)

	C4.1.87 SVE Memory - Non-temporal and Quadword Scatter Store
	C4.1.87.1 SVE2 64-bit scatter non-temporal store (vector plus scalar)
	C4.1.87.2 SVE2 32-bit scatter non-temporal store (vector plus scalar)

	C4.1.88 SVE Memory - Non-temporal and Multi-register Contiguous Store
	C4.1.88.1 SVE contiguous non-temporal store (scalar plus scalar)
	C4.1.88.2 SVE store multiple structures (scalar plus scalar)

	C4.1.89 SVE Memory - Scatter with Optional Sign Extend
	C4.1.89.1 SVE 64-bit scatter store (scalar plus unpacked 32-bit unscaled offsets)
	C4.1.89.2 SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
	C4.1.89.3 SVE 32-bit scatter store (scalar plus 32-bit unscaled offsets)
	C4.1.89.4 SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)

	C4.1.90 SVE Memory - Scatter
	C4.1.90.1 SVE 64-bit scatter store (scalar plus 64-bit unscaled offsets)
	C4.1.90.2 SVE 64-bit scatter store (scalar plus 64-bit scaled offsets)
	C4.1.90.3 SVE 64-bit scatter store (vector plus immediate)
	C4.1.90.4 SVE 32-bit scatter store (vector plus immediate)

	C4.1.91 SVE Memory - Contiguous Store with Immediate Offset
	C4.1.91.1 SVE contiguous non-temporal store (scalar plus immediate)
	C4.1.91.2 SVE store multiple structures (scalar plus immediate)
	C4.1.91.3 SVE contiguous store (scalar plus immediate)

	C4.1.92 Data Processing -- Immediate
	C4.1.92.1 PC-rel. addressing
	C4.1.92.2 Add/subtract (immediate)
	C4.1.92.3 Add/subtract (immediate, with tags)
	C4.1.92.4 Min/max (immediate)
	C4.1.92.5 Logical (immediate)
	C4.1.92.6 Move wide (immediate)
	C4.1.92.7 Bitfield
	C4.1.92.8 Extract

	C4.1.93 Branches, Exception Generating and System instructions
	C4.1.93.1 Conditional branch (immediate)
	C4.1.93.2 Exception generation
	C4.1.93.3 System instructions with register argument
	C4.1.93.4 Hints
	C4.1.93.5 Barriers
	C4.1.93.6 PSTATE
	C4.1.93.7 System with result
	C4.1.93.8 System instructions
	C4.1.93.9 System register move
	C4.1.93.10 System pair instructions
	C4.1.93.11 System register pair move
	C4.1.93.12 Unconditional branch (register)
	C4.1.93.13 Unconditional branch (immediate)
	C4.1.93.14 Compare and branch (immediate)
	C4.1.93.15 Test and branch (immediate)

	C4.1.94 Loads and Stores
	C4.1.94.1 Compare and swap pair
	C4.1.94.2 Advanced SIMD load/store multiple structures
	C4.1.94.3 Advanced SIMD load/store multiple structures (post-indexed)
	C4.1.94.4 Advanced SIMD load/store single structure
	C4.1.94.5 Advanced SIMD load/store single structure (post-indexed)
	C4.1.94.6 RCW compare and swap
	C4.1.94.7 RCW compare and swap pair
	C4.1.94.8 128-bit atomic memory operations
	C4.1.94.9 GCS load/store
	C4.1.94.10 Load/store memory tags
	C4.1.94.11 Load/store exclusive pair
	C4.1.94.12 Load/store exclusive register
	C4.1.94.13 Load/store ordered
	C4.1.94.14 Compare and swap
	C4.1.94.15 LDIAPP/STILP
	C4.1.94.16 LDAPR/STLR (writeback)
	C4.1.94.17 LDAPR/STLR (unscaled immediate)
	C4.1.94.18 LDAPR/STLR (SIMD&FP)
	C4.1.94.19 Load register (literal)
	C4.1.94.20 Memory Copy and Memory Set
	C4.1.94.21 Load/store no-allocate pair (offset)
	C4.1.94.22 Load/store register pair (post-indexed)
	C4.1.94.23 Load/store register pair (offset)
	C4.1.94.24 Load/store register pair (pre-indexed)
	C4.1.94.25 Load/store register (unscaled immediate)
	C4.1.94.26 Load/store register (immediate post-indexed)
	C4.1.94.27 Load/store register (unprivileged)
	C4.1.94.28 Load/store register (immediate pre-indexed)
	C4.1.94.29 Atomic memory operations
	C4.1.94.30 Load/store register (register offset)
	C4.1.94.31 Load/store register (pac)
	C4.1.94.32 Load/store register (unsigned immediate)

	C4.1.95 Data Processing -- Register
	C4.1.95.1 Data-processing (2 source)
	C4.1.95.2 Data-processing (1 source)
	C4.1.95.3 Logical (shifted register)
	C4.1.95.4 Add/subtract (shifted register)
	C4.1.95.5 Add/subtract (extended register)
	C4.1.95.6 Add/subtract (with carry)
	C4.1.95.7 Rotate right into flags
	C4.1.95.8 Evaluate into flags
	C4.1.95.9 Conditional compare (register)
	C4.1.95.10 Conditional compare (immediate)
	C4.1.95.11 Conditional select
	C4.1.95.12 Data-processing (3 source)

	C4.1.96 Data Processing -- Scalar Floating-Point and Advanced SIMD
	C4.1.96.1 Cryptographic AES
	C4.1.96.2 Cryptographic three-register SHA
	C4.1.96.3 Cryptographic two-register SHA
	C4.1.96.4 Advanced SIMD scalar copy
	C4.1.96.5 Advanced SIMD scalar three same FP16
	C4.1.96.6 Advanced SIMD scalar two-register miscellaneous FP16
	C4.1.96.7 Advanced SIMD scalar three same extra
	C4.1.96.8 Advanced SIMD scalar two-register miscellaneous
	C4.1.96.9 Advanced SIMD scalar pairwise
	C4.1.96.10 Advanced SIMD scalar three different
	C4.1.96.11 Advanced SIMD scalar three same
	C4.1.96.12 Advanced SIMD scalar shift by immediate
	C4.1.96.13 Advanced SIMD scalar x indexed element
	C4.1.96.14 Advanced SIMD table lookup
	C4.1.96.15 Advanced SIMD permute
	C4.1.96.16 Advanced SIMD extract
	C4.1.96.17 Advanced SIMD copy
	C4.1.96.18 Advanced SIMD three same (FP16)
	C4.1.96.19 Advanced SIMD two-register miscellaneous (FP16)
	C4.1.96.20 Advanced SIMD three-register extension
	C4.1.96.21 Advanced SIMD two-register miscellaneous
	C4.1.96.22 Advanced SIMD across lanes
	C4.1.96.23 Advanced SIMD three different
	C4.1.96.24 Advanced SIMD three same
	C4.1.96.25 Advanced SIMD modified immediate
	C4.1.96.26 Advanced SIMD shift by immediate
	C4.1.96.27 Advanced SIMD vector x indexed element
	C4.1.96.28 Cryptographic three-register, imm2
	C4.1.96.29 Cryptographic three-register SHA 512
	C4.1.96.30 Cryptographic four-register
	C4.1.96.31 Cryptographic two-register SHA 512
	C4.1.96.32 Conversion between floating-point and fixed-point
	C4.1.96.33 Conversion between floating-point and integer
	C4.1.96.34 Floating-point data-processing (1 source)
	C4.1.96.35 Floating-point compare
	C4.1.96.36 Floating-point immediate
	C4.1.96.37 Floating-point conditional compare
	C4.1.96.38 Floating-point data-processing (2 source)
	C4.1.96.39 Floating-point conditional select
	C4.1.96.40 Floating-point data-processing (3 source)

	C5: The A64 System Instruction Class�
	C5.1 The System instruction class encoding space
	C5.1.1 Principles of the System instruction class encoding
	C5.1.2 System instruction class encoding overview
	UNDEFINED behaviors

	C5.1.3 op0==0b00, architectural hints, barriers and CLREX, and PSTATE access
	Architectural hint instructions
	Barriers and CLREX
	Instructions for accessing the PSTATE fields

	C5.1.4 op0==0b01, cache maintenance, TLB maintenance, address translation, prediction restriction, BRBE, Trace Extension, and Guarded Control Stack instructions
	Cache maintenance instructions, and data cache zero operation
	Prediction restriction instructions
	Address translation instructions
	TLB maintenance instructions
	Branch Record Buffer instructions
	Trace Extension instructions
	Guarded Control Stack instructions
	Reserved encoding space for IMPLEMENTATION DEFINED instructions

	C5.1.5 op0==0b11, Moves to and from Special-purpose registers
	Instructions for accessing Special-purpose registers

	C5.2 Special-purpose registers
	C5.2.1 ALLINT, All Interrupt Mask Bit
	Field descriptions
	Accessing ALLINT

	C5.2.2 CurrentEL, Current Exception Level
	Field descriptions
	Accessing CurrentEL

	C5.2.3 DAIF, Interrupt Mask Bits
	Field descriptions
	Accessing DAIF

	C5.2.4 DIT, Data Independent Timing
	Field descriptions
	Accessing DIT

	C5.2.5 ELR_EL1, Exception Link Register (EL1)
	Field descriptions
	Accessing ELR_EL1

	C5.2.6 ELR_EL2, Exception Link Register (EL2)
	Field descriptions
	Accessing ELR_EL2

	C5.2.7 ELR_EL3, Exception Link Register (EL3)
	Field descriptions
	Accessing ELR_EL3

	C5.2.8 FPCR, Floating-point Control Register
	Field descriptions
	Accessing FPCR

	C5.2.9 FPSR, Floating-point Status Register
	Field descriptions
	Accessing FPSR

	C5.2.10 NZCV, Condition Flags
	Field descriptions
	Accessing NZCV

	C5.2.11 PAN, Privileged Access Never
	Field descriptions
	Accessing PAN

	C5.2.12 PM, PMU Exception Mask
	Field descriptions
	Accessing PM

	C5.2.13 SP_EL0, Stack Pointer (EL0)
	Field descriptions
	Accessing SP_EL0

	C5.2.14 SP_EL1, Stack Pointer (EL1)
	Field descriptions
	Accessing SP_EL1

	C5.2.15 SP_EL2, Stack Pointer (EL2)
	Field descriptions
	Accessing SP_EL2

	C5.2.16 SP_EL3, Stack Pointer (EL3)
	Field descriptions

	C5.2.17 SPSel, Stack Pointer Select
	Field descriptions
	Accessing SPSel

	C5.2.18 SPSR_abt, Saved Program Status Register (Abort mode)
	Field descriptions
	Accessing SPSR_abt

	C5.2.19 SPSR_EL1, Saved Program Status Register (EL1)
	Field descriptions
	Accessing SPSR_EL1

	C5.2.20 SPSR_EL2, Saved Program Status Register (EL2)
	Field descriptions
	Accessing SPSR_EL2

	C5.2.21 SPSR_EL3, Saved Program Status Register (EL3)
	Field descriptions
	Accessing SPSR_EL3

	C5.2.22 SPSR_fiq, Saved Program Status Register (FIQ mode)
	Field descriptions
	Accessing SPSR_fiq

	C5.2.23 SPSR_irq, Saved Program Status Register (IRQ mode)
	Field descriptions
	Accessing SPSR_irq

	C5.2.24 SPSR_und, Saved Program Status Register (Undefined mode)
	Field descriptions
	Accessing SPSR_und

	C5.2.25 SSBS, Speculative Store Bypass Safe
	Field descriptions
	Accessing SSBS

	C5.2.26 SVCR, Streaming Vector Control Register
	Field descriptions
	Accessing SVCR

	C5.2.27 TCO, Tag Check Override
	Field descriptions
	Accessing TCO

	C5.2.28 UAO, User Access Override
	Field descriptions
	Accessing UAO

	C5.3 A64 System instructions for cache maintenance
	C5.3.1 DC CGDSW, Clean of Data and Allocation Tags by Set/Way
	Field descriptions
	Executing DC CGDSW

	C5.3.2 DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CGDVAC

	C5.3.3 DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP
	Field descriptions
	Executing DC CGDVADP

	C5.3.4 DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP
	Field descriptions
	Executing DC CGDVAP

	C5.3.5 DC CGSW, Clean of Allocation Tags by Set/Way
	Field descriptions
	Executing DC CGSW

	C5.3.6 DC CGVAC, Clean of Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CGVAC

	C5.3.7 DC CGVADP, Clean of Allocation Tags by VA to PoDP
	Field descriptions
	Executing DC CGVADP

	C5.3.8 DC CGVAP, Clean of Allocation Tags by VA to PoP
	Field descriptions
	Executing DC CGVAP

	C5.3.9 DC CIGDPAPA, Clean and Invalidate of Data and Allocation Tags by PA to PoPA
	Field descriptions
	Executing DC CIGDPAPA

	C5.3.10 DC CIGDPAE, Clean and invalidate of data and allocation tags by PA to PoE
	Field descriptions
	Executing DC CIGDPAE

	C5.3.11 DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way
	Field descriptions
	Executing DC CIGDSW

	C5.3.12 DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CIGDVAC

	C5.3.13 DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way
	Field descriptions
	Executing DC CIGSW

	C5.3.14 DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC
	Field descriptions
	Executing DC CIGVAC

	C5.3.15 DC CIPAPA, Data or unified Cache line Clean and Invalidate by PA to PoPA
	Field descriptions
	Executing DC CIPAPA

	C5.3.16 DC CIPAE, Data or unified Cache line Clean and Invalidate by PA to PoE
	Field descriptions
	Executing DC CIPAE

	C5.3.17 DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way
	Field descriptions
	Executing DC CISW

	C5.3.18 DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	Field descriptions
	Executing DC CIVAC

	C5.3.19 DC CSW, Data or unified Cache line Clean by Set/Way
	Field descriptions
	Executing DC CSW

	C5.3.20 DC CVAC, Data or unified Cache line Clean by VA to PoC
	Field descriptions
	Executing DC CVAC

	C5.3.21 DC CVADP, Data or unified Cache line Clean by VA to PoDP
	Field descriptions
	Executing DC CVADP

	C5.3.22 DC CVAP, Data or unified Cache line Clean by VA to PoP
	Field descriptions
	Executing DC CVAP

	C5.3.23 DC CVAU, Data or unified Cache line Clean by VA to PoU
	Field descriptions
	Executing DC CVAU

	C5.3.24 DC GVA, Data Cache set Allocation Tag by VA
	Field descriptions
	Executing DC GVA

	C5.3.25 DC GZVA, Data Cache set Allocation Tags and Zero by VA
	Field descriptions
	Executing DC GZVA

	C5.3.26 DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way
	Field descriptions
	Executing DC IGDSW

	C5.3.27 DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC
	Field descriptions
	Executing DC IGDVAC

	C5.3.28 DC IGSW, Invalidate of Allocation Tags by Set/Way
	Field descriptions
	Executing DC IGSW

	C5.3.29 DC IGVAC, Invalidate of Allocation Tags by VA to PoC
	Field descriptions
	Executing DC IGVAC

	C5.3.30 DC ISW, Data or unified Cache line Invalidate by Set/Way
	Field descriptions
	Executing DC ISW

	C5.3.31 DC IVAC, Data or unified Cache line Invalidate by VA to PoC
	Field descriptions
	Executing DC IVAC

	C5.3.32 DC ZVA, Data Cache Zero by VA
	Field descriptions
	Executing DC ZVA

	C5.3.33 IC IALLU, Instruction Cache Invalidate All to PoU
	Field descriptions
	Executing IC IALLU

	C5.3.34 IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	Field descriptions
	Executing IC IALLUIS

	C5.3.35 IC IVAU, Instruction Cache line Invalidate by VA to PoU
	Field descriptions
	Executing IC IVAU

	C5.4 A64 System instructions for address translation
	C5.4.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read
	Field descriptions
	Executing AT S12E0R

	C5.4.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write
	Field descriptions
	Executing AT S12E0W

	C5.4.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read
	Field descriptions
	Executing AT S12E1R

	C5.4.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write
	Field descriptions
	Executing AT S12E1W

	C5.4.5 AT S1E0R, Address Translate Stage 1 EL0 Read
	Field descriptions
	Executing AT S1E0R

	C5.4.6 AT S1E0W, Address Translate Stage 1 EL0 Write
	Field descriptions
	Executing AT S1E0W

	C5.4.7 AT S1E1A, Address Translate Stage 1 EL1 Without Permission checks
	Field descriptions
	Executing AT S1E1A

	C5.4.8 AT S1E1R, Address Translate Stage 1 EL1 Read
	Field descriptions
	Executing AT S1E1R

	C5.4.9 AT S1E1RP, Address Translate Stage 1 EL1 Read PAN
	Field descriptions
	Executing AT S1E1RP

	C5.4.10 AT S1E1W, Address Translate Stage 1 EL1 Write
	Field descriptions
	Executing AT S1E1W

	C5.4.11 AT S1E1WP, Address Translate Stage 1 EL1 Write PAN
	Field descriptions
	Executing AT S1E1WP

	C5.4.12 AT S1E2A, Address Translate Stage 1 EL2 Without Permission checks
	Field descriptions
	Executing AT S1E2A

	C5.4.13 AT S1E2R, Address Translate Stage 1 EL2 Read
	Field descriptions
	Executing AT S1E2R

	C5.4.14 AT S1E2W, Address Translate Stage 1 EL2 Write
	Field descriptions
	Executing AT S1E2W

	C5.4.15 AT S1E3A, Address Translate Stage 1 EL3 Without Permission checks
	Field descriptions
	Executing AT S1E3A

	C5.4.16 AT S1E3R, Address Translate Stage 1 EL3 Read
	Field descriptions
	Executing AT S1E3R

	C5.4.17 AT S1E3W, Address Translate Stage 1 EL3 Write
	Field descriptions
	Executing AT S1E3W

	C5.5 A64 System instructions for TLB maintenance
	C5.5.1 TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1
	Field descriptions
	Executing TLBI ALLE1, TLBI ALLE1NXS

	C5.5.2 TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable
	Field descriptions
	Executing TLBI ALLE1IS, TLBI ALLE1ISNXS

	C5.5.3 TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable
	Field descriptions
	Executing TLBI ALLE1OS, TLBI ALLE1OSNXS

	C5.5.4 TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2
	Field descriptions
	Executing TLBI ALLE2, TLBI ALLE2NXS

	C5.5.5 TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable
	Field descriptions
	Executing TLBI ALLE2IS, TLBI ALLE2ISNXS

	C5.5.6 TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable
	Field descriptions
	Executing TLBI ALLE2OS, TLBI ALLE2OSNXS

	C5.5.7 TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3
	Field descriptions
	Executing TLBI ALLE3, TLBI ALLE3NXS

	C5.5.8 TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable
	Field descriptions
	Executing TLBI ALLE3IS, TLBI ALLE3ISNXS

	C5.5.9 TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable
	Field descriptions
	Executing TLBI ALLE3OS, TLBI ALLE3OSNXS

	C5.5.10 TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1
	Field descriptions
	Executing TLBI ASIDE1, TLBI ASIDE1NXS

	C5.5.11 TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBI ASIDE1IS, TLBI ASIDE1ISNXS

	C5.5.12 TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBI ASIDE1OS, TLBI ASIDE1OSNXS

	C5.5.13 TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
	Field descriptions
	Executing TLBI IPAS2E1, TLBI IPAS2E1NXS

	C5.5.14 TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS

	C5.5.15 TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS

	C5.5.16 TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	Field descriptions
	Executing TLBI IPAS2LE1, TLBI IPAS2LE1NXS

	C5.5.17 TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS

	C5.5.18 TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS

	C5.5.19 TLBI PAALL, TLB Invalidate GPT Information by PA, All Entries, Local
	Field descriptions
	Executing TLBI PAALL

	C5.5.20 TLBI PAALLOS, TLB Invalidate GPT Information by PA, All Entries, Outer Shareable
	Field descriptions
	Executing TLBI PAALLOS

	C5.5.21 TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
	Field descriptions
	Executing TLBI RIPAS2E1, TLBI RIPAS2E1NXS

	C5.5.22 TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS

	C5.5.23 TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS

	C5.5.24 TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	Field descriptions
	Executing TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS

	C5.5.25 TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS

	C5.5.26 TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS

	C5.5.27 TLBI RPALOS, TLB Range Invalidate GPT Information by PA, Last level, Outer Shareable
	Field descriptions
	Executing TLBI RPALOS

	C5.5.28 TLBI RPAOS, TLB Range Invalidate GPT Information by PA, Outer Shareable
	Field descriptions
	Executing TLBI RPAOS

	C5.5.29 TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1
	Field descriptions
	Executing TLBI RVAAE1, TLBI RVAAE1NXS

	C5.5.30 TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVAAE1IS, TLBI RVAAE1ISNXS

	C5.5.31 TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVAAE1OS, TLBI RVAAE1OSNXS

	C5.5.32 TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1
	Field descriptions
	Executing TLBI RVAALE1, TLBI RVAALE1NXS

	C5.5.33 TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVAALE1IS, TLBI RVAALE1ISNXS

	C5.5.34 TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVAALE1OS, TLBI RVAALE1OSNXS

	C5.5.35 TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1
	Field descriptions
	Executing TLBI RVAE1, TLBI RVAE1NXS

	C5.5.36 TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVAE1IS, TLBI RVAE1ISNXS

	C5.5.37 TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVAE1OS, TLBI RVAE1OSNXS

	C5.5.38 TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2
	Field descriptions
	Executing TLBI RVAE2, TLBI RVAE2NXS

	C5.5.39 TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable
	Field descriptions
	Executing TLBI RVAE2IS, TLBI RVAE2ISNXS

	C5.5.40 TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable
	Field descriptions
	Executing TLBI RVAE2OS, TLBI RVAE2OSNXS

	C5.5.41 TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3
	Field descriptions
	Executing TLBI RVAE3, TLBI RVAE3NXS

	C5.5.42 TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable
	Field descriptions
	Executing TLBI RVAE3IS, TLBI RVAE3ISNXS

	C5.5.43 TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable
	Field descriptions
	Executing TLBI RVAE3OS, TLBI RVAE3OSNXS

	C5.5.44 TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1
	Field descriptions
	Executing TLBI RVALE1, TLBI RVALE1NXS

	C5.5.45 TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI RVALE1IS, TLBI RVALE1ISNXS

	C5.5.46 TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI RVALE1OS, TLBI RVALE1OSNXS

	C5.5.47 TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2
	Field descriptions
	Executing TLBI RVALE2, TLBI RVALE2NXS

	C5.5.48 TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
	Field descriptions
	Executing TLBI RVALE2IS, TLBI RVALE2ISNXS

	C5.5.49 TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
	Field descriptions
	Executing TLBI RVALE2OS, TLBI RVALE2OSNXS

	C5.5.50 TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3
	Field descriptions
	Executing TLBI RVALE3, TLBI RVALE3NXS

	C5.5.51 TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable
	Field descriptions
	Executing TLBI RVALE3IS, TLBI RVALE3ISNXS

	C5.5.52 TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
	Field descriptions
	Executing TLBI RVALE3OS, TLBI RVALE3OSNXS

	C5.5.53 TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1
	Field descriptions
	Executing TLBI VAAE1, TLBI VAAE1NXS

	C5.5.54 TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VAAE1IS, TLBI VAAE1ISNXS

	C5.5.55 TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VAAE1OS, TLBI VAAE1OSNXS

	C5.5.56 TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1
	Field descriptions
	Executing TLBI VAALE1, TLBI VAALE1NXS

	C5.5.57 TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VAALE1IS, TLBI VAALE1ISNXS

	C5.5.58 TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VAALE1OS, TLBI VAALE1OSNXS

	C5.5.59 TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1
	Field descriptions
	Executing TLBI VAE1, TLBI VAE1NXS

	C5.5.60 TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VAE1IS, TLBI VAE1ISNXS

	C5.5.61 TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VAE1OS, TLBI VAE1OSNXS

	C5.5.62 TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2
	Field descriptions
	Executing TLBI VAE2, TLBI VAE2NXS

	C5.5.63 TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable
	Field descriptions
	Executing TLBI VAE2IS, TLBI VAE2ISNXS

	C5.5.64 TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable
	Field descriptions
	Executing TLBI VAE2OS, TLBI VAE2OSNXS

	C5.5.65 TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3
	Field descriptions
	Executing TLBI VAE3, TLBI VAE3NXS

	C5.5.66 TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable
	Field descriptions
	Executing TLBI VAE3IS, TLBI VAE3ISNXS

	C5.5.67 TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable
	Field descriptions
	Executing TLBI VAE3OS, TLBI VAE3OSNXS

	C5.5.68 TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1
	Field descriptions
	Executing TLBI VALE1, TLBI VALE1NXS

	C5.5.69 TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VALE1IS, TLBI VALE1ISNXS

	C5.5.70 TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VALE1OS, TLBI VALE1OSNXS

	C5.5.71 TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2
	Field descriptions
	Executing TLBI VALE2, TLBI VALE2NXS

	C5.5.72 TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable
	Field descriptions
	Executing TLBI VALE2IS, TLBI VALE2ISNXS

	C5.5.73 TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable
	Field descriptions
	Executing TLBI VALE2OS, TLBI VALE2OSNXS

	C5.5.74 TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3
	Field descriptions
	Executing TLBI VALE3, TLBI VALE3NXS

	C5.5.75 TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable
	Field descriptions
	Executing TLBI VALE3IS, TLBI VALE3ISNXS

	C5.5.76 TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable
	Field descriptions
	Executing TLBI VALE3OS, TLBI VALE3OSNXS

	C5.5.77 TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1
	Field descriptions
	Executing TLBI VMALLE1, TLBI VMALLE1NXS

	C5.5.78 TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VMALLE1IS, TLBI VMALLE1ISNXS

	C5.5.79 TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VMALLE1OS, TLBI VMALLE1OSNXS

	C5.5.80 TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1
	Field descriptions
	Executing TLBI VMALLS12E1, TLBI VMALLS12E1NXS

	C5.5.81 TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS

	C5.5.82 TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS

	C5.5.83 TLBIP IPAS2E1, TLBIP IPAS2E1NXS, TLB Invalidate Pair by Intermediate Physical Address, Stage 2, EL1
	Field descriptions
	Executing TLBIP IPAS2E1, TLBIP IPAS2E1NXS

	C5.5.84 TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS, TLB Invalidate Pair by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP IPAS2E1IS, TLBIP IPAS2E1ISNXS

	C5.5.85 TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS, TLB Invalidate Pair by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP IPAS2E1OS, TLBIP IPAS2E1OSNXS

	C5.5.86 TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS, TLB Invalidate Pair by Intermediate Physical Address, Stage 2, Last level, EL1
	Field descriptions
	Executing TLBIP IPAS2LE1, TLBIP IPAS2LE1NXS

	C5.5.87 TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS, TLB Invalidate Pair by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP IPAS2LE1IS, TLBIP IPAS2LE1ISNXS

	C5.5.88 TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS, TLB Invalidate Pair by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP IPAS2LE1OS, TLBIP IPAS2LE1OSNXS

	C5.5.89 TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
	Field descriptions
	Executing TLBIP RIPAS2E1, TLBIP RIPAS2E1NXS

	C5.5.90 TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP RIPAS2E1IS, TLBIP RIPAS2E1ISNXS

	C5.5.91 TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP RIPAS2E1OS, TLBIP RIPAS2E1OSNXS

	C5.5.92 TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	Field descriptions
	Executing TLBIP RIPAS2LE1, TLBIP RIPAS2LE1NXS

	C5.5.93 TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP RIPAS2LE1IS, TLBIP RIPAS2LE1ISNXS

	C5.5.94 TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP RIPAS2LE1OS, TLBIP RIPAS2LE1OSNXS

	C5.5.95 TLBIP RVAAE1, TLBIP RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1
	Field descriptions
	Executing TLBIP RVAAE1, TLBIP RVAAE1NXS

	C5.5.96 TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP RVAAE1IS, TLBIP RVAAE1ISNXS

	C5.5.97 TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP RVAAE1OS, TLBIP RVAAE1OSNXS

	C5.5.98 TLBIP RVAALE1, TLBIP RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1
	Field descriptions
	Executing TLBIP RVAALE1, TLBIP RVAALE1NXS

	C5.5.99 TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP RVAALE1IS, TLBIP RVAALE1ISNXS

	C5.5.100 TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP RVAALE1OS, TLBIP RVAALE1OSNXS

	C5.5.101 TLBIP RVAE1, TLBIP RVAE1NXS, TLB Range Invalidate by VA, EL1
	Field descriptions
	Executing TLBIP RVAE1, TLBIP RVAE1NXS

	C5.5.102 TLBIP RVAE1IS, TLBIP RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP RVAE1IS, TLBIP RVAE1ISNXS

	C5.5.103 TLBIP RVAE1OS, TLBIP RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP RVAE1OS, TLBIP RVAE1OSNXS

	C5.5.104 TLBIP RVAE2, TLBIP RVAE2NXS, TLB Range Invalidate by VA, EL2
	Field descriptions
	Executing TLBIP RVAE2, TLBIP RVAE2NXS

	C5.5.105 TLBIP RVAE2IS, TLBIP RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable
	Field descriptions
	Executing TLBIP RVAE2IS, TLBIP RVAE2ISNXS

	C5.5.106 TLBIP RVAE2OS, TLBIP RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable
	Field descriptions
	Executing TLBIP RVAE2OS, TLBIP RVAE2OSNXS

	C5.5.107 TLBIP RVAE3, TLBIP RVAE3NXS, TLB Range Invalidate by VA, EL3
	Field descriptions
	Executing TLBIP RVAE3, TLBIP RVAE3NXS

	C5.5.108 TLBIP RVAE3IS, TLBIP RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable
	Field descriptions
	Executing TLBIP RVAE3IS, TLBIP RVAE3ISNXS

	C5.5.109 TLBIP RVAE3OS, TLBIP RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable
	Field descriptions
	Executing TLBIP RVAE3OS, TLBIP RVAE3OSNXS

	C5.5.110 TLBIP RVALE1, TLBIP RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1
	Field descriptions
	Executing TLBIP RVALE1, TLBIP RVALE1NXS

	C5.5.111 TLBIP RVALE1IS, TLBIP RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP RVALE1IS, TLBIP RVALE1ISNXS

	C5.5.112 TLBIP RVALE1OS, TLBIP RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP RVALE1OS, TLBIP RVALE1OSNXS

	C5.5.113 TLBIP RVALE2, TLBIP RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2
	Field descriptions
	Executing TLBIP RVALE2, TLBIP RVALE2NXS

	C5.5.114 TLBIP RVALE2IS, TLBIP RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
	Field descriptions
	Executing TLBIP RVALE2IS, TLBIP RVALE2ISNXS

	C5.5.115 TLBIP RVALE2OS, TLBIP RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
	Field descriptions
	Executing TLBIP RVALE2OS, TLBIP RVALE2OSNXS

	C5.5.116 TLBIP RVALE3, TLBIP RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3
	Field descriptions
	Executing TLBIP RVALE3, TLBIP RVALE3NXS

	C5.5.117 TLBIP RVALE3IS, TLBIP RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable
	Field descriptions
	Executing TLBIP RVALE3IS, TLBIP RVALE3ISNXS

	C5.5.118 TLBIP RVALE3OS, TLBIP RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
	Field descriptions
	Executing TLBIP RVALE3OS, TLBIP RVALE3OSNXS

	C5.5.119 TLBIP VAAE1, TLBIP VAAE1NXS, TLB Invalidate Pair by VA, All ASID, EL1
	Field descriptions
	Executing TLBIP VAAE1, TLBIP VAAE1NXS

	C5.5.120 TLBIP VAAE1IS, TLBIP VAAE1ISNXS, TLB Invalidate Pair by VA, All ASID, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP VAAE1IS, TLBIP VAAE1ISNXS

	C5.5.121 TLBIP VAAE1OS, TLBIP VAAE1OSNXS, TLB Invalidate Pair by VA, All ASID, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP VAAE1OS, TLBIP VAAE1OSNXS

	C5.5.122 TLBIP VAALE1, TLBIP VAALE1NXS, TLB Invalidate Pair by VA, All ASID, Last level, EL1
	Field descriptions
	Executing TLBIP VAALE1, TLBIP VAALE1NXS

	C5.5.123 TLBIP VAALE1IS, TLBIP VAALE1ISNXS, TLB Invalidate Pair by VA, All ASID, Last Level, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP VAALE1IS, TLBIP VAALE1ISNXS

	C5.5.124 TLBIP VAALE1OS, TLBIP VAALE1OSNXS, TLB Invalidate Pair by VA, All ASID, Last Level, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP VAALE1OS, TLBIP VAALE1OSNXS

	C5.5.125 TLBIP VAE1, TLBIP VAE1NXS, TLB Invalidate Pair by VA, EL1
	Field descriptions
	Executing TLBIP VAE1, TLBIP VAE1NXS

	C5.5.126 TLBIP VAE1IS, TLBIP VAE1ISNXS, TLB Invalidate Pair by VA, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP VAE1IS, TLBIP VAE1ISNXS

	C5.5.127 TLBIP VAE1OS, TLBIP VAE1OSNXS, TLB Invalidate Pair by VA, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP VAE1OS, TLBIP VAE1OSNXS

	C5.5.128 TLBIP VAE2, TLBIP VAE2NXS, TLB Invalidate Pair by VA, EL2
	Field descriptions
	Executing TLBIP VAE2, TLBIP VAE2NXS

	C5.5.129 TLBIP VAE2IS, TLBIP VAE2ISNXS, TLB Invalidate Pair by VA, EL2, Inner Shareable
	Field descriptions
	Executing TLBIP VAE2IS, TLBIP VAE2ISNXS

	C5.5.130 TLBIP VAE2OS, TLBIP VAE2OSNXS, TLB Invalidate Pair by VA, EL2, Outer Shareable
	Field descriptions
	Executing TLBIP VAE2OS, TLBIP VAE2OSNXS

	C5.5.131 TLBIP VAE3, TLBIP VAE3NXS, TLB Invalidate Pair by VA, EL3
	Field descriptions
	Executing TLBIP VAE3, TLBIP VAE3NXS

	C5.5.132 TLBIP VAE3IS, TLBIP VAE3ISNXS, TLB Invalidate Pair by VA, EL3, Inner Shareable
	Field descriptions
	Executing TLBIP VAE3IS, TLBIP VAE3ISNXS

	C5.5.133 TLBIP VAE3OS, TLBIP VAE3OSNXS, TLB Invalidate Pair by VA, EL3, Outer Shareable
	Field descriptions
	Executing TLBIP VAE3OS, TLBIP VAE3OSNXS

	C5.5.134 TLBIP VALE1, TLBIP VALE1NXS, TLB Invalidate Pair by VA, Last level, EL1
	Field descriptions
	Executing TLBIP VALE1, TLBIP VALE1NXS

	C5.5.135 TLBIP VALE1IS, TLBIP VALE1ISNXS, TLB Invalidate Pair by VA, Last level, EL1, Inner Shareable
	Field descriptions
	Executing TLBIP VALE1IS, TLBIP VALE1ISNXS

	C5.5.136 TLBIP VALE1OS, TLBIP VALE1OSNXS, TLB Invalidate Pair by VA, Last level, EL1, Outer Shareable
	Field descriptions
	Executing TLBIP VALE1OS, TLBIP VALE1OSNXS

	C5.5.137 TLBIP VALE2, TLBIP VALE2NXS, TLB Invalidate Pair by VA, Last level, EL2
	Field descriptions
	Executing TLBIP VALE2, TLBIP VALE2NXS

	C5.5.138 TLBIP VALE2IS, TLBIP VALE2ISNXS, TLB Invalidate Pair by VA, Last level, EL2, Inner Shareable
	Field descriptions
	Executing TLBIP VALE2IS, TLBIP VALE2ISNXS

	C5.5.139 TLBIP VALE2OS, TLBIP VALE2OSNXS, TLB Invalidate Pair by VA, Last level, EL2, Outer Shareable
	Field descriptions
	Executing TLBIP VALE2OS, TLBIP VALE2OSNXS

	C5.5.140 TLBIP VALE3, TLBIP VALE3NXS, TLB Invalidate Pair by VA, Last level, EL3
	Field descriptions
	Executing TLBIP VALE3, TLBIP VALE3NXS

	C5.5.141 TLBIP VALE3IS, TLBIP VALE3ISNXS, TLB Invalidate Pair by VA, Last level, EL3, Inner Shareable
	Field descriptions
	Executing TLBIP VALE3IS, TLBIP VALE3ISNXS

	C5.5.142 TLBIP VALE3OS, TLBIP VALE3OSNXS, TLB Invalidate Pair by VA, Last level, EL3, Outer Shareable
	Field descriptions
	Executing TLBIP VALE3OS, TLBIP VALE3OSNXS

	C5.6 A64 System instructions for prediction restriction
	C5.6.1 CFP RCTX, Control Flow Prediction Restriction by Context
	Field descriptions
	Executing CFP RCTX

	C5.6.2 COSP RCTX, Clear Other Speculative Prediction Restriction by Context
	Field descriptions
	Executing COSP RCTX

	C5.6.3 CPP RCTX, Cache Prefetch Prediction Restriction by Context
	Field descriptions
	Executing CPP RCTX

	C5.6.4 DVP RCTX, Data Value Prediction Restriction by Context
	Field descriptions
	Executing DVP RCTX

	C5.7 A64 System instructions for the Branch Record Buffer Extension
	C5.7.1 BRB IALL, Invalidate the Branch Record Buffer
	Field descriptions
	Executing BRB IALL

	C5.7.2 BRB INJ, Branch Record Injection into the Branch Record Buffer
	Field descriptions
	Executing BRB INJ

	C5.8 A64 System instructions for the Trace Extension
	C5.8.1 TRCIT, Trace Instrumentation
	Field descriptions
	Executing TRCIT

	C5.9 A64 System instructions for the Guarded Control Stack
	C5.9.1 GCSPOPCX, Guarded Control Stack Pop and Compare exception return record
	Field descriptions
	Executing GCSPOPCX

	C5.9.2 GCSPOPM, Guarded Control Stack Pop
	Field descriptions
	Executing GCSPOPM

	C5.9.3 GCSPOPX, Guarded Control Stack Pop exception return record
	Field descriptions
	Executing GCSPOPX

	C5.9.4 GCSPUSHM, Guarded Control Stack Push
	Field descriptions
	Executing GCSPUSHM

	C5.9.5 GCSPUSHX, Guarded Control Stack Push exception return record
	Field descriptions
	Executing GCSPUSHX

	C5.9.6 GCSSS1, Guarded Control Stack Switch Stack 1
	Field descriptions
	Executing GCSSS1

	C5.9.7 GCSSS2, Guarded Control Stack Switch Stack 2
	Field descriptions
	Executing GCSSS2

	C6: A64 Base Instruction Descriptions�
	C6.1 About the A64 base instructions
	C6.1.1 Register size
	C6.1.2 Use of the PC
	C6.1.3 Use of the stack pointer
	C6.1.4 Condition flags and related instructions
	Effect of random number generation instructions on Condition flags

	C6.2 Alphabetical list of A64 base instructions
	C6.2.1 ABS
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.2 ADC
	Assembler symbols
	Operation
	Operational information

	C6.2.3 ADCS
	Assembler symbols
	Operation
	Operational information

	C6.2.4 ADD (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.5 ADD (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.6 ADD (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.7 ADDG
	Integer
	Assembler symbols
	Operation

	C6.2.8 ADDS (extended register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.9 ADDS (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.10 ADDS (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.11 ADR
	Assembler symbols
	Operation

	C6.2.12 ADRP
	Assembler symbols
	Operation

	C6.2.13 AND (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.14 AND (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.15 ANDS (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.16 ANDS (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.17 ASR (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.18 ASR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.19 ASRV
	Assembler symbols
	Operation
	Operational information

	C6.2.20 AT
	Assembler symbols
	Operation

	C6.2.21 AUTDA, AUTDZA
	Integer
	Assembler symbols
	Operation

	C6.2.22 AUTDB, AUTDZB
	Integer
	Assembler symbols
	Operation

	C6.2.23 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.24 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.25 AXFLAG
	System
	Operation

	C6.2.26 B
	Assembler symbols
	Operation

	C6.2.27 B.cond
	Assembler symbols
	Operation

	C6.2.28 BC.cond
	19-bit signed PC-relative branch offset
	Assembler symbols
	Operation

	C6.2.29 BFC
	Leaving other bits unchanged
	Assembler symbols
	Operation
	Operational information

	C6.2.30 BFI
	Assembler symbols
	Operation
	Operational information

	C6.2.31 BFM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.32 BFXIL
	Assembler symbols
	Operation
	Operational information

	C6.2.33 BIC (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.34 BICS (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.35 BL
	Assembler symbols
	Operation

	C6.2.36 BLR
	Assembler symbols
	Operation

	C6.2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ
	Integer
	Assembler symbols
	Operation

	C6.2.38 BR
	Assembler symbols
	Operation

	C6.2.39 BRAA, BRAAZ, BRAB, BRABZ
	Integer
	Assembler symbols
	Operation

	C6.2.40 BRB
	System
	Assembler symbols
	Operation

	C6.2.41 BRK
	Assembler symbols
	Operation

	C6.2.42 BTI
	System
	Assembler symbols
	Operation

	C6.2.43 CAS, CASA, CASAL, CASL
	No offset
	Assembler symbols
	Operation

	C6.2.44 CASB, CASAB, CASALB, CASLB
	No offset
	Assembler symbols
	Operation

	C6.2.45 CASH, CASAH, CASALH, CASLH
	No offset
	Assembler symbols
	Operation

	C6.2.46 CASP, CASPA, CASPAL, CASPL
	No offset
	Assembler symbols
	Operation

	C6.2.47 CBNZ
	Assembler symbols
	Operation

	C6.2.48 CBZ
	Assembler symbols
	Operation

	C6.2.49 CCMN (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.50 CCMN (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.51 CCMP (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.52 CCMP (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.53 CFINV
	System
	Operation
	Operational information

	C6.2.54 CFP
	System
	Assembler symbols
	Operation

	C6.2.55 CHKFEAT
	System
	Operation

	C6.2.56 CINC
	Assembler symbols
	Operation
	Operational information

	C6.2.57 CINV
	Assembler symbols
	Operation
	Operational information

	C6.2.58 CLRBHB
	System
	Operation

	C6.2.59 CLREX
	Assembler symbols
	Operation

	C6.2.60 CLS
	Assembler symbols
	Operation
	Operational information

	C6.2.61 CLZ
	Assembler symbols
	Operation
	Operational information

	C6.2.62 CMN (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.63 CMN (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.64 CMN (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.65 CMP (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.66 CMP (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.67 CMP (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.68 CMPP
	Integer
	Assembler symbols
	Operation

	C6.2.69 CNEG
	Assembler symbols
	Operation
	Operational information

	C6.2.70 CNT
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.71 COSP
	System
	Assembler symbols
	Operation

	C6.2.72 CPP
	System
	Assembler symbols
	Operation

	C6.2.73 CPYFP, CPYFM, CPYFE
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.74 CPYFPN, CPYFMN, CPYFEN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.75 CPYFPRN, CPYFMRN, CPYFERN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.76 CPYFPRT, CPYFMRT, CPYFERT
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.77 CPYFPRTN, CPYFMRTN, CPYFERTN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.78 CPYFPRTRN, CPYFMRTRN, CPYFERTRN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.79 CPYFPRTWN, CPYFMRTWN, CPYFERTWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.80 CPYFPT, CPYFMT, CPYFET
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.81 CPYFPTN, CPYFMTN, CPYFETN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.82 CPYFPTRN, CPYFMTRN, CPYFETRN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.83 CPYFPTWN, CPYFMTWN, CPYFETWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.84 CPYFPWN, CPYFMWN, CPYFEWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.85 CPYFPWT, CPYFMWT, CPYFEWT
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.86 CPYFPWTN, CPYFMWTN, CPYFEWTN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.87 CPYFPWTRN, CPYFMWTRN, CPYFEWTRN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.88 CPYFPWTWN, CPYFMWTWN, CPYFEWTWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.89 CPYP, CPYM, CPYE
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.90 CPYPN, CPYMN, CPYEN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.91 CPYPRN, CPYMRN, CPYERN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.92 CPYPRT, CPYMRT, CPYERT
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.93 CPYPRTN, CPYMRTN, CPYERTN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.94 CPYPRTRN, CPYMRTRN, CPYERTRN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.95 CPYPRTWN, CPYMRTWN, CPYERTWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.96 CPYPT, CPYMT, CPYET
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.97 CPYPTN, CPYMTN, CPYETN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.98 CPYPTRN, CPYMTRN, CPYETRN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.99 CPYPTWN, CPYMTWN, CPYETWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.100 CPYPWN, CPYMWN, CPYEWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.101 CPYPWT, CPYMWT, CPYEWT
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.102 CPYPWTN, CPYMWTN, CPYEWTN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.103 CPYPWTRN, CPYMWTRN, CPYEWTRN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.104 CPYPWTWN, CPYMWTWN, CPYEWTWN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.105 CRC32B, CRC32H, CRC32W, CRC32X
	CRC
	Assembler symbols
	Operation
	Operational information

	C6.2.106 CRC32CB, CRC32CH, CRC32CW, CRC32CX
	CRC
	Assembler symbols
	Operation
	Operational information

	C6.2.107 CSDB
	Operation

	C6.2.108 CSEL
	Assembler symbols
	Operation
	Operational information

	C6.2.109 CSET
	Assembler symbols
	Operation
	Operational information

	C6.2.110 CSETM
	Assembler symbols
	Operation
	Operational information

	C6.2.111 CSINC
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.112 CSINV
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.113 CSNEG
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.114 CTZ
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.115 DC
	Assembler symbols
	Operation

	C6.2.116 DCPS1
	Assembler symbols
	Operation

	C6.2.117 DCPS2
	Assembler symbols
	Operation

	C6.2.118 DCPS3
	Assembler symbols
	Operation

	C6.2.119 DGH
	System
	Operation

	C6.2.120 DMB
	Assembler symbols
	Operation

	C6.2.121 DRPS
	Operation

	C6.2.122 DSB
	Memory barrier
	Memory nXS barrier
	Alias conditions
	Assembler symbols
	Operation for all encodings

	C6.2.123 DVP
	System
	Assembler symbols
	Operation

	C6.2.124 EON (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.125 EOR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.126 EOR (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.127 ERET
	Operation

	C6.2.128 ERETAA, ERETAB
	Integer
	Operation

	C6.2.129 ESB
	System
	Operation

	C6.2.130 EXTR
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.131 GCSB
	System
	Operation

	C6.2.132 GCSPOPCX
	System
	Assembler symbols
	Operation

	C6.2.133 GCSPOPM
	System
	Assembler symbols
	Operation

	C6.2.134 GCSPOPX
	System
	Assembler symbols
	Operation

	C6.2.135 GCSPUSHM
	System
	Assembler symbols
	Operation

	C6.2.136 GCSPUSHX
	System
	Assembler symbols
	Operation

	C6.2.137 GCSSS1
	System
	Assembler symbols
	Operation

	C6.2.138 GCSSS2
	System
	Assembler symbols
	Operation

	C6.2.139 GCSSTR
	Integer
	Assembler symbols
	Operation

	C6.2.140 GCSSTTR
	Integer
	Assembler symbols
	Operation

	C6.2.141 GMI
	Integer
	Assembler symbols
	Operation

	C6.2.142 HINT
	Assembler symbols
	Operation

	C6.2.143 HLT
	Assembler symbols
	Operation

	C6.2.144 HVC
	Assembler symbols
	Operation

	C6.2.145 IC
	Assembler symbols
	Operation

	C6.2.146 IRG
	Integer
	Assembler symbols
	Operation

	C6.2.147 ISB
	Assembler symbols
	Operation

	C6.2.148 LD64B
	Integer
	Assembler symbols
	Operation

	C6.2.149 LDADD, LDADDA, LDADDAL, LDADDL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.150 LDADDB, LDADDAB, LDADDALB, LDADDLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.151 LDADDH, LDADDAH, LDADDALH, LDADDLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.152 LDAPR
	No offset
	Post-index
	Assembler symbols
	Operation for all encodings
	Operational information

	C6.2.153 LDAPRB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.154 LDAPRH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.155 LDAPUR
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.156 LDAPURB
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.157 LDAPURH
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.158 LDAPURSB
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.159 LDAPURSH
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.160 LDAPURSW
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.161 LDAR
	Assembler symbols
	Operation
	Operational information

	C6.2.162 LDARB
	Assembler symbols
	Operation
	Operational information

	C6.2.163 LDARH
	Assembler symbols
	Operation
	Operational information

	C6.2.164 LDAXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.165 LDAXR
	Assembler symbols
	Operation
	Operational information

	C6.2.166 LDAXRB
	Assembler symbols
	Operation
	Operational information

	C6.2.167 LDAXRH
	Assembler symbols
	Operation
	Operational information

	C6.2.168 LDCLR, LDCLRA, LDCLRAL, LDCLRL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.169 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.170 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.171 LDCLRP, LDCLRPA, LDCLRPAL, LDCLRPL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.172 LDEOR, LDEORA, LDEORAL, LDEORL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.173 LDEORB, LDEORAB, LDEORALB, LDEORLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.174 LDEORH, LDEORAH, LDEORALH, LDEORLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.175 LDG
	Integer
	Assembler symbols
	Operation

	C6.2.176 LDGM
	Integer
	Assembler symbols
	Operation

	C6.2.177 LDIAPP
	Integer
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.178 LDLAR
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.179 LDLARB
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.180 LDLARH
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.181 LDNP
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.182 LDP
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.183 LDPSW
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.184 LDR (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.185 LDR (literal)
	Assembler symbols
	Operation
	Operational information

	C6.2.186 LDR (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.187 LDRAA, LDRAB
	Unscaled offset
	Assembler symbols
	Operation
	Operational information

	C6.2.188 LDRB (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.189 LDRB (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.190 LDRH (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.191 LDRH (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.192 LDRSB (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.193 LDRSB (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.194 LDRSH (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.195 LDRSH (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.196 LDRSW (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.197 LDRSW (literal)
	Assembler symbols
	Operation
	Operational information

	C6.2.198 LDRSW (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.199 LDSET, LDSETA, LDSETAL, LDSETL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.200 LDSETB, LDSETAB, LDSETALB, LDSETLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.201 LDSETH, LDSETAH, LDSETALH, LDSETLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.202 LDSETP, LDSETPA, LDSETPAL, LDSETPL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.203 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.204 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.205 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.206 LDSMIN, LDSMINA, LDSMINAL, LDSMINL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.207 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.208 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.209 LDTR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.210 LDTRB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.211 LDTRH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.212 LDTRSB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.213 LDTRSH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.214 LDTRSW
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.215 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.216 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.217 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.218 LDUMIN, LDUMINA, LDUMINAL, LDUMINL
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.219 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.220 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH
	Integer
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.221 LDUR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.222 LDURB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.223 LDURH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.224 LDURSB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.225 LDURSH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.226 LDURSW
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.227 LDXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.228 LDXR
	Assembler symbols
	Operation
	Operational information

	C6.2.229 LDXRB
	Assembler symbols
	Operation
	Operational information

	C6.2.230 LDXRH
	Assembler symbols
	Operation
	Operational information

	C6.2.231 LSL (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.232 LSL (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.233 LSLV
	Assembler symbols
	Operation
	Operational information

	C6.2.234 LSR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.235 LSR (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.236 LSRV
	Assembler symbols
	Operation
	Operational information

	C6.2.237 MADD
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.238 MNEG
	Assembler symbols
	Operation
	Operational information

	C6.2.239 MOV (bitmask immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.240 MOV (inverted wide immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.241 MOV (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.242 MOV (to/from SP)
	Assembler symbols
	Operation

	C6.2.243 MOV (wide immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.244 MOVK
	Assembler symbols
	Operation
	Operational information

	C6.2.245 MOVN
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.246 MOVZ
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.247 MRS
	Assembler symbols
	Operation

	C6.2.248 MRRS
	System
	Assembler symbols
	Operation

	C6.2.249 MSR (immediate)
	Alias conditions
	Assembler symbols
	Operation

	C6.2.250 MSR (register)
	Assembler symbols
	Operation

	C6.2.251 MSRR
	System
	Assembler symbols
	Operation

	C6.2.252 MSUB
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.253 MUL
	Assembler symbols
	Operation

	C6.2.254 MVN
	Assembler symbols
	Operation
	Operational information

	C6.2.255 NEG (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.256 NEGS
	Assembler symbols
	Operation
	Operational information

	C6.2.257 NGC
	Assembler symbols
	Operation
	Operational information

	C6.2.258 NGCS
	Assembler symbols
	Operation
	Operational information

	C6.2.259 NOP
	Operation
	Operational information

	C6.2.260 ORN (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.261 ORR (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.262 ORR (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.263 PACDA, PACDZA
	Integer
	Assembler symbols
	Operation

	C6.2.264 PACDB, PACDZB
	Integer
	Assembler symbols
	Operation

	C6.2.265 PACGA
	Integer
	Assembler symbols
	Operation

	C6.2.266 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.267 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.268 PRFM (immediate)
	Assembler symbols
	Shared decode for all encodings
	Operation

	C6.2.269 PRFM (literal)
	Assembler symbols
	Operation

	C6.2.270 PRFM (register)
	Assembler symbols
	Shared decode for all encodings
	Operation

	C6.2.271 PRFUM
	Assembler symbols
	Shared decode for all encodings
	Operation

	C6.2.272 PSB
	System
	Operation

	C6.2.273 PSSBB
	Operation

	C6.2.274 RBIT
	Assembler symbols
	Operation
	Operational information

	C6.2.275 RCWCAS, RCWCASA, RCWCASL, RCWCASAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.276 RCWCASP, RCWCASPA, RCWCASPL, RCWCASPAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.277 RCWCLR, RCWCLRA, RCWCLRL, RCWCLRAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.278 RCWCLRP, RCWCLRPA, RCWCLRPL, RCWCLRPAL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.279 RCWSCAS, RCWSCASA, RCWSCASL, RCWSCASAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.280 RCWSCASP, RCWSCASPA, RCWSCASPL, RCWSCASPAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.281 RCWSCLR, RCWSCLRA, RCWSCLRL, RCWSCLRAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.282 RCWSCLRP, RCWSCLRPA, RCWSCLRPL, RCWSCLRPAL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.283 RCWSET, RCWSETA, RCWSETL, RCWSETAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.284 RCWSETP, RCWSETPA, RCWSETPL, RCWSETPAL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.285 RCWSSET, RCWSSETA, RCWSSETL, RCWSSETAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.286 RCWSSETP, RCWSSETPA, RCWSSETPL, RCWSSETPAL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.287 RCWSSWP, RCWSSWPA, RCWSSWPL, RCWSSWPAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.288 RCWSSWPP, RCWSSWPPA, RCWSSWPPL, RCWSSWPPAL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.289 RCWSWP, RCWSWPA, RCWSWPL, RCWSWPAL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.290 RCWSWPP, RCWSWPPA, RCWSWPPL, RCWSWPPAL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.291 RET
	Assembler symbols
	Operation

	C6.2.292 RETAA, RETAB
	Integer
	Operation

	C6.2.293 REV
	Assembler symbols
	Operation
	Operational information

	C6.2.294 REV16
	Assembler symbols
	Operation
	Operational information

	C6.2.295 REV32
	Assembler symbols
	Operation
	Operational information

	C6.2.296 REV64
	Assembler symbols
	Operation
	Operational information

	C6.2.297 RMIF
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.298 ROR (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.299 ROR (register)
	Assembler symbols
	Operation
	Operational information

	C6.2.300 RORV
	Assembler symbols
	Operation
	Operational information

	C6.2.301 RPRFM
	Integer
	Assembler symbols
	Operation

	C6.2.302 SB
	System
	Operation

	C6.2.303 SBC
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.304 SBCS
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.305 SBFIZ
	Assembler symbols
	Operation
	Operational information

	C6.2.306 SBFM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.307 SBFX
	Assembler symbols
	Operation
	Operational information

	C6.2.308 SDIV
	Assembler symbols
	Operation

	C6.2.309 SETF8, SETF16
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.310 SETGP, SETGM, SETGE
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.311 SETGPN, SETGMN, SETGEN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.312 SETGPT, SETGMT, SETGET
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.313 SETGPTN, SETGMTN, SETGETN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.314 SETP, SETM, SETE
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.315 SETPN, SETMN, SETEN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.316 SETPT, SETMT, SETET
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.317 SETPTN, SETMTN, SETETN
	Integer
	Notes for all encodings
	Assembler symbols
	Operation

	C6.2.318 SEV
	Operation

	C6.2.319 SEVL
	Operation

	C6.2.320 SMADDL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.321 SMAX (immediate)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.322 SMAX (register)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.323 SMC
	Assembler symbols
	Operation

	C6.2.324 SMIN (immediate)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.325 SMIN (register)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.326 SMNEGL
	Assembler symbols
	Operation
	Operational information

	C6.2.327 SMSTART
	System
	Assembler symbols
	Operation

	C6.2.328 SMSTOP
	System
	Assembler symbols
	Operation

	C6.2.329 SMSUBL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.330 SMULH
	Assembler symbols
	Operation
	Operational information

	C6.2.331 SMULL
	Assembler symbols
	Operation
	Operational information

	C6.2.332 SSBB
	Operation

	C6.2.333 ST2G
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.334 ST64B
	Integer
	Assembler symbols
	Operation

	C6.2.335 ST64BV
	Integer
	Assembler symbols
	Operation

	C6.2.336 ST64BV0
	Integer
	Assembler symbols
	Operation

	C6.2.337 STADD, STADDL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.338 STADDB, STADDLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.339 STADDH, STADDLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.340 STCLR, STCLRL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.341 STCLRB, STCLRLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.342 STCLRH, STCLRLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.343 STEOR, STEORL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.344 STEORB, STEORLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.345 STEORH, STEORLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.346 STG
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.347 STGM
	Integer
	Assembler symbols
	Operation

	C6.2.348 STGP
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.349 STILP
	Integer
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.350 STLLR
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.351 STLLRB
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.352 STLLRH
	No offset
	Assembler symbols
	Operation
	Operational information

	C6.2.353 STLR
	No offset
	Pre-index
	Assembler symbols
	Operation for all encodings
	Operational information

	C6.2.354 STLRB
	Assembler symbols
	Operation
	Operational information

	C6.2.355 STLRH
	Assembler symbols
	Operation
	Operational information

	C6.2.356 STLUR
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.357 STLURB
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.358 STLURH
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.359 STLXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.360 STLXR
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.361 STLXRB
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.362 STLXRH
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.363 STNP
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.364 STP
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.365 STR (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.366 STR (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.367 STRB (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.368 STRB (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.369 STRH (immediate)
	Post-index
	Pre-index
	Unsigned offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C6.2.370 STRH (register)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.371 STSET, STSETL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.372 STSETB, STSETLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.373 STSETH, STSETLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.374 STSMAX, STSMAXL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.375 STSMAXB, STSMAXLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.376 STSMAXH, STSMAXLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.377 STSMIN, STSMINL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.378 STSMINB, STSMINLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.379 STSMINH, STSMINLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.380 STTR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.381 STTRB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.382 STTRH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.383 STUMAX, STUMAXL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.384 STUMAXB, STUMAXLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.385 STUMAXH, STUMAXLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.386 STUMIN, STUMINL
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.387 STUMINB, STUMINLB
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.388 STUMINH, STUMINLH
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.389 STUR
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.390 STURB
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.391 STURH
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C6.2.392 STXP
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.393 STXR
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.394 STXRB
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.395 STXRH
	Assembler symbols
	Operation
	Operational information

	C6.2.396 STZ2G
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.397 STZG
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Operation for all encodings

	C6.2.398 STZGM
	Integer
	Assembler symbols
	Operation

	C6.2.399 SUB (extended register)
	Assembler symbols
	Operation
	Operational information

	C6.2.400 SUB (immediate)
	Assembler symbols
	Operation
	Operational information

	C6.2.401 SUB (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.402 SUBG
	Integer
	Assembler symbols
	Operation

	C6.2.403 SUBP
	Integer
	Assembler symbols
	Operation

	C6.2.404 SUBPS
	Integer
	Alias conditions
	Assembler symbols
	Operation

	C6.2.405 SUBS (extended register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.406 SUBS (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.407 SUBS (shifted register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.408 SVC
	Assembler symbols
	Operation

	C6.2.409 SWP, SWPA, SWPAL, SWPL
	Integer
	Assembler symbols
	Operation

	C6.2.410 SWPB, SWPAB, SWPALB, SWPLB
	Integer
	Assembler symbols
	Operation

	C6.2.411 SWPH, SWPAH, SWPALH, SWPLH
	Integer
	Assembler symbols
	Operation

	C6.2.412 SWPP, SWPPA, SWPPAL, SWPPL
	Integer
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	C6.2.413 SXTB
	Assembler symbols
	Operation
	Operational information

	C6.2.414 SXTH
	Assembler symbols
	Operation
	Operational information

	C6.2.415 SXTW
	Assembler symbols
	Operation
	Operational information

	C6.2.416 SYS
	Alias conditions
	Assembler symbols
	Operation

	C6.2.417 SYSL
	Alias conditions
	Assembler symbols
	Operation

	C6.2.418 SYSP
	System
	Alias conditions
	Assembler symbols
	Operation

	C6.2.419 TBNZ
	Assembler symbols
	Operation

	C6.2.420 TBZ
	Assembler symbols
	Operation

	C6.2.421 TCANCEL
	System
	Assembler symbols
	Operation

	C6.2.422 TCOMMIT
	System
	Operation

	C6.2.423 TLBI
	Assembler symbols
	Operation

	C6.2.424 TLBIP
	System
	Assembler symbols
	Operation

	C6.2.425 TRCIT
	System
	Assembler symbols
	Operation

	C6.2.426 TSB
	System
	Operation

	C6.2.427 TST (immediate)
	Assembler symbols
	Operation

	C6.2.428 TST (shifted register)
	Assembler symbols
	Operation
	Operational information

	C6.2.429 TSTART
	System
	Assembler symbols
	Operation

	C6.2.430 TTEST
	System
	Assembler symbols
	Operation

	C6.2.431 UBFIZ
	Assembler symbols
	Operation
	Operational information

	C6.2.432 UBFM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.433 UBFX
	Assembler symbols
	Operation
	Operational information

	C6.2.434 UDF
	Assembler symbols
	Operation

	C6.2.435 UDIV
	Assembler symbols
	Operation

	C6.2.436 UMADDL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.437 UMAX (immediate)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.438 UMAX (register)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.439 UMIN (immediate)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.440 UMIN (register)
	Integer
	Assembler symbols
	Operation
	Operational information

	C6.2.441 UMNEGL
	Assembler symbols
	Operation
	Operational information

	C6.2.442 UMSUBL
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C6.2.443 UMULH
	Assembler symbols
	Operation
	Operational information

	C6.2.444 UMULL
	Assembler symbols
	Operation
	Operational information

	C6.2.445 UXTB
	Assembler symbols
	Operation
	Operational information

	C6.2.446 UXTH
	Assembler symbols
	Operation
	Operational information

	C6.2.447 WFE
	Operation

	C6.2.448 WFET
	System
	Assembler symbols
	Operation

	C6.2.449 WFI
	Operation

	C6.2.450 WFIT
	System
	Assembler symbols
	Operation

	C6.2.451 XAFLAG
	System
	Operation

	C6.2.452 XPACD, XPACI, XPACLRI
	Integer
	System
	Assembler symbols
	Operation for all encodings

	C6.2.453 YIELD
	Operation

	C7: A64 Advanced SIMD and Floating-point Instruction Descriptions�
	C7.1 About the A64 Advanced SIMD and floating-point instructions
	C7.1.1 Register size
	C7.1.2 Output element control
	C7.1.3 Data types
	C7.1.4 Condition flags and related instructions

	C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions
	C7.2.1 ABS
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.2 ADD (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.3 ADDHN, ADDHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.4 ADDP (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.5 ADDP (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.6 ADDV
	Assembler symbols
	Operation
	Operational information

	C7.2.7 AESD
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.8 AESE
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.9 AESIMC
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.10 AESMC
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.11 AND (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.12 BCAX
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.13 BFCVT
	Single-precision to BFloat16
	Assembler symbols
	Operation

	C7.2.14 BFCVTN, BFCVTN2
	Vector single-precision to BFloat16
	Assembler symbols
	Operation

	C7.2.15 BFDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.16 BFDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.17 BFMLALB, BFMLALT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.18 BFMLALB, BFMLALT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.19 BFMMLA
	Vector
	Assembler symbols
	Operation
	Operational information

	C7.2.20 BIC (vector, immediate)
	Assembler symbols
	Operation
	Operational information

	C7.2.21 BIC (vector, register)
	Assembler symbols
	Operation
	Operational information

	C7.2.22 BIF
	Assembler symbols
	Operation
	Operational information

	C7.2.23 BIT
	Assembler symbols
	Operation
	Operational information

	C7.2.24 BSL
	Assembler symbols
	Operation
	Operational information

	C7.2.25 CLS (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.26 CLZ (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.27 CMEQ (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.28 CMEQ (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.29 CMGE (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.30 CMGE (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.31 CMGT (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.32 CMGT (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.33 CMHI (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.34 CMHS (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.35 CMLE (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.36 CMLT (zero)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.37 CMTST
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.38 CNT
	Assembler symbols
	Operation
	Operational information

	C7.2.39 DUP (element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.40 DUP (general)
	Assembler symbols
	Operation
	Operational information

	C7.2.41 EOR (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.42 EOR3
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.43 EXT
	Assembler symbols
	Operation
	Operational information

	C7.2.44 FABD
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.45 FABS (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.46 FABS (scalar)
	Assembler symbols
	Operation

	C7.2.47 FACGE
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.48 FACGT
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.49 FADD (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.50 FADD (scalar)
	Assembler symbols
	Operation

	C7.2.51 FADDP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.52 FADDP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.53 FCADD
	Vector
	Assembler symbols
	Operation

	C7.2.54 FCCMP
	Assembler symbols
	Operation
	Operational information

	C7.2.55 FCCMPE
	Assembler symbols
	Operation
	Operational information

	C7.2.56 FCMEQ (register)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.57 FCMEQ (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.58 FCMGE (register)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.59 FCMGE (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.60 FCMGT (register)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.61 FCMGT (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.62 FCMLA (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.63 FCMLA
	Vector
	Assembler symbols
	Operation

	C7.2.64 FCMLE (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.65 FCMLT (zero)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.66 FCMP
	Assembler symbols
	Operation
	Operational information

	C7.2.67 FCMPE
	Assembler symbols
	Operation
	Operational information

	C7.2.68 FCSEL
	Assembler symbols
	Operation
	Operational information

	C7.2.69 FCVT
	Assembler symbols
	Operation

	C7.2.70 FCVTAS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.71 FCVTAS (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.72 FCVTAU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.73 FCVTAU (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.74 FCVTL, FCVTL2
	Assembler symbols
	Operation

	C7.2.75 FCVTMS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.76 FCVTMS (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.77 FCVTMU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.78 FCVTMU (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.79 FCVTN, FCVTN2 (FP64 to FP32, FP32 to FP16)
	Assembler symbols
	Operation

	C7.2.80 FCVTNS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.81 FCVTNS (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.82 FCVTNU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.83 FCVTNU (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.84 FCVTPS (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.85 FCVTPS (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.86 FCVTPU (vector)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.87 FCVTPU (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.88 FCVTXN, FCVTXN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.89 FCVTZS (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.90 FCVTZS (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.91 FCVTZS (scalar, fixed-point)
	Assembler symbols
	Operation
	Operational information

	C7.2.92 FCVTZS (scalar, integer)
	Assembler symbols
	Operation
	Operational information

	C7.2.93 FCVTZU (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.94 FCVTZU (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.95 FCVTZU (scalar, fixed-point)
	Assembler symbols
	Operation
	Operational information

	C7.2.96 FCVTZU (scalar, integer)
	Assembler symbols
	Operation
	Operational information

	C7.2.97 FDIV (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.98 FDIV (scalar)
	Assembler symbols
	Operation

	C7.2.99 FJCVTZS
	Double-precision to 32-bit
	Assembler symbols
	Operation

	C7.2.100 FMADD
	Assembler symbols
	Operation

	C7.2.101 FMAX (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.102 FMAX (scalar)
	Assembler symbols
	Operation

	C7.2.103 FMAXNM (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.104 FMAXNM (scalar)
	Assembler symbols
	Operation

	C7.2.105 FMAXNMP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.106 FMAXNMP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.107 FMAXNMV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.108 FMAXP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.109 FMAXP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.110 FMAXV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.111 FMIN (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.112 FMIN (scalar)
	Assembler symbols
	Operation

	C7.2.113 FMINNM (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.114 FMINNM (scalar)
	Assembler symbols
	Operation

	C7.2.115 FMINNMP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.116 FMINNMP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.117 FMINNMV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.118 FMINP (scalar)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.119 FMINP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.120 FMINV
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.121 FMLA (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.122 FMLA (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.123 FMLAL, FMLAL2 (by element)
	FMLAL
	FMLAL2
	Assembler symbols
	Operation for all encodings

	C7.2.124 FMLAL, FMLAL2 (vector)
	FMLAL
	FMLAL2
	Assembler symbols
	Operation for all encodings

	C7.2.125 FMLS (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.126 FMLS (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.127 FMLSL, FMLSL2 (by element)
	FMLSL
	FMLSL2
	Assembler symbols
	Operation for all encodings

	C7.2.128 FMLSL, FMLSL2 (vector)
	FMLSL
	FMLSL2
	Assembler symbols
	Operation for all encodings

	C7.2.129 FMOV (vector, immediate)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.130 FMOV (register)
	Assembler symbols
	Operation

	C7.2.131 FMOV (general)
	Assembler symbols
	Operation
	Operational information

	C7.2.132 FMOV (scalar, immediate)
	Assembler symbols
	Operation

	C7.2.133 FMSUB
	Assembler symbols
	Operation

	C7.2.134 FMUL (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.135 FMUL (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.136 FMUL (scalar)
	Assembler symbols
	Operation

	C7.2.137 FMULX (by element)
	Scalar, half-precision
	Scalar, single-precision and double-precision
	Vector, half-precision
	Vector, single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.138 FMULX
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.139 FNEG (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.140 FNEG (scalar)
	Assembler symbols
	Operation

	C7.2.141 FNMADD
	Assembler symbols
	Operation

	C7.2.142 FNMSUB
	Assembler symbols
	Operation

	C7.2.143 FNMUL (scalar)
	Assembler symbols
	Operation

	C7.2.144 FRECPE
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.145 FRECPS
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.146 FRECPX
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.147 FRINT32X (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.148 FRINT32X (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.149 FRINT32Z (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.150 FRINT32Z (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.151 FRINT64X (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.152 FRINT64X (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.153 FRINT64Z (vector)
	Vector single-precision and double-precision
	Assembler symbols
	Operation

	C7.2.154 FRINT64Z (scalar)
	Floating-point
	Assembler symbols
	Operation

	C7.2.155 FRINTA (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.156 FRINTA (scalar)
	Assembler symbols
	Operation

	C7.2.157 FRINTI (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.158 FRINTI (scalar)
	Assembler symbols
	Operation

	C7.2.159 FRINTM (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.160 FRINTM (scalar)
	Assembler symbols
	Operation

	C7.2.161 FRINTN (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.162 FRINTN (scalar)
	Assembler symbols
	Operation

	C7.2.163 FRINTP (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.164 FRINTP (scalar)
	Assembler symbols
	Operation

	C7.2.165 FRINTX (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.166 FRINTX (scalar)
	Assembler symbols
	Operation

	C7.2.167 FRINTZ (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.168 FRINTZ (scalar)
	Assembler symbols
	Operation

	C7.2.169 FRSQRTE
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.170 FRSQRTS
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.171 FSQRT (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.172 FSQRT (scalar)
	Assembler symbols
	Operation

	C7.2.173 FSUB (vector)
	Half-precision
	Single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.174 FSUB (scalar)
	Assembler symbols
	Operation

	C7.2.175 INS (element)
	Assembler symbols
	Operation
	Operational information

	C7.2.176 INS (general)
	Assembler symbols
	Operation
	Operational information

	C7.2.177 LD1 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.178 LD1 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.179 LD1R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.180 LD2 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.181 LD2 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.182 LD2R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.183 LD3 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.184 LD3 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.185 LD3R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.186 LD4 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.187 LD4 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.188 LD4R
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.189 LDAP1 (SIMD&FP)
	64-bit
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.190 LDAPUR (SIMD&FP)
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.191 LDNP (SIMD&FP)
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.192 LDP (SIMD&FP)
	Post-index
	Pre-index
	Signed offset
	Notes for all encodings
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.193 LDR (immediate, SIMD&FP)
	Post-index
	Pre-index
	Unsigned offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.194 LDR (literal, SIMD&FP)
	Assembler symbols
	Operation
	Operational information

	C7.2.195 LDR (register, SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.196 LDUR (SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.197 MLA (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.198 MLA (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.199 MLS (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.200 MLS (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.201 MOV (scalar)
	Assembler symbols
	Operation
	Operational information

	C7.2.202 MOV (element)
	Assembler symbols
	Operation
	Operational information

	C7.2.203 MOV (from general)
	Assembler symbols
	Operation
	Operational information

	C7.2.204 MOV (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.205 MOV (to general)
	Assembler symbols
	Operation
	Operational information

	C7.2.206 MOVI
	Assembler symbols
	Operation
	Operational information

	C7.2.207 MUL (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.208 MUL (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.209 MVN
	Assembler symbols
	Operation
	Operational information

	C7.2.210 MVNI
	Assembler symbols
	Operation
	Operational information

	C7.2.211 NEG (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.212 NOT
	Assembler symbols
	Operation
	Operational information

	C7.2.213 ORN (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.214 ORR (vector, immediate)
	Assembler symbols
	Operation
	Operational information

	C7.2.215 ORR (vector, register)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.216 PMUL
	Assembler symbols
	Operation
	Operational information

	C7.2.217 PMULL, PMULL2
	Assembler symbols
	Operation
	Operational information

	C7.2.218 RADDHN, RADDHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.219 RAX1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.220 RBIT (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.221 REV16 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.222 REV32 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.223 REV64
	Assembler symbols
	Operation
	Operational information

	C7.2.224 RSHRN, RSHRN2
	Assembler symbols
	Operation
	Operational information

	C7.2.225 RSUBHN, RSUBHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.226 SABA
	Assembler symbols
	Operation
	Operational information

	C7.2.227 SABAL, SABAL2
	Assembler symbols
	Operation
	Operational information

	C7.2.228 SABD
	Assembler symbols
	Operation
	Operational information

	C7.2.229 SABDL, SABDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.230 SADALP
	Assembler symbols
	Operation
	Operational information

	C7.2.231 SADDL, SADDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.232 SADDLP
	Assembler symbols
	Operation
	Operational information

	C7.2.233 SADDLV
	Assembler symbols
	Operation
	Operational information

	C7.2.234 SADDW, SADDW2
	Assembler symbols
	Operation
	Operational information

	C7.2.235 SCVTF (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.236 SCVTF (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.237 SCVTF (scalar, fixed-point)
	Assembler symbols
	Operation

	C7.2.238 SCVTF (scalar, integer)
	Assembler symbols
	Operation

	C7.2.239 SDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.240 SDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.241 SHA1C
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.242 SHA1H
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.243 SHA1M
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.244 SHA1P
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.245 SHA1SU0
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.246 SHA1SU1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.247 SHA256H2
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.248 SHA256H
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.249 SHA256SU0
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.250 SHA256SU1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.251 SHA512H
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.252 SHA512H2
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.253 SHA512SU0
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.254 SHA512SU1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.255 SHADD
	Assembler symbols
	Operation
	Operational information

	C7.2.256 SHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.257 SHLL, SHLL2
	Assembler symbols
	Operation
	Operational information

	C7.2.258 SHRN, SHRN2
	Assembler symbols
	Operation
	Operational information

	C7.2.259 SHSUB
	Assembler symbols
	Operation
	Operational information

	C7.2.260 SLI
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.261 SM3PARTW1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.262 SM3PARTW2
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.263 SM3SS1
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.264 SM3TT1A
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.265 SM3TT1B
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.266 SM3TT2A
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.267 SM3TT2B
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.268 SM4E
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.269 SM4EKEY
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.270 SMAX
	Assembler symbols
	Operation
	Operational information

	C7.2.271 SMAXP
	Assembler symbols
	Operation
	Operational information

	C7.2.272 SMAXV
	Assembler symbols
	Operation
	Operational information

	C7.2.273 SMIN
	Assembler symbols
	Operation
	Operational information

	C7.2.274 SMINP
	Assembler symbols
	Operation
	Operational information

	C7.2.275 SMINV
	Assembler symbols
	Operation
	Operational information

	C7.2.276 SMLAL, SMLAL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.277 SMLAL, SMLAL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.278 SMLSL, SMLSL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.279 SMLSL, SMLSL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.280 SMMLA (vector)
	Vector
	Assembler symbols
	Operation
	Operational information

	C7.2.281 SMOV
	Assembler symbols
	Operation
	Operational information

	C7.2.282 SMULL, SMULL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.283 SMULL, SMULL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.284 SQABS
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.285 SQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.286 SQDMLAL, SQDMLAL2 (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.287 SQDMLAL, SQDMLAL2 (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.288 SQDMLSL, SQDMLSL2 (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.289 SQDMLSL, SQDMLSL2 (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.290 SQDMULH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.291 SQDMULH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.292 SQDMULL, SQDMULL2 (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.293 SQDMULL, SQDMULL2 (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.294 SQNEG
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.295 SQRDMLAH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.296 SQRDMLAH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.297 SQRDMLSH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.298 SQRDMLSH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.299 SQRDMULH (by element)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.300 SQRDMULH (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.301 SQRSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.302 SQRSHRN, SQRSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.303 SQRSHRUN, SQRSHRUN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.304 SQSHL (immediate)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.305 SQSHL (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.306 SQSHLU
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.307 SQSHRN, SQSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.308 SQSHRUN, SQSHRUN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.309 SQSUB
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.310 SQXTN, SQXTN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.311 SQXTUN, SQXTUN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.312 SRHADD
	Assembler symbols
	Operation

	C7.2.313 SRI
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.314 SRSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.315 SRSHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.316 SRSRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.317 SSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.318 SSHLL, SSHLL2
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.319 SSHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.320 SSRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.321 SSUBL, SSUBL2
	Assembler symbols
	Operation
	Operational information

	C7.2.322 SSUBW, SSUBW2
	Assembler symbols
	Operation
	Operational information

	C7.2.323 ST1 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.324 ST1 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.325 ST2 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.326 ST2 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.327 ST3 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.328 ST3 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.329 ST4 (multiple structures)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.330 ST4 (single structure)
	No offset
	Post-index
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.331 STL1 (SIMD&FP)
	64-bit
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.332 STLUR (SIMD&FP)
	Unscaled offset
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.333 STNP (SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.334 STP (SIMD&FP)
	Post-index
	Pre-index
	Signed offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.335 STR (immediate, SIMD&FP)
	Post-index
	Pre-index
	Unsigned offset
	Assembler symbols
	Shared decode for all encodings
	Operation for all encodings
	Operational information

	C7.2.336 STR (register, SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.337 STUR (SIMD&FP)
	Assembler symbols
	Shared decode for all encodings
	Operation
	Operational information

	C7.2.338 SUB (vector)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.339 SUBHN, SUBHN2
	Assembler symbols
	Operation
	Operational information

	C7.2.340 SUDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.341 SUQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.342 SXTL, SXTL2
	Assembler symbols
	Operation
	Operational information

	C7.2.343 TBL
	Assembler symbols
	Operation
	Operational information

	C7.2.344 TBX
	Assembler symbols
	Operation
	Operational information

	C7.2.345 TRN1
	Assembler symbols
	Operation
	Operational information

	C7.2.346 TRN2
	Assembler symbols
	Operation
	Operational information

	C7.2.347 UABA
	Assembler symbols
	Operation
	Operational information

	C7.2.348 UABAL, UABAL2
	Assembler symbols
	Operation
	Operational information

	C7.2.349 UABD
	Assembler symbols
	Operation
	Operational information

	C7.2.350 UABDL, UABDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.351 UADALP
	Assembler symbols
	Operation
	Operational information

	C7.2.352 UADDL, UADDL2
	Assembler symbols
	Operation
	Operational information

	C7.2.353 UADDLP
	Assembler symbols
	Operation
	Operational information

	C7.2.354 UADDLV
	Assembler symbols
	Operation
	Operational information

	C7.2.355 UADDW, UADDW2
	Assembler symbols
	Operation
	Operational information

	C7.2.356 UCVTF (vector, fixed-point)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.357 UCVTF (vector, integer)
	Scalar half precision
	Scalar single-precision and double-precision
	Vector half precision
	Vector single-precision and double-precision
	Assembler symbols
	Operation for all encodings

	C7.2.358 UCVTF (scalar, fixed-point)
	Assembler symbols
	Operation

	C7.2.359 UCVTF (scalar, integer)
	Assembler symbols
	Operation

	C7.2.360 UDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.361 UDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.362 UHADD
	Assembler symbols
	Operation
	Operational information

	C7.2.363 UHSUB
	Assembler symbols
	Operation
	Operational information

	C7.2.364 UMAX
	Assembler symbols
	Operation
	Operational information

	C7.2.365 UMAXP
	Assembler symbols
	Operation
	Operational information

	C7.2.366 UMAXV
	Assembler symbols
	Operation
	Operational information

	C7.2.367 UMIN
	Assembler symbols
	Operation
	Operational information

	C7.2.368 UMINP
	Assembler symbols
	Operation
	Operational information

	C7.2.369 UMINV
	Assembler symbols
	Operation
	Operational information

	C7.2.370 UMLAL, UMLAL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.371 UMLAL, UMLAL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.372 UMLSL, UMLSL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.373 UMLSL, UMLSL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.374 UMMLA (vector)
	Vector
	Assembler symbols
	Operation
	Operational information

	C7.2.375 UMOV
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.376 UMULL, UMULL2 (by element)
	Assembler symbols
	Operation
	Operational information

	C7.2.377 UMULL, UMULL2 (vector)
	Assembler symbols
	Operation
	Operational information

	C7.2.378 UQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.379 UQRSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.380 UQRSHRN, UQRSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.381 UQSHL (immediate)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.382 UQSHL (register)
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.383 UQSHRN, UQSHRN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.384 UQSUB
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.385 UQXTN, UQXTN2
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.386 URECPE
	Assembler symbols
	Operation

	C7.2.387 URHADD
	Assembler symbols
	Operation

	C7.2.388 URSHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.389 URSHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.390 URSQRTE
	Assembler symbols
	Operation

	C7.2.391 URSRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.392 USDOT (vector)
	Vector
	Assembler symbols
	Operation

	C7.2.393 USDOT (by element)
	Vector
	Assembler symbols
	Operation

	C7.2.394 USHL
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.395 USHLL, USHLL2
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C7.2.396 USHR
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.397 USMMLA (vector)
	Vector
	Assembler symbols
	Operation
	Operational information

	C7.2.398 USQADD
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings

	C7.2.399 USRA
	Scalar
	Vector
	Assembler symbols
	Operation for all encodings
	Operational information

	C7.2.400 USUBL, USUBL2
	Assembler symbols
	Operation
	Operational information

	C7.2.401 USUBW, USUBW2
	Assembler symbols
	Operation
	Operational information

	C7.2.402 UXTL, UXTL2
	Assembler symbols
	Operation
	Operational information

	C7.2.403 UZP1
	Assembler symbols
	Operation
	Operational information

	C7.2.404 UZP2
	Assembler symbols
	Operation
	Operational information

	C7.2.405 XAR
	Advanced SIMD
	Assembler symbols
	Operation
	Operational information

	C7.2.406 XTN, XTN2
	Assembler symbols
	Operation
	Operational information

	C7.2.407 ZIP1
	Assembler symbols
	Operation
	Operational information

	C7.2.408 ZIP2
	Assembler symbols
	Operation
	Operational information

	C8: SVE Instruction Descriptions�
	C8.1 About the SVE instructions
	C8.2 Alphabetical list of SVE instructions
	C8.2.1 ABS
	Assembler symbols
	Operation
	Operational information

	C8.2.2 ADCLB
	Assembler symbols
	Operation
	Operational information

	C8.2.3 ADCLT
	Assembler symbols
	Operation
	Operational information

	C8.2.4 ADD (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.5 ADD (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.6 ADD (vectors, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.7 ADDHNB
	Assembler symbols
	Operation
	Operational information

	C8.2.8 ADDHNT
	Assembler symbols
	Operation
	Operational information

	C8.2.9 ADDP
	Assembler symbols
	Operation
	Operational information

	C8.2.10 ADDPL
	Assembler symbols
	Operation
	Operational information

	C8.2.11 ADDQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.12 ADDVL
	Assembler symbols
	Operation
	Operational information

	C8.2.13 ADR
	Packed offsets
	Unpacked 32-bit signed offsets
	Unpacked 32-bit unsigned offsets
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.14 AESD
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.15 AESE
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.16 AESIMC
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.17 AESMC
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.18 AND (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.19 AND (predicates)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.20 AND (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.21 AND (vectors, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.22 ANDQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.23 ANDS
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.24 ANDV
	Assembler symbols
	Operation
	Operational information

	C8.2.25 ASR (immediate, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.26 ASR (immediate, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.27 ASR (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.28 ASR (wide elements, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.29 ASR (wide elements, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.30 ASRD
	Assembler symbols
	Operation
	Operational information

	C8.2.31 ASRR
	Assembler symbols
	Operation
	Operational information

	C8.2.32 BCAX
	Assembler symbols
	Operation
	Operational information

	C8.2.33 BDEP
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.34 BEXT
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.35 BFADD (predicated)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.36 BFADD (unpredicated)
	SVE2
	Assembler symbols
	Operation

	C8.2.37 BFCLAMP
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.38 BFCVT
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.39 BFCVTNT
	SVE
	Assembler symbols
	Operation

	C8.2.40 BFDOT (indexed)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.41 BFDOT (vectors)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.42 BFMAX
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.43 BFMAXNM
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.44 BFMIN
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.45 BFMINNM
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.46 BFMLA (indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.47 BFMLA (vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.48 BFMLALB (indexed)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.49 BFMLALB (vectors)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.50 BFMLALT (indexed)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.51 BFMLALT (vectors)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.52 BFMLS (indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.53 BFMLS (vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.54 BFMLSLB (indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.55 BFMLSLB (vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.56 BFMLSLT (indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.57 BFMLSLT (vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.58 BFMMLA
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.59 BFMUL (indexed)
	SVE2
	Assembler symbols
	Operation

	C8.2.60 BFMUL (vectors, predicated)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.61 BFMUL (vectors, unpredicated)
	SVE2
	Assembler symbols
	Operation

	C8.2.62 BFSUB (predicated)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.63 BFSUB (unpredicated)
	SVE2
	Assembler symbols
	Operation

	C8.2.64 BGRP
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.65 BIC (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.66 BIC (predicates)
	Assembler symbols
	Operation
	Operational information

	C8.2.67 BIC (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.68 BIC (vectors, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.69 BICS
	Assembler symbols
	Operation
	Operational information

	C8.2.70 BRKA
	Assembler symbols
	Operation

	C8.2.71 BRKAS
	Assembler symbols
	Operation
	Operational information

	C8.2.72 BRKB
	Assembler symbols
	Operation

	C8.2.73 BRKBS
	Assembler symbols
	Operation
	Operational information

	C8.2.74 BRKN
	Assembler symbols
	Operation

	C8.2.75 BRKNS
	Assembler symbols
	Operation
	Operational information

	C8.2.76 BRKPA
	Assembler symbols
	Operation

	C8.2.77 BRKPAS
	Assembler symbols
	Operation
	Operational information

	C8.2.78 BRKPB
	Assembler symbols
	Operation

	C8.2.79 BRKPBS
	Assembler symbols
	Operation
	Operational information

	C8.2.80 BSL
	Assembler symbols
	Operation
	Operational information

	C8.2.81 BSL1N
	Assembler symbols
	Operation
	Operational information

	C8.2.82 BSL2N
	Assembler symbols
	Operation
	Operational information

	C8.2.83 CADD
	Assembler symbols
	Operation
	Operational information

	C8.2.84 CDOT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.85 CDOT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.86 CLASTA (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.87 CLASTA (SIMD&FP scalar)
	Assembler symbols
	Operation

	C8.2.88 CLASTA (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.89 CLASTB (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.90 CLASTB (SIMD&FP scalar)
	Assembler symbols
	Operation

	C8.2.91 CLASTB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.92 CLS
	Assembler symbols
	Operation
	Operational information

	C8.2.93 CLZ
	Assembler symbols
	Operation
	Operational information

	C8.2.94 CMLA (indexed)
	16-bit
	32-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.95 CMLA (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.96 CMP<cc> (immediate)
	Equal
	Greater than
	Greater than or equal
	Higher
	Higher or same
	Less than
	Less than or equal
	Lower
	Lower or same
	Not equal
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.97 CMP<cc> (vectors)
	Equal
	Greater than
	Greater than or equal
	Higher
	Higher or same
	Not equal
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.98 CMP<cc> (wide elements)
	Equal
	Greater than
	Greater than or equal
	Higher
	Higher or same
	Less than
	Less than or equal
	Lower
	Lower or same
	Not equal
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.99 CMPLE (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.100 CMPLO (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.101 CMPLS (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.102 CMPLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.103 CNOT
	Assembler symbols
	Operation
	Operational information

	C8.2.104 CNT
	Assembler symbols
	Operation
	Operational information

	C8.2.105 CNTB, CNTD, CNTH, CNTW
	Byte
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.106 CNTP (predicate as counter)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.107 CNTP (predicate)
	Assembler symbols
	Operation
	Operational information

	C8.2.108 COMPACT
	Assembler symbols
	Operation

	C8.2.109 CPY (immediate, merging)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.110 CPY (immediate, zeroing)
	Assembler symbols
	Operation
	Operational information

	C8.2.111 CPY (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.112 CPY (SIMD&FP scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.113 CTERMEQ, CTERMNE
	Equal
	Not equal
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.114 DECB, DECD, DECH, DECW (scalar)
	Byte
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.115 DECD, DECH, DECW (vector)
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.116 DECP (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.117 DECP (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.118 DUP (immediate)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.119 DUP (indexed)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.120 DUP (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.121 DUPM
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.122 DUPQ
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.123 EON
	Assembler symbols
	Operation
	Operational information

	C8.2.124 EOR (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.125 EOR (predicates)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.126 EOR (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.127 EOR (vectors, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.128 EOR3
	Assembler symbols
	Operation
	Operational information

	C8.2.129 EORBT
	Assembler symbols
	Operation
	Operational information

	C8.2.130 EORQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.131 EORS
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.132 EORTB
	Assembler symbols
	Operation
	Operational information

	C8.2.133 EORV
	Assembler symbols
	Operation
	Operational information

	C8.2.134 EXT
	Constructive
	Destructive
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.135 EXTQ
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.136 FABD
	Assembler symbols
	Operation
	Operational information

	C8.2.137 FABS
	Assembler symbols
	Operation
	Operational information

	C8.2.138 FAC<cc>
	Greater than
	Greater than or equal
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.139 FACLE
	Assembler symbols
	Operation
	Operational information

	C8.2.140 FACLT
	Assembler symbols
	Operation
	Operational information

	C8.2.141 FADD (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.142 FADD (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.143 FADD (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.144 FADDA
	Assembler symbols
	Operation

	C8.2.145 FADDP
	Assembler symbols
	Operation
	Operational information

	C8.2.146 FADDQV
	SVE2
	Assembler symbols
	Operation

	C8.2.147 FADDV
	Assembler symbols
	Operation

	C8.2.148 FCADD
	Assembler symbols
	Operation
	Operational information

	C8.2.149 FCLAMP
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.150 FCM<cc> (vectors)
	Equal
	Greater than
	Greater than or equal
	Not equal
	Unordered
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.151 FCM<cc> (zero)
	Equal
	Greater than
	Greater than or equal
	Less than
	Less than or equal
	Not equal
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.152 FCMLA (indexed)
	Half-precision
	Single-precision
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.153 FCMLA (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.154 FCMLE (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.155 FCMLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.156 FCPY
	Assembler symbols
	Operation
	Operational information

	C8.2.157 FCVT
	Half-precision to single-precision
	Half-precision to double-precision
	Single-precision to half-precision
	Single-precision to double-precision
	Double-precision to half-precision
	Double-precision to single-precision
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.158 FCVTLT
	Half-precision to single-precision
	Single-precision to double-precision
	Assembler symbols
	Operation for all encodings

	C8.2.159 FCVTNT
	Single-precision to half-precision
	Double-precision to single-precision
	Assembler symbols
	Operation for all encodings

	C8.2.160 FCVTX
	Assembler symbols
	Operation
	Operational information

	C8.2.161 FCVTXNT
	Assembler symbols
	Operation

	C8.2.162 FCVTZS
	Half-precision to 16-bit
	Half-precision to 32-bit
	Half-precision to 64-bit
	Single-precision to 32-bit
	Single-precision to 64-bit
	Double-precision to 32-bit
	Double-precision to 64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.163 FCVTZU
	Half-precision to 16-bit
	Half-precision to 32-bit
	Half-precision to 64-bit
	Single-precision to 32-bit
	Single-precision to 64-bit
	Double-precision to 32-bit
	Double-precision to 64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.164 FDIV
	Assembler symbols
	Operation
	Operational information

	C8.2.165 FDIVR
	Assembler symbols
	Operation
	Operational information

	C8.2.166 FDOT (vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.167 FDOT (indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.168 FDUP
	Assembler symbols
	Operation

	C8.2.169 FEXPA
	Assembler symbols
	Operation

	C8.2.170 FLOGB
	Assembler symbols
	Operation
	Operational information

	C8.2.171 FMAD
	Assembler symbols
	Operation
	Operational information

	C8.2.172 FMAX (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.173 FMAX (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.174 FMAXNM (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.175 FMAXNM (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.176 FMAXNMP
	Assembler symbols
	Operation
	Operational information

	C8.2.177 FMAXNMQV
	SVE2
	Assembler symbols
	Operation

	C8.2.178 FMAXNMV
	Assembler symbols
	Operation

	C8.2.179 FMAXP
	Assembler symbols
	Operation
	Operational information

	C8.2.180 FMAXQV
	SVE2
	Assembler symbols
	Operation

	C8.2.181 FMAXV
	Assembler symbols
	Operation

	C8.2.182 FMIN (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.183 FMIN (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.184 FMINNM (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.185 FMINNM (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.186 FMINNMP
	Assembler symbols
	Operation
	Operational information

	C8.2.187 FMINNMQV
	SVE2
	Assembler symbols
	Operation

	C8.2.188 FMINNMV
	Assembler symbols
	Operation

	C8.2.189 FMINP
	Assembler symbols
	Operation
	Operational information

	C8.2.190 FMINQV
	SVE2
	Assembler symbols
	Operation

	C8.2.191 FMINV
	Assembler symbols
	Operation

	C8.2.192 FMLA (indexed)
	Half-precision
	Single-precision
	Double-precision
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.193 FMLA (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.194 FMLALB (indexed)
	Assembler symbols
	Operation
	Operational information

	C8.2.195 FMLALB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.196 FMLALT (indexed)
	Assembler symbols
	Operation
	Operational information

	C8.2.197 FMLALT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.198 FMLS (indexed)
	Half-precision
	Single-precision
	Double-precision
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.199 FMLS (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.200 FMLSLB (indexed)
	Assembler symbols
	Operation
	Operational information

	C8.2.201 FMLSLB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.202 FMLSLT (indexed)
	Assembler symbols
	Operation
	Operational information

	C8.2.203 FMLSLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.204 FMMLA
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.205 FMOV (immediate, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.206 FMOV (immediate, unpredicated)
	Assembler symbols
	Operation

	C8.2.207 FMOV (zero, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.208 FMOV (zero, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.209 FMSB
	Assembler symbols
	Operation
	Operational information

	C8.2.210 FMUL (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.211 FMUL (indexed)
	Half-precision
	Single-precision
	Double-precision
	Assembler symbols
	Operation for all encodings

	C8.2.212 FMUL (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.213 FMUL (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.214 FMULX
	Assembler symbols
	Operation
	Operational information

	C8.2.215 FNEG
	Assembler symbols
	Operation
	Operational information

	C8.2.216 FNMAD
	Assembler symbols
	Operation
	Operational information

	C8.2.217 FNMLA
	Assembler symbols
	Operation
	Operational information

	C8.2.218 FNMLS
	Assembler symbols
	Operation
	Operational information

	C8.2.219 FNMSB
	Assembler symbols
	Operation
	Operational information

	C8.2.220 FRECPE
	Assembler symbols
	Operation

	C8.2.221 FRECPS
	Assembler symbols
	Operation

	C8.2.222 FRECPX
	Assembler symbols
	Operation
	Operational information

	C8.2.223 FRINT<r>
	Current mode
	Current mode signalling inexact
	Nearest with ties to away
	Nearest with ties to even
	Toward zero
	Toward minus infinity
	Toward plus infinity
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.224 FRSQRTE
	Assembler symbols
	Operation

	C8.2.225 FRSQRTS
	Assembler symbols
	Operation

	C8.2.226 FSCALE
	Assembler symbols
	Operation
	Operational information

	C8.2.227 FSQRT
	Assembler symbols
	Operation
	Operational information

	C8.2.228 FSUB (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.229 FSUB (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.230 FSUB (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.231 FSUBR (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.232 FSUBR (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.233 FTMAD
	Assembler symbols
	Operation
	Operational information

	C8.2.234 FTSMUL
	Assembler symbols
	Operation

	C8.2.235 FTSSEL
	Assembler symbols
	Operation

	C8.2.236 HISTCNT
	Assembler symbols
	Operation

	C8.2.237 HISTSEG
	Assembler symbols
	Operation

	C8.2.238 INCB, INCD, INCH, INCW (scalar)
	Byte
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.239 INCD, INCH, INCW (vector)
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.240 INCP (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.241 INCP (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.242 INDEX (immediate, scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.243 INDEX (immediates)
	Assembler symbols
	Operation
	Operational information

	C8.2.244 INDEX (scalar, immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.245 INDEX (scalars)
	Assembler symbols
	Operation
	Operational information

	C8.2.246 INSR (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.247 INSR (SIMD&FP scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.248 LASTA (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.249 LASTA (SIMD&FP scalar)
	Assembler symbols
	Operation

	C8.2.250 LASTB (scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.251 LASTB (SIMD&FP scalar)
	Assembler symbols
	Operation

	C8.2.252 LD1B (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.253 LD1B (scalar plus immediate, single register)
	8-bit element
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.254 LD1B (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.255 LD1B (scalar plus scalar, single register)
	8-bit element
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.256 LD1B (scalar plus vector)
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.257 LD1B (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.258 LD1D (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.259 LD1D (scalar plus immediate, single register)
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.260 LD1D (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.261 LD1D (scalar plus scalar, single register)
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.262 LD1D (scalar plus vector)
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.263 LD1D (vector plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.264 LD1H (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.265 LD1H (scalar plus immediate, single register)
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.266 LD1H (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.267 LD1H (scalar plus scalar, single register)
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.268 LD1H (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.269 LD1H (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.270 LD1Q
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.271 LD1RB
	8-bit element
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.272 LD1RD
	Assembler symbols
	Operation
	Operational information

	C8.2.273 LD1RH
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.274 LD1ROB (scalar plus immediate)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.275 LD1ROB (scalar plus scalar)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.276 LD1ROD (scalar plus immediate)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.277 LD1ROD (scalar plus scalar)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.278 LD1ROH (scalar plus immediate)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.279 LD1ROH (scalar plus scalar)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.280 LD1ROW (scalar plus immediate)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.281 LD1ROW (scalar plus scalar)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.282 LD1RQB (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.283 LD1RQB (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.284 LD1RQD (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.285 LD1RQD (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.286 LD1RQH (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.287 LD1RQH (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.288 LD1RQW (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.289 LD1RQW (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.290 LD1RSB
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.291 LD1RSH
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.292 LD1RSW
	Assembler symbols
	Operation
	Operational information

	C8.2.293 LD1RW
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.294 LD1SB (scalar plus immediate)
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.295 LD1SB (scalar plus scalar)
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.296 LD1SB (scalar plus vector)
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.297 LD1SB (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.298 LD1SH (scalar plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.299 LD1SH (scalar plus scalar)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.300 LD1SH (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.301 LD1SH (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.302 LD1SW (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.303 LD1SW (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.304 LD1SW (scalar plus vector)
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.305 LD1SW (vector plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.306 LD1W (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.307 LD1W (scalar plus immediate, single register)
	32-bit element
	64-bit element
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.308 LD1W (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.309 LD1W (scalar plus scalar, single register)
	32-bit element
	64-bit element
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.310 LD1W (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.311 LD1W (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.312 LD2B (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.313 LD2B (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.314 LD2D (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.315 LD2D (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.316 LD2H (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.317 LD2H (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.318 LD2Q (scalar plus immediate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.319 LD2Q (scalar plus scalar)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.320 LD2W (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.321 LD2W (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.322 LD3B (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.323 LD3B (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.324 LD3D (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.325 LD3D (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.326 LD3H (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.327 LD3H (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.328 LD3Q (scalar plus immediate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.329 LD3Q (scalar plus scalar)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.330 LD3W (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.331 LD3W (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.332 LD4B (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.333 LD4B (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.334 LD4D (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.335 LD4D (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.336 LD4H (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.337 LD4H (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.338 LD4Q (scalar plus immediate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.339 LD4Q (scalar plus scalar)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.340 LD4W (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.341 LD4W (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.342 LDFF1B (scalar plus scalar)
	8-bit element
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.343 LDFF1B (scalar plus vector)
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.344 LDFF1B (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.345 LDFF1D (scalar plus scalar)
	Assembler symbols
	Operation

	C8.2.346 LDFF1D (scalar plus vector)
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.347 LDFF1D (vector plus immediate)
	Assembler symbols
	Operation

	C8.2.348 LDFF1H (scalar plus scalar)
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.349 LDFF1H (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.350 LDFF1H (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.351 LDFF1SB (scalar plus scalar)
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.352 LDFF1SB (scalar plus vector)
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.353 LDFF1SB (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.354 LDFF1SH (scalar plus scalar)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.355 LDFF1SH (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.356 LDFF1SH (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.357 LDFF1SW (scalar plus scalar)
	Assembler symbols
	Operation

	C8.2.358 LDFF1SW (scalar plus vector)
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.359 LDFF1SW (vector plus immediate)
	Assembler symbols
	Operation

	C8.2.360 LDFF1W (scalar plus scalar)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.361 LDFF1W (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.362 LDFF1W (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.363 LDNF1B
	8-bit element
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.364 LDNF1D
	Assembler symbols
	Operation

	C8.2.365 LDNF1H
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.366 LDNF1SB
	16-bit element
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.367 LDNF1SH
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.368 LDNF1SW
	Assembler symbols
	Operation

	C8.2.369 LDNF1W
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.370 LDNT1B (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.371 LDNT1B (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.372 LDNT1B (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.373 LDNT1B (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.374 LDNT1B (vector plus scalar)
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.375 LDNT1D (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.376 LDNT1D (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.377 LDNT1D (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.378 LDNT1D (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.379 LDNT1D (vector plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.380 LDNT1H (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.381 LDNT1H (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.382 LDNT1H (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.383 LDNT1H (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.384 LDNT1H (vector plus scalar)
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.385 LDNT1SB
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.386 LDNT1SH
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.387 LDNT1SW
	Assembler symbols
	Operation
	Operational information

	C8.2.388 LDNT1W (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.389 LDNT1W (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.390 LDNT1W (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.391 LDNT1W (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.392 LDNT1W (vector plus scalar)
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.393 LDR (predicate)
	Assembler symbols
	Operation
	Operational information

	C8.2.394 LDR (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.395 LSL (immediate, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.396 LSL (immediate, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.397 LSL (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.398 LSL (wide elements, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.399 LSL (wide elements, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.400 LSLR
	Assembler symbols
	Operation
	Operational information

	C8.2.401 LSR (immediate, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.402 LSR (immediate, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.403 LSR (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.404 LSR (wide elements, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.405 LSR (wide elements, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.406 LSRR
	Assembler symbols
	Operation
	Operational information

	C8.2.407 MAD
	Assembler symbols
	Operation
	Operational information

	C8.2.408 MATCH
	Assembler symbols
	Operation

	C8.2.409 MLA (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.410 MLA (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.411 MLS (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.412 MLS (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.413 MOV
	Assembler symbols
	Operation
	Operational information

	C8.2.414 MOV
	Assembler symbols
	Operation
	Operational information

	C8.2.415 MOV (immediate, predicated, merging)
	Assembler symbols
	Operation
	Operational information

	C8.2.416 MOV (immediate, predicated, zeroing)
	Assembler symbols
	Operation
	Operational information

	C8.2.417 MOV (immediate, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.418 MOV (predicate, predicated, merging)
	Assembler symbols
	Operation
	Operational information

	C8.2.419 MOV (predicate, predicated, zeroing)
	Assembler symbols
	Operation
	Operational information

	C8.2.420 MOV (scalar, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.421 MOV (scalar, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.422 MOV (SIMD&FP scalar, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.423 MOV (SIMD&FP scalar, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.424 MOV (vector, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.425 MOV (vector, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.426 MOVPRFX (predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.427 MOVPRFX (unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.428 MOVS (predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.429 MOVS (unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.430 MSB
	Assembler symbols
	Operation
	Operational information

	C8.2.431 MUL (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.432 MUL (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.433 MUL (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.434 MUL (vectors, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.435 NAND
	Assembler symbols
	Operation
	Operational information

	C8.2.436 NANDS
	Assembler symbols
	Operation
	Operational information

	C8.2.437 NBSL
	Assembler symbols
	Operation
	Operational information

	C8.2.438 NEG
	Assembler symbols
	Operation
	Operational information

	C8.2.439 NMATCH
	Assembler symbols
	Operation

	C8.2.440 NOR
	Assembler symbols
	Operation
	Operational information

	C8.2.441 NORS
	Assembler symbols
	Operation
	Operational information

	C8.2.442 NOT (predicate)
	Assembler symbols
	Operation
	Operational information

	C8.2.443 NOT (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.444 NOTS
	Assembler symbols
	Operation
	Operational information

	C8.2.445 ORN (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.446 ORN (predicates)
	Assembler symbols
	Operation
	Operational information

	C8.2.447 ORNS
	Assembler symbols
	Operation
	Operational information

	C8.2.448 ORQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.449 ORR (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.450 ORR (predicates)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.451 ORR (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.452 ORR (vectors, unpredicated)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.453 ORRS
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.454 ORV
	Assembler symbols
	Operation
	Operational information

	C8.2.455 PEXT (predicate pair)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.456 PEXT (predicate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.457 PFALSE
	Assembler symbols
	Operation
	Operational information

	C8.2.458 PFIRST
	Assembler symbols
	Operation
	Operational information

	C8.2.459 PMOV (to predicate)
	Byte
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings

	C8.2.460 PMOV (to vector)
	Byte
	Doubleword
	Halfword
	Word
	Assembler symbols
	Operation for all encodings

	C8.2.461 PMUL
	Assembler symbols
	Operation
	Operational information

	C8.2.462 PMULLB
	16-bit or 64-bit elements
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.463 PMULLT
	16-bit or 64-bit elements
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.464 PNEXT
	Assembler symbols
	Operation
	Operational information

	C8.2.465 PRFB (scalar plus immediate)
	Assembler symbols
	Operation

	C8.2.466 PRFB (scalar plus scalar)
	Assembler symbols
	Operation

	C8.2.467 PRFB (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	64-bit scaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.468 PRFB (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.469 PRFD (scalar plus immediate)
	Assembler symbols
	Operation

	C8.2.470 PRFD (scalar plus scalar)
	Assembler symbols
	Operation

	C8.2.471 PRFD (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	64-bit scaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.472 PRFD (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.473 PRFH (scalar plus immediate)
	Assembler symbols
	Operation

	C8.2.474 PRFH (scalar plus scalar)
	Assembler symbols
	Operation

	C8.2.475 PRFH (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	64-bit scaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.476 PRFH (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.477 PRFW (scalar plus immediate)
	Assembler symbols
	Operation

	C8.2.478 PRFW (scalar plus scalar)
	Assembler symbols
	Operation

	C8.2.479 PRFW (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	64-bit scaled offset
	Assembler symbols
	Operation for all encodings

	C8.2.480 PRFW (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings

	C8.2.481 PSEL
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.482 PTEST
	Assembler symbols
	Operation
	Operational information

	C8.2.483 PTRUE (predicate as counter)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.484 PTRUE (predicate)
	Assembler symbols
	Operation
	Operational information

	C8.2.485 PTRUES
	Assembler symbols
	Operation
	Operational information

	C8.2.486 PUNPKHI, PUNPKLO
	High half
	Low half
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.487 RADDHNB
	Assembler symbols
	Operation
	Operational information

	C8.2.488 RADDHNT
	Assembler symbols
	Operation
	Operational information

	C8.2.489 RAX1
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.490 RBIT
	Assembler symbols
	Operation
	Operational information

	C8.2.491 RDFFR (predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.492 RDFFR (unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.493 RDFFRS
	Assembler symbols
	Operation
	Operational information

	C8.2.494 RDVL
	Assembler symbols
	Operation
	Operational information

	C8.2.495 REV (predicate)
	Assembler symbols
	Operation
	Operational information

	C8.2.496 REV (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.497 REVB, REVH, REVW
	Byte
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.498 REVD
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.499 RSHRNB
	Assembler symbols
	Operation
	Operational information

	C8.2.500 RSHRNT
	Assembler symbols
	Operation
	Operational information

	C8.2.501 RSUBHNB
	Assembler symbols
	Operation
	Operational information

	C8.2.502 RSUBHNT
	Assembler symbols
	Operation
	Operational information

	C8.2.503 SABA
	Assembler symbols
	Operation
	Operational information

	C8.2.504 SABALB
	Assembler symbols
	Operation
	Operational information

	C8.2.505 SABALT
	Assembler symbols
	Operation
	Operational information

	C8.2.506 SABD
	Assembler symbols
	Operation
	Operational information

	C8.2.507 SABDLB
	Assembler symbols
	Operation
	Operational information

	C8.2.508 SABDLT
	Assembler symbols
	Operation
	Operational information

	C8.2.509 SADALP
	Assembler symbols
	Operation
	Operational information

	C8.2.510 SADDLB
	Assembler symbols
	Operation
	Operational information

	C8.2.511 SADDLBT
	Assembler symbols
	Operation
	Operational information

	C8.2.512 SADDLT
	Assembler symbols
	Operation
	Operational information

	C8.2.513 SADDV
	Assembler symbols
	Operation
	Operational information

	C8.2.514 SADDWB
	Assembler symbols
	Operation
	Operational information

	C8.2.515 SADDWT
	Assembler symbols
	Operation
	Operational information

	C8.2.516 SBCLB
	Assembler symbols
	Operation
	Operational information

	C8.2.517 SBCLT
	Assembler symbols
	Operation
	Operational information

	C8.2.518 SCLAMP
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.519 SCVTF
	16-bit to half-precision
	32-bit to half-precision
	32-bit to single-precision
	32-bit to double-precision
	64-bit to half-precision
	64-bit to single-precision
	64-bit to double-precision
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.520 SDIV
	Assembler symbols
	Operation
	Operational information

	C8.2.521 SDIVR
	Assembler symbols
	Operation
	Operational information

	C8.2.522 SDOT (2-way, vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.523 SDOT (2-way, indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.524 SDOT (4-way, indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.525 SDOT (4-way, vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.526 SEL (predicates)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.527 SEL (vectors)
	Alias conditions
	Assembler symbols
	Operation
	Operational information

	C8.2.528 SETFFR
	Operation
	Operational information

	C8.2.529 SHADD
	Assembler symbols
	Operation
	Operational information

	C8.2.530 SHRNB
	Assembler symbols
	Operation
	Operational information

	C8.2.531 SHRNT
	Assembler symbols
	Operation
	Operational information

	C8.2.532 SHSUB
	Assembler symbols
	Operation
	Operational information

	C8.2.533 SHSUBR
	Assembler symbols
	Operation
	Operational information

	C8.2.534 SLI
	Assembler symbols
	Operation
	Operational information

	C8.2.535 SM4E
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.536 SM4EKEY
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.537 SMAX (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.538 SMAX (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.539 SMAXP
	Assembler symbols
	Operation
	Operational information

	C8.2.540 SMAXQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.541 SMAXV
	Assembler symbols
	Operation
	Operational information

	C8.2.542 SMIN (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.543 SMIN (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.544 SMINP
	Assembler symbols
	Operation
	Operational information

	C8.2.545 SMINQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.546 SMINV
	Assembler symbols
	Operation
	Operational information

	C8.2.547 SMLALB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.548 SMLALB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.549 SMLALT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.550 SMLALT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.551 SMLSLB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.552 SMLSLB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.553 SMLSLT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.554 SMLSLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.555 SMMLA
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.556 SMULH (predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.557 SMULH (unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.558 SMULLB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.559 SMULLB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.560 SMULLT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.561 SMULLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.562 SPLICE
	Constructive
	Destructive
	Assembler symbols
	Operation for all encodings

	C8.2.563 SQABS
	Assembler symbols
	Operation
	Operational information

	C8.2.564 SQADD (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.565 SQADD (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.566 SQADD (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.567 SQCADD
	Assembler symbols
	Operation
	Operational information

	C8.2.568 SQCVTN
	SVE2
	Assembler symbols
	Operation

	C8.2.569 SQCVTUN
	SVE2
	Assembler symbols
	Operation

	C8.2.570 SQDECB
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.571 SQDECD (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.572 SQDECD (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.573 SQDECH (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.574 SQDECH (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.575 SQDECP (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.576 SQDECP (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.577 SQDECW (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.578 SQDECW (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.579 SQDMLALB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.580 SQDMLALB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.581 SQDMLALBT
	Assembler symbols
	Operation
	Operational information

	C8.2.582 SQDMLALT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.583 SQDMLALT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.584 SQDMLSLB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.585 SQDMLSLB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.586 SQDMLSLBT
	Assembler symbols
	Operation
	Operational information

	C8.2.587 SQDMLSLT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.588 SQDMLSLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.589 SQDMULH (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.590 SQDMULH (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.591 SQDMULLB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.592 SQDMULLB (vectors)
	Assembler symbols
	Operation

	C8.2.593 SQDMULLT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.594 SQDMULLT (vectors)
	Assembler symbols
	Operation

	C8.2.595 SQINCB
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.596 SQINCD (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.597 SQINCD (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.598 SQINCH (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.599 SQINCH (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.600 SQINCP (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.601 SQINCP (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.602 SQINCW (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.603 SQINCW (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.604 SQNEG
	Assembler symbols
	Operation
	Operational information

	C8.2.605 SQRDCMLAH (indexed)
	16-bit
	32-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.606 SQRDCMLAH (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.607 SQRDMLAH (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.608 SQRDMLAH (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.609 SQRDMLSH (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.610 SQRDMLSH (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.611 SQRDMULH (indexed)
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.612 SQRDMULH (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.613 SQRSHL
	Assembler symbols
	Operation
	Operational information

	C8.2.614 SQRSHLR
	Assembler symbols
	Operation
	Operational information

	C8.2.615 SQRSHRN
	SVE2
	Assembler symbols
	Operation

	C8.2.616 SQRSHRNB
	Assembler symbols
	Operation

	C8.2.617 SQRSHRNT
	Assembler symbols
	Operation

	C8.2.618 SQRSHRUN
	SVE2
	Assembler symbols
	Operation

	C8.2.619 SQRSHRUNB
	Assembler symbols
	Operation

	C8.2.620 SQRSHRUNT
	Assembler symbols
	Operation

	C8.2.621 SQSHL (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.622 SQSHL (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.623 SQSHLR
	Assembler symbols
	Operation
	Operational information

	C8.2.624 SQSHLU
	Assembler symbols
	Operation
	Operational information

	C8.2.625 SQSHRNB
	Assembler symbols
	Operation

	C8.2.626 SQSHRNT
	Assembler symbols
	Operation

	C8.2.627 SQSHRUNB
	Assembler symbols
	Operation

	C8.2.628 SQSHRUNT
	Assembler symbols
	Operation

	C8.2.629 SQSUB (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.630 SQSUB (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.631 SQSUB (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.632 SQSUBR
	Assembler symbols
	Operation
	Operational information

	C8.2.633 SQXTNB
	Assembler symbols
	Operation

	C8.2.634 SQXTNT
	Assembler symbols
	Operation

	C8.2.635 SQXTUNB
	Assembler symbols
	Operation

	C8.2.636 SQXTUNT
	Assembler symbols
	Operation

	C8.2.637 SRHADD
	Assembler symbols
	Operation
	Operational information

	C8.2.638 SRI
	Assembler symbols
	Operation
	Operational information

	C8.2.639 SRSHL
	Assembler symbols
	Operation
	Operational information

	C8.2.640 SRSHLR
	Assembler symbols
	Operation
	Operational information

	C8.2.641 SRSHR
	Assembler symbols
	Operation
	Operational information

	C8.2.642 SRSRA
	Assembler symbols
	Operation
	Operational information

	C8.2.643 SSHLLB
	Assembler symbols
	Operation
	Operational information

	C8.2.644 SSHLLT
	Assembler symbols
	Operation
	Operational information

	C8.2.645 SSRA
	Assembler symbols
	Operation
	Operational information

	C8.2.646 SSUBLB
	Assembler symbols
	Operation
	Operational information

	C8.2.647 SSUBLBT
	Assembler symbols
	Operation
	Operational information

	C8.2.648 SSUBLT
	Assembler symbols
	Operation
	Operational information

	C8.2.649 SSUBLTB
	Assembler symbols
	Operation
	Operational information

	C8.2.650 SSUBWB
	Assembler symbols
	Operation
	Operational information

	C8.2.651 SSUBWT
	Assembler symbols
	Operation
	Operational information

	C8.2.652 ST1B (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.653 ST1B (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.654 ST1B (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.655 ST1B (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.656 ST1B (scalar plus vector)
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.657 ST1B (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.658 ST1D (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.659 ST1D (scalar plus immediate, single register)
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.660 ST1D (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.661 ST1D (scalar plus scalar, single register)
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.662 ST1D (scalar plus vector)
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.663 ST1D (vector plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.664 ST1H (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.665 ST1H (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.666 ST1H (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.667 ST1H (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.668 ST1H (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.669 ST1H (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.670 ST1Q
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.671 ST1W (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.672 ST1W (scalar plus immediate, single register)
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.673 ST1W (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.674 ST1W (scalar plus scalar, single register)
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.675 ST1W (scalar plus vector)
	32-bit scaled offset
	32-bit unpacked scaled offset
	32-bit unpacked unscaled offset
	32-bit unscaled offset
	64-bit scaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.676 ST1W (vector plus immediate)
	32-bit element
	64-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.677 ST2B (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.678 ST2B (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.679 ST2D (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.680 ST2D (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.681 ST2H (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.682 ST2H (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.683 ST2Q (scalar plus immediate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.684 ST2Q (scalar plus scalar)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.685 ST2W (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.686 ST2W (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.687 ST3B (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.688 ST3B (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.689 ST3D (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.690 ST3D (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.691 ST3H (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.692 ST3H (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.693 ST3Q (scalar plus immediate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.694 ST3Q (scalar plus scalar)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.695 ST3W (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.696 ST3W (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.697 ST4B (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.698 ST4B (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.699 ST4D (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.700 ST4D (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.701 ST4H (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.702 ST4H (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.703 ST4Q (scalar plus immediate)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.704 ST4Q (scalar plus scalar)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.705 ST4W (scalar plus immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.706 ST4W (scalar plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.707 STNT1B (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.708 STNT1B (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.709 STNT1B (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.710 STNT1B (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.711 STNT1B (vector plus scalar)
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.712 STNT1D (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.713 STNT1D (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.714 STNT1D (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.715 STNT1D (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.716 STNT1D (vector plus scalar)
	Assembler symbols
	Operation
	Operational information

	C8.2.717 STNT1H (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.718 STNT1H (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.719 STNT1H (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.720 STNT1H (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.721 STNT1H (vector plus scalar)
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.722 STNT1W (scalar plus immediate, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.723 STNT1W (scalar plus immediate, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.724 STNT1W (scalar plus scalar, consecutive registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.725 STNT1W (scalar plus scalar, single register)
	Assembler symbols
	Operation
	Operational information

	C8.2.726 STNT1W (vector plus scalar)
	32-bit unscaled offset
	64-bit unscaled offset
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.727 STR (predicate)
	Assembler symbols
	Operation
	Operational information

	C8.2.728 STR (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.729 SUB (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.730 SUB (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.731 SUB (vectors, unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.732 SUBHNB
	Assembler symbols
	Operation
	Operational information

	C8.2.733 SUBHNT
	Assembler symbols
	Operation
	Operational information

	C8.2.734 SUBR (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.735 SUBR (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.736 SUDOT
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.737 SUNPKHI, SUNPKLO
	High half
	Low half
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.738 SUQADD
	Assembler symbols
	Operation
	Operational information

	C8.2.739 SXTB, SXTH, SXTW
	Byte
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.740 TBL
	SVE
	SVE2
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.741 TBLQ
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.742 TBX
	Assembler symbols
	Operation
	Operational information

	C8.2.743 TBXQ
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.744 TRN1, TRN2 (predicates)
	Even
	Odd
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.745 TRN1, TRN2 (vectors)
	Even
	Even (quadwords)
	Odd
	Odd (quadwords)
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.746 UABA
	Assembler symbols
	Operation
	Operational information

	C8.2.747 UABALB
	Assembler symbols
	Operation
	Operational information

	C8.2.748 UABALT
	Assembler symbols
	Operation
	Operational information

	C8.2.749 UABD
	Assembler symbols
	Operation
	Operational information

	C8.2.750 UABDLB
	Assembler symbols
	Operation
	Operational information

	C8.2.751 UABDLT
	Assembler symbols
	Operation
	Operational information

	C8.2.752 UADALP
	Assembler symbols
	Operation
	Operational information

	C8.2.753 UADDLB
	Assembler symbols
	Operation
	Operational information

	C8.2.754 UADDLT
	Assembler symbols
	Operation
	Operational information

	C8.2.755 UADDV
	Assembler symbols
	Operation
	Operational information

	C8.2.756 UADDWB
	Assembler symbols
	Operation
	Operational information

	C8.2.757 UADDWT
	Assembler symbols
	Operation
	Operational information

	C8.2.758 UCLAMP
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.759 UCVTF
	16-bit to half-precision
	32-bit to half-precision
	32-bit to single-precision
	32-bit to double-precision
	64-bit to half-precision
	64-bit to single-precision
	64-bit to double-precision
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.760 UDIV
	Assembler symbols
	Operation
	Operational information

	C8.2.761 UDIVR
	Assembler symbols
	Operation
	Operational information

	C8.2.762 UDOT (2-way, indexed)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.763 UDOT (2-way, vectors)
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.764 UDOT (4-way, indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.765 UDOT (4-way, vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.766 UHADD
	Assembler symbols
	Operation
	Operational information

	C8.2.767 UHSUB
	Assembler symbols
	Operation
	Operational information

	C8.2.768 UHSUBR
	Assembler symbols
	Operation
	Operational information

	C8.2.769 UMAX (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.770 UMAX (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.771 UMAXP
	Assembler symbols
	Operation
	Operational information

	C8.2.772 UMAXQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.773 UMAXV
	Assembler symbols
	Operation
	Operational information

	C8.2.774 UMIN (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.775 UMIN (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.776 UMINP
	Assembler symbols
	Operation
	Operational information

	C8.2.777 UMINQV
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.778 UMINV
	Assembler symbols
	Operation
	Operational information

	C8.2.779 UMLALB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.780 UMLALB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.781 UMLALT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.782 UMLALT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.783 UMLSLB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.784 UMLSLB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.785 UMLSLT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.786 UMLSLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.787 UMMLA
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.788 UMULH (predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.789 UMULH (unpredicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.790 UMULLB (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.791 UMULLB (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.792 UMULLT (indexed)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.793 UMULLT (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.794 UQADD (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.795 UQADD (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.796 UQADD (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.797 UQCVTN
	SVE2
	Assembler symbols
	Operation

	C8.2.798 UQDECB
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.799 UQDECD (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.800 UQDECD (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.801 UQDECH (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.802 UQDECH (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.803 UQDECP (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.804 UQDECP (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.805 UQDECW (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.806 UQDECW (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.807 UQINCB
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.808 UQINCD (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.809 UQINCD (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.810 UQINCH (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.811 UQINCH (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.812 UQINCP (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.813 UQINCP (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.814 UQINCW (scalar)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C8.2.815 UQINCW (vector)
	Assembler symbols
	Operation
	Operational information

	C8.2.816 UQRSHL
	Assembler symbols
	Operation
	Operational information

	C8.2.817 UQRSHLR
	Assembler symbols
	Operation
	Operational information

	C8.2.818 UQRSHRN
	SVE2
	Assembler symbols
	Operation

	C8.2.819 UQRSHRNB
	Assembler symbols
	Operation

	C8.2.820 UQRSHRNT
	Assembler symbols
	Operation

	C8.2.821 UQSHL (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.822 UQSHL (vectors)
	Assembler symbols
	Operation
	Operational information

	C8.2.823 UQSHLR
	Assembler symbols
	Operation
	Operational information

	C8.2.824 UQSHRNB
	Assembler symbols
	Operation

	C8.2.825 UQSHRNT
	Assembler symbols
	Operation

	C8.2.826 UQSUB (immediate)
	Assembler symbols
	Operation
	Operational information

	C8.2.827 UQSUB (vectors, predicated)
	Assembler symbols
	Operation
	Operational information

	C8.2.828 UQSUB (vectors, unpredicated)
	Assembler symbols
	Operation

	C8.2.829 UQSUBR
	Assembler symbols
	Operation
	Operational information

	C8.2.830 UQXTNB
	Assembler symbols
	Operation

	C8.2.831 UQXTNT
	Assembler symbols
	Operation

	C8.2.832 URECPE
	Assembler symbols
	Operation
	Operational information

	C8.2.833 URHADD
	Assembler symbols
	Operation
	Operational information

	C8.2.834 URSHL
	Assembler symbols
	Operation
	Operational information

	C8.2.835 URSHLR
	Assembler symbols
	Operation
	Operational information

	C8.2.836 URSHR
	Assembler symbols
	Operation
	Operational information

	C8.2.837 URSQRTE
	Assembler symbols
	Operation
	Operational information

	C8.2.838 URSRA
	Assembler symbols
	Operation
	Operational information

	C8.2.839 USDOT (indexed)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.840 USDOT (vectors)
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.841 USHLLB
	Assembler symbols
	Operation
	Operational information

	C8.2.842 USHLLT
	Assembler symbols
	Operation
	Operational information

	C8.2.843 USMMLA
	SVE
	Assembler symbols
	Operation
	Operational information

	C8.2.844 USQADD
	Assembler symbols
	Operation
	Operational information

	C8.2.845 USRA
	Assembler symbols
	Operation
	Operational information

	C8.2.846 USUBLB
	Assembler symbols
	Operation
	Operational information

	C8.2.847 USUBLT
	Assembler symbols
	Operation
	Operational information

	C8.2.848 USUBWB
	Assembler symbols
	Operation
	Operational information

	C8.2.849 USUBWT
	Assembler symbols
	Operation
	Operational information

	C8.2.850 UUNPKHI, UUNPKLO
	High half
	Low half
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.851 UXTB, UXTH, UXTW
	Byte
	Halfword
	Word
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.852 UZP1, UZP2 (predicates)
	Even
	Odd
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.853 UZP1, UZP2 (vectors)
	Even
	Even (quadwords)
	Odd
	Odd (quadwords)
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.854 UZPQ1
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.855 UZPQ2
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.856 WHILEGE (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.857 WHILEGE (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.858 WHILEGE (predicate)
	Assembler symbols
	Operation

	C8.2.859 WHILEGT (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.860 WHILEGT (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.861 WHILEGT (predicate)
	Assembler symbols
	Operation

	C8.2.862 WHILEHI (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.863 WHILEHI (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.864 WHILEHI (predicate)
	Assembler symbols
	Operation

	C8.2.865 WHILEHS (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.866 WHILEHS (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.867 WHILEHS (predicate)
	Assembler symbols
	Operation

	C8.2.868 WHILELE (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.869 WHILELE (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.870 WHILELE (predicate)
	Assembler symbols
	Operation

	C8.2.871 WHILELO (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.872 WHILELO (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.873 WHILELO (predicate)
	Assembler symbols
	Operation

	C8.2.874 WHILELS (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.875 WHILELS (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.876 WHILELS (predicate)
	Assembler symbols
	Operation

	C8.2.877 WHILELT (predicate as counter)
	SVE2
	Assembler symbols
	Operation

	C8.2.878 WHILELT (predicate pair)
	SVE2
	Assembler symbols
	Operation

	C8.2.879 WHILELT (predicate)
	Assembler symbols
	Operation

	C8.2.880 WHILERW
	Assembler symbols
	Operation

	C8.2.881 WHILEWR
	Assembler symbols
	Operation

	C8.2.882 WRFFR
	Assembler symbols
	Operation
	Operational information

	C8.2.883 XAR
	Assembler symbols
	Operation
	Operational information

	C8.2.884 ZIP1, ZIP2 (predicates)
	High halves
	Low halves
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.885 ZIP1, ZIP2 (vectors)
	High halves
	High halves (quadwords)
	Low halves
	Low halves (quadwords)
	Assembler symbols
	Operation for all encodings
	Operational information

	C8.2.886 ZIPQ1
	SVE2
	Assembler symbols
	Operation
	Operational information

	C8.2.887 ZIPQ2
	SVE2
	Assembler symbols
	Operation
	Operational information

	C9: SME Instruction Descriptions�
	C9.1 About the SME instructions
	C9.2 Alphabetical list of SME instructions
	C9.2.1 ADD (array accumulators)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.2 ADD (array results, multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.3 ADD (array results, multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.4 ADD (to vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.5 ADDHA
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.6 ADDSPL
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.7 ADDSVL
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.8 ADDVA
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.9 BFADD
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.10 BFCLAMP
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.11 BFCVT
	SME2
	Assembler symbols
	Operation

	C9.2.12 BFCVTN
	SME2
	Assembler symbols
	Operation

	C9.2.13 BFDOT (multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.14 BFDOT (multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.15 BFDOT (multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.16 BFMAX (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.17 BFMAX (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.18 BFMAXNM (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.19 BFMAXNM (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.20 BFMIN (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.21 BFMIN (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.22 BFMINNM (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.23 BFMINNM (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.24 BFMLA (multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.25 BFMLA (multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.26 BFMLA (multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.27 BFMLAL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.28 BFMLAL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.29 BFMLAL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.30 BFMLS (multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.31 BFMLS (multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.32 BFMLS (multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.33 BFMLSL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.34 BFMLSL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.35 BFMLSL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.36 BFMOPA (non-widening)
	SME2
	Assembler symbols
	Operation

	C9.2.37 BFMOPA (widening)
	SME
	Assembler symbols
	Operation

	C9.2.38 BFMOPS (non-widening)
	SME2
	Assembler symbols
	Operation

	C9.2.39 BFMOPS (widening)
	SME
	Assembler symbols
	Operation

	C9.2.40 BFSUB
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.41 BFVDOT
	SME2
	Assembler symbols
	Operation

	C9.2.42 BMOPA
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.43 BMOPS
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.44 FADD
	Two ZA single-vectors
	Two ZA single-vectors of half precision elements
	Four ZA single-vectors
	Four ZA single-vectors of half precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.45 FCLAMP
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.46 FCVT (narrowing)
	SME2
	Assembler symbols
	Operation

	C9.2.47 FCVT (widening)
	SME2
	Assembler symbols
	Operation

	C9.2.48 FCVTL
	SME2
	Assembler symbols
	Operation

	C9.2.49 FCVTN
	SME2
	Assembler symbols
	Operation

	C9.2.50 FCVTZS
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.51 FCVTZU
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.52 FDOT (multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.53 FDOT (multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.54 FDOT (multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.55 FMAX (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.56 FMAX (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.57 FMAXNM (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.58 FMAXNM (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.59 FMIN (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.60 FMIN (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.61 FMINNM (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.62 FMINNM (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.63 FMLA (multiple and indexed vector)
	Two ZA single-vectors of half precision elements
	Two ZA single-vectors of single precision elements
	Two ZA single-vectors of double precision elements
	Four ZA single-vectors of half precision elements
	Four ZA single-vectors of single precision elements
	Four ZA single-vectors of double precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.64 FMLA (multiple and single vector)
	Two ZA single-vectors
	Two ZA single-vectors of half precision elements
	Four ZA single-vectors
	Four ZA single-vectors of half precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.65 FMLA (multiple vectors)
	Two ZA single-vectors
	Two ZA single-vectors of half precision elements
	Four ZA single-vectors
	Four ZA single-vectors of half precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.66 FMLAL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.67 FMLAL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.68 FMLAL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.69 FMLS (multiple and indexed vector)
	Two ZA single-vectors of half precision elements
	Two ZA single-vectors of single precision elements
	Two ZA single-vectors of double precision elements
	Four ZA single-vectors of half precision elements
	Four ZA single-vectors of single precision elements
	Four ZA single-vectors of double precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.70 FMLS (multiple and single vector)
	Two ZA single-vectors
	Two ZA single-vectors of half precision elements
	Four ZA single-vectors
	Four ZA single-vectors of half precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.71 FMLS (multiple vectors)
	Two ZA single-vectors
	Two ZA single-vectors of half precision elements
	Four ZA single-vectors
	Four ZA single-vectors of half precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.72 FMLSL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.73 FMLSL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.74 FMLSL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.75 FMOPA (non-widening)
	Single-precision
	Double-precision
	Assembler symbols
	Operation for all encodings

	C9.2.76 FMOPA (widening)
	SME
	Assembler symbols
	Operation

	C9.2.77 FMOPS (non-widening)
	Single-precision
	Double-precision
	Assembler symbols
	Operation for all encodings

	C9.2.78 FMOPS (widening)
	SME
	Assembler symbols
	Operation

	C9.2.79 FRINTA
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.80 FRINTM
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.81 FRINTN
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.82 FRINTP
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.83 FSUB
	Two ZA single-vectors
	Two ZA single-vectors of half precision elements
	Four ZA single-vectors
	Four ZA single-vectors of half precision elements
	Assembler symbols
	Operation for all encodings

	C9.2.84 FVDOT
	SME2
	Assembler symbols
	Operation

	C9.2.85 LD1B (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.86 LD1B (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.87 LD1B (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.88 LD1D (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.89 LD1D (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.90 LD1D (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.91 LD1H (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.92 LD1H (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.93 LD1H (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.94 LD1Q
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.95 LD1W (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.96 LD1W (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.97 LD1W (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.98 LDNT1B (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.99 LDNT1B (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.100 LDNT1D (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.101 LDNT1D (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.102 LDNT1H (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.103 LDNT1H (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.104 LDNT1W (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.105 LDNT1W (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.106 LDR (array vector)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.107 LDR (table)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.108 LUTI2 (four registers)
	Consecutive
	Strided
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.109 LUTI2 (single)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.110 LUTI2 (two registers)
	Consecutive
	Strided
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.111 LUTI4 (four registers)
	Consecutive
	Strided
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.112 LUTI4 (single)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.113 LUTI4 (two registers)
	Consecutive
	Strided
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.114 MOV (array to vector, four registers)
	Assembler symbols
	Operation
	Operational information

	C9.2.115 MOV (array to vector, two registers)
	Assembler symbols
	Operation
	Operational information

	C9.2.116 MOV (tile to vector, four registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.117 MOV (tile to vector, single)
	8-bit
	16-bit
	32-bit
	64-bit
	128-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.118 MOV (tile to vector, two registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.119 MOV (vector to array, four registers)
	Assembler symbols
	Operation
	Operational information

	C9.2.120 MOV (vector to array, two registers)
	Assembler symbols
	Operation
	Operational information

	C9.2.121 MOV (vector to tile, four registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.122 MOV (vector to tile, single)
	8-bit
	16-bit
	32-bit
	64-bit
	128-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.123 MOV (vector to tile, two registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.124 MOVA (array to vector, four registers)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.125 MOVA (array to vector, two registers)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.126 MOVA (tile to vector, four registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.127 MOVA (tile to vector, single)
	8-bit
	16-bit
	32-bit
	64-bit
	128-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.128 MOVA (tile to vector, two registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.129 MOVA (vector to array, four registers)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.130 MOVA (vector to array, two registers)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.131 MOVA (vector to tile, four registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.132 MOVA (vector to tile, single)
	8-bit
	16-bit
	32-bit
	64-bit
	128-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.133 MOVA (vector to tile, two registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.134 MOVAZ (array to vector, four registers)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.135 MOVAZ (array to vector, two registers)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.136 MOVAZ (tile to vector, four registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.137 MOVAZ (tile to vector, single)
	8-bit
	16-bit
	32-bit
	64-bit
	128-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.138 MOVAZ (tile to vector, two registers)
	8-bit
	16-bit
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.139 MOVT (scalar to table)
	SME2
	Assembler symbols
	Operation

	C9.2.140 MOVT (table to scalar)
	SME2
	Assembler symbols
	Operation

	C9.2.141 RDSVL
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.142 SCLAMP
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.143 SCVTF
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.144 SDOT (2-way, multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.145 SDOT (2-way, multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.146 SDOT (2-way, multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.147 SDOT (4-way, multiple and indexed vector)
	Two ZA single-vectors of 32-bit elements
	Two ZA single-vectors of 64-bit elements
	Four ZA single-vectors of 32-bit elements
	Four ZA single-vectors of 64-bit elements
	Assembler symbols
	Operation for all encodings

	C9.2.148 SDOT (4-way, multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.149 SDOT (4-way, multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.150 SEL
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.151 SMAX (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.152 SMAX (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.153 SMIN (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.154 SMIN (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.155 SMLAL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.156 SMLAL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.157 SMLAL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.158 SMLALL (multiple and indexed vector)
	One ZA quad-vector of 32-bit elements
	One ZA quad-vector of 64-bit elements
	Two ZA quad-vectors of 32-bit elements
	Two ZA quad-vectors of 64-bit elements
	Four ZA quad-vectors of 32-bit elements
	Four ZA quad-vectors of 64-bit elements
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.159 SMLALL (multiple and single vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.160 SMLALL (multiple vectors)
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.161 SMLSL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.162 SMLSL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.163 SMLSL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.164 SMLSLL (multiple and indexed vector)
	One ZA quad-vector of 32-bit elements
	One ZA quad-vector of 64-bit elements
	Two ZA quad-vectors of 32-bit elements
	Two ZA quad-vectors of 64-bit elements
	Four ZA quad-vectors of 32-bit elements
	Four ZA quad-vectors of 64-bit elements
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.165 SMLSLL (multiple and single vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.166 SMLSLL (multiple vectors)
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.167 SMOPA (2-way)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.168 SMOPA (4-way)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.169 SMOPS (2-way)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.170 SMOPS (4-way)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.171 SQCVT (four registers)
	SME2
	Assembler symbols
	Operation

	C9.2.172 SQCVT (two registers)
	SME2
	Assembler symbols
	Operation

	C9.2.173 SQCVTN
	SME2
	Assembler symbols
	Operation

	C9.2.174 SQCVTU (four registers)
	SME2
	Assembler symbols
	Operation

	C9.2.175 SQCVTU (two registers)
	SME2
	Assembler symbols
	Operation

	C9.2.176 SQCVTUN
	SME2
	Assembler symbols
	Operation

	C9.2.177 SQDMULH (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.178 SQDMULH (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.179 SQRSHR (four registers)
	SME2
	Assembler symbols
	Operation

	C9.2.180 SQRSHR (two registers)
	SME2
	Assembler symbols
	Operation

	C9.2.181 SQRSHRN
	SME2
	Assembler symbols
	Operation

	C9.2.182 SQRSHRU (four registers)
	SME2
	Assembler symbols
	Operation

	C9.2.183 SQRSHRU (two registers)
	SME2
	Assembler symbols
	Operation

	C9.2.184 SQRSHRUN
	SME2
	Assembler symbols
	Operation

	C9.2.185 SRSHL (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.186 SRSHL (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.187 ST1B (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.188 ST1B (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.189 ST1B (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.190 ST1D (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.191 ST1D (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.192 ST1D (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.193 ST1H (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.194 ST1H (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.195 ST1H (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.196 ST1Q
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.197 ST1W (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.198 ST1W (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.199 ST1W (scalar plus scalar, tile slice)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.200 STNT1B (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.201 STNT1B (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.202 STNT1D (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.203 STNT1D (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.204 STNT1H (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.205 STNT1H (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.206 STNT1W (scalar plus immediate, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.207 STNT1W (scalar plus scalar, strided registers)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.208 STR (array vector)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.209 STR (table)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.210 SUB (array accumulators)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.211 SUB (array results, multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.212 SUB (array results, multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.213 SUDOT (multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.214 SUDOT (multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.215 SUMLALL (multiple and indexed vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.216 SUMLALL (multiple and single vector)
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.217 SUMOPA
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.218 SUMOPS
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.219 SUNPK
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.220 SUVDOT
	SME2
	Assembler symbols
	Operation

	C9.2.221 SVDOT (2-way)
	SME2
	Assembler symbols
	Operation

	C9.2.222 SVDOT (4-way)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C9.2.223 UCLAMP
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.224 UCVTF
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.225 UDOT (2-way, multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.226 UDOT (2-way, multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.227 UDOT (2-way, multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.228 UDOT (4-way, multiple and indexed vector)
	Two ZA single-vectors of 32-bit elements
	Two ZA single-vectors of 64-bit elements
	Four ZA single-vectors of 32-bit elements
	Four ZA single-vectors of 64-bit elements
	Assembler symbols
	Operation for all encodings

	C9.2.229 UDOT (4-way, multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.230 UDOT (4-way, multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.231 UMAX (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.232 UMAX (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.233 UMIN (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.234 UMIN (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.235 UMLAL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.236 UMLAL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.237 UMLAL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.238 UMLALL (multiple and indexed vector)
	One ZA quad-vector of 32-bit elements
	One ZA quad-vector of 64-bit elements
	Two ZA quad-vectors of 32-bit elements
	Two ZA quad-vectors of 64-bit elements
	Four ZA quad-vectors of 32-bit elements
	Four ZA quad-vectors of 64-bit elements
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.239 UMLALL (multiple and single vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.240 UMLALL (multiple vectors)
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.241 UMLSL (multiple and indexed vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.242 UMLSL (multiple and single vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.243 UMLSL (multiple vectors)
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.244 UMLSLL (multiple and indexed vector)
	One ZA quad-vector of 32-bit elements
	One ZA quad-vector of 64-bit elements
	Two ZA quad-vectors of 32-bit elements
	Two ZA quad-vectors of 64-bit elements
	Four ZA quad-vectors of 32-bit elements
	Four ZA quad-vectors of 64-bit elements
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.245 UMLSLL (multiple and single vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.246 UMLSLL (multiple vectors)
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.247 UMOPA (2-way)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.248 UMOPA (4-way)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.249 UMOPS (2-way)
	SME2
	Assembler symbols
	Operation
	Operational information

	C9.2.250 UMOPS (4-way)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.251 UQCVT (four registers)
	SME2
	Assembler symbols
	Operation

	C9.2.252 UQCVT (two registers)
	SME2
	Assembler symbols
	Operation

	C9.2.253 UQCVTN
	SME2
	Assembler symbols
	Operation

	C9.2.254 UQRSHR (four registers)
	SME2
	Assembler symbols
	Operation

	C9.2.255 UQRSHR (two registers)
	SME2
	Assembler symbols
	Operation

	C9.2.256 UQRSHRN
	SME2
	Assembler symbols
	Operation

	C9.2.257 URSHL (multiple and single vector)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.258 URSHL (multiple vectors)
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings

	C9.2.259 USDOT (multiple and indexed vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.260 USDOT (multiple and single vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.261 USDOT (multiple vectors)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings

	C9.2.262 USMLALL (multiple and indexed vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.263 USMLALL (multiple and single vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.264 USMLALL (multiple vectors)
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.265 USMOPA
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.266 USMOPS
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.267 USVDOT
	SME2
	Assembler symbols
	Operation

	C9.2.268 UUNPK
	Two registers
	Four registers
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.269 UVDOT (2-way)
	SME2
	Assembler symbols
	Operation

	C9.2.270 UVDOT (4-way)
	32-bit
	64-bit
	Assembler symbols
	Operation for all encodings

	C9.2.271 UZP (four registers)
	8-bit to 64-bit elements
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.272 UZP (two registers)
	8-bit to 64-bit elements
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.273 ZERO (double-vector)
	One ZA double-vector
	Two ZA double-vectors
	Four ZA double-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.274 ZERO (quad-vector)
	One ZA quad-vector
	Two ZA quad-vectors
	Four ZA quad-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.275 ZERO (single-vector)
	Two ZA single-vectors
	Four ZA single-vectors
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.276 ZERO (table)
	SME2
	Operation
	Operational information

	C9.2.277 ZERO (tiles)
	SME
	Assembler symbols
	Operation
	Operational information

	C9.2.278 ZIP (four registers)
	8-bit to 64-bit elements
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	C9.2.279 ZIP (two registers)
	8-bit to 64-bit elements
	128-bit element
	Assembler symbols
	Operation for all encodings
	Operational information

	Part D: The AArch64 System Level Architecture�
	D1: The AArch64 System Level Programmers’ Model�
	D1.1 Exception levels
	D1.1.1 Execution state
	D1.1.2 Security states
	D1.1.3 Effect of not implementing an Exception level
	D1.1.3.1 Behavior when EL3 is not implemented
	D1.1.3.2 Behavior when EL2 is not implemented
	D1.1.3.3 Behavior when EL2 is not implemented and EL3 is implemented
	D1.1.3.4 Typical Exception level usage model

	D1.2 Registers for instruction processing and exception handling
	D1.2.1 The general-purpose registers
	D1.2.2 The stack pointer registers
	D1.2.2.1 Stack pointer register selection

	D1.2.3 The SIMD and floating-point registers
	D1.2.4 Saved Program Status Registers
	D1.2.5 Exception Link Registers

	D1.3 Exceptions
	D1.3.1 Exception entry terminology
	D1.3.1.1 Taken, taken from, and taken to
	D1.3.1.2 Exception generating instructions
	D1.3.1.3 Synchronous and asynchronous exceptions
	D1.3.1.4 Definition of a precise exception and imprecise exception
	D1.3.1.5 Preferred exception return address
	D1.3.1.6 Exception vectors

	D1.3.2 Exception entry
	D1.3.2.1 Synchronous exception entry
	D1.3.2.2 Asynchronous exception entry

	D1.3.3 Exception return terminology
	D1.3.3.1 Return, return from, return to

	D1.3.4 Exception return
	D1.3.4.1 Legal exception returns from AArch64 state
	D1.3.4.2 Illegal exception returns from AArch64 state

	D1.3.5 Synchronous exception types
	D1.3.5.1 Taking synchronous exceptions from EL0
	D1.3.5.2 Exception levels for taking a synchronous External abort
	D1.3.5.3 Granule Protection Check (GPC) faults
	D1.3.5.4 SVE synchronous memory faults
	D1.3.5.5 Prioritization of Synchronous exceptions taken to AArch64 state
	D1.3.5.6 Trapping of floating-point exceptions
	D1.3.5.7 Memory Copy and Memory Set exceptions

	D1.3.6 Asynchronous exception types
	D1.3.6.1 Virtual interrupts
	D1.3.6.2 Establishing the target Exception level of an asynchronous exception
	D1.3.6.3 Asynchronous exception masking
	D1.3.6.4 Prioritization of interrupts
	D1.3.6.5 Taking an interrupt during a multi-access load or store
	D1.3.6.6 Taking an interrupt during an SVE instruction

	D1.3.7 UNDEFINED instructions
	D1.3.8 Configurable instruction controls
	D1.3.8.1 EL0 and EL1 configurable instruction controls
	D1.3.8.2 EL2 configurable instruction controls
	D1.3.8.3 EL3 configurable instruction controls

	D1.3.9 Exception generating instructions
	D1.3.10 Program Counter and stack pointer alignment
	D1.3.10.1 PC alignment checking
	D1.3.10.2 SP alignment checking

	D1.4 Process state, PSTATE
	D1.4.1 PSTATE fields that are meaningful in AArch64 state
	D1.4.1.1 Accessing PSTATE fields

	D1.5 Resets and power domains
	D1.5.1 Power domains and reset domains
	D1.5.2 Reset types
	D1.5.3 Reset behavior
	D1.5.3.1 External debug access to registers in reset

	D1.6 Mechanisms for entering a low-power state
	D1.6.1 Wait for Event
	D1.6.1.1 The Event Register
	D1.6.1.2 The Wait for Event and Wait for Event with Timeout instructions
	D1.6.1.3 Trapping of WFE and WFET
	D1.6.1.4 WFE wakeup events in AArch64 state
	D1.6.1.5 The Send Event instructions

	D1.6.2 Wait for Interrupt mechanism
	D1.6.2.1 WFI wakeup events

	D1.6.3 Pending PMU Exception
	D1.6.4 Using WFI to indicate an idle state on bus interfaces

	D1.7 Self-hosted debug
	D1.7.1 Debug exceptions
	D1.7.2 The PSTATE debug mask bit, D

	D1.8 Event monitors
	D1.8.1 The Performance Monitors Extension
	D1.8.2 The Activity Monitors Extension

	D1.9 Interprocessing
	D1.9.1 Register mappings between AArch32 state and AArch64 state
	D1.9.1.1 Mapping of the general-purpose registers between the Execution states
	D1.9.1.2 Mapping of the SIMD and floating-point registers between the Execution states
	D1.9.1.3 Mapping of the System registers between the Execution states
	D1.9.1.4 State of the general-purpose registers on taking an exception to AArch64 state
	D1.9.1.5 SPSR, ELR, and AArch64 SP relationships on changing Execution state
	D1.9.1.6 PSTATE.SM and PSTATE.ZA behaviors on changing Execution state

	D1.10 Check Feature

	D2: AArch64 Self-hosted Debug�
	D2.1 About self-hosted debug
	D2.1.1 Definition of a debugger in the context of self-hosted debug
	D2.1.2 Context ID and Process ID
	D2.1.3 About debug exceptions

	D2.2 Routing debug exceptions
	D2.2.1 Pseudocode description of routing debug exceptions

	D2.3 The debug exception enable controls
	D2.3.1 Enabling debug exceptions from the current Exception level and Security state
	D2.3.2 Pseudocode description of enabling debug exceptions

	D2.4 The effect of powerdown on debug exceptions
	D2.5 Summary of the routing and enabling of debug exceptions
	D2.6 Pseudocode description of debug exceptions
	D2.7 Breakpoint Instruction exceptions
	D2.7.1 About Breakpoint Instruction exceptions
	D2.7.2 Breakpoint instructions
	D2.7.3 Exception syndrome information and preferred return address
	D2.7.3.1 Exception syndrome information
	D2.7.3.2 Preferred return address

	D2.7.4 Pseudocode description of Breakpoint Instruction exceptions

	D2.8 Breakpoint exceptions
	D2.8.1 About Breakpoint exceptions
	D2.8.2 Accessing breakpoint System registers
	D2.8.3 Breakpoint types and linking of breakpoints
	D2.8.3.1 Rules for linking breakpoints
	D2.8.3.2 Breakpoint types defined by DBGBCR<n>_EL1.{BT2, BT}

	D2.8.4 Execution conditions for which a breakpoint generates Breakpoint exceptions
	D2.8.5 Breakpoint instruction address comparisons
	D2.8.5.1 Specifying the halfword-aligned address that an Address breakpoint matches on
	D2.8.5.2 Address Mismatch breakpoints
	D2.8.5.3 Programming a breakpoint range with eight or more bytes

	D2.8.6 Breakpoint context comparisons
	D2.8.7 Breakpoint usage constraints
	D2.8.7.1 Reserved DBGBCR<n>_EL1.{BT2, BT} values
	D2.8.7.2 Reserved DBGBCR<n>_EL1.{SSCE, SSC, HMC, PMC} values
	D2.8.7.3 Programming dependencies of the BAS and MASK fields
	D2.8.7.4 Reserved DBGBCR<n>_EL1.BAS values
	D2.8.7.5 Usage constraints on DBGBCR<n>_EL1.{LBNX, LBN} values
	D2.8.7.6 Other usage constraints for Address breakpoints
	D2.8.7.7 Other usage constraints for Context breakpoints

	D2.8.8 Preferred return address
	D2.8.9 Pseudocode description of Breakpoint exceptions taken from an AArch64 stage 1 translation regime

	D2.9 Watchpoint exceptions
	D2.9.1 About Watchpoint exceptions
	D2.9.2 Accessing watchpoint System registers
	D2.9.3 Watchpoint types and linking of watchpoints
	D2.9.3.1 Rules for linking watchpoints

	D2.9.4 Execution conditions for which a watchpoint generates Watchpoint exceptions
	D2.9.5 Watchpoint data address comparisons
	D2.9.5.1 Size of the data access
	D2.9.5.2 Programming a watchpoint range with eight bytes or fewer
	D2.9.5.3 Programming a watchpoint range with eight or more bytes

	D2.9.6 Determining the memory location that caused a Watchpoint exception
	D2.9.6.1 Address recorded for Watchpoint exceptions generated by Memory Copy and Memory Set instructions
	D2.9.6.2 Address recorded for Watchpoint exceptions generated by zeroing and data cache maintenance instructions
	D2.9.6.3 Address recorded for Watchpoint exceptions generated by SVE and SME instructions
	D2.9.6.4 Address recorded for Watchpoint exceptions generated by other instructions

	D2.9.7 Watchpoint behavior for certain instruction classes
	D2.9.7.1 Watchpoint behavior on accesses by Store-Exclusive instructions
	D2.9.7.2 Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA, DC GVA, and DC GZVA instructions
	D2.9.7.3 Watchpoint behavior on accesses by SVE and SME instructions
	D2.9.7.4 Watchpoint behavior on accesses by Allocation tag load and store instructions

	D2.9.8 Watchpoint usage constraints
	D2.9.8.1 Reserved DBGBCR<n>_EL1.{BT2, BT} values when using Watchpoints
	D2.9.8.2 Reserved DBGWCR<n>_EL1.{SSCE, SSC, HMC, PAC} values
	D2.9.8.3 Usage constraints on DBGWCR<n>_EL1.{LBNX, LBN} values
	D2.9.8.4 Programming dependencies of the BAS and MASK fields
	D2.9.8.5 Reserved DBGWCR<n>_EL1.BAS values
	D2.9.8.6 Reserved DBGWCR<n>_EL1.MASK values
	D2.9.8.7 Other usage constraints

	D2.9.9 Exception syndrome information and preferred return address
	D2.9.9.1 Exception syndrome information
	D2.9.9.2 Preferred return address

	D2.9.10 Pseudocode description of Watchpoint exceptions taken from AArch64 state

	D2.10 Vector Catch exceptions
	D2.11 Software Step exceptions
	D2.11.1 About Software Step exceptions
	D2.11.2 Rules for setting MDSCR_EL1.SS to 1
	D2.11.3 The software step state machine
	D2.11.4 Entering the active-not-pending state
	D2.11.5 Behavior in the active-not-pending state
	D2.11.5.1 If the PE takes an exception to an Exception level that is using AArch64
	D2.11.5.2 If the PE takes an exception to an Exception level that is using AArch32
	D2.11.5.3 Summary of behavior in the active-not-pending state

	D2.11.6 Entering the active-pending state
	D2.11.7 Behavior in the active-pending state
	D2.11.8 Stepping T32 IT instructions
	D2.11.9 Exception syndrome information and preferred return address
	D2.11.9.1 Exception syndrome information
	D2.11.9.2 Preferred return address

	D2.11.10 Additional considerations
	D2.11.10.1 Behavior when an Exception return instruction is an illegal exception return
	D2.11.10.2 Behavior when the instruction stepped writes a misaligned PC value
	D2.11.10.3 Stepping code that uses Exclusives monitors
	D2.11.10.4 Synchronization and the software step state machine

	D2.11.11 Pseudocode description of Software Step exceptions

	D2.12 Synchronization and debug exceptions

	D3: AArch64 Self-hosted Trace�
	D3.1 About self-hosted trace
	D3.1.1 Trace sinks
	D3.1.2 Register controls to enable self-hosted trace

	D3.2 Prohibited regions in self-hosted trace
	D3.2.1 Controls to prohibit trace at Exception levels
	D3.2.2 Self-hosted trace and visibility of virtual data

	D3.3 Self-hosted trace timestamps
	D3.4 Synchronization in self-hosted trace

	D4: The Embedded Trace Extension�
	D4.1 About the Embedded Trace Extension
	D4.1.1 Attributes of tracing
	D4.1.2 Self-hosted Trace
	D4.1.3 External debug
	D4.1.3.1 Real-time continuous export
	D4.1.3.2 Short-term on-chip capture with subsequent low speed export

	D4.1.4 Trace output
	D4.1.5 Trace sessions
	D4.1.6 Trace unit programming states

	D4.2 Programmers’ model
	D4.2.1 Accessing ETE registers
	D4.2.1.1 External debugger interface
	D4.2.1.2 System instructions

	D4.2.2 Synchronization of register updates
	D4.2.2.1 System registers
	D4.2.2.2 External debugger registers
	D4.2.2.3 Synchronization and the authentication interface

	D4.3 Trace elements
	D4.3.1 Layer model
	D4.3.2 Trace protocol synchronization
	D4.3.2.1 Non-periodic trace protocol synchronization
	D4.3.2.2 Periodic trace protocol synchronization
	D4.3.2.3 Synchronization of instruction trace

	D4.3.3 Speculation in the trace element stream
	D4.3.3.1 Tracing transactions

	D4.3.4 Trace element stream
	D4.3.5 P0 element
	D4.3.5.1 Atom element
	D4.3.5.2 Exception element
	D4.3.5.3 Source Address element
	D4.3.5.4 Q element
	D4.3.5.5 Transaction Start Element

	D4.3.6 Virtual Address Space Element
	D4.3.6.1 Trace On element
	D4.3.6.2 Target Address element
	D4.3.6.3 Context element

	D4.3.7 Temporal elements
	D4.3.7.1 Cycle Count element
	D4.3.7.2 Timestamp element
	D4.3.7.3 Timestamp Marker element

	D4.3.8 Speculation Resolution Elements
	D4.3.8.1 Commit element
	D4.3.8.2 Cancel element
	D4.3.8.3 Discard element
	D4.3.8.4 Mispredict element

	D4.3.9 Instrumentation element
	D4.3.10 Other elements
	D4.3.10.1 Event element
	D4.3.10.2 Overflow element

	D4.3.11 Transactional Memory
	D4.3.11.1 Transaction Start element
	D4.3.11.2 Transaction Commit element
	D4.3.11.3 Transaction Failure element

	D4.4 Instruction and exception classification
	D4.4.1 AArch64 instructions
	D4.4.1.1 Direct P0 instructions
	D4.4.1.2 Indirect P0 instructions
	D4.4.1.3 Return from exception instructions
	D4.4.1.4 Branch with link instructions
	D4.4.1.5 Meaning of Atom elements

	D4.4.2 AArch32 A32 instructions
	D4.4.2.1 Direct P0 instructions
	D4.4.2.2 Indirect P0 instructions
	D4.4.2.3 Branch with link instructions
	D4.4.2.4 Meaning of Atom elements

	D4.4.3 AArch32 T32 instructions
	D4.4.3.1 Direct P0 instructions
	D4.4.3.2 Indirect P0 instructions
	D4.4.3.3 Branch with link instructions
	D4.4.3.4 Meaning of Atom elements

	D4.4.4 Exceptions to Exception element encoding

	D4.5 About the ETE trace unit
	D4.5.1 Resetting the trace unit
	D4.5.2 System behaviors
	D4.5.2.1 Behavior on enabling
	D4.5.2.2 Behavior on disabling
	D4.5.2.3 Behavior on flushing
	D4.5.2.4 Low-power state
	D4.5.2.5 Trace unit behavior when the PE is in a low-power state
	D4.5.2.6 Trace unit behavior in the low-power state

	D4.5.3 Trace unit behavior while the PE is in Debug state
	D4.5.4 Trace unit behavior on a trace unit buffer overflow
	D4.5.5 Instrumentation extension
	D4.5.6 Trace unit power states
	D4.5.7 Visibility of the PE operation
	D4.5.7.1 ETE trace operation
	D4.5.7.2 Impact on PE behavior
	D4.5.7.3 Behavior on a PE Warm reset
	D4.5.7.4 Instruction block
	D4.5.7.5 Exposing speculation
	D4.5.7.6 Trace Prohibited Regions
	D4.5.7.7 Multi-threaded processor
	D4.5.7.8 Sharing between multiple PEs

	D4.5.8 Speculation resolution
	D4.5.8.1 Initialization
	D4.5.8.2 New block operation
	D4.5.8.3 Resolved operation
	D4.5.8.4 Cancel operation

	D4.5.9 Filtering trace generation
	D4.5.9.1 ViewInst function
	D4.5.9.2 ViewInst start/stop function filtering
	D4.5.9.3 ViewInst include/exclude function filtering
	D4.5.9.4 Guidelines for interpreting the ViewInst function result
	D4.5.9.5 Rules for tracing Exceptional occurrences
	D4.5.9.6 Forced tracing of Exceptional occurrences

	D4.5.10 Element Generation
	D4.5.10.1 Trace Info element generation
	D4.5.10.2 Atom element
	D4.5.10.3 Exception element
	D4.5.10.4 Source address element
	D4.5.10.5 Q element
	D4.5.10.6 Event element
	D4.5.10.7 Cancel element generation
	D4.5.10.8 Commit element generation
	D4.5.10.9 Transaction Start element
	D4.5.10.10 Transaction Commit element
	D4.5.10.11 Transaction Failure element
	D4.5.10.12 Context element
	D4.5.10.13 Target Address element
	D4.5.10.14 Mispredict element
	D4.5.10.15 Overflow element
	D4.5.10.16 Timestamp element
	D4.5.10.17 Trace On element
	D4.5.10.18 Cycle Count element
	D4.5.10.19 Discard element
	D4.5.10.20 Instrumentation element

	D4.5.11 Trace unit features
	D4.5.11.1 Q regions
	D4.5.11.2 Branch broadcasting
	D4.5.11.3 Context identifier tracing
	D4.5.11.4 Cycle counting
	D4.5.11.5 Event trace
	D4.5.11.6 No overflow
	D4.5.11.7 Stalling the execution of the PE
	D4.5.11.8 Timestamping
	D4.5.11.9 Virtual context identifier tracing

	D4.5.12 Compression
	D4.5.12.1 Implied commits
	D4.5.12.2 Atom packing
	D4.5.12.3 Address compression
	D4.5.12.4 Return stack address matching
	D4.5.12.5 Timestamp value compression

	D4.6 Resource operation
	D4.6.1 Behavior of the resources while in the Running state
	D4.6.2 Behavior of the resources while in the Pausing state
	D4.6.3 Behavior of the resources while in the Paused state
	D4.6.4 Behavior of resources on a Trace synchronization event
	D4.6.5 Resource organization
	D4.6.5.1 Precise resources
	D4.6.5.2 Imprecise resources
	D4.6.5.3 Selecting a resource or a pair of resources
	D4.6.5.4 A Resource Selector pair

	D4.6.6 Address comparators
	D4.6.6.1 Single Address Comparators
	D4.6.6.2 Address Range Comparators

	D4.6.7 Context Identifier Comparator
	D4.6.8 Virtual Context Identifier Comparators
	D4.6.9 Counters
	D4.6.9.1 Counter Operation in Normal mode
	D4.6.9.2 Counter Operation in Self-reload mode
	D4.6.9.3 Forming a larger Counter from two separate Counters
	D4.6.9.4 Pseudocode

	D4.6.10 Sequencer
	D4.6.10.1 Pseudocode

	D4.6.11 Single-shot Comparator Controls
	D4.6.11.1 Single-shot Comparator Control modes
	D4.6.11.2 Operation while in Paused state

	D4.6.12 External Outputs
	D4.6.12.1 Operation while in Paused state

	D4.6.13 External inputs
	D4.6.13.1 Operation while in Paused state
	D4.6.13.2 Operation while in low-power state

	D4.6.14 PE Comparator Inputs

	D5: ETE Protocol Descriptions�
	D5.1 About the ETE protocol
	D5.1.1 Encoding schemes
	Field encodings
	Instruction set encoding

	D5.2 Summary list of ETE packets
	D5.3 Alphabetical list of ETE packets
	D5.3.1 Alignment Synchronization Packet
	Packet Layout
	Additional information

	D5.3.2 Atom Format 1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.3 Atom Format 2 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.4 Atom Format 3 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.5 Atom Format 4 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.6 Atom Format 5.1 Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.7 Atom Format 5.2 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.8 Atom Format 6 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.9 Commit Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.10 Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.3.11 Context Same Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.12 Cycle Count Format 1_0 unknown count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.13 Cycle Count Format 1_0 with count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.14 Cycle Count Format 1_1 unknown count Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.15 Cycle Count Format 1_1 with count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.16 Cycle Count Format 2_0 large commit Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.17 Cancel Format 1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.18 Cancel Format 2 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.19 Cancel Format 3 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.20 Cycle Count Format 2_0 small commit Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.21 Cycle Count Format 2_1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.22 Cycle Count Format 3_0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.23 Cycle Count Format 3_1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.24 Discard Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.25 Event Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.26 Exception 32-bit Address IS0 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.27 Exception 32-bit Address IS0 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.3.28 Exception 32-bit Address IS1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.29 Exception 32-bit Address IS1 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.3.30 Exception 64-bit Address IS0 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.31 Exception 64-bit Address IS0 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.3.32 Exception 64-bit Address IS1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.33 Exception 64-bit Address IS1 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.3.34 Exception Exact Match Address Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.35 Exception Short Address IS0 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.36 Exception Short Address IS1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.37 Ignore Packet
	Packet Layout

	D5.3.38 Instrumentation Packet
	Packet Layout
	Field descriptions
	Element sequence

	D5.3.39 Mispredict Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.40 Overflow Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.41 PE Reset Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.3.42 Q 32-bit address IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.43 Q 32-bit address IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.44 Q Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.45 Q short address IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.46 Q short address IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.47 Q with count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.48 Q with Exact match address Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.49 Source Address 32-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.50 Source Address 32-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.51 Source Address 64-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.52 Source Address 64-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.53 Source Address Exact Match Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.54 Source Address Short IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.55 Source Address Short IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.56 Timestamp Marker Packet
	Packet Layout

	D5.3.57 Timestamp Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Field descriptions
	Element sequence
	Additional information

	D5.3.58 Target Address 32-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.59 Target Address 32-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.60 Target Address 64-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.61 Target Address 64-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.62 Target Address Exact Match Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.63 Target Address Short IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.64 Target Address Short IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.3.65 Target Address with Context 32-bit IS0 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.3.66 Target Address with Context 32-bit IS1 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.3.67 Target Address with Context 64-bit IS0 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.3.68 Target Address with Context 64-bit IS1 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.3.69 Trace Info Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Packet Layout - Variant 5
	Packet Layout - Variant 6
	Packet Layout - Variant 7
	Packet Layout - Variant 8
	Field descriptions
	Element sequence
	Additional information

	D5.3.70 Trace On Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.71 Transaction Commit Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.72 Transaction Start Packet
	Packet Layout
	Element sequence
	Additional information

	D5.3.73 Transaction Failure Packet
	Packet Layout
	Field descriptions
	Additional information

	D6: The Trace Buffer Extension�
	D6.1 About the Trace Buffer Extension
	D6.1.1 The trace buffer pointers
	D6.1.2 System events

	D6.2 The trace buffer
	D6.2.1 Trace Buffer Unit disabled
	D6.2.2 Restrictions on programming the Trace Buffer Unit
	D6.2.3 Effect on the exclusive monitors and transactions
	D6.2.4 Effect of MTE

	D6.3 Trace buffer Self-hosted mode
	D6.3.1 Behavior when address translation is enabled
	D6.3.2 Behavior when address translation disabled
	D6.3.3 Effect of stage 2 translation
	D6.3.4 Accesses to the trace buffer
	D6.3.5 The owning translation regime
	D6.3.6 Cache and TLB operations
	D6.3.7 Self-hosted mode and MEC
	D6.3.8 Self-hosted mode and MPAM

	D6.4 Trace buffer External mode
	D6.4.1 The external Trace Buffer debug component
	D6.4.2 Behavior in External mode
	D6.4.3 External mode and the Realm Management Extension
	D6.4.4 External mode and MEC
	D6.4.5 External mode and MPAM

	D6.5 Trace buffer management
	D6.5.1 Prioritization of a trace buffer management event
	D6.5.2 Buffer full and buffer wrap events
	D6.5.3 Trigger event
	D6.5.4 Faults
	D6.5.5 External aborts
	D6.5.6 IMPLEMENTATION DEFINED management events

	D6.6 Synchronization and the Trace Buffer Unit
	D6.6.1 Trace Synchronization event
	D6.6.2 Trace synchronization and the Trace Unit
	D6.6.3 Self-hosted trace extension synchronization rules

	D6.7 Trace synchronization and memory barriers
	D6.8 Trace of Speculative execution
	D6.9 Trace in Debug state
	D6.10 Synchronization litmus tests
	D6.11 UNPREDICTABLE behavior

	D7: The AArch64 System Level Memory Model�
	D7.1 About the memory system architecture
	D7.1.1 Form of the memory system architecture
	D7.1.2 Memory attributes

	D7.2 Address space
	D7.2.1 Virtual address space overflow

	D7.3 Mixed-endian support in AArch64
	D7.4 Memory Encryption Contexts
	D7.4.1 Memory Encryption Context IDs
	D7.4.1.1 MECID width
	D7.4.1.2 MECID mismatch

	D7.4.2 Memory encryption block size
	D7.4.3 Restrictions on the effects of speculation

	D7.5 Cache support
	D7.5.1 General behavior of the caches
	D7.5.2 Cache identification
	D7.5.2.1 Possible formats of the Cache Size Identification Register, CCSIDR_EL1

	D7.5.3 Cacheability, cache allocation hints, and cache transient hints
	D7.5.3.1 Transient cacheability hint

	D7.5.4 Cacheable MEC transactions
	D7.5.5 Enabling and disabling the caching of memory accesses
	D7.5.6 Behavior of caches at reset
	D7.5.7 Non-cacheable accesses and instruction caches
	D7.5.8 About cache maintenance in AArch64 state
	D7.5.8.1 Terms used in describing the cache maintenance instructions
	D7.5.8.2 Abstraction of the cache hierarchy

	D7.5.9 A64 Cache maintenance instructions
	D7.5.9.1 The instruction cache maintenance instruction (IC)
	D7.5.9.2 The data cache maintenance instruction (DC)
	D7.5.9.3 EL0 accessibility of cache maintenance instructions
	D7.5.9.4 General requirements for the scope of maintenance instructions
	D7.5.9.5 Effects of instructions that operate by VA to the PoC
	D7.5.9.6 Effects of instructions that operate by PA to the PoPA
	D7.5.9.7 Effects of instructions that operate by PA to the PoE
	D7.5.9.8 Effects of instructions that operate by VA to the PoP
	D7.5.9.9 Effects of instructions that operate by VA to the PoU
	D7.5.9.10 Effects of All and set/way maintenance instructions
	D7.5.9.11 Effects of virtualization and Security state on the cache maintenance instructions
	D7.5.9.12 Boundary conditions for cache maintenance instructions
	D7.5.9.13 Ordering and completion of data and instruction cache instructions
	D7.5.9.14 Performing cache maintenance instructions

	D7.5.10 Data cache zero instruction
	D7.5.11 Cache lockdown
	D7.5.11.1 The interaction of cache lockdown with cache maintenance instructions

	D7.5.12 System level caches
	D7.5.13 Branch prediction
	D7.5.14 Execution, data prediction and prefetching restriction System instructions

	D7.6 External aborts
	D7.6.1 Provision for the classification of External aborts
	D7.6.2 Parity or ECC error reporting, RAS Extension not implemented

	D7.7 Memory barrier instructions
	D7.7.1 EL2 control of the shareability of data barrier instructions executed at EL0 or EL1

	D7.8 Pseudocode description of general memory System instructions
	D7.8.1 Memory data type definitions
	D7.8.2 Basic memory access
	D7.8.3 Aligned memory access
	D7.8.4 Unaligned memory access
	D7.8.5 Exclusives monitors operations
	D7.8.6 Access permission checking
	D7.8.7 Abort exceptions
	D7.8.8 Memory barriers

	D8: The AArch64 Virtual Memory System Architecture�
	D8.1 Address translation
	D8.1.1 Translation granules
	D8.1.2 Translation regimes
	D8.1.2.1 Non-secure EL1&0 translation regime
	D8.1.2.2 Secure EL1&0 translation regime
	D8.1.2.3 Realm EL1&0 translation regime
	D8.1.2.4 Non-secure EL2&0 translation regime
	D8.1.2.5 Secure EL2&0 translation regime
	D8.1.2.6 Realm EL2&0 translation regime
	D8.1.2.7 Non-secure EL2 translation regime
	D8.1.2.8 Secure EL2 translation regime
	D8.1.2.9 Realm EL2 translation regime
	D8.1.2.10 EL3 translation regime

	D8.1.3 Relationship between translation regimes and implemented Exception levels
	D8.1.4 System registers relevant to MMU operation
	D8.1.5 Out-of-context translation regimes
	D8.1.5.1 Speculative memory accesses from out-of-context translation regimes
	D8.1.5.2 Register changes when changing virtual machine

	D8.1.6 Implemented physical address size
	D8.1.7 Output address size configuration
	D8.1.8 Supported virtual address ranges
	D8.1.9 Input address size configuration
	D8.1.10 Intermediate physical address size configuration

	D8.2 Translation process
	D8.2.1 Translation table walk
	D8.2.2 Concatenated translation tables
	D8.2.3 Translation table base address register
	D8.2.4 Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported
	D8.2.4.1 Preventing EL0 access to halves of the address map

	D8.2.5 Translation table and translation table lookup properties
	D8.2.5.1 Translation table size
	D8.2.5.2 Translation table alignment
	D8.2.5.3 Translation table lookup endianness
	D8.2.5.4 Translation table lookup memory attributes

	D8.2.6 Translation table walk properties
	D8.2.6.1 Ordering of memory accesses from translation table walks
	D8.2.6.2 Security state of translation table lookups

	D8.2.7 Translation Hardening Extension
	D8.2.7.1 Stage 1 Protected Attribute
	D8.2.7.2 Stage 1 Reduced Coherence write
	D8.2.7.3 Assured translation
	D8.2.7.4 Stage 2 TopLevel checks

	D8.2.8 VMSAv8-64 translation using the 4KB granule
	D8.2.8.1 VMSAv8-64 Stage 1 address translation using the 4KB translation granule
	D8.2.8.2 VMSAv8-64 Stage 2 address translation using the 4KB translation granule
	D8.2.8.3 Finding the descriptor when using the VMSAv8-64 4KB translation granule

	D8.2.9 VMSAv8-64 translation using the 16KB granule
	D8.2.9.1 VMSAv8-64 Stage 1 address translation using the 16KB translation granule
	D8.2.9.2 VMSAv8-64 Stage 2 address translation using the 16KB translation granule
	D8.2.9.3 Finding the descriptor when using the VMSAv8-64 16KB translation granule

	D8.2.10 VMSAv8-64 translation using the 64KB granule
	D8.2.10.1 VMSAv8-64 Stage 1 address translation using the 64KB translation granule
	D8.2.10.2 VMSAv8-64 Stage 2 address translation using the 64KB translation granule
	D8.2.10.3 Finding the descriptor when using the VMSAv8-64 64KB translation granule

	D8.2.11 Translation using the VMSAv9-128 translation system
	D8.2.11.1 Starting the VMSAv9-128 translation
	D8.2.11.2 Continuing the VMSAv9-128 translation
	D8.2.11.3 Completing the VMSAv9-128 translation

	D8.2.12 The effects of disabling an address translation stage
	D8.2.12.1 Behavior when stage 1 address translation is disabled
	D8.2.12.2 Behavior when stage 2 address translation is disabled
	D8.2.12.3 Instruction fetch behavior when all translation stages are disabled
	D8.2.12.4 Effect of disabling address translation on maintenance and address translation instructions

	D8.2.13 Address translation instructions
	D8.2.13.1 Address translation instructions, successful address translation
	D8.2.13.2 Address translation instructions, effect of translation regime
	D8.2.13.3 Address translation instructions, synchronization requirements

	D8.3 Translation table descriptor formats
	D8.3.1 VMSAv8-64 descriptor formats
	D8.3.1.1 VMSAv8-64 Table descriptor format
	D8.3.1.2 VMSAv8-64 Block descriptor and Page descriptor formats
	D8.3.1.3 VMSAv8-64 Invalid descriptor format

	D8.3.2 VMSAv9-128 descriptor formats
	D8.3.2.1 VMSAv9-128 Table descriptor format
	D8.3.2.2 VMSAv9-128 Block descriptor and Page descriptor formats
	D8.3.2.3 VMSAv9-128 Invalid descriptor format

	D8.4 Memory access control
	D8.4.1 Stage 1 permissions
	D8.4.1.1 Stage 1 Base permissions
	D8.4.1.2 Stage 1 Direct permissions
	D8.4.1.3 Stage 1 Indirect permissions
	D8.4.1.4 Stage 1 Overlay permissions
	D8.4.1.5 Combining stage 1 Base permissions and Overlay permissions

	D8.4.2 Stage 2 permissions
	D8.4.2.1 Stage 2 Direct permissions
	D8.4.2.2 Stage 2 Indirect permissions

	D8.4.3 Effect of both stage 1 and stage 2 on data access permissions
	D8.4.4 Effects on instruction execution permissions and restrictions on instruction fetch
	D8.4.4.1 Effect of both stage 1 and stage 2 on instruction access permissions
	D8.4.4.2 Restriction on Secure instruction fetch
	D8.4.4.3 Restriction on Realm instruction fetch

	D8.4.5 Effect of PSTATE on access permission
	D8.4.5.1 PSTATE.PAN
	D8.4.5.2 PSTATE.UAO
	D8.4.5.3 PSTATE.BTYPE

	D8.4.6 Controlling memory access Security state
	D8.4.6.1 Hierarchical control of Secure or Non-secure memory accesses

	D8.5 Hardware updates to the translation tables
	D8.5.1 The Access flag
	D8.5.1.1 Software management of the Access flag
	D8.5.1.2 Hardware management of the Access flag
	D8.5.1.3 Hardware management of the Table descriptor Access Flag

	D8.5.2 The dirty state
	D8.5.2.1 Hardware management of the dirty state
	D8.5.2.2 Implications of enabling the dirty state management mechanism

	D8.5.3 Ordering of hardware updates to the translation tables
	D8.5.4 Restriction on memory types for hardware updates to translation tables
	D8.5.5 Use of the Contiguous bit with hardware updates to the translation tables

	D8.6 Memory region attributes
	D8.6.1 Stage 1 memory type and Cacheability attributes
	D8.6.2 Stage 1 Shareability attributes
	D8.6.3 Stage 2 memory type and Cacheability attributes
	D8.6.4 Stage 2 Memory Tagging attributes
	D8.6.5 Stage 2 memory type and Cacheability attributes when FWB is disabled
	D8.6.5.1 Combining stage 1 and stage 2 memory type attributes
	D8.6.5.2 Combining stage 1 and stage 2 Cacheability attributes for Normal memory

	D8.6.6 Stage 2 memory type and Cacheability attributes when FWB is enabled
	D8.6.7 Stage 2 Shareability attributes
	D8.6.7.1 Combining the stage 1 and stage 2 Shareability attributes for Normal memory

	D8.7 Other descriptor fields
	D8.7.1 The Contiguous bit
	D8.7.1.1 Misprogramming the Contiguous bit
	D8.7.1.2 Architectural guarantees when the Contiguous bit is misprogrammed
	D8.7.1.3 Implementation options when the Contiguous bit is misprogrammed

	D8.7.2 Page Based Hardware attributes
	D8.7.3 Block translation entry
	D8.7.4 XS attribute modifier

	D8.8 Address tagging
	D8.8.1 Address tag control
	D8.8.2 Effect of address tagging on the PC

	D8.9 Logical Address Tagging
	D8.9.1 Logical Address Tag control
	D8.9.1.1 Effect of Logical Address Tagging on address translation and cache maintenance instructions
	D8.9.1.2 Effect of Logical Address Tagging on the PC

	D8.10 Pointer authentication
	D8.10.1 PAC field
	D8.10.2 PAC generation and verification keys
	D8.10.3 PAC instructions
	D8.10.4 Faulting on pointer authentication

	D8.11 Memory Encryption Contexts extension
	D8.11.1 Effect of MEC on PA spaces
	D8.11.1.1 Effect on the EL3 translation regime
	D8.11.1.2 Effect on the Realm EL2 and Realm EL2&0 translation regimes
	D8.11.1.3 Effect on the Realm EL1&0 translation regime

	D8.12 Virtualization Host Extensions
	D8.12.1 Behavior of HCR_EL2.E2H
	D8.12.2 System and Special-purpose register redirection
	D8.12.3 System and Special-purpose register aliasing

	D8.13 Nested virtualization
	D8.13.1 Behavior when HCR_EL2.NV is 1
	D8.13.2 Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0
	D8.13.3 Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1
	D8.13.4 Behavior when HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1
	D8.13.5 Effect of HCR_EL2.AT
	D8.13.6 Enhanced support for nested virtualization
	D8.13.6.1 Redirection of register accesses from EL2 to EL1
	D8.13.6.2 Loads and stores generated by transforming register accesses
	D8.13.6.3 Exceptions from transformed register accesses
	D8.13.6.4 Interaction with self-hosted and External debug

	D8.14 Memory aborts
	D8.14.1 MMU fault types
	D8.14.1.1 Translation fault
	D8.14.1.2 Address size fault
	D8.14.1.3 External abort on a translation table walk
	D8.14.1.4 Access flag fault
	D8.14.1.5 Permission fault
	D8.14.1.6 TLB conflict abort

	D8.14.2 MMU faults generated by address translation instructions
	D8.14.2.1 Exceptions to reporting the fault in PAR_EL1

	D8.14.3 MMU faults generated by cache maintenance operations
	D8.14.4 MMU fault-checking sequence
	D8.14.4.1 Stage 2 fault on a stage 1 translation table walk
	D8.14.4.2 The lookup level associated with MMU faults

	D8.14.5 MMU fault prioritization from a single address translation stage
	D8.14.5.1 Prioritization of Permission faults

	D8.15 Translation Lookaside Buffers
	D8.15.1 TLB behavior at reset
	D8.15.2 TLB lockdown
	D8.15.3 Use of ASIDs and VMIDs to reduce TLB maintenance requirements
	D8.15.3.1 Global and process-specific translation table entries
	D8.15.3.2 ASID size
	D8.15.3.3 VMID size
	D8.15.3.4 Common not private translations

	D8.16 TLB maintenance
	D8.16.1 Using break-before-make when updating translation table entries
	D8.16.2 Support levels for changing table or block size
	D8.16.3 TLB maintenance due to TLB conflict
	D8.16.4 The interaction of TLB lockdown with TLB maintenance instructions
	D8.16.5 TLB maintenance instructions
	D8.16.5.1 TLB maintenance instructions that do not apply to a range of addresses
	D8.16.5.2 TLB maintenance instructions that apply to a range of addresses
	D8.16.5.3 Translation table level hint
	D8.16.5.4 TLB maintenance instruction scope

	D8.16.6 Operation of the TLB maintenance instructions
	D8.16.6.1 Invalidating TLB entries from stage 2 translations

	D8.16.7 Broadcast TLB maintenance
	D8.16.8 Ordering and completion of TLB maintenance instructions

	D8.17 Caches
	D8.17.1 Data and unified caches
	D8.17.2 Instruction caches
	D8.17.2.1 Physically-indexed, physically-tagged instruction caches
	D8.17.2.2 Virtually-indexed, physically-tagged instruction caches

	D8.17.3 Cache maintenance requirements due to changing memory region attributes

	D8.18 Pseudocode description of VMSAv8-64 address translation

	D9: The Granule Protection Check Mechanism�
	D9.1 GPC behavior overview
	D9.2 GPC faults
	D9.3 GPT caching and invalidation
	D9.4 GPT formats
	D9.4.1 GPT Table descriptor
	D9.4.2 GPT Block descriptor
	D9.4.3 GPT Granules descriptor
	D9.4.4 GPT Contiguous descriptor
	D9.4.5 GPI field encoding in GPT descriptors

	D9.5 GPT lookup process
	D9.5.1 Ordering of memory accesses from GPT walks

	D10: The Memory Tagging Extension�
	D10.1 Introduction
	D10.2 Allocation Tags
	D10.3 Memory region tagging types
	D10.3.1 Interactions with Device memory

	D10.4 Tag checking
	D10.4.1 Tag Checked memory accesses
	D10.4.2 Tag Check operations

	D10.5 Allocation Tag Access controls
	D10.6 Physical Tag locations
	D10.6.1 Accessing Tag locations
	D10.6.2 Allocation Tag Storage
	D10.6.2.1 Access to Allocation Tag storage at data locations

	D10.6.3 Caching of Allocation Tags

	D10.7 Tag Check Faults
	D10.7.1 Asynchronous Tag Check Faults

	D11: The Guarded Control Stack�
	D11.1 Introduction
	D11.1.1 Protection for return addresses
	D11.1.2 Call stack recording
	D11.1.3 Overview

	D11.2 The Guarded Control Stack
	D11.2.1 Enabling the Guarded Control Stack

	D11.3 Procedure returns
	D11.3.1 Procedure call and return instructions
	D11.3.2 Management of procedure return records

	D11.4 Exception returns
	D11.4.1 Pushing and popping exception return state
	D11.4.2 Using the exception return protection features

	D11.5 Stage 1 permission model
	D11.5.1 Stage 1 Base Permissions
	D11.5.2 Security states

	D11.6 Stage 2 Permission model
	D11.6.1 Hardening Stage 1 translations

	D11.7 Guarded Control Stack switching
	D11.8 Guarded Control Stack exceptions
	D11.9 Guarded Control Stack data accesses
	D11.9.1 Guarded Control Stack data access behaviors

	D11.10 Detecting when FEAT_GCS is enabled

	D12: The Generic Timer in AArch64 state�
	D12.1 About the Generic Timer
	D12.1.1 The full set of Generic Timer components
	D12.1.2 The system counter
	D12.1.2.1 Initializing and reading the system counter frequency
	D12.1.2.2 Memory-mapped controls of the system counter

	D12.2 The AArch64 view of the Generic Timer
	D12.2.1 The physical counter
	D12.2.1.1 The self-synchronized view of the physical counter
	D12.2.1.2 The physical offset register

	D12.2.2 The virtual counter
	D12.2.2.1 The self-synchronized view of the virtual counter
	D12.2.2.2 The virtual offset register

	D12.2.3 Event streams
	D12.2.4 Timers
	D12.2.4.1 Operation of the CompareValue views of the timers
	D12.2.4.2 Operation of the TimerValue views of the timers

	D13: The Performance Monitors Extension�
	D13.1 About the Performance Monitors
	D13.1.1 Interaction with EL3
	D13.1.2 Interaction with EL2
	D13.1.3 Time as measured by the Performance Monitors cycle counter
	D13.1.4 Interaction with trace

	D13.2 Accuracy of the Performance Monitors
	D13.2.1 Non-invasive behavior
	D13.2.2 A reasonable degree of inaccuracy

	D13.3 Behavior on overflow
	D13.3.1 Generating overflow interrupt requests
	D13.3.1.1 Pseudocode description of overflow interrupt requests

	D13.3.2 Exception-based event profiling
	D13.3.3 Synchronous exception-based event profiling

	D13.4 Attributability
	D13.5 Controlling the PMU counters
	D13.5.1 Enabling PMU counters
	D13.5.1.1 Enabling the event counters
	D13.5.1.2 Enabling the cycle counter
	D13.5.1.3 Enabling the instruction counter

	D13.5.2 Freezing PMU counters
	D13.5.3 Resetting counters
	D13.5.4 Prohibiting counting

	D13.6 Multithreaded implementations
	D13.7 Event filtering
	D13.7.1 Filtering by Exception level and Security state
	D13.7.2 Accuracy of event filtering
	D13.7.2.1 Exception-related events
	D13.7.2.2 Software increment events

	D13.7.3 Pseudocode description of event filtering

	D13.8 Event counting threshold
	D13.8.1 Enabling event counting threshold
	D13.8.2 Threshold conditions
	D13.8.3 Edge conditions
	D13.8.4 Accessing event counting threshold functionality
	D13.8.5 Pseudocode description of event counting threshold and edge

	D13.9 PMU snapshots
	D13.10 Performance Monitors and Debug state
	D13.11 Counter access
	D13.11.1 PMEVCNTR<n> event counters
	D13.11.2 Cycle and instruction counters
	D13.11.3 EL0 access controls

	D13.12 PMU events and event numbers
	D13.12.1 Definitions
	D13.12.1.1 Definition of terms
	D13.12.1.2 Levels of caches and TLBs
	D13.12.1.3 Counting events from shared components
	D13.12.1.4 Tracking the Guarded Control Stack data accesses
	D13.12.1.5 Counting exceptions taken locally or not taken locally

	D13.12.2 The PMU event number space and common events
	D13.12.3 Common event numbers
	D13.12.3.1 Common architectural events
	D13.12.3.2 Common microarchitectural events

	D13.12.4 Cycle event counting
	D13.12.4.1 Multithreaded implementations

	D13.12.5 Meaningful combinations of common events
	D13.12.5.1 Scalar-equivalent operations
	D13.12.5.2 Bytes loaded and stored
	D13.12.5.3 Overall vector utilization
	D13.12.5.4 Vector loop efficiency

	D13.12.6 Required events
	D13.12.7 Synchronous events
	D13.12.8 IMPLEMENTATION DEFINED event numbers

	D13.13 Performance Monitors Extension registers

	D14: The System Performance Monitors Extension�
	D14.1 About the System Performance Monitors
	D14.2 System PMU configuration
	D14.3 Accessing System PMUs
	D14.3.1 Accessing System PMU registers
	D14.3.2 Accessing System PMU counters

	D14.4 Generating System PMU overflow interrupt requests

	D15: The Activity Monitors Extension�
	D15.1 About the Activity Monitors Extension
	D15.2 Properties and behavior of the activity monitors
	D15.2.1 Basic characteristics of the activity monitor event counters
	D15.2.2 Counter configuration and controls
	D15.2.3 Power and reset domains
	D15.2.4 Accuracy and non-invasive behavior
	D15.2.5 Virtualization

	D15.3 AMU events and event numbers
	D15.3.1 Architected event counters
	D15.3.2 Auxiliary event counters

	D16: The Statistical Profiling Extension�
	D16.1 About the Statistical Profiling Extension
	D16.1.1 Non-invasive behavior
	D16.1.2 PMU extensions
	D16.1.3 Multithreaded implementations

	D16.2 Defining the sample population
	D16.2.1 Operations that might be excluded from the sample population

	D16.3 Controlling when an operation is sampled
	D16.3.1 Operation sampling
	D16.3.2 Generating random numbers for sampling
	D16.3.3 Initializing the sample interval counters
	D16.3.4 Behavior of the sample interval counter while profiling is enabled
	D16.3.4.1 If PMSIRR_EL1.RND is 0:
	D16.3.4.2 If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0
	D16.3.4.3 If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1

	D16.3.5 Behavior of the sample interval counter while profiling is disabled
	D16.3.6 Where operations are sampled
	D16.3.7 Sample collisions

	D16.4 Enabling profiling
	D16.5 Filtering sample records
	D16.5.1 Discard mode

	D16.6 The profiling data
	D16.6.1 Information collected for micro-ops
	D16.6.2 Additional information for each profiled branch or exception return
	D16.6.2.1 Previous branch target

	D16.6.3 Additional information for each profiled memory access operation
	D16.6.3.1 Additional effects when FEAT_MTE is implemented
	D16.6.3.2 Additional effects when FEAT_NV2 is implemented
	D16.6.3.3 Additional effects when FEAT_MOPS is implemented
	D16.6.3.4 Additional effects when FEAT_LS64, FEAT_LS64_V, and FEAT_LS64_ACCDATA are implemented
	D16.6.3.5 Additional effects when FEAT_GCS is implemented
	D16.6.3.6 Data Alignment Flag

	D16.6.4 Additional information for each profiled conditional instruction
	D16.6.5 Additional information for each profiled Scalable Vector Extension operation
	D16.6.6 Sample operation records for misspeculated and non-architectural operations
	D16.6.7 Additional information for other operations
	D16.6.8 Controlling the data that is collected
	D16.6.9 Exceptions
	D16.6.9.1 Non-architectural exceptions

	D16.7 The Profiling Buffer
	D16.7.1 Restrictions on the current write pointer
	D16.7.2 The owning translation regime
	D16.7.2.1 Summary of the owning translation regime

	D16.7.3 Memory access types and coherency
	D16.7.4 Memory access and crossing page boundaries
	D16.7.5 Cache and TLB operations
	D16.7.6 Effect on the exclusive monitors

	D16.8 Profiling Buffer management
	D16.8.1 Prioritization of Profiling Buffer management events
	D16.8.2 Buffer full event
	D16.8.3 Faults and watchpoints
	D16.8.3.1 Hardware management of dirty state and the Access flag by the Statistical Profiling Extension

	D16.8.4 External aborts
	D16.8.4.1 The External abort is ignored
	D16.8.4.2 The External abort generates an SError interrupt exception
	D16.8.4.3 The External abort is reported to the SPU

	D16.8.5 Access not allowed
	D16.8.6 Implementation defined reason

	D16.9 Synchronization and Statistical Profiling
	D16.9.1 UNPREDICTABLE behavior

	D17: Statistical Profiling Extension Sample Record Specification�
	D17.1 About the Statistical Profiling Extension sample records
	D17.1.1 Headers
	D17.1.2 Records
	D17.1.3 Protocol framing packets and forwards compatibility
	D17.1.4 Statistical Profiling Extension protocol packet headers
	8-bit headers
	16-bit headers

	D17.2 Alphabetical list of Statistical Profiling Extension packets
	D17.2.1 Address packet
	Address packet header
	Address packet payload (instruction virtual address or branch target address)
	Address packet payload (data access virtual address)
	Address packet payload (data access physical address)

	D17.2.2 Context packet
	Context packet header
	Context packet payload

	D17.2.3 Counter packet
	Counter packet header
	Counter packet payload

	D17.2.4 Data Source packet
	Data Source packet header
	Data Source packet payload

	D17.2.5 End packet
	Field descriptions

	D17.2.6 Events packet
	Events packet header
	Events packet payload

	D17.2.7 Operation Type packet
	Operation Type packet header
	Operation Type packet payload (Other)
	Operation Type packet payload (Data processing, SVE vector)
	Operation Type packet payload (Load/store, general)
	Operation Type packet payload (Load/store, extended)
	Operation Type packet payload (Load/store, SVE)
	Operation Type packet payload (Load/store, Memory Copy)
	Operation Type packet payload (Load/store, Memory Set)
	Operation Type packet payload (Load/store, GCS)
	Operation Type packet payload (Branch)

	D17.2.8 Padding
	Field descriptions

	D17.2.9 Timestamp packet
	Timestamp packet header
	Timestamp packet payload

	D18: The Branch Record Buffer Extension�
	D18.1 About the Branch Record Buffer Extension
	D18.1.1 Branch records
	D18.1.2 Cycle counting
	D18.1.3 Mispredicted branches
	D18.1.4 BRBE Prohibited regions
	D18.1.5 Branch records for exceptions
	D18.1.6 Branch records for exception returns
	D18.1.7 The Branch Record Buffer Extension and the Transactional Memory Extension
	D18.1.8 PE speculation

	D18.2 Branch record filtering
	D18.2.1 Filtering on type

	D18.3 Branch record buffer operation
	D18.4 Branch record buffer
	D18.4.1 Invalidating the record buffer

	D18.5 Programmers’ model
	D18.5.1 Manual injection of Branch records

	D19: RAS PE Architecture�
	D19.1 About the RAS Extension
	D19.2 PE error handling
	D19.2.1 PE error detection
	D19.2.2 PE error propagation
	D19.2.3 Other errors

	D19.3 Generating error exceptions
	D19.4 Taking error exceptions
	D19.4.1 PE error state recording in the exception syndrome
	D19.4.2 PE error state classification
	D19.4.2.1 Using the PE error state classification
	D19.4.2.2 Recording the physical address

	D19.4.3 Multiple SError exceptions
	D19.4.4 Target Exception level for External abort and SError exceptions taken to AArch64 state
	D19.4.5 Target Exception level for External abort and SError exceptions taken to AArch32 state

	D19.5 Error synchronization event
	D19.5.1 ESB and Virtual SError exceptions
	D19.5.2 Extension for synchronization at exception entry and return
	D19.5.2.1 Synchronization on exception entry
	D19.5.2.2 Synchronization on exception return

	D19.5.3 Error synchronization barriers in a minimal implementation

	D19.6 Virtual SError exceptions
	D19.7 Error records in the PE
	D19.7.1 Error record System register view
	D19.7.1.1 Fields in VSESR_EL2, VDFSR, DISR_EL1, DISR, VDISR_EL2, and VDISR.

	D20: MPAM PE Architecture�
	D20.1 About the MPAM Extension
	D20.2 Memory-system resource partitioning
	D20.3 Memory-system resource usage monitoring
	D20.4 Memory-system components
	D20.5 Versions of the MPAM Extension
	D20.5.1 MPAM versions for PEs
	D20.5.2 MPAM system features by MPAM version
	D20.5.3 MPAM PE features by MPAM version
	D20.5.4 Relationships between MPAM versions
	D20.5.4.1 MPAM v0.1
	D20.5.4.2 MPAM v1.0
	D20.5.4.3 MPAM v1.1
	D20.5.4.4 MPAM for RME

	D20.5.5 Interoperation of components with different MPAM versions

	D20.6 Example uses
	D20.6.1 Separate systems combined
	D20.6.2 Foreground and background job optimization
	D20.6.3 Service-level provisioning in multi-tenant VM servers

	D20.7 ID Types, Properties, and Spaces
	D20.8 ID types and properties
	D20.9 Physical address spaces
	D20.10 PARTID spaces and properties
	D20.10.1 Alternative PARTID spaces
	D20.10.2 Virtual PARTID spaces
	D20.10.3 PARTID space signals

	D20.11 Maximum PARTID number
	D20.12 Default PARTID
	D20.13 Default PMG
	D20.14 Memory-System Propagation of MPAM information
	D20.15 PE behavior
	D20.15.1 PARTID generation
	D20.15.2 Information flow
	D20.15.3 Resource partitioning
	D20.15.4 Resource-usage monitoring

	D20.16 Other Requesters with MPAM
	D20.17 The MPAM for RME system
	D20.17.1 Introduction
	D20.17.1.1 Four-space region
	D20.17.1.2 Two-space region

	D20.18 PE Generation of MPAM Information
	D20.19 MPAM System registers
	D20.20 Instruction, data, translation table walk, and other accesses
	D20.20.1 Load unprivileged and store unprivileged instructions
	D20.20.2 Accesses by enhanced support for nested virtualization
	D20.20.3 Accesses by statistical profiling extension
	D20.20.4 Translation table accesses by AT instructions
	D20.20.5 MPAM information for Granule Protection Table access

	D20.21 Security
	D20.21.1 Secure and Non-secure PARTID space
	D20.21.2 Relationship of PARTID space and physical address space
	D20.21.3 SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use
	D20.21.3.1 Settings to control Secure MPAM PARTID use in MPAM v1.1 implementations
	D20.21.3.2 Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations
	D20.21.3.3 Settings to control MPAM PARTID use in MPAM for RME

	D20.22 PARTID virtualization
	D20.22.1 MPAM virtual ID spaces
	D20.22.2 Support for type 2 hypervisors
	D20.22.3 Mapping of guest OS virtual PARTIDs
	D20.22.3.1 Example of virtual-to-physical PARTID mapping

	D20.22.4 Guest OS and all its applications under single PARTID
	D20.22.5 Trap accesses to EL2 and EL1 System registers
	D20.22.5.1 Virtualizing MPAMIDR_EL1
	D20.22.5.2 Trapping accesses to MPAM2_EL2
	D20.22.5.3 Controlling accesses to MPAM1_EL1
	D20.22.5.4 Controlling accesses to MPAM0_EL1
	D20.22.5.5 Trapping all MPAM registers

	D20.23 MPAM AArch32 interoperability
	D20.24 Support for nested virtualization
	D20.24.1 Nested virtualization extension
	D20.24.2 Enhanced nested virtualization extension

	D20.25 MPAM errors and default ID generation
	D20.25.1 Out-of-range PARTID behavior
	D20.25.2 Out-of-range PMG behavior
	D20.25.3 Invalid virtual PARTID behavior
	D20.25.4 PARTID space on error
	D20.25.5 MPAM3_EL3.SDEFLT and MPAM generation errors
	D20.25.6 MPAM3_EL3.FORCE_NS and MPAM generation errors

	D20.26 MPAM for RME PE generation of MPAM information
	D20.26.1 PE and MPAM
	D20.26.2 Alternative PARTID spaces and selection
	D20.26.2.1 Selection of primary or alternative PARTID space when executing at EL3
	D20.26.2.2 Selection of primary or alternative PARTID space when executing at EL2, EL1 and EL0
	D20.26.2.3 Determining forced PARTID space in EL2, EL1 and EL0
	D20.26.2.4 Alternative PARTID space and PARTID virtualization
	D20.26.2.5 ALTSP and FORCE_NS
	D20.26.2.6 ALTSP in Host mode at EL0

	D20.26.3 MPAM information for Granule Protection Table access

	D20.27 Synchronization of MPAM System register changes
	D20.28 Summary of System registers
	D20.29 MPAM enable
	D20.30 SDEFLT
	D20.30.1 Interaction of SDEFLT and MPAMEN

	D20.31 Lower-EL MPAM register access trapping
	D20.32 FORCE_NS
	D20.33 Reset
	D20.34 Unimplemented Exception levels
	D20.34.1 Effects if EL3 is not implemented
	D20.34.2 Effects if EL2 is implemented in neither Security state
	D20.34.3 Effects if EL2 is implemented only in Non-secure state, or if implemented but disabled by SCR_EL2.EEL2 = 0 in Secure state

	D21: The Scalable Matrix Extension�
	D21.1 Overview
	D21.2 SME traps and exceptions
	D21.3 Validity of SME and SVE state
	D21.4 Streaming execution priority
	D21.4.1 Streaming execution priority for shared implementations
	D21.4.1.1 Streaming execution context management
	D21.4.1.2 Streaming execution priority control
	D21.4.1.3 Streaming execution priority virtualization

	D21.5 Floating-point behaviors in Streaming SVE mode
	D21.6 Floating-point behaviors for instructions that target the SME ZA array
	D21.7 Security and power considerations
	D21.7.1 Security considerations
	D21.7.2 Power considerations

	D22: AArch64 System Register Encoding�
	D22.1 The System register encoding space
	D22.2 Moves to and from debug and trace System registers
	D22.2.1 Instructions for accessing debug System registers

	D22.3 Moves to and from non-debug System registers, Special-purpose registers
	D22.3.1 Instructions for accessing non-debug System registers
	D22.3.1.1 About the GIC System registers

	D22.3.2 Reserved encodings for IMPLEMENTATION DEFINED registers

	D23: AArch64 System Register Descriptions�
	D23.1 About the AArch64 System registers
	D23.1.1 Fixed values and reserved values in the System register descriptions
	D23.1.2 General behavior of accesses to the AArch64 System registers
	Reset behavior of AArch64 System registers
	Synchronization requirements for AArch64 System registers

	D23.1.3 Principles of the ID scheme for fields in ID registers
	ID registers to which this scheme applies
	Alternative ID scheme used for the Performance Monitors Extension version
	Alternative ID scheme used for ID_AA64MMFR0_EL1 stage 2 granule sizes
	Alternative ID scheme used for ID_AA64SMFR0_EL1

	D23.2 General system control registers
	D23.2.1 ACCDATA_EL1, Accelerator Data
	Field descriptions
	Accessing ACCDATA_EL1

	D23.2.2 ACTLR_EL1, Auxiliary Control Register (EL1)
	Field descriptions
	Accessing ACTLR_EL1

	D23.2.3 ACTLR_EL2, Auxiliary Control Register (EL2)
	Field descriptions
	Accessing ACTLR_EL2

	D23.2.4 ACTLR_EL3, Auxiliary Control Register (EL3)
	Field descriptions
	Accessing ACTLR_EL3

	D23.2.5 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)
	Field descriptions
	Accessing AFSR0_EL1

	D23.2.6 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)
	Field descriptions
	Accessing AFSR0_EL2

	D23.2.7 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)
	Field descriptions
	Accessing AFSR0_EL3

	D23.2.8 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)
	Field descriptions
	Accessing AFSR1_EL1

	D23.2.9 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)
	Field descriptions
	Accessing AFSR1_EL2

	D23.2.10 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)
	Field descriptions
	Accessing AFSR1_EL3

	D23.2.11 AIDR_EL1, Auxiliary ID Register
	Field descriptions
	Accessing AIDR_EL1

	D23.2.12 AMAIR2_EL1, Extended Auxiliary Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing AMAIR2_EL1

	D23.2.13 AMAIR2_EL2, Extended Auxiliary Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing AMAIR2_EL2

	D23.2.14 AMAIR2_EL3, Extended Auxiliary Memory Attribute Indirection Register (EL3)
	Field descriptions
	Accessing AMAIR2_EL3

	D23.2.15 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing AMAIR_EL1

	D23.2.16 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing AMAIR_EL2

	D23.2.17 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)
	Field descriptions
	Accessing AMAIR_EL3

	D23.2.18 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])
	Field descriptions
	Accessing APDAKeyHi_EL1

	D23.2.19 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])
	Field descriptions
	Accessing APDAKeyLo_EL1

	D23.2.20 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])
	Field descriptions
	Accessing APDBKeyHi_EL1

	D23.2.21 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])
	Field descriptions
	Accessing APDBKeyLo_EL1

	D23.2.22 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])
	Field descriptions
	Accessing APGAKeyHi_EL1

	D23.2.23 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])
	Field descriptions
	Accessing APGAKeyLo_EL1

	D23.2.24 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])
	Field descriptions
	Accessing APIAKeyHi_EL1

	D23.2.25 APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])
	Field descriptions
	Accessing APIAKeyLo_EL1

	D23.2.26 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])
	Field descriptions
	Accessing APIBKeyHi_EL1

	D23.2.27 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])
	Field descriptions
	Accessing APIBKeyLo_EL1

	D23.2.28 CCSIDR2_EL1, Current Cache Size ID Register 2
	Field descriptions
	Accessing CCSIDR2_EL1

	D23.2.29 CCSIDR_EL1, Current Cache Size ID Register
	Field descriptions
	Accessing CCSIDR_EL1

	D23.2.30 CLIDR_EL1, Cache Level ID Register
	Field descriptions
	Accessing CLIDR_EL1

	D23.2.31 CONTEXTIDR_EL1, Context ID Register (EL1)
	Field descriptions
	Accessing CONTEXTIDR_EL1

	D23.2.32 CONTEXTIDR_EL2, Context ID Register (EL2)
	Field descriptions
	Accessing CONTEXTIDR_EL2

	D23.2.33 CPACR_EL1, Architectural Feature Access Control Register
	Field descriptions
	Accessing CPACR_EL1

	D23.2.34 CPTR_EL2, Architectural Feature Trap Register (EL2)
	Field descriptions
	Accessing CPTR_EL2

	D23.2.35 CPTR_EL3, Architectural Feature Trap Register (EL3)
	Field descriptions
	Accessing CPTR_EL3

	D23.2.36 CSSELR_EL1, Cache Size Selection Register
	Field descriptions
	Accessing CSSELR_EL1

	D23.2.37 CTR_EL0, Cache Type Register
	Field descriptions
	Accessing CTR_EL0

	D23.2.38 DACR32_EL2, Domain Access Control Register
	Field descriptions
	Accessing DACR32_EL2

	D23.2.39 DCZID_EL0, Data Cache Zero ID Register
	Field descriptions
	Accessing DCZID_EL0

	D23.2.40 ESR_EL1, Exception Syndrome Register (EL1)
	Field descriptions
	Accessing ESR_EL1

	D23.2.41 ESR_EL2, Exception Syndrome Register (EL2)
	Field descriptions
	Accessing ESR_EL2

	D23.2.42 ESR_EL3, Exception Syndrome Register (EL3)
	Field descriptions
	Accessing ESR_EL3

	D23.2.43 FAR_EL1, Fault Address Register (EL1)
	Field descriptions
	Accessing FAR_EL1

	D23.2.44 FAR_EL2, Fault Address Register (EL2)
	Field descriptions
	Accessing FAR_EL2

	D23.2.45 FAR_EL3, Fault Address Register (EL3)
	Field descriptions
	Accessing FAR_EL3

	D23.2.46 FPEXC32_EL2, Floating-Point Exception Control Register
	Field descriptions
	Accessing FPEXC32_EL2

	D23.2.47 GCR_EL1, Tag Control Register.
	Field descriptions
	Accessing GCR_EL1

	D23.2.48 GMID_EL1, Multiple tag transfer ID Register
	Field descriptions
	Accessing GMID_EL1

	D23.2.49 GPCCR_EL3, Granule Protection Check Control Register (EL3)
	Field descriptions
	Accessing GPCCR_EL3

	D23.2.50 GPTBR_EL3, Granule Protection Table Base Register
	Field descriptions
	Accessing GPTBR_EL3

	D23.2.51 HACR_EL2, Hypervisor Auxiliary Control Register
	Field descriptions
	Accessing HACR_EL2

	D23.2.52 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register
	Field descriptions
	Accessing HAFGRTR_EL2

	D23.2.53 HCR_EL2, Hypervisor Configuration Register
	Field descriptions
	Accessing HCR_EL2

	D23.2.54 HCRX_EL2, Extended Hypervisor Configuration Register
	Field descriptions
	Accessing HCRX_EL2

	D23.2.55 HDFGRTR2_EL2, Hypervisor Debug Fine-Grained Read Trap Register 2
	Field descriptions
	Accessing HDFGRTR2_EL2

	D23.2.56 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register
	Field descriptions
	Accessing HDFGRTR_EL2

	D23.2.57 HDFGWTR2_EL2, Hypervisor Debug Fine-Grained Write Trap Register 2
	Field descriptions
	Accessing HDFGWTR2_EL2

	D23.2.58 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register
	Field descriptions
	Accessing HDFGWTR_EL2

	D23.2.59 HFGITR2_EL2, Hypervisor Fine-Grained Instruction Trap Register 2
	Field descriptions
	Accessing HFGITR2_EL2

	D23.2.60 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register
	Field descriptions
	Accessing HFGITR_EL2

	D23.2.61 HFGRTR2_EL2, Hypervisor Fine-Grained Read Trap Register 2
	Field descriptions
	Accessing HFGRTR2_EL2

	D23.2.62 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register
	Field descriptions
	Accessing HFGRTR_EL2

	D23.2.63 HFGWTR2_EL2, Hypervisor Fine-Grained Write Trap Register 2
	Field descriptions
	Accessing HFGWTR2_EL2

	D23.2.64 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register
	Field descriptions
	Accessing HFGWTR_EL2

	D23.2.65 HPFAR_EL2, Hypervisor IPA Fault Address Register
	Field descriptions
	Accessing HPFAR_EL2

	D23.2.66 HSTR_EL2, Hypervisor System Trap Register
	Field descriptions
	Accessing HSTR_EL2

	D23.2.67 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0
	Field descriptions
	Accessing ID_AA64AFR0_EL1

	D23.2.68 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1
	Field descriptions
	Accessing ID_AA64AFR1_EL1

	D23.2.69 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	Field descriptions
	Accessing ID_AA64DFR0_EL1

	D23.2.70 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1
	Field descriptions
	Accessing ID_AA64DFR1_EL1

	D23.2.71 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_AA64ISAR0_EL1

	D23.2.72 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_AA64ISAR1_EL1

	D23.2.73 ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2
	Field descriptions
	Accessing ID_AA64ISAR2_EL1

	D23.2.74 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	Field descriptions
	Accessing ID_AA64MMFR0_EL1

	D23.2.75 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	Field descriptions
	Accessing ID_AA64MMFR1_EL1

	D23.2.76 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	Field descriptions
	Accessing ID_AA64MMFR2_EL1

	D23.2.77 ID_AA64MMFR3_EL1, AArch64 Memory Model Feature Register 3
	Field descriptions
	Accessing ID_AA64MMFR3_EL1

	D23.2.78 ID_AA64MMFR4_EL1, AArch64 Memory Model Feature Register 4
	Field descriptions
	Accessing ID_AA64MMFR4_EL1

	D23.2.79 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	Field descriptions
	Accessing ID_AA64PFR0_EL1

	D23.2.80 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	Field descriptions
	Accessing ID_AA64PFR1_EL1

	D23.2.81 ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2
	Field descriptions
	Accessing ID_AA64PFR2_EL1

	D23.2.82 ID_AA64SMFR0_EL1, SME Feature ID Register 0
	Field descriptions
	Accessing ID_AA64SMFR0_EL1

	D23.2.83 ID_AA64ZFR0_EL1, SVE Feature ID Register 0
	Field descriptions
	Accessing ID_AA64ZFR0_EL1

	D23.2.84 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0
	Field descriptions
	Accessing ID_AFR0_EL1

	D23.2.85 ID_DFR0_EL1, AArch32 Debug Feature Register 0
	Field descriptions
	Accessing ID_DFR0_EL1

	D23.2.86 ID_DFR1_EL1, Debug Feature Register 1
	Field descriptions
	Accessing ID_DFR1_EL1

	D23.2.87 ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_ISAR0_EL1

	D23.2.88 ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_ISAR1_EL1

	D23.2.89 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2
	Field descriptions
	Accessing ID_ISAR2_EL1

	D23.2.90 ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3
	Field descriptions
	Accessing ID_ISAR3_EL1

	D23.2.91 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4
	Field descriptions
	Accessing ID_ISAR4_EL1

	D23.2.92 ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5
	Field descriptions
	Accessing ID_ISAR5_EL1

	D23.2.93 ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6
	Field descriptions
	Accessing ID_ISAR6_EL1

	D23.2.94 ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0
	Field descriptions
	Accessing ID_MMFR0_EL1

	D23.2.95 ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1
	Field descriptions
	Accessing ID_MMFR1_EL1

	D23.2.96 ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2
	Field descriptions
	Accessing ID_MMFR2_EL1

	D23.2.97 ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3
	Field descriptions
	Accessing ID_MMFR3_EL1

	D23.2.98 ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4
	Field descriptions
	Accessing ID_MMFR4_EL1

	D23.2.99 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5
	Field descriptions
	Accessing ID_MMFR5_EL1

	D23.2.100 ID_PFR0_EL1, AArch32 Processor Feature Register 0
	Field descriptions
	Accessing ID_PFR0_EL1

	D23.2.101 ID_PFR1_EL1, AArch32 Processor Feature Register 1
	Field descriptions
	Accessing ID_PFR1_EL1

	D23.2.102 ID_PFR2_EL1, AArch32 Processor Feature Register 2
	Field descriptions
	Accessing ID_PFR2_EL1

	D23.2.103 IFSR32_EL2, Instruction Fault Status Register (EL2)
	Field descriptions
	Accessing IFSR32_EL2

	D23.2.104 ISR_EL1, Interrupt Status Register
	Field descriptions
	Accessing ISR_EL1

	D23.2.105 LORC_EL1, LORegion Control (EL1)
	Field descriptions
	Accessing LORC_EL1

	D23.2.106 LOREA_EL1, LORegion End Address (EL1)
	Field descriptions
	Accessing LOREA_EL1

	D23.2.107 LORID_EL1, LORegionID (EL1)
	Field descriptions
	Accessing LORID_EL1

	D23.2.108 LORN_EL1, LORegion Number (EL1)
	Field descriptions
	Accessing LORN_EL1

	D23.2.109 LORSA_EL1, LORegion Start Address (EL1)
	Field descriptions
	Accessing LORSA_EL1

	D23.2.110 MAIR2_EL1, Extended Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing MAIR2_EL1

	D23.2.111 MAIR2_EL2, Extended Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing MAIR2_EL2

	D23.2.112 MAIR2_EL3, Extended Memory Attribute Indirection Register (EL3)
	Field descriptions
	Accessing MAIR2_EL3

	D23.2.113 MAIR_EL1, Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing MAIR_EL1

	D23.2.114 MAIR_EL2, Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing MAIR_EL2

	D23.2.115 MAIR_EL3, Memory Attribute Indirection Register (EL3)
	Field descriptions
	Accessing MAIR_EL3

	D23.2.116 MECIDR_EL2, MEC Identification Register
	Field descriptions
	Accessing MECIDR_EL2

	D23.2.117 MECID_A0_EL2, Alternate MECID for EL2 and EL2&0 translation regimes
	Field descriptions
	Accessing MECID_A0_EL2

	D23.2.118 MECID_A1_EL2, Alternate MECID for EL2&0 translation regimes.
	Field descriptions
	Accessing MECID_A1_EL2

	D23.2.119 MECID_P0_EL2, Primary MECID for EL2 and EL2&0 translation regimes
	Field descriptions
	Accessing MECID_P0_EL2

	D23.2.120 MECID_P1_EL2, Primary MECID for EL2&0 translation regimes
	Field descriptions
	Accessing MECID_P1_EL2

	D23.2.121 MECID_RL_A_EL3, Realm PA space Alternate MECID for EL3 stage 1 translation regime
	Field descriptions
	Accessing MECID_RL_A_EL3

	D23.2.122 MIDR_EL1, Main ID Register
	Field descriptions
	Accessing MIDR_EL1

	D23.2.123 MFAR_EL3, Physical Fault Address Register (EL3)
	Field descriptions
	Accessing MFAR_EL3

	D23.2.124 MPIDR_EL1, Multiprocessor Affinity Register
	Field descriptions
	Accessing MPIDR_EL1

	D23.2.125 MVFR0_EL1, AArch32 Media and VFP Feature Register 0
	Field descriptions
	Accessing MVFR0_EL1

	D23.2.126 MVFR1_EL1, AArch32 Media and VFP Feature Register 1
	Field descriptions
	Accessing MVFR1_EL1

	D23.2.127 MVFR2_EL1, AArch32 Media and VFP Feature Register 2
	Field descriptions
	Accessing MVFR2_EL1

	D23.2.128 PAR_EL1, Physical Address Register
	Field descriptions
	Accessing PAR_EL1

	D23.2.129 PFAR_EL1, Physical Fault Address Register (EL1)
	Field descriptions
	Accessing PFAR_EL1

	D23.2.130 PFAR_EL2, Physical Fault Address Register (EL2)
	Field descriptions
	Accessing PFAR_EL2

	D23.2.131 PIR_EL1, Permission Indirection Register 1 (EL1)
	Field descriptions
	Accessing PIR_EL1

	D23.2.132 PIR_EL2, Permission Indirection Register 2 (EL2)
	Field descriptions
	Accessing PIR_EL2

	D23.2.133 PIR_EL3, Permission Indirection Register 3 (EL3)
	Field descriptions
	Accessing PIR_EL3

	D23.2.134 PIRE0_EL1, Permission Indirection Register 0 (EL1)
	Field descriptions
	Accessing PIRE0_EL1

	D23.2.135 PIRE0_EL2, Permission Indirection Register 0 (EL2)
	Field descriptions
	Accessing PIRE0_EL2

	D23.2.136 POR_EL0, Permission Overlay Register 0 (EL0)
	Field descriptions
	Accessing POR_EL0

	D23.2.137 POR_EL1, Permission Overlay Register 1 (EL1)
	Field descriptions
	Accessing POR_EL1

	D23.2.138 POR_EL2, Permission Overlay Register 2 (EL2)
	Field descriptions
	Accessing POR_EL2

	D23.2.139 POR_EL3, Permission Overlay Register 3 (EL3)
	Field descriptions
	Accessing POR_EL3

	D23.2.140 RCWMASK_EL1, Read Check Write Instruction Mask (EL1)
	Field descriptions
	Accessing RCWMASK_EL1

	D23.2.141 RCWSMASK_EL1, Software Read Check Write Instruction Mask (EL1)
	Field descriptions
	Accessing RCWSMASK_EL1

	D23.2.142 REVIDR_EL1, Revision ID Register
	Field descriptions
	Accessing REVIDR_EL1

	D23.2.143 RGSR_EL1, Random Allocation Tag Seed Register.
	Field descriptions
	Accessing RGSR_EL1

	D23.2.144 RMR_EL1, Reset Management Register (EL1)
	Field descriptions
	Accessing RMR_EL1

	D23.2.145 RMR_EL2, Reset Management Register (EL2)
	Field descriptions
	Accessing RMR_EL2

	D23.2.146 RMR_EL3, Reset Management Register (EL3)
	Field descriptions
	Accessing RMR_EL3

	D23.2.147 RNDR, Random Number
	Field descriptions
	Accessing RNDR

	D23.2.148 RNDRRS, Random Number Full Entropy
	Field descriptions
	Accessing RNDRRS

	D23.2.149 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)
	Field descriptions
	Accessing RVBAR_EL1

	D23.2.150 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)
	Field descriptions
	Accessing RVBAR_EL2

	D23.2.151 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)
	Field descriptions
	Accessing RVBAR_EL3

	D23.2.152 S2PIR_EL2, Stage 2 Permission Indirection Register (EL2)
	Field descriptions
	Accessing S2PIR_EL2

	D23.2.153 S2POR_EL1, Stage 2 Permission Overlay Register (EL1)
	Field descriptions
	Accessing S2POR_EL1

	D23.2.154 S3_<op1>_<Cn>_<Cm>_<op2>, IMPLEMENTATION DEFINED Registers
	Field descriptions
	Accessing S3_<op1>_<Cn>_<Cm>_<op2>

	D23.2.155 SCR_EL3, Secure Configuration Register
	Field descriptions
	Accessing SCR_EL3

	D23.2.156 SCTLR2_EL1, System Control Register (EL1)
	Field descriptions
	Accessing SCTLR2_EL1

	D23.2.157 SCTLR2_EL2, System Control Register (EL2)
	Field descriptions
	Accessing SCTLR2_EL2

	D23.2.158 SCTLR2_EL3, System Control Register (EL3)
	Field descriptions
	Accessing SCTLR2_EL3

	D23.2.159 SCTLR_EL1, System Control Register (EL1)
	Field descriptions
	Accessing SCTLR_EL1

	D23.2.160 SCTLR_EL2, System Control Register (EL2)
	Field descriptions
	Accessing SCTLR_EL2

	D23.2.161 SCTLR_EL3, System Control Register (EL3)
	Field descriptions
	Accessing SCTLR_EL3

	D23.2.162 SCXTNUM_EL0, EL0 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL0

	D23.2.163 SCXTNUM_EL1, EL1 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL1

	D23.2.164 SCXTNUM_EL2, EL2 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL2

	D23.2.165 SCXTNUM_EL3, EL3 Read/Write Software Context Number
	Field descriptions
	Accessing SCXTNUM_EL3

	D23.2.166 SMCR_EL1, SME Control Register (EL1)
	Field descriptions
	Accessing SMCR_EL1

	D23.2.167 SMCR_EL2, SME Control Register (EL2)
	Field descriptions
	Accessing SMCR_EL2

	D23.2.168 SMCR_EL3, SME Control Register (EL3)
	Field descriptions
	Accessing SMCR_EL3

	D23.2.169 SMIDR_EL1, Streaming Mode Identification Register
	Field descriptions
	Accessing SMIDR_EL1

	D23.2.170 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register
	Field descriptions
	Accessing SMPRIMAP_EL2

	D23.2.171 SMPRI_EL1, Streaming Mode Priority Register
	Field descriptions
	Accessing SMPRI_EL1

	D23.2.172 TCR2_EL1, Extended Translation Control Register (EL1)
	Field descriptions
	Accessing TCR2_EL1

	D23.2.173 TCR2_EL2, Extended Translation Control Register (EL2)
	Field descriptions
	Accessing TCR2_EL2

	D23.2.174 TCR_EL1, Translation Control Register (EL1)
	Field descriptions
	Accessing TCR_EL1

	D23.2.175 TCR_EL2, Translation Control Register (EL2)
	Field descriptions
	Accessing TCR_EL2

	D23.2.176 TCR_EL3, Translation Control Register (EL3)
	Field descriptions
	Accessing TCR_EL3

	D23.2.177 TFSRE0_EL1, Tag Fault Status Register (EL0).
	Field descriptions
	Accessing TFSRE0_EL1

	D23.2.178 TFSR_EL1, Tag Fault Status Register (EL1)
	Field descriptions
	Accessing TFSR_EL1

	D23.2.179 TFSR_EL2, Tag Fault Status Register (EL2)
	Field descriptions
	Accessing TFSR_EL2

	D23.2.180 TFSR_EL3, Tag Fault Status Register (EL3)
	Field descriptions
	Accessing TFSR_EL3

	D23.2.181 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2
	Field descriptions
	Accessing TPIDR2_EL0

	D23.2.182 TPIDR_EL0, EL0 Read/Write Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL0

	D23.2.183 TPIDR_EL1, EL1 Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL1

	D23.2.184 TPIDR_EL2, EL2 Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL2

	D23.2.185 TPIDR_EL3, EL3 Software Thread ID Register
	Field descriptions
	Accessing TPIDR_EL3

	D23.2.186 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register
	Field descriptions
	Accessing TPIDRRO_EL0

	D23.2.187 TTBR0_EL1, Translation Table Base Register 0 (EL1)
	Field descriptions
	Accessing TTBR0_EL1

	D23.2.188 TTBR0_EL2, Translation Table Base Register 0 (EL2)
	Field descriptions
	Accessing TTBR0_EL2

	D23.2.189 TTBR0_EL3, Translation Table Base Register 0 (EL3)
	Field descriptions
	Accessing TTBR0_EL3

	D23.2.190 TTBR1_EL1, Translation Table Base Register 1 (EL1)
	Field descriptions
	Accessing TTBR1_EL1

	D23.2.191 TTBR1_EL2, Translation Table Base Register 1 (EL2)
	Field descriptions
	Accessing TTBR1_EL2

	D23.2.192 VBAR_EL1, Vector Base Address Register (EL1)
	Field descriptions
	Accessing VBAR_EL1

	D23.2.193 VBAR_EL2, Vector Base Address Register (EL2)
	Field descriptions
	Accessing VBAR_EL2

	D23.2.194 VBAR_EL3, Vector Base Address Register (EL3)
	Field descriptions
	Accessing VBAR_EL3

	D23.2.195 VMECID_A_EL2, Alternate MECID for EL1&0 stage 2 translation regime
	Field descriptions
	Accessing VMECID_A_EL2

	D23.2.196 VMECID_P_EL2, Primary MECID for EL1&0 stage 2 translation regime
	Field descriptions
	Accessing VMECID_P_EL2

	D23.2.197 VMPIDR_EL2, Virtualization Multiprocessor ID Register
	Field descriptions
	Accessing VMPIDR_EL2

	D23.2.198 VNCR_EL2, Virtual Nested Control Register
	Field descriptions
	Accessing VNCR_EL2

	D23.2.199 VPIDR_EL2, Virtualization Processor ID Register
	Field descriptions
	Accessing VPIDR_EL2

	D23.2.200 VSTCR_EL2, Virtualization Secure Translation Control Register
	Field descriptions
	Accessing VSTCR_EL2

	D23.2.201 VSTTBR_EL2, Virtualization Secure Translation Table Base Register
	Field descriptions
	Accessing VSTTBR_EL2

	D23.2.202 VTCR_EL2, Virtualization Translation Control Register
	Field descriptions
	Accessing VTCR_EL2

	D23.2.203 VTTBR_EL2, Virtualization Translation Table Base Register
	Field descriptions
	Accessing VTTBR_EL2

	D23.2.204 ZCR_EL1, SVE Control Register (EL1)
	Field descriptions
	Accessing ZCR_EL1

	D23.2.205 ZCR_EL2, SVE Control Register (EL2)
	Field descriptions
	Accessing ZCR_EL2

	D23.2.206 ZCR_EL3, SVE Control Register (EL3)
	Field descriptions
	Accessing ZCR_EL3

	D23.3 Debug registers
	D23.3.1 DBGAUTHSTATUS_EL1, Debug Authentication Status Register
	Field descriptions
	Accessing DBGAUTHSTATUS_EL1

	D23.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 63
	Field descriptions
	Accessing DBGBCR<n>_EL1

	D23.3.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 63
	Field descriptions
	Accessing DBGBVR<n>_EL1

	D23.3.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear Register
	Field descriptions
	Accessing DBGCLAIMCLR_EL1

	D23.3.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set Register
	Field descriptions
	Accessing DBGCLAIMSET_EL1

	D23.3.6 DBGDTR_EL0, Debug Data Transfer Register, half-duplex
	Field descriptions
	Accessing DBGDTR_EL0

	D23.3.7 DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	Field descriptions
	Accessing DBGDTRRX_EL0

	D23.3.8 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	Field descriptions
	Accessing DBGDTRTX_EL0

	D23.3.9 DBGPRCR_EL1, Debug Power Control Register
	Field descriptions
	Accessing DBGPRCR_EL1

	D23.3.10 DBGVCR32_EL2, Debug Vector Catch Register
	Field descriptions
	Accessing DBGVCR32_EL2

	D23.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 63
	Field descriptions
	Accessing DBGWCR<n>_EL1

	D23.3.12 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 63
	Field descriptions
	Accessing DBGWVR<n>_EL1

	D23.3.13 DLR_EL0, Debug Link Register
	Field descriptions
	Accessing DLR_EL0

	D23.3.14 DSPSR_EL0, Debug Saved Program Status Register
	Field descriptions
	Accessing DSPSR_EL0

	D23.3.15 MDCCINT_EL1, Monitor DCC Interrupt Enable Register
	Field descriptions
	Accessing MDCCINT_EL1

	D23.3.16 MDCCSR_EL0, Monitor DCC Status Register
	Field descriptions
	Accessing MDCCSR_EL0

	D23.3.17 MDCR_EL2, Monitor Debug Configuration Register (EL2)
	Field descriptions
	Accessing MDCR_EL2

	D23.3.18 MDCR_EL3, Monitor Debug Configuration Register (EL3)
	Field descriptions
	Accessing MDCR_EL3

	D23.3.19 MDRAR_EL1, Monitor Debug ROM Address Register
	Field descriptions
	Accessing MDRAR_EL1

	D23.3.20 MDSCR_EL1, Monitor Debug System Control Register
	Field descriptions
	Accessing MDSCR_EL1

	D23.3.21 MDSELR_EL1, Breakpoint and Watchpoint Selection Register
	Field descriptions
	Accessing MDSELR_EL1

	D23.3.22 OSDLR_EL1, OS Double Lock Register
	Field descriptions
	Accessing OSDLR_EL1

	D23.3.23 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive
	Field descriptions
	Accessing OSDTRRX_EL1

	D23.3.24 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit
	Field descriptions
	Accessing OSDTRTX_EL1

	D23.3.25 OSECCR_EL1, OS Lock Exception Catch Control Register
	Field descriptions
	Accessing OSECCR_EL1

	D23.3.26 OSLAR_EL1, OS Lock Access Register
	Field descriptions
	Accessing OSLAR_EL1

	D23.3.27 OSLSR_EL1, OS Lock Status Register
	Field descriptions
	Accessing OSLSR_EL1

	D23.3.28 SDER32_EL2, AArch32 Secure Debug Enable Register
	Field descriptions
	Accessing SDER32_EL2

	D23.3.29 SDER32_EL3, AArch32 Secure Debug Enable Register
	Field descriptions
	Accessing SDER32_EL3

	D23.3.30 TRFCR_EL1, Trace Filter Control Register (EL1)
	Field descriptions
	Accessing TRFCR_EL1

	D23.3.31 TRFCR_EL2, Trace Filter Control Register (EL2)
	Field descriptions
	Accessing TRFCR_EL2

	D23.4 Trace registers
	D23.4.1 TRBBASER_EL1, Trace Buffer Base Address Register
	Field descriptions
	Accessing TRBBASER_EL1

	D23.4.2 TRBIDR_EL1, Trace Buffer ID Register
	Field descriptions
	Accessing TRBIDR_EL1

	D23.4.3 TRBLIMITR_EL1, Trace Buffer Limit Address Register
	Field descriptions
	Accessing TRBLIMITR_EL1

	D23.4.4 TRBMAR_EL1, Trace Buffer Memory Attribute Register
	Field descriptions
	Accessing TRBMAR_EL1

	D23.4.5 TRBMPAM_EL1, Trace Buffer MPAM Configuration Register
	Field descriptions
	Accessing TRBMPAM_EL1

	D23.4.6 TRBPTR_EL1, Trace Buffer Write Pointer Register
	Field descriptions
	Accessing TRBPTR_EL1

	D23.4.7 TRBSR_EL1, Trace Buffer Status/syndrome Register
	Field descriptions
	Accessing TRBSR_EL1

	D23.4.8 TRBTRG_EL1, Trace Buffer Trigger Counter Register
	Field descriptions
	Accessing TRBTRG_EL1

	D23.4.9 TRCACATR<n>, Trace Address Comparator Access Type Register <n>, n = 0 - 15
	Field descriptions
	Accessing TRCACATR<n>

	D23.4.10 TRCACVR<n>, Trace Address Comparator Value Register <n>, n = 0 - 15
	Field descriptions
	Accessing TRCACVR<n>

	D23.4.11 TRCAUTHSTATUS, Trace Authentication Status Register
	Field descriptions
	Accessing TRCAUTHSTATUS

	D23.4.12 TRCAUXCTLR, Trace Auxiliary Control Register
	Field descriptions
	Accessing TRCAUXCTLR

	D23.4.13 TRCBBCTLR, Trace Branch Broadcast Control Register
	Field descriptions
	Accessing TRCBBCTLR

	D23.4.14 TRCCCCTLR, Trace Cycle Count Control Register
	Field descriptions
	Accessing TRCCCCTLR

	D23.4.15 TRCCIDCCTLR0, Trace Context Identifier Comparator Control Register 0
	Field descriptions
	Accessing TRCCIDCCTLR0

	D23.4.16 TRCCIDCCTLR1, Trace Context Identifier Comparator Control Register 1
	Field descriptions
	Accessing TRCCIDCCTLR1

	D23.4.17 TRCCIDCVR<n>, Trace Context Identifier Comparator Value Registers <n>, n = 0 - 7
	Field descriptions
	Accessing TRCCIDCVR<n>

	D23.4.18 TRCCLAIMCLR, Trace Claim Tag Clear Register
	Field descriptions
	Accessing TRCCLAIMCLR

	D23.4.19 TRCCLAIMSET, Trace Claim Tag Set Register
	Field descriptions
	Accessing TRCCLAIMSET

	D23.4.20 TRCCNTCTLR<n>, Trace Counter Control Register <n>, n = 0 - 3
	Field descriptions
	Accessing TRCCNTCTLR<n>

	D23.4.21 TRCCNTRLDVR<n>, Trace Counter Reload Value Register <n>, n = 0 - 3
	Field descriptions
	Accessing TRCCNTRLDVR<n>

	D23.4.22 TRCCNTVR<n>, Trace Counter Value Register <n>, n = 0 - 3
	Field descriptions
	Accessing TRCCNTVR<n>

	D23.4.23 TRCCONFIGR, Trace Configuration Register
	Field descriptions
	Accessing TRCCONFIGR

	D23.4.24 TRCDEVARCH, Trace Device Architecture Register
	Field descriptions
	Accessing TRCDEVARCH

	D23.4.25 TRCDEVID, Trace Device Configuration Register
	Field descriptions
	Accessing TRCDEVID

	D23.4.26 TRCEVENTCTL0R, Trace Event Control 0 Register
	Field descriptions
	Accessing TRCEVENTCTL0R

	D23.4.27 TRCEVENTCTL1R, Trace Event Control 1 Register
	Field descriptions
	Accessing TRCEVENTCTL1R

	D23.4.28 TRCEXTINSELR<n>, Trace External Input Select Register <n>, n = 0 - 3
	Field descriptions
	Accessing TRCEXTINSELR<n>

	D23.4.29 TRCIDR0, Trace ID Register 0
	Field descriptions
	Accessing TRCIDR0

	D23.4.30 TRCIDR1, Trace ID Register 1
	Field descriptions
	Accessing TRCIDR1

	D23.4.31 TRCIDR10, Trace ID Register 10
	Field descriptions
	Accessing TRCIDR10

	D23.4.32 TRCIDR11, Trace ID Register 11
	Field descriptions
	Accessing TRCIDR11

	D23.4.33 TRCIDR12, Trace ID Register 12
	Field descriptions
	Accessing TRCIDR12

	D23.4.34 TRCIDR13, Trace ID Register 13
	Field descriptions
	Accessing TRCIDR13

	D23.4.35 TRCIDR2, Trace ID Register 2
	Field descriptions
	Accessing TRCIDR2

	D23.4.36 TRCIDR3, Trace ID Register 3
	Field descriptions
	Accessing TRCIDR3

	D23.4.37 TRCIDR4, Trace ID Register 4
	Field descriptions
	Accessing TRCIDR4

	D23.4.38 TRCIDR5, Trace ID Register 5
	Field descriptions
	Accessing TRCIDR5

	D23.4.39 TRCIDR6, Trace ID Register 6
	Field descriptions
	Accessing TRCIDR6

	D23.4.40 TRCIDR7, Trace ID Register 7
	Field descriptions
	Accessing TRCIDR7

	D23.4.41 TRCIDR8, Trace ID Register 8
	Field descriptions
	Accessing TRCIDR8

	D23.4.42 TRCIDR9, Trace ID Register 9
	Field descriptions
	Accessing TRCIDR9

	D23.4.43 TRCIMSPEC0, Trace IMP DEF Register 0
	Field descriptions
	Accessing TRCIMSPEC0

	D23.4.44 TRCIMSPEC<n>, Trace IMP DEF Register <n>, n = 1 - 7
	Field descriptions
	Accessing TRCIMSPEC<n>

	D23.4.45 TRCITECR_EL1, Instrumentation Trace Control Register (EL1)
	Field descriptions
	Accessing TRCITECR_EL1

	D23.4.46 TRCITECR_EL2, Instrumentation Trace Control Register (EL2)
	Field descriptions
	Accessing TRCITECR_EL2

	D23.4.47 TRCITEEDCR, Instrumentation Trace Extension External Debug Control Register
	Field descriptions
	Accessing TRCITEEDCR

	D23.4.48 TRCOSLSR, Trace OS Lock Status Register
	Field descriptions
	Accessing TRCOSLSR

	D23.4.49 TRCPRGCTLR, Trace Programming Control Register
	Field descriptions
	Accessing TRCPRGCTLR

	D23.4.50 TRCQCTLR, Trace Q Element Control Register
	Field descriptions
	Accessing TRCQCTLR

	D23.4.51 TRCRSCTLR<n>, Trace Resource Selection Control Register <n>, n = 2 - 31
	Field descriptions
	Accessing TRCRSCTLR<n>

	D23.4.52 TRCRSR, Trace Resources Status Register
	Field descriptions
	Accessing TRCRSR

	D23.4.53 TRCSEQEVR<n>, Trace Sequencer State Transition Control Register <n>, n = 0 - 2
	Field descriptions
	Accessing TRCSEQEVR<n>

	D23.4.54 TRCSEQRSTEVR, Trace Sequencer Reset Control Register
	Field descriptions
	Accessing TRCSEQRSTEVR

	D23.4.55 TRCSEQSTR, Trace Sequencer State Register
	Field descriptions
	Accessing TRCSEQSTR

	D23.4.56 TRCSSCCR<n>, Trace Single-shot Comparator Control Register <n>, n = 0 - 7
	Field descriptions
	Accessing TRCSSCCR<n>

	D23.4.57 TRCSSCSR<n>, Trace Single-shot Comparator Control Status Register <n>, n = 0 - 7
	Field descriptions
	Accessing TRCSSCSR<n>

	D23.4.58 TRCSSPCICR<n>, Trace Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7
	Field descriptions
	Accessing TRCSSPCICR<n>

	D23.4.59 TRCSTALLCTLR, Trace Stall Control Register
	Field descriptions
	Accessing TRCSTALLCTLR

	D23.4.60 TRCSTATR, Trace Status Register
	Field descriptions
	Accessing TRCSTATR

	D23.4.61 TRCSYNCPR, Trace Synchronization Period Register
	Field descriptions
	Accessing TRCSYNCPR

	D23.4.62 TRCTRACEIDR, Trace ID Register
	Field descriptions
	Accessing TRCTRACEIDR

	D23.4.63 TRCTSCTLR, Trace Timestamp Control Register
	Field descriptions
	Accessing TRCTSCTLR

	D23.4.64 TRCVICTLR, Trace ViewInst Main Control Register
	Field descriptions
	Accessing TRCVICTLR

	D23.4.65 TRCVIIECTLR, Trace ViewInst Include/Exclude Control Register
	Field descriptions
	Accessing TRCVIIECTLR

	D23.4.66 TRCVIPCSSCTLR, Trace ViewInst Start/Stop PE Comparator Control Register
	Field descriptions
	Accessing TRCVIPCSSCTLR

	D23.4.67 TRCVISSCTLR, Trace ViewInst Start/Stop Control Register
	Field descriptions
	Accessing TRCVISSCTLR

	D23.4.68 TRCVMIDCCTLR0, Trace Virtual Context Identifier Comparator Control Register 0
	Field descriptions
	Accessing TRCVMIDCCTLR0

	D23.4.69 TRCVMIDCCTLR1, Trace Virtual Context Identifier Comparator Control Register 1
	Field descriptions
	Accessing TRCVMIDCCTLR1

	D23.4.70 TRCVMIDCVR<n>, Trace Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7
	Field descriptions
	Accessing TRCVMIDCVR<n>

	D23.5 Performance Monitors registers
	D23.5.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register
	Field descriptions
	Accessing PMCCFILTR_EL0

	D23.5.2 PMCCNTR_EL0, Performance Monitors Cycle Count Register
	Field descriptions
	Accessing PMCCNTR_EL0

	D23.5.3 PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register
	Field descriptions
	Accessing PMCCNTSVR_EL1

	D23.5.4 PMCEID0_EL0, Performance Monitors Common Event Identification Register 0
	Field descriptions
	Accessing PMCEID0_EL0

	D23.5.5 PMCEID1_EL0, Performance Monitors Common Event Identification Register 1
	Field descriptions
	Accessing PMCEID1_EL0

	D23.5.6 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register
	Field descriptions
	Accessing PMCNTENCLR_EL0

	D23.5.7 PMCNTENSET_EL0, Performance Monitors Count Enable Set Register
	Field descriptions
	Accessing PMCNTENSET_EL0

	D23.5.8 PMCR_EL0, Performance Monitors Control Register
	Field descriptions
	Accessing PMCR_EL0

	D23.5.9 PMECR_EL1, Performance Monitors Extended Control Register (EL1)
	Field descriptions
	Accessing PMECR_EL1

	D23.5.10 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTR<n>_EL0

	D23.5.11 PMEVCNTSVR<n>_EL1, Performance Monitors Event Count Saved Value Register <n>, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTSVR<n>_EL1

	D23.5.12 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVTYPER<n>_EL0

	D23.5.13 PMIAR_EL1, Performance Monitors Instruction Address Register
	Field descriptions
	Accessing PMIAR_EL1

	D23.5.14 PMICFILTR_EL0, Performance Monitors Instruction Counter Filter Register
	Field descriptions
	Accessing PMICFILTR_EL0

	D23.5.15 PMICNTR_EL0, Performance Monitors Instruction Counter Register
	Field descriptions
	Accessing PMICNTR_EL0

	D23.5.16 PMICNTSVR_EL1, Performance Monitors Instruction Count Saved Value Register
	Field descriptions
	Accessing PMICNTSVR_EL1

	D23.5.17 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register
	Field descriptions
	Accessing PMINTENCLR_EL1

	D23.5.18 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register
	Field descriptions
	Accessing PMINTENSET_EL1

	D23.5.19 PMMIR_EL1, Performance Monitors Machine Identification Register
	Field descriptions
	Accessing PMMIR_EL1

	D23.5.20 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register
	Field descriptions
	Accessing PMOVSCLR_EL0

	D23.5.21 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register
	Field descriptions
	Accessing PMOVSSET_EL0

	D23.5.22 PMSELR_EL0, Performance Monitors Event Counter Selection Register
	Field descriptions
	Accessing PMSELR_EL0

	D23.5.23 PMSSCR_EL1, Performance Monitors Snapshot Status and Capture Register
	Field descriptions
	Accessing PMSSCR_EL1

	D23.5.24 PMSWINC_EL0, Performance Monitors Software Increment Register
	Field descriptions
	Accessing PMSWINC_EL0

	D23.5.25 PMUACR_EL1, Performance Monitors User Access Control Register
	Field descriptions
	Accessing PMUACR_EL1

	D23.5.26 PMUSERENR_EL0, Performance Monitors User Enable Register
	Field descriptions
	Accessing PMUSERENR_EL0

	D23.5.27 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register
	Field descriptions
	Accessing PMXEVCNTR_EL0

	D23.5.28 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register
	Field descriptions
	Accessing PMXEVTYPER_EL0

	D23.5.29 PMZR_EL0, Performance Monitors Zero with Mask
	Field descriptions
	Accessing PMZR_EL0

	D23.5.30 SPMACCESSR_EL1, System Performance Monitors Access Register (EL1)
	Field descriptions
	Accessing SPMACCESSR_EL1

	D23.5.31 SPMACCESSR_EL2, System Performance Monitors Access Register (EL2)
	Field descriptions
	Accessing SPMACCESSR_EL2

	D23.5.32 SPMACCESSR_EL3, System Performance Monitors Access Register (EL3)
	Field descriptions
	Accessing SPMACCESSR_EL3

	D23.5.33 SPMCFGR_EL1, System Performance Monitors Configuration Register
	Field descriptions
	Accessing SPMCFGR_EL1

	D23.5.34 SPMCGCR<n>_EL1, System PMU Counter Group Configuration Register <n>, n = 0 - 1
	Field descriptions
	Accessing SPMCGCR<n>_EL1

	D23.5.35 SPMCNTENCLR_EL0, System Performance Monitors Count Enable Clear Register
	Field descriptions
	Accessing SPMCNTENCLR_EL0

	D23.5.36 SPMCNTENSET_EL0, System Performance Monitors Count Enable Set Register
	Field descriptions
	Accessing SPMCNTENSET_EL0

	D23.5.37 SPMCR_EL0, System Performance Monitor Control Register
	Field descriptions
	Accessing SPMCR_EL0

	D23.5.38 SPMDEVAFF_EL1, System Performance Monitors Device Affinity Register
	Field descriptions
	Accessing SPMDEVAFF_EL1

	D23.5.39 SPMDEVARCH_EL1, System Performance Monitors Device Architecture Register
	Field descriptions
	Accessing SPMDEVARCH_EL1

	D23.5.40 SPMEVCNTR<n>_EL0, System Performance Monitors Event Count Register, n = 0 - 63
	Field descriptions
	Accessing SPMEVCNTR<n>_EL0

	D23.5.41 SPMEVFILT2R<n>_EL0, System Performance Monitors Event Filter Control Register 2, n = 0 - 63
	Field descriptions
	Accessing SPMEVFILT2R<n>_EL0

	D23.5.42 SPMEVFILTR<n>_EL0, System Performance Monitors Event Filter Control Register, n = 0 - 63
	Field descriptions
	Accessing SPMEVFILTR<n>_EL0

	D23.5.43 SPMEVTYPER<n>_EL0, System Performance Monitors Event Type Register, n = 0 - 63
	Field descriptions
	Accessing SPMEVTYPER<n>_EL0

	D23.5.44 SPMIIDR_EL1, System PMU Implementation Identification Register
	Field descriptions
	Accessing SPMIIDR_EL1

	D23.5.45 SPMINTENCLR_EL1, System Performance Monitors Interrupt Enable Clear Register
	Field descriptions
	Accessing SPMINTENCLR_EL1

	D23.5.46 SPMINTENSET_EL1, System Performance Monitors Interrupt Enable Set Register
	Field descriptions
	Accessing SPMINTENSET_EL1

	D23.5.47 SPMOVSCLR_EL0, System Performance Monitors Overflow Flag Status Clear Register
	Field descriptions
	Accessing SPMOVSCLR_EL0

	D23.5.48 SPMOVSSET_EL0, System Performance Monitors Overflow Flag Status Set Register
	Field descriptions
	Accessing SPMOVSSET_EL0

	D23.5.49 SPMROOTCR_EL3, System Performance Monitors Root and Realm Control Register
	Field descriptions
	Accessing SPMROOTCR_EL3

	D23.5.50 SPMSCR_EL1, System Performance Monitors Secure Control Register
	Field descriptions
	Accessing SPMSCR_EL1

	D23.5.51 SPMSELR_EL0, System Performance Monitors Select Register
	Field descriptions
	Accessing SPMSELR_EL0

	D23.6 Activity Monitors registers
	D23.6.1 AMCFGR_EL0, Activity Monitors Configuration Register
	Field descriptions
	Accessing AMCFGR_EL0

	D23.6.2 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register
	Field descriptions
	Accessing AMCG1IDR_EL0

	D23.6.3 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register
	Field descriptions
	Accessing AMCGCR_EL0

	D23.6.4 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0
	Field descriptions
	Accessing AMCNTENCLR0_EL0

	D23.6.5 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1
	Field descriptions
	Accessing AMCNTENCLR1_EL0

	D23.6.6 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0
	Field descriptions
	Accessing AMCNTENSET0_EL0

	D23.6.7 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1
	Field descriptions
	Accessing AMCNTENSET1_EL0

	D23.6.8 AMCR_EL0, Activity Monitors Control Register
	Field descriptions
	Accessing AMCR_EL0

	D23.6.9 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVCNTR0<n>_EL0

	D23.6.10 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTR1<n>_EL0

	D23.6.11 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTVOFF0<n>_EL2

	D23.6.12 AMEVCNTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTVOFF1<n>_EL2

	D23.6.13 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVTYPER0<n>_EL0

	D23.6.14 AMEVTYPER1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVTYPER1<n>_EL0

	D23.6.15 AMUSERENR_EL0, Activity Monitors User Enable Register
	Field descriptions
	Accessing AMUSERENR_EL0

	D23.7 Statistical Profiling Extension registers
	D23.7.1 PMBIDR_EL1, Profiling Buffer ID Register
	Field descriptions
	Accessing PMBIDR_EL1

	D23.7.2 PMBLIMITR_EL1, Profiling Buffer Limit Address Register
	Field descriptions
	Accessing PMBLIMITR_EL1

	D23.7.3 PMBPTR_EL1, Profiling Buffer Write Pointer Register
	Field descriptions
	Accessing PMBPTR_EL1

	D23.7.4 PMBSR_EL1, Profiling Buffer Status/syndrome Register
	Field descriptions
	Accessing PMBSR_EL1

	D23.7.5 PMSCR_EL1, Statistical Profiling Control Register (EL1)
	Field descriptions
	Accessing PMSCR_EL1

	D23.7.6 PMSCR_EL2, Statistical Profiling Control Register (EL2)
	Field descriptions
	Accessing PMSCR_EL2

	D23.7.7 PMSDSFR_EL1, Sampling Data Source Filter Register
	Field descriptions
	Accessing PMSDSFR_EL1

	D23.7.8 PMSEVFR_EL1, Sampling Event Filter Register
	Field descriptions
	Accessing PMSEVFR_EL1

	D23.7.9 PMSFCR_EL1, Sampling Filter Control Register
	Field descriptions
	Accessing PMSFCR_EL1

	D23.7.10 PMSICR_EL1, Sampling Interval Counter Register
	Field descriptions
	Accessing PMSICR_EL1

	D23.7.11 PMSIDR_EL1, Sampling Profiling ID Register
	Field descriptions
	Accessing PMSIDR_EL1

	D23.7.12 PMSIRR_EL1, Sampling Interval Reload Register
	Field descriptions
	Accessing PMSIRR_EL1

	D23.7.13 PMSLATFR_EL1, Sampling Latency Filter Register
	Field descriptions
	Accessing PMSLATFR_EL1

	D23.7.14 PMSNEVFR_EL1, Sampling Inverted Event Filter Register
	Field descriptions
	Accessing PMSNEVFR_EL1

	D23.8 Branch Record Buffer Extension registers
	D23.8.1 BRBCR_EL1, Branch Record Buffer Control Register (EL1)
	Field descriptions
	Accessing BRBCR_EL1

	D23.8.2 BRBCR_EL2, Branch Record Buffer Control Register (EL2)
	Field descriptions
	Accessing BRBCR_EL2

	D23.8.3 BRBFCR_EL1, Branch Record Buffer Function Control Register
	Field descriptions
	Accessing BRBFCR_EL1

	D23.8.4 BRBIDR0_EL1, Branch Record Buffer ID0 Register
	Field descriptions
	Accessing BRBIDR0_EL1

	D23.8.5 BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31
	Field descriptions
	Accessing BRBINF<n>_EL1

	D23.8.6 BRBINFINJ_EL1, Branch Record Buffer Information Injection Register
	Field descriptions
	Accessing BRBINFINJ_EL1

	D23.8.7 BRBSRC<n>_EL1, Branch Record Buffer Source Address Register <n>, n = 0 - 31
	Field descriptions
	Accessing BRBSRC<n>_EL1

	D23.8.8 BRBSRCINJ_EL1, Branch Record Buffer Source Address Injection Register
	Field descriptions
	Accessing BRBSRCINJ_EL1

	D23.8.9 BRBTGT<n>_EL1, Branch Record Buffer Target Address Register <n>, n = 0 - 31
	Field descriptions
	Accessing BRBTGT<n>_EL1

	D23.8.10 BRBTGTINJ_EL1, Branch Record Buffer Target Address Injection Register
	Field descriptions
	Accessing BRBTGTINJ_EL1

	D23.8.11 BRBTS_EL1, Branch Record Buffer Timestamp Register
	Field descriptions
	Accessing BRBTS_EL1

	D23.9 RAS registers
	D23.9.1 DISR_EL1, Deferred Interrupt Status Register
	Field descriptions
	Accessing DISR_EL1

	D23.9.2 ERRIDR_EL1, Error Record ID Register
	Field descriptions
	Accessing ERRIDR_EL1

	D23.9.3 ERRSELR_EL1, Error Record Select Register
	Field descriptions
	Accessing ERRSELR_EL1

	D23.9.4 ERXADDR_EL1, Selected Error Record Address Register
	Field descriptions
	Accessing ERXADDR_EL1

	D23.9.5 ERXCTLR_EL1, Selected Error Record Control Register
	Field descriptions
	Accessing ERXCTLR_EL1

	D23.9.6 ERXFR_EL1, Selected Error Record Feature Register
	Field descriptions
	Accessing ERXFR_EL1

	D23.9.7 ERXGSR_EL1, Selected Error Record Group Status Register
	Field descriptions
	Accessing ERXGSR_EL1

	D23.9.8 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0
	Field descriptions
	Accessing ERXMISC0_EL1

	D23.9.9 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1
	Field descriptions
	Accessing ERXMISC1_EL1

	D23.9.10 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2
	Field descriptions
	Accessing ERXMISC2_EL1

	D23.9.11 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3
	Field descriptions
	Accessing ERXMISC3_EL1

	D23.9.12 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown Register
	Field descriptions
	Accessing ERXPFGCDN_EL1

	D23.9.13 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control Register
	Field descriptions
	Accessing ERXPFGCTL_EL1

	D23.9.14 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature Register
	Field descriptions
	Accessing ERXPFGF_EL1

	D23.9.15 ERXSTATUS_EL1, Selected Error Record Primary Status Register
	Field descriptions
	Accessing ERXSTATUS_EL1

	D23.9.16 VDISR_EL2, Virtual Deferred Interrupt Status Register (EL2)
	Field descriptions
	Accessing VDISR_EL2

	D23.9.17 VSESR_EL2, Virtual SError Exception Syndrome Register
	Field descriptions
	Accessing VSESR_EL2

	D23.10 Generic Timer registers
	D23.10.1 CNTFRQ_EL0, Counter-timer Frequency Register
	Field descriptions
	Accessing CNTFRQ_EL0

	D23.10.2 CNTHCTL_EL2, Counter-timer Hypervisor Control Register
	Field descriptions
	Accessing CNTHCTL_EL2

	D23.10.3 CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control Register
	Field descriptions
	Accessing CNTHP_CTL_EL2

	D23.10.4 CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHP_CVAL_EL2

	D23.10.5 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHP_TVAL_EL2

	D23.10.6 CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHPS_CTL_EL2

	D23.10.7 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHPS_CVAL_EL2

	D23.10.8 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHPS_TVAL_EL2

	D23.10.9 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHV_CTL_EL2

	D23.10.10 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHV_CVAL_EL2

	D23.10.11 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHV_TVAL_EL2

	D23.10.12 CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHVS_CTL_EL2

	D23.10.13 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHVS_CVAL_EL2

	D23.10.14 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHVS_TVAL_EL2

	D23.10.15 CNTKCTL_EL1, Counter-timer Kernel Control Register
	Field descriptions
	Accessing CNTKCTL_EL1

	D23.10.16 CNTP_CTL_EL0, Counter-timer Physical Timer Control Register
	Field descriptions
	Accessing CNTP_CTL_EL0

	D23.10.17 CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue Register
	Field descriptions
	Accessing CNTP_CVAL_EL0

	D23.10.18 CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue Register
	Field descriptions
	Accessing CNTP_TVAL_EL0

	D23.10.19 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count Register
	Field descriptions
	Accessing CNTPCTSS_EL0

	D23.10.20 CNTPCT_EL0, Counter-timer Physical Count Register
	Field descriptions
	Accessing CNTPCT_EL0

	D23.10.21 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control Register
	Field descriptions
	Accessing CNTPS_CTL_EL1

	D23.10.22 CNTPOFF_EL2, Counter-timer Physical Offset Register
	Field descriptions
	Accessing CNTPOFF_EL2

	D23.10.23 CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue Register
	Field descriptions
	Accessing CNTPS_CVAL_EL1

	D23.10.24 CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue Register
	Field descriptions
	Accessing CNTPS_TVAL_EL1

	D23.10.25 CNTV_CTL_EL0, Counter-timer Virtual Timer Control Register
	Field descriptions
	Accessing CNTV_CTL_EL0

	D23.10.26 CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue Register
	Field descriptions
	Accessing CNTV_CVAL_EL0

	D23.10.27 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue Register
	Field descriptions
	Accessing CNTV_TVAL_EL0

	D23.10.28 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count Register
	Field descriptions
	Accessing CNTVCTSS_EL0

	D23.10.29 CNTVCT_EL0, Counter-timer Virtual Count Register
	Field descriptions
	Accessing CNTVCT_EL0

	D23.10.30 CNTVOFF_EL2, Counter-timer Virtual Offset Register
	Field descriptions
	Accessing CNTVOFF_EL2

	D23.11 Guarded Control Stack registers
	D23.11.1 GCSCR_EL1, Guarded Control Stack Control Register (EL1)
	Field descriptions
	Accessing GCSCR_EL1

	D23.11.2 GCSCR_EL2, Guarded Control Stack Control Register (EL2)
	Field descriptions
	Accessing GCSCR_EL2

	D23.11.3 GCSCR_EL3, Guarded Control Stack Control Register (EL3)
	Field descriptions
	Accessing GCSCR_EL3

	D23.11.4 GCSCRE0_EL1, Guarded Control Stack Control Register (EL0)
	Field descriptions
	Accessing GCSCRE0_EL1

	D23.11.5 GCSPR_EL0, Guarded Control Stack Pointer Register (EL0)
	Field descriptions
	Accessing GCSPR_EL0

	D23.11.6 GCSPR_EL1, Guarded Control Stack Pointer Register (EL1)
	Field descriptions
	Accessing GCSPR_EL1

	D23.11.7 GCSPR_EL2, Guarded Control Stack Pointer Register (EL2)
	Field descriptions
	Accessing GCSPR_EL2

	D23.11.8 GCSPR_EL3, Guarded Control Stack Pointer Register (EL3)
	Field descriptions
	Accessing GCSPR_EL3

	D23.12 MPAM registers
	D23.12.1 MPAM0_EL1, MPAM0 Register (EL1)
	Field descriptions
	Accessing MPAM0_EL1

	D23.12.2 MPAM1_EL1, MPAM1 Register (EL1)
	Field descriptions
	Accessing MPAM1_EL1

	D23.12.3 MPAM2_EL2, MPAM2 Register (EL2)
	Field descriptions
	Accessing MPAM2_EL2

	D23.12.4 MPAM3_EL3, MPAM3 Register (EL3)
	Field descriptions
	Accessing MPAM3_EL3

	D23.12.5 MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)
	Field descriptions
	Accessing MPAMHCR_EL2

	D23.12.6 MPAMIDR_EL1, MPAM ID Register (EL1)
	Field descriptions
	Accessing MPAMIDR_EL1

	D23.12.7 MPAMSM_EL1, MPAM Streaming Mode Register
	Field descriptions
	Accessing MPAMSM_EL1

	D23.12.8 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0
	Field descriptions
	Accessing MPAMVPM0_EL2

	D23.12.9 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1
	Field descriptions
	Accessing MPAMVPM1_EL2

	D23.12.10 MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2
	Field descriptions
	Accessing MPAMVPM2_EL2

	D23.12.11 MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3
	Field descriptions
	Accessing MPAMVPM3_EL2

	D23.12.12 MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4
	Field descriptions
	Accessing MPAMVPM4_EL2

	D23.12.13 MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5
	Field descriptions
	Accessing MPAMVPM5_EL2

	D23.12.14 MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6
	Field descriptions
	Accessing MPAMVPM6_EL2

	D23.12.15 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7
	Field descriptions
	Accessing MPAMVPM7_EL2

	D23.12.16 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register
	Field descriptions
	Accessing MPAMVPMV_EL2

	Part E: The AArch32 Application Level Architecture�
	E1: The AArch32 Application Level Programmers’ Model�
	E1.1 About the Application level programmers’ model
	E1.2 The Application level programmers’ model in AArch32 state
	E1.2.1 Instruction sets, arithmetic operations, and register files
	E1.2.2 Core data types and arithmetic in AArch32 state
	E1.2.2.1 Integer arithmetic

	E1.2.3 The general-purpose registers, and the PC, in AArch32 state
	E1.2.3.1 Writing to the PC
	E1.2.3.2 Pseudocode description of operations on the AArch32 general-purpose registers and the PC

	E1.2.4 Process state, PSTATE
	E1.2.4.1 Accessing PSTATE fields at EL0
	E1.2.4.2 Use of PSTATE.IT
	E1.2.4.3 Pseudocode description of PSTATE PE state fields

	E1.2.5 About the DIT bit
	E1.2.6 Jazelle support

	E1.3 Advanced SIMD and floating-point instructions
	E1.3.1 The SIMD and floating-point register file
	E1.3.1.1 Advanced SIMD views of the register file
	E1.3.1.2 Floating-point views of the register file
	E1.3.1.3 SIMD and Floating-point register file mapping onto registers
	E1.3.1.4 Pseudocode description of the SIMD and Floating-point register file

	E1.3.2 Data types supported by the Advanced SIMD implementation
	E1.3.2.1 Advanced SIMD vectors

	E1.3.3 Advanced SIMD and floating-point System registers
	E1.3.4 Floating-point data types and arithmetic
	E1.3.5 Flushing denormalized numbers to zero
	E1.3.5.1 Flushing denormalized inputs to zero
	Flushing to zero of denormalized numbers as Intermediate results of some BF16 instructions
	E1.3.5.2 Flushing denormalized outputs to zero

	E1.3.6 NaN handling and the Default NaN
	E1.3.6.1 The Default NaN
	E1.3.6.2 NaN handling
	E1.3.6.3 NaN propagation

	E1.3.7 Rounding
	E1.3.7.1 Round to Nearest mode
	E1.3.7.2 Round towards Plus Infinity mode
	E1.3.7.3 Round towards Minus Infinity mode
	E1.3.7.4 Round towards Zero mode
	E1.3.7.5 Round to Nearest with Ties to Away
	E1.3.7.6 Round to Odd mode

	E1.3.8 Floating-point exceptions and exception traps
	E1.3.8.1 Input Denormal exceptions
	E1.3.8.2 Inexact exceptions
	E1.3.8.3 Underflow exceptions
	E1.3.8.4 Overflow exceptions
	E1.3.8.5 Divide by Zero exceptions
	E1.3.8.6 Invalid Operation exceptions
	E1.3.8.7 Floating-point exception traps
	E1.3.8.8 Combinations of floating-point exceptions

	E1.3.9 Controls of Advanced SIMD operation that do not apply to floating-point operation
	E1.3.10 Implications of not including Advanced SIMD and floating-point support
	E1.3.11 Pseudocode description of floating-point operations
	E1.3.11.1 Generation of specific floating-point values
	E1.3.11.2 Floating-point negation and absolute value
	E1.3.11.3 Floating-point value unpacking
	E1.3.11.4 Floating-point exception and NaN handling
	E1.3.11.5 Floating-point rounding
	E1.3.11.6 Selection of Arm standard floating-point arithmetic
	E1.3.11.7 Floating-point comparisons
	E1.3.11.8 Floating-point maximum and minimum
	E1.3.11.9 Floating-point addition and subtraction
	E1.3.11.10 Floating-point multiplication and division
	E1.3.11.11 Floating-point fused multiply-add
	E1.3.11.12 Floating-point reciprocal estimate and step
	E1.3.11.13 Floating-point square root
	E1.3.11.14 Floating-point reciprocal square root estimate and step
	E1.3.11.15 Floating-point conversions

	E1.4 About the AArch32 System register interface
	E1.5 Exceptions

	E2: The AArch32 Application Level Memory Model�
	E2.1 About the Arm memory model
	E2.1.1 Address space
	E2.1.2 Memory type overview

	E2.2 Atomicity in the Arm architecture
	E2.2.1 Requirements for single-copy atomicity
	E2.2.2 Properties of single-copy atomic accesses
	E2.2.3 Multi-copy atomicity
	E2.2.4 Requirements for multi-copy atomicity
	E2.2.5 Concurrent modification and execution of instructions

	E2.3 Definition of the memory model
	E2.3.1 Basic and dependency definitions
	E2.3.2 Ordering relations and constraints
	E2.3.3 Ordering of instruction fetches
	E2.3.4 Restrictions on the effects of speculation
	E2.3.4.1 Speculative Store Bypass Safe (SSBS)
	E2.3.4.2 Definition of exploitative control of speculative execution
	E2.3.4.3 Definition of exploitative predictive leakage
	E2.3.4.4 Further restrictions on the effects of speculation from Armv8.5

	E2.3.5 Memory barriers
	E2.3.5.1 Instruction Synchronization Barrier (ISB)
	E2.3.5.2 Data Memory Barrier (DMB)
	E2.3.5.3 Data Synchronization Barrier (DSB)
	E2.3.5.4 Speculation Barrier (SB)
	E2.3.5.5 Consumption of Speculative Data Barrier (CSDB)
	E2.3.5.6 Speculative Store Bypass Barrier (SSBB)
	E2.3.5.7 Physical Speculative Store Bypass Barrier (PSSBB)
	E2.3.5.8 Trace Synchronization Barrier (TSB)
	E2.3.5.9 Shareability and access limitations on the data barrier operations
	E2.3.5.10 Load-Acquire, Store-Release

	E2.4 Ordering of translation table walks
	E2.5 Caches and memory hierarchy
	E2.5.1 Introduction to caches
	E2.5.2 Memory hierarchy
	E2.5.2.1 The Cacheability and Shareability memory attributes

	E2.5.3 Implication of caches for the application programmer
	E2.5.3.1 Data coherency issues
	E2.5.3.2 Synchronization and coherency issues between data and instruction accesses

	E2.5.4 Preloading caches

	E2.6 Alignment support
	E2.6.1 Instruction alignment
	E2.6.2 Unaligned data access
	E2.6.3 Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE
	E2.6.4 Unaligned data access restrictions
	E2.6.5 Generation of Alignment faults by load/store multiple accesses to Device memory

	E2.7 Endian support
	E2.7.1 General description of endianness in the Arm architecture
	E2.7.2 Instruction endianness
	E2.7.3 Data endianness
	E2.7.3.1 Instructions to reverse bytes in registers
	E2.7.3.2 Endianness in Advanced SIMD

	E2.7.4 Endianness of memory-mapped peripherals

	E2.8 Memory types and attributes
	E2.8.1 Normal memory
	E2.8.1.1 Shareable Normal memory
	E2.8.1.2 Non-shareable Normal memory
	E2.8.1.3 Cacheability attributes for Normal memory
	E2.8.1.4 Multi-register loads and stores that access Normal memory

	E2.8.2 Device memory
	E2.8.2.1 Gathering
	E2.8.2.2 Reordering
	E2.8.2.3 Early Write Acknowledgement
	E2.8.2.4 Multi-register loads and stores that access Device memory

	E2.8.3 Memory access restrictions

	E2.9 Mismatched memory attributes
	E2.10 Synchronization and semaphores
	E2.10.1 Exclusive access instructions and Non-shareable memory locations
	E2.10.1.1 Changes to the local monitor state resulting from speculative execution

	E2.10.2 Exclusive access instructions and shareable memory locations
	E2.10.2.1 Operation of the global Exclusives monitor

	E2.10.3 Marking and the size of the marked memory block
	E2.10.4 Context switch support
	E2.10.5 Load-Exclusive and Store-Exclusive instruction usage restrictions
	E2.10.6 Use of WFE and SEV instructions by spin-locks

	Part F: The AArch32 Instruction Sets�
	F1: About the T32 and A32 Instruction Descriptions�
	F1.1 Format of instruction descriptions
	F1.1.1 Instruction section title
	F1.1.2 Introduction to the instruction
	F1.1.3 Instruction encodings
	F1.1.4 Assembler symbols
	F1.1.4.1 Assembler syntax prototype line conventions

	F1.1.5 Pseudocode describing how the instruction operates

	F1.2 Standard assembler syntax fields
	F1.3 Conditional execution
	F1.3.1 The Condition code field in A32 instruction encodings
	F1.3.2 Pseudocode description of conditional execution

	F1.4 Shifts applied to a register
	F1.4.1 Constant shifts
	F1.4.1.1 Encoding

	F1.4.2 Register controlled shifts
	F1.4.3 Pseudocode description of instruction-specified shifts and rotates

	F1.5 Memory accesses
	F1.6 Encoding of lists of general-purpose registers and the PC
	F1.7 General information about the T32 and A32 instruction descriptions
	F1.7.1 Execution of instructions in debug state
	F1.7.2 Fixed values in AArch32 instruction and System register descriptions
	F1.7.3 UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space
	F1.7.4 T32 and A32 Advanced SIMD and floating-point instruction encodings
	F1.7.4.1 Advanced SIMD data-processing
	F1.7.4.2 Advanced SIMD element or structure load/store
	F1.7.4.3 Advanced SIMD and floating-point load/store and 64-bit register moves
	F1.7.4.4 Advanced SIMD and floating-point 32-bit register moves
	F1.7.4.5 Floating-point data-processing

	F1.7.5 The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions
	F1.7.5.1 T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier
	F1.7.5.2 A32 restrictions on the use of PC or 0b1111 as a register specifier

	F1.7.6 The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions
	F1.7.7 Modified immediate constants in T32 and A32 instructions
	F1.7.7.1 Modified immediate constants in T32 instructions
	F1.7.7.2 Modified immediate constants in A32 instructions
	F1.7.7.3 Modified immediate constants in T32 and A32 Advanced SIMD instructions
	F1.7.7.4 Modified immediate constants in T32 and A32 floating-point instructions

	F1.8 Additional pseudocode support for instruction descriptions
	F1.8.1 Pseudocode description of operations for System register access instructions
	F1.8.2 Pseudocode details of system calls

	F1.9 Additional information about Advanced SIMD and floating-point instructions
	F1.9.1 Advanced SIMD and floating-point instruction syntax
	F1.9.2 The Advanced SIMD addressing mode
	F1.9.3 Advanced SIMD instruction modifiers
	F1.9.4 Advanced SIMD operand shapes
	F1.9.5 Data type specifiers
	F1.9.5.1 Syntax flexibility

	F1.9.6 Register specifiers
	F1.9.7 Register lists
	F1.9.7.1 Syntax flexibility

	F1.9.8 Register encoding
	F1.9.9 Advanced SIMD scalars

	F2: The AArch32 Instruction Sets Overview�
	F2.1 Support for instructions in different versions of the Arm architecture
	F2.2 Unified Assembler Language
	F2.2.1 Conditional instructions
	F2.2.2 Use of labels in UAL instruction syntax

	F2.3 Branch instructions
	F2.4 Data-processing instructions
	F2.4.1 Standard data-processing instructions
	F2.4.2 Shift instructions
	F2.4.3 Multiply instructions
	F2.4.4 Saturating instructions
	F2.4.5 Saturating addition and subtraction instructions
	F2.4.6 Packing and unpacking instructions
	F2.4.7 Parallel addition and subtraction instructions
	F2.4.8 Divide instructions
	F2.4.9 Miscellaneous data-processing instructions

	F2.5 PSTATE and banked register access instructions
	F2.5.1 PSTATE access instructions
	F2.5.2 Banked register access instructions

	F2.6 Load/store instructions
	F2.6.1 Loads to the PC
	F2.6.2 Halfword and byte loads and stores
	F2.6.3 Load unprivileged and Store unprivileged
	F2.6.4 Load-Exclusive and Store-Exclusive
	F2.6.5 Load-Acquire and Store-Release
	F2.6.6 Addressing modes

	F2.7 Load/store multiple instructions
	F2.7.1 Loads to the PC

	F2.8 Miscellaneous instructions
	F2.8.1 The Yield instruction

	F2.9 Exception-generating and exception-handling instructions
	F2.9.1 Debug state

	F2.10 System register access instructions
	F2.11 Advanced SIMD and floating-point load/store instructions
	F2.11.1 Element and structure load/store instructions

	F2.12 Advanced SIMD and floating-point register transfer instructions
	F2.13 Advanced SIMD data-processing instructions
	F2.13.1 Advanced SIMD parallel addition and subtraction
	F2.13.2 Bitwise Advanced SIMD data-processing instructions
	F2.13.3 Advanced SIMD comparison instructions
	F2.13.4 Advanced SIMD shift instructions
	F2.13.5 Advanced SIMD multiply instructions
	F2.13.6 Advanced SIMD dot product instructions
	F2.13.7 Advanced SIMD complex number arithmetic instructions
	F2.13.8 Advanced SIMD BFloat16 instructions
	F2.13.9 Advanced SIMD matrix multiply instructions
	F2.13.10 Miscellaneous Advanced SIMD data-processing instructions
	F2.13.11 The Cryptographic Extension in AArch32 state

	F2.14 Floating-point data-processing instructions

	F3: T32 Instruction Set Encoding�
	F3.1 T32 instruction set encoding
	F3.1.1 16-bit
	F3.1.1.1 Data-processing (two low registers)
	F3.1.1.2 Load/store (register offset)
	F3.1.1.3 Load/store word/byte (immediate offset)
	F3.1.1.4 Load/store halfword (immediate offset)
	F3.1.1.5 Load/store (SP-relative)
	F3.1.1.6 Add PC/SP (immediate)
	F3.1.1.7 Load/store multiple

	F3.1.2 Shift (immediate), add, subtract, move, and compare
	F3.1.2.1 Add, subtract (three low registers)
	F3.1.2.2 Add, subtract (two low registers and immediate)
	F3.1.2.3 Add, subtract, compare, move (one low register and immediate)

	F3.1.3 Special data instructions and branch and exchange
	F3.1.3.1 Branch and exchange
	F3.1.3.2 Add, subtract, compare, move (two high registers)

	F3.1.4 Miscellaneous 16-bit instructions
	F3.1.4.1 Adjust SP (immediate)
	F3.1.4.2 Extend
	F3.1.4.3 Change Processor State
	F3.1.4.4 Reverse bytes
	F3.1.4.5 Hints
	F3.1.4.6 Push and Pop

	F3.1.5 Conditional branch, and Supervisor Call
	F3.1.5.1 Exception generation

	F3.1.6 32-bit
	F3.1.6.1 Load/store multiple
	F3.1.6.2 Data-processing (shifted register)
	F3.1.6.3 Data-processing (modified immediate)
	F3.1.6.4 Long multiply and divide

	F3.1.7 System register access, Advanced SIMD, and floating-point
	F3.1.8 Advanced SIMD data-processing
	F3.1.8.1 Advanced SIMD three registers of the same length

	F3.1.9 Advanced SIMD two registers, or three registers of different lengths
	F3.1.9.1 Advanced SIMD two registers misc
	F3.1.9.2 Advanced SIMD duplicate (scalar)
	F3.1.9.3 Advanced SIMD three registers of different lengths
	F3.1.9.4 Advanced SIMD two registers and a scalar

	F3.1.10 Advanced SIMD shifts and immediate generation
	F3.1.10.1 Advanced SIMD one register and modified immediate
	F3.1.10.2 Advanced SIMD two registers and shift amount

	F3.1.11 Advanced SIMD and System register load/store and 64-bit move
	F3.1.11.1 Advanced SIMD and floating-point 64-bit move
	F3.1.11.2 System register 64-bit move
	F3.1.11.3 Advanced SIMD and floating-point load/store
	F3.1.11.4 System register Load/Store

	F3.1.12 Advanced SIMD and System register 32-bit move
	F3.1.12.1 Floating-point move special register
	F3.1.12.2 Advanced SIMD 8/16/32-bit element move/duplicate
	F3.1.12.3 System register 32-bit move

	F3.1.13 Floating-point data-processing
	F3.1.13.1 Floating-point data-processing (two registers)
	F3.1.13.2 Floating-point move immediate
	F3.1.13.3 Floating-point data-processing (three registers)

	F3.1.14 Additional Advanced SIMD and floating-point instructions
	F3.1.14.1 Advanced SIMD three registers of the same length extension
	F3.1.14.2 Floating-point conditional select
	F3.1.14.3 Floating-point minNum/maxNum
	F3.1.14.4 Floating-point extraction and insertion
	F3.1.14.5 Floating-point directed convert to integer
	F3.1.14.6 Advanced SIMD and floating-point multiply with accumulate
	F3.1.14.7 Advanced SIMD and floating-point dot product

	F3.1.15 Load/store dual, load/store exclusive, load-acquire/store-release, and table branch
	F3.1.15.1 Load/store exclusive
	F3.1.15.2 Load/store exclusive byte/half/dual
	F3.1.15.3 Load-acquire / Store-release
	F3.1.15.4 Load/store dual (immediate, post-indexed)
	F3.1.15.5 Load/store dual (immediate)
	F3.1.15.6 Load/store dual (immediate, pre-indexed)

	F3.1.16 Branches and miscellaneous control
	F3.1.16.1 Hints
	F3.1.16.2 Change processor state
	F3.1.16.3 Miscellaneous system
	F3.1.16.4 Exception return
	F3.1.16.5 DCPS
	F3.1.16.6 Exception generation

	F3.1.17 Data-processing (plain binary immediate)
	F3.1.17.1 Data-processing (simple immediate)
	F3.1.17.2 Move Wide (16-bit immediate)
	F3.1.17.3 Saturate, Bitfield

	F3.1.18 Advanced SIMD element or structure load/store
	F3.1.18.1 Advanced SIMD load/store multiple structures
	F3.1.18.2 Advanced SIMD load single structure to all lanes
	F3.1.18.3 Advanced SIMD load/store single structure to one lane

	F3.1.19 Load/store single
	F3.1.19.1 Load/store, unsigned (register offset)
	F3.1.19.2 Load/store, unsigned (immediate, post-indexed)
	F3.1.19.3 Load/store, unsigned (negative immediate)
	F3.1.19.4 Load/store, unsigned (unprivileged)
	F3.1.19.5 Load/store, unsigned (immediate, pre-indexed)
	F3.1.19.6 Load/store, unsigned (positive immediate)
	F3.1.19.7 Load, unsigned (literal)
	F3.1.19.8 Load/store, signed (register offset)
	F3.1.19.9 Load/store, signed (immediate, post-indexed)
	F3.1.19.10 Load/store, signed (negative immediate)
	F3.1.19.11 Load/store, signed (unprivileged)
	F3.1.19.12 Load/store, signed (immediate, pre-indexed)
	F3.1.19.13 Load/store, signed (positive immediate)
	F3.1.19.14 Load, signed (literal)

	F3.1.20 Data-processing (register)
	F3.1.20.1 Register extends
	F3.1.20.2 Parallel add-subtract
	F3.1.20.3 Data-processing (two source registers)

	F3.1.21 Multiply, multiply accumulate, and absolute difference
	F3.1.21.1 Multiply and absolute difference

	F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding

	F4: A32 Instruction Set Encoding�
	F4.1 A32 instruction set encoding
	F4.1.1 Data-processing and miscellaneous instructions
	F4.1.1.1 Multiply and Accumulate
	F4.1.1.2 Halfword Multiply and Accumulate

	F4.1.2 Extra load/store
	F4.1.2.1 Load/Store Dual, Half, Signed Byte (register)
	F4.1.2.2 Load/Store Dual, Half, Signed Byte (immediate, literal)

	F4.1.3 Synchronization primitives and Load-Acquire/Store-Release
	F4.1.3.1 Load/Store Exclusive and Load-Acquire/Store-Release

	F4.1.4 Miscellaneous
	F4.1.4.1 Exception Generation
	F4.1.4.2 Move special register (register)
	F4.1.4.3 Cyclic Redundancy Check
	F4.1.4.4 Integer Saturating Arithmetic

	F4.1.5 Data-processing register (immediate shift)
	F4.1.5.1 Integer Data Processing (three register, immediate shift)
	F4.1.5.2 Integer Test and Compare (two register, immediate shift)
	F4.1.5.3 Logical Arithmetic (three register, immediate shift)

	F4.1.6 Data-processing register (register shift)
	F4.1.6.1 Integer Data Processing (three register, register shift)
	F4.1.6.2 Integer Test and Compare (two register, register shift)
	F4.1.6.3 Logical Arithmetic (three register, register shift)

	F4.1.7 Data-processing immediate
	F4.1.7.1 Integer Data Processing (two register and immediate)
	F4.1.7.2 Move Halfword (immediate)
	F4.1.7.3 Move Special Register and Hints (immediate)
	F4.1.7.4 Integer Test and Compare (one register and immediate)
	F4.1.7.5 Logical Arithmetic (two register and immediate)

	F4.1.8 Load/Store Word, Unsigned Byte (immediate, literal)
	F4.1.9 Load/Store Word, Unsigned Byte (register)
	F4.1.10 Media instructions
	F4.1.10.1 Parallel Arithmetic
	F4.1.10.2 Saturate 16-bit
	F4.1.10.3 Reverse Bit/Byte
	F4.1.10.4 Saturate 32-bit
	F4.1.10.5 Extend and Add
	F4.1.10.6 Signed multiply, Divide
	F4.1.10.7 Unsigned Sum of Absolute Differences
	F4.1.10.8 Bitfield Insert
	F4.1.10.9 Permanently UNDEFINED
	F4.1.10.10 Bitfield Extract

	F4.1.11 Branch, branch with link, and block data transfer
	F4.1.11.1 Exception Save/Restore
	F4.1.11.2 Load/Store Multiple
	F4.1.11.3 Branch (immediate)

	F4.1.12 System register access, Advanced SIMD, floating-point, and Supervisor call
	F4.1.13 Supervisor call
	F4.1.14 Unconditional Advanced SIMD and floating-point instructions
	F4.1.14.1 Advanced SIMD three registers of the same length extension
	F4.1.14.2 Floating-point conditional select
	F4.1.14.3 Floating-point minNum/maxNum
	F4.1.14.4 Floating-point extraction and insertion
	F4.1.14.5 Floating-point directed convert to integer
	F4.1.14.6 Advanced SIMD and floating-point multiply with accumulate
	F4.1.14.7 Advanced SIMD and floating-point dot product

	F4.1.15 Advanced SIMD and System register load/store and 64-bit move
	F4.1.15.1 Advanced SIMD and floating-point 64-bit move
	F4.1.15.2 System register 64-bit move
	F4.1.15.3 Advanced SIMD and floating-point load/store
	F4.1.15.4 System register load/store

	F4.1.16 Advanced SIMD and System register 32-bit move
	F4.1.16.1 Floating-point move special register
	F4.1.16.2 Advanced SIMD 8/16/32-bit element move/duplicate
	F4.1.16.3 System register 32-bit move

	F4.1.17 Floating-point data-processing
	F4.1.17.1 Floating-point data-processing (two registers)
	F4.1.17.2 Floating-point move immediate
	F4.1.17.3 Floating-point data-processing (three registers)

	F4.1.18 Unconditional instructions
	F4.1.19 Miscellaneous
	F4.1.19.1 Change Process State

	F4.1.20 Advanced SIMD data-processing
	F4.1.20.1 Advanced SIMD three registers of the same length

	F4.1.21 Advanced SIMD two registers, or three registers of different lengths
	F4.1.21.1 Advanced SIMD two registers misc
	F4.1.21.2 Advanced SIMD duplicate (scalar)
	F4.1.21.3 Advanced SIMD three registers of different lengths
	F4.1.21.4 Advanced SIMD two registers and a scalar

	F4.1.22 Advanced SIMD shifts and immediate generation
	F4.1.22.1 Advanced SIMD one register and modified immediate
	F4.1.22.2 Advanced SIMD two registers and shift amount

	F4.1.23 Memory hints and barriers
	F4.1.23.1 Barriers
	F4.1.23.2 Preload (immediate)
	F4.1.23.3 Preload (register)

	F4.1.24 Advanced SIMD element or structure load/store
	F4.1.24.1 Advanced SIMD load/store multiple structures
	F4.1.24.2 Advanced SIMD load single structure to all lanes
	F4.1.24.3 Advanced SIMD load/store single structure to one lane

	F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding

	F5: T32 and A32 Base Instruction Set Instruction Descriptions�
	F5.1 Alphabetical list of T32 and A32 base instruction set instructions
	F5.1.1 ADC, ADCS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.2 ADC, ADCS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.3 ADC, ADCS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.4 ADD, ADDS (immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.5 ADD, ADDS (register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.6 ADD, ADDS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.7 ADD, ADDS (SP plus immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.8 ADD, ADDS (SP plus register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.9 ADD (immediate, to PC)
	A1
	T1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.10 ADR
	A1
	A2
	T1
	T2
	T3
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings

	F5.1.11 AND, ANDS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.12 AND, ANDS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.13 AND, ANDS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.14 ASR (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.15 ASR (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.16 ASRS (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.17 ASRS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.18 B
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.19 BFC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.20 BFI
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.21 BIC, BICS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.22 BIC, BICS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.23 BIC, BICS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.24 BKPT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.25 BL, BLX (immediate)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.26 BLX (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.27 BX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.28 BXJ
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.29 CBNZ, CBZ
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.30 CLRBHB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.31 CLREX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.32 CLZ
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.33 CMN (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.34 CMN (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.35 CMN (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.36 CMP (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.37 CMP (register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.38 CMP (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.39 CPS, CPSID, CPSIE
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.40 CRC32
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.41 CRC32C
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.42 CSDB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.43 DBG
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.44 DCPS1
	T1
	Operation

	F5.1.45 DCPS2
	T1
	Operation

	F5.1.46 DCPS3
	T1
	Operation

	F5.1.47 DMB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.48 DSB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.49 EOR, EORS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.50 EOR, EORS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.51 EOR, EORS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.52 ERET
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.53 ESB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.54 HLT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.55 HVC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.56 ISB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.57 IT
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.58 LDA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.59 LDAB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.60 LDAEX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.61 LDAEXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.62 LDAEXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.63 LDAEXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.64 LDAH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.65 LDC (immediate)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.66 LDC (literal)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.67 LDM, LDMIA, LDMFD
	A1
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.68 LDM (exception return)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.69 LDM (User registers)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.70 LDMDA, LDMFA
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.71 LDMDB, LDMEA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.72 LDMIB, LDMED
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.73 LDR (immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.74 LDR (literal)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.75 LDR (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.76 LDRB (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.77 LDRB (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.78 LDRB (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.79 LDRBT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.80 LDRD (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.81 LDRD (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.82 LDRD (register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.83 LDREX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.84 LDREXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.85 LDREXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.86 LDREXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.87 LDRH (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.88 LDRH (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.89 LDRH (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.90 LDRHT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.91 LDRSB (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.92 LDRSB (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.93 LDRSB (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.94 LDRSBT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.95 LDRSH (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.96 LDRSH (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.97 LDRSH (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.98 LDRSHT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.99 LDRT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.100 LSL (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.101 LSL (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.102 LSLS (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.103 LSLS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.104 LSR (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.105 LSR (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.106 LSRS (immediate)
	A1
	T2
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.107 LSRS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.108 MCR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.109 MCRR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.110 MLA, MLAS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.111 MLS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.112 MOV, MOVS (immediate)
	A1
	A2
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.113 MOV, MOVS (register)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.114 MOV, MOVS (register-shifted register)
	A1
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.115 MOVT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.116 MRC
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.117 MRRC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.118 MRS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.119 MRS (Banked register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.120 MSR (Banked register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.121 MSR (immediate)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.122 MSR (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.123 MUL, MULS
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.124 MVN, MVNS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.125 MVN, MVNS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.126 MVN, MVNS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.127 NOP
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.128 ORN, ORNS (immediate)
	T1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.129 ORN, ORNS (register)
	T1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.130 ORR, ORRS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.131 ORR, ORRS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.132 ORR, ORRS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.133 PKHBT, PKHTB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.134 PLD, PLDW (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.135 PLD (literal)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.136 PLD, PLDW (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.137 PLI (immediate, literal)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.138 PLI (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.139 POP
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.140 POP (multiple registers)
	A1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.141 POP (single register)
	A1
	T4
	Assembler symbols
	Operation for all encodings

	F5.1.142 PSSBB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.143 PUSH
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.144 PUSH (multiple registers)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.145 PUSH (single register)
	A1
	T4
	Assembler symbols
	Operation for all encodings

	F5.1.146 QADD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.147 QADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.148 QADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.149 QASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.150 QDADD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.151 QDSUB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.152 QSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.153 QSUB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.154 QSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.155 QSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.156 RBIT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.157 REV
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.158 REV16
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.159 REVSH
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.160 RFE, RFEDA, RFEDB, RFEIA, RFEIB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.161 ROR (immediate)
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.162 ROR (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.163 RORS (immediate)
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.164 RORS (register)
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.165 RRX
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.166 RRXS
	A1
	T3
	Assembler symbols
	Operation for all encodings

	F5.1.167 RSB, RSBS (immediate)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.168 RSB, RSBS (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.169 RSB, RSBS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.170 RSC, RSCS (immediate)
	A1
	Assembler symbols
	Operation
	Operational information

	F5.1.171 RSC, RSCS (register)
	A1
	Assembler symbols
	Operation
	Operational information

	F5.1.172 RSC, RSCS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.173 SADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.174 SADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.175 SASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.176 SB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.177 SBC, SBCS (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.178 SBC, SBCS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.179 SBC, SBCS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.180 SBFX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.181 SDIV
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.182 SEL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.183 SETEND
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.184 SETPAN
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.185 SEV
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.186 SEVL
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.187 SHADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.188 SHADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.189 SHASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.190 SHSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.191 SHSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.192 SHSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.193 SMC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.194 SMLABB, SMLABT, SMLATB, SMLATT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.195 SMLAD, SMLADX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.196 SMLAL, SMLALS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.197 SMLALBB, SMLALBT, SMLALTB, SMLALTT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.198 SMLALD, SMLALDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.199 SMLAWB, SMLAWT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.200 SMLSD, SMLSDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.201 SMLSLD, SMLSLDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.202 SMMLA, SMMLAR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.203 SMMLS, SMMLSR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.204 SMMUL, SMMULR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.205 SMUAD, SMUADX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.206 SMULBB, SMULBT, SMULTB, SMULTT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.207 SMULL, SMULLS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.208 SMULWB, SMULWT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.209 SMUSD, SMUSDX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.210 SRS, SRSDA, SRSDB, SRSIA, SRSIB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior

	F5.1.211 SSAT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.212 SSAT16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.213 SSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.214 SSBB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.215 SSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.216 SSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.217 STC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.218 STL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.219 STLB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.220 STLEX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.221 STLEXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.222 STLEXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.223 STLEXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.224 STLH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.225 STM, STMIA, STMEA
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.226 STM (User registers)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.227 STMDA, STMED
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.228 STMDB, STMFD
	A1
	T1
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.229 STMIB, STMFA
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.230 STR (immediate)
	A1
	T1
	T2
	T3
	T4
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.231 STR (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.232 STRB (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.233 STRB (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.234 STRBT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.235 STRD (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.236 STRD (register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.237 STREX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.238 STREXB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.239 STREXD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.240 STREXH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.241 STRH (immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.242 STRH (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.243 STRHT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.244 STRT
	A1
	A2
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	CONSTRAINED UNPREDICTABLE behavior
	Operational information

	F5.1.245 SUB (immediate, from PC)
	A2
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.246 SUB, SUBS (immediate)
	A1
	T1
	T2
	T3
	T4
	T5
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.247 SUB, SUBS (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.248 SUB, SUBS (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.249 SUB, SUBS (SP minus immediate)
	A1
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.250 SUB, SUBS (SP minus register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.251 SVC
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.252 SXTAB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.253 SXTAB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.254 SXTAH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.255 SXTB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.256 SXTB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.257 SXTH
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.258 TBB, TBH
	T1
	Notes for all encodings
	Assembler symbols
	Operation

	F5.1.259 TEQ (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.260 TEQ (register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.261 TEQ (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.262 TSB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F5.1.263 TST (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.264 TST (register)
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.265 TST (register-shifted register)
	A1
	Notes for all encodings
	Assembler symbols
	Operation
	Operational information

	F5.1.266 UADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.267 UADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.268 UASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.269 UBFX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.270 UDF
	A1
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F5.1.271 UDIV
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.272 UHADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.273 UHADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.274 UHASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.275 UHSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.276 UHSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.277 UHSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.278 UMAAL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.279 UMLAL, UMLALS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.280 UMULL, UMULLS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.281 UQADD16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.282 UQADD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.283 UQASX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.284 UQSAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.285 UQSUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.286 UQSUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.287 USAD8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.288 USADA8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.289 USAT
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.290 USAT16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.291 USAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.292 USUB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.293 USUB8
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.294 UXTAB
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.295 UXTAB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.296 UXTAH
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.297 UXTB
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.298 UXTB16
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.299 UXTH
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F5.1.300 WFE
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.301 WFI
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.1.302 YIELD
	A1
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F5.2 Encoding and use of banked register transfer instructions
	F5.2.1 Register arguments in the banked register transfer instructions
	F5.2.2 Usage restrictions on the banked register transfer instructions
	F5.2.3 Encoding the register argument in the banked register transfer instructions
	F5.2.4 Pseudocode support for the banked register transfer instructions

	F6: T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions�
	F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
	F6.1.1 AESD
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.2 AESE
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.3 AESIMC
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.4 AESMC
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.5 FLDM*X (FLDMDBX, FLDMIAX)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.6 FSTMDBX, FSTMIAX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.7 SHA1C
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.8 SHA1H
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.9 SHA1M
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.10 SHA1P
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.11 SHA1SU0
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.12 SHA1SU1
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.13 SHA256H
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.14 SHA256H2
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.15 SHA256SU0
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.16 SHA256SU1
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.17 VABA
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.18 VABAL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.19 VABD (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.20 VABD (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.21 VABDL (integer)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.22 VABS
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.23 VACGE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.24 VACLE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.25 VACGT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.26 VACLT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.27 VADD (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.28 VADD (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.29 VADDHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.30 VADDL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.31 VADDW
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.32 VAND (immediate)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.33 VAND (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.34 VBIC (immediate)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.35 VBIC (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.36 VBIF
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.37 VBIT
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.38 VBSL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.39 VCADD
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.40 VCEQ (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.41 VCEQ (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.42 VCGE (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.43 VCGE (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.44 VCGT (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.45 VCGT (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.46 VCLE (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.47 VCLE (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.48 VCLS
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.49 VCLT (immediate #0)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.50 VCLT (register)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.51 VCLZ
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.52 VCMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.53 VCMLA (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.54 VCMP
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.55 VCMPE
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.56 VCNT
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.57 VCVT (from single-precision to BFloat16, Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.58 VCVT (between double-precision and single-precision)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.59 VCVT (between half-precision and single-precision, Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.60 VCVT (between floating-point and integer, Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.61 VCVT (floating-point to integer, floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.62 VCVT (integer to floating-point, floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.63 VCVT (between floating-point and fixed-point, Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.64 VCVT (between floating-point and fixed-point, floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.65 VCVTA (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.66 VCVTA (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.67 VCVTB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.68 VCVTB (BFloat16)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.69 VCVTM (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.70 VCVTM (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.71 VCVTN (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.72 VCVTN (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.73 VCVTP (Advanced SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.74 VCVTP (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.75 VCVTR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.76 VCVTT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.77 VCVTT (BFloat16)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.78 VDIV
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.79 VDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.80 VDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.81 VDUP (general-purpose register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.82 VDUP (scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.83 VEOR
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.84 VEXT (byte elements)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.85 VEXT (multibyte elements)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.86 VFMA
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.87 VFMAB, VFMAT (BFloat16, vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.88 VFMAB, VFMAT (BFloat16, by scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.89 VFMAL (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.90 VFMAL (by scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.91 VFMS
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.92 VFMSL (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.93 VFMSL (by scalar)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.94 VFNMA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.95 VFNMS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.96 VHADD
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.97 VHSUB
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.98 VINS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.99 VJCVT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.100 VLD1 (single element to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.101 VLD1 (single element to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.102 VLD1 (multiple single elements)
	A1
	A2
	A3
	A4
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.103 VLD2 (single 2-element structure to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.104 VLD2 (single 2-element structure to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.105 VLD2 (multiple 2-element structures)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.106 VLD3 (single 3-element structure to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.107 VLD3 (single 3-element structure to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.108 VLD3 (multiple 3-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.109 VLD4 (single 4-element structure to one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.110 VLD4 (single 4-element structure to all lanes)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.111 VLD4 (multiple 4-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.112 VLDM, VLDMDB, VLDMIA
	A1
	A2
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.113 VLDR (immediate)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.114 VLDR (literal)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.115 VMAX (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.116 VMAX (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.117 VMAXNM
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.118 VMIN (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.119 VMIN (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.120 VMINNM
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.121 VMLA (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.122 VMLA (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.123 VMLA (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.124 VMLAL (integer)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.125 VMLAL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.126 VMLS (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.127 VMLS (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.128 VMLS (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.129 VMLSL (integer)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.130 VMLSL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.131 VMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.132 VMOV (between two general-purpose registers and a doubleword floating-point register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.133 VMOV (between general-purpose register and half-precision)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.134 VMOV (immediate)
	A1
	A2
	A3
	A4
	A5
	T1
	T2
	T3
	T4
	T5
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.135 VMOV (register)
	A2
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.136 VMOV (register, SIMD)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.137 VMOV (general-purpose register to scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.138 VMOV (between general-purpose register and single-precision)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.139 VMOV (scalar to general-purpose register)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.140 VMOV (between two general-purpose registers and two single-precision registers)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.141 VMOVL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.142 VMOVN
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.143 VMOVX
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.144 VMRS
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.145 VMSR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.146 VMUL (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.147 VMUL (integer and polynomial)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.148 VMUL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.149 VMULL (integer and polynomial)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.150 VMULL (by scalar)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.151 VMVN (immediate)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.152 VMVN (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.153 VNEG
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.154 VNMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.155 VNMLS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.156 VNMUL
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.157 VORN (immediate)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.158 VORN (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.159 VORR (immediate)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.160 VORR (register)
	A1
	T1
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.161 VPADAL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.162 VPADD (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.163 VPADD (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.164 VPADDL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.165 VPMAX (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.166 VPMAX (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.167 VPMIN (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.168 VPMIN (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.169 VPOP
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.170 VPUSH
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.171 VQABS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.172 VQADD
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.173 VQDMLAL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.174 VQDMLSL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.175 VQDMULH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.176 VQDMULL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.177 VQMOVN, VQMOVUN
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.178 VQNEG
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.179 VQRDMLAH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.180 VQRDMLSH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.181 VQRDMULH
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.182 VQRSHL
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.183 VQRSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.184 VQRSHRN, VQRSHRUN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.185 VQRSHRUN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.186 VQSHL, VQSHLU (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.187 VQSHL (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.188 VQSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.189 VQSHRN, VQSHRUN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.190 VQSHRUN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.191 VQSUB
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.192 VRADDHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.193 VRECPE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.194 VRECPS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.195 VREV16
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.196 VREV32
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.197 VREV64
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.198 VRHADD
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.199 VRINTA (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.200 VRINTA (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.201 VRINTM (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.202 VRINTM (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.203 VRINTN (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.204 VRINTN (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.205 VRINTP (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.206 VRINTP (floating-point)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.207 VRINTR
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.208 VRINTX (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.209 VRINTX (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.210 VRINTZ (Advanced SIMD)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.211 VRINTZ (floating-point)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.212 VRSHL
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.213 VRSHR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.214 VRSHR (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.215 VRSHRN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.216 VRSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.217 VRSQRTE
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.218 VRSQRTS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.219 VRSRA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.220 VRSUBHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.221 VSDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.222 VSDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.223 VSELEQ, VSELGE, VSELGT, VSELVS
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.224 VSHL (immediate)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.225 VSHL (register)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.226 VSHLL
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.227 VSHR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.228 VSHR (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.229 VSHRN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings

	F6.1.230 VSHRN (zero)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.231 VSLI
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.232 VSMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.233 VSQRT
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.234 VSRA
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.235 VSRI
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.236 VST1 (single element from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.237 VST1 (multiple single elements)
	A1
	A2
	A3
	A4
	T1
	T2
	T3
	T4
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.238 VST2 (single 2-element structure from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.239 VST2 (multiple 2-element structures)
	A1
	A2
	T1
	T2
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.240 VST3 (single 3-element structure from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.241 VST3 (multiple 3-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.242 VST4 (single 4-element structure from one lane)
	A1
	A2
	A3
	T1
	T2
	T3
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.243 VST4 (multiple 4-element structures)
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.244 VSTM, VSTMDB, VSTMIA
	A1
	A2
	T1
	T2
	Notes for all encodings
	Alias conditions
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.245 VSTR
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.246 VSUB (floating-point)
	A1
	A2
	T1
	T2
	Assembler symbols
	Operation for all encodings

	F6.1.247 VSUB (integer)
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.248 VSUBHN
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.249 VSUBL
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.250 VSUBW
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.251 VSUDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.252 VSWP
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.253 VTBL, VTBX
	A1
	T1
	Notes for all encodings
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.254 VTRN
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.255 VTST
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.256 VUDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.257 VUDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.258 VUMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.259 VUSDOT (by element)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.260 VUSDOT (vector)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.261 VUSMMLA
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.262 VUZP
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.263 VUZP (alias)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	F6.1.264 VZIP
	A1
	T1
	Assembler symbols
	Operation for all encodings
	Operational information

	F6.1.265 VZIP (alias)
	A1
	T1
	Assembler symbols
	Operation for all encodings

	Part G: The AArch32 System Level Architecture�
	G1: The AArch32 System Level Programmers’ Model�
	G1.1 About the AArch32 System level programmers’ model
	G1.2 Exception levels
	G1.2.1 Typical Exception level usage model

	G1.3 Exception terminology
	G1.3.1 Terminology for taking an exception
	G1.3.2 Terminology for returning from an exception
	G1.3.3 Exception levels
	G1.3.4 Definition of a precise exception
	G1.3.5 Definitions of synchronous and asynchronous exceptions

	G1.4 Execution state
	G1.4.1 About the AArch32 PE modes

	G1.5 Instruction Set state
	G1.6 Security state
	G1.6.1 The Armv8-A security model
	G1.6.1.1 The AArch32 security model, and execution privilege
	G1.6.1.2 Changing from Secure state to Non-secure state

	G1.7 Security state, Exception levels, and AArch32 execution privilege
	G1.7.1 Limited use of Privilege level in AArch32 state

	G1.8 Virtualization
	G1.8.1 The effect of implementing EL2 on the Exception model
	G1.8.1.1 Virtual interrupts

	G1.9 AArch32 state PE modes
	G1.9.1 Notes on the AArch32 PE modes
	G1.9.1.1 Effect of the EL3 Execution state on the PE modes and Exception levels

	G1.9.2 Hyp mode
	G1.9.3 Pseudocode description of mode operations

	G1.10 AArch32 general-purpose registers, the PC, and the Special-purpose registers
	G1.10.1 Pseudocode description of general-purpose register and PC operations
	G1.10.2 Saved Program Status Registers (SPSRs)
	G1.10.2.1 Pseudocode description of SPSR operations

	G1.10.3 ELR_hyp

	G1.11 Process state, PSTATE
	G1.11.1 Accessing PSTATE fields
	G1.11.1.1 The Current Program Status Register, CPSR
	G1.11.1.2 Accessing the PE state controls and the Execution state bit
	G1.11.1.3 The CPS instruction
	G1.11.1.4 The SETEND instruction
	G1.11.1.5 The SETPAN instruction

	G1.11.2 The Saved Program Status Registers (SPSRs)
	G1.11.3 Illegal changes to PSTATE.M
	G1.11.4 Pseudocode description of PSTATE operations

	G1.12 Instruction set states
	G1.12.1 Exceptions and instruction set state
	G1.12.2 Unimplemented instruction sets
	G1.12.2.1 Trivial implementation of the Jazelle extension

	G1.13 Handling exceptions that are taken to an Exception level using AArch32
	G1.13.1 Exception vectors and the exception base address
	G1.13.1.1 The vector tables and exception offsets

	G1.13.2 Exception prioritization for exceptions taken to AArch32 state
	G1.13.2.1 Synchronous exception prioritization for exceptions taken to AArch32 state
	G1.13.2.2 Architectural requirements for taking asynchronous exceptions

	G1.13.3 Overview of exception entry
	G1.13.3.1 Link values saved on exception entry

	G1.13.4 PE mode for taking exceptions
	G1.13.4.1 Exceptions taken to Hyp mode
	G1.13.4.2 Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64
	G1.13.4.3 The possible modes for taking each exception

	G1.13.5 PE state on exception entry
	G1.13.5.1 Instruction set state on exception entry
	G1.13.5.2 PSTATE.E value on exception entry
	G1.13.5.3 PSTATE.{A, I, F, M} values on exception entry

	G1.13.6 Routing exceptions from Non-secure EL0 to EL2
	G1.13.6.1 Exception reporting when HCR.TGE routes an exception to EL2 using AArch32

	G1.13.7 Routing debug exceptions to EL2 using AArch32

	G1.14 Routing of aborts taken to AArch32 state
	G1.15 Exception return to an Exception level using AArch32
	G1.15.1 Exception return instructions
	G1.15.1.1 Return from an exception taken to a PE mode other than Hyp mode
	G1.15.1.2 Return from an exception taken to Hyp mode

	G1.15.2 Alignment of exception returns
	G1.15.3 Illegal return events from AArch32 state
	G1.15.4 Legal returns that set PSTATE.IL to 1
	G1.15.5 The Illegal Execution state exception
	G1.15.5.1 Pseudocode description of exception return

	G1.16 Asynchronous exception behavior for exceptions taken from AArch32 state
	G1.16.1 Virtual exceptions when an implementation includes EL2
	G1.16.1.1 Effects of the HCR.{AMO, IMO, FMO} bits

	G1.16.2 Asynchronous exception routing controls
	G1.16.3 Asynchronous exception masking controls
	G1.16.3.1 Asynchronous exception masking in an implementation that includes EL2 but not EL3
	G1.16.3.2 Asynchronous exception masking in an implementation that includes EL3 but not EL2
	G1.16.3.3 Asynchronous exception masking in an implementation that includes both EL2 and EL3
	G1.16.3.4 Summary of the asynchronous exception masking controls

	G1.16.4 Asynchronous exception routing and masking with higher Exception levels using AArch64
	G1.16.4.1 Summary of physical interrupt routing
	G1.16.4.2 Summary of physical interrupt masking

	G1.16.5 Taking an interrupt or other exception during a multiple-register load or store

	G1.17 AArch32 state exception descriptions
	G1.17.1 Undefined Instruction exception
	G1.17.1.1 The PE mode to which the Undefined Instruction exception is taken
	G1.17.1.2 Pseudocode description of taking the Undefined Instruction exception
	G1.17.1.3 Conditional execution of undefined instructions
	G1.17.1.4 Interaction of UNDEFINED instruction behavior with UNPREDICTABLE or CONSTRAINED UNPREDICTABLE instruction behavior

	G1.17.2 Monitor Trap exception
	G1.17.2.1 The PE mode to which the Monitor Trap exception is taken
	G1.17.2.2 Pseudocode description of taking the Monitor Trap exception

	G1.17.3 Hyp Trap exception
	G1.17.3.1 The PE mode to which the Hyp Trap exception is taken
	G1.17.3.2 Pseudocode description of taking the Hyp Trap exception

	G1.17.4 Supervisor Call (SVC) exception
	G1.17.4.1 The PE mode to which the Supervisor Call exception is taken
	G1.17.4.2 Pseudocode description of taking the Supervisor Call exception

	G1.17.5 Secure Monitor Call (SMC) exception
	G1.17.5.1 The PE mode to which the Secure Monitor Call exception is taken
	G1.17.5.2 Pseudocode description of taking the Secure Monitor Call exception

	G1.17.6 Hypervisor Call (HVC) exception
	G1.17.6.1 The PE mode to which the Hypervisor Call exception is taken
	G1.17.6.2 Pseudocode description of taking the Hypervisor Call exception

	G1.17.7 Prefetch Abort exception
	G1.17.7.1 Prefetch Abort exception reporting a PC alignment fault exception
	G1.17.7.2 The PE mode to which the Prefetch Abort exception is taken
	G1.17.7.3 Pseudocode description of taking the Prefetch Abort exception

	G1.17.8 Data Abort exception
	G1.17.8.1 The PE mode to which the Data Abort exception is taken
	G1.17.8.2 Pseudocode description of taking the Data Abort exception
	G1.17.8.3 Effects of data-aborted instructions
	G1.17.8.4 The Arm abort model

	G1.17.9 Virtual SError interrupt exception
	G1.17.9.1 The PE mode to which the Virtual SError interrupt exception is taken
	G1.17.9.2 Pseudocode description of taking the Virtual SError interrupt exception

	G1.17.10 IRQ exception
	G1.17.10.1 The PE mode to which the physical IRQ exception is taken
	G1.17.10.2 Pseudocode description of taking the physical IRQ exception

	G1.17.11 Virtual IRQ exception
	G1.17.11.1 The PE mode to which the Virtual IRQ exception is taken
	G1.17.11.2 Pseudocode description of taking the Virtual IRQ exception

	G1.17.12 FIQ exception
	G1.17.12.1 The PE mode to which the physical FIQ exception is taken
	G1.17.12.2 Pseudocode description of taking the FIQ exception

	G1.17.13 Virtual FIQ exception
	G1.17.13.1 The PE mode to which the Virtual FIQ exception is taken
	G1.17.13.2 Pseudocode description of taking the Virtual FIQ exception

	G1.17.14 Additional pseudocode functions for exception handling

	G1.18 Reset into AArch32 state
	G1.18.1 PE state on reset into AArch32 state
	G1.18.2 Pseudocode descriptions of reset

	G1.19 Mechanisms for entering a low-power state
	G1.19.1 Wait For Event and Send Event
	G1.19.1.1 The Event Register
	G1.19.1.2 The Wait For Event instruction
	G1.19.1.3 WFE wakeup events
	G1.19.1.4 The Send Event instructions
	G1.19.1.5 Pseudocode description of the Wait For Event mechanism

	G1.19.2 Wait For Interrupt
	G1.19.2.1 WFI wakeup events
	G1.19.2.2 Using WFI to indicate an idle state on bus interfaces
	G1.19.2.3 Pseudocode description of Wait For Interrupt

	G1.20 The AArch32 System register interface
	G1.20.1 System registers in the coproc == 0b111x encoding space
	G1.20.2 Access to System registers
	G1.20.3 Access controls for Advanced SIMD and floating-point functionality
	G1.20.4 Background to the System register interface

	G1.21 Advanced SIMD and floating-point support
	G1.21.1 AArch32 implications of not including support for Advanced SIMD and floating-point
	G1.21.2 Enabling Advanced SIMD and floating-point support
	G1.21.2.1 FPEXC control of access to Advanced SIMD and floating-point functionality
	G1.21.2.2 EL0 access to Advanced SIMD and floating-point functionality

	G1.21.3 Advanced SIMD and floating-point System registers
	G1.21.3.1 Register map of the Advanced SIMD and floating-point System registers
	G1.21.3.2 Accessing the Advanced SIMD and floating-point System registers

	G1.21.4 Context switching when using Advanced SIMD and floating-point functionality

	G1.22 Configurable instruction controls
	G1.22.1 Instructions that fail their Condition code check
	G1.22.2 Instructions that are UNPREDICTABLE
	G1.22.3 Register access instructions
	G1.22.4 PL1 configurable controls
	G1.22.5 EL2 configurable controls
	G1.22.6 EL3 configurable controls
	G1.22.7 Pseudocode description of configurable instruction enables, disables, and traps
	G1.22.7.1 Pseudocode description of enabling SIMD and floating-point functionality

	G2: AArch32 Self-hosted Debug�
	G2.1 About self-hosted debug
	G2.1.1 Definition of a debugger in the context of self-hosted debug
	G2.1.2 Context ID and Process ID
	G2.1.3 About debug exceptions

	G2.2 Routing debug exceptions
	G2.2.1 Pseudocode description of routing debug exceptions

	G2.3 The debug exception enable controls
	G2.3.1 Enabling debug exceptions
	G2.3.2 Disabling debug exceptions from Secure state
	G2.3.3 Pseudocode description of enabling debug exceptions

	G2.4 The effect of powerdown on debug exceptions
	G2.5 Summary of permitted routing and enabling of debug exceptions
	G2.6 Pseudocode description of debug exceptions
	G2.7 Breakpoint Instruction exceptions
	G2.7.1 About Breakpoint Instruction exceptions
	G2.7.2 Breakpoint instruction in the A32 and T32 instruction sets
	G2.7.2.1 About whether the BKPT instruction is conditional

	G2.7.3 BKPT instructions as the first instruction in an IT block
	G2.7.4 Exception syndrome information and preferred return address for a BKPT instruction
	G2.7.4.1 Exception syndrome information for a Breakpoint Instruction exception
	G2.7.4.2 Preferred return address for a Breakpoint Instruction exception

	G2.7.5 Pseudocode description of Breakpoint Instruction exceptions

	G2.8 Breakpoint exceptions
	G2.8.1 About Breakpoint exceptions
	G2.8.2 Breakpoint types and linking of breakpoints
	G2.8.2.1 Rules for linking breakpoints
	G2.8.2.2 Breakpoint types defined by DBGBCRn.BT

	G2.8.3 Execution conditions for which a breakpoint generates Breakpoint exceptions
	G2.8.4 Breakpoint instruction address comparisons
	G2.8.4.1 Address Match breakpoints
	G2.8.4.2 Address Mismatch breakpoints
	G2.8.4.3 Specifying the halfword-aligned address that an Address breakpoint matches on

	G2.8.5 Breakpoint context comparisons
	G2.8.6 Using breakpoints
	G2.8.6.1 Using an Address Mismatch breakpoint to single-step an instruction
	G2.8.6.2 ITD control effects on address breakpoints on the first instruction in an IT block
	G2.8.6.3 Breakpoint usage constraints

	G2.8.7 Exception syndrome information and preferred return address for a Breakpoint exception
	G2.8.7.1 Exception syndrome information for a Breakpoint exception
	G2.8.7.2 Preferred return address for a Breakpoint exception

	G2.8.8 Pseudocode description of Breakpoint exceptions taken from AArch32 state

	G2.9 Watchpoint exceptions
	G2.9.1 About Watchpoint exceptions
	G2.9.2 Watchpoint types and linking of watchpoints
	G2.9.2.1 Rules for linking watchpoints

	G2.9.3 Execution conditions for which a watchpoint generates Watchpoint exceptions
	G2.9.4 Watchpoint data address comparisons
	G2.9.4.1 Size of the data access
	G2.9.4.2 Programming a watchpoint with eight bytes or fewer
	G2.9.4.3 Programming a watchpoint with eight or more bytes

	G2.9.5 Determining the memory location that caused a Watchpoint exception
	G2.9.5.1 Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions
	G2.9.5.2 Address recorded for Watchpoint exceptions generated by data cache maintenance instructions

	G2.9.6 Watchpoint behavior on other instructions
	G2.9.6.1 Watchpoint behavior on accesses by Store-Exclusive instructions
	G2.9.6.2 Watchpoint behavior on accesses by DCIMVAC instructions

	G2.9.7 Usage constraints
	G2.9.7.1 Reserved DBGWCR<n>.{SSC, HMC, PAC} values
	G2.9.7.2 Reserved DBGWCR<n>.LBN values
	G2.9.7.3 Programming dependencies of the BAS and MASK fields
	G2.9.7.4 Reserved DBGWCR<n>.BAS values
	G2.9.7.5 Reserved DBGWCR<n>.MASK values
	G2.9.7.6 Other usage constraints

	G2.9.8 Exception syndrome information and preferred return address
	G2.9.8.1 Exception syndrome information
	G2.9.8.2 Preferred return address

	G2.9.9 Pseudocode description of Watchpoint exceptions taken from AArch32 state

	G2.10 Vector Catch exceptions
	G2.10.1 About Vector Catch exceptions
	G2.10.2 Exception vectors that Vector Catch exceptions can be enabled for
	G2.10.3 Generation of Vector Catch exceptions
	G2.10.3.1 Address-matching form
	G2.10.3.2 Exception-trapping form

	G2.10.4 Usage constraints
	G2.10.4.1 Usage constraints that apply to both forms of vector catch
	G2.10.4.2 Usage constraints that apply only to the address-matching form

	G2.10.5 Exception syndrome information and preferred return address for a Vector Catch exception
	G2.10.5.1 Exception syndrome information for a Vector Catch exception
	G2.10.5.2 Preferred return address for a Vector Catch exception

	G2.10.6 Pseudocode description of Vector Catch exceptions

	G2.11 Synchronization and debug exceptions
	G2.11.1 State and mode changes without explicit context synchronization events

	G3: AArch32 Self-hosted Trace�
	G3.1 About self-hosted trace
	G3.1.1 Trace Sinks
	G3.1.2 Register controls to enable self-hosted trace

	G3.2 Prohibited regions in self-hosted trace
	G3.2.1 Controls to prohibit trace at Exception levels
	G3.2.2 Self-hosted trace and address translation

	G3.3 Self-hosted trace timestamps
	G3.4 Synchronization in self-hosted trace

	G4: The AArch32 System Level Memory Model�
	G4.1 About the memory system architecture
	G4.1.1 Form of the memory system architecture
	G4.1.2 Memory attributes

	G4.2 Address space
	G4.2.1 Address space overflow or underflow
	G4.2.1.1 Instruction address space overflow
	G4.2.1.2 Data address space overflow and underflow

	G4.3 Mixed-endian support in AArch32
	G4.4 AArch32 cache and branch predictor support
	G4.4.1 General behavior of the caches
	G4.4.2 Cache identification
	G4.4.2.1 Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2

	G4.4.3 Cacheability, cache allocation hints, and cache transient hints
	G4.4.3.1 Transient Cacheability hint

	G4.4.4 Enabling and disabling the caching of memory accesses in AArch32 state
	G4.4.5 Behavior of caches at reset
	G4.4.6 About cache maintenance in AArch32 state
	G4.4.6.1 Terms used in describing the cache maintenance instructions
	G4.4.6.2 Abstraction of the cache hierarchy

	G4.4.7 AArch32 cache and branch predictor maintenance instructions
	G4.4.7.1 AArch32 instruction cache maintenance instructions (IC*)
	G4.4.7.2 AArch32 data cache maintenance instructions (DC*)
	G4.4.7.3 Branch predictors
	G4.4.7.4 General requirements for the scope of cache and branch predictor maintenance instructions
	G4.4.7.5 Effects of instructions that operate by VA to the Point of Coherency
	G4.4.7.6 Effects of instructions that operate by VA but not to the Point of Coherency
	G4.4.7.7 Effects of All and set/way maintenance instructions
	G4.4.7.8 Effects of virtualization and security on the AArch32 cache maintenance instructions
	G4.4.7.9 Boundary conditions for cache maintenance instructions
	G4.4.7.10 Ordering of cache and branch predictor maintenance instructions
	G4.4.7.11 Performing cache maintenance instructions

	G4.4.8 Execution and data prediction restriction System instructions
	G4.4.9 Cache lockdown
	G4.4.9.1 The interaction of cache lockdown with cache maintenance instructions

	G4.4.10 System level caches

	G4.5 System register support for IMPLEMENTATION DEFINED memory features
	G4.6 External aborts
	G4.6.1 Provision for classification of External aborts
	G4.6.2 Parity or ECC error reporting, FEAT_RAS not implemented

	G4.7 Memory barrier instructions
	G4.7.1 EL2 control of the Shareability of data barrier instructions executed at EL0 or EL1

	G4.8 Pseudocode description of general memory System instructions
	G4.8.1 Memory data type definitions
	G4.8.2 Basic memory access
	G4.8.3 Aligned memory access
	G4.8.4 Unaligned memory access
	G4.8.5 Exclusives monitors operations
	G4.8.6 Access permission checking
	G4.8.7 Abort exceptions
	G4.8.8 Memory barriers

	G5: The AArch32 Virtual Memory System Architecture�
	G5.1 About VMSAv8-32
	G5.1.1 The VMSAv8-32 translation regimes
	G5.1.1.1 Alternative descriptions of the PL1&0 translation regime

	G5.1.2 Address types used in a VMSAv8-32 description
	G5.1.3 Address spaces in VMSAv8-32
	G5.1.4 About address translation for VMSAv8-32
	G5.1.4.1 Atomicity of register changes on changing virtual machine
	G5.1.4.2 Use of out-of-context translation regimes

	G5.1.5 Organization of the remainder of this chapter

	G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior
	G5.2.1 VMSAv8-32 behavior when stage 1 address translation is disabled
	G5.2.1.1 Effect of the HCR.DC field
	G5.2.1.2 Effect of disabling translation on maintenance and address translation instructions

	G5.2.2 VMSAv8-32 behavior when stage 2 address translation is disabled
	G5.2.3 Behavior of instruction fetches when all associated address translations are disabled
	G5.2.4 Enabling stages of address translation

	G5.3 Translation tables
	G5.3.1 Translation table walks for memory accesses using VMSAv8-32 translation regimes
	G5.3.2 Information returned by a translation table lookup
	G5.3.3 Determining the translation table base address in the VMSAv8-32 translation regimes
	G5.3.4 Control of translation table walks on a TLB miss
	G5.3.5 Access to the Secure or Non-secure PA map
	G5.3.5.1 Secure and Non-secure address spaces

	G5.4 The VMSAv8-32 Short-descriptor translation table format
	G5.4.1 VMSAv8-32 Short-descriptor Translation Table format descriptors
	G5.4.1.1 Short-descriptor Translation Table level 1 descriptor formats
	G5.4.1.2 Short-descriptor Translation Table level 2 descriptor formats
	G5.4.1.3 Additional requirements for Short-descriptor format translation tables

	G5.4.2 Memory attributes in the VMSAv8-32 Short-descriptor Translation Table format descriptors
	G5.4.3 Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format
	G5.4.4 Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format
	G5.4.5 Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format
	G5.4.5.1 Reading a level 1 translation table
	G5.4.5.2 The full translation flow for Sections, Supersections, Small pages and Large pages

	G5.5 The VMSAv8-32 Long-descriptor translation table format
	G5.5.1 Overview of VMSAv8-32 address translation using Long-descriptor translation tables
	G5.5.2 VMSAv8-32 Long-descriptor Translation Table format descriptors
	G5.5.2.1 VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats
	G5.5.2.2 VMSAv8-32 Long-descriptor translation table level 3 descriptor formats

	G5.5.3 Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors
	G5.5.3.1 Next-level attributes in VMSAv8-32 Long-descriptor stage 1 Table descriptors
	G5.5.3.2 Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors
	G5.5.3.3 Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors

	G5.5.4 Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format
	G5.5.4.1 Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format

	G5.5.5 Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format
	G5.5.5.1 Possible errors in programming the translation table registers

	G5.5.6 VMSAv8-32 Long-descriptor translation table format address lookup levels
	G5.5.6.1 Use of concatenated translation tables for the initial stage 2 lookup

	G5.5.7 Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format
	G5.5.7.1 Determining the required initial lookup level for stage 1 translations
	G5.5.7.2 Determining the required initial lookup level for stage 2 translations

	G5.5.8 The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format

	G5.6 Memory access control
	G5.6.1 About access permissions
	G5.6.1.1 AP[2:1] access permissions model
	G5.6.1.2 AP[2:0] access permissions control, Short-descriptor format only

	G5.6.2 About the PAN bit
	G5.6.3 Access permissions for instruction execution
	G5.6.3.1 Hierarchical control of instruction fetching, Long-descriptor format
	G5.6.3.2 Preventing execution from writable locations
	G5.6.3.3 Restriction on Secure instruction fetch

	G5.6.4 Domains, Short-descriptor format only
	G5.6.5 The Access flag
	G5.6.5.1 Software management of the Access flag

	G5.6.6 Hyp mode control of Non-secure access permissions

	G5.7 Memory region attributes
	G5.7.1 Overview of memory region attributes for stage 1 translations
	G5.7.1.1 Stage 1 definition of the XS attribute

	G5.7.2 Short-descriptor format memory region attributes, without TEX remap
	G5.7.2.1 Cacheability attributes, without TEX remap
	G5.7.2.2 Shareability and the S bit, without TEX remap

	G5.7.3 Short-descriptor format memory region attributes, with TEX remap
	G5.7.3.1 Determining the Shareability, with TEX remap
	G5.7.3.2 SCTLR.TRE, SCTLR.M, and the effect of the TEX remap registers
	G5.7.3.3 The OS managed translation table bits
	G5.7.3.4 The effect of EL3 on TEX remap

	G5.7.4 VMSAv8-32 Long-descriptor format memory region attributes
	G5.7.4.1 Shareability, Long-descriptor format
	G5.7.4.2 Other fields in the Long-descriptor translation table format descriptors

	G5.7.5 EL2 control of Non-secure memory region attributes
	G5.7.5.1 Combining the memory type attribute
	G5.7.5.2 Combining the Cacheability attribute
	G5.7.5.3 Combining the Shareability attribute

	G5.8 Translation Lookaside Buffers
	G5.8.1 Global and process-specific translation table entries
	G5.8.2 TLB matching
	G5.8.3 TLB behavior at reset
	G5.8.4 TLB lockdown
	G5.8.5 TLB conflict aborts

	G5.9 TLB maintenance requirements
	G5.9.1 General TLB maintenance requirements
	G5.9.1.1 Using break-before-make when updating translation table entries
	G5.9.1.2 The interaction of TLB lockdown with TLB maintenance instructions
	G5.9.1.3 Ordering and completion of TLB maintenance instructions
	G5.9.1.4 Use of ASIDs and VMIDs to reduce TLB maintenance requirements

	G5.9.2 Maintenance requirements on changing System register values
	G5.9.2.1 Changing the Access flag enable
	G5.9.2.2 Changing HCR.PTW
	G5.9.2.3 Changing the current Translation table format

	G5.9.3 Atomicity of register changes on changing virtual machine
	G5.9.4 Synchronization of changes of ASID and TTBR
	G5.9.5 The scope of TLB maintenance instructions
	G5.9.5.1 EL2 forced broadcasting of TLB maintenance instructions
	G5.9.5.2 TLB maintenance with different translation granule sizes

	G5.10 Caches in VMSAv8-32
	G5.10.1 Data and unified caches
	G5.10.2 Instruction caches
	G5.10.2.1 Physically-indexed, physically-tagged instruction caches
	G5.10.2.2 Virtually-indexed, physically-tagged instruction caches
	G5.10.2.3 The IVIPT architecture Extension

	G5.10.3 Cache maintenance requirement created by changing translation table attributes

	G5.11 VMSAv8-32 memory aborts
	G5.11.1 Types of MMU faults
	G5.11.1.1 Permission fault
	G5.11.1.2 Translation fault
	G5.11.1.3 Address size fault
	G5.11.1.4 Access flag fault
	G5.11.1.5 Domain fault, Short-descriptor format translation tables only

	G5.11.2 VMSAv8-32 MMU fault terminology
	G5.11.3 The MMU fault-checking sequence
	G5.11.3.1 Stage 2 fault on a stage 1 translation table walk

	G5.11.4 Alignment faults
	G5.11.5 External abort on a translation table walk
	G5.11.5.1 Behavior of External aborts on a translation table walk caused by address translation instructions

	G5.11.6 AArch32 state prioritization of synchronous aborts from a single stage of address translation
	G5.11.6.1 Synchronous External abort errors from address translation caching structures

	G5.12 Exception reporting in a VMSAv8-32 implementation
	G5.12.1 About exception reporting
	G5.12.1.1 Fault address reporting on synchronous External aborts

	G5.12.2 Reporting exceptions taken to PL1 modes
	G5.12.2.1 Registers used for reporting exceptions taken to PL1 modes
	G5.12.2.2 Data Abort exceptions, taken to a PL1 mode
	G5.12.2.3 Prefetch Abort exceptions, taken to a PL1 mode

	G5.12.3 Fault reporting in PL1 modes
	G5.12.3.1 Reporting of External aborts taken from Non-secure state to Monitor mode
	G5.12.3.2 PL1 fault reporting with the Short-descriptor translation table format
	G5.12.3.3 PL1 fault reporting with the Long-descriptor translation table format
	G5.12.3.4 Reserved encoding in the IFSR and DFSR encodings tables

	G5.12.4 Summary of register updates on faults taken to PL1 modes
	G5.12.5 Reporting exceptions taken to Hyp mode
	G5.12.5.1 Registers used for reporting exceptions taken to Hyp mode
	G5.12.5.2 Memory fault reporting in Hyp mode
	G5.12.5.3 Use of the HSR

	G5.12.6 Summary of register updates on exceptions taken to Hyp mode
	G5.12.6.1 Classification of MMU faults taken to Hyp mode

	G5.13 Address translation instructions
	G5.13.1 Address translation instruction naming and operation summary
	G5.13.1.1 ATS1C**, Address translation stage 1, current security state
	G5.13.1.2 ATS12NSO**, Address translation stages 1 and 2, Non-secure state only
	G5.13.1.3 ATS1H*, Address translation stage 1, Hyp mode

	G5.13.2 Encoding and availability of the address translation instructions
	G5.13.3 Determining the PAR format
	G5.13.4 Handling of faults and aborts during an address translation instruction
	G5.13.4.1 MMU fault on an address translation instruction
	G5.13.4.2 External abort during an address translation instruction
	G5.13.4.3 Stage 2 fault on a current state address translation instruction

	G5.14 Pseudocode description of VMSAv8-32 memory system operations
	G5.14.1 Full Physical Address
	G5.14.2 Translation regime
	G5.14.3 Address translation
	G5.14.4 Long-descriptor Translation table walk
	G5.14.5 Short-descriptor Translation table walk
	G5.14.6 Memory attribute decoding
	G5.14.7 Fault detection

	G5.15 About the System registers for VMSAv8-32
	G5.15.1 Classification of System registers
	G5.15.1.1 Banked System registers
	G5.15.1.2 Restricted access System registers
	G5.15.1.3 Configurable access System registers
	G5.15.1.4 EL2-mode System registers
	G5.15.1.5 Common System registers
	G5.15.1.6 Secure System registers for the (coproc == 0b1111) encoding space
	G5.15.1.7 Access to registers from Monitor mode
	G5.15.1.8 The CP15SDISABLE and CP15SDISABLE2 input signals

	G5.16 Functional grouping of VMSAv8-32 System registers

	G6: The Generic Timer in AArch32 state�
	G6.1 About the Generic Timer in AArch32 state
	G6.1.1 The full set of Generic Timer components
	G6.1.2 The system counter
	G6.1.2.1 Initializing and reading the system counter frequency
	G6.1.2.2 Memory-mapped controls of the system counter

	G6.2 The AArch32 view of the Generic Timer
	G6.2.1 The physical counter
	G6.2.1.1 The self-synchronized view of the physical counter

	G6.2.2 The virtual counter
	G6.2.2.1 The self-synchronized view of the virtual counter
	G6.2.2.2 The virtual offset register

	G6.2.3 Event streams
	G6.2.4 Timers
	G6.2.4.1 Operation of the CompareValue views of the timers
	G6.2.4.2 Operation of the TimerValue views of the timers

	G7: AArch32 System Register Encoding�
	G7.1 The AArch32 System register encoding space
	G7.2 Organization of registers in the (coproc == 0b1110) encoding space
	G7.2.1 Register access instruction arguments, (coproc == 0b1110) registers

	G7.3 Organization of registers in the (coproc == 0b1111) encoding space
	G7.3.1 System register summary for (coproc == 0b1111) encodings by CRn value
	G7.3.1.1 The HSTR.Tn trap on (coproc == 0b1111) System registers
	G7.3.1.2 Behavior of AArch32 VMSA System registers with (coproc == 0b1111, CRn == c0)
	G7.3.1.3 Reserved encodings in the AArch32 VMSA System register (coproc == 0b1111) space

	G7.3.2 Full list of AArch32 VMSA System registers in the (coproc == 0b1111) encoding space
	G7.3.2.1 About the GIC System registers

	G8: AArch32 System Register Descriptions�
	G8.1 About the AArch32 System registers
	G8.1.1 Fixed values in the System register descriptions
	G8.1.2 General behavior of System registers
	Register names
	Read-only bits in read/write registers
	The CPUID identification scheme
	IMPLEMENTATION DEFINED performance monitors
	UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System register accesses
	Read-only and write-only register encodings
	Reset behavior of AArch32 System registers
	Synchronization of changes to AArch32 System registers

	G8.1.3 Principles of the ID scheme for fields in ID registers
	AArch32 ID registers to which this scheme applies
	Alternative ID scheme used for the Performance Monitors Extension version

	G8.1.4 About AArch32 System register accesses
	Ordering of reads of System registers
	Accessing 32-bit System registers
	Accessing 64-bit System registers

	G8.2 General system control registers
	G8.2.1 ACTLR, Auxiliary Control Register
	Field descriptions
	Accessing ACTLR

	G8.2.2 ACTLR2, Auxiliary Control Register 2
	Field descriptions
	Accessing ACTLR2

	G8.2.3 ADFSR, Auxiliary Data Fault Status Register
	Field descriptions
	Accessing ADFSR

	G8.2.4 AIDR, Auxiliary ID Register
	Field descriptions
	Accessing AIDR

	G8.2.5 AIFSR, Auxiliary Instruction Fault Status Register
	Field descriptions
	Accessing AIFSR

	G8.2.6 AMAIR0, Auxiliary Memory Attribute Indirection Register 0
	Field descriptions
	Accessing AMAIR0

	G8.2.7 AMAIR1, Auxiliary Memory Attribute Indirection Register 1
	Field descriptions
	Accessing AMAIR1

	G8.2.8 APSR, Application Program Status Register
	Field descriptions

	G8.2.9 ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read
	Field descriptions
	Executing ATS12NSOPR

	G8.2.10 ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write
	Field descriptions
	Executing ATS12NSOPW

	G8.2.11 ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
	Field descriptions
	Executing ATS12NSOUR

	G8.2.12 ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
	Field descriptions
	Executing ATS12NSOUW

	G8.2.13 ATS1CPR, Address Translate Stage 1 Current state PL1 Read
	Field descriptions
	Executing ATS1CPR

	G8.2.14 ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN
	Field descriptions
	Executing ATS1CPRP

	G8.2.15 ATS1CPW, Address Translate Stage 1 Current state PL1 Write
	Field descriptions
	Executing ATS1CPW

	G8.2.16 ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN
	Field descriptions
	Executing ATS1CPWP

	G8.2.17 ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read
	Field descriptions
	Executing ATS1CUR

	G8.2.18 ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write
	Field descriptions
	Executing ATS1CUW

	G8.2.19 ATS1HR, Address Translate Stage 1 Hyp mode Read
	Field descriptions
	Executing ATS1HR

	G8.2.20 ATS1HW, Address Translate Stage 1 Hyp mode Write
	Field descriptions
	Executing ATS1HW

	G8.2.21 BPIALL, Branch Predictor Invalidate All
	Field descriptions
	Executing BPIALL

	G8.2.22 BPIALLIS, Branch Predictor Invalidate All, Inner Shareable
	Field descriptions
	Executing BPIALLIS

	G8.2.23 BPIMVA, Branch Predictor Invalidate by VA
	Field descriptions
	Executing BPIMVA

	G8.2.24 CCSIDR, Current Cache Size ID Register
	Field descriptions
	Accessing CCSIDR

	G8.2.25 CCSIDR2, Current Cache Size ID Register 2
	Field descriptions
	Accessing CCSIDR2

	G8.2.26 CFPRCTX, Control Flow Prediction Restriction by Context
	Field descriptions
	Executing CFPRCTX

	G8.2.27 CLIDR, Cache Level ID Register
	Field descriptions
	Accessing CLIDR

	G8.2.28 CONTEXTIDR, Context ID Register
	Field descriptions
	Accessing CONTEXTIDR

	G8.2.29 COSPRCTX, Clear Other Speculative Prediction Restriction by Context
	Field descriptions
	Executing COSPRCTX

	G8.2.30 CP15DMB, Data Memory Barrier System instruction
	Field descriptions
	Executing CP15DMB

	G8.2.31 CP15DSB, Data Synchronization Barrier System instruction
	Field descriptions
	Executing CP15DSB

	G8.2.32 CP15ISB, Instruction Synchronization Barrier System instruction
	Field descriptions
	Executing CP15ISB

	G8.2.33 CPACR, Architectural Feature Access Control Register
	Field descriptions
	Accessing CPACR

	G8.2.34 CPSR, Current Program Status Register
	Field descriptions

	G8.2.35 CPPRCTX, Cache Prefetch Prediction Restriction by Context
	Field descriptions
	Executing CPPRCTX

	G8.2.36 CSSELR, Cache Size Selection Register
	Field descriptions
	Accessing CSSELR

	G8.2.37 CTR, Cache Type Register
	Field descriptions
	Accessing CTR

	G8.2.38 DACR, Domain Access Control Register
	Field descriptions
	Accessing DACR

	G8.2.39 DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC
	Field descriptions
	Executing DCCIMVAC

	G8.2.40 DCCISW, Data Cache line Clean and Invalidate by Set/Way
	Field descriptions
	Executing DCCISW

	G8.2.41 DCCMVAC, Data Cache line Clean by VA to PoC
	Field descriptions
	Executing DCCMVAC

	G8.2.42 DCCMVAU, Data Cache line Clean by VA to PoU
	Field descriptions
	Executing DCCMVAU

	G8.2.43 DCCSW, Data Cache line Clean by Set/Way
	Field descriptions
	Executing DCCSW

	G8.2.44 DCIMVAC, Data Cache line Invalidate by VA to PoC
	Field descriptions
	Executing DCIMVAC

	G8.2.45 DCISW, Data Cache line Invalidate by Set/Way
	Field descriptions
	Executing DCISW

	G8.2.46 DFAR, Data Fault Address Register
	Field descriptions
	Accessing DFAR

	G8.2.47 DFSR, Data Fault Status Register
	Field descriptions
	Accessing DFSR

	G8.2.48 DTLBIALL, Data TLB Invalidate All
	Field descriptions
	Executing DTLBIALL

	G8.2.49 DTLBIASID, Data TLB Invalidate by ASID match
	Field descriptions
	Executing DTLBIASID

	G8.2.50 DTLBIMVA, Data TLB Invalidate by VA
	Field descriptions
	Executing DTLBIMVA

	G8.2.51 DVPRCTX, Data Value Prediction Restriction by Context
	Field descriptions
	Executing DVPRCTX

	G8.2.52 ELR_hyp, Exception Link Register (Hyp mode)
	Field descriptions
	Accessing ELR_hyp

	G8.2.53 FCSEIDR, FCSE Process ID register
	Field descriptions
	Accessing FCSEIDR

	G8.2.54 FPEXC, Floating-Point Exception Control register
	Field descriptions
	Accessing FPEXC

	G8.2.55 FPSCR, Floating-Point Status and Control Register
	Field descriptions
	Accessing FPSCR

	G8.2.56 FPSID, Floating-Point System ID register
	Field descriptions
	Accessing FPSID

	G8.2.57 HACR, Hyp Auxiliary Configuration Register
	Field descriptions
	Accessing HACR

	G8.2.58 HACTLR, Hyp Auxiliary Control Register
	Field descriptions
	Accessing HACTLR

	G8.2.59 HACTLR2, Hyp Auxiliary Control Register 2
	Field descriptions
	Accessing HACTLR2

	G8.2.60 HADFSR, Hyp Auxiliary Data Fault Status Register
	Field descriptions
	Accessing HADFSR

	G8.2.61 HAIFSR, Hyp Auxiliary Instruction Fault Status Register
	Field descriptions
	Accessing HAIFSR

	G8.2.62 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0
	Field descriptions
	Accessing HAMAIR0

	G8.2.63 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1
	Field descriptions
	Accessing HAMAIR1

	G8.2.64 HCPTR, Hyp Architectural Feature Trap Register
	Field descriptions
	Accessing HCPTR

	G8.2.65 HCR, Hyp Configuration Register
	Field descriptions
	Accessing HCR

	G8.2.66 HCR2, Hyp Configuration Register 2
	Field descriptions
	Accessing HCR2

	G8.2.67 HDFAR, Hyp Data Fault Address Register
	Field descriptions
	Accessing HDFAR

	G8.2.68 HIFAR, Hyp Instruction Fault Address Register
	Field descriptions
	Accessing HIFAR

	G8.2.69 HMAIR0, Hyp Memory Attribute Indirection Register 0
	Field descriptions
	Accessing HMAIR0

	G8.2.70 HMAIR1, Hyp Memory Attribute Indirection Register 1
	Field descriptions
	Accessing HMAIR1

	G8.2.71 HPFAR, Hyp IPA Fault Address Register
	Field descriptions
	Accessing HPFAR

	G8.2.72 HRMR, Hyp Reset Management Register
	Field descriptions
	Accessing HRMR

	G8.2.73 HSCTLR, Hyp System Control Register
	Field descriptions
	Accessing HSCTLR

	G8.2.74 HSR, Hyp Syndrome Register
	Field descriptions
	Accessing HSR

	G8.2.75 HSTR, Hyp System Trap Register
	Field descriptions
	Accessing HSTR

	G8.2.76 HTCR, Hyp Translation Control Register
	Field descriptions
	Accessing HTCR

	G8.2.77 HTPIDR, Hyp Software Thread ID Register
	Field descriptions
	Accessing HTPIDR

	G8.2.78 HTTBR, Hyp Translation Table Base Register
	Field descriptions
	Accessing HTTBR

	G8.2.79 HVBAR, Hyp Vector Base Address Register
	Field descriptions
	Accessing HVBAR

	G8.2.80 ICIALLU, Instruction Cache Invalidate All to PoU
	Field descriptions
	Executing ICIALLU

	G8.2.81 ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable
	Field descriptions
	Executing ICIALLUIS

	G8.2.82 ICIMVAU, Instruction Cache line Invalidate by VA to PoU
	Field descriptions
	Executing ICIMVAU

	G8.2.83 ID_AFR0, Auxiliary Feature Register 0
	Field descriptions
	Accessing ID_AFR0

	G8.2.84 ID_DFR0, Debug Feature Register 0
	Field descriptions
	Accessing ID_DFR0

	G8.2.85 ID_DFR1, Debug Feature Register 1
	Field descriptions
	Accessing ID_DFR1

	G8.2.86 ID_ISAR0, Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_ISAR0

	G8.2.87 ID_ISAR1, Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_ISAR1

	G8.2.88 ID_ISAR2, Instruction Set Attribute Register 2
	Field descriptions
	Accessing ID_ISAR2

	G8.2.89 ID_ISAR3, Instruction Set Attribute Register 3
	Field descriptions
	Accessing ID_ISAR3

	G8.2.90 ID_ISAR4, Instruction Set Attribute Register 4
	Field descriptions
	Accessing ID_ISAR4

	G8.2.91 ID_ISAR5, Instruction Set Attribute Register 5
	Field descriptions
	Accessing ID_ISAR5

	G8.2.92 ID_ISAR6, Instruction Set Attribute Register 6
	Field descriptions
	Accessing ID_ISAR6

	G8.2.93 ID_MMFR0, Memory Model Feature Register 0
	Field descriptions
	Accessing ID_MMFR0

	G8.2.94 ID_MMFR1, Memory Model Feature Register 1
	Field descriptions
	Accessing ID_MMFR1

	G8.2.95 ID_MMFR2, Memory Model Feature Register 2
	Field descriptions
	Accessing ID_MMFR2

	G8.2.96 ID_MMFR3, Memory Model Feature Register 3
	Field descriptions
	Accessing ID_MMFR3

	G8.2.97 ID_MMFR4, Memory Model Feature Register 4
	Field descriptions
	Accessing ID_MMFR4

	G8.2.98 ID_MMFR5, Memory Model Feature Register 5
	Field descriptions
	Accessing ID_MMFR5

	G8.2.99 ID_PFR0, Processor Feature Register 0
	Field descriptions
	Accessing ID_PFR0

	G8.2.100 ID_PFR1, Processor Feature Register 1
	Field descriptions
	Accessing ID_PFR1

	G8.2.101 ID_PFR2, Processor Feature Register 2
	Field descriptions
	Accessing ID_PFR2

	G8.2.102 IFAR, Instruction Fault Address Register
	Field descriptions
	Accessing IFAR

	G8.2.103 IFSR, Instruction Fault Status Register
	Field descriptions
	Accessing IFSR

	G8.2.104 ISR, Interrupt Status Register
	Field descriptions
	Accessing ISR

	G8.2.105 ITLBIALL, Instruction TLB Invalidate All
	Field descriptions
	Executing ITLBIALL

	G8.2.106 ITLBIASID, Instruction TLB Invalidate by ASID match
	Field descriptions
	Executing ITLBIASID

	G8.2.107 ITLBIMVA, Instruction TLB Invalidate by VA
	Field descriptions
	Executing ITLBIMVA

	G8.2.108 JIDR, Jazelle ID Register
	Field descriptions
	Accessing JIDR

	G8.2.109 JMCR, Jazelle Main Configuration Register
	Field descriptions
	Accessing JMCR

	G8.2.110 JOSCR, Jazelle OS Control Register
	Field descriptions
	Accessing JOSCR

	G8.2.111 MAIR0, Memory Attribute Indirection Register 0
	Field descriptions
	Accessing MAIR0

	G8.2.112 MAIR1, Memory Attribute Indirection Register 1
	Field descriptions
	Accessing MAIR1

	G8.2.113 MIDR, Main ID Register
	Field descriptions
	Accessing MIDR

	G8.2.114 MPIDR, Multiprocessor Affinity Register
	Field descriptions
	Accessing MPIDR

	G8.2.115 MVBAR, Monitor Vector Base Address Register
	Field descriptions
	Accessing MVBAR

	G8.2.116 MVFR0, Media and VFP Feature Register 0
	Field descriptions
	Accessing MVFR0

	G8.2.117 MVFR1, Media and VFP Feature Register 1
	Field descriptions
	Accessing MVFR1

	G8.2.118 MVFR2, Media and VFP Feature Register 2
	Field descriptions
	Accessing MVFR2

	G8.2.119 NMRR, Normal Memory Remap Register
	Field descriptions
	Accessing NMRR

	G8.2.120 NSACR, Non-Secure Access Control Register
	Field descriptions
	Accessing NSACR

	G8.2.121 PAR, Physical Address Register
	Field descriptions
	Accessing PAR

	G8.2.122 PRRR, Primary Region Remap Register
	Field descriptions
	Accessing PRRR

	G8.2.123 REVIDR, Revision ID Register
	Field descriptions
	Accessing REVIDR

	G8.2.124 RMR, Reset Management Register
	Field descriptions
	Accessing RMR

	G8.2.125 RVBAR, Reset Vector Base Address Register
	Field descriptions
	Accessing RVBAR

	G8.2.126 SCR, Secure Configuration Register
	Field descriptions
	Accessing SCR

	G8.2.127 SCTLR, System Control Register
	Field descriptions
	Accessing SCTLR

	G8.2.128 SPSR, Saved Program Status Register
	Field descriptions

	G8.2.129 SPSR_abt, Saved Program Status Register (Abort mode)
	Field descriptions
	Accessing SPSR_abt

	G8.2.130 SPSR_fiq, Saved Program Status Register (FIQ mode)
	Field descriptions
	Accessing SPSR_fiq

	G8.2.131 SPSR_hyp, Saved Program Status Register (Hyp mode)
	Field descriptions
	Accessing SPSR_hyp

	G8.2.132 SPSR_irq, Saved Program Status Register (IRQ mode)
	Field descriptions
	Accessing SPSR_irq

	G8.2.133 SPSR_mon, Saved Program Status Register (Monitor mode)
	Field descriptions
	Accessing SPSR_mon

	G8.2.134 SPSR_svc, Saved Program Status Register (Supervisor mode)
	Field descriptions
	Accessing SPSR_svc

	G8.2.135 SPSR_und, Saved Program Status Register (Undefined mode)
	Field descriptions
	Accessing SPSR_und

	G8.2.136 TCMTR, TCM Type Register
	Field descriptions
	Accessing TCMTR

	G8.2.137 TLBIALL, TLB Invalidate All
	Field descriptions
	Executing TLBIALL

	G8.2.138 TLBIALLH, TLB Invalidate All, Hyp mode
	Field descriptions
	Executing TLBIALLH

	G8.2.139 TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable
	Field descriptions
	Executing TLBIALLHIS

	G8.2.140 TLBIALLIS, TLB Invalidate All, Inner Shareable
	Field descriptions
	Executing TLBIALLIS

	G8.2.141 TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp
	Field descriptions
	Executing TLBIALLNSNH

	G8.2.142 TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
	Field descriptions
	Executing TLBIALLNSNHIS

	G8.2.143 TLBIASID, TLB Invalidate by ASID match
	Field descriptions
	Executing TLBIASID

	G8.2.144 TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable
	Field descriptions
	Executing TLBIASIDIS

	G8.2.145 TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2
	Field descriptions
	Executing TLBIIPAS2

	G8.2.146 TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable
	Field descriptions
	Executing TLBIIPAS2IS

	G8.2.147 TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
	Field descriptions
	Executing TLBIIPAS2L

	G8.2.148 TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable
	Field descriptions
	Executing TLBIIPAS2LIS

	G8.2.149 TLBIMVA, TLB Invalidate by VA
	Field descriptions
	Executing TLBIMVA

	G8.2.150 TLBIMVAA, TLB Invalidate by VA, All ASID
	Field descriptions
	Executing TLBIMVAA

	G8.2.151 TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable
	Field descriptions
	Executing TLBIMVAAIS

	G8.2.152 TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level
	Field descriptions
	Executing TLBIMVAAL

	G8.2.153 TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable
	Field descriptions
	Executing TLBIMVAALIS

	G8.2.154 TLBIMVAH, TLB Invalidate by VA, Hyp mode
	Field descriptions
	Executing TLBIMVAH

	G8.2.155 TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable
	Field descriptions
	Executing TLBIMVAHIS

	G8.2.156 TLBIMVAIS, TLB Invalidate by VA, Inner Shareable
	Field descriptions
	Executing TLBIMVAIS

	G8.2.157 TLBIMVAL, TLB Invalidate by VA, Last level
	Field descriptions
	Executing TLBIMVAL

	G8.2.158 TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode
	Field descriptions
	Executing TLBIMVALH

	G8.2.159 TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
	Field descriptions
	Executing TLBIMVALHIS

	G8.2.160 TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable
	Field descriptions
	Executing TLBIMVALIS

	G8.2.161 TLBTR, TLB Type Register
	Field descriptions
	Accessing TLBTR

	G8.2.162 TPIDRPRW, PL1 Software Thread ID Register
	Field descriptions
	Accessing TPIDRPRW

	G8.2.163 TPIDRURO, PL0 Read-Only Software Thread ID Register
	Field descriptions
	Accessing TPIDRURO

	G8.2.164 TPIDRURW, PL0 Read/Write Software Thread ID Register
	Field descriptions
	Accessing TPIDRURW

	G8.2.165 TTBCR, Translation Table Base Control Register
	Field descriptions
	Accessing TTBCR

	G8.2.166 TTBCR2, Translation Table Base Control Register 2
	Field descriptions
	Accessing TTBCR2

	G8.2.167 TTBR0, Translation Table Base Register 0
	Field descriptions
	Accessing TTBR0

	G8.2.168 TTBR1, Translation Table Base Register 1
	Field descriptions
	Accessing TTBR1

	G8.2.169 VBAR, Vector Base Address Register
	Field descriptions
	Accessing VBAR

	G8.2.170 VMPIDR, Virtualization Multiprocessor ID Register
	Field descriptions
	Accessing VMPIDR

	G8.2.171 VPIDR, Virtualization Processor ID Register
	Field descriptions
	Accessing VPIDR

	G8.2.172 VTCR, Virtualization Translation Control Register
	Field descriptions
	Accessing VTCR

	G8.2.173 VTTBR, Virtualization Translation Table Base Register
	Field descriptions
	Accessing VTTBR

	G8.3 Debug registers
	G8.3.1 DBGAUTHSTATUS, Debug Authentication Status register
	Field descriptions
	Accessing DBGAUTHSTATUS

	G8.3.2 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBCR<n>

	G8.3.3 DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBVR<n>

	G8.3.4 DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBXVR<n>

	G8.3.5 DBGCLAIMCLR, Debug CLAIM Tag Clear register
	Field descriptions
	Accessing DBGCLAIMCLR

	G8.3.6 DBGCLAIMSET, Debug CLAIM Tag Set register
	Field descriptions
	Accessing DBGCLAIMSET

	G8.3.7 DBGDCCINT, DCC Interrupt Enable Register
	Field descriptions
	Accessing DBGDCCINT

	G8.3.8 DBGDEVID, Debug Device ID register 0
	Field descriptions
	Accessing DBGDEVID

	G8.3.9 DBGDEVID1, Debug Device ID register 1
	Field descriptions
	Accessing DBGDEVID1

	G8.3.10 DBGDEVID2, Debug Device ID register 2
	Field descriptions
	Accessing DBGDEVID2

	G8.3.11 DBGDIDR, Debug ID Register
	Field descriptions
	Accessing DBGDIDR

	G8.3.12 DBGDRAR, Debug ROM Address Register
	Field descriptions
	Accessing DBGDRAR

	G8.3.13 DBGDSAR, Debug Self Address Register
	Field descriptions
	Accessing DBGDSAR

	G8.3.14 DBGDSCRext, Debug Status and Control Register, External View
	Field descriptions
	Accessing DBGDSCRext

	G8.3.15 DBGDSCRint, Debug Status and Control Register, Internal View
	Field descriptions
	Accessing DBGDSCRint

	G8.3.16 DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View
	Field descriptions
	Accessing DBGDTRRXext

	G8.3.17 DBGDTRRXint, Debug Data Transfer Register, Receive
	Field descriptions
	Accessing DBGDTRRXint

	G8.3.18 DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit
	Field descriptions
	Accessing DBGDTRTXext

	G8.3.19 DBGDTRTXint, Debug Data Transfer Register, Transmit
	Field descriptions
	Accessing DBGDTRTXint

	G8.3.20 DBGOSDLR, Debug OS Double Lock Register
	Field descriptions
	Accessing DBGOSDLR

	G8.3.21 DBGOSECCR, Debug OS Lock Exception Catch Control Register
	Field descriptions
	Accessing DBGOSECCR

	G8.3.22 DBGOSLAR, Debug OS Lock Access Register
	Field descriptions
	Accessing DBGOSLAR

	G8.3.23 DBGOSLSR, Debug OS Lock Status Register
	Field descriptions
	Accessing DBGOSLSR

	G8.3.24 DBGPRCR, Debug Power Control Register
	Field descriptions
	Accessing DBGPRCR

	G8.3.25 DBGVCR, Debug Vector Catch Register
	Field descriptions
	Accessing DBGVCR

	G8.3.26 DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGWCR<n>

	G8.3.27 DBGWFAR, Debug Watchpoint Fault Address Register
	Field descriptions
	Accessing DBGWFAR

	G8.3.28 DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15
	Field descriptions
	Accessing DBGWVR<n>

	G8.3.29 DLR, Debug Link Register
	Field descriptions
	Accessing DLR

	G8.3.30 DSPSR, Debug Saved Program Status Register
	Field descriptions
	Accessing DSPSR

	G8.3.31 DSPSR2, Debug Saved Process State Register 2
	Field descriptions
	Accessing DSPSR2

	G8.3.32 HDCR, Hyp Debug Control Register
	Field descriptions
	Accessing HDCR

	G8.3.33 HTRFCR, Hyp Trace Filter Control Register
	Field descriptions
	Accessing HTRFCR

	G8.3.34 PMMIR, Performance Monitors Machine Identification Register
	Field descriptions
	Accessing PMMIR

	G8.3.35 SDCR, Secure Debug Control Register
	Field descriptions
	Accessing SDCR

	G8.3.36 SDER, Secure Debug Enable Register
	Field descriptions
	Accessing SDER

	G8.3.37 TRFCR, Trace Filter Control Register
	Field descriptions
	Accessing TRFCR

	G8.4 Performance Monitors registers
	G8.4.1 PMCCFILTR, Performance Monitors Cycle Count Filter Register
	Field descriptions
	Accessing PMCCFILTR

	G8.4.2 PMCCNTR, Performance Monitors Cycle Count Register
	Field descriptions
	Accessing PMCCNTR

	G8.4.3 PMCEID0, Performance Monitors Common Event Identification register 0
	Field descriptions
	Accessing PMCEID0

	G8.4.4 PMCEID1, Performance Monitors Common Event Identification register 1
	Field descriptions
	Accessing PMCEID1

	G8.4.5 PMCEID2, Performance Monitors Common Event Identification register 2
	Field descriptions
	Accessing PMCEID2

	G8.4.6 PMCEID3, Performance Monitors Common Event Identification register 3
	Field descriptions
	Accessing PMCEID3

	G8.4.7 PMCNTENCLR, Performance Monitors Count Enable Clear register
	Field descriptions
	Accessing PMCNTENCLR

	G8.4.8 PMCNTENSET, Performance Monitors Count Enable Set register
	Field descriptions
	Accessing PMCNTENSET

	G8.4.9 PMCR, Performance Monitors Control Register
	Field descriptions
	Accessing PMCR

	G8.4.10 PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTR<n>

	G8.4.11 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVTYPER<n>

	G8.4.12 PMINTENCLR, Performance Monitors Interrupt Enable Clear register
	Field descriptions
	Accessing PMINTENCLR

	G8.4.13 PMINTENSET, Performance Monitors Interrupt Enable Set register
	Field descriptions
	Accessing PMINTENSET

	G8.4.14 PMOVSR, Performance Monitors Overflow Flag Status Register
	Field descriptions
	Accessing PMOVSR

	G8.4.15 PMOVSSET, Performance Monitors Overflow Flag Status Set register
	Field descriptions
	Accessing PMOVSSET

	G8.4.16 PMSELR, Performance Monitors Event Counter Selection Register
	Field descriptions
	Accessing PMSELR

	G8.4.17 PMSWINC, Performance Monitors Software Increment register
	Field descriptions
	Accessing PMSWINC

	G8.4.18 PMUSERENR, Performance Monitors User Enable Register
	Field descriptions
	Accessing PMUSERENR

	G8.4.19 PMXEVCNTR, Performance Monitors Selected Event Count Register
	Field descriptions
	Accessing PMXEVCNTR

	G8.4.20 PMXEVTYPER, Performance Monitors Selected Event Type Register
	Field descriptions
	Accessing PMXEVTYPER

	G8.5 Activity Monitors registers
	G8.5.1 AMCFGR, Activity Monitors Configuration Register
	Field descriptions
	Accessing AMCFGR

	G8.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register
	Field descriptions
	Accessing AMCGCR

	G8.5.3 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0
	Field descriptions
	Accessing AMCNTENCLR0

	G8.5.4 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1
	Field descriptions
	Accessing AMCNTENCLR1

	G8.5.5 AMCNTENSET0, Activity Monitors Count Enable Set Register 0
	Field descriptions
	Accessing AMCNTENSET0

	G8.5.6 AMCNTENSET1, Activity Monitors Count Enable Set Register 1
	Field descriptions
	Accessing AMCNTENSET1

	G8.5.7 AMCR, Activity Monitors Control Register
	Field descriptions
	Accessing AMCR

	G8.5.8 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVCNTR0<n>

	G8.5.9 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTR1<n>

	G8.5.10 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVTYPER0<n>

	G8.5.11 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVTYPER1<n>

	G8.5.12 AMUSERENR, Activity Monitors User Enable Register
	Field descriptions
	Accessing AMUSERENR

	G8.6 RAS registers
	G8.6.1 DISR, Deferred Interrupt Status Register
	Field descriptions
	Accessing DISR

	G8.6.2 ERRIDR, Error Record ID Register
	Field descriptions
	Accessing ERRIDR

	G8.6.3 ERRSELR, Error Record Select Register
	Field descriptions
	Accessing ERRSELR

	G8.6.4 ERXADDR, Selected Error Record Address Register
	Field descriptions
	Accessing ERXADDR

	G8.6.5 ERXADDR2, Selected Error Record Address Register 2
	Field descriptions
	Accessing ERXADDR2

	G8.6.6 ERXCTLR, Selected Error Record Control Register
	Field descriptions
	Accessing ERXCTLR

	G8.6.7 ERXCTLR2, Selected Error Record Control Register 2
	Field descriptions
	Accessing ERXCTLR2

	G8.6.8 ERXFR, Selected Error Record Feature Register
	Field descriptions
	Accessing ERXFR

	G8.6.9 ERXFR2, Selected Error Record Feature Register 2
	Field descriptions
	Accessing ERXFR2

	G8.6.10 ERXMISC0, Selected Error Record Miscellaneous Register 0
	Field descriptions
	Accessing ERXMISC0

	G8.6.11 ERXMISC1, Selected Error Record Miscellaneous Register 1
	Field descriptions
	Accessing ERXMISC1

	G8.6.12 ERXMISC2, Selected Error Record Miscellaneous Register 2
	Field descriptions
	Accessing ERXMISC2

	G8.6.13 ERXMISC3, Selected Error Record Miscellaneous Register 3
	Field descriptions
	Accessing ERXMISC3

	G8.6.14 ERXMISC4, Selected Error Record Miscellaneous Register 4
	Field descriptions
	Accessing ERXMISC4

	G8.6.15 ERXMISC5, Selected Error Record Miscellaneous Register 5
	Field descriptions
	Accessing ERXMISC5

	G8.6.16 ERXMISC6, Selected Error Record Miscellaneous Register 6
	Field descriptions
	Accessing ERXMISC6

	G8.6.17 ERXMISC7, Selected Error Record Miscellaneous Register 7
	Field descriptions
	Accessing ERXMISC7

	G8.6.18 ERXSTATUS, Selected Error Record Primary Status Register
	Field descriptions
	Accessing ERXSTATUS

	G8.6.19 VDFSR, Virtual SError Exception Syndrome Register
	Field descriptions
	Accessing VDFSR

	G8.6.20 VDISR, Virtual Deferred Interrupt Status Register
	Field descriptions
	Accessing VDISR

	G8.7 Generic Timer registers
	G8.7.1 CNTFRQ, Counter-timer Frequency register
	Field descriptions
	Accessing CNTFRQ

	G8.7.2 CNTHCTL, Counter-timer Hyp Control register
	Field descriptions
	Accessing CNTHCTL

	G8.7.3 CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	Field descriptions
	Accessing CNTHP_CTL

	G8.7.4 CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register
	Field descriptions
	Accessing CNTHP_CVAL

	G8.7.5 CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register
	Field descriptions
	Accessing CNTHP_TVAL

	G8.7.6 CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHPS_CTL

	G8.7.7 CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHPS_CVAL

	G8.7.8 CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHPS_TVAL

	G8.7.9 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
	Field descriptions
	Accessing CNTHV_CTL

	G8.7.10 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)
	Field descriptions
	Accessing CNTHV_CVAL

	G8.7.11 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)
	Field descriptions
	Accessing CNTHV_TVAL

	G8.7.12 CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)
	Field descriptions
	Accessing CNTHVS_CTL

	G8.7.13 CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)
	Field descriptions
	Accessing CNTHVS_CVAL

	G8.7.14 CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)
	Field descriptions
	Accessing CNTHVS_TVAL

	G8.7.15 CNTKCTL, Counter-timer Kernel Control register
	Field descriptions
	Accessing CNTKCTL

	G8.7.16 CNTP_CTL, Counter-timer Physical Timer Control register
	Field descriptions
	Accessing CNTP_CTL

	G8.7.17 CNTP_CVAL, Counter-timer Physical Timer CompareValue register
	Field descriptions
	Accessing CNTP_CVAL

	G8.7.18 CNTP_TVAL, Counter-timer Physical Timer TimerValue register
	Field descriptions
	Accessing CNTP_TVAL

	G8.7.19 CNTPCT, Counter-timer Physical Count register
	Field descriptions
	Accessing CNTPCT

	G8.7.20 CNTPCTSS, Counter-timer Self-Synchronized Physical Count register
	Field descriptions
	Accessing CNTPCTSS

	G8.7.21 CNTV_CTL, Counter-timer Virtual Timer Control register
	Field descriptions
	Accessing CNTV_CTL

	G8.7.22 CNTV_CVAL, Counter-timer Virtual Timer CompareValue register
	Field descriptions
	Accessing CNTV_CVAL

	G8.7.23 CNTV_TVAL, Counter-timer Virtual Timer TimerValue register
	Field descriptions
	Accessing CNTV_TVAL

	G8.7.24 CNTVCT, Counter-timer Virtual Count register
	Field descriptions
	Accessing CNTVCT

	G8.7.25 CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register
	Field descriptions
	Accessing CNTVCTSS

	G8.7.26 CNTVOFF, Counter-timer Virtual Offset register
	Field descriptions
	Accessing CNTVOFF

	Part H: External Debug�
	H1: About External Debug�
	H1.1 Introduction to external debug
	H1.1.1 Definition and constraints of a debugger in the context of external debug

	H1.2 External debug
	H1.3 Required debug authentication

	H2: Debug State�
	H2.1 About Debug state
	H2.2 Halting the PE on debug events
	H2.2.1 Halting allowed and halting prohibited
	H2.2.2 Halting debug events
	H2.2.3 Breakpoint and Watchpoint debug events
	H2.2.4 Other debug exceptions
	H2.2.5 Debug state entry and debug event prioritization
	H2.2.5.1 Breakpoint debug events and Vector Catch exception

	H2.2.6 Imprecise entry to Debug state
	H2.2.7 Summary of actions from debug events
	H2.2.8 Pseudocode description of Halting on debug events

	H2.3 Entering Debug state
	H2.3.1 Entering Debug state from AArch32 state
	H2.3.2 Effect of Debug state entry on DLR and DSPSR
	H2.3.3 Effect of Debug state entry on System registers, the Event register, and Exclusives monitors
	H2.3.4 Effect of entering Debug state on PSTATE
	H2.3.5 Entering Debug state during loads and stores
	H2.3.6 Entering Debug state and Software Step
	H2.3.7 Pseudocode description of entering Debug state

	H2.4 Behavior in Debug state
	H2.4.1 PSTATE in Debug state
	H2.4.2 Executing instructions in Debug state
	H2.4.2.1 Executing A64 instructions in Debug state
	H2.4.2.2 Executing T32 instructions in Debug state

	H2.4.3 Decode tables
	H2.4.4 Security in Debug state
	H2.4.5 Privilege in Debug state
	H2.4.6 Debug state operations, DCPS, DRPS, MRS, MSR
	H2.4.6.1 DCPS<n>
	H2.4.6.2 DRPS
	H2.4.6.3 MRS and MSR

	H2.4.7 Exceptions in Debug state
	H2.4.7.1 Generating exceptions when in Debug state
	H2.4.7.2 Taking exceptions when in Debug state
	H2.4.7.3 Pseudocode description of taking exceptions in Debug state
	H2.4.7.4 Reset in Debug state

	H2.4.8 Accessing registers in Debug state
	H2.4.8.1 General-purpose register access, other than AArch64 state SP access
	H2.4.8.2 SIMD&FP register, System register, and AArch64 state SP accesses
	H2.4.8.3 PC and PSTATE access

	H2.4.9 Accessing memory in Debug state
	H2.4.9.1 Simple memory transfers
	H2.4.9.2 Bulk memory transfers

	H2.5 Exiting Debug state

	H3: Halting Debug Events�
	H3.1 Introduction to Halting debug events
	H3.2 Halting Step debug events
	H3.2.1 Overview of a Halting Step debug event
	H3.2.2 The Halting Step state machine
	H3.2.3 Using Halting Step
	H3.2.4 Detailed Halting Step state machine behavior
	H3.2.4.1 Entering the active-not-pending state
	H3.2.4.2 PE behavior in the active-not-pending state
	H3.2.4.3 Entering the active-pending state
	H3.2.4.4 PE behavior in the active-pending state
	H3.2.4.5 PE behavior in the inactive state when in Non-debug state
	H3.2.4.6 PE behavior in Debug state

	H3.2.5 Synchronization and the Halting Step state machine
	H3.2.5.1 Changing the value of EDECR.SS when not in Debug state

	H3.2.6 Stepping T32 IT instructions
	H3.2.7 Disabling interrupts while stepping
	H3.2.8 Syndrome information on Halting Step
	H3.2.9 Pseudocode description of Halting Step debug events

	H3.3 Halt Instruction debug event
	H3.3.1 HLT instructions as the first instruction in a T32 IT block

	H3.4 Exception Catch debug event
	H3.4.1 Prioritization of Exception Catch debug events
	H3.4.2 Generating Exception Catch debug events when FEAT_Debugv8p2 is not implemented
	H3.4.3 Generating Exception Catch debug events when FEAT_Debugv8p2 is implemented and FEAT_Debugv8p8 is not implemented
	H3.4.4 Generating Exception Catch debug events when FEAT_Debugv8p8 is implemented
	H3.4.5 Controlling Exception Catch debug events when FEAT_RME is implemented
	H3.4.6 Controlling Exception Catch debug events when FEAT_Debugv8p2 is implemented
	H3.4.7 Controlling Exception Catch debug events when FEAT_Debugv8p2 is not implemented
	H3.4.8 Examples of Exception Catch debug events
	H3.4.9 Pseudocode description of Exception Catch debug events

	H3.5 External Debug Request debug event
	H3.5.1 Synchronization and External Debug Request debug events
	H3.5.2 ETE external debug request
	H3.5.3 Trace Buffer Unit external debug request
	H3.5.4 PMU Overflow external debug request
	H3.5.5 Pseudocode description of External Debug Request debug events

	H3.6 OS Unlock Catch debug event
	H3.6.1 Using the OS Unlock Catch debug event
	H3.6.2 Pseudocode description of OS Unlock Catch debug event

	H3.7 Reset Catch debug events
	H3.7.1 Pseudocode description of Reset Catch debug event

	H3.8 Software Access debug event
	H3.8.1 Pseudocode description of Software Access debug event

	H3.9 Synchronization and Halting debug events
	H3.9.1 Pending Halting debug events

	H4: The Debug Communication Channel and Instruction Transfer Register�
	H4.1 Introduction
	H4.2 DCC and ITR registers
	H4.3 DCC and ITR access modes
	H4.3.1 Normal access mode
	H4.3.2 Memory access mode
	H4.3.2.1 Ordering, access sizes and effect on Exclusives monitors
	H4.3.2.2 Data Aborts in Memory access mode
	H4.3.2.3 Illegal Execution state exception
	H4.3.2.4 Alignment constraints

	H4.3.3 Memory-mapped accesses to the DCC and ITR

	H4.4 Flow control of the DCC and ITR registers
	H4.4.1 Ready flags
	H4.4.2 Buffering writes to EDITR
	H4.4.3 Overrun and underrun flags
	H4.4.3.1 Accessing 64-bit data

	H4.4.4 Cumulative error flag
	H4.4.4.1 Pseudocode description of clearing the error flag

	H4.5 Synchronization of DCC and ITR accesses
	H4.5.1 Summary of System register accesses to the DCC
	H4.5.2 DCC accesses in Non-debug state
	H4.5.2.1 Derived requirements

	H4.5.3 Synchronization of DCC interrupt request signals
	H4.5.4 DCC and ITR access in Debug state

	H4.6 Interrupt-driven use of the DCC
	H4.7 Pseudocode description of the operation of the DCC and ITR registers

	H5: The Embedded Cross-Trigger Interface�
	H5.1 About the Embedded Cross-Trigger
	H5.1.1 Implementation with a CoreSight CTI
	H5.1.2 Implementation with CTIv2

	H5.2 Basic operation on the ECT
	H5.2.1 Multicycle events
	H5.2.1.1 An ECT that supports multicycle trigger events
	H5.2.1.2 An ECT that does not support multicycle trigger events

	H5.3 Cross-triggers on a PE in an Arm A-profile implementation
	H5.4 Description and allocation of CTI triggers
	H5.4.1 Debug request trigger event
	H5.4.2 Restart request trigger event
	H5.4.3 Cross-halt trigger event
	H5.4.4 Performance Monitors overflow trigger event
	H5.4.5 Statistical Profiling Extension sample trigger event
	H5.4.6 Generic trace external input trigger events
	H5.4.7 Generic trace external output trigger events
	H5.4.8 Generic CTI interrupt trigger event
	H5.4.9 Trace buffer stopped trigger event
	H5.4.10 Trace buffer management trigger event
	H5.4.11 Trace buffer wrap trigger event

	H5.5 CTI registers programmers’ model
	H5.5.1 CTI reset
	H5.5.2 CTI authentication

	H5.6 Examples

	H6: Debug Reset and Powerdown Support�
	H6.1 About Debug over powerdown
	H6.2 Power domains and debug
	H6.3 Core power domain power states
	H6.4 Powerup request mechanism
	H6.4.1 Powerup request mechanism if FEAT_DoPD is implemented
	H6.4.2 Powerup request mechanism if FEAT_DoPD is not implemented

	H6.5 Emulating low-power states
	H6.6 Debug OS Save and Restore sequences
	H6.6.1 EDPRSR.{DLK, SPD, PU} and the Core power domain
	H6.6.2 EDPRSR.SPD when the Core domain is in either retention or powerdown state
	H6.6.3 EDPRSR.{DLK, R} and reset state
	H6.6.4 Debug registers to save over powerdown
	H6.6.5 OS Save sequence
	H6.6.6 OS Restore sequence
	H6.6.7 Debug behavior when the OS Lock is locked
	H6.6.8 Debug behavior when the OS Lock is unlocked
	H6.6.9 Debug behavior when the OS Double Lock is locked

	H6.7 Reset and debug
	H6.7.1 External debug interface accesses to registers in reset

	H7: The PC Sample-based Profiling Extension�
	H7.1 About the PC Sample-based Profiling Extension
	H7.1.1 Controlling the PC Sample-based Profiling Extension
	H7.1.1.1 Suspending and activating PC Sample-based Profiling

	H7.1.2 Registers implemented by the PC Sample-based Profiling Extension
	H7.1.3 Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN
	H7.1.4 Pseudocode description of PC Sample-based Profiling

	H8: About the External Debug Registers�
	H8.1 Relationship between external debug and System registers
	H8.2 Endianness and supported access sizes
	H8.3 Synchronization of changes to the external debug registers
	H8.3.1 Synchronization and the authentication interface
	H8.3.2 Examples of the synchronization of changes to the external debug registers

	H8.4 Memory-mapped accesses to the external debug interface
	H8.4.1 Register access permissions for memory-mapped accesses
	H8.4.1.1 Effect of the optional Software Lock on memory-mapped access
	H8.4.1.2 Behavior of a not permitted memory-mapped access

	H8.4.2 Synchronization of memory-mapped accesses to external debug registers

	H8.5 External debug interface register access permissions
	H8.5.1 External debug over powerdown and locks
	H8.5.2 External access disabled
	H8.5.3 Behavior of a not permitted access
	H8.5.4 External debug interface register access permissions summary
	H8.5.5 IMPLEMENTATION DEFINED registers
	H8.5.6 Reserved and unallocated registers

	H8.6 External debug interface registers
	H8.6.1 Access permissions for the External debug interface registers

	H8.7 Cross-trigger interface registers
	H8.8 External debug register resets

	H9: External Debug Register Descriptions�
	H9.1 About the external debug registers
	H9.2 External debug registers
	H9.2.1 DBGAUTHSTATUS_EL1, Debug Authentication Status Register
	Field descriptions
	Accessing the DBGAUTHSTATUS_EL1:

	H9.2.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 63
	Field descriptions
	Accessing the DBGBCR<n>_EL1:

	H9.2.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 63
	Field descriptions
	Accessing the DBGBVR<n>_EL1:

	H9.2.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear Register
	Field descriptions
	Accessing the DBGCLAIMCLR_EL1:

	H9.2.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set Register
	Field descriptions
	Accessing the DBGCLAIMSET_EL1:

	H9.2.6 DBGDTRRX_EL0, Debug Data Transfer Register, Receive
	Field descriptions
	Accessing the DBGDTRRX_EL0:

	H9.2.7 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit
	Field descriptions
	Accessing the DBGDTRTX_EL0:

	H9.2.8 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 63
	Field descriptions
	Accessing the DBGWCR<n>_EL1:

	H9.2.9 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 63
	Field descriptions
	Accessing the DBGWVR<n>_EL1:

	H9.2.10 EDAA32PFR, External Debug Auxiliary Processor Feature Register
	Field descriptions
	Accessing the EDAA32PFR:

	H9.2.11 EDACR, External Debug Auxiliary Control Register
	Field descriptions
	Accessing the EDACR:

	H9.2.12 EDCIDR0, External Debug Component Identification Register 0
	Field descriptions
	Accessing the EDCIDR0:

	H9.2.13 EDCIDR1, External Debug Component Identification Register 1
	Field descriptions
	Accessing the EDCIDR1:

	H9.2.14 EDCIDR2, External Debug Component Identification Register 2
	Field descriptions
	Accessing the EDCIDR2:

	H9.2.15 EDCIDR3, External Debug Component Identification Register 3
	Field descriptions
	Accessing the EDCIDR3:

	H9.2.16 EDCIDSR, External Debug Context ID Sample Register
	Field descriptions
	Accessing the EDCIDSR:

	H9.2.17 EDDEVAFF0, External Debug Device Affinity register 0
	Field descriptions
	Accessing the EDDEVAFF0:

	H9.2.18 EDDEVAFF1, External Debug Device Affinity register 1
	Field descriptions
	Accessing the EDDEVAFF1:

	H9.2.19 EDDEVARCH, External Debug Device Architecture Register
	Field descriptions
	Accessing the EDDEVARCH:

	H9.2.20 EDDEVID, External Debug Device ID register 0
	Field descriptions
	Accessing the EDDEVID:

	H9.2.21 EDDEVID1, External Debug Device ID Register 1
	Field descriptions
	Accessing the EDDEVID1:

	H9.2.22 EDDEVID2, External Debug Device ID register 2
	Field descriptions
	Accessing the EDDEVID2:

	H9.2.23 EDDEVTYPE, External Debug Device Type register
	Field descriptions
	Accessing the EDDEVTYPE:

	H9.2.24 EDDFR, External Debug Feature Register
	Field descriptions
	Accessing the EDDFR:

	H9.2.25 EDDFR1, External Debug Feature Register 1
	Field descriptions
	Accessing the EDDFR1:

	H9.2.26 EDECCR, External Debug Exception Catch Control Register
	Field descriptions
	Accessing the EDECCR:

	H9.2.27 EDECR, External Debug Execution Control Register
	Field descriptions
	Accessing the EDECR:

	H9.2.28 EDESR, External Debug Event Status Register
	Field descriptions
	Accessing the EDESR:

	H9.2.29 EDHSR, External Debug Halting Syndrome Register
	Field descriptions
	Accessing the EDHSR:

	H9.2.30 EDITCTRL, External Debug Integration mode Control register
	Field descriptions
	Accessing the EDITCTRL:

	H9.2.31 EDITR, External Debug Instruction Transfer Register
	Field descriptions
	Accessing the EDITR:

	H9.2.32 EDLAR, External Debug Lock Access Register
	Field descriptions
	Accessing the EDLAR:

	H9.2.33 EDLSR, External Debug Lock Status Register
	Field descriptions
	Accessing the EDLSR:

	H9.2.34 EDPCSR, External Debug Program Counter Sample Register
	Field descriptions
	Accessing the EDPCSR:

	H9.2.35 EDPFR, External Debug Processor Feature Register
	Field descriptions
	Accessing the EDPFR:

	H9.2.36 EDPIDR0, External Debug Peripheral Identification Register 0
	Field descriptions
	Accessing the EDPIDR0:

	H9.2.37 EDPIDR1, External Debug Peripheral Identification Register 1
	Field descriptions
	Accessing the EDPIDR1:

	H9.2.38 EDPIDR2, External Debug Peripheral Identification Register 2
	Field descriptions
	Accessing the EDPIDR2:

	H9.2.39 EDPIDR3, External Debug Peripheral Identification Register 3
	Field descriptions
	Accessing the EDPIDR3:

	H9.2.40 EDPIDR4, External Debug Peripheral Identification Register 4
	Field descriptions
	Accessing the EDPIDR4:

	H9.2.41 EDPRCR, External Debug Power/Reset Control Register
	Field descriptions
	Accessing the EDPRCR:

	H9.2.42 EDPRSR, External Debug Processor Status Register
	Field descriptions
	Accessing the EDPRSR:

	H9.2.43 EDRCR, External Debug Reserve Control Register
	Field descriptions
	Accessing the EDRCR:

	H9.2.44 EDSCR, External Debug Status and Control Register
	Field descriptions
	Accessing the EDSCR:

	H9.2.45 EDSCR2, External Debug Status and Control Register 2
	Field descriptions
	Accessing the EDSCR2:

	H9.2.46 EDVIDSR, External Debug Virtual Context Sample Register
	Field descriptions
	Accessing the EDVIDSR:

	H9.2.47 EDWAR, External Debug Watchpoint Address Register
	Field descriptions
	Accessing the EDWAR:

	H9.2.48 MIDR_EL1, Main ID Register
	Field descriptions
	Accessing the MIDR_EL1:

	H9.2.49 OSLAR_EL1, OS Lock Access Register
	Field descriptions
	Accessing the OSLAR_EL1:

	H9.3 External trace registers
	H9.3.1 TRCACATR<n>, Trace Address Comparator Access Type Register <n>, n = 0 - 15
	Field descriptions
	Accessing the TRCACATR<n>:

	H9.3.2 TRCACVR<n>, Trace Address Comparator Value Register <n>, n = 0 - 15
	Field descriptions
	Accessing the TRCACVR<n>:

	H9.3.3 TRCAUTHSTATUS, Trace Authentication Status Register
	Field descriptions
	Accessing the TRCAUTHSTATUS:

	H9.3.4 TRCAUXCTLR, Trace Auxiliary Control Register
	Field descriptions
	Accessing the TRCAUXCTLR:

	H9.3.5 TRCBBCTLR, Trace Branch Broadcast Control Register
	Field descriptions
	Accessing the TRCBBCTLR:

	H9.3.6 TRCCCCTLR, Trace Cycle Count Control Register
	Field descriptions
	Accessing the TRCCCCTLR:

	H9.3.7 TRCCIDCCTLR0, Trace Context Identifier Comparator Control Register 0
	Field descriptions
	Accessing the TRCCIDCCTLR0:

	H9.3.8 TRCCIDCCTLR1, Trace Context Identifier Comparator Control Register 1
	Field descriptions
	Accessing the TRCCIDCCTLR1:

	H9.3.9 TRCCIDCVR<n>, Trace Context Identifier Comparator Value Registers <n>, n = 0 - 7
	Field descriptions
	Accessing the TRCCIDCVR<n>:

	H9.3.10 TRCCIDR0, Trace Component Identification Register 0
	Field descriptions
	Accessing the TRCCIDR0:

	H9.3.11 TRCCIDR1, Trace Component Identification Register 1
	Field descriptions
	Accessing the TRCCIDR1:

	H9.3.12 TRCCIDR2, Trace Component Identification Register 2
	Field descriptions
	Accessing the TRCCIDR2:

	H9.3.13 TRCCIDR3, Trace Component Identification Register 3
	Field descriptions
	Accessing the TRCCIDR3:

	H9.3.14 TRCCLAIMCLR, Trace Claim Tag Clear Register
	Field descriptions
	Accessing the TRCCLAIMCLR:

	H9.3.15 TRCCLAIMSET, Trace Claim Tag Set Register
	Field descriptions
	Accessing the TRCCLAIMSET:

	H9.3.16 TRCCNTCTLR<n>, Trace Counter Control Register <n>, n = 0 - 3
	Field descriptions
	Accessing the TRCCNTCTLR<n>:

	H9.3.17 TRCCNTRLDVR<n>, Trace Counter Reload Value Register <n>, n = 0 - 3
	Field descriptions
	Accessing the TRCCNTRLDVR<n>:

	H9.3.18 TRCCNTVR<n>, Trace Counter Value Register <n>, n = 0 - 3
	Field descriptions
	Accessing the TRCCNTVR<n>:

	H9.3.19 TRCCONFIGR, Trace Configuration Register
	Field descriptions
	Accessing the TRCCONFIGR:

	H9.3.20 TRCDEVAFF, Trace Device Affinity Register
	Field descriptions
	Accessing the TRCDEVAFF:

	H9.3.21 TRCDEVARCH, Trace Device Architecture Register
	Field descriptions
	Accessing the TRCDEVARCH:

	H9.3.22 TRCDEVID, Trace Device Configuration Register
	Field descriptions
	Accessing the TRCDEVID:

	H9.3.23 TRCDEVID1, Trace Device Configuration Register 1
	Field descriptions
	Accessing the TRCDEVID1:

	H9.3.24 TRCDEVID2, Trace Device Configuration Register 2
	Field descriptions
	Accessing the TRCDEVID2:

	H9.3.25 TRCDEVTYPE, Trace Device Type Register
	Field descriptions
	Accessing the TRCDEVTYPE:

	H9.3.26 TRCEVENTCTL0R, Trace Event Control 0 Register
	Field descriptions
	Accessing the TRCEVENTCTL0R:

	H9.3.27 TRCEVENTCTL1R, Trace Event Control 1 Register
	Field descriptions
	Accessing the TRCEVENTCTL1R:

	H9.3.28 TRCEXTINSELR<n>, Trace External Input Select Register <n>, n = 0 - 3
	Field descriptions
	Accessing the TRCEXTINSELR<n>:

	H9.3.29 TRCIDR0, Trace ID Register 0
	Field descriptions
	Accessing the TRCIDR0:

	H9.3.30 TRCIDR1, Trace ID Register 1
	Field descriptions
	Accessing the TRCIDR1:

	H9.3.31 TRCIDR10, Trace ID Register 10
	Field descriptions
	Accessing the TRCIDR10:

	H9.3.32 TRCIDR11, Trace ID Register 11
	Field descriptions
	Accessing the TRCIDR11:

	H9.3.33 TRCIDR12, Trace ID Register 12
	Field descriptions
	Accessing the TRCIDR12:

	H9.3.34 TRCIDR13, Trace ID Register 13
	Field descriptions
	Accessing the TRCIDR13:

	H9.3.35 TRCIDR2, Trace ID Register 2
	Field descriptions
	Accessing the TRCIDR2:

	H9.3.36 TRCIDR3, Trace ID Register 3
	Field descriptions
	Accessing the TRCIDR3:

	H9.3.37 TRCIDR4, Trace ID Register 4
	Field descriptions
	Accessing the TRCIDR4:

	H9.3.38 TRCIDR5, Trace ID Register 5
	Field descriptions
	Accessing the TRCIDR5:

	H9.3.39 TRCIDR6, Trace ID Register 6
	Field descriptions
	Accessing the TRCIDR6:

	H9.3.40 TRCIDR7, Trace ID Register 7
	Field descriptions
	Accessing the TRCIDR7:

	H9.3.41 TRCIDR8, Trace ID Register 8
	Field descriptions
	Accessing the TRCIDR8:

	H9.3.42 TRCIDR9, Trace ID Register 9
	Field descriptions
	Accessing the TRCIDR9:

	H9.3.43 TRCIMSPEC0, Trace IMP DEF Register 0
	Field descriptions
	Accessing the TRCIMSPEC0:

	H9.3.44 TRCIMSPEC<n>, Trace IMP DEF Register <n>, n = 1 - 7
	Field descriptions
	Accessing the TRCIMSPEC<n>:

	H9.3.45 TRCITCTRL, Trace Integration Mode Control Register
	Field descriptions
	Accessing the TRCITCTRL:

	H9.3.46 TRCITEEDCR, Instrumentation Trace Extension External Debug Control Register
	Field descriptions
	Accessing the TRCITEEDCR:

	H9.3.47 TRCLAR, Trace Lock Access Register
	Field descriptions
	Accessing the TRCLAR:

	H9.3.48 TRCLSR, Trace Lock Status Register
	Field descriptions
	Accessing the TRCLSR:

	H9.3.49 TRCOSLSR, Trace OS Lock Status Register
	Field descriptions
	Accessing the TRCOSLSR:

	H9.3.50 TRCPDCR, Trace PowerDown Control Register
	Field descriptions
	Accessing the TRCPDCR:

	H9.3.51 TRCPDSR, Trace PowerDown Status Register
	Field descriptions
	Accessing the TRCPDSR:

	H9.3.52 TRCPIDR0, Trace Peripheral Identification Register 0
	Field descriptions
	Accessing the TRCPIDR0:

	H9.3.53 TRCPIDR1, Trace Peripheral Identification Register 1
	Field descriptions
	Accessing the TRCPIDR1:

	H9.3.54 TRCPIDR2, Trace Peripheral Identification Register 2
	Field descriptions
	Accessing the TRCPIDR2:

	H9.3.55 TRCPIDR3, Trace Peripheral Identification Register 3
	Field descriptions
	Accessing the TRCPIDR3:

	H9.3.56 TRCPIDR4, Trace Peripheral Identification Register 4
	Field descriptions
	Accessing the TRCPIDR4:

	H9.3.57 TRCPIDR5, Trace Peripheral Identification Register 5
	Field descriptions
	Accessing the TRCPIDR5:

	H9.3.58 TRCPIDR6, Trace Peripheral Identification Register 6
	Field descriptions
	Accessing the TRCPIDR6:

	H9.3.59 TRCPIDR7, Trace Peripheral Identification Register 7
	Field descriptions
	Accessing the TRCPIDR7:

	H9.3.60 TRCPRGCTLR, Trace Programming Control Register
	Field descriptions
	Accessing the TRCPRGCTLR:

	H9.3.61 TRCQCTLR, Trace Q Element Control Register
	Field descriptions
	Accessing the TRCQCTLR:

	H9.3.62 TRCRSCTLR<n>, Trace Resource Selection Control Register <n>, n = 2 - 31
	Field descriptions
	Accessing the TRCRSCTLR<n>:

	H9.3.63 TRCRSR, Trace Resources Status Register
	Field descriptions
	Accessing the TRCRSR:

	H9.3.64 TRCSEQEVR<n>, Trace Sequencer State Transition Control Register <n>, n = 0 - 2
	Field descriptions
	Accessing the TRCSEQEVR<n>:

	H9.3.65 TRCSEQRSTEVR, Trace Sequencer Reset Control Register
	Field descriptions
	Accessing the TRCSEQRSTEVR:

	H9.3.66 TRCSEQSTR, Trace Sequencer State Register
	Field descriptions
	Accessing the TRCSEQSTR:

	H9.3.67 TRCSSCCR<n>, Trace Single-shot Comparator Control Register <n>, n = 0 - 7
	Field descriptions
	Accessing the TRCSSCCR<n>:

	H9.3.68 TRCSSCSR<n>, Trace Single-shot Comparator Control Status Register <n>, n = 0 - 7
	Field descriptions
	Accessing the TRCSSCSR<n>:

	H9.3.69 TRCSSPCICR<n>, Trace Single-shot Processing Element Comparator Input Control Register <n>, n = 0 - 7
	Field descriptions
	Accessing the TRCSSPCICR<n>:

	H9.3.70 TRCSTALLCTLR, Trace Stall Control Register
	Field descriptions
	Accessing the TRCSTALLCTLR:

	H9.3.71 TRCSTATR, Trace Status Register
	Field descriptions
	Accessing the TRCSTATR:

	H9.3.72 TRCSYNCPR, Trace Synchronization Period Register
	Field descriptions
	Accessing the TRCSYNCPR:

	H9.3.73 TRCTRACEIDR, Trace ID Register
	Field descriptions
	Accessing the TRCTRACEIDR:

	H9.3.74 TRCTSCTLR, Trace Timestamp Control Register
	Field descriptions
	Accessing the TRCTSCTLR:

	H9.3.75 TRCVICTLR, Trace ViewInst Main Control Register
	Field descriptions
	Accessing the TRCVICTLR:

	H9.3.76 TRCVIIECTLR, Trace ViewInst Include/Exclude Control Register
	Field descriptions
	Accessing the TRCVIIECTLR:

	H9.3.77 TRCVIPCSSCTLR, Trace ViewInst Start/Stop PE Comparator Control Register
	Field descriptions
	Accessing the TRCVIPCSSCTLR:

	H9.3.78 TRCVISSCTLR, Trace ViewInst Start/Stop Control Register
	Field descriptions
	Accessing the TRCVISSCTLR:

	H9.3.79 TRCVMIDCCTLR0, Trace Virtual Context Identifier Comparator Control Register 0
	Field descriptions
	Accessing the TRCVMIDCCTLR0:

	H9.3.80 TRCVMIDCCTLR1, Trace Virtual Context Identifier Comparator Control Register 1
	Field descriptions
	Accessing the TRCVMIDCCTLR1:

	H9.3.81 TRCVMIDCVR<n>, Trace Virtual Context Identifier Comparator Value Register <n>, n = 0 - 7
	Field descriptions
	Accessing the TRCVMIDCVR<n>:

	H9.4 External Trace Buffer registers
	H9.4.1 TRBAUTHSTATUS, Authentication Status Register
	Field descriptions
	Accessing the TRBAUTHSTATUS:

	H9.4.2 TRBBASER_EL1, Trace Buffer Base Address Register
	Field descriptions
	Accessing the TRBBASER_EL1:

	H9.4.3 TRBCIDR0, Component Identification Register 0
	Field descriptions
	Accessing the TRBCIDR0:

	H9.4.4 TRBCIDR1, Component Identification Register 1
	Field descriptions
	Accessing the TRBCIDR1:

	H9.4.5 TRBCIDR2, Component Identification Register 2
	Field descriptions
	Accessing the TRBCIDR2:

	H9.4.6 TRBCIDR3, Component Identification Register 3
	Field descriptions
	Accessing the TRBCIDR3:

	H9.4.7 TRBCR, Trace Buffer Control Register
	Field descriptions
	Accessing the TRBCR:

	H9.4.8 TRBDEVAFF, Device Affinity Register
	Field descriptions
	Accessing the TRBDEVAFF:

	H9.4.9 TRBDEVARCH, Trace Buffer Device Architecture Register
	Field descriptions
	Accessing the TRBDEVARCH:

	H9.4.10 TRBDEVID, Device Configuration Register
	Field descriptions
	Accessing the TRBDEVID:

	H9.4.11 TRBDEVID1, Device Configuration Register 1
	Field descriptions
	Accessing the TRBDEVID1:

	H9.4.12 TRBDEVID2, Device Configuration Register 2
	Field descriptions
	Accessing the TRBDEVID2:

	H9.4.13 TRBDEVTYPE, Device Type Register
	Field descriptions
	Accessing the TRBDEVTYPE:

	H9.4.14 TRBIDR_EL1, Trace Buffer ID Register
	Field descriptions
	Accessing the TRBIDR_EL1:

	H9.4.15 TRBITCTRL, Integration Mode Control Register
	Field descriptions
	Accessing the TRBITCTRL:

	H9.4.16 TRBLAR, Lock Access Register
	Field descriptions
	Accessing the TRBLAR:

	H9.4.17 TRBLIMITR_EL1, Trace Buffer Limit Address Register
	Field descriptions
	Accessing the TRBLIMITR_EL1:

	H9.4.18 TRBLSR, Lock Status Register
	Field descriptions
	Accessing the TRBLSR:

	H9.4.19 TRBMAR_EL1, Trace Buffer Memory Attribute Register
	Field descriptions
	Accessing the TRBMAR_EL1:

	H9.4.20 TRBMPAM_EL1, Trace Buffer MPAM Configuration Register
	Field descriptions
	Accessing the TRBMPAM_EL1:

	H9.4.21 TRBPIDR0, Peripheral Identification Register 0
	Field descriptions
	Accessing the TRBPIDR0:

	H9.4.22 TRBPIDR1, Peripheral Identification Register 1
	Field descriptions
	Accessing the TRBPIDR1:

	H9.4.23 TRBPIDR2, Peripheral Identification Register 2
	Field descriptions
	Accessing the TRBPIDR2:

	H9.4.24 TRBPIDR3, Peripheral Identification Register 3
	Field descriptions
	Accessing the TRBPIDR3:

	H9.4.25 TRBPIDR4, Peripheral Identification Register 4
	Field descriptions
	Accessing the TRBPIDR4:

	H9.4.26 TRBPIDR5, Peripheral Identification Register 5
	Field descriptions
	Accessing the TRBPIDR5:

	H9.4.27 TRBPIDR6, Peripheral Identification Register 6
	Field descriptions
	Accessing the TRBPIDR6:

	H9.4.28 TRBPIDR7, Peripheral Identification Register 7
	Field descriptions
	Accessing the TRBPIDR7:

	H9.4.29 TRBPTR_EL1, Trace Buffer Write Pointer Register
	Field descriptions
	Accessing the TRBPTR_EL1:

	H9.4.30 TRBSR_EL1, Trace Buffer Status/syndrome Register
	Field descriptions
	Accessing the TRBSR_EL1:

	H9.4.31 TRBTRG_EL1, Trace Buffer Trigger Counter Register
	Field descriptions
	Accessing the TRBTRG_EL1:

	H9.5 Cross-Trigger Interface registers
	H9.5.1 ASICCTL, CTI External Multiplexer Control register
	Field descriptions
	Accessing the ASICCTL:

	H9.5.2 CTIAPPCLEAR, CTI Application Trigger Clear register
	Field descriptions
	Accessing the CTIAPPCLEAR:

	H9.5.3 CTIAPPPULSE, CTI Application Pulse register
	Field descriptions
	Accessing the CTIAPPPULSE:

	H9.5.4 CTIAPPSET, CTI Application Trigger Set register
	Field descriptions
	Accessing the CTIAPPSET:

	H9.5.5 CTIAUTHSTATUS, CTI Authentication Status register
	Field descriptions
	Accessing the CTIAUTHSTATUS:

	H9.5.6 CTICHINSTATUS, CTI Channel In Status register
	Field descriptions
	Accessing the CTICHINSTATUS:

	H9.5.7 CTICHOUTSTATUS, CTI Channel Out Status register
	Field descriptions
	Accessing the CTICHOUTSTATUS:

	H9.5.8 CTICIDR0, CTI Component Identification Register 0
	Field descriptions
	Accessing the CTICIDR0:

	H9.5.9 CTICIDR1, CTI Component Identification Register 1
	Field descriptions
	Accessing the CTICIDR1:

	H9.5.10 CTICIDR2, CTI Component Identification Register 2
	Field descriptions
	Accessing the CTICIDR2:

	H9.5.11 CTICIDR3, CTI Component Identification Register 3
	Field descriptions
	Accessing the CTICIDR3:

	H9.5.12 CTICLAIMCLR, CTI CLAIM Tag Clear register
	Field descriptions
	Accessing the CTICLAIMCLR:

	H9.5.13 CTICLAIMSET, CTI CLAIM Tag Set register
	Field descriptions
	Accessing the CTICLAIMSET:

	H9.5.14 CTICONTROL, CTI Control register
	Field descriptions
	Accessing the CTICONTROL:

	H9.5.15 CTIDEVAFF0, CTI Device Affinity register 0
	Field descriptions
	Accessing the CTIDEVAFF0:

	H9.5.16 CTIDEVAFF1, CTI Device Affinity register 1
	Field descriptions
	Accessing the CTIDEVAFF1:

	H9.5.17 CTIDEVARCH, CTI Device Architecture register
	Field descriptions
	Accessing the CTIDEVARCH:

	H9.5.18 CTIDEVCTL, CTI Device Control register
	Field descriptions
	Accessing the CTIDEVCTL:

	H9.5.19 CTIDEVID, CTI Device ID register 0
	Field descriptions
	Accessing the CTIDEVID:

	H9.5.20 CTIDEVID1, CTI Device ID register 1
	Field descriptions
	Accessing the CTIDEVID1:

	H9.5.21 CTIDEVID2, CTI Device ID register 2
	Field descriptions
	Accessing the CTIDEVID2:

	H9.5.22 CTIDEVTYPE, CTI Device Type register
	Field descriptions
	Accessing the CTIDEVTYPE:

	H9.5.23 CTIGATE, CTI Channel Gate Enable register
	Field descriptions
	Accessing the CTIGATE:

	H9.5.24 CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31
	Field descriptions
	Accessing the CTIINEN<n>:

	H9.5.25 CTIINTACK, CTI Output Trigger Acknowledge register
	Field descriptions
	Accessing the CTIINTACK:

	H9.5.26 CTIITCTRL, CTI Integration mode Control register
	Field descriptions
	Accessing the CTIITCTRL:

	H9.5.27 CTILAR, CTI Lock Access Register
	Field descriptions
	Accessing the CTILAR:

	H9.5.28 CTILSR, CTI Lock Status Register
	Field descriptions
	Accessing the CTILSR:

	H9.5.29 CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31
	Field descriptions
	Accessing the CTIOUTEN<n>:

	H9.5.30 CTIPIDR0, CTI Peripheral Identification Register 0
	Field descriptions
	Accessing the CTIPIDR0:

	H9.5.31 CTIPIDR1, CTI Peripheral Identification Register 1
	Field descriptions
	Accessing the CTIPIDR1:

	H9.5.32 CTIPIDR2, CTI Peripheral Identification Register 2
	Field descriptions
	Accessing the CTIPIDR2:

	H9.5.33 CTIPIDR3, CTI Peripheral Identification Register 3
	Field descriptions
	Accessing the CTIPIDR3:

	H9.5.34 CTIPIDR4, CTI Peripheral Identification Register 4
	Field descriptions
	Accessing the CTIPIDR4:

	H9.5.35 CTITRIGINSTATUS, CTI Trigger In Status register
	Field descriptions
	Accessing the CTITRIGINSTATUS:

	H9.5.36 CTITRIGOUTSTATUS, CTI Trigger Out Status register
	Field descriptions
	Accessing the CTITRIGOUTSTATUS:

	Part I: Memory-mapped Components of the Arm Architecture�
	I1: Requirements for Memory-mapped Components�
	I1.1 Supported access sizes
	I1.2 Synchronization of memory-mapped registers
	I1.3 Access requirements for reserved and unallocated registers

	I2: System Level Implementation of the Generic Timer�
	I2.1 About the Generic Timer specification
	I2.1.1 Registers in the system level implementation of the Generic Timer
	I2.1.1.1 Endianness and supported access sizes
	I2.1.1.2 Power and reset domains for the system level implementation of the Generic Timer

	I2.1.2 The system level components of the Generic Timer

	I2.2 Memory-mapped counter module
	I2.2.1 Control of counter operating frequency and increment
	I2.2.1.1 The Frequency modes table
	I2.2.1.2 Changing the system counter and increment

	I2.2.2 Halt-on-debug
	I2.2.3 Counter module control and status register summary

	I2.3 Memory-mapped timer components
	I2.3.1 The CNTCTLBase frame
	I2.3.2 The CNTBaseN and CNTEL0BaseN frames
	I2.3.2.1 The
	I2.3.2.2 The
	I2.3.2.3 CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames

	I3: Recommended External Interface to the Performance Monitors�
	I3.1 About the external interface to the Performance Monitors registers
	I3.1.1 Endianness and supported access sizes
	I3.1.2 Differences in the external views of the Performance Monitors registers
	I3.1.2.1 External views of the Performance Monitors registers when the 64-bit external PMU programmers’ model extension is implemented

	I3.1.3 Synchronization of changes to the memory-mapped views
	I3.1.4 Access permissions for external views of the Performance Monitors

	I4: Recommended External Interface to the Activity Monitors�
	I4.1 About the external interface to the Activity Monitors Extension registers
	I4.1.1 Differences in the external views of the Activity Monitors Extension registers
	I4.1.2 Access during reset and power transitions

	I5: RAS System Architecture�
	I5.1 About the RAS System Architecture
	I5.2 Nodes
	I5.2.1 Multiple error records per node

	I5.3 Detecting and consuming errors
	I5.4 Standard error record
	I5.4.1 Error record types
	I5.4.2 Component error states
	I5.4.3 Writing the error record
	I5.4.3.1 Component error states and priorities
	I5.4.3.2 Prioritizing errors, FEAT_RASSAv1
	I5.4.3.3 Prioritizing errors, FEAT_RASSAv1p1
	I5.4.3.4 Overwriting the error syndrome
	I5.4.3.5 Keeping the previous error syndrome
	I5.4.3.6 Detecting multiple errors

	I5.4.4 Error syndrome
	I5.4.4.1 Corrected error field
	I5.4.4.2 Poison indicator

	I5.4.5 Security and Virtualization
	I5.4.5.1 Confidential data
	I5.4.5.2 Security of error records

	I5.4.6 Synchronization and error record accesses
	I5.4.7 Bridges to other architectures
	I5.4.8 Software faults
	I5.4.9 Other sources of error and warnings

	I5.5 Error recovery interrupt
	I5.6 Fault handling interrupt
	I5.7 In-band error response signaling
	I5.8 Critical error interrupt
	I5.9 Standard format Corrected error counter
	I5.10 Error recovery, fault handling, and critical error signaling
	I5.11 Error record reset
	I5.11.1 Error record reset flag

	I5.12 The RAS Timestamp Extension
	I5.13 The Common Fault Injection Model Extension
	I5.13.1 Operation of the Common Fault Injection Model Extension

	I5.14 IMPLEMENTATION DEFINED fault or error injection models
	I5.15 Memory-mapped view
	I5.15.1 Error record groups
	I5.15.2 Fault injection groups
	I5.15.3 System RAS Agents
	I5.15.4 Access requirements for memory-mapped views of RAS error records

	I5.16 Reset values

	I6: External System Control Register Descriptions�
	I6.1 About the external system control register descriptions
	I6.2 External Performance Monitors registers summary
	I6.2.1 Performance Monitors external register views

	I6.3 Performance Monitors external register descriptions
	I6.3.1 PMAUTHSTATUS, Performance Monitors Authentication Status register
	Field descriptions
	Accessing PMAUTHSTATUS

	I6.3.2 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register
	Field descriptions
	Accessing PMCCFILTR_EL0

	I6.3.3 PMCCIDSR, CONTEXTIDR_ELx Sample Register
	Field descriptions
	Accessing PMCCIDSR

	I6.3.4 PMCCNTR_EL0, Performance Monitors Cycle Counter
	Field descriptions
	Accessing PMCCNTR_EL0

	I6.3.5 PMCCNTSVR_EL1, Performance Monitors Cycle Count Saved Value Register
	Field descriptions
	Accessing PMCCNTSVR_EL1

	I6.3.6 PMCEID0, Performance Monitors Common Event Identification register 0
	Field descriptions
	Accessing PMCEID0

	I6.3.7 PMCEID1, Performance Monitors Common Event Identification register 1
	Field descriptions
	Accessing PMCEID1

	I6.3.8 PMCEID2, Performance Monitors Common Event Identification register 2
	Field descriptions
	Accessing PMCEID2

	I6.3.9 PMCEID3, Performance Monitors Common Event Identification register 3
	Field descriptions
	Accessing PMCEID3

	I6.3.10 PMCFGR, Performance Monitors Configuration Register
	Field descriptions
	Accessing PMCFGR

	I6.3.11 PMCGCR0, Counter Group Configuration Register 0
	Field descriptions
	Accessing PMCGCR0

	I6.3.12 PMCID1SR, CONTEXTIDR_EL1 Sample Register
	Field descriptions
	Accessing PMCID1SR

	I6.3.13 PMCID2SR, CONTEXTIDR_EL2 Sample Register
	Field descriptions
	Accessing PMCID2SR

	I6.3.14 PMCIDR0, Performance Monitors Component Identification Register 0
	Field descriptions
	Accessing PMCIDR0

	I6.3.15 PMCIDR1, Performance Monitors Component Identification Register 1
	Field descriptions
	Accessing PMCIDR1

	I6.3.16 PMCIDR2, Performance Monitors Component Identification Register 2
	Field descriptions
	Accessing PMCIDR2

	I6.3.17 PMCIDR3, Performance Monitors Component Identification Register 3
	Field descriptions
	Accessing PMCIDR3

	I6.3.18 PMCNTEN, Performance Monitors Count Enable register
	Field descriptions
	Accessing PMCNTEN

	I6.3.19 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear Register
	Field descriptions
	Accessing PMCNTENCLR_EL0

	I6.3.20 PMCNTENSET_EL0, Performance Monitors Count Enable Set Register
	Field descriptions
	Accessing PMCNTENSET_EL0

	I6.3.21 PMCR_EL0, Performance Monitors Control Register
	Field descriptions
	Accessing PMCR_EL0

	I6.3.22 PMDEVAFF, Performance Monitors Device Affinity register
	Field descriptions
	Accessing PMDEVAFF

	I6.3.23 PMDEVAFF0, Performance Monitors Device Affinity register 0
	Field descriptions
	Accessing PMDEVAFF0

	I6.3.24 PMDEVAFF1, Performance Monitors Device Affinity register 1
	Field descriptions
	Accessing PMDEVAFF1

	I6.3.25 PMDEVARCH, Performance Monitors Device Architecture register
	Field descriptions
	Accessing PMDEVARCH

	I6.3.26 PMDEVID, Performance Monitors Device ID register
	Field descriptions
	Accessing PMDEVID

	I6.3.27 PMDEVTYPE, Performance Monitors Device Type register
	Field descriptions
	Accessing PMDEVTYPE

	I6.3.28 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTR<n>_EL0

	I6.3.29 PMEVCNTSVR<n>_EL1, Performance Monitors Event Count Saved Value Register <n>, n = 0 - 30
	Field descriptions
	Accessing PMEVCNTSVR<n>_EL1

	I6.3.30 PMEVFILT2R<n>, Performance Monitors Event Filter Registers, n = 0 - 63
	Field descriptions
	Accessing PMEVFILT2R<n>

	I6.3.31 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVTYPER<n>_EL0

	I6.3.32 PMICFILTR_EL0, Performance Monitors Instruction Counter Filter Register
	Field descriptions
	Accessing PMICFILTR_EL0

	I6.3.33 PMICNTR_EL0, Performance Monitors Instruction Counter Register
	Field descriptions
	Accessing PMICNTR_EL0

	I6.3.34 PMICNTSVR_EL1, Performance Monitors Instruction Count Saved Value Register
	Field descriptions
	Accessing PMICNTSVR_EL1

	I6.3.35 PMIIDR, Performance Monitors Implementation Identification Register
	Field descriptions
	Accessing PMIIDR

	I6.3.36 PMINTEN, Performance Monitors Interrupt Enable register
	Field descriptions
	Accessing PMINTEN

	I6.3.37 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear Register
	Field descriptions
	Accessing PMINTENCLR_EL1

	I6.3.38 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set Register
	Field descriptions
	Accessing PMINTENSET_EL1

	I6.3.39 PMITCTRL, Performance Monitors Integration mode Control register
	Field descriptions
	Accessing PMITCTRL

	I6.3.40 PMLAR, Performance Monitors Lock Access Register
	Field descriptions
	Accessing PMLAR

	I6.3.41 PMLSR, Performance Monitors Lock Status Register
	Field descriptions
	Accessing PMLSR

	I6.3.42 PMMIR, Performance Monitors Machine Identification Register
	Field descriptions
	Accessing PMMIR

	I6.3.43 PMOVS, Performance Monitors Overflow Flag Status register
	Field descriptions
	Accessing PMOVS

	I6.3.44 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register
	Field descriptions
	Accessing PMOVSCLR_EL0

	I6.3.45 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set Register
	Field descriptions
	Accessing PMOVSSET_EL0

	I6.3.46 PMPCSCTL, PC Sample-based Profiling Control Register
	Field descriptions
	Accessing PMPCSCTL

	I6.3.47 PMPCSR, Program Counter Sample Register
	Field descriptions
	Accessing PMPCSR

	I6.3.48 PMPIDR0, Performance Monitors Peripheral Identification Register 0
	Field descriptions
	Accessing PMPIDR0

	I6.3.49 PMPIDR1, Performance Monitors Peripheral Identification Register 1
	Field descriptions
	Accessing PMPIDR1

	I6.3.50 PMPIDR2, Performance Monitors Peripheral Identification Register 2
	Field descriptions
	Accessing PMPIDR2

	I6.3.51 PMPIDR3, Performance Monitors Peripheral Identification Register 3
	Field descriptions
	Accessing PMPIDR3

	I6.3.52 PMPIDR4, Performance Monitors Peripheral Identification Register 4
	Field descriptions
	Accessing PMPIDR4

	I6.3.53 PMSSCR_EL1, Performance Monitors Snapshot Status and Capture Register
	Field descriptions
	Accessing PMSSCR_EL1

	I6.3.54 PMSWINC_EL0, Performance Monitors Software Increment Register
	Field descriptions
	Accessing PMSWINC_EL0

	I6.3.55 PMVCIDSR, CONTEXTIDR_EL1 and VMID Sample Register
	Field descriptions
	Accessing PMVCIDSR

	I6.3.56 PMVIDSR, VMID Sample Register
	Field descriptions
	Accessing PMVIDSR

	I6.3.57 PMZR_EL0, Performance Monitors Zero with Mask
	Field descriptions
	Accessing PMZR_EL0

	I6.4 External Activity Monitors Extension registers summary
	I6.4.1 Activity Monitors external register views

	I6.5 Activity Monitors external register descriptions
	I6.5.1 AMCFGR, Activity Monitors Configuration Register
	Field descriptions
	Accessing AMCFGR

	I6.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register
	Field descriptions
	Accessing AMCGCR

	I6.5.3 AMCIDR0, Activity Monitors Component Identification Register 0
	Field descriptions
	Accessing AMCIDR0

	I6.5.4 AMCIDR1, Activity Monitors Component Identification Register 1
	Field descriptions
	Accessing AMCIDR1

	I6.5.5 AMCIDR2, Activity Monitors Component Identification Register 2
	Field descriptions
	Accessing AMCIDR2

	I6.5.6 AMCIDR3, Activity Monitors Component Identification Register 3
	Field descriptions
	Accessing AMCIDR3

	I6.5.7 AMCNTEN, Activity Monitors Count Set and Clear Register
	Field descriptions
	Accessing AMCNTEN

	I6.5.8 AMCNTENCLR, Activity Monitors Count Enable Clear Register
	Field descriptions
	Accessing AMCNTENCLR

	I6.5.9 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0
	Field descriptions
	Accessing AMCNTENCLR0

	I6.5.10 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1
	Field descriptions
	Accessing AMCNTENCLR1

	I6.5.11 AMCNTENSET, Activity Monitors Count Enable Set Register
	Field descriptions
	Accessing AMCNTENSET

	I6.5.12 AMCNTENSET0, Activity Monitors Count Enable Set Register 0
	Field descriptions
	Accessing AMCNTENSET0

	I6.5.13 AMCNTENSET1, Activity Monitors Count Enable Set Register 1
	Field descriptions
	Accessing AMCNTENSET1

	I6.5.14 AMCR, Activity Monitors Control Register
	Field descriptions
	Accessing AMCR

	I6.5.15 AMDEVAFF, Activity Monitors Device Affinity Register
	Field descriptions
	Accessing AMDEVAFF

	I6.5.16 AMDEVAFF0, Activity Monitors Device Affinity Register 0
	Field descriptions
	Accessing AMDEVAFF0

	I6.5.17 AMDEVAFF1, Activity Monitors Device Affinity Register 1
	Field descriptions
	Accessing AMDEVAFF1

	I6.5.18 AMDEVARCH, Activity Monitors Device Architecture Register
	Field descriptions
	Accessing AMDEVARCH

	I6.5.19 AMDEVTYPE, Activity Monitors Device Type Register
	Field descriptions
	Accessing AMDEVTYPE

	I6.5.20 AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVCNTR0<n>

	I6.5.21 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVCNTR1<n>

	I6.5.22 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 3
	Field descriptions
	Accessing AMEVTYPER0<n>

	I6.5.23 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15
	Field descriptions
	Accessing AMEVTYPER1<n>

	I6.5.24 AMIIDR, Activity Monitors Implementation Identification Register
	Field descriptions
	Accessing AMIIDR

	I6.5.25 AMPIDR0, Activity Monitors Peripheral Identification Register 0
	Field descriptions
	Accessing AMPIDR0

	I6.5.26 AMPIDR1, Activity Monitors Peripheral Identification Register 1
	Field descriptions
	Accessing AMPIDR1

	I6.5.27 AMPIDR2, Activity Monitors Peripheral Identification Register 2
	Field descriptions
	Accessing AMPIDR2

	I6.5.28 AMPIDR3, Activity Monitors Peripheral Identification Register 3
	Field descriptions
	Accessing AMPIDR3

	I6.5.29 AMPIDR4, Activity Monitors Peripheral Identification Register 4
	Field descriptions
	Accessing AMPIDR4

	I6.6 Generic Timer memory-mapped registers overview
	I6.7 Generic Timer memory-mapped register descriptions
	I6.7.1 CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7
	Field descriptions
	Accessing the CNTACR<n>:

	I6.7.2 CNTCR, Counter Control Register
	Field descriptions
	Accessing the CNTCR:

	I6.7.3 CNTCV, Counter Count Value register
	Field descriptions
	Accessing the CNTCV:

	I6.7.4 CNTEL0ACR, Counter-timer EL0 Access Control Register
	Field descriptions
	Accessing the CNTEL0ACR:

	I6.7.5 CNTFID0, Counter Frequency ID
	Field descriptions
	Accessing the CNTFID0:

	I6.7.6 CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003
	Field descriptions
	Accessing the CNTFID<n>:

	I6.7.7 CNTFRQ, Counter-timer Frequency
	Field descriptions
	Accessing the CNTFRQ:

	I6.7.8 CNTID, Counter Identification Register
	Field descriptions
	Accessing the CNTID:

	I6.7.9 CNTNSAR, Counter-timer Non-secure Access Register
	Field descriptions
	Accessing the CNTNSAR:

	I6.7.10 CNTP_CTL, Counter-timer Physical Timer Control
	Field descriptions
	Accessing the CNTP_CTL:

	I6.7.11 CNTP_CVAL, Counter-timer Physical Timer CompareValue
	Field descriptions
	Accessing the CNTP_CVAL:

	I6.7.12 CNTP_TVAL, Counter-timer Physical Timer TimerValue
	Field descriptions
	Accessing the CNTP_TVAL:

	I6.7.13 CNTPCT, Counter-timer Physical Count
	Field descriptions
	Accessing the CNTPCT:

	I6.7.14 CNTSCR, Counter Scale Register
	Field descriptions
	Accessing the CNTSCR:

	I6.7.15 CNTSR, Counter Status Register
	Field descriptions
	Accessing the CNTSR:

	I6.7.16 CNTTIDR, Counter-timer Timer ID Register
	Field descriptions
	Accessing the CNTTIDR:

	I6.7.17 CNTV_CTL, Counter-timer Virtual Timer Control
	Field descriptions
	Accessing the CNTV_CTL:

	I6.7.18 CNTV_CVAL, Counter-timer Virtual Timer CompareValue
	Field descriptions
	Accessing the CNTV_CVAL:

	I6.7.19 CNTV_TVAL, Counter-timer Virtual Timer TimerValue
	Field descriptions
	Accessing the CNTV_TVAL:

	I6.7.20 CNTVCT, Counter-timer Virtual Count
	Field descriptions
	Accessing the CNTVCT:

	I6.7.21 CNTVOFF, Counter-timer Virtual Offset
	Field descriptions
	Accessing the CNTVOFF:

	I6.7.22 CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7
	Field descriptions
	Accessing the CNTVOFF<n>:

	I6.7.23 CounterID<n>, Counter ID registers, n = 0 - 11
	Field descriptions
	Accessing the CounterID<n>:

	I6.8 RAS registers summary
	I6.8.1 RAS external register views

	I6.9 RAS register descriptions
	I6.9.1 ERRACR, Access Configuration Register
	Field descriptions
	Accessing the ERRACR:

	I6.9.2 ERRCIDR0, Component Identification Register 0
	Field descriptions
	Accessing the ERRCIDR0:

	I6.9.3 ERRCIDR1, Component Identification Register 1
	Field descriptions
	Accessing the ERRCIDR1:

	I6.9.4 ERRCIDR2, Component Identification Register 2
	Field descriptions
	Accessing the ERRCIDR2:

	I6.9.5 ERRCIDR3, Component Identification Register 3
	Field descriptions
	Accessing the ERRCIDR3:

	I6.9.6 ERRCRICR0, Critical Error Interrupt Configuration Register 0
	Field descriptions
	Accessing the ERRCRICR0:

	I6.9.7 ERRCRICR1, Critical Error Interrupt Configuration Register 1
	Field descriptions
	Accessing the ERRCRICR1:

	I6.9.8 ERRCRICR2, Critical Error Interrupt Configuration Register 2
	Field descriptions
	Accessing the ERRCRICR2:

	I6.9.9 ERRDEVAFF, Device Affinity Register
	Field descriptions
	Accessing the ERRDEVAFF:

	I6.9.10 ERRDEVARCH, Device Architecture Register
	Field descriptions
	Accessing the ERRDEVARCH:

	I6.9.11 ERRDEVID, Device Configuration Register
	Field descriptions
	Accessing the ERRDEVID:

	I6.9.12 ERRERICR0, Error Recovery Interrupt Configuration Register 0
	Field descriptions
	Accessing the ERRERICR0:

	I6.9.13 ERRERICR1, Error Recovery Interrupt Configuration Register 1
	Field descriptions
	Accessing the ERRERICR1:

	I6.9.14 ERRERICR2, Error Recovery Interrupt Configuration Register 2
	Field descriptions
	Accessing the ERRERICR2:

	I6.9.15 ERRFHICR0, Fault Handling Interrupt Configuration Register 0
	Field descriptions
	Accessing the ERRFHICR0:

	I6.9.16 ERRFHICR1, Fault Handling Interrupt Configuration Register 1
	Field descriptions
	Accessing the ERRFHICR1:

	I6.9.17 ERRFHICR2, Fault Handling Interrupt Configuration Register 2
	Field descriptions
	Accessing the ERRFHICR2:

	I6.9.18 ERRGSR, Error Group Status Register
	Field descriptions
	Accessing the ERRGSR:

	I6.9.19 ERRIIDR, Implementation Identification Register
	Field descriptions
	Accessing the ERRIIDR:

	I6.9.20 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191
	Field descriptions
	Accessing the ERRIMPDEF<n>:

	I6.9.21 ERRIRQCR<n>, Generic Error Interrupt Configuration Register <n>, n = 0 - 15
	Field descriptions
	Accessing the ERRIRQCR<n>:

	I6.9.22 ERRIRQSR, Error Interrupt Status Register
	Field descriptions
	Accessing the ERRIRQSR:

	I6.9.23 ERR<n>ADDR, Error Record <n> Address Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>ADDR:

	I6.9.24 ERR<n>CTLR, Error Record <n> Control Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>CTLR:

	I6.9.25 ERR<n>FR, Error Record <n> Feature Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>FR:

	I6.9.26 ERR<n>MISC0, Error Record <n> Miscellaneous Register 0, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC0:

	I6.9.27 ERR<n>MISC1, Error Record <n> Miscellaneous Register 1, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC1:

	I6.9.28 ERR<n>MISC2, Error Record <n> Miscellaneous Register 2, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC2:

	I6.9.29 ERR<n>MISC3, Error Record <n> Miscellaneous Register 3, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>MISC3:

	I6.9.30 ERR<n>PFGCDN, Error Record <n> Pseudo-fault Generation Countdown Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>PFGCDN:

	I6.9.31 ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>PFGCTL:

	I6.9.32 ERR<n>PFGF, Error Record <n> Pseudo-fault Generation Feature Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>PFGF:

	I6.9.33 ERR<n>STATUS, Error Record <n> Primary Status Register, n = 0 - 65534
	Field descriptions
	Accessing the ERR<n>STATUS:

	I6.9.34 ERRPIDR0, Peripheral Identification Register 0
	Field descriptions
	Accessing the ERRPIDR0:

	I6.9.35 ERRPIDR1, Peripheral Identification Register 1
	Field descriptions
	Accessing the ERRPIDR1:

	I6.9.36 ERRPIDR2, Peripheral Identification Register 2
	Field descriptions
	Accessing the ERRPIDR2:

	I6.9.37 ERRPIDR3, Peripheral Identification Register 3
	Field descriptions
	Accessing the ERRPIDR3:

	I6.9.38 ERRPIDR4, Peripheral Identification Register 4
	Field descriptions
	Accessing the ERRPIDR4:

	Part J: Architectural Pseudocode�
	J1: Armv8 Pseudocode�
	J1.1 Pseudocode for AArch64 operation
	J1.1.1 aarch64/debug
	aarch64/debug/brbe/BRBCycleCountingEnabled
	aarch64/debug/brbe/BRBEBranch
	aarch64/debug/brbe/BRBEBranchOnISB
	aarch64/debug/brbe/BRBEDebugStateExit
	aarch64/debug/brbe/BRBEException
	aarch64/debug/brbe/BRBEExceptionReturn
	aarch64/debug/brbe/BRBEFreeze
	aarch64/debug/brbe/BRBEISB
	aarch64/debug/brbe/BRBEMispredictAllowed
	aarch64/debug/brbe/BRBETimeStamp
	aarch64/debug/brbe/BRB_IALL
	aarch64/debug/brbe/BRB_INJ
	aarch64/debug/brbe/Branch
	aarch64/debug/brbe/BranchEncCycleCount
	aarch64/debug/brbe/BranchMispredict
	aarch64/debug/brbe/BranchRawCycleCount
	aarch64/debug/brbe/BranchRecordAllowed
	aarch64/debug/brbe/Contents
	aarch64/debug/brbe/FilterBranchRecord
	aarch64/debug/brbe/FirstBranchAfterProhibited
	aarch64/debug/brbe/GetBRBENumRecords
	aarch64/debug/brbe/Getter
	aarch64/debug/brbe/ShouldBRBEFreeze
	aarch64/debug/brbe/UpdateBranchRecordBuffer
	aarch64/debug/breakpoint/AArch64.BreakpointMatch
	aarch64/debug/breakpoint/AArch64.BreakpointValueMatch
	aarch64/debug/breakpoint/AArch64.ReservedBreakpointType
	aarch64/debug/breakpoint/AArch64.StateMatch
	aarch64/debug/breakpoint/BreakpointType
	aarch64/debug/breakpoint/DebugAddrTop
	aarch64/debug/breakpoint/EffectiveMDSELR_EL1_BANK
	aarch64/debug/breakpoint/IsBreakpointEnabled
	aarch64/debug/breakpoint/SelfHostedExtendedBPWPEnabled
	aarch64/debug/ebep/CheckForPMUException
	aarch64/debug/ebep/ExceptionReturnPPEND
	aarch64/debug/ebep/IsSupportingPMUSynchronousMode
	aarch64/debug/ebep/PMUExceptionEnabled
	aarch64/debug/ebep/PMUExceptionMasked
	aarch64/debug/ebep/PMUInterruptEnabled
	aarch64/debug/ebep/TakePMUException
	aarch64/debug/ebep/inst_addr_executed
	aarch64/debug/ebep/sync_counter_overflowed
	aarch64/debug/enables/AArch64.GenerateDebugExceptions
	aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom
	aarch64/debug/ite/AArch64.TRCIT
	aarch64/debug/ite/TraceInstrumentation
	aarch64/debug/pmu/AArch64.IncrementCycleCounter
	aarch64/debug/pmu/AArch64.IncrementEventCounter
	aarch64/debug/pmu/AArch64.PMUCycle
	aarch64/debug/statisticalprofiling/CollectContextIDR1
	aarch64/debug/statisticalprofiling/CollectContextIDR2
	aarch64/debug/statisticalprofiling/CollectPhysicalAddress
	aarch64/debug/statisticalprofiling/CollectTimeStamp
	aarch64/debug/statisticalprofiling/OpType
	aarch64/debug/statisticalprofiling/ProfilingBufferEnabled
	aarch64/debug/statisticalprofiling/ProfilingBufferOwner
	aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier
	aarch64/debug/statisticalprofiling/SPEAddByteToRecord
	aarch64/debug/statisticalprofiling/SPEAddPacketToRecord
	aarch64/debug/statisticalprofiling/SPEBranch
	aarch64/debug/statisticalprofiling/SPEBufferFilled
	aarch64/debug/statisticalprofiling/SPEBufferIsFull
	aarch64/debug/statisticalprofiling/SPECollectRecord
	aarch64/debug/statisticalprofiling/SPEConstructRecord
	aarch64/debug/statisticalprofiling/SPECycle
	aarch64/debug/statisticalprofiling/SPEEmptyRecord
	aarch64/debug/statisticalprofiling/SPEEvent
	aarch64/debug/statisticalprofiling/SPEFreezeOnEvent
	aarch64/debug/statisticalprofiling/SPEGetDataSourcePayloadSize
	aarch64/debug/statisticalprofiling/SPEGetEventsPayloadSize
	aarch64/debug/statisticalprofiling/SPEGetRandomBoolean
	aarch64/debug/statisticalprofiling/SPEGetRandomInterval
	aarch64/debug/statisticalprofiling/SPEISB
	aarch64/debug/statisticalprofiling/SPEMaxAddrs
	aarch64/debug/statisticalprofiling/SPEMaxCounters
	aarch64/debug/statisticalprofiling/SPEMaxRecordSize
	aarch64/debug/statisticalprofiling/SPEPostExecution
	aarch64/debug/statisticalprofiling/SPEPreExecution
	aarch64/debug/statisticalprofiling/SPEResetSampleCounter
	aarch64/debug/statisticalprofiling/SPEResetSampleStorage
	aarch64/debug/statisticalprofiling/SPESampleAddAddressPCVirtual
	aarch64/debug/statisticalprofiling/SPESampleAddContext
	aarch64/debug/statisticalprofiling/SPESampleAddOpOther
	aarch64/debug/statisticalprofiling/SPESampleAddOpSVELoadStore
	aarch64/debug/statisticalprofiling/SPESampleAddOpSVEOther
	aarch64/debug/statisticalprofiling/SPESampleAddTimeStamp
	aarch64/debug/statisticalprofiling/SPESampleExtendedLoadStore
	aarch64/debug/statisticalprofiling/SPESampleGeneralPurposeLoadStore
	aarch64/debug/statisticalprofiling/SPESampleLoadStore
	aarch64/debug/statisticalprofiling/SPESampleMemCopy
	aarch64/debug/statisticalprofiling/SPESampleMemSet
	aarch64/debug/statisticalprofiling/SPESampleSIMDFPLoadStore
	aarch64/debug/statisticalprofiling/SPESetDataPhysicalAddress
	aarch64/debug/statisticalprofiling/SPESetDataVirtualAddress
	aarch64/debug/statisticalprofiling/SPEStartCounter
	aarch64/debug/statisticalprofiling/SPEStopCounter
	aarch64/debug/statisticalprofiling/SPEToCollectSample
	aarch64/debug/statisticalprofiling/SPEWriteToBuffer
	aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled
	aarch64/debug/statisticalprofiling/TimeStamp
	aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState
	aarch64/debug/watchpoint/AArch64.WatchpointByteMatch
	aarch64/debug/watchpoint/AArch64.WatchpointMatch
	aarch64/debug/watchpoint/IsWatchpointEnabled

	J1.1.2 aarch64/exceptions
	aarch64/exceptions/aborts/AArch64.Abort
	aarch64/exceptions/aborts/AArch64.AbortSyndrome
	aarch64/exceptions/aborts/AArch64.CheckPCAlignment
	aarch64/exceptions/aborts/AArch64.DataAbort
	aarch64/exceptions/aborts/AArch64.EffectiveTCF
	aarch64/exceptions/aborts/AArch64.InstructionAbort
	aarch64/exceptions/aborts/AArch64.PCAlignmentFault
	aarch64/exceptions/aborts/AArch64.PhysicalSErrorTarget
	aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault
	aarch64/exceptions/aborts/AArch64.ReportTagCheckFault
	aarch64/exceptions/aborts/AArch64.RouteToSErrorOffset
	aarch64/exceptions/aborts/AArch64.SPAlignmentFault
	aarch64/exceptions/aborts/AArch64.SyncExternalAbortTarget
	aarch64/exceptions/aborts/AArch64.TagCheckFault
	aarch64/exceptions/aborts/BranchTargetException
	aarch64/exceptions/aborts/TCFType
	aarch64/exceptions/aborts/TakeGPCException
	aarch64/exceptions/async/AArch64.TakePhysicalFIQException
	aarch64/exceptions/async/AArch64.TakePhysicalIRQException
	aarch64/exceptions/async/AArch64.TakePhysicalSErrorException
	aarch64/exceptions/async/AArch64.TakeVirtualFIQException
	aarch64/exceptions/async/AArch64.TakeVirtualIRQException
	aarch64/exceptions/async/AArch64.TakeVirtualSErrorException
	aarch64/exceptions/debug/AArch64.BreakpointException
	aarch64/exceptions/debug/AArch64.SoftwareBreakpoint
	aarch64/exceptions/debug/AArch64.SoftwareStepException
	aarch64/exceptions/debug/AArch64.VectorCatchException
	aarch64/exceptions/debug/AArch64.WatchpointException
	aarch64/exceptions/exceptions/AArch64.ExceptionClass
	aarch64/exceptions/exceptions/AArch64.ReportException
	aarch64/exceptions/exceptions/AArch64.ResetControlRegisters
	aarch64/exceptions/exceptions/AArch64.TakeReset
	aarch64/exceptions/ieeefp/AArch64.FPTrappedException
	aarch64/exceptions/syscalls/AArch64.CallHypervisor
	aarch64/exceptions/syscalls/AArch64.CallSecureMonitor
	aarch64/exceptions/syscalls/AArch64.CallSupervisor
	aarch64/exceptions/takeexception/AArch64.TakeException
	aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap
	aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome
	aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap
	aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps
	aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled
	aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap
	aarch64/exceptions/traps/AArch64.CheckFPEnabled
	aarch64/exceptions/traps/AArch64.CheckForERetTrap
	aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap
	aarch64/exceptions/traps/AArch64.CheckForSVCTrap
	aarch64/exceptions/traps/AArch64.CheckForWFxTrap
	aarch64/exceptions/traps/AArch64.CheckIllegalState
	aarch64/exceptions/traps/AArch64.MonitorModeTrap
	aarch64/exceptions/traps/AArch64.SystemAccessTrap
	aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome
	aarch64/exceptions/traps/AArch64.Undefined
	aarch64/exceptions/traps/AArch64.WFxTrap
	aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64
	aarch64/exceptions/traps/CheckFPEnabled64
	aarch64/exceptions/traps/CheckLDST64BEnabled
	aarch64/exceptions/traps/CheckST64BV0Enabled
	aarch64/exceptions/traps/CheckST64BVEnabled
	aarch64/exceptions/traps/LDST64BTrap
	aarch64/exceptions/traps/WFETrapDelay
	aarch64/exceptions/traps/WaitForEventUntilDelay

	J1.1.3 aarch64/functions
	aarch64/functions/aborts/AArch64.FaultSyndrome
	aarch64/functions/aborts/EncodeGPCSC
	aarch64/functions/aborts/LS64InstructionSyndrome
	aarch64/functions/aborts/WatchpointFARNotPrecise
	aarch64/functions/at/AArch64.AT
	aarch64/functions/at/AArch64.EncodePAR
	aarch64/functions/at/AArch64.PARFaultStatus
	aarch64/functions/at/AArch64.isPARFormatD128
	aarch64/functions/at/GetPAR_EL1_D128
	aarch64/functions/at/GetPAR_EL1_F
	aarch64/functions/barrierop/MemBarrierOp
	aarch64/functions/bfxpreferred/BFXPreferred
	aarch64/functions/bitmasks/AltDecodeBitMasks
	aarch64/functions/bitmasks/DecodeBitMasks
	aarch64/functions/cache/AArch64.DataMemZero
	aarch64/functions/cache/AArch64.TagMemZero
	aarch64/functions/compareop/CompareOp
	aarch64/functions/countop/CountOp
	aarch64/functions/d128/IsD128Enabled
	aarch64/functions/dc/AArch64.DC
	aarch64/functions/dc/AArch64.MemZero
	aarch64/functions/dc/MemZero
	aarch64/functions/eret/AArch64.ExceptionReturn
	aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass
	aarch64/functions/exclusive/AArch64.IsExclusiveVA
	aarch64/functions/exclusive/AArch64.MarkExclusiveVA
	aarch64/functions/exclusive/AArch64.SetExclusiveMonitors
	aarch64/functions/extendreg/DecodeRegExtend
	aarch64/functions/extendreg/ExtendReg
	aarch64/functions/extendreg/ExtendType
	aarch64/functions/fpconvop/FPConvOp
	aarch64/functions/fpmaxminop/FPMaxMinOp
	aarch64/functions/fpunaryop/FPUnaryOp
	aarch64/functions/fusedrstep/FPRSqrtStepFused
	aarch64/functions/fusedrstep/FPRecipStepFused
	aarch64/functions/gcs/AddGCSExRecord
	aarch64/functions/gcs/AddGCSRecord
	aarch64/functions/gcs/CheckGCSExRecord
	aarch64/functions/gcs/CheckGCSSTREnabled
	aarch64/functions/gcs/EXLOCKException
	aarch64/functions/gcs/GCSDataCheckException
	aarch64/functions/gcs/GCSEnabled
	aarch64/functions/gcs/GCSInstruction
	aarch64/functions/gcs/GCSPCREnabled
	aarch64/functions/gcs/GCSPCRSelected
	aarch64/functions/gcs/GCSPOPCX
	aarch64/functions/gcs/GCSPOPM
	aarch64/functions/gcs/GCSPOPX
	aarch64/functions/gcs/GCSPUSHM
	aarch64/functions/gcs/GCSPUSHX
	aarch64/functions/gcs/GCSReturnValueCheckEnabled
	aarch64/functions/gcs/GCSSS1
	aarch64/functions/gcs/GCSSS2
	aarch64/functions/gcs/GCSSTRTrapException
	aarch64/functions/gcs/GCSSynchronizationBarrier
	aarch64/functions/gcs/GetCurrentEXLOCKEN
	aarch64/functions/gcs/GetCurrentGCSPointer
	aarch64/functions/gcs/LoadCheckGCSRecord
	aarch64/functions/gcs/SetCurrentGCSPointer
	aarch64/functions/ic/AArch64.IC
	aarch64/functions/immediateop/ImmediateOp
	aarch64/functions/logicalop/LogicalOp
	aarch64/functions/mec/AArch64.S1AMECFault
	aarch64/functions/mec/AArch64.S1DisabledOutputMECID
	aarch64/functions/mec/AArch64.S1OutputMECID
	aarch64/functions/mec/AArch64.S2OutputMECID
	aarch64/functions/mec/AArch64.TTWalkMECID
	aarch64/functions/mec/DEFAULT_MECID
	aarch64/functions/memory/AArch64.AccessIsTagChecked
	aarch64/functions/memory/AArch64.AddressWithAllocationTag
	aarch64/functions/memory/AArch64.AllocationTagCheck
	aarch64/functions/memory/AArch64.AllocationTagFromAddress
	aarch64/functions/memory/AArch64.CanonicalTagCheck
	aarch64/functions/memory/AArch64.CheckTag
	aarch64/functions/memory/AArch64.IsUnprivAccessPriv
	aarch64/functions/memory/AArch64.MemSingle
	aarch64/functions/memory/AArch64.MemSingleRead
	aarch64/functions/memory/AArch64.MemSingleWrite
	aarch64/functions/memory/AArch64.MemTag
	aarch64/functions/memory/AArch64.PhysicalTag
	aarch64/functions/memory/AArch64.UnalignedAccessFaults
	aarch64/functions/memory/AddressSupportsLS64
	aarch64/functions/memory/AllInAlignedQuantity
	aarch64/functions/memory/CheckSPAlignment
	aarch64/functions/memory/Mem
	aarch64/functions/memory/MemAtomic
	aarch64/functions/memory/MemAtomicRCW
	aarch64/functions/memory/MemLoad64B
	aarch64/functions/memory/MemStore64B
	aarch64/functions/memory/MemStore64BWithRet
	aarch64/functions/memory/MemStore64BWithRetStatus
	aarch64/functions/memory/NVMem
	aarch64/functions/memory/PhysMemTagRead
	aarch64/functions/memory/PhysMemTagWrite
	aarch64/functions/memory/StoreOnlyTagCheckingEnabled
	aarch64/functions/mops/CPYFOptionA
	aarch64/functions/mops/CPYOptionA
	aarch64/functions/mops/CPYParams
	aarch64/functions/mops/CPYPostSizeChoice
	aarch64/functions/mops/CPYPreSizeChoice
	aarch64/functions/mops/CPYSizeChoice
	aarch64/functions/mops/CheckMOPSEnabled
	aarch64/functions/mops/CheckMemCpyParams
	aarch64/functions/mops/CheckMemSetParams
	aarch64/functions/mops/IsMemCpyForward
	aarch64/functions/mops/MOPSStage
	aarch64/functions/mops/MaxBlockSizeCopiedBytes
	aarch64/functions/mops/MemCpyBytes
	aarch64/functions/mops/MemCpyParametersIllformedE
	aarch64/functions/mops/MemCpyParametersIllformedM
	aarch64/functions/mops/MemCpyStageSize
	aarch64/functions/mops/MemCpyZeroSizeCheck
	aarch64/functions/mops/MemSetBytes
	aarch64/functions/mops/MemSetParametersIllformedE
	aarch64/functions/mops/MemSetParametersIllformedM
	aarch64/functions/mops/MemSetStageSize
	aarch64/functions/mops/MemSetZeroSizeCheck
	aarch64/functions/mops/MismatchedCpySetTargetEL
	aarch64/functions/mops/MismatchedMemCpyException
	aarch64/functions/mops/MismatchedMemSetException
	aarch64/functions/mops/SETGOptionA
	aarch64/functions/mops/SETOptionA
	aarch64/functions/mops/SETParams
	aarch64/functions/mops/SETPostSizeChoice
	aarch64/functions/mops/SETPreSizeChoice
	aarch64/functions/mops/SETSizeChoice
	aarch64/functions/mops/UpdateCpyRegisters
	aarch64/functions/mops/UpdateSetRegisters
	aarch64/functions/movewideop/MoveWideOp
	aarch64/functions/movwpreferred/MoveWidePreferred
	aarch64/functions/pac/addpac/AddPAC
	aarch64/functions/pac/addpacda/AddPACDA
	aarch64/functions/pac/addpacdb/AddPACDB
	aarch64/functions/pac/addpacga/AddPACGA
	aarch64/functions/pac/addpacia/AddPACIA
	aarch64/functions/pac/addpacib/AddPACIB
	aarch64/functions/pac/auth/AArch64.PACFailException
	aarch64/functions/pac/auth/Auth
	aarch64/functions/pac/authda/AuthDA
	aarch64/functions/pac/authdb/AuthDB
	aarch64/functions/pac/authia/AuthIA
	aarch64/functions/pac/authib/AuthIB
	aarch64/functions/pac/calcbottompacbit/AArch64.PACEffectiveTxSZ
	aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit
	aarch64/functions/pac/computepac/ComputePAC
	aarch64/functions/pac/computepac/ComputePAC2
	aarch64/functions/pac/computepac/ComputePACIMPDEF
	aarch64/functions/pac/computepac/ComputePACQARMA
	aarch64/functions/pac/computepac/PACCellInvShuffle
	aarch64/functions/pac/computepac/PACCellShuffle
	aarch64/functions/pac/computepac/PACInvSub
	aarch64/functions/pac/computepac/PACMult
	aarch64/functions/pac/computepac/PACSub
	aarch64/functions/pac/computepac/PacSub1
	aarch64/functions/pac/computepac/RC
	aarch64/functions/pac/computepac/RotCell
	aarch64/functions/pac/computepac/TweakCellInvRot
	aarch64/functions/pac/computepac/TweakCellRot
	aarch64/functions/pac/computepac/TweakInvShuffle
	aarch64/functions/pac/computepac/TweakShuffle
	aarch64/functions/pac/computepac/UsePACIMP
	aarch64/functions/pac/computepac/UsePACQARMA3
	aarch64/functions/pac/computepac/UsePACQARMA5
	aarch64/functions/pac/pac/ConstPACField
	aarch64/functions/pac/pac/HavePACIMPAuth
	aarch64/functions/pac/pac/HavePACIMPGeneric
	aarch64/functions/pac/pac/HavePACQARMA3Auth
	aarch64/functions/pac/pac/HavePACQARMA3Generic
	aarch64/functions/pac/pac/HavePACQARMA5Auth
	aarch64/functions/pac/pac/HavePACQARMA5Generic
	aarch64/functions/pac/pac/IsAPDAKeyEnabled
	aarch64/functions/pac/pac/IsAPDBKeyEnabled
	aarch64/functions/pac/pac/IsAPIAKeyEnabled
	aarch64/functions/pac/pac/IsAPIBKeyEnabled
	aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges
	aarch64/functions/pac/strip/Strip
	aarch64/functions/pac/trappacuse/TrapPACUse
	aarch64/functions/predictionrestrict/AArch64.RestrictPrediction
	aarch64/functions/prefetch/Prefetch
	aarch64/functions/pstatefield/PSTATEField
	aarch64/functions/ras/AArch64.ESBOperation
	aarch64/functions/ras/AArch64.EncodeAsyncErrorSyndrome
	aarch64/functions/ras/AArch64.EncodeSyncErrorSyndrome
	aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome
	aarch64/functions/ras/AArch64.vESBOperation
	aarch64/functions/ras/FirstRecordOfNode
	aarch64/functions/ras/IsCommonFaultInjectionImplemented
	aarch64/functions/ras/IsCountableErrorsRecorded
	aarch64/functions/ras/IsErrorAddressIncluded
	aarch64/functions/ras/IsErrorRecordImplemented
	aarch64/functions/ras/IsFirstRecordOfNode
	aarch64/functions/ras/IsSPMUCounterImplemented
	aarch64/functions/rcw/ProtectionEnabled
	aarch64/functions/rcw/RCW128_PROTECTED_BIT
	aarch64/functions/rcw/RCW64_PROTECTED_BIT
	aarch64/functions/rcw/RCWCheck
	aarch64/functions/reduceop/FPReduce
	aarch64/functions/reduceop/IntReduce
	aarch64/functions/reduceop/ReduceOp
	aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers
	aarch64/functions/registers/AArch64.ResetGeneralRegisters
	aarch64/functions/registers/AArch64.ResetSIMDFPRegisters
	aarch64/functions/registers/AArch64.ResetSpecialRegisters
	aarch64/functions/registers/AArch64.ResetSystemRegisters
	aarch64/functions/registers/PC64
	aarch64/functions/registers/SP
	aarch64/functions/registers/SPMCFGR_EL1
	aarch64/functions/registers/SPMCGCR_EL1
	aarch64/functions/registers/SPMCNTENCLR_EL0
	aarch64/functions/registers/SPMCNTENSET_EL0
	aarch64/functions/registers/SPMCR_EL0
	aarch64/functions/registers/SPMDEVAFF_EL1
	aarch64/functions/registers/SPMDEVARCH_EL1
	aarch64/functions/registers/SPMEVCNTR_EL0
	aarch64/functions/registers/SPMEVFILT2R_EL0
	aarch64/functions/registers/SPMEVFILTR_EL0
	aarch64/functions/registers/SPMEVTYPER_EL0
	aarch64/functions/registers/SPMIIDR_EL1
	aarch64/functions/registers/SPMINTENCLR_EL1
	aarch64/functions/registers/SPMINTENSET_EL1
	aarch64/functions/registers/SPMOVSCLR_EL0
	aarch64/functions/registers/SPMOVSSET_EL0
	aarch64/functions/registers/SPMROOTCR_EL3
	aarch64/functions/registers/SPMSCR_EL1
	aarch64/functions/registers/V
	aarch64/functions/registers/Vpart
	aarch64/functions/registers/X
	aarch64/functions/shiftreg/DecodeShift
	aarch64/functions/shiftreg/ShiftReg
	aarch64/functions/shiftreg/ShiftType
	aarch64/functions/sme/CounterToPredicate
	aarch64/functions/sme/EncodePredCount
	aarch64/functions/sme/HaveSME
	aarch64/functions/sme/HaveSME2
	aarch64/functions/sme/HaveSME2p1
	aarch64/functions/sme/HaveSMEB16B16
	aarch64/functions/sme/HaveSMEF16F16
	aarch64/functions/sme/HaveSMEF64F64
	aarch64/functions/sme/HaveSMEI16I64
	aarch64/functions/sme/Lookup
	aarch64/functions/sme/PredCountTest
	aarch64/functions/sme/System
	aarch64/functions/sme/ZAhslice
	aarch64/functions/sme/ZAslice
	aarch64/functions/sme/ZAtile
	aarch64/functions/sme/ZAvector
	aarch64/functions/sme/ZAvslice
	aarch64/functions/sme/ZT0
	aarch64/functions/sve/AArch32.IsFPEnabled
	aarch64/functions/sve/AArch64.IsFPEnabled
	aarch64/functions/sve/ActivePredicateElement
	aarch64/functions/sve/AnyActiveElement
	aarch64/functions/sve/BitDeposit
	aarch64/functions/sve/BitExtract
	aarch64/functions/sve/BitGroup
	aarch64/functions/sve/CeilPow2
	aarch64/functions/sve/CheckNonStreamingSVEEnabled
	aarch64/functions/sve/CheckOriginalSVEEnabled
	aarch64/functions/sve/CheckSMEAccess
	aarch64/functions/sve/CheckSMEAndZAEnabled
	aarch64/functions/sve/CheckSMEEnabled
	aarch64/functions/sve/CheckSMEZT0Enabled
	aarch64/functions/sve/CheckSVEEnabled
	aarch64/functions/sve/CheckStreamingSVEAndZAEnabled
	aarch64/functions/sve/CheckStreamingSVEEnabled
	aarch64/functions/sve/CurrentNSVL
	aarch64/functions/sve/CurrentSVL
	aarch64/functions/sve/CurrentVL
	aarch64/functions/sve/DecodePredCount
	aarch64/functions/sve/ElemFFR
	aarch64/functions/sve/FFR
	aarch64/functions/sve/FPCompareNE
	aarch64/functions/sve/FPCompareUN
	aarch64/functions/sve/FPConvertSVE
	aarch64/functions/sve/FPExpA
	aarch64/functions/sve/FPExpCoefficient
	aarch64/functions/sve/FPLogB
	aarch64/functions/sve/FPMinNormal
	aarch64/functions/sve/FPOne
	aarch64/functions/sve/FPPointFive
	aarch64/functions/sve/FPReducePredicated
	aarch64/functions/sve/FPScale
	aarch64/functions/sve/FPTrigMAdd
	aarch64/functions/sve/FPTrigMAddCoefficient
	aarch64/functions/sve/FPTrigSMul
	aarch64/functions/sve/FPTrigSSel
	aarch64/functions/sve/FirstActive
	aarch64/functions/sve/FloorPow2
	aarch64/functions/sve/HaveSMEFullA64
	aarch64/functions/sve/HaveSVE
	aarch64/functions/sve/HaveSVE2
	aarch64/functions/sve/HaveSVE2AES
	aarch64/functions/sve/HaveSVE2BitPerm
	aarch64/functions/sve/HaveSVE2PMULL128
	aarch64/functions/sve/HaveSVE2SHA256
	aarch64/functions/sve/HaveSVE2SHA3
	aarch64/functions/sve/HaveSVE2SHA512
	aarch64/functions/sve/HaveSVE2SM3
	aarch64/functions/sve/HaveSVE2SM4
	aarch64/functions/sve/HaveSVE2p1
	aarch64/functions/sve/HaveSVEB16B16
	aarch64/functions/sve/HaveSVEFP32MatMulExt
	aarch64/functions/sve/HaveSVEFP64MatMulExt
	aarch64/functions/sve/ImplementedSMEVectorLength
	aarch64/functions/sve/ImplementedSVEVectorLength
	aarch64/functions/sve/InStreamingMode
	aarch64/functions/sve/IntReducePredicated
	aarch64/functions/sve/IsEven
	aarch64/functions/sve/IsFPEnabled
	aarch64/functions/sve/IsFullA64Enabled
	aarch64/functions/sve/IsOdd
	aarch64/functions/sve/IsOriginalSVEEnabled
	aarch64/functions/sve/IsPow2
	aarch64/functions/sve/IsSMEEnabled
	aarch64/functions/sve/IsSVEEnabled
	aarch64/functions/sve/LastActive
	aarch64/functions/sve/LastActiveElement
	aarch64/functions/sve/MaxImplementedAnyVL
	aarch64/functions/sve/MaxImplementedSVL
	aarch64/functions/sve/MaxImplementedVL
	aarch64/functions/sve/MaybeZeroSVEUppers
	aarch64/functions/sve/MemNF
	aarch64/functions/sve/MemSingleNF
	aarch64/functions/sve/NoneActive
	aarch64/functions/sve/P
	aarch64/functions/sve/PredTest
	aarch64/functions/sve/PredicateElement
	aarch64/functions/sve/ResetSMEState
	aarch64/functions/sve/ResetSVEState
	aarch64/functions/sve/SMEAccessTrap
	aarch64/functions/sve/SMEExceptionType
	aarch64/functions/sve/SVEAccessTrap
	aarch64/functions/sve/SVECmp
	aarch64/functions/sve/SVEMoveMaskPreferred
	aarch64/functions/sve/SetPSTATE_SM
	aarch64/functions/sve/SetPSTATE_SVCR
	aarch64/functions/sve/SetPSTATE_ZA
	aarch64/functions/sve/ShiftSat
	aarch64/functions/sve/SupportedPowerTwoSVL
	aarch64/functions/sve/System
	aarch64/functions/sve/Z
	aarch64/functions/syshintop/SystemHintOp
	aarch64/functions/sysop/SysOp
	aarch64/functions/sysop/SystemOp
	aarch64/functions/sysop_128/SysOp128
	aarch64/functions/sysop_128/SystemOp128
	aarch64/functions/sysregisters/ELR_EL
	aarch64/functions/sysregisters/ELR_ELx
	aarch64/functions/sysregisters/ESRType
	aarch64/functions/sysregisters/ESR_EL
	aarch64/functions/sysregisters/ESR_ELx
	aarch64/functions/sysregisters/FAR_EL
	aarch64/functions/sysregisters/FAR_ELx
	aarch64/functions/sysregisters/PFAR_EL
	aarch64/functions/sysregisters/PFAR_ELx
	aarch64/functions/sysregisters/S1PIRType
	aarch64/functions/sysregisters/S1PORType
	aarch64/functions/sysregisters/S2PIRType
	aarch64/functions/sysregisters/S2PORType
	aarch64/functions/sysregisters/SCTLRType
	aarch64/functions/sysregisters/SCTLR_EL
	aarch64/functions/sysregisters/SCTLR_ELx
	aarch64/functions/sysregisters/VBAR_EL
	aarch64/functions/sysregisters/VBAR_ELx
	aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled
	aarch64/functions/system/AArch64.CheckDAIFAccess
	aarch64/functions/system/AArch64.CheckSystemAccess
	aarch64/functions/system/AArch64.ChooseNonExcludedTag
	aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr
	aarch64/functions/system/AArch64.ExecutingBTIInstr
	aarch64/functions/system/AArch64.ExecutingERETInstr
	aarch64/functions/system/AArch64.ImpDefSysInstr
	aarch64/functions/system/AArch64.ImpDefSysInstr128
	aarch64/functions/system/AArch64.ImpDefSysInstrWithResult
	aarch64/functions/system/AArch64.ImpDefSysRegRead
	aarch64/functions/system/AArch64.ImpDefSysRegRead128
	aarch64/functions/system/AArch64.ImpDefSysRegWrite
	aarch64/functions/system/AArch64.ImpDefSysRegWrite128
	aarch64/functions/system/AArch64.NextRandomTagBit
	aarch64/functions/system/AArch64.RandomTag
	aarch64/functions/system/AArch64.SysInstr
	aarch64/functions/system/AArch64.SysInstrWithResult
	aarch64/functions/system/AArch64.SysRegRead
	aarch64/functions/system/AArch64.SysRegWrite
	aarch64/functions/system/BTypeCompatible
	aarch64/functions/system/BTypeCompatible_BTI
	aarch64/functions/system/BTypeCompatible_PACIXSP
	aarch64/functions/system/BTypeNext
	aarch64/functions/system/ChooseRandomNonExcludedTag
	aarch64/functions/system/InGuardedPage
	aarch64/functions/system/IsHCRXEL2Enabled
	aarch64/functions/system/IsSCTLR2EL1Enabled
	aarch64/functions/system/IsSCTLR2EL2Enabled
	aarch64/functions/system/IsTCR2EL1Enabled
	aarch64/functions/system/IsTCR2EL2Enabled
	aarch64/functions/system/SetBTypeCompatible
	aarch64/functions/system/SetBTypeNext
	aarch64/functions/system/SetInGuardedPage
	aarch64/functions/system128/AArch64.SysInstr128
	aarch64/functions/system128/AArch64.SysRegRead128
	aarch64/functions/system128/AArch64.SysRegWrite128
	aarch64/functions/tlbi/AArch64.TLBIP_IPAS2
	aarch64/functions/tlbi/AArch64.TLBIP_RIPAS2
	aarch64/functions/tlbi/AArch64.TLBIP_RVA
	aarch64/functions/tlbi/AArch64.TLBIP_RVAA
	aarch64/functions/tlbi/AArch64.TLBIP_VA
	aarch64/functions/tlbi/AArch64.TLBIP_VAA
	aarch64/functions/tlbi/AArch64.TLBI_ALL
	aarch64/functions/tlbi/AArch64.TLBI_ASID
	aarch64/functions/tlbi/AArch64.TLBI_IPAS2
	aarch64/functions/tlbi/AArch64.TLBI_PAALL
	aarch64/functions/tlbi/AArch64.TLBI_RIPAS2
	aarch64/functions/tlbi/AArch64.TLBI_RPA
	aarch64/functions/tlbi/AArch64.TLBI_RVA
	aarch64/functions/tlbi/AArch64.TLBI_RVAA
	aarch64/functions/tlbi/AArch64.TLBI_VA
	aarch64/functions/tlbi/AArch64.TLBI_VAA
	aarch64/functions/tlbi/AArch64.TLBI_VMALL
	aarch64/functions/tlbi/AArch64.TLBI_VMALLS12
	aarch64/functions/tlbi/ASID_NONE
	aarch64/functions/tlbi/Broadcast
	aarch64/functions/tlbi/DecodeTLBITG
	aarch64/functions/tlbi/GPTTLBIMatch
	aarch64/functions/tlbi/HasLargeAddress
	aarch64/functions/tlbi/ResTLBIRTTL
	aarch64/functions/tlbi/ResTLBITTL
	aarch64/functions/tlbi/TGBits
	aarch64/functions/tlbi/TLBI
	aarch64/functions/tlbi/TLBILevel
	aarch64/functions/tlbi/TLBIMatch
	aarch64/functions/tlbi/TLBIMemAttr
	aarch64/functions/tlbi/TLBIOp
	aarch64/functions/tlbi/TLBIPRange
	aarch64/functions/tlbi/TLBIRange
	aarch64/functions/tlbi/TLBIRecord
	aarch64/functions/tlbi/VMID
	aarch64/functions/tlbi/VMID_NONE
	aarch64/functions/tme/CheckTransactionalSystemAccess
	aarch64/functions/tme/CommitTransactionalWrites
	aarch64/functions/tme/DiscardTransactionalWrites
	aarch64/functions/tme/FailTransaction
	aarch64/functions/tme/IsTMEEnabled
	aarch64/functions/tme/MemHasTransactionalAccess
	aarch64/functions/tme/RestoreTransactionCheckpoint
	aarch64/functions/tme/StartTrackingTransactionalReadsWrites
	aarch64/functions/tme/TMFailure
	aarch64/functions/tme/TMState
	aarch64/functions/tme/TSTATE
	aarch64/functions/tme/TakeTransactionCheckpoint
	aarch64/functions/tme/TransactionStartTrap
	aarch64/functions/vbitop/VBitOp

	J1.1.4 aarch64/translation
	aarch64/translation/attrs/AArch64.MAIRAttr
	aarch64/translation/debug/AArch64.CheckBreakpoint
	aarch64/translation/debug/AArch64.CheckDebug
	aarch64/translation/debug/AArch64.CheckWatchpoint
	aarch64/translation/vmsa_addrcalc/AArch64.IASize
	aarch64/translation/vmsa_addrcalc/AArch64.LeafBase
	aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase
	aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize
	aarch64/translation/vmsa_addrcalc/AArch64.S1SLTTEntryAddress
	aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel
	aarch64/translation/vmsa_addrcalc/AArch64.S1TTBaseAddress
	aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress
	aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel
	aarch64/translation/vmsa_addrcalc/AArch64.S2TTBaseAddress
	aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress
	aarch64/translation/vmsa_faults/AArch64.AddrTop
	aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults
	aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange
	aarch64/translation/vmsa_faults/AArch64.OAOutOfRange
	aarch64/translation/vmsa_faults/AArch64.S1CheckPermissions
	aarch64/translation/vmsa_faults/AArch64.S1ComputePermissions
	aarch64/translation/vmsa_faults/AArch64.S1DirectBasePermissions
	aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault
	aarch64/translation/vmsa_faults/AArch64.S1IndirectBasePermissions
	aarch64/translation/vmsa_faults/AArch64.S1OverlayPermissions
	aarch64/translation/vmsa_faults/AArch64.S1TxSZFaults
	aarch64/translation/vmsa_faults/AArch64.S2CheckPermissions
	aarch64/translation/vmsa_faults/AArch64.S2ComputePermissions
	aarch64/translation/vmsa_faults/AArch64.S2DirectBasePermissions
	aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault
	aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL
	aarch64/translation/vmsa_faults/AArch64.S2IndirectBasePermissions
	aarch64/translation/vmsa_faults/AArch64.S2InvalidSL
	aarch64/translation/vmsa_faults/AArch64.S2OverlayPermissions
	aarch64/translation/vmsa_faults/AArch64.S2TxSZFaults
	aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange
	aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs
	aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext
	aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext
	aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10
	aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2
	aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL20
	aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL3
	aarch64/translation/vmsa_translation/AArch64.FullTranslate
	aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc
	aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput
	aarch64/translation/vmsa_translation/AArch64.S1Translate
	aarch64/translation/vmsa_translation/AArch64.S2Translate
	aarch64/translation/vmsa_translation/AArch64.SettingAccessFlagPermitted
	aarch64/translation/vmsa_translation/AArch64.SettingDirtyStatePermitted
	aarch64/translation/vmsa_translation/AArch64.TranslateAddress
	aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported
	aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults
	aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit
	aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType
	aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms
	aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms
	aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms
	aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLeaf
	aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable
	aarch64/translation/vmsa_walk/AArch64.S1Walk
	aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLeaf
	aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable
	aarch64/translation/vmsa_walk/AArch64.S2Walk
	aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace
	aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel
	aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.GetVARange
	aarch64/translation/vmsa_walkparams/AArch64.HaveS1TG
	aarch64/translation/vmsa_walkparams/AArch64.HaveS2TG
	aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.PAMax
	aarch64/translation/vmsa_walkparams/AArch64.RLS2TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG0
	aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG1
	aarch64/translation/vmsa_walkparams/AArch64.S1E0POEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1EPD
	aarch64/translation/vmsa_walkparams/AArch64.S1Enabled
	aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.S1POEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1POR
	aarch64/translation/vmsa_walkparams/AArch64.S1TTBR
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3
	aarch64/translation/vmsa_walkparams/AArch64.S2DecodeTG0
	aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams
	aarch64/translation/vmsa_walkparams/S2DCacheEnabled

	J1.2 Pseudocode for AArch32 operation
	J1.2.1 aarch32/debug
	aarch32/debug/VCRMatch/AArch32.VCRMatch
	aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEna bled
	aarch32/debug/breakpoint/AArch32.BreakpointMatch
	aarch32/debug/breakpoint/AArch32.BreakpointValueMatch
	aarch32/debug/breakpoint/AArch32.ReservedBreakpointType
	aarch32/debug/breakpoint/AArch32.StateMatch
	aarch32/debug/enables/AArch32.GenerateDebugExceptions
	aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom
	aarch32/debug/pmu/AArch32.IncrementCycleCounter
	aarch32/debug/pmu/AArch32.IncrementEventCounter
	aarch32/debug/pmu/AArch32.PMUCycle
	aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState
	aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState
	aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState
	aarch32/debug/watchpoint/AArch32.WatchpointByteMatch
	aarch32/debug/watchpoint/AArch32.WatchpointMatch

	J1.2.2 aarch32/exceptions
	aarch32/exceptions/aborts/AArch32.Abort
	aarch32/exceptions/aborts/AArch32.AbortSyndrome
	aarch32/exceptions/aborts/AArch32.CheckPCAlignment
	aarch32/exceptions/aborts/AArch32.CommonFaultStatus
	aarch32/exceptions/aborts/AArch32.ReportDataAbort
	aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort
	aarch32/exceptions/aborts/AArch32.TakeDataAbortException
	aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException
	aarch32/exceptions/async/AArch32.TakePhysicalFIQException
	aarch32/exceptions/async/AArch32.TakePhysicalIRQException
	aarch32/exceptions/async/AArch32.TakePhysicalSErrorException
	aarch32/exceptions/async/AArch32.TakeVirtualFIQException
	aarch32/exceptions/async/AArch32.TakeVirtualIRQException
	aarch32/exceptions/async/AArch32.TakeVirtualSErrorException
	aarch32/exceptions/debug/AArch32.SoftwareBreakpoint
	aarch32/exceptions/debug/DebugException
	aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps
	aarch32/exceptions/exceptions/AArch32.ExceptionClass
	aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64
	aarch32/exceptions/exceptions/AArch32.ReportHypEntry
	aarch32/exceptions/exceptions/AArch32.ResetControlRegisters
	aarch32/exceptions/exceptions/AArch32.TakeReset
	aarch32/exceptions/exceptions/ExcVectorBase
	aarch32/exceptions/ieeefp/AArch32.FPTrappedException
	aarch32/exceptions/syscalls/AArch32.CallHypervisor
	aarch32/exceptions/syscalls/AArch32.CallSupervisor
	aarch32/exceptions/syscalls/AArch32.TakeHVCException
	aarch32/exceptions/syscalls/AArch32.TakeSMCException
	aarch32/exceptions/syscalls/AArch32.TakeSVCException
	aarch32/exceptions/takeexception/AArch32.EnterHypMode
	aarch32/exceptions/takeexception/AArch32.EnterMode
	aarch32/exceptions/takeexception/AArch32.EnterMonitorMode
	aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled
	aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap
	aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap
	aarch32/exceptions/traps/AArch32.CheckForSVCTrap
	aarch32/exceptions/traps/AArch32.CheckForWFxTrap
	aarch32/exceptions/traps/AArch32.CheckITEnabled
	aarch32/exceptions/traps/AArch32.CheckIllegalState
	aarch32/exceptions/traps/AArch32.CheckSETENDEnabled
	aarch32/exceptions/traps/AArch32.SystemAccessTrap
	aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome
	aarch32/exceptions/traps/AArch32.TakeHypTrapException
	aarch32/exceptions/traps/AArch32.TakeMonitorTrapException
	aarch32/exceptions/traps/AArch32.TakeUndefInstrException
	aarch32/exceptions/traps/AArch32.Undefined

	J1.2.3 aarch32/functions
	aarch32/functions/aborts/AArch32.DomainValid
	aarch32/functions/aborts/AArch32.FaultSyndrome
	aarch32/functions/aborts/EncodeSDFSC
	aarch32/functions/common/A32ExpandImm
	aarch32/functions/common/A32ExpandImm_C
	aarch32/functions/common/DecodeImmShift
	aarch32/functions/common/DecodeRegShift
	aarch32/functions/common/RRX
	aarch32/functions/common/RRX_C
	aarch32/functions/common/SRType
	aarch32/functions/common/Shift
	aarch32/functions/common/Shift_C
	aarch32/functions/common/T32ExpandImm
	aarch32/functions/common/T32ExpandImm_C
	aarch32/functions/common/VBitOps
	aarch32/functions/common/VCGEType
	aarch32/functions/common/VCGTtype
	aarch32/functions/common/VFPNegMul
	aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps
	aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass
	aarch32/functions/exclusive/AArch32.IsExclusiveVA
	aarch32/functions/exclusive/AArch32.MarkExclusiveVA
	aarch32/functions/exclusive/AArch32.SetExclusiveMonitors
	aarch32/functions/float/CheckAdvSIMDEnabled
	aarch32/functions/float/CheckAdvSIMDOrVFPEnabled
	aarch32/functions/float/CheckCryptoEnabled32
	aarch32/functions/float/CheckVFPEnabled
	aarch32/functions/float/FPHalvedSub
	aarch32/functions/float/FPRSqrtStep
	aarch32/functions/float/FPRecipStep
	aarch32/functions/float/StandardFPCR
	aarch32/functions/memory/AArch32.MemSingle
	aarch32/functions/memory/AArch32.MemSingleRead
	aarch32/functions/memory/AArch32.MemSingleWrite
	aarch32/functions/memory/AArch32.UnalignedAccessFaults
	aarch32/functions/memory/Hint_PreloadData
	aarch32/functions/memory/Hint_PreloadDataForWrite
	aarch32/functions/memory/Hint_PreloadInstr
	aarch32/functions/memory/MemA
	aarch32/functions/memory/MemO
	aarch32/functions/memory/MemS
	aarch32/functions/memory/MemU
	aarch32/functions/memory/MemU_unpriv
	aarch32/functions/memory/Mem_with_type
	aarch32/functions/ras/AArch32.ESBOperation
	aarch32/functions/ras/AArch32.EncodeAsyncErrorSyndrome
	aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome
	aarch32/functions/ras/AArch32.vESBOperation
	aarch32/functions/registers/AArch32.ResetGeneralRegisters
	aarch32/functions/registers/AArch32.ResetSIMDFPRegisters
	aarch32/functions/registers/AArch32.ResetSpecialRegisters
	aarch32/functions/registers/AArch32.ResetSystemRegisters
	aarch32/functions/registers/ALUExceptionReturn
	aarch32/functions/registers/ALUWritePC
	aarch32/functions/registers/BXWritePC
	aarch32/functions/registers/BranchWritePC
	aarch32/functions/registers/CBWritePC
	aarch32/functions/registers/D
	aarch32/functions/registers/Din
	aarch32/functions/registers/LR
	aarch32/functions/registers/LoadWritePC
	aarch32/functions/registers/LookUpRIndex
	aarch32/functions/registers/Monitor_mode_registers
	aarch32/functions/registers/PC32
	aarch32/functions/registers/PCStoreValue
	aarch32/functions/registers/Q
	aarch32/functions/registers/Qin
	aarch32/functions/registers/R
	aarch32/functions/registers/RBankSelect
	aarch32/functions/registers/Rmode
	aarch32/functions/registers/S
	aarch32/functions/registers/_Dclone
	aarch32/functions/system/AArch32.ExceptionReturn
	aarch32/functions/system/AArch32.ExecutingCP10or11Instr
	aarch32/functions/system/AArch32.ITAdvance
	aarch32/functions/system/AArch32.SysRegRead
	aarch32/functions/system/AArch32.SysRegRead64
	aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR
	aarch32/functions/system/AArch32.SysRegWrite
	aarch32/functions/system/AArch32.SysRegWrite64
	aarch32/functions/system/AArch32.SysRegWriteM
	aarch32/functions/system/AArch32.WriteMode
	aarch32/functions/system/AArch32.WriteModeByInstr
	aarch32/functions/system/BadMode
	aarch32/functions/system/BankedRegisterAccessValid
	aarch32/functions/system/CPSRWriteByInstr
	aarch32/functions/system/ConditionPassed
	aarch32/functions/system/CurrentCond
	aarch32/functions/system/InITBlock
	aarch32/functions/system/LastInITBlock
	aarch32/functions/system/SPSRWriteByInstr
	aarch32/functions/system/SPSRaccessValid
	aarch32/functions/system/SelectInstrSet
	aarch32/functions/tlbi/AArch32.DTLBI_ALL
	aarch32/functions/tlbi/AArch32.DTLBI_ASID
	aarch32/functions/tlbi/AArch32.DTLBI_VA
	aarch32/functions/tlbi/AArch32.ITLBI_ALL
	aarch32/functions/tlbi/AArch32.ITLBI_ASID
	aarch32/functions/tlbi/AArch32.ITLBI_VA
	aarch32/functions/tlbi/AArch32.TLBI_ALL
	aarch32/functions/tlbi/AArch32.TLBI_ASID
	aarch32/functions/tlbi/AArch32.TLBI_IPAS2
	aarch32/functions/tlbi/AArch32.TLBI_VA
	aarch32/functions/tlbi/AArch32.TLBI_VAA
	aarch32/functions/tlbi/AArch32.TLBI_VMALL
	aarch32/functions/tlbi/AArch32.TLBI_VMALLS12
	aarch32/functions/v6simd/Sat
	aarch32/functions/v6simd/SignedSat
	aarch32/functions/v6simd/UnsignedSat

	J1.2.4 aarch32/translation
	aarch32/translation/attrs/AArch32.DefaultTEXDecode
	aarch32/translation/attrs/AArch32.MAIRAttr
	aarch32/translation/attrs/AArch32.RemappedTEXDecode
	aarch32/translation/debug/AArch32.CheckBreakpoint
	aarch32/translation/debug/AArch32.CheckDebug
	aarch32/translation/debug/AArch32.CheckVectorCatch
	aarch32/translation/debug/AArch32.CheckWatchpoint
	aarch32/translation/faults/AArch32.IPAIsOutOfRange
	aarch32/translation/faults/AArch32.S1HasAlignmentFault
	aarch32/translation/faults/AArch32.S1LDHasPermissionsFault
	aarch32/translation/faults/AArch32.S1SDHasPermissionsFault
	aarch32/translation/faults/AArch32.S2HasAlignmentFault
	aarch32/translation/faults/AArch32.S2HasPermissionsFault
	aarch32/translation/faults/AArch32.S2InconsistentSL
	aarch32/translation/faults/AArch32.VAIsOutOfRange
	aarch32/translation/tlbcontext/AArch32.GetS1TLBContext
	aarch32/translation/tlbcontext/AArch32.GetS2TLBContext
	aarch32/translation/tlbcontext/AArch32.TLBContextEL10
	aarch32/translation/tlbcontext/AArch32.TLBContextEL2
	aarch32/translation/tlbcontext/AArch32.TLBContextEL30
	aarch32/translation/translation/AArch32.EL2Enabled
	aarch32/translation/translation/AArch32.FullTranslate
	aarch32/translation/translation/AArch32.OutputDomain
	aarch32/translation/translation/AArch32.S1DisabledOutput
	aarch32/translation/translation/AArch32.S1Enabled
	aarch32/translation/translation/AArch32.S1TranslateLD
	aarch32/translation/translation/AArch32.S1TranslateSD
	aarch32/translation/translation/AArch32.S2Translate
	aarch32/translation/translation/AArch32.SDStageOA
	aarch32/translation/translation/AArch32.TranslateAddress
	aarch32/translation/translation/SDFSize
	aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD
	aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD
	aarch32/translation/walk/AArch32.S1IASize
	aarch32/translation/walk/AArch32.S1WalkLD
	aarch32/translation/walk/AArch32.S1WalkSD
	aarch32/translation/walk/AArch32.S2IASize
	aarch32/translation/walk/AArch32.S2StartLevel
	aarch32/translation/walk/AArch32.S2Walk
	aarch32/translation/walk/AArch32.TranslationSizeSD
	aarch32/translation/walk/RemapRegsHaveResetValues
	aarch32/translation/walkparams/AArch32.GetS1TTWParams
	aarch32/translation/walkparams/AArch32.GetS2TTWParams
	aarch32/translation/walkparams/AArch32.GetVARange
	aarch32/translation/walkparams/AArch32.S1DCacheEnabled
	aarch32/translation/walkparams/AArch32.S1ICacheEnabled
	aarch32/translation/walkparams/AArch32.S1TTWParamsEL10
	aarch32/translation/walkparams/AArch32.S1TTWParamsEL2
	aarch32/translation/walkparams/AArch32.S1TTWParamsEL30

	J1.3 Shared pseudocode
	J1.3.1 shared/debug
	shared/debug/ClearStickyErrors/ClearStickyErrors
	shared/debug/DebugTarget/DebugTarget
	shared/debug/DebugTarget/DebugTargetFrom
	shared/debug/DoubleLockStatus/DoubleLockStatus
	shared/debug/OSLockStatus/OSLockStatus
	shared/debug/SoftwareLockStatus/Component
	shared/debug/SoftwareLockStatus/GetAccessComponent
	shared/debug/SoftwareLockStatus/SoftwareLockStatus
	shared/debug/authentication/AccessState
	shared/debug/authentication/AllowExternalDebugAccess
	shared/debug/authentication/AllowExternalPMSSAccess
	shared/debug/authentication/AllowExternalPMUAccess
	shared/debug/authentication/AllowExternalTraceAccess
	shared/debug/authentication/Debug_authentication
	shared/debug/authentication/ExternalInvasiveDebugEnabled
	shared/debug/authentication/ExternalNoninvasiveDebugAllowed
	shared/debug/authentication/ExternalNoninvasiveDebugEnabled
	shared/debug/authentication/ExternalRealmInvasiveDebugEnabled
	shared/debug/authentication/ExternalRealmNoninvasiveDebugEnabled
	shared/debug/authentication/ExternalRootInvasiveDebugEnabled
	shared/debug/authentication/ExternalRootNoninvasiveDebugEnabled
	shared/debug/authentication/ExternalSecureInvasiveDebugEnabled
	shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled
	shared/debug/authentication/IsAccessNonSecure
	shared/debug/authentication/IsAccessSecure
	shared/debug/authentication/IsCorePowered
	shared/debug/breakpoint/CheckValidStateMatch
	shared/debug/breakpoint/ContextAwareBreakpointRange
	shared/debug/breakpoint/IsContextAwareBreakpoint
	shared/debug/breakpoint/NumBreakpointsImplemented
	shared/debug/breakpoint/NumContextAwareBreakpointsImplemented
	shared/debug/breakpoint/NumWatchpointsImplemented
	shared/debug/cti/CTI_ProcessEvent
	shared/debug/cti/CTI_SetEventLevel
	shared/debug/cti/CTI_SignalEvent
	shared/debug/cti/CrossTrigger
	shared/debug/dccanditr/CheckForDCCInterrupts
	shared/debug/dccanditr/DTR
	shared/debug/dccanditr/Read_DBGDTRRX_EL0
	shared/debug/dccanditr/Read_DBGDTRTX_EL0
	shared/debug/dccanditr/Read_DBGDTR_EL0
	shared/debug/dccanditr/Write_DBGDTRRX_EL0
	shared/debug/dccanditr/Write_DBGDTRTX_EL0
	shared/debug/dccanditr/Write_DBGDTR_EL0
	shared/debug/dccanditr/Write_EDITR
	shared/debug/halting/DCPSInstruction
	shared/debug/halting/DRPSInstruction
	shared/debug/halting/DebugHalt
	shared/debug/halting/DebugRestorePSR
	shared/debug/halting/DisableITRAndResumeInstructionPrefetch
	shared/debug/halting/ExecuteA64
	shared/debug/halting/ExecuteT32
	shared/debug/halting/ExitDebugState
	shared/debug/halting/Halt
	shared/debug/halting/HaltOnBreakpointOrWatchpoint
	shared/debug/halting/Halted
	shared/debug/halting/HaltingAllowed
	shared/debug/halting/Restarting
	shared/debug/halting/StopInstructionPrefetchAndEnableITR
	shared/debug/halting/UpdateDbgAuthStatus
	shared/debug/halting/UpdateEDHSR
	shared/debug/halting/UpdateEDSCRFields
	shared/debug/haltingevents/CheckExceptionCatch
	shared/debug/haltingevents/CheckHaltingStep
	shared/debug/haltingevents/CheckOSUnlockCatch
	shared/debug/haltingevents/CheckPendingExceptionCatch
	shared/debug/haltingevents/CheckPendingOSUnlockCatch
	shared/debug/haltingevents/CheckPendingResetCatch
	shared/debug/haltingevents/CheckResetCatch
	shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters
	shared/debug/haltingevents/CheckTRBEHalt
	shared/debug/haltingevents/ExternalDebugRequest
	shared/debug/haltingevents/HSAdvance
	shared/debug/haltingevents/HaltingStep_DidNotStep
	shared/debug/haltingevents/HaltingStep_SteppedEX
	shared/debug/interrupts/ExternalDebugInterruptsDisabled
	shared/debug/pmu
	shared/debug/pmu/CYCLE_COUNTER_ID
	shared/debug/pmu/CheckForPMUOverflow
	shared/debug/pmu/ClearEventCounters
	shared/debug/pmu/CountPMUEvents
	shared/debug/pmu/GetNumEventCounters
	shared/debug/pmu/GetNumEventCountersAccessible
	shared/debug/pmu/GetPMUAccessMask
	shared/debug/pmu/GetPMUReadMask
	shared/debug/pmu/GetPMUWriteMask
	shared/debug/pmu/HasElapsed64Cycles
	shared/debug/pmu/INSTRUCTION_COUNTER_ID
	shared/debug/pmu/IncrementInstructionCounter
	shared/debug/pmu/PMUCaptureEvent
	shared/debug/pmu/PMUCaptureEventAllowed
	shared/debug/pmu/PMUCaptureEventEnabled
	shared/debug/pmu/PMUCountValue
	shared/debug/pmu/PMUCounterIsHyp
	shared/debug/pmu/PMUEvent
	shared/debug/pmu/PMUOverflowCondition
	shared/debug/pmu/PMUSwIncrement
	shared/debug/pmu/ReservedPMUThreshold
	shared/debug/pmu/ShouldPMUFreeze
	shared/debug/pmu/ZeroCycleCounter
	shared/debug/pmu/ZeroPMUCounters
	shared/debug/samplebasedprofiling/CreatePCSample
	shared/debug/samplebasedprofiling/PCSRSuspended
	shared/debug/samplebasedprofiling/PCSample
	shared/debug/samplebasedprofiling/Read_EDPCSRlo
	shared/debug/samplebasedprofiling/Read_PMPCSR
	shared/debug/samplebasedprofiling/SetPCSRActive
	shared/debug/samplebasedprofiling/SetPCSRUnknown
	shared/debug/samplebasedprofiling/SetPCSample
	shared/debug/softwarestep/CheckSoftwareStep
	shared/debug/softwarestep/DebugExceptionReturnSS
	shared/debug/softwarestep/SSAdvance
	shared/debug/softwarestep/SoftwareStep_DidNotStep
	shared/debug/softwarestep/SoftwareStep_SteppedEX

	J1.3.2 shared/exceptions
	shared/exceptions/exceptions/ConditionSyndrome
	shared/exceptions/exceptions/Exception
	shared/exceptions/exceptions/ExceptionRecord
	shared/exceptions/exceptions/ExceptionSyndrome
	shared/exceptions/traps/Undefined

	J1.3.3 shared/functions
	shared/functions/aborts/EncodeLDFSC
	shared/functions/aborts/IPAValid
	shared/functions/aborts/IsAsyncAbort
	shared/functions/aborts/IsDebugException
	shared/functions/aborts/IsExternalAbort
	shared/functions/aborts/IsExternalSyncAbort
	shared/functions/aborts/IsFault
	shared/functions/aborts/IsSErrorInterrupt
	shared/functions/aborts/IsSecondStage
	shared/functions/aborts/LSInstructionSyndrome
	shared/functions/aborts/ReportAsGPCException
	shared/functions/cache/CACHE_OP
	shared/functions/cache/CPASAtPAS
	shared/functions/cache/CPASAtSecurityState
	shared/functions/cache/CacheRecord
	shared/functions/cache/DCInstNeedsTranslation
	shared/functions/cache/DecodeSW
	shared/functions/cache/GetCacheInfo
	shared/functions/cache/ICInstNeedsTranslation
	shared/functions/common/ASR
	shared/functions/common/ASR_C
	shared/functions/common/Abs
	shared/functions/common/Align
	shared/functions/common/BitCount
	shared/functions/common/CountLeadingSignBits
	shared/functions/common/CountLeadingZeroBits
	shared/functions/common/Elem
	shared/functions/common/Extend
	shared/functions/common/HighestSetBit
	shared/functions/common/Int
	shared/functions/common/IsAligned
	shared/functions/common/IsOnes
	shared/functions/common/IsZero
	shared/functions/common/IsZeroBit
	shared/functions/common/LSL
	shared/functions/common/LSL_C
	shared/functions/common/LSR
	shared/functions/common/LSR_C
	shared/functions/common/LowestSetBit
	shared/functions/common/Max
	shared/functions/common/Min
	shared/functions/common/Ones
	shared/functions/common/ROR
	shared/functions/common/ROR_C
	shared/functions/common/RShr
	shared/functions/common/Replicate
	shared/functions/common/Reverse
	shared/functions/common/RoundDown
	shared/functions/common/RoundTowardsZero
	shared/functions/common/RoundUp
	shared/functions/common/SInt
	shared/functions/common/SignExtend
	shared/functions/common/Signal
	shared/functions/common/Split
	shared/functions/common/UInt
	shared/functions/common/ZeroExtend
	shared/functions/common/Zeros
	shared/functions/counters/AArch32.CheckTimerConditions
	shared/functions/counters/AArch64.CheckTimerConditions
	shared/functions/counters/CNTHCTL_EL2_VHE
	shared/functions/counters/GenericCounterTick
	shared/functions/counters/IsTimerConditionMet
	shared/functions/counters/PhysicalCount
	shared/functions/counters/SetEventRegister
	shared/functions/counters/TestEventCNTP
	shared/functions/counters/TestEventCNTV
	shared/functions/crc/BitReverse
	shared/functions/crc/Poly32Mod2
	shared/functions/crypto/AESInvMixColumns
	shared/functions/crypto/AESInvShiftRows
	shared/functions/crypto/AESInvSubBytes
	shared/functions/crypto/AESMixColumns
	shared/functions/crypto/AESShiftRows
	shared/functions/crypto/AESSubBytes
	shared/functions/crypto/FFmul02
	shared/functions/crypto/FFmul03
	shared/functions/crypto/FFmul09
	shared/functions/crypto/FFmul0B
	shared/functions/crypto/FFmul0D
	shared/functions/crypto/FFmul0E
	shared/functions/crypto/ROL
	shared/functions/crypto/SHA256hash
	shared/functions/crypto/SHAchoose
	shared/functions/crypto/SHAhashSIGMA0
	shared/functions/crypto/SHAhashSIGMA1
	shared/functions/crypto/SHAmajority
	shared/functions/crypto/SHAparity
	shared/functions/crypto/Sbox
	shared/functions/exclusive/ClearExclusiveByAddress
	shared/functions/exclusive/ClearExclusiveLocal
	shared/functions/exclusive/ExclusiveMonitorsStatus
	shared/functions/exclusive/IsExclusiveGlobal
	shared/functions/exclusive/IsExclusiveLocal
	shared/functions/exclusive/MarkExclusiveGlobal
	shared/functions/exclusive/MarkExclusiveLocal
	shared/functions/exclusive/ProcessorID
	shared/functions/extension/HaveBF16Ext
	shared/functions/extension/HaveFeatABLE
	shared/functions/extension/HaveInt8MatMulExt
	shared/functions/extension/HaveSoftwareLock
	shared/functions/extension/HaveTME
	shared/functions/extension/HaveTraceExt
	shared/functions/extension/InsertIESBBeforeException
	shared/functions/extension/IsG1ActivityMonitorImplemented
	shared/functions/extension/IsG1ActivityMonitorOffsetImplemented
	shared/functions/externalaborts/ActionRequired
	shared/functions/externalaborts/ClearPendingPhysicalSError
	shared/functions/externalaborts/ClearPendingVirtualSError
	shared/functions/externalaborts/ErrorIsContained
	shared/functions/externalaborts/ErrorIsSynchronized
	shared/functions/externalaborts/ExtAbortToA64
	shared/functions/externalaborts/FaultIsCorrected
	shared/functions/externalaborts/GetPendingPhysicalSError
	shared/functions/externalaborts/HandleExternalAbort
	shared/functions/externalaborts/HandleExternalReadAbort
	shared/functions/externalaborts/HandleExternalTTWAbort
	shared/functions/externalaborts/HandleExternalWriteAbort
	shared/functions/externalaborts/IsExternalAbortTakenSynchronously
	shared/functions/externalaborts/IsPhysicalSErrorPending
	shared/functions/externalaborts/IsSErrorEdgeTriggered
	shared/functions/externalaborts/IsSynchronizablePhysicalSErrorPending
	shared/functions/externalaborts/IsVirtualSErrorPending
	shared/functions/externalaborts/PEErrorState
	shared/functions/externalaborts/PendSErrorInterrupt
	shared/functions/externalaborts/ReportErrorAsIMPDEF
	shared/functions/externalaborts/ReportErrorAsUC
	shared/functions/externalaborts/ReportErrorAsUER
	shared/functions/externalaborts/ReportErrorAsUEU
	shared/functions/externalaborts/ReportErrorAsUncategorized
	shared/functions/externalaborts/StateIsRecoverable
	shared/functions/float/bfloat/BFAdd
	shared/functions/float/bfloat/BFAdd_ZA
	shared/functions/float/bfloat/BFDotAdd
	shared/functions/float/bfloat/BFInfinity
	shared/functions/float/bfloat/BFMatMulAdd
	shared/functions/float/bfloat/BFMax
	shared/functions/float/bfloat/BFMaxNum
	shared/functions/float/bfloat/BFMin
	shared/functions/float/bfloat/BFMinNum
	shared/functions/float/bfloat/BFMul
	shared/functions/float/bfloat/BFMulAdd
	shared/functions/float/bfloat/BFMulAddH
	shared/functions/float/bfloat/BFMulAddH_ZA
	shared/functions/float/bfloat/BFMulAdd_ZA
	shared/functions/float/bfloat/BFMulH
	shared/functions/float/bfloat/BFNeg
	shared/functions/float/bfloat/BFRound
	shared/functions/float/bfloat/BFSub
	shared/functions/float/bfloat/BFSub_ZA
	shared/functions/float/bfloat/BFUnpack
	shared/functions/float/bfloat/BFZero
	shared/functions/float/bfloat/FPAdd_BF16
	shared/functions/float/bfloat/FPConvertBF
	shared/functions/float/bfloat/FPRoundBF
	shared/functions/float/fixedtofp/FixedToFP
	shared/functions/float/fpabs/FPAbs
	shared/functions/float/fpadd/FPAdd
	shared/functions/float/fpadd/FPAdd_ZA
	shared/functions/float/fpcompare/FPCompare
	shared/functions/float/fpcompareeq/FPCompareEQ
	shared/functions/float/fpcomparege/FPCompareGE
	shared/functions/float/fpcomparegt/FPCompareGT
	shared/functions/float/fpconvert/FPConvert
	shared/functions/float/fpconvertnan/FPConvertNaN
	shared/functions/float/fpcrtype/FPCR_Type
	shared/functions/float/fpdecoderm/FPDecodeRM
	shared/functions/float/fpdecoderounding/FPDecodeRounding
	shared/functions/float/fpdefaultnan/FPDefaultNaN
	shared/functions/float/fpdiv/FPDiv
	shared/functions/float/fpdot/FPDot
	shared/functions/float/fpdot/FPDotAdd
	shared/functions/float/fpdot/FPDotAdd_ZA
	shared/functions/float/fpexc/FPExc
	shared/functions/float/fpinfinity/FPInfinity
	shared/functions/float/fpmatmul/FPMatMulAdd
	shared/functions/float/fpmax/FPMax
	shared/functions/float/fpmaxnormal/FPMaxNormal
	shared/functions/float/fpmaxnum/FPMaxNum
	shared/functions/float/fpmerge/IsMerging
	shared/functions/float/fpmin/FPMin
	shared/functions/float/fpminnum/FPMinNum
	shared/functions/float/fpmul/FPMul
	shared/functions/float/fpmuladd/FPMulAdd
	shared/functions/float/fpmuladd/FPMulAdd_ZA
	shared/functions/float/fpmuladdh/FPMulAddH
	shared/functions/float/fpmuladdh/FPMulAddH_ZA
	shared/functions/float/fpmuladdh/FPProcessNaNs3H
	shared/functions/float/fpmulx/FPMulX
	shared/functions/float/fpneg/FPNeg
	shared/functions/float/fponepointfive/FPOnePointFive
	shared/functions/float/fpprocessdenorms/FPProcessDenorm
	shared/functions/float/fpprocessdenorms/FPProcessDenorms
	shared/functions/float/fpprocessdenorms/FPProcessDenorms3
	shared/functions/float/fpprocessdenorms/FPProcessDenorms4
	shared/functions/float/fpprocessexception/FPProcessException
	shared/functions/float/fpprocessnan/FPProcessNaN
	shared/functions/float/fpprocessnans/FPProcessNaNs
	shared/functions/float/fpprocessnans3/FPProcessNaNs3
	shared/functions/float/fpprocessnans4/FPProcessNaNs4
	shared/functions/float/fprecipestimate/FPRecipEstimate
	shared/functions/float/fprecipestimate/RecipEstimate
	shared/functions/float/fprecpx/FPRecpX
	shared/functions/float/fpround/FPBits
	shared/functions/float/fpround/FPRound
	shared/functions/float/fpround/FPRoundBase
	shared/functions/float/fpround/FPRoundCV
	shared/functions/float/fprounding/FPRounding
	shared/functions/float/fproundingmode/FPRoundingMode
	shared/functions/float/fproundint/FPRoundInt
	shared/functions/float/fproundintn/FPRoundIntN
	shared/functions/float/fprsqrtestimate/FPRSqrtEstimate
	shared/functions/float/fprsqrtestimate/RecipSqrtEstimate
	shared/functions/float/fpsqrt/FPSqrt
	shared/functions/float/fpsub/FPSub
	shared/functions/float/fpsub/FPSub_ZA
	shared/functions/float/fpthree/FPThree
	shared/functions/float/fptofixed/FPToFixed
	shared/functions/float/fptofixedjs/FPToFixedJS
	shared/functions/float/fptwo/FPTwo
	shared/functions/float/fptype/FPType
	shared/functions/float/fpunpack/FPUnpack
	shared/functions/float/fpunpack/FPUnpackBase
	shared/functions/float/fpunpack/FPUnpackCV
	shared/functions/float/fpzero/FPZero
	shared/functions/float/vfpexpandimm/VFPExpandImm
	shared/functions/integer/AddWithCarry
	shared/functions/interrupts/InterruptID
	shared/functions/interrupts/SetInterruptRequestLevel
	shared/functions/memory/AArch64.BranchAddr
	shared/functions/memory/AccessDescriptor
	shared/functions/memory/AccessType
	shared/functions/memory/AddrTop
	shared/functions/memory/AlignmentEnforced
	shared/functions/memory/Allocation
	shared/functions/memory/BigEndian
	shared/functions/memory/BigEndianReverse
	shared/functions/memory/Cacheability
	shared/functions/memory/CreateAccDescA32LSMD
	shared/functions/memory/CreateAccDescASIMD
	shared/functions/memory/CreateAccDescASIMDAcqRel
	shared/functions/memory/CreateAccDescAT
	shared/functions/memory/CreateAccDescAcqRel
	shared/functions/memory/CreateAccDescAtomicOp
	shared/functions/memory/CreateAccDescDC
	shared/functions/memory/CreateAccDescDCZero
	shared/functions/memory/CreateAccDescExLDST
	shared/functions/memory/CreateAccDescGCS
	shared/functions/memory/CreateAccDescGCSSS1
	shared/functions/memory/CreateAccDescGPR
	shared/functions/memory/CreateAccDescGPTW
	shared/functions/memory/CreateAccDescIC
	shared/functions/memory/CreateAccDescIFetch
	shared/functions/memory/CreateAccDescLDAcqPC
	shared/functions/memory/CreateAccDescLDGSTG
	shared/functions/memory/CreateAccDescLOR
	shared/functions/memory/CreateAccDescLS64
	shared/functions/memory/CreateAccDescMOPS
	shared/functions/memory/CreateAccDescNV2
	shared/functions/memory/CreateAccDescRCW
	shared/functions/memory/CreateAccDescS1TTW
	shared/functions/memory/CreateAccDescS2TTW
	shared/functions/memory/CreateAccDescSME
	shared/functions/memory/CreateAccDescSPE
	shared/functions/memory/CreateAccDescSTGMOPS
	shared/functions/memory/CreateAccDescSVE
	shared/functions/memory/CreateAccDescSVEFF
	shared/functions/memory/CreateAccDescSVENF
	shared/functions/memory/CreateAccDescTRBE
	shared/functions/memory/CreateAccDescTTEUpdate
	shared/functions/memory/DataMemoryBarrier
	shared/functions/memory/DataSynchronizationBarrier
	shared/functions/memory/DeviceType
	shared/functions/memory/EffectiveMTX
	shared/functions/memory/EffectiveTBI
	shared/functions/memory/EffectiveTCMA
	shared/functions/memory/ErrorState
	shared/functions/memory/Fault
	shared/functions/memory/FaultRecord
	shared/functions/memory/FullAddress
	shared/functions/memory/GPCF
	shared/functions/memory/GPCFRecord
	shared/functions/memory/Hint_Prefetch
	shared/functions/memory/Hint_RangePrefetch
	shared/functions/memory/IsDataAccess
	shared/functions/memory/IsSMEAccess
	shared/functions/memory/IsSVEAccess
	shared/functions/memory/MBReqDomain
	shared/functions/memory/MBReqTypes
	shared/functions/memory/MPAM
	shared/functions/memory/MemAtomicOp
	shared/functions/memory/MemAttrHints
	shared/functions/memory/MemOp
	shared/functions/memory/MemType
	shared/functions/memory/Memory
	shared/functions/memory/MemoryAttributes
	shared/functions/memory/NewAccDesc
	shared/functions/memory/PASpace
	shared/functions/memory/Permissions
	shared/functions/memory/PhysMemRead
	shared/functions/memory/PhysMemRetStatus
	shared/functions/memory/PhysMemWrite
	shared/functions/memory/PrefetchHint
	shared/functions/memory/S1AccessControls
	shared/functions/memory/S2AccessControls
	shared/functions/memory/Shareability
	shared/functions/memory/SpeculativeStoreBypassBarrierToPA
	shared/functions/memory/SpeculativeStoreBypassBarrierToVA
	shared/functions/memory/Tag
	shared/functions/memory/VARange
	shared/functions/mpam/AltPARTIDspace
	shared/functions/mpam/AltPIdRealm
	shared/functions/mpam/AltPIdSecure
	shared/functions/mpam/DefaultMPAMinfo
	shared/functions/mpam/DefaultPARTID
	shared/functions/mpam/DefaultPMG
	shared/functions/mpam/GenMPAMatEL
	shared/functions/mpam/GenMPAMcurEL
	shared/functions/mpam/MAP_vPARTID
	shared/functions/mpam/MPAMisEnabled
	shared/functions/mpam/MPAMisVirtual
	shared/functions/mpam/PARTIDspaceFromSS
	shared/functions/mpam/UsePrimarySpaceEL10
	shared/functions/mpam/UsePrimarySpaceEL2
	shared/functions/mpam/genMPAM
	shared/functions/mpam/genPARTID
	shared/functions/mpam/genPMG
	shared/functions/mpam/getMPAM_PARTID
	shared/functions/mpam/getMPAM_PMG
	shared/functions/mpam/mapvpmw
	shared/functions/predictionrestrict/ASID
	shared/functions/predictionrestrict/ExecutionCntxt
	shared/functions/predictionrestrict/RESTRICT_PREDICTIONS
	shared/functions/predictionrestrict/RestrictType
	shared/functions/predictionrestrict/TargetSecurityState
	shared/functions/registers/BranchTo
	shared/functions/registers/BranchToAddr
	shared/functions/registers/BranchType
	shared/functions/registers/EffectiveFPCR
	shared/functions/registers/Hint_Branch
	shared/functions/registers/NextInstrAddr
	shared/functions/registers/ResetExternalDebugRegisters
	shared/functions/registers/ThisInstrAddr
	shared/functions/registers/_PC
	shared/functions/registers/_R
	shared/functions/sysregisters/SPSR_ELx
	shared/functions/sysregisters/SPSR_curr
	shared/functions/system/AArch64.ChkFeat
	shared/functions/system/AddressNotInNaturallyAlignedBlock
	shared/functions/system/BranchTargetCheck
	shared/functions/system/ClearEventRegister
	shared/functions/system/ConditionHolds
	shared/functions/system/ConsumptionOfSpeculativeDataBarrier
	shared/functions/system/CurrentInstrSet
	shared/functions/system/CurrentPL
	shared/functions/system/CurrentSecurityState
	shared/functions/system/DSBAlias
	shared/functions/system/EL0
	shared/functions/system/EL2Enabled
	shared/functions/system/EL3SDDUndef
	shared/functions/system/EL3SDDUndefPriority
	shared/functions/system/ELFromM32
	shared/functions/system/ELFromSPSR
	shared/functions/system/ELIsInHost
	shared/functions/system/ELStateUsingAArch32
	shared/functions/system/ELStateUsingAArch32K
	shared/functions/system/ELUsingAArch32
	shared/functions/system/ELUsingAArch32K
	shared/functions/system/EffectiveEA
	shared/functions/system/EffectiveHCR_EL2_E2H
	shared/functions/system/EffectiveHCR_EL2_NVx
	shared/functions/system/EffectiveSCR_EL3_NS
	shared/functions/system/EffectiveSCR_EL3_NSE
	shared/functions/system/EffectiveSCR_EL3_RW
	shared/functions/system/EffectiveTGE
	shared/functions/system/EndOfInstruction
	shared/functions/system/EnterLowPowerState
	shared/functions/system/EventRegister
	shared/functions/system/ExceptionalOccurrenceTargetState
	shared/functions/system/FIQPending
	shared/functions/system/GenerateAddress
	shared/functions/system/GetAccumulatedFPExceptions
	shared/functions/system/GetLoadStoreType
	shared/functions/system/GetPSRFromPSTATE
	shared/functions/system/HasArchVersion
	shared/functions/system/HaveAArch32
	shared/functions/system/HaveAArch32EL
	shared/functions/system/HaveAArch64
	shared/functions/system/HaveEL
	shared/functions/system/HaveELUsingSecurityState
	shared/functions/system/HaveFP16Ext
	shared/functions/system/HaveSecureState
	shared/functions/system/HighestEL
	shared/functions/system/Hint_CLRBHB
	shared/functions/system/Hint_DGH
	shared/functions/system/Hint_WFE
	shared/functions/system/Hint_WFI
	shared/functions/system/Hint_Yield
	shared/functions/system/IRQPending
	shared/functions/system/IllegalExceptionReturn
	shared/functions/system/InstrSet
	shared/functions/system/InstructionSynchronizationBarrier
	shared/functions/system/InterruptPending
	shared/functions/system/IsASEInstruction
	shared/functions/system/IsCurrentSecurityState
	shared/functions/system/IsEventRegisterSet
	shared/functions/system/IsHighestEL
	shared/functions/system/IsInHost
	shared/functions/system/IsSecure
	shared/functions/system/IsSecureBelowEL3
	shared/functions/system/IsSecureEL2Enabled
	shared/functions/system/LocalTimeoutEvent
	shared/functions/system/Mode_Bits
	shared/functions/system/NonSecureOnlyImplementation
	shared/functions/system/PLOfEL
	shared/functions/system/PSTATE
	shared/functions/system/PhysicalCountInt
	shared/functions/system/PrivilegeLevel
	shared/functions/system/ProcState
	shared/functions/system/RestoredITBits
	shared/functions/system/SCRType
	shared/functions/system/SCR_curr
	shared/functions/system/SecureOnlyImplementation
	shared/functions/system/SecurityState
	shared/functions/system/SecurityStateAtEL
	shared/functions/system/SendEvent
	shared/functions/system/SendEventLocal
	shared/functions/system/SetAccumulatedFPExceptions
	shared/functions/system/SetPSTATEFromPSR
	shared/functions/system/ShouldAdvanceHS
	shared/functions/system/ShouldAdvanceIT
	shared/functions/system/ShouldAdvanceSS
	shared/functions/system/ShouldSetPPEND
	shared/functions/system/SmallestTranslationGranule
	shared/functions/system/SpeculationBarrier
	shared/functions/system/SyncCounterOverflowed
	shared/functions/system/SynchronizeContext
	shared/functions/system/SynchronizeErrors
	shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts
	shared/functions/system/TakeUnmaskedSErrorInterrupts
	shared/functions/system/ThisInstr
	shared/functions/system/ThisInstrLength
	shared/functions/system/Unreachable
	shared/functions/system/UsingAArch32
	shared/functions/system/ValidSecurityStateAtEL
	shared/functions/system/VirtualFIQPending
	shared/functions/system/VirtualIRQPending
	shared/functions/system/WFxType
	shared/functions/system/WaitForEvent
	shared/functions/system/WaitForInterrupt
	shared/functions/system/WatchpointRelatedSyndrome
	shared/functions/unpredictable/ConstrainUnpredictable
	shared/functions/unpredictable/ConstrainUnpredictableBits
	shared/functions/unpredictable/ConstrainUnpredictableBool
	shared/functions/unpredictable/ConstrainUnpredictableInteger
	shared/functions/unpredictable/ConstrainUnpredictableProcedure
	shared/functions/unpredictable/Constraint
	shared/functions/unpredictable/Unpredictable
	shared/functions/vector/AdvSIMDExpandImm
	shared/functions/vector/MatMulAdd
	shared/functions/vector/PolynomialMult
	shared/functions/vector/SatQ
	shared/functions/vector/SignedSatQ
	shared/functions/vector/UnsignedRSqrtEstimate
	shared/functions/vector/UnsignedRecipEstimate
	shared/functions/vector/UnsignedSatQ

	J1.3.4 shared/trace
	shared/trace/Common/DebugMemWrite
	shared/trace/Common/DebugWriteExternalAbort
	shared/trace/Common/DebugWriteFault
	shared/trace/Common/GetTimestamp
	shared/trace/Common/PhysicalOffsetIsValid
	shared/trace/TraceBranch/BranchNotTaken
	shared/trace/TraceBuffer/AllowExternalTraceBufferAccess
	shared/trace/TraceBuffer/TraceBufferEnabled
	shared/trace/TraceBuffer/TraceBufferOwner
	shared/trace/TraceBuffer/TraceBufferRunning
	shared/trace/TraceInstrumentationAllowed/TraceInstrumentationAllowed
	shared/trace/selfhosted/EffectiveE0HTRE
	shared/trace/selfhosted/EffectiveE0TRE
	shared/trace/selfhosted/EffectiveE1TRE
	shared/trace/selfhosted/EffectiveE2TRE
	shared/trace/selfhosted/SelfHostedTraceEnabled
	shared/trace/selfhosted/TraceAllowed
	shared/trace/selfhosted/TraceContextIDR2
	shared/trace/selfhosted/TraceSynchronizationBarrier
	shared/trace/selfhosted/TraceTimeStamp
	shared/trace/system/IsTraceCorePowered

	J1.3.5 shared/translation
	shared/translation/at
	shared/translation/at/EncodePARAttrs
	shared/translation/at/PAREncodeShareability
	shared/translation/at/ReportedPARAttrs
	shared/translation/at/ReportedPARShareability
	shared/translation/attrs/DecodeDevice
	shared/translation/attrs/DecodeLDFAttr
	shared/translation/attrs/DecodeSDFAttr
	shared/translation/attrs/DecodeShareability
	shared/translation/attrs/EffectiveShareability
	shared/translation/attrs/NormalNCMemAttr
	shared/translation/attrs/S1ConstrainUnpredictableRESMAIR
	shared/translation/attrs/S1DecodeMemAttrs
	shared/translation/attrs/S2CombineS1AttrHints
	shared/translation/attrs/S2CombineS1Device
	shared/translation/attrs/S2CombineS1MemAttrs
	shared/translation/attrs/S2CombineS1Shareability
	shared/translation/attrs/S2DecodeCacheability
	shared/translation/attrs/S2DecodeMemAttrs
	shared/translation/attrs/S2MemTagType
	shared/translation/attrs/WalkMemAttrs
	shared/translation/faults/AlignmentFault
	shared/translation/faults/ExclusiveFault
	shared/translation/faults/NoFault
	shared/translation/gpc/AbovePPS
	shared/translation/gpc/DecodeGPTBlock
	shared/translation/gpc/DecodeGPTContiguous
	shared/translation/gpc/DecodeGPTGranules
	shared/translation/gpc/DecodeGPTTable
	shared/translation/gpc/DecodePGS
	shared/translation/gpc/DecodePGSRange
	shared/translation/gpc/DecodePPS
	shared/translation/gpc/GPCFault
	shared/translation/gpc/GPCNoFault
	shared/translation/gpc/GPCRegistersConsistent
	shared/translation/gpc/GPICheck
	shared/translation/gpc/GPIIndex
	shared/translation/gpc/GPIValid
	shared/translation/gpc/GPTL0Size
	shared/translation/gpc/GPTLevel0Index
	shared/translation/gpc/GPTLevel1Index
	shared/translation/gpc/GPTWalk
	shared/translation/gpc/GranuleProtectionCheck
	shared/translation/gpc/PGS
	shared/translation/gpc/Table
	shared/translation/translation/S1TranslationRegime
	shared/translation/vmsa/AddressDescriptor
	shared/translation/vmsa/ContiguousSize
	shared/translation/vmsa/CreateAddressDescriptor
	shared/translation/vmsa/CreateFaultyAddressDescriptor
	shared/translation/vmsa/DecodePASpace
	shared/translation/vmsa/DescriptorType
	shared/translation/vmsa/Domains
	shared/translation/vmsa/FetchDescriptor
	shared/translation/vmsa/HasUnprivileged
	shared/translation/vmsa/Regime
	shared/translation/vmsa/RegimeUsingAArch32
	shared/translation/vmsa/S1TTWParams
	shared/translation/vmsa/S2TTWParams
	shared/translation/vmsa/SDFType
	shared/translation/vmsa/SecurityStateForRegime
	shared/translation/vmsa/StageOA
	shared/translation/vmsa/TGx
	shared/translation/vmsa/TGxGranuleBits
	shared/translation/vmsa/TLBContext
	shared/translation/vmsa/TLBRecord
	shared/translation/vmsa/TTWState
	shared/translation/vmsa/TranslationRegime
	shared/translation/vmsa/TranslationSize
	shared/translation/vmsa/UseASID
	shared/translation/vmsa/UseVMID

	Part K: Appendixes�
	K1: Architectural Constraints on UNPREDICTABLE Behaviors�
	K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors
	K1.1.1 Overview of the constraints on Armv7 UNPREDICTABLE behaviors
	K1.1.2 Using R13 by instruction
	K1.1.3 Using R15 by instruction
	K1.1.4 Branching into an IT block
	K1.1.5 Branching to an unaligned PC
	K1.1.6 Loads and Stores to unaligned locations
	K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT
	K1.1.8 Unallocated System register access instructions
	K1.1.9 SBZ or SBO fields T32 and A32 in instructions
	K1.1.10 UNPREDICTABLE cases in immediate constants in T32 data-processing instructions
	K1.1.11 UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions
	K1.1.12 CONSTRAINED UNPREDICTABLE behaviors due to caching of System register control or data values
	K1.1.13 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization
	K1.1.14 Unallocated values with register fields of CP15 registers and Translation Table entries
	K1.1.15 Translation Table Base Address alignment
	K1.1.16 Handling of System register control fields for Advanced SIMD and floating-point operation
	K1.1.16.1 CONSTRAINED UNPREDICTABLE CPACR and NSACR settings

	K1.1.17 Mapping of non-idempotent memory locations using the Normal memory type
	K1.1.18 The Performance Monitors Extension
	K1.1.18.1 CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR
	K1.1.18.2 CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n>
	K1.1.18.3 CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN

	K1.1.19 The Activity Monitors Extension
	K1.1.19.1 CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR0<n> and AMEVTYPER0<n>
	K1.1.19.2 CONSTRAINED UNPREDICTABLE accesses to AMEVCNTR1<n> and AMEVTYPER1<n>
	K1.1.19.3 CONSTRAINED UNPREDICTABLE accesses to AMCNTENCLR1 and AMCNTENSET1

	K1.1.20 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED
	K1.1.21 Out of range VA
	K1.1.22 Instruction fetches from Device memory
	K1.1.23 Multi-access instructions that load the PC from Device memory
	K1.1.24 Programming CSSELR.Level for a cache level that is not implemented
	K1.1.25 Crossing a page boundary with different memory types or Shareability attributes
	K1.1.26 Crossing a 4KB boundary with a Device access
	K1.1.27 UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs
	K1.1.28 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings
	K1.1.28.1 CONSTRAINED UNPREDICTABLE behavior of CRC32 instruction encodings
	K1.1.28.2 CONSTRAINED UNPREDICTABLE behavior of other A32 instruction encodings

	K1.1.29 Out of range values of the Set/Way/Index fields in cache maintenance instructions
	K1.1.30 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set
	K1.1.30.1 SRS (T32)
	K1.1.30.2 SRS (A32)
	K1.1.30.3 SUBS PC, LR and related instructions (T32)
	K1.1.30.4 SUBS PC. LR and related instructions (A32)

	K1.1.31 CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point instructions
	K1.1.31.1 VCVT (between floating-point and fixed-point)
	K1.1.31.2 VLD1 (multiple single elements)
	K1.1.31.3 VLD1 (single element to all lanes)
	K1.1.31.4 VLD2 (multiple 2-element structures)
	K1.1.31.5 VLD2 (single 2-element structure to one lane)
	K1.1.31.6 VLD2 (single 2-element structure to all lanes)
	K1.1.31.7 VLD3 (multiple 3-element structures)
	K1.1.31.8 VLD3 (single 3-element structure to one lane)
	K1.1.31.9 VLD3 (single 3-element structure to all lanes)
	K1.1.31.10 VLD4 (multiple 4-element structures)
	K1.1.31.11 VLD4 (single 4-element structure to one lane)
	K1.1.31.12 VLD4 (single 4-element structure to all lanes)
	K1.1.31.13 VLDM
	K1.1.31.14 VMOV (between two general-purpose registers and two single-precision registers)
	K1.1.31.15 VMOV (between two general-purpose registers and a doubleword floating-point register)
	K1.1.31.16 VST1 (multiple single elements)
	K1.1.31.17 VST2 (multiple 2-element structures)
	K1.1.31.18 VST2 (single 2-element structure from one lane)
	K1.1.31.19 VST3 (multiple 3-element structures)
	K1.1.31.20 VST3 (single 3-element structure from one lane)
	K1.1.31.21 VST4 (multiple 4-element structures)
	K1.1.31.22 VST4 (single 4-element structure from one lane)
	K1.1.31.23 VSTM

	K1.1.32 CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR
	K1.1.32.1 Misprogramming VTCR.S
	K1.1.32.2 Misprogramming VTCR.{SL0, T0SZ}

	K1.1.33 CONSTRAINED UNPREDICTABLE behavior of EL2 features
	K1.1.33.1 ERET in User mode or System mode
	K1.1.33.2 Accessing Hyp mode from outside Hyp mode
	K1.1.33.3 Modifying PSTATE.M when in Hyp mode
	K1.1.33.4 Use of Hyp mode in Secure state
	K1.1.33.5 Exception return to Hyp mode
	K1.1.33.6 Stage 1 default memory type
	K1.1.33.7 Trapping of general exceptions to Hyp mode
	K1.1.33.8 MSR (banked register) and MRS (banked register)

	K1.1.34 Reserved values in System and memory-mapped registers and translation table entries
	K1.1.35 CONSTRAINED UNPREDICTABLE behavior in Debug state

	K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
	K1.2.1 Overview of the constraints on AArch64 UNPREDICTABLE behaviors
	K1.2.2 SBZ or SBO fields in A64 instructions
	K1.2.3 CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values
	K1.2.4 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization
	K1.2.5 Translation table base address alignment
	K1.2.6 The Performance Monitors Extension
	K1.2.6.1 CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or PMXEVETYPER_EL0
	K1.2.6.2 CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0
	K1.2.6.3 CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN

	K1.2.7 The Activity Monitors Extension
	K1.2.8 Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED
	K1.2.9 Out of range virtual address
	K1.2.10 Mapping of non-idempotent memory locations using the Normal memory type
	K1.2.11 Instruction fetches from Device memory
	K1.2.12 Programming the CSSELR_EL1.{Level, InD, TnD} for a cache level that is not implemented
	K1.2.13 Crossing a page boundary with different memory types or Shareability attributes
	K1.2.14 Crossing a peripheral boundary with a Device access
	K1.2.15 CONSTRAINED UNPREDICTABLE behaviors with SVE memory accesses
	K1.2.16 CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs
	K1.2.17 CONSTRAINED UNPREDICTABLE behavior for A64 instructions
	K1.2.17.1 Memory Copy and Memory Set CPY*
	K1.2.17.2 LDAXP
	K1.2.17.3 LDNP
	K1.2.17.4 LDNP (SIMD&FP)
	K1.2.17.5 LDP and LDIAPP
	K1.2.17.6 LDP (SIMD&FP)
	K1.2.17.7 LDPSW
	K1.2.17.8 LDR (immediate)
	K1.2.17.9 LDRB (immediate)
	K1.2.17.10 LDRH (immediate)
	K1.2.17.11 LDRSB (immediate)
	K1.2.17.12 LDRSH (immediate)
	K1.2.17.13 LDRSW (immediate)
	K1.2.17.14 LDXP
	K1.2.17.15 Memory Copy and Memory Set SET*
	K1.2.17.16 STP and STILP
	K1.2.17.17 STLXP
	K1.2.17.18 STLXR
	K1.2.17.19 STLXRB
	K1.2.17.20 STLXRH
	K1.2.17.21 STR (immediate)
	K1.2.17.22 STRB (immediate)
	K1.2.17.23 STRH (immediate)
	K1.2.17.24 STXP
	K1.2.17.25 STXR
	K1.2.17.26 STXRB
	K1.2.17.27 STXRH

	K1.2.18 Out of range values of the Set/Way/Index fields in cache maintenance instructions
	K1.2.19 Reserved values in System and memory-mapped registers and translation table entries
	K1.2.20 CONSTRAINED UNPREDICTABLE behavior in Debug state

	K2: Recommendations for Reporting Memory Attributes on an Interconnect�
	K2.1 Arm recommendations for reporting memory attributes on an interconnect
	K2.1.1 Effect of microarchitectural choices on memory attributes
	K2.1.1.1 Effect when memory accesses are forced to be Non-cacheable

	K3: GCS Software Usage Examples�
	K3.1 Recording the call stacks from the current PE
	K3.2 Recording the call stacks from a different PE
	K3.3 Overwriting a Guarded Control Stack record from a higher Exception level
	K3.4 Thread migration between PEs
	K3.5 Switching EL0 Guarded Control Stacks from EL1
	K3.6 Synchronization of GCS accesses
	K3.6.1 Interaction with non-coherent observers

	K4: ETE Recommended Configurations�
	K4.1 Configurations

	K5: ETE and TRBE Software Usage Examples�
	K5.1 Trace analyzer
	K5.1.1 Introduction
	K5.1.1.1 Using Trace Info elements to start trace analysis
	K5.1.1.2 Encountering Trace Info elements after trace analysis has started
	K5.1.1.3 Decompression information

	K5.1.2 ETE common pseudocode
	K5.1.2.1 Element ASL
	K5.1.2.2 Decompressor enumerations
	K5.1.2.3 Decompressor functions
	K5.1.2.4 Data encodings

	K5.1.3 Stage 1, parsing the byte stream
	K5.1.3.1 Retained state
	K5.1.3.2 Parsing
	K5.1.3.3 Alignment Sync packet
	K5.1.3.4 Discard
	K5.1.3.5 Overflow
	K5.1.3.6 Trace Info
	K5.1.3.7 Trace On
	K5.1.3.8 Speculation
	K5.1.3.9 Mispredict
	K5.1.3.10 Atom packets
	K5.1.3.11 Q packets
	K5.1.3.12 Source address packets
	K5.1.3.13 Exceptions
	K5.1.3.14 Address and context
	K5.1.3.15 Transactions
	K5.1.3.16 Timestamps
	K5.1.3.17 Event tracing
	K5.1.3.18 Functions

	K5.1.4 Stage 2, speculation resolution
	K5.1.4.1 Emit
	K5.1.4.2 Trace Info element
	K5.1.4.3 Commit element
	K5.1.4.4 Cancel element
	K5.1.4.5 Discard element
	K5.1.4.6 Stack

	K5.1.5 Stage 2, transaction resolution
	K5.1.5.1 Transaction
	K5.1.5.2 Transaction Start element
	K5.1.5.3 Transaction Commit element
	K5.1.5.4 Transaction Failure element

	K5.1.6 Stage 3, analysis
	K5.1.6.1 Analyze element
	K5.1.6.2 Retained state
	K5.1.6.3 Operation of the return stack
	K5.1.6.4 Atom element
	K5.1.6.5 Context element
	K5.1.6.6 Exception element
	K5.1.6.7 Source address element
	K5.1.6.8 Target Address element
	K5.1.6.9 Trace Info element
	K5.1.6.10 Trace On element
	K5.1.6.11 Mispredict element
	K5.1.6.12 ETEEvent element
	K5.1.6.13 Discard element
	K5.1.6.14 Overflow element
	K5.1.6.15 Q element
	K5.1.6.16 Timestamp element
	K5.1.6.17 Cycle Count element
	K5.1.6.18 Functions

	K5.2 ETE programming
	K5.2.1 Example code sequences
	K5.2.1.1 Enabling the trace unit
	K5.2.1.2 Disabling the trace unit
	K5.2.1.3 Example save restore routine

	K5.2.2 Minimal programming
	K5.2.3 Filtering models
	K5.2.4 Filtering used the exclude function
	K5.2.5 Filtering used the include function
	K5.2.6 OS save and restore routines

	K5.3 Trace examples
	K5.3.1 Basic Examples
	K5.3.2 Examples of changes in context
	K5.3.3 An example of the use of the trace unit return stack
	K5.3.4 Transactions

	K5.4 Differences between ETM and ETE
	K5.5 Context switching
	K5.6 Controlling generation of trace buffer management events

	K6: Stages of Execution�
	K6.1 Stages of execution without the TME
	K6.2 Stages of execution with the TME

	K7: Recommended External Debug Interface�
	K7.1 About the recommended external debug interface
	K7.1.1 EDBGRQ and DBGACK
	K7.1.2 Non-secure, Secure, Realm, and Root views of the debug registers

	K7.2 PMUEVENT bus
	K7.3 Recommended authentication interface
	K7.4 Management registers and CoreSight compliance
	K7.4.1 CoreSight interface register map
	K7.4.2 Management register access permissions
	K7.4.3 Management register resets
	K7.4.4 About the Peripheral identification scheme
	K7.4.4.1 Allocating revisions and part numbers

	K7.4.5 About the Component Identification scheme

	K8: Additional Information for Implementations of the Generic Timer�
	K8.1 Providing a complete set of features in a system level implementation
	K8.2 Gray count scheme for timer distribution scheme

	K9: Legacy Instruction Syntax for AArch32 Instruction Sets�
	K9.1 Legacy Instruction Syntax
	K9.1.1 Pre-UAL instruction syntax for the A32 base instructions
	K9.1.2 Pre-UAL instruction syntax for the A32 floating-point instructions
	K9.1.3 FCONST

	K10: Address Translation Examples�
	K10.1 AArch64 Address translation examples
	K10.1.1 Examples of performing the initial lookup
	K10.1.1.1 Performing the initial lookup using the 4KB translation granule
	K10.1.1.2 Performing the initial lookup using the 16KB granule
	K10.1.1.3 Performing the initial lookup using the 64KB translation granule

	K10.1.2 Full translation flows for VMSAv8-64 address translation
	K10.1.2.1 The address and properties fields shown in the translation flows
	K10.1.2.2 Full translation flow using the 4KB granule and starting at level 0
	K10.1.2.3 Full translation flow using the 4KB granule and starting at level 1
	K10.1.2.4 Full translation flow using the 64KB granule and starting at level 1
	K10.1.2.5 Full translation flow using the 64KB granule and starting at level 2

	K10.2 AArch32 Address translation examples
	K10.2.1 Address translation examples using the VMSAv8-32 Short descriptor translation table format
	K10.2.1.1 Translation flow for a Supersection
	K10.2.1.2 Translation flow for a Section
	K10.2.1.3 Translation flow for a Large page
	K10.2.1.4 Translation flow for a Small page
	K10.2.1.5 The address and Properties fields shown in the translation flows

	K10.2.2 Address translation examples using the VMSAv8-32 Long descriptor translation table format
	K10.2.2.1 Full translation flow, starting at level 1 lookup
	K10.2.2.2 Full translation flow, starting at level 2 lookup
	K10.2.2.3 The address and Properties fields shown in the translation flows

	K11: Example OS Save and Restore Sequences�
	K11.1 Save Debug registers
	K11.2 Restore Debug registers

	K12: Recommended Upload and Download Processes for External Debug�
	K12.1 Using memory access mode in AArch64 state

	K13: Software Usage Examples�
	K13.1 Use of the Advanced SIMD complex number instructions
	K13.1.1 Complex addition
	K13.1.2 Complex multiplication

	K13.2 Use of the Armv8.2 extensions to the Cryptographic Extension
	K13.2.1 Use of the SHA512 instructions
	K13.2.2 Use of the SHA3 instructions
	K13.2.3 Use of the SM3 instructions
	K13.2.4 Use of the SM4 instructions

	K14: Barrier Litmus Tests�
	K14.1 Introduction
	K14.1.1 Overview of memory consistency
	K14.1.2 Barrier operation definitions
	K14.1.3 Conventions

	K14.2 Load-Acquire, Store-Release and barriers
	K14.2.1 Message passing
	K14.2.1.1 Resolving weakly-ordered message passing by using Acquire and Release
	K14.2.1.2 Resolving message passing by the use of Store-Release and address dependency

	K14.2.2 Address dependency with object construction
	K14.2.3 WFE and WFI and barriers

	K14.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers
	K14.3.1 Acquiring a lock
	K14.3.2 Releasing a lock
	K14.3.3 Ticket locks
	K14.3.4 Use of Wait For Event (WFE) and Send Event (SEV) with locks
	K14.3.4.1 Simple lock
	K14.3.4.2 Ticket lock

	K14.4 Using a mailbox to send an interrupt
	K14.5 Cache and TLB maintenance instructions and barriers
	K14.5.1 Data cache maintenance instructions
	K14.5.1.1 Message passing to non-caching observers
	K14.5.1.2 Multiprocessing message passing to non-caching observers
	K14.5.1.3 Invalidating DMA buffers, non-functional example
	K14.5.1.4 Invalidating DMA buffers, functional example with single PE
	K14.5.1.5 Invalidating DMA buffers, functional example with multiple coherent PEs

	K14.5.2 Instruction cache maintenance instructions
	K14.5.2.1 Ensuring the visibility of updates to instructions for a uniprocessor
	K14.5.2.2 Ensuring the visibility of updates to instructions for a multiprocessor

	K14.5.3 TLB maintenance instructions and barriers
	K14.5.3.1 Ensuring the visibility of updates to translation tables for a uniprocessor
	K14.5.3.2 Ensuring the visibility of updates to translation tables for a multiprocessor
	K14.5.3.3 Paging memory in and out
	K14.5.3.4 Using break-before-make when updating translation table entries

	K14.5.4 Ordering of Memory-mapped device control with payloads

	K14.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers
	K14.6.1 Simple ordering and barrier cases
	K14.6.1.1 Simple weakly consistent ordering example
	K14.6.1.2 Message passing
	K14.6.1.3 Address dependency with object construction
	K14.6.1.4 Posting a store before polling for acknowledgment
	K14.6.1.5 WFE and WFI and barriers

	K14.6.2 Load-Exclusive, Store-Exclusive and barriers
	K14.6.2.1 Acquiring a lock
	K14.6.2.2 Releasing a lock
	K14.6.2.3 Use of Wait For Event (WFE) and Send Event (SEV) with locks

	K14.6.3 Using a mailbox to send an interrupt
	K14.6.4 Cache and TLB maintenance instructions and barriers
	K14.6.4.1 Data cache maintenance instructions
	K14.6.4.2 Instruction cache maintenance instructions
	K14.6.4.3 TLB maintenance instructions and barriers

	K15: Random Number Generation�
	K15.1 Properties of the generated random number

	K16: Arm Pseudocode Definition�
	K16.1 About the Arm pseudocode
	K16.1.1 General limitations of Arm pseudocode

	K16.2 Pseudocode for instruction descriptions
	K16.2.1 Instruction encoding diagrams and instruction pseudocode
	K16.2.2 Limitations of the instruction pseudocode

	K16.3 Data types
	K16.3.1 General data type rules
	K16.3.2 Bitstrings
	K16.3.2.1 Syntax
	K16.3.2.2 Description

	K16.3.3 Integers
	K16.3.3.1 Syntax
	K16.3.3.2 Description

	K16.3.4 Reals
	K16.3.4.1 Syntax
	K16.3.4.2 Description

	K16.3.5 Booleans
	K16.3.5.1 Syntax
	K16.3.5.2 Description

	K16.3.6 Enumerations
	K16.3.6.1 Syntax and examples
	K16.3.6.2 Description

	K16.3.7 Structures
	K16.3.7.1 Syntax and examples
	K16.3.7.2 Description

	K16.3.8 Tuples
	K16.3.8.1 Examples
	K16.3.8.2 Description

	K16.3.9 Arrays
	K16.3.9.1 Syntax
	K16.3.9.2 Description

	K16.4 Operators
	K16.4.1 Relational operators
	K16.4.1.1 Equality and non-equality
	K16.4.1.2 Comparisons
	K16.4.1.3 Set membership with IN

	K16.4.2 Boolean operators
	K16.4.3 Bitstring operators
	K16.4.3.1 Logical operations on bitstrings
	K16.4.3.2 Bitstring concatenation and slicing

	K16.4.4 Arithmetic operators
	K16.4.4.1 Unary plus and minus
	K16.4.4.2 Addition and subtraction
	K16.4.4.3 Multiplication
	K16.4.4.4 Division and modulo
	K16.4.4.5 Scaling
	K16.4.4.6 Raising to a power

	K16.4.5 The assignment operator
	K16.4.5.1 General expression syntax

	K16.4.6 Precedence rules
	K16.4.7 Conditional expressions
	K16.4.8 Operator polymorphism

	K16.5 Statements and control structures
	K16.5.1 Statements and Indentation
	K16.5.2 Function and procedure calls
	K16.5.2.1 Procedure and function definitions
	K16.5.2.2 Procedure calls
	K16.5.2.3 Return statements

	K16.5.3 Conditional control structures
	K16.5.3.1 if … then … else …
	K16.5.3.2 case … of …

	K16.5.4 Loop control structures
	K16.5.4.1 repeat … until …
	K16.5.4.2 while … do
	K16.5.4.3 for …

	K16.5.5 Special statements
	K16.5.5.1 UNDEFINED
	K16.5.5.2 UNPREDICTABLE
	K16.5.5.3 SEE…
	K16.5.5.4 IMPLEMENTATION_DEFINED

	K16.5.6 Comments

	K16.6 Built-in functions
	K16.6.1 Bitstring manipulation functions
	K16.6.1.1 Bitstring length and most significant bit
	K16.6.1.2 Bitstring concatenation and replication
	K16.6.1.3 Bitstring count
	K16.6.1.4 Testing a bitstring for being all zero or all ones
	K16.6.1.5 Lowest and highest set bits of a bitstring
	K16.6.1.6 Zero-extension and sign-extension of bitstrings
	K16.6.1.7 Converting bitstrings to integers

	K16.6.2 Arithmetic functions
	K16.6.2.1 Absolute value
	K16.6.2.2 Rounding and aligning
	K16.6.2.3 Maximum and minimum

	K16.7 Miscellaneous helper procedures and functions
	K16.7.1 EndOfInstruction()
	K16.7.2 Hint_Debug()
	K16.7.3 Hint_PreloadData()
	K16.7.4 Hint_PreloadDataForWrite()
	K16.7.5 Hint_PreloadInstr()
	K16.7.6 Hint_Yield()
	K16.7.7 IsExternalAbort()
	K16.7.8 IsAsyncAbort()
	K16.7.9 LSInstructionSyndrome()
	K16.7.10 ProcessorID()
	K16.7.11 RemapRegsHaveResetValues()
	K16.7.12 ResetControlRegisters()
	K16.7.13 ThisInstr()
	K16.7.14 ThisInstrLength()

	K16.8 Arm pseudocode definition index

	K17: Registers Index�
	K17.1 Introduction and register disambiguation
	K17.1.1 Register name disambiguation by Execution state
	K17.1.2 Register name disambiguation by Exception level

	K17.2 Alphabetical index of AArch64 registers and System instructions
	K17.3 Functional index of AArch64 registers and System instructions
	K17.3.1 Special-purpose registers
	K17.3.2 VMSA-specific registers
	K17.3.3 ID registers
	K17.3.4 Performance monitors registers
	K17.3.5 Activity monitors registers
	K17.3.6 Debug registers
	K17.3.7 Trace registers
	K17.3.8 Branch Record Buffer registers
	K17.3.9 RAS registers
	K17.3.10 Root Security state registers
	K17.3.11 Memory Partitioning and Monitoring registers
	K17.3.12 Generic timer registers
	K17.3.13 Cache maintenance system instructions
	K17.3.14 Address translation system instructions
	K17.3.15 TLB maintenance system instructions
	K17.3.16 Prediction restriction System instructions
	K17.3.17 Base system registers

	K17.4 Alphabetical index of AArch32 registers and System instructions
	K17.5 Functional index of AArch32 registers and System instructions
	K17.5.1 Special-purpose registers
	K17.5.2 VMSA-specific registers
	K17.5.3 ID registers
	K17.5.4 Performance monitors registers
	K17.5.5 Activity Monitors registers
	K17.5.6 Debug registers
	K17.5.7 RAS registers
	K17.5.8 Generic timer registers
	K17.5.9 Cache maintenance system instructions
	K17.5.10 Address translation system instructions
	K17.5.11 TLB maintenance system instructions
	K17.5.12 Prediction restriction instructions
	K17.5.13 Legacy feature registers and system instructions
	K17.5.14 Base system registers

	K17.6 Alphabetical index of memory-mapped registers
	K17.7 Functional index of memory-mapped registers
	K17.7.1 ID registers
	K17.7.2 Performance monitors registers
	K17.7.3 Debug registers
	K17.7.4 RAS registers
	K17.7.5 Cross-trigger interface registers

	Glossary

